

June 2, 2020

Kirby Olson New Mexico Environment Department Air Quality Bureau 525 Camino de los Marquez, Suite 1 Santa Fe, New Mexico, 87505

RE: Application for NSR Modification Wildcat Compressor Station – NSR Permit 7474 XTO Energy Inc.

Dear Ms. Olson:

XTO Energy Inc. is submitting the attached New Source Review permit application for the referenced facility. A detailed list of proposed changes are included in Section 3 of the application. Also included is a check for the filing fee. The electronic files will be provided via email or secure transfer. Please contact me at 865-850-2007 or etullos@pei-tx.com should you have any questions.

Sincerely,

Julo

Evan Tullos Vice President

WILDCAT COMPRESSOR STATION Eddy County, NM NSR Permit Modification Application

PREPARED FOR: Ben Schneider ENVIRONMENTAL ENGINEER XTO ENERGY INC. 5/24/2020

WILDCAT COMPRESSOR STATION

NSR Permit Modification Application

Table of Contents

Tab 1	UA1 Form - Company and Facility Information
Tab 2	UA2 Form - Application Tables
Tab 3	Section 3 - Application Summary
Tab 4	Section 4 - Process Flow Sheet
Tab 5	Section 5 - Plot Plan Drawn To Scale
Tab 6	Section 6 - All Calculations
Tab 7	Section 7 - Information Used To Determine Emissions
Tab 8	Section 8 - Map(s)
Tab 9	Section 9 - Proof of Public Notice
Tab 10	Section 10 - Written Description of the Routine Operations of the Facility
Tab 11	Section 11 -Source Determination
Tab 12	Section 12 - PSD Applicability Determination for All Sources
Tab 13	Section 13 - Determination of State & Federal Air Quality Regulations
Tab 14	Section 14 - Operational Plan to Mitigate Emissions
Tab 15	Section 15 - Alternative Operating Scenarios
Tab 16	Section 16 - Air Dispersion Modeling
Tab 17	Section 17 - Compliance Test History
Tab 18	Section 18 - Addendum for Streamline Applications (Not Applicable)
Tab 19	Section 19 - Requirements for Title V Program
Tab 20	Section 20 - Other Relevant Information
Tab 21	Section 21 - Addendum for Landfill Applications (Not Applicable)
Tab 22	Section 22 - Certification
Tab 23	Section 23 - UA4

Tab 1

UA1 Form - Company and Facility Information

Tab 2 UA2 Form - Application Tables

Table 2-A: Regulated Emission Sources

Unit and stack numbering must correspond throughout the application package. Equipment exemptions under 2.72.202 NMAC do not apply to 20.2.73 NMAC. Identify process equipment that is used to reroute emissions back into the process or sales pipeline in Table 2-A, such as a VRU, VRT, ULPS, Flashing Vessel, or Blowcase.

Unit Number ¹	Source Description	Make	Model #	Serial #	Manufact- urer's Rated Capacity ³	Requested Permitted Capacity ³	Date of Manufacture ² Date of	Controlled by Unit # Emissions	Source Classi- fication	For Each Piece of 1	Equipment, Check One	RICE Ignition Type (CI, SI, 4SLB, 4SRB,	Replacing Unit No.
Number					(Specify Units)	(Specify Units)	Construction/ Reconstruction ²	vented to Stack #	Code (SCC)			2SLB) ⁴	Cint i toi
ENG1	Natural Gas Compressor Engine	Caterpillar	G3616	ZZY00803	5000	5000	6/22/2018 1/31/2020	ENG1 CAT1	20200254	 Existing (unchanged) New/Additional To Be Modified 	 To be Removed Replacement Unit To be Replaced 	4SLB	N/A
ENG2	Natural Gas Compressor Engine	Caterpillar	G3616	ZZY00809	5000	5000	7/5/2018 7/15/2019	ENG2 CAT2	20200254	 Existing (unchanged) New/Additional To Be Modified 	 To be Removed Replacement Unit To be Replaced 	4SLB	N/A
ENG3	Natural Gas Compressor Engine	Caterpillar	G3616	ZZY00797	5000	5000	6/14/2018 2/3/2020	ENG3 CAT3	20200254	 Existing (unchanged) New/Additional To Be Modified 	 To be Removed Replacement Unit To be Replaced 	4SLB	N/A
ENG4	Natural Gas Compressor Engine	Caterpillar	G3616	TBD	5000	5000	TBD	ENG4 CAT4	20200254	 For the Modified Existing (unchanged) New/Additional To Be Modified 	 To be Removed Replacement Unit To be Replaced 	4SLB	N/A
ENG5	Natural Gas Compressor Engine	Caterpillar	G3616	TBD	5000	5000	TBD	ENG5 CAT5	20200254	 To be Modified Existing (unchanged) New/Additional To Be Modified 	 To be Removed Replacement Unit To be Replaced 	4SLB	N/A
ENG6	Natural Gas Compressor Engine	Caterpillar	G3616	TBD	5000	5000	TBD	ENG6 CAT6	20200254	 To be Modified Existing (unchanged) New/Additional To Be Modified 	 To be Removed Replacement Unit To be Replaced 	4SLB	N/A
ENG7	Natural Gas Compressor Engine	Caterpillar	G3616	TBD	5000	5000	TBD	ENG7 CAT7	20200254	 To be Modified Existing (unchanged) New/Additional To Be Modified 	 To be Removed Replacement Unit To be Replaced 	4SLB	N/A
ENG8	Natural Gas Compressor Engine	Caterpillar	G3616	TBD	5000	5000	TBD	ENG8 CAT8	20200254	 For the Modified Existing (unchanged) New/Additional To Be Modified 	 To be Removed Replacement Unit To be Replaced 	4SLB	N/A
ENG9	Natural Gas Compressor Engine	Caterpillar	G3616	TBD	5000	5000	TBD	ENG9 CAT9	20200254	 For the Modified Existing (unchanged) New/Additional To Be Modified 	 To be Removed Replacement Unit To be Replaced 	4SLB	N/A
ENG11	Natural Gas Compressor Engine	Caterpillar	3516J TA	N6W01025	1380	1380	11/1/2018 12/11/2019	ENG11 CAT11	20200254	 Existing (unchanged) New/Additional To Be Modified 	 To be Removed Replacement Unit To be Replaced 	4SLB	N/A
ENG12	Natural Gas Compressor Engine	Caterpillar	3516J TA	N6W01015	1380	1380	11/3/2018 12/11/2019	ENG12 CAT12	20200254	 Existing (unchanged) New/Additional To Be Modified 	 To be Removed Replacement Unit To be Replaced 	4SLB	N/A
ENG10	Natural Gas Compressor Engine	Caterpillar	G3606T A	TBD	1775	1775	TBD TBD	ENG10 CAT10	20200254	 Existing (unchanged) New/Additional To Be Modified 	 To be Removed Replacement Unit To be Replaced 	4SLB	N/A
ENG13	Natural Gas Compressor Engine	Caterpillar	G3306T A	TBD	203	203	TBD TBD	ENG13 CAT13	20200254	 Existing (unchanged) New/Additional To Be Modified 	 To be Removed Replacement Unit To be Replaced 	4SRB	N/A
HTR1	Fuel Line Heater	Wenco Energy Corp	SB20- 12H	1118-936	0.75 MMBtu/hr	0.75 MMBtu/hr	2019 N/A	TBD HTR1	31000228	 Existing (unchanged) New/Additional To Be Modified 	 To be Removed Replacement Unit To be Replaced 	N/A	N/A
RB1	Glycol Regenator Heater	Flameco	N/A	N/A	2.0 MMBtu/hr	2.0 MMBtu/hr	2019 N/A	N/A RB1	31000404	 Existing (unchanged) New/Additional To Be Modified 	 To be Removed Replacement Unit To be Replaced 	N/A	N/A
RB2	Glycol Regenator Reboiler	Flameco	N/A	N/A	2.0 MMBtu/hr	2.0 MMBtu/hr	2019 N/A	N/A RB2	31000404	 Existing (unchanged) New/Additional To Be Modified 	 To be Removed Replacement Unit To be Replaced 	N/A	N/A
RB3	Glycol Regenator Reboiler	N/A	N/A	N/A	2.0 MMBtu/hr	2.0 MMBtu/hr	TBD N/A	N/A RB3	31000404	 Existing (unchanged) New/Additional To Be Modified 	 To be Removed Replacement Unit To be Replaced 	N/A	N/A
HTR2	Fuel Line Heater	N/A	N/A	N/A	0.75 MMBtu/hr	0.75 MMBtu/hr	TBD N/A	N/A HTR2	31000228	 Existing (unchanged) New/Additional To Be Modified 	 To be Removed Replacement Unit To be Replaced 	N/A	N/A
HTR3	Fuel Line Heater	N/A	N/A	N/A	1.5 MMBtu/hr	1.5 MMBtu/hr	TBD N/A	N/A HTR3	31000228	 Existing (unchanged) New/Additional To Be Modified 	 To be Removed Replacement Unit To be Replaced 	N/A	N/A

¥7. 1.					Manufact- urer's Rated	Requested Permitted	Date of Manufacture ²	Controlled by Unit #	Source Classi-			RICE Ignition	
Unit Number ¹	Source Description	Make	Model #	Serial #	Capacity ³ (Specify Units)	Capacity ³ (Specify Units)	Date of Construction/ Reconstruction ²	Emissions vented to Stack #	fication Code (SCC)	For Each Piece of	Equipment, Check One	Type (CI, SI, 4SLB, 4SRB, 2SLB) ⁴	Replacing Unit No.
FL1	Flare 1	Tornado	N/A	N/A	70 mmscfd	70 mmscfd	2019	N/A	31000205	 Existing (unchanged) New/Additional 	 To be Removed Replacement Unit 	N/A	N/A
TET	T fare 1	Tornado	IVA	IWA	70 miniseru	70 minisera	2019	FL1	51000205	 To Be Modified 	To be Replaced	IVA	10/A
FL2	Flare 2	Tornado	N/A	N/A	70 mmscfd	70 mmscfd	2019	N/A	31000205	 Existing (unchanged) New/Additional 	 To be Removed Replacement Unit 	N/A	N/A
							2019	FL2		 To Be Modified 	To be Replaced		
FL3	Flare 3	Tornado	TBD	TBD	70 mmscfd	70 mmscfd	TBD	N/A	31000205	 Existing (unchanged) New/Additional 	 To be Removed Replacement Unit 	N/A	N/A
	-						TBD	FL3		 To Be Modified 	To be Replaced		
SKT1	Skim Tank	Palmer	TK-5052	N/A	1000	1000	2019	FL1-FL3	40400311	 Existing (unchanged) New/Additional 	 To be Removed Replacement Unit 	N/A	N/A
							2019	FL1-FL3		 To Be Modified 	To be Replaced		
SKT2	Skim Tank (Backup)	TBD	TBD	N/A	1000	1000	TBD	FL1-FL3	40400311	 Existing (unchanged) New/Additional 	 To be Removed Replacement Unit 	N/A	N/A
							TBD	FL1-FL3		 To Be Modified 	To be Replaced		
OT1	Condensate Tank	Palmer	TK-5054	N/A	500	500	2019	FL1-FL3	40400311	 Existing (unchanged) New/Additional 	 To be Removed Replacement Unit 	N/A	N/A
							2019	FL1-FL3		 To Be Modified 	To be Replaced		
OT2	Condensate Tank	Palmer	TK-5062	N/A	500	500	2019	FL1-FL3	40400311	 Existing (unchanged) New/Additional 	 To be Removed Replacement Unit 	N/A	N/A
012	Condensate Faint	T uniter	111 0002		200	200	2019	FL1-FL3		 To Be Modified 	To be Replaced	1011	
OT3	Condensate Tank	Palmer	TK-5063	N/A	500	500	2019	FL1-FL3	40400311	 Existing (unchanged) New/Additional 	 To be Removed Replacement Unit 	N/A	N/A
015	Condensate Funk	runner	110 5005	10/11	500	500	2019	FL1-FL3	10100511	 To Be Modified 	To be Replaced	10/11	10/1
OT4	Condensate Tank	Palmer	TK-5064	N/A	500	500	2019	FL1-FL3	40400311	 Existing (unchanged) New/Additional 	 To be Removed Replacement Unit 	N/A	N/A
014	Condensate Tank	1 annei	114-5004	IVA	500	500	2019	FL1-FL3	40400511	 To Be Modified 	 To be Replaced 	19/24	10/14
WT1	Produced Water	Palmer	TK-5051	N/A	500	500	2019	FL1-FL3	40400315	 Existing (unchanged) New/Additional 	 To be Removed Replacement Unit 	N/A	N/A
w 1 1	Tank	1 annei	114-5051	IVA	500	500	2019	FL1-FL3	40400515	 To Be Modified 	To be Replaced	1WA	10/A
WT2	Produced Water	Palmer	TK-5053	N/A	500	500	2019	FL1-FL3	40400315	 Existing (unchanged) New/Additional 	 To be Removed Replacement Unit 	N/A	N/A
W12	Tank	1 annei	114-50555		500	500	2019	FL1-FL3	40400515	 To Be Modified 	To be Replaced	IVA	IVA
VRU1	Low Pressure	Tamrotor	SB20-	C-5010 FE02502683	125 HP	125 HP	2019	FL1-FL3	N/A	 Existing (unchanged) New/Additional 	 To be Removed Replacement Unit 	N/A	N/A
VICOI	Separator VRU #1	Tannotor	12H	4	125 111	125 111	2019	FL1-3	IWA	 To Be Modified 	To be Replaced	1WA	10/A
VIDUO	Low Pressure	E	SB20-	C-5020	105 110	105 100	2019	FL1-FL3		Existing (unchanged)	To be Removed	27/1	27/1
VRU2	Separator VRU Backup	Tamrotor	12H	FE02502683 1	125 HP	125 HP	2019	FL1-3	N/A	 New/Additional To Be Modified 	 Replacement Unit To be Replaced 	N/A	N/A
	TEG Dehydrator				80	80	2019	COND1		 Existing (unchanged) 	To be Removed		
DEHY1	with Condenser	N/A	N/A	N/A	MMscfd	MMscfd	2019	RB1	31000227	 New/Additional To Be Modified 	 Replacement Unit To be Replaced 	N/A	N/A
	TEG Dehydrator				80	80	2019	COND2		 Existing (unchanged) 	To be Removed		
DEHY2	with Condenser	N/A	N/A	N/A	MMscfd	MMscfd	2019	RB2	31000227	 New/Additional To Be Modified 	 Replacement Unit To be Replaced 	N/A	N/A
	TEG Dehydrator				80	80	TBD	COND3		 Existing (unchanged) 	To be Removed		
DEHY3	with Condenser	N/A	N/A	N/A	MMscfd	MMscfd	TBD	RB3	31000227	 New/Additional To Be Modified 	 Replacement Unit To be Replaced 	N/A	N/A
	Low Pressure						2019	FL1-FL3		 Existing (unchanged) 	To be Removed		
LPS	Separator	N/A	N/A	N/A	N/A	N/A	2019	FL1-FL3	N/A	 New/Additional To Be Modified 	 Replacement Unit To be Replaced 	N/A	N/A
	Condensate Truck	2711					N/A	N/A		 Existing (unchanged) 	To be Removed		
LOAD	Loading	N/A	N/A	N/A	656 BOPD	656 BOPD	N/A	N/A	40400250	 New/Additional To Be Modified 	 Replacement Unit To be Replaced 	N/A	N/A
							N/A	N/A		 Existing (unchanged) 	To be Removed		
FUG	Fugitive Emissions	N/A	N/A	N/A	N/A	N/A	N/A	N/A	31088811	 New/Additional To Be Modified 	 Replacement Unit To be Replaced 	N/A	N/A
			1				N/A	N/A		 Existing (unchanged) 	 To be Removed 		
SSM	SSM Activities	N/A	N/A	N/A	N/A	N/A	N/A	N/A	31088811	 New/Additional To Be Modified 	 Replacement Unit To be Replaced 	N/A	N/A
1			1			I	f all units in both NC			be mounted		I	1

¹ Unit numbers must correspond to unit numbers in the previous NOI unless a complete cross reference table of all units in both NOIs is provided. ² Specify dates required to determine regulatory applicability.

³ To properly account for power conversion efficiencies, generator set rated capacity shall be reported as the rated capacity of the engine in horsepower, not the kilowatt capacity of the generator set. ⁴ "4SLB" means four stroke lean burn engine, "4SRB" means four stroke rich burn engine, "2SLB" means two stroke lean burn engine, "CI" means compression ignition, and "SI" means spark ignition

Table 2-B: Insignificant Activities¹ (20.2.70 NMAC) OR Exempted Equipment (20.2.72 NMAC)

All 20.2.70 NMAC (Title V) applications must list all Insignificant Activities in this table. All 20.2.72 NMAC applications must list Exempted Equipment in this table. If equipment listed on this table is exempt under 20.2.72.202.B.5, include emissions calculations and emissions totals for 202.B.5 "similar functions" units, operations, and activities in Section 6, Calculations. Equipment and activities exempted under 20.2.72.202 NMAC may not necessarily be Insignificant under 20.2.70 NMAC (and vice versa). Unit & stack numbering must be consistent throughout the application package. Per Exemptions Policy 02-012.00 (see http://www.env.nm.gov/aqb/permit/aqb_pol.html), 20.2.72.202.B NMAC Exemptions do not apply, but 20.2.72.202.A NMAC exemptions do apply to NOI facilities under 20.2.73 NMAC. List 20.2.72.301.D.4 NMAC Auxiliary Equipment for Streamline applications in Table 2-A. The List of Insignificant Activities (for TV) can be found online at

http://www.env.nm.gov/aqb/forms/InsignificantListTitleV.pdf. TV sources may elect to enter both TV Insignificant Activities and Part 72 Exemptions on this form.

Unit Number	Source Description	Manufacturer	Model No.	Max Capacity	List Specific 20.2.72.202 NMAC Exemption (e.g. 20.2.72.202.B.5) Insignificant Activity citation (e.g. IA List	Date of Manufacture /Reconstruction ² Date of Installation	For Each Piece of I	Equipment, Check Onc
			Serial No.	Capacity Units	Item #1.a)	/Construction ²		
ROAD	Haul Road Emissions	N/A	N/A	N/A	20.2.72.202.B.5	N/A	 Existing (unchanged) New/Additional 	 To be Removed Replacement Unit
			N/A	N/A	20.2.72.202.B.5	N/A		To be Replaced
							 Existing (unchanged) New/Additional To Be Modified 	 To be Removed Replacement Unit To be Replaced
							 Existing (unchanged) New/Additional To Be Modified 	 To be Removed Replacement Unit To be Replaced
							 Existing (unchanged) New/Additional To Be Modified 	 To be Removed Replacement Unit To be Replaced
							 Existing (unchanged) New/Additional To Be Modified 	 To be Removed Replacement Unit To be Replaced
							 Existing (unchanged) New/Additional To Be Modified 	 To be Removed Replacement Unit To be Replaced
							 Existing (unchanged) New/Additional To Be Modified 	 To be Removed Replacement Unit To be Replaced
							 Existing (unchanged) New/Additional To Be Modified 	 To be Removed Replacement Unit To be Replaced
							 Existing (unchanged) New/Additional To Be Modified 	 To be Removed Replacement Unit To be Replaced
							 Existing (unchanged) New/Additional To Be Modified 	 To be Removed Replacement Unit To be Replaced
							 Existing (unchanged) New/Additional To Be Modified 	 To be Removed Replacement Unit To be Replaced
							 Existing (unchanged) New/Additional To Be Modified 	 To be Removed Replacement Unit To be Replaced
							 Existing (unchanged) New/Additional To Be Modified 	 To be Removed Replacement Unit To be Replaced

¹ Insignificant activities exempted due to size or production rate are defined in 20.2.70.300.D.6, 20.2.70.7.Q NMAC, and the NMED/AQB List of Insignificant Activities, dated September 15, 2008. Emissions from these insignificant activities do not need to be reported, unless specifically requested.

² Specify date(s) required to determine regulatory applicability.

Table 2-C: Emissions Control Equipment

Unit and stack numbering must correspond throughout the application package. The permittee shall report all control devices and list each pollutant controlled by the control device regardless if the applicant takes credit for the reduction in emissions. Flares, Enclosed Combustion Devices, Catalytic Converters and Air Fuel Ratio (AFR) Controllers shall be reported on Table 2-C. For each AFR, note whether the AFR are aftermarket or integral to the engine.

Control Equipment Unit No.	Control Equipment Description	Date Installed	Controlled Pollutant(s)	Controlling Emissions for Unit Number(s) ¹	Efficiency (% Control by Weight)	Method used to Estimate Efficiency
FL1	Flare 1	TBD	VOC, HAP	Facility Inlet, OT1-OT4, WT1-WT2, SKTK1/SKTK2, LPS	98	Engineering Est.
FL2	Flare 2	TBD	VOC, HAP	Facility Inlet, OT1-OT4, WT1-WT2, SKTK1/SKTK2, LPS	98	Engineering Est.
FL3	Flare 3	TBD	VOC, HAP	Facility Inlet, OT1-OT4, WT1-WT2, SKTK1/SKTK2, LPS	98	Engineering Est.
RB1	Still Vent Emissions	TBD	VOC, HAP	DEHY1 - BTEX Condensor Vapors	98	Engineering Est.
RB2	Still Vent Emissions	TBD	VOC, HAP	DEHY2 - BTEX Condensor Vapors	98	Engineering Est.
RB3	Still Vent Emissions	TBD	VOC, HAP	DEHY3 - BTEX Condensor Vapors	98	Engineering Est.
VRU1	Low Pressure Separator VRU #1	2019	VOC, HAPs	LPS	98	Engineering Est.
VRU2	Low Pressure Separator VRU Backup	2019	VOC, HAPs	LPS	98	Engineering Est.
COND1- COND3	BTEX Condenser	2019	VOC, HAP	DEHY1-DEHY3	98	Engineering Est.
CAT1-CAT12	Engine Catalysts	2019	CO, VOC, HAP	ENG1-ENG12	CO-85, VOC/HAP-73	Engineering Est.
¹ List each cor	ntrol device on a separate line. For each control device, list all e	nission units c	controlled by the control device.			

Table 2-D: Maximum Emissions (under normal operating conditions)

Maximum Emissions are the emissions at maximum capacity and prior to (in the absence of) pollution control, emission-reducing process equipment, or any other emission reduction. Calculate the hourly emissions using the worst case hourly emissions for each pollutant, calculate the annual emissions as if the facility were operating at maximum plant capacity without pollution controls for 8760 hours per year, unless otherwise approved by the Department. List Hazardous Air Pollutants (HAP) & Toxic Air Pollutants (TAPs) in Table 2-I. Unit & stack numbering must be consistent throughout the application package. Fill all cells in this table with the emission numbers or a "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expressed to at least 2 decimal points (e.g. 0.41, 1.41, or 1.41E-4).

TL. M.N.	N	Ox	C	0	V	OC	SC	Ox	PI	M1	PM	[10 ¹	PM	2.5 ¹	Н	$_2S$	Le	ad
Unit No.	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
ENG1	4.13	18.11	33.62	147.26	14.32	62.72	0.43	1.88	0.39	1.69	0.39	1.69	0.39	1.69	-	-	-	-
ENG2	4.13	18.11	33.62	147.26	14.32	62.72	0.43	1.88	0.39	1.69	0.39	1.69	0.39	1.69	-	-	-	-
ENG3	4.13	18.11	33.62	147.26	14.32	62.72	0.43	1.88	0.39	1.69	0.39	1.69	0.39	1.69	-	-	-	-
ENG4	4.13	18.11	33.62	147.26	14.32	62.72	0.43	1.88	0.39	1.69	0.39	1.69	0.39	1.69	-	-	-	-
ENG5	4.13	18.11	33.62	147.26	14.32	62.72	0.43	1.88	0.39	1.69	0.39	1.69	0.39	1.69	-	-	-	-
ENG6	4.13	18.11	33.62	147.26	14.32	62.72	0.43	1.88	0.39	1.69	0.39	1.69	0.39	1.69	-	-	-	-
ENG7	4.13	18.11	33.62	147.26	14.32	62.72	0.43	1.88	0.39	1.69	0.39	1.69	0.39	1.69	-	-	-	-
ENG8	4.13	18.11	33.62	147.26	14.32	62.72	0.43	1.88	0.39	1.69	0.39	1.69	0.39	1.69	-	-	-	-
ENG9	4.13	18.11	33.62	147.26	14.32	62.72	0.43	1.88	0.39	1.69	0.39	1.69	0.39	1.69	-	-	-	-
ENG11	1.90	8.33	8.91	39.04	6.06	26.56	0.14	0.59	0.12	0.53	0.12	0.53	0.12	0.53	-	-	-	-
ENG12	1.90	8.33	8.91	39.04	6.06	26.56	0.14	0.59	0.12	0.53	0.12	0.53	0.12	0.53	-	-	-	-
HTR1	0.11	0.50	0.10	0.42	0.01	0.03	0.01	0.04	0.01	0.04	0.01	0.04	0.01	0.04	-	-	-	-
RB1	0.31	1.34	0.26	1.13	0.02	0.07	0.03	0.12	0.02	0.10	0.02	0.10	0.02	0.10	-	-	-	-
RB2	0.31	1.34	0.26	1.13	0.02	0.07	0.03	0.12	0.02	0.10	0.02	0.10	0.02	0.10	-	-	-	-
RB3	0.31	1.34	0.26	1.13	0.02	0.07	0.03	0.12	0.02	0.10	0.02	0.10	0.02	0.10	-	-	-	-
FL1-FL3 Pilot	0.67	2.94	1.34	5.86	0.98	4.29	0.01	0.02	0.03	0.13	0.03	0.13	0.03	0.13	-	-	-	-
FL1-FL3							Emissions	are not rou	ted to flai	re in uncoi	ntrolled so	enario.						
Norm																		
FL1-FL3 SSM				_	-		Emissions	are not rou	ited to flai	re in uncoi	ntrolled so	enario.		_	-	_		-
SKT1	-	-	-	-	13.83	60.58	-	-	-	-	-	-	-	-	-	-	-	-
SKT2	-	-	-	-	13.83	60.58	-	-	-	-	-	-	-	-	-	-	-	-
OT1	-	-	-	-	128.38	290.48	-	-	-	-	-	-	-	-	-	-	-	-
OT2	-	-	-	-	128.38	290.48	-	-	-	-	-	-	-	-	-	-	-	-
OT3	-	-	-	-	128.38	290.48	-	-	-	-	-	-	-	-	-	-	-	-
OT4	-	-	-	-	128.38	290.48	-	-	-	-	-	-	-	-	-	-	-	-
WT1	-	-	-	-	0.50	2.20	-	-	-	-	-	-	-	-	-	-	-	-
WT2	-	-	-	-	0.50	2.20	-	-	-	-	-	-	-	-	-	-	-	-
DEHY1	-	-	-	-	29.63	129.79	-	-	-	-	-	-	-	-	-	-	-	-
DEHY2	-	-	-	-	29.63	129.79	-	-	-	-	-	-	-	-	-	-	-	-
DEHY3	-	-	-	-	29.63	129.79	-	-	-	-	-	-	-	-	-	-	-	-
LPS	-	-	-	-	343.16	173.88	-	-	-	-	-	-	-	-	-	-	-	-
LOAD	-	-	-	-	62.76	10.28	-	-	-	-	-	-	-	-	-	-	-	-
FUG	-	-	-	-	2.48	10.87	-	-	-	-	-	-	-	-	-	-	-	-
SSM	-	-	-	-	-	10.00	-	-	-	-	-	-	-	-	-	-	-	-
ROAD	-	-	-	-	-	-	-	-	0.15	0.02	0.15	0.02	0.15	0.02	-	-	-	-
T. ()	42.71	107.06	222 (1	1412.05	1101 53	2404.00	4.00	10.54			2.02	16.72	2.02	16.72				
Totals	42.71	187.06	322.61	1413.05	1181.52	2494.00	4.23	18.54	-	-	3.82	16.73	3.82	16.73	-	-	-	-

¹ Condensable Particulate Matter: Include condensable particulate matter emissions for PM10 and PM2.5 if the source is a combustion source. Do not include condensable particulate matter for PM unless PM is set equal to PM10 and PM2.5. Particulate matter (PM) is not subject to an ambient air quality standard, but it is a regulated air pollutant under PSD (20.2.74 NMAC) and Title V (20.2.70 NMAC).

Table 2-E: Requested Allowable Emissions

Unit & stack numbering must be consistent throughout the application package. Fill all cells in this table with the emission numbers or a "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expected. Numbers shall be expressed to at least 2 decimal points (e.g. 0.41, 1.41, or 1.41E⁻⁴).

Unit No.	N	Ox	С	0	VC	C	S	Ox	P	M ¹	PM	[10 ¹	PM	2.5 ¹	Н	$_2S$	Le	ead
Unit No.	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
ENG1	4.13	18.11	5.04	22.09	3.87	16.93	0.43	1.88	0.39	1.69	0.39	1.69	0.39	1.69	-	-	-	-
ENG2	4.13	18.11	5.04	22.09	3.87	16.93	0.43	1.88	0.39	1.69	0.39	1.69	0.39	1.69	-	-	-	-
ENG3	4.13	18.11	5.04	22.09	3.87	16.93	0.43	1.88	0.39	1.69	0.39	1.69	0.39	1.69	-	-	-	-
ENG4	4.13	18.11	5.04	22.09	3.87	16.93	0.43	1.88	0.39	1.69	0.39	1.69	0.39	1.69	-	-	-	-
ENG5	4.13	18.11	5.04	22.09	3.87	16.93	0.43	1.88	0.39	1.69	0.39	1.69	0.39	1.69	-	-	-	-
ENG6	4.13	18.11	5.04	22.09	3.87	16.93	0.43	1.88	0.39	1.69	0.39	1.69	0.39	1.69	-	-	-	-
ENG7	4.13	18.11	5.04	22.09	3.87	16.93	0.43	1.88	0.39	1.69	0.39	1.69	0.39	1.69	-	-	-	-
ENG8	4.13	18.11	5.04	22.09	3.87	16.93	0.43	1.88	0.39	1.69	0.39	1.69	0.39	1.69	-	-	-	-
ENG9	4.13	18.11	5.04	22.09	3.87	16.93	0.43	1.88	0.39	1.69	0.39	1.69	0.39	1.69	-	-	-	-
ENG11	1.90	8.33	1.34	5.86	1.64	7.17	0.14	0.59	0.12	0.53	0.12	0.53	0.12	0.53	-	-	-	-
ENG12	1.90																	
HTR1	0.11	0.50 0.10 0.42 0.01 0.03 0.01 0.04 0.01 <th< td=""></th<>																
RB1	0.31	1.34 0.26 1.13 0.02 0.07 0.03 0.12 0.02 0.10 0.02 0.10 -																
RB2	0.31	1.34	0.26	1.13	0.02	0.07	0.03	0.12	0.02	0.10	0.02	0.10	0.02	0.10	-	-	-	-
RB3	0.31	1.34	0.26	1.13	0.02	0.07	0.03	0.12	0.02	0.10	0.02	0.10	0.02	0.10	-	-	-	-
FL1-FL3 Pilot	0.67	2.94	1.34	5.86	0.98	4.29	0.01	0.02	0.03	0.13	0.03	0.13	0.03	0.13	I	-	I	-
FL1-FL3 Norm	1.75	7.36	3.50	14.69	10.98	26.28	0.01	0.05	0.03	0.14	0.03	0.14	0.03	0.14	-	-	I	-
FL1-FL3 SSM	387.69	4.97	773.97	9.92	727.00	10.99	3.18	0.05	15.88	0.19	15.88	0.19	15.88	0.19	-	-	-	-
SKT1								Emissio	ons Repres	sented at F	FL1-FL3							
SKT2								Emissio	ns Repres	sented at F	FL1-FL3							
OT1								Emissio	ns Repres	sented at F	FL1-FL3							
OT2								Emissio	ns Repres	sented at F	FL1-FL3							
OT3								Emissio	ns Repres	sented at F	FL1-FL3							
OT4								Emissio	ons Repres	sented at F	FL1-FL3							
WT1								Emissio	ons Repres	sented at F	FL1-FL3							
WT2								Emissio	ns Repres	sented at F	FL1-FL3							

Table 2-E: Requested Allowable Emissions

Unit & stack numbering must be consistent throughout the application package. Fill all cells in this table with the emission numbers or a "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expected. Numbers shall be expressed to at least 2 decimal points (e.g. 0.41, 1.41, or 1.41E⁻⁴).

Unit No.	N	Ox	С	0	V	DC	S	Ox	P	M^1	PM	[10 ¹	PM	2.5 ¹	Н	$_2S$	Le	ead
Unit No.	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
DEHY1	0.11	0.49	0.22	0.98	0.59	2.60	0.07	0.29	0.00	0.01	0.00	0.01	0.00	0.01	-	-	-	-
DEHY2	0.11	0.49	0.22	0.98	0.59	2.60	0.07	0.29	0.00	0.01	0.00	0.01	0.00	0.01	-	-	-	-
DEHY3	0.11	0.49	0.22	0.98	0.59	2.60	0.07	0.29	0.00	0.01	0.00	0.01	0.00	0.01	-	-	-	-
LPS								Emissio	ons Repres	sented at F	FL1-FL3							
LOAD	-	-	-	-	62.76	10.28	-	-	-	-	-	-	-	-	-	-	-	-
FUG	-	-	-	-	2.48	10.87	-	-	-	-	-	-	-	-	-	-	-	-
SSM	-	-	-	-	-	10.00	-	-	-	-	-	-	-	-	-	-	-	-
ROAD	-	-	-	-	-	-	-	-	0.15	0.02	0.15	0.02	0.15	0.02	-	-	-	-
Totals	432.49	200.87	828.41	247.74	844.10	247.49	7.63	19.52	19.89	17.12	19.89	17.12	19.89	17.12	-	-	-	-

¹Condensable Particulate Matter: Include condensable particulate matter emissions for PM10 and PM2.5 if the source is a combustion source. Do not include condensable particulate matter for PM unless PM is set equal to PM10 and PM2.5. Particulate matter (PM) is not subject to an ambient air quality standard, but it is a regulated air pollutant under PSD (20.2.74 NMAC) and Title V (20.2.70 NMAC).

Table 2-F: Additional Emissions during Startup, Shutdown, and Routine Maintenance (SSM)

This table is intentionally left blank since all emissions at this facility due to routine or predictable startup, shutdown, or scehduled maintenance are no higher than those listed in Table 2-E and a malfunction emission limit is not already permitted or requested. If you are required to report GHG emissions as described in Section 6a, include any GHG emissions during Startup, Shutdown, and/or Scheduled Maintenance (SSM) in Table 2-P. Provide an explanations of SSM emissions in Section 6 and 6a.

All applications for facilities that have emissions during routine our predictable startup, shutdown or scheduled maintenance (SSM)¹, including NOI applications, must include in this table the Maximum Emissions during routine or predictable startup, shutdown and scheduled maintenance (20.2.7 NMAC, 20.2.72.203.A.3 NMAC, 20.2.73.200.D.2 NMAC). In Section 6 and 6a, provide emissions calculations for all SSM emissions reported in this table. Refer to "Guidance for Submittal of Startup, Shutdown, Maintenance Emissions in Permit Applications (https://www.env.nm.gov/adb/permit/adb pol.html) for more detailed instructions. Numbers shall be expressed to at least 2 decimal points (e.g. 0.41, 1.41, or 1.41E-4).

(https://www		Ox		:0		DC		Ox		M^2		110 ²		2.5^2		2S	Le	ead
Unit No.	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr										
SSM	-	-	-	-	-	10.00												
Totals					-	10.00												
I otals					-	10.00												

¹ For instance, if the short term steady-state Table 2-E emissions are 5 lb/hr and the SSM rate is 12 lb/hr, enter 7 lb/hr in this table. If the annual steady-state Table 2-E emissions are 21.9 TPY, and the number of scheduled SSM events result in annual emissions of 31.9 TPY, enter 10.0 TPY in the table below.

² Condensable Particulate Matter: Include condensable particulate matter emissions for PM10 and PM2.5 if the source is a combustion source. Do not include condensable particulate matter for PM unless PM is set equal to PM10 and PM2.5. Particulate matter (PM) is not subject to an ambient air quality standard, but it is a regulated air pollutant under PSD (20.2.74 NMAC) and Title V (20.2.70 NMAC).

Table 2-G: Stack Exit and Fugitive Emission Rates for Special Stacks

□ I have elected to leave this table blank because this facility does not have any stacks/vents that split emissions from a single source or combine emissions from more than one source listed in table 2-A. Additionally, the emission rates of all stacks match the Requested allowable emission rates stated in Table 2-E.

	Serving Unit	N	Ox	C	0	V	DC	S	Ox	Р	М	PN	110	PM	2.5	\Box H ₂ S of	r 🗆 Lead
Stack No.	Number(s) from Table 2-A	lb/hr	ton/yr	lb/hr	ton/yr												
RB1	RB1	0.31	1.34	0.26	1.13	0.02	0.07	0.03	0.12	0.02	0.10	0.02	0.10	-	-	-	-
KD1	DEHY1	0.11	0.49	0.22	0.98	0.59	2.60	0.07	0.29	0.00	0.01	0.00	0.01				
RB2	RB2	0.31	1.34	0.26	1.13	0.02	0.07	0.03	0.12	0.02	0.10	0.02	0.10				
102	DEHY2	0.11	0.49	0.22	0.98	0.59	2.60	0.07	0.29	0.00	0.01	0.00	0.01				
RB3	RB3	0.31	1.34	0.26	1.13	0.02	0.07	0.03	0.12	0.02	0.10	0.02	0.10				
	DEHY3	0.11	0.49	0.22	0.98	0.59	2.60	0.07	0.29	0.00	0.01	0.00	0.01				
																	ļ
																	-
	Totals:	1.26	5.50	1.44	6.33	1.83	8.01	0.28	1.23	0.08	0.34	0.07	0.34				

Use this table to list stack emissions (requested allowable) from split and combined stacks. List Toxic Air Pollutants (TAPs) and Hazardous Air Pollutants (HAPs) in Table 2-I. List all fugitives that are associated with the normal, routine, and non-emergency operation of the facility. Unit and stack numbering must correspond throughout the application package. Refer to Table 2-E for instructions on use of the "-" symbol and on significant figures.

Table 2-H: Stack Exit Conditions

Unit and stack numbering must correspond throughout the application package. Include the stack exit conditions for each unit that emits from a stack, including blowdown venting parameters and tank emissions.

Stack	Serving Unit Number(s)	Orientation	Rain Caps	Height Above	Temp.	Flow	Rate	Moisture by	Velocity	Inside
Number	from Table 2-A	(H-Horizontal V=Vertical)	(Yes or No)	Ground (ft)	(F)	(acfs)	(dscfs)	Volume (%)	(ft/sec)	Diameter (ft)
ENG1	ENG1	V	No	25	809	522.93	Unknown	Unknown	295.92	1.50
ENG2	ENG2	V	No	25	809	522.93	Unknown	Unknown	295.92	1.50
ENG3	ENG3	V	No	25	809	522.93	Unknown	Unknown	295.92	1.50
ENG4	ENG4	V	No	25	809	522.93	Unknown	Unknown	295.92	1.50
ENG5	ENG5	V	No	25	809	522.93	Unknown	Unknown	295.92	1.50
ENG6	ENG6	V	No	25	809	522.93	Unknown	Unknown	295.92	1.50
ENG7	ENG7	V	No	25	809	522.93	Unknown	Unknown	295.92	1.50
ENG8	ENG8	V	No	25	809	522.93	Unknown	Unknown	295.92	1.50
ENG9	ENG9	V	No	25	809	522.93	Unknown	Unknown	295.92	1.50
ENG11	ENG11	V	No	20	997	152.75	Unknown	Unknown	194.49	1.00
ENG12	ENG12	V	No	20	997	152.75	Unknown	Unknown	194.49	1.00
HTR1	HTR1	V	Ν	15	800	5.05	Unknown	Unknown	6.43	0.75
RB1	RB1	V	Ν	15	800	13.47	Unknown	Unknown	7.62	1.00
RB2	RB2	V	Ν	15	800	13.47	Unknown	Unknown	7.62	1.00
RB3	RB3	V	Ν	15	800	13.47	Unknown	Unknown	7.62	1.00
FL1	FL1	V	No	145	1832	0.11	Unknown	Unknown	65.60	0.83
FL2	FL2	V	No	145	1832	0.11	Unknown	Unknown	65.60	0.83
FL3	FL3	V	No	145	1832	0.11	Unknown	Unknown	65.60	0.83

Table 2-I: Stack Exit and Fugitive Emission Rates for HAPs and TAPs

In the table below, report the Potential to Emit for each HAP from each regulated emission unit listed in Table 2-A, only if the entire facility emits the HAP at a rate greater than or equal to one (1) ton per year For each such emission unit, HAPs shall be reported to the nearest 0.1 tpy. Each facility-wide Individual HAP total and the facility-wide Total HAPs shall be the sum of all HAP sources calculated to the nearest 0.1 ton per year. Per 20.2.72.403.A.1 NMAC, facilities not exempt [see 20.2.72.402.C NMAC] from TAP permitting shall report each TAP that has an uncontrolled emission rate in excess of its pounds per hour screening level specified in 20.2.72.502 NMAC. TAPs shall be reported using one more significant figure than the number of significant figures shown in the pound per hour threshold corresponding to the substance. Use the HAP nomenclature as it appears in Section 112 (b) of the 1990 CAAA and the TAP nomenclature as it listed in 20.2.72.502 NMAC. Include tank-flashing emissions estimates of HAPs in this table. For each HAP or TAP listed, fill all cells in this table with the emission numbers or a "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expected or the pollutant is emitted in a quantity less than the threshold amounts described above.

Stack No.	Unit No.(s)	Total	HAPs		ldehyde or 🗆 TAP	n-He ☑ HAP (exane or 🗆 TAP	🗹 HA	zene ▲P or □ ▲P		dehyde or □ TAP		Here	Name	Pollutant e Here or 🗆 TAP	Nam	Pollutant e Here or 🗆 TAP	Name	Pollutant e Here or 🗆 TAP
		lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
ENG1	ENG1	0.53	2.33	0.4	2.0	-	-	-	-	0.1	0.4								
ENG2	ENG2	0.53	2.33	0.4	2.0	-	-	-	-	0.1	0.4								
ENG3	ENG3	0.53	2.33	0.4	2.0	-	-	-	-	0.1	0.4								
ENG4	ENG4	0.53	2.33	0.4	2.0	-	-	-	-	0.1	0.4								
ENG5	ENG5	0.53	2.33	0.4	2.0	-	-	-	-	0.1	0.4								
ENG6	ENG6	0.53	2.33	0.4	2.0	-	-	-	-	0.1	0.4								
ENG7	ENG7	0.53	2.33	0.4	2.0	-	-	-	-	0.1	0.4								
ENG8	ENG8	0.53	2.33	0.4	2.0	-	-	-	-	0.1	0.4								
ENG9	ENG9	0.53	2.33	0.4	2.0	-	-	-	-	0.1	0.4								
ENG11	ENG11	0.36	1.56	0.3	1.4	-	-	-	-	0.0	0.1								
ENG12	ENG12	0.36	1.56	0.3	1.4	-	-	-	-	0.0	0.1								
HTR1	HTR1	2.16E-03	0.01	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0								
RB1	RB1	0.01	0.03	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0								
RB2	RB2	0.01	0.03	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0								
RB3	RB3	0.01	0.03	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0								
FL1-FL3 Pilot	FL1-FL3 Pilot	0.01	0.03	-	-	0.0	0.0	3.9E-04	1.7E-03	-	-								
FL1-FL3 Norm	FL1-FL3 Norm	0.5	1.1	-	-	0.4	0.8	0.0	0.1	-	-								
FL1-FL3 SSM	FL1-FL3 SSM	17.0	0.3	-	-	13.9	0.2	0.7	0.0	-	-								
RB1	DEHY1	0.1	0.2	-	-	0.0	0.1	0.0	0.1	-	-								
RB2	DEHY2	0.1	0.2	-	-	0.0	0.1	0.0	0.1	-	-								
RB3	DEHY3	0.1	0.2	-	-	0.0	0.1	0.0	0.1	-	-								

Stack No.	Unit No.(s)		HAPs		dehyde or 🗆 TAP		exane or 🗆 TAP	🗹 НА	zene ⊾P or □ AP		dehyde or 🗆 TAP		Pollutant Here Or 🗆 TAP	Provide Name			Pollutant Here Or 🗆 TAP	Name	Pollutant e Here or 🗆 TAP
		lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
FL1-FL3	SKT1				Emissi	ons Repres	sented at F	L1-FL3											
FL1-FL3	SKT2				Emissi	ons Repres	sented at F	L1-FL3											
FL1-FL3	OT1		Emissions Represented at FL1-FL3																
FL1-FL3	OT2				Emissi	ons Repres	sented at F	L1-FL3											
FL1-FL3	OT3		Emissions Represented at FL1-FL3																
FL1-FL3	OT4		Emissions Represented at FL1-FL3																
FL1-FL3	WT1				Emissi	ons Repres	sented at F	L1-FL3											
FL1-FL3	WT2				Emissi	ons Repres	sented at F	L1-FL3											
FL1-FL3	LPS				Emissi	ons Repres	sented at F	L1-FL3											
N/A	LOAD	2.6	0.4	-	-	-	-	-	-	-	-								
N/A	FUG	0.3	1.4	-	-	0.3	1.1	0.0	0.1	-	-								
N/A	SSM	-	-	-	-	-	-	-	-	-	-								
ROAD	ROAD	-							-	-	-								
Tot	als:	26.0	26.0 28.1 4.7 20.5 14.6 2.4 0.9 0.5 0.8 3.6																

Table 2-J: Fuel

	Fuel Type (low sulfur Diesel,	Fuel Source: purchased commercial,		Speci	fy Units		
Unit No.	ultra low sulfur diesel, Natural Gas, Coal,)	pipeline quality natural gas, residue gas, raw/field natural gas, process gas (e.g. SRU tail gas) or other	Lower Heating Value (btu/scf)	Hourly Usage (scf)	Annual Usage (mmscf)	% Sulfur % Negligible %	% Ash
ENG1	Natural Gas	Field Gas	1158	33088.9	289.86	Negligible	0
ENG2	Natural Gas	Field Gas	1158	33088.9	289.86	Negligible	0
ENG3	Natural Gas	Field Gas	1158	33088.9	289.86	Negligible	0
ENG4	Natural Gas	Field Gas	1158	33088.9	289.86	Negligible	0
ENG5	Natural Gas	Field Gas	1158	33088.9	289.86	Negligible	0
ENG6	Natural Gas	Field Gas	1158	33088.9	289.86	Negligible	0
ENG7	Natural Gas	Field Gas	1158	33088.9	289.86	Negligible	0
ENG8	Natural Gas	Field Gas	1158	33088.9	289.86	Negligible	0
ENG9	Natural Gas	Field Gas	1158	33088.9	289.86	Negligible	0
ENG11	Natural Gas	Field Gas	1158	10440.9	91.46	Negligible	0
ENG12	Natural Gas	Field Gas	1158	10440.9	91.46	Negligible	0
HTR1	Natural Gas	Field Gas	1158	588.7	5.16	Negligible	0
RB1	Natural Gas	Field Gas	1158	1570.0	13.75	Negligible	0
RB2	Natural Gas	Field Gas	1158	1570.0	13.75	Negligible	0
RB3	Natural Gas	Field Gas	1158	1570.0	13.75	Negligible	0
FL1	Natural Gas	Field Gas	1158	1270.8	11.13	Negligible	0
FL2	Natural Gas	Field Gas	1158	1270.8	11.13	Negligible	0
FL3	Natural Gas	Field Gas	1158	1270.8	11.13	Negligible	0

Table 2-K: Liquid Data for Tanks Listed in Table 2-L

For each tank, list the liquid(s) to be stored in each tank. If it is expected that a tank may store a variety of hydrocarbon liquids, enter "mixed hydrocarbons" in the Composition column for that tank and enter the corresponding data of the most volatile liquid to be stored in the tank. If tank is to be used for storage of different materials, list all the materials in the "All Calculations" attachment, run the newest version of TANKS on each, and use the material with the highest emission rate to determine maximum uncontrolled and requested allowable emissions rate. The permit will specify the most volatile category of liquids that may be stored in each tank. Include appropriate tank-flashing modeling input data. Use additional sheets if necessary. Unit and stack numbering must correspond throughout the application package.

