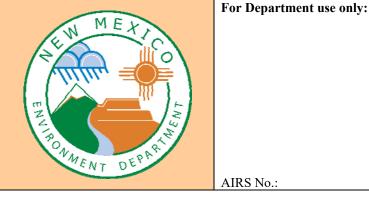
XTO ENERGY INC. CORRAL CANYON TANK BATTERY EDDY COUNTY, NEW MEXICO NSR PERMIT APPLICATION

PREPARED FOR: T.J. TOLE ENVIRONMENTAL ENGINEER XTO ENERGY INC. 11/21/2019

CORRAL CANYON TANK BATTERY

NSR PERMIT APPLICATION

Table of Contents


- Tab 1UA1 Form Company and Facility Information
- Tab 2 UA2 Form Application Tables
- Tab 3Section 3 Application Summary
- Tab 4Section 4 Process Flow Sheet
- Tab 5Section 5 Plot Plan Drawn To Scale
- Tab 6Section 6 All Calculations
- Tab 7Section 7 Information Used To Determine Emissions
- Tab 8 Section 8 Map(s)
- Tab 9Section 9 Proof of Public Notice
- Tab 10Section 10 Written Description of the Routine Operations of the Facility
- Tab 11Section 11 -Source Determination
- Tab 12
 Section 12 PSD Applicability Determination for All Sources
- Tab 13Section 13 Determination of State & Federal Air Quality Regulations
- Tab 14Section 14 Operational Plan to Mitigate Emissions
- Tab 15Section 15 Alternative Operating Scenarios
- Tab 16Section 16 Air Dispersion Modeling
- Tab 17 Section 17 Compliance Test History
- Tab 18
 Section 18 Addendum for Streamline Applications (Not Applicable)
- Tab 19Section 19 Requirements for Title V Program
- Tab 20Section 20 Other Relevant Information
- Tab 21Section 21 Addendum for Landfill Applications (Not Applicable)
- Tab 22 Section 22 Certification
- Tab 23 Section 23 UA4

Tab 1UA1 Form - Company and Facility Information

Mail Application To:

New Mexico Environment Department Air Quality Bureau Permits Section 525 Camino de los Marquez, Suite 1 Santa Fe, New Mexico, 87505

Phone: (505) 476-4300 Fax: (505) 476-4375 www.env.nm.gov/aqb

AIRS No.:

Universal Air Quality Permit Application

Use this application for NOI, NSR, or Title V sources.

Use this application for: the initial application, modifications, technical revisions, and renewals. For technical revisions, complete Sections, 1-A, 1-B, 2-E, 3, 9 and any other sections that are relevant to the requested action; coordination with the Air Quality Bureau permit staff prior to submittal is encouraged to clarify submittal requirements and to determine if more or less than these sections of the application are needed. Use this application for streamline permits as well. See Section 1-I for submittal instructions for other permits.

This application is submitted as (check all that apply): □ Request for a No Permit Required Determination (no fee) Updating an application currently under NMED review. Include this page and all pages that are being updated (no fee required). □ Not Constructed Existing Permitted (or NOI) Facility □ Existing Non-permitted (or NOI) Facility Construction Status: Minor Source: □ a NOI 20.2.73 NMAC 20.2.72 NMAC application or revision □ 20.2.72.300 NMAC Streamline application Title V Source:
Title V (new)
Title V renewal
TV minor mod.
TV significant mod.
TV Acid Rain:
New
Renewal PSD Major Source:
PSD major source (new)
minor modification to a PSD source □ a PSD major modification

Acknowledgements:

🗹 I acknowledge that a pre-application meeting is available to me upon request. 🗆 Title V Operating, Title IV Acid Rain, and NPR applications have no fees.

🗹 \$500 NSR application Filing Fee enclosed OR 🗆 The full permit fee associated with 10 fee points (required w/ streamline applications).

☑ Check No.: 1284 in the amount of \$500

I acknowledge the required submittal format for the hard copy application is printed double sided 'head-to-toe', 2-hole punched (except the Sect. 2 landscape tables is printed 'head-to-head'), numbered tab separators. Incl. a copy of the check on a separate page. □ This facility qualifies to receive assistance from the Small Business Environmental Assistance program (SBEAP) and qualifies for 50% of the normal application and permit fees. Enclosed is a check for 50% of the normal application fee which will be verified with the Small Business Certification Form for your company.

□ This facility qualifies to receive assistance from the Small Business Environmental Assistance Program (SBEAP) but does not qualify for 50% of the normal application and permit fees. To see if you qualify for SBEAP assistance and for the small business certification form go to https://www.env.nm.gov/aqb/sbap/small business criteria.html).

Citation: Please provide the low level citation under which this application is being submitted: 20.2.72.219.D.1.a NMAC (e.g. application for a new minor source would be 20.2.72.200.A NMAC, one example for a Technical Permit Revision is 20.2.72.219.B.1.b NMAC, a Title V acid rain application would be: 20.2.70.200.C NMAC)

Section 1 – Facility Information

Sect	tion 1-A: Company Information	AI # if known (see 1 st 3 to 5 #s of permit IDEA ID No.):	Updating Permit/NOI #: 6275					
1	Facility Name: Corral Canyon Tank Battery	Plant primary SIC Code (4 digits): 1311						
1		Plant NAIC code (6 digits): 211111						
a	a Facility Street Address (If no facility street address, provide directions from a prominent landmark): See Section 1-D.4							
2	Plant Operator Company Name: XTO Energy Inc.	Phone/Fax: (832) 624-4	4426					
a	Plant Operator Address: 22777 Springwoods Village Parkway, W4.6B.344, Spring, TX 77389							
b	Plant Operator's New Mexico Corporate ID or Tax ID: 1522747							

3	Plant Owner(s) name(s): XTO Energy Inc.	Phone/Fax: (832) 624-4426			
a	Plant Owner(s) Mailing Address(s): 22777 Springwoods Village Parkway,	W4.6B.344, Spring, TX 77389			
4	Bill To (Company): XTO Energy Inc.	Phone/Fax: (832) 624-4426			
a	Mailing Address: 22777 Springwoods Village Parkway, W4.6B.344, Spring, TX 77389	E-mail: raymond_tole@xtoenergy.com			
5	□ Preparer: ☑ Consultant: Evan Tullos	Phone/Fax: (865) 850-2007			
а	Mailing Address: 5 Cardinal Court; Edwardsville, IL 620205	E-mail: etullos@pei-tx.com			
6	Plant Operator Contact: Raymond (TJ) Tole	Phone/Fax: (832) 624-4426			
a	Address: 22777 Springwoods Village Parkway, W4.6B.344, Spring, TX 77389	E-mail: raymond_tole@xtoenergy.com			
7	Air Permit Contact: Raymond (TJ) Tole	Title: Environmental Engineer			
a	E-mail: raymond_tole@xtoenergy.com	Phone/Fax: (832) 624-4426			
b	Mailing Address: 22777 Springwoods Village Parkway, W4.6B.344, Sprin	ng, TX 77389			
c	The designated Air permit Contact will receive all official correspondence	(i.e. letters, permits) from the Air Quality Bureau.			

Section 1-B: Current Facility Status

1.a	Has this facility already been constructed? ☑ Yes □ No	1.b If yes to question 1.a, is it currently operating in New Mexico?								
2	If yes to question 1.a, was the existing facility subject to a Notice of Intent (NOI) (20.2.73 NMAC) before submittal of this application? □ Yes ☑ No	If yes to question 1.a, was the existing facility subject to a construction permit (20.2.72 NMAC) before submittal of this application? ☑ Yes □ No								
3	Is the facility currently shut down? \Box Yes \blacksquare No	If yes, give month and year of shut down (MM/YY):								
4	Was this facility constructed before 8/31/1972 and continuously operated since 1972? □ Yes ☑ No									
5	If Yes to question 3, has this facility been modified (see 20.2.72.7.P NMAC) or the capacity increased since $\frac{8}{31}/1972?$									
6	Does this facility have a Title V operating permit (20.2.70 NMAC)? □ Yes ☑ No	If yes, the permit No. is: P-								
7	Has this facility been issued a No Permit Required (NPR)? □ Yes ☑ No	If yes, the NPR No. is:								
8	Has this facility been issued a Notice of Intent (NOI)? □ Yes ☑No	If yes, the NOI No. is:								
9	Does this facility have a construction permit (20.2.72/20.2.74 NMAC)? ☑ Yes □ No	If yes, the permit No. is: 6275								
10	Is this facility registered under a General permit (GCP-1, GCP-2, etc.)? □ Yes ☑ No	If yes, the register No. is:								

Section 1-C: Facility Input Capacity & Production Rate

1	What is the	What is the facility's maximum input capacity, specify units (reference here and list capacities in Section 20, if more room is required)											
а	Current	Hourly: 1,438 barrels of oil/condensate	Daily: 34,512 barrels of oil/condensate	Annually: 12,596,880 barrels of oil/condensate									
b	Proposed	Hourly: 1,063 barrels of oil/condensate	Daily: 25,500 barrels of oil/condensate	Annually: 9,307,496 barrels of oil/condensate									
2	What is the	facility's maximum production rate, sp	pecify units (reference here and list capacities in	Section 20, if more room is required)									
a	Current	Hourly: 1,438 barrels of oil/condensate	Daily: 34,512 barrels of oil/condensate	Annually: 9,314,800 barrels of oil/condensate									
b	Proposed	Hourly: 1,063 barrels of oil/condensate	Daily: 25,500 barrels of oil/condensate	Annually: 9,307,496 barrels of oil/condensate									

Section 1-D: Facility Location Information

1	Section: 5	Range: 2	29E	Township: 25S	County: 1	Eddy		Elevation (ft): 2949				
2	UTM Zone: [12 or	☑ 13		Datum: □ NAD 27 ☑ NAD 83 □ WGS 84							
a	UTM E (in meter	rs, to nearest	10 meter	s): 594370	UTM N (i	n meters, to neares	st 10 meters):	3557850				
b	AND Latitude	(deg., min.	, sec.):	32° 09' 11"	Longitude (deg., min., sec.): -103° 59' 57"							
3	Name and zip o	code of nea	rest No	ew Mexico town: Malaga	88263							
4		Drive 4.0	miles	om nearest NM town (attacl to left on Pipeline Road Nu				5 miles on US-285S to left on Drive 3.5 miles to left turn.				
5	The facility is 6	6.7 (distanc	e) mile	es SE (direction) of Malaga	(nearest to	wn).						
6	(specify)	• `		one): 🗆 Private 🗆 Indian/Pu								
7	List all municipalities, Indian tribes, and counties within a ten (10) mile radius (20.2.72.203.B.2 NMAC) of the property on which the facility is proposed to be constructed or operated: Eddy County											
8	20.2.72 NMAC applications only : Will the property on which the facility is proposed to be constructed or operated be closer than 50 km (31 miles) to other states, Bernalillo County, or a Class I area (see <u>www.env.nm.gov/aqb/modeling/class1areas.html</u>)? ☑ Yes □ No (20.2.72.206.A.7 NMAC) If yes, list all with corresponding distances in kilometers: Carlsbad Caverns - 35.36, Texas - 16.95											
9	Name nearest (Class I area	: Carls	bad Caverns								
10	Shortest distant	ce (in km)	from fa	acility boundary to the boundary	ndary of the	nearest Class	I area (to the	nearest 10 meters): 35.36				
11				neter of the Area of Operat den removal areas) to neare								
12	lands, including mining overburden removal areas) to nearest residence, school or occupied structure: < 2 miles											
13	Does the owner U Yes IN A portable station or	r/operator i o ionary sour that can be	intend t ce is n e re-ins	to operate this source as a p ot a mobile source, such as stalled at various locations,	oortable stat an automol such as a h	ionary source a pile, but a sourc pt mix asphalt	as defined in ce that can plant that is	n 20.2.72.7.X NMAC? be installed permanently at moved to different job sites.				
14		• 1	5	unction with other air regul nit number (if known) of th		-	roperty?	🛛 No 🗌 Yes				

Section 1-E: Proposed Operating Schedule (The 1-E.1 & 1-E.2 operating schedules may become conditions in the permit.)

1	Facility maximum operating $(\frac{\text{hours}}{\text{day}})$: 24	(days (week): 7	$(\frac{\text{weeks}}{\text{year}}): 52$	$\left(\frac{\text{hours}}{\text{year}}\right)$: 8760						
2	Facility's maximum daily operating schedule (if less than $24 \frac{hours}{day}$)?Start: $\square AM \\ \square PM$ End: $\square AM \\ \square PM$									
3	Month and year of anticipated start of construction: Facility is operating.									
4	Month and year of anticipated construction complet	ion: Construction is not requir	ed.							
5	Month and year of anticipated startup of new or modified facility: Facility is operating.									
6	Will this facility operate at this site for more than or	ne year? 🗹 Yes 🗆 No								

Section 1-F: Other Facility Information

1Are there any current Notice of Violations (NOV), compliance orders, or any other compliance or enforcement issues related
to this facility? \Box Yes \blacksquare NoIf yes, specify:

а	If yes, NOV date or description of issue:	yes, NOV date or description of issue:										
b	Is this application in response to any issue listed in 1-F, 1 c	Is this application in response to any issue listed in 1-F, 1 or 1a above? 🗆 Yes 🗆 No If Yes, provide the 1c & 1d info below:										
c	Document Title:	Date:		nent # (or nd paragraph #):								
d	Provide the required text to be inserted in this permit:											
2	Is air quality dispersion modeling or modeling waiver being submitted with this application? 🗹 Yes 🗆 No											
3	Does this facility require an "Air Toxics" permit under 20.2.72.400 NMAC & 20.2.72.502, Tables A and/or B? 🗆 Yes 🗹 No											
4	Will this facility be a source of federal Hazardous Air Poll	utants (HAP)? 🗹 Yes	s □No									
a	If Yes, what type of source? \Box Major ($\Box \ge 10$ tpy of anOR \blacksquare Minor ($\blacksquare \le 10$ tpy of an			tpy of any combination of HAPS) tpy of any combination of HAPS)								
5	Is any unit exempt under 20.2.72.202.B.3 NMAC? □ Yes	s 🗹 No										
	If yes, include the name of company providing commercial electric power to the facility:											
a	Commercial power is purchased from a commercial utility site for the sole purpose of the user.	company, which spe	cifically d	loes not include power generated on								

Section 1-G: Streamline Application (This section applies to 20.2.72.300 NMAC Streamline applications only)

1 □ I have filled out Section 18, "Addendum for Streamline Applications." ☑ N/A (This is not a Streamline application.)

Section 1-H: Current Title V Information - Required for all applications from TV Sources

(Title V-source required information for all applications submitted pursuant to 20.2.72 NMAC (Minor Construction Permits), or

20.2.74/20.2.79 NMAC (Major PSD/NNSR applications), and/or 20.2.70 NMAC (Title V))

1	Responsible Official (R.O.) (20.2.70.300.D.2 NMAC):		Phone:						
a	R.O. Title:	R.O. e-mail:							
b	R. O. Address:								
2	Alternate Responsible Official Phone: (20.2.70.300.D.2 NMAC): Phone:								
a	a A. R.O. Title: A. R.O. e-mail:								
b	A. R. O. Address:								
3	Company's Corporate or Partnership Relationship to any other Air Quality Permittee (List the names of any companies that have operating (20.2.70 NMAC) permits and with whom the applicant for this permit has a corporate or partnership relationship):								
4	Name of Parent Company ("Parent Company" means the primary name of the organization that owns the company to be permitted wholly or in part.):								
a	Address of Parent Company:								
5	Names of Subsidiary Companies ("Subsidiary Companies" means of owned, wholly or in part, by the company to be permitted.):	organizations, branc	hes, divisions or subsidiaries, which are						
6	Telephone numbers & names of the owners' agents and site contact	ts familiar with plan	t operations:						
7	Affected Programs to include Other States, local air pollution contr Will the property on which the facility is proposed to be constructe states, local pollution control programs, and Indian tribes and pueb ones and provide the distances in kilometers:	d or operated be clo	ser than 80 km (50 miles) from other						

Section 1-I – Submittal Requirements

Each 20.2.73 NMAC (NOI), a 20.2.70 NMAC (Title V), a 20.2.72 NMAC (NSR minor source), or 20.2.74 NMAC (PSD) application package shall consist of the following:

Hard Copy Submittal Requirements:

- One hard copy original signed and notarized application package printed double sided 'head-to-toe' <u>2-hole punched</u> as we bind the document on top, not on the side; except Section 2 (landscape tables), which should be head-to-head. Please use numbered tab separators in the hard copy submittal(s) as this facilitates the review process. For NOI submittals only, hard copies of UA1, Tables 2A, 2D & 2F, Section 3 and the signed Certification Page are required. Please include a copy of the check on a separate page.
- 2) If the application is for a minor NSR, PSD, NNSR, or Title V application, include one working hard copy for Department use. This copy should be printed in book form, 3-hole punched, and must be double sided. Note that this is in addition to the head-toto 2-hole punched copy required in 1) above. Minor NSR Technical Permit revisions (20.2.72.219.B NMAC) only need to fill out Sections 1-A, 1-B, 3, and should fill out those portions of other Section(s) relevant to the technical permit revision. TV Minor Modifications need only fill out Sections 1-A, 1-B, 1-H, 3, and those portions of other Section(s) relevant to the minor modification. NMED may require additional portions of the application to be submitted, as needed.
- 3) The entire NOI or Permit application package, including the full modeling study, should be submitted electronically. Electronic files for applications for NOIs, any type of General Construction Permit (GCP), or technical revisions to NSRs must be submitted with compact disk (CD) or digital versatile disc (DVD). For these permit application submittals, two CD copies are required (in sleeves, not crystal cases, please), with additional CD copies as specified below. NOI applications require only a single CD submittal. Electronic files for other New Source Review (construction) permits/permit modifications or Title V permits/permit modifications can be submitted on CD/DVD or sent through AQB's secure file transfer service.

Electronic files sent by (check one):

□ CD/DVD attached to paper application

secure electronic transfer. Air Permit Contact Name

Email			

Phone number

a. If the file transfer service is chosen by the applicant, after receipt of the application, the Bureau will email the applicant with instructions for submitting the electronic files through a secure file transfer service. Submission of the electronic files through the file transfer service needs to be completed within 3 business days after the invitation is received, so the applicant should ensure that the files are ready when sending the hard copy of the application. The applicant will not need a password to complete the transfer. **Do not use the file transfer service for NOIs, any type of GCP, or technical revisions to NSR permits.**

- 4) Optionally, the applicant may submit the files with the application on compact disk (CD) or digital versatile disc (DVD) following the instructions above and the instructions in 5 for applications subject to PSD review.
- 5) If air dispersion modeling is required by the application type, include the NMED Modeling Waiver and/or electronic air dispersion modeling report, input, and output files. The dispersion modeling <u>summary report only</u> should be submitted as hard copy(ies) unless otherwise indicated by the Bureau.
- 6) If the applicant submits the electronic files on CD and the application is subject to PSD review under 20.2.74 NMAC (PSD) or NNSR under 20.2.79 NMC include,
 - a. one additional CD copy for US EPA,
 - b. one additional CD copy for each federal land manager affected (NPS, USFS, FWS, USDI) and,
 - c. one additional CD copy for each affected regulatory agency other than the Air Quality Bureau.

If the application is submitted electronically through the secure file transfer service, these extra CDs do not need to be submitted.

Electronic Submittal Requirements [in addition to the required hard copy(ies)]:

- 1) All required electronic documents shall be submitted as 2 separate CDs or submitted through the AQB secure file transfer service. Submit a single PDF document of the entire application as submitted and the individual documents comprising the application.
- 2) The documents should also be submitted in Microsoft Office compatible file format (Word, Excel, etc.) allowing us to access the text and formulas in the documents (copy & paste). Any documents that cannot be submitted in a Microsoft Office compatible

format shall be saved as a PDF file from within the electronic document that created the file. If you are unable to provide Microsoft office compatible electronic files or internally generated PDF files of files (items that were not created electronically: i.e. brochures, maps, graphics, etc.), submit these items in hard copy format. We must be able to review the formulas and inputs that calculated the emissions.

- 3) It is preferred that this application form be submitted as 4 electronic files (3 MSWord docs: Universal Application section 1 [UA1], Universal Application section 3-19 [UA3], and Universal Application 4, the modeling report [UA4]) and 1 Excel file of the tables (Universal Application section 2 [UA2]). Please include as many of the 3-19 Sections as practical in a single MS Word electronic document. Create separate electronic file(s) if a single file becomes too large or if portions must be saved in a file format other than MS Word.
- 4) The electronic file names shall be a maximum of 25 characters long (including spaces, if any). The format of the electronic Universal Application shall be in the format: "A-3423-FacilityName". The "A" distinguishes the file as an application submittal, as opposed to other documents the Department itself puts into the database. Thus, all electronic application submittals should begin with "A-". Modifications to existing facilities should use the core permit number (i.e. '3423') the Department assigned to the facility as the next 4 digits. Use 'XXXX' for new facility applications. The format of any separate electronic submittals (additional submittals such as non-Word attachments, re-submittals, application updates) and Section document shall be in the format: "A-3423-9-description", where "9" stands for the section # (in this case Section 9-Public Notice). Please refrain, as much as possible, from submitting any scanned documents as this file format is extremely large, which uses up too much storage capacity in our database. Please take the time to fill out the header information throughout all submittals as this will identify any loose pages, including the Application Date (date submitted) & Revision number (0 for original, 1, 2, etc.; which will help keep track of subsequent partial update(s) to the original submittal. Do not use special symbols (#, @, etc.) in file names. The footer information should not be modified by the applicant.

Table of Contents

- Section 1: General Facility Information
- Section 2: Tables
- Section 3: Application Summary
- Section 4: Process Flow Sheet
- Section 5: Plot Plan Drawn to Scale
- Section 6: All Calculations
- Section 7: Information Used to Determine Emissions
- Section 8: Map(s)
- Section 9: Proof of Public Notice
- Section 10: Written Description of the Routine Operations of the Facility
- Section 11: Source Determination
- Section 12: PSD Applicability Determination for All Sources & Special Requirements for a PSD Application
- Section 13: Discussion Demonstrating Compliance with Each Applicable State & Federal Regulation
- Section 14: Operational Plan to Mitigate Emissions
- Section 15: Alternative Operating Scenarios
- Section 16: Air Dispersion Modeling
- Section 17: Compliance Test History
- Section 18: Addendum for Streamline Applications (streamline applications only)
- Section 19: Requirements for the Title V (20.2.70 NMAC) Program (Title V applications only)
- Section 20: Other Relevant Information
- Section 21: Addendum for Landfill Applications
- Section 22: Certification Page

Tab 2 UA2 Form - Application Tables

Table 2-A: Regulated Emission Sources

Unit and stack numbering must correspond throughout the application package. If applying for a NOI under 20.2.73 NMAC, equipment exemptions under 2.72.202 NMAC do not apply.

Unit					Manufact- urer's Rated	Requested Permitted	Date of Manufacture ²	Controlled by Unit #	Source Classi-		Cquipment, Check One	RICE Ignition Type (CI, SI,	Replacing			
Number ¹	Source Description	Make	Model #	Serial #	Capacity ³ (Specify Units)	Capacity ³ (Specify Units)	Date of Construction/ Reconstruction ²	Emissions vented to Stack #	fication Code (SCC)			4SLB, 4SRB, 2SLB) ⁴	Unit No.			
	•				CORRA	L CANYON	EXPANSION S	SITE EQUI	PMENT	-						
FUG1	Fugitive Emissions	N/A	N/A	N/A	N/A	N/A	N/A	N/A	31088811	 Existing (unchanged) New/Additional 	To be RemovedReplacement Unit	N/A	N/A			
roor	Fugitive Emissions	IN/A	11/A	11/7	IN/A	11/7	N/A	N/A	51000011	To Be Modified	□ To be Replaced	11/14	11/A			
HPF1	High Pressure Flare	Tornado	N/A	N/A	> 60	> 60	2017	N/A	31000205	 Existing (unchanged) New/Additional 	 To be Removed Replacement Unit 	N/A	N/A			
11111	ingh i ressure i fure	Tornado	10/21	10/11	MMSCFD	MMSCFD	2017	HPF1	51000205	☑ To Be Modified	 To be Replaced 	10/11	10/1			
TT 1	Oil Truck Loading						N/A	LPF1	40.400250	$\Box \text{ Existing (unchanged)}$	□ To be Removed					
TL1	Rack	N/A	N/A	N/A	N/A	N/A	N/A	LPF1	40400250	 New/Additional To Be Modified 	Replacement UnitTo be Replaced	N/A	N/A			
					2	2	2018	N/A		□ Existing (unchanged)	□ To be Removed					
LPF1	Low Pressure Flare	Tornado	N/A	N/A		MMSCFD	2018	LPF1	31000205	 □ New/Additional ☑ To Be Modified 	 Replacement Unit To be Replaced 	N/A	N/A			
	Heater Treater: 4.0	a 11		27/1	4.0	4.0	2018	N/A	31000404	31000404			□ Existing (unchanged)	□ To be Removed	27/1	27/1
HTR1	MMBtu/hr	Smith	N/A	N/A	MMBtu/hr	MMBtu/hr	2018	HTR1			 New/Additional To Be Modified 	Replacement UnitTo be Replaced	N/A	N/A		
LITERA	Heater Treater: 4.0	G :1	27/4	27/4	4.0	4.0	2018	N/A		□ Existing (unchanged)	□ To be Removed	27/4	27/4			
HTR2	MMBtu/hr	Smith	N/A	N/A	MMBtu/hr	MMBtu/hr	2018	HTR2	31000404	 New/Additional To Be Modified 	Replacement UnitTo be Replaced	N/A	N/A			
BC1	Electric Booster	TOPS	N/A	NT/A	> 150 JUD ⁵	> 150 JUD ⁵	TBD	N/A	N/A	□ Existing (unchanged)	□ To be Removed	N/A	N/A			
BCI	Compressor	TOPS	IN/A	N/A	>150 HP ⁵	>150 HP ⁵	TBD	HPF	IN/A	 □ New/Additional ☑ To Be Modified 	Replacement UnitTo be Replaced	IN/A	IN/A			
BC2	Electric Booster	TOPS	N/A	N/A	>150 HP ⁵	>150 HP ⁵	TBD	N/A	N/A	 Existing (unchanged) New/Additional 	 To be Removed Replacement Unit 	N/A	N/A			
DC2	Compressor	1015	10/A	10/A	~150 III	>130 III	TBD	HPF	1071	☑ To Be Modified	□ To be Replaced	10/A	10/24			
VRT1	Vapor Recovery	UMC	N/A	N/A	20,000	20,500	TBD	VRU1	N/A	 Existing (unchanged) New/Additional 	To be RemovedReplacement Unit	N/A	N/A			
VICIT	Tower (VRT)	ome	10/21	10/1	BOPD ⁵	BOPD ⁵	TBD	LPF1		To Be Modified	To be Replaced	10/1	10/21			
VRU1	Vapor Recovery	TOPS	N/A	N/A	>100 HP ⁵	>100 HP ⁵	TBD	LPF1	N/A	 Existing (unchanged) New/Additional 	 To be Removed Replacement Unit 	N/A	N/A			
	Unit for VRT		1.11		× 100 III		TBD	LPF1		I To Be Modified	□ To be Replaced		1			
VRT2	Vapor Recovery	TOPS	N/A	N/A	20,000	20,500	TBD	VRU2	N/A	 Existing (unchanged) New/Additional 	 To be Removed Replacement Unit 	N/A	N/A			
	Tower (VRT)				BOPD ⁵	BOPD ⁵	TBD	LPF1		To Be Modified	□ To be Replaced					
VRU2	Vapor Recovery	TOPS	N/A	N/A	>100 HP ⁵	>100 HP ⁵	TBD	N/A	N/A	 Existing (unchanged) New/Additional 	To be RemovedReplacement Unit	N/A	N/A			
	Unit for VRT						TBD	LPF1		To Be Modified	To be Replaced					
TK1	Oil/ Condensate	Unknown	N/A	N/A	750 BBLS	750 BBLS	2018	VRU3	40400311	 Existing (unchanged) New/Additional 	To be RemovedReplacement Unit	N/A	N/A			
	Tank						2018	LPF1		To Be Modified	To be Replaced To be Replaced					
TK2	Oil/ Condensate	Unknown	N/A	N/A	750 BBLS	750 BBLS	2018	VRU3	40400311	 Existing (unchanged) New/Additional 	 To be Removed Replacement Unit 	N/A	N/A			
	Tank						2018	LPF1		To Be Modified	To be Replaced To be Replaced					
TK3	Oil/ Condensate	Unknown	N/A	N/A	750 BBLS	750 BBLS	2018	VRU3	40400311	 Existing (unchanged) New/Additional 	To be RemovedReplacement Unit	N/A	N/A			
	Tank						2018	LPF1		I To Be Modified	To be Replaced					

T T • 4					Manufact- urer's Rated	Requested Permitted	Date of Manufacture ²	Controlled by Unit #	Source Classi-		RICE Ignition	
Unit Number ¹	Source Description	Make	Model #	Serial #	Capacity ³ (Specify Units)	Capacity ³ (Specify Units)	Date of Construction/ Reconstruction ²	Emissions vented to Stack #	fication Code (SCC)	For Each Piece of Equipment, Check One	Type (CI, SI, 4SLB, 4SRB, 2SLB) ⁴	Replacing Unit No.
TK4	Oil/ Condensate Tank	Unknown	N/A	N/A	750 BBLS	750 BBLS	2018 2018	VRU3 LPF1	40400311	□ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit ☑ To Be Modified □ To be Replaced	N/A	N/A
TK5	Oil/ Condensate Tank	Unknown	N/A	N/A	750 BBLS	750 BBLS	2018 2018	VRU3 LPF1	40400311	□ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit ☑ To Be Modified □ To be Replaced	N/A	N/A
TK6	Oil/ Condensate Tank	Unknown	N/A	N/A	750 BBLS	750 BBLS	2018 2018	VRU3 LPF1	40400311	□ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit ☑ To Be Modified □ To be Replaced	N/A	N/A
VRU3	Vapor Recovery Unit for Oil Tanks	TOPS	N/A	N/A	N/A	N/A	Unknown 2018	LPF1 LPF1	N/A	□ Existing (unchanged) □ To be Removed ☑ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced	N/A	N/A
SKTK1	Skim Tank	Unknown	N/A	N/A	1000 BBLS	1000 BBLS	2018 2018	LPF1 LPF1	40400315	□ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit ☑ To Be Modified □ To be Replaced	N/A	N/A
SKTK2	Skim Tank	Unknown	N/A	N/A	1000 BBLS	1000 BBLS	2018 2018	LPF1 LPF1	40400315	□ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit ☑ To Be Modified □ To be Replaced	N/A	N/A
PWTK1	Produced Water Tank	Unknown	N/A	N/A	750 BBLS	750 BBLS	2018 2018	LPF1 LPF1	40400315	□ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit ☑ To Be Modified □ To be Replaced	N/A	N/A
PWTK2	Produced Water Tank	Unknown	N/A	N/A	750 BBLS	750 BBLS	2018 2018	LPF1 LPF1	40400315	□ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit ☑ To Be Modified □ To be Replaced	N/A	N/A
PWTK3	Produced Water Tank	Unknown	N/A	N/A	750 BBLS	750 BBLS	2018 2018	LPF1 LPF1	40400315	□ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit ☑ To Be Modified □ To be Replaced	N/A	N/A
PWTK4	Produced Water Tank	Unknown	N/A	N/A	750 BBLS	750 BBLS	2018 2018	LPF1 LPF1	40400315	□ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit ☑ To Be Modified □ To be Replaced	N/A	N/A
PWTK5	Produced Water Tank	Unknown	N/A	N/A	750 BBLS	750 BBLS	2018 2018	LPF1 LPF1	40400315	□ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit ☑ To Be Modified □ To be Replaced	N/A	N/A
PWTK6	Produced Water Tank	Unknown	N/A	N/A	750 BBLS	750 BBLS	2018 2018	LPF1 LPF1	40400315	□ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit ☑ To Be Modified □ To be Replaced	N/A	N/A
GLC1	Electric Gas Lift Compression	TOPS	N/A	N/A	N/A	N/A	2018 2018	N/A N/A	N/A	□ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit ☑ To Be Modified □ To be Replaced	N/A	N/A
GLC2	Electric Gas Lift Compression	TOPS	N/A	N/A	N/A	N/A	2018 2018	N/A N/A	N/A	□ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit ☑ To Be Modified □ To be Replaced	N/A	N/A
ROAD	ROAD EMISSIONS	N/A	N/A	N/A	N/A	N/A	N/A N/A	N/A N/A	N/A	□ Existing (unchanged) □ To be Removed ☑ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced	N/A	N/A
SSM	Startup, Shutdown, Maintenance	N/A	N/A	N/A	N/A	N/A	N/A N/A	N/A N/A	N/A	□ Existing (unchanged) □ To be Removed ☑ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced	N/A	N/A

June 2020: Revision 1

W 1					Manufact- urer's Rated	Requested Permitted	Date of Manufacture ²	Controlled by Unit #	Source Classi-			RICE Ignition	
Unit Number ¹	Source Description	Make	Model #	Serial #	Capacity ³ (Specify Units)	Capacity ³ (Specify Units)	Date of Construction/ Reconstruction ²	Emissions vented to Stack #	fication Code (SCC)	For Each Piece of Equip	ment, Check One	Type (CI, SI, 4SLB, 4SRB, 2SLB) ⁴	Replacing Unit No.
						EQUIPM	ENT TO BE RE	MOVED		•		·	
LPF2	Low Pressure Flare	Tornado	N/A	N/A	2 MMSCFD	2 MMSCFD	2018 2018	N/A LPF2	31000205	□ New/Additional □ R	o be Removed eplacement Unit o be Replaced	N/A	N/A
GLC2-1	Electric Gas Lift Compression	N/A	N/A	N/A	N/A	N/A	2018 2018	N/A N/A	N/A	□ Existing (unchanged) ☑ T □ New/Additional □ R	o be Removed eplacement Unit o be Replaced	N/A	N/A
GLC2-2	Electric Gas Lift Compression	N/A	N/A	N/A	N/A	N/A	2018 2018	N/A N/A	N/A	□ Existing (unchanged) ☑ T □ New/Additional □ R	o be Removed eplacement Unit	N/A	N/A
LPF- OLD1	Low Pressure Flare	Tornado	N/A	N/A	2 MMSCFD	2 MMSCFD	2015 2015	N/A LPF-OLD1	31000216	□ Existing (unchanged) ☑ T □ New/Additional □ R	o be Replaced o be Removed eplacement Unit	N/A	N/A
HTR- OLD1	Heater Treater: 2.0 MMBtu/hr	N/A	N/A	N/A	2.0	2.0 MMBtu/hr	2015 2015 2015	N/A HTR-OLD1	31000404	□ Existing (unchanged) ☑ T □ New/Additional □ R	o be Replaced o be Removed eplacement Unit o be Replaced	N/A	N/A
BC1- OLD	Electric Booster Compressor	Quincy	N/A	Unknown	>150 HP ⁵	>150 HP ⁵	2015 2015	N/A BC1-OLD	N/A	□ Existing (unchanged) ☑ T □ New/Additional □ R	o be Removed eplacement Unit o be Replaced	N/A	N/A
VRT- OLD1	Vapor Recovery Tower (VRT)	Unknown	N/A	N/A	20500 BOPD	20500 BOPD	2015 2015	VRU-OLD1 LPF-OLD1	N/A	□ Existing (unchanged) ☑ T □ New/Additional □ R	o be Removed eplacement Unit o be Replaced	N/A	N/A
VRTVRU- OLD1	Vapor Recovery Unit for VRT	Quincy	N/A	240NG	>100 HP ⁵	>100 HP ⁵	2015 2015	LPF-OLD1 VRTVRU- OLD1	NT/A	□ Existing (unchanged) ☑ T □ New/Additional □ R	o be Removed eplacement Unit o be Replaced	N/A	N/A
TK1- OLD	Oil/ Condensate Tank	Petrosmith	N/A	10719	1000 BBLS	1000 BBLS	2014 2015	LPF-OLD1	40400311	□ New/Additional □ R	o be Removed eplacement Unit o be Replaced	N/A	N/A
TK2- OLD	Oil/ Condensate Tank	Petrosmith	N/A	9609	1000 BBLS	1000 BBLS	2014 2015	LPF-OLD1 LPF-OLD1	40400311	□ New/Additional □ R	o be Removed eplacement Unit o be Replaced	N/A	N/A
TK3- OLD	Oil/ Condensate Tank	Petrosmith	N/A	10715	1000 BBLS	1000 BBLS	2014 2015	LPF-OLD1 LPF-OLD1	40400311	 □ Existing (unchanged) □ New/Additional □ R 	o be Removed eplacement Unit o be Replaced	N/A	N/A
SKTK1- OLD	Water Skim Tank	Petrosmith	N/A	N/A	1000 BBLS	1000 BBLS	2014 2015	LPF-OLD1 LPF-OLD1	40400315	 □ Existing (unchanged) □ New/Additional □ R 	o be Removed eplacement Unit o be Replaced	N/A	N/A
PTWK1- OLD	Produced Water Tank	Petrosmith	N/A	10713	1000 BBLS	1000 BBLS	2014 2015	LPF-OLD1 LPF-OLD1	40400315	□ Existing (unchanged) ☑ T □ New/Additional □ R	o be Removed eplacement Unit o be Replaced	N/A	N/A
PTWK2- OLD	Produced Water Tank	Petrosmith	N/A	10712	1000 BBLS	1000 BBLS	2014 2015	LPF-OLD1 LPF-OLD1	40400315	□ Existing (unchanged) ☑ T □ New/Additional □ R	o be Removed eplacement Unit o be Replaced	N/A	N/A
PTWK3- OLD	Produced Water Tank	Petrosmith	N/A	9606	1000 BBLS	1000 BBLS	2014 2015	LPF-OLD1 LPF-OLD1	40400315	 □ Existing (unchanged) □ New/Additional □ R 	o be Removed eplacement Unit o be Replaced	N/A	N/A
ETK1- OLD	Emergency Blowdown Tank	Petrosmith	N/A	11422	210 BBLS	210 BBLS	2012 2015	N/A etk1-old	40400311	□ Existing (unchanged) ☑ T □ New/Additional □ R	o be Removed eplacement Unit o be Replaced	N/A	N/A

					Manufact- urer's Rated	Requested Permitted	Date of Manufacture ²	Controlled by Unit #	Source Classi-			RICE Ignition	
Unit Number ¹	Source Description	Make	Model #	Serial #	Capacity ³ (Specify Units)	Capacity ³ (Specify Units)	Date of Construction/ Reconstruction ²	Emissions vented to Stack #	fication Code (SCC)	For Each Piece of Equipme	ent, Check One	Type (CI, SI, 4SLB, 4SRB, 2SLB) ⁴	Replacing Unit No.
ETK-1	Emergency	Unknown	N/A	N/A	210 PPI S	210 BBLS	2018	N/A	40400311	8(8)	be Removed blacement Unit	N/A	N/A
EIK-I	Blowdown Tank	Ulikilowii	IN/A	IN/A	210 BBLS	210 BBLS	2018	ETK-1	40400311	1	blacement Unit	IN/A	IN/A
HPF2	High Pressure Flare	Tornado	N/A	N/A	> 60	> 60	TBD	N/A	31000205	8(8)	be Removed blacement Unit	N/A	N/A
11112	Tingii Pressure Plare	Tornado	IN/A	IN/A	MMSCFD	MMSCFD	TBD	HPF2	51000205	□ To Be Modified □ To b	be Replaced	1N/A	IN/A
PWTK7	Produced Water	TBD	TBD	TBD	750 DDI S	750 BBLS	TBD	LPF2	40400315	5 (5)	be Removed blacement Unit	N/A	N/A
rwik/	Tank	IBD	IBD	IBD	750 BBLS	750 DDLS	TBD	LPF2	40400313	1	be Replaced	1N/A	IN/A
PWTK8	Produced Water	TBD	TBD	TBD	750 DDI S	750 BBLS	TBD	LPF2	40400315	8(8)	be Removed blacement Unit	N/A	N/A
r w iko	Tank	IDD	IBD	IBD	750 BBLS	750 BBLS	TBD	LPF2	40400315	1	bacement Ont	IN/A	IN/A
TK7	Oil/ Condensate	TBD	TBD	TBD	750 DDI S	750 BBLS	TBD	LPF2	40400311	8(8)	be Removed	N/A	N/A
1K/	Tank	IDD	IBD	IDD	750 BBLS	/ JU DDLS	TBD	LPF2	40400311	1	blacement Unit be Replaced	IN/A	IN/A
TK8	Oil/ Condensate	TBD	TBD	TBD	750 DDI C	750 BBLS	TBD	LPF2	40400211	8(8)	be Removed		N/A
1K8	Tank	IBD	IBD	IBD	/30 BBLS	730 BBLS	TBD	LPF2	40400311	1	blacement Unit be Replaced	N/A	N/A
UTD 2	HEATER TREATER:	TDD	TDD	TDD	4.0	4.0	TBD	N/A	21000404	5(5)	be Removed	N T/A	
HTR3	4.0 MMBTU/HR BURNER	TBD	TBD	TBD	MMBtu/hr	MMBtu/hr	TBD	HTR3	31000404	-	blacement Unit be Replaced	N/A	N/A
HPF1-	III I D EI	T 1	27/4	27/4	30	30	NA	N/A		8(8)	be Removed	27/1	27/4
OLD	High Pressure Flare	Tornado	N/A	N/A	MMSCFD	MMSCFD	2015	HPF1-OLD	31000216	1	blacement Unit be Replaced	N/A	N/A
BC2-	Electric Booster	o :		TT 1	75	75	2016	N/A	27/4	8(8)	be Removed		
OLD	Compressor	Quincy	N/A	Unknown	MSCFD	MSCFD	2016	BC2-OLD	N/A	-	blacement Unit be Replaced	N/A	N/A
HTR-	Auxiliary Heaters	X 7 .		X7 -	< 4	< 4	Varies	N/A		🗆 Existing (unchanged) 🗹 To b	be Removed		
OLD2	< 4 MMBtu/hr	Varies	N/A	Varies	MMBtu/hr	MMBtu/hr	Unknown	HTR-OLD2	31000404	-	blacement Unit be Replaced	N/A	N/A
TL1-	Oil Truck Loading						N/A	N/A		□ Existing (unchanged) ☑ To b	be Removed		
OLD	Rack	N/A	N/A	N/A	N/A	N/A	N/A	N/A	40400250		placement Unit be Replaced	N/A	N/A

¹ Unit numbers must correspond to unit numbers in the previous NOI unless a complete cross reference table of all units in both NOIs is provided.

