Ms. Michelle Hunter, Bureau Chief
Ground Water Quality Bureau
New Mexico Environment Department
Harold Runnels Building, Room N2250
1190 St. Francis Drive
P.O. Box 26110
Santa Fe, NM 87502

Dear Ms. Hunter:

Subject: Request for Additional Information, Class V Underground Injection Control Wells, Discharge Permit Application DP-1835

On September 24, 2015, Mr. Steve Huddleston, New Mexico Environment Department (NMED) Ground Water Quality Bureau, requested additional information (verbal communication) from the U.S. Department of Energy and Los Alamos National Security, LLC (DOE/LANS) on discharge permit application DP-1835, submitted by DOE/LANS in April 2015. Discharge permit application DP-1835 is for the operation of the Chromium Project’s proposed Class V underground injection controls (UIC) wells. Mr. Huddleston asked for additional information on the following subject:

- **Additional information on injection well design and operation.** The injection well design schematic provided in Appendix B of the April 2015 discharge permit application (ENV-DO-15-0085) should be modified to include the following additional information: (a) the normal and maximum operating pressures, (b) the possible degrees from vertical of injection wells drilled at an angle, and (c) identification of the Baski, Inc. flow control valve (FCVTM). In addition, a more detailed description of how the injection wells will be operated is needed.

Enclosures 1, 2, and 3 provide the additional information requested.
Please contact Robert S. Beers by telephone at (505) 667-7969 or by email at bbeers@lanl.gov if you have questions regarding this information.

Sincerely,

Alison M. Dorries
Division Leader
Environmental Protection Division
Los Alamos National Security, LLC

AMD:GET:MTS:RSB/Im

Enclosures:
1. Injection well operation schematic
2. Injection well operation description
3. Baski Flow Control Valve description

Cy: James Hogan, NMED/SWQB, Santa Fe, NM, (E-File)
John E. Kieling, NMED/HWB, Santa Fe, NM, (E-File)
Steven M. Yanicak, NMED/DOE/OB, (E-File)
Cheryl Rodriguez, DOE-EM-LA, (E-File)
Gene E. Turner, DOE-NA-LA, (E-File)
Jordan Arnswald, DOE-NA-LA, (E-File)
Kirsten Laskey, DOE-EM-LA, (E-File)
Craig S. Leasure, PADOPS, (E-File)
Amy E. De Palma, PADOPS, (E-File)
Michael T. Brandt, ADESH, (E-File)
Raeanna Sharp-Geiger, ADESH, (E-File)
Alison M. Dorries, ENV-DO, (E-File)
Randall M. Erickson, ADEP, (E-File)
Enrique Torres, ADEP, (E-File)
Bruce Robinson, ADEP-PDO, (E-File)
Stephanie F. Swickley, ADEP-PDO, (E-File)
Danny Katzman, ADEP-PDO, (E-File)
Alan S. Macgregor, ER-ES, (E-File)
Gerald F. Fordham, ES-EPD, (E-File)
Michael T. Saladen, ENV-CP, (E-File)
Robert S. Beers, ENV-CP, (E-File)
lasomailbox@nnsa.doe.gov, (E-File)
locatesteam@lanl.gov, (E-File)
epcceat@lanl.gov, (E-File)
env-correspondence@lanl.gov, (E-File)
Ms. Michelle Hunter, Bureau Chief
Ground Water Quality Bureau
New Mexico Environment Department
Harold Runnells Building, Room N2250
1190 St. Francis Drive
P.O. Box 26110
Santa Fe, NM 87502

Dear Ms. Hunter:

Subject: Request for Additional Information, Class V Underground Injection Control Wells, Discharge Permit Application DP-1835

On September 24, 2015, Mr. Steve Huddleson, New Mexico Environment Department (NMED) Ground Water Quality Bureau, requested additional information (verbal communication) from the U.S. Department of Energy and Los Alamos National Security, LLC (DOE/LANS) on discharge permit application DP-1835, submitted by DOE/LANS in April 2015. Discharge permit application DP-1835 is for the operation of the Chromium Project’s proposed Class V underground injection controls (UIC) wells. Mr. Huddleson asked for additional information on the following subject:

- Additional information on injection well design and operation. The injection well design schematic provided in Appendix B of the April 2015 discharge permit application (ENV-DO-15-0085) should be modified to include the following additional information: (a) the normal and maximum operating pressures, (b) the possible degrees from vertical of injection wells drilled at an angle, and (c) identification of the Baski, Inc. flow control valve (FCVTM). In addition, a more detailed description of how the injection wells will be operated is needed.

