Title V Operating Permit

APPLICATION FOR PERMIT RENEWAL

Valencia Regional Landfill and Recycling Facility Los Lunas, New Mexico

Submitted To:

Program Manager Permitting Section New Mexico Environment Department Air Quality Bureau 525 Camino De Los Marquez Santa Fe, New Mexico 87505 505.476.4300

Prepared For:

Waste Management of New Mexico, Inc. P.O. Box 15700 Rio Rancho, New Mexico 87174 505.892.2055

Prepared By:

Gordon Environmental/PSC 333 Rio Rancho Blvd., Suite 400 Rio Rancho, New Mexico 87124 505.867.6990

November 15, 2018 Gordon/PSC Project #: 01025418

November 15, 2018

Ms. Melinda Owens Title V Permit Section Manager New Mexico Environment Department Air Quality Bureau 525 Camino De Los Marquez Santa Fe, New Mexico 87505

Re: Valencia Regional Landfill and Recycling Facility: Application for Title V Operating Permit Renewal Permit Application No. P247L-R1 [0254.18]

Dear Ms. Owens,

On behalf of our client, Waste Management of New Mexico, Inc. (WMNM), Gordon Environmental/PSC is pleased to provide the New Mexico Environment Department (NMED) Air Quality Bureau (AQB) with the enclosed Title V Application for Permit Renewal for the Valencia Regional Landfill and Recycling Facility (VRLRF). Consistent with the requirements of 20.2.70.300.B.2 NMAC, this Application is being submitted 12 months prior to the date of the current permit expiration (Operating Permit No. P247L-R1). In the attached Application, the emissions estimates demonstrate compliance with applicable regulations, specifically 40 CFR 50 (National Ambient Air Quality Standards); 40 CFR 52 (Prevention of Significant Deterioration); and 20.2.3 NMAC (New Mexico Ambient Air Quality Standards).

Where appropriate, data provided in the twenty-two sections has been cross-referenced to information in the relevant Section of the Operating Permit Application Form (**Section 1**). Consistent with the requirements of 20.2.70.300.D, two electronic versions of the Application are being provided to AQB, along with two full hard-copy versions.

We appreciate the Bureau's review of the enclosed information. Please contact us with your questions and comments.

Sincerely,

GORDON ENVIRONMENTAL/PSC

Bv /

Michael J. Crepeau, P.E. Senior Project Manager

Enclosures

cc: Mr. Jack Kolopanis, Area Environmental Protection Manager, WMNM (w/enclosures) Mr. Stephen Miceli, District Landfill Manager, WMNM (w/enclosures)

MJC/IC X:2018/0254.18/03_DSGNZ_TO/02_AGENCY/nmed_cvrltr_VRLRF.docx

Mail Application To:

New Mexico Environment Department Air Quality Bureau Permits Section 525 Camino de los Marquez, Suite 1 Santa Fe, New Mexico, 87505

Phone: (505) 476-4300 Fax: (505) 476-4375 www.env.nm.gov/aqb

AIRS No.:

For Department use only:

Universal Air Quality Permit Application

Use this application for NOI, NSR, or Title V sources.

Use this application for: the initial application, modifications, technical revisions, and renewals. For technical revisions, complete Sections, 1-A, 1-B, 2-E, 3, 9 and any other sections that are relevant to the requested action; coordination with the Air Quality Bureau permit staff prior to submittal is encouraged to clarify submittal requirements and to determine if more or less than these sections of the application are needed. Use this application for streamline permits as well. For NOI applications, submit the entire UA1, UA2, and UA3 applications on a single CD (no copies are needed). For NOIs, hard copies of UA1, Tables 2A, 2D & 2F, Section 3 and the signed Certification Page are required.

This application is submitted as (check all that apply): Request for a No Permit Required Determination (no fee)

Updating an application currently under NMED review. Include this page and all pages that are being updated (no fee required). Construction Status: Not Constructed Existing Permitted (or NOI) Facility Existing Non-permitted (or NOI) Facility a NOI 20.2.73 NMAC 20.2.72 NMAC application or revision 20.2.72.300 NMAC Streamline application Minor Source: Title V Source: Title V (new) **Z** Title V renewal TV minor mod. TV significant mod. TV Acid Rain: New Renewal PSD Major Source: PSD major source (new) minor modification to a PSD source a PSD major modification

Acknowledgements:

 \square I acknowledge that a pre-application meeting is available to me upon request. Title V Operating, Title IV Acid Rain, and NPR applications have no fees.

\$500 NSR application Filing Fee enclosed OR The full permit fee associated with 10 fee points (required w/ streamline applications).

Check No.: in the amount of

I acknowledge the required submittal format for the hard copy application is printed double sided 'head-to-toe', 2-hole punched (except the Sect. 2 landscape tables is printed 'head-to-head'), numbered tab separators. Incl. a copy of the check on a separate page.

This facility qualifies to receive assistance from the Small Business Environmental Assistance program (SBEAP) and qualifies for 50% of the normal application and permit fees. Enclosed is a check for 50% of the normal application fee which will be verified with the Small Business Certification Form for your company.

This facility qualifies to receive assistance from the Small Business Environmental Assistance Program (SBEAP) but does not qualify for 50% of the normal application and permit fees. To see if you qualify for SBEAP assistance and for the small business certification form go to https://www.env.nm.gov/aqb/sbap/small_business_criteria.html).

Citation: Please provide the **low level citation** under which this application is being submitted: **20.2.70.300.B.2 NMAC** (e.g. application for a new minor source would be 20.2.72.200.A NMAC, one example for a Technical Permit Revision is 20.2.72.219.B.1.b NMAC, a Title V acid rain application would be: 20.2.70.200.C NMAC)

Section 1 – Facility Information

		AI # if known (see 1 st	Updating
~		3 to 5 #s of permit	Permit/NOI #:P-247L-
Sec	tion 1-A: Company Information	IDEA ID No.): 21664	R1
1	Facility Name: Valencia Regional Landfill and Recycling Facility	Plant primary SIC Code	e (4 digits): 4953
1		Plant NAIC code (6 dig	gits):562212
	Facility Street Address (If no facility street address, provide directions from	n a prominent landmark)	: Mystic Mountain Road,
а	6 miles south of NM Hwy 6 in Valencia County, New Mexico, 87206		
2	Plant Operator Company Name: Waste Management of New Mexico, Inc.	Phone/Fax: 505-892-20	955/505-892-2057
а	Plant Operator Address: P.O. Box 15700, Rio Rancho, NM 87174		

b	Plant Operator's New Mexico Corporate ID or Tax ID: 01-799015007	
3	Plant Owner(s) name(s): Waste Management of New Mexico, Inc.	Phone/Fax: 505-892-2055/505-892-2057
а	Plant Owner(s) Mailing Address(s): P.O. Box 15700, Rio Rancho, NM 87	7174
4	Bill To (Company): Waste Management of New Mexico, Inc.	Phone/Fax: 505-892-2055/505-892-2057
a	Mailing Address: P.O. Box 15700, Rio Rancho, NM 87174	E-mail: smiceli@wm.com
5	Preparer: ZConsultant: Gordon Environmental/PSC, Inc.	Phone/Fax: 505-867-6990/505-867-6991
a	Mailing Address: 333 Rio Rancho Blvd. NE, Suite 400, Rio Rancho, NM 87124	E-mail: MCrepeau@team-psc.com
6	Plant Operator Contact: Steve Miceli, Landfill District Manager	Phone/Fax: 505-433-6053/505-892-2057
a	Address: 40 Landfill Road, Los Lunas, NM 87031	E-mail: smiceli@wm.com
7	Air Permit Contact: John W. Kolopanis	Title: AZ/NM Area Environmental Protection Manager
a	E-mail: jkolopan@wm.com	Phone/Fax: 480-457-4706/602-763-9225
b	Mailing Address: 222 S. Mill Ave., Suite 333 Tempe, AZ 85281	

Section 1-B: Current Facility Status

-						
1.a	Has this facility already been constructed? Yes No	1.b If yes to question 1.a, is it currently operating in New Mexico?				
2	If yes to question 1.a, was the existing facility subject to a Notice of Intent (NOI) (20.2.73 NMAC) before submittal of this application? Yes ☑ No	If yes to question 1.a, was the existing facility subject to a construction permit (20.2.72 NMAC before submittal of this application? Yes Z No				
3	Is the facility currently shut down? Yes ☑ No	If yes, give month and year of shut down (MM/YY): N/A				
4	Was this facility constructed before 8/31/1972 and continuously operated s	since 1972? Yes 🗹 No				
5	If Yes to question 3, has this facility been modified (see 20.2.72.7.P NMAY Yes No Z N/A	C) or the capacity increased since 8/31/1972?				
6	Does this facility have a Title V operating permit (20.2.70 NMAC)? ☑ Yes No	If yes, the permit No. is: P-247L-R1				
7	Has this facility been issued a No Permit Required (NPR)? Yes I No	If yes, the NPR No. is: N/A				
8	Has this facility been issued a Notice of Intent (NOI)? Yes 🗹 No	If yes, the NOI No. is: N/A				
9	Does this facility have a construction permit (20.2.72/20.2.74 NMAC)? Yes ☑ No	If yes, the permit No. is: N/A				
10	Is this facility registered under a General permit (GCP-1, GCP-2, etc.)? Yes ☑ No	If yes, the register No. is: N/A				

Section 1-C: Facility Input Capacity & Production Rate

1	What is the facility's maximum input capacity, specify units (reference here and list capacities in Section 20, if more room is required)							
a	Current	Hourly: N/A	Daily: N/A	Annually: N/A				
b	b Proposed Hourly: N/A Daily: N/A Annually: N/A							
2	What is the facility's maximum production rate, specify units (reference here and list capacities in Section 20, if more room is required)							
a	Current	Hourly: N/A	Daily: N/A	Annually: N/A				
b	Proposed	Hourly: N/A	Daily: N/A	Annually: N/A				

	Section: 27	Range: 2W	Township: 6N	County: Valencia		Elevation (ft): 5466				
2	UTM Zone:	12 or 🗹 13		Datum: NAD 27 NAD 83 🗹 WGS 84						
a	UTM E (in mete	rs, to nearest 10 mete	ers): 312,820	UTM N (in meters, to nearest	10 meters): 3	3,844,214				
b	AND Latitude	(deg., min., sec.)	: 34° 43' 29" N	Longitude (deg., min., see	c.): 107° 20)' 39" W				
3	Name and zip	code of nearest N	New Mexico town: Los Lun	as, NM 87031						
4	and NM Hwy	6 (Exit 203) dri	om nearest NM town (attac ve 14.6 miles west on NM proceed approximately 5.8	Hwy 6 to Mystic Mountai	n Road, tu	ntersection of Interstate 25 rn south and travel 0.4-				
5	The facility is 16 miles west of Los Lunas, NM .									
6	Status of land at facility (check one): I Private Indian/Pueblo Federal BLM Federal Forest Service Other (specify)									
7	which the facil <u>Municipalities</u> No municip <u>Indian tribes:</u> Isleta: 7 mi <u>Counties:</u> Valencia C Socorro Co Cibola Cou Bernalillo Cou	Isleta: 7 miles								
			1 337.11.1 / 1	. 1 . 1	. 1	1 11 1				
8	than 50 km (31	C applications on miles) to other	ly: Will the property on whether the states, Bernalillo County, or NMAC) If yes, list all with	a Class I area (see <u>www.env</u>	.nm.gov/aqb/ı	-				
	than 50 km (31 Yes No (2	C applications on miles) to other 0.2.72.206.A.7 N	states, Bernalillo County, or	a Class I area (see <u>www.env</u> corresponding distances in	.nm.gov/aqb/ı	modeling/class1areas.html)?				
9	than 50 km (31 Yes No (2 Name nearest	C applications on miles) to other 0.2.72.206.A.7 N Class I area: Bos	states, Bernalillo County, or NMAC) If yes, list all with	a Class I area (see <u>www.env</u> corresponding distances in Vildlife Refuge	.nm.gov/aqb/i kilometers	nodeling/class1areas.html)? : N/A				
8 9 10 11	than 50 km (31) Yes No (2) Name nearest (Shortest distan Distance (mete	C applications on miles) to other a 0.2.72.206.A.7 N Class I area: Bos ce (in km) from ers) from the peri	states, Bernalillo County, or NMAC) If yes, list all with que del Apache National V	a Class I area (see <u>www.env</u> corresponding distances in Vildlife Refuge ndary of the nearest Class I ions (AO is defined as the p	nm.gov/aqb/i kilometers area (to the blant site in	nearest 10 meters): 97.10 km clusive of all disturbed				
9 10	than 50 km (31) Yes No (2) Name nearest (2) Shortest distan Distance (meter lands, includin southwest Method(s) used	C applications on miles) to other a 0.2.72.206.A.7 N Class I area: Bos ce (in km) from ers) from the peri g mining overbu d to delineate the	states, Bernalillo County, or MAC) If yes, list all with que del Apache National V facility boundary to the bou meter of the Area of Operat	a Class I area (see <u>www.env</u> corresponding distances in Vildlife Refuge ndary of the nearest Class I ions (AO is defined as the p est residence, school or occu e areas of the landfill are	nm.gov/aqb/r kilometers area (to the blant site in upied struc enclosed b	nearest 10 meters): 97.10 km clusive of all disturbed ture: 4,020 meters				
9 10	than 50 km (31) Yes No (2) Name nearest (2) Shortest distan Distance (metel lands, includin southwest Method(s) used chain-link fen " Restricted A continuous wa that would required	C applications on miles) to other a 0.2.72.206.A.7 N Class I area: Bos ce (in km) from ers) from the peri g mining overbu d to delineate the ce topped with a rea" is an area to lls, or other conti uire special equip perty may be ider	states, Bernalillo County, or VMAC) If yes, list all with que del Apache National V facility boundary to the bou meter of the Area of Operat rden removal areas) to near Restricted Area: The activ 3-strand barbed-wire and o which public entry is effect nuous barriers approved by poment to traverse. If a large ntified with signage only. P	a Class I area (see www.env corresponding distances in Vildlife Refuge ndary of the nearest Class I ions (AO is defined as the p est residence, school or occu e areas of the landfill are equipped with locking gat tively precluded. Effective the Department, such as ru property is completely enc ublic roads cannot be part of	area (to the blant site in upied struc enclosed b tes. barriers in gged physi losed by fe of a Restrict	 modeling/class1areas.html)? N/A nearest 10 meters): 97.10 km clusive of all disturbed ture: 4,020 meters y a (minimum) 6-foot clude continuous fencing, cal terrain with steep grade ncing, a restricted area ted Area. 				
9 10 11	than 50 km (31) Yes No (2) Name nearest (2) Shortest distan Distance (metel lands, includin southwest Method(s) used chain-link fen " Restricted A continuous wa that would req within the prop Does the owned Yes ☑ N A portable stat one location on	C applications on miles) to other a 0.2.72.206.A.7 N Class I area: Bos ce (in km) from ers) from the peri g mining overbu d to delineate the ce topped with a rea" is an area to lls, or other conti uire special equip perty may be iden r/operator intend to ionary source is that can be re-ir	states, Bernalillo County, or JMAC) If yes, list all with que del Apache National V facility boundary to the bou meter of the Area of Operat rden removal areas) to near Restricted Area: The activ 3-strand barbed-wire and which public entry is effec nuous barriers approved by pment to traverse. If a large tified with signage only. P to operate this source as a p not a mobile source, such as	a Class I area (see <u>www.env</u> corresponding distances in Vildlife Refuge ndary of the nearest Class I ions (AO is defined as the p est residence, school or occu e areas of the landfill are e equipped with locking gat tively precluded. Effective the Department, such as ru property is completely enc <u>ublic roads cannot be part o</u> portable stationary source as an automobile, but a source such as a hot mix asphalt p	area (to the blant site in upied struc enclosed b tes. barriers in gged physi losed by fe of a Restrict s defined in e that can b lant that is	nodeling/class1areas.html)? : N/A nearest 10 meters): 97.10 km clusive of all disturbed ture: 4,020 meters y a (minimum) 6-foot clude continuous fencing, cal terrain with steep grade ncing, a restricted area ted Area. 1 20.2.72.7.X NMAC?				

Section 1-D: Facility Location Information

1	Facility maximum operating (hours/day): N/A	(days/week):N/A	(weeks year):N/A	(hours year):N/A		
2	Facility's maximum daily operating schedule (if less t	than $24 \frac{\text{hours}}{\text{day}}$)? Start: N/A	AM PM	Hnd: N/A	□AM □PM	
3	Month and year of anticipated start of construction: N	//A				
4	Month and year of anticipated construction completion: N/A					
5	Month and year of anticipated startup of new or modi	fied facility: N/A				
6	Will this facility operate at this site for more than one	e year? Yes No	N/A			

Section 1-E: Proposed Operating Schedule (The 1-E.1 & 1-E.2 operating schedules may become conditions in the permit.)

Section 1-F: Other Facility Information

1	Are there any current Notice of Violations (NOV), compliance orders, or any other compliance or enforcement issues related to this facility? Yes Z No If yes, specify:						
a	If yes, NOV date or description of issue: N/A NOV Tracking No: N/A						
b	Is this application in response to any issue listed in 1-F, 1 or 1a above? Yes 🗹 No If Yes, provide the 1c & 1d info below:						
c	Document Title: N/ADate: N/ARequirement # (or page # and paragraph #): N/A						
d	Provide the required text to be inserted in this permit: N/A						
2	Is air quality dispersion modeling or modeling waiver being submitted with this application? Ves No						
3	Does this facility require an "Air Toxics" permit under 20.2.72.400 NMAC & 20.2.72.502, Tables A and/or B? Yes 🗹 No						
4	Will this facility be a source of federal Hazardous Air Pollutants (HAP)? Z Yes No						
a	If Yes, what type of source? ORMajor (≥ 10 tpy of any single HAP \blacksquare Minor ($\blacksquare < 10$ tpy of any single HAPOR AND ≥ 25 tpy of any combination of HAPS) \blacksquare Minor ($\blacksquare < 10$ tpy of any single HAP \blacksquare MD $\blacksquare < 25$ tpy of any combination of HAPS)						
5	Is any unit exempt under 20.2.72.202.B.3 NMAC? ☑ Yes No						
	If yes, include the name of company providing commercial electric power to the facility: <u>Public Service Company of New</u> <u>Mexico (PNM)</u>						
a	Commercial power is purchased from a commercial utility company, which specifically does not include power generated on site for the sole purpose of the user.						

Section 1-G: Streamline Application (This section applies to 20.2.72.300 NMAC Streamline applications only)

1	I have filled out Section 18, "Adden	dum for Streamline Applications."	🗹 N/A (1	This is not a Streamline applica	tion.)
---	--------------------------------------	-----------------------------------	----------	----------------------------------	--------

Section 1-H: Current Title V Information - Required for all applications from TV Sources

(Title V-source required information for all applications submitted pursuant to 20.2.72 NMAC (Minor Construction Permits), or 20.2.74/20.2.79 NMAC (Major PSD/NNSR applications), and/or 20.2.70 NMAC (Title V))

1	Responsible Official (20.2.70.300.D.2 NMAC): Damon De Frates	Phone: (480) 457-4835	
a	R.O. Title: Director of Post Collections	R.O. e-mail: ddefr	ates@wm.com
b	R. O. Address: 222 S. Mill Avenue, Suite 333, Tempe, AZ 85281		
2	Alternate Responsible Official (20.2.70.300.D.2 NMAC): John W. Kolopanis		Phone: (480) 457-4706
a	A. R.O. Title: Environmental Protection Manager	A. R.O. e-mail: jko	olopan@wm.com

b	A. R. O. Address: 222 S. Mill Avenue, Suite 333, Tempe, AZ 85281
3	Company's Corporate or Partnership Relationship to any other Air Quality Permittee (List the names of any companies that have operating (20.2.70 NMAC) permits and with whom the applicant for this permit has a corporate or partnership relationship): Waste Management of New Mexico, Inc. San Juan County Regional Landfill Permit No. P-246L-R1 Waste Management of New Mexico, Inc.
	Rio Rancho Landfill Permit No. P-208L-R2
4	Name of Parent Company ("Parent Company" means the primary name of the organization that owns the company to be permitted wholly or in part.): Waste Management Holdings, Inc.
a	Address of Parent Company: 1001 Fannin, Suite 400, Houston, TX 77002
5	Names of Subsidiary Companies ("Subsidiary Companies" means organizations, branches, divisions or subsidiaries, which are owned, wholly or in part, by the company to be permitted.): N/A
6	Telephone numbers & names of the owners' agents and site contacts familiar with plant operations: Mr. Steve Miceli, District Manager (505) 433-6053 (office) (505) 974-1947 (cell) Mr. Douglas Shimic, Operations Manager (505) 433-6053 (office) (505) 206-0667 (cell)
	Affected Programs to include Other States, local air pollution control programs (i.e. Bernalillo) and Indian tribes: Will the property on which the facility is proposed to be constructed or operated be closer than 80 km (50 miles) from other states, local pollution control programs, and Indian tribes and pueblos (20.2.70.402.A.2 and 20.2.70.7.B)? If yes, state which ones and provide the distances in kilometers:
7	Yes, the Valencia Regional Landfill and Recycling Facility is located fewer than 80 km (50 miles) from local air pollution control programs and Indian tribes or pueblos. <u>Other States:</u> None <u>Local Pollution Control Programs:</u> Bernalillo County: 16.3 km (10.0 miles) <u>Indian tribes and Pueblos:</u> Alamo: 45km (28 miles) Acoma Pueblo: 52 km (32 miles) To'hajilee (Cañoncito) Pueblo: 40 km (25 miles) Sandia Pueblo: 72.4 km (45 miles) Santa Ana Pueblo: 78.9 km (49 miles) Zia Pueblo: 77.2 km (48 miles) Laguna Pueblo: 25.8 km (16 miles) Isleta Pueblo: 11.3 km (7 miles)

Section 1-I – Submittal Requirements

Each 20.2.73 NMAC (NOI), a 20.2.70 NMAC (Title V), a 20.2.72 NMAC (NSR minor source), or 20.2.74 NMAC (PSD) application package shall consist of the following:

Hard Copy Submittal Requirements:

- One hard copy original signed and notarized application package printed double sided 'head-to-toe' <u>2-hole punched</u> as we bind the document on top, not on the side; except Section 2 (landscape tables), which should be head-to-head. Please use numbered tab separators in the hard copy submittal(s) as this facilitates the review process. For NOI submittals only, hard copies of UA1, Tables 2A, 2D & 2F, Section 3 and the signed Certification Page are required. Please include a copy of the check on a separate page.
- 2) If the application is for a minor NSR, PSD, NNSR, or Title V application, include one working hard copy for Department use. This copy does not need to be 2-hole punched, but must be double sided. Minor NSR Technical Permit revisions (20.2.72.219.B NMAC) only need to fill out Sections 1-A, 1-B, 3, and should fill out those portions of other Section(s) relevant to the technical permit revision. TV Minor Modifications need only fill out Sections 1-A, 1-B, 1-H, 3, and those portions of other Section(s) relevant to the minor modification. NMED may require additional portions of the application to be submitted, as needed.
- 3) The entire NOI or Permit application package, including the full modeling study, should be submitted electronically on compact disk(s) (CD). For permit application submittals, two CD copies are required (in sleeves, not crystal cases, please), with additional CD copies as specified below. NOI applications require only a single CD submittal.
- 4) If air dispersion modeling is required by the application type, include the NMED Modeling Waiver OR one additional electronic copy of the air dispersion modeling including the input and output files. The dispersion modeling <u>summary report</u> <u>only</u> should be submitted as hard copy(ies) unless otherwise indicated by the Bureau. The complete dispersion modeling study, including all input/output files, should be submitted electronically as part of the electronic submittal.
- 5) If subject to PSD review under 20.2.74 NMAC (PSD) or NNSR under 20.2.79 NMC include,
 - a. one additional CD copy for US EPA,
 - b. one additional CD copy for each federal land manager affected (NPS, USFS, FWS, USDI) and,
 - c. one additional CD copy for each affected regulatory agency other than the Air Quality Bureau.

Electronic Submittal Requirements [in addition to the required hard copy(ies)]:

- 1) All required electronic documents shall be submitted in duplicate (2 separate CDs). A single PDF document of the entire application as submitted and the individual documents comprising the application.
- 2) The documents should also be submitted in Microsoft Office compatible file format (Word, Excel, etc.) allowing us to access the text and formulas in the documents (copy & paste). Any documents that cannot be submitted in a Microsoft Office compatible format shall be saved as a PDF file from within the electronic document that created the file. If you are unable to provide Microsoft office compatible electronic files or internally generated PDF files of files (items that were not created electronically: i.e. brochures, maps, graphics, etc.), submit these items in hard copy format with the number of additional hard copies corresponding to the number of CD copies required. We must be able to review the formulas and inputs that calculated the emissions.
- 3) It is preferred that this application form be submitted as 3 electronic files (2 MSWord docs: Universal Application section 1 and Universal Application section 3-19) and 1 Excel file of the tables (Universal Application section 2) on the CD(s). Please include as many of the 3-19 Sections as practical in a single MS Word electronic document. Create separate electronic file(s) if a single file becomes too large or if portions must be saved in a file format other than MS Word.
- 4) The electronic file names shall be a maximum of 25 characters long (including spaces, if any). The format of the electronic Universal Application shall be in the format: "A-3423-FacilityName". The "A" distinguishes the file as an application submittal, as opposed to other documents the Department itself puts into the database. Thus, all electronic application submittals should begin with "A-". Modifications to existing facilities should use the core permit number (i.e. '3423') the Department assigned to the facility as the next 4 digits. Use 'XXXX' for new facility applications. The format of any separate electronic submittals (additional submittals such as non-Word attachments, re-submittals, application updates) and Section document shall be in the format: "A-3423-9-description", where "9" stands for the section # (in this case Section 9-Public Notice). Please refrain, as much as possible, from submitting any scanned documents as this file format is extremely large, which uses up too much storage capacity in our database. Please take the time to fill out the header information throughout all submittals as this will identify any loose pages, including the Application Date (date submitted) & Revision # (0 for original, 1, 2, etc.; which will help keep track of subsequent partial update(s) to the original submittal. The footer information should not be modified by the applicant.

Table of Contents

Section 1: General Facility Information

Section 2: Tables

Table 2-A: Regulated Emissions Sources

 Table 2-B: Insignificant Activities or Exempted Equipment

 Table 2-C: Emissions Control Equipment

 Table 2-D: Maximum Emissions

 Table 2-E: Requested Allowable Emissions

Table 2-F: Additional Emissions during Startup, Shutdown and Routine Maintenance (SSM)

Table 2-G:Stack Exit and Fugitive Emission Rates for Special Stacks

 Table 2-H: Stack Exit Conditions

Table 2-I: Stack Exit and Fugitive Emission Rates for HAPs and TAPs

Table 2-J: Fuel

Table 2-K: Liquid data for Tanks Listed in Table 2-L

Table 2-L: Tank Data

 Table 2-M: Materials Processed and Produced

 Table 2-N:CEM Equipment

 Table 2-O:Parametric Emissions Measurement Equipment

Table 2-P: Green House Gas Emissions

Section 3: Application Summary

Section 4: Process Flow Sheet

Figure 4.1: Landfill Vehicle Travel – Disposal Route and Access Roads Process Flow Diagram

Figure 4.2: General Landfill Operations Process Flow Diagram

Figure 4.3: Landfill Gas Generation Process Flow Diagram

Figure 4.4: PCS Landfarm Treatment Process Flow Diagram

Figure 4.5: Engines Process Flow Diagram

Section 5: Plot Plan

Figure 5.1: Plot Plan Drawn to Scale

Section 6: All Calculations

Table 6.1: Refuse Delivery Vehicle Specifications

 Table 6.2: Miscellaneous Vehicle Specifications

 Table 6.3: Annual Waste Acceptance Rates

Table 6.4: Projected Annual Landfill Gas and NMOC Generation Rates

 Table 6.5: Estimated Controlled VOC Emissions

Table 6.6: HAP Emissions Tracking Sheet

Table 6.7: Estimated Landfill Gas HAP Emissions

Attachment 6.1: Uncontrolled Emissions – Emission Unit 1

Attachment 6.2: Uncontrolled Emissions – Emission Unit 2

Attachment 6.3: Controlled Emissions – Emission Units 1 and 2

Attachment 6.4: Wind Erosion Emissions Calculations – Emission Unit 2

Attachment 6.5: LandGEM NMOC Emissions Estimate (LandGEM Modeling Outputs)

Attachment 6.6: PCS Analytical Test Results (03/29/18 Sampling Event)

Attachment 6.7: LandGEM Output (Inventory Tab)

Attachment 6.8: Tier 2 Landfill Gas Sampling Report

Section 6.a: Green House Gas Emissions

Section 7: Information Used to Determine Emissions

Attachment 7.1: Equipment Manufacturer's Specification Sheets

Attachment 7.2: AP-42 Sections

Attachment 7.3: NMED AQB Lists of Insignificant and Trivial Activities

Attachment 7.4: Scalehouse Generator Record Keeping 2015-2018

Attachment 7.5: Vehicle Maintenance Fluid MSDS data

Section 8: Map(s)

Figure 8.1: Site Location Map

- Figure 8.2: Site Plan
- Section 9: Proof of Public Notice (Not Applicable to Title V Applications)
- Section 10: Written Description of the Routine Operations of the Facility
- Section 11: Source Determination
- Section 12: PSD Applicability Determination for All Sources
- Section 13: Determination of State & Federal Air Quality Regulations
- Section 14: Operational Plan to Mitigate Emissions
- Section 15: Alternative Operating Scenarios
- Section 16: Air Dispersion Modeling

Attachment 16.1: Universal Application 4 (UA4)

- Section 17: Compliance Test History (Not Applicable to this Application)
- Section 18: Addendum for Streamline Applications (Not Applicable to this Application)
- Section 19: Requirements for the Title V (20.2.70 NMAC) Program
- Section 20: Other Relevant Information
- Section 21: Addendum for Landfill Applications
- Section 22: Certification Page

Table 2-A: Regulated Emission Sources

Unit and stack numbering must correspond throughout the application package. If applying for a NOI under 20.2.73 NMAC, equipment exemptions under 2.72.202 NMAC do not apply.

Unit Number ¹	Source Description	Make	Model #	Serial #	Manufact- urer's Rated Capacity ³ (Specify Units)	Requested Permitted Capacity ³ (Specify Units)	Date of Manufacture ² Date of Construction/ Reconstruction ²	Controlled by Unit # Emissions vented to Stack #	Source Classi- fication Code (SCC)	For Each Piece of Equipment, Check One	RICE Ignition Type (CI, SI, 4SLB, 4SRB, 2SLB) ⁴	Replacing Unit No.
1	Landfill Roads	N/A	N/A	N/A	N/A	N/A	N/A	2	5010-	 Existing (unchanged) To be Removed New/Additional Replacement Unit 	N/A	N/A
1	Lanunn Koaus	IN/A	IN/A	IN/A	IN/A	IN/A	N/A	N/A	0401	□ To Be Modified □ To be Replaced	IN/A	IN/A
2	General Landfill	N/A	N/A	N/A	N/A	N/A	N/A	N/A	5010-	 Existing (unchanged) To be Removed New/Additional Replacement Unit 	N/A	N/A
	Operations						N/A	N/A	0402	□ To Be Modified □ To be Replaced		
3	Landfill Gas	N/A	N/A	N/A	N/A	N/A	N/A	N/A	5010-	 Existing (unchanged) To be Removed New/Additional Replacement Unit 	N/A	N/A
	Generation						N/A	N/A	0406	□ To Be Modified □ To be Replaced		
4	PCS Landfarm	N/A	N/A	N/A	N/A	N/A	N/A	N/A	26200-	 Existing (unchanged) To be Removed New/Additional Replacement Unit 	N/A	N/A
	i es Lunum	1011	1.011	1011	1011	1011	N/A	N/A	30000	□ To Be Modified □ To be Replaced	1011	1.011
5	Engines	N/A	N/A	N/A	N/A	N/A	N/A	N/A	2030- 0101;	 Existing (unchanged) To be Removed New/Additional Replacement Unit 	N/A	N/A
5	Engines	IN/A	IN/A	IN/A	IN/A	IN/A	N/A	N/A	2030- 0301	□ To Be Modified □ To be Replaced	IN/A	IN/A
										 Existing (unchanged) To be Removed New/Additional Replacement Unit To Be Modified To be Replaced 		
										Existing (unchanged) To be Removed New/Additional Replacement Unit To Be Modified To be Replaced		
										Existing (unchanged) To be Removed New/Additional Replacement Unit To Be Modified To be Replaced Existing (unchanged) To be Removed		
										New/Additional Replacement Unit To Be Modified To be Replaced		
										Existing (unchanged) To be Removed New/Additional Replacement Unit To Be Modified To be Replaced		
										Existing (unchanged) To be Removed New/Additional Replacement Unit To Be Modified To be Replaced		
										Existing (unchanged) To be Removed New/Additional Replacement Unit To Be Modified To be Replaced		
										Existing (unchanged) To be Removed New/Additional Replacement Unit To Be Modified To be Replaced		
										Existing (unchanged) To be Removed New/Additional Replacement Unit To Be Modified To be Replaced		

¹ Unit numbers must correspond to unit numbers in the previous permit unless a complete cross reference table of all units in both permits is provided.

² Specify dates required to determine regulatory applicability.

³ To properly account for power conversion efficiencies, generator set rated capacity shall be reported as the rated capacity of the engine in horsepower, not the kilowatt capacity of the generator set. "4SLB" means four stroke lean burn engine, "4SRB" means four stroke rich burn engine, "2SLB" means two stroke lean burn engine, "CI" means compression ignition, and "SI" means spark ignition

Table 2-B: Insignificant Activities¹ (20.2.70 NMAC) OR Exempted Equipment (20.2.72 NMAC)

All 20.2.70 NMAC (Title V) applications must list all Insignificant Activities in this table. All 20.2.72 NMAC applications must list Exempted Equipment in this table. If equipment listed on this table is exempt under 20.2.72.202.B.5, include emissions calculations and emissions totals for 202.B.5 "similar functions" units, operations, and activities in Section 6, Calculations. Equipment and activities exempted under 20.2.72.202 NMAC may not necessarily be Insignificant under 20.2.70 NMAC (and vice versa). Unit & stack numbering must be consistent throughout the application package. Per Exemptions Policy 02-012.00 (see http://www.env.nm.gov/aqb/permit/aqb_pol.html), 20.2.72.202.B NMAC Exemptions do not apply, but 20.2.72.202.A NMAC exemptions do apply to NOI facilities under 20.2.73 NMAC. List 20.2.72.301.D.4 NMAC Auxiliary Equipment for Streamline applications in Table 2-A. The List of Insignificant Activities (for TV) can be found online at http://www.env.nm.gov/aqb/forms/InsignificantListTitleV.pdf . TV sources may elect to enter both TV Insignificant Activities and Part 72 Exemptions on this form.

Unit Number	Source Description	Manufacturer	Model No.	Max Capacity	List Specific 20.2.72.202 NMAC Exemption (e.g. 20.2.72.202.B.5)	Date of Manufacture /Reconstruction ²		
			Serial No. Canacity Units		Insignificant Activity citation (e.g. IA List Item #1.a)	Date of Installation /Construction ²		
2a	Disast Fuel Starage Tank	NA	N/A	8,000	20.2.72.202.B.2	2007	 Existing (unchanged) New/Additional 	 To be Removed Replacement Unit
Za	Diesel Fuel Storage Tank	NA	N/A	gallons	IA List Item #8	2007	 New/Additional To Be Modified 	 Replacement Ont To be Replaced
2b	Vehicle Maintenance Fluids	Castrol	N/A	<0.2	20.2.72.202.B.2	N/A	 Existing (unchanged) New/Additional 	 To be Removed Replacement Unit
20		Castion	N/A	psi	IA List Item #5	N/A	 To Be Modified 	 Replacement Ont To be Replaced
5a	Scalehouse Generator (Diesel)	Cummins	DGCB	90	20.2.72.202.B.3	08/2006	 Existing (unchanged) New/Additional 	 To be Removed Replacement Unit
Ja	Scalehouse Generator (Dieser)	Cummins	K06098811	hp	IA List Item #6	08/2006	 New/Additional To Be Modified 	 Replacement Ont To be Replaced
5b	Water Well Generator (Diesel)	Cummins	DGCB	90	Non-exempt	08/2006	 Existing (unchanged) New/Additional 	 To be Removed Replacement Unit
50	Water Weil Generator (Dieser)	Cummins	K06098812	hp	IA List Item #6	08/2006	 New/Additional To Be Modified 	 Replacement Ont To be Replaced
5c	Portable Power Washer (Gas)	ALKOTA	53553B	20	20.2.72.202.A.2	N/A	 Existing (unchanged) New/Additional 	 To be Removed Replacement Unit To be Replaced
50	Portable Power Washer (Gas)	ALKUTA	254478	hp	IA List Item #6	N/A	 New/Additional To Be Modified 	
Ed	Portable Air Compressor	Ingereell Dend	P185WIR	69	20.2.72.202.A.2	N/A	Existing (unchanged)	□ To be Removed
5d	(Diesel)	Ingersoll Rand	303393UGJ219	hp	IA List Item #6	N/A	 New/Additional To Be Modified 	 Replacement Unit To be Replaced
	Portable Diesel Fuel Storage Tank Generator (Gas)	Generac	GP7500E	13	N/A	04/2015	 Existing (unchanged) New/Additional To Be Modified 	 To be Removed Replacement Unit To be Replaced
5e			9638235A	hp	IA List Item #6	12/14/2017		
5f	Portable Light Tower (Diesel)	SiteLite	Kubota D950-BG1	29	N/A	12/2004	 Existing (unchanged) New/Additional 	To be RemovedReplacement Unit
			N/A	hp	IA List Item #6	2/20/2017	 To Be Modified Existing (unchanged) 	 To be Replaced To be Removed
5g	Portable Trash Pump (3" Water Pump) (Gas)	Yamaha	MZ300 7VB8-020	10	N/A	2017	New/Additional	Replacement Unit
	Water Fullip) (Gas)		1000172	hp	IA List Item #6	11/13/2017	 To Be Modified Existing (unchanged) 	 To be Replaced To be Removed
5h	Portable Generator (Gas)	GENERAC XG10000E	0J2537 E9180986.15047	18		02/2015	New/Additional	Replacement Unit
			CAT C1.1	hp 24	IA List Item #6	4/17/2015 03/2015	 To Be Modified Existing (unchanged) 	 To be Replaced To be Removed
5i	Portable Tarping Machine (Diesel)	Tarpomatic	G8N17832		IA List Item #6	8/30/2015	 New/Additional To Be Modified 	Replacement Unit
	Portable Small Generator		Generac 5982-1	hp 7	N/A	08/2013	To Be Modified Existing (unchanged)	 To be Replaced To be Removed
5j	(Gas)	Generac	9029590B	hp	IA List Item #6	11/14/2016	 New/Additional To Be Modified 	 Replacement Unit To be Replaced
			30230300	ΠΡ		11/14/2010	 Existing (unchanged) New/Additional To Be Modified 	 To be Removed Replacement Unit To be Replaced
							 Existing (unchanged) New/Additional To Be Modified 	 To be Removed Replacement Unit To be Replaced
							 Existing (unchanged) New/Additional To Be Modified 	 To be Removed Replacement Unit To be Replaced

² Specify date(s) required to determine regulatory applicability.

Table 2-C: Emissions Control Equipment

Unit and stack numbering must correspond throughout the application package. Only list control equipment for TAPs if the TAP's maximum uncontrolled emissions rate is over its respective threshold as listed in 20.2.72 NMAC, Subpart V, Tables A and B. In accordance with 20.2.72.203.A(3) and (8) NMAC, 20.2.70.300.D(5)(b) and (e) NMAC, and 20.2.73.200.B(7) NMAC, the permittee shall report all control devices and list each pollutant controlled by the control device regardless if the applicant takes credit for the reduction in emissions.

Control Equipment Unit No.	d by the control device regardless if the applicant takes credit for th Control Equipment Description	Date Installed	Controlled Pollutant(s)	Controlling Emissions for Unit Number(s) ¹	Efficiency (% Control by Weight)	Method used to Estimate Efficiency
1	Peterbilt Water Wagon (5,000 gallons), Cold Millings	N/A	TSP, PM10, PM2.5	1, 2	60%, 80%	Bureau Recommendation
List each contro	ol device on a separate line. For each control device, list all	emission units co	ntrolled by the control device			

Table 2-D: Maximum Emissions (under normal operating conditions)

□ This Table was intentionally left blank because it would be identical to Table 2-E.

Maximum Emissions are the emissions at maximum capacity and prior to (in the absence of) pollution control, emission-reducing process equipment, or any other emission reduction. Calculate the hourly emissions using the worst case hourly emissions for each pollutant. For each pollutant, calculate the annual emissions as if the facility were operating at maximum plant capacity without pollution controls for 8760 hours per year, unless otherwise approved by the Department. List Hazardous Air Pollutants (HAP) & Toxic Air Pollutants (TAPs) in Table 2-I. Unit & stack numbering must be consistent throughout the application package. Fill all cells in this table with the emission numbers or a "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expected. Numbers shall be expressed to at least 2 decimal points (e.g. 0.41, 1.41, or 1.41E-4).

TT 'A NT	N	Ox	C	0	V	C	S	Dx	TS	\mathbf{P}^2	PM	(10 ²	PM	2.5^2	Н	$_{2}S$	Le	ead
Unit No.	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
1									54.23	64.22	14.64	17.34	1.46	1.73				
2									163.40	14.93	45.39	4.39	4.50	0.45				
3					0.70	3.06												
4					4.89	21.44												
5																		
Totals	0.00	0.00	0.00	0.00	5.59	24.50	0.00	0.00	217.64	79.15	60.03	21.73	5.96	2.18	0.00	0.00	0.00	0.00

¹Condensable Particulate Matter: Include condensable particulate matter emissions for PM10 and PM2.5 if the source is a combustion source. Do not include condensable particulate matter for TSP unless TSP is set equal to PM10 and PM2.5.

Table 2-D-1: Generator Emissions Estimates

*For NSR Applicability Emission Factors based on Exhaust Emission Data Sheet, 60DGCB, 60 Hz Diesel Generator (Cummins Power Generation, 11-04-14) Brake Horsepower: Prime Power Rating utilized for both generators based on Power Rating Sheet (Cummins Power Generation, 11-04-14)

		Water Well Ge	nerator (Non-Emergend	y) - Unit 5l	D			
	Emission	Rated	Brake Horsepower:				Emissions	Emissions
Parameter	Factor	Power	Prime Power Rating	g/lb	hrs/yr	lb/ton	(lbs/hr)	(tons/yr)
	(g/hp-hour)	Class	rinne rower Katilig				(105/11)	(tons/yr)
Hydrocarbons (VOCs)	0.4						0.08	0.35
NOx	7.97						1.6	6.9
СО	0.75	37 ≤ kW < 75	90	453.6	8,760	2,000	0.15	0.65
PM (TSP, PM_{10} , and $PM_{2.5}$)	7.97 0.75						0.03	0.11
SO ₂	0.60						0.12	0.52

Notes:

g = grams

hp = horsepower

Table 2-E: Requested Allowable Emissions

Unit & stack numbering must be consistent throughout the application package. Fill all cells in this table with the emission numbers or a "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expected. Numbers shall be expressed to at least 2 decimal points (e.g. 0.41, 1.41, or 1.41E⁻⁴).

Unit No.	N	Ox	C	20	V	DC	S	Ox	TS	SP ¹	PM	[10 ¹	PM	2.5 ¹	Н	$_2$ S	Le	ead
Unit Ivo.	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr								
1									14.20	16.57	3.83	4.47	0.38	0.45				
2									67.91	8.82	19.15	2.61	1.91	0.27				
3					0.70	3.06												
4					4.89	21.44												
5																		
Totals	0.00	0.00	0.00	0.00	5.59	24.50	0.00	0.00	82.12	25.38	22.98	7.08	2.29	0.72	0.00	0.00	0.00	0.00

¹ Condensable Particulate Matter: Include condensable particulate matter emissions for PM10 and PM2.5 if the source is a combustion source. Do not include condensable particulate matter for TSP unless TSP is set equal to PM10 and PM2.5.

Table 2-F: Additional Emissions during Startup, Shutdown, and Routine Maintenance (SSM)

[x] This table is intentionally left blank since all emissions at this facility due to routine or predictable startup, shutdown, or scehduled maintenance are no higher than those listed in Table 2-E and a malfunction emission limit is not already permitted or requested. If you are required to report GHG emissions as described in Section 6a, include any GHG emissions during Startup, Shutdown, and/or Scheduled Maintenance (SSM) in Table 2-P. Provide an explanations of SSM emissions in Section 6 and 6a.

All applications for facilities that have emissions during routine our predictable startup, shutdown or scheduled maintenance $(SSM)^1$, including NOI applications, must include in this table the Maximum Emissions during routine or predictable startup, shutdown and scheduled maintenance (20.2.7 NMAC, 20.2.72.203.A.3 NMAC, 20.2.73.200.D.2 NMAC). In Section 6 and 6a, provide emissions calculations for all SSM emissions reported in this table. Refer to "Guidance for Submittal of Startup, Shutdown, Maintenance Emissions in Permit Applications (https://www.any.ang.av/aph/apmit/aph.apl.html) for more detailed instructions.

(https://www	.env.nm.g	ov/aqb/per	mit/aqb r	ool.html) fo	or more de	tailed insti	uctions. N	umbers sh	all be exp	ressed to a	it least 2 d	ecimal poi	nts (e.g. 0.	<u>41, 1.41, 0</u>	or 1.41E-4).	_	_
Unit No.		Ox		CO	V			Ox		SP^2		(10 ²		2.5 ²		₂ S		ead
cint rio.	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
Totals																		

¹ For instance, if the short term steady-state Table 2-E emissions are 5 lb/hr and the SSM rate is 12 lb/hr, enter 7 lb/hr in this table. If the annual steady-state Table 2-E emissions are 21.9 TPY, and the number of scheduled SSM events result in annual emissions of 31.9 TPY, enter 10.0 TPY in the table below.

² Condensable Particulate Matter: Include condensable particulate matter emissions for PM10 and PM2.5 if the source is a combustion source. Do not include condensable particulate matter for TSP unless TSP is set equal to PM10 and PM2.5.

Table 2-G: Stack Exit and Fugitive Emission Rates for Special Stacks

[x] I have elected to leave this table blank because this facility does not have any stacks/vents that split emissions from a single source or combine emissions from more than one source listed in table 2-A. Additionally, the emission rates of all stacks match the Requested allowable emission rates stated in Table 2-E.

Use this table to list stack emissions (requested allowable) from split and combined stacks. List Toxic Air Pollutants (TAPs) and Hazardous Air Pollutants (HAPs) in Table 2-I. List all fugitives that are associated with the normal, routine, and non-emergency operation of the facility. Unit and stack numbering must correspond throughout the application package. Refer to Table 2-E for instructions on use of the "-" symbol and on significant figures.

St. I.N.	Serving Unit	N	Ox	C	0	V	DC	S	Ox	T	SP	PN	110	PN	12.5	□ H ₂ S or	r 🗆 Lead
Stack No.	Number(s) from Table 2-A	lb/hr	ton/yr	lb/hr	ton/yr												
																	<u> </u>
,	Totals:																

Table 2-H: Stack Exit Conditions

Unit and stack numbering must correspond throughout the application package. Include the stack exit conditions for each unit that emits from a stack, including blowdown venting parameters and tank emissions. If the facility has multiple operating scenarios, complete a separate Table 2-H for each scenario and, for each, type scenario name here:

Stack	Serving Unit Number(s)	Orientation	Rain Caps	Height Above	Temp.	Flow	v Rate	Moisture by	Velocity	Inside
Number	from Table 2-A	(H-Horizontal V=Vertical)	(Yes or No)	Ground (ft)	(F)	(acfs)	(dscfs)	Volume (%)	(ft/sec)	Diameter (ft)
N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A

Revision # 0

Table 2-I: Stack Exit and Fugitive Emission Rates for HAPs and TAPs

In the table below, report the Potential to Emit for each HAP from each regulated emission unit listed in Table 2-A, only if the entire facility emits the HAP at a rate greater than or equal to one (1) ton per year. For each such emission unit, HAPs shall be reported to the nearest 0.1 tpy. Each facility-wide Individual HAP total and the facility-wide Total HAPs shall be the sum of all HAP sources calculated to the nearest 0.1 ton per year. Per 20.2.72.403.A.1 NMAC, facilities not exempt [see 20.2.72.402.C NMAC] from TAP permitting shall report each TAP that has an uncontrolled emission rate in excess of its pounds per hour screening level specified in 20.2.72.502 NMAC. TAPs shall be reported using one more significant figure than the number of significant figures shown in the pound per hour threshold corresponding to the substance. Use the HAP nomenclature as it appears in Section 112 (b) of the 1990 CAAA and the TAP nomenclature as it listed in 20.2.72.502 NMAC. Include tank-flashing emissions estimates of HAPs in this table. For each HAP or TAP listed, fill all cells in this table with the emission numbers or a "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expected or the pollutant is emitted in a quantity less than the threshold amounts described above.

	Unit No.(s)	Total				Tab		Etherlb	enzene or 🗆 TAP	Xyl ☑ HAP (enes or 🗆 TAP		Pollutant e Here or 🗆 TAP		Pollutant e Here or 🗆 TAP		Pollutant e Here or 🗆 TAP		Pollutant e 🛛 r 🗆 TAP
		lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
N/A	3	0.47	2.05	0.007	0.03	0.16	0.69	0.02	0.09	0.06	0.25								
N/A	4	5.13	22.45	1.28	5.61	1.28	5.61	1.28	5.61	1.28	5.61								
Tot	als:	5.59	24.50	1.29	5.64	1.44	6.31	1.30	5.71	1.34	5.86								

Table 2-J: Fuel

Specify fuel characteristics and usage. Unit and stack numbering must correspond throughout the application package.

	Fuel Type (low sulfur Diesel,	Fuel Source: purchased commercial,		Speci	fy Units		
Unit No.	ultra low sulfur diesel, Natural Gas, Coal,)	pipeline quality natural gas, residue gas, raw/field natural gas, process gas (e.g. SRU tail gas) or other	Lower Heating Value	Hourly Usage	Annual Usage	% Sulfur	% Ash
N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A

Table 2-K: Liquid Data for Tanks Listed in Table 2-L

For each tank, list the liquid(s) to be stored in each tank. If it is expected that a tank may store a variety of hydrocarbon liquids, enter "mixed hydrocarbons" in the Composition column for that tank and enter the corresponding data of the most volatile liquid to be stored in the tank. If tank is to be used for storage of different materials, list all the materials in the "All Calculations" attachment, run the newest version of TANKS on each, and use the material with the highest emission rate to determine maximum uncontrolled and requested allowable emissions rate. The permit will specify the most volatile category of liquids that may be stored in each tank. Include appropriate tank-flashing modeling input data. Use additional sheets if necessary. Unit and stack numbering must correspond throughout the application package.

					Vapor	Average Stor	age Conditions	Max Storag	ge Conditions
Tank No.	SCC Code	Material Name	Composition	Liquid Density (lb/gal)	Molecular Weight (lb/lb*mol)	Temperature (°F)	True Vapor Pressure (psia)	Temperature (°F)	True Vapor Pressure (psia)
N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A

Table 2-L: Tank Data

Include appropriate tank-flashing modeling input data. Use an addendum to this table for unlisted data categories. Unit and stack numbering must correspond throughout the application package. Use additional sheets if necessary. See reference Table 2-L2. Note: 1.00 bbl = 10.159 M3 = 42.0 gal

Tank No.	Date Installed	Materials Stored	Seal Type (refer to Table 2	Roof Type (refer to Table 2-	Сар	acity	Diameter (M)	Vapor Space	Co (from Ta	blor ble VI-C)	Paint Condition (from Table	Annual Throughput (gal/yr)	Turn- overs
			LR below)	LR below)	(bbl)	(M ³)	()	(M)	Roof	Shell	VI-C)	(gal/yr)	(per year)
N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A

Table 2-L2: Liquid Storage Tank Data Codes Reference Table

Roof Type	Seal Type, W	elded Tank Seal Type	Seal Type, Rive	eted Tank Seal Type	Roof, Shell Color	Paint Condition
FX: Fixed Roof	Mechanical Shoe Seal	Liquid-mounted resilient seal	Vapor-mounted resilient seal	Seal Type	WH: White	Good
IF: Internal Floating Roof	A: Primary only	A: Primary only	A: Primary only	A: Mechanical shoe, primary only	AS: Aluminum (specular)	Poor
EF: External Floating Roof	B: Shoe-mounted secondary	B: Weather shield	B: Weather shield	B: Shoe-mounted secondary	AD: Aluminum (diffuse)	
P: Pressure	C: Rim-mounted secondary	C: Rim-mounted secondary	C: Rim-mounted secondary	C: Rim-mounted secondary	LG: Light Gray	
					MG: Medium Gray	
Note: 1.00 bbl = 0.159 M	$^{3} = 42.0$ gal				BL: Black	
					OT: Other (specify)	

Table 2-M: Materials Processed and Produced (Use additional sheets as necessary.)	Table 2-M:	Materials	Processed	and	Produced	(Use additional sheets as necessary.)
---	------------	-----------	-----------	-----	----------	---------------------------------------

	Materi	al Processed		Material Produced						
Description	Chemical Composition	Phase (Gas, Liquid, or Solid)	Quantity (specify units)	Description	Chemical Composition	Phase	Quantity (specify units)			
N/A	N/A N/A		N/A	N/A	N/A N/A		N/A			

Table 2-N: CEM Equipment

Enter Continuous Emissions Measurement (CEM) Data in this table. If CEM data will be used as part of a federally enforceable permit condition, or used to satisfy the requirements of a state or federal regulation, include a copy of the CEM's manufacturer specification sheet in the Information Used to Determine Emissions attachment. Unit and stack numbering must correspond throughout the application package. Use additional sheets if necessary.

Stack No.	Pollutant(s)	Manufacturer	Model No.	Serial No.	Sample Frequency	Averaging Time	Range	Sensitivity	Accuracy
N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A

Table 2-O: Parametric Emissions Measurement Equipment

Unit and stack numbering must correspond throughout the application package. Use additional sheets if necessary.

Unit No.	Parameter/Pollutant Measured	Location of Measurement	Unit of Measure	Acceptable Range	Frequency of Maintenance	Nature of Maintenance	Method of Recording	Averaging Time
N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A

Table 2-P: Greenhouse Gas Emissions

Applications submitted under 20.2.70, 20.2.72, & 20.2.74 NMAC are required to complete this Table. Power plants, Title V major sources, and PSD major sources must report and calculate all GHG emissions for each unit. Applicants must report potential emission rates in short tons per year (see Section 6.a for assistance). Include GHG emissions during Startup, Shutdown, and Scheduled Maintenance in this table. For minor source facilities that are not power plants, are not Title V, or are not PSD, there are three options for reporting GHGs 1) report GHGs for each individual piece of equipment; 2) report all GHGs from a group of unit types, for example report all combustion source GHGs as a single unit and all venting GHG as a second separate unit; OR 3) check the following box \Box By checking this box, the applicant acknowledges the total CO2e emissions are less than 75,000 tons per year.

		CO ₂ ton/yr	N2O ton/yr	CH ₄ ton/yr	SF ₆ ton/yr	PFC/HFC ton/yr ²					Total GHG Mass Basis ton/yr ⁴	Total CO₂e ton/yr ⁵
Unit No.	GWPs ¹	1	298	25	22,800	footnote 3						
2	mass GHG	3848.58	0	418.38	0	0					4266.96	
3	CO ₂ e	3848.58	0	10459.54	0	0						14308.13
4	mass GHG											\sim
4	CO ₂ e											
	mass GHG											
	CO ₂ e											
	mass GHG											
	CO ₂ e											
	mass GHG											
	CO ₂ e											
	mass GHG											
	CO ₂ e											
	mass GHG											
	CO ₂ e											
	mass GHG											
	CO ₂ e											
	mass GHG											
	CO ₂ e											
	mass GHG											
	CO ₂ e											
	mass GHG											
	CO ₂ e											
	mass GHG											
	CO ₂ e											
	mass GHG											
	CO ₂ e											
	mass GHG											
	CO ₂ e											
Total	mass GHG	3848.58		418.38							4266.96	
Total	CO ₂ e	3848.58		10459.544								14308.127

^T GWP (Global Warming Potential): Applicants must use the most current GWPs codified in Table A-1 of 40 CFR part 98. GWPs are subject to change, therefore, applicants need to check 40 CFR 98 to confirm GWP values.

² For HFCs or PFCs describe the specific HFC or PFC compound and use a separate column for each individual compound.

³ For each new compound, enter the appropriate GWP for each HFC or PFC compound from Table A-1 in 40 CFR 98.

⁴ Green house gas emissions on a mass basis is the ton per year green house gas emission before adjustment with its GWP.

⁵ CO₂e means Carbon Dioxide Equivalent and is calculated by multiplying the TPY mass emissions of the green house gas by its GWP.

Section 3

Application Summary

The <u>Application Summary</u> shall include a brief description of the facility and its process, the type of permit application, the applicable regulation (i.e. 20.2.72.200.A.X, or 20.2.73 NMAC) under which the application is being submitted, and any air quality permit numbers associated with this site. If this facility is to be collocated with another facility, provide details of the other facility including permit number(s). In case of a revision or modification to a facility, provide the lowest level regulatory citation (i.e. 20.2.72.219.B.1.d NMAC) under which the revision or modification is being requested. Also describe the proposed changes from the original permit, how the proposed modification will affect the facility's operations and emissions, de-bottlenecking impacts, and changes to the facility's major/minor status (both PSD & Title V).

Routine or predictable emissions during Startup, Shutdown, and Maintenance (SSM): Provide an overview of how SSM emissions are accounted for in this application. Refer to "Guidance for Submittal of Startup, Shutdown, Maintenance Emissions in Permit Applications (http://www.env.nm.gov/aqb/permit/app_form.html) for more detailed instructions on SSM emissions.

On March 27, 2009, the Valencia Regional Landfill and Recycling Facility (VRLRF) was issued Title V Permit Number P247L after NMED Air Quality Bureau (AQB) approval of the November 16, 2007 Title V Operating Permit Application. On December 3, 2009, VRLRF was issued Title V Permit Number P247L-M1, a Minor Permit Modification to HAP emissions from the site's permitted petroleum contaminated soils (PCS) landfarm. On November 20, 2014, the NMED Air Quality Bureau approved the Title V Application for Operating Permit Renewal, issuing permit Number P247L-R1. VRLRF currently operates under Title V Permit Number P247L-R1, which is scheduled to expire November 20, 2019. This Application for Permit Renewal is being submitted at least 12 months prior to that expiration date, as required by 20.2.70.300.B(2) NMAC.

The portable engines identified as unit numbers 5.e through 5.j in **Table 2-B** are units that are not subject to 20.2.72 NMAC and are insignificant activities under 20.2.70 NMAC. Accordingly, they are not included in emission calculation totals for the facility, or in air dispersion modeling. These units are not identified as stationary sources subject to construction permitting under 20.2.72 NMAC because they are not "stationary sources" or "portable stationary sources" as defined therein. Although the engines are portable sources, they are not "portable stationary" sources because they instead meet the definition of non-road engine under federal regulations. As set forth in 40 C.F.R. 89.2 (in pertinent part), a portable non-road engine is one that is neither regulated by a federal New Source Performance Standard ("NSPS"), nor remains at a location for more than 12 consecutive months or a shorter period of time for an engine located at a seasonal source. A "location" is defined as any single site at a building, structure, facility or installation; EPA has confirmed that an engine that is frequently moved to various locations within a facility would be correctly characterized as a non-road, rather than stationary, source. *See e.g.* EPA Applicability Determination Control Number M090038.

The categorization of these engines is not altered by either NMED's regulatory definitions or its Permitting Guidance dated April 2, 2014 re: The regulation of non-road engines under 20.2.70, 20.2.72, and 20.2.73 NMAC. While NMED's definition of "portable stationary source" does include certain portable units, it is most appropriately applicable to large portable units associated with asphalt plants and crusher plants, which may be subject to federal NSPS and typically remain at a single location for more than 12 consecutive months or a shorter period of time in the case of seasonal sources. NMED's definition cites asphalt plants as an example of a portable stationary source, as does the Permitting Guidance. The Permitting Guidance further explains NMED's interest in regulating portable engines that are utilized in operations that are dependent on their use, such as in the aggregate industry, oil and gas industry, and mining industry. In each of these examples, portable engines are used to power a production process, are integral to the operation of those sources, and are likely for that reason to remain on site in a single location for time periods that would render the units stationary under the federal definition and thereby fall within the applicability of an NSPS standard. As stated in the Permitting Guidance: The operation of the aggregate processing equipment is dependent upon the use of non-road engines, as absent any available line power the aggregate processing equipment could not operate without a source of electric power. As such, the portable generators are integral to the operation of the aggregate processing equipment.

By contrast, the portable engines used at the Valencia Regional Landfill and Recycling Facility are small power generators used only on an as-needed basis to provide lighting at the working face of the landfill, to provide temporary power for tarping machines or to assist in leachate or water pumping. They are not subject to any NSPS standard and do not remain at a single location for 12 months – in fact, they may be moved on a daily basis. Unlike asphalt and aggregate plants, landfill operations are not entirely dependent on the portable generators. These units do not appear to fall within the purview of the NMED's Permitting Guidance, and to our knowledge have not been historically subject to NMED construction permitting requirements. For these reasons, the units are not identified as "portable stationary" sources within the relevant NMED definitions and guidance and are instead identified as both exempt from construction permit requirements established pursuant to 20.2.72 NMAC and Title V permit requirements established pursuant to 20.2.70 NMAC.

Units 5a and 5b are stationary engines. Unit 5a is an emergency back-up generator operated no greater than 500 hours per year and is considered exempt and insignificant. Unit 5b is a generator utilized to pump water for site dust control and general construction. Unit 5b is considered non-exempt, but insignificant. Consistent with prevailing Bureau policy, emissions calculations for Unit 5a are not provided in this Application, and emission rates are not listed in **Tables 2-D** and **2-E**. In addition,

emissions calculations for Unit 5b are provided as **Table 2-D-1** in **Section 2**, but emission rates are not listed in **Tables 2-D** and **2-E**.

VRLRF is a municipal solid waste (MSW) landfill operating pursuant to NMED Solid Waste Facility Permit Nos. SWM-013229 and SWM-013230 (SP). The facility is currently authorized to dispose of municipal solid waste (MSW) and the following approved special wastes:

- Chemical Spill Residue
- Petroleum Contaminated Soils (PCS)
- Sludge
- Packing House & Killing Plant Offal
- Industrial Solid Waste
- Oil Conservation Division Waste
- Treated Formerly Characteristic Hazardous Waste

Following is a description of measures taken to mitigate potential source emissions during startups, shutdowns, and emergencies for landfill operations that have the potential to emit pollutants of concern (e.g., particulates, NMOCs, HAPs, VOCs). Landfill operations associated with the emission of particulate matter (e.g., TSP, PM₁₀, and PM_{2.5}) consist of vehicle travel on landfill roads, and general landfill operations (e.g., heavy equipment operations, wind erosion). The measures taken to mitigate potential fugitive particulate emissions during startups, shutdowns, and emergencies include a Peterbilt 348 water wagon (5,000 gallon capacity), which is used on a daily basis when the landfill is operational. A CAT 613C water wagon (5,000-gallon capacity) is available as backup.

The landfill also utilizes recycled asphalt (cold millings) as a road covering to control fugitive dust emissions potentially originating from vehicle travel on unpaved surfaces. Fugitive dust emissions are also minimized by controlling the speed of waste delivery vehicles and landfill equipment. Signs are posted within the Landfill Operations Area and along the Disposal Route and landfill access roads limiting vehicle speed to 15 mph.

On September 4, 2009, VRLRF modified their permit to address minor modifications to hazardous air pollutant (HAP) emissions from the facility's PCS landfarm, and to discuss the applicability of 40 CFR 63 Subparts HHHHHH (6H) and XXXXXX (6X) to the facility's surface coating operation. It was determined that these Subparts are not applicable to the facility. Additionally, surface coating operations are no longer conducted at the facility.

Section 4

Process Flow Sheet

A **process flow sheet** and/or block diagram indicating the individual equipment, all emission points and types of control applied to those points. The unit numbering system should be consistent throughout this application.

Four process flow sheets are included in this Section. These flow sheets correspond to the following Emission Units:

• Emission Unit No. 1: Landfill Roads – Disposal Route and Access Roads

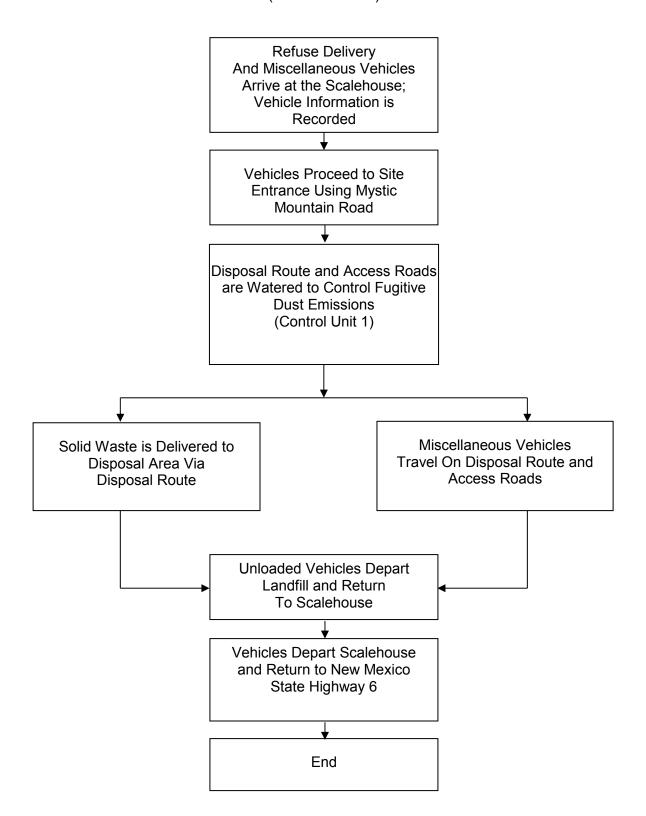
Emission Unit 1 is comprised of potential particulate emissions from vehicle travel on landfill roads. **Figure 4.1** presents a process flow diagram for potential emissions from these operations.

• Emission Unit No. 2: General Landfill Operations

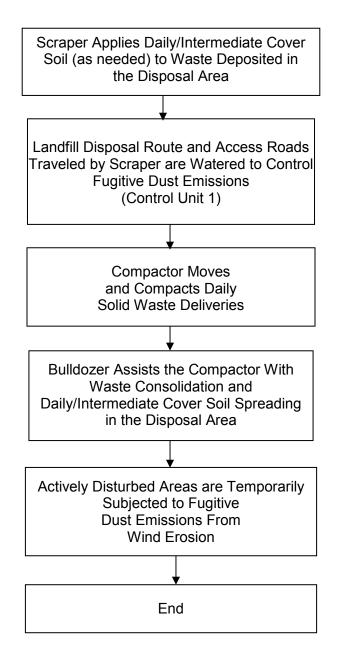
General landfill operations include activities associated with waste disposal and soil cover, as well as potential fugitive emissions from wind erosion on actively disturbed areas. **Figure 4.2** presents a process flow diagram for potential emissions from landfill operations.

• Emission Unit No. 3: Landfill Gas Generation

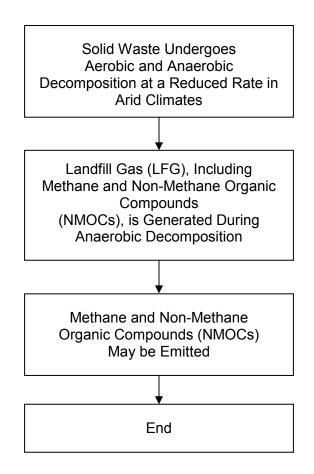
Uncontrolled emissions of methane and non-methane organic compounds (NMOCs) can be generated as a result of anaerobic decomposition of municipal solid waste (MSW). **Figure 4.3** presents a process flow diagram for potential emissions of NMOCs.

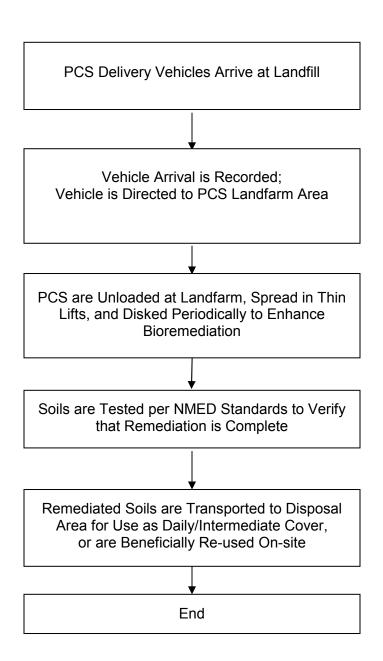

• Emission Unit No. 4: PCS Landfarm Treatment

Petroleum contaminated soils (PCS) are treated to NMED standards by landfarming (a combination of biodegradation and volatilization). During landfarm treatment, hazardous air pollutants (HAPs) may be emitted. **Figure 4.4** presents a process flow diagram for potential HAP emissions from PCS landfarm treatment.


• Emission Unit No. 5: Stationary and Portable Engines

Emission Unit No. 5 is comprised of two stationary and multiple portable engines used for facility or equipment maintenance and support to landfill operations. **Figure 4.5** presents a process flow diagram for potential emissions from the stationary and portable engines. **Figure 4.5** presents a process flow diagram for potential emissions from stationary engines. The site's portable engines are considered exempt, as well as "insignificant activities."


Figure 4.1 Landfill Roads Process Flow Diagram (Emission Unit 1)


Figure 4.2 General Landfill Operations Process Flow Diagram (Emission Unit 2)

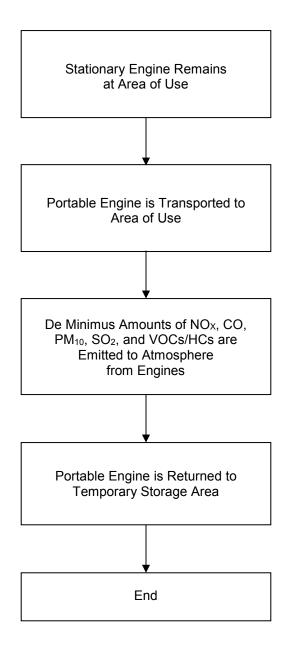

Figure 4.3 Landfill Gas Generation Process Flow Diagram (Emission Unit 3)

Figure 4.4 PCS Landfarm Treatment Process Flow Diagram (Emission Unit 4)

Figure 4.5 Engine Process Flow Diagram (Emission Unit 5)


Form-Section 4 last revised: 8/15/2011

Section 5

Plot Plan Drawn To Scale

A <u>plot plan drawn to scale</u> showing emissions points, roads, structures, tanks, and fences of property owned, leased, or under direct control of the applicant. This plot plan must clearly designate the restricted area as defined in UA1, Section 1-D.12. The unit numbering system should be consistent throughout this application.

A scaled map (Plot Plan) of VRLRF showing emission points, structures, tanks, and fences is included in this Section. Designated as **Figure 5.1**, the Plot Plan denotes the items listed above.

1408000		LEGEND
E 140		
		PETROLEUM CONTAMINATED SOILS
		REMEDIATION AREA BOUNDARY
		DISPOSAL AREA X LANDFILL FENCE
	N 1356000	MINIMUMUMUM DISPOSAL ROUTE (COLD MILLINGS)
		DISPOSAL ROUTE (UNPAVED)
		ACCESS ROAD (COLD MILLINGS)
		SOIL BORROW AREA
		1 EMISSION UNIT
		CONTROL POINT AND ELEVATION
		N 1355000
		SITE GRID NM STATE PLANE NAD83 FT
	N_1355000	
		EMISSION UNITS
		1 DISPOSAL ROUTE AND ACCESS ROAD TRAVEL
		2 GENERAL LANDFILL OPERATIONS
		3 LANDFILL GAS GENERATION
		4 PETROLEUM CONTAMINATED SOILS LANDFARM
		5 ENGINES
	<u>N</u> 1354000	NOTES
		1. EXISTING MAP INFORMATION PROVIDED BY
		WMNM, AND COMPILED FROM AERIAL PHOTOGRAPHY DATED NOVEMBER, 2017 BY MILLER CREEK ASSOCIATES, INC.
		MILLER CREEK ASSOCIATES, INC.
20.400	N 1353000	
A PP406 5409.832		
	N_1352000	H_
		NORTH
		0 300' 600'
		PLOT PLAN
	N 1351000	VALENCIA REGIONAL LANDFILL AND RECYCLING FACILITY
A PP409		VALENCIA COUNTY, NEW MEXICO
▲ ^{PP409} 5479.791		333 Rio Rancho Blvd. NE Rio Rancho, New Mexico
		GORDONPhone: 505-867-6990ENVIRONMENTALFax: 505-867-6991
1408000		DATE: 11/05/2018 CAD: Plot_Plan_TV.dwg PROJECT #: 010254.18
لنا		APPROVED BY: MJC www.team-psc.com FIGURE 5.1

Section 6

All Calculations

Show all calculations used to determine both the hourly and annual controlled and uncontrolled emission rates. All calculations shall be performed keeping a minimum of three significant figures. Document the source of each emission factor used (if an emission rate is carried forward and not revised, then a statement to that effect is required). If identical units are being permitted and will be subject to the same operating conditions, submit calculations for only one unit and a note specifying what other units to which the calculations apply. All formulas and calculations used to calculate emissions must be submitted. The "Calculations" tab in the UA2 has been provided to allow calculations to be linked to the emissions tables. Add additional "Calc" tabs as needed. If the UA2 or other spread sheets are used, all calculation spread sheet(s) shall be submitted electronically in Microsoft Excel compatible format so that formulas and input values can be checked. Format all spread sheets are not used, provide the original formulas with defined variables. Additionally, provide subsequent formulas showing the input values for each variable in the formula. All calculations, including those calculations are imbedded in the Calc tab of the UA2 portion of the application, the printed Calc tab(s), should be submitted under this section.

Tank Flashing Calculations: The information provided to the AQB shall include a discussion of the method used to estimate tank-flashing emissions, relative thresholds (i.e., NOI, permit, or major source (NSPS, PSD or Title V)), accuracy of the model, the input and output from simulation models and software, all calculations, documentation of any assumptions used, descriptions of sampling methods and conditions, copies of any lab sample analysis. If Hysis is used, all relevant input parameters shall be reported, including separator pressure, gas throughput, and all other relevant parameters necessary for flashing calculation.

SSM Calculations: It is the applicant's responsibility to provide an estimate of SSM emissions or to provide justification for not doing so. In this Section, provide emissions calculations for Startup, Shutdown, and Routine Maintenance (SSM) emissions listed in the Section 2 SSM and/or Section 22 GHG Tables and the rational for why the others are reported as zero (or left blank in the SSM/GHG Tables). Refer to "Guidance for Submittal of Startup, Shutdown, Maintenance Emissions in Permit Applications (http://www.env.nm.gov/aqb/permit/app_form.html) for more detailed instructions on calculating SSM emissions. If SSM emissions are greater than those reported in the Section 2, Requested Allowables Table, modeling may be required to ensure compliance with the standards whether the application is NSR or Title V. Refer to the Modeling Section of this application for more guidance on modeling requirements.

Glycol Dehydrator Calculations: The information provided to the AQB shall include the manufacturer's maximum design recirculation rate for the glycol pump. If GRI-Glycalc is used, the full input summary report shall be included as well as a copy of the gas analysis that was used.

Road Calculations: Calculate fugitive particulate emissions and enter haul road fugitives in Tables 2-A, 2-D and 2-E for:

- 1. If you transport raw material, process material and/or product into or out of or within the facility and have PER emissions greater than 0.5 tpy.
- 2. If you transport raw material, process material and/or product into or out of the facility more frequently than one round trip per day.

Significant Figures:

A. All emissions standards are deemed to have at least two significant figures, but not more than three significant figures.

B. At least 5 significant figures shall be retained in all intermediate calculations.

C. In calculating emissions to determine compliance with an emission standard, the following rounding off procedures shall be used:

- (1) If the first digit to be discarded is less than the number 5, the last digit retained shall not be changed;
- (2) If the first digit discarded is greater than the number 5, or if it is the number 5 followed by at least one digit other than the number zero, the last figure retained shall be increased by one unit; and
- (3) If the first digit discarded is exactly the number 5, followed only by zeros, the last digit retained shall be rounded upward if it is an odd number, but no adjustment shall be made if it is an even number.
- (4) The final result of the calculation shall be expressed in the units of the standard.

Control Devices: In accordance with 20.2.72.203.A(3) and (8) NMAC, 20.2.70.300.D(5)(b) and (e) NMAC, and 20.2.73.200.B(7) NMAC, the permittee shall report all control devices and list each pollutant controlled by the control device

Page

Daga

regardless if the applicant takes credit for the reduction in emissions. The applicant can indicate in this section of the application if they chose to not take credit for the reduction in emission rates. For notices of intent submitted under 20.2.73 NMAC, only uncontrolled emission rates can be considered to determine applicability unless the state or federal Acts require the control. This information is necessary to determine if federally enforceable conditions are necessary for the control device, and/or if the control device produces its own regulated pollutants or increases emission rates of other pollutants.

TABLE OF CONTENTS

		•
6.0	Introduction	3
6.1	Landfill Roads – Emission Unit 1	3
6.2	General Landfill Operations – Emission Unit 2	6
6.3	Landfill Gas Generation – Emission Unit 3	10
6.4	Petroleum Contaminated Soils Landfarm – Emission Unit 4	15
6.5	Engines – Emission Unit 5	15
6.6	Hazardous Air Pollutant (HAP) Sources	18
6.7	Additional Emissions During Startup, Shutdown, and Routine Maintenance	20
6.8	References	21

List of Tables

Table No.

Section

able		гауе
6.1	Daily Refuse Delivery Vehicle Trips	5
6.2	Daily Miscellaneous Vehicle Trips	6
6.3	Annual Waste Acceptance Rates	12
6.4	Projected Annual Landfill Gas and NMOC Generation Rates	13
6.5	Estimated Landfill Gas VOC Emissions for 2025	14
6.6	HAP Emissions Tracking Sheet	17
6.7	Estimated HAP Emissions From Landfill Gas for 2025	19

List of Attachments

Title

- Attachment
 - 6.1 Uncontrolled Emissions Emission Unit 1
 - 6.2 Uncontrolled Emissions Emission Unit 2
 - 6.3 Controlled Emissions Emission Units 1 and 2
 - 6.4 Wind Erosion Emissions Calculations Emission Unit 2
 - 6.5 NMOC Emissions Estimate Emission Unit 3
 - 6.6 PCS Analytical Test Results (02/05/2013)
 - 6.7 LandGEM Output (Inventory Tab)
 - 6.8 Tier 2 Landfill Gas Sampling Report

6.0 Introduction

This Section describes the methods used to estimate potential fugitive emissions of particulate matter (TSP, PM₁₀, and PM_{2.5}); non-methane organic compounds (NMOCs); hazardous air pollutants (HAPs); and volatile organic compounds (VOCs) from the following area and point sources (i.e., Emission Units):

- Emission Unit 1 Landfill Roads
- Emission Unit 2 General Landfill Operations
- Emission Unit 3 Landfill Gas Generation
- Emission Unit 4 Petroleum Contaminated Soils Landfarm

Emission rate estimates from these units are summarized in **Tables 2-D** and **2-E**. **Sections 6.1** and **6.2** provide discussion of the landfill activities associated with potential fugitive dust emissions. Landfill processes related to potential NMOC and VOC emissions are discussed in **Sections 6.3** and **6.4**. Engines are discussed in **Section 6.5**. HAP emissions estimates are discussed in **Section 6.6**. **Section 6.7** addresses the requirements for start-up, shutdown, and maintenance (SSM); and discussion of green house gas (GHG) is provided in **Section 6.a**.

6.1 Landfill Roads – Emission Unit 1

Landfill roads consist of the Disposal Route and landfill access roads constructed of unpaved surfaces; as well as temporary graded roadways. Vehicles traveling on the unpaved portions of the Disposal Route and access roads (**Figure 5.1, Section 5**) have the potential to generate fugitive dust emissions. Cumulatively, potential fugitive dust emissions from vehicular traffic at VRLRF have been designated Emission Unit 1. Unpaved road surfaces are currently watered on a routine basis, or treated with cold millings (recycled asphalt) and watered for dust control. For the purposes of this Application for Permit Renewal, approximately 2,455 feet of the total length of the Disposal Route is characterized as being treated with water only. This Section provides emission rate estimates for the following vehicle categories:

- 1. Municipal Solid Waste (MSW) and Petroleum Contaminated Soils (PCS) Delivery Vehicles -Delivery of MSW and PCS along the Disposal Route (site entrance to Disposal Area) and PCS Disposal Route (site entrance to PCS Landfarm) typically occurs in one of six vehicle types:
 - Small Disposal Trucks
 - Large Disposal Trucks
 - Front/Side Loaders and Packer Trucks
 - Dump Trucks
 - Roll-off Trucks
 - Transfer Trucks and Tractor Trailers

- 2. Miscellaneous Vehicles Employee vehicles (trucks, personal vehicles) and water wagon, which travel on the Disposal Route and access roads until one of four destinations is reached:
 - The Shop Area
 - Locations near the Disposal Area
 - The water supply well
 - The Break Room

Detailed emissions calculations for Emission Unit 1 activities are provided in **Attachment 6.1**. To account for anticipated increases in waste receipts, a conservative escalator of 5% per year was applied to the total vehicle miles traveled (VMT) for the MSW and PCS delivery vehicles. It is assumed that the VMT for miscellaneous vehicles remains constant for the Permit period.

6.1.1 Emissions from MSW and PCS Delivery Vehicles

Potential fugitive dust emissions from MSW and PCS delivery vehicles can occur along the Disposal Route (**Figure 5.1, Section 5**). MSW and PCS delivery vehicles that travel on the Disposal Route include the six classes of refuse delivery vehicles.

Two separate equations, published in AP-42, Section 13.2.2, "Unpaved Roads" (November, 2006), were used for estimating long-term emissions (tons/yr) and short-term emissions (lbs/hr) for vehicle travel on landfill roads. The mathematical equations for both emissions estimates are similar; however, the equation used for estimating long-term emissions includes precipitation as a factor when estimating the annual emission rate. Input variables for both equations include:

- AP-42 default empirical constants.
- AP-42 default average surface material silt content.
- Average vehicle weight.
- The number of days with at least 0.01 inches of precipitation per year (long-term emissions equation only).

According to the guidance presented in AP-42, Section 13.2.2, the equations are not intended to be used to calculate separate emission factors for multiple vehicle types simultaneously. Therefore, an "average" refuse delivery vehicle was determined based on the different types of refuse delivery vehicles and their frequency of travel. The information below presents data that were provided by VRLRF, as well as conservative assumptions that were made in order to perform representative calculations:

- The number of days per year with at least 0.01 inches of precipitation is 60 for the area encompassing VRLRF (AP-42, Figure 13.2.2-1).
- The distance traveled by MSW delivery vehicles is approximately 1.22 miles (round-trip).
- The distance traveled by PCS delivery vehicles is approximately 0.79 miles (round-trip).
- The Disposal Route is comprised of approximately 2,455 feet (0.46 miles one-way) of cold millings treated roadway, and 819 feet (0.16 miles) of unpaved roadway.
- The Disposal Route traveled by PCS vehicles is comprised of approximately 725 feet (0.14 miles) of unpaved roadway.
- There is an average of 42 round-trips/day for MSW delivery vehicles.

- There is an average of 1 trips/day for PCS delivery vehicles.
- The average operating year consists of 313 days/yr (6 days/week, 52 weeks/yr).
- The average refuse delivery vehicle weighs 24.9 tons (**Table 6.1**).

TABLE 6.1 Daily Refuse Delivery Vehicle Trips Valencia Regional Landfill and Recycling Facility

Vehicle Specification	Small Disposal Trucks	Large Disposal Trucks	Front/ Side Loaders	Dump Trucks	Roll-off Trucks	Tractor- Trailers	Average
Trips/day	2	3	12	3	20	4	44*
Average Weight (tons)	1.65	2.45	23.35	24.5	27.85	39.35	24.9**

* Cumulative number of trips per day for combined MSW and PCS delivery vehicles, includes 5% escalator.

** Weighted average.

6.1.2 Emissions From Miscellaneous Vehicles

Additional vehicles that travel on the Disposal Route and landfill access roads include miscellaneous vehicles such as company trucks and the facility water truck (5,000-gallon-capacity). The water truck currently applies approximately 7.8 million gallons of water annually to the Disposal Route and landfill access roads. The equations used for estimating potential fugitive dust emissions from these vehicles are the same equations used for refuse delivery vehicles. As with refuse delivery vehicles, an "average" miscellaneous vehicle was determined based on the different types of miscellaneous vehicles that travel on landfill access roads and their frequency of travel. The information below presents data that has been provided by VRLRF, as well as conservative assumptions that were made in order to perform representative calculations:

- The number of days per year with at least 0.01 inches of precipitation is 60 for the areas around VRLRF (AP-42, Figure 13.2.2-1).
- The weighted average daily round-trip for the "average" miscellaneous vehicle is 0.74 miles.
- Miscellaneous vehicles travel a weighted average distance of approximately 0.59 miles per round-trip on the cold millings portion of the Disposal Route and 0.89 miles per round-trip on the unpaved portion of the Disposal Route and landfill access roads.
- There is an average of 4.5 round-trips/day.
- The average operating year consists of 313 days.
- The average miscellaneous vehicle weight (including the water truck) is 17.75 tons (**Table 6.2**).

Daily Miscellaneous Vehicle Trips Valencia Regional Landfill and Recycling Facility							
VehicleCompanyWaterSpecificationTrucksTruck							
Trips/day	2**	2.5**	4.5*				
Weight (tons)	2	43.4	17.75**				

TABLE 6.2

* Cumulative number of trips per day

** Weighted average (cold millings and unpaved)

6.1.3 Fugitive Dust Control Measures

Dust control measures are regularly employed during routine landfill operations in order to reduce potential fugitive dust emissions produced by landfill activities. VRLRF typically applies approximately 7.8 million gallons of water per year to the Disposal Route and access roads. A Peterbilt 348 water wagon (5,000-gallon capacity) makes an average of 2.5 trips per day along the Disposal Route and landfill access roads. Consistent with existing New Mexico Environment Department (NMED) Air Quality Bureau (AQB) policy, an overall water control efficiency of 60% was applied to unpaved portions of the Disposal Route and access roads which receive only water as a dust control measure; and an overall control efficiency of 80% was applied to that portion of the Disposal Route treated with both cold millings and water. Detailed calculations for fugitive dust control efficiencies for the Disposal Route and access roads are provided in Attachment 6.3.

6.2 **General Landfill Operations – Emission Unit 2**

General landfill operations include solid waste disposal at the Disposal Area, daily/intermediate cover soil application, and wind erosion on actively disturbed areas; and have been designated Emission Unit 2. Detailed emissions calculations for general landfill operations are provided in Attachments 6.2 and 6.4.

6.2.1 Disposal Area Operations

Fugitive dust emissions from Disposal Area operations result primarily from the daily operations of heavy equipment such as scraper unloading, road graders, bulldozers, and compactors. The scraper is used to transport daily/intermediate cover soil from Soil Borrow Area 2 to the Disposal Area. Road graders maintain the Disposal Route and access roads. Compactors consolidate waste at the Disposal Area, and bulldozers assist the compactors at the Disposal Area by positioning waste so it can be easily consolidated.

Potential fugitive dust emissions from the heavy equipment associated with Disposal Area operations were calculated using data from VRLRF equipment operating logs for each piece of equipment at the Landfill. Where applicable, running time hours (operating hours plus idle time) were converted to actual operating hours (hours that the vehicle has the potential to create fugitive emissions) by applying an operating efficiency to the running time of each piece of equipment. Emission factors were calculated using the most recent edition of AP-42 (USEPA, 1995, updated 1998, 2006, and 2008). Average equipment weights, capacities, and typical operating speeds for heavy equipment were applied from the Caterpillar[®] Performance Handbook, Edition 42 (Caterpillar[®] 2012).

A. Scraper Operations

Scraper operations involve scraper travel (on the Disposal Route and access roads) to and from the loading location (Soil Borrow Area 2) and unloading location (Disposal Area), as well as the loading and unloading processes themselves. Each of these three processes is a potential source of fugitive dust emissions. Guidance for estimating emission rates for these processes was obtained from AP-42, Section 13.2.2, Section 11.9, and Section 13.2.4.

A.1 Scraper Travel

The scraper travels primarily between Soil Borrow Area 2 and the Disposal Area (see **Figure 5.1**, **Section 5**) and makes approximately 20 round trips per week. Emissions from scraper travel were estimated using the same equations and control efficiencies for vehicle travel on the Disposal Route and access roads (**Section 6.1.1**) and utilized the following information:

- The number of days per year with at least 0.01 inches of precipitation is 60 for the area around VRLRF (AP-42, Figure 13.2.2-1).
- The average scraper round trip is 1.21 miles on the Disposal Route and Access Roads traveling between Soil Borrow Area 2 and the Disposal Area.
- There is an average of 20 round trips/week.
- The average operating year consists of 313 days/yr.
- The average scraper weight (loaded and unloaded) is 56.4 tons.

A.2 Scraper Loading

Emissions from scraper loading at Soil Borrow Area 2 were estimated using guidance provided in AP-42, Section 11.9 "Western Surface Coal Mining (October 1998)". The emission factor for TSP emissions is listed in Table 11.9-4 as 0.058 lbs/ton. To calculate the PM_{10} and $PM_{2.5}$ emission factor for scraper loading, a ratio of the values of the empirical constant (k) for $PM_{2.5}$, PM_{10} and TSP (AP-42, Section 13.2.2) was applied to the TSP emission factor (E_{TSP}) of 0.058 lbs/ton as follows:

- PM_{10} Emission Factor (E_{PM10}) = (k_{PM10}/k_{TSP}) x (E_{TSP}) = (1.5/4.9) x (0.058 lbs/ton)
- PM₁₀ Emission Factor (E_{PM10}) = (0.31) x (0.058 lbs/ton) = 0.018 lbs/ton
- $PM_{2.5}$ Emission Factor ($E_{PM2.5}$) = ($k_{PM2.5}/k_{TSP}$) x (E_{TSP}) = (0.15/4.9) x (0.058 lbs/ton)
- PM_{2.5} Emission Factor (E_{PM2.5}) = (0.031) x (0.058 lbs/ton) = 0.0018 lbs/ton

The TSP, PM₁₀, and PM_{2.5} emission factors were then applied to the total calculated mass of soil moved per year. These calculations were performed using information provided by VRLRF, including an estimate of 20 scraper trips/week (i.e., loads/week), a scraper capacity of 22 yd³, and an operating year of 313 days. The total mass of soil loaded per year is estimated to be 54,912 tons.

A.3. Scraper Unloading

Emissions from scraper unloading at the disposal areas were estimated using guidance provided by AP-42, Section 13.2.4, Aggregate Handling and Storage Piles (November, 2006). These calculations were performed using the same information provided by VRLRF for scraper loading and an operating year of 313 days. The total mass of soil unloaded per year is equivalent to the mass of soil loaded (54,912 tons). Detailed emissions calculations for scraper loading and unloading, as well as the cumulative uncontrolled emissions from all scraper operations, are provided in **Attachment 6.2**.

B. Grader Operations

Grader operations involve routine Disposal Route and access road maintenance. The potential fugitive dust emissions from grader operations were calculated using equations provided in AP-42, Section 11.9, Table 11.9-1. Calculated emission factors were then applied to the total vehicle miles traveled per year by the grader. Average yearly miles were calculated using the following information:

- 1 CAT[®] 140G road grader in service.
- An average grader speed of 3 mph.
- The average operating year consists of 313 days.
- The average operating time is 12 hours/week (624 hours/year), based on a 100% operating efficiency.

C. Compactor and Bulldozer Operations

Compactor and Bulldozer operations primarily involve consolidation of in-place waste and application of daily/intermediate cover soil at the Disposal Area. From guidance provided in AP-42, Section 13.2.3, Heavy Construction Operations (January 1995), Table 13.2.3-1, potential fugitive dust emissions from compactor and bulldozer operations were calculated by using the bulldozer emission equation in AP-42, Table 11.9-1. Calculated emission factors were then applied to the total annual operating hours for the compactor and bulldozer. It was conservatively assumed that the compactor and bulldozer make contact with all of the waste at the Disposal Area. Calculations were performed using the following information:

- The average operating year consists of 313 days.
- The average operating day for the compactor is 7 hours/day, based on an 85% operating efficiency.

6.2.2 Fugitive Dust Control Measures

Fugitive dust control measures are employed during the operating day in order to reduce potential fugitive dust emissions during normal operations. A control efficiency of 60% was applied to the scraper and grader travel on unpaved landfill roads treated with watered (i.e., unpaved Disposal Route and access roads), and a control efficiency of 80% was applied to the scraper and grader travel on the portions of the Disposal Route treated with cold millings. The bulldozer and compactor operate nearly 100% of the time within the Disposal Area, which is not watered. Therefore, no control efficiency was applied to bulldozer and compactor operations.

6.2.3 Dust Emissions from Wind Erosion on Disturbed Areas

Based on guidance provided in AP-42, Section 13.2.5, Industrial Wind Erosion (November, 2006), only those areas of the landfill actively disturbed by facility operations were included in the acreage for which potential fugitive dust emissions attributable to wind erosion were calculated:

- Disposal Route and Access Roads
- Disposal Area operations
- Soil Borrow Area 2 operations
- PCS Remediation Area operations

Using the AP-42 guidance, wind erosion emissions estimates from approximately 18.9± acres of actively disturbed areas were estimated. A control efficiency of 60% for fugitive dust emissions due to wind erosion was applied to landfill access roads and unpaved portions of the Disposal Route. A control efficiency of 80% is applied for wind erosion over areas of the Disposal Route treated with cold millings. For the purposes of wind erosion estimates, disposal area operations, and the soil borrow area were conservatively assumed to have a control efficiency of zero. Detailed calculations for fugitive dust emissions due to wind erosion are provided in **Attachment 6.4**.

Wind erosion emissions were estimated by use of emission factors provided in AP-42, Section 11.9. The emission factor for TSP emissions is listed in Table 11.9-4 as 0.38 tons/acre/yr. To calculate the PM_{10} and $PM_{2.5}$ emission factors for wind erosion, a ratio of the values of the empirical constant (k) for PM_{10} , $PM_{2.5}$ and TSP (AP-42, Section 13.2.2) was applied to the TSP emission factor (E_{TSP}) of 0.38 tons/acre/yr as follows:

- PM_{10} Emission Factor (E_{PM10}) = (k_{PM10}/k_{TSP}) x (E_{TSP}) = (1.5/4.9) x (0.38 tons/acre/yr)
- PM₁₀ Emission Factor (E_{PM10}) = (0.31) x (0.38 tons/acre/yr) = 0.12 tons/acre/yr
- PM_{2.5} Emission Factor (E_{PM2.5}) = (k_{PM2.5}/k_{TSP}) x (E_{TSP}) = (0.15/4.9) x (0.38 tons/acre/yr)
- $PM_{2.5}$ Emission Factor ($E_{PM2.5}$) = (0.031) x (0.38 tons/acre/yr) = 0.012 tons/acre/yr

6.3 Landfill Gas Generation – Emission Unit 3

Solid waste is subject to aerobic and anaerobic decomposition that results in the potential generation of landfill gas (LFG). The rate of LFG generation is a function of the composition, moisture content, age, temperature, pH, alkalinity of the refuse, nutrient supply, etc. Methane (CH₄) and carbon dioxide (CO₂) are the primary constituents of LFG, generated in approximately equal proportions. In addition, LFG also contains a very small proportion (<0.04%) of non-methane organic compounds (NMOCs), of which Volatile Organic Compounds (VOCs) and Hazardous Air Pollutants (HAPs) are subsets. The uncontrolled emissions of NMOCs from the landfill are designated Emission Unit 3.

The EPA model LandGEM (Landfill Gas Emissions Model), Version 3.02 (USEPA, May 2005) was deployed to calculate total potential LFG and NMOC emission rates for the landfill. The Model estimates emissions resulting from the biodegradation of refuse in landfills and is recommended by EPA for use in developing estimates for state inventories. The Model uses a first-order decay rate equation and estimates annual emissions over a time period specified by the user. This model is proven to over-estimate LFG production and emission rates for arid landfills. The time period specified for VRLRF was 1988 (the first year of waste acceptance) through 2025. The following values were input into LandGEM to estimate total LFG generation rates from VRLRF:

- A Clean Air Act (CAA) default value for the potential methane generation capacity of refuse, $L_o = 170 \text{ m}^3/\text{Mg}$ refuse.
- A methane generation rate constant, $k = 0.02 \text{ yr}^{-1}$ (CAA default for arid regions).
- A site-specific NMOC concentration (C_{NMOC}) value of 345 ppm_v as hexane.
- The landfill type selected was no co-disposal (i.e., no landfilling of hazardous waste along with municipal solid waste).
- The site is treated as active (i.e., accepting waste) for the years 1988 2025.
- The composition of LFG is modeled as 50.0% methane (CAA default for arid regions)

VRLRF began accepting waste in 1988 under the name Tri-Sect Landfill. From 1988 through 1999, materials deposited at the site included residential, commercial, and yard/landscape wastes, as well as construction and demolition (C&D) debris, petroleum contaminated soils (PCS), and tires. From March 1999 through March 2007, only PCS (processed on-site for remediation) were accepted. In April 2007, the site resumed acceptance of the historical MSW waste stream, as well as other recently permitted special wastes.

In June 2006, an aerial survey of VRLRF was performed to determine the amount of in-place waste. The survey results showed that approximately 193,595 Mg of waste (degradable and non-degradable) had been deposited at the site since 1988. Waste acceptance rates/types were not well documented from 1988 through 1993. Waste types identified in the 1994 – 1999 Annual Reports submitted to NMED Solid Waste Bureau include residential waste; yard or landscape waste; non-degradable wastes (e.g.,

construction/demolition debris); commercial waste; special waste (which may include sludge, petroleum contaminated soil, industrial solid waste, etc); and other (i.e., tires, etc). Based on information provided by VRLRF, the waste types included in the incoming waste stream from 1994 – 1999 are indicative of waste accepted for disposal during years of historical waste acceptance rates (1988 – 1993).

Table 6.3 provides a summary of the documented waste types and quantities accepted at the site from 1994 – 2017 that were input into LandGEM. Conservatively, construction & demolition (C&D) debris was the only non-degradable waste accepted at the landfill which was excluded from the LandGEM calculations for 1994-1999. An average annual non-degradable waste mass of 16.1% was calculated for 1994 – 1999, and conservatively applied (as 16%) to calculate annual non-degradable waste receipts accepted from 1988 – 1993.

A total of 159,446 tons (144,618 Mg) of waste receipts was recorded at the Landfill from 1994 – 1999. This total of known waste was subtracted from the surveyed estimate of 193,595 Mg for a total waste mass of 48,977 Mg accepted during the period of unrecorded waste acceptance rate from 1988-1993. Because the waste profiles for the known period are similar to that projected for the unrecorded period of waste acceptance, 16% of the 1988-1993 total waste mass was subtracted to account for C&D debris. This resulting estimate of degradable waste (41,141 Mg) accepted during the first six years of the VRLRF operations was then divided by six for an annual waste acceptance rate estimate of 6,857 Mg/yr.

The estimated annual acceptance rate of 6,857 Mg/yr was input into LandGEM to estimate NMOC generation rates for each year of unrecorded waste acceptance (i.e., 1988 through 1993). Actual waste acceptance values (less C&D debris) reported in Annual Reports were used for 1994 – 1999. Waste receipts of 0 Mg/yr were input into LandGEM for 2000 – 2006, as the site temporarily ceased accepting municipal solid waste (MSW) in 1999. For waste receipts from 2007 to 2012, non-degradable wastes were removed from the total waste receipts to retain consistency with WMNM gate receipt records and waste receipt tonnage utilized by SCS Engineers for annual emissions inventories reporting activities (SCS Engineers, 2011 Emissions Inventory; and Waste Management of New Mexico, Inc. (WMNM) communication for 2012 and historical waste receipts). For waste receipts from 2013 to 2017, total waste receipts data were obtained from WMNM. LFG emissions for the years 2018 through 2024 for VRLRF were estimated by applying a conservative escalator of 5% per year to waste receipts in LandGEM; and a constant waste receipt rate of 136,364 Mg/yr (150,000 tons/year) was applied commencing in 2025.

Г

TABLE 6.3Annual Waste Acceptance RatesValencia Regional Landfill and Recycling Facility

Summary of Annual Waste Acceptance (1988 – 2017)							
Year	Total Annual WasteNon- DegradableReceipts (tons/year)Receipts (tons/year)		Degradable Waste Receipts (tons/year)	Degradable Waste Disposal Rate (Mg/year)**			
1988	7,543	0	7,543	6,857			
1989	7,543	0	7,543	6,857			
1990	7,543	0	7,543	6,857			
1991	7,543	0	7,543	6,857			
1992	7,543	0	7,543	6,857			
1993	7,543	0	7,543	6,857			
1994	2,694	0	2,694	2,449			
1995	19,165	0	19,165	17,423			
1996	26,780	0	26,780	24,345			
1997	50,943	0	50,943	46,312			
1998	47,150	0	47,150	42,864			
1999	12,714	0	12,714	11,558			
2000	0	0	0	0			
2001	0	0	0	0			
2002	0	0	0	0			
2003	0	0	0	0			
2004	0	0	0	0			
2005	0	0	0	0			
2006	0	0	0	0			
2007*	35,546	13,969	21,557	19,615			
2008*	56,531	20,483	36,048	32,771			
2009*	63,323	26,384	36,393	33,581			
2010*	73,384	25,142	48,242	43,856			
2011*	85,832	30,275	55,557	50,506			
2012*	93,427	32,990	60,437	54,942			
2013*	66,738	15,274	51,464	46,785			
2014*	66,380	17,218	49,162	44,692			
2015*	83,342	40,905	42,437	38,579			
2016*	44,163	12,131	32,032	29,120			
2017*	48,234	22,471	25,763	23,421			

NOTES:

*Waste Receipt Data obtained from VRLRF

**Waste Receipt Value entered into LandGEM (Attachment 6.5)

6.3.1 Estimated NMOC and VOC Emissions

LandGEM calculated an NMOC emission rate of approximately 5.74 tons/year (5.20 Mg/yr) in 2025 for wastes disposed of in the landfill through 2024 (**Attachment 6.5**). **Table 6.4** provides a summary of the LandGEM estimates for total LFG and NMOC emissions from VRLRF from 2017 through 2025.

Volatile organic compounds (VOCs) are a subset of NMOCs, and comprise approximately 39% (by weight) of NMOCs (AP-42, Table 2.4-2, Draft, October 2008). **Table 6.5** provides a summary of VOC emissions contained in LFG, estimated in 2025 from waste deposited in VRLRF through 2024, as calculated by LandGEM.

TABLE 6.4
Projected Annual Landfill Gas and NMOC Generation Rates
Emission Unit 3
Valencia Regional Landfill and Recycling Facility

	Estimated	Estimated	Estimated	Estimated
Year	Total LFG	NMOC	NMOC	NMOC
Tear	Emissions	Emissions	Emissions	Emissions
	(scfm)	(Mg/yr)	(tons/yr)	(lbs/hr)*
2017	220.34	4.06	4.47	1.02
2018	226.59	4.17	4.60	1.05
2019	233.23	4.29	4.73	1.08
2020	240.31	4.42	4.88	1.11
2021	247.83	4.56	5.03	1.15
2022	255.81	4.71	5.19	1.18
2023	264.28	4.86	5.36	1.22
2024	273.26	5.03	5.54	1.27
2025	282.77	5.20	5.74	1.31

* Value Obtained by multiplying ^{tons}/_{year} by 2000^{lb}/_{ton} and dividing by (365_{days}*24_{hrs})

TABLE 6.5Estimated Landfill Gas VOC Emissions for 2025Emission Unit 3Valencia Regional Landfill and Recycling Facility

HAP/VOC	Uncontrolled Emissions (tons/yr) (LandGEM Output)*			
1,1,2,2-Tetrachloroethane - HAP/VOC	3.56E-02			
1,1-Dichloroethane (ethylidene dichloride) - HAP/VOC	4.57E-02			
1,1-Dichloroethene (vinylidene chloride) - HAP/VOC	3.73E-03			
1,2-Dichloroethane (ethylene dichloride) - HAP/VOC	7.81E-03			
1,2-Dichloropropane (propylene dichloride) - HAP/VOC	3.92E-03			
2-Propanol (isopropyl alcohol) – VOC	5.79E-01			
Acrylonitrile - HAP/VOC	6.44E-02			
Benzene - No or Unknown Co-disposal - HAP/VOC	2.86E-02			
Bromodichloromethane - VOC	9.78E-02			
Butane – VOC	5.60E-02			
Carbon disulfide - HAP/VOC	8.50E-03			
Carbon tetrachloride - HAP/VOC	1.18E-04			
Carbonyl sulfide - HAP/VOC	5.67E-03			
Chlorobenzene - HAP/VOC	5.42E-03			
Chloroethane (ethyl chloride) - HAP/VOC	1.62E-02			
Chloroform - HAP/VOC	6.90E-04			
Chloromethane – VOC	1.17E-02			
Dichlorobenzene - (HAP for para isomer/VOC)	5.94E-03			
Dichlorofluoromethane - VOC	5.15E-02			
Dimethyl sulfide (methyl sulfide) - VOC	9.33E-02			
Ethanol – VOC	2.40E-01			
Ethyl mercaptan (ethanethiol) - VOC	2.75E-02			
Ethylbenzene - HAP/VOC	9.40E-02			
Ethylene dibromide - HAP/VOC	3.62E-05			
Fluorotrichloromethane - VOC	2.01E-02			
Hexane - HAP/VOC	1.10E-01			
Methyl ethyl ketone - HAP/VOC	9.86E-02			
Methyl isobutyl ketone - HAP/VOC	3.66E-02			
Methyl mercaptan - VOC	2.32E-02			
Pentane – VOC	4.58E-02			
Propane – VOC	9.34E-02			
t-1,2-Dichloroethene - VOC	5.23E-02			
Toluene - No or Unknown Co-disposal - HAP/VOC	6.92E-01			
Trichloroethylene (trichloroethene) - HAP/VOC	7.08E-02			
Vinyl chloride - HAP/VOC	8.79E-02			
Xylenes - HAP/VOC	2.45E-01			
Total Potential VOC Emissions	3.06 tons/yr**			

Notes:

* Adapted from LandGEM output provided in **Attachment 6.7**

** Value provided in **Table 2-D** and **2-E**

VOC emissions are likely overestimates for New Mexico (arid) landfills

Total potential cumulative VOC emissions from VRLRF are:

•	Landfill Gas (Unit 3)	3.06	tons/year (See Table 6.5)
•	Remediation of PCS (Unit 4)	up to <u>21.44</u>	tons/year (See Section 6.4)

• Total target VOC emissions estimate

24.5 tons/year

These VOC emissions estimates are also included in Tables 2-D and 2-E

6.4 Petroleum Contaminated Soils Landfarm – Emission Unit 4

VRLRF is permitted by NMED Solid Waste Bureau (SWB) to accept petroleum contaminated soils (PCS) for remediation via landfarming; for beneficial use as daily/intermediate cover soil; or for direct disposal. The PCS landfarm area (**Figure 5.1, Section 5**) has been designated Emission Unit 4, and remediation of PCS is performed over lined or future lined areas of the landfill. Consistent with the New Mexico Solid Waste Rules (August 2007), PCS are considered remediated for the purpose of beneficial use when soil sample analyses meet the following conditions:

- 1. the sum of benzene, toluene, ethylbenzene, and xylene isomer concentrations (i.e., BTEX) is less than 500 mg/Kg, with benzene individually less than 10 mg/Kg; and
- 2. the total petroleum hydrocarbon (TPH) concentration is less than 1,000 mg/Kg

Prior to acceptance by VRLRF, incoming shipments of PCS are required to be analyzed for total petroleum hydrocarbon (TPH) concentration using EPA Method 8015B and BTEX via EPA Method 8260B (or approved equivalents); and must be approved by WMNM and issued an approved profile number prior to arrival at the landfill. PCS shipments are recorded on a "non-hazardous waste manifest form" with the approved profile number identifying the project.

VRLRF periodically collects samples from the in-situ PCS within the landfarm, and the samples are analyzed for TPH and BTEX in order to track the remediation process, and to verify its success. **Attachment 6.6** is a copy of the most recent laboratory report from analysis of twenty grab samples collected on March 29, 2018. These results show maximum TPH concentrations of 850 mg/kg. No detectable benzene, toluene, ethylbenzene, or xylenes were reported above the method reporting limit in either sample. Therefore, the tested soils are considered remediated consistent with the criteria set forth in the Solid Waste Rules. The following discussion outlines the methods that are implemented by VRLRF to track VOC/HAP emissions from the PCS landfarm.

Benzene, toluene, ethylbenzene, and xylene (BTEX) are the main constituents of concern in PCS that have the potential to volatilize, and are considered volatile organic compounds (VOCs) and hazardous air pollutants (HAPs). The existing permit condition for calculation of the HAP emissions (A504) specifies individual HAP values be calculated using the highest single concentration of an individual HAP from all

of the generator analytical data. This permit condition creates an artificially exaggerated emission result by excluding all the other data points. Therefore, WMNM proposes the following methodology:

A more accurate method of determining the individual HAP emissions would be to use an Upper Confidence Limit (UCL) using an 80% confidence interval which includes the entire analytical data set as specified in SW-846, Chapter 9. When determining an UCL using an 80% confidence interval, one is actually determining a concentration with 90% confidence.

The emissions of each HAP from PCS will be calculated every 12 months using the following equation: $MHAPs = [(UCL)(MPCS)(VLF)]x[1x10^{6}]$

Where:

MHAPS=mass of HAPs emitted per year from PCS landfarm (tons per year)

UCL= estimated concentration of HAPs in PCS accepted for landfarm treatment (ppm or mg/kg) using the Upper Confidence Limit at the 80% confidence interval (SW-846, Chapter 9)

MPCS=mass of PCS accepted for treatment (tons)

VLF=100% of HAPs volatilized by landfarm treatment = 1

Calculation for individual HAP emissions shall be based upon the UCL at the 80% confidence interval of the individual HAPs as determined from the analytical test results associated with each PCS profile.

VRLRF electronically tracks the BTEX analytical results from each remediation project and volume/mass of each inbound PCS shipment using the above methodologies. This approach provides a very conservative indicator of HAP emissions; and WMNM will track the accumulated daily volume of PCS accepted, by approved profile number, by using a spreadsheet similar to the one provided as **Table 6.6**. VRLRF tracks total HAP emissions from PCS such that, on an annual basis, total site emissions do not exceed 10 tons/year for individual HAP or 25 tons/year of aggregate HAPs on a site-wide basis. This includes HAPs emitted as part of fugitive LFG emissions. Total site-wide HAP emissions are discussed in detail **Section 6.6**.

Valencia Regional Landfill and Recycling Facility

PCS HA	Ps Emissio	ns Calculation Sheet								Annual Reporting Peri	iod		То	
												Emissions		
Date	Profile #	Description	TPH ppm	Benzene (ppm)	Toluene (ppm)	Ethyl benzene (ppm)	Xylene (ppm)	Total BTEX (ppm)	Soil Tons	Total Benzene (tons)	Total Toluene (tons)	Total Ethyl benzene (tons)	Total Xylene (tons)	Total BTEX Emissions (tons)
								0.000000		0.000000	0.000000	0.000000	0.000000	0.000000
								0.000000		0.000000	0.000000	0.000000	0.000000	0.000000
								0.000000		0.000000	0.000000	0.000000	0.000000	0.000000
								0.000000		0.000000	0.000000	0.000000	0.000000	0.000000
					1			0.000000		0.000000	0.000000	0.000000	0.000000	0.000000
-								0.000000		0.000000	0.000000	0.000000	0.000000	0.000000
-								0.000000		0.000000	0.000000	0.000000	0.000000	0.000000
								0.000000		0.000000	0.000000	0.000000	0.000000	0.000000
								0.000000		0.000000	0.000000	0.000000	0.000000	0.000000
								0.000000		0.000000	0.000000	0.000000	0.000000	0.000000
								0.000000		0.000000	0.000000	0.000000	0.000000	0.000000
								0.000000		0.000000	0.000000	0.000000	0.000000	0.000000
								0.000000		0.000000	0.000000	0.000000	0.000000	0.000000
								0.000000		0.000000	0.000000	0.000000	0.000000	0.000000
								0.000000		0.000000	0.000000	0.000000	0.000000	0.000000
								0.000000		0.000000	0.000000	0.000000	0.000000	0.000000
								0.000000		0.000000	0.000000	0.000000	0.000000	0.000000
								0.000000		0.000000	0.000000	0.000000	0.000000	0.000000
								0.000000		0.000000	0.000000	0.000000	0.000000	0.000000
								0.000000		0.000000	0.000000	0.000000	0.000000	0.000000
L				1				0.000000		0.000000	0.000000	0.000000	0.000000	0.000000
								0.000000		0.000000	0.000000	0.000000	0.000000	0.000000
								0.000000		0.000000	0.000000	0.000000	0.000000	0.000000
								0.000000		0.000000	0.000000	0.000000	0.000000	0.000000
								0.000000	-	0.000000	0.000000	0.000000	0.000000	0.000000
	Totals								0.00	0.000000	0.0000000	0.0000000	0.000000	0.000000

TOTAL HAP EMISSIONS					
Total HAP Emissions from LFG = constant = Table 6.7 =	2.05 tons				
Total HAP Emissions from PCS =	0.0E+00 tons				
Total Site-Wide HAP Emissions =	2.05 tons				
Target Total =	24.5 tons/yr				

INDIVIDUAL HAP EMISSIONS

Benzene from LFG = constant = Table 6.7 =	0.029 to	ons
Benzene from PCS =	0.0E+00 to	ons
Total Benzene =	0.029 to	ons
Toluene from LFG = constant = Table 6.7 =	0.69 to	ons
Toluene from PCS =	0.0E+00 to	ons
Total Toluene =	0.69 to	ons
Ethylbenzene from LFG = constant = Table 6.7 =	0.09 to	ons
Ethylbenzene from PCS =	0.0E+00 to	ons
Total Ethylbenzene =	0.09 to	ons
Xylene from LFG = constant = Table 6.7 =	0.25 to	ons
Xylene from PCS =	0.0E+00 to	ons
Total Xylene =	0.25 to	ons
Target Total Per HAP =	9.5 to	ons/yr

6.5 Engines – Emission Unit 5

See discussions in Section 3.0 Application Summary, and Section 7.4 Insignificant Activities and Equipment.

6.6 Hazardous Air Pollutant (HAP) Sources

The purpose of the information provided in this Section is to demonstrate that the VRLRF is not a major source for hazardous air pollutants (HAPs) subject to Section 112(r) of the Clean Air Act (CAA).

6.6.1 Regulatory Applicability

On January 16, 2003, the EPA published a maximum achievable control technology (MACT) standard for municipal solid waste landfills that applies to both major HAP sources and area sources. Section 112(a) of the CAA defines a major source as "any stationary source or group of stationary sources that emits or has the potential to emit, considering controls, in the aggregate, 10 tons per year or more of any hazardous air pollutant or 25 tons per year or more of any combination of hazardous air pollutants." Section 112(a) of the CAA also defines an area source as "any stationary source of hazardous air pollutants that is not a major source."

The MACT standard for landfills is published in 40 CFR 63 Subpart AAAA, [National Emission Standards for Hazardous Air Pollutants (NESHAP): Municipal Solid Waste Landfills]. NESHAP applies to area source landfills if they:

- 1. have a design capacity equal to or greater than 2.5 million megagrams (Mg) and 2.5 million cubic meters (m³)
- 2. have accepted waste since November 8, 1987 (or have additional capacity for waste deposition), and have estimated uncontrolled emissions of 50 Mg/yr NMOC or more
- 3. are operated as a bioreactor

Because the design capacity of VRLRF is greater than 2.5 million megagrams and VRLRF has accepted waste since November 8, 1987, the Landfill is subject to the NSPS provisions of 40 CFR 60, Subpart WWW. However, since the Site has estimated uncontrolled NMOC emissions less than 50 Mg per year, the Site is not yet subject to MACT 40 CFR 63 Subpart AAAA.

6.6.2 Potential HAP Emissions from Landfill Gas

The LandGEM Model estimates emissions of 27 HAPs, which are a subset of NMOCs, and are potentially present in landfill gas. The user-defined data input into the Model generates a concentration output for individual HAPs (**Attachment 6.7**). **Table 6.7** presents a summary of the projected uncontrolled emissions of HAPs in year 2025 from LFG as calculated by LandGEM. As shown in **Table 6.7**, total (cumulative) uncontrolled HAP emissions of 2.05 tons/year from landfill gas are significantly less than the MACT standard of 25 tons/year for combined HAPs; and there are no HAPs that exceed

their *de minimus* emission rate established by 112(g) of the CAA. Total potential cumulative HAP emissions from VRLRF are summarized as follows:

TABLE 6.7Estimated Landfill Gas HAP Emissions From Landfill Gas for 2025Emission Unit 3Valencia Regional Landfill and Recycling Facility

НАР	Uncontrolled Emissions (tons/yr) (LandGEM Output)*
1,1,1-Trichloroethane (methyl chloroform) – HAP	1.23E-02
1,1,2,2-Tetrachloroethane – HAP/VOC	3.56E-02
1,1-Dichloroethane (ethylidene dichloride) – HAP/VOC	4.57E-02
1,1-Dichloroethene (vinylidene chloride) – HAP/VOC	3.73E-03
1,2-Dichloroethane (ethylene dichloride) – HAP/VOC	7.81E-03
1,2-Dichloropropane (propylene dichloride) – HAP/VOC	3.92E-03
Acrylonitrile – HAP/VOC	6.44E-02
Benzene – No or Unknown Co-disposal – HAP/VOC	2.86E-02**
Carbon disulfide – HAP/VOC	8.50E-03
Carbon tetrachloride – HAP/VOC	1.18E-04
Carbonyl sulfide – HAP/VOC	5.67E-03
Chlorobenzene – HAP/VOC	5.42E-03
Chloroethane (ethyl chloride) – HAP/VOC	1.62E-02
Chloroform – HAP/VOC	6.90E-04
Dichlorobenzene – (HAP for para isomer/VOC)	5.94E-03
Dichloromethane (methylene chloride) – HAP	2.29E-01
Ethylbenzene – HAP/VOC	9.40E-02**
Ethylene dibromide – HAP/VOC	3.62E-05
Hexane – HAP/VOC	2.01E-02
Mercury (total) – HAP	1.10E-01
Methyl ethyl ketone – HAP/VOC	9.86E-02
Methyl isobutyl ketone – HAP/VOC	3.66E-02
Perchloroethylene (tetrachloroethylene) – HAP	1.18E-01
Toluene – No or Unknown Co-disposal – HAP/VOC	6.92E-01**
Trichloroethylene (trichloroethene) – HAP/VOC	7.08E-02
Vinyl chloride – HAP/VOC	8.79E-02
Xylenes – HAP/VOC	2.45E-01**
Total Potential HAP Emissions	2.05 tons/year**

Notes:

* Adapted from LandGEM output provided in Attachment 6.7

** Values provided in Table 6.6 and Table 2-I

HAP emissions are likely substantial overestimates for New Mexico (arid) landfills

- Landfill Gas (Unit 3)
- Remediation of PCS (Unit 4)
- Total target HAP emissions estimate

 2.05
 tons/year (See Table 6.7)

 up to 22.45
 tons/year (See Section 6.4)

 24.5
 tons/year

Based on the data provided in **Table 6.7**, and the above discussion, VRLRF is not a major source for HAP (either individually or in the aggregate), as defined in Section 112(r) of the Clean Air Act.

6.7 Additional Emissions During Startup, Shutdown, and Routine Maintenance

Table 2-F, **Section 2**, which is reserved for requesting additional allowances for potential emissions during startup, shutdown, and routine maintenance (SSM), has intentionally been left blank for this Application for Permit Renewal. Additional emissions allowances for SSM emissions are not being requested for this facility, as none of the processes which take place at VRLRF produces an excess amount of emissions during SSM. Following is a description of measures to be taken to mitigate source emissions during SSM for landfill operations that have the potential to emit pollutants of concern (e.g., particulates, NMOCs, HAPs, VOCs).

6.7.1 Particulates

Landfill operations associated with the potential emission of particulate matter (e.g., TSP, PM₁₀, and PM_{2.5}) consist of vehicle travel on treated and unpaved landfill roads, and general landfill operations (e.g., heavy equipment operations, wind erosion). The measures taken to mitigate against potential excessive fugitive particulate emissions during startups, shutdowns, and emergencies consist of a Peterbilt 348 water wagon (5,000-gallon capacity) which serves as the site's primary dust suppression mode, and is used on a daily basis when the landfill is operational. The source of the water for the wagons is the VRLRF water well located at the western boundary of the facility (**Figure 5.1**). In addition, the site's Disposal Route is treated with recycled basecourse (cold millings) from the facility entrance to the disposal area turnoff. Control efficiencies relating to water application and types of road material (e.g., cold millings, unpaved) are presented in **Sections 6.1** and **6.2**. Additional equipment can be leased from local suppliers, or another WMNM facility in the region (i.e., Rio Rancho Landfill). VRLRF may also utilize processed green waste as a soil amendment to promote vegetative growth and minimize soil erosion on areas requiring intermediate/final cover.

In addition to the above procedures, VRLRF currently implements dust control measures outlined in the Plan of Operations (Volume II, Section 7.2 of the Solid Waste Permit), which is maintained as part of the Landfill's NMED-approved April 2004 (Updated August 2005) Application for Permit at the Scalehouse.

6.7.2 NMOCs

Municipal solid waste (MSW) decomposition produces landfill gas (LFG), which typically contains a small amount (i.e. <0.04%) of non-methane organic compounds (NMOCs). At this time, there is no provision to mitigate NMOC emissions during startup, shutdown, or emergencies. NMOC generation from MSW decomposition is a continual process that is not subject to "malfunction", and is not "started up" or "shut down" at will.

6.7.3 VOC/HAP Emissions

Emissions of volatile organic compounds (VOCs) and hazardous air pollutants (HAPs) could potentially occur from the landfarming of petroleum contaminated soils (PCS) or the decomposition of municipal solid waste (MSW). At this time, there is no provision to mitigate VOC/HAP emissions from PCS remediation during startup, shutdown, or emergencies, as remediation is a continual process that is not subject to "malfunction", and is not "started up" or "shut down" at will.

6.8 References

<u>AP-42: Compilation of Air Pollutant Emission Factors, Volume 1: Stationary Point and Area Sources,</u> Fifth Edition, Office of Air Quality Planning and Standards/Office of Air and Radiation, US Environmental Protection Agency, Research Triangle Park, NC 27711, October 2008 (Draft), November 2006; September, October, and November 1998; January 1995; and September 1991.

Caterpillar[®] Performance Handbook, Edition 42, Caterpillar[®], Inc., Peoria, Illinois, 2012.

LandGEM (Landfill Gas Emissions Model), Version 3.02, Control Technology Center, US Environmental Protection Agency, Research Triangle Park, NC, 27711, and Office of Research and Development, Washington, DC 20460, May 2005.

ATTACHMENT 6.1 UNCONTROLLED EMISSIONS EMISSION UNIT 1

- Refuse & PCS Delivery Vehicles
- Miscellaneous Vehicles

LANDFILL OPERATING HOURS

The Valencia Regional Landfill and Recycling Facility is open Monday through Saturday.

Operational Hours

From Monday through Friday, the Landfill operates:

Α	13 hrs/day
В	5 days/week
С	52 weeks/yr
On Saturday, the	Landfill operates:
D	

10.5 hrs/day D

- Е 1 days/week F
- 52 weeks/yr

The Landfill is closed on Sunday:

- G 1 days/week
- н 52 weeks/yr

I Number of working days per year = (365 days/yr) - (G)(H) =

- J Operating hours (Monday through Friday) = (A)(B)(C) =
- K Operating hours (Saturday) = (D)(E)(F) =

Total Landfill Operating Hours

L Landfill Operating Hours = (J + K) =

313 days/yr (Monday through Saturday) 3,380 hrs/yr 546 hrs/yr

3,926 hrs/yr

SUMMARY OF EMISSIONS FROM SIGNIFICANT SOURCES

Valencia Regional Landfill

	Description	Source Type	Pollutant	Air Pollu	a/Uncontrolled tant Emission Rate	Pollutant En	ntrolled Air nission Rate	
4		Vahiala Tr	Diana	(tons/yr)	(Ibs/hr) nd Access Road	(tons/yr)	(lbs/hr)	
1	Refuse Delivery Vehicles (Cold Millings)	venicie i r	avei: Dispos	41.63	32.37	8.33	6.47	
				3.98	5.07	0.33	1.01	
	Miscellaneous Vehicles (Cold Millings) Refuse Delivery Vehicles (Unpaved)	Area	TSP	13.94	10.84	5.58	4.34	
	Miscellaneous Vehicles (Unpaved)			4.67	5.95	1.87	2.38	
	wiscenarieous venicies (Onpaveu)		Unit Total	64.22	54.23	16.57	14.20	
	Refuse Delivery Vehicles (Cold Millings)		Unit Total	11.24	8.74	2.25	1.75	
	Miscellaneous Vehicles (Cold Millings)			1.07	1.37	0.21	0.27	
	Refuse Delivery Vehicles (Unpaved)	Area	PM ₁₀	3.76	2.93	1.51	1.17	
	Miscellaneous Vehicles (Unpaved)			1.26	1.61	0.50	0.64	
	wiscellaneous venicles (Onpaved)		Unit Total		14.64	4.47	3.83	
	Refuse Delivery Vehicles (Cold Millings)			17.34 1.12	0.87	4.4 7 0.22	0.17	
	Miscellaneous Vehicles (Cold Millings)			0.11	0.14	0.22	0.03	
	Refuse Delivery Vehicles (Unpaved)	Area	PM _{2.5}	0.11	0.14	0.02	0.03	
	, , , ,			0.38	0.29	0.15	0.12	
	Miscellaneous Vehicles (Unpaved)		Unit Total	1.73	1.46	0.05 0.45	0.08	
2		Go	neral Landf			0.45	0.30	
2	Compactor/Bulldozer	Ge		0.16	0.073	0.16	0.07	
	Motor Grader (Cold Millings)			0.10	1.9	0.058	0.07	
	Motor Grader (Unpaved)	Area	TSP	0.29	1.9	0.030	0.75	
	Scraper	Alca	101	7.00	1.5	2.98	65.46	
	Wind Erosion				7.19	1.64	5.51	1.26
	Wind Libbion		Unit Total	14.93	163.40	8.82	67.91	
	Compactor/Bulldozer		onit rotai	0.013	0.0060	0.013	0.0060	
	Motor Grader (Cold Millings)			0.013	0.83	0.015	0.0000	
	Motor Grader (Unpaved)	Area	PM ₁₀	0.129	0.83	0.020	0.33	
	Scraper	7.00	10	1.92	43.23	0.83	18.26	
	Wind Erosion			2.20	0.50	1.69	0.38	
			Unit Total	4.39	45.39	2.61	19.15	
	Compactor/Bulldozer			0.017	0.0077	0.017	0.0077	
	Motor Grader (Cold Millings)			0.0090	0.058	0.00181	0.012	
	Motor Grader (Unpaved)	Area	PM _{2.5}	0.0090	0.058	0.0036	0.012	
	Scraper		2.5	0.19	4.33	0.08	1.83	
	Wind Erosion			0.22	0.05	0.00	0.04	
			Unit Total	0.45	4.50	0.27	1.91	
3			Landfil					
5	Landfill Gas (Year 2025)	Point	NMOCs	5.74	1.31	5.74	1.31	
4			PCS Lar					
Ŧ	PCS Landfarm	Point	HAPs	22.45	5.13	22.45	5.13	

Notes:

▶ Fugitive dust emissions from Emission Units 1 and 2 are controlled by application of water (60% control) and cold millings recycled asphalt (80% control)

► Scraper emissions include travel, loading, and unloading

► NMOC emissions are for year 2025

REFUSE DELIVERY VEHICLE OPERATIONS (Cold Millings) (Uncontrolled Long-Term Emissions)

Purpose: The purpose of this calculation is to estimate the potential fugitive dust emissions from MSW and PCS Delivery Vehicle travel on the portion of the Disposal Route treated with cold millings base course.

Methodology: According to guidance presented in EPA AP-42, Section 13.2.2, Unpaved Roads (November 2006).

Long-Term Emissions Equation:

E_{ext} = (k)(s/12)^a(W/3)^b [(365-p)/365]

(AP-42,13.2.2.2, equation (2))

 $\rm E_{ext}$ = annual size-specific emission factor extrapolated for natural mitigation (Ibs/VMT)

E _{ext} = annual siz	ze-specific emission factor extrapolated for natural mitigation (lbs/VMT		
		TSP PM ₁₀ PM _{2.5}	
k = particle size	e multiplier (dimensionless)	k = 4.9 k = 1.5 k = 0.4	15
	terial silt content (%) AP-42, Table 13.2.2-1	s = 6.4 s = 6.4 s = 6.	
	onstant (dimensionless)	a = 0.7 a = 0.9 a = 0.	
	onstant (dimensionless)	b = 0.45 b = 0.45 b = 0.4	
	icle weight (tons); see calculation below	W = 24.9 W = 24.9 W = 24	
	days per year with at least 0.01 inches of precipitation	p = 60 p = 60 p = 6	0
(AP-42, Fig	jure 13.2.1-2)		
TSP, PM ₁₀ and	IPM _{2.5} Emission Factors:		
E _{TSP} =	$(4.9)(6.4/12)^{0.7}(W/3)^{0.45}$ [(365-p)/365] =	6.83 lbs/VMT	
-136			
E _{PM10} =	(1.5)(6.4/12) ^{0.9} (W/3) ^{0.45} [(365-p)/365] =	1.84 lbs/VMT	
-PM10			
E _{PM2.5} =	(0.15)(6.4/12) ^{0.9} (W/3) ^{0.45} [(365-p)/365] =	0.18 lbs/VMT	
	Miles Traveled (VMT):	0.070 vehicles/ve/kessed as lendfill data)	
B Annual escal	hicle count of MSW Delivery Vehicles per year =	9,270 vehicles/yr (based on landfill data)	
		5% per year	
	ears for which escalator is applied = N = r of MSW Delivery Vehicles per year = (Baseline Vehicle Count)[1+ (es	7 years	
	r of MSW Delivery Vehicles per year =	13.044 vehicles/vr	
	listance from Landfill Entrance to Disposal Area =	0.93 mi/vehicle	
	Delivery Vehicle VMT = $(\mathbf{E})(\mathbf{F})$ =	12,129 mi/yr	
	hicle count of PCS Delivery Vehicles per year =	90 vehicles/yr (based on landfill data)	
I Annual escala		5% per year	
	ears for which escalator is applied = N =	7 years	
•	r of PCS Delivery Vehicles per year = (Baseline Vehicle Count)[1+ (es	-	
	r of PCS Delivery Vehicles per year =	127 vehicles/yr	
	distance from Landfill Entrance to Disposal Area =	0.51 mi/vehicle	
N Total PCS D	Delivery Vehicle VMT = (L)(M) =	65 mi/yr	
O Total VMT =	= (G+N)=	12,194 mi/yr	
Weighted Ave	rage Mean Vehicle Weight (W):		
-	ight of Transfer and Tractor Trailers =	39.35 tons (based on Landfill estimates)	
-	of Transfer and Tractor Trailers =	9.0% (based on Landfill estimates)	
C Average em	pty weight of Roll-off Trucks =	27.85 tons (based on Landfill estimates)	
D Percentage	of Roll-off Trucks =	47.0% (based on Landfill estimates)	
E Average emp	pty weight of Dump Trucks =	24.50 tons (based on Landfill estimates)	
F Percentage	of Dump Trucks =	6.0% (based on Landfill estimates)	
G Average em	pty weight of Front/Side Loader & Packer Trucks =	23.35 tons (based on Landfill estimates)	
H Percentage	of Front/Side Loader & Packer Trucks =	28.0% (based on Landfill estimates)	
I Average emp	ty weight of small disposal trucks (i.e., self-haul vehicles) =	1.65 tons (based on Landfill estimates)	
0	of small disposal trucks =	4.0% (based on Landfill estimates)	
• •	pty weight of large disposal trucks (i.e., MSW and PCS trucks) =	2.45 tons (based on Landfill estimates)	
-	of large disposal trucks =	6.0% (based on Landfill estimates)	
-	verage mean vehicle weight (W) = [(A)(B) + (C)(D) + (E)(F) + (G)(H) + verage mean vehicle weight (W) =)(J) + (K)(L)] 24.9 tons	
TSD PM and	I DM Long Torm Emissions		
A TSP, PM ₁₀ and	I PM _{2.5} Long-Term Emissions	83 262 lbc/ur	
A TSP = B TSP =	(E _{TSP})(Total VMT) = (A)/(2,000 lbs/ton) =	83,262 lbs/yr 41.63 tons/yr uncontrolled	
в тор = С РМ ₁₀ =	$(\mathbf{A})(2,000 \text{ lbs/ton}) =$ $(\mathbf{E}_{PM10})(\text{Total VMT}) =$	22,477 lbs/yr	
D DM -			

(C)/(2,000 lbs/ton) =

(E_{PM2.5})(Total VMT) =

(E)/(2,000 lbs/ton) =

D PM₁₀=

E PM_{2.5}=

F PM_{2.5}=

11.24 tons/yr uncontrolled

1.12 tons/yr uncontrolled

2,248 lbs/yr

REFUSE DELIVERY VEHICLE OPERATIONS (Cold Millings) (Uncontrolled Short-Term Emissions)

Short-Term Emissions Equation:	
E = (k)(s/12) ^a (W/3) ^b	(AP-42,13.2.2.2, equation (1))
E = size-specific emission factor (lbs/VMT) k = particle size multiplier (dimensionless) s = surface material silt content (%) AP-42, Table 13.2.2-1 a = empirical constant (dimensionless) b = empirical constant (dimensionless) W = mean vehicle weight (tons)	TSP PM_{10} $PM_{2.5}$ k = 4.9 k = 1.5 k = 0.15 s = 6.4 s = 6.4 s = 6.4 a = 0.7 a = 0.9 a = 0.9 b = 0.45 b = 0.45 b = 0.45 W = 24.9 W = 24.9 W = 24.9
TSP, PM_{10} and $PM_{2.5}$ Emission Factors:	
$E_{TSP} = (4.9)(6.4/12)^{0.7}(W/3)^{0.45} =$	8.17 lbs/VMT
E _{PM10} = (1.5)(6.4/12) ^{0.9} (W/3) ^{0.45} =	2.21 lbs/VMT
$E_{PM2.5}$ = (0.15)(6.4/12) ^{0.9} (W/3) ^{0.45} =	0.22 lbs/VMT
Operating Hours: Operating efficiency = Based on Landfill estimates, from Monday through Saturday, the "average" refuse delivery A 10 hrs/day Monday through Friday (Scalehouse open B 9 hrs/day Saturday, the "average" refuse delivery C 261 weekdays/yr D 52 Saturdays/yr	7 am - 5 pm)
Operating hours = [(A)(B)(C)] [Operating Efficiency] =	3,078 hrs/yr
Total Vehicle Miles Traveled (VMT): Total VMT =	12,194 mi/yr
$\begin{array}{llllllllllllllllllllllllllllllllllll$	99,641 lbs/yr 32.37 lbs/hr uncontrolled 26,899 lbs/yr 8.74 lbs/hr uncontrolled 2,690 lbs/yr 0.87 lbs/hr uncontrolled

REFUSE DELIVERY VEHICLE OPERATIONS (Unpaved) (Uncontrolled Long-Term Emissions)

Purpose: The purpose of this calculation is to estimate the potential fugitive dust emissions from MSW Delivery Vehicles that travel on the unpaved Disposal Route extending into the Disposal Area, as well as emissions from PCS Delivery Vehicles on the unpaved PCS Disposal Route.							
Methodology:	According to guidance presented in EPA AP-42, Section 13.2.2, Unpaved Roads (November 2006).						
Long-Term Em	issions Equation:						
E _{ext} =	(k)(s/12) ^a (W/3) ^b [(365-p)/365]	(AP-42,13.2.2.2, equation (2))					
E _{ext} = annual siz	e-specific emission factor extrapolated for natural mitigation (lbs/VMT)	TSP PM ₁₀ PM _{2.5}					
	multiplier (dimensionless)	k = 4.9 k = 1.5 k = 0.15					
	erial silt content (%) AP-42, Table 13.2.2-1 nstant (dimensionless)	s = 6.4 $s = 6.4$ $s = 6.4$ $a = 0.7$ $a = 0.9$ $a = 0.9$					
	nstant (dimensionless)	$b = 0.45 \qquad b = 0.45 \qquad b = 0.45$					
	le weight (tons); see calculation below	W = 24.9 $W = 24.9$ $W = 24.9$ $p = 60$ $p = 60$ $p = 60$					
p = number of da (AP-42, Figu	ays per year with at least 0.01 inches of precipitation re 13.2.1-2)	p = 60 p = 60 p = 60					
TSP, PM ₁₀ and	PM _{2.5} Emission Factors:						
E _{TSP} =	$(4.9)(6.4/12)^{0.7}(W/3)^{0.45}$ [(365-p)/365] =	6.83 lbs/VMT					
E _{PM10} =	(1.5)(6.4/12) ^{0.9} (W/3) ^{0.45} [(365-p)/365] =	1.84 lbs/VMT					
E _{PM2.5} =	(0.15)(6.4/12) ^{0.9} (W/3) ^{0.45} [(365-p)/365] =	0.18 lbs/VMT					
A Baseline vehi B Annual escala C Number of yea D Total number E Total number F Round-trip dis G Total MSW D H Baseline vehi I Annual escalat J Number of yea K Total number L Total number M Round-trip di N Total PCS De O Total VMT =	ars for which escalator is applied = N = of MSW Delivery Vehicles per year = (Baseline Vehicle Count)[1+ (escal of MSW Delivery Vehicles per year = stance from Landfill Entrance to Disposal Area = lelivery Vehicle VMT = (E)(F)= cle count of PCS Delivery Vehicles per year = or = ars for which escalator is applied = N = of PCS Delivery Vehicles per year = (Baseline Vehicle Count)[1+ (escala of PCS Delivery Vehicles per year = stance from Landfill Entrance to Disposal Area = elivery Vehicle VMT = (L)(M) = (G+N)= age Mean Vehicle Weight (W):	13,044 vehicles/yr 0.31 mi/vehicle 4,048 mi/yr 90 vehicles/yr (based on landfill data) 5% per year 7 years ator %)]N 127 vehicles/yr 0.27 mi/vehicle 35 mi/yr 4,083 mi/yr					
	ht of Transfer and Tractor Trailers = f Transfer and Tractor Trailers =	39.35 tons (based on Landfill estimates)9.0% (based on Landfill estimates)					
-	ty weight of Roll-off Trucks =	27.85 tons (based on Landfill estimates)					
0	f Roll-off Trucks = ty weight of Dump Trucks =	47.0% (based on Landfill estimates)					
	f Dump Trucks =	24.50 tons (based on Landfill estimates)6.0% (based on Landfill estimates)					
	ty weight of Front/Side Loader & Packer Trucks =	23.35 tons (based on Landfill estimates)					
-	f Front/Side Loader & Packer Trucks = y weight of small disposal trucks (i.e., self-haul vehicles) =	 28.0% (based on Landfill estimates) 1.65 tons (based on Landfill estimates) 					
	f small disposal trucks =	4.0% (based on Landfill estimates)					
	ty weight of large disposal trucks (i.e., MSW and PCS trucks) =	2.45 tons (based on Landfill estimates)					
•	f large disposal trucks = erage mean vehicle weight (W) = [(A)(B) + (C)(D) + (E)(F) + (G)(H) + (I) (.	6.0% (based on Landfill estimates) J) + (K)(L)]					
	erage mean vehicle weight (W) =	24.9 tons					
TSP, PM ₁₀ and	PM _{2.5} Long-Term Emissions						
A TSP =	(E _{TSP})(Total VMT) =	27,878 lbs/yr					
B TSP = C PM ₁₀ =	(A)/(2,000 lbs/ton) = (E _{PM10})(Total VMT) =	13.94 tons/yr uncontrolled 7,526 lbs/yr					
D PM ₁₀ =	(C)/(2,000 lbs/ton) =	3.76 tons/yr uncontrolled					
E PM _{2.5} =	(E _{PM2.5})(Total VMT) =	753 lbs/yr					
F PM _{2.5} =	(E)/(2,000 lbs/ton) =	0.38 tons/yr uncontrolled					

REFUSE DELIVERY VEHICLE OPERATIONS (Unpaved) (Uncontrolled Short-Term Emissions)

Short-Term En	nissions Equation:				
E =	(k)(s/12) ^a (W/3) ^b		(AP-42,13.2.2.2, equation (1))		
k = particle size	c emission factor (lbs/VMT) e multiplier (dimensionless) terial silt content (%) AP-42, T	able 13.2.2-1	TSP k = 4.9 s = 6.4	PM_{10} k = 1.5 s = 6.4	PM _{2.5} k = 0.15 s = 6.4
a = empirical co b = empirical co	onstant (dimensionless) onstant (dimensionless) cle weight (tons)		$ \begin{array}{c} a = & 0.7 \\ b = & 0.45 \\ W = & 24.9 \end{array} $	a = 0.9 b = 0.45 W = 24.9	$ \begin{array}{r} a = 0.9 \\ b = 0.45 \\ W = 24.9 \end{array} $
TSP. PM₁₀ and	PM _{2.5} Emission Factors:			. <u> </u>	
E _{TSP} =	(4.9)(6.4/12) ^{0.7} (W/3) ^{0.45}	=	8.17 lbs/VMT		
E _{PM10} =	(1.5)(6.4/12) ^{0.9} (W/3) ^{0.45}	=	2.21 lbs/VMT		
E _{PM2.5} =	(0.15)(6.4/12) ^{0.9} (W/3) ^{0.45}	=	0.22 lbs/VMT		
	ency = fill estimates, from Monday th	rough Saturday, the "average" refuse deliver	• •	tes)	
	A 10 hrs/day B 9 hrs/day C 261 weekdays/ D 52 Saturdays/	-	. ,		
	s = [(A)(C)+((B)(D)] [Operating	*	3,078 hrs/yr		
Total Vehicle I Total VMT =	Miles Traveled (VMT):		4,083 mi/yr		
TSP, PM ₁₀ and	PM _{2.5} Short-Term Emission	s:			
A TSP = B TSP =	(E _{TSP})(Total VMT) = (A)/(Operating Hours) =		33,362 lbs/yr 10.84 lbs/hr uncontrolled	7	
C PM ₁₀ =	(E _{PM10})(Total VMT) =		9,006 lbs/yr		
D PM ₁₀ =	(C)/(Operating Hours) =		2.93 lbs/hr uncontrolled	7	
E PM _{2.5} =	(E _{PM2.5})(Total VMT) =		901 lbs/yr	_	
F PM _{2.5} =	(E)/(Operating Hours) =		0.29 lbs/hr uncontrolled		

MISCELLANEOUS VEHICLE OPERATIONS (Cold Millings) (Uncontrolled Long-Term Emissions)

Purpose: The purpose of this calculation is to estimate the potential fugitive dust emissions from Miscellaneous Vehicle travel on the portion of the Disposal Route treated with cold millings base course.

Methodology: According to guidance presented in EPA AP-42, Section 13.2.2, Unpaved Roads (November 2006).

Long-Term Emissions Equation:

//3) ^b [(365-p)/365]
//3) ^b

(AP-42,13.2.2.2, equation (2))

E_{ext} = annual size-specific emission factor extrapolated for natural mitigation (lbs/VMT)

E_{ext} = annual size-specific emission factor extrapolated for natural mitigation (los/VMT)							
	TSP]	PN	I ₁₀	ŀ	PM _{2.5}
k = particle size multiplier (dimensionless)	k =	4.9		k =	1.5	k =	0.15
s = surface material silt content (%) AP-42, Table 13.2.2-1	s =	6.4		s =	6.4	s =	6.4
a = empirical constant (dimensionless)	a =	0.7		a =	0.9	a =	0.9
b = empirical constant (dimensionless)	b =	0.45		b =	0.45	b =	0.45
W = mean vehicle weight (tons)	W =	19.7		W =	19.7	W =	19.7
p = number of days per year with at least 0.01 inches of precipitation	p =	60		p =	60	p =	60
(AP-42, Figure 13.2.1-2)							

TSP, $\text{PM}_{10}\,\text{and}\,\,\text{PM}_{2.5}$ Emission Factors:

E _{TSP} =	(4.9)(6.4/12) ^{0.7} (W/3) ^{0.45}	[(365-p)/365] =	6.15 lbs/VMT
E _{PM10} =	(1.5)(6.4/12) ^{0.9} (W/3) ^{0.45}	[(365-p)/365] =	1.66 lbs/VMT
E _{PM2.5} =	(0.15)(6.4/12) ^{0.9} (W/3) ^{0.45}	[(365-p)/365] =	0.17 lbs/VMT

Weighted Average Mean Vehicle Weight (W): Company Bick up Trucke

Company Pick-up Trucks		
A Number of vehicles	2	
B Round-trips/day ⁽¹⁾	2	
C Miles/round-trip (1)	0.41	
D Operating days/year ⁽¹⁾	313	
E Mean vehicle weight (tons)	2	(based on Landfill estimates)
Water Truck		
F Number of vehicles	1	
G Round-trips/day ⁽¹⁾	3	
H Miles/round-trip ⁽¹⁾	0.83	
I Operating days/year ⁽¹⁾	313	
J Empty vehicle weight (tons)	33	(based upon landfill estimates)
K Water Capacity (gallons)	5,000	(based upon landfill estimates)
L Mean vehicle weight ⁽²⁾ (tons)	43.4	

Notes:

(1) Data based on landfill estimates.