² Specify dates required to determine regulatory applicability.

³ To properly account for power conversion efficiencies, generator set rated capacity shall be reported as the rated capacity of the engine in horsepower, not the kilowatt capacity of the generator set.

⁴ "4SLB" means four stroke lean burn engine, "4SRB" means four stroke rich burn engine, "2SLB" means two stroke lean burn engine, "CI" means compression ignition, and "SI" means spark ignition

⁵ The capacities are listed for illustrative purposes only and not meant to be enforceable since these are not specific points of emissions. The daily requested permitted capacity will be split between VRT1 and VRT2.

Table 2-B: Insignificant Activities¹ (20.2.70 NMAC) OR Exempted Equipment (20.2.72 NMAC)

All 20.2.70 NMAC (Title V) applications must list all Insignificant Activities in this table. All 20.2.72 NMAC applications must list Exempted Equipment in this table. If equipment listed on this table is exempt under 20.2.72.202.B.5, include emissions calculations and emissions totals for 202.B.5 "similar functions" units, operations, and activities in Section 6, Calculations. Equipment and activities exempted under 20.2.72.202 NMAC may not necessarily be Insignificant under 20.2.70 NMAC (and vice versa). Unit & stack numbering must be consistent throughout the application package. Per Exemptions Policy 02-012.00 (see http://www.env.nm.gov/aqb/permit/aqb_pol.html), 20.2.72.202.B NMAC Exemptions do not apply, but 20.2.72.202.A NMAC exemptions do apply to NOI facilities under 20.2.73 NMAC. List 20.2.72.301.D.4 NMAC Auxiliary Equipment for Streamline applications in Table 2-A. The List of Insignificant Activities (for TV) can be found online at http://www.env.nm.gov/aqb/forms/InsignificantListTitleV.pdf. TV sources may elect to enter both TV Insignificant Activities and Part 72 Exemptions on this form.

Unit Number	Source Description	Manufacturer	Model No.	Max Capacity	List Specific 20.2.72.202 NMAC Exemption (e.g. 20.2.72.202.B.5) Insignificant Activity citation (e.g. IA List	Date of Manufacture /Reconstruction ² Date of Installation	For Each Piece of Equipment, Check Onc
			Serial No.	Capacity Units	Insignmeant Activity citation (e.g. 1A List Item #1.a)	/Construction ²	
	Not applicable						 Existing (unchanged) To be Removed New/Additional Replacement Unit
							□ To Be Modified □ To be Replaced
							□ Existing (unchanged) □ To be Removed
							 New/Additional To Be Modified To be Replaced
							\Box Existing (unchanged) \Box To be Removed
							□ New/Additional □ Replacement Unit
							□ To Be Modified □ To be Replaced
							 Existing (unchanged) To be Removed New/Additional Replacement Unit
							□ To Be Modified □ To be Replaced
							□ Existing (unchanged) □ To be Removed
							□ New/Additional □ Replacement Unit
							\Box To Be Modified \Box To be Replaced
							\Box Existing (unchanged) \Box To be Removed
							New/Additional Replacement Unit
							□ To Be Modified □ To be Replaced
							 Existing (unchanged) To be Removed New/Additional Replacement Unit
							□ To Be Modified □ To be Replaced
							Existing (unchanged) To be Removed
							□ New/Additional □ Replacement Unit
							□ To Be Modified □ To be Replaced
							□ Existing (unchanged) □ To be Removed
							□ New/Additional □ Replacement Unit
							□ To Be Modified □ To be Replaced
							 Existing (unchanged) To be Removed New/Additional Replacement Unit
							 New/Additional Replacement Unit To Be Modified To be Replaced
							□ Existing (unchanged) □ To be Removed
							New/Additional Replacement Unit
							□ To Be Modified □ To be Replaced
							\Box Existing (unchanged) \Box To be Removed
							□ New/Additional □ Replacement Unit
							□ To Be Modified □ To be Replaced
							 Existing (unchanged) To be Removed New/Additional Replacement Unit
							 □ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced

¹ Insignificant activities exempted due to size or production rate are defined in 20.2.70.300.D.6, 20.2.70.7.Q NMAC, and the NMED/AQB List of Insignificant Activities, dated September 15, 2008. Emissions from these insignificant activities do not need to be reported, unless specifically requested.

² Specify date(s) required to determine regulatory applicability.

Table 2-C: Emissions Control Equipment

Unit and stack numbering must correspond throughout the application package. Only list control equipment for TAPs if the TAP's maximum uncontrolled emissions rate is over its respective threshold as listed in 20.2.72 NMAC, Subpart V, Tables A and B. In accordance with 20.2.72.203.A(3) and (8) NMAC, 20.2.70.300.D(5)(b) and (e) NMAC, and 20.2.73.200.B(7) NMAC, the permittee shall report all control devices and list each pollutant controlled by the control device regardless if the applicant takes credit for the reduction in emissions.

Control Equipment Unit No.	Control Equipment Description	Date Installed	Controlled Pollutant(s)	Controlling Emissions for Unit Number(s) ¹	Efficiency (% Control by Weight)	Method used to Estimate Efficiency
VRU1	Vapor Recovery Unit	2018	VOC/HAP	VRT1	98%	Eng. Estimate
VRU2	Vapor Recovery Unit	2018	VOC/HAP	VRT2	98%	Eng. Estimate
VRU3	Vapor Recovery Unit	2018	VOC/HAP	TK1-TK6	98%	Eng. Estimate
LPF1	Low Pressure Flare	2015	VOC/HAP	VRT1-VRT2, TK1-TK6, SKTK1- SKTK2, PWTK1-PWTK6, TL1	98%	Manufacturer
HPF1	High Pressure Flare	2017	VOC/HAP	Inlet Gas, Treater Gas	98%	Manufacturer
		_				

Table 2-D: Maximum Emissions (under normal operating conditions)

□ This Table was intentionally left blank because it would be identical to Table 2-E.

Maximum Emissions are the emissions at maximum capacity and prior to (in the absence of) pollution control, emission-reducing process equipment, or any other emission reduction. Calculate the hourly emissions using the worst case hourly emissions for each pollutant. For each pollutant, calculate the annual emissions as if the facility were operating at maximum plant capacity without pollution controls for 8760 hours per year, unless otherwise approved by the Department. List Hazardous Air Pollutants (HAP) & Toxic Air Pollutants (TAPs) in Table 2-I. Unit & stack numbering must be consistent throughout the application package. Fill all cells in this table with the emission numbers or a "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expected. Numbers shall be expressed to at least 2 decimal points (e.g. 0.41, 1.41, or 1.41E-4).

Unit No.	N	Ox	C	0	V	OC	S	Ox	PI	M	PM	110 ¹	PM	2.5 ¹	Н	$_2S$	Le	ead
Umit No.	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
FUG1					2.46	10.79												
HTR1	0.56	2.45	0.47	2.06	0.03	0.13	0.00	0.01	0.04	0.19	0.04	0.19	0.04	0.19				
HTR2	0.56	2.45	0.47	2.06	0.03	0.13	0.00	0.01	0.04	0.19	0.04	0.19	0.04	0.19				
TL1					60.76	221.56												
ROAD									0.19	0.67	0.19	0.67	0.04	0.10				
VRT1-VRT2					2971.77	13016.34			0.00	0.00	0.00	0.00	0.00	0.00				
TK1					69.84	305.92												
TK2					69.84	305.92												
TK3					69.84	305.92												
TK4					69.84	305.92												
TK5					69.84	305.92												
TK6					69.84	305.92												
SKTK1					18.48	80.92												
SKTK2					18.48	80.92												
PWTK1					0.13	0.55												
PWTK2					0.13	0.55												
PWTK3					0.13	0.55												
PWTK4					0.13	0.55												
PWTK5					0.13	0.55												
PWTK6					0.13	0.55												
HPF1	0.08	0.34	0.15	0.67	0.16	0.69	0.00	0.00	0.00	0.01	0.00	0.01	0.00	0.01				
LPF1	0.04	0.17	0.08	0.33	0.08	0.34	0.00	0.00	0.00	0.01	0.00	0.01	0.00	0.01				
Totals	1.24	5.41	1.17	5.13	3492.06	15250.65	0.01	0.03	0.28	1.06	0.28	1.06	0.13	0.49				

¹Condensable Particulate Matter: Include condensable particulate matter emissions for PM10 and PM2.5 if the source is a combustion source. Do not include condensable particulate matter for PM unless PM is set equal to PM10 and PM2.5. Particulate matter (PM) is not subject to an ambient air quality standard, but PM is a regulated air pollutant under PSD (20.2.74 NMAC) and Title V (20.2.70 NMAC).

Table 2-E: Requested Allowable Emissions

Unit & stack numbering must be consistent throughout the application package. Fill all cells in this table with the emission numbers or a "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expected. Numbers shall be expressed to at least 2 decimal points (e.g. 0.41, 1.41, or 1.41E⁻⁴).

Unit No.	N	Ox	C	0	VC	DC	S	Ox	PI	M ¹	PM	[10 ¹	PM	2.5 ¹	Н	$_2S$	Le	ead
Unit No.	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
FUG1					2.46	10.79												
HTR1	0.56	2.45	0.47	2.06	0.03	0.13	0.00	0.01	0.04	0.19	0.04	0.19	0.04	0.19				
HTR2	0.56	2.45	0.47	2.06	0.03	0.13	0.00	0.01	0.04	0.19	0.04	0.19	0.04	0.19				
TL1					0.79	2.88												
ROAD									0.19	0.67	0.19	0.67	0.04	0.10				
VRT1-VRT2								Emiss	sions repre	esented at]	LPF1.							
TK1								Emiss	sions repre	esented at	LPF1.							
TK2								Emiss	sions repre	esented at	LPF1.							
TK3								Emiss	sions repre	esented at	LPF1.							
TK4								Emiss	sions repre	esented at	LPF1.							
TK5								Emiss	sions repre	esented at	LPF1.							
TK6								Emiss	sions repre	esented at	LPF1.							
SKTK1								Emiss	sions repre	esented at	LPF1.							
SKTK2								Emiss	sions repre	esented at	LPF1.							
PWTK1								Emiss	sions repre	esented at	LPF1.							
PWTK2								Emiss	sions repre	esented at	LPF1.							
PWTK3								Emiss	sions repre	esented at	LPF1.							
PWTK4									-	esented at								
PWTK5								Emiss	sions repre	esented at	LPF2.							
PWTK6								Emiss	sions repre	esented at	LPF2.							
HPF1	491.84	54.00	981.90	107.80	1016.95	115.21	3.93	0.44	19.30	2.05	19.30	2.05	19.30	2.05				
LPF1	16.19	7.57	32.32	15.11	86.61	32.27	0.18	0.17	0.35	0.21	0.35	0.21	0.35	0.21				
SSM						10.00												
Totals	509.15	66.47	1015.15	127.03	1106.88	171.42	4.12	0.63	19.93	3.30	19.93	3.30	19.78	2.73				

¹Condensable Particulate Matter: Include condensable particulate matter emissions for PM10 and PM2.5 if the source is a combustion source. Do not include condensable particulate matter for PM unless PM is set equal to PM10 and PM2.5. Particulate matter (PM) is not subject to an ambient air quality standard, but PM is a regulated air pollutant under PSD (20.2.74 NMAC) and Title V (20.2.70 NMAC).

Table 2-F: Additional Emissions during Startup, Shutdown, and Routine Maintenance (SSM)

This table is intentionally left blank since all emissions at this facility due to routine or predictable startup, shutdown, or scehduled maintenance are no higher than those listed in Table 2-E and a malfunction emission lir is not already permitted or requested. If you are required to report GHG emissions as described in Section 6a, include any GHG emissions during Startup, Shutdown, and/or Scheduled Maintenance (SSM) in Table 2-P. Provide an explanations of SSM emissions in Section 6 and 6a.

All applications for facilities that have emissions during routine our predictable startup, shutdown or scheduled maintenance (SSM)¹, including NOI applications, must include in this table the Maximum Emissions during routine or predictable startup, shutdown and scheduled maintenance (20.2.7 NMAC, 20.2.72.203.A.3 NMAC, 20.2.73.200.D.2 NMAC). In Section 6 and 6a, provide emissions calculations for all SSM emissions reported in this table. Refer to "Guidance for Submitted of Startup, Shutdown, Maintenance Emissions in Permit Applications

(https://www.env.nm.gov/aqb/permit/aqb_pol.html) for more detailed instructions. Numbers shall be expressed to at least 2 decimal points (e.g. 0.41, 1.41, or 1.41E-4).

Unit No	N	Ox	C	0	V(DC	SC	Dx	PI PI	M^2	PM	110 ²	PM	2.5^2	н.	$_2S$	Le	ead
Unit No.	lb/hr	ton/yr							lb/hr								lb/hr	ton/yr
SSM	-	-	-	-	-	10	-	-	-	-	-	-	-	-	-	-	-	-
																		-
Tetels						10												
Totals	-	-	-	-	-	10	-	-	-	-	-	-	-	-	-	-	-	-

¹ For instance, if the short term steady-state Table 2-E emissions are 5 lb/hr and the SSM rate is 12 lb/hr, enter 7 lb/hr in this table. If the annual steady-state Table 2-E emissions are 21.9 TPY, and the number of scheduled SSM events result in annual emissions of 31.9 TPY, enter 10.0 TPY in the table below.

² Condensable Particulate Matter: Include condensable particulate matter emissions for PM10 and PM2.5 if the source is a combustion source. Do not include condensable particulate matter for PM unless PM is set equal to PM10 and PM2.5. Particulate matter (PM) is not subject to an ambient air quality standard, but it is a regulated air pollutant under PSD (20.2.74 NMAC) and Title V (20.2.70 NMAC).

Table 2-G: Stack Exit and Fugitive Emission Rates for Special Stacks

I have elected to leave this table blank because this facility does not have any stacks/vents that split emissions from a single source or combine emissions from more than one source listed in table 2-A. Additionally, the emission rates of all stacks match the Requested allowable emission rates stated in Table 2-E.

Use this table to list stack emissions (requested allowable) from split and combined stacks. List Toxic Air Pollutants (TAPs) and Hazardous Air Pollutants (HAPs) in Table 2-I. List all fugitives that are associated with the normal, routine, and non-emergency operation of the facility. Unit and stack numbering must correspond throughout the application package. Refer to Table 2-E for instructions on use of the "-" symbol and on significant figures.

	Serving Unit		Ox	C	0	V	DC	S	Ox	P	М	PN	110	PM	12.5	□ H ₂ S or	r 🗆 Lead
Stack No.	Number(s) from Table 2-A	lb/hr	ton/yr	lb/hr	ton/yr												
,	Totals:																

Table 2-H: Stack Exit Conditions

Unit and stack numbering must correspond throughout the application package. Include the stack exit conditions for each unit that emits from a stack, including blowdown venting parameters and tank emissions. If the facility has multiple operating scenarios, complete a separate Table 2-H for each scenario and, for each, type scenario name here:

Stack	Serving Unit Number(s)	Orientation (H-Horizontal	Rain Caps	Height Above	Temp.	Flow	Rate	Moisture by	Velocity	Inside
Number	from Table 2-A	V=Vertical)	(Yes or No)	Ground (ft)	(F)	(acfs)	(dscfs)	Volume (%)	(ft/sec)	Diameter (ft)
HTR1	HTR1	Н	Ν	20	1000	24.7	Unknown	Unknown	31.5	1.00
HTR2	HTR2	Н	Ν	20	1000	24.7	Unknown	Unknown	31.5	1.00
HPF1	HPF1	Н	N	145	1832	6.7	Unknown	Unknown	65.6	0.50
LPF1	LPF1	Н	Ν	40	1832	3.3	Unknown	Unknown	65.6	0.50

Table 2-I: Stack Exit and Fugitive Emission Rates for HAPs and TAPs

In the table below, report the Potential to Emit for each HAP from each regulated emission unit listed in Table 2-A, only if the entire facility emits the HAP at a rate greater than or equal to one (1) ton per year. For each such emission unit, HAPs shall be reported to the nearest 0.1 tpy. Each facility-wide Individual HAP total and the facility-wide Total HAPs shall be the sum of all HAP sources calculated to the nearest 0.1 ton per year. Per 20.2.72.403.A.1 NMAC, facilities not exempt [see 20.2.72.402.C NMAC] from TAP permitting shall report each TAP that has an uncontrolled emission rate in excess of its pounds per hour screening level specified in 20.2.72.502 NMAC. TAPs shall be reported using one more significant figure than the number of significant figures shown in the pound per hour threshold corresponding to the substance. Use the HAP nomenclature as it appears in Section 112 (b) of the 1990 CAAA and the TAP nomenclature as it listed in 20.2.72.502 NMAC. Include tank-flashing emission sestimates of HAPs in this table. For each HAP or TAP listed, fill all cells in this table with the emission numbers or a "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expected or the pollutant is emitted in a quantity less than the threshold amounts described above.

Stack No.	Unit No.(s)	Total	HAPs		exane or 🗆 TAP	Ben ☑ HAP o			uene or 🗆 TAP	Provide Name	Here	Name	Pollutant Here or 🗆 TAP	Name	Pollutant e Here or 🗆 TAP		Here	Name Here	Pollutant e
		lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
FUG1	FUG1	0.1	0.6	0.0	0.1	0.0	0.1	0.0	0.1										
HTR1	HTR1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0										
HTR2	HTR2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0										
TL-OIL	TL-OIL	0.0	0.1	0.0	0.1	0.0	0.0	0.0	0.0										
VRT1-VRT2	VRT1-VRT2								Emiss	ions repre	sented at	LPF1.							
SKTK1- SKTK2	SKTK1- SKTK2								Emiss	ions repre	sented at	LPF1.							
PWTK1- PWTK6	PWTK1- PWTK6								Emiss	ions repre	esented at 1	LPF1.							
HPF1	HPF1	30.3	3.5	15.8	1.8	7.2	0.8	4.5	0.5										
LPF1	LPF1	3.7	1.5	1.9	0.7	0.9	0.3	0.6	0.2										
Tot	als:	34.1	5.8	17.7	2.7	8.0	1.2	5.1	0.8										

Table 2-J: Fuel

Specify fuel characteristics and usage. Unit and stack numbering must correspond throughout the application package.

	Fuel Type (low sulfur Diesel,	Fuel Source: purchased commercial,		Speci	fy Units		
Unit No.	ultra low sulfur diesel, Natural Gas, Coal,)	pipeline quality natural gas, residue gas, raw/field natural gas, process gas (e.g. SRU tail gas) or other	Lower Heating Value	Hourly Usage (scf)	Annual Usage (MMscf)	% Sulfur	% Ash
HTR1	Natural Gas	Field Gas	1387.0	2883.8	25.3	0	0
HTR2	Natural Gas	Field Gas	1387.0	2883.8	25.3	0	0
HPF1	Natural Gas	Field Gas	1387.0	400.0	3.5	0	0
LPF1	Natural Gas	Field Gas	1387.0	200.0	1.8	0	0

Table 2-K: Liquid Data for Tanks Listed in Table 2-L

For each tank, list the liquid(s) to be stored in each tank. If it is expected that a tank may store a variety of hydrocarbon liquids, enter "mixed hydrocarbons" in the Composition column for that tank and enter the corresponding data of the most volatile liquid to be stored in the tank. If tank is to be used for storage of different materials, list all the materials in the "All Calculations" attachment, run the newest version of TANKS on each, and use the material with the highest emission rate to determine maximum uncontrolled and requested allowable emissions rate. The permit will specify the most volatile category of liquids that may be stored in each tank. Include appropriate tank-flashing modeling input data. Use additional sheets if necessary. Unit and stack numbering must correspond throughout the application package.

					Vapor	Average Stor	age Conditions	Max Storag	ge Conditions
Tank No.	SCC Code	Material Name	Composition	Liquid Density (lb/gal)	Molecular Weight (lb/lb*mol)	Temperature (°F)	True Vapor Pressure (psia)	Temperature (°F)	True Vapor Pressure (psia)
TK1	40400311	Oil/Condensate	Oil/Condensate	6.5	50.7	95.5	9.7	112.1	11.9
TK2	40400311	Oil/Condensate	Oil/Condensate	6.5	50.7	95.5	9.7	112.1	11.9
TK3	40400311	Oil/Condensate	Oil/Condensate	6.5	50.7	95.5	9.7	112.1	11.9
TK4	40400311	Oil/Condensate	Oil/Condensate	6.5	50.7	95.5	9.7	112.1	11.9
TK5	40400311	Oil/Condensate	Oil/Condensate	6.5	50.7	95.5	9.7	112.1	11.9
TK6	40400311	Oil/Condensate	Oil/Condensate	6.5	50.7	95.5	9.7	112.1	11.9
SKTK1	40400315	Produced Water	Produced Water-99%/Oil-1%	8.3	22.7	88.1	0.7	104.7	1.1
SKTK2	40400315	Produced Water	Produced Water-99%/Oil-1%	8.3	22.7	88.1	0.7	104.7	1.1
PWTK1	40400315	Produced Water	Produced Water	8.3	18.1	88.1	0.7	104.7	1.1
PWTK2	40400315	Produced Water	Produced Water	8.3	18.1	88.1	0.7	104.7	1.1
PWTK3	40400315	Produced Water	Produced Water	8.3	18.1	88.1	0.7	104.7	1.1
PWTK4	40400315	Produced Water	Produced Water	8.3	18.1	88.1	0.7	104.7	1.1
PWTK5	40400315	Produced Water	Produced Water	8.3	18.1	88.1	0.7	104.7	1.1
PWTK6	40400315	Produced Water	Produced Water	8.3	18.1	88.1	0.7	104.7	1.1

Table 2-L: Tank Data

Include appropriate tank-flashing modeling input data. Use an addendum to this table for unlisted data categories. Unit and stack numbering must correspond throughout the application package. Use additional sheets if necessary. See reference Table 2-L2. Note: 1.00 bbl = 10.159 M3 = 42.0 gal

Tank No.	Date Installed	Materials Stored		Roof Type (refer to Table 2-	Cap	acity	Diameter (M)	Vapor Space		blor ble VI-C)	Paint Condition (from Table	Annual Throughput	Turn- overs
	Instanca		LR below)	LR below)	(bbl)	(M ³)	()	(M)	Roof	Shell	VI-C)	(gal/yr)	(per year)
TK1	2018	Oil/Condensate	N/A	FX	750	119	4.6	7.3	MG	MG	Good	65,152,474	2068.3
TK2	2018	Oil/Condensate	N/A	FX	750	119	4.6	7.3	MG	MG	Good	65,152,474	2068.3
TK3	2018	Oil/Condensate	N/A	FX	750	119	4.6	7.3	MG	MG	Good	65,152,474	2068.3
TK4	2018	Oil/Condensate	N/A	FX	750	119	4.6	7.3	MG	MG	Good	65,152,474	2068.3
TK5	2018	Oil/Condensate	N/A	FX	750	119	4.6	7.3	MG	MG	Good	65,152,474	2068.3
TK6	2018	Oil/Condensate	N/A	FX	750	119	4.6	7.3	MG	MG	Good	65,152,474	2068.3
SKTK1	2018	Produced Water	N/A	FX	1,000	159	6.4	4.9	MG	MG	Good	459,904,455	10950.1
SKTK2	2018	Produced Water	N/A	FX	1,000	159	6.4	4.9	MG	MG	Good	459,904,455	10950.11
PWTK1	2018	Produced Water	N/A	FX	750	119	4.6	7.3	MG	MG	Good	153,300,000	4866.7
PWTK2	2018	Produced Water	N/A	FX	750	119	4.6	7.3	MG	MG	Good	153,300,000	4866.7
PWTK3	2018	Produced Water	N/A	FX	750	119	4.6	7.3	MG	MG	Good	153,300,000	4866.7
PWTK4	2018	Produced Water	N/A	FX	750	119	4.6	7.3	MG	MG	Good	153,300,000	4866.7
PWTK5	2018	Produced Water	N/A	FX	750	119	4.6	7.3	MG	MG	Good	153,300,000	4866.7
PWTK6	2015	Produced Water	N/A	FX	750	119	4.6	7.3	MG	MG	Good	153,300,000	4866.7

Roof Type	Seal Type, We	lded Tank Seal Type	Seal Type, Rive	Roof, Shell Color	Paint Condition	
FX: Fixed Roof	Mechanical Shoe Seal	Liquid-mounted resilient seal	Vapor-mounted resilient seal	Seal Type	WH: White	Good
IF: Internal Floating Roof	A: Primary only	A: Primary only	A: Primary only	A: Mechanical shoe, primary only	AS: Aluminum (specular)	Poor
EF: External Floating Roof	B: Shoe-mounted secondary	B: Weather shield	B: Weather shield	B: Shoe-mounted secondary	AD: Aluminum (diffuse)	
P: Pressure	C: Rim-mounted secondary	C: Rim-mounted secondary	C: Rim-mounted secondary C: Rim-mounted secondary		LG: Light Gray	
	-				MG: Medium Gray	
Note: $1.00 \text{ bbl} = 0.159 \text{ M}^3$	3 = 42.0 gal				BL: Black	
	OT: Other (specify)					

Table 2-L2: Liquid Storage Tank Data Codes Reference Table

Table 2-M:	Materials Processed and Produced (Use additional sheets as necessary.)
------------	--

	Materi	al Processed		Material Produced						
Description	Chemical Composition	emical Composition Phase (Gas, Liquid, or Solid)		Description	Chemical Composition	Phase	Quantity (specify units)			
Natural Gas	Natural Gas	Gas	60.9 MMscfd	Natural Gas	Natural Gas	Gas	60.9 MMscfd			
Oil/Condensate	Oil/Condensate	Liquid	25500 BOPD	Oil/Condensate	Oil/Condensate	Liquid	25500 BOPD			
Produced Water	Produced Water	Liquid	60000 BWPD	Produced Water	Produced Water	Liquid	60000 BWPD			

Table 2-N: CEM Equipment

Enter Continuous Emissions Measurement (CEM) Data in this table. If CEM data will be used as part of a federally enforceable permit condition, or used to satisfy the requirements of a state or federal regulation, include a copy of the CEM's manufacturer specification sheet in the Information Used to Determine Emissions attachment. Unit and stack numbering must correspond throughout the application package. Use additional sheets if necessary.

Stack No.	Pollutant(s)	Manufacturer	Model No.	Serial No.	Sample Frequency	Averaging Time	Range	Sensitivity	Accuracy
	Not applicable								

Table 2-O: Parametric Emissions Measurement Equipment

Unit and stack numbering must correspond throughout the application package. Use additional sheets if necessary.

Unit No.	Parameter/Pollutant Measured	Location of Measurement	Unit of Measure	Acceptable Range	Frequency of Maintenance	Nature of Maintenance	Method of Recording	Averaging Time
	Not applicable							

Table 2-P: Greenhouse Gas Emissions

Applications submitted under 20.2.70, 20.2.72, & 20.2.74 NMAC are required to complete this Table. Power plants, Title V major sources, and PSD major sources must report and calculate all GHG emissions for each unit. Applicants must report potential emission rates in short tons per year (see Section 6.a for assistance). Include GHG emissions during Startup, Shutdown, and Scheduled Maintenance in this table. For minor source facilities that are not power plants, are not Title V, or are not PSD, there are three options for reporting GHGs 1) report GHGs for each individual piece of equipment; 2) report all GHGs from a group of unit types, for example report all combustion source GHGs as a single unit and all venting GHG as a second separate unit; OR 3) check the following box 🗹 By checking this box, the applicant acknowledges the total CO2e emissions are less than 75,000 tons per year.

		CO ₂ ton/yr	N2O ton/yr	CH ₄ ton/yr	SF ₆ ton/yr	PFC/HFC ton/yr ²			XTO Energy Inc.		Total GHG Mass Basis ton/yr ⁴	Total CO₂e ton/yr ⁵
Unit No.	GWPs ¹	1	298	25	22,800	footnote 3						
	CHC	16.0	0.0	10.0							20	
FUG1	mass GHG CO ₂ e	16.9 16.9	0.0	12.2 305.6							29	322
	mass GHG	2049.8	0.0	0.0							2050	322
HTR1	CO ₂ e	2049.8	1.2	1.0							2030	2052
	mass GHG	2049.8	0.0	0.0							2050	2052
HTR2	CO ₂ e	2049.8	1.2	1.0							2020	2052
	mass GHG	39257.1	0.0	131.3							39388	
HPF1	CO ₂ e	39257.1	0.0	3283.3								42540
LPF1	mass GHG	360.9	0.0	2.3							363	
LFFI	CO ₂ e	360.9	0.0	57.6								418
	mass GHG											
	CO ₂ e					-						
	mass GHG											
	CO ₂ e											
	mass GHG											
	CO ₂ e											
	mass GHG CO ₂ e											
	mass GHG											
	CO ₂ e											
-	mass GHG											
	CO ₂ e											
	mass GHG							 				
	CO ₂ e											
	mass GHG											
	CO ₂ e											
	mass GHG										43880	
	CO ₂ e											47385

¹GWP (Global Warming Potential): Applicants must use the most current GWPs codified in Table A-1 of 40 CFR part 98. GWPs are subject to change, therefore, applicants need to check 40 CFR 98 to confirm GWP values.

² For HFCs or PFCs describe the specific HFC or PFC compound and use a separate column for each individual compound.

³ For each new compound, enter the appropriate GWP for each HFC or PFC compound from Table A-1 in 40 CFR 98.

⁴ Green house gas emissions on a **mass basis** is the ton per year green house gas emission before adjustment with its GWP.

⁵ CO₂e means Carbon Dioxide Equivalent and is calculated by multiplying the TPY mass emissions of the green house gas by its GWP.

Tab 3Section 3 - Application Summary

Section 3

Application Summary

The <u>Application Summary</u> shall include a brief description of the facility and its process, the type of permit application, the applicable regulation (i.e. 20.2.72.200.A.X, or 20.2.73 NMAC) under which the application is being submitted, and any air quality permit numbers associated with this site. If this facility is to be collocated with another facility, provide details of the other facility including permit number(s). In case of a revision or modification to a facility, provide the lowest level regulatory citation (i.e. 20.2.72.219.B.1.d NMAC) under which the revision or modification is being requested. Also describe the proposed changes from the original permit, how the proposed modification will affect the facility's operations and emissions, de-bottlenecking impacts, and changes to the facility's major/minor status (both PSD & Title V).

The **<u>Process</u>** <u>Summary</u> shall include a brief description of the facility and its processes.

<u>Startup, Shutdown, and Maintenance (SSM)</u> routine or predictable emissions: Provide an overview of how SSM emissions are accounted for in this application. Refer to "Guidance for Submittal of Startup, Shutdown, Maintenance Emissions in Permit Applications (http://www.env.nm.gov/aqb/permit/app_form.html) for more detailed instructions on SSM emissions.

XTO Energy is planning modification of the Corral Canyon Tank Battery in Eddy County, NM. The facility is operated under NSR Permit 6275. This is a New Source Review (NSR) permit application being submitted in accordance with 20.2.72.219.D.1.a NMAC.

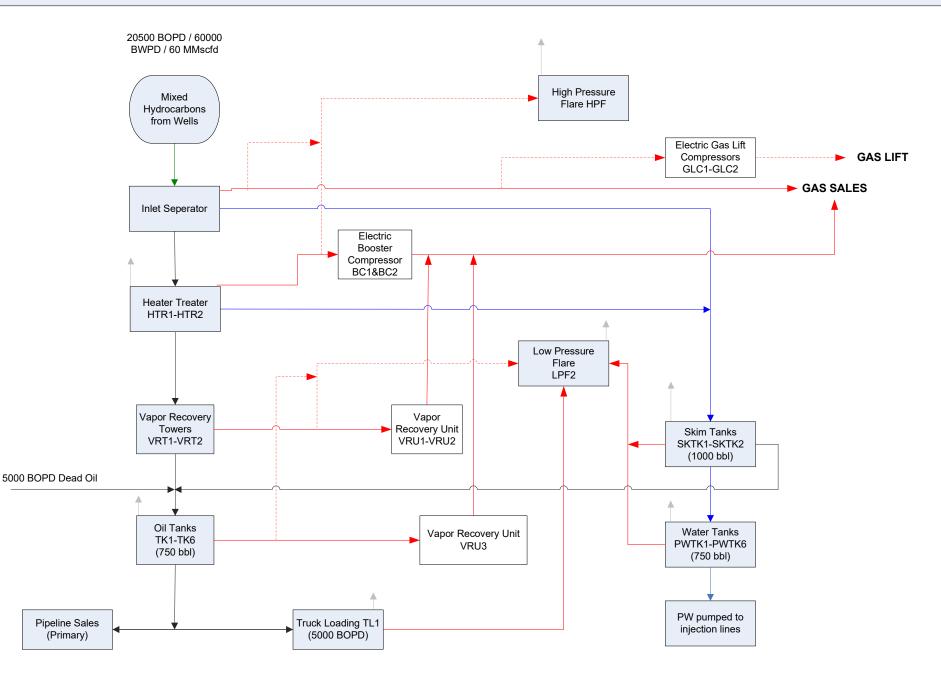
This is a typical oil and gas battery that collects oil and water from field production for temporary storage. Oil and water flow into the site from surrounding well sites. Water and gas are separated from the incoming oil and sold via pipeline. Oil and water are temporarily stored in tanks prior to being shipped offsite via pipeline or truck. Electric compressors are used to boost produced gas to sales line pressure.

Routine SSM emissions are included with the regular emissions of the facility.

The following changes, which include shutting down the old portion of the site, are being made to the current permit with this application:

- 1. Remove two electric drive gas lift compressors
- 2. Remove two heaters (HTR-OLD2, HTR3)
- 3. Remove two high pressure flares (HPF-OLD1, HPF2)
- 4. Adjust booster compressor and VRU downtime hours
- 5. Remove low pressure flare (LPF2)
- 6. Remove booster compressor (BC-OLD2)
- 7. Remove two oil tanks (TK7, TK8)
- 8. Remove two water tanks (PWTK7, PWTK8)
- 9. Remove two emergency blowdown tanks (ETK1, ETK-OLD1)
- 10. Updated oil, water, and gas production and flaring rates

Tab 4 Section 4 - Process Flow Sheet

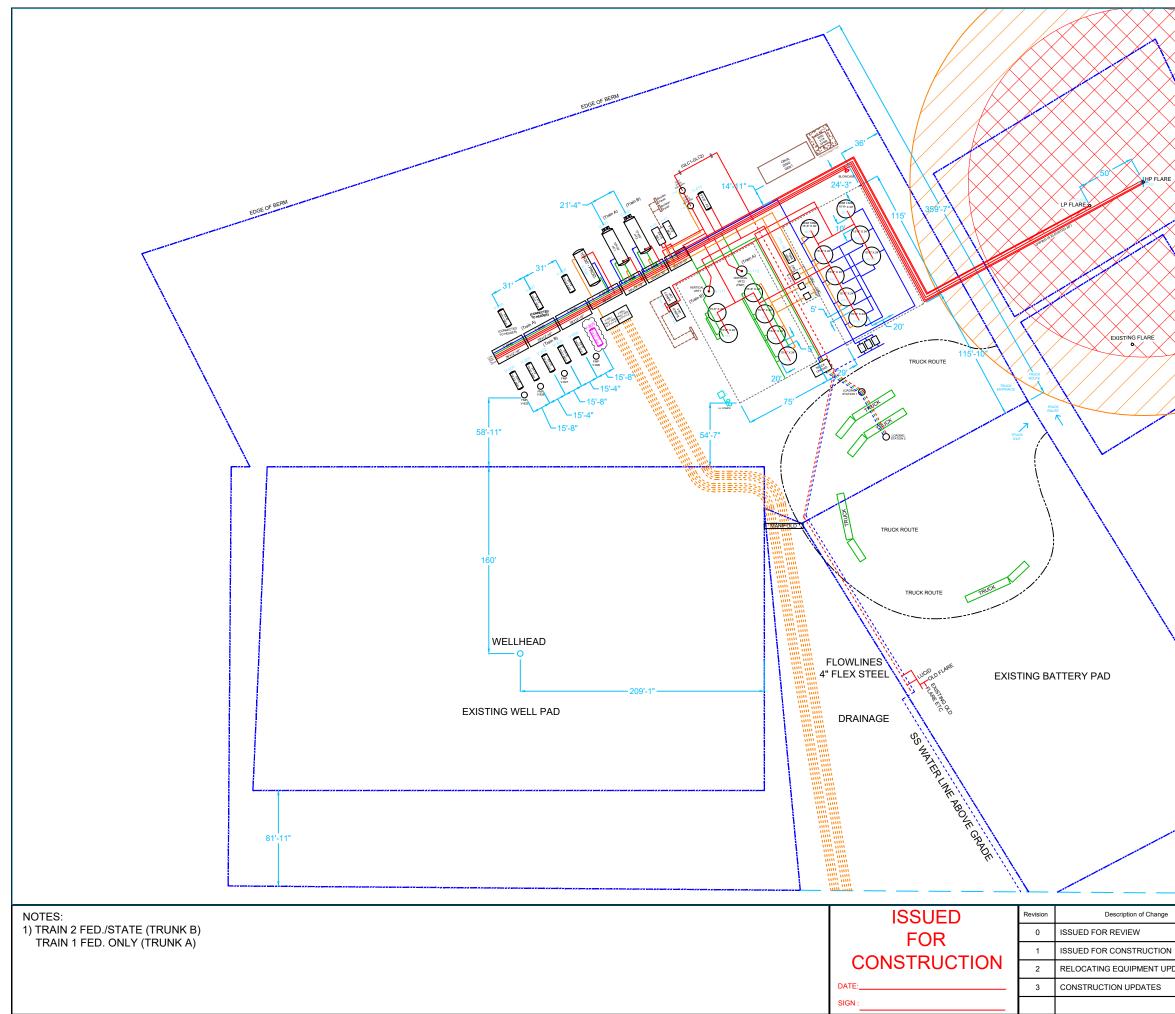

Section 4

Process Flow Sheet

A **process flow sheet** and/or block diagram indicating the individual equipment, all emission points and types of control applied to those points. The unit numbering system should be consistent throughout this application.

A process flow diagram is included.

XTO Energy Inc. Corral Canyon Expansion Tank Battery Process Flow Diagram


Tab 5Section 5 - Plot Plan Drawn To Scale

Section 5

Plot Plan Drawn To Scale

A <u>plot plan drawn to scale</u> showing emissions points, roads, structures, tanks, and fences of property owned, leased, or under direct control of the applicant. This plot plan must clearly designate the restricted area as defined in UA1, Section 1-D.12. The unit numbering system should be consistent throughout this application.

A plot plan for the facility is included.

