

March 1, 2019

Mr. Ted Schooley NMED Air Quality Bureau 525 Camino de los Marquez, Suite 1 Santa Fe, NM 87505

RE: Application for a Renewal to Title V Permit P024-R2M1, for the Western Refining Southwest, Inc. and Western Refining Terminals, LLC. -Bloomfield Products Terminal VNR

NYSE

Dear Mr. Schooley,

Western Refining Southwest, Inc. and Western Refining Terminals, LLC. is submitting this application to renew the Title V permit for the Bloomfield Products Terminal. The facility is located approximately 0.27 miles south of Bloomfield, NM. Bloomfield Products Terminal is currently permitted under Operating Permit P-024-R2M1 and NSR Permit 0402-M12R4. The facility is a bulk storage terminal that receives materials via loading rack, pipelines, or trucks, stores the materials in storage tanks, and loads the materials out elsewhere at the facility.

The format and content of this application are consistent with the Bureau's current policy regarding Title V applications. Title V Permit P-024-R2M1 expires on March 4, 2020. Western Refining Terminals, LLC and Western Refining Southwest, Inc. is submitting this application in accordance with 20.2.70.300.B.2 NMAC, requiring a timely application for a Title V renewal be submitted at least 12 months prior to the date of permit expiration.

Enclosed are two hard copies of the application, including an original certification and two discs containing the electronic files. Please feel free to contact either myself at (505) 632-4195 or the Trinity Consultants Albuquerque office at (505) 266-6611 if you have any questions regarding this application.

Sincerely,

Formy be Robts

Tommy D. Roberts Terminal Supervisor Western Refining

cc: B. Davis (WNR) K. Robinson (WNR)

Mail Application To:

New Mexico Environment Department Air Quality Bureau Permits Section 525 Camino de los Marquez, Suite 1 Santa Fe, New Mexico, 87505

Phone: (505) 476-4300 Fax: (505) 476-4375 www.env.nm.gov/aqb

AIRS No.:

Universal Air Quality Permit Application

Use this application for NOI, NSR, or Title V sources.

Use this application for: the initial application, modifications, technical revisions, and renewals. For technical revisions, complete Sections, 1-A, 1-B, 2-E, 3, 9 and any other sections that are relevant to the requested action; coordination with the Air Quality Bureau permit staff prior to submittal is encouraged to clarify submittal requirements and to determine if more or less than these sections of the application are needed. Use this application for streamline permits as well. For NOI applications, submit the entire UA1, UA2, and UA3 applications on a single CD (no copies are needed). For NOIs, hard copies of UA1, Tables 2A, 2D & 2F, Section 3 and the signed Certification Page are required.

This application is submitted as (check all that apply):
□ Request for a No Permit Required Determination (no fee) Updating an application currently under NMED review. Include this page and all pages that are being updated (no fee required). Construction Status:
□ Not Constructed Existing Permitted (or NOI) Facility □ Existing Non-permitted (or NOI) Facility Minor Source: □ a NOI 20.2.73 NMAC □ 20.2.72 NMAC application or revision □ 20.2.72.300 NMAC Streamline application Title V Source: 🗆 Title V (new) 🗹 Title V renewal 🗆 TV minor mod. 🗆 TV significant mod. TV Acid Rain: 🗆 New 🗆 Renewal □ minor modification to a PSD source PSD Major Source: □ PSD major source (new) □ a PSD major modification

Acknowledgements:

Z I acknowledge that a pre-application meeting is available to me upon request. Z Title V Operating, Title IV Acid Rain, and NPR applications have no fees.

□ \$500 NSR application Filing Fee enclosed OR □ The full permit fee associated with 10 fee points (required w/ streamline applications).

□ Check No.: _____ in the amount of

I acknowledge the required submittal format for the hard copy application is printed double sided 'head-to-toe', 2-hole punched (except the Sect. 2 landscape tables is printed 'head-to-head'), numbered tab separators. Incl. a copy of the check on a separate page. □ This facility qualifies to receive assistance from the Small Business Environmental Assistance program (SBEAP) and qualifies for 50% of the normal application and permit fees. Enclosed is a check for 50% of the normal application fee which will be verified with the Small Business Certification Form for your company.

This facility qualifies to receive assistance from the Small Business Environmental Assistance Program (SBEAP) but does not qualify for 50% of the normal application and permit fees. To see if you qualify for SBEAP assistance and for the small business certification form go to https://www.env.nm.gov/aqb/sbap/small business criteria.html).

Citation: Please provide the low level citation under which this application is being submitted: 20.2.70.300.B.2 NMAC (e.g. application for a new minor source would be 20.2.72.200.A NMAC, one example for a Technical Permit Revision is 20.2.72.219.B.1.b NMAC, a Title V acid rain application would be: 20.2.70.200.C NMAC)

Section 1 – Facility Information

Sec	tion 1-A: Company Information	AI # if known (see 1 st 3 to 5 #s of permit IDEA ID No.): 1156	Opdating Permit/NOI #: P024- R2M1				
1	Facility Name: Bloomfield Products Terminal	Plant primary SIC Code (4 digits): 5171					
1		Plant NAIC code (6 digits): 424710					
a	Facility Street Address (If no facility street address, provide directions from a prominent landmark): 50 County Road 4990, Bloomfield, NM 87413						
2	Plant Operator Company Name: Western Refining Terminals, LLC	Phone/Fax: (505) 632-4	195				
a	Plant Operator Address: 50 County Road 4990, P.O. Box 159, Bloomfield, NM 87413						

Western Refining Southwest, Inc. & Western Refining Terminals, LLC

b	Plant Operator's New Mexico Corporate ID or Tax ID: 86-0784398 Del	aware LLC
3	Plant Owner(s) name(s): Western Refining Terminals, LLC and Western Refining Southwest, Inc.	Phone/Fax: (505) 632-4195
а	Plant Owner(s) Mailing Address(s): 19100 Ridgewood Parkway, San Ai	ntonio, TX 78259
4	Bill To (Company): Western Refining Terminals, LLC	Phone/Fax: (505) 632-4166
a	Mailing Address: 111 County Road 4990, Bloomfield, NM 87413	E-mail: Kelly.Robinson@andeavor.com
5	 Preparer: Consultant: Hao Zhang, Trinity Consultants Inc. 	Phone/Fax: (713) 552-1371 / (713) 552-1374
a	Mailing Address: 1800 West Loop South, Suite 1000, Houston, Texas 77027	E-mail: hzhang@trinityconsultants.com
6	Plant Operator Contact: Tommy D. Roberts	Phone/Fax: (505) 632-4195
a	Address: P.O. Box 159, 50 County Road 4990 Bloomfield, NM 87413	E-mail: Tommy.D.Roberts@andeavor.com
7	Air Permit Contact: Kelly R. Robinson	Title: Environmental Supervisor
a	E-mail: Kelly.Robinson@andeavor.com	Phone/Fax: (505) 632-4166
b	Mailing Address: 111 County Road 4990, Bloomfield, NM 87413	

Section 1-B: Current Facility Status

1.a	Has this facility already been constructed? ☑ Yes □ No	1.b If yes to question 1.a, is it currently operating in New Mexico?					
2	If yes to question 1.a, was the existing facility subject to a Notice of Intent (NOI) (20.2.73 NMAC) before submittal of this application? □ Yes ☑ No	If yes to question 1.a, was the existing facility subject to a construction permit (20.2.72 NMAC) before submittal of this application? ✓ Yes □ No					
3	Is the facility currently shut down? \Box Yes $\mathbf{\nabla}$ No	If yes, give month and year of shut down (MM/YY): N/A					
4	Was this facility constructed before 8/31/1972 and continuously operated since 1972?						
5	If Yes to question 3, has this facility been modified (see 20.2.72.7.P NMAC) or the capacity increased since $8/31/1972$?						
6	Does this facility have a Title V operating permit (20.2.70 NMAC)? ☑ Yes □ No	If yes, the permit No. is: P-024-R2M1					
7	Has this facility been issued a No Permit Required (NPR)? □ Yes ☑ No	If yes, the NPR No. is: N/A					
8	Has this facility been issued a Notice of Intent (NOI)? □ Yes ☑ No	If yes, the NOI No. is: N/A					
9	Does this facility have a construction permit (20.2.72/20.2.74 NMAC)? ☑ Yes □ No	If yes, the permit No. is: 0402-M12R4					
10	Is this facility registered under a General permit (GCP-1, GCP-2, etc.)? □ Yes ☑ No	If yes, the register No. is: N/A					

Section 1-C: Facility Input Capacity & Production Rate

1	What is the facility's maximum input capacity, specify units (reference here and list capacities in Section 20, if more room is required)							
a	Current	Hourly: \sim 792 barrels of material*	Daily: ~ 19,000 barrels of material*	Annually: ~ 6,935,000 barrels of material*				
b	b Proposed Hourly: ~ 792 barrels of material* Daily: ~ 19,000 barrels of material* Annually: ~ 6,935,000 barrels of material*							
2	What is the facility's maximum production rate, specify units (reference here and list capacities in Section 20, if more room is required)							
а	Current	Hourly: ~ 792 barrels of material*	Daily: ~ 19,000 barrels of material*	Annually: ~ 6,935,000 barrels of material*				
b	Proposed	Hourly: ~ 792 barrels of material*	Daily: ~ 19,000 barrels of material*	Annually: ~ 6,935,000 barrels of material*				

*For informational purposes only; not intended to be an enforceable limit.

Section 1-D: Facility Location Information

1	Section: 26 & 27	Range: 11W	Township: 29N	County: San Juan	Elevation (ft): 5,525		
2	UTM Zone:] 12 or ☑ 13		Datum: ☑ NAD 27 □ NA	D 83 🗆 WGS 84		
a	UTM E (in meter	rs, to nearest 10 meter	s): 234,000 m	UTM N (in meters, to nearest 10 meter	s): 4,065,500 m		
b	AND Latitude	(deg., min., sec.):	36° 41' 50"	Longitude (deg., min., sec.): -10 ⁷	″° 58' 20"		
3	Name and zip c	ode of nearest Ne	ew Mexico town: Bloomfie	eld, NM 87413			
4	Detailed Drivin Bloomfield Bou	g Instructions frouder and State	om nearest NM town (attack Road 4990, the facility is a	h a road map if necessary): From tl approximately 0.5 miles East on St	e intersection of South ate Road 4990.		
5	The facility is 0).27 (distance) mi	les South (direction) of Blo	pomfield (nearest town).			
6	Status of land a	t facility (check o	one): 🗹 Private 🗆 Indian/P	ueblo 🗆 Federal BLM 🗆 Federal I	Forest Service Other (specify)		
7	List all municipalities, Indian tribes, and counties within a ten (10) mile radius (20.2.72.203.B.2 NMAC) of the property on which the facility is proposed to be constructed or operated: Municipalities: Aztec, Bloomfield, and Farmington; Indian Tribes: Navajo Nation: and Counties: San Juan County						
8	20.2.72 NMAC applications only : Will the property on which the facility is proposed to be constructed or operated be closer than 50 km (31 miles) to other states, Bernalillo County, or a Class I area (see <u>www.nmenv.state.nm.us/aqb/modeling/class1areas.html</u>)? □ Yes □ No (20.2.72.206.A.7 NMAC) N/A – this application being submitted under 20.2.70 NMAC.						
9	Name nearest C	Class I area: Mesa	Verde National Park				
10	Shortest distance	e (in km) from fa	acility boundary to the boundary	ndary of the nearest Class I area (to	the nearest 10 meters): 66 km		
11	Distance (meter lands, including	rs) from the pering mining overburg	neter of the Area of Operat den removal areas) to neare	ions (AO is defined as the plant sit est residence, school or occupied st	e inclusive of all disturbed ructure: ~ 122 m		
	Method(s) used	to delineate the	Restricted Area: Fence and	locking gates			
12	" Restricted Ar continuous wal that would requ within the prop	ea" is an area to ls, or other contin ire special equips erty may be ident	which public entry is effect auous barriers approved by ment to traverse. If a large tified with signage only. Po	tively precluded. Effective barrier the Department, such as rugged ph property is completely enclosed by ublic roads cannot be part of a Res	s include continuous fencing, ysical terrain with steep grade fencing, a restricted area ricted Area.		
13	Does the owner Yes V No A portable station or	:/operator intend to o onary source is n that can be re-ins	to operate this source as a p ot a mobile source, such as stalled at various locations,	oortable stationary source as define an automobile, but a source that c such as a hot mix asphalt plant tha	d in 20.2.72.7.X NMAC? an be installed permanently at t is moved to different job sites.		
14	Will this facilit	y operate in conju	unction with other air regul	ated parties on the same property?	☑ No □ Yes		
	If yes, what is t	he name and perr	nit number (if known) of th	ne other facility?			

Section 1-E: Proposed Operating Schedule (The 1-E.1 & 1-E.2 operating schedules may become conditions in the permit.)

1	Facility maximum operating $\left(\frac{\text{hours}}{\text{day}}\right)$: 24	(days/week): 7	$(\frac{\text{weeks}}{\text{year}}): 52$	$(\frac{\text{hours}}{\text{year}})$: 8,760			
2	Facility's maximum daily operating schedule (if les	s than $24 \frac{\text{hours}}{\text{day}}$? Start: N/A	□AM □PM	End: N/A	AM PM		
3	Month and year of anticipated start of construction: N/A – no proposed construction						
4	Month and year of anticipated construction completion: N/A – no proposed construction						
5	Month and year of anticipated startup of new or modified facility: N/A – no new or modified facility						
6	Will this facility operate at this site for more than or	ne year? 🗹 Yes 🗆 No					

Section 1-F: Other Facility Information

Western Refining Southwest, Inc. & Western Refining Terminals, LLC

Bloomfield Products Terminal

a	If yes, NOV date or descri	NOV Tracking No: N/A					
b	Is this application in respo	nse to any issue lis	ted in 1-F, 1 or 1a above? □Yes ☑ No	If Yes, provide the 1c & 1d info below:			
c	Document Title: N/A	Date: N/A	Requirement # (or page # and paragrap)	h #): N/A			
d	Provide the required text to be inserted in this permit: N/A						
2	Is air quality dispersion modeling or modeling waiver being submitted with this application?						
3	Does this facility require an "Air Toxics" permit under 20.2.72.400 NMAC & 20.2.72.502, Tables A and/or B? 🗆 Yes 🗹 No						
4	Will this facility be a source of federal Hazardous Air Pollutants (HAP)? Z Yes D No						
a	If Yes, what type of source OF	e? □ Major (□ R ☑ Minor (☑	\geq 10 tpy of any single HAP OR $\Box \geq$ I <10 tpy of any single HAP AND \Box	25 tpy of any combination of HAPS) <25 tpy of any combination of HAPS)			
5	Is any unit exempt under 20.2.72.202.B.3 NMAC? Ves Ves						
	If yes, include the name of	f company providin	g commercial electric power to the facilit	y: <u>N/A</u> .			
a Commercial power is purchased from a commercial utility company, which specifically does not include power ge site for the sole purpose of the user.							

Sect	ion 1-G: Streamline Application	(This section applies to 20.2.72.300 NMAC Streamline applications only)
1	□ I have filled out Section 18, "Addendum for Strea	amline Applications." \blacksquare N/A (This is not a Streamline application.)

Section 1-H: Current Title V Information - Required for all applications from TV Sources (Title V-source required information for all applications submitted pursuant to 20.2.72 NMAC (Minor Construction Permits), or 20.2.74/20.2.79 NMAC (Major PSD/NNSR applications), and/or 20.2.70 NMAC (Title V))

1	Responsible Official (20.2.70.300.D.2 NMAC): Tommy D. Roberts		Phone: (505) 632-4195			
a	R.O. Title: Terminal Supervisor	R.O. e-mail: Tomm	ny.D.Roberts@andeavor.com			
b	R. O. Address: P.O. Box 159, 50 County Road 4990 Bloomfield, N	IM 87413				
2	Alternate Responsible Official (20.2.70.300.D.2 NMAC): N/A		Phone: N/A			
a	A. R.O. Title: N/A	A. R.O. e-mail: N/	A			
b	A. R. O. Address: N/A					
3	Company's Corporate or Partnership Relationship to any other Air have operating (20.2.70 NMAC) permits and with whom the applic relationship): None	Quality Permittee (I eant for this permit h	ist the names of any companies that as a corporate or partnership			
4	Name of Parent Company ("Parent Company" means the primary name of the organization that owns the company to be permitted wholly or in part.): The immediate parent of Western Refining Southwest, Inc. is Giant Industries, Inc. The immediate parent of Western Refining Terminals LLC is WNRL Energy LLC					
a	Address of Parent Company: 19100 Ridgewood Parkway, San Ant	onio, TX 78259				
5	 Names of Subsidiary Companies ("Subsidiary Companies" means organizations, branches, divisions or subsidiaries, which are owned, wholly or in part, by the company to be permitted.): The subsidiaries of Western Refining Terminals, LLC are Asphalt Terminals, LLC; Western Refining Delaware Basin Storage, LLC. The subsidiaries of Western Refining Southwest, Inc. are Tesoro Refining & Marketing Company LLC; Tesoro Alaska Company LLC; Northern Tier Energy GP LLC; Western Refining GP, LLC, Western Refining LP, LLC; Ciniza Production Company, Dial Oil Co., LLC; Empire Oil Co., Giant Stop-n-Go of New Mexico, LLC; Western Refining Conan Gathering Holdings, LLC; Western Refining Retail, LLC; Tesoro Great Plains Holding Company LLC; Western Refining Yorktown Holding Company; San Juan Refining Company, LLC; Giant Four Corners, LLC; Western Refining Yorktown, Inc.; and 					
6	Telephone numbers & names of the owners' agents and site contac Kelly Robinson - (505) 801-5616	ts familiar with plan	t operations:			

Affected Programs to include Other States, local air pollution control programs (i.e. Bernalillo) and Indian tribes: Will the property on which the facility is proposed to be constructed or operated be closer than 80 km (50 miles) from other states, local pollution control programs, and Indian tribes and pueblos (20.2.70.402.A.2 and 20.2.70.7.B)? If yes, state which ones and provide the distances in kilometers: **States**: Colorado (~33.5km); **Indian Tribes**: Navajo Nation (~25km); Ute Mountain (~29km); Southern Ute (~30km); Jicarilla Apache (~70km)

Section 1-I – Submittal Requirements

Each 20.2.73 NMAC (**NOI**), a 20.2.70 NMAC (**Title V**), a 20.2.72 NMAC (**NSR** minor source), or 20.2.74 NMAC (**PSD**) application package shall consist of the following:

Hard Copy Submittal Requirements:

- One hard copy original signed and notarized application package printed double sided 'head-to-toe' <u>2-hole punched</u> as we bind the document on top, not on the side; except Section 2 (landscape tables), which should be head-to-head. Please use numbered tab separators in the hard copy submittal(s) as this facilitates the review process. For NOI submittals only, hard copies of UA1, Tables 2A, 2D & 2F, Section 3 and the signed Certification Page are required. Please include a copy of the check on a separate page.
- 2) If the application is for a minor NSR, PSD, NNSR, or Title V application, include one working hard copy for Department use. This copy does not need to be 2-hole punched, but must be double sided. Minor NSR Technical Permit revisions (20.2.72.219.B NMAC) only need to fill out Sections 1-A, 1-B, 3, and should fill out those portions of other Section(s) relevant to the technical permit revision. TV Minor Modifications need only fill out Sections 1-A, 1-B, 1-H, 3, and those portions of other Section(s) relevant to the minor modification. NMED may require additional portions of the application to be submitted, as needed.
- 3) The entire NOI or Permit application package, including the full modeling study, should be submitted electronically on compact disk(s) (CD). For permit application submittals, two CD copies are required (in sleeves, not crystal cases, please), with additional CD copies as specified below. NOI applications require only a single CD submittal.
- 4) If air dispersion modeling is required by the application type, include the NMED Modeling Waiver OR one additional electronic copy of the air dispersion modeling including the input and output files. The dispersion modeling <u>summary report</u> <u>only</u> should be submitted as hard copy(ies) unless otherwise indicated by the Bureau. The complete dispersion modeling study, including all input/output files, should be submitted electronically as part of the electronic submittal.
- 5) If subject to PSD review under 20.2.74 NMAC (PSD) or NNSR under 20.2.79 NMC include,
 - a. one additional CD copy for US EPA,
 - b. one additional CD copy for each federal land manager affected (NPS, USFS, FWS, USDI) and,
 - c. one additional CD copy for each affected regulatory agency other than the Air Quality Bureau.

Electronic Submittal Requirements [in addition to the required hard copy(ies)]:

- 1) All required electronic documents shall be submitted in duplicate (2 separate CDs). A single PDF document of the entire application as submitted and the individual documents comprising the application.
- 2) The documents should also be submitted in Microsoft Office compatible file format (Word, Excel, etc.) allowing us to access the text and formulas in the documents (copy & paste). Any documents that cannot be submitted in a Microsoft Office compatible format shall be saved as a PDF file from within the electronic document that created the file. If you are unable to provide Microsoft office compatible electronic files or internally generated PDF files of files (items that were not created electronically: i.e. brochures, maps, graphics, etc.), submit these items in hard copy format with the number of additional hard copies corresponding to the number of CD copies required. We must be able to review the formulas and inputs that calculated the emissions.
- 3) It is preferred that this application form be submitted as 3 electronic files (2 MSWord docs: Universal Application section 1 and Universal Application section 3-19) and 1 Excel file of the tables (Universal Application section 2) on the CD(s). Please include as many of the 3-19 Sections as practical in a single MS Word electronic document. Create separate electronic file(s) if a single file becomes too large or if portions must be saved in a file format other than MS Word.
- 4) The electronic file names shall be a maximum of 25 characters long (including spaces, if any). The format of the electronic Universal Application shall be in the format: "A-3423-FacilityName". The "A" distinguishes the file as an application submittal, as opposed to other documents the Department itself puts into the database. Thus, all electronic application submittals should begin with "A-". Modifications to existing facilities should use the core permit number (i.e. '3423') the Department assigned to the facility as the next 4 digits. Use 'XXXX' for new facility applications. The format of any separate electronic submittals (additional submittals such as non-Word attachments, re-submittals, application updates) and Section document shall be in the format: "A-3423-9-description", where "9" stands for the section # (in this case Section 9-Public Notice). Please refrain, as much

Western Refining Southwest, Inc. & Western Refining Terminals, LLC

as possible, from submitting any scanned documents as this file format is extremely large, which uses up too much storage capacity in our database. Please take the time to fill out the header information throughout all submittals as this will identify any loose pages, including the Application Date (date submitted) & Revision # (0 for original, 1, 2, etc.; which will help keep track of subsequent partial update(s) to the original submittal. The footer information should not be modified by the applicant.

Table of Contents

- Section 1: General Facility Information
- Section 2: Tables
- Section 3: Application Summary
- Section 4: Process Flow Sheet
- Section 5: Plot Plan Drawn to Scale
- Section 6: All Calculations
- Section 7: Information Used to Determine Emissions
- Section 8: Map(s)
- Section 9: Proof of Public Notice
- Section 10: Written Description of the Routine Operations of the Facility
- Section 11: Source Determination
- Section 12: PSD Applicability Determination for All Sources & Special Requirements for a PSD Application
- Section 13: Discussion Demonstrating Compliance with Each Applicable State & Federal Regulation
- Section 14: Operational Plan to Mitigate Emissions
- Section 15: Alternative Operating Scenarios
- Section 16: Air Dispersion Modeling
- Section 17: Compliance Test History
- Section 18: Addendum for Streamline Applications (streamline applications only)
- Section 19: Requirements for the Title V (20.2.70 NMAC) Program (Title V applications only)
- Section 20: Other Relevant Information
- Section 21: Addendum for Landfill Applications
- Section 22: Certification Page

Table 2-A: Regulated Emission Sources

Unit and stack numbering must correspond throughout the application package. If applying for a NOI under 20.2.73 NMAC, equipment exemptions under 2.72.202 NMAC do not apply.

					Manufact- urer's Rated	Requested	Date of Manufacture ²	Controlled by Unit #	Source			RICE Ignition Type	
Unit Number ¹	Source Description	Make	Model #	Serial #	Capacity ³ (Specify Units)	Permitted Capacity ³ (Specify Units)	Date of Construction/ Reconstruction ²	Emissions vented to Stack #	Classi- fication Code (SCC)	For Each Piece of Equipment, Check One		(CI, SI, 4SLB, 4SRB, 2SLB) ⁴	Replacing Unit No.
B-502A	Boiler	Superior Boiler	6-X-1500	17357	12.6	12.6	2012	N/A	10200602	Existing (unchanged) New/Additional	To be Removed Replacement Unit	N/A	N/A
200211	Boner	Works	0 11 1000	1,007	MMBtu/hr	MMBtu/hr		B-502A	10200002	To Be Modified	To be Replaced	1.011	1011
API	API Oily Water	N/A	N/A	N/A	500 gpm	500 gpm	1974	N/A (has cover)	30600508	 Existing (unchanged) New/Additional 	To be Removed Replacement Unit	N/A	N/A
	Separator							API		To Be Modified	To be Replaced		
S-1	Benzene Strippers	Delta	53 200RS	8388-1	200 gpm	200 gpm	2007	N/A	263000000	 Existing (unchanged) New/Additional 	To be Removed Replacement Unit	N/A	N/A
S-2	Benzene Surppers	Dena	/ V600A	8388-2	(each)	(each)		S-1, S-2	203000000	To Be Modified	To be Replaced	14/14	10/11
TLR-1	Truck Loading/Unloading Back	N/A	N/A	N/A	N/A	N/A	1979	VRU (gasoline loading only)	40400250	 Existing (unchanged) New/Additional To Be Modified 	To be Removed Replacement Unit To be Replaced	N/A	N/A
	Rack							VRU, TLR-1					
EG-1	All regulated storage tanks	N/A	N/A	N/A	varies	None	Varies	N/A (some have floating roofs)	40400199	 Existing (unchanged) New/Additional To Be Modified 	To be Removed Replacement Unit To be Replaced	N/A	N/A
								Varies		To be mounicu	10 00 1000		
E 1	Fugitives	NI/A	NI/A	N/A	NI/A	N/A	1977	N/A	40400151	Existing (unchanged) New/Additional	To be Removed Replacement Unit	N/A	NI/A
Г-1	Fugitives	N/A	N/A	IN/A	IN/A	IN/A		N/A	To Be Modified	To be Replaced	IN/A	IN/A	
D 521 ⁵	Emergency Fire	Fairbanks/	NTA 855E	18105224	400 hn	400 hn	1983	N/A	20200101	Existing (unchanged)	To be Removed Replacement Unit	N/A	N/A
P-321	Water Pump	Cummins	NTA-0551	18103224	400 np	400 lip	1983	P-521	20200101	To Be Modified	To be Replaced	IN/A	IN/A
D 521 A ⁵	Emergency Fire	Fairbanks/	KT-855-F2	10813810	380 hn	380 hn	1979	N/A	20200101	Existing (unchanged) New/Additional	To be Removed Replacement Unit	N/A	N/A
F-321A	Water Pump	Cummins	K1-055-12	10015017	560 np	560 np	1979	P-521A	20200101	☑ To Be Modified	To be Replaced	11/74	10/74
D 526 ⁵	Emergency Fire	Fairbanks/	DDFP- 06FH	06VF2202	460 hn	460 hn	1998	N/A	20200101	Existing (unchanged) New/Additional	To be Removed Replacement Unit	N/A	N/A
1-520	Water Pump	Detroit	8386F	74	400 lip	400 lip	1998	P-526	20200101	☑ To Be Modified	To be Replaced	14/14	14/74
SSM	Startup, Shutdown	N/A	N/A	N/A	N/A	N/A	1977	N/A	40400150	 Existing (unchanged) New/Additional 	To be Removed Replacement Unit	N/A	N/A
	& Maintenance							N/A		To Be Modified	To be Replaced		
										Existing (unchanged) New/Additional To Be Modified	To be Removed Replacement Unit To be Replaced		

Unit numbers must correspond to unit numbers in the previous permit unless a complete cross reference table of all units in both permits is provided.

² Specify dates required to determine regulatory applicability.

³ To properly account for power conversion efficiencies, generator set rated capacity shall be reported as the rated capacity of the engine in horsepower, not the kilowatt capacity of the generator set.

⁴ "4SLB" means four stroke lean burn engine, "4SRB" means four stroke rich burn engine, "2SLB" means two stroke lean burn engine, "CI" means compression ignition, and "SI" means spark ignition

⁵ Units P-521, P-521A, and P-526 are exempt under NSR permitting but cannot be considered insignificant for Title V applications due to MACT ZZZ applicability.

Table 2-B: Insignificant Activities¹ (20.2.70 NMAC) OR Exempted Equipment (20.2.72 NMAC)

All 20.2.70 NMAC (Title V) applications must list all Insignificant Activities in this table. All 20.2.72 NMAC applications must list Exempted Equipment in this table. If equipment listed on this table is exempt under 20.2.72.202.B.5, include emissions calculations and emissions totals for 202.B.5 "similar functions" units, operations, and activities in Section 6, Calculations. Equipment and activities exempted under 20.2.72.202 NMAC may not necessarily be Insignificant under 20.2.70 NMAC (and vice versa). Unit & stack numbering must be consistent throughout the application package. Per Exemptions Policy 02-012.00 (see http://www.env.nm.gov/aqb/permit/aqb_pol.html), 20.2.72.202.B NMAC Exemptions do not apply, but 20.2.72.202.A NMAC exemptions do apply to NOI facilities under 20.2.73 NMAC. List 20.2.72.301.D.4 NMAC Auxiliary Equipment for Streamline applications in Table 2-A. The List of Insignificant Activities (for TV) can be found online at http://www.env.nm.gov/aqb/forms/InsignificantListTitleV.pdf . TV sources may elect to enter both TV Insignificant Activities and Part 72 Exemptions on this form.

Unit Number	Source Description	Manufasturan	Model No.	Max Capacity	List Specific 20.2.72.202 NMAC Exemption (e.g. 20.2.72.202.B.5)	Date of Manufacture /Reconstruction ²	For Food Biose of Fouriement Check One		
Unit Number	Source Description	Manufacturer	Serial No. Capacity Units		Insignificant Activity citation (e.g. IA List Item #1.a)	Date of Installation /Construction ²	For Each Free of Equipment, Check One		
TI 1	Treatment Impoundments	N/A	N/A	N/A	20.2.72.202.B.5	N/A	Existing (unchanged) To be Removed		
11-1	Treatment impoundments	\mathbf{N}/\mathbf{A}	N/A	N/A	1.a.	N/A	To Be Modified To be Replaced		
							Existing (unchanged) To be Removed Naw/Additional Perlacement Unit		
							To Be Modified To be Replaced		
							Existing (unchanged) To be Removed		
							To Be Modified To be Replaced		
							Existing (unchanged) To be Removed		
							To Be Modified To be Replaced		
							Existing (unchanged) To be Removed		
							To Be Modified To be Replaced		
							Existing (unchanged) To be Removed		
							To Be Modified To be Replaced		
							Existing (unchanged) To be Removed		
							To Be Modified To be Replaced		
							Existing (unchanged) To be Removed		
							New/Additional Replacement Unit To Be Modified To be Replaced		
							Existing (unchanged) To be Removed		
							New/AdditionalReplacement UnitTo Be ModifiedTo be Replaced		
							Existing (unchanged) To be Removed		
							New/AdditionalReplacement UnitTo Be ModifiedTo be Replaced		
							Existing (unchanged) To be Removed		
							New/AdditionalReplacement UnitTo Be ModifiedTo be Replaced		
							Existing (unchanged) To be Removed		
							New/AdditionalReplacement UnitTo Be ModifiedTo be Replaced		
							Existing (unchanged) To be Removed		
							New/AdditionalReplacement UnitTo Be ModifiedTo be Replaced		

¹ Insignificant activities exempted due to size or production rate are defined in 20.2.70.300.D.6, 20.2.70.7.Q NMAC, and the NMED/AQB List of Insignificant Activities, dated September 15, 2008. Emissions from these insignificant activities do not need to be reported, unless specifically requested.

² Specify date(s) required to determine regulatory applicability.

Table 2-C: Emissions Control Equipment

Unit and stack numbering must correspond throughout the application package. Only list control equipment for TAPs if the TAP's maximum uncontrolled emissions rate is over its respective threshold as listed in 20.2.72 NMAC, Subpart V, Tables A and B. In accordance with 20.2.72.203.A(3) and (8) NMAC, 20.2.70.300.D(5)(b) and (e) NMAC, and 20.2.73.200.B(7) NMAC, the permittee shall report all control devices and list each pollutant controlled by the control device regardless if the applicant takes credit for the reduction in emissions.

Control Equipment Unit No.	Control Equipment Description	Date Installed	Controlled Pollutant(s)	Controlling Emissions for Unit Number(s) ¹	Efficiency (% Control by Weight)	Method used to Estimate Efficiency
API	Covered Separator	Unknown	VOC	API	Unnknown	Unknown
VRU TLR-1	Vapor recovery unit	Unknown	VOC	TLR-1	98%	Exhaust emissions monitor

¹ List each control device on a separate line. For each control device, list all emission units controlled by the control device.

Table 2-D: Maximum Emissions (under normal operating conditions)

This Table was intentionally left blank because it would be identical to Table 2-E.

Maximum Emissions are the emissions at maximum capacity and prior to (in the absence of) pollution control, emission-reducing process equipment, or any other emission reduction. Calculate the hourly emissions using the worst case hourly emissions for each pollutant. For each pollutant, calculate the annual emissions as if the facility were operating at maximum plant capacity without pollution controls for 8760 hours per year, unless otherwise approved by the Department. List Hazardous Air Pollutants (HAP) & Toxic Air Pollutants (TAPs) in Table 2-I. Unit & stack numbering must be consistent throughout the application package. Fill all cells in this table with the emission numbers or a "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expected. Numbers shall be expressed to at least 2 decimal points (e.g. 0.41, 1.41, or 1.41E-4).

Unit No	N	Ox	С	0	V	OC	S	Ox	TS	P ^{1,2}	PM	[10 ¹	PM	(2.5 ¹	Н	$_{2}S$	Le	ad
Unit No.	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
TLR-1						012 59												
(w/o VRU)	-	-		-	-	912.38	-	-	-	-	-	-	-	-	-	-	-	-
F-1	-	-	-	-	-	23.56	-	-	-	-	-	-	-	-	-	-	-	-
B-502A	0.44	1.93	1.89	8.28	0.20	0.88	0.18	0.79	-	-	0.13	0.55	0.13	0.55	-	-	-	-
EG-1	-	-	-	-	-	172.81	-	-	-	-	-	-	-	-	-	-	-	-
S-1, S-2																		
(if not	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
operating)																		
API	-	-	-	-	-	137.97	-	-	-	-	-	-	-	-	-	-	-	-
P_521*	10.58	46.35	1.76	7 72	0.41	1 78	0.57	2.51	_	_	0.44	1.93	0.44	1.93	_	_	_	_
P-521A*	11.73	51.38	2 53	11.07	0.96	4 19	0.77	3 38	_	_	0.82	3.61	0.82	3.61	_	_	_	_
P-526*	14.20	62.20	3.06	13.40	1.16	5.08	0.93	4.09	-	-	1.00	4.37	1.00	4.37	-	-	-	-
Totals	36.95	161.86	9.24	40.47	2.72	1258.85	2.46	10.76	-	-	2.39	10.47	2.39	10.47	-	-	-	-

¹Condensable Particulate Matter: Include condensable particulate matter emissions for PM10 and PM2.5 if the source is a combustion source. Do not include condensable particulate matter for TSP unless TSP is set equal to PM10 and PM2.5.

 2 TSP not included because the the NM TSP standard was repealed on 11/30/2018.

*Note that units P-521, P-521A, and P-526 are included with this application because they are subject to MACT ZZZZ; however, they are not subject to emission limitations under MACT ZZZZ or permitting under 20.2.72 NMAC.

Table 2-E: Requested Allowable Emissions

Unit & stack numbering must be consistent throughout the application package. Fill all cells in this table with the emission numbers or a "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expected. Numbers shall be expressed to at least 2 decimal points (e.g. 0.41, 1.41, or 1.41E⁻⁴).

Unit No	N	Ox	C	0	V	DC	S	Ox	TS	P ^{1,2}	PM	[10 ¹	PM	2.5 ¹	Н	₂ S	Le	ad
Unit No.	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr								
TLR-1*	-	-		-	-	18.44	-	-	-	-	-	-	-	-	-	-	-	-
F-1	-	-	-	-	-	23.56	-	-	-	-	-	-	-	-	-	-	-	-
B-502A	0.44	1.93	1.89	8.28	0.20	0.88	0.18	0.79	-	-	0.13	0.55	0.13	0.55	-	-	-	-
EG-1	-	-	-	-	-	172.81	-	-	-	-	-	-	-	-	-	-	-	-
S-1, S-2	-	-	-	-	-	8.95	-	-	-	-	-	-	-	-	-	-	-	-
API	-	-	-	-	-	5.52	-	-	-	-	-	-	-	-	-	-	-	-
P-521**	10.58	2.65	1.76	0.44	0.41	0.10	0.57	0.14	-	-	0.44	0.11	0.44	0.11	-	-	-	-
P-521A**	11.73	2.93	2.53	0.63	0.96	0.24	0.77	0.19	-	-	0.82	0.21	0.82	0.21	-	-	-	-
P-526**	14.20	3.55	3.06	0.76	1.16	0.29	0.93	0.23	-	-	1.00	0.25	1.00	0.25	-	-	-	-
Totals	36.95	11.06	9.24	10.12	2.72	230.79	2.46	1.36	-	-	2.39	1.12	2.39	1.12	-	-	-	-

¹Condensable Particulate Matter: Include condensable particulate matter emissions for PM10 and PM2.5 if the source is a combustion source. Do not include condensable particulate matter for TSP unless TSP is set equal to PM10 and PM2.5.

² TSP not included because the the NM TSP standard was repealed on 11/30/2018.

*Annual VOC emission limit from unit TLR-1 is inconsistent with permits P-024-R2M1 & 0402-M12R4 due to an excel rounding error in the UA2 form submitted for NSR permit revision 0402-M12R2

**Note that units P-521, P-521A, and P-526 are included with this application because they are subject to MACT ZZZZ; however, they are not subject to emission limitations under MACT ZZZZ or permitting under 20.2.72 NMAC.

Table 2-F: Additional Emissions during Startup, Shutdown, and Routine Maintenance (SSM)

This table is intentionally left blank since all emissions at this facility due to routine or predictable startup, shutdown, or scehduled maintenance are no higher than those listed in Table 2-E and a malfunction emission limit is not already permitted or requested. If you are required to report GHG emissions as described in Section 6a, include any GHG emissions during Startup, Shutdown, and/or Scheduled Maintenance (SSM) in Table 2-P. Provide an explanations of SSM emissions in Section 6 and 6a.

All applications for facilities that have emissions during routine our predictable startup, shutdown or scheduled maintenance (SSM)¹, including NOI applications, must include in this table the Maximum Emissions during routine or predictable startup, shutdown and scheduled maintenance (20.2.7 NMAC, 20.2.72.203.A.3 NMAC, 20.2.73.200.D.2 NMAC). In Section 6 and 6a, provide emissions calculations for all SSM emissions reported in this table. Refer to "Guidance for Submittal of Startup, Shutdown, Maintenance Emissions in Permit Applications (https://www.env.nm.gov/apb/permit/apb. pol.html) for more detailed instructions. Numbers shall be expressed to at least 2 decimal points (e.g. 0.41, 1.41, or 1.41E-4).

Unit No.	N	Ox	C	0	V	C	S	Ox	TS	$P^{2,3}$	PM	110 ²	PM	(2.5^2)	Н	$_2$ S	Le	ad
Unit No.	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
SSM	-	-	<u> </u>	-	<u> </u>	10.00	<u> </u>	-	<u> </u>	-	2.20	0.10	2.20	0.10	9.40E-05	1.20E-05	-	<u> </u>
																		1
																		1
																		1
																		i
																		1
																		1
																		í
Totals	-	-	-	-	-	10.00	-	-	0.00	0	2.20	0.10	2.20	0.10	9.40E-05	1.20E-05	-	- 1

¹ For instance, if the short term steady-state Table 2-E emissions are 5 lb/hr and the SSM rate is 12 lb/hr, enter 7 lb/hr in this table. If the annual steady-state Table 2-E emissions are 21.9 TPY, and the number of scheduled SSM events result in annual emissions of 31.9 TPY, enter 10.0 TPY in the table below.

² Condensable Particulate Matter: Include condensable particulate matter emissions for PM10 and PM2.5 if the source is a combustion source. Do not include condensable particulate matter for TSP unless TSP is set equal to PM10 and PM2.5.

³ TSP not included because the the NM TSP standard was repealed on 11/30/2018.

Table 2-G: Stack Exit and Fugitive Emission Rates for Special Stacks

Z I have elected to leave this table blank because this facility does not have any stacks/vents that split emissions from a single source or combine emissions from more than one source listed in table 2-A. Additionally, the emission rates of all stacks match the Requested allowable emission rates stated in Table 2-E.

Use this table to list stack emissions (requested allowable) from split and combined stacks. List Toxic Air Pollutants (TAPs) and Hazardous Air Pollutants (HAPs) in Table 2-I. List all fugitives that are associated with the normal, routine, and non-emergency operation of the facility. Unit and stack numbering must correspond throughout the application package. Refer to Table 2-E for instructions on use of the "-" symbol and on significant figures.

	Serving Unit	Ν	Ox	C	0	V	C	S	Ox	Т	SP	PN	110	PM	12.5	H ₂ S or	- Lead
Stack No.	Number(s) from Table 2-A	lb/hr	ton/yr	lb/hr	ton/yr												
	Totals:																

Table 2-H: Stack Exit Conditions

Unit and stack numbering must correspond throughout the application package. Include the stack exit conditions for each unit that emits from a stack, including blowdown venting parameters and tank emissions. If the facility has multiple operating scenarios, complete a separate Table 2-H for each scenario and, for each, type scenario name here:

Stack	Serving Unit Number(s)	Orientation	Rain Caps	Height Above	Temp.	Flow	Rate	Moisture by	Velocity	Inside
Number	from Table 2-A	V=Vertical)	(Yes or No)	Ground (ft)	(F)	(acfs)	(dscfs)	Volume (%)	(ft/sec)	Diameter (ft)
VRU TLR-1	TLR-1	V	No	22	60	2		N/A	5.9	0.7
B-502A	B-502A	V	No	12	360	42		N/A	14.6	1.9
S-1, S-2	S-1, S-2	V	No	31	80	Unknown		N/A	Unknown	3.0
P-521	P-521	V	No	4.5	880	42.17		N/A	309.2	0.42
P-521A	P-521A	Unknown	Unknown	Unknown	Unknown	Unknown		N/A	Unknown	Unknown
P-526	P-526	Unknown	Unknown	Unknown	Unknown	Unknown		N/A	Unknown	Unknown

Table 2-I: Stack Exit and Fugitive Emission Rates for HAPs and TAPs

In the table below, report the Potential to Emit for each HAP from each regulated emission unit listed in Table 2-A, only if the entire facility emits the HAP at a rate greater than or equal to one (1) ton per year. For each such emission unit, HAPs shall be reported to the nearest 0.1 tpy. Each facility-wide Individual HAP total and the facility-wide Total HAPs shall be the sum of all HAP sources calculated to the nearest 0.1 ton per year. Per 20.2.72.403.A.1 NMAC, facilities not exempt [see 20.2.72.402.C NMAC] from TAP permitting shall report each TAP that has an uncontrolled emission rate in excess of its pounds per hour screening level specified in 20.2.72.502 NMAC. TAPs shall be reported using one more significant figure than the number of significant figures shown in the pound per hour threshold corresponding to the substance. Use the HAP nomenclature as it appears in Section 112 (b) of the 1990 CAAA and the TAP nomenclature as it listed in 20.2.72.502 NMAC. Include tank-flashing emissions estimates of HAPs in this table. For each HAP or TAP listed, fill all cells in this table with the emission numbers or a "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expected or the pollutant is emitted in a quantity less than the threshold amounts described above.

Stack No.	Unit No.(s)	Total	HAPs	Ben E HA TA	zene P or AP	Tolu E HA TA	iene P or AP	Ethylb E HA TA	enzene P or AP		lene P or AP	n-He E HA TA	exane P or AP	Provide Name HAP o	Pollutant Here or TAP	Provide Name HAP o	Pollutant Here or TAP	Provide Name Here HAP or	Pollutant TAP
		lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
TLR-1	TLR-1	0.075	0.37	0.017	0.073	0.015	0.066	0.0012	0.0053	0.008	0.035	0.030	0.13						
F-1	F-1	1.53	6.69	0.13	0.55	0.55	2.39	0.084	0.37	0.55	2.40	0.19	0.83						
B-502A	B-502A	0.0012	0.0052	2.65E-05	1.16E-04	4.28E-05	1.88E-04	-	-	-	-	7.94E-05	3.48E-04						
EG-1	Regulated Tanks	1.37	5.99	0.19	0.85	0.21	0.90	0.014	0.060	0.089	0.39	0.80	3.52						
S-1, S-2	S1, S2	3.71	8.52	0.81	1.86	1.70	3.91	0.14	0.32	1.00	2.30	-	-						
API	API	2.93	2.67	0.57	0.52	0.99	0.91	0.085	0.078	0.71	0.65	0.014	0.013						
P-521*	P-521*	0.011	0.0027	0.0026	6.53E-04	0.0011	2.86E-04	-	-	7.98E-04	2.00E-04	-	-						
P-521A*	P-521A*	0.010	0.0025	0.0025	6.20E-04	0.0011	2.72E-04	-	-	7.58E-04	1.90E-04	-	-						
P-526*	P-526*	0.012	0.0031	0.0030	7.51E-04	0.0013	3.29E-04	-	-	9.18E-04	2.29E-04	-	-						
Tot	als:	9.64	24.25	1.72	3.86	3.46	8.17	0.32	0.83	2.35	5.78	1.04	4.49						

Table 2-J: Fuel

Specify fuel characteristics and usage. Unit and stack numbering must correspond throughout the application package.

	Fuel Type (low sulfur Diesel,	Fuel Source: purchased commercial,		Speci	fy Units		
Unit No.	ultra low sulfur diesel, Natural Gas, Coal,)	gas, raw/field natural gas, residue (e.g. SRU tail gas) or other	Lower Heating Value	Hourly Usage	Annual Usage	% Sulfur	% Ash
B-502A	Natural Gas	Pipeline Quality Natural Gas	1000 Btu/scf	0.013 MMscf	110.04 MMscf	50gr/Mscf	N/A
P-521	Diesel	Purchased Diesel	19,300 Btu/lb	~20.9 gal	~10,450 gal	~15 ppm	N/A
P-521A	Diesel	Purchased Diesel	19,300 Btu/lb	~23.9 gal	~11,967.8 gal	~15 ppm	N/A
P-526	Diesel	Purchased Diesel	19,300 Btu/lb	~31.7 gal	~15,827.3 gal	~15 ppm	N/A

Table 2-K: Liquid Data for Tanks Listed in Table 2-L

For each tank, list the liquid(s) to be stored in each tank. If it is expected that a tank may store a variety of hydrocarbon liquids, enter "mixed hydrocarbons" in the Composition column for that tank and enter the corresponding data of the most volatile liquid to be stored in the tank. If tank is to be used for storage of different materials, list all the materials in the "All Calculations" attachment, run the newest version of TANKS on each, and use the material with the highest emission rate to determine maximum uncontrolled and requested allowable emissions rate. The permit will specify the most volatile category of liquids that may be stored in each tank. Include appropriate tank-flashing modeling input data. Use additional sheets if necessary. Unit and stack numbering must correspond throughout the application package.

				Liquid	Vapor	Average Stor	age Conditions	Max Storag	ge Conditions
Tank No.	SCC Code	Material Name	Composition	Density (lb/gal)	Molecular Weight (lb/lb*mol)	Temperature (°F)	True Vapor Pressure (psia)	Temperature (°F)	True Vapor Pressure (psia)
2*	N/A	Filtered Water	100% H2O	8.34	18	54.6	0.21	62.2	0.28
3	40400199	Premium Gasoline	See Attachment		67	54.6	5.1	62.2	5.1
4	40400199	Premium Gasoline	See Attachment		67	54.6	5.1	62.2	5.1
5*	N/A	Storm Water	100% H2O	8.34	18	54.6	0.21	62.2	0.28
8	40400199	Crude	See Attachment		60	62.7	5.2	76.12	6.5
9	40400199	Crude	See Attachment		60	60.2	4.9	71.8	6.1
11	40400199	Crude	See Attachment		60	54.6	4.5	62.2	4.5
12	40400199	Premium Gasoline	See Attachment		67	54.6	5.1	62.2	5.1
13	40400199	Premium Gasoline	See Attachment		67	54.6	5.1	62.2	5.1
14	40400199	Premium Gasoline	See Attachment		67	54.6	5.1	62.2	5.1
18	40400199	Diesel	See Attachment		130	54.6	0.0058	62.2	0.0058
19	40400199	Diesel	See Attachment		130	54.6	0.0058	62.2	0.0058
20	40400199	Premium Gasoline	See Attachment		67	54.6	5.1	62.2	5.1
23	40400199	Premium Gasoline	See Attachment		67	54.6	5.1	62.2	5.1
24	40400199	Diesel	See Attachment		130	54.6	0.0058	62.2	0.0058
25	40400199	Diesel	See Attachment		130	54.6	0.0058	62.2	0.0058
26	40400199	Premium Gasoline	See Attachment		67	54.6	5.1	62.2	5.1
27	40400199	Heavy Burner Fuel	See Attachment		180	180	0.0002	180	0.0002
28	40400199	Crude	See Attachment		60	54.6	4.5	62.2	4.5
29	40400199	Premium Gasoline	See Attachment		67	54.6	5.1	62.2	5.1
30	40400199	Premium Gasoline	See Attachment		67	54.6	5.1	62.2	5.1
31	40400199	Crude	See Attachment		60	54.6	4.5	62.2	4.5
32	40400199	Premium Gasoline	See Attachment		67	54.6	5.1	62.2	5.1
33*	N/A	Water	100% H2O	8.34	18	54.6	0.21	62.2	0.28
35	40400199	Premium Gasoline	See Attachment		67	54.6	5.1	62.2	5.1
36	40400199	Premium Gasoline	See Attachment		67	54.6	5.1	62.2	5.1
37*	N/A	Water	100% H2O	8.34	18	54.6	0.21	62.2	0.28
38*	N/A	Water	100% H2O	8.34	18	54.6	0.21	62.2	0.28
41	40400199	Crude	See Attachment		60	54.6	4.5	62.2	4.5
42A	40400199	Crude	See Attachment		60	54.6	4.5	62.2	5.1
42B	40400199	Crude	See Attachment		60	54.6	4.5	62.2	5.1
44	40400199	Premium Gasoline	See Attachment		67	54.6	5.1	62.2	5.1
45	40400199	Ethanol	See Attachment		46.1	54.6	0.54	62.2	0.54

* Exempt from permitting, but included in EG1

Table 2-L: Tank Data

Include appropriate tank-flashing modeling input data. Use an addendum to this table for unlisted data categories. Unit and stack numbering must correspond throughout the application package. Use additional sheets if necessary. See reference Table 2-L2. Note: 1.00 bbl = 10.159 M3 = 42.0 gal

Tank No.	Date Installed	Materials Stored	Seal Type (refer to Table 2-	Roof Type (refer to Table 2-	Capao	city**	Diameter (M)	Vapor Space	Co (from Tal	lor ble VI-C)	Paint Condition (from Table	Annual Throughput	Turn- overs
			L2 below)	L2 below)	(bbl)	(M ³)		(M)	Roof	Shell	VI-C)	(gal/yr)	(per year)
2*	1/1/1978	Filtered Water	N/A	FX	67,145	10,675	30.0	7	WH	WH	Good	131,400,000	47
3	9/1/1966	Premium Gasoline	Liquid-mounted Weather Shield	EF	9,876	1,570	12.5	N/A	WH	WH	Good	40,000,000	96
4	9/1/1966	Premium Gasoline	Liquid-mounted Weather Shield	EF	9,876	1,570	12.5	N/A	WH	WH	Good	40,000,000	96
5*	9/1/1966	Storm Water	N/A	FX	9,475	1,506	12.5	N/A	WH	WH	Good	Unknown	Unknown
8	1/1/1960	Crude	N/A	FX	504	80	3.7	42.7	AD	AD	Good	5,000,000	236
9	1/1/1960	Crude	N/A	FX	504	80	3.7	42.7	AD	AD	Good	5,000,000	236
11	12/1/1982	Crude	Liquid-mounted Rim-mounted	EF	55,954	8,896	30.5	N/A	WH	WH	Good	60,000,000	26
12	12/1/1982	Premium Gasoline	Liquid-mounted Rim-mounted	EF	55,954	8,896	30.5	N/A	WH	WH	Good	70,000,000	30
13	1/1/1959	Premium Gasoline	Liquid-mounted Rim-mounted	EF	30,303	4,818	20.4	N/A	WH	WH	Good	40,000,000	31
14	1/1/1961	Premium Gasoline	Mechanical Shoe Rim-mounted	EF	30,141	4,792	20.4	N/A	WH	WH	Good	40,000,000	32
18	1/1/1974	Diesel	Vapor-mounted None	IF	55,954	8,896	30.5	N/A	WH	WH	Good	50,000,000	21
19	1/1/1975	Diesel	N/A	FX	36,712	5,837	24.7	65.6	WH	WH	Good	65,000,000	42
20	11/1/2007	Premium Gasoline	Liquid-mounted None	IF	22,158	3,523	18.3	N/A	WH	WH	Good	3,000,000	3
23	1/1/1962	Premium Gasoline	Mechanical Shoe Rim-mounted	EF	40,427	6,427	25.9	N/A	WH	WH	Good	65,000,000	38
24	4/4/2006	Diesel	N/A	FX	10,107	1,607	13.1	16.4	WH	WH	Good	50,000,000	118
25	4/4/2006	Diesel	N/A	FX	10,107	1,607	13.1	16.4	WH	WH	Good	50,000,000	118
26	12/1/1967	Premium Gasoline	Vapor-mounted Rim-mounted	IF	4,000	636	10.4	N/A	WH	WH	Good	10,000,000	60
27	1/1/1967	Heavy Burner Fuel	N/A	FX	10,000	1,590	12.8	62.3	WH	WH	Good	8,000,000	19
28	4/1/1969	Crude	Mechanical Shoe Rim-mounted	EF	96,689	15,372	36.6	N/A	WH	WH	Good	100,000,000	25
29	1/1/1974	Premium Gasoline	Vapor-mounted None	IF	20,100	3,196	19.5	N/A	WH	WH	Good	10,000,000	12
30	1/1/1974	Premium Gasoline	Vapor-mounted Rim-mounted	IF	20,144	3,203	18.3	N/A	WH	WH	Good	120,000,000	142
31	8/1/1977	Crude	Mechanical Shoe Shoe-mounted	EF	110,000	17,489	42.7	N/A	WH	WH	Good	120,000,000	26
32	4/7/1988	Premium Gasoline	Mechanical Shoe Rim-mounted	EF	20,144	3,203	18.3	N/A	WH	WH	Good	120,000,000	142
33*	N/A	Water	N/A	FX	403	64	4.0	3	WH	WH	Good	10,512,000	621
35	1/1/1983	Premium Gasoline	Mechanical Shoe Rim-mounted	IF	55,954	8,896	30.5	N/A	WH	WH	Good	100,000,000	43
36	1/1/1983	Premium Gasoline	Mechanical Shoe None	IF	55,954	8,896	30.5	N/A	WH	WH	Good	100,000,000	43
37*	N/A	Water	N/A	FX	121	19	4.0	1	OT(Beige)	OT(Beige)	Good	2,102,400	414
38*	N/A	Water	N/A	FX	302	48	4.0	2	OT(Beige)	OT(Beige)	Good	10,512,000	829
41	3/1/2002	Crude	Liquid-mounted Rim-mounted	IF	2,800	445	7.6	N/A	WH	WH	Good	4,000,000	34
42A	2007	Crude	N/A	FX	403	65	3.7	N/A	WH	WH	Good	2,000,000	118
42B	6/29/1905	Crude	N/A	FX	403	64	3.7	16.4	WH	WH	Good	2,000,000	118
44	1/2/1989	Premium Gasoline	Vapor-mounted Rim-mounted	IF	2,098	334	7.6	N/A	WH	WH	Good	1,000,000	11
45	8/2/1998	Ethanol	Mechanical Shoe Rim-mounted	IF	5,484	872	10.7	N/A	WH	WH	Good	1,500,000	7

* Exempt from permitting, but included in EG1

** For informational purposes only - not intended to be an enforceable limit

Table 2-L2: Liquid Storage Tank Data Codes Reference Table

Roof Type	Seal Type, We	elded Tank Seal Type	Seal Type, Rive	eted Tank Seal Type	Roof, Shell Color	Paint Condition				
FX: Fixed Roof	Mechanical Shoe Seal	Liquid-mounted resilient seal	Vapor-mounted resilient seal	Seal Type	WH: White	Good				
IF: Internal Floating Roof	A: Primary only	A: Primary only	A: Primary only	A: Mechanical shoe, primary only	AS: Aluminum (specular)	Poor				
EF: External Floating Roof	B: Shoe-mounted secondary	B: Weather shield	B: Weather shield	B: Shoe-mounted secondary	AD: Aluminum (diffuse)					
P: Pressure	C: Rim-mounted secondary	C: Rim-mounted secondary	C: Rim-mounted secondary	C: Rim-mounted secondary	LG: Light Gray					
					MG: Medium Gray					
Note: 1.00 bbl = 0.159 M	te: $1.00 \text{ bbl} = 0.159 \text{ M}^3 = 42.0 \text{ gal}$									
					OT: Other (specify)					

Table 2-M:	Materials Processed and Produced	(Use additional sheets as necessary.)

	Materi	al Processed		Μ	Iaterial Produced		
Description	Chemical Composition	Phase (Gas, Liquid, or Solid)	Quantity (specify units)	Description	Chemical Composition	Phase	Quantity (specify units)
Four Corners Crude	Mixed hydrocarbons	Liquid	19,000 b/d	N/A - This t	facility does not produce any r	naterial	
Unleaded Gasoline	Mixed hydrocarbons	Liquid	9,500 b/d				
Diesel	Mixed hydrocarbons	Liquid	9,500 b/d				
Ethanol	Ethanol	Liquid	4,000 b/d				
Naphtha	Mixed hydrocarbons	Liquid	4,000 b/d				

Table 2-N: CEM Equipment

Enter Continuous Emissions Measurement (CEM) Data in this table. If CEM data will be used as part of a federally enforceable permit condition, or used to satisfy the requirements of a state or federal regulation, include a copy of the CEM's manufacturer specification sheet in the Information Used to Determine Emissions attachment. Unit and stack numbering must correspond throughout the application package. Use additional sheets if necessary.

Stack No.	Pollutant(s)	Manufacturer	Model No.	Serial No.	Sample Frequency	Averaging Time	Range	Sensitivity	Accuracy
VRU	VOC	John Zink	Series 2000 AAT/Z-609-9-8-8-115-X	VR-92087	Instantaneous	6 hr rolling	Unlimited	Unlimited	97.5% Confidence

Table 2-O: Parametric Emissions Measurement Equipment

Unit and stack numbering must correspond throughout the application package. Use additional sheets if necessary.

Unit No.	Parameter/Pollutant Measured	Location of Measurement	Unit of Measure	Acceptable Range	Frequency of Maintenance	Nature of Maintenance	Method of Recording	Averaging Time
		Т	here are no PEMS at	the facility.			-	-

Table 2-P: Greenhouse Gas Emissions

Applications submitted under 20.2.70, 20.2.72, & 20.2.74 NMAC are required to complete this Table. Power plants, Title V major sources, and PSD major sources must report and calculate all GHG emissions for each unit. Applicants must report potential emission rates in short tons per year (see Section 6.a for assistance). Include GHG emissions during Startup, Shutdown, and Scheduled Maintenance in this table. For minor source facilities that are not power plants, are not Title V, or are not PSD, there are three options for reporting GHGs 1) report GHGs for each individual piece of equipment; 2) report all GHGs from a group of unit types, for example report all combustion source GHGs as a single unit and all venting GHG as a second separate unit; OR 3) check the following box **Z** By checking this box, the applicant acknowledges the total CO2e emissions are less than 75,000 tons per year.

		CO ₂ ton/yr	N2O ton/yr	CH ₄ ton/yr	SF ₆ ton/yr	PFC/HFC ton/yr ²					Total GHG Mass Basis ton/yr ⁴	Total CO₂e ton/yr ⁵
Unit No.	GWPs ¹	1	298	25	22,800	footnote 3						
D 502 A	mass GHG	6455.73	0.012	0.12							6455.87	
B-502A	CO ₂ e	6455.73	3.63	3.04								6462.40
D 521	mass GHG	57.52	0.0056	0.0028							57.53	
r-521	CO ₂ e	57.52	1.67	0.070								59.27
P 521A	mass GHG	65.88	0.0064	0.0032							65.89	
1-321A	CO ₂ e	65.88	1.92	0.080								67.87
P-526	mass GHG	87.12	0.0085	0.0043							87.13	<u> </u>
1-520	CO ₂ e	87.12	2.53	0.11								89.76
	mass GHG											
	CO ₂ e											
	mass GHG		ļ!	 								
	CO ₂ e											
	mass GHG											
	CO ₂ e					1						
	mass GHG		ļ!	 	<u> </u>							ļ
	CO ₂ e											
	mass GHG						 					
	CO ₂ e											
	mass GHG		ļ/	 	┢────							
	CO ₂ e											
	mass GHG											
	mass GHG				<u> </u>							
	mass CHC											
	CO a											
	mass CHC				<u> </u>							
	CO ₂ e				┢────							
	mass GHC											
	CO2e											
	mass GHG	6666.26	0.033	0.13							6666.42	
Total	CO ₂ e	6666.26	9.75	3.30		1						6679.30

Global Warming Potential): Applicants must use the most current GWPs codified in Table A-1 of 40 CFR part 98. GWPs are subject to change, therefore, applicants need to check 40 CFR 98 to confirm GWP values.