(2) Average water wagon (Peterbilt 348) weight = empty weight of vehicle + 1/2 weight of water (density = 8.3 lbs/gal). Average water wagon weight = J + (0.5)(K)(8.3 lbs/gallon)(1 ton/2,000 lbs) = 43.4 tons

19.7 tons
513 mi/yr
779 mi/vr
1,293 mi/yr

TSP, PM_{10} and $PM_{2.5}$ Long-Term Emissions:

A TSP =	(E _{TSP})(Total VMT) =	7,956 lbs/yr
B TSP =	(A)/(2,000 lbs/ton) =	3.98 tons/yr uncontrolled
C PM ₁₀ =	(E _{PM10})(Total VMT) =	2,148 lbs/yr
D PM ₁₀ =	(C)/(2,000 lbs/ton) =	1.07 tons/yr uncontrolled
E PM _{2.5} =	(E _{PM2.5})(Total VMT) =	215 lbs/yr
F PM _{2.5} =	(E)/(2,000 lbs/ton) =	0.11 tons/yr uncontrolled

MISCELLANEOUS VEHICLE OPERATIONS (Cold Millings) (Uncontrolled Short-Term Emissions)

Short-Term Emissions Equation:

E = (k)(s/12)^a(W/3)^b (AP-42,13.2.2.2, equation (1)) E = size-specific emission factor (lbs/VMT) TSP **PM**₁₀ PM_{2.5} k = particle size multiplier (dimensionless) k = 4.9 k = 1.5 k = 0.15 s = surface material silt content (%) AP-42, Table 13.2.2-1 6.4 s = 6.4 s = 6.4 s = a = empirical constant (dimensionless) a = 0.7 a = 0.9 а = 0.9 b = empirical constant (dimensionless) b = 0.45 b = 0.45 b = 0.45 W = mean vehicle weight (tons) W = 19.7 W = 19.7 W = 19.7 TSP, $\text{PM}_{10}\,\text{and}\,\,\text{PM}_{2.5}$ Emission Factors: (4.9)(6.4/12)^{0.7}(W/3)^{0.45} E_{TSP} = 7.37 lbs/VMT = (1.5)(6.4/12)^{0.9}(W/3)^{0.45} E_{PM10} = 1.99 lbs/VMT = (0.15)(6.4/12)^{0.9}(W/3)^{0.45} 0.20 lbs/VMT E_{PM2.5} = = **Operating Hours:** Operating efficiency = 100% (based on Landfill estimates) Based on Landfill estimates, from Monday through Saturday, the "average" miscellaneous vehicle operates: 6 hrs/day А в 313 days/yr 1,878 hrs/yr Operating hours = [(A)(B)] [Operating Efficiency] = Total Vehicle Miles Traveled (VMT): Total VMT = 1,293 mi/yr TSP, PM_{10} and $PM_{2.5}$ Short-Term Emissions: A TSP = (E_{TSP})(Total VMT) = 9,522 lbs/yr B TSP = (A)/(Operating Hours) = 5.07 lbs/hr uncontrolled (E_{PM10})(Total VMT) = **C** PM₁₀= 2,570 lbs/yr **D** PM₁₀= (C)/(Operating Hours) = 1.37 lbs/hr uncontrolled E PM_{2.5}= (E_{PM2.5})(Total VMT) = 257 lbs/yr F PM_{2.5}= (E)/(Operating Hours) = 0.14 lbs/hr uncontrolled

MISCELLANEOUS VEHICLE OPERATIONS (Unpaved) (Uncontrolled Long-Term Emissions)

			(Oncontrolled Ec		310113)		
<u>Purpose</u> :	The purpose of this calculation is to estimate the potential fugitive dust emissions from Miscellaneous Vehicle travel on unpaved portions of the Disposal Route and Access Roads.						
<u>Methodology</u> :	According to guidance presented in EPA AP-42, Section 13.2.2, Unpaved Roads (November 2006).						
Long-Term Err	nissions Equation:						
E _{ext} =	(k)(s/12) ^a (\	W/3) ^b [(365-p)/	365]	(AP-42,13.2.2.2,	equation (2))		
E _{ext} = annual siz	ze-specific emission factor ex	,					
				TSP		PM ₁₀	PM _{2.5}
•	e multiplier (dimensionless)			k =	4.9	k = 1.5	k = 0.15
	terial silt content (%) AP-42,	Table 13.2.2-1		s =	6.4 0.7	s = 6.4 a = 0.9	s = 6.4 a = 0.9
	onstant (dimensionless) onstant (dimensionless)			a = b =	0.45	a = 0.9 b = 0.45	a = 0.9 b = 0.45
	, ,			U =	15.8	W = 15.8	W = 15.8
p = number of c	 W = mean vehicle weight (tons) p = number of days per year with at least 0.01 inches of precipitation (AP-42, Figure 13.2.1-2) 			p =	60	p = 60	p = 60
TSP, PM ₁₀ and	PM _{2.5} Emission Factors:						
E _{TSP} =	(4.9)(6.4/12) ^{0.7} (W/3) ^{0.45}	[(365-p)/	365] =		5.57 lbs/VMT		
E _{PM10} =	(1.5)(6.4/12) ^{0.9} (W/3) ^{0.45}	[(365-p)/	365] =		1.50 lbs/VMT		
E _{PM2.5} =	(0.15)(6.4/12) ^{0.9} (W/3) ^{0.45}	[(365-p)/	365] =		0.15 lbs/VMT		
-	rage Mean Vehicle Weight (Pick-up Trucks	(W):					
A Number of ve		2					
B Round-trips/c	lay ⁽¹⁾	2					
C Miles/round-t	rip ⁽¹⁾	0.70					
D Operating da		313					
E Mean vehicle weight (tons) 2 Water Truck		2	(based on Landfill estimation	tes)			
F Number of ve	hicles	1					
G Round-trips/c	•	2					
H Miles/round-t	•	1.28					
Operating day	•	313	4 I I I I I I I I I I I I I I I I I I I				
J Empty vehicle		33 5,000	(based upon landfill estim				
K Water Capac L Mean vehicle		43.4	(based upon landfill estim	iales)			
	weight (tons)	-101					
Notes:							
(1) Data based	on landfill estimates.						
(2) Average water wagon (Peterbilt 348) weight = empty weight of vehicle + 1/2 weight of water (density = 8.3 lbs/gal).							
Average water wagon weight = \mathbf{J} + (0.5)(K)(8.3 lbs/gallon)(1 ton/2,000 lbs) = 43.4 tons							
Weighted average mean vehicle weight = (AB/(AB+FG))(E) + (FG/(AB+FG))(L) =					15.8 tons		
Total Vehicle Miles Traveled (VMT):							
VMT = (number of vehicles)(round trips/day)(mi/round trip)(operating days/yr)							
M VMT (Company Pick-up Trucks) = (A)(B)(C)(D) =				876 mi/yr			
	Truck) = (F)(G)(H)(I) =				801 mi/yr		
O Total VMT =	IVI TIN =				1,678 mi/yr		
TSP, PM ₁₀ and PM _{2.5} Long-Term Emissions:							
A TSP = $(E_{TSP})(Total VMT) =$			F	9,341 lbs/yr			
B TSP = (A)/(2,000 lbs/ton) =			L	4.67 tons/yr unco	ontrolled		
C PM ₁₀ = (E _{PM10})(Total VMT) =			г	2,522 lbs/yr	we have the st		
D $PM_{10} =$ (C)/(2,000 lbs/ton) =			L	1.26 tons/yr unco	ontrolled		
E $PM_{2,5}$ = (E _{PM2.5})(Total VMT) = F $PM_{2,5}$ = (E)/(2,000 lbs/ton) =			г	252 lbs/yr	ontrolled		
F 1VI2.5 -	(L)/(2,000 IDS/(011) =			L	0.13 tons/yr unco	in oneu	

MISCELLANEOUS VEHICLE OPERATIONS (Unpaved) (Uncontrolled Short-Term Emissions)

Short-Term Emissions Equation:

E = (k)(s/12)^a(W/3)^b (AP-42,13.2.2.2, equation (1)) E = size-specific emission factor (lbs/VMT) TSP **PM**₁₀ PM_{2.5} k = particle size multiplier (dimensionless) k = 4.9 k = 1.5 k = 0.15 s = surface material silt content (%) AP-42, Table 13.2.2-1 6.4 s = 6.4 6.4 s = s = a = empirical constant (dimensionless) a = 0.7 a = 0.9 a÷ 0.9 b = empirical constant (dimensionless) b = 0.45 b = 0.45 b = 0.45 W = mean vehicle weight (tons) W = 15.8 W = 15.8 W = 15.8 TSP, PM_{10} and $PM_{2.5}$ Emission Factors: (4.9)(6.4/12)^{0.7}(W/3)^{0.45} E_{TSP} = 6.66 lbs/VMT = E_{PM10} = (1.5)(6.4/12)^{0.9}(W/3)^{0.45} 1.80 lbs/VMT = (0.15)(6.4/12)^{0.9}(W/3)^{0.45} 0.18 lbs/VMT E_{PM2.5} = = **Operating Hours:** Operating efficiency = 100% (based on Landfill estimates) Based on Landfill estimates, from Monday through Friday, the "average" miscellaneous vehicle operates: 6 hrs/day Α в 313 days/yr Operating hours = [(A)(B) [Operating Efficiency] = 1,878 hrs/yr Total Vehicle Miles Traveled (VMT): Total VMT = 1,678 mi/yr TSP, PM_{10} and $PM_{2.5}$ Short-Term Emissions: A TSP = (E_{TSP})(Total VMT) = 11,179 lbs/yr B TSP = (A)/(Operating Hours) = 5.95 lbs/hr uncontrolled (E_{PM10})(Total VMT) = C PM₁₀= 3,018 lbs/yr **D** PM₁₀= (C)/(Operating Hours) = 1.61 lbs/hr uncontrolled (E_{PM2.5})(Total VMT) = E PM_{2.5}= 302 lbs/yr F PM_{2.5}= (E)/(Operating Hours) = 0.16 lbs/hr uncontrolled

ATTACHMENT 6.2 UNCONTROLLED EMISSIONS

EMISSION UNIT 2

- Scraper
- Motor Grader
- Compactor/Bulldozer

	SCRAPER (OPERATIONS				
	(Uncontrolled Long-Term Emissions - Scraper Tra	vel to the Working Face Over Unpaved Acces Road)				
Purpose:	The purpose of this calculation is to estimate the potential fugitive dust	emissions from three different scraper processes:				
	Scraper Travel along the unpaved Access Road portion and unpaved Disposal Route portion between Soil Borrow Area 2 and the Disposal Area.					
<u>Methodology</u> :						
Long-Term Em	issions Equation:					
E _{ext} =	(k)(s/12) ^a (W/3) ^b [(365-p)/365]	(AP-42,13.2.2.2, equation (2))				
E _{ext} = annual siz	e-specific emission factor extrapolated for natural mitigation (lbs/VMT)					
		TSP PM ₁₀ PM _{2.5}				
k = particle size	multiplier (dimensionless)	k = 4.9 k = 1.5 k = 0.15				
s = surface mate	erial silt content (%) AP-42, Table 13.2.2-1	s = 6.4 s = 6.4 s = 6.4				
a = empirical co	nstant (dimensionless)	a = 0.7 a = 0.9 a = 0.9				
	nstant (dimensionless)	b = 0.45 b = 0.45 b = 0.45				
W = mean vehic	• • •	W = 56.4 W = 56.4 W = 56.4				
•	ays per year with at least 0.01 inches of precipitation rre 13.2.2-1)	p = 60 p = 60 p = 60				
TSP, PM ₁₀ and	PM _{2.5} Emission Factors:					
E _{TSP} =	$(4.9)(6.4/12)^{0.7}(W/3)^{0.45}$ [(365-p)/365] =	9.87 lbs/VMT				
E _{PM10} =	$(1.5)(6.4/12)^{0.9}(W/3)^{0.45}$ [(365-p)/365] =	2.67 lbs/VMT				
E _{PM2.5} =	$(0.15)(6.4/12)^{0.9}(W/3)^{0.45}$ [(365-p)/365] =	0.27 lbs/VMT				
Total Vehicle N	liles Traveled (VMT):					
A Number of In	termediate Cover round trips per week =	20 round trips/week (based on Landfill estimates)				
B Round-trip di	stance from Soil Borrow Area 2 to Disposal Area =	0.91 mi/round-trip				
C Total VMT =	((A)(B))(52 weeks/year) =	946 mi/yr				
Mean Vehicle V	Veight (W):					
Mean vehicle we	eight = (vehicle empty weight) + (1/2 soil weight)					
A Vehicle empt	y weight (CAT 627G) =	43.2 tons (Caterpillar Handbook, 2012)				
B Scraper capa	acity =	22 yd ³ /load (based on Landfill estimates)				
C Soil density (tons/yd ³) =	1.2 tons/yd ³ (Caterpillar Handbook, 2012)				
D Soil weight =		26.4 tons				
E Assume Scra	aper is empty for 1/2 of its round-trip =	0.5				
F 1/2 soil weight	nt = (D)(E) =	13.2 tons				
G Mean vehicle	e weight (W) = (A) + (F) =	56.4 tons				
	PM _{2.5} Long-Term Emissions					
A TSP =	(E _{TSP})(Total VMT) =	9,336 lbs/yr				
B TSP =	(A)/(2,000 lbs/ton) =	4.67 tons/yr uncontrolled				
C PM ₁₀ =	(E _{PM10})(Total VMTI) =	2,520 lbs/yr				
D PM ₁₀ =	(C)/(2,000 lbs/ton) =	1.26 tons/yr uncontrolled				
E PM _{2.5} =	(E _{PM2.5})(Total VMT) =	252 lbs/yr				
F PM _{2.5} =	(E)/(2,000 lbs/ton) =	0.13 tons/yr uncontrolled				

SCRAPER OPERATIONS

(Uncontrolled Short-Term Emissions - Scraper Travel to the Working Face Over Unpaved Access Road

Short-Term Emissions Equation:

F PM_{2.5} =

(E)/(Operating Hours) =

E =	(k)(s/12) ^a (W/3) ^b	(AP-42,13.2.2.2, equation (1a))	
F = size-spe	cific emission factor (lbs/VMT)	TSP PN	M ₁₀ PM _{2.5}
•	ize multiplier (dimensionless)	k = 4.9 k =	1.5 k = 0.15
	naterial silt content (%) AP-42, Table 13.2.2-1	s = 6.4 s =	6.4 s = 6.4
	l constant (dimensionless)	a = 0.7 a =	0.9 a = 0.9
	constant (dimensionless)	b = 0.45 b =	0.45 b = 0.45
W = mean ve	ehicle weight (tons)	W = 56.4 W =	56.4 W = 56.4
TSP, PM ₁₀ a	nd PM _{2.5} Emission Factors:		
E _{TSP} =	$(4.9)(6.4/12)^{0.7}(W/3)^{0.45}$ =	11.82 lbs/VMT	
E _{PM10} =	(1.5)(6.4/12) ^{0.9} (W/3) ^{0.45} =	3.19 lbs/VMT	
E _{PM2.5} =	(0.15)(6.4/12) ^{0.9} (W/3) ^{0.45} =	0.32 lbs/VMT	
Total Vehicl	e Miles Traveled (VMT):		
Total VMT =		946 mi/yr	
Mean Vehicl	le Weight (W):		
Mean vehicle weight (W) =		56.4 tons	
Operating H	lours:		
Operating eff	ficiency =	100% based on Landfill estimate	s
From Monda	y through Friday, the scraper operates:		
	A 1 hrs/day		
	B 1 days/week		
	C 52 weeks/yr		
On Saturday	, the scraper operates:		
	D 1 hrs/day		
	E 1 days/week		
On conting 1	F 52 weeks/yr		
Operating ho	<pre>burs = [(A)(B)(C) + (D)(E)(F)] [Operating Efficiency] =</pre>	104 hrs/yr	
	nd PM _{2.5} Short-Term Emissions:		
A TSP =	(E _{TSP})(Total VMT) =	11,173 lbs/yr	
B TSP =	(A)/(Operating Hours) =	107.43 lbs/hr uncontrolled	
C PM ₁₀ =	(E _{PM10})(Total VMTI) =	3,016 lbs/yr	
D PM_{10} = (C)/(Operating Hours) =		29.00 lbs/hr uncontrolled	
E PM _{2.5} =	$(E_{PM2.5})$ (Total VMT) =	302 lbs/yr	
	(E)(())poroting Houre) =	2.90 lbc/br uncontrolled	

2.90 lbs/hr uncontrolled

		SCRAPER C	PERATIONS
	(Uncontrolled Long-Ter	m Emissions - Scraper Travel f	to the Working Face Over Cold Millings Disposal Route)
Purpose:	: The purpose of this calculation is to estimate the potential fugitive dust emissions from three different scraper processes:		
	Scraper Travel along the Cold	Millings Disposal Route portion between	Soil Borrow Area 2 and the Disposal Area.
Scraper Loading at Soil Borrow Area 2 Scraper Unloading at the Disposal Area/Working Face Methodology: Emissions estimates for each process involve the application of guidance from three (3) separate sections of EPA AP-42: Scraper Travel Section 13.2.2 (Unpaved Roads, November 2006) Scraper Loading Section 11.9 (Western Surface Coal Mining, October 1998) Scraper Unloading Section 13.2.4 (Aggregate Handling and Storage Piles, November 2006)			
Long-Term Em	issions Equation:		
E _{ext} =	(k)(s/12) ^a (W/3) ^b	[(365-p)/365]	(AP-42,13.2.2.2, equation (2))
E _{ext} = annual siz	ze-specific emission factor extrap	oolated for natural mitigation (lbs/VMT)	
s = surface mate a = empirical co b = empirical co W = mean vehic p = number of d	multiplier (dimensionless) erial silt content (%) AP-42, Tabl instant (dimensionless) instant (dimensionless) cle weight (tons) lays per year with at least 0.01 in ure 13.2.2-1)		TSP PM_{10} $PM_{2.5}$ k = 4.9k = 1.5k = 0.15s = 6.4s = 6.4a = 0.7a = 0.9b = 0.45b = 0.45W = 56.4W = 56.4p = 60p = 60
TSP, PM ₁₀ and	PM _{2.5} Emission Factors:		
E _{TSP} =	(4.9)(6.4/12) ^{0.7} (W/3) ^{0.45}	[(365-p)/365] =	9.87 lbs/VMT
E _{PM10} =	(1.5)(6.4/12) ^{0.9} (W/3) ^{0.45}	[(365-p)/365] =	2.67 lbs/VMT
E _{PM2.5} =	(0.15)(6.4/12) ^{0.9} (W/3) ^{0.45}	[(365-p)/365] =	0.27 lbs/VMT
A Number of InB Round-trip di	files Traveled (VMT): termediate Cover round trips per stance from Soil Borrow Area 2 (((A)(B))(52 weeks/year) =		20 round trips/week(based on Landfill estimates)0.30 mi/round-trip308 mi/yr
 A Vehicle empt B Scraper capa C Soil density (D Soil weight = E Assume Scra F 1/2 soil weight 	eight = (vehicle empty weight) + y weight (CAT 627G) = acity = tons/yd ³) = (B)(C) = aper is empty for 1/2 of its round-		 43.2 tons (Caterpillar Handbook, 2012) 22 yd³/load (based on Landfill estimates) 1.2 tons/yd³ (Caterpillar Handbook, 2012) 26.4 tons 0.5 13.2 tons 56.4 tons
TSP , PM ₁₀ and A TSP = B TSP = C PM ₁₀ = D PM ₁₀ = E PM _{2.5} = F PM _{2.5} =	$\begin{array}{l} \textbf{PM}_{2.5} \ \textbf{Long-Term Emissions} \\ (E_{TSP})(Total VMT) = \\ (\textbf{A})/(2,000 \ lbs/ton) = \\ (E_{PM10})(Total VMTI) = \\ (\textbf{C})/(2,000 \ lbs/ton) = \\ (E_{PM2.5})(Total VMT) = \\ (\textbf{E})/(2,000 \ lbs/ton) = \end{array}$		3,045 lbs/yr 1.52 tons/yr uncontrolled 822 lbs/yr 0.41 tons/yr uncontrolled 82 lbs/yr 0.04 tons/yr uncontrolled

SCRAPER OPERATIONS

(Uncontrolled Short-Term Emissions - Scraper Travel to the Working Face Over Cold Millings Disposal Route

Short-Term Emissions Equation:

E =	(k)(s/12) ^a (W/3) ^b	(AP-42,13.2.2.2, equation (1a))	
E = size-specific emission factor (lbs/VMT)		TSP PM ₁₀	PM _{2.5}
k = particle size multiplier (dimensionless)		k = 4.9 k = 1.	5 k = 0.15
	naterial silt content (%) AP-42, Table 13.2.2-1	s = 6.4 s = 6.	4 s = 6.4
	constant (dimensionless)	a = 0.7 a = 0.	9 a = 0.9
	constant (dimensionless)	b = 0.45 b = 0.4	45 b = 0.45
-	chicle weight (tons)	W = 56.4 W = 56	.4 W = 56.4
TSP, PM ₁₀ ai	nd PM _{2.5} Emission Factors:		
E _{TSP} =	$(4.9)(6.4/12)^{0.7}(W/3)^{0.45}$ =	11.82 lbs/VMT	
E _{PM10} =	(1.5)(6.4/12) ^{0.9} (W/3) ^{0.45} =	3.19 lbs/VMT	
E _{PM2.5} =	(0.15)(6.4/12) ^{0.9} (W/3) ^{0.45} =	0.32 lbs/VMT	
Total Vehicl Total VMT =	e Miles Traveled (VMT):	308 mi/yr	
Mean Vehicl	e Weight (W):		
Mean vehicle	e weight (W) =	56.4 tons	
Operating H	ours:		
Operating eff	iciency =	100% based on Landfill estimates	
From Monda	y through Friday, the scraper operates:		
	A 1 hrs/day		
	B 1 days/week		
	C 52 weeks/yr		
On Saturday,	, the scraper operates:		
	D 1 hrs/day		
	E 1 days/week		
	F 52 weeks/yr		
Operating ho	urs = [(A)(B)(C) + (D)(E)(F)] [Operating Efficiency] =	104 hrs/yr	
TSP, PM ₁₀ ai	nd PM _{2.5} Short-Term Emissions:		
A TSP =	(E _{TSP})(Total VMT) =	3,644 lbs/yr	
B TSP =	(A)/(Operating Hours) =	35.04 lbs/hr uncontrolled	
C PM ₁₀ =	(E _{PM10})(Total VMTI) =	984 lbs/yr	
D PM ₁₀ =	(C)/(Operating Hours) =	9.46 lbs/hr uncontrolled	
E PM _{2.5} =	(E _{PM2.5})(Total VMT) =	98 lbs/yr	
F PM _{2.5} =	(E)/(Operating Hours) =	0.95 lbs/hr uncontrolled	

SCRAPER OPERATIONS (Uncontrolled Emissions - Scraper Loading)

TSP, PM_{10} and $PM_{2.5}$ Emission Factors:

TSP, PM₁₀, and PM_{2.5} uncontrolled emissions for scraper loading are estimated through application of emission factors presented in AP-42, Section 11.9, Table 11.9-4 and Section 13.2.2.2.

A E_{TSP} =

0.058 lbs/ton of material loaded (Table 11.9-4)

The emission factors for PM_{10} and $PM_{2.5}$ are calculated by applying the ratio of the PM_{10} , $PM_{2.5}$, and TSP particle size multiplier (k) values, obtained from AP-42, Section 13.2.2.2, to the TSP emission factor of 0.058 lbs/ton of material loaded.

B E _{PM10} =	(1.5/4.9)(E _{TSP}) = (0.31)(A) =
C E _{PM2.5} =	(0.15/4.9)(E _{TSP}) = (.031)(A) =

Mass of Soil Loaded Per Year:

- A Number of scraper loads per day=
- B Scraper capacity=
- C Soil density=
- D Mass of soil loaded per day = (A)(B)(C) =
- E Operating days per year =
- F Mass of soil loaded per year = (D)(E) =

Operating Hours:

Operating hours =

TSP, PM₁₀ and PM_{2.5} Emissions:

- **A** TSP = (E_{TSP})(Mass of soil loaded per year) = **B** TSP = (**A**)/(2,000 lbs/ton) =
- **C** TSP = (A)/(Operating Hours) =
- **D** PM_{10} = (E_{PM10})(Mass of soil loaded per year) =
- **E** PM₁₀ = (**D**)/(2,000 lbs/ton) =
- **F** PM_{10} = (**D**)/(Operating Hours) =
- G $PM_{2.5}$ = (E_{PM2.5})(Mass of soil loaded per year) =
- H PM_{2.5} = (G)/(2,000 lbs/ton) =
- I PM_{2.5} = (G)/(Operating Hours) =

0.02 lbs/ton of material loaded **0.002** lbs/ton of material loaded

10 loads/day (based on Landfill estimates)
22 yd³/load (based on Landfill estimates)
1.2 tons/yd³ (Caterpillar[®] Handbook, 2012
264 tons/day
104 days/yr
27,456 tons/yr

104 hrs/yr

1,592	lbs/yr
0.80	tons/yr uncontrolled
15.31	lbs/hr uncontrolled
487	lbs/yr
0.24	tons/yr uncontrolled
4.69	lbs/hr uncontrolled
49	lbs/yr
0.02	tons/yr uncontrolled
0.47	lbs/hr uncontrolled

SCRAPER OPERATIONS (Uncontrolled Emissions - Scraper Unloading)

Emissions Equation:

Emissions E	•		
E =	$\frac{(k)(0.0032)(U/5)^{1.3}}{(M/2)^{1.4}}$	(AP-42,13.2.4, equ	ation (1))
	()	(
E = size-spec	ific emission factor (lbs/ton of material unloaded)		
k = particle si	ze multiplier (dimensionless) =	0.74 k _{tsp}	(, , ,
		0.35 k _{PM10}	(AP-42, 13.2.4)
		0.053 k _{PM2.5}	(AP-42, 13.2.4)
U* = mean wi	nd speed (mph) =	12.5	
* Meteorologi	cal data obtained online from NREL USDOE		
M = soil mois	ture content (%) =	12 (AP-42, ⁻	Table 13.2.4-1)
TSP, PM ₁₀ ar	Id PM _{2.5} Emission Factors:		
E _{TSP} =	$\frac{(0.74)(0.0032)(U/5)^{1.3}}{(M/2)^{1.4}} =$	0.00063 lbs/ton of	f material unloaded
E _{PM10} =	(0.35)(0.0032)(U/5) ^{1.3} (M/2) ^{1.4} =	0.00030 lbs/ton o	f material unloaded
E _{PM2.5} =	(0.053)(0.0032)(U/5) ^{1.3} (M/2) ^{1.4} =	0.00005 lbs/ton of	f material unloaded
Mass of Soil	Unloaded Per Year:		
Mass of soil u	inloaded per year = Mass of soil loaded per year =	27,456 tons/yr	
Operating H	ours:		
Operating hours =		104 hrs/yr	
TSP, PM ₁₀ ar	nd PM _{2.5} Emissions:		
A TSP =	(E _{TSP})(Mass of soil unloaded per year) =	17 lbs/yr	
B TSP =	(A)/(2,000 lbs/ton) =	0.009 tons/yr u	uncontrolled
C TSP =	(A)/(Operating Hours) =	0.17 lbs/hr ur	ncontrolled
D PM ₁₀ =	(E _{PM10})(Mass of soil unloaded per year) =	8 lbs/yr	
E PM ₁₀ =	(D)/(2,000 lbs/ton) =	0.004 tons/yr u	uncontrolled
F PM ₁₀ =	(D)/(Operating Hours) =	0.08 lbs/hr ur	ncontrolled

- **G** PM_{2.5} = $(E_{PM2.5})$ (Mass of soil unloaded per year) =
- H PM_{2.5} = (G)/(2,000 lbs/ton) =

I PM_{2.5} = (G)/(Operating Hours) =

0.009	tons/yr uncontrolled
0.17	lbs/hr uncontrolled
8	lbs/yr
0.004	tons/yr uncontrolled
0.08	lbs/hr uncontrolled
1	lbs/yr
0.001	tons/yr uncontrolled
0.01	lbs/hr uncontrolled

SCRAPER OPERATIONS - SUMMARY OF EMISSIONS

(Total Uncontrolled TSP, PM_{10} , and $PM_{2.5}$ Emissions)

Scraper Travel + Loading + Unloading
TSP Long-Term Emissions

TSP Short-Term Emissions

PM₁₀ Long-Term Emissions PM₁₀ Short-Term Emissions

 $\rm PM_{2.5}$ Long-Term Emissions PM_{2.5} Short-Term Emissions

7.0 tons/yr uncontro	lled
157.9 lbs/hr uncontroll	ed
1.9 tons/yr uncontro	lled
43.2 lbs/hr uncontrol	ed

0.19	tons/yr uncontrolled
4.33	lbs/hr uncontrolled

MOTOR GRADER OPERATIONS (Cold Millings)

(Uncontrolled Emissions)

Purpose: The purpose of this calculation is to estimate the potential fugitive dust emissions from Motor Grader operations on the portion of the Disposal Route treated with cold millings base course.

Methodology: Emissions for TSP, PM₁₀, and PM_{2.5} have been estimated by use of the emission factor equations provided in AP-42, Section 11.9, Western Surface Coal Mining (October 1998), Table 11.9-1:

Emissions Equ	lations:	
E _{TSP} =	(0.040)(S) ^{2.5}	(AP-42, Table 11.9-1)
E _{PM15} =	(0.051)(S) ^{2.0}	(AP-42, Table 11.9-1)
E _{PM10} =	(0.60)(E _{PM15})	(AP-42, Table 11.9-1)
E _{PM10} =	(0.60)(0.051)(S) ^{2.0}	
E _{PM2.5} =	(0.031)(E _{TSP})	(AP-42, Table 11.9-1)
E _{PM2.5} =	(0.031)(0.040)(S) ^{2.5}	
E = size-specifi	c emission factor (lbs/VMT)
S = mean vehic	le speed (mph) =	3 mph (based on Landfill estimates)
TOD DM and	DM Emission Eastern	
	PM _{2.5} Emission Factors:	
E _{TSP} =	$(0.040)(S)^{2.5} =$	0.62 lbs/VMT
E _{PM10} =	$(0.60)(0.051)(S)^{2.0} =$	0.28 lbs/VMT
E _{PM2.5} =	(0.031)(0.040)(S) ^{2.5} =	0.02 lbs/VMT
Operating Hou	rs:	
Operating efficient	ency =	100% (based on Landfill estimates)
Based on Land	ill estimates, one motor gr	ader (CAT 140G) operates:
	4	6 hr/week on roads covered with cold millings (based on Landfill estimates)
1	3	52 weeks/yr (based on Landfill estimates)
1		52 weeks/yr (based on Landfill estimates)
I Operating hours	3 इ : (A)(B)(Operating Efficien	52 weeks/yr (based on Landfill estimates)
I Operating hours Total Vehicle M	3	52 weeks/yr (based on Landfill estimates)
I Operating hours Total Vehicle M	3 s · (A)(B)(Operating Efficien /iiles Traveled (VMT):	52 weeks/yr (based on Landfill estimates) ncy) = 312 hrs/yr
I Operating hours Total Vehicle N Total VMT = (O	3 s · (A)(B)(Operating Efficien /iiles Traveled (VMT):	52 weeks/yr (based on Landfill estimates) ncy) = 312 hrs/yr
I Operating hours Total Vehicle N Total VMT = (O	3 s: (A)(B)(Operating Efficien files Traveled (VMT): perating Hours)(S) =	52 weeks/yr (based on Landfill estimates) ncy) = 312 hrs/yr
Total Vehicle M Total VMT = (O TSP, PM ₁₀ and	3 s: (A)(B)(Operating Efficien files Traveled (VMT): perating Hours)(S) = PM _{2.5} Emissions	52 weeks/yr (based on Landfill estimates) ncy) = 312 hrs/yr 936 mi/yr
Total Vehicle M Total VMT = (O TSP, PM ₁₀ and A TSP =	 B (A)(B)(Operating Efficient A files Traveled (VMT): perating Hours)(S) = PM_{2.5} Emissions (E_{TSP})(Total VMT) = 	52 weeks/yr (based on Landfill estimates) ncy) = 312 hrs/yr 936 mi/yr 584 lbs/yr
Total Vehicle M Total VMT = (O TSP, PM ₁₀ and A TSP = B TSP =	B s: (A)(B)(Operating Efficient liles Traveled (VMT): perating Hours)(S) = PM _{2.5} Emissions (E _{TSP})(Total VMT) = (A)/(2,000 lbs/ton) =	52 weeks/yr (based on Landfill estimates) ncy) = 312 hrs/yr 936 mi/yr 584 lbs/yr 0.29 tons/yr uncontrolled
Total Vehicle M Total VMT = (O TSP, PM ₁₀ and A TSP = B TSP = C TSP =	B s: (A)(B)(Operating Efficient liles Traveled (VMT): perating Hours)(S) = PM_{2.5} Emissions (E _{TSP})(Total VMT) = (A)/(2,000 lbs/ton) = (A)/(Operating Hours) =	52 weeks/yr (based on Landfill estimates) hcy) = 312 hrs/yr 936 mi/yr 584 lbs/yr 0.29 tons/yr uncontrolled 1.87 lbs/hr uncontrolled
Total Vehicle MTotal VMT = (O)TSP, PM10 andA TSP =B TSP =C TSP =D PM10 =	B :: (A)(B)(Operating Efficient Niles Traveled (VMT): : perating Hours)(S) = : PM _{2.5} Emissions : (E _{TSP})(Total VMT) = : (A)/(2,000 lbs/ton) = : (A)/(Operating Hours) = : (E _{PM10})(Total VMT) = :	52 weeks/yr (based on Landfill estimates) hcy) = 312 hrs/yr 936 mi/yr 584 lbs/yr 0.29 tons/yr uncontrolled 1.87 lbs/hr uncontrolled 258 lbs/yr
Total Vehicle M Total VMT = (O TSP, PM ₁₀ and A TSP = B TSP = C TSP = D PM ₁₀ = E PM ₁₀ = F PM ₁₀ = G PM _{2.5} =	B S : (A)(B)(Operating Efficient Niles Traveled (VMT): perating Hours)(S) = PM_{2.5} Emissions (E _{TSP})(Total VMT) = (A)/(2,000 lbs/ton) = (E _{PM10})(Total VMT) = (D)/(2,000 lbs/ton) =	52 weeks/yr (based on Landfill estimates) hcy) = 312 hrs/yr 936 mi/yr 584 lbs/yr 0.29 tons/yr uncontrolled 1.87 lbs/hr uncontrolled 258 lbs/yr 0.13 tons/yr uncontrolled
Total Vehicle M Total VMT = (O TSP, PM ₁₀ and A TSP = B TSP = C TSP = D PM ₁₀ = E PM ₁₀ = F PM ₁₀ =	B S : (A)(B)(Operating Efficient Niles Traveled (VMT): perating Hours)(S) = PM_{2.5} Emissions (E_{TSP})(Total VMT) = (A)/(2,000 lbs/ton) = (A)/(Operating Hours) = (E _{PM10})(Total VMT) = (D)/(2,000 lbs/ton) = (D)/(Operating Hours) =	52 weeks/yr (based on Landfill estimates) hcy) = 312 hrs/yr 936 mi/yr 584 lbs/yr 0.29 tons/yr uncontrolled 1.87 lbs/hr uncontrolled 258 lbs/yr 0.13 tons/yr uncontrolled 0.83 lbs/hr uncontrolled

MOTOR GRADER OPERATIONS (Unpaved)

(Uncontrolled Emissions)

Purpose: The purpose of this calculation is to estimate the potential fugitive dust emissions from Motor Grader operations on unpaved portions of the Disposal Route and Access Roads.

Methodology: Emissions for TSP, PM₁₀, and PM_{2.5} have been estimated by use of the emission factor equations provided in AP-42, Section 11.9, Western Surface Coal Mining (October 1998), Table 11.9-1:

Emissions Equations: (0.040)(S)^{2.5} (AP-42, Table 11.9-1) E_{TSP} = (0.051)(S)^{2.0} (AP-42, Table 11.9-1) E_{PM15} = E_{PM10} = (0.60)(E_{PM15}) (AP-42, Table 11.9-1) E_{PM10} = $(0.60)(0.051)(S)^{2.0}$ (0.031)(E_{TSP}) (AP-42, Table 11.9-1) E_{PM2.5} = (0.031)(0.040)(S)^{2.5} E_{PM2.5} = E = size-specific emission factor (lbs/VMT) S = mean vehicle speed (mph) = 3 mph (based on Landfill estimates) TSP, PM_{10} and $PM_{2.5}$ Emission Factors: $(0.040)(S)^{2.5} =$ 0.62 lbs/VMT E_{TSP} = $(0.60)(0.051)(S)^{2.0} =$ 0.28 lbs/VMT E_{PM10} = $(0.031)(0.040)(S)^{2.5} =$ 0.02 lbs/VMT E_{PM2.5} = **Operating Hours:** Operating efficiency = 100% (based on Landfill estimates) Based on Landfill estimates, one motor grader (CAT 140G) operates: 6 hr/week on unpaved roads (based on Landfill estimates) Α в 52 weeks/yr (based on Landfill estimates) Operating hours (A)(B)(Operating Efficiency) = 312 hrs/yr Total Vehicle Miles Traveled (VMT): Total VMT = (Operating Hours)(S) = 936 mi/yr TSP, PM₁₀ and PM_{2.5} Emissions (E_{TSP})(Total VMT) = A TSP = 584 lbs/yr B TSP = (A)/(2,000 lbs/ton) = 0.29 tons/yr uncontrolled C TSP = (A)/(Operating Hours) = 1.87 lbs/hr uncontrolled **D** PM₁₀ = (E_{PM10})(Total VMT) = 258 lbs/yr E PM₁₀ = (D)/(2,000 lbs/ton) = 0.13 tons/yr uncontrolled **F** PM₁₀ = (D)/(Operating Hours) = 0.83 lbs/hr uncontrolled

18.1 lbs/yr

0.009 tons/yr uncontrolled

0.06 lbs/hr uncontrolled

(E_{PM2.5})(Total VMT) =

(G)/(Operating Hours) =

(G)/(2,000 lbs/ton) =

G PM_{2.5} =

H PM_{2.5} =

I PM_{2.5} =

COMPACTOR/BULLDOZER OPERATIONS

(Uncontrolled Emissions)

<u>Methodology</u>: According to AP-42, Section 13.2.3, Heavy Construction Operations (January 1995), Table 13.2.3-1, emissions for TSP, PM₁₀, and PM_{2.5} for the compactor are to be estimated by use of the bulldozer emission factor equations provided in AP-42, Section 11.9, Western Surface Coal Mining (October 1998), Table 11.9-1. Therefore, a single equation was used to estimate emissions from both equipment types, which operate within the same area of the landfill (i.e., the Disposal Area).

		equipment types, which operate within the same area of the landfill (i.e., the
Emissions Equ	uations:	
E _{TSP} =	(5.7)(s) ^{1.2} (M) ^{1.3}	(AP-42, Table 11.9-1)
E _{PM15} =	(1.0)(s) ^{1.5} (M) ^{1.4}	(AP-42, Table 11.9-1)
E _{PM10} =	(0.75)(E _{PM15})	(AP-42, Table 11.9-1)
E _{PM2.5} =	(0.105)(E _{TSP})	(AP-42, Table 11.9-1)
E = size-specifi	c emission factor (Ibs/ton of compac	ted waste)
s = material silt	content (%) =	0.5 (assumed for silt content of MSW)
M = material mo	pisture content (%) =	15 (assumed for MSW)
TSP, PM ₁₀ and	PM _{2.5} Emission Factors:	
E _{TSP} =	$[(5.7)(s)^{1.2}]/[(M)^{1.3}] =$	0.073 lbs/hr of operation
E _{PM10} =	$[(0.75)(s)^{1.5}]/[(M)^{1.4}] =$	0.006 lbs/hr of operation
E _{PM2.5} =	$[0.105][(5.7)(s)^{1.2}]/[(M)^{1.3}] =$	0.008 lbs/hr of operation
Operating Hou	irs:	
Pieces of equip	ment operating at the Disposal Area	= 2 pieces (based on Landfill estimates)
Equipment type	compactor (CAT 826H) & bulldoze	
	ency (each piece) =	85% (based on Landfill estimates)
-		Friday, each piece of equipment operates:
		s/day Monday through Friday
	B 7 hrs	s/day Saturday
	C 261 we	ekdays/year
		turdays/year
Operating hours	s = [Pieces of equipment] [(A)(C) +	(B)(D)] [Operating Efficiency] = 4,382 hrs/yr
TSP, PM ₁₀ and	PM _{2.5} Emissions	
A TSP =	(E _{TSP})(Operating Hours) =	322 lbs/yr
B TSP =	(A)/(2,000 lbs/ton) =	0.16 tons/yr uncontrolled
C TSP =	(A)/(Operating Hours) =	0.07 lbs/hr uncontrolled
D PM ₁₀ =	(E _{PM10})(Operating Hours) =	26 lbs/yr

C 13F -	(A)/(Operating riburs) =	
D PM ₁₀ =	(E _{PM10})(Operating Hours) =	26 lbs/yr
E PM ₁₀ =	(D)/(2,000 lbs/ton) =	0.01 tons/yr uncontrolled
F PM ₁₀ =	(D)/(Operating Hours) =	0.006 lbs/hr uncontrolled
G PM _{2.5} =	(E _{PM2.5})(Operating Hours) =	34 lbs/yr
H PM _{2.5} =	(G)/(2,000 lbs/ton) =	0.02 tons/yr uncontrolled
I PM _{2.5} =	(G)/(Operating Hours) =	0.008 lbs/hr uncontrolled

ATTACHMENT 6.3 CONTROLLED EMISSIONS EMISSION UNITS 1 AND 2

ATTACHMENT 6.3

ITEMIZED SUMMARY OF CONTROLLED VEHICLE EMISSIONS

Valencia County Regional Landfill - Emission Units 1 and 2

Controlled fugitive dust emissions are estimated by using the following equation:

Controlled emissions = (uncontrolled emissions)(1 - control efficiency)

Control efficiencies = 80%, 60%, and 0%

Emissions	Uncon	trolled	Control Efficiency	Controlled			
Emissions	tons/yr	lbs/hr	(%)	tons/yr	lbs/hr		
Refu	se Delivery Vehic	le Operations	s (Cold Millings)				
TSP Long-Term Emissions	41.63		80	8.33			
TSP Short-Term Emissions		32.37	80		6.47		
PM ₁₀ Long-Term Emissions	11.24		80	2.25			
PM ₁₀ Short-Term Emissions		8.74	80		1.75		
PM _{2.5} Long-Term Emissions	1.12		80	0.22			
PM _{2.5} Short-Term Emissions		0.87	80		0.17		
Re	fuse Delivery Vel	nicle Operatio	ons (Unpaved)				
TSP Long-Term Emissions	13.94		60	5.58			
TSP Short-Term Emissions		10.84	60		4.34		
PM ₁₀ Long-Term Emissions	3.76		60	1.51			
PM ₁₀ Short-Term Emissions		2.93	60		1.17		
PM _{2.5} Long-Term Emissions	0.38		60	0.15			
PM _{2.5} Short-Term Emissions		0.29	60		0.12		
Mis	cellaneous Vehicl	e Operations	(Cold Millings)				
TSP Long-Term Emissions	3.98		80	0.80			
TSP Short-Term Emissions		5.07	80		1.0		
PM ₁₀ Long-Term Emissions	1.07		80	0.21			
PM ₁₀ Short-Term Emissions		1.37	80		0.27		
PM _{2.5} Long-Term Emissions	0.11		80	0.021			
PM _{2.5} Short-Term Emissions		0.14	80		0.027		
M	iscellaneous Veh	icle Operatio	ns (Unpaved)				
TSP Long-Term Emissions	4.67		60	1.9			
TSP Short-Term Emissions		5.95	60		2.4		
PM ₁₀ Long-Term Emissions	1.26		60	0.50			
PM ₁₀ Short-Term Emissions		1.61	60		0.6		
PM _{2.5} Long-Term Emissions	0.13		60	0.050			
PM _{2.5} Short-Term Emissions		0.16	60		0.06		
	Compactor/E	ulldozer Ope	rations				
TSP Long-Term Emissions	0.16		0	0.16			
TSP Short-Term Emissions		0.07	0		0.073		
PM ₁₀ Long-Term Emissions	0.01		0	0.013			
PM ₁₀ Short-Term Emissions		0.006	0		0.0060		
PM _{2.5} Long-Term Emissions	0.02		0	0.017			
PM _{2.5} Short-Term Emissions		0.008	0		0.0077		
Motor Grader Operations (Cold Millings)							
TSP Long-Term Emissions	0.29		80	0.058			
TSP Short-Term Emissions		1.87	80		0.37		
PM ₁₀ Long-Term Emissions	0.13		80	0.0258			
PM ₁₀ Short-Term Emissions	1	0.83	80		0.17		
PM _{2.5} Long-Term Emissions	0.01		80	0.00181			
PM _{2.5} Short-Term Emissions		0.06	80		0.012		

ATTACHMENT 6.3 (continued) ITEMIZED SUMMARY OF CONTROLLED VEHICLE EMISSIONS

Valencia County Regional Landfill - Emission Units 1 and 2

Controlled emissions = (uncontrolled emissions)(1 - control efficiency)

Control efficiencies = 80%, 60%, and 0%

Motor Grader Operations (Unpaved)								
TSP Long-Term Emissions	0.29		60	0.12				
TSP Short-Term Emissions		1.87	60		0.75			
PM ₁₀ Long-Term Emissions	0.129		60	0.052				
PM ₁₀ Short-Term Emissions		0.83	60		0.33			
PM _{2.5} Long-Term Emissions	0.009		60	0.0036				
PM _{2.5} Short-Term Emissions		0.06	60		0.023			
	Scrap	er Operations	6					
	Scraper Tra	avel (Cold Mill	lings)					
TSP Long-Term Emissions	1.52		80	0.30				
TSP Short-Term Emissions		35.04	80		7.0			
PM ₁₀ Long-Term Emissions	0.41		80	0.082				
PM ₁₀ Short-Term Emissions		9.46	80		1.89			
PM _{2.5} Long-Term Emissions	0.04		80	0.0082				
PM _{2.5} Short-Term Emissions		0.95	80		0.189			
Scraper	Travel (Unpaved D	isposal Route	e and Access Roads)					
TSP Long-Term Emissions	4.67		60	1.87				
TSP Short-Term Emissions		107.43	60		43.0			
PM ₁₀ Long-Term Emissions	1.26		60	0.50				
PM ₁₀ Short-Term Emissions		29.00	60		11.60			
PM _{2.5} Long-Term Emissions	0.13		60	0.050				
PM _{2.5} Short-Term Emissions		2.90	60		1.160			
	Scra	per Loading						
TSP Long-Term Emissions	0.80		0	0.8				
TSP Short-Term Emissions		15.31	0		15.3			
PM ₁₀ Long-Term Emissions	0.24		0	0.24				
PM ₁₀ Short-Term Emissions		4.69	0		4.7			
PM _{2.5} Long-Term Emissions	0.02		0	0.024				
PM _{2.5} Short-Term Emissions		0.47	0		0.47			
Scraper Unloading								
TSP Long-Term Emissions	0.009		0	0.0087				
TSP Short-Term Emissions		0.17	0		0.167			
PM ₁₀ Long-Term Emissions	0.004		0	0.0041				
PM ₁₀ Short-Term Emissions		0.08	0		0.079			
PM _{2.5} Long-Term Emissions	0.001		0	0.00062				
PM _{2.5} Short-Term Emissions		0.01	0		0.0120			

ATTACHMENT 6.4 WIND EROSION EMISSIONS CALCULATIONS EMISSION UNIT 2

WIND EROSION EMISSIONS CALCULATIONS

Purpose: The purpose of this calculation is to estimate the potential uncontrolled and controlled fugitive dust emissions due to wind erosion from actively disturbed areas at the Landfill.

Methodology: TSP, PM₁₀, and PM_{2.5} emissions due to wind erosion are estimated through application of emission factors presented in AP-42, Section 11.9 (Table 11.9-4) and Section 13.2.2.2:

TSP, PM₁₀ and PM_{2.5} Emission Factors:

TSP, PM₁₀ and PM_{2.5} emissions due to wind erosion are estimated through application of emission factors presented in AP-42, Section 11.9, Table 11.9-4 and Section 13.2.2.2. Emissions from wind erosion were calculated as occurring 24 hours/day, 365 days/yr (i.e., 8,760 hrs/yr).

Hours/yr =	8,760 hours/yr
E _{TSP} =	0.38 tons/acre/yr (Table 11.9-4)

The emission factors for PM_{10} and $PM_{2.5}$ are calculated by applying ratios of the PM_{10} , $PM_{2.5}$ and TSP particle size multiplier (k) values (obtained from AP-42, Section 13.2.2.2) to the TSP emission factor (E_{TSP}) of 0.38 tons/acre/yr:

E _{PM10} = E _{PM2.5} =	(B / A)(E _{TSP}) = (C / A)(E _{TSP}) =		0.12 tons/acre/yr 0.012 tons/acre/yr
	C k _{PM2.5} =	0.15	
	B k _{PM10} =	1.5	
	A K _{TSP} =	4.9	

EXAMPLE CALCULATIONS:

Potential fugitive dust emissions from actively disturbed areas are estimated utilizing the acreage of the disturbed area and the TSP, PM₁₀ and PM_{2.5} emission factors, as illustrated in the following example calculations:

Example disturbed area = Disposal Route (unpaved):

The acreage for Landfill roads (i.e., Disposal Route and access roads) is calculated by multiplying the total unpaved road length by the average road width of 30 ft, and then dividing by 43,560 ft²/acre. The acreage for the Disposal Routes and access roads were determined using AutoCAD software.

A MSW Disposal Route (Cold Millings) =	2,455 feet
B MSW Disposal Route (Unpaved) =	819 feet
C PCS Disposal Route (Unpaved) =	725 feet
D Access Roads (Unpaved) =	3.379 feet
	-,
E Average road width =	30.0 feet
F ft ² /acre	43,560 ft ² /acre
G MSW Disposal Route Acreage (Cold Millings) = [(A)(E)]/(F) =	1.69 acres
H MSW Disposal Route Acreage (Unpaved) = [(B)(E)]/(F) =	0.56 acres
I PCS Disposal Route Acreage (Unpaved) = [(C)(E)]/(F) =	0.50 acres
J Access Roads Acreage (Unpaved) = [(D)(E)]/(F) =	2.33 acres

► Example: MSW Disposal Route (Cold Millings) uncontrolled TSP, PM 10, and PM 2.5 Emissions:

K TSP =	(E _{TSP})(G) =	0.64 tons/yr (uncontrolled)
L TSP =	(K)(2,000 lbs/ton)/(8,760 hrs/yr) =	0.15 lbs/hr (uncontrolled)
M PM ₁₀ =	(E _{PM10})(G) =	0.20 tons/yr (uncontrolled)
N PM ₁₀ =	(M)(2,000 lbs/ton)/(8,760 hrs/yr) =	0.04 lbs/hr (uncontrolled)
O PM _{2.5} =	(E _{PM2.5})(G) =	0.02 tons/yr (uncontrolled)
P PM _{2.5} =	(O)(2,000 lbs/ton)/(8,760 hrs/yr) =	0.004 lbs/hr (uncontrolled)

Based on guidance provided in AP-42, Section 13.2.5, Industrial Wind Erosion (January 1995), only those areas of the Landfill that are actively disturbed by facility operations were included in the acreage for which potential fugitive dust emissions attributable to wind erosion were calculated. Fugitive dust emissions due to wind erosion on disturbed areas are based on wind erosion potentially occurring 24 hrs/day, 365 days/yr (i.e., 8,760 hrs/yr), and are summarized in **Table 1**.

WIND EROSION EMISSIONS CALCULATIONS (continued)

Controlled Emissions

Based on AQB guidance, control efficiencies of 60% (water only) and 80% (cold millings base course plus water) were applied to the following disturbed areas:

MSW Disposal Route	(80% control)	1.69 acres
MSW Disposal Route	(60% control)	0.56 acres
PCS Disposal Route	(60% control)	0.50 acres
Access Roads	(60% control)	2.33 acres

Example Controlled Emissions Calculations:

Controlled fugitive dust emissions are estimated by using the following equation: Controlled emissions = (uncontrolled emissions)(1 - control efficiency) Control Efficiency = **80%**

Example: MSW Disposal Route (Cold Millings) controlled TSP, PM₁₀, and PM_{2.5} Emissions:

Q TSP =	(E _{TSP})(G)(1-Control Efficiency) =	0.13	tons/yr (controlled)
R TSP =	(Q)(2,000 lbs/ton)/(8,760 hrs/yr) =	0.03	lbs/hr (controlled)
S PM ₁₀ =	(E _{PM10})(G)(1-Control Efficiency) =	0.04	tons/yr (controlled)
T PM ₁₀ =	(S)(2,000 lbs/ton)/(8,760 hrs/yr) =	0.009	lbs/hr (controlled)
U PM _{2.5} =	(E _{PM2.5})(G)(1-Control Efficiency) =	0.004	tons/yr (controlled)
V PM _{2.5}	(U)(2,000 lbs/ton)/(8,760 hrs/yr) =	0.0009	lbs/hr (controlled)

The controlled fugitive dust emissions due to wind erosion on actively disturbed areas are summarized in Table 1.

Uncontrolled Emissions

Water is applied to the following areas for fugitive dust control on an as-needed basis. However, for emissions calculations, a conservative control efficiency of zero was applied to these areas:

Disposal Area	1.00 ac
► Soil Borrow Area 2	5.12 ac
PCS Remediation Area	6.32 ac

Uncontrolled fugitive dust emissions due to wind erosion on actively disturbed areas are also summarized in Table 1.

TABLE 1 SUMMARY OF WIND EROSION EMISSIONS Valencia Regional Landfill and Recycling Facility

					Uncontrolled Emissions						Cor	trolled Emiss	ions				
Disturbed Area ¹	Area (acres)	Emission Factor (E _{TSP})	Emission Factor (E _{PM10})	Emission Factor (E _{PM2.5})	TSP Emissions (tons/yr)	TSP Emissions (Ibs/hr)	PM ₁₀ Emissions (tons/yr)	PM ₁₀ Emissions (Ibs/hr)	PM _{2.5} Emissions (tons/yr)	PM _{2.5} Emissions (Ibs/hr)	Control Efficiency (%)	TSP Emissions (tons/yr)	TSP Emissions (lbs/hr)	PM ₁₀ Emissions (tons/yr)	PM ₁₀ Emissions (Ibs/hr)	PM _{2.5} Emissions (tons/yr)	PM _{2.5} Emissions (Ibs/hr)
MSW Disposal Route (Cold Millings)	1.69	0.38	0.12	0.012	0.64	0.15	0.20	0.04	0.02	0.004	80%	0.13	0.03	0.04	0.009	0.004	0.0009
MSW Disposal Route (Unpaved)	0.40	0.38	0.12	0.012	0.15	0.03	0.05	0.011	0.005	0.0011	60%	0.06	0.014	0.02	0.004	0.002	0.0004
PCS Disposal Route (Unpaved)	0.29	0.38	0.12	0.012	0.11	0.03	0.03	0.01	0.00	0.001	60%	0.04	0.01	0.01	0.003	0.001	0.0003
Access Roads (Cold Millings)	1.03	0.38	0.12	0.012	0.39	0.09	0.12	0.03	0.01	0.003	80%	0.08	0.02	0.02	0.005	0.002	0.0005
Access Roads (Unpaved)	3.08	0.38	0.12	0.012	1.17	0.27	0.36	0.08	0.04	0.008	60%	0.47	0.11	0.14	0.03	0.014	0.003
Disposal Area	1.00	0.38	0.12	0.012	0.38	0.09	0.12	0.03	0.012	0.003	0%	0.38	0.09	0.12	0.03	0.012	0.003
Soil Borrow Area 2	5.12	0.38	0.12	0.012	1.9	0.44	0.60	0.14	0.06	0.014	0%	1.9	0.44	0.60	0.14	0.06	0.01
PCS Remediation Area	6.32	0.38	0.12	0.012	2.4	0.55	0.73	0.17	0.07	0.02	0%	2.4	0.55	0.73	0.17	0.07	0.02
TOTALS	18.9				7.2	1.6	2.2	0.50	0.22	0.050		5.5	1.3	1.7	0.38	0.17	0.038

Note:

¹ See Figure 5.1, Section 5 for locations of actively disturbed areas subject to wind erosion

ATTACHMENT 6.5 NMOC EMISSIONS ESTIMATE EMISSION UNIT 3

(LandGEM Modeling Outputs)

Summary Report

Landfill Name or Identifier: Valencia Regional Landfill

Date: Monday, November 05, 2018

Description/Comments:

About LandGEM:

First-Order Decomposition Rate Equation:

$$Q_{CH_4} = \sum_{i=1}^{n} \sum_{j=0.1}^{1} k L_o \left(\frac{M_i}{10}\right) e^{-kt_{ij}}$$

Where,

 Q_{CH4} = annual methane generation in the year of the calculation (m³/year)

i = 1-year time increment

n = (year of the calculation) - (initial year of waste acceptance)

j = 0.1-year time increment

k = methane generation rate (year⁻¹) L_o = potential methane generation capacity (m^3/Mg) M_i = mass of waste accepted in the ith year (*Mg*) t_{ij} = age of the jth section of waste mass M_i accepted in the ith year (*decimal years*, e.g., 3.2 years)

LandGEM is based on a first-order decomposition rate equation for quantifying emissions from the decomposition of landfilled waste in municipal solid waste (MSW) landfills. The software provides a relatively simple approach to estimating landfill gas emissions. Model defaults are based on empirical data from U.S. landfills. Field test data can also be used in place of model defaults when available. Further guidance on EPA test methods, Clean Air Act (CAA) regulations, and other guidance regarding landfill gas emissions and control technology requirements can be found at http://www.epa.gov/ttnatw01/landfill/landfillg.html.

LandGEM is considered a screening tool — the better the input data, the better the estimates. Often, there are limitations with the available data regarding waste quantity and composition, variation in design and operating practices over time, and changes occurring over time that impact the emissions potential. Changes to landfill operation, such as operating under wet conditions through leachate recirculation or other liquid additions, will result in generating more gas at a faster rate. Defaults for estimating emissions for this type of operation are being developed to include in LandGEM along with defaults for convential landfills (no leachate or liquid additions) for developing emission inventories and determining CAA applicability. Refer to the Web site identified above for future updates.

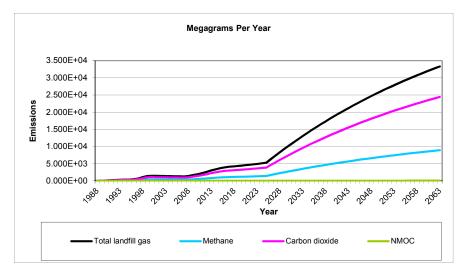
LANDFILL CHARACTERISTICS		
Landfill Open Year	1988	
Landfill Closure Year (with 80-year limit)	2067	
Actual Closure Year (without limit)	2067	
Have Model Calculate Closure Year?	No	
Waste Design Capacity	58,242,200	short tons
MODEL PARAMETERS		
Methane Generation Rate, k	0.020	year ⁻¹
Potential Methane Generation Capacity, L_o	170	m³/Mg
NMOC Concentration	345	ppmv as hexane
Methane Content	50	% by volume

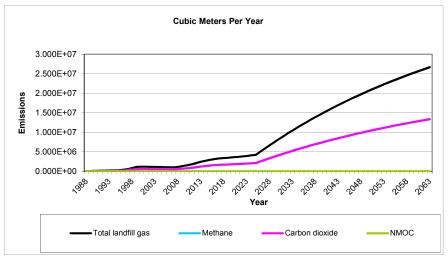
GASES / POLLUTANTS SELECTED					
Gas / Pollutant #1:	Total landfill gas				
Gas / Pollutant #2:	Methane				
Gas / Pollutant #3:	Carbon dioxide				
Gas / Pollutant #4:	NMOC				

WASTE ACCEPTANCE RATES

F	IE ACCEPTANCE RATES		Waste-	n-Place
Year	(Mg/year)	(short tons/year)	(Mg)	(short tons)
1988	6,857	7,543	0	0
1989	6,857	7,543	6,857	7,543
1990	6,857	7,543	13,714	15,085
1991	6,857	7,543	20,571	22,628
1992	6,857	7,543	27,428	30,171
1993	6,857	7,543	34,285	37,714
1994	2,449	2,694	41,142	45,256
1995	17,423	19,165	43,591	47,950
1996	24,345	26,780	61,014	67,115
1997	46,312	50,943	85,359	93,895
1998	42,864	47,150	131,671	144,838
1999	11,558	12,714	174,535	191,989
2000	0	0	186,093	204,702
2001	0	0	186,093	204,702
2002	0	0	186,093	204,702
2003	0	0	186,093	204,702
2004	0	0	186,093	204,702
2005	0	0	186,093	204,702
2006	0	0	186,093	204,702
2007	19,615	21,577	186,093	204,702
2008	32,771	36,048	205,708	226,279
2009	33,581	36,939	238,479	262,327
2010	43,856	48,242	272,060	299,266
2011	50,506	55,557	315,916	347,508
2012	54,942	60,437	366,422	403,064
2013	46,785	51,464	421,364	463,501
2014	44,692	49,162	468,149	514,964
2015	38,579	42,437	512,842	564,126
2016	29,120	32,032	551,421	606,563
2017	23,421	25,763	580,540	638,594
2018	24,592	27,051	603,961	664,357
2019	25,821	28,403	628,553	691,408
2020	27,112	29,824	654,374	719,812
2021	28,468	31,315	681,487	749,635
2022	29,891	32,881	709,955	780,950
2023	31,386	34,525	739,846	813,831
2024	32,955	36,251	771,232	848,355
2025	136,364	150,000	804,187	884,606
2026	136,364	150,000	940,551	1,034,607
2027	136,364	150,000	1,076,915	1,184,607

WASTE ACCEPTANCE RATES (Continued)


Year	Waste Acc	cepted	Waste-I	n-Place
rear	(Mg/year)	(short tons/year)	(Mg)	(short tons)
2028	136,364	150,000	1,213,279	1,334,607
2029	136,364	150,000	1,349,643	1,484,608
2030	136,364	150,000	1,486,007	1,634,608
2031	136,364	150,000	1,622,371	1,784,609
2032	136,364	150,000	1,758,735	1,934,609
2033	136,364	150,000	1,895,099	2,084,609
2034	136,364	150,000	2,031,463	2,234,610
2035	136,364	150,000	2,167,827	2,384,610
2036	136,364	150,000	2,304,191	2,534,611
2037	136,364	150,000	2,440,555	2,684,611
2038	136,364	150,000	2,576,919	2,834,611
2039	136,364	150,000	2,713,283	2,984,612
2040	136,364	150,000	2,849,647	3,134,612
2041	136,364	150,000	2,986,011	3,284,613
2042	136,364	150,000	3,122,375	3,434,613
2043	136,364	150,000	3,258,739	3,584,613
2044	136,364	150,000	3,395,103	3,734,614
2045	136,364	150,000	3,531,467	3,884,614
2046	136,364	150,000	3,667,831	4,034,615
2047	136,364	150,000	3,804,195	4,184,615
2048	136,364	150,000	3,940,559	4,334,615
2049	136,364	150,000	4,076,923	4,484,616
2050	136,364	150,000	4,213,287	4,634,616
2051	136,364	150,000	4,349,651	4,784,617
2052	136,364	150,000	4,486,015	4,934,617
2053	136,364	150,000	4,622,379	5,084,617
2054	136,364	150,000	4,758,743	5,234,618
2055	136,364	150,000	4,895,107	5,384,618
2056	136,364	150,000	5,031,471	5,534,619
2057	136,364	150,000	5,167,835	5,684,619
2058	136,364	150,000	5,304,199	5,834,619
2059	136,364	150,000	5,440,563	5,984,620
2060	136,364	150,000	5,576,927	6,134,620
2061	136,364	150,000	5,713,291	6,284,621
2062	136,364	150,000	5,849,655	6,434,621
2063	136,364	150,000	5,986,019	6,584,621
2064	136,364	150,000	6,122,383	6,734,622
2065	136,364	150,000	6,258,747	6,884,622
2066	136,364	150,000	6,395,111	7,034,623
2067	0	0	6,531,475	7,184,623


	Gas / Pollutant Default Parameters:			User-specified Pollutant Parameters:		
		Concentration		Concentration		
	Compound	(ppmv)	Molecular Weight	(ppmv)	Molecular Weight	
Gases	Total landfill gas Methane		0.00			
	Carbon dioxide		44.01			
	NMOC	4 000	86.18			
	1,1,1-Trichloroethane	4,000	00.10			
	(methyl chloroform) -					
	HAP	0.48	133.41			
	1,1,2,2-	0.40	100.41			
	Tetrachloroethane -					
	HAP/VOC	1.1	167.85			
	1,1-Dichloroethane		101.00			
	(ethylidene dichloride) -					
	HAP/VOC	2.4	98.97			
	1,1-Dichloroethene					
	(vinylidene chloride) -					
	HAP/VOC	0.20	96.94			
	1,2-Dichloroethane					
	(ethylene dichloride) -					
	HAP/VOC	0.41	98.96			
	1,2-Dichloropropane					
	(propylene dichloride) -					
	HAP/VOC	0.18	112.99			
	2-Propanol (isopropyl					
	alcohol) - VOC	50	60.11			
	Acetone	7.0	58.08			
	Acrylonitrile - HAP/VOC	6.3	53.06			
	Benzene - No or					
	Unknown Co-disposal -					
	HAP/VOC	1.9	78.11			
	Benzene - Co-disposal -					
S	HAP/VOC	11	78.11			
ant	Bromodichloromethane -					
lut	VOC	3.1	163.83			
Pollutants	Butane - VOC	5.0	58.12			
	Carbon disulfide -					
	HAP/VOC	0.58	76.13			
	Carbon monoxide	140	28.01			
	Carbon tetrachloride -		452.04			
	HAP/VOC	4.0E-03	153.84			
	Carbonyl sulfide - HAP/VOC	0.49	60.07			
	Chlorobenzene -	0.49	00.07			
	HAP/VOC	0.25	112.56			
	Chlorodifluoromethane	1.3	86.47			
	Chloroethane (ethyl	1.0	00.47			
	chloride) - HAP/VOC	1.3	64.52			
	Chloroform - HAP/VOC	0.03	119.39			
	Chloromethane - VOC	1.2	50.49			
		=				
	Dichlorobenzene - (HAP					
	for para isomer/VOC)	0.21	147			
	Dichlorodifluoromethane	16	120.91			
	Dichlorofluoromethane -					
	VOC	2.6	102.92			
	Dichloromethane					
	(methylene chloride) -					
	HAP	14	84.94			
	Dimethyl sulfide (methyl					
	sulfide) - VOC	7.8	62.13			
	Ethane	890	30.07			
	Ethanol - VOC	27	46.08		1	

Pollutant Parameters (Continued)

	Gas / Poll	User-specified Pol	lutant Parameters:		
		Concentration		Concentration	
	Compound	(ppmv)	Molecular Weight	(ppmv)	Molecular Weight
	Ethyl mercaptan				
	(ethanethiol) - VOC	2.3	62.13		
	Ethylbenzene -				
	HAP/VOC	4.6	106.16		
	Ethylene dibromide -				
	HAP/VOC	1.0E-03	187.88		
	Fluorotrichloromethane -				
	VOC	0.76	137.38		
	Hexane - HAP/VOC	6.6	86.18		
	Hydrogen sulfide	36	34.08		
	Mercury (total) - HAP	2.9E-04	200.61		
	Methyl ethyl ketone -				
	HAP/VOC	7.1	72.11		
	Methyl isobutyl ketone -				
	HAP/VOC	1.9	100.16		
	Methyl mercaptan - VOC	2.5	48.11		
	Pentane - VOC	3.3	72.15		
	Perchloroethylene	0.0	,		
	(tetrachloroethylene) -				
	(letrachioroethylene) -	3.7	165.83		
		<u> </u>			
	Propane - VOC	11	44.09		
	t-1,2-Dichloroethene -	0.0	00.04		
	VOC	2.8	96.94		
	Toluene - No or				
	Unknown Co-disposal -		aa ta		
	HAP/VOC	39	92.13		
	Toluene - Co-disposal -				
	HAP/VOC	170	92.13		
	Trichloroethylene				
Pollutants	(trichloroethene) -				
tai	HAP/VOC	2.8	131.40		
	Vinyl chloride -				
Р	HAP/VOC	7.3	62.50		
	Xylenes - HAP/VOC	12	106.16		
1					
L					

Graphs

<u>Results</u>

Year		Total landfill gas		Methane			
rear	(Mg/year)	(m ³ /year)	(av ft^3/min)	(Mg/year)	(m ³ /year)	(av ft^3/min)	
988	0	0	0	0	0	0	
989	5.771E+01	4.621E+04	3.105E+00	1.541E+01	2.311E+04	1.552E+00	
990	1.143E+02	9.151E+04	6.148E+00	3.052E+01	4.575E+04	3.074E+00	
991	1.697E+02	1.359E+05	9.131E+00	4.533E+01	6.795E+04	4.566E+00	
992	2.241E+02	1.794E+05	1.206E+01	5.985E+01	8.971E+04	6.028E+00	
993	2.773E+02	2.221E+05	1.492E+01	7.408E+01	1.110E+05	7.461E+00	
994	3.296E+02	2.639E+05	1.773E+01	8.803E+01	1.319E+05	8.866E+00	
995	3.436E+02	2.752E+05	1.849E+01	9.179E+01	1.376E+05	9.244E+00	
996	4.835E+02	3.871E+05	2.601E+01	1.291E+02	1.936E+05	1.301E+01	
997	6.788E+02	5.435E+05	3.652E+01	1.813E+02	2.718E+05	1.826E+01	
998	1.055E+03	8.449E+05	5.677E+01	2.818E+02	4.224E+05	2.838E+01	
999	1.395E+03	1.117E+06	7.505E+01	3.726E+02	5.585E+05	3.753E+01	
2000	1.465E+03	1.173E+06	7.880E+01	3.912E+02	5.864E+05	3.940E+01	
2001	1.436E+03	1.150E+06	7.724E+01	3.835E+02	5.748E+05	3.862E+01	
2002	1.407E+03	1.127E+06	7.571E+01	3.759E+02	5.634E+05	3.786E+01	
2003	1.379E+03	1.104E+06	7.421E+01	3.684E+02	5.522E+05	3.711E+01	
2004	1.352E+03	1.083E+06	7.274E+01	3.611E+02	5.413E+05	3.637E+01	
005	1.325E+03	1.061E+06	7.130E+01	3.540E+02	5.306E+05	3.565E+01	
2006	1.299E+03	1.040E+06	6.989E+01	3.470E+02	5.201E+05	3.494E+01	
2007	1.273E+03	1.020E+06	6.851E+01	3.401E+02	5.098E+05	3.425E+01	
2008	1.413E+03	1.132E+06	7.603E+01	3.775E+02	5.658E+05	3.802E+01	
2009	1.661E+03	1.330E+06	8.936E+01	4.437E+02	6.650E+05	4.468E+01	
2010	1.911E+03	1.530E+06	1.028E+02	5.104E+02	7.650E+05	5.140E+01	
2011	2.242E+03	1.795E+06	1.206E+02	5.988E+02	8.976E+05	6.031E+01	
2012	2.623E+03	2.100E+06	1.411E+02	7.005E+02	1.050E+06	7.055E+01	
2013	3.033E+03	2.429E+06	1.632E+02	8.102E+02	1.214E+06	8.159E+01	
2014	3.367E+03	2.696E+06	1.811E+02	8.993E+02	1.348E+06	9.057E+01	
2015	3.676E+03	2.944E+06	1.978E+02	9.820E+02	1.472E+06	9.890E+01	
2016	3.928E+03	3.145E+06	2.113E+02	1.049E+03	1.573E+06	1.057E+02	
2017	4.095E+03	3.279E+06	2.203E+02	1.094E+03	1.640E+06	1.102E+02	
2018	4.211E+03	3.372E+06	2.266E+02	1.125E+03	1.686E+06	1.133E+02	
2019	4.335E+03	3.471E+06	2.332E+02	1.158E+03	1.736E+06	1.166E+02	
2020	4.466E+03	3.577E+06	2.403E+02	1.193E+03	1.788E+06	1.202E+02	
2021	4.606E+03	3.688E+06	2.478E+02	1.230E+03	1.844E+06	1.239E+02	
022	4.755E+03	3.807E+06	2.558E+02	1.270E+03	1.904E+06	1.279E+02	
023	4.912E+03	3.933E+06	2.643E+02	1.312E+03	1.967E+06	1.321E+02	
024	5.079E+03	4.067E+06	2.733E+02	1.357E+03	2.033E+06	1.366E+02	
025	5.256E+03	4.209E+06	2.828E+02	1.404E+03	2.104E+06	1.414E+02	
026	6.299E+03	5.044E+06	3.389E+02	1.683E+03	2.522E+06	1.695E+02	
027	7.322E+03	5.863E+06	3.940E+02	1.956E+03	2.932E+06	1.970E+02	
028	8.325E+03	6.666E+06	4.479E+02	2.224E+03	3.333E+06	2.239E+02	
029	9.308E+03	7.453E+06	5.008E+02	2.486E+03	3.727E+06	2.504E+02	
030	1.027E+04	8.225E+06	5.526E+02	2.743E+03	4.112E+06	2.763E+02	
031	1.122E+04	8.981E+06	6.034E+02	2.996E+03	4.490E+06	3.017E+02	
032	1.214E+04	9.722E+06	6.532E+02	3.243E+03	4.861E+06	3.266E+02	
033	1.305E+04	1.045E+07	7.020E+02	3.485E+03	5.224E+06	3.510E+02	
034	1.394E+04	1.116E+07	7.499E+02	3.723E+03	5.580E+06	3.749E+02	
035	1.481E+04	1.186E+07	7.968E+02	3.956E+03	5.929E+06	3.984E+02	
036	1.566E+04	1.254E+07	8.427E+02	4.184E+03	6.271E+06	4.214E+02	
2037	1.650E+04	1.321E+07	8.878E+02	4.408E+03	6.607E+06	4.439E+02	

Veer		Total landfill gas		Methane			
Year	(Mg/year)	(m ³ /year)	(av ft^3/min)	(Mg/year)	(m ³ /year)	(av ft^3/min)	
2038	1.732E+04	1.387E+07	9.320E+02	4.627E+03	6.935E+06	4.660E+02	
2039	1.813E+04	1.451E+07	9.752E+02	4.842E+03	7.257E+06	4.876E+02	
2040	1.892E+04	1.515E+07	1.018E+03	5.052E+03	7.573E+06	5.088E+02	
2041	1.969E+04	1.577E+07	1.059E+03	5.259E+03	7.883E+06	5.296E+02	
2042	2.045E+04	1.637E+07	1.100E+03	5.461E+03	8.186E+06	5.500E+02	
2043	2.119E+04	1.697E+07	1.140E+03	5.660E+03	8.484E+06	5.700E+02	
2044	2.192E+04	1.755E+07	1.179E+03	5.854E+03	8.775E+06	5.896E+02	
2045	2.263E+04	1.812E+07	1.218E+03	6.045E+03	9.061E+06	6.088E+02	
2046	2.333E+04	1.868E+07	1.255E+03	6.232E+03	9.341E+06	6.276E+02	
2047	2.402E+04	1.923E+07	1.292E+03	6.415E+03	9.615E+06	6.461E+02	
2048	2.469E+04	1.977E+07	1.328E+03	6.594E+03	9.884E+06	6.641E+02	
2049	2.535E+04	2.030E+07	1.364E+03	6.770E+03	1.015E+07	6.819E+02	
2050	2.599E+04	2.081E+07	1.398E+03	6.943E+03	1.041E+07	6.992E+02	
2051	2.663E+04	2.132E+07	1.433E+03	7.112E+03	1.066E+07	7.163E+02	
2052	2.725E+04	2.182E+07	1.466E+03	7.278E+03	1.091E+07	7.329E+02	
2053	2.785E+04	2.230E+07	1.499E+03	7.440E+03	1.115E+07	7.493E+02	
2054	2.845E+04	2.278E+07	1.531E+03	7.599E+03	1.139E+07	7.653E+02	
2055	2.903E+04	2.325E+07	1.562E+03	7.755E+03	1.162E+07	7.811E+02	
2056	2.961E+04	2.371E+07	1.593E+03	7.908E+03	1.185E+07	7.965E+02	
2057	3.017E+04	2.416E+07	1.623E+03	8.058E+03	1.208E+07	8.116E+02	
2058	3.072E+04	2.460E+07	1.653E+03	8.205E+03	1.230E+07	8.264E+02	
2059	3.126E+04	2.503E+07	1.682E+03	8.349E+03	1.252E+07	8.409E+02	
2060	3.179E+04	2.545E+07	1.710E+03	8.491E+03	1.273E+07	8.551E+02	
2061	3.231E+04	2.587E+07	1.738E+03	8.629E+03	1.293E+07	8.690E+02	
2062	3.281E+04	2.628E+07	1.765E+03	8.765E+03	1.314E+07	8.827E+02	
2063	3.331E+04	2.667E+07	1.792E+03	8.898E+03	1.334E+07	8.961E+02	
2064	3.380E+04	2.706E+07	1.818E+03	9.028E+03	1.353E+07	9.092E+02	
2065	3.428E+04	2.745E+07	1.844E+03	9.156E+03	1.372E+07	9.221E+02	
2066	3.475E+04	2.782E+07	1.869E+03	9.281E+03	1.391E+07	9.347E+02	
2067	3.521E+04	2.819E+07	1.894E+03	9.404E+03	1.410E+07	9.471E+02	
2068	3.451E+04	2.763E+07	1.857E+03	9.218E+03	1.382E+07	9.283E+02	
2069	3.383E+04	2.709E+07	1.820E+03	9.035E+03	1.354E+07	9.099E+02	
2070	3.316E+04	2.655E+07	1.784E+03	8.856E+03	1.327E+07	8.919E+02	
2071	3.250E+04	2.602E+07	1.749E+03	8.681E+03	1.301E+07	8.743E+02	
2072	3.186E+04	2.551E+07	1.714E+03	8.509E+03	1.275E+07	8.570E+02	
2073	3.122E+04	2.500E+07	1.680E+03	8.340E+03	1.250E+07	8.400E+02	
2074	3.061E+04	2.451E+07	1.647E+03	8.175E+03	1.225E+07	8.234E+02	
2075	3.000E+04	2.402E+07	1.614E+03	8.013E+03	1.201E+07	8.071E+02	
2076	2.941E+04	2.355E+07	1.582E+03	7.855E+03	1.177E+07	7.911E+02	
2077	2.882E+04	2.308E+07	1.551E+03	7.699E+03	1.154E+07	7.754E+02	
2078	2.825E+04	2.262E+07	1.520E+03	7.547E+03	1.131E+07	7.601E+02	
2079	2.769E+04	2.218E+07	1.490E+03	7.397E+03	1.109E+07	7.450E+02	
2080	2.715E+04	2.174E+07	1.461E+03	7.251E+03	1.087E+07	7.303E+02	
2081	2.661E+04	2.131E+07	1.432E+03	7.107E+03	1.065E+07	7.158E+02	
2082	2.608E+04	2.088E+07	1.403E+03	6.967E+03	1.044E+07	7.016E+02	
2083	2.556E+04	2.047E+07	1.375E+03	6.829E+03	1.024E+07	6.877E+02	
2084	2.506E+04	2.007E+07	1.348E+03	6.693E+03	1.003E+07	6.741E+02	
2085	2.456E+04	1.967E+07	1.322E+03	6.561E+03	9.834E+06	6.608E+02	
2086	2.408E+04	1.928E+07	1.295E+03	6.431E+03	9.639E+06	6.477E+02	
2087	2.360E+04	1.890E+07	1.270E+03	6.304E+03	9.449E+06	6.348E+02	
2088	2.313E+04	1.852E+07	1.245E+03	6.179E+03	9.261E+06	6.223E+02	

Veen		Total landfill gas		Methane			
Year	(Mg/year)	(m ³ /year)	(av ft^3/min)	(Mg/year)	(m³/year)	(av ft^3/min)	
2089	2.267E+04	1.816E+07	1.220E+03	6.056E+03	9.078E+06	6.100E+02	
2090	2.222E+04	1.780E+07	1.196E+03	5.937E+03	8.898E+06	5.979E+02	
2091	2.178E+04	1.744E+07	1.172E+03	5.819E+03	8.722E+06	5.860E+02	
2092	2.135E+04	1.710E+07	1.149E+03	5.704E+03	8.549E+06	5.744E+02	
2093	2.093E+04	1.676E+07	1.126E+03	5.591E+03	8.380E+06	5.631E+02	
2094	2.052E+04	1.643E+07	1.104E+03	5.480E+03	8.214E+06	5.519E+02	
2095	2.011E+04	1.610E+07	1.082E+03	5.372E+03	8.052E+06	5.410E+02	
2096	1.971E+04	1.578E+07	1.061E+03	5.265E+03	7.892E+06	5.303E+02	
2097	1.932E+04	1.547E+07	1.040E+03	5.161E+03	7.736E+06	5.198E+02	
2098	1.894E+04	1.517E+07	1.019E+03	5.059E+03	7.583E+06	5.095E+02	
2099	1.856E+04	1.487E+07	9.988E+02	4.959E+03	7.433E+06	4.994E+02	
2100	1.820E+04	1.457E+07	9.790E+02	4.860E+03	7.285E+06	4.895E+02	
2101	1.784E+04	1.428E+07	9.596E+02	4.764E+03	7.141E+06	4.798E+02	
2102	1.748E+04	1.400E+07	9.406E+02	4.670E+03	7.000E+06	4.703E+02	
2103	1.714E+04	1.372E+07	9.220E+02	4.577E+03	6.861E+06	4.610E+02	
2104	1.680E+04	1.345E+07	9.037E+02	4.487E+03	6.725E+06	4.519E+02	
2105	1.646E+04	1.318E+07	8.858E+02	4.398E+03	6.592E+06	4.429E+02	
2106	1.614E+04	1.292E+07	8.683E+02	4.311E+03	6.462E+06	4.341E+02	
2107	1.582E+04	1.267E+07	8.511E+02	4.225E+03	6.334E+06	4.256E+02	
2108	1.551E+04	1.242E+07	8.343E+02	4.142E+03	6.208E+06	4.171E+02	
2109	1.520E+04	1.217E+07	8.177E+02	4.060E+03	6.085E+06	4.089E+02	
2110	1.490E+04	1.193E+07	8.015E+02	3.979E+03	5.965E+06	4.008E+02	
2111	1.460E+04	1.169E+07	7.857E+02	3.901E+03	5.847E+06	3.928E+02	
2112	1.431E+04	1.146E+07	7.701E+02	3.823E+03	5.731E+06	3.851E+02	
2113	1.403E+04	1.123E+07	7.549E+02	3.748E+03	5.617E+06	3.774E+02	
2114	1.375E+04	1.101E+07	7.399E+02	3.673E+03	5.506E+06	3.700E+02	
2115	1.348E+04	1.079E+07	7.253E+02	3.601E+03	5.397E+06	3.626E+02	
2116	1.321E+04	1.058E+07	7.109E+02	3.529E+03	5.290E+06	3.555E+02	
2117	1.295E+04	1.037E+07	6.968E+02	3.459E+03	5.185E+06	3.484E+02	
2118	1.270E+04	1.017E+07	6.830E+02	3.391E+03	5.083E+06	3.415E+02	
2119	1.244E+04	9.964E+06	6.695E+02	3.324E+03	4.982E+06	3.348E+02	
2120	1.220E+04	9.767E+06	6.562E+02	3.258E+03	4.884E+06	3.281E+02	
2121	1.196E+04	9.574E+06	6.433E+02	3.194E+03	4.787E+06	3.216E+02	
2122	1.172E+04	9.384E+06	6.305E+02	3.130E+03	4.692E+06	3.153E+02	
2123	1.149E+04	9.198E+06	6.180E+02	3.068E+03	4.599E+06	3.090E+02	
2124	1.126E+04	9.016E+06	6.058E+02	3.008E+03	4.508E+06	3.029E+02	
2125	1.104E+04	8.838E+06	5.938E+02	2.948E+03	4.419E+06	2.969E+02	
2126	1.082E+04	8.663E+06	5.820E+02	2.890E+03	4.331E+06	2.910E+02	
2127	1.060E+04	8.491E+06	5.705E+02	2.832E+03	4.246E+06	2.853E+02	
2128	1.039E+04	8.323E+06	5.592E+02	2.776E+03	4.161E+06	2.796E+02	

Year		Carbon dioxide		NMOC			
	(Mg/year)	(m ³ /year)	(av ft^3/min)	(Mg/year)	(m³/year)	(av ft^3/min)	
988	0	0	0	0	0	0	
989	4.229E+01	2.311E+04	1.552E+00	5.715E-02	1.594E+01	1.071E-03	
990	8.375E+01	4.575E+04	3.074E+00	1.132E-01	3.157E+01	2.121E-03	
991	1.244E+02	6.795E+04	4.566E+00	1.681E-01	4.689E+01	3.150E-03	
992	1.642E+02	8.971E+04	6.028E+00	2.219E-01	6.190E+01	4.159E-03	
993	2.033E+02	1.110E+05	7.461E+00	2.746E-01	7.662E+01	5.148E-03	
994	2.415E+02	1.319E+05	8.866E+00	3.263E-01	9.104E+01	6.117E-03	
995	2.519E+02	1.376E+05	9.244E+00	3.403E-01	9.494E+01	6.379E-03	
996	3.543E+02	1.936E+05	1.301E+01	4.788E-01	1.336E+02	8.974E-03	
997	4.975E+02	2.718E+05	1.826E+01	6.722E-01	1.875E+02	1.260E-02	
998	7.733E+02	4.224E+05	2.838E+01	1.045E+00	2.915E+02	1.958E-02	
999	1.022E+03	5.585E+05	3.753E+01	1.381E+00	3.854E+02	2.589E-02	
2000	1.073E+03	5.864E+05	3.940E+01	1.450E+00	4.046E+02	2.719E-02	
2001	1.052E+03	5.748E+05	3.862E+01	1.422E+00	3.966E+02	2.665E-02	
2002	1.031E+03	5.634E+05	3.786E+01	1.393E+00	3.887E+02	2.612E-02	
2003	1.011E+03	5.522E+05	3.711E+01	1.366E+00	3.811E+02	2.560E-02	
2004	9.909E+02	5.413E+05	3.637E+01	1.339E+00	3.735E+02	2.510E-02	
2005	9.713E+02	5.306E+05	3.565E+01	1.312E+00	3.661E+02	2.460E-02	
2006	9.520E+02	5.201E+05	3.494E+01	1.286E+00	3.589E+02	2.411E-02	
2007	9.332E+02	5.098E+05	3.425E+01	1.261E+00	3.518E+02	2.363E-02	
2008	1.036E+03	5.658E+05	3.802E+01	1.399E+00	3.904E+02	2.623E-02	
2009	1.217E+03	6.650E+05	4.468E+01	1.645E+00	4.589E+02	3.083E-02	
2010	1.400E+03	7.650E+05	5.140E+01	1.892E+00	5.278E+02	3.547E-02	
2011	1.643E+03	8.976E+05	6.031E+01	2.220E+00	6.194E+02	4.161E-02	
2012	1.922E+03	1.050E+06	7.055E+01	2.597E+00	7.245E+02	4.868E-02	
2013	2.223E+03	1.214E+06	8.159E+01	3.003E+00	8.379E+02	5.630E-02	
2014	2.467E+03	1.348E+06	9.057E+01	3.334E+00	9.301E+02	6.249E-02	
2015	2.694E+03	1.472E+06	9.890E+01	3.640E+00	1.016E+03	6.824E-02	
2016	2.879E+03	1.573E+06	1.057E+02	3.890E+00	1.085E+03	7.291E-02	
2017	3.001E+03	1.640E+06	1.102E+02	4.055E+00	1.131E+03	7.602E-02	
2018	3.087E+03	1.686E+06	1.133E+02	4.170E+00	1.163E+03	7.817E-02	
2019	3.177E+03	1.736E+06	1.166E+02	4.293E+00	1.198E+03	8.047E-02	
2020	3.273E+03	1.788E+06	1.202E+02	4.423E+00	1.234E+03	8.291E-02	
2021	3.376E+03	1.844E+06	1.239E+02	4.561E+00	1.273E+03	8.550E-02	
2022	3.485E+03	1.904E+06	1.279E+02	4.708E+00	1.314E+03	8.825E-02	
2023	3.600E+03	1.967E+06	1.321E+02	4.864E+00	1.357E+03	9.118E-02	
024	3.722E+03	2.033E+06	1.366E+02	5.029E+00	1.403E+03	9.427E-02	
025	3.852E+03	2.104E+06	1.414E+02	5.204E+00	1.452E+03	9.756E-02	
2026	4.617E+03	2.522E+06	1.695E+02	6.238E+00	1.740E+03	1.169E-01	
2027	5.366E+03	2.932E+06	1.970E+02	7.251E+00	2.023E+03	1.359E-01	
028	6.101E+03	3.333E+06	2.239E+02	8.244E+00	2.300E+03	1.545E-01	
029	6.821E+03	3.727E+06	2.504E+02	9.217E+00	2.571E+03	1.728E-01	
030	7.527E+03	4.112E+06	2.763E+02	1.017E+01	2.837E+03	1.906E-01	
031	8.220E+03	4.490E+06	3.017E+02	1.111E+01	3.098E+03	2.082E-01	
2032	8.898E+03	4.861E+06	3.266E+02	1.202E+01	3.354E+03	2.254E-01	
2033	9.563E+03	5.224E+06	3.510E+02	1.292E+01	3.605E+03	2.422E-01	
2034	1.021E+04	5.580E+06	3.749E+02	1.380E+01	3.850E+03	2.587E-01	
2035	1.085E+04	5.929E+06	3.984E+02	1.466E+01	4.091E+03	2.749E-01	
036	1.148E+04	6.271E+06	4.214E+02	1.551E+01	4.327E+03	2.907E-01	
2037	1.209E+04	6.607E+06	4.439E+02	1.634E+01	4.559E+03	3.063E-01	

Ma an		Carbon dioxide		NMOC			
Year	(Mg/year)	(m ³ /year)	(av ft^3/min)	(Mg/year)	(m³/year)	(av ft^3/min)	
038	1.269E+04	6.935E+06	4.660E+02	1.715E+01	4.785E+03	3.215E-01	
039	1.328E+04	7.257E+06	4.876E+02	1.795E+01	5.008E+03	3.365E-01	
040	1.386E+04	7.573E+06	5.088E+02	1.873E+01	5.226E+03	3.511E-01	
041	1.443E+04	7.883E+06	5.296E+02	1.950E+01	5.439E+03	3.655E-01	
2042	1.498E+04	8.186E+06	5.500E+02	2.025E+01	5.648E+03	3.795E-01	
2043	1.553E+04	8.484E+06	5.700E+02	2.098E+01	5.854E+03	3.933E-01	
2044	1.606E+04	8.775E+06	5.896E+02	2.170E+01	6.055E+03	4.068E-01	
2045	1.659E+04	9.061E+06	6.088E+02	2.241E+01	6.252E+03	4.201E-01	
2046	1.710E+04	9.341E+06	6.276E+02	2.310E+01	6.445E+03	4.331E-01	
2047	1.760E+04	9.615E+06	6.461E+02	2.378E+01	6.635E+03	4.458E-01	
2048	1.809E+04	9.884E+06	6.641E+02	2.445E+01	6.820E+03	4.583E-01	
2049	1.858E+04	1.015E+07	6.819E+02	2.510E+01	7.002E+03	4.705E-01	
2050	1.905E+04	1.041E+07	6.992E+02	2.574E+01	7.181E+03	4.825E-01	
2051	1.951E+04	1.066E+07	7.163E+02	2.637E+01	7.356E+03	4.942E-01	
2052	1.997E+04	1.091E+07	7.329E+02	2.698E+01	7.527E+03	5.057E-01	
2053	2.041E+04	1.115E+07	7.493E+02	2.758E+01	7.695E+03	5.170E-01	
2054	2.085E+04	1.139E+07	7.653E+02	2.817E+01	7.860E+03	5.281E-01	
2055	2.128E+04	1.162E+07	7.811E+02	2.875E+01	8.021E+03	5.389E-01	
2056	2.170E+04	1.185E+07	7.965E+02	2.932E+01	8.179E+03	5.496E-01	
2057	2.211E+04	1.208E+07	8.116E+02	2.987E+01	8.334E+03	5.600E-01	
2058	2.251E+04	1.230E+07	8.264E+02	3.042E+01	8.486E+03	5.702E-01	
2059	2.291E+04	1.252E+07	8.409E+02	3.095E+01	8.635E+03	5.802E-01	
2060	2.330E+04	1.273E+07	8.551E+02	3.148E+01	8.781E+03	5.900E-01	
2061	2.368E+04	1.293E+07	8.690E+02	3.199E+01	8.925E+03	5.996E-01	
2062	2.405E+04	1.314E+07	8.827E+02	3.249E+01	9.065E+03	6.091E-01	
2063	2.405E+04 2.441E+04	1.334E+07	8.961E+02	3.299E+01	9.202E+03	6.183E-01	
2064	2.441E+04 2.477E+04	1.353E+07	9.092E+02	3.347E+01	9.337E+03	6.274E-01	
2065	2.512E+04	1.372E+07	9.092E+02 9.221E+02	3.394E+01	9.337E+03 9.469E+03	6.363E-01	
2066					9.409E+03	6.450E-01	
2066	2.547E+04 2.580E+04	1.391E+07 1.410E+07	9.347E+02 9.471E+02	3.441E+01 3.486E+01	9.599E+03 9.726E+03	6.535E-01	
	2.529E+04	1.382E+07	9.471E+02 9.283E+02	3.400E+01 3.417E+01		6.405E-01	
2068	2.529E+04 2.479E+04	1.354E+07	9.203E+02 9.099E+02	3.350E+01	9.533E+03 9.345E+03		
						6.279E-01	
2070	2.430E+04	1.327E+07	8.919E+02	3.283E+01	9.160E+03	6.154E-01	
2071	2.382E+04	1.301E+07	8.743E+02	3.218E+01	8.978E+03	6.032E-01	
2072	2.335E+04	1.275E+07	8.570E+02	3.154E+01	8.800E+03	5.913E-01	
2073	2.288E+04	1.250E+07	8.400E+02	3.092E+01	8.626E+03	5.796E-01	
2074	2.243E+04	1.225E+07	8.234E+02	3.031E+01	8.455E+03	5.681E-01	
075	2.199E+04	1.201E+07	8.071E+02	2.971E+01	8.288E+03	5.569E-01	
2076	2.155E+04	1.177E+07	7.911E+02	2.912E+01	8.124E+03	5.458E-01	
077	2.112E+04	1.154E+07	7.754E+02	2.854E+01	7.963E+03	5.350E-01	
078	2.071E+04	1.131E+07	7.601E+02	2.798E+01	7.805E+03	5.244E-01	
079	2.030E+04	1.109E+07	7.450E+02	2.742E+01	7.651E+03	5.141E-01	
080	1.989E+04	1.087E+07	7.303E+02	2.688E+01	7.499E+03	5.039E-01	
081	1.950E+04	1.065E+07	7.158E+02	2.635E+01	7.351E+03	4.939E-01	
082	1.911E+04	1.044E+07	7.016E+02	2.583E+01	7.205E+03	4.841E-01	
083	1.874E+04	1.024E+07	6.877E+02	2.532E+01	7.063E+03	4.745E-01	
084	1.837E+04	1.003E+07	6.741E+02	2.481E+01	6.923E+03	4.651E-01	
085	1.800E+04	9.834E+06	6.608E+02	2.432E+01	6.786E+03	4.559E-01	
086	1.765E+04	9.639E+06	6.477E+02	2.384E+01	6.651E+03	4.469E-01	
087	1.730E+04	9.449E+06	6.348E+02	2.337E+01	6.520E+03	4.380E-01	
2088	1.695E+04	9.261E+06	6.223E+02	2.291E+01	6.390E+03	4.294E-01	

Year	Carbon dioxide			NMOC			
rear	(Mg/year)	(m ³ /year)	(av ft^3/min)	(Mg/year)	(m³/year)	(av ft^3/min)	
2089	1.662E+04	9.078E+06	6.100E+02	2.245E+01	6.264E+03	4.209E-01	
2090	1.629E+04	8.898E+06	5.979E+02	2.201E+01	6.140E+03	4.125E-01	
2091	1.597E+04	8.722E+06	5.860E+02	2.157E+01	6.018E+03	4.044E-01	
2092	1.565E+04	8.549E+06	5.744E+02	2.115E+01	5.899E+03	3.964E-01	
2093	1.534E+04	8.380E+06	5.631E+02	2.073E+01	5.782E+03	3.885E-01	
2094	1.504E+04	8.214E+06	5.519E+02	2.032E+01	5.668E+03	3.808E-01	
2095	1.474E+04	8.052E+06	5.410E+02	1.991E+01	5.556E+03	3.733E-01	
2096	1.445E+04	7.892E+06	5.303E+02	1.952E+01	5.446E+03	3.659E-01	
2097	1.416E+04	7.736E+06	5.198E+02	1.913E+01	5.338E+03	3.586E-01	
2098	1.388E+04	7.583E+06	5.095E+02	1.875E+01	5.232E+03	3.515E-01	
2099	1.361E+04	7.433E+06	4.994E+02	1.838E+01	5.128E+03	3.446E-01	
2100	1.334E+04	7.285E+06	4.895E+02	1.802E+01	5.027E+03	3.378E-01	
2101	1.307E+04	7.141E+06	4.798E+02	1.766E+01	4.927E+03	3.311E-01	
2102	1.281E+04	7.000E+06	4.703E+02	1.731E+01	4.830E+03	3.245E-01	
2103	1.256E+04	6.861E+06	4.610E+02	1.697E+01	4.734E+03	3.181E-01	
2104	1.231E+04	6.725E+06	4.519E+02	1.663E+01	4.640E+03	3.118E-01	
2105	1.207E+04	6.592E+06	4.429E+02	1.630E+01	4.549E+03	3.056E-01	
2106	1.183E+04	6.462E+06	4.341E+02	1.598E+01	4.458E+03	2.996E-01	
2107	1.159E+04	6.334E+06	4.256E+02	1.566E+01	4.370E+03	2.936E-01	
2108	1.136E+04	6.208E+06	4.171E+02	1.535E+01	4.284E+03	2.878E-01	
2109	1.114E+04	6.085E+06	4.089E+02	1.505E+01	4.199E+03	2.821E-01	
2110	1.092E+04	5.965E+06	4.008E+02	1.475E+01	4.116E+03	2.765E-01	
2111	1.070E+04	5.847E+06	3.928E+02	1.446E+01	4.034E+03	2.711E-01	
2112	1.049E+04	5.731E+06	3.851E+02	1.417E+01	3.954E+03	2.657E-01	
2113	1.028E+04	5.617E+06	3.774E+02	1.389E+01	3.876E+03	2.604E-01	
2114	1.008E+04	5.506E+06	3.700E+02	1.362E+01	3.799E+03	2.553E-01	
2115	9.879E+03	5.397E+06	3.626E+02	1.335E+01	3.724E+03	2.502E-01	
2116	9.684E+03	5.290E+06	3.555E+02	1.308E+01	3.650E+03	2.453E-01	
2117	9.492E+03	5.185E+06	3.484E+02	1.283E+01	3.578E+03	2.404E-01	
2118	9.304E+03	5.083E+06	3.415E+02	1.257E+01	3.507E+03	2.356E-01	
2119	9.120E+03	4.982E+06	3.348E+02	1.232E+01	3.438E+03	2.310E-01	
2120	8.939E+03	4.884E+06	3.281E+02	1.208E+01	3.370E+03	2.264E-01	
2121	8.762E+03	4.787E+06	3.216E+02	1.184E+01	3.303E+03	2.219E-01	
2122	8.589E+03	4.692E+06	3.153E+02	1.160E+01	3.237E+03	2.175E-01	
2123	8.419E+03	4.599E+06	3.090E+02	1.137E+01	3.173E+03	2.132E-01	
2124	8.252E+03	4.508E+06	3.029E+02	1.115E+01	3.111E+03	2.090E-01	
2125	8.089E+03	4.419E+06	2.969E+02	1.093E+01	3.049E+03	2.049E-01	
2126	7.928E+03	4.331E+06	2.910E+02	1.071E+01	2.989E+03	2.008E-01	
2127	7.771E+03	4.246E+06	2.853E+02	1.050E+01	2.929E+03	1.968E-01	
2128	7.618E+03	4.161E+06	2.796E+02	1.029E+01	2.871E+03	1.929E-01	

ATTACHMENT 6.6 PCS ANALYTICAL TEST RESULTS (03/29/2018 SAMPLING EVENT)

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Denver 4955 Yarrow Street Arvada, CO 80002 Tel: (303)736-0100

TestAmerica Job ID: 280-107960-1 Client Project/Site: 3217|Valencia, NM - Soils

For:

Waste Management 1132 Carpenter Street NE Rio Rancho, New Mexico 87144

Attn: Mr. Steve Miceli

Betay Sara

Authorized for release by: 4/19/2018 9:07:45 AM

Betsy Sara, Project Manager II (303)736-0189 betsy.sara@testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Case Narrative	3
Definitions	4
Detection Summary	5
Method Summary	9
Sample Summary	10
Client Sample Results	11
QC Sample Results	49
QC Association	75
Chronicle	79
Subcontract Data	85
Receipt Checklists	185
Chain of Custody	186

Job ID: 280-107960-1

Laboratory: TestAmerica Denver

Narrative

CASE NARRATIVE

Client: Waste Management

Project: 3217|Valencia, NM - Soils

Report Number: 280-107960-1

With the exceptions noted as flags or footnotes, standard analytical protocols were followed in the analysis of the samples and no problems were encountered or anomalies observed. In addition all laboratory quality control samples were within established control limits, with any exceptions noted below. Each sample was analyzed to achieve the lowest possible reporting limit within the constraints of the method. In some cases, due to interference or analytes present at high concentrations, samples were diluted. For diluted samples, the reporting limits are adjusted relative to the dilution required.

This report may include reporting limits (RLs) less than TestAmerica's standard reporting limit. The reported sample results and associated reporting limits are being used specifically to meet the needs of this project. Note that data are not normally reported to these levels without qualification because they are inherently less reliable and potentially less defensible than required by the latest industry standards.

Sample Receiving

The samples were received on 03/30/2018; the samples arrived in good condition, properly preserved and on ice. The temperatures of the coolers at receipt were 0.2° C, 1.2° C and 1.4° C.

Holding Times

All holding times were within established control limits.

Method Blanks

2-Butanone (MEK), Acetone Method 8260B, Gasoline Range Organics (GRO)-C6-C10 Method 8015B, Diesel Range Organics [C10-C28] and C10-C36 Method 8015B were detected in the Method Blanks below the project established reporting limits. No corrective action is taken for any values in Method Blanks that are below the requested reporting limits.

All other Method Blanks were within the acceptance limits.

Laboratory Control Samples (LCS)

All Laboratory Control Samples were within established control limits.

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Sample Duplicate (Dup)

Sample PCS AC2 was selected to fulfill the laboratory batch quality control requirements for Method 8260B. Analysis of the laboratory generated MS/MSD for this sample exhibited recoveries of multiple spike compounds below the lower control limits. Because the corresponding Laboratory Control Sample and the Method Blank sample were within control limits, this anomaly may be due to matrix interference and no corrective action was taken.

Sample PCS AC1 was selected to fulfill the laboratory batch quality control requirements for Method 8015B. Analysis of the laboratory generated MS/MSD for this sample exhibited recoveries of Gasoline Range Organics (GRO)-C6-C10 below the lower control limit. Because the corresponding Laboratory Control Sample and the Method Blank sample were within control limits, this anomaly may be due to matrix interference and no corrective action was taken.

All other MS and MSD and Dup samples were within established control limits.

1 2 3 4 5 6 7 8 9

Qualifiers

GC/MS VOA

GC/WS VU		4
Qualifier	Qualifier Description	4
В	Compound was found in the blank and sample.	 5
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	J
F1	MS and/or MSD Recovery is outside acceptance limits.	
GC VOA		
Qualifier	Qualifier Description	
В	Compound was found in the blank and sample.	
F1	MS and/or MSD Recovery is outside acceptance limits.	8
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	U
GC Semi V	/OA	9
Qualifier	Qualifier Description	
В	Compound was found in the blank and sample.	
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	

Glossary

	These commonly used abbreviations may or may not be present in this report.	
¤ L	isted under the "D" column to designate that the result is reported on a dry weight basis	- 1
%R F	Percent Recovery	
CFL C	Contains Free Liquid	
CNF C	Contains No Free Liquid	
DER D	Duplicate Error Ratio (normalized absolute difference)	
Dil Fac D	Dilution Factor	
DL D	Detection Limit (DoD/DOE)	
DL, RA, RE, IN Ir	ndicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC D	Decision Level Concentration (Radiochemistry)	
EDL E	Estimated Detection Limit (Dioxin)	
LOD L	.imit of Detection (DoD/DOE)	
LOQ L	.imit of Quantitation (DoD/DOE)	
MDA N	Vinimum Detectable Activity (Radiochemistry)	
MDC N	Vinimum Detectable Concentration (Radiochemistry)	
MDL N	Method Detection Limit	
ML N	Vinimum Level (Dioxin)	
NC N	Not Calculated	
ND N	Not Detected at the reporting limit (or MDL or EDL if shown)	
PQL F	Practical Quantitation Limit	
QC C	Quality Control	
RER F	Relative Error Ratio (Radiochemistry)	
RL F	Reporting Limit or Requested Limit (Radiochemistry)	
RPD F	Relative Percent Difference, a measure of the relative difference between two points	
TEF T	Foxicity Equivalent Factor (Dioxin)	
TEQ T	Foxicity Equivalent Quotient (Dioxin)	

Detection Summary

Client: Waste Management Project/Site: 3217|Valencia, NM - Soils

Client Sample ID: PCS AC1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
2-Butanone (MEK)	3.3	JB	21	1.9	ug/Kg	1	- 8	8260B	Total/NA
Gasoline Range Organics (GRO) -C6-C10	0.50	J B F1	1.2	0.33	mg/Kg	1	8	8015B	Total/NA
Diesel Range Organics [C10-C28]	19	В	7.9	1.3	mg/Kg	1	8	8015B	Total/NA
C10-C36	27	В	7.9	2.0	mg/Kg	1	8	8015B	Total/NA

Client Sample ID: PCS AC2

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Type
1,2-Dichlorobenzene	0.69	J	5.8	0.52	ug/Kg	1	8260B	Total/NA
1,2-Dichloroethene, Total	7.4		5.8	0.45	ug/Kg	1	8260B	Total/NA
cis-1,2-Dichloroethene	7.4		2.9	0.64	ug/Kg	1	8260B	Total/NA
Gasoline Range Organics (GRO) -C6-C10	0.64	JB	1.2	0.32	mg/Kg	1	8015B	Total/NA
Diesel Range Organics [C10-C28]	230	В	7.6	1.3	mg/Kg	1	8015B	Total/NA
C10-C36	280	В	7.6	1.9	mg/Kg	1	8015B	Total/NA

Client Sample ID: PCS AC3

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	Method	Prep Type
2-Butanone (MEK)	11	JB	22	2.0	ug/Kg	1	8260B	Total/NA
Acetone	21	J	22	6.0	ug/Kg	1	8260B	Total/NA
Gasoline Range Organics (GRO) -C6-C10	0.78	JB	1.2	0.33	mg/Kg	1	8015B	Total/NA
Diesel Range Organics [C10-C28]	320	В	7.4	1.3	mg/Kg	1	8015B	Total/NA
C10-C36	370	В	7.4	1.8	mg/Kg	1	8015B	Total/NA

Client Sample ID: PCS AC4

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
1,2-Dichloroethene, Total	4.8	J	5.7	0.45	ug/Kg	1	_	8260B	Total/NA
2-Butanone (MEK)	9.0	JB	23	2.1	ug/Kg	1		8260B	Total/NA
Acetone	20	JB	23	6.2	ug/Kg	1		8260B	Total/NA
cis-1,2-Dichloroethene	4.8		2.9	0.64	ug/Kg	1		8260B	Total/NA
Gasoline Range Organics (GRO) -C6-C10	0.89	JB	1.2	0.32	mg/Kg	1		8015B	Total/NA
Diesel Range Organics [C10-C28]	680	В	7.8	1.3	mg/Kg	1		8015B	Total/NA
C10-C36	850	В	7.8	2.0	mg/Kg	1		8015B	Total/NA

Client Sample ID: PCS AC5

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Type
2-Butanone (MEK)	7.8	JB	24	2.2	ug/Kg	1	8260B	Total/NA
Acetone	12	J	24	6.4	ug/Kg	1	8260B	Total/NA
Gasoline Range Organics (GRO) -C6-C10	0.84	JB	1.2	0.33	mg/Kg	1	8015B	Total/NA
Diesel Range Organics [C10-C28]	25	В	7.8	1.3	mg/Kg	1	8015B	Total/NA
C10-C36	39	В	7.8	2.0	mg/Kg	1	8015B	Total/NA

Client Sample ID: PCS AC6

This Detection Summary does not include radiochemical test results.

TestAmerica Denver

5

Lab Sample ID: 280-107960-1

Lab Sample ID: 280-107960-2

Lab Sample ID: 280-107960-3

Lab Sample ID: 280-107960-4

Lab Sample ID: 280-107960-5

Lab Sample ID: 280-107960-6

Client Sample ID: PCS AC6 (Continued)

Lab Sample ID: 280-107960-6

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type
1,2-Dichloroethene, Total	4.6	J	5.7	0.44	ug/Kg		8260B	Total/NA
2-Butanone (MEK)	7.1	JB	23	2.1	ug/Kg	1	8260B	Total/NA
Acetone	15	JB	23	6.1	ug/Kg	1	8260B	Total/NA
cis-1,2-Dichloroethene	4.6		2.8	0.64	ug/Kg	1	8260B	Total/NA
Gasoline Range Organics (GRO) -C6-C10	0.52	JB	1.2	0.32	mg/Kg	1	8015B	Total/NA
Diesel Range Organics [C10-C28]	18	В	7.8	1.3	mg/Kg	1	8015B	Total/NA
C10-C36	28	В	7.8	2.0	mg/Kg	1	8015B	Total/NA

Client Sample ID: PCS AC7

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	Method	Prep Type
1,2-Dichloroethene, Total	4.1	J	5.7	0.45	ug/Kg	1	8260B	Total/NA
2-Butanone (MEK)	6.0	JB	23	2.1	ug/Kg	1	8260B	Total/NA
Acetone	12	JB	23	6.2	ug/Kg	1	8260B	Total/NA
cis-1,2-Dichloroethene	4.1		2.9	0.64	ug/Kg	1	8260B	Total/NA
Gasoline Range Organics (GRO) -C6-C10	0.54	JB	1.2	0.32	mg/Kg	1	8015B	Total/NA
Diesel Range Organics [C10-C28]	24	В	7.9	1.3	mg/Kg	1	8015B	Total/NA
C10-C36	39	В	7.9	2.0	mg/Kg	1	8015B	Total/NA

Client Sample ID: PCS AC8

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Type
2-Butanone (MEK)	9.2	JB	21	1.9	ug/Kg	1	8260B	Total/NA
Acetone	18	J	21	5.6	ug/Kg	1	8260B	Total/NA
Gasoline Range Organics (GRO) -C6-C10	0.58	JB	1.2	0.33	mg/Kg	1	8015B	Total/NA
Diesel Range Organics [C10-C28]	32	В	7.7	1.3	mg/Kg	1	8015B	Total/NA
C10-C36	51	В	7.7	1.9	mg/Kg	1	8015B	Total/NA

Client Sample ID: PCS AC9

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Type
2-Butanone (MEK)	7.5	JB	20	1.8	ug/Kg	1	8260B	Total/NA
Acetone	20		20	5.4	ug/Kg	1	8260B	Total/NA
Gasoline Range Organics (GRO) -C6-C10	0.73	JB	1.2	0.32	mg/Kg	1	8015B	Total/NA
Diesel Range Organics [C10-C28]	59	В	7.7	1.3	mg/Kg	1	8015B	Total/NA
C10-C36	92	В	7.7	1.9	mg/Kg	1	8015B	Total/NA

Client Sample ID: PCS AC10

Analyte 2-Butanone (MEK) Acetone		Qualifier J B J	RL 22 22	2.1	Unit ug/Kg ug/Kg	Dil Fac	_	Method 8260B 8260B	Prep Type Total/NA Total/NA
Gasoline Range Organics (GRO) -C6-C10	0.61	JB	1.2		mg/Kg	1		8015B	Total/NA
Diesel Range Organics [C10-C28]	26	В	7.8	1.3	mg/Kg	1		8015B	Total/NA
C10-C36	41	В	7.8	2.0	mg/Kg	1		8015B	Total/NA

This Detection Summary does not include radiochemical test results.

Lab Sample ID: 280-107960-8

Lab Sample ID: 280-107960-9

Lab Sample ID: 280-107960-10

TestAmerica Denver

Client Sample ID: PCS AC11

Lab Sample ID: 280-107960-11

5

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	Method	Prep Type
2-Butanone (MEK)	9.7	J	22	2.0	ug/Kg	1	8260B	Total/NA
Acetone	29	В	22	6.0	ug/Kg	1	8260B	Total/NA
Methylene Chloride	1.8	J	5.6	1.8	ug/Kg	1	8260B	Total/NA
Gasoline Range Organics (GRO) -C6-C10	0.67	JB	1.2	0.32	mg/Kg	1	8015B	Total/NA
Diesel Range Organics [C10-C28]	20	В	8.0	1.4	mg/Kg	1	8015B	Total/NA
C10-C36	33	В	8.0	2.0	mg/Kg	1	8015B	Total/NA

Client Sample ID: PCS AC12

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	Method	Prep Type
2-Butanone (MEK)	3.8	J	22	2.1	ug/Kg	1	8260B	Total/NA
Acetone	12	JB	22	6.0	ug/Kg	1	8260B	Total/NA
Gasoline Range Organics (GRO) -C6-C10	0.65	JB	1.2	0.33	mg/Kg	1	8015B	Total/NA
Diesel Range Organics [C10-C28]	26	В	7.9	1.4	mg/Kg	1	8015B	Total/NA
C10-C36	44	В	7.9	2.0	mg/Kg	1	8015B	Total/NA

Client Sample ID: PCS AC13

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	Method	Prep Type
2-Butanone (MEK)	1.9	J	21	1.9	ug/Kg	1	8260B	Total/NA
Acetone	6.0	JB	21	5.6	ug/Kg	1	8260B	Total/NA
Gasoline Range Organics (GRO) -C6-C10	0.71	JB	1.2	0.32	mg/Kg	1	8015B	Total/NA
Diesel Range Organics [C10-C28]	20	В	7.7	1.3	mg/Kg	1	8015B	Total/NA
C10-C36	32	В	7.7	1.9	mg/Kg	1	8015B	Total/NA

Client Sample ID: PCS AC14

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Type
2-Butanone (MEK)	6.7	J	23	2.1	ug/Kg	1	8260B	Total/NA
Acetone	19	JB	23	6.1	ug/Kg	1	8260B	Total/NA
Gasoline Range Organics (GRO) -C6-C10	0.82	JB	1.2	0.33	mg/Kg	1	8015B	Total/NA
Diesel Range Organics [C10-C28]	16	В	7.3	1.2	mg/Kg	1	8015B	Total/NA
C10-C36	23	В	7.3	1.8	mg/Kg	1	8015B	Total/NA

Client Sample ID: PCS AC15

Lab Sample	ID: 280	-107960-15
------------	---------	------------

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
2-Butanone (MEK)	8.8	J	21	1.9	ug/Kg	1	_	8260B	Total/NA
Acetone	27	В	21	5.6	ug/Kg	1		8260B	Total/NA
Methylene Chloride	1.9	J	5.2	1.7	ug/Kg	1		8260B	Total/NA
Gasoline Range Organics (GRO) -C6-C10	0.83	JB	1.2	0.33	mg/Kg	1		8015B	Total/NA
Diesel Range Organics [C10-C28]	22	В	7.7	1.3	mg/Kg	1		8015B	Total/NA
C10-C36	35	В	7.7	1.9	mg/Kg	1		8015B	Total/NA

Client Sample ID: PCS AC16

Lab Sample ID: 280-107960-16

This Detection Summary does not include radiochemical test results.

TestAmerica Denver

Lab Sample ID: 280-107960-13

Lab Sample ID: 280-107960-14

Client Sample ID: PCS AC16 (Continued)

Lab Sample ID: 280-107960-17

Lab Sample ID: 280-107960-18

Lab Sample ID: 280-107960-16

5

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type
2-Butanone (MEK)	7.4	J	21	1.9	ug/Kg	1	8260B	Total/NA
Acetone	22	В	21	5.7	ug/Kg	1	8260B	Total/NA
Gasoline Range Organics (GRO) -C6-C10	0.69	JB	1.2	0.32	mg/Kg	1	8015B	Total/NA
Diesel Range Organics [C10-C28]	25	В	7.1	1.2	mg/Kg	1	8015B	Total/NA
C10-C36	45	В	7.1	1.8	mg/Kg	1	8015B	Total/NA

Client Sample ID: PCS AC17

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	0 Method	Prep Type
2-Butanone (MEK)	5.1	J	21	1.9	ug/Kg	1	8260B	Total/NA
Acetone	11	JB	21	5.7	ug/Kg	1	8260B	Total/NA
Gasoline Range Organics (GRO) -C6-C10	0.72	JB	1.2	0.32	mg/Kg	1	8015B	Total/NA
Diesel Range Organics [C10-C28]	20	В	7.1	1.2	mg/Kg	1	8015B	Total/NA
C10-C36	37	В	7.1	1.8	mg/Kg	1	8015B	Total/NA

Client Sample ID: PCS AC18

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Type
2-Butanone (MEK)	3.8	J	21	1.9	ug/Kg	1	8260B	Total/NA
Acetone	8.2	JB	21	5.5	ug/Kg	1	8260B	Total/NA
Gasoline Range Organics (GRO) -C6-C10	0.62	JB	1.2	0.32	mg/Kg	1	8015B	Total/NA
Diesel Range Organics [C10-C28]	20	В	8.0	1.4	mg/Kg	1	8015B	Total/NA
C10-C36	34	В	8.0	2.0	mg/Kg	1	8015B	Total/NA

Client Sample ID: PCS AC19

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Type
2-Butanone (MEK)	4.6	J	23	2.1	ug/Kg	1	8260B	Total/NA
Acetone	10	JB	23	6.2	ug/Kg	1	8260B	Total/NA
Gasoline Range Organics (GRO) -C6-C10	0.71	JB	1.2	0.32	mg/Kg	1	8015B	Total/NA
Diesel Range Organics [C10-C28]	17	В	7.4	1.3	mg/Kg	1	8015B	Total/NA
C10-C36	30	В	7.4	1.8	mg/Kg	1	8015B	Total/NA

Client Sample ID: PCS AC20

Lab Sample ID: 280-107960-20

Lab Sample ID: 280-107960-19

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
2-Butanone (MEK)	6.6	J	20	1.9	ug/Kg	1	_	8260B	Total/NA
Acetone	21	В	20	5.5	ug/Kg	1		8260B	Total/NA
Gasoline Range Organics (GRO) -C6-C10	0.76	JB	1.2	0.32	mg/Kg	1		8015B	Total/NA
Diesel Range Organics [C10-C28]	20	В	7.5	1.3	mg/Kg	1		8015B	Total/NA
C10-C36	35	В	7.5	1.9	mg/Kg	1		8015B	Total/NA

This Detection Summary does not include radiochemical test results.

Method Summary

Client: Waste Management Project/Site: 3217|Valencia, NM - Soils

5
6
8
9

Method	Method Description	Protocol	Laboratory
8260B	Volatile Organic Compounds (GC/MS)	SW846	TAL DEN
8015B	Gasoline Range Organics - (GC)	SW846	TAL DEN
8015B	Diesel Range Organics (DRO) (GC)	SW846	TAL DEN
3546	Microwave Extraction	SW846	TAL DEN
5030B	Purge and Trap	SW846	TAL DEN

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL DEN = TestAmerica Denver, 4955 Yarrow Street, Arvada, CO 80002, TEL (303)736-0100

Sample Summary

Client: Waste Management Project/Site: 3217|Valencia, NM - Soils

TestAmerica Job ID: 280-107960-1

Client: Waste Man Project/Site: 3217	nagement Valencia, NM - Soils	TestAmerica Job ID: 280-107960-1						
Lab Sample ID	Client Sample ID	Matrix	Collected Received					
280-107960-1	PCS AC1	Solid	03/29/18 11:35 03/30/18 08:50					
280-107960-2	PCS AC2	Solid	03/29/18 11:41 03/30/18 08:50					
280-107960-3	PCS AC3	Solid	03/29/18 11:46 03/30/18 08:50	E				
280-107960-4	PCS AC4	Solid	03/29/18 11:50 03/30/18 08:50	D				
280-107960-5	PCS AC5	Solid	03/29/18 11:55 03/30/18 08:50					
280-107960-6	PCS AC6	Solid	03/29/18 12:00 03/30/18 08:50					
280-107960-7	PCS AC7	Solid	03/29/18 12:05 03/30/18 08:50					
280-107960-8	PCS AC8	Solid	03/29/18 12:10 03/30/18 08:50	7				
280-107960-9	PCS AC9	Solid	03/29/18 12:15 03/30/18 08:50					
280-107960-10	PCS AC10	Solid	03/29/18 12:20 03/30/18 08:50	8				
280-107960-11	PCS AC11	Solid	03/29/18 12:25 03/30/18 08:50					
280-107960-12	PCS AC12	Solid	03/29/18 12:30 03/30/18 08:50	9				
280-107960-13	PCS AC13	Solid	03/29/18 12:36 03/30/18 08:50					
280-107960-14	PCS AC14	Solid	03/29/18 12:41 03/30/18 08:50					
280-107960-15	PCS AC15	Solid	03/29/18 12:46 03/30/18 08:50					
280-107960-16	PCS AC16	Solid	03/29/18 12:51 03/30/18 08:50					
280-107960-17	PCS AC17	Solid	03/29/18 12:56 03/30/18 08:50					
280-107960-18	PCS AC18	Solid	03/29/18 13:02 03/30/18 08:50					
280-107960-19	PCS AC19	Solid	03/29/18 13:07 03/30/18 08:50					
280-107960-20	PCS AC20	Solid	03/29/18 13:14 03/30/18 08:50	13				

Client Sample ID: PCS AC1

Methyl tert-butyl ether

Method: 8260B - Volatile Organic Compounds (GC/MS)

J
8
9

Lab Sample ID: 280-107960-1 Matrix: Solid

Client Sample ID: PCS AC1 Lab Sample ID: 280-107960-1										
Date Collected: 03/29/18 11:35								Matrix	c: Solid	
Date Received: 03/30/18 08:50										
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac	
1,1,1,2-Tetrachloroethane	ND		5.3		ug/Kg			04/11/18 01:50	1	
1,1,1-Trichloroethane	ND		5.3		ug/Kg		04/10/18 20:00	04/11/18 01:50	1	
1,1,2,2-Tetrachloroethane	ND		5.3	0.65	ug/Kg		04/10/18 20:00	04/11/18 01:50	1	
1,1,2-Trichloroethane	ND		5.3		ug/Kg			04/11/18 01:50	1	
1,1-Dichloroethane	ND		5.3	0.22	ug/Kg		04/10/18 20:00	04/11/18 01:50	1	
1,1-Dichloroethene	ND		5.3	0.63	ug/Kg		04/10/18 20:00	04/11/18 01:50	1	
1,1-Dichloropropene	ND		5.3	0.57	ug/Kg		04/10/18 20:00	04/11/18 01:50	1	
1,2,3-Trichlorobenzene	ND		5.3	0.80	ug/Kg		04/10/18 20:00	04/11/18 01:50	1	
1,2,3-Trichloropropane	ND		5.3	0.86	ug/Kg		04/10/18 20:00	04/11/18 01:50	1	
1,2,4-Trichlorobenzene	ND		5.3	0.78	ug/Kg		04/10/18 20:00	04/11/18 01:50	1	
1,2,4-Trimethylbenzene	ND		5.3	0.62	ug/Kg		04/10/18 20:00	04/11/18 01:50	1	
1,2-Dibromo-3-Chloropropane	ND		11	0.64	ug/Kg		04/10/18 20:00	04/11/18 01:50	1	
1,2-Dibromoethane	ND		5.3	0.55	ug/Kg		04/10/18 20:00	04/11/18 01:50	1	
1,2-Dichlorobenzene	ND		5.3	0.48	ug/Kg		04/10/18 20:00	04/11/18 01:50	1	
1,2-Dichloroethane	ND		5.3	0.74	ug/Kg		04/10/18 20:00	04/11/18 01:50	1	
1,2-Dichloroethene, Total	ND		5.3	0.41	ug/Kg		04/10/18 20:00	04/11/18 01:50	1	
1,2-Dichloropropane	ND		5.3	0.58	ug/Kg		04/10/18 20:00	04/11/18 01:50	1	
1,3,5-Trimethylbenzene	ND		5.3	0.61	ug/Kg		04/10/18 20:00	04/11/18 01:50	1	
1,3-Dichlorobenzene	ND		5.3	0.51	ug/Kg		04/10/18 20:00	04/11/18 01:50	1	
1,3-Dichloropropane	ND		5.3	0.54	ug/Kg		04/10/18 20:00	04/11/18 01:50	1	
1,4-Dichlorobenzene	ND		5.3	0.83	ug/Kg		04/10/18 20:00	04/11/18 01:50	1	
2,2-Dichloropropane	ND		5.3		ug/Kg		04/10/18 20:00	04/11/18 01:50	1	
2-Butanone (MEK)	3.3	JB	21		ug/Kg		04/10/18 20:00	04/11/18 01:50	1	
2-Chlorotoluene	ND		5.3		ug/Kg		04/10/18 20:00	04/11/18 01:50	1	
2-Hexanone	ND		21		ug/Kg		04/10/18 20:00	04/11/18 01:50	1	
4-Chlorotoluene	ND		5.3		ug/Kg		04/10/18 20:00	04/11/18 01:50	1	
4-Isopropyltoluene	ND		5.3		ug/Kg		04/10/18 20:00	04/11/18 01:50	1	
4-Methyl-2-pentanone (MIBK)	ND		21		ug/Kg		04/10/18 20:00	04/11/18 01:50	1	
Acetone	ND		21		ug/Kg		04/10/18 20:00	04/11/18 01:50	1	
Benzene	ND		5.3		ug/Kg		04/10/18 20:00	04/11/18 01:50	1	
Bromobenzene	ND		5.3		ug/Kg		04/10/18 20:00	04/11/18 01:50	1	
Bromoform	ND		5.3		ug/Kg		04/10/18 20:00	04/11/18 01:50	1	
Bromomethane	ND		11		ug/Kg			04/11/18 01:50	1	
Carbon tetrachloride	ND		5.3		ug/Kg			04/11/18 01:50	1	
Chlorobenzene	ND		5.3		ug/Kg			04/11/18 01:50	1	
Chlorobromomethane	ND		5.3		ug/Kg			04/11/18 01:50	1	
Chlorodibromomethane	ND		5.3		ug/Kg			04/11/18 01:50	1	
Chloroethane	ND		11		ug/Kg			04/11/18 01:50	1	
Chloroform	ND		11		ug/Kg			04/11/18 01:50	1	
Chloromethane	ND		11		ug/Kg			04/11/18 01:50	· · · · · · · · · · · · · · · · · · ·	
cis-1,2-Dichloroethene	ND		2.7		ug/Kg			04/11/18 01:50	1	
cis-1,3-Dichloropropene	ND		5.3		ug/Kg			04/11/18 01:50	1	
Dibromomethane	ND		5.3		ug/Kg			04/11/18 01:50	· · · · · · · · · · · · · · · · · · ·	
Dichlorobromomethane	ND		5.3		ug/Kg ug/Kg			04/11/18 01:50	1	
Dichlorodifluoromethane	ND		11		ug/Kg			04/11/18 01:50	1	
Ethylbenzene	ND		5.3		ug/Kg ug/Kg			04/11/18 01:50		
	ND		5.3 5.3						1	
Hexachlorobutadiene					ug/Kg			04/11/18 01:50	1	
Isopropylbenzene	ND		5.3	0.03	ug/Kg			04/11/18 01:50	۲ ۸	

TestAmerica Denver

04/10/18 20:00 04/11/18 01:50

21

0.36 ug/Kg

ND

1

Client Sample ID: PCS AC1 Date Collected: 03/29/18 11:35

Date Received: 03/30/18 08:50										
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	5
Methylene Chloride	ND		5.3	1.7	ug/Kg		04/10/18 20:00	04/11/18 01:50	1	
m-Xylene & p-Xylene	ND		2.7	1.1	ug/Kg		04/10/18 20:00	04/11/18 01:50	1	6
Naphthalene	ND		5.3	0.67	ug/Kg		04/10/18 20:00	04/11/18 01:50	1	
n-Butylbenzene	ND		5.3	0.60	ug/Kg		04/10/18 20:00	04/11/18 01:50	1	
N-Propylbenzene	ND		5.3	0.62	ug/Kg		04/10/18 20:00	04/11/18 01:50	1	
o-Xylene	ND		2.7	0.65	ug/Kg		04/10/18 20:00	04/11/18 01:50	1	8
sec-Butylbenzene	ND		5.3	0.82	ug/Kg		04/10/18 20:00	04/11/18 01:50	1	U
Styrene	ND		5.3	0.67	ug/Kg		04/10/18 20:00	04/11/18 01:50	1	0
tert-Butylbenzene	ND		5.3	0.53	ug/Kg		04/10/18 20:00	04/11/18 01:50	1	J
Tetrachloroethene	ND		5.3	0.63	ug/Kg		04/10/18 20:00	04/11/18 01:50	1	
Toluene	ND		5.3	0.73	ug/Kg		04/10/18 20:00	04/11/18 01:50	1	
trans-1,2-Dichloroethene	ND		2.7	0.41	ug/Kg		04/10/18 20:00	04/11/18 01:50	1	
trans-1,3-Dichloropropene	ND		5.3	0.71	ug/Kg		04/10/18 20:00	04/11/18 01:50	1	
Trichloroethene	ND		5.3	0.24	ug/Kg		04/10/18 20:00	04/11/18 01:50	1	
Trichlorofluoromethane	ND		11	1.1	ug/Kg		04/10/18 20:00	04/11/18 01:50	1	
Vinyl chloride	ND		5.3	1.4	ug/Kg		04/10/18 20:00	04/11/18 01:50	1	
Xylenes, Total	ND		5.3	0.65	ug/Kg		04/10/18 20:00	04/11/18 01:50	1	
Surrogate	%Recoverv	Qualifier	Limits				Prepared	Analyzed	Dil Fac	

Surrogate	%Recovery (Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	80		58 - 140	04/10/18 20:00	04/11/18 01:50	1
4-Bromofluorobenzene (Surr)	101		76 - 127	04/10/18 20:00	04/11/18 01:50	1
Dibromofluoromethane (Surr)	90		75 - 121	04/10/18 20:00	04/11/18 01:50	1
Toluene-d8 (Surr)	94		80 - 126	04/10/18 20:00	04/11/18 01:50	1

Client Sample ID: PCS AC2 Date Collected: 03/29/18 11:41

Date Received: 03/30/18 08:50

Date Received: 03/30/18 08:50									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND		5.8	0.64	ug/Kg		04/11/18 19:00	04/12/18 03:22	1
1,1,1-Trichloroethane	ND		5.8	0.60	ug/Kg		04/11/18 19:00	04/12/18 03:22	1
1,1,2,2-Tetrachloroethane	ND		5.8	0.70	ug/Kg		04/11/18 19:00	04/12/18 03:22	1
1,1,2-Trichloroethane	ND		5.8	1.0	ug/Kg		04/11/18 19:00	04/12/18 03:22	1
1,1-Dichloroethane	ND		5.8	0.24	ug/Kg		04/11/18 19:00	04/12/18 03:22	1
1,1-Dichloroethene	ND		5.8	0.68	ug/Kg		04/11/18 19:00	04/12/18 03:22	1
1,1-Dichloropropene	ND		5.8	0.62	ug/Kg		04/11/18 19:00	04/12/18 03:22	1
1,2,3-Trichlorobenzene	ND	F1	5.8	0.86	ug/Kg		04/11/18 19:00	04/12/18 03:22	1
1,2,3-Trichloropropane	ND		5.8	0.93	ug/Kg		04/11/18 19:00	04/12/18 03:22	1
1,2,4-Trichlorobenzene	ND	F1	5.8	0.84	ug/Kg		04/11/18 19:00	04/12/18 03:22	1
1,2,4-Trimethylbenzene	ND		5.8	0.67	ug/Kg		04/11/18 19:00	04/12/18 03:22	1
1,2-Dibromo-3-Chloropropane	ND		12	0.69	ug/Kg		04/11/18 19:00	04/12/18 03:22	1
1,2-Dibromoethane	ND		5.8	0.60	ug/Kg		04/11/18 19:00	04/12/18 03:22	1
1,2-Dichlorobenzene	0.69	J	5.8	0.52	ug/Kg		04/11/18 19:00	04/12/18 03:22	1
1,2-Dichloroethane	ND		5.8	0.81	ug/Kg		04/11/18 19:00	04/12/18 03:22	1
1,2-Dichloroethene, Total	7.4		5.8	0.45	ug/Kg		04/11/18 19:00	04/12/18 03:22	1
1,2-Dichloropropane	ND		5.8	0.63	ug/Kg		04/11/18 19:00	04/12/18 03:22	1
1,3,5-Trimethylbenzene	ND		5.8	0.66	ug/Kg		04/11/18 19:00	04/12/18 03:22	1
1,3-Dichlorobenzene	ND		5.8	0.55	ug/Kg		04/11/18 19:00	04/12/18 03:22	1
1,3-Dichloropropane	ND		5.8	0.59	ug/Kg		04/11/18 19:00	04/12/18 03:22	1
1,4-Dichlorobenzene	ND		5.8	0.90	ug/Kg		04/11/18 19:00	04/12/18 03:22	1
2,2-Dichloropropane	ND		5.8	0.51	ug/Kg		04/11/18 19:00	04/12/18 03:22	1

TestAmerica Denver

Lab Sample ID: 280-107960-1 Matrix: Solid

Lab Sample ID: 280-107960-2 Matrix: Solid

RL

23

MDL Unit

2.1 ug/Kg

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Result Qualifier

ND

Lab Sample ID: 280-107960-2 Matrix: Solid

Analyzed

04/11/18 19:00 04/12/18 03:22

Dil Fac

1

5.8	0.59	ug/Kg	04/11/18 19:00	04/12/18 03:22	1	6
23	5.6	ug/Kg	04/11/18 19:00	04/12/18 03:22	1	
5.8	0.90	ug/Kg	04/11/18 19:00	04/12/18 03:22	1	7
5.8	0.56	ug/Kg	04/11/18 19:00	04/12/18 03:22	1	
23	5.0	ug/Kg	04/11/18 19:00	04/12/18 03:22	1	8
23	6.2	ug/Kg	04/11/18 19:00	04/12/18 03:22	1	
5.8	0.54	ug/Kg	04/11/18 19:00	04/12/18 03:22	1	0
5.8	0.56	ug/Kg	04/11/18 19:00	04/12/18 03:22	1	3
5.8	0.26	ug/Kg	04/11/18 19:00	04/12/18 03:22	1	10
12	0.58	ug/Kg	04/11/18 19:00	04/12/18 03:22	1	IU
5.8	0.73	ug/Kg	04/11/18 19:00	04/12/18 03:22	1	4.4
5.8	0.62	ug/Kg	04/11/18 19:00	04/12/18 03:22	1	11
5.8	0.35	ug/Kg	04/11/18 19:00		1	40
5.8	0.66	ug/Kg	04/11/18 19:00	04/12/18 03:22	1	12
12	1.0	ug/Kg	04/11/18 19:00	04/12/18 03:22	1	
12	0.33	ug/Kg	04/11/18 19:00	04/12/18 03:22	1	13
12	0.89	ug/Kg	04/11/18 19:00	04/12/18 03:22	1	
2.9	0.64	ug/Kg	04/11/18 19:00	04/12/18 03:22	1	14
5.8	1.5	ug/Kg	04/11/18 19:00	04/12/18 03:22	1	
5.8	0.97	ug/Kg	04/11/18 19:00	04/12/18 03:22	1	
5.8	0.25	ug/Kg	04/11/18 19:00	04/12/18 03:22	1	
12	0.60	ug/Kg	04/11/18 19:00	04/12/18 03:22	1	
5.8	0.77	ug/Kg	04/11/18 19:00	04/12/18 03:22	1	
5.8	0.63	ug/Kg	04/11/18 19:00	04/12/18 03:22	1	
5.8	0.68	ug/Kg	04/11/18 19:00	04/12/18 03:22	1	
23	0.39	ug/Kg	04/11/18 19:00	04/12/18 03:22	1	
5.8	1.8	ug/Kg	04/11/18 19:00	04/12/18 03:22	1	
2.9	1.2	ug/Kg	04/11/18 19:00	04/12/18 03:22	1	
5.8	0.73	ug/Kg	04/11/18 19:00	04/12/18 03:22	1	
5.8	0.64	ug/Kg	04/11/18 19:00	04/12/18 03:22	1	
5.8	0.67	ug/Kg	04/11/18 19:00	04/12/18 03:22	1	
2.9	0.70	ug/Kg	04/11/18 19:00	04/12/18 03:22	1	
5.8	0.89	ug/Kg	04/11/18 19:00	04/12/18 03:22	1	
5.8	0.73	ug/Kg	04/11/18 19:00	04/12/18 03:22	1	
5.8	0.58	ug/Kg	04/11/18 19:00	04/12/18 03:22	1	
5.8	0.68	ua/Ka	04/11/18 19:00	04/12/18 03:22	1	

Prepared

D

Client Sample ID: PCS AC2 Date Collected: 03/29/18 11:41

Date Received: 03/30/18 08:50

Analyte

2-Butanone (MEK)

Client Sample Results

Client: Waste Management Project/Site: 3217|Valencia, NM - Soils

Client Sample ID: PCS AC3 Date Collected: 03/29/18 11:46 Date Received: 03/30/18 08:50

Lab Sample ID: 280-107960-3 Matrix: Solid

Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
1,1,1,2-Tetrachloroethane	ND		5.6	0.62	ug/Kg		. 04/10/18 20:00	04/11/18 02:30	1	
1,1,1-Trichloroethane	ND		5.6		ug/Kg		04/10/18 20:00	04/11/18 02:30	1	
1,1,2,2-Tetrachloroethane	ND		5.6	0.68	ug/Kg		04/10/18 20:00	04/11/18 02:30	1	E
1,1,2-Trichloroethane	ND		5.6	0.98	ug/Kg		04/10/18 20:00	04/11/18 02:30	1	
1,1-Dichloroethane	ND		5.6	0.23	ug/Kg		04/10/18 20:00	04/11/18 02:30	1	
1,1-Dichloroethene	ND		5.6	0.65	ug/Kg		04/10/18 20:00	04/11/18 02:30	1	
1,1-Dichloropropene	ND		5.6	0.60	ug/Kg		04/10/18 20:00	04/11/18 02:30	1	-
1,2,3-Trichlorobenzene	ND		5.6	0.83	ug/Kg		04/10/18 20:00	04/11/18 02:30	1	
1,2,3-Trichloropropane	ND		5.6	0.90	ug/Kg		04/10/18 20:00	04/11/18 02:30	1	
1,2,4-Trichlorobenzene	ND		5.6	0.81	ug/Kg		04/10/18 20:00	04/11/18 02:30	1	
1,2,4-Trimethylbenzene	ND		5.6	0.64	ug/Kg		04/10/18 20:00	04/11/18 02:30	1	
1,2-Dibromo-3-Chloropropane	ND		11	0.67	ug/Kg		04/10/18 20:00	04/11/18 02:30	1	
1,2-Dibromoethane	ND		5.6	0.58	ug/Kg		04/10/18 20:00	04/11/18 02:30	1	
1,2-Dichlorobenzene	ND		5.6	0.50	ug/Kg		04/10/18 20:00	04/11/18 02:30	1	
1,2-Dichloroethane	ND		5.6	0.78	ug/Kg		04/10/18 20:00	04/11/18 02:30	1	
1,2-Dichloroethene, Total	ND		5.6	0.43	ug/Kg		04/10/18 20:00	04/11/18 02:30	1	
1,2-Dichloropropane	ND		5.6	0.61	ug/Kg		04/10/18 20:00	04/11/18 02:30	1	
1,3,5-Trimethylbenzene	ND		5.6	0.63	ug/Kg		04/10/18 20:00	04/11/18 02:30	1	
1,3-Dichlorobenzene	ND		5.6	0.53	ug/Kg		04/10/18 20:00	04/11/18 02:30	1	
1,3-Dichloropropane	ND		5.6	0.57	ug/Kg		04/10/18 20:00	04/11/18 02:30	1	
1,4-Dichlorobenzene	ND		5.6	0.87	ug/Kg		04/10/18 20:00	04/11/18 02:30	1	
2,2-Dichloropropane	ND		5.6	0.49	ug/Kg		04/10/18 20:00	04/11/18 02:30	1	
2-Butanone (MEK)	11	JB	22	2.0	ug/Kg		04/10/18 20:00	04/11/18 02:30	1	
2-Chlorotoluene	ND		5.6	0.57	ug/Kg		04/10/18 20:00	04/11/18 02:30	1	
2-Hexanone	ND		22	5.4	ug/Kg		04/10/18 20:00	04/11/18 02:30	1	
4-Chlorotoluene	ND		5.6	0.87	ug/Kg		04/10/18 20:00	04/11/18 02:30	1	
4-Isopropyltoluene	ND		5.6	0.54	ug/Kg		04/10/18 20:00	04/11/18 02:30	1	
4-Methyl-2-pentanone (MIBK)	ND		22	4.8	ug/Kg		04/10/18 20:00	04/11/18 02:30	1	
Acetone	21	J	22		ug/Kg			04/11/18 02:30	1	
Benzene	ND		5.6	0.52	ug/Kg		04/10/18 20:00	04/11/18 02:30	1	
Bromobenzene	ND		5.6		ug/Kg		04/10/18 20:00	04/11/18 02:30	1	
Bromoform	ND		5.6		ug/Kg		04/10/18 20:00	04/11/18 02:30	1	
Bromomethane	ND		11		ug/Kg			04/11/18 02:30	1	
Carbon tetrachloride	ND		5.6		ug/Kg			04/11/18 02:30	1	
Chlorobenzene	ND		5.6		ug/Kg			04/11/18 02:30	1	
Chlorobromomethane	ND		5.6		ug/Kg			04/11/18 02:30	1	
Chlorodibromomethane	ND		5.6		ug/Kg			04/11/18 02:30	1	
Chloroethane	ND		11		ug/Kg			04/11/18 02:30	1	
Chloroform	ND		11		ug/Kg			04/11/18 02:30		
Chloromethane	ND		11		ug/Kg			04/11/18 02:30	1	
cis-1,2-Dichloroethene	ND		2.8		ug/Kg			04/11/18 02:30	1	
cis-1,3-Dichloropropene	ND		5.6		ug/Kg			04/11/18 02:30	1	
Dibromomethane	ND		5.6		ug/Kg			04/11/18 02:30	1	
Dichlorobromomethane	ND		5.6		ug/Kg			04/11/18 02:30	1	
Dichlorodifluoromethane	ND		11		ug/Kg			04/11/18 02:30	1	
Ethylbenzene	ND		5.6 5.6		ug/Kg			04/11/18 02:30	1	
	ND		5.6		ug/Kg			04/11/18 02:30	1	
Isopropylbenzene	ND		5.6		ug/Kg			04/11/18 02:30	1	
Methyl tert-butyl ether	ND		22		ug/Kg			04/11/18 02:30	1	
Methylene Chloride	ND		5.6		ug/Kg			04/11/18 02:30	1	
m-Xylene & p-Xylene	ND		2.8	1.2	ug/Kg		04/10/18 20:00	04/11/18 02:30	1	

92

Client Sample ID: PCS AC3 Date Collected: 03/29/18 11:46

Date Received: 03/30/18 08:50 Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	5
Naphthalene	ND		5.6	0.70	ug/Kg		04/10/18 20:00	04/11/18 02:30	1	
n-Butylbenzene	ND		5.6	0.62	ug/Kg		04/10/18 20:00	04/11/18 02:30	1	
N-Propylbenzene	ND		5.6	0.64	ug/Kg		04/10/18 20:00	04/11/18 02:30	1	
o-Xylene	ND		2.8	0.68	ug/Kg		04/10/18 20:00	04/11/18 02:30	1	
sec-Butylbenzene	ND		5.6	0.85	ug/Kg		04/10/18 20:00	04/11/18 02:30	1	
Styrene	ND		5.6	0.70	ug/Kg		04/10/18 20:00	04/11/18 02:30	1	8
tert-Butylbenzene	ND		5.6	0.56	ug/Kg		04/10/18 20:00	04/11/18 02:30	1	U
Tetrachloroethene	ND		5.6	0.65	ug/Kg		04/10/18 20:00	04/11/18 02:30	1	0
Toluene	ND		5.6	0.77	ug/Kg		04/10/18 20:00	04/11/18 02:30	1	9
trans-1,2-Dichloroethene	ND		2.8	0.43	ug/Kg		04/10/18 20:00	04/11/18 02:30	1	
trans-1,3-Dichloropropene	ND		5.6	0.74	ug/Kg		04/10/18 20:00	04/11/18 02:30	1	
Trichloroethene	ND		5.6	0.26	ug/Kg		04/10/18 20:00	04/11/18 02:30	1	
Trichlorofluoromethane	ND		11	1.2	ug/Kg		04/10/18 20:00	04/11/18 02:30	1	
Vinyl chloride	ND		5.6	1.5	ug/Kg		04/10/18 20:00	04/11/18 02:30	1	
Xylenes, Total	ND		5.6	0.68	ug/Kg		04/10/18 20:00	04/11/18 02:30	1	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac	13
1,2-Dichloroethane-d4 (Surr)	87		58 - 140				04/10/18 20:00	04/11/18 02:30	1	
4-Bromofluorobenzene (Surr)	101		76 - 127				04/10/18 20:00	04/11/18 02:30	1	
Dibromofluoromethane (Surr)	91		75 - 121				04/10/18 20:00	04/11/18 02:30	1	

80 - 126

Client Sample ID: PCS AC4 Date Collected: 03/29/18 11:50 Date Received: 03/30/18 08:50

Toluene-d8 (Surr)

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND	5.7	0.64	ug/Kg		04/11/18 19:00	04/12/18 04:43	1
1,1,1-Trichloroethane	ND	5.7	0.59	ug/Kg		04/11/18 19:00	04/12/18 04:43	1
1,1,2,2-Tetrachloroethane	ND	5.7	0.70	ug/Kg		04/11/18 19:00	04/12/18 04:43	1
1,1,2-Trichloroethane	ND	5.7	1.0	ug/Kg		04/11/18 19:00	04/12/18 04:43	1
1,1-Dichloroethane	ND	5.7	0.24	ug/Kg		04/11/18 19:00	04/12/18 04:43	1
1,1-Dichloroethene	ND	5.7	0.67	ug/Kg		04/11/18 19:00	04/12/18 04:43	1
1,1-Dichloropropene	ND	5.7	0.62	ug/Kg		04/11/18 19:00	04/12/18 04:43	1
1,2,3-Trichlorobenzene	ND	5.7	0.86	ug/Kg		04/11/18 19:00	04/12/18 04:43	1
1,2,3-Trichloropropane	ND	5.7	0.93	ug/Kg		04/11/18 19:00	04/12/18 04:43	1
1,2,4-Trichlorobenzene	ND	5.7	0.84	ug/Kg		04/11/18 19:00	04/12/18 04:43	1
1,2,4-Trimethylbenzene	ND	5.7	0.66	ug/Kg		04/11/18 19:00	04/12/18 04:43	1
1,2-Dibromo-3-Chloropropane	ND	11	0.69	ug/Kg		04/11/18 19:00	04/12/18 04:43	1
1,2-Dibromoethane	ND	5.7	0.59	ug/Kg		04/11/18 19:00	04/12/18 04:43	1
1,2-Dichlorobenzene	ND	5.7	0.51	ug/Kg		04/11/18 19:00	04/12/18 04:43	1
1,2-Dichloroethane	ND	5.7	0.80	ug/Kg		04/11/18 19:00	04/12/18 04:43	1
1,2-Dichloroethene, Total	4.8 J	5.7	0.45	ug/Kg		04/11/18 19:00	04/12/18 04:43	1
1,2-Dichloropropane	ND	5.7	0.63	ug/Kg		04/11/18 19:00	04/12/18 04:43	1
1,3,5-Trimethylbenzene	ND	5.7	0.65	ug/Kg		04/11/18 19:00	04/12/18 04:43	1
1,3-Dichlorobenzene	ND	5.7	0.55	ug/Kg		04/11/18 19:00	04/12/18 04:43	1
1,3-Dichloropropane	ND	5.7	0.58	ug/Kg		04/11/18 19:00	04/12/18 04:43	1
1,4-Dichlorobenzene	ND	5.7	0.89	ug/Kg		04/11/18 19:00	04/12/18 04:43	1
2,2-Dichloropropane	ND	5.7	0.50	ug/Kg		04/11/18 19:00	04/12/18 04:43	1
2-Butanone (MEK)	9.0 J B	23	2.1	ug/Kg		04/11/18 19:00	04/12/18 04:43	1
2-Chlorotoluene	ND	5.7	0.58	ug/Kg		04/11/18 19:00	04/12/18 04:43	1

TestAmerica Denver

Lab Sample ID: 280-107960-3 **Matrix: Solid**

04/10/18 20:00 04/11/18 02:30

Lab Sample ID: 280-107960-4

1

Matrix: Solid

Page 15 of 188

Lab Sample ID: 280-107960-4 Matrix: Solid

Client Sample ID: PCS AC4 Date Collected: 03/29/18 11:50

Date Received: 03/30/18 08:50 Analyte	Paou!	Qualifier	ы	МС	Unit	~	Bronarad	Analyzed	
Analyte 2-Hexanone	ND	Qualifier			Unit ug/Kg	D	Prepared	Analyzed 04/12/18 04:43	Dil Fac
Hexanone I-Chlorotoluene	ND ND		23 5.7		ug/Kg ug/Kg			04/12/18 04:43	1
Chiorotoluene Isopropyltoluene	ND		5.7		ug/Kg ug/Kg			04/12/18 04:43	1
	ND		5.7 23					04/12/18 04:43	1
-Methyl-2-pentanone (MIBK)			23		ug/Kg ug/Kg				1
Acetone	20 ND	JB	23 5.7					04/12/18 04:43	
Benzene					ug/Kg			04/12/18 04:43 04/12/18 04:43	1
Bromobenzene	ND		5.7		ug/Kg				•
Bromoform	ND		5.7		ug/Kg			04/12/18 04:43	1
Bromomethane	ND		11		ug/Kg			04/12/18 04:43	1
Carbon tetrachloride	ND		5.7		ug/Kg			04/12/18 04:43	1
Chlorobenzene	ND		5.7		ug/Kg			04/12/18 04:43	1
Chlorobromomethane	ND		5.7		ug/Kg			04/12/18 04:43	1
Chlorodibromomethane	ND		5.7		ug/Kg			04/12/18 04:43	1
Chloroethane	ND		11		ug/Kg			04/12/18 04:43	1
Chloroform	ND		11		ug/Kg			04/12/18 04:43	1
Chloromethane	ND		11		ug/Kg			04/12/18 04:43	1
is-1,2-Dichloroethene	4.8		2.9		ug/Kg			04/12/18 04:43	1
is-1,3-Dichloropropene	ND		5.7		ug/Kg			04/12/18 04:43	1
Dibromomethane	ND		5.7		ug/Kg			04/12/18 04:43	1
ichlorobromomethane	ND		5.7		ug/Kg			04/12/18 04:43	1
lichlorodifluoromethane	ND		11		ug/Kg		04/11/18 19:00	04/12/18 04:43	1
thylbenzene	ND		5.7	0.77	ug/Kg		04/11/18 19:00	04/12/18 04:43	1
lexachlorobutadiene	ND		5.7		ug/Kg		04/11/18 19:00	04/12/18 04:43	1
sopropylbenzene	ND		5.7	0.67	ug/Kg		04/11/18 19:00	04/12/18 04:43	1
lethyl tert-butyl ether	ND		23		ug/Kg		04/11/18 19:00	04/12/18 04:43	1
lethylene Chloride	ND		5.7		ug/Kg		04/11/18 19:00	04/12/18 04:43	1
n-Xylene & p-Xylene	ND		2.9	1.2	ug/Kg		04/11/18 19:00	04/12/18 04:43	1
laphthalene	ND		5.7	0.72	ug/Kg		04/11/18 19:00	04/12/18 04:43	1
-Butylbenzene	ND		5.7	0.64	ug/Kg		04/11/18 19:00	04/12/18 04:43	1
I-Propylbenzene	ND		5.7	0.66	ug/Kg		04/11/18 19:00	04/12/18 04:43	1
-Xylene	ND		2.9		ug/Kg		04/11/18 19:00	04/12/18 04:43	1
ec-Butylbenzene	ND		5.7	0.88	ug/Kg		04/11/18 19:00	04/12/18 04:43	1
Styrene	ND		5.7	0.72	ug/Kg		04/11/18 19:00	04/12/18 04:43	1
ert-Butylbenzene	ND		5.7	0.57	ug/Kg		04/11/18 19:00	04/12/18 04:43	1
etrachloroethene	ND		5.7	0.67	ug/Kg		04/11/18 19:00	04/12/18 04:43	1
oluene	ND		5.7	0.79	ug/Kg		04/11/18 19:00	04/12/18 04:43	1
ans-1,2-Dichloroethene	ND		2.9	0.45	ug/Kg		04/11/18 19:00	04/12/18 04:43	1
ans-1,3-Dichloropropene	ND		5.7	0.77	ug/Kg		04/11/18 19:00	04/12/18 04:43	1
richloroethene	ND		5.7	0.26	ug/Kg		04/11/18 19:00	04/12/18 04:43	1
richlorofluoromethane	ND		11		ug/Kg		04/11/18 19:00	04/12/18 04:43	1
inyl chloride	ND		5.7		ug/Kg		04/11/18 19:00	04/12/18 04:43	1
(ylenes, Total	ND		5.7		ug/Kg		04/11/18 19:00	04/12/18 04:43	1
-	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
,2-Dichloroethane-d4 (Surr)	77		58 - 140				04/11/18 19:00	04/12/18 04:43	1
-Bromofluorobenzene (Surr)	99		76 - 127				04/11/18 19:00	04/12/18 04:43	1
Dibromofluoromethane (Surr)	89		75 - 121				04/11/18 19:00	04/12/18 04:43	1
Toluene-d8 (Surr)	92		80 - 126				04/11/18 19:00	04/12/18 04:43	1