\searrow			
$\langle \rangle \rangle$	\times		$\langle \lambda \rangle$
\times	$\langle \rangle \rangle$	\sim	
\times	\sim	\sim	$//\lambda$
\times	\times	\times	
\times	XX	$\times \!$	$\langle \rangle / \rangle$
\times	$\times \times$	$\times \times$	\times / / λ
\times	$\times \times$	$\times \times$	\times / / λ
	\times	\bigvee	\times
	>>	$\langle \rangle$	\times
	>>	$\langle \times \rangle$	R150'
$\langle \rangle \rangle$	\bigcirc	$\langle \rangle \langle$	\times / / / /
$\times \times \times$	Δ	$\langle \rangle \langle \rangle$	\mathbf{A} / \mathbf{A}
\sim	XX	$\langle \rangle \rangle$	R200'
\times	\times	\nearrow	
$\times \times$	\times	\mathcal{A}	
\times	\sim	. / /	
\sim	XV	. / /	
7			
- Contraction of the second se			
	1		
		1	
		\	
		1	
		1	
		, ,	
		1	
		1	
\backslash			
\mathbf{A}			, A
\sim			
$\langle \rangle$			
``````````````````````````````````````	$\backslash$		
	$\mathbf{N}$		
	$\sim$		
		<b>N</b>	
		1	Λ. I I
	and the second se		N N N N N N N N N N N N N N N N N N N
and the second se			
2	Date	Ву	
	07/23/18	JSF	CORRAL CANYON EXP.
N	11/07/18	JSF	ENERGY COUNTY
PDATE	02/18/19	JSF	PLOT PLAN
	04/02/19	JSF	XTO - DB - CC20 - 0TBAT - PLOT - 000 - 0116 - 3
			Company Division Field Facility Doc Type Equip Doc # Revision
		1	

Tab 6Section 6 - All Calculations

# Section 6

# **All Calculations**

<u>Show all calculations</u> used to determine both the hourly and annual controlled and uncontrolled emission rates. All calculations shall be performed keeping a minimum of three significant figures. Document the source of each emission factor used (if an emission rate is carried forward and not revised, then a statement to that effect is required). If identical units are being permitted and will be subject to the same operating conditions, submit calculations for only one unit and a note specifying what other units to which the calculations apply. All formulas and calculations used to calculate emissions must be submitted. The "Calculations" tab in the UA2 has been provided to allow calculations to be linked to the emissions tables. Add additional "Calc" tabs as needed. If the UA2 or other spread sheets are used, all calculation spread sheet(s) shall be submitted electronically in Microsoft Excel compatible format so that formulas and input values can be checked. Format all spread sheets and calculations such that the reviewer can follow the logic and verify the input values. Define all variables. If calculation spread sheets are not used, provide the original formulas with defined variables. Additionally, provide subsequent formulas showing the input values for each variable in the formula. All calculations, including those calculations are imbedded in the Calc tab of the UA2 portion of the application, the printed Calc tab(s), should be submitted under this section.

**Tank Flashing Calculations**: The information provided to the AQB shall include a discussion of the method used to estimate tank-flashing emissions, relative thresholds (i.e., NOI, permit, or major source (NSPS, PSD or Title V)), accuracy of the model, the input and output from simulation models and software, all calculations, documentation of any assumptions used, descriptions of sampling methods and conditions, copies of any lab sample analysis. If Hysis is used, all relevant input parameters shall be reported, including separator pressure, gas throughput, and all other relevant parameters necessary for flashing calculation.

**SSM Calculations**: It is the applicant's responsibility to provide an estimate of SSM emissions or to provide justification for not doing so. In this Section, provide emissions calculations for Startup, Shutdown, and Routine Maintenance (SSM) emissions listed in the Section 2 SSM and/or Section 22 GHG Tables and the rational for why the others are reported as zero (or left blank in the SSM/GHG Tables). Refer to "Guidance for Submittal of Startup, Shutdown, Maintenance Emissions in Permit Applications (http://www.env.nm.gov/aqb/permit/app_form.html) for more detailed instructions on calculating SSM emissions. If SSM emissions are greater than those reported in the Section 2, Requested Allowables Table, modeling may be required to ensure compliance with the standards whether the application is NSR or Title V. Refer to the Modeling Section of this application for more guidance on modeling requirements.

**Glycol Dehydrator Calculations**: The information provided to the AQB shall include the manufacturer's maximum design recirculation rate for the glycol pump. If GRI-Glycalc is used, the full input summary report shall be included as well as a copy of the gas analysis that was used.

Road Calculations: Calculate fugitive particulate emissions and enter haul road fugitives in Tables 2-A, 2-D and 2-E for:

- 1. If you transport raw material, process material and/or product into or out of or within the facility and have PER emissions greater than 0.5 tpy.
- 2. If you transport raw material, process material and/or product into or out of the facility more frequently than one round trip per day.

#### Significant Figures:

A. All emissions standards are deemed to have at least two significant figures, but not more than three significant figures.

**B.** At least 5 significant figures shall be retained in all intermediate calculations.

**C.** In calculating emissions to determine compliance with an emission standard, the following rounding off procedures shall be used:

- (1) If the first digit to be discarded is less than the number 5, the last digit retained shall not be changed;
- (2) If the first digit discarded is greater than the number 5, or if it is the number 5 followed by at least one digit other than the number zero, the last figure retained shall be increased by one unit; and
- (3) If the first digit discarded is exactly the number 5, followed only by zeros, the last digit retained shall be rounded upward if it is an odd number, but no adjustment shall be made if it is an even number.
- (4) The final result of the calculation shall be expressed in the units of the standard.

**Control Devices:** In accordance with 20.2.72.203.A(3) and (8) NMAC, 20.2.70.300.D(5)(b) and (e) NMAC, and 20.2.73.200.B(7) NMAC, the permittee shall report all control devices and list each pollutant controlled by the control device

XTO Energy Inc.

regardless if the applicant takes credit for the reduction in emissions. The applicant can indicate in this section of the application if they chose to not take credit for the reduction in emission rates. For notices of intent submitted under 20.2.73 NMAC, only uncontrolled emission rates can be considered to determine applicability unless the state or federal Acts require the control. This information is necessary to determine if federally enforceable conditions are necessary for the control device, and/or if the control device produces its own regulated pollutants or increases emission rates of other pollutants.

### Gas Lift Compressor (GLC1, GLC2)

The gas lift compressors are not emission points. They are electric. If not in use, gas is routed to the sales line (see below).

#### Heater Treaters (HTR1, HTR2)

Emission rates for NOx, CO, VOC, and PM were calculated using AP-42 factors for external natural gas combustion sources, Table 1.4-1 and 1.4-2.  $PM_{10}$  and  $PM_{2.5}$  emissions are set equal to PM emissions as a conservative measure. SO₂ emissions were calculated based on the units' fuel consumption and a maximum sulfur content of 5 gr/100 scf. Hazardous Air Pollutants (HAPs) were calculated using AP-42 factors.

#### **Electric Booster Compressors (BC1, BC2)**

The booster compressors are not emission points; however, when a compressor shuts down for maintenance, gas from the heater treaters is routed to HPF1. See HPF1 for more details on calculations.

#### High Pressure Flare (HPF1)

The flare uses a continuously lit pilot. Emission rates for  $NO_x$  and CO are calculated using factors from TNRCC. H₂S, SO₂ and VOC emissions were calculated based on the gas analysis. The pilot was conservatively assumed to use 400 scf/hr of pilot/purge gas.

HPF1 controls gas from the heater treaters when the booster compressors are down. BC1/BC2 downtime is estimated to be 876 hours per year. During normal operation, the boosters collects 100% of the gas using a closed system. During downtime, all of the gas is routed to the flare with a control efficiency of 98%. The mass flow and composition of gas generated by the heater treaters was modeled using Promax.

The high pressure flare is also used to flare inlet gas. As a conservative estimate, approximately 60.9 mmscfd of inlet gas flaring was included. A value of 210 hours per year was chosen for illustrative purposes to estimate annual rates. The number of hours is not intended to be enforceable. Emission rates for  $NO_x$  and CO are calculated using factors from TNRCC. H₂S, SO₂ and VOC emissions were calculated based on the gas analysis.

#### Low Pressure Flare (LPF1)

The flare uses a continuously lit pilot. Emission rates for  $NO_x$  and CO are calculated using factors from TNRCC.  $H_2S$ ,  $SO_2$  and VOC emissions were calculated based on the gas analysis. The pilots were conservatively assumed to use 200 scf/hr of pilot/purge gas.

The low pressure flare is used to control the VRT vapors that are not captured by the VRU during normal operation, all vapors from the VRT during VRU downtime, all vapors from the storage tanks not captured by the VRT, and truck loading vapors. The mass flow of gas generated included flashing, working, and breathing losses from the oil and water storage tanks. Hourly rates assumed zero capture by the VRU. Emission rates for  $NO_x$  and CO are calculated using factors from TNRCC. H₂S, SO₂ and VOC emissions were calculated based on the gas analysis. A VOC control efficiency of 98% was used.

#### Vapor Recovery Towers (VRT1/VRT2)

The VRT is a piece of process equipment, not an emission point. The mass flow of gas generated at the VRT was modeled using Promax. Gas from the VRT is routed to sales through a vapor recovery unit (VRU1-VRU2). The VRUs collect 98% of the gas generated at the VRT during normal operation, with any remaining gas in the closed vent system routed to the low pressure flares. XTO elected not to assume the 100% collection efficiency used by the AQB in the application forms. VRU1-VRU2 downtime is estimated to be 1,752 hours per year, during which time vapors are routed directly to LPF1. Any emissions resulting from combustion of gas generated at the VRTs are represented at the low pressure flare.

XTO Energy Inc.

Corral Canyon Tank Battery

Flashing and working/breathing emissions from the oil storage tanks were estimated using Promax, assuming an oil flow of 20,500 BOPD produced oil from surrounding wells. Another 5,000 BOPD of dead oil can also flow into the site. Both sets of oil tanks are controlled using a VRU/Flare closed vent system. TK1-TK-6 use VRU3 and LPF1.

### Water Skim Tank (SKTK1-SKTK2)

Water skim tank flash and working/breathing emissions were estimated using Promax. The water flow used in the calculations was 60,000 BWPD. LPF1 is used to control emissions from the water tanks.

### Water Run Tanks (PWTK1-PWTK6)

Water run tank working/breathing emissions were estimated using Promax. Flash emissions are not expected downstream from the skim tanks. LPF1 is used to control emissions from the water tanks. Water is piped offsite for disposal.

### **Fugitives (FUG1)**

Fugitives for the facility were calculated in EPA/API average emission factors.

### Vapor Recovery Units (VRU1/VRU2 and VRU3)

The vapor recovery units are not control devices, as demonstrated by the cost-benefit analysis in Section 5.

#### Truck Loading (TL1)

Truck loading of oil is calculated using the calculation method from AP-42 Section 5.2. The liquid properties were obtained from Promax. A collection efficiency of 98.7% was used for DOT trucks and a control efficiency of 98% was used for flares.

# Section 6.a

# **Green House Gas Emissions**

Form-Section 6 last revised: 5/3/16

Section 6, Page 3

**Title V (20.2.70 NMAC), Minor NSR (20.2.72 NMAC), and PSD (20.2.74 NMAC)** applicants must estimate and report greenhouse gas (GHG) emissions to verify the emission rates reported in the public notice, determine applicability to 40 CFR 60 Subparts, and to evaluate Prevention of Significant Deterioration (PSD) applicability. GHG emissions that are subject to air permit regulations consist of the sum of an aggregate group of these six greenhouse gases: carbon dioxide (CO₂), nitrous oxide (N₂O), methane (CH₄), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride (SF₆).

## **Calculating GHG Emissions:**

1. Calculate the ton per year (tpy) GHG mass emissions and GHG CO₂e emissions from your facility.

**2.** GHG mass emissions are the sum of the total annual tons of greenhouse gases without adjusting with the global warming potentials (GWPs). GHG CO₂e emissions are the sum of the mass emissions of each individual GHG multiplied by its GWP found in Table A-1 in 40 CFR 98 <u>Mandatory Greenhouse Gas Reporting</u>.

3. Emissions from routine or predictable start up, shut down, and maintenance must be included.

4. Report GHG mass and GHG  $CO_2e$  emissions in Table 2-P of this application. Emissions are reported in <u>short</u> tons per year and represent each emission unit's Potential to Emit (PTE).

**5.** All Title V major sources, PSD major sources, and all power plants, whether major or not, must calculate and report GHG mass and CO2e emissions for each unit in Table 2-P.

**6.** For minor source facilities that are not power plants, are not Title V, and are not PSD there are three options for reporting GHGs in Table 2-P: 1) report GHGs for each individual piece of equipment; 2) report all GHGs from a group of unit types, for example report all combustion source GHGs as a single unit and all venting GHGs as a second separate unit; 3) or check the following  $\square$  By checking this box, the applicant acknowledges the total CO2e emissions are less than 75,000 tons per year.

### Sources for Calculating GHG Emissions:

- Manufacturer's Data
- AP-42 Compilation of Air Pollutant Emission Factors at http://www.epa.gov/ttn/chief/ap42/index.html
- EPA's Internet emission factor database WebFIRE at http://cfpub.epa.gov/webfire/

• 40 CFR 98 <u>Mandatory Green House Gas Reporting</u> except that tons should be reported in short tons rather than in metric tons for the purpose of PSD applicability.

• API Compendium of Greenhouse Gas Emissions Methodologies for the Oil and Natural Gas Industry. August 2009 or most recent version.

• Sources listed on EPA's NSR Resources for Estimating GHG Emissions at http://www.epa.gov/nsr/clean-air-act-permitting-greenhouse-gases:

### **Global Warming Potentials (GWP):**

Applicants must use the Global Warming Potentials codified in Table A-1 of the most recent version of 40 CFR 98 Mandatory Greenhouse Gas Reporting. The GWP for a particular GHG is the ratio of heat trapped by one unit mass of the GHG to that of one unit mass of  $CO_2$  over a specified time period.

"Greenhouse gas" for the purpose of air permit regulations is defined as the aggregate group of the following six gases: carbon dioxide, nitrous oxide, methane, hydrofluorocarbons, perfluorocarbons, and sulfur hexafluoride. (20.2.70.7 NMAC, 20.2.74.7 NMAC). You may also find GHGs defined in 40 CFR 86.1818-12(a).

#### Metric to Short Ton Conversion:

Short tons for GHGs and other regulated pollutants are the standard unit of measure for PSD and title V permitting programs. 40 CFR 98 <u>Mandatory Greenhouse Reporting</u> requires metric tons.

1 metric ton = 1.10231 short tons (per Table A-2 to Subpart A of Part 98 – Units of Measure Conversions)

#### XTO ENERGY INC. CORRAL CANYON TANK BATTERY FACILITY EMISSIONS SUMMARY

		1			•		•		•		•				·
EMISSION SOURCE DESCRIPTION	FACILITY IDENTIFICATION NUMBER	UNIT NUMBER	N	Ox	c	0	V( (INCLUE	OC DES HAPs)	S	O ₂	PM ₁	0 & 2.5	HA	APs	CO2e
	(FIN)		lb/hr	ТРҮ	lb/hr	ТРҮ	lb/hr	ТРҮ	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	TPY
11.1 L PSI GENERATOR ENGINE	ENG1	ENG1	0.59	2.59	1.18	5.18	0.53	2.33	0.03	0.13	0.03	0.12	0.13	0.55	1443
FUGITIVE EMISSIONS: EQUIPMENT LEAKS	FUG1	FUG1					2.46	10.79					0.13	0.59	320
HEATER TREATER: 4.0 MMBTU/HR	HTR1	HTR1	0.56	2.45	0.47	2.06	0.03	0.13	0.00	0.01	0.04	0.19	0.01	0.03	2052
HEATER TREATER: 4.0 MMBTU/HR	HTR2	HTR2	0.56	2.45	0.47	2.06	0.03	0.13	0.00	0.01	0.04	0.19	0.01	0.03	2052
TRUCK LOADING - OIL (UNCOLLECTED VAPORS)	TL1	TL1					0.79	2.88					0.03	0.12	
ROAD EMISSIONS	ROAD	ROAD									0.19	0.67			
VAPOR RECOVERY TOWERS	VRT1-VRT2	LPF1						Emission	s Represent	ed at LPF1			•		
OIL STORAGE TANK	TK1	LPF1						Emission	s Represent	ed at LPF1					
OIL STORAGE TANK	TK2	LPF1						Emission	s Represent	ed at LPF1					
OIL STORAGE TANK	TK3	LPF1						Emission	s Represent	ed at LPF1					
OIL STORAGE TANK	TK4	LPF1						Emission	s Represent	ed at LPF1					
OIL STORAGE TANK	TK5	LPF1						Emission	s Represent	ed at LPF1					
OIL STORAGE TANK	TK6	LPF1						Emission	s Represent	ed at LPF1					
SKIM TANKS	SKTK1	LPF1						Emission	s Represent	ed at LPF1					
SKIM TANKS	SKTK2	LPF1						Emission	s Represent	ed at LPF1					
PRODUCED WATER TANK	PWTK1	LPF1						Emission	s Represent	ed at LPF1					
PRODUCED WATER TANK	PWTK2	LPF1						Emission	s Represent	ed at LPF1					
PRODUCED WATER TANK	PWTK3	LPF1						Emission	s Represent	ed at LPF1					
PRODUCED WATER TANK	PWTK4	LPF1						Emission	s Represent	ed at LPF1					
PRODUCED WATER TANK	PWTK5	LPF1						Emission	s Represent	ed at LPF1					
PRODUCED WATER TANK	PWTK6	LPF1						Emission	s Represent	ed at LPF1					
HIGH PRESSURE FLARE	HPF1	HPF1	491.84	54.00	981.90	107.80	1016.95	115.21	3.93	0.44	19.30	2.05	30.27	3.50	42540
LOW PRESSURE FLARE	LPF1	LPF1	13.09	19.80	26.14	39.52	69.29	97.58	0.15	0.28	0.29	0.46	3.04	4.42	489
SSM/MALFUNCTIONS	SSM/MF	SSM/MF						10.00							
			N	Ox	c	0	V	OC DES HAPs)	S	O ₂	PM	0 & 2.5	HA	APs	CO2e
TOTAL FACILITY	WIDE EMISSIONS	5	lb/hr	ТРҮ	lb/hr	ТРҮ	lb/hr	TPY	lb/hr	ТРҮ	lb/hr	ТРҮ	lb/hr	ТРҮ	ТРҮ
			506.64	81.29	1010.16	156.62	1090.08	239.06	4.12	0.87	19.90	3.67	33.62	9.25	48896

CORRAL CANYON TANK BATTERY

#### FACILITY EMISSIONS SUMMARY - UNCONTROLLED EMISSIONS DURING NORMAL OPERATION

			EMIS	SSIONS S	UMMARY	( TABLE								
	FACILITY IDENTIFICATION		N	Ox	c	0		OC DES HAPs)	S	D ₂	PM ₁	0 & 2.5	н	APs
EMISSION SOURCE DESCRIPTION	NUMBER (FIN)	UNIT NUMBER	lb/hr	ТРҮ	lb/hr	ТРҮ	lb/hr	ТРҮ	lb/hr	TPY	lb/hr	ТРҮ	lb/hr	ТРҮ
1.1 L PSI GENERATOR ENGINE	ENG1	ENG1	0.59	2.59	1.18	5.18	0.53	2.33	0.03	0.13	0.03	0.12	0.13	0.55
FUGITIVE EMISSIONS: EQUIPMENT LEAKS	FUG1	FUG1					2.46	10.79	-				0.13	0.59
HEATER TREATER: 4.0 MMBTU/HR	HTR1	HTR1	0.56	2.45	0.47	2.06	0.03	0.13	0.00	0.01	0.04	0.19	0.01	0.03
HEATER TREATER: 4.0 MMBTU/HR	HTR2	HTR2	0.56	2.45	0.47	2.06	0.03	0.13	0.00	0.01	0.04	0.19	0.01	0.03
FRUCK LOADING - OIL UNCOLLECTED VAPORS)	TL-OIL	TL-OIL					60.76	221.56	1		-		2.62	9.55
ROAD EMISSIONS	ROAD	ROAD							-		0.19	0.67		
APOR RECOVERY TOWERS	VRT1-VRT2	VRT1-VRT2					2971.77	13016.34					124.89	547.00
DIL STORAGE TANK	TK1	TK1					69.84	305.92					2.94	12.89
DIL STORAGE TANK	TK2	TK2					69.84	305.92					2.94	12.89
DIL STORAGE TANK	TK3	TK3					69.84	305.92					2.94	12.89
DIL STORAGE TANK	TK4	TK4					69.84	305.92					2.94	12.89
DIL STORAGE TANK	TK5	TK5					69.84	305.92					2.94	12.89
DIL STORAGE TANK	TK6	TK6					69.84	305.92					2.94	12.89
SKIM TANK	SKTK1	SKTK1					18.48	80.92					1.83	8.03
SKIM TANK	SKTK2	SKTK2					18.48	80.92	-				1.83	8.03
PRODUCED WATER TANK	PWTK1	LPF1					0.13	0.55	-				0.01	0.05
PRODUCED WATER TANK	PWTK2	LPF1					0.13	0.55	-				0.01	0.05
PRODUCED WATER TANK	PWTK3	LPF1					0.13	0.55	-		-		0.01	0.05
PRODUCED WATER TANK	PWTK4	LPF1					0.13	0.55	-				0.01	0.05
PRODUCED WATER TANK	PWTK5	LPF1					0.13	0.55	1		-		0.01	0.05
PRODUCED WATER TANK	PWTK6	LPF1					0.13	0.55	-				0.01	0.05
HIGH PRESSURE FLARE	HPF	HPF	0.08	0.34	0.15	0.67	0.16	0.69	0.00	0.00	0.00	0.01	0.00	0.02
OW PRESSURE FLARE	LPF1	LPF1	0.04	0.17	0.08	0.33	0.08	0.34	0.00	0.00	0.00	0.01	0.00	0.01
			N	Ox		0	v	oc	S	0 ₂	PM.	0 & 2.5	н	APs
TOTAL FACILITY WI	OF FMISSIONS		lb/hr	ТРҮ	lb/hr	ТРҮ	(INCLUE Ib/hr	DES HAPs) TPY	lb/hr	ТРҮ	lb/hr	TPY	Ib/hr	тру
IOTAL FACILITY WI	JE LIVII3310183		1.83	8.00	2.35	10.30	3492.59	15252.98	0.04	0.16	0.31	1.19	149.19	651.53

#### XTO ENERGY INC. CORRAL CANYON TANK BATTERY COMPRESSOR ENGINES

							C	ontrol	led Er	nissior	ns Calc	ulatio	ns - C	ompre	essor I	ingine	es										
						Manufact	urer's Data			AP-42 Facto	rs																
						g/h	p-hr			lb/MMBtu	1				16	/hr							tj	ру			
Source ID	Unit Description	Yearly Operating Hours	Rated HP	MMbtu/hp-hr ¹ (HHV)	NOx ²	CO ²	VOC ²	нсно	SO23	PM _{10 &amp; 2.5} 4	Aceta- ldehyde	NOx	со	voc	нсно	SO2	PM _{10 &amp; 2.5}	Aceta- ldehyde	HAPs	NOx	со	voc	нсно	$SO_2$	PM _{10 &amp; 2.5}	Aceta- ldehyde	HAPs
ENG1	11.1 L PSI GENERATOR ENGINE	8760	268	0.01050	1.00	2.00	0.90	0.200	0.01030	0.01006	0.00279	0.59	1.18	0.53	0.12	0.03	0.03	0.01	0.13	2.59	5.18	2.33	0.52	0.13	0.12	0.03	0.55
																	·										
² Emission facto	rs are based on NSPS Subpart JJJJ lin	nitations for th	e engine s	ize							1		т	otal Em	issions F	er Pollu	itant (TP	m		NOx	со	voc	нсно	$SO_2$	PM _{10 &amp; 2.5}	Aceta- ldehyde	HAPs
³ SO ₂ Emissions	were calculated based on 5 gr S/100 s	scf											1	our Elli	13310115 1	ci i ont	(11	•,		2.59	5.18	2.33	0.52	0.13	0.12	0.03	0.55
⁴ PM Emission I	actor = Sum of all PM factors in AP-	42.																									

#### XTO ENERGY INC. CORRAL CANYON TANK BATTERY COMPRESSOR ENGINES

							Un	contro	olled H	missio	ons Cal	lculati	ions -	Comp	ressor	Engi	nes										
									I			Ī															
						Manufactu	urer's Data			AP-42 Facto	rs									-							
						g/hj	p-hr			lb/MMBtu	ı				Ibj	/hr							tj	<i>by</i>			
Source ID	Unit Description	Yearly Operating Hours	Rated HP	MMbtu/hp-hr	NOx	со	VOC1	нсно	SO22	PM _{10 &amp; 25} 3	Aceta- ldehyde	NOx	со	VOC	нсно	SO ₂	PM _{10 &amp; 25}	Aceta- ldehyde	HAPs	NOx	со	VOC	нсно	SO2	PM _{10 &amp; 2.5}	Aceta- ldehyde	HAPs
ENG1	11.1 L PSI GENERATOR ENGINE	8760	268	0.01050	1.00	2.00	0.90	0.20	0.01030	0.01006	0.00279	0.59	1.18	0.53	0.12	0.03	0.03	0.01	0.13	2.59	5.18	2.33	0.52	0.13	0.12	0.03	0.55
¹ Emission Fact	or Includes HCHO												т	otal Em	issions P	Per Pollu	ıtant (TP	Y)		NOx	со	VOC	нсно	$SO_2$	PM _{10 &amp; 2.5}	Aceta- ldehyde	HAPs
² SO ₂ Emission	s were calculated based on 5 gr S/100 s	scf												our Em	100101131			•,		2.59	5.18	2.33	0.52	0.13	0.12	0.03	0.55
³ PM Emission	Factor = Sum of all PM factors in AP-	12.																									

### XTO ENERGY INC. CORRAL CANYON TANK BATTERY COMPRESSOR ENGINES

				Gre	eenhouse	Gas Ca	lculati	ons - C	ompre	essor E	ngines							
						10 CFR 98 Factors ² b/MMBtu				lb/hr					tj	y		
Source I	D Unit Description	Yearly Operating Hours	Rated HP	MMbtu/hp-hr ¹ (HHV)	CO2	CH ₄	N ₂ O	CO2	CH4	CH4 as CO2e	N ₂ O	N ₂ O as CO2e	CO2	CH4	CH4 as CO2e	N ₂ O	N ₂ O as CO2e	Total CO2e
ENG1	11.1 L PSI GENERATOR ENGINE	8760	268	0.010496012	107	0.002205	0.0002205	301.5680	0.0062	0.16	0.0006	0.18	1320.87	0.03	0.68	0.00	0.81	1322.36
										То	otal Emis	sions (TF	ΥY)				Total CO	
																	1322.36	·

#### XTO ENERGY INC. CORRAL CANYON TANK BATTERY BURNER CALCULATIONS

_						CRITI	ERIA &	REGUL	ATED P	OLLUT	ANTS							
					1	AP-42 Factor												
						lb/MMSCF	1				lb/hr					tpy		
ource ID	Fuel Gas (BTU/SCF)	Operating Hours	Burner Rating (MMBTU/Hr) ²	NOx	СО	VOC	$SO_2$	$PM_{10 \ \& \ 2.5}$	NOx	СО	VOC	SO ₂	PM _{10 &amp; 2.5}	NOx	со	VOC	SO ₂	PM10 & 2.5
HTR1	1387.0	8760	4.00	136	114	7.5	0.82	10.3	0.56	0.47	0.03	0.00	0.04	2.45	2.06	0.13	0.01	0.19
HTR2	1387.0	8760	4.00	136	114	7.5	0.82	10.3	0.56	0.47	0.03	0.00	0.04	2.45	2.06	0.13	0.01	0.19
tors are addin	sted for Site Eng	l Heating Values F	xample Calculation - 1	Nov Factor - 1	00 * 1348.4 / 10	020 = 132 lb/A4	MSCE AP 4	7 Table 1 4.1 1	2 & 1 4 3									
burner effic		r meaning varue. r	stample Calculation -	NOX Factor - 1	00 1348.471	020 – 152 lby WI	M3CF. AI 42	- Table 1.4-1, 1.	-2, & 1.1-3.									79.4
												Tota	l (tpy)	NOx	СО	VOC	SO ₂	PM _{10 &amp; 2.5}
														4.91	4.12	0.27	0.03	0.37
						HAZA	ARDOU	S AIR P	OLLUT/	ANTS (I	HAPs)							
						HAZA	ARDOU	IS AIR P	OLLUTA	ANTS (I	HAPs)							
						HAZA		IS AIR P	OLLUTA	ANTS (I	HAPs)							
							rs	JS AIR P	OLLUTA	ANTS (F	HAPs)					tpy		
ource ID	Fuel Gas (BTU/SCF)	Operating Hours	Burner Rating (MMBTU/Hr)	Benzene	Toluene	AP-42 Factor	rs	<b>IS AIR P</b>	Benzene	ANTS (F	,	НСНО	Dicloro- benzene	Benzene	Toluene	tpy N-Hexane	НСНО	
				Benzene 0.002856		AP-42 Factor lb/MMSCF	rs				lb/hr	НСНО 0.000294		Benzene 0.000036	Toluene 0.000058		HCHO 0.001288	benzene
iource ID HTR1 HTR2	(BTU/SCF)	Hours	(MMBTU/Hr)		Toluene	AP-42 Factor lb/MMSCF N-Hexane	rs HCHO	Diclorobenz	Benzene	Toluene	lb/hr N-Hexane		benzene			N-Hexane		Dicloro- benzene 0.000021 0.000021
HTR1	(BTU/SCF) 1387.0	Hours 8760	(MMBTU/Hr) 4.00	0.002856	Toluene 0.004623	AP-42 Factor lb/MMSCF N-Hexane 2.448	rs HCHO 0.101989	Diclorobenz	Benzene 0.000008	Toluene 0.000013	lb/hr N-Hexane 0.007059	0.000294	benzene 0.000005	0.000036	0.000058	N-Hexane 0.030918	0.001288	benzene 0.000021
HTR1 HTR2	(BTU/SCF) 1387.0	Hours 8760 8760	(MMBTU/Hr) 4.00	0.002856	Toluene 0.004623	AP-42 Factor lb/MMSCF N-Hexane 2.448	rs HCHO 0.101989	Diclorobenz	Benzene 0.000008	Toluene 0.000013	lb/hr N-Hexane 0.007059	0.000294	benzene 0.000005	0.000036	0.000058	N-Hexane 0.030918	0.001288	benzene 0.000021 0.000021
HTR1 HTR2	(BTU/SCF) 1387.0 1387.0 Table 1.4-1, 1.4-2,	Hours 8760 8760	(MMBTU/Hr) 4.00	0.002856	Toluene 0.004623	AP-42 Factor lb/MMSCF N-Hexane 2.448	rs HCHO 0.101989	Diclorobenz	Benzene 0.000008	Toluene 0.000013	Ib/hr N-Hexane 0.007059 0.007059	0.000294	benzene 0.000005 0.000005	0.000036	0.000058	N-Hexane 0.030918 0.030918	0.001288	benzene 0.000021 0.000021 Diclorober
HTR1 HTR2 urce: AP-42 -	(BTU/SCF) 1387.0 1387.0 Table 1.4-1, 1.4-2, Efficiency	Hours 8760 8760	(MMBTU/Hr) 4.00	0.002856	Toluene 0.004623 0.004623	AP-42 Factor lb/MMSCF N-Hexane 2.448 2.448	rs HCHO 0.101989 0.101989	Diclorobenz	Benzene 0.000008	Toluene 0.000013	Ib/hr N-Hexane 0.007059 0.007059	0.000294	benzene 0.000005 0.000005	0.000036 0.000036 Benzene	0.000058 0.000058 Toluene	N-Hexane 0.030918 0.030918 Hexane	0.001288 0.001288 HCHO	benzene 0.000021

# CORRAL CANYON TANK BATTERY

### **BURNER CALCULATIONS - GHG EMISSIONS**

### **CRITERIA & REGULATED POLLUTANTS**

				40	) CFR 98 Fact	ors						
					lb/MMBtu			lb/hr			Tons / Year	
Source ID	Fuel Gas (BTU/SCF)	Operating Hours	Burner Rating (MMBTU/Hr)	CO ₂	CH4	N ₂ O	CO ₂	CH4	N ₂ O	CO ₂	$CH_4$	N ₂ O
HTR1	1387.0	8760	4.00	117	0.00	0.00	467.989	0.009	0.001	2049.793	0.039	0.004
HTR2	1387.0	8760	4.00	117	0.00	0.00	467.989	0.009	0.001	2049.793	0.039	0.004
*40 CFR 98 En	nission Factors.	Global warmin	g potential of 25 f	or CH4 and 2	<u>(</u>		Total I	Emissions (To	ns/Year)	4099.585	0.077	0.008

		Ca	onversion to C	D2e		
Source	CO ₂	CH4	CH4 → CO2e	N2O	N2O → CO2e	Total CO2e
HTR1	2049.793	0.039	0.966	0.004	1.151	2051.910
HTR2	2049.793	0.039	0.966	0.004	1.151	2051.910
Total	4099.585	0.039	0.966	0.004	1.151	4101.702

# CORRAL CANYON TANK BATTERY

### AUXH - EXHAUST STACK FLOW & FUEL CONSUMPTION RATES

Source Name	HTR2 and HTR3
Burner Rating (btu/hr)	4000000
Heating Value (btu/scf)	1387
3" eclipse air mixer: (Air/Gas Ratio) ¹	5/1
Stack Temperature (°F)	1000
Stack Diameter (ft)	1
Stack Height (ft)	20
Fuel Consumption (scf/hr)	2884
Fuel Consumption (scf/day)	69212
Fuel Consumption (mmscf/year)	25.262
Air Injection Rate (scf/hr)	28838.2
Total exhaust flow rate @ STP (scf/hr)	31722.1
Total exhaust flow rate @ STP (scf/sec)	8.8
Total exhaust flow rate @ 1000 °F (acf/hr)	89065.8
Total exhaust flow rate @ 1000 °F (acf/sec)	24.7
Exhaust Stack Exit Velocity @ STP (ft/sec)	11.219
Exhaust Stack Exit Velocity @ 1000 °F (ft/sec)	31.501

# XTO ENERGY INC. CORRAL CANYON TANK BATTERY FUEL GAS ANALYSIS - PROMAX RESULTS

Conversion of M	Aole Percent to Wei	ight Percent
Component	Mole %	Weight %
Carbon Dioxide	0.1764	0.3293
Nitrogen	0.9094	1.0808
Methane	69.2643	47.1415
Ethane	14.8437	18.9358
Propane	8.2352	15.4060
Isobutane	1.1059	2.7269
n-Butane	2.7098	6.6819
Isopentane	0.6031	1.8459
n-Pentane	0.6456	1.9760
n-Hexane	0.1357	0.4962
Cyclohexane	0.0232	0.0829
i-C6	0.2154	0.7874
i-C7	0.2693	1.1448
Methylcyclohexane	0.0075	0.0311
Octane	0.0671	0.3253
Nonane	0.0103	0.0562
Benzene	0.0680	0.2252
Toluene	0.0363	0.1420
Ethylbenzene	0.0017	0.0078
o-Xylene	0.0077	0.0349
H2S	0.0009	0.0013
Water	0.6554	0.5009
2,2,4 Trimethylpentane	0.0082	0.0396
Decanes Plus	0.0000	0.0001
Total	100.00	100.0000
MOLECULAR	WEIGHT	23.57
SATURATE		1387.0
NMH		50.95
VOCs (NM		32.01
HAPs	/	0.95
H2S Mole Per		0.00
¹ Values from GPSA Enginee		

#### CORRAL CANYON TANK BATTERY

### COMBINED HP & LP FLARING - TOTAL EMISSIONS SUMMARY

				Flare	Emissions	Summary	Table					
	N	Эx	с	0		VOC Total HAPs)	S	O ₂	PM ₁	0 & 2.5	Total	HAPs
Stream Source	lb/hr	ТРҮ	lb/hr	ТРҮ	lb/hr	ТРҮ	lb/hr	ТРҮ	lb/hr	ТРҮ	lb/hr	ТРҮ
High Pressure Flaring	491.84	54.00	981.90	107.80	1016.95	115.21	3.93	0.44	19.30	2.05	30.27	3.50
Low Pressure Flaring	13.09	19.80	26.14	39.52	69.29	97.58	0.15	0.28	0.29	0.46	3.04	4.42
Total Emissions	504.93	73.79	1008.04	147.32	1086.24	212.80	4.08	0.71	19.59	2.50	33.31	7.92

# CORRAL CANYON TANK BATTERY

#### HP FLARING - TOTAL EMISSIONS SUMMARY

				Flare l	Emissions St	ummary Tab	le					
Stream Source	NOx	Ox	с	o		VOC Total HAPs)	S	0 ₂	PM ₁	.0 & 2.5	Total	HAPs
Stream Source	lb/hr	ТРҮ	lb/hr	ТРҮ	lb/hr	ТРҮ	lb/hr	ТРҮ	lb/hr	ТРҮ	lb/hr	ТРҮ
Pilot Fuel & Purge Gas	0.08	0.34	0.15	0.67	0.16	0.69	0.00	0.00	0.00	0.01	0.00	0.02
Booster Compressor MSS	6.09	2.67	12.16	5.32	23.32	10.21	0.07	0.03	0.02	0.01	0.92	0.40
Sales Gas Flaring	485.67	51.00	969.59	101.81	993.48	104.31	3.87	0.41	19.28	2.02	29.35	3.08
Total Emissions	491.84	54.00	981.90	107.80	1016.95	115.21	3.93	0.44	19.30	2.05	30.27	3.50

# XTO ENERGY INC. CORRAL CANYON TANK BATTERY HP FLARE - PILOT & PURGE GAS

Flare Pilot & Purge Gas Emissions									
r									
Pilot Fuel + Purge Gas	9600	SCF/Day							
Duration	8760	Hours/Year							
Flared	Yes	(Yes/No)							
Vented	No	(Yes/No)							
BTU	1387.05	Btu/scf							
Estimated Quantity	Total Estimated	Hourly Emission	Annualizad						

Component	Estimated Quantity Emitted from the Flare (lb/day)	Total Estimated Quantity Emitted (lb/day)	Hourly Emission Rate (lb/hr)	Annualized Emission Rate (TPY)
СО	3.668	3.668	0.15	0.67
NOx	1.838	1.838	0.08	0.34
VOCs	3.759	3.759	0.16	0.69
SO ₂	0.015	0.015	0.00	0.00
H ₂ S	0.000	0.000	0.00	0.00
PM 10 & 2.5	0.073	0.073	0.00	0.01

Flare Emission Factors
NOx: 0.138
CO: 0.2755

# XTO ENERGY INC. CORRAL CANYON TANK BATTERY TREATER GAS ANALYSIS - PROMAX RESULTS

(	Gas Composition	
Component	Mole %	Weight %