² For HFCs or PFCs describe the specific HFC or PFC compound and use a separate column for each individual compound.

³ For each new compound, enter the appropriate GWP for each HFC or PFC compound from Table A-1 in 40 CFR 98.

⁴ Green house gas emissions on a **mass basis** is the ton per year green house gas emission before adjustment with its GWP.

⁵ CO₂e means Carbon Dioxide Equivalent and is calculated by multiplying the TPY mass emissions of the green house gas by its GWP.

Application Summary

The <u>Application Summary</u> shall include a brief description of the facility and its process, the type of permit application, the applicable regulation (i.e. 20.2.72.200.A.X, or 20.2.73 NMAC) under which the application is being submitted, and any air quality permit numbers associated with this site. If this facility is to be collocated with another facility, provide details of the other facility including permit number(s). In case of a revision or modification to a facility, provide the lowest level regulatory citation (i.e. 20.2.72.219.B.1.d NMAC) under which the revision or modification is being requested. Also describe the proposed changes from the original permit, how the proposed modification will affect the facility's operations and emissions, de-bottlenecking impacts, and changes to the facility's major/minor status (both PSD & Title V).

Routine or predictable emissions during Startup, Shutdown, and Maintenance (SSM): Provide an overview of how SSM emissions are accounted for in this application. Refer to "Guidance for Submittal of Startup, Shutdown, Maintenance Emissions in Permit Applications (http://www.env.nm.gov/aqb/permit/app_form.html) for more detailed instructions on SSM emissions.

The Bloomfield Products Terminal (formerly Bloomfield Refinery) is owned by Western Refining Terminals, LLC and Western Refining Southwest, Inc. The Terminal is operated by Western Refining Terminals, LLC (Western). This facility is a bulk storage terminal that receives materials via pipelines or trucks (i.e., directly from trucks and not via the loading rack). The facility stores the materials in storage tanks and loads the materials out via the loading rack, pipelines, or trucks elsewhere at the facility.

This application is being submitted for a renewal to the current Title V permit in accordance with 20.2.70.300.B.2 NMAC, which requires a timely application be submitted at least 12 months prior to the expiration date of the current Title V permit. The facility is currently authorized to operate under Title V permit P-024-R2M1, which expires on March 4, 2020.

The facility is also authorized by NSR permit 0402-M12R4 and includes the following regulated air emissions sources:

- One boiler (B-502A)
- Truck loading/unloading at truck rack TLR-1 (with VRU for gasoline loading operations) and truck unloading elsewhere in the facility
- Storage tanks (EG-1)
- Wastewater treatment equipment (API, S-1, and S-2)
- Facility-wide fugitives (F-1)
- Startup, shutdown, maintenance (SSM)
- Three (3) emergency fire water pumps (P-521, P-521A, and P-526)

Bloomfield Products Terminal is a PSD major source (list of 28), Title V major source, and an area source of HAPs.

With this renewal, MACT 40 CFR 63 Subpart EEEE will no longer apply to this facility. Previously, this subpart applied to the following: truck unloading, transfer rack, and equipment leak components in organic liquids service that are associated with transfer rack. The facility became subject to this regulation when it was a major source of HAPs and the affected equipment remains subject in the current Title V permit despite the facility becoming an area source of HAPs pursuant to the MACT "Once In, Always In" Provision. With the January 25, 2018 withdrawal of the "Once In, Always In" Provision, the facility is no longer subject to this subpart.

In addition, emissions for the emergency fire water pumps have been added with this renewal, as described in Section 6 of this application. Also, the HAP emission calculation methodology from the boiler unit has been updated to utilize the n-hexane emission factor from Ventura County AB 2588 Combustion Emission Factors, May 2001.

Finally, with this renewal Western has up-dated the facility owner and operator status. The associated Responsible Official has been updated accordingly.

No other changes to the facility are proposed with this renewal.

Process Flow Sheet

A **process flow sheet** and/or block diagram indicating the individual equipment, all emission points and types of control applied to those points. The unit numbering system should be consistent throughout this application.

A process flow sheet is included in this section.

Plot Plan Drawn To Scale

A <u>plot plan drawn to scale</u> showing emissions points, roads, structures, tanks, and fences of property owned, leased, or under direct control of the applicant. This plot plan must clearly designate the restricted area as defined in UA1, Section 1-D.12. The unit numbering system should be consistent throughout this application.

A plot plan is included in this section.

All Calculations

Show all calculations used to determine both the hourly and annual controlled and uncontrolled emission rates. All calculations shall be performed keeping a minimum of three significant figures. Document the source of each emission factor used (if an emission rate is carried forward and not revised, then a statement to that effect is required). If identical units are being permitted and will be subject to the same operating conditions, submit calculations for only one unit and a note specifying what other units to which the calculations apply. All formulas and calculations used to calculate emissions must be submitted. The "Calculations" tab in the UA2 has been provided to allow calculations to be linked to the emissions tables. Add additional "Calc" tabs as needed. If the UA2 or other spread sheets are used, all calculation spread sheet(s) shall be submitted electronically in Microsoft Excel compatible format so that formulas and input values can be checked. Format all spread sheets are not used, provide the original formulas with defined variables. Additionally, provide subsequent formulas showing the input values for each variable in the formula. All calculations, including those calculations are imbedded in the Calc tab of the UA2 portion of the application, the printed Calc tab(s), should be submitted under this section.

Tank Flashing Calculations: The information provided to the AQB shall include a discussion of the method used to estimate tank-flashing emissions, relative thresholds (i.e., NOI, permit, or major source (NSPS, PSD or Title V)), accuracy of the model, the input and output from simulation models and software, all calculations, documentation of any assumptions used, descriptions of sampling methods and conditions, copies of any lab sample analysis. If Hysis is used, all relevant input parameters shall be reported, including separator pressure, gas throughput, and all other relevant parameters necessary for flashing calculation.

SSM Calculations: It is the applicant's responsibility to provide an estimate of SSM emissions or to provide justification for not doing so. In this Section, provide emissions calculations for Startup, Shutdown, and Routine Maintenance (SSM) emissions listed in the Section 2 SSM and/or Section 22 GHG Tables and the rational for why the others are reported as zero (or left blank in the SSM/GHG Tables). Refer to "Guidance for Submittal of Startup, Shutdown, Maintenance Emissions in Permit Applications (http://www.env.nm.gov/aqb/permit/app_form.html) for more detailed instructions on calculating SSM emissions. If SSM emissions are greater than those reported in the Section 2, Requested Allowables Table, modeling may be required to ensure compliance with the standards whether the application is NSR or Title V. Refer to the Modeling Section of this application for more guidance on modeling requirements.

Glycol Dehydrator Calculations: The information provided to the AQB shall include the manufacturer's maximum design recirculation rate for the glycol pump. If GRI-Glycalc is used, the full input summary report shall be included as well as a copy of the gas analysis that was used.

Road Calculations: Calculate fugitive particulate emissions and enter haul road fugitives in Tables 2-A, 2-D and 2-E for:

- 1. If you transport raw material, process material and/or product into or out of or within the facility and have PER emissions greater than 0.5 tpy.
- 2. If you transport raw material, process material and/or product into or out of the facility more frequently than one round trip per day.

Significant Figures:

A. All emissions standards are deemed to have at least two significant figures, but not more than three significant figures.

B. At least 5 significant figures shall be retained in all intermediate calculations.

C. In calculating emissions to determine compliance with an emission standard, the following rounding off procedures shall be used:

- (1) If the first digit to be discarded is less than the number 5, the last digit retained shall not be changed;
- (2) If the first digit discarded is greater than the number 5, or if it is the number 5 followed by at least one digit other than the number zero, the last figure retained shall be increased by one unit; **and**
- (3) If the first digit discarded is exactly the number 5, followed only by zeros, the last digit retained shall be rounded upward if it is an odd number, but no adjustment shall be made if it is an even number.
- (4) The final result of the calculation shall be expressed in the units of the standard.

Control Devices: In accordance with 20.2.72.203.A(3) and (8) NMAC, 20.2.70.300.D(5)(b) and (e) NMAC, and 20.2.73.200.B(7) NMAC, the permittee shall report all control devices and list each pollutant controlled by the control device

Western Refining Southwest, Inc. & Western Refining Terminals, LLC

regardless if the applicant takes credit for the reduction in emissions. The applicant can indicate in this section of the application if they chose to not take credit for the reduction in emission rates. For notices of intent submitted under 20.2.73 NMAC, only uncontrolled emission rates can be considered to determine applicability unless the state or federal Acts require the control. This information is necessary to determine if federally enforceable conditions are necessary for the control device, and/or if the control device produces its own regulated pollutants or increases emission rates of other pollutants.

Boiler (B-502A)

The boiler B-502A combusts natural gas. Most criteria pollutant emissions are calculated based on the heat input rating and manufacturer's emissions factors for natural gas combustion. SO₂ emissions are calculated using the pipeline natural gas specification of 50 gr Total Sulfur/Mscf. HAP emissions are calculated using AP-42 Tables 1.4-2, 1.4-3 and 1.4-4 and Ventura County AB 2588 Combustion Emission Factors (May 2001).

Truck Loading Rack (TLR-1) with Vapor Recovery Unit (VRU)

At the terminal, gasoline and diesel fuel is transferred by loading rack from storage tanks to trucks. In addition, gasoline, diesel, crude, ethanol, and naphtha is transferred via loading rack or via soft pipe elsewhere in the facility from trucks to storage tanks. Emissions from gasoline loading are controlled by a Vapor Recovery Unit (VRU), which is limited to 0.083 lb/1000-gal of gasoline loaded.

VOC emissions from loading are calculated using U.S. EPA AP-42 Section 5.2. HAP/TAP emissions are calculated based on the approximate HAP/TAP speciation profile for each product loaded. The emission factors, emission calculations, and a detailed sample calculation, are included in this Section.

Unloading VOC and HAP/TAP emissions from hose disconnects are also calculated at the anticipated unloading rates.

Fugitives (F-1)

Fugitive VOC emissions for each remaining functional area are calculated based on fitting counts provided by the facility. Fugitive HAP/TAP emissions are calculated based on fugitive VOC emissions and the approximate HAP/TAP speciation for each functional area. The emission factors, emission calculations, a detailed description of the fugitive VOC emission calculation procedure, and a detailed sample calculation, are included in this section.

Tank Emissions (EG-1)

Tank working and breathing losses are calculated using the Tanks 4.0.9d program. The calculations were completed using the highest vapor pressure liquid that would be stored in the tank. The detailed reports containing the tank parameters, stored liquid and meteorological data are included in Section 7 (Due to the large quantity of these TANKs reports, Western has only included them in the electronic .pdf version of this application.)

Tank flashing emissions were not calculated because flashing emissions are not expected from these tanks. The materials are transferred and stored at atmospheric conditions. Therefore, there is no mechanism for generating flash emissions.

API Separator (API)

The VOC emissions for the API separator are calculated using Section 5.1 of AP-42. Detailed calculations are shown in this section. The HAP emissions are calculated based on API VOC emissions and the HAP speciation of the wastewater. The calculations for these emissions are provided in this section.

Emergency Fire Water Pumps (P-521, P-521A, and P-526)

The emergency fire water pump, P-521 operates using a 400-hp diesel engine. Controlled emissions were calculated based on an operation time of 500 hours per year. Emissions for CO, NOx, VOC, SO2 and PM emissions were calculated using manufacture emission factors. HAP emissions were calculating using AP-42 emission factors for uncontrolled diesel engines.

The emergency fire pumps, P-521A and P-526, operate using a 380-bhp and 460-bhp diesel engine, respectively. Controlled emissions were calculated based on an operation time of 500 hours per year. Engine emission were calculated using AP-42 emission factors for uncontrolled diesel engines.

Benzene Strippers (S-1, S-2)

The VOC emissions for the benzene strippers are calculated from the VOC concentration of the wastewater. The HAP emissions are calculated from the HAP concentration of the wastewater. The air emissions from the benzene strippers are based on the efficiency of stripping the VOCs and HAPs from the wastewater. Detailed calculations are provided in this section.

SSM

Estimates were made for the activities listed below. For VOCs, Western requested the 10 tpy allowed for SSM/Malfunction per paragraph 2.e) of "Implementation Guidance for Permitting SSM Emissions and Excess Emissions" document issued 10 January 2011. For other pollutants, Western provides SSM emissions estimates in this section.

SSM activities for facility operating as a bulk terminal

- *Abrasive Blasting Emissions.** Emissions from abrasive blasting performed on storage tanks.
- Temporary Equipment Emissions. Emissions from temporary equipment used at the terminal for maintenance.
- *Tank Emptying and Degassing Emissions*. Emissions from degassing storage tanks in preparation for cleaning, internal inspection, or maintenance.
- Tank Cleaning Emissions. Emissions generated during the cleaning of storage tanks.
- Tank Refilling Emissions. Emissions generated during the refilling of storage tanks following cleaning.
- Tank Surface Coating Emissions.* Emissions generated during the application of surface coatings to storage tanks.
- *Routine Surface Coating Emissions*. Emissions generated during routine surface coating activities throughout the terminal.
- *Solvent Usage Emissions*. Emissions from solvents used to clean surface coating equipment and to prepare surfaces for the application of coatings.
- **Boiler Startup Emissions.** Emissions generated during boiler startup conditions, which are not greater than permit allowables for normal operation.

*Please note that these activities are primarily conducted on the inside of the storage tanks.

Section 6.a Green House Gas Emissions

(Submitting under 20.2.70, 20.2.72 20.2.74 NMAC)

Title V (20.2.70 NMAC), Minor NSR (20.2.72 NMAC), and PSD (20.2.74 NMAC) applicants must estimate and report greenhouse gas (GHG) emissions to verify the emission rates reported in the public notice, determine applicability to 40 CFR 60 Subparts, and to evaluate Prevention of Significant Deterioration (PSD) applicability. GHG emissions that are subject to air permit regulations consist of the sum of an aggregate group of these six greenhouse gases: carbon dioxide (CO₂), nitrous oxide (N₂O), methane (CH₄), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride (SF₆).

Calculating GHG Emissions:

1. Calculate the ton per year (tpy) GHG mass emissions and GHG CO₂e emissions from your facility.

2. GHG mass emissions are the sum of the total annual tons of greenhouse gases without adjusting with the global warming potentials (GWPs). GHG CO₂e emissions are the sum of the mass emissions of each individual GHG multiplied by its GWP found in Table A-1 in 40 CFR 98 <u>Mandatory Greenhouse Gas Reporting</u>.

3. Emissions from routine or predictable start up, shut down, and maintenance must be included.

4. Report GHG mass and GHG CO_2e emissions in Table 2-P of this application. Emissions are reported in <u>short</u> tons per year and represent each emission unit's Potential to Emit (PTE).

5. All Title V major sources, PSD major sources, and all power plants, whether major or not, must calculate and report GHG mass and CO2e emissions for each unit in Table 2-P.

6. For minor source facilities that are not power plants, are not Title V, and are not PSD there are three options for reporting GHGs in Table 2-P: 1) report GHGs for each individual piece of equipment; 2) report all GHGs from a group of unit types, for example report all combustion source GHGs as a single unit and all venting GHGs as a second separate unit; 3) or check the following \square By checking this box, the applicant acknowledges the total CO2e emissions are less than 75,000 tons per year.

Sources for Calculating GHG Emissions:

- Manufacturer's Data
- AP-42 Compilation of Air Pollutant Emission Factors at http://www.epa.gov/ttn/chief/ap42/index.html
- EPA's Internet emission factor database WebFIRE at http://cfpub.epa.gov/webfire/

• 40 CFR 98 <u>Mandatory Green House Gas Reporting</u> except that tons should be reported in short tons rather than in metric tons for the purpose of PSD applicability.

• API Compendium of Greenhouse Gas Emissions Methodologies for the Oil and Natural Gas Industry. August 2009 or most recent version.

• Sources listed on EPA's NSR Resources for Estimating GHG Emissions at http://www.epa.gov/nsr/clean-air-act-permitting-greenhouse-gases:

Global Warming Potentials (GWP):

Applicants must use the Global Warming Potentials codified in Table A-1 of the most recent version of 40 CFR 98 Mandatory Greenhouse Gas Reporting. The GWP for a particular GHG is the ratio of heat trapped by one unit mass of the GHG to that of one unit mass of CO_2 over a specified time period.

"Greenhouse gas" for the purpose of air permit regulations is defined as the aggregate group of the following six gases: carbon dioxide, nitrous oxide, methane, hydrofluorocarbons, perfluorocarbons, and sulfur hexafluoride. (20.2.70.7 NMAC, 20.2.74.7 NMAC). You may also find GHGs defined in 40 CFR 86.1818-12(a).

Metric to Short Ton Conversion:

Short tons for GHGs and other regulated pollutants are the standard unit of measure for PSD and title V permitting programs. 40 CFR 98 <u>Mandatory Greenhouse Reporting</u> requires metric tons.

1 metric ton = 1.10231 short tons (per Table A-2 to Subpart A of Part 98 – Units of Measure Conversions)

Green house gas emissions are included in this section.

Boiler Data						
Source ID	Source Name	Maximum Operating Rate (MMBtu/hr)	Average Operating Rate (MMBtu/hr)	Fuel Heating Value (MMBtu/MMscf)	Hourly Fuel Usauge (MMscf/hr)	Annual Fuel Usage (MMscf/yr)
B-502A	Boiler	12.6	12.6	1000	0.013	110.4

Boiler Emission Factors [1,2]

Source ID	Source Name	PM (lb/MMBtu)	NOx (lb/MMBtu)	CO (lb/MMBtu)	VOC (lb/MMBtu)	SO ₂ (lb/MMBtu)
B-502A	Boiler	1.00E-02	0.035	0.15	0.016	0.014

1 B-502A: NOx, CO, VOC, PM lb/MMBtu emission factors based on manufacturer's data $^2~{\rm SO}_2$ emission factor based on 50 gr Total Sulfur/Mscf pipeline specification for natural gas

Sample Calculation - SO 2 Emission Factor

Hourly Emissions:	50 gr S	lb S	1000 Mscf	MMscf	64.06 lb SO ₂	=	1.43E-02 lb
_	Mscf	7000 gr	MMscf	1000 MMBtu	32.065 lb S		MMBtu

Hourly Emissions for Existing Boiler

Source ID	Source Name	PM (lb/hr)	NOx (lb/hr)	CO (lb/hr)	VOC (lb/hr)	SO ₂ (lb/hr)
B-502A	Boiler	0.13	0.44	1.89	0.20	0.18

Sample Calculation - B-502A, NOx

Hourly Emissions:	3.50E-02 lb	12.60 MMBtu	=	4.41E-01 lb
	MMBtu	hr		hr

Annual Emissions for Existing Boiler

Source ID	Source Name	PM (tpy)	NOx (tpy)	CO (tpy)	VOC (tpy)	SO ₂ (tpy)
B-502A	Boiler	0.55	1.93	8.28	0.88	0.79

Sample Calculation - B-502A, NOx

Annual Emissions:	0.04	12.6	8,760 hrs	ton	=	1.93 ton
	MMBtu	hr	yr	2,000 lbs		yr

Boiler Data

Source ID	Source Name	Maximum Operating Rate	Average Operating Rate	Fuel Heating Value	Hourly Fuel Usauge	Annual Fuel Usage
		(MIMBU/IIF)	(ININIBLU/IIF)	(MINIBLU/MINISCI)	(WIWISCI/IIF)	(WIWISCI/yr)
B-502A	Boiler	12.6	12.6	1000	0.013	110.4

HAP Emission Factors

THE LINESDICHT LICE																			
		HAPs Defined in Section 112 (b) of Clean Air Act											TAPs Listed in 20.2.72.502 NMAC						
Source ID	Source Name	Benzene	Dichlorobenzene	Formaldehyde	n-Hexane	Naphthalene	Toluene	Arsenic	Cadmium	Chromium	Lead	Manganese	Mercury	Nickel	Barium	Copper	Molybdenum	Vanadium	Zinc
		(lb/MMscf)	(lb/MMscf)	(lb/MMscf)	(lb/MMscf)	(lb/MMscf)	(lb/MMscf)	(lb/MMscf)	(lb/MMscf)	(lb/MMscf)	(lb/MMscf)	(lb/MMscf)	(lb/MMscf)	(lb/MMscf)	(lb/MMscf)	(lb/MMscf)	(lb/MMscf)	(lb/MMscf)	(lb/MMscf)
B-502A	Boiler	2.10E-03	1.20E-03	7.50E-02	6.30E-03	6.10E-04	3.40E-03	2.00E-04	1.10E-03	1.40E-03	5.00E-04	3.80E-04	2.60E-04	2.10E-03	4.40E-03	8.50E-04	1.10E-03	2.30E-03	2.90E-02

¹ Except for n-hexane, emission factors for other organic HAPs and metal HAPs are obtained from Tables 1.4-3 and 1.4-4 of U.S. EPA AP-42, Section 1.4 (External Combustion Sources), July 1998.

Emission factors for n-hexane are obtained from Ventura County AB 2588 Combustion Emission Factors, May 2001. The emission factor for the external combustion equipment with lowest heat rating is used as conservative measure.

Emission factors for lead are obtained from Table 1.4-2 of U.S. EPA AP-42, Section 1.4 (External Combustion Sources), July 1998.

 2 Only compounds with emission factors larger than 10^4 were included in the analysis. Non-volatile organic compounds and simple asphyxiants were also excluded.

Hourly HAP Emissions

HAPs Defined in Section 112 (b) of Clean Air Act												TAPs Listed in 20.2.72.502 NMAC					Total HAP			
Source ID	Source Name	Benzene	Dichlorobenzene	Formaldehyde	n-Hexane	Naphthalene	Toluene	Arsenic	Cadmium	Chromium	Lead	Manganese	Mercury	Nickel	Barium	Copper	Molybdenum	Vanadium	Zinc	Emissions
		(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)
B-502A	Boiler	2.65E-05	1.51E-05	9.45E-04	7.94E-05	7.69E-06	4.28E-05	2.52E-06	1.39E-05	1.76E-05	6.30E-06	4.79E-06	3.28E-06	2.65E-05	5.54E-05	1.07E-05	1.39E-05	2.90E-05	3.65E-04	0.0012

Sample Calculation - B-502, Benzene

Hourly Emissions:	(Emission Factor) x (Hourly (Operating Rate/Fuel Heating Value)
~		1 0 0 1

Annual HAP Emissions

			HAPs Defined in Section 112 (b) of Clean Air Act											Total HA	
Source ID	Source Name	Benzene	Dichlorobenzene	Formaldehyde	n-Hexane	Naphthalene	Toluene	Arsenic	Cadmium	Chromium	Lead	Manganese	Mercury	Nickel	Emission
		(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)
B-502A	Boiler	1.16E-04	6.62E-05	4.14E-03	3.48E-04	3.37E-05	1.88E-04	1.10E-05	6.07E-05	7.73E-05	2.76E-05	2.10E-05	1.43E-05	1.16E-04	0.0052

Sample Calculation - B-502, Benzene

Annual Emissions: (Emission Factor) x (Hourly Operating Rate/Fuel Heating Value) x (8760 hrs/yr) x (ton/2000 lbs)									
Annual Emissions:		2.10E-03 lb	12.6 MMBtu	MMscf	8,760 hrs	ton	=	1.16E-04 ton	
-	MMscf	hr	1000 MMBtu	yr	2,000 lbs		yr		

Boiler GHG Calculation

40 CFR 98 Subpart C TIER 1 Emission unit(s): B-502A Source description: Natural gas-fired boiler Annual fuel usage: 110.38 MMscf/yr

CO₂ Calculation¹ (Eq C-1) Click here to view Table C-1 to Subpart C of Part 98.

Fuel Usage provided by Western.

CH4 Calculation2(Eq C-8)Click here to view Table C-1 to Subpart C of Part 98Click here to view Table C-2 to Subpart C of Part 98

$CH_4 =$	1 x 10	⁻³ x <u>110.38 MMscf</u> x yr	1000 MMbtu x MMscf	$\frac{1 \text{ x}}{\text{MMbtu}} \log CH_4$
CH ₄ =	0.11	tonnes CH ₄ / yr		
CH ₄ =	0.12	ton CH ₄ / yr		

N2O Calculation³(Eq C-8)Click here to view Table C-1 to Subpart C of Part 98Click here to view Table C-2 to Subpart C of Part 98

N ₂ O =	1 x 10	0 ⁻³ x <u>110.38 MMscf</u> x yr	1000 MMbtu x MMscf	$\frac{1 \text{ x}}{\text{MMbtu}} \frac{10^{-4}}{\text{MMbtu}} \text{ kg } \text{N}_2\text{O}$
$N_2O =$	0.011	tonnes N ₂ O / yr		
$N_2O =$	0.012	ton N ₂ O / yr		

 $CO_2e = 6462.40 \text{ ton } CO_2e/yr$ Note: ${}^1 \text{ Global warming potential of } CO_2 \text{ is:} 1$ ${}^2 \text{ Global warming potential of } CH_4 \text{ is.} 25$ ${}^3 \text{ Global warming potential of } N_2O \text{ is} 298$

Materials Transferred

Material Transferred	Material Type	Loading or Unloading	Control Device
Gasoline	Liquid	Both	None
#1 Diesel	Liquid	Both	None
#2 Diesel	Liquid	Both	None
Naphtha	Liquid	Unloading	None
Ethanol	Liquid	Unloading	None
Crude	Liquid	Unloading	None

Liquid Loading Losses[1.2.3.4]

Source ID	Material Transferred	Vapor Molecular Weight	True Vapor Pressure	Saturation Factor ¹	Average Temperature	Loading Loss ^{2,3}	Control Device	Control Efficiency ⁴	Collection Efficiency	Annual Throughput	Annual Uncaptured Loading Emissions
		(lb/lb-mole)	(psia)		(° R)	(lb/10 ⁵ gal)		(%)	(%)	(bbl/yr)	(tpy)
LL-RAG	Rack Avg. Gasoline	68	5.2	1.45	512	0.083	None	0.0%	0.0%	3,467,500	907.45
LL-D1	#1 Diesel	130	0.0071	1.45	512	0.033	None	0.0%	0.0%	3,467,500	2.37
LL-D2	#2 Diesel	130	0.0058	1.45	512	0.03	None	0.0%	0.0%	3,467,500	1.94
								Total	Liquid Loading	Loss Emissions	911.76

^a Vapor Molecular Weight, True Vapor Pressure and Average Temperature acquired from TANKS database for Bloomfield Refinery.

95%

^b Annual throughput obtained from 2009 NSR application for Bloomfield Refinery.

¹ Per U.S. EPA AP-42 Section 5.2 Transportation And Marketing Of Petroleum Liquids, Table 5.2-1.

² Per MACT CC, operation of the Vapor Recovery Unit (VRU) at the Truck Loading Rack should limit VOC emissions to 10 mg of VOC / liter (0.083 lb/10³ gal) of gasoline loaded. Facility requests this limit stay despite MACT CC no longer being applicable.

³ Per methodology described in U.S. EPA AP-42 Section 5.2 Transportation And Marketing Of Petroleum Liquids.

⁴ Per U.S. EPA AP-42 Section 5.2 Transportation And Marketing Of Petroleum Liquids.

Vapor recovery efficiency is assumed to be Vapor collection efficiency (MACT CC requirement) is assumed to be

99.2%

Sample Calculation - Diesel

Loading Loss:	12.46	130 lb	0.01 psia	1.45			2.66E-02 lb
		lb-mole			512 °R	=	10^3 gal
Annual Uncaptured Emissions:	0.027 lb	3,467,500 bbl	42 gal	100% - 00.0%	ton	_	1.94 ton
Unloading Losses for Liquids	1,000 gal	yr	bbl		2,000 lbs	-	yr

Liquid Unloading Losses (Hose Disconnect Fugitive Emissions)

Samuel ID	Madanial Transformed	Leeding on Unleeding	Soft Hose	6- 6 II I	S-& H O	Depressurived	Gas Molecular	True Vapor	Annual	Fugitive	Annual VOC
Source ID	Material Transferred	Loading or Unioading	Diameter	Soft Hose Length	Soft Hose Overpressure	volume	weight	Pressure	Inrougnput	Emissions	Emissions
			(in)	(ft)	(psig)	(ft ³ /truck)	(lb/lb-mole)	(psia)	(bbl/yr)	(lb/truck)	(tpy)
UL-C	Crude	Unloading	4	6	1	0.56	60	4.5	6,935,000	0.03	0.48
UL-RAG	Rack Avg. Gasoline	Unloading	4	6	1	0.56	68	5.2	3,467,500	0.03	3.16E-01
UL-Naphtha	Naphtha	Unloading	4	6	1	0.56	75	0.5	1,460,000	3.63E-03	1.39E-02
UL-Ethanol	Ethanol	Unloading	4	6	1	0.56	46.1	0.7	1,460,000	3.40E-03	1.30E-02
UL-D1	#1 Diesel	Unloading	4	6	1	0.56	130	0.0071	3,467,500	9.11E-05	8.27E-04
UL-D2	#2 Diesel	Unloading	4	6	1	0.56	130	0.0058	3,467,500	7.44E-05	6.76E-04
									Total Fus	itive Emissions	0.83

¹ The hose will be capped as soon as it is disconnected from the truck. It is assumed, all of the vapor from the soft hose is released (worst case emissions).

The vapor area released is calculated by taking the volume of the hose multiplied by the pressure fraction released. The entire volume of the hose is assumed to be released.

Ex. (Diameter² x Pi \div 4) x [Hose length x (psig \div 14.7 psi)/14.7]

² Annual emissions are based on the annual throughput and the number of trucks necessary to deliver the annual amount of material. The number of trucks is based on the truck capcaity (i.e., 8,000 gallons)

Sample Calculation - Crude

Depressurized Volume:	8.73E-02 square ft	6 ft	(1 psig	+ 14.7 psia)	= -	0.56 cubic ft	
			14	., psia		HUCK	
Unloading Emissions:	0.56 cubic ft	lb-mol	60 lb	4.47 psia		_	2.65E-02 lb
	truck	379.41 cubic ft	lb-mol		14.7 psia	_	truck
Annual Emission:	2.65E-02 lb	6,935,000 bbl	truck	ton	_	0.48 ton	
-	truck	yr	191 bbl	2000 lb		yr	
Materials Transferred

Material Transferred	Material Type	Loading or Unloading	Control Device
Gasoline	Liquid	Both	VRU
#1 Diesel	Liquid	Both	
#2 Diesel	Liquid	Both	
Naphtha	Liquid	Unloading	
Ethanol	Liquid	Unloading	
Crude	Liquid	Unloading	

Liquid Loading Losses[1,2,3,4]

												Annual	Total Annual
		Vapor Molecular	True Vapor					Control	Collection	Annual	Annual Controlled	Uncaptured	Loading
Source ID	Material Transferred	Weight	Pressure	Saturation Factor ¹	Average Temperature	Loading Loss ^{2,3}	Control Device	Efficiency 4	Efficiency	Throughput	Loading Emissions	Loading Emissions	Emissions
		(lb/lb-mole)	(psia)		(° R)	(lb/10 ³ gal)		(%)	(%)	(bbl/yr)	(tpy)	(tpy)	(tpy)
LL-RAG	Rack Avg. Gasoline	68	5.2	1.45	512	0.083	VRU	94.2%	99.2%	3,467,500	6.04	7.26	13.30
LL-D1	#1 Diesel	130	0.0071	1.45	512	0.033		0.0%	0.0%	3,467,500	0.00	2.37	2.37
LL-D2	#2 Diesel	130	0.0058	1.45	512	0.03		0.0%	0.0%	3,467,500	0.00	1.94	1.94
								Total	Liquid Loading	Loss Emissions	6.04	11.57	17.61

* Vapor Molecular Weight, True Vapor Pressure and Average Temperature acquired from TANKS database for Bloomfield Refinery.

^b Annual throughput obtained from 2009 NSR application for Bloomfield Refinery.

¹ Per U.S. EPA AP-42 Section 5.2 Transportation And Marketing Of Petroleum Liquids, Table 5.2-1.

² Per MACT CC, operation of the Vapor Recovery Unit (VRU) at the Truck Loading Rack should limit VOC emissions to 10 mg of VOC / liter (0.083 lb/l0 gal) of gasoline loaded. Facility requests this limit stay despite MACT CC no longer being applicable.

³ Per methodology described in U.S. EPA AP-42 Section 5.2 Transportation And Marketing Of Petroleum Liquids.

⁴ Per U.S. EPA AP-42 Section 5.2 Transportation And Marketing Of Petroleum Liquids.

Vapor recovery efficiency is assumed to be

95% Vapor collection efficiency (MACT CC requirement) is assumed to be 99.2%

Sample Calculation - Diesel

Loading Loss:	12.46	130 lb	0.01 psia	1.45		_	2.66E-02 lb
		lb-mole			512 °R		10^3 gal
Annual Controlled Emissions: Unloading Losses for Liquids	0.027 lb 1,000 gal	3,467,500 bbl yr	42 gal bbl	100% - 00.00%	ton 2,000 lbs	=	0.00 ton yr
Annual Uncaptured Emissions: Liquid Unloading Losses (Hose Disconnect Fugitive Emissions)	0.027 lb 1,000 gal	3,467,500 bbl yr	42 gal bbl	100% - 00.0%	ton 2,000 lbs	- =	1.94 ton yr

Liquid Unloading Losses (Hose Disconnect Fugitive Emissions)

Г			Loading or	Soft Hose		Soft Hose	Depressurived	Gas Molecular	True Vapor	Annual	Fugitive	Annual VOC
	Source ID	Material Transferred	Unloading	Diameter	Soft Hose Length	Overpressure	Volume ¹	Weight	Pressure	Throughput	Emissions	Emissions ²
				(in)	(ft)	(psig)	(ft ³ /truck)	(lb/lb-mole)	(psia)	(bbl/yr)	(lb/truck)	(tpy)
Г	UL-C	Crude	Unloading	4	6	1	0.56	60	4.5	6,935,000	0.03	0.48
	UL-RAG	Rack Avg. Gasoline	Unloading	4	6	1	0.56	68	5.2	3,467,500	0.03	3.16E-01
	UL-Naphtha	Naphtha	Unloading	4	6	1	0.56	75	0.5	1,460,000	3.63E-03	1.39E-02
	UL-Ethanol	Ethanol	Unloading	4	6	1	0.56	46.1	0.7	1,460,000	3.40E-03	1.30E-02
	UL-D1	#1 Diesel	Unloading	4	6	1	0.56	130	0.0071	3,467,500	9.11E-05	8.27E-04
	UL-D2	#2 Diesel	Unloading	4	6	1	0.56	130	0.0058	3,467,500	7.44E-05	6.76E-04
Г										Total Fug	itive Emissions	0.83

¹ The hose will be capped as soon as it is disconnected from the truck. It is assumed, all of the vapor from the soft hose is released (worst case emissions).

The vapor area released is calculated by taking the volume of the hose multiplied by the pressure fraction released. The entire volume of the hose is assumed to be released.

Ex. (Diameter² x Pi ÷ 4) x [Hose length x (psig ÷ 14.7 psi)/14.7]

² Annual emissions are based on the annual throughput and the number of trucks necessary to deliver the annual amount of material. The number of trucks is based on the truck capacity (i.e., 8,000 gallons)

Sample Calculation - Crude

Depressurized Volume:	8.73E-02 square ft 6 ft		(1 psig 14	+ 14.7 psia) 1.7 psia	- = -	0.56 cubic ft truck	
Unloading Emissions:	0.56 cubic ft truck	lb-mol 379.41 cubic ft	60 lb lb-mol	4.47 psia	14.7 psia	= -	2.65E-02 lb truck
Annual Emission: Vapor Phase HAP Speciation	2.65E-02 lb truck	6,935,000 bbl yr	truck 191 bbl	ton 2000 lb	- = -	0.48 ton yr	

Materials Transferred

Source ID	Material Transferred	Loading or Unloading	Vapor Molecular Weight	True Vapor Pressure	Saturation Factor ¹	Average Temperature	Loading Loss ^{2,2}	Control ³ Efficiency ⁴	Collection Efficiency	Annual Throughput	Annual Controlled Loading Emissions	Annual Uncaptured Loading Emissions	Total Annual Loading Emissions
			(lb/lb-mole)	(psia)		(° R)	(lb/10 ³ gal)	(%)	(%)	(bbl/yr)	(tpy)	(tpy)	(tpy)
LL-RAG	Rack Avg. Gasoline	Loading	68	5.2	1.45	512	0.083	94.24%	99.2%	3,467,500	6.04	7.26	13.30
LL-D1	#1 Diesel	Loading	130	0.0071	1.45	512	0.033	0.00%	0.0%	3,467,500	0.00	2.37	2.37
LL-D2	#2 Diesel	Loading	130	0.0058	1.45	512	0.03	0%	0.0%	3,467,500	0.00	1.94	1.94
Liquid Loading Lo	sses[1,2,3,4]							Total Liquid Loading	Loss Emissions	from Truck Rack	6.04	9.63	17.61

Liquid Loading Losses[1,2,3,4]

¹ Per U.S. EPA AP-42 Section 5.2 Transportation And Marketing Of Petroleum Liquids, Table 5.2-1.

² Per MACT CC operation of the Vapor Recovery Unit (VRU) at the Truck Loading Rack should limit VOC emissions to 10 mg of VOC / liter (0.083 lb/10³ gal) of gasoline loaded. Facility requests this limit stay despite MACT CC no longer being applicable.

³ Per methodology described in U.S. EPA AP-42 Section 5.2 Transportation And Marketing Of Petroleum Liquids.

⁴ Per U.S. EPA AP-42 Section 5.2 Transportation And Marketing Of Petroleum Liquids. 95%

Vapor recovery efficiency is assumed to be

Vapor collection efficiency (MACT CC requirement) is assumed to be 99.2%

Sample Calculation - Diesel

Loading Loss:	12.46	130 lb	0.01 psia	1.45		=	0.03 lb
		lb-mole			512 °R		10^3 gal
Annual Controlled Emissions:	0.03 lb	3,467,500 bbl	42 gal	100% - 00.00%	ton	=	0.00 ton
	1,000 gal	yr	bbl	1	2,000 lbs	-	yr
Annual Uncaptured Emissions:	0.03 lb	3,467,500 bbl	42 gal	100% - 00.0%	ton	=	2.37 ton
	1,000 gal	yr	bbl		2,000 lbs	-	yr

Unloading Losses for Liquids

		Loading or	Soft Hose	Soft Hose	Soft Hose	Depressurived	Gas Molecular	True Vapor	Annual	Unloading	Hourly VOC	Annual VOC
Source ID	Material Transferred	Unloading	Diameter	Length	Overpressure	Volume ¹	Weight	Pressure	Throughput	Emissions	Emissions ²	Emissions ³
			(in)	(f t)	(psig)	(ft ³ /truck)	(lb/lb-mole)	(psia)	(bbl/yr)	(lb/truck)	(lb/hr)	(tpy)
UL-C	Crude	Unloading	4	6	1	0.56	60	4.5	6,935,000	0.03	0.16	0.48
UL-RAG	Rack Avg. Gasoline	Unloading	4	6	1	0.56	68	5.19	3,467,500	0.03	0.21	3.16E-01
UL-Naphtha	Naphtha	Unloading	4	6	1	0.56	75	0.5	1,460,000	3.63E-03	0.02	1.39E-02
UL-Ethanol	Ethanol	Unloading	4	6	1	0.56	46.1	0.7	1,460,000	3.40E-03	0.02	1.30E-02
UL-D1	#1 Diesel	Unloading	4	6	1	0.56	130	0.0071	3,467,500	9.11E-05	5.47E-04	8.27E-04
UL-D2	#2 Diesel	Unloading	4	6	1	0.56	130	0.0058	3,467,500	7.44E-05	4.47E-04	6.76E-04
									Total F	ugitive Emissions		0.83

¹ The hose will be capped as soon as it is disconnected from the truck. It is assumed, all of the vapor from the soft hose is released (worst case emissions).

² It is assumed that the facility can unload 6 trucks per hour.

³ Annual emissions are based on the annual throughput and the number of trucks necessary to deliver the annual amount of material. The number of trucks is based on the truck capcaity (i.e., 8,000 gallons)

Sample Calculation - Crude

Depressurized Volume:	8.73E-02 square ft	6 ft	(1 psig + 14.7 psia)		=	0.56 cubic ft	_
			14.7	psia		truck	
Unloading Emissions:	0.56 cubic ft	lb-mol	60 lb	4.47 psia		=	2.65E-02 lb
	truck	385.4 cubic ft	lb-mol		14.7 psia		truck
Hourly Emissions	2.65E.02.1b	6 tmake	_	1 50E 01 lb			
Houry Emissions	truck	hr	_	hr			
Annual Emission:	2.65E-02 lb	6,935,000 bbl	truck	ton	=	0.48 ton	
-	truck	yr	191 bbl	2000 lb	-	yr	-

Vapor Phase HAP Speciation

						TAPs Listed in 20.	2.72.502 NMAC					
Source	Material	2,2,4-									1,2,4-	
ID	Transferred	Trimethylpentane	Benzene	Cumene	Ethylbenzene	n-Hexane	Naphthalene	PAC	Toluene	Xylene	Trimethylbenzene	Cyclohexane
		(ppmw)	(ppmw)	(ppmw)	(ppmw)	(ppmw)	(ppmw)	(ppmw)	(ppmw)	(ppmw)	(ppmw)	(ppmw)
LL-RAG, UL-RAG	Rack Avg. Gasoline	3,100	5,300	10	200	9,600	20	0	4,500	1,100	100	2,600
LL-D1, UL-D1	#1 Diesel	0	0	600	900	100	5,600	0	1,200	6,000	10,700	0
UL-N	Naphtha	0	19,500	0	2,400	112,200	0	0	37,700	12,800	600	73,400
UL-E	Ethanol	0	900	100	400	1,800	0	0	2,600	2,300	1,000	1,100
LL-D2, UL-D2	#2 Diesel	100	0	200	200	15	1,300	0	800	2,800	4,600	500
UL-C	Crude	300	3,500	0	200	24,200	0	0	2,900	800	100	9,900

Annual HAP Emissions

			HAPs Defined in Section 112 (b) of Clean Air Act									
Source ID	Material Transferred	2,2,4- Trimethylpentane (tpy)	Benzene (tpy)	Cumene (tpy)	Ethylbenzene (tpy)	n-Hexane (tpy)	Naphthalene (tpy)	PAC (tpy)	Toluene (tpy)	Xylene (tpy)	Total HAPs (tpy)	
LL-RAG												
UL-RAG	Rack Avg. Gasoline	4.22E-02	7.22E-02	1.36E-04	2.72E-03	1.31E-01	2.72E-04	0.00E+00	6.13E-02	1.50E-02	3.25E-01	
LL-D1												
UL-D1	#1 Diesel	0.00E+00	0.00E+00	1.42E-03	2.14E-03	2.37E-04	1.33E-02	0.00E+00	2.85E-03	1.42E-02	3.42E-02	
UL-N	Naphtha	0.00E+00	2.70E-04	0.00E+00	3.33E-05	1.56E-03	0.00E+00	0.00E+00	5.23E-04	1.77E-04	2.56E-03	
UL-E	Ethanol	0.00E+00	1.17E-05	1.30E-06	5.20E-06	2.34E-05	0.00E+00	0.00E+00	3.38E-05	2.99E-05	1.05E-04	
LL-D2												
UL D2	#2 Diesel	1.94E-04	0.00	3.88E-04	3.88E-04	2.91E-05	2.52E-03	0.00E+00	1.55E-03	5.43E-03	1.05E-02	
UL-C	Crude	1.44E-04	1.68E-03	0.00E+00	9.61E-05	1.16E-02	0.00E+00	0.00E+00	1.39E-03	3.84E-04	1.53E-02	
Truck Rack	Total	4.24E-02	7.25E-02	1.95E-03	5.29E-03	1.33E-01	1.61E-02	0.00E+00	6.62E-02	3.49E-02	3.72E-01	

Sample Calculation - Benzene from Crude Unloading Loading(Assuming crude vapor is 100% VOCs)

Annual Emissions:	0.48 ton VOC	1 ton crude Vapor	3,500 ppmw benzene	1		1.68E-03 ton
	yr	1 ton VOC	crude Vapor	10 ⁶ ppmw	=	yr

TABLE A-1 VOC EMISSION FACTORS

		Normal ³	Normal	Leaky ³	Leaky	Emission
		Leak Rate	Leak Rate	Leak Rate	Leak Rate	Factor
Component Type	Service	(kg/hr/source)	(lb/hr/source)	(kg/hr/source)	(lb/hr/source)	Source
Valve ¹	Gas	0.00024	0.00052	0.01230	0.02706	EPA Protocol For Equipment Leak Emission Estimates, Table 2-10
	Light Liquid	0.00024	0.00052	0.01230	0.02706	EPA Protocol For Equipment Leak Emission Estimates, Table 2-10
	Heavy Liquid	0.00023	0.00051	0.00023	0.00051	EPA Protocol For Equipment Leak Emission Estimates, Table 2-2
Open-ended Lines	Gas	0.0023	0.00506	-	-	EPA Protocol For Equipment Leak Emission Estimates, Table 2-2
	Light Liquid	0.0023	0.00506	-	-	EPA Protocol For Equipment Leak Emission Estimates, Table 2-2
	Heavy Liquid	0.0023	0.00506	-	-	EPA Protocol For Equipment Leak Emission Estimates, Table 2-2
Flanges	Gas	0.00025	0.00056	-	-	AP-42, 4th Ed., Table 9.1-2
	Light Liquid	0.00025	0.00056	-	-	AP-42, 4th Ed., Table 9.1-2
	Heavy Liquid	0.00025	0.00056	-	-	AP-42, 4th Ed., Table 9.1-2
Pumps ²	Light Liquid	0.00519	0.01142	0.05644	0.12416	EPA Protocol For Equipment Leak Emission Estimates, Table 2-10
•	Heavy Liquid	0.00519	0.01142	0.05644	0.12416	EPA Protocol For Equipment Leak Emission Estimates, Table 2-10
Compressors	Gas	0.63636	1.40000	-	-	EPA Protocol For Equipment Leak Emission Estimates, Table 2-2
Process Drains	Light Liquid	0.03182	0.07000	-	-	AP-42, 4th Ed., Table 9.1-2
	Heavy Liquid	0.03182	0.07000	-	-	AP-42, 4th Ed., Table 9.1-2
Connectors	Gas	0.00025	0.00055	-	-	EPA Protocol For Equipment Leak Emission Estimates, Table 2-2
	Light Liquid	0.00025	0.00055	-	-	EPA Protocol For Equipment Leak Emission Estimates, Table 2-2
	Heavy Liquid	0.00025	0.00055	-	-	EPA Protocol For Equipment Leak Emission Estimates, Table 2-2
Pressure Relief Valve	Gas	0.16000	0.35200	-	-	EPA Protocol For Equipment Leak Emission Estimates, Table 2-2
	Normal	Leaky				
¹ Valve Screening Level	500	100,000	ppm			
² Pump Screening Level	2,000	100,000	ppm			
³ Percentage of Components	98%	2%				

TABLE A-2 COMPONENTS AND EMISSIONS BY UNIT / SERVICE / COMPONENT

Gas / Vapor Light Liquid Heavy Liquid Pumps² PRV⁵ PRV⁵ Connect PRV⁵ Unit Valves Compress Connect³ Valves Drains Valves Pumps Drains Truck Loading 96 288 711 27 2214 Tank Farm 821 25 0 2538 1 Plant wide (not otherwise given) 0 0 1.532 4,752 Total Components 96 0 0 288 52 0 0 0 2 0 0

Component quantities as reported in the most recent LDAR Report complemented by TRI Fugitives worksheet^{1,3}

Emissions by Unit Service / Component, lbs/hr

		Gas / V	/apor			l	Light Liquio	d		Heavy Liquid					
Unit	Valves	Compress.	PRV ⁵	Connect ⁴	Valves	Pumps ²	PRV ⁵	Drains	Connect ⁴	Valves	Pumps	PRV ⁵	Drains	Connect ⁴	
Truck Loading	0.10	0.00	0.00	0.16	0.75	0.37	0.00	0.00	1.24	0.00	0.01	0.00	0.00	0.00	
Tank Farm	0.00	0.00	0.00	0.00	0.86	0.34	0.00	0.00	1.42	0.00	0.01	0.00	0.00	0.00	
Plant wide (not otherwise given)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	

¹ Based on component information provided in email correspondence from client on 10/24/2008 (Jim Lieb) and 10/30/2008 (Kelly Robinson).

² Includes agitators. Per EPA Protocol For Equipment Leak Emission Estimates, Table 2-2, footnote c, agitator emissions may be estimated using light liquid service pump factors.

³ The number of flanges and connectors is estimated by a mulipicative factor applied to (# valves + # pumps/compressors + # PRV + # drains).

Flange and connector factor: 3.0

⁴ The emission factors for flanges and connectors are the same for all services. The values shown in the "Emission Factors" sheet are used to calculate the emission rates.

⁵ All pressure relief valves are vented back to the process (not to atmosphere) and are not included in either the component counts or in the emission rates.

Connect

3

3

0

6

Functional Unit	Total Fugiti	ve Emissions
	V	OC
	(lb/hr)	(tpy)
Truck Loading	2.63	11.53
Tank Farm	2.64	11.57
Plant wide	0.00	0.00
Total	5.27	23.10
Total with 2% Safety Factor	-	23.56

Table A-3 TOTAL VOC FUGITIVE EMISSIONS

Table A-4. Total Fugitive VOC Emissions

Functional Unit	Total Fugitiv VO	e Emissions C
	(lb/hr)	(tpy)
Truck Loading	2.63	11.53
Tank Farm	2.64	11.57
Other Plant Sources	0.00	0.00
Total	5.27	23.10
Total with 2% Safety Factor	-	23.56

Table A-5. Representative Stream for Each Process Unit/Area

Functional Unit	Feed/Intermediate/Product HAP Speciation Used	HAP Speciation Basis
Truck Loading	Gasoline/#1 Diesel/#2 Diesel	MAX (Regular Gasoline, Premium Gasoline, #1 Diesel, #2
Tank Farm	Crude/Gasoline	AVERAGE(Crude, Regular Gasoline, Premium Gasoline)
Other Plant Sources	Crude/Gasoline	AVERAGE(Crude, Regular Gasoline, Premium Gasoline)

Table A-6. Stream HAP Speciation

	HAPs Defined in Section 112 (b) of Clean Air Act													TAPs L	isted in 20.2.72.	502 NMAC	, ,
	2,2,4-													1,2,4-			
Process Stream	Trimethylpentane	Benzene	Cumene	Ethylbenzene	n-Hexane	Naphthalene	PAC	Toluene	Xylene	Arsenic	Lead	Mercury	Nickel	Trimethylbenzene	Cyclohexane	Copper	Vanadium
	(ppmw)	(ppmw)	(ppmw)	(ppmw)	(ppmw)	(ppmw)	(ppmw)	(ppmw)	(ppmw)	(ppmw)	(ppmw)	(ppmw)	(ppmw)	(ppmw)	(ppmw)	(ppmw)	(ppmw)
Regular Gasoline	2,900	16,800	400	8,000	41,200	1,300	25	55,100	58,500	0	0.010	0.00030	0	14,900	18,000	0	0
Premium Gasoline	0	30,400	1,200	21,100	27,700	2,300	25	137,400	137,800	0	0.010	0.00032	0	29,000	8,700	0	0
#1 Diesel	900	0	400	500	100	5,600	25	900	5,600	0	0.010	0.00052	0	10,500	200	0	0
#2 Diesel	1,200	0	200	300	0	3,000	50	700	3,800	0	0.15	0.0011	0	5,800	100	0	0
Crude	500	5,300	600	3,200	22,200	1,100	30	15,800	14,200	0	0.29	0.016	0.40	4,600	14,400	0.10	1.50
Regular Gasoline	2900	16,800	400	8,000	41,200	1,300	25	55,100	58,500	0	0.01	0.000	0.00	14,900	18,000	0.00	0.00
Premium Gasoline	0	30,400	1,200	21,100	27,700	2,300	25	137,400	137,800	0	0.010	0.00032	0	29,000	8,700	0	0

Table A-7. Representative Stream HAP Speciation

				HAI	Ps Defined in	n Section 112 (b) of Clean A	Air Act						TAPs L	isted in 20.2.72.	502 NMAC	
	2,2,4-													1,2,4-			
Process Stream	Trimethylpentane	Benzene	Cumene	Ethylbenzene	n-Hexane	Naphthalene	PAC	Toluene	Xylene	Arsenic	Lead	Mercury	Nickel	Trimethylbenzene	Cyclohexane	Copper	Vanadium
	(ppmw)	(ppmw)	(ppmw)	(ppmw)	(ppmw)	(ppmw)	(ppmw)	(ppmw)	(ppmw)	(ppmw)	(ppmw)	(ppmw)	(ppmw)	(ppmw)	(ppmw)	(ppmw)	(ppmw)
Gasoline/#1 Diesel/#2 Diesel	2,900	30,400	1,200	21,100	41,200	5,600	50	137,400	137,800	0	0.15	0.0011	0	29,000	18,000	0	0
Crude/Gasoline	1,133	17,500	733	10,767	30,367	1,567	27	69,433	70,167	0	0.10	0.0056	0.13	16,167	13,700	0.03	0.50
Crude/Gasoline	1,133	17,500	733	10,767	30,367	1,567	27	69,433	70,167	0	0.10	0.0056	0.13	16,167	13,700	0.03	0.50

Sample Calculation

Benzene Content in Gasoline/#1 Diesel/#2 Diesel: MAX(16,800, 30,400, 0, 0) ppmw = 30,400 ppmw

2 Diesel)

Table A-8. Hourly HAP Emissions from Fugitives

				HAF	s Defined in	Section 112 (h) of Clean A	ir Act						TAPs Listed in 20.2.72.502 NMAC				Total HAP
	2,2,4-													1,2,4-				
Functional Unit	Trimethylpentane	Benzene	Cumene	Ethylbenzene	n-Hexane	Naphthalene	PAC	Toluene	Xylene	Arsenic	Lead	Mercury	Nickel	Trimethylbenzene	Cyclohexane	Copper	Vanadium	Emissions
	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)
Truck Loading	7.64E-03	8.01E-02	3.16E-03	5.56E-02	1.08E-01	1.47E-02	1.32E-04	3.62E-01	3.63E-01	0	4.06E-07	2.92E-09	0	7.64E-02	4.74E-02	0	0	9.94E-01
Tank Farm	2.99E-03	4.62E-02	1.94E-03	2.84E-02	8.02E-02	4.14E-03	7.04E-05	1.83E-01	1.85E-01	0	2.69E-07	1.49E-08	3.52E-07	4.27E-02	3.62E-02	8.80E-08	1.32E-06	5.33E-01
Other Plant Sources	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Total HAP Emissions	1.06E-02	1.26E-01	5.10E-03	8.40E-02	1.89E-01	1.89E-02	2.02E-04	5.45E-01	5.48E-01	0	6.75E-07	1.78E-08	3.52E-07	1.19E-01	8.36E-02	8.80E-08	1.32E-06	1.53

Sample Calculation - Truck Loading, Benzene (Assuming vapor emitted is 100% VOCs and vapor phase speciation equals liquid phase speciation.)

Hourly Emissions:	2.63 lb VOC	lb vapor	17,500 ppmw benzene	1	=	8.01E-02 lb
	hr	lb VOC emitted	Crude/Gasoline	10 ⁶ ppmw		hr

Table A-9. Annual HAP Emissions from Fugitives

	HAPs Defined in Section 112 (b) of Clean Air Act													Total
Functional Unit	2,2,4- Trimethylpentane	Benzene	Cumene	Ethylbenzene	n-Hexane	Naphthalene	PAC	Toluene	Xylene	Arsenic	Lead	Mercury	Nickel	Emis
	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(tr
Truck Loading	3.34E-02	3.51E-01	1.38E-02	2.43E-01	4.75E-01	6.46E-02	5.77E-04	1.58E+00	1.59E+00	0	1.78E-06	1.28E-08	0	4.361
Tank Farm	1.31E-02	2.02E-01	8.48E-03	1.25E-01	3.51E-01	1.81E-02	3.08E-04	8.03E-01	8.12E-01	0	1.18E-06	6.52E-08	1.54E-06	2.331
Other Plant Sources	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0	0.00E+00	0.00E+00	0.00E+00	0.001
Total HAP Emissions	4.66E-02	5.53E-01	2.23E-02	3.68E-01	8.26E-01	8.27E-02	8.85E-04	2.39E+00	2.40E+00	0	2.96E-06	7.80E-08	1.54E-06	6.0

Sample Calculation - Truck Loading, Benzene (Assuming vapor emitted is 100% VOCs and vapor phase speciation equals liquid phase speciation.)

Annual Emissions:	11.53 ton VOC	ton vapor	17,500 ppmw benzene	1	=	3.51E-01 ton
	yr	ton VOC emitted	Crude/Gasoline	10 ⁶ ppmw		yr

HAP

ssions py) E+00 E+00 E+00 69

> Trinity Consultants March 2019

API Separator VOC Emissions

			Average		Hourly		
		VOC Emission	VOC	Annual VOC			
Source ID	Source Name	Flow Rate	Flow Rate	Hours	Factor	Emissions	Emissions
		(gpm)	(gpm)	(hrs)	(lb/gal)	(lb/hr)	(tpy)
API	API Separator	500	105	8,760	0.0002	6.00	5.52

Controlled emission factor is obtained from AP-42, Section 5.1 (Petroleum Refining, January 1995), Table 5.1-2, for covered oil-water separators at refineries.

Sample Calculation

Hourly Emissions:	500 gal	60 min	0.0002 lb	=	6.00 lb		
	min	hr	gal		hr		
Annual Emissions:	105 gal	60 min	8760 hr	0.0002 lb	ton	=	5.52 ton
	min	hr	yr	gal	2,000 lbs		yr

Air Stripper Data

			Influent Wa	stewater S	peciation			Effluent Was	tewater Sp	eciation					
													Average		
						Other					Other		Wastewater	Operation	Wastewater
Source ID	Source Name	Benzene	Ethylbenzene	Toluene	Xylene	Organics	Benzene	Ethylbenzene	Toluene	Xylene	Organics	Capacity	Flow Rate	Hours	Density
		(ppmw)	(ppmw)	(ppmw)	(ppmw)	(ppmw)	(ppmw)	(ppmw)	(ppmw)	(ppmw)	(ppmw)	(gpm)	(gpm)	(hrs)	(lb/gal)
S1 & S2	Air Strippers	8.10	1.40	17.00	10.00	3.08	0.0010	0.0010	0.0010	0.0010	0.67	200	105	8,760	8.34

^a Influent and effluent wastewater BTEX contents are from *facility-provided air stripper design specifications*. Other influent and effluent organic contents (1,2,4 Trimethylbenzene, hexane, naphthalene) are from

TRI - 10-28-08 Updated Bloomfield 2007-JimsAdditionsplus fugitives.xls.

^b Air stripper capacity is from NSR Permit 0402-M10 and average wastewater flowrate based on TRI - 10-28-08 Updated Bloomfield 2007-JimsAdditionsplus fugitives.xls (with a small safety factor).

^c It is assumed that wastewater has the same density as water.

Annual HAP Emissions from Air Strippers

Source ID	Source Name	Benzene	Ethylbenzene	Toluene	Xylene	Other Organics	Total VOC Emissions
		(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)
S1 & S2	Air Strippers	1.86	0.32	3.91	2.30	0.55	8.95

Sample Calculation - Benzene

Annual Emissions:	105 gal	60 min	8.34 lb	(8.10 - 0.0010) ppmw	8,760 hrs	ton	=	1.86 ton
	min	hr	gal	10 ⁶ ppmw	yr	2,000 lbs		yr

API Separator VOC Emissions

		Maximum	Average				Annual						
		Wastewater	Wastewater	Operation		Wastewater	Recovered	Recovered	Recovered Oil	Recovered Oil	VOC Emission	Hourly VOC	Annual VOC
Source ID	Source Name	Flow Rate	Flow Rate	Hours	Wastewater Density	VOC content	Oil	Oil Density	VOC content	BTEX content	Factor	Emissions	Emissions
		(gpm)	(gpm)	(hrs)	(lb/gal)	(ppmw)	(gal)	(lb/gal)	(ppmw)	(ppmw)	(lb/gal)	(lb/hr)	(tpy)
API	API Separator	500	105	8,760	8.34	277	1,982,022	7	106,482	60,400	0.0002	6.0	5.52
¹ Controllad ami	ssion factor is obtained	from AP 42 Section	5.1 (Patrolaum Pafinir	a January 1005) Tak	ala 5,1,2, for acuarad oil water	concretore et refineries							

Controlled emission factor is obtained from AP-42, Section 5.1 (Petroleum Refining, January 1995), Table 5.1-2, for covered oil-water separators at refineries.

Stream HAP Speciation for API Separator

Stream Name	St	ream Concentra	tions		Stream Name Stream Concentrations										TAPs Listed in 20.2.72.502 NMAC		
	2,2,4-Trimethyl pentane (ppmw)	Benzene (ppmw)	Cumene (ppmw)	Ethyl benzene (ppmw)	Hexane (ppmw)	Naphthalene (ppmw)	PAC (ppmw)	Toluene (ppmw)	Xylene (mixed isomers) (ppmw)	Arsenic Compounds (ppmw)	Lead Compounds (ppmw)	Mercury Compounds (ppmw)	Nickel Compounds (ppmw)	1,2,4- Trimethyl benzene (ppmw)	Cyclo hexane (ppmw)	Copper Compounds (ppmw)	Vanadium Compounds (ppmw)
Wastewater In Wastewater Out		34 8		5	1	3		63 17	43 10					9			
Recovered Oil	8,800	5,600	500	5,400	7,400	3,100	30	23,400	26,000	0	0.29	0.00075	0	12,800	3,800	0	0

¹ The content of benzene, ethylbenzene, toluene, and xylene is based on the average of sample test data conducted between August 2008 and September 2008.