RL

6.0

6.0

6.0

6.0

MDL Unit

0.67 ug/Kg

0.62 ug/Kg

0.73 ug/Kg

1.0 ug/Kg

D

Prepared

04/10/18 20:00 04/11/18 03:11

04/10/18 20:00 04/11/18 03:11

04/10/18 20:00 04/11/18 03:11

04/10/18 20:00 04/11/18 03:11

Client Sample ID: PCS AC5

1,1,1,2-Tetrachloroethane

1,1,2,2-Tetrachloroethane

1,1,1-Trichloroethane

1,1,2-Trichloroethane

Analyte

Date Collected: 03/29/18 11:55

Date Received: 03/30/18 08:50

Lab Sample ID: 280-107960-5

Analyzed

Matrix: Solid

Dil Fac

1

1

1

1

8

1,1-Dichoroethane ND 6.0 0.2.5 upKg 0.41018 02:00 0.41118 03:11 1 1,1-Dichoroptene ND 6.0 0.64 upKg 0.41018 20:00 0.41118 03:11 1 1,2.3-Tichkoroptene ND 6.0 0.69 upKg 0.41018 20:00 0.41118 03:11 1 1,2.3-Tichkoroptenzen ND 6.0 0.67 upKg 0.41018 20:00 0.41118 03:11 1 1,2.4-Tirnethyberzene ND 6.0 0.67 upKg 0.41018 20:00 0.41118 03:11 1 1,2.4-Tirnethyberzene ND 6.0 0.62 upKg 0.41018 20:00 0.41118 03:11 1 1,2.4-Dichoroethare ND 6.0 0.62 upKg 0.41018 20:00 0.41118 03:11 1 1,2.2.Dichoroetharen ND 6.0 0.64 upKg 0.41018 20:00 0.41118 03:11 1 1,2.Dichoroetharen ND 6.0 0.65 upKg 0.41018 20:00 0.41118 03:11 1 1,2.Dichoroetharen	L		ND	0.0	1.0	ug/itg	04/10/10 20:00	04/11/10 03.11		
1.1-Dichloropopene ND 6.0 0.64 ug/kg 04/10/18 20:00 04/11/18 03:11 1 1.2.3-Tichlorobenzene ND 6.0 0.89 ug/kg 04/10/18 20:00 04/11/18 03:11 1 1.2.3-Tichlorobenzene ND 6.0 0.67 ug/kg 04/10/18 20:00 04/11/18 03:11 1 1.2.4-Tirchlorobenzene ND 6.0 0.68 ug/kg 04/10/18 20:00 04/11/18 03:11 1 1.2-Dibromoethane ND 6.0 0.62 ug/kg 04/10/18 20:00 04/11/18 03:11 1 1.2-Dichlorobenzene ND 6.0 0.62 ug/kg 04/10/18 20:00 04/11/18 03:11 1 1.2-Dichlorobenzene ND 6.0 0.64 ug/kg 04/10/18 20:00 04/11/18 03:11 1 1.2-Dichlorobenzene ND 6.0 0.66 ug/kg 04/10/18 20:00 04/11/18 03:11 1 1.3-Dichlorobenzene ND 6.0 0.67 ug/kg 04/10/18 20:00 04/11/18 03:11 1		1,1-Dichloroethane	ND	6.0	0.25	ug/Kg	04/10/18 20:00	04/11/18 03:11	1	_
1.2.3-Trichlorobenzene ND 6.0 0.89 ug/kg 0.4/10/18 20:00 0.4/11/18 03:11 1 1.2.3-Trichloroppane ND 6.0 0.87 ug/kg 0.4/10/18 20:00 0.4/11/18 03:11 1 1.2.4-Trichlorobenzene ND 6.0 0.87 ug/kg 0.4/10/18 20:00 0.4/11/18 03:11 1 1.2.4-Trichlorobenzene ND 6.0 0.68 ug/kg 0.4/10/18 20:00 0.4/11/18 03:11 1 1.2-Dibrono-Schloropropane ND 6.0 0.62 ug/kg 0.4/10/18 20:00 0.4/11/18 03:11 1 1.2-Dichloroethane ND 6.0 0.63 ug/kg 0.4/10/18 20:00 0.4/11/18 03:11 1 1.2-Dichloroethane ND 6.0 0.66 ug/kg 0.4/10/18 20:00 0.4/11/18 03:11 1 1.2-Dichloropethane ND 6.0 0.66 ug/kg 0.4/10/18 20:00 0.4/11/18 03:11 1 1.3-Dichloroporpane ND 6.0 0.57 ug/kg 0.4/10/18 20:00 0.4/11/18 03:11 1 </td <td></td> <td>1,1-Dichloroethene</td> <td>ND</td> <td>6.0</td> <td>0.70</td> <td>ug/Kg</td> <td>04/10/18 20:00</td> <td>04/11/18 03:11</td> <td>1</td> <td>8</td>		1,1-Dichloroethene	ND	6.0	0.70	ug/Kg	04/10/18 20:00	04/11/18 03:11	1	8
12.3-Trichloropropane ND 6.0 0.96 ug/Kg 04/10/18 20:00 04/11/18 03:11 1 12.4-Trinktyberzene ND 6.0 0.67 ug/Kg 04/10/18 20:00 04/11/18 03:11 1 12.4-Trinktyberzene ND 12 0.71 ug/Kg 04/10/18 20:00 04/11/18 03:11 1 12.Dichloroberzene ND 6.0 0.62 ug/Kg 04/10/18 20:00 04/11/18 03:11 1 1.2-Dichloroberzene ND 6.0 0.64 ug/Kg 04/10/18 20:00 04/11/18 03:11 1 1.2-Dichloroberne ND 6.0 0.64 ug/Kg 04/10/18 20:00 04/11/18 03:11 1 1.2-Dichloroberne ND 6.0 0.66 ug/Kg 04/10/18 20:00 04/11/18 03:11 1 1.3-Dichloroberzene ND 6.0 0.67 ug/Kg 04/10/18 20:00 04/11/18 03:11 1 1.3-Dichloroberzene ND 6.0 0.62 ug/Kg 04/10/18 20:00 04/11/18 03:11 1 1.		1,1-Dichloropropene	ND	6.0	0.64	ug/Kg	04/10/18 20:00	04/11/18 03:11	1	U
1.2.4-Trichlorobenzene ND 6.0 0.87 ug/Kg 0.4/10/18 20:00 0.4/11/18 03:11 1 1.2.4-Trimethylbenzene ND 6.0 0.69 ug/Kg 0.4/10/18 20:00 0.4/11/18 03:11 1 1.2-Dibromoschane ND 6.0 0.62 ug/Kg 0.4/10/18 20:00 0.4/11/18 03:11 1 1.2-Dibromoschane ND 6.0 0.63 ug/Kg 0.4/10/18 20:00 0.4/11/18 03:11 1 1.2-Dibromoschane ND 6.0 0.64 ug/Kg 0.4/10/18 20:00 0.4/11/18 03:11 1 1.2-Dichloroschane ND 6.0 0.66 ug/Kg 0.4/10/18 20:00 0.4/11/18 03:11 1 1.3-Dichlorobenzene ND 6.0 0.66 ug/Kg 0.4/10/18 20:00 0.4/11/18 03:11 1 1.4-Dichlorobenzene ND 6.0 0.61 ug/Kg 0.4/10/18 20:00 0.4/11/18 03:11 1 2.2-Dicorobenzene ND 6.0 0.52 ug/Kg 0.4/10/18 20:00 0.4/11/18 03:11 1		1,2,3-Trichlorobenzene	ND	6.0	0.89	ug/Kg	04/10/18 20:00	04/11/18 03:11	1	0
1.2.4 Timethyberzene ND 6.0 0.69 ug/kg 0.4/10/18 20:00 0.4/11/18 03:11 1 1.2.Dibromo-3-Chioropropane ND 12 0.71 ug/kg 0.4/10/18 20:00 0.4/11/18 03:11 1 1.2.Dibromo-scherzene ND 6.0 0.54 ug/kg 0.4/10/18 20:00 0.4/11/18 03:11 1 1.2.Dichoroethane ND 6.0 0.83 ug/kg 0.4/10/18 20:00 0.4/11/18 03:11 1 1.2.Dichioroethane ND 6.0 0.66 ug/kg 0.4/10/18 20:00 0.4/11/18 03:11 1 1.2.Dichioroethane ND 6.0 0.66 ug/kg 0.4/10/18 20:00 0.4/11/18 03:11 1 1.3.Dichioroberzene ND 6.0 0.57 ug/kg 0.4/10/18 20:00 0.4/11/18 03:11 1 1.4-Dichioroberzene ND 6.0 0.52 ug/kg 0.4/10/18 20:00 0.4/11/18 03:11 1 1.2-Dichoroberzene ND 6.0 0.52 ug/kg 0.4/10/18 20:00 0.4/11/18 03:11 1 </td <td>L</td> <td>1,2,3-Trichloropropane</td> <td>ND</td> <td>6.0</td> <td>0.96</td> <td>ug/Kg</td> <td>04/10/18 20:00</td> <td>04/11/18 03:11</td> <td>1</td> <td>3</td>	L	1,2,3-Trichloropropane	ND	6.0	0.96	ug/Kg	04/10/18 20:00	04/11/18 03:11	1	3
1.2-Dibromo-3-Chloropropane ND 12 0.71 ug/Kg 04/10/18 20:00 04/11/18 03:11 1 1.2-Dichloroberzene ND 6.0 0.52 ug/Kg 04/10/18 20:00 04/11/18 03:11 1 1.2-Dichloroberzene ND 6.0 0.83 ug/Kg 04/10/18 20:00 04/11/18 03:11 1 1.2-Dichloroberzene ND 6.0 0.64 ug/Kg 04/10/18 20:00 04/11/18 03:11 1 1.2-Dichloropopane ND 6.0 0.68 ug/Kg 04/10/18 20:00 04/11/18 03:11 1 1.3-Dichloropopane ND 6.0 0.68 ug/Kg 04/10/18 20:00 04/11/18 03:11 1 1.3-Dichloropopane ND 6.0 0.61 ug/Kg 04/10/18 20:00 04/11/18 03:11 1 2.4-Dichloropopane ND 6.0 0.52 ug/Kg 04/10/18 20:00 04/11/18 03:11 1 2.4-Dichloropopane ND 6.0 0.53 ug/Kg 04/10/18 20:00 04/11/18 03:11 1		1,2,4-Trichlorobenzene	ND	6.0	0.87	ug/Kg	04/10/18 20:00	04/11/18 03:11	1	
1,2-Dibromoethane ND 6.0 0.62 ug/Kg 04/10/18 20:00 04/11/18 03:11 1 1,2-Dichlorobenzene ND 6.0 0.54 ug/Kg 04/10/18 20:00 04/11/18 03:11 1 1,2-Dichloroethane ND 6.0 0.64 ug/Kg 04/10/18 20:00 04/11/18 03:11 1 1,2-Dichloroethane ND 6.0 0.66 ug/Kg 04/10/18 20:00 04/11/18 03:11 1 1,3-Dichlorobenzene ND 6.0 0.68 ug/Kg 04/10/18 20:00 04/11/18 03:11 1 1,3-Dichlorobenzene ND 6.0 0.61 ug/Kg 04/10/18 20:00 04/11/18 03:11 1 1,4-Dichlorobenzene ND 6.0 0.52 ug/Kg 04/10/18 20:00 04/11/18 03:11 1 2,2-Dichloropropane ND 6.0 0.61 ug/Kg 04/10/18 20:00 04/11/18 03:11 1 2,2-Dichloropropane ND 6.0 0.61 ug/Kg 04/10/18 20:00 04/11/18 03:11 1 2,	L	1,2,4-Trimethylbenzene	ND	6.0	0.69	ug/Kg	04/10/18 20:00	04/11/18 03:11	1	
1.2-Dichlorobenzene ND 6.0 0.54 ug/Kg 04/10/18 20:00 04/11/18 03:11 1 1.2-Dichloroethane, ND 6.0 0.83 ug/Kg 04/10/18 20:00 04/11/18 03:11 1 1.2-Dichloropropane ND 6.0 0.66 ug/Kg 04/10/18 20:00 04/11/18 03:11 1 1.3-Dichloropropane ND 6.0 0.68 ug/Kg 04/10/18 20:00 04/11/18 03:11 1 1.3-Dichloropropane ND 6.0 0.61 ug/Kg 04/10/18 20:00 04/11/18 03:11 1 1.3-Dichloropropane ND 6.0 0.61 ug/Kg 04/10/18 20:00 04/11/18 03:11 1 1.4-Dichlorobenzene ND 6.0 0.62 ug/Kg 04/10/18 20:00 04/11/18 03:11 1 2.2-Dichloropropane ND 6.0 0.61 ug/Kg 04/10/18 20:00 04/11/18 03:11 1 2Dichloropropane ND 6.0 0.61 ug/Kg 04/10/18 20:00 04/11/18 03:11 1 <td< td=""><td></td><td>1,2-Dibromo-3-Chloropropane</td><td>ND</td><td>12</td><td>0.71</td><td>ug/Kg</td><td>04/10/18 20:00</td><td>04/11/18 03:11</td><td>1</td><td></td></td<>		1,2-Dibromo-3-Chloropropane	ND	12	0.71	ug/Kg	04/10/18 20:00	04/11/18 03:11	1	
1.2-Dichloroethane ND 6.0 0.83 ug/kg 04/10/18 20:00 04/11/18 03:11 1 1.2-Dichloroethene, Total ND 6.0 0.46 ug/kg 04/10/18 20:00 04/11/18 03:11 1 1.2-Dichloropropane ND 6.0 0.68 ug/kg 04/10/18 20:00 04/11/18 03:11 1 1.3-Dichlorobenzene ND 6.0 0.57 ug/kg 04/10/18 20:00 04/11/18 03:11 1 1.3-Dichlorobenzene ND 6.0 0.57 ug/kg 04/10/18 20:00 04/11/18 03:11 1 1.4-Dichloropropane ND 6.0 0.52 ug/kg 04/10/18 20:00 04/11/18 03:11 1 2.4-Dichloropropane ND 6.0 0.52 ug/kg 04/10/18 20:00 04/11/18 03:11 1 2.4-Dichloropropane ND 6.0 0.52 ug/kg 04/10/18 20:00 04/11/18 03:11 1 2.4-Dichloropropane ND 6.0 0.53 ug/kg 04/10/18 20:00 04/11/18 03:11 1		1,2-Dibromoethane	ND	6.0	0.62	ug/Kg	04/10/18 20:00	04/11/18 03:11	1	
1.2-Dichloroethene, Total ND 6.0 0.46 ug/kg 04/10/18 20:00 04/11/18 03:11 1 1.2-Dichloropropane ND 6.0 0.66 ug/kg 04/10/18 20:00 04/11/18 03:11 1 1.3-5-Trimethylbenzene ND 6.0 0.68 ug/kg 04/10/18 20:00 04/11/18 03:11 1 1.3-Dichloropropane ND 6.0 0.61 ug/kg 04/10/18 20:00 04/11/18 03:11 1 2Dichloropropane ND 6.0 0.51 ug/kg 04/10/18 20:00 04/11/18 03:11 1 2Dichloropropane ND 6.0 0.52 ug/kg 04/10/18 20:00 04/11/18 03:11 1 2Dichloropropane ND 6.0 0.61 ug/kg 04/10/18 20:00 04/11/18 03:11 1 2Dichloropropane ND 6.0 0.61 ug/kg 04/10/18 20:00 04/11/18 03:11 1 2Bicharone ND 6.0 0.58 ug/kg 04/10/18 20:00 04/11/18 03:11 1		1,2-Dichlorobenzene	ND	6.0	0.54	ug/Kg	04/10/18 20:00	04/11/18 03:11	1	
1.2-Dichloropropane ND 6.0 0.66 ug/Kg 04/10/18 20:00 04/11/18 03:11 1 1.3.5-Trinnethylbenzene ND 6.0 0.85 ug/Kg 04/10/18 20:00 04/11/18 03:11 1 1.3-Dichlorobenzene ND 6.0 0.57 ug/Kg 04/10/18 20:00 04/11/18 03:11 1 1.3-Dichlorobenzene ND 6.0 0.52 ug/Kg 04/10/18 20:00 04/11/18 03:11 1 2.2-Dichloropropane ND 6.0 0.52 ug/Kg 04/10/18 20:00 04/11/18 03:11 1 2.4-Dichoropropane ND 6.0 0.61 ug/Kg 04/10/18 20:00 04/11/18 03:11 1 2.4-Exanone ND 6.0 0.61 ug/Kg 04/10/18 20:00 04/11/18 03:11 1 4-Isoproptioluene ND 6.0 0.58 ug/Kg 04/10/18 20:00 04/11/18 03:11 1 4-Isoproptioluene ND 6.0 0.58 ug/Kg 04/10/18 20:00 04/11/18 03:11 1 4-Isopr		1,2-Dichloroethane	ND	6.0	0.83	ug/Kg	04/10/18 20:00	04/11/18 03:11	1	
1,3,5-Trimethylbenzene ND 6.0 0.68 ug/Kg 04/10/18 20:00 04/11/18 03:11 1 1,3-Dichlorobenzene ND 6.0 0.57 ug/Kg 04/10/18 20:00 04/11/18 03:11 1 1,4-Dichloropropane ND 6.0 0.93 ug/Kg 04/10/18 20:00 04/11/18 03:11 1 2,2-Dichloropropane ND 6.0 0.93 ug/Kg 04/10/18 20:00 04/11/18 03:11 1 2,2-Dichloropropane ND 6.0 0.52 ug/Kg 04/10/18 20:00 04/11/18 03:11 1 2,2-Dichloropropane ND 6.0 0.61 ug/Kg 04/10/18 20:00 04/11/18 03:11 1 2-Chlorobluene ND 6.0 0.61 ug/Kg 04/10/18 20:00 04/11/18 03:11 1 4-Isopropyltoluene ND 6.0 0.53 ug/Kg 04/10/18 20:00 04/11/18 03:11 1 4-Methyl-2-pentanone (MIBK) ND 24 5.2 ug/Kg 04/10/18 20:00 04/11/18 03:11 1 Acetone ND 6.0 0.56 ug/Kg 04/10/18 20:00		1,2-Dichloroethene, Total	ND	6.0			04/10/18 20:00	04/11/18 03:11	1	
1,3-Dichlorobenzene ND 6.0 0.57 ug/Kg 04/10/18 20:00 04/11/18 03:11 1 1,3-Dichloropropane ND 6.0 0.61 ug/Kg 04/10/18 20:00 04/11/18 03:11 1 1,4-Dichlorobropane ND 6.0 0.52 ug/Kg 04/10/18 20:00 04/11/18 03:11 1 2,2-Dichloropropane ND 6.0 0.52 ug/Kg 04/10/18 20:00 04/11/18 03:11 1 2-Butanone (MEK) 7.8 JB 24 2.2 ug/Kg 04/10/18 20:00 04/11/18 03:11 1 2-Hexanone ND 6.0 0.61 ug/Kg 04/10/18 20:00 04/11/18 03:11 1 4-Isopropyltoluene ND 6.0 0.93 ug/Kg 04/10/18 20:00 04/11/18 03:11 1 4-stopropyltoluene ND 6.0 0.58 ug/Kg 04/10/18 20:00 04/11/18 03:11 1 Acetone 12 J 24 6.4 ug/Kg 04/10/18 20:00 04/11/18 03:11 1 B		1,2-Dichloropropane	ND	6.0			04/10/18 20:00	04/11/18 03:11	1	
1,3-Dichloropropane ND 6.0 0.61 ug/Kg 04/10/18 20:00 04/11/18 03:11 1 1,4-Dichlorobenzene ND 6.0 0.52 ug/Kg 04/10/18 20:00 04/11/18 03:11 1 2,2-Dichloropropane ND 6.0 0.52 ug/Kg 04/10/18 20:00 04/11/18 03:11 1 2-Butanone (MEK) 7.8 J B 24 2.2 ug/Kg 04/10/18 20:00 04/11/18 03:11 1 2-Chlorotoluene ND 6.0 0.61 ug/Kg 04/10/18 20:00 04/11/18 03:11 1 4-Schorotoluene ND 6.0 0.93 ug/Kg 04/10/18 20:00 04/11/18 03:11 1 4-Isopropyltoluene ND 6.0 0.58 ug/Kg 04/10/18 20:00 04/11/18 03:11 1 4-Methyl-2-pentanone (MIBK) ND 24 5.2 ug/Kg 04/10/18 20:00 04/11/18 03:11 1 Berzene ND 6.0 0.56 ug/Kg 04/10/18 20:00 04/11/18 03:11 1		1,3,5-Trimethylbenzene	ND	6.0			04/10/18 20:00	04/11/18 03:11	1	
1.4-Dichlorobenzene ND 6.0 0.93 ug/Kg 04/10/18 20:00 04/11/18 03:11 1 2.2-Dichloropropane ND 6.0 0.52 ug/Kg 04/10/18 20:00 04/11/18 03:11 1 2-Bitanone (MEK) 7.8 J B 24 2.2 ug/Kg 04/10/18 20:00 04/11/18 03:11 1 2-Chlorotoluene ND 6.0 0.61 ug/Kg 04/10/18 20:00 04/11/18 03:11 1 2-Hexanone ND 6.0 0.93 ug/Kg 04/10/18 20:00 04/11/18 03:11 1 4-Shopropyltoluene ND 6.0 0.93 ug/Kg 04/10/18 20:00 04/11/18 03:11 1 4-Methyl-2-pentanone (MIBK) ND 24 5.2 ug/Kg 04/10/18 20:00 04/11/18 03:11 1 Benzene ND 6.0 0.58 ug/Kg 04/10/18 20:00 04/11/18 03:11 1 Bromoform ND 6.0 0.56 ug/Kg 04/10/18 20:00 04/11/18 03:11 1 Bromoform </td <td></td> <td>1,3-Dichlorobenzene</td> <td>ND</td> <td>6.0</td> <td>0.57</td> <td>ug/Kg</td> <td>04/10/18 20:00</td> <td>04/11/18 03:11</td> <td>1</td> <td></td>		1,3-Dichlorobenzene	ND	6.0	0.57	ug/Kg	04/10/18 20:00	04/11/18 03:11	1	
2,2-Dichloropropane ND 6.0 0.52 ug/Kg 04/10/18 20:00 04/11/18 03:11 1 2-Butanone (MEK) 7.8 J B 24 2.2 ug/Kg 04/10/18 20:00 04/11/18 03:11 1 2-Chlorotoluene ND 6.0 0.61 ug/Kg 04/10/18 20:00 04/11/18 03:11 1 2-Hexanone ND 24 5.8 ug/Kg 04/10/18 20:00 04/11/18 03:11 1 4-Chlorotoluene ND 6.0 0.93 ug/Kg 04/10/18 20:00 04/11/18 03:11 1 4-Stopropytoluene ND 6.0 0.58 ug/Kg 04/10/18 20:00 04/11/18 03:11 1 4-Methyl-2-pentanone (MIBK) ND 24 5.2 ug/Kg 04/10/18 20:00 04/11/18 03:11 1 Bromobenzene ND 6.0 0.56 ug/Kg 04/10/18 20:00 04/11/18 03:11 1 Bromobenzene ND 6.0 0.27 ug/Kg 04/10/18 20:00 04/11/18 03:11 1 Bromobenze		1,3-Dichloropropane	ND	6.0	0.61	ug/Kg	04/10/18 20:00	04/11/18 03:11	1	
2-Butanone (MEK) 7.8 J B 24 2.2 ug/Kg 04/10/18 20:00 04/11/18 03:11 1 2-Chorotoluene ND 6.0 0.61 ug/Kg 04/10/18 20:00 04/11/18 03:11 1 2-Hexanone ND 24 5.8 ug/Kg 04/10/18 20:00 04/11/18 03:11 1 4-Chlorotoluene ND 6.0 0.93 ug/Kg 04/10/18 20:00 04/11/18 03:11 1 4-Stopropyltoluene ND 6.0 0.58 ug/Kg 04/10/18 20:00 04/11/18 03:11 1 4-Methyl-2-pentanone (MIBK) ND 24 5.2 ug/Kg 04/10/18 20:00 04/11/18 03:11 1 Acetone 12 J 24 6.4 ug/Kg 04/10/18 20:00 04/11/18 03:11 1 Bromobenzene ND 6.0 0.58 ug/Kg 04/10/18 20:00 04/11/18 03:11 1 Carbon tetrachloride ND 6.0 0.57 ug/Kg 04/10/18 20:00 04/11/18 03:11 1 <		1,4-Dichlorobenzene	ND	6.0	0.93	ug/Kg	04/10/18 20:00	04/11/18 03:11	1	
2-Chlorotoluene ND 6.0 0.61 ug/Kg 04/10/18 20:00 04/11/18 03:11 1 2-Hexanone ND 24 5.8 ug/Kg 04/10/18 20:00 04/11/18 03:11 1 4-Chlorotoluene ND 6.0 0.93 ug/Kg 04/10/18 20:00 04/11/18 03:11 1 4-Isopropyltoluene ND 6.0 0.58 ug/Kg 04/10/18 20:00 04/11/18 03:11 1 4-Methyl-2-pentanone (MIBK) ND 24 5.2 ug/Kg 04/10/18 20:00 04/11/18 03:11 1 Acetone 12 J 24 6.4 ug/Kg 04/10/18 20:00 04/11/18 03:11 1 Berzene ND 6.0 0.58 ug/Kg 04/10/18 20:00 04/11/18 03:11 1 Bromobenzene ND 6.0 0.27 ug/Kg 04/10/18 20:00 04/11/18 03:11 1 Carbon tetrachloride ND 6.0 0.75 ug/Kg 04/10/18 20:00 04/11/18 03:11 1 Chlorobenzene		2,2-Dichloropropane	ND	6.0			04/10/18 20:00	04/11/18 03:11	1	
2-Hexanone ND 24 5.8 ug/Kg 04/10/18 00.0 04/11/18 03:11 1 4-Chlorotoluene ND 6.0 0.93 ug/Kg 04/10/18 00:00 04/11/18 03:11 1 4-Sopropyltoluene ND 6.0 0.58 ug/Kg 04/10/18 00:00 04/11/18 03:11 1 4-Methyl-2-pentanone (MIBK) ND 24 5.2 ug/Kg 04/10/18 00:00 04/11/18 03:11 1 Acetone 12 J 24 6.4 ug/Kg 04/10/18 00:0 04/11/18 03:11 1 Benzene ND 6.0 0.56 ug/Kg 04/10/18 00:0 04/11/18 03:11 1 Bromobenzene ND 6.0 0.58 ug/Kg 04/10/18 0:00 04/11/18 0:11 1 Grabon tetrachloride ND 6.0 0.27 ug/Kg 04/10/18 0:00 04/11/18 0:11 1		2-Butanone (MEK)	7.8 JB	24	2.2	ug/Kg	04/10/18 20:00	04/11/18 03:11	1	
4-ChlorotolueneND6.00.93ug/Kg04/10/1804/11/1803:1114-IsopropyltolueneND6.00.58ug/Kg04/10/1820:0004/11/1803:1114-Methyl-2-pentanone (MIBK)ND245.2ug/Kg04/10/1820:0004/11/1803:111Acetone12J246.4ug/Kg04/10/1820:0004/11/1803:111BenzeneND6.00.56ug/Kg04/10/1820:0004/11/1803:111BromobenzeneND6.00.58ug/Kg04/10/1820:0004/11/1803:111BromoformND6.00.27ug/Kg04/10/1820:0004/11/1803:111BromoformND120.60ug/Kg04/10/1820:0004/11/1803:111Carbon tetrachlorideND6.00.75ug/Kg04/10/1820:0004/11/1803:111ChlorobenzeneND6.00.64ug/Kg04/10/1820:0004/11/1803:111ChlorobenzeneND6.00.68ug/Kg04/10/1820:0004/11/1803:111ChlorobenzeneND6.00.68ug/Kg04/10/1820:0004/11/1803:111ChlorobertaneND120.14ug/Kg04/10/1820:0004/11/1803:111ChlorodibromomethaneND12 </td <td></td> <td>2-Chlorotoluene</td> <td>ND</td> <td>6.0</td> <td>0.61</td> <td>ug/Kg</td> <td>04/10/18 20:00</td> <td>04/11/18 03:11</td> <td>1</td> <td></td>		2-Chlorotoluene	ND	6.0	0.61	ug/Kg	04/10/18 20:00	04/11/18 03:11	1	
4-Isopropyltoluene ND 6.0 0.58 ug/Kg 04/10/18 20:00 04/11/18 03:11 1 4-Methyl-2-pentanone (MIBK) ND 24 5.2 ug/Kg 04/10/18 20:00 04/11/18 03:11 1 Acetone 12 J 24 6.4 ug/Kg 04/10/18 20:00 04/11/18 03:11 1 Benzene ND 6.0 0.56 ug/Kg 04/10/18 20:00 04/11/18 03:11 1 Bromobenzene ND 6.0 0.58 ug/Kg 04/10/18 20:00 04/11/18 03:11 1 Bromobenzene ND 6.0 0.58 ug/Kg 04/10/18 20:00 04/11/18 03:11 1 Bromoform ND 6.0 0.27 ug/Kg 04/10/18 20:00 04/11/18 03:11 1 Carbon tetrachloride ND 6.0 0.27 ug/Kg 04/10/18 20:00 04/11/18 03:11 1 Chlorobenzene ND 6.0 0.64 ug/Kg 04/10/18 20:00 04/11/18 03:11 1 Chlorobenmomethane		2-Hexanone	ND	24	5.8	ug/Kg	04/10/18 20:00	04/11/18 03:11	1	
4-Methyl-2-pentanone (MIBK) ND 24 5.2 ug/Kg 04/10/18 20:00 04/11/18 03:11 1 Acetone 12 J 24 6.4 ug/Kg 04/10/18 20:00 04/11/18 03:11 1 Benzene ND 6.0 0.56 ug/Kg 04/10/18 20:00 04/11/18 03:11 1 Bromobenzene ND 6.0 0.58 ug/Kg 04/10/18 20:00 04/11/18 03:11 1 Bromobenzene ND 6.0 0.58 ug/Kg 04/10/18 20:00 04/11/18 03:11 1 Bromotorm ND 6.0 0.27 ug/Kg 04/10/18 20:00 04/11/18 03:11 1 Bromomethane ND 6.0 0.27 ug/Kg 04/10/18 20:00 04/11/18 03:11 1 Chlorobenzene ND 6.0 0.75 ug/Kg 04/10/18 20:00 04/11/18 03:11 1 Chlorobenzene ND 6.0 0.64 ug/Kg 04/10/18 20:00 04/11/18 03:11 1 Chlorobenomethane ND 6.0 0.68 ug/Kg 04/10/18 20:00 04/11/18 03:11 1		4-Chlorotoluene		6.0			04/10/18 20:00	04/11/18 03:11	1	
Acetone12J246.4ug/Kg04/10/1820:0004/11/1803:111BenzeneND6.00.56ug/Kg04/10/1820:0004/11/1803:111BromobenzeneND6.00.58ug/Kg04/10/1820:0004/11/1803:111BromoformND6.00.27ug/Kg04/10/1820:0004/11/1803:111BromomethaneND120.60ug/Kg04/10/1820:0004/11/1803:111Carbon tetrachlorideND6.00.75ug/Kg04/10/1820:0004/11/1803:111ChlorobenzeneND6.00.64ug/Kg04/10/1820:0004/11/1803:111ChlorobromomethaneND6.00.36ug/Kg04/10/1820:0004/11/1803:111ChlorobromomethaneND6.00.68ug/Kg04/10/1820:0004/11/1803:111ChlorobromomethaneND121.1ug/Kg04/10/1820:0004/11/1803:111ChloroformND120.35ug/Kg04/10/1820:0004/11/1803:111ChloroformND120.92ug/Kg04/10/1820:0004/11/1803:111ChloroformND120.92ug/Kg04/10/1820:0004/11/1803:111ChloroformND3.00.		4-Isopropyltoluene	ND	6.0			04/10/18 20:00	04/11/18 03:11	1	
BenzeneND6.00.56ug/Kg04/10/18 20:0004/11/18 03:111BromobenzeneND6.00.58ug/Kg04/10/18 20:0004/11/18 03:111BromoformND6.00.27ug/Kg04/10/18 20:0004/11/18 03:111BromomethaneND120.60ug/Kg04/10/18 20:0004/11/18 03:111Carbon tetrachlorideND6.00.75ug/Kg04/10/18 20:0004/11/18 03:111ChlorobenzeneND6.00.64ug/Kg04/10/18 20:0004/11/18 03:111ChlorobromomethaneND6.00.68ug/Kg04/10/18 20:0004/11/18 03:111ChlorobromomethaneND6.00.68ug/Kg04/10/18 20:0004/11/18 03:111ChlorobromomethaneND6.00.68ug/Kg04/10/18 20:0004/11/18 03:111ChlorobromomethaneND121.1ug/Kg04/10/18 20:0004/11/18 03:111ChlorobromomethaneND120.92ug/Kg04/10/18 20:0004/11/18 03:111ChlorobromethaneND120.92ug/Kg04/10/18 20:0004/11/18 03:111ChlorobromethaneND120.92ug/Kg04/10/18 20:0004/11/18 03:111ChlorobromethaneND3.00.67ug/Kg04/10/18 20:0004/11/18 03:111cis-1,3-DichloropropeneND6.01.5ug/Kg04/10/18		4-Methyl-2-pentanone (MIBK)		24	5.2	ug/Kg	04/10/18 20:00	04/11/18 03:11	1	
BromobenzeneND6.00.58ug/Kg04/10/1820:0004/11/1803:111BromoformND6.00.27ug/Kg04/10/1820:0004/11/1803:111BromomethaneND120.60ug/Kg04/10/1820:0004/11/1803:111Carbon tetrachlorideND6.00.75ug/Kg04/10/1820:0004/11/1803:111ChlorobenzeneND6.00.64ug/Kg04/10/1820:0004/11/1803:111ChlorobromomethaneND6.00.66ug/Kg04/10/1820:0004/11/1803:111ChlorobromomethaneND6.00.68ug/Kg04/10/1820:0004/11/1803:111ChlorobromomethaneND6.00.36ug/Kg04/10/1820:0004/11/1803:111ChlorobromomethaneND6.00.36ug/Kg04/10/1820:0004/11/1803:111ChlorobromomethaneND121.1ug/Kg04/10/1820:0004/11/1803:111ChlorobromomethaneND120.35ug/Kg04/10/1820:0004/11/1803:111ChlorobromomethaneND120.92ug/Kg04/10/1804/11/1803:111ChlorobromomethaneND120.92ug/Kg04/10/1804/11/1803:111cis-1,2-DichloropropeneND		Acetone		24	6.4	ug/Kg	04/10/18 20:00	04/11/18 03:11	1	
BromoformND6.00.27ug/Kg04/10/18 20:0004/11/18 03:111BromomethaneND120.60ug/Kg04/10/18 20:0004/11/18 03:111Carbon tetrachlorideND6.00.75ug/Kg04/10/18 20:0004/11/18 03:111ChlorobenzeneND6.00.64ug/Kg04/10/18 20:0004/11/18 03:111ChlorobromomethaneND6.00.36ug/Kg04/10/18 20:0004/11/18 03:111ChlorobromomethaneND6.00.68ug/Kg04/10/18 20:0004/11/18 03:111ChlorobtaneND121.1ug/Kg04/10/18 20:0004/11/18 03:111ChlorobtaneND120.35ug/Kg04/10/18 20:0004/11/18 03:111ChlorobtaneND120.35ug/Kg04/10/18 20:0004/11/18 03:111ChlorobtaneND120.92ug/Kg04/10/18 20:0004/11/18 03:111ChlorobtaneND120.92ug/Kg04/10/18 20:0004/11/18 03:111ChlorobtaneND120.92ug/Kg04/10/18 20:0004/11/18 03:111ChlorobtaneND3.00.67ug/Kg04/10/18 20:0004/11/18 03:111ChlorobtaneND6.01.5ug/Kg04/10/18 20:0004/11/18 03:111ChlorobtaneND6.01.0ug/Kg04/10/18 20:0004/11/18 03:111 <td></td> <td>Benzene</td> <td>ND</td> <td>6.0</td> <td></td> <td></td> <td>04/10/18 20:00</td> <td>04/11/18 03:11</td> <td>1</td> <td></td>		Benzene	ND	6.0			04/10/18 20:00	04/11/18 03:11	1	
BromomethaneND120.60ug/Kg04/10/18 20:0004/11/18 03:111Carbon tetrachlorideND6.00.75ug/Kg04/10/18 20:0004/11/18 03:111ChlorobenzeneND6.00.64ug/Kg04/10/18 20:0004/11/18 03:111ChlorobromomethaneND6.00.36ug/Kg04/10/18 20:0004/11/18 03:111ChlorodibromomethaneND6.00.36ug/Kg04/10/18 20:0004/11/18 03:111ChlorodibromomethaneND6.00.68ug/Kg04/10/18 20:0004/11/18 03:111ChloroethaneND121.1ug/Kg04/10/18 20:0004/11/18 03:111ChloroformND120.35ug/Kg04/10/18 20:0004/11/18 03:111ChloroethaneND120.92ug/Kg04/10/18 20:0004/11/18 03:111ChloroothaneND120.92ug/Kg04/10/18 20:0004/11/18 03:111ChloromethaneND120.92ug/Kg04/10/18 20:0004/11/18 03:111ChloromethaneND3.00.67ug/Kg04/10/18 20:0004/11/18 03:111cis-1,3-DichloropropeneND6.01.5ug/Kg04/10/18 20:0004/11/18 03:111DibromomethaneND6.01.0ug/Kg04/10/18 20:0004/11/18 03:111DichlorobromomethaneND6.01.0ug/Kg04/10/18 20:0		Bromobenzene		6.0					1	
Carbon tetrachlorideND6.00.75ug/Kg04/10/1800.01111ChlorobenzeneND6.00.64ug/Kg04/10/1820:0004/11/1803:111ChlorobromomethaneND6.00.36ug/Kg04/10/1820:0004/11/1803:111ChlorodibromomethaneND6.00.36ug/Kg04/10/1820:0004/11/1803:111ChlorodibromomethaneND6.00.68ug/Kg04/10/1820:0004/11/1803:111ChloroethaneND121.1ug/Kg04/10/1820:0004/11/1803:111ChloroformND120.35ug/Kg04/10/1820:0004/11/1803:111ChloromethaneND120.92ug/Kg04/10/1820:0004/11/1803:111ChloromethaneND120.92ug/Kg04/10/1820:0004/11/1803:111ChloromethaneND3.00.67ug/Kg04/10/1820:0004/11/1803:111cis-1,2-DichloropropeneND6.01.5ug/Kg04/10/1820:0004/11/1803:111DibromomethaneND6.01.0ug/Kg04/10/1804/10/1803:111DichlorobromomethaneND6.00.26ug/Kg04/10/1804/10/1803:111		Bromoform		6.0	0.27	ug/Kg	04/10/18 20:00	04/11/18 03:11	1	
ChlorobenzeneND6.00.64ug/Kg04/10/18 20:0004/11/18 03:111ChlorobromomethaneND6.00.36ug/Kg04/10/18 20:0004/11/18 03:111ChlorodibromomethaneND6.00.68ug/Kg04/10/18 20:0004/11/18 03:111ChlorodibromomethaneND6.00.68ug/Kg04/10/18 20:0004/11/18 03:111ChlorodibromomethaneND121.1ug/Kg04/10/18 20:0004/11/18 03:111ChloroformND120.35ug/Kg04/10/18 20:0004/11/18 03:111ChloromethaneND120.92ug/Kg04/10/18 20:0004/11/18 03:111ChloromethaneND120.92ug/Kg04/10/18 20:0004/11/18 03:111cis-1,2-DichloroetheneND3.00.67ug/Kg04/10/18 20:0004/11/18 03:111cis-1,3-DichloropropeneND6.01.5ug/Kg04/10/18 20:0004/11/18 03:111DibromomethaneND6.01.0ug/Kg04/10/18 20:0004/11/18 03:111DichlorobromomethaneND6.01.0ug/Kg04/10/18 20:0004/11/18 03:111DichlorobromomethaneND6.01.0ug/Kg04/10/18 20:0004/11/18 03:111DichlorobromomethaneND6.00.26ug/Kg04/10/18 20:0004/11/18 03:111		Bromomethane					04/10/18 20:00	04/11/18 03:11	1	
ChlorobromomethaneND6.00.36ug/Kg04/10/18 20:0004/11/18 03:111ChlorodibromomethaneND6.00.68ug/Kg04/10/18 20:0004/11/18 03:111ChloroethaneND121.1ug/Kg04/10/18 20:0004/11/18 03:111ChloroethaneND120.35ug/Kg04/10/18 20:0004/11/18 03:111ChloroformND120.92ug/Kg04/10/18 20:0004/11/18 03:111ChloromethaneND120.92ug/Kg04/10/18 20:0004/11/18 03:111cis-1,2-DichloroetheneND3.00.67ug/Kg04/10/18 20:0004/11/18 03:111cis-1,3-DichloropropeneND6.01.5ug/Kg04/10/18 20:0004/11/18 03:111DibromomethaneND6.01.0ug/Kg04/10/18 20:0004/11/18 03:111DibromomethaneND6.01.0ug/Kg04/10/18 20:0004/11/18 03:111DibromomethaneND6.01.0ug/Kg04/10/18 20:0004/11/18 03:111		Carbon tetrachloride		6.0			04/10/18 20:00	04/11/18 03:11	1	
Chlorodibromomethane ND 6.0 0.68 ug/Kg 04/10/18 20:00 04/11/18 03:11 1 Chloroethane ND 12 1.1 ug/Kg 04/10/18 20:00 04/11/18 03:11 1 Chloroform ND 12 0.35 ug/Kg 04/10/18 20:00 04/11/18 03:11 1 Chloroform ND 12 0.35 ug/Kg 04/10/18 20:00 04/11/18 03:11 1 Chloromethane ND 12 0.92 ug/Kg 04/10/18 20:00 04/11/18 03:11 1 cis-1,2-Dichloroethene ND 3.0 0.67 ug/Kg 04/10/18 20:00 04/11/18 03:11 1 cis-1,3-Dichloropropene ND 6.0 1.5 ug/Kg 04/10/18 20:00 04/11/18 03:11 1 Dibromomethane ND 6.0 1.0 ug/Kg 04/10/18 20:00 04/11/18 03:11 1 Dibromomethane ND 6.0 0.26 ug/Kg 04/10/18 20:00 04/11/18 03:11 1		Chlorobenzene	ND	6.0			04/10/18 20:00	04/11/18 03:11	1	
Chloroethane ND 12 1.1 ug/Kg 04/10/18 20:00 04/11/18 03:11 1 Chloroform ND 12 0.35 ug/Kg 04/10/18 20:00 04/11/18 03:11 1 Chloromethane ND 12 0.92 ug/Kg 04/10/18 20:00 04/11/18 03:11 1 Chloromethane ND 12 0.92 ug/Kg 04/10/18 20:00 04/11/18 03:11 1 cis-1,2-Dichloroethene ND 3.0 0.67 ug/Kg 04/10/18 20:00 04/11/18 03:11 1 cis-1,3-Dichloropropene ND 6.0 1.5 ug/Kg 04/10/18 20:00 04/11/18 03:11 1 Dibromomethane ND 6.0 1.0 ug/Kg 04/10/18 20:00 04/11/18 03:11 1 Dibromomethane ND 6.0 0.26 ug/Kg 04/10/18 20:00 04/11/18 03:11 1									1	
Chloroform ND 12 0.35 ug/Kg 04/10/18 20:00 04/11/18 03:11 1 Chloromethane ND 12 0.92 ug/Kg 04/10/18 20:00 04/11/18 03:11 1 cis-1,2-Dichloroethene ND 3.0 0.67 ug/Kg 04/10/18 20:00 04/11/18 03:11 1 cis-1,3-Dichloropropene ND 6.0 1.5 ug/Kg 04/10/18 20:00 04/11/18 03:11 1 Dibromomethane ND 6.0 1.0 ug/Kg 04/10/18 20:00 04/11/18 03:11 1 Dibromomethane ND 6.0 0.26 ug/Kg 04/10/18 20:00 04/11/18 03:11 1									1	
Chloromethane ND 12 0.92 ug/Kg 04/10/18 20:00 04/11/18 03:11 1 cis-1,2-Dichloroethene ND 3.0 0.67 ug/Kg 04/10/18 20:00 04/11/18 03:11 1 cis-1,3-Dichloropropene ND 6.0 1.5 ug/Kg 04/10/18 20:00 04/11/18 03:11 1 Dibromomethane ND 6.0 1.0 ug/Kg 04/10/18 20:00 04/11/18 03:11 1 Dichlorobromomethane ND 6.0 0.26 ug/Kg 04/10/18 20:00 04/11/18 03:11 1									1	
cis-1,2-Dichloroethene ND 3.0 0.67 ug/Kg 04/10/18 20:00 04/11/18 03:11 1 cis-1,3-Dichloropropene ND 6.0 1.5 ug/Kg 04/10/18 20:00 04/11/18 03:11 1 Dibromomethane ND 6.0 1.0 ug/Kg 04/10/18 20:00 04/11/18 03:11 1 Dichlorobromomethane ND 6.0 0.26 ug/Kg 04/10/18 20:00 04/11/18 03:11 1									1	
cis-1,3-Dichloropropene ND 6.0 1.5 ug/Kg 04/10/18 20:00 04/11/18 03:11 1 Dibromomethane ND 6.0 1.0 ug/Kg 04/10/18 20:00 04/11/18 03:11 1 Dichlorobromomethane ND 6.0 0.26 ug/Kg 04/10/18 20:00 04/11/18 03:11 1									1	
Dibromomethane ND 6.0 1.0 ug/Kg 04/10/18 20:00 04/11/18 03:11 1 Dichlorobromomethane ND 6.0 0.26 ug/Kg 04/10/18 20:00 04/11/18 03:11 1										
Dichlorobromomethane ND 6.0 0.26 ug/Kg 04/10/18 20:00 04/11/18 03:11 1										
									1	
Dichlorodifluoromethane ND 12 0.62 ug/Kg 04/10/18 20:00 04/11/18 03:11 1				6.0			04/10/18 20:00	04/11/18 03:11	1	
		Dichlorodifluoromethane	ND	12					1	
Ethylbenzene ND 6.0 0.80 ug/Kg 04/10/18 20:00 04/11/18 03:11 1		-							1	
Hexachlorobutadiene ND 6.0 0.66 ug/Kg 04/10/18 20:00 04/11/18 03:11 1									1	
Isopropylbenzene ND 6.0 0.70 ug/Kg 04/10/18 20:00 04/11/18 03:11 1									1	
Methyl tert-butyl ether ND 24 0.41 ug/Kg 04/10/18 20:00 04/11/18 03:11 1		Methyl tert-butyl ether	ND	24	0.41	ug/Kg	04/10/18 20:00	04/11/18 03:11	1	

TestAmerica Denver

Method: 8260B - Volatile Organic Compounds (GC/MS)

Result Qualifier

ND

ND

ND

ND

Lab Sample ID: 280-107960-6

Matrix: Solid

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Client Sample ID: PCS AC5 Date Collected: 03/29/18 11:55 Data Dessived: 02/20/49 09:50

Date Received: 03/30/18 08:50 Analyte	Pocult	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	5
•		Quaimer					•			J
Methylene Chloride	ND		6.0	1.9	0 0		04/10/18 20:00		1	
m-Xylene & p-Xylene	ND		3.0	1.2	ug/Kg		04/10/18 20:00	04/11/18 03:11	1	
Naphthalene	ND		6.0	0.75	ug/Kg		04/10/18 20:00	04/11/18 03:11	1	
n-Butylbenzene	ND		6.0	0.67	ug/Kg		04/10/18 20:00	04/11/18 03:11	1	
N-Propylbenzene	ND		6.0	0.69	ug/Kg		04/10/18 20:00	04/11/18 03:11	1	
o-Xylene	ND		3.0	0.73	ug/Kg		04/10/18 20:00	04/11/18 03:11	1	8
sec-Butylbenzene	ND		6.0	0.92	ug/Kg		04/10/18 20:00	04/11/18 03:11	1	U
Styrene	ND		6.0	0.75	ug/Kg		04/10/18 20:00	04/11/18 03:11	1	0
tert-Butylbenzene	ND		6.0	0.60	ug/Kg		04/10/18 20:00	04/11/18 03:11	1	3
Tetrachloroethene	ND		6.0	0.70	ug/Kg		04/10/18 20:00	04/11/18 03:11	1	
Toluene	ND		6.0	0.82	ug/Kg		04/10/18 20:00	04/11/18 03:11	1	
trans-1,2-Dichloroethene	ND		3.0	0.46	ug/Kg		04/10/18 20:00	04/11/18 03:11	1	
trans-1,3-Dichloropropene	ND		6.0	0.80	ug/Kg		04/10/18 20:00	04/11/18 03:11	1	
Trichloroethene	ND		6.0	0.27	ug/Kg		04/10/18 20:00	04/11/18 03:11	1	
Trichlorofluoromethane	ND		12	1.2	ug/Kg		04/10/18 20:00	04/11/18 03:11	1	
Vinyl chloride	ND		6.0	1.6	ug/Kg		04/10/18 20:00	04/11/18 03:11	1	
Xylenes, Total	ND		6.0	0.73	ug/Kg		04/10/18 20:00	04/11/18 03:11	1	13
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac	

Surrogate	%Recovery Qu	ualifier Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	83	58 - 140	04/10/18 20:00	04/11/18 03:11	1
4-Bromofluorobenzene (Surr)	101	76 - 127	04/10/18 20:00	04/11/18 03:11	1
Dibromofluoromethane (Surr)	91	75 - 121	04/10/18 20:00	04/11/18 03:11	1
Toluene-d8 (Surr)	94	80 - 126	04/10/18 20:00	04/11/18 03:11	1

Client Sample ID: PCS AC6 Date Collected: 03/29/18 12:00

Date Received: 03/30/18 08:50

Date Received: 03/30/18 08:50									
Analyte	Result Q	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND		5.7	0.64	ug/Kg		04/11/18 19:00	04/12/18 05:03	1
1,1,1-Trichloroethane	ND		5.7	0.59	ug/Kg		04/11/18 19:00	04/12/18 05:03	1
1,1,2,2-Tetrachloroethane	ND		5.7	0.70	ug/Kg		04/11/18 19:00	04/12/18 05:03	1
1,1,2-Trichloroethane	ND		5.7	1.0	ug/Kg		04/11/18 19:00	04/12/18 05:03	1
1,1-Dichloroethane	ND		5.7	0.24	ug/Kg		04/11/18 19:00	04/12/18 05:03	1
1,1-Dichloroethene	ND		5.7	0.67	ug/Kg		04/11/18 19:00	04/12/18 05:03	1
1,1-Dichloropropene	ND		5.7	0.62	ug/Kg		04/11/18 19:00	04/12/18 05:03	1
1,2,3-Trichlorobenzene	ND		5.7	0.85	ug/Kg		04/11/18 19:00	04/12/18 05:03	1
1,2,3-Trichloropropane	ND		5.7	0.92	ug/Kg		04/11/18 19:00	04/12/18 05:03	1
1,2,4-Trichlorobenzene	ND		5.7	0.83	ug/Kg		04/11/18 19:00	04/12/18 05:03	1
1,2,4-Trimethylbenzene	ND		5.7	0.66	ug/Kg		04/11/18 19:00	04/12/18 05:03	1
1,2-Dibromo-3-Chloropropane	ND		11	0.68	ug/Kg		04/11/18 19:00	04/12/18 05:03	1
1,2-Dibromoethane	ND		5.7	0.59	ug/Kg		04/11/18 19:00	04/12/18 05:03	1
1,2-Dichlorobenzene	ND		5.7	0.51	ug/Kg		04/11/18 19:00	04/12/18 05:03	1
1,2-Dichloroethane	ND		5.7	0.80	ug/Kg		04/11/18 19:00	04/12/18 05:03	1
1,2-Dichloroethene, Total	4.6 J		5.7	0.44	ug/Kg		04/11/18 19:00	04/12/18 05:03	1
1,2-Dichloropropane	ND		5.7	0.63	ug/Kg		04/11/18 19:00	04/12/18 05:03	1
1,3,5-Trimethylbenzene	ND		5.7	0.65	ug/Kg		04/11/18 19:00	04/12/18 05:03	1
1,3-Dichlorobenzene	ND		5.7	0.55	ug/Kg		04/11/18 19:00	04/12/18 05:03	1
1,3-Dichloropropane	ND		5.7	0.58	ug/Kg		04/11/18 19:00	04/12/18 05:03	1
1,4-Dichlorobenzene	ND		5.7	0.89	ug/Kg		04/11/18 19:00	04/12/18 05:03	1
2,2-Dichloropropane	ND		5.7	0.50	ug/Kg		04/11/18 19:00	04/12/18 05:03	1

TestAmerica Denver

Lab Sample ID: 280-107960-5

Matrix: Solid

Lab Sample ID: 280-107960-6 Matrix: Solid

Client Sample ID: PCS AC6 Date Collected: 03/29/18 12:00

Date Received: 03/30/18 08:50

Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
2-Butanone (MEK)		JB	23	2.1	ug/Kg			04/12/18 05:03	1
2-Chlorotoluene	ND		5.7		ug/Kg			04/12/18 05:03	1
2-Hexanone	ND		23		ug/Kg			04/12/18 05:03	1
4-Chlorotoluene	ND		5.7	0.89	ug/Kg		04/11/18 19:00	04/12/18 05:03	1
4-Isopropyltoluene	ND		5.7	0.56	ug/Kg		04/11/18 19:00	04/12/18 05:03	1
4-Methyl-2-pentanone (MIBK)	ND		23	5.0	ug/Kg		04/11/18 19:00	04/12/18 05:03	1
Acetone	15	JB	23	6.1	ug/Kg		04/11/18 19:00	04/12/18 05:03	1
Benzene	ND		5.7		ug/Kg		04/11/18 19:00	04/12/18 05:03	1
Bromobenzene	ND		5.7	0.56	ug/Kg		04/11/18 19:00	04/12/18 05:03	1
Bromoform	ND		5.7	0.26	ug/Kg		04/11/18 19:00	04/12/18 05:03	1
Bromomethane	ND		11		ug/Kg		04/11/18 19:00	04/12/18 05:03	1
Carbon tetrachloride	ND		5.7	0.72	ug/Kg		04/11/18 19:00	04/12/18 05:03	1
Chlorobenzene	ND		5.7	0.62	ug/Kg		04/11/18 19:00	04/12/18 05:03	1
Chlorobromomethane	ND		5.7	0.34	ug/Kg		04/11/18 19:00	04/12/18 05:03	1
Chlorodibromomethane	ND		5.7	0.65	ug/Kg		04/11/18 19:00	04/12/18 05:03	1
Chloroethane	ND		11	1.0	ug/Kg		04/11/18 19:00	04/12/18 05:03	1
Chloroform	ND		11	0.33	ug/Kg		04/11/18 19:00	04/12/18 05:03	1
Chloromethane	ND		11	0.88	ug/Kg		04/11/18 19:00	04/12/18 05:03	1
cis-1,2-Dichloroethene	4.6		2.8	0.64	ug/Kg		04/11/18 19:00	04/12/18 05:03	1
cis-1,3-Dichloropropene	ND		5.7	1.5	ug/Kg		04/11/18 19:00	04/12/18 05:03	1
Dibromomethane	ND		5.7	0.96	ug/Kg		04/11/18 19:00	04/12/18 05:03	1
Dichlorobromomethane	ND		5.7	0.25	ug/Kg		04/11/18 19:00	04/12/18 05:03	1
Dichlorodifluoromethane	ND		11	0.59	ug/Kg		04/11/18 19:00	04/12/18 05:03	1
Ethylbenzene	ND		5.7	0.76	ug/Kg		04/11/18 19:00	04/12/18 05:03	1
Hexachlorobutadiene	ND		5.7	0.63	ug/Kg		04/11/18 19:00	04/12/18 05:03	1
Isopropylbenzene	ND		5.7	0.67	ug/Kg		04/11/18 19:00	04/12/18 05:03	1
Methyl tert-butyl ether	ND		23	0.39	ug/Kg		04/11/18 19:00	04/12/18 05:03	1
Methylene Chloride	ND		5.7		ug/Kg		04/11/18 19:00	04/12/18 05:03	1
m-Xylene & p-Xylene	ND		2.8		ug/Kg		04/11/18 19:00	04/12/18 05:03	1
Naphthalene	ND		5.7	0.72	ug/Kg		04/11/18 19:00	04/12/18 05:03	1
n-Butylbenzene	ND		5.7	0.64	ug/Kg		04/11/18 19:00	04/12/18 05:03	1
N-Propylbenzene	ND		5.7		ug/Kg		04/11/18 19:00	04/12/18 05:03	1
o-Xylene	ND		2.8		ug/Kg		04/11/18 19:00	04/12/18 05:03	1
sec-Butylbenzene	ND		5.7		ug/Kg		04/11/18 19:00	04/12/18 05:03	1
Styrene	ND		5.7		ug/Kg		04/11/18 19:00	04/12/18 05:03	1
tert-Butylbenzene	ND		5.7		ug/Kg			04/12/18 05:03	1
Tetrachloroethene	ND		5.7		ug/Kg			04/12/18 05:03	1
Toluene	ND		5.7		ug/Kg			04/12/18 05:03	1
trans-1,2-Dichloroethene	ND		2.8		ug/Kg			04/12/18 05:03	1
trans-1,3-Dichloropropene	ND		5.7		ug/Kg			04/12/18 05:03	1
Trichloroethene	ND		5.7		ug/Kg			04/12/18 05:03	1
Trichlorofluoromethane	ND		11		ug/Kg			04/12/18 05:03	1
Vinyl chloride	ND		5.7		ug/Kg			04/12/18 05:03	1
Xylenes, Total	ND		5.7		ug/Kg			04/12/18 05:03	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	75		58 - 140				-	04/12/18 05:03	1
4-Bromofluorobenzene (Surr)	96		76 - 127					04/12/18 05:03	1
Dibromofluoromethane (Surr)	88		75 - 121					04/12/18 05:03	1
Toluene-d8 (Surr)	90		80 - 126					04/12/18 05:03	

Client Sample Results

RL

5.7

5.7

5.7

Result Qualifier

ND

ND

ND

MDL Unit

0.64 ug/Kg

0.60 ug/Kg

0.70 ug/Kg

Client: Waste Management Project/Site: 3217|Valencia, NM - Soils

Client Sample ID: PCS AC7 Date Collected: 03/29/18 12:05 Date Received: 03/30/18 08:50 Analyte

1,1,1,2-Tetrachloroethane

1,1,2,2-Tetrachloroethane

1,1,1-Trichloroethane

Prepared

D

Lab Sample ID: 280-107960-7 Matrix: Solid

Analyzed

Dil Fac 04/11/18 19:00 04/12/18 05:24 1 04/11/18 19:00 04/12/18 05:24 1 04/11/18 19:00 04/12/18 05:24 1 8

1,1,2,2-1 etrachioroethane	ND	5.7	0.70 ug/Kg	04/11/18 19:00 04/12/18 05:24	1
1,1,2-Trichloroethane	ND	5.7	1.0 ug/Kg	04/11/18 19:00 04/12/18 05:24	1
1,1-Dichloroethane	ND	5.7	0.24 ug/Kg	04/11/18 19:00 04/12/18 05:24	1
1,1-Dichloroethene	ND	5.7	0.68 ug/Kg	04/11/18 19:00 04/12/18 05:24	1
1,1-Dichloropropene	ND	5.7	0.62 ug/Kg	04/11/18 19:00 04/12/18 05:24	1
1,2,3-Trichlorobenzene	ND	5.7	0.86 ug/Kg	04/11/18 19:00 04/12/18 05:24	1
1,2,3-Trichloropropane	ND	5.7	0.93 ug/Kg	04/11/18 19:00 04/12/18 05:24	1
1,2,4-Trichlorobenzene	ND	5.7	0.84 ug/Kg	04/11/18 19:00 04/12/18 05:24	1
1,2,4-Trimethylbenzene	ND	5.7	0.67 ug/Kg	04/11/18 19:00 04/12/18 05:24	1
1,2-Dibromo-3-Chloropropane	ND	11	0.69 ug/Kg	04/11/18 19:00 04/12/18 05:24	1
1,2-Dibromoethane	ND	5.7	0.60 ug/Kg	04/11/18 19:00 04/12/18 05:24	1
1,2-Dichlorobenzene	ND	5.7	0.52 ug/Kg	04/11/18 19:00 04/12/18 05:24	1
1,2-Dichloroethane	ND	5.7	0.80 ug/Kg	04/11/18 19:00 04/12/18 05:24	1
1,2-Dichloroethene, Total	4.1 J	5.7	0.45 ug/Kg	04/11/18 19:00 04/12/18 05:24	1
1,2-Dichloropropane	ND	5.7	0.63 ug/Kg	04/11/18 19:00 04/12/18 05:24	1
1,3,5-Trimethylbenzene	ND	5.7	0.66 ug/Kg	04/11/18 19:00 04/12/18 05:24	1
1,3-Dichlorobenzene	ND	5.7	0.55 ug/Kg	04/11/18 19:00 04/12/18 05:24	1
1,3-Dichloropropane	ND	5.7	0.59 ug/Kg	04/11/18 19:00 04/12/18 05:24	1
1,4-Dichlorobenzene	ND	5.7	0.90 ug/Kg	04/11/18 19:00 04/12/18 05:24	1
2,2-Dichloropropane	ND	5.7	0.51 ug/Kg	04/11/18 19:00 04/12/18 05:24	1
2-Butanone (MEK)	6.0 JB	23	2.1 ug/Kg	04/11/18 19:00 04/12/18 05:24	1
2-Chlorotoluene	ND	5.7	0.59 ug/Kg	04/11/18 19:00 04/12/18 05:24	1
2-Hexanone	ND	23	5.6 ug/Kg	04/11/18 19:00 04/12/18 05:24	1
4-Chlorotoluene	ND	5.7	0.90 ug/Kg	04/11/18 19:00 04/12/18 05:24	1
4-Isopropyltoluene	ND	5.7	0.56 ug/Kg	04/11/18 19:00 04/12/18 05:24	1
4-Methyl-2-pentanone (MIBK)	ND	23	5.0 ug/Kg	04/11/18 19:00 04/12/18 05:24	1
Acetone	12 J B	23	6.2 ug/Kg	04/11/18 19:00 04/12/18 05:24	1
Benzene	ND	5.7	0.54 ug/Kg	04/11/18 19:00 04/12/18 05:24	1
Bromobenzene	ND	5.7	0.56 ug/Kg	04/11/18 19:00 04/12/18 05:24	1
Bromoform	ND	5.7	0.26 ug/Kg	04/11/18 19:00 04/12/18 05:24	1
Bromomethane	ND	11	0.57 ug/Kg	04/11/18 19:00 04/12/18 05:24	1
Carbon tetrachloride	ND	5.7	0.72 ug/Kg	04/11/18 19:00 04/12/18 05:24	1
Chlorobenzene	ND	5.7	0.62 ug/Kg	04/11/18 19:00 04/12/18 05:24	1
Chlorobromomethane	ND	5.7	0.34 ug/Kg	04/11/18 19:00 04/12/18 05:24	1
Chlorodibromomethane	ND	5.7	0.66 ug/Kg	04/11/18 19:00 04/12/18 05:24	1
Chloroethane	ND	11	1.0 ug/Kg	04/11/18 19:00 04/12/18 05:24	1
Chloroform	ND	11	0.33 ug/Kg	04/11/18 19:00 04/12/18 05:24	1
Chloromethane	ND	11	0.89 ug/Kg	04/11/18 19:00 04/12/18 05:24	1
cis-1,2-Dichloroethene	4.1	2.9	0.64 ug/Kg	04/11/18 19:00 04/12/18 05:24	1
cis-1,3-Dichloropropene	ND	5.7	1.5 ug/Kg	04/11/18 19:00 04/12/18 05:24	1
Dibromomethane	ND	5.7	0.97 ug/Kg	04/11/18 19:00 04/12/18 05:24	1
Dichlorobromomethane	ND	5.7	0.25 ug/Kg	04/11/18 19:00 04/12/18 05:24	1
Dichlorodifluoromethane	ND	11	0.60 ug/Kg	04/11/18 19:00 04/12/18 05:24	1
Ethylbenzene	ND	5.7	0.77 ug/Kg	04/11/18 19:00 04/12/18 05:24	1
Hexachlorobutadiene	ND	5.7	0.63 ug/Kg	04/11/18 19:00 04/12/18 05:24	1
Isopropylbenzene	ND	5.7	0.68 ug/Kg	04/11/18 19:00 04/12/18 05:24	1
Methyl tert-butyl ether	ND	23	0.39 ug/Kg	04/11/18 19:00 04/12/18 05:24	1
Methylene Chloride					
	ND	5.7	1.8 ug/Kg	04/11/18 19:00 04/12/18 05:24	1
m-Xylene & p-Xylene	ND ND	5.7 2.9	1.8 ug/Kg 1.2 ug/Kg	04/11/18 19:00 04/12/18 05:24 04/11/18 19:00 04/12/18 05:24	1 1

94

Client Sample ID: PCS AC7 Date Collected: 03/29/18 12:05

Toluene-d8 (Surr)

Lab Sample ID: 280-107960-7 Matrix: Solid

04/11/18 19:00 04/12/18 05:24

Lab Sample ID: 280-107960-8

Date Received: 03/30/18 08:50 Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	5
Naphthalene	ND		5.7	0.72	ug/Kg		04/11/18 19:00	04/12/18 05:24	1	
n-Butylbenzene	ND		5.7	0.64	ug/Kg		04/11/18 19:00	04/12/18 05:24	1	
N-Propylbenzene	ND		5.7	0.67	ug/Kg		04/11/18 19:00	04/12/18 05:24	1	
o-Xylene	ND		2.9	0.70	ug/Kg		04/11/18 19:00	04/12/18 05:24	1	
sec-Butylbenzene	ND		5.7	0.89	ug/Kg		04/11/18 19:00	04/12/18 05:24	1	
Styrene	ND		5.7	0.72	ug/Kg		04/11/18 19:00	04/12/18 05:24	1	8
tert-Butylbenzene	ND		5.7	0.57	ug/Kg		04/11/18 19:00	04/12/18 05:24	1	0
Tetrachloroethene	ND		5.7	0.68	ug/Kg		04/11/18 19:00	04/12/18 05:24	1	0
Toluene	ND		5.7	0.79	ug/Kg		04/11/18 19:00	04/12/18 05:24	1	9
trans-1,2-Dichloroethene	ND		2.9	0.45	ug/Kg		04/11/18 19:00	04/12/18 05:24	1	
trans-1,3-Dichloropropene	ND		5.7	0.77	ug/Kg		04/11/18 19:00	04/12/18 05:24	1	
Trichloroethene	ND		5.7	0.26	ug/Kg		04/11/18 19:00	04/12/18 05:24	1	
Trichlorofluoromethane	ND		11	1.2	ug/Kg		04/11/18 19:00	04/12/18 05:24	1	
Vinyl chloride	ND		5.7	1.5	ug/Kg		04/11/18 19:00	04/12/18 05:24	1	
Xylenes, Total	ND		5.7	0.70	ug/Kg		04/11/18 19:00	04/12/18 05:24	1	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac	1:
1,2-Dichloroethane-d4 (Surr)	77		58 - 140				04/11/18 19:00	04/12/18 05:24	1	
4-Bromofluorobenzene (Surr)	96		76 - 127				04/11/18 19:00	04/12/18 05:24	1	
Dibromofluoromethane (Surr)	90		75_121				04/11/18 19:00	04/12/18 05:24	1	

Client Sample ID: PCS AC8 Date Collected: 03/29/18 12:10 Date Received: 03/30/18 08:50

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND	5.2	0.58	ug/Kg		04/10/18 20:00	04/11/18 04:12	1
1,1,1-Trichloroethane	ND	5.2	0.54	ug/Kg		04/10/18 20:00	04/11/18 04:12	1
1,1,2,2-Tetrachloroethane	ND	5.2	0.63	ug/Kg		04/10/18 20:00	04/11/18 04:12	1
1,1,2-Trichloroethane	ND	5.2	0.92	ug/Kg		04/10/18 20:00	04/11/18 04:12	1
1,1-Dichloroethane	ND	5.2	0.22	ug/Kg		04/10/18 20:00	04/11/18 04:12	1
1,1-Dichloroethene	ND	5.2	0.61	ug/Kg		04/10/18 20:00	04/11/18 04:12	1
1,1-Dichloropropene	ND	5.2	0.56	ug/Kg		04/10/18 20:00	04/11/18 04:12	1
1,2,3-Trichlorobenzene	ND	5.2	0.78	ug/Kg		04/10/18 20:00	04/11/18 04:12	1
1,2,3-Trichloropropane	ND	5.2	0.84	ug/Kg		04/10/18 20:00	04/11/18 04:12	1
1,2,4-Trichlorobenzene	ND	5.2	0.76	ug/Kg		04/10/18 20:00	04/11/18 04:12	1
1,2,4-Trimethylbenzene	ND	5.2	0.60	ug/Kg		04/10/18 20:00	04/11/18 04:12	1
1,2-Dibromo-3-Chloropropane	ND	10	0.62	ug/Kg		04/10/18 20:00	04/11/18 04:12	1
1,2-Dibromoethane	ND	5.2	0.54	ug/Kg		04/10/18 20:00	04/11/18 04:12	1
1,2-Dichlorobenzene	ND	5.2	0.47	ug/Kg		04/10/18 20:00	04/11/18 04:12	1
1,2-Dichloroethane	ND	5.2	0.73	ug/Kg		04/10/18 20:00	04/11/18 04:12	1
1,2-Dichloroethene, Total	ND	5.2	0.41	ug/Kg		04/10/18 20:00	04/11/18 04:12	1
1,2-Dichloropropane	ND	5.2	0.57	ug/Kg		04/10/18 20:00	04/11/18 04:12	1
1,3,5-Trimethylbenzene	ND	5.2	0.59	ug/Kg		04/10/18 20:00	04/11/18 04:12	1
1,3-Dichlorobenzene	ND	5.2	0.50	ug/Kg		04/10/18 20:00	04/11/18 04:12	1
1,3-Dichloropropane	ND	5.2	0.53	ug/Kg		04/10/18 20:00	04/11/18 04:12	1
1,4-Dichlorobenzene	ND	5.2	0.81	ug/Kg		04/10/18 20:00	04/11/18 04:12	1
2,2-Dichloropropane	ND	5.2	0.46	ug/Kg		04/10/18 20:00	04/11/18 04:12	1
2-Butanone (MEK)	9.2 J B	21	1.9	ug/Kg		04/10/18 20:00	04/11/18 04:12	1
2-Chlorotoluene	ND	5.2	0.53	ug/Kg		04/10/18 20:00	04/11/18 04:12	1

80 - 126

TestAmerica Denver

1

Matrix: Solid

Image: Constraint of the second state of th

Client Sample ID: PCS AC8 Date Collected: 03/29/18 12:10

Date Received: 03/30/18 08:50 Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2-Hexanone	ND		21	5.1	ug/Kg		<u> </u>	04/11/18 04:12	1
I-Chlorotoluene	ND		5.2	0.81	ug/Kg			04/11/18 04:12	1
-Isopropyltoluene	ND		5.2	0.51	ug/Kg			04/11/18 04:12	1
-Methyl-2-pentanone (MIBK)	ND		21		ug/Kg			04/11/18 04:12	1
Acetone	18	J	21		ug/Kg			04/11/18 04:12	1
Benzene	ND	•	5.2		ug/Kg			04/11/18 04:12	1
Bromobenzene	ND		5.2	0.51				04/11/18 04:12	1
Bromoform	ND		5.2		ug/Kg			04/11/18 04:12	1
Bromomethane	ND		10		ug/Kg			04/11/18 04:12	1
Carbon tetrachloride	ND		5.2		ug/Kg			04/11/18 04:12	1
Chlorobenzene	ND		5.2		ug/Kg			04/11/18 04:12	1
Chlorobromomethane	ND		5.2	0.31	ug/Kg			04/11/18 04:12	1
Chlorodibromomethane	ND		5.2		ug/Kg			04/11/18 04:12	1
Chloroethane	ND		10		ug/Kg			04/11/18 04:12	1
Chloroform	ND		10		ug/Kg			04/11/18 04:12	1
Chloromethane	ND		10		ug/Kg			04/11/18 04:12	
is-1.2-Dichloroethene	ND		2.6		ug/Kg			04/11/18 04:12	1
is-1,3-Dichloropropene	ND		5.2		ug/Kg			04/11/18 04:12	1
Dibromomethane	ND		5.2		ug/Kg			04/11/18 04:12	
Dichlorobromomethane	ND		5.2		ug/Kg			04/11/18 04:12	1
Vichlorodifluoromethane	ND		10		ug/Kg			04/11/18 04:12	1
thylbenzene	ND		5.2		ug/Kg			04/11/18 04:12	
lexachlorobutadiene	ND		5.2	0.70	ug/Kg			04/11/18 04:12	1
sopropylbenzene	ND		5.2	0.61	ug/Kg			04/11/18 04:12	1
fethyl tert-butyl ether	ND		21		ug/Kg ug/Kg			04/11/18 04:12	· · · · · · · · · 1
fethylene Chloride	ND		5.2	0.35	ug/Kg ug/Kg			04/11/18 04:12	1
n-Xylene & p-Xylene	ND		2.6	1.1	ug/Kg ug/Kg			04/11/18 04:12	1
laphthalene	ND		5.2	0.66	ug/Kg			04/11/18 04:12	1
-Butylbenzene	ND		5.2		ug/Kg ug/Kg			04/11/18 04:12	1
I-Propylbenzene	ND		5.2		ug/Kg ug/Kg			04/11/18 04:12	1
			2.6		ug/Kg ug/Kg			04/11/18 04:12	
-Xylene	ND ND		2.0 5.2						1
ec-Butylbenzene					ug/Kg			04/11/18 04:12	-
Styrene	ND		5.2		ug/Kg			04/11/18 04:12	1
ert-Butylbenzene	ND		5.2		ug/Kg			04/11/18 04:12	1
etrachloroethene	ND		5.2	0.61	ug/Kg			04/11/18 04:12	1
oluene	ND		5.2		ug/Kg			04/11/18 04:12	1
rans-1,2-Dichloroethene	ND		2.6		ug/Kg			04/11/18 04:12	1
rans-1,3-Dichloropropene	ND		5.2		ug/Kg			04/11/18 04:12	1
richloroethene	ND		5.2		ug/Kg			04/11/18 04:12	1
richlorofluoromethane	ND		10	1.1	ug/Kg			04/11/18 04:12	1
/inyl chloride	ND		5.2		ug/Kg			04/11/18 04:12	1
ylenes, Total	ND		5.2	0.63	ug/Kg		04/10/18 20:00	04/11/18 04:12	1
urrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
,2-Dichloroethane-d4 (Surr)	89		58 - 140				04/10/18 20:00	04/11/18 04:12	1
-Bromofluorobenzene (Surr)	106		76 - 127				04/10/18 20:00	04/11/18 04:12	1
Dibromofluoromethane (Surr)	91		75 - 121				04/10/18 20:00	04/11/18 04:12	1
Toluene-d8 (Surr)	93		80 - 126				04/10/18 20:00	04/11/18 04:12	1

Method: 8260B - Volatile Organic Compounds (GC/MS)

Lab Sample ID: 280-107960-9 Matrix: Solid

Client Sample ID: PCS AC9 Date Collected: 03/29/18 12:15 Date Received: 03/30/18 08:50

Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
ND	5.0	0.56	ug/Kg		04/10/18 20:00	04/11/18 04:32	1	
ND	5.0				04/10/18 20:00	04/11/18 04:32	1	
ND	5.0				04/10/18 20:00	04/11/18 04:32	1	
ND	5.0				04/10/18 20:00	04/11/18 04:32	1	
ND	5.0				04/10/18 20:00	04/11/18 04:32	1	
ND	5.0				04/10/18 20:00	04/11/18 04:32	1	
ND	5.0				04/10/18 20:00	04/11/18 04:32	1	
ND	5.0				04/10/18 20:00	04/11/18 04:32	1	
ND	5.0				04/10/18 20:00	04/11/18 04:32	1	
ND	5.0						1	
ND							1	
ND	10						1	
							· · · · · · · · 1	
							1	
							1	
								ļ
							1	
							-	
							-	
							-	
							-	
							-	
							-	
							-	
							-	
							-	
							-	
							-	
							1	
							1	
ND	5.0						1	
ND	5.0						1	
ND	10				04/10/18 20:00	04/11/18 04:32	1	
ND	5.0				04/10/18 20:00	04/11/18 04:32	1	
ND	5.0	0.55	ug/Kg		04/10/18 20:00	04/11/18 04:32	1	
ND	5.0	0.59	ua/Ka		04/10/18 20.00	04/11/18 04:32	1	
	ND ND	ND 5.0 ND 5.0	ND 5.0 0.56 ND 5.0 0.61 ND 5.0 0.88 ND 5.0 0.21 ND 5.0 0.59 ND 5.0 0.54 ND 5.0 0.75 ND 5.0 0.73 ND 5.0 0.52 ND 5.0 0.52 ND 5.0 0.52 ND 5.0 0.52 ND 5.0 0.55 ND 5.0 0.57 ND 5.0 0.57 ND 5.0 0.57 ND 5.0 0.51 ND 5.0 0.51 ND 5.0 0.51 ND 5.0 0.51 ND 5.0 0.51	ND 5.0 0.56 ug/Kg ND 5.0 0.52 ug/Kg ND 5.0 0.61 ug/Kg ND 5.0 0.88 ug/Kg ND 5.0 0.21 ug/Kg ND 5.0 0.59 ug/Kg ND 5.0 0.54 ug/Kg ND 5.0 0.75 ug/Kg ND 5.0 0.73 ug/Kg ND 5.0 0.73 ug/Kg ND 5.0 0.58 ug/Kg ND 5.0 0.58 ug/Kg ND 5.0 0.52 ug/Kg ND 5.0 0.57 ug/Kg ND 5.0 0.57 ug/Kg ND 5.0 0.57 ug/Kg ND 5.0 0.57 ug/Kg ND 5.0 0.51 ug/Kg ND 5.0 0.51 ug/Kg ND 5.0	ND 5.0 0.56 ug/Kg ND 5.0 0.52 ug/Kg ND 5.0 0.61 ug/Kg ND 5.0 0.88 ug/Kg ND 5.0 0.21 ug/Kg ND 5.0 0.54 ug/Kg ND 5.0 0.54 ug/Kg ND 5.0 0.54 ug/Kg ND 5.0 0.55 ug/Kg ND 5.0 0.75 ug/Kg ND 5.0 0.51 ug/Kg ND 5.0 0.52 ug/Kg ND 5.0 0.52 ug/Kg ND 5.0 0.52 ug/Kg ND 5.0 0.51 ug/Kg ND 5.0	ND 5.0 0.56 ug/Kg 04/10/18 20:00 ND 5.0 0.52 ug/Kg 04/10/18 20:00 ND 5.0 0.61 ug/Kg 04/10/18 20:00 ND 5.0 0.88 ug/Kg 04/10/18 20:00 ND 5.0 0.59 ug/Kg 04/10/18 20:00 ND 5.0 0.51 ug/Kg 04/10/18 20:00 ND 5.0 0.51 ug/Kg 04/10/18 20:00 ND 5.0 0.51 ug/Kg 04/10/18 20:00 ND 5.0 0.52 ug/Kg 04/10/18 20:00 ND 5.0 0.55 ug/Kg 04/10/18 20:00 ND 5.0 0.51 ug/Kg 04/10/18 20:00 ND 5.0 0.51 ug/Kg 04/10/18 20:00	ND 5.0 0.56 ug/Kg 04/10/18 20:00 04/11/18 04:32 ND 5.0 0.52 ug/Kg 04/10/18 20:00 04/11/18 04:32 ND 5.0 0.68 ug/Kg 04/10/18 20:00 04/11/18 04:32 ND 5.0 0.58 ug/Kg 04/10/18 20:00 04/11/18 04:32 ND 5.0 0.54 ug/Kg 04/10/18 20:00 04/11/18 04:32 ND 5.0 0.57 ug/Kg 04/10/18 20:00 04/11/18 04:32 ND 5.0 0.57 ug/Kg 04/10/18 20:00 04/11/18 04:32 ND 5.0 0.75 ug/Kg 04/10/18 20:00 04/11/18 04:32 ND 5.0 0.58 ug/Kg 04/10/18 20:00 04/11/18 04:32 ND 5.0 0.52 ug/Kg 04/10/18 20:00 04/11/18 04:32 ND 5.0 0.52 ug/Kg 04/10/18 20:00 04/11/18 04:32 ND 5.0 0.51 ug/Kg 04/10/18 20:00 04/11/18 04:32	ND 5.0 0.56 ug/kg 04/10/18 20:00 04/11/18 04:32 1 ND 5.0 0.52 ug/kg 04/10/18 20:00 04/11/18 04:32 1 ND 5.0 0.61 ug/kg 04/10/18 20:00 04/11/18 04:32 1 ND 5.0 0.21 ug/kg 04/10/18 20:00 04/11/18 04:32 1 ND 5.0 0.59 ug/kg 04/10/18 20:00 04/11/18 04:32 1 ND 5.0 0.54 ug/kg 04/10/18 20:00 04/11/18 04:32 1 ND 5.0 0.75 ug/kg 04/10/18 20:00 04/11/18 04:32 1 ND 5.0 0.73 ug/kg 04/10/18 20:00 04/11/18 04:32 1 ND 5.0 0.58 ug/kg 04/10/18 20:00 04/11/18 04:32 1 ND 5.0 0.52 ug/kg 04/10/18 20:00 04/11/18 04:32 1 ND 5.0 0.55 ug/kg 04/10/18 20:00 04/11/18 04:32

Lab Sample ID: 280-107960-9

Matrix: Solid

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Client Sample ID: PCS AC9 Date Collected: 03/29/18 12:15

Date Received: 03/30/18 08:50	l									
Analyte	Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	5
Methylene Chloride	ND		5.0	1.6	ug/Kg		04/10/18 20:00	04/11/18 04:32	1	
m-Xylene & p-Xylene	ND		2.5	1.0	ug/Kg		04/10/18 20:00	04/11/18 04:32	1	
Naphthalene	ND		5.0	0.63	ug/Kg		04/10/18 20:00	04/11/18 04:32	1	
n-Butylbenzene	ND		5.0	0.56	ug/Kg		04/10/18 20:00	04/11/18 04:32	1	
N-Propylbenzene	ND		5.0	0.58	ug/Kg		04/10/18 20:00	04/11/18 04:32	1	
o-Xylene	ND		2.5	0.61	ug/Kg		04/10/18 20:00	04/11/18 04:32	1	8
sec-Butylbenzene	ND		5.0	0.77	ug/Kg		04/10/18 20:00	04/11/18 04:32	1	0
Styrene	ND		5.0	0.63	ug/Kg		04/10/18 20:00	04/11/18 04:32	1	0
tert-Butylbenzene	ND		5.0	0.50	ug/Kg		04/10/18 20:00	04/11/18 04:32	1	3
Tetrachloroethene	ND		5.0	0.59	ug/Kg		04/10/18 20:00	04/11/18 04:32	1	
Toluene	ND		5.0	0.69	ug/Kg		04/10/18 20:00	04/11/18 04:32	1	
trans-1,2-Dichloroethene	ND		2.5	0.39	ug/Kg		04/10/18 20:00	04/11/18 04:32	1	
trans-1,3-Dichloropropene	ND		5.0	0.67	ug/Kg		04/10/18 20:00	04/11/18 04:32	1	
Trichloroethene	ND		5.0	0.23	ug/Kg		04/10/18 20:00	04/11/18 04:32	1	
Trichlorofluoromethane	ND		10	1.0	ug/Kg		04/10/18 20:00	04/11/18 04:32	1	
Vinyl chloride	ND		5.0	1.3	ug/Kg		04/10/18 20:00	04/11/18 04:32	1	
Xylenes, Total	ND		5.0		ug/Kg		04/10/18 20:00	04/11/18 04:32	1	
Surrogate	%Recovery (Qualifier	Limits				Prepared	Analyzed	Dil Fac	

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	84		58 - 140	04/10/18 20:00	04/11/18 04:32	1
4-Bromofluorobenzene (Surr)	105		76 - 127	04/10/18 20:00	04/11/18 04:32	1
Dibromofluoromethane (Surr)	92		75 - 121	04/10/18 20:00	04/11/18 04:32	1
Toluene-d8 (Surr)	94		80 - 126	04/10/18 20:00	04/11/18 04:32	1

Client Sample ID: PCS AC10 Date Collected: 03/29/18 12:20

Date Received: 03/30/18 08:50

Date Received. 05/50/10 00.50						_			
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND		5.6	0.63	ug/Kg		04/10/18 20:00	04/11/18 04:52	1
1,1,1-Trichloroethane	ND		5.6	0.58	ug/Kg		04/10/18 20:00	04/11/18 04:52	1
1,1,2,2-Tetrachloroethane	ND		5.6	0.68	ug/Kg		04/10/18 20:00	04/11/18 04:52	1
1,1,2-Trichloroethane	ND		5.6	0.99	ug/Kg		04/10/18 20:00	04/11/18 04:52	1
1,1-Dichloroethane	ND		5.6	0.24	ug/Kg		04/10/18 20:00	04/11/18 04:52	1
1,1-Dichloroethene	ND		5.6	0.66	ug/Kg		04/10/18 20:00	04/11/18 04:52	1
1,1-Dichloropropene	ND		5.6	0.61	ug/Kg		04/10/18 20:00	04/11/18 04:52	1
1,2,3-Trichlorobenzene	ND		5.6	0.84	ug/Kg		04/10/18 20:00	04/11/18 04:52	1
1,2,3-Trichloropropane	ND		5.6	0.91	ug/Kg		04/10/18 20:00	04/11/18 04:52	1
1,2,4-Trichlorobenzene	ND		5.6	0.82	ug/Kg		04/10/18 20:00	04/11/18 04:52	1
1,2,4-Trimethylbenzene	ND		5.6	0.65	ug/Kg		04/10/18 20:00	04/11/18 04:52	1
1,2-Dibromo-3-Chloropropane	ND		11	0.67	ug/Kg		04/10/18 20:00	04/11/18 04:52	1
1,2-Dibromoethane	ND		5.6	0.58	ug/Kg		04/10/18 20:00	04/11/18 04:52	1
1,2-Dichlorobenzene	ND		5.6	0.50	ug/Kg		04/10/18 20:00	04/11/18 04:52	1
1,2-Dichloroethane	ND		5.6	0.79	ug/Kg		04/10/18 20:00	04/11/18 04:52	1
1,2-Dichloroethene, Total	ND		5.6	0.44	ug/Kg		04/10/18 20:00	04/11/18 04:52	1
1,2-Dichloropropane	ND		5.6	0.62	ug/Kg		04/10/18 20:00	04/11/18 04:52	1
1,3,5-Trimethylbenzene	ND		5.6	0.64	ug/Kg		04/10/18 20:00	04/11/18 04:52	1
1,3-Dichlorobenzene	ND		5.6	0.54	ug/Kg		04/10/18 20:00	04/11/18 04:52	1
1,3-Dichloropropane	ND		5.6	0.57	ug/Kg		04/10/18 20:00	04/11/18 04:52	1
1,4-Dichlorobenzene	ND		5.6	0.88	ug/Kg		04/10/18 20:00	04/11/18 04:52	1
2,2-Dichloropropane	ND		5.6	0.49	ug/Kg		04/10/18 20:00	04/11/18 04:52	1

TestAmerica Denver

Lab Sample ID: 280-107960-10

Matrix: Solid

2 3 4 5 6 7

3

Lab Sample ID: 280-107960-10 Matrix: Solid

Client Sample ID: PCS AC10
Date Collected: 03/29/18 12:20
Date Received: 03/30/18 08:50

Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
2-Butanone (MEK)	6.1	JB	22	2.1	ug/Kg		04/10/18 20:00	04/11/18 04:52	1
2-Chlorotoluene	ND		5.6	0.57	ug/Kg		04/10/18 20:00	04/11/18 04:52	1
2-Hexanone	ND		22	5.5	ug/Kg		04/10/18 20:00	04/11/18 04:52	1
4-Chlorotoluene	ND		5.6		ug/Kg		04/10/18 20:00	04/11/18 04:52	1
4-Isopropyltoluene	ND		5.6	0.55	ug/Kg		04/10/18 20:00	04/11/18 04:52	1
4-Methyl-2-pentanone (MIBK)	ND		22	4.9	ug/Kg		04/10/18 20:00	04/11/18 04:52	1
Acetone	12	J	22	6.0	ug/Kg		04/10/18 20:00	04/11/18 04:52	1
Benzene	ND		5.6	0.53	ug/Kg		04/10/18 20:00	04/11/18 04:52	1
Bromobenzene	ND		5.6	0.55	ug/Kg		04/10/18 20:00	04/11/18 04:52	1
Bromoform	ND		5.6	0.26	ug/Kg		04/10/18 20:00	04/11/18 04:52	1
Bromomethane	ND		11	0.56	ug/Kg		04/10/18 20:00	04/11/18 04:52	1
Carbon tetrachloride	ND		5.6	0.71	ug/Kg		04/10/18 20:00	04/11/18 04:52	1
Chlorobenzene	ND		5.6	0.61	ug/Kg		04/10/18 20:00	04/11/18 04:52	1
Chlorobromomethane	ND		5.6	0.34	ug/Kg		04/10/18 20:00	04/11/18 04:52	1
Chlorodibromomethane	ND		5.6	0.64	ug/Kg		04/10/18 20:00	04/11/18 04:52	1
Chloroethane	ND		11	1.0	ug/Kg		04/10/18 20:00	04/11/18 04:52	1
Chloroform	ND		11	0.33	ug/Kg		04/10/18 20:00	04/11/18 04:52	1
Chloromethane	ND		11	0.86	ug/Kg		04/10/18 20:00	04/11/18 04:52	1
cis-1,2-Dichloroethene	ND		2.8		ug/Kg		04/10/18 20:00	04/11/18 04:52	1
cis-1,3-Dichloropropene	ND		5.6		ug/Kg		04/10/18 20:00	04/11/18 04:52	1
Dibromomethane	ND		5.6		ug/Kg		04/10/18 20:00	04/11/18 04:52	1
Dichlorobromomethane	ND		5.6		ug/Kg		04/10/18 20:00	04/11/18 04:52	1
Dichlorodifluoromethane	ND		11		ug/Kg			04/11/18 04:52	1
Ethylbenzene	ND		5.6		ug/Kg			04/11/18 04:52	1
Hexachlorobutadiene	ND		5.6		ug/Kg			04/11/18 04:52	1
Isopropylbenzene	ND		5.6		ug/Kg			04/11/18 04:52	1
Methyl tert-butyl ether	ND		22		ug/Kg			04/11/18 04:52	1
Methylene Chloride	ND		5.6	1.8	ug/Kg			04/11/18 04:52	1
m-Xylene & p-Xylene	ND		2.8		ug/Kg			04/11/18 04:52	1
Naphthalene	ND		5.6	0.71				04/11/18 04:52	· · · · · · · · · · · · · · · · · · ·
n-Butylbenzene	ND		5.6		ug/Kg			04/11/18 04:52	1
N-Propylbenzene	ND		5.6		ug/Kg			04/11/18 04:52	1
o-Xylene	ND		2.8		ug/Kg			04/11/18 04:52	· · · · · · · · · · · · · · · · · · ·
sec-Butylbenzene	ND		5.6		ug/Kg			04/11/18 04:52	1
Styrene	ND		5.6	0.71				04/11/18 04:52	1
tert-Butylbenzene	ND		5.6		ug/Kg			04/11/18 04:52	· · · · · · · · · · · · · · · · · · ·
Tetrachloroethene	ND		5.6		ug/Kg			04/11/18 04:52	1
Toluene	ND		5.6		ug/Kg			04/11/18 04:52	1
trans-1,2-Dichloroethene	ND		2.8		ug/Kg ug/Kg			04/11/18 04:52	1
trans-1,3-Dichloropropene	ND		5.6		ug/Kg ug/Kg			04/11/18 04:52	1
Trichloroethene	ND		5.6		ug/Kg ug/Kg			04/11/18 04:52	1
Trichlorofluoromethane	ND		11		ug/Kg ug/Kg			04/11/18 04:52	· · · · · · · · · · · · · · · · · · ·
Vinyl chloride	ND		5.6		ug/Kg ug/Kg			04/11/18 04:52	1
Xylenes, Total	ND		5.6		ug/Kg ug/Kg			04/11/18 04:52	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	83		58 - 140				-	04/11/18 04:52	1
4-Bromofluorobenzene (Surr)	101		76 - 127					04/11/18 04:52	1
Dibromofluoromethane (Surr)	90		75 - 121					04/11/18 04:52	1
Toluene-d8 (Surr)	93		80 - 126					04/11/18 04:52	1

TestAmerica Denver

Client Sample Results

RL

5.6

5.6

5.6

5.6

MDL Unit

0.58 ug/Kg

0.68 ug/Kg

0.98 ug/Kg

ug/Kg

0.62

D

Prepared

Result Qualifier

ND

ND

ND

ND

Client: Waste Management Project/Site: 3217|Valencia, NM - Soils

Client Sample ID: PCS AC11 Date Collected: 03/29/18 12:25 Date Received: 03/30/18 08:50 Analyte

1,1,1,2-Tetrachloroethane

1,1,2,2-Tetrachloroethane

1,1,1-Trichloroethane

1,1,2-Trichloroethane

1,1-Dichloroethane 1,1-Dichloroethene 1,1-Dichloropropene 1,2,3-Trichlorobenzene 1,2,3-Trichloropropane 1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene 1,2-Dibromo-3-Chloropropane

1,2-Dibromoethane 1,2-Dichlorobenzene 1,2-Dichloroethane 1,2-Dichloroethene, Total 1,2-Dichloropropane 1,3,5-Trimethylbenzene 1,3-Dichlorobenzene 1,3-Dichloropropane 1,4-Dichlorobenzene 2,2-Dichloropropane 2-Butanone (MEK) 2-Chlorotoluene 2-Hexanone 4-Chlorotoluene 4-Isopropyltoluene

4-Methyl-2-pentanone (MIBK)

Acetone Benzene Bromobenzene Bromoform Bromomethane Carbon tetrachloride Chlorobenzene Chlorobromomethane Chlorodibromomethane

Chloroethane Chloroform Chloromethane cis-1,2-Dichloroethene cis-1,3-Dichloropropene Dibromomethane

04/12/18 18:38 04/12/18 19:17

04/12/18 18:38 04/12/18 19:17

04/12/18 18:38 04/12/18 19:17

04/12/18 18:38 04/12/18 19:17

Lab Sample ID: 280-107960-11 Matrix: Solid

Analyzed

Dil Fac

1

1

1

				- 3 3		•=	-	
ND		5.6		ug/Kg	04/12/18 18:38	04/12/18 19:17	1	
ND		5.6		ug/Kg	04/12/18 18:38	04/12/18 19:17	1	7
ND		5.6	0.60	ug/Kg	04/12/18 18:38	04/12/18 19:17	1	
ND		5.6	0.84	ug/Kg	04/12/18 18:38	04/12/18 19:17	1	8
ND		5.6	0.90	ug/Kg	04/12/18 18:38	04/12/18 19:17	1	
ND		5.6	0.81	ug/Kg	04/12/18 18:38	04/12/18 19:17	1	9
ND		5.6	0.65	ug/Kg	04/12/18 18:38	04/12/18 19:17	1	
ND		11	0.67	ug/Kg	04/12/18 18:38	04/12/18 19:17	1	10
ND		5.6	0.58	ug/Kg	04/12/18 18:38	04/12/18 19:17	1	
ND		5.6	0.50	ug/Kg	04/12/18 18:38	04/12/18 19:17	1	44
ND		5.6	0.78	ug/Kg	04/12/18 18:38	04/12/18 19:17	1	
ND		5.6	0.43	ug/Kg	04/12/18 18:38	04/12/18 19:17	1	12
ND		5.6	0.61	ug/Kg	04/12/18 18:38	04/12/18 19:17	1	
ND		5.6	0.64	ug/Kg	04/12/18 18:38	04/12/18 19:17	1	40
ND		5.6	0.53	ug/Kg	04/12/18 18:38	04/12/18 19:17	1	13
ND		5.6	0.57	ug/Kg	04/12/18 18:38	04/12/18 19:17	1	
ND		5.6	0.87	ug/Kg	04/12/18 18:38	04/12/18 19:17	1	14
ND		5.6	0.49	ug/Kg	04/12/18 18:38	04/12/18 19:17	1	
9.7	J	22	2.0	ug/Kg	04/12/18 18:38	04/12/18 19:17	1	
ND		5.6	0.57	ug/Kg	04/12/18 18:38	04/12/18 19:17	1	
ND		22	5.5	ug/Kg	04/12/18 18:38	04/12/18 19:17	1	
ND		5.6	0.87	ug/Kg	04/12/18 18:38	04/12/18 19:17	1	
ND		5.6	0.55	ug/Kg	04/12/18 18:38	04/12/18 19:17	1	
ND		22	4.9	ug/Kg	04/12/18 18:38	04/12/18 19:17	1	
29	В	22	6.0	ug/Kg	04/12/18 18:38	04/12/18 19:17	1	
ND		5.6	0.52	ug/Kg	04/12/18 18:38	04/12/18 19:17	1	
ND		5.6	0.55	ug/Kg	04/12/18 18:38	04/12/18 19:17	1	
ND		5.6	0.26	ug/Kg	04/12/18 18:38	04/12/18 19:17	1	
ND		11	0.56	ug/Kg	04/12/18 18:38	04/12/18 19:17	1	
ND		5.6	0.70	ug/Kg	04/12/18 18:38	04/12/18 19:17	1	
ND		5.6	0.60	ug/Kg	04/12/18 18:38	04/12/18 19:17	1	
ND		5.6	0.33	ug/Kg	04/12/18 18:38	04/12/18 19:17	1	
ND		5.6	0.64	ug/Kg	04/12/18 18:38	04/12/18 19:17	1	
ND		11	0.99	ug/Kg	04/12/18 18:38	04/12/18 19:17	1	
ND		11	0.32	ug/Kg	04/12/18 18:38	04/12/18 19:17	1	
ND		11	0.86	ug/Kg	04/12/18 18:38	04/12/18 19:17	1	
ND		2.8	0.62	ug/Kg	04/12/18 18:38	04/12/18 19:17	1	
ND		5.6	1.4	ug/Kg	04/12/18 18:38	04/12/18 19:17	1	
ND		5.6	0.94	ug/Kg	04/12/18 18:38	04/12/18 19:17	1	
ND		5.6		ug/Kg	04/12/18 18:38	04/12/18 19:17	1	
ND		11	0.58	ug/Kg	04/12/18 18:38	04/12/18 19:17	1	
ND		5.6	0.75	μα/Κα	04/12/18 18:38	04/12/18 19.17	1	

Dichlorobromomethane Dichlorodifluoromethane Ethylbenzene ND 5.6 0.75 ug/Kg 04/12/18 18:38 04/12/18 19:17 1 Hexachlorobutadiene ND 5.6 0.61 ug/Kg 04/12/18 18:38 04/12/18 19:17 1 Isopropylbenzene ND 5.6 0.66 ug/Kg 04/12/18 18:38 04/12/18 19:17 1 22 Methyl tert-butyl ether ND 0.38 ug/Kg 04/12/18 18:38 04/12/18 19:17 1 **Methylene Chloride** 1.8 J 5.6 1.8 ug/Kg 04/12/18 18:38 04/12/18 19:17 1 m-Xylene & p-Xylene ND 2.8 1.2 ug/Kg 04/12/18 18:38 04/12/18 19:17 1

Lab Sample ID: 280-107960-11

04/12/18 18:38 04/12/18 19:17

04/12/18 18:38 04/12/18 19:17

Lab Sample ID: 280-107960-12

Matrix: Solid

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

94

98

Client Sample ID: PCS AC11 Date Collected: 03/29/18 12:25

Date Received: 03/30/18 08:50										-
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Naphthalene	ND		5.6	0.70	ug/Kg		04/12/18 18:38	04/12/18 19:17	1	2
n-Butylbenzene	ND		5.6	0.62	ug/Kg		04/12/18 18:38	04/12/18 19:17	1	
N-Propylbenzene	ND		5.6	0.65	ug/Kg		04/12/18 18:38	04/12/18 19:17	1	
o-Xylene	ND		2.8	0.68	ug/Kg		04/12/18 18:38	04/12/18 19:17	1	
sec-Butylbenzene	ND		5.6	0.86	ug/Kg		04/12/18 18:38	04/12/18 19:17	1	
Styrene	ND		5.6	0.70	ug/Kg		04/12/18 18:38	04/12/18 19:17	1	
tert-Butylbenzene	ND		5.6	0.56	ug/Kg		04/12/18 18:38	04/12/18 19:17	1	
Tetrachloroethene	ND		5.6	0.66	ug/Kg		04/12/18 18:38	04/12/18 19:17	1	
Toluene	ND		5.6	0.77	ug/Kg		04/12/18 18:38	04/12/18 19:17	1	
trans-1,2-Dichloroethene	ND		2.8	0.43	ug/Kg		04/12/18 18:38	04/12/18 19:17	1	
trans-1,3-Dichloropropene	ND		5.6	0.75	ug/Kg		04/12/18 18:38	04/12/18 19:17	1	
Trichloroethene	ND		5.6	0.26	ug/Kg		04/12/18 18:38	04/12/18 19:17	1	
Trichlorofluoromethane	ND		11	1.2	ug/Kg		04/12/18 18:38	04/12/18 19:17	1	
Vinyl chloride	ND		5.6	1.5	ug/Kg		04/12/18 18:38	04/12/18 19:17	1	
Xylenes, Total	ND		5.6	0.68	ug/Kg		04/12/18 18:38	04/12/18 19:17	1	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac	
1,2-Dichloroethane-d4 (Surr)	81		58 - 140				04/12/18 18:38	04/12/18 19:17	1	
4-Bromofluorobenzene (Surr)	100		76 - 127				04/12/18 18:38	04/12/18 19:17	1	

75 - 121

80 - 126

Client Sample ID: PCS AC12						
Date Collected: 03/29/18 12:30						
Date Received: 03/30/18 08:50						

Dibromofluoromethane (Surr)

Toluene-d8 (Surr)

Analyte	Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND		5.6	0.63	ug/Kg		04/12/18 18:38	04/12/18 19:38	1
1,1,1-Trichloroethane	ND		5.6	0.58	ug/Kg		04/12/18 18:38	04/12/18 19:38	1
1,1,2,2-Tetrachloroethane	ND		5.6	0.68	ug/Kg		04/12/18 18:38	04/12/18 19:38	1
1,1,2-Trichloroethane	ND		5.6	0.99	ug/Kg		04/12/18 18:38	04/12/18 19:38	1
1,1-Dichloroethane	ND		5.6	0.24	ug/Kg		04/12/18 18:38	04/12/18 19:38	1
1,1-Dichloroethene	ND		5.6	0.66	ug/Kg		04/12/18 18:38	04/12/18 19:38	1
1,1-Dichloropropene	ND		5.6	0.61	ug/Kg		04/12/18 18:38	04/12/18 19:38	1
1,2,3-Trichlorobenzene	ND		5.6	0.84	ug/Kg		04/12/18 18:38	04/12/18 19:38	1
1,2,3-Trichloropropane	ND		5.6	0.91	ug/Kg		04/12/18 18:38	04/12/18 19:38	1
1,2,4-Trichlorobenzene	ND		5.6	0.82	ug/Kg		04/12/18 18:38	04/12/18 19:38	1
1,2,4-Trimethylbenzene	ND		5.6	0.65	ug/Kg		04/12/18 18:38	04/12/18 19:38	1
1,2-Dibromo-3-Chloropropane	ND		11	0.67	ug/Kg		04/12/18 18:38	04/12/18 19:38	1
1,2-Dibromoethane	ND		5.6	0.58	ug/Kg		04/12/18 18:38	04/12/18 19:38	1
1,2-Dichlorobenzene	ND		5.6	0.50	ug/Kg		04/12/18 18:38	04/12/18 19:38	1
1,2-Dichloroethane	ND		5.6	0.79	ug/Kg		04/12/18 18:38	04/12/18 19:38	1
1,2-Dichloroethene, Total	ND		5.6	0.44	ug/Kg		04/12/18 18:38	04/12/18 19:38	1
1,2-Dichloropropane	ND		5.6	0.62	ug/Kg		04/12/18 18:38	04/12/18 19:38	1
1,3,5-Trimethylbenzene	ND		5.6	0.64	ug/Kg		04/12/18 18:38	04/12/18 19:38	1
1,3-Dichlorobenzene	ND		5.6	0.54	ug/Kg		04/12/18 18:38	04/12/18 19:38	1
1,3-Dichloropropane	ND		5.6	0.57	ug/Kg		04/12/18 18:38	04/12/18 19:38	1
1,4-Dichlorobenzene	ND		5.6	0.88	ug/Kg		04/12/18 18:38	04/12/18 19:38	1
2,2-Dichloropropane	ND		5.6	0.49	ug/Kg		04/12/18 18:38	04/12/18 19:38	1
2-Butanone (MEK)	3.8	J	22	2.1	ug/Kg		04/12/18 18:38	04/12/18 19:38	1
2-Chlorotoluene	ND		5.6	0.57	ug/Kg		04/12/18 18:38	04/12/18 19:38	1

TestAmerica Denver

9 10 11

1

1

Matrix: Solid

8

Lab Sample ID: 280-107960-12 Matrix: Solid

Client Sample ID: PCS AC12 Date Collected: 03/29/18 12:30

Date Received: 03/30/18 08:50									x. Soliu
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2-Hexanone	ND		22		ug/Kg	— –		04/12/18 19:38	1
4-Chlorotoluene	ND		5.6		ug/Kg			04/12/18 19:38	1
4-Isopropyltoluene	ND		5.6		ug/Kg		04/12/18 18:38	04/12/18 19:38	1
4-Methyl-2-pentanone (MIBK)	ND		22		ug/Kg			04/12/18 19:38	1
Acetone		JB	22		ug/Kg			04/12/18 19:38	1
Benzene	ND		5.6		ug/Kg			04/12/18 19:38	1
Bromobenzene	ND		5.6		ug/Kg			04/12/18 19:38	1
Bromoform	ND		5.6		ug/Kg			04/12/18 19:38	1
Bromomethane	ND		11		ug/Kg			04/12/18 19:38	1
Carbon tetrachloride	ND		5.6		ug/Kg			04/12/18 19:38	1
Chlorobenzene	ND		5.6		ug/Kg			04/12/18 19:38	1
Chlorobromomethane	ND		5.6		ug/Kg			04/12/18 19:38	1
Chlorodibromomethane	ND		5.6		ug/Kg			04/12/18 19:38	1
Chloroethane	ND		11		ug/Kg			04/12/18 19:38	1
Chloroform	ND		11		ug/Kg			04/12/18 19:38	1
Chloromethane	ND		····· 11		ug/Kg			04/12/18 19:38	1
cis-1,2-Dichloroethene	ND		2.8		ug/Kg ug/Kg			04/12/18 19:38	1
cis-1,2-Dichloropropene	ND		5.6		ug/Kg ug/Kg			04/12/18 19:38	1
Dibromomethane	ND		5.6		ug/Kg ug/Kg			04/12/18 19:38	1
Dichlorobromomethane	ND		5.6		ug/Kg ug/Kg			04/12/18 19:38	1
Dichlorodifluoromethane	ND		5.6 11		ug/Kg ug/Kg			04/12/18 19:38	1
Ethylbenzene	ND ND		5.6		ug/Kg ug/Kg			04/12/18 19:38	1
Hexachlorobutadiene	ND		5.6		ug/Kg ug/Kg			04/12/18 19:38	1
Isopropylbenzene	ND		5.6		ug/Kg i ug/Kg			04/12/18 19:38	1
Methyl tert-butyl ether	ND ND		5.0 22		ug/Kg ug/Kg			04/12/18 19:38	1
Methylene Chloride	ND		5.6					04/12/18 19:38	1
methylene & p-Xylene	ND ND		5.6 2.8		ug/Kg ug/Kg			04/12/18 19:38	1
m-xylene & p-xylene Naphthalene	DN ND		2.8 5.6					04/12/18 19:38	1
Naphthalene n-Butylbenzene	ND ND		5.6 5.6		ug/Kg			04/12/18 19:38	1
•	ND ND		5.6 5.6		ug/Kg				1
N-Propylbenzene					ug/Kg			04/12/18 19:38	
o-Xylene	ND		2.8		ug/Kg			04/12/18 19:38	1
sec-Butylbenzene	ND		5.6		i ug/Kg			04/12/18 19:38	1
Styrene	ND		5.6	0.71				04/12/18 19:38	1
tert-Butylbenzene	ND		5.6		ug/Kg			04/12/18 19:38	1
Tetrachloroethene	ND		5.6		ug/Kg			04/12/18 19:38	1
Toluene	ND		5.6		ug/Kg			04/12/18 19:38	1
trans-1,2-Dichloroethene	ND		2.8		ug/Kg			04/12/18 19:38	1
trans-1,3-Dichloropropene	ND		5.6		ug/Kg			04/12/18 19:38	1
	ND		5.6		ug/Kg			04/12/18 19:38	1
Trichlorofluoromethane	ND		11		ug/Kg			04/12/18 19:38	1
Vinyl chloride	ND		5.6		ug/Kg			04/12/18 19:38	1
Xylenes, Total	ND		5.6	0.68	ug/Kg		04/12/18 18:38	04/12/18 19:38	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	76		58 - 140				04/12/18 18:38	04/12/18 19:38	1
4-Bromofluorobenzene (Surr)	97		76 - 127				04/12/18 18:38	04/12/18 19:38	1
Dibromofluoromethane (Surr)	88		75 - 121					04/12/18 19:38	
Toluene-d8 (Surr)	94		80 - 126					04/12/18 19:38	

RL

5.2

5.2

MDL Unit

0.58 ug/Kg

0.54 ug/Kg

D

Prepared

Lab Sample ID: 280-107960-13

04/12/18 18:38 04/12/18 19:58

04/12/18 18:38 04/12/18 19:58

Analyzed

Matrix: Solid

Dil Fac

1

1

8

I, I, I- I I CHIOI Delliane	ND	5.2	0.54 ug/kg	04/12/10 10.30 04/12/10 19.30 1
1,1,2,2-Tetrachloroethane	ND	5.2	0.63 ug/Kg	04/12/18 18:38 04/12/18 19:58 1
1,1,2-Trichloroethane	ND	5.2	0.91 ug/Kg	04/12/18 18:38 04/12/18 19:58 1
1,1-Dichloroethane	ND	5.2	0.22 ug/Kg	04/12/18 18:38 04/12/18 19:58 1
1,1-Dichloroethene	ND	5.2	0.61 ug/Kg	04/12/18 18:38 04/12/18 19:58 1
1,1-Dichloropropene	ND	5.2	0.56 ug/Kg	04/12/18 18:38 04/12/18 19:58 1
1,2,3-Trichlorobenzene	ND	5.2	0.78 ug/Kg	04/12/18 18:38 04/12/18 19:58 1
1,2,3-Trichloropropane	ND	5.2	0.84 ug/Kg	04/12/18 18:38 04/12/18 19:58 1
1,2,4-Trichlorobenzene	ND	5.2	0.76 ug/Kg	04/12/18 18:38 04/12/18 19:58 1
1,2,4-Trimethylbenzene	ND	5.2	0.60 ug/Kg	04/12/18 18:38 04/12/18 19:58 1
1,2-Dibromo-3-Chloropropane	ND	10	0.62 ug/Kg	04/12/18 18:38 04/12/18 19:58 1
1,2-Dibromoethane	ND	5.2	0.54 ug/Kg	04/12/18 18:38 04/12/18 19:58 1
1,2-Dichlorobenzene	ND	5.2	0.47 ug/Kg	04/12/18 18:38 04/12/18 19:58 1
1,2-Dichloroethane	ND	5.2	0.73 ug/Kg	04/12/18 18:38 04/12/18 19:58 1
1,2-Dichloroethene, Total	ND	5.2	0.40 ug/Kg	04/12/18 18:38 04/12/18 19:58 1
1,2-Dichloropropane	ND	5.2	0.57 ug/Kg	04/12/18 18:38 04/12/18 19:58 1
1,3,5-Trimethylbenzene	ND	5.2	0.59 ug/Kg	04/12/18 18:38 04/12/18 19:58 1
1,3-Dichlorobenzene	ND	5.2	0.50 ug/Kg	04/12/18 18:38 04/12/18 19:58 1
1,3-Dichloropropane	ND	5.2	0.53 ug/Kg	04/12/18 18:38 04/12/18 19:58 1
1,4-Dichlorobenzene	ND	5.2	0.81 ug/Kg	04/12/18 18:38 04/12/18 19:58 1
2,2-Dichloropropane	ND	5.2	0.46 ug/Kg	04/12/18 18:38 04/12/18 19:58 1
2-Butanone (MEK)	1.9 J	21	1.9 ug/Kg	04/12/18 18:38 04/12/18 19:58 1
2-Chlorotoluene	ND	5.2	0.53 ug/Kg	04/12/18 18:38 04/12/18 19:58 1
2-Hexanone	ND	21	5.1 ug/Kg	04/12/18 18:38 04/12/18 19:58 1
4-Chlorotoluene	ND	5.2	0.81 ug/Kg	04/12/18 18:38 04/12/18 19:58 1
4-Isopropyltoluene	ND	5.2	0.51 ug/Kg	04/12/18 18:38 04/12/18 19:58 1
4-Methyl-2-pentanone (MIBK)	ND	21	4.5 ug/Kg	04/12/18 18:38 04/12/18 19:58 1
Acetone	6.0 JB	21	5.6 ug/Kg	04/12/18 18:38 04/12/18 19:58 1
Benzene	ND	5.2	0.49 ug/Kg	04/12/18 18:38 04/12/18 19:58 1
Bromobenzene	ND	5.2	0.51 ug/Kg	04/12/18 18:38 04/12/18 19:58 1
Bromoform	ND	5.2	0.24 ug/Kg	04/12/18 18:38 04/12/18 19:58 1
Bromomethane	ND	10	0.52 ug/Kg	04/12/18 18:38 04/12/18 19:58 1
Carbon tetrachloride	ND	5.2	0.65 ug/Kg	04/12/18 18:38 04/12/18 19:58 1
Chlorobenzene	ND	5.2	0.56 ug/Kg	04/12/18 18:38 04/12/18 19:58 1
Chlorobromomethane	ND	5.2	0.31 ug/Kg	04/12/18 18:38 04/12/18 19:58 1
Chlorodibromomethane	ND	5.2	0.59 ug/Kg	04/12/18 18:38 04/12/18 19:58 1
Chloroethane	ND	10	0.92 ug/Kg	04/12/18 18:38 04/12/18 19:58 1
Chloroform	ND	10	0.30 ug/Kg	04/12/18 18:38 04/12/18 19:58 1
Chloromethane	ND	10	0.80 ug/Kg	04/12/18 18:38 04/12/18 19:58 1
cis-1,2-Dichloroethene	ND	2.6	0.58 ug/Kg	04/12/18 18:38 04/12/18 19:58 1
cis-1,3-Dichloropropene	ND	5.2	1.3 ug/Kg	04/12/18 18:38 04/12/18 19:58 1
Dibromomethane	ND	5.2	0.87 ug/Kg	04/12/18 18:38 04/12/18 19:58 1
Dichlorobromomethane	ND	5.2	0.23 ug/Kg	04/12/18 18:38 04/12/18 19:58 1
Dichlorodifluoromethane	ND	10	0.54 ug/Kg	04/12/18 18:38 04/12/18 19:58 1
Ethylbenzene	ND	5.2	0.69 ug/Kg	04/12/18 18:38 04/12/18 19:58 1
Hexachlorobutadiene	ND	5.2	0.57 ug/Kg	04/12/18 18:38 04/12/18 19:58 1
Isopropylbenzene	ND	5.2	0.61 ug/Kg	04/12/18 18:38 04/12/18 19:58 1
Methyl tert-butyl ether	ND	21	0.35 ug/Kg	04/12/18 18:38 04/12/18 19:58 1
1				

TestAmerica Denver

Method: 8260B - Volatile Organic Compounds (GC/MS)

Result Qualifier

ND

ND

Client Sample ID: PCS AC13 Date Collected: 03/29/18 12:36 Date Received: 03/30/18 08:50

1,1,1,2-Tetrachloroethane

1,1,1-Trichloroethane

Analyte

Lab Sample ID: 280-107960-13

Lab Sample ID: 280-107960-14

Matrix: Solid

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Client Sample ID: PCS AC13 Date Collected: 03/29/18 12:36

Date Received: 03/30/18 08:50									
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	5
Methylene Chloride	ND	5.2	1.7	ug/Kg		04/12/18 18:38	04/12/18 19:58	1	
m-Xylene & p-Xylene	ND	2.6	1.1	ug/Kg		04/12/18 18:38	04/12/18 19:58	1	
Naphthalene	ND	5.2	0.65	ug/Kg		04/12/18 18:38	04/12/18 19:58	1	
n-Butylbenzene	ND	5.2	0.58	ug/Kg		04/12/18 18:38	04/12/18 19:58	1	
N-Propylbenzene	ND	5.2	0.60	ug/Kg		04/12/18 18:38	04/12/18 19:58	1	
o-Xylene	ND	2.6	0.63	ug/Kg		04/12/18 18:38	04/12/18 19:58	1	8
sec-Butylbenzene	ND	5.2	0.80	ug/Kg		04/12/18 18:38	04/12/18 19:58	1	0
Styrene	ND	5.2	0.65	ug/Kg		04/12/18 18:38	04/12/18 19:58	1	0
tert-Butylbenzene	ND	5.2	0.52	ug/Kg		04/12/18 18:38	04/12/18 19:58	1	3
Tetrachloroethene	ND	5.2	0.61	ug/Kg		04/12/18 18:38	04/12/18 19:58	1	
Toluene	ND	5.2	0.72	ug/Kg		04/12/18 18:38	04/12/18 19:58	1	
trans-1,2-Dichloroethene	ND	2.6	0.40	ug/Kg		04/12/18 18:38	04/12/18 19:58	1	
trans-1,3-Dichloropropene	ND	5.2	0.69	ug/Kg		04/12/18 18:38	04/12/18 19:58	1	
Trichloroethene	ND	5.2	0.24	ug/Kg		04/12/18 18:38	04/12/18 19:58	1	
Trichlorofluoromethane	ND	10	1.1	ug/Kg		04/12/18 18:38	04/12/18 19:58	1	
Vinyl chloride	ND	5.2	1.4	ug/Kg		04/12/18 18:38	04/12/18 19:58	1	
Xylenes, Total	ND	5.2	0.63	ug/Kg		04/12/18 18:38	04/12/18 19:58	1	13
Surrogate	%Recovery Qualifier	Limits				Prepared	Analyzed	Dil Fac	

Surrogate	%Recovery Qualifie	er Limits	Prepared Analyz	zed Dil Fac
1,2-Dichloroethane-d4 (Surr)	81	58 - 140	04/12/18 18:38 04/12/18	19:58 1
4-Bromofluorobenzene (Surr)	95	76 - 127	04/12/18 18:38 04/12/18	19:58 1
Dibromofluoromethane (Surr)	92	75 - 121	04/12/18 18:38 04/12/18	19:58 1
Toluene-d8 (Surr)	92	80 - 126	04/12/18 18:38 04/12/18	19:58 1

Client Sample ID: PCS AC14 Date Collected: 03/29/18 12:41

Date Received: 03/30/18 08:50

Date Received: 03/30/18 08:50									
Analyte	Result Q	ualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND		5.6	0.63	ug/Kg		04/12/18 18:38	04/12/18 20:59	1
1,1,1-Trichloroethane	ND		5.6	0.59	ug/Kg		04/12/18 18:38	04/12/18 20:59	1
1,1,2,2-Tetrachloroethane	ND		5.6	0.69	ug/Kg		04/12/18 18:38	04/12/18 20:59	1
1,1,2-Trichloroethane	ND		5.6	0.99	ug/Kg		04/12/18 18:38	04/12/18 20:59	1
1,1-Dichloroethane	ND		5.6	0.24	ug/Kg		04/12/18 18:38	04/12/18 20:59	1
1,1-Dichloroethene	ND		5.6	0.67	ug/Kg		04/12/18 18:38	04/12/18 20:59	1
1,1-Dichloropropene	ND		5.6	0.61	ug/Kg		04/12/18 18:38	04/12/18 20:59	1
1,2,3-Trichlorobenzene	ND		5.6	0.85	ug/Kg		04/12/18 18:38	04/12/18 20:59	1
1,2,3-Trichloropropane	ND		5.6	0.91	ug/Kg		04/12/18 18:38	04/12/18 20:59	1
1,2,4-Trichlorobenzene	ND		5.6	0.82	ug/Kg		04/12/18 18:38	04/12/18 20:59	1
1,2,4-Trimethylbenzene	ND		5.6	0.65	ug/Kg		04/12/18 18:38	04/12/18 20:59	1
1,2-Dibromo-3-Chloropropane	ND		11	0.68	ug/Kg		04/12/18 18:38	04/12/18 20:59	1
1,2-Dibromoethane	ND		5.6	0.59	ug/Kg		04/12/18 18:38	04/12/18 20:59	1
1,2-Dichlorobenzene	ND		5.6	0.51	ug/Kg		04/12/18 18:38	04/12/18 20:59	1
1,2-Dichloroethane	ND		5.6	0.79	ug/Kg		04/12/18 18:38	04/12/18 20:59	1
1,2-Dichloroethene, Total	ND		5.6	0.44	ug/Kg		04/12/18 18:38	04/12/18 20:59	1
1,2-Dichloropropane	ND		5.6	0.62	ug/Kg		04/12/18 18:38	04/12/18 20:59	1
1,3,5-Trimethylbenzene	ND		5.6	0.64	ug/Kg		04/12/18 18:38	04/12/18 20:59	1
1,3-Dichlorobenzene	ND		5.6	0.54	ug/Kg		04/12/18 18:38	04/12/18 20:59	1
1,3-Dichloropropane	ND		5.6	0.57	ug/Kg		04/12/18 18:38	04/12/18 20:59	1
1,4-Dichlorobenzene	ND		5.6	0.88	ug/Kg		04/12/18 18:38	04/12/18 20:59	1
2,2-Dichloropropane	ND		5.6	0.50	ug/Kg		04/12/18 18:38	04/12/18 20:59	1

TestAmerica Denver

Matrix: Solid

Date Collected: 03/29/18 12:41

Date Received: 03/30/18 08:50

Analyte

Lab Sample ID: 280-107960-14

Analyzed

Prepared

D

Matrix: Solid

Dil Fac

5

Analyte	Result	Quaimer	RL	NUDL	Unit	U	Frepareu	Allalyzeu	DIIFac	
2-Butanone (MEK)	6.7	J	23	2.1	ug/Kg		04/12/18 18:38	04/12/18 20:59	1	
2-Chlorotoluene	ND		5.6	0.57	ug/Kg		04/12/18 18:38	04/12/18 20:59	1	6
2-Hexanone	ND		23	5.5	ug/Kg		04/12/18 18:38	04/12/18 20:59	1	
4-Chlorotoluene	ND		5.6	0.88	ug/Kg		04/12/18 18:38	04/12/18 20:59	1	7
4-Isopropyltoluene	ND		5.6	0.55	ug/Kg		04/12/18 18:38	04/12/18 20:59	1	
4-Methyl-2-pentanone (MIBK)	ND		23	4.9	ug/Kg		04/12/18 18:38	04/12/18 20:59	1	8
Acetone	19	JB	23	6.1	ug/Kg		04/12/18 18:38	04/12/18 20:59	1	
Benzene	ND		5.6	0.53	ug/Kg		04/12/18 18:38	04/12/18 20:59	1	0
Bromobenzene	ND		5.6	0.55	ug/Kg		04/12/18 18:38	04/12/18 20:59	1	3
Bromoform	ND		5.6	0.26	ug/Kg		04/12/18 18:38	04/12/18 20:59	1	10
Bromomethane	ND		11	0.56	ug/Kg		04/12/18 18:38	04/12/18 20:59	1	
Carbon tetrachloride	ND		5.6	0.71	ug/Kg		04/12/18 18:38	04/12/18 20:59	1	4.4
Chlorobenzene	ND		5.6	0.61	ug/Kg		04/12/18 18:38	04/12/18 20:59	1	11
Chlorobromomethane	ND		5.6	0.34	ug/Kg		04/12/18 18:38	04/12/18 20:59	1	10
Chlorodibromomethane	ND		5.6	0.64	ug/Kg		04/12/18 18:38	04/12/18 20:59	1	12
Chloroethane	ND		11	1.0	ug/Kg		04/12/18 18:38	04/12/18 20:59	1	
Chloroform	ND		11	0.33	ug/Kg		04/12/18 18:38	04/12/18 20:59	1	13
Chloromethane	ND		11	0.87	ug/Kg		04/12/18 18:38	04/12/18 20:59	1	
cis-1,2-Dichloroethene	ND		2.8	0.63	ug/Kg		04/12/18 18:38	04/12/18 20:59	1	14
cis-1,3-Dichloropropene	ND		5.6	1.5	ug/Kg		04/12/18 18:38	04/12/18 20:59	1	
Dibromomethane	ND		5.6	0.95	ug/Kg		04/12/18 18:38	04/12/18 20:59	1	
Dichlorobromomethane	ND		5.6	0.25	ug/Kg		04/12/18 18:38	04/12/18 20:59	1	
Dichlorodifluoromethane	ND		11		ug/Kg		04/12/18 18:38	04/12/18 20:59	1	
Ethylbenzene	ND		5.6		ug/Kg		04/12/18 18:38	04/12/18 20:59	1	
Hexachlorobutadiene	ND		5.6	0.62	ug/Kg		04/12/18 18:38	04/12/18 20:59	1	
Isopropylbenzene	ND		5.6		ug/Kg		04/12/18 18:38	04/12/18 20:59	1	
Methyl tert-butyl ether	ND		23	0.38	ug/Kg		04/12/18 18:38	04/12/18 20:59	1	
Methylene Chloride	ND		5.6	1.8	ug/Kg		04/12/18 18:38	04/12/18 20:59	1	
m-Xylene & p-Xylene	ND		2.8	1.2	ug/Kg		04/12/18 18:38	04/12/18 20:59	1	
Naphthalene	ND		5.6	0.71	ug/Kg		04/12/18 18:38	04/12/18 20:59	1	
n-Butylbenzene	ND		5.6		ug/Kg		04/12/18 18:38	04/12/18 20:59	1	
N-Propylbenzene	ND		5.6	0.65	ug/Kg		04/12/18 18:38	04/12/18 20:59	1	
o-Xylene	ND		2.8	0.69	ug/Kg			04/12/18 20:59	1	
sec-Butylbenzene	ND		5.6	0.87	ug/Kg			04/12/18 20:59	1	
Styrene	ND		5.6	0.71	ug/Kg		04/12/18 18:38	04/12/18 20:59	1	
tert-Butylbenzene	ND		5.6		ug/Kg			04/12/18 20:59	1	
Tetrachloroethene	ND		5.6		ug/Kg		04/12/18 18:38	04/12/18 20:59	1	
Toluene	ND		5.6	0.78	ug/Kg		04/12/18 18:38	04/12/18 20:59	1	
trans-1,2-Dichloroethene	ND		2.8		ug/Kg		04/12/18 18:38	04/12/18 20:59	1	
trans-1,3-Dichloropropene	ND		5.6		ug/Kg			04/12/18 20:59	1	
Trichloroethene	ND		5.6		ug/Kg			04/12/18 20:59	1	
Trichlorofluoromethane	ND		11		ug/Kg			04/12/18 20:59	1	
Vinyl chloride	ND		5.6		ug/Kg			04/12/18 20:59	1	
Xylenes, Total	ND		5.6	0.69	ug/Kg		04/12/18 18:38	04/12/18 20:59	1	

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	78		58 - 140	04/12/18 18:38	04/12/18 20:59	1
4-Bromofluorobenzene (Surr)	99		76 - 127	04/12/18 18:38	04/12/18 20:59	1
Dibromofluoromethane (Surr)	90		75 - 121	04/12/18 18:38	04/12/18 20:59	1
Toluene-d8 (Surr)	94		80 - 126	04/12/18 18:38	04/12/18 20:59	1

TestAmerica Denver

RL

Result Qualifier

MDL Unit

Client Sample Results

Client: Waste Management Project/Site: 3217|Valencia, NM - Soils

Client Sample ID: PCS AC15 Date Collected: 03/29/18 12:46 Date Received: 03/30/18 08:50 Analyte

1,1,1,2-Tetrachloroethane1,1,1-Trichloroethane1,1,2,2-Tetrachloroethane1,1,2-Trichloroethane1,1-Dichloroethane1,1-Dichloroethane1,1-Dichloroptopene1,2,3-Trichlorobenzene1,2,4-Trichlorobenzene1,2,4-Trimethylbenzene1,2-Trimethylbenzene1,2-Dibromo-3-Chloropropane

1,2-Dibromoethane 1,2-Dichlorobenzene 1,2-Dichloroethane 1,2-Dichloroethene, Total

3	960-15 : Solid	e ID: 280-107 Matrix	Lab Sampl						
4	Dil Fac	Analyzed	Prepared	D	Unit	MDL	RL	Qualifier	Result
	1	04/12/18 21:20	04/12/18 18:38		ug/Kg	0.59	5.2		ND
5	1	04/12/18 21:20	04/12/18 18:38		ug/Kg	0.54	5.2		ND
	1	04/12/18 21:20	04/12/18 18:38		ug/Kg	0.64	5.2		ND
6	1	04/12/18 21:20	04/12/18 18:38		ug/Kg	0.92	5.2		ND
	1	04/12/18 21:20	04/12/18 18:38		ug/Kg	0.22	5.2		ND
7	1	04/12/18 21:20	04/12/18 18:38		ug/Kg	0.62	5.2		ND
	1	04/12/18 21:20	04/12/18 18:38		ug/Kg	0.56	5.2		ND
8	1	04/12/18 21:20	04/12/18 18:38		ug/Kg	0.78	5.2		ND
	1	04/12/18 21:20	04/12/18 18:38		ug/Kg	0.85	5.2		ND
9	1	04/12/18 21:20	04/12/18 18:38		ug/Kg	0.76	5.2		ND
	1	04/12/18 21:20	04/12/18 18:38		ug/Kg	0.61	5.2		ND
10	1	04/12/18 21:20	04/12/18 18:38		ug/Kg	0.63	10		ND
	1	04/12/18 21:20	04/12/18 18:38		ug/Kg	0.54	5.2		ND
44	1	04/12/18 21:20	04/12/18 18:38		ug/Kg	0.47	5.2		ND
	1	04/12/18 21:20	04/12/18 18:38		ug/Kg	0.73	5.2		ND
40	1	04/12/18 21:20	04/12/18 18:38		ug/Kg	0.41	5.2		ND
	1	04/12/18 21:20	04/12/18 18:38		ug/Kg	0.58	5.2		ND
40	1	04/12/18 21:20	04/12/18 18:38		ug/Kg	0.60	5.2		ND
13	1	04/12/18 21:20	04/12/18 18:38		ug/Kg	0.50	5.2		ND
	1	04/12/18 21:20	04/12/18 18:38		ug/Kg	0.53	5.2		ND
14	1	04/12/18 21:20	04/12/18 18:38		ug/Kg	0.82	5.2		ND
	1	04/12/18 21:20	04/12/18 18:38		ug/Kg	0.46	5.2		ND
	1	04/12/18 21:20	04/12/18 18:38		ug/Kg	1.9	21	J	8.8

1,2-Dichloropropane	ND	5.2	0.58 ug/Kg	04/12/18 18:38 04/12/18 21:20 1
1,3,5-Trimethylbenzene	ND	5.2	0.60 ug/Kg	04/12/18 18:38 04/12/18 21:20 1
1,3-Dichlorobenzene	ND	5.2	0.50 ug/Kg	04/12/18 18:38 04/12/18 21:20 1
1,3-Dichloropropane	ND	5.2	0.53 ug/Kg	04/12/18 18:38 04/12/18 21:20 1
1,4-Dichlorobenzene	ND	5.2	0.82 ug/Kg	04/12/18 18:38 04/12/18 21:20 1
2,2-Dichloropropane	ND	5.2	0.46 ug/Kg	04/12/18 18:38 04/12/18 21:20 1
2-Butanone (MEK)	8.8 J	21	1.9 ug/Kg	04/12/18 18:38 04/12/18 21:20 1
2-Chlorotoluene	ND	5.2	0.53 ug/Kg	04/12/18 18:38 04/12/18 21:20 1
2-Hexanone	ND	21	5.1 ug/Kg	04/12/18 18:38 04/12/18 21:20 1
4-Chlorotoluene	ND	5.2	0.82 ug/Kg	04/12/18 18:38 04/12/18 21:20 1
4-Isopropyltoluene	ND	5.2	0.51 ug/Kg	04/12/18 18:38 04/12/18 21:20 1
4-Methyl-2-pentanone (MIBK)	ND	21	4.6 ug/Kg	04/12/18 18:38 04/12/18 21:20 1
Acetone	27 B	21	5.6 ug/Kg	04/12/18 18:38 04/12/18 21:20 1
Benzene	ND	5.2	0.49 ug/Kg	04/12/18 18:38 04/12/18 21:20 1
Bromobenzene	ND	5.2	0.51 ug/Kg	04/12/18 18:38 04/12/18 21:20 1
Bromoform	ND	5.2	0.24 ug/Kg	04/12/18 18:38 04/12/18 21:20 1
Bromomethane	ND	10	0.52 ug/Kg	04/12/18 18:38 04/12/18 21:20 1
Carbon tetrachloride	ND	5.2	0.66 ug/Kg	04/12/18 18:38 04/12/18 21:20 1
Chlorobenzene	ND	5.2	0.56 ug/Kg	04/12/18 18:38 04/12/18 21:20 1
Chlorobromomethane	ND	5.2	0.31 ug/Kg	04/12/18 18:38 04/12/18 21:20 1
Chlorodibromomethane	ND	5.2	0.60 ug/Kg	04/12/18 18:38 04/12/18 21:20 1
Chloroethane	ND	10	0.93 ug/Kg	04/12/18 18:38 04/12/18 21:20 1
Chloroform	ND	10	0.30 ug/Kg	04/12/18 18:38 04/12/18 21:20 1
Chloromethane	ND	10	0.81 ug/Kg	04/12/18 18:38 04/12/18 21:20 1
cis-1,2-Dichloroethene	ND	2.6	0.59 ug/Kg	04/12/18 18:38 04/12/18 21:20 1
cis-1,3-Dichloropropene	ND	5.2	1.3 ug/Kg	04/12/18 18:38 04/12/18 21:20 1
Dibromomethane	ND	5.2	0.88 ug/Kg	04/12/18 18:38 04/12/18 21:20 1
Dichlorobromomethane	ND	5.2	0.23 ug/Kg	04/12/18 18:38 04/12/18 21:20 1
Dichlorodifluoromethane	ND	10	0.54 ug/Kg	04/12/18 18:38 04/12/18 21:20 1
Ethylbenzene	ND	5.2	0.70 ug/Kg	04/12/18 18:38 04/12/18 21:20 1
Hexachlorobutadiene	ND	5.2	0.58 ug/Kg	04/12/18 18:38 04/12/18 21:20 1
Isopropylbenzene	ND	5.2	0.62 ug/Kg	04/12/18 18:38 04/12/18 21:20 1
Methyl tert-butyl ether	ND	21	0.36 ug/Kg	04/12/18 18:38 04/12/18 21:20 1
Methylene Chloride	1.9 J	5.2	1.7 ug/Kg	04/12/18 18:38 04/12/18 21:20 1
m-Xylene & p-Xylene	ND	2.6	1.1 ug/Kg	04/12/18 18:38 04/12/18 21:20 1
•				

04/12/18 18:38 04/12/18 21:20

04/12/18 18:38 04/12/18 21:20

04/12/18 18:38 04/12/18 21:20

04/12/18 18:38 04/12/18 21:20

04/12/18 18:38 04/12/18 21:20

1

1

1

1

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

ND

ND

ND

ND

ND

Client Sample ID: PCS AC15 Date Collected: 03/2 Date Received: 03/30

Analyte Naphthalene n-Butylbenzene N-Propylbenzene o-Xylene sec-Butylbenzene

Styrene

Toluene

tert-Butylbenzene Tetrachloroethene

Trichloroethene

trans-1,2-Dichloroethene

trans-1,3-Dichloropropene

CS AC15 29/18 12:46							Lab Samp	le ID: 280-107 Matrix	'960-15 :: Solid	
30/18 08:50	Result	Qualifier	RL	мы	Unit	D	Prepared	Analyzed	Dil Fac	5
	ND		5.2		ug/Kg		04/12/18 18:38		1	
	ND		5.2	0.59	ug/Kg		04/12/18 18:38	04/12/18 21:20	1	
	ND		5.2	0.61	ug/Kg		04/12/18 18:38	04/12/18 21:20	1	
	ND		2.6	0.64	ug/Kg		04/12/18 18:38	04/12/18 21:20	1	
	ND		5.2	0.81	ug/Kg		04/12/18 18:38	04/12/18 21:20	1	
	ND		5.2	0.66	ug/Kg		04/12/18 18:38	04/12/18 21:20	1	8
	ND		5.2	0.52	ug/Kg		04/12/18 18:38	04/12/18 21:20	1	0

0.62 ug/Kg

0.72 ug/Kg

0.41 ug/Kg

0.70 ug/Kg

0.24 ug/Kg

Trichlorofluoromethane	ND		10	1.1	ug/Kg	04/12/18 18:38	04/12/18 21:20	1	
Vinyl chloride	ND		5.2	1.4	ug/Kg	04/12/18 18:38	04/12/18 21:20	1	
Xylenes, Total	ND		5.2	0.64	ug/Kg	04/12/18 18:38	04/12/18 21:20	1	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac	
1,2-Dichloroethane-d4 (Surr)	76		58 - 140			04/12/18 18:38	04/12/18 21:20	1	
4-Bromofluorobenzene (Surr)	104		76 - 127			04/12/18 18:38	04/12/18 21:20	1	
Dibromofluoromethane (Surr)	91		75 - 121			04/12/18 18:38	04/12/18 21:20	1	

5.2

5.2

2.6

5.2

5.2

Client Sample ID: PCS AC16 Date Collected: 03/29/18 12:51 Date Received: 03/30/18 08:50

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND		5.3	0.59	ug/Kg		04/12/18 18:38	04/12/18 21:40	1
1,1,1-Trichloroethane	ND		5.3	0.55	ug/Kg		04/12/18 18:38	04/12/18 21:40	1
1,1,2,2-Tetrachloroethane	ND		5.3	0.64	ug/Kg		04/12/18 18:38	04/12/18 21:40	1
1,1,2-Trichloroethane	ND		5.3	0.92	ug/Kg		04/12/18 18:38	04/12/18 21:40	1
1,1-Dichloroethane	ND		5.3	0.22	ug/Kg		04/12/18 18:38	04/12/18 21:40	1
1,1-Dichloroethene	ND		5.3	0.62	ug/Kg		04/12/18 18:38	04/12/18 21:40	1
1,1-Dichloropropene	ND		5.3	0.57	ug/Kg		04/12/18 18:38	04/12/18 21:40	1
1,2,3-Trichlorobenzene	ND		5.3	0.79	ug/Kg		04/12/18 18:38	04/12/18 21:40	1
1,2,3-Trichloropropane	ND		5.3	0.85	ug/Kg		04/12/18 18:38	04/12/18 21:40	1
1,2,4-Trichlorobenzene	ND		5.3	0.77	ug/Kg		04/12/18 18:38	04/12/18 21:40	1
1,2,4-Trimethylbenzene	ND		5.3	0.61	ug/Kg		04/12/18 18:38	04/12/18 21:40	1
1,2-Dibromo-3-Chloropropane	ND		11	0.63	ug/Kg		04/12/18 18:38	04/12/18 21:40	1
1,2-Dibromoethane	ND		5.3	0.55	ug/Kg		04/12/18 18:38	04/12/18 21:40	1
1,2-Dichlorobenzene	ND		5.3	0.47	ug/Kg		04/12/18 18:38	04/12/18 21:40	1
1,2-Dichloroethane	ND		5.3	0.74	ug/Kg		04/12/18 18:38	04/12/18 21:40	1
1,2-Dichloroethene, Total	ND		5.3	0.41	ug/Kg		04/12/18 18:38	04/12/18 21:40	1
1,2-Dichloropropane	ND		5.3	0.58	ug/Kg		04/12/18 18:38	04/12/18 21:40	1
1,3,5-Trimethylbenzene	ND		5.3	0.60	ug/Kg		04/12/18 18:38	04/12/18 21:40	1
1,3-Dichlorobenzene	ND		5.3	0.50	ug/Kg		04/12/18 18:38	04/12/18 21:40	1
1,3-Dichloropropane	ND		5.3	0.54	ug/Kg		04/12/18 18:38	04/12/18 21:40	1
1,4-Dichlorobenzene	ND		5.3	0.82	ug/Kg		04/12/18 18:38	04/12/18 21:40	1
2,2-Dichloropropane	ND		5.3	0.46	ug/Kg		04/12/18 18:38	04/12/18 21:40	1
2-Butanone (MEK)	7.4	J	21	1.9	ug/Kg		04/12/18 18:38	04/12/18 21:40	1
2-Chlorotoluene	ND		5.3	0.54	ug/Kg		04/12/18 18:38	04/12/18 21:40	1

TestAmerica Denver

Lab Sample ID: 280-107960-16 Matrix: Solid

Lab Sample ID: 280-107960-16 Matrix: Solid

5

8

Client Sample ID: PCS AC16 Date Collected: 03/29/18 12:51

Date Received: 03/30/18 08:50									
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
2-Hexanone	ND		21		ug/Kg			04/12/18 21:40	1
4-Chlorotoluene	ND		5.3		ug/Kg			04/12/18 21:40	1
4-Isopropyltoluene	ND		5.3		ug/Kg			04/12/18 21:40	1
4-Methyl-2-pentanone (MIBK)	ND		21		ug/Kg			04/12/18 21:40	1
Acetone	22	В	21		ug/Kg			04/12/18 21:40	1
Benzene	ND		5.3		ug/Kg			04/12/18 21:40	1
Bromobenzene	ND		5.3		ug/Kg			04/12/18 21:40	1
Bromoform	ND		5.3		ug/Kg			04/12/18 21:40	1
Bromomethane	ND		11		ug/Kg			04/12/18 21:40	1
Carbon tetrachloride	ND		5.3		ug/Kg		04/12/18 18:38	04/12/18 21:40	1
Chlorobenzene	ND		5.3		ug/Kg		04/12/18 18:38	04/12/18 21:40	1
Chlorobromomethane	ND		5.3	0.32	ug/Kg		04/12/18 18:38	04/12/18 21:40	1
Chlorodibromomethane	ND		5.3		ug/Kg		04/12/18 18:38	04/12/18 21:40	1
Chloroethane	ND		11	0.94	ug/Kg		04/12/18 18:38	04/12/18 21:40	1
Chloroform	ND		11		ug/Kg			04/12/18 21:40	1
Chloromethane	ND		11	0.81	ug/Kg		04/12/18 18:38	04/12/18 21:40	1
cis-1,2-Dichloroethene	ND		2.6	0.59	ug/Kg		04/12/18 18:38	04/12/18 21:40	1
cis-1,3-Dichloropropene	ND		5.3	1.4	ug/Kg		04/12/18 18:38	04/12/18 21:40	1
Dibromomethane	ND		5.3	0.88	ug/Kg		04/12/18 18:38	04/12/18 21:40	1
Dichlorobromomethane	ND		5.3	0.23	ug/Kg		04/12/18 18:38	04/12/18 21:40	1
Dichlorodifluoromethane	ND		11	0.55	ug/Kg		04/12/18 18:38	04/12/18 21:40	1
Ethylbenzene	ND		5.3	0.70	ug/Kg		04/12/18 18:38	04/12/18 21:40	1
Hexachlorobutadiene	ND		5.3	0.58	ug/Kg		04/12/18 18:38	04/12/18 21:40	1
sopropylbenzene	ND		5.3	0.62	ug/Kg		04/12/18 18:38	04/12/18 21:40	1
Methyl tert-butyl ether	ND		21	0.36	ug/Kg		04/12/18 18:38	04/12/18 21:40	1
Methylene Chloride	ND		5.3	1.7	ug/Kg		04/12/18 18:38	04/12/18 21:40	1
m-Xylene & p-Xylene	ND		2.6	1.1	ug/Kg		04/12/18 18:38	04/12/18 21:40	1
Naphthalene	ND		5.3	0.66	ug/Kg		04/12/18 18:38	04/12/18 21:40	1
n-Butylbenzene	ND		5.3	0.59	ug/Kg		04/12/18 18:38	04/12/18 21:40	1
N-Propylbenzene	ND		5.3	0.61	ug/Kg		04/12/18 18:38	04/12/18 21:40	1
o-Xylene	ND		2.6	0.64	ug/Kg		04/12/18 18:38	04/12/18 21:40	1
sec-Butylbenzene	ND		5.3	0.81	ug/Kg		04/12/18 18:38	04/12/18 21:40	1
Styrene	ND		5.3	0.66	ug/Kg		04/12/18 18:38	04/12/18 21:40	1
tert-Butylbenzene	ND		5.3	0.53	ug/Kg		04/12/18 18:38	04/12/18 21:40	1
Tetrachloroethene	ND		5.3	0.62	ug/Kg		04/12/18 18:38	04/12/18 21:40	1
Toluene	ND		5.3	0.73	ug/Kg		04/12/18 18:38	04/12/18 21:40	1
trans-1,2-Dichloroethene	ND		2.6	0.41	ug/Kg		04/12/18 18:38	04/12/18 21:40	1
trans-1,3-Dichloropropene	ND		5.3	0.70	ug/Kg		04/12/18 18:38	04/12/18 21:40	1
Trichloroethene	ND		5.3	0.24	ug/Kg		04/12/18 18:38	04/12/18 21:40	1
Trichlorofluoromethane	ND		11	1.1	ug/Kg		04/12/18 18:38	04/12/18 21:40	1
/inyl chloride	ND		5.3		ug/Kg		04/12/18 18:38	04/12/18 21:40	1
Xylenes, Total	ND		5.3		ug/Kg		04/12/18 18:38	04/12/18 21:40	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	80		58 - 140					04/12/18 21:40	1
4-Bromofluorobenzene (Surr)	104		76 - 127					04/12/18 21:40	1
Dibromofluoromethane (Surr)	93		75 - 121					04/12/18 21:40	1
Toluene-d8 (Surr)	96		80 - 126					04/12/18 21:40	

Method: 8260B - Volatile Organic Compounds (GC/MS)

Lab Sample ID: 280-107960-17 Matrix: Solid

Client Sample ID: PCS AC17 Date Collected: 03/29/18 12:56 Date Received: 03/30/18 08:50

Date Received: 03/30/18 08:50 Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
1,1,1,2-Tetrachloroethane	ND		5.3	0.59	ug/Kg		04/12/18 18:38	04/12/18 22:00	1	
1,1,1-Trichloroethane	ND		5.3		ug/Kg		04/12/18 18:38	04/12/18 22:00	1	
1,1,2,2-Tetrachloroethane	ND		5.3		ug/Kg		04/12/18 18:38	04/12/18 22:00	1	
1,1,2-Trichloroethane	ND		5.3		ug/Kg		04/12/18 18:38	04/12/18 22:00	1	
1,1-Dichloroethane	ND		5.3		ug/Kg		04/12/18 18:38	04/12/18 22:00	1	
1,1-Dichloroethene	ND		5.3		ug/Kg		04/12/18 18:38	04/12/18 22:00	1	
1,1-Dichloropropene	ND		5.3		ug/Kg		04/12/18 18:38	04/12/18 22:00	1	
1,2,3-Trichlorobenzene	ND		5.3		ug/Kg		04/12/18 18:38	04/12/18 22:00	1	
1,2,3-Trichloropropane	ND		5.3		ug/Kg		04/12/18 18:38	04/12/18 22:00	1	
1,2,4-Trichlorobenzene	ND		5.3		ug/Kg		04/12/18 18:38	04/12/18 22:00	1	
1,2,4-Trimethylbenzene	ND		5.3		ug/Kg		04/12/18 18:38	04/12/18 22:00	1	
1,2-Dibromo-3-Chloropropane	ND		11		ug/Kg			04/12/18 22:00	1	
1,2-Dibromoethane	ND		5.3		ug/Kg			04/12/18 22:00	1	
1,2-Dichlorobenzene	ND		5.3		ug/Kg			04/12/18 22:00	1	
1,2-Dichloroethane	ND		5.3		ug/Kg			04/12/18 22:00	1	
1,2-Dichloroethene, Total	ND		5.3	0.41				04/12/18 22:00		
1,2-Dichloropropane	ND		5.3		ug/Kg			04/12/18 22:00	1	
1,3,5-Trimethylbenzene	ND		5.3		ug/Kg			04/12/18 22:00	1	
1,3-Dichlorobenzene	ND		5.3		ug/Kg			04/12/18 22:00		
1,3-Dichloropropane	ND		5.3		ug/Kg			04/12/18 22:00	1	
1,4-Dichlorobenzene	ND		5.3		ug/Kg			04/12/18 22:00	1	
2,2-Dichloropropane	ND		5.3		ug/Kg			04/12/18 22:00		
2-Butanone (MEK)	5.1		21		ug/Kg			04/12/18 22:00	1	
2-Chlorotoluene	ND	v	5.3		ug/Kg			04/12/18 22:00	1	
2-Hexanone	ND		21		ug/Kg			04/12/18 22:00		
4-Chlorotoluene	ND		5.3		ug/Kg			04/12/18 22:00	1	
4-Isopropyltoluene	ND		5.3		ug/Kg			04/12/18 22:00	1	
4-Methyl-2-pentanone (MIBK)	ND		21		ug/Kg			04/12/18 22:00	1	
Acetone		JB	21		ug/Kg			04/12/18 22:00	1	
Benzene	ND		5.3		ug/Kg			04/12/18 22:00	1	
Bromobenzene	ND		5.3		ug/Kg			04/12/18 22:00		
Bromoform	ND		5.3		ug/Kg			04/12/18 22:00	1	
Bromomethane	ND		11		ug/Kg			04/12/18 22:00	1	
Carbon tetrachloride	ND		5.3		ug/Kg			04/12/18 22:00	1	
Chlorobenzene	ND		5.3		ug/Kg			04/12/18 22:00	1	
Chlorobromomethane	ND		5.3		ug/Kg ug/Kg			04/12/18 22:00	1	
Chlorodibromomethane	ND		5.3		ug/Kg			04/12/18 22:00	1	
Chloroethane	ND		5.5 11		ug/Kg ug/Kg			04/12/18 22:00	1	
Chloroform	ND		11		ug/Kg ug/Kg			04/12/18 22:00	1	
Chloromethane	ND		11		ug/Kg			04/12/18 22:00	1	
cis-1,2-Dichloroethene	ND		2.6		ug/Kg ug/Kg			04/12/18 22:00	1	
cis-1,3-Dichloropropene	ND		5.3		ug/Kg ug/Kg			04/12/18 22:00	1	
Dibromomethane	ND		5.3		ug/Kg			04/12/18 22:00	1	
Dichlorobromomethane	ND		5.3 5.3		ug/Kg ug/Kg			04/12/18 22:00	1	
Dichlorodifluoromethane	ND		5.3 11					04/12/18 22:00		
	ND		5.3		ug/Kg			04/12/18 22:00	1	
Ethylbenzene					ug/Kg					
	ND		5.3		ug/Kg			04/12/18 22:00	1	
Isopropylbenzene Methyl tert-butyl ether	ND ND		5.3 21		ug/Kg ug/Kg			04/12/18 22:00 04/12/18 22:00	1	

Client Sample ID: PCS AC17 Date Collected: 03/29/18 12:56

								Matrix	. 50110	
Date Received: 03/30/18 08:50 Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Methylene Chloride	ND		5.3	1.7	ug/Kg		04/12/18 18:38	04/12/18 22:00	1	
m-Xylene & p-Xylene	ND		2.6	1.1	ug/Kg		04/12/18 18:38	04/12/18 22:00	1	
Naphthalene	ND		5.3	0.67	ug/Kg		04/12/18 18:38	04/12/18 22:00	1	
n-Butylbenzene	ND		5.3	0.59	ug/Kg		04/12/18 18:38	04/12/18 22:00	1	
N-Propylbenzene	ND		5.3	0.61	ug/Kg		04/12/18 18:38	04/12/18 22:00	1	_
o-Xylene	ND		2.6	0.65	ug/Kg		04/12/18 18:38	04/12/18 22:00	1	
sec-Butylbenzene	ND		5.3	0.81	ug/Kg		04/12/18 18:38	04/12/18 22:00	1	
Styrene	ND		5.3	0.67	ug/Kg		04/12/18 18:38	04/12/18 22:00	1	
tert-Butylbenzene	ND		5.3	0.53	ug/Kg		04/12/18 18:38	04/12/18 22:00	1	
Tetrachloroethene	ND		5.3	0.62	ug/Kg		04/12/18 18:38	04/12/18 22:00	1	
Toluene	ND		5.3	0.73	ug/Kg		04/12/18 18:38	04/12/18 22:00	1	
trans-1,2-Dichloroethene	ND		2.6	0.41	ug/Kg		04/12/18 18:38	04/12/18 22:00	1	
trans-1,3-Dichloropropene	ND		5.3	0.71	ug/Kg		04/12/18 18:38	04/12/18 22:00	1	
Trichloroethene	ND		5.3	0.24	ug/Kg		04/12/18 18:38	04/12/18 22:00	1	
Trichlorofluoromethane	ND		11	1.1	ug/Kg		04/12/18 18:38	04/12/18 22:00	1	
Vinyl chloride	ND		5.3	1.4	ug/Kg		04/12/18 18:38	04/12/18 22:00	1	
Xylenes, Total	ND		5.3	0.65	ug/Kg		04/12/18 18:38	04/12/18 22:00	1	

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	81		58 - 140	04/12/18 18:38	04/12/18 22:00	1
4-Bromofluorobenzene (Surr)	101		76 - 127	04/12/18 18:38	04/12/18 22:00	1
Dibromofluoromethane (Surr)	92		75 - 121	04/12/18 18:38	04/12/18 22:00	1
Toluene-d8 (Surr)	94		80 - 126	04/12/18 18:38	04/12/18 22:00	1

Client Sample ID: PCS AC18 Date Collected: 03/29/18 13:02

Date Received: 03/30/18 08:50

Date Received: 03/30/16 06:50									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND		5.2	0.58	ug/Kg		04/12/18 18:38	04/12/18 22:20	1
1,1,1-Trichloroethane	ND		5.2	0.54	ug/Kg		04/12/18 18:38	04/12/18 22:20	1
1,1,2,2-Tetrachloroethane	ND		5.2	0.63	ug/Kg		04/12/18 18:38	04/12/18 22:20	1
1,1,2-Trichloroethane	ND		5.2	0.91	ug/Kg		04/12/18 18:38	04/12/18 22:20	1
1,1-Dichloroethane	ND		5.2	0.22	ug/Kg		04/12/18 18:38	04/12/18 22:20	1
1,1-Dichloroethene	ND		5.2	0.61	ug/Kg		04/12/18 18:38	04/12/18 22:20	1
1,1-Dichloropropene	ND		5.2	0.56	ug/Kg		04/12/18 18:38	04/12/18 22:20	1
1,2,3-Trichlorobenzene	ND		5.2	0.77	ug/Kg		04/12/18 18:38	04/12/18 22:20	1
1,2,3-Trichloropropane	ND		5.2	0.83	ug/Kg		04/12/18 18:38	04/12/18 22:20	1
1,2,4-Trichlorobenzene	ND		5.2	0.75	ug/Kg		04/12/18 18:38	04/12/18 22:20	1
1,2,4-Trimethylbenzene	ND		5.2	0.60	ug/Kg		04/12/18 18:38	04/12/18 22:20	1
1,2-Dibromo-3-Chloropropane	ND		10	0.62	ug/Kg		04/12/18 18:38	04/12/18 22:20	1
1,2-Dibromoethane	ND		5.2	0.54	ug/Kg		04/12/18 18:38	04/12/18 22:20	1
1,2-Dichlorobenzene	ND		5.2	0.46	ug/Kg		04/12/18 18:38	04/12/18 22:20	1
1,2-Dichloroethane	ND		5.2	0.72	ug/Kg		04/12/18 18:38	04/12/18 22:20	1
1,2-Dichloroethene, Total	ND		5.2	0.40	ug/Kg		04/12/18 18:38	04/12/18 22:20	1
1,2-Dichloropropane	ND		5.2	0.57	ug/Kg		04/12/18 18:38	04/12/18 22:20	1
1,3,5-Trimethylbenzene	ND		5.2	0.59	ug/Kg		04/12/18 18:38	04/12/18 22:20	1
1,3-Dichlorobenzene	ND		5.2	0.49	ug/Kg		04/12/18 18:38	04/12/18 22:20	1
1,3-Dichloropropane	ND		5.2	0.53	ug/Kg		04/12/18 18:38	04/12/18 22:20	1
1,4-Dichlorobenzene	ND		5.2	0.80	ug/Kg		04/12/18 18:38	04/12/18 22:20	1
2,2-Dichloropropane	ND		5.2	0.45	ug/Kg		04/12/18 18:38	04/12/18 22:20	1

TestAmerica Denver

Lab Sample ID: 280-107960-18

Matrix: Solid

8

RL

21

5.2

21

5.2

MDL Unit

1.9 ug/Kg

0.53 ug/Kg

5.0 ug/Kg

0.80 ug/Kg

D

Prepared

04/12/18 18:38 04/12/18 22:20

04/12/18 18:38 04/12/18 22:20

04/12/18 18:38 04/12/18 22:20

04/12/18 18:38 04/12/18 22:20

Lab Sample ID: 280-107960-18

Analyzed

Matrix: Solid

Dil Fac

1

1

1

1

4-Chiorololuene	ND		5.2	0.60	ug/kg	04/12/10 10.30	04/12/16 22.20	1
4-Isopropyltoluene	ND		5.2	0.50	ug/Kg	04/12/18 18:38	04/12/18 22:20	1
4-Methyl-2-pentanone (MIBK)	ND		21	4.5	ug/Kg	04/12/18 18:38	04/12/18 22:20	1
Acetone	8.2	JB	21	5.5	ug/Kg	04/12/18 18:38	04/12/18 22:20	1
Benzene	ND		5.2	0.48	ug/Kg	04/12/18 18:38	04/12/18 22:20	1
Bromobenzene	ND		5.2	0.50	ug/Kg	04/12/18 18:38	04/12/18 22:20	1
Bromoform	ND		5.2	0.24	ug/Kg	04/12/18 18:38	04/12/18 22:20	1
Bromomethane	ND		10	0.52	ug/Kg	04/12/18 18:38	04/12/18 22:20	1
Carbon tetrachloride	ND		5.2	0.65	ug/Kg	04/12/18 18:38	04/12/18 22:20	1
Chlorobenzene	ND		5.2		ug/Kg	04/12/18 18:38	04/12/18 22:20	1
Chlorobromomethane	ND		5.2		ug/Kg	04/12/18 18:38	04/12/18 22:20	1
Chlorodibromomethane	ND		5.2		ug/Kg	04/12/18 18:38	04/12/18 22:20	1
Chloroethane	ND		10		ug/Kg	04/12/18 18:38	04/12/18 22:20	1
Chloroform	ND		10		ug/Kg	04/12/18 18:38	04/12/18 22:20	1
Chloromethane	ND		10		ug/Kg		04/12/18 22:20	1
cis-1,2-Dichloroethene	ND		2.6		ug/Kg		04/12/18 22:20	1
cis-1,3-Dichloropropene	ND		5.2		ug/Kg		04/12/18 22:20	1
Dibromomethane	ND		5.2		ug/Kg		04/12/18 22:20	
Dichlorobromomethane	ND		5.2		ug/Kg		04/12/18 22:20	1
Dichlorodifluoromethane	ND		10		ug/Kg		04/12/18 22:20	1
Ethylbenzene	ND		5.2		ug/Kg		04/12/18 22:20	
Hexachlorobutadiene	ND		5.2		ug/Kg		04/12/18 22:20	1
Isopropylbenzene	ND		5.2		ug/Kg		04/12/18 22:20	1
Methyl tert-butyl ether	ND		21		ug/Kg		04/12/18 22:20	
Methylene Chloride	ND		5.2		ug/Kg		04/12/18 22:20	1
m-Xylene & p-Xylene	ND		2.6		ug/Kg ug/Kg		04/12/18 22:20	1
Naphthalene	ND		5.2		ug/Kg		04/12/18 22:20	· · · · · · 1
•	ND		5.2					1
n-Butylbenzene	ND				ug/Kg		04/12/18 22:20	1
N-Propylbenzene			5.2		ug/Kg		04/12/18 22:20	·····
o-Xylene	ND		2.6		ug/Kg		04/12/18 22:20	1
sec-Butylbenzene	ND		5.2		ug/Kg		04/12/18 22:20	1
Styrene	ND		5.2		ug/Kg		04/12/18 22:20	1
tert-Butylbenzene	ND		5.2		ug/Kg		04/12/18 22:20	1
Tetrachloroethene	ND		5.2		ug/Kg		04/12/18 22:20	1
Toluene	ND		5.2		ug/Kg		04/12/18 22:20	1
trans-1,2-Dichloroethene	ND		2.6		ug/Kg		04/12/18 22:20	1
trans-1,3-Dichloropropene	ND		5.2		ug/Kg		04/12/18 22:20	1
Trichloroethene	ND		5.2		ug/Kg		04/12/18 22:20	1
Trichlorofluoromethane	ND		10		ug/Kg		04/12/18 22:20	1
Vinyl chloride	ND		5.2		ug/Kg		04/12/18 22:20	1
Xylenes, Total	ND		5.2	0.63	ug/Kg	04/12/18 18:38	04/12/18 22:20	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	77		58 - 140			04/12/18 18:38	04/12/18 22:20	1
4-Bromofluorobenzene (Surr)	103		76 - 127			04/12/18 18:38	04/12/18 22:20	1
Dibromofluoromethane (Surr)	88		75 - 121			04/12/18 18:38	04/12/18 22:20	1
Toluene-d8 (Surr)	94		80 - 126			04/12/18 18:38	04/12/18 22:20	1

enver

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Result Qualifier

3.8 J

ND

ND

ND

Client Sample ID: PCS AC18 Date Collected: 03/29/18 13:02 Date Received: 03/30/18 08:50

Analyte

2-Butanone (MEK)

2-Chlorotoluene

4-Chlorotoluene

2-Hexanone

Ibenzene	ND		5.2	0.52	ug/Kg	04/12/18 18:38	04/12/18 22:20	
oroethene	ND		5.2	0.61	ug/Kg	04/12/18 18:38	04/12/18 22:20	
	ND		5.2	0.71	ug/Kg	04/12/18 18:38	04/12/18 22:20	
2-Dichloroethene	ND		2.6	0.40	ug/Kg	04/12/18 18:38	04/12/18 22:20	
B-Dichloropropene	ND		5.2	0.69	ug/Kg	04/12/18 18:38	04/12/18 22:20	
ethene	ND		5.2	0.24	ug/Kg	04/12/18 18:38	04/12/18 22:20	
fluoromethane	ND		10	1.1	ug/Kg	04/12/18 18:38	04/12/18 22:20	
oride	ND		5.2	1.4	ug/Kg	04/12/18 18:38	04/12/18 22:20	
Total	ND		5.2	0.63	ug/Kg	04/12/18 18:38	04/12/18 22:20	
te	%Recovery	Qualifier	Limits			Prepared	Analyzed	Di
loroethane-d4 (Surr)	77		58 - 140			04/12/18 18:38	04/12/18 22:20	
fluorobenzene (Surr)	103		76 - 127			04/12/18 18:38	04/12/18 22:20	
fluoromethane (Surr)	88		75 - 121			04/12/18 18:38	04/12/18 22:20	
-d8 (Surr)	94		80 - 126			04/12/18 18:38	04/12/18 22:20	
							TestAmerica	Der
			Page 37 of 188				//1	0/2