					Vapor	Average Stor	age Conditions	Max Storage Conditions		
Tank No.	SCC Code	Material Name	Composition	Liquid Density (lb/gal)	Vapor Molecular Weight (lb/lb*mol)	Temperature (°F)	True Vapor Pressure (psia)	Temperature (°F)	True Vapor Pressure (psia)	
SKT1	40400311	Produced Water	Produced Water	8.2	53	72.59	11.20	81.88	12.88	
SKT2	40400311	Produced Water	Produced Water	8.2	53	72.59	11.20	81.88	12.88	
OT1	40400311	Condensate	Condensate	6.6	55	66.49	8.66	75.67	10.09	
OT2	40400311	Condensate	Condensate	6.6	55	66.49	8.66	75.67	10.09	
OT3	40400311	Condensate	Condensate	6.6	55	66.49	8.66	75.67	10.09	
OT4	40400311	Condensate	Condensate	6.6	55	66.49	8.66	75.67	10.09	
WT1	40400315	Produced Water	Produced Water	8.2	0	85.02	11.18	94.20	12.83	
WT2	40400315	Produced Water	Produced Water	8.2	0	85.02	11.18	94.20	12.83	

Table 2-L: Tank Data

Include appropriate tank-flashing modeling input data. Use an addendum to this table for unlisted data categories. Unit and stack numbering must correspond throughout the application package. Use additional sheets if necessary. See reference Table 2-L2. Note: 1.00 bbl = 10.159 M3 = 42.0 gal

Date Installed	Materials Stored		Seal Type (refer to Table 2- LR below)	Roof Type (refer to Table 2- LR below)	Cap	acity	Diameter (M)	Vapor Space (M)		blor ble VI-C)	Paint Condition (from Table VI-	Annual Throughput	Turn- overs (per year)
		El (below)	Ele below)	(bbl)	(M ³)			Roof	Shell	C)	(gal/yr)	(per year)	
2019	Produced Water	N/A	FX	1,000	1,590	4.75	9.1	Tan	Tan	Good	3,409,921	81	
TBD	Produced Water	N/A	FX	1,000	1,590	4.75	9.1	Tan	Tan	Good	3,409,921	81	
2019	Condensate	N/A	FX	500	795	3.66	4.9	Tan	Tan	Good	2,515,601	120	
2019	Condensate	N/A	FX	500	795	3.66	4.9	Tan	Tan	Good	2,515,601	120	
2019	Condensate	N/A	FX	500	795	3.66	4.9	Tan	Tan	Good	2,515,601	120	
2019	Condensate	N/A	FX	500	795	3.66	4.9	Tan	Tan	Good	2,515,601	120	
2019	Produced Water	N/A	FX	500	795	3.66	4.9	Tan	Tan	Good	3,294,962	120	
2019	Produced Water	N/A	FX	500	795	3.66	4.9	Tan	Tan	Good	3,294,962	120	
	TBD 2019 2019 2019 2019 2019 2019 2019	TBDProduced Water2019Condensate2019Condensate2019Condensate2019Condensate2019Produced Water	2019Produced WaterN/ATBDProduced WaterN/A2019CondensateN/A2019CondensateN/A2019CondensateN/A2019CondensateN/A2019CondensateN/A2019Produced WaterN/A	2019Produced WaterN/AFXTBDProduced WaterN/AFX2019CondensateN/AFX2019CondensateN/AFX2019CondensateN/AFX2019CondensateN/AFX2019CondensateN/AFX2019Produced WaterN/AFX	2019Produced WaterN/AFX1,000TBDProduced WaterN/AFX1,0002019CondensateN/AFX5002019CondensateN/AFX5002019CondensateN/AFX5002019CondensateN/AFX5002019CondensateN/AFX5002019CondensateN/AFX5002019Produced WaterN/AFX500	Condensate N/A FX 1,000 1,590 TBD Produced Water N/A FX 1,000 1,590 2019 Condensate N/A FX 1,000 1,590 2019 Condensate N/A FX 500 795 2019 Produced Water N/A FX 500 795 2019 Produced Water N/A FX 500 795	Interface Interface <thinterface< th=""> Interface <thinterface< th=""> Interface Interface</thinterface<></thinterface<>	Income Income Income (M ³) (M ³) 2019 Produced Water N/A FX 1,000 1,590 4.75 9.1 TBD Produced Water N/A FX 1,000 1,590 4.75 9.1 2019 Condensate N/A FX 500 795 3.66 4.9 2019 Produced Water N/A FX 500 795 3.66 4.9	Intensity Intensity Intensity (bb) (M³) Intensity Roof 2019 Produced Water N/A FX 1,000 1,590 4.75 9.1 Tan TBD Produced Water N/A FX 1,000 1,590 4.75 9.1 Tan 2019 Condensate N/A FX 500 795 3.66 4.9 Tan 2019 Condensate N/A FX 500 795 3.66 4.9 Tan 2019 Condensate N/A FX 500 795 3.66 4.9 Tan 2019 Condensate N/A FX 500 795 3.66 4.9 Tan 2019 Condensate N/A FX 500 795 3.66 4.9 Tan 2019 Produced Water N/A FX 500 795 3.66 4.9 Tan 2019 Produced Water N/A FX	In outbox/ In outbox/ (bb) (M ³) Image: Constant in the image: Const	IndextryIndextry(bb)(M³)RoofRoofShellC)2019Produced WaterN/AFX1,0001,5904.759.1TanTanGoodTBDProduced WaterN/AFX1,0001,5904.759.1TanTanGood2019CondensateN/AFX5007953.664.9TanTanGood2019CondensateN/AFX5007953.664.9TanTanGood2019CondensateN/AFX5007953.664.9TanTanGood2019CondensateN/AFX5007953.664.9TanTanGood2019Produced WaterN/AFX5007953.664.9TanTanGood2019Produced WaterN/AFX5007953.664.9TanTanGood2019Produced WaterN/AFX5007953.664.9TanTanGood2019Produced WaterN/AFX5007953.664.9TanTanGood	Indexerval 2019Indexerval (bel)(bel)(M³)Indexerval (bel)RoofShellC)(garyi)2019Produced WaterN/AFX1,0001,5904.759.1TanTanGood3,409,921TBDProduced WaterN/AFX1,0001,5904.759.1TanTanGood3,409,9212019CondensateN/AFX5007953.664.9TanTanGood2,515,6012019CondensateN/AFX5007953.664.9TanTanGood2,515,6012019CondensateN/AFX5007953.664.9TanTanGood2,515,6012019CondensateN/AFX5007953.664.9TanTanGood2,515,6012019Produced WaterN/AFX5007953.664.9TanTanGood2,515,6012019Produced WaterN/AFX5007953.664.9TanTanGood2,515,6012019Produced WaterN/AFX5007953.664.9TanTanGood2,515,6012019Produced WaterN/AFX5007953.664.9TanTanGood3,294,9622019Produced WaterN/AFX5007953.664.9TanTanGood <t< td=""></t<>	

Roof Type	Seal Type, W	/elded Tank Seal Type	Seal Type, Rive	Roof, Shell Color	Paint Condition	
FX: Fixed Roof	Mechanical Shoe Seal	Liquid-mounted resilient seal	Vapor-mounted resilient seal	Seal Type	WH: White	Good
IF: Internal Floating Roof	A: Primary only	A: Primary only	A: Primary only	A: Mechanical shoe, primary only	AS: Aluminum (specular)	Poor
EF: External Floating Roof	B: Shoe-mounted secondary	B: Weather shield	B: Weather shield	B: Shoe-mounted secondary	AD: Aluminum (diffuse)	
P: Pressure	C: Rim-mounted secondary	C: Rim-mounted secondary	C: Rim-mounted secondary	C: Rim-mounted secondary	LG: Light Gray	
					MG: Medium Gray	
Note: $1.00 \text{ bbl} = 0.159 \text{ M}$	$^{3} = 42.0$ gal				BL: Black	
					OT: Other (specify)	

Table 2-L2: Liquid Storage Tank Data Codes Reference Table

	Materia	al Processed		Material Produced						
Description	Chemical Composition	Phase (Gas, Liquid, or Solid)	Quantity (specify units)	Description	Chemical Composition	Phase	Quantity (specify units)			
Mixed Hydrocarbons	Oil (BOPD)	Liquid	656	Mixed Hydrocarbons	Oil (BOPD)	Liquid	656			
	Produced Water (BWPD)	Liquid	430		Produced Water (BWPD)	Liquid	430			
	Natural Gas (MMSCFD)	Gas	240		Natural Gas (MMSCFD)	Gas	240			

Table 2-M: Materials Processed and Produced (Use additional sheets as necessary.)

Table 2-N: CEM Equipment

Enter Continuous Emissions Measurement (CEM) Data in this table. If CEM data will be used as part of a federally enforceable permit condition, or used to satisfy the requirements of a state or federal regulation, include a copy of the CEM's manufacturer specification sheet in the Information Used to Determine Emissions attachment. Unit and stack numbering must correspond throughout the application package. Use additional sheets if necessary.

Pollutant(s)	Manufacturer	Model No.	Serial No.	Sample Frequency	Averaging Time	Range	Sensitivity	Accuracy
	Pollutant(s)	Pollutant(s) Manufacturer Image: Image	Pollutant(s)ManufacturerModel No.II	Pollutant(s)ManufacturerModel No.Serial No.Image: Serial No. <td>Pollutan(s)ManufacturerModel No.Serial No.Sample FrequencyII<t< td=""><td>Pollutant(s)ManufacturerModel No.Serial No.Sample Prequency PrequencyAveraging TimeIII<td>Pollutan(s)ManufacturerModel No.Serial No.Sample Prequency TimeAveragin TimeRangeIII<td< td=""><td>Pollutant(s)ManufacturerModel No.Serial No.Sample FrequencyAveraging TimeRangeSensitivityII<</br></td></td<></br></td></td></t<></td>	Pollutan(s)ManufacturerModel No.Serial No.Sample FrequencyII <t< td=""><td>Pollutant(s)ManufacturerModel No.Serial No.Sample Prequency PrequencyAveraging TimeIII<td>Pollutan(s)ManufacturerModel No.Serial No.Sample Prequency TimeAveragin TimeRangeIII<td< td=""><td>Pollutant(s)ManufacturerModel No.Serial No.Sample FrequencyAveraging TimeRangeSensitivityII<</br></td></td<></br></td></td></t<>	Pollutant(s)ManufacturerModel No.Serial No.Sample Prequency PrequencyAveraging TimeIII <td>Pollutan(s)ManufacturerModel No.Serial No.Sample Prequency TimeAveragin TimeRangeIII<td< td=""><td>Pollutant(s)ManufacturerModel No.Serial No.Sample FrequencyAveraging TimeRangeSensitivityII<</br></td></td<></br></td>	Pollutan(s)ManufacturerModel No.Serial No.Sample Prequency TimeAveragin 	Pollutant(s)ManufacturerModel No.Serial No.Sample

Table 2-O: Parametric Emissions Measurement Equipment

Unit and stack numbering must c	prespond throughout the	application package	Use additional sheets if necessary.

Unit No.	Parameter/Pollutant Measured	Location of Measurement	Unit of Measure	Acceptable Range	Frequency of Maintenance	Nature of Maintenance	Method of Recording	Averaging Time
N/A								

Table 2-P: Greenhouse Gas Emissions

Applications submitted under 20.2.70, 20.2.72, & 20.2.74 NMAC are required to complete this Table. Power plants, Title V major sources, and PSD major sources must report and calculate all GHG emissions for each unit. Applicants must report potential emission rates in short tons per year (see Section 6.a for assistance). Include GHG emissions during Startup, Shutdown, and Scheduled Maintenance in this table. For minor source facilities that are not power plants, are not Title V, or are not PSD, there are three options for reporting GHGs 1) report GHGs for each individual piece of equipment; 2) report all GHGs from a group of unit types, for example report all combustion source GHGs as a single unit and all venting GHG as a second separate unit; OR 3) check the following box By checking this box, the applicant acknowledges the total CO2e emissions are less than 75,000 tons per year.

		CO ₂ ton/yr	N2O ton/yr	CH ₄ ton/yr	SF ₆ ton/yr	PFC/HFC ton/yr ²							Total GHG Mass Basis ton/yr ⁴	Total CO ₂ e ton/yr ⁵
Unit No.	GWPs ¹	1	298	25	22,800	footnote 3								
ENG1	mass GHG	22160.71	0.04	0.37									22161.1	
LINGI	CO ₂ e	22160.714	11.028704	9.2522682										22181.0
ENG2	mass GHG	22160.71	0.04	0.37									22161.1	
	CO ₂ e	22160.71	11.03	9.25										22181.0
ENG3	mass GHG	22160.71	0.04	0.37									22161.1	
2.000	CO ₂ e	22160.714	11.028704	9.2522682										22181.0
ENG4	mass GHG	22160.71	0.04	0.37									22161.1	
	CO ₂ e	22160.71	11.03	9.25										22181.0
ENG5	mass GHG	22160.71	0.04	0.37									22161.1	
	CO ₂ e	22160.714	11.028704	9.2522682										22181.0
ENG6	mass GHG	22160.71	0.04	0.37		-							22161.1	
	CO ₂ e	22160.71	11.03	9.25						-			221611	22181.0
ENG7	mass GHG	22160.71	0.04	0.37		-	 						22161.1	
	CO ₂ e	22160.714	11.028704	9.2522682										22181.0
ENG8	mass GHG	22160.71	0.04	0.37									22161.1	
	CO ₂ e	22160.71	11.03	9.25										22181.0
ENG9	mass GHG	22160.71	0.04	0.37		-	 						22161.1	
	CO ₂ e	22160.714	11.028704	9.2522682									684 6 A	22181.0
ENG11	mass GHG	6716.00	0.01	0.12		-							6716.1	(700.4
	CO ₂ e	6716.00	3.48	2.92										6722.4
ENG12	mass GHG	6716.00	0.01	0.12					-				6716.1	(722.4
	CO ₂ e	6716	3.4800165	2.9194769									520.2	6722.4
HTR1	mass GHG	519.93	0.00	0.31									520.2	527.0
	CO ₂ e	519.93	0.22	7.76 0.83									1207.2	527.9
RB1	mass GHG CO2e	1386.47 1386.4718	0.00 0.5755123	20.692649		ł						-	1387.3	1407.7
	mass GHG	1386.47	0.00	0.83									1387.3	1407.7
RB2	CO ₂ e	1386.47	0.58	20.69		1							1307.3	1407.7
	mass GHG	1386.47	0.00	0.83									1387.3	1407.7
RB3	CO ₂ e	1386.4718	0.5755123	20.692649		1							1307.5	1407.7
	mass GHG	5744.12	0.01	6.26									5750.4	1407.7
FL1	CO ₂ e	5744.12	2.42	156.57									5750.4	5903.1
	mass GHG	5744.12	0.01	6.26									5750.4	5905.1
FL2	CO ₂ e	5744.112	2.4227229	156.56876									5750.4	5903.1
	mass GHG	5744.1135	0.01	6.26									5750.4	5705.1
FL3	CO ₂ e	5744.12	2.42	156.57		<u> </u>	<u> </u>			<u> </u>			5750.7	5903.1
	mass GHG	582.01	0.00	0.08									582.1	5705.1
RB1	CO ₂ e	582.00581	0.5168966	1.9812999									502.1	584.5
	mass GHG	582.01	0.00	0.08									582.1	
RB2	CO ₂ e	582.01	0.52	1.98		1	1			1			50211	584.5
	mass GHG	582.01	0.00	0.08									582.1	50115
RB3	CO ₂ e	582.00581	0.5168966	1.9812999										584.5
	mass GHG	236,536	0	25									236,562	
Total	CO ₂ e	236,536	117	635										237,288
	-				CUUD L'S	d in Table A-1 of 4	 	·	L	· · · ·	 			

* GWP (Global Warming Potential): Applicants must use the most current GWPs codified in Table A-1 of 40 CFR part 98. GWPs are subject to change, therefore, applicants need to check 40 CFR 98 to confirm GWP value

² For HFCs or PFCs describe the specific HFC or PFC compound and use a separate column for each individual compound.

³ For each new compound, enter the appropriate GWP for each HFC or PFC compound from Table A-1 in 40 CFR 98.

⁴ Green house gas emissions on amass basis is the ton per year green house gas emission before adjustment with its GWP.

⁵ CO₂e means Carbon Dioxide Equivalent and is calculated by multiplying the TPY mass emissions of the green house gas by its GWP.

⁶ For Heaters/Boilers, CO₂ CH4, N2O emissions calculated according to §98.233(z)(1) and (2).

Tab 3Section 3 - Application Summary

Section 3

Application Summary

The <u>Application Summary</u> shall include a brief description of the facility and its process, the type of permit application, the applicable regulation (i.e. 20.2.72.200.A.X, or 20.2.73 NMAC) under which the application is being submitted, and any air quality permit numbers associated with this site. If this facility is to be collocated with another facility, provide details of the other facility including permit number(s). In case of a revision or modification to a facility, provide the lowest level regulatory citation (i.e. 20.2.72.219.B.1.d NMAC) under which the revision or modification is being requested. Also describe the proposed changes from the original permit, how the proposed modification will affect the facility's operations and emissions, de-bottlenecking impacts, and changes to the facility's major/minor status (both PSD & Title V).

The <u>Process Summary</u> shall include a brief description of the facility and its processes.

<u>Startup, Shutdown, and Maintenance (SSM)</u> routine or predictable emissions: Provide an overview of how SSM emissions are accounted for in this application. Refer to "Guidance for Submittal of Startup, Shutdown, Maintenance Emissions in Permit Applications (http://www.env.nm.gov/aqb/permit/app_form.html) for more detailed instructions on SSM emissions.

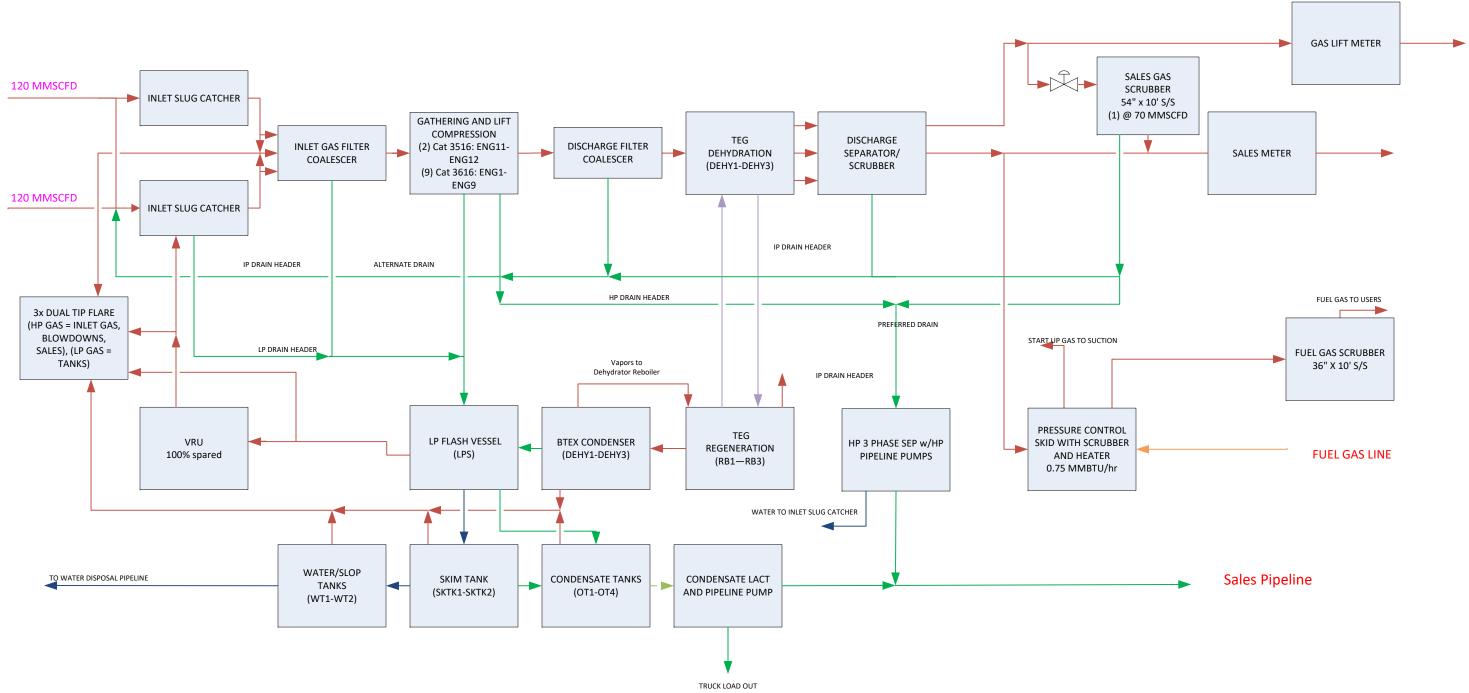
XTO Energy Inc. is planning modification of the Wildcat Compressor Station in Eddy County, NM. The facility is a typical compressor station with natural gas engines, dehydration, storage tanks, and flares. Site construction is planned under NSR Permit 7474. This is a New Source Review permit application being submitted in accordance with 20.2.72 NMAC.

Routine SSM combustion emissions are included with the regular emissions of the facility. SSM emissions from equipment maintenance are routed to either the low pressure or high pressure flare header (FL1/FL2/FL3). SSM-related VOC emissions (tank landings/cleanings) are included at a rate of 10 tons per year per NMAQB guidance. Detailed calculations are included in the application.

The facility is proposing the following modifications:

- 1) Remove HTR2 and HTR3;
- 2) Remove ENG10 and ENG13;
- 3) Increase glycol circulation rate for more conservative approach;
- 4) Update RB1-RB3 heat input to 2.0 MMBtu/hr;
- 5) Increase flare purge gas rates;
- 6) Update tank throughputs;
- 7) Add produced gas flaring:
- 8) Update engine VOC/formaldehyde control efficiencies to 73%;
- 9) Update flare height to 145'.

Tab 4 Section 4 - Process Flow Sheet

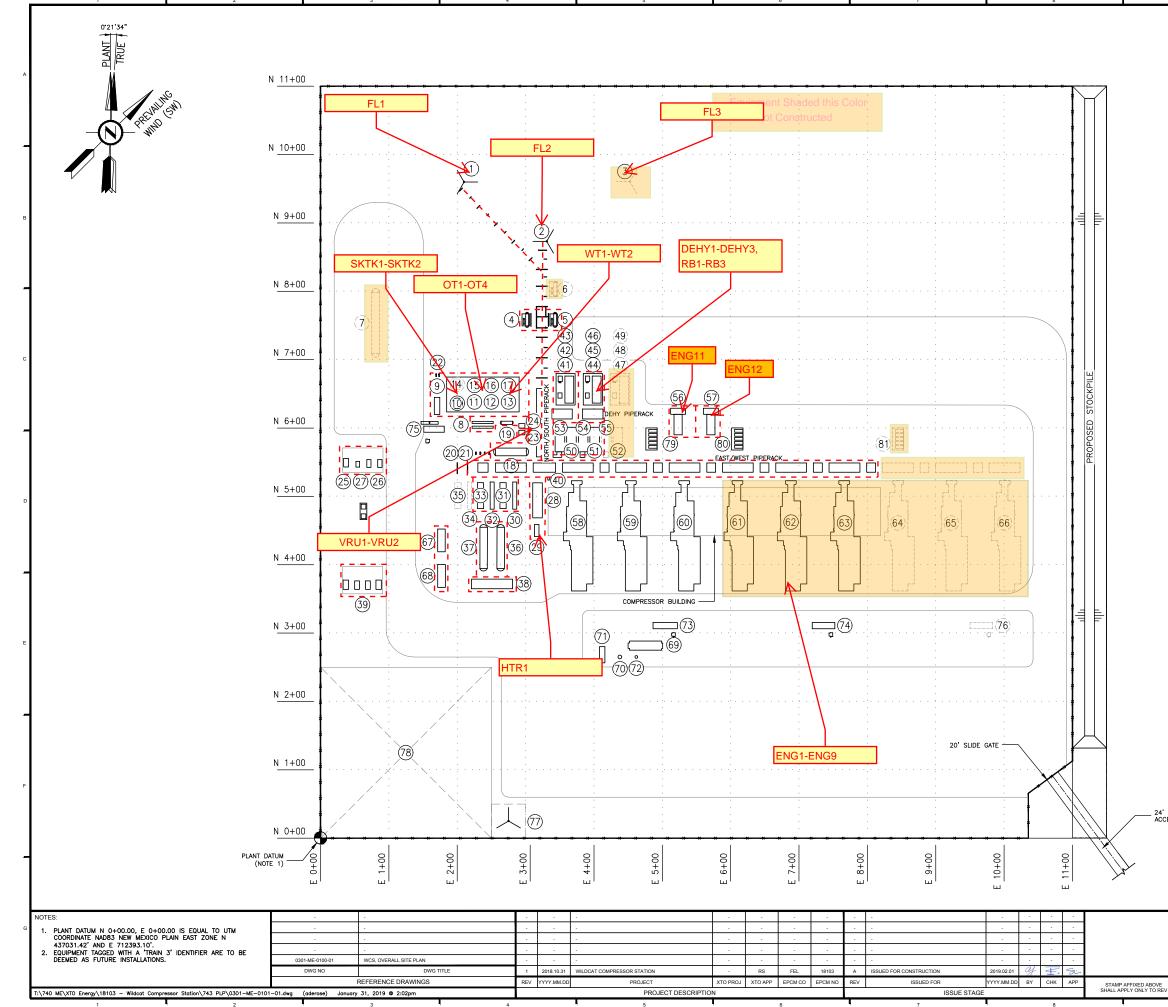

Section 4

Process Flow Sheet

A **process flow sheet** and/or block diagram indicating the individual equipment, all emission points and types of control applied to those points. The unit numbering system should be consistent throughout this application.

A process flow diagram is presented on the following page.

XTO DELAWARE BASIN GEN 1.5 COMPRESSOR STATION


Tab 5Section 5 - Plot Plan Drawn To Scale

Section 5

Plot Plan Drawn To Scale

A <u>plot plan drawn to scale</u> showing emissions points, roads, structures, tanks, and fences of property owned, leased, or under direct control of the applicant. This plot plan must clearly designate the restricted area as defined in UA1, Section 1-D.12. The unit numbering system should be consistent throughout this application.

A proposed plot plan is presented on the following page.

	LEGEND: 1. FL-1505 TR. 1 HP/ 2. FL-2505 TR. 2 HP/		A
	3. FL-3505 TR. 3 HP/ 4. PK-1501 TR. 1 FLA 5. PK-2501 TR. 2 FLA	LP FLARE (FUTURE) RE KNOCKOUT SKID RE KNOCKOUT SKID RE KNOCKOUT SKID (FUTURE) AGE (FUTURE) 'ELINE PUMPS WATER TANK	-
	 13. TK-5054 CONDENSA 14. TK-5061 SKIM TANK 15. TK-5062 PRODUCED 16. TK-5063 CONDENSA 17. TK-5064 CONDENSA 18. PV-5001 L.P. 3-PH 19. PV-5041 H.P. 3-PH 	TE TANK (FUTURE) WATER TANK TE TANK TE TANK ASE SEPARATOR	в
	20. P-5002/03 CONDEN 21. P-5004/05 WATER	SATE TRANSFER PUMPS TRANSFER PUMPS ED WATER PIPELINE PUMPS OVERY UNIT S PIG LAUNCHER	-
	27. PL-4014 CONDENSA 28. PK-7001 FUEL GAS 29. PK-7004 LINE HEAT 30. F-1001 TR. 1 INLET 31. PK-1001A TR. 1 INLET 33. PK-2001A TR. 2 INLET 33. PK-2001A TR.2 INLET	TE PIG LAUNCHER SCRUBBER SKID ER GAS FILTER COALESCER LET FILTER SKID GAS FILTER COALESCER	с
	35. PK-3001A TR. 3 INL 36. PV-0031 TR. 1 INLE 37. PV-0041 TR. 2 INLE 38. PK-0100 INLET HEA 39. PR-0011/12/13/14	IT SLUG CATCHER DER SKID	-
	41. PK-1420 TR. 1 TEG 42. PK-1430 TR. 1 BTE 43. TK-1421 TR. 1 GLY 44. PK-2420 TR. 2 TEG 45. PK-2430 TR. 2 BTE 46. TK-2421 TR. 2 GLY	REGEN SKID REBOILER X SKID COL MAKE-UP TANK REGEN SKID REBOILER X SKID	D
	48. PK-3430 TR. 3 BTE 49. TK-3421 TR. 3 GLY 50. PK-1410 TR. 1 DEF 51. PK-2410 TR. 2 DEF 52. PK-3410 TR. 3 DEF 53. PK-1400 TR. 1 OUT	X SKID (FUTURE) COL MAKE–UP TANK (FUTURE) IY/DISCHARGE SKID IY/DISCHARGE SKID IY/DISCHARGE SKID (FUTURE) LET FILTER SKID (FUTURE)	
	56. C-1040 3 STG. GAS	LET FILTER SKID (FUTURE) SUPPLEMENTAL COMPRESSOR. 1 SUPPLEMENTAL COMPRESSOR. 2 G. GAS COMPRESSOR 1 G. GAS COMPRESSOR 2	E
	65. C-3020 TR. 3 4 ST 66. C-3030 TR. 3 4 ST	G. GAS COMPRESSOR 2 G. GAS COMPRESSOR 3 G. GAS COMPRESSOR 1 (FUTURE) G. GAS COMPRESSOR 2 (FUTURE) G. GAS COMPRESSOR 3 (FUTURE)	
	67. PK-4002 LIFT GAS 3 68. PK-4020 SALES GAS 69. PK-6001 INSTRUMEN 70. PV-6002 INSTRUMEN 71. PV-6003 START AIR 72. PV-6004 INSTRUMEN 73. PDC-1000 TR. 1 MC	S SCRUBBER SKID IT AIR SKID IT AIR RECEIVER VOLUME TANK IT AIR WET TANK CC BUILDING	-
_ 24' WIDE ACCESS ROAD	74. PDC-2000 TR. 2 MM 75. PDC-4000 MCC BL 76. PDC-3000 TR. 3 MC 77. SCADA TOWER 78. SUB STATION 79. TK-1601/02/03/04 80. TK-2601/02/03/04	IILDING IC BUILDING (FUTURE) /05 TR. 1 DAY TANKS	F
		/05 TR. 3 DAY TANKS (FUTURE) <u>GRAPHIC SCALE</u>	╞
		XTO FACILITY: WILDCAT COMPRESSOR STATION	\mathbf{I}
	ENERGY	WILDCAT COMPRESSOR STATION FACILITY PLOT PLAN	G

CALE: 1/64"=1' DWG: 0301-ME-0101-01

REV: 1A

Tab 6Section 6 - All Calculations

Section 6

All Calculations

Show all calculations used to determine both the hourly and annual controlled and uncontrolled emission rates. All calculations shall be performed keeping a minimum of three significant figures. Document the source of each emission factor used (if an emission rate is carried forward and not revised, then a statement to that effect is required). If identical units are being permitted and will be subject to the same operating conditions, submit calculations for only one unit and a note specifying what other units to which the calculations apply. All formulas and calculations used to calculate emissions must be submitted. The "Calculations" tab in the UA2 has been provided to allow calculations to be linked to the emissions tables. Add additional "Calc" tabs as needed. If the UA2 or other spread sheets are used, all calculation spread sheet(s) shall be submitted electronically in Microsoft Excel compatible format so that formulas and input values can be checked. Format all spread sheets are not used, provide the original formulas with defined variables. Additionally, provide subsequent formulas showing the input values for each variable in the formula. All calculations, including those calculations are imbedded in the Calc tab of the UA2 portion of the application, the printed Calc tab(s), should be submitted under this section.

Tank Flashing Calculations: The information provided to the AQB shall include a discussion of the method used to estimate tank-flashing emissions, relative thresholds (i.e., NOI, permit, or major source (NSPS, PSD or Title V)), accuracy of the model, the input and output from simulation models and software, all calculations, documentation of any assumptions used, descriptions of sampling methods and conditions, copies of any lab sample analysis. If Hysis is used, all relevant input parameters shall be reported, including separator pressure, gas throughput, and all other relevant parameters necessary for flashing calculation.

SSM Calculations: It is the applicant's responsibility to provide an estimate of SSM emissions or to provide justification for not doing so. In this Section, provide emissions calculations for Startup, Shutdown, and Routine Maintenance (SSM) emissions listed in the Section 2 SSM and/or Section 22 GHG Tables and the rational for why the others are reported as zero (or left blank in the SSM/GHG Tables). Refer to "Guidance for Submittal of Startup, Shutdown, Maintenance Emissions in Permit Applications (http://www.env.nm.gov/aqb/permit/app_form.html) for more detailed instructions on calculating SSM emissions. If SSM emissions are greater than those reported in the Section 2, Requested Allowables Table, modeling may be required to ensure compliance with the standards whether the application is NSR or Title V. Refer to the Modeling Section of this application for more guidance on modeling requirements.

Glycol Dehydrator Calculations: The information provided to the AQB shall include the manufacturer's maximum design recirculation rate for the glycol pump. If GRI-Glycalc is used, the full input summary report shall be included as well as a copy of the gas analysis that was used.

Road Calculations: Calculate fugitive particulate emissions and enter haul road fugitives in Tables 2-A, 2-D and 2-E for:

- 1. If you transport raw material, process material and/or product into or out of or within the facility and have PER emissions greater than 0.5 tpy.
- 2. If you transport raw material, process material and/or product into or out of the facility more frequently than one round trip per day.

Significant Figures:

A. All emissions standards are deemed to have at least two significant figures, but not more than three significant figures.

B. At least 5 significant figures shall be retained in all intermediate calculations.

C. In calculating emissions to determine compliance with an emission standard, the following rounding off procedures shall be used:

- (1) If the first digit to be discarded is less than the number 5, the last digit retained shall not be changed;
- (2) If the first digit discarded is greater than the number 5, or if it is the number 5 followed by at least one digit other than the number zero, the last figure retained shall be increased by one unit; and
- (3) If the first digit discarded is exactly the number 5, followed only by zeros, the last digit retained shall be rounded upward if it is an odd number, but no adjustment shall be made if it is an even number.
- (4) The final result of the calculation shall be expressed in the units of the standard.

Control Devices: In accordance with 20.2.72.203.A(3) and (8) NMAC, 20.2.70.300.D(5)(b) and (e) NMAC, and 20.2.73.200.B(7) NMAC, the permittee shall report all control devices and list each pollutant controlled by the control device

XTO Energy Inc.

Wildcat Compressor Station

regardless if the applicant takes credit for the reduction in emissions. The applicant can indicate in this section of the application if they chose to not take credit for the reduction in emission rates. For notices of intent submitted under 20.2.73 NMAC, only uncontrolled emission rates can be considered to determine applicability unless the state or federal Acts require the control. This information is necessary to determine if federally enforceable conditions are necessary for the control device, and/or if the control device produces its own regulated pollutants or increases emission rates of other pollutants.

Caterpillar 3616TA (E-1 to E-9) and 3516TA (E-11 to E-12)

Emission factors for nitrogen oxides (NOx), carbon monoxide (CO), formaldehyde, and volatile organic compounds (VOC) are based on manufacturer's data. Emissions of particulate matter (PM/PM_{10} and $PM_{2.5}$) were calculated using AP-42 Table 3.2-3 factors. PM_{10} and $PM_{2.5}$ emissions are set equal to PM emissions. SO₂ emissions are based on the units' fuel consumption and a sulfur content of 5 grains per 100 standard cubic feet (5 gr/100 scf). Hazardous Air Pollutants (HAPs) except for formaldehyde were calculated using AP-42 factors.

Line Heater (HTR1) and Glycol Regenerator Heaters (RB1 to RB3)

Emission of NOx, CO, VOC, HAP, and $PM/PM_{10}/PM_{2.5}$ are based on AP-42 Table 3.2-3 emission factors. PM_{10} and $PM_{2.5}$ emissions are set equal to PM emissions. SO₂ emissions were based on the unit's fuel consumption and a maximum sulfur content of 5 grains per 100 standard cubic feet (5 gr/100 scf).

SSM/Emergency Flares (FL1 – FL3)

The facility will use three (3) dual-tip flares. NOx and CO emissions are based on factors from the Texas Commission on Environmental Quality (TCEQ) publication RG-360A/09. VOC emissions were calculated using a material balance and the manufacturer's guaranteed destruction efficiency (98%). Since gas can be routed to any or all of the flares, they are illustrated as one combine emission point. The flares have a control efficiency of 98%, with manufacturer documentation provided in Section 7 of the application. SSM activities routed to the flares could include process vessel purging and maintenance blowdowns for process equipment, high pressure gas flaring, and low pressure separator gas during VRU downtime. Tank vapors and 2% of the low pressure separator gas not collected by the VRU are continuously routed to the low pressure side of the flare.

Triethylene Glycol Dehydrators (DEHY1-DEHY3)

Emissions from the dehydrators are calculated using BR&E ProMax simulation software. Flash tank vapors are routed back to mixing with the inlet gas. Each dehydrator is equipped with a condenser. Condensed liquids are routed to the skim tank and any remaining gas is burned in the reboilers (RB1-RB3). The emissions being released at RB1-RB3 from the dehydration process (and not direct fuel combustion) are represented as a separate emission point (DEHY1-DEHY3).

Storage Tanks (SKT1-SKT2, OT1-OT4, WT1-WT2)

Flashing, working and breathing emissions from the skim tank, oil tanks, and water tanks were calculated using BR&E ProMax simulation software. Emissions from the tanks are controlled using FL1-FL3. The simulation reports are included in Section 7.

Truck Loading (LOAD)

Uncontrolled emissions from oil loading of trucks were calculated using Equation 1 of AP-42 Section 5.2. Maximum slop oil loading rates are calculated using 656 BOPD. Relevant portions of AP-42 Section 5.2 are included in Section 7. Oil truck loading will be uncontrolled.

Piping Component Fugitive Emissions (FUG)

Facility fugitive emissions were calculated using TCEQ's "Air Permit Technical Guidance for Chemical Sources – Fugitive Guidance" document, and conservatively assumed component counts. Reduction efficiencies were obtained from EPA's Protocol for Equipment Leak Emission Estimates (EPA-453/R-95-017). Relevant portions of the TCEQ document are included in Section 7.

Startup, Shutdown, and Maintenance (SSM)

SSM emissions not routed to the flare system were assumed equal to the flat 10 tpy of VOC per State guidance. Specific SSM emissions include small equipment blowdowns, tank emptying and refilling, tank roof landing, and miscellaneous activities. Other SSM emissions are routed to the flare and calculated in accordance with the flare methodology above.

Haul Road Fugitive Emissions

Fugitive haul road emissions were calculated using Equations 1a and 2 of AP-42 Section 13.2.2. Relevant portions of AP-42 Section 13.2.2 are included in Section 7.

Section 6.a

Green House Gas Emissions

(Submitting under 20.2.70, 20.2.72 20.2.74 NMAC)

Title V (20.2.70 NMAC), Minor NSR (20.2.72 NMAC), and PSD (20.2.74 NMAC) applicants must estimate and report greenhouse gas (GHG) emissions to verify the emission rates reported in the public notice, determine applicability to 40 CFR 60 Subparts, and to evaluate Prevention of Significant Deterioration (PSD) applicability. GHG emissions that are subject to air permit regulations consist of the sum of an aggregate group of these six greenhouse gases: carbon dioxide (CO₂), nitrous oxide (N₂O), methane (CH₄), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride (SF₆).

Calculating GHG Emissions:

1. Calculate the ton per year (tpy) GHG mass emissions and GHG CO2e emissions from your facility.

2. GHG mass emissions are the sum of the total annual tons of greenhouse gases without adjusting with the global warming potentials (GWPs). GHG CO₂e emissions are the sum of the mass emissions of each individual GHG multiplied by its GWP found in Table A-1 in 40 CFR 98 <u>Mandatory Greenhouse Gas Reporting</u>.

3. Emissions from routine or predictable start up, shut down, and maintenance must be included.

4. Report GHG mass and GHG CO₂e emissions in Table 2-P of this application. Emissions are reported in <u>short</u> tons per year and represent each emission unit's Potential to Emit (PTE).

5. All Title V major sources, PSD major sources, and all power plants, whether major or not, must calculate and report GHG mass and CO2e emissions for each unit in Table 2-P.

6. For minor source facilities that are not power plants, are not Title V, and are not PSD there are three options for reporting GHGs in Table 2-P: 1) report GHGs for each individual piece of equipment; 2) report all GHGs from a group of unit types, for example report all combustion source GHGs as a single unit and all venting GHGs as a second separate unit; 3) or check the following \Box By checking this box, the applicant acknowledges the total CO2e emissions are less than 75,000 tons per year.

Sources for Calculating GHG Emissions:

- Manufacturer's Data
- AP-42 Compilation of Air Pollutant Emission Factors at http://www.epa.gov/ttn/chief/ap42/index.html
- EPA's Internet emission factor database WebFIRE at http://cfpub.epa.gov/webfire/
- 40 CFR 98 <u>Mandatory Green House Gas Reporting</u> except that tons should be reported in short tons rather than in metric tons for the purpose of PSD applicability.
- API Compendium of Greenhouse Gas Emissions Methodologies for the Oil and Natural Gas Industry. August 2009 or most recent version.

• Sources listed on EPA's NSR Resources for Estimating GHG Emissions at http://www.epa.gov/nsr/clean-air-act-permitting-greenhouse-gases:

Global Warming Potentials (GWP):

Applicants must use the Global Warming Potentials codified in Table A-1 of the most recent version of 40 CFR 98 Mandatory Greenhouse Gas Reporting. The GWP for a particular GHG is the ratio of heat trapped by one unit mass of the GHG to that of one unit mass of CO_2 over a specified time period.

"Greenhouse gas" for the purpose of air permit regulations is defined as the aggregate group of the following six gases: carbon dioxide, nitrous oxide, methane, hydrofluorocarbons, perfluorocarbons, and sulfur hexafluoride. (20.2.70.7 NMAC, 20.2.74.7 NMAC). You may also find GHGs defined in 40 CFR 86.1818-12(a).

Metric to Short Ton Conversion:

Short tons for GHGs and other regulated pollutants are the standard unit of measure for PSD and title V permitting programs. 40 CFR 98 <u>Mandatory Greenhouse Reporting</u> requires metric tons.

1 metric ton = 1.10231 short tons (per Table A-2 to Subpart A of Part 98 – Units of Measure Conversions)

WILDCAT COMPRESSOR STATION

FACILITY EMISSIONS SUMMARY

				1	EMISSIONS S	UMMARY TAI	BLE								
EMISSION SOURCE DESCRIPTION	FACILITY IDENTIFICATION	STACK NUMBER	Ν	Ox	(20	VC (INCLUE	DC DES HAPs)	s	O ₂	PM	10 & 2.5	H	APs	CO2e
	NUMBER		lb/hr	ТРҮ	lb/hr	ТРҮ	lb/hr	ТРҮ	lb/hr	ТРҮ	lb/hr	ТРҮ	lb/hr	ТРҮ	ТРҮ
Caterpillar G3616 Natural Gas Compressor Engine	ENG1	ENG1	4.13	18.11	5.04	22.09	3.87	16.93	0.43	1.88	0.39	1.69	0.53	2.33	22181
Caterpillar G3616 Natural Gas Compressor Engine	ENG2	ENG2	4.13	18.11	5.04	22.09	3.87	16.93	0.43	1.88	0.39	1.69	0.53	2.33	22181
Caterpillar G3616 Natural Gas Compressor Engine	ENG3	ENG3	4.13	18.11	5.04	22.09	3.87	16.93	0.43	1.88	0.39	1.69	0.53	2.33	22181
Caterpillar G3616 Natural Gas Compressor Engine	ENG4	ENG4	4.13	18.11	5.04	22.09	3.87	16.93	0.43	1.88	0.39	1.69	0.53	2.33	22181
Caterpillar G3616 Natural Gas Compressor Engine	ENG5	ENG5	4.13	18.11	5.04	22.09	3.87	16.93	0.43	1.88	0.39	1.69	0.53	2.33	22181
Caterpillar G3616 Natural Gas Compressor Engine	ENG6	ENG6	4.13	18.11	5.04	22.09	3.87	16.93	0.43	1.88	0.39	1.69	0.53	2.33	22181
Caterpillar G3616 Natural Gas Compressor Engine	ENG7	ENG7	4.13	18.11	5.04	22.09	3.87	16.93	0.43	1.88	0.39	1.69	0.53	2.33	22181
Caterpillar G3616 Natural Gas Compressor Engine	ENG8	ENG8	4.13	18.11	5.04	22.09	3.87	16.93	0.43	1.88	0.39	1.69	0.53	2.33	22181
Caterpillar G3616 Natural Gas Compressor Engine	ENG9	ENG9	4.13	18.11	5.04	22.09	3.87	16.93	0.43	1.88	0.39	1.69	0.53	2.33	22181
Caterpillar 3516J TA Natural Gas Compressor Engine	ENG11	ENG11	1.90	8.33	1.34	5.86	1.64	7.17	0.14	0.59	0.12	0.53	0.36	1.56	6722
Caterpillar 3516J TA Natural Gas Compressor Engine	ENG12	ENG12	1.90	8.33	1.34	5.86	1.64	7.17	0.14	0.59	0.12	0.53	0.36	1.56	6722
Fuel Line Heater (0.75 MMBtu/hr)	HTR1	HTR1	0.11	0.50	0.10	0.42	0.01	0.03	0.01	0.04	0.01	0.04	0.002	0.01	528
Glycol Regenator Heater (2.0 MMBtu/hr)	RB1	RB1	0.31	1.34	0.26	1.13	0.02	0.07	0.03	0.12	0.02	0.10	0.006	0.03	1408
Glycol Regenator Reboiler (2.0 MMBtu/hr)	RB2	RB2	0.31	1.34	0.26	1.13	0.02	0.07	0.03	0.12	0.02	0.10	0.006	0.03	1408
Glycol Regenator Reboiler (2.0 MMBtu/hr)	RB3	RB3	0.31	1.34	0.26	1.13	0.02	0.07	0.03	0.12	0.02	0.10	0.006	0.03	1408
Total Flare Pilot/Purge Emissions	FL1-FL3 Pilot	FL1-FL3 Pilot	0.67	2.94	1.34	5.86	0.98	4.29	0.01	0.02	0.03	0.13	0.01	0.03	3519
Total Flare Normal Operations	FL1-FL3 Norm	FL1-FL3 Norm	1.75	7.36	3.50	14.69	10.98	26.28	0.01	0.05	0.03	0.14	0.46	1.09	7958
Total Flare SSM	FL1-FL3 SSM	FL1-FL3 SSM	387.69	4.97	773.97	9.92	727.00	10.99	3.18	0.05	15.88	0.19	16.96	0.27	6232
TEG Dehydrator with Condenser	DEHY1	RB1	0.11	0.49	0.22	0.98	0.59	2.60	0.07	0.29	0.003	0.01	0.05	0.23	585
TEG Dehydrator with Condenser	DEHY2	RB2	0.11	0.49	0.22	0.98	0.59	2.60	0.07	0.29	0.003	0.01	0.05	0.23	585
TEG Dehydrator with Condenser	DEHY3	RB3	0.11	0.49	0.22	0.98	0.59	2.60	0.07	0.29	0.003	0.01	0.05	0.23	585
Skim Tank	SKT1	FL1-FL3		1			•	Emiss	ions Represe	nted at FL1-F	1.3		•	1	<u> </u>
Skim Tank (Backup)	SKT2	FL1-FL3	B Emissions Represented at FL1-FL3												
Condensate Tank	OT1	FL1-FL3	3 Emissions Represented at FL1-FL3												
Condensate Tank	OT2	FL1-FL3						Emiss	ions Represe	nted at FL1-F	L3				

WILDCAT COMPRESSOR STATION

FACILITY EMISSIONS SUMMARY

				1	EMISSIONS S	UMMARY TA	BLE								
EMISSION SOURCE DESCRIPTION	FACILITY IDENTIFICATION	STACK NUMBER	N	Ox		20	V((INCLUE	DC DES HAPs)	s	0 ₂	PM ₁	0 & 2.5	н	APs	CO2e
	NUMBER		lb/hr	ТРҮ	lb/hr	ТРҮ	lb/hr	ТРҮ	lb/hr	ТРҮ	lb/hr	ТРҮ	lb/hr	ТРҮ	ТРҮ
Condensate Tank	OT3	FL1-FL3						Emiss	ions Represe	nted at FL1-F	L3				
Condensate Tank	OT4	FL1-FL3						Emiss	ions Represe	nted at FL1-F	L3				
Produced Water Tank	WT1	FL1-FL3						Emiss	ions Represe	nted at FL1-F	L3				
Produced Water Tank	WT2	FL1-FL3						Emiss	ions Represe	nted at FL1-F	L3				
Low Pressure Separator	LPS	FL1-FL3						Emiss	ions Represe	nted at FL1-F	L3				
Condensate Truck Loading	LOAD	N/A	-	-	-	-	62.76	10.28	-	-	-	-	2.57	0.42	-
Fugitive Emissions	FUG	N/A	-	-	-	-	2.48	10.87	-	-	-	-	0.33	1.42	-
SSM Activities	SSM	N/A	-	-	-	-	-	10.00	-	-	-	-	-	-	-
ROAD EMISSIONS	ROAD	ROAD	-	-	-	-	-	-	-	-	0.15	0.02	-	-	-
				1	1	1	1		т. Т		r r	1	1	Г	
		N	Ox	C	20		OC DES HAPs)	s	O ₂	PM ₁	0 & 2.5	HA	APs	CO2e	
TOTAL FACILITY WID	E EMISSIONS		lb/hr	ТРҮ	lb/hr	TPY	lb/hr	ТРҮ	lb/hr	TPY	lb/hr	TPY	lb/hr	ТРҮ	TPY
			432.49	200.87	828.41	247.74	844.10	247.49	7.63	19.52	19.89	17.12	26.01	28.14	237,288

WILDCAT COMPRESSOR STATION

Methodology for Burner Calculations

Burner Emission Calculations

AP 42 Emission Factors: Tables 1.4-1, 1.4-2, & 1.4-3

Emission Rate_x (lb/hr) = Burner Rating (MMBTU/hr) * EF_x (lb/MMSCF) / 1020 (Btu/scf) * Heating Value of Fuel Gas (BTU/SCF) / 1020 (Btu/scf) + 25%

Annual Emission Rate_x (TPY) = Emission Rate (lb/hr) * 8760 (hour/year) / 2000 (lb/ton)

Mass Balance - SO₂ & H₂S Calculations

 H_2S Mass Flow Rate (lb/hr) = P * V / 10.73 / T * MW_{GAS} * $H_2S_{WEIGHT \%}$ * (1 - DRE)

P = Pressure (psia), V = Fuel Consumed in a hour (ft³/hr), 10.73 = Ideal Gas Constant, T = Temperature (°R)

Uncontrolled H₂S Mass Flow Rate (lb/hr) = P * V / 10.73 / T * MW_{GAS} * H₂S_{WEIGHT %}

SO2 Emission Rate (lb/hr) = Uncontrolled H2S Mass Rate (lb/hr) * SO2 Conversion Efficiency * (MW of SO2 (lb/lb-mol) / MW of H2S (lb/lb-mol))

Annual Emission Rate (TPY) = Emission Rate (lb/hr) * 8760 (hour/year) / 2000 (lb/ton)

MW_{GAS} = Molecular Weight of the Gas, H₂S_{WEIGHT} = Weight Percent of the H₂S in the Fuel Gas, DRE = Burner Combustion Efficiency of H₂S

WILDCAT COMPRESSOR STATION

Methodology for Engine Calculations

Engine Emission Calculations

Manufacturer's Data or NSPS Subpart JJJJ Limit Calculations

Emission Rate_X (lb/hr) = Emission Factor_X (g/hp-hr) * Rated hp / 453.6 (g/lb)

Annual Emission Rate_X (TPY) = Emission Rate (lb/hr) * 8760 (hour/year) / 2000 (lb/ton)

AP 42 Emission Factors

Emission $Rate_X (lb/hr) = Fuel Consumption (MMBTU/hp-hr) * EF_X (lb/MMBTU) * Rated hp$

Annual Emission Rate_x (TPY) = Emission Rate_x (lb/hr) * 8760 (hour/year) / 2000 (lb/ton)

WILDCAT COMPRESSOR STATION

Methodology for Flare Calculations

Flare Calculations

VOC Flare Calculations - Uses the Ideal Gas Law for Mixtures

The mass flow rate of VOCs to the flare were modeled using Promax. The mass rate was then reduced by the destruction efficiency of the flare (98%).