 2 The content of other HAPs is based on stream speciation profile for recovered oil.

^b BTEX contents of API outlet wastewater are based on stripper inlet wastewater given in Table A17. Other HAPS based on TRI - 10-28-08 Updated Bloomfield.xls

^b BTEX contents of inlet wastewater are based on Email from Jim Lieb on January 14, 2009. Other HAPs estimated using outlet wastewater concentration (found to be 4 times less than inlet concentrations for BTEX pollutants)

Wastewater Sampling Results

Sample Date	Benzene	Ethylbenzene	Toluene	Xylenes	Benzene	Ethylbenzene	Toluene	Xylenes
	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(ppmw)	(ppmw)	(ppmw)	(ppmw)
8/27/2008	18	-	-	-	18	-	-	-
8/28/2008	28	-	-	-	28	-	-	-
9/3/2008	53	8.9	100	73	53	8.9	100	73
9/11/2008	38	1.7	25	12	38	1.7	25	12
Average	34.25	5.30	62.50	42.50	34.25	5.30	62.50	42.50

Hourly HAP Emissions from API Separator

						НА	Ps Defined in Sec	tion 112 (b) of	f Clean Air Act						TAP	s Listed in 20.2.7	2.502 NMAC		Total HAP
		2,2,4- Trimethyl	yl											1,2,4-					
Source II	Sour Name	pentane	Benzene	Cumene	Ethylbenzene	n-Hexane	Naphthalene	PAC	Toluene	Xylene	Arsenic	Lead	Mercury	Nickel	Trimethylbenzene	Cyclohexane	Copper	Vanadium	Emissions
		(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)
API	API Separator	4.96E-01	5.67E-01	2.82E-02	8.46E-02	1.43E-02	4.30E-02	1.69E-03	9.87E-01	7.05E-01	0.00E+00	1.61E-05	4.23E-08	0.00E+00	1.43E-01	2.14E-01	0.00E+00	0.00E+00	2.93

Sample Calculation - Benzene from Wastewater Data (Assuming benzene/VOC ratio emitted equals the benzene/VOC ratio in the wastewater feed.)

Hourly Emissions:	500 gal water	60 min	0002 lb VOC emitte	10 ⁶ lb Wastewater	34 lb benzene	=	5.67E-01 lb
	min	hr	gal water	277 lb VOC	106 lb Wastewater		hr

Sample Calculation - Cumene from Recovered Oil Data (Assuming Cumene/VOC ratio emitted equals the Cumene/VOC ratio in the recovered oil.)

Hourly Emissions:	500 gal	60 min	0002 lb VOC emitte	10 ⁶ lb Recovered Oil 5	500 lb cumene	=	1.43E-02 lb
	min	hr	gal water	106482 lb VOC 0 ⁶ l	lb Recovered Oil		hr

Annual HAP Emissions from API Separator

						HA	Ps Defined in Sec	tion 112 (b) of	Clean Air Act						
		2,2,4-													
		Trimethyl													
Source ID	Sour Name	pentane	Benzene	Cumene	Ethylbenzene	n-Hexane	Naphthalene	PAC	Toluene	Xylene	Arsenic	Lead	Mercury	Nickel	
		(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	
API	API Separator	4.56E-01	5.22E-01	1.46E-06	7.78E-02	1.32E-02	3.95E-02	1.55E-03	9.08E-01	6.49E-01	0.00E+00	1.48E-05	3.89E-08	0.00E+00	

Sample Calculation - Benzene

Annual Emissions:	105 gal	60 min	8760 hr	0.0002 lb VOC emitted	10 ⁶ lb Wastewater	34 lb benzene	=	5.22E-01 tons
	min	hr	yr	gal water	277 lb VOC	0 ⁶ lb Wastewater	-	yr

Total HAP	
Emissions	
(tpy)	
2.67	

Air Stripper Data

		Influent Wastewater HAP Speciation					Effluent Wastew	ater HAP	Speciation						
									Average						
													Wastewater	Operation	Wastewater
Source ID	Source Name	Benzene	Ethylbenzene	Toluene	Xylene	Other HAPs	Benzene	Ethylbenzene	Toluene	Xylene	Other HAPs	Capacity	Flow Rate	Hours	Density
		(ppmw)	(ppmw)	(ppmw)	(ppmw)	(ppmw)	(ppmw)	(ppmw)	(ppmw)	(ppmw)	(ppmw)	(gpm)	(gpm)	(hrs)	(lb/gal)
S1 & S2	Air Strippers	8.10	1.40	17.00	10.00	0.88	0.001	0.001	0.001	0.0010	0.34	200	105	8,760	8.34

Hourly HAP Emissions from Air Strippers

		HAP	HAPs Defined in Section 112 (b) of Clean Air Act								
Source ID	Source Name	Benzene (lb/hr)	Ethylbenzene (lb/hr)	Toluene (lb/hr)	Xylene (lb/hr)	Other HAPs (lb/hr)	Emissions (lb/hr)				
S1 & S2	Air Strippers	0.81	0.14	1.70	1.00	0.05	3.71				

Sample Calculation - Benzene

Hourly Emissions:	200 gal	60 min	8.34 lb	(8.10 - 0.0010) ppmw		0.81 lb
	min	hr	gal	10 ⁶ ppmw	=	hr

Annual HAP Emissions from Air Strippers

		HAP	's Defined in Sec	tion 112 (b) of Clean	Air Act	Total HAP
Source ID	Source Name	Benzene	Ethylbenzene	Toluene	Xylene	Other HAPs	Emissions
		(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)
S1 & S2	Air Strippers	1.86	0.32	3.91	2.30	0.12	8.52

Sample Calculation - Benzene

Annual Emissions:	105 gal	60 min	8.34 lb	(8.10 - 0.0010) ppmw	8,760 hrs	ton		1.86 ton
	min	hr	gal	10 ⁶ ppmw	yr	2,000 lbs	=	yr

One Fairbanks Fire Pump w/ Cummins NTA-855F 400-hp Diesel Engine

UNCONTROLL	UNCONTROLLED EMISSIONS (PER): Using manufacturers data for the emission factors										
Pollutant	Emis. Factor	Engine Power	Emissions Rate	Grams/Pound	Emissions Rate	Annual Operation	Annual Emissions				
	(g/hp-hr)	(hp)	(g/hr)	(g/lb)	(lb/hr)	(hrs/yr)	(ton/yr)				
CO	2.00	400	800	453.6	1.76	8760	7.72				
NOx	12.00	400	4800	453.6	10.58	8760	46.35				
VOC/HC	0.46	400	184	453.6	0.41	8760	1.78				
SO ₂	0.65	400	260.0	454.6	0.57	8761	2.51				
PM	0.50	400	200	453.6	0.44	8760	1.93				

CONTROLLED EMISSIONS: Using manufacturers data for the emission factors and emergency use potential of 500 hours per year

Pollutant	Emis. Factor	Engine Power	Emissions Rate	Grams/Pound	Emissions Rate	Annual Operation	Annual Emissions	Annual Emissions
	(g/hp-hr)	(hp)	(g/hr)	(g/lb)	(lb/hr)	(hrs/yr)	(lb/yr)	(ton/yr)
CO	2.00	400	800	453.6	1.76	500	881.83	0.44
NOx	12.00	400	4800	453.6	10.58	500	5291.01	2.65
VOC/HC	0.46	400	184	453.6	0.41	500	202.82	0.10
SO ₂	0.65	400	260.0	454.6	0.57	500	285.97	0.14
PM	0.50	400	200	453.6	0.44	500	220.46	0.11

UNCONTROLLED HAPS (AP-42 Emission factors)

Pollutant	Emis. Factor	Emis Factor	Engine Power	Emissions Rate	Annual Operation	Annual Emissions	Annual Emissions				
	(lb/MMBtu)	(lb/hp-hr)**	(hp)	(lb/hr)	(hrs/yr)	(lb/yr)	(ton/yr)				
Benzene	0.000933	0.000006531	400	0.0026	8760	22.88	0.011				
Toluene	0.000409	0.000002863	400	0.0011	8760	10.03	0.0050				
Xylenes	0.000285	0.000001995	400	7.98E-04	8760	6.99	0.0035				
Acrolein	0.0000925	6.475E-07	400	2.59E-04	8760	2.27	0.0011				
Formaldehyde	0.00118	0.00000826	400	0.0033	8760	28.94	0.014				
Acetaldehyde	0.000767	0.000005369	400	0.0021	8760	18.81	0.0094				
Total HAPs	3.79E-03	2.65328E-05	400	0.011	8760	92.97	0.046				
Note:	Note: **Average BSFC of 7,000 Btu/hp-hr from AP-42 Section 3.3 to convert AP-42 3.3-2 emission factors from Ib/MMBtu to Ib/hp-hi										

CONTROLLED HAPS (AP-42 Emission factors) and potential emergency use of 500 hours per year

Pollutant	Emis. Factor	Emis Factor	Engine Power	Emissions Rate	Annual Operation	Annual Emissions	Annual Emissions
	(lb/MMBTU)	(lb/hp-hr)**	(hp)	(lb/Hr)	(Hrs/Yr)	(lb/Yr)	(Tons/Yr)
Benzene	0.000933	0.000006531	400	0.0026	500	1.31	6.53E-04
Toluene	0.000409	0.000002863	400	0.0011	500	0.57	2.86E-04
Xylenes	0.000285	0.000001995	400	7.98E-04	500	0.40	2.00E-04
Acrolein	0.0000925	6.475E-07	400	2.59E-04	500	0.13	6.48E-05
Formaldehyde	0.00118	0.00000826	400	0.0033	500	1.65	8.26E-04
Acetaldehyde	0.000767	0.000005369	400	0.0021	500	1.07	5.37E-04
Total HAP	3.79E-03	2.65328E-05	400	0.011	500	5.31	0.0027

Note: **Average BSFC of 7,000 Btu/hp-hr from AP-42 Section 3.4 to convert AP-42 3.4-3 emission factors from Ib/MMBtu to Ib/hp-hr

One Fairbanks Fire Pump w/ Cummins KT-855-F2 380-hp Diesel Engine

UNCONTROLLE	JNCONTROLLED EMISSIONS (PER): Using AP-42 Table 3.3-1 for Diesel Fuel										
Dellutent	Emis. Factor	Emis. Factor	Engine Power	Emissions Rate	Annual Operation	Annual Emissions	Annual Emissions				
Pollutant	(lb/MMBtu)	(lb/hp-hr) ²	(hp)	(lb/hr)	(hr/yr)	(lb/yr)	(ton/yr)				
CO	0.95	0.0067	380	2.53	8760	22136.52	11.07				
NOx	4.41	0.031	380	11.73	8760	102760.06	51.38				
TOC ¹	0.36	0.0025	380	0.96	8760	8388.58	4.19				
SOx	0.29	0.0020	380	0.77	8760	6757.46	3.38				
PM	0.31	0.0022	380	0.82	8760	7223.50	3.61				

CONTROLLED EMISSIONS: 500 Hours of Operation per Year

Pollutant	Emis. Factor	Emis. Factor	Engine Power	Emissions Rate	Annual Operation	Annual Emissions	Annual Emissions
	(lb/MMBtu)	(lb/hp-hr) ²	(hp)	(lb/hr)	(hr/yr)	(lb/yr)	(ton/yr)
CO	0.95	0.0067	380	2.53	500	1263.50	0.63
NOx	4.41	0.031	380	11.73	500	5865.30	2.93
тос	0.36	0.0025	380	0.96	500	478.80	0.24
SOx	0.29	0.0020	380	0.77	500	385.70	0.19
PM	0.31	0.0022	380	0.82	500	412.30	0.21

UNCONTROLLED HAP Emissions: AP-42 Table 3.3-2 Emission Factors

Pollutont	Emis. Factor	Emis. Factor	Engine Power	Emissions Rate	Annual Operation	Annual Emissions	Annual Emissions
Foliularit	(Ib/MMBtu)	(lb/hp-hr) ²	(hp)	(lb/hr)	(hr/yr)	(lb/yr)	(ton/yr)
Benzene	9.33E-04	6.53E-06	380	0.0025	8760	21.74	0.011
Toluene	4.09E-04	2.86E-06	380	0.0011	8760	9.53	0.0048
Xylenes	2.85E-04	2.00E-06	380	7.58E-04	8760	6.64	0.0033
Acrolein	9.25E-05	6.48E-07	380	2.46E-04	8760	2.16	0.0011
Formaldehyde	0.0012	8.26E-06	380	0.0031	8760	27.50	0.014
Acetaldehyde	7.67E-04	5.37E-06	380	0.0020	8760	17.87	0.0089
Total HAPs	0.0038	2.65328E-05	380	0.010	8760	88.32	0.044

CONTROLLED HAP EMISSIONS: 500 Hours of Operation per Year

Pollutant	Emis. Factor	Emis. Factor	Engine Power	Emissions Rate	Annual Operation	Annual Emissions	Annual Emissions
Follularit	(lb/MMBtu)	(lb/hp-hr) ²	(hp)	(lb/hr)	(hr/yr)	(lb/yr)	(ton/yr)
Benzene	9.33E-04	6.53E-06	380	0.0025	500	1.24	6.20E-04
Toluene	4.09E-04	2.86E-06	380	0.0011	500	0.54	2.72E-04
Xylenes	2.85E-04	2.00E-06	380	7.58E-04	500	0.38	1.90E-04
Acrolein	9.25E-05	6.48E-07	380	2.46E-04	500	0.12	6.15E-05
Formaldehyde	0.0012	8.26E-06	380	0.0031	500	1.57	7.85E-04
Acetaldehyde	7.67E-04	5.37E-06	380	0.0020	500	1.02	5.10E-04
Total HAPs	0.0038	2.65E-05	380	0.010	500	5.04	0.0025

Notes: ¹ The TOC emissions factor includes emissions from "exhaust" and "crankcase". ² Average BSFC of 7,000 Btu/hp-hr from AP-42 Section 3.3 to convert AP-42 3.3-1&2 emission factors from lb/MMBtu to lb/hp-hr.

One Fairbanks Emergency Fire Water Pump w/ Detroit DDFP-06FH 8386F 460-bhp Diesel Engine

UNCONTROLLED EMISSIONS (PER): Using AP-42 Table 3.3-1 for Diesel Fuel										
Pollutant	Emis. Factor	Emis. Factor	Engine Power	Emissions Rate	Annual Operation	Annual Emissions	Annual Emissions			
Follutarit	(lb/MMBtu)	(lb/hp-hr) ²	(hp)	(lb/hr)	(hr/yr)	(lb/yr)	(ton/yr)			
CO	0.95	0.0067	460	3.06	8760	26796.84	13.40			
NOx	4.41	0.031	460	14.20	8760	124393.75	62.20			
TOC1	0.36	0.0025	460	1.16	8760	10154.59	5.08			
SOx	0.29	0.0020	460	0.93	8760	8180.09	4.09			
PM	0.31	0.0022	460	1.00	8760	8744.23	4.37			

CONTROLLED EMISSIONS: 500 Hours of Operation per Year

Pollutant	Emis. Factor	Emis. Factor	Engine Power	Emissions Rate	Annual Operation	Annual Emissions	Annual Emissions
Pollutant	(lb/MMBtu)	(lb/hp-hr) ²	(hp)	(lb/hr)	(hr/yr)	(lb/yr)	(ton/yr)
CO	0.95	0.0067	460	3.06	500	1529.50	0.76
NOx	4.41	0.031	460	14.20	500	7100.10	3.55
тос	0.36	0.0025	460	1.16	500	579.60	0.29
SOx	0.29	0.0020	460	0.93	500	466.90	0.23
PM	0.31	0.0022	460	1.00	500	499.10	0.25

UNCONTROLLED HAP Emissions: AP-42 Table 3.3-2 Emission Factors

Pollutant	Emis. Factor	Emis. Factor	Engine Power	Emissions Rate	Annual Operation	Annual Emissions	Annual Emissions
Pollularit	(lb/MMBtu)	(lb/hp-hr) ²	(hp)	(lb/hr)	(hr/yr)	(lb/yr)	(ton/yr)
Benzene	9.33E-04	6.53E-06	460	0.0030	8760	26.32	0.013
Toluene	4.09E-04	2.86E-06	460	0.0013	8760	11.54	0.0058
Xylenes	2.85E-04	2.00E-06	460	9.18E-04	8760	8.04	0.0040
Acrolein	9.25E-05	6.48E-07	460	2.98E-04	8760	2.61	0.0013
Formaldehyde	0.0012	8.26E-06	460	0.0038	8760	33.28	0.017
Acetaldehyde	7.67E-04	5.37E-06	460	0.0025	8760	21.63	0.0108
Total HAPs	0.0038	2.65328E-05	460	0.012	8760	106.92	0.053

CONTROLLED HAP EMISSIONS: 500 Hours of Operation per Year

Dellutent	Emis. Factor	Emis. Factor	Engine Power	Emissions Rate	Annual Operation	Annual Emissions	Annual Emissions
Pollularit	(lb/MMBtu)	(lb/hp-hr) ²	(hp)	(lb/hr)	(hr/yr)	(lb/yr)	(ton/yr)
Benzene	9.33E-04	6.53E-06	460	0.0030	500	1.50	7.51E-04
Toluene	4.09E-04	2.86E-06	460	0.0013	500	0.66	3.29E-04
Xylenes	2.85E-04	2.00E-06	460	9.18E-04	500	0.46	2.29E-04
Acrolein	9.25E-05	6.48E-07	460	2.98E-04	500	0.15	7.45E-05
Formaldehyde	0.0012	8.26E-06	460	0.0038	500	1.90	9.50E-04
Acetaldehyde	7.67E-04	5.37E-06	460	0.0025	500	1.23	6.17E-04
Total HAPs	0.0038	2.65E-05	460	0.012	500	6.10	0.0031

Notes: ¹ The TOC emissions factor includes emissions from "exhaust" and "crankcase". ² Average BSFC of 7,000 Btu/hp-hr from AP-42 Section 3.3 to convert AP-42 3.3-1&2 emission factors from lb/MMBtu to lb/hp-hr.

GHG Emissions

P-	521	P-	521A	P	-526		
Total Uncontrolled Fuel Usage	183084 gallons/yr	Total Uncontrolled Fuel Usage	209676 gallons/yr	Total Uncontrolled Fuel Usage	277293.9 gallons/yr		
Total Controlled Fuel Usage	10450 gallons/year	Total Controlled Fuel Usage	11968 gallons/year	Total Controlled Fuel Usage	15827.28 gallons/year		
HHV	0.091 MMBtu/gal	HHV	0.091 MMBtu/gal	HHV	0.091 MMBtu/gal		
CO ₂ Emission Factor	61.46 kg CO ₂ /MMBtu	CO ₂ Emission Factor	61.46 kg CO ₂ /MMBtu	CO ₂ Emission Factor	61.46 kg CO ₂ /MMBtu		
CH ₄ Emission Factor	0.003 kg CH ₄ /MMBtu	CH ₄ Emission Factor	0.003 kg CH₄/MMBtu	CH ₄ Emission Factor	0.003 kg CH₄/MMBtu		
NO ₂ Emission Factor	0.006 kg N ₂ O/ MMBtu	NO ₂ Emission Factor	0.006 kg N ₂ O/ MMBtu	NO ₂ Emission Factor	0.006 kg N ₂ O/ MMBtu		
Controlled Emissions		Controlle	d Emissions	Controlle	Controlled Emissions		
Amount of CO ₂	58445.4 kg CO ₂ /yr	Amount of CO ₂	66934.3 kg CO ₂ /yr	Amount of CO ₂	88519.8 kg CO ₂ /yr		
Amount of CH₄	2.9 kg CH₄/yr	Amount of CH ₄	3.3 kg CH₄/yr	Amount of CH ₄	4.3 kg CH₄/yr		
Amount N ₂ O	5.7 kg N ₂ O/yr	Amount N ₂ O	6.5 kg N ₂ O/yr	Amount N ₂ O	8.6 kg N ₂ O/yr		
Amount of CO ₂	57.52 tons CO ₂ /yr	Amount of CO ₂	65.88 tons CO ₂ /yr	Amount of CO ₂	87.12 tons CO ₂ /yr		
Amount of CH ₄	2.81E-03 tons CH ₄ /yr	Amount of CH ₄	3.22E-03 tons CH ₄ /yr	Amount of CH ₄	4.25E-03 tons CH ₄ /yr		
Amount N ₂ O	5.62E-03 tons N_2O/yr	Amount N ₂ O	6.43E-03 tons N ₂ O/yr	Amount N ₂ O	8.51E-03 tons N ₂ O/yr		
Total CO ₂ e	59.27 CO ₂ e/yr	Total CO₂e	67.87 CO2e/yr	Total CO ₂ e	89.76 CO ₂ e/yr		

GWP ¹	
CO ₂ (tons/yr)	1
CH ₄ (tons/yr)	25
N ₂ 0 (tons/yr)	298
1	

¹GWP (Global Warming Potential) taken from 40 CFR 98

SSM Emissions Summary Table

		Hourly Emissions (lbs/hr)					Annual Emissions (TPY)									
Source		NOx	SO_2	со	PM	PM_{10}	VOC	H_2S		NOx	SO_2	со	PM	PM_{10}	VOC	H_2S
Vacuum Truck							1.53								0.79	
Sandblasting					2.36	0.56							0.30	0.59		
Surface Coating*					1.31	1.31	13.44						0.03	0.03	0.27	
Tank Degassing*							15.37								2.21	
Tank Cleaning*							0.01								0.02	
Tank Landing and Refilling*							110.64								1.66	
Boiler Startup ¹				3.53								1.77E-03				
Drum Cleaning							0.027								4.08E-05	
Salt Loading					0.35	0.35							5.22E-04	5.22E-04		
Small Equipment							5.17E-04	9.42E-05							2.25E-04	1.17E-05
	TOTALS	0.00	0.00	3.53		2.22	141.02	9.42E-05		0.00	0.00	1.77E-03		0.62	4.95	1.17E-05
Requested	Allowable								10	10	10	10		10	9	

*The worst case emissions in any tank are selected

¹ Modeling not required because this value does not exceed permitted limit

Table B-4 Abrasive Usage for Tank Cleaning [1]

Maximum Usage (ton/hr)	0.2
Annual Usage (tons/yr)	50

¹ Annual usage provided by Bloomfield 11/2011.

Table B-5 Short-Term Hourly Storage Abrasive Blasting Emissions [1]

Tank Number	PM	PM ₁₀
	(lb/hr)	(lb/hr)
FixedTanks	2.36	0.56
FloatTanks	2.36	0.56

Covers abrasive blasting performed on storage tanks .

Table B-6 Annual Storage Tank Abrasive Blasting Emissions [1]

Tank Number	PM	PM ₁₀
	(tpy)	(tpy)
FixedTanks	0.30	0.07
FloatTanks	0.30	0.07

¹ Covers abrasive blasting performed on storage tanks .

Table B-7. Surface Coating Composition Data [1,2]

Application	VOC Weight Percent	Solids Weight Percent ²	Density	VOC Content	PM Content
	(wt. %)	(wt %)	(lb/gal)	(lb/gal)	(lb/gal)
Standard Industrial Enamel	40	20	10.00	4.00	2.00
Cleaning Solvent	100	0	7.5	7.50	0.00
450H White Resin	20	20	13.11	2.62	2.62
450H Cure	37	20	8.60	3.18	1.72
2/400 White Resin	5	20	12.77	0.64	2.55
400 Cure	35	20	11.67	4.09	2.33
Worst Case	37	20	13.11	4.09	2.62
Tank Surface Coating Operations		20	13.11	3.50	2.62

¹ The VOC limit for tank surface coating operations is specified in 30 TAC 115.421(a)(9)(iv) (surface coating VOC limits for miscellaneous metal parts and products - high-performance coating

applications).

Per the definition in 30 TAC 115.420(b)(7)(C), extreme performance coatings are defined as coatings are subject to continuous outdoor exposure, which would be the case for storage tank coatings.

² Per engineering judgement after internet review of typical solids content

Table B-8. Tank Surface Coating Schedule

	Number of
Year	Tanks to be
	Painted
2011	1
2012	1
2013	1

^a Trinity conservative assumption that all tanks in service will be painted each year.

Table B-9 Surface Coating Usage Data [1,2,3]

Average Volume of Paint Used Per Tank (gal)	100
Total Estimated Volume of Paint Purchased for Routine Painting (gal/yr)	300
Approximate Solvent Usage per Amount of Paint (%)	25

¹ Approximate tank surface coating usage information was estimated by Randy Schmaltz. Estimate is based on Historic and predicted use.

² Total volume of coatings used in routine surface coating operations was estimated at 100 gallons per tank, 1 tanks per year.

³ Solvent usage is assumed to be approximately 25% of coating usage on average.

Table B-10. Surface Coating Application Data [1, 2]			
Transfer Efficiency (%)	80		
Maximum Paint Usage for Tank Surface Coating (gal/hr)	2.5		
Daily Paint Usage for Tank Surface Coating (gal/day)	20		

¹ For airless application to an approximately flat surface, a transfer efficiency of 80% is obtained from Table 1 of TCEQ, Air Permit Technical Guidance

for Coatings Sources, Surface Coating Operations, April 2001. However, as a conservative approach, the above transfer efficiency is used

in the calculations based on process experience with other spray coating industries.

² It is conservatively assumed that the duration of time required to paint a single tank is approximately 1 week, at 8 hours per day.

It is also conservatively estimated that surface coating would be applied to 1 tank in the refinery at any given time since only paint one tank per year.

Table B-11 Short-Term Hourly Tank Surface Coating Emissions [1]

	Tank I	Painting	Sol	vent	VOC	PM ₁₀
Year	VOC	PM_{10}	VOC	PM_{10}		l
	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)
2011	8.75	1.31	4.69	-	13.44	1.31
2012	8.75	1.31	4.69	-	13.44	1.31
2013	8.75	1.31	4.69	-	13.44	1.31
Future	8.75	1.31	4.69	-	13.44	1.31

¹ The worst case VOC speciation fractions are used for emission calculations of VOC species.

Table B-12 Daily Tank Surface Coating Emissions [1]

	Tank Painting		Solvent		VOC	PM ₁₀	VOC	PM ₁₀
Year	VOC	PM_{10}	VOC	PM_{10}				
	(lb/day)	(lb/day)	(lb/day)	(lb/day)	(lb/day)	(lb/day)	(lb/hr)	(lb/hr)
2011	70.00	10.49	37.50	-	107.50	10.49	4.48	0.44
2012	70.00	10.49	37.50	-	107.50	10.49	4.48	0.44
2013	70.00	10.49	37.50	-	107.50	10.49	4.48	0.44
Future	70.00	10.49	37.50	-	107.50	10.49	4.48	0.44

¹ The worst case VOC speciation fractions are used for emission calculations of VOC species.

Table B-13. Annual Tank Surface Coating Emissions [1]

		ainting	Sol	vent	VOC	PM ₁₀
Year	VOC	PM_{10}	VOC	PM_{10}		
	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)
2011	0.18	0.03	0.09	-	0.27	0.03
2012	0.18	0.03	0.09	-	0.27	0.03
2013	0.18	0.03	0.09	-	0.27	0.03
Future	0.18	0.03	0.09	-	0.27	0.03

¹ The worst case VOC speciation fractions are used for emission calculations of VOC species.

Section 7

Information Used To Determine Emissions

Information Used to Determine Emissions shall include the following:

- ☑ If manufacturer data are used, include specifications for emissions units <u>and</u> control equipment, including control efficiencies specifications and sufficient engineering data for verification of control equipment operation, including design drawings, test reports, and design parameters that affect normal operation.
- □ If test data are used, include a copy of the complete test report. If the test data are for an emissions unit other than the one being permitted, the emission units must be identical. Test data may not be used if any difference in operating conditions of the unit being permitted and the unit represented in the test report significantly effect emission rates.
- ☑ If the most current copy of AP-42 is used, reference the section and date located at the bottom of the page. Include a copy of the page containing the emissions factors, and clearly mark the factors used in the calculations.
- □ If an older version of AP-42 is used, include a complete copy of the section.
- \blacksquare If an EPA document or other material is referenced, include a complete copy.
- □ Fuel specifications sheet.
- □ If computer models are used to estimate emissions, include an input summary (if available) and a detailed report, and a disk containing the input file(s) used to run the model. For tank-flashing emissions, include a discussion of the method used to estimate tank-flashing emissions, relative thresholds (i.e., permit or major source (NSPS, PSD or Title V)), accuracy of the model, the input and output from simulation models and software, all calculations, documentation of any assumptions used, descriptions of sampling methods and conditions, copies of any lab sample analysis.

The following information was used to determine emissions for the boiler, truck loading rack/unloading operations, fugitives, storage tanks, API separator, benzene strippers, SSM, and emergency fire water pumps:

Boiler (B-502A)

- Manufacturer's estimated emissions data
- AP-42 Tables 1.4-2, 1.4-3 and 1.4-4
- Ventura County AB 2588 Combustion Emission Factors, May 2001

Truck Loading Rack (TLR-1) with Vapor Recovery Unit (VRU)

• U.S. EPA AP-42, 5th Edition, Section 5.2, Transportation and Marketing of Petroleum Liquids, July 2008

Fugitives (F-1)

• U.S. EPA-453 /R-95-017, EPA Protocol for Equipment Leak Emission Estimates, November 1995

Tank Emissions (EG-1)

• Tanks 4.0.9d

API Separator (API)

• U.S. EPA AP-42, 5th Edition, Section 5.1, Petroleum Refining, January 1995

Emergency Fire Water Pumps (P-521, P-521A, and P-526)

- P-521 & P-521A
 - o Manufacture Exhaust Emission Data Sheet
 - 0 U.S. EPA AP-42 5th Edition, Section 3.3, Gasoline & Diesel Industrial Engines, October 1995, Table 3.3-2
- P-526
 - o U.S. EPA AP-42 5th Edition, Section 3.3, Gasoline & Diesel Industrial Engines, October 1995, Table 3.3-1
 - U.S. EPA AP-42 5th Edition, Section 3.3, *Gasoline & Diesel Industrial Engines*, October 1995, Table 3.3-2
 - o Diesel Service & Supply Inc., Approximate Fuel Consumption Chart

Startup, Shutdown, and Maintenance (SSM)

- TCEQ, Abrasive Blast Cleaning, Guidance Document RG-169, March 2001
- TCEQ, Painting Basics and Emission Calculations for TCEQ Air Quality Permit Applications, October 2006

Estimated Emissions - HDS and HDSX Burners

The following emissions apply to all HDS and HDSX burners from 200 to 1200 hp firing the fuels shown and at the emission levels indicated.

Estimated Emission Levels Firing Natural Gas							
Dolly	tant	Model HDS	Model HDSX				
Pollutant		NO FGR	60 ppm	20 ppm			
NOx ^(B)	ppm lb/mmbtu	100 0.12	60 0.07	30 0.035	25 0.03	20 0.024	
$\mathbf{CO}^{(\mathbf{A})}$	ppm	200	200 ^(A)	200 ^(A)	200 ^(A)	200 ^(A)	
	lb/mmbtu	0.15	0.15 ^(A)	0.15 ^(A)	0.15 ^(A)	0.15 ^(A)	
SO _v (C)	ppm	1	1	1	1	1	
501	lb/mmbtu	0.001	0.001	0.001	0.001	0.001	
	ppm	40	40	40	40	40	
	lb/mmbtu	0.016	0.016	0.016	0.016	0.016	
рм	ppm	na	na	na	na	na	
T IVI	lb/mmbtu	0.01	0.01	0.01	0.01	0.01	

Estimated Emission Levels Firing #2 Oil ^(D)							
Della	tont	Model HDS	Model HDSX				
Pollutant		NO FGR	60 ppm	20 ppm			
NOx ^(B)	ppm	185	185	140	140	140	
	lb/mmbtu	0.25	0.25	0.176	0.176	0.176	
CO ^(A)	ppm	90	90	90	90	90	
	lb/mmbtu	0.07	0.07	0.07	0.07	0.07	
SOx (C)	ppm	278	278	278	278	278	
	lb/mmbtu	0.52	0.52	0.52	0.52	0.52	
HC / VOC	ppm	50	60	60	60	60	
	lb/mmbtu	0.025	0.03	0.03	0.03	0.03	
РМ	ppm	na	na	na	na	na	
	lb/mmbtu	0.025	0.025	0.025	0.025	0.025	

Assumption sued for above (Contact Webster if different assumptions required)

- A. CO varies with firing rate. Lower levels available, contact sales.
- B. The ppm levels are corrected to 3% Oxygen (15% excess air) and dry volume basis.
- C. Maximum sulfur in natural gas is 0.0006% wt.
- D. ASTM #2 fuel, 0.05% Nitrogen, 0.5% Sulfur and 0.01% Ash (% by weight).
- E. All levels are above backround (ambient) conditions.
- F. Emission levels are based on a properly maintained and tuned burner.

Proprietary & Confidential

Pollutant	Emission Factor (lb/10 ⁶ scf)	Emission Factor Rating
CO ₂ ^b	120,000	А
Lead	0.0005	D
N ₂ O (Uncontrolled)	2.2	Е
N ₂ O (Controlled-low-NO _X burner)	0.64	Е
PM (Total) ^c	7.6	D
PM (Condensable) ^c	5.7	D
PM (Filterable) ^c	1.9	В
SO_2^d	0.6	А
ТОС	11	В
Methane	2.3	В
VOC	5.5	С

TABLE 1.4-2.EMISSION FACTORS FOR CRITERIA POLLUTANTS AND GREENHOUSE
GASES FROM NATURAL GAS COMBUSTION^a

^a Reference 11. Units are in pounds of pollutant per million standard cubic feet of natural gas fired. Data are for all natural gas combustion sources. To convert from $lb/10^6$ scf to $kg/10^6$ m³, multiply by 16. To convert from $lb/10^6$ scf to 1b/MMBtu, divide by 1,020. The emission factors in this table may be converted to other natural gas heating values by multiplying the given emission factor by the ratio of the specified heating value to this average heating value. TOC = Total Organic Compounds. VOC = Volatile Organic Compounds.

^b Based on approximately 100% conversion of fuel carbon to CO₂. $CO_2[lb/10^6 \text{ scf}] = (3.67)$ (CON) (C)(D), where CON = fractional conversion of fuel carbon to CO₂, C = carbon content of fuel by weight (0.76), and D = density of fuel, $4.2 \times 10^4 \text{ lb}/10^6 \text{ scf}$.

^c All PM (total, condensible, and filterable) is assumed to be less than 1.0 micrometer in diameter. Therefore, the PM emission factors presented here may be used to estimate PM₁₀, PM_{2.5} or PM₁ emissions. Total PM is the sum of the filterable PM and condensible PM. Condensible PM is the particulate matter collected using EPA Method 202 (or equivalent). Filterable PM is the particulate matter collected on, or prior to, the filter of an EPA Method 5 (or equivalent) sampling train.

^d Based on 100% conversion of fuel sulfur to SO₂. Assumes sulfur content is natural gas of 2,000 grains/10⁶ scf. The SO₂ emission factor in this table can be converted to other natural gas sulfur contents by multiplying the SO₂ emission factor by the ratio of the site-specific sulfur content (grains/10⁶ scf) to 2,000 grains/10⁶ scf.

TABLE 1.4-3. EMISSION FACTORS FOR SPECIATED ORGANIC COMPOUNDS FROM NATURAL GAS COMBUSTION (Continued)

Emission Factor CAS No. Pollutant $(lb/10^{6} \text{ scf})$ Emission Factor Rating 2-Methylnaphthalene^{b, c} 91-57-6 2.4E-05 D 3-Methylchloranthrene^{b, c} 56-49-5 Е <1.8E-06 7.12-E <1.6E-05 Dimethylbenz(a)anthracene^{b,c} Acenaphthene^{b,c} 83-32-9 <1.8E-06 E Acenaphthylene^{b,c} 203-96-8 Е <1.8E-06 Anthracene^{b,c} 120-12-7 Е <2.4E-06 56-55-3 Benz(a)anthracene^{b,c} Е <1.8E-06 Benzene^b 71-43-2 2.1E-03 В 50-32-8 Benzo(a)pyrene^{b,c} Е <1.2E-06 Benzo(b)fluoranthene^{b,c} 205-99-2 Е <1.8E-06 Benzo(g,h,i)perylene^{b,c} Е 191-24-2 <1.2E-06 Benzo(k)fluoranthene^{b,c} 207-08-9 Е <1.8E-06 106-97-8 Butane 2.1E+00 Ε Chrysene^{b,c} 218-01-9 Ε <1.8E-06 Dibenzo(a,h)anthracene^{b,c} 53-70-3 Е <1.2E-06 Dichlorobenzene^b Е 25321-22-1.2E-03 6 74-84-0 Ethane 3.1E+00 E Fluoranthene^{b,c} 206-44-0 3.0E-06 E 86-73-7 Fluorene^{b,c} 2.8E-06 E 50-00-0 Formaldehyde^b 7.5E-02 В Hexane^b 110-54-3 1.8E+00E 193-39-5 Indeno(1,2,3-cd)pyrene^{b,c} E <1.8E-06 Naphthalene^b 91-20-3 Е 6.1E-04 109-66-0 Pentane Е 2.6E+00 Phenanathrene^{b,c} 85-01-8 1.7E-05 D 74-98-6 Propane 1.6E+00 Е

TABLE 1.4-3. EMISSION FACTORS FOR SPECIATED ORGANIC COMPOUNDS FROM NATURAL GAS COMBUSTION^a

TABLE 1.4-3. EMISSION FACTORS FOR SPECIATED ORGANIC COMPOUNDS FROM

CAS No.	Pollutant	Emission Factor (lb/10 ⁶ scf)	Emission Factor Rating
129-00-0	Pyrene ^{b, c}	5.0E-06	Е
108-88-3	Toluene ^b	3.4E-03	С

NATURAL GAS COMBUSTION (Continued)

^a Reference 11. Units are in pounds of pollutant per million standard cubic feet of natural gas fired. Data are for all natural gas combustion sources. To convert from lb/10⁶ scf to kg/10⁶ m³, multiply by 16. To convert from 1b/10⁶ scf to lb/MMBtu, divide by 1,020. Emission Factors preceeded with a less-than symbol are based on method detection limits.

^b Hazardous Air Pollutant (HAP) as defined by Section 112(b) of the Clean Air Act.

^c HAP because it is Polycyclic Organic Matter (POM). POM is a HAP as defined by Section 112(b) of the Clean Air Act.

^d The sum of individual organic compounds may exceed the VOC and TOC emission factors due to differences in test methods and the availability of test data for each pollutant.

CAS No.	Pollutant	Emission Factor (lb/10 ⁶ scf)	Emission Factor Rating
7440-38-2	Arsenic ^b	2.0E-04	Е
7440-39-3	Barium	4.4E-03	D
7440-41-7	Beryllium ^b	<1.2E-05	Е
7440-43-9	Cadmium ^b	1.1E-03	D
7440-47-3	Chromium ^b	1.4E-03	D
7440-48-4	Cobalt ^b	8.4E-05	D
7440-50-8	Copper	8.5E-04	С
7439-96-5	Manganese ^b	3.8E-04	D
7439-97-6	Mercury ^b	2.6E-04	D
7439-98-7	Molybdenum	1.1E-03	D
7440-02-0	Nickel ^b	2.1E-03	С
7782-49-2	Selenium ^b	<2.4E-05	Е
7440-62-2	Vanadium	2.3E-03	D
7440-66-6	Zinc	2.9E-02	Е

TABLE 1.4-4. EMISSION FACTORS FOR METALS FROM NATURAL GAS COMBUSTION^a

^a Reference 11. Units are in pounds of pollutant per million standard cubic feet of natural gas fired. Data are for all natural gas combustion sources. Emission factors preceeded by a less-than symbol are based on method detection limits. To convert from lb/10⁶ scf to kg/10⁶ m³, multiply by l6. To convert from lb/10⁶ scf to 1b/MMBtu, divide by 1,020.
^b Hazardous Air Pollutant as defined by Section 112(b) of the Clean Air Act.

VENTURA COUNTY AIR POLLUTION CONTROL DISTRICT

669 County Square Drive, Ventura CA 93003 805/ 645-1401 FAX 805/ 645-1444 www.vcapcd.org

AB 2588 COMBUSTION EMISSION FACTORS

Emission factors for combustion of natural gas and diesel fuel were developed for use in AB 2588 emission inventory reports in 1990 and updated in 1991, 1992 and 1995. These factors have been updated again based on new data available from the USEPA (1) (10).

These emission factors are to be used where source testing or fuel analysis are not required by the AB 2588 Criteria and Guidelines Regulations, Appendix D. The factors are divided into external combustion sources (boilers, heaters, flares) and internal combustion sources (engines, turbines). Natural gas combustion factors are further divided into a number of sub-categories, based on equipment size and type.

If better source specific data such as manufacturer's data, source tests, or fuel analysis is available, it should be used rather than these emission factors.

Natural Gas Combustion Factors

Natural gas combustion factors were developed for listed substances identified by the California Air Resources Board (CARB) as significant components of natural gas combustion emissions (2) and for some federal HAPs.

In the past, the VCAPCD has included emission factors for natural gas fired internal combustion equipment in this document. In 2000, the USEPA published air toxics emission factors for natural gas fired turbines and engines. For natural gas fired internal combustion equipment, the emission factors from the USEPA publication AP-42 (1) should be used.

For natural gas fired turbines, emission factors from Table 3.1-3 of AP-42, dated April 2000 should be used. For natural gas fired internal combustion engines, emission factors from Tables 3.2-1, 3.2-2, and 3.2-3 of AP-42, dated August 2000, as applicable, should be used.

	<10 MMBTUh	10-100 MMBTUh	>100 MMBTUh	flare						
Pollutant	Emissions (lb/MMcf)									
benzene	0.0080	0.0058	0.0017	0.159						
formaldehyde	0.0170	0.0123	0.0036	1.169						
PAH's (including naphthalene)	0.0004	0.0004	0.0004	0.014						
naphthalene	0.0003	0.0003	0.0003	0.011						
acetaldehyde	0.0043	0.0031	0.0009	0.043						
acrolein	0.0027	0.0027	0.0008	0.010						
propylene	0.7310	0.5300	0.01553	2.440						
toluene	0.0366	0.0265	0.0078	0.058						
xylenes	0.0272	0.0197	0.0058	0.029						
ethyl benzene	0.0095	0.0069	0.0020	1.444						
hexane	0.0063	0.0046	0.0013	0.029						

Natural Gas Fired External Combustion Equipment

TANKS 4.0.9d Emissions Report - Detail Format Tank Indentification and Physical Characteristics

Identification

T-3 Bloomfield New Mexico San Juan Refining External Floating Roof Tank Premium Gasoline
41.00 393,330.00 101.70
Light Rust White/White Good
Pontoon Typical
m Welded Liquid-mounted Weather Shield

Deck Fitting/Status

Quantity

Access Hatch (24-in. Diam.)/Bolted Cover, Gasketed	1
Automatic Gauge Float Well/Unbolted Cover, Ungasketed	1
/acuum Breaker (10-in. Diam.)/Weighted Mech. Actuation, Gask.	1
Jnslotted Guide-Pole Well/Ungasketed Sliding Cover	1
Gauge-Hatch/Sample Well (8-in. Diam.)/Weighted Mech. Actuation, Gask.	1
Roof Leg (3-in. Diameter)/Adjustable, Pontoon Area, Ungasketed	4
Roof Leg (3-in. Diameter)/Adjustable, Center Area, Ungasketed	4

Meterological Data used in Emissions Calculations: Bloomfield, New Mexico (Avg Atmospheric Pressure = 11.9 psia)

TANKS 4.0.9d

Emissions Report - Detail Format

Liquid Contents of Storage Tank

T-3 - External Floating Roof Tank Bloomfield, New Mexico

		Da Tem	aily Liquid S perature (d	urf. eg F)	Liquid Bulk Temp	Vapo	r Pressure	(psia)	Vapor Mol.	Liquid Mass	Vapor Mass	Mol.	Basis for Vapor Pressure
Mixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations
Gasoline (premium base blend) - Bloomfield	All	54.58	46.99	62.17	52.22	5.0870	N/A	N/A	67.0000			88.00	Option 4: RVP=10.8, ASTM Slope=3
1,2,4-Trimethylbenzene						0.0164	N/A	N/A	120.1900	0.0149	0.0001	120.19	Option 2: A=7.04383, B=1573.267, C=208.56
1-Butene Surrogate (Iso-C5 base)						0.1000	N/A	N/A	56.1000	0.0006	0.0000	56.10	Option 1: VP50 = .1 VP60 = .1
1-Pentene						7.7168	N/A	N/A	70.1400	0.0051	0.0102	70.14	Option 2: A=6.8442, B=1044.01, C=233.5
2,2,4-Trimethylpentane						0.5086	N/A	N/A	114.2300	0.0029	0.0004	114.23	Option 2: A=6.8118, B=1257.84, C=220.74
2-Methyl-1-butene						3.9857	N/A	N/A	70.1300	0.0106	0.0109	70.13	Option 2: A=6.4863, B=1039.69, C=236.65
2-Pentene						5.6874	N/A	N/A	70.1400	0.0194	0.0285	70.14	Option 1: VP50 = 5 VP60 = 6.5
3-Methyl-1-Butene Surrogate (IC5)						0.1000	N/A	N/A	70.1000	0.0019	0.0000	70.10	Option 1: VP50 = .1 VP60 = .1
Benzene						1.0030	N/A	N/A	78.1100	0.0168	0.0044	78.11	Option 2: A=6.905, B=1211.033, C=220.79
Butane Surrogate (Iso-C5 base)						0.1000	N/A	N/A	58.1000	0.0434	0.0011	58.10	Option 1: VP50 = .1 VP60 = .1
Cis-2-Butene Surrogate (Iso-C5)						0.1000	N/A	N/A	56.1000	0.0034	0.0001	56.10	Option 1: VP50 = .1 VP60 = .1
Cyclohexane						1.0441	N/A	N/A	84.1600	0.0180	0.0049	84.16	Option 2: A=6.841, B=1201.53, C=222.65
Ethylbenzene						0.0897	N/A	N/A	106.1700	0.0080	0.0002	106.17	Option 2: A=6.975, B=1424.255, C=213.21
Hexane (-n)						1.6589	N/A	N/A	86.1700	0.0412	0.0176	86.17	Option 2: A=6.876, B=1171.17, C=224.41
Isobutane Surrogate(Iso-C5 base)						0.1000	N/A	N/A	58.1000	0.0293	0.0008	58.10	Option 1: VP50 = .1 VP60 = .1
Isobutene Surrogate (Iso-C5 base)						0.1000	N/A	N/A	56.1000	0.0006	0.0000	56.10	Option 1: VP50 = .1 VP60 = .1
Isopentane						8.8587	N/A	N/A	72.1500	0.1098	0.2511	72.15	Option 1: VP50 = 7.889 VP60 = 10.005
Isopropyl benzene						0.0416	N/A	N/A	120.2000	0.0004	0.0000	120.20	Option 2: A=6.963, B=1460.793, C=207.78
Naphthalene						0.0019	N/A	N/A	128.0000	0.0013	0.0000	128.00	Option 1: VP50 = .0015 VP60 = .0024
Pentane (-n)						6.0535	N/A	N/A	72.1500	0.0588	0.0919	72.15	Option 3: A=27691, B=7.558
Propane Surrogate (Iso-C5 base)						0.1000	N/A	N/A	44.1000	0.0033	0.0001	44.10	Option 1: VP50 = .1 VP60 = .1
Propylene Surrogate (Iso-C5 base)						0.1000	N/A	N/A	44.1000	0.0001	0.0000	44.10	Option 1: VP50 = .1 VP60 = .1
Toluene						0.2783	N/A	N/A	92.1300	0.0551	0.0040	92.13	Option 2: A=6.954, B=1344.8, C=219.48
Trans-2-Butene Surrogate (iso-C5)						0.1000	N/A	N/A	56.1000	0.0026	0.0001	56.10	Option 1: VP50 = .1 VP60 = .1
Unidentified Components						7.3806	N/A	N/A	63.2842	0.4940	0.5726	104.04	
Xylene (-m)						0.0745	N/A	N/A	106.1700	0.0585	0.0011	106.17	Option 2: A=7.009, B=1462.266, C=215.11

TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

T-3 - External Floating Roof Tank Bloomfield, New Mexico

Annual Emission Calcaulations	
Rim Seal Losses (lb):	2,206.7503
Seal Factor A (lb-mole/ft-yr):	0.7000
Seal Factor B (lb-mole/ft-yr (mph)^n):	0.3000
Average Wind Speed (mph):	10.6000
Seal-related Wind Speed Exponent:	1.2000
Value of Vapor Pressure Function: Vapor Pressure at Daily Average Liquid	0.1385
Surface Temperature (psia):	5.0870
Tank Diameter (ft):	41.0000
Vapor Molecular Weight (lb/lb-mole):	67.0000
Product Factor:	1.0000
Withdrawal Losses (lb):	199.4429
Annual Net Throughput (gal/yr.):	40,000,000.0000
Shell Clingage Factor (bbl/1000 sqft):	0.0015
Average Organic Liquid Density (lb/gal):	6.0700
Tank Diameter (ft):	41.0000
Roof Fitting Losses (lb):	24,267.9899
Value of Vapor Pressure Function:	0.1385
Vapor Molecular Weight (lb/lb-mole):	67.0000
Product Factor:	1.0000
Tot. Roof Fitting Loss Fact.(lb-mole/yr):	2,614.6915
Average Wind Speed (mph):	10.6000
Total Losses (Ib):	26 67/ 1831

Roof Fitting/Status	Quantity	KFa(lb-mole/yr)	Roof Fitting Loss Factors KFb(lb-mole/(yr mph^n))	m	Losses(lb)
Access Hatch (24-in. Diam.)/Bolted Cover, Gasketed	1	1.60	0.00	0.00	14.8502
Automatic Gauge Float Well/Unbolted Cover, Ungasketed	1	14.00	5.40	1.10	584.3532
Vacuum Breaker (10-in. Diam.)/Weighted Mech. Actuation, Gask.	1	6.20	1.20	0.94	130.8228
Unslotted Guide-Pole Well/Ungasketed Sliding Cover	1	31.00	150.00	1.40	23,316.4579
Gauge-Hatch/Sample Well (8-in. Diam.)/Weighted Mech. Actuation, Gask.	1	0.47	0.02	0.97	5.6592
Roof Leg (3-in, Diameter)/Adjustable, Pontoon Area, Ungasketed	4	2.00	0.37	0.91	159.3537
Roof Leg (3-in. Diameter)/Adjustable, Center Area, Ungasketed	4	0.82	0.53	0.14	56.4929

TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: Annual

T-3 - External Floating Roof Tank Bloomfield, New Mexico

	Losses(lbs)								
Components	Rim Seal Loss	Withdrawl Loss	Deck Fitting Loss	Deck Seam Loss	Total Emissions				
Gasoline (premium base blend) - Bloomfield	2,206.75	199.44	24,267.99	0.00	26,674.18				
Isopentane	554.21	21.90	6,094.79	0.00	6,670.90				
1-Pentene	22.42	1.02	246.60	0.00	270.04				
2-Methyl-1-butene	24.07	2.11	264.73	0.00	290.91				
Pentane (-n)	202.81	11.73	2,230.34	0.00	2,444.88				
2-Pentene	62.87	3.87	691.36	0.00	758.09				
Hexane (-n)	38.94	8.22	428.26	0.00	475.42				
Benzene	9.60	3.35	105.58	0.00	118.54				
Cyclohexane	10.71	3.59	117.76	0.00	132.06				
2,2,4-Trimethylpentane	0.84	0.58	9.24	0.00	10.66				
Toluene	8.74	10.99	96.08	0.00	115.80				
Ethylbenzene	0.41	1.60	4.49	0.00	6.50				
Xylene (-m)	2.48	11.67	27.31	0.00	41.47				
Isopropyl benzene	0.01	0.08	0.10	0.00	0.19				
1,2,4-Trimethylbenzene	0.14	2.97	1.53	0.00	4.64				
Naphthalene	0.00	0.26	0.02	0.00	0.28				
Propane Surrogate (Iso-C5 base)	0.19	0.66	2.07	0.00	2.91				
Isobutane Surrogate(Iso-C5 base)	1.67	5.84	18.36	0.00	25.87				
1-Butene Surrogate (Iso-C5 base)	0.03	0.12	0.38	0.00	0.53				
Butane Surrogate (Iso-C5 base)	2.47	8.66	27.19	0.00	38.32				
Trans-2-Butene Surrogate (iso-C5)	0.15	0.52	1.63	0.00	2.30				

Cis-2-Butene Surrogate (Iso- C5)	0.19	0.68	2.13	0.00	3.00
3-Methyl-1-Butene Surrogate (IC5)	0.11	0.38	1.19	0.00	1.68
Propylene Surrogate (Iso-C5 base)	0.01	0.02	0.06	0.00	0.09
Isobutene Surrogate (Iso-C5 base)	0.03	0.12	0.38	0.00	0.53
Unidentified Components	1,263.64	98.52	13,896.41	0.00	15,258.57

TANKS 4.0 Report

TANKS 4.0.9d **Emissions Report - Detail Format Tank Indentification and Physical Characteristics**

Identification							
User Identification:	T-4						
City:	Bloomfield						
State:	New Mexico						
Company:	San Juan Refining						
Type of Tank:	External Floating Roof Tank						
Description:	Premium Gasoline						
Tank Dimensions							
Diameter (ft):	41.00						
Volume (gallons):	393.330.00						
Turnovers:	101.70						
Paint Characteristics							
Internal Shell Condition:	Light Rust						
Shell Color/Shade:	White/White						
Shell Condition	Good						
Roof Characteristics							
Type:	Pontoon						
Fitting Category	Typical						
Tank Construction and Rim-Seal	System						
Construction:	Welded						
Primary Seal:	Liquid-mounted						
Secondary Seal	Weather Shield						
Deck Fitting/Status		Quantity					
Access Hatch (24-in. Diam.)/Bolted	Cover, Gasketed	1					
Automatic Gauge Float Well/Unbolt	1						
Vacuum Breaker (10-in. Diam.)/We	1						
Unslotted Guide-Pole Well/Ungasketed Sliding Cover							
Gauge-Hatch/Sample Well (8-in. Di	iam.)/Weighted Mech. Actuation, Gask.	1					
Roof Leg (3-in. Diameter)/Adjustab	le, Pontoon Area, Ungasketed	4					
Roof Leg (3-in. Diameter)/Adjustab	le, Center Area, Ungasketed	4					

Meterological Data used in Emissions Calculations: Bloomfield, New Mexico (Avg Atmospheric Pressure = 11.9 psia)

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

T-4 - External Floating Roof Tank Bloomfield, New Mexico

		Da Temj	ily Liquid Si perature (de	urf. ∋g F)	Liquid Bulk Temp	Vapor	r Pressure	(psia)	Vapor Mol.	Liquid Mass	Vapor Mass	Mol.	Basis for Vapor Pressure
Mixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations
Gasoline (premium base blend) - Bloomfield	All	54.58	46.99	62.17	52.22	5.0870	N/A	N/A	67.0000			88.00	Option 4: RVP=10.8, ASTM Slope=3
1,2,4-Trimethylbenzene						0.0164	N/A	N/A	120.1900	0.0149	0.0001	120.19	Option 2: A=7.04383, B=1573.267, C=208.56
1-Butene Surrogate (Iso-C5 base)						0.1000	N/A	N/A	56.1000	0.0006	0.0000	56.10	Option 1: VP50 = .1 VP60 = .1
1-Pentene						7.7168	N/A	N/A	70.1400	0.0051	0.0102	70.14	Option 2: A=6.8442, B=1044.01, C=233.5
2,2,4-Trimethylpentane						0.5086	N/A	N/A	114.2300	0.0029	0.0004	114.23	Option 2: A=6.8118, B=1257.84, C=220.74
2-Methyl-1-butene						3.9857	N/A	N/A	70.1300	0.0106	0.0109	70.13	Option 2: A=6.4863, B=1039.69, C=236.65
2-Pentene						5.6874	N/A	N/A	70.1400	0.0194	0.0285	70.14	Option 1: VP50 = 5 VP60 = 6.5
3-Methyl-1-Butene Surrogate (IC5)						0.1000	N/A	N/A	70.1000	0.0019	0.0000	70.10	Option 1: VP50 = .1 VP60 = .1
Benzene						1.0030	N/A	N/A	78.1100	0.0168	0.0044	78.11	Option 2: A=6.905, B=1211.033, C=220.79
Butane Surrogate (Iso-C5 base)						0.1000	N/A	N/A	58.1000	0.0434	0.0011	58.10	Option 1: VP50 = .1 VP60 = .1
Cis-2-Butene Surrogate (Iso-C5)						0.1000	N/A	N/A	56.1000	0.0034	0.0001	56.10	Option 1: VP50 = .1 VP60 = .1
Cyclohexane						1.0441	N/A	N/A	84.1600	0.0180	0.0049	84.16	Option 2: A=6.841, B=1201.53, C=222.65
Ethylbenzene						0.0897	N/A	N/A	106.1700	0.0080	0.0002	106.17	Option 2: A=6.975, B=1424.255, C=213.21
Hexane (-n)						1.6589	N/A	N/A	86.1700	0.0412	0.0176	86.17	Option 2: A=6.876, B=1171.17, C=224.41
Isobutane Surrogate(Iso-C5 base)						0.1000	N/A	N/A	58.1000	0.0293	0.0008	58.10	Option 1: VP50 = .1 VP60 = .1
Isobutene Surrogate (Iso-C5 base)						0.1000	N/A	N/A	56.1000	0.0006	0.0000	56.10	Option 1: VP50 = .1 VP60 = .1
Isopentane						8.8587	N/A	N/A	72.1500	0.1098	0.2511	72.15	Option 1: VP50 = 7.889 VP60 = 10.005
Isopropyl benzene						0.0416	N/A	N/A	120.2000	0.0004	0.0000	120.20	Option 2: A=6.963, B=1460.793, C=207.78
Naphthalene						0.0019	N/A	N/A	128.0000	0.0013	0.0000	128.00	Option 1: VP50 = .0015 VP60 = .0024
Pentane (-n)						6.0535	N/A	N/A	72.1500	0.0588	0.0919	72.15	Option 3: A=27691, B=7.558
Propane Surrogate (Iso-C5 base)						0.1000	N/A	N/A	44.1000	0.0033	0.0001	44.10	Option 1: VP50 = .1 VP60 = .1
Propylene Surrogate (Iso-C5 base)						0.1000	N/A	N/A	44.1000	0.0001	0.0000	44.10	Option 1: VP50 = .1 VP60 = .1
Toluene						0.2783	N/A	N/A	92.1300	0.0551	0.0040	92.13	Option 2: A=6.954, B=1344.8, C=219.48
Trans-2-Butene Surrogate (iso-C5)						0.1000	N/A	N/A	56.1000	0.0026	0.0001	56.10	Option 1: VP50 = .1 VP60 = .1
Unidentified Components						7.3806	N/A	N/A	63.2842	0.4940	0.5726	104.04	
Xylene (-m)						0.0745	N/A	N/A	106.1700	0.0585	0.0011	106.17	Option 2: A=7.009, B=1462.266, C=215.11
T-4 - External Floating Roof Tank Bloomfield, New Mexico

Annual Emission Calcaulations	
Rim Seal Losses (lb):	2,206.7503
Seal Factor A (lb-mole/ft-yr):	0.7000
Seal Factor B (lb-mole/ft-yr (mph)^n):	0.3000
Average Wind Speed (mph):	10.6000
Seal-related Wind Speed Exponent:	1.2000
Value of Vapor Pressure Function: Vapor Pressure at Daily Average Liquid	0.1385
Surface Temperature (psia):	5.0870
Tank Diameter (ft):	41.0000
Vapor Molecular Weight (lb/lb-mole):	67.0000
Product Factor:	1.0000
Withdrawal Losses (Ib):	199.4429
Annual Net Throughput (gal/yr.):	40,000,000.0000
Shell Clingage Factor (bbl/1000 sqft):	0.0015
Average Organic Liquid Density (lb/gal):	6.0700
Tank Diameter (ft):	41.0000
Roof Fitting Losses (Ib):	24,267.9899
Value of Vapor Pressure Function:	0.1385
Vapor Molecular Weight (lb/lb-mole):	67.0000
Product Factor:	1.0000
Tot. Roof Fitting Loss Fact. (lb-mole/yr):	2,614.6915
Average Wind Speed (mph):	10.6000
Total Losses (lb):	26,674.1831

Roof Fitting/Status	Quantity	KFa(lb-mole/yr)	Roof Fitting Loss Factors KFb(lb-mole/(yr mph^n))	m	Losses(lb)
Access Hatch (24-in, Diam,)/Bolted Cover, Gasketed	1	1.60	0.00	0.00	14.8502
Automatic Gauge Float Well/Unbolted Cover, Ungasketed	1	14.00	5.40	1.10	584.3532
Vacuum Breaker (10-in. Diam.)/Weighted Mech. Actuation, Gask.	1	6.20	1.20	0.94	130.8228
Unslotted Guide-Pole Well/Ungasketed Sliding Cover	1	31.00	150.00	1.40	23,316.4579
Gauge-Hatch/Sample Well (8-in. Diam.)/Weighted Mech. Actuation, Gask.	1	0.47	0.02	0.97	5.6592
Roof Leg (3-in. Diameter)/Adjustable, Pontoon Area, Ungasketed	4	2.00	0.37	0.91	159.3537
Roof Leg (3-in, Diameter)/Adjustable, Center Area, Ungasketed	4	0.82	0.53	0.14	56,4929