Enclosures 1, 2, and 3 provide the additional information requested.
ENCLOSURE 1

Injection well operation schematic

ENV-DO-15-0274

LA-UR-15-27555

Date: OCT 08 2015
INJECTION WELL OPERATION SCHEMATIC

INJECTION WELL SLAVE TUBE

INJECTION WELL CASING

WATER LEVEL IN WELL CASING MONITORED WITH PRESSURE TRANSDUCER AND ALARMD IF AT HIGH LEVEL

WATER LEVEL INJECTION TREATMENT TO BE INJECTED

BACKFLUSH WATER TO STORAGE-TREATMENT

ENV-DO-15-0274

ENCLOSURE 1

HIGH LEVEL ALARM INJECTION WATER LEVEL (35-45 PSI ABOVE STATIC LEVEL)

NORMAL INJECTION WATER LEVEL (10-15 PSI ABOVE STATIC LEVEL)

STATIC WATER LEVEL

INJECTION WELL SCREEN

CHECK VALVE

MAINTENANCE (BACK-FLUSH) PUMP

BASKI FLOW CONTROL VALVE WILL BE USED TO MAINTAIN CONSTANT PRESSURE IN DISCHARGE-INJECTION PIPE WHILE CONTROLLING FLOW OF TREATED WATER INTO INJECTION WELL CASING. FLOW FROM INJECTION WELL CASING THROUGH WELL SCREEN AND INTO THE FORMATION WILL BE VIA GRAVITY.

NOT TO SCALE
ENCLOSURE 2

Injection well operation description

ENV-DO-15-0274

LA-UR-15-27555

Date: OCT 08 2015
Injection Well Operation Description

Chromium-containing groundwater extracted from the regional aquifer in Mortandad Canyon will be treated with ion exchange to remove chromium prior to injection into the regional aquifer. The injection wells to be used will be similar in design to the extraction wells and will inject the treated effluent into the same vertical interval of the regional aquifer from which it was removed (0-100 ft below the top of the regional aquifer). The flow of treated water that is pumped into the injection wells will be controlled with a Baski flow control valve (FCV™). The FCV™ will keep the discharge-injection pipe filled and under pressure to prevent cascading of the water into the well. Once discharged from the FCV™ the water will enter the injection well casing, and flow through the well screen and into the formation via gravity. Pressure in the piping at the surface will be monitored with a control system which will then adjust the FCV™ operation to maintain the pipeline pressure set point.

The water level in the injection well casing will be monitored by the control system through the use of a down-hole pressure transducer. Static water level within the injection wells is expected to be 1,000 to 1,100 feet below the ground surface. During injection it is expected that the water pressure within the injection well casing will rise 10-15 psi above the static water level. Reduced injection capacity within the well is anticipated during on-going operation. Thus the control system will be programmed to alarm the operator and shut down one or more extraction wells, if necessary, in the event that water levels within the injection well casing reached the high level set point (35-45 psi above static water level).

The discharge-injection pipe will also be equipped with a check valve and a submersible pump. This pump will be used to maintain well performance by back flushing the well as part of a regular maintenance program. Back flushing is anticipated once the water pressure within the injection well increases 10-12 psi above the levels observed initially. Backflush water will be stored and treated, if needed, prior to injection or land application in accordance with the approved Discharge Permit.

Schematics of the injection well operation and the Baski FCV™ are provided as Enclosures 1 and 3, respectively. The schematic in Enclosure 1 depicts an angled injection well; the angle from vertical is not anticipated to be greater than 23 degrees.
ENCLOSURE 3

Baski Flow Control Valve description

ENV-DO-15-0274

LA-UR-15-27555

Date: OCT 08 2015
Above:
Cort Baski with the inner control section of a FCV™ Flow Control Valve (16-inch OD, all stainless steel), with the channels and annular orifices visible.