NOx & CO Calculations - TCEQ Emission Factors Used

NOx (lb/day) = Heating Value (BTU/ft³) * EF (lb/MMBTU) * V (ft³/Day) / 10⁶ (BTU/MMBTU)

CO (lb/day) = Heating Value (BTU/ft³) * EF (lb/MMBTU) * V (ft³/Day) / 10⁶ (BTU/MMBTU)

COEF = 0.5496 or 0.2755, NOxEF = 0.138, EF = Emission Factor, V = Volume of Gas in a Day

SO2 & H2S Calculations - Mass Balance

 H_2S Mass Flow Rate (lb/hr) = P * V / 10.73 / T * MW_{GAS} * $H_2S_{WEIGHT \%}$ * (1 - DRE)

P = Pressure (psia), V = Fuel Consumed in a hour (ft³/hr), 10.73 = Ideal Gas Constant, T = Temperature (°R)

Uncontrolled H₂S Mass Flow Rate (lb/hr) = P * V / 10.73 / T * MW_{GAS} * H₂S_{WEIGHT %}

SO2 Emission Rate (lb/hr) = Uncontrolled H2S Mass Rate (lb/hr) * SO2 Conversion Efficiency * (MW of SO2 (lb/lb-mol) / MW of H2S (lb/lb-mol))

Annual Emission Rate (TPY) = Emission Rate (lb/hr) * 8760 (hour/year) / 2000 (lb/ton)

 MW_{GAS} = Molecular Weight of the Gas, $H_2S_{WEIGHT\%}$ = Weight Percent of the H_2S in Gas Stream, DRE = Flare Destruction Efficiency of H_2S in Gas Stream, DRE = Flare Destruct

XTO ENERGY, INC. WILDCAT COMPRESSOR STATION COMPRESSOR ENGINES

									U	ncontrolle	d Emissio	ıs Calc	ulation	s											
					М	anufactı	urer's D	ata		AP-42 Facto	ors														
						g/hp	p-hr ²			lb/MMBtu	3,4				lb/hı	5						tpy ⁵			
Source ID	Unit Description	Annual Hours	Rated HP	MMbtu/hp- hr ¹ (HHV)	NOx	со	voc	нсно	SO ₂	PM _{10 & 2.5}	Acetal- dehyde	NOx	со	voc	нсно	SO_2	PM _{10 & 2.5}	Acetal- dehyde	NOx	со	voc	нсно	SO_2	PM _{10 & 2.5}	Acetal- dehyde
ENG1	Caterpillar G3616 Natural Gas Compressor Engine	8760	5000	0.007664	0.30	3.05	1.27	0.15	0.01121	0.01006	0.00836	4.13	33.62	14.32	1.65	0.43	0.39	0.32	18.11	147.26	62.72	7.24	1.88	1.69	1.40
ENG2	Caterpillar G3616 Natural Gas Compressor Engine	8760	5000	0.007664	0.30	3.05	1.27	0.15	0.01121	0.01006	0.00836	4.13	33.62	14.32	1.65	0.43	0.39	0.32	18.11	147.26	62.72	7.24	1.88	1.69	1.40
ENG3	Caterpillar G3616 Natural Gas Compressor Engine	8760	5000	0.007664	0.30	3.05	1.27	0.15	0.01121	0.01006	0.00836	4.13	33.62	14.32	1.65	0.43	0.39	0.32	18.11	147.26	62.72	7.24	1.88	1.69	1.40
ENG4	Caterpillar G3616 Natural Gas Compressor Engine	8760	5000	0.007664	0.30	3.05	1.27	0.15	0.01121	0.01006	0.00836	4.13	33.62	14.32	1.65	0.43	0.39	0.32	18.11	147.26	62.72	7.24	1.88	1.69	1.40
ENG5	Caterpillar G3616 Natural Gas Compressor Engine	8760	5000	0.007664	0.30	3.05	1.27	0.15	0.01121	0.01006	0.00836	4.13	33.62	14.32	1.65	0.43	0.39	0.32	18.11	147.26	62.72	7.24	1.88	1.69	1.40
ENG6	Caterpillar G3616 Natural Gas Compressor Engine	8760	5000	0.007664	0.30	3.05	1.27	0.15	0.01121	0.01006	0.00836	4.13	33.62	14.32	1.65	0.43	0.39	0.32	18.11	147.26	62.72	7.24	1.88	1.69	1.40
ENG7	Caterpillar G3616 Natural Gas Compressor Engine	8760	5000	0.007664	0.30	3.05	1.27	0.15	0.01121	0.01006	0.00836	4.13	33.62	14.32	1.65	0.43	0.39	0.32	18.11	147.26	62.72	7.24	1.88	1.69	1.40
ENG8	Caterpillar G3616 Natural Gas Compressor Engine	8760	5000	0.007664	0.30	3.05	1.27	0.15	0.01121	0.01006	0.00836	4.13	33.62	14.32	1.65	0.43	0.39	0.32	18.11	147.26	62.72	7.24	1.88	1.69	1.40
ENG9	Caterpillar G3616 Natural Gas Compressor Engine	8760	5000	0.007664	0.30	3.05	1.27	0.15	0.01121	0.01006	0.00836	4.13	33.62	14.32	1.65	0.43	0.39	0.32	18.11	147.26	62.72	7.24	1.88	1.69	1.40
ENG11	Caterpillar 3516J TA Natural Gas Compressor Engine	8760	1380	0.008762	0.50	2.93	1.56	0.40	0.01121	0.01006	0.00836	1.90	8.91	6.06	1.22	0.14	0.12	0.10	8.33	39.04	26.56	5.33	0.59	0.53	0.44
ENG12	Caterpillar 3516J TA	8760	1380	0.008762	0.50	2.93	1.56	0.40	0.01121	0.01006	0.00836	1.90	8.91	6.06	1.22	0.14	0.12	0.10	8.33	39.04	26.56	5.33	0.59	0.53	0.44

¹HHV is based on the Fuel Consumption Rate @ 75% Load from the Gas Engine Rating Pro Report

²The VOC emission factor (g/hp-hr) includes HCHO. Emission factors based on Gas Engine Rating Pro Report @ 100% Load.

 $^3\mathrm{SO}_2$ Emissions were calculated using the emission factor from Table 3.2-2

⁴PM Emission Factor = 7.71E-05 lb/MMBTU + 7.71E-05 lb/MMBTU + 9.91E-03 lb/MMBTU = 0.01006 lb/MMBTU

⁵25% safety factor was added to NOx on all engines. 25% safety factor was added to VOC on 3516. VOC lb/hr rates include acetaldehyde emissions.

 NOx
 CO
 VOC
 HCHO
 SO2

 Total Emissions Per Pollutant (TPY)
 179.60
 1403.38
 617.59
 75.84
 18.13

Acetaldehyde

13.51

PM_{10 & 2.5}

16.26

WILDCAT COMPRESSOR STATION

COMPRESSOR ENGINES

										Co	ontrolle	ed Emis	ssions Cal	culations	6													
					Cont	rol Efficio	angy (9/-)	М	anufactu (w/ co	ntrol)	ata		AP-42 Facto					lb/r	_4						tay	-		
Source ID	Unit Description	Annual Hours	Rated HP	MMbtu/hp- hr ¹ (HHV)	со	VOC	нсон	NOx	g/hp CO		нсно	SO ₂	PM _{10 & 2.5}	u Acetal- dehyde	NOx	со	voc	нсно	sO ₂	PM _{10 & 2.5}	Acetal- dehyde	NOx	со	voc	ф <u></u> нсно		PM _{10 & 2.5}	Acetal- dehyde
ENG1	Caterpillar G3616 Natural Gas Compressor Engine	8760	5000	0.007664	85.0	73.0	73.0	0.30	0.46	0.34	0.04	0.0112	0.01006	0.00836	4.13	5.04	3.87	0.45	0.43	0.39	0.09	18.11	22.09	16.93	1.96	1.88	1.69	0.38
ENG2	Caterpillar G3616 Natural Gas Compressor Engine	8760	5000	0.007664	85.0	73.0	73.0	0.30	0.46	0.34	0.04	0.0112	0.01006	0.00836	4.13	5.04	3.87	0.45	0.43	0.39	0.09	18.11	22.09	16.93	1.96	1.88	1.69	0.38
ENG3	Caterpillar G3616 Natural Gas Compressor Engine	8760	5000	0.007664	85.0	73.0	73.0	0.30	0.46	0.34	0.04	0.0112	0.01006	0.00836	4.13	5.04	3.87	0.45	0.43	0.39	0.09	18.11	22.09	16.93	1.96	1.88	1.69	0.38
ENG4	Caterpillar G3616 Natural Gas Compressor Engine	8760	5000	0.007664	85.0	73.0	73.0	0.30	0.46	0.34	0.04	0.0112	0.01006	0.00836	4.13	5.04	3.87	0.45	0.43	0.39	0.09	18.11	22.09	16.93	1.96	1.88	1.69	0.38
ENG5	Caterpillar G3616 Natural Gas Compressor Engine	8760	5000	0.007664	85.0	73.0	73.0	0.30	0.46	0.34	0.04	0.0112	0.01006	0.00836	4.13	5.04	3.87	0.45	0.43	0.39	0.09	18.11	22.09	16.93	1.96	1.88	1.69	0.38
ENG6	Caterpillar G3616 Natural Gas Compressor Engine	8760	5000	0.007664	85.0	73.0	73.0	0.30	0.46	0.34	0.04	0.0112	0.01006	0.00836	4.13	5.04	3.87	0.45	0.43	0.39	0.09	18.11	22.09	16.93	1.96	1.88	1.69	0.38
ENG7	Caterpillar G3616 Natural Gas Compressor Engine	8760	5000	0.007664	85.0	73.0	73.0	0.30	0.46	0.34	0.04	0.0112	0.01006	0.00836	4.13	5.04	3.87	0.45	0.43	0.39	0.09	18.11	22.09	16.93	1.96	1.88	1.69	0.38
ENG8	Caterpillar G3616 Natural Gas Compressor Engine	8760	5000	0.007664	85.0	73.0	73.0	0.30	0.46	0.34	0.04	0.0112	0.01006	0.00836	4.13	5.04	3.87	0.45	0.43	0.39	0.09	18.11	22.09	16.93	1.96	1.88	1.69	0.38
ENG9	Caterpillar G3616 Natural Gas Compressor Engine	8760	5000	0.007664	85.0	73.0	73.0	0.30	0.46	0.34	0.04	0.0112	0.01006	0.00836	4.13	5.04	3.87	0.45	0.43	0.39	0.09	18.11	22.09	16.93	1.96	1.88	1.69	0.38
ENG11	Caterpillar 3516J TA Natural Gas Compressor Engine	8760	1380	0.008762	85.0	73.0	73.0	0.50	0.44	0.42	0.11	0.0112	0.01006	0.00836	1.90	1.34	1.64	0.33	0.14	0.12	0.03	8.33	5.86	7.17	1.44	0.59	0.53	0.12
ENG12	Caterpillar 3516J TA Natural Gas Compressor Engine	8760	1380	0.008762	85.0	73.0	73.0	0.50	0.44	0.42	0.11	0.0112	0.01006	0.00836	1.90	1.34	1.64	0.33	0.14	0.12	0.03	8.33	5.86	7.17	1.44	0.59	0.53	0.12
² The VOC er	servatively based on the Fuel Consur nission factor (g/hp-hr) includes HCI	IO. Emission f	actors base																			T			1			
	ons were calculated using the emissio n Factor = 7.71E-05 lb/MMBTU + 7.71			03 lb/MMBTU = 0.0	01006 lb/M	MBTU											Total I	Emission	s Per Po	ollutant (TP)	()	NOx 179.60	CO 210.51	VOC 166.75	нсно 20.48	SO ₂	PM _{10 & 2.5} 16.26	Acet- aldehyde 3.65
⁵ 25% safety f	actor was added to NOx on all engine	es. 25% safety f	actor was a	dded to VOC on 3	516. VOC	lb/hr rates ir	nclude acetald	ehyde emi	ssions.							L						179.00	210.01	100.73	20.90	10.13	10.20	5.05

XTO ENERGY, INC. WILDCAT COMPRESSOR STATION COMPRESSOR ENGINES

					Gree	enhouse	Gas Emi	ssions C	alculati	ons								
								-										
					Engine Data		FR 98 tors ²											
					g/hp-hr	lb/M	MBtu			lb/hr					tj	ру		
Source ID	Unit Description	Annual Hours	Rated HP	MMbtu/hp- hr ¹ (HHV)	CO2	CH_4	N ₂ O	CO2	CH4	N ₂ O	CH4 as CO2e	N ₂ O as CO2e	CO2	CH_4	N ₂ O	CH₄ as CO2e	N ₂ O as CO2e	Total CO2e
ENG1	Caterpillar G3616 Natural Gas Compressor Engine	8760	5000	0.007664	459	0.002205	0.000221	5059.52	0.0845	0.0084	2.11	2.52	22160.71	0.37	0.04	9.25	11.03	22181.00
ENG2	Caterpillar G3616 Natural Gas Compressor Engine	8760	5000	0.007664	459	0.002205	0.000221	5059.52	0.0845	0.0084	2.11	2.52	22160.71	0.37	0.04	9.25	11.03	22181.00
ENG3	Caterpillar G3616 Natural Gas Compressor Engine	8760	5000	0.007664	459	0.002205	0.000221	5059.52	0.0845	0.0084	2.11	2.52	22160.71	0.37	0.04	9.25	11.03	22181.00
ENG4	Caterpillar G3616 Natural Gas Compressor Engine	8760	5000	0.007664	459	0.002205	0.000221	5059.52	0.0845	0.0084	2.11	2.52	22160.71	0.37	0.04	9.25	11.03	22181.00
ENG5	Caterpillar G3616 Natural Gas Compressor Engine	8760	5000	0.007664	459	0.002205	0.000221	5059.52	0.0845	0.0084	2.11	2.52	22160.71	0.37	0.04	9.25	11.03	22181.00
ENG6	Caterpillar G3616 Natural Gas Compressor Engine	459	0.002205	0.000221	5059.52	0.0845	0.0084	2.11	2.52	22160.71	0.37	0.04	9.25	11.03	22181.00			
ENG7	Caterpillar G3616 Natural Gas Compressor Engine	8760	5000	0.007664	459	0.002205	0.000221	5059.52	0.0845	0.0084	2.11	2.52	22160.71	0.37	0.04	9.25	11.03	22181.00
ENG8	Caterpillar G3616 Natural Gas Compressor Engine	8760	5000	0.007664	459	0.002205	0.000221	5059.52	0.0845	0.0084	2.11	2.52	22160.71	0.37	0.04	9.25	11.03	22181.00
ENG9	Caterpillar G3616 Natural Gas Compressor Engine	8760	5000	0.007664	459	0.002205	0.000221	5059.52	0.0845	0.0084	2.11	2.52	22160.71	0.37	0.04	9.25	11.03	22181.00
ENG11	Caterpillar 3516J TA Natural Gas Compressor Engine	504	0.002205	0.000221	1533.33	0.0267	0.0027	0.67	0.79	6716.00	0.12	0.01	2.92	3.48	6722.40			
ENG12	Caterpillar 3516J TA Natural Gas Compressor Engine	504	0.002205	0.000221	1533.33	0.0267	0.0027	0.67	0.79	6716.00	0.12	0.01	2.92	3.48	6722.40			
	on the Fuel Consumption Rate @ 75% L	Rating Pro Report		1														
² Warming pote	ential for CH4 is 25. N2O is 298.						Total	Emission	s (TPY)				Tota	al CO2e				
													213	8073.76				

WILDCAT COMPRESSOR STATION

HEATERS - BURNER CALCULATIONS & EXHAUST STACK FLOW & FUEL CONSUMPTION RATES

						CRITERIA	& REGULA	TED POLLU	UTANTS	EMISS	IONS								
						A	P-42 Factors ¹												
						1	lb/MMBtu					lb/hr ²					tpy2		
Source ID		Fuel Gas HHV (BTU/SCF)		Burner Rating (MMBTU/Hr)		СО	VOC	SO ₂	PM _{10 & 2.5}	NOx	СО	VOC	SO ₂	PM _{10 & 2.5}	NOx	СО	VOC	SO ₂	PM _{10 & 2.5}
HTR1	3. Fuel Gas	1,274	8,760	0.75	0.10	0.08	0.01	0.01	0.01	0.11	0.10	0.01	0.01	0.01	0.50	0.42	0.03	0.04	0.04
RB1	3. Fuel Gas	1,274	8,760	2.00	0.10	0.08	0.01	0.01	0.01	0.31	0.26	0.02	0.03	0.02	1.34	1.13	0.07	0.12	0.10
RB2	3. Fuel Gas	1,274	8,760	2.00	0.10	0.08	0.01	0.01	0.01	0.31	0.26	0.02	0.03	0.02	1.34	1.13	0.07	0.12	0.10
RB3	3. Fuel Gas	1,274	8,760	2.00	0.10	0.08	0.01	0.01	0.01	0.31	0.26	0.02	0.03	0.02	1.34	1.13	0.07	0.12	0.10

¹Source: Emission factors from AP-42, Chapter 1, Tables 1.4-1, 1.4-2 and 1.4-3, converted from lb/MMscf to lb/MMbtu by dividing by 1,020 Btu/scf (per AP-42, Chapter 1 guidance). SO2 - 5 gr/100 scf

²Burners - 25% Safety Factor

	Total (trav)	NOx	СО	VOC	SO_2	PM _{10 & 2.5}
4.55 5.60 0.25 0.59 0.54	Total (tpy)	4.53	3.80	0.25	0.39	0.34

WILDCAT COMPRESSOR STATION

HEATERS - BURNER CALCULATIONS & EXHAUST STACK FLOW & FUEL CONSUMPTION RATES

						HAZA	RDOUS AIR P	OLLUTANTS	(HAP) EN	IISSION	5								
							P-42 Factors ¹ lb/MMBtu			<u> </u>		lb/hr²					tpy ²		
Source ID	Promax Stream	Fuel Gas (BTU/SCF)	Operating Hours	Burner Rating (MMBTU/Hr)	Benzene	Toluene	N- Hexane	НСНО	Dichloro benzene	Benzene	Toluene	N- Hexane	НСНО	Dichloro benzene	Benzene	Toluene	N- Hexane	HCHO	Dichloro benzene
HTR1	3. Fuel Gas	1,274	8760	0.75	2.1E-06	3.3E-06	1.8E-03	7.4E-05	1.2E-06	<0.001	<0.001	0.00	<0.001	<0.001	<0.001	<0.001	0.01	<0.001	<0.001
RB1	3. Fuel Gas	1,274	8760	2.00	2.1E-06	3.3E-06	1.8E-03	7.4E-05	1.2E-06	<0.001	<0.001	0.01	<0.001	<0.001	<0.001	<0.001	0.02	0.00	<0.001
RB2	3. Fuel Gas	1,274	8760	2.00	2.1E-06	3.3E-06	1.8E-03	7.4E-05	1.2E-06	<0.001	<0.001	0.01	<0.001	<0.001	<0.001	<0.001	0.02	0.00	<0.001
RB3	3. Fuel Gas	1,274	8760	2.00	2.1E-06	3.3E-06	1.8E-03	7.4E-05	1.2E-06	<0.001	<0.001	0.01	<0.001	<0.001	<0.001	<0.001	0.02	0.00	<0.001

¹ Source: Emission factors from AP-42, Chapter 1, Tables 1.4-1, 1.4-2 and 1.4-3, converted from lb/MMscf to lb/MMbtu by dividing by 1,020 Btu/scf (per AP-42, Chapter 1 guidance). SO2 - 5 gr/100 scf	Total Individual	Benzene	Toluene	N- Hexane	НСНО	Dichloro benzene
² Burners - 25% Safety Factor	HAPS (tpy)	0.00	0.00	0.08	0.00	0.00
	Total Combined HAPS (tpy)	0.09]			

WILDCAT COMPRESSOR STATION

HEATERS - BURNER CALCULATIONS & EXHAUST STACK FLOW & FUEL CONSUMPTION RATES

				Exhaust Stack	and Fuel Consu	mption I
		-	-	-		
Source	HTR1	RB1	RB2	RB3		
Burner Rating (btu/hr)	750000	2000000	2000000	2000000		
Gross Heating Value (btu/scf)	1273.9	1273.9	1273.9	1273.9		
3" eclipse air mixer: (Air/Gas Ratio) ¹	5/1	5/1	5/1	5/1		
Stack Temperature (°F)	1000	1000	1000	1000		
Stack Diameter (ft)	1	1.5	1.5	1.5		
Stack Height (ft)	20	20	20	20		
Fuel Consumption (scf/hr)	589	1570	1570	1570		
Fuel Consumption (scf/day)	14130	37680	37680	37680		
Fuel Consumption (mmscf/year)	5	14	14	14		
Air Injection Rate (scf/hr)	5887	15700	15700	15700		
Total exhaust flow rate @ STP (scf/hr)	6476	17270	17270	17270		
Total exhaust flow rate @ STP (scf/sec)	2	5	5	5		
Total exhaust flow rate @ 1000 °F (acf/hr)	18183	48488	48488	48488		
Total exhaust flow rate @ 1000 °F (acf/sec)	5.05	13	13	13		
Exhaust Stack Exit Velocity @ STP (ft/sec)	2.29	3	3	3		
Exhaust Stack Exit Velocity @ 1000 °F (ft/sec)	6.43	8	8	8		
Total CH4 (ton/yr) ²	0.31	0.83	0.83	0.83		
Total N2O (ton/yr) ²	0.001	0.002	0.002	0.002		
Total CO2 (ton/yr) ²	520	1386	1386	1386		
Total CO2e (ton/yr) ²	527.90	1408	1408	1408		
	1					
	1					
	1					

Promax Stream Name	3. Fuel
Component	Gas Mass Frac
Component	0.00
Triethylene Glycol	
Carbon Dioxide	0.00
Nitrogen	0.02
Methane	0.57
Ethane	0.18
Propane	0.13
Isobutane	0.02
n-Butane	0.05
Isopentane	0.01
n-Pentane	0.01
n-Hexane	0.00
Cyclohexane	0.00
i-C6	0.00
i-C7	0.00
Methylcyclohexane	0.00
Octane	0.00
Nonane	0.00
Benzene	0.00
Toluene	0.00
Ethylbenzene	0.00
o-Xylene	0.00
Hydrogen Sulfide	0.00
Water	0.00
2,2,4-Trimethylpentane	0.00
Decanes Plus	0.00

¹ Air/Gas Ratio is based on the Manufacturer's Data of XTO's typical burner installations

² GHG emissions source is 40 CFR § 98.233 (n), 40 CFR § 98.233(v) for CH4 and CO2 mass emissions, 40 CFR § 98.233(z) for N2O mass emissions,

WILDCAT COMPRESSOR STATION

STORAGE TANK EMISSIONS SUMMARY

							VOC EMI	ISSIONS SUM	IMARY										
								Wo	Uncontrolled king & Breathin				Uncontrollee Flash Losses			Uncon Total En		Contr Total En	
Unit Number	Source Description	Material Type (Oil/Produced Water)	Number of Tanks in Category	Controlled by Unit #	Control Efficiency (%)	Promax Stream Liquid Material	Material Throughput (bbls/day)	Promax Stream (Hrly)	Promax Stream (Annual)	Lb/hr	ТРҮ	Promax Stream (Hrly)	Promax Stream (Annual)	Lb/hr	ТРҮ	Lb/hr	ТРҮ	Lb/hr	ТРҮ
SKT1	Skim Tank	Produced Water	2	FL1-FL3	98	14. Skim Tank Inlet	222.43	8. Skim Tank W&B	8. Skim Tank W&B	4.83	21.13	6. Skim Tank Flash Gas	6. Skim Tank Flash Gas	9.01	39.44	13.83	60.58	0.28	1.21
SKT2	Skim Tank (Backup)	Produced Water	2	FL1-FL3	98	14. Skim Tank Inlet	222.43	8. Skim Tank W&B	8. Skim Tank W&B	4.83	21.13	6. Skim Tank Flash Gas	6. Skim Tank Flash Gas	9.01	39.44	13.83	60.58	0.28	1.21
OT1	Condensate Tank	Condensate	4	FL1-FL3	98	11. Condensate Sales Liquid	164.10	10. Condensate Tank W&B	10. Condensate Tank W&B	3.53	15.48	22. Condensate Flash Losses Hrly	7. Condensate Tank Flash Gas	124.84	275.00	128.38	290.48	2.57	5.81
OT2	Condensate Tank	Condensate	4	FL1-FL3	98	11. Condensate Sales Liquid	164.10	10. Condensate Tank W&B	10. Condensate Tank W&B	3.53	15.48	22. Condensate Flash Losses Hrly	7. Condensate Tank Flash Gas	124.84	275.00	128.38	290.48	2.57	5.81
OT3	Condensate Tank	Condensate	4	FL1-FL3	98	11. Condensate Sales Liquid	164.10	10. Condensate Tank W&B	10. Condensate Tank W&B	3.53	15.48	22. Condensate Flash Losses Hrly	7. Condensate Tank Flash Gas	124.84	275.00	128.38	290.48	2.57	5.81
OT4	Condensate Tank	Condensate	4	FL1-FL3	98	11. Condensate Sales Liquid	164.10	10. Condensate Tank W&B	10. Condensate Tank W&B	3.53	15.48	22. Condensate Flash Losses Hrly	7. Condensate Tank Flash Gas	124.84	275.00	128.38	290.48	2.57	5.81
WT1	Produced Water Tank	Produced Water	2	FL1-FL3	98	12. Produced Water Liquid	214.94	9. Water Tank W&B	9. Water Tank W&B	0.50	2.20	5. Water Tank Flash Gas	5. Water Tank Flash Gas	0.00	0.00	0.50	2.20	0.01	0.04
WT2	Produced Water Tank	Produced Water	2	FL1-FL3	98	12. Produced Water Liquid	214.94	9. Water Tank W&B	9. Water Tank W&B	0.50	2.20	5. Water Tank Flash Gas	5. Water Tank Flash Gas	0.00	0.00	0.50	2.20	0.01	0.04
			Storage Tank E	missions						24.79	108.58			517.39	1178.89	542.18	1287.46	10.84	25.75
L								I	1	I	I	1							

XTO ENERGY, INC. WILDCAT COMPRESSOR STATION OIL TRUCK LOADING LOSSES - UNCONTROLLED

Truck Loading Loss	es Calculations						
Promax Stream Production	11. Condensate Sa	ales Liquid					
Promax Stream Emissions	10. Condensate T	ank W&B					
Controlled/Uncontrolled	UNCONTRO	LLED					
Operating Schedule ^c	120	Day/Year					
Condensate Production	656	bbls / Day					
Promax Repo	rt Results						
LL= 12.46 * SPM/1	C * (1-EFF/100)						
5	aturation Factor (S) =	0	.6				
Average True Vapor Pressure	of liquid loaded (P) ^a =	8.	66				
Max True Vapor Pressure	of liquid loaded (P) ^a =	10	.09				
Average Temperature of bulk liquid le	baded in Rankin $(T)^a$ =	526	5.16				
Max Temperature of bulk liquid le	baded in Rankin $(T)^a$ =	535	5.34				
Mo	Molecular Weight (M) ^a =						
Control Efficiency * Collec	tion Efficiency (EFF)=	()				
Hydroca	bon Content (%wt) ^a =	99	.98				
	/OC Content (wt%) ^a =	92	.47				
	HAP Conent (wt%) ^a =	3.	79				
Average Uncontrolled LL (lb Total HC	/ bbl Throughput) ^b =	0.2	822				
Average Uncontrolled LL (lb VOC	/ bbl Throughput) ^b =	0.2	610				
Max Uncontrolled LL (lb Total HC		0.3	231				
Max Uncontrolled LL (lb VOC	/ bbl Throughput) ^b =	0.2	989				
Estimated Thro	ughput (bbls/Year) =	782	766				
Truck Loadi	ng Rate (bbls/hour) =	22	10				
Estimated # of Loads (Approx	imately 1 hr/Load) =	32	75				
		116 / 1	TPY				
Total Hydrocarbon Emissions		lb/hr					
		67.86	11.11				
Total VOC Emissions		lb/hr	TPY				
		62.76	10.28				

Total HAP Emissions

lb/hr

2.57

TPY

0.42

XTO ENERGY, INC. WILDCAT COMPRESSOR STATION OIL TRUCK LOADING LOSSES - UNCONTROLLED

Component		Total Speciated Emitted During	
	Mass Fraction ^d	lb/hr ^d	ton/yr
Triethylene Glycol	0.00	0.00	0.00
Carbon Dioxide	0.02	0.01	0.00
Nitrogen	0.00	0.00	0.00
Methane	0.22	0.15	0.03
Ethane	7.29	4.95	0.93
Propane	24.91	16.90	3.17
Isobutane	8.33	5.66	1.06
n-Butane	26.27	17.83	3.34
Isopentane	8.70	5.90	1.11
n-Pentane	10.35	7.02	1.32
n-Hexane	2.97	2.02	0.38
Cyclohexane	0.27	0.18	0.03
i-C6	4.18	2.84	0.53
i-C7	4.58	3.11	0.58
Methylcyclohexane	0.14	0.10	0.02
Octane	0.85	0.57	0.11
Nonane	0.09	0.06	0.01
Benzene	0.32	0.21	0.04
Toluene	0.26	0.18	0.03
Ethylbenzene	0.01	0.01	0.00
o-Xylene	0.05	0.04	0.01
Hydrogen Sulfide	0.00	0.00	0.00
Water	0.00	0.00	0.00
2,2,4-Trimethylpentane	0.18	0.12	0.02
Decanes Plus	0.00	0.00	0.00
Total HC	99.98	67.84	12.72
Total VOC	92.47	62.75	11.77
Total HAP	3.79	2.57	0.48
Heating Value (Btu/scf)	3068.60	3068.60	3068.60
Molecular Weight (lb/lbmol)	54.60	54.60	54.60
SO2 Emissions (lb/hr)	N/A	N/A	N/A
Operating Hours (hr/yr)	N/A	N/A	2880
Mass Flow	N/A	67.86 lb/hr	11.11 ton/yr
Volumetric Flow (scf/hr)	N/A	471.63	77.24
Heat Release (MMBtu/hr)	N/A	1.45	0.24

Footnotes:

^a Values were obtained from Promax.

^o Loading emissions include total hydrocarbons as calculated using AP-42, Section 5.2.

² Condensate tanks are only trucked out when transfer to pipeline is unavailable.

d The component speciation was obtained from Promax Stream " and multiplied by the total hydrocarbon emissions. (VOC =

0.12 lb/hr * 0.00 wt% VOC = 0.00 lb/hr)

e Loading emissions are uncontrolled.

XTO ENERGY INC. WILDCAT COMPRESSOR STATION FLARE 1-3 EMISSION SUMMARY

						F	lare Emis	sions Su	mmary T	able								
	Stream Source	N	Ox	C	0		VOC Total HAPs)	S	D ₂	PM ₁	0 & 2.5	Total	HAPs	CO2e	n-He	exane	Ben	zene
Stream Source	Stream Source	lb/hr	ТРҮ	lb/hr	ТРҮ	lb/hr	ТРҮ	lb/hr	ТРҮ	lb/hr	ТРҮ	lb/hr	ТРҮ	ТРҮ	lb/hr	ТРҮ	lb/hr	ТРҮ
	FL1 Pilot/Purge	0.22	0.98	0.45	1.95	0.33	1.43	0.00	0.01	0.01	0.04	0.00	0.01	1172.86	0.00	0.01	0.00	0.00
FL1-FL3 Pilot	FL2 Pilot / Purge	0.22	0.98	0.45	1.95	0.33	1.43	0.00	0.01	0.01	0.04	0.00	0.01	1172.86	0.00	0.01	0.00	0.00
	FL3 Pilot / Purge	0.22	0.98	0.45	1.95	0.33	1.43	0.00	0.01	0.01	0.04	0.00	0.01	1172.86	0.00	0.01	0.00	0.00
	PW Tank Vapors	0.00	0.01	0.01	0.03	0.02	0.09	0.00	0.00	0.00	0.00	0.00	0.02	18.90	0.00	0.01	0.00	0.01
	Skim Tank Vapors	0.09	0.38	0.17	0.75	0.55	2.42	0.00	0.01	0.00	0.01	0.03	0.15	419.81	0.02	0.10	0.00	0.02
FL1-FL3 Norm	Oil Tank Vapors	1.63	6.85	3.26	13.68	10.27	23.24	0.01	0.03	0.03	0.13	0.42	0.91	7378.46	0.33	0.65	0.04	0.11
	Low Presure Separator Vapors Normal Operation	0.03	0.12	0.06	0.23	0.13	0.53	0.00	0.00	0.00	0.00	0.00	0.02	141.10	0.00	0.01	0.00	0.00
	Low Presure Separator Vapors VRU Downtime	1.46	0.64	2.92	1.28	6.73	2.95	0.02	0.01	0.04	0.02	0.19	0.08	783.87	0.14	0.06	0.02	0.01
FL1-FL3 SSM	HP Flare Blowdowns	0.17	0.08	0.33	0.17	0.24	0.12	0.00	0.00	0.01	0.00	0.00	0.00	100.25	0.00	0.00	0.00	0.00
	Inlet Gas Flaring	386.06	4.25	770.72	8.48	720.02	7.92	3.16	0.03	15.83	0.17	16.76	0.18	5348.35	13.78	0.15	0.72	0.01
Total	Total Emissions	389.44	12.33	777.47	24.62	737.97	37.27	3.19	0.10	15.91	0.33	17.42	1.36	14190.74	14.28	0.98	0.79	0.15
FL1-FL3 Pilot	Total Flare Pilot/Purge Emissions	0.67	2.94	1.34	5.86	0.98	4.29	0.01	0.02	0.03	0.13	0.01	0.03	3518.58	0.01	0.03	0.00	0.00
FL1-FL3 Norm	Total Flare Normal Operations	1.75	7.36	3.50	14.69	10.98	26.28	0.01	0.05	0.03	0.14	0.46	1.09	7958.27	0.36	0.76	0.04	0.14
FL1-FL3 SSM	Total Flare SSM	387.69	4.97	773.97	9.92	727.00	10.99	3.18	0.05	15.88	0.19	16.96	0.27	6232.47	13.92	0.21	0.75	0.02
FL1-FL3 HP	High Pressure Gas Flaring (No Pilot)	386.23	4.33	771.05	8.64	720.27	8.04	3.16	0.04	15.84	0.18	16.76	0.19	5448.60	13.78	0.15	0.72	0.01
FL1-FL3 LP	Low Pressure Gas Flaring (No Pilot)	3.21	8.00	6.41	15.97	17.69	29.23	0.04	0.06	0.07	0.16	0.65	1.18	8742.14	0.49	0.82	0.06	0.15

XTO ENERGY INC. WILDCAT COMPRESSOR STATION FLARE 1-3 HOURLY EMISSIONS WINTER SEASON - NORMAL OPERATIONS

					Unc	captured Maximum										Criter	ia Pollutant Emi	ssions from	1 Flare °
Stream	HP Flare	SSM Low Pres Sep ^d	Inlet Gas	HP Flare	LP Flare	Oil Tanl	· ·		nk Vapors	1	k Vapors	Low Pres Sep ^d							
	Blowdowns ^f 17. HPF	Flash (VRU Off) 1. LP Separator	Flaring ⁸ 19. Inlet Flaring	Pilot/Purge ^c 15. HPF Pilot/	Pilot/Purge ^c	Flash 22. Condensate	W&B 10. Condensate	Flash 6. Skim Tank	W&B 8. Skim Tank	Flash 5. Water Tank	W&B 9. Water Tank	Vapors (VRU On) 1. LP Separator	Total Vapors to Flare (uncontrolled)	Destruction Efficiency	Total Flare Exhaust (controlled)	Component	Emission Rate	Emission Factor	n Emi Facto
	Blowdowns	Gas	0	Purge Gas	Purge Gas	Flash Losses Hrly	Tank W&B	Flash Gas	W&B	Flash Gas	W&B	Gas							
Component Triethylene Glycol	(lb/hr) 0.00	(1b/hr) 0.00	(lb/hr) 0.72	(lb/hr) 0.00	(lb/hr) 0.00	(1b/hr) 0.00	(lb/hr) 0.00	(lb/hr) 0.00	(lb/hr) 0.00	(1b/hr) 0	(1b/hr) 0.00	(1b/hr) 0.00	(lb/hr) 0.72	(%) 98%	(lb/hr) 0.01	NOX	(lb/hr) 390.11	0.138	1b/1
Carbon Dioxide	0.00	0.63	273.69	0.34	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	275.15	98%	275.15	со	778.81	0.138	1b/1
Nitrogen	0.86	0.65	1807.20	2.27	1.19	0.00	0.00	0.00	0.00	0.00	0.00	0.01	1812.19	0%	1812.19	SO ₂	3.20		10/
Methane	30.50	64.37	64416.37	80.12	42.06	1.18	0.03	0.57	0.03	0.00	0.01	1.29	64636.53	98%	1292.73	PM ₁₀	15.94	7.60	lb/
Ethane	9.91	84.16	21892.38	26.04	13.67	39.39	1.11	0.96	0.16	0.00	0.02	1.68	22069.48	98%	441.39	PM2.5	15.94	7.60	lb/
Propane	7.09	133.01	17149.26	18.62	9.77	134.52	3.81	3.17	1.38	0.00	0.04	2.66	17463.33	98%	349.27	N ₂ O	0.62	0.00022	lb/
Isobutane	1.11	31.50	3077.67	2.92	1.53	45.01	1.27	1.39	0.96	0.00	0.02	0.63	3164.02	98%	63.28	H ₂ S	0.03		
n-Butane	2.57	85.51	7737.32	6.74	3.54	141.89	4.02	4.73	3.05	0.00	0.08	1.71	7991.16	98%	159.82				
Isopentane	0.54	23.91	2115.00	1.42	0.74	46.96	1.33	1.96	1.08	0.00	0.05	0.48	2193.48	98%	43.87		or Controls / Fla	re DRE	
n-Pentane	0.57	27.77	2469.96	1.49	0.78	55.90	1.58	2.50	1.32	0.00	0.06	0.56	2562.49	98%	51.25	LPS VRU Col	-	98%	
n-Hexane	0.08	6.82	689.05	0.22	0.11	16.05	0.45	0.81	0.36	0.00	0.06	0.14	714.15	98%	14.28		Operations)	90.0	
Cyclohexane	0.01	0.78	68.34	0.02	0.01	1.46	0.04	0.09	0.04	0.00	0.01	0.02	70.81	98%	1.42		Downtime	10.00%	(8
i-C6	0.14	10.13	961.60	0.37	0.20	22.59	0.64	1.12	0.53	0.00	0.06	0.20	997.59	98%	19.95	(MSS C	perations)	10.00 /0	10
i-C7	0.10	11.28	1239.09	0.25	0.13	24.73	0.70	1.46	0.61	0.00	0.22	0.23	1278.80	98%	25.58		ction Efficiency	98%	
Methylcyclohexane	0.00	0.34	35.12	0.01	0.00	0.77	0.02	0.05	0.02	0.00	0.01	0.01	36.35	98%	0.73		24+		
Octane	0.01	2.28	280.66	0.02	0.01	4.57	0.13	0.34	0.13	0.00	0.19	0.05	288.37	98%	5.77	Flare Destruct	ion Efficiency C3	98%	
Nonane	0.00	0.28	29.01	0.00	0.00	0.51	0.01	0.05	0.02	0.00	0.02	0.01	29.91	98%	0.60				
Benzene	0.00	1.20	36.21	0.01	0.01	1.71	0.05	0.13	0.06	0.00	0.08	0.02	39.49	98%	0.79				4
Toluene	0.00	0.94	46.50	0.01	0.00	1.41	0.04	0.12	0.05	0.00	0.07	0.02	49.18	98%	0.98	H2S molecular		34.08	
Ethylbenzene	0.00	0.03	2.10	0.00	0.00	0.04	0.00	0.00	0.00	0.00	0.00	0.00	2.18	98%	0.04	SO2 molecular		64.06	
o-Xylene	0.00	0.22	15.16	0.00	0.00	0.28	0.01	0.03	0.01	0.00	0.02	0.00	15.74	98%	0.31	Molar Volume		379.484	
Hydrogen Sulfide	0.00	0.01	1.68	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.70	98%	0.03	Flare Operatin	g Hours	8760	.0
Water	0.00	3.11	4.00	0.00	0.00	0.00	0.00	0.43	0.16	0.00	0.23	0.06	8.00	0%	8.00				
2,2,4-Trimethylpentane	0.00	0.44	49.02	0.01	0.00	0.99	0.03	0.06	0.02	0.00	0.01	0.01	50.59	98%	1.01				
Decanes Plus	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	98%	0.00				
Total	53.62 12.22	489.37	124397.16	140.87	73.96	540.06	15.29	20.02 18.01	10.02	0.00	1.27	9.79 6.73	125751.41	-	4568.46				
Total VOC Total HAP	0.09	336.44 9.64	36001.12 838.06	32.11 0.24	16.86	499.38 20.48	0.58	18.01	9.65	0.00	1.00 0.25	0.19	36947.65 871.34	-	738.95 17.43				
	1,273.90	2,124.36	1,342.81	1273.90	1273.90	20.48 3068.60	3068.60	2908.87	3232.20	0.00	2160.54	2124.36	8/1.34 1347.90		17.43				
eating Value (Btu/scf)		2,124.36	22.66						58.94	0.00	48.87	37.23	1347.90						
lolecular Weight (lb/lbmol) perating Hours (hr/yr)	21.38	37.23	22.66	21.38 8760	21.38 8760	54.60 8760	54.60 8760	53.09 8760	58.94 8760	8760	48.87 8760	37.23							
lass Flow (lb/hr)	53.62	489.37	124,397,16	140.87	73.96	540.06	15.29	20.02	10.02	0.00	1.27	9,79	125751.41						
olumetric Flow (scf/hr)	952	4,988	2,083,333	2,500	1,313	3,753	106.25	143.08	64.49	0.00	9.86	99.76	2097262.20						
eat Release (MMBtu/hr)	1.21	10.60	2,797.53	3.18	1.67	11.52	0.33	0.42	0.21	0.00	0.02	0.21	2826.90						
						Combustion Emissio	ons from Flare												
	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(1b/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(1b/hr)	(1b/hr)	(lb/hr)	•					
Total NO _x	0.17	1.46	386.06	0.44	0.23	1.59	0.04	0.06	0.03	0.00	0.00	0.03	390.11						
Total CO	0.33	2.92	770.72	0.88	0.46	3.17	0.09	0.11	0.06	0.00	0.01	0.06	778.81						
Total SO ₂	0.00	0.02	3.16	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	3.20						
Total PM ₁₀	0.01	0.04	15.83	0.02	0.01	0.03	0.00	0.00	0.00	0.00	0.00	0.00	15.94						
Total PM _{2.5}	0.01	0.04	15.83	0.02	0.01	0.03	0.00	0.00	0.00	0.00	0.00	0.00	15.94						
Total VOC (slip)	0.24	6.73	720.02	0.64	0.34	9.99	0.28	0.36	0.19	0.00	0.02	0.13	738.95						
Total HAP (slip)	0.00	0.19	16.76	0.00	0.00	0.41	0.01	0.02	0.01	0.00	0.00	0.00	17.43						
Total n-Hexane (slip)	0.00	0.14	13.78	0.00	0.00	0.32	0.01	0.02	0.01	0.00	0.00	0.00	14.28						
Total Benzene (slip)	0.00	0.02	0.72	0.00	0.00	0.03	0.00	0.00	0.00	0.00	0.00	0.00	0.79						
Total CH ₄	0.46	0.56	913.29	1.20	0.63	0.01	0.00	0.00	0.00	0.00	0.00	0.01	916.16						
	0.000	0.01	1.36	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	1.37						
Total N ₂ O							47.42	65.10	30.62	0.00	4.31	35.50	467,776.54						
	188.97	1775.08	463197.14	496.47	260.65	1675.27	47.42	65.10											

^c Pilot fuel gas emissions are conservatively calculated based on observed flowrates

Controlled Emissions Were Calculated by the Following: Uncontrolled Emissions * (1 - VRU Efficiency) * (1 - Flare Destruction Efficiency)

Flare CO and NOx emission factors from TCEQ Air Permit Techincal Guidance for Chemical Sources. PM and PM2.5 emission factors from AP.42, Table 1.4-1 and 1.4-2, July 1998. SO2 emissions assume 100% conversion of H2S to SO2.

Blowdowns are estimated to be @ 952 SCF per blowdown. XTO conservatively estimates 1000 blowdowns per year and 1 blowdown per hour

XTO conservatively estimates 46 MMscf of inlet gas flaring per year @ 2.08 MMscf/hr max rate

HG emissions source is 40 CFR § 98.233 (n), 40 CFR § 98.233(v) for CH4 and CO2 mass emissions, 40 CFR § 98.233(z) for N2O mass emissions.

XTO ENERGY INC. WILDCAT COMPRESSOR STATION FLARE 1-3 ANNUAL EMISSIONS WINTER SEASON - NORMAL OPERATIONS

								FLARE ANNUAL	- NORMAL OPER	ATIONS									
[Lines	ptured Maximum H	Incode: Englanding Ba	1	an ta Flans Ab							Criter	ia Pollutant Emis		7aun ^e
		SSM		HP Flare	LP Flare	Oil Tan			nk Vapors	PW Tan	k Vapors	Low Pres Sep ^d				Criter	ia ronutant Emig	sions from 1	lare
Stream	HP Flare Blowdowns ^f	Low Pres Sep ^d Flash (VRU Off)	Inlet Gas Flaring ^g	Pilot/Purge ^c	Pilot/Purge ^c	Flash	W&B	Flash	W&B	Flash	W&B	Flash (VRU On)	Total Vapors to Flare	Destruction Efficiency	Total Flare Exhaust	Component	Emission Rate	Emission	Emission
Promax Stream Name	17. HPF Blowdowns	1. LP Separator Gas	19. Inlet Flaring	15. HPF Pilot / Purge Gas	16. LPF Pilot/ Purge Gas	7. Condensate Tank Flash Gas	10. Condensate Tank W&B	6. Skim Tank Flash Gas	8. Skim Tank W&B	5. Water Tank Flash Gas	9. Water Tank W&B	1. LP Separator Gas	(uncontrolled)		(controlled)			Factor	Factor Unit
Component	(ton/yr)	(ton/yr)	(ton/yr)	(ton/yr)	(ton/yr)	(ton/yr)	(ton/yr)	(ton/yr)	(ton/yr)	(ton/yr)	(ton/yr)	(ton/yr)	(ton/yr)	(%)	(ton/yr)	NO _x	(ton/yr)	 	
Triethylene Glycol	0.00	0.00	0.01 3.01	0.00	0.00	0.00	0.00	0.00 0.19	0.00	0.00	0.00	0.00	0.01	98%	0.00 6.36		15.27	0.138	lb/MMB
Carbon Dioxide	0.06	0.29	3.01	9.94	5.22	0.39	0.01	0.19	0.09	0.00	0.04	0.05	6.36 35.86	0% 0%	5.36	CO SO ₂	30.48 0.12	0.2755	lb/MMBt
Nitrogen Methane	15.25	28.20	708.58	350.92	184.23	14.74	0.00	2.51	0.00	0.00	0.00	5.08	1309.79	98%	26.20	PM ₁₀	0.12	7.60	lb/MMs
Ethane	4.96	36.86	240.82	114.05	59.88	95.98	4.88	4.20	0.69	0.00	0.07	6.64	569.02	98%	11.38	PM2.5	0.46	7.60	lb/MMs
Propane	3.54	58.26	188.64	81.54	42.81	321.63	16.68	13.88	6.05	0.00	0.19	10.49	743.70	98%	14.87	N ₂ O	0.02	0.00022	lb/MMB
Isobutane	0.56	13.80	33.85	12.80	6.72	103.88	5.58	6.08	4.19	0.00	0.07	2.48	190.02	98%	3.80	H ₂ S	0.00		
n-Butane	1.28	37.45	85.11	29.52	15.50	307.14	17.59	20.71	13.36	0.00	0.36	6.74	534.76	98%	10.70	-			
Isopentane	0.27	10.47	23.27	6.21	3.26	97.03	5.82	8.59	4.75	0.00	0.20	1.89	161.75	98%	3.24	LPS Vap	or Controls / Fla	e DRE	
n-Pentane	0.28	12.16	27.17	6.54	3.43	115.43	6.93	10.95	5.77	0.00	0.27	2.19	191.12	98%	3.82		lection Efficiency	98.0%	
n-Hexane	0.04	2.99	7.58	0.94	0.50	30.30	1.99	3.56	1.59	0.00	0.26	0.54	50.29	98%	1.01		Operations)	20.070	
Cyclohexane	0.00	0.34	0.75	0.08	0.04	3.44	0.18	0.41	0.18	0.00	0.05	0.06	5.54	98%	0.11		Downtime	10.0%	(876 hrs)
i-C6	0.07	4.44	10.58	1.63	0.86	44.29	2.80	4.91	2.32	0.00	0.27	0.80	72.95	98%	1.46		perations)	<u> </u>	
i-C7	0.05	4.94	13.63	1.11	0.58	50.86	3.07	6.39	2.69	0.00	0.95	0.89	85.15	98%	1.70		ction Efficiency C4+	98%	
Methylcyclohexane Octane	0.00	0.15	0.39	0.02	0.01 0.05	1.56 10.51	0.10	0.20	0.08	0.00	0.05	0.03	2.58 18.33	98% 98%	0.05	l'	Cit.	<u> </u>	
Nonane	0.00	0.12	0.32	0.09	0.00	1.33	0.06	0.20	0.07	0.00	0.81	0.02	2.24	98%	0.37	Flare Destruct	tion Efficiency C3	98%	
Benzene	0.00	0.53	0.32	0.06	0.03	5.26	0.00	0.58	0.27	0.00	0.36	0.02	7.78	98%	0.04				J
Toluene	0.00	0.41	0.51	0.03	0.02	4.26	0.18	0.54	0.22	0.00	0.33	0.07	6.57	98%	0.13	H2S molecula	r weight	34.08	1
Ethylbenzene	0.00	0.01	0.02	0.00	0.00	0.12	0.01	0.02	0.01	0.00	0.01	0.00	0.20	98%	0.00	SO2 molecular		64.06	
o-Xylene	0.00	0.09	0.17	0.00	0.00	1.00	0.03	0.14	0.05	0.00	0.08	0.02	1.59	98%	0.03	Molar Volume	(scf/lbmol)	379.484	
Hydrogen Sulfide	0.00	0.01	0.02	0.01	0.00	0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.07	98%	0.00	Flare Operatin	g Hours	8760	1
Water	0.00	1.36	0.04	0.02	0.01	2.39	0.00	1.86	0.70	0.00	1.02	0.24	7.66	0%	7.66				
2,2,4-Trimethylpentane	0.00	0.19	0.54	0.04	0.02	1.97	0.12	0.25	0.10	0.00	0.05	0.03	3.33	98%	0.07				
Decanes Plus	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	98%	0.00				
Total	26.81	214.35	1368.37	617.02	323.94	1213.56	66.96	87.67	43.87	0.00	5.56	38.58	4006.67		129.01				
Total VOC	6.11	147.36	396.01	140.62	73.83	1100.00	61.91	78.89	42.27	0.00	4.40	26.52	2077.92		41.56	-			
Total HAP	0.05 1273.90	4.22 2124.36	9.22	1.07 1273.90	0.56	42.91 2934.58	2.54 3068.60	5.09 2908.87	2.25 3232.20	0.00	1.08 2160.54	0.76 2124.36	69.76	-	1.40	1			
Heating Value (Btu/scf)			1342.81		1273.90				58.94	0.00	48.87		1827.78						
Molecular Weight (lb/lbmol) Operating Hours (hr/yr)	21.38 1000	37.23 876	22.66	21.38 8760	21.38 8760	52.22 8760	54.60 8760	53.09 8760	58.94 8760	0.00 8760	48.87 8760	37.23 7884	-						
Mass Flow (ton/yr)	26.81	214.35	1368.37	617.02	323.94	1213.56	66.96	87.67	43.87	0.00	5.56	38.58	4006.67						
Volumetric Flow (MMscf/yr)	0.95	4.37	45.83	21.90	11.50	32.88	0.93	1.25	0.56	0.00	0.09	0.79	121.05						
Heat Release (MMBtu/yr)	1212.21	9282.13	61545.68	27898.43	14646.68	96490.37	2856.01	3645.95	1826.03	0.00	186.53	1670.78	221260.79						
		1	I			mbustion Emissior			1	I									
Total NO _x	(ton/yr) 0.08	(ton/yr) 0.64	(ton/yr) 4.25	(ton/yr) 1.92	(ton/yr) 1.01	(ton/yr) 6.66	(ton/yr) 0.20	(ton/yr) 0.25	(ton/yr) 0.13	(ton/yr) 0.00	(ton/yr) 0.01	(ton/yr) 0.12	(ton/yr) 15.27						
Total CO	0.17	1.28	8.48	3.84	2.02	13.29	0.39	0.50	0.25	0.00	0.03	0.23	30.48						
Total SO ₂	0.00	0.01	0.03	0.02	0.01	0.03	0.00	0.01	0.01	0.00	0.00	0.00	0.12						
Total PM ₁₀	0.00	0.02	0.17	0.08	0.04	0.12	0.00	0.00	0.00	0.00	0.00	0.00	0.46						
Total PM _{2.5}	0.00	0.02	0.17	0.08	0.04	0.12	0.00	0.00	0.00	0.00	0.00	0.00	0.46						
Total VOC (slip)	0.12	2.95	7.92	2.81	1.48	22.00	1.24	1.58	0.85	0.00	0.09	0.53	41.56						
Total HAP (slip)	0.00	0.08	0.18	0.02	0.01	0.86	0.05	0.10	0.04	0.00	0.02	0.02	1.40						
Total n-Hexane (slip)	0.00	0.06	0.15	0.02	0.01	0.61	0.04	0.07	0.03	0.00	0.01	0.01	1.01						
Total Benzene (slip)	0.00	0.01	0.01	0.00	0.00	0.11	0.00	0.01	0.01	0.00	0.01	0.00	0.16						
Total CH4	0.23	0.24	10.05	5.27	2.77	0.17	0.00	0.02	0.00	0.00	0.00	0.04	18.79						
Total N ₂ O	0.000	0.00	0.01	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.02						
Total CO ₂	94.49	777.48	5095.17	2174.55	1141.64	7163.25	207.70	285.14	134.10	0.00	18.89	139.95	17232.35						
Total CO2e	100.25	783.87	5348.35	2307.27	1211.31	7170.65	207.82	285.64	134.18	0.00	18.90	141.10	17,709.32						
Footnotes: *Uncontrolled stream properties dete b Tank emissions determined in ProN * Pilot fuel gas emissions are conserva d ^C Ontrolled Emissions Were Calculat * Flare CO and NOx emission factors	Max are calculated at t atively calculated base ted by the Following:	ed on observed flowrate Uncontrolled Emission	s * (1 - VRU Efficiency)	* (1 - Flare Destru		n AP-42. Table 1 4-1 a	nd 1.4-2. July 1998 9	D2 emissions assume	100% conversion of F	125 to 502.									
f Blowdowns are estimated to be @ 9 g XTO conservatively estimates 46 M	52 SCF per blowdowr	a. XTO conservatively o	stimates 1000 blowdo				.,.,												

g XTO conservatively estimates 46 MMscf of inlet gas flaring per year @ 2.08 MMscf/hr max rate h GHG emissions source is 40 CFR § 98.233 (n), 40 CFR § 98.233(v) for CH4 and CO2 mass emissions, 40 CFR § 98.233(z) for N2O mass emissions