Emissions Report for: Annual

T-4 - External Floating Roof Tank Bloomfield, New Mexico

	Losses(lbs)							
Components	Rim Seal Loss	Withdrawl Loss	Deck Fitting Loss	Deck Seam Loss	Total Emissions			
Gasoline (premium base blend) - Bloomfield	2,206.75	199.44	24,267.99	0.00	26,674.18			
Isopentane	554.21	21.90	6,094.79	0.00	6,670.90			
1-Pentene	22.42	1.02	246.60	0.00	270.04			
2-Methyl-1-butene	24.07	2.11	264.73	0.00	290.91			
Pentane (-n)	202.81	11.73	2,230.34	0.00	2,444.88			
2-Pentene	62.87	3.87	691.36	0.00	758.09			
Hexane (-n)	38.94	8.22	428.26	0.00	475.42			
Benzene	9.60	3.35	105.58	0.00	118.54			
Cyclohexane	10.71	3.59	117.76	0.00	132.06			
2,2,4-Trimethylpentane	0.84	0.58	9.24	0.00	10.66			
Toluene	8.74	10.99	96.08	0.00	115.80			
Ethylbenzene	0.41	1.60	4.49	0.00	6.50			
Xylene (-m)	2.48	11.67	27.31	0.00	41.47			
Isopropyl benzene	0.01	0.08	0.10	0.00	0.19			
1,2,4-Trimethylbenzene	0.14	2.97	1.53	0.00	4.64			
Naphthalene	0.00	0.26	0.02	0.00	0.28			
Propane Surrogate (Iso-C5 base)	0.19	0.66	2.07	0.00	2.91			
Isobutane Surrogate(Iso-C5 base)	1.67	5.84	18.36	0.00	25.87			
1-Butene Surrogate (Iso-C5 base)	0.03	0.12	0.38	0.00	0.53			
Butane Surrogate (Iso-C5 base)	2.47	8.66	27.19	0.00	38.32			
Trans-2-Butene Surrogate (iso-C5)	0.15	0.52	1.63	0.00	2.30			
Cis-2-Butene Surrogate (Iso- C5)	0.19	0.68	2.13	0.00	3.00			
3-Methyl-1-Butene Surrogate (IC5)	0.11	0.38	1.19	0.00	1.68			
Propylene Surrogate (Iso-C5 base)	0.01	0.02	0.06	0.00	0.09			
Isobutene Surrogate (Iso-C5 base)	0.03	0.12	0.38	0.00	0.53			
Unidentified Components	1,263.64	98.52	13,896.41	0.00	15,258.57			

TANKS 4.0.9d Emissions Report - Detail Format Tank Indentification and Physical Characteristics

Identification	
User Identification:	T-8
City:	Bloomfield
State:	New Mexico
Company:	San Juan Refining
Type of Tank:	Vertical Fixed Root Tank
Description:	Crude Slop
Tank Dimensions	
Shell Height (ft):	25.00
Diameter (ft):	12.00
Liquid Height (ft) :	23.00
Avg. Liquid Height (ft):	12.00
Volume (gallons):	19,300.00
I urnovers:	259.07
In Tapk Heated (v/p):	5,000,000.00
Is rank mealed (y/n):	N
Paint Characteristics	
Shell Color/Shade:	Aluminum/Diffuse
Shell Condition	Good
Roof Color/Shade:	Aluminum/Diffuse
Roof Condition:	Good
Roof Characteristics	
Type:	Cone
Height (ft)	1.00
Slope (ft/ft) (Cone Roof)	0.17
Breather Vent Settings	
Vacuum Settings (psig):	0.00
Pressure Settings (psig)	0.00

Meterological Data used in Emissions Calculations: Bloomfield, New Mexico (Avg Atmospheric Pressure = 11.9 psia)

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

T-8 - Vertical Fixed Roof Tank Bloomfield, New Mexico

Mixture/Component	Month	Dai Temp Avg.	ily Liquid So berature (de Min.	urf. eg F) Max.	Liquid Bulk Temp (deg F)	Vapo Avg.	r Pressure Min.	(psia) Max.	Vapor Mol. Weight.	Liquid Mass Fract.	Vapor Mass Fract.	Mol. Weight	Basis for Vapor Pressure Calculations
Crude Oil (Four Corpore Sweet)	A.II.	62.02	40.12	74.02	E4 90	5 1104	4.0412	6 2907	60.0000			162.00	Option 4: PI/P=7.4
1 2 4-Trimethylbenzene	741	02.03	45.12	74.55	34.80	0.0222	0.0131	0.3697	120 1900	0.0128	0.0002	120.19	Option 2: A=7.0/383 B=1573.267 C=208.56
1-Pentene						0.0222	6.8303	11 8536	70 1400	0.0004	0.0002	70.14	Option 2: A=6.8442 B=1044.01 C=233.5
2.2.4-Trimethylpentane						0.6313	0.0303	0 0028	11/ 2300	0.0088	0.0010	114.23	Option 2: A=6.8118 B=1257.84 C=220.74
2-Methyl-1-butene						4 6625	3 5405	6.0477	70 1300	0.0000	0.0032	70.13	Option 2: A=6.4863 B=1039.69 C=236.65
3-Methyl-1-Butene Surrogate (IC5)						0 1000	0.1000	0.1000	70 1000	0.0002	0.0000	70.10	Option 1: VP60 = 1 VP70 = 1
Benzene						1.2351	0.8568	1.7425	78,1100	0.0056	0.0037	78.11	Option 2: A=6.905, B=1211.033, C=220.79
Butane Surrogate (Iso-C5 base)						0.1000	0.1000	0.1000	58,1000	0.0033	0.0002	58.10	Option 1: VP60 = $.1$ VP70 = $.1$
Cis-2-Butene Surrogate (Iso-C5)						0.1000	0.1000	0.1000	56,1000	0.0002	0.0000	56.10	Option 1: VP60 = .1 VP70 = .1
Cyclohexane						1.2795	0.8953	1.7909	84.1600	0.0038	0.0026	84.16	Option 2: A=6.841, B=1201.53, C=222.65
Ethylbenzene						0.1164	0.0736	0.1792	106.1700	0.0054	0.0003	106.17	Option 2: A=6.975, B=1424.255, C=213.21
Hexane (-n)						2.0165	1.4312	2.7856	86.1700	0.0074	0.0079	86.17	Option 2: A=6.876, B=1171.17, C=224.41
Isobutane Surrogate(Iso-C5 base)						0.1000	0.1000	0.1000	58.1000	0.0009	0.0000	58.10	Option 1: VP60 = .1 VP70 = .1
Isopentane						10.5168	7.7120	13.9135	72.1500	0.0199	0.1113	72.15	Option 1: VP60 = 10.005 VP70 = 12.53
Isopropyl benzene						0.0551	0.0336	0.0877	120.2000	0.0005	0.0000	120.20	Option 2: A=6.963, B=1460.793, C=207.78
Naphthalene						0.0027	0.0015	0.0046	128.0000	0.0031	0.0000	128.00	Option 1: VP60 = .0024 VP70 = .0037
Pentane (-n)						7.1490	5.3413	9.4346	72.1500	0.0088	0.0334	72.15	Option 3: A=27691, B=7.558
Toluene						0.3515	0.2332	0.5174	92.1300	0.0234	0.0044	92.13	Option 2: A=6.954, B=1344.8, C=219.48
Trans-2-Butene Surrogate (iso-C5)						0.1000	0.1000	0.1000	56.1000	0.0007	0.0000	56.10	Option 1: VP60 = .1 VP70 = .1
Unidentified Components						5.7849	5.4706	5.4707	57.7067	0.8675	0.8265	186.26	
Xylene (-m)						0.0970	0.0610	0.1500	106.1700	0.0260	0.0013	106.17	Option 2: A=7.009, B=1462.266, C=215.11

T-8 - Vertical Fixed Roof Tank Bloomfield, New Mexico

Annual Emission Calcaulations	
Standing Language (Ib):	2 000 1500
Standing Losses (Ib):	2,908.1520
Vapor Space Volume (cu ii).	1,507.9045
Vapor Space Expansion Factor:	0.0040
Vapor Space Expansion Factor:	0.949
venieu vapor Saturation Factor.	0.2103
Tank Vapor Space Volume:	
Vapor Space Volume (cu ft):	1,507.9645
Tank Diameter (ft):	12.0000
Vapor Space Outage (ft):	13.3333
Tank Shell Height (ft):	25.0000
Roof Outage (ft):	0.3333
Roof Outage (Cone Roof)	0 2222
Roof Height (ft):	1.000
Roof Slope (#/#):	0.1700
Shell Radius (ft):	6.0000
Vener Density	
Vapor Density (lb/cu ft):	0.0548
Vapor Molecular Weight (lb/lb-mole):	60.0000
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	5.1104
Daily Avg. Liquid Surface Temp. (deg. R):	521.6968
Daily Average Ambient Temp. (deg. F):	52.2000
Ideal Gas Constant R	
(psia cuft / (lb-mol-deg R)):	10.731
Liquid Bulk Temperature (deg. R):	514.4700
Tank Paint Solar Absorptance (Shell):	0.6000
Tank Paint Solar Absorptance (Roof):	0.6000
Daily Total Solar Insulation	
Factor (Btu/sqft day):	1,766.0000
Vapor Space Expansion Factor	
Vapor Space Expansion Factor:	0.4448
Daily Vapor Temperature Range (deg. R):	51.6288
Daily Vapor Pressure Range (psia):	2.3484
Breather Vent Press. Setting Range(psia):	0.0000
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	5.1104
Vapor Pressure at Daily Minimum Liquid	
Surface Temperature (psia):	4.0412
Vapor Pressure at Daily Maximum Liquid	0.000
Surface Temperature (psia):	6.3897
Daily Avg. Liquid Surface Temp. (deg R):	521.6966
Daily Win. Liquid Surface Temp. (deg R):	508.7896
Daily Max. Liquid Surface Temp. (deg R):	30 5000
Dany Amoleni Temp, Nange (ueg. N).	30.5000
Vented Vapor Saturation Factor	0.2460
Vanor Pressure at Daily Average Liquid	0.2108
Surface Temperature (nsia):	5 110/
Vapor Space Outage (ft):	13.3333
Marking Langage (Ib):	7 700 400
Vapor Molecular Weight (lb/lb-mole):	60 0000
Vapor Pressure at Daily Average Liquid	00.0000
Surface Temperature (psia):	5 1104
Annual Net Throughput (gal/yr.):	5.000.000.000
Annual Turnovers:	259 0674
Turnover Factor:	0 2824
Maximum Liquid Volume (gal):	19.300.0000
Maximum Liquid Height (ft):	23.000
Tank Diameter (ft):	12.0000
Working Loss Product Factor:	0.7500
-	
Total Losses (lb):	10.641.3357

Emissions Report for: Annual

T-8 - Vertical Fixed Roof Tank Bloomfield, New Mexico

	Losses(lbs)					
Components	Working Loss	Breathing Loss	Total Emissions			
Crude Oil (Four Corners Sweet)	7,733.18	2,908.15	10,641.34			
Isopentane	860.34	323.54	1,183.89			
1-Pentene	14.91	5.61	20.52			
2-Methyl-1-butene	24.92	9.37	34.29			
Pentane (-n)	258.62	97.26	355.88			
Hexane (-n)	61.34	23.07	84.41			
Benzene	28.43	10.69	39.12			
Cyclohexane	19.99	7.52	27.50			
2,2,4-Trimethylpentane	22.84	8.59	31.43			
Toluene	33.82	12.72	46.53			
Ethylbenzene	2.58	0.97	3.56			
Xylene (-m)	10.37	3.90	14.27			
Isopropyl benzene	0.11	0.04	0.16			
1,2,4-Trimethylbenzene	1.17	0.44	1.60			
Naphthalene	0.03	0.01	0.05			
Isobutane Surrogate(Iso-C5 base)	0.37	0.14	0.51			
Butane Surrogate (Iso-C5 base)	1.36	0.51	1.87			
Trans-2-Butene Surrogate (iso-C5)	0.29	0.11	0.40			
Cis-2-Butene Surrogate (Iso-C5)	0.08	0.03	0.11			
3-Methyl-1-Butene Surrogate (IC5)	0.08	0.03	0.11			
Unidentified Components	6,391.52	2,403.61	8,795.13			

TANKS 4.0.9d Emissions Report - Detail Format Tank Indentification and Physical Characteristics

Identification	
User Identification:	T-9
City:	Bloomfield
State:	New Mexico
Company:	San Juan Refining
Type of Tank:	Vertical Fixed Roof Tank
Description:	Crude Slop
Tank Dimensions	
Shell Height (ft):	25.00
Diameter (ft):	12.00
Liquid Height (ft) :	23.00
Avg. Liquid Height (ft):	12.00
Volume (gallons):	19,300.00
Not Throughput(gal/yr):	5 000 000 00
Is Tank Heated (v/n):	3,000,000.00
is failt fleated (ym).	i v
Paint Characteristics	
Shell Color/Shade:	Aluminum/Diffuse
Shell Condition	Good
Roof Color/Shade:	Aluminum/Specular
Roof Condition:	Good
Roof Characteristics	
Туре:	Cone
Height (ft)	1.00
Slope (ft/ft) (Cone Roof)	0.17
Breather Vent Settings	
Vacuum Settings (psig):	0.00
Pressure Settings (psig)	0.00

Meterological Data used in Emissions Calculations: Bloomfield, New Mexico (Avg Atmospheric Pressure = 11.9 psia)

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

T-9 - Vertical Fixed Roof Tank Bloomfield, New Mexico

Mixture/Component	Month	Dai Temp Avg.	ily Liquid S perature (de Min.	urf. eg F) Max.	Liquid Bulk Temp (deg F)	Vapo Avg.	r Pressure Min.	(psia) Max.	Vapor Mol. Weight.	Liquid Mass Fract.	Vapor Mass Fract.	Mol. Weight	Basis for Vapor Pressure Calculations
Crude Oil (Four Corners Sweet)	All	60.21	48.60	71.82	54.17	4.9478	4.0022	6.0602	60.0000			163.00	Option 4: RVP=7.4
1,2,4-Trimethylbenzene						0.0206	0.0128	0.0324	120.1900	0.0128	0.0001	120.19	Option 2: A=7.04383, B=1573.267, C=208.56
1-Pentene						8.7230	6.7504	11.1270	70.1400	0.0004	0.0019	70.14	Option 2: A=6.8442, B=1044.01, C=233.5
2,2,4-Trimethylpentane						0.5993	0.4250	0.8297	114.2300	0.0088	0.0029	114.23	Option 2: A=6.8118, B=1257.84, C=220.74
2-Methyl-1-butene						4.4894	3.5003	5.6871	70.1300	0.0013	0.0032	70.13	Option 2: A=6.4863, B=1039.69, C=236.65
3-Methyl-1-Butene Surrogate (IC5)						0.1000	0.1000	0.1000	70.1000	0.0002	0.0000	70.10	Option 1: VP60 = .1 VP70 = .1
Benzene						1.1747	0.8439	1.6065	78.1100	0.0056	0.0036	78.11	Option 2: A=6.905, B=1211.033, C=220.79
Butane Surrogate (Iso-C5 base)						0.1000	0.1000	0.1000	58.1000	0.0033	0.0002	58.10	Option 1: VP60 = .1 VP70 = .1
Cis-2-Butene Surrogate (Iso-C5)						0.1000	0.1000	0.1000	56.1000	0.0002	0.0000	56.10	Option 1: VP60 = .1 VP70 = .1
Cyclohexane						1.2183	0.8821	1.6542	84.1600	0.0038	0.0025	84.16	Option 2: A=6.841, B=1201.53, C=222.65
Ethylbenzene						0.1093	0.0722	0.1619	106.1700	0.0054	0.0003	106.17	Option 2: A=6.975, B=1424.255, C=213.21
Hexane (-n)						1.9239	1.4109	2.5810	86.1700	0.0074	0.0078	86.17	Option 2: A=6.876, B=1171.17, C=224.41
Isobutane Surrogate(Iso-C5 base)						0.1000	0.1000	0.1000	58.1000	0.0009	0.0000	58.10	Option 1: VP60 = .1 VP70 = .1
Isopentane						10.0578	7.6075	13.0399	72.1500	0.0199	0.1099	72.15	Option 1: VP60 = 10.005 VP70 = 12.53
Isopropyl benzene						0.0515	0.0329	0.0786	120.2000	0.0005	0.0000	120.20	Option 2: A=6.963, B=1460.793, C=207.78
Naphthalene						0.0024	0.0014	0.0040	128.0000	0.0031	0.0000	128.00	Option 1: VP60 = .0024 VP70 = .0037
Pentane (-n)						6.8674	5.2774	8.8344	72.1500	0.0088	0.0332	72.15	Option 3: A=27691, B=7,558
Toluene						0.3323	0.2292	0.4723	92,1300	0.0234	0.0043	92.13	Option 2; A=6.954, B=1344.8, C=219.48
Trans-2-Butene Surrogate (iso-C5)						0.1000	0.1000	0.1000	56,1000	0.0007	0.0000	56.10	Option 1: VP60 = .1 VP70 = .1
Unidentified Components						5.6116	5.3380	5.3381	57.7409	0.8675	0.8286	186.26	
Xylene (-m)						0.0910	0.0599	0.1354	106.1700	0.0260	0.0013	106.17	Option 2: A=7.009, B=1462.266, C=215.11

T-9 - Vertical Fixed Roof Tank Bloomfield, New Mexico

Annual Emission Calcaulations	
	0.540
Stanuing Losses (ID):	2,510.0383
Vapor Density (Ib/cu ft):	1,007.9645
Vapor Space Expansion Factor:	0.0002
Vented Vapor Saturation Factor:	0.3033
	0.222
Tank Vapor Space Volume:	
Vapor Space Volume (cu ft):	1,507.9645
Tank Diameter (ft):	12.0000
Vapor Space Outage (ft):	13.3333
Tank Shell Height (ft):	25.0000
Roof Outage (ff):	12.0000
Nooi Outage (it).	0.0000
Roof Outage (Cone Roof)	
Roof Outage (ft):	0.3333
Roof Height (ft):	1.0000
Roof Slope (ft/ft):	0.1700
Shell Radius (ft):	6.0000
Vapor Density	
Vapor Density (lb/cu ft):	0.0532
Vapor Molecular Weight (lb/lb-mole):	60.0000
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	4.9478
Daily Avg. Liquid Surface Temp. (deg. R):	519.8/91
Daily Average Ambient Temp. (deg. F):	52.2000
(psis suff / (lb mol dog P));	10 721
Liquid Bulk Temperature (deg. R):	513 8400
Tank Paint Solar Absorptance (Shell):	0.6000
Tank Paint Solar Absorptance (Roof):	0.3900
Daily Total Solar Insulation	
Factor (Btu/sqft day):	1,766.0000
Vanas Sanas Europaina Fastas	
Vapor Space Expansion Factor	0 3853
Daily Vapor Temperature Range (deg. R):	46 4368
Daily Vapor Pressure Range (psia):	2.0580
Breather Vent Press, Setting Range(psia);	0.0000
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	4.9478
Vapor Pressure at Daily Minimum Liquid	
Surface Temperature (psia):	4.0022
Vapor Pressure at Daily Maximum Liquid	
Surface Temperature (psia):	6.0602
Daily Avg. Liquid Surface Temp. (deg R):	519.8791
Daily Max Liquid Surface Temp. (deg R):	500.2/00
Daily Ambient Temp, Range (deg, R).	30 5000
cary randonic remp. range (deg. rt).	35.3000
Vented Vapor Saturation Factor	
Vented Vapor Saturation Factor:	0.2224
Vapor Pressure at Daily Average Liquid:	
Surface Temperature (psia):	4.9478
vapor Space Outage (tt):	13.3333
Working Losses (lb):	7,487,0062
Vapor Molecular Weight (lb/lb-mole):	60.0000
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	4.9478
Annual Net Throughput (gal/yr.):	5,000,000.0000
Annual Turnovers:	259.0674
Turnover Factor:	0.2825
Maximum Liquid Volume (gal):	19,300.0000
Maximum Liquid Height (ft):	23.0000
Tank Diameter (ft):	12.0000
working Loss Product Factor:	0.7500
otal Losses (Ib):	9,997.0445

Emissions Report for: Annual

T-9 - Vertical Fixed Roof Tank Bloomfield, New Mexico

	Losses(lbs)					
Components	Working Loss	Breathing Loss	Total Emissions			
Crude Oil (Four Corners Sweet)	7,487.01	2,510.04	9,997.04			
Isopentane	822.80	275.85	1,098.64			
1-Pentene	14.34	4.81	19.15			
2-Methyl-1-butene	23.99	8.04	32.04			
Pentane (-n)	248.44	83.29	331.73			
Hexane (-n)	58.52	19.62	78.15			
Benzene	27.04	9.07	36.11			
Cyclohexane	19.03	6.38	25.41			
2,2,4-Trimethylpentane	21.68	7.27	28.95			
Toluene	31.97	10.72	42.68			
Ethylbenzene	2.43	0.81	3.24			
Xylene (-m)	9.73	3.26	12.99			
Isopropyl benzene	0.11	0.04	0.14			
1,2,4-Trimethylbenzene	1.08	0.36	1.45			
Naphthalene	0.03	0.01	0.04			
Isobutane Surrogate(Iso-C5 base)	0.37	0.12	0.49			
Butane Surrogate (Iso-C5 base)	1.36	0.45	1.81			
Trans-2-Butene Surrogate (iso-C5)	0.29	0.10	0.38			
Cis-2-Butene Surrogate (Iso-C5)	0.08	0.03	0.11			
3-Methyl-1-Butene Surrogate (IC5)	0.08	0.03	0.11			
Unidentified Components	6,203.63	2,079.78	8,283.42			

TANKS 4.0.9d Emissions Report - Detail Format Tank Indentification and Physical Characteristics

Identification

User Identification: City: State: Company: Type of Tank: Description:	T-11 Bloomfield New Mexico San Juan Refining External Floating Roof Tank Reformate
Tank Dimensions Diameter (ft): Volume (gallons): Turnovers:	100.00 2,115,000.00 28.37
Paint Characteristics Internal Shell Condition: Shell Color/Shade: Shell Condition	Light Rust White/White Good
Roof Characteristics Type: Fitting Category	Pontoon Typical
Tank Construction and Rim-Seal Sys Construction: Primary Seal: Secondary Seal	stem Welded Liquid-mounted Rim-mounted
Dook Eitting/Status	

Deck Fitting/Status

Access Hatch (24-in. Diam.)/Bolted Cover, Gasketed	1
Automatic Gauge Float Well/Unbolted Cover, Ungasketed	1
Vacuum Breaker (10-in. Diam.)/Weighted Mech. Actuation, Gask.	1
Unslotted Guide-Pole Well/Ungasketed Sliding Cover	1
Gauge-Hatch/Sample Well (8-in. Diam.)/Weighted Mech. Actuation, Gask.	1
Roof Leg (3-in. Diameter)/Adjustable, Pontoon Area, Ungasketed	17
Roof Leg (3-in. Diameter)/Adjustable, Center Area, Ungasketed	16

Meterological Data used in Emissions Calculations: Bloomfield, New Mexico (Avg Atmospheric Pressure = 11.9 psia)

TANKS 4.0.9d

Emissions Report - Detail Format

Liquid Contents of Storage Tank

T-11 - External Floating Roof Tank Bloomfield, New Mexico

Mixture/Component	Month	Da Tem Avg.	aily Liquid S perature (d Min.	urf. eg F) Max.	Liquid Bulk Temp (deg F)	Vapo Avg.	r Pressure Min.	(psia) Max.	Vapor Mol. Weight.	Liquid Mass Fract.	Vapor Mass Fract.	Mol. Weight	Basis for Vapor Pressure Calculations
-		-											
Reformate - Bloomfield	All	54.58	46.99	62.17	52.22	3.8677	N/A	N/A	75.0000			92.00	Option 4: RVP=8, ASTM Slope=5
1,2,4-Trimethylbenzene						0.0164	N/A	N/A	120.1900	0.0407	0.0002	120.19	Option 2: A=7.04383, B=1573.267, C=208.56
1-Butene Surrogate (Iso-C5 base)						0.1000	N/A	N/A	56.1000	0.0002	0.0000	56.10	Option 1: VP50 = .1 VP60 = .1
1-Pentene						7.7168	N/A	N/A	70.1400	0.0001	0.0002	70.14	Option 2: A=6.8442, B=1044.01, C=233.5
2-Methyl-1-butene						3.9857	N/A	N/A	70.1300	0.0003	0.0004	70.13	Option 2: A=6.4863, B=1039.69, C=236.65
2-Pentene						5.6874	N/A	N/A	70.1400	0.0003	0.0005	70.14	Option 1: VP50 = 5 VP60 = 6.5
3-Methyl-1-Butene Surrogate (IC5)						0.1000	N/A	N/A	70.1000	0.0001	0.0000	70.10	Option 1: VP50 = .1 VP60 = .1
Benzene						1.0030	N/A	N/A	78.1100	0.0415	0.0132	78.11	Option 2: A=6.905, B=1211.033, C=220.79
Butane Surrogate (Iso-C5 base)						0.1000	N/A	N/A	58.1000	0.0416	0.0013	58.10	Option 1: VP50 = .1 VP60 = .1
Cis-2-Butene Surrogate (Iso-C5)						0.1000	N/A	N/A	56.1000	0.0001	0.0000	56.10	Option 1: VP50 = .1 VP60 = .1
Cyclohexane						1.0441	N/A	N/A	84.1600	0.0014	0.0005	84.16	Option 2: A=6.841, B=1201.53, C=222.65
Ethylbenzene						0.0897	N/A	N/A	106.1700	0.0284	0.0008	106.17	Option 2: A=6.975, B=1424.255, C=213.21
Hexane (-n)						1.6589	N/A	N/A	86.1700	0.0298	0.0157	86.17	Option 2: A=6.876, B=1171.17, C=224.41
Isobutane Surrogate(Iso-C5 base)						0.1000	N/A	N/A	58.1000	0.0232	0.0007	58.10	Option 1: VP50 = .1 VP60 = .1
Isopentane						8.8587	N/A	N/A	72.1500	0.0416	0.1169	72.15	Option 1: VP50 = 7.889 VP60 = 10.005
Isopropyl benzene						0.0416	N/A	N/A	120.2000	0.0012	0.0000	120.20	Option 2: A=6.963, B=1460.793, C=207.78
Naphthalene						0.0019	N/A	N/A	128.0000	0.0003	0.0000	128.00	Option 1: VP50 = .0015 VP60 = .0024
Pentane (-n)						6.0535	N/A	N/A	72.1500	0.0340	0.0653	72.15	Option 3: A=27691, B=7.558
Propane Surrogate (Iso-C5 base)						0.1000	N/A	N/A	44.1000	0.0081	0.0003	44.10	Option 1: VP50 = .1 VP60 = .1
Toluene						0.2783	N/A	N/A	92.1300	0.1920	0.0169	92.13	Option 2: A=6.954, B=1344.8, C=219.48
Trans-2-Butene Surrogate (iso-C5)						0.1000	N/A	N/A	56.1000	0.0003	0.0000	56.10	Option 1: VP50 = .1 VP60 = .1
Unidentified Components						9.6378	N/A	N/A	75.0802	0.3471	0.7631	104.39	
Xylene (-m)						0.0745	N/A	N/A	106.1700	0.1677	0.0040	106.17	Option 2: A=7.009, B=1462.266, C=215.11

T-11 - External Floating Roof Tank Bloomfield, New Mexico

Annual Emission Calcaulations	
Rim Seal Losses (lb):	1,115.3731
Seal Factor A (lb-mole/ft-yr):	0.3000
Seal Factor B (lb-mole/ft-yr (mph)^n):	0.6000
Average Wind Speed (mph):	10.6000
Seal-related Wind Speed Exponent:	0.3000
Value of Vapor Pressure Function: Vapor Pressure at Daily Average Liquid	0.0980
Surface Temperature (psia):	3.8677
Tank Diameter (ft):	100.0000
Vapor Molecular Weight (lb/lb-mole):	75.0000
Product Factor:	1.0000
Withdrawal Losses (lb):	129.3257
Annual Net Throughput (gal/yr.):	60,000,000.0000
Shell Clingage Factor (bbl/1000 sqft):	0.0015
Average Organic Liquid Density (lb/gal):	6.4000
Tank Diameter (ft):	100.0000
Roof Fitting Losses (lb):	19,752.5077
Value of Vapor Pressure Function:	0.0980
Vapor Molecular Weight (lb/lb-mole):	75.0000
Product Factor:	1.0000
Tot. Roof Fitting Loss Fact.(lb-mole/yr):	2,688.7513
Average Wind Speed (mph):	10.6000
Total Losses (Ib):	20 997 2066

Roof Fitting/Status	Quantity	KFa(lb-mole/yr)	Roof Fitting Loss Factors KFb(lb-mole/(yr mph^n))	m	Losses(lb)
Access Hatch (24-in. Diam.)/Bolted Cover, Gasketed	1	1.60	0.00	0.00	11.7542
Automatic Gauge Float Well/Unbolted Cover, Ungasketed	1	14.00	5.40	1.10	462.5234
Vacuum Breaker (10-in. Diam.)/Weighted Mech. Actuation, Gask.	1	6.20	1.20	0.94	103.5480
Unslotted Guide-Pole Well/Ungasketed Sliding Cover	1	31.00	150.00	1.40	18,455.2883
Gauge-Hatch/Sample Well (8-in. Diam.)/Weighted Mech. Actuation, Gask.	1	0.47	0.02	0.97	4.4794
Roof Leg (3-in. Diameter)/Adjustable, Pontoon Area, Ungasketed	17	2.00	0.37	0.91	536.0551
Roof Leg (3-in. Diameter)/Adjustable, Center Area, Ungasketed	16	0.82	0.53	0.14	178.8594

Emissions Report for: Annual

T-11 - External Floating Roof Tank Bloomfield, New Mexico

	Losses(lbs)								
Components	Rim Seal Loss	Withdrawl Loss	Deck Fitting Loss	Deck Seam Loss	Total Emissions				
Reformate - Bloomfield	1,115.37	129.33	19,752.51	0.00	20,997.21				
Isopentane	130.37	5.38	2,308.68	0.00	2,444.42				
1-Pentene	0.27	0.01	4.83	0.00	5.12				
2-Methyl-1-butene	0.42	0.04	7.49	0.00	7.95				
Pentane (-n)	72.81	4.40	1,289.40	0.00	1,366.60				
2-Pentene	0.60	0.04	10.69	0.00	11.33				
Hexane (-n)	17.49	3.85	309.70	0.00	331.04				
Benzene	14.72	5.37	260.77	0.00	280.86				
Cyclohexane	0.52	0.18	9.16	0.00	9.86				
Toluene	18.90	24.83	334.72	0.00	378.45				
Ethylbenzene	0.90	3.67	15.95	0.00	20.52				
Xylene (-m)	4.42	21.69	78.29	0.00	104.39				
Isopropyl benzene	0.02	0.16	0.31	0.00	0.49				
1,2,4-Trimethylbenzene	0.24	5.26	4.18	0.00	9.68				
Naphthalene	0.00	0.04	0.00	0.00	0.04				
Propane Surrogate (Iso-C5 base)	0.29	1.05	5.07	0.00	6.41				
Isobutane Surrogate(Iso-C5 base)	0.82	3.00	14.53	0.00	18.36				
1-Butene Surrogate (Iso-C5 base)	0.01	0.03	0.13	0.00	0.16				
Butane Surrogate (Iso-C5 base)	1.47	5.38	26.06	0.00	32.91				
Trans-2-Butene Surrogate (iso-C5)	0.01	0.04	0.19	0.00	0.24				
Cis-2-Butene Surrogate (Iso-C5)	0.00	0.01	0.06	0.00	0.08				
3-Methyl-1-Butene Surrogate (IC5)	0.00	0.01	0.06	0.00	0.08				
Unidentified Components	851.09	44.89	15,072.24	0.00	15,968.21				

TANKS 4.0.9d Emissions Report - Detail Format Tank Indentification and Physical Characteristics

Identification

User Identification: City: State: Company: Type of Tank: Description:	T-12 Bloomfield New Mexico San Juan Refining External Floating Roof Tank Gasoline
Tank Dimensions Diameter (ft): Volume (gallons): Turnovers:	100.00 2,115,000.00 33.10
Paint Characteristics Internal Shell Condition: Shell Color/Shade: Shell Condition	Light Rust White/White Good
Roof Characteristics Type: Fitting Category	Pontoon Typical
Tank Construction and Rim-Seal Syst Construction: Primary Seal: Secondary Seal	tem Welded Liquid-mounted Rim-mounted
Deals Fitting/Status	

Deck Fitting/Status

Deck Fitting/Status	Quantity
Access Hatch (24-in. Diam.)/Bolted Cover, Gasketed	1
Automatic Gauge Float Well/Unbolted Cover, Ungasketed	1
Vacuum Breaker (10-in. Diam.)/Weighted Mech. Actuation, Gask.	1
Unslotted Guide-Pole Well/Ungasketed Sliding Cover	1
Gauge-Hatch/Sample Well (8-in. Diam.)/Weighted Mech. Actuation, Gask.	1
Roof Leg (3-in. Diameter)/Adjustable, Pontoon Area, Ungasketed	17
Roof Leg (3-in. Diameter)/Adjustable, Center Area, Ungasketed	16

Meterological Data used in Emissions Calculations: Bloomfield, New Mexico (Avg Atmospheric Pressure = 11.9 psia)

TANKS 4.0.9d Emissions Report - Detail Format

file://C:\Program Files\Tanks409d\summarydisplay.htm

Liquid Contents of Storage Tank

T-12 - External Floating Roof Tank Bloomfield, New Mexico

		Da Tem	ily Liquid S perature (d	urf. eg F)	Liquid Bulk Temp	Vapo	Pressure	(psia)	Vapor Mol.	Liquid Mass	Vapor Mass	Mol.	Basis for Vapor Pressure
Mixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations
Gasoline (premium base blend) - Bloomfield	All	54.58	46.99	62.17	52.22	5.0870	N/A	N/A	67.0000			88.00	Option 4: RVP=10.8, ASTM Slope=3
1,2,4-Trimethylbenzene						0.0164	N/A	N/A	120.1900	0.0223	0.0001	120.19	Option 2: A=7.04383, B=1573.267, C=208.56
1-Butene Surrogate (Iso-C5 base)						0.1000	N/A	N/A	56.1000	0.0020	0.0001	56.10	Option 1: VP50 = .1 VP60 = .1
1-Pentene						7.7168	N/A	N/A	70.1400	0.0101	0.0201	70.14	Option 2: A=6.8442, B=1044.01, C=233.5
2,2,4-Trimethylpentane						0.5086	N/A	N/A	114.2300	0.0051	0.0007	114.23	Option 2: A=6.8118, B=1257.84, C=220.74
2-Methyl-1-butene						3.9857	N/A	N/A	70.1300	0.0161	0.0166	70.13	Option 2: A=6.4863, B=1039.69, C=236.65
2-Pentene						5.6874	N/A	N/A	70.1400	0.0212	0.0311	70.14	Option 1: VP50 = 5 VP60 = 6.5
3-Methyl-1-Butene Surrogate (IC5)						0.1000	N/A	N/A	70.1000	0.0021	0.0001	70.10	Option 1: VP50 = .1 VP60 = .1
Benzene						1.0030	N/A	N/A	78.1100	0.0057	0.0015	78.11	Option 2: A=6.905, B=1211.033, C=220.79
Butane Surrogate (Iso-C5 base)						0.1000	N/A	N/A	58.1000	0.0078	0.0002	58.10	Option 1: VP50 = .1 VP60 = .1
Cis-2-Butene Surrogate (Iso-C5)						0.1000	N/A	N/A	56.1000	0.0046	0.0001	56.10	Option 1: VP50 = .1 VP60 = .1
Cyclohexane						1.0441	N/A	N/A	84.1600	0.0053	0.0014	84.16	Option 2: A=6.841, B=1201.53, C=222.65
Ethylbenzene						0.0897	N/A	N/A	106.1700	0.0068	0.0002	106.17	Option 2: A=6.975, B=1424.255, C=213.21
Hexane (-n)						1.6589	N/A	N/A	86.1700	0.0087	0.0037	86.17	Option 2: A=6.876, B=1171.17, C=224.41
Isobutane Surrogate(Iso-C5 base)						0.1000	N/A	N/A	58.1000	0.0018	0.0000	58.10	Option 1: VP50 = .1 VP60 = .1
Isobutene Surrogate (Iso-C5 base)						0.1000	N/A	N/A	56.1000	0.0014	0.0000	56.10	Option 1: VP50 = .1 VP60 = .1
Isopentane						8.8587	N/A	N/A	72.1500	0.0848	0.1940	72.15	Option 1: VP50 = 7.889 VP60 = 10.005
Isopropyl benzene						0.0416	N/A	N/A	120.2000	0.0007	0.0000	120.20	Option 2: A=6.963, B=1460.793, C=207.78
Naphthalene						0.0019	N/A	N/A	128.0000	0.0020	0.0000	128.00	Option 1: VP50 = .0015 VP60 = .0024
Pentane (-n)						6.0535	N/A	N/A	72.1500	0.0147	0.0230	72.15	Option 3: A=27691, B=7.558
Propane Surrogate (Iso-C5 base)						0.1000	N/A	N/A	44.1000	0.0001	0.0000	44.10	Option 1: VP50 = .1 VP60 = .1
Propylene Surrogate (Iso-C5 base)						0.1000	N/A	N/A	44.1000	0.0001	0.0000	44.10	Option 1: VP50 = .1 VP60 = .1
Toluene						0.2783	N/A	N/A	92.1300	0.0245	0.0018	92.13	Option 2: A=6.954, B=1344.8, C=219.48
Trans-2-Butene Surrogate (iso-C5)						0.1000	N/A	N/A	56.1000	0.0033	0.0001	56.10	Option 1: VP50 = .1 VP60 = .1
Unidentified Components						5.4572	N/A	N/A	65.0678	0.7058	0.7045	91.85	
Xylene (-m)						0.0745	N/A	N/A	106.1700	0.0430	0.0008	106.17	Option 2: A=7.009, B=1462.266, C=215.11

T-12 - External Floating Roof Tank Bloomfield, New Mexico

Annual Emission Calcaulations	
Rim Seal Losses (lb):	1,409.1652
Seal Factor A (lb-mole/ft-yr):	0.3000
Seal Factor B (lb-mole/ft-yr (mph)^n):	0.6000
Average Wind Speed (mph):	10.6000
Seal-related Wind Speed Exponent:	0.3000
Value of Vapor Pressure Function: Vapor Pressure at Daily Average Liquid	0.1385
Surface Temperature (psia):	5.0870
Tank Diameter (ft):	100.0000
Vapor Molecular Weight (lb/lb-mole):	67.0000
Product Factor:	1.0000
Withdrawal Losses (lb):	143.1003
Annual Net Throughput (gal/yr.):	70,000,000.0000
Shell Clingage Factor (bbl/1000 sqft):	0.0015
Average Organic Liquid Density (lb/gal):	6.0700
Tank Diameter (ft):	100.0000
Roof Fitting Losses (lb):	24,955.3682
Value of Vapor Pressure Function:	0.1385
Vapor Molecular Weight (lb/lb-mole):	67.0000
Product Factor:	1.0000
Tot. Roof Fitting Loss Fact.(lb-mole/yr):	2,688.7513
Average Wind Špeed (mph):	10.6000
Total Losses (Ib):	26 507 6337

Roof Fitting/Status	Quantity	KFa(lb-mole/yr)	Roof Fitting Loss Factors KFb(lb-mole/(yr mph^n))	m	Losses(lb)
Access Hatch (24-in. Diam.)/Bolted Cover, Gasketed	1	1.60	0.00	0.00	14.8502
Automatic Gauge Float Well/Unbolted Cover, Ungasketed	1	14.00	5.40	1.10	584.3532
Vacuum Breaker (10-in. Diam.)/Weighted Mech. Actuation, Gask.	1	6.20	1.20	0.94	130.8228
Unslotted Guide-Pole Well/Ungasketed Sliding Cover	1	31.00	150.00	1.40	23,316.4579
Gauge-Hatch/Sample Well (8-in. Diam.)/Weighted Mech. Actuation, Gask.	1	0.47	0.02	0.97	5.6592
Roof Leg (3-in. Diameter)/Adjustable. Pontoon Area. Ungasketed	17	2.00	0.37	0.91	677.2534
Roof Leg (3-in. Diameter)/Adjustable, Center Area, Ungasketed	16	0.82	0.53	0.14	225.9715

Emissions Report for: Annual

T-12 - External Floating Roof Tank Bloomfield, New Mexico

	Losses(lbs)								
Components	Rim Seal Loss	Withdrawl Loss	Deck Fitting Loss	Deck Seam Loss	Total Emissions				
Gasoline (premium base blend) - Bloomfield	1,409.17	143.10	24,955.37	0.00	26,507.63				
Isopentane	273.33	12.13	4,840.41	0.00	5,125.87				
1-Pentene	28.36	1.45	502.20	0.00	532.00				
2-Methyl-1-butene	23.35	2.30	413.47	0.00	439.13				
Pentane (-n)	32.38	2.10	573.38	0.00	607.86				
2-Pentene	43.87	3.03	776.90	0.00	823.81				
Hexane (-n)	5.25	1.24	92.99	0.00	99.49				
Benzene	2.08	0.82	36.84	0.00	39.73				
Cyclohexane	2.01	0.76	35.66	0.00	38.43				
2,2,4-Trimethylpentane	0.94	0.73	16.71	0.00	18.39				
Toluene	2.48	3.51	43.93	0.00	49.92				
Ethylbenzene	0.22	0.97	3.93	0.00	5.12				
Xylene (-m)	1.17	6.15	20.65	0.00	27.96				
Isopropyl benzene	0.01	0.10	0.19	0.00	0.30				
1,2,4-Trimethylbenzene	0.13	3.19	2.36	0.00	5.68				
Naphthalene	0.00	0.29	0.02	0.00	0.31				
Propylene Surrogate (Iso-C5 base)	0.00	0.01	0.06	0.00	0.08				
Propane Surrogate (Iso-C5 base)	0.00	0.01	0.06	0.00	0.08				
Isobutane Surrogate(Iso-C5 base)	0.07	0.26	1.16	0.00	1.48				
Isobutene Surrogate (Iso-C5 base)	0.05	0.20	0.90	0.00	1.15				
1-Butene Surrogate (Iso-C5 base)	0.07	0.29	1.29	0.00	1.65				

Butane Surrogate (Iso-C5 base)	0.28	1.12	5.03	0.00	6.43
Trans-2-Butene Surrogate (iso-C5)	0.12	0.47	2.13	0.00	2.72
Cis-2-Butene Surrogate (Iso- C5)	0.17	0.66	2.96	0.00	3.79
3-Methyl-1-Butene Surrogate (IC5)	0.08	0.30	1.35	0.00	1.73
Unidentified Components	992.74	101.00	17,580.78	0.00	18,674.52

TANKS 4.0.9d Emissions Report - Detail Format Tank Indentification and Physical Characteristics

Identification

User Identification: City: State: Company: Type of Tank: Description:	T-13 Bloomfield New Mexico San Juan Refining External Floating Roof Tank Gasoline
Tank Dimensions Diameter (ft): Volume (gallons): Turnovers:	67.00 1,161,000.00 34.45
Paint Characteristics Internal Shell Condition: Shell Color/Shade: Shell Condition	Light Rust White/White Good
Roof Characteristics Type: Fitting Category	Pontoon Typical
Tank Construction and Rim-Seal Sys Construction: Primary Seal: Secondary Seal	stem Welded Liquid-mounted Rim-mounted
Deck Fitting/Status	

ıg/

Quantity

Access Hatch (24-in, Diam)/Bolted Cover, Gasketed	1
Automatic Gauge Float Well/Unbolted Cover, Ungasketed	1
Vacuum Breaker (10-in. Diam.)/Weighted Mech. Actuation, Gask.	1
Unslotted Guide-Pole Well/Ungasketed Sliding Cover	1
Gauge-Hatch/Sample Well (8-in. Diam.)/Weighted Mech. Actuation, Gask.	1
Roof Leg (3-in. Diameter)/Adjustable, Pontoon Area, Ungasketed	13
Roof Leg (3-in. Diameter)/Adjustable, Center Area, Ungasketed	9

Meterological Data used in Emissions Calculations: Bloomfield, New Mexico (Avg Atmospheric Pressure = 11.9 psia)

TANKS 4.0.9d Emissions Report - Detail Format

Liquid Contents of Storage Tank

T-13 - External Floating Roof Tank Bloomfield, New Mexico

		Daily Liquid Surf. Temperature (deg F		urf. eg F)	Liquid Bulk Temp	quid 3ulk emp Vapor Pressure (psia)		Vapor Mol.	Liquid Mass	Vapor Mass	Mol.	Basis for Vapor Pressure	
Mixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations
Gasoline (premium base blend) - Bloomfield	All	54.58	46.99	62.17	52.22	5.0870	N/A	N/A	67.0000			88.00	Option 4: RVP=10.8, ASTM Slope=3
1,2,4-Trimethylbenzene						0.0164	N/A	N/A	120.1900	0.0149	0.0001	120.19	Option 2: A=7.04383, B=1573.267, C=208.56
1-Butene Surrogate (Iso-C5 base)						0.1000	N/A	N/A	56.1000	0.0006	0.0000	56.10	Option 1: VP50 = .1 VP60 = .1
1-Pentene						7.7168	N/A	N/A	70.1400	0.0051	0.0102	70.14	Option 2: A=6.8442, B=1044.01, C=233.5
2,2,4-Trimethylpentane						0.5086	N/A	N/A	114.2300	0.0029	0.0004	114.23	Option 2: A=6.8118, B=1257.84, C=220.74
2-Methyl-1-butene						3.9857	N/A	N/A	70.1300	0.0106	0.0109	70.13	Option 2: A=6.4863, B=1039.69, C=236.65
2-Pentene						5.6874	N/A	N/A	70.1400	0.0194	0.0285	70.14	Option 1: VP50 = 5 VP60 = 6.5
3-Methyl-1-Butene Surrogate (IC5)						0.1000	N/A	N/A	70.1000	0.0019	0.0000	70.10	Option 1: VP50 = .1 VP60 = .1
Benzene						1.0030	N/A	N/A	78.1100	0.0168	0.0044	78.11	Option 2: A=6.905, B=1211.033, C=220.79
Butane Surrogate (Iso-C5 base)						0.1000	N/A	N/A	58.1000	0.0434	0.0011	58.10	Option 1: VP50 = .1 VP60 = .1
Cis-2-Butene Surrogate (Iso-C5)						0.1000	N/A	N/A	56.1000	0.0034	0.0001	56.10	Option 1: VP50 = .1 VP60 = .1
Cyclohexane						1.0441	N/A	N/A	84.1600	0.0180	0.0049	84.16	Option 2: A=6.841, B=1201.53, C=222.65
Ethylbenzene						0.0897	N/A	N/A	106.1700	0.0080	0.0002	106.17	Option 2: A=6.975, B=1424.255, C=213.21
Hexane (-n)						1.6589	N/A	N/A	86.1700	0.0412	0.0176	86.17	Option 2: A=6.876, B=1171.17, C=224.41
Isobutane Surrogate(Iso-C5 base)						0.1000	N/A	N/A	58.1000	0.0293	0.0008	58.10	Option 1: VP50 = .1 VP60 = .1
Isobutene Surrogate (Iso-C5 base)						0.1000	N/A	N/A	56.1000	0.0006	0.0000	56.10	Option 1: VP50 = .1 VP60 = .1
Isopentane						8.8587	N/A	N/A	72.1500	0.1098	0.2511	72.15	Option 1: VP50 = 7.889 VP60 = 10.005
Isopropyl benzene						0.0416	N/A	N/A	120.2000	0.0004	0.0000	120.20	Option 2: A=6.963, B=1460.793, C=207.78
Naphthalene						0.0019	N/A	N/A	128.0000	0.0013	0.0000	128.00	Option 1: VP50 = .0015 VP60 = .0024
Pentane (-n)						6.0535	N/A	N/A	72.1500	0.0588	0.0919	72.15	Option 3: A=27691, B=7.558
Propane Surrogate (Iso-C5 base)						0.1000	N/A	N/A	44.1000	0.0033	0.0001	44.10	Option 1: VP50 = .1 VP60 = .1
Propylene Surrogate (Iso-C5 base)						0.1000	N/A	N/A	44.1000	0.0001	0.0000	44.10	Option 1: VP50 = .1 VP60 = .1
Toluene						0.2783	N/A	N/A	92.1300	0.0551	0.0040	92.13	Option 2: A=6.954, B=1344.8, C=219.48
Trans-2-Butene Surrogate (iso-C5)						0.1000	N/A	N/A	56.1000	0.0026	0.0001	56.10	Option 1: VP50 = .1 VP60 = .1
Unidentified Components						7.3806	N/A	N/A	63.2842	0.4940	0.5726	104.04	
Xylene (-m)						0.0745	N/A	N/A	106.1700	0.0585	0.0011	106.17	Option 2: A=7.009, B=1462.266, C=215.11

T-13 - External Floating Roof Tank Bloomfield, New Mexico

Annual Emission Calcaulations	
Rim Seal Losses (lb):	944.1407
Seal Factor A (lb-mole/ft-yr):	0.3000
Seal Factor B (lb-mole/ft-yr (mph)^n):	0.6000
Average Wind Speed (mph):	10.6000
Seal-related Wind Speed Exponent:	0.3000
Value of Vapor Pressure Function: Vapor Pressure at Daily Average Liquid	0.1385
Surface Temperature (psia):	5.0870
Tank Diameter (ft):	67.0000
Vapor Molecular Weight (lb/lb-mole):	67.0000
Product Factor:	1.0000
Withdrawal Losses (lb):	122.0471
Annual Net Throughput (gal/yr.):	40,000,000.0000
Shell Clingage Factor (bbl/1000 sqft):	0.0015
Average Organic Liquid Density (lb/gal):	6.0700
Tank Diameter (ft):	67.0000
Roof Fitting Losses (lb):	24,697.1519
Value of Vapor Pressure Function:	0.1385
Vapor Molecular Weight (lb/lb-mole):	67.0000
Product Factor:	1.0000
Tot. Roof Fitting Loss Fact.(lb-mole/yr):	2,660.9305
Average Wind Speed (mph):	10.6000
Total Losses (Ib):	25 763 3398

Roof Fitting/Status	Quantity	KFa(lb-mole/yr)	Roof Fitting Loss Factors KFb(lb-mole/(yr mph^n))	m	Losses(lb)
Access Hatch (24-in, Diam.)/Bolted Cover, Gasketed	1	1.60	0.00	0.00	14.8502
Automatic Gauge Float Well/Unbolted Cover, Ungasketed	1	14.00	5.40	1.10	584.3532
Vacuum Breaker (10-in. Diam.)/Weighted Mech. Actuation, Gask.	1	6.20	1.20	0.94	130.8228
Unslotted Guide-Pole Well/Ungasketed Sliding Cover	1	31.00	150.00	1.40	23.316.4579
Gauge-Hatch/Sample Well (8-in, Diam.)/Weighted Mech, Actuation, Gask.	1	0.47	0.02	0.97	5.6592
Roof Leg (3-in, Diameter)/Adjustable, Pontoon Area, Ungasketed	13	2.00	0.37	0.91	517.8996
Roof Leg (3-in. Diameter)/Adjustable, Center Area, Ungasketed	9	0.82	0.53	0.14	127.1089

Emissions Report for: Annual

T-13 - External Floating Roof Tank Bloomfield, New Mexico

	Losses(lbs)									
Components	Rim Seal Loss	Withdrawl Loss	Deck Fitting Loss	Deck Seam Loss	Total Emissions					
Gasoline (premium base blend) - Bloomfield	944.14	122.05	24,697.15	0.00	25,763.34					
Isopentane	237.12	13.40	6,202.57	0.00	6,453.09					
1-Pentene	9.59	0.62	250.96	0.00	261.18					
2-Methyl-1-butene	10.30	1.29	269.41	0.00	281.00					
Pentane (-n)	86.77	7.18	2,269.78	0.00	2,363.73					
2-Pentene	26.90	2.37	703.58	0.00	732.85					
Hexane (-n)	16.66	5.03	435.83	0.00	457.52					
Benzene	4.11	2.05	107.45	0.00	113.61					
Cyclohexane	4.58	2.20	119.85	0.00	126.62					
2,2,4-Trimethylpentane	0.36	0.35	9.40	0.00	10.12					
Toluene	3.74	6.72	97.78	0.00	108.24					
Ethylbenzene	0.17	0.98	4.57	0.00	5.72					
Xylene (-m)	1.06	7.14	27.80	0.00	36.00					
Isopropyl benzene	0.00	0.05	0.11	0.00	0.16					
1,2,4-Trimethylbenzene	0.06	1.82	1.56	0.00	3.44					
Naphthalene	0.00	0.16	0.02	0.00	0.18					
Propane Surrogate (Iso-C5 base)	0.08	0.40	2.10	0.00	2.59					
Isobutane Surrogate(Iso-C5 base)	0.71	3.58	18.68	0.00	22.97					
1-Butene Surrogate (Iso-C5 base)	0.01	0.07	0.38	0.00	0.47					
Butane Surrogate (Iso-C5 base)	1.06	5.30	27.67	0.00	34.03					
Trans-2-Butene Surrogate (iso-C5)	0.06	0.32	1.66	0.00	2.04					

Cis-2-Butene Surrogate (Iso- C5)	0.08	0.41	2.17	0.00	2.67
3-Methyl-1-Butene Surrogate (IC5)	0.05	0.23	1.21	0.00	1.49
Propylene Surrogate (Iso-C5 base)	0.00	0.01	0.06	0.00	0.08
Isobutene Surrogate (Iso-C5 base)	0.01	0.07	0.38	0.00	0.47
Unidentified Components	540.64	60.29	14,142.16	0.00	14,743.09

TANKS 4.0.9d Emissions Report - Detail Format Tank Indentification and Physical Characteristics

Identification

User Identification: City: State: Company: Type of Tank: Description:	T-14 Bloomfield New Mexico San Juan Refining External Floating Roof Tank Gasoline
Tank Dimensions Diameter (ft): Volume (gallons): Turnovers:	67.00 1,160,000.00 34.48
Paint Characteristics Internal Shell Condition: Shell Color/Shade: Shell Condition	Light Rust White/White Good
Roof Characteristics Type: Fitting Category	Pontoon Typical
Tank Construction and Rim-Seal Syst Construction: Primary Seal: Secondary Seal	em Welded Mechanical Shoe Rim-mounted
Deck Fitting/Status	

Quantity

Access Hatch (24-in. Diam.)/Bolted Cover, Gasketed	1
Automatic Gauge Float Well/Unbolted Cover, Ungasketed	1
Vacuum Breaker (10-in. Diam.)/Weighted Mech. Actuation, Gask.	1
Unslotted Guide-Pole Well/Ungasketed Sliding Cover	1
Gauge-Hatch/Sample Well (8-in. Diam.)/Weighted Mech. Actuation, Gask.	1
Roof Leg (3-in. Diameter)/Adjustable, Pontoon Area, Ungasketed	13
Roof Leg (3-in. Diameter)/Adjustable, Center Area, Ungasketed	9
Rim Vent (6-in. Diameter)/Weighted Mech. Actuation, Gask.	1

Meterological Data used in Emissions Calculations: Bloomfield, New Mexico (Avg Atmospheric Pressure = 11.9 psia)

TANKS 4.0.9d Emissions Report - Detail Format

file://C:\Program Files\Tanks409d\summarydisplay.htm

Liquid Contents of Storage Tank

T-14 - External Floating Roof Tank Bloomfield, New Mexico

		Daily Liquid Surf. Temperature (deg F		urf. eg F)	Liquid Bulk Temp	quid 3ulk emp Vapor Pressure (psia)		Vapor Mol.	Liquid Mass	Vapor Mass	Mol.	Basis for Vapor Pressure	
Mixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations
Gasoline (premium base blend) - Bloomfield	All	54.58	46.99	62.17	52.22	5.0870	N/A	N/A	67.0000			88.00	Option 4: RVP=10.8, ASTM Slope=3
1,2,4-Trimethylbenzene						0.0164	N/A	N/A	120.1900	0.0149	0.0001	120.19	Option 2: A=7.04383, B=1573.267, C=208.56
1-Butene Surrogate (Iso-C5 base)						0.1000	N/A	N/A	56.1000	0.0006	0.0000	56.10	Option 1: VP50 = .1 VP60 = .1
1-Pentene						7.7168	N/A	N/A	70.1400	0.0051	0.0102	70.14	Option 2: A=6.8442, B=1044.01, C=233.5
2,2,4-Trimethylpentane						0.5086	N/A	N/A	114.2300	0.0029	0.0004	114.23	Option 2: A=6.8118, B=1257.84, C=220.74
2-Methyl-1-butene						3.9857	N/A	N/A	70.1300	0.0106	0.0109	70.13	Option 2: A=6.4863, B=1039.69, C=236.65
2-Pentene						5.6874	N/A	N/A	70.1400	0.0194	0.0285	70.14	Option 1: VP50 = 5 VP60 = 6.5
3-Methyl-1-Butene Surrogate (IC5)						0.1000	N/A	N/A	70.1000	0.0019	0.0000	70.10	Option 1: VP50 = .1 VP60 = .1
Benzene						1.0030	N/A	N/A	78.1100	0.0168	0.0044	78.11	Option 2: A=6.905, B=1211.033, C=220.79
Butane Surrogate (Iso-C5 base)						0.1000	N/A	N/A	58.1000	0.0434	0.0011	58.10	Option 1: VP50 = .1 VP60 = .1
Cis-2-Butene Surrogate (Iso-C5)						0.1000	N/A	N/A	56.1000	0.0034	0.0001	56.10	Option 1: VP50 = .1 VP60 = .1
Cyclohexane						1.0441	N/A	N/A	84.1600	0.0180	0.0049	84.16	Option 2: A=6.841, B=1201.53, C=222.65
Ethylbenzene						0.0897	N/A	N/A	106.1700	0.0080	0.0002	106.17	Option 2: A=6.975, B=1424.255, C=213.21
Hexane (-n)						1.6589	N/A	N/A	86.1700	0.0412	0.0176	86.17	Option 2: A=6.876, B=1171.17, C=224.41
Isobutane Surrogate(Iso-C5 base)						0.1000	N/A	N/A	58.1000	0.0293	0.0008	58.10	Option 1: VP50 = .1 VP60 = .1
Isobutene Surrogate (Iso-C5 base)						0.1000	N/A	N/A	56.1000	0.0006	0.0000	56.10	Option 1: VP50 = .1 VP60 = .1
Isopentane						8.8587	N/A	N/A	72.1500	0.1098	0.2511	72.15	Option 1: VP50 = 7.889 VP60 = 10.005
Isopropyl benzene						0.0416	N/A	N/A	120.2000	0.0004	0.0000	120.20	Option 2: A=6.963, B=1460.793, C=207.78
Naphthalene						0.0019	N/A	N/A	128.0000	0.0013	0.0000	128.00	Option 1: VP50 = .0015 VP60 = .0024
Pentane (-n)						6.0535	N/A	N/A	72.1500	0.0588	0.0919	72.15	Option 3: A=27691, B=7.558
Propane Surrogate (Iso-C5 base)						0.1000	N/A	N/A	44.1000	0.0033	0.0001	44.10	Option 1: VP50 = .1 VP60 = .1
Propylene Surrogate (Iso-C5 base)						0.1000	N/A	N/A	44.1000	0.0001	0.0000	44.10	Option 1: VP50 = .1 VP60 = .1
Toluene						0.2783	N/A	N/A	92.1300	0.0551	0.0040	92.13	Option 2: A=6.954, B=1344.8, C=219.48
Trans-2-Butene Surrogate (iso-C5)						0.1000	N/A	N/A	56.1000	0.0026	0.0001	56.10	Option 1: VP50 = .1 VP60 = .1
Unidentified Components						7.3806	N/A	N/A	63.2842	0.4940	0.5726	104.04	
Xylene (-m)						0.0745	N/A	N/A	106.1700	0.0585	0.0011	106.17	Option 2: A=7.009, B=1462.266, C=215.11

T-14 - External Floating Roof Tank Bloomfield, New Mexico

Annual Emission Calcaulations	
Rim Seal Losses (lb):	3,009.7714
Seal Factor A (lb-mole/ft-yr):	0.6000
Seal Factor B (lb-mole/ft-yr (mph)^n):	0.4000
Average Wind Speed (mph):	10.6000
Seal-related Wind Speed Exponent:	1.0000
Value of Vapor Pressure Function: Vapor Pressure at Daily Average Liquid	0.1385
Surface Temperature (psia):	5.0870
Tank Diameter (ft):	67.0000
Vapor Molecular Weight (lb/lb-mole):	67.0000
Product Factor:	1.0000
Withdrawal Losses (lb):	122.0471
Annual Net Throughput (gal/yr.):	40,000,000.0000
Shell Clingage Factor (bbl/1000 sqft):	0.0015
Average Organic Liquid Density (lb/gal):	6.0700
Tank Diameter (ft):	67.0000
Roof Fitting Losses (lb):	24,710.6285
Value of Vapor Pressure Function:	0.1385
Vapor Molecular Weight (lb/lb-mole):	67.0000
Product Factor:	1.0000
Tot. Roof Fitting Loss Fact.(lb-mole/yr):	2,662.3825
Average Wind Speed (mph):	10.6000
Total Lossos (Ib):	27 842 4470

Roof Fitting/Status	Quantity	KFa(lb-mole/yr)	Roof Fitting Loss Factors KFb(lb-mole/(yr mph^n))	m	Losses(lb)
Access Hatch (24-in, Diam,)/Bolted Cover, Gasketed	1	1.60	0.00	0.00	14.8502
Automatic Gauge Float Well/Unbolted Cover, Ungasketed	1	14.00	5.40	1.10	584.3532
Vacuum Breaker (10-in. Diam.)/Weighted Mech. Actuation, Gask.	1	6.20	1.20	0.94	130.8228
Unslotted Guide-Pole Well/Ungasketed Sliding Cover	1	31.00	150.00	1.40	23,316.4579
Gauge-Hatch/Sample Well (8-in. Diam.)/Weighted Mech. Actuation, Gask.	1	0.47	0.02	0.97	5.6592
Roof Leg (3-in. Diameter)/Adjustable, Pontoon Area, Ungasketed	13	2.00	0.37	0.91	517.8996
Roof Leg (3-in. Diameter)/Adjustable, Center Area, Ungasketed	9	0.82	0.53	0.14	127.1089
Rim Vent (6-in. Diameter)/Weighted Mech. Actuation, Gask.	1	0.71	0.10	1.00	13.4766