Carbon Dioxide	0.1935	0.2593
Nitrogen	0.2236	0.1908
Methane	41.2118	20.1368
Ethane	23.1411	21.1935
Propane	17.9809	24.1493
Isobutane	2.7647	4.8942
n-Butane	7.0651	12.5072
Isopentane	1.7129	3.7641
n-Pentane	1.8944	4.1629
n-Hexane	0.4442	1.1660
Cyclohexane	0.0764	0.1959
i-C6	0.6761	1.7745
i-C7	0.9233	2.8177
Methylcyclohexane	0.0263	0.0786
Octane	0.2612	0.9089
Nonane	0.0442	0.1725
Benzene	0.2203	0.5242
Toluene	0.1298	0.3644
Ethylbenzene	0.0067	0.0217
o-Xylene	0.0306	0.0988
H2S	0.0017	0.0018
Water	0.9427	0.5173
2,2,4 Trimethylpentane	0.0284	0.0989
Decanes Plus	0.0001	0.0007
Total	100.00	100.0000
MOLECULAR		32.83
SATURATE		1889.06
NMH0		78.89
VOCs (NM)	/	57.70
HAPs H2S Mole Per		2.27
	<u>.</u>	
¹ Values from GPSA Enginee	ring Data Book, Volume II, 1	istn Edition, Figure 23-2

### CORRAL CANYON TANK BATTERY

### HEATER TREATER GAS - FLARING VOC EMISSIONS

Emissions Component		Heater Treater ream	Controlled Heater Treater Stream (Booster Downtime - 100% Flared) ²		
	lb/hr	TPY	lb/hr	TPY	
Carbon Dioxide	5.240	22.951	0.105	0.046	
Nitrogen	3.856	16.887	0.077	0.034	
Methane	406.910	1782.266	8.138	3.565	
Ethane	428.262	1875.790	8.565	3.752	
Propane	487.992	2137.407	9.760	4.275	
Isobutane	98.899	433.178	1.978	0.866	
n-Butane	252.737	1106.988	5.055	2.214	
Isopentane	76.061	333.149	1.521	0.666	
n-Pentane	84.122	368.452	1.682	0.737	
n-Hexane	23.561	103.199	0.471	0.206	
Cyclohexane	3.959	17.340	0.079	0.035	
i-C6	35.858	157.060	0.717	0.314	
i-C7	56.939	249.391	1.139	0.499	
Methylcyclohexane	1.587	6.953	0.032	0.014	
Octane	18.366	80.442	0.367	0.161	
Nonane	3.486	15.271	0.070	0.031	
Benzene	10.593	46.396	0.212	0.093	
Toluene	7.363	32.249	0.147	0.064	
Ethylbenzene	0.439	1.925	0.009	0.004	
o-Xylene	1.996	8.743	0.040	0.017	
H2S	0.036	0.156	0.001	0.000	
Water	10.452	45.781	0.209	0.092	
2,2,4 Trimethylpentane	1.998	8.752	0.040	0.018	
Decanes Plus	0.015	0.066	0.000	0.000	

Emissions Component		led Heater Stream	Controlled Heater Treater Stream (Booster Downtime - 100% Flared) ²		
	lb/hr	TPY	lb/hr	TPY	
STREAM TOTAL	2020.73	8850.79	40.41	17.70	
VOC TOTAL	1165.97	5106.96	23.32	10.21	
HAP TOTAL	45.95	201.26	0.92	0.40	

¹Uncontrolled emissions and gas volume are based on Promax Results. Treater vapors are collected for sales by booster compressor. 100% of vapors are flared during booster downtime.

²Controlled Emissions were calculated by the following: Uncontrolled Emissions * (1 - VRU Efficiency) * (1 - Flare Destruction Efficiency) Flare Reduction = **98**% Booster Collection Efficiency = **100**%

³Annual controlled rate (tpy) calculated by multiplying hourly emission rate by booster downtime.

# XTO ENERGY INC. CORRAL CANYON TANK BATTERY HP FLARE COMBUSTION EMISSIONS - HEATER TREATER GAS

	Total Treater Gas Flared	560545	SCF/Day	
	Duration	876	Hours/Year	
	Flared	Yes	(Yes/No)	
	Vented	No	(Yes/No)	
	Heating Volume	1889.06	Btu/scf	
Component	Estimated Quantity Emitted from the Flare	Total Estimated Quantity Emitted (lb/day)	Hourly Emission Rate (lb/hr)	Annualized Emission Rate (TPY)
component	(lb/day)	(12) aug)		
СО	(lb/day) 291.729	291.729	12.16	5.32
-		· · ·	12.16 6.09	5.32 2.67
СО	291.729	291.729		
CO NOx	291.729 146.129	291.729 146.129	6.09	2.67

# XTO ENERGY INC. CORRAL CANYON TANK BATTERY INLET GAS ANALYSIS - PROMAX RESULTS

(	Gas Composition	
		-
Component	Mole %	Weight %
Carbon Dioxide	0.1764	0.3293
Nitrogen	0.9094	1.0808
Methane	69.2643	47.1415
Ethane	14.8437	18.9358
Propane	8.2352	15.4060
Isobutane	1.1059	2.7269
n-Butane	2.7098	6.6819
Isopentane	0.6031	1.8459
n-Pentane	0.6456	1.9760
n-Hexane	0.1357	0.4962
Cyclohexane	0.0232	0.0829
i-C6	0.2154	0.7874
i-C7	0.2693	1.1448
Methylcyclohexane	0.0075	0.0311
Octane	0.0671	0.3253
Nonane	0.0103	0.0562
Benzene	0.0680	0.2252
Toluene	0.0363	0.1420
Ethylbenzene	0.0017	0.0078
o-Xylene	0.0077	0.0349
H2S	0.0009	0.0013
Water	0.6554	0.5009
2,2,4 Trimethylpentane	0.0082	0.0396
Decanes Plus	0.0000	0.0001
Total	100.00	100.0000
MOLECULAR		23.57
SATURATE		1387.05
NMH		50.95
VOCs (NMI	/	32.01
HAPs LICE Mala Dec		0.95
H2S Mole Per		0.00
¹ Values from GPSA Enginee	ring Data Book, Volume II, 1	3th Edition, Figure 23-2

# **XTO ENERGY INC.** CORRAL CANYON TANK BATTERY HP FLARE COMBUSTION EMISSIONS

	Total Gas Flared	60,895,633	SCF/Day	
	Total Gas Flared	532,836,791	SCF/Year	
	Duration	210	Hours/Year ²	
	Flared	Yes	(Yes/No)	
	Vented	No	(Yes/No)	
	Heat Content	1387.05	Btu/scf	
Component	Estimated Quantity Emitted from the Flare (lb/day)	Total Estimated Quantity Emitted (lb/day)	Hourly Emission Rate (lb/hr) ¹	Annualized Emission Rate (TPY)
Component	Emitted from the	Quantity Emitted	Rate	Emission Rate
-	Emitted from the Flare (lb/day)	Quantity Emitted (lb/day)	Rate (lb/hr) ¹	Emission Rate (TPY)
СО	Emitted from the Flare (lb/day) 23270.135	Quantity Emitted (lb/day) 23270.135	Rate           (lb/hr) ¹ 969.59	Emission Rate (TPY) 101.81
CO NOx	Emitted from the Flare (lb/dav) 23270.135 11656.184	Quantity Emitted (lb/day) 23270.135 11656.184	Rate           (lb/hr) ¹ 969.59           485.67	Emission Rate (TPY) 101.81 51.00
CO NOx VOCs	Emitted from the Flare (lb/day) 23270.135 11656.184 23843.411	Quantity Emitted (lb/day) 23270.135 11656.184 23843.411	Rate           (lb/hr) ¹ 969.59           485.67           993.48	Emission Rate (TPY) 101.81 51.00 104.31

1) VOC calculation: Gas flow (scfd) * 14.7/10.73/528 * Molecular Weight * VOC Weight %/24 2) The number of hours is not meant to be enforceable. It is used to calculate an enforceable annual limit.

## XTO ENERGY INC. CORRAL CANYON TANK BATTERY HIGH PRESSURE FLARING EMISSIONS - GHG

Pilot Consumption Rate (scf/year)		Inlet Gas F (scf/ye		Treater Gas Flare Rate (scf/year)		
3504000	)	532,836	6,791	20,459,904		
Pilot & Purg	e Gas	Inlet Gas Co	ombusted	Treater Gas 0	Combusted	
		Ea,CH4 = Va * XCH4	4 * [(1- η)* ZL + ZU			
Va =	3504000	Va =	532836790.8	Va =	20459904	
XCH ₄ =	0.6926	XCH ₄ =	0.6926	XCH ₄ =	0.4121	
N =	0.98	N =	0.98	N =	0.98	
Z _L =	1	Z _L =	1	Z _L =	1	
Z _U =	0	Z _U =	0	Z _U =	0	
$Ea,CH_4 =$	48540	$Ea, CH_4 =$	7381314	Ea,CH ₄ =	168638	
		Ea,CO2 (uncombus	ted) = Va * XCO2			
Va =	3504000	Va =	532836790.8	Va =	20459904	
X _{CO2} =	0.0018	X _{CO2} =	0.0018	X _{CO2} =	0.0019	
Ea,CO2 (uncombusted)	6180	Ea,CO2 (uncombusted)	939749	Ea,CO2 (uncombusted)	39580	
		Ea,CO2 (combusted) = $\Sigma$	C (η * Va * Yj * Rj * ZL)			
Ea,CO2 (combusted) =	5130810	Ea,CO2 (combusted) =	780218072	Ea,CO2 (combusted) =	42734201	
		Es,n = Ea,n * (459.67 + Ts)	* Pa / (459.67 + Ta) * Ps			
$E_{a,n}(CH4) =$	43696	$E_{a,n}(CH4) =$	6644711	$E_{a,n}(CH4) =$	151809	
E _{a,n} (CO2) =	4624354	$E_{a,n}(CO2) =$	703203703	$E_{a,n}(CO2) =$	38505255	
		Masss,i = Es,	,i * ρi * 103			
Mass _{CH4}	0.839	Mass _{CH4}	127.578	Mass _{CH4}	2.915	
Mass _{C02}	243.241	Mass _{C02}	36988.515	Mass _{C02}	2025.376	
		CO2e = CO2 + (	(CH4 X GWP)			
CO ₂	243	CO ₂	36989	CO ₂	2025	
CH₄	1	CH ₄	128	CH ₄	3	
CO₂e	264	CO ₂ e	40178	CO ₂ e	2098	

### CORRAL CANYON TANK BATTERY

#### LP FLARING - TOTAL EMISSIONS SUMMARY

			Flar	e Emissions	Summary Ta	ble - Total Em	issions							
				1	Normal Opera	itions								
Stream Source	NOx	Ox	С	0		VOC Total HAPs)	SO ₂		PM ₁₀		PM _{10 &amp; 2.5}		Total	HAPs
Stream Source	lb/hr	ТРҮ	lb/hr	ТРҮ	lb/hr	ТРҮ	lb/hr	ТРҮ	lb/hr	ТРҮ	lb/hr	ТРҮ		
Pilot Fuel & Purge Gas	0.04	0.17	0.08	0.33	0.08	0.34	0.00	0.00	0.00	0.01	0.00	0.01		
Vapor Recovery Tower (VRT)	0.22	0.76	0.43	1.52	1.19	4.17	0.00	0.01	0.00	0.02	0.05	0.18		
Oil Storage Tanks	0.03	0.01	0.06	0.01	0.17	0.04	0.00	0.00	0.00	0.00	0.01	0.00		
Truck Loading of Oil	0.17	0.75	0.35	1.50	1.01	4.41	0.00	0.00	0.00	0.01	0.04	0.18		
Skim & Water Tanks	0.51	2.23	1.02	4.45	0.38	1.68	0.03	0.12	0.02	0.10	0.07	0.33		

VRU Downtime Emissions - MSS												
Stream Source	N	Эx	СО			Total VOC SO ₂		SO ₂ PM _{10 &amp; 2.5}		Total	HAPs	
Stream Source	lb/hr	ТРҮ	lb/hr	ТРҮ	lb/hr	ТРҮ	lb/hr	ТРҮ	lb/hr	ТРҮ	lb/hr	ТРҮ
Vapor Recovery Tower (VRT)	10.84	9.49	21.64	18.96	59.44	52.07	0.11	0.10	0.23	0.20	2.56	2.25
Oil Storage Tanks	1.53	6.38	3.06	12.75	8.38	34.87	0.01	0.05	0.03	0.12	0.35	1.47

Low Pressure Flaring Summary													
Stream Source	NOx		NOx CO		0	Total VOC (Includes Total HAPs)		$SO_2$		PM _{10 &amp; 2.5}		Total HAPs	
Stream Source	lb/hr	ТРҮ	lb/hr	ТРҮ	lb/hr	ТРҮ	lb/hr	ТРҮ	lb/hr	ТРҮ	lb/hr	ТРҮ	
Normal Operations ¹	0.72	3.92	1.44	7.82	1.47	10.64	0.03	0.13	0.03	0.13	0.12	0.70	
VRU Downtime - MSS	12.37	15.88	24.70	31.70	67.82	86.94	0.12	0.14	0.26	0.33	2.92	3.72	
Combined Flaring Total ²	13.09	19.80	26.14	39.52	69.29	97.58	0.15	0.28	0.29	0.46	3.04	4.42	

¹Hourly emissions during normal operations do not include emissions from the VRTor oil tanks during normal operation as they cannot occur at the same time as VRU downtime.

²Combined Flaring Hourly Rates denotes the peak hourly rate possible.

# XTO ENERGY INC. CORRAL CANYON TANK BATTERY LP FLARE - PILOT & PURGE GAS

	Pilot Fuel + Purge Gas Duration Flared Vented BTU	4800 8760 Yes No 1387.05	SCF/Day Hours/Year (Yes/No) (Yes/No) Btu/scf	
Component	Estimated Quantity Emitted from the Flare (lb/day)	Total Estimated Quantity Emitted (lb/day)	Hourly Emission Rate (lb/hr)	Annualized Emission Rate (TPY)
СО	1.834	1.834	0.08	0.33
NOx	0.919	0.919	0.04	0.17
VOCs	1.879	1.879	0.08	0.34
SO ₂	0.007	0.007	0.00	0.00
$H_2S$	0.000	0.000	0.00	0.00
PM 10 & 2.5	0.036	0.036	0.00	0.01
VOCs SO ₂	1.879           0.007           0.000	1.879 0.007 0.000	0.08 0.00 0.00	0.34 0.00 0.00

# XTO ENERGY INC. CORRAL CANYON TANK BATTERY VRT VAPOR ANALYSIS - PROMAX RESULTS

G	as Composition	
Component	Mole %	Weight %
Carbon Dioxide	0.1077	0.1034
Nitrogen	0.0227	0.0139
Methane	10.9558	3.8344
Ethane	22.3331	14.6505
Propane	30.7372	29.5695
Isobutane	5.7479	7.2884
n-Butane	15.2933	19.3922
Isopentane	3.8299	6.0284
n-Pentane	4.2156	6.6355
n-Hexane	0.9441	1.7749
Cyclohexane	0.1626	0.2986
i-C6	1.4731	2.7696
i-C7	1.9009	4.1554
Methylcyclohexane	0.0534	0.1145
Octane	0.4852	1.2091
Nonane	0.0761	0.2130
Benzene	0.4733	0.8066
Toluene	0.2601	0.5228
Ethylbenzene	0.0125	0.0290
o-Xylene	0.0563	0.1305
H2S	0.0022	0.0016
Water	0.7991	0.3141
2,2,4 Trimethylpentane	0.0576	0.1435
Decanes Plus	0.0001	0.0005
Total	100.00	100.0000
MOLECULAR	WEICHT	45.94
MOLECULAR SATURATE		45.84
NMH		2588.42
VOCs (NMI		95.73 81.08
HAPs	/	3.41
H2S Mole Per		0.00
¹ Values from GPSA Engineer	<b>X</b> 2	

# CORRAL CANYON TANK BATTERY

## VAPOR RECOVERY TOWER EMISSIONS (VRT2-VRT3)

Emissions Component	Uncontrolle	d VRT Stream		VRT Stream Operations)	Controlled VRT Stream (VRU Downtime - 100% Flared)		
	lb/hr	TPY	lb/hr	TPY	lb/hr	ТРҮ	
Carbon Dioxide	3.788	16.593	0.002	0.005	0.076	0.066	
Nitrogen	0.509	2.231	0.000	0.001	0.010	0.009	
Methane	140.536	615.548	0.056	0.197	2.811	2.462	
Ethane	536.960	2351.887	0.215	0.753	10.739	9.408	
Propane	1083.762	4746.877	0.434	1.519	21.675	18.988	
Isobutane	267.131	1170.035	0.107	0.374	5.343	4.680	
n-Butane	710.750	3113.084	0.284	0.996	14.215	12.452	
Isopentane	220.949	967.755	0.088	0.310	4.419	3.871	
n-Pentane	243.199	1065.212	0.097	0.341	4.864	4.261	
n-Hexane	65.053	284.933	0.026	0.091	1.301	1.140	
Cyclohexane	10.944	47.937	0.004	0.015	0.219	0.192	
i-C6	101.508	444.605	0.041	0.142	2.030	1.778	
i-C7	152.302	667.084	0.061	0.213	3.046	2.668	
Methylcyclohexane	4.195	18.376	0.002	0.006	0.084	0.074	
Octane	44.316	194.104	0.018	0.062	0.886	0.776	
Nonane	7.807	34.194	0.003	0.011	0.156	0.137	
Benzene	29.564	129.492	0.012	0.041	0.591	0.518	
Toluene	19.162	83.929	0.008	0.027	0.383	0.336	
Ethylbenzene	1.063	4.655	0.000	0.001	0.021	0.019	
o-Xylene	4.782	20.943	0.002	0.007	0.096	0.084	
H2S	0.059	0.260	0.000	0.000	0.001	0.001	
Water	11.511	50.419	0.005	0.016	0.230	0.202	
2,2,4 Trimethylpentane	5.261	23.044	0.002	0.007	0.105	0.092	
Decanes Plus	0.019	0.083	0.000	0.000	0.000	0.000	
			Controllad	VRT Stream	Controllad	VRT Stream	
Emissions Component	Uncontrolle	d VRT Stream	(Normal Oj	perations - 2% ared)	(VRU Dow	ntime - 100% red)	
	lb/hr	TPY	lb/hr	TPY	lb/hr	ТРҮ	
STREAM TOTAL	3665.13	16053.28	1.47	5.14	73.30	64.21	
VOC TOTAL	2971.77	13016.34	1.19	4.17	59.44	52.07	
HAP TOTAL	124.89	547.00	0.05	0.18	2.50	2.19	
Uncontrolled emissions and gas vo		romax Results. VRT v vent system. 100% of			any remaining vapo	rs routed to the fla	

³Annual controlled rate (tpy) calculated by multiplying hourly emission rate by VRU downtime.

# XTO ENERGY INC. CORRAL CANYON TANK BATTERY LP FLARE - VAPOR RECOVERY TOWERS - NORMAL OPERATIONS

VRT Daily Gas Volume	728246	SCF/Day	
VRU Collection Efficiency	98	Percentage	
Uncaptured Vapors	14565	SCF/Day	
Duration	7008	Hours/Year	
Flared	Yes	(Yes/No)	
Vented	No	(Yes/No)	
Heat Content	2588.42	Btu/scf	

Component	Estimated Quantity Emitted from the Flare (lb/day)	Total Estimated Quantity Emitted (lb/day)	Hourly Emission Rate (lb/hr)	Annualized Emission Rate (TPY)
CO	10.386	10.386	0.43	1.52
NOx	5.203	5.203	0.22	0.76
SO ₂	0.053	0.053	0.00	0.01
H ₂ S	0.001	0.001	0.00	0.00
PM _{10 &amp; 2.5}	0.111	0.111	0.00	0.02

Flare Emission Factors
NOx: 0.138
CO: 0.2755

# XTO ENERGY INC. CORRAL CANYON TANK BATTERY LP FLARE - VAPOR RECOVERY TOWERS - VRU DOWNTIME

VRT Daily Gas Volume	728246	SCF/Day	
VRU Collection Efficiency	0	Percentage	
Uncaptured Vapors	728246	SCF/Day	
Duration	1752	Hours/Year	
Flared	Yes	(Yes/No)	
Vented	No	(Yes/No)	
Heating Volume	2588.42	Btu/scf	

519.320	519.320	21.64	18.96
260.131	260.131	10.84	9.49
2.642	2.642	0.11	0.10
0.028	0.028	0.00	0.00
5.535	5.535	0.23	0.20
2	260.131 2.642 0.028	260.131         260.131           2.642         2.642           0.028         0.028	260.131         260.131         10.84           2.642         2.642         0.11           0.028         0.028         0.00

Flare Emission Factors
NOx: 0.138
CO: 0.2755

# XTO ENERGY INC. CORRAL CANYON TANK BATTERY OIL STORAGE TANK EMISSIONS SUMMARY

	TOTAL EMISSIONS SUMMARY									
EDI		Tank		Material	Material Type	Total VOC Emissions				
FIN	Unit Description	Controlled (Yes/No)	Control Type	Throughput (bbls/day)	(Oil/Produced Water)	lb/hour	ТРҮ			
TK1	Oil Storage Tank	Yes	Flare	4250.0	OIL	1.42	5.82			
TK2	Oil Storage Tank	Yes	Flare	4250.0	OIL	1.42	5.82			
TK3	Oil Storage Tank	Yes	Flare	4250.0	OIL	1.42	5.82			
TK4	Oil Storage Tank	Yes	Flare	4250.0	OIL	1.42	5.82			
TK5	Oil Storage Tank	Yes	Flare	4250.0	OIL	1.42	5.82			
TK6	Oil Storage Tank	Yes	Flare	4250.0	OIL	1.42	5.82			
		Oil	Tank Emissions			8.55	34.91			
* Emissions a	re represented at LPF.									

# XTO ENERGY INC. CORRAL CANYON TANK BATTERY OIL TANK VAPOR ANALYSIS - PROMAX RESULTS

(	Gas Composition	
Component	Mole %	Weight %
Carbon Dioxide	0.0470	0.0409
Nitrogen	0.0004	0.0002
Methane	0.6581	0.2091
Ethane	20.8120	12.3947
Propane	35.4572	30.9672
Isobutane	7.0404	8.1048
n-Butane	19.5465	22.5016
Isopentane	5.0435	7.2072
n-Pentane	5.5602	7.9454
n-Hexane	1.2925	2.2060
Cyclohexane	0.1670	0.2784
i-C6	1.9490	3.3266
i-C7	0.7449	1.4784
Methylcyclohexane	0.0549	0.1069
Octane	0.6288	1.4226
Nonane	0.0973	0.2473
Benzene	0.4721	0.7305
Toluene	0.2786	0.5085
Ethylbenzene	0.0147	0.0308
o-Xylene	0.0553	0.1164
H2S	0.0018	0.0012
Water	0.0005	0.0002
2,2,4 Trimethylpentane	0.0774	0.1750
Decanes Plus	0.0001	0.0004
Total	100.00	100.0000
MOLECULAR	WEIGHT	50.49
SATURATEI		2848.03
NMHC		99.75
VOCs (NMN		87.35
HAPs	/	3.77
H2S Mole Perc	centage	0.00

#### CORRAL CANYON TANK BATTERY

### OIL STORAGE TANK - EMISSIONS SUMMARY

Emission Component	Uncontrolled Oil Tank W&B Stream		Uncontrolled Oil Tank Flash Stream		Oil Tank Stream Controlled By Flare - VRU Downtime		Oil Tank Stream Controlled By VRU & Flare Normal Operations	
	lb/hr	TPY	lb/hr	ТРҮ	lb/hr	TPY	lb/hr	TPY
Carbon Dioxide	0.043	0.186	0.333	1.457	0.008	0.031	0.000	0.000
Nitrogen	0.000	0.001	0.043	0.190	0.001	0.004	0.000	0.000
Methane	0.217	0.951	9.152	40.085	0.187	0.780	0.004	0.001
Ethane	12.870	56.371	53.945	236.280	1.336	5.560	0.027	0.006
Propane	32.155	140.840	118.800	520.345	3.019	12.562	0.060	0.013
Isobutane	8.416	36.861	29.650	129.867	0.761	3.168	0.015	0.003
n-Butane	23.365	102.338	79.303	347.347	2.053	8.544	0.041	0.009
Isopentane	7.484	32.778	24.638	107.914	0.642	2.673	0.013	0.003
n-Pentane	8.250	36.136	27.167	118.994	0.708	2.947	0.014	0.003
n-Hexane	2.291	10.033	7.135	31.250	0.189	0.784	0.004	0.001
Cyclohexane	0.289	1.266	0.983	4.307	0.025	0.106	0.001	0.000
i-C6	3.454	15.129	11.124	48.723	0.292	1.213	0.006	0.001
i-C7	1.535	6.724	16.927	74.142	0.369	1.536	0.007	0.002
Methylcyclohexane	0.111	0.486	0.373	1.633	0.010	0.040	0.000	0.000
Octane	1.477	6.470	4.810	21.067	0.126	0.523	0.003	0.001
Nonane	0.257	1.125	0.831	3.641	0.022	0.091	0.000	0.000
Benzene	0.758	3.322	3.283	14.380	0.081	0.336	0.002	0.000
Toluene	0.528	2.313	2.108	9.231	0.053	0.219	0.001	0.000
Ethylbenzene	0.032	0.140	0.115	0.505	0.003	0.012	0.000	0.000
o-Xylene	0.121	0.529	0.517	2.266	0.013	0.053	0.000	0.000
H2S	0.001	0.005	0.005	0.022	0.000	0.001	0.000	0.000
Water	0.000	0.001	0.896	3.925	0.018	0.075	0.000	0.000
2,2,4 Trimethylpentane	0.182	0.796	0.592	2.591	0.015	0.064	0.000	0.000
Decanes Plus	0.000	0.002	0.002	0.008	0.000	0.000	0.000	0.000

Emission Component	Uncontrolled Oil Tank W&B Stream		Flash Stream		Controlled B	c Stream y Flare - VRU ntime	Controlled By	k Stream VRU & Flare - Operations
	lb/hr	TPY	lb/hr	ТРҮ	lb/hr	TPY	lb/hr	TPY
STREAM TOTAL	103.84	454.80	392.73	1720.17	9.93	41.32	0.20	0.04
VOC TOTAL	90.70	397.29	328.36	1438.21	8.38	34.87	0.17	0.04
HAP TOTAL	3.91	17.13	13.75	60.22	0.35	1.47	0.01	0.00

¹Uncontrolled emissions and gas volume are based on Promax Results. Tank vapors are controlled using a flare.

²Controlled Emissions Were Calculated by the Following: Uncontrolled Emissions * (1 - VRU Efficiency) * (1 - Flare Destruction Efficiency)

 Flare Destruction Efficiency
 98%
 VRU Efficiency
 98%
 VRU Downtime
 8322 hr

 ³Annual controlled rate (tpy) calculated by multiplying hourly emission rate by 8760 hours for normal operation.
 8
 8
 8

## XTO ENERGY INC. CORRAL CANYON TANK BATTERY LP FLARE - OIL STORAGE TANKS

Flared Oil Storage Tank Emissions - VRU Normal Operations
-----------------------------------------------------------

93697

98% 1874 438

Yes

No

2848.03

Daily Gas Volume VRU Collection Efficiency Uncaptured Vapors Duration Flared Vented Heating Volume SCF/Day Percentage SCF/Day Hours/Year (Yes/No) (Yes/No) Btu/scf

Component	Estimated Quantity Emitted from the Flare (lb/day)	Total Estimated Quantity Emitted (lb/day)	Hourly Emission Rate (lb/hr)	Annualized Emission Rate (TPY)
СО	1.470	1.470	0.06	0.01
NOx	0.737	0.737	0.03	0.01
SO ₂	0.005	0.005	0.00	0.00
$H_2S$	0.000	0.000	0.00	0.00
PM 10 & 2.5	0.014	0.014	0.00	0.00
		Flare Emission Factors		

NOx: 0.138	
CO: 0 2755	

# XTO ENERGY INC. CORRAL CANYON TANK BATTERY LP FLARE - OIL STORAGE TANKS

Daily Gas Volume	93697	SCF/Day	
VRU Collection Efficiency	0	Percentage	
Uncaptured Vapors	93697	SCF/Day	
Duration	8322	Hours/Year	
Flared	Yes	(Yes/No)	
Vented	No	(Yes/No)	
Heating Volume	2848.03	Btu/scf	

Component	Estimated Quantity Emitted from the Flare (lb/day)	Total Estimated Quantity Emitted (lb/day)	Hourly Emission Rate (lb/hr)	Annualized Emission Rate (TPY)
СО	73.518	73.518	3.06	12.75
NOx	36.826	36.826	1.53	6.38
SO ₂	0.274	0.274	0.01	0.05
$H_2S$	0.003	0.003	0.00	0.00
PM 10 & 2.5	0.712	0.712	0.03	0.12
			l	

Flare Emission Factors
NOx: 0.138
CO: 0.2755

# CORRAL CANYON TANK BATTERY

# PRODUCED WATER STORAGE TANK EMISSIONS SUMMARY

	TOTAL EMISSIONS SUMMARY							
FIN	Unit Description	Tank Controlled	Control Type	Material Throughput	Material Type	Total VOC Emissions		
	(Yes/No)	control type	(bbls/day)	(Oil/Produced Water)	lb/hour	ТРҮ		
PWTK1	Produced Water Tank	Yes	Flare	10000	PRODUCED WATER	0.00	0.01	
PWTK2	Produced Water Tank	Yes	Flare	10000	PRODUCED WATER	0.00	0.01	
PWTK3	Produced Water Tank	Yes	Flare	10000	PRODUCED WATER	0.00	0.01	
PWTK4	Produced Water Tank	Yes	Flare	10000	PRODUCED WATER	0.00	0.01	
PWTK5	Produced Water Tank	Yes	Flare	10000	PRODUCED WATER	0.00	0.01	
PWTK6	Produced Water Tank	Yes	Flare	10000	PRODUCED WATER	0.00	0.01	
	Water Tank Emissions							

### XTO ENERGY INC. CORRAL CANYON TANK BATTERY PRODUCED WATER TANK VAPOR ANALYSIS - PROMAX RESULTS

Commonant	Mala 0/	Moight 0
Component	Mole %	Weight %
Carbon Dioxide	0.2881	0.7001
Nitrogen	0.0100	0.0154
Methane	0.9341	0.8277
Ethane	0.2286	0.3796
Propane	0.0161	0.0393
Isobutane	0.0003	0.0008
n-Butane	0.0012	0.0040
Isopentane	0.0000	0.0002
n-Pentane	0.0000	0.0000
n-Hexane	0.0000	0.0000
Cyclohexane	0.0000	0.0000
i-C6	0.0000	0.0000
i-C7	0.0000	0.0000
Methylcyclohexane	0.0000	0.0000
Octane	0.0000	0.0000
Nonane	0.0000	0.0000
Benzene	0.0009	0.0040
Toluene	0.0002	0.0010
Ethylbenzene	0.0000	0.0000
o-Xylene	0.0000	0.0001
H2S	0.0025	0.0046
Water	98.5180	98.0231
2,2,4 Trimethylpentane	0.0000	0.0000
Decanes Plus	0.0000	0.0000
Total	100.00	100.0000
MOLECULAR W	FIGHT	18.11
SATURATED		64
NMHC	510	0.43
VOCs (NMNE	EHC)	0.05
HAPs		0.01
H2S Mole Perce	entage	0.00

#### **XTO ENERGY INC.**

#### CORRAL CANYON TANK BATTERY

#### PRODUCED WATER TANKS - EMISSIONS SUMMARY

Emission Component	Uncontrolled F	Uncontrolled PW W&B Stream Uncontrolled PW Flash Stream		PW Tank Stream Controlled By Flare		
	lb/hr	TPY	lb/hr	ТРҮ	lb/hr	TPY
Carbon Dioxide	0.048	0.210	0.058	0.256	0.002	0.009
Nitrogen	0.001	0.005	0.018	0.078	0.000	0.002
Methane	0.057	0.248	1.452	6.362	0.030	0.132
Ethane	0.026	0.114	0.738	3.234	0.015	0.067
Propane	0.003	0.012	0.413	1.810	0.008	0.036
Isobutane	0.000	0.000	0.047	0.207	0.001	0.004
n-Butane	0.000	0.001	0.156	0.683	0.003	0.014
Isopentane	0.000	0.000	0.029	0.126	0.001	0.003
n-Pentane	0.000	0.000	0.014	0.062	0.000	0.001
n-Hexane	0.000	0.000	0.002	0.010	0.000	0.000
Cyclohexane	0.000	0.000	0.005	0.021	0.000	0.000
i-C6	0.000	0.000	0.007	0.031	0.000	0.001
i-C7	0.000	0.000	0.006	0.027	0.000	0.001
Methylcyclohexane	0.000	0.000	0.001	0.004	0.000	0.000
Octane	0.000	0.000	0.000	0.002	0.000	0.000
Nonane	0.000	0.000	0.000	0.000	0.000	0.000
Benzene	0.000	0.001	0.041	0.179	0.001	0.004
Toluene	0.000	0.000	0.024	0.107	0.000	0.002
Ethylbenzene	0.000	0.000	0.001	0.006	0.000	0.000
o-Xylene	0.000	0.000	0.006	0.025	0.000	0.001
H2S	0.000	0.001	0.000	0.001	0.000	0.000
Water	6.708	29.383	0.122	0.536	0.137	0.598
2,2,4 Trimethylpentane	0.000	0.000	0.000	0.001	0.000	0.000
Decanes Plus	0.000	0.000	0.000	0.000	0.000	0.000

Emission Component	Uncontrolled PW W&B Stream		l Uncontrolled PW Flash Stream		by Flare	
	lb/hr	ТРҮ	lb/hr	TPY	lb/hr	ТРҮ
STREAM TOTAL	6.84	29.98	3.14	13.77	0.20	0.87
VOC TOTAL	0.00	0.01	0.75	3.30	0.02	0.07
HAP TOTAL	0.00	0.00	0.07	0.33	0.00	0.01

¹Uncontrolled emissions and gas volume are based on Promax Results. Tank vapors are controlled using a flare.

²Controlled Emissions Were Calculated by the Following: Uncontrolled Emissions * (1 - VRU Efficiency) * (1 - Flare Destruction Efficiency)

Flare Destruction Efficiency 98%

³Annual controlled rate (tpy) calculated by multiplying hourly emission rate by 8760 hours for normal operation .

### XTO ENERGY INC. CORRAL CANYON TANK BATTERY SKIM TANK EMISSIONS SUMMARY

	TOTAL EMISSIONS SUMMARY							
FIN	Tank         Material           FIN         Unit Description         Controlled         Control Type         Throughput         Material Type							
	ent Description	(Yes/No)	control type	(bbls/day)	(Oil/Produced Water)	lb/hour	ТРҮ	
SKTK1	Skim Tank	Yes	Flare	30000	PRODUCED WATER	0.37	1.62	
SKTK2	Skim Tank	Yes	Flare	30000	PRODUCED WATER	0.37	1.62	
	SKIM Tank Emissions						1.62	

### XTO ENERGY INC. CORRAL CANYON TANK BATTERY SKIM TANK VAPOR ANALYSIS - PROMAX RESULTS

Gas Composition				
Component	Mole %	Weight %		
Carbon Dioxide	0.9595	1.8593		
Nitrogen	0.4578	0.5647		
Methane	65.4089	46.2030		
Ethane	17.7409	23.4886		
Propane	6.7689	13.1425		
Isobutane	0.5888	1.5070		
n-Butane	1.9394	4.9634		
Isopentane	0.2890	0.9182		
n-Pentane	0.1417	0.4501		
n-Hexane	0.0192	0.0729		
Cyclohexane	0.0417	0.1545		
i-C6	0.0594	0.2253		
i-C7	0.0451	0.1989		
Methylcyclohexane	0.0068	0.0293		
Octane	0.0028	0.0142		
Nonane	0.0004	0.0021		
Benzene	0.3780	1.3001		
Toluene	0.1910	0.7750		
Ethylbenzene	0.0086	0.0402		
o-Xylene	0.0396	0.1852		
H2S	0.0058	0.0087		
Water	4.9055	3.8912		
2,2,4 Trimethylpentane	0.0011	0.0054		
Decanes Plus	0.0000	0.0002		
Total	100.00	100.0000		
MOLECULAR	WFICHT	22.71		
SATURATEI		1280.96		
NMHC	-	47.47		
VOCs (NMN		23.98		
HAPs	· · · - /	2.38		
H2S Mole Per	centage	0.01		

#### **XTO ENERGY INC.**

#### CORRAL CANYON TANK BATTERY

#### SKIM TANKS - EMISSIONS SUMMARY

Emission Component		Uncontrolled Skim Tank W&B Stream Flash Stream Controlled b				
	lb/hr	TPY	lb/hr	ТРҮ	lb/hr	TPY
Carbon Dioxide	0.068	0.298	2.864	12.545	0.059	0.257
Nitrogen	0.000	0.001	0.870	3.810	0.017	0.076
Methane	0.051	0.223	71.172	311.732	1.424	6.239
Ethane	0.036	0.158	36.182	158.478	0.724	3.173
Propane	0.003	0.014	20.245	88.672	0.405	1.774
Isobutane	0.000	0.000	2.321	10.167	0.046	0.203
n-Butane	0.000	0.001	7.646	33.488	0.153	0.670
Isopentane	0.000	0.000	1.414	6.195	0.028	0.124
n-Pentane	0.000	0.000	0.693	3.037	0.014	0.063
n-Hexane	0.000	0.000	0.112	0.492	0.002	0.010
Cyclohexane	0.000	0.000	0.238	1.043	0.005	0.02
i-C6	0.000	0.000	0.347	1.520	0.007	0.030
i-C7	0.000	0.000	0.306	1.342	0.006	0.022
Methylcyclohexane	0.000	0.000	0.045	0.198	0.001	0.004
Octane	0.000	0.000	0.022	0.096	0.000	0.002
Nonane	0.000	0.000	0.003	0.014	0.000	0.000
Benzene	0.001	0.003	2.003	8.772	0.040	0.176
Toluene	0.000	0.000	1.194	5.229	0.024	0.105
Ethylbenzene	0.000	0.000	0.062	0.271	0.001	0.005
o-Xylene	0.000	0.000	0.285	1.249	0.006	0.02
H2S	0.000	0.001	0.013	0.059	0.000	0.00
Water	5.096	22.322	5.994	26.254	0.222	0.972
2,2,4 Trimethylpentane	0.000	0.000	0.008	0.036	0.000	0.00
Decanes Plus	0.000	0.000	0.000	0.002	0.000	0.00

Emission Component	Uncontrolled Skim Tank W&B Stream		Uncontrolled Skim Tank Flash Stream		Skim Tank Stream Controlled by Flare	
	lb/hr	TPY	lb/hr	ТРҮ	lb/hr	TPY
STREAM TOTAL	5.26	23.02	154.04	674.70	3.19	13.95
VOC TOTAL	0.00	0.02	36.95	161.82	0.74	3.24
HAP TOTAL	0.00	0.00	3.66	16.05	0.07	0.32

¹Uncontrolled emissions and gas volume are based on Promax Results. Tank vapors are controlled using a flare.

²Controlled Emissions Were Calculated by the Following: Uncontrolled Emissions * (1 - VRU Efficiency) * (1 - Flare Destruction Efficiency)

Flare Destruction Efficiency

**98**%

³Annual controlled rate (tpy) calculated by multiplying hourly emission rate by 8760 hours for normal operation.

### XTO ENERGY INC. CORRAL CANYON TANK BATTERY LP FLARE - SKIM AND WATER TANKS

Skim Tank Daily Gas Volume	69108	SCF/Day (Skim and Water Tanks)
VRU Collection Efficiency	0	Percentage
Uncaptured Vapors	69108	SCF/Day
Duration	8760	Hours/Year
Flared	Yes	(Yes/No)
Vented	No	(Yes/No)
Heating Volume	1280.96	Btu/scf

Component	Estimated Quantity Emitted from the Flare (lb/day)	Total Estimated Quantity Emitted (lb/day)	Hourly Emission Rate (lb/hr)	Annualized Emission Rate (TPY)
СО	24.389	24.389	1.02	4.45
NOx	12.216	12.216	0.51	2.23
SO ₂	0.670	0.670	0.03	0.12
H ₂ S	0.007	0.007	0.00	0.00
PM 10 & 2.5	0.525	0.525	0.02	0.10

Flare Emission Factors
NOx: 0.138
CO: 0.2755

#### XTO ENERGY INC. CORRAL CANYON TANK BATTERY OIL TRUCK LOADING EMISSIONS

Truck Loading Losse	s Calculations -	·VOCs
Oil Loading Operating Schedule Total Production	5000 365 1825000	bbls / Day Day / Year bbls / Year
I I = 12 46 * SP	M/T * (1-EFF/100)	
	ration Factor (S) = $(S) = (S)$	0.6
Average True Vapor Pressure of 1		9.71
Maximum True Vapor Pressure of l	iquid loaded (P) =	11.92
Average Temperature of bulk liquid loade	d in Rankin $(T)^1 =$	554.0
Maximum Temperature of bulk liquid loade	d in Rankin $(T)^1$ =	570.6
Molecu	lar Weight $(M)^1 =$	50.49
Collection	Efficiency $(EFF)^2 =$	98.70
Hourly LL (lb Total HC / 1	bbl Throughput) =	0.0043
Hourly LL (lb VOC / b	bl Throughput) =	0.0038
Annual LL (lb Total HC / l	obl Throughput) =	0.0036
Annual LL (lb VOC / b	bl Throughput) =	0.0032
Estimated Through	put (bbls/Year) =	1825000
Truck Loading I	Rate (bbls/hour) =	210
Estimated # of Loads (Approxima	ately 1 hr/Load) =	8690

COMPONENT	lb/hr	ТРҮ
VOCs	0.79	2.88
HAPs	0.03	0.12
Benzene	0.01	0.02

¹Based on PROMAX Results

²Based on DOT Oil Trucks at a collection efficiency of 98.7%. Controlled emissions at 98% flare efficiency are shown on the LP Flare Truck Loading page. Emissions here include only those emitted as a result of incomplete collection.

### XTO ENERGY INC. CORRAL CANYON TANK BATTERY LP FLARE - CONTROLLED TRUCK LOADING EMISSIONS

LP Flare - Truck Loading of Oil

#### Oil Loading (Captured Vapors) LP Flare Component Mole % Weight % lb/hr lb/hr TPY Carbon Dioxide 0.044 0.039 0.023 0.023 0.099 0.000 0.000 0.000 Nitrogen 0.000 0.000 Methane 0.465 0.149 0.086 0.002 0.008 12.840 0.149 Ethane 21.440 7.434 0.651 Propane 35.908 31.537 18.258 0.365 1.599 Isobutane 6.984 8.084 4.680 0.094 0.410 n-Butane 19.255 22.290 12.905 0.258 1.130 Isopentane 4.9087.053 4.083 0.082 0.358 n-Pentane 5.395 7.753 4.489 0.090 0.393 n-Hexane 1.244 2.135 1.236 0.025 0.108 Cyclohexane 0.160 0.269 0.156 0.003 0.014 i-C6 1.879 3.226 1.868 0.037 0.164 i-C7 0.7111.419 0.822 0.0160.072 Methylcyclohexane 0.053 0.103 0.060 0.0010.005 Octane 0.599 1.362 0.789 0.0160.069 Nonane 0.092 0.236 0.136 0.003 0.012 0.453 0.008 0.036 Benzene 0.705 0.408 Toluene 0.266 0.489 0.283 0.006 0.025 Ethylbenzene 0.014 0.029 0.017 0.000 0.001 o-Xylene 0.053 0.111 0.064 0.0010.006 H2S 0.002 0.0010.001 0.000 0.000 Water 0.000 0.000 0.000 0.000 0.000 2,2,4 Trimethylpentane 0.074 0.169 0.098 0.002 0.009 0.000 Decanes Plus 0.000 0.000 0.000 0.000 Stream Total 57.89 1.18 5.17 VOC Total 50.35 1.01 4.41 HAP Total 2.11 0.04 0.18

Annual Hours (hrs)	8690	Molecular Weight	50.21
Heating Value of Vapor (Btu/scf)	2833	Volumetric Flow (scf/hr)	443.35
Vapor Balance Loading Capture	98.7%	Heat Released (MMBtu/hr)	1.256
Destruction Efficiency of Flare	98%		

C	Criteria Pollutant Emissions from Flare ²									
Component	Emission Rate	Emission Rate	Emission	Emission						
-	(1b/hr)	(TPY)	Factor	Factor Units						
NO _X	0.17	0.75	0.138	lb/MMBtu						
СО	0.35	1.50	0.2755	lb/MMBtu						
SO ₂	0.00	0.00								
PM ₁₀	0.00	0.01	7.60	lb/MMscf						
PM _{2.5}	0.00	0.01	7.60	lb/MMscf						
H ₂ S	0.00	0.00								

¹ Oil Loading vapors properties determined from ProMax

² Flare CO and NOx emission factors from TCEQ Air Permit Techincal Guidance for Chemical Sources. PM and PM2.5 emission factors from AP-42, Table 1.4-1 and 1.4-2, July 1998. SO2 emissions assume 100% conversion of H2S to SO2.

### XTO ENERGY INC. CORRAL CANYON TANK BATTERY LOW PRESSURE FLARING EMISSIONS - GHG

Pilot Consumpt	tion Rate	Total LP Flare	Cas Rate	
(scf/year		(scf/yea		
1752000	)	11904680	08.6	
		I		
Pilot & Purg	e Gas	Total Gas Con	mbusted	
	Ea, $CH_4 = Va * \lambda$	$(CH_4 * [(1-\eta) * ZL + ZU)]$		
Va =	1752000	Va =	119046809	
XCH ₄ =	0.6926	XCH ₄ =	0.1096	
N =	0.98	N =	0.98	
Z _L =	1	Z _L =	1	
Z _U =	0	Z _U =	0	
$Ea, CH_4 =$	24270	$Ea_{r}CH_{4} =$	260850	
	E _{a,CO2} (uncon	nbusted) = $V_a * X_{CO2}$		
Va = 175200		Va =	119046809	
X _{CO2} =	0.0018	X _{CO2} =	0.0016	
Ea,CO2 (uncombusted)	3090	Ea,CO2 (uncombusted)	195549	
	Ea,CO2 (combusted	l) = Σ (η * Va * Yj * Rj * ZL)		