WILDCAT COMPRESSOR STATION

HPF FLARE BLOWDOWN GAS ROUTED TO FLARE (EXAMPLE CALCULATION)

1) $E_{s,CH4} = V_a * 2$	X _{CH4} * [(1- η)*	$Z_L + Z_U$	=	10,823.63	SCF/Yr	Г	Source	Annual Volume
	951,570.00						17. HPF Blowdowns	951,570.00
	0.568724734							,
N =	0.98							
Z _L =	1.00						Total	951,570.00
Z _U =	0.00							
2) E _{s,CO2} (uncon	nbusted) = V _a	* X _{CO2}	=	2,263.40	SCF/Yr			
	951,570.00							
X _{CO2} =	0.0024							
3) E _{s,CO2} (combu	usted) = Σ (η *	Va * Yj * Rj * 2	Z _L)					
N =	0.98							
$V_a =$,		Rj =		$E_{a, CO2} =$			
Y _J =	Methane	0.5687	1		530,357.77			
	Ethane	0.1848	2		344,742.93			
	Propane	0.1321	3		369,691.37			
	Butane	0.0686	4		255,859.14			
-	Pentane +	0.0272	5		126,664.32			
Z _L =	1.00				1,627,315.54	SCF/Yr		
4) Mass _{s,i} = $E_{s,i}$								
E _{s,i} (CH4) =								
$E_{s,i}$ (CO2) =								
$p_i(CH4) =$	0.0192	kg/ft3	=	0.21	metric tons			
p _i (CO2) =	0.0526	kg/ft3	=	85.72	metric tons			
5) $CO_2e = CO_2$,	,	short tons	CO ₂ e				
CO2 =	85.72	=	94.49	94.49				
CH4 =	0.21	=	0.23	5.73				
CH4 GWP =	25			100.21				

XTO ENERGY INC. WILDCAT COMPRESSOR STATION DEHYDRATOR 1-3 VAPORS ROUTED TO GLYCOL REGENERATOR HEATER (PER DEHYDRATOR)

Combustion (lb/br) 0.00 1.73 0.02 7.30 17.44 31.09 5.17 21.48 7.27 9.88 1.93 0.63 3.01 2.24 0.15 0.16 0.01 3.56 1.90 0.02 0.20 0.11	Combustion (ton/yr) 5.23E-08 7.59 0.07 31.99 7.6.38 136.19 22.65 94.10 31.85 43.29 8.47 2.74 13.20 10.25 0.66 0.72 0.03 15.58 8.33 0.10	(lbyhr) 0.00 1.73 0.02 7.30 1.7.44 3.109 5.17 2.1.48 7.27 9.88 1.93 0.63 3.01 2.24 0.15 0.16 0.01 3.56	(ton/yr) 0.00 7.59 0.07 31.99 7.6.38 136.19 22.65 94.10 31.85 43.29 8.47 2.74 13.20 10.25 0.66 0.72 0.03	(%) 98% 0% 0% 98%	(lb/hr) 0.00 1.73 0.02 0.15 0.35 0.62 0.10 0.43 0.15 0.20 0.04 0.01 0.06 0.05 0.00	(ton/yr) 0.00 7.59 0.07 0.64 1.53 2.72 0.45 1.88 0.64 0.87 0.17 0.05 0.26 0.20 0.01	NOx CO SO2 PMin PMas PMas PMas V2O H2S Combustion Devi Efficient Combustion Devi H2S	ry C4+	0.138 0.2755 7.60 0.00022 98% 98%	lb/MMBtt
0.00 1.73 0.02 7.30 17.44 31.09 5.17 21.48 7.27 9.88 1.93 0.63 3.01 2.34 0.15 0.16 0.01 3.56 1.90 0.02 0.20	5.23E-08 7.59 0.07 31.99 7.6.38 136.19 22.65 94.10 31.85 43.29 8.47 2.74 13.20 10.25 0.66 0.72 0.03 15.58 8.33	0.00 1.73 0.02 7.30 17.44 31.09 5.17 21.48 7.27 9.88 1.93 0.63 3.01 2.34 0.15 0.16 0.01 3.56	0.00 7.59 0.07 31.99 76.38 136.19 22.65 94.10 31.85 43.29 8.47 2.74 13.20 10.25 0.66 0.72 0.03	98% 0% 0% 98% 98% 98% 98% 98% 98% 98% 98% 98% 98	0.00 1.73 0.02 0.15 0.35 0.62 0.10 0.43 0.43 0.20 0.04 0.01 0.06 0.05 0.00	0.00 7.59 0.07 0.64 1.53 2.72 0.45 1.88 0.64 0.87 0.17 0.05 0.26 0.20	CO SO ₂ PM ₁₀ PM ₂₅ N ₂ O H ₂ S Combustion Devi Efficienc	0.34 0.67 0.20 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.2755 7.60 7.60 0.00022 98%	lb/MMBtu lb/MMscf lb/MMscf lb/MMBtu
1.73 0.02 7.30 17.44 31.09 5.17 21.48 7.27 9.88 0.63 3.01 2.34 0.15 0.16 0.01 3.56 1.90 0.02	7.59 0.07 31.99 76.38 136.19 22.65 94.10 31.85 43.29 8.47 2.74 13.20 10.25 0.66 0.72 0.03 15.58 8.33	1.73 0.02 7.30 17.44 31.09 5.17 21.48 7.27 9.88 1.93 0.63 3.01 2.34 0.15 0.16 0.01 3.56	7.59 0.07 31.99 76.38 136.19 22.65 94.10 31.85 43.29 8.47 2.74 13.20 10.25 0.66 0.72 0.03	0% 0% 98% 98% 98% 98% 98% 98% 98% 98% 98% 98	1.73 0.02 0.15 0.35 0.62 0.10 0.43 0.15 0.20 0.04 0.01 0.06 0.05 0.00	7.59 0.07 0.64 1.53 2.72 0.45 1.88 0.64 0.87 0.17 0.05 0.26 0.20	CO SO ₂ PM ₁₀ PM ₂₅ N ₂ O H ₂ S Combustion Devi Efficienc	0.67 0.20 0.01 0.01 0.00 0.00 ice Destruction yy C4+	0.2755 7.60 7.60 0.00022 98%	lb/MMBtu lb/MMscf lb/MMscf lb/MMBtu
0.02 7.30 17.44 31.09 5.17 21.48 7.27 9.88 1.93 0.63 3.01 2.34 0.15 0.16 0.01 3.56 1.90 0.02 0.20	0.07 31.99 76.38 136.19 22.65 94.10 31.85 43.29 8.47 2.74 13.20 10.25 0.66 0.72 0.03 15.58 8.33	0.02 7.30 17.44 31.09 5.17 21.48 7.27 9.88 1.93 0.63 3.01 2.34 0.15 0.16 0.01 3.56	0.07 31.99 76.38 136.19 22.65 94.10 31.85 43.29 8.47 2.74 13.20 10.25 0.66 0.72 0.03	0% 98% 98% 98% 98% 98% 98% 98% 98% 98% 98	0.02 0.15 0.35 0.62 0.10 0.43 0.15 0.20 0.04 0.01 0.06 0.05 0.00	0.07 0.64 1.53 2.72 0.45 1.88 0.64 0.87 0.17 0.05 0.26 0.20	SO ₂ PM ₁₀ PM _{2.5} N ₅ O H ₂ S Combustion Devi Efficience Combustion Devi	0.20 0.01 0.01 0.00 0.00 ice Destruction ry C4+	 7.60 7.60 0.00022 98%	 lb/MMsc lb/MMsc lb/MMBt
7.30 17.44 31.09 5.17 21.48 7.27 9.88 1.93 0.63 3.01 2.34 0.15 0.01 3.56 1.90 0.02 0.20	31.99 76.38 136.19 22.65 94.10 31.85 43.29 8.47 2.74 13.20 10.25 0.66 0.72 0.03 15.58 8.33	7.30 17.44 31.09 5.17 21.48 7.27 9.88 1.93 0.63 3.01 2.34 0.15 0.16 0.01 3.56	31.99 76.38 136.19 22.65 94.10 31.85 43.29 8.47 2.74 13.20 10.25 0.66 0.72 0.03	98% 98% 98% 98% 98% 98% 98% 98% 98% 98%	0.15 0.35 0.62 0.10 0.43 0.15 0.20 0.04 0.01 0.06 0.05 0.00	0.64 1.53 2.72 0.45 1.88 0.64 0.87 0.17 0.05 0.26 0.20	PM ₁₀ PM _{2.5} N ₂ O H ₂ S Combustion Dev Efficience	0.01 0.01 0.00 0.00 ice Destruction ry C4+	7.60 7.60 0.00022 98%	lb/MMsc lb/MMsc lb/MMBt
17.44 31.09 5.17 21.48 7.27 9.88 1.93 0.63 3.01 2.34 0.15 0.16 0.01 3.56 1.90 0.02 0.20	76.38 136.19 22.65 94.10 31.85 43.29 8.47 2.74 13.20 10.25 0.66 0.72 0.03 15.58 8.33	17.44 31.09 5.17 21.48 7.27 9.88 1.93 0.63 3.01 2.34 0.15 0.16 0.01 3.56	76.38 136.19 22.65 94.10 31.85 43.29 8.47 2.74 13.20 10.25 0.66 0.72 0.03	98% 98% 98% 98% 98% 98% 98% 98% 98% 98%	0.35 0.62 0.10 0.43 0.15 0.20 0.04 0.01 0.06 0.05 0.00	1.53 2.72 0.45 1.88 0.64 0.87 0.17 0.05 0.26 0.20	PM ₂₅ N ₂ O H ₂ S Combustion Dev Efficienc Combustion Devi	0.01 0.00 0.00 ice Destruction ty C4+	7.60 0.00022 98%	lb/MMsc lb/MMBt
31.09 5.17 21.48 7.27 9.88 1.93 0.63 3.01 2.24 0.15 0.16 0.01 3.56 1.90 0.02 0.20	136.19 22.65 94.10 31.85 43.29 8.47 2.74 13.20 10.25 0.66 0.72 0.03 15.58 8.33	31.09 5.17 21.48 7.27 9.88 1.93 0.63 3.01 2.34 0.15 0.16 0.01 3.56	136.19 22.65 94.10 31.85 43.29 8.47 2.74 13.20 10.25 0.66 0.72 0.03	98% 98% 98% 98% 98% 98% 98% 98% 98% 98%	0.62 0.10 0.43 0.15 0.20 0.04 0.01 0.06 0.05 0.00	2.72 0.45 1.88 0.64 0.87 0.17 0.05 0.26 0.20	N2O H2S Combustion Dev Efficienc Combustion Devi	0.00 0.00 ice Destruction ry C4+	0.00022 98%	lb/MMBt
5.17 21.48 7.27 9.88 1.93 0.63 3.01 2.34 0.15 0.16 0.01 3.56 1.90 0.02 0.20	22.65 94.10 31.85 43.29 8.47 2.74 13.20 10.25 0.66 0.72 0.03 15.58 8.33	5.17 21.48 7.27 9.88 1.93 0.63 3.01 2.34 0.15 0.16 0.01 3.56	22.65 94.10 31.85 43.29 8.47 2.74 13.20 10.25 0.66 0.72 0.03	98% 98% 98% 98% 98% 98% 98% 98%	0.10 0.43 0.15 0.20 0.04 0.01 0.06 0.05 0.00	0.45 1.88 0.64 0.87 0.17 0.05 0.26 0.20	H ₂ S Combustion Dev Efficienc Combustion Devi	0.00 ice Destruction ty C4+	 98%	
21.48 7.27 9.88 1.93 0.63 3.01 2.34 0.15 0.16 0.01 3.56 1.90 0.02 0.20	94.10 31.85 43.29 8.47 2.74 13.20 10.25 0.66 0.72 0.03 15.58 8.33	21.48 7.27 9.88 1.93 0.63 3.01 2.34 0.15 0.16 0.01 3.56	94.10 31.85 43.29 8.47 2.74 13.20 10.25 0.66 0.72 0.03	98% 98% 98% 98% 98% 98% 98% 98%	0.43 0.15 0.20 0.04 0.01 0.06 0.05 0.00	1.88 0.64 0.87 0.17 0.05 0.26 0.20	Combustion Dev Efficienc Combustion Devi	ice Destruction cy C4+	98%	
7.27 9.88 1.93 0.63 3.01 2.34 0.15 0.16 0.01 3.56 1.90 0.02 0.20	31.85 43.29 8.47 2.74 13.20 10.25 0.66 0.72 0.03 15.58 8.33	7.27 9.88 1.93 0.63 3.01 2.34 0.15 0.16 0.01 3.56	31.85 43.29 8.47 2.74 13.20 10.25 0.66 0.72 0.03	98% 98% 98% 98% 98% 98% 98%	0.15 0.20 0.04 0.01 0.06 0.05 0.00	0.64 0.87 0.17 0.05 0.26 0.20	Efficience Combustion Devi	ry C4+	50,0	
9.88 1.93 0.63 3.01 2.34 0.15 0.16 0.01 3.56 1.90 0.02 0.20	43.29 8.47 2.74 13.20 10.25 0.66 0.72 0.03 15.58 8.33	9.88 1.93 0.63 3.01 2.34 0.15 0.16 0.01 3.56	43.29 8.47 13.20 10.25 0.66 0.72 0.03	98% 98% 98% 98% 98% 98%	0.20 0.04 0.01 0.06 0.05 0.00	0.87 0.17 0.05 0.26 0.20	Efficience Combustion Devi	ry C4+	50,0	
1.93 0.63 3.01 2.34 0.15 0.01 0.01 3.56 1.90 0.02 0.20	8.47 2.74 13.20 10.25 0.66 0.72 0.03 15.58 8.33	1.93 0.63 3.01 2.34 0.15 0.16 0.01 3.56	8.47 2.74 13.20 10.25 0.66 0.72 0.03	98% 98% 98% 98% 98%	0.04 0.01 0.06 0.05 0.00	0.17 0.05 0.26 0.20	Combustion Devi		98%	
0.63 3.01 2.34 0.15 0.16 0.01 3.56 1.90 0.02 0.20	2.74 13.20 10.25 0.66 0.72 0.03 15.58 8.33	0.63 3.01 2.34 0.15 0.16 0.01 3.56	2.74 13.20 10.25 0.66 0.72 0.03	98% 98% 98% 98% 98%	0.01 0.06 0.05 0.00	0.05 0.26 0.20		ce Efficiency C3	98%	
3.01 2.34 0.15 0.06 0.01 3.56 1.90 0.02 0.20	13.20 10.25 0.66 0.72 0.03 15.58 8.33	3.01 2.34 0.15 0.16 0.01 3.56	13.20 10.25 0.66 0.72 0.03	98% 98% 98% 98%	0.06 0.05 0.00	0.26 0.20				
2.34 0.15 0.16 0.01 3.56 1.90 0.02 0.20	10.25 0.66 0.72 0.03 15.58 8.33	2.34 0.15 0.16 0.01 3.56	10.25 0.66 0.72 0.03	98% 98% 98%	0.05	0.20	H2S molecular wei			
0.15 0.16 0.01 3.56 1.90 0.02 0.20	0.66 0.72 0.03 15.58 8.33	0.15 0.16 0.01 3.56	0.66 0.72 0.03	98% 98%	0.00		H2S molecular woi			
0.16 0.01 3.56 1.90 0.02 0.20	0.72 0.03 15.58 8.33	0.16 0.01 3.56	0.72 0.03	98%		0.01			34.08	
0.01 3.56 1.90 0.02 0.20	0.03 15.58 8.33	0.01 3.56	0.03				SO2 molecular wei	ght	64.06	
3.56 1.90 0.02 0.20	15.58 8.33	3.56			0.00	0.01	Molar Volume (scf)		379.484	
1.90 0.02 0.20	8.33			98%	0.00	0.00	Combustor Operati	ing Hours	8760	
0.02 0.20			15.58	98%	0.07	0.31				
0.20	0.10	1.90	8.33	98%	0.04	0.17				
		0.02	0.10	98%	0.00	0.00				
0.11	0.88	0.20	0.88	98%	0.00	0.02				
	0.47	0.11	0.47	98%	0.00	0.01				
0.98	4.28	0.98	4.28	0%	0.98	4.28				
0.08	0.35	0.08	0.35	98%	0.00	0.01				
				98%						
				-	5.00	21.91				
88.90	389.37	88.90	389.37	-	1.78	7.79				
7.80	34.17	7.80	34.17		0.16	0.68				
2,390.72	2,390.72	2390.72	2390.72							
43.23	43.23									
	510.16 ton/yr	116.47 lb/hr	510.16 ton/yr							
1,022 sct/hr 2 44 MMBtu/hr	9 MMsct/yr 21.412 63 MMBtu/yr	2 44 MMBtu/hr	9 MMsct/yr 21.412 63 MMBtu/yr							
				1						
0.05	0.24	0.05	0.24				Large	Glycol Unit - MA	CT HH Chec	ck
0.001	0.01	0.00	0.01				# of Units	3	Limit	
398.63	1,746.02	398.63	1,746.02				Flow per Dehy	8,179	85,000 SCF	/Day
400.35	1,753.51	400.35	1,753.51				Benzene Emissions	0.10	1 ton/yr	
	2,390.72 43.23 8,760 116.47 lb/hr 1.022 sci/hr 2.44 MMRtw/hr 0.34 0.67 0.20 0.008 0.01 1.78 0.16 0.04 0.07 0.05 0.001 398.63	116.47 \$10.16 88.90 339.37 7.80 34.17 2,390.72 2,390.72 43.23 43.23 8,760 8,760 116.47 lb/hr 510.16 ton/yr 1,022 ex/hr 9 Mbscf/yr 2,44 MMBtu/lr 21.412.63 MMBtu/yr 2.44 MMBtu/lr 21.412.63 MMBtu/yr 0.34 1.48 0.67 2.95 0.20 0.88 0.008 0.03 0.01 0.03 1.78 7.79 0.16 0.68 0.04 0.17 0.67 0.31 0.05 0.24 0.041 0.01 398.63 1,746.02	116.47 510.16 116.47 88.90 389.37 88.90 7.80 34.17 7.80 2,390.72 2,390.72 2390.72 43.23 43.23 - 8.760 8.760 - 116.47 lb/hr 510.16 ton/yr 116.47 lb/hr 1.022 scf/hr 9.M8c4/yr 1.022 scf/hr 2.44 MMBtu/lr 21.412.63 MMBu/yr 2.44 MMBtu/hr Combustion Emissions from Combustion Device(s) (bf/hr) 0.34 0.67 2.95 0.67 0.20 0.88 0.20 0.008 0.03 0.01 0.01 0.03 0.01 0.17 0.13 0.01 0.67 0.34 0.66 0.68 0.20 0.088 0.03 0.01 0.03 0.04 0.17 0.13 0.16 0.68 0.16 0.49 0.31 0.01 0.41 0.05 0.24 0.05	116.47 510.16 116.47 510.16 88.90 389.37 88.90 389.37 7.80 34.17 7.80 34.17 2.90.72 2.390.72 2590.72 2590.72 43.23 43.23 - - 8.760 8.760 - - 8.760 8.760 - - 116.47 lb/hr 510.16 ton/yr 116.47 lb/hr 510.16 ton/yr 1.022 scf/hr 9 MMscf/yr 1.023 scf/hr 9 MMscf/yr 2.44 MMBu/hr 21.412.63 MMBu/yr 2.44 MMBu/hr 21.412.63 MMBu/yr 2.44 MMBu/hr 21.412.63 MMBu/yr 2.44 MMBu/hr 21.412.63 MMBu/yr 0.44 MABu/hr 21.412.63 MMBu/yr 2.44 MMBu/hr 21.412.63 MMBu/yr 0.34 1.48 0.34 1.48 0.34 1.48 0.67 2.95 0.67 2.95 0.20 0.88 0.20 0.88 0.008 0.03 0.01 0.03 0.01 0.03 0.16 <	116.47 510.16 116.47 510.16 - 88.90 389.37 88.90 389.37 - 7.80 34.17 7.80 34.17 - 2.300.72 2.300.72 2590.72 2590.72 2590.72 - 43.23 43.23 - - - - - 8.760 8.760 - - - - - - 1.02 scf/hr 9 MMscf/yr 1.16.47 lb/hr 510.16 ton/yr 1.02 scf/hr 9 MMscf/yr 2.44 MMBu/hr 21.412.63 MMBu/yr 2.44 MMBu/hr 21.412.63 MMBu/yr 2.44 MMBu/hr 12.12.43 MMBu/yr 2.44 MMBu/hr 21.412.63 MMBu/yr 2.44 MMBu/hr 12.12.63 MMBu/yr 2.44 MMBu/hr 2.44 MMBu/hr 21.412.63 MMBu/yr 2.44 MMBu/hr 12.142.63 MMBu/yr 2.44 MMBu/hr 1.148 0.34 1.48 0.67 2.95 0.67 2.95 0.20 0.88 0.20 0.88 0.008 0.03 0.01	116.47 510.16 116.47 510.16 - 5.00 88.90 389.37 88.90 389.37 - 1.78 7.80 34.17 7.80 34.17 - 0.16 2.300.72 2.300.72 2590.72 290.72 290.72 1.016 43.23 43.23 - - - - 8.760 8.700 - - - - 1.02 scf/hr 9 MMscf/yr 1.16.47 lb/hr 510.16 ton/yr 1.02 scf/hr 9 MMscf/yr 1.02 scf/hr 9 MMscf/yr 1.02 scf/hr 9 MMscf/yr 2.14 MMBu/hr 21.412.63 MMBu/yr 2.44 MMBu/hr 21.412.63 MMBu/yr 2.44 MMBu/hr 12.142.63 MMBu/yr 2.44 MMBu/hr 12.142.63 MMBu/yr 0.34 1.48 0.34 1.48 0.34 1.48 0.67 2.95 0.67 2.95 0.20 0.88 0.008 0.03 0.01 0.03 0.01 0.03 0.16 0.68 0.16 <td>11647 510.16 116.47 510.16 - 5.00 21.91 88.90 389.37 88.80 389.37 - 1.78 7.79 7.80 34.17 7.80 34.17 - 0.16 0.68 2.90.72 2.390.72 2590.72 2590.72 2590.72 - 0.16 0.68 43.23 43.23 -</td> <td>11647 510.16 116.47 510.16 - 5.00 21.91 88.90 389.37 88.90 389.37 - 1.78 7.79 7.80 34.17 7.80 34.17 - 0.16 0.68 2.30.72 2.390.72 2590.72 2590.72 2590.72 39.07 - 0.16 0.68 43.23 43.23 -<td>11647 510.16 116.47 510.16 - 5.00 21.91 88.90 389.37 88.80 389.37 - 1.78 7.79 7.80 34.17 7.80 34.17 - 0.16 0.68 2,30.72 2,30.72 259.72 259.72 259.72 1.78 0.16 0.68 3.70 43.23 -</td><td>116.47 510.16 116.47 510.16 - 5.00 21.91 88.90 389.37 88.90 389.37 - 1.78 7.79 7.80 34.17 7.80 34.17 - 0.16 0.68 2,30.72 2,30.72 2290.72 2590.72 2590.72 3.70 0.16 0.68 43.23 43.23 - - - - - - - 1.67 0.16 0.68 8,700 8,760 - - - - - - - 116.47 lb/hr 510.16 ton/yr 1.02 sc/hr 9 MMscf/yr 2.142.68 MBbu/yr 2.142.68 MBb</td></td>	11647 510.16 116.47 510.16 - 5.00 21.91 88.90 389.37 88.80 389.37 - 1.78 7.79 7.80 34.17 7.80 34.17 - 0.16 0.68 2.90.72 2.390.72 2590.72 2590.72 2590.72 - 0.16 0.68 43.23 43.23 -	11647 510.16 116.47 510.16 - 5.00 21.91 88.90 389.37 88.90 389.37 - 1.78 7.79 7.80 34.17 7.80 34.17 - 0.16 0.68 2.30.72 2.390.72 2590.72 2590.72 2590.72 39.07 - 0.16 0.68 43.23 43.23 - <td>11647 510.16 116.47 510.16 - 5.00 21.91 88.90 389.37 88.80 389.37 - 1.78 7.79 7.80 34.17 7.80 34.17 - 0.16 0.68 2,30.72 2,30.72 259.72 259.72 259.72 1.78 0.16 0.68 3.70 43.23 -</td> <td>116.47 510.16 116.47 510.16 - 5.00 21.91 88.90 389.37 88.90 389.37 - 1.78 7.79 7.80 34.17 7.80 34.17 - 0.16 0.68 2,30.72 2,30.72 2290.72 2590.72 2590.72 3.70 0.16 0.68 43.23 43.23 - - - - - - - 1.67 0.16 0.68 8,700 8,760 - - - - - - - 116.47 lb/hr 510.16 ton/yr 1.02 sc/hr 9 MMscf/yr 2.142.68 MBbu/yr 2.142.68 MBb</td>	11647 510.16 116.47 510.16 - 5.00 21.91 88.90 389.37 88.80 389.37 - 1.78 7.79 7.80 34.17 7.80 34.17 - 0.16 0.68 2,30.72 2,30.72 259.72 259.72 259.72 1.78 0.16 0.68 3.70 43.23 -	116.47 510.16 116.47 510.16 - 5.00 21.91 88.90 389.37 88.90 389.37 - 1.78 7.79 7.80 34.17 7.80 34.17 - 0.16 0.68 2,30.72 2,30.72 2290.72 2590.72 2590.72 3.70 0.16 0.68 43.23 43.23 - - - - - - - 1.67 0.16 0.68 8,700 8,760 - - - - - - - 116.47 lb/hr 510.16 ton/yr 1.02 sc/hr 9 MMscf/yr 2.142.68 MBbu/yr 2.142.68 MBb

VOC/HAP Emissions for Dehydration Units (DEHY1 - DEHY3) - Routed to RB1 - RB3

^c Flash tank emissions are routed back to inlet slug catch

WILDCAT COMPRESSOR STATION

ROAD EMISSIONS

Total Suspended Particle Emis	sions
$E = k(sL/2)^{a}(W/3)^{b}$	
a	0.7
b	0.45
k	4.9
Silt %	4.8
Vehicle Weight (tons)	28
E (lbs/VMT)	7.05
Rain Days	70
E-Annual (lbs/VMT)	5.70
Truckloads per year	210
Driving Distance Per Load (ft)	1000
Annual Distance (miles)	40
Control Efficiency - 15 MPH Limit	0.44
Emissions (lbs/hr)	0.60
Emissions (tpy)	0.06

PM ₁₀ Emissions	
$E = k(sL/2)^{a}(W/3)^{b}$	
a	0.9
b	0.45
k	1.5
Silt %	4.8
Vehicle Weight (tons)	28
E (lbs/VMT)	1.80
Rain Days	70
E-Annual (lbs/VMT)	1.45
Truckloads per day	210
Driving Distance Per Load (ft)	1000
Annual Distance (miles)	40
Control Efficiency - 15 MPH Limit	0.44
Emissions (lbs/hr)	0.15
Emissions (tpy)	0.02

PM _{2.5} Emissions	
$E = k(sL/2)^{a}(W/3)^{b}$	
a	0.9
b	0.45
k	0.15
Silt %	4.8
Vehicle Weight (tons)	28
E (lbs/VMT)	0.18
Rain Days	70
E-Annual (lbs/VMT)	0.15
Truckloads per day	210
Driving Distance Per Load (ft)	1000
Annual Distance (miles)	40
Control Efficiency - 15 MPH Limit	0.44
Emissions (lbs/hr)	0.02
Emissions (tpy)	0.00

Emissions (lbs/hr) = Driving Distance (ft)/ 5280 * E (lbs/VMT) Emissions (tpy) = Annual Distance * E / 2000

References:

EPA. "Compilation of Air Pollutant Emission Factors, Volume 1: Stationary Point and Area Sources," Section 13.2.2 AP-42, Ofice of Air Quality Planning and Standards, Research Triangle Park, NC. 5th edition (11/2006).

XTO ENERGY, INC. WILDCAT COMPRESSOR STATION FUGITIVE EMISSIONS - VOCs

Factors ^a (lb/hr/source) 0.00992080 0.00551156 0.00001852 0.00021605 0.00529109 0.02866009 0.00113000 0.00005291 0.0004297 0.00046297 0.000046297 0.00001653 0.00024251	Total VOC Weight % ^c 97.81% 97.81% 97.81% 97.81% 97.81% 97.81% 97.81% 97.81% 97.81% 97.81%	lb/hour 2.12 1.27 0.00 0.03 0.00 0.42 0.00 0.00 0.00 0.19 0.21 0.00	Ib/year 18614.13 11145.24 0.00 283.24 0.00 3683.60 0.00 4.53 1654.59 1872.40 0.00	tons/year 9.31 5.57 0.00 0.14 0.00 1.84 0.00 0.00 0.00 0.83 0.94
0.00551156 0.0001852 0.00021605 0.00529109 0.02866009 0.00113000 0.00005291 0.00046297 0.00046297 0.00001653 0.00024251 0.00085980	97.81% 97.81% 97.81% 29.75% 97.81% 97.81% 97.81% 29.75% 97.81% 97.81%	1.27 0.00 0.03 0.00 0.42 0.00 0.00 0.19 0.21	11145.24 0.00 283.24 0.00 3683.60 0.00 4.53 1654.59 1872.40	$5.57 \\ 0.00 \\ 0.14 \\ 0.00 \\ 1.84 \\ 0.00 \\ 0.00 \\ 0.83$
0.00001852 0.00021605 0.00529109 0.02866009 0.00113000 0.00005291 0.00044092 0.00046297 0.000046297 0.00001653 0.00024251 0.00085980	97.81% 97.81% 29.75% 97.81% 97.81% 97.81% 29.75% 97.81% 97.81%	0.00 0.03 0.00 0.42 0.00 0.00 0.19 0.21	0.00 283.24 0.00 3683.60 0.00 4.53 1654.59 1872.40	0.00 0.14 0.00 1.84 0.00 0.00 0.83
0.00021605 0.00529109 0.02866009 0.00113000 0.00005291 0.00044092 0.00046297 0.00001653 0.00024251 0.00085980	97.81% 29.75% 97.81% 97.81% 97.81% 29.75% 97.81% 97.81%	0.03 0.00 0.42 0.00 0.00 0.19 0.21	283.24 0.00 3683.60 0.00 4.53 1654.59 1872.40	0.14 0.00 1.84 0.00 0.00 0.83
0.00529109 0.02866009 0.00113000 0.00005291 0.00044092 0.00046297 0.00001653 0.00024251 0.00085980	29.75% 97.81% 97.81% 97.81% 29.75% 97.81% 97.81%	0.00 0.42 0.00 0.00 0.19 0.21	0.00 3683.60 0.00 4.53 1654.59 1872.40	0.00 1.84 0.00 0.00 0.83
0.02866009 0.00113000 0.00005291 0.00044092 0.00046297 0.00001653 0.00024251 0.00085980	97.81% 97.81% 97.81% 29.75% 97.81% 97.81%	0.42 0.00 0.00 0.19 0.21	3683.60 0.00 4.53 1654.59 1872.40	1.84 0.00 0.00 0.83
0.00113000 0.00005291 0.00044092 0.00046297 0.00001653 0.00024251 0.00085980	97.81% 97.81% 29.75% 97.81% 97.81%	0.00 0.00 0.19 0.21	0.00 4.53 1654.59 1872.40	0.00 0.00 0.83
0.00005291 0.00044092 0.00046297 0.00001653 0.00024251 0.00085980	97.81% 29.75% 97.81% 97.81%	0.00 0.19 0.21	4.53 1654.59 1872.40	0.00
0.00044092 0.00046297 0.00001653 0.00024251 0.00085980	29.75% 97.81% 97.81%	0.19 0.21	1654.59 1872.40	0.83
0.00046297 0.00001653 0.00024251 0.00085980	97.81% 97.81%	0.21	1872.40	
0.00001653 0.00024251 0.00085980	97.81%			0.94
0.00024251 0.00085980		0.00	0.00	0.71
0.00085980	97.81%		0.00	0.00
		0.07	635.85	0.32
0.00024251	29.75%	0.18	1613.22	0.81
0.00021201	97.81%	0.06	490.39	0.25
0.0000086	97.81%	0.00	0.00	0.00
0.00000639	97.81%	0.00	8.38	0.00
0.00440925	29.75%	0.09	827.29	0.41
0.00308647	97.81%	0.00	0.00	0.00
0.00030865	97.81%	0.00	0.00	0.00
0.00055116	97.81%	0.00	0.00	0.00
0.01940068	29.75%	0.06	505.57	0.25
0.01653467	97.81%	0.00	0.00	0.00
0.00007055	97.81%	0.00	0.00	0.00
0.03086472	97.81%	0.15	1322.32	0.66
	0.00308647 0.00030865 0.00055116 0.01940068 0.01653467 0.00007055	0.00308647 97.81% 0.00030865 97.81% 0.00055116 97.81% 0.01940068 29.75% 0.01653467 97.81% 0.00007055 97.81%	0.00308647 97.81% 0.00 0.00030865 97.81% 0.00 0.00055116 97.81% 0.00 0.01940068 29.75% 0.06 0.01653467 97.81% 0.00 0.00007055 97.81% 0.00	0.00308647 97.81% 0.00 0.00 0.00030865 97.81% 0.00 0.00 0.00055116 97.81% 0.00 0.00 0.01940068 29.75% 0.06 505.57 0.01653467 97.81% 0.00 0.00 0.00007055 97.81% 0.00 0.00

XTO ENERGY, INC. WILDCAT COMPRESSOR STATION FUGITIVE EMISSIONS - VOCs

			Contro	olled	VOC Emissi	ions			
Component	Service	Control (%) ^b	Estimated Components	Hours	Factors ^a	Total VOC		OC Emissions	1
Туре		Control (70)	Count		(lb/hr/source)	Weight % ^c	lb/hour	lb/year	tons/year
	Gas/Vapor	67%	720	8760	0.009921	29.75%	0.70	6,143	3.07
Valves	Light Oil	61%	236	8760	0.005512	97.81%	0.50	4,347	2.17
valves	Heavy Oil		0	8760	0.000019	97.81%	0.00	0	0.00
	Water/Light Oil		153	8760	0.000216	97.81%	0.03	283	0.14
	Gas/Vapor		0	8760	0.005291	29.75%	0.00	0	0.00
Pump Seals	Light Oil	45%	15	8760	0.028660	97.81%	0.23	2,026	1.01
Fump Seals	Heavy Oil		0	8760	0.001130	97.81%	0.00	0	0.00
	Water/Light Oil		10	8760	0.000053	97.81%	0.00	5	0.00
	Gas/Vapor		1440	8760	0.000441	29.75%	0.19	1,655	0.83
Commentant	Light Oil		472	8760	0.000463	97.81%	0.21	1,872	0.94
Connectors	Heavy Oil		0	8760	0.000017	97.81%	0.00	0	0.00
	Water/Light Oil		306	8760	0.000243	97.81%	0.07	636	0.32
	Gas/Vapor		720	8760	0.000860	29.75%	0.18	1,613	0.81
171	Light Oil		236	8760	0.000243	97.81%	0.06	490	0.25
Flanges	Heavy Oil		0	8760	0.000001	97.81%	0.00	0	0.00
	Water/Light Oil		153	8760	0.000006	97.81%	0.00	8	0.00
	Gas/Vapor		72	8760	0.004409	29.75%	0.09	827	0.41
Open-ended	Light Oil		0	8760	0.003086	97.81%	0.00	0	0.00
Lines	Heavy Oil		0	8760	0.000309	97.81%	0.00	0	0.00
	Water/Light Oil		0	8760	0.000551	97.81%	0.00	0	0.00
	Gas/Vapor		10	8760	0.019401	29.75%	0.06	506	0.25
01	Light Oil		0	8760	0.016535	97.81%	0.00	0	0.00
Other:	Heavy Oil		0	8760	0.000071	97.81%	0.00	0	0.00
	Water/Light Oil		5	8760	0.030865	97.81%	0.15	1,322	0.66

Emission Component	lb/hr	lb/year	TPY
Controlled VOC Emissions	2.48	21,733	10.87

45%

0%

Footnotes:

^a Factors are taken from EPA Document EPA-453/R-095-017, November 1995, Table 2-4

^bControl efficiencies are taken from EPA Document EPA-453/R-095-017, November 1995, Table 5-2

Valves w/ Gas Vapor 67%

Light Liquid 61% Flange/Connector

Gas/Vapor analysis based on inlet gas. Liquid Analysis based on liquid from condensate from Low Pressure Separator

Pump

XTO ENERGY, INC. WILDCAT COMPRESSOR STATION FUGITIVE EMISSIONS - HAPs

Component Type S		Estimated				Emissions		
	Service	Components Count	Hours Factors	Total HAPs Weight % ^b	lb/hour	lb/year	tons/year	
	Gas/Vapor	720	8760	0.00992080	0.84%	0.060	524.326	0.262
Valves	Light Oil	236	8760	0.00551156	11.04%	0.144	1258.113	0.629
valves	Heavy Oil	0	8760	0.00001852	11.04%	0.000	0.000	0.000
	Water/Light Oil	153	8760	0.00021605	11.04%	0.004	31.973	0.016
	Gas/Vapor	0	8760	0.00529109	0.84%	0.000	0.000	0.000
Dumm Coolo	Light Oil	15	8760	0.02866009	11.04%	0.047	415.817	0.208
Pump Seals	Heavy Oil	0	8760	0.00113000	11.04%	0.000	0.000	0.000
	Water/Light Oil	10	8760	0.00005291	11.04%	0.000	0.512	0.000
	Gas/Vapor	1440	8760	0.00044092	0.84%	0.005	46.607	0.023
	Light Oil	472	8760	0.00046297	11.04%	0.024	211.363	0.106
Connectors	Heavy Oil	0	8760	0.00001653	11.04%	0.000	0.000	0.000
	Water/Light Oil	306	8760	0.00024251	11.04%	0.008	71.776	0.036
	Gas/Vapor	720	8760	0.00085980	0.84%	0.005	45.442	0.023
Elemana	Light Oil	236	8760	0.00024251	11.04%	0.006	55.357	0.028
Flanges	Heavy Oil	0	8760	0.0000086	11.04%	0.000	0.000	0.000
	Water/Light Oil	153	8760	0.00000639	11.04%	0.000	0.946	0.000
	Gas/Vapor	72	8760	0.00440925	0.84%	0.003	23.303	0.012
Open-ended	Light Oil	0	8760	0.00308647	11.04%	0.000	0.000	0.000
Lines	Heavy Oil	0	8760	0.00030865	11.04%	0.000	0.000	0.000
	Water/Light Oil	0	8760	0.00055116	11.04%	0.000	0.000	0.000
	Gas/Vapor	10	8760	0.01940068	0.84%	0.002	14.241	0.007
Other:	Light Oil	0	8760	0.01653467	11.04%	0.000	0.000	0.000
Ouler:	Heavy Oil	0	8760	0.00007055	11.04%	0.000	0.000	0.000
	Water/Light Oil	5	8760	0.03086472	11.04%	0.017	149.268	0.075

Emission Component	lb/hr	lb/year	TPY
Gas/Vapor	0.07	653.92	0.33
Oil	0.25	2195.13	1.10
Total HAPs	0.33	2849.04	1.42
Benzene	0.01	129.08	0.06
n-Hexane	0.25	2195.82	1.10

Footnotes:

^a Factors are taken from EPA Document EPA-453/R-095-017, November 1995, Table 2-4 ^b HAP WT% taken from samples for Inlet Separator Liquid and Inlet Separator Gas.

Tab 7

Section 7 - Information Used To Determine Emissions

Section 7

Information Used To Determine Emissions

Information Used to Determine Emissions shall include the following:

- ☑ If manufacturer data are used, include specifications for emissions units <u>and</u> control equipment, including control efficiencies specifications and sufficient engineering data for verification of control equipment operation, including design drawings, test reports, and design parameters that affect normal operation.
- □ If test data are used, include a copy of the complete test report. If the test data are for an emissions unit other than the one being permitted, the emission units must be identical. Test data may not be used if any difference in operating conditions of the unit being permitted and the unit represented in the test report significantly effect emission rates.
- ☑ If the most current copy of AP-42 is used, reference the section and date located at the bottom of the page. Include a copy of the page containing the emissions factors, and clearly mark the factors used in the calculations.
- □ If an older version of AP-42 is used, include a complete copy of the section.
- \blacksquare If an EPA document or other material is referenced, include a complete copy.
- □ Fuel specifications sheet.
- ☑ If computer models are used to estimate emissions, include an input summary (if available) and a detailed report, and a disk containing the input file(s) used to run the model. For tank-flashing emissions, include a discussion of the method used to estimate tank-flashing emissions, relative thresholds (i.e., permit or major source (NSPS, PSD or Title V)), accuracy of the model, the input and output from simulation models and software, all calculations, documentation of any assumptions used, descriptions of sampling methods and conditions, copies of any lab sample analysis.

The Wildcat Compressor Station gas inlet composition was obtained from the simulated using oil and gas samples entering a tank battery that will flow into the station. The PLU Brush Draw 18 No. 104H hydrocarbon sample was used to estimate emissions and sales gas compositions for the Poker Lake Unit 18 Twin Wells Ranch Tank Battery (GCP-O&G-8579). The PLU 18 Brushy Draw No. 104H analysis is representative of the hydrocarbons from the surrounding wells and batteries. The sales gas composition from this battery was used as the inlet gas composition for the station.

All supporting documentation is provided in this section.

FESCO, Ltd. 1100 Fesco Ave. - Alice, Texas 78332

For: XTO Energy, Inc. 22777 Springwoods Village Pkwy. Spring, Texas 77389

Sample: PLU 18 Brushy Draw Tank Battery No. 104H First Stage Separator Spot Gas Sample @ 130 psig & 109 °F

Date Sampled: 08/20/2019

Job Number: 192971.001

CHROMATOGRAPH EXTENDED ANALYSIS - GPA 2286

COMPONENT	MOL%	GPM
Hydrogen Sulfide*	< 0.001	
Nitrogen	1.177	
Carbon Dioxide	0.114	
Methane	73.146	
Ethane	12.878	3.529
Propane	6.712	1.895
Isobutane	0.928	0.311
n-Butane	2.317	0.748
2-2 Dimethylpropane	0.013	0.005
Isopentane	0.541	0.203
n-Pentane	0.647	0.240
Hexanes	0.552	0.233
Heptanes Plus	<u>0.975</u>	0.432
Totals	100.000	7.596

Computed Real Characteristics Of Heptanes Plus:

Specific Gravity	3.565	(Air=1)
Molecular Weight	102.78	
Gross Heating Value	5475	BTU/CF

Computed Real Characteristics Of Total Sample:

Specific Gravity	0.804	(Air=1)
Compressibility (Z)	0.9953	
Molecular Weight	23.18	
Gross Heating Value		
Dry Basis	1405	BTU/CF
Saturated Basis	1381	BTU/CF

*Hydrogen Sulfide tested on location by: Stain Tube Method (GPA 2377) Results: <0.013 Gr/100 CF, <0.2 PPMV or <0.001 Mol %

Base Conditions: 15.025 PSI & 60 Deg F

Sampled By: (14) R. Perez Analyst: NG Processor: RG Cylinder ID: T-1897 Certified: FESCO, Ltd. - Alice, Texas

David Dannhaus 361-661-7015

CHROMATOGRAPH EXTENDED ANALYSIS - GPA 2286				
TOTAL REPORT				

		GPM		WT %
COMPONENT	MOL %	GPIN		< 0.001
Hydrogen Sulfide*	< 0.001			
Nitrogen	1.177			1.423
Carbon Dioxide	0.114			0.216
Methane	73.146	0 500		50.631
Ethane	12.878	3.529		16.708
Propane	6.712	1.895		12.770
Isobutane	0.928	0.311		2.327
n-Butane	2.317	0.748		5.811
2,2 Dimethylpropane	0.013	0.005		0.040
Isopentane	0.541	0.203		1.684
n-Pentane	0.647	0.240		2.014
2,2 Dimethylbutane	0.008	0.003		0.030
Cyclopentane	0.000	0.000		0.000
2,3 Dimethylbutane	0.050	0.021		0.186
2 Methylpentane	0.167	0.071		0.621
3 Methylpentane	0.087	0.036		0.323
n-Hexane	0.240	0.101		0.892
Methylcyclopentane	0.095	0.034		0.345
Benzene	0.016	0.005		0.054
Cyclohexane	0.122	0.043		0.443
2-Methylhexane	0.034	0.016		0.147
3-Methylhexane	0.038	0.018		0.164
2,2,4 Trimethylpentane	0.000	0.000		0.000
Other C7's	0.093	0.000		0.398
n-Heptane	0.087	0.041		0.376
Methylcyclohexane	0.117	0.041		0.496
Toluene	0.026	0.040		0.490
Other C8's	0.020	0.009		0.103
	0.045	0.055		0.552
n-Octane				-
Ethylbenzene	0.004	0.002		0.018
M & P Xylenes	0.021	0.008		0.096
O-Xylene	0.006	0.002		0.027
Other C9's	0.080	0.042		0.436
n-Nonane	0.023	0.013		0.127
Other C10's	0.037	0.022		0.226
n-Decane	0.007	0.004		0.043
Undecanes (11)	0.008	<u>0.005</u>		<u>0.051</u>
Totals	100.000	7.596		100.000
Computed Real Charact	eristics of Total Sampl	е		
			(Air=1)	
			. /	
Molecular Weight		- 23.18		
Gross Heating Value		0		
Drv Basis		- 1405	BTU/CF	
Saturated Basis -		1381	BTU/CF	
		1001	5.0/01	

FESCO, Ltd. 1100 Fesco Ave. - Alice, Texas 78332

Sample: PLU 18 Brushy Draw Tank Battery No. 104H First Stage Separator

Spot Gas Sample @ 130 psig & 109 °F

Date Sampled: 08/20/2019

Job Number: 192971.001

GLYCALC FORMAT

COMPONENT	MOL%	GPM	Wt %
Carbon Dioxide	0.114		0.216
Hydrogen Sulfide	< 0.001		< 0.001
Nitrogen	1.177		1.423
Methane	73.146		50.631
Ethane	12.878	3.529	16.708
Propane	6.712	1.895	12.770
Isobutane	0.928	0.311	2.327
n-Butane	2.330	0.753	5.851
Isopentane	0.541	0.203	1.684
n-Pentane	0.647	0.240	2.014
Cyclopentane	0.000	0.000	0.000
n-Hexane	0.240	0.101	0.892
Cyclohexane	0.122	0.043	0.443
Other C6's	0.312	0.132	1.160
Heptanes	0.347	0.150	1.430
Methylcyclohexane	0.117	0.048	0.496
2,2,4 Trimethylpentane	0.000	0.000	0.000
Benzene	0.016	0.005	0.054
Toluene	0.026	0.009	0.103
Ethylbenzene	0.004	0.002	0.018
Xylenes	0.027	0.011	0.123
Octanes Plus	<u>0.316</u>	<u>0.165</u>	<u>1.657</u>
Totals	100.000	7.596	100.000

Real Characteristics Of Octanes Plus:

Specific Gravity	4.212	(Air=1)
Molecular Weight	121.44	
Gross Heating Value	6478	BTU/CF

Real Characteristics Of Total Sample:

Specific Gravity	0.804	(Air=1)
Compressibility (Z)	0.9953	
Molecular Weight	23.18	
Gross Heating Value		
Dry Basis	1405	BTU/CF
Saturated Basis	1381	BTU/CF

FESCO, Ltd. 1100 FESCO Avenue - Alice, Texas 78332

For: XTO Energy, Inc. 22777 Springwoods Village Pkwy. Spring, Texas 77389

Sample: PLU 18 Brushy Draw Tank Battery No. 104H First Stage Separator Hydrocarbon Liquid Sampled @ 130 psig & 109 °F

Date Sampled: 08/21/19

Job Number: 192971.002

CHROMATOGRAPH EXTENDED ANALYSIS - GPA 2186-M

COMPONENT	MOL %	LIQ VOL %	WT %
Nitrogen	0.038	0.007	0.007
Carbon Dioxide	0.011	0.003	0.003
Methane	2.990	0.839	0.323
Ethane	2.773	1.228	0.562
Propane	4.351	1.985	1.293
Isobutane	1.270	0.688	0.497
n-Butane	4.521	2.360	1.771
2,2 Dimethylpropane	0.060	0.038	0.029
Isopentane	2.401	1.454	1.168
n-Pentane	3.658	2.196	1.779
2,2 Dimethylbutane	0.043	0.030	0.025
Cyclopentane	0.000	0.000	0.000
2,3 Dimethylbutane	0.322	0.219	0.187
2 Methylpentane	1.363	0.937	0.792
3 Methylpentane	0.817	0.552	0.475
n-Hexane	2.668	1.817	1.550
Heptanes Plus	<u>72.715</u>	<u>85.647</u>	<u>89.539</u>
Totals:	100.000	100.000	100.000

Specific Gravity	0.8139	(Water=1)
°API Gravity	42.35	@ 60°F
Molecular Weight	182.7	
Vapor Volume	13.79	CF/Gal
Weight	6.78	Lbs/Gal

Characteristics of Total Sample:

Specific Gravity	0.7786	(Water=1)
°API Gravity	50.25	@ 60°F
Molecular Weight	148.4	
Vapor Volume	16.24	CF/Gal
Weight	6.49	Lbs/Gal

Base Conditions: 15.025 PSI & 60 °F

Certified: FESCO, Ltd. - Alice, Texas

Sampled By: (14) Perez Analyst: ANB Processor: ANBdjv Cylinder ID: W-0360

David Dannhaus 361-661-7015

TANKS DATA INPUT REPORT - GPA 2186-M

COMPONENT	Mol %	LiqVol %	Wt %
Carbon Dioxide	0.011	0.003	0.003
Nitrogen	0.038	0.007	0.007
Methane	2.990	0.839	0.323
Ethane	2.773	1.228	0.562
Propane	4.351	1.985	1.293
Isobutane	1.270	0.688	0.497
n-Butane	4.580	2.398	1.800
Isopentane	2.401	1.454	1.168
n-Pentane	3.658	2.196	1.779
Other C-6's	2.545	1.737	1.478
Heptanes	9.560	6.545	6.040
Octanes	12.413	9.427	8.953
Nonanes	6.689	5.986	5.716
Decanes Plus	40.652	61.509	66.494
Benzene	0.199	0.092	0.105
Toluene	0.947	0.525	0.588
E-Benzene	0.143	0.091	0.102
Xylenes	1.561	0.998	1.117
n-Hexane	2.668	1.817	1.550
2,2,4 Trimethylpentane	<u>0.551</u>	0.474	<u>0.424</u>
Totals:	100.000	100.000	100.000
Characteristics of Total Sample:			
Specific Gravity		0.7786	(Water=1)
°API Gravity		50.25	@ 60°F
Molecular Weight		148.4	
Vapor Volume		16.24	CF/Gal
Weight		6.49	Lbs/Gal

Characteristics of Decanes (C10) Plus:

Specific Gravity	0.8417 (Water=1)
Molecular Weight	242.7

Characteristics of Atmospheric Sample:

°API Gravity	47.21	@ 60°F
Reid Vapor Pressure Equivalent (D-6377)	8.87	psi

QUALITY CONTROL CHECK				
	Sampling Conditions	Test Samples		
Cylinder Number		W-0360*		
Pressure, PSIG		129		
Temperature, °F		109		

* Sample used for analysis

FESCO, Ltd.