Emissions Report for: Annual

T-14 - External Floating Roof Tank Bloomfield, New Mexico

	Losses(lbs)				
Components	Rim Seal Loss	Withdrawl Loss	Deck Fitting Loss	Deck Seam Loss	Total Emissions
Gasoline (premium base blend) - Bloomfield	3,009.77	122.05	24,710.63	0.00	27,842.45
Isopentane	755.89	13.40	6,205.95	0.00	6,975.25
1-Pentene	30.58	0.62	251.10	0.00	282.30
2-Methyl-1-butene	32.83	1.29	269.56	0.00	303.68
Pentane (-n)	276.61	7.18	2,271.02	0.00	2,554.81
2-Pentene	85.74	2.37	703.97	0.00	792.08
Hexane (-n)	53.11	5.03	436.07	0.00	494.21
Benzene	13.09	2.05	107.51	0.00	122.66
Cyclohexane	14.61	2.20	119.91	0.00	136.71
2,2,4-Trimethylpentane	1.15	0.35	9.41	0.00	10.91
Toluene	11.92	6.72	97.83	0.00	116.47
Ethylbenzene	0.56	0.98	4.58	0.00	6.11
Xylene (-m)	3.39	7.14	27.81	0.00	38.34
Isopropyl benzene	0.01	0.05	0.11	0.00	0.17
1,2,4-Trimethylbenzene	0.19	1.82	1.56	0.00	3.57
Naphthalene	0.00	0.16	0.02	0.00	0.18
Propane Surrogate (Iso-C5 base)	0.26	0.40	2.11	0.00	2.76
Isobutane Surrogate(Iso-C5 base)	2.28	3.58	18.69	0.00	24.55
1-Butene Surrogate (Iso-C5 base)	0.05	0.07	0.38	0.00	0.50
Butane Surrogate (Iso-C5 base)	3.37	5.30	27.69	0.00	36.36
Trans-2-Butene Surrogate (iso-C5)	0.20	0.32	1.66	0.00	2.18

Cis-2-Butene Surrogate (Iso- C5)	0.26	0.41	2.17	0.00	2.85
3-Methyl-1-Butene Surrogate (IC5)	0.15	0.23	1.21	0.00	1.59
Propylene Surrogate (Iso-C5 base)	0.01	0.01	0.06	0.00	0.08
Isobutene Surrogate (Iso-C5 base)	0.05	0.07	0.38	0.00	0.50
Unidentified Components	1,723.46	60.29	14,149.88	0.00	15,933.63
TANKS 4.0.9d Emissions Report - Detail Format Tank Indentification and Physical Characteristics

Identification

User Identification: City: State: Company: Type of Tank: Description:	T-18 Bloomfield New Mexico San Juan Refining Internal Floating Roof Tank Diesel
Tank Dimensions Diameter (ft): Volume (gallons): Turnovers: Self Supp. Roof? (y/n): No. of Columns: Eff. Col. Diam. (ft):	100.00 2,115,000.00 23.64 Y 0.00 0.00
Paint Characteristics Internal Shell Condition: Shell Color/Shade: Shell Condition Roof Color/Shade: Roof Condition:	Light Rust White/White Good White/White Good
Rim-Seal System Primary Seal: Secondary Seal	Vapor-mounted None
Deck Characteristics Deck Fitting Category: Deck Type:	Typical Welded
Deals Eithing VOtation	

Deck Fitting/Status Quantity Access Hatch (24-in. Diam.)/Unbolted Cover, Ungasketed 1 Automatic Gauge Float Well/Unbolted Cover, Ungasketed 1 Roof Leg or Hanger Well/Adjustable 32 Sample Pipe or Well (24-in. Diam.)/Slit Fabric Seal 10% Open 1 Vacuum Breaker (10-in. Diam.)/Weighted Mech. Actuation, Gask. 1

Meterological Data used in Emissions Calculations: Bloomfield, New Mexico (Avg Atmospheric Pressure = 11.9 psia)

TANKS 4.0.9d

file://C:\Program Files\Tanks409d\summarydisplay.htm

Emissions Report - Detail Format Liquid Contents of Storage Tank

T-18 - Internal Floating Roof Tank Bloomfield, New Mexico

Mixture/Component	Мо	nth	Da Temj Avg.	ily Liquid Su berature (de Min.	urf. eg F) Max.	Liquid Bulk Temp (deg F)	Vapo Avg.	Pressure Min.	(psia) Max.	Vapor Mol. Weight.	Liquid Mass Fract.	Vapor Mass Fract.	Mol. Weight	Basis for Vapor Pressure Calculations
Diesel (#2) - Bloomfield	All		54.58	46.99	62.17	52.22	0.0058	N/A	N/A	130.0000			205.00	Option 1: VP50 = .0045 VP60 = .0074
1,2,4-Trimethylbenzene							0.0164	N/A	N/A	120.1900	0.0105	0.0466	120.19	Option 2: A=7.04383, B=1573.267, C=208.56
2,2,4-Trimethylpentane							0.5086	N/A	N/A	114.2300	0.0009	0.1238	114.23	Option 2: A=6.8118, B=1257.84, C=220.74
Cyclohexane							1.0441	N/A	N/A	84.1600	0.0002	0.0565	84.16	Option 2: A=6.841, B=1201.53, C=222.65
Ethylbenzene							0.0897	N/A	N/A	106.1700	0.0005	0.0121	106.17	Option 2: A=6.975, B=1424.255, C=213.21
Hexane (-n)							1.6589	N/A	N/A	86.1700	0.0001	0.0449	86.17	Option 2: A=6.876, B=1171.17, C=224.41
Isopropyl benzene							0.0416	N/A	N/A	120.2000	0.0004	0.0045	120.20	Option 2: A=6.963, B=1460.793, C=207.78
Naphthalene							0.0019	N/A	N/A	128.0000	0.0056	0.0029	128.00	Option 1: VP50 = .0015 VP60 = .0024
Toluene							0.2783	N/A	N/A	92.1300	0.0009	0.0678	92.13	Option 2: A=6.954, B=1344.8, C=219.48
Unidentified Components							0.0024	N/A	N/A	172.8110	0.9753	0.5281	209.07	
Xylene (-m)							0.0745	N/A	N/A	106.1700	0.0056	0.1129	106.17	Option 2: A=7.009, B=1462.266, C=215.11

TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

T-18 - Internal Floating Roof Tank Bloomfield, New Mexico

Annual Emission Calcaulations	
Rim Seal Losses (lb):	10.6688
Seal Factor A (lb-mole/ft-yr):	6.7000
Seal Factor B (lb-mole/ft-yr (mph)^n):	0.2000
Value of Vapor Pressure Function: Vapor Pressure at Daily Average Liguid	0.0001
Surface Temperature (psia):	0.0058
Tank Diameter (ft):	100.0000
Vapor Molecular Weight (lb/lb-mole):	130.0000
Product Factor:	1.0000
Withdrawal Losses (lb):	117.7066
Number of Columns:	0.0000
Effective Column Diameter (ft):	0.0000
Annual Net Throughput (gal/yr.):	50,000,000.0000
Shell Clingage Factor (bbl/1000 sqft):	0.0015
Average Organic Liquid Density (lb/gal):	6.9900
Tank Diameter (ft):	100.0000
Deck Fitting Losses (Ib):	5.1115
Value of Vapor Pressure Function:	0.0001
Vapor Molecular Weight (lb/lb-mole):	130.0000
Product Factor:	1.0000
Tot. Roof Fitting Loss Fact.(lb-mole/yr):	321.0000
Deck Seam Losses (lb):	0.0000
Deck Seam Length (ft): Deck Seam Loss per Linit Length	0.0000
Factor (lb-mole/ft-vr)	0.000
Deck Seam Length Factor(ft/sgft)	0.0000
Tank Diameter (ft):	100.0000
Vapor Molecular Weight (lb/lb-mole):	130.0000
Product Factor:	1.0000
Total Losses (lb):	133.4869

Roof Fitting/Status	Quantity	KFa(lb-mole/yr)	Roof Fitting Loss Factors KFb(lb-mole/(yr mph^n))	m	Losses(lb)
Access Hatch (24-in. Diam.)/Unbolted Cover, Ungasketed	1	36.00	5.90	1.20	0.5732
Automatic Gauge Float Well/Unbolted Cover, Ungasketed	1	14.00	5.40	1.10	0.2229
Roof Leg or Hanger Well/Adjustable	32	7.90	0.00	0.00	4.0255
Sample Pipe or Well (24-in. Diam.)/Slit Fabric Seal 10% Open	1	12.00	0.00	0.00	0.1911
Vacuum Breaker (10-in. Diam.)/Weighted Mech. Actuation, Gask.	1	6.20	1.20	0.94	0.0987

TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: Annual

T-18 - Internal Floating Roof Tank Bloomfield, New Mexico

		Losses(lbs)										
Components	Rim Seal Loss	Withdrawl Loss	Deck Fitting Loss	Deck Seam Loss	Total Emissions							
Diesel (#2) - Bloomfield	10.67	117.71	5.11	0.00	133.49							
Hexane (-n)	0.48	0.01	0.23	0.00	0.72							
Cyclohexane	0.60	0.02	0.29	0.00	0.92							
2,2,4-Trimethylpentane	1.32	0.11	0.63	0.00	2.06							
Toluene	0.72	0.11	0.35	0.00	1.18							
Ethylbenzene	0.13	0.06	0.06	0.00	0.25							
Xylene (-m)	1.20	0.66	0.58	0.00	2.44							
Isopropyl benzene	0.05	0.05	0.02	0.00	0.12							
1,2,4-Trimethylbenzene	0.50	1.24	0.24	0.00	1.97							
Naphthalene	0.03	0.66	0.01	0.00	0.70							
Unidentified Components	5.63	114.80	2.70	0.00	123.13							

TANKS 4.0 Report

TANKS 4.0.9d Emissions Report - Detail Format Tank Indentification and Physical Characteristics

Identification	
User Identification:	T-19
City: State:	Bioomfield
Company:	San Juan Refining
Type of Tank	Vertical Fixed Roof Tank
Description:	Diesel
Tank Dimensions	
Shell Height (ft):	40.00
Diameter (ft):	81.00
Liquid Height (II) : Ava Liquid Height (ft):	39.00
Volume (gallons):	1 485 000 00
Turnovers:	43.77
Net Throughput(gal/yr):	65,000,000.00
Is Tank Heated (y/n):	Ν
Point Characteristics	
Shell Color/Shade	White/White
Shell Condition	Good
Roof Color/Shade:	White/White
Roof Condition:	Good
Root Characteristics	Cana
Type: Hoight (ff)	2 00
Slope (ft/ft) (Cone Roof)	0.05
	0.00
Breather Vent Settings	
Vacuum Settings (psig):	-0.03
Pressure Settings (psig)	0.03

Meterological Data used in Emissions Calculations: Bloomfield, New Mexico (Avg Atmospheric Pressure = 11.9 psia)

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

T-19 - Vertical Fixed Roof Tank Bloomfield, New Mexico

Mixture/Component	Month	Da Tem Avg.	ily Liquid S perature (de Min.	urf. eg F) Max.	Liquid Bulk Temp (deg F)	Vapo Avg.	r Pressure Min.	(psia) Max.	Vapor Mol. Weight.	Liquid Mass Fract.	Vapor Mass Fract.	Mol. Weight	Basis for Vapor Pressure Calculations
Diesel (#2) - Bloomfield	All	54.58	46.99	62.17	52.22	0.0058	0.0040	0.0077	130.0000			205.00	Option 1: VP50 = .0045 VP60 = .0074
1,2,4-Trimethylbenzene						0.0164	0.0119	0.0223	120.1900	0.0058	0.0257	120.19	Option 2: A=7.04383, B=1573.267, C=208.56
2,2,4-Trimethylpentane						0.5086	0.4046	0.6340	114.2300	0.0012	0.1651	114.23	Option 2: A=6.8118, B=1257.84, C=220.74
Cyclohexane						1.0441	0.8423	1.2845	84.1600	0.0001	0.0282	84.16	Option 2: A=6.841, B=1201.53, C=222.65
Ethylbenzene						0.0897	0.0680	0.1170	106.1700	0.0003	0.0073	106.17	Option 2: A=6.975, B=1424.255, C=213.21
Isopropyl benzene						0.0416	0.0309	0.0554	120.2000	0.0002	0.0023	120.20	Option 2: A=6.963, B=1460.793, C=207.78
Naphthalene						0.0019	0.0013	0.0027	128.0000	0.0030	0.0016	128.00	Option 1: VP50 = .0015 VP60 = .0024
Toluene						0.2783	0.2174	0.3531	92.1300	0.0007	0.0527	92.13	Option 2: A=6.954, B=1344.8, C=219.48
Unidentified Components						0.0034	0.0026	0.0026	148.8120	0.9849	0.6405	207.49	
Xylene (-m)						0.0745	0.0564	0.0975	106.1700	0.0038	0.0766	106.17	Option 2: A=7.009, B=1462.266, C=215.11

TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

T-19 - Vertical Fixed Roof Tank Bloomfield, New Mexico

Annual Emission Calcaulations	
Standing Langes (lh):	200 0700
Standing Losses (ib):	288.0766
Vapor Density (lb/cu ft):	0 0001
Vapor Space Expansion Factor	0.0543
Vented Vapor Saturation Factor:	0.9937
Tank Vapor Space Volume:	100 105 0701
vapor Space volume (cu π):	106,495.2784
Tank Diameter (it):	81.0000
Tank Shell Height (ft):	40,0000
Average Liquid Height (ft):	20,0000
Roof Outage (ft):	0.6667
Roof Outage (Cone Roof)	0.6667
Roof Height (ft):	2 0000
Roof Slope (ft/ft):	0.0500
Shell Radius (ft):	40.5000
Vapor Dopoity	
Vapor Density (Ib/cu ft):	0.0001
Vapor Molecular Weight (lb/lb-mole):	130.0000
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	0.0058
Daily Avg. Liquid Surface Temp. (deg. R):	514.2529
Daily Average Ambient Temp. (deg. F):	52.2000
Ideal Gas Constant R	
(psia cutt / (lb-mol-deg R)):	10.731
Liquid Buik Temperature (deg. R):	511.8900
Tank Paint Solar Absorptance (Sneil).	0.1700
Daily Total Solar Insulation	0.1700
Factor (Btu/sqft day):	1,766.0000
Vapor Space Expansion Factor	0.0542
Daily Vapor Temperature Range (deg. R):	30 3662
Daily Vapor Pressure Range (psia):	0.0037
Breather Vent Press, Setting Range(psia):	0.0600
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	0.0058
Vapor Pressure at Daily Minimum Liquid	
Surface Temperature (psia):	0.0040
Vapor Pressure at Daily Maximum Liquid	
Surface Temperature (psia):	0.0077
Daily Avg. Liquid Surface Temp. (deg R):	514.2529
Daily Win. Elquid Surface Temp. (deg R):	500.0014
Daily Ambient Temp, Range (deg, R):	5∠1.8445 30 5000
cary ransient remp. range (deg. rt).	55.5000
Vented Vapor Saturation Factor	0.0007
Vener Processor at Daily Average Lignid	0.9937
Surface Temperature (nsia):	0.0058
Vapor Space Outage (ft):	20.6667
Working Losses (lb): Vapor Molecular Weight (lb/lb-mole):	999.2429
Vapor Pressure at Daily Average Liquid	150.0000
Surface Temperature (psia):	0.0058
Annual Net Throughput (gal/yr.):	65,000,000.0000
Annual Turnovers:	43.7710
Turnover Factor:	0.8521
Maximum Liquid Volume (gal):	1,485,000.0000
Maximum Liquid Height (ft):	39.0000
Tank Diameter (ft):	81.0000
Working Loss Product Factor:	1.0000
Total Losses (lb):	1.287.3196

TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: Annual

T-19 - Vertical Fixed Roof Tank Bloomfield, New Mexico

	Losses(lbs)								
Components	Working Loss	Breathing Loss	Total Emissions						
Diesel (#2) - Bloomfield	999.24	288.08	1,287.32						
Cyclohexane	28.23	8.14	36.36						
2,2,4-Trimethylpentane	164.97	47.56	212.54						
Toluene	52.66	15.18	67.84						
Ethylbenzene	7.27	2.10	9.37						
Xylene (-m)	76.54	22.07	98.61						
Isopropyl benzene	2.25	0.65	2.90						
1,2,4-Trimethylbenzene	25.71	7.41	33.12						
Naphthalene	1.55	0.45	2.00						
Unidentified Components	640.06	184.53	824.59						

TANKS 4.0 Report

Quantity

TANKS 4.0.9d Emissions Report - Detail Format Tank Indentification and Physical Characteristics

Identification		
User Identification:	T-20_Edit	
City:	Bloomfield	
State:	New Mexico	
Company:	San Juan Refining	
Type of Tank:	Internal Floating Roof Tank	
Description:	Gasoline	
Tank Dimensions		
Diameter (ft):	60.00	
Volume (gallons):	840,000.00	
Turnovers:	3.57	
Self Supp. Roof? (y/n):	Y	
No. of Columns:	0.00	
Eff. Col. Diam. (ft):	0.00	
Paint Characteristics		
Internal Shell Condition:	Light Rust	
Shell Color/Shade:	White/White	
Shell Condition	Good	
Roof Color/Shade:	White/White	
Roof Condition:	Good	
Rim-Seal System		
Primary Seal:	Liquid-mounted	
Secondary Seal	None	
Deck Characteristics		
Deck Fitting Category:	Typical	
Deck Type:	Welded	
Deck Fitting/Status		

Access Hatch (24-in. Diam.)/Unbolted Cover, Ungasketed Automatic Gauge Float Well/Unbolted Cover, Ungasketed Roof Leg or Hanger Well/Adjustable Sample Pipe or Well (24-in. Diam.)/Slit Fabric Seal 10% Open Vacuum Breaker (10-in. Diam.)/Weighted Mech. Actuation, Gask.

Meterological Data used in Emissions Calculations: Bloomfield, New Mexico (Avg Atmospheric Pressure = 11.9 psia)

file://C:\Program Files\Tanks409d\summarydisplay.htm

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

T-20_Edit - Internal Floating Roof Tank Bloomfield, New Mexico

Mixture/Component	Month	Da Tem Avg.	ily Liquid S perature (d Min.	urf. eg F) Max.	Liquid Bulk Temp (deg F)	Vapo Avg.	r Pressure Min.	(psia) Max.	Vapor Mol. Weight.	Liquid Mass Fract.	Vapor Mass Fract.	Mol. Weight	Basis for Vapor Pressure Calculations
Gasoline (premium base blend) - Bloomfield	All	54.58	46.99	62.17	52.22	5.0870	N/A	N/A	67.0000			88.00	Option 4: RVP=10.8, ASTM Slope=3
1,2,4-Trimethylbenzene						0.0164	N/A	N/A	120.1900	0.0104	0.0000	120.19	Option 2: A=7.04383, B=1573.267, C=208.56
Benzene						1.0030	N/A	N/A	78.1100	0.0066	0.0017	78.11	Option 2: A=6.905, B=1211.033, C=220.79
Cyclohexane						1.0441	N/A	N/A	84.1600	0.0240	0.0065	84.16	Option 2: A=6.841, B=1201.53, C=222.65
Ethylbenzene						0.0897	N/A	N/A	106.1700	0.0083	0.0002	106.17	Option 2: A=6.975, B=1424.255, C=213.21
Hexane (-n)						1.6589	N/A	N/A	86.1700	0.0234	0.0100	86.17	Option 2: A=6.876, B=1171.17, C=224.41
Isopentane						8.8587	N/A	N/A	72.1500	0.0095	0.0217	72.15	Option 1: VP50 = 7.889 VP60 = 10.005
Isopropyl benzene						0.0416	N/A	N/A	120.2000	0.0018	0.0000	120.20	Option 2: A=6.963, B=1460.793, C=207.78
Naphthalene						0.0019	N/A	N/A	128.0000	0.0001	0.0000	128.00	Option 1: VP50 = .0015 VP60 = .0024
Pentane (-n)						6.0535	N/A	N/A	72.1500	0.0132	0.0206	72.15	Option 3: A=27691, B=7.558
Toluene						0.2783	N/A	N/A	92.1300	0.0439	0.0032	92.13	Option 2: A=6.954, B=1344.8, C=219.48
Unidentified Components						5.8925	N/A	N/A	66.4210	0.8059	0.9350	87.10	
Xylene (-m)						0.0745	N/A	N/A	106.1700	0.0529	0.0010	106.17	Option 2: A=7.009, B=1462.266, C=215.11

TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

T-20_Edit - Internal Floating Roof Tank Bloomfield, New Mexico

Annual Emission Calcaulations	
Rim Seal Losses (lb):	891.0141
Seal Factor A (lb-mole/ft-yr):	1.6000
Seal Factor B (lb-mole/ft-yr (mph)^n):	0.3000
Value of Vapor Pressure Function: Vapor Pressure at Daily Average Liquid	0.1385
Surface Temperature (psia):	5.0870
Tank Diameter (ft):	60.0000
Vapor Molecular Weight (lb/lb-mole):	67.0000
Product Factor:	1.0000
Withdrawal Losses (Ib):	10.2214
Number of Columns:	0.0000
Effective Column Diameter (ft):	0.0000
Annual Net Throughput (gal/yr.):	3,000,000.0000
Shell Clingage Factor (bbl/1000 sqft):	0.0015
Average Organic Liquid Density (lb/gal):	6.0700
Tank Diameter (ft):	60.0000
Deck Fitting Losses (lb):	1,879.4829
Value of Vapor Pressure Function:	0.1385
Vapor Molecular Weight (lb/lb-mole):	67.0000
Product Factor:	1.0000
Tot. Roof Fitting Loss Fact. (lb-mole/yr):	202.5000
Deck Seam Losses (lb):	0.0000
Deck Seam Length (ft):	0.0000
Deck Seam Loss per Unit Length	
Factor (lb-mole/ft-yr):	0.0000
Deck Seam Length Factor(ft/sqft):	0.0000
Tank Diameter (ft):	60.0000
Vapor Molecular Weight (lb/lb-mole):	67.0000
Product Factor:	1.0000
Total Losses (lb)	2 780 7184

Roof Fitting/Status	Quantity	KFa(lb-mole/yr)	Roof Fitting Loss Factors KFb(lb-mole/(yr mph^n))	m	Losses(lb)
Access Hatch (24-in. Diam.)/Unbolted Cover, Ungasketed	1	36.00	5.90	1.20	334.1303
Automatic Gauge Float Well/Unbolted Cover, Ungasketed	1	14.00	5.40	1.10	129.9396
Roof Leg or Hanger Well/Adjustable	17	7.90	0.00	0.00	1,246.4916
Sample Pipe or Well (24-in. Diam.)/Silt Fabric Seal 10% Open	1	12.00	0.00	0.00	111.3768
Vacuum Breaker (10-in. Diam.)/Weighted Mech. Actuation, Gask.	1	6.20	1.20	0.94	57.5447

TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: Annual

T-20_Edit - Internal Floating Roof Tank Bloomfield, New Mexico

	Losses(lbs)							
Components	Rim Seal Loss	Withdrawl Loss	Deck Fitting Loss	Deck Seam Loss	Total Emissions			
Gasoline (premium base blend) - Bloomfield	891.01	10.22	1,879.48	0.00	2,780.72			
Isopentane	19.36	0.10	40.84	0.00	60.30			
Pentane (-n)	18.38	0.13	38.78	0.00	57.29			
Hexane (-n)	8.93	0.24	18.84	0.00	28.01			
Benzene	1.52	0.07	3.21	0.00	4.80			
Cyclohexane	5.77	0.25	12.16	0.00	18.17			
Toluene	2.81	0.45	5.93	0.00	9.19			
Ethylbenzene	0.17	0.08	0.36	0.00	0.62			
Xylene (-m)	0.91	0.54	1.91	0.00	3.36			
Isopropyl benzene	0.02	0.02	0.04	0.00	0.07			
1,2,4-Trimethylbenzene	0.04	0.11	0.08	0.00	0.23			
Naphthalene	0.00	0.00	0.00	0.00	0.00			
Unidentified Components	833.11	8.24	1,757.33	0.00	2,598.68			

TANKS 4.0 Report

TANKS 4.0.9d **Emissions Report - Detail Format Tank Indentification and Physical Characteristics**

Identification		
User Identification:	T-23	
City:	Bloomfield	
State:	New Mexico	
Company.	San Juan Refining	
Type of Tank	External Floating Roof Tank	
Description:	Gasoline	
Description		
Tank Dimensions		
Diamotor (ft):	95.00	
Volume (gallons):	1 613 000	
Turpovors:	40.30	
Tumovers.	40.50	
Paint Characteristics		
Internal Shell Condition:	Light Rust	
Shell Color/Shade:	White/White	
Shell Condition	Good	
	8000	
Roof Characteristics		
Type:	Pontoon	
Fitting Category	Typical	
Thing Outogory	i ypioui	
Tank Construction and Rim-Seal	I System	
Construction:	Welded	
Primary Seal:	Mechanical Shoe	
Secondary Seal	None	
Deals Fitting/Status		Overtitu
Deck Fitting/Status		Quantity
Access Hatch (24-in. Diam.)/Bolted	d Cover, Gasketed	1
Automatic Gauge Float Well/Unbol	Ited Cover, Ungasketed	1
Vacuum Breaker (10-in. Diam.)/We	eighted Mech. Actuation, Gask.	1
Unslotted Guide-Pole Well/Ungask	keted Sliding Cover	1
Gauge-Hatch/Sample Well (8-in, D	Diam.)/Weighted Mech. Actuation, Gask.	1
Roof Leg (3-in Diameter)/Adjustab	ble Pontoon Area Ungasketed	16
Roof Leg (3-in. Diameter)/Adjustab	ble. Center Area, Ungasketed	12
Rim Vent (6-in Diameter)/Weighte	d Mech Actuation Gask	1

Meterological Data used in Emissions Calculations: Bloomfield, New Mexico (Avg Atmospheric Pressure = 11.9 psia)

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

T-23 - External Floating Roof Tank Bloomfield, New Mexico

		Da Tem	ily Liquid S perature (d	urf. eg F)	Liquid Bulk Temp	Vapo	r Pressure	(psia)	Vapor Mol.	Liquid Mass	Vapor Mass	Mol.	Basis for Vapor Pressure
Mixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations
Gasoline (premium base blend) - Bloomfield	All	54.58	46.99	62.17	52.22	5.0870	N/A	N/A	67.0000			88.00	Option 4: RVP=10.8, ASTM Slope=3
1,2,4-Trimethylbenzene						0.0164	N/A	N/A	120.1900	0.0002	0.0000	120.19	Option 2: A=7.04383, B=1573.267, C=208.56
1-Butene Surrogate (Iso-C5 base)						0.1000	N/A	N/A	56.1000	0.0001	0.0000	56.10	Option 1: VP50 = .1 VP60 = .1
1-Pentene						7.7168	N/A	N/A	70.1400	0.0001	0.0002	70.14	Option 2: A=6.8442, B=1044.01, C=233.5
2-Methyl-1-butene						3.9857	N/A	N/A	70.1300	0.0002	0.0002	70.13	Option 2: A=6.4863, B=1039.69, C=236.65
2-Pentene						5.6874	N/A	N/A	70.1400	0.0006	0.0009	70.14	Option 1: VP50 = 5 VP60 = 6.5
3-Methyl-1-Butene Surrogate (IC5)						0.1000	N/A	N/A	70.1000	0.0001	0.0000	70.10	Option 1: VP50 = .1 VP60 = .1
Benzene						1.0030	N/A	N/A	78.1100	0.0226	0.0059	78.11	Option 2: A=6.905, B=1211.033, C=220.79
Butane Surrogate (Iso-C5 base)						0.1000	N/A	N/A	58.1000	0.0663	0.0017	58.10	Option 1: VP50 = .1 VP60 = .1
Cis-2-Butene Surrogate (Iso-C5)						0.1000	N/A	N/A	56.1000	0.0002	0.0000	56.10	Option 1: VP50 = .1 VP60 = .1
Cyclohexane						1.0441	N/A	N/A	84.1600	0.0560	0.0151	84.16	Option 2: A=6.841, B=1201.53, C=222.65
Ethylbenzene						0.0897	N/A	N/A	106.1700	0.0002	0.0000	106.17	Option 2: A=6.975, B=1424.255, C=213.21
Hexane (-n)						1.6589	N/A	N/A	86.1700	0.1116	0.0478	86.17	Option 2: A=6.876, B=1171.17, C=224.41
Isobutane Surrogate(Iso-C5 base)						0.1000	N/A	N/A	58.1000	0.0134	0.0003	58.10	Option 1: VP50 = .1 VP60 = .1
Isobutene Surrogate (Iso-C5 base)						0.1000	N/A	N/A	56.1000	0.0001	0.0000	56.10	Option 1: VP50 = .1 VP60 = .1
Isopentane						8.8587	N/A	N/A	72.1500	0.1238	0.2832	72.15	Option 1: VP50 = 7.889 VP60 = 10.005
Pentane (-n)						6.0535	N/A	N/A	72.1500	0.1452	0.2269	72.15	Option 3: A=27691, B=7.558
Propane Surrogate (Iso-C5 base)						0.1000	N/A	N/A	44.1000	0.0012	0.0000	44.10	Option 1: VP50 = .1 VP60 = .1
Toluene						0.2783	N/A	N/A	92.1300	0.0139	0.0010	92.13	Option 2: A=6.954, B=1344.8, C=219.48
Trans-2-Butene Surrogate (iso-C5)						0.1000	N/A	N/A	56.1000	0.0004	0.0000	56.10	Option 1: VP50 = .1 VP60 = .1
Unidentified Components						7.1254	N/A	N/A	59.6993	0.4428	0.4167	116.71	
Xylene (-m)						0.0745	N/A	N/A	106.1700	0.0010	0.0000	106.17	Option 2: A=7.009, B=1462.266, C=215.11

TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

T-23 - External Floating Roof Tank Bloomfield, New Mexico

Annual Emission Calcaulations	
Rim Seal Losses (lb):	38,249.8169
Seal Factor A (lb-mole/ft-yr):	5.8000
Seal Factor B (lb-mole/ft-yr (mph)^n):	0.3000
Average Wind Speed (mph):	10.6000
Seal-related Wind Speed Exponent:	2.1000
Value of Vapor Pressure Function: Vapor Pressure at Daily Average Liguid	0.1385
Surface Temperature (psia):	5.0870
Tank Diameter (ft):	85.0000
Vapor Molecular Weight (lb/lb-mole):	67.0000
Product Factor:	1.0000
Withdrawal Losses (lb):	156.3280
Annual Net Throughput (gal/yr.):	65,000,000.0000
Shell Clingage Factor (bbl/1000 sqft):	0.0015
Average Organic Liquid Density (lb/gal):	6.0700
Tank Diameter (ft):	85.0000
Roof Fitting Losses (lb):	24,872.5135
Value of Vapor Pressure Function:	0.1385
Vapor Molecular Weight (lb/lb-mole):	67.0000
Product Factor:	1.0000
Tot. Roof Fitting Loss Fact. (lb-mole/yr):	2,679.8243
Average Wind Speed (mph):	10.6000
Total Losses (lb):	63,278.6584

Roof Fitting/Status	Quantity	KFa(lb-mole/yr)	Roof Fitting Loss Factors KFb(lb-mole/(yr mph^n))	m	Losses(lb)
Access Hatch (24-in. Diam.)/Bolted Cover, Gasketed Automatic Gauge Float Well/Uhobided Cover, Ungasketed Vacuum Breaker (10-in. Diam.)/Weighted Mech. Actuation, Gask. Unstotted Guide-Pole Well/Ungasketed Silding Cover Gauge-Hatch/Sample Well (8-in. Diam.)/Weighted Mech. Actuation, Gask. Roof Leg (3-in. Diameter//Adjustable, Pontoon Area, Ungasketed Roof Leg (3-in. Diameter//Adjustable, Centor Area, Ungasketed Bin Vent (6-in. Diameter//Adjustable, Centor Area, Ungasketed Bin Vent (6-in. Diameter/Meighted Mech. Actuation, Gask	1 1 1 1 16 12 1	1.60 14.00 6.20 31.00 0.47 2.00 0.82 0.71	0.00 5.40 1.20 150.00 0.02 0.37 0.53 0.13	0.00 1.10 0.94 1.40 0.97 0.91 0.14 1.00	14.8502 584.3532 130.8228 23,316.4579 5,5692 637.4149 169.4786 13,4766

TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: Annual

T-23 - External Floating Roof Tank Bloomfield, New Mexico

	Losses(lbs)							
Components	Rim Seal Loss	Withdrawl Loss	Deck Fitting Loss	Deck Seam Loss	Total Emissions			
Gasoline (premium base blend) - Bloomfield	38,249.82	156.33	24,872.51	0.00	63,278.66			
Isopentane	10,831.10	19.35	7,043.08	0.00	17,893.53			
1-Pentene	7.62	0.02	4.96	0.00	12.59			
2-Methyl-1-butene	7.87	0.03	5.12	0.00	13.02			
Pentane (-n)	8,680.72	22.70	5,644.77	0.00	14,348.18			
2-Pentene	33.70	0.09	21.91	0.00	55.71			
Hexane (-n)	1,828.38	17.45	1,188.93	0.00	3,034.77			
Benzene	223.87	3.53	145.57	0.00	372.98			
Cyclohexane	577.46	8.75	375.50	0.00	961.72			
Toluene	38.20	2.17	24.84	0.00	65.22			
Ethylbenzene	0.18	0.03	0.12	0.00	0.32			
Xylene (-m)	0.74	0.16	0.48	0.00	1.37			
1,2,4-Trimethylbenzene	0.03	0.03	0.02	0.00	0.08			
Propane Surrogate (Iso-C5 base)	1.19	0.19	0.77	0.00	2.14			
Isobutane Surrogate(Iso-C5 base)	13.23	2.09	8.61	0.00	23.93			
Isobutene Surrogate (Iso-C5 base)	0.10	0.02	0.06	0.00	0.18			
1-Butene Surrogate (Iso-C5 base)	0.10	0.02	0.06	0.00	0.18			
Butane Surrogate (Iso-C5 base)	65.48	10.36	42.58	0.00	118.42			
Trans-2-Butene Surrogate (iso-C5)	0.40	0.06	0.26	0.00	0.71			
Cis-2-Butene Surrogate (Iso- C5)	0.20	0.03	0.13	0.00	0.36			
3-Methyl-1-Butene Surrogate (IC5)	0.10	0.02	0.06	0.00	0.18			
Unidentified Components	15,939.16	69.22	10,364.68	0.00	26,373.06			

TANKS 4.0 Report

TANKS 4.0.9d Emissions Report - Detail Format Tank Indentification and Physical Characteristics

Identification	
User Identification:	T-24
City:	Bloomfield
Siale:	New Mexico San Juan Refining
Type of Tank:	Vertical Fixed Roof Tank
Description:	Diesel
Tank Dimensions	
Shell Height (ft):	40.00
Diameter (ft):	42.50
Liquid Height (ft) :	38.50
Avg. Liquid Height (ft):	35.00
Volume (gallons):	408,565.48
I urnovers:	122.38
Is Tank Heated (v/n):	50,000,000.00 N
is fank fleated (y/f).	
Paint Characteristics	
Shell Color/Shade:	White/White
Shell Condition	Good
Roof Color/Shade:	White/White
Roof Condition:	Good
Roof Characteristics	
Туре:	Cone
Height (ft)	1.00
Slope (ff/ff) (Cone Roof)	0.00
Breather Vent Settings	
Vacuum Settings (psig):	-0.03
Pressure Settings (psig)	0.03

Meterological Data used in Emissions Calculations: Bloomfield, New Mexico (Avg Atmospheric Pressure = 11.9 psia)

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

T-24 - Vertical Fixed Roof Tank Bloomfield, New Mexico

Mixture/Component	Month	Da Tem Avg.	ily Liquid S perature (de Min.	urf. eg F) Max.	Liquid Bulk Temp (deg F)	Vapo Avg.	r Pressure Min.	(psia) Max.	Vapor Mol. Weight.	Liquid Mass Fract.	Vapor Mass Fract.	Mol. Weight	Basis for Vapor Pressure Calculations
Diesel (#2) - Bloomfield	All	54.58	46.99	62.17	52.22	0.0058	0.0040	0.0077	130.0000			205.00	Option 1: VP50 = .0045 VP60 = .0074
1,2,4-Trimethylbenzene						0.0164	0.0119	0.0223	120.1900	0.0058	0.0257	120.19	Option 2: A=7.04383, B=1573.267, C=208.56
2,2,4-Trimethylpentane						0.5086	0.4046	0.6340	114.2300	0.0012	0.1651	114.23	Option 2: A=6.8118, B=1257.84, C=220.74
Cyclohexane						1.0441	0.8423	1.2845	84.1600	0.0001	0.0282	84.16	Option 2: A=6.841, B=1201.53, C=222.65
Ethylbenzene						0.0897	0.0680	0.1170	106.1700	0.0003	0.0073	106.17	Option 2: A=6.975, B=1424.255, C=213.21
Isopropyl benzene						0.0416	0.0309	0.0554	120.2000	0.0002	0.0023	120.20	Option 2: A=6.963, B=1460.793, C=207.78
Naphthalene						0.0019	0.0013	0.0027	128.0000	0.0030	0.0016	128.00	Option 1: VP50 = .0015 VP60 = .0024
Toluene						0.2783	0.2174	0.3531	92.1300	0.0007	0.0527	92.13	Option 2: A=6.954, B=1344.8, C=219.48
Unidentified Components						0.0034	0.0026	0.0026	148.8120	0.9849	0.6405	207.49	
Xylene (-m)						0.0745	0.0564	0.0975	106.1700	0.0038	0.0766	106.17	Option 2: A=7.009, B=1462.266, C=215.11

TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

T-24 - Vertical Fixed Roof Tank Bloomfield, New Mexico

Annual Emission Calcaulations	
Standing Losses (Ib):	20 5622
Vanor Snace Volume (cu ft):	7 566 0023
Vapor Density (lb/cu ft):	0.0001
Vapor Space Expansion Factor:	0.0543
Vented Vapor Saturation Factor:	0.9984
Tank Vapor Space Volume:	
Vapor Space Volume (cu ft):	7,566.0023
Tank Diameter (ft):	42.5000
Vapor Space Outage (ft):	5.3333
Tank Shell Height (ft):	40.0000
Average Liquid Height (ft):	35.0000
Roof Outage (ft):	0.3333
Roof Outage (Cone Roof)	0.0000
Roof Outage (ft):	0.3333
Roof Height (II):	1.0000
Shell Radius (ft):	21.2500
Vanar Dansity	
Vapor Density (lb/cu ft):	0.0001
Vapor Molecular Weight (lb/lb-mole):	130.0000
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	0.0058
Daily Avg. Liquid Surface Temp. (deg. R):	514.2529
Daily Average Ambient Temp. (deg. F):	52.2000
Ideal Gas Constant R	40 724
(psia cuit / (ib-morature (deg R)).	511 8900
Tank Paint Solar Absorptance (Shell):	0 1700
Tank Paint Solar Absorptance (Boof):	0.1700
Daily Total Solar Insulation	
Factor (Btu/sqft day):	1,766.0000
Vapor Space Expansion Factor	
Vapor Space Expansion Factor:	0.0543
Daily Vapor Temperature Range (deg. R):	30.3662
Daily Vapor Pressure Range (psia):	0.0037
Breather Vent Press. Setting Range(psia):	0.0600
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	0.0058
Vapor Pressure at Daily Minimum Liquid	
Surface Temperature (psia):	0.0040
Vapor Pressure at Daily Maximum Liquid	0.0077
Daily Ava Liquid Surface Tomp (deg P):	0.0077 614 2620
Daily My, Liquid Surface Temp. (deg R).	506 6614
Daily Max. Liquid Surface Temp. (deg R):	521 8445
Daily Ambient Temp. Range (deg. R):	30.5000
Vented Vapor Saturation Factor	
Vented Vapor Saturation Factor:	0.9984
Vapor Pressure at Daily Average Liquid:	
Surface Temperature (psia):	0.0058
Vapor Space Outage (ft):	5.3333
Working Losses (Ib):	371.4964
Vapor Molecular Weight (Ib/Ib-mole):	130.0000
Surface Temperature (psia):	0 0050
Appual Net Throughout (gal/yr.):	50 000 000 000
Annual Turnovers:	122 370/
Turnover Factor:	0.4118
Maximum Liquid Volume (gal):	408.565 4774
Maximum Liquid Height (ft):	38.5000
Tank Diameter (ft):	42.5000
Working Loss Product Factor:	1.0000
-	
Total Losses (lb):	392.0597

TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: Annual

T-24 - Vertical Fixed Roof Tank Bloomfield, New Mexico

	Losses(lbs)						
Components	Working Loss	Breathing Loss	Total Emissions				
Diesel (#2) - Bloomfield	371.50	20.56	392.06				
Cyclohexane	10.49	0.58	11.07				
2,2,4-Trimethylpentane	61.33	3.39	64.73				
Toluene	19.58	1.08	20.66				
Ethylbenzene	2.70	0.15	2.85				
Xylene (-m)	28.46	1.58	30.03				
Isopropyl benzene	0.84	0.05	0.88				
1,2,4-Trimethylbenzene	9.56	0.53	10.09				
Naphthalene	0.58	0.03	0.61				
Unidentified Components	237.96	13.17	251.13				

TANKS 4.0 Report

TANKS 4.0.9d Emissions Report - Detail Format Tank Indentification and Physical Characteristics

Identification	
User Identification:	T-25
City:	Bloomfield
State:	New Mexico
Type of Tapk:	Vortical Fixed Roof Tank
Description:	Diesel
Decemption	210001
Tank Dimensions	
Shell Height (ft):	40.00
Diameter (ft):	42.50
Liquid Height (ft) :	38.50
Avg. Liquid Height (ft):	35.00
Volume (gallons):	408,565.48
lurnovers:	122.38
In Topk Heated (v/p):	50,000,000.00 N
IS TAIK HEALED (y/II).	N
Paint Characteristics	
Shell Color/Shade:	White/White
Shell Condition	Good
Roof Color/Shade:	White/White
Roof Condition:	Good
Roof Characteristics	
Туре:	Cone
Height (ft)	1.00
Slope (ft/ft) (Cone Roof)	0.00
Breather Vent Settings	
Vacuum Settings (psig)	-0.03
Pressure Settings (psig)	0.03

Meterological Data used in Emissions Calculations: Bloomfield, New Mexico (Avg Atmospheric Pressure = 11.9 psia)

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

T-25 - Vertical Fixed Roof Tank Bloomfield, New Mexico

Mixture/Component	Month	Da Tem Avg.	ily Liquid S perature (de Min.	urf. eg F) Max.	Liquid Bulk Temp (deg F)	Vapo Avg.	r Pressure Min.	(psia) Max.	Vapor Mol. Weight.	Liquid Mass Fract.	Vapor Mass Fract.	Mol. Weight	Basis for Vapor Pressure Calculations
Diesel (#2) - Bloomfield	All	54.58	46.99	62.17	52.22	0.0058	0.0040	0.0077	130.0000			205.00	Option 1: VP50 = .0045 VP60 = .0074
1,2,4-Trimethylbenzene						0.0164	0.0119	0.0223	120.1900	0.0058	0.0257	120.19	Option 2: A=7.04383, B=1573.267, C=208.56
2,2,4-Trimethylpentane						0.5086	0.4046	0.6340	114.2300	0.0012	0.1651	114.23	Option 2: A=6.8118, B=1257.84, C=220.74
Cyclohexane						1.0441	0.8423	1.2845	84.1600	0.0001	0.0282	84.16	Option 2: A=6.841, B=1201.53, C=222.65
Ethylbenzene						0.0897	0.0680	0.1170	106.1700	0.0003	0.0073	106.17	Option 2: A=6.975, B=1424.255, C=213.21
Isopropyl benzene						0.0416	0.0309	0.0554	120.2000	0.0002	0.0023	120.20	Option 2: A=6.963, B=1460.793, C=207.78
Naphthalene						0.0019	0.0013	0.0027	128.0000	0.0030	0.0016	128.00	Option 1: VP50 = .0015 VP60 = .0024
Toluene						0.2783	0.2174	0.3531	92.1300	0.0007	0.0527	92.13	Option 2: A=6.954, B=1344.8, C=219.48
Unidentified Components						0.0034	0.0026	0.0026	148.8120	0.9849	0.6405	207.49	
Xylene (-m)						0.0745	0.0564	0.0975	106.1700	0.0038	0.0766	106.17	Option 2: A=7.009, B=1462.266, C=215.11

TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

T-25 - Vertical Fixed Roof Tank Bloomfield, New Mexico

Annual Emission Calcaulations	
Standing Losses (Ib):	20 5622
Vanor Snace Volume (cu ft):	7 566 0023
Vapor Density (lb/cu ft):	0.0001
Vapor Space Expansion Factor:	0.0543
Vented Vapor Saturation Factor:	0.9984
Tank Vapor Space Volume:	
Vapor Space Volume (cu ft):	7,566.0023
Tank Diameter (ft):	42.5000
Vapor Space Outage (ft):	5.3333
Tank Shell Height (ft):	40.0000
Average Liquid Height (ft):	35.0000
Roof Outage (ft):	0.3333
Roof Outage (Cone Roof)	0.0000
Roor Outage (II):	0.3333
Roof Right (II).	1.0000
Shell Radius (ft):	21.2500
Vapor Density	
Vapor Density (lb/cu ft):	0.0001
Vapor Molecular Weight (lb/lb-mole):	130.0000
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	0.0058
Daily Avg. Liquid Surface Temp. (deg. R):	514.2529
Ideal Gas Constant P	52.2000
(nsia cuft / (lb-mol-deg R));	10 731
Liquid Bulk Temperature (deg. R):	511,8900
Tank Paint Solar Absorptance (Shell):	0.1700
Tank Paint Solar Absorptance (Roof):	0.1700
Daily Total Solar Insulation	
Factor (Btu/sqft day):	1,766.0000
Vapor Space Expansion Factor	
Vapor Space Expansion Factor:	0.0543
Daily Vapor Temperature Range (deg. R):	30.3662
Daily Vapor Pressure Range (psia):	0.0037
Breather Vent Press. Setting Range(psia):	0.0600
Vapor Pressure at Daily Average Liquid	0.0050
Vapor Brossuro et Deily Minimum Liquid	0.0056
Surface Tomporature (pain):	0.0040
Vanor Pressure at Daily Maximum Liquid	0.0040
Surface Temperature (psia):	0.0077
Daily Avg, Liquid Surface Temp, (deg R);	514.2529
Daily Min. Liquid Surface Temp. (deg R):	506.6614
Daily Max. Liquid Surface Temp. (deg R):	521.8445
Daily Ambient Temp. Range (deg. R):	30.5000
Vented Vapor Saturation Factor	
Vented Vapor Saturation Factor:	0.9984
Vapor Pressure at Daily Average Liquid:	
Surface Temperature (psia):	0.0058
vapor Space Outage (tt):	5.3333
Working Losses (Ib):	371.4964
Vapor Molecular Weight (lb/lb-mole):	130.0000
Surface Temperature (psia):	0 0050
Annual Net Throughput (gal/yr.):	50 000 000 000
Annual Turnovers:	122 370/
Turnover Factor:	0.4118
Maximum Liquid Volume (gal):	408.565.4774
Maximum Liquid Height (ft):	38.5000
Tank Diameter (ft):	42.5000
Working Loss Product Factor:	1.0000
-	
Total Losses (lb):	392.0597

TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: Annual

T-25 - Vertical Fixed Roof Tank Bloomfield, New Mexico

	Losses(lbs)				
Components	Working Loss	Breathing Loss	Total Emissions		
Diesel (#2) - Bloomfield	371.50	20.56	392.06		
Cyclohexane	10.49	0.58	11.07		
2,2,4-Trimethylpentane	61.33	3.39	64.73		
Toluene	19.58	1.08	20.66		
Ethylbenzene	2.70	0.15	2.85		
Xylene (-m)	28.46	1.58	30.03		
Isopropyl benzene	0.84	0.05	0.88		
1,2,4-Trimethylbenzene	9.56	0.53	10.09		
Naphthalene	0.58	0.03	0.61		
Unidentified Components	237.96	13.17	251.13		

TANKS 4.0 Report

Quantity

TANKS 4.0.9d Emissions Report - Detail Format Tank Indentification and Physical Characteristics

Identification		
User Identification:	T-26	
City:	Bloomfield	
State:	New Mexico	
Company:	San Juan Refining	
Type of Tank:	Internal Floating Roof Tank	
Description:	Gasoline	
Tank Dimensions		
Diameter (ft):	34.00	
Volume (gallons):	137,100.00	
Turnovers:	72.94	
Self Supp. Roof? (y/n):	Y	
No. of Columns:	0.00	
Eff. Col. Diam. (ft):	0.00	
Paint Characteristics		
Internal Shell Condition:	Light Rust	
Shell Color/Shade:	White/White	
Shell Condition	Good	
Roof Color/Shade:	White/White	
Roof Condition:	Good	
Rim-Seal System		
Primary Seal:	Vapor-mounted	
Secondary Seal	Rim-mounted	
Deck Characteristics		
Deck Fitting Category:	Typical	
Deck Type:	Welded	
Deck Fitting/Status		

Access Hatch (24-in. Diam.)/Unbolted Cover, Ungasketed Automatic Gauge Float Well/Unbolted Cover, Ungasketed Roof Leg or Hanger Well/Adjustable Sample Pipe or Well (24-in. Diam.)/Slit Fabric Seal 10% Open Vacuum Breaker (10-in. Diam.)/Weighted Mech. Actuation, Gask.

Meterological Data used in Emissions Calculations: Bloomfield, New Mexico (Avg Atmospheric Pressure = 11.9 psia)

file://C:\Program Files\Tanks409d\summarydisplay.htm

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

T-26 - Internal Floating Roof Tank Bloomfield, New Mexico

Mixture/Component	Month	Da Tem Avg.	ily Liquid Soperature (de Min.	urf. eg F) Max.	Liquid Bulk Temp (deg F)	Vapo Avg.	r Pressure Min.	(psia) Max.	Vapor Mol. Weight.	Liquid Mass Fract.	Vapor Mass Fract.	Mol. Weight	Basis for Vapor Pressure Calculations
Gasoline (premium base blend) - Bloomfield	All	54.58	46.99	62.17	52.22	5.0870	N/A	N/A	67.0000			88.00	Option 4: RVP=10.8, ASTM Slope=3
1.2.4-Trimethylbenzene						0.0164	N/A	N/A	120,1900	0.0104	0.0000	120.19	Option 2: A=7.04383, B=1573.267, C=208.56
Benzene						1.0030	N/A	N/A	78.1100	0.0066	0.0017	78.11	Option 2: A=6.905, B=1211.033, C=220.79
Butane Surrogate (Iso-C5 base)						0.1000	N/A	N/A	58,1000	0.0068	0.0002	58.10	Option 1: VP50 = .1 VP60 = .1
Cis-2-Butene Surrogate (Iso-C5)						0.1000	N/A	N/A	56,1000	0.0001	0.0000	56.10	Option 1: VP50 = .1 VP60 = .1
Cyclohexane						1.0441	N/A	N/A	84.1600	0.0240	0.0065	84.16	Option 2: A=6.841, B=1201.53, C=222.65
Ethylbenzene						0.0897	N/A	N/A	106.1700	0.0083	0.0002	106.17	Option 2: A=6.975, B=1424.255, C=213.21
Hexane (-n)						1.6589	N/A	N/A	86.1700	0.0234	0.0100	86.17	Option 2: A=6.876, B=1171.17, C=224.41
Isobutane Surrogate(Iso-C5 base)						0.1000	N/A	N/A	58.1000	0.0021	0.0001	58.10	Option 1: VP50 = .1 VP60 = .1
Isopentane						8.8587	N/A	N/A	72.1500	0.0095	0.0217	72.15	Option 1: VP50 = 7.889 VP60 = 10.005
Isopropyl benzene						0.0416	N/A	N/A	120.2000	0.0018	0.0000	120.20	Option 2: A=6.963, B=1460.793, C=207.78
Naphthalene						0.0019	N/A	N/A	128.0000	0.0001	0.0000	128.00	Option 1: VP50 = .0015 VP60 = .0024
Pentane (-n)						6.0535	N/A	N/A	72.1500	0.0132	0.0206	72.15	Option 3: A=27691, B=7.558
Propane Surrogate (Iso-C5 base)						0.1000	N/A	N/A	44.1000	0.0016	0.0000	44.10	Option 1: VP50 = .1 VP60 = .1
Toluene						0.2783	N/A	N/A	92.1300	0.0439	0.0032	92.13	Option 2: A=6.954, B=1344.8, C=219.48
Trans-2-Butene Surrogate (iso-C5)						0.1000	N/A	N/A	56.1000	0.0001	0.0000	56.10	Option 1: VP50 = .1 VP60 = .1
Unidentified Components						6.0159	N/A	N/A	66.4249	0.7952	0.9347	87.77	
Xylene (-m)						0.0745	N/A	N/A	106.1700	0.0529	0.0010	106.17	Option 2: A=7.009, B=1462.266, C=215.11

TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

T-26 - Internal Floating Roof Tank Bloomfield, New Mexico

Annual Emission Calcaulations								
Rim Seal Losses (lb): 694.248								
Seal Factor A (lb-mole/ft-yr):	2.2000							
Seal Factor B (lb-mole/ft-yr (mph)^n):	0.0030							
Value of Vapor Pressure Function:	0.1385							
Surface Temperature (psia)	5.0870							
Tank Diameter (ft):	34.0000							
Vapor Molecular Weight (lb/lb-mole):	67.0000							
Product Factor:	1.0000							
Withdrawal Losses (lb):	60.1262							
Number of Columns:	0.0000							
Effective Column Diameter (ft):	0.0000							
Annual Net Throughput (gal/yr.):	10,000,000.0000							
Shell Clingage Factor (bbl/1000 sqft):	0.0015							
Average Organic Liquid Density (lb/gal):	6.0700							
Tank Diameter (ft):	34.0000							
Deck Fitting Losses (Ib):	1,439.5447							
Value of Vapor Pressure Function:	0.1385							
Vapor Molecular Weight (lb/lb-mole):	67.0000							
Product Factor:	1.0000							
Tot. Roof Fitting Loss Fact. (lb-mole/yr):	155.1000							
Deck Seam Losses (lb):	0.0000							
Deck Seam Length (ft):	0.0000							
Deck Seam Loss per Unit Length								
Factor (lb-mole/ft-yr):	0.0000							
Deck Seam Length Factor(ft/sqft):	0.0000							
Tank Diameter (ft):	34.0000							
Vapor Molecular Weight (lb/lb-mole):	67.0000							
Product Factor:	1.0000							
Total Losses (lb):	2,193.9193							

Roof Fitting/Status	Quantity	KFa(lb-mole/yr)	Roof Fitting Loss Factors KFb(lb-mole/(yr mph^n))	m	Losses(lb)
Access Hatch (24-in. Diam.)/Unbolted Cover, Ungasketed	1	36.00	5.90	1.20	334.1303
Automatic Gauge Float Well/Unbolted Cover, Ungasketed	1	14.00	5.40	1.10	129.9396
Roof Leg or Hanger Well/Adjustable	11	7.90	0.00	0.00	806.5534
Sample Pipe or Well (24-in. Diam.)/Silt Fabric Seal 10% Open	1	12.00	0.00	0.00	111.3768
Vacuum Breaker (10-in. Diam.)/Weighted Mech. Actuation, Gask.	1	6.20	1.20	0.94	57.5447

TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: Annual

T-26 - Internal Floating Roof Tank Bloomfield, New Mexico

	Losses(lbs)							
Components	Rim Seal Loss	Withdrawl Loss	Deck Fitting Loss	Deck Seam Loss	Total Emissions			
Gasoline (premium base blend) - Bloomfield	694.25	60.13	1,439.54	0.00	2,193.92			
Isopentane	15.09	0.57	31.28	0.00	46.94			
Pentane (-n)	14.32	0.79	29.70	0.00	44.82			
Hexane (-n)	6.96	1.41	14.43	0.00	22.79			
Benzene	1.19	0.40	2.46	0.00	4.04			
Cyclohexane	4.49	1.44	9.31	0.00	15.25			
Toluene	2.19	2.64	4.54	0.00	9.37			
Ethylbenzene	0.13	0.50	0.28	0.00	0.91			
Xylene (-m)	0.71	3.18	1.47	0.00	5.35			
Isopropyl benzene	0.01	0.11	0.03	0.00	0.15			
1,2,4-Trimethylbenzene	0.03	0.63	0.06	0.00	0.72			
Naphthalene	0.00	0.01	0.00	0.00	0.01			
Propane Surrogate (Iso-C5 base)	0.03	0.10	0.06	0.00	0.18			
Isobutane Surrogate(Iso-C5 base)	0.04	0.13	0.08	0.00	0.24			
Butane Surrogate (Iso-C5 base)	0.12	0.41	0.25	0.00	0.78			
Trans-2-Butene Surrogate (iso-C5)	0.00	0.01	0.00	0.00	0.01			
Cis-2-Butene Surrogate (Iso- C5)	0.00	0.01	0.00	0.00	0.01			
Unidentified Components	648.94	47.81	1,345.59	0.00	2,042.34			

TANKS 4.0 Report

TANKS 4.0.9d Emissions Report - Detail Format Tank Indentification and Physical Characteristics

Identification	
User Identification:	T-27
City:	Bloomfield
State:	New Mexico
Company:	San Juan Refining
Type of Tank:	Vertical Fixed Roof Tank
Description:	Heavy Burner Fuel
Tank Dimensions	
Shell Height (ft):	40.00
Diameter (ft):	42.00
Liquid Height (ft) :	39.00
Avg. Liquid Height (ft):	21.00
Volume (gallons):	413,900.00
I urnovers:	19.33
Is Tank Heated (v/n):	8,000,000.00 V
is failt heated (y/i).	I
Paint Characteristics	
Shell Color/Shade:	White/White
Shell Condition	Good
Roof Color/Shade:	White/White
Roof Condition:	Good
Roof Characteristics	
Type:	Cone
Height (ft)	1.00
Slope (ft/ft) (Cone Roof)	0.05
Breather Vent Settings	
Vacuum Settings (psig):	0.00
Pressure Settings (psig)	0.00

Meterological Data used in Emissions Calculations: Bloomfield, New Mexico (Avg Atmospheric Pressure = 11.9 psia)
T-27 - Vertical Fixed Roof Tank Bloomfield, New Mexico

Mixture/Component	Month	Da Tem Avg.	ily Liquid S perature (de Min.	urf. eg F) Max.	Liquid Bulk Temp (deg F)	Vapo Avg.	r Pressure Min.	(psia) Max.	Vapor Mol. Weight.	Liquid Mass Fract.	Vapor Mass Fract.	Mol. Weight	Basis for Vapor Pressure Calculations	
Heavy Burner Fuel - Bloomfield	All	180.00	180.00	180.00	180.00	0.0002	0.0002	0.0002	180.0000			365.00		

TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

T-27 - Vertical Fixed Roof Tank Bloomfield, New Mexico

Annual Emission Calcaulations	
Standing Langer (Ib):	0.0000
Standing Losses (ID):	0.0000
Vapor Density (lb/cu ft):	20,703.2109
Vapor Space Expansion Factor	0.0000
Vented Vapor Saturation Factor:	0.9998
Tank Vapor Space Volume: Vapor Space Volume (cu ft):	26 785 2189
Tank Diameter (ft):	/2 0000
Vanor Space Outage (ft):	19 3333
Tank Shell Height (ft):	40.0000
Average Liquid Height (ft):	21.0000
Roof Outage (ft):	0.3333
Roof Outage (Cone Roof)	
Roof Outage (ft):	0.3333
Roof Height (ft):	1.0000
Roof Slope (ft/ft):	0.0500
Shell Radius (ft):	21.0000
Vapor Density	
Vapor Density (Ib/cu ft):	0.0000
Vapor Molecular Weight (Ib/Ib-mole):	180.0000
Surface Temperature (psia):	0 0003
Daily Avg. Liquid Surface Temp. (deg. P):	639 6700
Daily Average Ambient Temp. (deg. K).	52 2000
Ideal Gas Constant R	52.2000
(psia cuft / (lb-mol-deg R)):	10.731
Liquid Bulk Temperature (deg. R):	639.6700
Tank Paint Solar Absorptance (Shell):	0.1700
Tank Paint Solar Absorptance (Roof):	0.1700
Daily Total Solar Insulation	4 766 0000
Factor (Btu/sqft day):	1,766.0000
Vapor Space Expansion Factor	
Vapor Space Expansion Factor:	0.0000
Daily Vapor Temperature Range (deg. R):	0.0000
Broother Vent Press, Setting Pange(psia):	0.0000
Vapor Pressure at Daily Average Liquid	0.0000
Surface Temperature (nsia):	0.0002
Vapor Pressure at Daily Minimum Liquid	
Surface Temperature (psia):	0.0002
Vapor Pressure at Daily Maximum Liquid	
Surface Temperature (psia):	0.0002
Daily Avg. Liquid Surface Temp. (deg R):	639.6700
Daily Min. Liquid Surface Temp. (deg R):	639.6700
Daily Max. Liquid Surface Temp. (deg R):	639.6700
Daily Ambient Temp. Range (deg. R):	30.5000
Vented Vapor Saturation Factor	
vented vapor Saturation Factor:	0.9998
vapor Pressure at Daily Average Liquid:	0.0000
Surface Temperature (psia):	0.0002
vapor Space Outage (ii).	19.3333
Norking Losses (Ib):	6.5143
Vapor Molecular Weight (Ib/Ib-mole):	180.0000
Surface Temperature (psia):	0 0002
Annual Net Throughout (gal/yr.)	8 000 000 000
Annual Turnovers:	19 3283
Turnover Factor:	1 0000
Maximum Liquid Volume (gal):	413,900,0000
Maximum Liquid Height (ft):	39.0000
Tank Diameter (ft):	42.0000
Working Loss Product Factor:	1.0000
Total Losses (Ib):	6.5143

TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: Annual

T-27 - Vertical Fixed Roof Tank Bloomfield, New Mexico

	Losses(lbs)									
Components	Working Loss	Breathing Loss	Total Emissions							
Heavy Burner Fuel - Bloomfield	6.51	0.00	6.51							

TANKS 4.0 Report

TANKS 4.0.9d **Emissions Report - Detail Format Tank Indentification and Physical Characteristics**