Client Sample Results

Client: Waste Management Project/Site: 3217|Valencia, NM - Soils

Client Sample ID: PCS AC19 Date Collected: 03/29/18 13:07 Date Analy

Lab Sample ID: 280-107960-19 Matrix: Solid

Date Received: 03/30/18 08:50 Analyte Result Qualifier RL MDL Unit. D Propared Analyzed DI 1.1.1; Teitrachioroethane ND 5.8 0.66 up/Kq 041/218 18.38 041/218 22.41 1.1.2; Trichloroethane ND 5.8 0.70 up/Kq 041/218 18.38 041/218 22.41 1.1.2; Trichloroethane ND 5.8 0.24 up/Kq 041/218 18.38 041/218 22.41 1.1.Dichloroethane ND 5.8 0.66 up/Kq 041/218 18.38 041/218 22.41 1.1.Dichloroethane ND 5.8 0.66 up/Kq 041/218 18.38 041/218 22.41 1.2.3; Trichloroptopane ND 5.8 0.87 up/Kq 041/218 18.38 041/218 22.41 1.2.4; Trinelhyberzene ND 5.8 0.87 up/Kq 041/218 18.38 041/218 22.41 1.2.4; Trinelhyberzene ND 5.8 0.87 up/Kq 041/218 18.38 041/218 22.41 1.2.4; Trinelhyberzene ND 5.8	
1.1.12-Tetrachloroethane ND 5.8 0.65 ug/kg 0.41/21/8 18:38 0.41/21/8 18:3	Fac
1,1,7-trinibroochane ND 5.8 0.60 ug/Kg 0.41/21/8 16.38 0.41/21/8 12.24 1,1,2,2-Trichiorochane ND 5.8 0.70 ug/Kg 0.41/21/8 16.38 0.41/21/8 12.24 1,1-Dichiorochane ND 5.8 0.74 ug/Kg 0.41/21/8 16.38 0.41/21/8 12.24 1,1-Dichiorochane ND 5.8 0.62 ug/Kg 0.41/21/8 16.38 0.41/21/8 12.24 1,1-Dichiorochane ND 5.8 0.62 ug/Kg 0.41/21/8 16.38 0.41/21/8 12.24 1,2-Dichiorochane ND 5.8 0.64 ug/Kg 0.41/21/8 16.38 0.41/21/8 12.24 1,2-Dichiorochane ND 5.8 0.64 ug/Kg 0.41/21/8 16.38 0.41/21/8 12.24 1,2-Dichiorochane ND 5.8 0.65 ug/Kg 0.41/21/8 16.38 0.41/21/8 12.24 1,2-Dichiorochane ND 5.8 0.67 ug/Kg 0.41/21/8 16.38 0.41/21/8 12.24 1,2-Dichiorochane ND 5.8 0.67 ug/Kg 0.41/21/8 16.38 0.41/21/8 12.24 1,2-Dichiorochane ND 5.8 0.61 <	
1.1.2Tetrachloroethane ND 5.8 0.70 ug/kg 04/12/18 04/12/18 04/12/18 04/12/18 04/12/18 22:41 1.1.Dichloroethane ND 5.8 0.68 ug/kg 04/12/18 04/12/18 22:41 1.1.Dichloroppene ND 5.8 0.68 ug/kg 04/12/18 04/12/18 22:41 1.2.Jochloroppene ND 5.8 0.68 ug/kg 04/12/18 04/12/18 22:41 1.2.3-Trichlorobenzene ND 5.8 0.64 ug/kg 04/12/18 04/12/18 22:41 1.2.4-Trichlorobenzene ND 5.8 0.67 ug/kg 04/12/18 04/12/18 2:41 1.2.4-Trichlorobenzene ND 5.8 0.60 ug/kg 04/12/18 04/12/18 2:41 1.2.Dichloroethane ND 5.8 0.61 ug/kg 04/12/18 04/12/18 2:41 1.2.Dichloroethane ND 5.8 0.61 ug/kg 04/12/18 04/12/18 2:41	1
1,1_2-Trichloroethane ND 5.8 1.0 ug/kg 04/12/18 04/12/18 0224 1.1 1,1-Dichloroethane ND 5.8 0.24 ug/kg 04/12/18 04/12/18 224.11 1,1-Dichloropropene ND 5.8 0.62 ug/kg 04/12/18 04/12/18 224.11 1,2-3-Trichloroberzene ND 5.8 0.62 ug/kg 04/12/18 04/12/18 224.11 1,2-3-Trichloroberzene ND 5.8 0.64 ug/kg 04/12/18 04/12/18 224.11 1,2-4-Trinethylberzene ND 5.8 0.67 ug/kg 04/12/18 04/12/18 224.11 1,2-Dichloroberzene ND 5.8 0.60 ug/kg 04/12/18 04/12/18 224.11 1,2-Dichloroberzene ND 5.8 0.61 ug/kg 04/12/18 04/12/18 224.11 1,2-Dichloroberzene ND 5.8 0.63 ug/kg 04/12/18 04/12/18 224.11 12.3-Dichloroberzene ND	1
11-Dichloroethane ND 5.8 0.24 ug/kg 04/12/18 18.38 04/12/18 22:41 1.1-Dichloroethane ND 5.8 0.68 ug/kg 04/12/18 18.38 04/12/18 22:41 1.2-Dichloroptopene ND 5.8 0.62 ug/kg 04/12/18 18.38 04/12/18 22:41 1.2.3-Trichlorobenzene ND 5.8 0.63 ug/kg 04/12/18 18.38 04/12/18 22:41 1.2.4-Trichlorobenzene ND 5.8 0.64 ug/kg 04/12/18 18.38 04/12/18 22:41 1.2.4-Trichlorobenzene ND 5.8 0.67 ug/kg 04/12/18 18.38 04/12/18 22:41 1.2.Dichromo-Schloropropane ND 5.8 0.61 ug/kg 04/12/18 18.38 04/12/18 22:41 1.2.Dichlorobenzene ND 5.8 0.61 ug/kg 04/12/18 18.38 04/12/18 22:41 1.2.Dichloropopane ND 5.8 0.61 ug/kg 04/12/18 18.38 04/12/18 22:41 1.2.Dichloropopane ND 5.8 0.65 ug/kg 04/12/18 18.38 04/12/18 22:41 1.3.Dichlorobenzene ND 5.8 0.59	1
1.1 Dichloroptene ND 5.8 0.66 ug/kg 04/12/18 13.3 04/12/18 12.2.4.1 1.1.2.J.Trichloropropane ND 5.8 0.62 ug/kg 04/12/18	1
1,1-Dichloropropene ND 5.8 0.62 ug/kg 04/12/18 04/12/18 02:2:41 1,2,3-Trichlorobenzene ND 5.8 0.53 ug/kg 04/12/18	
1.2.3-Trichloropropane ND 5.8 0.86 ug/kg 04/12/18 18.38 04/12/18 12.4.1 1.2.4-Trichloropropane ND 5.8 0.93 ug/kg 04/12/18 18.38 04/12/18 12.2.4 1.2.4-Trichloropropane ND 5.8 0.67 ug/kg 04/12/18 12.2.1 1.2-Diornomothane ND 12 0.69 ug/kg 04/12/18 18.38 04/12/18 12.2.1 1.2-Diornomothane ND 5.8 0.61 ug/kg 04/12/18 18.38 04/12/18 12.2.1 1.2-Diorlorothane ND 5.8 0.64 ug/kg 04/12/18 12.2.2.41 1.2-Diorlorothene, Total ND 5.8 0.64 ug/kg 04/12/18 12.2.2.41 1.2-Diorlorothene, Total ND 5.8 0.65 ug/kg 04/12/18 12.2.2.41 1.3-Diorlorophane ND 5.8 0.65 ug/kg 04/12/18 12.2.2.41 1.3-Diorlorophane ND 5.8 0.55 ug/kg 04/12/18 12.2.2.41 1.3-Diorlorophane <td< td=""><td>1 </td></td<>	1
1.2.3-Tichloropropane ND 5.8 0.93 ug/Kg 04/12/18 18:38 04/12/18 22:41 1.2.4-Tirinethybberzene ND 5.8 0.64 ug/Kg 04/12/18 18:38 04/12/18 22:41 1.2.4-Tirinethybberzene ND 5.8 0.67 ug/Kg 04/12/18 18:38 04/12/18 22:41 1.2-Dibromoethane ND 5.8 0.60 ug/Kg 04/12/18 18:38 04/12/18 22:41 1.2-Dibromoethane ND 5.8 0.52 ug/Kg 04/12/18 18:38 04/12/18 22:41 1.2-Dibromoethane ND 5.8 0.61 ug/Kg 04/12/18 18:38 04/12/18 22:41 1.2-Dibromoethane, Total ND 5.8 0.65 ug/Kg 04/12/18 18:38 04/12/18 22:41 1.3-Dibriorobenzene ND 5.8 0.65 ug/Kg 04/12/18 18:38 04/12/18 22:41 1.3-Dibrioropropane ND 5.8 0.55 ug/Kg 04/12/18 18:38 04/12/18 22:41 1.3-Dibrioropropane ND 5.8 0.50 ug/Kg 04/12/18 18:38 04/12/18 22:41 1.3-Dibrioropropane ND 5.8 0.51	1
1.2.4-Trichlorobenzene ND 5.8 0.84 ug/kg 04/12/18 18:38 04/12/18 22:41 1.2.4-Trimetrybenzene ND 5.8 0.67 ug/kg 04/12/18 18:38 04/12/18 22:41 1.2.Dibromo-S-Chloropropane ND 5.8 0.60 ug/kg 04/12/18 18:38 04/12/18 22:41 1.2.Dichlorobenzene ND 5.8 0.81 ug/kg 04/12/18 18:38 04/12/18 22:41 1.2.Dichloroethane ND 5.8 0.81 ug/kg 04/12/18 18:38 04/12/18 22:41 1.2.Dichloroethane ND 5.8 0.81 ug/kg 04/12/18 18:38 04/12/18 22:41 1.3.Dichloropropane ND 5.8 0.66 ug/kg 04/12/18 18:38 04/12/18 22:41 1.3.Dichlorobenzene ND 5.8 0.55 ug/kg 04/12/18 18:38 04/12/18 22:41 1.4.Dichlorobenzene ND 5.8 0.51 ug/kg 04/12/18 18:38 04/12/18 22:41 2.Dichorobenzene ND 5.8 0.51 ug/kg 04/12/18 18:38 04/12/	1
1.2.4-Trimethylbenzene ND 5.8 0.67 vg/kg 04/12/18 18:38 04/12/18 22:41 1.2-Dibromo-3-Chioropropane ND 12 0.69 vg/kg 04/12/18 18:38 04/12/18 22:41 1.2-Dibromo-st-Chioropropane ND 5.8 0.60 vg/kg 04/12/18 18:38 04/12/18 22:41 1.2-Dichoroethane ND 5.8 0.61 vg/kg 04/12/18 18:38 04/12/18 22:41 1.2-Dichoropthene, Total ND 5.8 0.45 vg/kg 04/12/18 18:38 04/12/18 22:41 1.3-Dichoroptopane ND 5.8 0.65 vg/kg 04/12/18 18:38 04/12/18 22:41 1.3-Dichoroptopane ND 5.8 0.55 vg/kg 04/12/18 18:38 04/12/18 22:41 1.3-Dichoroptopane ND 5.8 0.59 vg/kg 04/12/18 18:38 04/12/18 22:41 1.4-Dichlorobenzene ND 5.8 0.59 vg/kg 04/12/18 18:38 04/12/18 22:41 1.3-Dichloropropane ND 5.8 0.59 vg/kg 04/12/18 18:38 04/12/18 22:41 2-Chiorobluene ND 5.8 0.59	- 1
1.2-Dibromo-3-Chloropropane ND 12 0.69 ug/Kg 04/12/18 18:38 04/12/18 22:41 1.2-Dichrobehzene ND 5.8 0.60 ug/Kg 04/12/18 18:38 04/12/18 22:41 1.2-Dichrobehzene ND 5.8 0.81 ug/Kg 04/12/18 18:38 04/12/18 22:41 1.2-Dichrobehzene ND 5.8 0.61 ug/Kg 04/12/18 18:38 04/12/18 22:41 1.2-Dichrobepropane ND 5.8 0.63 ug/Kg 04/12/18 18:38 04/12/18 22:41 1.3-Dichrobenzene ND 5.8 0.65 ug/Kg 04/12/18 18:38 04/12/18 22:41 1.3-Dichrobenzene ND 5.8 0.55 ug/Kg 04/12/18 18:38 04/12/18 22:41 1.4-Dichrobenzene ND 5.8 0.51 ug/Kg 04/12/18 18:38 04/12/18 22:41 1.4-Dichrobenzene ND 5.8 0.51 ug/Kg 04/12/18 18:38 04/12/18 22:41 2.4-Dichrobenzene ND 5.8 0.51 ug/Kg 04/12/18 18:38 04/12/18 22:41 2.5-Dichrobenzene ND 5.8 0.59 ug/Kg	
1.2-Dibromoethane ND 5.8 0.60 ug/kg 04/12/18 18:38 04/12/18 22:41 1.2-Dichlorobenzene ND 5.8 0.52 ug/kg 04/12/18 18:38 04/12/18 22:41 1.2-Dichloropethane ND 5.8 0.81 ug/kg 04/12/18 18:38 04/12/18 22:41 1.2-Dichloropropane ND 5.8 0.63 ug/kg 04/12/18 8:38 04/12/18 22:41 1.3-Dichlorobenzene ND 5.8 0.66 ug/kg 04/12/18 8:38 04/12/18 2:41 1.3-Dichloropropane ND 5.8 0.59 ug/kg 04/12/18 8:38 04/12/18 2:41 1.3-Dichloropropane ND 5.8 0.59 ug/kg 04/12/18 8:38 04/12/18 2:41 2Dichloropropane ND 5.8 0.59 ug/kg 04/12/18 8:38 04/12/18 2:41 2Dichloropropane ND 5.8 0.59 ug/kg 04/12/18 8:38 04/12/18 2:41 2Dichloropropane <t< td=""><td>1</td></t<>	1
1.2-Dichlorobenzene ND 5.8 0.52 ug/Kg 04/12/18 18:38 04/12/18 22:41 1.2-Dichloroethane, Total ND 5.8 0.81 ug/Kg 04/12/18 18:38 04/12/18 22:41 1.2-Dichloroptopane ND 5.8 0.63 ug/Kg 04/12/18 18:38 04/12/18 22:41 1.3-Dichloroptopane ND 5.8 0.66 ug/Kg 04/12/18 18:38 04/12/18 22:41 1.3-Dichlorobenzene ND 5.8 0.55 ug/Kg 04/12/18 18:38 04/12/18 22:41 1.3-Dichloropopane ND 5.8 0.59 ug/Kg 04/12/18 18:38 04/12/18 22:41 1.3-Dichloropopane ND 5.8 0.59 ug/Kg 04/12/18 18:38 04/12/18 22:41 2.2-Dichloropopane ND 5.8 0.59 ug/Kg 04/12/18 18:38 04/12/18 22:41 2.4-Dichorobluene ND 5.8 0.59 ug/Kg 04/12/18 18:38 04/12/18 22:41 2.4-Dichorobluene ND 5.8 0.59 ug/Kg 04/12/18 18:38 04/12/18 22:41 2.4-Dichorobluene ND 5.8 0.56 ug/Kg<	1
1.2-Dichloroethane ND 5.8 0.81 ug/Kg 04/12/18 18:38 04/12/18 22:41 1.2-Dichloroethene, Total ND 5.8 0.45 ug/Kg 04/12/18 18:38 04/12/18 22:41 1.2-Dichloroppane ND 5.8 0.66 ug/Kg 04/12/18 18:38 04/12/18 22:41 1.3-Dichloroppane ND 5.8 0.66 ug/Kg 04/12/18 18:38 04/12/18 22:41 1.3-Dichloroppane ND 5.8 0.55 ug/Kg 04/12/18 18:38 04/12/18 22:41 1.3-Dichloropropane ND 5.8 0.59 ug/Kg 04/12/18 18:38 04/12/18 22:41 2.2-Dichloropropane ND 5.8 0.51 ug/Kg 04/12/18 18:38 04/12/18 22:41 2.2-Dichloropropane ND 5.8 0.51 ug/Kg 04/12/18 18:38 04/12/18 22:41 2.4-Dichloroblenzene ND 5.8 0.59 ug/Kg 04/12/18 18:38 04/12/18 22:41 2.4-Dichloroblenzene ND 2.3 5.0 ug/Kg 04/12/18 18:38 04/12/18 22:41 2Hexanone ND 5.8 0.56 ug/Kg	1
1,2-Dichloroethene, Total ND 5.8 0.45 ug/Kg 04/12/18 18:38 04/12/18 22:41 1,2-Dichloropropane ND 5.8 0.63 ug/Kg 04/12/18 18:38 04/12/18 22:41 1,3-Dichlorobenzene ND 5.8 0.65 ug/Kg 04/12/18 18:38 04/12/18 22:41 1,3-Dichlorobenzene ND 5.8 0.55 ug/Kg 04/12/18 18:38 04/12/18 22:41 1,3-Dichlorobenzene ND 5.8 0.59 ug/Kg 04/12/18 18:38 04/12/18 22:41 2,2-Dichloropropane ND 5.8 0.51 ug/Kg 04/12/18 18:38 04/12/18 22:41 2,-Dichloropropane ND 5.8 0.51 ug/Kg 04/12/18 18:38 04/12/18 22:41 2,-Dichloropopane ND 5.8 0.59 ug/Kg 04/12/18 18:38 04/12/18 22:41 2,-Elutanone MEK A A J 23 5.6 ug/Kg 04/12/18 18:38 04/12/18 22:41 2,-Chorotoluene ND 5.8 0.59 ug/Kg 04/12/18 18:38 04/12/18 22:41 4,-Soropy/toluene ND 5.	1
1,2-Dichloropropane ND 5.8 0.63 ug/Kg 04/12/18 18:38 04/12/18 22:41 1,3-Dichlorobenzene ND 5.8 0.66 ug/Kg 04/12/18 18:38 04/12/18 22:41 1,3-Dichlorobenzene ND 5.8 0.55 ug/Kg 04/12/18 18:38 04/12/18 22:41 1,3-Dichloroporpane ND 5.8 0.90 ug/Kg 04/12/18 18:38 04/12/18 22:41 2,2-Dichloropropane ND 5.8 0.90 ug/Kg 04/12/18 18:38 04/12/18 22:41 2,2-Dichloropropane ND 5.8 0.90 ug/Kg 04/12/18 18:38 04/12/18 22:41 2,-Eburotoluene ND 5.8 0.91 ug/Kg 04/12/18 18:38 04/12/18 22:41 2,-Eburotoluene ND 5.8 0.90 ug/Kg 04/12/18 18:38 04/12/18 22:41 2,-Hexanone ND 5.8 0.90 ug/Kg 04/12/18 18:38 04/12/18 22:41 4,-Isopropytloluene ND 5.8 0.90 ug/Kg 04/12/18 18:38 04/12/18 22:41 4,-Borpoytloluene ND 5.8 0.56 ug/Kg	1
1,3.5-Trimethylbenzene ND 5.8 0.66 ug/Kg 04/12/18 18:38 04/12/18 22:41 1,3-Dichlorobenzene ND 5.8 0.55 ug/Kg 04/12/18 18:38 04/12/18 22:41 1,4-Dichlorobenzene ND 5.8 0.59 ug/Kg 04/12/18 18:38 04/12/18 2:41 2,2-Dichloropropane ND 5.8 0.51 ug/Kg 04/12/18 18:38 04/12/18 2:41 2,2-Dichloropropane ND 5.8 0.51 ug/Kg 04/12/18 18:38 04/12/18 2:41 2,2-Dichloropropane ND 5.8 0.59 ug/Kg 04/12/18 8:38 04/12/18 2:41 2,-Ehstanone ND 5.8 0.59 ug/Kg 04/12/18 8:38 04/12/18 2:41 4-Chlorotoluene ND 5.8 0.50 ug/Kg 04/12/18 8:38 04/12/18 2:41 4-Chlorotoluene ND 5.8 0.56 ug/Kg 04/12/18 8:38 04/12/18 2:41 4-Chlorotoluene ND	1
1,3-Dichlorobenzene ND 5.8 0.55 ug/Kg 04/12/18 18:38 04/12/18 2:41 1,3-Dichloropropane ND 5.8 0.59 ug/Kg 04/12/18 18:38 04/12/18 2:241 2,2-Dichloropropane ND 5.8 0.51 ug/Kg 04/12/18 18:38 04/12/18 2:241 2,2-Dichloropropane ND 5.8 0.51 ug/Kg 04/12/18 04/12/18 2:42 2:41 2-Butanone (MEK) 4.6 J 23 2.1 ug/Kg 04/12/18 8:38 04/12/18 2:41 2-Chlorotoluene ND 5.8 0.59 ug/Kg 04/12/18 8:38 04/12/18 2:41 4-Chorotoluene ND 23 5.6 ug/Kg 04/12/18 8:38 04/12/18 2:41 4-Isopropyltoluene ND 5.8 0.56 ug/Kg 04/12/18 8:38 04/12/18 2:41 Acetone 10 J B 23 5.0 ug/Kg 04/12/18 8:38 04/12/18 2:41 Bromoform <td< td=""><td>1</td></td<>	1
1,3-DichloropropaneND5.80.59ug/Kg04/12/1818:3804/12/1822:411,4-DichlorobenzeneND5.80.90ug/Kg04/12/1818:3804/12/1822:412,2-DichloropropaneND5.80.51ug/Kg04/12/1818:3804/12/1822:412-Butanone (MEK)4.6J232.1ug/Kg04/12/1818:3804/12/1822:412-ChloroblueneND5.80.59ug/Kg04/12/1818:3804/12/1822:412-HexanoneND235.6ug/Kg04/12/1818:3804/12/1822:414-ChloroblueneND5.80.90ug/Kg04/12/1818:3804/12/1822:414-SopropyltolueneND5.80.56ug/Kg04/12/1818:3804/12/1822:414-Methyl-2-pentanone (MIBK)ND235.0ug/Kg04/12/1818:3804/12/1822:41BenzeneND5.80.54ug/Kg04/12/1818:3804/12/1822:41BromobenzeneND5.80.56ug/Kg04/12/1818:3804/12/1822:41BromobenzeneND5.80.56ug/Kg04/12/1818:3804/12/1822:41BromobenzeneND5.80.56ug/Kg04/12/1818:3804/12/1822:41ChlorobinzeneND5.80.73ug/Kg04/12/1818:3804/12/1822:41 <t< td=""><td>1</td></t<>	1
1.4-DichlorobenzeneND5.80.90ug/kg04/12/18 18:3804/12/18 22:412.2-DichloropropaneND5.80.51ug/kg04/12/18 18:3804/12/18 22:412-Butanone (MEK)4.6J232.1ug/kg04/12/18 18:3804/12/18 22:412-ChlorotolueneND5.80.59ug/kg04/12/18 18:3804/12/18 22:412-HexanoneND5.80.59ug/kg04/12/18 18:3804/12/18 22:412-HexanoneND5.80.90ug/kg04/12/18 18:3804/12/18 22:414-ChlorotolueneND5.80.56ug/kg04/12/18 18:3804/12/18 22:414-SopropyltolueneND5.80.56ug/kg04/12/18 18:3804/12/18 22:414-Methyl-2-pentanone (MIBK)ND235.0ug/kg04/12/18 18:3804/12/18 22:41Acetone10J B236.2ug/kg04/12/18 18:3804/12/18 22:41BenzeneND5.80.56ug/kg04/12/18 18:3804/12/18 22:41BromoformND5.80.56ug/kg04/12/18 18:3804/12/18 22:41BromoformND5.80.56ug/kg04/12/18 18:3804/12/18 22:41BromoformND5.80.56ug/kg04/12/18 18:3804/12/18 22:41ChlorobenzeneND5.80.52ug/kg04/12/18 18:3804/12/18 22:41ChlorobenzeneND5.80.62ug/kg04/12/18 18:3804/12/	1
2.2-Dichloropropane ND 5.8 0.51 ug/kg 04/12/18 18:38 04/12/18 22:41 2-Butanone (MEK) 4.6 J 23 2.1 ug/kg 04/12/18 18:38 04/12/18 22:41 2-Chlorotoluene ND 5.8 0.59 ug/kg 04/12/18 18:38 04/12/18 22:41 2-Hexanone ND 23 5.6 ug/kg 04/12/18 18:38 04/12/18 22:41 4-Chlorotoluene ND 5.8 0.90 ug/kg 04/12/18 18:38 04/12/18 22:41 4-Isopropytoluene ND 5.8 0.56 ug/kg 04/12/18 18:38 04/12/18 22:41 4-Methyl-2-pentanone (MIBK) ND 23 5.0 ug/kg 04/12/18 18:38 04/12/18 22:41 Acetone 10 J B 23 6.2 ug/kg 04/12/18 18:38 04/12/18 22:41 Bromobenzene ND 5.8 0.54 ug/kg 04/12/18 18:38 04/12/18 22:41 Bromotorm ND 5.8 0.56 ug/kg 04/12/18 18:38 04/12/18 18:28	1
2-Butanone (MEK) 4.6 J 23 2.1 ug/Kg 04/12/18 838 04/12/18 822.41 2-Chlorotoluene ND 5.8 0.59 ug/Kg 04/12/18 838 04/12/18 822.41 2-Hexanone ND 23 5.6 ug/Kg 04/12/18 838 04/12/18 822.41 4-Chlorotoluene ND 5.8 0.90 ug/Kg 04/12/18 838 04/12/18 82.41 4-Isopropyltoluene ND 5.8 0.90 ug/Kg 04/12/18 838 04/12/18 82.41 4-Methyl-2-pentanone (MIBK) ND 23 5.0 ug/Kg 04/12/18 838 04/12/18 82.41 Acetone 10 J B 23 6.2 ug/Kg 04/12/18 83 04/12/18 82.41 Benzene ND 5.8 0.54 ug/Kg 04/12/18 83 04/12/18 82.41 Bromoform ND 5.8 0.73 ug/Kg 04/12/18<	1
2-Chlorotoluene ND 5.8 0.59 ug/Kg 0.4/12/18 18:38 0.4/12/18 22:41 2-Hexanone ND 23 5.6 ug/Kg 0.4/12/18 18:38 0.4/12/18 22:41 4-Chlorotoluene ND 5.8 0.90 ug/Kg 0.4/12/18 18:38 0.4/12/18 22:41 4-Isopropyltoluene ND 5.8 0.56 ug/Kg 0.4/12/18 18:38 0.4/12/18 22:41 4-Methyl-2-pentanone (MIBK) ND 23 5.0 ug/Kg 0.4/12/18 18:38 0.4/12/18 22:41 Acetone 10 J B 23 6.2 ug/Kg 0.4/12/18 18:38 0.4/12/18 22:41 Bronobenzene ND 5.8 0.54 ug/Kg 0.4/12/18 18:38 0.4/12/18 22:41 Bromoform ND 5.8 0.56 ug/Kg 0.4/12/18 18:38 0.4/12/18 22:41 Carbon tetrachloride ND 5.8 0.73 ug/Kg 0.4/12/18 18:38 0.4/12/18 22:41 Chlorobenzene ND 5.8 0.62 ug/Kg 0.4/12/18 18:38 0.4/12/18 22:41	1
2-HexanoneND235.6ug/Kg04/12/1818:3804/12/1822:414-ChlorotolueneND5.80.90ug/Kg04/12/1818:3804/12/1822:414-IsopropyltolueneND5.80.56ug/Kg04/12/1818:3804/12/1822:414-Methyl-2-pentanone (MIBK)ND235.0ug/Kg04/12/1818:3804/12/1822:41Acetone10J B236.2ug/Kg04/12/1818:3804/12/1822:41BenzeneND5.80.54ug/Kg04/12/1818:3804/12/1822:41BromobenzeneND5.80.56ug/Kg04/12/1818:3804/12/1822:41BromoformND5.80.57ug/Kg04/12/1818:3804/12/1822:41Carbon tetrachlorideND5.80.73ug/Kg04/12/1818:3804/12/1822:41ChlorobromomethaneND5.80.73ug/Kg04/12/1818:3804/12/1822:41ChlorobromomethaneND5.80.62ug/Kg04/12/1818:3804/12/1822:41ChlorobromomethaneND5.80.66ug/Kg04/12/1818:3804/12/1822:41ChlorobromomethaneND120.33ug/Kg04/12/1818:3804/12/1822:41ChlorothromomethaneND120.33ug/Kg04/12/1818:3804/12/1822:41 <td>1</td>	1
4-ChlorotolueneND5.80.90ug/Kg04/12/1804/12/1818:3804/12/1802:184-IsopropyltolueneND5.80.56ug/Kg04/12/1818:3804/12/1822:414-Methyl-2-pentanone (MIBK)ND235.0ug/Kg04/12/1818:3804/12/1822:41Acetone10J B236.2ug/Kg04/12/1818:3804/12/1822:41BenzeneND5.80.54ug/Kg04/12/1818:3804/12/1822:41BromobenzeneND5.80.56ug/Kg04/12/1818:3804/12/1822:41BromoformND5.80.56ug/Kg04/12/1818:3804/12/1822:41BromoformND5.80.73ug/Kg04/12/1818:3804/12/1822:41Carbon tetrachlorideND5.80.73ug/Kg04/12/1818:3804/12/1822:41ChlorobenzeneND5.80.73ug/Kg04/12/1818:3804/12/1822:41ChlorobenzeneND5.80.73ug/Kg04/12/1818:3804/12/1822:41ChlorobenzeneND5.80.35ug/Kg04/12/1818:3804/12/1822:41ChlorobenzeneND5.80.35ug/Kg04/12/1818:3804/12/1822:41ChlorobromomethaneND120.33ug/Kg04/12/1818:3804/12/1822:41	1
4-IsopropyltolueneND5.80.56ug/Kg0.4/12/18 18:380.4/12/18 22:414-Methyl-2-pentanone (MIBK)ND235.0ug/Kg0.4/12/18 18:380.4/12/18 22:41Acetone10J B236.2ug/Kg0.4/12/18 18:380.4/12/18 22:41BenzeneND5.80.54ug/Kg0.4/12/18 18:380.4/12/18 22:41BromobenzeneND5.80.56ug/Kg0.4/12/18 18:380.4/12/18 22:41BromoformND5.80.56ug/Kg0.4/12/18 18:380.4/12/18 22:41BromomethaneND5.80.57ug/Kg0.4/12/18 18:380.4/12/18 22:41Carbon tetrachlorideND5.80.73ug/Kg0.4/12/18 18:380.4/12/18 22:41ChlorobenzeneND5.80.73ug/Kg0.4/12/18 18:380.4/12/18 22:41ChlorobromomethaneND5.80.73ug/Kg0.4/12/18 18:380.4/12/18 22:41ChlorobromomethaneND5.80.62ug/Kg0.4/12/18 18:380.4/12/18 22:41ChlorobromomethaneND5.80.62ug/Kg0.4/12/18 18:380.4/12/18 22:41ChlorobromomethaneND5.80.62ug/Kg0.4/12/18 18:380.4/12/18 22:41ChloroformND121.0ug/Kg0.4/12/18 18:380.4/12/18 22:41ChloroethaneND120.33ug/Kg0.4/12/18 18:380.4/12/18 22:41ChloroethaneND120.33ug/Kg	1
4-Methyl-2-pentanone (MIBK)ND235.0ug/Kg04/12/1812/1822:41Acetone10J B236.2ug/Kg04/12/1818:3804/12/1822:41BenzeneND5.80.54ug/Kg04/12/1818:3804/12/1822:41BromobenzeneND5.80.56ug/Kg04/12/1818:3804/12/1822:41BromoformND5.80.56ug/Kg04/12/1818:3804/12/1822:41BromomethaneND5.80.27ug/Kg04/12/1818:3804/12/1822:41Carbon tetrachlorideND120.58ug/Kg04/12/1818:3804/12/1822:41ChlorobenzeneND5.80.73ug/Kg04/12/1818:3804/12/1822:41ChlorobenzeneND5.80.73ug/Kg04/12/1818:3804/12/1822:41ChlorobenzeneND5.80.62ug/Kg04/12/1818:3804/12/1822:41ChlorobenzeneND5.80.62ug/Kg04/12/1818:3804/12/1822:41ChlorobenzeneND5.80.62ug/Kg04/12/1818:3804/12/1822:41ChlorobenzeneND5.80.35ug/Kg04/12/1818:3804/12/1822:41ChlorobenzeneND5.80.35ug/Kg04/12/1818:3804/12/1822:41ChlorobenamethaneND <t< td=""><td>1</td></t<>	1
Acetone10 J B236.2 ug/kg04/12/18 18:3804/12/18 22:41BenzeneND5.80.54 ug/kg04/12/18 18:3804/12/18 22:41BromobenzeneND5.80.56 ug/kg04/12/18 18:3804/12/18 22:41BromoformND5.80.56 ug/kg04/12/18 18:3804/12/18 22:41BromomethaneND120.58 ug/kg04/12/18 18:3804/12/18 22:41Carbon tetrachlorideND5.80.73 ug/kg04/12/18 18:3804/12/18 22:41ChlorobenzeneND5.80.73 ug/kg04/12/18 18:3804/12/18 22:41ChlorobenzeneND5.80.62 ug/kg04/12/18 18:3804/12/18 22:41ChlorobenzeneND5.80.62 ug/kg04/12/18 18:3804/12/18 22:41ChlorobromomethaneND5.80.66 ug/kg04/12/18 18:3804/12/18 22:41ChloroformND121.0 ug/kg04/12/18 18:3804/12/18 22:41ChloroethaneND121.0 ug/kg04/12/18 18:3804/12/18 22:41ChloromethaneND120.33 ug/kg04/12/18 18:3804/12/18 22:41ChloromethaneND120.33 ug/kg04/12/18 18:3804/12/18 22:41ChloromethaneND120.89 ug/kg04/12/18 18:3804/12/18 22:41ChloromethaneND2.90.65 ug/kg04/12/18 18:3804/12/18 22:41Cis-1,3-DichloropropeneND5.81.5 ug/kg04/12/18 18:3804/12/18 22:41Dibromomethane	1
BenzeneND5.80.54ug/Kg04/12/1818:3804/12/1822:41BromobenzeneND5.80.56ug/Kg04/12/1818:3804/12/1822:41BromoformND5.80.27ug/Kg04/12/1818:3804/12/1822:41BromomethaneND120.58ug/Kg04/12/1818:3804/12/1822:41Carbon tetrachlorideND5.80.73ug/Kg04/12/1818:3804/12/1822:41ChlorobenzeneND5.80.62ug/Kg04/12/1818:3804/12/1822:41ChlorobromomethaneND5.80.66ug/Kg04/12/1818:3804/12/1822:41ChlorodibromomethaneND5.80.66ug/Kg04/12/1818:3804/12/1822:41ChlorodibromomethaneND121.0ug/Kg04/12/1818:3804/12/1822:41ChloroformND120.33ug/Kg04/12/1818:3804/12/1822:41ChloroformND120.33ug/Kg04/12/1818:3804/12/1822:41ChloroformND120.89ug/Kg04/12/1818:3804/12/1822:41ChloroformND120.89ug/Kg04/12/1818:3804/12/1822:41ChloroformND120.89ug/Kg04/12/1818:3804/12/1822:41ChloroformND2.9 <td>1</td>	1
BromobenzeneND5.80.56ug/Kg04/12/18 18:3804/12/18 22:41BromoformND5.80.27ug/Kg04/12/18 18:3804/12/18 22:41BromomethaneND120.58ug/Kg04/12/18 18:3804/12/18 22:41Carbon tetrachlorideND5.80.73ug/Kg04/12/18 18:3804/12/18 22:41ChlorobenzeneND5.80.62ug/Kg04/12/18 18:3804/12/18 22:41ChlorobromomethaneND5.80.62ug/Kg04/12/18 18:3804/12/18 22:41ChlorobromomethaneND5.80.66ug/Kg04/12/18 18:3804/12/18 22:41ChlorobromomethaneND5.80.66ug/Kg04/12/18 18:3804/12/18 22:41ChlorodibromomethaneND121.0ug/Kg04/12/18 18:3804/12/18 22:41ChloroformND120.33ug/Kg04/12/18 18:3804/12/18 22:41ChloroformND120.33ug/Kg04/12/18 18:3804/12/18 22:41ChloroformND120.33ug/Kg04/12/18 18:3804/12/18 22:41ChloroformND120.89ug/Kg04/12/18 18:3804/12/18 22:41ChloroformND120.89ug/Kg04/12/18 18:3804/12/18 22:41ChloroforethaneND2.90.65ug/Kg04/12/18 18:3804/12/18 22:41Cis-1,2-DichloroptheneND5.81.5ug/Kg04/12/18 18:3804/12/18 22:41<	1
BromoformND5.80.27ug/Kg04/12/18 18:3804/12/18 22:41BromomethaneND120.58ug/Kg04/12/18 18:3804/12/18 22:41Carbon tetrachlorideND5.80.73ug/Kg04/12/18 18:3804/12/18 22:41ChlorobenzeneND5.80.62ug/Kg04/12/18 18:3804/12/18 22:41ChlorobromomethaneND5.80.35ug/Kg04/12/18 18:3804/12/18 22:41ChlorodibromomethaneND5.80.66ug/Kg04/12/18 18:3804/12/18 22:41ChlorodibromomethaneND5.80.66ug/Kg04/12/18 18:3804/12/18 22:41ChloroformND121.0ug/Kg04/12/18 18:3804/12/18 22:41ChloroformND120.33ug/Kg04/12/18 18:3804/12/18 22:41ChloroformND120.39ug/Kg04/12/18 18:3804/12/18 22:41ChloroformND120.39ug/Kg04/12/18 18:3804/12/18 22:41ChloromethaneND120.89ug/Kg04/12/18 18:3804/12/18 22:41ChloroformND2.90.65ug/Kg04/12/18 18:3804/12/18 22:41cis-1,3-DichloropropeneND5.81.5ug/Kg04/12/18 18:3804/12/18 22:41DibromomethaneND5.80.97ug/Kg04/12/18 18:3804/12/18 22:41	1
BromomethaneND120.58ug/Kg04/12/18 18:3804/12/18 22:41Carbon tetrachlorideND5.80.73ug/Kg04/12/18 18:3804/12/18 22:41ChlorobenzeneND5.80.62ug/Kg04/12/18 18:3804/12/18 22:41ChlorobromomethaneND5.80.35ug/Kg04/12/18 18:3804/12/18 22:41ChlorodibromomethaneND5.80.66ug/Kg04/12/18 18:3804/12/18 22:41ChlorodibromomethaneND5.80.66ug/Kg04/12/18 18:3804/12/18 22:41ChloroethaneND121.0ug/Kg04/12/18 18:3804/12/18 22:41ChloroformND120.33ug/Kg04/12/18 18:3804/12/18 22:41ChloromethaneND120.33ug/Kg04/12/18 18:3804/12/18 22:41ChloroformND120.89ug/Kg04/12/18 18:3804/12/18 22:41ChloromethaneND120.89ug/Kg04/12/18 18:3804/12/18 22:41ChloromethaneND120.89ug/Kg04/12/18 18:3804/12/18 22:41ChloropropeneND2.90.65ug/Kg04/12/18 18:3804/12/18 22:41Cis-1,3-DichloropropeneND5.80.97ug/Kg04/12/18 18:3804/12/18 22:41DibromomethaneND5.80.97ug/Kg04/12/18 18:3804/12/18 22:41	1
Carbon tetrachlorideND5.80.73ug/Kg04/12/1818:3804/12/1822:41ChlorobenzeneND5.80.62ug/Kg04/12/1818:3804/12/1822:41ChlorobromomethaneND5.80.35ug/Kg04/12/1818:3804/12/1822:41ChlorodibromomethaneND5.80.66ug/Kg04/12/1818:3804/12/1822:41ChlorodibromomethaneND5.80.66ug/Kg04/12/1818:3804/12/1822:41ChloroethaneND121.0ug/Kg04/12/1818:3804/12/1822:41ChloroformND120.33ug/Kg04/12/1818:3804/12/1822:41ChloromethaneND120.89ug/Kg04/12/1818:3804/12/1822:41ChloromethaneND120.89ug/Kg04/12/1818:3804/12/1822:41ChloromethaneND120.89ug/Kg04/12/1818:3804/12/1822:41ChloromethaneND2.90.65ug/Kg04/12/1818:3804/12/1822:41cis-1,3-DichloropropeneND5.81.5ug/Kg04/12/1818:3804/12/1822:41DibromomethaneND5.80.97ug/Kg04/12/1818:3804/12/1822:41	1
ChlorobenzeneND5.80.62ug/Kg04/12/1818:3804/12/1822:41ChlorobromomethaneND5.80.35ug/Kg04/12/1818:3804/12/1822:41ChlorodibromomethaneND5.80.66ug/Kg04/12/1818:3804/12/1822:41ChloroethaneND121.0ug/Kg04/12/1818:3804/12/1822:41ChloroformND120.33ug/Kg04/12/1818:3804/12/1822:41ChloromethaneND120.89ug/Kg04/12/1818:3804/12/1822:41ChloromethaneND120.89ug/Kg04/12/1818:3804/12/1822:41ChloromethaneND2.90.65ug/Kg04/12/1818:3804/12/1822:41cis-1,2-DichloroetheneND2.90.65ug/Kg04/12/1818:3804/12/1822:41cis-1,3-DichloropropeneND5.80.97ug/Kg04/12/1818:3804/12/1822:41DibromomethaneND5.80.97ug/Kg04/12/1818:3804/12/1822:41	1
ChlorobromomethaneND5.80.35ug/Kg04/12/18 18:3804/12/18 22:41ChlorodibromomethaneND5.80.66ug/Kg04/12/18 18:3804/12/18 22:41ChloroethaneND121.0ug/Kg04/12/18 18:3804/12/18 22:41ChloroformND120.33ug/Kg04/12/18 18:3804/12/18 22:41ChloromethaneND120.33ug/Kg04/12/18 18:3804/12/18 22:41ChloromethaneND120.89ug/Kg04/12/18 18:3804/12/18 22:41cis-1,2-DichloroetheneND2.90.65ug/Kg04/12/18 18:3804/12/18 22:41cis-1,3-DichloropropeneND5.81.5ug/Kg04/12/18 18:3804/12/18 22:41DibromomethaneND5.80.97ug/Kg04/12/18 18:3804/12/18 22:41	1
ChlorodibromomethaneND5.80.66ug/Kg04/12/1818:3804/12/1822:41ChloroethaneND121.0ug/Kg04/12/1818:3804/12/1822:41ChloroformND120.33ug/Kg04/12/1818:3804/12/1822:41ChloromethaneND120.89ug/Kg04/12/1818:3804/12/1822:41ChloromethaneND120.89ug/Kg04/12/1818:3804/12/1822:41cis-1,2-DichloroetheneND2.90.65ug/Kg04/12/1818:3804/12/1822:41cis-1,3-DichloropropeneND5.81.5ug/Kg04/12/1818:3804/12/1822:41DibromomethaneND5.80.97ug/Kg04/12/1818:3804/12/1822:41	1
ChloroethaneND121.0ug/Kg04/12/18 18:3804/12/18 22:41ChloroformND120.33ug/Kg04/12/18 18:3804/12/18 22:41ChloromethaneND120.89ug/Kg04/12/18 18:3804/12/18 22:41cis-1,2-DichloroetheneND2.90.65ug/Kg04/12/18 18:3804/12/18 22:41cis-1,3-DichloropropeneND5.81.5ug/Kg04/12/18 18:3804/12/18 22:41DibromomethaneND5.80.97ug/Kg04/12/18 18:3804/12/18 22:41	1
ChloroformND120.33ug/Kg04/12/1818:3804/12/1822:41ChloromethaneND120.89ug/Kg04/12/1818:3804/12/1822:41cis-1,2-DichloroetheneND2.90.65ug/Kg04/12/1818:3804/12/1822:41cis-1,3-DichloropropeneND5.81.5ug/Kg04/12/1818:3804/12/1822:41DibromomethaneND5.80.97ug/Kg04/12/1818:3804/12/1822:41	1
ChloromethaneND120.89ug/Kg04/12/1804/12/182:341cis-1,2-DichloroetheneND2.90.65ug/Kg04/12/1818:3804/12/182:41cis-1,3-DichloropropeneND5.81.5ug/Kg04/12/1818:3804/12/182:41DibromomethaneND5.80.97ug/Kg04/12/1818:3804/12/182:41	1
cis-1,2-DichloroetheneND2.90.65ug/Kg04/12/1804/12/182:41cis-1,3-DichloropropeneND5.81.5ug/Kg04/12/1818:3804/12/182:41DibromomethaneND5.80.97ug/Kg04/12/1818:3804/12/182:41	1
cis-1,3-Dichloropropene ND 5.8 1.5 ug/Kg 04/12/18 18:38 04/12/18 22:41 Dibromomethane ND 5.8 0.97 ug/Kg 04/12/18 18:38 04/12/18 22:41	1
Dibromomethane ND 5.8 0.97 ug/Kg 04/12/18 18:38 04/12/18 22:41	1
	1
	1
Dichlorobiomomethane ND 5.6 0.25 ug/Kg 04/12/16/18.36 04/12/16/22.41	1
Dichlorodifluoromethane ND 12 0.60 ug/Kg 04/12/18 18:38 04/12/18 22:41	1
Ethylbenzene ND 5.8 0.77 ug/Kg 04/12/18 18:38 04/12/18 22:41	1
Hexachlorobutadiene ND 5.8 0.63 ug/Kg 04/12/18 18:38 04/12/18 22:41	1
Isopropylbenzene ND 5.8 0.68 ug/Kg 04/12/18 18:38 04/12/18 22:41	1
Methyl tert-butyl ether ND 23 0.39 ug/Kg 04/12/18 18:38 04/12/18 22:41	1
Methylene Chloride ND 5.8 1.8 ug/Kg 04/12/18 18:38 04/12/18 22:41	1
m-Xylene & p-Xylene ND 2.9 1.2 ug/Kg 04/12/18 18:38 04/12/18 22:41	1

94

Client Sample ID: PCS AC19 Date Collected: 03/29/18 13:07

Lab Sample ID: 280-107960-19 Matrix: Solid

04/12/18 18:38 04/12/18 22:41

Lab Sample ID: 280-107960-20

1

Matrix: Solid

zed Dil Fac 👌
22:41 1
22:41 1
22:41 1
22:41 1
22:41 1
22:41 1 8
22:41 1
22:41 1
22:41 1
22:41 1
22:41 1
22:41 1
22:41 1
22:41 1
22:41 1
zed Dil Fac
22:41 1
22:41 1 1
22:41 1

80 - 126

Client Sample ID: PCS AC20 Date Collected: 03/29/18 13:14 Date Received: 03/30/18 08:50

Toluene-d8 (Surr)

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND	5.1	0.57	ug/Kg		04/12/18 18:38	04/12/18 23:01	1
1,1,1-Trichloroethane	ND	5.1	0.53	ug/Kg		04/12/18 18:38	04/12/18 23:01	1
1,1,2,2-Tetrachloroethane	ND	5.1	0.62	ug/Kg		04/12/18 18:38	04/12/18 23:01	1
1,1,2-Trichloroethane	ND	5.1	0.89	ug/Kg		04/12/18 18:38	04/12/18 23:01	1
1,1-Dichloroethane	ND	5.1	0.21	ug/Kg		04/12/18 18:38	04/12/18 23:01	1
1,1-Dichloroethene	ND	5.1	0.60	ug/Kg		04/12/18 18:38	04/12/18 23:01	1
1,1-Dichloropropene	ND	5.1	0.55	ug/Kg		04/12/18 18:38	04/12/18 23:01	1
1,2,3-Trichlorobenzene	ND	5.1	0.76	ug/Kg		04/12/18 18:38	04/12/18 23:01	1
1,2,3-Trichloropropane	ND	5.1	0.82	ug/Kg		04/12/18 18:38	04/12/18 23:01	1
1,2,4-Trichlorobenzene	ND	5.1	0.74	ug/Kg		04/12/18 18:38	04/12/18 23:01	1
1,2,4-Trimethylbenzene	ND	5.1	0.59	ug/Kg		04/12/18 18:38	04/12/18 23:01	1
1,2-Dibromo-3-Chloropropane	ND	10	0.61	ug/Kg		04/12/18 18:38	04/12/18 23:01	1
1,2-Dibromoethane	ND	5.1	0.53	ug/Kg		04/12/18 18:38	04/12/18 23:01	1
1,2-Dichlorobenzene	ND	5.1	0.46	ug/Kg		04/12/18 18:38	04/12/18 23:01	1
1,2-Dichloroethane	ND	5.1	0.71	ug/Kg		04/12/18 18:38	04/12/18 23:01	1
1,2-Dichloroethene, Total	ND	5.1	0.40	ug/Kg		04/12/18 18:38	04/12/18 23:01	1
1,2-Dichloropropane	ND	5.1	0.56	ug/Kg		04/12/18 18:38	04/12/18 23:01	1
1,3,5-Trimethylbenzene	ND	5.1	0.58	ug/Kg		04/12/18 18:38	04/12/18 23:01	1
1,3-Dichlorobenzene	ND	5.1	0.49	ug/Kg		04/12/18 18:38	04/12/18 23:01	1
1,3-Dichloropropane	ND	5.1	0.52	ug/Kg		04/12/18 18:38	04/12/18 23:01	1
1,4-Dichlorobenzene	ND	5.1	0.79	ug/Kg		04/12/18 18:38	04/12/18 23:01	1
2,2-Dichloropropane	ND	5.1	0.45	ug/Kg		04/12/18 18:38	04/12/18 23:01	1
2-Butanone (MEK)	6.6 J	20	1.9	ug/Kg		04/12/18 18:38	04/12/18 23:01	1
2-Chlorotoluene	ND	5.1	0.52	ug/Kg		04/12/18 18:38	04/12/18 23:01	1

Lab Sample ID: 280-107960-20 Matrix: Solid

5

8

Client Sample ID: PCS AC20 Date Collected: 03/29/18 13:14

Date Received: 03/30/18 08:									
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2-Hexanone	ND		20	5.0	ug/Kg		04/12/18 18:38	04/12/18 23:01	1
4-Chlorotoluene	ND		5.1	0.79	ug/Kg		04/12/18 18:38	04/12/18 23:01	1
4-Isopropyltoluene	ND		5.1	0.50	ug/Kg		04/12/18 18:38	04/12/18 23:01	1
4-Methyl-2-pentanone (MIBK)	ND		20	4.4	ug/Kg		04/12/18 18:38	04/12/18 23:01	1
Acetone	21	В	20		ug/Kg		04/12/18 18:38	04/12/18 23:01	1
Benzene	ND		5.1		ug/Kg		04/12/18 18:38	04/12/18 23:01	1
Bromobenzene	ND		5.1		ug/Kg		04/12/18 18:38	04/12/18 23:01	1
Bromoform	ND		5.1		ug/Kg		04/12/18 18:38	04/12/18 23:01	1
Bromomethane	ND		10		ug/Kg		04/12/18 18:38	04/12/18 23:01	1
Carbon tetrachloride	ND		5.1		ug/Kg		04/12/18 18:38	04/12/18 23:01	1
Chlorobenzene	ND		5.1		ug/Kg		04/12/18 18:38	04/12/18 23:01	1
Chlorobromomethane	ND		5.1		ug/Kg		04/12/18 18:38	04/12/18 23:01	1
Chlorodibromomethane	ND		5.1		ug/Kg		04/12/18 18:38	04/12/18 23:01	1
Chloroethane	ND		10		ug/Kg			04/12/18 23:01	1
Chloroform	ND		10		ug/Kg			04/12/18 23:01	1
Chloromethane	ND		10		ug/Kg			04/12/18 23:01	1
cis-1,2-Dichloroethene	ND		2.5		ug/Kg			04/12/18 23:01	1
cis-1,3-Dichloropropene	ND		5.1		ug/Kg			04/12/18 23:01	1
Dibromomethane	ND		5.1		ug/Kg			04/12/18 23:01	
Dichlorobromomethane	ND		5.1		ug/Kg			04/12/18 23:01	1
Dichlorodifluoromethane	ND		10		ug/Kg			04/12/18 23:01	1
Ethylbenzene	ND		5.1		ug/Kg			04/12/18 23:01	
Hexachlorobutadiene	ND		5.1		ug/Kg			04/12/18 23:01	1
Isopropylbenzene	ND		5.1		ug/Kg			04/12/18 23:01	1
Methyl tert-butyl ether	ND		20		ug/Kg			04/12/18 23:01	
Methylene Chloride	ND		5.1		ug/Kg			04/12/18 23:01	1
m-Xylene & p-Xylene	ND		2.5		ug/Kg			04/12/18 23:01	1
Naphthalene	ND		5.1		ug/Kg			04/12/18 23:01	
n-Butylbenzene	ND		5.1		ug/Kg			04/12/18 23:01	1
N-Propylbenzene	ND		5.1		ug/Kg			04/12/18 23:01	1
o-Xylene	ND		2.5		ug/Kg			04/12/18 23:01	
sec-Butylbenzene	ND		5.1		ug/Kg ug/Kg			04/12/18 23:01	1
Styrene	ND		5.1					04/12/18 23:01	1
tert-Butylbenzene	ND		5.1		ug/Kg ug/Kg			04/12/18 23:01	
Tetrachloroethene	ND		5.1		ug/Kg ug/Kg			04/12/18 23:01	1
	ND		5.1		ug/Kg ug/Kg			04/12/18 23:01	1
Toluene trans-1,2-Dichloroethene									· · · · · · · 1
	ND		2.5		ug/Kg			04/12/18 23:01	1
trans-1,3-Dichloropropene	ND		5.1		ug/Kg			04/12/18 23:01 04/12/18 23:01	1
Trichloroethene	ND		5.1		ug/Kg				1
Trichlorofluoromethane	ND		10		ug/Kg			04/12/18 23:01	1
Vinyl chloride	ND		5.1		ug/Kg			04/12/18 23:01	1
Xylenes, Total	ND		5.1	0.62	ug/Kg		04/12/18 18:38	04/12/18 23:01	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	77		58 - 140				04/12/18 18:38	04/12/18 23:01	1
4-Bromofluorobenzene (Surr)	100		76 - 127				04/12/18 18:38	04/12/18 23:01	1
Dibromofluoromethane (Surr)	88		75 - 121				04/12/18 18:38	04/12/18 23:01	1
Toluene-d8 (Surr)	93		80 - 126				04/12/18 18:38	04/12/18 23:01	1

5

8 9

Method: 8015B - Gasoline Range Organics - (GC)

	•	•	()						
Client Sample ID: PCS AC1 Date Collected: 03/29/18 11:35							Lab Sam	ple ID: 280-10 Matrix	7960-1 c: Solid
Date Received: 03/30/18 08:50 Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO) -C6-C10		J B F1	1.2		mg/Kg		04/03/18 13:40		1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
a,a,a-Trifluorotoluene	94		77 - 123				04/03/18 13:40	04/10/18 15:10	1
Client Sample ID: PCS AC2							Lab Sam	ple ID: 280-10	7960-2
Date Collected: 03/29/18 11:41								Matrix	c: Solid
Date Received: 03/30/18 08:50 Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO) -C6-C10	0.64	JB	1.2	0.32	mg/Kg		04/03/18 13:40	04/10/18 16:49	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
a,a,a-Trifluorotoluene	92		77 - 123				04/03/18 13:40	04/10/18 16:49	1
Client Sample ID: PCS AC3							Lab Sam	ple ID: 280-10	7960-3
Date Collected: 03/29/18 11:46								•	c: Solid
Date Received: 03/30/18 08:50 Analyte	Booult	Qualifier	RL	MDL	Unit	D	Bronorod	Analyzad	Dil Fac
Gasoline Range Organics (GRO)	0.78		1.2		mg/Kg		Prepared 04/03/18 13:40	Analyzed 04/10/18 17:13	1
-C6-C10		• -							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
a,a,a-Trifluorotoluene	88		77 - 123				04/03/18 13:40	04/10/18 17:13	1
Client Sample ID: PCS AC4							Lab Sam	ple ID: 280-10	7960-4
Date Collected: 03/29/18 11:50								Matrix	c: Solid
Date Received: 03/30/18 08:50 Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)	0.89	-	1.2		mg/Kg		04/03/18 13:40		1
-C6-C10									
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
a,a,a-Trifluorotoluene	87		77 - 123				04/03/18 13:40	04/10/18 17:38	1
Client Sample ID: PCS AC5 Date Collected: 03/29/18 11:55							Lab Sam	ple ID: 280-10 Matrix	7960-5 c: Solid
Date Received: 03/30/18 08:50 Analyte	Pocult	Qualifier	RL	МП	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)	0.84		1.2		mg/Kg			04/10/18 18:03	1
-C6-C10									
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
a,a,a-Trifluorotoluene	88		77 - 123				04/03/18 13:40	04/10/18 18:03	1
Client Sample ID: PCS AC6							Lab Sam	ple ID: 280-10	
Date Collected: 03/29/18 12:00								Matrix	c: Solid
Date Received: 03/30/18 08:50 Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)	0.52		1.2		mg/Kg		•	04/10/18 20:17	1
-C6-C10									

5

Method: 8015B - Gasoline Range Organics - (GC) (Continued)

Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
a,a,a-Trifluorotoluene	87		77 - 123				04/03/18 13:40	04/10/18 20:17	1
Client Sample ID: PCS AC7 Date Collected: 03/29/18 12:05 Date Received: 03/30/18 08:50							Lab Sam	ple ID: 280-10 Matrix	7960-7 : Solid
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO) -C6-C10	0.54		1.2		mg/Kg		04/03/18 13:40	-	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
a,a,a-Trifluorotoluene	96		77 - 123				04/03/18 13:40	04/10/18 20:41	1
Client Sample ID: PCS AC8 Date Collected: 03/29/18 12:10 Date Received: 03/30/18 08:50							Lab Sam	ple ID: 280-10 Matrix	7960-8 :: Solid
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO) -C6-C10	0.58	JB	1.2	0.33	mg/Kg		04/03/18 13:40	04/10/18 21:06	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
a,a,a-Trifluorotoluene	95		77 - 123				04/03/18 13:40	04/10/18 21:06	1
Client Sample ID: PCS AC9 Date Collected: 03/29/18 12:15 Date Received: 03/30/18 08:50							Lab Sam	ple ID: 280-10 Matrix	7960-9 :: Solid
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Result 0.73		RL		Unit mg/Kg	D	Prepared 04/03/18 13:40	•	Dil Fac
Analyte Gasoline Range Organics (GRO)		JB				D	•	•	
Analyte Gasoline Range Organics (GRO) -C6-C10	0.73	JB	1.2			<u>D</u>	04/03/18 13:40 Prepared	04/10/18 21:30	1
Analyte Gasoline Range Organics (GRO) -C6-C10 Surrogate	0.73 %Recovery	JB	1.2			<u>D</u>	04/03/18 13:40 Prepared 04/03/18 13:40	04/10/18 21:30 Analyzed 04/10/18 21:30 le ID: 280-107	1 Dil Fac
Analyte Gasoline Range Organics (GRO) -C6-C10 Surrogate a,a,a-Trifluorotoluene Client Sample ID: PCS AC10 Date Collected: 03/29/18 12:20	0.73 %Recovery 89	JB	1.2		mg/Kg	D 	04/03/18 13:40 Prepared 04/03/18 13:40	04/10/18 21:30 Analyzed 04/10/18 21:30 le ID: 280-107	1 Dil Fac 1 960-10
Analyte Gasoline Range Organics (GRO) -C6-C10 Surrogate a,a,a-Trifluorotoluene Client Sample ID: PCS AC10 Date Collected: 03/29/18 12:20 Date Received: 03/30/18 08:50	0.73 %Recovery 89	J B <i>Qualifier</i> Qualifier	1.2 	0.32	mg/Kg		04/03/18 13:40 Prepared 04/03/18 13:40 Lab Samp	04/10/18 21:30 Analyzed 04/10/18 21:30 le ID: 280-107 Matrix Analyzed	1 Dil Fac 1 2960-10 c: Solid
Analyte Gasoline Range Organics (GRO) -C6-C10 Surrogate a,a,a-Trifluorotoluene Client Sample ID: PCS AC10 Date Collected: 03/29/18 12:20 Date Received: 03/30/18 08:50 Analyte Gasoline Range Organics (GRO)	0.73 %Recovery 89 Result	J B Qualifier Qualifier J B	1.2 Limits 77 - 123 RL	0.32	mg/Kg Unit		04/03/18 13:40 Prepared 04/03/18 13:40 Lab Samp Prepared	04/10/18 21:30 Analyzed 04/10/18 21:30 le ID: 280-107 Matrix Analyzed	1 <i>Dil Fac</i> 7 960-10 (: Solid Dil Fac
Analyte Gasoline Range Organics (GRO) -C6-C10 Surrogate a,a,a-Trifluorotoluene Client Sample ID: PCS AC10 Date Collected: 03/29/18 12:20 Date Received: 03/30/18 08:50 Analyte Gasoline Range Organics (GRO) -C6-C10	0.73 %Recovery 89 Result 0.61	J B Qualifier Qualifier J B	1.2 <u>Limits</u> 77 - 123 <u>RL</u> 1.2	0.32	mg/Kg Unit		04/03/18 13:40 Prepared 04/03/18 13:40 Lab Samp Prepared 04/03/18 13:40 Prepared	04/10/18 21:30 Analyzed 04/10/18 21:30 le ID: 280-107 Matrix Analyzed 04/10/18 21:55	1 <i>Dil Fac</i> 7 7 7 7 7 960-10 C: Solid Dil Fac 1
Analyte Gasoline Range Organics (GRO) -C6-C10 Surrogate a,a,a-Trifluorotoluene Client Sample ID: PCS AC10 Date Collected: 03/29/18 12:20 Date Received: 03/29/18 12:20 Date Received: 03/30/18 08:50 Analyte Gasoline Range Organics (GRO) -C6-C10 Surrogate a,a,a-Trifluorotoluene Client Sample ID: PCS AC11 Date Collected: 03/29/18 12:25 Date Received: 03/30/18 08:50	0.73 %Recovery 89 Result 0.61 %Recovery 88	J B Qualifier J B Qualifier	1.2 Limits 77 - 123 RL 1.2 Limits 77 - 123	0.32 MDL 0.33	mg/Kg Unit mg/Kg		04/03/18 13:40 Prepared 04/03/18 13:40 Lab Samp Prepared 04/03/18 13:40 Prepared 04/03/18 13:40 Outloop Prepared 04/03/18 04/03/18 13:40 0 Lab Samp Description Description 04/03/18 13:40 Description 04/03/18 13:40 Description Lab Samp Description Description	Analyzed 04/10/18 21:30 Analyzed 04/10/18 21:30 le ID: 280-107 Matrix Analyzed 04/10/18 21:55 Analyzed 04/10/18 21:55 Analyzed 04/10/18 21:55 Le ID: 280-107	1 Dil Fac 1 2960-10 Contract 2960-10 Contract Dil Fac 1 Dil Fac 1 2960-11 C: Solid
Analyte Gasoline Range Organics (GRO) -C6-C10 Surrogate a,a,a-Trifluorotoluene Client Sample ID: PCS AC10 Date Collected: 03/29/18 12:20 Date Received: 03/30/18 08:50 Analyte Gasoline Range Organics (GRO) -C6-C10 Surrogate a,a,a-Trifluorotoluene Client Sample ID: PCS AC11 Date Collected: 03/29/18 12:25 Date Collected: 03/29/18 12:25 Date Received: 03/30/18 08:50 Analyte	0.73 %Recovery 89 Result 0.61 %Recovery 88 Result	J B Qualifier J B Qualifier Qualifier	1.2 Limits 77 - 123 RL 1.2 Limits 77 - 123 RL	0.32 MDL 0.33	mg/Kg Unit mg/Kg Unit		04/03/18 13:40 Prepared 04/03/18 13:40 Lab Samp Prepared 04/03/18 13:40 Prepared 04/03/18 13:40 Outloop Prepared 04/03/18 04/03/18 13:40 0 Prepared 04/03/18 13:40 Prepared 04/03/18 13:40 Prepared 04/03/18 13:40 Lab Samp Prepared 04/03/18	Analyzed Analyzed O4/10/18 21:30 Ie ID: 280-107 Matrix Analyzed O4/10/18 21:55 Analyzed O4/10/18 21:55 Analyzed O4/10/18 21:55 Ie ID: 280-107 Matrix Analyzed	1 <i>Dil Fac</i> 1 2960-10 2960-10 2960-10 1 <i>Dil Fac</i> 1 2960-11 2960-11 2960-11 2960-11 2960-11 2960-10
Analyte Gasoline Range Organics (GRO) -C6-C10 Surrogate a,a,a-Trifluorotoluene Client Sample ID: PCS AC10 Date Collected: 03/29/18 12:20 Date Received: 03/29/18 12:20 Date Received: 03/30/18 08:50 Analyte Gasoline Range Organics (GRO) -C6-C10 Surrogate a,a,a-Trifluorotoluene Client Sample ID: PCS AC11 Date Collected: 03/29/18 12:25 Date Received: 03/30/18 08:50	0.73 %Recovery 89 Result 0.61 %Recovery 88	J B Qualifier J B Qualifier Qualifier	1.2 Limits 77 - 123 RL 1.2 Limits 77 - 123	0.32 MDL 0.33	mg/Kg Unit mg/Kg	D	04/03/18 13:40 Prepared 04/03/18 13:40 Lab Samp Prepared 04/03/18 13:40 Prepared 04/03/18 13:40 Outloop Prepared 04/03/18 04/03/18 13:40 0 Prepared 04/03/18 13:40 Prepared 04/03/18 13:40 Prepared 04/03/18 13:40 Lab Samp Prepared 04/03/18	04/10/18 21:30 Analyzed 04/10/18 21:30 le ID: 280-107 Matrix Analyzed 04/10/18 21:55 Analyzed 04/10/18 21:55 le ID: 280-107 Matrix	1 Dil Fac 1 2960-10 Contract 2960-10 Contract Dil Fac 1 Dil Fac 1 2960-11 C: Solid
Analyte Gasoline Range Organics (GRO) -C6-C10 Surrogate a,a,a-Trifluorotoluene Client Sample ID: PCS AC10 Date Collected: 03/29/18 12:20 Date Received: 03/30/18 08:50 Analyte Gasoline Range Organics (GRO) -C6-C10 Surrogate a,a,a-Trifluorotoluene Client Sample ID: PCS AC11 Date Collected: 03/29/18 12:25 Date Received: 03/29/18 12:25 Date Received: 03/30/18 08:50 Analyte Gasoline Range Organics (GRO)	0.73 %Recovery 89 Result 0.61 %Recovery 88 Result	J B Qualifier J B Qualifier Qualifier J B	1.2 Limits 77 - 123 RL 1.2 Limits 77 - 123 RL	0.32 MDL 0.33	mg/Kg Unit mg/Kg Unit	D	04/03/18 13:40 Prepared 04/03/18 13:40 Lab Samp Prepared 04/03/18 13:40 Prepared 04/03/18 13:40 Outloop Prepared 04/03/18 04/03/18 13:40 0 Prepared 04/03/18 13:40 Prepared 04/03/18 13:40 Prepared 04/03/18 13:40 Lab Samp Prepared 04/03/18	Analyzed Analyzed O4/10/18 21:30 Ie ID: 280-107 Matrix Analyzed O4/10/18 21:55 Analyzed O4/10/18 21:55 Analyzed O4/10/18 21:55 Ie ID: 280-107 Matrix Analyzed	1 <i>Dil Fac</i> 1 2960-10 2960-10 2960-10 1 <i>Dil Fac</i> 1 2960-11 2960-11 2960-11 2960-11 2960-11 2960-10

5

8 9

Method: 8015B - Gasoline Range Organics - (GC)

		•	. ,						
Client Sample ID: PCS AC12 Date Collected: 03/29/18 12:30							Lab Samp	le ID: 280-107 Matrix	/960-12 c: Solid
Date Received: 03/20/18 08:50								Mati 12	C. Solid
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO) -C6-C10	0.65	JB	1.2	0.33	mg/Kg		04/03/18 13:40	04/11/18 14:51	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
a,a,a-Trifluorotoluene	97		77 - 123				04/03/18 13:40	04/11/18 14:51	1
									000 42
Client Sample ID: PCS AC13 Date Collected: 03/29/18 12:36								le ID: 280-107 Matrix	c: Solid
Date Received: 03/30/18 08:50								matrix	. oona
Analyte	Result	Qualifier	RL	MDL		D	-	Analyzed	Dil Fac
Gasoline Range Organics (GRO) -C6-C10	0.71	JB	1.2	0.32	mg/Kg		04/03/18 13:40	04/11/18 15:16	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
a,a,a-Trifluorotoluene	90		77 - 123				04/03/18 13:40	04/11/18 15:16	1
Client Sample ID: PCS AC14 Date Collected: 03/29/18 12:41							Lab Samp	le ID: 280-107 Motrix	
Date Received: 03/29/18 12:41								Watib	c: Solid
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO) -C6-C10	0.82	JB	1.2	0.33	mg/Kg		04/03/18 13:40	04/11/18 15:41	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
a,a,a-Trifluorotoluene	90		77 - 123				•	04/11/18 15:41	1
Client Sample ID: PCS AC15							Lab Samp	le ID: 280-107	
Date Collected: 03/29/18 12:46 Date Received: 03/30/18 08:50								watrix	c: Solid
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO) -C6-C10	0.83	JB	1.2	0.33	mg/Kg		04/03/18 13:40	04/11/18 16:06	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
a.a.a-Trifluorotoluene	85	Quaimer	77 - 123				•	04/11/18 16:06	1
									-
Client Sample ID: PCS AC16							Lab Samp	le ID: 280-107	
Date Collected: 03/29/18 12:51								Matrix	c: Solid
Date Received: 03/30/18 08:50 Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)	0.69		1.2		mg/Kg		04/03/18 13:40		1
-C6-C10					0 0				
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
a,a,a-Trifluorotoluene	85		77 - 123				04/03/18 13:40	04/11/18 16:31	1
									000 47
Client Sample ID: PCS AC17							Lab Samb	le ID: 280-107	960-17
Client Sample ID: PCS AC17 Date Collected: 03/29/18 12:56							Lab Samp	le ID: 280-107 Matrix	(960-17 (Solid
Date Collected: 03/29/18 12:56 Date Received: 03/30/18 08:50								Matrix	c: Solid
Date Collected: 03/29/18 12:56		Qualifier		MDL	Unit mg/Kg	D		Matrix Analyzed	

8 9

Method: 8015B - Gasoline Range Organics - (GC) (Continued)

Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
a,a,a-Trifluorotoluene	92		77 - 123				04/03/18 13:40	04/11/18 16:56	1
Client Sample ID: PCS AC18 Date Collected: 03/29/18 13:02							Lab Samp	le ID: 280-107 Matrix	/960-18 (: Solid
Date Received: 03/30/18 08:50 Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO) -C6-C10	0.62	JB	1.2	0.32	mg/Kg		04/03/18 13:40	04/11/18 17:21	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
a,a,a-Trifluorotoluene	86		77 - 123				04/03/18 13:40	04/11/18 17:21	1
Client Sample ID: PCS AC19 Date Collected: 03/29/18 13:07							Lab Samp	le ID: 280-107 Matrix	/960-19 (: Solid
Date Received: 03/30/18 08:50 Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO) -C6-C10	0.71	JB	1.2	0.32	mg/Kg		04/03/18 13:40	04/11/18 17:45	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
a,a,a-Trifluorotoluene	98		77 - 123				04/03/18 13:40	04/11/18 17:45	1
Client Sample ID: PCS AC20 Date Collected: 03/29/18 13:14 Date Received: 03/30/18 08:50							Lab Samp	le ID: 280-107 Matrix	/960-20 (: Solid
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO) -C6-C10	0.76	JB	1.2	0.32	mg/Kg		04/03/18 13:40	04/11/18 18:10	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
a,a,a-Trifluorotoluene	95		77 - 123				04/03/18 13:40	04/11/18 18:10	1

Method: 8015B - Diesel Range Organics (DRO) (GC)

Client Sample ID: PCS AC1 Date Collected: 03/29/18 11:35							Lab Sam	ple ID: 280-10 Matrix	7960-1 :: Solid
Date Received: 03/30/18 08:50 Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics [C10-C28]	19	B	7.9	1.3	mg/Kg		04/03/18 07:33	04/09/18 15:15	1
C10-C36	27	В	7.9	2.0	mg/Kg		04/03/18 07:33	04/09/18 15:15	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	82		49 - 115				04/03/18 07:33	04/09/18 15:15	1
Client Sample ID: PCS AC2							Lab Sam	ple ID: 280-10	7960-2
Date Collected: 03/29/18 11:41									: Solid
Date Received: 03/30/18 08:50									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics [C10-C28]	230	В	7.6	1.3	mg/Kg		04/03/18 07:33	04/09/18 16:28	1
C10-C36	280	В	7.6	1.9	mg/Kg		04/03/18 07:33	04/09/18 16:28	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	83		49 - 115				04/03/18 07:33	04/09/18 16:28	1

Method: 8015B - Diesel Range Organics (DRO) (GC)

5

8 9

Client Sample ID: PCS AC3 Date Collected: 03/29/18 11:46							Lab Sam	ole ID: 280-10 Matrix)7960-3 c: Solid
Date Received: 03/30/18 08:50									
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Diesel Range Organics [C10-C28]	320		7.4		mg/Kg			04/09/18 16:53	1
C10-C36	370	В	7.4	1.8	mg/Kg		04/03/18 07:33	04/09/18 16:53	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	89		49 - 115				•	04/09/18 16:53	1
Client Sample ID: PCS AC4							Lab Sam	ole ID: 280-10	
Date Collected: 03/29/18 11:50								Matrix	c: Solid
Date Received: 03/30/18 08:50	Decult	Qualifian			11		Ducusurad	A	
Analyte	680	Qualifier B		MDL 1.3	mg/Kg	D	Prepared 04/03/18 07:33	Analyzed 04/09/18 17:17	Dil Fac
Diesel Range Organics [C10-C28] C10-C36	850	-	7.8		mg/Kg			04/09/18 17:17	1
010-036	000	D	7.0	2.0	mg/rtg		04/03/10 07.33	04/03/10 17.17	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	66		49 - 115				04/03/18 07:33	04/09/18 17:17	1
Client Sample ID: PCS AC5							Lab Sam	ole ID: 280-10	
Date Collected: 03/29/18 11:55								Matrix	c: Solid
Date Received: 03/30/18 08:50	Booult	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Analyte Diesel Range Organics [C10-C28]					mg/Kg		04/03/18 07:33	04/09/18 17:42	
C10-C36	39		7.8		mg/Kg			04/09/18 17:42	1
010-030			1.0	2.0	mg/rtg			04/00/10 11.42	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	80		49 - 115				04/03/18 07:33	04/09/18 17:42	1
									7000 0
Client Sample ID: PCS AC6 Date Collected: 03/29/18 12:00								ole ID: 280-10 Motrix	c: Solid
Date Received: 03/30/18 08:50								Watrix	. Soli u
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics [C10-C28]	18		7.8		mg/Kg		04/03/18 07:33	04/09/18 18:06	1
C10-C36	28		7.8		mg/Kg		04/03/18 07:33	04/09/18 18:06	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	84		49 - 115				04/03/18 07:33	04/09/18 18:06	1
Client Sample ID: PCS AC7							Lah Sami	ole ID: 280-10	7960-7
Date Collected: 03/29/18 12:05							Lab Sam		c: Solid
Date Received: 03/30/18 08:50									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics [C10-C28]	24	В	7.9	1.3	mg/Kg		04/03/18 07:33	04/09/18 18:31	1
C10-C36	39	В	7.9	2.0	mg/Kg		04/03/18 07:33	04/09/18 18:31	1
	0/ D	0	1 1				D	A	D.1
Surrogate	%Recovery 87	Qualifier	Limits 49 - 115				Prepared	Analyzed 04/09/18 18:31	Dil Fac
o-Terphenyl	07		49 - 115				04/03/16 07.33	04/09/10 10.31	1
									7000 0
Client Sample ID: PCS AC8							Lab Sami	ole ID: 280-10	1/960-8
Client Sample ID: PCS AC8 Date Collected: 03/29/18 12:10							Lab Sam	ole ID: 280-10 Matrix	c: Solid
							Lab Sam		
Date Collected: 03/29/18 12:10 Date Received: 03/30/18 08:50 Analyte	Result	Qualifier	RL	MDL		D	Prepared	Matrix Analyzed	
Date Collected: 03/29/18 12:10 Date Received: 03/30/18 08:50		B	RL 7.7 7.7	1.3	Unit mg/Kg mg/Kg	D	Prepared 04/03/18 07:33	Matrix	c: Solid

Method: 8015B - Diesel Range Organics (DRO) (GC) (Continued)

Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	86		49 - 115				04/03/18 07:33	04/09/18 18:55	1
Client Sample ID: PCS AC9							Lah Sam	ple ID: 280-10	7960-9
Date Collected: 03/29/18 12:15							Lab Gam		: Solid
Date Received: 03/30/18 08:50									. oona
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics [C10-C28]	59	B	7.7	1.3	mg/Kg		04/03/18 07:33	04/09/18 19:20	1
C10-C36	92	В	7.7	1.9	mg/Kg		04/03/18 07:33	04/09/18 19:20	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	91		49 - 115				•	04/09/18 19:20	1
Client Sample ID: PCS AC10							Lob Somo	le ID: 280-107	060 40
Date Collected: 03/29/18 12:20							Lab Samp		: Solid
Date Received: 03/23/18 08:50								Watin	. Soliu
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics [C10-C28]	26		7.8		mg/Kg		04/03/18 07:33	04/09/18 19:44	1
C10-C36	41		7.8		mg/Kg		04/03/18 07:33	04/09/18 19:44	1
Sumerate	9/ Decessory	Ovalifiar	Limita				Dronorod	Anolymod	
Surrogate o-Terphenyl	%Recovery 87	Quaimer	Limits 49 - 115				Prepared	Analyzed 04/09/18 19:44	Dil Fac
0-Terpheny	07		49-115				04/03/18 07.33	04/09/10 19.44	I
Client Sample ID: PCS AC11							Lab Samp	le ID: 280-107	960-11
Date Collected: 03/29/18 12:25								Matrix	: Solid
Date Received: 03/30/18 08:50									
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics [C10-C28]	20	В	8.0		mg/Kg		04/03/18 07:33	04/09/18 20:33	1
C10-C36	33	В	8.0	2.0	mg/Kg		04/03/18 07:33	04/09/18 20:33	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	83		49 - 115				04/03/18 07:33	04/09/18 20:33	1
Client Sample ID: PCS AC12							Lab Samp	le ID: 280-107	960 12
Date Collected: 03/29/18 12:30							Lab Samp		: Solid
Date Received: 03/30/18 08:50								Matrix	. oonu
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics [C10-C28]	26	В	7.9	1.4	mg/Kg		04/03/18 07:33	04/09/18 20:57	1
C10-C36	44	В	7.9	2.0	mg/Kg		04/03/18 07:33	04/09/18 20:57	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	92		49 - 115				04/03/18 07:33	04/09/18 20:57	1
Client Sample ID: PCS AC13							l ah Samn	le ID: 280-107	960-13
							Lab Gamp		: Solid
Date Collected: 03/29/18 12:36								Matrix	. oona
	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Date Collected: 03/29/18 12:36 Date Received: 03/30/18 08:50 Analyte	Result 20		RL		Unit mg/Kg	D	Prepared 04/03/18 07:33		
Date Collected: 03/29/18 12:36 Date Received: 03/30/18 08:50		B		1.3		D	04/03/18 07:33	Analyzed	Dil Fac
Date Collected: 03/29/18 12:36 Date Received: 03/30/18 08:50 Analyte Diesel Range Organics [C10-C28]	20	B B	7.7	1.3	mg/Kg	D	04/03/18 07:33	Analyzed 04/09/18 21:22	Dil Fac

Client Sample ID: PCS AC14

Method: 8015B - Diesel Range Organics (DRO) (GC)

Lab Sample ID: 280-107960-14 5

8 9

Client Sample ID: PCS AC14							Lan Samp	ie ID: 200-107	900-14
Date Collected: 03/29/18 12:41								Matrix	: Solid
Date Received: 03/30/18 08:50									
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics [C10-C28]	16	В	7.3	1.2	mg/Kg		04/03/18 07:33	04/09/18 21:46	1
C10-C36	23		7.3		mg/Kg			04/09/18 21:46	1
Surrogata	%Recovery	Qualifiar	Limits				Bronorod	Analyzad	Dil Fac
Surrogate o-Terphenyl	76	Quaimer	49 - 115				Prepared	Analyzed 04/09/18 21:46	1 DII Fac
	70		43 - 110				04/03/10 07:33	04/03/10 21.40	,
Client Sample ID: PCS AC15							Lab Samp	le ID: 280-107	
Date Collected: 03/29/18 12:46								Matrix	: Solid
Date Received: 03/30/18 08:50									
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Diesel Range Organics [C10-C28]	22	В	7.7	1.3	mg/Kg		04/03/18 07:33	04/09/18 22:10	1
C10-C36	35	В	7.7	1.9	mg/Kg		04/03/18 07:33	04/09/18 22:10	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
p-Terphenyl	81		49 - 115				•	04/09/18 22:10	1
Client Sample ID: PCS AC16							Lab Samp	le ID: 280-107	
Date Collected: 03/29/18 12:51								Matrix	: Solid
Date Received: 03/30/18 08:50		0			11	_	Descent	A	D '' F
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Diesel Range Organics [C10-C28]	25	В	7.1		mg/Kg		04/03/18 07:33	04/09/18 22:35	1
C10-C36	45	В	7.1	1.8	mg/Kg		04/03/18 07:33	04/09/18 22:35	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
p-Terphenyl	90		49 - 115				04/03/18 07:33	04/09/18 22:35	1
Client Sample ID: PCS AC17							Lab Samp	le ID: 280-107	960 17
Date Collected: 03/29/18 12:56									: Solid
								Watin	. Soliu
Date Received: 03/30/18 08:50		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Analyte							04/03/18 07:33		1
Diesel Range Organics [C10-C28]	20				mg/Kg				-
C10-C36	37	в	7.1	1.8	mg/Kg		04/03/18 07:33	04/09/18 22:59	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
p-Terphenyl	86		49 - 115				04/03/18 07:33	04/09/18 22:59	1
Client Sample ID: PCS AC18							Lab Samp	le ID: 280-107	960-18
Date Collected: 03/29/18 13:02									: Solid
								Iviau ix	. Soliu
Date Received: 03/30/18 08:50		Qualifian	ы	MDI	11		Drenered	Analyzad	
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Diesel Range Organics [C10-C28]			8.0	1.4	mg/Kg			04/09/18 23:24	1
	20								
	20 34		8.0	2.0	mg/Kg		04/03/18 07:33	04/09/18 23:24	1
C10-C36		В		2.0	mg/Kg		04/03/18 07:33 Prepared	04/09/18 23:24 Analyzed	1 Dil Fac
C10-C36 Surrogate	34	В	8.0	2.0	mg/Kg		Prepared		
C10-C36 Surrogate p-Terphenyl	34 %Recovery	В	8.0 <i>Limits</i>	2.0	mg/Kg		Prepared 04/03/18 07:33	Analyzed 04/09/18 23:24	Dil Fac
C10-C36 Surrogate D-Terphenyl Client Sample ID: PCS AC19	34 %Recovery 88	В	8.0 <i>Limits</i>	2.0	mg/Kg		Prepared 04/03/18 07:33	Analyzed 04/09/18 23:24 e ID: 280-107	Dil Fac 1 960-19
C10-C36 Surrogate p-Terphenyl Client Sample ID: PCS AC19 Date Collected: 03/29/18 13:07	34 %Recovery 88	В	8.0 <i>Limits</i>	2.0	mg/Kg		Prepared 04/03/18 07:33	Analyzed 04/09/18 23:24 e ID: 280-107	Dil Fac
C10-C36 Surrogate p-Terphenyl Client Sample ID: PCS AC19 Date Collected: 03/29/18 13:07 Date Received: 03/30/18 08:50	34 <u>%Recovery</u> 88	B Qualifier	8.0 			D	Prepared 04/03/18 07:33 Lab Samp	Analyzed 04/09/18 23:24 e ID: 280-107 Matrix	Dil Fac 1 960-19 :: Solid
C10-C36 Surrogate o-Terphenyl Client Sample ID: PCS AC19 Date Collected: 03/29/18 13:07 Date Received: 03/30/18 08:50 Analyte	34 <u>%Recovery</u> 88 Result	B <i>Qualifier</i> Qualifier	8.0 	MDL	Unit	D	Prepared 04/03/18 07:33 Lab Sampl Prepared	Analyzed 04/09/18 23:24 e ID: 280-107 Matrix Analyzed	Dil Fac 1 960-19 1: Solid Dil Fac
C10-C36 Surrogate o-Terphenyl Client Sample ID: PCS AC19 Date Collected: 03/29/18 13:07 Date Received: 03/30/18 08:50	34 <u>%Recovery</u> 88	B Qualifier Qualifier B	8.0 	MDL 1.3		D	Prepared 04/03/18 07:33 Lab Samp Prepared 04/03/18 07:33	Analyzed 04/09/18 23:24 e ID: 280-107 Matrix	Dil Fac 1 960-19 :: Solid

Method: 8015B - Diesel Range Organics (DRO) (GC) (Continued)

Surrogate o-Terphenyl	%Recovery 87	Qualifier	Limits 49 - 115				Prepared 04/03/18 07:33	Analyzed 04/09/18 23:48	Dil Fac
Client Sample ID: PCS AC20 Date Collected: 03/29/18 13:14 Date Received: 03/30/18 08:50 Analyte		Qualifier	RL	MDL	Unit	D	Lab Samp	le ID: 280-107 Matrix Analyzed	960-20 :: Solid Dil Fac
Diesel Range Organics [C10-C28]	20	В	7.5	1.3	mg/Kg		04/03/18 07:33	04/10/18 00:13	1
C10-C36	35	В	7.5	1.9	mg/Kg		04/03/18 07:33	04/10/18 00:13	1
Surrogate o-Terphenyl	%Recovery 86	Qualifier	Limits 49 - 115				Prepared 04/03/18 07:33	Analyzed 04/10/18 00:13	Dil Fac

Lab Sample ID: MB 280-410881/3-A

Matrix: Solid

Analyte

Isopropylbenzene

Analysis Batch: 410890

1,1,1,2-Tetrachloroethane

1,1,1-Trichloroethane

Method: 8260B - Volatile Organic Compounds (GC/MS)

MB MB

ND

ND

Result Qualifier

RL

5.0

5.0

MDL Unit

0.56 ug/Kg

0.52 ug/Kg

D

Prepared

Client Sample ID: Method Blank

04/10/18 19:00 04/10/18 20:45

04/10/18 19:00 04/10/18 20:45

Analyzed

Prep Type: Total/NA

Prep Batch: 410881

Dil Fac

1

1

1,1,1-I richloroethane	ND	5.0	0.52 ug/Kg	04/10/18 19:00 04/10/18 20:45 1
1,1,2,2-Tetrachloroethane	ND	5.0	0.61 ug/Kg	04/10/18 19:00 04/10/18 20:45 1
1,1,2-Trichloroethane	ND	5.0	0.88 ug/Kg	04/10/18 19:00 04/10/18 20:45 1
1,1-Dichloroethane	ND	5.0	0.21 ug/Kg	04/10/18 19:00 04/10/18 20:45 1 8
1,1-Dichloroethene	ND	5.0	0.59 ug/Kg	04/10/18 19:00 04/10/18 20:45 1
1,1-Dichloropropene	ND	5.0	0.54 ug/Kg	04/10/18 19:00 04/10/18 20:45 1 9
1,2,3-Trichlorobenzene	ND	5.0	0.75 ug/Kg	04/10/18 19:00 04/10/18 20:45 1
1,2,3-Trichloropropane	ND	5.0	0.81 ug/Kg	04/10/18 19:00 04/10/18 20:45 1 1
1,2,4-Trichlorobenzene	ND	5.0	0.73 ug/Kg	04/10/18 19:00 04/10/18 20:45 1
1,2,4-Trimethylbenzene	ND	5.0	0.58 ug/Kg	04/10/18 19:00 04/10/18 20:45 1 11
1,2-Dibromo-3-Chloropropane	ND	10	0.60 ug/Kg	04/10/18 19:00 04/10/18 20:45 1
1,2-Dibromoethane	ND	5.0	0.52 ug/Kg	04/10/18 19:00 04/10/18 20:45 1 12
1,2-Dichlorobenzene	ND	5.0	0.45 ug/Kg	04/10/18 19:00 04/10/18 20:45 1
1,2-Dichloroethane	ND	5.0	0.70 ug/Kg	04/10/18 19:00 04/10/18 20:45 1 1 2
1,2-Dichloroethene, Total	ND	5.0	0.39 ug/Kg	04/10/18 19:00 04/10/18 20:45 1
1,2-Dichloropropane	ND	5.0	0.55 ug/Kg	04/10/18 19:00 04/10/18 20:45 1
1,3,5-Trimethylbenzene	ND	5.0	0.57 ug/Kg	04/10/18 19:00 04/10/18 20:45 1
1,3-Dichlorobenzene	ND	5.0	0.48 ug/Kg	04/10/18 19:00 04/10/18 20:45 1
1,3-Dichloropropane	ND	5.0	0.51 ug/Kg	04/10/18 19:00 04/10/18 20:45 1
1,4-Dichlorobenzene	ND	5.0	0.78 ug/Kg	04/10/18 19:00 04/10/18 20:45 1
2,2-Dichloropropane	ND	5.0	0.44 ug/Kg	04/10/18 19:00 04/10/18 20:45 1
2-Butanone (MEK)	4.78 J	20	1.8 ug/Kg	04/10/18 19:00 04/10/18 20:45 1
2-Chlorotoluene	ND	5.0	0.51 ug/Kg	04/10/18 19:00 04/10/18 20:45 1
2-Hexanone	ND	20	4.9 ug/Kg	04/10/18 19:00 04/10/18 20:45 1
4-Chlorotoluene	ND	5.0	0.78 ug/Kg	04/10/18 19:00 04/10/18 20:45 1
4-Isopropyltoluene	ND	5.0	0.49 ug/Kg	04/10/18 19:00 04/10/18 20:45 1
4-Methyl-2-pentanone (MIBK)	ND	20	4.4 ug/Kg	04/10/18 19:00 04/10/18 20:45 1
Acetone	ND	20	5.4 ug/Kg	04/10/18 19:00 04/10/18 20:45 1
Benzene	ND	5.0	0.47 ug/Kg	04/10/18 19:00 04/10/18 20:45 1
Bromobenzene	ND	5.0	0.49 ug/Kg	04/10/18 19:00 04/10/18 20:45 1
Bromoform	ND	5.0	0.23 ug/Kg	04/10/18 19:00 04/10/18 20:45 1
Bromomethane	ND	10	0.50 ug/Kg	04/10/18 19:00 04/10/18 20:45 1
Carbon tetrachloride	ND	5.0	0.63 ug/Kg	04/10/18 19:00 04/10/18 20:45 1
Chlorobenzene	ND	5.0	0.54 ug/Kg	04/10/18 19:00 04/10/18 20:45 1
Chlorobromomethane	ND	5.0	0.30 ug/Kg	04/10/18 19:00 04/10/18 20:45 1
Chlorodibromomethane	ND	5.0	0.57 ug/Kg	04/10/18 19:00 04/10/18 20:45 1
Chloroethane	ND	10	0.89 ug/Kg	04/10/18 19:00 04/10/18 20:45 1
Chloroform	ND	10	0.29 ug/Kg	04/10/18 19:00 04/10/18 20:45 1
Chloromethane	ND	10	0.77 ug/Kg	04/10/18 19:00 04/10/18 20:45 1
cis-1,2-Dichloroethene	ND	2.5	0.56 ug/Kg	04/10/18 19:00 04/10/18 20:45 1
cis-1,3-Dichloropropene	ND	5.0	1.3 ug/Kg	04/10/18 19:00 04/10/18 20:45 1
Dibromomethane	ND	5.0	0.84 ug/Kg	04/10/18 19:00 04/10/18 20:45 1
Dichlorobromomethane	ND	5.0	0.22 ug/Kg	04/10/18 19:00 04/10/18 20:45 1
Dichlorodifluoromethane	ND	10	0.52 ug/Kg	04/10/18 19:00 04/10/18 20:45 1
Ethylbenzene	ND	5.0	0.67 ug/Kg	04/10/18 19:00 04/10/18 20:45 1
Hexachlorobutadiene	ND	5.0	0.55 ug/Kg	04/10/18 19:00 04/10/18 20:45 1
	ND	 F 0		

TestAmerica Denver

04/10/18 19:00 04/10/18 20:45

5.0

0.59 ug/Kg

ND

1

9

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

MR MR

Lab Sample ID: MB 280-41088 Matrix: Solid					Client Sample ID: Method Bla Prep Type: Total/I Prep Batch: 4108						
Analysis Batch: 410890	МВ	МВ						Prep Batch.	410001		
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac		
Methyl tert-butyl ether	ND		20	0.34	ug/Kg		04/10/18 19:00	04/10/18 20:45	1		
Methylene Chloride	ND		5.0	1.6	ug/Kg		04/10/18 19:00	04/10/18 20:45	1		
m-Xylene & p-Xylene	ND		2.5	1.0	ug/Kg		04/10/18 19:00	04/10/18 20:45	1		
Naphthalene	ND		5.0	0.63	ug/Kg		04/10/18 19:00	04/10/18 20:45	1		
n-Butylbenzene	ND		5.0	0.56	ug/Kg		04/10/18 19:00	04/10/18 20:45	1		
N-Propylbenzene	ND		5.0	0.58	ug/Kg		04/10/18 19:00	04/10/18 20:45	1		
o-Xylene	ND		2.5	0.61	ug/Kg		04/10/18 19:00	04/10/18 20:45	1		
sec-Butylbenzene	ND		5.0	0.77	ug/Kg		04/10/18 19:00	04/10/18 20:45	1		
Styrene	ND		5.0	0.63	ug/Kg		04/10/18 19:00	04/10/18 20:45	1		
tert-Butylbenzene	ND		5.0	0.50	ug/Kg		04/10/18 19:00	04/10/18 20:45	1		
Tetrachloroethene	ND		5.0	0.59	ug/Kg		04/10/18 19:00	04/10/18 20:45	1		
Toluene	ND		5.0	0.69	ug/Kg		04/10/18 19:00	04/10/18 20:45	1		
trans-1,2-Dichloroethene	ND		2.5	0.39	ug/Kg		04/10/18 19:00	04/10/18 20:45	1		
trans-1,3-Dichloropropene	ND		5.0	0.67	ug/Kg		04/10/18 19:00	04/10/18 20:45	1		
Trichloroethene	ND		5.0	0.23	ug/Kg		04/10/18 19:00	04/10/18 20:45	1		
Trichlorofluoromethane	ND		10	1.0	ug/Kg		04/10/18 19:00	04/10/18 20:45	1		
Vinyl chloride	ND		5.0	1.3	ug/Kg		04/10/18 19:00	04/10/18 20:45	1		
Xylenes, Total	ND		5.0	0.61	ug/Kg		04/10/18 19:00	04/10/18 20:45	1		

	N/D						
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac	
1,2-Dichloroethane-d4 (Surr)	79		58 - 140	04/10/18 19:00	04/10/18 20:45	1	
4-Bromofluorobenzene (Surr)	94		76 - 127	04/10/18 19:00	04/10/18 20:45	1	
Dibromofluoromethane (Surr)	90		75 - 121	04/10/18 19:00	04/10/18 20:45	1	
Toluene-d8 (Surr)	92		80 - 126	04/10/18 19:00	04/10/18 20:45	1	
	1,2-Dichloroethane-d4 (Surr) 4-Bromofluorobenzene (Surr) Dibromofluoromethane (Surr)	Surrogate%Recovery1,2-Dichloroethane-d4 (Surr)794-Bromofluorobenzene (Surr)94Dibromofluoromethane (Surr)90	Surrogate%RecoveryQualifier1,2-Dichloroethane-d4 (Surr)794-Bromofluorobenzene (Surr)94Dibromofluoromethane (Surr)90	Surrogate%RecoveryQualifierLimits1,2-Dichloroethane-d4 (Surr)7958 - 1404-Bromofluorobenzene (Surr)9476 - 127Dibromofluoromethane (Surr)9075 - 121	Surrogate %Recovery Qualifier Limits Prepared 1,2-Dichloroethane-d4 (Surr) 79 58 - 140 04/10/18 19:00 4-Bromofluorobenzene (Surr) 94 76 - 127 04/10/18 19:00 Dibromofluoromethane (Surr) 90 75 - 121 04/10/18 19:00	Surrogate %Recovery Qualifier Limits Prepared Analyzed 1,2-Dichloroethane-d4 (Surr) 79 58 - 140 04/10/18 19:00 04/10/18 20:45 4-Bromofluorobenzene (Surr) 94 76 - 127 04/10/18 19:00 04/10/18 20:45 Dibromofluoromethane (Surr) 90 75 - 121 04/10/18 19:00 04/10/18 20:45	Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 1,2-Dichloroethane-d4 (Surr) 79 58 - 140 04/10/18 19:00 04/10/18 20:45 1 4-Bromofluorobenzene (Surr) 94 76 - 127 04/10/18 19:00 04/10/18 20:45 1 Dibromofluoromethane (Surr) 90 75 - 121 04/10/18 19:00 04/10/18 20:45 1

Lab Sample ID: LCS 280-410881/1-A Matrix: Solid Analysis Batch: 410890

Analysis Datch. 410050	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
1,1,1,2-Tetrachloroethane	50.0	44.2		ug/Kg		88	76 - 135
1,1,1-Trichloroethane	50.0	40.2		ug/Kg		80	70 - 135
1,1,2,2-Tetrachloroethane	50.0	47.6		ug/Kg		95	65 - 135
1,1,2-Trichloroethane	50.0	50.9		ug/Kg		102	78 - 135
1,1-Dichloroethane	50.0	44.5		ug/Kg		89	70 - 135
1,1-Dichloroethene	50.0	45.9		ug/Kg		92	79 - 135
1,1-Dichloropropene	50.0	47.4		ug/Kg		95	72 - 135
1,2,3-Trichlorobenzene	50.0	49.9		ug/Kg		100	62 - 135
1,2,3-Trichloropropane	50.0	48.0		ug/Kg		96	65 - 135
1,2,4-Trichlorobenzene	50.0	48.1		ug/Kg		96	65 - 135
1,2,4-Trimethylbenzene	50.0	42.3		ug/Kg		85	67 - 135
1,2-Dibromo-3-Chloropropane	50.0	50.2		ug/Kg		100	66 - 150
1,2-Dibromoethane	50.0	47.8		ug/Kg		96	76 - 135
1,2-Dichlorobenzene	50.0	47.3		ug/Kg		95	73 - 135
1,2-Dichloroethane	50.0	42.1		ug/Kg		84	69 - 135
1,2-Dichloroethene, Total	100	97.1		ug/Kg		97	78 - 135
1,2-Dichloropropane	50.0	47.9		ug/Kg		96	72 - 121
1,3,5-Trimethylbenzene	50.0	42.6		ug/Kg		85	65 - 135

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep Batch: 410881

9

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 280-410881/1-A Matrix: Solid				Clier	nt Sai	nple ID	: Lab Control Sampl Prep Type: Total/N
Analysis Batch: 410890							Prep Batch: 41088
	Spike		LCS		_	~-	%Rec.
	Added		Qualifier	Unit	D	%Rec	Limits
1,3-Dichlorobenzene	50.0	46.9		ug/Kg		94	69 - 135
1,3-Dichloropropane	50.0	46.2		ug/Kg		92	74 - 135 70 - 105
1,4-Dichlorobenzene	50.0	47.4		ug/Kg		95	73 - 135
2,2-Dichloropropane	50.0	41.5		ug/Kg		83	69 - 135
2-Butanone (MEK)	200	203		ug/Kg		101	45 - 177
2-Chlorotoluene	50.0	45.2		ug/Kg		90	67 - 135
2-Hexanone	200	226		ug/Kg		113	67 - 150
4-Chlorotoluene	50.0	47.0		ug/Kg		94	68 - 135
4-Isopropyltoluene	50.0	44.0		ug/Kg		88	66 - 135
4-Methyl-2-pentanone (MIBK)	200	214		ug/Kg		107	69 - 150
Acetone	200	224		ug/Kg		112	65 - 150
Benzene	50.0	49.6		ug/Kg		99	75 - 135
Bromobenzene	50.0	47.7		ug/Kg		95	72 - 135
Bromoform	50.0	42.9		ug/Kg		86	77 - 135
Bromomethane	50.0	50.8		ug/Kg		102	52 - 135
Carbon tetrachloride	50.0	38.5		ug/Kg		77	69 - 138
Chlorobenzene	50.0	45.3		ug/Kg		91	78 - 135
Chlorobromomethane	50.0	50.9		ug/Kg		102	74 - 135
Chlorodibromomethane	50.0	42.2		ug/Kg		84	77 - 135
Chloroethane	50.0	51.8		ug/Kg		104	51 - 145
Chloroform	50.0	43.5		ug/Kg		87	73 - 123
Chloromethane	50.0	49.2		ug/Kg		98	41 - 138
cis-1,2-Dichloroethene	50.0	48.3		ug/Kg		97	76 - 135
cis-1,3-Dichloropropene	50.0	44.4		ug/Kg		89	71 - 135
Dibromomethane	50.0	46.9		ug/Kg		94	73 - 135
Dichlorobromomethane	50.0	42.4		ug/Kg		85	73 - 135
Dichlorodifluoromethane	50.0	42.1		ug/Kg		84	32 - 152
Ethylbenzene	50.0	46.2		ug/Kg		92	73 - 125
Hexachlorobutadiene	50.0	45.7		ug/Kg		91	52 - 151
sopropylbenzene	50.0	43.7		ug/Kg		87	74 - 137
Methyl tert-butyl ether	50.0	46.6		ug/Kg		93	71 - 141
Methylene Chloride	50.0	50.3		ug/Kg		101	76 - 136
m-Xylene & p-Xylene	50.0	45.5		ug/Kg		91	77 - 135
Naphthalene	50.0	52.1		ug/Kg		104	65 - 135
n-Butylbenzene	50.0	44.4		ug/Kg		89	68 - 135
N-Propylbenzene	50.0	44.9		ug/Kg		90	67 - 135
p-Xylene	50.0	46.6		ug/Kg		93	75 - 135
sec-Butylbenzene	50.0	46.2		ug/Kg		92	69 - 135
Styrene	50.0	46.3		ug/Kg		93	76 - 135
ert-Butylbenzene	50.0	43.7		ug/Kg		87	66 - 135
Tetrachloroethene	50.0	49.0		ug/Kg		98	76 - 135
Toluene	50.0	48.7		ug/Kg		97	77 - 122
trans-1,2-Dichloroethene	50.0	48.8		ug/Kg		98	77 - 135
rans-1,3-Dichloropropene	50.0	42.5		ug/Kg		85	71 - 135
Trichloroethene	50.0	46.1		ug/Kg		92	77 - 135
Trichlorofluoromethane	50.0	38.8		ug/Kg		78	48 - 150
Vinyl chloride	50.0	46.8		ug/Kg		94	43 - 145

Prep Type: Total/NA

Prep Batch: 410881

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 280-410881/1-A Matrix: Solid

Analysis Batch: 410890

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	74		58 - 140
4-Bromofluorobenzene (Surr)	91		76 - 127
Dibromofluoromethane (Surr)	87		75 - 121
Toluene-d8 (Surr)	92		80 - 126

Lab Sample ID: LCSD 280-410881/2-A **Matrix: Solid**

Analysis Batch: 410890

Analysis Batch: 410890							Prep Ba		
· ····· · ·····························	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1,1,2-Tetrachloroethane	50.0	44.1		ug/Kg		88	76 - 135	0	20
1,1,1-Trichloroethane	50.0	40.6		ug/Kg		81	70 - 135	1	20
1,1,2,2-Tetrachloroethane	50.0	46.9		ug/Kg		94	65 - 135	1	21
1,1,2-Trichloroethane	50.0	50.9		ug/Kg		102	78 - 135	0	20
1,1-Dichloroethane	50.0	44.9		ug/Kg		90	70 - 135	1	20
1,1-Dichloroethene	50.0	45.7		ug/Kg		91	79 - 135	0	20
1,1-Dichloropropene	50.0	47.3		ug/Kg		95	72 - 135	0	20
1,2,3-Trichlorobenzene	50.0	50.0		ug/Kg		100	62 - 135	0	31
1,2,3-Trichloropropane	50.0	47.5		ug/Kg		95	65 - 135	1	21
1,2,4-Trichlorobenzene	50.0	47.7		ug/Kg		95	65 - 135	1	26
1,2,4-Trimethylbenzene	50.0	42.7		ug/Kg		85	67 - 135	1	20
1,2-Dibromo-3-Chloropropane	50.0	48.8		ug/Kg		98	66 - 150	3	28
1,2-Dibromoethane	50.0	46.9		ug/Kg		94	76 - 135	2	20
1,2-Dichlorobenzene	50.0	48.6		ug/Kg		97	73 - 135	3	20
1,2-Dichloroethane	50.0	41.5		ug/Kg		83	69 - 135	1	20
1,2-Dichloroethene, Total	100	97.9		ug/Kg		98	78 - 135	1	20
1,2-Dichloropropane	50.0	48.6		ug/Kg		97	72 - 121	1	20
1,3,5-Trimethylbenzene	50.0	43.4		ug/Kg		87	65 - 135	2	21
1,3-Dichlorobenzene	50.0	47.1		ug/Kg		94	69 - 135	0	20
1,3-Dichloropropane	50.0	45.7		ug/Kg		91	74 - 135	1	20
1,4-Dichlorobenzene	50.0	46.8		ug/Kg		94	73 - 135	1	22
2,2-Dichloropropane	50.0	41.5		ug/Kg		83	69 - 135	0	20
2-Butanone (MEK)	200	192		ug/Kg		96	45 - 177	5	32
2-Chlorotoluene	50.0	46.1		ug/Kg		92	67 - 135	2	22
2-Hexanone	200	215		ug/Kg		107	67 - 150	5	29
4-Chlorotoluene	50.0	47.0		ug/Kg		94	68 - 135	0	20
4-Isopropyltoluene	50.0	44.0		ug/Kg		88	66 - 135	0	20
4-Methyl-2-pentanone (MIBK)	200	209		ug/Kg		104	69 - 150	3	25
Acetone	200	209		ug/Kg		105	65 - 150	7	28
Benzene	50.0	50.0		ug/Kg		100	75 - 135	1	20
Bromobenzene	50.0	48.6		ug/Kg		97	72 - 135	2	22
Bromoform	50.0	42.6		ug/Kg		85	77 - 135	1	20
Bromomethane	50.0	48.3		ug/Kg		97	52 - 135	5	22
Carbon tetrachloride	50.0	38.7		ug/Kg		77	69 - 138	1	20
Chlorobenzene	50.0	45.2		ug/Kg		90	78 - 135	0	20
Chlorobromomethane	50.0	51.4		ug/Kg		103	74 - 135	1	21
Chlorodibromomethane	50.0	41.8		ug/Kg		84	77 - 135	1	20
Chloroethane	50.0	51.2		ug/Kg		102	51 ₋ 145	1	22

9 |1 |2 |3

9

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 280-410881/2-A Matrix: Solid			(Client Sa	mple	ID: Lat	Control Prep Ty		
Analysis Batch: 410890							Prep Ba		
	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloroform	50.0	43.3		ug/Kg		87	73 - 123	0	20
Chloromethane	50.0	45.8		ug/Kg		92	41 - 138	7	25
cis-1,2-Dichloroethene	50.0	48.7		ug/Kg		97	76 - 135	1	20
cis-1,3-Dichloropropene	50.0	43.8		ug/Kg		88	71 - 135	1	20
Dibromomethane	50.0	46.2		ug/Kg		92	73 - 135	2	20
Dichlorobromomethane	50.0	42.8		ug/Kg		86	73 - 135	1	20
Dichlorodifluoromethane	50.0	40.3		ug/Kg		81	32 - 152	4	28
Ethylbenzene	50.0	46.4		ug/Kg		93	73 - 125	1	20
Hexachlorobutadiene	50.0	45.8		ug/Kg		92	52 - 151	0	25
Isopropylbenzene	50.0	44.4		ug/Kg		89	74 - 137	2	20
Methyl tert-butyl ether	50.0	46.1		ug/Kg		92	71 - 141	1	20
Methylene Chloride	50.0	50.5		ug/Kg		101	76 - 136	0	21
m-Xylene & p-Xylene	50.0	45.9		ug/Kg		92	77 - 135	1	20
Naphthalene	50.0	50.9		ug/Kg		102	65 - 135	2	38
n-Butylbenzene	50.0	45.0		ug/Kg		90	68 - 135	1	21
N-Propylbenzene	50.0	45.8		ug/Kg		92	67 - 135	2	22
o-Xylene	50.0	47.1		ug/Kg		94	75 - 135	1	20
sec-Butylbenzene	50.0	46.3		ug/Kg		93	69 - 135	0	22
Styrene	50.0	46.8		ug/Kg		94	76 - 135	1	20
tert-Butylbenzene	50.0	44.2		ug/Kg		88	66 - 135	1	22
Tetrachloroethene	50.0	48.2		ug/Kg		96	76 - 135	2	20
Toluene	50.0	49.4		ug/Kg		99	77 - 122	1	20
trans-1,2-Dichloroethene	50.0	49.2		ug/Kg		98	77 - 135	1	20
trans-1,3-Dichloropropene	50.0	42.8		ug/Kg		86	71 - 135	1	20
Trichloroethene	50.0	46.9		ug/Kg		94	77 - 135	2	20
Trichlorofluoromethane	50.0	38.8		ug/Kg		78	48 - 150	0	33
Vinyl chloride	50.0	43.8		ug/Kg		88	43 - 145	7	24

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	83		58 - 140
4-Bromofluorobenzene (Surr)	94		76 - 127
Dibromofluoromethane (Surr)	91		75 - 121
Toluene-d8 (Surr)	96		80 - 126

Lab Sample ID: 280-107962-A-1-B MS Matrix: Solid Analysis Batch: 410890

Analysis Batch: 410890	Sample	Sample	Spike	MS	MS				Prep Batch: 410881 %Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
1,1,1,2-Tetrachloroethane	ND		54.7	46.4		ug/Kg		85	76 - 135
1,1,1-Trichloroethane	ND		54.7	44.0		ug/Kg		80	70 - 135
1,1,2,2-Tetrachloroethane	ND		54.7	48.3		ug/Kg		88	65 - 135
1,1,2-Trichloroethane	ND		54.7	54.2		ug/Kg		99	78 - 135
1,1-Dichloroethane	ND		54.7	49.9		ug/Kg		91	70 - 135
1,1-Dichloroethene	ND		54.7	50.3		ug/Kg		92	79 - 135
1,1-Dichloropropene	ND		54.7	50.1		ug/Kg		91	72 - 135
1,2,3-Trichlorobenzene	ND		54.7	43.9		ug/Kg		80	62 - 135
1,2,3-Trichloropropane	ND		54.7	50.4		ug/Kg		92	65 - 135

TestAmerica Denver

Client Sample ID: Matrix Spike

Prep Type: Total/NA

9

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 280-107962 Matrix: Solid	-A-1-B INS						CI	ient Sa	mple ID: Matrix Spike Prep Type: Total/NA
Analysis Batch: 410890									Prep Batch: 41088
	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
1,2,4-Trichlorobenzene	ND		54.7	41.4		ug/Kg		76	65 - 135
1,2,4-Trimethylbenzene	ND		54.7	42.8		ug/Kg		78	67 ₋ 135
1,2-Dibromo-3-Chloropropane	ND		54.7	49.4		ug/Kg		90	66 - 150
1,2-Dibromoethane	ND		54.7	49.9		ug/Kg		91	76 ₋ 135
1,2-Dichlorobenzene	ND		54.7	47.9		ug/Kg		88	73 ₋ 135
1,2-Dichloroethane	ND		54.7	45.5		ug/Kg		83	69 - 135
1,2-Dichloroethene, Total	ND		109	106		ug/Kg		97	78 ₋ 135
1,2-Dichloropropane	ND		54.7	51.6		ug/Kg		94	72 - 121
1,3,5-Trimethylbenzene	ND		54.7	44.2		ug/Kg		81	65 - 135
1,3-Dichlorobenzene	ND		54.7	46.9		ug/Kg		86	69 - 135
1,3-Dichloropropane	ND		54.7	49.2		ug/Kg		90	74 - 135
1,4-Dichlorobenzene	ND		54.7	46.5		ug/Kg		85	73 - 135
2,2-Dichloropropane	ND		54.7	44.2		ug/Kg		81	69 - 135
2-Butanone (MEK)	ND		219	213		ug/Kg ug/Kg		97	45 - 177
2-Chlorotoluene	ND		54.7	46.7		ug/Kg ug/Kg		97 85	43 - 177 67 - 135
2-Hexanone	ND		219	40.7 231				105	67 - 150
						ug/Kg			
4-Chlorotoluene	ND		54.7	47.7		ug/Kg		87	68 - 135 68 - 135
4-Isopropyltoluene	ND		54.7	43.6		ug/Kg		80	66 - 135
4-Methyl-2-pentanone (MIBK)	ND		219	219		ug/Kg		100	69 - 150
Acetone	ND		219	211		ug/Kg		96	65 - 150
Benzene	ND		54.7	53.8		ug/Kg		98	75 - 135
Bromobenzene	ND		54.7	48.9		ug/Kg		89	72 - 135
Bromoform	ND		54.7	44.3		ug/Kg		81	77 - 135
Bromomethane	ND		54.7	55.7		ug/Kg		102	52 - 135
Carbon tetrachloride	ND		54.7	42.1		ug/Kg		77	69 - 138
Chlorobenzene	ND		54.7	46.8		ug/Kg		86	78 - 135
Chlorobromomethane	ND		54.7	54.2		ug/Kg		99	74 - 135
Chlorodibromomethane	ND		54.7	43.8		ug/Kg		80	77 - 135
Chloroethane	ND		54.7	59.1		ug/Kg		108	51 ₋ 145
Chloroform	ND		54.7	47.4		ug/Kg		87	73 - 123
Chloromethane	ND		54.7	50.1		ug/Kg		92	41 - 138
cis-1,2-Dichloroethene	ND		54.7	52.6		ug/Kg		96	76 ₋ 135
cis-1,3-Dichloropropene	ND		54.7	45.5		ug/Kg		83	71 - 135
Dibromomethane	ND		54.7	49.7		ug/Kg		91	73 ₋ 135
Dichlorobromomethane	ND		54.7	45.1		ug/Kg		82	73 - 135
Dichlorodifluoromethane	ND		54.7	44.1		ug/Kg		81	32 - 152
Ethylbenzene	ND		54.7	47.9		ug/Kg		88	73 - 125
Hexachlorobutadiene	ND		54.7	38.8		ug/Kg		71	52 - 151
Isopropylbenzene	ND		54.7	45.1		ug/Kg		82	74 - 137
Methyl tert-butyl ether	ND		54.7	50.2		ug/Kg		92	71 - 141
Methylene Chloride	ND		54.7	54.5		ug/Kg		100	76 - 136
m-Xylene & p-Xylene	ND		54.7	47.1		ug/Kg		86	77 - 135
Naphthalene	ND		54.7	47.1		ug/Kg		86	65 - 135
n-Butylbenzene	ND		54.7	47.2		ug/Kg ug/Kg		78	68 - 135
N-Propylbenzene	ND		54.7 54.7	42.5		ug/Kg ug/Kg		86	67 - 135
o-Xylene	ND		54.7	49.4		ug/Kg		90 84	75 - 135
sec-Butylbenzene	ND		54.7	44.6		ug/Kg		81	69 - 135

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 280-1079 Matrix: Solid	62-A-1-B MS						CI	ient Sa	mple ID: Matrix Spike Prep Type: Total/NA
Analysis Batch: 410890	Sample	Sample	Spike	MS	MS				Prep Batch: 410881 %Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
tert-Butylbenzene	ND		54.7	44.4		ug/Kg		81	66 - 135
Tetrachloroethene	ND		54.7	49.0		ug/Kg		89	76 - 135
Toluene	ND		54.7	51.1		ug/Kg		93	77 - 122
trans-1,2-Dichloroethene	ND		54.7	53.2		ug/Kg		97	77 - 135
trans-1,3-Dichloropropene	ND		54.7	45.3		ug/Kg		83	71 - 135
Trichloroethene	ND		54.7	49.1		ug/Kg		90	77 - 135
Trichlorofluoromethane	ND		54.7	42.1		ug/Kg		77	48 - 150
Vinyl chloride	ND		54.7	48.2		ug/Kg		88	43 - 145
	MS	MS							
Surrogate	%Recovery	Qualifier	Limits						
1,2-Dichloroethane-d4 (Surr)	84		58 - 140						
4-Bromofluorobenzene (Surr)	94		76 - 127						
Dibromofluoromethane (Surr)	91		75_121						
Toluene-d8 (Surr)	93		80 - 126						

Lab Sample ID: 280-107962-A-1-C MSD Matrix: Solid Analysis Batch: 410890

Project/Site: 3217|Valencia, NM - Soils

Matrix: Solid Analysis Batch: 410890		-							Prep Ty Prep Ba	pe: Tot	al/NA
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1,1,2-Tetrachloroethane	ND		54.3	46.3		ug/Kg		85	76 - 135	0	20
1,1,1-Trichloroethane	ND		54.3	42.8		ug/Kg		79	70 ₋ 135	3	20
1,1,2,2-Tetrachloroethane	ND		54.3	45.4		ug/Kg		84	65 - 135	6	21
1,1,2-Trichloroethane	ND		54.3	51.3		ug/Kg		95	78 - 135	5	20
1,1-Dichloroethane	ND		54.3	48.9		ug/Kg		90	70 - 135	2	20
1,1-Dichloroethene	ND		54.3	48.8		ug/Kg		90	79 ₋ 135	3	20
1,1-Dichloropropene	ND		54.3	48.7		ug/Kg		90	72 - 135	3	20
1,2,3-Trichlorobenzene	ND		54.3	39.9		ug/Kg		73	62 - 135	10	31
1,2,3-Trichloropropane	ND		54.3	47.3		ug/Kg		87	65 - 135	6	21
1,2,4-Trichlorobenzene	ND		54.3	37.1		ug/Kg		68	65 - 135	11	26
1,2,4-Trimethylbenzene	ND		54.3	39.5		ug/Kg		73	67 - 135	8	20
1,2-Dibromo-3-Chloropropane	ND		54.3	42.9		ug/Kg		79	66 - 150	14	28
1,2-Dibromoethane	ND		54.3	47.8		ug/Kg		88	76 - 135	4	20
1,2-Dichlorobenzene	ND		54.3	43.7		ug/Kg		80	73 - 135	9	20
1,2-Dichloroethane	ND		54.3	43.6		ug/Kg		80	69 ₋ 135	4	20
1,2-Dichloroethene, Total	ND		109	103		ug/Kg		95	78 - 135	2	20
1,2-Dichloropropane	ND		54.3	51.1		ug/Kg		94	72 - 121	1	20
1,3,5-Trimethylbenzene	ND		54.3	42.0		ug/Kg		77	65 - 135	5	21
1,3-Dichlorobenzene	ND		54.3	43.3		ug/Kg		80	69 - 135	8	20
1,3-Dichloropropane	ND		54.3	48.1		ug/Kg		89	74 - 135	2	20
1,4-Dichlorobenzene	ND		54.3	43.5		ug/Kg		80	73 - 135	7	22
2,2-Dichloropropane	ND		54.3	42.8		ug/Kg		79	69 - 135	3	20
2-Butanone (MEK)	ND		217	183		ug/Kg		84	45 - 177	15	32
2-Chlorotoluene	ND		54.3	43.8		ug/Kg		81	67 - 135	6	22
2-Hexanone	ND		217	207		ug/Kg		95	67 - 150	11	29
4-Chlorotoluene	ND		54.3	45.5		ug/Kg		84	68 - 135	5	20
4-Isopropyltoluene	ND		54.3	40.7		ug/Kg		75	66 - 135	7	20
4-Methyl-2-pentanone (MIBK)	ND		217	195		ug/Kg		90	69 - 150	12	25

Client Sample ID: Matrix Spike Duplicate

TestAmerica Denver

5

9

9

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Matrix: Solid									Prep Ty		
Analysis Batch: 410890			• •						Prep Ba	atch: 41	
•	-	Sample	Spike	-	MSD	11	_	0/ D	%Rec.		RPD
Analyte Acetone		Qualifier	Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limi
	ND		217	185		ug/Kg		85	65 - 150	13	28
Benzene	ND		54.3	52.1		ug/Kg		96	75 - 135	3	20
Bromobenzene	ND		54.3	47.5		ug/Kg		87	72 - 135	3	22
Bromoform	ND		54.3	42.0		ug/Kg		77	77 - 135	5	20
Bromomethane	ND		54.3	55.3		ug/Kg		102	52 - 135	1	22
Carbon tetrachloride	ND		54.3	40.8		ug/Kg		75	69 - 138	3	20
Chlorobenzene	ND		54.3	46.0		ug/Kg		85	78 - 135	2	20
Chlorobromomethane	ND		54.3	52.7		ug/Kg		97	74 - 135	3	21
Chlorodibromomethane	ND		54.3	43.1		ug/Kg		79	77 - 135	2	20
Chloroethane	ND		54.3	58.2		ug/Kg		107	51 - 145	2	22
Chloroform	ND		54.3	46.5		ug/Kg		86	73 - 123	2	20
Chloromethane	ND		54.3	49.7		ug/Kg		91	41 - 138	1	25
cis-1,2-Dichloroethene	ND		54.3	50.9		ug/Kg		94	76 - 135	3	20
cis-1,3-Dichloropropene	ND		54.3	45.1		ug/Kg		83	71 - 135	1	20
Dibromomethane	ND		54.3	47.1		ug/Kg		87	73 - 135	5	20
Dichlorobromomethane	ND		54.3	44.0		ug/Kg		81	73 - 135	3	20
Dichlorodifluoromethane	ND		54.3	43.7		ug/Kg		81	32 - 152	1	28
Ethylbenzene	ND		54.3	47.4		ug/Kg		87	73 - 125	1	20
Hexachlorobutadiene	ND		54.3	33.4		ug/Kg		61	52 - 151	15	25
Isopropylbenzene	ND		54.3	43.7		ug/Kg		80	74 - 137	3	20
Methyl tert-butyl ether	ND		54.3	48.3		ug/Kg		89	71 - 141	4	20
Methylene Chloride	ND		54.3	52.4		ug/Kg		97	76 - 136	4	21
m-Xylene & p-Xylene	ND		54.3	46.8		ug/Kg		86	77 - 135	1	20
Naphthalene	ND		54.3	42.0		ug/Kg		77	65 - 135	12	38
n-Butylbenzene	ND		54.3	39.0		ug/Kg		72	68 - 135	8	21
N-Propylbenzene	ND		54.3	44.2		ug/Kg		81	67 - 135	6	22
o-Xylene	ND		54.3	47.7		ug/Kg		88	75 - 135	3	20
sec-Butylbenzene	ND		54.3	42.4		ug/Kg		78	69 - 135	5	22
Styrene	ND		54.3	44.1		ug/Kg		81	76 - 135	4	20
tert-Butylbenzene	ND		54.3	41.9		ug/Kg		77	66 - 135	6	22
Tetrachloroethene	ND		54.3	48.3		ug/Kg		89	76 - 135	1	20
Toluene	ND		54.3	50.4		ug/Kg		93	77 - 122	1	20
trans-1,2-Dichloroethene	ND		54.3	52.3		ug/Kg		96	77 - 135	2	20
trans-1,3-Dichloropropene	ND		54.3	43.6		ug/Kg		80	71 - 135	4	20
Trichloroethene	ND		54.3	48.8		ug/Kg		90	77 - 135	1	20
Trichlorofluoromethane	ND		54.3	41.6		ug/Kg		77	48 - 150	1	33
Vinyl chloride	ND		54.3	47.5		ug/Kg		87	43 - 145	2	24
						- 5 - 5				_	
		MSD									
Surrogate	%Recovery	Qualifier	Limits								
1,2-Dichloroethane-d4 (Surr)	76		58 - 140								
4-Bromofluorobenzene (Surr)	95		76 - 127								
Dibromofluoromethane (Surr)	89		75 - 121								

9

TestAmerica Job ID: 280-1079

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 280-41102 Matrix: Solid	28/3-A						Client Samp			
Matrix: Solid								Prep Type: To		
Analysis Batch: 411029	МВ	МВ						Prep Batch:	411028	
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
1,1,1,2-Tetrachloroethane	ND		5.0	0.56	ug/Kg		04/11/18 19:00	04/11/18 20:36	1	
1,1,1-Trichloroethane	ND		5.0	0.52	ug/Kg		04/11/18 19:00	04/11/18 20:36	1	
1,1,2,2-Tetrachloroethane	ND		5.0	0.61	ug/Kg		04/11/18 19:00	04/11/18 20:36	1	
1,1,2-Trichloroethane	ND		5.0		ug/Kg		04/11/18 19:00	04/11/18 20:36	1	
1,1-Dichloroethane	ND		5.0	0.21	ug/Kg		04/11/18 19:00	04/11/18 20:36	1	
1,1-Dichloroethene	ND		5.0	0.59			04/11/18 19:00	04/11/18 20:36	1	
1,1-Dichloropropene	ND		5.0	0.54	ug/Kg		04/11/18 19:00	04/11/18 20:36	1	
1,2,3-Trichlorobenzene	ND		5.0		ug/Kg		04/11/18 19:00	04/11/18 20:36	1	
1,2,3-Trichloropropane	ND		5.0	0.81			04/11/18 19:00	04/11/18 20:36	1	
1,2,4-Trichlorobenzene	ND		5.0	0.73	ug/Kg		04/11/18 19:00	04/11/18 20:36	1	
1,2,4-Trimethylbenzene	ND		5.0		ug/Kg		04/11/18 19:00	04/11/18 20:36	1	
1,2-Dibromo-3-Chloropropane	ND		10		ug/Kg		04/11/18 19:00	04/11/18 20:36	1	
1,2-Dibromoethane	ND		5.0		ug/Kg		04/11/18 19:00	04/11/18 20:36	1	
1,2-Dichlorobenzene	ND		5.0		ug/Kg		04/11/18 19:00	04/11/18 20:36	1	
1,2-Dichloroethane	ND		5.0		ug/Kg		04/11/18 19:00	04/11/18 20:36	1	
1,2-Dichloroethene, Total	ND		5.0		ug/Kg		04/11/18 19:00	04/11/18 20:36	1	
1,2-Dichloropropane	ND		5.0		ug/Kg		04/11/18 19:00	04/11/18 20:36	1	
1,3,5-Trimethylbenzene	ND		5.0		ug/Kg		04/11/18 19:00	04/11/18 20:36	1	
1,3-Dichlorobenzene	ND		5.0		ug/Kg		04/11/18 19:00	04/11/18 20:36	1	
1,3-Dichloropropane	ND		5.0	0.51				04/11/18 20:36	1	
1,4-Dichlorobenzene	ND		5.0		ug/Kg			04/11/18 20:36	1	
2,2-Dichloropropane	ND		5.0		ug/Kg		04/11/18 19:00	04/11/18 20:36	1	
2-Butanone (MEK)	5.18	J	20	1.8	ug/Kg		04/11/18 19:00	04/11/18 20:36	1	
2-Chlorotoluene	ND		5.0	0.51			04/11/18 19:00	04/11/18 20:36	1	
2-Hexanone	ND		20	4.9			04/11/18 19:00	04/11/18 20:36	1	
4-Chlorotoluene	ND		5.0	0.78	ug/Kg		04/11/18 19:00	04/11/18 20:36	1	
4-Isopropyltoluene	ND		5.0	0.49	ug/Kg		04/11/18 19:00	04/11/18 20:36	1	
4-Methyl-2-pentanone (MIBK)	ND		20	4.4	ug/Kg		04/11/18 19:00	04/11/18 20:36	1	
Acetone	9.27	J	20	5.4			04/11/18 19:00	04/11/18 20:36	1	
Benzene	ND		5.0	0.47	ug/Kg		04/11/18 19:00	04/11/18 20:36	1	
Bromobenzene	ND		5.0		ug/Kg		04/11/18 19:00	04/11/18 20:36	1	
Bromoform	ND		5.0		ug/Kg		04/11/18 19:00	04/11/18 20:36	1	
Bromomethane	ND		10		ug/Kg		04/11/18 19:00	04/11/18 20:36	1	
Carbon tetrachloride	ND		5.0		ug/Kg		04/11/18 19:00	04/11/18 20:36	1	
Chlorobenzene	ND		5.0		ug/Kg		04/11/18 19:00	04/11/18 20:36	1	
Chlorobromomethane	ND		5.0		ug/Kg		04/11/18 19:00	04/11/18 20:36	1	
Chlorodibromomethane	ND		5.0		ug/Kg			04/11/18 20:36	1	
Chloroethane	ND		10		ug/Kg			04/11/18 20:36	1	
Chloroform	ND		10		ug/Kg		04/11/18 19:00	04/11/18 20:36	1	
Chloromethane	ND		10		ug/Kg			04/11/18 20:36	1	
cis-1,2-Dichloroethene	ND		2.5		ug/Kg			04/11/18 20:36	1	
cis-1,3-Dichloropropene	ND		5.0		ug/Kg			04/11/18 20:36	1	
Dibromomethane	ND		5.0		ug/Kg			04/11/18 20:36	1	
Dichlorobromomethane	ND		5.0		ug/Kg			04/11/18 20:36	1	
Dichlorodifluoromethane	ND		10		ug/Kg			04/11/18 20:36	1	
Ethylbenzene	ND		5.0		ug/Kg			04/11/18 20:36		
Hexachlorobutadiene	ND		5.0		ug/Kg			04/11/18 20:36	1	
Isopropylbenzene	ND		5.0		ug/Kg ug/Kg			04/11/18 20:36	1	

QC Sample Results

Lab Sample ID: MB 280-411028/3-A

Client Sample ID: Method Blank

5

9

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Matrix: Solid							i i	Prep Type: To	otal/NA
Analysis Batch: 411029								Prep Batch:	411028
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND		20	0.34	ug/Kg		04/11/18 19:00	04/11/18 20:36	1
Methylene Chloride	ND		5.0	1.6	ug/Kg		04/11/18 19:00	04/11/18 20:36	1
m-Xylene & p-Xylene	ND		2.5	1.0	ug/Kg		04/11/18 19:00	04/11/18 20:36	1
Naphthalene	ND		5.0	0.63	ug/Kg		04/11/18 19:00	04/11/18 20:36	1
n-Butylbenzene	ND		5.0	0.56	ug/Kg		04/11/18 19:00	04/11/18 20:36	1
N-Propylbenzene	ND		5.0	0.58	ug/Kg		04/11/18 19:00	04/11/18 20:36	1
o-Xylene	ND		2.5	0.61	ug/Kg		04/11/18 19:00	04/11/18 20:36	1
sec-Butylbenzene	ND		5.0	0.77	ug/Kg		04/11/18 19:00	04/11/18 20:36	1
Styrene	ND		5.0	0.63	ug/Kg		04/11/18 19:00	04/11/18 20:36	1
tert-Butylbenzene	ND		5.0	0.50	ug/Kg		04/11/18 19:00	04/11/18 20:36	1
Tetrachloroethene	ND		5.0	0.59	ug/Kg		04/11/18 19:00	04/11/18 20:36	1
Toluene	ND		5.0	0.69	ug/Kg		04/11/18 19:00	04/11/18 20:36	1
trans-1,2-Dichloroethene	ND		2.5	0.39	ug/Kg		04/11/18 19:00	04/11/18 20:36	1
trans-1,3-Dichloropropene	ND		5.0	0.67	ug/Kg		04/11/18 19:00	04/11/18 20:36	1
Trichloroethene	ND		5.0	0.23	ug/Kg		04/11/18 19:00	04/11/18 20:36	1
Trichlorofluoromethane	ND		10	1.0	ug/Kg		04/11/18 19:00	04/11/18 20:36	1
Vinyl chloride	ND		5.0	1.3	ug/Kg		04/11/18 19:00	04/11/18 20:36	1
Xylenes, Total	ND		5.0	0.61	ug/Kg		04/11/18 19:00	04/11/18 20:36	1

Analyzed	Dil Fac
04/11/18 20:36	1
04/11/18 20:36	1
04/11/18 20:36	1
04/11/18 20:36	1
	Analyzed 04/11/18 20:36 04/11/18 20:36 04/11/18 20:36 04/11/18 20:36

Lab Sample ID: LCS 280-411028/1-A Matrix: Solid Analysis Batch: 411029

Analysis Baton. 411020	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
1,1,1,2-Tetrachloroethane	50.0	47.7		ug/Kg		95	76 - 135
1,1,1-Trichloroethane	50.0	44.1		ug/Kg		88	70 - 135
1,1,2,2-Tetrachloroethane	50.0	46.7		ug/Kg		93	65 - 135
1,1,2-Trichloroethane	50.0	52.4		ug/Kg		105	78 - 135
1,1-Dichloroethane	50.0	47.3		ug/Kg		95	70 - 135
1,1-Dichloroethene	50.0	50.7		ug/Kg		101	79 - 135
1,1-Dichloropropene	50.0	50.5		ug/Kg		101	72 - 135
1,2,3-Trichlorobenzene	50.0	56.1		ug/Kg		112	62 - 135
1,2,3-Trichloropropane	50.0	46.9		ug/Kg		94	65 - 135
1,2,4-Trichlorobenzene	50.0	52.7		ug/Kg		105	65 - 135
1,2,4-Trimethylbenzene	50.0	45.2		ug/Kg		90	67 - 135
1,2-Dibromo-3-Chloropropane	50.0	49.9		ug/Kg		100	66 - 150
1,2-Dibromoethane	50.0	48.6		ug/Kg		97	76 - 135
1,2-Dichlorobenzene	50.0	50.9		ug/Kg		102	73 - 135
1,2-Dichloroethane	50.0	43.6		ug/Kg		87	69 - 135
1,2-Dichloroethene, Total	100	102		ug/Kg		102	78 - 135
1,2-Dichloropropane	50.0	50.9		ug/Kg		102	72 - 121
1,3,5-Trimethylbenzene	50.0	46.6		ug/Kg		93	65 - 135

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep Batch: 411028

9

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 280-411028/1-A Matrix: Solid				Clie	nt Sar	nple ID	: Lab Control Sample Prep Type: Total/N
Analysis Batch: 411029							Prep Batch: 41102
	Spike		LCS				%Rec.
Analyte	Added		Qualifier	Unit	D	%Rec	Limits
1,3-Dichlorobenzene	50.0	50.7		ug/Kg		101	69 - 135
1,3-Dichloropropane	50.0	48.6		ug/Kg		97	74 - 135
1,4-Dichlorobenzene	50.0	50.2		ug/Kg		100	73 - 135
2,2-Dichloropropane	50.0	46.0		ug/Kg		92	69 - 135
2-Butanone (MEK)	200	177		ug/Kg		88	45 - 177
2-Chlorotoluene	50.0	48.9		ug/Kg		98	67 - 135
2-Hexanone	200	192		ug/Kg		96	67 - 150
4-Chlorotoluene	50.0	50.6		ug/Kg		101	68 - 135
1-IsopropyItoluene	50.0	48.8		ug/Kg		98	66 - 135
4-Methyl-2-pentanone (MIBK)	200	187		ug/Kg		94	69 - 150
Acetone	200	194		ug/Kg		97	65 - 150
Benzene	50.0	52.7		ug/Kg		105	75 - 135
Bromobenzene	50.0	50.7		ug/Kg		101	72 - 135
Bromoform	50.0	44.0		ug/Kg		88	77 - 135
Bromomethane	50.0	52.2		ug/Kg		104	52 - 135
Carbon tetrachloride	50.0	42.2		ug/Kg		84	69 - 138
Chlorobenzene	50.0	49.2		ug/Kg		98	78 - 135
Chlorobromomethane	50.0	52.4		ug/Kg		105	74 - 135
Chlorodibromomethane	50.0	43.9		ug/Kg		88	77 - 135
Chloroethane	50.0	53.5		ug/Kg		107	51 ₋ 145
Chloroform	50.0	45.4		ug/Kg		91	73 - 123
Chloromethane	50.0	47.3		ug/Kg		95	41 - 138
cis-1,2-Dichloroethene	50.0	50.6		ug/Kg		101	76 - 135
cis-1,3-Dichloropropene	50.0	46.8		ug/Kg		94	71 - 135
Dibromomethane	50.0	48.1		ug/Kg		96	73 - 135
Dichlorobromomethane	50.0	45.7		ug/Kg		91	73 - 135
Dichlorodifluoromethane	50.0	44.8		ug/Kg		90	32 - 152
Ethylbenzene	50.0	49.8		ug/Kg		100	73 - 125
Hexachlorobutadiene	50.0	52.0		ug/Kg		104	52 - 151
sopropylbenzene	50.0	47.0		ug/Kg		94	74 - 137
Methyl tert-butyl ether	50.0	46.9		ug/Kg		94	71 - 141
Methylene Chloride	50.0	53.8		ug/Kg		108	76 - 136
n-Xylene & p-Xylene	50.0	50.1		ug/Kg		100	77 - 135
Naphthalene	50.0	53.6		ug/Kg		107	65 - 135
n-Butylbenzene	50.0	48.1		ug/Kg		96	68 - 135
N-Propylbenzene	50.0	49.3		ug/Kg		99	67 - 135
D-Xylene	50.0	50.4		ug/Kg		101	75 - 135
sec-Butylbenzene	50.0	50.1		ug/Kg		100	69 - 135
Styrene	50.0	48.2		ug/Kg		96	76 - 135
ert-Butylbenzene	50.0	47.8		ug/Kg		96	66 - 135
Fetrachloroethene	50.0	53.5		ug/Kg		107	76 - 135
Foluene	50.0	52.0		ug/Kg ug/Kg		107	77 - 122
rans-1,2-Dichloroethene	50.0	52.0 51.5		ug/Kg ug/Kg		104	77 - 122
rans-1,3-Dichloropropene	50.0	45.6		ug/Kg ug/Kg		91	71 - 135
Frichloroethene	50.0	49.9		ug/Kg ug/Kg		100	77 - 135
Frichlorofluoromethane							
inchioronuoromethane	50.0 50.0	41.2 48.5		ug/Kg ug/Kg		82 97	48 - 150 43 - 145

QC Sample Results

Prep Type: Total/NA

Prep Batch: 411028

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 280-411028/1-A Matrix: Solid

Analysis Batch: 411029

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	75		58 - 140
4-Bromofluorobenzene (Surr)	91		76 - 127
Dibromofluoromethane (Surr)	89		75 - 121
Toluene-d8 (Surr)	95		80 - 126

Lab Sample ID: LCSD 280-411028/2-A **Matrix: Solid**

Analysis Batch: 411029

Analysis Batch: 411029							Prep Ba		
Analysis Batch. 411025	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1,1,2-Tetrachloroethane	50.0	46.7		ug/Kg		93	76 - 135	2	20
1,1,1-Trichloroethane	50.0	42.2		ug/Kg		84	70 - 135	5	20
1,1,2,2-Tetrachloroethane	50.0	47.7		ug/Kg		95	65 - 135	2	21
1,1,2-Trichloroethane	50.0	52.2		ug/Kg		104	78 - 135	0	20
1,1-Dichloroethane	50.0	47.1		ug/Kg		94	70 - 135	0	20
1,1-Dichloroethene	50.0	49.5		ug/Kg		99	79 - 135	2	20
1,1-Dichloropropene	50.0	49.7		ug/Kg		99	72 - 135	2	20
1,2,3-Trichlorobenzene	50.0	53.2		ug/Kg		106	62 - 135	5	31
1,2,3-Trichloropropane	50.0	49.9		ug/Kg		100	65 - 135	6	21
1,2,4-Trichlorobenzene	50.0	51.2		ug/Kg		102	65 - 135	3	26
1,2,4-Trimethylbenzene	50.0	44.9		ug/Kg		90	67 - 135	0	20
1,2-Dibromo-3-Chloropropane	50.0	50.9		ug/Kg		102	66 - 150	2	28
1,2-Dibromoethane	50.0	48.8		ug/Kg		98	76 - 135	0	20
1,2-Dichlorobenzene	50.0	50.3		ug/Kg		101	73 - 135	1	20
1,2-Dichloroethane	50.0	42.8		ug/Kg		86	69 - 135	2	20
1,2-Dichloroethene, Total	100	103		ug/Kg		103	78 - 135	1	20
1,2-Dichloropropane	50.0	49.8		ug/Kg		100	72 - 121	2	20
1,3,5-Trimethylbenzene	50.0	45.6		ug/Kg		91	65 - 135	2	21
1,3-Dichlorobenzene	50.0	48.8		ug/Kg		98	69 - 135	4	20
1,3-Dichloropropane	50.0	48.3		ug/Kg		97	74 - 135	1	20
1,4-Dichlorobenzene	50.0	49.9		ug/Kg		100	73 - 135	1	22
2,2-Dichloropropane	50.0	43.8		ug/Kg		88	69 - 135	5	20
2-Butanone (MEK)	200	180		ug/Kg		90	45 - 177	2	32
2-Chlorotoluene	50.0	48.3		ug/Kg		97	67 - 135	1	22
2-Hexanone	200	202		ug/Kg		101	67 - 150	5	29
4-Chlorotoluene	50.0	49.6		ug/Kg		99	68 - 135	2	20
4-Isopropyltoluene	50.0	47.1		ug/Kg		94	66 - 135	3	20
4-Methyl-2-pentanone (MIBK)	200	192		ug/Kg		96	69 - 150	2	25
Acetone	200	197		ug/Kg		98	65 - 150	2	28
Benzene	50.0	52.5		ug/Kg		105	75 - 135	0	20
Bromobenzene	50.0	50.3		ug/Kg		101	72 - 135	1	22
Bromoform	50.0	44.9		ug/Kg		90	77 - 135	2	20
Bromomethane	50.0	46.7		ug/Kg		93	52 - 135	11	22
Carbon tetrachloride	50.0	40.8		ug/Kg		82	69 - 138	3	20
Chlorobenzene	50.0	48.1		ug/Kg		96	78 - 135	2	20
Chlorobromomethane	50.0	53.1		ug/Kg		106	74 - 135	1	21
Chlorodibromomethane	50.0	43.9		ug/Kg		88	77 - 135	0	20
Chloroethane	50.0	48.7		ug/Kg		97	51 ₋ 145	9	22

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 280-411028/2-A Matrix: Solid			C	Client Sa	mple	ID: Lat	Control Prep Ty		
Analysis Batch: 411029							Prep Ba	atch: 41	
	Spike	-	LCSD				%Rec.		RPD
Analyte	Added		Qualifier	Unit	D		Limits	RPD	Limit
Chloroform	50.0	45.5		ug/Kg		91	73 - 123	0	20
Chloromethane	50.0	43.2		ug/Kg		86	41 - 138	9	25
cis-1,2-Dichloroethene	50.0	51.1		ug/Kg		102	76 - 135	1	20
cis-1,3-Dichloropropene	50.0	44.9		ug/Kg		90	71 - 135	4	20
Dibromomethane	50.0	48.0		ug/Kg		96	73 - 135	0	20
Dichlorobromomethane	50.0	44.7		ug/Kg		89	73 - 135	2	20
Dichlorodifluoromethane	50.0	38.2		ug/Kg		76	32 - 152	16	28
Ethylbenzene	50.0	48.8		ug/Kg		98	73 - 125	2	20
Hexachlorobutadiene	50.0	50.6		ug/Kg		101	52 - 151	3	25
Isopropylbenzene	50.0	46.1		ug/Kg		92	74 - 137	2	20
Methyl tert-butyl ether	50.0	47.8		ug/Kg		96	71 - 141	2	20
Methylene Chloride	50.0	52.9		ug/Kg		106	76 - 136	2	21
m-Xylene & p-Xylene	50.0	47.8		ug/Kg		96	77 - 135	5	20
Naphthalene	50.0	53.4		ug/Kg		107	65 - 135	0	38
n-Butylbenzene	50.0	47.8		ug/Kg		96	68 - 135	1	21
N-Propylbenzene	50.0	48.0		ug/Kg		96	67 - 135	3	22
o-Xylene	50.0	49.1		ug/Kg		98	75 - 135	3	20
sec-Butylbenzene	50.0	48.8		ug/Kg		98	69 ₋ 135	3	22
Styrene	50.0	48.4		ug/Kg		97	76 - 135	0	20
tert-Butylbenzene	50.0	46.8		ug/Kg		94	66 - 135	2	22
Tetrachloroethene	50.0	51.9		ug/Kg		104	76 - 135	3	20
Toluene	50.0	52.0		ug/Kg		104	77 - 122	0	20
trans-1,2-Dichloroethene	50.0	52.3		ug/Kg		105	77 - 135	2	20
trans-1,3-Dichloropropene	50.0	44.4		ug/Kg		89	71 - 135	3	20
Trichloroethene	50.0	48.9		ug/Kg		98	77 - 135	2	20
Trichlorofluoromethane	50.0	36.8		ug/Kg		74	48 - 150	11	33
Vinyl chloride	50.0	42.3		ug/Kg		85	43 - 145	14	24

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	74		58 - 140
4-Bromofluorobenzene (Surr)	93		76 - 127
Dibromofluoromethane (Surr)	90		75 - 121
Toluene-d8 (Surr)	95		80 - 126

Lab Sample ID: 280-107960-2 MS Matrix: Solid Analysis Batch: 411029

Analysis Batch: 411029	Sample	Sample	Spike	MS	MS				Prep Batch: 411028 %Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
1,1,1,2-Tetrachloroethane	ND		55.7	47.1		ug/Kg		85	76 - 135
1,1,1-Trichloroethane	ND		55.7	41.9		ug/Kg		75	70 - 135
1,1,2,2-Tetrachloroethane	ND		55.7	48.4		ug/Kg		87	65 - 135
1,1,2-Trichloroethane	ND		55.7	54.0		ug/Kg		97	78 - 135
1,1-Dichloroethane	ND		55.7	48.3		ug/Kg		87	70 - 135
1,1-Dichloroethene	ND		55.7	49.1		ug/Kg		88	79 - 135
1,1-Dichloropropene	ND		55.7	48.3		ug/Kg		87	72 - 135
1,2,3-Trichlorobenzene	ND	F1	55.7	33.9	F1	ug/Kg		61	62 - 135
1,2,3-Trichloropropane	ND		55.7	51.3		ug/Kg		92	65 - 135

TestAmerica Denver

Client Sample ID: PCS AC2

Prep Type: Total/NA

5 6 9

9

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 280-107960 Matrix: Solid Analysis Batch: 411029		_						Client	Sample ID: PCS AC2 Prep Type: Total/NA Prep Batch: 411028
Analyte	•	Sample Qualifier	Spike Added		MS Qualifier	Unit	D	%Rec	%Rec. Limits
1,2,4-Trichlorobenzene	ND		55.7	33.6		ug/Kg		60	65 - 135
1,2,4-Trimethylbenzene	ND		55.7	42.9		ug/Kg		77	67 - 135
1,2-Dibromo-3-Chloropropane	ND		55.7	50.4		ug/Kg		91	66 - 150
1,2-Dibromoethane	ND		55.7	49.1		ug/Kg		88	76 - 135
1.2-Dichlorobenzene	0.69	Л	55.7	46.9		ug/Kg		83	73 - 135
1,2-Dichloroethane	ND	C C	55.7	43.8		ug/Kg		79	69 - 135
1,2-Dichloroethene, Total	7.4		111	111		ug/Kg		93	78 - 135
1,2-Dichloropropane	ND		55.7	51.3		ug/Kg		92	72 - 121
1,3,5-Trimethylbenzene	ND		55.7	43.9		ug/Kg		79	65 - 135
1,3-Dichlorobenzene	ND		55.7	46.5		ug/Kg		84	69 - 135
1,3-Dichloropropane	ND		55.7	48.3		ug/Kg		87	74 - 135
1,4-Dichlorobenzene	ND		55.7	44.7		ug/Kg		80	73 - 135
2,2-Dichloropropane	ND		55.7	39.3		ug/Kg		71	69 - 135
2-Butanone (MEK)	ND		223	362		ug/Kg		163	45 - 177
2-Chlorotoluene	ND		55.7	47.5		ug/Kg		85	67 - 135
2-Hexanone	ND		223	183		ug/Kg		82	67 - 150
4-Chlorotoluene	ND		55.7	48.5		ug/Kg		87	68 - 135
4-Isopropyltoluene	ND		55.7	41.6		ug/Kg		75	66 - 135
4-Methyl-2-pentanone (MIBK)	ND		223	186		ug/Kg		83	69 - 150
Acetone	ND		223	179		ug/Kg		80	65 - 150 65 - 150
Benzene	ND		55.7	53.5		ug/Kg		96	75 - 135
Bromobenzene	ND		55.7	51.8		ug/Kg		93	72 - 135
Bromoform	ND	F1	55.7	45.3		ug/Kg ug/Kg		81	77 - 135
Bromomethane	ND		55.7	39.0		ug/Kg		70	52 - 135
Carbon tetrachloride	ND		55.7	40.2		ug/Kg		70	69 - 138
Chlorobenzene	ND	⊑1	55.7	46.7		ug/Kg ug/Kg		84	78 - 135
Chlorobromomethane	ND		55.7	40.7 54.4		ug/Kg ug/Kg		98	74 - 135
Chlorodibromomethane	ND	F 1	55.7	45.8		ug/Kg		82	77 - 135
Chloroethane	ND		55.7	40.0		ug/Kg ug/Kg		72	51 - 145
Chloroform	ND		55.7	46.0		ug/Kg ug/Kg		83	73 - 123
Chloromethane	ND		55.7	40.0 37.9				68	41 - 138
cis-1,2-Dichloroethene	7.4		55.7	58.0		ug/Kg		91	41 - 138 76 - 135
cis-1,3-Dichloropropene	7.4 ND		55.7	44.5		ug/Kg		80	70 - 135 71 - 135
						ug/Kg			
Dibromomethane	ND		55.7	49.0		ug/Kg		88	73 - 135 73 - 125
Dichlorobromomethane	ND		55.7	45.6		ug/Kg		82	73 - 135
Dichlorodifluoromethane	ND		55.7	37.2		ug/Kg		67	32 - 152
Ethylbenzene	ND		55.7 55.7	47.3		ug/Kg		85 57	73 - 125
Hexachlorobutadiene	ND	F 1	55.7	31.8		ug/Kg		57 85	52 - 151 74 127
Isopropylbenzene	ND	F 1	55.7	47.5		ug/Kg		85	74 - 137
Methyl tert-butyl ether	ND		55.7 55.7	49.7		ug/Kg		89 04	71 - 141 76 - 126
Methylene Chloride	ND	F 1	55.7	52.3		ug/Kg		94	76 - 136 77 135
m-Xylene & p-Xylene	ND	г 1	55.7	45.7		ug/Kg		82	77 - 135
Naphthalene	ND	F 4	55.7	39.3		ug/Kg		71	65 - 135
n-Butylbenzene	ND	ГÏ	55.7	39.3		ug/Kg		71	68 - 135 67 - 425
N-Propylbenzene	ND		55.7	47.6		ug/Kg		85	67 - 135
o-Xylene	ND		55.7	47.2		ug/Kg		85	75 - 135
sec-Butylbenzene	ND	-	55.7	45.3		ug/Kg		81	69 - 135
Styrene	ND	⊢1	55.7	43.0		ug/Kg		77	76 - 135

Client Sample ID: PCS AC2 Prep Type: Total/NA

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 280-10790 Matrix: Solid	60-2 MS							Client	Sample ID: PCS AC2 Prep Type: Total/NA
Analysis Batch: 411029	Sample	Sample	Spike	MS	MS				Prep Batch: 411028 %Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
tert-Butylbenzene	ND		55.7	44.4		ug/Kg		80	66 - 135
Tetrachloroethene	ND		55.7	50.2		ug/Kg		90	76 ₋ 135
Toluene	ND		55.7	50.7		ug/Kg		91	77 - 122
trans-1,2-Dichloroethene	ND		55.7	52.6		ug/Kg		94	77 ₋ 135
trans-1,3-Dichloropropene	ND		55.7	43.1		ug/Kg		77	71 - 135
Trichloroethene	ND		55.7	51.2		ug/Kg		92	77 - 135
Trichlorofluoromethane	ND		55.7	35.5		ug/Kg		64	48 - 150
Vinyl chloride	ND		55.7	36.7		ug/Kg		66	43 - 145
	MS	MS							
Surrogate	%Recovery	Qualifier	Limits						
1,2-Dichloroethane-d4 (Surr)	81		58 - 140						
4-Bromofluorobenzene (Surr)	104		76 - 127						
Dibromofluoromethane (Surr)	96		75 - 121						
Toluene-d8 (Surr)	103		80 - 126						

Lab Sample ID: 280-107960-2 MSD
Matrix: Solid
Analysis Batch: 411029

Analysis Bataly 444020											
Analysis Batch: 411029	Samplo	Sample	Spike	MSD	MSD				Prep Ba %Rec.	atch: 4	RPD
Analyte	•	Qualifier	Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1,1,2-Tetrachloroethane	ND		56.3	43.6		ug/Kg		77	76 - 135	8	20
1,1,1-Trichloroethane	ND		56.3	41.7		ug/Kg		74	70 - 135	1	20
1,1,2,2-Tetrachloroethane	ND		56.3	42.0		ug/Kg		75	65 - 135	14	21
1,1,2-Trichloroethane	ND		56.3	52.0		ug/Kg		92	78 - 135	4	20
1,1-Dichloroethane	ND		56.3	46.7		ug/Kg		83	70 - 135	3	20
1,1-Dichloroethene	ND		56.3	50.9		ug/Kg		90	79 - 135	4	20
1,1-Dichloropropene	ND		56.3	47.5		ug/Kg		84	72 - 135	2	20
1,2,3-Trichlorobenzene	ND	F1	56.3	36.9		ug/Kg		65	62 - 135	9	31
1,2,3-Trichloropropane	ND		56.3	47.2		ug/Kg		84	65 - 135	8	21
1,2,4-Trichlorobenzene	ND	F1	56.3	34.8	F1	ug/Kg		62	65 - 135	3	26
1,2,4-Trimethylbenzene	ND		56.3	37.9		ug/Kg		67	67 - 135	12	20
1,2-Dibromo-3-Chloropropane	ND		56.3	47.7		ug/Kg		85	66 - 150	6	28
1,2-Dibromoethane	ND		56.3	46.2		ug/Kg		82	76 - 135	6	20
1,2-Dichlorobenzene	0.69	J	56.3	43.2		ug/Kg		75	73 - 135	8	20
1,2-Dichloroethane	ND		56.3	41.2		ug/Kg		73	69 ₋ 135	6	20
1,2-Dichloroethene, Total	7.4		113	109		ug/Kg		90	78 ₋ 135	2	20
1,2-Dichloropropane	ND		56.3	48.2		ug/Kg		86	72 - 121	6	20
1,3,5-Trimethylbenzene	ND		56.3	39.3		ug/Kg		70	65 - 135	11	21
1,3-Dichlorobenzene	ND		56.3	41.1		ug/Kg		73	69 - 135	12	20
1,3-Dichloropropane	ND		56.3	44.9		ug/Kg		80	74 - 135	7	20
1,4-Dichlorobenzene	ND		56.3	41.3		ug/Kg		73	73 - 135	8	22
2,2-Dichloropropane	ND		56.3	40.2		ug/Kg		71	69 - 135	2	20
2-Butanone (MEK)	ND		225	338		ug/Kg		150	45 - 177	7	32
2-Chlorotoluene	ND		56.3	41.9		ug/Kg		74	67 - 135	13	22
2-Hexanone	ND		225	178		ug/Kg		79	67 - 150	3	29
4-Chlorotoluene	ND		56.3	42.9		ug/Kg		76	68 - 135	12	20
4-Isopropyltoluene	ND		56.3	38.3		ug/Kg		68	66 - 135	8	20
4-Methyl-2-pentanone (MIBK)	ND		225	179		ug/Kg		80	69 - 150	3	25

