Trace Perchlorate in Groundwaters of the Pajarito Plateau, Española Basin and the Rio Grande North of Taos, New Mexico

DALE, Michael¹, GRANZOW, Kim¹, LONGMIRE, Patrick², YANICAK, Steve¹, ENGLERT, Dave¹, and COUNCE, Dale²

¹ New Mexico Environment Department, DOE Oversight Bureau, 134 State Road 4, Suite A, White Rock, NM 87544

² Los Alamos National Laboratory, EES-6, MS D469, Los Alamos, NM 87544
ACKNOWLEDGMENTS

Department of Energy
Los Alamos National Laboratory
OUTLINE OF PRESENTATION

Why Determine Background?
Analytical Methods
Study Areas
Aquifers Tested
Testing Period and Analyses
Results
Perchlorate in Precipitation
Findings and Conclusions
WHY DETERMINE BACKGROUND?

Assess groundwater impacts of known anthropogenic sources

May help in determining drinking water and cleanup standards, modeling risk/exposure, pathway analysis, tracer, etc.
ANALYTICAL METHODS

Liquid Chromatography/Mass Spectrometry/Mass Spectrometry (LC/MS/MS) (EPA SW846 LCMS by 8321A)

Method can detect perchlorate to 0.05 μg/L; quantify to about 0.20 μg/L.

Performance evaluation on the method conducted by LANL and NMED in 2003: results favored the method for low-level, sub- μg/L concentrations.
ANALYTICAL METHODS

Ion Chromatography/Mass Spectrometry/Mass Spectrometry (IC/MS/MS) (EPA SW846 8321A Perchlorate ICMSMS)

Method can detect perchlorate to 0.0012 μg/L; quantify to about 0.01 μg/L.
STUDY AREAS

Los Alamos, NM – Springs and wells located in the Sierra de Los Valles and Pajarito Plateau

Taos, NM - Springs located along the west and east side of the Rio Grande
AQUIFERS TESTED

Los Alamos Area
Perched volcanic in mountain block/front and perched beneath the Pajarito Plateau; submodern to modern age with short flow paths. Twelve stations sampled with 20 results.

Pajarito Plateau regional system; probably >1000 yrs age with long flow paths. Twenty-two stations sampled with 36 results.

Taos Area
West side Rio Grande north of Taos – assumed regional; probably >1000 yrs age with long flow paths. Three stations sampled with five results.

East side Rio Grande north of Taos – assumed intermediate; submodern to modern age with short flow paths. Four stations sampled with seven results.

West side Rio Grande south of Taos – assumed regional; probably >1000 yrs age with long flow path. One station sampled with two results.
TWO-YEAR TESTING PERIOD

2003 and 2004 (total of 76 results from 47 wells and springs)

ANALYSES

In addition to perchlorate, samples were analyzed for major ions, trace metals, low-level tritium, and stable isotopes.
RESULTS
PERCHED VOLCANIC AND INTERMEDIATE - Los Alamos

REGIONAL - Los Alamos

WEST SIDE RIO GRANDE - Taos

EAST SIDE RIO GRANDE - Taos

Mean: 0.27
1 STD: 0.07
n: 20

Mean: 0.27
1 STD: 0.09
n: 36

Mean: 0.10
1 STD: 0.03
n: 5

Mean: 0.12
1 STD: 0.01
n: 7
Perchlorate vs δ^{18}O

-15.5
-14.5
-13.5
-12.5
-11.5
-10.5
0 0.1 0.2 0.3 0.4

Perchlorate (µg/L)

δ^{18}O (‰)

Taos area

Los Alamos area

Low Elevation Recharge

High Elevation Recharge

Big Spring, South of Taos
PERCHLORATE IN LOCAL PRECIPITATION

Four non-filtered snow-pack samples - perchlorate not detected greater than 0.05 – 0.06 µg/L.

Three non-filtered rain samples - perchlorate not detected greater than 0.05 µg/L.

Two non-filtered rain samples contain 0.0099 and 0.021 µg/L using the IC/MS/MS method – detection limit at 0.0012 µg/L; reporting limit at 0.01 µg/L.

IS IT REALLY THERE?
FINDINGS AND CONCLUSIONS

- Perchlorate is present in background groundwaters in the Los Alamos and Taos areas.
- Little variability within the Los Alamos/Pajarito Plateau groundwater system. Concentration does not vary along the flow path from recharge to discharge, suggesting that it enters, or is produced, in the system early.
- Taos area groundwater contains less perchlorate than the Los Alamos groundwater.
- Concentration inversely correlates with the oxygen isotope composition – more depleted, higher elevation, less perchlorate. This behavior may be due to the variability in evapotranspiration with respect to recharge elevation.
- Due to the current threshold of instrument detection limits, it is difficult to determine if perchlorate is present in precipitation.