Identification		
User Identification:	T-28	
City:	Bloomfield	
State:	New Mexico	
Company:	San Juan Refining	
Type of Tank:	External Floating Roof Tank	
Description:	Crude Oil	
Tank Dimensions		
Diameter (ft):	110.00	
Volume (gallons):	3.270.000.00	
Turnovers:	30.58	
Paint Characteristics		
Internal Shell Condition:	Light Rust	
Shell Color/Shade:	White/White	
Shell Condition	Good	
Roof Characteristics		
Type:	Pontoon	
Fitting Category	Typical	
Tank Construction and Rim-Seal Sy	ystem	
Construction:	Welded	
Primary Seal:	Mechanical Shoe	
Secondary Seal	None	
Deck Fitting/Status		Quantity
Access Hatch (24-in. Diam.)/Bolted C	over, Gasketed	1
Automatic Gauge Float Well/Unbolted	Cover, Ungasketed	1
Vacuum Breaker (10-in. Diam.)/Weigh	nted Mech. Actuation, Gask.	1
Unslotted Guide-Pole Well/Ungaskete	d Sliding Cover	1
Gauge-Hatch/Sample Well (8-in. Dian	n.)/Weighted Mech. Actuation, Gask.	1
Root Leg (3-in. Diameter)/Adjustable,	Pontoon Area, Ungasketed	18
Root Leg (3-in. Diameter)/Adjustable,	Center Area, Ungaskétéd	20
Kim vent (6-in. Diameter)/Weighted N	iecn. Actuation, Gask.	1

Meterological Data used in Emissions Calculations: Bloomfield, New Mexico (Avg Atmospheric Pressure = 11.9 psia)

file://C:\Program Files\Tanks409d\summarydisplay.htm

T-28 - External Floating Roof Tank Bloomfield, New Mexico

Mixture/Component	Month	Da Tem Avg.	ily Liquid S perature (d Min.	urf. eg F) Max.	Liquid Bulk Temp (deg F)	Vapo Avg.	r Pressure Min.	(psia) Max.	Vapor Mol. Weight.	Liquid Mass Fract.	Vapor Mass Fract.	Mol. Weight	Basis for Vapor Pressure Calculations
Crude Oil (Four Corners Sweet)	All	54.58	46.99	62.17	52.22	4,4698	N/A	N/A	60.0000			163.00	Option 4: RVP=7.4
1,2,4-Trimethylbenzene						0.0164	N/A	N/A	120.1900	0.0041	0.0000	120.19	Option 2: A=7.04383, B=1573.267, C=208.56
2,2,4-Trimethylpentane						0.5086	N/A	N/A	114.2300	0.0008	0.0002	114.23	Option 2: A=6.8118, B=1257.84, C=220.74
Benzene						1.0030	N/A	N/A	78.1100	0.0051	0.0031	78.11	Option 2: A=6.905, B=1211.033, C=220.79
Butane Surrogate (Iso-C5 base)						0.1000	N/A	N/A	58.1000	0.0098	0.0006	58.10	Option 1: VP50 = .1 VP60 = .1
Cyclohexane						1.0441	N/A	N/A	84.1600	0.0139	0.0088	84.16	Option 2: A=6.841, B=1201.53, C=222.65
Ethylbenzene						0.0897	N/A	N/A	106.1700	0.0031	0.0002	106.17	Option 2: A=6.975, B=1424.255, C=213.21
Hexane (-n)						1.6589	N/A	N/A	86.1700	0.0216	0.0218	86.17	Option 2: A=6.876, B=1171.17, C=224.41
Isobutane Surrogate(Iso-C5 base)						0.1000	N/A	N/A	58.1000	0.0022	0.0001	58.10	Option 1: VP50 = .1 VP60 = .1
Isopentane						8.8587	N/A	N/A	72.1500	0.0115	0.0619	72.15	Option 1: VP50 = 7.889 VP60 = 10.005
Isopropyl benzene						0.0416	N/A	N/A	120.2000	0.0005	0.0000	120.20	Option 2: A=6.963, B=1460.793, C=207.78
Naphthalene						0.0019	N/A	N/A	128.0000	0.0010	0.0000	128.00	Option 1: VP50 = .0015 VP60 = .0024
Pentane (-n)						6.0535	N/A	N/A	72.1500	0.0173	0.0637	72.15	Option 3: A=27691, B=7.558
Propane Surrogate (Iso-C5 base)						0.1000	N/A	N/A	44.1000	0.0077	0.0005	44.10	Option 1: VP50 = .1 VP60 = .1
Toluene						0.2783	N/A	N/A	92.1300	0.0144	0.0024	92.13	Option 2: A=6.954, B=1344.8, C=219.48
Unidentified Components						5.2966	N/A	N/A	57.7758	0.8721	0.8359	194.03	
Xylene (-m)						0.0745	N/A	N/A	106.1700	0.0149	0.0007	106.17	Option 2: A=7.009, B=1462.266, C=215.11

TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

T-28 - External Floating Roof Tank Bloomfield, New Mexico

Annual Emission Calcaulations	
Rim Seal Losses (lb):	15,002.0351
Seal Factor A (lb-mole/ft-yr):	5.8000
Seal Factor B (lb-mole/ft-yr (mph)^n):	0.3000
Average Wind Speed (mph):	10.6000
Seal-related Wind Speed Exponent:	2.1000
Value of Vapor Pressure Function: Vapor Pressure at Daily Average Liquid	0.1172
Surface Temperature (psia):	4.4698
Tank Diameter (ft):	110.0000
Vapor Molecular Weight (lb/lb-mole):	60.0000
Product Factor:	0.4000
Withdrawal Losses (lb):	777.6688
Annual Net Throughput (gal/yr.):	100,000,000.0000
Shell Clingage Factor (bbl/1000 sqft):	0.0060
Average Organic Liquid Density (lb/gal):	6.3500
Tank Diameter (ft):	110.0000
Roof Fitting Losses (Ib):	7,596.5748
Value of Vapor Pressure Function:	0.1172
Vapor Molecular Weight (lb/lb-mole):	60.0000
Product Factor:	0.4000
Tot. Roof Fitting Loss Fact. (lb-mole/yr):	2,700.5823
Average Wind Speed (mph):	10.6000
Total Losses (lb):	23,376.2787

Roof Fitting/Status	Quantity	KFa(lb-mole/yr)	Roof Fitting Loss Factors KFb(lb-mole/(yr mph^n))	m	Losses(lb)
Access Hatch (24-in. Diam.)/Bolted Cover, Gasketed	1	1.60	0.00	0.00	4.5007
Automatic Gauge Float Well/Unbolted Cover, Ungasketed	1	14.00	5.40	1.10	177.1016
Vacuum Breaker (10-in. Diam.)/Weighted Mech. Actuation, Gask.	1	6.20	1.20	0.94	39.6488
Unslotted Guide-Pole Well/Ungasketed Sliding Cover Gauge-Hatch/Sample Well (∈, Diam,)Weighted Mech, Actuation, Gask	1	31.00 0.47	150.00	1.40	7,066.5857
Roof Leg (3-in. Diameter)/Adjustable, Pontoon Area, Ungasketed	18	2.00	0.37	0.91	217.3311
Roof Leg (3-in. Diameter)/Adjustable, Center Area, Ungasketed	20	0.82	0.53	0.14	85.6073
Rim Vent (6-in. Diameter)/Vegiteta Mech. Actuation, Gask.	1	0.71	0.10	1.00	4.0844

TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: Annual

T-28 - External Floating Roof Tank Bloomfield, New Mexico

			Losses(lbs)	Losses(lbs)							
Components	Rim Seal Loss	Withdrawl Loss	Deck Fitting Loss	Deck Seam Loss	Total Emissions						
Crude Oil (Four Corners Sweet)	15,002.04	777.67	7,596.57	0.00	23,376.28						
Isopentane	928.90	8.94	470.36	0.00	1,408.20						
Pentane (-n)	954.89	13.45	483.53	0.00	1,451.87						
Hexane (-n)	326.72	16.80	165.44	0.00	508.96						
Benzene	46.64	3.97	23.62	0.00	74.23						
Cyclohexane	132.33	10.81	67.01	0.00	210.15						
2,2,4-Trimethylpentane	3.71	0.62	1.88	0.00	6.21						
Toluene	36.54	11.20	18.50	0.00	66.24						
Ethylbenzene	2.53	2.41	1.28	0.00	6.23						
Xylene (-m)	10.12	11.59	5.13	0.00	26.84						
Isopropyl benzene	0.19	0.39	0.10	0.00	0.67						
1,2,4-Trimethylbenzene	0.61	3.19	0.31	0.00	4.11						
Naphthalene	0.02	0.78	0.01	0.00	0.80						
Propane Surrogate (Iso-C5 base)	7.02	5.99	3.56	0.00	16.56						
Isobutane Surrogate(Iso-C5 base)	2.01	1.71	1.02	0.00	4.73						
Butane Surrogate (Iso-C5 base)	8.94	7.62	4.52	0.00	21.08						
Unidentified Components	12,540.87	678.20	6,350.32	0.00	19,569.39						

TANKS 4.0 Report

Quantity

1 19 1

TANKS 4.0.9d Emissions Report - Detail Format Tank Indentification and Physical Characteristics

Identification		
User Identification:	T-29	
City:	Bloomfield	
State:	New Mexico	
Company:	San Juan Refining	
Type of Tank:	Internal Floating Roof Tank	
Description:	Gasoline	
Tank Dimonsions		
Diameter (ft):	64.00	
Diameter (It):	700, 400, 00	
volume (gallons):	700,400.00	
Full Curren Deset2 (u/m):	14.28	
Self Supp. Root? (y/n):	ř 0.00	
No. of Columns:	0.00	
Ell. Col. Dialli. (II).	0.00	
Paint Characteristics		
Internal Shell Condition:	Light Rust	
Shell Color/Shade:	vvnite/vvnite	
Shell Condition	Good	
Roof Color/Shade:	White/White	
Roof Condition:	Good	
Rim-Seal System		
Primary Seal:	Vapor-mounted	
Secondary Seal	None	
Dock Characteristics		
Deck Glaracteristics	Turrical	
Deck Filling Calegory:	i ypical Woldod	
реск туре.	Welded	
Deck Fitting/Status		

Access Hatch (24-in. Diam.)/Unbolted Cover, Ungasketed Automatic Gauge Float Well/Unbolted Cover, Ungasketed Roof Leg or Hanger Well/Adjustable Sample Pipe or Well (24-in. Diam.)/Slit Fabric Seal 10% Open Vacuum Breaker (10-in. Diam.)/Weighted Mech. Actuation, Gask.

Meterological Data used in Emissions Calculations: Bloomfield, New Mexico (Avg Atmospheric Pressure = 11.9 psia)

file://C:\Program Files\Tanks409d\summarydisplay.htm

T-29 - Internal Floating Roof Tank Bloomfield, New Mexico

Mixture/Component	Month	Da Tem Avg.	ily Liquid Soperature (de Min.	urf. eg F) Max.	Liquid Bulk Temp (deg F)	Vapo Avg.	r Pressure Min.	(psia) Max.	Vapor Mol. Weight.	Liquid Mass Fract.	Vapor Mass Fract.	Mol. Weight	Basis for Vapor Pressure Calculations
Gasoline (premium base blend) - Bloomfield	All	54.58	46.99	62.17	52.22	5.0870	N/A	N/A	67.0000			88.00	Option 4: RVP=10.8, ASTM Slope=3
1.2.4-Trimethylbenzene						0.0164	N/A	N/A	120,1900	0.0104	0.0000	120.19	Option 2: A=7.04383, B=1573.267, C=208.56
Benzene						1.0030	N/A	N/A	78.1100	0.0066	0.0017	78.11	Option 2: A=6.905, B=1211.033, C=220.79
Butane Surrogate (Iso-C5 base)						0.1000	N/A	N/A	58.1000	0.0068	0.0002	58.10	Option 1: VP50 = .1 VP60 = .1
Cis-2-Butene Surrogate (Iso-C5)						0.1000	N/A	N/A	56.1000	0.0001	0.0000	56.10	Option 1: VP50 = .1 VP60 = .1
Cyclohexane						1.0441	N/A	N/A	84.1600	0.0240	0.0065	84.16	Option 2: A=6.841, B=1201.53, C=222.65
Ethylbenzene						0.0897	N/A	N/A	106.1700	0.0083	0.0002	106.17	Option 2: A=6.975, B=1424.255, C=213.21
Hexane (-n)						1.6589	N/A	N/A	86.1700	0.0234	0.0100	86.17	Option 2: A=6.876, B=1171.17, C=224.41
Isobutane Surrogate(Iso-C5 base)						0.1000	N/A	N/A	58.1000	0.0021	0.0001	58.10	Option 1: VP50 = .1 VP60 = .1
Isopentane						8.8587	N/A	N/A	72.1500	0.0095	0.0217	72.15	Option 1: VP50 = 7.889 VP60 = 10.005
Isopropyl benzene						0.0416	N/A	N/A	120.2000	0.0018	0.0000	120.20	Option 2: A=6.963, B=1460.793, C=207.78
Naphthalene						0.0019	N/A	N/A	128.0000	0.0001	0.0000	128.00	Option 1: VP50 = .0015 VP60 = .0024
Pentane (-n)						6.0535	N/A	N/A	72.1500	0.0132	0.0206	72.15	Option 3: A=27691, B=7.558
Propane Surrogate (Iso-C5 base)						0.1000	N/A	N/A	44.1000	0.0016	0.0000	44.10	Option 1: VP50 = .1 VP60 = .1
Toluene						0.2783	N/A	N/A	92.1300	0.0439	0.0032	92.13	Option 2: A=6.954, B=1344.8, C=219.48
Trans-2-Butene Surrogate (iso-C5)						0.1000	N/A	N/A	56.1000	0.0001	0.0000	56.10	Option 1: VP50 = .1 VP60 = .1
Unidentified Components						6.0159	N/A	N/A	66.4249	0.7952	0.9347	87.77	
Xylene (-m)						0.0745	N/A	N/A	106.1700	0.0529	0.0010	106.17	Option 2: A=7.009, B=1462.266, C=215.11

TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

T-29 - Internal Floating Roof Tank Bloomfield, New Mexico

Annual Emission Calcaulations	
Rim Seal Losses (lb):	3,979.8630
Seal Factor A (lb-mole/ft-yr):	6.7000
Seal Factor B (lb-mole/ft-yr (mph)^n):	0.2000
Value of Vapor Pressure Function:	0.1385
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	5.0870
Tank Diameter (ft):	64.0000
Vapor Molecular Weight (lb/lb-mole):	67.0000
Product Factor:	1.0000
Withdrawal Losses (lb):	31.9420
Number of Columns:	0.0000
Effective Column Diameter (ft):	0.0000
Annual Net Throughput (gal/yr.):	10,000,000.0000
Shell Clingage Factor (bbl/1000 sqft):	0.0015
Average Organic Liquid Density (lb/gal):	6.0700
Tank Diameter (ft):	64.0000
Deck Fitting Losses (lb):	2,026.1290
Value of Vapor Pressure Function:	0.1385
Vapor Molecular Weight (lb/lb-mole):	67.0000
Product Factor:	1.0000
Tot. Roof Fitting Loss Fact. (lb-mole/yr):	218.3000
Deck Seam Losses (lb):	0.0000
Deck Seam Length (ft):	0.0000
Deck Seam Loss per Unit Length	
Factor (lb-mole/ft-vr):	0.0000
Deck Seam Length Factor(ft/sqft):	0.0000
Tank Diameter (ft):	64.0000
Vapor Molecular Weight (lb/lb-mole):	67.0000
Product Factor:	1.0000
Total Lassas (Ib)-	6 027 0240

Roof Fitting/Status	Quantity	KFa(lb-mole/yr)	Roof Fitting Loss Factors KFb(lb-mole/(yr mph^n))	m	Losses(lb)
Access Hatch (24-in. Diam.)/Unbolted Cover, Ungasketed	1	36.00	5.90	1.20	334.1303
Automatic Gauge Float Well/Unbolted Cover, Ungasketed	1	14.00	5.40	1.10	129.9396
Rool Leg or Hanger Well/Aguistable	19	7.90	0.00	0.00	1,393.1377
Sample Pipe or Well (24-in. Diam.)/Silt Fabric Seal 10% Open	1	12.00	0.00	0.00	111.3768
Vacuum Breaker (10-in. Diam.)/Weighted Mach. Actuation, Gask.	1	6.20	1.20	0.94	57.5447

TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: Annual

T-29 - Internal Floating Roof Tank Bloomfield, New Mexico

	Losses(lbs)							
Components	Rim Seal Loss	Withdrawl Loss	Deck Fitting Loss	Deck Seam Loss	Total Emissions			
Gasoline (premium base blend) - Bloomfield	3,979.86	31.94	2,026.13	0.00	6,037.93			
Isopentane	86.48	0.30	44.03	0.00	130.81			
Pentane (-n)	82.11	0.42	41.80	0.00	124.34			
Hexane (-n)	39.89	0.75	20.31	0.00	60.94			
Benzene	6.80	0.21	3.46	0.00	10.48			
Cyclohexane	25.75	0.77	13.11	0.00	39.63			
Toluene	12.55	1.40	6.39	0.00	20.35			
Ethylbenzene	0.76	0.27	0.39	0.00	1.42			
Xylene (-m)	4.05	1.69	2.06	0.00	7.80			
Isopropyl benzene	0.08	0.06	0.04	0.00	0.17			
1,2,4-Trimethylbenzene	0.18	0.33	0.09	0.00	0.60			
Naphthalene	0.00	0.00	0.00	0.00	0.00			
Propane Surrogate (Iso-C5 base)	0.16	0.05	0.08	0.00	0.30			
Isobutane Surrogate(Iso-C5 base)	0.22	0.07	0.11	0.00	0.39			
Butane Surrogate (Iso-C5 base)	0.70	0.22	0.36	0.00	1.27			
Trans-2-Butene Surrogate (iso-C5)	0.01	0.00	0.01	0.00	0.02			
Cis-2-Butene Surrogate (Iso- C5)	0.01	0.00	0.01	0.00	0.02			
Unidentified Components	3,720.11	25.40	1,893.89	0.00	5,639.40			

TANKS 4.0 Report

Quantity

1 19 1

TANKS 4.0.9d Emissions Report - Detail Format Tank Indentification and Physical Characteristics

Identification		
User Identification:	T-30	
City:	Bloomfield	
State:	New Mexico	
Company:	San Juan Refining	
Type of Tank:	Internal Floating Roof Tank	
Description:	Gasoline	
Tank Dimensions		
Diameter (ft):	64.00	
Volume (gallons):	700,400.00	
Turnovers:	171.33	
Self Supp. Roof? (y/n):	Y	
No. of Columns:	0.00	
Eff. Col. Diam. (ft):	0.00	
Paint Characteristics		
Internal Shell Condition:	Light Rust	
Shell Color/Shade:	White/White	
Shell Condition	Good	
Roof Color/Shade:	White/White	
Roof Condition:	Good	
Rim-Seal System		
Primary Seal:	Vapor-mounted	
Secondary Seal	Rim-mounted	
Deck Characteristics		
Deck Fitting Category:	Typical	
Deck Type:	Welded	
Deck Fitting/Status		
Assess Hatsh (04 in Diam)// Jakat	te d Osvers Userscheite d	

Access Hatch (24-in. Diam.)/Unbolted Cover, Ungasketed Automatic Gauge Float Well/Unbolted Cover, Ungasketed Roof Leg or Hanger Well/Adjustable Sample Pipe or Well (24-in. Diam.)/Slit Fabric Seal 10% Open Vacuum Breaker (10-in. Diam.)/Weighted Mech. Actuation, Gask.

Meterological Data used in Emissions Calculations: Bloomfield, New Mexico (Avg Atmospheric Pressure = 11.9 psia)

file://C:\Program Files\Tanks409d\summarydisplay.htm

T-30 - Internal Floating Roof Tank Bloomfield, New Mexico

		Da Tem	ily Liquid S perature (de	urf. ∋g F)	Liquid Bulk Temp	Vapor	Pressure	(psia)	Vapor Mol.	Liquid Mass	Vapor Mass	Mol.	Basis for Vapor Pressure
Mixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations
Gasoline (premium base blend) - Bloomfield	All	54.58	46.99	62.17	52.22	5.0870	N/A	N/A	67.0000			88.00	Option 4: RVP=10.8, ASTM Slope=3
1,2,4-Trimethylbenzene						0.0164	N/A	N/A	120.1900	0.0290	0.0001	120.19	Option 2: A=7.04383, B=1573.267, C=208.56
1-Butene Surrogate (Iso-C5 base)						0.1000	N/A	N/A	56.1000	0.0002	0.0000	56.10	Option 1: VP50 = .1 VP60 = .1
1-Pentene						7.7168	N/A	N/A	70.1400	0.0001	0.0002	70.14	Option 2: A=6.8442, B=1044.01, C=233.5
2-Methyl-1-butene						3.9857	N/A	N/A	70.1300	0.0002	0.0002	70.13	Option 2: A=6.4863, B=1039.69, C=236.65
2-Pentene						5.6874	N/A	N/A	70.1400	0.0003	0.0004	70.14	Option 1: VP50 = 5 VP60 = 6.5
3-Methyl-1-Butene Surrogate (IC5)						0.1000	N/A	N/A	70.1000	0.0001	0.0000	70.10	Option 1: VP50 = .1 VP60 = .1
Benzene						1.0030	N/A	N/A	78.1100	0.0304	0.0079	78.11	Option 2: A=6.905, B=1211.033, C=220.79
Butane Surrogate (Iso-C5 base)						0.1000	N/A	N/A	58.1000	0.0451	0.0012	58.10	Option 1: VP50 = .1 VP60 = .1
Cis-2-Butene Surrogate (Iso-C5)						0.1000	N/A	N/A	56.1000	0.0002	0.0000	56.10	Option 1: VP50 = .1 VP60 = .1
Cyclohexane						1.0441	N/A	N/A	84.1600	0.0087	0.0023	84.16	Option 2: A=6.841, B=1201.53, C=222.65
Ethylbenzene						0.0897	N/A	N/A	106.1700	0.0211	0.0005	106.17	Option 2: A=6.975, B=1424.255, C=213.21
Hexane (-n)						1.6589	N/A	N/A	86.1700	0.0277	0.0119	86.17	Option 2: A=6.876, B=1171.17, C=224.41
Isobutane Surrogate(Iso-C5 base)						0.1000	N/A	N/A	58.1000	0.0233	0.0006	58.10	Option 1: VP50 = .1 VP60 = .1
Isobutene Surrogate (Iso-C5 base)						0.1000	N/A	N/A	56.1000	0.0001	0.0000	56.10	Option 1: VP50 = .1 VP60 = .1
Isopentane						8.8587	N/A	N/A	72.1500	0.1484	0.3394	72.15	Option 1: VP50 = 7.889 VP60 = 10.005
Isopropyl benzene						0.0416	N/A	N/A	120.2000	0.0012	0.0000	120.20	Option 2: A=6.963, B=1460.793, C=207.78
Naphthalene						0.0019	N/A	N/A	128.0000	0.0023	0.0000	128.00	Option 1: VP50 = .0015 VP60 = .0024
Pentane (-n)						6.0535	N/A	N/A	72.1500	0.0414	0.0647	72.15	Option 3: A=27691, B=7.558
Propane Surrogate (Iso-C5 base)						0.1000	N/A	N/A	44.1000	0.0031	0.0001	44.10	Option 1: VP50 = .1 VP60 = .1
Propylene Surrogate (Iso-C5 base)						0.1000	N/A	N/A	44.1000	0.0000	0.0000	44.10	Option 1: VP50 = .1 VP60 = .1
Toluene						0.2783	N/A	N/A	92.1300	0.1374	0.0099	92.13	Option 2: A=6.954, B=1344.8, C=219.48
Trans-2-Butene Surrogate (iso-C5)						0.1000	N/A	N/A	56.1000	0.0002	0.0000	56.10	Option 1: VP50 = .1 VP60 = .1
Unidentified Components						10.1360	N/A	N/A	62.8627	0.3417	0.5579	100.75	
Xylene (-m)						0.0745	N/A	N/A	106.1700	0.1378	0.0027	106.17	Option 2: A=7.009, B=1462.266, C=215.11

TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

T-30 - Internal Floating Roof Tank Bloomfield, New Mexico

Annual Emission Calcaulations	
Rim Seal Losses (lb):	1,306.8207
Seal Factor A (lb-mole/ft-yr):	2.2000
Seal Factor B (lb-mole/ft-yr (mph)^n):	0.0030
Value of Vapor Pressure Function:	0.1385
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	5.0870
Tank Diameter (ft):	64.0000
Vapor Molecular Weight (lb/lb-mole):	67.0000
Product Factor:	1.0000
Withdrawal Losses (lb):	383.3042
Number of Columns:	0.0000
Effective Column Diameter (ft):	0.0000
Annual Net Throughput (gal/yr.):	120,000,000.0000
Shell Clingage Factor (bbl/1000 sqft):	0.0015
Average Organic Liquid Density (lb/gal):	6.0700
Tank Diameter (ft):	64.0000
Deck Fitting Losses (Ib):	2,026.1290
Value of Vapor Pressure Function:	0.1385
Vapor Molecular Weight (lb/lb-mole):	67.0000
Product Factor:	1.0000
Tot. Roof Fitting Loss Fact.(lb-mole/yr):	218.3000
Deck Seam Losses (lb):	0.0000
Deck Seam Length (ft):	0.0000
Deck Seam Loss per Unit Length	
Factor (lb-mole/ft-yr):	0.0000
Deck Seam Length Factor(ft/sqft):	0.0000
Tank Diameter (ft):	64.0000
Vapor Molecular Weight (lb/lb-mole):	67.0000
Product Factor:	1.0000
Total Losses (Ib)-	3 716 2530

Roof Fitting/Status	Quantity	KFa(lb-mole/yr)	Roof Fitting Loss Factors KFb(lb-mole/(yr mph^n))	m	Losses(lb)
Access Hatch (24-in. Diam.)/Unbolted Cover, Ungasketed	1	36.00	5.90	1.20	334.1303
Automatic Gauge Float Well/Unbolted Cover, Ungasketed	1	14.00	5.40	1.10	129.9396
Roof Leg or Hanger Well/Aguistable	19	7.90	0.00	0.00	1,393.1377
Sample Pipe or Well (24-in. Diam.)/Silt Fabric Seal 10% Open	1	12.00	0.00	0.00	111.3768
Vacuum Breaker (10-in. Diam.)/Weighted Moch. Actuation, Gask.	1	6.20	1.20	0.94	57.5447

TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: Annual

T-30 - Internal Floating Roof Tank Bloomfield, New Mexico

	Losses(lbs)								
Components	Rim Seal Loss	Withdrawl Loss	Deck Fitting Loss	Deck Seam Loss	Total Emissions				
Gasoline (premium base blend) - Bloomfield	1,306.82	383.30	2,026.13	0.00	3,716.25				
Isopentane	443.58	56.88	687.74	0.00	1,188.20				
1-Pentene	0.26	0.04	0.40	0.00	0.70				
2-Methyl-1-butene	0.27	0.08	0.42	0.00	0.76				
Pentane (-n)	84.56	15.87	131.11	0.00	231.54				
2-Pentene	0.58	0.11	0.89	0.00	1.58				
Hexane (-n)	15.50	10.62	24.04	0.00	50.16				
Benzene	10.29	11.65	15.95	0.00	37.89				
Cyclohexane	3.07	3.33	4.75	0.00	11.15				
Toluene	12.90	52.67	20.00	0.00	85.57				
Ethylbenzene	0.64	8.09	0.99	0.00	9.72				
Xylene (-m)	3.46	52.82	5.37	0.00	61.66				
Isopropyl benzene	0.02	0.46	0.03	0.00	0.50				
1,2,4-Trimethylbenzene	0.16	11.12	0.25	0.00	11.53				
Naphthalene	0.00	0.88	0.00	0.00	0.89				
Propane Surrogate (Iso-C5 base)	0.10	1.19	0.16	0.00	1.46				
Isobutane Surrogate(Iso-C5 base)	0.79	8.93	1.22	0.00	10.94				
Isobutene Surrogate (Iso-C5 base)	0.00	0.04	0.01	0.00	0.05				
1-Butene Surrogate (Iso-C5 base)	0.01	0.08	0.01	0.00	0.09				
Butane Surrogate (Iso-C5 base)	1.52	17.29	2.36	0.00	21.17				
Trans-2-Butene Surrogate (iso-C5)	0.01	0.08	0.01	0.00	0.09				
Cis-2-Butene Surrogate (Iso- C5)	0.01	0.08	0.01	0.00	0.09				
3-Methyl-1-Butene Surrogate (IC5)	0.00	0.04	0.01	0.00	0.05				
Propylene Surrogate (Iso-C5 base)	0.00	0.01	0.00	0.00	0.01				
Unidentified Components	729.09	130.97	1,130.40	0.00	1,990.46				

TANKS 4.0 Report

TANKS 4.0.9d **Emissions Report - Detail Format** Tank Indentification and Physical Characteristics

Identification User Identification: City: State: Company: Type of Tools:	T-31 Bloomfield New Mexico San Juan Refining External Elections Poof Tank	
Description:	Crude Oil	
Tank Dimensions Diameter (ft): Volume (gallons): Turnovers:	140.00 4,144,000.00 28.96	
Paint Characteristics Internal Shell Condition: Shell Color/Shade: Shell Condition	Light Rust White/White Good	
Roof Characteristics Type: Fitting Category	Pontoon Typical	
Tank Construction and Rim-Seal Construction: Primary Seal: Secondary Seal	System Welded Mechanical Shoe Shoe-mounted	
Deck Fitting/Status		Quantity
Access Hatch (24-in. Diam.)/Bolted Automatic Gauge Float Well/Unbolt Vacuum Breaker (10-in. Diam.)/Wei Unslotted Guide-Pole Well/Ungaske Gauge-Hatch/Sample Well (8-in. Di Roof Leg (3-in. Diameter)/Adjustabl Roof Leg (3-in. Diameter)/Adjustabl Rim Vent (6-in. Diameter)/Weighted	Cover, Gasketed ed Cover, Ungasketed ighted Mech. Actuation, Gask. eted Sliding Cover am.)/Weighted Mech. Actuation, Gask. le, Pontoon Area, Ungasketed le, Center Area, Ungasketed d Mech. Actuation, Gask.	1 1 2 1 1 1 21 33 3 1

Meterological Data used in Emissions Calculations: Bloomfield, New Mexico (Avg Atmospheric Pressure = 11.9 psia)

T-31 - External Floating Roof Tank Bloomfield, New Mexico

Mixture/Component	Month	Da Temı Avg.	ily Liquid S perature (de Min.	urf. eg F) Max.	Liquid Bulk Temp (deg F)	Vapo Avg.	r Pressure Min.	(psia) Max.	Vapor Mol. Weight.	Liquid Mass Fract.	Vapor Mass Fract.	Mol. Weight	Basis for Vapor Pressure Calculations
Crude Oil (Four Corners Sweet)	All	54.58	46.99	62.17	52.22	4.4698	N/A	N/A	60.0000			163.00	Option 4: RVP=7.4
1,2,4-Trimethylbenzene						0.0164	N/A	N/A	120.1900	0.0041	0.0000	120.19	Option 2: A=7.04383, B=1573.267, C=208.56
2,2,4-Trimethylpentane						0.5086	N/A	N/A	114.2300	0.0008	0.0002	114.23	Option 2: A=6.8118, B=1257.84, C=220.74
Benzene						1.0030	N/A	N/A	78.1100	0.0051	0.0031	78.11	Option 2: A=6.905, B=1211.033, C=220.79
Butane Surrogate (Iso-C5 base)						0.1000	N/A	N/A	58.1000	0.0098	0.0006	58.10	Option 1: VP50 = .1 VP60 = .1
Cyclohexane						1.0441	N/A	N/A	84.1600	0.0139	0.0088	84.16	Option 2: A=6.841, B=1201.53, C=222.65
Ethylbenzene						0.0897	N/A	N/A	106.1700	0.0031	0.0002	106.17	Option 2: A=6.975, B=1424.255, C=213.21
Hexane (-n)						1.6589	N/A	N/A	86.1700	0.0216	0.0218	86.17	Option 2: A=6.876, B=1171.17, C=224.41
Isobutane Surrogate(Iso-C5 base)						0.1000	N/A	N/A	58.1000	0.0022	0.0001	58.10	Option 1: VP50 = .1 VP60 = .1
Isopentane						8.8587	N/A	N/A	72.1500	0.0115	0.0619	72.15	Option 1: VP50 = 7.889 VP60 = 10.005
Isopropyl benzene						0.0416	N/A	N/A	120.2000	0.0005	0.0000	120.20	Option 2: A=6.963, B=1460.793, C=207.78
Naphthalene						0.0019	N/A	N/A	128.0000	0.0010	0.0000	128.00	Option 1: VP50 = .0015 VP60 = .0024
Pentane (-n)						6.0535	N/A	N/A	72.1500	0.0173	0.0637	72.15	Option 3: A=27691, B=7.558
Propane Surrogate (Iso-C5 base)						0.1000	N/A	N/A	44.1000	0.0077	0.0005	44.10	Option 1: VP50 = .1 VP60 = .1
Toluene						0.2783	N/A	N/A	92.1300	0.0144	0.0024	92.13	Option 2: A=6.954, B=1344.8, C=219.48
Unidentified Components						5.2966	N/A	N/A	57.7758	0.8721	0.8359	194.03	
Xylene (-m)						0.0745	N/A	N/A	106.1700	0.0149	0.0007	106.17	Option 2: A=7.009, B=1462.266, C=215.11

TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

T-31 - External Floating Roof Tank Bloomfield, New Mexico

Annual Emission Calcaulations	
Rim Seal Losses (lb):	5,793.0623
Seal Factor A (lb-mole/ft-yr):	1.6000
Seal Factor B (lb-mole/ft-yr (mph)^n):	0.3000
Average Wind Speed (mph):	10.6000
Seal-related Wind Speed Exponent:	1.6000
Value of Vapor Pressure Function:	0.1172
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	4.4698
Tank Diameter (ft):	140.0000
Vapor Molecular Weight (lb/lb-mole):	60.0000
Product Factor:	0.4000
Withdrawal Losses (Ib):	733.2306
Annual Net Throughput (gal/yr.):	120,000,000.0000
Shell Clingage Factor (bbl/1000 sqft):	0.0060
Average Organic Liquid Density (lb/gal):	6.3500
Tank Diameter (ft):	140.0000
Roof Fitting Losses (lb):	7,728,0902
Value of Vapor Pressure Function:	0.1172
Vapor Molecular Weight (lb/lb-mole):	60.0000
Product Factor:	0.4000
Tot. Roof Fitting Loss Fact. (lb-mole/yr):	2,747.3360
Average Wind Speed (mph):	10.6000
Total Losses (lb):	14,254.3831

Roof Fitting/Status	Quantity	KFa(lb-mole/yr)	Roof Fitting Loss Factors KFb(lb-mole/(yr mph^n))	m	Losses(lb)
Access Hatch (24-in. Diam.)/Bolted Cover, Gasketed Automatic Gauge Float Well/Uhobited Cover, Ungasketed Vacuum Breaker (10-in. Diam.)/Weighted Mech. Actuation, Gask. Unsitetted Guide-Pole Well/Uhgasketed Silfung Cover Gauge-Hatch/Sample Well (8-in. Diam.)/Weighted Mech. Actuation, Gask. Roof Leg (3-in. Diameter)/Adjustable, Contoon Area, Ungasketed Roof Leg (3-in. Diameter)/Adjustable, Center Area, Ungasketed Rim Vent (6-in. Diameter)/Adjustable, Center Area, Ungasketed Rim Vent (6-in. Diameter)/Adjustable, Center Area, Ungasketed Rim Vent (6-in. Diameter)/Adjustable, Center Area, Ungasketed	1 1 1 1 21 21 33 1	1.60 14.00 6.20 31.00 0.47 2.00 0.82 0.71	0.00 5.40 1.20 150.00 0.02 0.37 0.53 0.10	0.00 1.10 0.94 1.40 0.97 0.91 0.14 1.00	4.5007 177.1016 79.2977 7,066.5857 1.7152 253.5529 141.2520 4.0844

TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: Annual

T-31 - External Floating Roof Tank Bloomfield, New Mexico

	Losses(lbs)								
Components	Rim Seal Loss	Withdrawl Loss	Deck Fitting Loss	Deck Seam Loss	Total Emissions				
Crude Oil (Four Corners Sweet)	5,793.06	733.23	7,728.09	0.00	14,254.38				
Isopentane	358.69	8.43	478.51	0.00	845.63				
Pentane (-n)	368.73	12.68	491.90	0.00	873.31				
Hexane (-n)	126.16	15.84	168.30	0.00	310.31				
Benzene	18.01	3.74	24.03	0.00	45.78				
Cyclohexane	51.10	10.19	68.17	0.00	129.46				
2,2,4-Trimethylpentane	1.43	0.59	1.91	0.00	3.93				
Toluene	14.11	10.56	18.82	0.00	43.49				
Ethylbenzene	0.98	2.27	1.31	0.00	4.56				
Xylene (-m)	3.91	10.93	5.22	0.00	20.05				
Isopropyl benzene	0.07	0.37	0.10	0.00	0.54				
1,2,4-Trimethylbenzene	0.24	3.01	0.32	0.00	3.56				
Naphthalene	0.01	0.73	0.01	0.00	0.75				
Propane Surrogate (Iso-C5 base)	2.71	5.65	3.62	0.00	11.97				
Isobutane Surrogate(Iso-C5 base)	0.77	1.61	1.03	0.00	3.42				
Butane Surrogate (Iso-C5 base)	3.45	7.19	4.60	0.00	15.24				
Unidentified Components	4,842.68	639.45	6,460.26	0.00	11,942.38				

TANKS 4.0 Report

TANKS 4.0.9d **Emissions Report - Detail Format Tank Indentification and Physical Characteristics**

Identification User Identification: City: State: Company: Type of Tank: Description: Tank Dimensions Diameter (ft):	T-32 Bloomfield New Mexico San Juan Refining External Floating Roof Tank Gasoline 60.00	
Volume (gallons): Turnovers:	752,300.00 159.51	
Paint Characteristics Internal Shell Condition: Shell Color/Shade: Shell Condition	Light Rust White/White Good	
Roof Characteristics Type: Fitting Category	Pontoon Typical	
Tank Construction and Rim-Seal Sys Construction: Primary Seal: Secondary Seal	tem Welded Mechanical Shoe Rim-mounted	
Deck Fitting/Status		Quantity
Access Hatch (24-in. Diam.)/Bolted Cov Automatic Gauge Float Well/Unbolted C Vacuum Breaker (10-in. Diam.)/Weighte Unslotted Guide-Pole Well/Ungasketed Gauge-Hatch/Sample Well (8-in. Diam.) Roof Leg (3-in. Diameter)/Adjustable, C Rim Vent (6-in. Diameter)/Weighted Me	rer, Gasketed Cover, Ungasketed 3d Mech. Actuation, Gask. Silding Cover /Weighted Mech. Actuation, Gask. ontoon Area, Ungasketed enter Area, Ungasketed ch. Actuation, Gask.	1 1 1 1 1 1 9 7 7

Meterological Data used in Emissions Calculations: Bloomfield, New Mexico (Avg Atmospheric Pressure = 11.9 psia)

file://C:\Program Files\Tanks409d\summarydisplay.htm

T-32 - External Floating Roof Tank Bloomfield, New Mexico

		Da Tem	ily Liquid S perature (de	urf. ∋g F)	Liquid Bulk Temp	Vapor	Pressure	(psia)	Vapor Mol.	Liquid Mass	Vapor Mass	Mol.	Basis for Vapor Pressure
Mixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations
Gasoline (premium base blend) - Bloomfield	All	54.58	46.99	62.17	52.22	5.0870	N/A	N/A	67.0000			88.00	Option 4: RVP=10.8, ASTM Slope=3
1,2,4-Trimethylbenzene						0.0164	N/A	N/A	120.1900	0.0290	0.0001	120.19	Option 2: A=7.04383, B=1573.267, C=208.56
1-Butene Surrogate (Iso-C5 base)						0.1000	N/A	N/A	56.1000	0.0002	0.0000	56.10	Option 1: VP50 = .1 VP60 = .1
1-Pentene						7.7168	N/A	N/A	70.1400	0.0001	0.0002	70.14	Option 2: A=6.8442, B=1044.01, C=233.5
2-Methyl-1-butene						3.9857	N/A	N/A	70.1300	0.0002	0.0002	70.13	Option 2: A=6.4863, B=1039.69, C=236.65
2-Pentene						5.6874	N/A	N/A	70.1400	0.0003	0.0004	70.14	Option 1: VP50 = 5 VP60 = 6.5
3-Methyl-1-Butene Surrogate (IC5)						0.1000	N/A	N/A	70.1000	0.0001	0.0000	70.10	Option 1: VP50 = .1 VP60 = .1
Benzene						1.0030	N/A	N/A	78.1100	0.0304	0.0079	78.11	Option 2: A=6.905, B=1211.033, C=220.79
Butane Surrogate (Iso-C5 base)						0.1000	N/A	N/A	58.1000	0.0451	0.0012	58.10	Option 1: VP50 = .1 VP60 = .1
Cis-2-Butene Surrogate (Iso-C5)						0.1000	N/A	N/A	56.1000	0.0002	0.0000	56.10	Option 1: VP50 = .1 VP60 = .1
Cyclohexane						1.0441	N/A	N/A	84.1600	0.0087	0.0023	84.16	Option 2: A=6.841, B=1201.53, C=222.65
Ethylbenzene						0.0897	N/A	N/A	106.1700	0.0211	0.0005	106.17	Option 2: A=6.975, B=1424.255, C=213.21
Hexane (-n)						1.6589	N/A	N/A	86.1700	0.0277	0.0119	86.17	Option 2: A=6.876, B=1171.17, C=224.41
Isobutane Surrogate(Iso-C5 base)						0.1000	N/A	N/A	58.1000	0.0233	0.0006	58.10	Option 1: VP50 = .1 VP60 = .1
Isobutene Surrogate (Iso-C5 base)						0.1000	N/A	N/A	56.1000	0.0001	0.0000	56.10	Option 1: VP50 = .1 VP60 = .1
Isopentane						8.8587	N/A	N/A	72.1500	0.1484	0.3394	72.15	Option 1: VP50 = 7.889 VP60 = 10.005
Isopropyl benzene						0.0416	N/A	N/A	120.2000	0.0012	0.0000	120.20	Option 2: A=6.963, B=1460.793, C=207.78
Naphthalene						0.0019	N/A	N/A	128.0000	0.0023	0.0000	128.00	Option 1: VP50 = .0015 VP60 = .0024
Pentane (-n)						6.0535	N/A	N/A	72.1500	0.0414	0.0647	72.15	Option 3: A=27691, B=7.558
Propane Surrogate (Iso-C5 base)						0.1000	N/A	N/A	44.1000	0.0031	0.0001	44.10	Option 1: VP50 = .1 VP60 = .1
Propylene Surrogate (Iso-C5 base)						0.1000	N/A	N/A	44.1000	0.0000	0.0000	44.10	Option 1: VP50 = .1 VP60 = .1
Toluene						0.2783	N/A	N/A	92.1300	0.1374	0.0099	92.13	Option 2: A=6.954, B=1344.8, C=219.48
Trans-2-Butene Surrogate (iso-C5)						0.1000	N/A	N/A	56.1000	0.0002	0.0000	56.10	Option 1: VP50 = .1 VP60 = .1
Unidentified Components						10.1360	N/A	N/A	62.8627	0.3417	0.5579	100.75	
Xylene (-m)						0.0745	N/A	N/A	106.1700	0.1378	0.0027	106.17	Option 2: A=7.009, B=1462.266, C=215.11

TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

T-32 - External Floating Roof Tank Bloomfield, New Mexico

Annual Emission Calcaulations	
Rim Seal Losses (lb):	2,695.3177
Seal Factor A (lb-mole/ft-yr):	0.6000
Seal Factor B (lb-mole/ft-yr (mph)^n):	0.4000
Average Wind Speed (mph):	10.6000
Seal-related Wind Speed Exponent:	1.0000
Value of Vapor Pressure Function: Vapor Pressure at Daily Average Liquid	0.1385
Surface Temperature (psia):	5.0870
Tank Diameter (ft):	60.0000
Vapor Molecular Weight (lb/lb-mole):	67.0000
Product Factor:	1.0000
Withdrawal Losses (lb):	408.8579
Annual Net Throughput (gal/yr.):	120,000,000.0000
Shell Clingage Factor (bbl/1000 sqft):	0.0015
Average Organic Liquid Density (lb/gal):	6.0700
Tank Diameter (ft):	60.0000
Roof Fitting Losses (Ib):	24,523.0284
Value of Vapor Pressure Function:	0.1385
Vapor Molecular Weight (lb/lb-mole):	67.0000
Product Factor:	1.0000
Tot. Roof Fitting Loss Fact. (lb-mole/yr):	2,642.1700
Average Wind Speed (mph):	10.6000
Total Losses (lb):	27,627.2039

Roof Fitting/Status	Quantity	KFa(lb-mole/yr)	Roof Fitting Loss Factors KFb(lb-mole/(yr mph^n))	m	Losses(lb)
Access Hatch (24-in. Diam.)/Bolted Cover, Gasketed Automatic Gauge Float Well/Uhobited Cover, Ungasketed Vacuum Breaker (10-in. Diam.)/Weighted Mech. Actuation, Gask. Unslotted Guide-Pole Well/Ungasketed Silding Cover Gauge-Hatch/Sample Well (8-in. Diam.)/Weighted Mech. Actuation, Gask. Roof Leg (3-in. Diameter)/Adjustable, Pontoon Area, Ungasketed Roof Leg (3-in. Diameter)/Adjustable, Center Area, Ungasketed Rim Vent (6-in. Diameter)/Adjustable, Center Area, Ungasketed Rim Vent (6-in. Diameter)/Adjustable, Center Area, Ungasketed	1 1 1 1 9 7 1	1.60 14.00 6.20 31.00 0.47 2.00 0.82 0.71	0.00 5.40 1.20 150.00 0.02 0.37 0.53 0.10	0.00 1.10 0.94 1.40 0.97 0.91 0.14 1.00	14.8502 584.3532 130.8228 23,316.4579 5.6592 358.5459 98.8625 13.4766

TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: Annual

T-32 - External Floating Roof Tank Bloomfield, New Mexico

	Losses(lbs)								
Components	Rim Seal Loss	Withdrawl Loss	Deck Fitting Loss	Deck Seam Loss	Total Emissions				
Gasoline (premium base blend) - Bloomfield	2,695.32	408.86	24,523.03	0.00	27,627.20				
Isopentane	914.88	60.67	8,323.97	0.00	9,299.53				
1-Pentene	0.54	0.04	4.89	0.00	5.46				
2-Methyl-1-butene	0.55	0.08	5.05	0.00	5.68				
Pentane (-n)	174.41	16.93	1,586.84	0.00	1,778.18				
2-Pentene	1.19	0.12	10.80	0.00	12.11				
Hexane (-n)	31.98	11.33	290.96	0.00	334.26				
Benzene	21.22	12.43	193.06	0.00	226.71				
Cyclohexane	6.32	3.56	57.52	0.00	67.40				
Toluene	26.61	56.18	242.10	0.00	324.89				
Ethylbenzene	1.32	8.63	11.98	0.00	21.92				
Xylene (-m)	7.15	56.34	65.02	0.00	128.50				
Isopropyl benzene	0.03	0.49	0.32	0.00	0.84				
Isobutene Surrogate (Iso-C5 base)	0.01	0.04	0.06	0.00	0.11				
1-Butene Surrogate (Iso-C5 base)	0.01	0.08	0.13	0.00	0.22				
Butane Surrogate (Iso-C5 base)	3.14	18.44	28.56	0.00	50.13				
Trans-2-Butene Surrogate (iso-C5)	0.01	0.08	0.13	0.00	0.22				
1,2,4-Trimethylbenzene	0.33	11.86	3.01	0.00	15.20				
Naphthalene	0.00	0.94	0.03	0.00	0.97				
Propane Surrogate (Iso-C5 base)	0.22	1.27	1.96	0.00	3.45				
Isobutane Surrogate(Iso-C5 base)	1.62	9.53	14.75	0.00	25.90				
Cis-2-Butene Surrogate (Iso- C5)	0.01	0.08	0.13	0.00	0.22				
3-Methyl-1-Butene Surrogate (IC5)	0.01	0.04	0.06	0.00	0.11				
Propylene Surrogate (Iso-C5 base)	0.00	0.01	0.01	0.00	0.02				
Unidentified Components	1,503.75	139.70	13,681.70	0.00	15,325.15				

TANKS 4.0 Report

Quantity

TANKS 4.0.9d Emissions Report - Detail Format Tank Indentification and Physical Characteristics

Identification										
User Identification:	T-35									
City:	Bloomfield									
State:	New Mexico									
Company:	San Juan Refining									
Type of Tank:	Internal Floating Roof Tank									
Description:	Gasoline									
Tank Dimensions										
Diameter (ft):	100.00									
Volume (gallons):	1,903,000.00									
Turnovers:	52.55									
Self Supp. Roof? (y/n):	Y									
No. of Columns:	0.00									
Eff. Col. Diam. (ft):	0.00									
Paint Characteristics										
Internal Shall Condition:	Light Pust									
Shall Color/Shado:	Light Rusi White/White									
Shell Condition	Cood									
Boof Color/Shaday	White White									
Roof Condition:	Good									
Roor Condition.	3000									
Rim-Seal System										
Primary Seal:	Mechanical Shoe									
Secondary Seal	Rim-mounted									
Deck Characteristics										
Deck Fitting Category	Typical									
Deck Type:	Welded									
Deck Fitting/Status										
Access Hatch (24-in, Diam)/Unbol	ted Cover Upgasketed									

Access Hatch (24-in. Diam.)/Unbolted Cover, Ungasketed Automatic Gauge Float Well/Unbolted Cover, Ungasketed Roof Leg or Hanger Well/Adjustable Sample Pipe or Well (24-in. Diam.)/Slit Fabric Seal 10% Open Vacuum Breaker (10-in. Diam.)/Weighted Mech. Actuation, Gask.

Meterological Data used in Emissions Calculations: Bloomfield, New Mexico (Avg Atmospheric Pressure = 11.9 psia)

file://C:\Program Files\Tanks409d\summarydisplay.htm

T-35 - Internal Floating Roof Tank Bloomfield, New Mexico

Mixture/Component	Month	Da Tem Avg.	ily Liquid Soperature (de Min.	urf. eg F) Max.	Liquid Bulk Temp (deg F)	Vapo Avg.	r Pressure Min.	(psia) Max.	Vapor Mol. Weight.	Liquid Mass Fract.	Vapor Mass Fract.	Mol. Weight	Basis for Vapor Pressure Calculations
Gasoline (premium base blend) - Bloomfield	All	54.58	46.99	62.17	52.22	5.0870	N/A	N/A	67.0000			88.00	Option 4: RVP=10.8, ASTM Slope=3
1.2.4-Trimethylbenzene						0.0164	N/A	N/A	120,1900	0.0104	0.0000	120.19	Option 2: A=7.04383, B=1573.267, C=208.56
Benzene						1.0030	N/A	N/A	78.1100	0.0066	0.0017	78.11	Option 2: A=6.905, B=1211.033, C=220.79
Butane Surrogate (Iso-C5 base)						0.1000	N/A	N/A	58,1000	0.0068	0.0002	58.10	Option 1: VP50 = .1 VP60 = .1
Cis-2-Butene Surrogate (Iso-C5)						0.1000	N/A	N/A	56,1000	0.0001	0.0000	56.10	Option 1: VP50 = .1 VP60 = .1
Cyclohexane						1.0441	N/A	N/A	84.1600	0.0240	0.0065	84.16	Option 2: A=6.841, B=1201.53, C=222.65
Ethylbenzene						0.0897	N/A	N/A	106.1700	0.0083	0.0002	106.17	Option 2: A=6.975, B=1424.255, C=213.21
Hexane (-n)						1.6589	N/A	N/A	86.1700	0.0234	0.0100	86.17	Option 2: A=6.876, B=1171.17, C=224.41
Isobutane Surrogate(Iso-C5 base)						0.1000	N/A	N/A	58.1000	0.0021	0.0001	58.10	Option 1: VP50 = .1 VP60 = .1
Isopentane						8.8587	N/A	N/A	72.1500	0.0095	0.0217	72.15	Option 1: VP50 = 7.889 VP60 = 10.005
Isopropyl benzene						0.0416	N/A	N/A	120.2000	0.0018	0.0000	120.20	Option 2: A=6.963, B=1460.793, C=207.78
Naphthalene						0.0019	N/A	N/A	128.0000	0.0001	0.0000	128.00	Option 1: VP50 = .0015 VP60 = .0024
Pentane (-n)						6.0535	N/A	N/A	72.1500	0.0132	0.0206	72.15	Option 3: A=27691, B=7.558
Propane Surrogate (Iso-C5 base)						0.1000	N/A	N/A	44.1000	0.0016	0.0000	44.10	Option 1: VP50 = .1 VP60 = .1
Toluene						0.2783	N/A	N/A	92.1300	0.0439	0.0032	92.13	Option 2: A=6.954, B=1344.8, C=219.48
Trans-2-Butene Surrogate (iso-C5)						0.1000	N/A	N/A	56.1000	0.0001	0.0000	56.10	Option 1: VP50 = .1 VP60 = .1
Unidentified Components						6.0159	N/A	N/A	66.4249	0.7952	0.9347	87.77	
Xylene (-m)						0.0745	N/A	N/A	106.1700	0.0529	0.0010	106.17	Option 2: A=7.009, B=1462.266, C=215.11

TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

T-35 - Internal Floating Roof Tank Bloomfield, New Mexico

Annual Emission Calcaulations	
Rim Seal Losses (lb):	556.8838
Seal Factor A (lb-mole/ft-yr):	0.6000
Seal Factor B (lb-mole/ft-yr (mph)^n):	0.4000
Value of Vapor Pressure Function: Vapor Pressure at Daily Average Liquid	0.1385
Surface Temperature (psia):	5.0870
Tank Diameter (ft):	100.0000
Vapor Molecular Weight (lb/lb-mole):	67.0000
Product Factor:	1.0000
Withdrawal Losses (Ib):	204.4289
Number of Columns:	0.0000
Effective Column Diameter (ft):	0.0000
Annual Net Throughput (gal/yr.):	100,000,000.0000
Shell Clingage Factor (bbl/1000 sqft):	0.0015
Average Organic Liquid Density (lb/gal):	6.0700
Tank Diameter (ft):	100.0000
Deck Fitting Losses (Ib):	2,979.3284
Value of Vapor Pressure Function:	0.1385
Vapor Molecular Weight (lb/lb-mole):	67.0000
Product Factor:	1.0000
Tot. Roof Fitting Loss Fact. (lb-mole/yr):	321.0000
Deck Seam Losses (lb):	0.0000
Deck Seam Length (ft):	0.0000
Deck Seam Loss per Unit Length	
Factor (lb-mole/ft-yr):	0.0000
Deck Seam Length Factor(ft/sqft):	0.0000
Tank Diameter (ft):	100.0000
Vapor Molecular Weight (lb/lb-mole):	67.0000
Product Factor:	1.0000
Total Losses (lb):	3,740.6412

Roof Fitting/Status	Quantity	KFa(lb-mole/yr)	Roof Fitting Loss Factors KFb(lb-mole/(yr mph^n))	m	Losses(Ib)
Access Hatch (24-in. Diam.)/Unbolted Cover, Ungasketed	1	36.00	5.90	1.20	334.1303
Automatic Gauge Float Well/Unbolted Cover, Ungasketed	1	14.00	5.40	1.10	129.9396
Roof Leg or Hanger Well/Adjustable	32	7.90	0.00	0.00	2,346.3372
Sample Pipe or Well (24-in. Diam.)/Silt Fabric Seal 10% Open	1	12.00	0.00	0.00	111.3768
Vacuum Breaker (10-in. Diam.)/Weighted Mech. Actuation, Gask.	1	6.20	1.20	0.94	57.5447

TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: Annual

T-35 - Internal Floating Roof Tank Bloomfield, New Mexico

	Losses(lbs)									
Components	Rim Seal Loss	Withdrawl Loss	Deck Fitting Loss	Deck Seam Loss	Total Emissions					
Gasoline (premium base blend) - Bloomfield	556.88	204.43	2,979.33	0.00	3,740.64					
Isopentane	12.10	1.94	64.74	0.00	78.78					
Pentane (-n)	11.49	2.70	61.47	0.00	75.66					
Hexane (-n)	5.58	4.78	29.86	0.00	40.23					
Benzene	0.95	1.35	5.09	0.00	7.39					
Cyclohexane	3.60	4.91	19.28	0.00	27.79					
Toluene	1.76	8.97	9.40	0.00	20.13					
Ethylbenzene	0.11	1.70	0.57	0.00	2.38					
Xylene (-m)	0.57	10.81	3.03	0.00	14.41					
Isopropyl benzene	0.01	0.37	0.06	0.00	0.44					
1,2,4-Trimethylbenzene	0.02	2.13	0.13	0.00	2.28					
Naphthalene	0.00	0.02	0.00	0.00	0.02					
Propane Surrogate (Iso-C5 base)	0.02	0.33	0.12	0.00	0.47					
Isobutane Surrogate(Iso-C5 base)	0.03	0.43	0.16	0.00	0.62					
Butane Surrogate (Iso-C5 base)	0.10	1.39	0.52	0.00	2.01					
Trans-2-Butene Surrogate (iso-C5)	0.00	0.02	0.01	0.00	0.03					
Cis-2-Butene Surrogate (Iso- C5)	0.00	0.02	0.01	0.00	0.03					
Unidentified Components	520.54	162.56	2,784.88	0.00	3,467.98					

TANKS 4.0 Report

Quantity

TANKS 4.0.9d Emissions Report - Detail Format Tank Indentification and Physical Characteristics

Identification									
User Identification:	T-36								
City:	Bloomfield								
State:	New Mexico								
Company:	San Juan Refining								
Type of Tank:	Internal Floating Roof Tank								
Description:	Gasolino								
Description.	Gasoline								
Tank Dimensions									
Diameter (ft):	100.00								
Volume (gallons):	1.903.000.00								
Turnovers:	52 55								
Self Supp. Roof? (v/n):	Y 02.00								
No. of Columns:	0.00								
Eff Col Diam (ft):	0.00								
	0.00								
Paint Characteristics									
Internal Shell Condition:	Light Rust								
Shell Color/Shade:	White/White								
Shell Condition	Good								
Roof Color/Shade:	White/White								
Roof Condition:	Good								
Rim-Seal System									
Primary Seal:	Mechanical Shoe								
Secondary Seal	None								
Deck Characteristics									
Deck Fitting Category:	Typical								
Deck Type:	Welded								
Book Type.	Holdou								
Deck Fitting/Status									
Access Hatch (24 in Diam)/Linhold	ad Cover, Upgacketed								

Access Hatch (24-in. Diam.)/Unbolted Cover, Ungasketed Automatic Gauge Float Well/Unbolted Cover, Ungasketed Roof Leg or Hanger Well/Adjustable Sample Pipe or Well (24-in. Diam.)/Slit Fabric Seal 10% Open Vacuum Breaker (10-in. Diam.)/Weighted Mech. Actuation, Gask.