9

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 280-10796 Matrix: Solid	JU-2 IVIOD							Cileill	Sample I Prep Ty		
Analysis Batch: 411029									Prep Ba		
·····, ····	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Acetone	ND		225	166		ug/Kg		74	65 - 150	7	28
Benzene	ND		56.3	51.2		ug/Kg		91	75 - 135	5	20
Bromobenzene	ND		56.3	45.9		ug/Kg		81	72 - 135	12	22
Bromoform	ND	F1	56.3	42.0	F1	ug/Kg		75	77 - 135	8	20
Bromomethane	ND		56.3	40.4		ug/Kg		72	52 - 135	3	22
Carbon tetrachloride	ND		56.3	39.4		ug/Kg		70	69 - 138	2	20
Chlorobenzene	ND	F1	56.3	43.6	F1	ug/Kg		77	78 - 135	7	20
Chlorobromomethane	ND		56.3	52.5		ug/Kg		93	74 - 135	4	2
Chlorodibromomethane	ND	F1	56.3	42.3	F1	ug/Kg		75	77 - 135	8	20
Chloroethane	ND		56.3	42.5		ug/Kg		75	51 - 145	6	22
Chloroform	ND		56.3	44.2		ug/Kg		78	73 - 123	4	20
Chloromethane	ND		56.3	39.2		ug/Kg		70	41 - 138	3	25
cis-1,2-Dichloroethene	7.4		56.3	56.0		ug/Kg		86	76 - 135	4	20
cis-1,3-Dichloropropene	ND		56.3	42.0		ug/Kg		75	71 - 135	6	20
Dibromomethane	ND		56.3	46.6		ug/Kg		83	73 - 135	5	20
Dichlorobromomethane	ND		56.3	43.2		ug/Kg		77	73 - 135	5	20
Dichlorodifluoromethane	ND		56.3	37.3		ug/Kg		66	32 - 152	0	2
Ethylbenzene	ND		56.3	43.8		ug/Kg		78	73 - 125	8	2
Hexachlorobutadiene	ND		56.3	33.9		ug/Kg		60	52 - 151	6	2
Isopropylbenzene	ND	F1	56.3	41.3	F1	ug/Kg		73	74 - 137	14	20
Methyl tert-butyl ether	ND		56.3	48.3		ug/Kg		86	71 - 141	3	20
Methylene Chloride	ND		56.3	52.8		ug/Kg		94	76 - 136	1	2
m-Xylene & p-Xylene	ND	F1	56.3	42.9	F1	ug/Kg		76	70 - 130 77 - 135	6	2
Naphthalene	ND		56.3	40.2		ug/Kg		70	65 - 135	2	3
n-Butylbenzene	ND	F1	56.3	36.5	⊑1	ug/Kg		65	68 - 135	7	2
N-Propylbenzene	ND		56.3	40.5		ug/Kg ug/Kg		72	67 - 135	, 16	2
o-Xylene	ND		56.3	40.5		ug/Kg ug/Kg		72	75 - 135	7	20
sec-Butylbenzene	ND		56.3	41.4		ug/Kg ug/Kg		73	69 - 135	, 9	22
Styrene	ND	E1	56.3	41.4	E 1			73	09 - 135 76 - 135	5	2
tert-Butylbenzene	ND		56.3	41.1 39.9	F I	ug/Kg ug/Kg		73	66 - 135	11	20
Tetrachloroethene									76 - 135		
	ND ND		56.3	47.5		ug/Kg		84	76 - 135 77 - 122	6	20 20
Toluene			56.3	49.5		ug/Kg		88		2	
trans-1,2-Dichloroethene	ND		56.3	52.8		ug/Kg		94 74	77 - 135	0	20
trans-1,3-Dichloropropene	ND		56.3	41.8		ug/Kg		74 97	71 - 135 77 - 135	3	20
Trichloroethene	ND		56.3	49.0		ug/Kg		87	77 - 135	4	20
Trichlorofluoromethane	ND		56.3	36.1		ug/Kg		64	48 - 150	2	33
Vinyl chloride	ND		56.3	36.7		ug/Kg		65	43 - 145	0	24
Surrogate	MSD %Recovery	MSD Qualifier	Limits								
1,2-Dichloroethane-d4 (Surr)	84	Quaiiiiei									
4-Bromofluorobenzene (Surr)	84 92		56 - 140 76 - 127								
	92 91		76 - 127 75 - 121								
Dibromofluoromethane (Surr) Toluene-d8 (Surr)	91 94		75 - 121 80 - 126								

Lab Sample ID: MB 280-411171/3-A

Client Sample ID: Method Blank

9

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Matrix: Solid							Prep Type: To			
								Prep Batch:		
Analysis Batch: 411164	MB	МВ						Flep Batch.	411171	
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
1,1,1,2-Tetrachloroethane	ND		5.0	0.56	ug/Kg		. 04/12/18 18:00	04/12/18 18:57	1	
1,1,1-Trichloroethane	ND		5.0		ug/Kg		04/12/18 18:00	04/12/18 18:57	1	
1,1,2,2-Tetrachloroethane	ND		5.0		ug/Kg		04/12/18 18:00	04/12/18 18:57	1	
1,1,2-Trichloroethane	ND		5.0	0.88	ug/Kg		04/12/18 18:00	04/12/18 18:57	1	
1,1-Dichloroethane	ND		5.0		ug/Kg		04/12/18 18:00	04/12/18 18:57	1	
1,1-Dichloroethene	ND		5.0		ug/Kg		04/12/18 18:00	04/12/18 18:57	1	-
1,1-Dichloropropene	ND		5.0		ug/Kg		04/12/18 18:00	04/12/18 18:57	1	
1,2,3-Trichlorobenzene	ND		5.0	0.75	ug/Kg		04/12/18 18:00	04/12/18 18:57	1	
1,2,3-Trichloropropane	ND		5.0		ug/Kg		04/12/18 18:00	04/12/18 18:57	1	
1,2,4-Trichlorobenzene	ND		5.0	0.73	ug/Kg		04/12/18 18:00	04/12/18 18:57	1	
1,2,4-Trimethylbenzene	ND		5.0		ug/Kg		04/12/18 18:00	04/12/18 18:57	1	
1,2-Dibromo-3-Chloropropane	ND		10		ug/Kg		04/12/18 18:00	04/12/18 18:57	1	
1,2-Dibromoethane	ND		5.0		ug/Kg		04/12/18 18:00	04/12/18 18:57	1	
1,2-Dichlorobenzene	ND		5.0		ug/Kg		04/12/18 18:00	04/12/18 18:57	1	
1,2-Dichloroethane	ND		5.0		ug/Kg		04/12/18 18:00	04/12/18 18:57	1	
1,2-Dichloroethene, Total	ND		5.0		ug/Kg		04/12/18 18:00	04/12/18 18:57	1	
1,2-Dichloropropane	ND		5.0		ug/Kg		04/12/18 18:00	04/12/18 18:57	1	
1,3,5-Trimethylbenzene	ND		5.0		ug/Kg		04/12/18 18:00	04/12/18 18:57	1	
1,3-Dichlorobenzene	ND		5.0		ug/Kg			04/12/18 18:57	1	
1,3-Dichloropropane	ND		5.0		ug/Kg		04/12/18 18:00	04/12/18 18:57	1	
1,4-Dichlorobenzene	ND		5.0		ug/Kg		04/12/18 18:00	04/12/18 18:57	1	
2,2-Dichloropropane	ND		5.0		ug/Kg		04/12/18 18:00	04/12/18 18:57	1	
2-Butanone (MEK)	ND		20				04/12/18 18:00	04/12/18 18:57	1	
2-Chlorotoluene	ND		5.0		ug/Kg		04/12/18 18:00	04/12/18 18:57	1	
2-Hexanone	ND		20	4.9	ug/Kg		04/12/18 18:00	04/12/18 18:57	1	
4-Chlorotoluene	ND		5.0		ug/Kg		04/12/18 18:00	04/12/18 18:57	1	
4-Isopropyltoluene	ND		5.0	0.49	ug/Kg		04/12/18 18:00	04/12/18 18:57	1	
4-Methyl-2-pentanone (MIBK)	ND		20	4.4	ug/Kg		04/12/18 18:00	04/12/18 18:57	1	
Acetone	13.5	J	20	5.4	ug/Kg		04/12/18 18:00	04/12/18 18:57	1	
Benzene	ND		5.0	0.47	ug/Kg		04/12/18 18:00	04/12/18 18:57	1	
Bromobenzene	ND		5.0	0.49	ug/Kg		04/12/18 18:00	04/12/18 18:57	1	
Bromoform	ND		5.0	0.23	ug/Kg		04/12/18 18:00	04/12/18 18:57	1	
Bromomethane	ND		10	0.50	ug/Kg		04/12/18 18:00	04/12/18 18:57	1	
Carbon tetrachloride	ND		5.0	0.63	ug/Kg		04/12/18 18:00	04/12/18 18:57	1	
Chlorobenzene	ND		5.0	0.54	ug/Kg		04/12/18 18:00	04/12/18 18:57	1	
Chlorobromomethane	ND		5.0	0.30	ug/Kg		04/12/18 18:00	04/12/18 18:57	1	
Chlorodibromomethane	ND		5.0	0.57	ug/Kg		04/12/18 18:00	04/12/18 18:57	1	
Chloroethane	ND		10	0.89	ug/Kg		04/12/18 18:00	04/12/18 18:57	1	
Chloroform	ND		10	0.29	ug/Kg		04/12/18 18:00	04/12/18 18:57	1	
Chloromethane	ND		10	0.77	ug/Kg		04/12/18 18:00	04/12/18 18:57	1	
cis-1,2-Dichloroethene	ND		2.5	0.56	ug/Kg		04/12/18 18:00	04/12/18 18:57	1	
cis-1,3-Dichloropropene	ND		5.0	1.3	ug/Kg		04/12/18 18:00	04/12/18 18:57	1	
Dibromomethane	ND		5.0		ug/Kg		04/12/18 18:00	04/12/18 18:57	1	
Dichlorobromomethane	ND		5.0	0.22	ug/Kg		04/12/18 18:00	04/12/18 18:57	1	
Dichlorodifluoromethane	ND		10	0.52	ug/Kg		04/12/18 18:00	04/12/18 18:57	1	
Ethylbenzene	ND		5.0	0.67	ug/Kg		04/12/18 18:00	04/12/18 18:57	1	
Hexachlorobutadiene	ND		5.0		ug/Kg		04/12/18 18:00	04/12/18 18:57	1	
Isopropylbenzene	ND		5.0		ug/Kg		04/12/18 18:00	04/12/18 18:57	1	
Let a state of the second s										

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

MB MB **Result Qualifier**

ND

Lab Sample ID: MB 280-411171/3-A atriv Ma

Matrix: S	olid	
Analysis	Batch: 411164	

Analyte

Methyl tert-butyl ether

Methylene Chloride

Naphthalene

o-Xylene

Styrene

Toluene

n-Butylbenzene

N-Propylbenzene

sec-Butylbenzene

tert-Butylbenzene

Tetrachloroethene

Trichloroethene

Vinyl chloride

Xylenes, Total

trans-1,2-Dichloroethene

trans-1,3-Dichloropropene

Trichlorofluoromethane

m-Xylene & p-Xylene

Client Sample ID: Method Blank Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

		Tep Type. It						
5	411171	Prep Batch:						
	Dil Fac	Analyzed	Prepared	D	Unit	MDL	RL	
	1	04/12/18 18:57	04/12/18 18:00		ug/Kg	0.34	20	
	1	04/12/18 18:57	04/12/18 18:00		ug/Kg	1.6	5.0	
	1	04/12/18 18:57	04/12/18 18:00		ug/Kg	1.0	2.5	
	1	04/12/18 18:57	04/12/18 18:00		ug/Kg	0.63	5.0	
8	1	04/12/18 18:57	04/12/18 18:00		ug/Kg	0.56	5.0	
	1	04/12/18 18:57	04/12/18 18:00		ug/Kg	0.58	5.0	
9	1	04/12/18 18:57	04/12/18 18:00		ug/Kg	0.61	2.5	
	1	04/12/18 18:57	04/12/18 18:00		ug/Kg	0.77	5.0	
	1	04/12/18 18:57	04/12/18 18:00		ug/Kg	0.63	5.0	
	1	04/12/18 18:57	04/12/18 18:00		ug/Kg	0.50	5.0	
	1	04/12/18 18:57	04/12/18 18:00		ug/Kg	0.59	5.0	
	1	04/12/18 18:57	04/12/18 18:00		ug/Kg	0.69	5.0	
	1	04/12/18 18:57	04/12/18 18:00		ug/Kg	0.39	2.5	
	1	04/12/18 18:57	04/12/18 18:00		ug/Kg	0.67	5.0	
10	1	04/12/18 18:57	04/12/18 18:00		ug/Kg	0.23	5.0	
13	1	04/12/18 18:57	04/12/18 18:00		ug/Kg	1.0	10	
	1	04/12/18 18:57	04/12/18 18:00		ug/Kg	1.3	5.0	
	1	04/12/18 18:57	04/12/18 18:00		ug/Kg	0.61	5.0	

	MB MB			
Surrogate	%Recovery Qualifier	Limits	Prepared Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	76	58 - 140	04/12/18 18:00 04/12/18 18:57	1
4-Bromofluorobenzene (Surr)	95	76 - 127	04/12/18 18:00 04/12/18 18:57	1
Dibromofluoromethane (Surr)	91	75 - 121	04/12/18 18:00 04/12/18 18:57	1
Toluene-d8 (Surr)	94	80 - 126	04/12/18 18:00 04/12/18 18:57	1

Lab Sample ID: LCS 280-411171/1-A **Matrix: Solid** Analysis Batch: 411164

Analysis Batch: 411164	Spike	LCS	LCS				Prep Batch: 411171 %Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
1,1,1,2-Tetrachloroethane	50.0	46.4		ug/Kg		93	76 - 135
1,1,1-Trichloroethane	50.0	43.5		ug/Kg		87	70 - 135
1,1,2,2-Tetrachloroethane	50.0	50.4		ug/Kg		101	65 - 135
1,1,2-Trichloroethane	50.0	56.0		ug/Kg		112	78 - 135
1,1-Dichloroethane	50.0	48.5		ug/Kg		97	70 - 135
1,1-Dichloroethene	50.0	52.0		ug/Kg		104	79 - 135
1,1-Dichloropropene	50.0	51.3		ug/Kg		103	72 - 135
1,2,3-Trichlorobenzene	50.0	57.2		ug/Kg		114	62 - 135
1,2,3-Trichloropropane	50.0	51.6		ug/Kg		103	65 - 135
1,2,4-Trichlorobenzene	50.0	53.8		ug/Kg		108	65 - 135
1,2,4-Trimethylbenzene	50.0	45.7		ug/Kg		91	67 - 135
1,2-Dibromo-3-Chloropropane	50.0	57.1		ug/Kg		114	66 - 150
1,2-Dibromoethane	50.0	49.3		ug/Kg		99	76 - 135
1,2-Dichlorobenzene	50.0	52.0		ug/Kg		104	73 - 135
1,2-Dichloroethane	50.0	44.5		ug/Kg		89	69 - 135
1,2-Dichloroethene, Total	100	111		ug/Kg		111	78 - 135
1,2-Dichloropropane	50.0	51.0		ug/Kg		102	72 - 121
1,3,5-Trimethylbenzene	50.0	46.9		ug/Kg		94	65 - 135

9

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Matrix: Solid							Prep Type: Total/N/
Analysis Batch: 411164							Prep Batch: 41117
	Spike		LCS		_	~ -	%Rec.
Analyte	Added		Qualifier	Unit	D	%Rec	Limits
I,3-Dichlorobenzene	50.0	50.7		ug/Kg		101	69 - 135
I,3-Dichloropropane	50.0	48.7		ug/Kg		97	74 - 135
1,4-Dichlorobenzene	50.0	51.5		ug/Kg		103	73 - 135
2,2-Dichloropropane	50.0	45.6		ug/Kg		91	69 - 135
2-Butanone (MEK)	200	202		ug/Kg		101	45 - 177
2-Chlorotoluene	50.0	48.8		ug/Kg		98	67 - 135
2-Hexanone	200	223		ug/Kg		112	67 - 150
4-Chlorotoluene	50.0	50.3		ug/Kg		101	68 - 135
1-Isopropyltoluene	50.0	48.1		ug/Kg		96	66 - 135
4-Methyl-2-pentanone (MIBK)	200	209		ug/Kg		104	69 - 150
Acetone	200	220		ug/Kg		110	65 - 150
Benzene	50.0	53.9		ug/Kg		108	75 - 135
Bromobenzene	50.0	52.1		ug/Kg		104	72 - 135
Bromoform	50.0	48.0		ug/Kg		96	77 - 135
Bromomethane	50.0	45.9		ug/Kg		92	52 - 135
Carbon tetrachloride	50.0	42.9		ug/Kg		86	69 - 138
Chlorobenzene	50.0	48.7		ug/Kg		97	78 - 135
Chlorobromomethane	50.0	55.5		ug/Kg		111	74 - 135
Chlorodibromomethane	50.0	45.3		ug/Kg		91	77 - 135
Chloroethane	50.0	50.1		ug/Kg		100	51 ₋ 145
Chloroform	50.0	46.8		ug/Kg		94	73 - 123
Chloromethane	50.0	44.5		ug/Kg		89	41 - 138
cis-1,2-Dichloroethene	50.0	55.5		ug/Kg		111	76 - 135
cis-1,3-Dichloropropene	50.0	46.5		ug/Kg		93	71 - 135
Dibromomethane	50.0	50.6		ug/Kg		101	73 - 135
Dichlorobromomethane	50.0	46.7		ug/Kg		93	73 - 135
Dichlorodifluoromethane	50.0	39.7		ug/Kg		79	32 - 152
Ethylbenzene	50.0	49.2		ug/Kg		98	73 - 125
Hexachlorobutadiene	50.0	52.2		ug/Kg		104	52 - 151
sopropylbenzene	50.0	47.6		ug/Kg		95	74 - 137
Methyl tert-butyl ether	50.0	50.4		ug/Kg		101	71 - 141
Methylene Chloride	50.0	54.9		ug/Kg		110	76 - 136
n-Xylene & p-Xylene	50.0	48.6		ug/Kg		97	77 - 135
Naphthalene	50.0	57.8		ug/Kg		116	65 - 135
n-Butylbenzene	50.0	48.5		ug/Kg		97	68 - 135
N-Propylbenzene	50.0	49.2		ug/Kg		98	67 - 135
D-Xylene	50.0	49.7		ug/Kg		99	75 - 135
sec-Butylbenzene	50.0	49.4		ug/Kg		99	69 - 135
Styrene	50.0	49.2		ug/Kg		98	76 - 135
ert-Butylbenzene	50.0	47.5		ug/Kg		95	66 - 135
Fetrachloroethene	50.0	53.1		ug/Kg ug/Kg		106	76 - 135
Foluene	50.0	53.8		ug/Kg ug/Kg		108	70 - 133 77 - 122
rans-1,2-Dichloroethene	50.0	55.0		ug/Kg ug/Kg		100	77 - 122
rans-1,2-Dichloropropene	50.0	55.0 47.0				94	77 - 135 71 - 135
				ug/Kg			
Frichloroethene	50.0	51.6		ug/Kg		103	77 - 135
Frichlorofluoromethane /inyl chloride	50.0 50.0	38.2 43.8		ug/Kg ug/Kg		76 88	48 - 150 43 - 145

Prep Type: Total/NA

Prep Batch: 411171

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 280-411171/1-A Matrix: Solid

Analysis Batch: 411164

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	81		58 - 140
4-Bromofluorobenzene (Surr)	93		76 - 127
Dibromofluoromethane (Surr)	90		75 - 121
Toluene-d8 (Surr)	93		80 - 126

Lab Sample ID: LCSD 280-411171/2-A Matrix: Solid

Analysis Batch: 411164

Analysis Batch: 411164	Spike	LCSD	LCSD				Prep Ba %Rec.	atch: 4	11171 RPD
Analyte	Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1,1,2-Tetrachloroethane	50.0	48.4		ug/Kg		97	76 - 135	4	20
1,1,1-Trichloroethane	50.0	43.5		ug/Kg		87	70 - 135	0	20
1,1,2,2-Tetrachloroethane	50.0	46.9		ug/Kg		94	65 - 135	7	21
1,1,2-Trichloroethane	50.0	53.7		ug/Kg		107	78 - 135	4	20
1,1-Dichloroethane	50.0	48.7		ug/Kg		97	70 - 135	0	20
1,1-Dichloroethene	50.0	52.5		ug/Kg		105	79 ₋ 135	1	20
1,1-Dichloropropene	50.0	51.3		ug/Kg		103	72 - 135	0	20
1,2,3-Trichlorobenzene	50.0	52.1		ug/Kg		104	62 - 135	9	31
1,2,3-Trichloropropane	50.0	48.8		ug/Kg		98	65 - 135	6	21
1,2,4-Trichlorobenzene	50.0	50.2		ug/Kg		100	65 - 135	7	26
1,2,4-Trimethylbenzene	50.0	45.5		ug/Kg		91	67 - 135	0	20
1,2-Dibromo-3-Chloropropane	50.0	49.0		ug/Kg		98	66 - 150	15	28
1,2-Dibromoethane	50.0	49.7		ug/Kg		99	76 - 135	1	20
1,2-Dichlorobenzene	50.0	51.1		ug/Kg		102	73 - 135	2	20
1,2-Dichloroethane	50.0	43.2		ug/Kg		86	69 - 135	3	20
1,2-Dichloroethene, Total	100	110		ug/Kg		110	78 - 135	0	20
1,2-Dichloropropane	50.0	51.1		ug/Kg		102	72 - 121	0	20
1,3,5-Trimethylbenzene	50.0	46.9		ug/Kg		94	65 - 135	0	21
1,3-Dichlorobenzene	50.0	51.4		ug/Kg		103	69 - 135	1	20
1,3-Dichloropropane	50.0	48.6		ug/Kg		97	74 - 135	0	20
1,4-Dichlorobenzene	50.0	50.9		ug/Kg		102	73 - 135	1	22
2,2-Dichloropropane	50.0	45.6		ug/Kg		91	69 - 135	0	20
2-Butanone (MEK)	200	174		ug/Kg		87	45 - 177	15	32
2-Chlorotoluene	50.0	48.6		ug/Kg		97	67 - 135	0	22
2-Hexanone	200	203		ug/Kg		101	67 - 150	10	29
4-Chlorotoluene	50.0	50.7		ug/Kg		101	68 - 135	1	20
4-Isopropyltoluene	50.0	47.9		ug/Kg		96	66 - 135	1	20
4-Methyl-2-pentanone (MIBK)	200	187		ug/Kg		93	69 - 150	11	25
Acetone	200	189		ug/Kg		95	65 - 150	15	28
Benzene	50.0	54.1		ug/Kg		108	75 - 135	1	20
Bromobenzene	50.0	52.1		ug/Kg		104	72 - 135	0	22
Bromoform	50.0	46.7		ug/Kg		93	77 - 135	3	20
Bromomethane	50.0	49.5		ug/Kg		99	52 - 135	7	22
Carbon tetrachloride	50.0	42.6		ug/Kg		85	69 - 138	0	20
Chlorobenzene	50.0	49.9		ug/Kg		100	78 - 135	2	20
Chlorobromomethane	50.0	54.9		ug/Kg		110	74 - 135	1	21
Chlorodibromomethane	50.0	45.3		ug/Kg		91	77 - 135	0	20
Chloroethane	50.0	50.8		ug/Kg		102	51 - 145	1	22

9

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 280-411171/2-A Matrix: Solid			(Client Sa	mple	ID: Lat	Control Prep Ty		
Analysis Batch: 411164							Prep Ba	atch: 41	
	Spike	-	LCSD				%Rec.		RPD
Analyte	Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloroform	50.0	46.7		ug/Kg		93	73 - 123	0	20
Chloromethane	50.0	43.5		ug/Kg		87	41 - 138	2	25
cis-1,2-Dichloroethene	50.0	55.5		ug/Kg		111	76 - 135	0	20
cis-1,3-Dichloropropene	50.0	46.8		ug/Kg		94	71 - 135	1	20
Dibromomethane	50.0	48.6		ug/Kg		97	73 - 135	4	20
Dichlorobromomethane	50.0	45.6		ug/Kg		91	73 - 135	2	20
Dichlorodifluoromethane	50.0	38.6		ug/Kg		77	32 - 152	3	28
Ethylbenzene	50.0	51.2		ug/Kg		102	73 - 125	4	20
Hexachlorobutadiene	50.0	49.3		ug/Kg		99	52 - 151	6	25
Isopropylbenzene	50.0	47.9		ug/Kg		96	74 - 137	1	20
Methyl tert-butyl ether	50.0	48.2		ug/Kg		96	71 - 141	4	20
Methylene Chloride	50.0	55.1		ug/Kg		110	76 - 136	0	21
m-Xylene & p-Xylene	50.0	49.3		ug/Kg		99	77 - 135	1	20
Naphthalene	50.0	51.1		ug/Kg		102	65 - 135	12	38
n-Butylbenzene	50.0	47.7		ug/Kg		95	68 - 135	2	21
N-Propylbenzene	50.0	50.0		ug/Kg		100	67 - 135	2	22
o-Xylene	50.0	50.3		ug/Kg		101	75 - 135	1	20
sec-Butylbenzene	50.0	50.4		ug/Kg		101	69 - 135	2	22
Styrene	50.0	49.5		ug/Kg		99	76 - 135	1	20
tert-Butylbenzene	50.0	47.8		ug/Kg		96	66 - 135	1	22
Tetrachloroethene	50.0	54.4		ug/Kg		109	76 - 135	2	20
Toluene	50.0	53.7		ug/Kg		107	77 _ 122	0	20
trans-1,2-Dichloroethene	50.0	54.9		ug/Kg		110	77 - 135	0	20
trans-1,3-Dichloropropene	50.0	45.8		ug/Kg		92	71 - 135	3	20
Trichloroethene	50.0	51.7		ug/Kg		103	77 - 135	0	20
Trichlorofluoromethane	50.0	38.9		ug/Kg		78	48 - 150	2	33
Vinyl chloride	50.0	43.8		ug/Kg		88	43 - 145	0	24

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	74		58 - 140
4-Bromofluorobenzene (Surr)	91		76 - 127
Dibromofluoromethane (Surr)	90		75 - 121
Toluene-d8 (Surr)	94		80 - 126

Lab Sample ID: 280-107960-20 MS Matrix: Solid Analysis Batch: 411164

Analysis Batch: 411164	Sample	Sample	Spike	MS	MS				Prep Batch: 411171 %Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
1,1,1,2-Tetrachloroethane	ND		57.1	46.4		ug/Kg		81	76 - 135
1,1,1-Trichloroethane	ND		57.1	43.2		ug/Kg		76	70 - 135
1,1,2,2-Tetrachloroethane	ND		57.1	46.8		ug/Kg		82	65 - 135
1,1,2-Trichloroethane	ND		57.1	55.1		ug/Kg		96	78 - 135
1,1-Dichloroethane	ND		57.1	49.3		ug/Kg		86	70 - 135
1,1-Dichloroethene	ND		57.1	51.6		ug/Kg		90	79 - 135
1,1-Dichloropropene	ND		57.1	50.8		ug/Kg		89	72 - 135
1,2,3-Trichlorobenzene	ND		57.1	40.1		ug/Kg		70	62 - 135
1,2,3-Trichloropropane	ND		57.1	50.0		ug/Kg		88	65 - 135

TestAmerica Denver

Client Sample ID: PCS AC20

Prep Type: Total/NA

9

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 280-10796 Matrix: Solid Analysis Batch: 411164	0-20 MS							Client	Sample ID: PCS AC20 Prep Type: Total/NA Prep Batch: 411171
	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	Result	Qualifier	Added		Qualifier	Unit	D	%Rec	Limits
1,2,4-Trichlorobenzene	ND		57.1	37.9		ug/Kg		66	65 - 135
1,2,4-Trimethylbenzene	ND		57.1	40.8		ug/Kg		71	67 - 135
1,2-Dibromo-3-Chloropropane	ND		57.1	48.0		ug/Kg		84	66 - 150
1,2-Dibromoethane	ND		57.1	48.9		ug/Kg		86	76 - 135
1,2-Dichlorobenzene	ND		57.1	45.3		ug/Kg		79	73 - 135
1,2-Dichloroethane	ND		57.1	44.7		ug/Kg		78	69 - 135
1,2-Dichloroethene, Total	ND		114	106		ug/Kg		93	78 - 135
1,2-Dichloropropane	ND		57.1	51.8		ug/Kg		91	72 - 121
1,3,5-Trimethylbenzene	ND		57.1	41.9		ug/Kg		73	65 - 135
1,3-Dichlorobenzene	ND		57.1	43.8		ug/Kg		77	69 ₋ 135
1,3-Dichloropropane	ND		57.1	48.5		ug/Kg		85	74 - 135
1,4-Dichlorobenzene	ND		57.1	44.1		ug/Kg		77	73 ₋ 135
2,2-Dichloropropane	ND		57.1	42.4		ug/Kg		74	69 ₋ 135
2-Butanone (MEK)	6.6	J	228	229		ug/Kg		97	45 - 177
2-Chlorotoluene	ND		57.1	44.5		ug/Kg		78	67 - 135
2-Hexanone	ND		228	209		ug/Kg		92	67 - 150
4-Chlorotoluene	ND		57.1	45.4		ug/Kg		80	68 - 135
4-Isopropyltoluene	ND		57.1	40.5		ug/Kg		71	66 - 135
4-Methyl-2-pentanone (MIBK)	ND		228	204		ug/Kg		89	69 - 150
Acetone	21	в	228	196		ug/Kg		77	65 - 150
Benzene	ND	_	57.1	53.8		ug/Kg		94	75 - 135
Bromobenzene	ND		57.1	47.6		ug/Kg		83	72 - 135
Bromoform	ND		57.1	44.7		ug/Kg		78	77 - 135
Bromomethane	ND		57.1	42.8		ug/Kg		75	52 - 135
Carbon tetrachloride	ND		57.1	41.6		ug/Kg		73	69 - 138
Chlorobenzene	ND		57.1	46.0		ug/Kg		81	78 - 135
Chlorobromomethane	ND		57.1	54.2		ug/Kg		95	74 - 135
Chlorodibromomethane	ND		57.1	43.8		ug/Kg		77	77 - 135
Chloroethane	ND		57.1	44.4		ug/Kg		78	51 - 145
Chloroform	ND		57.1	46.6		ug/Kg		82	73 - 123
Chloromethane	ND		57.1	39.8		ug/Kg		70	41 - 138
cis-1,2-Dichloroethene	ND		57.1	52.4		ug/Kg		92	76 - 135
cis-1,3-Dichloropropene	ND		57.1	44.6		ug/Kg		78	71 - 135
Dibromomethane	ND		57.1	49.2		ug/Kg		86	73 - 135
Dichlorobromomethane	ND		57.1	44.9		ug/Kg		79	73 - 135
Dichlorodifluoromethane	ND		57.1	38.4		ug/Kg		67	32 - 152
Ethylbenzene	ND		57.1	46.9		ug/Kg		82	73 - 125
Hexachlorobutadiene	ND		57.1	40.9 34.9		ug/Kg ug/Kg		61	52 - 151
Isopropylbenzene	ND		57.1	44.0		ug/Kg		77	74 - 137
1 12				44.0 50.2				88	71 - 141
Methyl tert-butyl ether Methylene Chloride	ND ND		57.1 57.1	50.2 54.0		ug/Kg ug/Kg		00 95	76 - 136
	ND		57.1	54.0 46.2		ug/Kg ug/Kg		95 81	76 - 136 77 - 135
m-Xylene & p-Xylene Naphthalene									
	ND		57.1	45.1		ug/Kg		79 60	65 - 135 68 125
n-Butylbenzene	ND		57.1	39.1		ug/Kg		69 70	68 - 135 67 135
N-Propylbenzene	ND		57.1	45.0		ug/Kg		79	67 - 135 75 - 135
o-Xylene	ND		57.1	46.9		ug/Kg		82	75 - 135
sec-Butylbenzene	ND		57.1	43.6		ug/Kg		76	69 - 135 70 - 105
Styrene	ND		57.1	43.6		ug/Kg		76	76 - 135

Client Sample ID: PCS AC20

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 280-10790 Matrix: Solid							Client Sample ID: PCS AC20 Prep Type: Total/NA				
Analysis Batch: 411164	Sample	Sample	Spike	MS	MS				Prep Batch: 411171 %Rec.		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
tert-Butylbenzene	ND		57.1	43.1		ug/Kg		75	66 - 135		
Tetrachloroethene	ND		57.1	48.6		ug/Kg		85	76 ₋ 135		
Toluene	ND		57.1	51.8		ug/Kg		91	77 - 122		
trans-1,2-Dichloroethene	ND		57.1	53.3		ug/Kg		93	77 - 135		
trans-1,3-Dichloropropene	ND		57.1	45.0		ug/Kg		79	71 - 135		
Trichloroethene	ND		57.1	49.4		ug/Kg		87	77 - 135		
Trichlorofluoromethane	ND		57.1	36.9		ug/Kg		65	48 - 150		
Vinyl chloride	ND		57.1	37.8		ug/Kg		66	43 - 145		
	MS	MS									
Surrogate	%Recovery	Qualifier	Limits								
1,2-Dichloroethane-d4 (Surr)	85		58 - 140								
4-Bromofluorobenzene (Surr)	93		76 - 127								
Dibromofluoromethane (Surr)	90		75_121								
Toluene-d8 (Surr)	91		80 - 126								

Lab Sample ID: 280-107960-20 MSD
Matrix: Solid
Analysis Batch: 411164

Matrix: Solid	-20 1100							onent	Prep Ty		
Analysis Batch: 411164									Prep Ba		
·····, ····	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1,1,2-Tetrachloroethane	ND		56.3	50.5		ug/Kg		90	76 - 135	9	20
1,1,1-Trichloroethane	ND		56.3	47.6		ug/Kg		85	70 - 135	10	20
1,1,2,2-Tetrachloroethane	ND		56.3	54.1		ug/Kg		96	65 - 135	14	21
1,1,2-Trichloroethane	ND		56.3	59.3		ug/Kg		105	78 - 135	7	20
1,1-Dichloroethane	ND		56.3	52.6		ug/Kg		93	70 - 135	7	20
1,1-Dichloroethene	ND		56.3	56.4		ug/Kg		100	79 - 135	9	20
1,1-Dichloropropene	ND		56.3	54.3		ug/Kg		96	72 - 135	7	20
1,2,3-Trichlorobenzene	ND		56.3	40.1		ug/Kg		71	62 - 135	0	31
1,2,3-Trichloropropane	ND		56.3	57.7		ug/Kg		102	65 - 135	14	21
1,2,4-Trichlorobenzene	ND		56.3	38.9		ug/Kg		69	65 - 135	3	26
1,2,4-Trimethylbenzene	ND		56.3	45.2		ug/Kg		80	67 - 135	10	20
1,2-Dibromo-3-Chloropropane	ND		56.3	55.8		ug/Kg		99	66 - 150	15	28
1,2-Dibromoethane	ND		56.3	54.2		ug/Kg		96	76 - 135	10	20
1,2-Dichlorobenzene	ND		56.3	50.2		ug/Kg		89	73 - 135	10	20
1,2-Dichloroethane	ND		56.3	48.7		ug/Kg		86	69 - 135	8	20
1,2-Dichloroethene, Total	ND		113	115		ug/Kg		102	78 - 135	8	20
1,2-Dichloropropane	ND		56.3	55.7		ug/Kg		99	72 - 121	7	20
1,3,5-Trimethylbenzene	ND		56.3	46.7		ug/Kg		83	65 - 135	11	21
1,3-Dichlorobenzene	ND		56.3	48.6		ug/Kg		86	69 - 135	10	20
1,3-Dichloropropane	ND		56.3	53.9		ug/Kg		96	74 - 135	11	20
1,4-Dichlorobenzene	ND		56.3	47.1		ug/Kg		84	73 - 135	7	22
2,2-Dichloropropane	ND		56.3	46.3		ug/Kg		82	69 - 135	9	20
2-Butanone (MEK)	6.6	J	225	281		ug/Kg		122	45 - 177	20	32
2-Chlorotoluene	ND		56.3	49.6		ug/Kg		88	67 - 135	11	22
2-Hexanone	ND		225	219		ug/Kg		97	67 - 150	4	29
4-Chlorotoluene	ND		56.3	49.7		ug/Kg		88	68 - 135	9	20
4-Isopropyltoluene	ND		56.3	44.6		ug/Kg		79	66 - 135	10	20
4-Methyl-2-pentanone (MIBK)	ND		225	209		ug/Kg		93	69 - 150	2	25

TestAmerica Denver

5 6

9

9

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limi
21	В	225	213		ug/Kg		85	65 - 150	8	28
ND		56.3	57.9		ug/Kg		103	75 - 135	7	20
ND		56.3	53.4		ug/Kg		95	72 - 135	12	22
ND		56.3	49.2		ug/Kg		87	77 - 135	10	20
ND		56.3	43.5		ug/Kg		77	52 - 135	2	22
ND		56.3	45.4		ug/Kg		81	69 - 138	9	20
ND		56.3	50.4		ug/Kg		90	78 ₋ 135	9	20
ND		56.3	59.3		ug/Kg		105	74 ₋ 135	9	2
ND		56.3	49.1		ug/Kg		87	77 - 135	11	20
ND		56.3	44.6		ug/Kg		79	51 ₋ 145	0	22
ND		56.3	50.2				89	73 - 123	7	20
ND		56.3	39.5				70	41 - 138	1	25
							102	76 ₋ 135	9	20
								71 - 135	9	20
										2
										2
										2
										2
										2
										2
										2
										2
										2
										3
										2
										2
										2
										2
										20
										2
										2
										20
										2
										2
										2
										3
ND		56.3	37.7		ug/Kg		67	43 - 145	0	24
MSD	MSD									
%Recovery	Qualifier	Limits								
76		58 - 140								
95		76 - 127								
89		75 - 121								
	Result 21 ND ND	SampleSampleResultQualifier21BNDN	Sample Sample Spike Result Qualifier Added 21 B 225 ND 56.3 ND 56.3	Sample Sample Spike MSD 21 B 225 213 ND 56.3 57.9 ND 56.3 53.4 ND 56.3 49.2 ND 56.3 49.2 ND 56.3 45.4 ND 56.3 45.4 ND 56.3 50.3 ND 56.3 50.3 ND 56.3 49.1 ND 56.3 49.1 ND 56.3 49.1 ND 56.3 40.1 ND 56.3 50.2 ND 56.3 50.2 ND 56.3 40.0 ND 56.3 50.2 ND 56.3 40.1 ND 56.3 42.3 <tr< td=""><td>Sample Sample Spike MSD MSD Result Qualifier Added Result Qualifier 21 B 225 213 Qualifier ND 56.3 57.9 ND 56.3 49.2 ND 56.3 49.2 ND 56.3 45.4 ND 56.3 45.4 ND 56.3 44.6 ND 56.3 44.6 ND 56.3 44.6 ND 56.3 44.6 ND 56.3 49.0 ND 56.3 49.0 ND 56.3 59.3 ND 56.3 49.0 ND 56.3 49.0 ND 56.3 49.0 ND 56.3 51.7 ND 56.3 49.0 ND 56.3 49.0 ND 56.3 51.7 ND 56.3 49.1 ND 56.3 49.1 ND 56.3 49.2 ND<</td><td>Result Qualifier Added Result Qualifier Unit 21 B 225 213 ug/Kg ND 56.3 57.9 ug/Kg ND 56.3 53.4 ug/Kg ND 56.3 49.2 ug/Kg ND 56.3 45.4 ug/Kg ND 56.3 50.4 ug/Kg ND 56.3 50.4 ug/Kg ND 56.3 49.1 ug/Kg ND 56.3 44.6 ug/Kg ND 56.3 50.2 ug/Kg ND 56.3 40.1 ug/Kg ND 56.3 40.1 ug/Kg ND 56.3</td><td>Sample Sample Spike MSD MSD 21 B 225 213 Ug/Kg D ND 56.3 57.9 ug/Kg D ND 56.3 53.4 ug/Kg Ug/Kg ND 56.3 49.2 ug/Kg ND 56.3 49.2 ug/Kg ND 56.3 49.2 ug/Kg ND 56.3 49.1 ug/Kg ND 56.3 59.3 ug/Kg ND 56.3 49.1 ug/Kg ND 56.3 49.1 ug/Kg ND 56.3 49.1 ug/Kg ND 56.3 44.6 ug/Kg ND 56.3 50.2 ug/Kg ND 56.3 50.2 ug/Kg ND 56.3 51.7 ug/Kg ND 56.3 51.7 ug/Kg ND 56.3 49.6 ug/Kg ND</td><td>Sample Sample Spike MSD MSD 21 B 225 213 ug/Kg D %Rec ND 56.3 57.9 ug/Kg 103 ND 56.3 53.4 ug/Kg 95 ND 56.3 49.2 ug/Kg 87 ND 56.3 45.4 ug/Kg 87 ND 56.3 45.4 ug/Kg 90 ND 56.3 50.4 ug/Kg 90 ND 56.3 50.4 ug/Kg 90 ND 56.3 50.4 ug/Kg 90 ND 56.3 50.2 ug/Kg 70 ND 56.3 39.5 ug/Kg 70 ND 56.3 50.2 ug/Kg 89 ND 56.3 50.2 ug/Kg 87 ND 56.3 50.2 ug/Kg 94 ND 56.3 50.2 ug/Kg 8</td><td>Sample Sample Spike MSD MSD Unit D %Rec. 21 B 225 213 ug/Kg 95 75.135 ND 56.3 57.9 ug/Kg 95 72.135 ND 56.3 53.4 ug/Kg 95 72.135 ND 56.3 49.2 ug/Kg 87 77.135 ND 56.3 44.4 ug/Kg 90 78.135 ND 56.3 45.4 ug/Kg 80 77 52.135 ND 56.3 45.4 ug/Kg 80 77.135 ND 56.3 44.6 ug/Kg 80 77.135 ND 56.3 50.2 ug/Kg 80 71.135 ND 56.3 50.2 ug/Kg 80 73.123 ND 56.3 50.2 ug/Kg 87 71.135 ND 56.3 50.2 ug/Kg 87 71.135</td><td>Sample Sample Spike MSD MSD Unit D %Rec. Limits RPD 21 B 225 213 ug/Kg 10 65 57.185 8 ND 56.3 53.4 ug/Kg 103 75.135 12 ND 56.3 49.2 ug/Kg 87 77.135 10 ND 56.3 45.4 ug/Kg 87 77.135 10 ND 56.3 45.4 ug/Kg 80 74.135 9 ND 56.3 49.1 ug/Kg 87 77.135 11 ND 56.3 49.1 ug/Kg 70 71.135 11 ND 56.3 39.5 ug/Kg 70 41.138 1 ND 56.3 39.5 ug/Kg 102 76.135 9 ND 56.3 39.2 ug/Kg 102 76.135 11 ND 56.3 39.2 <tu< td=""></tu<></td></tr<>	Sample Sample Spike MSD MSD Result Qualifier Added Result Qualifier 21 B 225 213 Qualifier ND 56.3 57.9 ND 56.3 49.2 ND 56.3 49.2 ND 56.3 45.4 ND 56.3 45.4 ND 56.3 44.6 ND 56.3 44.6 ND 56.3 44.6 ND 56.3 44.6 ND 56.3 49.0 ND 56.3 49.0 ND 56.3 59.3 ND 56.3 49.0 ND 56.3 49.0 ND 56.3 49.0 ND 56.3 51.7 ND 56.3 49.0 ND 56.3 49.0 ND 56.3 51.7 ND 56.3 49.1 ND 56.3 49.1 ND 56.3 49.2 ND<	Result Qualifier Added Result Qualifier Unit 21 B 225 213 ug/Kg ND 56.3 57.9 ug/Kg ND 56.3 53.4 ug/Kg ND 56.3 49.2 ug/Kg ND 56.3 45.4 ug/Kg ND 56.3 50.4 ug/Kg ND 56.3 50.4 ug/Kg ND 56.3 49.1 ug/Kg ND 56.3 44.6 ug/Kg ND 56.3 50.2 ug/Kg ND 56.3 40.1 ug/Kg ND 56.3 40.1 ug/Kg ND 56.3	Sample Sample Spike MSD MSD 21 B 225 213 Ug/Kg D ND 56.3 57.9 ug/Kg D ND 56.3 53.4 ug/Kg Ug/Kg ND 56.3 49.2 ug/Kg ND 56.3 49.2 ug/Kg ND 56.3 49.2 ug/Kg ND 56.3 49.1 ug/Kg ND 56.3 59.3 ug/Kg ND 56.3 49.1 ug/Kg ND 56.3 49.1 ug/Kg ND 56.3 49.1 ug/Kg ND 56.3 44.6 ug/Kg ND 56.3 50.2 ug/Kg ND 56.3 50.2 ug/Kg ND 56.3 51.7 ug/Kg ND 56.3 51.7 ug/Kg ND 56.3 49.6 ug/Kg ND	Sample Sample Spike MSD MSD 21 B 225 213 ug/Kg D %Rec ND 56.3 57.9 ug/Kg 103 ND 56.3 53.4 ug/Kg 95 ND 56.3 49.2 ug/Kg 87 ND 56.3 45.4 ug/Kg 87 ND 56.3 45.4 ug/Kg 90 ND 56.3 50.4 ug/Kg 90 ND 56.3 50.4 ug/Kg 90 ND 56.3 50.4 ug/Kg 90 ND 56.3 50.2 ug/Kg 70 ND 56.3 39.5 ug/Kg 70 ND 56.3 50.2 ug/Kg 89 ND 56.3 50.2 ug/Kg 87 ND 56.3 50.2 ug/Kg 94 ND 56.3 50.2 ug/Kg 8	Sample Sample Spike MSD MSD Unit D %Rec. 21 B 225 213 ug/Kg 95 75.135 ND 56.3 57.9 ug/Kg 95 72.135 ND 56.3 53.4 ug/Kg 95 72.135 ND 56.3 49.2 ug/Kg 87 77.135 ND 56.3 44.4 ug/Kg 90 78.135 ND 56.3 45.4 ug/Kg 80 77 52.135 ND 56.3 45.4 ug/Kg 80 77.135 ND 56.3 44.6 ug/Kg 80 77.135 ND 56.3 50.2 ug/Kg 80 71.135 ND 56.3 50.2 ug/Kg 80 73.123 ND 56.3 50.2 ug/Kg 87 71.135 ND 56.3 50.2 ug/Kg 87 71.135	Sample Sample Spike MSD MSD Unit D %Rec. Limits RPD 21 B 225 213 ug/Kg 10 65 57.185 8 ND 56.3 53.4 ug/Kg 103 75.135 12 ND 56.3 49.2 ug/Kg 87 77.135 10 ND 56.3 45.4 ug/Kg 87 77.135 10 ND 56.3 45.4 ug/Kg 80 74.135 9 ND 56.3 49.1 ug/Kg 87 77.135 11 ND 56.3 49.1 ug/Kg 70 71.135 11 ND 56.3 39.5 ug/Kg 70 41.138 1 ND 56.3 39.5 ug/Kg 102 76.135 9 ND 56.3 39.2 ug/Kg 102 76.135 11 ND 56.3 39.2 <tu< td=""></tu<>

QC Sample Results

TestAmerica Job ID: 280-107960-1

Method: 8015B - Gasoline Range Organics - (GC)

Lab Sample ID: MB 280-41 Matrix: Solid	0039/1-A							С	lieı		ole ID: Mo Prep Typ	be: To	tal/NA
Analysis Batch: 410771	-										Prep Ba	itch: 4	10039
A week de		MB MB	-					_	-		A		D !! F
Analyte		ult Qualifier	RL 1.2			Unit		D		epared	Analyz 04/10/18		Dil Fac
Gasoline Range Organics (GRO) -C6-C10	0.0	007 J	1.2		0.33	mg/Ko	9	04	4/03	/16 13.40	04/10/18	14.21	I
		MB MB							_				
Surrogate		ery Qualifier	Limits					_		epared	Analyz		Dil Fac
a,a,a-Trifluorotoluene		96	77 - 123					04	4/03	8/18 13:40	04/10/18	14:21	1
Lab Sample ID: LCS 280-4 Matrix: Solid	10039/2-A						Clie	nt S	am		Lab Con Prep Typ		
Analysis Batch: 410771											Prep Ba		
			Spike	LCS	LCS	;					%Rec.		
Analyte			Added	Result	Qua	lifier	Unit		D	%Rec	Limits		
Gasoline Range Organics (GRO) -C6-C10			5.50	5.52			mg/Kg			100	85 - 153		
	LCS I	LCS											
Surrogate	%Recovery	Qualifier	Limits										
a,a,a-Trifluorotoluene	92	·	77 - 123										
Lab Sample ID: 280-10796 Matrix: Solid Analysis Batch: 410771	Sample S		Spike		MS				_		Sample I Prep Typ Prep Ba %Rec.	be: To	tal/NA
Analyte	Result (Added	Result		lifier	Unit		D _	%Rec	Limits		
Gasoline Range Organics (GRO) -C6-C10	0.50	JBF1	5.51	5.65			mg/Kg			93	85 - 153		
	MS I	MS											
Surrogate	%Recovery	Qualifier	Limits										
a,a,a-Trifluorotoluene	105		77 - 123										
Lab Sample ID: 280-10796 Matrix: Solid	0-1 MSD										Sample I Prep Typ	be: To	tal/NA
Analysis Batch: 410771						_					Prep Ba	tch: 4	
• • •	Sample S		Spike		MSE				_	~~ -	%Rec.		RPD
Analyte	Result 0		Added	Result		lifier	Unit		D	%Rec	Limits	RPD	Limit
Gasoline Range Organics (GRO) -C6-C10	0.50	J B F 1	5.47	4.97	⊦1		mg/Kg			82	85 - 153	13	30
	MSD I	MSD											
Surrogate	%Recovery	Qualifier	Limits										

Method: 8015B - Diesel Range Organics (DRO) (GC)

Matrix: So	e ID: MB 280-409932/1 lid satch: 410664	- A						i i	le ID: Methoo Prep Type: To Prep Batch:	otal/NA
		MB	MB							
Analyte		Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range	Organics [C10-C28]	2.01	J	7.9	1.4	mg/Kg		04/03/18 07:33	04/09/18 14:26	1
C10-C36		3.08	J	7.9	2.0	mg/Kg		04/03/18 07:33	04/09/18 14:26	1

QC Sample Results

TestAmerica Job ID: 280-107960-1

Client: Waste Management Project/Site: 3217 Valencia											
		MB MB									
Surrogate	%Reco	very Qualifier	Limits				Ρ	repared	Analyz	ed	Dil Fac
o-Terphenyl		83	49 - 115				04/0	3/18 07:33	04/09/18	14:26	1
Lab Sample ID: LCS 280	-409932/2-A					Clier	nt Sa	mple ID:	Lab Con	trol Sa	mple
Matrix: Solid									Prep Typ		
Analysis Batch: 410664									Prep Ba		
			Spike	LCS	LCS				%Rec.		
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits		
Diesel Range Organics			119	90.9		mg/Kg		76	53 - 115		
[C10-C28]											
C10-C36			119	89.9		mg/Kg		76	57 - 115		
	LCS	105									
Surrogate	%Recovery		Limits								
o-Terphenyl			49 - 115								
	07		10 - 110								
Lab Sample ID: 280-1079	960-1 MS							Client	Sample II): PCS	SAC1
Matrix: Solid									Prep Typ		
Analysis Batch: 410664									Prep Ba		
	Sample	Sample	Spike	MS	MS				%Rec.		
Analyte	•	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Diesel Range Organics	19	B	128	117		mg/Kg		77	56 - 115		
[C10-C28]											
C10-C36	27	В	128	126		mg/Kg		77	57 ₋ 115		
	MS	MS									
Surrogate	%Recovery	Qualifier	Limits								
o-Terphenyl	85		49 - 115								
Lab 0											
Lab Sample ID: 280-1079									Sample II		
Matrix: Solid									Prep Typ		
Analysis Batch: 410664	0	Comple	Cmiles	MOD	MOD				Prep Ba %Rec.	tcn: 40	
Amelia	Sample	-	Spike	-	MSD Qualifiar	l lmit	-	0/ D		000	RPD
Analyte		Qualifier	Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Diesel Range Organics	19	В	133	119		mg/Kg		75	56 - 115	2	23
[C10-C28] C10-C36	27	в	133	127		mg/Kg		75	57 ₋ 115	1	23
	21	D	100	121				15	07 - 110	I	20
	MSD	MSD									
Surrogate	%Recovery	Qualifier	Limits								
o-Terphenyl	84		49 - 115								

QC Association Summary

Client: Waste Management Project/Site: 3217|Valencia, NM - Soils

10

GC/MS VOA

Prep Batch: 410881

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
280-107960-1	PCS AC1	Total/NA	Solid	5030B	
280-107960-3	PCS AC3	Total/NA	Solid	5030B	
280-107960-5	PCS AC5	Total/NA	Solid	5030B	
280-107960-8	PCS AC8	Total/NA	Solid	5030B	
280-107960-9	PCS AC9	Total/NA	Solid	5030B	
280-107960-10	PCS AC10	Total/NA	Solid	5030B	
MB 280-410881/3-A	Method Blank	Total/NA	Solid	5030B	
LCS 280-410881/1-A	Lab Control Sample	Total/NA	Solid	5030B	
LCSD 280-410881/2-A	Lab Control Sample Dup	Total/NA	Solid	5030B	
280-107962-A-1-B MS	Matrix Spike	Total/NA	Solid	5030B	
280-107962-A-1-C MSD	Matrix Spike Duplicate	Total/NA	Solid	5030B	

Analysis Batch: 410890

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	
280-107960-1	PCS AC1	Total/NA	Solid	8260B	410881	
280-107960-3	PCS AC3	Total/NA	Solid	8260B	410881	
280-107960-5	PCS AC5	Total/NA	Solid	8260B	410881	
280-107960-8	PCS AC8	Total/NA	Solid	8260B	410881	
280-107960-9	PCS AC9	Total/NA	Solid	8260B	410881	
280-107960-10	PCS AC10	Total/NA	Solid	8260B	410881	
MB 280-410881/3-A	Method Blank	Total/NA	Solid	8260B	410881	
LCS 280-410881/1-A	Lab Control Sample	Total/NA	Solid	8260B	410881	
LCSD 280-410881/2-A	Lab Control Sample Dup	Total/NA	Solid	8260B	410881	
280-107962-A-1-B MS	Matrix Spike	Total/NA	Solid	8260B	410881	
280-107962-A-1-C MSD	Matrix Spike Duplicate	Total/NA	Solid	8260B	410881	

Prep Batch: 411028

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
280-107960-2	PCS AC2	Total/NA	Solid	5030B	
280-107960-4	PCS AC4	Total/NA	Solid	5030B	
280-107960-6	PCS AC6	Total/NA	Solid	5030B	
280-107960-7	PCS AC7	Total/NA	Solid	5030B	
MB 280-411028/3-A	Method Blank	Total/NA	Solid	5030B	
LCS 280-411028/1-A	Lab Control Sample	Total/NA	Solid	5030B	
LCSD 280-411028/2-A	Lab Control Sample Dup	Total/NA	Solid	5030B	
280-107960-2 MS	PCS AC2	Total/NA	Solid	5030B	
280-107960-2 MSD	PCS AC2	Total/NA	Solid	5030B	

Analysis Batch: 411029

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
280-107960-2	PCS AC2	Total/NA	Solid	8260B	411028
280-107960-4	PCS AC4	Total/NA	Solid	8260B	411028
280-107960-6	PCS AC6	Total/NA	Solid	8260B	411028
280-107960-7	PCS AC7	Total/NA	Solid	8260B	411028
MB 280-411028/3-A	Method Blank	Total/NA	Solid	8260B	411028
LCS 280-411028/1-A	Lab Control Sample	Total/NA	Solid	8260B	411028
LCSD 280-411028/2-A	Lab Control Sample Dup	Total/NA	Solid	8260B	411028
280-107960-2 MS	PCS AC2	Total/NA	Solid	8260B	411028
280-107960-2 MSD	PCS AC2	Total/NA	Solid	8260B	411028

QC Association Summary

Client: Waste Management Project/Site: 3217|Valencia, NM - Soils

5 6 7

0

	3

GC/MS	VOA I	(Continued)
	V VA	Continucu

Analysis Batch: 411164

ab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batc
80-107960-11	PCS AC11	Total/NA	Solid	8260B	41117
80-107960-12	PCS AC12	Total/NA	Solid	8260B	41117
80-107960-13	PCS AC13	Total/NA	Solid	8260B	41117
80-107960-14	PCS AC14	Total/NA	Solid	8260B	41117
80-107960-15	PCS AC15	Total/NA	Solid	8260B	41117
80-107960-16	PCS AC16	Total/NA	Solid	8260B	41117
280-107960-17	PCS AC17	Total/NA	Solid	8260B	41117
280-107960-18	PCS AC18	Total/NA	Solid	8260B	41117
280-107960-19	PCS AC19	Total/NA	Solid	8260B	41117
280-107960-20	PCS AC20	Total/NA	Solid	8260B	41117
/IB 280-411171/3-A	Method Blank	Total/NA	Solid	8260B	41117
CS 280-411171/1-A	Lab Control Sample	Total/NA	Solid	8260B	41117
CSD 280-411171/2-A	Lab Control Sample Dup	Total/NA	Solid	8260B	41117
280-107960-20 MS	PCS AC20	Total/NA	Solid	8260B	41117
280-107960-20 MSD	PCS AC20	Total/NA	Solid	8260B	41117
rep Batch: 411171					
rep Batch: 411171 .ab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batc
-ab Sample ID 280-107960-11	Client Sample ID PCS AC11	Prep Type Total/NA	Matrix Solid	Method 5030B	Prep Batc
.ab Sample ID					Prep Bato
-ab Sample ID 280-107960-11	PCS AC11	Total/NA	Solid	5030B	Prep Bato
Lab Sample ID 280-107960-11 280-107960-12	PCS AC11 PCS AC12	Total/NA Total/NA	Solid Solid	5030B 5030B	Prep Batc
Lab Sample ID 280-107960-11 280-107960-12 280-107960-13	PCS AC11 PCS AC12 PCS AC13	Total/NA Total/NA Total/NA	Solid Solid Solid	5030B 5030B 5030B	Prep Batc
Lab Sample ID 280-107960-11 280-107960-12 280-107960-13 280-107960-14	PCS AC11 PCS AC12 PCS AC13 PCS AC14	Total/NA Total/NA Total/NA Total/NA	Solid Solid Solid Solid	5030B 5030B 5030B 5030B	Prep Batc
Lab Sample ID 280-107960-11 280-107960-12 280-107960-13 280-107960-14 280-107960-15	PCS AC11 PCS AC12 PCS AC13 PCS AC14 PCS AC15	Total/NA Total/NA Total/NA Total/NA Total/NA	Solid Solid Solid Solid Solid Solid	5030B 5030B 5030B 5030B 5030B 5030B	Prep Bato
Lab Sample ID 280-107960-11 280-107960-12 280-107960-13 280-107960-14 280-107960-15 280-107960-16	PCS AC11 PCS AC12 PCS AC13 PCS AC14 PCS AC15 PCS AC16	Total/NA Total/NA Total/NA Total/NA Total/NA Total/NA	Solid Solid Solid Solid Solid Solid	5030B 5030B 5030B 5030B 5030B 5030B 5030B	Prep Bato
Lab Sample ID 280-107960-11 280-107960-12 280-107960-13 280-107960-14 280-107960-15 280-107960-16 280-107960-17	PCS AC11 PCS AC12 PCS AC13 PCS AC14 PCS AC15 PCS AC16 PCS AC17	Total/NA Total/NA Total/NA Total/NA Total/NA Total/NA	Solid Solid Solid Solid Solid Solid Solid	5030B 5030B 5030B 5030B 5030B 5030B 5030B	Prep Batc
Lab Sample ID 280-107960-11 280-107960-12 280-107960-13 280-107960-14 280-107960-15 280-107960-16 280-107960-17 280-107960-18	PCS AC11 PCS AC12 PCS AC13 PCS AC14 PCS AC15 PCS AC16 PCS AC17 PCS AC18	Total/NA Total/NA Total/NA Total/NA Total/NA Total/NA Total/NA	Solid Solid Solid Solid Solid Solid Solid Solid	5030B 5030B 5030B 5030B 5030B 5030B 5030B 5030B	Prep Batc
Lab Sample ID 280-107960-11 280-107960-12 280-107960-13 280-107960-14 280-107960-15 280-107960-16 280-107960-17 280-107960-18 280-107960-19	PCS AC11 PCS AC12 PCS AC13 PCS AC13 PCS AC14 PCS AC15 PCS AC16 PCS AC16 PCS AC17 PCS AC18 PCS AC19	Total/NA Total/NA Total/NA Total/NA Total/NA Total/NA Total/NA Total/NA	Solid Solid Solid Solid Solid Solid Solid Solid Solid	5030B 5030B 5030B 5030B 5030B 5030B 5030B 5030B 5030B 5030B	Prep Batc
Lab Sample ID 280-107960-11 280-107960-12 280-107960-13 280-107960-14 280-107960-15 280-107960-16 280-107960-17 280-107960-18 280-107960-19 280-107960-20	PCS AC11 PCS AC12 PCS AC13 PCS AC13 PCS AC14 PCS AC15 PCS AC16 PCS AC16 PCS AC17 PCS AC18 PCS AC19 PCS AC20	Total/NA Total/NA Total/NA Total/NA Total/NA Total/NA Total/NA Total/NA Total/NA	Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid	5030B 5030B 5030B 5030B 5030B 5030B 5030B 5030B 5030B 5030B	Prep Bato
Lab Sample ID 280-107960-11 280-107960-12 280-107960-13 280-107960-14 280-107960-15 280-107960-16 280-107960-17 280-107960-18 280-107960-20 VIB 280-411171/3-A	PCS AC11 PCS AC12 PCS AC13 PCS AC13 PCS AC14 PCS AC15 PCS AC16 PCS AC16 PCS AC17 PCS AC18 PCS AC19 PCS AC20 Method Blank	Total/NA Total/NA Total/NA Total/NA Total/NA Total/NA Total/NA Total/NA Total/NA Total/NA	Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid	5030B 5030B 5030B 5030B 5030B 5030B 5030B 5030B 5030B 5030B 5030B 5030B	Prep Bato
Lab Sample ID 280-107960-11 280-107960-12 280-107960-13 280-107960-14 280-107960-15 280-107960-16 280-107960-17 280-107960-18 280-107960-19 280-107960-20 MB 280-411171/3-A .CS 280-411171/1-A	PCS AC11 PCS AC12 PCS AC13 PCS AC14 PCS AC15 PCS AC16 PCS AC16 PCS AC17 PCS AC17 PCS AC18 PCS AC19 PCS AC20 Method Blank Lab Control Sample	Total/NA Total/NA Total/NA Total/NA Total/NA Total/NA Total/NA Total/NA Total/NA Total/NA Total/NA	Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid	5030B 5030B 5030B 5030B 5030B 5030B 5030B 5030B 5030B 5030B 5030B 5030B 5030B	Prep Batc

GC VOA

Prep Batch: 410039

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
280-107960-1	PCS AC1	Total/NA	Solid	5030B	
280-107960-2	PCS AC2	Total/NA	Solid	5030B	
280-107960-3	PCS AC3	Total/NA	Solid	5030B	
280-107960-4	PCS AC4	Total/NA	Solid	5030B	
280-107960-5	PCS AC5	Total/NA	Solid	5030B	
280-107960-6	PCS AC6	Total/NA	Solid	5030B	
280-107960-7	PCS AC7	Total/NA	Solid	5030B	
280-107960-8	PCS AC8	Total/NA	Solid	5030B	
280-107960-9	PCS AC9	Total/NA	Solid	5030B	
280-107960-10	PCS AC10	Total/NA	Solid	5030B	
280-107960-11	PCS AC11	Total/NA	Solid	5030B	
280-107960-12	PCS AC12	Total/NA	Solid	5030B	

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
280-107960-1	PCS AC1	Total/NA	Solid	8015B	410039
280-107960-2	PCS AC2	Total/NA	Solid	8015B	410039
280-107960-3	PCS AC3	Total/NA	Solid	8015B	410039
280-107960-4	PCS AC4	Total/NA	Solid	8015B	410039
280-107960-5	PCS AC5	Total/NA	Solid	8015B	410039
280-107960-6	PCS AC6	Total/NA	Solid	8015B	410039
280-107960-7	PCS AC7	Total/NA	Solid	8015B	410039
280-107960-8	PCS AC8	Total/NA	Solid	8015B	410039
280-107960-9	PCS AC9	Total/NA	Solid	8015B	410039
280-107960-10	PCS AC10	Total/NA	Solid	8015B	410039
MB 280-410039/1-A	Method Blank	Total/NA	Solid	8015B	410039
LCS 280-410039/2-A	Lab Control Sample	Total/NA	Solid	8015B	410039
280-107960-1 MS	PCS AC1	Total/NA	Solid	8015B	410039
280-107960-1 MSD	PCS AC1	Total/NA	Solid	8015B	410039

Analysis Batch: 410986

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
280-107960-11	PCS AC11	Total/NA	Solid	8015B	410039
280-107960-12	PCS AC12	Total/NA	Solid	8015B	410039
280-107960-13	PCS AC13	Total/NA	Solid	8015B	410039
280-107960-14	PCS AC14	Total/NA	Solid	8015B	410039
280-107960-15	PCS AC15	Total/NA	Solid	8015B	410039
280-107960-16	PCS AC16	Total/NA	Solid	8015B	410039
280-107960-17	PCS AC17	Total/NA	Solid	8015B	410039
280-107960-18	PCS AC18	Total/NA	Solid	8015B	410039
280-107960-19	PCS AC19	Total/NA	Solid	8015B	410039
280-107960-20	PCS AC20	Total/NA	Solid	8015B	410039

GC Semi VOA

Prep Batch: 409932

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
280-107960-1	PCS AC1	Total/NA	Solid	3546	
280-107960-2	PCS AC2	Total/NA	Solid	3546	
280-107960-3	PCS AC3	Total/NA	Solid	3546	

TestAmerica Denver

Prep Batch: 410039 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
280-107960-13	PCS AC13	Total/NA	Solid	5030B	
280-107960-14	PCS AC14	Total/NA	Solid	5030B	
280-107960-15	PCS AC15	Total/NA	Solid	5030B	
280-107960-16	PCS AC16	Total/NA	Solid	5030B	
280-107960-17	PCS AC17	Total/NA	Solid	5030B	
280-107960-18	PCS AC18	Total/NA	Solid	5030B	
280-107960-19	PCS AC19	Total/NA	Solid	5030B	
280-107960-20	PCS AC20	Total/NA	Solid	5030B	
MB 280-410039/1-A	Method Blank	Total/NA	Solid	5030B	
LCS 280-410039/2-A	Lab Control Sample	Total/NA	Solid	5030B	
280-107960-1 MS	PCS AC1	Total/NA	Solid	5030B	
280-107960-1 MSD	PCS AC1	Total/NA	Solid	5030B	
nalysis Batch: 410	771				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch

Client: Waste Management Project/Site: 3217|Valencia, NM - Soils

GC Semi VOA (Continued)

Prep Batch: 409932 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
280-107960-4	PCS AC4	Total/NA	Solid	3546	
280-107960-5	PCS AC5	Total/NA	Solid	3546	
280-107960-6	PCS AC6	Total/NA	Solid	3546	
280-107960-7	PCS AC7	Total/NA	Solid	3546	
280-107960-8	PCS AC8	Total/NA	Solid	3546	
280-107960-9	PCS AC9	Total/NA	Solid	3546	
280-107960-10	PCS AC10	Total/NA	Solid	3546	
280-107960-11	PCS AC11	Total/NA	Solid	3546	
280-107960-12	PCS AC12	Total/NA	Solid	3546	
280-107960-13	PCS AC13	Total/NA	Solid	3546	
280-107960-14	PCS AC14	Total/NA	Solid	3546	
280-107960-15	PCS AC15	Total/NA	Solid	3546	
280-107960-16	PCS AC16	Total/NA	Solid	3546	
280-107960-17	PCS AC17	Total/NA	Solid	3546	
280-107960-18	PCS AC18	Total/NA	Solid	3546	
280-107960-19	PCS AC19	Total/NA	Solid	3546	
280-107960-20	PCS AC20	Total/NA	Solid	3546	
MB 280-409932/1-A	Method Blank	Total/NA	Solid	3546	
LCS 280-409932/2-A	Lab Control Sample	Total/NA	Solid	3546	
280-107960-1 MS	PCS AC1	Total/NA	Solid	3546	
280-107960-1 MSD	PCS AC1	Total/NA	Solid	3546	

Analysis Batch: 410664

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
280-107960-1	PCS AC1	Total/NA	Solid	8015B	409932
280-107960-2	PCS AC2	Total/NA	Solid	8015B	409932
280-107960-3	PCS AC3	Total/NA	Solid	8015B	409932
280-107960-4	PCS AC4	Total/NA	Solid	8015B	409932
280-107960-5	PCS AC5	Total/NA	Solid	8015B	409932
280-107960-6	PCS AC6	Total/NA	Solid	8015B	409932
280-107960-7	PCS AC7	Total/NA	Solid	8015B	409932
280-107960-8	PCS AC8	Total/NA	Solid	8015B	409932
280-107960-9	PCS AC9	Total/NA	Solid	8015B	409932
280-107960-10	PCS AC10	Total/NA	Solid	8015B	409932
280-107960-11	PCS AC11	Total/NA	Solid	8015B	409932
280-107960-12	PCS AC12	Total/NA	Solid	8015B	409932
280-107960-13	PCS AC13	Total/NA	Solid	8015B	409932
280-107960-14	PCS AC14	Total/NA	Solid	8015B	409932
280-107960-15	PCS AC15	Total/NA	Solid	8015B	409932
280-107960-16	PCS AC16	Total/NA	Solid	8015B	409932
280-107960-17	PCS AC17	Total/NA	Solid	8015B	409932
280-107960-18	PCS AC18	Total/NA	Solid	8015B	409932
280-107960-19	PCS AC19	Total/NA	Solid	8015B	409932
280-107960-20	PCS AC20	Total/NA	Solid	8015B	409932
MB 280-409932/1-A	Method Blank	Total/NA	Solid	8015B	409932
LCS 280-409932/2-A	Lab Control Sample	Total/NA	Solid	8015B	409932
280-107960-1 MS	PCS AC1	Total/NA	Solid	8015B	409932
280-107960-1 MSD	PCS AC1	Total/NA	Solid	8015B	409932

Lab Sample ID: 280-107960-1 Matrix: Solid

Lab Sample ID: 280-107960-2

Matrix: Solid

Date Collected: 03/29/18 11:35 Date Received: 03/30/18 08:50

Client Sample ID: PCS AC1

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5030B			4.705 g	5 mL	410881	04/10/18 20:00	RSN	TAL DEN
Total/NA	Analysis	8260B		1	5 g	5 mL	410890	04/11/18 01:50	RSN	TAL DEN
Total/NA	Prep	5030B			4.997 g	5 mL	410039	04/03/18 13:40	CAS	TAL DEN
Total/NA	Analysis	8015B		1	.1 mL	5 mL	410771	04/10/18 15:10	CAS	TAL DEN
Total/NA	Prep	3546			15.2 g	1 mL	409932	04/03/18 07:33	KI	TAL DEN
Total/NA	Analysis	8015B		1			410664	04/09/18 15:15	TDJ	TAL DEN

Client Sample ID: PCS AC2 Date Collected: 03/29/18 11:41 Date Received: 03/30/18 08:50

Batch Batch Dil Initial Final Batch Prepared Method Factor Amount Analyst Prep Type Туре Amount Number or Analyzed Run Lab Total/NA 5030B 4.343 g 5 mL 411028 04/11/18 19:00 RSN TAL DEN Prep 04/12/18 03:22 RSN Total/NA Analysis 8260B 5 mL 411029 TAL DEN 1 5 g Total/NA Prep 5030B 5.049 g 5 mL 410039 04/03/18 13:40 CAS TAL DEN Total/NA Analysis 8015B 1 .1 mL 5 mL 410771 04/10/18 16:49 CAS TAL DEN Total/NA Prep 3546 15.7 g 1 mL 409932 04/03/18 07:33 KI TAL DEN Total/NA Analysis 8015B 1 410664 04/09/18 16:28 TDJ TAL DEN

Client Sample ID: PCS AC3 Date Collected: 03/29/18 11:46 Date Received: 03/30/18 08:50

Lab Sample ID: 280-107960-3 Matrix: Solid

Lab Sample ID: 280-107960-4

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5030B			4.504 g	5 mL	410881	04/10/18 20:00	RSN	TAL DEN
Total/NA	Analysis	8260B		1	5 g	5 mL	410890	04/11/18 02:30	RSN	TAL DEN
Total/NA	Prep	5030B			4.963 g	5 mL	410039	04/03/18 13:40	CAS	TAL DEN
Total/NA	Analysis	8015B		1	.1 mL	5 mL	410771	04/10/18 17:13	CAS	TAL DEN
Total/NA	Prep	3546			16.3 g	1 mL	409932	04/03/18 07:33	KI	TAL DEN
Total/NA	Analysis	8015B		1			410664	04/09/18 16:53	TDJ	TAL DEN

Client Sample ID: PCS AC4 Date Collected: 03/29/18 11:50 Date Received: 03/30/18 08:50

Γ	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5030B			4.371 g	5 mL	411028	04/11/18 19:00	RSN	TAL DEN
Total/NA	Analysis	8260B		1	5 g	5 mL	411029	04/12/18 04:43	RSN	TAL DEN
Total/NA	Prep	5030B			5.043 g	5 mL	410039	04/03/18 13:40	CAS	TAL DEN
Total/NA	Analysis	8015B		1	.1 mL	5 mL	410771	04/10/18 17:38	CAS	TAL DEN
Total/NA	Prep	3546			15.3 g	1 mL	409932	04/03/18 07:33	КІ	TAL DEN
Total/NA	Analysis	8015B		1			410664	04/09/18 17:17	TDJ	TAL DEN

TestAmerica Denver

Matrix: Solid

Initial

Amount

4.197 g

5 g

4.989 q

.1 mL

15.3 g

Final

Amount

5 mL

5 mL

5 mL

5 mL

1 mL

Batch

Number

410881

410890

410039

410771

409932

410664

Dil

1

1

1

Factor

Run

Batch

Туре

Prep

Prep

Prep

Analysis

Analysis

Analysis

Batch

Method

5030B

8260B

5030B

8015B

3546

8015B

Client Sample ID: PCS AC5

Date Collected: 03/29/18 11:55 Date Received: 03/30/18 08:50

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Lab Sample ID:	280-107960-5
	Matrix: Solid

or Analyzed Analyst

04/10/18 20:00 RSN

04/11/18 03:11 RSN

04/03/18 13:40 CAS

04/10/18 18:03 CAS

04/03/18 07:33 KI

04/09/18 17:42 TDJ

Lab Sample ID: 280-107960-6

Lab Sample ID: 280-107960-7

Lab Sample ID: 280-107960-8

Prepared

5 TAL DEN

Lab

TAL DEN

TAL DEN

TAL DEN

TAL DEN

TAL DEN

Matrix: Solid

Matrix: Solid

Matrix: Solid

Client Sample ID: PCS AC6 Date Collected: 03/29/18 12:00 Date Received: 03/30/18 08:50

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5030B			4.386 g	5 mL	411028	04/11/18 19:00	RSN	TAL DEN
Total/NA	Analysis	8260B		1	5 g	5 mL	411029	04/12/18 05:03	RSN	TAL DEN
Total/NA	Prep	5030B			5.015 g	5 mL	410039	04/03/18 13:40	CAS	TAL DEN
Total/NA	Analysis	8015B		1	.1 mL	5 mL	410771	04/10/18 20:17	CAS	TAL DEN
Total/NA	Prep	3546			15.3 g	1 mL	409932	04/03/18 07:33	KI	TAL DEN
Total/NA	Analysis	8015B		1			410664	04/09/18 18:06	TDJ	TAL DEN

Client Sample ID: PCS AC7 Date Collected: 03/29/18 12:05 Date Received: 03/30/18 08:50

_	Batch	Batch	atch	Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5030B			4.350 g	5 mL	411028	04/11/18 19:00	RSN	TAL DEN
Total/NA	Analysis	8260B		1	5 g	5 mL	411029	04/12/18 05:24	RSN	TAL DEN
Total/NA	Prep	5030B			5.001 g	5 mL	410039	04/03/18 13:40	CAS	TAL DEN
Total/NA	Analysis	8015B		1	.1 mL	5 mL	410771	04/10/18 20:41	CAS	TAL DEN
Total/NA	Prep	3546			15.2 g	1 mL	409932	04/03/18 07:33	KI	TAL DEN
Total/NA	Analysis	8015B		1			410664	04/09/18 18:31	TDJ	TAL DEN

Client Sample ID: PCS AC8 Date Collected: 03/29/18 12:10 Date Received: 03/30/18 08:50

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Prep	5030B			4.804 g	5 mL	410881	04/10/18 20:00	RSN	TAL DEN
Total/NA	Analysis	8260B		1	5 g	5 mL	410890	04/11/18 04:12	RSN	TAL DEN
Total/NA	Prep	5030B			4.979 g	5 mL	410039	04/03/18 13:40	CAS	TAL DEN
Total/NA	Analysis	8015B		1	.1 mL	5 mL	410771	04/10/18 21:06	CAS	TAL DEN
Total/NA	Prep	3546			15.5 g	1 mL	409932	04/03/18 07:33	KI	TAL DEN
Total/NA	Analysis	8015B		1			410664	04/09/18 18:55	TDJ	TAL DEN

TestAmerica Denver

Initial

Amount

5.003 g

5 g

5.020 q

.1 mL

15.5 g

Final

Amount

5 mL

5 mL

5 mL

5 mL

1 mL

Batch

Number

410881

410890

410039

410771

409932

410664

Dil

1

1

1

Factor

Run

Batch

Туре

Prep

Prep

Prep

Analysis

Analysis

Analysis

Batch

5030B

8260B

5030B

8015B

3546

8015B

Method

Client Sample ID: PCS AC9

Date Collected: 03/29/18 12:15 Date Received: 03/30/18 08:50

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Lab Sample	ID: 280-107960-9

Matrix: Solid

Lab

TAL DEN

TAL DEN

TAL DEN

TAL DEN

TAL DEN

TAL DEN

Matrix: Solid

Matrix: Solid

Matrix: Solid

Client Sample ID: PCS AC10 Date Collected: 03/29/18 12:20 Date Received: 03/30/18 08:50

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5030B			4.457 g	5 mL	410881	04/10/18 20:00	RSN	TAL DEN
Total/NA	Analysis	8260B		1	5 g	5 mL	410890	04/11/18 04:52	RSN	TAL DEN
Total/NA	Prep	5030B			4.992 g	5 mL	410039	04/03/18 13:40	CAS	TAL DEN
Total/NA	Analysis	8015B		1	.1 mL	5 mL	410771	04/10/18 21:55	CAS	TAL DEN
Total/NA	Prep	3546			15.3 g	1 mL	409932	04/03/18 07:33	KI	TAL DEN
Total/NA	Analysis	8015B		1			410664	04/09/18 19:44	TDJ	TAL DEN

Client Sample ID: PCS AC11 Date Collected: 03/29/18 12:25 Da

Date Received	d: 03/30/18 0	8:50							04/12/18 19:17 RSN TAL DEN	
	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5030B			4.486 g	5 mL	411171	04/12/18 18:38	RSN	TAL DEN
Total/NA	Analysis	8260B		1	5 g	5 mL	411164	04/12/18 19:17	RSN	TAL DEN
Total/NA	Prep	5030B			5.032 g	5 mL	410039	04/03/18 13:40	CAS	TAL DEN
Total/NA	Analysis	8015B		1	.1 mL	5 mL	410986	04/11/18 14:26	CAS	TAL DEN
Total/NA	Prep	3546			15.0 g	1 mL	409932	04/03/18 07:33	KI	TAL DEN
Total/NA	Analysis	8015B		1			410664	04/09/18 20:33	TDJ	TAL DEN

Client Sample ID: PCS AC12 Date Collected: 03/29/18 12:30 Date Received: 03/30/18 08:50

Prep Type Total/NA Total/NA	Batch Type Prep Analysis	Batch Method 5030B 8260B	Run	Dil Factor	Initial Amount 4.456 g 5 g	Final Amount 5 mL 5 mL	Batch Number 411171 411164	Prepared or Analyzed 04/12/18 18:38 04/12/18 19:38		Lab TAL DEN TAL DEN
Total/NA Total/NA	Prep Analysis	5030B 8015B		1	4.982 g .1 mL	5 mL 5 mL	410039 410986	04/03/18 13:40 04/11/18 14:51	CAS	TAL DEN TAL DEN
Total/NA Total/NA	Prep Analysis	3546 8015B		1	15.1 g	1 mL	409932 410664	04/03/18 07:33 04/09/18 20:57	KI TDJ	TAL DEN TAL DEN

TestAmerica Denver

Prepared

or Analyzed Analyst

04/10/18 20:00 RSN

04/11/18 04:32 RSN

04/03/18 13:40 CAS

04/10/18 21:30 CAS

04/03/18 07:33 KI

04/09/18 19:20 TDJ

Lab Sample ID: 280-107960-10

Lab Sample ID: 280-107960-11

Lab Sample ID: 280-107960-12

Lab Sample ID: 280-107960-13

Lab Sample ID: 280-107960-14

Lab Sample ID: 280-107960-15

Lab Sample ID: 280-107960-16

Matrix: Solid

Matrix: Solid

Matrix: Solid

Matrix: Solid

5

1

Date Collected: 03/29/18 12:36 Date Received: 03/30/18 08:50

Client Sample ID: PCS AC13

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5030B			4.823 g	5 mL	411171	04/12/18 18:38	RSN	TAL DEN
Total/NA	Analysis	8260B		1	5 g	5 mL	411164	04/12/18 19:58	RSN	TAL DEN
Total/NA	Prep	5030B			5.009 g	5 mL	410039	04/03/18 13:40	CAS	TAL DEN
Total/NA	Analysis	8015B		1	.1 mL	5 mL	410986	04/11/18 15:16	CAS	TAL DEN
Total/NA	Prep	3546			15.5 g	1 mL	409932	04/03/18 07:33	КІ	TAL DEN
Total/NA	Analysis	8015B		1			410664	04/09/18 21:22	TDJ	TAL DEN

Client Sample ID: PCS AC14 Date Collected: 03/29/18 12:41 Date Received: 03/30/18 08:50

Dil Initial Batch Batch Batch Final Prepared Prep Type Туре Method Run Factor Amount Amount Number or Analyzed Analyst Lab Total/NA Prep 5030B 4.435 g 5 mL 411171 04/12/18 18:38 RSN TAL DEN Total/NA 8260B 04/12/18 20:59 RSN TAL DEN Analysis 5 mL 411164 1 5 g Total/NA Prep 5030B 4.983 g 5 mL 410039 04/03/18 13:40 CAS TAL DEN Total/NA 8015B 5 mL 410986 04/11/18 15:41 CAS TAL DEN Analysis 1 .1 mL Total/NA Prep 3546 16.5 g 1 mL 409932 04/03/18 07:33 KI TAL DEN 8015B 04/09/18 21:46 TDJ TAL DEN Total/NA Analysis 1 410664

Client Sample ID: PCS AC15 Date Collected: 03/29/18 12:46 Date Received: 03/30/18 08:50

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5030B			4.782 g	5 mL	411171	04/12/18 18:38	RSN	TAL DEN
Total/NA	Analysis	8260B		1	5 g	5 mL	411164	04/12/18 21:20	RSN	TAL DEN
Total/NA	Prep	5030B			4.963 g	5 mL	410039	04/03/18 13:40	CAS	TAL DEN
Total/NA	Analysis	8015B		1	.1 mL	5 mL	410986	04/11/18 16:06	CAS	TAL DEN
Total/NA	Prep	3546			15.5 g	1 mL	409932	04/03/18 07:33	KI	TAL DEN
Total/NA	Analysis	8015B		1			410664	04/09/18 22:10	TDJ	TAL DEN

Client Sample ID: PCS AC16 Date Collected: 03/29/18 12:51 Date Received: 03/30/18 08:50

Prep Type Total/NA Total/NA	Batch Type Prep Analysis	Batch Method 5030B 8260B	Run	Dil Factor	Initial Amount 4.758 g 5 g	Final Amount 5 mL 5 mL	Batch Number 411171 411164		 Lab TAL DEN TAL DEN
Total/NA Total/NA	Prep Analysis	5030B 8015B		1	5.030 g .1 mL	5 mL 5 mL	410039 410986	04/03/18 13:40 04/11/18 16:31	 TAL DEN TAL DEN
Total/NA Total/NA	Prep Analysis	3546 8015B		1	16.9 g	1 mL	409932 410664	04/03/18 07:33 04/09/18 22:35	 TAL DEN TAL DEN

TestAmerica Denver

Lab Sample ID: 280-107960-17

Lab Sample ID: 280-107960-18

Lab Sample ID: 280-107960-19

Lab Sample ID: 280-107960-20

Matrix: Solid

Matrix: Solid

Matrix: Solid

Matrix: Solid

Date Collected: 03/29/18 12:56 Date Received: 03/30/18 08:50

Client Sample ID: PCS AC17

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5030B			4.726 g	5 mL	411171	04/12/18 18:38	RSN	TAL DEN
Total/NA	Analysis	8260B		1	5 g	5 mL	411164	04/12/18 22:00	RSN	TAL DEN
Total/NA	Prep	5030B			5.005 g	5 mL	410039	04/03/18 13:40	CAS	TAL DEN
Total/NA	Analysis	8015B		1	.1 mL	5 mL	410986	04/11/18 16:56	CAS	TAL DEN
Total/NA	Prep	3546			16.8 g	1 mL	409932	04/03/18 07:33	КІ	TAL DEN
Total/NA	Analysis	8015B		1			410664	04/09/18 22:59	TDJ	TAL DEN

Client Sample ID: PCS AC18 Date Collected: 03/29/18 13:02 Date Received: 03/30/18 08:50

Dil Initial Batch Batch Batch Final Prepared Prep Type Туре Method Run Factor Amount Amount Number or Analyzed Analyst Lab Total/NA Prep 5030B 4.853 g 5 mL 411171 04/12/18 18:38 RSN TAL DEN Total/NA 8260B 04/12/18 22:20 RSN TAL DEN Analysis 5 mL 411164 1 5 g Total/NA Prep 5030B 5.021 g 5 mL 410039 04/03/18 13:40 CAS TAL DEN Total/NA 8015B 5 mL 410986 04/11/18 17:21 CAS TAL DEN Analysis 1 .1 mL Total/NA Prep 3546 15.0 g 1 mL 409932 04/03/18 07:33 KI TAL DEN 8015B 04/09/18 23:24 TDJ TAL DEN Total/NA Analysis 1 410664

Client Sample ID: PCS AC19 Date Collected: 03/29/18 13:07 Date Received: 03/30/18 08:50

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5030B			4.339 g	5 mL	411171	04/12/18 18:38	RSN	TAL DEN
Total/NA	Analysis	8260B		1	5 g	5 mL	411164	04/12/18 22:41	RSN	TAL DEN
Total/NA	Prep	5030B			5.005 g	5 mL	410039	04/03/18 13:40	CAS	TAL DEN
Total/NA	Analysis	8015B		1	.1 mL	5 mL	410986	04/11/18 17:45	CAS	TAL DEN
Total/NA	Prep	3546			16.2 g	1 mL	409932	04/03/18 07:33	KI	TAL DEN
Total/NA	Analysis	8015B		1			410664	04/09/18 23:48	TDJ	TAL DEN

Client Sample ID: PCS AC20 Date Collected: 03/29/18 13:14 Date Received: 03/30/18 08:50

Prep Type Total/NA Total/NA	Batch Type Prep Analysis	Batch Method 5030B 8260B	Run	Dil Factor	Initial Amount 4.925 g 5 g	Final Amount 5 mL 5 mL	Batch Number 411171 411164	Prepared or Analyzed 04/12/18 18:38 04/12/18 23:01	Analyst RSN RSN	Lab TAL DEN TAL DEN
Total/NA Total/NA	Prep Analysis	5030B 8015B		1	5.040 g .1 mL	5 mL 5 mL	410039 410986	04/03/18 13:40 04/11/18 18:10		TAL DEN TAL DEN
Total/NA Total/NA	Prep Analysis	3546 8015B		1	16.0 g	1 mL	409932 410664	04/03/18 07:33 04/10/18 00:13		TAL DEN TAL DEN

TestAmerica Denver

5

Client: Waste Management Project/Site: 3217|Valencia, NM - Soils

Laboratory References:

TAL DEN = TestAmerica Denver, 4955 Yarrow Street, Arvada, CO 80002, TEL (303)736-0100

TestAmerica Denver

Lab Name: TestAmerica Denver	Job No.: 280-107960-1			
SDG No.:				
Client Sample ID: PCS AC1	Lab Sample ID: <u>280-107960-1</u>			
Matrix: Solid	Lab File ID: G6488.D			
Analysis Method: <u>8260B</u>	Date Collected: 03/29/2018 11:35			
Sample wt/vol: <u>4.705(g)</u>	Date Analyzed: 04/11/2018 01:50			
Soil Aliquot Vol:	Dilution Factor: 1			
Soil Extract Vol.:	GC Column: DB-624 v1 ID: 32(um)			
% Moisture:	Level: (low/med) Low			
Analysis Batch No.: 410890	Units: ug/Kg			

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
630-20-6	1,1,1,2-Tetrachloroethane	ND		5.3	0.60
71-55-6	1,1,1-Trichloroethane	ND		5.3	0.55
79-34-5	1,1,2,2-Tetrachloroethane	ND		5.3	0.65
79-00-5	1,1,2-Trichloroethane	ND		5.3	0.94
75-34-3	1,1-Dichloroethane	ND		5.3	0.22
75-35-4	1,1-Dichloroethene	ND		5.3	0.63
563-58-6	1,1-Dichloropropene	ND		5.3	0.57
87-61-6	1,2,3-Trichlorobenzene	ND		5.3	0.80
96-18-4	1,2,3-Trichloropropane	ND		5.3	0.86
120-82-1	1,2,4-Trichlorobenzene	ND		5.3	0.78
95-63-6	1,2,4-Trimethylbenzene	ND		5.3	0.62
96-12-8	1,2-Dibromo-3-Chloropropane	ND		11	0.64
106-93-4	1,2-Dibromoethane	ND		5.3	0.55
95-50-1	1,2-Dichlorobenzene	ND		5.3	0.48
107-06-2	1,2-Dichloroethane	ND		5.3	0.74
540-59-0	1,2-Dichloroethene, Total	ND		5.3	0.41
78-87-5	1,2-Dichloropropane	ND		5.3	0.58
108-67-8	1,3,5-Trimethylbenzene	ND		5.3	0.61
541-73-1	1,3-Dichlorobenzene	ND		5.3	0.51
142-28-9	1,3-Dichloropropane	ND		5.3	0.54
106-46-7	1,4-Dichlorobenzene	ND		5.3	0.83
594-20-7	2,2-Dichloropropane	ND		5.3	0.47
78-93-3	2-Butanone (MEK)	3.3	JВ	21	1.9
95-49-8	2-Chlorotoluene	ND		5.3	0.54
591-78-6	2-Hexanone	ND		21	5.2
106-43-4	4-Chlorotoluene	ND		5.3	0.83
99-87-6	4-Isopropyltoluene	ND		5.3	0.52
108-10-1	4-Methyl-2-pentanone (MIBK)	ND		21	4.6
67-64-1	Acetone	ND		21	5.7
71-43-2	Benzene	ND		5.3	0.50
108-86-1	Bromobenzene	ND		5.3	0.52
75-25-2	Bromoform	ND		5.3	0.24
74-83-9	Bromomethane	ND		11	0.53
56-23-5	Carbon tetrachloride	ND		5.3	0.67
108-90-7	Chlorobenzene	ND		5.3	0.57
74-97-5	Chlorobromomethane	ND		5.3	0.32

Lab Name: TestAmerica Denver	Job No.: 280-107960-1				
SDG No.:					
Client Sample ID: <u>PCS AC1</u>	Lab Sample ID: <u>280-107960-1</u>				
Matrix: Solid	Lab File ID: G6488.D				
Analysis Method: 8260B	Date Collected: 03/29/2018 11:35				
Sample wt/vol: 4.705(g)	Date Analyzed: 04/11/2018 01:50				
Soil Aliquot Vol:	Dilution Factor: 1				
Soil Extract Vol.:	GC Column: <u>DB-624 v1</u> ID: <u>32(um)</u>				
% Moisture:	Level: (low/med) Low				
Analysis Batch No.: 410890	Units: ug/Kg				

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
124-48-1	Chlorodibromomethane	ND		5.3	0.61
75-00-3	Chloroethane	ND		11	0.95
67-66-3	Chloroform	ND		11	0.31
74-87-3	Chloromethane	ND		11	0.82
156-59-2	cis-1,2-Dichloroethene	ND		2.7	0.60
10061-01-5	cis-1,3-Dichloropropene	ND		5.3	1.4
74-95-3	Dibromomethane	ND		5.3	0.89
75-27-4	Dichlorobromomethane	ND		5.3	0.23
75-71-8	Dichlorodifluoromethane	ND		11	0.55
100-41-4	Ethylbenzene	ND		5.3	0.71
87-68-3	Hexachlorobutadiene	ND		5.3	0.58
98-82-8	Isopropylbenzene	ND		5.3	0.63
1634-04-4	Methyl tert-butyl ether	ND		21	0.36
75-09-2	Methylene Chloride	ND		5.3	1.7
179601-23-1	m-Xylene & p-Xylene	ND		2.7	1.1
91-20-3	Naphthalene	ND		5.3	0.67
104-51-8	n-Butylbenzene	ND		5.3	0.60
103-65-1	N-Propylbenzene	ND		5.3	0.62
95-47-6	o-Xylene	ND		2.7	0.65
135-98-8	sec-Butylbenzene	ND		5.3	0.82
100-42-5	Styrene	ND		5.3	0.67
98-06-6	tert-Butylbenzene	ND		5.3	0.53
127-18-4	Tetrachloroethene	ND		5.3	0.63
108-88-3	Toluene	ND		5.3	0.73
156-60-5	trans-1,2-Dichloroethene	ND		2.7	0.41
10061-02-6	trans-1,3-Dichloropropene	ND		5.3	0.71
79-01-6	Trichloroethene	ND		5.3	0.24
75-69-4	Trichlorofluoromethane	ND		11	1.1
75-01-4	Vinyl chloride	ND		5.3	1.4
1330-20-7	Xylenes, Total	ND		5.3	0.65

Lab Name: TestAmerica Denver	Job No.: 280-107960-1
SDG No.:	
Client Sample ID: <u>PCS AC1</u>	Lab Sample ID: <u>280-107960-1</u>
Matrix: Solid	Lab File ID: G6488.D
Analysis Method: <u>8260B</u>	Date Collected: 03/29/2018 11:35
Sample wt/vol: 4.705(g)	Date Analyzed: 04/11/2018 01:50
Soil Aliquot Vol:	Dilution Factor: 1
Soil Extract Vol.:	GC Column: DB-624 v1 ID: 32(um)
% Moisture:	Level: (low/med) Low
Analysis Batch No.: 410890	Units: ug/Kg

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	80		58-140
460-00-4	4-Bromofluorobenzene (Surr)	101		76-127
1868-53-7	Dibromofluoromethane (Surr)	90		75-121
2037-26-5	Toluene-d8 (Surr)	94		80-126

Lab Name: TestAmerica Denver	Job No.: <u>280-107960-1</u>
SDG No.:	
Client Sample ID: <u>PCS AC2</u>	Lab Sample ID: 280-107960-2
Matrix: Solid	Lab File ID: G6529.D
Analysis Method: 8260B	Date Collected: 03/29/2018 11:41
Sample wt/vol: <u>4.343(g)</u>	Date Analyzed: 04/12/2018 03:22
Soil Aliquot Vol:	Dilution Factor: 1
Soil Extract Vol.:	GC Column: DB-624 v1 ID: 32(um)
% Moisture:	Level: (low/med) Low
Analysis Batch No.: 411029	Units: ug/Kg

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
630-20-6	1,1,1,2-Tetrachloroethane	ND		5.8	0.64
71-55-6	1,1,1-Trichloroethane	ND		5.8	0.60
79-34-5	1,1,2,2-Tetrachloroethane	ND		5.8	0.70
79-00-5	1,1,2-Trichloroethane	ND		5.8	1.0
75-34-3	1,1-Dichloroethane	ND		5.8	0.24
75-35-4	1,1-Dichloroethene	ND		5.8	0.68
563-58-6	1,1-Dichloropropene	ND		5.8	0.62
87-61-6	1,2,3-Trichlorobenzene	ND	F1	5.8	0.86
96-18-4	1,2,3-Trichloropropane	ND		5.8	0.93
120-82-1	1,2,4-Trichlorobenzene	ND	F1	5.8	0.84
95-63-6	1,2,4-Trimethylbenzene	ND		5.8	0.67
96-12-8	1,2-Dibromo-3-Chloropropane	ND		12	0.69
106-93-4	1,2-Dibromoethane	ND		5.8	0.60
95-50-1	1,2-Dichlorobenzene	0.69	J	5.8	0.52
107-06-2	1,2-Dichloroethane	ND		5.8	0.81
540-59-0	1,2-Dichloroethene, Total	7.4		5.8	0.45
78-87-5	1,2-Dichloropropane	ND		5.8	0.63
108-67-8	1,3,5-Trimethylbenzene	ND		5.8	0.66
541-73-1	1,3-Dichlorobenzene	ND		5.8	0.55
142-28-9	1,3-Dichloropropane	ND		5.8	0.59
106-46-7	1,4-Dichlorobenzene	ND		5.8	0.90
594-20-7	2,2-Dichloropropane	ND		5.8	0.51
78-93-3	2-Butanone (MEK)	ND		23	2.1
95-49-8	2-Chlorotoluene	ND		5.8	0.59
591-78-6	2-Hexanone	ND		23	5.6
106-43-4	4-Chlorotoluene	ND		5.8	0.90
99-87-6	4-Isopropyltoluene	ND		5.8	0.56
108-10-1	4-Methyl-2-pentanone (MIBK)	ND		23	5.0
67-64-1	Acetone	ND		23	6.2
71-43-2	Benzene	ND		5.8	0.54
108-86-1	Bromobenzene	ND		5.8	0.56
75-25-2	Bromoform	ND	F1	5.8	0.26
74-83-9	Bromomethane	ND		12	0.58
56-23-5	Carbon tetrachloride	ND		5.8	0.73
108-90-7	Chlorobenzene	ND	F1	5.8	0.62
74-97-5	Chlorobromomethane	ND		5.8	0.35

Lab Name: TestAmerica Denver	Job No.: <u>280-107960-1</u>
SDG No.:	
Client Sample ID: <u>PCS AC2</u>	Lab Sample ID: 280-107960-2
Matrix: Solid	Lab File ID: G6529.D
Analysis Method: 8260B	Date Collected: 03/29/2018 11:41
Sample wt/vol: <u>4.343(g)</u>	Date Analyzed: 04/12/2018 03:22
Soil Aliquot Vol:	Dilution Factor: 1
Soil Extract Vol.:	GC Column: DB-624 v1 ID: 32(um)
% Moisture:	Level: (low/med) Low
Analysis Batch No.: 411029	Units: ug/Kg

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
124-48-1	Chlorodibromomethane	ND	F1	5.8	0.66
75-00-3	Chloroethane	ND		12	1.0
67-66-3	Chloroform	ND		12	0.33
74-87-3	Chloromethane	ND		12	0.89
156-59-2	cis-1,2-Dichloroethene	7.4		2.9	0.64
10061-01-5	cis-1,3-Dichloropropene	ND		5.8	1.5
74-95-3	Dibromomethane	ND		5.8	0.97
75-27-4	Dichlorobromomethane	ND		5.8	0.25
75-71-8	Dichlorodifluoromethane	ND		12	0.60
100-41-4	Ethylbenzene	ND		5.8	0.77
87-68-3	Hexachlorobutadiene	ND		5.8	0.63
98-82-8	Isopropylbenzene	ND	F1	5.8	0.68
1634-04-4	Methyl tert-butyl ether	ND		23	0.39
75-09-2	Methylene Chloride	ND		5.8	1.8
179601-23-1	m-Xylene & p-Xylene	ND	F1	2.9	1.2
91-20-3	Naphthalene	ND		5.8	0.73
104-51-8	n-Butylbenzene	ND	F1	5.8	0.64
103-65-1	N-Propylbenzene	ND		5.8	0.67
95-47-6	o-Xylene	ND		2.9	0.70
135-98-8	sec-Butylbenzene	ND		5.8	0.89
100-42-5	Styrene	ND	F1	5.8	0.73
98-06-6	tert-Butylbenzene	ND		5.8	0.58
127-18-4	Tetrachloroethene	ND		5.8	0.68
108-88-3	Toluene	ND		5.8	0.79
156-60-5	trans-1,2-Dichloroethene	ND		2.9	0.45
10061-02-6	trans-1,3-Dichloropropene	ND		5.8	0.77
79-01-6	Trichloroethene	ND		5.8	0.26
75-69-4	Trichlorofluoromethane	ND		12	1.2
75-01-4	Vinyl chloride	ND		5.8	1.5
1330-20-7	Xylenes, Total	ND		5.8	0.70

Lab Name: TestAmerica Denver	Job No.: 280-107960-1			
SDG No.:				
Client Sample ID: <u>PCS AC2</u>	Lab Sample ID: <u>280-107960-2</u>			
Matrix: Solid	Lab File ID: G6529.D			
Analysis Method: <u>8260B</u>	Date Collected: 03/29/2018 11:41			
Sample wt/vol: 4.343(g)	Date Analyzed: 04/12/2018 03:22			
Soil Aliquot Vol:	Dilution Factor: 1			
Soil Extract Vol.:	GC Column: DB-624 v1 ID: 32(um)			
% Moisture:	Level: (low/med) Low			
Analysis Batch No.: <u>411029</u>	Units: ug/Kg			

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	78		58-140
460-00-4	4-Bromofluorobenzene (Surr)	98		76-127
1868-53-7	Dibromofluoromethane (Surr)	91		75-121
2037-26-5	Toluene-d8 (Surr)	93		80-126

Lab Name: TestAmerica Denver	Job No.: 280-107960-1	
SDG No.:		
Client Sample ID: PCS AC3	Lab Sample ID: <u>280-107960-3</u>	
Matrix: Solid	Lab File ID: <u>G6490.D</u>	
Analysis Method: <u>8260B</u>	Date Collected: 03/29/2018 11:46	
Sample wt/vol: 4.504(g)	Date Analyzed: 04/11/2018 02:30	
Soil Aliquot Vol:	Dilution Factor: 1	
Soil Extract Vol.:	GC Column: DB-624 v1 ID: 32(um)	
% Moisture:	Level: (low/med) Low	
Analysis Batch No.: 410890	Units: ug/Kg	

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
630-20-6	1,1,1,2-Tetrachloroethane	ND		5.6	0.62
71-55-6	1,1,1-Trichloroethane	ND		5.6	0.58
79-34-5	1,1,2,2-Tetrachloroethane	ND		5.6	0.68
79-00-5	1,1,2-Trichloroethane	ND		5.6	0.98
75-34-3	1,1-Dichloroethane	ND		5.6	0.23
75-35-4	1,1-Dichloroethene	ND		5.6	0.65
563-58-6	1,1-Dichloropropene	ND		5.6	0.60
87-61-6	1,2,3-Trichlorobenzene	ND		5.6	0.83
96-18-4	1,2,3-Trichloropropane	ND		5.6	0.90
120-82-1	1,2,4-Trichlorobenzene	ND		5.6	0.81
95-63-6	1,2,4-Trimethylbenzene	ND		5.6	0.64
96-12-8	1,2-Dibromo-3-Chloropropane	ND		11	0.67
106-93-4	1,2-Dibromoethane	ND		5.6	0.58
95-50-1	1,2-Dichlorobenzene	ND		5.6	0.50
107-06-2	1,2-Dichloroethane	ND		5.6	0.78
540-59-0	1,2-Dichloroethene, Total	ND		5.6	0.43
78-87-5	1,2-Dichloropropane	ND		5.6	0.61
108-67-8	1,3,5-Trimethylbenzene	ND		5.6	0.63
541-73-1	1,3-Dichlorobenzene	ND		5.6	0.53
142-28-9	1,3-Dichloropropane	ND		5.6	0.57
106-46-7	1,4-Dichlorobenzene	ND		5.6	0.87
594-20-7	2,2-Dichloropropane	ND		5.6	0.49
78-93-3	2-Butanone (MEK)	11	JВ	22	2.0
95-49-8	2-Chlorotoluene	ND		5.6	0.57
591-78-6	2-Hexanone	ND		22	5.4
106-43-4	4-Chlorotoluene	ND		5.6	0.87
99-87-6	4-Isopropyltoluene	ND		5.6	0.54
108-10-1	4-Methyl-2-pentanone (MIBK)	ND		22	4.8
67-64-1	Acetone	21	J	22	6.0
71-43-2	Benzene	ND		5.6	0.52
108-86-1	Bromobenzene	ND		5.6	0.54
75-25-2	Bromoform	ND		5.6	0.26
74-83-9	Bromomethane	ND		11	0.56
56-23-5	Carbon tetrachloride	ND		5.6	0.70
108-90-7	Chlorobenzene	ND		5.6	0.60
74-97-5	Chlorobromomethane	ND		5.6	0.33

Lab Name: TestAmerica Denver	Job No.: 280-107960-1
SDG No.:	
Client Sample ID: <u>PCS AC3</u>	Lab Sample ID: 280-107960-3
Matrix: Solid	Lab File ID: <u>G6490.D</u>
Analysis Method: 8260B	Date Collected: 03/29/2018 11:46
Sample wt/vol: 4.504(g)	Date Analyzed: 04/11/2018 02:30
Soil Aliquot Vol:	Dilution Factor: 1
Soil Extract Vol.:	GC Column: DB-624 v1 ID: 32(um)
% Moisture:	Level: (low/med) Low
Analysis Batch No.: 410890	Units: ug/Kg

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
124-48-1	Chlorodibromomethane	ND		5.6	0.63
75-00-3	Chloroethane	ND		11	0.99
67-66-3	Chloroform	ND		11	0.32
74-87-3	Chloromethane	ND		11	0.85
156-59-2	cis-1,2-Dichloroethene	ND		2.8	0.62
10061-01-5	cis-1,3-Dichloropropene	ND		5.6	1.4
74-95-3	Dibromomethane	ND		5.6	0.93
75-27-4	Dichlorobromomethane	ND		5.6	0.24
75-71-8	Dichlorodifluoromethane	ND		11	0.58
100-41-4	Ethylbenzene	ND		5.6	0.74
87-68-3	Hexachlorobutadiene	ND		5.6	0.61
98-82-8	Isopropylbenzene	ND		5.6	0.65
1634-04-4	Methyl tert-butyl ether	ND		22	0.38
75-09-2	Methylene Chloride	ND		5.6	1.8
179601-23-1	m-Xylene & p-Xylene	ND		2.8	1.2
91-20-3	Naphthalene	ND		5.6	0.70
104-51-8	n-Butylbenzene	ND		5.6	0.62
103-65-1	N-Propylbenzene	ND		5.6	0.64
95-47-6	o-Xylene	ND		2.8	0.68
135-98-8	sec-Butylbenzene	ND		5.6	0.85
100-42-5	Styrene	ND		5.6	0.70
98-06-6	tert-Butylbenzene	ND		5.6	0.56
127-18-4	Tetrachloroethene	ND		5.6	0.65
108-88-3	Toluene	ND		5.6	0.77
156-60-5	trans-1,2-Dichloroethene	ND		2.8	0.43
10061-02-6	trans-1,3-Dichloropropene	ND		5.6	0.74
79-01-6	Trichloroethene	ND		5.6	0.26
75-69-4	Trichlorofluoromethane	ND		11	1.2
75-01-4	Vinyl chloride	ND		5.6	1.5
1330-20-7	Xylenes, Total	ND		5.6	0.68

Lab Name: TestAmerica Denver	Job No.: 280-107960-1
SDG No.:	
Client Sample ID: <u>PCS AC3</u>	Lab Sample ID: 280-107960-3
Matrix: Solid	Lab File ID: <u>G6490.D</u>
Analysis Method: <u>8260B</u>	Date Collected: 03/29/2018 11:46
Sample wt/vol: <u>4.504(g)</u>	Date Analyzed: 04/11/2018 02:30
Soil Aliquot Vol:	Dilution Factor: 1
Soil Extract Vol.:	GC Column: DB-624 v1 ID: 32(um)
% Moisture:	Level: (low/med) Low
Analysis Batch No.: 410890	Units: ug/Kg

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	87		58-140
460-00-4	4-Bromofluorobenzene (Surr)	101		76-127
1868-53-7	Dibromofluoromethane (Surr)	91		75-121
2037-26-5	Toluene-d8 (Surr)	92		80-126

Lab Name: TestAmerica Denver	Job No.: <u>280-107960-1</u>
SDG No.:	
Client Sample ID: <u>PCS AC4</u>	Lab Sample ID: 280-107960-4
Matrix: Solid	Lab File ID: G6533.D
Analysis Method: <u>8260B</u>	Date Collected: 03/29/2018 11:50
Sample wt/vol: 4.371(g)	Date Analyzed: 04/12/2018 04:43
Soil Aliquot Vol:	Dilution Factor: 1
Soil Extract Vol.:	GC Column: DB-624 v1 ID: 32(um)
% Moisture:	Level: (low/med) Low
Analysis Batch No.: 411029	Units: ug/Kg

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
630-20-6	1,1,1,2-Tetrachloroethane	ND		5.7	0.64
71-55-6	1,1,1-Trichloroethane	ND		5.7	0.59
79-34-5	1,1,2,2-Tetrachloroethane	ND		5.7	0.70
79-00-5	1,1,2-Trichloroethane	ND		5.7	1.0
75-34-3	1,1-Dichloroethane	ND		5.7	0.24
75-35-4	1,1-Dichloroethene	ND		5.7	0.67
563-58-6	1,1-Dichloropropene	ND		5.7	0.62
87-61-6	1,2,3-Trichlorobenzene	ND		5.7	0.86
96-18-4	1,2,3-Trichloropropane	ND		5.7	0.93
120-82-1	1,2,4-Trichlorobenzene	ND		5.7	0.84
95-63-6	1,2,4-Trimethylbenzene	ND		5.7	0.66
96-12-8	1,2-Dibromo-3-Chloropropane	ND		11	0.69
106-93-4	1,2-Dibromoethane	ND		5.7	0.59
95-50-1	1,2-Dichlorobenzene	ND		5.7	0.51
107-06-2	1,2-Dichloroethane	ND		5.7	0.80
540-59-0	1,2-Dichloroethene, Total	4.8	J	5.7	0.45
78-87-5	1,2-Dichloropropane	ND		5.7	0.63
108-67-8	1,3,5-Trimethylbenzene	ND		5.7	0.65
541-73-1	1,3-Dichlorobenzene	ND		5.7	0.55
142-28-9	1,3-Dichloropropane	ND		5.7	0.58
106-46-7	1,4-Dichlorobenzene	ND		5.7	0.89
594-20-7	2,2-Dichloropropane	ND		5.7	0.50
78-93-3	2-Butanone (MEK)	9.0	JВ	23	2.1
95-49-8	2-Chlorotoluene	ND		5.7	0.58
591-78-6	2-Hexanone	ND		23	5.6
106-43-4	4-Chlorotoluene	ND		5.7	0.89
99-87-6	4-Isopropyltoluene	ND		5.7	0.56
108-10-1	4-Methyl-2-pentanone (MIBK)	ND		23	5.0
67-64-1	Acetone	20	JВ	23	6.2
71-43-2	Benzene	ND		5.7	0.54
108-86-1	Bromobenzene	ND		5.7	0.56
75-25-2	Bromoform	ND		5.7	0.26
74-83-9	Bromomethane	ND		11	0.57
56-23-5	Carbon tetrachloride	ND		5.7	0.72
108-90-7	Chlorobenzene	ND		5.7	0.62
74-97-5	Chlorobromomethane	ND		5.7	0.34

Lab Name: TestAmerica Denver	Job No.: 280-107960-1	
SDG No.:		
Client Sample ID: PCS AC4	Lab Sample ID: <u>280-107960-4</u>	
Matrix: Solid Lab File ID: G6533.D		
Analysis Method: <u>8260B</u>	Date Collected: 03/29/2018 11:50	
Sample wt/vol: 4.371(g)	Date Analyzed: 04/12/2018 04:43	
Soil Aliquot Vol:	Dilution Factor: 1	
Soil Extract Vol.:	GC Column: DB-624 v1 ID: 32(um)	
% Moisture:	Level: (low/med) Low	
Analysis Batch No.: 411029	Units: ug/Kg	

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
124-48-1	Chlorodibromomethane	ND		5.7	0.65
75-00-3	Chloroethane	ND		11	1.0
67-66-3	Chloroform	ND		11	0.33
74-87-3	Chloromethane	ND		11	0.88
156-59-2	cis-1,2-Dichloroethene	4.8		2.9	0.64
10061-01-5	cis-1,3-Dichloropropene	ND		5.7	1.5
74-95-3	Dibromomethane	ND		5.7	0.96
75-27-4	Dichlorobromomethane	ND		5.7	0.25
75-71-8	Dichlorodifluoromethane	ND		11	0.59
100-41-4	Ethylbenzene	ND		5.7	0.77
87-68-3	Hexachlorobutadiene	ND		5.7	0.63
98-82-8	Isopropylbenzene	ND		5.7	0.67
1634-04-4	Methyl tert-butyl ether	ND		23	0.39
75-09-2	Methylene Chloride	ND		5.7	1.8
179601-23-1	m-Xylene & p-Xylene	ND		2.9	1.2
91-20-3	Naphthalene	ND		5.7	0.72
104-51-8	n-Butylbenzene	ND		5.7	0.64
103-65-1	N-Propylbenzene	ND		5.7	0.66
95-47-6	o-Xylene	ND		2.9	0.70
135-98-8	sec-Butylbenzene	ND		5.7	0.88
100-42-5	Styrene	ND		5.7	0.72
98-06-6	tert-Butylbenzene	ND		5.7	0.57
127-18-4	Tetrachloroethene	ND		5.7	0.67
108-88-3	Toluene	ND		5.7	0.79
156-60-5	trans-1,2-Dichloroethene	ND		2.9	0.45
10061-02-6	trans-1,3-Dichloropropene	ND		5.7	0.77
79-01-6	Trichloroethene	ND		5.7	0.26
75-69-4	Trichlorofluoromethane	ND		11	1.2
75-01-4	Vinyl chloride	ND		5.7	1.5
1330-20-7	Xylenes, Total	ND		5.7	0.70
	l.				

Lab Name: TestAmerica Denver	Job No.: 280-107960-1
SDG No.:	
Client Sample ID: <u>PCS AC4</u>	Lab Sample ID: 280-107960-4
Matrix: Solid	Lab File ID: <u>G</u> 6533.D
Analysis Method: <u>8260B</u>	Date Collected: 03/29/2018 11:50
Sample wt/vol: <u>4.371(g)</u>	Date Analyzed: 04/12/2018 04:43
Soil Aliquot Vol:	Dilution Factor: 1
Soil Extract Vol.:	GC Column: DB-624 v1 ID: 32(um)
% Moisture:	Level: (low/med) Low
Analysis Batch No.: 411029	Units: ug/Kg

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	77		58-140
460-00-4	4-Bromofluorobenzene (Surr)	99		76-127
1868-53-7	Dibromofluoromethane (Surr)	89		75-121
2037-26-5	Toluene-d8 (Surr)	92		80-126

Lab Name: TestAmerica Denver	Job No.: 280-107960-1
SDG No.:	
Client Sample ID: PCS AC5	Lab Sample ID: 280-107960-5
Matrix: Solid	Lab File ID: <u>G</u> 6492.D
Analysis Method: 8260B	Date Collected: 03/29/2018 11:55
Sample wt/vol: <u>4.197(g)</u>	Date Analyzed: 04/11/2018 03:11
Soil Aliquot Vol:	Dilution Factor: 1
Soil Extract Vol.:	GC Column: DB-624 v1 ID: 32(um)
% Moisture:	Level: (low/med) Low
Analysis Batch No.: 410890	Units: ug/Kg

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
630-20-6	1,1,1,2-Tetrachloroethane	ND		6.0	0.67
71-55-6	1,1,1-Trichloroethane	ND		6.0	0.62
79-34-5	1,1,2,2-Tetrachloroethane	ND		6.0	0.73
79-00-5	1,1,2-Trichloroethane	ND		6.0	1.0
75-34-3	1,1-Dichloroethane	ND		6.0	0.25
75-35-4	1,1-Dichloroethene	ND		6.0	0.70
563-58-6	1,1-Dichloropropene	ND		6.0	0.64
87-61-6	1,2,3-Trichlorobenzene	ND		6.0	0.89
96-18-4	1,2,3-Trichloropropane	ND		6.0	0.96
120-82-1	1,2,4-Trichlorobenzene	ND		6.0	0.87
95-63-6	1,2,4-Trimethylbenzene	ND		6.0	0.69
96-12-8	1,2-Dibromo-3-Chloropropane	ND		12	0.71
106-93-4	1,2-Dibromoethane	ND		6.0	0.62
95-50-1	1,2-Dichlorobenzene	ND		6.0	0.54
107-06-2	1,2-Dichloroethane	ND		6.0	0.83
540-59-0	1,2-Dichloroethene, Total	ND		6.0	0.46
78-87-5	1,2-Dichloropropane	ND		6.0	0.66
108-67-8	1,3,5-Trimethylbenzene	ND		6.0	0.68
541-73-1	1,3-Dichlorobenzene	ND		6.0	0.57
142-28-9	1,3-Dichloropropane	ND		6.0	0.61
106-46-7	1,4-Dichlorobenzene	ND		6.0	0.93
594-20-7	2,2-Dichloropropane	ND		6.0	0.52
78-93-3	2-Butanone (MEK)	7.8	JВ	24	2.2
95-49-8	2-Chlorotoluene	ND		6.0	0.61
591-78-6	2-Hexanone	ND		24	5.8
106-43-4	4-Chlorotoluene	ND		6.0	0.93
99-87-6	4-Isopropyltoluene	ND		6.0	0.58
108-10-1	4-Methyl-2-pentanone (MIBK)	ND		24	5.2
67-64-1	Acetone	12	J	24	6.4
71-43-2	Benzene	ND		6.0	0.56
108-86-1	Bromobenzene	ND		6.0	0.58
75-25-2	Bromoform	ND		6.0	0.27
74-83-9	Bromomethane	ND		12	0.60
56-23-5	Carbon tetrachloride	ND		6.0	0.75
108-90-7	Chlorobenzene	ND		6.0	0.64
74-97-5	Chlorobromomethane	ND		6.0	0.36

Lab Name: TestAmerica Denver	Job No.: 280-107960-1	
SDG No.:		
Client Sample ID: PCS AC5 Lab Sample ID: 280-107960-5		
Matrix: Solid Lab File ID: G6492.D		
Analysis Method: 8260B	Date Collected: 03/29/2018 11:55	
Sample wt/vol: 4.197(g)	Date Analyzed: 04/11/2018 03:11	
Soil Aliquot Vol:	Dilution Factor: 1	
Soil Extract Vol.:	GC Column: <u>DB-624 v1</u> ID: <u>32(um)</u>	
% Moisture:	Level: (low/med) Low	
Analysis Batch No.: 410890	Units: ug/Kg	

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
124-48-1	Chlorodibromomethane	ND		6.0	0.68
75-00-3	Chloroethane	ND		12	1.1
67-66-3	Chloroform	ND		12	0.35
74-87-3	Chloromethane	ND		12	0.92
156-59-2	cis-1,2-Dichloroethene	ND		3.0	0.67
10061-01-5	cis-1,3-Dichloropropene	ND		6.0	1.5
74-95-3	Dibromomethane	ND		6.0	1.0
75-27-4	Dichlorobromomethane	ND		6.0	0.26
75-71-8	Dichlorodifluoromethane	ND		12	0.62
100-41-4	Ethylbenzene	ND		6.0	0.80
87-68-3	Hexachlorobutadiene	ND		6.0	0.66
98-82-8	Isopropylbenzene	ND		6.0	0.70
1634-04-4	Methyl tert-butyl ether	ND		24	0.41
75-09-2	Methylene Chloride	ND		6.0	1.9
179601-23-1	m-Xylene & p-Xylene	ND		3.0	1.2
91-20-3	Naphthalene	ND		6.0	0.75
104-51-8	n-Butylbenzene	ND		6.0	0.67
103-65-1	N-Propylbenzene	ND		6.0	0.69
95-47-6	o-Xylene	ND		3.0	0.73
135-98-8	sec-Butylbenzene	ND		6.0	0.92
100-42-5	Styrene	ND		6.0	0.75
98-06-6	tert-Butylbenzene	ND		6.0	0.60
127-18-4	Tetrachloroethene	ND		6.0	0.70
108-88-3	Toluene	ND		6.0	0.82
156-60-5	trans-1,2-Dichloroethene	ND		3.0	0.46
10061-02-6	trans-1,3-Dichloropropene	ND		6.0	0.80
79-01-6	Trichloroethene	ND		6.0	0.27
75-69-4	Trichlorofluoromethane	ND		12	1.2
75-01-4	Vinyl chloride	ND		6.0	1.6
1330-20-7	Xylenes, Total	ND		6.0	0.73

Lab Name: TestAmerica Denver	Job No.: 280-107960-1
SDG No.:	
Client Sample ID: <u>PCS AC5</u>	Lab Sample ID: 280-107960-5
Matrix: Solid	Lab File ID: G6492.D
Analysis Method: <u>8260B</u>	Date Collected: 03/29/2018 11:55
Sample wt/vol: <u>4.197(g)</u>	Date Analyzed: 04/11/2018 03:11
Soil Aliquot Vol:	Dilution Factor: 1
Soil Extract Vol.:	GC Column: DB-624 v1 ID: 32(um)
% Moisture:	Level: (low/med) Low
Analysis Batch No.: <u>410890</u>	Units: ug/Kg

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	83		58-140
460-00-4	4-Bromofluorobenzene (Surr)	101		76-127
1868-53-7	Dibromofluoromethane (Surr)	91		75-121
2037-26-5	Toluene-d8 (Surr)	94		80-126

Lab Name: TestAmerica Denver	Job No.: 280-107960-1
SDG No.:	
Client Sample ID: <u>PCS AC6</u>	Lab Sample ID: 280-107960-6
Matrix: Solid	Lab File ID: <u>G</u> 6534.D
Analysis Method: <u>8260B</u>	Date Collected: 03/29/2018 12:00
Sample wt/vol: 4.386(g)	Date Analyzed: 04/12/2018 05:03
Soil Aliquot Vol:	Dilution Factor: 1
Soil Extract Vol.:	GC Column: DB-624 v1 ID: 32(um)
% Moisture:	Level: (low/med) Low
Analysis Batch No.: <u>411029</u>	Units: ug/Kg

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
630-20-6	1,1,1,2-Tetrachloroethane	ND		5.7	0.64
71-55-6	1,1,1-Trichloroethane	ND		5.7	0.59
79-34-5	1,1,2,2-Tetrachloroethane	ND		5.7	0.70
79-00-5	1,1,2-Trichloroethane	ND		5.7	1.0
75-34-3	1,1-Dichloroethane	ND		5.7	0.24
75-35-4	1,1-Dichloroethene	ND		5.7	0.67
563-58-6	1,1-Dichloropropene	ND		5.7	0.62
87-61-6	1,2,3-Trichlorobenzene	ND		5.7	0.85
96-18-4	1,2,3-Trichloropropane	ND		5.7	0.92
120-82-1	1,2,4-Trichlorobenzene	ND		5.7	0.83
95-63-6	1,2,4-Trimethylbenzene	ND		5.7	0.66
96-12-8	1,2-Dibromo-3-Chloropropane	ND		11	0.68
106-93-4	1,2-Dibromoethane	ND		5.7	0.59
95-50-1	1,2-Dichlorobenzene	ND		5.7	0.51
107-06-2	1,2-Dichloroethane	ND		5.7	0.80
540-59-0	1,2-Dichloroethene, Total	4.6	J	5.7	0.44
78-87-5	1,2-Dichloropropane	ND		5.7	0.63
108-67-8	1,3,5-Trimethylbenzene	ND		5.7	0.65
541-73-1	1,3-Dichlorobenzene	ND		5.7	0.55
142-28-9	1,3-Dichloropropane	ND		5.7	0.58
106-46-7	1,4-Dichlorobenzene	ND		5.7	0.89
594-20-7	2,2-Dichloropropane	ND		5.7	0.50
78-93-3	2-Butanone (MEK)	7.1	JВ	23	2.1
95-49-8	2-Chlorotoluene	ND		5.7	0.58
591-78-6	2-Hexanone	ND		23	5.6
106-43-4	4-Chlorotoluene	ND		5.7	0.89
99-87-6	4-Isopropyltoluene	ND		5.7	0.56
108-10-1	4-Methyl-2-pentanone (MIBK)	ND		23	5.0
67-64-1	Acetone	15	JВ	23	6.1
71-43-2	Benzene	ND		5.7	0.54
108-86-1	Bromobenzene	ND		5.7	0.56
75-25-2	Bromoform	ND		5.7	0.26
74-83-9	Bromomethane	ND		11	0.57
56-23-5	Carbon tetrachloride	ND		5.7	0.72
108-90-7	Chlorobenzene	ND		5.7	0.62
74-97-5	Chlorobromomethane	ND		5.7	0.34

Lab Name: TestAmerica Denver	Job No.: <u>280-107960-1</u>
SDG No.:	
Client Sample ID: <u>PCS AC6</u>	Lab Sample ID: <u>280-107960-6</u>
Matrix: Solid	Lab File ID: G6534.D
Analysis Method: <u>8260B</u>	Date Collected: 03/29/2018 12:00
Sample wt/vol: 4.386(g)	Date Analyzed: 04/12/2018 05:03
Soil Aliquot Vol:	Dilution Factor: 1
Soil Extract Vol.:	GC Column: DB-624 v1 ID: 32(um)
% Moisture:	Level: (low/med) Low
Analysis Batch No.: 411029	Units: ug/Kg

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
124-48-1	Chlorodibromomethane	ND		5.7	0.65
75-00-3	Chloroethane	ND		11	1.0
67-66-3	Chloroform	ND		11	0.33
74-87-3	Chloromethane	ND		11	0.88
156-59-2	cis-1,2-Dichloroethene	4.6		2.8	0.64
10061-01-5	cis-1,3-Dichloropropene	ND		5.7	1.5
74-95-3	Dibromomethane	ND		5.7	0.96
75-27-4	Dichlorobromomethane	ND		5.7	0.25
75-71-8	Dichlorodifluoromethane	ND		11	0.59
100-41-4	Ethylbenzene	ND		5.7	0.76
87-68-3	Hexachlorobutadiene	ND		5.7	0.63
98-82-8	Isopropylbenzene	ND		5.7	0.67
1634-04-4	Methyl tert-butyl ether	ND		23	0.39
75-09-2	Methylene Chloride	ND		5.7	1.8
179601-23-1	m-Xylene & p-Xylene	ND		2.8	1.2
91-20-3	Naphthalene	ND		5.7	0.72
104-51-8	n-Butylbenzene	ND		5.7	0.64
103-65-1	N-Propylbenzene	ND		5.7	0.66
95-47-6	o-Xylene	ND		2.8	0.70
135-98-8	sec-Butylbenzene	ND		5.7	0.88
100-42-5	Styrene	ND		5.7	0.72
98-06-6	tert-Butylbenzene	ND		5.7	0.57
127-18-4	Tetrachloroethene	ND		5.7	0.67
108-88-3	Toluene	ND		5.7	0.79
156-60-5	trans-1,2-Dichloroethene	ND		2.8	0.44
10061-02-6	trans-1,3-Dichloropropene	ND		5.7	0.76
79-01-6	Trichloroethene	ND		5.7	0.26
75-69-4	Trichlorofluoromethane	ND		11	1.2
75-01-4	Vinyl chloride	ND		5.7	1.5
1330-20-7	Xylenes, Total	ND		5.7	0.70

Lab Name: TestAmerica Denver	Job No.: 280-107960-1		
SDG No.:			
Client Sample ID: <u>PCS AC6</u>	Lab Sample ID: 280-107960-6		
Matrix: Solid	id Lab File ID: G6534.D		
Analysis Method: <u>8260B</u>	Date Collected: 03/29/2018 12:00		
Sample wt/vol: <u>4.386(g)</u>	Date Analyzed: 04/12/2018 05:03		
Soil Aliquot Vol:	Dilution Factor: 1		
Soil Extract Vol.:	GC Column: DB-624 v1 ID: 32(um)		
% Moisture:	Level: (low/med) Low		
Analysis Batch No.: <u>411029</u>	Units: ug/Kg		

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	75		58-140
460-00-4	4-Bromofluorobenzene (Surr)	96		76-127
1868-53-7	Dibromofluoromethane (Surr)	88		75-121
2037-26-5	Toluene-d8 (Surr)	90		80-126

Lab Name: TestAmerica Denver	Job No.: 280-107960-1
SDG No.:	
Client Sample ID: <u>PCS AC7</u>	Lab Sample ID: 280-107960-7
Matrix: Solid	Lab File ID: <u>G</u> 6535.D
Analysis Method: 8260B	Date Collected: 03/29/2018 12:05
Sample wt/vol: 4.350(g)	Date Analyzed: 04/12/2018 05:24
Soil Aliquot Vol:	Dilution Factor: 1
Soil Extract Vol.:	GC Column: DB-624 v1 ID: 32(um)
% Moisture:	Level: (low/med) Low
Analysis Batch No.: 411029	Units: ug/Kg

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
630-20-6	1,1,1,2-Tetrachloroethane	ND		5.7	0.64
71-55-6	1,1,1-Trichloroethane	ND		5.7	0.60
79-34-5	1,1,2,2-Tetrachloroethane	ND		5.7	0.70
79-00-5	1,1,2-Trichloroethane	ND		5.7	1.0
75-34-3	1,1-Dichloroethane	ND		5.7	0.24
75-35-4	1,1-Dichloroethene	ND		5.7	0.68
563-58-6	1,1-Dichloropropene	ND		5.7	0.62
87-61-6	1,2,3-Trichlorobenzene	ND		5.7	0.86
96-18-4	1,2,3-Trichloropropane	ND		5.7	0.93
120-82-1	1,2,4-Trichlorobenzene	ND		5.7	0.84
95-63-6	1,2,4-Trimethylbenzene	ND		5.7	0.67
96-12-8	1,2-Dibromo-3-Chloropropane	ND		11	0.69
106-93-4	1,2-Dibromoethane	ND		5.7	0.60
95-50-1	1,2-Dichlorobenzene	ND		5.7	0.52
107-06-2	1,2-Dichloroethane	ND		5.7	0.80
540-59-0	1,2-Dichloroethene, Total	4.1	J	5.7	0.45
78-87-5	1,2-Dichloropropane	ND		5.7	0.63
108-67-8	1,3,5-Trimethylbenzene	ND		5.7	0.66
541-73-1	1,3-Dichlorobenzene	ND		5.7	0.55
142-28-9	1,3-Dichloropropane	ND		5.7	0.59
106-46-7	1,4-Dichlorobenzene	ND		5.7	0.90
594-20-7	2,2-Dichloropropane	ND		5.7	0.51
78-93-3	2-Butanone (MEK)	6.0	JВ	23	2.1
95-49-8	2-Chlorotoluene	ND		5.7	0.59
591-78-6	2-Hexanone	ND		23	5.6
106-43-4	4-Chlorotoluene	ND		5.7	0.90
99-87-6	4-Isopropyltoluene	ND		5.7	0.56
108-10-1	4-Methyl-2-pentanone (MIBK)	ND		23	5.0
67-64-1	Acetone	12	JВ	23	6.2
71-43-2	Benzene	ND		5.7	0.54
108-86-1	Bromobenzene	ND		5.7	0.56
75-25-2	Bromoform	ND		5.7	0.26
74-83-9	Bromomethane	ND		11	0.57
56-23-5	Carbon tetrachloride	ND		5.7	0.72
108-90-7	Chlorobenzene	ND		5.7	0.62
74-97-5	Chlorobromomethane	ND		5.7	0.34

Lab Name: TestAmerica Denver	Job No.: <u>280-107960-1</u>
SDG No.:	
Client Sample ID: PCS AC7	Lab Sample ID: <u>280-107960-7</u>
Matrix: Solid Lab File ID: G6535.D	
Analysis Method: <u>8260B</u>	Date Collected: 03/29/2018 12:05
Sample wt/vol: 4.350(g)	Date Analyzed: 04/12/2018 05:24
Soil Aliquot Vol:	Dilution Factor: 1
Soil Extract Vol.:	GC Column: <u>DB-624 v1</u> ID: <u>32(um)</u>
% Moisture:	Level: (low/med) Low
Analysis Batch No.: 411029	Units: ug/Kg

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
124-48-1	Chlorodibromomethane	ND		5.7	0.66
75-00-3	Chloroethane	ND		11	1.0
67-66-3	Chloroform	ND		11	0.33
74-87-3	Chloromethane	ND		11	0.89
156-59-2	cis-1,2-Dichloroethene	4.1		2.9	0.64
10061-01-5	cis-1,3-Dichloropropene	ND		5.7	1.5
74-95-3	Dibromomethane	ND		5.7	0.97
75-27-4	Dichlorobromomethane	ND		5.7	0.25
75-71-8	Dichlorodifluoromethane	ND		11	0.60
100-41-4	Ethylbenzene	ND		5.7	0.77
87-68-3	Hexachlorobutadiene	ND		5.7	0.63
98-82-8	Isopropylbenzene	ND		5.7	0.68
1634-04-4	Methyl tert-butyl ether	ND		23	0.39
75-09-2	Methylene Chloride	ND		5.7	1.8
179601-23-1	m-Xylene & p-Xylene	ND		2.9	1.2
91-20-3	Naphthalene	ND		5.7	0.72
104-51-8	n-Butylbenzene	ND		5.7	0.64
103-65-1	N-Propylbenzene	ND		5.7	0.67
95-47-6	o-Xylene	ND		2.9	0.70
135-98-8	sec-Butylbenzene	ND		5.7	0.89
100-42-5	Styrene	ND		5.7	0.72
98-06-6	tert-Butylbenzene	ND		5.7	0.57
127-18-4	Tetrachloroethene	ND		5.7	0.68
108-88-3	Toluene	ND		5.7	0.79
156-60-5	trans-1,2-Dichloroethene	ND		2.9	0.45
10061-02-6	trans-1,3-Dichloropropene	ND		5.7	0.77
79-01-6	Trichloroethene	ND		5.7	0.26
75-69-4	Trichlorofluoromethane	ND		11	1.2
75-01-4	Vinyl chloride	ND		5.7	1.5
1330-20-7	Xylenes, Total	ND		5.7	0.70

Lab Name: TestAmerica Denver	Job No.: 280-107960-1	
SDG No.:		
Client Sample ID: <u>PCS AC7</u>	Lab Sample ID: 280-107960-7	
Matrix: Solid	Lab File ID: G6535.D	
Analysis Method: <u>8260B</u>	Date Collected: 03/29/2018 12:05	
Sample wt/vol: <u>4.350(g)</u>	Date Analyzed: 04/12/2018 05:24	
Soil Aliquot Vol:	Dilution Factor: 1	
Soil Extract Vol.:	GC Column: DB-624 v1 ID: 32(um)	
% Moisture:	Level: (low/med) Low	
Analysis Batch No.: <u>411029</u>	Units: ug/Kg	

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	77		58-140
460-00-4	4-Bromofluorobenzene (Surr)	96		76-127
1868-53-7	Dibromofluoromethane (Surr)	90		75-121
2037-26-5	Toluene-d8 (Surr)	94		80-126

Lab Name: TestAmerica Denver	Job No.: 280-107960-1
SDG No.:	
Client Sample ID: <u>PCS AC8</u>	Lab Sample ID: 280-107960-8
Matrix: Solid	Lab File ID: G6495.D
Analysis Method: 8260B	Date Collected: 03/29/2018 12:10
Sample wt/vol: <u>4.804(g)</u>	Date Analyzed: 04/11/2018 04:12
Soil Aliquot Vol:	Dilution Factor: 1
Soil Extract Vol.:	GC Column: <u>DB-624 v1</u> ID: <u>32(um)</u>
% Moisture:	Level: (low/med) Low
Analysis Batch No.: 410890	Units: ug/Kg

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
630-20-6	1,1,1,2-Tetrachloroethane	ND		5.2	0.58
71-55-6	1,1,1-Trichloroethane	ND		5.2	0.54
79-34-5	1,1,2,2-Tetrachloroethane	ND		5.2	0.63
79-00-5	1,1,2-Trichloroethane	ND		5.2	0.92
75-34-3	1,1-Dichloroethane	ND		5.2	0.22
75-35-4	1,1-Dichloroethene	ND		5.2	0.61
563-58-6	1,1-Dichloropropene	ND		5.2	0.56
87-61-6	1,2,3-Trichlorobenzene	ND		5.2	0.78
96-18-4	1,2,3-Trichloropropane	ND		5.2	0.84
120-82-1	1,2,4-Trichlorobenzene	ND		5.2	0.76
95-63-6	1,2,4-Trimethylbenzene	ND		5.2	0.60
96-12-8	1,2-Dibromo-3-Chloropropane	ND		10	0.62
106-93-4	1,2-Dibromoethane	ND		5.2	0.54
95-50-1	1,2-Dichlorobenzene	ND		5.2	0.47
107-06-2	1,2-Dichloroethane	ND		5.2	0.73
540-59-0	1,2-Dichloroethene, Total	ND		5.2	0.41
78-87-5	1,2-Dichloropropane	ND		5.2	0.57
108-67-8	1,3,5-Trimethylbenzene	ND		5.2	0.59
541-73-1	1,3-Dichlorobenzene	ND		5.2	0.50
142-28-9	1,3-Dichloropropane	ND		5.2	0.53
106-46-7	1,4-Dichlorobenzene	ND		5.2	0.81
594-20-7	2,2-Dichloropropane	ND		5.2	0.46
78-93-3	2-Butanone (MEK)	9.2	JВ	21	1.9
95-49-8	2-Chlorotoluene	ND		5.2	0.53
591-78-6	2-Hexanone	ND		21	5.1
106-43-4	4-Chlorotoluene	ND		5.2	0.81
99-87-6	4-Isopropyltoluene	ND		5.2	0.51
108-10-1	4-Methyl-2-pentanone (MIBK)	ND		21	4.5
67-64-1	Acetone	18	J	21	5.6
71-43-2	Benzene	ND		5.2	0.49
108-86-1	Bromobenzene	ND		5.2	0.51
75-25-2	Bromoform	ND		5.2	0.24
74-83-9	Bromomethane	ND		10	0.52
56-23-5	Carbon tetrachloride	ND		5.2	0.66
108-90-7	Chlorobenzene	ND		5.2	0.56
74-97-5	Chlorobromomethane	ND		5.2	0.31

Lab Name: TestAmerica Denver	Job No.: 280-107960-1
SDG No.:	
Client Sample ID: <u>PCS AC8</u>	Lab Sample ID: <u>280-107960-8</u>
Matrix: Solid Lab File ID: G6495.D	
Analysis Method: 8260B	Date Collected: 03/29/2018 12:10
Sample wt/vol: 4.804(g)	Date Analyzed: 04/11/2018 04:12
Soil Aliquot Vol:	Dilution Factor: 1
Soil Extract Vol.:	GC Column: <u>DB-624 v1</u> ID: <u>32(um)</u>
% Moisture:	Level: (low/med) Low
Analysis Batch No.: 410890	Units: ug/Kg

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
124-48-1	Chlorodibromomethane	ND		5.2	0.59
75-00-3	Chloroethane	ND		10	0.93
67-66-3	Chloroform	ND		10	0.30
74-87-3	Chloromethane	ND		10	0.80
156-59-2	cis-1,2-Dichloroethene	ND		2.6	0.58
10061-01-5	cis-1,3-Dichloropropene	ND		5.2	1.3
74-95-3	Dibromomethane	ND		5.2	0.87
75-27-4	Dichlorobromomethane	ND		5.2	0.23
75-71-8	Dichlorodifluoromethane	ND		10	0.54
100-41-4	Ethylbenzene	ND		5.2	0.70
87-68-3	Hexachlorobutadiene	ND		5.2	0.57
98-82-8	Isopropylbenzene	ND		5.2	0.61
1634-04-4	Methyl tert-butyl ether	ND		21	0.35
75-09-2	Methylene Chloride	ND		5.2	1.7
179601-23-1	m-Xylene & p-Xylene	ND		2.6	1.1
91-20-3	Naphthalene	ND		5.2	0.66
104-51-8	n-Butylbenzene	ND		5.2	0.58
103-65-1	N-Propylbenzene	ND		5.2	0.60
95-47-6	o-Xylene	ND		2.6	0.63
135-98-8	sec-Butylbenzene	ND		5.2	0.80
100-42-5	Styrene	ND		5.2	0.66
98-06-6	tert-Butylbenzene	ND		5.2	0.52
127-18-4	Tetrachloroethene	ND		5.2	0.61
108-88-3	Toluene	ND		5.2	0.72
156-60-5	trans-1,2-Dichloroethene	ND		2.6	0.41
10061-02-6	trans-1,3-Dichloropropene	ND		5.2	0.70
79-01-6	Trichloroethene	ND		5.2	0.24
75-69-4	Trichlorofluoromethane	ND		10	1.1
75-01-4	Vinyl chloride	ND		5.2	1.4
1330-20-7	Xylenes, Total	ND		5.2	0.63

Lab Name: TestAmerica Denver	Job No.: 280-107960-1
SDG No.:	
Client Sample ID: <u>PCS AC8</u>	Lab Sample ID: 280-107960-8
Matrix: Solid Lab File ID: G6495.D	
Analysis Method: <u>8260B</u>	Date Collected: 03/29/2018 12:10
Sample wt/vol: <u>4.804(g)</u>	Date Analyzed: 04/11/2018 04:12
Soil Aliquot Vol:	Dilution Factor: 1
Soil Extract Vol.:	GC Column: DB-624 v1 ID: 32(um)
% Moisture:	Level: (low/med) Low
Analysis Batch No.: <u>410890</u>	Units: ug/Kg

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	89		58-140
460-00-4	4-Bromofluorobenzene (Surr)	106		76-127
1868-53-7	Dibromofluoromethane (Surr)	91		75-121
2037-26-5	Toluene-d8 (Surr)	93		80-126

Lab Name: TestAmerica Denver	Job No.: 280-107960-1	
SDG No.:		
Client Sample ID: PCS AC9	Lab Sample ID: 280-107960-9	
Matrix: Solid	Lab File ID: G6496.D	
Analysis Method: 8260B	Date Collected: 03/29/2018 12:15	
Sample wt/vol: <u>5.003(g)</u>	Date Analyzed: 04/11/2018 04:32	
Soil Aliquot Vol:	Dilution Factor: 1	
Soil Extract Vol.:	GC Column: DB-624 v1 ID: 32(um)	
% Moisture:	Level: (low/med) Low	
Analysis Batch No.: 410890	Units: ug/Kg	

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
630-20-6	1,1,1,2-Tetrachloroethane	ND		5.0	0.56
71-55-6	1,1,1-Trichloroethane	ND		5.0	0.52
79-34-5	1,1,2,2-Tetrachloroethane	ND		5.0	0.61
79-00-5	1,1,2-Trichloroethane	ND		5.0	0.88
75-34-3	1,1-Dichloroethane	ND		5.0	0.21
75-35-4	1,1-Dichloroethene	ND		5.0	0.59
563-58-6	1,1-Dichloropropene	ND		5.0	0.54
87-61-6	1,2,3-Trichlorobenzene	ND		5.0	0.75
96-18-4	1,2,3-Trichloropropane	ND		5.0	0.81
120-82-1	1,2,4-Trichlorobenzene	ND		5.0	0.73
95-63-6	1,2,4-Trimethylbenzene	ND		5.0	0.58
96-12-8	1,2-Dibromo-3-Chloropropane	ND		10	0.60
106-93-4	1,2-Dibromoethane	ND		5.0	0.52
95-50-1	1,2-Dichlorobenzene	ND		5.0	0.45
107-06-2	1,2-Dichloroethane	ND		5.0	0.70
540-59-0	1,2-Dichloroethene, Total	ND		5.0	0.39
78-87-5	1,2-Dichloropropane	ND		5.0	0.55
108-67-8	1,3,5-Trimethylbenzene	ND		5.0	0.57
541-73-1	1,3-Dichlorobenzene	ND		5.0	0.48
142-28-9	1,3-Dichloropropane	ND		5.0	0.51
106-46-7	1,4-Dichlorobenzene	ND		5.0	0.78
594-20-7	2,2-Dichloropropane	ND		5.0	0.44
78-93-3	2-Butanone (MEK)	7.5	JВ	20	1.8
95-49-8	2-Chlorotoluene	ND		5.0	0.51
591-78-6	2-Hexanone	ND		20	4.9
106-43-4	4-Chlorotoluene	ND		5.0	0.78
99-87-6	4-Isopropyltoluene	ND		5.0	0.49
108-10-1	4-Methyl-2-pentanone (MIBK)	ND		20	4.4
67-64-1	Acetone	20		20	5.4
71-43-2	Benzene	ND		5.0	0.47
108-86-1	Bromobenzene	ND		5.0	0.49
75-25-2	Bromoform	ND		5.0	0.23
74-83-9	Bromomethane	ND		10	0.50
56-23-5	Carbon tetrachloride	ND		5.0	0.63
108-90-7	Chlorobenzene	ND		5.0	0.54
74-97-5	Chlorobromomethane	ND		5.0	0.30

Lab Name: TestAmerica Denver	Job No.: 280-107960-1
SDG No.:	
Client Sample ID: PCS AC9	Lab Sample ID: <u>280-107960-9</u>
Matrix: Solid Lab File ID: G6496.D	
Analysis Method: 8260B Date Collected: 03/29/2018 12:15	
Sample wt/vol: <u>5.003(g)</u>	Date Analyzed: 04/11/2018 04:32
Soil Aliquot Vol:	Dilution Factor: 1
Soil Extract Vol.:	GC Column: DB-624 v1 ID: 32(um)
% Moisture:	Level: (low/med) Low
Analysis Batch No.: 410890	Units: ug/Kg

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
124-48-1	Chlorodibromomethane	ND		5.0	0.57
75-00-3	Chloroethane	ND		10	0.89
67-66-3	Chloroform	ND		10	0.29
74-87-3	Chloromethane	ND		10	0.77
156-59-2	cis-1,2-Dichloroethene	ND		2.5	0.56
10061-01-5	cis-1,3-Dichloropropene	ND		5.0	1.3
74-95-3	Dibromomethane	ND		5.0	0.84
75-27-4	Dichlorobromomethane	ND		5.0	0.22
75-71-8	Dichlorodifluoromethane	ND		10	0.52
100-41-4	Ethylbenzene	ND		5.0	0.67
87-68-3	Hexachlorobutadiene	ND		5.0	0.55
98-82-8	Isopropylbenzene	ND		5.0	0.59
1634-04-4	Methyl tert-butyl ether	ND		20	0.34
75-09-2	Methylene Chloride	ND		5.0	1.6
179601-23-1	m-Xylene & p-Xylene	ND		2.5	1.0
91-20-3	Naphthalene	ND		5.0	0.63
104-51-8	n-Butylbenzene	ND		5.0	0.56
103-65-1	N-Propylbenzene	ND		5.0	0.58
95-47-6	o-Xylene	ND		2.5	0.61
135-98-8	sec-Butylbenzene	ND		5.0	0.77
100-42-5	Styrene	ND		5.0	0.63
98-06-6	tert-Butylbenzene	ND		5.0	0.50
127-18-4	Tetrachloroethene	ND		5.0	0.59
108-88-3	Toluene	ND		5.0	0.69
156-60-5	trans-1,2-Dichloroethene	ND		2.5	0.39
10061-02-6	trans-1,3-Dichloropropene	ND		5.0	0.67
79-01-6	Trichloroethene	ND		5.0	0.23
75-69-4	Trichlorofluoromethane	ND		10	1.0
75-01-4	Vinyl chloride	ND		5.0	1.3
1330-20-7	Xylenes, Total	ND		5.0	0.61

Lab Name: TestAmerica Denver	Job No.: 280-107960-1
SDG No.:	
Client Sample ID: <u>PCS AC9</u>	Lab Sample ID: 280-107960-9
Matrix: Solid Lab File ID: G6496.D	
Analysis Method: <u>8260B</u>	Date Collected: 03/29/2018 12:15
Sample wt/vol: <u>5.003(g)</u>	Date Analyzed: 04/11/2018 04:32
Soil Aliquot Vol:	Dilution Factor: 1
Soil Extract Vol.:	GC Column: DB-624 v1 ID: 32(um)
% Moisture:	Level: (low/med) Low
Analysis Batch No.: <u>410890</u>	Units: ug/Kg

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	84		58-140
460-00-4	4-Bromofluorobenzene (Surr)	105		76-127
1868-53-7	Dibromofluoromethane (Surr)	92		75-121
2037-26-5	Toluene-d8 (Surr)	94		80-126

Lab Name: TestAmerica Denver	Job No.: 280-107960-1	
SDG No.:		
Client Sample ID: PCS AC10	Lab Sample ID: <u>280-107960-10</u>	
Matrix: Solid	Lab File ID: <u>G</u> 6497.D	
Analysis Method: <u>8260B</u>	Date Collected: 03/29/2018 12:20	
Sample wt/vol: <u>4.457(g)</u>	Date Analyzed: 04/11/2018 04:52	
Soil Aliquot Vol:	Dilution Factor: 1	
Soil Extract Vol.:	GC Column: DB-624 v1 ID: 32(um)	
% Moisture:	Level: (low/med) Low	
Analysis Batch No.: 410890	Units: ug/Kg	

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
630-20-6	1,1,1,2-Tetrachloroethane	ND		5.6	0.63
71-55-6	1,1,1-Trichloroethane	ND		5.6	0.58
79-34-5	1,1,2,2-Tetrachloroethane	ND		5.6	0.68
79-00-5	1,1,2-Trichloroethane	ND		5.6	0.99
75-34-3	1,1-Dichloroethane	ND		5.6	0.24
75-35-4	1,1-Dichloroethene	ND		5.6	0.66
563-58-6	1,1-Dichloropropene	ND		5.6	0.61
87-61-6	1,2,3-Trichlorobenzene	ND		5.6	0.84
96-18-4	1,2,3-Trichloropropane	ND		5.6	0.91
120-82-1	1,2,4-Trichlorobenzene	ND		5.6	0.82
95-63-6	1,2,4-Trimethylbenzene	ND		5.6	0.65
96-12-8	1,2-Dibromo-3-Chloropropane	ND		11	0.67
106-93-4	1,2-Dibromoethane	ND		5.6	0.58
95-50-1	1,2-Dichlorobenzene	ND		5.6	0.50
107-06-2	1,2-Dichloroethane	ND		5.6	0.79
540-59-0	1,2-Dichloroethene, Total	ND		5.6	0.44
78-87-5	1,2-Dichloropropane	ND		5.6	0.62
108-67-8	1,3,5-Trimethylbenzene	ND		5.6	0.64
541-73-1	1,3-Dichlorobenzene	ND		5.6	0.54
142-28-9	1,3-Dichloropropane	ND		5.6	0.57
106-46-7	1,4-Dichlorobenzene	ND		5.6	0.88
594-20-7	2,2-Dichloropropane	ND		5.6	0.49
78-93-3	2-Butanone (MEK)	6.1	JB	22	2.1
95-49-8	2-Chlorotoluene	ND		5.6	0.57
591-78-6	2-Hexanone	ND		22	5.5
106-43-4	4-Chlorotoluene	ND		5.6	0.88
99-87-6	4-Isopropyltoluene	ND		5.6	0.55
108-10-1	4-Methyl-2-pentanone (MIBK)	ND		22	4.9
67-64-1	Acetone	12	J	22	6.0
71-43-2	Benzene	ND		5.6	0.53
108-86-1	Bromobenzene	ND		5.6	0.55
75-25-2	Bromoform	ND		5.6	0.26
74-83-9	Bromomethane	ND		11	0.56
56-23-5	Carbon tetrachloride	ND		5.6	0.71
108-90-7	Chlorobenzene	ND		5.6	0.61
74-97-5	Chlorobromomethane	ND		5.6	0.34

Lab Name: TestAmerica Denver	Job No.: 280-107960-1		
SDG No.:			
Client Sample ID: PCS AC10	Lab Sample ID: <u>280-107960-10</u>		
Matrix: Solid Lab File ID: G6497.D			
Analysis Method: 8260B	Date Collected: 03/29/2018 12:20		
Sample wt/vol: 4.457(g)	Date Analyzed: 04/11/2018 04:52		
Soil Aliquot Vol:	Dilution Factor: 1		
Soil Extract Vol.:	GC Column: DB-624 v1 ID: 32(um)		
% Moisture:	Level: (low/med) Low		
Analysis Batch No.: 410890	Units: ug/Kg		

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
124-48-1	Chlorodibromomethane	ND		5.6	0.64
75-00-3	Chloroethane	ND		11	1.0
67-66-3	Chloroform	ND		11	0.33
74-87-3	Chloromethane	ND		11	0.86
156-59-2	cis-1,2-Dichloroethene	ND		2.8	0.63
10061-01-5	cis-1,3-Dichloropropene	ND		5.6	1.4
74-95-3	Dibromomethane	ND		5.6	0.94
75-27-4	Dichlorobromomethane	ND		5.6	0.25
75-71-8	Dichlorodifluoromethane	ND		11	0.58
100-41-4	Ethylbenzene	ND		5.6	0.75
87-68-3	Hexachlorobutadiene	ND		5.6	0.62
98-82-8	Isopropylbenzene	ND		5.6	0.66
1634-04-4	Methyl tert-butyl ether	ND		22	0.38
75-09-2	Methylene Chloride	ND		5.6	1.8
179601-23-1	m-Xylene & p-Xylene	ND		2.8	1.2
91-20-3	Naphthalene	ND		5.6	0.71
104-51-8	n-Butylbenzene	ND		5.6	0.63
103-65-1	N-Propylbenzene	ND		5.6	0.65
95-47-6	o-Xylene	ND		2.8	0.68
135-98-8	sec-Butylbenzene	ND		5.6	0.86
100-42-5	Styrene	ND		5.6	0.71
98-06-6	tert-Butylbenzene	ND		5.6	0.56
127-18-4	Tetrachloroethene	ND		5.6	0.66
108-88-3	Toluene	ND		5.6	0.77
156-60-5	trans-1,2-Dichloroethene	ND		2.8	0.44
10061-02-6	trans-1,3-Dichloropropene	ND		5.6	0.75
79-01-6	Trichloroethene	ND		5.6	0.26
75-69-4	Trichlorofluoromethane	ND		11	1.2
75-01-4	Vinyl chloride	ND		5.6	1.5
1330-20-7	Xylenes, Total	ND		5.6	0.68