COMPONENT	Mol %	LiqVol %	Wt %
Nitrogen	0.038	0.007	0.007
Carbon Dioxide	0.011	0.003	0.003
Methane	2.990	0.839	0.323
Ethane	2.773	1.228	0.562
Propane	4.351	1.985	1.293
Isobutane	1.270	0.688	0.497
n-Butane	4.521	2.360	1.771
2,2 Dimethylpropane	0.060	0.038	0.029
Isopentane	2.401	1.454	1.168
n-Pentane	3.658	2.196	1.779
2,2 Dimethylbutane	0.043	0.030	0.025
Cyclopentane	0.000	0.000	0.000
2,3 Dimethylbutane	0.322	0.219	0.187
2 Methylpentane	1.363	0.937	0.792
3 Methylpentane	0.817	0.552	0.475
n-Hexane	2.668	1.817	1.550
Methylcyclopentane	1.487	0.872	0.844
Benzene	0.199	0.092	0.105
Cyclohexane	2.289	1.290	1.298
2-Methylhexane 3-Methylhexane	0.973	0.749	0.657
2,2,4 Trimethylpentane	0.915 0.551	0.696 0.474	0.618 0.424
Other C-7's	1.228	0.900	0.424
n-Heptane	2.668	2.039	1.802
Methylcyclohexane	4.080	2.716	2.700
Toluene	0.947	0.525	0.588
Other C-8's	6.033	4.759	4.482
n-Octane	2.301	1.952	1.771
E-Benzene	0.143	0.091	0.102
M & P Xylenes	1.196	0.768	0.856
O-Xylene	0.365	0.230	0.261
Other C-9's	4.872	4.293	4.146
n-Nonane	1.817	1.693	1.570
Other C-10's	4.786	4.634	4.557
n-decane	1.297	1.319	1.244
Undecanes(11)	4.689	4.658	4.646
Dodecanes(12)	3.489	3.745	3.787
Tridecanes(13)	3.466	3.988	4.088
Tetradecanes(14)	2.807	3.459	3.594
Pentadecanes(15)	2.412	3.184	3.348
Hexadecanes(16)	1.869	2.638	2.797
Heptadecanes(17)	1.594	2.378	2.546
Octadecanes(18)	1.461	2.296	2.472
Nonadecanes(19)	1.275	2.086	2.260
Eicosanes(20)	1.015	1.727	1.882
Heneicosanes(21)	0.866	1.549	1.698
Docosanes(22)	0.743	1.385	1.527
Tricosanes(23)	0.635	1.228	1.362
Tetracosanes(24)	0.560	1.123	1.250
Pentacosanes(25)	0.500	1.039	1.162
Hexacosanes(26)	0.453 0.419	0.975 0.935	1.096
Heptacosanes(27) Octacosanes(28)	0.340	0.935	1.055 0.889
Nonacosanes(29)	0.340	0.732	0.832
Triacontanes(30)	0.281	0.692	0.789
Hentriacontanes Plus(31+)	<u>5.388</u>	<u>14.955</u>	<u>17.614</u>
Total	100.000	100.000	100.000

Page 3 of 3

FESCO, Ltd. 1100 Fesco Avenue - Alice, Texas 78332

For: XTO Energy, Inc. 22777 Springwoods Village Pkwy. Spring, Texas 77389 Date Sampled: 08/21/19

Date Analyzed: 09/09/19

Sample: PLU 18 Brushy Draw Tank Battery No. 104H

Job Number: J192971

FLASH LIBERATION OF HYDROCARBON LIQUID					
Separator HC Liquid Stock Tank					
Pressure, psig	130	0			
Temperature, °F	109	70			
Density of Separator HC Liquid (g/cc)	0.7597				
Gas Oil Ratio (1)		66.1			
Gas Specific Gravity (2)		1.269			

STOCK TANK FLUID PROPERTIES			
Shrinkage Recovery Factor (3)	0.9411		
Density of Stock Tank HC Liquid (g/cc @ 60 °F)	0.7910		
Oil API Gravity at 60 °F	47.21		

Quality Control Check				
Sampling Conditions Test Samples				
Cylinder No.		W-0360*		
Pressure, psig	130	129		
Temperature, °F	109	109		

(1) - Scf of flashed vapor per barrel of stock tank oil

(2) - Air = 1.000

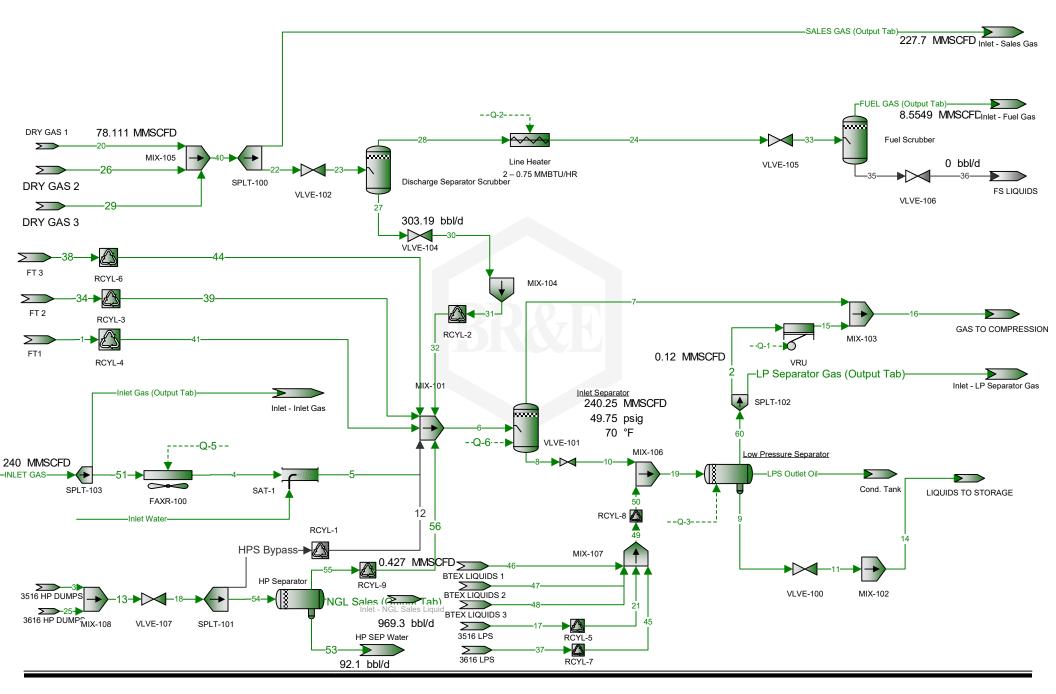
(3) - Fraction of first stage separator liquid

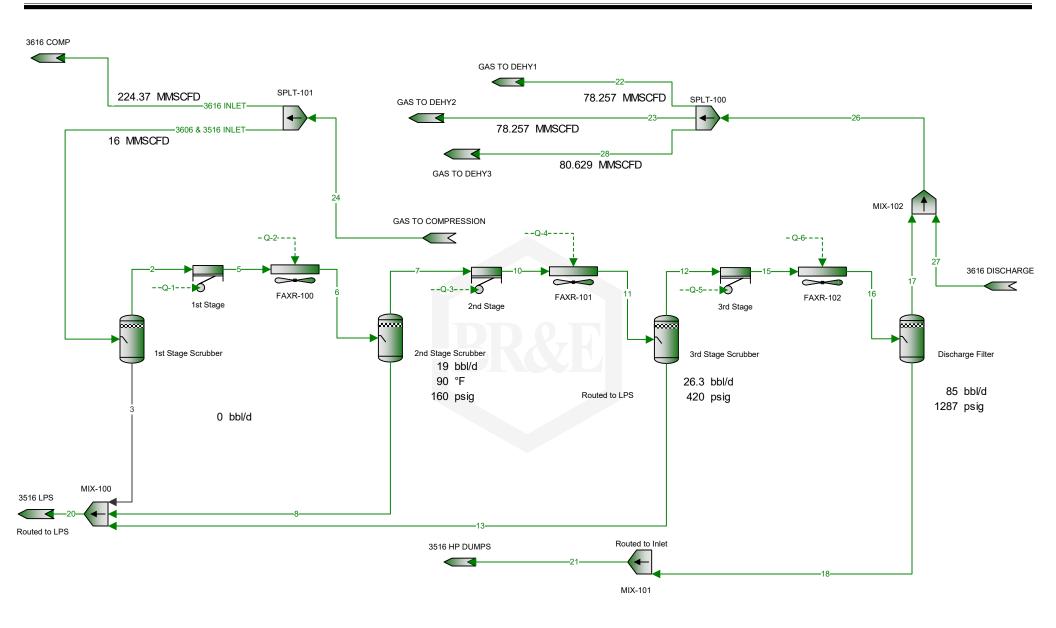
Analyst: R.E.

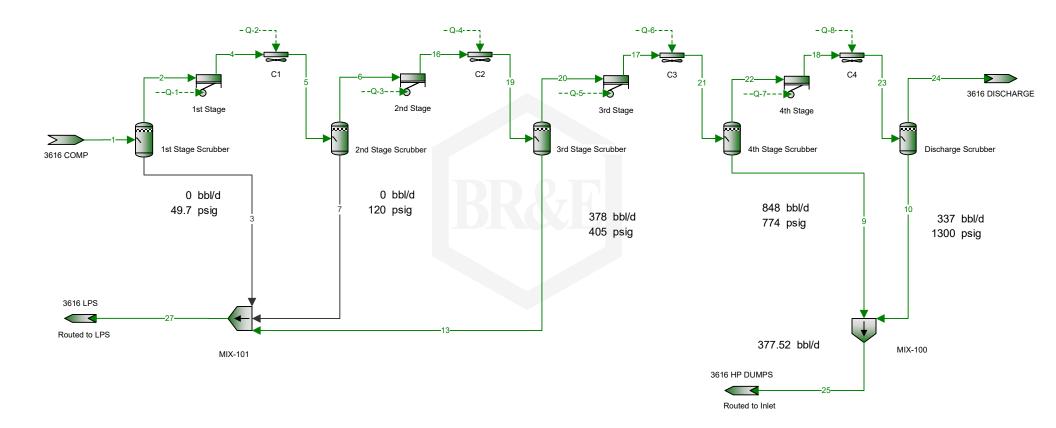
Base Conditions: 15.025 PSI & 60 °F

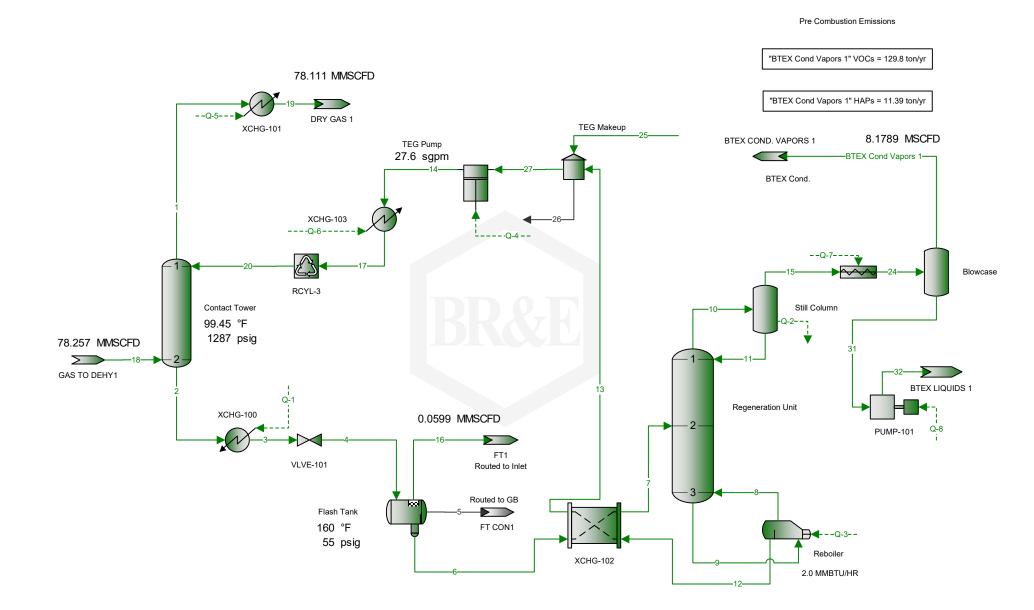
Certified: FESCO, Ltd. - Alice, Texas

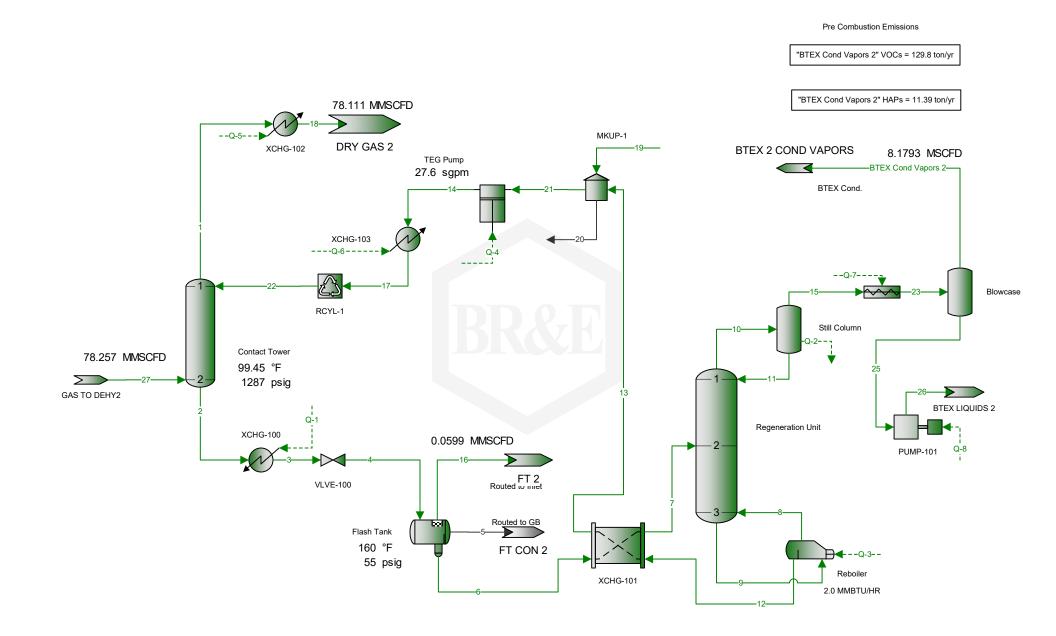
David Dannhaus 361-661-7015

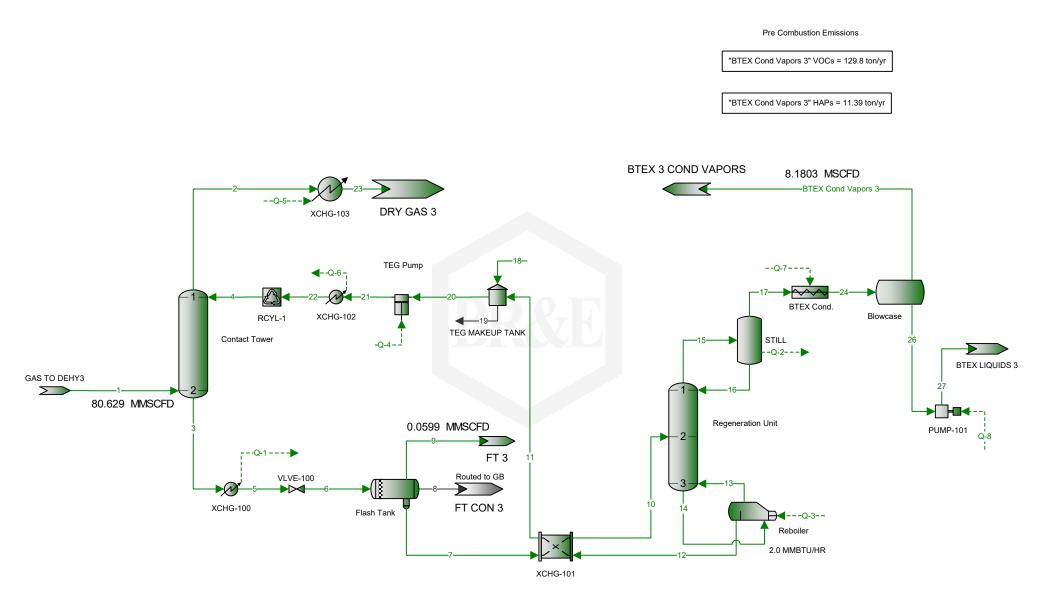

			Sales Plant Schematic			
Client Name:	XTO ENERGY INC				Job: DELAWAR	RE DEVELOPMENT
Location:	PLU 18 Twin Wells R	anch TB				
Flowsheet:	Sales					
		PP Gas TVapor PW STK Vapor STK Vapor C	RUGas MIX 100 FAXR 100 FAXR 100	60.874 M 1130.7 B Contined Sales Ga Contined Sales Ga 104.09 F USS -100 VSS -100 VSS -100 VSS -100		let to Wildcat CS
		VRT Gas Vapor	0 04 04 FAXR-101			

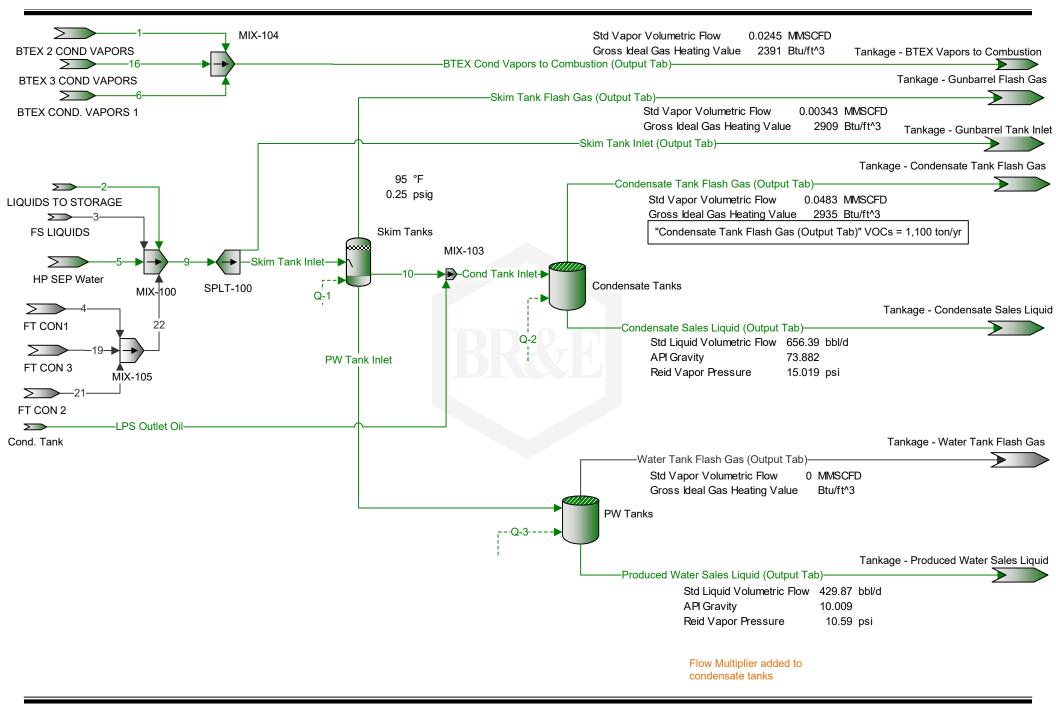

		Process Stre All Str Tabulated by	eams				
Client Name:	XTO ENERGY I			Job: DELAWARE DEVELOPMENT			
Location:	PLU 18 Twin We	ells Ranch TB					
Flowsheet:	Sales						
			-				
		Conne	ctions	<u> </u>			
		Combined					
		Sales Gas					
From Block To Block		VSSL-100					
TO BIOCK							
		Stream Co	magitian				
		Combined Sales Gas					
Mole Fraction		%					
Carbon Dioxide		0.111969					
Nitrogen Methane		1.15886 72.1455					
Ethane		13.1133					
Propane		7.0447					
Isobutane		0.967756					
n-Butane		2.45017					
Isopentane		0.552886					
n-Pentane		0.653966					
n-Hexane		0.169468 0.0179833					
Cyclohexane i-C6		0.0179833					
i-C7		0.293879					
Methylcyclohexar	ne	0.00943582					
Octane		0.0925583					
Nonane		0.0182404					
Benzene		0.0112688					
Toluene		0.0161728					
Ethylbenzene o-Xylene		0.000923918					
H2S		0.000901876					
Water		0.923509					
2,2,4-Trimethylpe	entane	0.0108863					
Decanes Plus		3.78831E-05					
Mass Fraction		Combined Sales Gas %					
Carbon Dioxide		0.215587					
Nitrogen		1.42028					
Methane		50.6359					
Ethane		17.2509					
Propane Isobutane		13.5905 2.46086					
n-Butane		6.2304					
Isopentane		1.74519					
n-Pentane		2.06425					
n-Hexane	n-Hexane						
Cyclohexane		0.0662143					
i-C6		0.858549					
i-C7 Methylcyclohexar	20	1.28832 0.0405329					
Octane		0.0405329					
Nonane		0.10235					
Benzene		0.0385099					
Toluene		0.0651935					
Ethylbenzene		0.00429134					
o-Xylene		0.0366269					
H2S		0.00134473					
Water 2,2,4-Trimethylpentane		0.727882 0.0544044					
Decanes Plus		0.0044044					

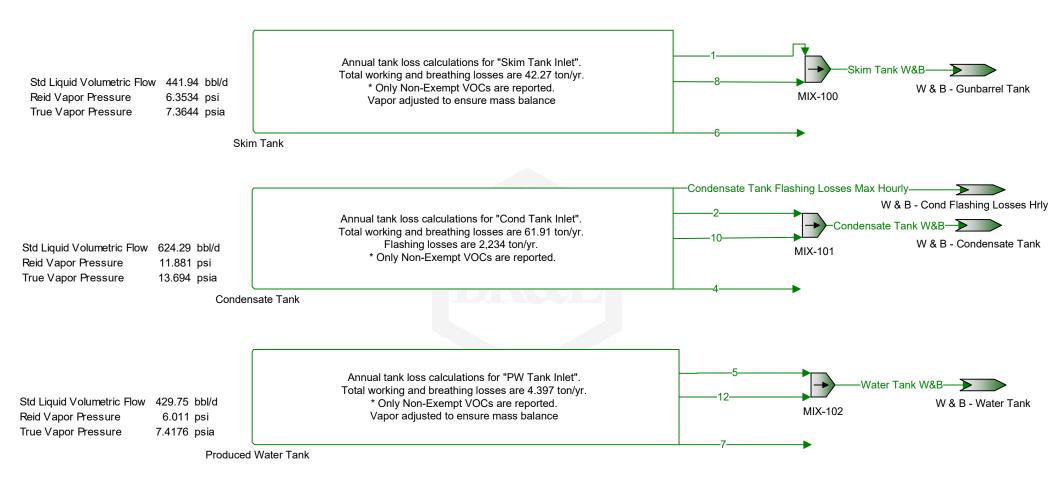

* User Specified Values ? Extrapolated or Approximate Values

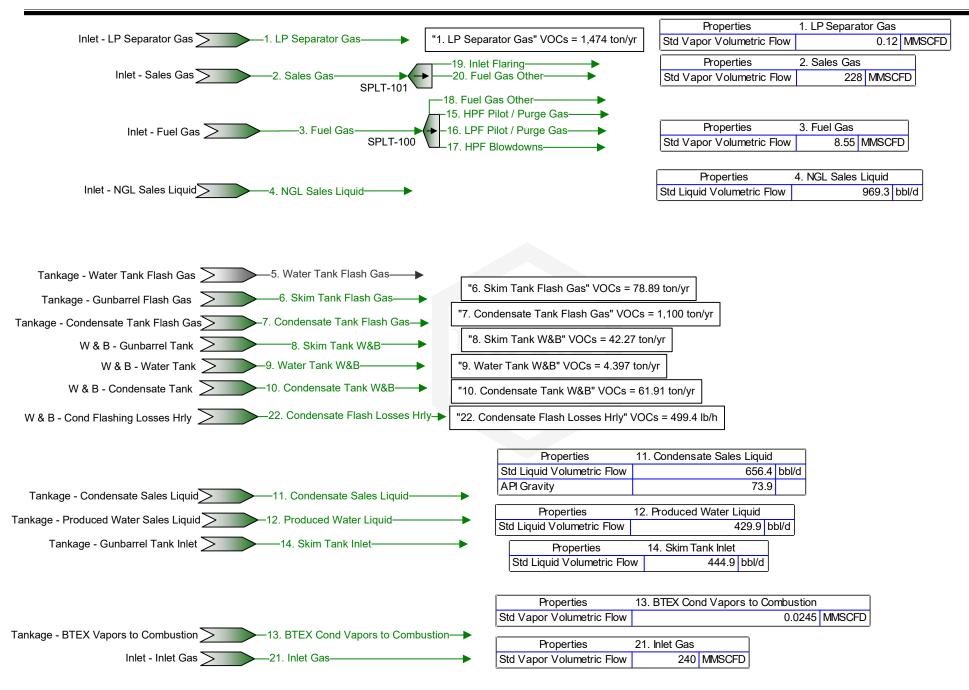

			Process Streams Report All Streams Tabulated by Total Phase							
Client Name: X	TO ENERGY							WARE DEVELOPMENT		
	LU 18 Twin W									
	ales									
Mass Flow			Combined Sales Gas Ib/h							
Carbon Dioxide			328.277							
Nitrogen			2162.68							
Methane			77103.8							
Ethane			26268.1							
Propane			20694.4							
Isobutane			3747.17							
n-Butane			9487.09							
Isopentane			2657.42							
n-Pentane			3143.26							
n-Hexane			972.895							
Cyclohexane			100.825							
i-Ĉ6			1307.32							
i-C7			1961.74							
Methylcyclohexane			61.7199							
Octane			704.345							
Nonane			155.849							
Benzene			58.6393							
Toluene			99.2708							
Ethylbenzene			6.53446							
o-Xylene			55.7722							
H2S			2.04764							
Water			1108.35							
2,2,4-Trimethylpentane			82.8421							
Decanes Plus			0.612507							
				Properties						
Property		Units	Combined Sales Gas							
Temperature		°F	104.086							
Pressure		psig	95							
Molecular Weight		lb/lbmol	22.8571				-			
Mass Flow		lb/h	152271						-	
Std Liquid Volumetric F	IOW	sgpm	831.818							
Std Vapor Volumetric F	IOW	MMSCFD	60.6737							
Gross Ideal Gas Heatin	ng value	Btu/ft^3	1343.73		<u> </u>		<u> </u>			
Remarks										


WILDCAT COMPRESSOR STATION









Client Name:			All St	reams Report Treams by Total Phase	lak.		1 ago 1 on 12
Client Name: Location:	DELAWARE DI				Job:		
Flowsheet:	Output	3301 0141011					
	•						
			Conn	ections			
			1. LP Separator Gas	2. Sales Gas	3. Fuel Gas	4. NGL Sales Liquid	5. Water Tank Flash Gas
From Block			Inlet - LP Separator Gas	Inlet - Sales Gas	Inlet - Fuel Gas	Inlet - NGL Sales Liquid	Tankage - Water Tank
To Block				SPLT-101	SPLT-100		Flash Gas
			Ctroom C				
			1. LP	omposition 2. Sales Gas	3. Fuel Gas	4. NGL Sales	5. Water Tank
Mass Fraction			Separator Gas %	2. Sales Gas	3. Fuel Gas	Liquid	Flash Gas %
Triethylene Glycol			1.49937E-09	0.000577059	2.50479E-05	1.4835E-15	70
Carbon Dioxide			0.128465	0.220014	0.237859	0.030462	
Nitrogen			0.133554	1.45276	1.61036	0.0141495	
Methane			13.154	51.7828	56.8725	2.46124	
Ethane			17.1985	17.5988	18.4841	5.57047	
Propane Isobutane			27.1804 6.43707	13.7859 2.47407	13.2145 2.07482	<u>11.9902</u> 4.0639	
n-Butane			17.4738	6.21986	4.78439	13.467	
Isopentane			4.88667	1.7002	1.00621	6.45743	
n-Pentane			5.67425	1.98555	1.0596	9.08517	
n-Hexane			1.39319	0.553915	0.152889	5.89567	
Cyclohexane			0.158407	0.0549354	0.0137626	0.693663	
i-C6 i-C7			2.07018 2.30479	0.773009 0.996078	0.264882 0.179257	6.56134 17.0167	
Methylcyclohexane			0.0700094	0.0282317	0.00389946	0.648652	
Octane			0.465398	0.225614	0.0146104	10.2544	
Nonane			0.0572251	0.0233224	0.000538551	2.56757	
Benzene			0.245463	0.0291061	0.00898304	0.35046	
Toluene			0.19267	0.0373838	0.00526183	1.05975	
Ethylbenzene			0.0055545	0.0016919	0.000107779	0.0967535	
o-Xylene Hydrogen Sulfide			0.0440768 0.0025171	0.0121902 0.00134946	0.000649821 0.00140693	0.870511 0.000525606	
Water			0.634565	0.00321692	0.0034911	0.0208257	
2,2,4-Trimethylpenta	ane		0.0891646	0.0394093	0.00589431	0.81902	
Decanes Plus			4.24095E-05	9.77871E-06	6.7711E-08	0.00404189	
			1. LP Separator Gas	2. Sales Gas	3. Fuel Gas	4. NGL Sales Liquid	5. Water Tank Flash Gas
Mole Fraction Triethylene Glycol			% 3.71735E-10	% 8.7071E-05	% 3.56664E-06	% 6.16905E-16	%
Carbon Dioxide			0.108681	0.113279	0.115572	0.043225	
Nitrogen			0.177504	1.1751	1.22924	0.0315427	
Methane			30.5285	73.1408	75.8072	9.58089	
Ethane			21.2955	13.262	13.1449	11.569	
Propane			22.9497	7.0841	6.40819	16.9807	
Isobutane n-Butane			4.12348	0.964529 2.42484	0.763339	4.3664 14.4694	
Isopentane			<u>11.1934</u> 2.52175	0.53397	0.298221	5.58924	
n-Pentane			2.92818	0.623586	0.314047	7.86369	
n-Hexane			0.601927	0.145648	0.0379378	4.27241	
Cyclohexane			0.070079	0.0147909	0.00349685	0.514716	
i-C6			0.894424	0.203257	0.0657278	4.7548	
i-C7 Methylcyclohexane			0.856391	0.225249 0.00651528	0.0382542	10.6053 0.412557	
Octane			0.0265475	0.00651528	0.00273506	5.60608	
Nonane			0.0166123	0.00412043	8.97907E-05	1.25017	
Benzene			0.117	0.00844329	0.00245915	0.280184	
Toluene			0.0778559	0.00919366	0.00122117	0.718264	
Ethylbenzene			0.00194797	0.000361109	2.17086E-05	0.0569125	
o-Xylene			0.0154577	0.0026018	0.000130886	0.512053	

* User Specified Values ? Extrapolated or Approximate Values

Client Name:	DELAWARE DI		Job:				
Location:	Wildcat Compre				500.		
Flowsheet:	Output						
TIOWSHEEL.	Output						
Mala Francisco			1. LP Separator Gas	2. Sales Gas	3. Fuel Gas	4. NGL Sales Liquid	5. Water Tank Flash Gas
Mole Fraction			%	%	%	%	%
Hydrogen Sulfide			0.00274983	0.000897208	0.000882758	0.000963101	
Water			1.31145	0.00404617	0.00414382	0.0721906	
2,2,4-Trimethylpent	ane		0.0290627	0.00781752	0.00110341	0.447757	
Decanes Plus			1.02933E-05	1.44445E-06	9.43872E-09	0.00164544	
			1. LP Separator Gas	2. Sales Gas	3. Fuel Gas	4. NGL Sales Liquid	5. Water Tank Flash Gas
Mass Flow			lb/h	lb/h	lb/h	lb/h	lb/h
Triethylene Glycol			7.33751E-09	3.26908	0.0050311	1.2341E-13	
Carbon Dioxide			0.628672	1246.4	47.7762	2.53408	
Nitrogen			0.653577	8230.02	323.455	1.17707	
Methane			64.3723	293354	11423.3	204.747	
Ethane			84.1648	99698.4	3712.7	463.398	
Propane			133.013	78098.1	2654.25	997.448	
Isobutane			31.5013	14015.8	416.746	338.069	
n-Butane			85.5122	35235.9	960.987	1120.29	
Isopentane			23.914	9631.77	202.106	537.182	
n-Pentane			27.7683	11248.3	212.831	755.78	
n-Hexane			6.81788	3137.97	30.7091	490.451	
Cyclohexane			0.7752	311.213	2.76434	57.7046	
i-Ĉ6			10.1309	4379.15	53.2039	545.827	
i-C7			11.279	5642.86	36.0054	1415.59	
Methylcyclohexane			0.342607	159.935	0.783241	53.9602	
Octane			2.27753	1278.12	2.93463	853.048	
Nonane			0.280044	132.123	0.108173	213.592	
Benzene			1.20123	164.888	1.80432	29.1541	
Toluene			0.942877	211.782	1.05688	88.1586	
Ethylbenzene			0.0271822	9.58472	0.0216483	8.04875	
o-Xylene			0.2157	69.0584	0.130522	72.4163	
Hydrogen Sulfide			0.012318	7.64477	0.282595	0.0437243	
Water			3.10539	18.2241	0.701219	1.73245	
2,2,4-Trimethylpent	ane		0.436348	223.256	1.18392	68.1328	
Decanes Plus			0.000207541	0.0553971	1.36003E-05	0.336238	
			Stream	Properties			
Desertes		Line Mar					5 Mat 7
Property		Units	1. LP Separator Gas	2. Sales Gas	3. Fuel Gas	4. NGL Sales Liquid	5. Water Tank Flash Gas
Temperature		°F	70	93.262	76.247	95.6601	

Property	onits	Separator Gas	2. Sales Gas	5. Fuel Gas	Liquid	Flash Gas
Temperature	°F	70	93.262	76.247	95.6601	
Pressure	psig	15	1272	120	400	0.25
Molecular Weight	lb/lbmol	37.2321	22.6592	21.3835	62.4485	
Mass Flow	lb/h	489.373	566507	20085.9	8318.83	0
Std Liquid Volumetric Flow	sgpm	2.10511	3129.35	114.846	28.2713	0
Std Vapor Volumetric Flow	MMSCFD	0.119709	227.701	8.55492	1.21323	0
Gross Ideal Gas Heating Value	Btu/ft^3	2124.36	1342.81	1273.9	3471.21	

Remarks

Г

	Process Streams Report All Streams Tabulated by Total Phase										
Client Name:	DELAWARE DI				Job:						
Location: Flowsheet:	Wildcat Compre Output	ssor Station									
Tiowsneet.	Output										
			Conn	ections							
			6. Skim Tank	7. Condensate	8. Skim Tank	9. Water Tank	10.				
			Flash Gas	Tank Flash Gas	W&B	W&B	Condensate Tank W&B				
From Block			Tankage -	Tankage -	W & B -	W & B - Water	W & B -				
			Gunbarrel Flash Gas	Condensate Tank Flash Gas	Gunbarrel Tank	Tank	Condensate Tank				
To Block											
						1					
			Stream C	omposition							
Mara Frantian			6. Skim Tank Flash Gas	7. Condensate Tank Flash Gas	8. Skim Tank W&B	9. Water Tank W&B	10. Condensate Tank W&B				
Mass Fraction Triethylene Glycol			% 1.31371E-08	% 2.81993E-09	% 3.23825E-09	% 6.95864E-08	% 1.81679E-12				
Carbon Dioxide			0.213369	0.0317358	0.207499	0.742571	0.0196511				
Nitrogen			0.0220164	0.00346877	0.000804474	0.00204849	0.000129488				
Methane			2.86434	1.21476	0.266323	0.54656	0.218436				
Ethane			4.78644	7.90902	1.56742	1.28189	7.29306				
Propane			15.8342	26.5032	13.8011	3.33052	24.908				
Isobutane			6.93129	8.56002	9.56053	1.28564	8.33381				
n-Butane Isopentane			23.6206 9.80086	25.3088 7.99565	30.4462 10.823	6.41461 3.56208	26.2733 8.69585				
n-Pentane			12.4907	9.51155	13.161	4.80499	10.3499				
n-Hexane			4.05657	2.49711	3.63405	4.69159	2.97119				
Cyclohexane			0.46334	0.283416	0.413235	0.905412	0.270021				
i-C6			5.5966	3.6492	5.27757	4.81868	4.18332				
i-C7			7.28632	4.19069	6.14025	17.1514	4.57869				
Methylcyclohexane Octane			0.229513 1.69289	0.128212 0.866198	0.187921 1.25635	0.812115 14.5797	0.143244 0.846333				
Nonane			0.232799	0.109463	0.157815	1.93128	0.0935544				
Benzene			0.66459	0.433403	0.610465	6.3949	0.316731				
Toluene			0.617068	0.350752	0.507093	5.87941	0.261977				
Ethylbenzene			0.0197943	0.0103003	0.0148597	0.178023	0.00764576				
o-Xylene			0.159164	0.0819955	0.118198	1.43986	0.0517031				
Hydrogen Sulfide Water			0.00425728 2.12471	0.00142588 0.19693	0.00616394 1.60322	0.045084 18.2867	0.000868944 6.40215E-05				
2,2,4-Trimethylpenta	ane		0.288308	0.19693	0.238768	0.913389	0.182472				
Decanes Plus			0.000188213	8.17191E-05	0.000115006	0.00148858	6.17235E-05				
			6. Skim Tank Flash Gas	7. Condensate Tank Flash Gas	8. Skim Tank W&B	9. Water Tank W&B	10. Condensate Tank W&B				
Mole Fraction			%	%	%	%	%				
Triethylene Glycol Carbon Dioxide			4.6439E-09 0.257371	9.80629E-10 0.0376583	1.27085E-09 0.277871	2.26456E-08 0.824601	6.60559E-13 0.0243803				
Nitrogen			0.041721	0.00646646	0.00169247	0.00357372	0.00243803				
Methane			9.47824	3.95436	0.978391	1.66502	0.743448				
Ethane			8.45021	13.736	3.07213	2.08346	13.2431				
Propane			19.0623	31.3878	18.4456	3.69122	30.8419				
Isobutane n Butana			6.33062	7.69114	9.69425	1.08101	7.82887				
n-Butane Isopentane			21.5736 7.21123	22.7398 5.78738	30.8721 8.84086	5.39362 2.41283	24.6814 6.58083				
n-Pentane			9.19038	6.88462	10.7506	3.25474	7.83261				
n-Hexane			2.49891	1.51326	2.48532	2.66066	1.88255				
Cyclohexane			0.292261	0.175865	0.28938	0.52577	0.175183				
i-C6			3.44759	2.21142	3.60932	2.73273	2.65055				
i-C7			3.86017	2.18407	3.61147	8.3652	2.49495				
Methylcyclohexane			0.124089	0.0681924	0.112797	0.404222	0.0796572				
Octane Nonane			0.786733 0.0963565	0.396005	0.648201 0.0725184	6.23772 0.735906	0.404543 0.0398279				
* User Specified Values				5.0.19050.0	0.0720104		to Esso Exploration, Inc.				

* User Specified Values ? Extrapolated or Approximate Values

Licensed to Esso Exploration, Inc.

	LAWARE DI				Job:		
	dcat Compre	ssor Station					
Flowsheet: Out	put						
				1	1		
Mole Fraction			6. Skim Tank Flash Gas %	7. Condensate Tank Flash Gas %	8. Skim Tank W&B %	9. Water Tank W&B %	10. Condensate Tank W&B %
Benzene			0.451659	0.289756	0.460594	4.001	0.221397
Toluene			0.355522	0.198801	0.324355	3.1185	0.155246
Ethylbenzene			0.00989767	0.0050667	0.00824904	0.0819497	0.00393222
o-Xylene			0.0795861	0.0403336	0.0656149	0.662812	0.0265909
Hydrogen Sulfide			0.00663126	0.00218489	0.0106591	0.0646493	0.00139213
Water			6.26084	0.570859	5.24478	49.6076	0.000194036
2,2,4-Trimethylpentane			0.133985	0.0743707	0.12319	0.390781	0.0872207
Decanes Plus			6.51325E-05	2.78199E-05	4.41846E-05	0.00047424	2.19696E-05
			6. Skim Tank Flash Gas	7. Condensate Tank Flash Gas	8. Skim Tank W&B	9. Water Tank W&B	10. Condensate Tank W&B
Mass Flow			lb/h	lb/h	lb/h	lb/h	lb/h
Triethylene Glycol			2.62944E-09	7.81313E-09	3.24336E-10	8.83193E-10	2.77731E-13
Carbon Dioxide			0.0427066	0.0879296	0.0207827	0.00942474	0.00300405
Nitrogen			0.00440666	0.00961083	8.05745E-05	2.59995E-05	1.97947E-05
Methane			0.573307	3.3657	0.0266744	0.00693696	0.033392
Ethane			0.958023	21.9134	0.156989	0.0162698	1.11488
Propane			3.16928	73.4318	1.38229	0.0422712	3.80765
Isobutane			1.38732	23.7171	0.957563	0.0163175	1.27398
n-Butane			4.72774	70.1224	3.04943	0.0814145	4.01637
Isopentane			1.96168	22.1534	1.08401	0.04521	1.32932
n-Pentane			2.50007	26.3534	1.31817	0.0609852	1.58218
n-Hexane			0.811938	6.9187	0.363979	0.0595459	0.454203
Cyclohexane			0.0927392	0.785254	0.0413888	0.0114915	0.0412778
i-C6			1.12018	10.1107	0.528591	0.0611588	0.639499
i-C7			1.45838	11.611	0.614995	0.217686	0.699938
Methylcyclohexane			0.0459378	0.355234	0.0188218	0.0103074	0.0218976
Octane Nonane			0.338837	2.39995	0.125833	0.185046	0.129378
			0.0465956	0.303286	0.0158064 0.0611429	0.0245118 0.0811643	0.0143016
Benzene Toluene			0.13302	0.971822	0.0611429	0.0811643	0.0484183 0.0400482
Ethylbenzene			0.0039619	0.0285388	0.00148832	0.0746217	0.0400482
o-Xylene			0.0318572	0.0285388	0.00148852	0.00225948	0.00790379
Hydrogen Sulfide			0.000852111	0.00395065	0.000617368	0.000572208	0.000132834
Water			0.425268	0.545629	0.160576	0.232096	9.78688E-06
2,2,4-Trimethylpentane			0.057706	0.450718	0.0239145	0.0115928	0.0278943
Decanes Plus			3.76715E-05	0.000226417	1.15188E-05	1.88931E-05	9.43559E-06
			0.101102.00	U.UUULLUTII			000002.00
Disementar		Unite		Properties	0 Objection	O Weter Tari	10
Property		Units	6. Skim Tank Flash Gas	7. Condensate Tank Flash Gas	8. Skim Tank W&B	9. Water Tank W&B	10. Condensate Tank W&B
Temperature		°F	95	75.67	81.8849	94.2043	75.6718
Pressure		psig	0.25	0.25	-3.09538	-11.1246	-0.62369
Molecular Weight		lb/lbmol	53.0853	52.2225	58.9351	48.8711	54.6007
Mass Flow		lb/h	20.0154	277.068	10.0158	1.2692	15.2869
Std Liquid Volumetric Flo		sgpm	0.0703477	1.01761	0.0337696	0.00355076	0.0552557
Std Vapor Volumetric Flo		MMSCFD	0.00343395	0.0483207	0.0015478	0.000236529	0.00254992
Gross Ideal Gas Heating	Value	Btu/ft^3	2908.87	2934.58	3232.2	2160.54	3068.6