Meterological Data used in Emissions Calculations: Bloomfield, New Mexico (Avg Atmospheric Pressure = 11.9 psia)

file://C:\Program Files\Tanks409d\summarydisplay.htm

T-36 - Internal Floating Roof Tank Bloomfield, New Mexico

		Da Tem	ily Liquid S perature (d	urf. ∋g F)	Liquid Bulk Temp	Vapo	r Pressure	(psia)	Vapor Mol.	Liquid Mass	Vapor Mass	Mol.	Basis for Vapor Pressure
Mixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations
Gasoline (premium base blend) - Bloomfield	All	54.58	46.99	62.17	52.22	5.0870	N/A	N/A	67.0000			88.00	Option 4: RVP=10.8, ASTM Slope=3
1,2,4-Trimethylbenzene						0.0164	N/A	N/A	120.1900	0.0143	0.0001	120.19	Option 2: A=7.04383, B=1573.267, C=208.56
1-Butene Surrogate (Iso-C5 base)						0.1000	N/A	N/A	56.1000	0.0020	0.0001	56.10	Option 1: VP50 = .1 VP60 = .1
1-Pentene						7.7168	N/A	N/A	70.1400	0.0101	0.0201	70.14	Option 2: A=6.8442, B=1044.01, C=233.5
2,2,4-Trimethylpentane						0.5086	N/A	N/A	114.2300	0.0052	0.0007	114.23	Option 2: A=6.8118, B=1257.84, C=220.74
2-Methyl-1-butene						3.9857	N/A	N/A	70.1300	0.0161	0.0166	70.13	Option 2: A=6.4863, B=1039.69, C=236.65
2-Pentene						5.6874	N/A	N/A	70.1400	0.0212	0.0311	70.14	Option 1: VP50 = 5 VP60 = 6.5
3-Methyl-1-Butene Surrogate (IC5)						0.1000	N/A	N/A	70.1000	0.0021	0.0001	70.10	Option 1: VP50 = .1 VP60 = .1
Benzene						1.0030	N/A	N/A	78.1100	0.0068	0.0018	78.11	Option 2: A=6.905, B=1211.033, C=220.79
Butane Surrogate (Iso-C5 base)						0.1000	N/A	N/A	58.1000	0.0081	0.0002	58.10	Option 1: VP50 = .1 VP60 = .1
Cis-2-Butene Surrogate (Iso-C5)						0.1000	N/A	N/A	56.1000	0.0046	0.0001	56.10	Option 1: VP50 = .1 VP60 = .1
Cyclohexane						1.0441	N/A	N/A	84.1600	0.0044	0.0012	84.16	Option 2: A=6.841, B=1201.53, C=222.65
Ethylbenzene						0.0897	N/A	N/A	106.1700	0.0064	0.0001	106.17	Option 2: A=6.975, B=1424.255, C=213.21
Hexane (-n)						1.6589	N/A	N/A	86.1700	0.0111	0.0048	86.17	Option 2: A=6.876, B=1171.17, C=224.41
Isobutane Surrogate(Iso-C5 base)						0.1000	N/A	N/A	58.1000	0.0018	0.0000	58.10	Option 1: VP50 = .1 VP60 = .1
Isobutene Surrogate (Iso-C5 base)						0.1000	N/A	N/A	56.1000	0.0014	0.0000	56.10	Option 1: VP50 = .1 VP60 = .1
Isopentane						8.8587	N/A	N/A	72.1500	0.0903	0.2065	72.15	Option 1: VP50 = 7.889 VP60 = 10.005
Isopropyl benzene						0.0416	N/A	N/A	120.2000	0.0008	0.0000	120.20	Option 2: A=6.963, B=1460.793, C=207.78
Naphthalene						0.0019	N/A	N/A	128.0000	0.0020	0.0000	128.00	Option 1: VP50 = .0015 VP60 = .0024
Pentane (-n)						6.0535	N/A	N/A	72.1500	0.0151	0.0236	72.15	Option 3: A=27691, B=7.558
Propane Surrogate (Iso-C5 base)						0.1000	N/A	N/A	44.1000	0.0001	0.0000	44.10	Option 1: VP50 = .1 VP60 = .1
Propylene Surrogate (Iso-C5 base)						0.1000	N/A	N/A	44.1000	0.0001	0.0000	44.10	Option 1: VP50 = .1 VP60 = .1
Toluene						0.2783	N/A	N/A	92.1300	0.0263	0.0019	92.13	Option 2: A=6.954, B=1344.8, C=219.48
Trans-2-Butene Surrogate (iso-C5)						0.1000	N/A	N/A	56.1000	0.0033	0.0001	56.10	Option 1: VP50 = .1 VP60 = .1
Unidentified Components						5.4303	N/A	N/A	64.9181	0.6998	0.6900	92.31	
Xylene (-m)						0.0745	N/A	N/A	106.1700	0.0466	0.0009	106.17	Option 2: A=7.009, B=1462.266, C=215.11
TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

T-36 - Internal Floating Roof Tank Bloomfield, New Mexico

Annual Emission Calcaulations	
Rim Seal Losses (lb):	5,383.2102
Seal Factor A (lb-mole/ft-yr):	5.8000
Seal Factor B (lb-mole/ft-yr (mph)^n):	0.3000
Value of Vapor Pressure Function:	0.1385
Surface Temperature (nsia):	5.0870
Tank Diameter (ft):	100,0000
Vapor Molecular Weight (lb/lb-mole):	67.0000
Product Factor:	1.0000
Withdrawal Losses (lb):	204.4289
Number of Columns:	0.0000
Effective Column Diameter (ft):	0.0000
Annual Net Throughput (gal/yr.):	100,000,000.0000
Shell Clingage Factor (bbl/1000 sqft):	0.0015
Average Organic Liquid Density (lb/gal):	6.0700
Tank Diameter (ft):	100.0000
Deck Fitting Losses (Ib):	2,979.3284
Value of Vapor Pressure Function:	0.1385
Vapor Molecular Weight (lb/lb-mole):	67.0000
Product Factor:	1.0000
Tot. Roof Fitting Loss Fact. (lb-mole/yr):	321.0000
Deck Seam Losses (lb):	0.0000
Deck Seam Length (ft):	0.0000
Deck Seam Loss per Unit Length	
Factor (lb-mole/ft-yr):	0.0000
Deck Seam Length Factor(ft/sqft):	0.0000
Tank Diameter (ft):	100.0000
Vapor Molecular Weight (lb/lb-mole):	67.0000
Product Factor:	1.0000
Total Losses (lb):	8,566.9676

Roof Fitting/Status	Quantity	KFa(lb-mole/yr)	Roof Fitting Loss Factors KFb(lb-mole/(yr mph^n))	m	Losses(lb)
Access Hatch (24-in. Diam.)/Unbolted Cover, Ungasketed	1	36.00	5.90	1.20	334.1303
Automatic Gauge Float Well/Unbolted Cover, Ungasketed	1	14.00	5.40	1.10	129.9396
Rool Leg or Hanger Well/Aguistable	32	7.90	0.00	0.00	2,346.3372
Sample Pipe or Well (24-in. Diam.)/Silt Fabric Seal 10% Open	1	12.00	0.00	0.00	111.3768
Vacuum Breaker (10-in. Diam.)/Weighted Mach. Actuation, Gask.	1	6.20	1.20	0.94	57.5447

TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: Annual

T-36 - Internal Floating Roof Tank Bloomfield, New Mexico

	Losses(lbs)								
Components	Rim Seal Loss	Withdrawl Loss	Deck Fitting Loss	Deck Seam Loss	Total Emissions				
Gasoline (premium base blend) - Bloomfield	5,383.21	204.43	2,979.33	0.00	8,566.97				
Isopentane	1,111.86	18.46	615.36	0.00	1,745.68				
1-Pentene	108.33	2.06	59.96	0.00	170.35				
2-Methyl-1-butene	89.19	3.29	49.36	0.00	141.85				
Pentane (-n)	127.05	3.09	70.32	0.00	200.45				
2-Pentene	167.59	4.33	92.75	0.00	264.67				
Hexane (-n)	25.59	2.27	14.16	0.00	42.03				
Benzene	9.48	1.39	5.25	0.00	16.12				
Cyclohexane	6.39	0.90	3.53	0.00	10.82				
2,2,4-Trimethylpentane	3.68	1.06	2.03	0.00	6.77				
Toluene	10.17	5.38	5.63	0.00	21.18				
Ethylbenzene	0.80	1.31	0.44	0.00	2.55				
Xylene (-m)	4.83	9.53	2.67	0.00	17.02				
Isopropyl benzene	0.05	0.16	0.03	0.00	0.24				
1,2,4-Trimethylbenzene	0.33	2.92	0.18	0.00	3.43				
Naphthalene	0.01	0.41	0.00	0.00	0.42				
Propylene Surrogate (Iso-C5 base)	0.01	0.02	0.01	0.00	0.04				
Propane Surrogate (Iso-C5 base)	0.01	0.02	0.01	0.00	0.04				
Isobutane Surrogate(Iso-C5 base)	0.25	0.37	0.14	0.00	0.76				
Isobutene Surrogate (Iso-C5 base)	0.19	0.29	0.11	0.00	0.59				
1-Butene Surrogate (Iso-C5 base)	0.28	0.41	0.15	0.00	0.84				
Cis-2-Butene Surrogate (Iso- C5)	0.64	0.94	0.35	0.00	1.93				
3-Methyl-1-Butene Surrogate (IC5)	0.29	0.43	0.16	0.00	0.88				
Unidentified Components	3,714.61	143.06	2,055.84	0.00	5,913.51				
Butane Surrogate (Iso-C5 base)	1.13	1.66	0.62	0.00	3.40				
Trans-2-Butene Surrogate (iso-C5)	0.46	0.67	0.25	0.00	1.39				

TANKS 4.0 Report

Quantity

1 9 1

TANKS 4.0.9d Emissions Report - Detail Format Tank Indentification and Physical Characteristics

Identification		
User Identification:	T-41	
City:	Bloomfield	
State:	New Mexico	
Company:	San Juan Refining	
Type of Tank:	Internal Floating Roof Tank	
Description:	Crude / Water	
Tank Dimensions		
Diameter (ft):	25.00	
Volume (gallons):	117,600.00	
Turnovers:	34.01	
Self Supp. Roof? (y/n):	Ŷ	
No. of Columns:	0.00	
Eff. Col. Diam. (ft):	0.00	
Paint Characteristics		
Internal Shell Condition:	Light Rust	
Shell Color/Shade:	White/White	
Shell Condition	Good	
Roof Color/Shade:	White/White	
Roof Condition:	Good	
Rim-Seal System		
Primary Seal:	Liquid-mounted	
Secondary Seal	Rim-mounted	
Deck Characteristics		
Deck Fitting Category:	Typical	
Deck Type:	Welded	
Deck Fitting/Status		

Access Hatch (24-in. Diam.)/Unbolted Cover, Ungasketed Automatic Gauge Float Well/Unbolted Cover, Ungasketed Roof Leg or Hanger Well/Adjustable Sample Pipe or Well (24-in. Diam.)/Slit Fabric Seal 10% Open Vacuum Breaker (10-in. Diam.)/Weighted Mech. Actuation, Gask.

Meterological Data used in Emissions Calculations: Bloomfield, New Mexico (Avg Atmospheric Pressure = 11.9 psia)

file://C:\Program Files\Tanks409d\summarydisplay.htm

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

T-41 - Internal Floating Roof Tank Bloomfield, New Mexico

Mixture/Component	Month	Da Tem Avg.	ily Liquid S perature (de Min.	urf. eg F) Max.	Liquid Bulk Temp (deg F)	Vapo Avg.	r Pressure Min.	(psia) Max.	Vapor Mol. Weight.	Liquid Mass Fract.	Vapor Mass Fract.	Mol. Weight	Basis for Vapor Pressure Calculations
Crude Oil (Four Corners Sweet)	All	54.58	46.99	62.17	52.22	4,4698	N/A	N/A	60.0000			163.00	Option 4: RVP=7.4
1,2,4-Trimethylbenzene						0.0164	N/A	N/A	120.1900	0.0041	0.0000	120.19	Option 2: A=7.04383, B=1573.267, C=208.56
2,2,4-Trimethylpentane						0.5086	N/A	N/A	114.2300	0.0008	0.0002	114.23	Option 2: A=6.8118, B=1257.84, C=220.74
Benzene						1.0030	N/A	N/A	78.1100	0.0051	0.0031	78.11	Option 2: A=6.905, B=1211.033, C=220.79
Butane Surrogate (Iso-C5 base)						0.1000	N/A	N/A	58.1000	0.0098	0.0006	58.10	Option 1: VP50 = .1 VP60 = .1
Cyclohexane						1.0441	N/A	N/A	84.1600	0.0139	0.0088	84.16	Option 2: A=6.841, B=1201.53, C=222.65
Ethylbenzene						0.0897	N/A	N/A	106.1700	0.0031	0.0002	106.17	Option 2: A=6.975, B=1424.255, C=213.21
Hexane (-n)						1.6589	N/A	N/A	86.1700	0.0216	0.0218	86.17	Option 2: A=6.876, B=1171.17, C=224.41
Isobutane Surrogate(Iso-C5 base)						0.1000	N/A	N/A	58.1000	0.0022	0.0001	58.10	Option 1: VP50 = .1 VP60 = .1
Isopentane						8.8587	N/A	N/A	72.1500	0.0115	0.0619	72.15	Option 1: VP50 = 7.889 VP60 = 10.005
Isopropyl benzene						0.0416	N/A	N/A	120.2000	0.0005	0.0000	120.20	Option 2: A=6.963, B=1460.793, C=207.78
Naphthalene						0.0019	N/A	N/A	128.0000	0.0010	0.0000	128.00	Option 1: VP50 = .0015 VP60 = .0024
Pentane (-n)						6.0535	N/A	N/A	72.1500	0.0173	0.0637	72.15	Option 3: A=27691, B=7.558
Propane Surrogate (Iso-C5 base)						0.1000	N/A	N/A	44.1000	0.0077	0.0005	44.10	Option 1: VP50 = .1 VP60 = .1
Toluene						0.2783	N/A	N/A	92.1300	0.0144	0.0024	92.13	Option 2: A=6.954, B=1344.8, C=219.48
Unidentified Components						5.2966	N/A	N/A	57.7758	0.8721	0.8359	194.03	
Xylene (-m)						0.0745	N/A	N/A	106.1700	0.0149	0.0007	106.17	Option 2: A=7.009, B=1462.266, C=215.11

TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

T-41 - Internal Floating Roof Tank Bloomfield, New Mexico

Annual Emission Calcaulations	
Rim Seal Losses (lb):	21.0970
Seal Factor A (lb-mole/ft-vr):	0.3000
Seal Factor B (lb-mole/ft-vr (mph)^n):	0.6000
Value of Vapor Pressure Function:	0.1172
Surface Temperature (psia):	4.4698
Tank Diameter (ft):	25.0000
Vapor Molecular Weight (lb/lb-mole):	60.0000
Product Factor:	0.4000
Withdrawal Losses (Ib):	136.8697
Number of Columns:	0.0000
Effective Column Diameter (ft):	0.0000
Annual Net Throughput (gal/yr.):	4,000,000.0000
Shell Clingage Factor (bbl/1000 sqft):	0.0060
Average Organic Liquid Density (lb/gal):	6.3500
Tank Diameter (ft):	25.0000
Deck Fitting Losses (lb):	391.8425
Value of Vapor Pressure Function:	0.1172
Vapor Molecular Weight (lb/lb-mole):	60.0000
Product Factor:	0.4000
Tot. Roof Fitting Loss Fact.(lb-mole/yr):	139.3000
Deck Seam Losses (lb):	0.0000
Deck Seam Length (ft):	0.0000
Eactor (Ib-mole/ft-vr):	0.0000
Deck Seam Length Eactor(ft/soft):	0.0000
Tank Diameter (ft):	25 0000
Vanor Molecular Weight (lb/lb-mole):	60,0000
Product Factor:	0.4000
Total Losses (lb):	549.8092

Roof Fitting/Status	Quantity	KFa(lb-mole/yr)	Roof Fitting Loss Factors KFb(lb-mole/(yr mph^n))	m	Losses(lb)
Access Hatch (24-in. Diam.)/Unbolted Cover, Ungasketed	1	36.00	5.90	1.20	101.2658
Automatic Gauge Float Well/Unbolted Cover, Ungasketed	1	14.00	5.40	1.10	39.3812
Roof Leg or Hanger Well/Adjustable	9	7.90	0.00	0.00	200.0000
Sample Pipe or Well (24-in. Diam.)/Silt Fabric Seal 10% Open	1	12.00	0.00	0.00	33.7553
Vacuum Breaker (10-in. Diam.)/Weighted Mech. Actuation, Gask.	1	6.20	1.20	0.94	17.4402

TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: Annual

T-41 - Internal Floating Roof Tank Bloomfield, New Mexico

	Losses(lbs)								
Components	Rim Seal Loss	Withdrawl Loss	Deck Fitting Loss	Deck Seam Loss	Total Emissions				
Crude Oil (Four Corners Sweet)	21.10	136.87	391.84	0.00	549.81				
Isopentane	1.31	1.57	24.26	0.00	27.14				
Pentane (-n)	1.34	2.37	24.94	0.00	28.65				
Hexane (-n)	0.46	2.96	8.53	0.00	11.95				
Benzene	0.07	0.70	1.22	0.00	1.98				
Cyclohexane	0.19	1.90	3.46	0.00	5.55				
2,2,4-Trimethylpentane	0.01	0.11	0.10	0.00	0.21				
Toluene	0.05	1.97	0.95	0.00	2.98				
Ethylbenzene	0.00	0.42	0.07	0.00	0.49				
Xylene (-m)	0.01	2.04	0.26	0.00	2.32				
Isopropyl benzene	0.00	0.07	0.00	0.00	0.07				
1,2,4-Trimethylbenzene	0.00	0.56	0.02	0.00	0.58				
Naphthalene	0.00	0.14	0.00	0.00	0.14				
Propane Surrogate (Iso-C5 base)	0.01	1.05	0.18	0.00	1.25				
Isobutane Surrogate(Iso-C5 base)	0.00	0.30	0.05	0.00	0.36				
Butane Surrogate (Iso-C5 base)	0.01	1.34	0.23	0.00	1.59				
Unidentified Components	17.64	119.36	327.56	0.00	464.56				

TANKS 4.0 Report

TANKS 4.0.9d Emissions Report - Detail Format Tank Indentification and Physical Characteristics

Identification User Identification: City: State: Company: Type of Tank: Description:	T-42A Bloomfield New Mexico San Juan Refining Vertical Fixed Roof Tank							
Tank Dimensions Shell Height (ft): Diameter (ft): Liquid Height (ft) : Avg. Liquid Height (ft): Volume (gallons): Turnovers: Net Throughput(gal/yr): Is Tank Heated (y/n):	20.00 12.00 20.00 12.00 16,920.59 118.20 2,000,000.00 N							
Paint Characteristics Shell Color/Shade: Shell Condition Roof Color/Shade: Roof Condition:	White/White Good White/White Good							
Roof Characteristics Type: Height (ft) Slope (ft/ft) (Cone Roof)	Cone 0.00 0.06							
Breather Vent Settings Vacuum Settings (psig): Pressure Settings (psig)	-0.03 0.03							

Meterological Data used in Emissions Calculations: Bloomfield, New Mexico (Avg Atmospheric Pressure = 11.9 psia)

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

T-42A - Vertical Fixed Roof Tank Bloomfield, New Mexico

Mixture/Component	Month	Dai Temp Avg.	ily Liquid Su perature (de Min.	urf. eg F) Max.	Liquid Bulk Temp (deg F)	Vapo Avg.	r Pressure Min.	(psia) Max.	Vapor Mol. Weight.	Liquid Mass Fract.	Vapor Mass Fract.	Mol. Weight	Basis for Vapor Pressure Calculations
Crude Oil (Four Corners Sweet)	All	54.58	46.99	62.17	52.22	4.4698	3.8834	5.1238	60.0000			163.00	Option 4: RVP=7.4
1,2,4-Trimethylbenzene						0.0164	0.0119	0.0223	120.1900	0.0128	0.0001	120.19	Option 2: A=7.04383, B=1573.267, C=208.56
1-Pentene						7.7168	6.5078	9.0980	70.1400	0.0004	0.0019	70.14	Option 2: A=6.8442, B=1044.01, C=233.5
2,2,4-Trimethylpentane						0.5086	0.4046	0.6340	114.2300	0.0088	0.0027	114.23	Option 2: A=6.8118, B=1257.84, C=220.74
2-Methyl-1-butene						3.9857	3.3782	4.6768	70.1300	0.0013	0.0031	70.13	Option 2: A=6.4863, B=1039.69, C=236.65
3-Methyl-1-Butene Surrogate (IC5)						0.1000	0.1000	0.1000	70.1000	0.0002	0.0000	70.10	Option 1: VP50 = .1 VP60 = .1
Benzene						1.0030	0.8049	1.2401	78.1100	0.0056	0.0034	78.11	Option 2: A=6.905, B=1211.033, C=220.79
Butane Surrogate (Iso-C5 base)						0.1000	0.1000	0.1000	58.1000	0.0033	0.0002	58.10	Option 1: VP50 = .1 VP60 = .1
Cis-2-Butene Surrogate (Iso-C5)						0.1000	0.1000	0.1000	56.1000	0.0002	0.0000	56.10	Option 1: VP50 = .1 VP60 = .1
Cyclohexane						1.0441	0.8423	1.2845	84.1600	0.0038	0.0024	84.16	Option 2: A=6.841, B=1201.53, C=222.65
Ethylbenzene						0.0897	0.0680	0.1170	106.1700	0.0054	0.0003	106.17	Option 2: A=6.975, B=1424.255, C=213.21
Hexane (-n)						1.6589	1.3498	2.0242	86.1700	0.0074	0.0075	86.17	Option 2: A=6.876, B=1171.17, C=224.41
Isobutane Surrogate(Iso-C5 base)						0.1000	0.1000	0.1000	58.1000	0.0009	0.0001	58.10	Option 1: VP50 = .1 VP60 = .1
Isopentane						8.8587	7.2840	10.5541	72.1500	0.0199	0.1071	72.15	Option 1: VP50 = 7.889 VP60 = 10.005
Isopropyl benzene						0.0416	0.0309	0.0554	120.2000	0.0005	0.0000	120.20	Option 2: A=6.963, B=1460.793, C=207.78
Naphthalene						0.0019	0.0013	0.0027	128.0000	0.0031	0.0000	128.00	Option 1: VP50 = .0015 VP60 = .0024
Pentane (-n)						6.0535	5.0834	7.1722	72,1500	0.0088	0.0324	72.15	Option 3: A=27691, B=7.558
Toluene						0.2783	0.2174	0.3531	92,1300	0.0234	0.0040	92.13	Option 2; A=6.954, B=1344.8, C=219.48
Trans-2-Butene Surrogate (iso-C5)						0.1000	0.1000	0.1000	56,1000	0.0007	0.0000	56.10	Option 1: $VP50 = .1 VP60 = .1$
Unidentified Components						5.0924	4.9377	4.9377	57.8255	0.8675	0.8336	186.26	
Xvlene (-m)						0.0745	0.0564	0.0975	106,1700	0.0260	0.0012	106.17	Option 2: A=7.009, B=1462.266, C=215.11

TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

T-42A - Vertical Fixed Roof Tank Bloomfield, New Mexico

Annual Emission Calcaulations	
	1 014 5000
Standing Losses (ID): Vapor Space Volume (ou ft):	1,214.5068
Vapor Density (lb/cu ft):	0.0486
Vapor Space Expansion Factor	0.0400
Vented Vapor Saturation Factor:	0.3419
Tank Vapor Space Volume:	
Vapor Space Volume (cu ft):	918.9159
Tank Diameter (ft):	12.0000
Vapor Space Outage (ft):	8.1250
Tank Shell Height (ft):	20.0000
Average Liquid Height (ft):	12.0000
Roof Outage (ft):	0.1250
Roof Outage (Cone Roof)	
Roof Outage (ft):	0.1250
Roof Right (II).	0.0000
Shell Radius (ft):	6.0000
Vapor Density	
Vapor Density (lb/cu ft):	0.0486
Vapor Molecular Weight (lb/lb-mole):	60.0000
Vapor Pressure at Daily Average Liquid	4 4000
Surrace Temperature (psia):	4.4698
Daily Average Ambient Temp. (deg. K):	52 2000
Ideal Gas Constant R	52.2000
(psia cuft / (lb-mol-deg R)):	10.731
Liquid Bulk Temperature (deg. R):	511.8900
Tank Paint Solar Absorptance (Shell):	0.1700
Tank Paint Solar Absorptance (Roof):	0.1700
Daily Total Solar Insulation	
Factor (Btu/sqft day):	1,766.0000
Vapor Space Expansion Factor	
Vapor Space Expansion Factor:	0.2179
Daily Vapor Temperature Range (deg. R):	30.3662
Broother Vent Broon, Setting Range(psia).	0.0600
Vanor Pressure at Daily Average Liquid	0.0000
Surface Temperature (psia):	4,4698
Vapor Pressure at Daily Minimum Liquid	
Surface Temperature (psia):	3.8834
Vapor Pressure at Daily Maximum Liquid	
Surface Temperature (psia):	5.1238
Daily Avg. Liquid Surface Temp. (deg R):	514.2529
Daily Max, Liquid Surface Temp. (deg R):	506.6614
Daily Ambient Temp. Range (deg. R):	5∠1.8445 30 5000
	00.0000
Vented Vapor Saturation Factor Vented Vapor Saturation Factor:	0.3419
Vapor Pressure at Daily Average Liquid:	0.0410
Surface Temperature (psia):	4.4698
Vapor Space Outage (ft):	8.1250
Norking Losses (Ib):	4,027.3902
Vapor Molecular Weight (lb/lb-mole):	60.0000
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	4.4698
Annual Net Throughput (gal/yr.):	2,000,000.0000
Annual Turnovers:	118.1992
Maximum Liquid Volume (gal):	16 020 5025
Maximum Liquid Volume (gal).	20,000
Tank Diameter (ft):	12 0000
Working Loss Product Factor:	0.7500
Total Losses (lb):	5.241.8970

TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: Annual

T-42A - Vertical Fixed Roof Tank Bloomfield, New Mexico

Components	Working Loss	Breathing Loss	Total Emissions
Crude Oil (Four Corners Sweet)	4,027.39	1,214.51	5,241.90
Isopentane	431.51	130.13	561.64
1-Pentene	7.56	2.28	9.83
2-Methyl-1-butene	12.68	3.82	16.51
Pentane (-n)	130.40	39.32	169.72
Hexane (-n)	30.05	9.06	39.11
Benzene	13.75	4.15	17.89
Cyclohexane	9.71	2.93	12.64
2,2,4-Trimethylpentane	10.95	3.30	14.26
Toluene	15.94	4.81	20.75
Ethylbenzene	1.19	0.36	1.54
Xylene (-m)	4.74	1.43	6.17
Isopropyl benzene	0.05	0.02	0.07
1,2,4-Trimethylbenzene	0.51	0.15	0.67
Naphthalene	0.01	0.00	0.02
Isobutane Surrogate(Iso-C5 base)	0.22	0.07	0.29
Butane Surrogate (Iso-C5 base)	0.81	0.24	1.05
Trans-2-Butene Surrogate (iso-C5)	0.17	0.05	0.22
Cis-2-Butene Surrogate (Iso-C5)	0.05	0.01	0.06
3-Methyl-1-Butene Surrogate (IC5)	0.05	0.01	0.06
Unidentified Components	3,357.03	1,012.35	4,369.39

TANKS 4.0 Report

TANKS 4.0.9d Emissions Report - Detail Format Tank Indentification and Physical Characteristics

Identification User Identification: City: State: Company: Type of Tank: Description:	T-42B Bloomfield New Mexico San Juan Refining Vertical Fixed Roof Tank
Tank Dimensions Shell Height (ft): Diameter (ft): Liquid Height (ft) : Avg. Liquid Height (ft): Volume (gallons): Turnovers: Net Throughput(gal/yr): Is Tank Heated (y/n):	20.00 12.00 20.00 15.00 16,920.59 118.20 2,000,000.00 N
Paint Characteristics Shell Color/Shade: Shell Condition Roof Color/Shade: Roof Condition:	White/White Good White/White Good
Roof Characteristics Type: Height (ft) Slope (ft/ft) (Cone Roof)	Cone 0.00 0.06
Breather Vent Settings Vacuum Settings (psig): Pressure Settings (psig)	-0.03 0.03

Meterological Data used in Emissions Calculations: Bloomfield, New Mexico (Avg Atmospheric Pressure = 11.9 psia)

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

T-42B - Vertical Fixed Roof Tank Bloomfield, New Mexico

Mixture/Component	Month	Dai Temp Avg.	ily Liquid Su perature (de Min.	urf. eg F) Max.	Liquid Bulk Temp (deg F)	Vapo Avg.	r Pressure Min.	(psia) Max.	Vapor Mol. Weight.	Liquid Mass Fract.	Vapor Mass Fract.	Mol. Weight	Basis for Vapor Pressure Calculations
Crude Oil (Four Corners Sweet)	All	54.58	46.99	62.17	52.22	4.4698	3.8834	5.1238	60.0000			163.00	Option 4: RVP=7.4
1,2,4-Trimethylbenzene						0.0164	0.0119	0.0223	120.1900	0.0128	0.0001	120.19	Option 2: A=7.04383, B=1573.267, C=208.56
1-Pentene						7.7168	6.5078	9.0980	70.1400	0.0004	0.0019	70.14	Option 2: A=6.8442, B=1044.01, C=233.5
2,2,4-Trimethylpentane						0.5086	0.4046	0.6340	114.2300	0.0088	0.0027	114.23	Option 2: A=6.8118, B=1257.84, C=220.74
2-Methyl-1-butene						3.9857	3.3782	4.6768	70.1300	0.0013	0.0031	70.13	Option 2: A=6.4863, B=1039.69, C=236.65
3-Methyl-1-Butene Surrogate (IC5)						0.1000	0.1000	0.1000	70.1000	0.0002	0.0000	70.10	Option 1: VP50 = .1 VP60 = .1
Benzene						1.0030	0.8049	1.2401	78.1100	0.0056	0.0034	78.11	Option 2: A=6.905, B=1211.033, C=220.79
Butane Surrogate (Iso-C5 base)						0.1000	0.1000	0.1000	58.1000	0.0033	0.0002	58.10	Option 1: VP50 = .1 VP60 = .1
Cis-2-Butene Surrogate (Iso-C5)						0.1000	0.1000	0.1000	56.1000	0.0002	0.0000	56.10	Option 1: VP50 = .1 VP60 = .1
Cyclohexane						1.0441	0.8423	1.2845	84.1600	0.0038	0.0024	84.16	Option 2: A=6.841, B=1201.53, C=222.65
Ethylbenzene						0.0897	0.0680	0.1170	106.1700	0.0054	0.0003	106.17	Option 2: A=6.975, B=1424.255, C=213.21
Hexane (-n)						1.6589	1.3498	2.0242	86.1700	0.0074	0.0075	86.17	Option 2: A=6.876, B=1171.17, C=224.41
Isobutane Surrogate(Iso-C5 base)						0.1000	0.1000	0.1000	58.1000	0.0009	0.0001	58.10	Option 1: VP50 = .1 VP60 = .1
Isopentane						8.8587	7.2840	10.5541	72.1500	0.0199	0.1071	72.15	Option 1: VP50 = 7.889 VP60 = 10.005
Isopropyl benzene						0.0416	0.0309	0.0554	120.2000	0.0005	0.0000	120.20	Option 2: A=6.963, B=1460.793, C=207.78
Naphthalene						0.0019	0.0013	0.0027	128.0000	0.0031	0.0000	128.00	Option 1: VP50 = .0015 VP60 = .0024
Pentane (-n)						6.0535	5.0834	7.1722	72,1500	0.0088	0.0324	72.15	Option 3: A=27691, B=7.558
Toluene						0.2783	0.2174	0.3531	92,1300	0.0234	0.0040	92.13	Option 2; A=6.954, B=1344.8, C=219.48
Trans-2-Butene Surrogate (iso-C5)						0.1000	0.1000	0.1000	56,1000	0.0007	0.0000	56.10	Option 1: $VP50 = .1 VP60 = .1$
Unidentified Components						5.0924	4.9377	4.9377	57.8255	0.8675	0.8336	186.26	
Xvlene (-m)						0.0745	0.0564	0.0975	106,1700	0.0260	0.0012	106.17	Option 2: A=7.009, B=1462.266, C=215.11

TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

T-42B - Vertical Fixed Roof Tank Bloomfield, New Mexico

Annual Emission Calcaulations	
Other Paral Lances (III.)	4 044 0700
Vapor Space Volume (ou ft):	1,011.9/20
Vapor Density (lb/cu ft):	0.0486
Vapor Space Expansion Factor	0.0400
Vented Vapor Saturation Factor:	0.4516
Tank Vapor Space Volume:	
Vapor Space Volume (cu ft):	579.6238
Tank Diameter (ft):	12.0000
Vapor Space Outage (ft):	5.1250
Tank Shell Height (ft):	20.0000
Average Liquid Height (ft):	15.0000
Roof Outage (ft):	0.1250
Roof Outage (Cone Roof)	
Roof Outage (ft):	0.1250
Roof Height (ft):	0.0000
Roof Slope (ft/ft):	0.0625
Shell Radius (ft):	6.0000
Vapor Density	0.0400
vapor Density (ID/CUIT):	0.0486
Vapor Pressure at Daily Average Liquid	ь 0 .0000
Surface Temperature (nsia):	4 4698
Daily Avg, Liquid Surface Temp, (den R):	514.2529
Daily Average Ambient Temp. (deg. F):	52,2000
Ideal Gas Constant R	
(psia cuft / (lb-mol-deg R)):	10.731
Liquid Bulk Temperature (deg. R):	511.8900
Tank Paint Solar Absorptance (Shell):	0.1700
Tank Paint Solar Absorptance (Roof):	0.1700
Daily Total Solar Insulation	4 766 0000
Factor (Btu/sqtt day):	1,766.0000
Vapor Space Expansion Factor	
Vapor Space Expansion Factor:	0.2179
Daily Vapor Temperature Range (deg. R):	30.3662
Daily vapor Pressure Range (psia).	1.2405
Vanor Pressure at Daily Average Liquid	0.0600
Surface Temperature (nsia):	4 4698
Vapor Pressure at Daily Minimum Liquid	4.4030
Surface Temperature (psia):	3.8834
Vapor Pressure at Daily Maximum Liquid	
Surface Temperature (psia):	5.1238
Daily Avg. Liquid Surface Temp. (deg R):	514.2529
Daily Min. Liquid Surface Temp. (deg R):	506.6614
Daily Max. Liquid Surface Temp. (deg R):	521.8445
Daily Ambient Temp. Range (deg. R):	30.5000
Vented Vapor Saturation Factor	
Vented Vapor Saturation Factor:	0.4516
vapor Pressure at Daily Average Liquid:	4 4000
Vapor Space Outage (ft):	4.4698
rapo, opase outlige (ii).	5.1200
Norking Losses (lb):	4,027.3902
Vapor Molecular Weight (lb/lb-mole):	60.0000
Surface Tomporature (poin):	4 4000
Annual Net Throughput (gal/yr.)	2 000 000 000
Annual Turnovers:	2,000,000.0000
Turnover Factor:	0.1992
Maximum Liquid Volume (gal):	16.920.5925
Maximum Liquid Height (ft):	20.0000
Tank Diameter (ft):	12.0000
Working Loss Product Factor:	0.7500
-	
Total Losses (lb):	5.039.3630

TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: Annual

T-42B - Vertical Fixed Roof Tank Bloomfield, New Mexico

	Losses(lbs)							
Components	Working Loss	Breathing Loss	Total Emissions					
Crude Oil (Four Corners Sweet)	4,027.39	1,011.97	5,039.36					
Isopentane	431.51	108.43	539.94					
1-Pentene	7.56	1.90	9.45					
2-Methyl-1-butene	12.68	3.19	15.87					
Pentane (-n)	130.40	32.76	163.16					
Hexane (-n)	30.05	7.55	37.60					
Benzene	13.75	3.45	17.20					
Cyclohexane	9.71	2.44	12.15					
2,2,4-Trimethylpentane	10.95	2.75	13.71					
Toluene	15.94	4.01	19.94					
Ethylbenzene	1.19	0.30	1.48					
Xylene (-m)	4.74	1.19	5.93					
Isopropyl benzene	0.05	0.01	0.06					
1,2,4-Trimethylbenzene	0.51	0.13	0.64					
Naphthalene	0.01	0.00	0.02					
Isobutane Surrogate(Iso-C5 base)	0.22	0.06	0.28					
Butane Surrogate (Iso-C5 base)	0.81	0.20	1.01					
Trans-2-Butene Surrogate (iso-C5)	0.17	0.04	0.21					
Cis-2-Butene Surrogate (Iso-C5)	0.05	0.01	0.06					
3-Methyl-1-Butene Surrogate (IC5)	0.05	0.01	0.06					
Unidentified Components	3,357.03	843.53	4,200.56					

TANKS 4.0 Report

Quantity

1 9 1

TANKS 4.0.9d Emissions Report - Detail Format Tank Indentification and Physical Characteristics

Identification	
User Identification:	T-44
City:	Bloomfield
State:	New Mexico
Company: Type of Teeks	San Juan Reining
Description:	Gasoline
Description.	Gasoline
Tank Dimensions	
Diameter (ft):	25.00
Volume (gallons):	73,500.00
Turnovers:	13.61
Self Supp. Roof? (y/n):	Y
No. of Columns:	0.00
Eff. Col. Diam. (ft):	0.00
Paint Characteristics	
Internal Shell Condition:	Light Rust
Shell Color/Shade:	White/White
Shell Condition	Good
Roof Color/Shade:	White/White
Roof Condition:	Good
Rim-Seal System	
Primary Seal:	Vapor-mounted
Secondary Seal	Rim-mounted
,	
Deck Characteristics	
Deck Fitting Category:	Typical
Deck Type:	Welded
Deck Fitting/Status	

Access Hatch (24-in. Diam.)/Unbolted Cover, Ungasketed Automatic Gauge Float Well/Unbolted Cover, Ungasketed Roof Leg or Hanger Well/Adjustable Sample Pipe or Well (24-in. Diam.)/Slit Fabric Seal 10% Open Vacuum Breaker (10-in. Diam.)/Weighted Mech. Actuation, Gask.

Meterological Data used in Emissions Calculations: Bloomfield, New Mexico (Avg Atmospheric Pressure = 11.9 psia)

file://C:\Program Files\Tanks409d\summarydisplay.htm

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

T-44 - Internal Floating Roof Tank Bloomfield, New Mexico

Mixture/Component	Month	Da Tem Avg.	ily Liquid Soperature (de Min.	urf. eg F) Max.	Liquid Bulk Temp (deg F)	Vapo Avg.	r Pressure Min.	(psia) Max.	Vapor Mol. Weight.	Liquid Mass Fract.	Vapor Mass Fract.	Mol. Weight	Basis for Vapor Pressure Calculations
Gasoline (premium base blend) - Bloomfield	All	54.58	46.99	62.17	52.22	5.0870	N/A	N/A	67.0000			88.00	Option 4: RVP=10.8, ASTM Slope=3
1.2.4-Trimethylbenzene						0.0164	N/A	N/A	120,1900	0.0104	0.0000	120.19	Option 2: A=7.04383, B=1573.267, C=208.56
Benzene						1.0030	N/A	N/A	78.1100	0.0066	0.0017	78.11	Option 2: A=6.905, B=1211.033, C=220.79
Butane Surrogate (Iso-C5 base)						0.1000	N/A	N/A	58.1000	0.0068	0.0002	58.10	Option 1: VP50 = .1 VP60 = .1
Cis-2-Butene Surrogate (Iso-C5)						0.1000	N/A	N/A	56.1000	0.0001	0.0000	56.10	Option 1: VP50 = .1 VP60 = .1
Cyclohexane						1.0441	N/A	N/A	84.1600	0.0240	0.0065	84.16	Option 2: A=6.841, B=1201.53, C=222.65
Ethylbenzene						0.0897	N/A	N/A	106.1700	0.0083	0.0002	106.17	Option 2: A=6.975, B=1424.255, C=213.21
Hexane (-n)						1.6589	N/A	N/A	86.1700	0.0234	0.0100	86.17	Option 2: A=6.876, B=1171.17, C=224.41
Isobutane Surrogate(Iso-C5 base)						0.1000	N/A	N/A	58.1000	0.0021	0.0001	58.10	Option 1: VP50 = .1 VP60 = .1
Isopentane						8.8587	N/A	N/A	72.1500	0.0095	0.0217	72.15	Option 1: VP50 = 7.889 VP60 = 10.005
Isopropyl benzene						0.0416	N/A	N/A	120.2000	0.0018	0.0000	120.20	Option 2: A=6.963, B=1460.793, C=207.78
Naphthalene						0.0019	N/A	N/A	128.0000	0.0001	0.0000	128.00	Option 1: VP50 = .0015 VP60 = .0024
Pentane (-n)						6.0535	N/A	N/A	72.1500	0.0132	0.0206	72.15	Option 3: A=27691, B=7.558
Propane Surrogate (Iso-C5 base)						0.1000	N/A	N/A	44.1000	0.0016	0.0000	44.10	Option 1: VP50 = .1 VP60 = .1
Toluene						0.2783	N/A	N/A	92.1300	0.0439	0.0032	92.13	Option 2: A=6.954, B=1344.8, C=219.48
Trans-2-Butene Surrogate (iso-C5)						0.1000	N/A	N/A	56.1000	0.0001	0.0000	56.10	Option 1: VP50 = .1 VP60 = .1
Unidentified Components						6.0159	N/A	N/A	66.4249	0.7952	0.9347	87.77	
Xylene (-m)						0.0745	N/A	N/A	106.1700	0.0529	0.0010	106.17	Option 2: A=7.009, B=1462.266, C=215.11

TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

T-44 - Internal Floating Roof Tank Bloomfield, New Mexico

Annual Emission Calcaulations	
Rim Seal Losses (lb):	510.4768
Seal Factor A (lb-mole/ft-yr):	2.2000
Seal Factor B (lb-mole/ft-yr (mph)^n):	0.0030
Value of Vapor Pressure Function: Vapor Pressure at Daily Average Liquid	0.1385
Surface Temperature (psia):	5.0870
Tank Diameter (ft):	25.0000
Vapor Molecular Weight (lb/lb-mole):	67.0000
Product Factor:	1.0000
Withdrawal Losses (Ib):	8.1772
Number of Columns:	0.0000
Effective Column Diameter (ft):	0.0000
Annual Net Throughput (gal/yr.):	1,000,000.0000
Shell Clingage Factor (bbl/1000 sqft):	0.0015
Average Organic Liquid Density (lb/gal):	6.0700
Tank Diameter (ft):	25.0000
Deck Fitting Losses (lb):	1,292.8986
Value of Vapor Pressure Function:	0.1385
Vapor Molecular Weight (lb/lb-mole):	67.0000
Product Factor:	1.0000
Tot. Roof Fitting Loss Fact.(lb-mole/yr):	139.3000
Deck Seam Losses (lb):	0.0000
Deck Seam Length (ft):	0.0000
Deck Seam Loss per Unit Length	
Factor (lb-mole/ft-yr):	0.0000
Deck Seam Length Factor(ft/sqft):	0.0000
Tank Diameter (ft):	25.0000
Vapor Molecular Weight (lb/lb-mole):	67.0000
Product Factor:	1.0000
Total Losses (Ib):	1.811.5526

Roof Fitting/Status	Quantity	KFa(lb-mole/yr)	Roof Fitting Loss Factors KFb(lb-mole/(yr mph^n))	m	Losses(Ib)
Access Hatch (24-in. Diam.)/Unbolted Cover, Ungasketed	1	36.00	5.90	1.20	334.1303
Automatic Gauge Float Well/Unbolted Cover, Ungasketed	1	14.00	5.40	1.10	129.9396
Roof Leg or Hanger Well/Adjustable	9	7.90	0.00	0.00	659.9073
Sample Pipe or Well (24-in. Diam.)/Silt Fabric Seal 10% Open	1	12.00	0.00	0.00	111.3768
Vacuum Breaker (10-in. Diam.)/Weighted Moch. Actuation, Gask.	1	6.20	1.20	0.94	57.5447

TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: Annual

T-44 - Internal Floating Roof Tank Bloomfield, New Mexico

	Losses(lbs)								
Components	Rim Seal Loss	Withdrawl Loss	Deck Fitting Loss	Deck Seam Loss	Total Emissions				
Gasoline (premium base blend) - Bloomfield	510.48	8.18	1,292.90	0.00	1,811.55				
Isopentane	11.09	0.08	28.09	0.00	39.26				
Pentane (-n)	10.53	0.11	26.67	0.00	37.31				
Hexane (-n)	5.12	0.19	12.96	0.00	18.27				
Benzene	0.87	0.05	2.21	0.00	3.14				
Cyclohexane	3.30	0.20	8.37	0.00	11.86				
Toluene	1.61	0.36	4.08	0.00	6.05				
Ethylbenzene	0.10	0.07	0.25	0.00	0.41				
Xylene (-m)	0.52	0.43	1.32	0.00	2.27				
Isopropyl benzene	0.01	0.01	0.03	0.00	0.05				
1,2,4-Trimethylbenzene	0.02	0.09	0.06	0.00	0.16				
Naphthalene	0.00	0.00	0.00	0.00	0.00				
Propane Surrogate (Iso-C5 base)	0.02	0.01	0.05	0.00	0.09				
Isobutane Surrogate(Iso-C5 base)	0.03	0.02	0.07	0.00	0.11				
Butane Surrogate (Iso-C5 base)	0.09	0.06	0.23	0.00	0.37				
Trans-2-Butene Surrogate (iso-C5)	0.00	0.00	0.00	0.00	0.01				
Cis-2-Butene Surrogate (Iso- C5)	0.00	0.00	0.00	0.00	0.01				
Unidentified Components	477.16	6.50	1,208.51	0.00	1,692.18				

TANKS 4.0 Report

Quantity

TANKS 4.0.9d Emissions Report - Detail Format Tank Indentification and Physical Characteristics

Identification		
User Identification:	T-45	
City:	Bloomfield	
State:	New Mexico	
Company:	San Juan Refining	
Type of Tank:	Internal Floating Roof Tank	
Description:	Ethanol	
Tank Dimensions		
Diameter (ft):	35.00	
Volume (gallons):	202,500.00	
Turnovers:	7.41	
Self Supp, Roof? (v/n);	Y	
No. of Columns:	0.00	
Eff. Col. Diam. (ft):	0.00	
Paint Characteristics		
Internal Shell Condition:	Light Rust	
Shell Color/Shade:	White/White	
Shell Condition	Good	
Roof Color/Shade:	White/White	
Roof Condition:	Good	
Rim-Seal System		
Primary Seal:	Mechanical Shoe	
Secondary Seal	Rim-mounted	
Deck Characteristics		
Deck Fitting Category:	Typical	
Deck Type:	Welded	
Deck Fitting/Status		
Access Hotah (24 in Diam)/Unhal	tod Cover, Upgoaketed	

Access Hatch (24-in. Diam.)/Unbolted Cover, Ungasketed Automatic Gauge Float Well/Unbolted Cover, Ungasketed Roof Leg or Hanger Well/Adjustable Sample Pipe or Well (24-in. Diam.)/Slit Fabric Seal 10% Open Vacuum Breaker (10-in. Diam.)/Weighted Mech. Actuation, Gask.

Meterological Data used in Emissions Calculations: Bloomfield, New Mexico (Avg Atmospheric Pressure = 11.9 psia)

file://C:\Program Files\Tanks409d\summarydisplay.htm

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

T-45 - Internal Floating Roof Tank Bloomfield, New Mexico

Mixture/Component	Month	Da Tem Avg.	ily Liquid S perature (de Min.	urf. eg F) Max.	Liquid Bulk Temp (deg F)	Vapo Avg.	Pressure Min.	(psia) Max.	Vapor Mol. Weight.	Liquid Mass Fract.	Vapor Mass Fract.	Mol. Weight	Basis for Vapor Pressure Calculations
Ethanol Blendstock	All	54.58	46.99	62.17	52.22	0.5443	N/A	N/A	46.1000			47.60	Option 2: A=8.321, B=1718.2, C=237.5
1.2.4-Trimethylbenzene						0.0164	N/A	N/A	120,1900	0.0010	0.0000	120.19	Option 2: A=7.04383, B=1573.267, C=208.56
1-Pentene						7.7168	N/A	N/A	70.1400	0.0001	0.0015	70.14	Option 2: A=6.8442, B=1044.01, C=233.5
2-Methyl-1-butene						3.9857	N/A	N/A	70.1300	0.0002	0.0015	70.13	Option 2: A=6.4863, B=1039.69, C=236.65
2-Pentene						5.6874	N/A	N/A	70.1400	0.0003	0.0032	70.14	Option 1: VP50 = 5 VP60 = 6.5
Benzene						1.0030	N/A	N/A	78.1100	0.0009	0.0017	78.11	Option 2: A=6.905, B=1211.033, C=220.79
Cyclohexane						1.0441	N/A	N/A	84.1600	0.0011	0.0022	84.16	Option 2: A=6.841, B=1201.53, C=222.65
Ethyl Alcohol Surrogate						0.1000	N/A	N/A	46.0700	0.9531	0.1808	46.07	Option 1: VP50 = .1 VP60 = .1
Ethylbenzene						0.0897	N/A	N/A	106.1700	0.0004	0.0001	106.17	Option 2: A=6.975, B=1424.255, C=213.21
Hexane (-n)						1.6589	N/A	N/A	86.1700	0.0018	0.0057	86.17	Option 2: A=6.876, B=1171.17, C=224.41
Isopentane						8.8587	N/A	N/A	72.1500	0.0042	0.0706	72.15	Option 1: VP50 = 7.889 VP60 = 10.005
Isopropyl benzene						0.0416	N/A	N/A	120.2000	0.0001	0.0000	120.20	Option 2: A=6.963, B=1460.793, C=207.78
Pentane (-n)						6.0535	N/A	N/A	72.1500	0.0026	0.0299	72.15	Option 3: A=27691, B=7.558
Toluene						0.2783	N/A	N/A	92.1300	0.0026	0.0014	92.13	Option 2: A=6.954, B=1344.8, C=219.48
Unidentified Components						77.9633	N/A	N/A	43.4056	0.0293	0.7012	268.24	
Xylene (-m)						0.0745	N/A	N/A	106.1700	0.0023	0.0003	106.17	Option 2: A=7.009, B=1462.266, C=215.11

TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

T-45 - Internal Floating Roof Tank Bloomfield, New Mexico

Annual Emission Calcaulations	
Rim Seal Losses (lb):	11.3311
Seal Factor A (lb-mole/ft-yr):	0.6000
Seal Factor B (lb-mole/ft-yr (mph)^n):	0.4000
Value of Vapor Pressure Function: Vapor Pressure at Daily Average Liquid	0.0117
Surface Temperature (psia):	0.5443
Tank Diameter (ft):	35.0000
Vapor Molecular Weight (lb/lb-mole):	46,1000
Product Factor:	1.0000
Withdrawal Losses (Ib):	9.3819
Number of Columns:	0.0000
Effective Column Diameter (ft):	0.0000
Annual Net Throughput (gal/yr.):	1,500,000.0000
Shell Clingage Factor (bbl/1000 sqft):	0.0015
Average Organic Liquid Density (lb/gal):	6.5000
Tank Diameter (ft):	35.0000
Deck Fitting Losses (lb):	83.6884
Value of Vapor Pressure Function:	0.0117
Vapor Molecular Weight (lb/lb-mole):	46.1000
Product Factor:	1.0000
Tot. Roof Fitting Loss Fact.(lb-mole/yr):	155.1000
Deck Seam Losses (lb):	0.0000
Deck Seam Length (ft):	0.0000
Deck Seam Loss per Unit Length	
Factor (lb-mole/ft-yr):	0.0000
Deck Seam Length Factor(ft/sqft):	0.0000
Tank Diameter (ft):	35.0000
Vapor Molecular Weight (lb/lb-mole):	46.1000
Product Factor:	1.0000
Total Losses (lb):	104.4014

Roof Fitting/Status	Quantity	KFa(lb-mole/yr)	Roof Fitting Loss Factors KFb(lb-mole/(yr mph^n))	m	Losses(lb)
Access Hatch (24-in. Diam.)/Unbolted Cover, Ungasketed	1	36.00	5.90	1.20	19.4248
Automatic Gauge Float Well/Unbolted Cover, Ungasketed	1	14.00	5.40	1.10	7.5541
Roof Leg or Hanger Well/Adjustable	11	7.90	0.00	0.00	46.8892
Sample Pipe or Well (24-in. Diam.)/Silt Fabric Seal 10% Open	1	12.00	0.00	0.00	6.4749
Vacuum Breaker (10-in. Diam.)/Weighted Mech. Actuation, Gask.	1	6.20	1.20	0.94	3.3454

TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: Annual

T-45 - Internal Floating Roof Tank Bloomfield, New Mexico

	Losses(lbs)				
Components	Rim Seal Loss	Withdrawl Loss	Deck Fitting Loss	Deck Seam Loss	Total Emissions
Ethanol Blendstock	11.33	9.38	83.69	0.00	104.40
Cyclohexane	0.02	0.01	0.18	0.00	0.22
Toluene	0.02	0.02	0.11	0.00	0.15
Ethylbenzene	0.00	0.00	0.01	0.00	0.01
Xylene (-m)	0.00	0.02	0.03	0.00	0.05
Ethyl Alcohol Surrogate	2.05	8.94	15.13	0.00	26.12
Isopropyl benzene	0.00	0.00	0.00	0.00	0.00
1,2,4-Trimethylbenzene	0.00	0.01	0.00	0.00	0.01
Isopentane	0.80	0.04	5.91	0.00	6.75
1-Pentene	0.02	0.00	0.12	0.00	0.14
2-Methyl-1-butene	0.02	0.00	0.13	0.00	0.15
Pentane (-n)	0.34	0.02	2.50	0.00	2.86
2-Pentene	0.04	0.00	0.27	0.00	0.31
Hexane (-n)	0.06	0.02	0.47	0.00	0.56
Benzene	0.02	0.01	0.14	0.00	0.17
Unidentified Components	7.95	0.27	58.68	0.00	66.90

TANKS 4.0 Report

loading operation, resulting in high levels of vapor generation and loss. If the turbulence is great enough, liquid droplets will be entrained in the vented vapors.

A second method of loading is submerged loading. Two types are the submerged fill pipe method and the bottom loading method. In the submerged fill pipe method, the fill pipe extends almost to the bottom of the cargo tank. In the bottom loading method, a permanent fill pipe is attached to the cargo tank bottom. During most of submerged loading by both methods, the fill pipe opening is below the liquid surface level. Liquid turbulence is controlled significantly during submerged loading, resulting in much lower vapor generation than encountered during splash loading.

The recent loading history of a cargo carrier is just as important a factor in loading losses as the method of loading. If the carrier has carried a nonvolatile liquid such as fuel oil, or has just been cleaned, it will contain vapor-free air. If it has just carried gasoline and has not been vented, the air in the carrier tank will contain volatile organic vapors, which will be expelled during the loading operation along with newly generated vapors.

Cargo carriers are sometimes designated to transport only one product, and in such cases are practicing "dedicated service". Dedicated gasoline cargo tanks return to a loading terminal containing air fully or partially saturated with vapor from the previous load. Cargo tanks may also be "switch loaded" with various products, so that a nonvolatile product being loaded may expel the vapors remaining from a previous load of a volatile product such as gasoline. These circumstances vary with the type of cargo tank and with the ownership of the carrier, the petroleum liquids being transported, geographic location, and season of the year.

One control measure for vapors displaced during liquid loading is called "vapor balance service", in which the cargo tank retrieves the vapors displaced during product unloading at bulk plants or service stations and transports the vapors back to the loading terminal. Figure 5.2-5 shows a tank truck in vapor balance service filling a service station underground tank and taking on displaced gasoline vapors for return to the terminal. A cargo tank returning to a bulk terminal in vapor balance service normally is saturated with organic vapors, and the presence of these vapors at the start of submerged loading of the tanker truck results in greater loading losses than encountered during nonvapor balance, or "normal", service. Vapor balance service is usually not practiced with marine vessels, although some vessels practice emission control by means of vapor transfer within their own cargo tanks during ballasting operations, discussed below.

Emissions from loading petroleum liquid can be estimated (with a probable error of ± 30 percent)⁴ using the following expression:

$$L_{L} = 12.46 \frac{SPM}{T}$$
(1)

where:

 L_{L} = loading loss, pounds per 1000 gallons (lb/10³ gal) of liquid loaded

S = a saturation factor (see Table 5.2-1)

P = true vapor pressure of liquid loaded, pounds per square inch absolute (psia) (see Figure 7.1-5, Figure 7.1-6, and Table 7.1-2)

- M = molecular weight of vapors, pounds per pound-mole (lb/lb-mole) (see Table 7.1-2)
- T = temperature of bulk liquid loaded, ${}^{\circ}\hat{R}$ (${}^{\circ}\hat{F}$ + 460)

Figure 5.2-5. Tank truck unloading into a service station underground storage tank and practicing "vapor balance" form of emission control.

Table 5.2-1.	SATURATION (S) FACTORS FOR CALCULATING PETROLEUM LIQUID
	LOADING LOSSES

Cargo Carrier	Mode Of Operation	S Factor
Tank trucks and rail tank cars Submerged loading of a clean cargo tank		0.50
	Submerged loading: dedicated normal service	0.60
	Submerged loading: dedicated vapor balance service	1.00
	Splash loading of a clean cargo tank	1.45
	Splash loading: dedicated normal service	1.45
	Splash loading: dedicated vapor balance service	1.00
Marine vessels ^a	Submerged loading: ships	0.2
	Submerged loading: barges	0.5

^a For products other than gasoline and crude oil. For marine loading of gasoline, use factors from Table 5.2-

2. For marine loading of crude oil, use Equations 2 and 3 and Table 5.2-3.

The saturation factor, S, represents the expelled vapor's fractional approach to saturation, and it accounts for the variations observed in emission rates from the different unloading and loading methods. Table 5.2-1 lists suggested saturation factors.

Emissions from controlled loading operations can be calculated by multiplying the uncontrolled emission rate calculated in Equation 1 by an overall reduction efficiency term:

$$\left(1 - \frac{\text{eff}}{100}\right)$$

The overall reduction efficiency should account for the capture efficiency of the collection system as well as both the control efficiency and any downtime of the control device. Measures to reduce loading emissions include selection of alternate loading methods and application of vapor recovery equipment. The latter captures organic vapors displaced during loading operations and recovers the vapors by the use of refrigeration, absorption, adsorption, and/or compression. The recovered product is piped back to storage. Vapors can also be controlled through combustion in a thermal oxidation unit, with no product recovery. Figure 5.2-6 demonstrates the recovery of gasoline vapors from tank trucks during loading operations at bulk terminals. Control efficiencies for the recovery units range from 90 to over 99 percent, depending on both the nature of the vapors and the type of control equipment used.⁵⁻⁶ However, not all of the displaced vapors reach the control device, because of leakage from both the tank truck and collection system. The collection efficiency should be assumed to be 99.2 percent for tanker trucks passing the MACT-level annual leak test (not more than 1 inch water column pressure change in 5 minutes after pressurizing to 18 inches water followed by pulling a vacuum of 6 inches water).⁷ A collection efficiency of 98.7 percent (a 1.3 percent leakage rate) should be assumed for trucks not passing one of these annual leak tests⁶.

Figure 5.2-6. Tank truck loading with vapor recovery.

United States Environmental Protection Agency Office of Air Quality Planning and Standards Research Triangle Park NC 27711

EPA-453/R-95-017 November 1995

Air

Protocol for Equipment Leak Emission Estimates

1995 Protocol for Equipment Leak Emission Estimates

Emission Standards Division

U.S. ENVIRONMENTAL PROTECTION AGENCY Office of Air and Radiation Office of Air Quality Planning and Standards Research Triangle Park, North Carolina 27711

November 1995

LIST OF TABLES

<u>Table</u>		Page
2-1	SOCMI Average Emission Factors	2-12
2-2	Refinery Average Emission Factors	2-13
2-3	Marketing Terminal Average Emission Factors	2-14
2-4	Oil and Gas Production Operations Average Emission Factors	2-15
2-5	SOCMI Screening Ranges Emission Factors	2-19
2-6	Refinery Screening Ranges Emission Factors	2-20
2-7	Marketing Terminal Screening Ranges Emission Factors	2-21
2-8	Oil and Gas Production Operations Screening Ranges Emission Factors	2-22
2-9	SOCMI Leak Rate/Screening Value Correlations	2-26
2-10	Petroleum Industry Leak Rate/Screening Value Correlations	2-27
2-11	Default-Zero Values: SOCMI Process Units	2-33
2-12	Default-Zero Values: Petroleum Industry	2-34
2-13	10,000 and 100,000 ppmv Screening Value Pegged Emis Rates For SOCMI Process Units	ssion 2-36
2-14	10,000 and 100,000 ppmv Screening Value Pegged Emis Rates For the Petroleum Industry	ssion 2-37
3-1	Performance Criteria for Portable VOC Detectors .	. 3-6
3-2	Portable VOC Detection Instruments	3-11
3-3	Equipment Leak Emission Sources	3-13
3-4	Example Field Sheets For Equipment Screening Data	3-26
4-1	Calculation Procedures For Leak Rate When Using the Vacuum Method	. 4-9
4-2	Calculation Procedures For Leak Rate When Using the Blow-Through Method	4-13
4-3	Example GC Calibration Data Sheet	4-20

Equipment type	Service	Emission factor (kg/hr/source) ^b	
Valves	Gas Light liquid Heavy liquid	0.0268 0.0109 0.00023	
Pump seals ^C	Light liquid Heavy liquid	0.114 0.021	
Compressor seals	Gas	0.636	
Pressure relief valves	Gas	0.16	
Connectors	All	0.00025	
Open-ended lines	All	0.0023	
Sampling connections	All	0.0150	
a _{Source} : Reference 2.			
^b These factors are for non-methane organic compound emission rates.			

TABLE 2-2. REFINERY AVERAGE EMISSION FACTORS^a

^CThe light liquid pump seal factor can be used to estimate the leak rate from agitator seals.

Equipment type/service	Correlation ^{b, c}
Valves/all	Leak rate $(kg/hr) = 2.29E-06 \times (SV)^{0.746}$
Pump seals/all	Leak rate $(kg/hr) = 5.03E-05 \times (SV)^{0.610}$
Othersd	Leak rate $(kg/hr) = 1.36E-05 \times (SV)^{0.589}$
Connectors/all	Leak rate $(kg/hr) = 1.53E-06 \times (SV)^{0.735}$
Flanges/all	Leak rate $(kg/hr) = 4.61E-06 \times (SV)^{0.703}$
Open-ended lines/all	Leak rate $(kg/hr) = 2.20E-06 \times (SV)^{0.704}$

TABLE 2-10. PETROLEUM INDUSTRY LEAK RATE/SCREENING VALUE CORRELATIONS^a

^aThe correlations presented in this table are revised petroleum industry correlations.

b_{SV} = Screening value in ppmv.

^CThese correlations predict total organic compound emission rates (including non-VOC's such as methane and ethane).

^dThe "other" equipment type was derived from instruments, loading arms, pressure relief valves, stuffing boxes, and vents. This "other" equipment type should be applied to any equipment type other than connectors, flanges, open-ended lines, pumps, or valves.

March 2001 Draft RG-169

Abrasive Blast Cleaning

Air Permits Division

printed on recycled paper

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

Authorization for use or reproduction of any original material contained in this publication, i.e., not obtained from other sources, is freely granted. The Commission would appreciate acknowledgment.

Copies of this publication are available for public use through the Texas State Library, other state depository libraries, and the TCEQ Library, in compliance with the state depository law. For more information on TCEQ publications call (512) 239-0028 or visit our Web site at:

www.tceq.state.tx.us

Published and distributed by: Texas Commission on Environmental Quality P.O. Box 13087 Austin, Texas 78711-3087

The TCEQ is an equal opportunity/affirmative action employer. The agency does not allow discrimination on the basis of race, color, religion, national origin, sex, disability, age, sexual orientation or veteran status. In compliance with the Americans with Disabilities Act, this document may be requested in alternate formats by contacting the TCEQ at (512)239-0028, Fax 239-4488, or 1-800-RELAY-TX (TDD), or by writing P.O. Box 13087, Austin, TX 78711-3087.

Table of Contents

Overview of Technical Guidance Package for Dry Abrasive Blast Cleaning	1
Obtaining Authorization to Operate	2
Review of an Air Quality Permit	3
Best Available Control Technology (BACT) Review	3
Emission Rate Calculations	3
Impacts Review	6
Applicable Rules and Regulations	7
Appendixes	
Appendix A - Abrasive Blasting of Water Storage Tanks	9

Overview of Technical Guidance Package for Dry Abrasive Blast Cleaning

This package discusses the different types of authorizations to construct and operate dry abrasive blast cleaning facilities as well as provides technical information necessary for completing an air permit application. In addition, a list of potentially applicable state and federal rules are listed.