Lab Name: TestAmerica Denver	Job No.: 280-107960-1		
SDG No.:			
Client Sample ID: PCS AC10	Lab Sample ID: 280-107960-10		
Matrix: Solid	Lab File ID: G6497.D		
Analysis Method: <u>8260B</u>	Date Collected: 03/29/2018 12:20		
Sample wt/vol: <u>4.457(g)</u>	Date Analyzed: 04/11/2018 04:52		
Soil Aliquot Vol:	Dilution Factor: 1		
Soil Extract Vol.:	GC Column: DB-624 v1 ID: 32(um)		
% Moisture:	Level: (low/med) Low		
Analysis Batch No.: 410890	Units: ug/Kg		

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	83		58-140
460-00-4 4-Bromofluorobenzene (Surr)		101		76-127
1868-53-7	Dibromofluoromethane (Surr)	90		75-121
2037-26-5 Toluene-d8 (Surr)		93		80-126

Lab Name: TestAmerica Denver	Job No.: 280-107960-1
SDG No.:	
Client Sample ID: PCS AC11	Lab Sample ID: 280-107960-11
Matrix: Solid	Lab File ID: <u>G</u> 6547.D
Analysis Method: 8260B	Date Collected: 03/29/2018 12:25
Sample wt/vol: 4.486(g)	Date Analyzed: 04/12/2018 19:17
Soil Aliquot Vol:	Dilution Factor: 1
Soil Extract Vol.:	GC Column: DB-624 v1 ID: 32(um)
% Moisture:	Level: (low/med) Low
Analysis Batch No.: 411164	Units: ug/Kg

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
630-20-6	1,1,1,2-Tetrachloroethane	ND		5.6	0.62
71-55-6	1,1,1-Trichloroethane	ND		5.6	0.58
79-34-5	1,1,2,2-Tetrachloroethane	ND		5.6	0.68
79-00-5	1,1,2-Trichloroethane	ND		5.6	0.98
75-34-3	1,1-Dichloroethane	ND		5.6	0.23
75-35-4	1,1-Dichloroethene	ND		5.6	0.66
563-58-6	1,1-Dichloropropene	ND		5.6	0.60
87-61-6	1,2,3-Trichlorobenzene	ND		5.6	0.84
96-18-4	1,2,3-Trichloropropane	ND		5.6	0.90
120-82-1	1,2,4-Trichlorobenzene	ND		5.6	0.81
95-63-6	1,2,4-Trimethylbenzene	ND		5.6	0.65
96-12-8	1,2-Dibromo-3-Chloropropane	ND		11	0.67
106-93-4	1,2-Dibromoethane	ND		5.6	0.58
95-50-1	1,2-Dichlorobenzene	ND		5.6	0.50
107-06-2	1,2-Dichloroethane	ND		5.6	0.78
540-59-0	1,2-Dichloroethene, Total	ND		5.6	0.43
78-87-5	1,2-Dichloropropane	ND		5.6	0.61
108-67-8	1,3,5-Trimethylbenzene	ND		5.6	0.64
541-73-1	1,3-Dichlorobenzene	ND		5.6	0.53
142-28-9	1,3-Dichloropropane	ND		5.6	0.57
106-46-7	1,4-Dichlorobenzene	ND		5.6	0.87
594-20-7	2,2-Dichloropropane	ND		5.6	0.49
78-93-3	2-Butanone (MEK)	9.7	J	22	2.0
95-49-8	2-Chlorotoluene	ND		5.6	0.57
591-78-6	2-Hexanone	ND		22	5.5
106-43-4	4-Chlorotoluene	ND		5.6	0.87
99-87-6	4-Isopropyltoluene	ND		5.6	0.55
108-10-1	4-Methyl-2-pentanone (MIBK)	ND		22	4.9
67-64-1	Acetone	29	В	22	6.0
71-43-2	Benzene	ND		5.6	0.52
108-86-1	Bromobenzene	ND		5.6	0.55
75-25-2	Bromoform	ND		5.6	0.26
74-83-9	Bromomethane	ND		11	0.56
56-23-5	Carbon tetrachloride	ND		5.6	0.70
108-90-7	Chlorobenzene	ND		5.6	0.60
74-97-5	Chlorobromomethane	ND		5.6	0.33

Lab Name: TestAmerica Denver	Job No.: 280-107960-1		
SDG No.:			
Client Sample ID: PCS AC11	Lab Sample ID: 280-107960-11		
Matrix: Solid	Lab File ID: <u>G6547.D</u>		
Analysis Method: 8260B	Date Collected: 03/29/2018 12:25		
Sample wt/vol: 4.486(g)	Date Analyzed: 04/12/2018 19:17		
Soil Aliquot Vol:	Dilution Factor: 1		
Soil Extract Vol.:	GC Column: <u>DB-624 v1</u> ID: <u>32(um)</u>		
% Moisture:	Level: (low/med) Low		
Analysis Batch No.: 411164	Units: ug/Kg		

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
124-48-1	Chlorodibromomethane	ND		5.6	0.64
75-00-3	Chloroethane	ND		11	0.99
67-66-3	Chloroform	ND		11	0.32
74-87-3	Chloromethane	ND		11	0.86
156-59-2	cis-1,2-Dichloroethene	ND		2.8	0.62
10061-01-5	cis-1,3-Dichloropropene	ND		5.6	1.4
74-95-3	Dibromomethane	ND		5.6	0.94
75-27-4	Dichlorobromomethane	ND		5.6	0.25
75-71-8	Dichlorodifluoromethane	ND		11	0.58
100-41-4	Ethylbenzene	ND		5.6	0.75
87-68-3	Hexachlorobutadiene	ND		5.6	0.61
98-82-8	Isopropylbenzene	ND		5.6	0.66
1634-04-4	Methyl tert-butyl ether	ND		22	0.38
75-09-2	Methylene Chloride	1.8	J	5.6	1.8
179601-23-1	m-Xylene & p-Xylene	ND		2.8	1.2
91-20-3	Naphthalene	ND		5.6	0.70
104-51-8	n-Butylbenzene	ND		5.6	0.62
103-65-1	N-Propylbenzene	ND		5.6	0.65
95-47-6	o-Xylene	ND		2.8	0.68
135-98-8	sec-Butylbenzene	ND		5.6	0.86
100-42-5	Styrene	ND		5.6	0.70
98-06-6	tert-Butylbenzene	ND		5.6	0.56
127-18-4	Tetrachloroethene	ND		5.6	0.66
108-88-3	Toluene	ND		5.6	0.77
156-60-5	trans-1,2-Dichloroethene	ND		2.8	0.43
10061-02-6	trans-1,3-Dichloropropene	ND		5.6	0.75
79-01-6	Trichloroethene	ND		5.6	0.26
75-69-4	Trichlorofluoromethane	ND		11	1.2
75-01-4	Vinyl chloride	ND		5.6	1.5
1330-20-7	Xylenes, Total	ND		5.6	0.68

Lab Name: TestAmerica Denver	Job No.: 280-107960-1			
SDG No.:				
Client Sample ID: <u>PCS AC11</u>	Lab Sample ID: 280-107960-11			
Matrix: Solid	Lab File ID: G6547.D			
Analysis Method: <u>8260B</u>	Date Collected: 03/29/2018 12:25			
Sample wt/vol: 4.486(g)	Date Analyzed: 04/12/2018 19:17			
Soil Aliquot Vol:	Dilution Factor: 1			
Soil Extract Vol.:	GC Column: DB-624 v1 ID: 32(um)			
% Moisture:	Level: (low/med) Low			
Analysis Batch No.: 411164	Units: ug/Kg			

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	81		58-140
460-00-4	4-Bromofluorobenzene (Surr)	100		76-127
1868-53-7	Dibromofluoromethane (Surr)	94		75-121
2037-26-5	Toluene-d8 (Surr)	98		80-126

Lab Name: TestAmerica Denver	Job No.: 280-107960-1
SDG No.:	
Client Sample ID: <u>PCS AC12</u>	Lab Sample ID: 280-107960-12
Matrix: Solid	Lab File ID: <u>G6548.D</u>
Analysis Method: 8260B	Date Collected: 03/29/2018 12:30
Sample wt/vol: 4.456(g)	Date Analyzed: 04/12/2018 19:38
Soil Aliquot Vol:	Dilution Factor: 1
Soil Extract Vol.:	GC Column: DB-624 v1 ID: 32(um)
% Moisture:	Level: (low/med) Low
Analysis Batch No.: 411164	Units: ug/Kg

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
630-20-6	1,1,1,2-Tetrachloroethane	ND		5.6	0.63
71-55-6	1,1,1-Trichloroethane	ND		5.6	0.58
79-34-5	1,1,2,2-Tetrachloroethane	ND		5.6	0.68
79-00-5	1,1,2-Trichloroethane	ND		5.6	0.99
75-34-3	1,1-Dichloroethane	ND		5.6	0.24
75-35-4	1,1-Dichloroethene	ND		5.6	0.66
563-58-6	1,1-Dichloropropene	ND		5.6	0.61
87-61-6	1,2,3-Trichlorobenzene	ND		5.6	0.84
96-18-4	1,2,3-Trichloropropane	ND		5.6	0.91
120-82-1	1,2,4-Trichlorobenzene	ND		5.6	0.82
95-63-6	1,2,4-Trimethylbenzene	ND		5.6	0.65
96-12-8	1,2-Dibromo-3-Chloropropane	ND		11	0.67
106-93-4	1,2-Dibromoethane	ND		5.6	0.58
95-50-1	1,2-Dichlorobenzene	ND		5.6	0.50
107-06-2	1,2-Dichloroethane	ND		5.6	0.79
540-59-0	1,2-Dichloroethene, Total	ND		5.6	0.44
78-87-5	1,2-Dichloropropane	ND		5.6	0.62
108-67-8	1,3,5-Trimethylbenzene	ND		5.6	0.64
541-73-1	1,3-Dichlorobenzene	ND		5.6	0.54
142-28-9	1,3-Dichloropropane	ND		5.6	0.57
106-46-7	1,4-Dichlorobenzene	ND		5.6	0.88
594-20-7	2,2-Dichloropropane	ND		5.6	0.49
78-93-3	2-Butanone (MEK)	3.8	J	22	2.1
95-49-8	2-Chlorotoluene	ND		5.6	0.57
591-78-6	2-Hexanone	ND		22	5.5
106-43-4	4-Chlorotoluene	ND		5.6	0.88
99-87-6	4-Isopropyltoluene	ND		5.6	0.55
108-10-1	4-Methyl-2-pentanone (MIBK)	ND		22	4.9
67-64-1	Acetone	12	JB	22	6.0
71-43-2	Benzene	ND		5.6	0.53
108-86-1	Bromobenzene	ND		5.6	0.55
75-25-2	Bromoform	ND		5.6	0.26
74-83-9	Bromomethane	ND		11	0.56
56-23-5	Carbon tetrachloride	ND		5.6	0.71
108-90-7	Chlorobenzene	ND		5.6	0.61
74-97-5	Chlorobromomethane	ND		5.6	0.34

Lab Name: TestAmerica Denver	Job No.: 280-107960-1
SDG No.:	
Client Sample ID: PCS AC12	Lab Sample ID: 280-107960-12
Matrix: Solid	Lab File ID: <u>G</u> 6548.D
Analysis Method: 8260B	Date Collected: 03/29/2018 12:30
Sample wt/vol: 4.456(g)	Date Analyzed: 04/12/2018 19:38
Soil Aliquot Vol:	Dilution Factor: 1
Soil Extract Vol.:	GC Column: DB-624 v1 ID: 32(um)
% Moisture:	Level: (low/med) Low
Analysis Batch No.: 411164	Units: ug/Kg

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
124-48-1	Chlorodibromomethane	ND		5.6	0.64
75-00-3	Chloroethane	ND		11	1.0
67-66-3	Chloroform	ND		11	0.33
74-87-3	Chloromethane	ND		11	0.86
156-59-2	cis-1,2-Dichloroethene	ND		2.8	0.63
10061-01-5	cis-1,3-Dichloropropene	ND		5.6	1.4
74-95-3	Dibromomethane	ND		5.6	0.94
75-27-4	Dichlorobromomethane	ND		5.6	0.25
75-71-8	Dichlorodifluoromethane	ND		11	0.58
100-41-4	Ethylbenzene	ND		5.6	0.75
87-68-3	Hexachlorobutadiene	ND		5.6	0.62
98-82-8	Isopropylbenzene	ND		5.6	0.66
1634-04-4	Methyl tert-butyl ether	ND		22	0.38
75-09-2	Methylene Chloride	ND		5.6	1.8
179601-23-1	m-Xylene & p-Xylene	ND		2.8	1.2
91-20-3	Naphthalene	ND		5.6	0.71
104-51-8	n-Butylbenzene	ND		5.6	0.63
103-65-1	N-Propylbenzene	ND		5.6	0.65
95-47-6	o-Xylene	ND		2.8	0.68
135-98-8	sec-Butylbenzene	ND		5.6	0.86
100-42-5	Styrene	ND		5.6	0.71
98-06-6	tert-Butylbenzene	ND		5.6	0.56
127-18-4	Tetrachloroethene	ND		5.6	0.66
108-88-3	Toluene	ND		5.6	0.77
156-60-5	trans-1,2-Dichloroethene	ND		2.8	0.44
10061-02-6	trans-1,3-Dichloropropene	ND		5.6	0.75
79-01-6	Trichloroethene	ND		5.6	0.26
75-69-4	Trichlorofluoromethane	ND		11	1.2
75-01-4	Vinyl chloride	ND		5.6	1.5
1330-20-7	Xylenes, Total	ND		5.6	0.68

Lab Name: TestAmerica Denver	Job No.: 280-107960-1	
SDG No.:		
Client Sample ID: <u>PCS AC12</u>	Lab Sample ID: 280-107960-12	
Matrix: Solid	Lab File ID: G6548.D	
Analysis Method: <u>8260B</u>	Date Collected: 03/29/2018 12:30	
Sample wt/vol: <u>4.456(g)</u>	Date Analyzed: 04/12/2018 19:38	
Soil Aliquot Vol:	Dilution Factor: 1	
Soil Extract Vol.:	GC Column: <u>DB-624 v1</u> ID: <u>32(um)</u>	
% Moisture:	Level: (low/med) Low	
Analysis Batch No.: 411164	Units: ug/Kg	

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	76		58-140
460-00-4	4-Bromofluorobenzene (Surr)	97		76-127
1868-53-7	Dibromofluoromethane (Surr)	88		75-121
2037-26-5	Toluene-d8 (Surr)	94		80-126

Lab Name: TestAmerica Denver	Job No.: 280-107960-1
SDG No.:	
Client Sample ID: PCS AC13	Lab Sample ID: 280-107960-13
Matrix: Solid	Lab File ID: <u>G</u> 6549.D
Analysis Method: <u>8260B</u>	Date Collected: 03/29/2018 12:36
Sample wt/vol: <u>4.823(g)</u>	Date Analyzed: 04/12/2018 19:58
Soil Aliquot Vol:	Dilution Factor: 1
Soil Extract Vol.:	GC Column: <u>DB-624 v1</u> ID: <u>32(um)</u>
% Moisture:	Level: (low/med) Low
Analysis Batch No.: 411164	Units: ug/Kg

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
630-20-6	1,1,1,2-Tetrachloroethane	ND		5.2	0.58
71-55-6	1,1,1-Trichloroethane	ND		5.2	0.54
79-34-5	1,1,2,2-Tetrachloroethane	ND		5.2	0.63
79-00-5	1,1,2-Trichloroethane	ND		5.2	0.91
75-34-3	1,1-Dichloroethane	ND		5.2	0.22
75-35-4	1,1-Dichloroethene	ND		5.2	0.61
563-58-6	1,1-Dichloropropene	ND		5.2	0.56
87-61-6	1,2,3-Trichlorobenzene	ND		5.2	0.78
96-18-4	1,2,3-Trichloropropane	ND		5.2	0.84
120-82-1	1,2,4-Trichlorobenzene	ND		5.2	0.76
95-63-6	1,2,4-Trimethylbenzene	ND		5.2	0.60
96-12-8	1,2-Dibromo-3-Chloropropane	ND		10	0.62
106-93-4	1,2-Dibromoethane	ND		5.2	0.54
95-50-1	1,2-Dichlorobenzene	ND		5.2	0.47
107-06-2	1,2-Dichloroethane	ND		5.2	0.73
540-59-0	1,2-Dichloroethene, Total	ND		5.2	0.40
78-87-5	1,2-Dichloropropane	ND		5.2	0.57
108-67-8	1,3,5-Trimethylbenzene	ND		5.2	0.59
541-73-1	1,3-Dichlorobenzene	ND		5.2	0.50
142-28-9	1,3-Dichloropropane	ND		5.2	0.53
106-46-7	1,4-Dichlorobenzene	ND		5.2	0.81
594-20-7	2,2-Dichloropropane	ND		5.2	0.46
78-93-3	2-Butanone (MEK)	1.9	J	21	1.9
95-49-8	2-Chlorotoluene	ND		5.2	0.53
591-78-6	2-Hexanone	ND		21	5.1
106-43-4	4-Chlorotoluene	ND		5.2	0.81
99-87-6	4-Isopropyltoluene	ND		5.2	0.51
108-10-1	4-Methyl-2-pentanone (MIBK)	ND		21	4.5
67-64-1	Acetone	6.0	JB	21	5.6
71-43-2	Benzene	ND		5.2	0.49
108-86-1	Bromobenzene	ND		5.2	0.51
75-25-2	Bromoform	ND		5.2	0.24
74-83-9	Bromomethane	ND		10	0.52
56-23-5	Carbon tetrachloride	ND		5.2	0.65
108-90-7	Chlorobenzene	ND		5.2	0.56
74-97-5	Chlorobromomethane	ND		5.2	0.31

Lab Name: TestAmerica Denver	Job No.: 280-107960-1
SDG No.:	
Client Sample ID: <u>PCS AC13</u>	Lab Sample ID: 280-107960-13
Matrix: Solid	Lab File ID: G6549.D
Analysis Method: <u>8260B</u> Date Collected: <u>03/29/2018</u> 12:36	
Sample wt/vol: 4.823(g)	Date Analyzed: 04/12/2018 19:58
Soil Aliquot Vol:	Dilution Factor: 1
Soil Extract Vol.:	GC Column: DB-624 v1 ID: 32(um)
% Moisture:	Level: (low/med) Low
Analysis Batch No.: 411164	Units: ug/Kg

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
124-48-1	Chlorodibromomethane	ND		5.2	0.59
75-00-3	Chloroethane	ND		10	0.92
67-66-3	Chloroform	ND		10	0.30
74-87-3	Chloromethane	ND		10	0.80
156-59-2	cis-1,2-Dichloroethene	ND		2.6	0.58
10061-01-5	cis-1,3-Dichloropropene	ND		5.2	1.3
74-95-3	Dibromomethane	ND		5.2	0.87
75-27-4	Dichlorobromomethane	ND		5.2	0.23
75-71-8	Dichlorodifluoromethane	ND		10	0.54
100-41-4	Ethylbenzene	ND		5.2	0.69
87-68-3	Hexachlorobutadiene	ND		5.2	0.57
98-82-8	Isopropylbenzene	ND		5.2	0.61
1634-04-4	Methyl tert-butyl ether	ND		21	0.35
75-09-2	Methylene Chloride	ND		5.2	1.7
179601-23-1	m-Xylene & p-Xylene	ND		2.6	1.1
91-20-3	Naphthalene	ND		5.2	0.65
104-51-8	n-Butylbenzene	ND		5.2	0.58
103-65-1	N-Propylbenzene	ND		5.2	0.60
95-47-6	o-Xylene	ND		2.6	0.63
135-98-8	sec-Butylbenzene	ND		5.2	0.80
100-42-5	Styrene	ND		5.2	0.65
98-06-6	tert-Butylbenzene	ND		5.2	0.52
127-18-4	Tetrachloroethene	ND		5.2	0.61
108-88-3	Toluene	ND		5.2	0.72
156-60-5	trans-1,2-Dichloroethene	ND		2.6	0.40
10061-02-6	trans-1,3-Dichloropropene	ND		5.2	0.69
79-01-6	Trichloroethene	ND		5.2	0.24
75-69-4	Trichlorofluoromethane	ND		10	1.1
75-01-4	Vinyl chloride	ND		5.2	1.4
1330-20-7	Xylenes, Total	ND		5.2	0.63

Lab Name: TestAmerica Denver	Job No.: 280-107960-1		
SDG No.:			
Client Sample ID: <u>PCS AC13</u>	Lab Sample ID: 280-107960-13		
Matrix: Solid Lab File ID: G6549.D			
Analysis Method: <u>8260B</u>	Date Collected: 03/29/2018 12:36		
Sample wt/vol: <u>4.823(g)</u>	Date Analyzed: 04/12/2018 19:58		
Soil Aliquot Vol:	Dilution Factor: 1		
Soil Extract Vol.:	GC Column: DB-624 v1 ID: 32(um)		
% Moisture:	Level: (low/med) Low		
Analysis Batch No.: 411164	Units: ug/Kg		

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	81		58-140
460-00-4	4-Bromofluorobenzene (Surr)	95		76-127
1868-53-7	Dibromofluoromethane (Surr)	92		75-121
2037-26-5	Toluene-d8 (Surr)	92		80-126

Lab Name: TestAmerica Denver	Job No.: <u>280-107960-1</u>		
SDG No.:			
Client Sample ID: <u>PCS AC14</u>	Lab Sample ID: 280-107960-14		
Matrix: Solid Lab File ID: G6552.D			
Analysis Method: 8260B Date Collected: 03/29/2018 12:41			
Sample wt/vol: 4.435(g)	Date Analyzed: 04/12/2018 20:59		
Soil Aliquot Vol:	Dilution Factor: 1		
Soil Extract Vol.:	GC Column: DB-624 v1 ID: 32(um)		
% Moisture:	Level: (low/med) Low		
Analysis Batch No.: 411164	Units: ug/Kg		

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
630-20-6	1,1,1,2-Tetrachloroethane	ND		5.6	0.63
71-55-6	1,1,1-Trichloroethane	ND		5.6	0.59
79-34-5	1,1,2,2-Tetrachloroethane	ND		5.6	0.69
79-00-5	1,1,2-Trichloroethane	ND		5.6	0.99
75-34-3	1,1-Dichloroethane	ND		5.6	0.24
75-35-4	1,1-Dichloroethene	ND		5.6	0.67
563-58-6	1,1-Dichloropropene	ND		5.6	0.61
87-61-6	1,2,3-Trichlorobenzene	ND		5.6	0.85
96-18-4	1,2,3-Trichloropropane	ND		5.6	0.91
120-82-1	1,2,4-Trichlorobenzene	ND		5.6	0.82
95-63-6	1,2,4-Trimethylbenzene	ND		5.6	0.65
96-12-8	1,2-Dibromo-3-Chloropropane	ND		11	0.68
106-93-4	1,2-Dibromoethane	ND		5.6	0.59
95-50-1	1,2-Dichlorobenzene	ND		5.6	0.51
107-06-2	1,2-Dichloroethane	ND		5.6	0.79
540-59-0	1,2-Dichloroethene, Total	ND		5.6	0.44
78-87-5	1,2-Dichloropropane	ND		5.6	0.62
108-67-8	1,3,5-Trimethylbenzene	ND		5.6	0.64
541-73-1	1,3-Dichlorobenzene	ND		5.6	0.54
142-28-9	1,3-Dichloropropane	ND		5.6	0.57
106-46-7	1,4-Dichlorobenzene	ND		5.6	0.88
594-20-7	2,2-Dichloropropane	ND		5.6	0.50
78-93-3	2-Butanone (MEK)	6.7	J	23	2.1
95-49-8	2-Chlorotoluene	ND		5.6	0.57
591-78-6	2-Hexanone	ND		23	5.5
106-43-4	4-Chlorotoluene	ND		5.6	0.88
99-87-6	4-Isopropyltoluene	ND		5.6	0.55
108-10-1	4-Methyl-2-pentanone (MIBK)	ND		23	4.9
67-64-1	Acetone	19	JВ	23	6.1
71-43-2	Benzene	ND		5.6	0.53
108-86-1	Bromobenzene	ND		5.6	0.55
75-25-2	Bromoform	ND		5.6	0.26
74-83-9	Bromomethane	ND		11	0.56
56-23-5	Carbon tetrachloride	ND		5.6	0.71
108-90-7	Chlorobenzene	ND		5.6	0.61
74-97-5	Chlorobromomethane	ND		5.6	0.34

Lab Name: TestAmerica Denver	Job No.: 280-107960-1		
SDG No.:			
Client Sample ID: PCS AC14 Lab Sample ID: 280-107960-14			
Matrix: Solid Lab File ID: G6552.D			
Analysis Method: 8260B Date Collected: 03/29/2018 12:41			
Sample wt/vol: 4.435(g)	Date Analyzed: 04/12/2018 20:59		
Soil Aliquot Vol:	Dilution Factor: 1		
Soil Extract Vol.:	GC Column: DB-624 v1 ID: 32(um)		
% Moisture:	Level: (low/med) Low		
Analysis Batch No.: 411164	Units: ug/Kg		

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
124-48-1	Chlorodibromomethane	ND		5.6	0.64
75-00-3	Chloroethane	ND		11	1.0
67-66-3	Chloroform	ND		11	0.33
74-87-3	Chloromethane	ND		11	0.87
156-59-2	cis-1,2-Dichloroethene	ND		2.8	0.63
10061-01-5	cis-1,3-Dichloropropene	ND		5.6	1.5
74-95-3	Dibromomethane	ND		5.6	0.95
75-27-4	Dichlorobromomethane	ND		5.6	0.25
75-71-8	Dichlorodifluoromethane	ND		11	0.59
100-41-4	Ethylbenzene	ND		5.6	0.76
87-68-3	Hexachlorobutadiene	ND		5.6	0.62
98-82-8	Isopropylbenzene	ND		5.6	0.67
1634-04-4	Methyl tert-butyl ether	ND		23	0.38
75-09-2	Methylene Chloride	ND		5.6	1.8
179601-23-1	m-Xylene & p-Xylene	ND		2.8	1.2
91-20-3	Naphthalene	ND		5.6	0.71
104-51-8	n-Butylbenzene	ND		5.6	0.63
103-65-1	N-Propylbenzene	ND		5.6	0.65
95-47-6	o-Xylene	ND		2.8	0.69
135-98-8	sec-Butylbenzene	ND		5.6	0.87
100-42-5	Styrene	ND		5.6	0.71
98-06-6	tert-Butylbenzene	ND		5.6	0.56
127-18-4	Tetrachloroethene	ND		5.6	0.67
108-88-3	Toluene	ND		5.6	0.78
156-60-5	trans-1,2-Dichloroethene	ND		2.8	0.44
10061-02-6	trans-1,3-Dichloropropene	ND		5.6	0.76
79-01-6	Trichloroethene	ND		5.6	0.26
75-69-4	Trichlorofluoromethane	ND		11	1.2
75-01-4	Vinyl chloride	ND		5.6	1.5
1330-20-7	Xylenes, Total	ND		5.6	0.69

	F	DRM I				
	GC/MS VOA ORGANICS		HEET			
Lab Name: Te	estAmerica Denver	Job No.: 280-1	07960-1			
SDG No.:						
Client Sampl	e ID: PCS AC14	Lab Sample ID:	280-107960)-14		
Matrix: Soli	.d	Lab File ID: G	6552.D			
Analysis Met	nalysis Method: 8260B Date Colle		: 03/29/201	L8 12:	41	
Sample wt/vc	mple wt/vol: 4.435(g) Date Analyzed		d: 04/12/2018 20:59			
Soil Aliquot	Aliquot Vol: Dilution Fact		tor: 1			
Soil Extract	vol.:	GC Column: DB-624 v1 ID: 32(um)				
% Moisture:		Level: (low/me	Level: (low/med) Low			
Analysis Bat	cch No.: 411164	Units: ug/Kg				
CAS NO.	SURROGATE		%REC	Q	LIMITS	
17060-07-0	1,2-Dichloroethane-d4 (Surr)		78		58-140	
460-00-4	4-Bromofluorobenzene (Surr)		99		76-127	
1868-53-7	Dibromofluoromethane (Surr)		90		75-121	
2037-26-5	Toluene-d8 (Surr)		94		80-126	

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	78		58-140
460-00-4	4-Bromofluorobenzene (Surr)	99		76-127
1868-53-7	Dibromofluoromethane (Surr)	90		75-121
2037-26-5	Toluene-d8 (Surr)	94		80-126

Lab Name: TestAmerica Denver	Job No.: 280-107960-1		
SDG No.:			
Client Sample ID: <u>PCS AC15</u>	Lab Sample ID: 280-107960-15		
Matrix: Solid Lab File ID: G6553.D			
Analysis Method: 8260B	Date Collected: 03/29/2018 12:46		
Sample wt/vol: <u>4.782(g)</u>	Date Analyzed: 04/12/2018 21:20		
Soil Aliquot Vol:	Dilution Factor: 1		
Soil Extract Vol.:	GC Column: DB-624 v1 ID: 32(um)		
% Moisture:	Level: (low/med) Low		
Analysis Batch No.: 411164	Units: ug/Kg		

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
630-20-6	1,1,1,2-Tetrachloroethane	ND		5.2	0.59
71-55-6	1,1,1-Trichloroethane	ND		5.2	0.54
79-34-5	1,1,2,2-Tetrachloroethane	ND		5.2	0.64
79-00-5	1,1,2-Trichloroethane	ND		5.2	0.92
75-34-3	1,1-Dichloroethane	ND		5.2	0.22
75-35-4	1,1-Dichloroethene	ND		5.2	0.62
563-58-6	1,1-Dichloropropene	ND		5.2	0.56
87-61-6	1,2,3-Trichlorobenzene	ND		5.2	0.78
96-18-4	1,2,3-Trichloropropane	ND		5.2	0.85
120-82-1	1,2,4-Trichlorobenzene	ND		5.2	0.76
95-63-6	1,2,4-Trimethylbenzene	ND		5.2	0.61
96-12-8	1,2-Dibromo-3-Chloropropane	ND		10	0.63
106-93-4	1,2-Dibromoethane	ND		5.2	0.54
95-50-1	1,2-Dichlorobenzene	ND		5.2	0.47
107-06-2	1,2-Dichloroethane	ND		5.2	0.73
540-59-0	1,2-Dichloroethene, Total	ND		5.2	0.41
78-87-5	1,2-Dichloropropane	ND		5.2	0.58
108-67-8	1,3,5-Trimethylbenzene	ND		5.2	0.60
541-73-1	1,3-Dichlorobenzene	ND		5.2	0.50
142-28-9	1,3-Dichloropropane	ND		5.2	0.53
106-46-7	1,4-Dichlorobenzene	ND		5.2	0.82
594-20-7	2,2-Dichloropropane	ND		5.2	0.46
78-93-3	2-Butanone (MEK)	8.8	J	21	1.9
95-49-8	2-Chlorotoluene	ND		5.2	0.53
591-78-6	2-Hexanone	ND		21	5.1
106-43-4	4-Chlorotoluene	ND		5.2	0.82
99-87-6	4-Isopropyltoluene	ND		5.2	0.51
108-10-1	4-Methyl-2-pentanone (MIBK)	ND		21	4.6
67-64-1	Acetone	27	В	21	5.6
71-43-2	Benzene	ND		5.2	0.49
108-86-1	Bromobenzene	ND		5.2	0.51
75-25-2	Bromoform	ND		5.2	0.24
74-83-9	Bromomethane	ND		10	0.52
56-23-5	Carbon tetrachloride	ND		5.2	0.66
108-90-7	Chlorobenzene	ND		5.2	0.56
74-97-5	Chlorobromomethane	ND		5.2	0.31

Lab Name: TestAmerica Denver	Job No.: 280-107960-1		
SDG No.:			
Client Sample ID: PCS AC15	Lab Sample ID: 280-107960-15		
Matrix: Solid	Lab File ID: <u>G6553.D</u>		
Analysis Method: 8260B	Date Collected: 03/29/2018 12:46		
Sample wt/vol: 4.782(g)	Date Analyzed: 04/12/2018 21:20		
Soil Aliquot Vol:	Dilution Factor: 1		
Soil Extract Vol.:	GC Column: DB-624 v1 ID: 32(um)		
% Moisture:	Level: (low/med) Low		
Analysis Batch No.: 411164	Units: ug/Kg		

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
124-48-1	Chlorodibromomethane	ND		5.2	0.60
75-00-3	Chloroethane	ND		10	0.93
67-66-3	Chloroform	ND		10	0.30
74-87-3	Chloromethane	ND		10	0.81
156-59-2	cis-1,2-Dichloroethene	ND		2.6	0.59
10061-01-5	cis-1,3-Dichloropropene	ND		5.2	1.3
74-95-3	Dibromomethane	ND		5.2	0.88
75-27-4	Dichlorobromomethane	ND		5.2	0.23
75-71-8	Dichlorodifluoromethane	ND		10	0.54
100-41-4	Ethylbenzene	ND		5.2	0.70
87-68-3	Hexachlorobutadiene	ND		5.2	0.58
98-82-8	Isopropylbenzene	ND		5.2	0.62
1634-04-4	Methyl tert-butyl ether	ND		21	0.36
75-09-2	Methylene Chloride	1.9	J	5.2	1.7
179601-23-1	m-Xylene & p-Xylene	ND		2.6	1.1
91-20-3	Naphthalene	ND		5.2	0.66
104-51-8	n-Butylbenzene	ND		5.2	0.59
103-65-1	N-Propylbenzene	ND		5.2	0.61
95-47-6	o-Xylene	ND		2.6	0.64
135-98-8	sec-Butylbenzene	ND		5.2	0.81
100-42-5	Styrene	ND		5.2	0.66
98-06-6	tert-Butylbenzene	ND		5.2	0.52
127-18-4	Tetrachloroethene	ND		5.2	0.62
108-88-3	Toluene	ND		5.2	0.72
156-60-5	trans-1,2-Dichloroethene	ND		2.6	0.41
10061-02-6	trans-1,3-Dichloropropene	ND		5.2	0.70
79-01-6	Trichloroethene	ND		5.2	0.24
75-69-4	Trichlorofluoromethane	ND		10	1.1
75-01-4	Vinyl chloride	ND		5.2	1.4
1330-20-7	Xylenes, Total	ND		5.2	0.64

Lab Name: TestAmerica Denver	Job No.: 280-107960-1
SDG No.:	
Client Sample ID: <u>PCS AC15</u>	Lab Sample ID: 280-107960-15
Matrix: Solid	Lab File ID: <u>G6553.D</u>
Analysis Method: <u>8260B</u>	Date Collected: 03/29/2018 12:46
Sample wt/vol: <u>4.782(g)</u>	Date Analyzed: 04/12/2018 21:20
Soil Aliquot Vol:	Dilution Factor: 1
Soil Extract Vol.:	GC Column: DB-624 v1 ID: 32(um)
% Moisture:	Level: (low/med) Low
Analysis Batch No.: 411164	Units: ug/Kg

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	76		58-140
460-00-4	4-Bromofluorobenzene (Surr)	104		76-127
1868-53-7	Dibromofluoromethane (Surr)	91		75-121
2037-26-5	Toluene-d8 (Surr)	96		80-126

Lab Name: TestAmerica Denver	Job No.: 280-107960-1
SDG No.:	
Client Sample ID: <u>PCS AC16</u>	Lab Sample ID: 280-107960-16
Matrix: Solid	Lab File ID: <u>G6554.D</u>
Analysis Method: 8260B	Date Collected: 03/29/2018 12:51
Sample wt/vol: <u>4.758(g)</u>	Date Analyzed: 04/12/2018 21:40
Soil Aliquot Vol:	Dilution Factor: 1
Soil Extract Vol.:	GC Column: DB-624 v1 ID: 32(um)
% Moisture:	Level: (low/med) Low
Analysis Batch No.: 411164	Units: ug/Kg

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
630-20-6	1,1,1,2-Tetrachloroethane	ND		5.3	0.59
71-55-6	1,1,1-Trichloroethane	ND		5.3	0.55
79-34-5	1,1,2,2-Tetrachloroethane	ND		5.3	0.64
79-00-5	1,1,2-Trichloroethane	ND		5.3	0.92
75-34-3	1,1-Dichloroethane	ND		5.3	0.22
75-35-4	1,1-Dichloroethene	ND		5.3	0.62
563-58-6	1,1-Dichloropropene	ND		5.3	0.57
87-61-6	1,2,3-Trichlorobenzene	ND		5.3	0.79
96-18-4	1,2,3-Trichloropropane	ND		5.3	0.85
120-82-1	1,2,4-Trichlorobenzene	ND		5.3	0.77
95-63-6	1,2,4-Trimethylbenzene	ND		5.3	0.61
96-12-8	1,2-Dibromo-3-Chloropropane	ND		11	0.63
106-93-4	1,2-Dibromoethane	ND		5.3	0.55
95-50-1	1,2-Dichlorobenzene	ND		5.3	0.47
107-06-2	1,2-Dichloroethane	ND		5.3	0.74
540-59-0	1,2-Dichloroethene, Total	ND		5.3	0.41
78-87-5	1,2-Dichloropropane	ND		5.3	0.58
108-67-8	1,3,5-Trimethylbenzene	ND		5.3	0.60
541-73-1	1,3-Dichlorobenzene	ND		5.3	0.50
142-28-9	1,3-Dichloropropane	ND		5.3	0.54
106-46-7	1,4-Dichlorobenzene	ND		5.3	0.82
594-20-7	2,2-Dichloropropane	ND		5.3	0.46
78-93-3	2-Butanone (MEK)	7.4	J	21	1.9
95-49-8	2-Chlorotoluene	ND		5.3	0.54
591-78-6	2-Hexanone	ND		21	5.1
106-43-4	4-Chlorotoluene	ND		5.3	0.82
99-87-6	4-Isopropyltoluene	ND		5.3	0.51
108-10-1	4-Methyl-2-pentanone (MIBK)	ND		21	4.6
67-64-1	Acetone	22	В	21	5.7
71-43-2	Benzene	ND		5.3	0.49
108-86-1	Bromobenzene	ND		5.3	0.51
75-25-2	Bromoform	ND		5.3	0.24
74-83-9	Bromomethane	ND		11	0.53
56-23-5	Carbon tetrachloride	ND		5.3	0.66
108-90-7	Chlorobenzene	ND		5.3	0.57
74-97-5	Chlorobromomethane	ND		5.3	0.32

Lab Name: TestAmerica Denver	Job No.: 280-107960-1
SDG No.:	
Client Sample ID: PCS AC16	Lab Sample ID: 280-107960-16
Matrix: Solid	Lab File ID: <u>G6554.D</u>
Analysis Method: <u>8260B</u>	Date Collected: 03/29/2018 12:51
Sample wt/vol: <u>4.758(g)</u>	Date Analyzed: 04/12/2018 21:40
Soil Aliquot Vol:	Dilution Factor: 1
Soil Extract Vol.:	GC Column: DB-624 v1 ID: 32(um)
% Moisture:	Level: (low/med) Low
Analysis Batch No.: 411164	Units: ug/Kg

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
124-48-1	Chlorodibromomethane	ND		5.3	0.60
75-00-3	Chloroethane	ND		11	0.94
67-66-3	Chloroform	ND		11	0.30
74-87-3	Chloromethane	ND		11	0.81
156-59-2	cis-1,2-Dichloroethene	ND		2.6	0.59
10061-01-5	cis-1,3-Dichloropropene	ND		5.3	1.4
74-95-3	Dibromomethane	ND		5.3	0.88
75-27-4	Dichlorobromomethane	ND		5.3	0.23
75-71-8	Dichlorodifluoromethane	ND		11	0.55
100-41-4	Ethylbenzene	ND		5.3	0.70
87-68-3	Hexachlorobutadiene	ND		5.3	0.58
98-82-8	Isopropylbenzene	ND		5.3	0.62
1634-04-4	Methyl tert-butyl ether	ND		21	0.36
75-09-2	Methylene Chloride	ND		5.3	1.7
179601-23-1	m-Xylene & p-Xylene	ND		2.6	1.1
91-20-3	Naphthalene	ND		5.3	0.66
104-51-8	n-Butylbenzene	ND		5.3	0.59
103-65-1	N-Propylbenzene	ND		5.3	0.61
95-47-6	o-Xylene	ND		2.6	0.64
135-98-8	sec-Butylbenzene	ND		5.3	0.81
100-42-5	Styrene	ND		5.3	0.66
98-06-6	tert-Butylbenzene	ND		5.3	0.53
127-18-4	Tetrachloroethene	ND		5.3	0.62
108-88-3	Toluene	ND		5.3	0.73
156-60-5	trans-1,2-Dichloroethene	ND		2.6	0.41
10061-02-6	trans-1,3-Dichloropropene	ND		5.3	0.70
79-01-6	Trichloroethene	ND		5.3	0.24
75-69-4	Trichlorofluoromethane	ND		11	1.1
75-01-4	Vinyl chloride	ND		5.3	1.4
1330-20-7	Xylenes, Total	ND		5.3	0.64

Lab Name: TestAmerica Denver	Job No.: 280-107960-1			
SDG No.:				
Client Sample ID: <u>PCS AC16</u>	Lab Sample ID: 280-107960-16			
Matrix: Solid	Lab File ID: <u>G</u> 6554.D			
Analysis Method: <u>8260B</u>	Date Collected: 03/29/2018 12:51			
Sample wt/vol: <u>4.758(g)</u>	Date Analyzed: 04/12/2018 21:40			
Soil Aliquot Vol:	Dilution Factor: 1			
Soil Extract Vol.:	GC Column: DB-624 v1 ID: 32(um)			
% Moisture:	Level: (low/med) Low			
Analysis Batch No.: 411164	Units: ug/Kg			

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	80		58-140
460-00-4	4-Bromofluorobenzene (Surr)	104		76-127
1868-53-7	Dibromofluoromethane (Surr)	93		75-121
2037-26-5	Toluene-d8 (Surr)	96		80-126

Lab Name: TestAmerica Denver	Job No.: 280-107960-1
SDG No.:	
Client Sample ID: <u>PCS AC17</u>	Lab Sample ID: <u>280-107960-17</u>
Matrix: Solid	Lab File ID: G6555.D
Analysis Method: <u>8260B</u>	Date Collected: 03/29/2018 12:56
Sample wt/vol: 4.726(g)	Date Analyzed: 04/12/2018 22:00
Soil Aliquot Vol:	Dilution Factor: 1
Soil Extract Vol.:	GC Column: DB-624 v1 ID: 32(um)
% Moisture:	Level: (low/med) Low
Analysis Batch No.: 411164	Units: ug/Kg

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
630-20-6	1,1,1,2-Tetrachloroethane	ND		5.3	0.59
71-55-6	1,1,1-Trichloroethane	ND		5.3	0.55
79-34-5	1,1,2,2-Tetrachloroethane	ND		5.3	0.65
79-00-5	1,1,2-Trichloroethane	ND		5.3	0.93
75-34-3	1,1-Dichloroethane	ND		5.3	0.22
75-35-4	1,1-Dichloroethene	ND		5.3	0.62
563-58-6	1,1-Dichloropropene	ND		5.3	0.57
87-61-6	1,2,3-Trichlorobenzene	ND		5.3	0.79
96-18-4	1,2,3-Trichloropropane	ND		5.3	0.86
120-82-1	1,2,4-Trichlorobenzene	ND		5.3	0.77
95-63-6	1,2,4-Trimethylbenzene	ND		5.3	0.61
96-12-8	1,2-Dibromo-3-Chloropropane	ND		11	0.63
106-93-4	1,2-Dibromoethane	ND		5.3	0.55
95-50-1	1,2-Dichlorobenzene	ND		5.3	0.48
107-06-2	1,2-Dichloroethane	ND		5.3	0.74
540-59-0	1,2-Dichloroethene, Total	ND		5.3	0.41
78-87-5	1,2-Dichloropropane	ND		5.3	0.58
108-67-8	1,3,5-Trimethylbenzene	ND		5.3	0.60
541-73-1	1,3-Dichlorobenzene	ND		5.3	0.51
142-28-9	1,3-Dichloropropane	ND		5.3	0.54
106-46-7	1,4-Dichlorobenzene	ND		5.3	0.83
594-20-7	2,2-Dichloropropane	ND		5.3	0.47
78-93-3	2-Butanone (MEK)	5.1	J	21	1.9
95-49-8	2-Chlorotoluene	ND		5.3	0.54
591-78-6	2-Hexanone	ND		21	5.2
106-43-4	4-Chlorotoluene	ND		5.3	0.83
99-87-6	4-Isopropyltoluene	ND		5.3	0.52
108-10-1	4-Methyl-2-pentanone (MIBK)	ND		21	4.6
67-64-1	Acetone	11	JB	21	5.7
71-43-2	Benzene	ND		5.3	0.50
108-86-1	Bromobenzene	ND		5.3	0.52
75-25-2	Bromoform	ND		5.3	0.24
74-83-9	Bromomethane	ND		11	0.53
56-23-5	Carbon tetrachloride	ND		5.3	0.67
108-90-7	Chlorobenzene	ND		5.3	0.57
74-97-5	Chlorobromomethane	ND		5.3	0.32

Lab Name: TestAmerica Denver	Job No.: 280-107960-1		
SDG No.:			
Client Sample ID: PCS AC17	Lab Sample ID: <u>280-107960-17</u>		
Matrix: Solid	Lab File ID: G6555.D		
Analysis Method: 8260B	Date Collected: 03/29/2018 12:56		
Sample wt/vol: 4.726(g)	Date Analyzed: 04/12/2018 22:00		
Soil Aliquot Vol:	Dilution Factor: 1		
Soil Extract Vol.:	GC Column: DB-624 v1 ID: 32(um)		
% Moisture:	Level: (low/med) Low		
Analysis Batch No.: 411164	Units: ug/Kg		

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
124-48-1	Chlorodibromomethane	ND		5.3	0.60
75-00-3	Chloroethane	ND		11	0.94
67-66-3	Chloroform	ND		11	0.31
74-87-3	Chloromethane	ND		11	0.81
156-59-2	cis-1,2-Dichloroethene	ND		2.6	0.59
10061-01-5	cis-1,3-Dichloropropene	ND		5.3	1.4
74-95-3	Dibromomethane	ND		5.3	0.89
75-27-4	Dichlorobromomethane	ND		5.3	0.23
75-71-8	Dichlorodifluoromethane	ND		11	0.55
100-41-4	Ethylbenzene	ND		5.3	0.71
87-68-3	Hexachlorobutadiene	ND		5.3	0.58
98-82-8	Isopropylbenzene	ND		5.3	0.62
1634-04-4	Methyl tert-butyl ether	ND		21	0.36
75-09-2	Methylene Chloride	ND		5.3	1.7
179601-23-1	m-Xylene & p-Xylene	ND		2.6	1.1
91-20-3	Naphthalene	ND		5.3	0.67
104-51-8	n-Butylbenzene	ND		5.3	0.59
103-65-1	N-Propylbenzene	ND		5.3	0.61
95-47-6	o-Xylene	ND		2.6	0.65
135-98-8	sec-Butylbenzene	ND		5.3	0.81
100-42-5	Styrene	ND		5.3	0.67
98-06-6	tert-Butylbenzene	ND		5.3	0.53
127-18-4	Tetrachloroethene	ND		5.3	0.62
108-88-3	Toluene	ND		5.3	0.73
156-60-5	trans-1,2-Dichloroethene	ND		2.6	0.41
10061-02-6	trans-1,3-Dichloropropene	ND		5.3	0.71
79-01-6	Trichloroethene	ND		5.3	0.24
75-69-4	Trichlorofluoromethane	ND		11	1.1
75-01-4	Vinyl chloride	ND		5.3	1.4
1330-20-7	Xylenes, Total	ND		5.3	0.65

Lab Name: TestAmerica Denver	Job No.: 280-107960-1
SDG No.:	
Client Sample ID: <u>PCS AC17</u>	Lab Sample ID: 280-107960-17
Matrix: Solid	Lab File ID: <u>G6555.D</u>
Analysis Method: <u>8260B</u>	Date Collected: 03/29/2018 12:56
Sample wt/vol: <u>4.726(g)</u>	Date Analyzed: 04/12/2018 22:00
Soil Aliquot Vol:	Dilution Factor: 1
Soil Extract Vol.:	GC Column: DB-624 v1 ID: 32(um)
% Moisture:	Level: (low/med) Low
Analysis Batch No.: 411164	Units: ug/Kg

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	81		58-140
460-00-4	4-Bromofluorobenzene (Surr)	101		76-127
1868-53-7	Dibromofluoromethane (Surr)	92		75-121
2037-26-5	Toluene-d8 (Surr)	94		80-126

Lab Name: TestAmerica Denver	Job No.: <u>280-107960-1</u>
SDG No.:	
Client Sample ID: <u>PCS AC18</u>	Lab Sample ID: 280-107960-18
Matrix: Solid	Lab File ID: <u>G6556.D</u>
Analysis Method: 8260B	Date Collected: 03/29/2018 13:02
Sample wt/vol: 4.853(g)	Date Analyzed: 04/12/2018 22:20
Soil Aliquot Vol:	Dilution Factor: 1
Soil Extract Vol.:	GC Column: DB-624 v1 ID: 32(um)
% Moisture:	Level: (low/med) Low
Analysis Batch No.: 411164	Units: ug/Kg

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
630-20-6	1,1,1,2-Tetrachloroethane	ND		5.2	0.58
71-55-6	1,1,1-Trichloroethane	ND		5.2	0.54
79-34-5	1,1,2,2-Tetrachloroethane	ND		5.2	0.63
79-00-5	1,1,2-Trichloroethane	ND		5.2	0.91
75-34-3	1,1-Dichloroethane	ND		5.2	0.22
75-35-4	1,1-Dichloroethene	ND		5.2	0.61
563-58-6	1,1-Dichloropropene	ND		5.2	0.56
87-61-6	1,2,3-Trichlorobenzene	ND		5.2	0.77
96-18-4	1,2,3-Trichloropropane	ND		5.2	0.83
120-82-1	1,2,4-Trichlorobenzene	ND		5.2	0.75
95-63-6	1,2,4-Trimethylbenzene	ND		5.2	0.60
96-12-8	1,2-Dibromo-3-Chloropropane	ND		10	0.62
106-93-4	1,2-Dibromoethane	ND		5.2	0.54
95-50-1	1,2-Dichlorobenzene	ND		5.2	0.46
107-06-2	1,2-Dichloroethane	ND		5.2	0.72
540-59-0	1,2-Dichloroethene, Total	ND		5.2	0.40
78-87-5	1,2-Dichloropropane	ND		5.2	0.57
108-67-8	1,3,5-Trimethylbenzene	ND		5.2	0.59
541-73-1	1,3-Dichlorobenzene	ND		5.2	0.49
142-28-9	1,3-Dichloropropane	ND		5.2	0.53
106-46-7	1,4-Dichlorobenzene	ND		5.2	0.80
594-20-7	2,2-Dichloropropane	ND		5.2	0.45
78-93-3	2-Butanone (MEK)	3.8	J	21	1.9
95-49-8	2-Chlorotoluene	ND		5.2	0.53
591-78-6	2-Hexanone	ND		21	5.0
106-43-4	4-Chlorotoluene	ND		5.2	0.80
99-87-6	4-Isopropyltoluene	ND		5.2	0.50
108-10-1	4-Methyl-2-pentanone (MIBK)	ND		21	4.5
67-64-1	Acetone	8.2	JB	21	5.5
71-43-2	Benzene	ND		5.2	0.48
108-86-1	Bromobenzene	ND		5.2	0.50
75-25-2	Bromoform	ND		5.2	0.24
74-83-9	Bromomethane	ND		10	0.52
56-23-5	Carbon tetrachloride	ND		5.2	0.65
108-90-7	Chlorobenzene	ND		5.2	0.56
74-97-5	Chlorobromomethane	ND		5.2	0.31

Lab Name: TestAmerica Denver	Job No.: 280-107960-1
SDG No.:	
Client Sample ID: PCS AC18	Lab Sample ID: <u>280-107960-18</u>
Matrix: Solid	Lab File ID: G6556.D
Analysis Method: <u>8260B</u>	Date Collected: 03/29/2018 13:02
Sample wt/vol: 4.853(g)	Date Analyzed: 04/12/2018 22:20
Soil Aliquot Vol:	Dilution Factor: 1
Soil Extract Vol.:	GC Column: DB-624 v1 ID: 32(um)
% Moisture:	Level: (low/med) Low
Analysis Batch No.: 411164	Units: ug/Kg

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
124-48-1	Chlorodibromomethane	ND		5.2	0.59
75-00-3	Chloroethane	ND		10	0.92
67-66-3	Chloroform	ND		10	0.30
74-87-3	Chloromethane	ND		10	0.79
156-59-2	cis-1,2-Dichloroethene	ND		2.6	0.58
10061-01-5	cis-1,3-Dichloropropene	ND		5.2	1.3
74-95-3	Dibromomethane	ND		5.2	0.87
75-27-4	Dichlorobromomethane	ND		5.2	0.23
75-71-8	Dichlorodifluoromethane	ND		10	0.54
100-41-4	Ethylbenzene	ND		5.2	0.69
87-68-3	Hexachlorobutadiene	ND		5.2	0.57
98-82-8	Isopropylbenzene	ND		5.2	0.61
1634-04-4	Methyl tert-butyl ether	ND		21	0.35
75-09-2	Methylene Chloride	ND		5.2	1.6
179601-23-1	m-Xylene & p-Xylene	ND		2.6	1.1
91-20-3	Naphthalene	ND		5.2	0.65
104-51-8	n-Butylbenzene	ND		5.2	0.58
103-65-1	N-Propylbenzene	ND		5.2	0.60
95-47-6	o-Xylene	ND		2.6	0.63
135-98-8	sec-Butylbenzene	ND		5.2	0.79
100-42-5	Styrene	ND		5.2	0.65
98-06-6	tert-Butylbenzene	ND		5.2	0.52
127-18-4	Tetrachloroethene	ND		5.2	0.61
108-88-3	Toluene	ND		5.2	0.71
156-60-5	trans-1,2-Dichloroethene	ND		2.6	0.40
10061-02-6	trans-1,3-Dichloropropene	ND		5.2	0.69
79-01-6	Trichloroethene	ND		5.2	0.24
75-69-4	Trichlorofluoromethane	ND		10	1.1
75-01-4	Vinyl chloride	ND		5.2	1.4
1330-20-7	Xylenes, Total	ND		5.2	0.63

Lab Name: TestAmerica Denver	Job No.: 280-107960-1
SDG No.:	
Client Sample ID: PCS AC18	Lab Sample ID: 280-107960-18
Matrix: Solid	Lab File ID: G6556.D
Analysis Method: 8260B	Date Collected: 03/29/2018 13:02
Sample wt/vol: 4.853(g)	Date Analyzed: 04/12/2018 22:20
Soil Aliquot Vol:	Dilution Factor: 1
Soil Extract Vol.:	GC Column: DB-624 v1 ID: 32(um)
% Moisture:	Level: (low/med) Low
Analysis Batch No.: 411164	Units: ug/Kg

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	77		58-140
460-00-4	4-Bromofluorobenzene (Surr)	103		76-127
1868-53-7	Dibromofluoromethane (Surr)	88		75-121
2037-26-5	Toluene-d8 (Surr)	94		80-126

Lab Name: TestAmerica Denver	Job No.: 280-107960-1
SDG No.:	
Client Sample ID: <u>PCS AC19</u>	Lab Sample ID: 280-107960-19
Matrix: Solid	Lab File ID: <u>G6557.D</u>
Analysis Method: 8260B	Date Collected: 03/29/2018 13:07
Sample wt/vol: 4.339(g)	Date Analyzed: 04/12/2018 22:41
Soil Aliquot Vol:	Dilution Factor: 1
Soil Extract Vol.:	GC Column: <u>DB-624 v1</u> ID: <u>32(um)</u>
% Moisture:	Level: (low/med) Low
Analysis Batch No.: 411164	Units: ug/Kg

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
630-20-6	1,1,1,2-Tetrachloroethane	ND		5.8	0.65
71-55-6	1,1,1-Trichloroethane	ND		5.8	0.60
79-34-5	1,1,2,2-Tetrachloroethane	ND		5.8	0.70
79-00-5	1,1,2-Trichloroethane	ND		5.8	1.0
75-34-3	1,1-Dichloroethane	ND		5.8	0.24
75-35-4	1,1-Dichloroethene	ND		5.8	0.68
563-58-6	1,1-Dichloropropene	ND		5.8	0.62
87-61-6	1,2,3-Trichlorobenzene	ND		5.8	0.86
96-18-4	1,2,3-Trichloropropane	ND		5.8	0.93
120-82-1	1,2,4-Trichlorobenzene	ND		5.8	0.84
95-63-6	1,2,4-Trimethylbenzene	ND		5.8	0.67
96-12-8	1,2-Dibromo-3-Chloropropane	ND		12	0.69
106-93-4	1,2-Dibromoethane	ND		5.8	0.60
95-50-1	1,2-Dichlorobenzene	ND		5.8	0.52
107-06-2	1,2-Dichloroethane	ND		5.8	0.81
540-59-0	1,2-Dichloroethene, Total	ND		5.8	0.45
78-87-5	1,2-Dichloropropane	ND		5.8	0.63
108-67-8	1,3,5-Trimethylbenzene	ND		5.8	0.66
541-73-1	1,3-Dichlorobenzene	ND		5.8	0.55
142-28-9	1,3-Dichloropropane	ND		5.8	0.59
106-46-7	1,4-Dichlorobenzene	ND		5.8	0.90
594-20-7	2,2-Dichloropropane	ND		5.8	0.51
78-93-3	2-Butanone (MEK)	4.6	J	23	2.1
95-49-8	2-Chlorotoluene	ND		5.8	0.59
591-78-6	2-Hexanone	ND		23	5.6
106-43-4	4-Chlorotoluene	ND		5.8	0.90
99-87-6	4-Isopropyltoluene	ND		5.8	0.56
108-10-1	4-Methyl-2-pentanone (MIBK)	ND		23	5.0
67-64-1	Acetone	10	JВ	23	6.2
71-43-2	Benzene	ND		5.8	0.54
108-86-1	Bromobenzene	ND		5.8	0.56
75-25-2	Bromoform	ND		5.8	0.27
74-83-9	Bromomethane	ND		12	0.58
56-23-5	Carbon tetrachloride	ND		5.8	0.73
108-90-7	Chlorobenzene	ND		5.8	0.62
74-97-5	Chlorobromomethane	ND		5.8	0.35

Lab Name: TestAmerica Denver	Job No.: 280-107960-1			
SDG No.:				
Client Sample ID: <u>PCS AC19</u>	Lab Sample ID: <u>280-107960-19</u>			
Matrix: Solid Lab File ID: G6557.D				
Analysis Method: <u>8260B</u>	Date Collected: 03/29/2018 13:07			
Sample wt/vol: 4.339(g)	Date Analyzed: 04/12/2018 22:41			
Soil Aliquot Vol:	Dilution Factor: 1			
Soil Extract Vol.:	GC Column: DB-624 v1 ID: 32(um)			
% Moisture:	Level: (low/med) Low			
Analysis Batch No.: 411164	Units: ug/Kg			

CAS NO.	COMPOUND NAME	RESULT Q		RL	MDL
124-48-1	Chlorodibromomethane	ND		5.8	0.66
75-00-3	Chloroethane	ND		12	1.0
67-66-3	Chloroform	ND		12	0.33
74-87-3	Chloromethane	ND		12	0.89
156-59-2	cis-1,2-Dichloroethene	ND		2.9	0.65
10061-01-5	cis-1,3-Dichloropropene	ND		5.8	1.5
74-95-3	Dibromomethane	ND		5.8	0.97
75-27-4	Dichlorobromomethane	ND		5.8	0.25
75-71-8	Dichlorodifluoromethane	ND		12	0.60
100-41-4	Ethylbenzene	ND		5.8	0.77
87-68-3	Hexachlorobutadiene	ND		5.8	0.63
98-82-8	Isopropylbenzene	ND		5.8	0.68
1634-04-4	Methyl tert-butyl ether	ND		23	0.39
75-09-2	Methylene Chloride	ND		5.8	1.8
179601-23-1	m-Xylene & p-Xylene	ND		2.9	1.2
91-20-3	Naphthalene	ND		5.8	0.73
104-51-8	n-Butylbenzene	ND		5.8	0.65
103-65-1	N-Propylbenzene	ND		5.8	0.67
95-47-6	o-Xylene	ND		2.9	0.70
135-98-8	sec-Butylbenzene	ND		5.8	0.89
100-42-5	Styrene	ND		5.8	0.73
98-06-6	tert-Butylbenzene	ND		5.8	0.58
127-18-4	Tetrachloroethene	ND		5.8	0.68
108-88-3	Toluene	ND		5.8	0.80
156-60-5	trans-1,2-Dichloroethene	ND		2.9	0.45
10061-02-6	trans-1,3-Dichloropropene	ND		5.8	0.77
79-01-6	Trichloroethene	ND		5.8	0.27
75-69-4	Trichlorofluoromethane	ND		12	1.2
75-01-4	Vinyl chloride	ND		5.8	1.5
1330-20-7	Xylenes, Total	ND		5.8	0.70

Lab Name: TestAmerica Denver	Job No.: 280-107960-1			
SDG No.:				
Client Sample ID: <u>PCS AC19</u>	Lab Sample ID: 280-107960-19			
Matrix: Solid	Lab File ID: G6557.D			
Analysis Method: <u>8260B</u>	Date Collected: 03/29/2018 13:07			
Sample wt/vol: 4.339(g)	Date Analyzed: 04/12/2018 22:41			
Soil Aliquot Vol:	Dilution Factor: 1			
Soil Extract Vol.:	GC Column: DB-624 v1 ID: 32(um)			
% Moisture:	Level: (low/med) Low			
Analysis Batch No.: 411164	Units: ug/Kg			

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	78		58-140
460-00-4	4-Bromofluorobenzene (Surr)	102		76-127
1868-53-7	Dibromofluoromethane (Surr)	89		75-121
2037-26-5	Toluene-d8 (Surr)	94		80-126

Lab Name: TestAmerica Denver	Job No.: 280-107960-1
SDG No.:	
Client Sample ID: PCS AC20	Lab Sample ID: 280-107960-20
Matrix: Solid	Lab File ID: <u>G6558.D</u>
Analysis Method: 8260B	Date Collected: 03/29/2018 13:14
Sample wt/vol: <u>4.925(g)</u>	Date Analyzed: 04/12/2018 23:01
Soil Aliquot Vol:	Dilution Factor: 1
Soil Extract Vol.:	GC Column: DB-624 v1 ID: 32(um)
% Moisture:	Level: (low/med) Low
Analysis Batch No.: 411164	Units: ug/Kg

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
630-20-6	1,1,1,2-Tetrachloroethane	ND		5.1	0.57
71-55-6	1,1,1-Trichloroethane	ND		5.1	0.53
79-34-5	1,1,2,2-Tetrachloroethane	ND		5.1	0.62
79-00-5	1,1,2-Trichloroethane	ND		5.1	0.89
75-34-3	1,1-Dichloroethane	ND		5.1	0.21
75-35-4	1,1-Dichloroethene	ND		5.1	0.60
563-58-6	1,1-Dichloropropene	ND		5.1	0.55
87-61-6	1,2,3-Trichlorobenzene	ND		5.1	0.76
96-18-4	1,2,3-Trichloropropane	ND		5.1	0.82
120-82-1	1,2,4-Trichlorobenzene	ND		5.1	0.74
95-63-6	1,2,4-Trimethylbenzene	ND		5.1	0.59
96-12-8	1,2-Dibromo-3-Chloropropane	ND		10	0.61
106-93-4	1,2-Dibromoethane	ND		5.1	0.53
95-50-1	1,2-Dichlorobenzene	ND		5.1	0.46
107-06-2	1,2-Dichloroethane	ND		5.1	0.71
540-59-0	1,2-Dichloroethene, Total	ND		5.1	0.40
78-87-5	1,2-Dichloropropane	ND		5.1	0.56
108-67-8	1,3,5-Trimethylbenzene	ND		5.1	0.58
541-73-1	1,3-Dichlorobenzene	ND		5.1	0.49
142-28-9	1,3-Dichloropropane	ND		5.1	0.52
106-46-7	1,4-Dichlorobenzene	ND		5.1	0.79
594-20-7	2,2-Dichloropropane	ND		5.1	0.45
78-93-3	2-Butanone (MEK)	6.6	J	20	1.9
95-49-8	2-Chlorotoluene	ND		5.1	0.52
591-78-6	2-Hexanone	ND		20	5.0
106-43-4	4-Chlorotoluene	ND		5.1	0.79
99-87-6	4-Isopropyltoluene	ND		5.1	0.50
108-10-1	4-Methyl-2-pentanone (MIBK)	ND		20	4.4
67-64-1	Acetone	21	В	20	5.5
71-43-2	Benzene	ND		5.1	0.48
108-86-1	Bromobenzene	ND		5.1	0.50
75-25-2	Bromoform	ND		5.1	0.23
74-83-9	Bromomethane	ND		10	0.51
56-23-5	Carbon tetrachloride	ND		5.1	0.64
108-90-7	Chlorobenzene	ND		5.1	0.55
74-97-5	Chlorobromomethane	ND		5.1	0.30

Lab Name: TestAmerica Denver	Job No.: 280-107960-1
SDG No.:	
Client Sample ID: <u>PCS AC20</u>	Lab Sample ID: 280-107960-20
Matrix: Solid	Lab File ID: <u>G6558.D</u>
Analysis Method: 8260B	Date Collected: 03/29/2018 13:14
Sample wt/vol: 4.925(g)	Date Analyzed: 04/12/2018 23:01
Soil Aliquot Vol:	Dilution Factor: 1
Soil Extract Vol.:	GC Column: DB-624 v1 ID: 32(um)
% Moisture:	Level: (low/med) Low
Analysis Batch No.: 411164	Units: ug/Kg

CAS NO.	COMPOUND NAME	RESULT	RESULT Q		MDL
124-48-1	Chlorodibromomethane	ND		5.1	0.58
75-00-3	Chloroethane	ND		10	0.90
67-66-3	Chloroform	ND		10	0.29
74-87-3	Chloromethane	ND		10	0.78
156-59-2	cis-1,2-Dichloroethene	ND		2.5	0.57
10061-01-5	cis-1,3-Dichloropropene	ND		5.1	1.3
74-95-3	Dibromomethane	ND		5.1	0.85
75-27-4	Dichlorobromomethane	ND		5.1	0.22
75-71-8	Dichlorodifluoromethane	ND		10	0.53
100-41-4	Ethylbenzene	ND		5.1	0.68
87-68-3	Hexachlorobutadiene	ND		5.1	0.56
98-82-8	Isopropylbenzene	ND		5.1	0.60
1634-04-4	Methyl tert-butyl ether	ND		20	0.35
75-09-2	Methylene Chloride	ND		5.1	1.6
179601-23-1	m-Xylene & p-Xylene	ND		2.5	1.1
91-20-3	Naphthalene	ND		5.1	0.64
104-51-8	n-Butylbenzene	ND		5.1	0.57
103-65-1	N-Propylbenzene	ND		5.1	0.59
95-47-6	o-Xylene	ND		2.5	0.62
135-98-8	sec-Butylbenzene	ND		5.1	0.78
100-42-5	Styrene	ND		5.1	0.64
98-06-6	tert-Butylbenzene	ND		5.1	0.51
127-18-4	Tetrachloroethene	ND		5.1	0.60
108-88-3	Toluene	ND		5.1	0.70
156-60-5	trans-1,2-Dichloroethene	ND		2.5	0.40
10061-02-6	trans-1,3-Dichloropropene	ND		5.1	0.68
79-01-6	Trichloroethene	ND		5.1	0.23
75-69-4	Trichlorofluoromethane	ND		10	1.1
75-01-4	Vinyl chloride	ND		5.1	1.4
1330-20-7	Xylenes, Total	ND		5.1	0.62

Lab Name: TestAmerica Denver	Job No.: 280-107960-1				
SDG No.:					
Client Sample ID: <u>PCS AC20</u>	Lab Sample ID: <u>280-107960-20</u>				
Matrix: Solid Lab File ID: G6558.D					
Analysis Method: <u>8260B</u>	Date Collected: 03/29/2018 13:14				
Sample wt/vol: 4.925(g)	Date Analyzed: 04/12/2018 23:01				
Soil Aliquot Vol:	Dilution Factor: 1				
Soil Extract Vol.:	GC Column: DB-624 v1 ID: 32(um)				
% Moisture:	Level: (low/med) Low				
Analysis Batch No.: <u>411164</u>	Units: ug/Kg				

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	77		58-140
460-00-4	4-Bromofluorobenzene (Surr)	100		76-127
1868-53-7	Dibromofluoromethane (Surr)	88		75-121
2037-26-5	Toluene-d8 (Surr)	93		80-126

	FOI GASOLINE RANGE ORGANI	RM I ICS AN	VALYSIS DATA	A SHEET			
Lab Name: Te	stAmerica Denver	Job	No.: 280-1	07960-1			
SDG No.:							
Client Sampl	e ID: PCS AC1	Lab	Sample ID:	280-10	7960-1		
Matrix: Soli	d	Lab	File ID: 0	13F1301	.D		
Analysis Met	hod: 8015B	5B Date Collected: 03/29/2018 11:35					
Sample wt/vo	1: 4.997(g)	Date Analyzed: 04/10/2018 15:10				1	
Soil Aliquot	Vol: _1 (mL)	Dilution Factor: 1					
Soil Extract	Vol.: <u>5 (mL)</u>	GC	Column: <u>RTX</u>	502.2	(105) ID: <u>C</u>	.53(mm)	
% Moisture:		Lev	el: (low/med) Medium				
Analysis Bat	ch No.: 410771	Uni	ts: mg/Kg				
CAS NO.	COMPOUND NAME		RESULT	Q	RL	MDL	
8006-61-9	Gasoline Range Organics (GRO)-C6-C10 C			JB F1	1.2	0.33	
CAS NO.	SURROGATE		%REC	Q	LIMITS		
98-08-8	a,a,a-Trifluorotoluene	a,a,a-Trifluorotoluene			94	77-123	

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
8006-61-9	Gasoline Range Organics (GRO)-C6-C10	0.50	JB F1	1.2	0.33

CAS NO.	SURROGATE	%REC	Q	LIMITS
98-08-8 a,a,a-Trifluorotoluene		94		77-123

Lab Name: TestAmerica Denver	Job No.: 280-107960-1
SDG No.:	
Client Sample ID: <u>PCS AC2</u>	Lab Sample ID: <u>280-107960-2</u>
Matrix: Solid	Lab File ID: 016F1601.D
Analysis Method: 8015B	Date Collected: 03/29/2018 11:41
Sample wt/vol: 5.049(g)	Date Analyzed: 04/10/2018 16:49
Soil Aliquot Vol: <u>.1 (mL)</u>	Dilution Factor: 1
Soil Extract Vol.: 5(mL)	GC Column: RTX 502.2 (105) ID: 0.53(mm)
% Moisture:	Level: (low/med) Medium
Analysis Batch No.: 410771	Units: mg/Kg

8006-61-9 Gasoline Bange Organics (GRO)-C6-C10 0 64 J B 1 2 0	CAS NO.	NO. COMPOUND NAME		Q	RL	MDL
	8006-61-9	Gasoline Range Organics (GRO)-C6-C10	0.64	JВ	1.2	0.32

CAS NO.	SURROGATE	%REC	Q	LIMITS
98-08-8 a,a,a-Trifluorotoluene		92		77-123

Lab Name: TestAmerica Denver	Job No.: 280-107960-1
SDG No.:	
Client Sample ID: <u>PCS AC3</u>	Lab Sample ID: <u>280-107960-3</u>
Matrix: Solid	Lab File ID: 017F1701.D
Analysis Method: 8015B	Date Collected: 03/29/2018 11:46
Sample wt/vol: 4.963(g)	Date Analyzed: 04/10/2018 17:13
Soil Aliquot Vol: .1 (mL)	Dilution Factor: 1
Soil Extract Vol.: 5(mL)	GC Column: RTX 502.2 (105) ID: 0.53(mm)
% Moisture:	Level: (low/med) Medium
Analysis Batch No.: 410771	Units: mg/Kg

CAS NO.	CAS NO. COMPOUND NAME		Q	RL	MDL
8006-61-9	Gasoline Range Organics (GRO)-C6-C10	0.78	JВ	1.2	0.33
L					

CAS NO.	SURROGATE	%REC	Q	LIMITS
98-08-8 a,a,a-Trifluorotoluene		88		77-123

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Lab Name: TestAmerica Denver	Job No.: 280-107960-1
SDG No.:	
Client Sample ID: <u>PCS AC4</u>	Lab Sample ID: <u>280-107960-4</u>
Matrix: Solid	Lab File ID: 018F1801.D
Analysis Method: <u>8015B</u>	Date Collected: 03/29/2018 11:50
Sample wt/vol: 5.043(g)	Date Analyzed: 04/10/2018 17:38
Soil Aliquot Vol: <u>.1 (mL)</u>	Dilution Factor: 1
Soil Extract Vol.: 5(mL)	GC Column: RTX 502.2 (105) ID: 0.53(mm)
% Moisture:	Level: (low/med) Medium
Analysis Batch No.: 410771	Units: mg/Kg

CAS NO.	IO. COMPOUND NAME		Q	RL	MDL
8006-61-9	Gasoline Range Organics (GRO)-C6-C10	0.89	JВ	1.2	0.32

CAS NO.	SURROGATE	%REC	Q	LIMITS
98-08-8 a,a,a-Trifluorotoluene		87		77-123

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Lab Name: TestAmerica Denver	Job No.: 280-107960-1
SDG No.:	
Client Sample ID: <u>PCS AC5</u>	Lab Sample ID: <u>280-107960-5</u>
Matrix: Solid	Lab File ID: <u>019F1901.D</u>
Analysis Method: 8015B	Date Collected: 03/29/2018 11:55
Sample wt/vol: 4.989(g)	Date Analyzed: 04/10/2018 18:03
Soil Aliquot Vol: .1 (mL)	Dilution Factor: 1
Soil Extract Vol.: 5(mL)	GC Column: RTX 502.2 (105) ID: 0.53(mm)
% Moisture:	Level: (low/med) Medium
Analysis Batch No.: 410771	Units: mg/Kg

CAS NO.	CAS NO. COMPOUND NAME		Q	RL	MDL
8006-61-9	Gasoline Range Organics (GRO)-C6-C10	0.84	JВ	1.2	0.33

CAS NO.	SURROGATE	%REC	Q	LIMITS
98-08-8	8-08-8 a,a,a-Trifluorotoluene			77-123

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Lab Name: TestAmerica Denver	Job No.: 280-107960-1
SDG No.:	
Client Sample ID: <u>PCS AC6</u>	Lab Sample ID: 280-107960-6
Matrix: Solid	Lab File ID: <u>020F2001.D</u>
Analysis Method: 8015B	Date Collected: 03/29/2018 12:00
Sample wt/vol: <u>5.015(g)</u>	Date Analyzed: 04/10/2018 20:17
Soil Aliquot Vol: <u>.1 (mL)</u>	Dilution Factor: 1
Soil Extract Vol.: 5(mL)	GC Column: <u>RTX 502.2 (105)</u> ID: 0.53(mm)
% Moisture:	Level: (low/med) Medium
Analysis Batch No.: 410771	Units: mg/Kg

8006-61-9 Gasoline Range Organics (GRO)-C6-C10 0.52 J B 1.2 0.3		CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
	8	006-61-9	Gasoline Range Organics (GRO)-C6-C10	0.52	JВ	1.2	0.32

CAS NO.	SURROGATE	%REC	Q	LIMITS
98-08-8	8-08-8 a,a,a-Trifluorotoluene			77-123

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Lab Name: TestAmerica Denver	Job No.: 280-107960-1
SDG No.:	
Client Sample ID: <u>PCS AC7</u>	Lab Sample ID: <u>280-107960-7</u>
Matrix: Solid	Lab File ID: 021F2101.D
Analysis Method: 8015B	Date Collected: 03/29/2018 12:05
Sample wt/vol: 5.001(g)	Date Analyzed: 04/10/2018 20:41
Soil Aliquot Vol: <u>.1 (mL)</u>	Dilution Factor: 1
Soil Extract Vol.: 5(mL)	GC Column: RTX 502.2 (105) ID: 0.53(mm)
% Moisture:	Level: (low/med) Medium
Analysis Batch No.: 410771	Units: mg/Kg

8006-61-9 Gasoline Range Organics (GRO)-C6-C10 0.54 J B 1.2 0.32	CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
	8006-61-9	Gasoline Range Organics (GRO)-C6-C10	0.54	JВ	1.2	0.32

CAS NO.	SURROGATE	%REC	Q	LIMITS
98-08-8	a,a,a-Trifluorotoluene	96		77-123

Lab Name: TestAmerica Denver	Job No.: 280-107960-1
SDG No.:	
Client Sample ID: <u>PCS AC8</u>	Lab Sample ID: 280-107960-8
Matrix: Solid	Lab File ID: 022F2201.D
Analysis Method: 8015B	Date Collected: 03/29/2018 12:10
Sample wt/vol: 4.979(g)	Date Analyzed: 04/10/2018 21:06
Soil Aliquot Vol: .1 (mL)	Dilution Factor: 1
Soil Extract Vol.: 5(mL)	GC Column: RTX 502.2 (105) ID: 0.53(mm)
% Moisture:	Level: (low/med) Medium
Analysis Batch No.: 410771	Units: mg/Kg

8006-61-9 Gasoline Range Organics (GRO)-C6-C10 0.58 J B	1.2	0.33

CAS NO.	SURROGATE	%REC	Q	LIMITS
98-08-8	a,a,a-Trifluorotoluene	95		77-123

Lab Name: TestAmerica Denver	Job No.: 280-107960-1
SDG No.:	
Client Sample ID: <u>PCS AC9</u>	Lab Sample ID: 280-107960-9
Matrix: Solid	Lab File ID: 023F2301.D
Analysis Method: 8015B	Date Collected: 03/29/2018 12:15
Sample wt/vol: 5.020(g)	Date Analyzed: 04/10/2018 21:30
Soil Aliquot Vol: <u>.1 (mL)</u>	Dilution Factor: 1
Soil Extract Vol.: 5(mL)	GC Column: RTX 502.2 (105) ID: 0.53(mm)
% Moisture:	Level: (low/med) Medium
Analysis Batch No.: 410771	Units: mg/Kg

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
8006-61-9 G	asoline Range Organics (GRO)-C6-C10	0.73	JВ	1.2	0.32

CAS NO.	SURROGATE	%REC	Q	LIMITS
98-08-8	a,a,a-Trifluorotoluene	89		77-123

Lab Name: TestAmerica Denver	Job No.: 280-107960-1
SDG No.:	
Client Sample ID: <u>PCS AC10</u>	Lab Sample ID: <u>280-107960-10</u>
Matrix: Solid	Lab File ID: 024F2401.D
Analysis Method: <u>8015B</u>	Date Collected: 03/29/2018 12:20
Sample wt/vol: <u>4.992(g)</u>	Date Analyzed: 04/10/2018 21:55
Soil Aliquot Vol: <u>.1 (mL)</u>	Dilution Factor: 1
Soil Extract Vol.: <u>5(mL)</u>	GC Column: <u>RTX 502.2 (105)</u> ID: <u>0.53(mm)</u>
% Moisture:	Level: (low/med) Medium
Analysis Batch No.: 410771	Units: mg/Kg

8006-61-9 Gasoline Range Organics (GRO)-C6-C10 0.61 J B 1.2 0.33	CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
	8006-61-9	Gasoline Range Organics (GRO)-C6-C10	0.61	JВ	1.2	0.33

CAS NO.	SURROGATE	%REC	Q	LIMITS
98-08-8	a,a,a-Trifluorotoluene	88		77-123

1 2 3 4 5 6 7 8 9 10 11 12 13

Lab Name: TestAmerica Denver	Job No.: 280-107960-1
SDG No.:	
Client Sample ID: <u>PCS AC11</u>	Lab Sample ID: <u>280-107960-11</u>
Matrix: Solid	Lab File ID: 012F1201.D
Analysis Method: 8015B	Date Collected: 03/29/2018 12:25
Sample wt/vol: 5.032(g)	Date Analyzed: 04/11/2018 14:26
Soil Aliquot Vol: .1 (mL)	Dilution Factor: 1
Soil Extract Vol.: 5(mL)	GC Column: RTX 502.2 (105) ID: 0.53(mm)
% Moisture:	Level: (low/med) Medium
Analysis Batch No.: 410986	Units: mg/Kg

8006-61-9 Gasoline Range Organics (GRO)-C6-C10 0.67 J B 1.2 0.32	CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
	8006-61-9	Gasoline Range Organics (GRO)-C6-C10	0.67	JВ	1.2	0.32

CAS NO.	SURROGATE	%REC	Q	LIMITS
98-08-8	a,a,a-Trifluorotoluene	92		77-123

Lab Name: TestAmerica Denver	Job No.: 280-107960-1
SDG No.:	
Client Sample ID: <u>PCS AC12</u>	Lab Sample ID: <u>280-107960-12</u>
Matrix: Solid	Lab File ID: 013F1301.D
Analysis Method: 8015B	Date Collected: 03/29/2018 12:30
Sample wt/vol: 4.982(g)	Date Analyzed: 04/11/2018 14:51
Soil Aliquot Vol: .1 (mL)	Dilution Factor: 1
Soil Extract Vol.: 5(mL)	GC Column: RTX 502.2 (105) ID: 0.53(mm)
% Moisture:	Level: (low/med) Medium
Analysis Batch No.: 410986	Units: mg/Kg

	2	RL	MDL
8006-61-9 Gasoline Range Organics (GRO)-C6-C10 0.	55 J B	1.2	0.33

CAS NO.	SURROGATE	%REC	Q	LIMITS
98-08-8	a,a,a-Trifluorotoluene	97		77-123

Lab Name: TestAmerica Denver	Job No.: 280-107960-1
SDG No.:	
Client Sample ID: <u>PCS AC13</u>	Lab Sample ID: 280-107960-13
Matrix: Solid	Lab File ID: 014F1401.D
Analysis Method: 8015B	Date Collected: 03/29/2018 12:36
Sample wt/vol: 5.009(g)	Date Analyzed: 04/11/2018 15:16
Soil Aliquot Vol: <u>.1 (mL)</u>	Dilution Factor: 1
Soil Extract Vol.: 5(mL)	GC Column: <u>RTX 502.2</u> (105) ID: <u>0.53(mm)</u>
% Moisture:	Level: (low/med) Medium
Analysis Batch No.: 410986	Units: mg/Kg

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
8006-61-9	Gasoline Range Organics (GRO)-C6-C10	0.71	JВ	1.2	0.32
					·

CAS NO.	CAS NO. SURROGATE		Q	LIMITS
98-08-8 a,a,a-Trifluorotoluene		90		77-123

Lab Name: TestAmerica Denver	Job No.: 280-107960-1
SDG No.:	
Client Sample ID: PCS AC14	Lab Sample ID: 280-107960-14
Matrix: Solid	Lab File ID: 015F1501.D
Analysis Method: 8015B	Date Collected: 03/29/2018 12:41
Sample wt/vol: 4.983(g)	Date Analyzed: 04/11/2018 15:41
Soil Aliquot Vol: <u>.1 (mL)</u>	Dilution Factor: 1
Soil Extract Vol.: 5(mL)	GC Column: RTX 502.2 (105) ID: 0.53(mm)
% Moisture:	Level: (low/med) Medium
Analysis Batch No.: 410986	Units: mg/Kg

8006-61-9 Gasoline Range Organics (GRO)-C6-C10 0 82 J B 1 2 0	CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
	8006-61-9	Gasoline Range Organics (GRO)-C6-C10	0.82	JВ	1.2	0.33

CAS NO.	SURROGATE	%REC	Q	LIMITS
98-08-8	a,a,a-Trifluorotoluene	90		77-123

Job No.: 280-107960-1
Lab Sample ID: <u>280-107960-15</u>
Lab File ID: 016F1601.D
Date Collected: 03/29/2018 12:46
Date Analyzed: 04/11/2018 16:06
Dilution Factor: 1
GC Column: RTX 502.2 (105) ID: 0.53(mm)
Level: (low/med) Medium
Units: mg/Kg

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
8006-61-9	Gasoline Range Organics (GRO)-C6-C10	0.83	JВ	1.2	0.33
				-	

CAS NO.	SURROGATE	%REC	Q	LIMITS
98-08-8	a,a,a-Trifluorotoluene	85		77-123

Lab Name: TestAmerica Denver	Job No.: 280-107960-1
SDG No.:	
Client Sample ID: <u>PCS AC16</u>	Lab Sample ID: 280-107960-16
Matrix: Solid	Lab File ID: 017F1701.D
Analysis Method: 8015B	Date Collected: 03/29/2018 12:51
Sample wt/vol: 5.030(g)	Date Analyzed: 04/11/2018 16:31
Soil Aliquot Vol: .1 (mL)	Dilution Factor: 1
Soil Extract Vol.: 5(mL)	GC Column: RTX 502.2 (105) ID: 0.53(mm)
% Moisture:	Level: (low/med) Medium
Analysis Batch No.: 410986	Units: mg/Kg

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
8006-61-9	Gasoline Range Organics (GRO)-C6-C10	0.69	JВ	1.2	0.32
<u> </u>					

CAS NO.	SURROGATE	%REC	Q	LIMITS
98-08-8	a,a,a-Trifluorotoluene	85		77-123

Lab Name: TestAmerica Denver	Job No.: 280-107960-1
SDG No.:	
Client Sample ID: <u>PCS AC17</u>	Lab Sample ID: 280-107960-17
Matrix: Solid	Lab File ID: 018F1801.D
Analysis Method: 8015B	Date Collected: 03/29/2018 12:56
Sample wt/vol: 5.005(g)	Date Analyzed: 04/11/2018 16:56
Soil Aliquot Vol: <u>.1 (mL)</u>	Dilution Factor: 1
Soil Extract Vol.: 5(mL)	GC Column: RTX 502.2 (105) ID: 0.53(mm)
% Moisture:	Level: (low/med) Medium
Analysis Batch No.: 410986	Units: mg/Kg

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
8006-61-9	Gasoline Range Organics (GRO)-C6-C10	0.72	JВ	1.2	0.32

CAS NO.	SURROGATE	%REC	Q	LIMITS
98-08-8	a,a,a-Trifluorotoluene	92		77-123

Lab Name: TestAmerica Denver	Job No.: 280-107960-1
SDG No.:	
Client Sample ID: <u>PCS AC18</u>	Lab Sample ID: 280-107960-18
Matrix: Solid	Lab File ID: <u>019F1901.D</u>
Analysis Method: 8015B	Date Collected: 03/29/2018 13:02
Sample wt/vol: 5.021(g)	Date Analyzed: 04/11/2018 17:21
Soil Aliquot Vol: .1 (mL)	Dilution Factor: 1
Soil Extract Vol.: 5(mL)	GC Column: RTX 502.2 (105) ID: 0.53(mm)
% Moisture:	Level: (low/med) Medium
Analysis Batch No.: 410986	Units: mg/Kg
Allarysts Bacon No 410900	

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
8006-61-9	Gasoline Range Organics (GRO)-C6-C10	0.62	JВ	1.2	0.32

CAS NO.	SURROGATE	%REC	Q	LIMITS
98-08-8	a,a,a-Trifluorotoluene	86		77-123

Lab Name: TestAmerica Denver	Job No.: 280-107960-1
SDG No.:	
Client Sample ID: <u>PCS AC19</u>	Lab Sample ID: 280-107960-19
Matrix: Solid	Lab File ID: 020F2001.D
Analysis Method: 8015B	Date Collected: 03/29/2018 13:07
Sample wt/vol: 5.005(g)	Date Analyzed: 04/11/2018 17:45
Soil Aliquot Vol: .1 (mL)	Dilution Factor: 1
Soil Extract Vol.: 5(mL)	GC Column: RTX 502.2 (105) ID: 0.53(mm)
% Moisture:	Level: (low/med) Medium
Analysis Batch No.: 410986	Units: mg/Kg

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
8006-61-9	Gasoline Range Organics (GRO)-C6-C10	0.71	JВ	1.2	0.32
					,

CAS NO.	SURROGATE	%REC	Q	LIMITS
98-08-8	a,a,a-Trifluorotoluene	98		77-123

Lab Name: TestAmerica Denver	Job No.: 280-107960-1
SDG No.:	
Client Sample ID: <u>PCS AC20</u>	Lab Sample ID: 280-107960-20
Matrix: Solid	Lab File ID: 021F2101.D
Analysis Method: 8015B	Date Collected: 03/29/2018 13:14
Sample wt/vol: 5.040(g)	Date Analyzed: 04/11/2018 18:10
Soil Aliquot Vol: <u>.1 (mL)</u>	Dilution Factor: 1
Soil Extract Vol.: 5(mL)	GC Column: RTX 502.2 (105) ID: 0.53(mm)
% Moisture:	Level: (low/med) Medium
Analysis Batch No.: 410986	Units: mg/Kg

8006-61-9 Gasoline Bange Organics (GRO)-C6-C10 0.76 J B 1.2	CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
	8006-61-9	Gasoline Range Organics (GRO)-C6-C10	0.76	JВ	1.2	0.32

CAS NO.	SURROGATE	%REC	Q	LIMITS
98-08-8	a,a,a-Trifluorotoluene	95		77-123

Lab Name: TestAmerica Denver	Job No.: 280-107960-1
SDG No.:	
Client Sample ID: <u>PCS AC1</u>	Lab Sample ID: <u>280-107960-1</u>
Matrix: Solid	Lab File ID: <u>04091807.D</u>
Analysis Method: 8015B	Date Collected: 03/29/2018 11:35
Extraction Method: 3546	Date Extracted: 04/03/2018 07:33
Sample wt/vol: 15.2(g)	Date Analyzed: 04/09/2018 15:15
Con. Extract Vol.: 1(mL)	Dilution Factor: 1
Injection Volume: <u>1(uL)</u>	GC Column: <u>RTX-1 (30.32)</u> ID: <u>0.25(mm)</u>
% Moisture:	GPC Cleanup:(Y/N) N
Analysis Batch No.: 410664	Units: mg/Kg

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
STL00143	Diesel Range Organics [C10-C28]	19	В	7.9	1.3
STL00255	C10-C36	27	В	7.9	2.0
		l			

CAS NO.	SURROGATE	%REC	Q	LIMITS
84-15-1	o-Terphenyl	82		49-115

Lab Name: TestAmerica Denver	Job No.: 280-107960-1
SDG No.:	
Client Sample ID: <u>PCS AC2</u>	Lab Sample ID: 280-107960-2
Matrix: Solid	Lab File ID: 04091810.D
Analysis Method: 8015B	Date Collected: 03/29/2018 11:41
Extraction Method: 3546	Date Extracted: 04/03/2018 07:33
Sample wt/vol: <u>15.7(g)</u>	Date Analyzed: 04/09/2018 16:28
Con. Extract Vol.: <u>1(mL)</u>	Dilution Factor: 1
Injection Volume: <u>1(uL)</u>	GC Column: <u>RTX-1 (30.32)</u> ID: <u>0.25(mm)</u>
% Moisture:	GPC Cleanup:(Y/N) N
Analysis Batch No.: 410664	Units: mg/Kg

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
STL00143	Diesel Range Organics [C10-C28]	230	В	7.6	1.3
STL00255	C10-C36	280	В	7.6	1.9
				1	

CAS NO.	SURROGATE	%REC	Q	LIMITS
84-15-1	o-Terphenyl	83		49-115

Lab Name: TestAmerica Denver	Job No.: 280-107960-1
SDG No.:	
Client Sample ID: <u>PCS AC3</u>	Lab Sample ID: <u>280-107960-3</u>
Matrix: Solid	Lab File ID: 04091811.D
Analysis Method: <u>8015B</u>	Date Collected: 03/29/2018 11:46
Extraction Method: 3546	Date Extracted: 04/03/2018 07:33
Sample wt/vol: 16.3(g)	Date Analyzed: 04/09/2018 16:53
Con. Extract Vol.: <u>1(mL)</u>	Dilution Factor: 1
Injection Volume: 1(uL)	GC Column: RTX-1 (30.32) ID: 0.25(mm)
% Moisture:	GPC Cleanup:(Y/N) N
Analysis Batch No.: 410664	Units: mg/Kg

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
STL00143	Diesel Range Organics [C10-C28]	320	В	7.4	1.3
STL00255	C10-C36	370	В	7.4	1.8
	-	L		· · · ·	

	CAS NO.	SURROGATE	%REC	Q	LIMITS
į	84-15-1	o-Terphenyl	89		49-115

Lab Name: TestAmerica Denver	Job No.: 280-107960-1		
SDG No.:			
Client Sample ID: <u>PCS AC4</u>	Lab Sample ID: <u>280-107960-4</u>		
Matrix: Solid Lab File ID: 04091812.D			
Analysis Method: <u>8015B</u>	Date Collected: 03/29/2018 11:50		
Extraction Method: 3546	Date Extracted: 04/03/2018 07:33		
Sample wt/vol: 15.3(g)	Date Analyzed: 04/09/2018 17:17		
Con. Extract Vol.: 1(mL)	Dilution Factor: 1		
Injection Volume: <u>1(uL)</u>	GC Column: <u>RTX-1 (30.32)</u> ID: <u>0.25(mm)</u>		
% Moisture:	GPC Cleanup:(Y/N) N		
Analysis Batch No.: 410664	Units: mg/Kg		

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
STL00143	Diesel Range Organics [C10-C28]	680	В	7.8	1.3
STL00255	C10-C36	850	В	7.8	2.0

CAS NO.	SURROGATE	%REC	Q	LIMITS
84-15-1	o-Terphenyl	66		49-115

Lab Name: TestAmerica Denver	Job No.: 280-107960-1
SDG No.:	
Client Sample ID: <u>PCS AC5</u>	Lab Sample ID: <u>280-107960-5</u>
Matrix: Solid	Lab File ID: 04091813.D
Analysis Method: 8015B	Date Collected: 03/29/2018 11:55
Extraction Method: 3546	Date Extracted: 04/03/2018 07:33
Sample wt/vol: 15.3(g)	Date Analyzed: 04/09/2018 17:42
Con. Extract Vol.: 1(mL)	Dilution Factor: 1
Injection Volume: <u>1(uL)</u>	GC Column: <u>RTX-1 (30.32)</u> ID: <u>0.25(mm)</u>
% Moisture:	GPC Cleanup:(Y/N) N
Analysis Batch No.: 410664	Units: mg/Kg

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
STL00143	Diesel Range Organics [C10-C28]	25	В	7.8	1.3
STL00255	C10-C36	39	В	7.8	2.0
	-				

CAS NO.	SURROGATE	%REC	Q	LIMITS
84-15-1	o-Terphenyl	80		49-115

Lab Name: TestAmerica Denver	Job No.: 280-107960-1
SDG No.:	
Client Sample ID: <u>PCS AC6</u>	Lab Sample ID: <u>280-107960-6</u>
Matrix: Solid	Lab File ID: 04091814.D
Analysis Method: <u>8015B</u>	Date Collected: 03/29/2018 12:00
Extraction Method: 3546	Date Extracted: 04/03/2018 07:33
Sample wt/vol: 15.3(g)	Date Analyzed: 04/09/2018 18:06
Con. Extract Vol.: 1(mL)	Dilution Factor: 1
Injection Volume: <u>1(uL)</u>	GC Column: <u>RTX-1 (30.32)</u> ID: <u>0.25(mm)</u>
% Moisture:	GPC Cleanup:(Y/N) N
Analysis Batch No.: 410664	Units: mg/Kg

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
STL00143	Diesel Range Organics [C10-C28]	18	В	7.8	1.3
STL00255	C10-C36	28	В	7.8	2.0

CAS NO.	SURROGATE	%REC	Q	LIMITS
84-15-1	o-Terphenyl	84		49-115

Lab Name: TestAmerica Denver	Job No.: 280-107960-1
SDG No.:	
Client Sample ID: PCS AC7	Lab Sample ID: <u>280-107960-7</u>
Matrix: Solid	Lab File ID: 04091815.D
Analysis Method: 8015B	Date Collected: 03/29/2018 12:05
Extraction Method: 3546	Date Extracted: 04/03/2018 07:33
Sample wt/vol: 15.2(g)	Date Analyzed: 04/09/2018 18:31
Con. Extract Vol.: 1(mL)	Dilution Factor: 1
Injection Volume: <u>1(uL)</u>	GC Column: <u>RTX-1 (30.32)</u> ID: <u>0.25(mm)</u>
% Moisture:	GPC Cleanup:(Y/N) N
Analysis Batch No.: 410664	Units: mg/Kg

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
STL00143	Diesel Range Organics [C10-C28]	24	В	7.9	1.3
STL00255	C10-C36	39	В	7.9	2.0
	-				

CAS NO.	SURROGATE	%REC	Q	LIMITS
84-15-1	o-Terphenyl	87		49-115

Lab Name: TestAmerica Denver	Job No.: 280-107960-1
SDG No.:	
Client Sample ID: PCS AC8	Lab Sample ID: <u>280-107960-8</u>
Matrix: Solid	Lab File ID: 04091816.D
Analysis Method: 8015B	Date Collected: 03/29/2018 12:10
Extraction Method: 3546	Date Extracted: 04/03/2018 07:33
Sample wt/vol: 15.5(g)	Date Analyzed: 04/09/2018 18:55
Con. Extract Vol.: 1(mL)	Dilution Factor: 1
Injection Volume: <u>1(uL)</u>	GC Column: <u>RTX-1 (30.32)</u> ID: <u>0.25(mm)</u>
% Moisture:	GPC Cleanup:(Y/N) N
Analysis Batch No.: 410664	Units: mg/Kg

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
STL00143	Diesel Range Organics [C10-C28]	32	В	7.7	1.3
STL00255	C10-C36	51	В	7.7	1.9
[·	1	-		1

CAS NO.	SURROGATE	%REC	Q	LIMITS
84-15-1	o-Terphenyl	86		49-115

Lab Name: TestAmerica Denver	Job No.: 280-107960-1
SDG No.:	
Client Sample ID: PCS AC9	Lab Sample ID: 280-107960-9
Matrix: Solid	Lab File ID: 04091817.D
Analysis Method: 8015B	Date Collected: 03/29/2018 12:15
Extraction Method: 3546	Date Extracted: 04/03/2018 07:33
Sample wt/vol: 15.5(g)	Date Analyzed: 04/09/2018 19:20
Con. Extract Vol.: <u>1(mL)</u>	Dilution Factor: 1
Injection Volume: <u>1(uL)</u>	GC Column: <u>RTX-1 (30.32)</u> ID: <u>0.25(mm)</u>
% Moisture:	GPC Cleanup:(Y/N) N
Analysis Batch No.: 410664	Units: mg/Kg

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
STL00143	Diesel Range Organics [C10-C28]	59	В	7.7	1.3
STL00255	C10-C36	92	В	7.7	1.9
[·	I	-		

CAS NO.	SURROGATE	%REC	Q	LIMITS
84-15-1	o-Terphenyl	91		49-115

Lab Name: TestAmerica Denver	Job No.: 280-107960-1
SDG No.:	
Client Sample ID: <u>PCS AC10</u>	Lab Sample ID: <u>280-107960-10</u>
Matrix: Solid	Lab File ID: 04091818.D
Analysis Method: <u>8015B</u>	Date Collected: 03/29/2018 12:20
Extraction Method: 3546	Date Extracted: 04/03/2018 07:33
Sample wt/vol: 15.3(g)	Date Analyzed: 04/09/2018 19:44
Con. Extract Vol.: <u>1(mL)</u>	Dilution Factor: 1
Injection Volume: 1(uL)	GC Column: RTX-1 (30.32) ID: 0.25(mm)
% Moisture:	GPC Cleanup:(Y/N) N
Analysis Batch No.: 410664	Units: mg/Kg

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
STL00143	Diesel Range Organics [C10-C28]	26	В	7.8	1.3
STL00255	C10-C36	41	В	7.8	2.0
r				· · · · · · · · · · · · · · · · · · ·	

CAS NO.	SURROGATE	%REC	Q	LIMITS
84-15-1	o-Terphenyl	87		49-115

Lab Name: TestAmerica Denver	Job No.: 280-107960-1
SDG No.:	
Client Sample ID: <u>PCS AC11</u>	Lab Sample ID: <u>280-107960-11</u>
Matrix: Solid	Lab File ID: 04091820.D
Analysis Method: 8015B	Date Collected: 03/29/2018 12:25
Extraction Method: 3546	Date Extracted: 04/03/2018 07:33
Sample wt/vol: <u>15.0(g)</u>	Date Analyzed: 04/09/2018 20:33
Con. Extract Vol.: <u>1(mL)</u>	Dilution Factor: 1
Injection Volume: <u>1(uL)</u>	GC Column: <u>RTX-1 (30.32)</u> ID: <u>0.25(mm)</u>
% Moisture:	GPC Cleanup:(Y/N) N
Analysis Batch No.: 410664	Units: mg/Kg

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
STL00143	Diesel Range Organics [C10-C28]	20	В	8.0	1.4
STL00255	C10-C36	33	В	8.0	2.0
	1				·

CAS NO.	SURROGATE	%REC	Q	LIMITS
84-15-1	o-Terphenyl	83		49-115

Lab Name: TestAmerica Denver	Job No.: 280-107960-1
SDG No.:	
Client Sample ID: <u>PCS AC12</u>	Lab Sample ID: <u>280-107960-12</u>
Matrix: Solid	Lab File ID: 04091821.D
Analysis Method: <u>8015B</u>	Date Collected: 03/29/2018 12:30
Extraction Method: 3546	Date Extracted: 04/03/2018 07:33
Sample wt/vol: 15.1(g)	Date Analyzed: 04/09/2018 20:57
Con. Extract Vol.: <u>1(mL)</u>	Dilution Factor: 1
Injection Volume: <u>1(uL)</u>	GC Column: RTX-1 (30.32) ID: 0.25(mm)
% Moisture:	GPC Cleanup:(Y/N) N
Analysis Batch No.: 410664	Units: mg/Kg

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
STL00143	Diesel Range Organics [C10-C28]	26	В	7.9	1.4
STL00255	C10-C36	44	В	7.9	2.0
	-				

CAS NO.	SURROGATE	%REC	Q	LIMITS
84-15-1	o-Terphenyl	92		49-115

Lab Name: TestAmerica Denver	Job No.: <u>280-107960-1</u>
SDG No.:	
Client Sample ID: <u>PCS AC13</u>	Lab Sample ID: <u>280-107960-13</u>
Matrix: Solid	Lab File ID: 04091822.D
Analysis Method: <u>8015B</u>	Date Collected: 03/29/2018 12:36
Extraction Method: 3546	Date Extracted: 04/03/2018 07:33
Sample wt/vol: 15.5(g)	Date Analyzed: 04/09/2018 21:22
Con. Extract Vol.: <u>1(mL)</u>	Dilution Factor: 1
Injection Volume: <u>1(uL)</u>	GC Column: <u>RTX-1 (30.32)</u> ID: <u>0.25(mm)</u>
% Moisture:	GPC Cleanup:(Y/N) N
Analysis Batch No.: 410664	Units: mg/Kg

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
STL00143 Dies	esel Range Organics [C10-C28]	20	В	7.7	1.3
STL00255 C10-	D-C36	32	В	7.7	1.9

	CAS NO.	SURROGATE	%REC	Q	LIMITS
8	84-15-1	o-Terphenyl	80		49-115

Lab Name: TestAmerica Denver	Job No.: 280-107960-1			
SDG No.:				
Client Sample ID: PCS AC14	Lab Sample ID: <u>280-107960-14</u>			
Matrix: Solid	Lab File ID: 04091823.D			
Analysis Method: 8015B	Date Collected: 03/29/2018 12:41			
Extraction Method: 3546	Date Extracted: 04/03/2018 07:33			
Sample wt/vol: 16.5(g)	Date Analyzed: 04/09/2018 21:46			
Con. Extract Vol.: 1(mL)	Dilution Factor: 1			
Injection Volume: <u>1(uL)</u>	GC Column: <u>RTX-1 (30.32)</u> ID: <u>0.25(mm)</u>			
% Moisture:	GPC Cleanup:(Y/N) N			
Analysis Batch No.: 410664	Units: mg/Kg			

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
STL00143	Diesel Range Organics [C10-C28]	16	В	7.3	1.2
STL00255	C10-C36	23	В	7.3	1.8
	-				

CAS NO.	SURROGATE	%REC	Q	LIMITS
84-15-1	o-Terphenyl	76		49-115

Lab Name: TestAmerica Denver	Job No.: <u>280-107960-1</u>
SDG No.:	
Client Sample ID: <u>PCS AC15</u>	Lab Sample ID: <u>280-107960-15</u>
Matrix: Solid	Lab File ID: 04091824.D
Analysis Method: <u>8015B</u>	Date Collected: 03/29/2018 12:46
Extraction Method: 3546	Date Extracted: 04/03/2018 07:33
Sample wt/vol: 15.5(g)	Date Analyzed: 04/09/2018 22:10
Con. Extract Vol.: <u>1(mL)</u>	Dilution Factor: 1
Injection Volume: <u>1(uL)</u>	GC Column: <u>RTX-1 (30.32)</u> ID: <u>0.25(mm)</u>
% Moisture:	GPC Cleanup:(Y/N) N
Analysis Batch No.: 410664	Units: mg/Kg

	DUND NAME	RESULT	×	RL	MDL
STL00143 Diesel Range Org	anics [C10-C28]	22	В	7.7	1.3
STL00255 C10-C36		35	В	7.7	1.9

CAS NO.	SURROGATE	%REC	Q	LIMITS
84-15-1	o-Terphenyl	81		49-115

Lab Name: TestAmerica Denver	Job No.: <u>280-107960-1</u>
SDG No.:	
Client Sample ID: PCS AC16	Lab Sample ID: <u>280-107960-16</u>
Matrix: Solid	Lab File ID: 04091825.D
Analysis Method: 8015B	Date Collected: 03/29/2018 12:51
Extraction Method: 3546	Date Extracted: 04/03/2018 07:33
Sample wt/vol: 16.9(g)	Date Analyzed: 04/09/2018 22:35
Con. Extract Vol.: 1(mL)	Dilution Factor: 1
Injection Volume: <u>1(uL)</u>	GC Column: <u>RTX-1 (30.32)</u> ID: 0.25(mm)
% Moisture:	GPC Cleanup:(Y/N) N
Analysis Batch No.: 410664	Units: mg/Kg

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
STL00143	Diesel Range Organics [C10-C28]	25	В	7.1	1.2
STL00255	C10-C36	45	В	7.1	1.8
	· · · · · · · · · · · · · · · · · · ·	I			l.

CAS NO.	SURROGATE	%REC	Q	LIMITS
84-15-1	o-Terphenyl	90		49-115

Lab Name: TestAmerica Denver	Job No.: <u>280-107960-1</u>
SDG No.:	
Client Sample ID: PCS AC17	Lab Sample ID: <u>280-107960-17</u>
Matrix: Solid	Lab File ID: 04091826.D
Analysis Method: 8015B	Date Collected: 03/29/2018 12:56
Extraction Method: 3546	Date Extracted: 04/03/2018 07:33
Sample wt/vol: 16.8(g)	Date Analyzed: 04/09/2018 22:59
Con. Extract Vol.: 1(mL)	Dilution Factor: 1
Injection Volume: <u>1(uL)</u>	GC Column: <u>RTX-1 (30.32)</u> ID: <u>0.25(mm)</u>
% Moisture:	GPC Cleanup:(Y/N) N
Analysis Batch No.: 410664	Units: mg/Kg

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
STL00143	Diesel Range Organics [C10-C28]	20	В	7.1	1.2
STL00255	C10-C36	37	В	7.1	1.8

CAS NO.	SURROGATE	%REC	Q	LIMITS
84-15-1	o-Terphenyl	86		49-115

Lab Name: TestAmerica Denver	Job No.: 280-107960-1
SDG No.:	
Client Sample ID: <u>PCS AC18</u>	Lab Sample ID: <u>280-107960-18</u>
Matrix: Solid	Lab File ID: 04091827.D
Analysis Method: <u>8015B</u>	Date Collected: 03/29/2018 13:02
Extraction Method: 3546	Date Extracted: 04/03/2018 07:33
Sample wt/vol: <u>15.0(g)</u>	Date Analyzed: 04/09/2018 23:24
Con. Extract Vol.: <u>1(mL)</u>	Dilution Factor: 1
Injection Volume: <u>1(uL)</u>	GC Column: <u>RTX-1 (30.32)</u> ID: <u>0.25(mm)</u>
% Moisture:	GPC Cleanup:(Y/N) N
Analysis Batch No.: 410664	Units: mg/Kg

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
STL00143	Diesel Range Organics [C10-C28]	20	В	8.0	1.4
STL00255	C10-C36	34	В	8.0	2.0
	·	I			I

CAS NO.	SURROGATE	%REC	Q	LIMITS
84-15-1	o-Terphenyl	88		49-115

Lab Name: TestAmerica Denver	Job No.: 280-107960-1
SDG No.:	
Client Sample ID: <u>PCS AC19</u>	Lab Sample ID: <u>280-107960-19</u>
Matrix: Solid	Lab File ID: 04091828.D
Analysis Method: <u>8015B</u>	Date Collected: 03/29/2018 13:07
Extraction Method: 3546	Date Extracted: 04/03/2018 07:33
Sample wt/vol: 16.2(g)	Date Analyzed: 04/09/2018 23:48
Con. Extract Vol.: <u>1(mL)</u>	Dilution Factor: 1
Injection Volume: <u>1(uL)</u>	GC Column: <u>RTX-1 (30.32)</u> ID: <u>0.25(mm)</u>
% Moisture:	GPC Cleanup:(Y/N) N
Analysis Batch No.: 410664	Units: mg/Kg

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
STL00143	Diesel Range Organics [C10-C28]	17	В	7.4	1.3
STL00255	C10-C36	30	В	7.4	1.8

CAS NO.	SURROGATE	%REC	Q	LIMITS
84-15-1	o-Terphenyl	87		49-115

Lab Name: TestAmerica Denver	Job No.: 280-107960-1
SDG No.:	
Client Sample ID: <u>PCS AC20</u>	Lab Sample ID: <u>280-107960-20</u>
Matrix: Solid	Lab File ID: 04091829.D
Analysis Method: <u>8015B</u>	Date Collected: 03/29/2018 13:14
Extraction Method: 3546	Date Extracted: 04/03/2018 07:33
Sample wt/vol: 16.0(g)	Date Analyzed: 04/10/2018 00:13
Con. Extract Vol.: 1(mL)	Dilution Factor: 1
Injection Volume: <u>1(uL)</u>	GC Column: <u>RTX-1 (30.32)</u> ID: <u>0.25(mm)</u>
% Moisture:	GPC Cleanup:(Y/N) N
Analysis Batch No.: 410664	Units: mg/Kg

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
STL00143	Diesel Range Organics [C10-C28]	20	В	7.5	1.3
STL00255	C10-C36	35	В	7.5	1.9
r	· · · · · · · · · · · · · · · · · · ·	1	-		

CAS NO.	SURROGATE	%REC	Q	LIMITS
84-15-1	o-Terphenyl	86		49-115

Login Sample Receipt Checklist

Client: Waste Management

Login Number: 107960 List Number: 1 Creator: Burtness, Benjamin W

Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	N/A	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time (Excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	N/A	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	True	
Chlorine Residual checked.	N/A	

List Source: TestAmerica Denver

4955 Yarrow Street Arvada, CO 80002 Phone (303) 736-0100 Fax (303) 431-7171	Sampler	0	dy Recor	d	Carrier Tracking No(s):
Client Information	Sampler: D.SHIMIC	S. MICEL	Lab PM: Sara, Betsy A E-Mail:	4	Carrier Tracking No(s):
Steve Miceli	505-97-	4-1947	betsy.sara@	betsy.sara@testamericainc.com	01
Company: Waste Management		. /		Analysis Requested	equested
Address: 1132 33rd Street	Due Date Requested:	81/4/18		-	
City: Rio Rancho	TAT Requested (days):				
State, Zip: NM,87144					
Phone: 505-974-1947	P0 #: Purchase Order Requested	lested	>)		
Email:	WO#				
Project Name:	Project #:28003991				5
3217/Valencia, NM	skip sites/events log all from "Soil"	all from "Soil"			
Sile VIEWENCHA LANDFILL	SSOW#:		-		9620
		Sample	Matrix (Wrwator, illered m MS/	20	eyo O
Sample Identification	Sample Date Ti	Time G=grab) er		TPH-GR VOA TPH-DF Moistur	ITH DIALL
Dre ACI	X		- 100	N N N N	
в.	-	133 (and so the owner where the second		
21	11/10	+		-	
PCS 464	11 81/12/5	HEN C	SV NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN		-
PLS ACS	129/8/	-	2		
PCS ACG	1 31/1201	-		1111	
PCS ACT	3/24/18 12	125 C	5 NJ	1 1 1)	
Acs Acs	8/01/8	0	4 NN		
les Acq		-	S M		
Prs Acio	24044	20	h		
9	ate	-	-		
Identification				Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)	be assessed if samples a
Deliverable Requested: I, II, III, IV, Other (specify)	Poison B Unknown	n Radiological		Special Instructions/QC Requirements:	rements:
Empty Kit Relinquished by:	Date	te:	Time:	R	Method of Shipment
Relinquished y	Datering 29/0	00337	Company	Received by:	Date/Time: 3-30-18
Relinguished by:	Date/Time: 1 5		Company	Received by:	Date/Time:
Reinquished by:	Date/Time:		Company	Received by:	Date/Time:
Custody Seals Intact: Custody Seal No. 2036	0			Cooler Temperature(s) °C and Other Remarks.	S C - O・1 エモ 井谷

4/19/2018

3 4 5

TestAmerica Denver					TestAmerica	Denica
4355 Tarlow Street Arvada, CO 80002 Phone (303) 736-0100 Fax (303) 431-7171	Chain of Custody Record	ody Record	-		THE LEADER IN ENVIRONMENTAL TESTING	DIMENTAL TESTING
Client Information	Sampler HIMIC /S. MICER	Lab PM: Sara, Betsy A		Carrier Tracking No(s):	COC No: 280-41655-12101.1	
Cilent Contact: Steve Miceli	Phone: So Son HANDAN	E-Mail: betsy.sara@te	E-Mail: betsy.sara@testamericainc.com	81/393544122	Page:	
Company: Waste Management		_	lysis	Requested	Job #:	
Address: 1132 33rd Street	Due Date Requested:/ 14/ 18		-		Preservation Codes:	Davann
city: Rio Rancho	TAT Requested (days):				H	N - None O - AsNaO2
State, Zp: NM,87144						- Na2O4S - Na2SO3
Phone: 505-974-1947	Po #: Purchase Order Requested	0)			oid	K - Na2S2SU3 S - H2SO4 T - TSP Dodecahydrate
Email: smiceli@wm.com	WO#:				1 - Ice J - DI Water	U - Acetorie V - MCAA
Project Name: 3217 Valencia, NM	Project #:28003991 skip sites/events log all from "Soil"				L-EDA	vv - pn 4-5 Z - other (specify)
Sin JACONCIA CANDACC	SSOW#:				of co Other:	
	Sample Type Sample (C=comp,	(Wrwater, Smooth, Ind Filtered rform MS/A	H-GRO A H-DRO Isture		tal Number	
Campie Relitionation	Preservation Code:	X	Z		T	opecial instructionstructe.
PCS AC 8	3/25/18 1210 C	S NN			4	
PCS AC 9	3/24/18/12/15 C	SNN	1111		4	
PCS AC 10	3/29/18 1220 C	NNS	11111		~	
PCS ACII	3/26/18 1225 C	S NN	1 1 1		H.	
PCS ACIZ	3/26/18 1230 C	< MN	(4	
PCS AC 13	2	NN 5	1111		1	
PCS AC 14	3/19/8/1241 C	NN S	[[]]		Ц.	
Deceible Hazard Identification		San	nie Disposit / A faa mak		tained lenger than 4	monthi
Non-Hazard Flammable Skin Irritant	Poison B Unknown Radiological		Return To Client	ent Disposal By Lab Archive For Mon	Archive For	Months
0			Special Instructions/QC Requirements:	ments:		
Empty Kij Relinquished by:	Date:	Time:		Method of Shipment:		
Relinquisided by	Date Time: 18 @ 3:40pm	Company	Received by:	Date/Time: 2-3-	-18 0850	Company TA-DE-V Company
Reinquished by:	Date/Time:	Company	Received by:	Date/Time:		Company
Custody Seals Intact: Custody Seal No.: 203	605		Cooler Temperature(s) *C and Other Remarks	er Remarks.		

TestAmerica Denver 4955 Yarrow Street Arvada, CO 80002 phone (303) 736,0400 Eav (303) 431 7474	Chain of Custody Record	tody Recor	ď		TestAmerica
Client Information	Sampler.	Lab PM: Sara, Betsy A		Carrier Tracking No(s):	COC No: 280-41655-12101.1
Client Contact: Steve Miceli	Phone: 50 5-674-194	i	E-Mail: betsy.sara@testamericainc.com	811293544133	Page:
Company: Waste Management		_	lysis	Requested	Job #:
Address: 1132 33rd Street	Due Date Requested:		_		Preservation Codes:
city: Rio Rancho	4				A - HCL B - NaOH C - Zn Acetate
State, Zip: NM,87144					D - Nitric Acid E - NaHSO4
Phone: 505-974-1947	Po #: Purchase Order Requested)			F - MeOH G - Amchlor
Email: smiceli@wm.com	WO#			5	I - Ice J - DI Water
Project Name: 3217/Valencia, NM	Project #:28003991 skip sites/events log all from "Soil"			tainer	
parria 1	SSOW#	-		con	Other:
NACENCIAL CHAMPICC		d Sa		arof	Γ
	Sample	(Wwwater, Filtered	RO	Numbe	
Sample Identification	Sample Date Time G=grab)	BToTissue, A=Air)	TPH-G VOA TPH-D Moistu	Total	Special Instructions/Note:
0	151	Preservation Code: XX	N N N N		
PCS ACIS	3/29/18 1246 (S NU	1111	2	
PCS AC16	3/24/18/1251 C	SWN	(1))	4	
PCS AC 17	3/24/18 1256 C	NN S	1 1 1 1	4	
PCS AC 18		SWN	1111	*	
PCS AR 19	8	NN S	1111		2
pes ne 20	++	SVN	1111		
ification		Sa	Sample Disposal (A fee may be	assessed if samples are retained longer than 1 month)	ined longe
Peliverable Requested: I, II, III, IV, Other (specify)	Poison B 🔟 Unknown 🛄 Radiological		Return To Client Dis Special Instructions/QC Requirements	posal By Lab	Archive For
Empty Kit Relinquished by:	Date:	Time:		Method of Shipment:	
Relinquished by:	1	Company	Received by:		
Relinquished by:	3/20/18 @ 3.5/AV		The Br	Date/Time:	1X 0850
Relinquished by:	Date/Time:	Company	Received by:	Date/Time:	
als Intact: Custody Seal No., 20 3 6	04		Cooler Temperature(s) °C and Other Remarks	r Remarks	
1036	04				

ATTACHMENT 6.7 LandGEM Output (INVENTORY TAB)

Form-Section 6 last revised: 5/3/16

Saved Date: 11/6/2018

INVENTORY

Landfill Name or Identifier: Valencia Regional Landfill

Enter year of emissions inventory:

Coo / Bollystant			Emission Rate		
Gas / Pollutant	(Mg/year)	(m³/year)	(av ft ³ /min)	(ft ³ /year)	(short tons/year)
Total landfill gas	5.256E+03	4.209E+06	2.828E+02	1.486E+08	5.781E+03
Methane	1.404E+03	2.104E+06	1.414E+02	7.431E+07	1.544E+03
Carbon dioxide	3.852E+03	2.104E+06	1.414E+02	7.431E+07	4.237E+03
NMOC	5.204E+00	1.452E+03	9.756E-02	5.128E+04	5.725E+00
1,1,1-Trichloroethane (methyl chloroform) - HAP	1.121E-02	2.020E+00	1.357E-04	7.134E+01	1.233E-02
1,1,2,2-Tetrachloroethane - HAP/VOC	3.232E-02	4.629E+00	3.110E-04	1.635E+02	3.555E-02
1,1-Dichloroethane (ethylidene dichloride) - HAP/VOC	4.158E-02	1.010E+01	6.786E-04	3.567E+02	4.574E-02
1,1-Dichloroethene (vinylidene chloride) - HAP/VOC	3.394E-03	8.417E-01	5.655E-05	2.972E+01	3.733E-03
1,2-Dichloroethane (ethylene dichloride) - HAP/VOC	7.102E-03	1.725E+00	1.159E-04	6.094E+01	7.812E-03
1,2-Dichloropropane (propylene dichloride) - HAP/VOC	3.560E-03	7.575E-01	5.090E-05	2.675E+01	3.916E-03
2-Propanol (isopropyl alcohol) - VOC	5.261E-01	2.104E+02	1.414E-02	7.431E+03	5.787E-01
Acetone	7.117E-02	2.946E+01	1.979E-03	1.040E+03	7.828E-02
Acrylonitrile - HAP/VOC	5.851E-02	2.651E+01	1.781E-03	9.363E+02	6.436E-02
Benzene - No or Unknown Co-disposal - HAP/VOC	2.598E-02	7.996E+00	5.373E-04	2.824E+02	2.858E-02
Benzene - No of Ofiknown Co-disposal - HAP/VOC Benzene - Co-disposal - HAP/VOC	1.504E-01	4.629E+00	3.110E-03	1.635E+03	1.654E-02
Bromodichloromethane - VOC				4.607E+02	
	8.890E-02	1.305E+01	8.766E-04		9.779E-02
Butane - VOC	5.087E-02	2.104E+01	1.414E-03	7.431E+02	5.595E-02
Carbon disulfide - HAP/VOC	7.729E-03	2.441E+00	1.640E-04	8.620E+01	8.502E-03
Carbon monoxide	6.864E-01	5.892E+02	3.959E-02	2.081E+04	7.551E-01
Carbon tetrachloride - HAP/VOC	1.077E-04	1.683E-02	1.131E-06	5.945E-01	1.185E-04
Carbonyl sulfide - HAP/VOC	5.152E-03	2.062E+00	1.386E-04	7.283E+01	5.668E-03
Chlorobenzene - HAP/VOC	4.926E-03	1.052E+00	7.069E-05	3.716E+01	5.418E-03
Chlorodifluoromethane	1.968E-02	5.471E+00	3.676E-04	1.932E+02	2.164E-02
Chloroethane (ethyl chloride) - HAP/VOC	1.468E-02	5.471E+00	3.676E-04	1.932E+02	1.615E-02
Chloroform - HAP/VOC	6.270E-04	1.263E-01	8.483E-06	4.459E+00	6.896E-04
Chloromethane - VOC	1.061E-02	5.050E+00	3.393E-04	1.783E+02	1.167E-02
Dichlorobenzene - (HAP for para isomer/VOC)	5.404E-03	8.838E-01	5.938E-05	3.121E+01	5.944E-03
Dichlorodifluoromethane	3.386E-01	6.734E+01	4.524E-03	2.378E+03	3.725E-01
Dichlorofluoromethane - VOC	4.684E-02	1.094E+01	7.352E-04	3.864E+02	5.152E-02
Dichloromethane (methylene chloride) - HAP	2.082E-01	5.892E+01	3.959E-03	2.081E+03	2.290E-01
Dimethyl sulfide (methyl sulfide) - VOC	8.483E-02	3.283E+01	2.206E-03	1.159E+03	9.331E-02
Ethane	4.685E+00	3.746E+03	2.517E-01	1.323E+05	5.153E+00
Ethanol - VOC	2.178E-01	1.136E+02	7.635E-03	4.013E+03	2.396E-01
Ethyl mercaptan (ethanethiol) - VOC	2.501E-02	9.680E+00	6.504E-04	3.418E+02	2.751E-02
Ethylbenzene - HAP/VOC	8.548E-02	1.936E+01	1.301E-03	6.837E+02	9.403E-02
Ethylene dibromide - HAP/VOC	3.289E-05	4.209E-03	2.828E-07	1.486E-01	3.618E-05
Fluorotrichloromethane - VOC	1.828E-02	3.198E+00	2.149E-04	1.130E+02	2.010E-02
Hexane - HAP/VOC	9.956E-02	2.778E+01	1.866E-03	9.809E+02	1.095E-01
Hydrogen sulfide	2.148E-01	1.515E+02	1.018E-02	5.350E+03	2.362E-01
Mercury (total) - HAP	1.018E-05	1.220E-03	8.200E-08	4.310E-02	1.120E-05
Methyl ethyl ketone - HAP/VOC	8.962E-02	2.988E+01	2.008E-03	1.055E+03	9.858E-02
Methyl isobutyl ketone - HAP/VOC	3.331E-02	7.996E+00	5.373E-04	2.824E+02	3.664E-02
Methyl mercaptan - VOC	2.105E-02	1.052E+01	7.069E-04	3.716E+02	2.316E-02
Pentane - VOC	4.168E-02	1.389E+01	9.331E-04	4.905E+02	4.584E-02
Perchloroethylene (tetrachloroethylene) - HAP	1.074E-01	1.557E+01	1.046E-03	5.499E+02	1.181E-01
Propane - VOC	8.489E-02	4.629E+01	3.110E-03	1.635E+03	9.338E-02
t-1.2-Dichloroethene - VOC	4.751E-02	1.178E+01	7.918E-04	4.161E+02	5.226E-02
Toluene - No or Unknown Co-disposal - HAP/VOC	4.751E-02 6.289E-01	1.641E+02	1.103E-02	4.161E+02 5.796E+03	6.918E-02
Toluene - Co-disposal - HAP/VOC	2.742E+00	7.154E+02	4.807E-02	2.527E+04	3.016E+00
Trichloroethylene (trichloroethene) - HAP/VOC	6.440E-02	1.178E+01	7.918E-04	4.161E+02	7.084E-02
Vinyl chloride - HAP/VOC Xylenes - HAP/VOC	7.986E-02 2.230E-01	3.072E+01 5.050E+01	2.064E-03 3.393E-03	1.085E+03 1.783E+03	8.785E-02 2.453E-01
	2.2301-01	3.0302101	3.3332-03	1.7052105	2.4331-01

ATTACHMENT 6.8 TIER 2 LANDFILL GAS SAMPLING REPORT

17 W. Wetmore Road, Suite 310, Tucson, AZ 85705 T 877.633.5520 | F 520.888.4804 | W www.cornerstoneeg.com

March 11, 2016

Ms. Renae Held New Mexico Environment Department Air Quality Bureau 525 Camino de los Marquez, Suite 1 Santa Fe, New Mexico, 87505-1816

Re: Tier 2 Landfill Gas Sampling Report, AI number 21664 Valencia Landfill – Los Lunas, New Mexico

Dear Ms. Held:

On behalf of our client, Waste Management of New Mexico, Inc., Cornerstone Environmental (Cornerstone) is submitting the attached Tier 2 Landfill Gas Sampling Report for the Valencia Landfill located in Los Lunas, New Mexico. We will be sending an original hard copy of the report to you for your use.

The New Source Performance Standards (NSPS) (40 CFR Part 60, Subpart WWW) require facilities to test and submit a Tier 2 report containing the site-specific non-methane organic compound (NMOC) concentration every five years. Cornerstone conducted a Tier 2 NMOC test at the San Juan Landfill from January 14 through January 15, 2016.

The Tier 2 test was performed to determine the current site-specific concentration of NMOCs for use in calculating the landfill's NMOC emission rate. The NMOC emission rate was estimated using the United States Environmental Protection Agency (EPA) Landfill Gas Emissions Model and the site-specific NMOC concentration. The Tier 2 results indicate that the NMOC emission rate will be below the regulatory compliance limit of 50 megagrams per year (Mg/yr) for the next five years (through 2020). Per 40 CFR Section 60.757(b)(1) of the NSPS, no further NMOC emissions estimating is required until the year 2021, unless the actual refuse acceptance rate exceeds the estimated value used in the calculations and the site exceeds 50 Mg/yr. A copy of the Tier 2 NMOC Emission Rate Report will be placed in the site's operating record for this facility.

During the course of your review, if you need any additional information or have any questions, please do not hesitate to call me at 630-633-5806.

Sincerely,

Cornerstone Environmental Group, LLC

Craig W. Young, P.E. Project Manager

Attachments

cc: Rod Walter, Waste Management of New Mexico Steve Miceli, Los Lunas Landfill

Building lifetime relationships with our clients and employees.

Tier 2 Landfill Gas Sampling Report Valencia Landfill

March 2016

Prepared for: Waste Management of New Mexico, Inc. Valencia Landfill 1600 W Highway 6 Los Lunas, NM 87031

7 W. Wetmore Road, Suite 310 Tucson, Arizona 85705 (520) 888-4800

REPORT CERTIFICATION

Tier 2 Landfill Gas Sampling Report

Valencia Landfill Los Lunas, New Mexico

The material and data in this report were prepared under the supervision and direction of the undersigned.

Cornerstone Environmental Group, LLC

W.

Craig W. Young, P.E. Project Manager

to U

Garth R. Bowers, P.E. Technical Director / Certifying Engineer

TABLE OF CONTENTS

REP	ORT CERTIFICATION	H
LIST	OF TABLES, FIGURES AND DRAWINGS	V
1	EXECUTIVE SUMMARY	5
2	INTRODUCTION	6
3	FIELD PROCEDURES	7
4	LABORATORY RESULTS	9
5	NMOC EMISSION RATE CALCULATION 1	1
6	CONCLUSIONS 1	2
LIMI	TATIONS 1	3
FIGU	IRES 1	4

APPENDICES

APPENDIX A FIELD DATA AND LOGS

APPENDIX B LABORATORY RESULTS

APPENDIX C TIER 2 NMOC EMISSION RATE CALCULATIONS (LANDGEM MODEL)

List of Tables, Figures and Drawings

Tables

- 1 SAMPLE LOCATIONS
- 2 SUMMARY OF LABORATORY METHOD 3C RESULTS
- 3 SUMMARY OF LABORATORY METHOD 25C RESULT
- 4 NMOC EMISSION RATE

Figures

- 1 SITE LOCATION
- 2 SAMPLE LOCATIONS MAP

1 EXECUTIVE SUMMARY

Cornerstone Environmental Group, LLC (Cornerstone) conducted a Tier 2 landfill gas (LFG) sampling event at the Valencia Regional Landfill (VRLF) located in unincorporated Valencia County approximately 13 miles west of Los Lunas, New Mexico on January 14 and 15, 2016. This is the first Tier 2 sampling performed at the VRLF. A total of 21 samples were taken from the landfill and analyzed by ALS laboratories for Non-Methane Organic Compounds (NMOC) as Hexane. The average NMOC concentration for the samples was 345 parts per million by volume (ppmv) as Hexane. Cornerstone used this NMOC concentration and waste acceptance rates through 2015 provided by Waste Management of New Mexico, Inc. (WMNM) to update the US Environmental Protection Agency (EPA) LFG Emission Model Version 3.02 (LandGEM) model for the site. Based on the LandGEM model, the NMOC emission rate for the VRLF for 2015 was 5.95 Megagrams per year (Mg/yr). The VRLF NMOC emission rate in 2015 is below the New Source Performance Standards (NSPS) emission threshold of 50 Mg/yr and is not expected to exceed the 50 Mg/yr emission threshold over the next five years.

2 INTRODUCTION

The Valencia Regional Landfill (VRLF) is a MSWLF owned and operated by Waste Management of New Mexico, Inc. (WMNM) located approximately fifteen miles southwest of Los Lunas, New Mexico, as shown in Figure 1. The VRLF has been in operation since 1988, accepting non-hazardous solid waste materials, including household, municipal, commercial, industrial, and construction/demolition wastes. Operations are conducted according to an approved engineering design and operations plan, which includes compaction and daily cover of landfilled wastes with soil. To date, approximately 18.4 acres (7.4 hectares) of permitted disposal area have received wastes that are more than two years old. Soil cover has been installed over the landfill wastes.

Based on the cumulative waste placed at the VRLF through the end of 2015, the VRLF triggered the 50 Mg/year threshold using the U.S. EPA Tier 1 analysis. As a result, either an active gas collection and control system (GCCS) needed to be installed or the initial Tier 2 testing procedure needed to be implemented. WMNM selected to perform the initial Tier 2 for the landfill.

Cornerstone Environmental Group, LLC (Cornerstone) conducted the initial Tier 2 landfill gas (LFG) sampling event at the VRLF located in Los Lunas, New Mexico on January 14 and 15, 2016. This report summarizes the field sampling, analytical results, and emissions estimates in support of a Tier 2 evaluation of NMOC emissions at the VRLF.

The VRLF operates under Title V Operating Permit (Title V Permit) Number P247L, issued by the New Mexico Environmental Department (NMED). Now that the VRLF has triggered the 50 Mg/year level using the Tier 1 approach and has entered in to the Tier 2 program, the Title V permit, the Title V Permit requires the VRLF to periodically submit an NMOC emissions estimate report and retest NMOC concentrations every five years in accordance with 40 Code of Federal Regulations (CFR) §60.754(a)(3) of the NSPS. This report is intended to satisfy Title V permit reporting requirements in addition to NSPS requirements.

This NMOC emission rate calculation has been updated based on site-specific NMOC concentrations determined during field-testing in January 2016 to yield a more site specific estimate of NMOC emissions for the VRLF. The results of this calculation were then used to project the annual NMOC emissions and determine if the facility will exceed 50 Mg/yr over the next five years; therefore, subjecting the VRLF to the GCCS requirements of the NSPS.

This report is intended to serve as a presentation of the Tier 2 sampling results and a fiveyear NMOC emission rate report for years 2016 through 2020. Included in this report is a description of the field procedures used to collect LFG field samples for laboratory analysis, the laboratory analytical results and data interpretation, a revised NMOC emission rate calculation, and a discussion of the Tier 2 sampling results.

3 FIELD PROCEDURES

In accordance with the NSPS [40 CFR §60.754(a)(3)], the Tier 2 sampling protocol requires sampling at a frequency of two samples for every hectare of landfill that has retained waste for at least two years, up to a maximum of 50 samples. The standard Tier 2 method requires penetrating the landfill surface and the interim cover.

A total of 15 sampling points were selected on an evenly spaced pattern across the VRLF, which has 18.4 acres (7.4 hectares) of landfill surface that have retained waste for at least 2 years. Sampling locations consisted of areas where waste has been in place for more than 2 years, but did not include areas which are known to be landfilled with non-degradable construction debris wastes. Areas with steep side slopes (greater than 3 horizontal: 1 vertical) or which were deemed unsafe due to weather conditions were avoided in selecting sampling locations due the potential for unsafe conditions with the direct push rig (GeoprobeTM). All sampling points where marked on the landfill by the WMNM site personnel or Cornerstone personnel using a global positioning system. The sampling locations are summarized in Table 1. Figure 2 illustrates the location of each sampling point.

All samples were collected on January 14 and 15, 2016. Field sampling was conducted in a manner consistent with EPA Air Quality Test Method 25C, Determination of NMOC in Landfill Gas (Method 25C). Soil gas samples were collected through the use of a direct push rig (Geoprobe[™]) operated by Alpine Remediation, Inc. The direct push rig was equipped with a soil gas sampling probe that was driven into the subsurface using a pneumatic hammer. A 1.25-inch diameter vapor sampling probe sampler with 3-foot extensions was driven to an appropriate depth of 8 feet below the ground surface for sample collection to ensure a minimum depth of 3 feet below the bottom of the landfill cover in conformance with Method 25C sampling requirements. The sampling rod was raised approximately one foot to allow the tip to open to allow gas to flow through the sampling rod giving a sample depth of approximately 7 feet below the ground surface. Due to gas quality (i.e., elevated oxygen or balance gas levels) at certain locations, sampling depth was increased up to a maximum depth of 24 feet below grade to obtain a sample.

Prior to collecting the LFG samples, a Landtec GEM-5000® portable monitoring unit, was used to measure methane, carbon dioxide, oxygen, and balance gas (assumed to be nitrogen) concentrations as a check for any indication of air intrusion in the landfill and potentially in the LFG sample collected. The concentrations were observed to be within the limits allowed under EPA Method 25C for NSPS Tier 2 testing. If oxygen levels were above 5% or balance gas was above 20%, air infiltration into the landfill was assumed and a sample was not taken. If oxygen levels were below 5% or balance gas was below 20%, the sample was considered to have no air infiltration and was collected for analysis.

Rev. 0, 3/11/16 Project 150780

A total of 7, six-liter Summa® canisters were used to collect 15 LFG samples plus 6 duplicate samples from within the waste mass older than 2 years. All samples were collected in stainless steel Summa canisters partially filled with helium under negative pressure by the analytical laboratory. All of the steel canisters were leak-tested by the analytical laboratory to verify that the valve and collection port on each tank was not leaking. Each canister was used to collect composite samples of three samples per canister. Due to sampling conditions, one canister had less than three samples per canister and one canister had four samples. The canisters were filled at a rate of approximately 500 milliliters per minute (ml/min) or less at each sample location until 1 liter of sample was collected. Equal volumes of LFG were collected at each location and included in a composite sample by collecting 1 liter of gas from each sample location. Each canister was documented in a field log with the laboratory canister number and sampling point. Date, time, depth of the sampling point, and initial sampling vacuum were also recorded in field logs. A copy of the field log is provided in Appendix A.

Sample Point	Latitude	Longitude
1	N34.43.239	W107.02.315
2	N34.43.206	W107.02.287
3	N34.43.176	W107.02.305
4	N34.43.177	W107.02.354
5	N34.43.163	W107.02.400
6	N34.43.175	W107.02.449
7	N34.43.320	W107.02.499
8	N34.43.245	W107.02.443
9	N34.43.244	W107.02.374
10	N34.43.29	W107.02.370
11	N34.43.229	W107.02.358
11D	N34.43.229	W107.02.358
12	N34.43.232	W107.02.386
12D	N34.43.232	W107.02.386
13	N34.43.216	W107.02.336
13D	N34.43.216	W107.02.336
14	N34.43.207	W107.02.403
14D	N34.43.207	W107.02.403
15	N34.43.227	W107.02.450
15D	N34.43.227	W107.02.450

8

TABLE 1 - SAMPLE LOCATIONS

Note: Sample Points with a "D" indicate a duplicate sample.

4 LABORATORY RESULTS

LFG samples were packaged by the sampler and shipped by Federal Express to ALS laboratory (ALS) in Simi Valley, California, for analysis by Method 25C and Method 3C (CFR, 2007 Appendix A). All samples were processed in the laboratory with a gas chromatographic column to separate NMOCs from fixed gases. Consistent with Method 25C quality control requirements, each sample was first tested according to Method 3C (CFR 2007, Appendix A) protocols for nitrogen and oxygen concentration using a thermal conductivity detector. The laboratory report for the Method 25C and 3C results is provided in Appendix B. A summary of Method 3C and Method 25C results is provided in Tables 2 and 3 respectively.

Pressurization of the Summa® canisters with helium was performed in the laboratory prior to analysis. The laboratory results are reported as total NMOC by volume as carbon and have been corrected for temperature and pressure as indicated by the dilution factor incorporated within the laboratory results.

The laboratory results were also corrected for the moisture content and measured nitrogen content present in the samples as discussed in EPA Method 25C. The moisture content of the LFG was determined based upon default EPA Method 25C specifications. Oxygen and nitrogen content for each sample was obtained from the EPA Method 3C test results.

None of the seven summa canisters analyzed were identified to contain oxygen concentrations greater than 5 percent by volume and, therefore, all samples were deemed to be acceptable samples. See Table 2 for Method 3C results.

A weighted average of the NMOC concentration (parts per million by volume [ppmv] as carbon) for each sample was calculated. Results were within the acceptable range of data collected at landfills. This value was then divided by six to convert from ppmv NMOC as carbon to ppmv NMOC as hexane and used as the site-specific NMOC concentration for the VRLF.

The Method 25C results revealed that the average NMOC concentration at the VRLF ranged from 190 to 450 parts per million-hexane (ppmh) for all samples analyzed. The weighted average NMOC concentration was identified to be 345 ppmh for all samples. The average NMOC concentration of 345 ppmh for acceptable samples was used to evaluate NMOC emissions consistent with Tier 2 protocols. See Table 3 for Method 25C results.

Lab Sample ID	Sample Points	Percent O ₂	Percent N ₂	Percent CH ₄	Percent CO ₂
P1600639-001	7, 2	1.97	15.1	41.1	41.8
P1600639-002	3, 4, 8D	2.30	25.2	36.0	36.3
P1600639-003	5, 6, 15, 15D	1.26	5.16	50.7	42.4
P1600639-004	8, 12, 12D	0.384	2.30	56.3	40.7
P1600639-005	9, 11, 11D	0.799	3.92	55.5	39.5
P1600639-006	14, 14D, 12	0.422	1.86	54.6	42.9
P1600639-007	13, 13D, 1	0.497	2.54	54.9	41.9

TABLE 2 - SUMMARY OF LABORATORY METHOD 3C RESULT

Note: Sample Points with a "D" indicate a duplicate sample.

TABLE 3 - SUMMARY OF LABORATORY METHOD 25C RESULT

Lab Sample ID	Sample Points	С _{ммос} as Hexane (ppm)
P1600639-001	7,2	330
P1600639-002	3, 4, 8D	330
P1600639-003	5, 6, 15, 15D	190
P1600639-004	8, 12, 12D	450
P1600639-005	9, 11, 11D	430
P1600639-006	14, 14D, 12	350
P1600639-007	13, 13D, 1	380

Note: Sample Points with a "D" indicate a duplicate sample.

5 NMOC EMISSION RATE CALCULATION

A revised NMOC emission rate calculation was performed with the site-specific NMOC concentration. The calculation was performed using the LandGEM (Clean Air Act [CAA] default values – k=0.02/year and $L_0=170 \text{ m}^3/\text{Mg}$), the site-specific NMOC concentration (345 ppmv), historical waste receipts for degradable solid waste, and the projected future waste acceptance rates (2016 – 2020) for VRLF. Waste acceptance rates for 2015 and prior were provided by WMNM. Table 4 below details the projected NMOC emission rates for 2015 through 2020.

The equation specified in 40 CFR 60.754 when the year to year solid waste acceptance rate is known is displayed below:

 $M_{NMOC} = \sum 2 k L_o M_i (e^{-kti}) (C_{NMOC}) (3.6 x 10^{-9})$

where:

 M_{NMOC} = Total emission rate from landfill – (Mg/yr)

k = Methane generation constant = 0.02/yr (representative of an arid climate.)

 L_o = Methane generation potential = 170 cubic meters per Megagram (m³/Mg)

 M_i = Mass of waste in the ith section – Mg

 t_i = Age of the ith section of waste - years

 C_{NMOC} = Site-specific NMOC concentration of 345 ppmv, as determined from sample analyses.

Year	Projected Disposal (tons)	Refuse in Place (Mg)	(Mg/yr)	(m³/yr)
2015		783,078	5.95	1,658
2016	61,500	858,844	6.50	1,812
2017	61,900	934,609	6.86	1,962
2018	62,500	1,010,375	7.22	2,110
2019	63,200	1,086,140	7.58	2,254
2020	63,900	1,161,905	7.94	2,396

 TABLE 4 - NMOC EMISSION RATE

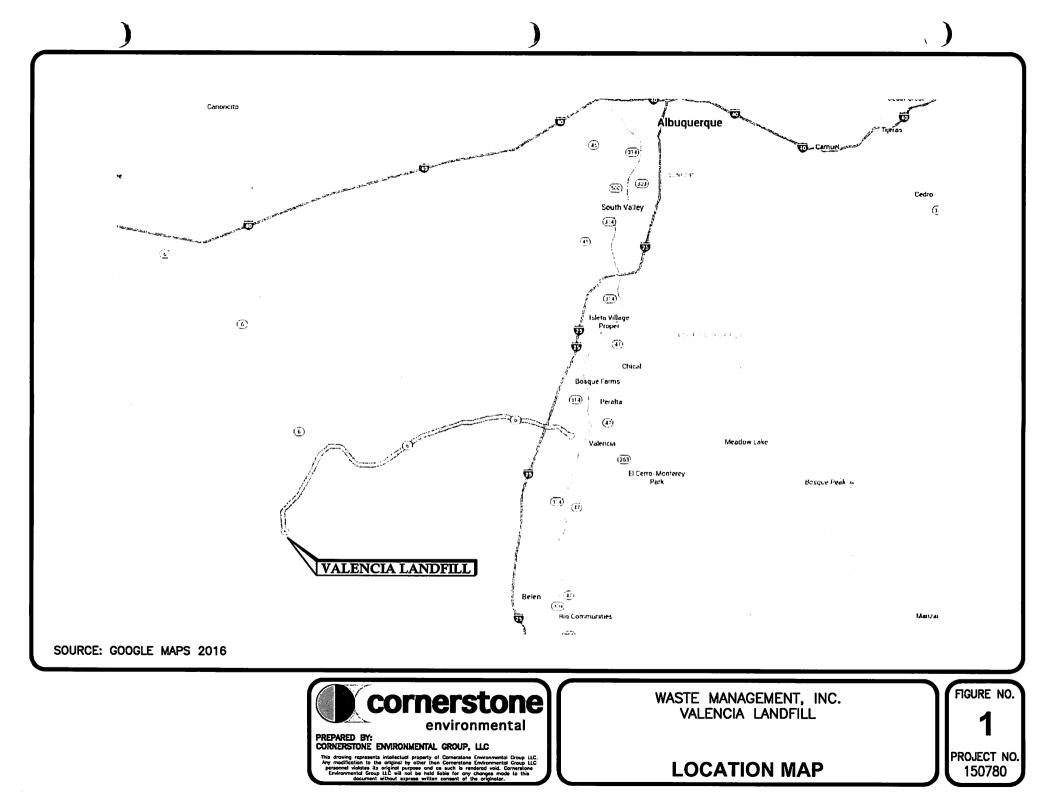
6 CONCLUSIONS

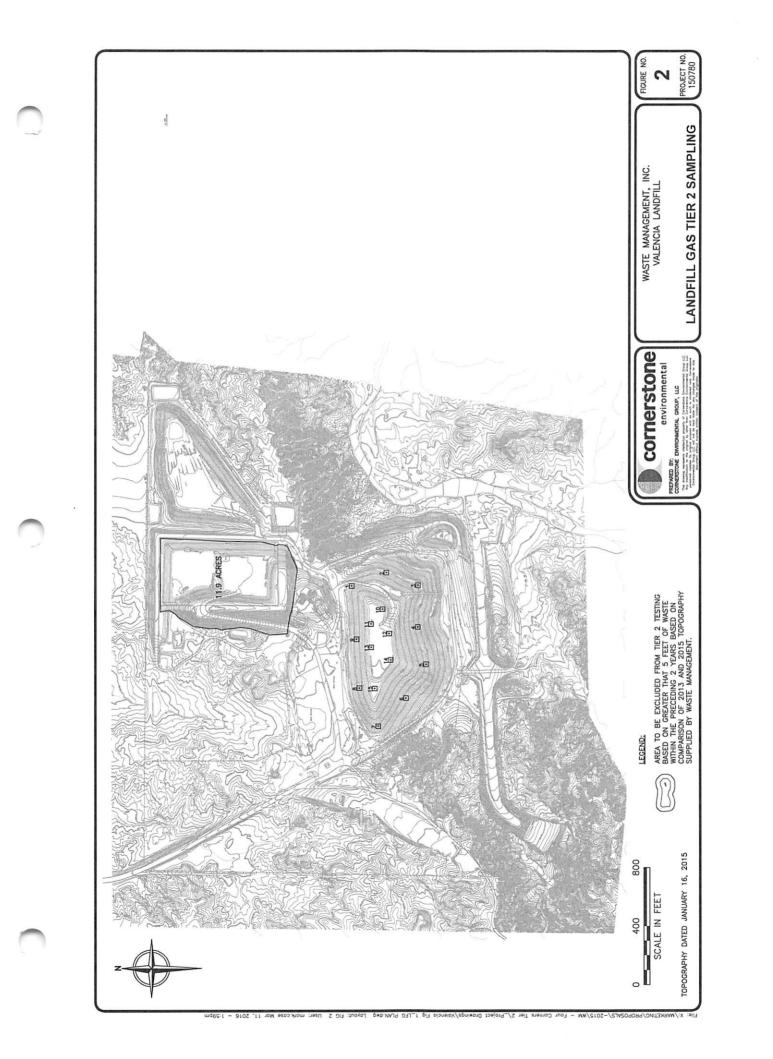
Based on the site-specific NMOC concentration determined by this Tier 2 LFG sampling event, the results of the Tier 2 calculation indicate that the NMOC emission rate for VRLF in 2015 and 2016 is below the NSPS emission threshold of 50 Mg/yr is not expected to exceed the 50 Mg/yr threshold limit value over the next five years. According to the LandGEM model results, the VRLF is not expected to exceed the NSPS emission threshold limit of 50 Mg/yr during the LandGEM model limit of 2067. In the event that actual waste acceptance rates differ significantly than those estimated in this report, VRLF will recalculate the NMOC emission rate using the NMOC concentration determined in this report and actual waste acceptance.

Per this report, as of February 2016, the VRLF is not projected to be over the NSPS threshold of 50 Mg/yr for the five year period of 2016 to 2020 and will not be subject to the requirements of NSPS within this timeframe. The VRLF will plan to conduct a new Tier II sampling event by January 7, 2021.

LIMITATIONS

The work product included in the attached was undertaken in full conformity with generally accepted professional consulting principles and practices and to the fullest extent as allowed by law we expressly disclaim all warranties, express or implied, including warranties of merchantability or fitness for a particular purpose. The work product was completed in full conformity with the contract with our client and this document is solely for the use and reliance of our client (unless previously agreed upon that a third party could rely on the work product) and any reliance on this work product by an unapproved outside party is at such party's risk.


The work product herein (including opinions, conclusions, suggestions, etc.) was prepared based on the situations and circumstances as found at the time, location, scope and goal of our performance and thus should be relied upon and used by our client recognizing these considerations and limitations. Cornerstone shall not be liable for the consequences of any change in environmental standards, practices, or regulations following the completion of our work and there is no warrant to the veracity of information provided by third parties, or the partial utilization of this work product.



Rev. 0, 3/11/16 Project 150780

FIGURES

APPENDIX A FIELD DATA AND LOGS

Cornerstone Environmental Group, LLC Tier 2 Sampling Log

LANDFILL NAME:	Los Lunas Landfill	Meter:	GEM 5000	
CLIENT:	Waste Management	Probe:	Stainless Steel Sampling Rod	
CLIENT FIELD REP:		Flowmeter:	Sample Train Rotameter	
PROJECT START DATE:	14-Jan-16	Vac. Gauge	Sample Train Gauge	
		Sample Tech:	Albrecht	

					FIELD	GAS ANALYS	IS (VIA GEM	5000)	SAM	PLE COLLECTIO	N SUMMA CANI ml/min)	NISTER					
DATE	SAMPLE NO.	Sample Depth (ft)			<20% N2	<5% O2	CH4	CO2	SCC I.D.	INITIAL PRESSURE (inHg)	FINAL PRESSURE (inHg)	AMOUNT (inHg)	SAMPLE START TIME	Latitude	Longitude	Outside TEMP. (F)	Barometric Prossuro
1/14/2016	7	10			5.2	0.8	49.6	44.4	767	-13.15	-0.79	-12.36	0925	N34.43.320	W107.02.499	25	24.59
1/14/2016	2	24			 12.8	0.0	45.7	41.4	767	-0.79	0.00	-0.79	1025	N34.43.206	W107.02.287	24	24.46
1/14/2016	3	24			19.9	0.1	41.5	38.6	603	-11.65	-2.70	-8.95	1430	N34.43.176	W107.02.305	54	24.37
1/14/2016	4	16			 0.0	0.1	53.8	46.0	603	-2.70	-0.41	-2.29	1500	N34.43.177	W107.02.354	54	24.37
1/14/2016	5	16			0.0	0.1	54.5	45.2	010	-12.71	-8.57	-4.14	1533	N34.43.163	W107.02.400	54	24.37
1/14/2016	6	16			 0.0	0.0	51.5	48.4	010	-8.57	-4.53	-4.04	1608	N34.43.175	W107.02.449	54	24.37
1/15/2016	15	16			0.0	0.0	54.5	45.5	010	-4.53	-1.21	-3.32	0830	N34.43.227	W107.02.450	21	24.36
1/15/2016	15D	16	Duplicate	Sample	0.0	0.1	54.2	45.8	010	-1.21	-0.10	-1.11	0835	N34.43.227	W107.02.450	21	24.36
1/15/2016	8	16			 0.0	0.0	55.8	44.1	197	-13.30	-8.24	-5.06	0850	N34.43.245	W107.02.443	21	24.35
1/15/2016	8D	16	Duplicate	Sample	0.0	0.5	55.7	44.3	603	-1.20	0.00	-1.20	0900	N34.43.245	W107.02.443	21	24.35
1/15/2016	12	16			0.0	0.0	58.9	40.7	197	-8.24	-4.06	-4.18	0915	N34.43.232	W107.02.386	25	24.35
1/15/2016	12D	16	Duplicate	Sample	 0.0	0.0	56.5	43.5	197	-4.06	-0.19	-3.87	0925	N34.43.232	W107.02.386	25	24.35
1/15/2016	9	16			 0.0	2.6	57.5	42.5	307	-13.22	-8,97	-4.25	0945	N34.43.244	W107.02.374	25	24.35
1/15/2016	11	16			0.3	0.0	58.8	38.2	307	-8.97	4.56	-4.41	1005	N34.43.229	W107.02.358	32	24.38
1/15/2016	11D	16	Duplicate	Sample	 0.0	0.2	56.3	43.7	307	-4.56	-0.38	-4.18	1015	N34.43.229	W107.02.358	32	24.38
1/15/2016	14	16			 0.0	0.0	54.5	45.4	1006	-13.05	-8.93	-4.12	1030	N34.43.207	W107.02.403	32	24.38
1/15/2016	14D	16	Duplicate	Sample	0.0	0.0	54.2	45.8	1006	-8.93	-4.90	-4.03	1035	N34.43.207	W107.02.403	36	24.38
1/15/2016	10	16			0.0	0.1	55.5	44.5	1006	-4.90	-1.18	-3.72	1045	N34.43.29	W107.02.370	41	24.38
1/15/2016	13	16			 0.0	0.1	54.7	45.3	149	-13.00	-8.18	-4.82	1105	N34.43.216	W107.02.336	41	24.38
1/15/2016	13D	16	Duplicate	Sample	 0.0	0.0	54.9	45.2	149	-8.78	-4.93	-3.85	1115	N34.43.216	W107.02.336	41	24.38
1/15/2016	1	20			 0.0	0.0	55.7	44.2	149	-4.93	-0.92	-4.01	1130	N34.43.239	W107.02.315	43	24.38

APPENDIX B LABORATORY RESULTS

2655 Park Center Dr., Suite A Simi Valley, CA 93065 T: +1 805 526 7161 F: +1 805 526 7270 www.alsglobal.com

LABORATORY REPORT

February 22, 2016

Craig Young Cornerstone Environmental Group, LLC 17 West Wetmore Road, Suite 310 Tucson, AZ 85705

RE: Los Lunas Landfill

Dear Craig:

Enclosed are the results of the samples submitted to our laboratory on February 8, 2016. For your reference, these analyses have been assigned our service request number P1600639.

All analyses were performed according to our laboratory's NELAP and DoD-ELAP-approved quality assurance program. The test results meet requirements of the current NELAP and DoD-ELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP and DoD-ELAP-accredited analytes, refer to the certifications section at www.alsglobal.com. Results are intended to be considered in their entirety and apply only to the samples analyzed and reported herein.

If you have any questions, please call me at (805) 526-7161.