Remarks

Client Name: DELAWARE DIVISION Job: Reverbeet: Output Job: Job: Reverbeet: Output Start Equal Condensate Station Job: Start Equal Condensate Station Job: From Block Tarkoge: Tark Inlet Tark Inlet Tark Inlet Tarkoge: Tark Inlet Tarkoge:				Process Str All St Tabulated b							
Flowshoet Output Connections Tankage- Condensate Sates Liquid 13. BTEX Varce Liquid Sates Liquid 13. BTEX Condensate Sates Liquid 14. Skim Tank Condensate Liquid 14. Skim Tank Date 15. BTEX Date 14. Skim Tank Date 15. BTEX Date 14. Skim Tank Date 14. Skim Tank Date 15. BTEX Date 14. Skim Tank Date 15. BTEX Date 17. BTEX Dat						Job:					
Connections Condensate Sales Liquid Vater Liquid Condensate to combustion Tarkage- Condensate Condensate Condensate <th colsp<="" td=""><td></td><td></td><td>ssor Station</td><td></td><td></td><td></td><td></td><td></td></th>	<td></td> <td></td> <td>ssor Station</td> <td></td> <td></td> <td></td> <td></td> <td></td>			ssor Station							
11. Condensate Sales Liquid 12. Produced Water Liquid 13. BTEX Conduston 14. Skim Tank Inite 15. BHF Pilot Purge Gas From Block Tankage- Condustate Sales Liquid Tankage- Produced UB Tankage- BTEX Vares Tankage- Gundustate Sales Liquid Tankage- UB Tankage- BTEX Vares Tankage- Gundustate Sales Liquid Tankage- UB Tankage- STEX Tankage- STEX Tankage- BTEX Vares Tankage- Gundustate Tankage- STEX Tankage- STEX Tankage- STEX Tankage- Gundustate SPLT-100 Tankage- STEX Tankage- STEX Tankage- STEX Tankage- Gundustate Tankage- STEX Tankage-		Output									
11. Condensate Sales Liquid 12. Produced Water Liquid 13. BTEX Conduston 14. Skim Tank Inite 15. BHF Pilot Purge Gas From Block Tankage- Condustate Sales Liquid Tankage- Produced UB Tankage- BTEX Vares Tankage- Gundustate Sales Liquid Tankage- UB Tankage- BTEX Vares Tankage- Gundustate Sales Liquid Tankage- UB Tankage- STEX Tankage- STEX Tankage- BTEX Vares Tankage- Gundustate Tankage- STEX Tankage- STEX Tankage- STEX Tankage- Gundustate SPLT-100 Tankage- STEX Tankage- STEX Tankage- STEX Tankage- Gundustate Tankage- STEX Tankage-				Conn	ections						
Condensate Sales Liquid Water Liquid Combustion Cond Vapors Combustion Finite Combustion Purge Gas From Block Tankage Condensate Sales Liquid Tankage Produced Tankage BTX Vapors to Combustion Tankage Tankage Tankage Tankage Tankage Tankage Tankage Tankage Setto Sales Tankage Setto Sale						13. BTEX	14. Skim Tank	15. HPF Pilot /			
From Block Tankage- Condensate Sales Liquid Tankage- Produced Water Sales Liquid Tankage- BTEX Vapors Liquid Tankage- BTEX Vapors Liquid SPLT-100 To Block				Condensate		Cond Vapors to					
Liquid Liquid - - Stream Composition Stream Composition Mass Fraction 11. Condensate 13. BTEX Condensate Condensate <t< td=""><td colspan="3">From Block</td><td>Condensate</td><td>Produced</td><td>Tankage - BTEX Vapors</td><td>Gunbarrel</td><td>SPLT-100</td></t<>	From Block			Condensate	Produced	Tankage - BTEX Vapors	Gunbarrel	SPLT-100			
Stream Composition 11. Condensate Sales Liquid 12. Produced Water Liquid 13. BTEX Cond Vapor to Combustion 14. Skim Tank Inter to Combustion 15. HPF Pilot / Purge Gas Mass Fraction %				Calco Elquia		to combustion	rank met				
11. Condensate Sales Liquid 12. Water Liquid 13. BTEX Water Liquid 14. Skim Tank Inlet 15. HPF Piloi / Purge Gas Mass Fraction %	To Block										
11. Condensate Sales Liquid 12. Water Liquid 13. BTEX Water Liquid 14. Skim Tank Inlet 15. HPF Piloi / Purge Gas Mass Fraction %											
Condensate Sales Liquid Condensate Sales Liquid Cond years Combusion Inlet Purge Gas Mass Fraction % % % % % Triethylene Glycol 6.00616E-07 0.0169937 1.12602E-08 0.0166051 2.50479E-05 Carbon Dioxide 0.000230545 0.000163547 6.27127 0.0166949 1.61036 Methane 0.0011937 0.000163547 6.27127 0.0065814 0.00985034 2.207852 Ehane 0.128975 0.000395582 14.9711 0.0165949 18.4841 Propane 1.25422 0.000395814 2.86951 0.0048504 2.207842 Isopentane 1.25422 0.00039574 4.44054 0.0368004 2.07482 Isopentane 6.56877 0.00140378 8.48000 0.161224 1.05561 n-Pentane 6.56877 0.00140378 8.48001 0.144294 0.057855 Cyclohexane 0.63055 0.001417818 2.35861 0.144094 0.026488 0.0175225 Cyclohexane				Stream C	omposition						
Mass Fraction % % % % % % % Teinhyne (Sycal 6.066/16-07 0.0169031 1.02502E-08 0.0098029 0.23785 Nitrogen 2.42578E-06 6.1297E-07 0.0146045 6.95542E-05 1.61038 Methane 0.00311937 0.00016357 6.27127 0.00922533 56.6725 Ehane 0.129875 0.000398552 14.9711 0.0165849 18.4941 Propane 1.25008 0.000398542 26.8551 0.0645571 13.2145 Isobutane 1.25422 0.000398549 26.8551 0.0464571 13.2145 Isopentane 5.5013 0.00191945 18.4457 0.146264 1.00521 n-Pentane 6.50587 0.0014378 8.48600 0.161224 1.0556 pc/cb 6.60355 0.0014708 8.48600 0.0157626 1.52589 pc/cb 6.60355 0.00141189 2.58681 0.1414984 0.226488 0.017626 pc/cb 6.403550 <				Condensate		Cond Vapors to					
Carbon Dioxide 0.000230545 0.0002222 1.48724 0.000908929 0.237859 Nitrogen 2.42576E-06 6.1297E-70 0.0146045 6.85542-05 1.61036 Methane 0.00311937 0.000163547 6.627127 0.000922533 56.8725 Ethane 0.129875 0.00038282 14 9711 0.00165049 18.4841 Propane 1.55008 0.000398704 4.44054 0.0036004 2.07482 Isopentane 4.56488 0.0016588 6.24233 0.104264 1.00651 n-Pentane 6.56057 0.00140387 1.66001 0.14524 1.0656 n-Pentane 6.56677 0.00140387 1.66001 0.14524 1.0556 n-Fexane 0.530456 0.00027927 0.58681 0.14094 0.264882 Cyclohexane 0.030456 0.00027927 0.58681 0.14094 0.264882 Cyclohexane 0.530455 0.0179257 0.564643 0.141694 0.50785 0.179257 Methycyclohexane 1.367662 <td>Mass Fraction</td> <td></td> <td></td> <td></td> <td>%</td> <td></td> <td>%</td> <td>%</td>	Mass Fraction				%		%	%			
Nitrogen 2.42576E-06 6.1297E-07 0.0446045 6.95542E-06 1.61036 Methane 0.00311937 0.000163547 6.27127 0.0022533 56.8725 Ethane 0.129875 0.000383582 14.9711 0.0165949 18.4841 Propane 1.55008 0.000394704 4.44054 0.0360404 2.07462 Isopanae 5.5013 0.00191945 18.4457 0.148602 4.78439 Isopanae 6.50587 0.0014378 8.44606 0.161224 1.0526 n-Petnane 6.50587 0.0014378 8.46066 0.161224 1.0526 n-Hexane 6.50355 0.0014189 2.58681 0.148094 0.264482 Cyclohexane 0.930456 0.00217027 0.538003 0.0204408 0.0393946 I-C 6.60355 0.0014189 2.58681 0.148040 0.264482 I-C 2.34931 0.000513223 2.0085 0.516895 0.179257 Methylocichexane 1.04541 0.0022508 0.0038946 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>											
Methane 0.00311937 0.000163547 6.27127 0.00222533 56.8725 Ethane 0.129875 0.00038582 14.9711 0.0165849 18.4841 Propane 1.55008 0.000986594 26.6951 0.00445571 13.2145 Isobutane 1.25422 0.00384704 4.40454 0.0388004 2.07482 n-Butane 4.36488 0.0016588 6.24253 0.104264 1.06621 n-Pentane 6.36677 0.0014378 8.48606 0.161224 1.0596 n-Hexane 6.36677 0.0014378 8.48606 0.014264 0.0236468 0.0137625 I-C2 2.60355 0.00144189 2.56681 0.148094 0.264882 0.178227 I-C3 0.00543009 0.128461 0.00225086 0.0038946 0.00448921 Cotane 2.32745 0.00514433 0.141649 0.50785 0.0014893 Nonane 9.87662 0.00215086 0.0025091 0.2108339 0.0026813 Toluene 1.13089											
Ethane 0.129875 0.000383582 14.9711 0.0165949 18.4841 Propane 1.55008 0.00098694 26.6951 0.0465571 13.2145 Isobutane 1.5504 0.00196584 6.24253 0.148602 4.78439 Isopentane 4.36488 0.0014588 6.24253 0.14264 1.0621 n-Pentane 6.60355 0.0014378 8.48606 0.161224 1.05621 n-Hexane 6.660355 0.0014377 1.66001 0.145986 0.152893 Cyclohexane 0.930456 0.000270927 0.56803 0.0204648 0.0137626 I-C5 0.00144189 2.56861 0.148094 0.28482 0.0727855 Methytcyclohexane 1.04541 0.000270927 0.208581 0.01480194 0.00763855 Nonane 9.87662 0.00215086 0.00256191 0.210838 0.00389304 Toluene 1.13789 0.00405095 3.0537 0.0028128 0.00983831 Toluene 3.17732 0.00373474 1											
Propane 1.55008 0.000996594 26.6951 0.0645571 13.2145 Isobutane 1.25422 0.00038704 4.44654 0.038804 2.74482 n-Butane 5.5013 0.0019145 18.4457 0.144802 4.78438 Isopertane 4.38488 0.0016588 6.24253 0.104264 1.0621 n-Pentane 6.56877 0.00140387 8.84606 0.0151224 1.0586 n-Hexane 0.530456 0.0007927 0.53803 0.026488 0.0137626 I-C 23.4931 0.00513223 2.0085 0.014789 0.00238946 I-C 23.4931 0.0043009 0.128461 0.0229288 0.0038946 I-C 23.2745 0.00514843 0.141649 0.50785 0.0145104 Nonane 9.67662 0.00215086 0.0052091 0.210839 0.000538551 Benzene 1.31089 0.00353074 4.163274 0.00364049 0.00648049 Vater 2.80862 0.0014773 0.0038736 0.0											
Isobutane 1.25422 0.000384704 4.44054 0.0368004 2.07482 n-Butane 5.5013 0.0011945 18.4457 0.148602 4.78439 Isopertane 4.36488 0.0010588 6.24253 0.104264 1.00621 n-Pentane 6.90558 0.0014378 8.48606 0.151224 1.0566 Cyclohexane 0.930456 0.000270927 0.536803 0.0226488 0.0137628 I-C6 6.60355 0.001414189 2.558611 0.148094 0.264882 I-C7 23.4931 0.00513223 2.0085 0.516595 0.0146104 Nanae 9.67662 0.00243009 0.128481 0.0222928 0.0038946 Octane 0.317732 0.00054955 3.03537 0.0280128 0.0098304 Toluene 1.13089 0.0045095 3.03537 0.028128 0.00083851 Ethylbenzene 0.287163 0.000135014 0.0183573 9.75724 0.0034911 2.44164 9.79308-06 1.32824-06 0.0005848											
Isopentane 4.36488 0.00106588 6.24253 0.104264 1.00621 n-Pentane 6.90558 0.0014378 8.48606 0.161224 1.0596 n-Hexane 6.56877 0.00140387 1.66001 0.143986 0.152889 Cyclohexane 0.330456 0.000270927 0.536803 0.0206468 0.0137626 I-C6 6.60355 0.00144189 2.58681 0.148094 0.264882 I-C7 23.4931 0.00513223 2.0085 0.516595 0.179257 Methylcyclohexane 1.04541 0.000243009 0.128461 0.0221688 0.00052880 Octane 23.2745 0.00514843 0.141649 0.50785 0.0145104 Nonane 9.67662 0.00215086 0.00562091 0.210898 0.000593851 Benzene 1.13089 0.0045095 3.0387 0.0201286 0.00029304 Toluene 2.80862 0.00148529 0.172272 0.0617857 0.000649821 Hydrogen Sulfide 3.0261-505 0.3049516											
n-Pentane 6.90558 0.0014378 8.48606 0.161224 1.0596 n-Hexane 6.56877 0.00140387 1.66001 0.145986 0.0157626 Cyclohexane 0.330456 0.000270927 0.536803 0.0206468 0.0137626 I-C7 23.4931 0.00513223 2.20085 0.516595 0.179257 Methycyclohexane 1.04541 0.00213023 2.20085 0.0339946 0.00339946 Octane 23.2745 0.00514843 0.141649 0.567655 0.179257 Methycyclohexane 9.67662 0.00215086 0.00562091 0.210839 0.000538551 Benzene 1.13089 0.00215086 0.00562091 0.210839 0.000528183 Ethylbenzene 0.287163 0.000138014 0.0191214 0.00631059 0.00010779 Cylarer 0.0018354 99.9613 0.838573 97.6724 0.0034911 L2,4-Trimethylpentane 1.24855 0.00027314 0.0685916 0.0273828 0.00028947 3.56664E-06 Carbon D	n-Butane										
n-Hexane €.56877 0.00140387 1.66001 0.145986 0.152889 Cyclohexane 0.930456 0.000270927 0.536803 0.0206488 0.0137626 I-C6 6.60355 0.00144189 2.58681 0.148094 0.264882 I-C7 23.4931 0.00513223 2.0085 0.516595 0.179257 Methylcyclohexane 1.04541 0.00243009 0.128461 0.0229268 0.0038946 Octane 23.2745 0.00514843 0.141649 0.50785 0.0146104 Nonare 9.67662 0.00215096 3.05387 0.0280128 0.00089304 Benzene 1.13089 0.00405095 3.05387 0.028128 0.00089304 Toluene 3.17732 0.003135014 0.00118514 0.00163519 0.00017779 Cyclogen Sulfide 3.0261E-05 0.3496516 0.027337 9.7624 0.0014083 Vater 0.0043544 9.99513 0.383673 9.7724 0.0014083 L2,4-Trimethylpentane 0.0438344 9.7930											
Cyclohexane 0.330456 0.00027027 0.536803 0.020468 0.0137626 I-C6 6.60355 0.00144189 2.56861 0.148094 0.264882 I-C7 23.4931 0.00513223 2.0085 0.516595 0.179257 Methylcyclohexane 1.04541 0.00230909 0.128461 0.0229288 0.00389946 Octane 23.2745 0.00518433 0.141649 0.50785 0.0146104 Nonane 9.67662 0.0025095 3.0537 0.228018 0.000538551 Benzene 1.13089 0.00045095 3.0537 0.0280139 0.000528183 Toluene 3.17732 0.001337474 1.63274 0.0713339 0.000528183 Ethylbenzene 0.287163 0.00148729 0.172272 0.0617857 0.000649821 Hydrogen Sulfide 3.0261E-05 1.34905E-05 0.092223 2.79327E-05 0.00149719 L2_2.4 -Tirmethylpentane 1.24855 0.00027314 0.0685916 0.0273828 0.00589431 L2_2.4 -Tirmethylpentane											
i-C6 6.60355 0.00141189 2.58681 0.148094 0.264882 i-C7 23.4931 0.00513223 2.0085 0.516595 0.179257 Methylcyclohexane 1.04541 0.000243009 0.128461 0.0229288 0.00389946 Octane 9.67662 0.00215086 0.00562091 0.210839 0.000538551 Benzene 1.13089 0.00405095 3.05387 0.0281058 0.00017739 Cylene 2.80862 0.00135014 0.020631059 0.000130777 0.00017779 o-Xylene 2.80862 0.00148729 0.172272 0.0617857 0.00049821 Hydrogen Sulfide 3.0261E-05 1.34905E-05 0.022323 2.79327E-05 0.00149633 Water 0.00438344 9.93513 0.838573 97.6724 0.0034911 2.2.4-1rimethylpentane 1.24855 0.000273314 0.00685916 0.0202947 3.56664E-06 Cardon Dioxide 0.0438344 9.79309-05 1.4615 0.00379066 0.115572 Nitrogen 7.											
i-C7 23.4931 0.00512223 2.0085 0.516595 0.179257 Methylcyclohexane 1.04541 0.000243009 0.128461 0.0229268 0.00389946 Octane 23.2745 0.00518483 0.141649 0.50785 0.0146104 Nonane 9.67662 0.00215086 0.00552091 0.210839 0.000538551 Benzene 1.13089 0.000405095 3.05387 0.0280128 0.0088804 Toluene 3.17732 0.00337474 1.63274 0.00713339 0.000526183 Ethylbenzene 0.287163 0.000148729 0.17272 0.0617857 0.00048921 Hydrogen Sulfide 3.0261E-05 1.34905E-05 0.092223 2.79327E-05 0.00140693 Water 0.0018354 99.9513 0.838573 97.6724 0.0034911 Decanes Plus 0.438344 9.79309E-06 1.52624E-06 0.00029473 3.56664E-06 Carbon Dioxide 3.67003E-07 0.002203944 2.95358E-09 0.0022947 3.56664E-06 Carbon Dioxide											
Octane 23.2745 0.00514843 0.141649 0.50785 0.0146104 Nonane 9.67662 0.0025086 0.00562091 0.210839 0.00053851 Benzene 1.13089 0.00405095 3.03587 0.0280128 0.0098304 Toluene 3.17732 0.00337474 1.63274 0.0713339 0.00017779 C-Xylene 2.80862 0.00148729 0.172272 0.0617857 0.0004069821 Hydrogen Sulfide 3.0261E-05 1.34905E-05 0.092223 2.79327E-05 0.00140639 Water 0.0018354 99.9513 0.838573 97.6724 0.00358941 Decanes Plus 0.0438344 9.79309E-06 1.52624E-06 0.00029473 3.56664E-06 Carbon Dioxide 0.0004807 9.09936E-05 1.4615 0.00023747 3.56664E-06 Carbon Dioxide 0.0078427 0.00178477 0.00202947 3.56664E-06 Carbon Dioxide 0.0078427 0.00178473 1.6894 0.0015546 75.2292 Nitrogen 7.94598E-06											
Nonane 9.67662 0.00215086 0.00652091 0.210839 0.000538551 Benzene 1.13089 0.0045095 3.05387 0.0280128 0.00888304 Toluene 3.17732 0.00373747 1.63274 0.0280128 0.00826183 Ethylbenzene 0.287163 0.000135014 0.0191214 0.00631059 0.00017779 o-Xylene 2.80862 0.00148729 0.172272 0.0617857 0.00044921 Hydrogen Sulfide 3.0261E-05 1.34905E-05 0.092223 2.79327E-05 0.000140893 Vater 0.0018354 99.9513 0.838573 97.6724 0.0034911 2.2.4-Trimethylpentane 0.0438344 9.79309E-06 1.52624E-06 0.000293438 6.7711E-08 Decanes Plus 0.0438344 9.79309E-05 1.4615 0.00020947 3.56664E-06 Carbon Dioxide 3.67003E-07 0.00203944 2.95358E-09 0.00202947 3.56664E-06 Carbon Dioxide 0.0178427 0.00013733 16.8994 0.0105546 75.8072											
Benzene 1.13089 0.00405095 3.05387 0.0280128 0.00898304 Toluene 3.17732 0.00037474 1.63274 0.0713339 0.00526183 Ethylbenzene 0.287163 0.000135014 0.0191214 0.00613059 0.000148729 o-Xylene 2.80862 0.00148729 0.172272 0.0617857 0.000649821 Hydrogen Sulfide 3.0261E-05 1.34905E-05 0.092223 2.79327E-05 0.00146093 Water 0.0018354 99.9513 0.683573 97.6724 0.00389431 Decanes Plus 0.0483844 9.79309E-06 1.52624E-06 0.000954583 6.7711E-08 Triethylene Glycol 3.6703E-07 0.00203944 2.5538E-09 0.00202947 3.56664E-06 Carbon Dioxide 0.0178427 0.00023944 2.5538E-09 0.00202947 3.56664E-06 Nitrogen 7.94598E-06 3.94355E-07 0.0225376 4.55711E-05 1.22924 Nitrogen 0.0178427 0.00023941 2.61712 0.0026508 6.40819 <											
Toluene 3.17732 0.00337474 1.63274 0.0713339 0.00526183 Ethylbenzene 0.287163 0.000135014 0.0191214 0.00613059 0.000107779 o-Xylene 2.80862 0.00148729 0.017272 0.0617857 0.000619821 Hydrogen Sulfide 3.0261E-05 1.34905E-05 0.092223 2.79327E-05 0.00140693 Water 0.0018354 99.9513 0.838573 97.6724 0.0034911 2.2.4-Trimethylpentane 1.24855 0.000273144 0.0685916 0.00273828 0.00584931 Decanes Plus 0.0438344 9.79309E-06 1.52624E-06 0.000295483 6.7711E-08 Mole Fraction % % % % % % Triethylene Glycol 3.67003E-07 0.00203944 2.95358E-09 0.002032947 3.56664E-06 Carbon Dioxide 0.0178427 0.000183733 16.8994 0.010546 75.8072 Methane 0.0178427 0.000183733 16.8994 0.0105546 75.8072 Ith											
Ethylbenzene 0.287163 0.000135014 0.0191214 0.00631059 0.00017779 o-Xylene 2.80862 0.00148729 0.172272 0.0617857 0.000649821 Hydrogen Sulfide 3.0261E-05 1.34905E-05 0.092232 2.79327E-05 0.00140693 Water 0.0018354 99.9513 0.838573 97.6724 0.0034911 2.2,4-Trimethylpentane 1.24855 0.000273314 0.0685916 0.0273828 0.00589431 Decanes Plus 0.0438344 9.79309E-06 1.52624E-06 0.0095483 6.7711E-08 Mole Fraction % % Condensate Sales Liquid 13. BTEX Cond vapors to Combustion 14. Skim Tank Inlet 15. HPF Pilot / Purge Gas Mitrgen 3.67003E-07 0.00203944 2.9538E-09 0.00202947 3.56664E-06 Carbon Dioxide 0.001779 0.00183733 16.8994 0.0105546 75.8072 Nitrogen 7.94598E-06 3.94355E-07 0.0225376 4.55711E-05 1.22924 Methane 0.0178427 0.000183733 16.8994											
o-Xylene 2.80862 0.00148729 0.172272 0.0617857 0.000649821 Hydrogen Sulfide 3.0261E-05 1.34905E-05 0.092223 2.79327E-05 0.00140693 2.2,4-Trimethylpentane 1.24855 0.000273314 0.0685916 0.0273828 0.00589431 Decanes Plus 0.0438344 9.79309E-06 1.52624E-06 0.000954583 6.7711E-08 Mole Fraction % % Condensate to to Combustion %											
Hydrogen Sulfide 3.0261E-05 1.34905E-05 0.092223 2.79327E-05 0.00140693 Water 0.0018354 99.9513 0.838573 97.6724 0.0034911 2.2,4-Trimethylpentane 1.24855 0.000273314 0.0685916 0.0273828 0.00589431 Decanes Plus 0.0438344 9.79309E-06 1.52624E-06 0.000954583 6.7711E-08 Value 12. Produced Water Liquid States Liquid 18. BTEX Cond Vapors to Combustion Mole Fraction %					0.00148729						
2,2,4-Trimethylpentane 1.24855 0.000273314 0.0685916 0.0273828 0.00589431 Decanes Plus 0.0438344 9.79309E-06 1.52624E-06 0.000954583 6.7711E-08 Condensate Sales Liquid 11. Condensate Sales Liquid 12. Produced Water Liquid 13. BTEX Cond Vapors to 14. Skim Tank Inlet 15. HPF Pilot / Purge Gas Mole Fraction % % % % Triethylene Glycol 3.67003E-07 0.00203944 2.95358E-09 0.00202947 3.56664E-06 Carbon Dioxide 0.0078427 0.00017833 16.8994 0.0105546 75.8072 Nitrogen 7.94598E-06 3.94355E-07 0.0225376 4.55711E-05 1.22924 Methane 0.0178427 0.000229907 21.5239 0.0101295 13.1449 Propane 3.22568 0.000407321 26.1712 0.0268708 6.40819 Isobutane 1.98014 0.000183733 16.8994 0.011621 0.763339 Propane 3.22568 0.000407321 26.1712 0.0268708 6.40819	Hydrogen Sulfide			3.0261E-05	1.34905E-05	0.092223	2.79327E-05	0.00140693			
Decanes Plus 0.0438344 9.79309E-06 1.52624E-06 0.000954583 6.7711E-08 It. 11. 12. Produced Water Liquid 13. BTEX Cond Vapors to Combustion 14. Skim Tank Inlet 15. HPF Pilot / Purge Gas Mole Fraction %											
11. Condensate Sales Liquid 12. Produced Water Liquid 13. BTEX Cond Vapors to Combustion 14. Skim Tank Inlet 15. HPF Pilot / Purge Gas Mole Fraction % <td></td> <td>e</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		e									
Condensate Sales Liquid Water Liquid Cond Vapors to Combustion Inlet Purge Gas Mole Fraction % <td></td> <td></td> <td></td> <td>0.0430344</td> <td>9.79009E-00</td> <td>1.52024E-00</td> <td>0.000904003</td> <td>0.7711E-00</td>				0.0430344	9.79009E-00	1.52024E-00	0.000904003	0.7711E-00			
Mole Fraction%%%%Triethylene Glycol3.67003E-070.002039442.95358E-090.002029473.56664E-06Carbon Dioxide0.00048079.09936E-051.46150.0003790660.115572Nitrogen7.94598E-063.94355E-070.02253764.55711E-051.22924Methane0.01784270.00018373316.89940.010554675.8072Ethane0.3963420.00022990721.52390.01129513.1449Propane3.225680.00040732126.17120.02687086.40819Isobutane1.980140.0001192883.302780.0116210.763339n-Butane8.685360.00059517913.71950.04692611.76021Isopentane5.551470.002662523.74040.02652390.298221n-Pentane8.782860.003591565.084680.04101410.314047n-Hexane6.994640.0029360.8327470.03109280.0379378Cyclohexane1.014515.8018E-050.2757390.004502790.00349685i-C67.031680.0003015531.297680.03154170.0657278				Condensate		Cond Vapors					
Carbon Dioxide0.00048079.09936E-051.46150.0003790660.115572Nitrogen7.94598E-063.94355E-070.02253764.55711E-051.22924Methane0.01784270.00018373316.89940.010554675.8072Ethane0.3963420.00022990721.52390.010129513.1449Propane3.225680.00040732126.17120.02687086.40819Isobutane1.980140.000192883.302780.0116210.763339n-Butane8.685360.00059517913.71950.04692611.76021Isopentane5.551470.0002662523.74040.02662390.298221n-Pentane8.782860.0003591565.084680.04101410.314047n-Hexane6.994640.00029360.8327470.03109280.0379378Cyclohexane1.014515.8018E-050.2757390.004502790.00349685i-C67.031680.0003015531.297680.03154170.0657278	Mole Fraction			%	%	Combustion					
Nitrogen7.94598E-063.94355E-070.02253764.55711E-051.22924Methane0.01784270.00018373316.89940.010554675.8072Ethane0.3963420.00022990721.52390.010129513.1449Propane3.225680.00040732126.17120.02687086.40819Isobutane1.980140.0001192883.302780.0116210.763339n-Butane8.685360.00059517913.71950.04692611.76021Isopentane5.551470.0002662523.74040.02652390.298221n-Pentane8.782860.0003591565.084680.04101410.314047n-Hexane6.994640.00029360.8327470.03109280.0379378Cyclohexane1.014515.8018E-050.2757390.004502790.00349685i-C67.031680.0003015531.297680.03154170.0657278											
Methane0.01784270.00018373316.89940.010554675.8072Ethane0.3963420.00022990721.52390.010129513.1449Propane3.225680.00040732126.17120.02687086.40819Isobutane1.980140.0001192883.302780.0116210.763339n-Butane8.685360.00059517913.71950.04692611.76021Isopentane5.551470.0002662523.74040.02652390.298221n-Pentane8.782860.0003591565.084680.04101410.314047n-Hexane6.994640.00029360.8327470.03109280.0379378Cyclohexane1.014515.8018E-050.2757390.004502790.00349685i-C67.031680.0003015531.297680.03154170.0657278											
Ethane0.3963420.00022990721.52390.010129513.1449Propane3.225680.00040732126.17120.02687086.40819Isobutane1.980140.0001192883.302780.0116210.763339n-Butane8.685360.00059517913.71950.04692611.76021Isopentane5.551470.0002662523.74040.02652390.298221n-Pentane8.782860.0003591565.084680.04101410.314047n-Hexane6.994640.00029360.8327470.03109280.0379378Cyclohexane1.014515.8018E-050.2757390.004502790.00349685i-C67.031680.0003015531.297680.03154170.0657278				7.94598E-06							
Propane3.225680.00040732126.17120.02687086.40819Isobutane1.980140.0001192883.302780.0116210.763339n-Butane8.685360.00059517913.71950.04692611.76021Isopentane5.551470.0002662523.74040.02652390.298221n-Pentane8.782860.0003591565.084680.04101410.314047n-Hexane6.994640.00029360.8327470.03109280.0379378Cyclohexane1.014515.8018E-050.2757390.004502790.00349685i-C67.031680.0003015531.297680.03154170.0657278											
Isobutane1.980140.0001192883.302780.0116210.763339n-Butane8.685360.00059517913.71950.04692611.76021Isopentane5.551470.0002662523.74040.02652390.298221n-Pentane8.782860.0003591565.084680.04101410.314047n-Hexane6.994640.00029360.8327470.03109280.0379378Cyclohexane1.014515.8018E-050.2757390.004502790.00349685i-C67.031680.0003015531.297680.03154170.0657278											
n-Butane8.685360.00059517913.71950.04692611.76021Isopentane5.551470.0002662523.74040.02652390.298221n-Pentane8.782860.0003591565.084680.04101410.314047n-Hexane6.994640.00029360.8327470.03109280.0379378Cyclohexane1.014515.8018E-050.2757390.004502790.00349685i-C67.031680.0003015531.297680.03154170.0657278											
n-Pentane8.782860.0003591565.084680.04101410.314047n-Hexane6.994640.00029360.8327470.03109280.0379378Cyclohexane1.014515.8018E-050.2757390.004502790.00349685i-C67.031680.0003015531.297680.03154170.0657278	n-Butane			8.68536	0.000595179	13.7195		1.76021			
n-Hexane6.994640.00029360.8327470.03109280.0379378Cyclohexane1.014515.8018E-050.2757390.004502790.00349685i-C67.031680.0003015531.297680.03154170.0657278											
Cyclohexane 1.01451 5.8018E-05 0.275739 0.00450279 0.00349685 i-C6 7.03168 0.000301553 1.29768 0.0315417 0.0657278											
i-C6 7.03168 0.000301553 1.29768 0.0315417 0.0657278											

* User Specified Values ? Extrapolated or Approximate Values

Licensed to Esso Exploration, Inc.

			Process St All S Tabulated b				
Client Name:	DELAWARE DIV	ISION			Job:		
Location:	Wildcat Compres						
Flowsheet:	Output						
			11. Condensate Sales Liquid	12. Produced Water Liquid	13. BTEX Cond Vapors to Combustion	14. Skim Tank Inlet	15. HPF Pilot / Purge Gas
Mole Fraction			%	%	%	%	%
Methylcyclohexane			0.977015	4.46054E-05	0.0565599	0.00428573	0.000849247
Octane			18.697	0.000812296	0.0536076	0.0816005	0.00273506
Nonane			6.92331	0.00030224	0.00189461	0.0301723	8.97907E-05
Benzene			1.32852	0.000934659	1.69013	0.00658219	0.00245915
Toluene			3.16435	0.000660106	0.766061	0.0142098	0.00122117
Ethylbenzene			0.248206	2.29197E-05	0.00778618	0.00109099	2.17086E-05
o-Xylene			2.42759	0.000252481	0.0701487	0.0106816	0.000130886
Hydrogen Sulfide			8.14775E-05	7.13396E-06	0.116981	1.5043E-05	0.000882758
Water			0.00934877	99.9911	2.01227	99.509	0.00414382
2,2,4-Trimethylpenta	ine		1.00299	4.31222E-05	0.0259587	0.00439982	0.00110341
Decanes Plus			0.0262213	1.15056E-06	4.30115E-07	0.000114214	9.43872E-09
			11.	12. Produced	13. BTEX	14. Skim Tank	15. HPF Pilot /
			Condensate	Water Liquid	Cond Vapors	Inlet	Purge Gas
			Sales Liquid		to		
					Combustion		
Mass Flow			lb/h	lb/h	lb/h	lb/h	lb/h
Triethylene Glycol			3.92692E-05	1.0657	1.19504E-08	1.0657	3.52856E-05
Carbon Dioxide			0.0150734	0.0139344	1.73295	0.0583342	0.335078
Nitrogen			0.0001586	3.84402E-05	0.0170105	0.00446393	2.26855
Methane			0.203949	0.0102563	7.30441	0.592073	80.1176
Ethane			8.49143	0.0240549	17.4375	1.06505	26.039
Propane			101.346	0.0624978	31.093	4.14322	18.6156
Isobutane			82.0029	0.0241253	5.17208	2.36182	2.92285
n-Butane			359.684	0.120371	21.4844	9.53715	6.73989
Isopentane			285.383	0.0668429	7.27094	6.69158	1.41747
n-Pentane			451.498 429.477	0.0901664 0.0880384	9.88408 1.93348	10.3472	1.49269
n-Hexane Cyclohexane			60.8348	0.0880384	0.625238	9.36925 1.32509	0.215378 0.0193877
					3.01296	9.50453	0.373146
i-C6 i-C7			431.751 1536.02	0.0904231 0.321849	2.33938	9.50453	0.373146
Methylcyclohexane			68.3506	0.321849	0.149624	1.47142	0.252524
Octane			1521.73	0.0152394	0.149624	32.5934	0.00549326
Nonane			632.673	0.322865	0.164985	13.5315	0.020582
Benzene			73.9395	0.134884	3.55697	1.79783	0.000758669
Toluene			207.739	0.23404	1.90172	4.57815	0.00741246
Ethylbenzene			18.7752	0.00846688	0.0222715	0.405008	0.000151831
o-Xylene			183.632	0.0932702	0.200652	3.96535	0.000915419
Hydrogen Sulfide			0.00197852	0.000846007	0.107416	0.0017927	0.00198198
Water			0.120002	6268.08	0.976722	6268.53	0.004918
2,2,4-Trimethylpenta	ine		81.6322	0.0171399	0.0798915	1.75741	0.00830345
Decanes Plus			2.86596	0.000614138	1.77768E-06	0.0612643	9.53861E-08
			2.00000	0.000014100	1.111002 00	0.0012040	0.000012 00
				-			
				Properties			
Property		Units	11. Condensate Sales Liquid	12. Produced Water Liquid	13. BTEX Cond Vapors to	14. Skim Tank Inlet	15. HPF Pilot / Purge Gas
					Combustion		

tion 60 75.3749 0 0.25	
0 0.25	5 120
.2301 18.354	4 21.3835
6.474 6417.91	1 140.872
59479 12.9753	0.805474
5385 3.18469	0.06
00 72 73 2600	9 1273.9
1	59479 12.9753 45385 3.18469 90.72 73.2699

Remarks

* User Specified Values ? Extrapolated or Approximate Values

		Process Streams Report All Streams Tabulated by Total Phase		
Client Name:	DELAWARE DI	/ISION	Job:	
Location:	Wildcat Compre	ssor Station		
Flowsheet:	Output			

			All St	reams Report Treams by Total Phase			
Client Name:	DELAWARE DI				Job:		
Location: Flowsheet:	Wildcat Compre	ssor Station					
	Output						
			Conn	ections			
			16. LPF Pilot /	17. HPF	18. Fuel Gas	19. Inlet	20. Fuel Gas
1			Purge Gas	Blowdowns	Other	Flaring	Other
From Block To Block			SPLT-100	SPLT-100	SPLT-100	SPLT-101	SPLT-101
TUBIUCK							
			Stream C	omposition			
			16. LPF Pilot / Purge Gas	17. HPF Blowdowns	18. Fuel Gas Other	19. Inlet Flaring	20. Fuel Gas Other
Mass Fraction			%	% 2.50479E-05	% 2.50470E.05	% 0.000577059	%
Triethylene Glycol Carbon Dioxide			2.50479E-05 0.237859	2.50479E-05 0.237859	2.50479E-05 0.237859	0.000577059	0.000577059 0.220014
Nitrogen			1.61036	1.61036	1.61036	1.45276	1.45276
Methane			56.8725	56.8725	56.8725	51.7828	51.7828
Ethane			18.4841	18.4841	18.4841	17.5988	17.5988
Propane Isobutane			13.2145 2.07482	13.2145 2.07482	13.2145 2.07482	13.7859 2.47407	13.7859 2.47407
n-Butane			4.78439	4.78439	4.78439	6.21986	6.21986
Isopentane			1.00621	1.00621	1.00621	1.7002	1.7002
n-Pentane			1.0596	1.0596	1.0596	1.98555	1.98555
n-Hexane			0.152889	0.152889	0.152889	0.553915	0.553915
Cyclohexane			0.0137626	0.0137626 0.264882	0.0137626	0.0549354 0.773009	0.0549354 0.773009
i-C6 i-C7			0.264882	0.264882	0.264882	0.996078	0.773009
Methylcyclohexane	1		0.00389946	0.00389946	0.00389946	0.0282317	0.0282317
Octane			0.0146104	0.0146104	0.0146104	0.225614	0.225614
Nonane			0.000538551	0.000538551	0.000538551	0.0233224	0.0233224
Benzene Toluene			0.00898304 0.00526183	0.00898304 0.00526183	0.00898304 0.00526183	0.0291061 0.0373838	0.0291061 0.0373838
Ethylbenzene			0.000107779	0.000107779	0.000107779	0.0016919	0.0016919
o-Xylene			0.000649821	0.000649821	0.000649821	0.0121902	0.0121902
Hydrogen Sulfide			0.00140693	0.00140693	0.00140693	0.00134946	0.00134946
Water			0.0034911	0.0034911	0.0034911	0.00321692	0.00321692
2,2,4-Trimethylpen Decanes Plus	tane		0.00589431 6.7711E-08	0.00589431 6.7711E-08	0.00589431 6.7711E-08	0.0394093 9.77871E-06	0.0394093 9.77871E-06
Decanes 1 lus			0.77112-00	0.77112-00	0.77112-00	9.77071E-00	9.7707TE-00
Mole Fraction			16. LPF Pilot / Purge Gas %	17. HPF Blowdowns %	18. Fuel Gas Other %	19. Inlet Flaring %	20. Fuel Gas Other %
Triethylene Glycol			3.56664E-06	3.56664E-06	3.56664E-06	8.7071E-05	8.7071E-05
Carbon Dioxide			0.115572	0.115572	0.115572	0.113279	0.113279
Nitrogen			1.22924	1.22924	1.22924	1.1751	1.1751
Methane Ethane			75.8072 13.1449	75.8072 13.1449	75.8072 13.1449	73.1408 13.262	73.1408 13.262
Propane			6.40819	6.40819	6.40819	7.0841	7.0841
Isobutane			0.763339	0.763339	0.763339	0.964529	0.964529
n-Butane			1.76021	1.76021	1.76021	2.42484	2.42484
Isopentane			0.298221	0.298221	0.298221	0.53397	0.53397
n-Pentane n-Hexane			0.314047	0.314047 0.0379378	0.314047 0.0379378	0.623586 0.145648	0.623586 0.145648
Cyclohexane			0.00349685	0.00349685	0.00349685	0.145648	0.145648
i-C6			0.0657278	0.0657278	0.0657278	0.203257	0.203257
i-C7			0.0382542	0.0382542	0.0382542	0.225249	0.225249
Methylcyclohexane	1		0.000849247	0.000849247	0.000849247	0.00651528	0.00651528
Octane Nonane			0.00273506 8.97907E-05	0.00273506 8.97907E-05	0.00273506 8.97907E-05	0.0447546 0.00412043	0.0447546 0.00412043
Benzene			0.00245915	0.00245915	0.00245915	0.00412043	0.00412043
Toluene			0.00122117	0.00122117	0.00122117	0.00919366	0.00919366
roluene							
Ethylbenzene			2.17086E-05	2.17086E-05	2.17086E-05	0.000361109	0.000361109
Ethylbenzene o-Xylene			0.000130886	0.000130886	0.000130886	0.0026018	0.0026018
Ethylbenzene							

* User Specified Values ? Extrapolated or Approximate Values ProMax 5.0.19050.0 Copyright © 2002-2019 BRE Group, Ltd. n

1

Client Name:	DELAWARE DI	VISION		Jol):	
Location:	Wildcat Compre	essor Station				
Flowsheet:	Output					
		16. LPF Pi Purge G	as Blowdov	wns Other	Flaring	20. Fuel Gas Other
Mole Fraction		%	%	%	%	%
2,2,4-Trimethylper	itane	0.00110				
Decanes Plus		9.43872	E-09 9.43872	2E-09 9.43872	E-09 1.44445E-0	6 1.44445E-06
Mass Flow		16. LPF Pi Purge G Ib/h		wns Other		20. Fuel Gas Other Ib/h
Triethylene Glycol		1.8525				
Carbon Dioxide		0.175			1376 273.69	
Nitrogen				-	0.132 1807.	
Methane					270.7 64416.	
Ethane					3.08 21892.	
Propane					8.78 17149.	
Isobutane					.176 3077.6	
n-Butane			-	-	3.143 7737.3	
Isopentane		0.744			9.404 211	
n-Pentane		0.783	662 0.5	56816 209	2469.9	6 8778.31
n-Hexane		0.113	0.08	31979 30.	2987 689.05	5 2448.91
Cyclohexane		0.0101	785 0.007	73795 2.7	2739 68.338	1 242.875
i-Ć6		0.195	5902 0.1	4203 52.	4929 961.60	
i-C7		0.132		61176 35.	5242 1239.0	9 4403.76
Methylcyclohexane	Э	0.00288	0.0020	0.77 0.77	2773 35.119	5 124.815
Octane		0.0108		33409 2.	8954 280.65	8 997.464
Nonane		0.000398			6727 29.012	
Benzene		0.00664			8021 36.207	
Toluene		0.00389			4276 46.504	
Ethylbenzene		7.9711			1359 2.1046	
o-Xylene		0.000480			8778 15.164	
Hydrogen Sulfide		0.00104			8818 1.6786	
Water		0.00258			1847 4.0017	
2,2,4-Trimethylper Decanes Plus	itane	0.00435			1681 49.02	
		5.00777	E-08 3.63066	6E-08 1.34186	E-05 0.012164	4 0.0432327

Stream Properties										
Property	Units	16. LPF Pilot / Purge Gas	17. HPF Blowdowns	18. Fuel Gas Other	19. Inlet Flaring	20. Fuel Gas Other				
Temperature	°F	76.247	76.247	76.247	93.262	93.262				
Pressure	psig	120	120	120	1272	1272				
Molecular Weight	lb/lbmol	21.3835	21.3835	21.3835	22.6592	22.6592				
Mass Flow	lb/h	73.958	53.62	19817.4	124397	442110				
Std Liquid Volumetric Flow	sgpm	0.422874	0.306586	113.311	687.162	2442.19				
Std Vapor Volumetric Flow	MMSCFD	0.0315 *	0.0228377 *	8.44059	50 *	177.701				
Gross Ideal Gas Heating Value	Btu/ft^3	1273.9	1273.9	1273.9	1342.81	1342.81				

Remarks

		All S	reams Report treams by Total Phase			
Client Name:	DELAWARE DI	VISION		Job:		
Location:	Wildcat Compre					
Flowsheet:	Output					
		Conn	ections			
		21. Inlet Gas	22. Condensate Flash Losses Hrly			
From Block		Inlet - Inlet Gas	W & B - Cond Flashing Losses Hrly			
To Block						
					· · ·	
		Stream C	omposition			
		21. Inlet Gas	22. Condensate Flash Losses Hrly			
Mass Fraction		%	%			
Triethylene Glycol		0 215590	1.81679E-12			
Carbon Dioxide Nitrogen		0.215589	0.0196511 0.000129488			
Methane		50.6359	0.218436			
Ethane		17.2509	7.29306			
Propane		13.5905	24.908			
Isobutane		2.46087	8.33381			
n-Butane		6.23041	26.2733			
Isopentane		1.7452	8.69585			
n-Pentane		2.06427	10.3499			
n-Hexane Cyclohexane		0.638932	2.97119 0.270021			
i-C6		0.066202	4.18332		+ +	
i-C0		1.28832	4.18352		+	
Methylcyclohexane	9	0.0405509	0.143244			
Octane		0.462569	0.846333			
Nonane		0.102348	0.0935544			
Benzene		0.0385141	0.316731			
Toluene		0.0651823	0.261977			
Ethylbenzene o-Xylene		0.00427315	0.00764576 0.0517031		+	
Hydrogen Sulfide		0.0366469	0.000868944		+ +	
Water		0.727883	6.40215E-05			
2,2,4-Trimethylper	ntane	0.0544228	0.182472			
Decanes Plus		0.00026845	6.17235E-05			
		21. Inlet Gas	22. Condensate Flash Losses Hrly			
Mole Fraction		%	%			
Triethylene Glycol		0	6.60559E-13			
Carbon Dioxide		0.11197	0.0243803			
Nitrogen Methane		1.15886 72.1455	0.000252384 0.743448			
Ethane		13.1133	13.2431			
Propane		7.0447	30.8419			
Isobutane		0.96776	7.82887			
n-Butane		2.45017	24.6814			
Isopentane		0.55289	6.58083			
n-Pentane		0.65397	7.83261			
n-Hexane		0.16947	1.88255			
Cyclohexane i-C6		0.01798 0.22772	0.175183 2.65055			
i-C7		0.29388	2.49495			
Methylcyclohexane	9	0.00944	0.0796572			

* User Specified Values ? Extrapolated or Approximate Values

Process Streams Report All Streams Tabulated by Total Phase							
Client Name: [DELAWARE DI	VISION			Job:	- 4	
Location: \	Wildcat Compre	essor Station					
Flowsheet: 0	Output						
			21. Inlet Gas	22.			
				Condensate Flash Losses Hrly			
Mole Fraction			%	%			
Octane			0.09256	0.404543			
Nonane			0.01824	0.0398279			
Benzene			0.01127	0.221397			
Toluene			0.01617	0.155246			
Ethylbenzene			0.00092	0.00393222 0.0265909			
o-Xylene Hydrogen Sulfide			0.00789	0.0265909			
Water			0.92351	0.00139213			
2,2,4-Trimethylpentan	е		0.01089	0.0872207			
Decanes Plus	-		4E-05	2.19696E-05			
				· ·			
Mass Flow			21. Inlet Gas	22. Condensate Flash Losses Hrly Ib/h			
Triethylene Glycol			0	9.8117E-12			
Carbon Dioxide			1298.54	0.106127			
Nitrogen			8554.67	0.000699308			
Methane			304991	1.17967			
Ethane			103906	39.3866			
Propane			81858.6	134.517			
Isobutane			14822.3	45.0072			
n-Butane			37527.1	141.89			
Isopentane n-Pentane			10511.7	46.9624 55.8954			
n-Pentane n-Hexane			<u> </u>	16.0461			
Cyclohexane			398.749	1.45826			
i-C6			5171.19	22.5923			
i-C7			7759.84	24.7275			
Methylcyclohexane			244.246	0.773599			
Octane			2786.15	4.57067			
Nonane			616.461	0.505246			
Benzene			231.978	1.71052			
Toluene			392.606	1.41482			
Ethylbenzene			25.738	0.0412914			
o-Xylene			220.732	0.279225			
Hydrogen Sulfide Water			8.08276	0.00469278 0.000345751			
vvater 2,2,4-Trimethylpentan	٩		4384.19 327.8	0.000345751			
2,2,4-1 rimetnyipentan Decanes Plus	0		1.61693	0.98545			
			1.01033	0.00000041			
			04.000	Duonoutico			
Drawarts		Linit-		Properties			
Property		Units	21. Inlet Gas	22. Condensate Flash Losses Hrly			
Temperature		°F	104.086	92.65			
Pressure		psig	95	5.7192			
Molecular Weight		lb/lbmol	22.8571	54.6007			
Mass Flow		lb/h	602321	540.056			
Std Liquid Volumetric		sgpm	3290.33	1.95207			
	LIOW/	MMSCFD	240	0.0900835			
Std Vapor Volumetric Gross Ideal Gas Heati		Btu/ft^3	1343.73	3068.6			

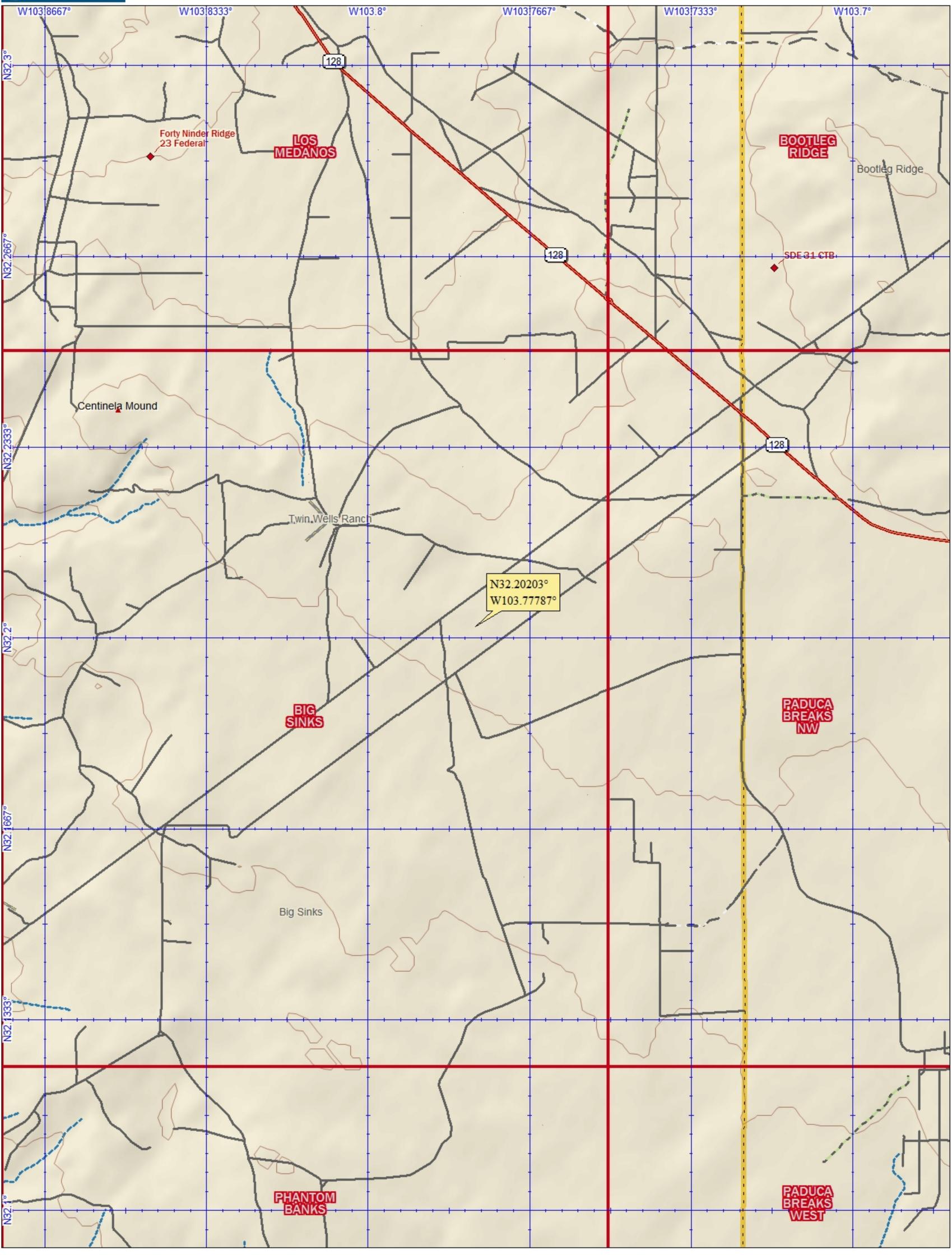
^{*} User Specified Values ? Extrapolated or Approximate Values

			cess Streams Report All Streams Tabulated by Total Phase		
Client Name:	DELAWARE DI	/ISION		Job:	
Location:	Wildcat Compres	ssor Station			
Flowsheet:	Output				

Tab 8 Section 8 - Map(s)

Section 8

Map(s)

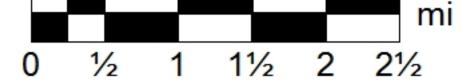

<u>A map</u> such as a 7.5 minute topographic quadrangle showing the exact location of the source. The map shall also include the following:

The UTM or Longitudinal coordinate system on both axes	An indicator showing which direction is north
A minimum radius around the plant of 0.8km (0.5 miles)	Access and haul roads
Topographic features of the area	Facility property boundaries
The name of the map	The area which will be restricted to public access
A graphical scale	

A site location map and aerial image illustrating the property boundary and surrounding access roads is provided.

Delorme


DeLorme Topo USA® 7.0


Data use subject to license.

© DeLorme. DeLorme Topo USA® 7.0.

www.delorme.com

7

Data Zoom 11-0

Tab 9 Section 9 - Proof of Public Notice

Section 9

Proof of Public Notice

(for NSR applications submitting under 20.2.72 or 20.2.74 NMAC) (This proof is required by: 20.2.72.203.A.14 NMAC "Documentary Proof of applicant's public notice")

☑ I have read the AQB "Guidelines for Public Notification for Air Quality Permit Applications" This document provides detailed instructions about public notice requirements for various permitting actions. It also provides public notice examples and certification forms. Material mistakes in the public notice will require a re-notice before issuance of the permit.

Unless otherwise allowed elsewhere in this document, the following items document proof of the applicant's Public Notification. Please include this page in your proof of public notice submittal with checkmarks indicating which documents are being submitted with the application.

New Permit and Significant Permit Revision public notices must include all items in this list.

Technical Revision public notices require only items 1, 5, 9, and 10.

Per the Guidelines for Public Notification document mentioned above, include:

- 1. A copy of the certified letter receipts with post marks (20.2.72.203.B NMAC)
- 2. ☑ A list of the places where the public notice has been posted in at least four publicly accessible and conspicuous places, including the proposed or existing facility entrance. (e.g: post office, library, grocery, etc.)
- 3. \square A copy of the property tax record (20.2.72.203.B NMAC).
- 4. \square A sample of the letters sent to the owners of record.
- 5. I A sample of the letters sent to counties, municipalities, and Indian tribes.
- 6. \square A sample of the public notice posted and a verification of the local postings.
- 7. 🗹 A table of the noticed citizens, counties, municipalities and tribes and to whom the notices were sent in each group.
- 8. 🗹 A copy of the public service announcement (PSA) sent to a local radio station and documentary proof of submittal.
- 9. ☑ A copy of the <u>classified or legal</u> ad including the page header (date and newspaper title) or its affidavit of publication stating the ad date, and a copy of the ad. When appropriate, this ad shall be printed in both English and Spanish.
- 10. A copy of the <u>display</u> ad including the page header (date and newspaper title) or its affidavit of publication stating the ad date, and a copy of the ad. When appropriate, this ad shall be printed in both English and Spanish.
- 11. A map with a graphic scale showing the facility boundary and the surrounding area in which owners of record were notified by mail. This is necessary for verification that the correct facility boundary was used in determining distance for notifying land owners of record.

The public notice documents are included. For #11 above, XTO chose to include all landowners within 1 mile of the facility.

Certified Mail Receipts with Postmarks

List of Places Posted

Site Location

Taco Bell

Verizon Store

Carlsbad Post Office

Property Tax Records

This map is a user generated static output from an Internet mapping site and is for reference only. Data layers that appear on this map may or may not be accurate, current, or otherwise reliable.

Property Record Card

Eddy Assessor

Value Summary Value By: M Land (1) Total	Market \$2,880 \$2,880	es: 0.000 Override N/A \$2,880	1 T: 24S R: 31E (1 T: 24S R: 31E (Quarter: NW S: 21 T: 24S R: 31E Quarter: SE S: 21 T: 24S R: 31E A
Value By:MLand (1)	\$2,880	N/A	1 T: 24S R: 31E (1 T: 24S R: 31E (KEMPT	Quarter: NW S: 21 T: 24S R: 31E Quarter: SE S: 21 T: 24S R: 31E A

Land Occurrence 1

Property Code

9200 - EXEMPT NON-RESIDENTIAL Land Code 141_4_5 - Grazing E Federal - 4.5 LAND

Abstract Summary

Code	Classification	Actual Value Value	Taxable Value	Actual Value Override	Taxable Override
9200	EXEMPT NON-RESIDENTIAL LAND	\$2,880	\$960	NA	NA
Total		\$2,880	\$960	NA	NA

OBJECTID_12_13_14: 20579 UPC: 4-184-143-264-264 UPC_join: 4184143264264 ACCOUNTNUMBER: R091905 LEGALSUMMARY: Quarter: NE S: 27 T: 24S R: 31E Quarter: NW S: 27 T: 24S R: 31E Quarter: SW S: 27 T: 24S R: 31E Quarter: SE S: 27 T: 24S R: 31E ALL MAP# 370-27 EXEMPT OWNERNAME: BUREAU OF LAND MANAGEMENT LANDACTUAL: 2880 **OBJECTID 1: 60945** TAXYEAR_1: 2019 ACCOUNTNUMBER_1: R091905 SEQUENCE_R: 0 OWNER OCCURENCE: 0 INTERNALID: C20160020093.1451631600000 DOCUMEN_TTYPE: Owner ACTIVE_1: A CONFIDENTIAL: 0 OWNERID_1: C20160020093 OBJECTID_12: 50137 TAXYEAR_12: 2019 ACCOUNTNUMBER_12: R091905 SEQUENCE_R_1: 0 INTERNALID_1: R091905.LAND2768229.1511265492835 MODEL_TYPE: Land ACCOUNTNUMBER_12_13: R091905 ACTUALAREA: 640 LANDCODE: 141_4 5 TAXAREA: CO NR VERSIONEND_1: 9223372036854775807 VERSIONSTART_1: 1511265492835

This map is a user generated static output from an Internet mapping site and is for reference only. Data layers that appear on this map may or may not be accurate, current, or otherwise reliable.