This package does not:

- ... address dry abrasive blast cleaning of water storage tanks. We have a specific regulation for this type of operation under Abrasive Blasting of Water Storage Tanks Performed by Portable Operations (*30 TAC § 111.131-111.139*). Contact our Engineering Services Division at (512) 239-1051 for more information.
- (2) ... include Wet Blast Cleaning or Water Slurry Blast Cleaning. These operations can generally be exempt from permitting.
- (3) ... include technical guidance for spray painting facilities. Please request a copy of the *Technical Guidance Package for Surface Coating Facilities* from our administrative section of the New Source Review Permits Division at (512) 239-1250 for a copy of this package.
- ... address questions of an administrative nature, application forms, registration forms, and general publications. Contact our administrative section of the New Source Review Permits Division at (512) 239-1250 for more information.

Obtaining Authorization to Operate

TCEQ has three ways to obtain authorization to construct and operate your abrasive blast cleaning facility:

Grandfathered from Permitting

Grandfathered facilities are those that were in operation prior to September 1, 1971 and have not undergone modification to their operation. If grandfathered, no authorization is required.

Exempt from Permitting

A facility may be exempt from the requirement to obtain an air permit if the emissions are insignificant. The following is a list of exemptions that are applicable to abrasive blast cleaning:

- Wet Blast Cleaning (*30 TAC § 106.451*)
- Dry Abrasive Cleaning (30 TAC § 106.452)

To qualify, the conditions of each exemption must be met exactly. In addition, registration may be required as well.

Required to have a Permit

If your facility is not grandfathered and cannot meet the conditions of an exemption, then you must obtain an air quality permit. We have the following types of air quality permits:

- **Permit to Construct** (*30 TAC* § *116.116 Subchapter B*)
- **Standard Permits** (*30 TAC* § *116.116 Subchapter F*)
- Flexible Permits (30 TAC § 116.116 Subchapter G)

However, most abrasive blast cleaning facilities that require an air quality permit only require a **Permit to Construct**.

Review of an Air Quality Permit

The three basic parts of the *technical* review of an air permit application are:

- Review of any proposed source reduction or proposed add-on control methods.
 This is known as the Best Available Control Technology (BACT) review.
- Calculation of estimated hourly and annual emission rates accounting for any controls proposed for the BACT review.
- (3) Estimation and evaluation of off-property concentrations of each chemical/compound that may be emitted.
- Note: Even though we may accept a BACT proposal, the resulting off-property concentrations may still be too high. In this case, additional levels of control above the BACT proposal may be required to reduce the off-property concentrations.

Best Available Control Technology (BACT) Review

For dry abrasive blast cleaning facilities, our current BACT Guidelines for Dry Abrasive Blast Cleaning Operations do <u>not</u> require process controls or add-on controls.

Emission Rate Calculations

Hourly and annual emission calculations of particulate matter are necessary for the off-property impacts review. In addition, these emission rates are used to determine the applicability of other rules and regulations. The emissions are separated into two categories: total suspended particulate matter (PM) and particulate matter less than or equal ten microns in size (PM_{10}).

Enclosed Operations

If you will be operating an enclosed blast cleaning operation, you will most likely be able to be exempt from permitting under **Dry Abrasive Cleaning** (*30 TAC § 106.452*).

The following equation can be used to calculate hourly and annual PM and PM_{10} emission rates:

 $\mathbf{Bmission}(lb/hr, yr) = \mathbf{Usage}(lb/hr, yr) = \mathbf{BmissionFactor} \cdot (1 - \frac{\mathbf{Removal Efficiency(\%)}}{100})$

where

Usage is the blast media usage,

Emission Factor is selected from the following:

Particle Size	Silica Sand	Coal Slag
PM	0.00590 lb PM/lb usage	0.00286 lb PM/lb usage
PM ₁₀	0.00140 lb PM ₁₀ /lb usage	0.00034 lb PM ₁₀ /lb usage

NOTE: For other types of blast media, please consult the manufacturer for this data.

Removal Efficiency is the manufacturer's average weight arrestance efficiency for fabric filters. For baghouses or cartridge filters, a 95% average weight arrestance efficiency may be used if the outlet grain loading is less than or equal to 0.01 grains per dry standard cubic foot.

The following is an example of calculating hourly PM and PM_{10} emissions of coal slag:

example usage rate = 1000 pounds per hour example control device is a baghouse with a 0.002 gr/dscf outlet grain loading select PM *Emission Factor* of 0.00286 for coal slag select PM_{10} *Emission Factor* of 0.00034 for coal slag

PM Emissions = 10001b + 0.00286 + (1 - \frac{95(\%)}{100}) = 0.141b/hour of PM

$$PM_{10}$$
 Emissions = 10001b+0.00034+(1- $\frac{95(\%)}{100}$) = 0.021b/hour of PM_{10}

NOTE: An enclosure, building, or room is considered to be enclosed if it can maintain a face velocity of at least 100 feet per minute (fpm) as follows:

Face Velocity (jpm) = Total Exhaust Fan Capacity (standard cubic feetper winute) Total Natural Draft Area(ft²)

Non-enclosed Operations

These equations are for calculating emission from facilities that operate outdoors or cannot achieve a 100-fpm face velocity. The following equation can be used to calculate hourly and annual emission PM and PM_{10} emission rates:

Emission(lb/hr,yr) = Usage(lb/hr,yr)=EmissionFactor

where

Usage is the blast media usage rate,

Emission Factor is selected from the following:

Particle Size	Silica Sand	Coal Slag
PM	0.00590 lb PM/lb usage	0.00286 lb PM/lb usage
PM_{10}	0.00140 lb PM ₁₀ /lb usage	0.00034 lb PM ₁₀ /lb usage

NOTE: For other types of blast media, please consult the manufacturer for this data.

The following is an example of calculating hourly PM and PM₁₀ emissions of silica sand:

example usage rate = 4000 pounds per hour select PM *Emission Factor* of 0.0059 for silica sand select PM₁₀ *Emission Factor* of 0.0014 for silica sand

> **PM Emissions = 40001b = 0.0059 = 23.601b/hour of PM PM₁₀ Emissions = 40001b = 0.0014 = 5.601b/hour of PM₁₀**

Impacts Review

For facilities under permit review, we evaluate the predicted off-property concentrations of particulate matter that may be emitted. Computerized air dispersion models are used for this analysis (Environmental Protection Agency (EPA) Screen or EPA ISCST3).

Since these analyses are specific to each facility and the density of the blast media used, it is not feasible to provide general guidance for the impacts review. Also, there are specific rules

PAINTING BASICS AND EMISSION CALCULATIONS FOR TCEQ AIR QUALITY PERMIT APPLICATIONS

DECEMBER 13, 2005 (UPDATED OCTOBER 11, 2006)

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

Protecting Texas by Reducing

And

Preventing Pollution

Presented by:

Mike Coldiron, P.E. and Eddie Mack, P.E. Texas Commission on Environmental Quality Austin, Texas The geometry of the part and the application equipment determine the transfer efficiency (TE), which is a measure of the amount of sprayed coating that is applied to the part. TE may be determined through several methods such as estimation from tables or charts, the volume of coating applied to a part, or through the weighing of parts and the paint pots.

Estimation of TE from tables or charts (see References 5 and 6) is the least accurate method and is presented as Table 1.

Application Equipment	Flat Surface	Table Leg	Bird Cage
Air Atomized	50	15	10
Airless	75-80	10	10
HVLP	65	15	10
Electrostatic Disk	95	90-95	90-95
Electrostatic Airless	80	70	70
Electrostatic Air Atomized	75	65	65

Table 1. Transfer Efficiency as a Function of Application Equipment and Part Geometry

A significant improvement in the estimation of TE can be achieved through the use of the volume of coating applied to a part. This can be determined either through the use of wet or dry film thickness, coating volume solids content, the surface area of the part, the number of parts coated, and accurately weighing the application system (paint pots, hoses and gun) before and after the coating is applied.

Cummins Engine Company, Inc.

Exhaust Emissions Data Sheet

Data Sheet: DS-1300 Date: 08Mar95

Engine

Model:	NTA855-F		
Type:	4 cycle, In-Line, 6 Cylinder Diesel		
Aspiration:	Turbocharged and Aftercooled		
Compression R	atio:	14.1:1	
Emissions Control Device:		Turbo, Aftercooling	

Performance Data

BHP
Fuel Consumption (gallons/hour)
Air to Fuel Ratio
Exhaust Gas Flow (CFM)
Exhaust Gas Temperature (°F)

Bore: 5.50 in. (140 mm) Stroke: 6.00 in. (152 mm) Displacement: 855 cu. in. (14.0 liters) 2100 RPM 1760 RPM

Config. Number: D093400FX02

Firepump

400	380
20.9	19.7
27.9	24.9
2530	2098
880	930

Application:

Exhaust Emissions Data

(All values are grams/hp-hour)

	Component	2100 RPM	1760 RPM
HC	(Total Unburned Hydrocarbons)	0.46	0.50
NOx	(Oxides of Nitrogen as NO2)	12.00	13.00
CO	(Carbon Monoxide)	2.00	8.0
PM	(Particulate Matter)	0.50	0.50
SO2	(Sulfur Dioxide)	0.65	0.65
CO ₂	(Carbon Dioxide)	540	530
N ₂	(Nitrogen)	3600	3200
02	(Oxygen)	530	410
H ₂ O	(Water Vapor)	200	190

Test Conditions

Data was recorded during steady-state rated engine speed (\pm 25 RPM) with full load (\pm 2%). Pressures, temperatures, and emission rates were stabilized.

Fuel Specification:	ASTM D975 No. 2-D diesel fuel with 0.2% sulfur content
45	(by weight) and 42-50 cetane number.
Fuel Temperature:	99° F ± 9° (at fuel pump inlet)
Intake Air Temperature:	77° F ± 9°
Barometric Pressure:	29.6 in. Hg ± 1 in. Hg
Humidity:	NOx measurement corrected to 75 grains H2O/lb. dry air

The HC, NOx, and CO emissions data tabulated here were taken from a single engine under the test conditions shown above. Data for the other components are estimates. This data is subject to instrumentation, measurement, and engine-to-engine variability. Engine operation with excessive air intake or exhaust restriction beyond published maximum limits, or with improper maintenance, may result in elevated emission levels.

All Data is Subject to Change Without Notice

Data Sheet : DS - 1300

CUMMINS ENGINE COMPANY, INC., Columbus, IN 47202-3005 U.S.A.

	Gasoline Fuel (SCC 2-02-003-01, 2-03-003-01)		Diesel Fuel (SCC 2-02-001-02, 2-03-001-01)		
Pollutant	Emission Factor (lb/hp-hr) (power output)	Emission Factor (lb/MMBtu) (fuel input)	Emission Factor (lb/hp-hr) (power output)	Emission Factor (lb/MMBtu) (fuel input)	EMISSION FACTOR RATING
NO _x	0.011	1.63	0.031	4.41	D
СО	6.96 E-03 ^d	0.99^{d}	6.68 E-03	0.95	D
SO _x	5.91 E-04	0.084	2.05 E-03	0.29	D
PM-10 ^b	7.21 E-04	0.10	2.20 E-03	0.31	D
CO ₂ ^c	1.08	154	1.15	164	В
Aldehydes	4.85 E-04	0.07	4.63 E-04	0.07	D
TOC					
Exhaust	0.015	2.10	2.47 E-03	0.35	D
Evaporative	6.61 E-04	0.09	0.00	0.00	Е
Crankcase	4.85 E-03	0.69	4.41 E-05	0.01	Е
Refueling	1.08 E-03	0.15	0.00	0.00	Е

Table 3.3-1. EMISSION FACTORS FOR UNCONTROLLED GASOLINE AND DIESEL INDUSTRIAL ENGINES^a

^a References 2,5-6,9-14. When necessary, an average brake-specific fuel consumption (BSFC) of 7,000 Btu/hp-hr was used to convert from lb/MMBtu to lb/hp-hr. To convert from lb/hp-hr to kg/kw-hr, multiply by 0.608. To convert from lb/MMBtu to ng/J, multiply by 430. SCC = Source Classification Code. TOC = total organic compounds.

Classification Code. TOC = total organic compounds.
^b PM-10 = particulate matter less than or equal to 10 µm aerodynamic diameter. All particulate is assumed to be ≤ 1 µm in size.
^c Assumes 99% conversion of carbon in fuel to CO₂ with 87 weight % carbon in diesel, 86 weight % carbon in gasoline, average BSFC of 7,000 Btu/hp-hr, diesel heating value of 19,300 Btu/lb, and gasoline heating value of 20,300 Btu/lb.
^d Instead of 0.439 lb/hp-hr (power output) and 62.7 lb/mmBtu (fuel input), the correct emissions factors values are 6.96 E-03 lb/hp-hr (power output) and 0.99 lb/mmBtu (fuel input), respectively. This is an editorial correction. March 24, 2009

Table 3.3-2.SPECIATED ORGANIC COMPOUND EMISSIONFACTORS FOR UNCONTROLLED DIESEL ENGINES^a

	Emission Factor
Pollutant	(Fuel Input) (lb/MMBtu)
Benzene ^b	9.33 E-04
Toluene ^b	4.09 E-04
Xylenes ^b	2.85 E-04
Propylene	2.58 E-03
1,3-Butadiene ^{b,c}	<3.91 E-05
Formaldehyde ^b	1.18 E-03
Acetaldehyde ^b	7.67 E-04
Acrolein ^b	<9.25 E-05
Polycyclic aromatic hydrocarbons (PAH)	
Naphthalene ^b	8.48 E-05
Acenaphthylene	<5.06 E-06
Acenaphthene	<1.42 E-06
Fluorene	2.92 E-05
Phenanthrene	2.94 E-05
Anthracene	1.87 E-06
Fluoranthene	7.61 E-06
Pyrene	4.78 E-06
Benzo(a)anthracene	1.68 E-06
Chrysene	3.53 E-07
Benzo(b)fluoranthene	<9.91 E-08
Benzo(k)fluoranthene	<1.55 E-07
Benzo(a)pyrene	<1.88 E-07
Indeno(1,2,3-cd)pyrene	<3.75 E-07
Dibenz(a,h)anthracene	<5.83 E-07
Benzo(g,h,l)perylene	<4.89 E-07
TOTAL PAH	1.68 E-04

^a Based on the uncontrolled levels of 2 diesel engines from References 6-7. Source Classification Codes 2-02-001-02, 2-03-001-01. To convert from lb/MMBtu to ng/J, multiply by 430.
 ^b Hazardous air pollutant listed in the *Clean Air Act*.
 ^c Based on data from 1 engine.

755 N 9th Ave. Brighton, Colorado 80603 Sales@DieselServiceandSupply.com 800-853-2073 | 303-659-2073 | 303-659-7923 fax www.dieselserviceandsupply.com

Approximate Fuel Consumption Chart

This chart approximates the fuel consumption of a diesel generator based on the size of the generator and the load at which the generator is operating at. Please note that this table is intended to be used as an estimate of how much fuel a generator uses during operation and is not an exact representation due to various factors that can increase or decrease the amount of fuel consumed.

Generator Size (kW)	1/4 Load (gal/hr)	1/2 Load (gal/hr)	3/4 Load (gal/hr)	Full Load (gal/hr)
20	0.6	0.9	1.3	1.6
30	1.3	1.8	2.4	2.9
40	1.6	2.3	3.2	4.0
60	1.8	2.9	3.8	4.8
75	2.4	3.4	4.6	6.1
100	2.6	4.1	5.8	7.4
125	3.1	5.0	7.1	9.1
135	3.3	5.4	7.6	9.8
150	3.6	5.9	8.4	10.9
175	4.1	6.8	9.7	12.7
200	4.7	7.7	11.0	14.4
230	5.3	8.8	12.5	16.6
250	5.7	9.5	13.6	18.0
300	6.8	11.3	16.1	21.5
350	7.9	13.1	18.7	25.1
400	8.9	14.9	21.3	28.6
500	11.0	18.5	26.4	35.7
600	13.2	22.0	31.5	42.8
750	16.3	27.4	39.3	53.4
1000	21.6	36.4	52.1	71.1
1250	26.9	45.3	65.0	88.8
1500	32.2	54.3	77.8	106.5
1750	37.5	63.2	90.7	124.2
2000	42.8	72.2	103.5	141.9
2250	48.1	81.1	116.4	159.6

www.dieselserviceandsupply.com

Map(s)

<u>A map</u> such as a 7.5 minute topographic quadrangle showing the exact location of the source. The map shall also include the following:

The UTM or Longitudinal coordinate system on both axes	An indicator showing which direction is north
A minimum radius around the plant of 0.8km (0.5 miles)	Access and haul roads
Topographic features of the area	Facility property boundaries
The name of the map	The area which will be restricted to public access
A graphical scale	

A map is included in this section.

Proof of Public Notice

(for NSR applications submitting under 20.2.72 or 20.2.74 NMAC) (This proof is required by: 20.2.72.203.A.14 NMAC "Documentary Proof of applicant's public notice")

☑ I have read the AQB "Guidelines for Public Notification for Air Quality Permit Applications" This document provides detailed instructions about public notice requirements for various permitting actions. It also provides public notice examples and certification forms. Material mistakes in the public notice will require a re-notice before issuance of the permit.

Unless otherwise allowed elsewhere in this document, the following items document proof of the applicant's Public Notification. Please include this page in your proof of public notice submittal with checkmarks indicating which documents are being submitted with the application.

New Permit and Significant Permit Revision public notices must include all items in this list.

Technical Revision public notices require only items 1, 5, 9, and 10.

Per the Guidelines for Public Notification document mentioned above, include:

- 1. \Box A copy of the certified letter receipts with post marks (20.2.72.203.B NMAC)
- 2. \Box A list of the places where the public notice has been posted in at least four publicly accessible and conspicuous places, including the proposed or existing facility entrance. (e.g: post office, library, grocery, etc.)
- 3. \Box A copy of the property tax record (20.2.72.203.B NMAC).
- 4. \Box A sample of the letters sent to the owners of record.
- 5. \Box A sample of the letters sent to counties, municipalities, and Indian tribes.
- 6. \Box A sample of the public notice posted and a verification of the local postings.
- 7. \Box A table of the noticed citizens, counties, municipalities and tribes and to whom the notices were sent in each group.
- 8. \Box A copy of the public service announcement (PSA) sent to a local radio station and documentary proof of submittal.
- 9. \Box A copy of the <u>classified or legal</u> ad including the page header (date and newspaper title) or its affidavit of publication stating the ad date, and a copy of the ad. When appropriate, this ad shall be printed in both English and Spanish.
- 10. \Box A copy of the <u>display</u> ad including the page header (date and newspaper title) or its affidavit of publication stating the ad date, and a copy of the ad. When appropriate, this ad shall be printed in both English and Spanish.
- 11. □ A map with a graphic scale showing the facility boundary and the surrounding area in which owners of record were notified by mail. This is necessary for verification that the correct facility boundary was used in determining distance for notifying land owners of record.

N/A – This application is being submitted under 20.2.70 NMAC.

Written Description of the Routine Operations of the Facility

<u>A written description of the routine operations of the facility</u>. Include a description of how each piece of equipment will be operated, how controls will be used, and the fate of both the products and waste generated. For modifications and/or revisions, explain how the changes will affect the existing process. In a separate paragraph describe the major process bottlenecks that limit production. The purpose of this description is to provide sufficient information about plant operations for the permit writer to determine appropriate emission sources.

The facility receives material via pipelines or trucks (i.e. directly from trucks and not via the loading rack); stores material in storage tanks; and loads material out via the loading rack or elsewhere at the facility.

Section 11 Source Determination

Source submitting under 20.2.70, 20.2.72, 20.2.73, and 20.2.74 NMAC

Sources applying for a construction permit, PSD permit, or operating permit shall evaluate surrounding and/or associated sources (including those sources directly connected to this source for business reasons) and complete this section. Responses to the following questions shall be consistent with the Air Quality Bureau's permitting guidance, <u>Single Source Determination Guidance</u>, which may be found on the Applications Page in the Permitting Section of the Air Quality Bureau website.

Typically, buildings, structures, installations, or facilities that have the same SIC code, that are under common ownership or control, and that are contiguous or adjacent constitute a single stationary source for 20.2.70, 20.2.72, 20.2.73, and 20.2.74 NMAC applicability purposes. Submission of your analysis of these factors in support of the responses below is optional, unless requested by NMED.

A. Identify the emission sources evaluated in this section (list and describe): See UA-2, Table 2-A.

B. Apply the 3 criteria for determining a single source:

<u>SIC</u> <u>Code</u>: Surrounding or associated sources belong to the same 2-digit industrial grouping (2-digit SIC code) as this facility, <u>OR</u> surrounding or associated sources that belong to different 2-digit SIC codes are support facilities for this source.

 \blacksquare Yes \Box No

<u>Common</u> <u>Ownership</u> <u>or</u> <u>Control</u>: Surrounding or associated sources are under common ownership or control as this source.

🗹 Yes 🛛 🗆 No

<u>Contiguous</u> or <u>Adjacent</u>: Surrounding or associated sources are contiguous or adjacent with this source.

 \blacksquare Yes \Box No

C. Make a determination:

- ☑ The source, as described in this application, constitutes the entire source for 20.2.70, 20.2.72, 20.2.73, or 20.2.74 NMAC applicability purposes. If in "A" above you evaluated only the source that is the subject of this application, all "YES" boxes should be checked. If in "A" above you evaluated other sources as well, you must check AT LEAST ONE of the boxes "NO" to conclude that the source, as described in the application, is the entire source for 20.2.70, 20.2.72, 20.2.73, and 20.2.74 NMAC applicability purposes.
- □ The source, as described in this application, <u>does not</u> constitute the entire source for 20.2.70, 20.2.72, 20.2.73, or 20.2.74 NMAC applicability purposes (A permit may be issued for a portion of a source). The entire source consists of the following facilities or emissions sources (list and describe):

Section 12.A

PSD Applicability Determination for All Sources

(Submitting under 20.2.72, 20.2.74 NMAC)

<u>A PSD applicability determination for all sources</u>. For sources applying for a significant permit revision, apply the applicable requirements of 20.2.74.AG and 20.2.74.200 NMAC and to determine whether this facility is a major or minor PSD source, and whether this modification is a major or a minor PSD modification. It may be helpful to refer to the procedures for Determining the Net Emissions Change at a Source as specified by Table A-5 (Page A.45) of the <u>EPA New Source Review</u> <u>Workshop Manual</u> to determine if the revision is subject to PSD review.

- A. This facility is:
 - **a minor PSD source before and after this modification (if so, delete C and D below).**
 - □ a major PSD source before this modification. This modification will make this a PSD minor source.
 - □ an existing PSD Major Source that has never had a major modification requiring a BACT analysis.
 - □ an existing PSD Major Source that has had a major modification requiring a BACT analysis
 - □ a new PSD Major Source after this modification.
- B. This facility [is or is not] one of the listed 20.2.74.501 Table I PSD Source Categories. The "project" emissions for this modification are [significant or not significant]. [Discuss why.] The "project" emissions listed below [do or do not] only result from changes described in this permit application, thus no emissions from other [revisions or modifications, past or future] to this facility. Also, specifically discuss whether this project results in "de-bottlenecking", or other associated emissions resulting in higher emissions. The project emissions (before netting) for this project are as follows [see Table 2 in 20.2.74.502 NMAC for a complete list of significance levels]:
 - a. NOx: XX.X TPY
 - b. CO: XX.X TPY
 - c. VOC: XX.X TPY
 - d. SOx: XX.X TPY
 - e. **TSP (PM): XX.X TPY**
 - f. **PM10: XX.X TPY**
 - g. PM2.5: XX.X TPY
 - h. Fluorides: XX.X TPY
 - i. Lead: XX.X TPY
 - j. Sulfur compounds (listed in Table 2): XX.X TPY
 - k. GHG: XX.X TPY
- C. Netting [is required, and analysis is attached to this document.] OR [is not required (project is not significant)] OR [Applicant is submitting a PSD Major Modification and chooses not to net.]
- D. **BACT** is [not required for this modification, as this application is a minor modification.] OR [required, as this application is a major modification. List pollutants subject to BACT review and provide a full top down BACT determination.]
- E. If this is an existing PSD major source, or any facility with emissions greater than 250 TPY (or 100 TPY for 20.2.74.501 Table 1 PSD Source Categories), determine whether any permit modifications are related, or could be considered a single project with this action, and provide an explanation for your determination whether a PSD modification is triggered.

N/A – This application is being submitted under 20.2.70 NMAC.

Determination of State & Federal Air Quality Regulations

This section lists each state and federal air quality regulation that may apply to your facility and/or equipment that are stationary sources of regulated air pollutants.

Not all state and federal air quality regulations are included in this list. Go to the Code of Federal Regulations (CFR) or to the Air Quality Bureau's regulation page to see the full set of air quality regulations.

Required Information for Specific Equipment:

For regulations that apply to specific source types, in the 'Justification' column **provide any information needed to determine if the regulation does or does not apply**. **For example**, to determine if emissions standards at 40 CFR 60, Subpart IIII apply to your three identical stationary engines, we need to know the construction date as defined in that regulation; the manufacturer date; the date of reconstruction or modification, if any; if they are or are not fire pump engines; if they are or are not emergency engines as defined in that regulation; their site ratings; and the cylinder displacement.

Required Information for Regulations that Apply to the Entire Facility:

See instructions in the 'Justification' column for the information that is needed to determine if an 'Entire Facility' type of regulation applies (e.g. 20.2.70 or 20.2.73 NMAC).

Regulatory Citations for Regulations That Do Not, but Could Apply:

If there is a state or federal air quality regulation that does not apply, but you have a piece of equipment in a source category for which a regulation has been promulgated, you must **provide the low level regulatory citation showing why your piece of equipment is not subject to or exempt from the regulation. For example** if you have a stationary internal combustion engine that is not subject to 40 CFR 63, Subpart ZZZZ because it is an existing 2 stroke lean burn stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions, your citation would be 40 CFR 63.6590(b)(3)(i). We don't want a discussion of every non-applicable regulation, but if it is possible a regulation could apply, explain why it does not. For example, if your facility is a power plant, you do not need to include a citation to show that 40 CFR 60, Subpart OOO does not apply to your non-existent rock crusher.

Regulatory Citations for Emission Standards:

For each unit that is subject to an emission standard in a source specific regulation, such as 40 CFR 60, Subpart OOO or 40 CFR 63, Subpart HH, include the low level regulatory citation of that emission standard. Emission standards can be numerical emission limits, work practice standards, or other requirements such as maintenance. Here are examples: a glycol dehydrator is subject to the general standards at 63.764C(1)(i) through (iii); an engine is subject to 63.6601, Tables 2a and 2b; a crusher is subject to 60.672(b), Table 3 and all transfer points are subject to 60.672(e)(1)

Federally Enforceable Conditions:

All federal regulations are federally enforceable. All Air Quality Bureau State regulations are federally enforceable except for the following: affirmative defense portions at 20.2.7.6.B, 20.2.7.110(B)(15), 20.2.7.11 through 20.2.7.113, 20.2.7.115, and 20.2.7.116; 20.2.37; 20.2.42; 20.2.43; 20.2.62; 20.2.63; 20.2.86; 20.2.89; and 20.2.90 NMAC. Federally enforceable means that EPA can enforce the regulation as well as the Air Quality Bureau and federally enforceable regulations can count toward determining a facility's potential to emit (PTE) for the Title V, PSD, and nonattainment permit regulations.

INCLUDE ANY OTHER INFORMATION NEEDED TO COMPLETE AN APPLICABILITY DETERMINATION OR THAT IS RELEVENT TO YOUR FACILITY'S NOTICE OF INTENT OR PERMIT.

EPA Applicability Determination Index for 40 CFR 60, 61, 63, etc: http://cfpub.epa.gov/adi/

Table for STATE REGULATIONS:

<u>STATE</u> <u>REGU-</u> <u>LATIONS</u>	Title	Applies? Enter Yes or	Unit(s) or Facility	JUSTIFICATION: (You may delete instructions or statements that do not
CITATION		110		apply in the justification column to shorten the document.)
20.2.1 NMAC	General Provisions	Yes	Facility	General Provisions apply to Notice of Intent, Construction, and Title V permit applications.
20.2.3 NMAC	Ambient Air Quality Standards NMAAQS	Yes	Facility	20.2.3 NMAC is a SIP approved regulation that limits the maximum allowable concentration of regulated air contaminants, and is implemented through 20.2.72 NMAC.
20.2.7 NMAC	Excess Emissions	Yes	Facility	This regulation establishes requirements for the facility if operations at the facility result in any excess emissions. Since regulated sources at the facility are subject to emissions limits under a permit or numerical emissions standards in a federal or state regulation, this part applies. The facility will also notify the NMED of any excess emission per 20.2.7.110 NMAC.
20.2.33 NMAC	Gas Burning Equipment - Nitrogen Dioxide	No	N/A	No affected equipment at facility.
20.2.34 NMAC	Oil Burning Equipment: NO ₂	No	N/A	No affected equipment at facility.
20.2.35 NMAC	Natural Gas Processing Plant – Sulfur	No	N/A	This facility is not a natural gas processing plant that uses a Sulfur Recovery Unit to reduce sulfur emissions; therefore, this regulation does not apply.
20.2.37 and 20.2.36 NMAC	Petroleum Processing Facilities and Petroleum Refineries	N/A	N/A	These regulations were repealed by the Environmental Improvement Board. Combustion emission sources subject to 20.2.37 NMAC before the repeal are now subject to 20.2.61 NMAC.
20.2.38 NMAC	Hydrocarbon Storage Facility	No	N/A	The facility is not subject to 20.38.109 NMAC as it is no longer a petroleum processing facility and it is also not a petroleum production facility. Accordingly, the facility is no longer subject to 20.2.38 NMAC.
20.2.39 NMAC	Sulfur Recovery Plant - Sulfur	No	N/A	No affected equipment at facility.
20.2.61.109 NMAC	Smoke & Visible Emissions	Yes	B-502A, P- 521, P-521A, P-526	Units B-502A, P-521, P-521A, and P-526 are subject to this regulation as the facility is no longer subject to 20.2.37 NMAC. Andeavor will operate those unit in compliance with the 20% opacity limit
20.2.70 NMAC	Operating Permits	Yes	Facility	The facility is a Title V major source and, therefore, subject to the requirements of 20.2.70 NMAC. The facility is Title V major for VOCs.
20.2.71 NMAC	Operating Permit Fees	Yes	Facility	Facility is subject to 20.2.70 NMAC and is in turn subject to 20.2.71 NMAC.
20.2.72 NMAC	Construction Permits	Yes	Facility	This facility is subject to 20.2.72 NMAC and has been issued NSR permit 0402M12R4.
20.2.73 NMAC	NOI & Emissions Inventory Requirements	Yes	Facility	This regulation establishes emission inventory requirements. The facility meets the applicability requirements of 20.2.73.300 NMAC. The facility will meet all applicable reporting requirements under 20.2.73.300.B.1 NMAC.
20.2.74 NMAC	Permits – Prevention of Significant Deterioration (PSD)	Yes	Facility	The facility is a PSD Major source. The facility is PSD major for VOCs. It is a PSD listed sources (Petroleum storage and transfer units with a total storage capacity exceeding 300,000 barrels). The facility has not completed a major modification and, therefore, does not require a PSD permit.
20.2.75 NMAC	Construction Permit Fees	Yes	Facility	This regulation establishes the guidelines and requirements for construction permitting fees. This facility is subject to 20.2.72 NMAC and is in turn subject to 20.2.75 NMAC. This facility is exempt from annual fees under this part (20.2.75.11.E NMAC) as it is subject to fees pursuant to 20.2.71 NMAC.

STATE REGU- LATIONS CITATION	Title	Applies? Enter Yes or No	Unit(s) or Facility	JUSTIFICATION: (You may delete instructions or statements that do not apply in the justification column to shorten the document.)
20.2.77 NMAC	New Source Performance	Yes	B-502A, Various tanks under EG-1, as described in current Title V permit table 104.B	This is a stationary source subject to requirements of 40 CFR Part 60, as amended through January 15, 2017.
20.2.78 NMAC	Emission Standards for HAPS	Yes (potentially)	Facility	This facility potentially emits hazardous air pollutants which are subject to the requirements of 40 CFR Part 61, as amended through January 15, 2017. The subpart does not apply under routine operating conditions; NESHAP Subpart M would apply in the case of asbestos demolition
20.2.79 NMAC	Permits – Nonattainment Areas	No	N/A	This regulation establishes the requirements for obtaining a nonattainment area permit. Facility is not located in a non-attainment area and therefore is not subject to this regulation.
20.2.80 NMAC	Stack Heights	No	N/A	This regulation establishes requirements for the evaluation of stack heights and other dispersion techniques. This regulation does not apply as all stacks at the facility will follow good engineering practices.
20.2.82 NMAC	MACT Standards for source categories of HAPS	Yes	P-521, P-521A, P-526, TLR-1, EG-1, F-1, and various tanks under EG-1, as described in current Title V permit table 104.B	This is a stationary source subject to requirements of 40 CFR Part 63, as amended through January 15, 2017.

Table for Applicable FEDERAL REGULATIONS:

FEDERAL REGU- LATIONS CITATION	Title	Applies? Enter Yes or No	Unit(s) or Facility	JUSTIFICATION:
40 CFR 50	NAAQS	Yes	Facility	This regulation defines national ambient air quality standards. The facility meets all applicable national ambient air quality standards for NO _x , CO, SO ₂ , H ₂ S, PM ₁₀ , and PM _{2.5} under this regulation.
NSPS 40 CFR 60, Subpart A	General Provisions	Yes	B-502A, Various tanks under EG-1, as described in current Title V permit table 104.B	Applies because other NSPS subparts apply to portions of this facility.
NSPS 40 CFR60.40a, Subpart Da	Subpart Da, Performance Standards for Electric Utility Steam Generating Units	No	N/A	No affected equipment at facility.

FEDERAL REGU- LATIONS CITATION	Title	Applies? Enter Yes or No	Unit(s) or Facility	JUSTIFICATION:
NSPS 40 CFR60.40b Subpart Db	Electric Utility Steam Generating Units	No	N/A	No affected equipment at facility.
40 CFR 60.40c, Subpart Dc	Standards of Performance for Small Industrial- Commercial- Institutional Steam Generating Units	Yes	B-502A	Unit B-502A is a steam generating unit for which construction, modification or reconstruction commenced after June 9, 1989 and that has a maximum design heat input capacity of 29 MW (100 MMBtu/hr) or less, but greater than or equal to 2.9 MW (10 MMBtu/hr).
NSPS 40 CFR 60, Subpart K	Standards of Performance for Storage Vessels for Petroleum Liquids for Which Construction, Reconstruction, or Modification Commenced after June 11, 1973, and Prior to May 19, 1978	Yes	Various tanks under EG-1, as described in current Title V permit table 104.B	Facility has storage vessels that potentially meet the applicability requirements of this Subpart per current Title V permit table 104.B.
NSPS 40 CFR 60, Subpart Ka	Standards of Performance for Storage Vessels for Petroleum Liquids for which Construction, Reconstruction, or Modification Commenced After May 18, 1978, and Prior to July 23, 1984	Yes	Various tanks under EG-1, as described in current Title V permit table 104.B	Facility has storage vessels that potentially meet the applicability requirements of this Subpart per current Title V permit table 104.B.
NSPS 40 CFR 60, Subpart Kb	Standards of Performance for Volatile Organic Liquid Storage Vessels (Including Petroleum Liquid Storage Vessels) for Which Construction, Reconstruction, or Modification Commenced After July 23, 1984	Yes	Various tanks under EG-1, as described in current Title V permit table 104.B	Facility has storage vessels that potentially meet the applicability requirements of this Subpart per current Title V permit table 104.B.
NSPS 40 CFR 60.330 Subpart GG	Stationary Gas Turbines	No	N/A	No affected equipment at facility.

FEDERAL REGU- LATIONS CITATION	Title	Applies? Enter Yes or No	Unit(s) or Facility	JUSTIFICATION:
NSPS 40 CFR 60, Subpart KKK	Leaks of VOC from Onshore Gas Plants	No	N/A	This facility is not an onshore natural gas processing plant; therefore, it is exempt from the provisions of this subpart.
NSPS 40 CFR Part 60 Subpart LLL	Standards of Performance for Onshore Natural Gas Processing : SO ₂ Emissions	No	N/A	This facility is not an onshore natural gas processing plant; therefore, it is exempt from the provisions of this subpart.
40 CFR 60 Subpart XX	Standards of Performance for Bulk Gasoline Terminals	No	N/A	The tank truck loading rack (TLR-1) is not subject to 40 CFR 60, Subpart XX because it was constructed prior to December 17, 1980 and has not been modified after December 17, 1980. Note: The addition of unloading emissions to the loading rack does not constitute a modification of the gasoline loading rack.
NSPS 40 CFR Part 60 Subpart OOOO	Standards of Performance for Crude Oil and Natural Gas Production, Transmission, and Distribution for which construction, modification or reconstruction commenced after August 23, 2011 and before September 18, 2015	No	N.A	This regulation establishes standards of performance for crude oil and natural gas production, transmission and distribution. The facility does not have any affected units that have been modified or reconstructed on or after August 23, 2011 and before September 18, 2015. [40 CFR 60.5360]
NSPS 40 CFR Part 60 Subpart OOOOa	Standards of Performance for Crude Oil and Natural Gas Facilities for which Construction, Modification or Reconstruction Commenced After September 18, 2015	No	N/A	This regulation establishes standards of performance for crude oil and natural gas production, transmission and distribution. The facility does not have any affected units that have been modified or reconstructed on or after September 18, 2015.
NSPS 40 CFR 60 Subpart IIII	Standards of performance for Stationary Compression Ignition Internal Combustion Engines	No	N/A	No affected equipment at facility.

FEDERAL REGU- LATIONS CITATION	Title	Applies? Enter Yes or No	Unit(s) or Facility	JUSTIFICATION:
NSPS 40 CFR Part 60 Subpart JJJJ	Standards of Performance for Stationary Spark Ignition Internal Combustion Engines	No	N/A	No affected equipment at facility.
NSPS 40 CFR 60 Subpart TTTT	Standards of Performance for Greenhouse Gas Emissions for Electric Generating Units	No	N/A	No affected equipment at facility.
NSPS 40 CFR 60 Subpart UUUU	Emissions Guidelines for Greenhouse Gas Emissions and Compliance Times for Electric Utility Generating Units	No	N/A	No affected equipment at facility.
NSPS 40 CFR 60, Subparts WWW, XXX, Cc, and Cf	Standards of performance for Municipal Solid Waste (MSW) Landfills	No	N/A	No affected equipment at facility.
NESHAP 40 CFR 61 Subpart A	General Provisions	Yes (potentially)	Facility	Applies if NESHAP Subpart M applies.
NESHAP 40 CFR 61 Subpart M	National Emission Standard for Asbestos	Yes (potentially)	Facility	Does not apply under routine operating conditions; Would apply in the case of asbestos demolition.
NESHAP 40 CFR 61 Subpart V	National Emission Standards for Equipment Leaks (Fugitive Emission Sources)	No	N/A	This regulation establishes national emission standards for equipment leaks (fugitive emission sources). The facility does not have equipment that operates in volatile hazardous air pollutant (VHAP) service [40 CFR Part 61.240]. The regulated activities subject to this regulation do not take place at this facility. The facility is not subject to this regulation.
MACT 40 CFR 63, Subpart A	General Provisions	Yes	P-521, P- 521A, P-526, TLR-1, EG-1, F-1, and various tanks under EG-1, as described in current Title V permit table 104.B	Applies if any other Subpart in 40 CFR 63 applies. This subpart applies because MACT ZZZZ and BBBBBB apply to units at the facility.
MACT 40 CFR 63.760 Subpart HH	Oil and Natural Gas Production Facilities	No	N/A	No affected equipment at facility.

FEDERAL REGU- LATIONS CITATION	Title	Applies? Enter Yes or No	Unit(s) or Facility	JUSTIFICATION:
MACT 40 CFR 63 Subpart HHH	National Emission Standards for Hazardous Air Pollutants From Natural Gas Transmission and Storage Facilities	No	N/A	This facility is not a major source of hazardous air pollutants (HAP) emissions as defined in §63.1271; therefore, this subpart does not apply.
MACT 40 CFR 63 Subpart EEEE	National Emissions Standard for Hazardous Air Pollutants: Organic Liquid Distribution (Non- Gasoline) (OLD MACT)	No	N/A	 Previously, this subpart applied to the following: truck unloading, transfer rack, and equipment leak components in organic liquids service that are associated with transfer rack. The facility became subject to this regulation when it was a major source of HAPs and the affected equipment remains subject in the current Title V permit despite the facility becoming an area source of HAPs pursuant to the MACT "Once In, Always In" Provision. With the January 25, 2018 withdrawal of the "Once In, Always In" Provision, the facility is no longer subject to this subpart.
MACT 40 CFR 63 Subpart DDDDD	National Emission Standards for Hazardous Air Pollutants for Major Industrial, Commercial, and Institutional Boilers & Process Heaters	No	N/A	No affected equipment at facility.
MACT 40 CFR 63 Subpart UUUUU	National Emission Standards for Hazardous Air Pollutants Coal & Oil Fire Electric Utility Steam Generating Unit	No	N/A	No affected equipment at facility.
MACT 40 CFR 63 Subpart BBBBBB	National Emissions Standards for Hazardous Air Pollutants for Source Category: Gasoline Distribution Bulk Terminals, Bulk Plants, and Pipeline Facilities	Yes	TLR-1, EG-1, F-1, and various tanks under EG-1, as described in current Title V permit table 104.B	The facility is a gasoline distribution bulk terminal and an area source of HAPS. Accordingly, it is subject to this Subpart.
MACT 40 CFR 63 Subpart ZZZZ	National Emissions Standards for Hazardous Air Pollutants for Stationary Reciprocating Internal Combustion Engines (RICE MACT)	Yes	P-521, P- 521A, & P-526	Units P-521, P-521A, P-526, the emergency fire water pumps, are existing (construction commenced prior to June 12, 2006) emergency stationary RICE located at an area source of HAPs. The engines must comply with the emission limitations in 40 CFR 63.6603 and Table 2d of the subpart.
40 CFR 64	Compliance Assurance Monitoring	No	N/A	Facility's truck loading rack (TLR-1) is controlled by a vapor recovery unit (VRU) during gasoline loading and is potentially subject to this part, but pursuant to 40 CFR 64.2(b)(1)(vi) is exempt because the VRU exhaust stream is equipped with a CEMS as required by the current Title V permit P024-R2M1.

FEDERAL REGU- LATIONS CITATION	Title	Applies? Enter Yes or No	Unit(s) or Facility	JUSTIFICATION:
40 CFR 68	Chemical Accident Prevention	No	N/A	This facility does not handle more than a threshold quantity of a regulated substance in a process, as determined under §68.115.
Title IV – Acid Rain 40 CFR 72	Acid Rain	No	N/A	This part establishes the acid rain program. This part does not apply because the facility is not covered by this regulation. [40 CFR Part 72.6]
Title IV – Acid Rain 40 CFR 73	Sulfur Dioxide Allowance Emissions	No	N/A	This regulation establishes sulfur dioxide allowance emissions for certain types of facilities. This part does not apply because the facility is not the type covered by this regulation [40 CFR Part 73.2].
Title IV-Acid Rain 40 CFR 75	Continuous Emissions Monitoring	No	N/A	Facility does not generate commercial electric power or electric power for sale.
Title IV – Acid Rain 40 CFR 76	Acid Rain Nitrogen Oxides Emission Reduction Program	No	N/A	This regulation establishes an acid rain nitrogen oxides emission reduction program. This regulation applies to each coal-fired utility unit that is subject to an acid rain emissions limitation or reduction requirement for SO ₂ . This part does not apply because the facility does not operate any coal-fired units [40 CFR Part 76.1].
Title VI – 40 CFR 82	Protection of Stratospheric Ozone	No	N/A	Not Applicable – facility does not "service", "maintain" or "repair" class I or class II appliances nor "disposes" of the appliances per the definitions under this subpart.

Operational Plan to Mitigate Emissions

(Submitting under 20.2.70, 20.2.72, 20.2.74 NMAC)

✓ Title V Sources (20.2.70 NMAC): By checking this box and certifying this application the permittee certifies that it has developed an <u>Operational Plan to Mitigate Emissions During Startups</u>, <u>Shutdowns</u>, <u>and Emergencies</u> defining the measures to be taken to mitigate source emissions during startups, shutdowns, and emergencies as required by 20.2.70.300.D.5(f) and (g) NMAC. This plan shall be kept on site to be made available to the Department upon request. This plan should not be submitted with this application.

- □ NSR (20.2.72 NMAC), PSD (20.2.74 NMAC) & Nonattainment (20.2.79 NMAC) Sources: By checking this box and certifying this application the permittee certifies that it has developed an <u>Operational Plan to Mitigate Source Emissions</u> <u>During Malfunction, Startup, or Shutdown</u> defining the measures to be taken to mitigate source emissions during malfunction, startup, or shutdown as required by 20.2.72.203.A.5 NMAC. This plan shall be kept on site to be made available to the Department upon request. This plan should not be submitted with this application.
- ☑ Title V (20.2.70 NMAC), NSR (20.2.72 NMAC), PSD (20.2.74 NMAC) & Nonattainment (20.2.79 NMAC) Sources: By checking this box and certifying this application the permittee certifies that it has established and implemented a Plan to Minimize Emissions During Routine or Predictable Startup, Shutdown, and Scheduled Maintenance through work practice standards and good air pollution control practices as required by 20.2.7.14.A and B NMAC. This plan shall be kept on site or at the nearest field office to be made available to the Department upon request. This plan should not be submitted with this application.

Startup and shutdown procedures are either based on manufacturer's recommendations or based on Western's experience with specific equipment. These procedures are designed to proactively address the potential for malfunction to the greatest extent possible. These procedures dictate a sequence of operations that are designed to minimize emissions from the facility during events that result in shutdown and subsequent startup.

Equipment located at this facility is equipped with various safety devices and features that aid in the prevention of excess emissions in the event of an operational emergency. If an operational emergency does occur and excess emissions occur, Western will submit the required Excess Emissions Report as per 20.2.7 NMAC. Corrective action to eliminate the excess emissions and prevent recurrence in the future will be undertaken as quickly as safety allows.

Western has developed an Operational Plan to Mitigate Emissions During Startups, Shutdowns, and Emergencies as required by 20.2.70.300.D.5 NMAC. This plan is kept on site and will be made available to the Department upon request.

Alternative Operating Scenarios

(Submitting under 20.2.70, 20.2.72, 20.2.74 NMAC)

Alternative Operating Scenarios: Provide all information required by the department to define alternative operating scenarios. This includes process, material and product changes; facility emissions information; air pollution control equipment requirements; any applicable requirements; monitoring, recordkeeping, and reporting requirements; and compliance certification requirements. Please ensure applicable Tables in this application are clearly marked to show alternative operating scenario.

Construction Scenarios: When a permit is modified authorizing new construction to an existing facility, NMED includes a condition to clearly address which permit condition(s) (from the previous permit and the new permit) govern during the interval between the date of issuance of the modification permit and the completion of construction of the modification(s). There are many possible variables that need to be addressed such as: Is simultaneous operation of the old and new units permitted and, if so for example, for how long and under what restraints? In general, these types of requirements will be addressed in Section A100 of the permit, but additional requirements may be added elsewhere. Look in A100 of our NSR and/or TV permit template for sample language dealing with these requirements. Find these permit templates at: https://www.env.nm.gov/aqb/permit/aqb_pol.html. Compliance with standards must be maintained during construction, which should not usually be a problem unless simultaneous operation of old and new equipment is requested.

In this section, under the bolded title "Construction Scenarios", specify any information necessary to write these conditions, such as: conservative-realistic estimated time for completion of construction of the various units, whether simultaneous operation of old and new units is being requested (and, if so, modeled), whether the old units will be removed or decommissioned, any PSD ramifications, any temporary limits requested during phased construction, whether any increase in emissions is being requested as SSM emissions or will instead be handled as a separate Construction Scenario (with corresponding emission limits and conditions, etc.

The term "alternative operating scenario" is not defined by regulation. Western understands this term to apply to a source which may routinely operate with alternative fuels or processes in such a manner as to potentially affect emissions. Based on this understanding, this facility has no alternative operating scenarios.

Units at the facility may be shut down from time to time due to factors including but not limited to market demand, maintenance, malfunctions, and emergency shutdowns. Temporary shutdowns are not alternative operating scenarios as Western understands the term.

Section 16 Air Dispersion Modeling

- Minor Source Construction (20.2.72 NMAC) and Prevention of Significant Deterioration (PSD) (20.2.74 NMAC) ambient impact analysis (modeling): Provide an ambient impact analysis as required at 20.2.72.203.A(4) and/or 20.2.74.303 NMAC and as outlined in the Air Quality Bureau's Dispersion Modeling Guidelines found on the Planning Section's modeling website. If air dispersion modeling has been waived for one or more pollutants, attach the AQB Modeling Section modeling waiver approval documentation.
- 2) SSM Modeling: Applicants must conduct dispersion modeling for the total short term emissions during routine or predictable startup, shutdown, or maintenance (SSM) using realistic worst case scenarios following guidance from the Air Quality Bureau's dispersion modeling section. Refer to "Guidance for Submittal of Startup, Shutdown, Maintenance Emissions in Permit Applications (<u>http://www.env.nm.gov/aqb/permit/app_form.html</u>) for more detailed instructions on SSM emissions modeling requirements.
- 3) Title V (20.2.70 NMAC) ambient impact analysis: Title V applications must specify the construction permit and/or Title V Permit number(s) for which air quality dispersion modeling was last approved. Facilities that have only a Title V permit, such as landfills and air curtain incinerators, are subject to the same modeling required for preconstruction permits required by 20.2.72 and 20.2.74 NMAC.

What is the purpose of this application?	Enter an X for each purpose that applies
New PSD major source or PSD major modification (20.2.74 NMAC). See #1 above.	
New Minor Source or significant permit revision under 20.2.72 NMAC (20.2.72.219.D NMAC).	
See #1 above. Note: Neither modeling nor a modeling waiver is required for VOC emissions.	
Reporting existing pollutants that were not previously reported.	
Reporting existing pollutants where the ambient impact is being addressed for the first time.	
Title V application (new, renewal, significant, or minor modification. 20.2.70 NMAC). See #3	Х
above.	
Relocation (20.2.72.202.B.4 or 72.202.D.3.c NMAC)	
Minor Source Technical Permit Revision 20.2.72.219.B.1.d.vi NMAC for like-kind unit replacements.	
Other: i.e. SSM modeling. See #2 above.	
This application does not require modeling since this is a No Permit Required (NPR) application.	
This application does not require modeling since this is a Notice of Intent (NOI) application	
(20.2.73 NMAC).	
This application does not require modeling according to 20.2.70.7.E(11), 20.2.72.203.A(4),	
20.2.74.303, 20.2.79.109.D NMAC and in accordance with the Air Quality Bureau's Modeling	
Guidelines.	

Check each box that applies:

- □ See attached, approved modeling **waiver for all** pollutants from the facility.
- □ See attached, approved modeling **waiver for some** pollutants from the facility.
- □ Attached in Universal Application Form 4 (UA4) is a **modeling report for all** pollutants from the facility.
- \Box Attached in UA4 is a **modeling report for some** pollutants from the facility.
- \blacksquare No modeling is required.

This application is being submitted under 20.2.70 NMAC. Modeling is not required for Title V applications.

Compliance Test History

(Submitting under 20.2.70, 20.2.72, 20.2.74 NMAC)

To show compliance with existing NSR permits conditions, you must submit a compliance test history. The table below provides an example.

TT:: 4 NT-		Tast Data
Unit No.	Test Description	Test Date
B-502A	Tested in accordance with EPA test method for NOx as required by NSR Permit 0402-M12R2	10/1/13
S-1 S-2	N/A – No test requirement.	N/A
API	N/A – No test requirement.	N/A
TLR-1	Tested in accordance with EPA test method for TOC as required by Operating Permit P024-M1 and 40 CFR 63, Subpart CC.	05/04/00
EG1	N/A – No test requirement.	N/A
F-1	N/A – No test requirement.	N/A

Compliance Test History Table

Requirements for Title V Program

Who Must Use this Attachment:

* Any major source as defined in 20.2.70 NMAC.

- * Any source, including an area source, subject to a standard or other requirement promulgated under Section 111 Standards of Performance for New Stationary Sources, or Section 112 Hazardous Air Pollutants, of the 1990 federal Clean Air Act ("federal Act"). Non-major sources subject to Sections 111 or 112 of the federal Act are exempt from the obligation to obtain an 20.2.70 NMAC operating permit until such time that the EPA Administrator completes rulemakings that require such sources to obtain operating permits. In addition, sources that would be required to obtain an operating permit solely because they are subject to regulations or requirements under Section 112(r) of the federal Act are exempt from the requirement to obtain an Operating Permit.
- * Any Acid Rain source as defined under title IV of the federal Act. The Acid Rain program has additional forms. See <u>http://www.env.nm.gov/aqb/index.html</u>. Sources that are subject to both the Title V and Acid Rain regulations are encouraged to submit both applications simultaneously.

* Any source in a source category designated by the EPA Administrator ("Administrator"), in whole or in part, by regulation, after notice and comment.

19.1 - 40 CFR 64, Compliance Assurance Monitoring (CAM) (20.2.70.300.D.10.e NMAC)

Any source subject to 40CFR, Part 64 (Compliance Assurance Monitoring) must submit all the information required by section 64.7 with the operating permit application. The applicant must prepare a separate section of the application package for this purpose; if the information is already listed elsewhere in the application package, make reference to that location. Facilities not subject to Part 64 are invited to submit periodic monitoring protocols with the application to help the AQB to comply with 20.2.70 NMAC. Sources subject to 40 CFR Part 64, must submit a statement indicating your source's compliance status with any enhanced monitoring and compliance certification requirements of the federal Act.

Not applicable as facility is not subject to 40 CFR 64 (CAM). Facility's truck loading rack (TLR-1) is controlled by a vapor recovery unit (VRU) during gasoline loading and is potentially subject to CAM, but pursuant to 40 CFR 64.2(b)(1)(vi), it is exempt because the VRU exhaust stream is equipped with a CEMS as required by the current Title V permit P024-R2M1.

19.2 - Compliance Status (20.2.70.300.D.10.a & 10.b NMAC)

Describe the facility's compliance status with each applicable requirement at the time this permit application is submitted. This statement should include descriptions of or references to all methods used for determining compliance. This statement should include descriptions of monitoring, recordkeeping and reporting requirements and test methods used to determine compliance with all applicable requirements. Refer to Section 2, Tables 2-N and 2-O of the Application Form as necessary. (20.2.70.300.D.11 NMAC) For facilities with existing Title V permits, refer to most recent Compliance Certification for existing requirements. Address new requirements such as CAM, here, including steps being taken to achieve compliance.

Based on information available and after reasonable inquiry, Western believes that the facility is in compliance with all requirements applicable to the facility.

19.3 - Continued Compliance (20.2.70.300.D.10.c NMAC)

Provide a statement that your facility will continue to be in compliance with requirements for which it is in compliance at the time of permit application. This statement must also include a commitment to comply with other applicable requirements as they come into effect during the permit term. This compliance must occur in a timely manner or be consistent with such schedule expressly required by the applicable requirement.

As described in Section 19.2, the facility believes that it is in compliance with all applicable requirements. Western states that it will continue to operate the Bloomfield Products Terminal in compliance with applicable requirements for which it is in compliance as of the date of this application.

Additionally, Western will meet any additional requirements that become effective during the permit term. Compliance will be achieved in a timely manner or on the schedule explicitly required by the applicable regulation. In the event Western discovers new information affecting the compliance status of the facility, Western will make appropriate notifications and/or take corrective actions, as appropriate.

19.4 - Schedule for Submission of Compliance (20.2.70.300.D.10.d NMAC)

You must provide a proposed schedule for submission to the department of compliance certifications during the permit term. This certification must be submitted annually unless the applicable requirement or the department specifies a more frequent period. A sample form for these certifications will be attached to the permit.

Compliance Certifications are submitted annually, as required by Title V permit P024-R2M1 Condition B112.D

19.5 - Stratospheric Ozone and Climate Protection

In addition to completing the four (4) questions below, you must submit a statement indicating your source's compliance status with requirements of Title VI, Section 608 (National Recycling and Emissions Reduction Program) and Section 609 (Servicing of Motor Vehicle Air Conditioners).

- Does any air conditioner(s) or any piece(s) of refrigeration equipment contain a refrigeration charge greater than 50 lbs? □ Yes ☑ No
 (If the answer is yes, describe the type of equipment and how many units are at the facility.)
- 3. Do your facility personnel maintain, service, repair, or dispose of any motor vehicle air conditioners (MVACs) or appliances ("appliance" and "MVAC" as defined at 82. 152)? □ Yes ☑ No
- Cite and describe which Title VI requirements are applicable to your facility (i.e. 40 CFR Part 82, Subpart A through G.)

The facility includes appliances containing regulated refrigerants; however, the facility is not subject to the requirements of 40 CFR 82 as the facility does not "service", "maintain" or "repair" class I or class II appliances nor "disposes" of the appliances per the definitions under this subpart. Outside companies that utilize certified technicians will complete services and repairs of the air conditioners at the facility.

19.6 - Compliance Plan and Schedule

Applications for sources, which are not in compliance with all applicable requirements at the time the permit application is submitted to the department, must include a proposed compliance plan as part of the permit application package. This plan shall include the information requested below:

A. Description of Compliance Status: (20.2.70.300.D.11.a NMAC)

A narrative description of your facility's compliance status with respect to all applicable requirements (as defined in 20.2.70 NMAC) at the time this permit application is submitted to the department.

B. Compliance plan: (20.2.70.300.D.11.B NMAC)

A narrative description of the means by which your facility will achieve compliance with applicable requirements with which it is not in compliance at the time you submit your permit application package.

C. Compliance schedule: (20.2.70.300D.11.c NMAC)

A schedule of remedial measures that you plan to take, including an enforceable sequence of actions with milestones, which will lead to compliance with all applicable requirements for your source. This schedule of compliance must be at least as stringent as that contained in any consent decree or administrative order to which your source is subject. The obligations of any consent decree or administrative order are not in any way diminished by the schedule of compliance.

D. Schedule of Certified Progress Reports: (20.2.70.300.D.11.d NMAC)

A proposed schedule for submission to the department of certified progress reports must also be included in the compliance schedule. The proposed schedule must call for these reports to be submitted at least every six (6) months.

E. Acid Rain Sources: (20.2.70.300.D.11.e NMAC)

If your source is an acid rain source as defined by EPA, the following applies to you. For the portion of your acid rain source subject to the acid rain provisions of title IV of the federal Act, the compliance plan must also include any additional requirements under the acid rain provisions of title IV of the federal Act. Some requirements of title IV regarding the schedule and methods the source will use to achieve compliance with the acid rain emissions limitations may supersede the requirements of title V and 20.2.70 NMAC. You will need to consult with the Air Quality Bureau permitting staff concerning how to properly meet this requirement.

NOTE: The Acid Rain program has additional forms. See <u>http://www.env.nm.gov/aqb/index.html</u>. Sources that are subject to both the Title V and Acid Rain regulations are **encouraged** to submit both applications **simultaneously**.

Based on available information and belief formed after reasonable inquiry, Western states that the Bloomfield Products Terminal is in compliance with all applicable requirements. No compliance plan, compliance schedule, or compliance reports are required at this time.

19.7 - 112(r) Risk Management Plan (RMP)

Any major sources subject to section 112(r) of the Clean Air Act must list all substances that cause the source to be subject to section 112(r) in the application. The permittee must state when the RMP was submitted to and approved by EPA.

The facility previously filed RMP with EPA as follows:

- Initial submission on 06/18/99; approved by EPA on 07/09/99.
- 5-year Update submission on 06/16/04; approved by EPA on 07/15/04
- 5-year Update submission on 06/17/09; acknowledged by EPA on 06/17/09.
Please note that the facility, as authorized by NSR Permit 0402-M12R4, no longer has more than a threshold quantity of a regulated substance in a process and accordingly is no longer required to have an RMP. Accordingly, in October 2012, Western submitted an RMP program De-registration form to EPA's RMP Reporting Center.

19.8 - Distance to Other States, Bernalillo, Indian Tribes and Pueblos

Will the property on which the facility is proposed to be constructed or operated be closer than 80 km (50 miles) from other states, local pollution control programs, and Indian tribes and pueblos (20.2.70.402.A.2 and 20.2.70.7.B NMAC)?

(If the answer is yes, state which apply and provide the distances.)

States: Colorado (~33.5km); Indian Tribes: Navajo Nation (~25km); Ute Mountain (~29km); Southern Ute (~30km); Jicarilla Apache (~70km)

19.9 - Responsible Official

Tommy D. Roberts, Terminal Supervisor P: (505) 632-4195 P.O. Box 159 50 County Road 4990 Bloomfield, NM 87413

Section 20

Other Relevant Information

<u>Other relevant information</u>. Use this attachment to clarify any part in the application that you think needs explaining. Reference the section, table, column, and/or field. Include any additional text, tables, calculations or clarifying information.

Additionally, the applicant may propose specific permit language for AQB consideration. In the case of a revision to an existing permit, the applicant should provide the old language and the new language in track changes format to highlight the proposed changes. If proposing language for a new facility or language for a new unit, submit the proposed operating condition(s), along with the associated monitoring, recordkeeping, and reporting conditions. In either case, please limit the proposed language to the affected portion of the permit.

No other relevant information.

March 2019 & Revision 0

Section 22: Certification

Company Name: WESTERN REFINING TERMINIALS LLC WESTERN REFINING SOUTHWEST, INC. , hereby certify that the information and data submitted in this OMM application are true and as accurate as possible, to the best of my knowledge and professional expertise and experience. Signed this 1 day of MARCH, 2019, upon my oath or affirmation, before a notary of the State of MEXICO NEW Printed Name Scribed and sworn before me on this <u>1</u> day of <u>MARCH</u> 2019 My authorization as a notary of the State of NEW MEXICO expires on the 2021 day of W 201 OFFICIAL SEAL MICHELLE L. MAES Notary Public

*For Title V applications, the signature must be of the Responsible Official as defined in 20.2.70.7.AE NMAC.

My Commission Expires

Mex