Ea,CO2 (combusted) =	2565405	Ea,CO2 (combusted) =	4970481	
	Es,n = Ea,n * (459.67 ·	+ Ts) * Pa / (459.67 + Ta) * Ps		
E _{a,n} (CH4) =	21848	$E_{a,n}(CH4) =$	234819	
E _{a,n} (CO2) =	2312177	$E_{a,n}(CO2) =$	4650496	
	Mass _{s,i}	= Ε _{s,i} * ρi * 10 ³		
Mass _{CH4}	0.419	Mass _{CH4}	4.509	
Mass _{C02}	121.621	Mass _{C02}	244.616	
	CO ₂ e = CO	D ₂ + (CH ₄ X GWP)		
CO ₂	122	CO ₂	245	
CH₄	0	CH₄	5	
CO ₂ e	132	CO ₂ e	357	

## XTO ENERGY INC. CORRAL CANYON TANK BATTERY ROAD EMISSIONS

PM ₁₀ Emissions							
$E = k(s/12)^{a}(W/3)^{b}$							
a	0.9						
b	0.45						
k	1.5						
Silt %	4.8						
Vehicle Weight (tons)	28						
E-Hourly (lbs/VMT)	1.80						
Rain Days	70						
E-Annual (lbs/VMT)	1.45						
Truckloads per year	8690						
Driving Distance Per Load (ft)	1000						
Annual Distance (miles)	1646						
Control Efficiency - 25 MPH Limit	0.44						
Emissions (lbs/hr)	0.19						
Emissions (tpy)	0.67						

<b>PM_{2.5} Emissions</b>									
$E = k(s/12)^{a}(W/3)^{b}$									
a	0.9								
b	0.45								
k	0.15								
Silt %	4.8								
Vehicle Weight (tons)	28								
E-Hourly (lbs/VMT)	0.18								
Rain Days	70								
E-Annual (lbs/VMT)	0.15								
Truckloads per year	8690								
Driving Distance Per Load (ft)	1000								
Annual Distance (miles)	1646								
Control Efficiency - 25 MPH Limit	0.44								
Emissions (lbs/hr)	0.02								
Emissions (tpy)	0.07								

Emissions (lbs/hr) = Driving Distance (ft)/ 5280 * E (lbs/VMT) Emissions (tpy) = Annual Distance * E / 2000

References:

EPA. "Compilation of Air Pollutant Emission Factors, Volume 1: Stationary Point and Area Sources," Section 13.2.2

AP-42, Ofice of Air Quality Planning and Standards, Research Triangle Park, NC. 5th edition (11/2006).

**XTO ENERGY INC.** 

#### CORRAL CANYON TANK BATTERY

#### FUGITIVE EMISSIONS - TOTAL EMISSION SUMMARY

Ε	EQUIPME	ENT LEAI	K EMISS	ION SUM	1MARY 1	TABLE			
			-		-			-	
Stream Source	Total	VOCs	Total HAPs		n-Hexane		CH4	CO2	CO2e
Stream Source	lb/hr	ТРҮ	lb/hr	ТРҮ	lb/hr	ТРҮ	ТРҮ	ТРҮ	ТРҮ
Inlet & Sales Section	0.85	3.74	0.05	0.21	0.01	0.04	4.42	6.06	116.44
Heater Treater Section	0.76	3.32	0.04	0.17	0.01	0.04	3.16	4.57	83.60
Storage Tank Section	0.85	3.73	0.05	0.20	0.01	0.05	4.53	6.15	119.47
Total Emissions	2.46	10.79	0.13	0.59	0.03	0.13	12.11	16.77	319.51
	•	•	•	•	•	•	•	•	· · · · · · · · · · · · · · · · · · ·

### XTO ENERGY INC. CORRAL CANYON TANK BATTERY FACILITY INLET GAS ANALYSIS - PROMAX

G	as Composition	
Component	Mole %	Weight %
Carbon Dioxide	0.1779	0.3290
Nitrogen	0.9132	1.0753
Methane	69.6002	46.9342
Ethane	14.4918	18.3168
Propane	7.8044	14.4657
Isobutane	1.0612	2.5928
n-Butane	2.6253	6.4140
Isopentane	0.6310	1.9136
n-Pentane	0.6807	2.0643
n-Hexane	0.2037	0.7379
Cyclohexane	0.1878	0.6644
i-C6	0.3150	1.1410
i-C7	0.2802	1.1803
Methylcyclohexane	0.1182	0.4880
Octane	0.0825	0.3960
Nonane	0.0278	0.1500
Benzene	0.0924	0.3034
Toluene	0.0517	0.2001
Ethylbenzene	0.0020	0.0089
o-Xylene	0.0119	0.0532
H2S	0.0010	0.0014
Water	0.6311	0.4779
2,2,4 Trimethylpentane	0.0000	0.0000
Decanes Plus	0.0089	0.0916
Total	100.00	100.0000
MOLECULAR W	FIGHT	23.79
SATURATED		1398
NMHC		51.182
VOCs (NMNE	EHC)	32.87
HAPs	/	1.30
H2S Mole Perce	entage	0.00

### XTO ENERGY INC. CORRAL CANYON TANK BATTERY FACILITY INLET FLUID ANALYSIS - PROMAX

Fl	uid Composition	
Commencent	<b>M-1</b> - 0/	
Component	Mole %	Weight %
Carbon Dioxide	0.0135	0.0041
Nitrogen	0.0262	0.0050
Methane	1.8491	0.2040
Ethane	2.5026	0.5174
Propane	4.3487	1.3185
Isobutane	1.3060	0.5219
n-Butane	4.5915	1.8349
Isopentane	2.5435	1.2618
n-Pentane	3.6721	1.8217
n-Hexane	2.5190	1.4926
Cyclohexane	0.0000	0.0000
i-C6	2.7051	1.6029
i-C7	10.9925	7.5734
Methylcyclohexane	0.0000	0.0000
Octane	12.6190	9.9111
Nonane	5.8823	5.1873
Benzene	1.4955	0.8032
Toluene	2.8516	1.8066
Ethylbenzene	0.4121	0.3009
o-Xylene	2.2869	1.6694
H2S	0.0000	0.0000
Water	0.0000	0.0000
2,2,4 Trimethylpentane	0.5060	0.3974
Decanes Plus	36.8766	61.7660
Total	100.00	100.0000
MOLECULAR W	EIGHT	145.44
NMHC		99.79
VOCs (NMNE	EHC)	99.27
HAPs		6.47
H2S Mole Perce	entage	0.00

XTO ENERGY INC. CORRAL CANYON TANK BATTERY INLET & SALES SECTION - FUGITIVE EMISSION VOCs

			F	ugitive Emissi	ion Calculations								
		1	1	1		ſ	Emissions		r		GILL	600	600
Component Type	Service	Estimated Components	Hours	Factors	Total VOC Weight %	11.4			Total CH4 Weight %	Total CO2 Weight %	CH4 Emissions	CO2 Emissions	CO2e Emissions
rype		Count			weight 76	lb/hour	lb/year	tons/year	weight 70	weigin 70	ton/year	ton/year	ton/year
	Gas/Vapor*	50	8760	0.00992000	32.87	0.16	1427.98	0.71	46.93	0.33	1.15	2.17	30.99
Valves	Light Oil*	50	8760	0.00550000	99.27	0.27	2391.40	1.20	1.85	0.00	1.18	1.20	30.76
valves	Heavy Oil	0	8760	0.00001900	99.27	0.00	0.00	0.00	1.85	0.00	0.00	0.00	0.00
	Water/Light Oil*	50	8760	0.00021600	99.27	0.01	93.92	0.05	1.85	0.00	0.05	0.05	1.21
	Gas/Vapor	0	8760	0.00529000	32.87	0.00	0.00	0.00	46.93	14.47	0.00	0.00	0.00
Pump Seals	Light Oil	0	8760	0.02866000	99.27	0.00	0.00	0.00	1.85	1.32	0.00	0.00	0.00
	Heavy Oil	0	8760	0.00113000	99.27	0.00	0.00	0.00	1.85	1.32	0.00	0.00	0.00
	Water/Light Oil	10	8760	0.00005300	99.27	0.00	4.61	0.00	1.85	1.32	0.00	0.00	0.06
<b>a</b> .	Gas/Vapor	200	8760	0.00044000	32.87	0.03	253.35	0.13	46.93	2.06	0.20	0.38	5.49
	Light Oil	200	8760	0.00046300	99.27	0.09	805.25	0.40	1.85	1.82	0.40	0.40	10.35
Connectors	Heavy Oil	0	8760	0.00001700	99.27	0.00	0.00	0.00	1.85	1.82	0.00	0.00	0.00
	Water/Light Oil	50	8760	0.00024300	99.27	0.01	105.66	0.05	1.85	1.82	0.05	0.05	1.36
	Gas/Vapor	200	8760	0.00086000	32.87	0.06	495.19	0.25	46.93	1.18	0.40	0.74	10.74
	Light Oil	200	8760	0.00024300	99.27	0.05	422.63	0.21	1.85	7.57	0.21	0.20	5.42
Flanges	Heavy Oil	0	8760	0.0000086	99.27	0.00	0.00	0.00	1.85	7.57	0.00	0.00	0.00
	Water/Light Oil	50	8760	0.00000620	99.27	0.00	2.70	0.00	1.85	7.57	0.00	0.00	0.03
	Gas/Vapor	10	8760	0.00441000	32.87	0.01	126.96	0.06	46.93	0.30	0.10	0.19	2.76
Open-ended	Light Oil	0	8760	0.00309000	99.27	0.00	0.00	0.00	1.85	0.80	0.00	0.00	0.00
Lines	Heavy Oil	0	8760	0.00030900	99.27	0.00	0.00	0.00	1.85	0.80	0.00	0.00	0.00
	Water/Light Oil	0	8760	0.00055000	99.27	0.00	0.00	0.00	1.85	0.80	0.00	0.00	0.00
	Gas/Vapor	0	8760	0.01940000	32.87	0.00	0.00	0.00	46.93	0.00	0.00	0.00	0.00
	Light Oil	0	8760	0.01650000	99.27	0.00	0.00	0.00	1.85	0.00	0.00	0.00	0.00
Other:	Heavy Oil	0	8760	0.00006800	99.27	0.00	0.00	0.00	1.85	0.00	0.00	0.00	0.00
	Water/Light Oil	5	8760	0.03090000	99.27	0.15	1343.53	0.67	1.85	0.00	0.66	0.68	17.28
		<u> </u>		-	-		•	•	•		-		
	E	mission Compo	onent		lb/hr	lb/year	TPY	1			CH4 Emissions	CO2 Emissions	CO2e Emissions
		Total VOC			0.85	7473.17	3.74	1			4.42	6.06	116.44

### XTO ENERGY INC. CORRAL CANYON TANK BATTERY INLET & SALES SECTION - FUGITIVE EMISSION HAPs

Fugitive Emission Calculations										
Estimated Emissions										
Component Type	Service		Hours	Factors	Total HAPs Weight %	lb/hour	lb/year	tons/year		
	Gas/Vapor*	50	8760	0.00992000	1.30	0.01	56.64	0.03		
¥7.1	Light Oil*	50	8760	0.00550000	6.47	0.02	155.86	0.08		
Valves	Heavy Oil	0	8760	0.00001900	6.47	0.00	0.00	0.00		
	Water/Light Oil*	50	8760	0.00021600	6.47	0.00	6.12	0.00		
Pump Seals	Gas/Vapor	0	8760	0.00529000	1.30	0.00	0.00	0.00		
	Light Oil	0	8760	0.02866000	6.47	0.00	0.00	0.00		
	Heavy Oil	0	8760	0.00113000	6.47	0.00	0.00	0.00		
	Water/Light Oil	10	8760	0.00005200	6.47	0.00	0.29	0.00		
	Gas/Vapor	200	8760	0.00044000	1.30	0.00	10.05	0.01		
<i>c</i> .	Light Oil	200	8760	0.00046300	6.47	0.01	52.48	0.03		
Connectors	Heavy Oil	0	8760	0.00001700	6.47	0.00	0.00	0.00		
	Water/Light Oil	50	8760	0.00024300	6.47	0.00	6.89	0.00		
	Gas/Vapor	200	8760	0.00086000	1.30	0.00	19.64	0.01		
51	Light Oil	200	8760	0.00024300	6.47	0.00	27.55	0.01		
Flanges	Heavy Oil	0	8760	0.0000086	6.47	0.00	0.00	0.00		
	Water/Light Oil	50	8760	0.00000620	6.47	0.00	0.18	0.00		
	Gas/Vapor	10	8760	0.00441000	1.30	0.00	5.04	0.00		
Open-ended	Light Oil	0	8760	0.00309000	6.47	0.00	0.00	0.00		
Lines	Heavy Oil	0	8760	0.00030900	6.47	0.00	0.00	0.00		
	Water/Light Oil	0	8760	0.00055000	6.47	0.00	0.00	0.00		
	Gas/Vapor	0	8760	0.01940000	1.30	0.00	0.00	0.00		
01	Light Oil	0	8760	0.01650000	6.47	0.00	0.00	0.00		
Other:	Heavy Oil	0	8760	0.00006800	6.47	0.00	0.00	0.00		
	Water/Light Oil	5	8760	0.03090000	6.47	0.01	87.57	0.04		

Emission Component	lb/hr	lb/year	ТРҮ
Total HAPs	0.05	428.30	0.21

### XTO ENERGY INC. CORRAL CANYON TANK BATTERY INLET & SALES SECTION - FUGITIVE EMISSIONS N-HEXANE

		Estimated				Emissions			
Component Type	Service	Components Count	Hours	Factors	Total n-Hexane Weight %	lb/hour	lb/year	tons/year	
	Gas/Vapor*	50	8760	0.00992000	0.74	0.00	10.58	0.01	
Valves	Light Oil*	50	8760	0.00550000	1.49	0.00	14.02	0.01	
	Heavy Oil	0	8760	0.00001900	1.49	0.00	0.00	0.00	
	Water/Light Oil*	50	8760	0.00021600	1.49	0.00	0.55	0.00	
	Gas/Vapor	0	8760	0.00529000	0.74	0.00	0.00	0.00	
Pump Seals	Light Oil	0	8760	0.02866000	1.49	0.00	0.00	0.00	
Pump Seals	Heavy Oil	0	8760	0.00113000	1.49	0.00	0.00	0.00	
	Water/Light Oil	10	8760	0.00005300	1.49	0.00	0.07	0.00	
<b>C</b> 1	Gas/Vapor	200	8760	0.00044000	0.74	0.00	5.69	0.00	
	Light Oil	200	8760	0.00046300	1.49	0.00	12.11	0.01	
Connectors	Heavy Oil	0	8760	0.00001700	1.49	0.00	0.00	0.00	
	Water/Light Oil	50	8760	0.00024300	1.49	0.00	1.59	0.00	
	Gas/Vapor	200	8760	0.00086000	0.74	0.00	11.12	0.01	
Elanasa	Light Oil	200	8760	0.00024300	1.49	0.00	6.35	0.00	
Flanges	Heavy Oil	0	8760	0.0000086	1.49	0.00	0.00	0.00	
	Water/Light Oil	50	8760	0.00000620	1.49	0.00	0.04	0.00	
	Gas/Vapor	10	8760	0.00441000	0.74	0.00	2.85	0.00	
Open-ended	Light Oil	0	8760	0.00309000	1.49	0.00	0.00	0.00	
Lines	Heavy Oil	0	8760	0.00030900	1.49	0.00	0.00	0.00	
	Water/Light Oil	0	8760	0.00055000	1.49	0.00	0.00	0.00	
	Gas/Vapor	0	8760	0.01940000	0.74	0.00	0.00	0.00	
Other:	Light Oil	0	8760	0.01650000	1.49	0.00	0.00	0.00	
Other.	Heavy Oil	0	8760	0.00006800	1.49	0.00	0.00	0.00	
	Water/Light Oil	5	8760	0.03090000	1.49	0.00	20.20	0.01	
	E	mission Compo	onent		lb/hr	lb/year	TPY	1	
		_				•		-	
		Total Benzen	e	0.010	85.17	0.043			

### XTO ENERGY INC. CORRAL CANYON TANK BATTERY TREATER GAS ANALYSIS - FUGITIVE EMISSIONS

Component	Mole %	Weight %
Carbon Dioxide	0.1935	0.2593
Nitrogen	0.2236	0.1908
Methane	41.2118	20.1368
Ethane	23.1411	21.1935
Propane	17.9809	24.1493
Isobutane	2.7647	4.8942
n-Butane	7.0651	12.5072
Isopentane	1.7129	3.7641
n-Pentane	1.8944	4.1629
n-Hexane	0.4442	1.1660
Cyclohexane	0.0764	0.1959
i-C6	0.6761	1.7745
i-C7	0.9233	2.8177
Methylcyclohexane	0.0263	0.0786
Octane	0.2612	0.9089
Nonane	0.0442	0.1725
Benzene	0.2203	0.5242
Toluene	0.1298	0.3644
Ethylbenzene	0.0067	0.0217
o-Xylene	0.0306	0.0988
H2S	0.0017	0.0018
Water	0.9427	0.5173
2,2,4 Trimethylpentane	0.0284	0.0989
Decanes Plus	0.0001	0.0007
Total	100.00	100.0000
		-
MOLECULAR W	/EIGHT	23.57
SATURATED	BTU	1387.05
NMHC		78.89
VOCs (NMNI	EHC)	57.70
HAPs H2S Mole Perce		2.27 0.00

### XTO ENERGY INC. CORRAL CANYON TANK BATTERY TREATER LIQUID ANALYSIS - FUGITIVE EMISSIONS

Component	Mole %	Weight %
Carbon Dioxide	0.0064	0.0019
Nitrogen	0.0011	0.0002
Methane	0.5823	0.0639
Ethane	1.6082	0.3307
Propane	3.9202	1.1822
Isobutane	1.3872	0.5514
n-Butane	4.9455	1.9658
Isopentane	2.8193	1.3911
n-Pentane	3.9847	1.9661
n-Hexane	2.8141	1.6584
Cyclohexane	0.6733	0.3875
i-C6	3.1524	1.8578
i-C7	11.0093	7.5442
Methylcyclohexane	0.4505	0.3025
Octane	12.5679	9.8179
Nonane	5.8928	5.1686 0.8417 1.8183
Benzene	1.5757	
Toluene	2.8856	
Ethylbenzene	0.4090	0.2969
o-Xylene	2.2790	1.6547
H2S	0.0002	0.0000
Water	0.0543	0.0067
2,2,4 Trimethylpentane	0.4703	0.3674
Decanes Plus	36.5106	60.8240
Total	100.00	100.0000
		-
MOLECULAR W	/EIGHT	146.22
NMHC		99.93
VOCs (NMNE	EHC)	99.60
HAPs H2S Mole Perce		6.64 0.00

#### XTO ENERGY INC. CORRAL CANYON TANK BATTERY TREATER SECTION - FUGITIVE EMISSION VOCs

			F	ugitive Emiss	ion Calculations								
		Estimated				Emissions			1		CH4	CO2	CO2e
Component Type	Service		Hours	Factors	Total VOC Weight %	lb/hour	lb/year	tons/year	Total CH4 Weight %	Total CO2 Weight %	Emissions ton/year	Emissions ton/year	Emission ton/year
	Gas/Vapor*	40	8760	0.00992000	57.70	0.23	2005.65	1.00	46.93	0.33	0.92	1.73	24.79
	Light Oil*	40	8760	0.00550000	99.60	0.22	1919.42	0.96	1.85	0.00	0.92	0.96	24.79
Valves	Heavy Oil	40	8760	0.00001900	99.60	0.00	0.00	0.00	1.85	0.00	0.95	0.00	0.00
	Water/Light Oil*	0	8760	0.00021600	99.60	0.00	0.00	0.00	1.85	0.00	0.00	0.00	0.00
	Gas/Vapor	0	8760	0.00529000	57.70	0.00	0.00	0.00	46.93	14.47	0.00	0.00	0.00
	Light Oil	0	8760	0.02866000	99.60	0.00	0.00	0.00	1.85	1.32	0.00	0.00	0.00
Pump Seals	Heavy Oil	0	8760	0.00113000	99.60	0.00	0.00	0.00	1.85	1.32	0.00	0.00	0.00
	Water/Light Oil	0	8760	0.00005300	99.60	0.00	0.00	0.00	1.85	1.32	0.00	0.00	0.00
	Gas/Vapor	200	8760	0.00044000	57.70	0.05	444.80	0.22	46.93	2.06	0.20	0.38	5.49
_	Light Oil	200	8760	0.00046300	99.60	0.09	807.90	0.40	1.85	1.82	0.40	0.40	10.35
Connectors	Heavy Oil	0	8760	0.00001700	99.60	0.00	0.00	0.00	1.85	1.82	0.00	0.00	0.00
	Water/Light Oil	0	8760	0.00024300	99.60	0.00	0.00	0.00	1.85	1.82	0.00	0.00	0.00
	Gas/Vapor	200	8760	0.00086000	57.70	0.10	869.39	0.43	46.93	1.18	0.40	0.74	10.74
	Light Oil	200	8760	0.00024300	99.60	0.05	424.02	0.21	1.85	7.57	0.21	0.20	5.42
Flanges	Heavy Oil	0	8760	0.00000086	99.60	0.00	0.00	0.00	1.85	7.57	0.00	0.00	0.00
	Water/Light Oil	0	8760	0.00000620	99.60	0.00	0.00	0.00	1.85	7.57	0.00	0.00	0.00
	Gas/Vapor	8	8760	0.00441000	57.70	0.02	178.33	0.09	46.93	0.30	0.08	0.15	2.20
Open-ended	Light Oil	0	8760	0.00309000	99.60	0.00	0.00	0.00	1.85	0.80	0.00	0.00	0.00
Lines	Heavy Oil	0	8760	0.00030900	99.60	0.00	0.00	0.00	1.85	0.80	0.00	0.00	0.00
	Water/Light Oil	0	8760	0.00055000	99.60	0.00	0.00	0.00	1.85	0.80	0.00	0.00	0.00
	Gas/Vapor	0	8760	0.01940000	57.70	0.00	0.00	0.00	46.93	0.00	0.00	0.00	0.00
Other:	Light Oil	0	8760	0.01650000	99.60	0.00	0.00	0.00	1.85	0.00	0.00	0.00	0.00
other.	Heavy Oil	0	8760	0.00006800	99.60	0.00	0.00	0.00	1.85	0.00	0.00	0.00	0.00
	Water/Light Oil	0	8760	0.03090000	99.60	0.00	0.00	0.00	1.85	0.00	0.00	0.00	0.00
								_					
	E	mission Compo	onent		lb/hr	lb/year	TPY				CH4 Emissions	CO2 Emissions	CO2e Emissio
		Total VOC			0.76	6649.51	3.32	1			3.16	4.57	83.60

### XTO ENERGY INC. CORRAL CANYON TANK BATTERY TREATER SECTION - FUGITIVE EMISSION HAPs

_		Estimated					Emissions	
Component Type	Service	Components Count	Hours	Factors	Total HAPs Weight %	lb/hour	lb/year	tons/year
	Gas/Vapor*	40	8760	0.00992000	2.27	0.01	79.04	0.04
Valves	Light Oil*	40	8760	0.00550000	6.64	0.01	127.92	0.06
	Heavy Oil	0	8760	0.00001900	6.64	0.00	0.00	0.00
	Water/Light Oil*	0	8760	0.00021600	6.64	0.00	0.00	0.00
	Gas/Vapor	0	8760	0.00529000	2.27	0.00	0.00	0.00
Pump Seals	Light Oil	0	8760	0.02866000	6.64	0.00	0.00	0.00
Pump Seals	Heavy Oil	0	8760	0.00113000	6.64	0.00	0.00	0.00
	Water/Light Oil	0	8760	0.00005300	6.64	0.00	0.00	0.00
	Gas/Vapor	200	8760	0.00044000	2.27	0.00	17.53	0.01
Connectors	Light Oil	200	8760	0.00046300	6.64	0.01	53.84	0.03
	Heavy Oil	0	8760	0.00001700	6.64	0.00	0.00	0.00
	Water/Light Oil	0	8760	0.00024300	6.64	0.00	0.00	0.00
	Gas/Vapor	200	8760	0.00086000	2.27	0.00	34.26	0.02
<b>F</b> I.	Light Oil	200	8760	0.00024300	6.64	0.00	28.26	0.01
Flanges	Heavy Oil	0	8760	0.0000086	6.64	0.00	0.00	0.00
	Water/Light Oil	0	8760	0.00000620	6.64	0.00	0.00	0.00
	Gas/Vapor	8	8760	0.00441000	2.27	0.00	7.03	0.00
Open-ended	Light Oil	0	8760	0.00309000	6.64	0.00	0.00	0.00
Lines	Heavy Oil	0	8760	0.00030900	6.64	0.00	0.00	0.00
	Water/Light Oil	0	8760	0.00055000	6.64	0.00	0.00	0.00
	Gas/Vapor	0	8760	0.01940000	2.27	0.00	0.00	0.00
Other:	Light Oil	0	8760	0.01650000	6.64	0.00	0.00	0.00
Other:	Heavy Oil	0	8760	0.00006800	6.64	0.00	0.00	0.00
	Water/Light Oil	0	8760	0.03090000	6.64	0.00	0.00	0.00
					11-11-11	ll da se se		1
	E	mission Compo	ment		lb/hr	lb/year	TPY	4
		Total HAPs			0.04	347.88	0.17	

### XTO ENERGY INC. CORRAL CANYON TANK BATTERY TREATER SECTION - FUGITIVE EMISSION N-HEXANE

		<b>E</b> (1 - 1			г		Emissions	
Component Type	Service	Estimated Components Count	Hours	Factors	Total n-Hexane Weight %	lb/hour	lb/year	tons/year
	Gas/Vapor*	40	8760	0.00992000	1.17	0.00	13.37	0.01
	Light Oil*	40	8760	0.00550000	1.66	0.00	12.46	0.01
Valves	Heavy Oil	0	8760	0.00001900	1.66	0.00	0.00	0.00
	Water/Light Oil*	0	8760	0.00021600	1.66	0.00	0.00	0.00
	Gas/Vapor	0	8760	0.00529000	1.17	0.00	0.00	0.00
Pump Seals	Light Oil	0	8760	0.02866000	1.66	0.00	0.00	0.00
	Heavy Oil	0	8760	0.00113000	1.66	0.00	0.00	0.00
	Water/Light Oil	0	8760	0.00005300	1.66	0.00	0.00	0.00
	Gas/Vapor	200	8760	0.00044000	1.17	0.00	8.99	0.00
Connectors	Light Oil	200	8760	0.00046300	1.66	0.00	13.45	0.01
	Heavy Oil	0	8760	0.00001700	1.66	0.00	0.00	0.00
	Water/Light Oil	0	8760	0.00024300	1.66	0.00	0.00	0.00
F1	Gas/Vapor	200	8760	0.00086000	1.17	0.00	17.57	0.01
	Light Oil	200	8760	0.00024300	1.66	0.00	7.06	0.00
Flanges	Heavy Oil	0	8760	0.0000086	1.66	0.00	0.00	0.00
	Water/Light Oil	0	8760	0.00000620	1.66	0.00	0.00	0.00
	Gas/Vapor	8	8760	0.00441000	1.17	0.00	3.60	0.00
Open-ended	Light Oil	0	8760	0.00309000	1.66	0.00	0.00	0.00
Lines	Heavy Oil	0	8760	0.00030900	1.66	0.00	0.00	0.00
	Water/Light Oil	0	8760	0.00055000	1.66	0.00	0.00	0.00
	Gas/Vapor	0	8760	0.01940000	1.17	0.00	0.00	0.00
Other:	Light Oil	0	8760	0.01650000	1.66	0.00	0.00	0.00
Other.	Heavy Oil	0	8760	0.00006800	1.66	0.00	0.00	0.00
	Water/Light Oil	0	8760	0.03090000	1.66	0.00	0.00	0.00
	E	mission Compo	onent		lb/hr	lb/year	ТРҮ	1
		1				•		-
		Total Benzen	ie		0.009	76.51	0.038	

### XTO ENERGY INC.

### CORRAL CANYON TANK BATTERY

### OIL TANK SECTION GAS ANALYSIS - FUGITIVE EMISSIONS

G	as Composition	
Component	Mole %	Weight %
Carbon Dioxide	0.0470	0.0409
Nitrogen	0.0004	0.0002
Methane	0.6581	0.2091
Ethane	20.8120	12.3947
Propane	35.4572	30.9672
Isobutane	7.0404	8.1048
n-Butane	19.5465	22.5016
Isopentane	5.0435	7.2072
n-Pentane	5.5602	7.9454
n-Hexane	1.2925	2.2060
Cyclohexane	0.1670	0.2784
i-C6	1.9490	3.3266
i-C7	0.7449	1.4784
Methylcyclohexane	0.0549	0.1069
Octane	0.6288	1.4226
Nonane	0.0973	0.2473
Benzene	0.4721	0.7305
Toluene	0.2786	0.5085
Ethylbenzene	0.0147	0.0308
o-Xylene	0.0553	0.1164
H2S	0.0018	0.0012
Water	0.0005	0.0002
2,2,4 Trimethylpentane	0.0774	0.1750
Decanes Plus	0.0001	0.0004
Total	100.00	100.0000
MOLECULAR W	EIGHT	50.49
SATURATED		2848.03
NMHC		99.75
VOCs (NMNE	EHC)	87.35
HAPs	·	3.77
H2S Mole Perce	entage	0.00

### XTO ENERGY INC. CORRAL CANYON TANK BATTERY WATER TANK LIQUID ANALYSIS - FUGITIVE EMISSIONS

W	ater Composition		
Component	Mole %	Weight %	
Carbon Dioxide	0.0004	0.0009	
Nitrogen	0.0000	0.0000	
Methane	0.0013	0.0012	
Ethane	0.0005	0.0008	
Propane	0.0001	0.0003	
Isobutane	0.0000	0.0000	
n-Butane	0.0000	0.0001	
Isopentane	0.0000	0.0000	
n-Pentane	0.0000	0.0000	
n-Hexane	0.0000	0.0000	
Cyclohexane	0.0000	0.0000	
i-C6	0.0000	0.0000	
i-C7	0.0000	0.0000	
Methylcyclohexane	0.0000	0.0000	
Octane	0.0000	0.0000	
Nonane	0.0000	0.0000 0.0038	
Benzene	0.0009		
Toluene	0.0003	0.0017	
Ethylbenzene	0.0000	0.0001	
o-Xylene	0.0001	0.0005	
H2S	0.0000	0.0000	
Water	99.9963	99.9905	
2,2,4 Trimethylpentane	0.0000	0.0000	
Decanes Plus	0.0000	0.0000	
Total	100.00	100.0000	
MOLECULAR W	/EIGHT	18.02	
NMHC VOCs (NMNE	HC)	0.01	
HAPs		0.01	
H2S Mole Perce	antaga	0.00	

### **XTO ENERGY INC.**

CORRAL CANYON TANK BATTERY

OIL TANK CONDENSATE ANALYSIS - FUGITIVE EMISSIONS

Component	Mole %	Weight %	
Carbon Dioxide	0.0009	0.0003	
Nitrogen	0.0000	0.0000	
Methane	0.0259	0.0027	
Ethane	0.4540	0.0895	
Propane	2.3655	0.6840	
Isobutane	1.1120	0.4238	
n-Butane	4.2640	1.6250	
Isopentane	2.7114	1.2827	
n-Pentane	3.9195	1.8542	
n-Hexane	2.8751	1.6246	
Cyclohexane	0.5666	0.3127	
i-C6	3.1720	1.7924	
i-C7	11.5910	7.6156	
Methylcyclohexane	0.3816	0.2457	
Octane	13.3478	9.9976	
Nonane	6.2601	5.2646	
Benzene	1.6306	0.8352	
Toluene	3.0462	1.8404	
Ethylbenzene	0.4348	0.3027	
o-Xylene	2.4220	1.6860	
H2S	0.0001	0.0000	
Water	0.0104	0.0012	
2,2,4 Trimethylpentane	0.5042	0.3777	
Decanes Plus	38.9042	62.1415	
Total	100.00	100.0000	
MOLECULAR W	EIGHT	152.51	
NMHC		37.765	
VOCs (NMNE	HC)	37.081	
HAPs		4.519	

#### XTO ENERGY INC. CORRAL CANYON TANK BATTERY STORAGE TANK SECTION - FUGITIVE EMISSIONS VOCs

			F	ugitive Emiss	on Calculations								
Component		Estimated			Total VOC	Emissions		Total CH4	Total CO2	CH4 Emissions	CO2 Emissions	CO2e Emissions	
Type	Service	Components Count	Hours	Factors	Weight %	lb/hour	lb/year	tons/year	Weight %	Weight %	ton/year	ton/year	ton/yea
	Gas/Vapor*	50	8760	0.00992000	87.35	0.43	3795.48	1.90	46.93	0.33	1.15	2.17	30.99
	Light Oil*	50	8760	0.00550000	37.08	0.10	893.28	0.45	1.85	0.00	1.18	1.20	30.76
Valves	Heavy Oil	0	8760	0.00001900	37.08	0.00	0.00	0.00	1.85	0.00	0.00	0.00	0.00
	Water/Light Oil*	50	8760	0.00021600	0.01	0.00	0.01	0.00	1.85	0.00	0.05	0.05	1.21
	Gas/Vapor*	5	8760	0.00529000	87.35	0.02	202.40	0.10	46.93	14.47	0.06	0.10	1.64
	Light Oil	5	8760	0.02866000	37.08	0.05	465.48	0.23	1.85	1.32	0.62	0.62	16.02
Pump Seals	Heavy Oil	0	8760	0.00113000	37.08	0.00	0.00	0.00	1.85	1.32	0.00	0.00	0.00
	Water/Light Oil	10	8760	0.00005300	0.01	0.00	0.00	0.00	1.85	1.32	0.00	0.00	0.06
	Gas/Vapor	50	8760	0.00044000	87.35	0.02	168.35	0.08	46.93	2.06	0.05	0.09	1.37
	Light Oil	50	8760	0.00046300	37.08	0.01	75.20	0.04	1.85	1.82	0.10	0.10	2.59
Connectors	Heavy Oil	0	8760	0.00001700	37.08	0.00	0.00	0.00	1.85	1.82	0.00	0.00	0.00
	Water/Light Oil	50	8760	0.00024300	0.01	0.00	0.01	0.00	1.85	1.82	0.05	0.05	1.36
	Gas/Vapor	50	8760	0.00086000	87.35	0.04	329.04	0.16	46.93	1.18	0.10	0.19	2.68
121	Light Oil	50	8760	0.00024300	37.08	0.00	39.47	0.02	1.85	7.57	0.05	0.05	1.36
Flanges	Heavy Oil	0	8760	0.0000086	37.08	0.00	0.00	0.00	1.85	7.57	0.00	0.00	0.00
	Water/Light Oil	50	8760	0.00000620	0.01	0.00	0.00	0.00	1.85	7.57	0.00	0.00	0.03
	Gas/Vapor	0	8760	0.00441000	87.35	0.00	0.00	0.00	46.93	0.30	0.00	0.00	0.00
Open-ended	Light Oil	0	8760	0.00309000	37.08	0.00	0.00	0.00	1.85	0.80	0.00	0.00	0.00
Lines	Heavy Oil	0	8760	0.00030900	37.08	0.00	0.00	0.00	1.85	0.80	0.00	0.00	0.00
	Water/Light Oil	0	8760	0.00055000	0.01	0.00	0.00	0.00	1.85	0.80	0.00	0.00	0.00
	Gas/Vapor	10	8760	0.01940000	87.35	0.17	1484.52	0.74	46.93	0.00	0.45	0.85	12.12
Other:	Light Oil	0	8760	0.01650000	37.08	0.00	0.00	0.00	1.85	0.00	0.00	0.00	0.00
ouler:	Heavy Oil	0	8760	0.00006800	37.08	0.00	0.00	0.00	1.85	0.00	0.00	0.00	0.00
	Water/Light Oil	5	8760	0.03090000	0.01	0.00	0.09	0.00	1.85	0.00	0.66	0.68	17.28
	E	mission Compo	onent		lb/hr	lb/year	TPY	1			CH4	CO2	CO2e
											Emissions	Emissions	Emissio
		Total VOC			0.85	7453.32	3.73				4.53	6.15	119.47

### XTO ENERGY INC. CORRAL CANYON TANK BATTERY STORAGE TANK SECTION - FUGITIVE EMISSIONS HAPs

		Estimated			T . 1111		Emissions	
Component Type	Service	Components Count	Hours	Factors	Total HAPs Weight %	lb/hour	lb/year	tons/year
	Gas/Vapor*	50	8760	0.00992000	3.77	0.02	163.68	0.08
37.1	Light Oil*	25	8760	0.00550000	4.52	0.01	54.44	0.03
Valves	Heavy Oil	0	8760	0.00001900	4.52	0.00	0.00	0.00
	Water/Light Oil*	25	8760	0.00021600	0.01	0.00	0.00	0.00
	Gas/Vapor	5	8760	0.00529000	3.77	0.00	8.73	0.00
	Light Oil	5	8760	0.02866000	4.52	0.01	56.73	0.03
Pump Seals	Heavy Oil	0	8760	0.00113000	4.52	0.00	0.00	0.00
	Water/Light Oil	5	8760	0.00005300	0.01	0.00	0.00	0.00
	Gas/Vapor	50	8760	0.00044000	3.77	0.00	7.26	0.00
Connectors	Light Oil	50	8760	0.00046300	4.52	0.00	9.17	0.00
	Heavy Oil	0	8760	0.00001700	4.52	0.00	0.00	0.00
	Water/Light Oil	50	8760	0.00024300	0.01	0.00	0.01	0.00
	Gas/Vapor	50	8760	0.00086000	3.77	0.00	14.19	0.01
	Light Oil	50	8760	0.00024300	4.52	0.00	4.81	0.00
Flanges	Heavy Oil	0	8760	0.0000086	4.52	0.00	0.00	0.00
	Water/Light Oil	50	8760	0.00000620	0.01	0.00	0.00	0.00
	Gas/Vapor	0	8760	0.00441000	3.77	0.00	0.00	0.00
Open-ended	Light Oil	0	8760	0.00309000	4.52	0.00	0.00	0.00
Lines	Heavy Oil	0	8760	0.00030900	4.52	0.00	0.00	0.00
	Water/Light Oil	0	8760	0.00055000	0.01	0.00	0.00	0.00
	Gas/Vapor	10	8760	0.01940000	3.77	0.01	64.02	0.03
Othern	Light Oil	3	8760	0.01650000	4.52	0.00	19.60	0.01
Other:	Heavy Oil	0	8760	0.00006800	4.52	0.00	0.00	0.00
	Water/Light Oil	3	8760	0.03090000	0.01	0.00	0.05	0.00
	E	mission Compo	onent		lb/hr	lb/year	ТРҮ	1
		Total HAPs			0.05	402.68	0.20	

### XTO ENERGY INC. CORRAL CANYON TANK BATTERY STORAGE TANK SECTION - FUGITIVE EMISSIONS N-HEXANE

с .		Estimated			<b>T</b> ( <b>1 T</b>		Emissions	
Component Type	Service	Components Count	Hours	Factors	Total n-Hexane Weight %	lb/hour	lb/year	tons/year
	Gas/Vapor	50	8760	0.00992000	0.51	0.00	22.09	0.01
37.1	Light Oil	50	8760	0.00550000	1.84	0.01	44.33	0.02
Valves	Heavy Oil	0	8760	0.00001900	1.84	0.00	0.00	0.00
	Water/Light Oil	50	8760	0.00021600	0.00	0.00	0.00	0.00
	Gas/Vapor	5	8760	0.00529000	0.51	0.00	1.18	0.00
Pump Seals	Light Oil	5	8760	0.02866000	1.84	0.00	23.10	0.01
	Heavy Oil	0	8760	0.00113000	1.84	0.00	0.00	0.00
	Water/Light Oil	10	8760	0.00005300	0.00	0.00	0.00	0.00
	Gas/Vapor	50	8760	0.00044000	0.51	0.00	0.98	0.00
Connectors	Light Oil	50	8760	0.00046300	1.84	0.00	3.73	0.00
	Heavy Oil	0	8760	0.00001700	1.84	0.00	0.00	0.00
	Water/Light Oil	50	8760	0.00024300	0.00	0.00	0.00	0.00
El	Gas/Vapor	50	8760	0.00086000	0.51	0.00	1.92	0.00
	Light Oil	50	8760	0.00024300	1.84	0.00	1.96	0.00
Flanges	Heavy Oil	0	8760	0.0000086	1.84	0.00	0.00	0.00
	Water/Light Oil	50	8760	0.00000620	0.00	0.00	0.00	0.00
	Gas/Vapor	0	8760	0.00441000	0.51	0.00	0.00	0.00
Open-ended	Light Oil	0	8760	0.00309000	1.84	0.00	0.00	0.00
Lines	Heavy Oil	0	8760	0.00030900	1.84	0.00	0.00	0.00
	Water/Light Oil	0	8760	0.00055000	0.00	0.00	0.00	0.00
	Gas/Vapor	10	8760	0.01940000	0.51	0.00	8.64	0.00
Other:	Light Oil	0	8760	0.01650000	1.84	0.00	0.00	0.00
Otner:	Heavy Oil	0	8760	0.00006800	1.84	0.00	0.00	0.00
	Water/Light Oil	5	8760	0.03090000	0.00	0.00	0.02	0.00
	E	mission Compo	onent		lb/hr	lb/year	ТРҮ	
		Total Benzer	e		0.012	107.96	0.054	

### XTO ENERGY INC. CORRAL CANYON TANK BATTERY VRU - COST BENEFIT ANALYSIS

	VAPOR RECOVERY TOWER VRU
Unit Variable	Vapor Recovery Tower
Vapor Emission Rate (mscfd)	713.681
Heating Value (btu/scf)	2588.42
Value of gas sold (\$/MMBtu)	\$ 2.40
VRU Rental Rate (\$/Month)	\$ 5,400.00
VRU Count	1
Total Monthly Rental Rate (\$/Month)	\$ 5,400.00
Annual Rental Rate Cost (\$/Year)	\$ 64,800.00
Expectancy of VRU (years)	5
Annual Revenue Total (\$/Year)	\$ 1,294,594.57
Five Year Profit (\$)	\$ 6,148,972.86

Is the primary purpose of the equipment to control air pollution?

No, the primary purpose is to recover product for sale.

Where the equipment is recovering product, how do the cost savings from the product recovery compare to the cost of the equipment?

The VRU generates income for the site.

#### Would the equipment be installed if no air quality regulations are in place?

The equipment would be installed regardless of air quality regulations.

(1) Vapor emissions are obtained from Promax Modeling.

(2) Value of gas sold based on 3-month average from http://www.eia.gov/dnav/ng/ng_pri_fut_s1_d.htm

(3) Heating vales of vapors are based on Promax results.

(4) Rental estimate includes installation, operation, and maintenance of VRU.

### XTO ENERGY INC. CORRAL CANYON TANK BATTERY VRU - COST BENEFIT ANALYSIS

STORAGE TANK VRUs		
Unit Varible	Oil Tanks	
Vapor Emission Rate (mscfd)	91.823	
Heating Value (btu/scf)	2848	
Value of gas sold (\$/MMBtu)	\$ 2.40	
VRU Rental Rate (\$/Month)	\$ 4,100.00	
VRU Count	1	
Total Monthly Rental Rate (\$/Month)	\$ 4,100.00	
Annual Rental Rate Cost (\$/Year)	\$ 49,200.00	
Expectancy of VRU (years)	5	
Annual Revenue Total (\$/Year)	\$ 183,269.99	
Five Year Profit (\$)	\$ 670,349.93	

Is the primary purpose of the equipment to control air pollution?

No, the primary purpose is to recover product for sale.

Where the equipment is recovering product, how do the cost savings from the product recovery compare to the cost of the equipment?

The VRU generates income for the site.

Would the equipment be installed if no air quality regulations are in place?

The equipment would be installed regardless of air quality regulations.

(1) Vapor emissions are obtained from Promax Modeling.

(2) Value of gas sold based on 3-month average from http://www.eia.gov/dnav/ng/ng_pri_fut_s1_d.htm

(3) Heating vales of vapors are based on Promax results.

(4) Rental estimate includes installation, operation, and maintenance of VRU.

## Tab 7 Section 7 - Information Used To Determine Emissions

# **Section 7**

## **Information Used To Determine Emissions**

#### Information Used to Determine Emissions shall include the following:

- ☑ If manufacturer data are used, include specifications for emissions units <u>and</u> control equipment, including control efficiencies specifications and sufficient engineering data for verification of control equipment operation, including design drawings, test reports, and design parameters that affect normal operation.
- □ If test data are used, include a copy of the complete test report. If the test data are for an emissions unit other than the one being permitted, the emission units must be identical. Test data may not be used if any difference in operating conditions of the unit being permitted and the unit represented in the test report significantly effect emission rates.
- ☑ If the most current copy of AP-42 is used, reference the section and date located at the bottom of the page. Include a copy of the page containing the emissions factors, and clearly mark the factors used in the calculations.
- $\Box$  If an older version of AP-42 is used, include a complete copy of the section.
- □ If an EPA document or other material is referenced, include a complete copy.
- ☑ Fuel specifications sheet.
- ☑ If computer models are used to estimate emissions, include an input summary (if available) and a detailed report, and a disk containing the input file(s) used to run the model. For tank-flashing emissions, include a discussion of the method used to estimate tank-flashing emissions, relative thresholds (i.e., permit or major source (NSPS, PSD or Title V)), accuracy of the model, the input and output from simulation models and software, all calculations, documentation of any assumptions used, descriptions of sampling methods and conditions, copies of any lab sample analysis.

Backup documentation is provided.

#### FESCO, Ltd. 1100 Fesco Ave. - Alice, Texas 78332

For: XTO Energy, Inc. 22777 Springwoods Village Pkwy. Spring, Texas 77389

Sample: Corral Canyon Tank Battery - FWKO 900 First Stage Separator Spot Gas Sample @ 87 psig & 86 °F

Date Sampled: 08/20/2019

Job Number: 192968.001

#### **CHROMATOGRAPH EXTENDED ANALYSIS - GPA 2286**

COMPONENT Hydrogen Sulfide*	<b>MOL%</b> < 0.001	GPM
Nitrogen	0.919	
Carbon Dioxide	0.179	
Methane	70.043	
Ethane	14.584	3.997
Propane	7.854	2.218
Isobutane	1.068	0.358
n-Butane	2.635	0.851
2-2 Dimethylpropane	0.007	0.003
Isopentane	0.635	0.238
n-Pentane	0.685	0.254
Hexanes	0.522	0.220
Heptanes Plus	0.869	<u>0.345</u>
Totals	100.000	8.485

#### **Computed Real Characteristics Of Heptanes Plus:**

Specific Gravity	3.263	(Air=1)
Molecular Weight	94.05	
Gross Heating Value	4891	BTU/CF