Respectfully submitted,

ALS | Environmental

By Sue Anderson at 10:13 am, Feb 22, 2016

Sue Anderson Project Manager

2655 Park Center Dr., Suite A Simi Valley, CA 93065 **T:** +1 805 526 7161 **F:** +1 805 526 7270 www.alsglobal.com

Client: Cornerstone Environmental Group, LLC Project: Los Lunas Landfill Service Request No: P1600639

CASE NARRATIVE

The samples were received intact under chain of custody on February 8, 2016 and were stored in accordance with the analytical method requirements. Please refer to the sample acceptance check form for additional information. The results reported herein are applicable only to the condition of the samples at the time of sample receipt.

Fixed Gases Analysis

The samples were analyzed for fixed gases (hydrogen, oxygen, nitrogen, carbon monoxide, methane and carbon dioxide) according to modified EPA Method 3C (single injection) using a gas chromatograph equipped with a thermal conductivity detector (TCD). This procedure is described in laboratory SOP VOA-EPA3C. This method is included on the laboratory's DoD-ELAP scope of accreditation, however it is not part of the NELAP or AIHA-LAP accreditation.

Total Gaseous Non-Methane Organics as Hexane Analysis

The samples were also analyzed for total gaseous non-methane organics as hexane according to modified EPA Method 25C. The analyses included a single sample injection (method modification) analyzed by gas chromatography using flame ionization detection/total combustion analysis. This method is not included on the laboratory's NELAP, DoD-ELAP, or AIHA-LAP scope of accreditation.

The results of analyses are given in the attached laboratory report. All results are intended to be considered in their entirety, and ALS Environmental (ALS) is not responsible for utilization of less than the complete report.

Use of ALS Environmental (ALS)'s Name. Client shall not use ALS's name or trademark in any marketing or reporting materials, press releases or in any other manner ("Materials") whatsoever and shall not attribute to ALS any test result, tolerance or specification derived from ALS's data ("Attribution") without ALS's prior written consent, which may be withheld by ALS for any reason in its sole discretion. To request ALS's consent, Client shall provide copies of the proposed Materials or Attribution and describe in writing Client's proposed use of such Materials or Attribution. If ALS has not provided written approval of the Materials or Attribution within ten (10) days of receipt from Client, Client's request to use ALS's name or trademark in any Materials or Attribution shall be deemed denied. ALS may, in its discretion, reasonably charge Client for its time in reviewing Materials or Attribution requests. Client acknowledges and agrees that the unauthorized use of ALS's name or trademark may cause ALS to incur irreparable harm for which the recovery of money damages will be inadequate. Accordingly, Client acknowledges and agrees that a violation shall justify preliminary injunctive relief. For questions contact the laboratory.

2655 Park Center Dr., Suite A Simi Valley, CA 93065 T: +1 805 526 7161 F: +1 805 526 7270 www.alsglobal.com

ALS Environmental - Simi Valley

CERTIFICATIONS, ACCREDITATIONS, AND REGISTRATIONS

Agency	Web Site	Number
АІНА	http://www.aihaaccreditedlabs.org	101661
Arizona DHS	http://www.azdhs.gov/lab/license/env.htm	AZ0694
DoD ELAP	http://www.pjlabs.com/search-accredited-labs	L15-398
Florida DOH (NELAP)	http://www.doh.state.fl.us/lab/EnvLabCert/WaterCert.htm	E871020
Maine DHHS	http://www.maine.gov/dhhs/mecdc/environmental-health/water/dwp- services/labcert/labcert.htm	2014025
Minnesota DOH (NELAP)	http://www.health.state.mn.us/accreditation	977273
New Jersey DEP NELAP)	http://www.nj.gov/dep/oqa/	CA009
New York DOH	http://www.wadsworth.org/labcert/elap/elap.html	11221
Oregon PHD (NELAP)	http://public.health.oregon.gov/LaboratoryServices/EnvironmentalLaborat oryAccreditation/Pages/index.aspx	4068-001
Pennsylvania DEP	http://www.depweb.state.pa.us/labs	68-03307 (Registration)
Texas CEQ (NELAP)	http://www.tceq.texas.gov/field/qa/env_lab_accreditation.html	T104704413- 15-6
Utah DOH (NELAP)	http://www.health.utah.gov/lab/labimp/certification/index.html	CA01627201 5-5
Washington DOE	http://www.ecy.wa.gov/programs/eap/labs/lab-accreditation.html	C946

Analyses were performed according to our laboratory's NELAP and DoD-ELAP approved quality assurance program. A complete listing of specific NELAP and DoD-ELAP certified analytes can be found in the certifications section at <u>www.alsglobal.com</u>, or at the accreditation body's website.

Each of the certifications listed above have an explicit Scope of Accreditation that applies to specific matrices/methods/analytes; therefore, please contact the laboratory for information corresponding to a particular certification.

DETAIL SUMMARY REPORT

Count: Project ID:

Cornerstone Environmental Group, LLC Los Lunas Landfill

Service Request: P1600639

:	2/8/2016
:	09:15

riojou ib.	Dos Dunus Dund									E
Date Received:	2/8/2016							s Can		
Time Received:	09:15							Modified - Fxd Gases	TCNA	
			Date	Time	Container	Pil	Pfl	Σ	2	
								1 7 1		
Client Sample ID	Lab Code	Matrix	Collected	Collected	ID	(psig)	(psig)	30	250	3
Client Sample ID 7, 2	Lab Code P1600639-001	Matrix Air	Collected 1/14/2016	Collected 10:25	ID SC00767	(psig) -1.81	(psig) 1.82	X		
·····										<
7, 2	P1600639-001	Air	1/14/2016	10:25	SC00767	-1.81	1.82	x	> >	< { {
7, 2 3, 4, 8 (dupl)	P1600639-001 P1600639-002	Air Air	1/14/2016 1/14/2016	10:25 15:00	SC00767 SC00603	-1.81 -1.62	1.82 2.18	x x	> > >	< < <
7, 2 3, 4, 8 (dupl) 5, 6, 15, 15 (dupl)	P1600639-001 P1600639-002 P1600639-003	Air Air Air	1/14/2016 1/14/2016 1/15/2016	10:25 15:00 08:35	SC00767 SC00603 SSC00010	-1.81 -1.62 -1.59	1.82 2.18 1.78	x x x x		
7, 2 3, 4, 8 (dupl) 5, 6, 15, 15 (dupl) 8, 12, 12 (dupl)	P1600639-001 P1600639-002 P1600639-003 P1600639-004	Air Air Air Air	1/14/2016 1/14/2016 1/15/2016 1/15/2016	10:25 15:00 08:35 09:25	SC00767 SC00603 SSC00010 SSC00197	-1.81 -1.62 -1.59 -1.69	1.82 2.18 1.78 1.50	x x x x x		
7, 2 3, 4, 8 (dupl) 5, 6, 15, 15 (dupl) 8, 12, 12 (dupl) 9, 11, 11 (dupl)	P1600639-001 P1600639-002 P1600639-003 P1600639-004 P1600639-005	Air Air Air Air Air	1/14/2016 1/14/2016 1/15/2016 1/15/2016 1/15/2016	10:25 15:00 08:35 09:25 10:15	SC00767 SC00603 SSC00010 SSC00197 SSC00307	-1.81 -1.62 -1.59 -1.69 -1.94	1.82 2.18 1.78 1.50 1.45	x x x x x x x		

•••

Sample Train Gauge Abrecht

								e	•	ing Lo	5								د کا م _ق
	ANDFILL N	AME:			Los Lune				-	Meter:		GEM 5000			-				
	lient: Lient fiel				vvaste Na	anagement			-	Probe: Flowmeter		Stainless Sta Sample Trail	el Sampling i Rotameter	100	-			ትገነ	600
	ROJECT S		TE:		14-Jan-10	5				Vac. Gaug		Sample Trai			-			, Y	•
							-		•	Sample Te		Abrecht			-	1		•	
Г				PRESAM	PLING SYS1 (<500mUmir	TEM PURGE	FIELDO	AS ANALYS		4 5000)	SAM	PLE COLLECTI	ON SUMMA CAN	NISTER					
	DATE	SAMPLE NO.	Sampie Depth (R)	START (Time)	END (Time)	AMOUNT (Time)	<20% N2	<5% O2	СН4	C02	SCC I.D.	INITIAL PRESSURE (nHg)	FINAL PRESSURE (mitg)	AMOUNT (nHg)	SAMPLE START TIME	Lattude	Langitude	Outside TEMP. (F)	Barometric Prossure
Γ	1/14/2016	7	10				5.2	0.8	49.6	44.4	767	-13,15	-0.79		0925	N34 43.320	W107 02.499	25	24.59
	1/14/2016	2	24		i		12.8	0.0	45.7	41.4	767	-0.79	0.00	1	1025	43.208	02.287	24	24.46
	1/14/2016	3	24-				19.9	0.1	41.5	38.6	603	-11.65	-2.70		1430 ·	43.176	02.305	54	24.37
	1/14/2016	4	16				0.0	0.1	53.8	46.0	603	-2.70	-0.41		1500	43.177	02.354	54	24.37
	1/14/2015	5	16				0.0	0.t	54.5	45.2	010	-12 71	-8.57		1533	43.163	02.400	54	24.37
	1/14/2016	6	16				0.0	0.0	51.5	48.4	010	-8.67	-4.53	•	1608	43.175	02.449	54	24.37
_	1/15/2016	15	16				0.0	D.0	54.5	45.5	010	-4.53	-1.21		0830	43.227	02.450	21	24.35
•	1/15/2016	15 (dupl)	16				0.0	D.1	54.2	45.8	010	-1.21	-0.10		0835	43.227	02.450	21	24.36
	1/15/2016	8	16				0.0	0.0	55.8	44.1	197	-13.30	-8.24		0850	43.245	02.443	21	24.35
	1/15/2016	8 (dupi)	16				0.D	0.5	55.7	44.3	603	-1.20	0.00		0900	43.245	02.443	21	24.35
	1/15/2016	12	16				0.0	0.0	58.9	40.7	197	-8.24	-4.06	ļ	0915	43.232	02.385	25	24.35
	1/15/2016	12 (dupl)	16				0.0	0.0	56 .5	43.5	197	-4.08	-0 <u>.19</u>	1	0925	43.232	02.386	25	24.35
_	1/15/2016	9	16				0.0	2.6	57 .5	42.5	307	-13.22	-8.97	1	C945	43.244	02.374	25	24.35
_	1/15/2016	11	16				0.3	0.0	58.6	38.2	307	-8.97	-4.56		1005	43.229	02.358	32	24.38
	1/15/2016	11 (dupi)	16			·	0.0****	0.2	56.3	43.7	307	-4.56	-0.38		1015	43.229	02.358	32	24.38
	1/15/2016	14	16				0.0	0.0	54.5	45.4	1006	-13.05	-8.93		1030	43.207	02.403	32	24.38
-		14 (dupi)	16				0.0	0.0	<u> </u>	45.8		-6.93	-4.90	<u> </u>	1035	43.207	02.403	36	24.38
	1/15/2016	12	16				0.0	0.1	55.5	44.5	1006	-4.90	-1.18	<u> </u>	1045	43.29	02.370	41	24.38
	1/15/2016	13	16				0.0	0.1	54.7	45.3	149	-13.00	-8.18		1105	43.216	02.336	41	24.38
		13 (dupl)	16				0.0	0.0	54.9	45.2	149	-8.78	-4.93		1115	43.216	02.336	41	24.38
_	1/15/2016	1	_20				0.0	0.0	55.7	44.2	149	-4.93	-0.92 •		1130	43.239	02.315	43	24.38
_														<u>}</u>	+ +				
										I		l	 		┣		٩		<u> </u>

.

2/8/16 0915 6- ×

•

.

5.5

ALS Environmental Sample Acceptance Check Form

		Environmental Group,	-			Work order:	P1600639			
•	: Los Lunas La (s) received on:				Date opened:	2/8/16	by:	KKEL	PF	
Sumpre										
		l samples received by ALS.			-	-			ndication	of
complianc	e or nonconformity.	. Thermal preservation and	pH will only be e	valuated either at	the request of th	e client and/or as requ	ired by the metho		No	<u>N/A</u>
1	Were sample	containers properly r	narked with cli	ient sample ID	?			<u>Yes</u>	<u>No</u>	
2	Did sample c	ontainers arrive in go	od condition?					X		
3	Were chain-o	f-custody papers used	l and filled out	?				X		
4	Did sample c	ontainer labels and/or	r tags agree wi	th custody pap	ers?			X		
5	Was sample v	volume received adequ	late for analysi	is?				X		
6	Are samples v	vithin specified holdin	g times?					X		
7	Was proper te	emperature (thermal p	preservation) o	f cooler at rec	eipt adhered t	to?				X
8	Were custody	seals on outside of co	ooler/Box/Con	tainer?					X	
		Location of seal(s)?					Sealing Lid?			X
	Were signatur	e and date included?								X
	Were seals int	act?								X
9	Do containe	ers have appropriate p	reservation, a	ccording to me	thod/SOP or	Client specified in	nformation?			X
		nt indication that the s	-		eserved?					X
	Were <u>VOA v</u>	ials checked for prese	nce/absence of	f air bubbles?						X
	Does the clien	t/method/SOP require	that the analys	st check the sa	mple pH and	if necessary alter	it?			X
10	Tubes:	Are the tubes cap	ped and intact?	1						X
11	Badges:	Are the badges pr	operly capped	and intact?						X
		Are dual bed bad	ges separated a	nd individuall	y capped and	intact?				X
Lah	Sample ID	Container	Required	Received	Adjusted	VOA Headspace	Recei	pt / Pres	ervatio	,
	-	Description	pH *	рН	рН	(Presence/Absence)	-	Comme		
P160063	9-001.01	6.0 L Source Can								
P160063		6.0 L Source Can								
P160063		6.0 L Silonite Can								
P160063		6.0 L Silonite Can								
P160063		6.0 L Silonite Can							-	
P160063 P160063		6.0 L Source Can 6.0 L Silonite Can								
1 100005	9-007.01	0.0 L Shohne Can								
							······			
					L					
				=	· · · · · · · · · · · · · · · · · · ·					

Explain any discrepancies: (include lab sample ID numbers):

RSK - MEEPP, HCL (pH<2); RSK - CO2, (pH 5-8); Sulfur (pH>4)

Ľ

RESULTS OF ANALYSIS Page 1 of 1

Client:Cornerstone Environmental Group, LLCClient Sample ID:7, 2Client Project ID:Los Lunas Landfill

ALS Project ID: P1600639 ALS Sample ID: P1600639-001

Test Code:	EPA Method 3C Modified	Date Collected: 1/14/16		
Instrument ID:	HP5890 II/GC1/TCD	Date Received: 2/8/16		
Analyst:	Mike Conejo/Wade Henton	Date Analyzed: 2/15/16		
Sample Type:	6.0 L Summa Canister	Volume(s) Analyzed: 0.10 ml	l(s)	
Test Notes:	H1			
Container ID:	SC00767			

Canister Dilution Factor: 2.51

CAS #	Compound	Result	MRL	Data
		%, v/v	%, v/v	Qualifier
1333-74-0	Hydrogen	ND	0.25	
7782-44-7	Oxygen*	1.97	0.25	
7727-37-9	Nitrogen	15.1	0.25	
<u>6</u> 30-08-0	Carbon Monoxide	ND	0.25	
82-8	Methane	41.1	0.25	
₁ ∠4-38-9	Carbon Dioxide	41.8	0.25	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method. * = The oxygen result may include argon due to coelution. Ambient air includes 0.93% argon.

RESULTS OF ANALYSIS Page 1 of 1

Client:	Cornerstone Environmental Group, LLC
Client Sample ID:	3, 4, 8 (dupl)
Client Project ID:	Los Lunas Landfill

ALS Project ID: P1600639 ALS Sample ID: P1600639-002

Test Code:	EPA Method 3C Modified	Date Collected: 1/14	1/16	
Instrument ID:	HP5890 II/GC1/TCD	Date Received: 2/8/16		
Analyst:	Mike Conejo/Wade Henton	Date Analyzed: 2/15	5/16	
Sample Type:	6.0 L Summa Canister	Volume(s) Analyzed:	0.10 ml(s)	
Test Notes:	H1			
Container ID:	SC00603			

Canister Dilution Factor: 2.49

CAS #	Compound	Result	MRL	Data
		%, v/v	%, v/v	Qualifier
1333-74-0	Hydrogen	ND	0.25	
7782-44-7	Oxygen*	2.30	0.25	
7727-37-9	Nitrogen	25.2	0.25	
630-08-0	Carbon Monoxide	ND	0.25	
-82-8	Methane	36.0	0.25	
. 24-38-9	Carbon Dioxide	36.3	0.25	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

* = The oxygen result may include argon due to coelution. Ambient air includes 0.93% argon.

H1 = Sample analysis performed past holding time.

3C_ALL_6.XLS - Page No.:

RESULTS OF ANALYSIS Page 1 of 1

Client:	Cornerstone Environmental Group, LLC
Client Sample ID:	5, 6, 15, 15 (dupl)
Client Project ID:	Los Lunas Landfill

ALS Project ID: P1600639 ALS Sample ID: P1600639-003

Test Code:	EPA Method 3C Modified	Date Collected: 1/1	5/16	
Instrument ID:	HP5890 II/GC1/TCD	Date Received: 2/8/16		
Analyst:	Mike Conejo/Wade Henton	Date Analyzed: 2/1	5/16	
Sample Type:	6.0 L Silonite Canister	Volume(s) Analyzed:	0.10 ml(s)	
Test Notes:	H1			
Container ID:	SSC00010			

Canister Dilution Factor: 2.42

CAS #	Compound	Result	MRL	Data
	-	%, v/v	%, v/v	Qualifier
1333-74-0	Hydrogen	0.493	0.24	
7782-44-7	Oxygen*	1.26	0.24	
7727-37-9	Nitrogen	5.16	0.24	
630-08-0	Carbon Monoxide	ND	0.24	
-82-8	Methane	50.7	0.24	
<i>_</i> ∠4-38-9	Carbon Dioxide	42.4	0.24	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method. * = The oxygen result may include argon due to coelution. Ambient air includes 0.93% argon.

- The oxygen result may include algon due to coefficient. Amblent an inc

RESULTS OF ANALYSIS Page 1 of 1

Client:	Cornerstone Environmental Group, LLC
Client Sample ID:	8, 12, 12 (dupl)
Client Project ID:	Los Lunas Landfill

ALS Project ID: P1600639 ALS Sample ID: P1600639-004

Test Code:	EPA Method 3C Modified	Date Collected: 1/15/16		
Instrument ID:	HP5890 II/GC1/TCD	Date Received: 2/8/16		
Analyst:	Mike Conejo/Wade Henton	Date Analyzed: 2/15/16		
Sample Type:	6.0 L Silonite Canister	Volume(s) Analyzed: 0.10 ml(s)		
Test Notes:	H1			
Container ID:	SSC00197			

Canister Dilution Factor: 2.41

CAS #	Compound	Result	MRL	Data
	-	%, v/v	%, v/v	Qualifier
1333-74-0	Hydrogen	0.270	0.24	
7782-44-7	Oxygen*	0.384	0.24	
7727-37-9	Nitrogen	2.30	0.24	
630-08-0	Carbon Monoxide	ND	0.24	
82-8	Methane	56.3	0.24	
4-38-9	Carbon Dioxide	40.7	0.24	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method. * = The oxygen result may include argon due to coelution. Ambient air includes 0.93% argon.

RESULTS OF ANALYSIS Page 1 of 1

Client:	Cornerstone Environmental Group, LLC
Client Sample ID:	9, 11, 11 (dupl)
Client Project ID:	Los Lunas Landfill

ALS Project ID: P1600639 ALS Sample ID: P1600639-005

Test Code:	EPA Method 3C Modified	Date Collected: 1/15	5/16
Instrument ID:	HP5890 II/GC1/TCD	Date Received: 2/8/	/16
Analyst:	Mike Conejo/Wade Henton	Date Analyzed: 2/15/16	
Sample Type:	6.0 L Silonite Canister	Volume(s) Analyzed:	0.10 ml(s)
Test Notes:	H1		
Container ID:	SSC00307		

Canister Dilution Factor: 2.50

CAS #	Compound	Result	MRL	Data	
		%, v/v	%, v/v	Qualifier	
1333-74-0	Hydrogen	0.293	0.25		
7782-44-7	Oxygen*	0.799	0.25		
7727-37-9	Nitrogen	3.92	0.25		
630-08-0	Carbon Monoxide	ND	0.25		
-82-8	Methane	55.5	0.25		
.24-38-9	Carbon Dioxide	39.5	0.25		

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method. * = The oxygen result may include argon due to coelution. Ambient air includes 0.93% argon.

RESULTS OF ANALYSIS Page 1 of 1

Client:	Cornerstone Environmental Group, LLC
Client Sample ID:	14, 14 (dupl), 12
Client Project ID:	Los Lunas Landfill

ALS Project ID: P1600639 ALS Sample ID: P1600639-006

Test Code:	EPA Method 3C Modified	Date Collected: 1/15/16	
Instrument ID:	HP5890 II/GC1/TCD	Date Received: 2/8/16	
Analyst:	Mike Conejo/Wade Henton	Date Analyzed: 2/15/16	
Sample Type:	6.0 L Summa Canister	Volume(s) Analyzed: 0.10 ml	.(s)
Test Notes:	H1		
Container ID:	SC01006		

Canister Dilution Factor: 2.74

CAS #	Compound	Result	MRL	Data
	-	%, v/v	%, v/v	Qualifier
1333-74-0	Hydrogen	ND	0.27	
7782-44-7	Oxygen*	0.422	0.27	
7727-37-9	Nitrogen	1.86	0.27	
<u>6</u> 30-08-0	Carbon Monoxide	ND	0.27	
82-8	Methane	54.6	0.27	
<u>.</u> -24-38-9	Carbon Dioxide	42.9	0.27	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method. * = The oxygen result may include argon due to coelution. Ambient air includes 0.93% argon.

RESULTS OF ANALYSIS Page 1 of 1

Client:	Cornerstone Environmental Group, LLC
Client Sample ID:	13, 13 (dupl), 1
Client Project ID:	Los Lunas Landfill

ALS Project ID: P1600639 ALS Sample ID: P1600639-007

Test Code:	EPA Method 3C Modified	Date Collected: 1/15/16	
Instrument ID:	HP5890 II/GC1/TCD	Date Received: 2/8/16	
Analyst:	Mike Conejo/Wade Henton	Date Analyzed: 2/15/16	
Sample Type:	6.0 L Silonite Canister	Volume(s) Analyzed: 0.10 ml(s)	
Test Notes:	H1		
Container ID:	SSC00149		

Canister Dilution Factor: 2.70

CAS #	Compound	Result	MRL	Data
		%, v/v	%, v/v	Qualifier
1333-74-0	Hydrogen	ND	0.27	
7782-44-7	Oxygen*	0.497	0.27	
7727-37-9	Nitrogen	2.54	0.27	
630-08-0	Carbon Monoxide	ND	0.27	
-82-8	Methane	54.9	0.27	
. 24-38-9	Carbon Dioxide	41.9	0.27	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method. * = The oxygen result may include argon due to coelution. Ambient air includes 0.93% argon.

H1 = Sample analysis performed past holding time.

RESULTS OF ANALYSIS Page 1 of 1

Client:	Cornerstone Environmental Group, LLC
Client Sample ID:	Method Blank
Client Project ID:	Los Lunas Landfill

ALS Project ID: P1600639 ALS Sample ID: P160215-MB

Test Code:	EPA Method 3C Modified	Date Collected: NA	
Instrument ID:	HP5890 II/GC1/TCD	Date Received: NA	
Analyst:	Mike Conejo/Wade Henton	Date Analyzed: 2/15/16	
Sample Type:	6.0 L Summa Canister	Volume(s) Analyzed: 0.1	0 ml(s)
Test Notes:			

CAS#	Compound	Result	MRL	Data
		%, v/v	%, v/v	Qualifier
1333-74-0	Hydrogen	ND	0.10	
7782-44-7	Oxygen*	ND	0.10	
7727-37-9	Nitrogen	ND	0.10	
630-08-0	Carbon Monoxide	ND	0.10	
-82-8	Methane	ND	0.10	
. ∠4-38-9	Carbon Dioxide	ND	0.10	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method. * = The oxygen result may include argon due to coelution. Ambient air includes 0.93% argon.

LABORATORY CONTROL SAMPLE SUMMARY

Page 1 of 1

Client:	Cornerstone Environmental Group, LLC
Client Sample ID:	Lab Control Sample
Client Project ID:	Los Lunas Landfill

ALS Project ID: P1600639 ALS Sample ID: P160215-LCS

Test Code:	EPA Method 3C Modified	Date Collected: NA	
Instrument ID:	HP5890 II/GC1/TCD	Date Received: NA	
Analyst:	Mike Conejo/Wade Henton	Date Analyzed: 2/15	5/16
Sample Type:	6.0 L Summa Canister	Volume(s) Analyzed:	NA ml(s)
Test Notes:			

					ALS	
CAS #	Compound	Spike Amount	Result	% Recovery	Acceptance	Data
		ppmV	ppmV		Limits	Qualifier
1333-74-0	Hydrogen	40,000	38,000	95	83-114	
7782-44-7	Oxygen*	40,000	40,800	102	84-121	
7727-37-9	Nitrogen	40,000	39,400	99	88-122	
630-08-0	Carbon Monoxide	40,000	40,000	100	87-118	
82-8	Methane	40,000	40,300	101	85-116	
+-38-9	Carbon Dioxide	40,000	40,100	100	84-117	

* = The oxygen result may include argon due to coelution. Ambient air includes 0.93% argon.

RESULTS OF ANALYSIS Page 1 of 1

Client:Cornerstone Environmental Group, LLCClient Project ID:Los Lunas Landfill

ALS Project ID: P1600639

Total Gaseous Nonmethane Organics (TGNMO) as Hexane

Test Code:	EPA Method 25C Modified	
Instrument ID:	HP5890 II/GC1/FID/TCA	Date(s) Collected: 1/14 - 1/15/16
Analyst:	Mike Conejo/Wade Henton	Date Received: 2/8/16
Sampling Media:	6.0 L Summa Canister(s)	Date Analyzed: 2/15/16
Test Notes:		

Client Sample ID	ALS Sample ID	Canister Dilution Factor	Injection Volume ml(s)	Result ppmV	MRL! ppmV	Data Qualifier
7, 2	P1600639-001	2.51	0.50	330	0.43	
3, 4, 8 (dupl)	P1600639-002	2.49	0.50	330	0.42	
5, 6, 15, 15 (dupl)	P1600639-003	2.42	0.50	190	0.41	
8, 12, 12 (dupl)	P1600639-004	2.41	0.50	450	0.41	
9, 11, 11 (dupl)	P1600639-005	2.50	0.50	430	0.43	
14 (dupl), 12	P1600639-006	2.74	0.50	350	0.47	
, 13 (dupl), 1	P1600639-007	2.70	0.50	380	0.46	
Method Blank	P160215-MB	1.00	0.50	ND	0.17	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method. ! = For consistency purposes, the actual MRL was divided by six and reported as Hexane.

LABORATORY CONTROL SAMPLE SUMMARY

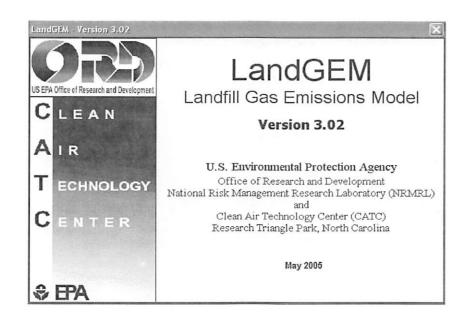
Page 1 of 1

Cornerstone Environmental Group, LLC	
Lab Control Sample	ALS Project ID: P1600639
Los Lunas Landfill	ALS Sample ID: P160215-LCS
EPA Method 25C Modified	Date Collected: NA
HP5890 II/GC1/FID/TCA	Date Received: NA
Mike Conejo/Wade Henton	Date Analyzed: 2/15/16
	Lab Control Sample Los Lunas Landfill EPA Method 25C Modified HP5890 II/GC1/FID/TCA

				ALS	
Compound	Spike Amount	Result	% Recovery	Acceptance	Data
	ppmV	ppmV		Limits	Qualifier
Total Gaseous Nonmethane Organics (TGNMO) as Hexane	16.7	17.7	106	81-119	

Volume(s) Analyzed:

NA ml(s)


Sampling Media:

Test Notes:

6.0 L Summa Canister

APPENDIX C TIER 2 NMOC EMISSION RATE CALCULATIONS (LANDGEM MODEL)

Summary Report

Landfill Name or Identifier: Valencia Landfill, Los Lunas New Mexico

Date: Friday, March 11, 2016

Description/Comments:

Waste acceptance from "Tonnage Data from GHG Report - San Juan County" column "Year's Total Waste." NMOC and Itehane from Tier 2 sample analysis in January 2016.

About LandGEM:

First-Order Decomposition Rate Equation:

$$Q_{CH_4} = \sum_{i=1}^{n} \sum_{j=0.1}^{1} k L_o \left(\frac{M_i}{10}\right) e^{-kt_{ij}}$$

Where,

 Q_{CH4} = annual methane generation in the year of the calculation (m³/year)

i = 1-year time increment n = (year of the calculation) - (initial year of waste acceptance)

j = 0.1-year time increment

k = methane generation rate (year⁻¹)

 L_o = potential methane generation capacity (m^3/Mg)

 $\begin{array}{l} M_i = mass \ of \ waste \ accepted \ in \ the \ i^{th} \ year \ (Mg \) \\ t_{ij} = age \ of \ the \ j^{th} \ section \ of \ waste \ mass \ M_i \ accepted \ in \ the \ i^{th} \ year \ (decimal \ years \ , \ e.g., \ 3.2 \ years) \end{array}$

LandGEM is based on a first-order decomposition rate equation for quantifying emissions from the decomposition of landfilled waste in municipal solid waste (MSW) landfills. The software provides a relatively simple approach to estimating landfill gas emissions. Model defaults are based on empirical data from U.S. landfills. Field test data can also be used in place of model defaults when available. Further guidance on EPA test methods, Clean Air Act (CAA) regulations, and other guidance regarding landfill gas emissions and control technology requirements can be found at http://www.epa.gov/ttnatw01/landfill/landfilpg.html.

LandGEM is considered a screening tool — the better the input data, the better the estimates. Often, there are limitations with the available data regarding waste quantity and composition, variation in design and operating practices over time, and changes occurring over time that impact the emissions potential. Changes to landfill operation, such as operating under wet conditions through leachate recirculation or other liquid additions, will result in generating more gas at a faster rate. Defaults for estimating emissions for this type of operation are being developed to include in LandGEM along with defaults for convential landfills (no leachate or liquid additions) for developing emission inventories and determining CAA applicability. Refer to the Web site identified above for future updates.

Input Review

LANDFILL CHARACTERISTICS 1988 Landfill Open Year Landfill Closure Year (with 80-year limit) 2067 Actual Closure Year (without limit) 3114 Have Model Calculate Closure Year? Yes Waste Design Capacity 71,160,000 MODEL PARAMETERS Methane Generation Rate, k 0.020 Potential Methane Generation Capacity, Lo 170 NMOC Concentration 365 Methane Content 50 GASES / POLI LITANTS SELECTED

GASES / PULLUTANTS S	ELECIED
Gas / Pollutant #1:	Total landfill gas
Gas / Pollutant #2:	Methane
Gas / Pollutant #3:	Carbon dioxide
Gas / Pollutant #4:	NMOC

WASTE ACCEPTANCE RATES

	Waste Acc	cepted	Waste-I	n-Place
Year	(Mg/year)	(short tons/year)	(Mg)	(short tons)
1988	7,360	8,096	0	0
1989	7,360	8,096	7,360	8,096
1990	7,360	8,096	14,720	16,192
1991	7,360	8,096	22,080	24,288
1992	7,360	8,096	29,440	32,384
1993	7,360	8,096	36,800	40,480
1994	2,449	2,694	44,160	48,576
1995	17,423	19,165	46,609	51,270
1996		26,780	64,032	70,435
1997	46,312	50,943	88,377	97,215
1998	42,865	47,151	134,689	148,158
1999	11,558	12,714	177,554	195,309
2000	6,955	7,650	189,112	208,023
2001	38,321	42,153	196,066	215,673
2002	5,400	5,940	234,387	257,826
2003	12,505	13,755	239,787	263,766
2004	21,952	24,147	252,292	277,521
2005	9,693	10,662	274,244	301,668
2006	7,177	7,895	283,936	312,330
2007	32,315	35,546	291,114	320,225
2008	51,392	56,531	323,428	355,771
2009	57,566	63,323	374,820	412,302
2010	66,713	73,384	432,386	475,625
2011	78,029	85,832	499,099	549,009
2012	84,934	93,427	577,128	634,841
2013	60,671	66,738	662,062	728,268
2014	60,345	66,380	722,733	795,006
2015	75,765	83,342	783,078	861,386
2016	55,909	61,500	858,844	944,728
2017	56,273	61,900	914,753	1,006,228
2018	56,818	62,500	971,025	1,068,128
2019	57,455	63,200	1,027,844	1,130,628
2020	58,091	63,900	1,085,298	1,193,828
2021	58,091	63,900	1,143,389	1,257,728
2022	58,091	63,900	1,201,480	1,321,628
2023	58,091	63,900	1,259,571	1,385,528
2024	58,091	63,900	1,317,662	1,449,428
2025	58,091	63,900	1,375,753	1,513,328
2026	58,091	63,900	1,433,844	1,577,228
2027	58,091	63,900	1,491,935	1,641,128

3/11/2016

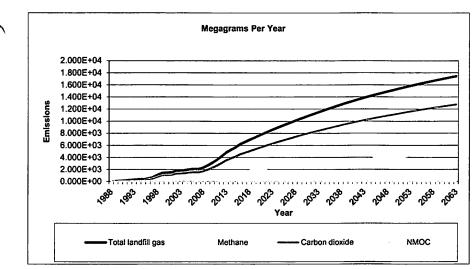
The 80-year waste acceptance limit of the model has been exceeded before the Waste Design Capacity was reached. The model will assume the 80th year of waste acceptance as the final year to estimate emissions. See Section 2.6 of the User's Manual.

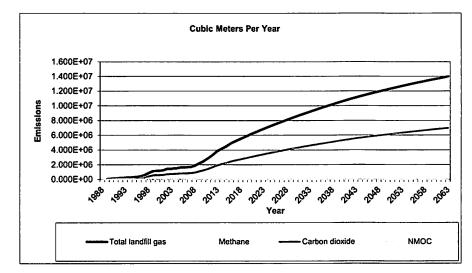
short tons

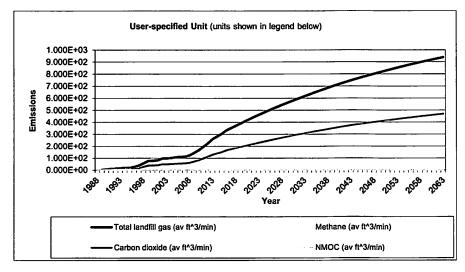
year⁻¹ m³ /Mg ppmv as hexane % by volume

WASTE ACCEPTANCE RATES (Continued)

Year —	Waste Ac		Waste-In-Place		
	(Mg/year)	(short tons/year)	(Mg)	(short tons)	
2028	58,091	63,900	1,550,025	1,705,02	
2029	58,091	63,900	1,608,116	1,768,92	
2030	58,091	63,900	1,666,207	1,832,82	
2031	58,091	63,900	1,724,298	1,896,72	
2032	58,091	63,900	1,782,389	1,960,62	
2033	58,091	63,900	1,840,480	2,024,52	
2034	58,091	63,900	1,898,571	2,088,42	
2035	58,091	63,900	1,956,662	2,152,32	
2036	58,091	63,900	2,014,753	2,216,22	
2037	58,091	63,900	2,072,844	2,280,12	
2038	58,091	63,900	2,130,935	2,344,02	
2039	58,091	63,900	2,189,025	2,407,92	
2040	58,091	63,900	2,247,116	2,471,82	
2041	58,091	63,900	2,305,207	2,535,72	
2042	58,091	63,900	2,363,298	2,599,62	
2043	58,091	63,900	2,421,389	2,663,52	
2044	58,091	63,900	2,479,480	2,727,42	
2045	58,091	63,900	2,537,571	2,791,32	
2046	58,091	63,900	2,595,662	2,855,22	
2047	58,091	63,900	2,653,753	2,919,12	
2048	58,091	63,900	2,711,844	2,983,02	
2049	58,091	63,900	2,769,935	3,046,92	
2050	58,091	63,900	2,828,025	3,110,82	
2051	58,091	63,900	2,886,116	3,174,72	
2052	58,091	63,900	2,944,207	3,238,62	
2053	58,091	63,900	3,002,298	3,302,52	
2054	58,091	63,900	3,060,389	3,366,42	
2055	58,091	63,900	3,118,480	3,430,32	
2056	58,091	63,900	3,176,571	3,494,22	
2057	58,091	63,900	3,234,662	3,558,12	
2058	58,091	63,900	3,292,753	3,622,02	
2059	58,091	63,900	3,350,844	3,685,92	
2060	58,091	63,900	3,408,935	3,749,82	
2061	58,091	63,900	3,467,025	3,813,72	
2062	58,091	63,900	3,525,116	3,877,62	
2063	58,091	63,900	3,583,207	3,941,52	
2064	58,091	63,900	3,641,298	4,005,42	
2065	58,091	63,900	3,699,389	4,069,3	
2066	58,091	63,900	3,757,480	4,133,2	
2067	58,091	63,900	3,815,571	4,197,12	


Pollutant Parameters


<u> </u>		utant Default Para		Concentration	ollutant Parameters:
	Compound	Concentration	Molecular Weight		Molecular Weight
	Total landfill gas	(ppmv)		(ppmv)	
ŝ	Methane		16.04		
Gases	Carbon dioxide				
Ö		4 000	44.01	a state of the second sec	
	NMOC	4,000	86.18		*1
	1,1,1-Trichloroethane				
	(methyl chloroform) -				
	HAP	0.48	133.41		
	1,1,2,2-				
	Tetrachloroethane -				
	HAP/VOC	1.1	167.85		
	1,1-Dichloroethane				
	(ethylidene dichloride) -				
	HAP/VOC	2.4	98.97		
	1,1-Dichloroethene				
	(vinylidene chloride) -				
	HAP/VOC	0.20	96.94		
	1,2-Dichloroethane	0.20			
	(ethylene dichloride) -				
		0.41	08.06		
	HAP/VOC	0.41	98.96	·····	
	1,2-Dichloropropane				
	(propylene dichloride) -				
	HAP/VOC	0.18	112.99		
	2-Propanol (isopropyl				
	alcohol) - VOC	50	60.11		
	Acetone	7.0	58.08		
	Acrylonitrile - HAP/VOC	6.3	53.06		
	Benzene - No or				
١	Unknown Co-disposal -				
•	HAP/VOC	1.9	78.11		
	Benzene - Co-disposal -				
	HAP/VOC	11	78.11		
Pollutants	Bromodichloromethane -		70.11		
tar	VOC	3.1	163.83		
Ē					
2	Butane - VOC	5.0	58.12		
_	Carbon disulfide -		70.40		
	HAP/VOC	0.58	76.13		
	Carbon monoxide	140	28.01		
	Carbon tetrachloride -				
	HAP/VOC	4.0E-03	153.84		
	Carbonyl sulfide -				
	HAP/VOC	0.49	60.07		
	Chlorobenzene -				
	HAP/VOC	0.25	112.56		
	Chlorodifluoromethane	1.3	86.47		
	Chloroethane (ethyl				··· · · · · · · · · · · · · · · · · ·
	chloride) - HAP/VOC	1.3	64.52		
	Chloroform - HAP/VOC	0.03	119.39		
	Chloromethane - VOC	1.2	50.49		•
		1.6	00.43		
	Dichlorobenzene - (HAP				
	for para isomer/VOC)	0.04	447		
		0.21	147		
	Dichlorodifluoromethane	40	400.04		
		16	120.91		
	Dichlorofluoromethane -				
	VOC	2.6	102.92		
	Dichloromethane				
	(methylene chloride) -				
	HAP	14	84.94		
1	Dimethyl sulfide (methyl				
	sulfide) - VOC	7.8	62.13		
	Ethane	890	30.07	·····	


Pollutant Parameters (Continued)

	5407101	Concentration	Concentration	ollutant Parameters:	
7	Compound	(ppmv)	Molecular Weight	(ppmv)	Molecular Weigh
E	Ethyl mercaptan	(ppint)	- Molocular Holgin	(ppint)	indicidual trongin
	ethanethiol) - VOC	2.3	62.13		
	Ethylbenzene -		02.10		-
	AP/VOC	4.6	106.16		
	Ethylene dibromide -	4.0	100.10		
	AP/VOC	1.0E-03	187.88		
	luorotrichloromethane -	1.02-00	107.00		
	/OC	0.76	137.38		
	lexane - HAP/VOC	6.6	86.18		-
	lydrogen sulfide	36	34.08		
	Aercury (total) - HAP	2.9E-04	200.61		
	Methyl ethyl ketone -	2.92-04	200.01		
	AP/VOC	7.1	70.11		
	Aethyl isobutyl ketone -	7.1	72.11		-
		10	100.10		
	IAP/VOC	1.9	100.16		
N	Methyl mercaptan - VOC	0.5	10.11		
		2.5	48.11		
	Pentane - VOC	3.3	72.15		
	Perchloroethylene				
(1	tetrachloroethylene) -	1532 (Later)			
	IAP	3.7	165.83		
P	Propane - VOC	11	44.09		
	-1,2-Dichloroethene -	1.44 M			
	/OC	2.8	96.94		
	oluene - No or				
U	Jnknown Co-disposal -				
H	IAP/VOC	39	92.13		
Т	oluene - Co-disposal -				
L F	IAP/VOC	170	92.13		
	richloroethylene				
	trichloroethene) -				
⊢ uts	AP/VOC	2.8	131.40		
	/inyl chloride -				
	IAP/VOC	7.3	62.50		
ă x	(ylenes - HAP/VOC	12	106.16		
V	/OC (assumed 39% of				
	MOC)			142.35	86.18
Ê					
-					-
7					

<u>Graphs</u>

Results

Year —		Total landfill gas			Methane			
vieal	(Mg/year)	(m³/year)	(av ft^3/min)	(Mg/year)	(m ³ /year)	(av ft^3/min)		
1988	0	Ō	0	0	0	0		
1989	6.194E+01	4.960E+04	3.333E+00	1.655E+01	2.480E+04	1.666E+00		
1990	1.227E+02	9.822E+04	6.599E+00	3.276E+01	4.911E+04	3.300E+00		
1991	1.822E+02	1.459E+05	9.801E+00	4.866E+01	7.294E+04	4.901E+00		
1992	2.405E+02	1.926E+05	1.294E+01	6.424E+01	9.629E+04	6.470E+00		
1993	2.977E+02	2.384E+05	1.602E+01	7.952E+01	1.192E+05	8.008E+00		
1994	3.537E+02	2.833E+05	1.903E+01	9.449E+01	1.416E+05	9.516E+00		
1995	3.673E+02	2.941E+05	1.976E+01	9.812E+01	1.471E+05	9.882E+00		
1996	5.067E+02	4.057E+05	2.726E+01	1.353E+02	2.029E+05	1.363E+01		
1997	7.016E+02	5.618E+05	3.775E+01	1.874E+02	2.809E+05	1.887E+01		
1998	1.077E+03	8.628E+05	5.797E+01	2.878E+02	4.314E+05	2.898E+01		
1999	1.417E+03	1.135E+06	7.623E+01	3.785E+02	5.673E+05	3.811E+01		
2000	1.486E+03	1.190E+06	7.995E+01	3.969E+02	5.950E+05	3.998E+01		
2001	1.515E+03	1.213E+06	8.152E+01	4.047E+02	6.066E+05	4.076E+01		
2002	1.808E+03	1.448E+06	9.726E+01	4.828E+02	7.238E+05	4.863E+01		
2003	1.817E+03	1.455E+06	9.778E+01	4.854E+02	7.276E+05	4.889E+01		
2004	1.887E+03	1.511E+06	1.015E+02	5.039E+02	7.553E+05	5.075E+01		
2005	2.034E+03	1.629E+06	1.094E+02	5.433E+02	8.144E+05	5.472E+01		
2006	2.075E+03	1.662E+06	1.117E+02	5.543E+02	8.309E+05	5.583E+01		
2007	2.095E+03	1.677E+06	1.127E+02	5.595E+02	8.386E+05	5.635E+01		
2008	2.325E+03	1.862E+06	1.251E+02	6.211E+02	9.309E+05	6.255E+01		
2009	2.712E+03	2.171E+06	1.459E+02	7.243E+02	1.086E+06	7.294E+01		
2010	3.142E+03	2.516E+06	1.691E+02	8.394E+02	1.258E+06	8.453E+01		
2011	3.642E+03	2.916E+06	1.959E+02	9.727E+02	1.458E+06	9.796E+01		
2012	4.226E+03	3.384E+06	2.274E+02	1.129E+03	1.692E+06	1.137E+02		
2013	4.857E+03	3.889E+06	2.613E+02	1.297E+03	1.945E+06	1.307E+02		
2014	5.272E+03	4.221E+06	2.836E+02	1.408E+03	2.111E+06	1.418E+02		
2015	5.675E+03	4.544E+06	3.053E+02	1.516E+03	2.272E+06	1.527E+02		
2016	6.200E+03	4.965E+06	3.336E+02	1.656E+03	2.483E+06	1.668E+02		
2017	6.548E+03	5.244E+06	3.523E+02	1.749E+03	2.622E+06	1.762E+02		
:018	6.892E+03	5.519E+06	3.708E+02	1.841E+03	2.759E+06	1.854E+02		
2019	7.234E+03	5.793E+06	3.892E+02	1.932E+03	2.896E+06	1.946E+02		
2020	7.574E+03	6.065E+06	4.075E+02	2.023E+03	3.033E+06	2.038E+02		
2021	7.913E+03	6.336E+06	4.257E+02	2.114E+03	3.168E+06	2.129E+02		
2022	8.245E+03	6.602E+06	4.436E+02	2.202E+03	3.301E+06	2.218E+02		
2023	8.571E+03	6.863E+06	4.611E+02	2.289E+03	3.432E+06	2.306E+02		
2024	8.890E+03	7.119E+06	4.783E+02	2.375E+03	3.559E+06	2.392E+02		
2025	9.203E+03	7.369E+06	4.951E+02	2.458E+03	3.685E+06	2.476E+02		
2026	9.510E+03	7.615E+06	5.116E+02	2.540E+03	3.807E+06	2.558E+02		
2027	9.810E+03	7.856E+06	5.278E+02	2.620E+03	3.928E+06	2.639E+02		
2028	1.010E+04	8.092E+06	5.437E+02	2.699E+03	4.046E+06	2.718E+02		
2029	1.039E+04	8.323E+06	5.592E+02	2.776E+03	4.161E+06	2.796E+02		
2030	1.068E+04	8.549E+06	5.744E+02	2.852E+03	4.275E+06	2.872E+02		
2031	1.095E+04	8.772E+06	5.894E+02	2.926E+03	4.386E+06	2.947E+02		
2032	1.123E+04	8.989E+06	6.040E+02	2.999E+03	4.495E+06	3.020E+02		
2033	1.149E+04	9.203E+06	6.183E+02	3.070E+03	4.601E+06	3.092E+02		
2034	1.175E+04	9.412E+06	6.324E+02	3.140E+03	4.706E+06	3.162E+02		
2035	1.201E+04	9.617E+06	6.462E+02	3.208E+03	4.809E+06	3.231E+02		
2036	1.226E+04	9.818E+06	6.597E+02	3.275E+03	4.909E+06	3.298E+02		
2037	1.251E+04	1.002E+07	6.729E+02	3.341E+03	5.008E+06	3.365E+02		

Year —		Total landfill gas		Methane			
	(Mg/year)	(m³/year)	(av ft^3/min)	(Mg/year)	(m³/year)	(av ft^3/min)	
2038	1.275E+04	1.021E+07	6.859E+02	3.405E+03	5.104E+06	3.430E+02	
2039	1.299E+04	1.040E+07	6.986E+02	3.468E+03	5.199E+06	3.493E+02	
2040	1.322E+04	1.058E+07	7.111E+02	3.530E+03	5.292E+06	3.556E+02	
2041	1.344E+04	1.077E+07	7.233E+02	3.591E+03	5.383E+06	3.617E+02	
2042	1.367E+04	1.094E+07	7.353E+02	3.651E+03	5.472E+06	3.677E+02	
2043	1.389E+04	1.112E+07	7.471E+02	3.709E+03	5.559E+06	3.735E+02	
2044	1.410E+04	1.129E+07	7.586E+02	3.766E+03	5.645E+06	3.793E+02	
2045	1.431E+04	1.146E+07	7.698E+02	3.822E+03	5.729E+06	3.849E+02	
2046	1.451E+04	1.162E+07	7.809E+02	3.877E+03	5.811E+06	3.905E+02	
2047	1.472E+04	1.178E+07	7.917E+02	3.931E+03	5.892E+06	3.959E+02	
2048	1.491E+04	1.194E+07	8.024E+02	3.984E+03	5.971E+06	4.012E+02	
2049	1.511E+04	1.210E+07	8.128E+02	4.035E+03	6.048E+06	4.064E+02	
2050	1.530E+04	1.225E+07	8.230E+02	4.086E+03	6.124E+06	4.115E+02	
2051	1.548E+04	1.240E+07	8.330E+02	4.136E+03	6.199E+06	4.165E+02	
2052	1.566E+04	1.254E+07	8.428E+02	4.184E+03	6.272E+06	4.214E+02	
2053	1.584E+04	1.269E+07	8.524E+02	4.232E+03	6.343E+06	4.262E+02	
2054	1.602E+04	1.283E+07	8.619E+02	4.279E+03	6.414E+06	4.309E+02	
2055	1.619E+04	1.296E+07	8.711E+02	4.325E+03	6.482E+06	4.355E+02	
2056	1.636E+04	1.310E+07	8.801E+02	4.370E+03	6.550E+06	4.401E+02	
2057	1.652E+04	1.323E+07	8.890E+02	4.414E+03	6.616E+06	4.445E+02	
2058	1.669E+04	1.336E+07	8.977E+02	4.457E+03	6.681E+06	4.489E+02	
2059	1.684E+04	1.349E+07	9.063E+02	4.499E+03	6.744E+06	4.531E+02	
2060	1.700E+04	1.361E+07	9.146E+02	4.541E+03	6.806E+06	4.573E+02	
2061	1.715E+04	1.373E+07	9.228E+02	4.581E+03	6.867E+06	4.614E+02	
2062	1.730E+04	1.385E+07	9.308E+02	4.621E+03	6.927E+06	4.654E+02	
2063	1.745E+04	1.397E+07	9.387E+02	4.660E+03	6.985E+06	4.694E+02	
2064	1.759E+04	1.409E+07	9.464E+02	4.699E+03	7.043E+06	4.732E+02	
2065	1.773E+04	1.420E+07	9.540E+02	4.736E+03	7.099E+06	4.770E+02	
2066	1.787E+04	1.431E+07	9.614E+02	4.773E+03	7.154E+06	4.807E+02	
2067	1.800E+04	1.442E+07	9.687E+02	4.809E+03	7.208E+06	4.843E+02	
2068	1.814E+04	1.452E+07	9.758E+02	4.844E+03	7.261E+06	4.879E+02	
2069	1.778E+04	1.424E+07	9.565E+02	4.749E+03	7.118E+06	4.782E+02	
2070	1.743E+04	1.395E+07	9.375E+02	4.655E+03	6.977E+06	4.688E+02	
2071	1.708E+04	1.368E+07	9.190E+02	4.562E+03	6.839E+06	4.595E+02	
2072	1.674E+04	1.341E+07	9.008E+02	4.472E+03	6.703E+06	4.504E+02	
2073	1.641E+04	1.314E+07	8.829E+02	4.383E+03	6.570E+06	4.415E+02	
2074	1.609E+04	1.288E+07	8.654E+02	4.297E+03	6.440E+06	4.327E+02	
2075	1.577E+04	1.263E+07	8.483E+02	4.212E+03	6.313E+06	4.242E+02	
2076	1.545E+04	1.238E+07	8.315E+02	4.128E+03	6.188E+06	4.158E+02	
2077	1.515E+04	1.213E+07	8.150E+02	4.046E+03	6.065E+06	4.075E+02	
2078	1.485E+04	1.189E+07	7.989E+02	3.966E+03	5.945E+06	3.995E+02	
2079	1.455E+04	1.165E+07	7.831E+02	3.888E+03	5.827E+06	3.915E+02	
2080	1.427E+04	1.142E+07	7.676E+02	3.811E+03	5.712E+06	3.838E+02	
2081	1.398E+04	1.120E+07	7.524E+02	3.735E+03	5.599E+06	3.762E+02	
2082	1.371E+04	1.098E+07	7.375E+02	3.661E+03	5.488E+06	3.687E+02	
2083	1.344E+04	1.076E+07	7.229E+02	3.589E+03	5.379E+06	3.614E+02	
2084	1.317E+04	1.055E+07	7.086E+02	3.518E+03	5.273E+06	3.543E+02	
2085	1.291E+04	1.034E+07	6.945E+02	3.448E+03	5.168E+06	3.473E+02	
2086	1.265E+04	1.013E+07	6.808E+02	3.380E+03	5.066E+06	3.404E+02	
2087	1.240E+04	9.932E+06	6.673E+02	3.313E+03	4.966E+06	3.337E+02	
2088	1.216E+04	9.735E+06	6.541E+02	3.247E+03	4.867E+06	3.270E+02	

Year		Total landfill gas			Methane	
Tear	(Mg/year)	(m ³ /year)	(av ft^3/min)	(Mg/year)	(m ³ /year)	(av ft^3/min)
2089	1.192E+04	9.542E+06	6.411E+02	3.183E+03	4.771E+06	3.206E+02
2090	1.168E+04	9.353E+06	6.284E+02	3.120E+03	4.677E+06	3.142E+02
2091	1.145E+04	9.168E+06	6.160E+02	3.058E+03	4.584E+06	3.080E+02
2092	1.122E+04	8.987E+06	6.038E+02	2.998E+03	4.493E+06	3.019E+02
2093	1.100E+04	8.809E+06	5.918E+02	2.938E+03	4.404E+06	2.959E+02
2094	1.078E+04	8.634E+06	5.801E+02	2.880E+03	4.317E+06	2.901E+02
2095	1.057E+04	8.463E+06	5.686E+02	2.823E+03	4.232E+06	2.843E+02
2096	1.036E+04	8.296E+06	5.574E+02	2.767E+03	4.148E+06	2.787E+02
2097	1.015E+04	8.131E+06	5.463E+02	2.712E+03	4.066E+06	2.732E+02
2098	9.954E+03	7.970E+06	5.355E+02	2.659E+03	3.985E+06	2.678E+02
2099	9.756E+03	7.813E+06	5.249E+02	2.606E+03	3.906E+06	2.625E+02
2100	9.563E+03	7.658E+06	5.145E+02	2.554E+03	3.829E+06	2.573E+02
2101	9.374E+03	7.506E+06	5.043E+02	2.504E+03	3.753E+06	2.522E+02
2102	9.188E+03	7.358E+06	4.944E+02	2.454E+03	3.679E+06	2.472E+02
2103	9.006E+03	7.212E+06	4.846E+02	2.406E+03	3.606E+06	2.423E+02
2104	8.828E+03	7.069E+06	4.750E+02	2.358E+03	3.535E+06	2.375E+02
2105	8.653E+03	6.929E+06	4.656E+02	2.311E+03	3.465E+06	2.328E+02
2106	8.482E+03	6.792E+06	4.563E+02	2.266E+03	3.396E+06	2.282E+02
2107	8.314E+03	6.657E+06	4.473E+02	2.221E+03	3.329E+06	2.237E+02
2108	8.149E+03	6.526E+06	4.385E+02	2.177E+03	3.263E+06	2.192E+02
2109	7.988E+03	6.396E+06	4.298E+02	2.134E+03	3.198E+06	2.149E+02
2110	7.830E+03	6.270E+06	4.213E+02	2.091E+03	3.135E+06	2.106E+02
2111	7.675E+03	6.146E+06	4.129E+02	2.050E+03	3.073E+06	2.065E+02
2112	7.523E+03	6.024E+06	4.047E+02	2.009E+03	3.012E+06	2.024E+02
2113	7.374E+03	5.905E+06	3.967E+02	1.970E+03	2.952E+06	1.984E+02
2114	7.228E+03	5.788E+06	3.889E+02	1.931E+03	2.894E+06	1.944E+02
2115	7.085E+03	5.673E+06	3.812E+02	1.892E+03	2.837E+06	1.906E+02
2116	6.944E+03	5.561E+06	3.736E+02	1.855E+03	2.780E+06	1.868E+02
2117	6.807E+03	5.451E+06	3.662E+02	1.818E+03	2.725E+06	1.831E+02
2118	6.672E+03	5.343E+06	3.590E+02	1.782E+03	2.671E+06	1.795E+02
119	6.540E+03	5.237E+06	3.519E+02	1.747E+03	2.618E+06	1.759E+02
2120	6.410E+03	5.133E+06	3.449E+02	1.712E+03	2.567E+06	1.724E+02
2121	6.284E+03	5.032E+06	3.381E+02	1.678E+03	2.516E+06	1.690E+02
2122	6.159E+03	4.932E+06	3.314E+02	1.645E+03	2.466E+06	1.657E+02
2123	6.037E+03	4.834E+06	3.248E+02	1.613E+03	2.417E+06	1.624E+02
2124	5.918E+03	4.739E+06	3.184E+02	1.581E+03	2.369E+06	1.592E+02
2125	5.800E+03	4.645E+06	3.121E+02	1.549E+03	2.322E+06	1.560E+02
2126	5.686E+03	4.553E+06	3.059E+02	1.519E+03	2.276E+06	1.529E+02
2127	5.573E+03	4.463E+06	2.998E+02	1.489E+03	2.231E+06	1.499E+02
2128	5.463E+03	4.374E+06	2.939E+02	1.459E+03	2.187E+06	1.470E+02

Year		Carbon dioxide			NMOC			
	(Mg/year)	(m³/year)	(av ft^3/min)	(Mg/year)	(m ³ /year)	(av ft^3/min		
1988	0	0	0	0	0	0		
1989	4.540E+01	2.480E+04	1.666E+00	6.489E-02	1.810E+01	1.216E-03		
1990	8.989E+01	4.911E+04	3.300E+00	1.285E-01	3.585E+01	2.409E-03		
1991	1.335E+02	7.294E+04	4.901E+00	1.909E-01	5.324E+01	3.577E-03		
1992	1.763E+02	9.629E+04	6.470E+00	2.520E-01	7.029E+01	4.723E-03		
1993	2.182E+02	1.192E+05	8.008E+00	3.119E-01	8.701E+01	5.846E-03		
1994	2.592E+02	1.416E+05	9.516E+00	3.706E-01	1.034E+02	6.947E-03		
1995	2.692E+02	1.471E+05	9.882E+00	3.848E-01	1.074E+02	7.214E-03		
1996	3.714E+02	2.029E+05	1.363E+01	5.308E-01	1.481E+02	9.950E-03		
1997	5.142E+02	2.809E+05	1.887E+01	7.350E-01	2.050E+02	1.378E-02		
1998	7.896E+02	4.314E+05	2.898E+01	1.129E+00	3.149E+02	2.116E-02		
1999	1.038E+03	5.673E+05	3.811E+01	1.484E+00	4.141E+02	2.782E-02		
2000	1.089E+03	5.950E+05	3.998E+01	1.557E+00	4.343E+02	2.918E-02		
2001	1.110E+03	6.066E+05	4.076E+01	1.587E+00	4.428E+02	2.975E-02		
2002	1.325E+03	7.238E+05	4.863E+01	1.894E+00	5.283E+02	3.550E-02		
2003	1.332E+03	7.276E+05	4.889E+01	1.904E+00	5.312E+02	3.569E-02		
2004	1.383E+03	7.553E+05	5.075E+01	1.976E+00	5.514E+02	3.705E-02		
2005	1.491E+03	8.144E+05	5.472E+01	2.131E+00	5.945E+02	3.994E-02		
2006	1.521E+03	8.309E+05	5.583E+01	2.174E+00	6.065E+02	4.075E-02		
2007	1.535E+03	8.386E+05	5.635E+01	2.194E+00	6.122E+02	4.113E-02		
2008	1.704E+03	9.309E+05	6.255E+01	2.436E+00	6.796E+02	4.566E-02		
2009	1.987E+03	1.086E+06	7.294E+01	2.841E+00	7.925E+02	5.325E-02		
2010	2.303E+03	1.258E+06	8.453E+01	3.292E+00	9.184E+02	6.171E-02		
2011	2.669E+03	1.458E+06	9.796E+01	3.815E+00	1.064E+03	7.151E-02		
2012	3.097E+03	1.692E+06	1.137E+02	4.428E+00	1,235E+03	8.299E-02		
2013	3.560E+03	1.945E+06	1.307E+02	5.089E+00	1.420E+03	9.539E-02		
2014	3.864E+03	2.111E+06	1.418E+02	5.523E+00	1.541E+03	1.035E-01		
2015	4.159E+03	2.272E+06	1.527E+02	5.946E+00	1.659E+03	1.114E-01		
2016	4.544E+03	2.483E+06	1.668E+02	6.496E+00	1.812E+03	1.218E-01		
2017	4.799E+03	2.622E+06	1.762E+02	6.860E+00	1.914E+03	1.286E-01		
2018	5.051E+03	2.759E+06	1.854E+02	7.221E+00	2.014E+03	1.353E-01		
2019	5.302E+03	2.896E+06	1.946E+02	7.579E+00	2.114E+03	1.421E-01		
2020	5.551E+03	3.033E+06	2.038E+02	7.935E+00	2.214E+03	1.487E-01		
2021	5.799E+03	3.168E+06	2.129E+02	8.290E+00	2.313E+03	1.554E-01		
2022	6.043E+03	3.301E+06	2.218E+02	8.638E+00	2.410E+03	1.619E-01		
2023	6.282E+03	3.432E+06	2.306E+02	8.979E+00	2.505E+03	1.683E-01		
2024	6.515E+03	3.559E+06	2.392E+02	9.314E+00	2.598E+03	1.746E-01		
2025	6.745E+03	3.685E+06	2.476E+02	9.641E+00	2.690E+03	1.807E-01		
2026	6.970E+03	3.807E+06	2.558E+02	9.963E+00	2.779E+03	1.867E-01		
2027	7.190E+03	3.928E+06	2.639E+02	1.028E+01	2.867E+03	1.927E-01		
2028	7.406E+03	4.046E+06	2.718E+02	1.059E+01	2.953E+03	1.984E-01		
2029	7.617E+03	4.161E+06	2.796E+02	1.089E+01	3.038E+03	2.041E-01		
2030	7.825E+03	4.275E+06	2.872E+02	1.119E+01	3.121E+03	2.097E-01		
2031	8.028E+03	4.386E+06	2.947E+02	1.148E+01	3.202E+03	2.151E-01		
2032	8.228E+03	4.495E+06	3.020E+02	1.176E+01	3.281E+03	2.205E-01		
2033	8.423E+03	4.601E+06	3.092E+02	1.204E+01	3.359E+03	2.257E-01		
2034	8.614E+03	4.706E+06	3.162E+02	1.231E+01	3.435E+03	2.308E-01		
2035	8.802E+03	4.809E+06	3.231E+02	1.258E+01	3.510E+03	2.359E-01		
2036	8.986E+03	4.909E+06	3.298E+02	1.285E+01	3.584E+03	2.408E-01		
2037	9.167E+03	5.008E+06	3.365E+02	1.310E+01	3.656E+03	2.456E-01		

Year	Carbon dioxide						NMOC	
`	(Mg/year)	(m³/year)	(av ft^3/min)	(Mg/year)	(m³/year)	(av ft^3/min		
2038	9.343E+03	5.104E+06	3.430E+02	1.336E+01	3.726E+03	2.504E-01		
2039	9.517E+03	5.199E+06	3.493E+02	1.360E+01	3.795E+03	2.550E-01		
2040	9.687E+03	5.292E+06	3.556E+02	1.385E+01	3.863E+03	2.596E-01		
2041	9.853E+03	5.383E+06	3.617E+02	1.408E+01	3.929E+03	2.640E-01		
2042	1.002E+04	5.472E+06	3.677E+02	1.432E+01	3.994E+03	2.684E-01		
2043	1.018E+04	5.559E+06	3.735E+02	1.455E+01	4.058E+03	2.727E-01		
2044	1.033E+04	5.645E+06	3.793E+02	1.477E+01	4.121E+03	2.769E-01		
2045	1.049E+04	5.729E+06	3.849E+02	1.499E+01	4.182E+03	2.810E-01		
2046	1.064E+04	5.811E+06	3.905E+02	1.521E+01	4.242E+03	2.850E-01		
2047	1.079E+04	5.892E+06	3.959E+02	1.542E+01	4.301E+03	2.890E-01		
2048	1.093E+04	5.971E+06	4.012E+02	1.562E+01	4.359E+03	2.929E-01		
2049	1.107E+04	6.048E+06	4.064E+02	1.583E+01	4.415E+03	2.967E-01		
2050	1.121E+04	6.124E+06	4.115E+02	1.603E+01	4.471E+03	3.004E-01		
2051	1.135E+04	6.199E+06	4.165E+02	1.622E+01	4.525E+03	3.040E-01		
2052	1.148E+04	6.272E+06	4.214E+02	1.641E+01	4.578E+03	3.076E-01		
2053	1.161E+04	6.343E+06	4.262E+02	1.660E+01	4.631E+03	3.111E-01		
2054	1.174E+04	6.414E+06	4.309E+02	1.678E+01	4.682E+03	3.146E-01		
2055	1.187E+04	6.482E+06	4.355E+02	1.696E+01	4.732E+03	3.179E-01		
2056	1.199E+04	6.550E+06	4.401E+02	1.714E+01	4.781E+03	3.213E-01		
2057	1.211E+04	6.616E+06	4.445E+02	1.731E+01	4.830E+03	3.245E-01		
2058	1.223E+04	6.681E+06	4.489E+02	1.748E+01	4.877E+03	3.277E-01		
2059	1.234E+04	6.744E+06	4.531E+02	1.765E+01	4.923E+03	3.308E-01		
2060	1.246E+04	6.806E+06	4.573E+02	1.781E+01	4.969E+03	3.338E-01		
2061	1.257E+04	6.867E+06	4.614E+02	1.797E+01	5.013E+03	3.368E-01		
2062	1.268E+04	6.927E+06	4.654E+02	1.813E+01	5.057E+03	3.398E-01		
2063	1.279E+04	6.985E+06	4.694E+02	1.828E+01	5.099E+03	3.426E-01		
2064	1.289E+04	7.043E+06	4.732E+02	1.843E+01	5.141E+03	3.454E-01		
2065	1.300E+04	7.099E+06	4.770E+02	1.858E+01	5.182E+03	3.482E-01		
2066	1.310E+04	7.154E+06	4.807E+02	1.872E+01	5.223E+03	3.509E-01		
2067	1.320E+04	7.208E+06	4.843E+02	1.886E+01	5.262E+03	3.536E-01		
2068	1.329E+04	7.261E+06	4.879E+02	1.900E+01	5.301E+03	3.562E-01		
2069	1.303E+04	7.118E+06	4.782E+02	1.862E+01	5.196E+03	3.491E-01		
2070	1.277E+04	6.977E+06	4.688E+02	1.826E+01	5.093E+03	3.422E-01		
2071	1.252E+04	6.839E+06	4.595E+02	1.789E+01	4.992E+03	3.354E-01		
2072	1.227E+04	6.703E+06	4.504E+02	1.754E+01	4.893E+03	3.288E-01		
2073	1.203E+04	6.570E+06	4.415E+02	1.719E+01	4.796E+03	3.223E-01		
2074	1.179E+04	6.440E+06	4.327E+02	1.685E+01	4.701E+03	3.159E-01		
2075	1.156E+04	6.313E+06	4.242E+02	1.652E+01	4.608E+03	3.096E-01		
2076	1.133E+04	6.188E+06	4.158E+02	1.619E+01	4.517E+03	3.035E-01		
2077	1.110E+04	6.065E+06	4.075E+02	1.587E+01	4.428E+03	2.975E-01		
2078	1.088E+04	5.945E+06	3.995E+02	1.556E+01	4.340E+03	2.916E-01		
2079	1.067E+04	5.827E+06	3.915E+02	1.525E+01	4.254E+03	2.858E-01		
2080	1.046E+04	5.712E+06	3.838E+02	1.495E+01	4.170E+03	2.802E-01		
2080	1.025E+04	5.599E+06	3.762E+02	1.495E+01	4.087E+03	2.746E-01		
2081					4.007E+03 4.006E+03	2.692E-01		
	1.005E+04	5.488E+06	3.687E+02	1.436E+01	3.927E+03	2.639E-01		
2083	9.847E+03	5.379E+06	3.614E+02	1.408E+01				
2084	9.652E+03	5.273E+06	3.543E+02	1.380E+01	3.849E+03	2.586E-01		
2085	9.461E+03	5.168E+06	3.473E+02	1.352E+01	3.773E+03	2.535E-01		
2086	9.274E+03	5.066E+06	3.404E+02	1.326E+01	3.698E+03	2.485E-01		
2087 2088	9.090E+03 8.910E+03	4.966E+06 4.867E+06	3.337E+02 3.270E+02	1.299E+01 1.274E+01	3.625E+03 3.553E+03	2.436E-01 2.387E-01		

Year Carbon dioxide				NMOC			
Vear	(Mg/year)	(m ³ /year)	(av ft^3/min)	(Mg/year)	(m ³ /year)	(av ft^3/min	
2089	8.734E+03	4.771E+06	3.206E+02	1.248E+01	3.483E+03	2.340E-01	
2090	8.561E+03	4.677E+06	3.142E+02	1.224E+01	3.414E+03	2.294E-01	
2091	8.391E+03	4.584E+06	3.080E+02	1.199E+01	3.346E+03	2.248E-01	
2092	8.225E+03	4.493E+06	3.019E+02	1.176E+01	3.280E+03	2.204E-01	
2093	8.062E+03	4.404E+06	2.959E+02	1.152E+01	3.215E+03	2.160E-01	
2094	7.902E+03	4.317E+06	2.901E+02	1.130E+01	3.151E+03	2.117E-01	
2095	7.746E+03	4.232E+06	2.843E+02	1.107E+01	3.089E+03	2.076E-01	
2096	7.593E+03	4.148E+06	2.787E+02	1.085E+01	3.028E+03	2.034E-01	
2097	7.442E+03	4.066E+06	2.732E+02	1.064E+01	2.968E+03	1.994E-01	
2098	7.295E+03	3.985E+06	2.678E+02	1.043E+01	2.909E+03	1.955E-01	
2099	7.150E+03	3.906E+06	2.625E+02	1.022E+01	2.852E+03	1.916E-01	
2100	7.009E+03	3.829E+06	2.573E+02	1.002E+01	2.795E+03	1.878E-01	
2101	6.870E+03	3.753E+06	2.522E+02	9.821E+00	2.740E+03	1.841E-01	
2102	6.734E+03	3.679E+06	2.472E+02	9.626E+00	2.686E+03	1.804E-01	
2103	6.601E+03	3.606E+06	2.423E+02	9.435E+00	2.632E+03	1.769E-01	
2104	6.470E+03	3.535E+06	2.375E+02	9.249E+00	2.580E+03	1.734E-01	
2105	6.342E+03	3.465E+06	2.328E+02	9.066E+00	2.529E+03	1.699E-01	
2106	6.216E+03	3.396E+06	2.282E+02	8.886E+00	2.479E+03	1.666E-01	
2107	6.093E+03	3.329E+06	2.237E+02	8.710E+00	2.430E+03	1.633E-01	
2108	5.973E+03	3.263E+06	2.192E+02	8.538E+00	2.382E+03	1.600E-01	
2109	5.854E+03	3.198E+06	2.149E+02	8.369E+00	2.335E+03	1.569E-01	
2110	5.738E+03	3.135E+06	2.106E+02	8.203E+00	2.288E+03	1.538E-01	
2111	5.625E+03	3.073E+06	2.065E+02	8.040E+00	2.243E+03	1.507E-01	
2112	5.513E+03	3.012E+06	2.024E+02	7.881E+00	2.199E+03	1.477E-01	
2113	5.404E+03	2.952E+06	1.984E+02	7.725E+00	2.155E+03	1.448E-01	
2114	5.297E+03	2.894E+06	1.944E+02	7.572E+00	2.112E+03	1.419E-01	
2115	5.192E+03	2.837E+06	1.906E+02	7.422E+00	2.071E+03	1.391E-01	
2116	5.089E+03	2.780E+06	1.868E+02	7.275E+00	2.030E+03	1.364E-01	
2117	4.989E+03	2.725E+06	1.831E+02	7.131E+00	1.989E+03	1.337E-01	
2118	4.890E+03	2.671E+06	1.795E+02	6.990E+00	1.950E+03	1.310E-01	
.119	4.793E+03	2.618E+06	1.759E+02	6.852E+00	1.911E+03	1.284E-01	
2120	4.698E+03	2.567E+06	1.724E+02	6.716E+00	1.874E+03	1.259E-01	
2121	4.605E+03	2.516E+06	1.690E+02	6.583E+00	1.837E+03	1.234E-01	
2122	4.514E+03	2.466E+06	1.657E+02	6.453E+00	1.800E+03	1.210E-01	
2123	4.425E+03	2.417E+06	1.624E+02	6.325E+00	1.764E+03	1.186E-01	
2124	4.337E+03	2.369E+06	1.592E+02	6.200E+00	1.730E+03	1.162E-01	
2125	4.251E+03	2.322E+06	1.560E+02	6.077E+00	1.695E+03	1.139E-01	
2126	4.167E+03	2.276E+06	1.529E+02	5.956E+00	1.662E+03	1.117E-01	
2127	4.084E+03	2.231E+06	1.499E+02	5.839E+00	1.629E+03	1.094E-01	
2128	4.003E+03	2.187E+06	1.470E+02	5.723E+00	1.597E+03	1.073E-01	

Section 6.a

Green House Gas Emissions

(Submitting under 20.2.70, 20.2.72 20.2.74 NMAC)

Title V (20.2.70 NMAC), Minor NSR (20.2.72 NMAC), and PSD (20.2.74 NMAC) applicants must estimate and report greenhouse gas (GHG) emissions to verify the emission rates reported in the public notice, determine applicability to 40 CFR 60 Subparts, and to evaluate Prevention of Significant Deterioration (PSD) applicability. GHG emissions that are subject to air permit regulations consist of the sum of an aggregate group of these six greenhouse gases: carbon dioxide (CO₂), nitrous oxide (N₂O), methane (CH₄), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride (SF₆).

Calculating GHG Emissions:

1. Calculate the ton per year (tpy) GHG mass emissions and GHG CO₂e emissions from your facility.

2. GHG mass emissions are the sum of the total annual tons of greenhouse gases without adjusting with the global warming potentials (GWPs). GHG CO₂e emissions are the sum of the mass emissions of each individual GHG multiplied by its GWP found in Table A-1 in 40 CFR 98 <u>Mandatory Greenhouse Gas Reporting</u>.

3. Emissions from routine or predictable start up, shut down, and maintenance must be included.

4. Report GHG mass and GHG CO_2e emissions in Table 2-P of this application. Emissions are reported in <u>short</u> tons per year and represent each emission unit's Potential to Emit (PTE).

5. All Title V major sources, PSD major sources, and all power plants, whether major or not, must calculate and report GHG mass and CO2e emissions for each unit in Table 2-P.

6. For minor source facilities that are not power plants, are not Title V, and are not PSD there are three options for reporting GHGs in Table 2-P: 1) report GHGs for each individual piece of equipment; 2) report all GHGs from a group of unit types, for example report all combustion source GHGs as a single unit and all venting GHGs as a second separate unit; 3) or check the following \Box By checking this box, the applicant acknowledges the total CO2e emissions are less than 75,000 tons per year.

Sources for Calculating GHG Emissions:

- Manufacturer's Data
- AP-42 Compilation of Air Pollutant Emission Factors at http://www.epa.gov/ttn/chief/ap42/index.html
- EPA's Internet emission factor database WebFIRE at http://cfpub.epa.gov/webfire/

• 40 CFR 98 <u>Mandatory Green House Gas Reporting</u> except that tons should be reported in short tons rather than in metric tons for the purpose of PSD applicability.

• API Compendium of Greenhouse Gas Emissions Methodologies for the Oil and Natural Gas Industry. August 2009 or most recent version.

• Sources listed on EPA's NSR Resources for Estimating GHG Emissions at http://www.epa.gov/nsr/clean-air-act-permitting-greenhouse-gases:

Global Warming Potentials (GWP):

Applicants must use the Global Warming Potentials codified in Table A-1 of the most recent version of 40 CFR 98 Mandatory Greenhouse Gas Reporting. The GWP for a particular GHG is the ratio of heat trapped by one unit mass of the GHG to that of one unit mass of CO_2 over a specified time period.

"Greenhouse gas" for the purpose of air permit regulations is defined as the aggregate group of the following six gases: carbon dioxide, nitrous oxide, methane, hydrofluorocarbons, perfluorocarbons, and sulfur hexafluoride. (20.2.70.7 NMAC, 20.2.74.7 NMAC). You may also find GHGs defined in 40 CFR 86.1818-12(a).

Metric to Short Ton Conversion:

Short tons for GHGs and other regulated pollutants are the standard unit of measure for PSD and title V permitting programs. 40 CFR 98 <u>Mandatory Greenhouse Reporting</u> requires metric tons.

1 metric ton = 1.10231 short tons (per Table A-2 to Subpart A of Part 98 – Units of Measure Conversions)

VRLRF does not meet the criteria for GHG reporting for existing Title V sources applying for operating permit renewal per 20.2.70.7 NMAC. Calculations of GHG emissions for VRLRF have been estimated by Waste Management of New Mexico, Inc. (WMNM), and those values have been determined to be below the reporting threshold for landfills. Landfill GHG emissions (accounting for oxidation) were calculated to be approximately 14,308 tons/year (12,980 Mg/year) CO2e for emissions year 2017.

Additionally, VRLRF is not subject to the requirements of 20.2.74 NMAC (Prevention of Significant Deterioration, PSD), as the facility is not an existing major PSD source, or a modification of a minor source. Determination of PSD applicability for existing minor Title V sources will be determined upon recalculation of annual GHG generation by WMNM annually.

Section 7

Information Used To Determine Emissions

Information Used to Determine Emissions shall include the following:

- If manufacturer data are used, include specifications for emissions units and control equipment, including control efficiencies specifications and sufficient engineering data for verification of control equipment operation, including design drawings, test reports, and design parameters that affect normal operation.
 If test data are used, include a copy of the complete test report. If the test data are for an emissions unit other than the one being permitted, the emission units must be identical. Test data may not be used if any difference in operating conditions of the unit being permitted and the unit represented in the test report significantly effect emission rates.
- ☑ If the most current copy of AP-42 is used, reference the section and date located at the bottom of the page. Include a copy of the page containing the emissions factors, and clearly mark the factors used in the calculations.

If an older version of AP-42 is used, include a complete copy of the section.

If an EPA document or other material is referenced, include a complete copy.

Fuel specifications sheet.

If computer models are used to estimate emissions, include an input summary (if available) and a detailed report, and a disk containing the input file(s) used to run the model. For tank-flashing emissions, include a discussion of the method used to estimate tank-flashing emissions, relative thresholds (i.e., permit or major source (NSPS, PSD or Title V)), accuracy of the model, the input and output from simulation models and software, all calculations, documentation of any assumptions used, descriptions of sampling methods and conditions, copies of any lab sample analysis.

7.0 Introduction

Multiple sources of equipment and activity-specific data, equations, and emissions factors were used in determining potential emissions produced by activities at VRLRF. Information used to determine emissions is outlined in the following sections and attachments. As necessary, engineering calculations were used to supplement and/or support the data used to determine emissions estimates.

7.1 Manufacturer Data

When necessary, available manufacturer data were used in determining emissions rates from heavy equipment operations at the facility. Equipment weight and soil density data from the Caterpillar Performance Handbook (Edition 42, January 2012) were used to determine particulate emissions from water wagon, scraper, and motor grader operations. **Attachment 7.1** provides copies of manufacturer specifications.

7.2 EPA Emissions Factors and AP-42

The most recent version of the Environmental Protection Agency's Emissions Factors and AP-42 (5th Edition and associated updates) were used in determining particulate emissions for this Application. Pages containing relevant equations, emissions factors, and tables are included in **Attachment 7.2**.

7.3 Other Modeling and Emissions Determination

No computer models were used to determine particulate emissions. VOC/HAP emissions that could potentially occur from the remediation of petroleum contaminated soils (PCS) have been estimated as demonstrated in **Section 6** using the previous AQB-approved mass-balance method. This approach is demonstrated in **Section 6.6**, and an example PCS shipment/HAP tracking sheet, which continually calculates HAP emissions potentially produced during landfarming of PCS, is provided as **Table 6.6**, **Section 6**.

The EPA Landfill Gas Emissions Model (LandGEM) Version 3.02 (USEPA, May, 2005) was used to calculate total landfill gas production, as well as the uncontrolled NMOC, VOC, and HAP emission rates from landfill gas. The Model estimates emissions resulting from the biodegradation of refuse in landfills, and is recommended by EPA for use in developing estimates for state inventories. The Model uses a first-order decay rate equation, and estimates annual emissions over a time period specified by the user. The time period specified for waste acceptance at VRLRF was 1988 (the first year of waste acceptance) through 2025. This conservative timeframe was selected to project emissions estimates through the 5-year Operating Permit term, as well as the anticipated 18-month Permit review/issuance period; and is conservative for arid landfills.

Air Dispersion Modeling was performed in support of this Application for Renewal. The accompanying Air Dispersion Modeling Analysis Report, which is submitted concurrent with this Application as UA4, demonstrates compliance with applicable regulations, specifically 40 CFR 50 (National Ambient Air Quality Standards); 40 CFR 52 (Prevention of Significant Deterioration); and 20.2.3 NMAC (New Mexico Ambient Air Quality Standards).

7.4 Insignificant Activities and Equipment

Several activities conducted at VRLRF are considered "insignificant" or "trivial". Consistent with 20.2.70.300.D(6) NMAC, this Section evaluates the insignificance of each activity utilizing guidance furnished by NMED Air Quality Bureau (AQB). Specifically, AQB has developed a List of Insignificant Activities (dated March 24, 2005) and a List of Trivial Activities (dated September 15, 2008), which enumerate activities and equipment that are considered insignificant or trivial on the basis of size, emissions, or production rate. **Table 2-B** in **Section 2** provides a list of these activities, and a copy of each List is provided in **Attachment 7.3**.

• Diesel Fuel Storage Tank and Generator – VRLRF maintains an above-ground, 8,000gallon diesel fuel (distillate fuel oil #2) storage tank that is used exclusively for on-site consumptive use in landfill operations. Tanks used solely for fueling company-owned equipment which have a capacity of less than 25,000 gallons are considered insignificant, as

Form-Section 7 last revised: 8/15/2011

Section 7, Page 2

stated in Item 8 of the List of Insignificant Activities (**Attachment 7.3**). Fuel is pumped from the storage tank into on-site equipment by a pump powered by a 13 hp Generac Diesel generator. Item 6 of the List of Insignificant Activities states that portable diesel engines that have a design capacity of less than 200 hp, and gasoline engines that have a design capacity of less than 500 hp, are considered insignificant.

Scalehouse and Water Well Generators – VRLRF utilizes two Cummins generators for the production of electricity. One generator is located at the Scalehouse, and the second is located at the facility's water well. Each generator is powered by a 90 hp diesel engine. Item 6 of the List of Insignificant Activities states that portable diesel engines that have a design capacity of less than 200 hp, and gasoline engines that have a design capacity of less than 500 hp are considered insignificant.

As defined per 20.2.72 NMAC, the Scalehouse and water well generator engines are stationary sources. Under NMAC 20.2.72.202(B)(3), the Scalehouse generator (Unit 5a) qualifies for an exemption as an emergency standby generator operated less than 500 hours per year only during the unavoidable loss of commercial utility power. The water well generator (Unit 5b) does not qualify for an exemption under 20.2.70.202 NMAC. As requested by the NMED AQB, emissions calculations for Unit 5b have been provided as **Table 2-D-1** for NSR applicability purposes, but emission rates are not provided within Tables **2-D** and **2-E**. Unit 5a record keeping is provided as **Attachment 7.4**.

- Shop Equipment The Shop Area utilizes various air compressors, parts washers, generators, and pumps for daily maintenance activities and support to landfill operations. These pieces of equipment are considered insignificant due to the small size of their power plants (i.e., less than 200 hp). Item 6 of the List of Insignificant Activities states that portable diesel engines that have a design capacity of less than 200 hp, and gasoline engines that have a design capacity of less than 200 hp are considered insignificant. These pieces of equipment are listed below, and in Section 2, Table 2-B.
 - **ALKOTA High Pressure Power Washer** Powered by a 20 hp gas engine
 - o Ingersoll Rand Air Compressor Powered by a 69 hp diesel engine
 - o Generac Diesel Fuel Storage Tank Generator Powered by 13 hp gas engine
 - SiteLite Portable Light Tower Powered by a 29 hp diesel engine
 - Yamaha Trash Pump Powered by a 10 hp gas engine
 - Generac Portable Generator Powered by a 18 hp gas engine

- **Tarpomatic Portable Tarping Machine** Powered by a 24 hp diesel engine
- **Generac Small Generator** Powered by a 7 hp gas engine
- Vehicle Maintenance Fluids Use and Storage Motor oil, antifreeze, hydraulic oil, and automatic transmission fluid are stored and used at VRLRF. These materials exhibit vapor pressures considerably less than the 0.2 psi threshold value specified in Item 5 of the List of Insignificant Activities. Therefore, storage of these materials is also considered an insignificant activity. Individual MSDSs for these products are provided in Attachment 7.5.

7.5 Dust Control

As described in **Section 6.1.3**, a dust control efficiency of 80% is allowed on the unpaved portions of the Disposal Route at VRLRF treated with recycled basecourse (cold millings) and daily application of water. Unpaved portions of the Disposal Route and access roads which are only watered are allowed a 60% control efficiency. Additionally, the posted speed limit on facility roads is 15 mph, and Soil Borrow Area 2 and the Disposal Area are watered periodically to limit the production of fugitive dust during daily cover soil excavation, spreading, and waste disposal/compaction operations.

7.6 References

Caterpillar[®] Performance Handbook, Edition 42, Caterpillar®, Inc., Peoria, Illinois, 2012.

LandGEM (Landfill Gas Emissions Model), Version 3.02, Control Technology Center, US Environmental Protection Agency, Research Triangle Park, NC, 27711, and Office of Research and Development, Washington, DC 20460, May 2005.

<u>AP-42: Compilation of Air Pollutant Emission Factors, Volume 1: Stationary Point and Area Sources,</u> Fifth Edition, Office of Air Quality Planning and Standards/Office of Air and Radiation, US Environmental Protection Agency, Research Triangle Park, NC 27711, October 2008 (Draft), November 2006; September, October, and November 1998; January 1995; and September 1991.

ATTACHMENT 7.1

EQUIPMENT MANUFACTURER'S SPECIFICATION SHEETS

2012 CATERPILLAR® PERFORMANCE HANDBOOK SECTIONS

Wheel Tractor-Scrapers (cont'd)

	Product Ident.		Horse- power	Capacity Struck/	Approx. Shipping		Dimens	ions m (ft)		Tire Size (Standard) & ply rating	Turning
Model	No. Prefix	Years Built	Max/ Rated	Heaped m³ (yd³)	Weight kg (lb)	Length	Width	Height	Width of Tread	Tractor & Scraper	Circle m (ft)
627	54K	68-74	T/225	10.7/15.3	29 900	12.00	3.50	3.60	2.20	29.5 × 29-28	13.30
		[S/225	(14/20)	(66,000)	(36'9")	(11'7")	(11'8")	(7'3")		(43'9")
627B	14S	73-86	T/225	10.7/15.3	34 610	13.3	3.45	3.63	2,18	29.5-29,	11.10
			S/225	(14/20)	(76,300)	(43'9")	(11'4")	(11'11")	(7'2")	28 PR (E-3)	(36'6")
627E	6EB	86-90	T/225	10.7/15.3	34 670	12.89	3.47	3.71	2.21 (7'3 ")	33.25-29,	10.90
		[S/225	(14/20)	(76,435)	(42'3")	(11'4")	(12'2")	2.18 (7'2")	26 PR (E-3)	(35'9")
627E	7CG	90-93	T/330	10.7/15.3	35 160	12.93	3.47	3.71	2.21	33.25-29,	10.9
			S/225	(14/20)	(77,500)	(42'5")	(11'4")	(12'2")	(7'3")	26 PR (E-3)	(35'8")
627F Series II	1DL	<mark>93-00</mark>	T/330	10.7/15.3	37 060	<mark>12.9</mark>	3.47	3.71	2.21	33.25-R29	10.9
			S/225	(14/20)	<mark>(81,640)</mark>	<mark>(42'5")</mark>	(11'4")	(12'2")	<mark>(7'3")</mark>	★★ (E-2/E-3)	(35'9")
627B/PP	15S	73-86	T/225	10.7/15.3	35 660	14.91	3.45	3.63	2.18	29.5-29,	11.1
			S/225	(14/20)	(78,620)	(48'11")	(11'4")	(11'11")	(7'2")	28 PR (E-3)	(36'6")
627E/PP	6GB	86-89	T/225	10.7/15.3	36 130	12.89	3.47	3.71	2.21 (7'3")	33.25-29,	10.90
		[S/225	(14/20)	(79,655)	(42'3")	(11'4")	(12'2")	2.18 (7'2'')	26 PR (E-3)	(35'9")
627E/PP	7CG	90-93	T/330	10.7/15.3	36 620	15.2	3.47	3.71	2.21	33.25-29,	10.9
		1	S/225	(14/20)	(80,735)	(49'7")	(11'4")	(12'2")	(7'3")	26 PR (E-3)	(35'8")
627F/PP Series II	1DL	93-00	T/330	10.7/15.3	38 103	15.2	3,47	3.71	2.21	33.25-R29	10.9
		ľ	S/225	(14/20)	(84,000)	(49'7")	(11'4")	(12'2")	(7'3")	★★ (E-2/E-3)	(35'9")
627G/PP	AXF	00-02	T/330/365	10.7/15.3	38 140	15.2	3.47	3.71	2.20	33.25R29	11.7
			S/225	(14/20)	(84,075)	(49'7")	(11'4")	(12'2")	(7'3")		(38'5")
627G/PP	CEX	02-05	T/330/365	12/17	39 186	15.2	3.47	3.71	2.20	33.25R29	11.7
			S/225/249	(15.7/22)	(86,390)	(49'7")	(11'4")	(12'2")	(7'3")		(38'5")
627G P/P	DBD	05-10	T/330/365	12/17	39 443	15.2	3.58	3.81	2.23	33.25R29**E3	11.7
			S/239/266	(15.7/22)	(86,957)	(49'7")	(11'9")	(12'6")	(7'4")		(38'5")
									Tractor		
									2.20		
									(7'3")		
									Scraper		
630A &	52F	60-62	420/335	21/27	35 830	14.63	3.91	4.01	2.39	16.0 × 25-16	11.89
482C Scraper				(27/35)	(79,000)	(48'0")	(12'10")	(13'2")	(7'10")	29.5 × 35-28	(39'0")
									Scraper	33.5 × 33-26	
630A	52F	60-62	420/335	16/21.4	31 430	13.82	3,58	3.73	2.21	16.0 × 25-16	11.89
				(21/28)	(69,300)	(45'4")	(11'9")	(12'3")	(7'3")	29.5 × 35-28	(39'0")
630B	14G	62-63	420/335	16/23	33 520	14.12	3.81	3.71	2.41	16.0-25, 16	13.36
				(21/30)	(73,900)	(46'4")	(12'6")	(12'2")	(7'11")	29.5-35, 28	(43'10")
630B	14G	63-66	400/360	16/23	33 570	14.30	3.81	3.94	2.41	16.0-25, 16	13.36
				(21/30)	(74,000)	(46'11")	(12'6")	(12'11")	(7'11")	29.5-35, 34	(43'10")
630B	10G	62-69	/400	16/23	35 750	14.35	3.81	3.94	2.40	16.0-25, 16	13.36
		[(21/30)	(78,800)	(47'1")	(12'6")	(12'11")	(7'10")	29.5-35, 34	(43'10")

19

COMPACTORS

	Product Ident.		Flywheel	Approx.	Drum	Articulated			imum eeds	
Model	No. Prefix	Years Built	Kilowatts (Horsepower)	Oper. Wt. kg (lb)	Width m (ft)	Steering Angle, Maximum	Transmission	Fwd. km/h (mph)	Rev. km/h (mph)	
815	91P	70-81	127	17 300	0.97	44°	Power Shift	30.1	35.7	*
			(170)	(38,200)	(3'2")	Either Side	4F-4R	(18.7)	(22.2)	
815B	17Z	81-95	161	20 035	0.98	45°	Power Shift	37.5	42.9	*
			(216)	(44,175)	(3'2")	Either Side	4F-4R	(23.3)	(26.6)	
815F	1GN	96-02	164	20 952	0.98	36°	Power Shift	37.6	43.0	
			(220)	(46,096)	(3'2")	Either Side	4F-4R	(23.3)	(26.7)	
815F	BKL	03-06	179	20 755	0.98	36°	Power Shift	17.9	19.5	
			(240)	(45,765)	(3'2")	Either Side	3F-3R	(11.1)	(12.1)	
815F II	BYN	06	173	20 755	0.99	42°	Power Shift	17.6	19.5	
			(232)	(45,756)	(3'3")	Either side	3F-3R	(11)	(12.2)	
816	57U	72-81	127	18 550	1.02	44°	Power Shift	30.1	35.7	**
			(170)	(40,900)	(3'4")	Either Side	4F-4R	(18.6)	(22.4)	
816B	15Z	81-95	161	20 628	1.02		Power Shift	35.3	40.4	**
			(216)	(45,477)	(3'4")		4F-4R	(22.0)	(25.1)	
816F	5FN	96-02	164	20 879	1.02	42°	Power Shift	36.3	41.4	
			(220)	(45,934)	(3'4")	Either Side	4F-4R	(22.5)	(25.7)	
816F II	BZR	06	173	23 748	1.016	42°	Power Shift	9.5	10.6	
			(232)	(52,364)	(3'4")	Either side	2F-2R	(5.9)	(6.6)	
825B	43N	70-78	224	30 075	1.13	44°	Power Shift	29.8	29.8	<u> </u>
			(300)	(66,300)	(3'8")	Either Side		(18.5)	(18.5)	
825C	86X	78-96	231	32 400	1.13	42°	Power Shift	29.8	33.9	
			(310)	(71,432)	(3'8")	Either Side	4F-4R	(18.5)	(21.1)	
825G	6RN	96-02	235	31 740	1.13	42°	Power Shift	15.6	17.2	
			(315)	(69,828)	(3'8")	Either Side	3F-3R	(9.7)	(10.7)	
825G II	AXB	03-04	253	32 734	1.13	42°	Power Shift	15.6	17.2	
			(339)	(72,164)	(3'8")	Either Side	3F-3R	(9.7)	(10.7)	
825H	AZW	05	264	32 734	1.125	42°	Power Shift	15.6	17.2	
			(354)	(72,164)	(3'7")	Either side	3F-3R	(9.7)	(10.7)	
826C	87X	78-95	235	34 920	1.20	42°	Power Shift	32.5	37.2	
			(315)	(76,990)	(3'11")	Either Side	4F-4R	(20.2)	(23.1)	
826G	7LN	96-02	235	33 350	1.2	42°	Power Shift	11.2	13.5	
			(315)	(73,537)	(3'11")	Either Side	2F-2R	(6.9)	(8.4)	
826H	AWF	05	264	36 967	1.2	42°	Power Shift	9.7	10.6	
			(354)	(81,498)	(3'11")	Either side	2F-2R	(6.03)	(6.59)	
835	44N	70-74	298	35 900	1.22	44°	Power Shift	32.2	34.8	
			(400)	(79,100)	(4'0")	Either Side	3F-3R	(20.0)	(21.6)	
836	3RL	93-95	336	45 450	1.4	35°	Power Shift	11.3	14.0	*
	7FR	95-98	(450)	(100,000)	(4'7")	Either Side	2F-2R	(7.0)	(8.7)	
836G	7MZ	98-01	351	53 680	1.4	35°	Power Shift	6.0	10.2	
			(471)	118,348	(4'7")	Either Side	2F-2R	(3.7)	(6.3)	
836H	BXD	05	372	53 682	1.4	35°	Power Shift	10.9	11.4	
			(499)	(118,348)	(4'7")	Either side	2F-2R	(6.8)	(7.1)	

*Turbocharged, Articulated Steering. **Turbocharged, ROPS Cab, Sleeve Metering Fuel System.

Waste Handling Track-Type Tractors

Specifications

MODEL		<mark>7R</mark> s 2 WH		LGP s 2 WH	D8F	RWH
Flywheel Power	179 kW	240 hp	179 kW	240 hp	228 kW	305 hp
Operating Weight:*						
Power Shift Differential Steer	28 108 kg	61,912 lb	30 328 kg	66,802 lb	37 630 kg	82,880 lb
Engine Model	31760	SCAC	3176C	SCAC	340	6ETA
Rated Engine RPM	2	100	21	100	2	100
No. of Cylinders		6		6		6
Bore	125 mm	4.92"	125 mm	4.92"	137 mm	5.4"
Stroke	140 mm	5.5"	140 mm	5.5"	165 mm	6.5"
Displacement	10.3 L	629 in ³	10.3 L	629 in ³	14.6 L	893 in ³
Track Rollers (Each Side)		7		7		8
ERF†		_	.	9		_
Width of Standard Track Shoe	560 mm	1'10"	914 mm	3'0"	560 mm	1'10"
Length of Track on Ground	2.89 m	9'5"	3.16 m	10'5"	3.21 m	10'6"
Ground Contact Area (with Std. Shoe)	3.22 m ²	4996 in ²	5.78 m²	8960 in ²	3.57 m²	5544 in ²
Track Gauge	1.98 m	6'6"	2.24 m	7'4"	2.08 m	6'10"
GENERAL DIMENSIONS:						
Height (Stripped Top)**	2.56 m	8'5"	2.74 m	9'0"	2.67 m	8'9"
Height (ToTop of ROPS Canopy)	3.53 m	11'7"	3.52 m	11'6"	3.51 m	11'6"
Height (ToTop of ROPS Cab)	3.43 m	11'2"	3.58 m	11'9"	3.45 m	11'3"
Overall Length (with SU Blade)***		_	-	_	6.91 m	22'8"
(without Blade)		_	-	_	4.93 m	16'2"
Overall Length (with S Blade)	5.69 m	18'8"	5.78 m	19'0"		_
(without Blade)	4.67 m	15'4"	4.67 m	15'4"		_
Width (over Trunnion)	2.87 m	9'5"	3.37 m	11'1"	3.05 m	10'0"
Width (without Trunnion — Std. Shoe)	2.54 m	8'4"	3.15 m	10'4"	2.70 m	8'8"
Ground Clearance	414 mm	16.3"	496 mm	1'7.5"	606 mm	1'11"
BladeTypes and Widths:						
Straight	3.52 m	11'7"	4.55 m	14'11"		_
Angle Straight	4.50 m	14'9"	-	_	4.99 m	16'4"
Full 25° Angle	4.12 m	13'6"	-	_	4.52 m	14'10"
Universal	3.98 m	13'1"	-	_	4.26 m	14'0"
Semi-U	3.69 m	12'2"	-	_	3.94 m	12'11"
Fuel Tank Refill Capacity	479 L	127 U.S. gal	479 L	127 U.S. gal	625 L	165 U.S. ga

* Operating Weight includes ROPS canopy, operator, lubricants, coolant, full fuel tank, hydraulic controls and fluid, straight dozer with tilt, horn, back-up alarm, retrieval hitch and front pull hook.

— D8R equipped with track guides, ROPS/FOPS cab, single shank ripper and SU blade.
 ** Height (stripped top) — without ROPS canopy, exhaust, seat back or other easily removed encumbrances.

*** Includes drawbar. † ERF – Extended Track Roller Frame. Extends frame 366 mm (14.4"), adds 3 track sections and 2 rollers/side.

Motor Graders (cont'd)

	Product			Approx.	Wheel-			Mold- board	Turning		Maximur	-
	Ident. No.	Years	Horse- power,	Ship Wt.	base m	Length m	Width m	Length	Radius		km/h (mph)	km/h (mph)
Model	Prefix	Built	Rated	kg (lb)	(ft)	(ft)	(ft)	(ft)	(ft)	Controls	Forward	Rev.
140	14U(U.S.)	71-74	150	13 109	5.84	7.95	2.44	3.66	10.97	Mech.	38.8	47.0
	11R(U.S.)	70-74		(28,900)	(19'2")	(26'1")	(8'0")	(12'0")	(36'0")		(24.1)	(29.2)
	55F(AUSTL)	71-75		(,,,		,						
	24R(CAN)	71-74										
140B	61S(BRAZ)	81-87	150	13 620	6.14	8.07	2.39	3.96	11.60	Mech.	37.6	25.6
				(30,003)	(20'2")	(26'6")	(7'10")	(13'0")	(38'0")		(23.4)	(15.9
140G	72V(U.S.)	73-95	150	14 102	5.92	8.33	2.45	3.66	7.30	Hyd.	41.0	41.0
	5MD(BRAZ)	87-95		(31,090)	(19'5")	(27'4")	(8'0")	(12'0")	(24'0")		(25.5)	(25.5
	13W(AUSTL)			(,,				((/			
	81V(CAN)	74-80										
140G	72V(U.S.)	73-95	150	14 914	5.92	8.33	2.45	3.66	7.30	Hyd.	41.0	41.0
AWD	121(0.0.)	10.00		(32,880)	(19'5")	(27'4")	(8'0")	(12'0")	(24'0")	- i y ci.	(25.5)	(25.5
140H	2ZK(U.S.)	95-02	165/185	14 724	6.10	8.60	2.46	3.66	7.40	Hyd.	41.1	32.4
	8KM(U.S.)	00 02		(32,460)	(20'0")	(28'3")	(8'1")	(12'0")	(24'3")	i i y ai	(25.5)	(20.2
	9TN(BRAZ)			(02,100,	(2007)	(200),	(017	((=:0)		(20.0)	(20.2
	3AS(BRAZ)											
	9ZN(AUSTL)											
	APM(U.S.)	02-07										
	CCA(BRAZ)	02-07										
	126(AUSTL)	02-07										
140H	APM(U.S.)	03-05	165/205	14 677	6.17	8.71	2.46	3.66	7.5	Hyd.	44.0	34.7
14011	CCA(BRAZ)	02-07	105/205	(32,357)	(20'3")	(28'7")	(8'1")	(12'0 ")	(24'7 ")	nyu.	(27.4)	(21.6
	126(AUSTL)	02-07		(32,357)	(203)	(207)	(01)	(120)	(247)		(27.4)	(21.0
140H	8JM(U.S.)	96-99	165/185	14 661	6.09	8.60	2.46	3.66	7.4	Hyd.	41.1	32.4
STD	5HM(BRAZ)	96-09	105/105	(32,321)	(20'0 ")	(28'3 ")	2.40 (8'1")	(12'0 ")	(24'3")	riyu.	(25.5)	(20.2
310	XZH(CHINA)	90-09 05-10		(32,321)	(200)	(203)	(01)	(120)	(243)		(25.5)	(20.2
143H	1AL(U.S.)	95-02	165/185	15 023	6.10	8.60	2.46	3.66	7.40	Hyd.	41.1	32.4
14511	APN(U.S.)	02-07	103/103	(33,120)	(20'0")	(28'3")	(8'1")	(12'0 ")	(24'3")	nyu.	(25.5)	(20.2
143H	APN(U.S.)	02-07	165/205	15 270	6.17	8.71	2.55	3.66	7.5	Hyd.	44.0	34.7
14511	AIN(0.5.)	02-07	103/203	(33,670)	(20'3")	(28'7")	(8'5")	(12'0 ")	(24'7 ")	nyu.	(27.4)	(21.6
14B	78E(U.S.)	59-59	150	13 300	5.84	8.03	2.44	3.66	10.97	Mech.	34.8	11.3
140	64C(U.S.)	59-59 59-69	130	(29,280)	(19'2 ")	(26'4 ")	2.44 (8'0")	(12'0 ")	(36'0 ")	INICOL.	(21.6)	(7.0)
14C	35F(U.S.)	59-69 59-61	150	(29,200) 12 973	5.84	8.03	2.44	3.66	10.97	Mech.	34.8	11.3
140	331 (0.0.)	55-01	130	(28,600)	(19'2 ")	(26'4 ")	(8'0")	(12'0 ")	(36'0")	WIGON.	(21.6)	(7.0)
14D	96F(U.S.)	61-65	150	13 700	6.15	8.33	2.44	3.96	11.58	Mech.	34.1	23.5
טדי	301 (0.0.)	01-03	130	(30,300)	(20'2")	(27'4 ")	(8'0")	(13'0 ")	(38'0")	WIGON.	(21.2)	(14.6
14E	99G(U.S.)	65-68	150	13 699	6.15	8.33	2.44	3.96	11.58	Hyd.	36.4	24.9
·	000(0.0.)	00-00		(30,200)	(20'2 ")	(27'4 ")	(8'0")	(13'0 ")	(38'0")	Mech.	(22.6)	(15.5
14E	12K(U.S.)	67-73	150	14 300	6.10	8.30	2.44	3.96	11.60	Hyd.	39.1	47.3
14L	72G(U.S.)	69-73	130	(31,600)	(20'2")	(27'4 ")	2.44 (8'0")	(13'0 ")	(38'0")	Mech.	(24.3)	(29.4
14G	96U(U.S.)	73-95	200	20 688	6.45	9.21	2.83	4.27	7.90	Hyd.	43.0	50.1
041	300(0.3.)	10-00	200	(45,610)	(21'2")	(30'3 ")	2.83 (9'3")	4.27 (14'0")	(25'11 ")	riyu.	(26.8)	(31.1
14H	7WJ(U.S.)	95-02	215	(45,610) 18 784	(212) 6.45	9.21	(93) 2.70	4.27	(25 11) 7.90	Hvd	42.7	47.3
14Π	ASE(U.S.)	95-02 02-07	215							Hyd.		
1/11			220/240	(41,410)	(21'2")	(30'2")	(8'10")	(14'0")	(25'11") 8.0	니고서	(26.5)	(29.4
14H	ASE(U.S.)	02-07	220/240	18 809	6.56	9.34	2.82	4.27		Hyd.	46.1	51.1
				(41,465)	(21'6")	(30'8")	(9'3")	(14'0")	(26'4")		(28.7)	(31.8

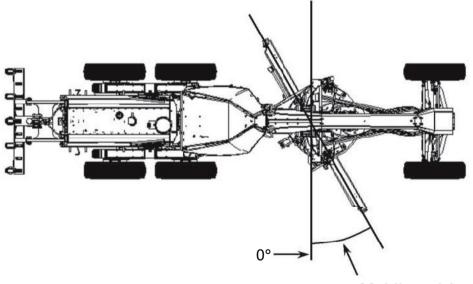
PRODUCTION

The motor grader is used in a variety of applications in a variety of industries. Therefore, there are many ways to measure its operating capacity, or production. One method expresses a motor grader's production in relation to the area covered by the moldboard.

Formula:

- $A = S \times (L_e L_o) \times 1000 \times E$ (Metric) $A = S \times (L_e L_o) \times 5280 \times E$ (English)
- where
- A: Hourly operating area (m²/h or ft²/h) S: Operating speed (km/h or mph)
- L_e: Effective blade length (m or ft)
- L_o: Width of overlap (m or ft) E: Job efficiency

Operating Speeds:


Typical operating speeds by application

Finish Grading:	0-4 km/h	(0-2.5 mph)
Heavy Blading:	0-9 km/h	(0-6 mph)
Ditch Repair:	0-5 km/h	(0-3 mph)
Ripping:	0-5 km/h	(0-3 mph)
Road Maintenance:	5-16 km/h	(3-9.5 mph)
Haul Road Maintenance:	5-16 km/h	(3-9.5 mph)
Snow Plowing:	7-21 km/h	(4-13 mph)
Snow Winging:	15-28 km/h	(9-17 mph)

Effective Blade Length:

Since the moldboard is usually angled when moving material, an effective blade length must be computed to account for this angle. This is the actual width of material swept by the moldboard.

NOTE: Angles are measured as shown below. The effective length becomes shorter as the angle increases.

Moldboard Angle

MATERIAL DENSITY STANDARDS (CATERPILLAR HANDBOOK, 2012)

BULLDOZER PRODUCTION OFF-THE-JOB

You can estimate bulldozer production using the production curves that follow and the correction factors that are applicable. Use this formula:

 $\frac{Production (Lm³/hr)}{(LCY/hr)} = \frac{Maximum}{production} \times \frac{Correction}{factors}$

The bulldozer production curves give maximum uncorrected production for universal, semi-universal, and straight blades and are based on the following conditions:

- 1. 100% efficiency (60 minute hour level cycle).
- 2. Power shift machines with 0.05 min. fixed times.
- 3. Machine cuts for 15 m (50 feet), then drifts blade load to dump over a high wall. (Dump time 0 sec.)
- 4. Soil density of 1370 kg/Lm³ (2300 lb/LCY).
- Coefficient of traction:*

 Track machines 0.5 or better
 Wheel machines 0.4 or better
- 6. Hydraulic controlled blades used.
- 7. Dig 1F** Carry 2F** Return 2R**

To obtain estimated production in bank cubic meters or bank cubic yards, appropriate load factor from the Tables section should be applied to the corrected production as calculated above.

Production Bm ³ /hr	Lm³/hr	×	LF
(BCY/h) [–]	(LCY/h)	×	LF

*Coefficient of traction assumed to be at least 0.4. While poor traction affects both track and wheel vehicles, causing them to take smaller blade loads, wheeled units are affected more severely and production falls much more rapidly. While no fixed rules can predict this production loss, a rough rule of thumb is that wheel dozer production falls off 4% for each one-hundredth decrease in coefficient of traction below 0.40. If, for example, coefficient of traction is 0.30, the difference is ten-hundredths (0.10), and production is 60% ($10 \times 4\% = 40\%$ decrease).

**This gear sequence is based on level to downhill terrain, light to medium density material, and no blade extensions such as spill plates, rock guards, etc. Exceeding these conditions may require carry in 1F, but productivity should equal or exceed "standard conditions" due to the larger loads that can be carried in 1F.

ATTACHMENT 7.2 AP-42 SECTIONS

Table 2.4-2 (CONTINUED). DEFAULT CONCENTRATIONS FOR LFG CONSTITUENTS FOR
LANDFILLS WITH WASTE IN PLACE PRIOR TO 1992

Compound	Molecular Weight	Default Concentration (ppmv)	Emission Factor Rating
Ethanol	46.08	27.2	Е
Ethyl mercaptan (ethanethiol)	62.13	2.28	D
Ethylbenzene ^a	106.16	4.61	В
Ethylene dibromide	187.88	0.001	Е
Fluorotrichloromethane	137.38	0.76	В
Hexane ^a	86.18	6.57	В
Hydrogen sulfide	34.08	35.5	В
Mercury (total) ^{a,d}	200.61	2.92×10^{-4}	Е
Methyl ethyl ketone ^a	72.11	7.09	А
Methyl isobutyl ketone ^a	100.16	1.87	В
Methyl mercaptan	48.11	2.49	С
Pentane	72.15	3.29	С
Perchloroethylene (tetrachloroethylene) ^a	165.83	3.73	В
Propane	44.09	11.1	В
t-1,2-dichloroethene	96.94	2.84	В
Toluene ^a	92.13		
Co-disposal (SCC 50300603)		165	D
No or Unknown co-disposal (SCC 50100402)		39.3	А
Trichloroethylene (trichloroethene) ^a	131.38	2.82	В
Vinyl chloride ^a	62.50	7.34	В
Xylenes ^a	106.16	12.1	В

NOTE: This is not an all-inclusive list of potential LFG constituents, only those for which test data were available at multiple sites. References 16-82. Source Classification Codes in parentheses.

^a Hazardous Air Pollutants listed in Title III of the 1990 Clean Air Act Amendments.

^b Carbon monoxide is not a typical constituent of LFG, but does exist in instances involving landfill (underground) combustion. Therefore, this default value should be used with caution. Of 18 sites where CO was measured, only 2 showed detectable levels of CO.

^c Source tests did not indicate whether this compound was the para- or ortho- isomer. The para isomer is a Title III-listed HAP.

^d No data were available to speciate total Hg into the elemental and organic forms.

^e For NSPS/Emission Guideline compliance purposes, the default concentration for NMOC as specified in the final rule must be used. For purposes not associated with NSPS/Emission Guideline compliance, the default VOC content at co-disposal sites can be estimated by 85 percent by weight (2,060 ppmv as hexane); at No or Unknown sites can be estimated by 39 percent by weight 235 ppmv as hexane).

		AI WENE Emissions Bv	AI WESTERN SURFACE COAL MINES ⁻ Emissions By Particle Size Range (Aerodynamic Diameter) ^{be}	VIIINES ² Ivnamic Diam	eter) ^{b,c}		
		Luning to have to a	Duringing Footor Daviations	Cool:	ar Eastan		EMISSION
		EIIIISSIUII FAC	tor Equations	DCall	Scalling raciols		FACTOR
Operation	Material	TSP $\leq 30 \ \mu m$	$\leq 15 \ \mu m$	$\leq 10 \ \mu m^d$	$\leq\!2.5~\mu m/TSP^e$	Units	RATING
Blasting ^f	Coal or overburden	0.000014(A) ^{1.5}	ND	0.52°	0.03	lb/blast	c_DD
Truck loading	Coal	$\frac{1.16}{(M)^{1.2}}$	$\frac{0.119}{(M)^{0.9}}$	0.75	0.019	lb/ton	BBCC
Bulldozing	Coal	$\frac{78.4 \text{ (s)}^{1.2}}{(\text{M})^{1.3}}$	$\frac{18.6 (s)^{1.5}}{(M)^{1.4}}$	0.75	0.022	lb/hr	CCDD
	Overburden	$\frac{5.7 \text{ (s)}^{1.2}}{(\text{M})^{1.3}}$	$\frac{1.0 \text{ (s)}^{1.5}}{(\text{M})^{1.4}}$	0.75	0.105	<mark>lb/hr</mark>	BCDD
Dragline	Overburden	$\frac{0.0021 (d)^{1.1}}{(M)^{0.3}}$	$\frac{0.0021 (d)^{0.7}}{(M)^{0.3}}$	0.75	0.017	lb/yd³	BCDD
Vehicle traffic ^s							
Grading		<mark>0.040 (S)^{2.5}</mark>	<mark>0.051 (S)^{2.0}</mark>	<mark>09.0</mark>	<mark>0.031</mark>	1b/VMT	CCDD
Active storage pile ^h (wind erosion and maintenance)	Coal	0.72 u	ND	ND	QN	<u>lb</u> (acre)(hr)	C ⁱ
^a Reference 1, except as	; noted. VMT =	Reference 1, except as noted. VMT = vehicle miles traveled. ND = no data. Quality ratings coded where "Q, X, Y, Z" are ratings for $\leq 30 \text{ µm}$,	ND = no data. Quality I	atings coded	where ''Q, X, Y,	Z" are rating	gs for ≤30 µm,

Table 11.9-1 (English Units). EMISSION FACTOR EQUATIONS FOR UNCONTROLLED OPEN DUST SOURCES

å Ŷ ŝ ž Y $\leq 15 \text{ µm}, \leq 10 \text{ µm}, \text{ and } \leq 2.5 \text{ µm}, \text{ respectively}$. See also note below. invivily 1, variati da muluu.

Particulate matter less than or equal to 30 µm in aerodynamic diameter is sometimes termed "suspendable particulate" and is often used as a surrogate for TSP (total suspended particulate). TSP denotes what is measured by a standard high volume sampler (see Section 13.2). "Symbols for equations: p

A = horizontal area (ft²), with blasting depth \leq 70 ft. Not for vertical face of a bench.

material moisture content (%) = M

material silt content (%) s ||

wind speed (mph) = n

drop height (ft) || ||

mean vehicle weight (tons) W =

mean vehicle speed (mph) mean number of wheels S ⊗ ■

IOS	SOURCES AT WESTERN SURFACE COAL MINES	TE COAL MIT	NES		
Source	Material	Mine Location ^a	TSP Emission Factor ^b	Units	EMISSION FACTOR RATING
Drilling	Overburden	Any	$\begin{array}{c} 1.3\\ 0.59\end{array}$	lb/hole kg/hole	υυ
	Coal	γ	$0.22 \\ 0.10$	lb/hole kg/hole	ЩЩ
Topsoil removal by scraper	Topsoil	Any	0.058	lb/ton	цц
		IV	0.029 0.44 0.22	kg/Mg lb/ton kg/Mg	а шп
Overburden replacement	Overburden	Any	0.012 0.0060	lb/ton kg/Mg	υυ
Truck loading by power shovel (batch drop) ^c	Overburden	^	0.037 0.018	lb/ton kg/Mg	шш
Train loading (batch or continuous drop) ^c	Coal	Any	0.028 0.014	lb/ton kg/Mg	шш
		Ш	0.0002 0.0001	lb/ton kg/Mg	шш
Bottom dump truck unloading (batch drop) ^{c}	Overburden	^	0.002 0.001	lb/ton kg/Mg	шш
	Coal	IV	0.027 0.014	lb/ton kg/Mg	шш
		Ш	0.005 0.002	lb/ton kg/Mg	шш
		П	0.020 0.010	lb/ton kg/Mg	шш
		Ι	0.014 0.0070	lb/T kg/Mg	ШШ
		Any	0.066 0.033	lb/T kg/Mg	DD

	Table 11.9-4 (cont.).	t.).			
Source	Material	Mine Location ^a	TSP Emission Factor ^b	Units	EMISSION FACTOR RATING
End dump truck unloading (batch drop) ^{ε}	Coal	V	0.007 0.004	lb/T kg/Mg	пп
Scraper unloading (batch drop) ⁶	Topsoil	<mark>\1</mark>	0.04 0.02	<mark>lb/T</mark> kg/Mg	шш
Wind erosion of exposed areas ^d	Seeded land, stripped overburden, graded overburden	Any	0.38	T (acre)(yr)	U
			0.85	Mg (hectare)(yr)	С
^a Roman numerals I through V refer to specific mine locations for which the corresponding emission factors were developed (Reference 5).	c mine locations for which the correspon	sponding emiss	ion factors wer	nission factors were developed (Reference 5)	srence 5).

Tables 11.9-4 and 11.9-5 present characteristics of each of these mines. See text for correct use of these "mine-specific" emission factors. The other factors (from Reference 7, except for overburden drilling from Reference 1) can be applied to any western surface coal mine. Total suspended particulate (TSP) denotes what is measured by a standard high volume sampler (see Section 13.2). ą.

^c Predictive emission factor equations, which generally provide more accurate estimates of emissions, are presented in Chapter 13.

^d To estimate wind erosion on a shorter time scale (e. g., worst-case day), see Section 13.2.5.

	Road Use Or	Plant	No. Of	Silt Conte	ent (%)
Industry	Surface Material	Sites	Samples	Range	Mean
Copper smelting	Plant road	1	3	16 - 19	17
Iron and steel production	Plant road	19	135	0.2 - 19	6.0
Sand and gravel processing	Plant road	1	3	4.1 - 6.0	4.8
	Material storage area	1	1	-	7.1
Stone quarrying and processing	Plant road	2	10	2.4 - 16	10
	Haul road to/from pit	4	20	5.0-15	8.3
Taconite mining and processing	Service road	1	8	2.4 - 7.1	4.3
	Haul road to/from pit	1	12	3.9 - 9.7	5.8
Western surface coal mining	Haul road to/from pit	3	21	2.8 - 18	8.4
	Plant road	2	2	4.9 - 5.3	5.1
	Scraper route	3	10	7.2 - 25	17
	Haul road (freshly graded)	2	5	18 - 29	24
Construction sites	Scraper routes	7	20	0.56-23	8.5
Lumber sawmills	Log yards	2	2	4.8-12	8.4
Municipal solid waste landfills	Disposal routes	4	20	<mark>2.2 - 21</mark>	<mark>6.4</mark>

Table 13.2.2-1. TYPICAL SILT CONTENT VALUES OF SURFACE MATERIAL ON INDUSTRIAL UNPAVED ROADS^a

^aReferences 1,5-15.

The following empirical expressions may be used to estimate the quantity in pounds (lb) of size-specific particulate emissions from an unpaved road, per vehicle mile traveled (VMT):

For vehicles traveling on unpaved surfaces at industrial sites, emissions are estimated from the following equation:

$$E = k (s/12)^{a} (W/3)^{b}$$
(1a)

and, for vehicles traveling on publicly accessible roads, dominated by light duty vehicles, emissions may be estimated from the following:

$$E = \frac{k (s/12)^{a} (S/30)^{d}}{(M/0.5)^{c}} - C$$
(1b)

where k, a, b, c and d are empirical constants (Reference 6) given below and

- E = size-specific emission factor (lb/VMT)
- s = surface material silt content (%)
- W = mean vehicle weight (tons)
- M = surface material moisture content (%)
- S = mean vehicle speed (mph)
- C = emission factor for 1980's vehicle fleet exhaust, brake wear and tire wear.

The source characteristics s, W and M are referred to as correction parameters for adjusting the emission estimates to local conditions. The metric conversion from lb/VMT to grams (g) per vehicle kilometer traveled (VKT) is as follows:

1 lb/VMT = 281.9 g/VKT

The constants for Equations 1a and 1b based on the stated aerodynamic particle sizes are shown in Tables 13.2.2-2 and 13.2.2-4. The PM-2.5 particle size multipliers (k-factors) are taken from Reference 27.

	Industria	al Roads (Equa	ation 1a)	Public Roads (Equation 1b)		
Constant	PM-2.5	PM-10	PM-30*	PM-2.5	PM-10	PM-30*
k (lb/VMT)	<mark>0.15</mark>	<mark>1.5</mark>	<mark>4.9</mark>	0.18	1.8	6.0
a	<mark>0.9</mark>	0.9	0.7	1	1	1
b	0.45	0.45	0.45	-	-	-
с	-	-	-	0.2	0.2	0.3
d	-	-	-	0.5	0.5	0.3
Quality Rating	В	В	В	В	В	В

Table 13.2.2-2. CONSTANTS FOR EQUATIONS 1a AND 1b

*Assumed equivalent to total suspended particulate matter (TSP)

"-" = not used in the emission factor equation

Table 13.2.2-2 also contains the quality ratings for the various size-specific versions of Equation 1a and 1b. The equation retains the assigned quality rating, if applied within the ranges of source conditions, shown in Table 13.2.2-3, that were tested in developing the equation:

Table 13.2.2-3. RANGE OF SOURCE CONDITIONS USED IN DEVELOPING EQUATION 1a AND 1b

			Vehicle ight		Vehicle eed	Mean	Surface Moisture
Emission Factor	Surface Silt Content, %	Mg	ton	km/hr	mph	No. of Wheels	Content, %
Industrial Roads (Equation 1a)	1.8-25.2	1.8-260	2-290	8-69	5-43	4- 17 ^a	0.03-13
Public Roads (Equation 1b)	1.8-35	1.4-2.7	1.5-3	16-88	10-55	4-4.8	0.03-13

^a See discussion in text.

As noted earlier, the models presented as Equations 1a and 1b were developed from tests of traffic on unpaved surfaces. Unpaved roads have a hard, generally nonporous surface that usually dries quickly after a rainfall or watering, because of traffic-enhanced natural evaporation. (Factors influencing how fast a road dries are discussed in Section 13.2.2.3, below.) The quality ratings given above pertain to the mid-range of the measured source conditions for the equation. A higher mean vehicle weight and a higher than normal traffic rate may be justified when performing a worst-case analysis of emissions from unpaved roads.

The emission factors for the exhaust, brake wear and tire wear of a 1980's vehicle fleet (C) was obtained from EPA's MOBILE6.2 model ²³. The emission factor also varies with aerodynamic size range

average uncontrolled conditions (but including natural mitigation) under the simplifying assumption that annual average emissions are inversely proportional to the number of days with measurable (more than 0.254 mm [0.01 inch]) precipitation:

$$E_{ext} = E [(365 - P)/365]$$
 (2)

where:

 E_{ext} = annual size-specific emission factor extrapolated for natural mitigation, lb/VMT

E = emission factor from Equation 1a or 1b

P = number of days in a year with at least 0.254 mm (0.01 in) of precipitation (see

below)

Figure 13.2.2-1 gives the geographical distribution for the mean annual number of "wet" days for the United States.

Equation 2 provides an estimate that accounts for precipitation on an annual average basis for the purpose of inventorying emissions. It should be noted that Equation 2 does not account for differences in the temporal distributions of the rain events, the quantity of rain during any event, or the potential for the rain to evaporate from the road surface. In the event that a finer temporal and spatial resolution is desired for inventories of public unpaved roads, estimates can be based on a more complex set of assumptions. These assumptions include:

1. The moisture content of the road surface material is increased in proportion to the quantity of water added;

2. The moisture content of the road surface material is reduced in proportion to the Class A pan evaporation rate;

3. The moisture content of the road surface material is reduced in proportion to the traffic volume; and

4. The moisture content of the road surface material varies between the extremes observed in the area. The CHIEF Web site (http://www.epa.gov/ttn/chief/ap42/ch13/related/c13s02-2.html) has a file which contains a spreadsheet program for calculating emission factors which are temporally and spatially resolved. Information required for use of the spreadsheet program includes monthly Class A pan evaporation values, hourly meteorological data for precipitation, humidity and snow cover, vehicle traffic information, and road surface material information.

It is emphasized that <u>the simple assumption underlying Equation 2 and the more complex set of</u> assumptions underlying the use of the procedure which produces a finer temporal and spatial resolution have not been verified in any rigorous manner. For this reason, the quality ratings for either approach should be downgraded one letter from the rating that would be applied to Equation 1.

13.2.2.3 Controls¹⁸⁻²²

A wide variety of options exist to control emissions from unpaved roads. Options fall into the following three groupings:

1. <u>Vehicle restrictions</u> that limit the speed, weight or number of vehicles on the road;

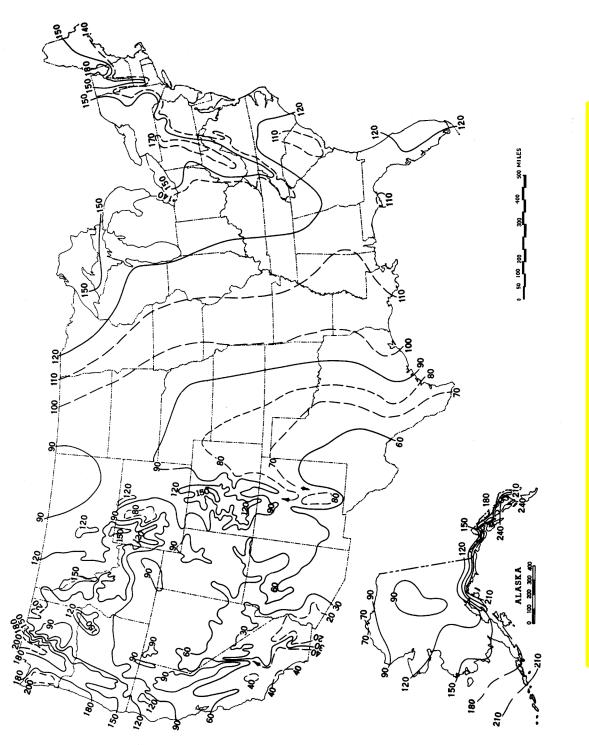


Figure 13.2.2-1. Mean number of days with 0.01 inch or more of precipitation in United States.

Rating Adjustment ^b	-1/-2°	-	-0/-1°	Щ	-0/-1°	-0/-1 ^c	-1/-2°	-1/-2°
Comments						May occur offsite	Emission factor downgraded because of differences in operating	mandinka
Recommended Emission Factor	Dozer equation (overburden) in Tables 11.9-1 and 11.9-2	Scraper unloading factor in Table 11.9-4	Scraper (travel mode) expression in Tables 11.9-1 and 11.9-2	5.7 kg/vehicle kilometer traveled (VKT) (20.2 lb/vehicle mile traveled [VMT])	Material handling emission factor equation in Section 13.2.4	Material handling emission factor equation in Section 13.2.4	Dozer equation in Tables 11.9-1 and 11.9-2	Grading equation in Tables 11.9-1 and 11.9-2
Dust-generating Activities	1. Bulldozing	2. Scrapers unloading topsoil	3. Scrapers in travel	4. Scrapers removing topsoil	5. Loading of excavated material into trucks	6. Truck dumping of fill material, Material handling emission factor road base, or other materials equation in Section 13.2.4	7. Compacting	8. Motor grading
Construction Phase	II. Site Preparation (earth moving)							

Table 13.2.3-1 (cont.).

The quantity of particulate emissions generated by either type of drop operation, per kilogram (kg) (ton) of material transferred, may be estimated, with a rating of A, using the following empirical expression:¹¹

$$E = k(0.0016) \qquad \frac{\left(\frac{U}{2.2}\right)^{1.3}}{\left(\frac{M}{2}\right)^{1.4}} \text{ (kg/megagram [Mg])}$$
$$E = k(0.0032) \qquad \frac{\left(\frac{U}{5}\right)^{1.3}}{\left(\frac{M}{2}\right)^{1.4}} \text{ (pound [lb]/ton)}$$

where:

E = emission factor

k = particle size multiplier (dimensionless)

U = mean wind speed, meters per second (m/s) (miles per hour [mph])

M = material moisture content (%)

The particle size multiplier in the equation, k, varies with aerodynamic particle size range, as follows:

	Aerodynamic Part	icle Size Multiplier (k) For Equation 1	
<mark>< 30 μm</mark>	< 15 µm	<mark>< 10 μm</mark>	$< 5 \ \mu m$	<mark><2.5 μm</mark>
0.74	0.48	0.35	0.20	0.053 ^a

^a Multiplier for $< 2.5 \mu m$ taken from Reference 14.

The equation retains the assigned quality rating if applied within the ranges of source conditions that were tested in developing the equation, as follows. Note that silt content is included, even though silt content does not appear as a correction parameter in the equation. While it is reasonable to expect that silt content and emission factors are interrelated, no significant correlation between the 2 was found during the derivation of the equation, probably because most tests with high silt contents were conducted under lower winds, and vice versa. It is recommended that estimates from the equation be reduced 1 quality rating level if the silt content used in a particular application falls outside the range given:

	Ranges Of Source Con	ditions For Equation 1	
Silt Contout	Maisture Contout	Wind	Speed
Silt Content (%)	Moisture Content (%)	m/s	mph
0.44 - 19	0.25 - 4.8	0.6 - 6.7	1.3 - 15

To retain the quality rating of the equation when it is applied to a specific facility, reliable correction parameters must be determined for specific sources of interest. The field and laboratory procedures for aggregate sampling are given in Reference 3. In the event that site-specific values for

(1)

ATTACHMENT 7.3

NMED AQB LISTS OF INSIGNIFICANT AND TRIVIAL ACTIVITIES

NMED AQB INSIGNIFICANT ACTIVITIES LIST (MARCH 24, 2005)

New Mexico Environment Department (NMED) Air Quality Bureau (AQB) Operating Permit Program List of Insignificant Activities March 24, 2005

Insignificant activities are those activities, which are listed herein by the Environment Department and approved by the Administrator of the US Environmental Protection Agency as insignificant on the basis of size, emissions or production rate. <u>Any activity for which applicable requirements apply, is not insignificant, regardless of whether the activity meets the criteria listed below.</u>

Operating permit applications submitted under 20.2.70 NMAC for sources, which include any of the following emissions units, operations or activities must provide the information required for emissions units under Subsection D.6 of 20.2.70.300 NMAC:

1.a. Any emissions unit, operation or activity that has the potential to emit no more than one (1) ton per year of any regulated air pollutant, excluding 112(b) hazardous air pollutants (see item 1.b), but including 112(r) flammable and toxic regulated pollutants that are not listed in Sections 500 - 502 of 20.2.72 NMAC. Regulated 112(r) pollutants that are listed in Sections 500 - 502 of 20.2.72 NMAC are insignificant if they are emitted in quantities less than the threshold (pound per hour) of that regulation.

1.b. Any emissions unit, operation or activity that has the potential to emit no more than the lesser of either one (1) ton per year or the de minimis level of any 112(b) hazardous air pollutants listed in the U.S. EPA document "Documentation of De Minimis Rates for Proposed 40 CFR part 63 subpart B", EPA-453/R-93-035 or de minimis levels established under subsequent rulemaking for 112(g).

2. Surface coating of equipment, including spray painting and roll coating, for sources with facility-wide total clean-up solvent and coating actual emissions of less than two (2) tons per year.

3. Fuel burning equipment which uses gaseous fuel, has a design rate less than or equal to five (5) million BTU per hour, and is used solely for heating buildings for personal comfort or for producing hot water for personal use.

4. Fuel burning equipment which uses distillate oil, has a design rate less than or equal to one (1) million BTU per hour, and is used solely for heating buildings for personal comfort or for producing hot water for personal use.

5. Any emissions unit, operation, or activity that handles or stores a liquid with a vapor pressure less than 10 mm Hg or in quantities less than 500 gallons.

NMED AQB List of Insignificant Activities

6. Portable engines and portable turbines that have a design capacity (based on sea level specifications) or a physically derated capacity less than or equal to:

200 HP engine if fueled by diesel or natural gas;500 HP engine if fueled by gasoline;650 HP engine if fueled by JP-4 or JP-8;1,500 HP turbine if fueled by natural gas.

A certification of physical engine deration must accompany the portable source and be kept by the Operator or Owner. Physical deration is a result of equipment design, such as combining an engine with a compressor that has an rpm limit. Physical deration is not a result of environmental conditions such as altitude or temperature.

OR

Portable engines, portable turbines, or fixed and portable emergency generators for which the Operator or Owner can adequately demonstrate through actual test data (using EPA approved methods) or manufacturer emissions data that at maximum sea level horsepower the units produce no more that 25 tons per year nitrogen oxides (NOx). In such a case, the documentary information is to be kept with the portable engine, portable turbine, or fixed and portable emergency generator.

To be classified as emergency, a generator's sole function is to provide electrical power when power from the local utilities is interrupted.

OR

Portable Aerospace Ground Equipment (such as power generators, compressors, heaters, air conditioners, lighting units) in direct support of aircraft operations on or in the immediate vicinity of an airfield.

To be classified as portable, the engine must comply with the definition of portable source in 20.2.70 NMAC.

7. Emergency generators which on a temporary basis replaces equipment used in normal operation, and which either has an allowable emission rate or potential to emit for each fee pollutant that is equal to or less than the equipment replaced, or which does not operate for a period exceeding 500 hours per calendar year. (revised 3/4/05)

8. Emissions from fuel storage and dispensing equipment operated solely for company-owned, company-leased or company-rented vehicles, which have a capacity of less than 25,000 gallons.

NMED AQB TRIVIAL ACTIVITIES LIST (SEPTEMBER 15, 2008)

New Mexico Environment Department (NMED) Air Quality Bureau (AQB) Operating Permit Program List of Trivial Activities September 15, 2008

These specific activities are established and approved by the Environment Department. These activities need not be included in an operating permit application. Similar activities may be excluded from operating permit applications with written authorization from the Department. <u>Any</u> activity for which applicable requirements apply, other than ambient air standards, is not trivial, regardless of whether the activity meets the criteria listed below.

1. Any activity that is not a source of regulated pollutants.

2. Activities that occur strictly for maintenance of grounds or buildings, including: lawn care, pest control, grinding, cutting, welding, painting, woodworking, sweeping, general repairs, janitorial activities, plumbing, re-tarring roofs, installing insulation, steam cleaning and water washing activities, and paving of roads, parking lots and other areas.

3. Activities for maintenance and repair of equipment, pollution control equipment, or motor vehicles either inside or outside of a building.

4. Combustion emissions from mobile sources, such as forklifts, courier vehicles, front loaders, graders, carts, and maintenance trucks.

5. Use of fire control equipment, including maintenance, testing, and training.

6. Use of office equipment and products, not including printers or businesses primarily involved in photographic reproduction.

7. Characterization of waste disposal sites (not waste treatment).

8. Non-anthropogenic wind blown dust.

9. Residential activities such as fireplaces, woodstoves, barbecue cookers, and emergency (backup) electrical generators.

10. Routine calibration and maintenance of laboratory equipment or other analytical instruments, including gases used as part of those processes.

11. Laundry activities, except for dry cleaning and steam boilers.

12. Food service and cafeteria activities.

13. Paint or non-paint materials dispensed from prepackaged aerosol cans of 16 ounce or less capacity.

14. Emissions from solid waste containers (pails, drums, and dumpsters).

NMED AQB List of Trivial Activities

15. Emissions from engine crankcase vents and equipment lubricating pumps.

16. Emissions from equipment lubricating systems (i.e., oil mist).

17. Air-conditioning units used for human comfort.

18. Ventilating units used for human comfort that do not exhaust air pollutants into the ambient air from any manufacturing/industrial or commercial process.

19. Vent emissions from sanitary sewer plumbing traps not within the boundary of publicly owned sewage treatment plant.

20. Tobacco smoking rooms and areas.

21. Portable electrical generators that can be moved without the assistance of any motorized or non-motorized vehicle, conveyance, or device from one location to another.

22. Pneumatically operated equipment.

23. Batteries and battery charging stations, except at battery manufacturing plants.

24. Storage tanks, vessels, and containers holding or storing liquid substances that will not emit any volatile organic compound (VOC) or hazardous air pollutant (HAP).

25. Storage tanks, reservoirs, and pumping and handling equipment of any size containing soaps, vegetable oil, grease, animal fat, and nonvolatile aqueous salt solutions, provided appropriate lids and covers are utilized.

26. Vents from continuous emissions monitors and other analyzers.

27. Natural gas pressure regulator vents, excluding venting at oil and gas production facilities.

28. Hand-held applicator equipment for hot-melt adhesives with no volatile organic compound (VOC) in the adhesive formulation.

29. Laser trimmers using dust collection to prevent fugitive emissions.

30. Bench-scale laboratory equipment used for physical or chemical analysis, but not lab fume hoods or vents.

31. Equipment used for quality control/assurance or inspection purposes, including sampling equipment used to withdraw materials for analysis.

NMED AQB List of Trivial Activities

32. Hydraulic and hydrostatic testing equipment.

33. Fugitive emissions related to movement of passenger vehicles, provided the emissions are not counted for applicability purposes and any required fugitive dust control plan or its equivalent is submitted.

34. Boiler water treatment operations, not including cooling towers.

35. Oxygen scavenging (de-aeration) of water.

36. Emissions from blow down of compressors and other vessels containing pipeline quality natural gas for the purpose of maintenance or due to emergency circumstances.

37. Pipeline quality natural gas emissions from safety relief valves.

Record of Changes: a) 9/15/08, Item 36 deleted due to revisions to 20.2.70 NMAC.

ATTACHMENT 7.4

SCALE HOUSE GENERATOR RECORD KEEPING 2015 - 2018

	Scal			Emission Unit	<u>5a</u>
		Hours	Log - 201	5 VRLF	
Month	Start Hrs	End hrs	Hrs Ran	Maintenance	Emergency Use
Jan	4915.25	4916.60	1.35	1.35	0.00
Feb	4916.60	4918.50	1.90	1.90	0.00
Mar	4918.50	4921.25	2.75	2.75	0.00
Apr	4921.25	4922.60	1.35	1.35	0.00
May	4922.60	4924.00	1.40	1.40	0.00
Jun	4924.00	4924.90	0.90	0.90	0.00
Jul	4924.90	4929.40	4.50	2.00	2.50
Aug	4929.40	4930.00	0.60	0.60	0.00
Sep	4930.00	4934.60	4.60	4.60	0.00
Oct	4934.60	4939.50	4.90	3.50	1.40
Nov	4939.50	4941.50	2.00	1.60	0.00
Dec	4940.50	4942.50	2.00	2.00	0.00
Тс	otal hours 20)15 =	28.25	23.95	3.90
		WASTE MA		®	

	<u>Scal</u>		<u>nerator -</u> Log - 201	<u>Emission Unit</u> .6 VRLF	<u>5a</u>
Month	Start Hrs	End hrs	Hrs Ran	Maintenance	Emergency Use
Jan	4942.50	4944.20	1.70	1.70	0.00
Feb	4944.20	4944.90	0.70	0.70	0.00
Mar	4944.90	4945.80	0.90	0.90	0.00
Apr	4945.80	4948.30	2.50	2.50	0.00
May	4948.30	4949.20	0.90	0.90	0.00
Jun	4949.20	4952.20	3.00	3.00	0.00
Jul	4952.20	4952.40	0.20	0.20	0.00
Aug	4952.40	4953.50	1.10	1.10	0.00
Sep	4953.50	4954.20	0.70	0.70	0.00
Oct	4954.20	4954.40	0.20	0.15	0.05
Nov	4954.40	4954.70	0.30	0.30	0.00
Dec	4954.70	4954.90	0.20	0.20	0.00
Тс	otal hours 20	016 =	12.40	12.35	0.05
				ø	

WASTE MANAGEMENT

	<u>Scal</u>	ehouse Gei	nerator -	Emission Unit	<u>5a</u>
		Hours	Log - 201	7 VRLF	
Month	Start Hrs	End hrs	Hrs Ran	Maintenance	Emergency Use
Jan	4954.90	4954.90	0.00	0.00	0.00
Feb	4954.90	4955.10	0.20	0.20	0.00
Mar	4955.10	4955.10	0.00	0.00	0.00
Apr	4955.10	4955.10	0.00	0.00	0.00
May	4955.10	4955.10	0.00	0.00	0.00
Jun	4955.10	4955.30	0.20	0.20	0.00
Jul	4955.30	4956.00	0.70	0.70	0.00
Aug	4956.00	4956.30	0.30	0.30	0.00
Sep	4956.30	4957.10	0.80	0.80	0.00
Oct	4957.10	4958.50	1.40	1.40	0.00
Nov	4958.50	4959.80	1.30	1.30	0.00
Dec	4959.80	4960.90	1.10	1.10	0.00
	Total h	ours 2017 =	6.00	6.00	0.00
		WASTE MA		®	

Scalehouse Generator - Emission Unit 5a							
	Hours Log - 2018 VRLF						
Month	Start Hrs	End hrs	Hrs Ran	Maintenance	Emergency Use		
Jan	4960.90	4962.40	1.50	1.50	0.00		
Feb	4962.40	4969.50	7.10	0.00	7.10		
Mar	4969.50	4976.10	6.60	0.00	6.60		
Apr	4976.10	4980.00	3.90	0.00	3.90		
May	4980.00	4982.00	2.00	0.00	2.00		
Jun	4982.00	4986.00	4.00	0.00	4.00		
Jul	4986.00	4991.20	5.20	0.00	5.20		
Aug	4991.20	4992.00	0.80	0.80	0.00		
Sep	4992.00	4993.00	1.00	1.00	0.00		
Oct			0.00				
Nov			0.00				
Dec			0.00				
Total hours 2018 = 32.10 3.30 28.80							
WASTE MANAGEMENT							

ATTACHMENT 7.5

MOTOR OIL AND VEHICLE MAINTENANCE FLUIDS MSDS DATA

CASTROL HYPURON 15W-40 SYNTHETIC MOTOR OIL MSDS

Material Safety Data Sheet

1. Product and company identification

Product name	Castrol Hypuron 15W-40
MSDS #	465215
Historic MSDS #:	465215-US06
Code	465215-US06 US12 US13 CA01
Product use	Diesel engine oil. For specific application advice see appropriate Technical Data Sheet or consult our company representative.
Manufacturer	BP Lubricants USA Inc. 1500 Valley Road Wayne, NJ 07470 Telephone: (973) 633-2200 Telecopier: (973) 633-7475
EMERGENCY HEALTH INFORMATION:	1 (800) 447-8735
	Outside the US: +1 703-527-3887 (CHEMTREC)
EMERGENCY SPILL INFORMATION:	1 (800) 424-9300 CHEMTREC (USA)
OTHER PRODUCT INFORMATION	1 (866) 4 BP - MSDS (866-427-6737 Toll Free - North America) email: bpcares@bp.com

2. Hazards identification

Physical state	Liquid.
Color	Brown.
Emergency overview	CAUTION !
	MAY CAUSE RESPIRATORY TRACT, EYE AND SKIN IRRITATION.
	Prolonged or repeated contact can defat the skin and lead to irritation and/or dermatitis. In accordance with good industrial hygiene and safety work practices, airborne exposures should be controlled to the lowest extent practicable. Avoid contact with eyes, skin and clothing. Use only with adequate ventilation. Keep container tightly closed and sealed until ready for use. Wash thoroughly after handling.
Routes of entry	Dermal contact. Eye contact. Inhalation. Ingestion.
Potential health effects	
Eyes	May cause eye irritation.
Skin	May cause skin irritation. Prolonged or repeated contact can defat the skin and lead to irritation and/or dermatitis.
Inhalation	May cause respiratory tract irritation.
Ingestion	Ingestion may cause gastrointestinal irritation and diarrhea.
See toxicological information	n (Section 11)

Product name	Castrol Hypuror	n 15W-40		Product code	465215-US06 US12 US13 CA01	Page: 1/6
Version 7	Date of issue	02/22/2011.	Format	US	Language	ENGLISH
				(US)		(ENGLISH)

3. Composition/information on ingredients			
Ingredient name	CAS #	%	
Base oil - highly refined Zinc alkyl dithiophosphate	Varies 93819-94-4	85 - 90 1 - 5	

4. First aid measures

Eye contact	In case of contact, immediately flush eyes with plenty of water for at least 15 minutes. Get medical attention if symptoms occur.
Skin contact	Immediately wash exposed skin with soap and water. Remove contaminated clothing and shoes. Wash clothing before reuse. Clean shoes thoroughly before reuse. Get medical attention if symptoms occur.
Inhalation	If inhaled, remove to fresh air. Get medical attention if symptoms occur.
Ingestion	Do not induce vomiting unless directed to do so by medical personnel. Never give anything by mouth to an unconscious person. If potentially dangerous quantities of this material have been swallowed, call a physician immediately. Get medical attention if symptoms occur.

5. Fire-fighting measures

Flash point	Closed cup: 190°C (374°F) [Pensky-Martens.]
Fire/explosion hazards	In a fire or if heated, a pressure increase will occur and the container may burst.
Extinguishing media	
Suitable	Use an extinguishing agent suitable for the surrounding fire.
Not suitable	Do not use water jet.
Fire-fighting procedures	Promptly isolate the scene by removing all persons from the vicinity of the incident if there is a fire. No action shall be taken involving any personal risk or without suitable training.
Hazardous combustion products	Combustion products may include the following: phosphorus oxides metal oxide/oxides carbon oxides (CO, CO ₂) (carbon monoxide, carbon dioxide) sulfur oxides (SO ₂ , SO ₃ etc.)
Protective clothing (fire)	Fire-fighters should wear appropriate protective equipment and self-contained breathing apparatus (SCBA) with a full face-piece operated in positive pressure mode.

6. Accidental release measures

Personal precautions	No action shall be taken involving any personal risk or without suitable training. Keep unnecessary and unprotected personnel from entering. Do not touch or walk through spilled material. In accordance with good industrial hygiene and safety work practices, airborne exposures should be controlled to the lowest extent practicable. Provide adequate ventilation. Wear appropriate respirator when ventilation is inadequate. Put on appropriate personal protective equipment (see Section 8).
Environmental precautions	Avoid dispersal of spilled material and runoff and contact with soil, waterways, drains and sewers. Inform the relevant authorities if the product has caused environmental pollution (sewers, waterways, soil or air).
Methods for cleaning up	
Large spill	Stop leak if without risk. Move containers from spill area. Approach release from upwind. Prevent entry into sewers, water courses, basements or confined areas. Wash spillages into an effluent treatment plant or proceed as follows. Contain and collect spillage with non-combustible, absorbent material e.g. sand, earth, vermiculite or diatomaceous earth and place in container for disposal according to local regulations (see section 13). Dispose of via a licensed waste disposal contractor. Contaminated absorbent material may pose the same hazard as the spilled product. Note: see section 1 for emergency contact information and section 13 for waste disposal.
Small spill	Stop leak if without risk. Move containers from spill area. Dilute with water and mop up if water- soluble. Alternatively, or if water-insoluble, absorb with an inert dry material and place in an appropriate waste disposal container. Dispose of via a licensed waste disposal contractor.

Product name	Castrol Hypuror	n 15W-40		Product code	465215-US06 US12 US13 CA01	Page: 2/6
Version 7	Date of issue	02/22/2011.	Format	US	Language	ENGLISH
				(US)		(ENGLISH)

7. Handling and storage

Handling	Put on appropriate personal protective equipment (see Section 8). Workers should wash hands and face before eating, drinking and smoking. Do not breathe vapor or mist. Do not ingest. Avoid contact with eyes, skin and clothing. Use only with adequate ventilation. Wear appropriate respirator when ventilation is inadequate.
Storage	Store in accordance with local regulations. Store away from direct sunlight in a dry, cool and well- ventilated area, away from incompatible materials (see section 10). Keep container tightly closed and sealed until ready for use. Containers that have been opened must be carefully resealed and kept upright to prevent leakage. Do not store in unlabeled containers. Use appropriate containment to avoid environmental contamination.
Other information	Sulfur compounds in this material may decompose when heated to release hydrogen sulfide gas which may accumulate to potentially lethal concentrations in enclosed air spaces. Vapor concentrations of hydrogen sulfide above 50 ppm, or prolonged exposure at lower concentrations, may saturate human odor perceptions so that the smell of gas may not be apparent. Exposure to concentrations of hydrogen sulfide vapor above 500 ppm may cause rapid death. Do not rely on the sense of smell to detect hydrogen sulfide.

8. Exposure controls/personal protection

Occupational exposure limits	
Ingredient name	Occupational exposure limits
Base oil - highly refined	ACGIH (United States). TWA: 5 mg/m ³ 8 hour(s). Form: Mineral oil, mist OSHA (United States). TWA: 5 mg/m ³ 8 hour(s). Form: Mineral oil, mist

While specific OELs for certain components may be shown in this section, other components may be present in any mist, vapor or dust produced. Therefore, the specific OELs may not be applicable to the product as a whole and are provided for guidance only.

Some states may enforce more stringent exposure limits.

· · · · · · · · · · · · · · · · · · ·	
Control Measures	Use only with adequate ventilation. If user operations generate dust, fumes, gas, vapor or mist, use process enclosures, local exhaust ventilation or other engineering controls to keep worker exposure to airborne contaminants below any recommended or statutory limits.
Hygiene measures	Wash hands, forearms and face thoroughly after handling chemical products, before eating, smoking and using the lavatory and at the end of the working period. Appropriate techniques should be used to remove potentially contaminated clothing. Wash contaminated clothing before reusing.
Personal protection	
Eyes	Avoid contact with eyes. Safety glasses with side shields or chemical goggles.
Skin and body	Avoid contact with skin and clothing. Wear suitable protective clothing.
Respiratory	Use adequate ventilation. In accordance with good industrial hygiene and safety work practices, airborne exposures should be controlled to the lowest extent practicable.
Hands	The correct choice of protective gloves depends upon the chemicals being handled, the conditions of work and use, and the condition of the gloves (even the best chemically resistant glove will break down after repeated chemical exposures). Most gloves provide only a short time of protection before they must be discarded and replaced. Because specific work environments and material handling practices vary, safety procedures should be developed for each intended application. Gloves should therefore be chosen in consultation with the supplier/manufacturer and with a full assessment of the working conditions.
	Consult your supervisor or Standard Operating Procedure (S.O.P) for special handling instructions.

9. Physical and chemical properties

Physical state	Liquid.
Color	Brown.
Flash point	Closed cup: 190°C (374°F) [Pensky-Martens.]
Density	870 kg/m³ (0.87 g/cm³) at 15°C

Product name	Castrol Hypuror	ו 15W-40		Product code	465215-US06 US12 US13 CA01	Page: 3/6
Version 7	Date of issue	02/22/2011.	Format	US	Language	ENGLISH
				(US)		(ENGLISH)

10. Stability and reactivity

Stability and reactivity	The product is stable.
Possibility of hazardous reactions	Under normal conditions of storage and use, hazardous reactions will not occur.
Conditions to avoid	Avoid all possible sources of ignition (spark or flame).
Incompatibility with various substances	Reactive or incompatible with the following materials: oxidizing materials.
Hazardous decomposition products	This product may release hydrogen sulfide (H_2S) if it is heated to high temperatures.
Hazardous polymerization	Under normal conditions of storage and use, hazardous polymerization will not occur.

11. Toxicological information

Other Toxicity Data	USED ENGINE OILS Combustion products resulting from the operation of internal combustion engines contaminate engine oils during use. Used engine oil may contain hazardous components which have the potential to cause skin cancer. Frequent or prolonged contact with all types and makes of used engine oil must therefore be avoided and a high standard of personal hygiene maintained.		
Other information	This product contains low levels of para-dodecylphenol. Para-dodecylphenol given orally to rats repeatedly at high dose levels caused adverse reproductive effects. The relevance of these findings to humans is uncertain. These effects are not expected to occur with the use of this product as intended when good personal hygiene is practiced.		
	Contains low concentration of zinc alkyl dithiophosphate (ZDDP). Concentration is not expected to cause eye or skin irritation.		
Potential chronic health effects			

Carcinogenicity No known significant effects or critical hazards.

12. Ecological information

Ecotoxicity

No testing has been performed by the manufacturer.

13. Disposal considerations

Waste information The generation of waste should be avoided or minimized wherever possible. Significant quantities of waste product residues should not be disposed of via the foul sewer but processed in a suitable effluent treatment plant. Dispose of surplus and non-recyclable products via a licensed waste disposal contractor. Disposal of this product, solutions and any by-products should at all times comply with the requirements of environmental protection and waste disposal legislation and any regional local authority requirements. Waste packaging should be recycled. Incineration or landfill should only be considered when recycling is not feasible. This material and its container must be disposed of in a safe way. Care should be taken when handling emptied containers that have not been cleaned or rinsed out. Empty containers or liners may retain some product residues. Avoid dispersal of spilled material and runoff and contact with soil, waterways, drains and sewers.