Right:
After fabrication this unit was installed at 545 feet below ground level, just above a vertical turbine bowl assembly.
The InFlex™ Flow Control Valve (FCV™) is a fluid-actuated valve that permits pumping water to the surface or regulating the flow of water from the surface into the well, while using the same column pipe and maintaining a column of water in it at all times. The InFlex™ FCV™ may be used in conjunction with a submersible pump or a vertical turbine pump for Aquifer Storage and Recovery (ASR) and Aquifer Thermal Energy Storage (ATES) applications. Advantages of the InFlex™ FCV™ include:

- **Impressive Performance**
 Testing at the factory and field use of the InFlex™ FCV™ confirm that it effectively adjusts and holds desired injection rates. Because of its unique design features, including no sliding seals to fail, it is the most durable and versatile valve on the market.

- **Cavitation-Free Design**
 The key to the successful control of the injection water through this valve is its long, adjustable, annular-gap flow path through a series of circular annular orifices. This flow path provides non-cavitating head loss that is easily controlled by changing the gap between the annular orifices and the rubber element. Stainless steel channels are a part of the adjustable flow system and stabilize the rubber element as it is pushed down and stretched by the inflation liquid.

- **Impossible to Sand-lock**
 By design, there is no place for sand to collect; therefore, the InFlex™ FCV™ cannot sand lock. It is impossible for the rubber element to “stick” at any time during pumping or injection, as there are no sliding surfaces to become “stuck” due to corrosion or sand-locking.

- **Wear-resistant**
 The InFlex™ FCV™ is extremely wear-resistant due to its rubber control element, similar to slurry pumps which are rubber lined to reduce wear. Due to its low-velocity, cavitation-free flow, the InFlex™ FCV™ resists sand and silt far better than conventional valve designs. Conventional valves have all of their pressure loss (at high velocities) across only one orifice stage, leading to wear from suspended solids and erosion with cavitation.

- **Ask about our 5-year limited warranty**
 The InFlex™ FCV™ utilizes a reinforced rubber element, the only “moving” part. This element is an adaptation of the element that has been successfully used in our inflatable downhole packers in demanding open-hole conditions for over two decades. All metal parts of the valve are constructed of stainless steel. Other more corrosion-resistant alloys are optional for aggressive environments.

- **Wide Range of Injection Capacities**
 Our InFlex™ FCV™ offers injection capacities of 10,000 gpm and higher with driving heads of 20 to 3,000 feet. All of the valves are infinitely adjustable from drip-tight shut-off to maximum flow. Furthermore, their maximum flow rate can be limited by using two control lines.

Flow Rate Discussion:

\[
Flow \ Rate \ [\text{gpm}] = C_v \sqrt{\text{Head \ [feet]}}
\]

The flow rate through a given valve is proportional to the square root of the driving head. The driving head is the sum of the injection pipeline pressure in feet of water plus the distance down to the injection water level in the well minus the head loss in the column pipe. Baski customizes the flow coefficient \(C_v\) range of each valve to the intended application (its column pipe size and driving head). Flow control results from changing this \(C_v\) between 0 (closed) and the valve’s maximum (open).

For more information on aquifer storage and recovery (ASR), please refer to

Groundwater Recharge and Wells - A Guide to Aquifer Storage Recovery by R. David G. Pyne

BASiK Inc. 1586 South Robb Way Denver, Colorado 80232 USA www.baski.com
Phone 1-303-789-1200 1-800-55-BASKI FAX 1-303-789-0900 info@baski.com

22
These drawings of the InFlex™ FCV™ show the operation of the valve for injection at full (maximum) and partial flows, and for pumping... note the cross sections.

For injection, the annular orifices provide the tortuous path for water that results in the desired non-cavitating pressure loss across the valve. The reinforced element stretches into the area between the channels which further increases pressure loss in the valve.

For pumping, the element is pressurized to provide a leak-proof shut-off seal against the area without channels. The valve has a built-in liquid inflation chamber so that gas from the surface may be used to actuate the valve.