#### **Computed Real Characteristics Of Total Sample:**

•		
Specific Gravity	0.826	(Air=1)
Compressibility (Z)	0.9950	
Molecular Weight	23.80	
Gross Heating Value		
Dry Basis	1442	BTU/CF
Saturated Basis	1418	BTU/CF

*Hydrogen Sulfide tested on location by: Stain Tube Method (GPA 2377) Results: <0.013 Gr/100 CF, <0.2 PPMV or <0.001 Mol %

Base Conditions: 15.025 PSI & 60 Deg F

Sampled By: (14) R. Perez Analyst: NG Processor: RG Cylinder ID: T-2763 Certified: FESCO, Ltd. - Alice, Texas

David Dannhaus 361-661-7015

CHROMATOGRAPH EXTENDED ANALYSIS - GPA 2286			
TOTAL REPORT			

COMPONENT	MOL %	GPM		WT %
Hydrogen Sulfide*	< 0.001			< 0.001
Nitrogen	0.919			1.082
Carbon Dioxide	0.179			0.331
Methane	70.043			47.216
Ethane	14.584	3.997		18.427
Propane	7.854	2.218		14.553
Isobutane	1.068	0.358		2.608
n-Butane	2.635	0.358		6.436
2,2 Dimethylpropane	0.007	0.003		0.021
Isopentane	0.635	0.238		1.925
n-Pentane	0.685	0.254		2.077
2,2 Dimethylbutane	0.007	0.003		0.025
Cyclopentane	0.000	0.000		0.000
2,3 Dimethylbutane	0.058	0.024		0.210
2 Methylpentane	0.165	0.070		0.598
3 Methylpentane	0.087	0.036		0.315
n-Hexane	0.205	0.086		0.742
Methylcyclopentane	0.101	0.036		0.357
Benzene	0.093	0.027		0.305
Cyclohexane	0.189	0.066		0.668
2-Methylhexane	0.025	0.012		0.105
3-Methylhexane	0.028	0.013		0.118
2,2,4 Trimethylpentane	0.000	0.000		0.000
Other C7's	0.071	0.032		0.296
n-Heptane	0.057	0.027		0.240
Methylcyclohexane	0.119	0.049		0.491
Toluene	0.052	0.018		0.201
Other C8's	0.065	0.031		0.301
n-Octane	0.018	0.009		0.086
Ethylbenzene	0.002	0.001		0.009
M & P Xylenes	0.010	0.004		0.045
O-Xylene	0.002	0.001		0.009
Other C9's	0.024	0.012		0.127
n-Nonane	0.004	0.002		0.022
Other C10's	0.007	0.002		0.042
n-Decane	0.001	0.004		0.006
Undecanes (11)	0.001	0.001		0.006
Totals	100.000	<u>8.485</u>		100.000
Totals	100.000	0.400		100.000
Computed Real Charact	eristics of Total Sample			
		0.826	(Air=1)	
		0.9950	(//// = 1)	
		23.80		
Gross Heating Value		23.00		
Dry Paoio		1442	BTU/CF	
Diy Dabib				
Saturated basis		1418	BTU/CF	

#### FESCO, Ltd. 1100 Fesco Ave. - Alice, Texas 78332

Sample: Corral Canyon Tank Battery - FWKO 900 First Stage Separator Spot Gas Sample @ 87 psig & 86 °F

Date Sampled: 08/20/2019

Job Number: 192968.001

**GLYCALC FORMAT** 

COMPONENT	MOL%	GPM	Wt %
Carbon Dioxide	0.179		0.331
Hydrogen Sulfide	< 0.001		< 0.001
Nitrogen	0.919		1.082
Methane	70.043		47.216
Ethane	14.584	3.997	18.427
Propane	7.854	2.218	14.553
Isobutane	1.068	0.358	2.608
n-Butane	2.642	0.854	6.457
Isopentane	0.635	0.238	1.925
n-Pentane	0.685	0.254	2.077
Cyclopentane	0.000	0.000	0.000
n-Hexane	0.205	0.086	0.742
Cyclohexane	0.189	0.066	0.668
Other C6's	0.317	0.134	1.148
Heptanes	0.282	0.119	1.116
Methylcyclohexane	0.119	0.049	0.491
2,2,4 Trimethylpentane	0.000	0.000	0.000
Benzene	0.093	0.027	0.305
Toluene	0.052	0.018	0.201
Ethylbenzene	0.002	0.001	0.009
Xylenes	0.012	0.005	0.054
Octanes Plus	<u>0.120</u>	<u>0.061</u>	<u>0.590</u>
Totals	100.000	8.485	100.000

#### **Real Characteristics Of Octanes Plus:**

Specific Gravity	4.060	(Air=1)
Molecular Weight	117.01	
Gross Heating Value	6153	BTU/CF

#### **Real Characteristics Of Total Sample:**

Specific Gravity	0.826	(Air=1)
Compressibility (Z)	0.9950	
Molecular Weight	23.80	
Gross Heating Value		
Dry Basis	1442	BTU/CF
Saturated Basis	1418	BTU/CF

#### FESCO, Ltd. 1100 FESCO Avenue - Alice, Texas 78332

For: XTO Energy, Inc. 22777 Springwoods Village Pkwy. Spring, Texas 77389

Sample: Corral Canyon Tank Battery - FWKO 900 First Stage Separator Hydrocarbon Liquid Sampled @ 87 psig & 86 °F

Date Sampled: 08/21/19

Job Number: 192968.002

#### CHROMATOGRAPH EXTENDED ANALYSIS - GPA 2186-M

COMPONENT	MOL %	LIQ VOL %	WT %
Nitrogen	0.026	0.005	0.005
Carbon Dioxide	0.014	0.004	0.004
Methane	1.849	0.544	0.207
Ethane	2.503	1.162	0.525
Propane	4.349	2.080	1.338
Isobutane	1.306	0.742	0.530
n-Butane	4.542	2.486	1.841
2,2 Dimethylpropane	0.050	0.033	0.025
Isopentane	2.544	1.615	1.280
n-Pentane	3.672	2.311	1.848
2,2 Dimethylbutane	0.036	0.026	0.022
Cyclopentane	0.000	0.000	0.000
2,3 Dimethylbutane	0.399	0.284	0.240
2 Methylpentane	1.412	1.018	0.849
3 Methylpentane	0.857	0.608	0.515
n-Hexane	2.519	1.798	1.514
Heptanes Plus	<u>73.923</u>	<u>85.283</u>	<u>89.256</u>
Totals:	100.000	100.000	100.000

Specific Gravity	0.8254	(Water=1)
°API Gravity	39.92	@ 60°F
Molecular Weight	173.1	
Vapor Volume	14.76	CF/Gal
Weight	6.88	Lbs/Gal

#### Characteristics of Total Sample:

Specific Gravity	0.7887	(Water=1)
°API Gravity	47.91	@ 60°F
Molecular Weight	143.4	
Vapor Volume	17.03	CF/Gal
Weight	6.57	Lbs/Gal

Base Conditions: 15.025 PSI & 60 °F

Certified: FESCO, Ltd. - Alice, Texas

Sampled By: (14) Perez Analyst: RR Processor: ANBdjv Cylinder ID: W-2619

David Dannhaus 361-661-7015

#### TANKS DATA INPUT REPORT - GPA 2186-M

COMPONENT	Mol %	LiqVol %	Wt %
Carbon Dioxide	0.014	0.004	0.004
Nitrogen	0.026	0.004	0.004
Methane	1.849	0.544	0.003
Ethane	2.503	1.162	0.525
Propane	4.349	2.080	1.338
Isobutane	1.306	0.742	0.530
n-Butane	4.592	2.519	1.866
Isopentane	2.544	1.615	1.280
n-Pentane	3.672	2.311	1.848
Other C-6's	2.705	1.936	1.626
Heptanes	10.992	7.572	7.025
Octanes	12.619	9.783	9.308
Nonanes	5.882	5.437	5.201
Decanes Plus	36.877	57.841	62.672
Benzene	1.495	0.727	0.815
Toluene	2.852	1.658	1.833
E-Benzene	0.412	0.276	0.305
Xylenes	2.287	1.533	1.694
n-Hexane	2.519	1.798	1.514
2,2,4 Trimethylpentane	0.506	0.457	0.403
Totals:	100.000	100.000	100.000
Characteristics of Total Sample:			
Specific Gravity		0.7887	(Water=1)
°API Gravity		47.91	@ 60°F
Molecular Weight		143.4	
Vapor Volume		17.03	CF/Gal
Weight		6.57	Lbs/Gal

#### Characteristics of Decanes (C10) Plus:

Specific Gravity	0.8546	(Water=1)
Molecular Weight	243.6	

#### Characteristics of Atmospheric Sample:

°API Gravity	45.26	@ 60°F
Reid Vapor Pressure Equivalent (D-6377)	9.64	psi

QUALITY CONTROL CHECK			
	Sampling Conditions	Test Sa	amples
Cylinder Number		W-2619*	
Pressure, PSIG	87	80	
Temperature, °F	86	86	

* Sample used for analysis

FESCO, Ltd.

COMPONENT	Mol %	LiqVol %	Wt %
Nitrogen	0.026	0.005	0.005
Carbon Dioxide	0.014	0.004	0.004
Methane	1.849	0.544	0.207
Ethane	2.503	1.162	0.525
Propane	4.349	2.080	1.338
Isobutane	1.306	0.742	0.530
n-Butane	4.542	2.486	1.841
2,2 Dimethylpropane	0.050	0.033	0.025
Isopentane	2.544	1.615	1.280
n-Pentane	3.672	2.311	1.848
2,2 Dimethylbutane	0.036	0.026	0.022
Cyclopentane	0.000	0.000	0.000
2,3 Dimethylbutane	0.399	0.284	0.240
2 Methylpentane	1.412	1.018	0.849
3 Methylpentane	0.857	0.608	0.515
n-Hexane	2.519	1.798	1.514
Methylcyclopentane	1.687	1.036	0.990
Benzene	1.495	0.727	0.815
Cyclohexane	4.127	2.439	2.423
2-Methylhexane	0.929	0.750	0.650
3-Methylhexane	0.841	0.670	0.588
2,2,4 Trimethylpentane	0.506	0.457	0.403
Other C-7's	1.146	0.863	0.793
n-Heptane	2.263	1.813	1.582
Methylcyclohexane	5.342	3.728	3.659
Toluene	2.852	1.658	1.833
Other C-8's n-Octane	5.341 1.936	4.333 1.722	4.106
E-Benzene	0.412	0.276	1.543 0.305
M & P Xylenes	1.715	1.155	1.270
O-Xylene	0.572	0.378	0.424
Other C-9's	4.372	3.962	3.851
n-Nonane	1.510	1.475	1.351
Other C-10's	4.633	4.614	4.566
n-decane	1.021	1.088	1.014
Undecanes(11)	4.261	4.353	4.369
Dodecanes(12)	2.994	3.303	3.362
Tridecanes(13)	3.042	3.600	3.714
Tetradecanes(14)	2.657	3.368	3.522
Pentadecanes(15)	2.326	3.158	3.342
Hexadecanes(16)	1.722	2.499	2.667
Heptadecanes(17)	1.501	2.304	2.482
Octadecanes(18)	1.395	2.254	2.443
Nonadecanes(19)	1.219	2.051	2.236
Eicosanes(20)	0.947	1.656	1.816
Heneicosanes(21)	0.841	1.547	1.706
Docosanes(22)	0.748	1.434	1.591
Tricosanes(23)	0.643	1.278	1.426
Tetracosanes(24)	0.562	1.157	1.297
Pentacosanes(25)	0.508	1.086	1.223
Hexacosanes(26)	0.458	1.014	1.147
Heptacosanes(27)	0.432	0.993	1.128
Octacosanes(28)	0.360	0.856	0.975
Nonacosanes(29)	0.337	0.825	0.944
Triacontanes(30)	0.282	0.713	0.818
Hentriacontanes Plus(31+)	<u>3.988</u>	<u>12.690</u>	<u>14.883</u>
Total	100.000	100.000	100.000

## FESCO, Ltd. 1100 Fesco Avenue - Alice, Texas 78332

For: XTO Energy, Inc. 22777 Springwoods Village Pkwy. Spring, Texas 77389 Date Sampled: 08/21/19

Date Analyzed: 09/09/19

Sample: Corral Canyon Tank Battery - FWKO 900

Job Number: J192968

FLASH LIBERATION OF HYDROCARBON LIQUID				
	Separator HC Liquid	Stock Tank		
Pressure, psig	87	0		
Temperature, °F	86	70		
Density of Separator HC Liquid (g/cc)	0.7670			
Gas Oil Ratio (1)		53.2		
Gas Specific Gravity (2)		1.318		

STOCK TANK FLUID PROPERTIES	
Shrinkage Recovery Factor (3)	0.9469
Density of Stock Tank HC Liquid (g/cc @ 60 °F)	0.7997
Oil API Gravity at 60 °F	45.26

Quality Control Check				
	Sampling Conditions	Test Sa	amples	
Cylinder No.		W-2619*		
Pressure, psig	87	80		
Temperature, °F	86	86		

(1) - Scf of flashed vapor per barrel of stock tank oil

(2) - Air = 1.000

(3) - Fraction of first stage separator liquid

Analyst: E.T. III

Base Conditions: 15.025 PSI & 60 °F

Certified: FESCO, Ltd. - Alice, Texas

David Dannhaus 361-661-7015

#### FESCO, Ltd. 1100 Fesco Ave. - Alice, Texas 78332

For: XTO Energy, Inc. 22777 Springwoods Village Pkwy. Spring, Texas 77389

Sample: Corral Canyon Tank Battery - FWKO 900 Gas Evolved from Hydrocarbon Liquid Flashed Spot Gas Sample @ 87 psig & 86 °F

Date Sampled: 08/20/2019

Job Number: 192968.011

#### CHROMATOGRAPH EXTENDED ANALYSIS - GPA 2286

COMPONENT	MOL%	GPM
Hydrogen Sulfide*	< 0.001	
Nitrogen	0.191	
Carbon Dioxide	0.156	
Methane	26.787	
Ethane	26.084	7.212
Propane	24.919	7.098
Isobutane	3.981	1.347
n-Butane	9.867	3.216
2-2 Dimethylpropane	0.020	0.008
Isopentane	2.314	0.875
n-Pentane	2.464	0.923
Hexanes	1.370	0.583
Heptanes Plus	<u>1.847</u>	<u>0.727</u>
Totals	100.000	21.990

#### **Computed Real Characteristics Of Heptanes Plus:**

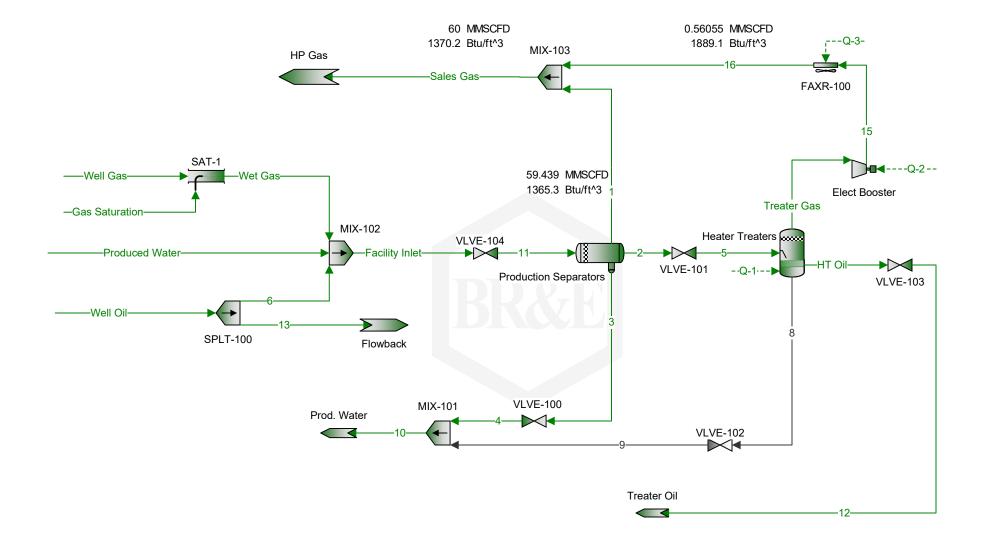
Specific Gravity	3.239	(Air=1)
Molecular Weight	92.54	
Gross Heating Value	4796	BTU/CF

### **Computed Real Characteristics Of Total Sample:**

Specific Gravity	1.318	(Air=1)
Compressibility (Z)	0.9863	
Molecular Weight	37.65	
Gross Heating Value		
Dry Basis	2233	BTU/CF
Saturated Basis	2195	BTU/CF

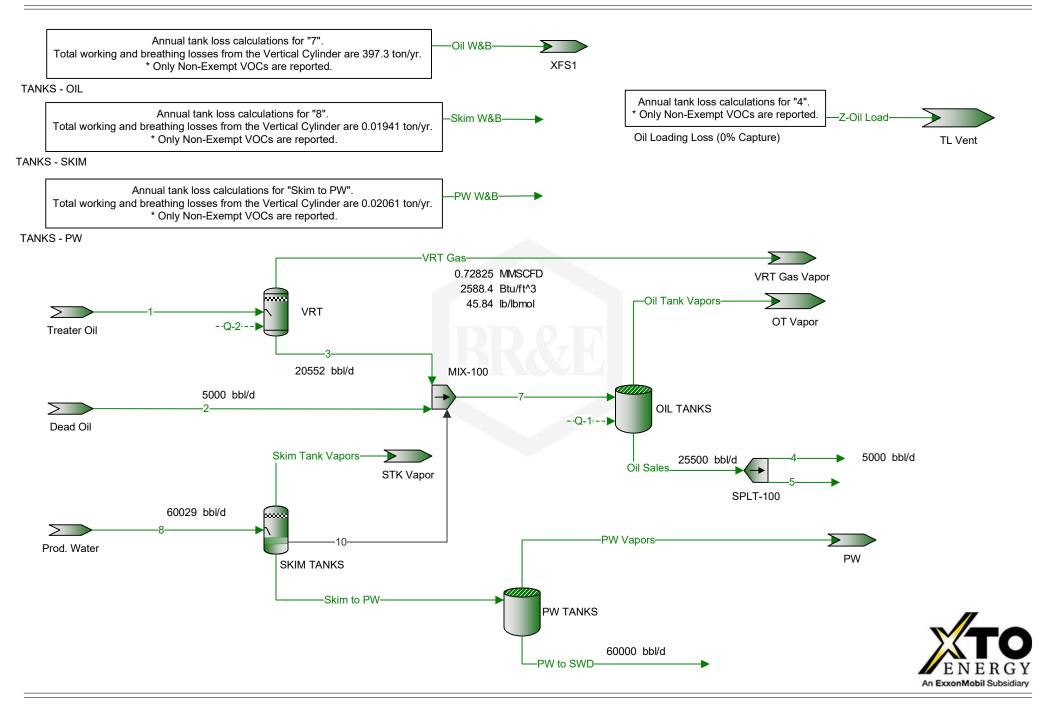
*Hydrogen Sulfide tested in laboratory by: Stain Tube Method (GPA 2377) Results: <0.013 Gr/100 CF, <0.2 PPMV or <0.001 Mol %

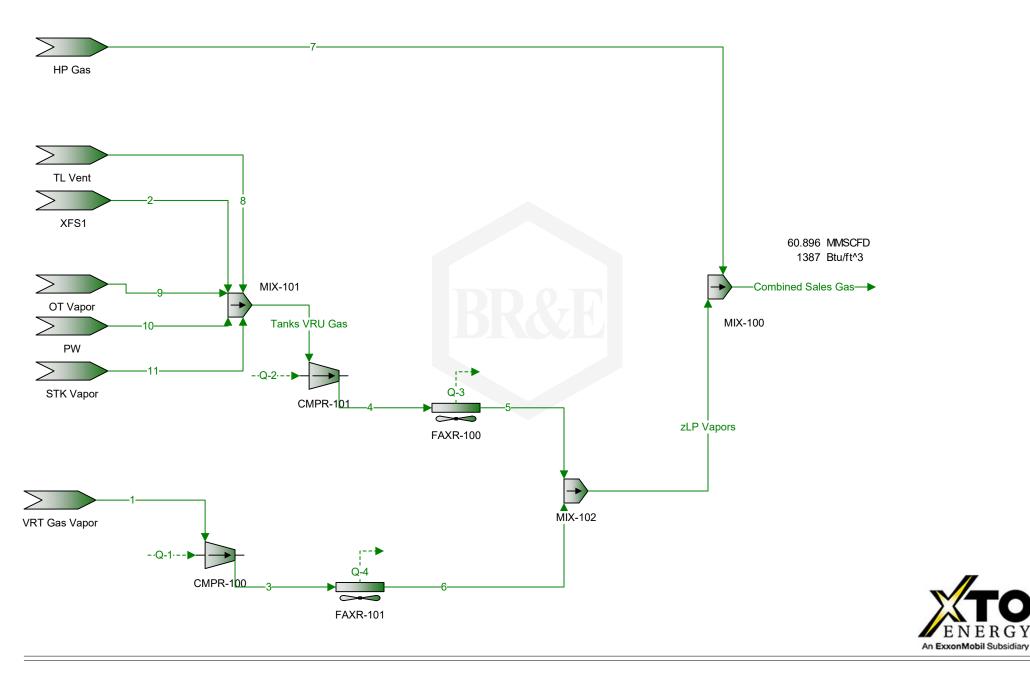
Base Conditions: 15.025 PSI & 60 Deg F


Sampled By: (16) ET III Analyst: NG Processor: NG Cylinder ID: FL-17S Certified: FESCO, Ltd. - Alice, Texas

David Dannhaus 361-661-7015

CHROMATOGRAPH EXTENDED ANALYSIS - GPA 2286
TOTAL REPORT


COMPONENT	MOL %	GPM	WT %
	< 0.001	GFM	< 0.001
Hydrogen Sulfide*			
Nitrogen	0.191		0.142
Carbon Dioxide	0.156		0.182
Methane	26.787	7.040	11.416
Ethane	26.084	7.212	20.831
Propane	24.919	7.098	29.184
Isobutane	3.981	1.347	6.145
n-Butane	9.867	3.216	15.232
2,2 Dimethylpropane	0.020	0.008	0.038
Isopentane	2.314	0.875	4.434
n-Pentane	2.464	0.923	4.722
2,2 Dimethylbutane	0.019	0.008	0.043
Cyclopentane	0.000	0.000	0.000
2,3 Dimethylbutane	0.160	0.068	0.366
2 Methylpentane	0.447	0.192	1.023
3 Methylpentane	0.229	0.097	0.524
n-Hexane	0.515	0.219	1.179
Methylcyclopentane	0.251	0.089	0.561
Benzene	0.218	0.063	0.452
Cyclohexane	0.447	0.157	0.999
2-Methylhexane	0.055	0.026	0.146
3-Methylhexane	0.060	0.028	0.160
2,2,4 Trimethylpentane	0.000	0.000	0.000
Other C7's	0.156	0.070	0.411
n-Heptane	0.112	0.053	0.298
Methylcyclohexane	0.239	0.099	0.623
Toluene	0.090	0.031	0.220
Other C8's	0.123	0.059	0.360
n-Octane	0.022	0.012	0.067
Ethylbenzene	0.004	0.002	0.011
M & P Xylenes	0.013	0.005	0.037
O-Xylene	0.003	0.001	0.008
Other C9's	0.038	0.020	0.127
n-Nonane	0.005	0.003	0.017
Other C10's	0.009	0.005	0.034
n-Decane	0.001	0.001	0.004
Undecanes (11)	0.001	0.001	0.004
Totals	100.000	21.990	100.000
Computed Real Charac	teristics O	f Total Sample:	
Specific Gravity		1 210	$(Air_1)$


Specific Gravity	1.318	(Air=1)
Compressibility (Z)	0.9863	
Molecular Weight	37.65	
Gross Heating Value		
Dry Basis	2233	BTU/CF
Saturated Basis	2195	BTU/CF





# CORRAL CANYON NEW TANK BATTERY





ENE

		Inlet Plant Schematic	
Client Name:	XTO ENERGY INC		Job. DELAWARE DEVELOPMENT
Location:	CC New TB		
Flowsheet:	Inlet		
			s ©≠Q2 ooster VLVE-103
		Prod. Water 10 VLVE-100 VLVE-102 VLVE-102	
		Treater OI	

Expansion Section.pmx

				*			
			All St	reams Report treams by Total Phase			
Client Name:	XTO ENERGY	INC			Job: DELA	WARE DEVELOPMI	ENT
Location:	CC New TB						
Flowsheet:	Inlet						
			Conn	ections			
						Draducad	Colos Cos
			Facility Inlet	Gas Saturation	HT Oil	Produced Water	Sales Gas
From Block			MIX-102	Saturation	Heater	water	MIX-103
FIOITI DIOCK			WIX-102		Treaters		1017-103
To Block			VLVE-104	SAT-1	VLVE-103	MIX-102	HP Gas
TO BIOOK			VEVE 104	on the	VEVE 100	WINT TOE	
			01 0	• 4 •			
				omposition	<u> </u>	· · ·	
			Facility Inlet	Gas	HT Oil	Produced	Sales Gas
				Saturation		Water	
Mole Fraction			%	%	%	%	%
Carbon Dioxide			0.021084	0 *	0.00640796	0 *	0.176548
Nitrogen			0.107019	0 *	0.00114543	0 *	0.922182
Methane			8.15247	0 *	0.582281	0 *	70.0876
Ethane Dronono			1.75775	0 *	1.60823	0 *	14.738
Propane			1.03204	0 *	3.92018	0 *	7.91957
Isobutane			0.160683	0 *	1.38717	-	1.04081
n-Butane Isopentane			0.436229 0.145838	0 *	<u>4.94554</u> 2.81931	0 *	2.53236 0.55764
n-Pentane			0.143030	0 *	3.98473	0 *	0.595487
n-Hexane			0.0954149	0 *	2.81407	0 *	0.124376
Cyclohexane			0.0218561	0 *	0.673334	0 *	0.0212996
i-C6			0.113666	0 *	3.15238	0 *	0.197757
i-C7			0.345533	0 *	11.0093	0 *	0.247271
Methylcyclohexane			0.0137613	0 *	0.450522	0 *	0.0068469
Octane			0.368824	0 *	12.5679	0 *	0.0613017
Nonane			0.17069	0 *	5.89279	0 *	0.00940667
Benzene			0.0533261	0 *	1.57566	0 *	0.0619638
Toluene			0.0871911	0 *	2.88563	0 *	0.03304
Ethylbenzene			0.0119639	0 *	0.408951	0 *	0.00156869
o-Xylene			0.066489	0 *	2.27902	0 *	0.00703729
			0.000115641	0 *	0.000191237	0 *	0.000893892
				100 *	0.0543035	100 *	0.64953
H2S			85.5891				
H2S Water	ane		85.5891 0.0144043	0 *	0.47032	0 *	0.00748567
H2S Water 2,2,4-Trimethylpent Decanes Plus	ane			0 * 0 *	0.47032 36.5106	0 *	0.00748567 1.11601E-05
H2S Water 2,2,4-Trimethylpent	ane		0.0144043			-	1.11601E-05
H2S Water 2,2,4-Trimethylpent Decanes Plus	ane		0.0144043 1.05081 Facility Inlet	0 * Gas Saturation	36.5106	0 * Produced Water	1.11601E-05 Sales Gas
H2S Water 2,2,4-Trimethylpent Decanes Plus Mass Fraction	ane		0.0144043 1.05081 Facility Inlet %	Gas Saturation %	36.5106 HT Oil %	0 * Produced Water %	1.11601E-05 Sales Gas %
H2S Water 2,2,4-Trimethylpent Decanes Plus Mass Fraction Carbon Dioxide	ane		0.0144043 1.05081 Facility Inlet % 0.0415824	Gas Saturation % 0 *	36.5106 HT Oil % 0.00192861	Produced Water % 0 *	1.11601E-05 Sales Gas % 0.334064
H2S Water 2,2,4-Trimethylpent Decanes Plus Mass Fraction Carbon Dioxide Nitrogen	ane		0.0144043 1.05081 Facility Inlet % 0.0415824 0.13435	0 * Gas Saturation % 0 * 0 *	36.5106 HT Oil % 0.00192861 0.000219439	0 * Produced Water % 0 * 0 * 0 *	1.11601E-05 Sales Gas % 0.334064 1.11072
H2S Water 2,2,4-Trimethylpent Decanes Plus Mass Fraction Carbon Dioxide Nitrogen Methane	ane		0.0144043 1.05081 Facility Inlet % 0.0415824 0.13435 5.86098	0 * Gas Saturation % 0 * 0 * 0 *	36.5106 HT Oil % 0.00192861 0.000219439 0.0638827	0 * Produced Water % 0 * 0 * 0 * 0 * 0 * 0 *	1.11601E-05 Sales Gas % 0.334064 1.11072 48.343
H2S Water 2,2,4-Trimethylpent Decanes Plus Mass Fraction Carbon Dioxide Nitrogen Methane Ethane	ane		0.0144043 1.05081 Facility Inlet % 0.0415824 0.13435 5.86098 2.36857	0 * Gas Saturation % 0 * 0 * 0 * 0 *	36.5106 HT Oil % 0.00192861 0.000219439 0.0638827 0.33071	0 * Produced Water % 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 *	1.11601E-05 Sales Gas % 0.334064 1.11072 48.343 19.0538
H2S Water 2,2,4-Trimethylpent Decanes Plus Mass Fraction Carbon Dioxide Nitrogen Methane Ethane Propane	ane		0.0144043 1.05081 Facility Inlet % 0.0415824 0.13435 5.86098 2.36857 2.03939	0 * Gas Saturation % 0 * 0 * 0 * 0 * 0 *	36.5106 HT Oil % 0.00192861 0.000219439 0.0638827 0.33071 1.18217	Produced Water         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *	1.11601E-05 Sales Gas % 0.334064 1.11072 48.343 19.0538 15.0148
H2S Water 2,2,4-Trimethylpent Decanes Plus Mass Fraction Carbon Dioxide Nitrogen Methane Ethane Propane Isobutane	ane		0.0144043 1.05081 Facility Inlet % 0.0415824 0.13435 5.86098 2.36857 2.03939 0.418526	Gas Saturation % 0 * 0 * 0 * 0 * 0 * 0 *	36.5106 HT Oil % 0.00192861 0.000219439 0.0638827 0.33071 1.18217 0.55138	Produced Water         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *	1.11601E-05 Sales Gas % 0.334064 1.11072 48.343 19.0538 15.0148 2.60096
H2S Water 2,2,4-Trimethylpent Decanes Plus Mass Fraction Carbon Dioxide Nitrogen Methane Ethane Propane Isobutane n-Butane	ane		0.0144043 1.05081 Facility Inlet % 0.0415824 0.13435 5.86098 2.36857 2.03939 0.418526 1.13623	Gas Saturation % 0 * 0 * 0 * 0 * 0 * 0 * 0 *	36.5106 HT Oil % 0.00192861 0.000219439 0.0638827 0.33071 1.18217 0.55138 1.96578	Produced Water         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *	1.11601E-05 Sales Gas % 0.334064 1.11072 48.343 19.0538 15.0148 2.60096 6.32832
H2S Water 2,2,4-Trimethylpent Decanes Plus Mass Fraction Carbon Dioxide Nitrogen Methane Ethane Propane Isobutane n-Butane Isopentane	ane		0.0144043 1.05081 Facility Inlet % 0.0415824 0.13435 5.86098 2.36857 2.03939 0.418526 1.13623 0.471532	Gas Saturation % 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 *	36.5106 HT Oil % 0.00192861 0.000219439 0.0638827 0.33071 1.18217 0.55138 1.96578 1.39108	Produced Water         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *	1.11601E-05 Sales Gas % 0.334064 1.11072 48.343 19.0538 15.0148 2.60096 6.32832 1.72983
H2S Water 2,2,4-Trimethylpent Decanes Plus Mass Fraction Carbon Dioxide Nitrogen Methane Ethane Propane Isobutane n-Butane Isopentane n-Pentane	ane		0.0144043 1.05081 Facility Inlet % 0.0415824 0.13435 5.86098 2.36857 2.03939 0.418526 1.13623 0.471532 0.594103	Gas Saturation % 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 *	36.5106 HT OII % 0.00192861 0.000219439 0.0638827 0.33071 1.18217 0.55138 1.96578 1.39108 1.96611	0         *           Produced Water %         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *	1.11601E-05 Sales Gas 0.334064 1.11072 48.343 19.0538 15.0148 2.60096 6.32832 1.72983 1.84724
H2S Water 2,2,4-Trimethylpent Decanes Plus Mass Fraction Carbon Dioxide Nitrogen Methane Ethane Propane Isobutane n-Butane Isobentane n-Pentane n-Pentane	ane		0.0144043 1.05081 Facility Inlet % 0.0415824 0.13435 5.86098 2.36857 2.03939 0.418526 1.13623 0.471532 0.471532 0.594103 0.368476	Gas Saturation % 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 *	36.5106 HT OII % 0.00192861 0.000219439 0.0638827 0.33071 1.18217 0.55138 1.96578 1.39108 1.96611 1.65843	Produced Water         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *	1.11601E-05 Sales Gas % 0.334064 1.11072 48.343 19.0538 15.0148 2.60096 6.32832 1.72983 1.84724 0.46083
H2S Water 2,2,4-Trimethylpent Decanes Plus Mass Fraction Carbon Dioxide Nitrogen Methane Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Pentane n-Hexane Cyclohexane	ane		0.0144043 1.05081 Facility Inlet % 0.0415824 0.13435 5.86098 2.36857 2.03939 0.418526 1.13623 0.471532 0.594103 0.368476 0.0824301	Gas Saturation % 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 *	36.5106 HT OII % 0.00192861 0.000219439 0.0638827 0.33071 1.18217 0.55138 1.96578 1.39108 1.96611 1.65843 0.387536	0         *           Produced Water %         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *	1.11601E-05 Sales Gas % 0.334064 1.11072 48.343 19.0538 15.0148 2.60096 6.32832 1.72983 1.84724 0.46083 0.077072
H2S Water 2,2,4-Trimethylpent Decanes Plus Mass Fraction Carbon Dioxide Nitrogen Methane Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Pentane n-Hexane Cyclohexane	ane		0.0144043 1.05081 Facility Inlet % 0.0415824 0.13435 5.86098 2.36857 2.03939 0.418526 1.13623 0.471532 0.594103 0.368476 0.0824301 0.438957	Gas Saturation % 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 *	36.5106 HT OII % 0.00192861 0.000219439 0.0638827 0.33071 1.18217 0.55138 1.96578 1.39108 1.96611 1.65843 0.387536 1.85781	0         *           Produced Water %         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *	1.11601E-05 Sales Gas 0.334064 1.11072 48.343 19.0538 15.0148 2.60096 6.32832 1.72983 1.84724 0.46083 0.077072 0.732717
H2S Water 2,2,4-Trimethylpent Decanes Plus Mass Fraction Carbon Dioxide Nitrogen Methane Ethane Propane Isobutane n-Butane Isobutane n-Butane n-Pentane n-Hexane Cyclohexane i-C6 i-C7			0.0144043 1.05081 Facility Inlet % 0.0415824 0.13435 5.86098 2.36857 2.03939 0.418526 1.13623 0.471532 0.594103 0.368476 0.0824301 0.438957 1.55159	Gas Saturation % 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 *	36.5106 HT Oil % 0.00192861 0.000219439 0.0638827 0.33071 1.18217 0.55138 1.96578 1.39108 1.96611 1.65843 0.387536 1.85781 7.54423	O         *           Water         %           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *	1.11601E-05 Sales Gas % 0.334064 1.11072 48.343 19.0538 15.0148 2.60096 6.32832 1.72983 1.84724 0.46083 0.077072 0.732717 1.0653
H2S Water 2,2,4-Trimethylpent Decanes Plus Mass Fraction Carbon Dioxide Nitrogen Methane Ethane Propane Isobutane n-Butane sopentane n-Butane n-Hexane Cyclohexane -C6 -C7 Methylcyclohexane			0.0144043 1.05081 <b>Facility Inlet</b> % 0.0415824 0.13435 5.86098 2.36857 2.03939 0.418526 1.13623 0.471532 0.594103 0.368476 0.0824301 0.438957 1.55159 0.0605505	Gas Saturation % 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 *	36.5106 HT Oil % 0.00192861 0.000219439 0.0638827 0.33071 1.18217 0.55138 1.96578 1.39108 1.96611 1.65843 0.387536 1.85781 7.54423 0.302514	O         *           Produced Water %         0           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *	1.11601E-05 Sales Gas % 0.334064 1.11072 48.343 19.0538 15.0148 2.60096 6.32832 1.72983 1.84724 0.46083 0.077072 0.732717 1.0653 0.0289045
H2S Water 2,2,4-Trimethylpent Decanes Plus Mass Fraction Carbon Dioxide Nitrogen Methane Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Pentane n-Hexane Cyclohexane i-C6 i-C7 Methylcyclohexane Octane			0.0144043 1.05081 Facility Inlet % 0.0415824 0.13435 5.86098 2.36857 2.03939 0.418526 1.13623 0.471532 0.594103 0.368476 0.0824301 0.438957 1.55159 0.0605505 1.88801	Gas Saturation % 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 *	36.5106 HT Oil % 0.00192861 0.000219439 0.0638827 0.33071 1.18217 0.55138 1.96578 1.39108 1.96611 1.65843 0.387536 1.85781 7.54423 0.302514 9.81788	0         *           Produced Water %         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *	1.11601E-05 Sales Gas % 0.334064 1.11072 48.343 19.0538 15.0148 2.60096 6.32832 1.72983 1.84724 0.46083 0.077072 0.732717 1.0653 0.0289045 0.301071
H2S Water 2,2,4-Trimethylpent Decanes Plus Mass Fraction Carbon Dioxide Nitrogen Methane Ethane Propane Isobutane n-Butane Isopentane n-Hexane Cyclohexane -C7 Methylcyclohexane Octane Nonane			0.0144043 1.05081 Facility Inlet % 0.0415824 0.13435 5.86098 2.36857 2.03939 0.418526 1.13623 0.471532 0.594103 0.368476 0.0824301 0.438957 1.55159 0.0605505 1.88801 0.981053	Gas Saturation % 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 *	36.5106 HT Oil % 0.00192861 0.000219439 0.0638827 0.33071 1.18217 0.55138 1.96578 1.39108 1.96611 1.65843 0.387536 1.85781 7.54423 0.302514 9.81788 5.16862	0         *           Produced Water %         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *	1.11601E-05 Sales Gas % 0.334064 1.11072 48.343 19.0538 15.0148 2.60096 6.32832 1.72983 1.84724 0.46083 0.077072 0.732717 1.0653 0.0289045 0.301071 0.0518719
H2S Water 2,2,4-Trimethylpent Decanes Plus Mass Fraction Carbon Dioxide Nitrogen Methane Ethane Propane Isobutane n-Butane Isobutane n-Butane Sopentane n-Pentane Cyclohexane i-C6 i-C7 Methylcyclohexane Octane Nonane Benzene			0.0144043 1.05081 <b>Facility Inlet</b> % 0.0415824 0.13435 5.86098 2.36857 2.03939 0.418526 1.13623 0.471532 0.594103 0.368476 0.0824301 0.438957 1.55159 0.0605505 1.88801 0.981053 0.186666	Gas Saturation % 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 *	36.5106 HT Oil % 0.00192861 0.000219439 0.0638827 0.33071 1.18217 0.55138 1.96578 1.39108 1.96611 1.65843 0.387536 1.85781 7.54423 0.302514 9.81788 5.16862 0.841701	O         *           Produced Water %         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *	1.11601E-05 Sales Gas % 0.334064 1.11072 48.343 19.0538 15.0148 2.60096 6.32832 1.72983 1.84724 0.46083 0.077072 0.732717 1.0653 0.0289045 0.301071 0.0518719 0.208102
H2S Water 2,2,4-Trimethylpent Decanes Plus Mass Fraction Carbon Dioxide Nitrogen Methane Ethane Propane Isobutane n-Butane n-Pentane n-Pentane n-Pentane n-Hexane Cyclohexane i-C6 i-C7 Methylcyclohexane Octane Nonane Benzene Toluene			0.0144043 1.05081 Facility Inlet % 0.0415824 0.13435 5.86098 2.36857 2.03939 0.418526 1.13623 0.471532 0.594103 0.368476 0.0824301 0.438957 1.55159 0.0605505 1.88801 0.981053 0.186666 0.360017	Gas Saturation % 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 *	36.5106 HT Oil % 0.00192861 0.000219439 0.0638827 0.33071 1.18217 0.55138 1.96578 1.39108 1.96611 1.65843 0.387536 1.85781 7.54423 0.302514 9.81788 5.16862 0.841701 1.81828	0         *           Produced Water %         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *	1.11601E-05 Sales Gas % 0.334064 1.11072 48.343 19.0538 15.0148 2.60096 6.32832 1.72983 1.84724 0.46083 0.077072 0.732717 1.0653 0.0289045 0.301071 0.0518719 0.208102 0.130889
H2S Water 2,2,4-Trimethylpent Decanes Plus Mass Fraction Carbon Dioxide Nitrogen Methane Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Pentane n-Pentane Cyclohexane Cyclohexane i-C6 i-C7 Methylcyclohexane Octane Nonane Benzene Toluene Ethylbenzene			0.0144043 1.05081 Facility Inlet % 0.0415824 0.13435 5.86098 2.36857 2.03939 0.418526 1.13623 0.471532 0.594103 0.368476 0.0824301 0.438957 1.55159 0.0605505 1.88801 0.981053 0.186666 0.360017 0.0569201	Gas Saturation % 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 *	36.5106 HT OII % 0.00192861 0.000219439 0.0638827 0.33071 1.18217 0.55138 1.96578 1.39108 1.96578 1.39108 1.96611 1.65843 0.387536 1.85781 7.54423 0.302514 9.81788 5.16862 0.841701 1.81828 0.296915	0         *           Produced Water %         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *	1.11601E-05 Sales Gas 0.334064 1.11072 48.343 19.0538 15.0148 2.60096 6.32832 1.72983 1.84724 0.46083 0.077072 0.732717 1.0653 0.0289045 0.301071 0.0518719 0.208102 0.130889 0.00716045
H2S Water 2,2,4-Trimethylpent Decanes Plus Mass Fraction Carbon Dioxide Nitrogen Methane Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Pentane n-Hexane Cyclohexane i-C6 i-C7 Methylcyclohexane Octane Benzene Toluene Ethylbenzene o-Xylene			0.0144043 1.05081 Facility Inlet % 0.0415824 0.13435 5.86098 2.36857 2.03939 0.418526 1.13623 0.471532 0.594103 0.368476 0.0824301 0.438957 1.55159 0.0605505 1.88801 0.981053 0.186666 0.360017 0.0569201 0.316331	Gas Saturation % 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 *	36.5106 HT OII % 0.00192861 0.000219439 0.0638827 0.33071 1.18217 0.55138 1.96578 1.39108 1.96578 1.39108 1.96611 1.65843 0.387536 1.85781 7.54423 0.302514 9.81788 5.16862 0.841701 1.81828 0.296915 1.65466	0         *           Water         %           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *	1.11601E-05 Sales Gas 0.334064 1.11072 48.343 19.0538 15.0148 2.60096 6.32832 1.72983 1.84724 0.46083 0.077072 0.732717 1.0653 0.0289045 0.301071 0.0518719 0.208102 0.130889 0.00716045 0.0321224
H2S Water 2,2,4-Trimethylpent Decanes Plus Mass Fraction Carbon Dioxide Nitrogen Methane Ethane Ethane Propane Isobutane n-Butane Isobutane n-Butane Nopentane n-Pentane Cyclohexane i-C6 i-C7 Methylcyclohexane Octane Nonane Benzene			0.0144043 1.05081 Facility Inlet % 0.0415824 0.13435 5.86098 2.36857 2.03939 0.418526 1.13623 0.471532 0.594103 0.368476 0.0824301 0.438957 1.55159 0.0605505 1.88801 0.981053 0.186666 0.360017 0.0569201	Gas Saturation % 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 *	36.5106 HT OII % 0.00192861 0.000219439 0.0638827 0.33071 1.18217 0.55138 1.96578 1.39108 1.96578 1.39108 1.96611 1.65843 0.387536 1.85781 7.54423 0.302514 9.81788 5.16862 0.841701 1.81828 0.296915	0         *           Produced Water %         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *           0         *	1.11601E-05 Sales Gas % 0.334064 1.11072 48.343 19.0538 15.0148 2.60096 6.32832 1.72983 1.84724 0.46083 0.077072 0.732717 1.0653 0.0289045 0.301071 0.0518719 0.208102

			All St	reams Report treams by Total Phase			
Client Name:	<b>XTO ENERGY I</b>	NC			Job: D	ELAWARE DEVELOP	/IENT
Location:	CC New TB						
Flowsheet:	Inlet						
<b>. .</b>			Facility Inlet	Gas Saturation	HT Oil	Produced Water	Sales Gas
Mass Fraction			%	%	%	%	%
Decanes Plus			11.4712	0 *	60.82	24 0 *	0.000116887
Mass Flow			Facility Inlet	Gas Saturation Ib/h	HT Oil lb/h	Produced Water Ib/h	Sales Gas Ib/h
Carbon Dioxide			527.202	0 *	4.6115	55 0*	511.865
Nitrogen			1703.35	0 *	0.52470		1701.88
Methane			74308.3	0 *	152.75		74072.8
Ethane			30029.9	0 *	790.76		29194.8
Propane			25856.4	0 *	2826.7		23006.1
Isobutane			5306.28	0 *	1318.4		3985.28
n-Butane			14405.7	0 *	4700.4		9696.47
Isopentane			5978.31	0 *	3326.2		2650.51
n-Pentane			7532.32	0 *	4701.1		2830.4
n-Hexane			4671.72	0 *	3965		706.099
Cyclohexane			1045.09	0 *	926.64		118.092
i-C6			5565.31	0 *	4442.2		1122.69
i-C7			19671.8	0 *	18039	··· •	1632.29
Methylcyclohexane			767.689	0 *	723.34		44.2885
Octane Nonane			23937.1 12438.3	0 *	23475 12358		461.311 79.4799
Benzene			2366.65	0 *	2012.6		318.861
Toluene			4564.47	0 *	4347.7		200.552
Ethylbenzene			4364.47	0 *	4347.7 709.95		10.9715
o-Xylene			4010.59	0 *	3956.4		49.2191
H2S			2.23923	0 *	0.10657		2.00698
Water			876066	751.81 *	15.997		770.881
2,2,4-Trimethylpenta	ne		934.853	0 *	878.51		56.3316
Decanes Plus			145438	0 *	14543		0.179099
				<b>C</b>			0
			Stream	Properties			
Property		Units	Facility Inlet	Gas Saturation	HT Oil	Produced Water	Sales Gas

Property	Units	Facility Inlet	Gas Saturation	HT Oil	Produced Water	Sales Gas
Temperature	°F	86.7323	327.72	120	86 *	85.8503
Pressure	psig	87	87	40	87 *	80
Molecular Weight	lb/lbmol	22.3147	18.0153	146.225	18.0153	23.2583
Mass Flow	lb/h	1.26785E+06	751.81	239112	875314	153223
Std Vapor Volumetric Flow	MMSCFD	517.466	0.380077	14.8931	442.515	60
Std Liquid Volumetric Flow	sgpm	3198.5	1.50292	613.82	1749.82 *	833.837
Gross Ideal Gas Heating Value	Btu/ft^3	424.168	50.31	7715.03	50.31	1370.24

Client Name:	XTO ENERGY	NC	All St	eams Report reams _{y Total Phase}		VARE DEVELOPM	IENT
Location:	CC New TB				JUD. DELA		
Flowsheet:	Inlet						
	mot						
			Conne	ections			
From Blook			Treater Gas	Well Gas	Well Oil	Wet Gas	1 Production
From Block			Heater Treaters Elect Booster	 SAT-1	 SPLT-100	SAT-1 MIX-102	Separators MIX-103
			Treater Gas	Well Gas	Well Oil	Wet Gas	1