Property Record Card

Eddy Assessor

BUREAU OF LAND MANAGEMENT		Account: R091 Tax Area: CO_NR OUT (Nonresident	- CARLSBAD-	Parcel: 4-184-143-264-264 Situs Address:
		Acres: 0.000		
Value Summary			Legal Descriptio	
Value By:	Market	Override	Quarter: NE S: 27 T: Quarter: SW S: 27 T:	24S R: 31E Quarter: NW S: 27 T: 24S R: 31E 24S R: 31E Quarter: SE S: 27 T: 24S R: 31E ALL
Land (1)	\$2,880	N/A		IPT
Total	\$2,880	\$2,880		
			1	
			l	

Land Occurrence 1

Property Code

9200 - EXEMPT NON-RESIDENTIAL Land Code 141_4_5 - Grazing E Federal - 4.5 LAND

Abstract Summary

Code	Classification	Actual Value Value	Taxable Value	Actual Value Override	Taxable Override
9200	EXEMPT NON-RESIDENTIAL LAND	\$2,880	\$960	NA	NA
Total		\$2,880	\$960	NA	NA

OBJECTID_12_13_14: 20554 UPC: 4-183-143-264-264 UPC_join: 4183143264264 ACCOUNTNUMBER: R091906 LEGALSUMMARY: Quarter: NE S: 28 T: 24S R: 31E Quarter: NW S: 28 T: 24S R: 31E Quarter: SW S: 28 T: 24S R: 31E Quarter: SE S: 28 T: 24S R: 31E ALL MAP# 370-28 EXEMPT OWNERNAME: BUREAU OF LAND MANAGEMENT LANDACTUAL: 2880 OBJECTID 1: 60946 TAXYEAR_1: 2019 ACCOUNTNUMBER_1: R091906 SEQUENCE_R: 0 OWNER_OCCURENCE: 0 INTERNALID: C20160020093.1451631600000 DOCUMEN_TTYPE: Owner ACTIVE_1: A CONFIDENTIAL: 0 OWNERID_1: C20160020093 OBJECTID_12: 50138 TAXYEAR_12: 2019 ACCOUNTNUMBER_12: R091906 SEQUENCE_R_1: 0 INTERNALID_1: R091906.LAND2768230.1511265493304 MODEL_TYPE: Land ACCOUNTNUMBER_12_13: R091906 ACTUALAREA: 640 LANDCODE: 141_4_5 TAXAREA: CO NR VERSIONEND_1: 9223372036854775807 VERSIONSTART_1: 1511265493304

This map is a user generated static output from an Internet mapping site and is for reference only. Data layers that appear on this map may or may not be accurate, current, or otherwise reliable.

Property Record Card

Eddy Assessor

BUREAU OF LAND MANAGEMENT		Account: R091 Tax Area: CO_NR OUT (Nonresidenti	- CARLSBAD-	Parcel: 4-183-143-264-264 Situs Address:
		Acres: 0.000		
Value Summary			Legal Descrip	
Value By:	Market	Override N/A	Quarter: NE S: 28 Quarter: SW S: 28 MAP# 370-28 EX	8 T: 24S R: 31E Quarter: NW S: 28 T: 24S R: 31E T: 24S R: 31E Quarter: SE S: 28 T: 24S R: 31E ALL FMPT
Land (1) Total	\$2,880 \$2,880	N/A \$2,880	MIN # 570 20 EM	
[

Land Occurrence 1

Property Code

9200 - EXEMPT NON-RESIDENTIAL Land Code 141_4_5 - Grazing E Federal - 4.5 LAND

Abstract Summary

Code	Classification	Actual Value Value	Taxable Value	Actual Value Override	Taxable Override
9200	EXEMPT NON-RESIDENTIAL LAND	\$2,880	\$960	NA	NA
Total		\$2,880	\$960	NA	NA

This map is a user generated static output from an Internet mapping site and is for reference only. Data layers that appear on this map may or may not be accurate, current, or otherwise reliable.

Property Record Card

Eddy Assessor

BUREAU OF LAND MANAGEMENT		Account: R091 Tax Area: CO_NR OUT (Nonresident Acres: 0.000	- CARLSBA	Parcel: 4-184-142-264-264 AD- Situs Address:		
Value Summary			Legal Desci	ription		
Value By: Land (1) Total	Market \$2,880 \$2,880	Override N/A \$2,880		: 22 T: 24S R: 31E Quarter: NW S: 22 T: 24S R: 31E 22 T: 24S R: 31E Quarter: SE S: 22 T: 24S R: 31E ALL EXEMPT		

Land Occurrence 1

Property Code

9200 - EXEMPT NON-RESIDENTIAL Land Code 141_4_5 - Grazing E Federal - 4.5 LAND

Abstract Summary

Code	Classification	Actual Value Value	Taxable Value	Actual Value Override	Taxable Override
9200	EXEMPT NON-RESIDENTIAL LAND	\$2,880	\$960	NA	NA
Total		\$2,880	\$960	NA	NA

OBJECTID_12_13_14: 20552 UPC: 4-183-141-264-264 UPC_join: 4183141264264 ACCOUNTNUMBER: R091874 LEGALSUMMARY: Quarter: NE S: 16 T: 24S R: 31E Quarter: NW S: 16 T: 24S R: 31E Quarter: SW S: 16 T: 24S R: 31E Quarter: SE S: 16 T: 24S R: 31E ALL MAP# 370-16 EXEMPT OWNERNAME: STATE OF NEW MEXICO LANDACTUAL: 2880 **OBJECTID 1: 60916 TAXYEAR 1: 2019** ACCOUNTNUMBER_1: R091874 SEQUENCE_R: 0 OWNER_OCCURENCE: 0 INTERNALID: C20160020105.1451631600000 DOCUMEN_TTYPE: Owner ACTIVE_1: A CONFIDENTIAL: 0 OWNERADDRESS_ADDRESS1: 310 OLD SANTA FE TRAIL OWNERADDRESS_CITY: SANTA FE OWNERADDRESS_STATE: NM OWNERADDRESS_ZIP: 87504 OWNERID_1: C20160020105 OBJECTID_12: 50108 TAXYEAR_12: 2019 ACCOUNTNUMBER_12: R091874 SEQUENCE_R_1: 0 INTERNALID 1: R091874.LAND2769123.1511265476303 MODEL TYPE: Land ACCOUNTNUMBER_12_13: R091874 ACTUALAREA: 640 LANDCODE: 153 4 5 TAXAREA: CO NR VERSIONEND_1: 9223372036854775807 VERSIONSTART_1: 1511265476303

This map is a user generated static output from an Internet mapping site and is for reference only. Data layers that appear on this map may or may not be accurate, current, or otherwise reliable.

Property Record Card

Eddy Assessor

STATE OF NEW MEXICO Account: R091874 Parcel: 4-183-141-264-264 310 OLD SANTA FE TRAIL Tax Area: CO_NR - CARLSBAD-Situs Address: SANTA FE, NM 87504 OUT (Nonresidential) Acres: 0.000 Legal Description Value Summary Quarter: NE S: 16 T: 24S R: 31E Quarter: NW S: 16 T: 24S R: 31E Quarter: SW S: 16 T: 24S R: 31E Quarter: SE S: 16 T: 24S R: 31E ALL MAP# 370-16 EXEMPT Value By: Override Market Land (1) \$2,880 N/A Total \$2,880 \$2,880

Land Occurrence 1

Property Code

9200 - EXEMPT NON-RESIDENTIAL Land Code 153_4_5 - Grazing E NM - 4.5 LAND

Abstract Summary

Code	Classification	Actual Value Value	Taxable Value	Actual Value Override	Taxable Override
9200	EXEMPT NON-RESIDENTIAL LAND	\$2,880	\$960	NA	NA
Total		\$2,880	\$960	NA	NA

Letters to Owners of Record and Applicable Counties, Municipalities, and Tribes

Certified Mail 7017 3040 0000 9587 9756

Bureau of Land Management 620 E. Greene St. Carlsbad, New Mexico, 88220-6292

RE: NSR Permit Application Wildcat Compressor Station XTO Energy Inc.

Dear Federal Official,

In accordance with the application requirements of 20.2.72 NMAC, XTO Energy Inc. is providing notification of the planned modification of the Wildcat Compressor Station on your property in Eddy County, NM. A public notice will be published in the Carlsbad Current-Argus newspaper, at the proposed site location, and three other locations in Carlsbad, NM. A copy of the notice is attached. Please contact me at (832) 624-2768 should you have any questions.

Sincerely,

Ben Schneider

Ben Schneider Environmental Engineer

Certified Mail 7017 3040 0000 9587 9770

Eddy County 101 W. Greene St. Suite 110 Carlsbad, New Mexico, 88220

RE: NSR Permit Application Wildcat Compressor Station XTO Energy Inc.

Dear County Manager,

In accordance with the application requirements of 20.2.72 NMAC, XTO Energy Inc. is providing notification of the planned modification of the Wildcat Compressor Station in Eddy County, NM. A public notice will be published in the Carlsbad Current-Argus newspaper, at the proposed site location, and three other locations in Carlsbad, NM. A copy of the notice is attached. Please contact me at (832) 624-2768 should you have any questions.

Sincerely,

Ben Schneider

Ben Schneider Environmental Engineer

Certified Mail 7017 3040 0000 9587 9763

Lea County Manager 100 N. Main Avenue Suite 4 Lovington, New Mexico, 88260

RE: NSR Permit Application Wildcat Compressor Station XTO Energy Inc.

Dear County Manager,

In accordance with the application requirements of 20.2.72 NMAC, XTO Energy Inc. is providing notification of the planned modification of the Wildcat Compressor Station Eddy County, NM. The proposed site is within 10 miles of Lea County. A public notice will be published in the Carlsbad Current-Argus newspaper, at the proposed site location, and three other locations in Carlsbad, NM. A copy of the notice is attached. Please contact me at (832) 624-2768 should you have any questions.

Sincerely,

Ban Schmeider

Ben Schneider Environmental Engineer

Certified Mail 7017 3040 0000 9587 9787

State of New Mexico Land Office 310 Old Santa Fe Trail Santa Fe, New Mexico, 87501

RE: NSR Permit Application Wildcat Compressor Station XTO Energy Inc.

Dear Commissioner,

In accordance with the application requirements of 20.2.72 NMAC, XTO Energy Inc. is providing notification of the planned modification of the Wildcat Compressor Station near your property in Eddy County, NM. A public notice will be published in the Carlsbad Current-Argus newspaper, at the proposed site location, and three other locations in Carlsbad, NM. A copy of the notice is attached. Please contact me at (832) 624-2768 should you have any questions.

Sincerely,

Ben Schneider

Ben Schneider Environmental Engineer

Sample of Notice posted and

Verification of Postings

NOTICE

XTO Energy, Inc. announces its application to the New Mexico Environment Department for an air quality permit for the modification of the Wildcat Compressor Station. The expected date of application submittal to the Air Quality Bureau is May 21, 2020. XTO Energy is planning to remove engines, updating engine emission rates, removing heaters, and update oil/water production rate.

The exact location for the proposed facility known as the Wildcat Compressor Station will be latitude 32 deg, 12 min, 7 sec and longitude -103 deg, 46 min, 40 sec. The approximate location of this facility is 4 miles southwest of intersection of NM 128 and Buck Jackson Rd. in Eddy County.

The estimated maximum quantities of any regulated air contaminants will be as follows in pound per hour (pph) and tons per year (tpy). These reported emissions could change slightly during the course of the Department's review:

Pollutant:	Pounds per hour	Tons per year
Particulate Matter (PM)	22	19
PM 10	22	19
PM 2.5	9	22
Sulfur Dioxide (SO ₂)	470	222
Nitrogen Oxides (NO _x)	900	249
Carbon Monoxide (CO)	920	249
Volatile Organic Compounds (VOC)	28	30
Total sum of all Hazardous Air Pollutants (HAPs)	n/a	n/a
Toxic Air Pollutant (TAP)	n/a	240000
Green House Gas Emissions as Total CO2e	22	19

The standard and maximum operating schedule of the facility will be 24 hours per day, 7 days a week and a maximum of 52 weeks per year. The owner and/or operator of the Facility is: XTO Energy, Inc.; 22777 Springwoods Village Pkwy; Spring, Texas 77389.

If you have any comments about the construction or operation of this facility, and you want your comments to be made as part of the permit review process, you must submit your comments in writing to this address: Permit Programs Manager; New Mexico Environment Department; Air Quality Bureau; 525 Camino de los Marquez, Suite 1; Santa Fe, New Mexico; 87505-1816; (505) 476-4300; 1 800 224-7009; <u>https://www.env.nm.gov/aqb/permit/aqb_draft_permits.html</u>. Other comments and questions may be submitted verbally.

With your comments, please refer to the company name and facility name, or send a copy of this notice along with your comments. This information is necessary since the Department may have not yet received the permit application. Please include a legible return mailing address. Once the Department has completed its preliminary review of the application and its air quality impacts, the Department's notice will be published in the legal section of a newspaper circulated near the facility location

Attención

Este es un aviso de la oficina de Calidad del Aire del Departamento del Medio Ambiente de Nuevo México, acerca de las emisiones producidas por un establecimiento en esta área. Si usted desea información en español, por favor comuníquese con esa oficina al teléfono 505-476-5557.

Notice of Non-Discrimination

NMED does not discriminate on the basis of race, color, national origin, disability, age or sex in the administration of its programs or activities, as required by applicable laws and regulations. NMED is responsible for coordination of compliance efforts and receipt of inquiries concerning non-discrimination requirements implemented by 40 C.F.R. Part 7, including Title VI of the Civil Rights Act of 1964, as amended; Section 504 of the Rehabilitation Act of 1973; the Age Discrimination Act of 1975, Title IX of the Education Amendments of 1972, and Section 13 of the Federal Water Pollution Control Act Amendments of 1972. If you have any questions about this notice or any of NMED's non-discrimination programs, policies or procedures, or if you believe that you have been discriminated against with respect to a NMED program or activity, you may contact: Kristine Yurdin, Non-Discrimination Coordinator, NMED, 1190 St. Francis Dr., Suite N4050, P.O. Box 5469, Santa Fe, NM 87502, (505) 827-2855, nd.coordinator@state.nm.us. You may also visit our website at https://www.env.nm.gov/non-employee-discrimination-complaint-page/ to learn how and where to file a complaint of discrimination.

General Posting of Notices – Certification

Wildcat Compressor Station

I, Brayder Hanin, the undersigned, certify that on 05/22/2020 , a true and correct copy of the attached Public Notice was posted in the following publicly accessible and conspicuous places in Carlsbad, Eddy County, State of New Mexico on the following dates:

Facility entrance -1. Post-Offic Verizon 2. 3. bell 4.

Signed this _____ day of ___ 2020 Mar

Signature -

Braydon Hormon Printed Name

05/22

Date

Title {APPLICANT OR RELATIONSHIP TO APPLICANT}

Noticed Citizens, Counties, Municipalities, and Tribes Eddy County:

Eddy County Manager

Lea County: Lea County Manager

Bureau Of Land Management: Carlsbad Field Office (David Evans)

State of NM: Commissioner

Public Service Announcement Documentation

May 25, 2020

KATK 92.1 FM (575) 887-7000

Re: Public Service Announcement

As part of the air quality permitting process in New Mexico, applicants for certain air permits must attempt to provide notice to the public of the proposed permit action via public service announcement (PSA). The announcement is attached. Will you air the PSA? Thank you.

Evan Tullos PEI (865) 850-2007

NOTICE OF AIR QUALITY PERMIT APPLICATION

XTO Energy, Inc. announces its application to the New Mexico Environment Department for an air quality permit for the modification of the Wildcat Compressor Station. The expected date of application submittal to the Air Quality Bureau is May 28, 2020. XTO Energy is planning to remove engines, updating engine emission rates, removing heaters, and update oil/water production rate.

The exact location for the proposed facility known as the Wildcat Compressor Station will be latitude 32 deg, 12 min, 7 sec and longitude -103 deg, 46 min, 40 sec. The approximate location of this facility is 4 miles southwest of intersection of NM 128 and Buck Jackson Rd. in Eddy County.

The notice was posted at the facility and three other public locations in Carlsbad such as the library, post office, and grocery store. If you have any comments about the construction or operation of the above facility, and you want your comments to be made as part of the permit review process, you must submit your comments in writing to the address below:

Permit Programs Manager New Mexico Environment Department Air Quality Bureau 525 Camino de los Marquez, Suite 1 Santa Fe, New Mexico 87505-1816 (505) 476-4300

Transmission Status

Your transmission has completed.

DOC Identifier : 49254074 Fax Number : 5758877000 Recipient : KATK FM Status Classification : "Success" Status Outcome : "Success" Last Attempt Date : 05/25/2020 Last Attempt Time : 15:23:27 Pages Scheduled : 3 Pages Sent : 3 Baud Rate : 14400 Duration (in seconds) : 42 Number of Retries : 1 Remote CSID : "NEXTIVA55"

Cover page

Public Service Announcement Wildcat.pdf

Legal Ad

6B I TUESDAY, MAY 19, 2020 I CARLSBAD CURRENT-ARGUS

Your Source ہے Public Notices

Legal Notices

for the latest...

STATE OF NEW MEXICO COUNTY OF EDDY FIFTH JUDICIAL DISTRICT IN THE CHILDREN'S COURT

STATE OF NEW MEXICO ex re.

CHILDREN, YOUTH AND FAMILIES DEPARTMENT

IN THE MATTER OF M.D. and J.D., Children; and Concerning, ASHLEY ROBERTS AND JOHN DURAN, Respondents.

NO: JQ-2019-29

NOTICE OF PENDENCY OF ACTION BY PUBLICATION

TO: Ashley Roberts, Respondent John Duran, Respondent

If you need help reading this document, you can call (575) 8854740, and the court will appoint an interpreter for you at no charge.

Si usted necesita ayuda para leer este documento, puede llamar (575) 885-4740, y el tribunal le nombrera un intérprete sin costo.

YOU ARE HEREBY NOTIFIED that an abuse/neglect petihas been filed against tion you in the above-named court and county by the State of New Mexico. In the petition, the New Mexico Children, Youth and Families Department alleges that you have neglected and/or abused M.D. and J.D, chil-dren, and seeks legal custo-dy of the child.

YOU ARE FURTHER NOTI-FIED that this matter will be heard in the children's court division of the district court Mexico, no sooner than twenty (20) days after the last publication date of this notice.

The name, address, and telephone number of the attorney for the petitioner is: Mary W. Craig, 901 De Baca, Carlsbad, NM 88220 575-887-3576

THIS PROCEEDING MAY RESULT IN TERMINATION OF YOUR PARENTAL RIGHTS.

Date: 4/21/2020 May 12, 19, 26, 2020

STATE OF NEW MEXICO COUNTY OF EDDY FIFTH JUDICIAL DISTRICT IN THE CHILDREN'S COURT

STATE OF NEW MEXICO ex rel.

CHILDREN, YOUTH AND FAMILIES DEPARTMENT

IN THE MATTER OF D.B., a Child and Concerning BERONICA DELAPAZ and DAVID BISCAINO, Respondents.

NO: JQ-2020-06-JSG

NOTICE OF PENDENCY OF ACTION BY PUBLICATION

Legal Notices llamar (575) 885-4740, y el tribunal le nombrera un intérprete sin costo.

YOU ARE HEREBY NOTIFIED that an abuse/neglect peti-tion has been filed against in the above-named you court and county by the State of New Mexico. In the petition, the New Mexico Children, Youth and Fami-lies Department alleges that you have neglected and/or abused D.B., a child, and seeks legal custody of the child child.

YOU ARE FURTHER NOTI-FIED that this matter will be heard in the children's court division of the district court Eddy County, New ico, no sooner than Mexico, no sooner than twenty (20) days after the last publication date of this notice.

The name, address, and tele-phone number of the attorney for the petitioner is: Mary W. Craig, 901 De Baca, Carlsbad, NM 88220 575-887-3576.

THIS PROCEEDING MAY RESULT IN TERMINATION OF YOUR PARENTAL RIGHTS.

Date: 4/21/2020 May 12, 19, 26, 2020

STATE OF NEW MEXICO COUNTY OF EDDY FIFTH JUDICIAL DISTRICT IN THE CHILDREN'S COURT

STATE OF NEW MEXICO ex

re. CHILDREN, YOUTH AND

FAMILIES DEPARTMENT IN THE MATTER OF

E.B., a Child, and EDMUNDO GARZA, Respondents.

NO: JO-2019-14-JSG

NOTICE OF PENDENCY OF ACTION BY PUBLICATION

TO: Edmundo Garza, Respondent

If you need help reading this document, you can call (575) 8854740, and the court will appoint an interpreter for you at no charge.

Si usted necesita ayuda para leer este documento, puede llamar (575) 885-4740, y el tribunal le nombrera un intérprete sin costo.

YOU ARE HEREBY NOTIFIED that an abuse/neglect peti-tion has been filed against in the above-named court and county by the State of New Mexico. In the petition, the New Mexico Children, Youth and Fami-lies Department alleges that you have neglected and/or abused E.B., a child, and seeks legal custody of the child.

YOU ARE FURTHER NOTI-FIED that this matter will be heard in the children's court division of the district court in Eddy County, New Mexico, no sooner than twenty (20) days after the last publication date of this notice.

The name, address, and tele-phone number of the attorney for the petitioner is: Mary W. Craig, 901 De Baca, Legal Notices

IN THE FIFTH JUDICIAL DISTRICT

OF EDDY COUNTY STATE OF NEW MEXICO HECTOR MARIO LEYVA VILLA and SABINO OLIVA, Plaintiffs, vs. NO. D-503-CV-2020-00322 JOHN T. JONES, if living, and the UNKNOWN HEIRS OF JOHN The UNKNOWN HEIKS OF JOHN T. JONES if dead, the UN-KNOWN HEIRS OF MAMIE R. PATTERSON, AND AVIS J. CHAT-HAM, if living, and the UN-KNOWN HEIRS OF AVIS J. CHAT-HAM if dead AND ALL UN-KNOWN CLAIMANTS OF INTER-EST

NOTICE OF PENDENCY OF CIVIL ACTION THE STATE OF NEW MEXICO TO THE FOLLOWING NAMED DEFENDANTS: UN-KNOWN HEIRS OF MAMIE R.

NAMED DEFENDANTS: UN-KNOWN HEIRS OF MAMIE R. PATTERSON, DECEASED; AND ALL UNKNOWN PERSONS WHO MAY CLAIM A LIEN, INTEREST, OR TITLE IN THE PREMISES AD-VERSE TO PLAINTIFF WHETHER FROM ANY ABOVE NAMED DE-CEASED OR OTHERWISE. NOTICE IS GIVEN that in the above styled cause, Plaintiff has filed a Suit against you, the gen-eral object of which is to Com-pliant to Quiet Title to the prop-erty described in the Complaint in the cause, said land located in Eddy County, New Mexico, de-scribed as follows: Common Address: 312 Etter St. , Carlsbad, New Mexico: Lot 29B Quarter: NE S:18 T: 22S R: 27E of the Oliva Land Division in the City of Carlsbad, Eddy County New Mexico, ADD Com-

in the City of Carlsbad, Eddy County, New Mexico; AND, Com-mon Address: 314 Etter St., Carlsbad, New Mexico:

Carisbad, New Mexico: Page 1 of 2 Lot 29A Quarter: NE S:18 T: 22S R: 27E of the Oliva Land Division in the City of Carisbad, Eddy County, New Maxico: Mexico; Unless you file a Responsive

Pleading or Motion herein on or before the 30th day after the date of last publication of this date of last publication of this notice, Judgment will be ren-dered against you by Default. TABOR & BYERS, L.L.P., Jay Francis, P.O. Box 1718, Carlsbad, New Mexico 88221-1718, Tel. (575) 885-4171 is the Attorney for the Plaintiff. WITNESS MY HAND AND SEAL OF THE DISTRICT COURT OF THE FIFTH JUDICIAL DISTRICT COURT, COUNTY OF EDDY, STATE OF NEW MEXICO THIS 1st DAY OF May, 2020.

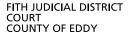
May, 2020.

KAREN CHRISTESSON, CLERK OF THE DISTRICT COURT #4177442, Current Argus, May 5, 12, 19,2020

FIFTH JUDICIAL DISTRICT COURT STATE OF NEW MEXICO COUN-TY OF EDDY CNB BANK, A State Banking Association, f/k/a THE CARLSBAD NATIONAL

BANK Plaintiff,

RICHARD L. WHICKER and CATHERINE E. WHICKER, husband and wife; CITY OF CARLSBAD; UNITED


STATES OF AMERICA THROUGH THE

OF AMERICA THROUGH THE INTERNAL REVENUE SERVICE Defendants. No. D-503-CV-2020-00369 NOTICE OF PENDENCY OF CIVIL ACTION TO: RICHARD L, WHICKE ER and CATHERINE E. WHICKER: NOTICE IS HEREBY GIVEN that in the above styled cause, Plaintiff has filed a has filed a

Complaint against you, the gen-eral object of which is for Fore-closure on a Deed of Trust and

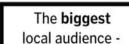
Unless you tile a Responsive Pleading or Motion, with the Districts Court, herein on or be-fore the thirty (30) days of the last publication, Judgment will be rendered against you by De-fault. You must also send a copy to the Plaintiff's counsel at the address below.

Legal Notices

STATE OF NEW MEXICO D-503-PB-2019-00109 IN THE MATTER OF THE

ESTATE OF MANUELA N. ECHAVARRIA,

Deceased NOTICE TO CREDITORS


NOTICE IS HEREBY GIVEN that the undersigned has been appointed Personal Representative of the refer-ence Estate. All persons hav-ing claims against the Estate are required to present their claims within two months after the date of the first publication of this Notice or their claims will be forever barred. claims must be presented either to the under-signed Personal Representative or filed with the Eddy County District Court, 102 N. Canal St. 3240, Carlsbad, NM 88220.

DATED this 15 day of May, 2020 /s/ Rafael R. Echavarria

PO Box 5 Loving, NM 88256 Submitted by: /s/ Jamie Dawson Jamie M. Dawson Attorneys for the Estate

Sanders, Bruin, Coll & Worley P.A. 701 W. Country Club Roswell, New Mexico 88201

(575)622-5440 #4196858, Carlsbad Current-Argus, May 19, 26, June 2, 2020

print and online

Legal Notices

SW1/4SW1/4SW1/4

NW¼SE¼NW¼

MOVE FROM PLACE OF USE: Purpose of Use Subdivisio

MOVE TO PLACE OF USE:

Street, Roswell, NM 88201.

Legal Notices Legal Notices

May 19, 2020

NOTICE is hereby given that on November 1, 2019, Henry McDonald, PO Box 597, Loving, New Mexico 88256 c/o Guy Chamberlin and David & Vickye Faulk, Route 782 E Derrick Road, Carlsbad, New Mexico 88220, filed with the STATE ENGINEER Application No. C-212, C-213 for permit to temporarily add two additional groundwater points of diversion with-in the Carlsbad Underground Basin of the State of New Mexico.

bad-nm-vendor-registration

PURCHASING AGENT:

Matt Fletcher, CPO

Date: 5/19/20

This notice is ordered to be published in the Carlsbad Current Argus.

32

32

Subdivision EDDY COUNTY

Subdivision NE¹/₄NE¹/₄NW¹/₄

Subdivision EDDY COUNTY

SW1/4NW1/4NW1/4

Section Township

225

225

13

Applicant requests emergency authorization to temporarily add two supplemental groundwater points of diversion. The water right under C-212, C-213, approved May 23, 2019; is temporarily permitted under the Water-Use Leasing Act for commercial purposes until December 31, 2020.

To be used for the authorized diversion of 75.222 acre-feet per annum (consumptive use)

Section Township 13 245

The existing wells are located approximately 4.2 miles northwest of the Town of Loving. Proposed wells are located approximately 1.7 miles southeast of the Town of Malaga, all in Eddy County, New Mexico.

Permit will expire December 31, 2020 and all rights will revert to original place of use, sub-ject to earlier revocation if requested by the applicant.

To view the application and supporting documentation contact the State Engineer District II Office to arrange a date and time for an appointment located at 1900 West Second

Any person, firm or corporation or other entity having standing to file objections or pro-

24S

EXISTING: Wells Subdivision C-212

C-213

COMMERCIAL

Existing Wells

Purpose of Use COMMERCIAL

PROPOSED:

C-464

C-738

gyv

for collection on a Promissory Note. Unless you file a Responsive

to the Plaintiff's counsel at the address below. TABOR & BYERS, L.L.P., Jay Francis, P.O. Box 1718, Carlsbad, New Mexico 88221-1718, Tel. (575) 885-4171 is the Attorney for the Plaintiff. WITNESS my hand and seal of the Eifth Judicial District Court

🗸 Legal Notices

NOTICE OF REQUEST FOR PROPOSALS

Legal Notices

Competitive sealed proposals for the Management of the Carlsbad Adult Daycare will be received by the City of Carlsbad for RFP No. $\underline{2020-09}$

The City shall entertain proposals in accordance with State law and as outlined within the RFP. All proposals shall be evaluated according to set criteria as stipulated in the RFP documents with price/cost being only one of several factors considered.

Proposals will be received at <u>City of Carlsbad, Purchasing</u> Department, Room 115, 101 N. Halagueno, Carlsbad, NM 88220 or P.O. Box 1569, Carlsbad, NM 88221-1569 until 5:00 p.m. on June 8, 2020

Copies of the Request for Proposals can be obtained in per-son at the office of the <u>Purchasing Department</u>, <u>Room 115</u>, at the City of Carlsbad, <u>101 N. Halagueno</u>, <u>Carlsbad</u>, <u>NM or</u> will be mailed upon written or telephone request to <u>Pur-chasing Department at (575) 234-7905</u>.

Copies of the RFP can also be obtained by registering with Vendor Registry on the City of Carlsbad website at the fol-

lowing link: https://vrapp.vendorregistry.com/Vendor/Register/Index/carls

A Pre-Proposal Conference will not be held, however specif-

ic questions regarding this RFP may be directed to Harry Burgess, City Administrator, at (575) 887-1191.

SELL IT BUY IT FIND IT

Place your classified ad today.

Range

Range

28E

28E

28E

28F

TO: Beronica DeLaPaz, Re- spondent David Biscaino, Respondent If you need help reading this document, you can call (575) 8854740, and the court will appoint an interpreter for you at no charge. THIS PROCEEDING I RESULT IN TERMINAT YOUR PARENTAL RIC Date: 4/21/2020 May 12, 19, 2	oner is: (575) 885-4171 is the Attorney for the Plaintiff. be Baca, 0 575- WITNESS my hand and seal of the Fifth Judicial District Court of Eddy County, New Mexico, this 1st day of May, 2020. MAY ION OF GHTS. KAREN CHRISTESSON, CLERK OF THE DISTRICT COURT By: /s / Deputy #4112799, Current Argus, May 5, 12, 19, 2020	tests shall do so in writing (objection must be legible, signed, and include the writer plete name, phone number, email address, and mailing address). The objection to proval of the application must be based on: (1) Impairment; if impairment, you mu cifically identify your water rights; and/or (2) Public Welfare/Conservation of Water; lic welfare or conservation of water within the state of New Mexico, you must sho you will be substantially and specifically affected. The written protest must be f triplicate, with the State Engineer, 1900 West Second Street, Roswell, NM 88201, by ly 6, 2020. Facsimiles (faxes) will be accepted as a valid protest if the hard copy i delivered or mailed and postmarked within 24-hours of the facsimile. Mailing po will be used to validate the 24-hour period. Protests can be faxed to the Office State Engineer, 575-623-8559. If no valid protest or objection is filed, the State En	the ap- ust spe- if pub- ow how filed, in the Ju- s hand- ostmark of the ngineer
Si usted necesita ayuda para leer este documento, puede	Homes Love the house. Know the neighborhood.	will evaluate the application in accordance with the provisions of Chapter 72 NMSA 19 #4177369, Current Argus, May 5, 12, 19, 26, June 2, 2020	978.
Legal Notices Legal Notice		NOTICE OF AIR QUALITY PERMIT APPLICATION	
GCP-Oil and Gas PUBLI 20.2.72 NMAC – General Permits, S NOTICE Murchison Oil and Gas, LLC announces its intent to Department for an air quality General Construction F this facility is Rock Ridge Central Battery. The expect tration for an air quality permit to the Air Quality Bu quirement according to New Mexico air quality regula	ection 220.A(2)(b)ii apply to the New Mexico Environment Permit, (GCP-Oil and Gas). The name of ted date of the submittal of our Regis- reau is June 1, 2020. This notice is a re-	XTO Energy Inc. announces its application to the New Mexico Environment Department the modification of the Wildcat Compressor Station. The expected date of applicat mittal to the Air Quality Bureau is May 21, 2020. XTO Energy is planning to remove updating engine emission rates, removing heaters, and updating oil/water production The exact location for the proposed facility known as the Wildcat Compressor Stat be latitude 32 deg, 12 min, 7 sec and longitude -103 deg, 46 min, 40 sec. The appr	ion sub- engines, rate. tion wi ll
The exact initial location of the facility is/will be UT Northing 3562113 The approximate location of this county. The standard operating schedule of this facility	M Zone 13, UTM Easting 592706, UTM s site is 4 miles SW of Malaga in Eddy	location of this facility is 4 miles southwest of intersection of NM 128 and Buck Jack in Eddy County. The estimated maximum quantities of any regulated air contaminant will be as fo pound per hour (pph) and tons per year (tpy) and could change slightly during the c the Department's review:	kson Rd. Mows in
Air emissions of any regulated air contaminant will be	less than or equal to: Tons per year (TPY)		
 Nitrogen Oxides (NOx) Carbon Monoxide (CO) Volatile Organic Compounds (VOC) (stack) Particulate Matter (PM10) Particulate Matter (PM2.5) Sulfur Dioxide (SO2) Hydrogen Sulfide (H2S) Any one (1) Hazardous Air Pollutant (HAP) Sum of all Hazardous Air Pollutants (HAPs) 	95 95 95 25 25 95 25 25 25 25 25 25 25 25 25 25 25 25 25	PM1022PM2.522Sulfur Dioxide (SO2)9Nitrogen Oxides (NOx)470Carbon Monoxide (CO)900Volatile Organic Compounds (VOC)920Total sum of all Hazardous Air Pollutants (HAPs)28	n/a 19 22 222 249 249 30
The owner and/or operator of the Plant is: Murchison Oil and Gas, LLC 5325 Sierra Vista Carlsbad, NM 88220 If you have any questions or comments about const	truction or operation of above facility.		ne Facili-
and want your comments to be made as a part of th mit your comments in writing to the address below: New Mexico Environment Department Air Quality Bureau Permit Section 525 Camino de los Marquez, Suite 1 Santa Fe, New Mexico, 87505 Phone (505) 476-4300		If you have any comments about the construction or operation of this facility, and your comments to be made as part of the permit review process, you must submit your ments in writing to this address: Permit Programs Manager; New Mexico Environm partment; Air Quality Bureau; 525 Camino de los Marquez, Suite 1; Santa Fe, New 87505-1816; (505) 476-4300; 1 800 224-7009; https://www.env.nm.gov/aqb/permit/aqb permits.html. Other comments and questions may be submitted verbally.	our com- ient De- Mexico;
Fax (505) 476-4375 Other comments and questions may be submitted verb Please refer to the company name and site name, a	,	With your comments, please refer to the company name and facility name, or send of this notice along with your comments. This information is necessary since the ment may have not yet received the permit application. Please include a legible mailing address. Once the Department has completed its preliminary review of the tion and its air quality impacts, the Department's notice will be published in the le	Depart- e return applica-
this notice along with your comments, since the D permit Registration at the time of this notice.		tion of a newspaper circulated near the facility location	5
Attención Este es un aviso de la oficina de Calidad del Aire del Nuevo México, acerca de las emisiones producidas p usted desea información en español, por favor comu 476-5557.	por un establecimiento en esta área. Si	Attención Este es un aviso de la oficina de Calidad del Aire del Departamento del Medio Amb Nuevo México, acerca de las emisiones producidas por un establecimiento en esta usted desea información en español, por favor comuníquese con esa oficina al teléfo 476-5557.	área. Si
Notice of Non-Discrim NMED does not discriminate on the basis of race, coli in the administration of its programs or activities, as tions. NMED is responsible for coordination of com concerning non-discrimination requirements impleme VI of the Civil Rights Act of 1964, as amended; Sectio the Age Discrimination Act of 1975, Title IX of the Ec tion 13 of the Federal Water Pollution Control Act questions about this notice or any of NMED's non-di cedures, or if you believe that you have been discrim program or activity, you may contact: Kristine Yu NMED, 1190 St. Francis Dr., Suite N4050, P.O. Box 546 nd.coordinator@state.nm.us. You may also visit our v -employee-discrimination-complaint-page/ to learn I discrimination.	or, national origin, disability, age or sex required by applicable laws and regula- pliance efforts and receipt of inquiries ented by 40 C.F.R. Part 7, including Title n 504 of the Rehabilitation Act of 1973; lucation Amendments of 1972, and Sec- Amendments of 1972. If you have any iscrimination programs, policies or pro- inated against with respect to a NMED urdin, Non-Discrimination Coordinator, 59, Santa Fe, NM 87502, (505) 827-2855, website at https://www.env.nm.gov/non how and where to file a complaint of	Notice of Non-Discrimination NMED does not discriminate on the basis of race, color, national origin, disability, ac in the administration of its programs or activities, as required by applicable laws and tions. NMED is responsible for coordination of compliance efforts and receipt of it concerning non-discrimination requirements implemented by 40 C.F.R. Part 7, includ VI of the Civil Rights Act of 1964, as amended; Section 504 of the Rehabilitation Act the Age Discrimination Act of 1975, Title IX of the Education Amendments of 1972, tion 13 of the Federal Water Pollution Control Act Amendments of 1972. If you h questions about this notice or any of NMED's non-discrimination programs, policies cedures, or if you believe that you have been discriminated against with respect to program or activity, you may contact: Kristine Yurdin, Non-Discrimination Coor NMED, 1190 St. Francis Dr., Suite N4050, P.O. Box 5469, Santa Fe, NM 87502, (505) 8, nd.coordinator@state.nm.us. You may also visit our website at https://www.env.nm.g- employee-discrimination-complaint-page/ to learn how and where to file a comp discrimination.	d regula- inquiries of 1973; and Sec- nave any s or pro- a NMED rdinator, 27-2855, gov/non
	May 19, 2020	4194838, Carlsbad Current-Argus, May 19, 2020	

Display Ad

NM SOLAR GROUP

GUEST COLUMNIST Correcting Holtec record

Jack Volpato Treasurer, Eddy Lea Energy Aliance

What is "fear?" Is it, an unpleasant feeling trigged by the perception of danger, real or imagined? Or is "F.E.A.R.," an acronym for "False Evidence Appearing Real," which is often the case to anything we don't understand such as science. Naturally we create a fear and justify that anxiety by creating evidence to support an unpleasant emotional feeling.

Fear and emotion are always brought into a debate against science, as proven facts are often tossed aside in discussions involving public or private enterprise. Whether the concerns are building roads, oil exploration or constructing and operating a storage facility for spent nuclear fuel in southeast New Mexico.

In the Draft Environmental Impact Statement (DEIS), the Nuclear Regulatory Commission's (NRC) staff recommended that Holtec International receive a license to store spent nuclear fuel. However, after the Albuquerque Journal editorial "NRC is right to put science before politics," the spreading of "false evidence appearing real" started in earnest.

Here are some emotional examples of "false evidence appearing real."

1. The proposed project will harm the state's important industries, including oil and gas production, ranching and agriculture.

The truth is no, the spent fuel storage facility will co-exist with all the industries in southeast New Mexico.

2. The rail lines can't handle the weight of transporting the spent fuel, again a false statement.

A railcar with 12 axles loaded with a transport cask weighs 337 tons, the weight dispersion is 28 tons per axle. The current E80 rail rating is 40 tons per axle, the loaded railcars are clearly below the rating limit.

3. Transporting the canisters will release radiation along the train route, this is another casualty of the truth.

Each Holtec canister has to pass a rigorous safety test that includes four successive accident conditions, free drop, puncture, fire and submersion in

water, the canister passed each condition.

In addition, the USNRC regulatory limit for dose rates around the canister is 10 mrem/hr. at 2 meters from the vehicle. As a comparison, the dose from a single dental x-ray is about 4 mrem. That means that a person standing 2 meters away from a transport cask, for 24 minutes (0.4 hours), would receive just about the same dose as from a single dental x-ray. However, that is not a realistic condition to consider for any member of the public. As a person at a railroad crossing would be further away from a transport cask and typically for a shorter period of time, hence the dose would be much lower.

These are just some of the "false evidence appearing real" that the project opponents create to put fear in your mind. There are so many other false statements to refute, but I'm only allowed 650 words to make my point.

The truth is we have to stop this cultural fear that has affected U.S. energy policy for the last 70 years, it is really simple, nuclear energy is not about weapons. It is a clean source of energy that will save the world and our climate. You can't have an intelligent reasonable discussion about saving the climate without including nuclear energy. Nuclear is our largest source of clean energy, providing more than 55% of emissions-free electricity. If you are truly an advocate for the environment, then you should support nuclear, case closed.

As Neil deGrasse Tyson said, "the great thing about science, is it's true, whether or not you believe it." You can't pick and choose what science you want to believe, which is what the groups against the proposed storage facility constantly do. They are upset that the scientists and experts who wrote the DEIS did not use their fake science.

I encourage you to read the DEIS on Holtec International's License Application for a Consolidated Interim Storage Facility, you can access the report at www.nrc.gov/docs/ML2006/ML2006-9G420.pdf.

Afterward please email your supporting comments to Holtec-CISFEIS @nrc.gov, the deadline is July 22.

NM forecasters warn of heat, fire weather

ASSOCIATED PRESS

ALBUQUERQUE – Weather forecasters are warning of record heat that is setting the stage for critical fire weather this week.

The National Meather Corriga in A

many parts of the state. That includes prohibiting campfires on three of northern New Mexico's national forests starting Wednesday. Restrictions already are in place for the Lincoln National Forest in southern New Mexico

for those that go solar!

Call for details! Offer Expires 5/31/20.

With over 300 days of sunshine each year, solar makes dollars and sense for New Mexicans. Let's let the sun get to work for you! Purchasing a solar system allows home and business owners to control their energy costs and protect themselves from future rate increases from utility companies. Gain energy independence today!

The National Weather Service in Albuquerque said chances for dry thunderstorms will increase for portions of central New Mexico on Tuesday as the forecast calls for low humidity and gusty winds Tuesday and Wednesday.

State and federal land managers already are imposing fire restrictions for

and on all non-federal, non-tribal and non-municipal lands statewide.

Aside from the critical weather, land managers are hoping by putting in place restrictions early they can avoid human-caused fires and the need to mobilize firefighting crews during the coronavirus pandemic.

NOTICE OF AIR QUALITY PERMIT APPLICATION

XTO Energy, Inc. announces its application to the New Mexico Environment Department for an air quality permit for the modification of the Wildcat Compressor Station. The expected date of application submittal to the Air Quality Bureau is May 21, 2020. XTO Energy is planning to remove engines, updating engine emission rates, removing heaters, and updating oil/water production rate.

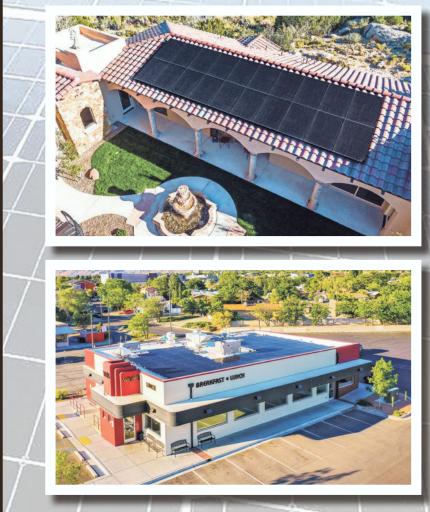
The exact location for the proposed facility known as the Wildcat Compressor Station will be latitude 32 deg, 12 min, 7 sec and longitude -103 deg, 46 min, 40 sec. The approximate location of this facility is 4 miles southwest of intersection of NM 128 and Buck Jackson Rd. in Eddy County.

The estimated maximum quantities of any regulated air contaminant will be as follows in pound per hour (pph) and tons per year (tpy) and could change slightly during the course of the Department's review:

Pollutant:	Pounds per hour	Tons per year
Particulate Matter (PM)	n/a	n/a
PM 10	22	19
PM 2.5	22	19
Sulfur Dioxide (SO2)	9	22
Nitrogen Oxides (NOx)	470	222
Carbon Monoxide (CO)	900	249
Volatile Organic Compounds (VOC)	920	249
Total sum of all Hazardous Air Pollutants (HAPs)	28	30
Toxic Air Pollutant (TAP)	n/a	n/a
Green House Gas Emissions as Total CO2e	n/a	240000

The standard and maximum operating schedules of the facility will be 24 hours per day, 7 days a week and a maximum of 52 weeks per year. The owner and/or operator of the Facility is: The owner and/or operator of the Facility is: XTO Energy, Inc.; 22777 Springwoods Village Pkwy-W4.6B.355; Spring, Texas 77389.

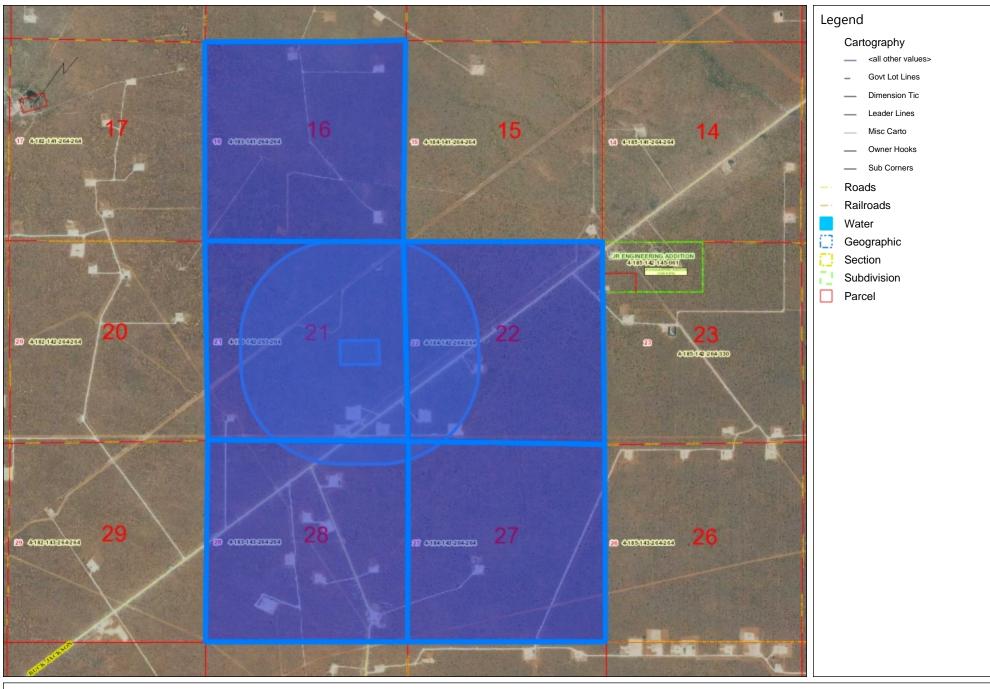
If you have any comments about the construction or operation of this facility, and you want your comments to be made as part of the permit review process, you must submit your comments in writing to this address: Permit Programs Manager; New Mexico Environment Department; Air Quality Bureau; 525 Camino de los Marquez, Suite 1; Santa Fe, New Mexico; 87505-1816; (505) 476-4300; 1 800 224-7009; <u>https://www.env.nm.gov/aqb/permit/aqb_draft_permits.html</u>. Other comments and questions may be submitted verbally.


With your comments, please refer to the company name and facility name, or send a copy of this notice along with your comments. This information is necessary since the Department may have not yet received the permit application. Please include a legible return mailing address. Once the Department has completed its preliminary review of the application and its air quality impacts, the Department's notice will be published in the legal section of a newspaper circulated near the facility location.

Attención

Este es un aviso de la oficina de Calidad del Aire del Departamento del Medio Ambiente de Nuevo México, acerca de las emisiones producidas por un establecimiento en esta área. Si usted desea información en español, por favor comuníquese con esa oficina al teléfono 505-476-5557.

Notice of Non-Discrimination


NMED does not discriminate on the basis of race, color, national origin, disability, age or sex in the administration of its programs or activities, as required by applicable laws and regulations. NMED is responsible for coordination of compliance efforts and receipt of inquiries concerning non-discrimination requirements implemented by 40 C.F.R. Part 7, including Title VI of the Civil Rights Act of 1964, as amended; Section 504 of the Rehabilitation Act of 1973; the Age Discrimination Act of 1975, Title IX of the Education Amendments of 1972, and Section 13 of the Federal Water Pollution Control Act Amendments of 1972. If you have any questions about this notice or any of NMED's non-discrimination programs, policies or procedures, or if you believe that you have been discriminated against with respect to a NMED program or activity, you may contact: Kristine Yurdin, Non-Discrimination Coordinator, NMED, 1190 St. Francis Dr., Suite N4050, P.O. Box 5469, Santa Fe, NM 87502, (505) 827-2855, nd.coordinator@state.nm.us. You may also visit our website at https://www.env.nm.gov/non-employee-discrimination-complaint-page/ to learn how and where to file a complaint of discrimination.

NM SOLAR GROUP CARES ABOUT YOUR SAFETY. WE ARE OFFERING VIRTUAL CONSULTATIONS!

Eddy County Property Tax Map

Wildcat CS Surrounding Properties Web Print: 05/25/2020

This map is a user generated static output from an Internet mapping site and is for reference only. Data layers that appear on this map may or may not be accurate, current, or otherwise reliable.

0

6,019 3,009 Feet

©2020 Sidwell. All rights reserved.

Tab 10

Section 10 - Written Description of the Routine Operations of the Facility

Section 10

Written Description of the Routine Operations of the Facility

<u>A written description of the routine operations of the facility</u>. Include a description of how each piece of equipment will be operated, how controls will be used, and the fate of both the products and waste generated. For modifications and/or revisions, explain how the changes will affect the existing process. In a separate paragraph describe the major process bottlenecks that limit production. The purpose of this description is to provide sufficient information about plant operations for the permit writer to determine appropriate emission sources.

Field gas flows into two inlet slug catchers. The site uses natural gas engines to compress the gas for sales, including nine (9) Caterpillar 3616TA engines (ENG1-ENG9) and two (2) Caterpillar 3516J engines (ENG11-ENG12). The Caterpillar engines are equipped with oxidation catalysts to reduce CO, VOC, and formaldehyde emissions.

Gas is dehydrated using triethylene glycol dehydration units (DEHY1-DEHY3, each handling up to 80 MMscfd each. The systems are equipped with flash tanks and condensers. Flash tank vapors are recycled in the dehydration system. The glycol still vent vapors are routed to condensers. Uncondensed vapors are controlled by the flare system (FL1/FL2/FL3). Dehydrated gas is then transferred to a sales pipeline.

Liquids generated anywhere in the system are dumped to an ultra-low pressure separator (LPS). Vapors from the LPS are routed to the flare system (FL1/FL2/FL3). From the LPS, oil at approximately 2 psig is dumped to four (4) oil storage tanks (OT1-OT4), which are controlled by the flare system (FL1/FL2/FL3). Water from the LPS flows to redundant skim tanks (SKT1/SKT2). The skim tanks are arranged as a redundant system in which one unit can be used if another is down for unforeseen circumstances. Water is then dumped to two (2) water tanks (WT1-WT2). Any residual oil flows from the skim tanks into the oil storage tanks. Vapors from the water storage tanks and skim tanks are also controlled by the flare system (FL1/FL2/FL3). Oil and water are trucked offsite.

The flare system (FL1/FL2/FL3) is also used to flare gas in compressor station in the event of an emergency.

Tab 11 Section 11 -Source Determination

Section 11

Source Determination

Source submitting under 20.2.70, 20.2.72, 20.2.73, and 20.2.74 NMAC

Sources applying for a construction permit, PSD permit, or operating permit shall evaluate surrounding and/or associated sources (including those sources directly connected to this source for business reasons) and complete this section. Responses to the following questions shall be consistent with the Air Quality Bureau's permitting guidance, <u>Single Source Determination Guidance</u>, which may be found on the Applications Page in the Permitting Section of the Air Quality Bureau website.

Typically, buildings, structures, installations, or facilities that have the same SIC code, that are under common ownership or control, and that are contiguous or adjacent constitute a single stationary source for 20.2.70, 20.2.72, 20.2.73, and 20.2.74 NMAC applicability purposes. Submission of your analysis of these factors in support of the responses below is optional, unless requested by NMED.

A. Identify the emission sources evaluated in this section (list and describe): See Table 2A

B. Apply the 3 criteria for determining a single source:

<u>SIC</u> <u>Code</u>: Surrounding or associated sources belong to the same 2-digit industrial grouping (2-digit SIC code) as this facility, <u>OR</u> surrounding or associated sources that belong to different 2-digit SIC codes are support facilities for this source.