NOTE: The generator of waste has the responsibility for proper waste identification (based on characteristic(s) or listing), transportation and disposal

Product name	Castrol Hypuron 15W-40	F	Product code	465215-US06 US12 US13 CA01	Page: 4/6
Version 7	Date of issue 02/22/2011.	Format l	US	Language	ENGLISH
		((US)		(ENGLISH)

14. Transport information

Not classified as hazardous for transport (DOT, TDG, IMO/IMDG, IATA/ICAO)

15. Regulatory information

• •			
U.S. Federal Regulations			
United States inventory (TSCA 8b)	All components are listed or exempted.		
	SARA 302/304/311/312 extremely hazardous substa SARA 302/304 emergency planning and notification SARA 302/304/311/312 hazardous chemicals: No pr SARA 311/312 MSDS distribution - chemical invent Hypuron 15W-40: Immediate (acute) health hazard	n: No products were fo oducts were found.	bund.
SARA 313			
	Product name	CAS number	Concentration
Form R - Reporting requirements	Zinc alkyl dithiophosphate	93819-94-4	0.845 - 1.6731
Supplier notification	Zinc alkyl dithiophosphate	93819-94-4	0.845 - 1.6731
CERCLA Sections 102a/103 Hazardous Substances (40 CFR Part 302.4):	CERCLA: Hazardous substances.: Zinc alkyl dithiophos 1 lb. (0.454 kg); Cadmium (Non-pyrophoric): 10 lbs. (4.5		
State regulations			
Massachusetts Substances	The following components are listed: MINERAL OIL, PE HYDROTREATED LIGHT PARAFFINIC	TROLEUM DISTILLA	ΓES,
New Jersey Hazardous Substances	The following components are listed: ZINC compounds		
Pennsylvania RTK Hazardous Substances	The following components are listed: ZINC COMPOUNE	S	
California Prop. 65	WARNING: This product contains a chemical known to t Arsenic	he State of California	to cause cancer.
	WARNING: This product contains a chemical known to t birth defects or other reproductive harm. Cadmium (Non-pyrophoric); lead; Benzene	he State of California	to cause cancer and
Other regulations			
Canada inventory	All components are listed or exempted.		
REACH Status	For the REACH status of this product please consult 1.	your company contact	, as identified in Section
Australia inventory (AICS)	All components are listed or exempted.		
China inventory (IECSC)	All components are listed or exempted.		
Japan inventory (ENCS)	At least one component is not listed.		
Korea inventory (KECI)	All components are listed or exempted.		
Philippines inventory (PICCS)	All components are listed or exempted.		

Product name	Castrol Hypuror	ו 15W-40		Product code	465215-US06 US12 US13 CA01	Page: 5/6
Version 7	Date of issue	02/22/2011.	Format	US	Language	ENGLISH
				(US)		(ENGLISH)

16. Other information

Label requirements	CAUTION ! MAY CAUSE R	ESPIRATOR	RY TRACT, EYE AND SKIN	IRRITATION.
HMIS® Rating :	Health Flammability Physical Hazard Personal protection	1 1 0 X	National Fire Protection Association (U.S.A.)	Health 1 Fire hazard Instability Specific hazard
History				
Date of issue	02/22/2011.			
Date of previous issue	07/08/2010.			
Prepared by	Product Steward	dship		
Notice to reader				

All reasonably practicable steps have been taken to ensure this data sheet and the health, safety and environmental information contained in it is accurate as of the date specified below. No warranty or representation, express or implied is made as to the accuracy or completeness of the data and information in this data sheet.

The data and advice given apply when the product is sold for the stated application or applications. You should not use the product other than for the stated application or applications without seeking advice from us.

It is the user's obligation to evaluate and use this product safely and to comply with all applicable laws and regulations. The BP Group shall not be responsible for any damage or injury resulting from use, other than the stated product use of the material, from any failure to adhere to recommendations, or from any hazards inherent in the nature of the material. Purchasers of the product for supply to a third party for use at work, have a duty to take all necessary steps to ensure that any person handling or using the product is provided with the information in this sheet. Employers have a duty to tell employees and others who may be affected of any hazards described in this sheet and of any precautions that should be taken.

Product name Castrol Hypuron 15W-40 Produ					465215-US06 US12 US13 CA01	Page: 6/6
Version 7	Date of issue	02/22/2011.	Format	US	Language	ENGLISH
				(US)		(ENGLISH)

CASTROL TRANS C 30

AUTOMATIC TRANSMISSION FLUID MSDS

Material Safety Data Sheet

1. Product and company identification

Product name	Castrol Trans C 30
MSDS #	459081
Code	459081-US06 US13
Product use	Transmission fluid For specific application advice see appropriate Technical Data Sheet or consult our company representative.
Manufacturer	BP Lubricants USA Inc. 1500 Valley Road Wayne, NJ 07470 Telephone: (973) 633-2200 Telecopier: (973) 633-7475
EMERGENCY HEALTH INFORMATION:	1 (800) 447-8735
	Outside the US: +1 703-527-3887 (CHEMTREC)
EMERGENCY SPILL INFORMATION:	1 (800) 424-9300 CHEMTREC (USA)
OTHER PRODUCT INFORMATION	1 (866) 4 BP - MSDS (866-427-6737 Toll Free - North America) email: bpcares@bp.com

2. Hazards identification

Physical state	Liquid.
Color	Green.
Emergency overview	CAUTION !
	MAY CAUSE RESPIRATORY TRACT, EYE AND SKIN IRRITATION.
	Prolonged or repeated contact can defat the skin and lead to irritation and/or dermatitis. In accordance with good industrial hygiene and safety work practices, airborne exposures should be controlled to the lowest extent practicable. Avoid contact with eyes, skin and clothing. Use only with adequate ventilation. Keep container tightly closed and sealed until ready for use. Wash thoroughly after handling.
Routes of entry	Dermal contact. Eye contact. Inhalation. Ingestion.
Potential health effects	
Eyes	May cause eye irritation.
Skin	May cause skin irritation. Prolonged or repeated contact can defat the skin and lead to irritation and/or dermatitis.
Inhalation	May cause respiratory tract irritation.
Ingestion	Ingestion may cause gastrointestinal irritation and diarrhea.
See toxicological information	i (section 11)

ĺ	Product name	Castrol Trans C	30		Product code	459081-US06 US13	Page: 1/6
	Version 4	Date of issue	11/23/2010.	Format	US	Language	ENGLISH.
					(US)		(ENGLISH)

3. Composition/information on ingredients

Highly refined base oil (IP 346 DMSO extract < 3%). Proprietary performance additives.

Ingredient name	CAS #	%
Base oil - highly refined	Varies	90 - 95
Zinc alkyl dithiophosphate	68649-42-3	1 - 5

4. First aid measures

Eye contact	In case of contact, immediately flush eyes with plenty of water for at least 15 minutes. Get medical attention if symptoms occur.
Skin contact	Immediately wash exposed skin with soap and water. Remove contaminated clothing and shoes. Wash clothing before reuse. Clean shoes thoroughly before reuse. Get medical attention if symptoms occur.
Inhalation	If inhaled, remove to fresh air. Get medical attention if symptoms occur.
Ingestion	Do not induce vomiting unless directed to do so by medical personnel. Never give anything by mouth to an unconscious person. If potentially dangerous quantities of this material have been swallowed, call a physician immediately. Get medical attention if symptoms occur.

5. Fire-fighting measures

Flash point	Closed cup: 212°C (413.6°F) [Pensky-Martens.] Open cup: 160°C (320°F) [Cleveland.]
Fire/explosion hazards	In a fire or if heated, a pressure increase will occur and the container may burst.
Extinguishing media	
Suitable	Use an extinguishing agent suitable for the surrounding fire.
Not suitable	Do not use water jet.
Fire-fighting procedures	Promptly isolate the scene by removing all persons from the vicinity of the incident if there is a fire. No action shall be taken involving any personal risk or without suitable training.
Hazardous combustion products	Combustion products may include the following: phosphorus oxides metal oxide/oxides carbon oxides (CO, CO ₂) (carbon monoxide, carbon dioxide) sulfur oxides (SO ₂ , SO ₃ etc.)
Protective clothing (fire)	Fire-fighters should wear appropriate protective equipment and self-contained breathing apparatus (SCBA) with a full face-piece operated in positive pressure mode.

6. Accidental release measures

Personal preca	utions	and unprotected person accordance with good in controlled to the lowest	n involving any personal risk or with inel from entering. Do not touch or ndustrial hygiene and safety work p extent practicable. Provide adequa ion is inadequate. Put on appropria	walk through spilled m ractices, airborne expo ate ventilation. Wear a	naterial. In osures should be appropriate
Environmental precautions			d material and runoff and contact w orities if the product has caused er		
Methods for cle	aning up				
Large spill		entry into sewers, water treatment plant or proce absorbent material e.g. disposal according to lo contractor. Contaminat	Move containers from spill area. courses, basements or confined a eed as follows. Contain and collect sand, earth, vermiculite or diatoma cal regulations (see section 13). Di ed absorbent material may pose the emergency contact information and	reas. Wash spillages spillage with non-com ceous earth and place spose of via a license e same hazard as the	into an effluent bustible, in container for d waste disposal spilled product.
Product name	Castrol Trans	C 30	Product code	459081-US06 US13	Page: 2/6
Version 4	Date of issue	11/23/2010.	Format US	Language	ENGLISH.

(US)

(ENGLISH)

Stop leak if without risk. Move containers from spill area. Dilute with water and mop up if watersoluble or absorb with an inert dry material and place in an appropriate waste disposal container. Dispose of via a licensed waste disposal contractor.

7. Handling and storage

Handling	Put on appropriate personal protective equipment (see section 8). Workers should wash hands and face before eating, drinking and smoking. Do not breathe vapor or mist. Do not ingest. Avoid contact with eyes, skin and clothing. Use only with adequate ventilation. Wear appropriate respirator when ventilation is inadequate.
Storage	Store in accordance with local regulations. Store away from direct sunlight in a dry, cool and well- ventilated area, away from incompatible materials (see section 10). Keep container tightly closed and sealed until ready for use. Containers that have been opened must be carefully resealed and kept upright to prevent leakage. Do not store in unlabeled containers. Use appropriate containment to avoid environmental contamination.
Other information	Sulfur compounds in this material may decompose when heated to release hydrogen sulfide gas which may accumulate to potentially lethal concentrations in enclosed air spaces. Vapor concentrations of hydrogen sulfide above 50 ppm, or prolonged exposure at lower concentrations, may saturate human odor perceptions so that the smell of gas may not be apparent. Exposure to concentrations of hydrogen sulfide vapor above 500 ppm may cause rapid death. Do not rely on the sense of smell to detect hydrogen sulfide.

8. Exposure controls/personal protection

Occupational exposure limits	
Ingredient name	Occupational exposure limits
Base oil - highly refined	ACGIH (United States). TWA: 5 mg/m ³ 8 hour(s). Form: Mineral oil, mist OSHA (United States). TWA: 5 mg/m ³ 8 hour(s). Form: Mineral oil, mist

While specific OELs for certain components may be shown in this section, other components may be present in any mist, vapor or dust produced. Therefore, the specific OELs may not be applicable to the product as a whole and are provided for guidance only.

Some states may enforce more stringent exposure limits.

Control Measures	Use only with adequate ventilation. If user operations generate dust, fumes, gas, vapor or mist, use process enclosures, local exhaust ventilation or other engineering controls to keep worker exposure to airborne contaminants below any recommended or statutory limits.
Hygiene measures	Wash hands, forearms and face thoroughly after handling chemical products, before eating, smoking and using the lavatory and at the end of the working period. Appropriate techniques should be used to remove potentially contaminated clothing. Wash contaminated clothing before reusing.
Personal protection	
Eyes	Avoid contact with eyes. Safety glasses with side shields or chemical goggles.
Skin and body	Avoid contact with skin and clothing. Wear suitable protective clothing.
Respiratory	Use adequate ventilation. In accordance with good industrial hygiene and safety work practices, airborne exposures should be controlled to the lowest extent practicable.
Hands	The correct choice of protective gloves depends upon the chemicals being handled, the conditions of work and use, and the condition of the gloves (even the best chemically resistant glove will break down after repeated chemical exposures). Most gloves provide only a short time of protection before they must be discarded and replaced. Because specific work environments and material handling practices vary, safety procedures should be developed for each intended application. Gloves should therefore be chosen in consultation with the supplier/manufacturer and with a full assessment of the working conditions.
	Consult your supervisor or Standard Operating Procedure (S.O.P) for special handling instructions.

Product name	Castrol Trans C	30		Product code	459081-US06 US13	Page: 3/6
Version 4	Date of issue	11/23/2010.	Format	US	Language	ENGLISH.
				(US)		(ENGLISH)

9. Physical and chemical properties

Physical state	Liquid.
Color	Green.
Odor	Mild.
Flash point	Closed cup: 212°C (413.6°F) [Pensky-Martens.] Open cup: 160°C (320°F) [Cleveland.]
Specific gravity	0.89
Viscosity	Kinematic: 90 mm²/s (90 cSt) at 40°C Kinematic: 11 mm²/s (11 cSt) at 100°C
Solubility	insoluble in water.

10. Stability and reactivity

Stability and reactivity	The product is stable.
Possibility of hazardous reactions	Under normal conditions of storage and use, hazardous reactions will not occur.
Conditions to avoid	Avoid all possible sources of ignition (spark or flame).
Incompatibility with various substances	Reactive or incompatible with the following materials: oxidizing materials and acids.
Hazardous decomposition products	This product may release hydrogen sulfide (H2S) if it is heated to high temperatures.
Hazardous polymerization	Under normal conditions of storage and use, hazardous polymerization will not occur.

11. Toxicological information

Other information

Contains low concentration of zinc alkyl dithiophosphate (ZDDP). Concentration is not expected to cause eye or skin irritation.

This product contains low levels of para-dodecylphenol. Para-dodecylphenol given orally to rats repeatedly at high dose levels caused adverse reproductive effects. The relevance of these findings to humans is uncertain. These effects are not expected to occur with the use of this product as intended when good personal hygiene is practiced.

Potential chronic health effects

Carcinogenicity

No known significant effects or critical hazards.

12. Ecological information

Ecotoxicity

No testing has been performed by the manufacturer.

13. Disposal considerations

Waste information

The generation of waste should be avoided or minimized wherever possible. Empty containers or liners may retain some product residues. This material and its container must be disposed of in a safe way. Dispose of surplus and non-recyclable products via a licensed waste disposal contractor. Disposal of this product, solutions and any by-products should at all times comply with the requirements of environmental protection and waste disposal legislation and any regional local authority requirements. Avoid dispersal of spilled material and runoff and contact with soil, waterways, drains and sewers.

NOTE: The generator of waste has the responsibility for proper waste identification (based on characteristic(s) or listing), transportation and disposal

F	Product name	Castrol Trans C	30		Product code	459081-US06 US13	Page: 4/6
	Version 4	Date of issue	11/23/2010.	Format	US	Language	ENGLISH.
					(US)		(ENGLISH)

14. Transport information

Not classified as hazardous for transport (DOT, TDG, IMO/IMDG, IATA/ICAO)

15. Regulatory information

U.S. Federal Regulations					
United States inventory (TSCA 8b)	All components are listed or exempted.				
	SARA 302/304/311/312 extremely hazardo SARA 302/304 emergency planning and n SARA 302/304/311/312 hazardous chemic SARA 311/312 MSDS distribution - chemi 30: Immediate (acute) health hazard	otification: No products were tals: No products were found.	found.		
SARA 313					
	Product name	CAS number	Concentration		
Form R - Reporting requirements	Zinc alkyl dithiophosphate	68649-42-3	1.196		
Supplier notification	Zinc alkyl dithiophosphate	68649-42-3	1.196		
CERCLA Sections 102a/103 Hazardous Substances (40 CFR Part 302.4):	CERCLA: Hazardous substances.: Zinc alkyl di (45.4 kg); Ethylbenzene: 1000 lbs. (454 kg);	thiophosphate: 1 lb. (0.454 kg);	xylene: 100 lbs.		
State regulations					
Massachusetts Substances	None of the components are listed.				
New Jersey Hazardous Substances	The following components are listed: ZINC com	pounds			
Pennsylvania RTK Hazardous Substances	The following components are listed: ZINC COI	MPOUNDS			
California Prop. 65	WARNING: This product contains a chemical k Ethylbenzene	nown to the State of California	to cause cancer.		
Inventories					
Canada inventory	All components are listed or exempted.				
Europe inventory	All components are listed or exempted.				
Australia inventory (AICS)	All components are listed or exempted.				
China inventory (IECSC)	All components are listed or exempted.				
Japan inventory (ENCS)	All components are listed or exempted.				
Korea inventory (KECI)	All components are listed or exempted.				
Philippines inventory (PICCS)	All components are listed or exempted.				

16. Other information

Label requirements

CAUTION !

MAY CAUSE RESPIRATORY TRACT, EYE AND SKIN IRRITATION.

Product name Castrol Trans C 30				Product code	459081-US06 US13	Page: 5/6
Version 4	Date of issue	11/23/2010.	Format	US	Language	ENGLISH.
				(US)		(ENGLISH)

HMIS® Rating :	Health 1 Flammability 1 Physical 0 Hazard Personal X protection	National Fire Protection Association (U.S.A.)	Health Health Fire hazard Specific hazard
History			
Date of issue	11/23/2010.		
Date of previous issue	06/26/2009.		
Prepared by	Product Stewardship		

Notice to reader

All reasonably practicable steps have been taken to ensure this data sheet and the health, safety and environmental information contained in it is accurate as of the date specified below. No warranty or representation, express or implied is made as to the accuracy or completeness of the data and information in this data sheet.

The data and advice given apply when the product is sold for the stated application or applications. You should not use the product other than for the stated application or applications without seeking advice from us.

It is the user's obligation to evaluate and use this product safely and to comply with all applicable laws and regulations. The BP Group shall not be responsible for any damage or injury resulting from use, other than the stated product use of the material, from any failure to adhere to recommendations, or from any hazards inherent in the nature of the material. Purchasers of the product for supply to a third party for use at work, have a duty to take all necessary steps to ensure that any person handling or using the product is provided with the information in this sheet. Employers have a duty to tell employees and others who may be affected of any hazards described in this sheet and of any precautions that should be taken.

Product name	Castrol Trans C	; 30		Product code	459081-US06 US13	Page: 6/6
Version 4	Date of issue	11/23/2010.	Format	US	Language	ENGLISH.
				(US)		(ENGLISH)

CASTROL DUAL RANGE HV 46 HYDRAULIC FLUID MSDS

1. Product and company identification

Product name	Dual Range HV 46
MSDS #	460278
Code	460278-CA01
Product use	Hydraulic fluid For specific application advice see appropriate Technical Data Sheet or consult our company representative.
Manufacturer	Castrol Industrial North America, Inc. 150 W. Warrenville Road Naperville, IL 60563
Supplier	Castrol Industrial North America, Inc. 150 W. Warrenville Road Naperville, IL 60563 Product Information: +1-877-641-1600
EMERGENCY SPILL INFORMATION:	1 (800) 424-9300 CHEMTREC (USA)

2. Hazards identification

Physical state	Liquid.
Color	Purple.
Emergency overview	CAUTION !
	MAY CAUSE RESPIRATORY TRACT, EYE AND SKIN IRRITATION.
	Prolonged or repeated contact can defat the skin and lead to irritation and/or dermatitis. In accordance with good industrial hygiene and safety work practices, airborne exposures should be controlled to the lowest extent practicable. Avoid contact with eyes, skin and clothing. Use only with adequate ventilation. Keep container tightly closed and sealed until ready for use. Wash thoroughly after handling.
Routes of entry	Dermal contact. Eye contact. Inhalation. Ingestion.
Potential health effects	
Eyes	May cause eye irritation.
Skin	May cause skin irritation. Prolonged or repeated contact can defat the skin and lead to irritation and/or dermatitis.
Inhalation	May cause respiratory tract irritation.
Ingestion	Ingestion may cause gastrointestinal irritation and diarrhea.
See toxicological information	n (Section 11)

3. Composition/information on ingredients

Ingredient name	CAS #	%
Base oil - highly refined	Varies	95 - 100

Product name Dual Range HV 46			Product code	460278-CA01	Page: 1/6	
Version 1	Date of issue	03/07/2011.	Format	US	Language	ENGLISH
				(US)		(ENGLISH)

4. First aid measures

Eye contact	In case of contact, immediately flush eyes with plenty of water for at least 15 minutes. Get medical attention if symptoms occur.
Skin contact	Immediately wash exposed skin with soap and water. Remove contaminated clothing and shoes. Wash clothing before reuse. Clean shoes thoroughly before reuse. Get medical attention if symptoms occur.
Inhalation	If inhaled, remove to fresh air. Get medical attention if symptoms occur.
Ingestion	Do not induce vomiting unless directed to do so by medical personnel. Never give anything by mouth to an unconscious person. If potentially dangerous quantities of this material have been swallowed, call a physician immediately. Get medical attention if symptoms occur.
Notes to physician	Treatment should in general be symptomatic and directed to relieving any effects.
	Note: High Pressure Applications Injections through the skin resulting from contact with the product at high pressure constitute a major medical emergency. Injuries may not appear serious at first but within a few hours tissue becomes swollen, discolored and extremely painful with extensive subcutaneous necrosis. Surgical exploration should be undertaken without delay. Thorough and extensive debridement of the wound and underlying tissue is necessary to minimize tissue loss and prevent or limit permanent damage. Note that high pressure may force the product considerable distances along tissue planes.

5. Fire-fighting measures

Fire/explosion hazards	In a fire or if heated, a pressure increase will occur and the container may burst.
Extinguishing media	
Suitable	Use an extinguishing agent suitable for the surrounding fire.
Not suitable	Do not use water jet.
Fire-fighting procedures	Promptly isolate the scene by removing all persons from the vicinity of the incident if there is a fire. No action shall be taken involving any personal risk or without suitable training.
Hazardous combustion products	Combustion products may include the following: carbon oxides (CO, CO ₂) (carbon monoxide, carbon dioxide)
Protective clothing (fire)	Fire-fighters should wear appropriate protective equipment and self-contained breathing apparatus (SCBA) with a full face-piece operated in positive pressure mode.

6. Accidental release measures

Personal precautions	No action shall be taken involving any personal risk or without suitable training. Keep unnecessary and unprotected personnel from entering. Do not touch or walk through spilled material. In accordance with good industrial hygiene and safety work practices, airborne exposures should be controlled to the lowest extent practicable. Provide adequate ventilation. Wear appropriate respirator when ventilation is inadequate. Put on appropriate personal protective equipment (see Section 8).
Environmental precautions	Avoid dispersal of spilled material and runoff and contact with soil, waterways, drains and sewers. Inform the relevant authorities if the product has caused environmental pollution (sewers, waterways, soil or air).
Methods for cleaning up	
Large spill	Stop leak if without risk. Move containers from spill area. Approach release from upwind. Prevent entry into sewers, water courses, basements or confined areas. Wash spillages into an effluent treatment plant or proceed as follows. Contain and collect spillage with non-combustible, absorbent material e.g. sand, earth, vermiculite or diatomaceous earth and place in container for disposal according to local regulations (see section 13). Dispose of via a licensed waste disposal contractor. Contaminated absorbent material may pose the same hazard as the spilled product. Note: see section 1 for emergency contact information and section 13 for waste disposal.
Small spill	Stop leak if without risk. Move containers from spill area. Dilute with water and mop up if water- soluble. Alternatively, or if water-insoluble, absorb with an inert dry material and place in an appropriate waste disposal container. Dispose of via a licensed waste disposal contractor.

Product name	Dual Range HV	46		Product code	460278-CA01	Page: 2/6
Version 1	Date of issue	03/07/2011.	Format	US	Language	ENGLISH
				(US)		(ENGLISH)

7. Handling and storage

Handling

Put on appropriate personal protective equipment (see Section 8). Workers should wash hands and face before eating, drinking and smoking. Do not breathe vapor or mist. Do not ingest. Avoid contact with eyes, skin and clothing. Use only with adequate ventilation. Wear appropriate respirator when ventilation is inadequate.

Storage

Store in accordance with local regulations. Store away from direct sunlight in a dry, cool and wellventilated area, away from incompatible materials (see section 10). Keep container tightly closed and sealed until ready for use. Containers that have been opened must be carefully resealed and kept upright to prevent leakage. Do not store in unlabeled containers. Use appropriate containment to avoid environmental contamination.

8. Exposure controls/personal protection

Occupational exposure limits	5
Ingredient name	Occupational exposure limits
Base oil - highly refined	ACGIH (United States). TWA: 5 mg/m ³ 8 hour(s). Form: Mineral oil, mist OSHA (United States). TWA: 5 mg/m ³ 8 hour(s). Form: Mineral oil, mist
	components may be shown in this section, other components may be present in any mist, vapor or specific OELs may not be applicable to the product as a whole and are provided for guidance only.
Some states may enforce mo	re stringent exposure limits.
Control Measures	Use only with adequate ventilation. If user operations generate dust, fumes, gas, vapor or mist, use process enclosures, local exhaust ventilation or other engineering controls to keep worker exposure to airborne contaminants below any recommended or statutory limits.
Hygiene measures	Wash hands, forearms and face thoroughly after handling chemical products, before eating, smoking and using the lavatory and at the end of the working period. Appropriate techniques should be used to remove potentially contaminated clothing. Wash contaminated clothing before reusing.
Personal protection	
Eyes	Avoid contact with eyes. Safety glasses with side shields or chemical goggles.
Skin and body	Avoid contact with skin and clothing. Wear suitable protective clothing.
Respiratory	Use adequate ventilation. In accordance with good industrial hygiene and safety work practices, airborne exposures should be controlled to the lowest extent practicable.
Hands	The correct choice of protective gloves depends upon the chemicals being handled, the conditions of work and use, and the condition of the gloves (even the best chemically resistant glove will break down after repeated chemical exposures). Most gloves provide only a short time of protection before they must be discarded and replaced. Because specific work environments and material handling practices vary, safety procedures should be developed for each intended application. Gloves should therefore be chosen in consultation with the supplier/manufacturer and with a full assessment of the working conditions.
	Consult your supervisor or Standard Operating Procedure (S.O.P) for special handling instructions.

9. Physical and chemical properties

Physical state	Liquid.
Color	Purple.
Specific gravity	0.872
Viscosity	Kinematic: 44.8 mm²/s (44.8 cSt) at 40°C Kinematic: 7.8 mm²/s (7.8 cSt) at 100°C
Solubility	insoluble in water.

Product name	Dual Range HV 46	Product code	460278-CA01 Page: 3/6
Version 1	Date of issue 03/07/2011.	Format US	Language ENGLISH
		(US)	(ENGLISH)

10. Stability and reactivity

Stability and reactivity	The product is stable.
Possibility of hazardous reactions	Under normal conditions of storage and use, hazardous reactions will not occur.
Conditions to avoid	Avoid all possible sources of ignition (spark or flame).
Incompatibility with various substances	Reactive or incompatible with the following materials: oxidizing materials.
Hazardous decomposition products	Under normal conditions of storage and use, hazardous decomposition products should not be produced.
Hazardous polymerization	Under normal conditions of storage and use, hazardous polymerization will not occur.

11. Toxicological information

Other information

Potential chronic health effects

Carcinogenicity

No known significant effects or critical hazards.

12. Ecological information

Ecotoxicity

No testing has been performed by the manufacturer.

13. Disposal considerations

Waste information

The generation of waste should be avoided or minimized wherever possible. Significant quantities of waste product residues should not be disposed of via the foul sewer but processed in a suitable effluent treatment plant. Dispose of surplus and non-recyclable products via a licensed waste disposal contractor. Disposal of this product, solutions and any by-products should at all times comply with the requirements of environmental protection and waste disposal legislation and any regional local authority requirements. Waste packaging should be recycled. Incineration or landfill should only be considered when recycling is not feasible. This material and its container must be disposed of in a safe way. Care should be taken when handling emptied containers that have not been cleaned or rinsed out. Empty containers or liners may retain some product residues. Avoid dispersal of spilled material and runoff and contact with soil, waterways, drains and sewers.

NOTE: The generator of waste has the responsibility for proper waste identification (based on characteristic(s) or listing), transportation and disposal

14. Transport information

Not classified as hazardous for transport (DOT, TDG, IMO/IMDG, IATA/ICAO)

15. Regulatory information

U.S. Federal Regulations

United States inventory (TSCA 8b) All components are listed or exempted.

SARA 302/304/311/312 extremely hazardous substances: No products were found.
SARA 302/304 emergency planning and notification: No products were found.
SARA 302/304/311/312 hazardous chemicals: No products were found.
SARA 311/312 MSDS distribution - chemical inventory - hazard identification: Dual Range HV 46 : Immediate (acute) health hazard

SARA 313

Product name Dual Range HV 46			Product code	460278-CA01	Page: 4/6	
Version 1	Date of issue	03/07/2011.	Format	US	Language	ENGLISH
				(US)		(ENGLISH)

Form R - Reporting requirements	This product does not contain any hazardous ingredients at or above regulated thresholds.
Supplier notification	This product does not contain any hazardous ingredients at or above regulated thresholds.
CERCLA Sections 102a/103 Hazardous Substances (40 CFR Part 302.4):	CERCLA: Hazardous substances.: Zinc dialkyl dithiophosphate; Ethyl acrylate: 1000 lbs. (454 kg); Naphthalene: 100 lbs. (45.4 kg);
State regulations	
Massachusetts Substances	None of the components are listed.
New Jersey Hazardous Substances	None of the components are listed.
Pennsylvania RTK Hazardous Substances	None of the components are listed.
California Prop. 65	WARNING: This product contains a chemical known to the State of California to cause cancer. Naphthalene; Ethyl acrylate
Other regulations	
Canada inventory	All components are listed or exempted.
REACH Status	For the REACH status of this product please consult your company contact, as identified in Section 1.
Australia inventory (AICS)	All components are listed or exempted.
China inventory (IECSC)	All components are listed or exempted.
Japan inventory (ENCS)	At least one component is not listed.
Korea inventory (KECI)	All components are listed or exempted.
Philippines inventory (PICCS)	All components are listed or exempted.

16. Other information

Label requirements	CAUTION !					
	MAY CAUSE R	RESPIRATORY	TRACT, EYE AND SKIN I	RRITATION.		
HMIS® Rating :	Health Flammability Physical Hazard Personal protection	1 1 0 X	National Fire Protection Association (U.S.A.)	Health Health Fire hazard Specific hazard		
History						
Date of issue	03/07/2011.					
Date of previous issue	No previous va	lidation.				
Prepared by	Product Stewar	rdship				
Notice to reader						

All reasonably practicable steps have been taken to ensure this data sheet and the health, safety and environmental information contained in it is accurate as of the date specified below. No warranty or representation, express or implied is made as to the accuracy or completeness of the data and information in this data sheet.

The data and advice given apply when the product is sold for the stated application or applications. You should not use the product other than for the stated application or applications without seeking advice from us.

It is the user's obligation to evaluate and use this product safely and to comply with all applicable laws and regulations. The BP Group shall not be responsible for any damage or injury resulting from use, other than the stated product use of the material, from any failure to adhere to recommendations, or from any hazards inherent in the nature of the material. Purchasers of the product for supply to a third party for use at work, have a duty to take all necessary steps to ensure that any person handling or using the

Product name Dual Range HV 46		Product code	460278-CA01	Page: 5/6		
Version 1	Date of issue	03/07/2011.	Format	US	Language	ENGLISH
				(US)		(ENGLISH)

product is provided with the information in this sheet. Employers have a duty to tell employees and others who may be affected of any hazards described in this sheet and of any precautions that should be taken.

Product name Dual Range HV 46			Product code	460278-CA01	Page: 6/6	
Version 1	Date of issue	03/07/2011.	Format	US	Language	ENGLISH
				(US)		(ENGLISH)

CASTROL HEAVY-DUTY 50/50 COOLANT/ANTIFREEZE MSDS

Material Safety Data Sheet

(ENGLISH)

1. Chemical product and company identification

Product name MSDS#	CASTROL HEAVY DUTY 50/50 PREDILUTED EXTENDED LIFE COOLANT / ANTIFREEZE 0000001870
Historic MSDS#:	None.
Code	0000001870
Product use	Automotive coolant system (antifreeze/anticorrosion). For specific application advice see appropriate Technical Data Sheet or consult your Castrol representative
Supplier	Castrol Heavy Duty Lubricants 9300 Pulaski Highway Baltimore, Maryland 21220-2495
EMERGENCY HEALTH INFORMATION:	1 (800) 447-8735 Outside the US: +1 703-527-3887 (CHEMTREC)
EMERGENCY SPILL INFORMATION:	1 (800) 424-9300 CHEMTREC (USA)
OTHER PRODUCT INFORMATION	1 (866) 4 BP - MSDS (866-427-6737 Toll Free - North America) email: bpcares@bp.com

2. Composition/information on ingredients

Ingredient name	CAS #	% by weight	Exposure limits
Ethylene glycol	107-21-1	45-47	ACGIH TLV (United States, 2002). CEIL: 100 mg/m ³ CEIL: 100 mg/m ³ Form: Aerosol OSHA PEL 1989 (United States, 3/1989). CEIL: 125 mg/m ³ Form: All forms CEIL: 50 ppm Form: All forms
DIETHYLENE GLYCOL Water	111-46-6 7732-18-5	0-2.5 50	None assigned. None assigned.

3. Hazards identification

Physical state	Liquid.	
Color	Red.	
Emergency overview	WARNING!	
	HARMFUL IF SWALLOWED. SLIGHTLY IRRITATING TO THE EYES.	
	Prolonged or repeated contact can defat the skin and lead to irritation Do not ingest. Avoid contact with eyes, skin and clothing. Avoid be thoroughly after handling.	
Routes of entry	Skin contact. Eye contact. Inhalation. Ingestion.	
Product CASTRO Name COOLA	AVY DUTY 50/50 PREDILUTED EXTENDED LIFE MSDS# 0000001	870 Page: 1/6
Version 1 D	f issue 07/19/2004. Format US-FULL	Language ENGLISH

Build 2.0.6

Potential Health Effects	
Eyes	Slightly irritating to the eyes.
Skin	Prolonged or repeated contact can defat the skin and lead to irritation and/or dermatitis.
Inhalation	Exposure to vapor or mist may cause respiratory tract irritation.
Ingestion	Harmful if swallowed. Symptoms similar to alcohol intoxication. Contains material which may cause damage to the following organs: kidneys. See Toxicological Information (section 11)

See toxicological Information (section 11)

4. First aid measures

Eye Contact	In case of contact, immediately flush eyes with plenty of water for at least 15 minutes. Get medical attention immediately.
Skin Contact	In case of contact, immediately flush skin with plenty of water for at least 15 minutes while removing contaminated clothing and shoes. Wash clothing before reuse. Thoroughly clean shoes before reuse. Get medical attention.
Inhalation	If inhaled, remove to fresh air. If not breathing, give artificial respiration. If breathing is difficult, give oxygen. Get medical attention.
Ingestion	Get medical attention urgently informing the doctor that a product containing ethylene glycol has been ingested and specific treatment may be required (see Advice to physicians).
Notes to Physician	Gastric lavage is indicated if significant quantities have been ingested in the previous 4 hours. The metabolism of the glycol to oxalic acid may be delayed by the intravenous administration of ethanol (give as a 5% solution in physiological saline to maintain a blood level of 1-2mg/ml). This has been shown to be an effective antidote provided treatment is started within about 6 hours of exposure. The glycol may be removed by dialysis but oxalates are not readily removed.

5. Fire-fighting measures

Flammability of the product	May be combustible at high temperature.
Products of combustion	These products are carbon oxides (CO, CO2).
Unusual fire/explosion hazards	This material is not explosive as defined by established regulatory criteria.
Fire fighting media and instructions	In case of fire, use water fog, foam, dry chemicals, or carbon dioxide. Do not use water jet.
Protective clothing (fire)	Firefighters should wear full bunker gear, including a positive pressure self-contained breathing apparatus.
Special remarks on fire hazards	Containers may rupture from pressure build-up.

6. Accidental release measures

Personal Precautions	Immediately contact emergency personnel. Keep unnecessary personnel away. Use suitable protective equipment (Section 8). Follow all fire fighting procedures (Section 5).
Environmental precautions and clean-up methods	If emergency personnel are unavailable, contain spilled material. For small spills add absorbent (soil may be used in the absence of other suitable materials) scoop up material and place in a sealed, liquid-proof container for disposal. For large spills dike spilled material or otherwise contain material to ensure runoff does not reach a waterway. Place spilled material in an appropriate container for disposal. Minimize contact of spilled material with soils to prevent runoff to surface waterways. See Section 13 for Waste Disposal Information.
Personal protection in case of a large spill	Splash goggles. Full suit. Boots. Gloves. Suggested protective clothing might not be sufficient; consult a specialist BEFORE handling this product.

	ASTROL HEAVY DUTY 50/50 PREDILUTE OOLANT / ANTIFREEZE	D EXTENDED LIFE	MSDS#	000001870	Page: 2/6
Version 1	Date of issue 07/19/2004.	Format U	IS-FULL	Languag	ge ENGLISH
		Build 2.0.6			(ENGLISH)

7. Handling and storage

Handling

Storage

Do not ingest. Avoid contact with eyes, skin and clothing. Avoid prolonged or repeated contact with skin. Use only with adequate ventilation. Avoid breathing vapor or mist. Wash thoroughly after handling.

Keep container tightly closed. Keep container in a cool, well-ventilated area. Empty containers may contain harmful, flammable/combustible or explosive residue or vapors. Do not cut, grind, drill, weld, reuse or dispose of containers unless adequate precautions are taken against these hazards.

8. Exposure controls/personal protection

Occupational exposure limits	
Ingredient name	Occupational exposure limits
Ethylene glycol	ACGIH TLV (United States, 2002). CEIL: 100 mg/m ³ CEIL: 100 mg/m ³ Form: Aerosol OSHA PEL 1989 (United States, 3/1989). CEIL: 125 mg/m ³ Form: All forms CEIL: 50 ppm Form: All forms
DIETHYLENE GLYCOL Water	None assigned. None assigned.
Control Measures	Provide exhaust ventilation or other engineering controls to keep the airborne concentrations of vapors below their respective occupational exposure limits. Ensure that eyewash stations and safety showers are proximal to the work-station location.
Hygiene measures	Wash hands, forearms, and face thoroughly after handling compounds and before eating, smoking, using lavatory, and at the end of day.
Personal protection	
Eyes	Chemical splash goggles.
Skin and Body	Do not get on skin or clothing. Wear clothing and footwear that cannot be penetrated by chemicals or oil.
Respiratory	Use with adequate ventilation. Avoid breathing vapor or mist. If ventilation is inadequate, use a NIOSH certified respirator with an organic vapor cartridge and P95 particulate filter.
Hands	Wear gloves that cannot be penetrated by chemicals or oil. (PVC, neoprene, Rubber gloves.)

Consult local authorities for acceptable exposure limits.

9. Physical and chemical properties

Physical state	Liquid.
рН	8.6 (Basic.)
Odor	Mild
Color	Red.
Boiling point / Range	106 to 108 °C
Melting point / Range	-37 °C

	ASTROL HEAVY DUTY 50/50 PREDILUTED DOLANT / ANTIFREEZE	EXTENDED LIFE	MSDS#	0000001870	Page: 3/6
Version 1	Date of issue 07/19/2004.	Format	US-FULL	Language	ENGLISH
		Build 2.0.6			(ENGLISH)

Specific Gravity	1.07
Volatility	50% v/v
Solubility	Easily soluble in cold water, hot water.

10. Stability and reactivity

Stability and Reactivity	The product is stable.	
Conditions to avoid	High temperatures. Keep away from water.	
Incompatibility with various substances	Extremely reactive or incompatible with oxidizing agents. moisture. Hygroscopic; keep container tightly closed.	Slightly reactive to reactive with acids,
Hazardous Decomposition Products	carbon oxides (CO, CO2)	
Hazardous polymerization	Will not occur.	

11. Toxicological information

Acute	toxid	city
/ 10 010		,

May be fatal if swallowed. Contains material which causes damage to the following organs: kidneys.

Ingestion may cause nausea, weakness and central nervous system effects. May cause convulsions.

At normal ambient temperatures this product will be unlikely to present an inhalation hazard because of its low volatility.

Ingredient name	Test	Result	Route	Species
Ethylene glycol	LD50	5890 mg/kg	Oral	Rat
	LD50	13400 mg/kg	Oral	Rat
	LD50	10600 mg/kg	Dermal	Rabbit
DIETHYLENE GLYCOL	LD50	12565 mg/kg	Oral	Rat
	LD50	4400 mg/kg	Oral	Rabbit
	LD50	11890 mg/kg	Dermal	Rabbit

Chronic toxicity

Carcinogenic effects	No component of this product at levels greater than 0.1% is identified as a carcinogen by ACGIH or the International Agency for Research on Cancer (IARC). No component of this product present at levels greater than 0.1% is identified as a carcinogen by the U.S. National Toxicology Program (NTP) or the U.S. Occupational Safety and Health Act (OSHA).
Mutagenic effects	No component of this product at levels greater than 0.1% is classified by established regulatory criteria as a mutagen.
Reproductive effects	No component of this product at levels greater than 0.1% is classified by established regulatory criteria as a reproductive toxin.
Teratogenic effects	No component of this product at levels greater than 0.1% is classified by established regulatory criteria as teratogenic or embryotoxic.

	ASTROL HEAVY DU OOLANT / ANTIFRE		UTED EXTENDED LIFE	MSDS#	000001870	Page: 4/6
Version 1	Date of issue	07/19/2004.	Format	US-FULL	Languag	je ENGLISH
			Build 2.0.6			(ENGLISH)

12. Ecological information

Ecotoxicity	No testing has been performed by the manufacturer.
Persistence/degradability	Readily biodegradable
Mobility	Spillages may penetrate the soil causing ground water contamination.
Soil/water partition coefficient (K _{oc})	This product is not likely to partition to organic material in the environment because its Log (Kow) is: -1.36
Bioaccumulative potential	This product shows a low bioaccumulation potential.
Other ecological information	Miscible in water.

13. Disposal considerations

Waste must be disposed of in accordance with federal, state and local environmental control regulations.

Consult your local or regional authorities.

14. Transport information

Waste information

International transport regulations

Regulatory Information	UN number	Proper shipping name	Class	Packing group	Label	Additional information
DOT Classification	UN3082	Environmentally hazardous substance, liquid, n.o.s. (Ethylene glycol)	9	111	Not determined.	<u>Reportable</u> <u>quantity</u> 5000 lbs. (2268 kg)
TDG Classification	Not regulated.				Not determined.	
IMDG Classification	Not regulated.				Not determined.	
IATA Classification	Not regulated.				Not determined.	

Nonbulk Shipping Information

D O T Nonbulk Shipping N Information	Not regulated. (Quantities <5000 lbs. (2268 kg))
---	--

15. Regulatory information

U.S. Federal regulations US INVENTORY (TSCA): In compliance.

This product is not regulated under Section 302 of SARA and 40 CFR Part 355.

SARA 313

		Product name		CAS number	Concentration	
	ASTROL HEAVY DU OOLANT / ANTIFRE		ED EXTENDED LIFE	MSDS#	000001870	Page: 5/6
Version 1	Date of issue	07/19/2004.	Format	US-FULL	Langua	ge ENGLISH
			Build 2.0.6			(ENGLISH)

	Form R - Reporting requirements	Ethylene glycol	107-21-1	45 - 47			
	Supplier notification	Ethylene glycol	107-21-1	45 - 47			
		CERCLA Sections 102a/103 Hazardous Substances (40 CF lbs. (2268 kg);	R Part 302.4):: Eth	ylene glycol: 5000			
State	e regulations	Massachusetts RTK:Ethylene glycol New Jersey:Ethylene glycol Pennsylvania RTK:Ethylene glycol (environmental hazard, generic environmental hazard); DIETHYLENE GLYCOL (generic environmental hazard)					
		California prop. 65: No products were found.					
Inve	ntories	AUSTRALIAN INVENTORY (AICS): Not determined.					
		CANADA INVENTORY (DSL): In compliance.					
		CHINA INVENTORY (IECS): Not determined.					
		EC INVENTORY (EINECS/ELINCS): Not determined.					
		JAPAN INVENTORY (ENCS): Not determined.					
		KOREA INVENTORY (ECL): Not determined.					
		PHILIPPINE INVENTORY (PICCS): Not determined.					

16. Other information

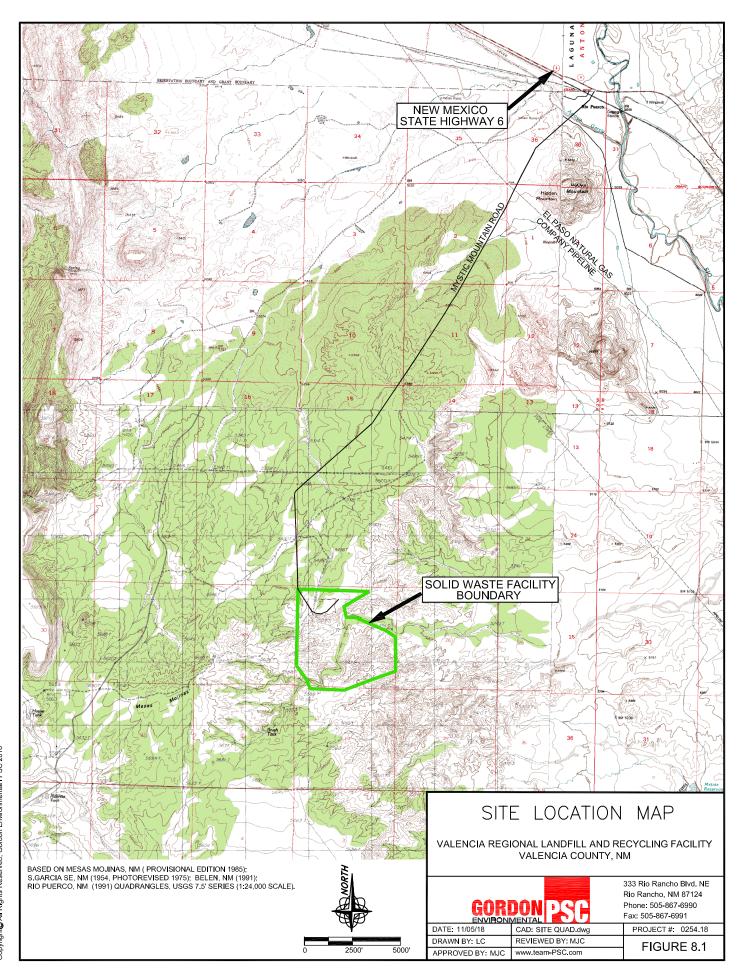
Label Requirements	WARNING!						
	HARMFUL IF S SLIGHTLY IRRI						
HMIS® Rating :	Health Flammability Physical Hazard Personal protection	2 1 0 X	National Fire Protection Association (U.S.A.)	Health Health Fire hazard Instability Specific hazard			
History							
Date of issue	07/19/2004.						
Date of previous issue	No Previous Va	alidation.					
Prepared by	Product Stewar	dship					

Notice to reader

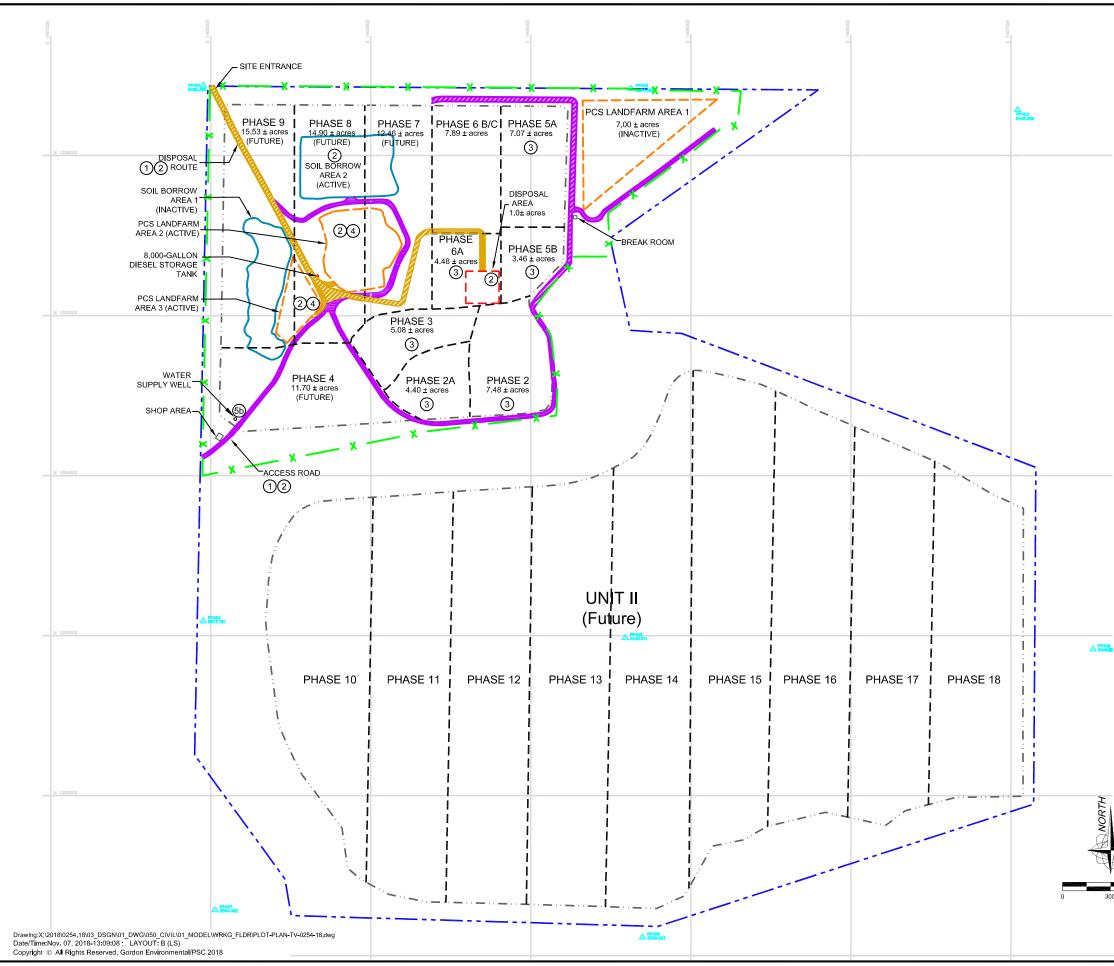
NOTICE : This Material Safety Data Sheet is based upon data considered to be accurate at the time of its preparation. Despite our efforts, it may not be up to date or applicable to the circumstances of any particular case. We are not responsible for any damage or injury resulting from abnormal use, from any failure to follow appropriate practices or from hazards inherent in the nature of the product.

This Material Safety Data Sheet conforms to the requirements of ANSI Z400.1.

	ASTROL HEAVY DUTY 50/50 PREDILUTED OOLANT / ANTIFREEZE	MSDS#	0000001870	Page: 6/6	
Version 1	Date of issue 07/19/2004.	Format	US-FULL	Languag	e ENGLISH
		Build 2.0.6			(ENGLISH)


Map(s)

<u>A map</u> such as a 7.5 minute topographic quadrangle showing the exact location of the source. The map shall also include the following:


The UTM or Longitudinal coordinate system on both axes	An indicator showing which direction is north
A minimum radius around the plant of 0.8km (0.5 miles)	Access and haul roads
Topographic features of the area	Facility property boundaries
The name of the map	The area which will be restricted to public access
A graphical scale	

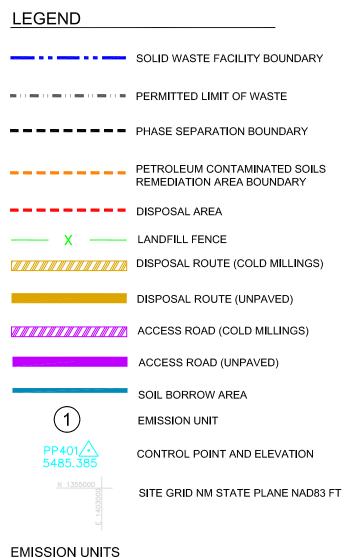

Two maps (Figures) of the Valencia Regional Landfill and Recycling Facility are included in this Section. Depending on the specific figure, these figures address the items denoted above; and include the following:

Figure 8.1 Site Location Map Figure 8.2 Site Plan

Drawing:X:/2018/0254.18/03_DSGN/01_DWG\050_CIVIL\01_MODEL\WFKG_FLDR\SITE_LOC.dwg Dde/TimesNov. 05, 2018-13:54:15 Copyright@ All Rights Reserved, Gardon Environmental I PSC 2016

- 1 DISPOSAL ROUTE AND ACCESS ROAD TRAVEL
- (2) GENERAL LANDFILL OPERATIONS
- (3) LANDFILL GAS GENERATION
- 4 PETROLEUM CONTAMINATED SOILS LANDFARM
- 5 ENGINES

NOTES

1. EXISTING MAP INFORMATION PROVIDED BY WMNM, AND COMPILED FROM AERIAL PHOTOGRAPHY DATED NOVEMBER, 2017 BY MILLER CREEK ASSOCIATES, INC.

NOVE	MBER, 2017 BY M	MILLER CREEK ASSOC	CIATES, INC.
	VALENCIA REG	SITE PLAN IONAL LANDFILL AND RE VALENCIA COUNTY, N	ECYCLING FACILITY
600'		ONDSA	333 Rio Rancho Blvd. NE Suite 400, Rio Rancho NM Phone: 505-867-6990 Fax: 505-867-6991
	DATE: 11/01/2018	CAD: SITE PLAN.dwg	PROJECT #: 010254.18
	DRAWN BY: LC	REVIEWED BY: LC	FIGURE 8.2
	APPROVED BY: MJC	www.team-psc.com	FIGURE 0.2

Proof of Public Notice

(for NSR applications submitting under 20.2.72 or 20.2.74 NMAC) (This proof is required by: 20.2.72.203.A.14 NMAC "Documentary Proof of applicant's public notice")

☑ I have read the AQB "Guidelines for Public Notification for Air Quality Permit Applications" This document provides detailed instructions about public notice requirements for various permitting actions. It also provides public notice examples and certification forms. Material mistakes in the public notice will require a re-notice before issuance of the permit.

Unless otherwise allowed elsewhere in this document, the following items document proof of the applicant's Public Notification. Please include this page in your proof of public notice submittal with checkmarks indicating which documents are being submitted with the application.

New Permit and Significant Permit Revision public notices must include all items in this list.

Technical Revision public notices require only items 1, 5, 9, and 10.

Per the Guidelines for Public Notification document mentioned above, include:

- 1. A copy of the certified letter receipts with post marks (20.2.72.203.B NMAC)
- 2. A list of the places where the public notice has been posted in at least four publicly accessible and conspicuous places, including the proposed or existing facility entrance. (e.g: post office, library, grocery, etc.)
- 3. A copy of the property tax record (20.2.72.203.B NMAC).
- 4. A sample of the letters sent to the owners of record.
- 5. A sample of the letters sent to counties, municipalities, and Indian tribes.
- 6. A sample of the public notice posted and a verification of the local postings.
- 7. A table of the noticed citizens, counties, municipalities and tribes and to whom the notices were sent in each group.
- 8. A copy of the public service announcement (PSA) sent to a local radio station and documentary proof of submittal.
- 9. A copy of the <u>classified or legal</u> ad including the page header (date and newspaper title) or its affidavit of publication stating the ad date, and a copy of the ad. When appropriate, this ad shall be printed in both English and Spanish.
- 10. A copy of the <u>display</u> ad including the page header (date and newspaper title) or its affidavit of publication stating the ad date, and a copy of the ad. When appropriate, this ad shall be printed in both English and Spanish.
- 11. A map with a graphic scale showing the facility boundary and the surrounding area in which owners of record were notified by mail. This is necessary for verification that the correct facility boundary was used in determining distance for notifying land owners of record.

Public notification is not required by the Applicant for Title V Permit Applications/Renewals.

Written Description of the Routine Operations of the Facility

<u>A written description of the routine operations of the facility</u>. Include a description of how each piece of equipment will be operated, how controls will be used, and the fate of both the products and waste generated. For modifications and/or revisions, explain how the changes will affect the existing process. In a separate paragraph describe the major process bottlenecks that limit production. The purpose of this description is to provide sufficient information about plant operations for the permit writer to determine appropriate emission sources.

10.0 Operational Plan

10.1 Solid Waste Permit Operational Plans

The April 2004 Application for Solid Waste Permit (Updated April 2005) for the Valencia Regional Landfill and Recycling Facility (VRLRF) includes detailed operating and construction plans for the Landfill. For example, the following Plans are included in Volume II of the Permit Application:

- Volume II, Section 1: Engineering Drawings
- Volume II, Section 2: Plan of Operations
- Volume II, Section 3: Contingency Plan
- Volume II, Section 4: Construction Quality Assurance (CQA) Plan
- Volume II, Section 5: Closure/Post-Closure Plan
- Volume II, Section 6: Landfill Gas Management Plan
- Volume II, Section 7: Leachate Management Plan
- Volume II, Section 8: Special Waste Disposal Management Plan
- Volume II, Section 9: Petroleum Contaminated Soils Disposal Management Plan
- Volume II, Section 10: Oil Conservation Division Waste Management Plan
- Volume II, Section 11: Transportation Plan

These Plans have been approved by NMED Solid Waste Bureau (SWB), and are incorporated by reference in the facility's Permit (Solid Waste Facility ID No. SWM-013229, dated November 20, 2006; with subsequent updates). Copies of the Plans are available at SWB, and will be made available by VRLRF upon request. **Section 14** contains a description of measures to be taken to mitigate source emissions during startups, shutdowns, and emergencies for landfill operations that have the potential to emit pollutants of concern (e.g., particulates, NMOCs, VOCs, HAPs). There are no known major bottlenecks that limit production at VRLRF.

Section 11 Source Determination

Source submitting under 20.2.70, 20.2.72, 20.2.73, and 20.2.74 NMAC

Sources applying for a construction permit, PSD permit, or operating permit shall evaluate surrounding and/or associated sources (including those sources directly connected to this source for business reasons) and complete this section. Responses to the following questions shall be consistent with the Air Quality Bureau's permitting guidance, <u>Single Source Determination Guidance</u>, which may be found on the Applications Page in the Permitting Section of the Air Quality Bureau website.

Typically, buildings, structures, installations, or facilities that have the same SIC code, that are under common ownership or control, and that are contiguous or adjacent constitute a single stationary source for 20.2.70, 20.2.72, 20.2.73, and 20.2.74 NMAC applicability purposes. Submission of your analysis of these factors in support of the responses below is optional, unless requested by NMED.

A. Identify the emission sources evaluated in this section (list and describe):

B. Apply the 3 criteria for determining a single source:

<u>SIC</u> <u>Code</u>: Surrounding or associated sources belong to the same 2-digit industrial grouping (2-digit SIC code) as this facility, <u>OR</u> surrounding or associated sources that belong to different 2-digit SIC codes are support facilities for this source.

☑ Yes No

<u>Common</u> <u>Ownership</u> or <u>Control</u>: Surrounding or associated sources are under common ownership or control as this source.

☑ Yes No

<u>Contiguous or Adjacent</u>: Surrounding or associated sources are contiguous or adjacent with this source.

🗹 Yes No

C. Make a determination:

☑ The source, as described in this application, constitutes the entire source for 20.2.70, 20.2.72, 20.2.73, or 20.2.74 NMAC applicability purposes. If in "A" above you evaluated only the source that is the subject of this application, all "YES" boxes should be checked. If in "A" above you evaluated other sources as well, you must check AT LEAST ONE of the boxes "NO" to conclude that the source, as described in the application, is the entire source for 20.2.70, 20.2.72, 20.2.73, and 20.2.74 NMAC applicability purposes.

The source, as described in this application, <u>does not</u> constitute the entire source for 20.2.70, 20.2.72, 20.2.73, or 20.2.74 NMAC applicability purposes (A permit may be issued for a portion of a source). The entire source consists of the following facilities or emissions sources (list and describe):

Section 12.A PSD Applicability Determination for All Sources

(Submitting under 20.2.72, 20.2.74 NMAC)

<u>A PSD applicability determination for all sources</u>. For sources applying for a significant permit revision, apply the applicable requirements of 20.2.74.AG and 20.2.74.200 NMAC and to determine whether this facility is a major or minor PSD source, and whether this modification is a major or a minor PSD modification. It may be helpful to refer to the procedures for Determining the Net Emissions Change at a Source as specified by Table A-5 (Page A.45) of the <u>EPA New Source Review</u> <u>Workshop Manual</u> to determine if the revision is subject to PSD review.

A. This facility is:

a minor PSD source before and after this modification (if so, delete C and D below). a major PSD source before this modification. This modification will make this a PSD minor source. an existing PSD Major Source that has never had a major modification requiring a BACT analysis. an existing PSD Major Source that has had a major modification requiring a BACT analysis a new PSD Major Source after this modification.

This document represents an Application for Permit Renewal for a minor source under the provisions of 20.2.70 NMAC. The Valencia Regional Landfill and Recycling Facility is not subject to the requirements of either 20.2.72 NMAC or 20.2.74 NMAC.

Determination of State & Federal Air Quality Regulations

This section lists each state and federal air quality regulation that may apply to your facility and/or equipment that are stationary sources of regulated air pollutants.

Not all state and federal air quality regulations are included in this list. Go to the Code of Federal Regulations (CFR) or to the Air Quality Bureau's regulation page to see the full set of air quality regulations.

Required Information for Specific Equipment:

For regulations that apply to specific source types, in the 'Justification' column **provide any information needed to determine if the regulation does or does not apply**. **For example**, to determine if emissions standards at 40 CFR 60, Subpart IIII apply to your three identical stationary engines, we need to know the construction date as defined in that regulation; the manufacturer date; the date of reconstruction or modification, if any; if they are or are not fire pump engines; if they are or are not emergency engines as defined in that regulation; their site ratings; and the cylinder displacement.

Required Information for Regulations that Apply to the Entire Facility:

See instructions in the 'Justification' column for the information that is needed to determine if an 'Entire Facility' type of regulation applies (e.g. 20.2.70 or 20.2.73 NMAC).

Regulatory Citations for Regulations That Do Not, but Could Apply:

If there is a state or federal air quality regulation that does not apply, but you have a piece of equipment in a source category for which a regulation has been promulgated, you must **provide the low level regulatory citation showing why your piece of equipment is not subject to or exempt from the regulation. For example** if you have a stationary internal combustion engine that is not subject to 40 CFR 63, Subpart ZZZZ because it is an existing 2 stroke lean burn stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions, your citation would be 40 CFR 63.6590(b)(3)(i). We don't want a discussion of every non-applicable regulation, but if it is possible a regulation could apply, explain why it does not. For example, if your facility is a power plant, you do not need to include a citation to show that 40 CFR 60, Subpart OOO does not apply to your non-existent rock crusher.

Regulatory Citations for Emission Standards:

For each unit that is subject to an emission standard in a source specific regulation, such as 40 CFR 60, Subpart OOO or 40 CFR 63, Subpart HH, include the low level regulatory citation of that emission standard. Emission standards can be numerical emission limits, work practice standards, or other requirements such as maintenance. Here are examples: a glycol dehydrator is subject to the general standards at 63.764C(1)(i) through (iii); an engine is subject to 63.6601, Tables 2a and 2b; a crusher is subject to 60.672(b), Table 3 and all transfer points are subject to 60.672(e)(1)

Federally Enforceable Conditions:

All federal regulations are federally enforceable. All Air Quality Bureau State regulations are federally enforceable except for the following: affirmative defense portions at 20.2.7.6.B, 20.2.7.110(B)(15), 20.2.7.11 through 20.2.7.113, 20.2.7.115, and 20.2.7.116; 20.2.37; 20.2.42; 20.2.43; 20.2.62; 20.2.63; 20.2.86; 20.2.89; and 20.2.90 NMAC. Federally enforceable means that EPA can enforce the regulation as well as the Air Quality Bureau and federally enforceable regulations can count toward determining a facility's potential to emit (PTE) for the Title V, PSD, and nonattainment permit regulations.

INCLUDE ANY OTHER INFORMATION NEEDED TO COMPLETE AN APPLICABILITY DETERMINATION OR THAT IS RELEVENT TO YOUR FACILITY'S NOTICE OF INTENT OR PERMIT.

EPA Applicability Determination Index for 40 CFR 60, 61, 63, etc: http://cfpub.epa.gov/adi/

STATE REGU- LATIONS CITATION	Title	Applies? Enter Yes or No	Unit(s) or Facility	JUSTIFICATION: (You may delete instructions or statements that do not apply in the justification column to shorten the document.)
20.2.1 NMAC	General Provisions	Yes	All Units	General Provisions apply to Notice of Intent, Construction, and Title V permit applications.
20.2.3 NMAC	Ambient Air Quality Standards NMAAQS	Yes for NSR, No for TV	All Units	Compliance with NMAAQS is demonstrated in the Air Dispersion Modeling Analysis Report (Submitted to NMED AQB as part of this application). The requirements of this part are not applicable requirements under 20.2.70 NMAC, as defined by that part.
20.2.7 NMAC	Excess Emissions	Yes	All Units	Records kept of any excess emission periods and notifications provided to NMED. Verbal (< 24 hrs) and written (< 10 days) notice of excess emissions.
20.2.33 NMAC	Gas Burning Equipment - Nitrogen Dioxide	No	N/A	No affected facilities
20.2.34 NMAC	Oil Burning Equipment: NO ₂	No	N/A	No affected facilities
20.2.35 NMAC	Natural Gas Processing Plant – Sulfur	No	N/A	No affected facilities
20.2.37 and 20.2.36 NMAC	Petroleum Processing Facilities and Petroleum Refineries	No	N/A	No affected facilities
<u>20.2.38</u> NMAC	Hydrocarbon Storage Facility	No	N/A	No significant hydrocarbon storage tanks at this facility
<u>20.2.39</u> NMAC	Sulfur Recovery Plant - Sulfur	No	N/A	No affected facilities
20.2.61.109 NMAC	Smoke & Visible Emissions	Yes	Unit 5b	Unit 5b is a certified Stationary Combustion Equipment.
20.2.64 NMAC	Municipal Solid Waste Landfills	Yes	Facility	The Facility is subject to the provisions of 20.2.64 NMAC. The Permit Renewal satisfies applicable requirements.
20.2.70 NMAC	Operating Permits	Yes	Facility	This Application for Permit Renewal satisfies applicable requirements
20.2.71 NMAC	Operating Permit Fees	Yes	Facility	Will submit required fees when assessed by NMED.
20.2.72 NMAC	Construction Permits	No	N/A	Not an affected facility as defined under 20.2.72 NMAC.
20.2.73 NMAC	NOI & Emissions Inventory Requirements	Yes	Facility	The facility will submit emissions inventory as requested by NMED.
20.2.74 NMAC	Permits – Prevention of Significant Deterioration (PSD)	No	N/A	The facility is not a new major source or major modification to an existing source.
20.2.75 NMAC	Construction Permit Fees	No	N/A	No affected facilities.

STATE REGU- LATIONS CITATION	Title	Applies? Enter Yes or No	Unit(s) or Facility	JUSTIFICATION: (You may delete instructions or statements that do not apply in the justification column to shorten the document.)
20.2.77 NMAC	New Source Performance	Yes	Units subject to 40 CFR 60	This is a stationary source which is subject to the requirements of 40 CFR Part 60. See discussion of NSPS below (40 CFR 60)
20.2.78 NMAC	Emission Standards for HAPS	No	Units Subject to 40 CFR 61	See discussion of NESHAPS below (40 CFR 61 & 63)
20.2.79 NMAC	Permits – Nonattainment Areas	No	N/A	No affected facilities.
20.2.80 NMAC	Stack Heights	No	N/A	No affected facilities.
20.2.82 NMAC	MACT Standards for source categories of HAPS	Yes	All Units Subject to 40 CFR 63	The facility is not a major source for HAPs (NMOC emissions are < 50 Mg/yr, facility-wide HAP emissions <10tpy individually and < 25tpy in the aggregate).

Example of a Table for Applicable FEDERAL REGULATIONS (Note: This is not an exhaustive list):

FEDERAL REGU- LATIONS CITATION	Title	Applies? Enter Yes or No	Unit(s) or Facility	JUSTIFICATION:
40 CFR 50	NAAQS	Yes	All Units	Compliance with NAAQS is demonstrated in the Air Dispersion Modeling Analysis Report (Submitted to NMED AQB as part of this application).
NSPS 40 CFR 60, Subpart A	General Provisions	Yes	All Units	Facility will comply with applicable sections.
NSPS 40 CFR60.40a, Subpart Da	Subpart Da, Performance Standards for Electric Utility Steam Generating Units	No	N/A	The facility does not own or operate Electric Utility Steam Generating Units

FEDERAL REGU- LATIONS CITATION	Title	Applies? Enter Yes or No	Unit(s) or Facility	JUSTIFICATION:	
NSPS 40 CFR60.40b Subpart Db	Electric Utility Steam Generating Units	No	N/A	The facility does not own or operate Electric Utility Steam Generating Units	
40 CFR 60.40c, Subpart Dc	Standards of Performance for Small Industrial- Commercial- Institutional Steam Generating Units	No	N/A	The facility does not own or operate Small Industrial-Commercial-Institutio Steam Generating Units	
NSPS 40 CFR 60, Subpart Ka	Standards of Performance for Storage Vessels for Petroleum Liquids for which Construction, Reconstruction, or Modification Commenced After May 18, 1978, and Prior to July 23, 1984	No	N/A	The facility does not own any storage vessels with capacities > 40,000 gallons.	
NSPS 40 CFR 60, Subpart Kb	Standards of Performance for Volatile Organic Liquid Storage Vessels (Including Petroleum Liquid Storage Vessels) for Which Construction, Reconstruction, or Modification Commenced After July 23, 1984	No	N/A	The facility does not own any storage vessels with capacities $> 75 \text{ m}^3$.	
NSPS 40 CFR 60.330 Subpart GG	Stationary Gas Turbines	No	N/A	No affected facilities	
NSPS 40 CFR 60, Subpart KKK	Leaks of VOC from Onshore Gas Plants	No	N/A	No affected facilities	
NSPS 40 CFR Part 60 Subpart LLL	Standards of Performance for Onshore Natural Gas Processing:	No	N/A	No affected facilities	

FEDERAL REGU- LATIONS CITATION	Title	Applies? Enter Yes or No	Unit(s) or Facility	JUSTIFICATION:		
NSPS 40 CFR Part 60 Subpart OOOO	SO ₂ Emissions Standards of Performance for Crude Oil and Natural Gas Production, Transmission, and Distribution for which construction, modification or reconstruction commenced after August 23, 2011 and before September 18, 2015	No	N/A	No affected facilities		
NSPS 40 CFR Part 60 Subpart OOOOa	Standards of Performance for Crude Oil and Natural Gas Facilities for which Construction, Modification or Reconstruction Commenced After September 18, 2015	No	N/A	No affected facilities		
NSPS 40 CFR 60 Subpart IIII	Standards of performance for Stationary Compression Ignition Internal Combustion Engines	Yes	Units 5b	Stationary compression ignition internal combustion engine Unit 5b is subject to this subpart.		
NSPS 40 CFR Part 60 Subpart JJJJ	Standards of Performance for Stationary Spark Ignition Internal Combustion Engines	No	N/A	Engines located at this facility are considered portable, non-road internal combustion engines or stationary compression ignition internal combustion engines and are not subject to this subpart.		
NSPS 40 CFR 60 Subpart TTTT	Standards of Performance for Greenhouse Gas Emissions for Electric Generating Units	No	N/A	No affected facilities		
NSPS 40 CFR 60 Subpart UUUU	Emissions Guidelines for Greenhouse Gas Emissions and Compliance Times for Electric Utility Generating Units	No	N/A	No affected facilities		
NSPS 40 CFR 60, Subparts WWW, XXX, Cc,	Standards of performance for Municipal Solid Waste (MSW)	Yes	All Units	Operating Permit will satisfy NSPS Subpart WWW, XXX, Ce, and Cf requirements.		

FEDERAL REGU- LATIONS CITATION	Title	Applies? Enter Yes or No	Unit(s) or Facility	JUSTIFICATION:				
and Cf	Landfills							
NESHAP 40 CFR 61 Subpart A	General Provisions	No	N/A	No affected facilities				
NESHAP 40 CFR 61 Subpart E	National Emission Standards for Mercury	No	N/A					
NESHAP 40 CFR 61 Subpart V	National Emission Standards for Equipment Leaks (Fugitive Emission Sources)	No	N/A	No affected facilities				
MACT 40 CFR 63, Subpart A	General Provisions	Yes	All Units					
MACT 40 CFR 63.760 Subpart HH	No	N/A	No affected facilities	No				
MACT 40 CFR 63 Subpart HHH	No	N/A	No affected facilities	No				
MACT 40 CFR 63 Subpart DDDDD	National Emission Standards for Hazardous Air Pollutants for Major Industrial, Commercial, and Institutional Boilers & Process Heaters	No	N/A	No affected facilities				
MACT 40 CFR 63 Subpart UUUUU	National Emission Standards for Hazardous Air Pollutants Coal & Oil Fire Electric Utility Steam Generating Unit	No	N/A	No affected facilities				
MACT 40 CFR 63 Subpart ZZZZ	National Emissions Standards for Hazardous Air Pollutants for Stationary Reciprocating Internal Combustion Engines (RICE MACT)	Yes	Units 5b	Stationary compression ignition internal combustion engine Unit 5b is subject to this subpart. Unit 5b meets Subpart ZZZZ requirements by meeting 40 CFR 60 Subpart IIII requirements.				

FEDERAL REGU- LATIONS CITATION	Title	Applies? Enter Yes or No	Unit(s) or Facility	JUSTIFICATION:	
40 CFR 64	Compliance Assurance Monitoring	No	N/A	This facility does not have an emissions source subject to the provisions of 40 CFR 64.	
40 CFR 68	Chemical Accident Prevention	Yes	All Units (68.10)	Facility-wide Risk Management Plan in Place.	
40 CFR 70	Operating Permit	No	N/A	Not applicable. Administered under 20.2.70 NMAC.	
Title IV – Acid Rain 40 CFR 72	Acid Rain	No	N/A	Not an affected source under 40 CFR 72.	
Title IV – Acid Rain 40 CFR 73	Sulfur Dioxide Allowance Emissions	No	N/A	Not an affected source under 40 CFR 73.	
Title IV-Acid Rain 40 CFR 75	Continuous Emissions Monitoring	No	N/A	Not an affected source under 40 CFR 75.	
Title IV – Acid Rain 40 CFR 76	Acid Rain Nitrogen Oxides Emission Reduction Program	No	N/A	Not an affected source under 40 CFR 76.	
Title VI – 40 CFR 82	Protection of Stratospheric Ozone	No	N/A	Facility does not produce, transfer, destroy, import, or export substances controlled under this regulation.	

Operational Plan to Mitigate Emissions

(Submitting under 20.2.70, 20.2.72, 20.2.74 NMAC)

☑ Title V Sources (20.2.70 NMAC): By checking this box and certifying this application the permittee certifies that it has developed an <u>Operational Plan to Mitigate Emissions During Startups</u>, <u>Shutdowns</u>, <u>and Emergencies</u> defining the measures to be taken to mitigate source emissions during startups, shutdowns, and emergencies as required by 20.2.70.300.D.5(f) and (g) NMAC. This plan shall be kept on site to be made available to the Department upon request. This plan should not be submitted with this application.

NSR (20.2.72 NMAC), **PSD** (20.2.74 NMAC) & **Nonattainment** (20.2.79 NMAC) **Sources:** By checking this box and certifying this application the permittee certifies that it has developed an <u>Operational Plan to Mitigate Source Emissions</u> <u>During Malfunction, Startup, or Shutdown</u> defining the measures to be taken to mitigate source emissions during malfunction, startup, or shutdown as required by 20.2.72.203.A.5 NMAC. This plan shall be kept on site to be made available to the Department upon request. This plan should not be submitted with this application.

Title V (20.2.70 NMAC), **NSR** (20.2.72 NMAC), **PSD** (20.2.74 NMAC) & **Nonattainment** (20.2.79 NMAC) **Sources:** By checking this box and certifying this application the permittee certifies that it has established and implemented a Plan to Minimize Emissions During Routine or Predictable Startup, Shutdown, and Scheduled Maintenance through work practice standards and good air pollution control practices as required by 20.2.7.14.A and B NMAC. This plan shall be kept on site or at the nearest field office to be made available to the Department upon request. This plan should not be submitted with this application.

Landfill operations associated with the potential emission of particulate matter (e.g., TSP, PM₁₀, and PM_{2.5}) consist of vehicle travel on treated and unpaved landfill roads, and general landfill operations (e.g., heavy equipment operations, wind erosion). The measures taken to mitigate excessive fugitive particulate emissions during startups, shutdowns, and emergencies consist of a Peterbilt 348 water wagon (5,000-gallon capacity) which serves as the site's primary dust suppression mode, and is used on a daily basis when the landfill is operational. A CAT 613C water wagon (5,000-gallon capacity) is available as backup. The source of the water for the wagon is the VRLRF water well located at the western boundary of the facility (**Figure 5.1**). In addition, the site's Disposal Route is treated with recycled asphalt basecourse (cold millings) from the facility entrance throughout most of the Disposal Route. Control efficiencies relating to water application and types of road material (e.g., recycled basecourse, unpaved) are presented in **Sections 6.1** and **6.2**. Additional equipment can be leased from local suppliers, or another WMNM facility in the region (i.e., Rio Rancho Landfill). VRLRF may also utilize processed green waste as a soil amendment to promote vegetative growth and minimize soil erosion on areas requiring intermediate/final cover.

In addition to the above procedures, VRLRF currently implements dust control measures outlined in the Plan of Operations Dust Control section (**Volume II, Section 7.2**), which is maintained as part of the Landfill's NMED-approved April 2004 (Updates August 2005) Application for Permit at the Scalehouse.

Alternative Operating Scenarios

(Submitting under 20.2.70, 20.2.72, 20.2.74 NMAC)

Alternative Operating Scenarios: Provide all information required by the department to define alternative operating scenarios. This includes process, material and product changes; facility emissions information; air pollution control equipment requirements; any applicable requirements; monitoring, recordkeeping, and reporting requirements; and compliance certification requirements. Please ensure applicable Tables in this application are clearly marked to show alternative operating scenario.

Construction Scenarios: When a permit is modified authorizing new construction to an existing facility, NMED includes a condition to clearly address which permit condition(s) (from the previous permit and the new permit) govern during the interval between the date of issuance of the modification permit and the completion of construction of the modification(s). There are many possible variables that need to be addressed such as: Is simultaneous operation of the old and new units permitted and, if so for example, for how long and under what restraints? In general, these types of requirements will be addressed in Section A100 of the permit, but additional requirements may be added elsewhere. Look in A100 of our NSR and/or TV permit template for sample language dealing with these requirements. Find these permit templates at: https://www.env.nm.gov/aqb/permit/aqb_pol.html. Compliance with standards must be maintained during construction, which should not usually be a problem unless simultaneous operation of old and new equipment is requested.

In this section, under the bolded title "Construction Scenarios", specify any information necessary to write these conditions, such as: conservative-realistic estimated time for completion of construction of the various units, whether simultaneous operation of old and new units is being requested (and, if so, modeled), whether the old units will be removed or decommissioned, any PSD ramifications, any temporary limits requested during phased construction, whether any increase in emissions is being requested as SSM emissions or will instead be handled as a separate Construction Scenario (with corresponding emission limits and conditions, etc.

Alternative Operating Scenarios

The Valencia Regional Landfill and Recycling Facility (VRLRF) is a municipal solid waste (MSW) landfill operating pursuant to NMED Solid Waste Facility Permit Nos. SWM-013229 and SWM-013230(SP). The facility is currently authorized to dispose of MSW and the following approved special wastes:

- Chemical Spill Residue
- Petroleum Contaminated Soils (PCS)
- Sludge
- Packing House & Killing Plant Offal
- Industrial Solid Waste
- Treated, Formerly Characteristic Hazardous Waste
- Oil Conservation Division Waste

With the expanding population of the Landfill's service area, it is reasonable to expect an increase in the acceptance rates of MSW, sludge, and PCS at the Landfill over the lifetime of the facility. Beyond the

various waste types described above, VRLRF does not anticipate changes in processes, materials, operations or products during the 5-year Permit term.

Section 16 Air Dispersion Modeling

- Minor Source Construction (20.2.72 NMAC) and Prevention of Significant Deterioration (PSD) (20.2.74 NMAC) ambient impact analysis (modeling): Provide an ambient impact analysis as required at 20.2.72.203.A(4) and/or 20.2.74.303 NMAC and as outlined in the Air Quality Bureau's Dispersion Modeling Guidelines found on the Planning Section's modeling website. If air dispersion modeling has been waived for one or more pollutants, attach the AQB Modeling Section modeling waiver approval documentation.
- 2) SSM Modeling: Applicants must conduct dispersion modeling for the total short term emissions during routine or predictable startup, shutdown, or maintenance (SSM) using realistic worst case scenarios following guidance from the Air Quality Bureau's dispersion modeling section. Refer to "Guidance for Submittal of Startup, Shutdown, Maintenance Emissions in Permit Applications (<u>http://www.env.nm.gov/aqb/permit/app_form.html</u>) for more detailed instructions on SSM emissions modeling requirements.
- 3) Title V (20.2.70 NMAC) ambient impact analysis: Title V applications must specify the construction permit and/or Title V Permit number(s) for which air quality dispersion modeling was last approved. Facilities that have only a Title V permit, such as landfills and air curtain incinerators, are subject to the same modeling required for preconstruction permits required by 20.2.72 and 20.2.74 NMAC.

What is the purpose of this application?	Enter an X for each purpose that applies
New PSD major source or PSD major modification (20.2.74 NMAC). See #1 above.	
New Minor Source or significant permit revision under 20.2.72 NMAC (20.2.72.219.D NMAC).	
See #1 above. Note: Neither modeling nor a modeling waiver is required for VOC emissions.	
Reporting existing pollutants that were not previously reported.	
Reporting existing pollutants where the ambient impact is being addressed for the first time.	
Title V application (new, renewal, significant, or minor modification. 20.2.70 NMAC). See #3	Х
above.	
Relocation (20.2.72.202.B.4 or 72.202.D.3.c NMAC)	
Minor Source Technical Permit Revision 20.2.72.219.B.1.d.vi NMAC for like-kind unit	
replacements.	
Other: i.e. SSM modeling. See #2 above.	
This application does not require modeling since this is a No Permit Required (NPR) application.	
This application does not require modeling since this is a Notice of Intent (NOI) application	
(20.2.73 NMAC).	
This application does not require modeling according to 20.2.70.7.E(11), 20.2.72.203.A(4),	
20.2.74.303, 20.2.79.109.D NMAC and in accordance with the Air Quality Bureau's Modeling	
Guidelines.	

Check each box that applies:

- \Box See attached, approved modeling waiver for all pollutants from the facility.
- □ See attached, approved modeling **waiver for some** pollutants from the facility.
- Attached in Universal Application Form 4 (UA4) is a modeling report for all pollutants from the facility.
- □ Attached in UA4 is a **modeling report for some** pollutants from the facility.
- \Box No modeling is required.

Due to the dynamic nature of the MSW Disposal Area as fill progresses, the location of the active MSW Disposal Area has been estimated to be within Phase 6A during the Permit period. The worst-case scenario was modeled to ensure potential emissions are representative of active MSW areas nearest to the solid waste facility boundary, since the orientation of roads will likely change depending on the

location of the active MSW area. Air Dispersion modeling was performed for VRLRF to support this Application for renewal and the UA4 form is attached to this section.

ATTACHMENT 16.1 UNIVERSAL APPLICATION 4 (UA4)

Universal Application 4

Air Dispersion Modeling Report

Refer to and complete Section 16 of the Universal Application form (UA3) to assist your determination as to whether modeling is required. If, after filling out Section 16, you are still unsure if modeling is required, e-mail the completed Section 16 to the AQB Modeling Manager for assistance in making this determination. If modeling is required, a modeling protocol would be submitted and approved prior to an application submittal. The protocol should be emailed to the modeling manager. A protocol is recommended but optional for minor sources and is required for new PSD sources or PSD major modifications. Fill out and submit this portion of the Universal Application form (UA4), the "Air Dispersion Modeling Report", only if air dispersion modeling is required for this application submittal. This serves as your modeling report submittal and should contain all the information needed to describe the modeling. No other modeling report or modeling protocol should be submitted with this permit application.

16	16-A: Identification				
1	Name of facility: Valencia Regional Landfill & Recycling Facility (VRLRF)				
2	Name of company: Waste Management of New Mexico, Inc. (WMNM)				
3	Current Permit number: P247L-R1				
4	Name of applicant's modeler: James Newby				
5	Phone number of modeler: (801) 544-5275				
6	E-mail of modeler: jnewby@cirrusllc.com				

16	16-B: Brief							
1	Why is the modeling being done? Moving equipment							
	Describe the permit changes relevant to the modeling.							
2	The location of disposal operations during the five-year term of new Title V operating permit will vary. These changes will impact the locations of the fill face, borrow area and some of the roads. In addition, there have been changes to the projected amount of waste that will be taken to the landfill.							
3	What geodetic datum was used in the modeling? NAD83							
4	How long will the facility be at this location? \approx 150 years							
5	Is the facility a major source with respect to Prevention of Significant Deterioration (PSD)?							
6	Identify the Air Quality Control Region (AQCR) in which the facility is located. 156							
_	List the PSD baseline dates for this region (minor or major, as appropriate).							
7	Not applicable (N/A). Per the NMAQB modeling guidelines, landfills do not need to model for PSD (see Section 7.2).							
0	Provide the name and distance to Class I areas within 50 km of the facility (300 km for PSD permits).							
8	N/A. Per the NMAQB modeling guidelines, landfills do not need to model for PSD (see Section 7.2).							

9	Is the facility located in a non-attainment area? No If so, describe. N/A
10	Describe any special modeling requirements, such as streamline permit requirements. N/A

The VRLRF is an existing solid waste facility. The landfill is located within Section 27, Township 6 North, Range 2 West, in Valencia County, approximately 17 miles west of Los Lunas, New Mexico and 6 miles south of State Highway 6. The property on which the landfill is located is owned by WMNM.

The landfill will be in operation from 0600–1900 Monday through Friday and from 0630-1700 on Saturday. During these times the company equipment (scraper, grader, compactor, bulldozer and miscellaneous vehicles) will be in operation. The landfill will be open to receive waste from 0700-1700 Monday through Friday and from 0700-1600 on Saturdays.

Emissions within the fill face area were modeled using area sources. Emissions included those from disposal vehicles, miscellaneous vehicles, the scraper, the grader, the compactor, the bulldozer, and wind erosion.

Emissions within the borrow area were also modeled using area sources. Emissions included those from miscellaneous vehicles, the scraper, the grader, and wind erosion.

The road dust emissions from vehicle traffic and wind erosion were modeled using volume sources in accordance with Section 5.3.3 of the Modeling Guidelines. Because the roads at the landfill are long, they were represented by alternating volume sources.

The water well generator was modeled as a point source.

There are no startup, shutdown and maintenance (SSM) emissions associated with the landfill.

Figure 1 at the end of this report provides a plot of the fence line, roads and active areas used in the modeling.

16-C: Modeling History of Facility

1

Describe the modeling history of the facility, including the air permit numbers, the pollutants modeled, the National Ambient Air Quality Standards (NAAQS), New Mexico AAQS (NMAAQS), and PSD increments modeled. (Do not include modeling waivers)

walvels).			
Pollutant	Latest permit and modification number that modeled the pollutant facility-wide.	Date of Permit	Comments
CO	N/A		
NO ₂	N/A		
SO ₂	N/A		
H_2S	N/A		
PM _{2.5}	P247L	03/27/2009	NAAQS
PM ₁₀	P247L	03/27/2009	NAAQS
TSP	P247L	03/27/2009	NAAQS & NMAAQS
Lead	N/A		
Ozone (PSD only)	N/A		
NM Toxic Air Pollutants	N/A		
(20.2.72.402 NMAC)			

16-D: Modeling performed for this application

10		s periormeu				
1					upplication. Choose the umulative analysis were	
	Pollutant	ROI	Cumulative analysis	Culpability analysis	Waiver approved	Pollutant not emitted or not changed.
	CO					X
	NO ₂					X
	SO ₂					Χ
	H ₂ S					X
	PM _{2.5}		Χ			
	PM ₁₀		Х			
	TSP				X	
	Lead					X
	Ozone					Х
	State air toxic(s) (20.2.72.402 NMAC)					X
	Dr. Sufi Mustafa sa rescinded.	aid that TSP modelin	g did not have to be	submitted with app	lications, since the TS	P standard is bein

The following table identifies the applicable significant impact levels (SIL) and National Ambient Air Quality Standards (NAAQS).

Pollutant	Averaging Period	SIL (µg/m ³)	NAAQS (µg/m ³)
PM ₁₀	24-Hour	5.0	150
PM _{2.5}	Annual	0.3	12
PM _{2.5}	24-Hour	1.2	35

The PM₁₀ 24-hour NAAQS is not to be exceeded more than once per year. Since the meteorological data is representative for the area, compliance with the PM₁₀ 24-hour NAAQS was determined using the high-second-high impact.

Since the facility does not emit significant amounts of secondary PM_{2.5} precursors, compliance with the PM_{2.5} 24-hour NAAQS was determined using the high-eighth-high impact.

16-E: New Mexico toxic air pollutants modeling

1	List any Ne application.		r pollutants (NMTAPs) fror	n Tables A and B	in 20.2.72.502 NMAC t	hat are modeled for this
	2	MTAPs that are em quired. N/A	itted but not modeled becau	use stack height co	prrection factor. Add add	itional rows to the table
	Pollutant	Emission Rate (pounds/hour)	Emission Rate Screening Level (pounds/hour)	Stack Height (meters)	Correction Factor	Emission Rate/ Correction Factor
	N/A					

16-F: Modeling options

1

What model(s) were used for the modeling? Why?

AERMOD was used, since it is the EPA approved near-field model.

What model options were used and why were they considered appropriate to the application?

Output was set to provide concentrations. Dry and wet depletion were disabled. The HRDOW Emission Rate Flag was used to limit emissions to the appropriate time of day.

Note: The modeling protocol stated AERMOD would be run using all EPA recommended defaults. However, when the protocol was approved, Mr. Sufi Mustafa, NMAQB, stated we should use the most recent Intel meteorological data. When running AERMOD using the default option and 2008 Intel meteorological data, a fatal error occurred (the use of turbulence data with Adj_U* is nondefault). Therefore, is was necessary to deselect the default option in order to run AERMOD. This change was approved by Mr. Eric Peters, NMAQB.

Modeling was conducted in accordance with the protocol submitted October 30, 2018 and the NMAQB Modeling Guidelines. First, emissions from all the VRLRF sources were modeled to determine if there were significant impacts. Second, where pollutant impacts exceeded the SIL, cumulative impacts for comparison with the NAAQS were determined using the methodologies identified in the modeling guidelines.

The coordinate system used to reference both source and receptor locations was of the Universal Transverse Mercator (UTM) convention (North American Datum 1983 [NAD83]). Source elevation data was obtained from a plot plan provided by WMNM.

16-	G: Surrou	nding source modeling
1	sources modeled of	source inventory provided by the Air Quality Bureau was believed to be inaccurate, describe how the differ from the inventory provided. If changes to the surrounding source inventory were made, use the sources to describe the changes. N/A
2	Date of surrounding	ng source retrieval. August 1, 2018.
	AQB Source ID	Description of Corrections
	N/A	

Neighboring sources of particulate modeling were limited to those within 10 km of the facility. A workbook containing the neighboring sources used in the modeling is provided on the modeling CD submitted with this report.

16	-H: Building and structure downwas	h							
1	1How many buildings are present at the facility?N/A								
2	How many above ground storage tanks are present at the facility?	N/A							
3	Was building downwash modeled for all buildings?	☑ Yes	□ No						
4	If not, explain why. N/A								
5	Building comments. There are a number of buildings and to produce downwash effects from the one point source surrounding the water pump generator will produce down	at the facility (the water pum	p generator). The structure						

16-I: Receptors and modeled property boundary

¹ "Restricted Area" is an area to which public entry is effectively precluded. Effective barriers include continuous fencing, continuous walls, or other continuous barriers approved by the Department, such as rugged physical terrain with a steep grade that would require special equipment to traverse. If a large property is completely enclosed by fencing, a restricted area within the property may be identified with signage only. Public roads cannot be part of a Restricted Area. A Restricted

2

Area is required in order to exclude receptors from the facility property. If the facility does not have a Restricted Area, then receptors shall be placed within the property boundaries of the facility. Describe the fence or other physical barrier at the facility that defines the restricted area. The restricted area is completely surrounded by a fence. Receptors must be placed along publicly accessible roads in the restricted area. 2 ☑ No □ Yes Are there public roads passing through the restricted area? 3 Are restricted area boundary coordinates included in the modeling files? ☑ Yes ΠNo Describe the receptor grids and their spacing. Note that while the facility fence encloses the active portion of the landfill, it does not enclose all the land owned by WMNM. Therefore, the fence line rather than the property boundary was used as the starting point for the receptor grid. A Cartesian grid with variable receptor spacing was used to evaluate significant impacts around the facility. The grid contained receptors with 25-meter spacing around the fence line, 50-meter spacing from the fence line out to at least 4 500 meters, 100-meter spacing from 500 meters beyond the fence line out to at least 1,000 meters, 250-meter spacing from 1,000 meters beyond the fence line out to at least 3,000 meters, and 500-meter spacing from 3,000 meters beyond the fence line out to at least 5.000 meters. Cumulative impact modeling was conducted using only those receptors from the grid defined in the paragraph above for which there were significant impacts. There were no cumulative impacts greater than or equal to 75 percent of the applicable standards at receptors located in the 100-meter, 250-meter, and 500-meter interval portions of the grid. 5 Describe receptor spacing along the fence line. See 4 above. 6 Describe the PSD Class I area receptors. N/A

16-	J: Sensitive areas		
1	Are there schools or hospitals or other sensitive areas near the facility? This information is optional (and purposely undefined), but may help determine issues related to public notice.	□ Yes	☑ No
2	If so, describe. N/A		
3	The modeling review process may need to be accelerated if there is a public hearing. Are there likely to be public comments opposing the permit application?	□ Yes	₽ No

16	-K: Modeling Scenarios		
	Identify, define, and describe all modeling scenarios. Exam rates, times of day, times of year, simultaneous or alternate etc. Alternative operating scenarios should correspond to a described in Section 15 of the Universal Application (UA3)	operation of old and new equipr Il parts of the Universal Applica	nent during transition periods,
1	Disposal operations at the landfill will take place within of the fill face at any one point in time will be approxin Eric Peters, NMAQB, modeling was conducted using a corner of Phase 6A. This placed the fill face nearest the	nately 1.0 acres. In accordance single scenario. The fill face	e with direction provided by
2	Which scenario produces the highest concentrations? Why?	N/A	
3	Were emission factor sets used to limit emission rates or hours of operation?	☑ Yes	🗆 No

	uestion pertains to the "SEASON", "MONTH", FDY" and related factor sets, not to the factors used
	culating the maximum emission rate.)
	describe factors for each group of sources. List the sources in each group before the factor table for that group
	fy or duplicate table as necessary. It's ok to put the table below section 16-K if it makes formatting easier.)
DELI	RDOW Emission Rate Flag was used to identify operating hours for three source groupings: FACILI' VERY, and SCRAPER. For each source grouping there was one set of hours applicable for Monday through the three source grouping the source grouping the source grouping the source group the source gro
	y and another set of hours applicable for Saturday. In the tables below, the first set of factors apply for Mond
	the Friday and the second set of factors apply to Saturday. Note that the water pump generator, wind erosi righboring sources were not included in any of the three source groupings. All other sources are included and the sources are included and the sources are included and the source are are source are are included and the source are included and the source are are are are are are are are are ar
	the groupings.
	C: The modeled pounds per hour (pph) emission rates from the various sources were modeled as the pour
	ar emission rates divided by the annual hours of operation. Therefore, an HRDOW Emission Rate Flag
(or 0.5	for half hours) was used for all sources.
•	Since the facility will be open to receive MSW & PCS waste for a total of 3,078 hours per year (hr/yr),
•	annual emission rates for those operations were divided by 3,078 hr/yr.
	unitud emission rates for enose operations were drived by 5,070 m/yr.
•	It is estimated the scraper will operate 1 hour per day on Friday and one hour per day on Saturday, fo
	total of 104 hr/yr. Therefore, the annual emission rates for the scraper were divided by 104 hr/yr.
•	It is estimated the compactor and bulldozer will each operate 7 hours per day. However, because
	equipment will actually operate off and on during the entire day, the annual emission rate was divided
	3,939 hr/yr (the total facility operating time).
•	It is estimated the miscellaneous vehicles will operate 6 hours per day. However, because this equipm
	will actually operate off and on during the entire day, the annual emission rates were divided by 3,939 h
1	(the total facility operating time).
•	It is estimated the grader will operate 2 hours per day. However, because the grader will operate at differ
	times each day, and because the emission rates are very low, the annual emission rates for the grader w divided by 3,939 hr/yr (the total facility operating time).
	uvided by 5,559 m/yr (the total facility operating time).
•	Though the HRDOW Emission Rate Flag was not used for wind erosion sources, it is noted that the ann
	wind erosion emissions were divided by 8,760 hr/yr.
	ACILITY source grouping applies to road dust sources associated with facility vehicles and operations. Th
source	es will operate from 0600-1900 Monday through Friday and from 0630-1700 on Saturday.
The fo	llowing sources were included in the FACILITY HRDOW source grouping:
11010	noving sources were metadou in the file fill fille of the source grouping.
•	FFA_DZR (Fill Face Area – Compactor/Bulldozer Operation)
•	FFA_MISC (Fill Face Area – Miscellaneous Vehicle Operation)
•	FFA_GRDR (Fill Face Area – Grader Operation)
•	BA_MISC (Borrow Area – Miscellaneous Vehicle Operation)
•	BA_GRDR (Borrow Area – Grader Operation)
•	PCS2_MSC (PCS Landfarm #2 – Miscellaneous Vehicle Operation)
•	PCS3_MSC (PCS Landfarm #3 – Miscellaneous Vehicle Operation)
•	MC_01 through MC_47 (Miscellaneous Route [Cold Millings]) M2011 01 through M2011 11 (Miscellaneous Boute [20 ft Width][Unnoved])
•	M30U_01 through M30U_11 (Miscellaneous Route [30 ft Width][Unpaved]) M20U_01 through M20U_84 (Miscellaneous Route [20 ft Width][Unpaved])
•	GC_01 through GC_24 (Grader Route [Cold Millings])
•	GC_01 through GC_24 (Grader Route [Cold Winnigs]) GFU_01 through GFU_06 (Grader Route – To/From Fill Face Area [Unpaved])
	or of or smorth or of on (or many morth of the inter the interior for particular)

	•	GBU_01 t	through G	BU_13 (G	rader Rou	ute – To/F	rom Borr	ow Area [Unpaved])	
	Hour of Day	Factor	Hour of Day	Factor		Hour of Day	Factor	Hour of Day	Factor		
	1	0	13	1		1	0	13	1		
	2	0	14	1		2	0	14	1		
	3	0	15	1		3	0	15	1		
	4	0	16	1		4	0	16	1		
	5	0	17	1		5	0	17	1		
5	6	0	18	1		6	0	18	0		
5	7	1	19	1		7	0.5	19	0		
	8	1	20	0		8	1	20	0		
	9	1	21	0		9	1	21	0		
	10	1	22	0		10	1	22	0		
	11	1	23	0		11	1	23	0		
	12	1	24	0		12	1	24	0		

The DELIVERY source grouping applies to road dust sources associated with public vehicles coming to and going from the landfill. These sources will operate from 0700-1700 Monday through Friday and from 0700-1600 on Saturday.

The following sources were included in the DELIVERY HRDOW source grouping:

• FFA_MSW (Fill Face Area – MSW Delivery)

4

- PCS2_DEL (PCS Landfarm #2 PCS Delivery)
- PCS3_DEL (PCS Landfarm #3 PCS Delivery)
- MDC_01 through MDC_24 (MSW Delivery Route [Cold Millings])
- MDU_01 through MDU_06 (MSW Delivery Route [Unpaved])
- PDC_01 through PDC_13 (PCS Delivery Route [Cold Millings])
- P2DU_01 through P2DU_02 (PCS Landfarm #2 Delivery Route [Unpaved])
- P3DU_01 through P3DU_02 (PCS Landfarm #3 Delivery Route [Unpaved])

	Hour of Day	Factor								
	1	0	13	1	1	0	13	1		
	2	0	14	1	2	0	14	1		
	3	0	15	1	3	0	15	1		
	4	0	16	1	4	0	16	1		
	5	0	17	1	5	0	17	0		
5	6	0	18	0	6	0	18	0		
5	7	0	19	0	7	0	19	0		
	8	1	20	0	8	1	20	0		
	9	1	21	0	9	1	21	0		
	10	1	22	0	10	1	22	0		
	11	1	23	0	11	1	23	0		
	12	1	24	0	12	1	24	0		

If hourly, variable emission rates were used that were not described above, describe them here: N/A

The SCRAPER source grouping applies to emissions associated with the scraper. The scraper will typically operate hour per day on Friday and Saturday. For modeling purposes, to allow for maximum operational flexibility, it was assumed the scraper will operate 1 hour per day Monday through Saturday.

	Testing was conducted to determine which hour of the day produced the highest modeled impact from the SCRAPER source grouping. Twenty-six model runs were conducted to determine the Monday through Friday high impacts, thirteen for PM_{10} and thirteen $PM_{2.5}$, one run for each hour of the operational day (0600-1900). Twenty-two model runs were conducted to determine the Saturday high impacts, eleven for PM_{10} and eleven for $PM_{2.5}$, one run for each hour (0630-0730 and 0700-1700).											
	Significant Impact Modeling											
	The high-first-high Monday through Friday 24-hour average impacts for both PM ₁₀ and PM _{2.5} occurred from 0800 to 0900. The high-first-high Saturday 24-hour average impacts for both PM ₁₀ and PM _{2.5} occurred from 0700 to 0800. The significant impact modeling was conducted assuming scraper operations would occur during those hours. A summary of the results is provided on the "Operating Time" tab of the "Valencia – November 2018 – Modeling Data. xlsx" workbook provided on the modeling CD submitted with this application.										0 to 0800. nours. A	
	Cumulat	ive Impac	t Modelin	ıg								
	The high-second-high Monday through Friday and Saturday 24-hour average impacts for PM ₁₀ occurred from 1600 to 1700. The high-eighth-high Monday through Friday 24-hour average impact for PM _{2.5} occurred from 1700 to 1800. The high-eighth-high Saturday 24-hour average impact for PM _{2.5} occurred from 0630 to 0730. The high Monday through Friday annual average impact for PM _{2.5} occurred from 1600 to 1700. The cumulative impact modeling was conducted assuming scraper operations would occur during those hours. A summary of the results is provided on the "Operating Time" tab of the "Valencia – November 2018 – Modeling Data. xlsx" workbook provided on the modeling CD submitted with this application. The following sources were included in the SCRAPER HRDOW source grouping: • FFA_SCRP (Fill Face Area – Scraper Travel & Unloading Operations) • SC_01 through SC_07 (Scraper Route [Cold Millings]) • SFU_01 through SFU_06 (Scraper Route – To/From Fill Face Area [Unpaved])											
	SCRAPH	ER Source	e Group - S	Significan	t Impact N	Modeling (PM 10 & P	M25)				
	Hour of Day	Factor	Hour of Day	Factor		Hour of Day	Factor	Hour of Day	Factor			
	1	0	13	0		1	0	13	0			
	2	0	14	0		2	0	14	0		ļ	
	3	0	15	0		3	0	15	0			
-	4	0	16	0		4	0	16	0			
ŀ	5	0	17	0		5	0	17	0			
5	<u>6</u> 7	0	18 19	0		6 7	0	18 19	0			
ŀ	/ 8	0	<u>19</u> 20	0		8	0 1	<u>19</u> 20	0			<u> </u>
ŀ	<u> </u>	<u> </u>	20	0		<u> </u>	0	20	0			<u> </u>
ŀ	<u> </u>	0	21	0		10	0	21	0			┼───┤
	10	0	22	0		10	0	22	0			
ŀ	12	0	23	0		12	0	23	0			
-	-		-			_	· · · ·		· · ·		I	1

4

SCRAPER Source Group – Cumulative Impact Modeling (PM₁₀ 24-Hour)

1

	Hour of Day	Factor								
	1	0	13	0	1	0	13	0		
	2	0	14	0	2	0	14	0		
	3	0	15	0	3	0	15	0		
	4	0	16	0	4	0	16	0		
	5	0	17	1	5	0	17	1		
F	6	0	18	0	6	0	18	0		
5	7	0	19	0	7	0	19	0		
	8	0	20	0	8	0	20	0		
	9	0	21	0	9	0	21	0		
	10	0	22	0	10	0	22	0		
	11	0	23	0	11	0	23	0		
	12	0	24	0	12	0	24	0		

SCRAPER Source Group – Cumulative Impact Modeling (PM2.5 24-Hour)

Hour of Day	Factor								
1	0	13	0	1	0	13	0		
2	0	14	0	2	0	14	0		
3	0	15	0	3	0	15	0		
4	0	16	0	4	0	16	0		
5	0	17	0	5	0	17	0		
6	0	18	1	6	0	18	0		
7	0	19	0	7	0.5	19	0		
8	0	20	0	8	0.5	20	0		
9	0	21	0	9	0	21	0		
10	0	22	0	10	0	22	0		
11	0	23	0	11	0	23	0		
12	0	24	0	12	0	24	0		

If hourly, variable emission rates were used that were not described above, describe them here: N/A

SCRAPER Source Group - Cumulative Impact Modeling (PM2.5 Annual) Hour of Hour of Hour of Hour of Factor Factor Factor Factor Day Dav Day Dav

6	Were different emission rates used for short-term and annual modeling?	□Yes	☑ No			
	If yes, describe. All modeling was conducted using the short-term (higher) emission rates.					

16-L: NO₂ Modeling

-	
	Which types of NO_2 modeling were used? Check all that apply. N/A
	100% NO _X to NO ₂ conversion
	ARM
1	PVMRM
	OLM
	ARM2
	Other:
2	Describe the NO_2 modeling. N/A
3	In-stack NO_2/NO_X ratio(s) used in modeling. N/A
4	Equilibrium NO_2/NO_X ratio(s) used in modeling. N/A
5	Describe/justify the use of the ratios chosen. N/A
6	Describe the design value used for each averaging period modeled. N/A 1-hour: Choose an item.

16-	16-M: Particulate Matter Modeling									
1	Select the po	Select the pollutants for which plume depletion modeling was used.								
		PM _{2.5}								
		PM ₁₀								
		TSP								
	Х	None								
2	Describe the particle size distributions used. Include the source of information. N/A									
3	Was second	Was secondary PM modeled for PM _{2.5} ?								
	<i>v</i> 1	Only required for PSD major modifications that are significant for NOx and/or SOx. Optional 🛛 Yes 🗹 No								
	for minor so	or minor sources, but allows use of high eighth high.								

Since the facility does not emit secondary $PM_{2.5}$ precursors, compliance with the $PM_{2.5}$ 24-hour NAAQS was determined using high-eighth-high impacts.

16-	N: Setback Distances and Source Classification
1	Portable sources or sources that need flexibility in their site configuration requires that setback distances be determined between the emission sources and the restricted area boundary (e.g. fence line) for both the initial location and future locations. Describe the setback distances for the initial location. N/A
2	Describe the requested, modeled, setback distances for future locations, if this permit is for a portable stationary source. Include a haul road in the relocation modeling. N/A

3	The unit numbers in the Tables 2-A, 2-B, 2-C, 2-E, 2-F, and 2-I should match the ones in the modeling files. Do these match?	□ Yes	☑ No						
	Provide a cross-reference table between unit numbers if they do not match. It's ok to place the easier formatting.	table below sec	ction 16-N for						
4	There are 418 facility sources in this modeling analysis. In most cases, multiple sources are required to model each source type. The source descriptions in the BEEST (.BST) files and the "Valencia – November 2018 - Modeling Data .xlsx" workbook (on the modeling CD submitted with this application) can be used to correlate the sources with the emission rates.								
5	The emission rates in Tables 2-E and 2-F should match the ones in the modeling files. Do these match?	☑ Yes	🗆 No						
6	If not, explain why. N/A								
7	Have the minor NSR exempt sources or Title V Insignificant Activities" (Table 2-B) sources been modeled?	□ Yes	🗹 No						
8	Which units consume increment for which pollutants?N/A. Per the NMAQB modeling guidelines, landfills do not need to model for PSD (see Se	ction 7.2).							
9	PSD increment description for sources (for unusual cases, i.e., baseline unit expanded emissions	s after baseline	date). N/A						
10	Are all the actual installation dates included in Table 2A of the application form, as required? This is necessary to verify the accuracy of PSD increment modeling.	□ Yes	☑ No						
11									

16	16-O: Flare Modeling									
1	For each flare or flaring scenario, complete the following: N/A									
	Flare ID (and scenario)	Average Molecular Weight	Gross Heat Release (cal/s)	Effective Flare Diameter (m)						
	N/A									

16-P: Volume and Related Sources								
1	Were the dimensions of volume sources different from standard dimensions in the Air Quality Bureau (AQB) Modeling Guidelines?	□ Yes	🗹 No					
2	 If the dimensions of volume sources are different from standard dimensions in the AQB Modeling Guidelines, describe how the dimensions were determined. Dimensions used were those applicable to the various sources at the facility as determined using the methods identified in the NMAQB Modeling Guidelines. See the "Conversions" tab in the "Valencia – November 2018 - Modeling Data.xlsx" workbook on the modeling CD submitted with this application. Note that because the roads at the landfill are very long, they were represented by alternating volume sources. 							
3	Describe the determination of sigma-Y and sigma-Z for fugitive sources. Sigma-Y and sigma-Z were calculated in accordance with the methods outlined in the NMAQB Modeling Guidelines. See the "Conversions" tab in the "Valencia - November 2018 - Modeling Data. xlsx" workbook on the modeling CD submitted with this application.							
 Describe how the volume sources are related to unit numbers. Or say they are the same. There are 401 facility volume sources in this modeling analysis. In each case, multiple sources are receach source type. The source descriptions in the BEEST (.BST) files and the "Valencia – November 2 								

	Data .xlsx" workbook (on the modeling CD submitted with this application) can be used to correlate the modeled sources with the unit number in the tables.
5	Describe any open pits. N/A
6	Describe emission units included in each open pit. N/A

Since there are 401 facility volume sources associated with this modeling analysis, Figures 3-15 at the end of this report are provided to show the locations of the various sources.

16-	Q: Background Concentrations								
	Identify and justify the background concentrations used.								
1	In accordance with direction received from Eric Peters, NMAQB, background concentrations were obtained from the stations in the Albuquerque region with the lowest particulate concentrations. Though the Albuquerque stations are nearest the landfill, the landfill is located in a rural area over 40 kilometers from the nearest station. The following PM ₁₀ background concentration was obtained from Table 19 (Bernalillo) of the NMAQB Modeling Guidelines:								
	24-Hour: 23.00 μg/m ³								
	The following PM _{2.5} background concentrations were obtained from Table 18 (Del Norte HS) of the NMAQB Modeling Guidelines:								
	Annual: 6.59 μg/m ³ 24-Hour: 15.37 μg/m ³								
2	Were background concentrations refined to monthly or hourly values?	□ Yes	🗹 No						

16-R: Meteorological Data

1

Identify and justify the meteorological data set(s) used.

Modeling was conducted using the Intel Rio Rancho meteorological data collected in 2008. The data was obtained from the NMAQB web site and no changes were made. The profile base elevation was set at 1,595 meters above mean sea level.

Two sources of meteorological data were considered: Bernalillo (1997) and Intel Rio Rancho (1993).

Bernalillo is located on the eastern side of the Rio Grande basin at an elevation of approximately 5,050 feet above mean sea level. Meteorological data collected at Bernalillo is strongly influenced by the river basin. The wind flow is predominantly northeast and southwest, which mirrors the orientation of the river basin.

The Intel Rio Rancho facility is located on a mesa approximately 2.5 kilometers northwest of the Rio Grande at an elevation of approximately 5,270 feet above mean sea level. Meteorological conditions at this site are not so strongly influenced by the river basin drainage flows. The winds observed at the Intel facility are from multiple directions, not just predominantly northeast and southwest as is the case for the Bernalillo data.

The VRLRF is located approximately 25 kilometers west of the Rio Grande at an elevation of approximately 5,500 feet above mean sea level. The landfill and the Intel facility are both located above and to the west of the Rio Grande and are in areas of similar topography. The Intel Rio Rancho 2008 meteorological data best represents the landfill.

2 Discuss how missing data were handled, how stability class was determined, and how the data were processed, if the Bureau did not provide the data. N/A

16	-S: Terrain
1	Was complex terrain used in the modeling? Yes. If no, describe why. N/A
	What was the source of the terrain data?
	Terrain elevation data for the receptors was obtained using United States Geological Survey (USGS) National Elevation Dataset (NED) 1/3 arc second data. The AERMOD Terrain Preprocessor (AERMAP) was used to calculate the receptor elevations and terrain maximums. The domain used to calculate terrain maximums was sufficient to identify all terrain nodes that create a slope greater than or equal to 10 percent.
2	The elevation data for sources and structures within the facility was obtained from the plot plan provided by WMNM and included in the application.
	Note: The southwestern, western and northern portions of the fence line are located in areas where the ground has not been disturbed by landfill operations. Therefore, the AERMAP elevations calculated for the receptors along the fence line in those areas appear to be accurate. The eastern and southeastern portions of the fence line are located in areas that have been disturbed by landfill operations. In those areas the AERMAP elevations do not appear to be accurate. For this reason, the elevations of the receptors along those areas of the fence line were obtained from the plot plan provided by WMNM. As expected, this change brought the affected receptor elevations very near the values obtained for the road source elevations in those areas. No changes were made to the AERMAP terrain maximums calculated for the affected receptors. The locations of the modified receptors are shown on Figure 2 at the end of this report.
1(
10	-T: Modeling Files
	Describe the modeling files:

1	Describe the modeling files:						
	File name (or folder and file name)	Pollutant(s)	Purpose (ROI/SIA, cumulative, culpability analysis, other)				
	Valencia – November 2018 – AERMAP Files.zip	N/A	Calculate terrain elevations				
	Valencia – November 2018 – AERMOD Files (Scraper Testing).zip	PM10 & PM2.5	Identify Scraper High Impacts				
	Valencia – November 2018 – AERMOD Files (ROI).zip	PM10 & PM2.5	ROI/SIA				
	Valencia – November 2018 – AERMOD Files (NAAQS).zip	PM10 & PM2.5	Cumulative				
	Valencia – November 2018 – Modeling Protocol.zip	N/A	Modeling protocol				
	Valencia – November 2018 – Modeling Report.zip	N/A	Modeling report files				

The zipped modeling report file contains the following:

- Valencia November 2018 Modeling Report.xlsx (Microsoft Word version of this modeling report)
- Valencia November 2018 Modeling Report.pdf (Adobe Acrobat version of this modeling report [including surfer plots of the source locations])
- Valencia November 2018 Modeling Data.xlsx (Microsoft Excel workbook containing miscellaneous modeling data and calculations [source locations, parameters and emission rates; fence line coordinates; operating times; receptors; etc.])
- Valencia November 2018 Neighboring Sources.xlsx (Excel workbook identifying the neighboring sources used in the modeling)

16-U: PSD New or Major Modification Applications

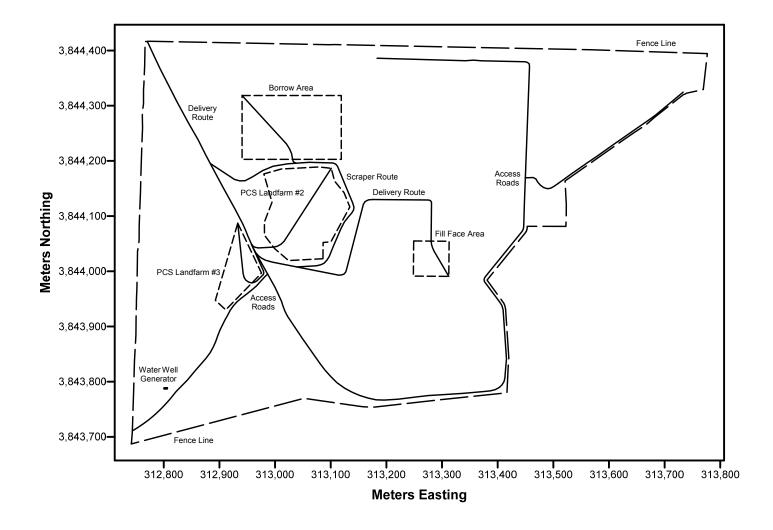
1	A new PSD major source or a major modification to an existing PSD major source requires additional analysis. Was preconstruction monitoring done (see 20.2.74.306 NMAC and PSD □ Yes Preapplication Guidance on the AQB website)?				
2	2If not, did AQB approve an exemption from preconstruction monitoring? □ Yes				
3	Bescribe how preconstruction monitoring has been addressed or attach the approved preconstruction monitoring or monitoring exemption. N/A				
4	Describe the additional impacts analysis required at 20.2.74.304 NMAC. N/A				
5	If required, have ozone and secondary PM _{2.5} ambient impacts analyses been completed? N/A				

16-	16-V: Modeling Results										
1	If ambient standards are exceeded because of surrounding sources, a culpability analysis is required for the source to show that the contribution from this source is less than the significance levels for the specific pollutant. N/A										
2	Identify the maxim	num concentr	ations from	the mode	ling analy	sis.					
	Pollutant	Period	Facility Concentration (µg/m3)	Total Modeled Concentration (μg/m3)	Total Modeled Concentration (PPM)	Background Concentration	Cumulative Concentration	Standard	Value of Standard	Units of Standard, Background, and Total	Percent of Standard
PM ₁	0	24-Hour	41.68	41.76		23.00	64.76	NAAQS	150	µg/m ³	43.18
PM ₂	.5	24-Hour	2.67	2.72		15.37	18.09	NAAQS	35	µg/m ³	51.68
PM ₂	.5	Annual	0.48	0.52		6.59	7.11	NAAQS	12	µg/m ³	59.24

Two model runs were conducted for the significant impact modeling, one for each pollutant.

Three model runs were conducted for the NAAQS modeling, one for each pollutant and averaging period.

16-W: Location of maximum concentrations								
1	Identify the locations of the maximum concentrations.							
Pollutant		Period	UTM East (m)	UTM North (m)	Elevation (ft)	Distance (m)	Radius of Impact (ROI) (m)	
PM ₁₀		24-Hour	313,106	3,844,411	5,463	0	3,637	
PM _{2.5}		24-Hour	313,032	3,844,412	5,480	0	1,607	
PM2.5		Annual	313,381	3,843,984	5,497	0	558	

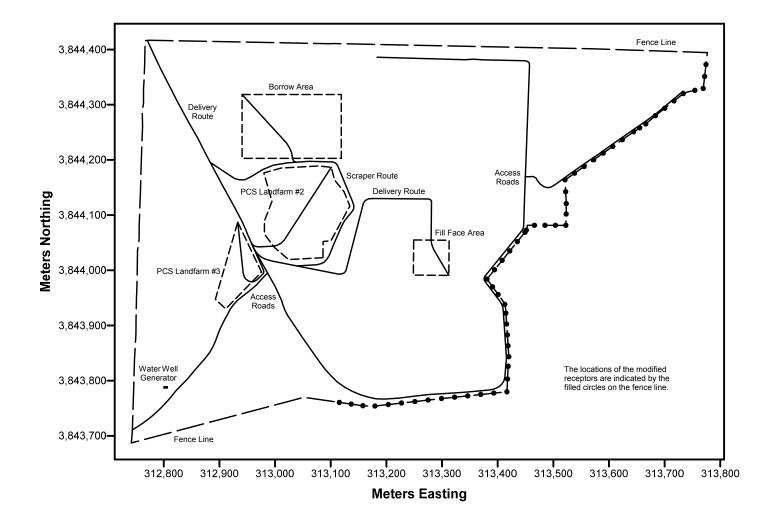

16-X: Summary/conclusions

A statement that modeling requirements have been satisfied and that the permit can be issued.

The modeling requirements have been satisfied and a permit can be issued.

1

Valencia Regional Landfill and Recycling Facility Modeled Fence Line, Roads, and Active Areas

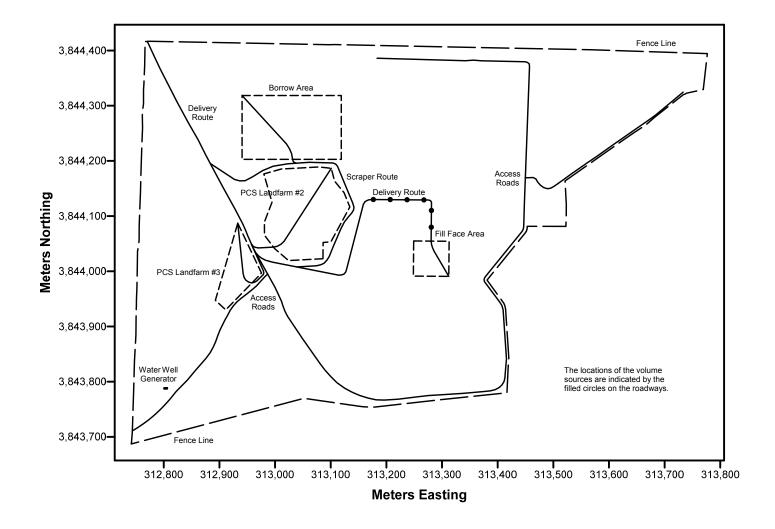


Universal Transverse Mercator Coordinates, Zone 13, NAD83

Figure 1

Cirrus Consulting, LLC

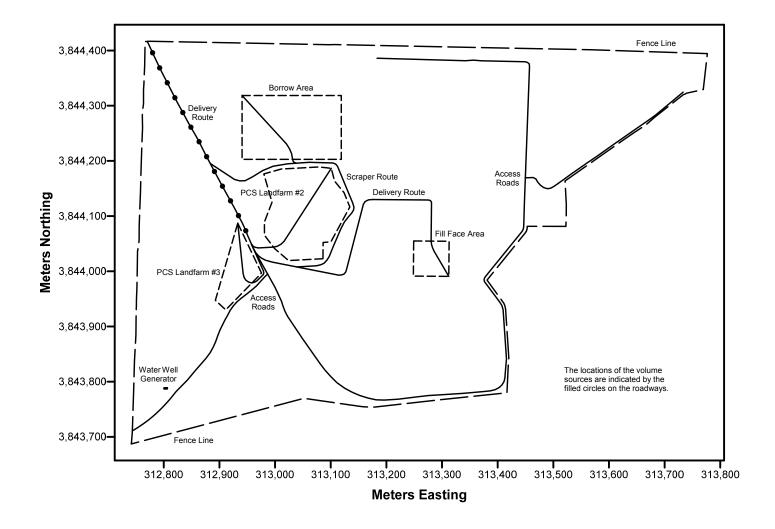
Valencia Regional Landfill and Recycling Facility Modified Fence Line Receptor Locations


Universal Transverse Mercator Coordinates, Zone 13, NAD83

Valencia Regional Landfill and Recycling Facility Cold Millings MSW Delivery Route Volume Source Locations

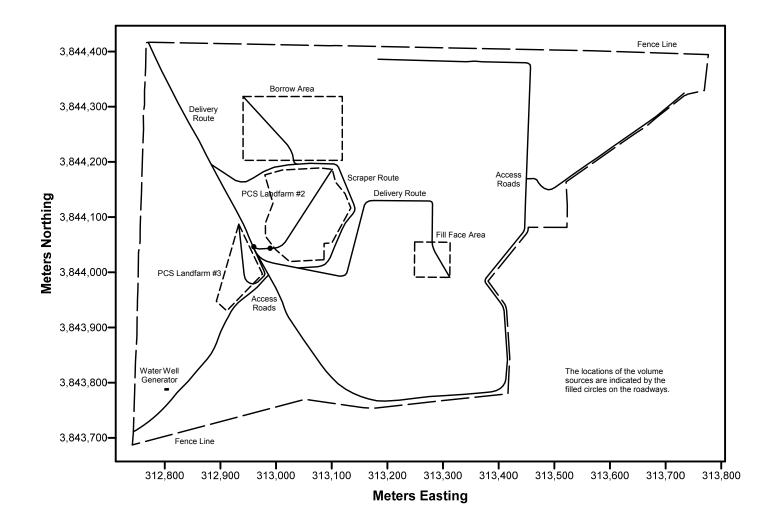
Universal Transverse Mercator Coordinates, Zone 13, NAD83

Valencia Regional Landfill and Recycling Facility Unpaved MSW Delivery Route Volume Source Locations

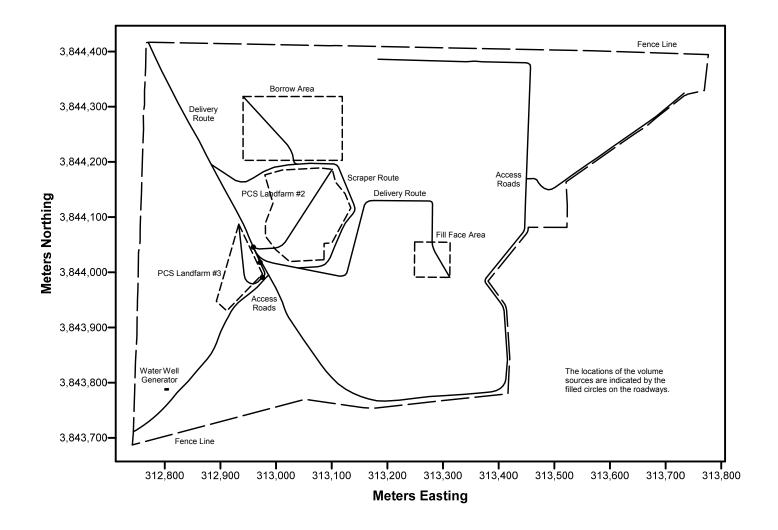


Universal Transverse Mercator Coordinates, Zone 13, NAD83

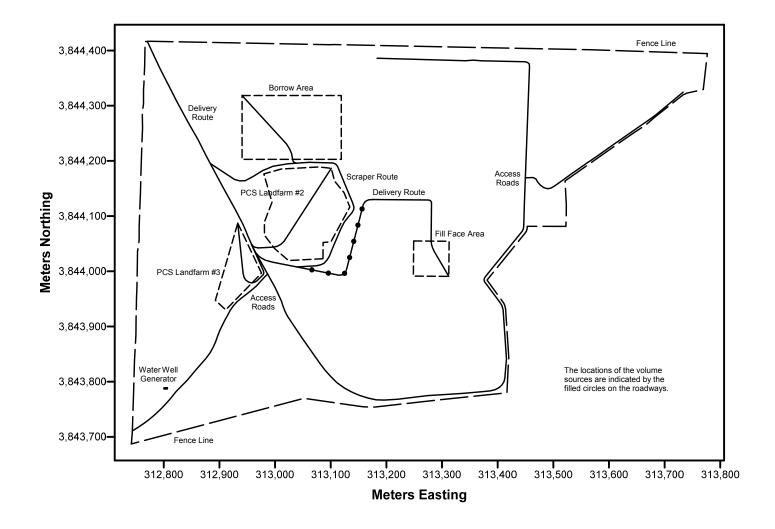
Figure 4


Cirrus Consulting, LLC

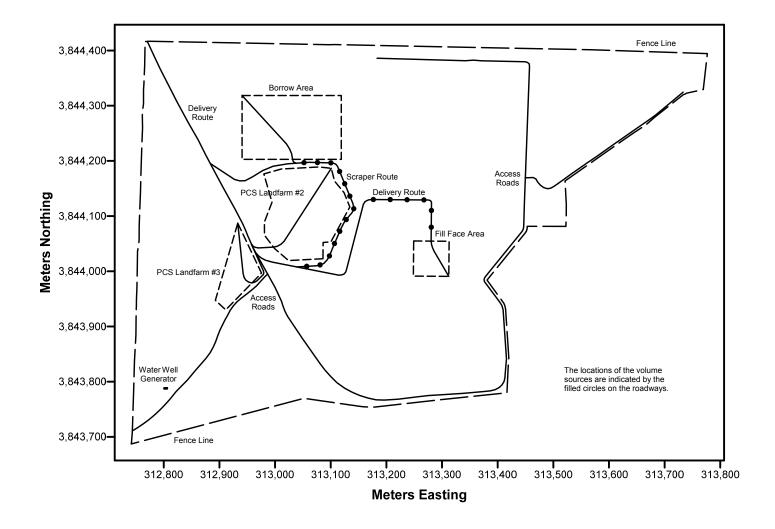
Valencia Regional Landfill and Recycling Facility Cold Millings PCS Delivery Route Volume Source Locations


Universal Transverse Mercator Coordinates, Zone 13, NAD83

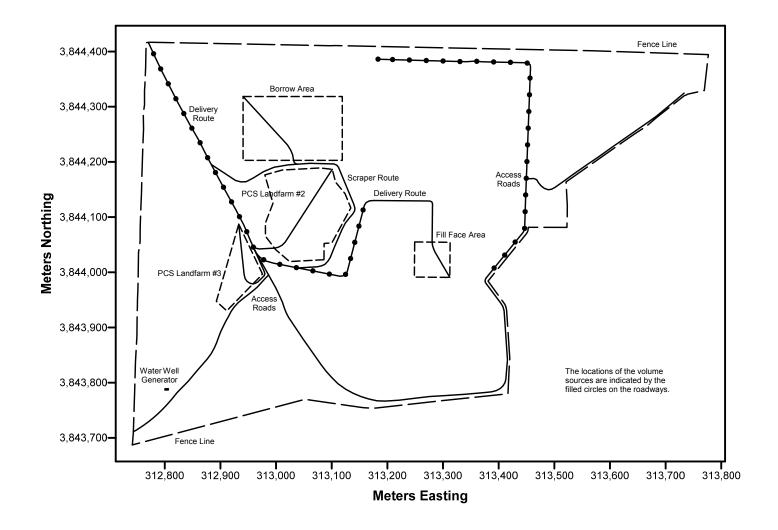
Valencia Regional Landfill and Recycling Facility Unpaved PCS Landfarm #2 Delivery Route Volume Source Locations


Universal Transverse Mercator Coordinates, Zone 13, NAD83

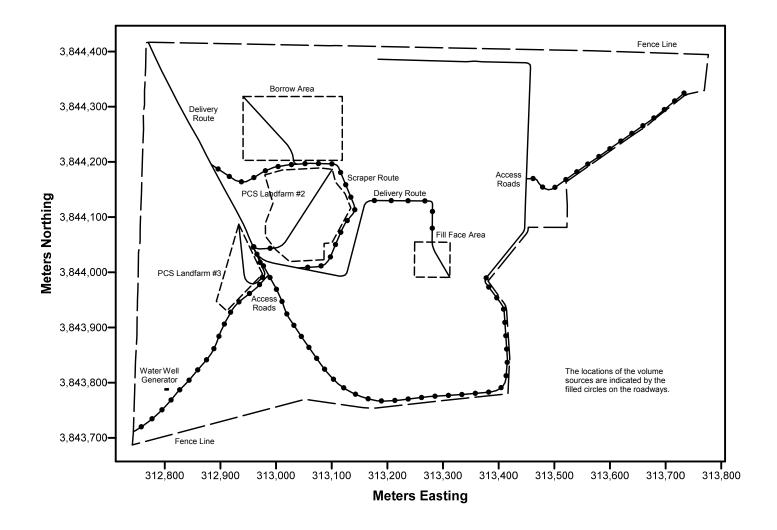
Valencia Regional Landfill and Recycling Facility Unpaved PCS Landfarm #3 Delivery Route Volume Source Locations


Universal Transverse Mercator Coordinates, Zone 13, NAD83

Valencia Regional Landfill and Recycling Facility Cold Millings Scraper Route Volume Source Locations


Universal Transverse Mercator Coordinates, Zone 13, NAD83

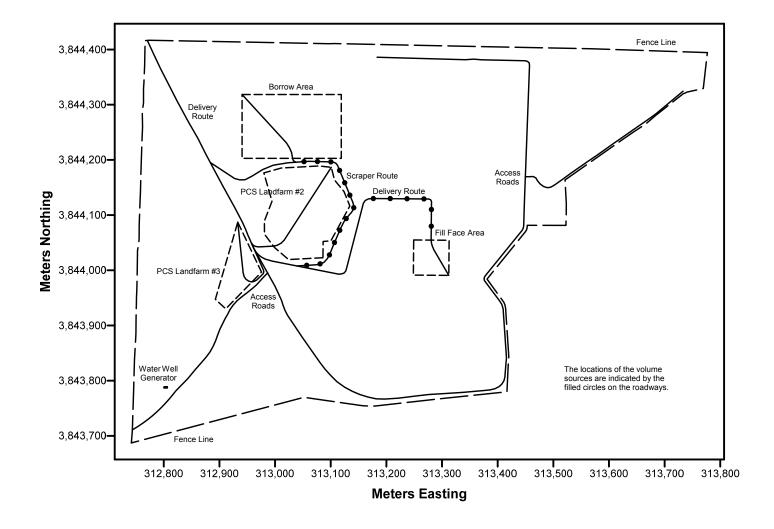
Valencia Regional Landfill and Recycling Facility Unpaved Scraper Route Volume Source Locations


Universal Transverse Mercator Coordinates, Zone 13, NAD83

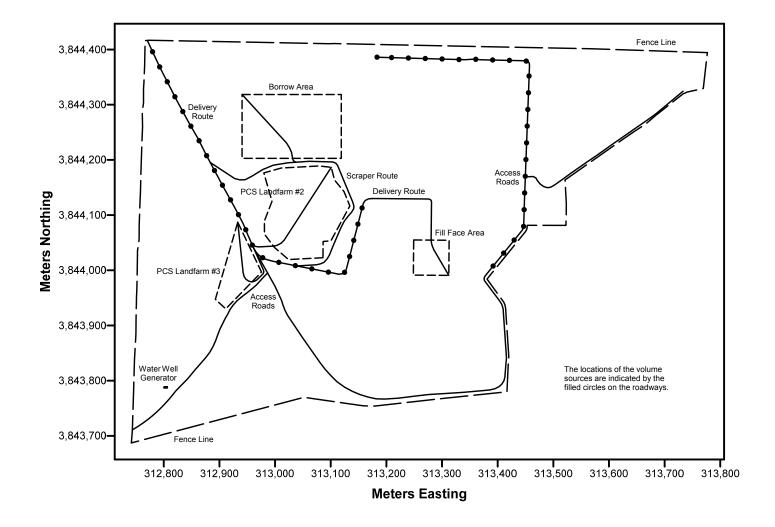
Valencia Regional Landfill and Recycling Facility Cold Millings Miscellaneous Vehicle Route Volume Source Locations

Universal Transverse Mercator Coordinates, Zone 13, NAD83

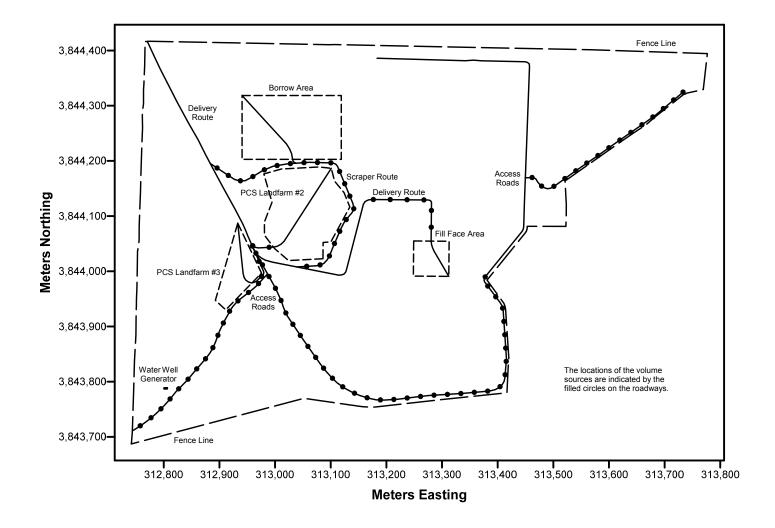
Valencia Regional Landfill and Recycling Facility Unpaved Miscellaneous Vehicle Route Volume Source Locations


Universal Transverse Mercator Coordinates, Zone 13, NAD83

Valencia Regional Landfill and Recycling Facility Cold Millings Grader Route Volume Source Locations


Universal Transverse Mercator Coordinates, Zone 13, NAD83

Valencia Regional Landfill and Recycling Facility Unpaved Grader Route Volume Source Locations


Universal Transverse Mercator Coordinates, Zone 13, NAD83

Valencia Regional Landfill and Recycling Facility Cold Millings Road Wind Erosion Volume Source Locations

Universal Transverse Mercator Coordinates, Zone 13, NAD83

Valencia Regional Landfill and Recycling Facility Unpaved Road Wind Erosion Volume Source Locations

Universal Transverse Mercator Coordinates, Zone 13, NAD83

Section 19

Requirements for Title V Program

Do not print this section unless this is a Title V application.

Who Must Use this Attachment:

* Any major source as defined in 20.2.70 NMAC.

- ^{*} Any source, including an area source, subject to a standard or other requirement promulgated under Section 111 Standards of Performance for New Stationary Sources, or Section 112 Hazardous Air Pollutants, of the 1990 federal Clean Air Act ("federal Act"). Non-major sources subject to Sections 111 or 112 of the federal Act are exempt from the obligation to obtain an 20.2.70 NMAC operating permit until such time that the EPA Administrator completes rulemakings that require such sources to obtain operating permits. In addition, sources that would be required to obtain an operating permit solely because they are subject to regulations or requirements under Section 112(r) of the federal Act are exempt from the requirement to obtain an Operating Permit.
- * Any Acid Rain source as defined under title IV of the federal Act. The Acid Rain program has additional forms. See <u>http://www.env.nm.gov/aqb/index.html</u>. Sources that are subject to both the Title V and Acid Rain regulations are encouraged to submit both applications simultaneously.
- * Any source in a source category designated by the EPA Administrator ("Administrator"), in whole or in part, by regulation, after notice and comment.

To save paper and to standardize the application format, delete this sentence, and begin your submittal for this item here.

19.1 - 40 CFR 64, Compliance Assurance Monitoring (CAM) (20.2.70.300.D.10.e NMAC)

Any source subject to 40CFR, Part 64 (Compliance Assurance Monitoring) must submit all the information required by section 64.7 with the operating permit application. The applicant must prepare a separate section of the application package for this purpose; if the information is already listed elsewhere in the application package, make reference to that location. Facilities not subject to Part 64 are invited to submit periodic monitoring protocols with the application to help the AQB to comply with 20.2.70 NMAC. Sources subject to 40 CFR Part 64, must submit a statement indicating your source's compliance status with any enhanced monitoring and compliance certification requirements of the federal Act.

Compliance assurance monitoring (CAM) is not applicable to fugitive dust emission sources where water (or surfactant) is used to control fugitive dust. These types of control measures are considered passive in that they act to prevent pollutants from forming. Passive control measures are not considered control devices under CAM.

19.2 - Compliance Status (20.2.70.300.D.10.a & 10.b NMAC)

Describe the facility's compliance status with each applicable requirement at the time this permit application is submitted. This statement should include descriptions of or references to all methods used for determining compliance. This statement should include descriptions of monitoring, recordkeeping and reporting requirements and test methods used to determine compliance with all applicable requirements. Refer to Section 2, Tables 2-N and 2-O of the Application Form as necessary. (20.2.70.300.D.11 NMAC) For facilities with existing Title V permits, refer to most recent Compliance Certification for existing requirements. Address new requirements such as CAM, here, including steps being taken to achieve compliance.

The Valencia Regional Landfill and Recycling Facility (VRLRF) is committed to complying with applicable regulatory requirements. To achieve that objective, relevant regulatory citations have been compiled, and the Landfill's compliance status has been summarized for known applicable regulations (**Section 13**) at the time of this Application for Permit Renewal. Updates to the regulatory requirements cited in **Section 13**, or future regulatory requirements, will be addressed in a timely manner consistent with the schedules specified by the applicable regulatory requirement.

Consistent with Condition A109 of Title V Operating Permit No. P247L-R1 (issued on November 20, 2014), VRLRF has submitted Semi-Annual Monitoring Reports (SAMRs) to AQB since March 27, 2009. Since the Permit was issued on November 20, 2014, seven SAMRs have been submitted to AQB, with the next SAMR due to be submitted on or before April 15, 2019. On an annual basis, VRLRF continues to submit Annual Compliance Certifications (ACCs) to AQB and EPA Region 6. Since the Permit was issued on November 20, 2014, three ACCs have been submitted to AQB and EPA Region 6, with the next ACC scheduled to be submitted on or before March 31, 2019.

19.3 - Continued Compliance (20.2.70.300.D.10.c NMAC)

Provide a statement that your facility will continue to be in compliance with requirements for which it is in compliance at the time of permit application. This statement must also include a commitment to comply with other applicable requirements as they come into effect during the permit term. This compliance must occur in a timely manner or be consistent with such schedule expressly required by the applicable requirement.

Consistent with historical monitoring and reporting practices, VRLRF hereby commits to remain in compliance with applicable local, state, and federal regulations at the time of this Application for Permit Renewal. Compliance will be maintained for those regulatory elements where compliance is required, and will, in a timely manner or at such schedule expressly required by the applicable requirement, meet additional applicable requirements that become effective during the Permit term.

19.4 - Schedule for Submission of Compliance (20.2.70.300.D.10.d NMAC)

You must provide a proposed schedule for submission to the department of compliance certifications during the permit term. This certification must be submitted annually unless the applicable requirement or the department specifies a more frequent period. A sample form for these certifications will be attached to the permit.

Consistent with Condition A109 of Title V Operating Permit No. P247L-R1, VRLRF has submitted seven Semi-Annual Monitoring Reports (SAMRs) and three Annual Compliance Certifications (ACCs) to AQB and EPA Region 6 since the Permit was issued on November 20, 2014. VRLRF Form-Section 19 last revised: 8/15/2011 Section 19, Page 2 Saved Date: 11/6/2018 will continue to submit SAMRs and ACCs to AQB and EPA consistent with the existing schedule, as well as any new schedule that may arise from this permitting action. Consistent with the existing schedule, the next SAMR will be submitted to AQB on or before April 15, 2019, and the next ACC will be submitted to AQB and EPA Region 6 on or before March 31, 2019.

19.5 - Stratospheric Ozone and Climate Protection

In addition to completing the four (4) questions below, you must submit a statement indicating your source's compliance status with requirements of Title VI, Section 608 (National Recycling and Emissions Reduction Program) and Section 609 (Servicing of Motor Vehicle Air Conditioners).

 Does your facility have any air conditioners or refrigeration equipment that uses CFCs, HCFCs or other ozonedepleting substances?
 ✓ Yes No

The Valencia Landfill has air conditioning units in the site buildings and heavy equipment are also equipped with on-board air conditions, for employee comfort. Additionally, there are several refrigeration units for keeping ice and chilling of employee meals. These units are outlined below.

Site Buildings:

- Scalehouse:
 - Air conditioner unit Goodman model GSC130301AA, R22 refrigerant, 123 oz. charge
 - Standard size refrigerator Americana model A3316AB5ARWW, R134a refrigerant, 4.12 oz. charge
 - o Small chest freezer Idylis model IF50CM23NW, R600a 1.76 oz. charge.
- Employee Breakroom:
 - Window-mounted air conditioner Frigidaire model FRA106CV1, R410a refrigerant, 15.17 oz. charge

Heavy Equipment:

- All heavy equipment have air conditioner units designed for mobile equipment utilizing R134a refrigerant.
- Does any air conditioner(s) or any piece(s) of refrigeration equipment contain a refrigeration charge greater than 50 lbs? Yes ☑ No
 (If the answer is yes, describe the type of equipment and how many units are at the facility.)
- 3. Do your facility personnel maintain, service, repair, or dispose of any motor vehicle air conditioners (MVACs) or appliances ("appliance" and "MVAC" as defined at 82. 152)? Yes ☑ No

The Valencia Regional Landfill and Recycling Facility (VRLRF) does not service, repair, or dispose of motor vehicle air conditioners (MVACs). MVACs for equipment and company-owned pick-up trucks used at the Landfill are serviced on-site by a third-party contractor. VRLRF does not accept for disposal items that were designed to harbor refrigerant, regardless of whether the refrigerant has been removed.

Cite and describe which Title VI requirements are applicable to your facility (i.e. 40 CFR Part 82, Subpart A through G.)

VRLRF is not subject to the requirements of 40 CFR Part 82, Subparts A through G.

19.6 - Compliance Plan and Schedule

Applications for sources, which are not in compliance with all applicable requirements at the time the permit application is submitted to the department, must include a proposed compliance plan as part of the permit application package. This plan shall include the information requested below:

A. Description of Compliance Status: (20.2.70.300.D.11.a NMAC)

A narrative description of your facility's compliance status with respect to all applicable requirements (as defined in 20.2.70 NMAC) at the time this permit application is submitted to the department.

B. Compliance plan: (20.2.70.300.D.11.B NMAC)

A narrative description of the means by which your facility will achieve compliance with applicable requirements with which it is not in compliance at the time you submit your permit application package.

C. Compliance schedule: (20.2.70.300D.11.c NMAC)

A schedule of remedial measures that you plan to take, including an enforceable sequence of actions with milestones, which will lead to compliance with all applicable requirements for your source. This schedule of compliance must be at least as stringent as that contained in any consent decree or administrative order to which your source is subject. The obligations of any consent decree or administrative order are not in any way diminished by the schedule of compliance.

D. Schedule of Certified Progress Reports: (20.2.70.300.D.11.d NMAC)

A proposed schedule for submission to the department of certified progress reports must also be included in the compliance schedule. The proposed schedule must call for these reports to be submitted at least every six (6) months.

E. Acid Rain Sources: (20.2.70.300.D.11.e NMAC)

If your source is an acid rain source as defined by EPA, the following applies to you. For the portion of your acid rain source subject to the acid rain provisions of title IV of the federal Act, the compliance plan must also include any additional requirements under the acid rain provisions of title IV of the federal Act. Some requirements of title IV regarding the schedule and methods the source will use to achieve compliance with the acid rain emissions limitations may supersede the requirements of title V and 20.2.70 NMAC. You will need to consult with the Air Quality Bureau permitting staff concerning how to properly meet this requirement.

NOTE: The Acid Rain program has additional forms. See <u>http://www.env.nm.gov/aqb/index.html</u>. Sources that are subject to both the Title V and Acid Rain regulations are **encouraged** to submit both applications **simultaneously**.

The Valencia Regional Landfill and Recycling Facility believes it is in compliance with applicable regulatory requirements at the time this Application for Permit Renewal is submitted to the Bureau. Additional compliance requirements, if any, which may be imposed by virtue of new regulations, will be addressed in accordance with applicable regulatory schedules.

19.7 - 112(r) Risk Management Plan (RMP)

Any major sources subject to section 112(r) of the Clean Air Act must list all substances that cause the source to be subject to section 112(r) in the application. The permittee must state when the RMP was submitted to and approved by EPA.

The Valencia Regional Landfill and Recycling Facility does not store or use any of the chemicals

listed in Section 112(r) in or exceeding the threshold quantities specified in this Section.

19.8 - Distance to Other States, Bernalillo, Indian Tribes and Pueblos

Will the property on which the facility is proposed to be constructed or operated be closer than 80 km (50 miles) from other states, local pollution control programs, and Indian tribes and pueblos (20.2.70.402.A.2 and 20.2.70.7.B NMAC)?

(If the answer is yes, state which apply and provide the distances.)

VRLRF is not located fewer than 50 miles from other states. The Landfill is located 16.3 km (10 miles) south of Bernalillo County. Eight Indian reservations and/or pueblos are located within 80 km (50 miles) of VRLRF:

- Alamo 45 km (28 miles) southwest
- Acoma Pueblo 52 km (32 miles) west
- To'hajilee (Cañoncito) Pueblo 40 km (25 miles) north
- Sandia Pueblo 72.4 km (45 miles) north
- Santa Ana Pueblo 78.9 km (49 miles) north
- Zia Pueblo 77.2 km (48 miles) north
- Laguna Pueblo 25.8 km (16 miles) north
- Isleta Pueblo 11.3 km (7 miles) east

The nearest Class I area, Bosque Del Apache National Wildlife Refuge, is situated 97.10 km (60.3 miles) south of the facility.

19.9 - Responsible Official

Provide the Responsible Official as defined in 20.2.70.7.AD NMAC:

Pursuant to 20.2.70.7.AE NMAC, the responsible official at VRLRF is Mr. Damon De Frates, Director, Post Collections Operations (Waste Management of New Mexico, Inc.). Mr. John W. Kolopanis, AZ/NM Area Senior Environmental Protection Manager (Waste Management of New Mexico, Inc.), is the alternate responsible official for VRLRF.

Section 20

Other Relevant Information

<u>Other relevant information</u>. Use this attachment to clarify any part in the application that you think needs explaining. Reference the section, table, column, and/or field. Include any additional text, tables, calculations or clarifying information.

Additionally, the applicant may propose specific permit language for AQB consideration. In the case of a revision to an existing permit, the applicant should provide the old language and the new language in track changes format to highlight the proposed changes. If proposing language for a new facility or language for a new unit, submit the proposed operating condition(s), along with the associated monitoring, recordkeeping, and reporting conditions. In either case, please limit the proposed language to the affected portion of the permit.

No other relevant information is necessary for this Application for Renewal.

Section 21

Addendum for Landfill Applications

Do not print this section unless this is a landfill application.

Landfill Applications are not required to complete Sections 1-C Input Capacity and Production Rate, 1-E Operating Schedule, 17 Compliance Test History, and 18 Streamline Applications. Section 12 – PSD Applicability is required only for Landfills with Gas Collection and Control Systems and/or landfills with other non-fugitive stationary sources of air emissions such as engines, turbines, boilers, heaters. All other Sections of the Universal Application Form are required.

EPA Background Information for MSW Landfill Air Quality Regulations: <u>https://www3.epa.gov/airtoxics/landfill/landflpg.html</u>

NM Solid Waste Bureau Website: <u>https://www.env.nm.gov/swb/</u>

21-A: Municipal Solid Waste Landfill Information							
1	How long will the landfill be operated? Expected longevity is approximately 150 years (2012 Estimates)						
2	Maximum operational hours per year: 3,926 hrs						
3	Landfill Operating hours (open to	o the public) M-F: 7am-5pm	Sat. 7am-4	pm	Sun. Closed		
4	To determine to what NSPS and modified, or reconstructed as det						
5	Landfill Design Capacity. Enter all 3 Tons: 58,242,200			s (Mg): 0	Cubic meters: 68,087,700		
6	Landfill NMOC Emission Rate (NSPS XXX)	\square Less than 34 Mg/year usin 3	g Tiers 1 to	Equal to or Gre Tiers 1 to 3	ater than 34 Mg/year using		
	Landfill NMOC Emission Rate (NSPS XXX)	Less than 500 ppm using T	ier 4		ater than 500 ppm using Tier		
	Landfill NMOC Emission Rate (NSPS WWW)	Less than 50 Mg/yr		Equal to or Greater than 50 Mg/yr			
7	Annual Waste Acceptance Rate:	67,862 tons/year (average	based on 2	2011-2017 VRLRF	data)		
8	Is Petroleum Contaminated Soil Accepted? Yes If so, what is the annual acceptance rate? Annual acceptance rate of PCS is limited by BTEX concentration and calculated HAP emissions (Section 6.4).						
9	NM Solid Waste Bureau (SWB) SWM-013229/SWM-013230(SWB Permit D	ate: November 20, 2006		
10	Describe the NM Solid Waste Bureau Permit, Status, and Type of waste deposited at the landfill. The Valencia Regional Landfill and Recycling Facility (VRLRF) has been in operation and permitted since 1988. VRLRF disposes of municipal solid waste (MSW), construction and demolition (C&D) debris, chemical spill residue, petroleum contaminated soils (PCS), sludge, packing house and killing plant offal, industrial solid waste (ISW), treated formerly characteristic hazardous (TFCH) waste, and oil conservation division (OCD) waste.						
11	Describe briefly any process(es) or any other operations conducted at the landfill. VRLRF is authorized to dispose of municipal solid wastes and specific NMED-defined special wastes. Waste types approved for acceptance at the VRLRF are detailed in the April 2004 Application For Permit to NMED SWB (and subsequent updates). Special wastes accepted for treatment or disposal include chemical spill residue, petroleum contaminated soil, sludge, offal, industrial solid wastes, treated						

formerly characteristic hazardous waste, and oil conservation division (OCD) waste. The Landfill maintains one 8,000 gallon diesel tank, whose fuel is used exclusively for on-site equipment. VRLRF does not engage in the following processes/activities nor does it operate the following equipment:

- Transfer stations
- Composting facility
- Paint booths
- Chipper or shredder
- Boilers

21-B: NMOC Emissions Determined Pursuant to 40 CFR 60, Subparts WWW or XXX

• •	
	Enter the regulatory citation of all Tier 1, 2, 3, and/or 4 procedures used to determine NMOC emission rates and the date(s) that each Tier procedure was conducted. In Section 7 of the application, include the input data and results.
1	Tier 1 equations (e.g. LandGEM):
2	Tier 2 Sampling: 5.74 tons/year (5.20 Mg/year) (LandGEM estimate of 2025 NMOC generation from projected waste receipts through 2024)
3	Tier 3 Rate Constant:
4	Tier 4 Surface Emissions Monitoring:
5	Attach all Tier Procedure calculations, procedures, and results used to determine the Gas Collection and Control System (GCCS) requirements.

Facilities that have a landfill GCCS must complete Section 21-C.

21-0	C: Landfill Gas Collection and Control System (GCCS) Design Plan
1	Was the GCCS design certified by a Professional Engineer?
2	Attach a copy of the GCCS Design Plan and enter the submittal date of the Plan pursuant to the deadlines in either NSPS WWW or NSPS XXX. The NMOC applicability threshold requiring a GCCS plan is 50Mg/yr for NSPS WWW and 34 Mg/yr or 500 ppm for NSPS XXX.
3	Is/Was the GCCS planned to be operational within 30 months of reporting NMOC emission rates equal to or greater than 50 Mg/yr, 34 Mg/yr, or 500 ppm pursuant to the deadlines specified in NSPS WWW or NSPS XXX?
4	Does the GCCS comply with the design and operational requirements found at 60.752, 60.753, and 69.759 (NSPS WWW) or at 60.762, 60.763, and 60.769 (NSPS XXX)?
5	Enter the control device(s) to which the landfill gas will be/is routed such as an open flare, enclosed combustion device, boiler, process heater, or other.
6	Do the control device(s) meet the operational requirements at 60.752 and 60.756 (NSPS WWW) or 60.762, 60.763, 60.766 (NSPS XXX)?

Conservative projected annual waste receipt values over the current permit period produces projected NMOC emissions from the landfill of 5.20 Mg/yr (5.74 tons/yr) in 2025. NMOC emissions (as determined

through application of the LandGEM model) for 2018 (from waste deposited through 2017) are calculated to be approximately 4.17 Mg/yr (4.60 tons/yr) (see **Attachment 6.7**). In the event that future NMOC emissions rate calculations and subsequent LandGEM simulations indicate NMOC emissions to be greater than the regulatory threshold of 50 Mg/yr, a landfill gas collection and control system (GCCS) will be designed and installed in accordance with the requirements of 40 CFR 60 Subpart WWW.

Section 22: Certification

Company Name: Waste Management of New Mexico, Inc

I, <u>Damon De Frates</u>, hereby certify that the information and data submitted in this application are true and as accurate as possible, to the best of my knowledge and professional expertise and experience.

Signed this 15th day of November, 2018, upon my oath or affirmation, before a notary of the State of

*Signature

Printed Name

71-25 Title

Scribed and sworn before me on this 15 day of Abecuber .2018

My authorization as a notary of the State of <u>Currous</u> expires on the

gust , 2020 . _ day of

inted Name

KATHLEEN T NEWCOMB Notary Public - Arizona Maricopa County My Comm. Expires Aug 3, 2020

*For Title V applications, the signature must be of the Responsible Official as defined in 20.2.70.7.AE NMAC.