Mole Fraction			%	%	%	%	%
Carbon Dioxide			0.193451	0.178998 *	0.0135 *	0.177868	0.176388
Nitrogen			0.223622	0.918991 *	0.02618 *	0.913191	0.92877
<u>Methane</u> Ethane			41.2118	70.0423 * 14.5839 *	1.84912 * 2.50262 *	69.6002 14.4918	70.3599 14.6588
ztnane Propane			23.1411 17.9809	7.85392 *	2.50262 *	7.80435	7.82468
Propane Isobutane			2.76467	1.06799 *	4.34866 * 1.30604 *	1.06125	1.02455
n-Butane			7.06514	2.64197 *	4.5915 *	2.6253	2.48961
sopentane			1.71289	0.634994 *	2.54353 *	0.630986	0.546745
n-Pentane			1.8944	0.684993 *	3.67212 *	0.68067	0.583237
n-Hexane			0.444234	0.204998 *	2.51901 *	0.203704	0.121359
Cyclohexane			0.0764284	0.188998 *	0 *	0.187805	0.0207797
-C6			0.676085	0.316997 *	2.70515 *	0.314996	0.193246
-C7			0.92326	0.281997 *	10.9925 *	0.280217	0.240896
Methylcyclohexane			0.0262674	0.118999 *	0 *	0.118248	0.00666376
Octane			0.261233	0.0829992 *	12.619 *	0.0824753	0.0594162
Nonane			0.0441674	0.0279997 *	5.88233 *	0.027823	0.00907885
Benzene Toluene			0.220333 0.129835	0.0929991 * 0.0519995 *	1.49547 * 2.85165 *	0.0924121 0.0516713	0.0604703 0.0321272
Ethylbenzene			0.00672601	0.00199998 *	0.41215 *	0.00198736	0.00152005
p-Xylene			0.0305502	0.0119999 *	2.28691 *	0.0119241	0.00681556
H2S			0.00169289	0.00099999 *	0 *	0.000993679	0.000886357
Water			0.942677	0 *	0 *	0.631138	0.646766
2,2,4-Trimethylpent	tane		0.0284216	0 *	0.506 *	0	0.00728824
Decanes Plus			0.000101039	0.00899991 *	36.8766 *	0.00894311	1.03125E-05
							L
Mass Fraction			Treater Gas	Well Gas	Well Oil	Wet Gas	1
				%	%	%	
Jarbon Dioxide			0.259308	% 0.330624 *	% 0.00408509 *	% 0.329043	% 0.335064
			% 0.259308 0.1908	0.330624 * 1.08048 *	0.00408509 * 0.00504263 *	0.329043 1.07531	% 0.335064 1.12301
Nitrogen Methane			% 0.259308 0.1908 20.1368	0.330624 * 1.08048 * 47.1596 *	0.00408509 * 0.00504263 * 0.203966 *	0.329043 1.07531 46.9342	% 0.335064 1.12301 48.7199
Nitrogen Methane Ethane			% 0.259308 0.1908 20.1368 21.1935	0.330624 * 1.08048 * 47.1596 * 18.4048 *	0.00408509 * 0.00504263 * 0.203966 * 0.517411 *	0.329043 1.07531 46.9342 18.3168	% 0.335064 1.12301 48.7199 19.0252
Nitrogen Methane Ethane Propane			%           0.259308           0.1908           20.1368           21.1935           24.1493	0.330624 * 1.08048 * 47.1596 * 18.4048 * 14.5352 *	0.00408509 * 0.00504263 * 0.203966 * 0.517411 * 1.31848 *	0.329043 1.07531 46.9342 18.3168 14.4657	% 0.335064 1.12301 48.7199 19.0252 14.8927
Nitrogen Methane Ethane Propane sobutane			%           0.259308           0.1908           20.1368           21.1935           24.1493           4.89423	0.330624 * 1.08048 * 47.1596 * 18.4048 * 14.5352 * 2.60524 *	0.00408509 * 0.00504263 * 0.203966 * 0.517411 * 1.31848 * 0.521939 *	0.329043 1.07531 46.9342 18.3168 14.4657 2.59279	% 0.335064 1.12301 48.7199 19.0252 14.8927 2.57031
Nitrogen Methane Ethane Propane sobutane n-Butane			%           0.259308           0.1908           20.1368           21.1935           24.1493           4.89423           12.5072	0.330624 * 1.08048 * 47.1596 * 18.4048 * 14.5352 * 2.60524 * 6.4448 *	0.00408509 * 0.00504263 * 0.203966 * 0.517411 * 1.31848 * 0.521939 * 1.83492 *	0.329043 1.07531 46.9342 18.3168 14.4657 2.59279 6.414	% 0.335064 1.12301 48.7199 19.0252 14.8927 2.57031 6.24574
Nitrogen Methane Ethane Propane sobutane n-Butane sopentane			%           0.259308           0.1908           20.1368           21.1935           24.1493           4.89423           12.5072           3.76406	0.330624 * 1.08048 * 47.1596 * 18.4048 * 14.5352 * 2.60524 * 6.4448 * 1.92281 *	0.00408509 * 0.00504263 * 0.203966 * 0.517411 * 1.31848 * 0.521939 * 1.83492 * 1.26179 *	0.329043 1.07531 46.9342 18.3168 14.4657 2.59279 6.414 1.91362	% 0.335064 1.12301 48.7199 19.0252 14.8927 2.57031 6.24574 1.70265
Nitrogen Methane Ethane Propane sobutane n-Butane sopentane n-Pentane			%           0.259308           0.1908           20.1368           21.1935           24.1493           4.89423           12.5072           3.76406           4.16293	0.330624 * 1.08048 * 47.1596 * 18.4048 * 14.5352 * 2.60524 * 6.4448 * 1.92281 * 2.07422 *	0.00408509 * 0.00504263 * 0.203966 * 0.517411 * 1.31848 * 0.521939 * 1.83492 * 1.26179 * 1.82166 *	0.329043 1.07531 46.9342 18.3168 14.4657 2.59279 6.414 1.91362 2.0643	% 0.335064 1.12301 48.7199 19.0252 14.8927 2.57031 6.24574 1.70265 1.81629
Nitrogen Methane Ethane Propane sobutane n-Butane sopentane n-Pentane n-Hexane			%           0.259308           0.1908           20.1368           21.1935           24.1493           4.89423           12.5072           3.76406	0.330624 * 1.08048 * 47.1596 * 18.4048 * 14.5352 * 2.60524 * 6.4448 * 1.92281 *	0.00408509 * 0.00504263 * 0.203966 * 0.517411 * 1.31848 * 0.521939 * 1.83492 * 1.26179 *	0.329043 1.07531 46.9342 18.3168 14.4657 2.59279 6.414 1.91362	% 0.335064 1.12301 48.7199 19.0252 14.8927 2.57031 6.24574 1.70265 1.81629 0.451406
Nitrogen Methane Ethane Propane sobutane n-Butane sopentane n-Pentane n-Hexane Cyclohexane			%           0.259308           0.1908           20.1368           21.1935           24.1493           4.89423           12.5072           3.76406           4.16293           1.16599	0.330624 * 1.08048 * 47.1596 * 18.4048 * 14.5352 * 2.60524 * 6.4448 * 1.92281 * 2.07422 * 0.741432 *	0.00408509 * 0.00504263 * 0.203966 * 0.517411 * 1.31848 * 0.521939 * 1.83492 * 1.26179 * 1.82166 * 1.49257 *	0.329043 1.07531 46.9342 18.3168 14.4657 2.59279 6.414 1.91362 2.0643 0.737889	%           0.335064           1.12301           48.7199           19.0252           14.8927           2.57031           6.24574           1.70265           1.81629           0.451406           0.0754838
Nitrogen Methane Ethane Propane sobutane n-Butane n-Pentane n-Hexane Cyclohexane -C6 -C7			%           0.259308           0.1908           20.1368           21.1935           24.1493           4.89423           12.5072           3.76406           4.16293           1.16599           0.19591           1.77453           2.81772	0.330624 * 1.08048 * 47.1596 * 18.4048 * 14.5352 * 2.60524 * 6.4448 * 1.92281 * 2.07422 * 0.741432 * 0.667574 * 1.14651 * 1.18593 *	0.00408509 * 0.00504263 * 0.203966 * 0.517411 * 1.31848 * 0.521939 * 1.83492 * 1.26179 * 1.82166 * 1.49257 * 0 * 1.60286 * 7.57344 *	0.329043 1.07531 46.9342 18.3168 14.4657 2.59279 6.414 1.91362 2.0643 0.737889 0.664383 1.14103 1.18026	%           0.335064           1.12301           48.7199           19.0252           14.8927           2.57031           6.24574           1.70265           1.81629           0.451406           0.0754838           0.718794           1.04188
Nitrogen Methane Ethane Propane sobutane -Butane sopentane -Pentane -Hexane Cyclohexane -C6 -C7 Methylcyclohexane			%           0.259308           0.1908           20.1368           21.1935           24.1493           4.89423           12.5072           3.76406           4.16293           1.16599           0.19591           1.77453           2.81772           0.0785535	0.330624 * 1.08048 * 47.1596 * 18.4048 * 14.5352 * 2.60524 * 6.4448 * 1.92281 * 2.07422 * 0.741432 * 0.667574 * 1.14651 * 1.18593 * 0.490378 *	0.00408509 * 0.00504263 * 0.203966 * 0.517411 * 1.31848 * 0.521939 * 1.83492 * 1.26179 * 1.82166 * 1.49257 * 0 * 1.60286 * 7.57344 * 0 *	0.329043 1.07531 46.9342 18.3168 14.4657 2.59279 6.414 1.91362 2.0643 0.737889 0.664383 1.14103 1.18026 0.488035	%           0.335064           1.12301           48.7199           19.0252           14.8927           2.57031           6.24574           1.70265           1.81629           0.451406           0.0754838           0.718794           1.04188           0.028241
Nitrogen Methane Ethane Propane sobutane n-Bentane n-Pentane n-Hexane Cyclohexane -C6 -C7 Methylcyclohexane Octane			%           0.259308           0.1908           20.1368           21.1935           24.1493           4.89423           12.5072           3.76406           4.16293           1.16599           0.19591           1.77453           2.81772           0.0785535           0.908866	0.330624 * 1.08048 * 47.1596 * 18.4048 * 14.5352 * 2.60524 * 6.4448 * 1.92281 * 2.07422 * 0.741432 * 0.667574 * 1.14651 * 1.18593 * 0.490378 * 0.397912 *	0.00408509 * 0.00504263 * 0.203966 * 0.517411 * 1.31848 * 0.521939 * 1.83492 * 1.26179 * 1.82166 * 1.49257 * 0 * 1.60286 * 7.57344 * 0 * 9.9111 *	0.329043 1.07531 46.9342 18.3168 14.4657 2.59279 6.414 1.91362 2.0643 0.737889 0.664383 1.14103 1.18026 0.488035 0.39601	%           0.335064           1.12301           48.7199           19.0252           14.8927           2.57031           6.24574           1.70265           1.81629           0.451406           0.0754838           1.04188           0.028241           0.292948
Nitrogen Methane Ethane Propane sobutane n-Bentane n-Pentane n-Hexane Cyclohexane -C6 -C7 Methylcyclohexane Dctane Nonane			%           0.259308           0.1908           20.1368           21.1935           24.1493           4.89423           12.5072           3.76406           4.16293           1.16599           0.19591           1.77453           2.81772           0.0785535           0.908866           0.172534	0.330624 * 1.08048 * 47.1596 * 18.4048 * 14.5352 * 2.60524 * 6.4448 * 1.92281 * 0.741432 * 0.667574 * 1.14651 * 1.18593 * 0.490378 * 0.397912 * 0.150719 *	0.00408509 * 0.00504263 * 0.203966 * 0.517411 * 1.31848 * 0.521939 * 1.83492 * 1.26179 * 1.82166 * 1.49257 * 0 * 1.60286 * 7.57344 * 0 * 9.9111 * 5.18735 *	0.329043 1.07531 46.9342 18.3168 14.4657 2.59279 6.414 1.91362 2.0643 0.737889 0.664383 1.14103 1.18026 0.488035 0.39601 0.149998	%           0.335064           1.12301           48.7199           19.0252           14.8927           2.57031           6.24574           1.70265           1.81629           0.451406           0.0754838           0.718794           1.04188           0.028241           0.292948           0.0502593
Nitrogen Methane Ethane Propane sobutane n-Butane sopentane n-Pentane Dyclohexane -C6 -C7 Methylcyclohexane Octane Nonane Benzene			%           0.259308           0.1908           20.1368           21.1935           24.1493           4.89423           12.5072           3.76406           4.16293           1.16599           0.19591           1.77453           2.81772           0.0785535           0.908866           0.172534           0.524198	0.330624 * 1.08048 * 47.1596 * 18.4048 * 14.5352 * 2.60524 * 6.4448 * 1.92281 * 0.741432 * 0.667574 * 1.14651 * 1.14651 * 1.18593 * 0.490378 * 0.397912 * 0.150719 * 0.304884 *	0.00408509 * 0.00504263 * 0.203966 * 0.517411 * 1.31848 * 0.521939 * 1.83492 * 1.26179 * 1.82166 * 1.49257 * 0 * 1.60286 * 7.57344 * 0 * 9.9111 * 5.18735 * 0.803185 *	0.329043 1.07531 46.9342 18.3168 14.4657 2.59279 6.414 1.91362 2.0643 0.737889 0.664383 1.14103 1.18026 0.488035 0.39601 0.149998 0.303427	%           0.335064           1.12301           48.7199           19.0252           14.8927           2.57031           6.24574           1.70265           1.81629           0.451406           0.0754838           0.718794           1.04188           0.028241           0.292948           0.0502593           0.203878
Nitrogen Methane Ethane Propane sobutane n-Butane sopentane n-Pentane Dyclohexane -C6 -C7 Methylcyclohexane Octane Nonane Benzene Foluene			%           0.259308           0.1908           20.1368           21.1935           24.1493           4.89423           12.5072           3.76406           4.16293           1.16599           0.19591           1.77453           2.81772           0.0785535           0.908866           0.172534           0.524198           0.36436	0.330624 * 1.08048 * 47.1596 * 18.4048 * 14.5352 * 2.60524 * 6.4448 * 1.92281 * 0.741432 * 0.667574 * 1.14651 * 1.18593 * 0.490378 * 0.397912 * 0.150719 * 0.304884 *	0.00408509 * 0.00504263 * 0.203966 * 0.517411 * 1.31848 * 0.521939 * 1.83492 * 1.26179 * 1.82166 * 1.49257 * 0 * 1.60286 * 7.57344 * 0 * 9.9111 * 5.18735 * 0.803185 * 1.80658 *	0.329043 1.07531 46.9342 18.3168 14.4657 2.59279 6.414 1.91362 2.0643 0.737889 0.664383 1.14103 1.18026 0.488035 0.39601 0.149998 0.303427 0.200123	%           0.335064           1.12301           48.7199           19.0252           14.8927           2.57031           6.24574           1.70265           1.81629           0.451406           0.0754838           0.718794           1.04188           0.028241           0.292948           0.0502593           0.203878           0.127769
Nitrogen Methane Ethane Propane sobutane n-Butane n-Pentane -Pentane Cyclohexane -C6 -C7 Methylcyclohexane Octane Nonane Benzene Toluene Ethylbenzene			%           0.259308           0.1908           20.1368           21.1935           24.1493           4.89423           12.5072           3.76406           4.16293           1.16599           0.19591           1.77453           2.81772           0.0785535           0.908866           0.172534           0.524198           0.36436           0.0217489	0.330624 * 1.08048 * 47.1596 * 18.4048 * 14.5352 * 2.60524 * 6.4448 * 1.92281 * 0.741432 * 0.741432 * 0.667574 * 1.14651 * 1.18593 * 0.490378 * 0.397912 * 0.150719 * 0.304884 * 0.201084 *	0.00408509 * 0.00504263 * 0.203966 * 0.517411 * 1.31848 * 0.521939 * 1.83492 * 1.26179 * 1.82166 * 1.49257 * 0 * 1.60286 * 7.57344 * 0 * 9.9111 * 5.18735 * 0.803185 * 1.80658 * 0.300855 *	0.329043 1.07531 46.9342 18.3168 14.4657 2.59279 6.414 1.91362 2.0643 0.737889 0.664383 1.14103 1.18026 0.488035 0.39601 0.149998 0.303427 0.200123 0.00886881	%           0.335064           1.12301           48.7199           19.0252           14.8927           2.57031           6.24574           1.70265           1.81629           0.451406           0.0754838           0.718794           1.04188           0.028241           0.292948           0.0502593           0.203878           0.127769           0.00696548
Nitrogen Methane Ethane Propane sobutane n-Butane n-Pentane n-Pentane Cyclohexane -C6 -C7 Methylcyclohexane Octane Nonane Benzene Toluene Ethylbenzene o-Xylene			%           0.259308           0.1908           20.1368           21.1935           24.1493           4.89423           12.5072           3.76406           4.16293           1.16599           0.19591           1.77453           2.81772           0.0785535           0.908866           0.172534           0.524198           0.36436           0.0217489           0.0987857	0.330624 * 1.08048 * 47.1596 * 18.4048 * 14.5352 * 2.60524 * 6.4448 * 1.92281 * 2.07422 * 0.741432 * 0.667574 * 1.14651 * 1.18593 * 0.490378 * 0.397912 * 0.150719 * 0.304884 * 0.0089114 * 0.0534684 *	0.00408509 * 0.00504263 * 0.203966 * 0.517411 * 1.31848 * 0.521939 * 1.83492 * 1.26179 * 1.82166 * 1.49257 * 0 * 1.60286 * 7.57344 * 0 * 9.9111 * 5.18735 * 0.803185 * 1.80658 * 0.300855 * 1.66937 *	0.329043 1.07531 46.9342 18.3168 14.4657 2.59279 6.414 1.91362 2.0643 0.737889 0.664383 1.14103 1.18026 0.488035 0.39601 0.149998 0.303427 0.200123 0.00886881 0.0532128	%           0.335064           1.12301           48.7199           19.0252           14.8927           2.57031           6.24574           1.70265           1.81629           0.451406           0.0754838           0.718794           1.04188           0.028241           0.292948           0.127769           0.00696548           0.0312315
Carbon Dioxide Nitrogen Methane Ethane Propane Isobutane n-Butane n-Pentane n-Pentane n-Hexane Cyclohexane -C6 -C7 Methylcyclohexane Doctane Benzene Tolluene Ethylbenzene o-Xylene H2S Water			%           0.259308           0.1908           20.1368           21.1935           24.1493           4.89423           12.5072           3.76406           4.16293           1.16599           0.19591           1.77453           2.81772           0.0785535           0.908866           0.172534           0.524198           0.36436           0.0217489           0.0987857           0.00175726	0.330624 * 1.08048 * 47.1596 * 18.4048 * 14.5352 * 2.60524 * 6.4448 * 1.92281 * 2.07422 * 0.741432 * 0.667574 * 1.14651 * 1.18593 * 0.490378 * 0.397912 * 0.150719 * 0.304884 * 0.0089114 * 0.0534684 * 0.00143036 *	0.00408509 * 0.00504263 * 0.203966 * 0.517411 * 1.31848 * 0.521939 * 1.83492 * 1.26179 * 1.82166 * 1.49257 * 0 * 1.60286 * 7.57344 * 0 * 9.9111 * 5.18735 * 0.803185 * 1.80658 * 0.300855 * 1.66937 * 0 *	0.329043 1.07531 46.9342 18.3168 14.4657 2.59279 6.414 1.91362 2.0643 0.737889 0.664383 1.14103 1.18026 0.488035 0.39601 0.149998 0.303427 0.200123 0.00886881 0.0532128 0.00142352	%           0.335064           1.12301           48.7199           19.0252           14.8927           2.57031           6.24574           1.70265           1.81629           0.451406           0.0754838           0.718794           1.04188           0.028241           0.292948           0.0502593           0.203878           0.127769           0.00696548           0.0312315           0.00130386
Nitrogen Methane Ethane Propane Isobutane n-Butane sopentane n-Pentane N-Pentane Cyclohexane -C6 -C7 Methylcyclohexane Octane Nonane Benzene Toluene Ethylbenzene o-Xylene			%           0.259308           0.1908           20.1368           21.1935           24.1493           4.89423           12.5072           3.76406           4.16293           1.16599           0.19591           1.77453           2.81772           0.0785535           0.908866           0.172534           0.524198           0.36436           0.0217489           0.0987857	0.330624 * 1.08048 * 47.1596 * 18.4048 * 14.5352 * 2.60524 * 6.4448 * 1.92281 * 2.07422 * 0.741432 * 0.667574 * 1.14651 * 1.18593 * 0.490378 * 0.397912 * 0.150719 * 0.304884 * 0.0089114 * 0.0534684 *	0.00408509 * 0.00504263 * 0.203966 * 0.517411 * 1.31848 * 0.521939 * 1.83492 * 1.26179 * 1.82166 * 1.49257 * 0 * 1.60286 * 7.57344 * 0 * 9.9111 * 5.18735 * 0.803185 * 1.80658 * 0.300855 * 1.66937 * 0 *	0.329043 1.07531 46.9342 18.3168 14.4657 2.59279 6.414 1.91362 2.0643 0.737889 0.664383 1.14103 1.18026 0.488035 0.39601 0.149998 0.303427 0.200123 0.00886881 0.0532128	%           0.335064           1.12301           48.7199           19.0252           14.8927           2.57031           6.24574           1.70265           1.81629           0.451406           0.0754838           0.718794           1.04188           0.028241           0.292948           0.203878           0.127769           0.00696548           0.0312315

			All St	eams Report reams _{/ Total Phase}			
Client Name:	XTO ENERGY I	NC			Job: DELAV	VARE DEVELOPM	ENT
Location:	CC New TB						
Flowsheet:	Inlet						
					4		
			Treater Gas	Well Gas	Well Oil	Wet Gas	1
Mass Flow			lb/h	lb/h	lb/h	lb/h	lb/h
Carbon Dioxide			5.2399	517.592 *	12.9619 *	517.592	506.625
Nitrogen			3.85555	1691.49 *	16.0001 *	1691.49	1698.03
Methane			406.91	73828.5 *	647.178 *	73828.5	73665.9
Ethane			428.262	28812.7 *	1641.73 *	28812.7	28766.6
Propane			487.992	22754.9 *	4183.49 *	22754.9	22518.1
Isobutane			98.899	4078.51 *	1656.1 *	4078.51	3886.38
n-Butane			252.737	10089.4 *	5822.16 *	10089.4	9443.73
Isopentane			76.0613	3010.17 *	4003.62 *	3010.17	2574.45
n-Pentane			84.1215	3247.19 *	5780.07 *	3247.19	2746.28
n-Hexane			23.5614	1160.71 *	4735.88 *	1160.71	682.538
Cyclohexane			3.9588	1045.09 *	0 *	1045.09	114.134
i-C6			35.8583	1794.86 *	5085.83 *	1794.86	1086.84
i-C7			56.9385	1856.58 *	24030.3 *	1856.58	1575.35
Methylcyclohexa	ine		1.58735	767.689 *	0 *	767.689	42.7011
Octane			18.3657	622.933 *	31447.7 *	622.933	442.945
Nonane			3.48644	235.951 *	16459.3 *	235.951	75.9934
Benzene			10.5926	477.297 *	2548.48 *	477.297	308.269
Toluene			7.36273	314.798 *	5732.24 *	314.798	193.19
Ethylbenzene			0.439486	13.9508 *	954.606 *	13.9508	10.532
o-Xylene			1.99619	83.7049 *	5296.85 *	83.7049	47.2229
H2S			0.0355095	2.23923 *	0 *	2.23923	1.97147
Water			10.4523	0 *	0 *	751.81	760.429
2,2,4-Trimethylp	entane		1.99815	0 *	1260.99 *	0	54.3335
Decanes Plus			0.0151486	144.048 *	195982 *	144.048	0.16395

	Stream Properties								
Property	Units	Treater Gas	Well Gas	Well Oil	Wet Gas	1			
Temperature	°F	120 *	86 *	86 *	86	86.7323			
Pressure	psig	40	87 *	87 *	87	87			
Molecular Weight	lb/lbmol	32.8323	23.8266	145.438	23.7899	23.168			
Mass Flow	lb/h	2020.73	156550	317297	157302	151203			
Std Vapor Volumetric Flow	MMSCFD	0.560545	59.8408 *	19.8697	60.2209	59.4395			
Std Liquid Volumetric Flow	sgpm	9.28282	841.739	816.667 *	843.242	824.554			
Gross Ideal Gas Heating Value	Btu/ft^3	1889.06	1406.59	7673.74	1398.03	1365.34			

Well Gas: Corral Canyon FWKO 900 8/20/19 Sample Date

#### Well Oil:

Corral Canyon FKWK 900 8/20/19 Sample Date Expansion Section.pmx

			All St	reams Report Treams by Total Phase			
Client Name:	XTO ENERGY I	NC			Job: DELA	L WARE DEVELOPM	FNT
_ocation:	CC New TB				JOD. DELA		
Flowsheet:	Inlet						
					I		
			Comm				
				ections		I	
			2	3	4	5	6
From Block			Production	Production	VLVE-100	VLVE-101	SPLT-100
To Block			Separators VLVE-101	Separators VLVE-100	MIX-101	Heater Treaters	MIX-102
				omposition	-		
Molo Erection			2 %	3 %	4 %	5 %	6 %
Mole Fraction Carbon Dioxide			0.0131925	0.000501518	70 0.000501518	0.0131925	0.0135
Nitrogen			0.00921525	6.9641E-05	6.9641E-05	0.00921525	0.0135
Methane			2.05602	0.0106184	0.0106184	2.05602	1.84912
Ethane			2.38929	0.00302867	0.00302867	2.05602	2.50262
Propane			4.4302	0.00109824	0.00109824	4.4302	4.34866
sobutane			1.43714	9.14905E-05	9.14905E-05	1.43714	1.30604
n-Butane			5.02243	0.000311619	0.000311619	5.02243	4.5915
sopentane			2.77918	4.47243E-05	4.47243E-05	2.77918	2.54353
n-Pentane			3.90891	2.09451E-05	2.09451E-05	3.90891	3.67212
n-Hexane			2.72811	2.80579E-06	2.80579E-06	2.72811	2.51901
Cyclohexane			0.651682	8.58892E-06	8.58892E-06	0.651682	2.0100
-C6			3.06256	8.87836E-06	8.87836E-06	3.06256	2.70515
-C7			10.6435	6.61664E-06	6.61664E-06	10.6435	10.9925
	2		0.435133	1.14839E-06	1.14839E-06	0.435133	10.0020
Octane	•		12.1215	4.04736E-07	4.04736E-07	12.1215	12.619
Nonane			5.68064	5.27021E-08	5.27021E-08	5.68064	5.88233
Benzene			1.5265	0.000926815	0.000926815	1.5265	1.49547
Toluene			2.78567	0.000361711	0.000361711	2.78567	2.85165
Ethylbenzene			0.394361	1.41555E-05	1.41555E-05	0.394361	0.41215
p-Xylene			2.19746	9.48626E-05	9.48626E-05	2.19746	2.28691
H2S			0.000245706	7.58879E-06	7.58879E-06	0.000245706	C
			0.0865273	99.9828	99.9828	0.0865273	C
vvater				1.55333E-07	1.55333E-07	0.454291	0.506
	tane			1 000000-07			
Water 2,2,4-Trimethylpen Decanes Plus	tane		0.454291 35.1863	6.36024E-09	6.36024E-09	35.1863	36.8766
2,2,4-Trimethylpen	tane		0.454291 35.1863	6.36024E-09	r ·	35.1863	36.8766
2,2,4-Trimethylpen Decanes Plus	tane		0.454291 35.1863 <b>2</b>	6.36024E-09 <b>3</b>	4	35.1863 <b>5</b>	36.8766 <b>6</b>
2,2,4-Trimethylpen Decanes Plus Mass Fraction	tane		0.454291 35.1863 <b>2</b> %	6.36024E-09 3 %	4 %	35.1863 5 %	36.8766 6 %
2,2,4-Trimethylpen Decanes Plus Mass Fraction Carbon Dioxide	tane		0.454291 35.1863 <b>2</b> % 0.00408549	6.36024E-09 3 % 0.00122504	<b>4</b> % 0.00122504	35.1863 5 % 0.00408549	36.8766 6 % 0.00408509
2,2,4-Trimethylpen Decanes Plus Mass Fraction Carbon Dioxide Nitrogen	tane		0.454291 35.1863 <b>2</b> % 0.00408549 0.00181653	6.36024E-09 3 % 0.00122504 0.00010828	<b>4</b> % 0.00122504 0.00010828	35.1863 5 % 0.00408549 0.00181653	36.8766 6 % 0.00408509 0.00504263
2,2,4-Trimethylpen Decanes Plus Mass Fraction Carbon Dioxide Nitrogen Methane	tane		0.454291 35.1863 <b>2</b> % 0.00408549 0.00181653 0.232097	6.36024E-09 3 % 0.00122504 0.00010828 0.00945472	<b>4</b> % 0.00122504 0.00010828 0.00945472	35.1863 5 % 0.00408549 0.00181653 0.232097	36.8766 6 % 0.00408509 0.00504263 0.203966
2,2,4-Trimethylpen Decanes Plus Mass Fraction Carbon Dioxide Nitrogen Methane Ethane	tane		0.454291 35.1863 <b>2</b> % 0.00408549 0.00181653 0.232097 0.505543	6.36024E-09 3 % 0.00122504 0.00010828 0.00945472 0.00505463	<b>4</b> % 0.00122504 0.00010828 0.00945472 0.00505463	35.1863 5 % 0.00408549 0.00181653 0.232097 0.505543	36.8766 6 % 0.00408509 0.00504263 0.203966 0.517411
2,2,4-Trimethylpen Decanes Plus Mass Fraction Carbon Dioxide Nitrogen Methane Ethane Propane	tane		0.454291 35.1863 <b>2</b> % 0.00408549 0.00181653 0.232097 0.505543 1.37464	6.36024E-09 3 % 0.00122504 0.00010828 0.00945472 0.00505463 0.00268789	<b>4</b> % 0.00122504 0.00010828 0.00945472 0.00505463 0.00268789	35.1863 5 % 0.00408549 0.00181653 0.232097 0.505543 1.37464	36.8766 6 % 0.00408509 0.00504263 0.203966 0.51741 1.31848
2,2,4-Trimethylpen Decanes Plus Mass Fraction Carbon Dioxide Nitrogen Methane Ethane Propane Isobutane	tane		0.454291 35.1863 <b>2</b> % 0.00408549 0.00181653 0.232097 0.505543 1.37464 0.587774	6.36024E-09 3 % 0.00122504 0.00010828 0.00945472 0.00505463 0.00268789 0.000295145	<b>4</b> % 0.00122504 0.00010828 0.00945472 0.00505463 0.00268789 0.000295145	35.1863 5 % 0.00408549 0.00181653 0.232097 0.505543 1.37464 0.587774	36.8766 6 % 0.00408509 0.00504263 0.203966 0.51741 1.31848 0.521938
2,2,4-Trimethylpen Decanes Plus Mass Fraction Carbon Dioxide Nitrogen Methane Ethane Propane Isobutane n-Butane	tane		0.454291 35.1863 <b>2</b> % 0.00408549 0.00181653 0.232097 0.505543 1.37464 0.587774 2.05412	6.36024E-09 3 % 0.00122504 0.00010828 0.00945472 0.00505463 0.00268789 0.000295145 0.00100527	4 % 0.00122504 0.00010828 0.00945472 0.00505463 0.00268789 0.000295145 0.00100527	35.1863 5 % 0.00408549 0.00181653 0.232097 0.505543 1.37464 0.587774 2.05412	36.8766 6 % 0.00408509 0.00504263 0.203966 0.51741 1.31848 0.521939 1.83492
2,2,4-Trimethylpen Decanes Plus Mass Fraction Carbon Dioxide Nitrogen Methane Ethane Propane sobutane n-Butane sopentane	tane		0.454291 35.1863 2 % 0.00408549 0.00181653 0.232097 0.505543 1.37464 0.587774 2.05412 1.41096	6.36024E-09 3 % 0.00122504 0.00010828 0.00945472 0.00505463 0.00268789 0.000295145 0.00100527 0.000179098	4           %           0.00122504           0.00010828           0.00945472           0.00505463           0.00268789           0.000295145           0.00100527           0.000179098	35.1863 5 % 0.00408549 0.00181653 0.232097 0.505543 1.37464 0.587774 2.05412 1.41096	36.8766 6 % 0.00408509 0.00504263 0.203966 0.51741 1.31848 0.521939 1.83492 1.26175
2,2,4-Trimethylpen Decanes Plus Mass Fraction Carbon Dioxide Nitrogen Methane Ethane Propane sobutane n-Butane sopentane n-Pentane	tane		0.454291 35.1863 2 % 0.00408549 0.00181653 0.232097 0.505543 1.37464 0.587774 2.05412 1.41096 1.98451	6.36024E-09 3 % 0.00122504 0.00010828 0.00945472 0.00505463 0.00268789 0.000295145 0.00100527 0.000179098 8.38742E-05	4           %           0.00122504           0.00010828           0.00945472           0.00505463           0.00268789           0.000295145           0.00100527           0.000179098           8.38742E-05	35.1863 5 % 0.00408549 0.00181653 0.232097 0.505543 1.37464 0.587774 2.05412 1.41096 1.98451	36.8766 6 % 0.00408509 0.00504263 0.203966 0.51741 1.31848 0.521939 1.83492 1.83492 1.26179 1.82166
2,2,4-Trimethylpen Decanes Plus Mass Fraction Carbon Dioxide Nitrogen Methane Ethane Propane sobutane -Butane sopentane n-Pentane	tane		0.454291 35.1863 2 % 0.00408549 0.00181653 0.232097 0.505543 1.37464 0.587774 2.05412 1.41096	6.36024E-09 3 % 0.00122504 0.00010828 0.00945472 0.00505463 0.00268789 0.000295145 0.00100527 0.000179098	4           %           0.00122504           0.00010828           0.00945472           0.00505463           0.00268789           0.000295145           0.00100527           0.000179098	35.1863 5 % 0.00408549 0.00181653 0.232097 0.505543 1.37464 0.587774 2.05412 1.41096	36.8766 6 % 0.00408509 0.00504263 0.203966 0.51741 1.31848 0.521939 1.83492 1.83492 1.83492 1.82166 1.49255
2,2,4-Trimethylpen Decanes Plus Mass Fraction Carbon Dioxide Nitrogen Methane Ethane Propane sobutane n-Butane sopentane n-Pentane n-Hexane Cyclohexane	tane		0.454291 35.1863 <b>2</b> % 0.00408549 0.00181653 0.232097 0.505543 1.37464 0.587774 2.05412 1.41096 1.98451 1.6543 0.385931	6.36024E-09 3 % 0.00122504 0.00010828 0.00945472 0.00505463 0.00268789 0.000295145 0.00100527 0.000179098 8.38742E-05 1.34201E-05 4.01198E-05	4 % 0.00122504 0.00010828 0.00945472 0.00505463 0.00268789 0.000295145 0.00100527 0.000179098 8.38742E-05 1.34201E-05 4.01198E-05	35.1863 5 % 0.00408549 0.00181653 0.232097 0.505543 1.37464 0.587774 2.05412 1.41096 1.98451 1.6543 0.385931	36.8766 6 % 0.00408509 0.00504263 0.203966 0.51741 1.31848 0.521939 1.83492 1.26175 1.82166 1.49255 0
2,2,4-Trimethylpen Decanes Plus Mass Fraction Carbon Dioxide Nitrogen Methane Ethane Propane sobutane n-Butane opentane n-Pentane 1-Hexane Cyclohexane -C6	tane		0.454291 35.1863 2 % 0.00408549 0.00181653 0.232097 0.505543 1.37464 0.587774 2.05412 1.41096 1.98451 1.6543	6.36024E-09 3 % 0.00122504 0.00010828 0.00945472 0.00505463 0.00268789 0.000295145 0.00100527 0.000179098 8.38742E-05 1.34201E-05	4 % 0.00122504 0.00010828 0.00945472 0.00505463 0.00268789 0.000295145 0.00100527 0.000179098 8.38742E-05 1.34201E-05	35.1863 5 % 0.00408549 0.00181653 0.232097 0.505543 1.37464 0.587774 2.05412 1.41096 1.98451 1.6543	36.8766 6 % 0.00408509 0.00504263 0.203966 0.51741 1.31848 0.521939 1.83492 1.83492 1.26179 1.82166 1.49257 0 1.60286
2,2,4-Trimethylpen Decanes Plus Mass Fraction Carbon Dioxide Nitrogen Methane Ethane Propane sobutane n-Butane n-Butane n-Pentane n-Pentane n-Hexane Cyclohexane -C6 -C7			0.454291 35.1863 <b>2</b> % 0.00408549 0.00181653 0.232097 0.505543 1.37464 0.587774 2.05412 1.41096 1.98451 1.6543 0.385931 1.85711 7.50462	6.36024E-09 3 % 0.00122504 0.00010828 0.00945472 0.00505463 0.00268789 0.000295145 0.00100527 0.000179098 8.38742E-05 1.34201E-05 4.01198E-05 4.24652E-05 3.67986E-05	4 % 0.00122504 0.00010828 0.00945472 0.00505463 0.00268789 0.000295145 0.00100527 0.000179098 8.38742E-05 1.34201E-05 4.01198E-05 4.24652E-05	35.1863 5 % 0.00408549 0.00181653 0.232097 0.505543 1.37464 0.587774 2.05412 1.41096 1.98451 1.6543 0.385931 1.85711	36.8766 6 % 0.00408509 0.00504263 0.203966 0.51741 1.31848 0.521939 1.83492 1.26175 1.82166 1.49255 ( 1.60286 7.57344
2,2,4-Trimethylpen Decanes Plus Mass Fraction Carbon Dioxide Nitrogen Methane Ethane Propane sobutane n-Butane n-Butane n-Butane n-Pentane n-Hexane Cyclohexane -C6 -C7 Methylcyclohexane			0.454291 35.1863 <b>2</b> % 0.00408549 0.00181653 0.232097 0.505543 1.37464 0.587774 2.05412 1.41096 1.98451 1.6543 0.385931 1.85711	6.36024E-09 3 % 0.00122504 0.00010828 0.00945472 0.00505463 0.00268789 0.000295145 0.000179098 8.38742E-05 1.34201E-05 4.01198E-05 4.24652E-05	4 % 0.00122504 0.00010828 0.00945472 0.00505463 0.00268789 0.000295145 0.00100527 0.000179098 8.38742E-05 1.34201E-05 4.01198E-05 4.24652E-05 3.67986E-05	35.1863 <b>5</b> <b>%</b> 0.00408549 0.00181653 0.232097 0.505543 1.37464 0.587774 2.05412 1.41096 1.98451 1.6543 0.385931 1.85711 7.50462	36.8766 6 % 0.00408509 0.00504263 0.203966 0.517411 1.31848 0.521939 1.83492 1.26179 1.82166 1.49257 0 1.60286 7.57344