☑ Yes □ No

<u>Common</u> <u>Ownership</u> or <u>Control</u>: Surrounding or associated sources are under common ownership or control as this source.

☑ Yes □ No

<u>Contiguous</u> or <u>Adjacent</u>: Surrounding or associated sources are contiguous or adjacent with this source.

☑ Yes □ No

C. Make a determination:

- ☑ The source, as described in this application, constitutes the entire source for 20.2.70, 20.2.72, 20.2.73, or 20.2.74 NMAC applicability purposes. If in "A" above you evaluated only the source that is the subject of this application, all "YES" boxes should be checked. If in "A" above you evaluated other sources as well, you must check AT LEAST ONE of the boxes "NO" to conclude that the source, as described in the application, is the entire source for 20.2.70, 20.2.72, 20.2.73, and 20.2.74 NMAC applicability purposes.
- □ The source, as described in this application, <u>does not</u> constitute the entire source for 20.2.70, 20.2.72, 20.2.73, or 20.2.74 NMAC applicability purposes (A permit may be issued for a portion of a source). The entire source consists of the following facilities or emissions sources (list and describe):

Tab 12

Section 12 - PSD Applicability Determination for All Sources

Section 12

Section 12.A PSD Applicability Determination for All Sources

(Submitting under 20.2.72, 20.2.74 NMAC)

<u>A PSD applicability determination for all sources</u>. For sources applying for a significant permit revision, apply the applicable requirements of 20.2.74.AG and 20.2.74.200 NMAC and to determine whether this facility is a major or minor PSD source, and whether this modification is a major or a minor PSD modification. It may be helpful to refer to the procedures for Determining the Net Emissions Change at a Source as specified by Table A-5 (Page A.45) of the <u>EPA New Source Review Workshop Manual</u> to determine if the revision is subject to PSD review.

- A. This facility is:
 - a minor PSD source before and after this modification (if so, delete C and D below).
 - □ a major PSD source before this modification. This modification will make this a PSD minor source.
 - □ an existing PSD Major Source that has never had a major modification requiring a BACT analysis.
 - □ an existing PSD Major Source that has had a major modification requiring a BACT analysis
 - □ a new PSD Major Source after this modification.

Tab 13

Section 13 - Determination of State & Federal Air Quality Regulations

Section 13

Determination of State & Federal Air Quality Regulations

This section lists each state and federal air quality regulation that may apply to your facility and/or equipment that are stationary sources of regulated air pollutants.

Not all state and federal air quality regulations are included in this list. Go to the Code of Federal Regulations (CFR) or to the Air Quality Bureau's regulation page to see the full set of air quality regulations.

Required Information for Specific Equipment:

For regulations that apply to specific source types, in the 'Justification' column **provide any information needed to determine if the regulation does or does not apply**. For example, to determine if emissions standards at 40 CFR 60, Subpart IIII apply to your three identical stationary engines, we need to know the construction date as defined in that regulation; the manufacturer date; the date of reconstruction or modification, if any; if they are or are not fire pump engines; if they are or are not emergency engines as defined in that regulation; their site ratings; and the cylinder displacement.

Required Information for Regulations that Apply to the Entire Facility:

See instructions in the 'Justification' column for the information that is needed to determine if an 'Entire Facility' type of regulation applies (e.g. 20.2.70 or 20.2.73 NMAC).

Regulatory Citations for Regulations That Do Not, but Could Apply:

If there is a state or federal air quality regulation that does not apply, but you have a piece of equipment in a source category for which a regulation has been promulgated, you must **provide the low level regulatory citation showing why your piece of equipment is not subject to or exempt from the regulation. For example** if you have a stationary internal combustion engine that is not subject to 40 CFR 63, Subpart ZZZZ because it is an existing 2 stroke lean burn stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions, your citation would be 40 CFR 63.6590(b)(3)(i). We don't want a discussion of every non-applicable regulation, but if it is possible a regulation could apply, explain why it does not. For example, if your facility is a power plant, you do not need to include a citation to show that 40 CFR 60, Subpart OOO does not apply to your non-existent rock crusher.

Regulatory Citations for Emission Standards:

For each unit that is subject to an emission standard in a source specific regulation, such as 40 CFR 60, Subpart OOO or 40 CFR 63, Subpart HH, include the low level regulatory citation of that emission standard. Emission standards can be numerical emission limits, work practice standards, or other requirements such as maintenance. Here are examples: a glycol dehydrator is subject to the general standards at 63.764C(1)(i) through (iii); an engine is subject to 63.6601, Tables 2a and 2b; a crusher is subject to 60.672(b), Table 3 and all transfer points are subject to 60.672(e)(1)

Federally Enforceable Conditions:

All federal regulations are federally enforceable. All Air Quality Bureau State regulations are federally enforceable except for the following: affirmative defense portions at 20.2.7.6.B, 20.2.7.110(B)(15), 20.2.7.11 through 20.2.7.113, 20.2.7.115, and 20.2.7.116; 20.2.37; 20.2.42; 20.2.43; 20.2.62; 20.2.63; 20.2.86; 20.2.89; and 20.2.90 NMAC. Federally enforceable means that EPA can enforce the regulation as well as the Air Quality Bureau and federally enforceable regulations can count toward determining a facility's potential to emit (PTE) for the Title V, PSD, and nonattainment permit regulations.

INCLUDE ANY OTHER INFORMATION NEEDED TO COMPLETE AN APPLICABILITY DETERMINATION OR THAT IS RELEVENT TO YOUR FACILITY'S NOTICE OF INTENT OR PERMIT.

EPA Applicability Determination Index for 40 CFR 60, 61, 63, etc: http://cfpub.epa.gov/adi/

<u>STATE</u> <u>REGU-</u> <u>LATIONS</u> CITATION	Title	Applies? Enter Yes or No	Unit(s) or Facility	JUSTIFICATION: (You may delete instructions or statements that do not apply in the justification column to shorten the document.)
20.2.1 NMAC	General Provisions	Yes	Facility	General Provisions apply to Notice of Intent, Construction, and Title V permit applications.
20.2.3 NMAC	Ambient Air Quality Standards NMAAQS	Yes	Facility	If subject, this would normally apply to the entire facility. 20.2.3 NMAC is a State Implementation Plan (SIP) approved regulation that limits the maximum allowable concentration of Total Suspended Particulates, Sulfur Compounds, Carbon Monoxide and Nitrogen Dioxide. Title V applications, see exemption at 20.2.3.9 NMAC
20.2.7 NMAC	Excess Emissions	Yes	Facility	If subject, this would normally apply to the entire facility. If your entire facility or individual pieces of equipment are subject to emissions limits in a permit or numerical emissions standards in a federal or state regulation, this applies. This would not apply to Notices of Intent since these are not permits.
20.2.33 NMAC	Gas Burning Equipment - Nitrogen Dioxide	No	N/A	None of the equipment has a rating greater than 1 MMBtu/hr.
20.2.34 NMAC	Oil Burning Equipment: NO ₂	No	N/A	This facility has no oil burning equipment.
20.2.35 NMAC	Natural Gas Processing Plant – Sulfur	No	N/A	The facility is not a gas processing plant.
20.2.38 NMAC	Hydrocarbon Storage Facility	Yes	OT1- OT4	The site uses a flare to comply with 20.2.38 NMAC.
20.2.39 NMAC	Sulfur Recovery Plant - Sulfur	No	N/A	The facility does not operate a sulfur recovery plant.
20.2.61.109 NMAC	Smoke & Visible Emissions	Yes	FL1-3, RB1-3, ENG1- 9, ENG11 -12, HTR1	This regulation that limits opacity to 20% applies to Stationary Combustion Equipment, such as engines, boilers, heaters, and flares unless your equipment is subject to another state regulation that limits particulate matter such as 20.2.19 NMAC (see 20.2.61.109 NMAC).
20.2.70 NMAC	Operating Permits	Yes	Facility	The facility is a major source and will apply for a Title V Operating Permit.
20.2.71 NMAC	Operating Permit Fees	Yes	Facility	The facility is a major source and will apply for a Title V Operating Permit.
20.2.72 NMAC	Construction Permits	Yes	Facility	This application requests a NSR in accordance with 20.2.72.
20.2.73 NMAC	NOI & Emissions Inventory Requirements	No	N/A	The site is subject to 20.2.72 NMAC.
20.2.74 NMAC	Permits – Prevention of Significant Deterioration (PSD)	No	N/A	The facility is not a major PSD site.
20.2.75 NMAC	Construction Permit Fees	Yes	Facility	A permit fee is included with this application.

STATE REGU- LATIONS CITATION	Title	Applies? Enter Yes or No	Unit(s) or Facility	JUSTIFICATION: (You may delete instructions or statements that do not apply in the justification column to shorten the document.)
20.2.77 NMAC	New Source Performance	Yes	Facility	See regulatory discussion in Federal Regulations Citation section.
20.2.78 NMAC	Emission Standards for HAPS	No	N/A	The facility does not fit into any of the source categories.
20.2.79 NMAC	Permits – Nonattainment Areas	No	N/A	The facility is not located in a nonattainment area.
20.2.80 NMAC	Stack Heights	No	N/A	There are no stacks to which this regulation would apply.
20.2.82 NMAC	MACT Standards for source categories of HAPS	Yes	DEHY1- 3, ENG1-9, ENG11- 12	See regulatory discussion in Federal Regulations Citation section.
20.2.1 NMAC	General Provisions	Yes	Facility	General Provisions apply to Notice of Intent, Construction, and Title V permit applications.
20.2.3 NMAC	Ambient Air Quality Standards NMAAQS	Yes	Facility	If subject, this would normally apply to the entire facility. 20.2.3 NMAC is a State Implementation Plan (SIP) approved regulation that limits the maximum allowable concentration of Total Suspended Particulates, Sulfur Compounds, Carbon Monoxide and Nitrogen Dioxide. Title V applications, see exemption at 20.2.3.9 NMAC

FEDERAL REGU- LATIONS CITATION	Title	Applies? Enter Yes or No	Unit(s) or Facility	JUSTIFICATION:
40 CFR 50	NAAQS	Yes	Facility	Compliance with the requirements of the GCP indicates compliance with NAAQS.
NSPS 40 CFR 60, Subpart A	General Provisions	Yes	Facility	See regulatory discussion below.
NSPS 40 CFR60.40a, Subpart Da	Subpart Da, Performance Standards for Electric Utility Steam Generating Units	No	N/A	The facility does not operate any electric utility steam generating units.
NSPS 40 CFR60.40b Subpart Db	Electric Utility Steam Generating Units	No	N/A	The facility does not operate any electric utility steam generating units.

FEDERAL REGU- LATIONS CITATION	Title	Applies? Enter Yes or No	Unit(s) or Facility	JUSTIFICATION:
NSPS 40 CFR 60, Subpart Ka	Storage Vessels for Petroleum Liquids Commenced After May 18, 1978, and Prior to July 23, 1984	No	N/A	The hydrocarbons are stored prior to custody transfer.
NSPS 40 CFR 60, Subpart Kb	Standards of Performance for Volatile Organic Liquid Storage Commenced After July 23, 1984	No	N/A	The hydrocarbons are stored prior to custody transfer.
NSPS 40 CFR 60.330 Subpart GG	Stationary Gas Turbines	No	N/A	There are no turbines.
NSPS 40 CFR 60, Subpart KKK	Leaks of VOC from Onshore Gas Plants	No	N/A	This is not a gas plant.
NSPS 40 CFR Part 60 Subpart LLL	Standards of Performance for Onshore Natural Gas Processing: SO2 Emissions	No	N/A	The facility does not operate a sweetening unit.
NSPS 40 CFR Part 60 Subpart OOOO	Crude Oil and Natural Gas Production, Transmission, and Distribution after August 23, 2011 and before September 18, 2015	No	N/A	The site will be constructed after 9/18/15. See NSPS OOOOa discussion below.
NSPS 40 CFR Part 60 Subpart OOOOa	Crude Oil and Natural Gas Facilities for which Construction, Modification or Reconstruction Commenced After September 18, 2015	Yes	FUG	The storage tanks were constructed after the applicability date of the rule; however, XTO is requesting emissions be limited by permit to less than 6 tpy. The regulation is applicable to the storage tanks but the tanks are not affected sources. The site uses low-bleed pneumatic controllers. The site is subject to leak monitoring from fugitive components.
NSPS 40 CFR 60 Subpart IIII	Standards of performance for Stationary Compression Ignition Internal Combustion Engines	No	N/A	The facility does not operate any affected sources.
NSPS 40 CFR Part 60 Subpart JJJJ	Standards of Performance for Stationary Spark Ignition Internal Combustion Engines	TBD	ENG1-9, ENG11- 12	ENG1-ENG3 are subject to the engines are subject to the limitations in Table 1 per 40 CFR 60.4233(e). A determination of applicability will be made for each engine to be used at the site.

<u>FEDERAL</u> <u>REGU-</u> <u>LATIONS</u> CITATION	Title	Applies? Enter Yes or No	Unit(s) or Facility	JUSTIFICATION:
NSPS 40 CFR 60 Subpart TTTT	Greenhouse Gas Emissions for Electric Generating Units	No	N/A	The facility does not operate any affected sources.
NSPS 40 CFR 60 Subpart UUUU	Greenhouse Gas Emissions and Compliance Times for Electric Utility Generating Units	No	N/A	The facility does not operate any affected sources.
NSPS 40 CFR 60, Subparts WWW, XXX, Cc, and Cf	Standards of performance for Municipal Solid Waste (MSW) Landfills	No	N/A	The facility does not operate any affected sources.
NESHAP 40 CFR 61 Subpart A	General Provisions	See Below	See Below	See regulatory discussion below.
NESHAP 40 CFR 61 Subpart E	National Emission Standards for Mercury	No	N/A	The facility does not operate any affected sources.
NESHAP 40 CFR 61 Subpart V	National Emission Standards for Equipment Leaks (Fugitive Emission Sources)	No	N/A	The facility does not operate any affected sources.
MACT 40 CFR 63, Subpart A	General Provisions	No	N/A	See regulatory discussion below.
MACT 40 CFR 63.760 Subpart HH	Oil and Natural Gas Production Facilities	Yes	DEHY1- 3	As a major source of HAP, sources subject to HH include storage vessels with flash emissions, fugitive components, and compressors in VHAP service ((see §63.760(b)(1)(ii), (iii), and (iv)). Fugitives and compressors are exempt per §63.769(b) since they are subject to NSPS OOOO. Storage vessels use a closed vent system connected to a combustor to comply with §63.766(b).The dehydrators process more than 3 mmscfd; however, since benzene emissions are less than 1 tpy, there are no applicable requirements. (See §63.764(E)(1))
MACT 40 CFR 63 Subpart HHH	Natural Gas Transmission and Storage Facilities	No	N/A	This regulation does not apply as the plant is not a natural gas transmission and storage facility as defined by the subpart (§63.1270(a)).
MACT 40 CFR 63 Subpart DDDDD	Major Industrial, Commercial, and Institutional Boilers & Process Heaters	Yes	HTR1, RB1-3	Per §63.7500(e), boilers and heaters designed to burn gas 1 fuels must comply with work practice standards in Table 3 and does not have emission or operating limits.
MACT 40 CFR 63 Subpart JJJJJJ	Boilers and Process Heaters	No	N/A	The units are exempt per §63.1195(e) since they burn natural gas.
MACT 40 CFR 63 Subpart UUUUU	NESHAP Coal & Oil Fire Electric Utility Steam Generating Unit	No	N/A	The facility does not operate any affected sources.
MACT 40 CFR 63 Subpart ZZZZ	RICE MACT	TBD	ENG1-9, ENG11- 12	ENG1-ENG3 comply with NSPS JJJJ to comply with NESHAP ZZZZ per $60.6590(c)(1)$. A determination of applicability will be made for each engine to be used at the site.

<u>FEDERAL</u> <u>REGU-</u> <u>LATIONS</u> CITATION	Title	Applies? Enter Yes or No	Unit(s) or Facility	JUSTIFICATION:
40 CFR 64	Compliance Assurance Monitoring	No	N/A	The facility is not subject to CAM.
40 CFR 68	Chemical Accident Prevention	No	N/A	The facility does not store any chemicals above threshold quantities.
Acid Rain 40 CFR 72	Acid Rain	No	N/A	The facility does not have any units subject to the Acid Rain regulations.
Title IV – Acid Rain 40 CFR 73	Sulfur Dioxide Allowance Emissions	No	N/A	The facility does not have any units subject to the Acid Rain regulations.
Title IV-Acid Rain 40 CFR 75	Continuous Emissions Monitoring	No	N/A	The facility does not have any units subject to the Acid Rain regulations.
Title IV – Acid Rain 40 CFR 76	Acid Rain Nitrogen Oxides Emission Reduction Program	No	N/A	The facility does not have any units subject to the Acid Rain regulations.
Title VI – 40 CFR 82	Protection of Stratospheric Ozone	No	N/A	The facility does not service, maintain, or repair equipment containing refrigerants.

Tab 14

Section 14 - Operational Plan to Mitigate Emissions

Operational Plan to Mitigate Emissions

(Submitting under 20.2.70, 20.2.72, 20.2.74 NMAC)

✓ Title V Sources (20.2.70 NMAC): By checking this box and certifying this application the permittee certifies that it has developed an <u>Operational Plan to Mitigate Emissions During Startups</u>, <u>Shutdowns</u>, <u>and Emergencies</u> defining the measures to be taken to mitigate source emissions during startups, shutdowns, and emergencies as required by 20.2.70.300.D.5(f) and (g) NMAC. This plan shall be kept on site to be made available to the Department upon request. This plan should not be submitted with this application.

- ✓ NSR (20.2.72 NMAC), PSD (20.2.74 NMAC) & Nonattainment (20.2.79 NMAC) Sources: By checking this box and certifying this application the permittee certifies that it has developed an <u>Operational Plan to Mitigate Source Emissions</u> <u>During Malfunction, Startup, or Shutdown</u> defining the measures to be taken to mitigate source emissions during malfunction, startup, or shutdown as required by 20.2.72.203.A.5 NMAC. This plan shall be kept on site to be made available to the Department upon request. This plan should not be submitted with this application.
- ☑ Title V (20.2.70 NMAC), NSR (20.2.72 NMAC), PSD (20.2.74 NMAC) & Nonattainment (20.2.79 NMAC) Sources: By checking this box and certifying this application the permittee certifies that it has established and implemented a Plan to Minimize Emissions During Routine or Predictable Startup, Shutdown, and Scheduled Maintenance through work practice standards and good air pollution control practices as required by 20.2.7.14.A and B NMAC. This plan shall be kept on site or at the nearest field office to be made available to the Department upon request. This plan should not be submitted with this application.

Emissions during startups, shutdowns, maintenance and emergencies (ESDs) will be minimized through the application of industry standards and /or manufacturer recommended operating practices as described below. Trained technicians are responsible for the timely and effective implementation of these actions.

Startup procedures for the engines are normally completed in less than 15 minutes and shutdown procedures are normally completed in less than 5 minutes. During a cold startup, the units may emit at a higher rate than normal as the units warm to operating temperature; however, if the unit has been shut down for long enough that a warm up is required, the small excess emissions occurring during warmup will be more than offset by the lack of emissions during the shutdown period. Similarly, if the unit is restarted while warm, there should be no excess emissions as the unit is already at operating temperature.

Tab 15Section 15 - Alternative Operating Scenarios

Alternative Operating Scenarios

(Submitting under 20.2.70, 20.2.72, 20.2.74 NMAC)

Alternative Operating Scenarios: Provide all information required by the department to define alternative operating scenarios. This includes process, material and product changes; facility emissions information; air pollution control equipment requirements; any applicable requirements; monitoring, recordkeeping, and reporting requirements; and compliance certification requirements. Please ensure applicable Tables in this application are clearly marked to show alternative operating scenario.

Construction Scenarios: When a permit is modified authorizing new construction to an existing facility, NMED includes a condition to clearly address which permit condition(s) (from the previous permit and the new permit) govern during the interval between the date of issuance of the modification permit and the completion of construction of the modification(s). There are many possible variables that need to be addressed such as: Is simultaneous operation of the old and new units permitted and, if so for example, for how long and under what restraints? In general, these types of requirements will be addressed in Section A100 of the permit, but additional requirements may be added elsewhere. Look in A100 of our NSR and/or TV permit template for sample language dealing with these requirements. Find these permit templates at: https://www.env.nm.gov/aqb/permit/aqb_pol.html. Compliance with standards must be maintained during construction, which should not usually be a problem unless simultaneous operation of old and new equipment is requested.

In this section, under the bolded title "Construction Scenarios", specify any information necessary to write these conditions, such as: conservative-realistic estimated time for completion of construction of the various units, whether simultaneous operation of old and new units is being requested (and, if so, modeled), whether the old units will be removed or decommissioned, any PSD ramifications, any temporary limits requested during phased construction, whether any increase in emissions is being requested as SSM emissions or will instead be handled as a separate Construction Scenario (with corresponding emission limits and conditions, etc.

XTO is not proposing any alternative operating scenarios.

Tab 16Section 16 - Air Dispersion Modeling

Section 16 Air Dispersion Modeling

- Minor Source Construction (20.2.72 NMAC) and Prevention of Significant Deterioration (PSD) (20.2.74 NMAC) ambient impact analysis (modeling): Provide an ambient impact analysis as required at 20.2.72.203.A(4) and/or 20.2.74.303 NMAC and as outlined in the Air Quality Bureau's Dispersion Modeling Guidelines found on the Planning Section's modeling website. If air dispersion modeling has been waived for one or more pollutants, attach the AQB Modeling Section modeling waiver approval documentation.
- 2) SSM Modeling: Applicants must conduct dispersion modeling for the total short term emissions during routine or predictable startup, shutdown, or maintenance (SSM) using realistic worst case scenarios following guidance from the Air Quality Bureau's dispersion modeling section. Refer to "Guidance for Submittal of Startup, Shutdown, Maintenance Emissions in Permit Applications (<u>http://www.env.nm.gov/aqb/permit/app_form.html</u>) for more detailed instructions on SSM emissions modeling requirements.
- 3) Title V (20.2.70 NMAC) ambient impact analysis: Title V applications must specify the construction permit and/or Title V Permit number(s) for which air quality dispersion modeling was last approved. Facilities that have only a Title V permit, such as landfills and air curtain incinerators, are subject to the same modeling required for preconstruction permits required by 20.2.72 and 20.2.74 NMAC.

What is the purpose of this application?	Enter an X for each purpose that applies
New PSD major source or PSD major modification (20.2.74 NMAC). See #1 above.	
New Minor Source or significant permit revision under 20.2.72 NMAC (20.2.72.219.D NMAC).	Х
See #1 above. Note: Neither modeling nor a modeling waiver is required for VOC emissions.	
Reporting existing pollutants that were not previously reported.	
Reporting existing pollutants where the ambient impact is being addressed for the first time.	
Title V application (new, renewal, significant, or minor modification. 20.2.70 NMAC). See #3	
above.	
Relocation (20.2.72.202.B.4 or 72.202.D.3.c NMAC)	
Minor Source Technical Permit Revision 20.2.72.219.B.1.d.vi NMAC for like-kind unit	
replacements.	
Other: i.e. SSM modeling. See #2 above.	
This application does not require modeling since this is a No Permit Required (NPR) application.	
This application does not require modeling since this is a Notice of Intent (NOI) application	
(20.2.73 NMAC).	
This application does not require modeling according to 20.2.70.7.E(11), 20.2.72.203.A(4),	
20.2.74.303, 20.2.79.109.D NMAC and in accordance with the Air Quality Bureau's Modeling	
Guidelines.	

Check each box that applies:

- □ See attached, approved modeling **waiver for all** pollutants from the facility.
- □ See attached, approved modeling **waiver for some** pollutants from the facility.
- ☑ Attached in Universal Application Form 4 (UA4) is a **modeling report for all** pollutants from the facility.
- □ Attached in UA4 is a **modeling report for some** pollutants from the facility.
- \Box No modeling is required.

Tab 17Section 17 - Compliance Test History

Compliance Test History

(Submitting under 20.2.70, 20.2.72, 20.2.74 NMAC)

To show compliance with existing NSR permits conditions, you must submit a compliance test history. The table below provides an example.

Initial compliance tests were performed on ENG1, ENG2, ENG3, ENG11, and ENG12 between March 24 and March 26, 2020. Testing demonstrated compliance with emission limitations.

Tab 18

Section 18 - Addendum for Streamline Applications (Not Applicable)

Addendum for Streamline Applications

Do not print this section unless this is a streamline application.

Streamline Applications do not require a complete application. Submit Sections 1-A, 1-B, 1-D, 1-F, 1-G, 2-A, 2-C thru L, Sections 3 thru 8, Section 13, Section 18, Section 22, and Section 23 (Certification). Other sections may be required at the discretion of the Department. 20.2.72.202 NMAC Exemptions do not apply to Streamline sources. 20.2.72.219 NMAC revisions and modifications do not apply to Streamline sources, thus 20.2.72.219 type actions require a complete new application submittal. Please do not print sections of a streamline application that are not required.

This section is not applicable since this is not a Streamline Permit Application.

Tab 19

Section 19 - Requirements for Title V Program

Requirements for Title V Program

Do not print this section unless this is a Title V application.

Who Must Use this Attachment:

* Any major source as defined in 20.2.70 NMAC.

- * Any source, including an area source, subject to a standard or other requirement promulgated under Section 111 Standards of Performance for New Stationary Sources, or Section 112 Hazardous Air Pollutants, of the 1990 federal Clean Air Act ("federal Act"). Non-major sources subject to Sections 111 or 112 of the federal Act are exempt from the obligation to obtain an 20.2.70 NMAC operating permit until such time that the EPA Administrator completes rulemakings that require such sources to obtain operating permits. In addition, sources that would be required to obtain an operating permit solely because they are subject to regulations or requirements under Section 112(r) of the federal Act are exempt from the requirement to obtain an Operating Permit.
- * Any Acid Rain source as defined under title IV of the federal Act. The Acid Rain program has additional forms. See <u>http://www.env.nm.gov/aqb/index.html</u>. Sources that are subject to both the Title V and Acid Rain regulations are encouraged to submit both applications simultaneously.
- * Any source in a source category designated by the EPA Administrator ("Administrator"), in whole or in part, by regulation, after notice and comment.

This is not a Title V application.

Tab 20Section 20 - Other Relevant Information

Other Relevant Information

<u>Other relevant information</u>. Use this attachment to clarify any part in the application that you think needs explaining. Reference the section, table, column, and/or field. Include any additional text, tables, calculations or clarifying information.

Additionally, the applicant may propose specific permit language for AQB consideration. In the case of a revision to an existing permit, the applicant should provide the old language and the new language in track changes format to highlight the proposed changes. If proposing language for a new facility or language for a new unit, submit the proposed operating condition(s), along with the associated monitoring, recordkeeping, and reporting conditions. In either case, please limit the proposed language to the affected portion of the permit.

No other relevant information is provided.

Tab 21

Section 21 - Addendum for Landfill Applications (Not Applicable)

Addendum for Landfill Applications

Do not print this section unless this is a landfill application.

Landfill Applications are not required to complete Sections 1-C Input Capacity and Production Rate, 1-E Operating Schedule, 17 Compliance Test History, and 18 Streamline Applications. Section 12 – PSD Applicability is required only for Landfills with Gas Collection and Control Systems and/or landfills with other non-fugitive stationary sources of air emissions such as engines, turbines, boilers, heaters. All other Sections of the Universal Application Form are required.

EPA Background Information for MSW Landfill Air Quality Regulations: https://www3.epa.gov/airtoxics/landfill/landflpg.html

NM Solid Waste Bureau Website: https://www.env.nm.gov/swb/

This is not a landfill.

Tab 22Section 22 - Certification

XTO Energy Inc.

Wildcat Compressor Station

May 2020: Revision 0

Section 22: Certification

Company Name: _____PEI on behalf XTO Energy Inc.

I. Evan Tullos _, hereby certify that the information and data submitted in this application are true and as accurate as possible, to the best of my knowledge and professional expertise and experience.

Signed this 2 day of Max _2020 , upon my oath or affirmation, before a notary of the State of Illinois.

*Signature

6/2/20 Date

Vice President

Title

Evan Tullos Printed Name

Scribed and sworn before me on this 2 day of ______, 2020 .

My authorization as a notary of the State of Illinois expires on the 6 day of June, 2023

Rosenberg

6.2.2020 Date SWATARRA ROSENBERG Official Seal Notary Public - State of Illinois My Commission Expires Jun 6, 2023

*For Title V applications, the signature must be of the Responsible Official as defined in 20.2.70.7.AE NMAC.

Form-Section 22 last revised: 3/7/2016

Saved Date: 5/24/2020

Tab 23 Section 23 - UA4

Universal Application 4

Air Dispersion Modeling Report

Refer to and complete Section 16 of the Universal Application form (UA3) to assist your determination as to whether modeling is required. If, after filling out Section 16, you are still unsure if modeling is required, e-mail the completed Section 16 to the AQB Modeling Manager for assistance in making this determination. If modeling is required, a modeling protocol would be submitted and approved prior to an application submittal. The protocol should be emailed to the modeling manager. A protocol is recommended but optional for minor sources and is required for new PSD sources or PSD major modifications. Fill out and submit this portion of the Universal Application form (UA4), the "Air Dispersion Modeling Report", only if air dispersion modeling is required for this application submittal. This serves as your modeling report submittal and should contain all the information needed to describe the modeling. No other modeling report or modeling protocol should be submitted with this permit application.

16-	16-A: Identification		
1	Name of facility:	Wildcat Compressor Station	
2	Name of company:	XTO Energy Inc.	
3	Current Permit number:	7474M1	
4	Name of applicant's modeler:	Bruce Ferguson	
5	Phone number of modeler:	(601) 824-4860	
6	E-mail of modeler:	bferguson@fce-engineering.com	

16	16-B: Brief						
1	Was a modeling protocol submitted and approved?	Yes□	No⊠				
2	Why is the modeling being done? Modifying Equipment	Other (describe below)					
3	Describe the permit changes relevant to the modeling.						
	See Section 3 of the application.						
4	What geodetic datum was used in the modeling?	NAD83					
5	How long will the facility be at this location? indefinite						
6	Is the facility a major source with respect to Prevention of Significant Deterioration (PSD)?	Yes□	No⊠				
7	Identify the Air Quality Control Region (AQCR) in which the facility is located	155					

10	-B: Brief List the PSD baseline dates for this region (minor or major, as appropriate).						
8	NO2	3/16/1988					
	SO2	7/28/1978	7/28/1978				
	PM10	2/20/1979	2/20/1979				
	PM2.5	11/13/2013					
9	Provide the name and distance to Class I areas within 50 km of the facility (300 km for PSD permits). None						
$\frac{10}{10}$ Is the facility located in a non-attainment area? If so describe below Yes \square N							
10							

16-C: Modeling History of Facility

Describe the modeling history of the facility, including the air permit numbers, the pollutants modeled, the National Ambient Air Quality Standards (NAAQS), New Mexico AAQS (NMAAQS), and PSD increments modeled. (Do not include modeling waivers).

	waivers).			
	Pollutant	Latest permit and modification number that modeled the pollutant facility-wide.	Date of Permit	Comments
	СО	7474M1	2/6/2019	
	NO ₂	7474M1	2/6/2019	
1	SO_2	7474M1	2/6/2019	
	H_2S			
	PM2.5	7474M1	2/6/2019	
	PM10	7474M1	2/6/2019	
	TSP			
	Lead			
	Ozone (PSD only)			
	NM Toxic Air			
	Pollutants			
	(20.2.72.402 NMAC)			

16-D: Modeling performed for this application

For each pollutant, indicate the modeling performed and submitted with this application. Choose the most complicated modeling applicable for that pollutant, i.e., culpability analysis assumes ROI and cumulative analysis were also performed.

Pollutant	ROI	Cumulative analysis	Culpability analysis	Waiver approved	Pollutant not emitted or not changed.
СО	\boxtimes				
NO ₂	\boxtimes	\boxtimes			
SO ₂	\boxtimes	\boxtimes			
H ₂ S					\boxtimes
PM2.5	\boxtimes	\boxtimes			
PM10	\boxtimes	\boxtimes			
TSP					
Lead					\boxtimes
Ozone*					
State air toxic(s) (20.2.72.402 NMAC)					

16-	16-E: New Mexico toxic air pollutants modeling							
1	List any New Mexico toxic air pollutants (NMTAPs) from Tables A and B in 20.2.72.502 NMAC that are modeled for this application. None							
	List any NI below, if re		itted but not modeled becaus		rrection factor. Add addi	tional rows to the table		
2	Pollutant	(pounds/hour)	Emission Rate Screening Level (pounds/hour)	Stack Height (meters)	Correction Factor	Correction Factor		

16-	16-F: Modeling options						
1	Was the latest version of AERMOD used with regulatory default options? If not explain below.	Yes⊠	No□				

16-G: Surrounding source modeling						
1	Date of surroundi	ng source retrieval	MergeMaster March 11, 2020			
2	If the surrounding source inventory provided by the Air Quality Bureau was believed to be inaccurate, describe how the sources modeled differ from the inventory provided. If changes to the surrounding source inventory were made, use the table below to describe them. Add rows as needed.					
	AQB Source ID	Description of Corrections				

38927R2	PM2.5 emissions were listed as 26.4 lb/hr for abrasive blasting. The application on the NMED website for this facility lists PM 26.4 lb/hr, PM10 3.77 lb/hr and PM2.5 0.377 lb/hr. The PM10 and PM2.5 fractions were adjusted to correspond to the application.
38927R3	This source appears to be duplicative of 38927R2 and was removed.
35169E1	This source is listed as a 0.5 MMBtu/hr heater treater with 5.5 lb/hr PM/PM10/PM2.5. This facility is not listed in APMAP, so the permit application was not reviewed. The heater treater emissions are two orders of magnitude greater than any other heater treater provided in the surrounding source inventory. The emissions were changed to 0.04 lb/hr which is the largest emissions of other heater treaters in the surrounding source inventory.
38323R3	PM2.5 emissions were listed as 26.4 lb/hr for abrasive blasting. The application on the NMED website for this facility lists PM 26.4 lb/hr, PM10 3.77 lb/hr and PM2.5 0.377 lb/hr. The PM10 and PM2.5 fractions were adjusted to correspond to the application.
38928R3	PM2.5 emissions were listed as 26.4 lb/hr for abrasive blasting. The application on the NMED website for this facility lists PM 26.4 lb/hr, PM10 3.77 lb/hr and PM2.5 0.377 lb/hr. The PM10 and PM2.5 fractions were adjusted to correspond to the application.

16-H: Building and structure downwash						
1	How many buildings are present at the facility?	None				
2	How many above ground storage tanks are present at the facility?	8				
3	Was building downwash modeled for all buildings and	tanks? If not explain why below.	Yes⊠	No□		
4	Building comments					

16-	16-I: Receptors and modeled property boundary					
1	 "Restricted Area" is an area to which public entry is effectively precluded. Effective barriers include continuous fencing, continuous walls, or other continuous barriers approved by the Department, such as rugged physical terrain with a steep grade that would require special equipment to traverse. If a large property is completely enclosed by fencing, a restricted area within the property may be identified with signage only. Public roads cannot be part of a Restricted Area. A Restricted Area is required in order to exclude receptors from the facility property. If the facility does not have a Restricted Area, then receptors shall be placed within the property boundaries of the facility. Describe the fence or other physical barrier at the facility that defines the restricted area. 					
	Fencing encompasses the station					
2	Receptors must be placed along publicly accessible roads in the restricted area. Are there public roads passing through the restricted area?	Yes□	No⊠			
3	Are restricted area boundary coordinates included in the modeling files?	Yes⊠	No□			
	Describe the receptor grids and their spacing. The table below may be used, adding rows as need	led.				

	Grid Type	Shape	Spacing	Start distance from restricted area or center of facility	End distance from restricted area or center of facility	Comments		
	Cartesian	Circular	50 m	0	1 km			
4	Cartesian	Circular	100 m	1 km	3 km			
	Cartesian	Circular	250 m	3 km	6 km			
	Cartesian	Circular	500 m	6 km	10 km			
	Cartesian	Circular	1 km	10 km	50 km			
5	Describe receptor spacing along the fence line.							
	50 m							
	Describe the PS	SD Class I are	a receptors.					
6	Not applicable							

16	16-J: Sensitive areas								
1	Are there schools or hospitals or other sensitive areas near the facility? If so describe below. This information is optional (and purposely undefined) but may help determine issues related to public notice.	Yes□	No⊠						
3	The modeling review process may need to be accelerated if there is a public hearing. Are there likely to be public comments opposing the permit application?	Yes□	No⊠						

16-K: Modeling Scenarios Identify, define, and describe all modeling scenarios. Examples of modeling scenarios include using different production rates, times of day, times of year, simultaneous or alternate operation of old and new equipment during transition periods, etc. Alternative operating scenarios should correspond to all parts of the Universal Application and should be fully described 1 in Section 15 of the Universal Application (UA3). Scenario 2E has the emissions as presented on Tab 2E of form UA2. Scenario B splits the flared emissions evenly across all three flares. Which scenario produces the highest concentrations? Why? Scenario B produces the highest concentrations because the flares are in close proximity and splitting the emissions evenly produces the highest emissions at the lowest effective diameter, reducing the plume rise. While the maximum impacts from 2 flaring are higher in this scenario, the cumulative maximum impacts for the facility differ by less than 1 ug/m³ between the scenarios indicating the flares are not the controlling source for the maximum impacts. For PM10/PM2.5 short term impacts, scenario 2E produced the highest impacts considering the whole facility and scenario 2E was used in the cumulative analysis. Were emission factor sets used to limit emission rates or hours of operation? (This question pertains to the "SEASON", "MONTH", "HROFDY" and related factor sets, not 3 Yes No⊠ to the factors used for calculating the maximum emission rate.) If so, describe factors for each group of sources. List the sources in each group before the factor table for that group. 4 (Modify or duplicate table as necessary. It's ok to put the table below section 16-K if it makes formatting easier.)

	Sources:											
	Hour of Day	Factor	Hour of Day	Factor								
	1		13									
	2		14									
	3		15									
	4		16									
	5		17									
	6		18									
5	7		19									
	8		20									
	9		21									
	10		22									
	11		23									
	12		24									
	If hourly,	If hourly, variable emission rates were used that were not described above, describe them below.										
6	Were diffe	erent emiss	ion rates u	sed for sho	ort-term an	d annual m	odeling? I	f so descri	be below.	Yes□		No⊠

16-	L: NO ₂	Modeling								
		Which types of NO ₂ modeling were used? Check all that apply.								
		ARM2								
1	\boxtimes	100% NO _X to NO ₂ conversion								
		PVMRM								
	□ OLM									
		Other:								
	Describe the NO ₂ modeling.									
2	Allowable emissions of NOx for facility was modeled. Monitored impacts from the NMED modeling guideline were used to account for off-site sources. The high-eighth-high of the year was used to determine compliance which is more conservative than the eighth highest daily maximum 1-hr concentration.									
3		It NO ₂ /NO _X ratios (0.5 minimum, 0.9 maximum or equilibrium) used? If not I justify the ratios used below.	Yes□	No□						
	Not applica	ble								
4	Describe the	e design value used for each averaging period modeled.								
		h eighth high e Year Annual Average								

	Select the pol	lutants for which	plume depletion modeling	g was	used.					
1	□ PM2.5									
1		PM10								
		None								
2	Describe the p	article size distr	ibutions used. Include the	source	e of informat	tion.				
2										
3	Does the facility emit at least 40 tons per year of NO _X or at least 40 tons per year of SO ₂ ? Sources that emit at least 40 tons per year of NO _X or at least 40 tons per year of SO ₂ are considered to emit significant amounts of precursors and must account for secondary formation of PM2.5.									
4	Was secondar	y PM modeled f	or PM2.5?				Y	es□	No⊠	
	If MERPs were used to account for secondary PM2.5 fill out the information below. If another method was used describe below.									
	NO _X (ton/yr)		SO_2 (ton/yr)		[PM2.5] _{ann}	nual	[P	M2.5] _{24-hour}	r	
	200.87		19.52 0.004				0.0	0.075		
	The worst-case MERP was selected from the Southwest Climate zone as presented at the EPA website <u>https://www.epa.gov/scram/merps-view-qlik</u> .									
5	State	County	Metric	Pre	ecursor	Emissions	Stack	MERP		
5	Colorado	Weld Co	Daily PM2.5	SO)2	1000	10	814		
	Colorado	Weld Co	Daily PM2.5	NC	Эх	1000	10	5215		
	Colorado	Weld Co	Annual PM2.5	NC	Эх	1000	10	10530		
	Colorado	Weld Co	Annual PM2.5			1000	10	7359		

16-	-N: Setback Distances
1	Portable sources or sources that need flexibility in their site configuration requires that setback distances be determined between the emission sources and the restricted area boundary (e.g. fence line) for both the initial location and future locations. Describe the setback distances for the initial location.
	Not applicable
2	Describe the requested, modeled, setback distances for future locations, if this permit is for a portable stationary source. Include a haul road in the relocation modeling.
	Not applicable

16-	O: PSD Incren	nent and Sourc	ce IDs					
1	The unit numbers in the modeling files. Do these if they do not match below					Yes		No⊠
1	Unit Number in UA-2			Unit Numb	er in Modeling Files	3		
	Road			SLINE				
	FL1, FL2 & FL2 for scenario B FL1B, FL2B, FLB							
	Remaining unit numbers are as presented in UA2							
2	The emission rates in the these match? If not, exp	e Tables 2-E and 2-F sho lain why below.	ould match the	ones in the n	nodeling files. Do	Yes	\boxtimes	No□
2	For Scenario 2-E the pil normal operation as pres emissions. For scenario B the emiss	ot emissions for all three sented in Table 2-E plus	pilot emission	s and FL3 is				
3	Have the minor NSR ex been modeled?				able 2-B) sources	Yes	\boxtimes	No□
		crement for which pollu						
	Unit ID	NO ₂	SO ₂	PM10		PM2.5		
	ENG1	Х		X	Х			Х
	ENG2	X X X					Х	
	ENG3	X		X	X			Х
	ENG4 ENG5	X		X	X			X
	ENG5 ENG6	X X		x x	X X			X X
	ENG7	X		X	X			X
4	ENG8	X		X	X			X
т Т	ENG9	х		X	Х			х
	ENG11	Х		x	Х			х
	ENG12	х		X	Х			Х
	FL1	Х		K	Х			х
	FL2	Х		ĸ	Х			Х
	FL3	Х		ĸ	Х			Х
	RB1/DEHY1	Х		X	Х			Х
	RB2/DEHY2	х		X	Х			Х
	RB3/DEHY3	Х		x	Х			Х
	HTR1	Х	:	x	Х			Х
	Road				Х			Х
5	PSD increment descript (for unusual cases, i.e., l after baseline date).	baseline unit expanded e		2	nstruction is after the	e mino	or source l	paseline date.
6		ation dates included in T fy the accuracy of PSD otion status is determined	increment mod	leling. If not	please explain	Yes	\boxtimes	No□

16-P: Flare Modeling									
1	For each flare or flaring scenario, complete the following								
	Flare ID (and scenario)	Average Molecular Weight	Gross Heat Release (cal/s)	Effective Flare Diameter (m)					
	Scenario 2E								
	FL1 Pilot	21.38	339,972	0.514					
	FL2 Normal Operation	32.03	720,664	0.724					
	FL3 SSM	24.90	3,046,491	1.522					
	Scenario B								
	FL1B	26.59	1,142,394	0.927					
	FL2B	26.59	1,142,394	0.927					
	FL3B	26.59	1,142,394	0.927					

16-	Q: Volume and Related Sources							
1	Were the dimensions of volume sources different from standard dimensions in the Air Quality Bureau (AQB) Modeling Guidelines? If not please explain how increment consumption status is determined for the missing installation dates below.	Yes⊠	No□					
	Describe the determination of sigma-Y and sigma-Z for fugitive sources.							
2	Sigma values for the road were determined using a vehicle height of 4 m, road width of 6 m and volume height of 1.7 times the vehicle height resulting in sigma-Y of 5.58 and initial sigma-Z of 3.16.							
3	Describe how the volume sources are related to unit numbers. Or say they are the same.							
	ROAD source is represented by volume sources L0000001 through L0000038							
	Describe any open pits.							
4	None							
	Describe emission units included in each open pit.							
5	Not Applicable							

16-	16-R: Background Concentrations								
	Were NMED provided background concentrations used? Identify the background station used								
	below. If non-NMED provided background concentrations were used describe the data that	Yes⊠	No□						
	was used.								
	CO: Del Norte High School (350010023)								
	NO ₂ : Outside Carlsbad (350151005)	NO ₂ : Outside Carlsbad (350151005)							
1	PM2.5: Hobbs-Jefferson (350450019)								
	PM10: Hobbs-Jefferson (350250008)								
	SO ₂ : Amarillo (483751025)								
	Other:								
	Comments:								
2	Were background concentrations refined to monthly or hourly values? If so describe below.	Yes□	No⊠						

1	16-S: Meteorological Data							
	Was NMED provided meteor	rological data used? If so select the station used.						
1	Artesia		Yes⊠	No□				
2		ogical data was not used describe the data set(s) used below. Discu was determined, and how the data were processed.	ss how missing	data were				

16-	16-T: Terrain								
1	Was complex terrain used in the modeling? If not, describe why below.	Yes⊠	No□						
2	What was the source of the terrain data?								
2	NED data through http://www.webgis.com/, downloaded through the Lakes Environmental GUI								

16-U: Modeling Files						
1	Describe the modeling files: Files are named by pollutant. Source groups in ROI analysis include 2E with flare emissions as listed on 2E and B with flare emissions split evenly across all three flares. Input files - *.ADI (AERMOD), *.bpi (BPIP) Output files - *.ADO (AERMOD), *.pro (BPIP) Summary files - *.SUM (AERMOD) Wildcat Observation Path 1-7-20.*, georeferenced facility layout figure					

Plot file format [xx][xx][xxx].plt [avg period][rank][G001 for scenario 2E and G002 for scenario B]

File name (or folder and file name)	Pollutant(s)	Purpose (ROI/SIA, cumulative, culpability analysis, other)			
Surrounding Sources\MergeMaster.zip	Surrounding source files produced by MergeMaster and EOG application showin PM/PM10/PM2.5 emissions for their general permits to support change to MergeMaster files				
Flares.zip		Comparison of flare NOx Impacts between two scenarios			
SIA					
CO.zip	СО	ROI			
NOx.zip	NO2	ROI, cumulative			
PM10.zip	PM10	ROI			
PM25.zip	PM25	ROI			
SO2.zip	SO2	ROI, cumulative			
CIA					
PM10.zip	PM10	cumulative			
PM25.zip	PM25	cumulative			

16-V: PSD New or Major Modification Applications (Not Applicable)								
1	A new PSD major source or a major modification to an existing PSD major source requires additional analysis. Was preconstruction monitoring done (see 20.2.74.306 NMAC and PSD Preapplication Guidance on the AQB website)?	Yes□	No□					
2	If not, did AQB approve an exemption from preconstruction monitoring?	Yes□	No□					
3	Describe how preconstruction monitoring has been addressed or attach the approved preconstruction monitoring or monitoring exemption.							
4	Describe the additional impacts analysis required at 20.2.74.304 NMAC.							
5	If required, have ozone and secondary PM2.5 ambient impacts analyses been completed? If so describe below.	Yes□	No□					

16-W: Mod	eling Res	ults								
1	If ambient standards are exceeded because of surrounding sources, a culpability analysis is required for the source to show that the contribution from this source is less than the significance levels for the specific pollutant. Was culpability analysis performed? If so Yes□ No⊠									
2	Identify the maximum concentrations from the modeling analysis. Rows may be modified, added and removed from the table below									
2	as necessary.									
t, Time 1 and lard	eled lity tration m3)	eled tration th	ary PM m3)	round tration n3)	lative tration n3)	a of ard and a) and a solution of ard		Location		
Pollutant, Time Period and Standard	Modeled Facility Concentration (µg/m3)	Modeled Concentration with	Secondary PM (μg/m3)	Background Concentration (µg/m3)	Cumulative Concentration (μg/m3)	Value of Standard (μg/m3)	Percent of Standard	UTM E (m)	UTM N (m)	Elevation (ft)
NO2 1-hr NAAQS	119.20422	N/A	N/A	38.7	157.9042	188.03	83.98%	615350	3563450	1072.87
NO2 Annual NMAAQS	11.49307	N/A	N/A	5	16.49307	94.02	17.54%	615005.37	3563623.75	1073.59
NO2 Annual PSD	11.49307	N/A	N/A	5	16.49307	25	65.97%	615005.37	3563623.75	1073.59
CO 1-hr SIL	213.14779	N/A	N/A	N/A	213.1478	2,000	10.66%	615350	3563400	1072.42
CO 8-hr SIL	102.69421	N/A	N/A	N/A	102.6942	500	20.54%	615400	3563450	1073.26
SO2 1-hr NAAQS	19.05846	N/A	N/A	47	66.05846	196.4	33.63%	614957.84	3563479.11	1070.31
SO2 3-hr SIL	12.23191	N/A	N/A	N/A	12.23191	25	48.93%	615053.02	3563623.8	1073.49
SO2 24-hr PSD	5.68915	N/A	N/A	68.3	73.98915	91	81.31%	615005.37	3563623.75	1073.59
SO2 Annual PSD	1.57081	N/A	N/A	0.67	2.24081	20	11.20%	615005.37	3563623.75	1073.59
PM10 24-hr NAAQS	5.92821*	9.33837	N/A	37.3	46.63837	150	31.09%	615291.22	3563320.77	1071.44
PM10 24-hr PSD	5.92821*	8.60355	N/A	N/A	8.60355	30	28.68%	615291.22	3563320.77	1071.44
PM10 Annual PSD	1.53322	2.84505	N/A	N/A	2.84505	17	16.74%	614957.8	3563527.31	1071
PM2.5 24-hr NAAQS	1.15888*	3.74022	0.075	13.4	17.21522	35	49.19%	615900	3563900	1074.1
PM2.5 24-hr PSD	1.15888*	5.58607	0.075	N/A	5.66107	9	62.90%	615900	3563900	1074.1
PM2.5 Annual NAAQS	0.87961	2.01168	0.004	5.9	7.91568	12	65.96%	615005.37	3563623.75	1073.59
PM2.5 Annual PSD	0.87961	1.97171	0.004	N/A	1.97571	4	49.39%	615005.37	3563623.75	1073.59

*Maximum impact from significance analysis at the location, however, does not occur during the design event.

1

16-X: Summary/conclusions

A statement that modeling requirements have been satisfied and that the permit can be issued.

The radius of impact analysis was conducted with all facility sources. Two source groups were used to evaluate the flare emissions. Source group "2E" with flare emissions as presented on Tab 2E of form UA2, and source group "B" to evaluate the flare emissions with the maximum emissions corresponding to the minimum effective diameter, i.e., split evenly across the flares.

CO impacts were found to be below the modeling significance level and no further evaluation was conducted. The remaining pollutants were above the modeling significance level. Cumulative impacts for NOx and SO2 were determined by adding monitored background values from the NMED Guideline, revised June 2, 2019, to account for surrounding sources. For the SO2 24-hr increment, the maximum 1-hour monitored impact was added to account for the surrounding source inventory as a conservative estimate.

Surrounding PM10 and PM2.5 sources within 25 km were retrieved from MergeMaster to conduct cumulative PM10 and PM2.5 analyses. Sources between 10 and 25 km were removed from the surrounding source inventory if the model ID was less than 10,000, indicating that the source does not consume increment. Receptors included in the cumulative analysis consisted of receptors with significant impacts identified in the ROI analysis. For PM2.5, the secondary formation estimates were added to the ROI impacts to determine whether the receptor had significant impacts.

All pollutants were found to be compliant with the ambient air quality standards or in the case of CO, impacts were insignificant. The source will not cause or contribute to a violation of the ambient air quality standard and the permit can be issued.