2,2,4-Trimethylpen Decanes Plus Mass Fraction Carbon Dioxide Nitrogen Methane Ethane Propane sobutane n-Bentane n-Pentane n-Pentane D-Hexane Cyclohexane -C6 -C7 Methylcyclohexane Octane			0.454291 35.1863 <b>2</b> % 0.00408549 0.00181653 0.232097 0.505543 1.37464 0.587774 2.05412 1.41096 1.98451 1.6543 0.385931 1.85711 7.50462 0.300637	6.36024E-09 3 % 0.00122504 0.00010828 0.00945472 0.00505463 0.00268789 0.000295145 0.00100527 0.000179098 8.38742E-05 1.34201E-05 4.01198E-05 4.24652E-05 3.67986E-05 6.25833E-06	4 % 0.00122504 0.00010828 0.00945472 0.00505463 0.00268789 0.000295145 0.00100527 0.000179098 8.38742E-05 1.34201E-05 4.01198E-05 4.24652E-05 3.67986E-05 6.25833E-06	35.1863 5 % 0.00408549 0.00181653 0.232097 0.505543 1.37464 0.587774 2.05412 1.41096 1.98451 1.6543 0.385931 1.85711 7.50462 0.300637	36.8766 6 % 0.00408509 0.00504263 0.203966 0.517411 1.31848 0.521939 1.83492 1.26179 1.82166 1.49257 0 1.60286 7.57344 0 9.9111
2,2,4-Trimethylpen Decanes Plus Mass Fraction Carbon Dioxide Nitrogen Methane Ethane Propane sobutane n-Bentane n-Pentane n-Hexane Cyclohexane -C6 -C7 Methylcyclohexane Dctane Nonane			0.454291 35.1863 <b>2</b> % 0.00408549 0.00181653 0.232097 0.505543 1.37464 0.587774 2.05412 1.41096 1.98451 1.6543 0.385931 1.85711 7.50462 0.300637 9.74323	6.36024E-09 3 % 0.00122504 0.00010828 0.00945472 0.00505463 0.00268789 0.000295145 0.00100527 0.000179098 8.38742E-05 1.34201E-05 4.01198E-05 4.24652E-05 3.67986E-05 6.25833E-06 2.56605E-06	4 % 0.00122504 0.00010828 0.00945472 0.00505463 0.00268789 0.000295145 0.00100527 0.000179098 8.38742E-05 1.34201E-05 4.24652E-05 3.67986E-05 6.25833E-06 2.56605E-06	35.1863 5 % 0.00408549 0.00181653 0.232097 0.505543 1.37464 0.587774 2.05412 1.41096 1.98451 1.6543 0.385931 1.85711 7.50462 0.300637 9.74323	36.8766 6 % 0.00408509 0.00504263 0.203966 0.51741 1.31848 0.521933 1.83492 1.26175 1.82166 1.4925 0 1.60286 7.57344 0 9.9117 5.18735
2,2,4-Trimethylpen Decanes Plus Mass Fraction Carbon Dioxide Nitrogen Methane Ethane Propane sobutane n-Bentane n-Pentane n-Pentane n-Hexane Cyclohexane -C6 -C7 Methylcyclohexane Dctane Nonane Benzene			0.454291 35.1863 2 % 0.00408549 0.00181653 0.232097 0.505543 1.37464 0.587774 2.05412 1.41096 1.98451 1.6543 0.385931 1.85711 7.50462 0.300637 9.74323 5.12675	6.36024E-09 3 % 0.00122504 0.00010828 0.00945472 0.00505463 0.00268789 0.000295145 0.00100527 0.000179098 8.38742E-05 1.34201E-05 4.01198E-05 4.24652E-05 3.67986E-05 6.25833E-06 2.56605E-06 3.75163E-07	4 % 0.00122504 0.00010828 0.00945472 0.00505463 0.00268789 0.000295145 0.00100527 0.000179098 8.38742E-05 1.34201E-05 4.01198E-05 4.24652E-05 3.67986E-05 6.25833E-06 2.56605E-06 3.75163E-07	35.1863 <b>5</b> % 0.00408549 0.00181653 0.232097 0.505543 1.37464 0.587774 2.05412 1.41096 1.98451 1.6543 0.385931 1.85711 7.50462 0.300637 9.74323 5.12675	36.8766 6 % 0.00408509 0.00504263 0.203966 0.51741 1.31848 0.521933 1.83492 1.26175 1.82166 1.4925 0.1.60286 7.57344 0.9.9117 5.18735 0.803185
2,2,4-Trimethylpen Decanes Plus Mass Fraction Carbon Dioxide Nitrogen Methane Ethane Propane sobutane sobutane sobutane sopentane n-Pentane n-Pentane Dyclohexane -C6 -C7 Methylcyclohexane Octane Nonane Benzene Foluene			0.454291 35.1863 2 % 0.00408549 0.00181653 0.232097 0.505543 1.37464 0.587774 2.05412 1.41096 1.98451 1.6543 0.385931 1.85711 7.50462 0.300637 9.74323 5.12675 0.839041	6.36024E-09 3 % 0.00122504 0.00010828 0.00945472 0.00505463 0.00268789 0.000295145 0.00100527 0.000179098 8.38742E-05 1.34201E-05 4.01198E-05 4.24652E-05 3.67986E-05 6.25833E-06 2.56605E-06 3.75163E-07 0.00401816	4 % 0.00122504 0.00010828 0.00945472 0.00505463 0.00268789 0.000295145 0.00100527 0.000179098 8.38742E-05 1.34201E-05 4.01198E-05 4.01198E-05 3.67986E-05 6.25833E-06 2.56605E-06 3.75163E-07 0.00401816	35.1863 <b>5</b> % 0.00408549 0.00181653 0.232097 0.505543 1.37464 0.587774 2.05412 1.41096 1.98451 1.6543 0.385931 1.85711 7.50462 0.300637 9.74323 5.12675 0.839041	36.8766 6 % 0.00408509 0.00504263 0.203966 0.51741 1.31848 0.521933 1.83492 1.26175 1.82166 1.49255 0.00 1.60286 7.57344 0.518735 0.803185 1.80658
2,2,4-Trimethylpen Decanes Plus Mass Fraction Carbon Dioxide Nitrogen Methane Ethane Propane sobutane n-Butane sopentane n-Pentane Dyclohexane -C6 -C7 Methylcyclohexane Octane Nonane Benzene Foluene Ethylbenzene			0.454291 35.1863 <b>2</b> % 0.00408549 0.00181653 0.232097 0.505543 1.37464 0.587774 2.05412 1.41096 1.98451 1.6543 0.385931 1.85711 7.50462 0.300637 9.74323 5.12675 0.839041 1.8061	6.36024E-09 3 % 0.00122504 0.00010828 0.00945472 0.00505463 0.00268789 0.000295145 0.00100527 0.000179098 8.38742E-05 1.34201E-05 4.01198E-05 4.24652E-05 3.67986E-05 6.25833E-06 2.56605E-06 3.75163E-07 0.00401816 0.00184978 8.34112E-05 0.000558977	4           %           0.00122504           0.00010828           0.00945472           0.00505463           0.00268789           0.00100527           0.001079098           8.38742E-05           1.34201E-05           4.01198E-05           4.24652E-05           3.67986E-05           6.25833E-06           2.56605E-06           3.75163E-07           0.00401816           0.00184978	35.1863 <b>5</b> % 0.00408549 0.00181653 0.232097 0.505543 1.37464 0.587774 2.05412 1.41096 1.98451 1.6543 0.385931 1.85711 7.50462 0.300637 9.74323 5.12675 0.839041 1.8061	36.8766 6 % 0.00408509 0.00504263 0.203966 0.51741 1.31848 0.521933 1.83492 1.26175 1.82166 1.49255 0.1.60286 7.57344 0.518735 0.803185 0.300855
2,2,4-Trimethylpen Decanes Plus Mass Fraction Carbon Dioxide Nitrogen Methane Ethane Propane sobutane n-Butane sopentane n-Butane copentane n-Hexane Cyclohexane -C6 -C7 Methylcyclohexane Octane Senzene Foluene Ethylbenzene coluene Ethylbenzene			0.454291 35.1863 0.00408549 0.00181653 0.232097 0.505543 1.37464 0.587774 2.05412 1.41096 1.98451 1.6543 0.385931 1.85711 7.50462 0.300637 9.74323 5.12675 0.839041 1.8061 0.294609	6.36024E-09 3 % 0.00122504 0.00010828 0.00945472 0.00505463 0.00268789 0.000295145 0.00109527 0.000179098 8.38742E-05 1.34201E-05 4.01198E-05 4.01198E-05 4.24652E-05 3.67986E-05 6.25833E-06 2.56605E-06 3.75163E-07 0.00401816 0.00184978 8.34112E-05	4           %           0.00122504           0.00010828           0.00945472           0.00505463           0.00268789           0.001295145           0.00100527           0.001070908           8.38742E-05           1.34201E-05           4.01198E-05           4.24652E-05           3.67986E-05           6.25833E-06           2.56605E-06           3.75163E-07           0.00401816           0.00184978           8.34112E-05	35.1863 <b>5</b> % 0.00408549 0.00181653 0.232097 0.505543 1.37464 0.587774 2.05412 1.41096 1.98451 1.6543 0.385931 1.85711 7.50462 0.300637 9.74323 5.12675 0.839041 1.8061 0.294609	36.8766 6 % 0.00408509 0.00504263 0.203966 0.51741 1.31848 0.521933 1.83492 1.26175 1.82166 1.49255 0.00 1.60286 7.57344 0.518735 0.803185 1.80658 0.300855 1.66935
2,2,4-Trimethylpen Decanes Plus Mass Fraction Carbon Dioxide Nitrogen Methane Ethane Propane sobutane n-Butane sopentane n-Butane sopentane n-Pentane Cyclohexane -C6 -C7 Methylcyclohexane -C6 -C7 Methylcyclohexane Dotane Senzene Toluene Ethylbenzene o-Xylene 42S			0.454291 35.1863 2 % 0.00408549 0.00181653 0.232097 0.505543 1.37464 0.587774 2.05412 1.41096 1.98451 1.6543 0.385931 1.85711 7.50462 0.300637 9.74323 5.12675 0.839041 1.8061 0.294609 1.64162	6.36024E-09 3 % 0.00122504 0.00010828 0.00945472 0.00505463 0.00268789 0.000295145 0.00100527 0.000179098 8.38742E-05 1.34201E-05 4.01198E-05 4.24652E-05 3.67986E-05 6.25833E-06 2.56605E-06 3.75163E-07 0.00401816 0.00184978 8.34112E-05 0.000558977	4           %           0.00122504           0.00010828           0.00945472           0.00505463           0.00268789           0.000295145           0.00100527           0.00179098           8.38742E-05           1.34201E-05           4.01198E-05           4.24652E-05           3.67986E-05           6.25833E-06           2.56605E-06           3.75163E-07           0.00401816           0.00184978           8.34112E-05           0.000558977	35.1863 5 % 0.00408549 0.00181653 0.232097 0.505543 1.37464 0.587774 2.05412 1.41096 1.98451 1.6543 0.385931 1.85711 7.50462 0.300637 9.74323 5.12675 0.839041 1.8061 0.294609 1.64162	36.8766 6 % 0.00408509 0.00504263 0.203966 0.51741 1.31848 0.521939 1.83492 1.26175 1.82166 1.49255 0.160286 7.57344 0.9.911 5.18735 0.803185 0.300855 1.66935 0.00055 0.00055 0.00055 0.00055 0.00055 0.00055 0.00055 0.00055 0.00055 0.00055 0.00055 0.00055 0.00055 0.00055 0.00055 0.00055 0.00055 0.00055 0.00055 0.00055 0.00055 0.00055 0.00055 0.00055 0.00055 0.00055 0.00055 0.00055 0.00055 0.00055 0.00055 0.00055 0.00055 0.00055 0.00055 0.00055 0.00055 0.00055 0.00055 0.00055 0.00055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.00555 0.0055 0.0055 0.00555 0.00555 0.00555 0.0055
2,2,4-Trimethylpen	3		0.454291 35.1863 2 % 0.00408549 0.00181653 0.232097 0.505543 1.37464 0.587774 2.05412 1.41096 1.98451 1.6543 0.385931 1.85711 7.50462 0.300637 9.74323 5.12675 0.839041 1.8061 0.294609 1.64162 5.89246E-05	6.36024E-09 3 % 0.00122504 0.00010828 0.00945472 0.00505463 0.00268789 0.000295145 0.0010527 0.000179098 8.38742E-05 1.34201E-05 4.01198E-05 4.24652E-05 3.67986E-05 6.25833E-06 2.56605E-06 3.75163E-07 0.00401816 0.00184978 8.34112E-05 0.000558977 1.43549E-05	4           %           0.00122504           0.00010828           0.00945472           0.00505463           0.00268789           0.000295145           0.000179098           8.38742E-05           1.34201E-05           4.01198E-05           4.24652E-05           3.67986E-05           6.25833E-06           2.56605E-06           3.75163E-07           0.00401816           0.00184978           8.34112E-05           0.000558977           1.43549E-05	35.1863 5 % 0.00408549 0.00181653 0.232097 0.505543 1.37464 0.587774 2.05412 1.41096 1.98451 1.6543 0.385931 1.85711 7.50462 0.300637 9.74323 5.12675 0.839041 1.8061 0.294609 1.64162 5.89246E-05	36.8766 <b>6</b>

* User Specified Values ? Extrapolated or Approximate Values

Licensed to Esso Exploration, Inc.

			All St	eams Report reams ^v Total Phase			
Client Name:	XTO ENERGY I	NC			Job: DELAV	VARE DEVELOPME	NT
Location:	CC New TB						
Flowsheet:	Inlet						
	•				÷		
			2	3	4	5	6
Mass Flow			lb/h	lb/h	lb/h	lb/h	lb/h
Carbon Dioxide			9.85145	10.7254	10.7254	9.85145	9.60945
Nitrogen			4.38025	0.948006	0.948006	4.38025	11.8619
Methane			559.661	82.7773	82.7773	559.661	479.793
Ethane			1219.03	44.254	44.254	1219.03	1217.12
Propane			3314.71	23.5329	23.5329	3314.71	3101.48
Isobutane			1417.31	2.58403	2.58403	1417.31	1227.77
n-Butane			4953.15	8.8013	8.8013	4953.15	4316.33
Isopentane			3402.29	1.56803	1.56803	3402.29	2968.14
n-Pentane			4785.31	0.73433	0.73433	4785.31	4285.13
n-Hexane			3989.06	0.117495	0.117495	3989.06	3511
Cyclohexane			930.604	0.351254	0.351254	930.604	0
i-C6			4478.1	0.371789	0.371789	4478.1	3770.45
i-C7			18096.1	0.322177	0.322177	18096.1	17815.2
Methylcyclohexane			724.933	0.0547925	0.0547925	724.933	0
Octane			23494.1	0.0224661	0.0224661	23494.1	23314.1
Nonane			12362.3	0.0032846	0.0032846	12362.3	12202.3
Benzene			2023.2	35.1796	35.1796	2023.2	1889.35
Toluene			4355.08	16.1951	16.1951	4355.08	4249.67
Ethylbenzene			710.398	0.730276	0.730276	710.398	707.709
o-Xylene			3958.48	4.89392	4.89392	3958.48	3926.89
H2S			0.142086	0.125679	0.125679	0.142086	0
Water			26.4496	875279	875279	26.4496	0
2,2,4-Trimethylpenta	ane		880.511	0.00862218	0.00862218	880.511	934.853
Decanes Plus			145437	0.00075289	0.00075289	145437	145294

Stream Properties								
Units	2	3	4	5	6			
°F	86.7323	86.7323	86.9396	85.7159	86			
psig	87	87	0.25 *	40 *	87			
lb/lbmol	142.112	18.017	18.017	142.112	145.438			
lb/h	241133	875513	875513	241133	235232			
MMSCFD	15.4536	442.573	442.573	15.4536	14.7307			
sgpm	623.103	1750.85	1750.85	623.103	605.446 *			
Btu/ft^3	7503.71	50.5636	50.5636	7503.71	7673.74			
	°F psig Ib/Ibmol Ib/h MMSCFD sgpm	Units         2           °F         86.7323           psig         87           lb/lbmol         142.112           lb/h         241133           MMSCFD         15.4536           sgpm         623.103	Units         2         3           °F         86.7323         86.7323           psig         87         87           lb/lbmol         142.112         18.017           lb/h         241133         875513           MMSCFD         15.4536         442.573           sgpm         623.103         1750.85	Units         2         3         4           °F         86.7323         86.7323         86.9396           psig         87         87         0.25 *           lb/lbmol         142.112         18.017         18.017           lb/h         241133         875513         875513           MMSCFD         15.4536         442.573         442.573           sgpm         623.103         1750.85         1750.85	Units2345°F86.732386.732386.939685.7159psig87870.25 *40 *lb/lbmol142.11218.01718.017142.112lb/h241133875513875513241133MMSCFD15.4536442.573442.57315.4536sgpm623.1031750.851750.85623.103			

		P	All S	treams Report Streams by Total Phase			
Client Name:	XTO ENERGY	NC			Job: DELA	WARE DEVELOPN	IENT
Location: Flowsheet:	CC New TB Inlet						
riowsneet.	Inter						
			Con	nections			
			8	9	10	11	12
From Block			Heater	VLVE-102	MIX-101	VLVE-104	VLVE-103
			reaters				
To Block		VI	LVE-102	MIX-101	Prod. Water	Production	Treater Oil
			_			Separators	
			01				
				Composition			
Mole Fraction			8 %	9 %	10 %	11 %	12 %
Carbon Dioxide			70	/0	0.000501518	0.021084	0.00640796
Nitrogen					6.9641E-05	0.107019	0.00114543
Methane					0.0106184	8.15247	0.582281
Ethane					0.00302867	1.75775	1.60823
Propane					0.00109824	1.03204	3.92018
Isobutane					9.14905E-05	0.160683	1.38717
n-Butane					0.000311619 4.47243E-05	0.436229	4.94554 2.81931
Isopentane n-Pentane					4.47243E-05 2.09451E-05	0.145838	2.81931 3.98473
n-Hexane					2.80579E-06	0.0954149	2.81407
Cyclohexane					8.58892E-06	0.0218561	0.673334
i-C6					8.87836E-06	0.113666	3.15238
i-C7					6.61664E-06	0.345533	11.0093
Methylcyclohexar	ie				1.14839E-06	0.0137613	0.450522
Octane					4.04736E-07	0.368824	12.5679
Nonane					5.27021E-08	0.17069	5.89279
Benzene Toluene					0.000926815	0.0533261 0.0871911	1.57566 2.88563
Ethylbenzene					1.41555E-05	0.0119639	0.408951
o-Xylene					9.48626E-05	0.066489	2.27902
H2S					7.58879E-06	0.000115641	0.000191237
Water					99.9828	85.5891	0.0543035
2,2,4-Trimethylpe	ntane				1.55333E-07	0.0144043	0.47032
Decanes Plus					6.36024E-09	1.05081	36.5106
			8		10	11	12
Mass Fraction			8 %	9 %	10 %	11 %	12 %
Mass Fraction Carbon Dioxide			8 %	9%	<b>10</b> % 0.00122504	<b>11</b> % 0.0415824	<b>12</b> % 0.00192861
Carbon Dioxide				-	0.00122504 0.00010828	% 0.0415824 0.13435	% 0.00192861 0.000219439
Carbon Dioxide Nitrogen Methane				-	0.00122504 0.00010828 0.00945472	% 0.0415824 0.13435 5.86098	% 0.00192861 0.000219439 0.0638827
Carbon Dioxide Nitrogen Methane Ethane				-	%           0.00122504           0.00010828           0.00945472           0.00505463	% 0.0415824 0.13435 5.86098 2.36857	% 0.00192861 0.000219439 0.0638827 0.33071
Carbon Dioxide Nitrogen Methane Ethane Propane				-	%           0.00122504           0.00010828           0.00945472           0.00505463           0.00268789	% 0.0415824 0.13435 5.86098 2.36857 2.03939	% 0.00192861 0.000219439 0.0638827 0.33071 1.18217
Carbon Dioxide Nitrogen Methane Ethane Propane Isobutane				-	%           0.00122504           0.00010828           0.00945472           0.00505463           0.00268789           0.000295145	% 0.0415824 0.13435 5.86098 2.36857 2.03939 0.418526	% 0.00192861 0.000219439 0.0638827 0.33071 1.18217 0.55138
Carbon Dioxide Nitrogen Methane Ethane Propane Isobutane n-Butane				-	%           0.00122504           0.00010828           0.00945472           0.00505463           0.00268789           0.000295145           0.00100527	%           0.0415824           0.13435           5.86098           2.36857           2.03939           0.418526           1.13623	%           0.00192861           0.000219439           0.0638827           0.33071           1.18217           0.55138           1.96578
Carbon Dioxide Nitrogen Methane Ethane Propane				-	%           0.00122504           0.00010828           0.00945472           0.00505463           0.00268789           0.000295145           0.00100527           0.000179098	%           0.0415824           0.13435           5.86098           2.36857           2.03939           0.418526           1.13623           0.471532	%           0.00192861           0.00219439           0.0638827           0.33071           1.18217           0.55138           1.96578           1.39108
Carbon Dioxide Nitrogen Methane Ethane Propane Isobutane n-Butane Isopentane n-Pentane				-	%           0.00122504           0.00010828           0.00945472           0.00505463           0.00268789           0.000295145           0.00100527	%           0.0415824           0.13435           5.86098           2.36857           2.03939           0.418526           1.13623	%           0.00192861           0.000219439           0.0638827           0.33071           1.18217           0.55138           1.96578
Carbon Dioxide Nitrogen Methane Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Hexane Cyclohexane				-	%           0.00122504           0.00010828           0.00945472           0.00505463           0.00268789           0.00100527           0.000179098           8.38742E-05           1.34201E-05           4.01198E-05	%           0.0415824           0.13435           5.86098           2.36857           2.03939           0.418526           1.13623           0.471532           0.594103           0.368476           0.0824301	%           0.00192861           0.00219439           0.0638827           0.33071           1.18217           0.55138           1.96578           1.39108           1.96611           1.65843           0.387536
Carbon Dioxide Nitrogen Methane Ethane Propane Isobutane n-Butane n-Butane n-Pentane n-Hexane Cyclohexane i-C6				-	%           0.00122504           0.00010828           0.00945472           0.00505463           0.00295145           0.0010527           0.000179098           8.38742E-05           1.34201E-05           4.01198E-05           4.24652E-05	%           0.0415824           0.13435           5.86098           2.36857           2.03939           0.418526           1.13623           0.471532           0.594103           0.368476           0.0824301           0.438957	%           0.00192861           0.000219439           0.0638827           0.33071           1.18217           0.55138           1.96578           1.39108           1.96611           1.65843           0.387536           1.85781
Carbon Dioxide Nitrogen Methane Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Hexane Cyclohexane i-C6 i-C7				-	%           0.00122504           0.00010828           0.00945472           0.00505463           0.00268789           0.000295145           0.00109527           0.000179098           8.38742E-05           1.34201E-05           4.01198E-05           4.24652E-05           3.67986E-05	%           0.0415824           0.13435           5.86098           2.36857           2.03939           0.418526           1.13623           0.471532           0.594103           0.368476           0.0824301           0.438957           1.55159	%           0.00192861           0.000219439           0.0638827           0.33071           1.18217           0.55138           1.96578           1.39108           1.96611           1.65843           0.387536           1.85781           7.54423
Carbon Dioxide Nitrogen Methane Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Hexane Cyclohexane i-C6 i-C7 Methylcyclohexar	16			-	%           0.00122504           0.00010828           0.00945472           0.00505463           0.00268789           0.000295145           0.00100527           0.000179098           8.38742E-05           1.34201E-05           4.01198E-05           4.24652E-05           3.67986E-05           6.25833E-06	%           0.0415824           0.13435           5.86098           2.36857           2.03939           0.418526           1.13623           0.471532           0.594103           0.368476           0.0824301           0.438957           1.55159           0.0605505	%           0.00192861           0.000219439           0.0638827           0.33071           1.18217           0.55138           1.96578           1.39108           1.96611           1.65843           0.387536           1.85781           7.54423           0.302514
Carbon Dioxide Nitrogen Methane Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Hexane Cyclohexane i-C6 i-C7 Methylcyclohexar Octane	16			-	%           0.00122504           0.00010828           0.00945472           0.00505463           0.00268789           0.000295145           0.00179098           8.38742E-05           1.34201E-05           4.01198E-05           4.24652E-05           3.67986E-05           6.25833E-06           2.56605E-06	%           0.0415824           0.13435           5.86098           2.36857           2.03939           0.418526           1.13623           0.471532           0.594103           0.368476           0.0824301           0.438957           1.55159           0.0605505           1.88801	%           0.00192861           0.000219439           0.0638827           0.33071           1.18217           0.55138           1.96578           1.39108           1.96611           1.65843           0.387536           1.85781           7.54423           0.302514           9.81788
Carbon Dioxide Nitrogen Methane Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Hexane Cyclohexane i-C6 i-C7 Methylcyclohexar Octane Nonane	16			-	%           0.00122504           0.00010828           0.00945472           0.00505463           0.00268789           0.000179098           8.38742E-05           1.34201E-05           4.01198E-05           4.24652E-05           3.67986E-05           6.25833E-06           2.56605E-06           3.75163E-07	%           0.0415824           0.13435           5.86098           2.36857           2.03939           0.418526           1.13623           0.471532           0.594103           0.368476           0.0824301           0.438957           1.55159           0.0605505           1.88801           0.981053	%           0.00192861           0.000219439           0.0638827           0.33071           1.18217           0.55138           1.96578           1.39108           1.96578           0.387536           1.85781           7.54423           0.302514           9.81788           5.16862
Carbon Dioxide Nitrogen Methane Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Hexane Cyclohexane i-C6 i-C7 Methylcyclohexar Octane Nonane Benzene	1e			-	%           0.00122504           0.00010828           0.00945472           0.00505463           0.00268789           0.000295145           0.00179098           8.38742E-05           1.34201E-05           4.01198E-05           4.24652E-05           3.67986E-05           6.25833E-06           2.56605E-06	%           0.0415824           0.13435           5.86098           2.36857           2.03939           0.418526           1.13623           0.471532           0.594103           0.368476           0.0824301           0.438957           1.55159           0.0605505           1.88801	%           0.00192861           0.000219439           0.0638827           0.33071           1.18217           0.55138           1.96578           1.39108           1.96611           1.65843           0.387536           1.85781           7.54423           0.302514           9.81788
Carbon Dioxide Nitrogen Methane Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Pentane Cyclohexane i-C6 i-C7 Methylcyclohexar Octane Nonane Benzene Toluene Ethylbenzene	16 			-	%           0.00122504           0.00010828           0.00945472           0.00505463           0.00268789           0.00010527           0.000179098           8.38742E-05           1.34201E-05           4.01198E-05           4.24652E-05           3.67986E-05           6.25833E-06           2.56605E-06           3.75163E-07           0.00401816           0.00184978           8.34112E-05	%           0.0415824           0.13435           5.86098           2.36857           2.03939           0.418526           1.13623           0.471532           0.594103           0.368476           0.0824301           0.438957           1.55159           0.0605505           1.88801           0.981053           0.186666           0.360017           0.0569201	%           0.00192861           0.000219439           0.0638827           0.33071           1.18217           0.55138           1.96578           1.39108           1.96611           1.65843           0.387536           1.85781           7.54423           0.302514           9.81788           5.16862           0.841701           1.81828           0.296915
Carbon Dioxide Nitrogen Methane Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Pentane n-Hexane Cyclohexane i-C6 i-C7 Methylcyclohexar Octane Nonane Benzene Toluene Ethylbenzene o-Xylene	1e			-	%           0.00122504           0.00010828           0.00945472           0.00505463           0.00268789           0.00010527           0.000100527           0.000179098           8.38742E-05           1.34201E-05           4.01198E-05           4.24652E-05           3.67986E-05           6.25833E-06           2.56605E-06           3.75163E-07           0.00401816           0.00184978           8.34112E-05           0.000558977	%           0.0415824           0.13435           5.86098           2.36857           2.03939           0.418526           1.13623           0.471532           0.594103           0.368476           0.0824301           0.438957           1.55159           0.0605505           1.88801           0.981053           0.186666           0.360017           0.0569201           0.316331	%           0.00192861           0.000219439           0.0638827           0.33071           1.18217           0.55138           1.96578           1.39108           1.96611           1.65843           0.387536           1.85781           7.54423           0.302514           9.81788           5.16862           0.841701           1.81828           0.296915           1.65466
Carbon Dioxide Nitrogen Methane Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Pentane n-Hexane Cyclohexane i-C6 i-C7 Methylcyclohexar Octane Nonane Benzene Toluene Ethylbenzene o-Xylene H2S	IE			-	%           0.00122504           0.00010828           0.00945472           0.00505463           0.00268789           0.00100527           0.000100527           0.000179098           8.38742E-05           1.34201E-05           4.01198E-05           4.24652E-05           3.67986E-05           6.25833E-06           2.56605E-06           3.75163E-07           0.00401816           0.00184978           8.34112E-05           0.000558977           1.43549E-05	%           0.0415824           0.13435           5.86098           2.36857           2.03939           0.418526           1.13623           0.471532           0.594103           0.368476           0.0824301           0.438957           1.55159           0.0605505           1.88801           0.981053           0.186666           0.360017           0.0569201           0.316331           0.000176617	%           0.00192861           0.000219439           0.0638827           0.33071           1.18217           0.55138           1.96578           1.39108           1.96611           1.65843           0.387536           1.85781           7.54423           0.302514           9.81788           5.16862           0.841701           1.81828           0.296915           1.65466           4.4572E-05
Carbon Dioxide Nitrogen Methane Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Pentane n-Hexane Cyclohexane i-C6 i-C7 Methylcyclohexar Octane Nonane Benzene Toluene Ethylbenzene o-Xylene				-	%           0.00122504           0.00010828           0.00945472           0.00505463           0.00268789           0.00010527           0.000100527           0.000179098           8.38742E-05           1.34201E-05           4.01198E-05           4.24652E-05           3.67986E-05           6.25833E-06           2.56605E-06           3.75163E-07           0.00401816           0.00184978           8.34112E-05           0.000558977	%           0.0415824           0.13435           5.86098           2.36857           2.03939           0.418526           1.13623           0.471532           0.594103           0.368476           0.0824301           0.438957           1.55159           0.0605505           1.88801           0.981053           0.186666           0.360017           0.0569201           0.316331	%           0.00192861           0.000219439           0.0638827           0.33071           1.18217           0.55138           1.96578           1.39108           1.96611           1.65843           0.387536           1.85781           7.54423           0.302514           9.81788           5.16862           0.841701           1.81828           0.296915           1.65466

	All	Streams Report Streams ed by Total Phase			
Client Name: XTO ENERGY II	NC		Job: DELAV	WARE DEVELOPME	INT
Location: CC New TB					
Flowsheet: Inlet					
·					
	8	9	10	11	12
Mass Flow	lb/h	lb/h	lb/h	lb/h	lb/h
Carbon Dioxide			10.7254	527.202	4.61155
Nitrogen			0.948006	1703.35	0.524705
Methane			82.7773	74308.3	152.751
Ethane			44.254	30029.9	790.766
Propane			23.5329	25856.4	2826.71
Isobutane			2.58403	5306.28	1318.41
n-Butane			8.8013	14405.7	4700.41
Isopentane			1.56803	5978.31	3326.23
n-Pentane			0.73433	7532.32	4701.19
n-Hexane			0.117495	4671.72	3965.5
Cyclohexane			0.351254	1045.09	926.645
i-C6			0.371789	5565.31	4442.24
i-C7			0.322177	19671.8	18039.1
Methylcyclohexane			0.0547925	767.689	723.346
Octane			0.0224661	23937.1	23475.7
Nonane			0.0032846	12438.3	12358.8
Benzene			35.1796	2366.65	2012.61
Toluene			16.1951	4564.47	4347.72
Ethylbenzene			0.730276	721.66	709.958
o-Xylene			4.89392	4010.59	3956.48
H2S			0.125679	2.23923	0.106577
Water			875279	876066	15.9974
2,2,4-Trimethylpentane			0.00862218	934.853	878.513
Decanes Plus			0.00075289	145438	145437
	Stroar	n Properties			
<b>D</b> (	Streat		10	44	

		Stream	roperties			
Property	Units	8	9	10	11	12
Temperature	°F	120		86.9396	86.7323	113.779
Pressure	psig	40	0.25 *	0.25	87 *	3
Molecular Weight	lb/lbmol			18.017	22.3147	146.225
Mass Flow	lb/h	0	0	875513	1.26785E+06	239112
Std Vapor Volumetric Flow	MMSCFD	0	0	442.573	517.466	14.8931
Std Liquid Volumetric Flow	sgpm	0	0	1750.85	3198.5	613.82
Gross Ideal Gas Heating Value	Btu/ft^3			50.5636	424.168	7715.03

		All S Tabulated	treams Report Streams I by Total Phase		
Client Name:	XTO ENERGY I	NC		Job: DELA	WARE DEVELOPMENT
Location:	CC New TB				
Flowsheet:	Inlet				
			nections		
		13	15	16	
From Block		SPLT-100	Elect Booster	FAXR-100	
To Block		Flowback	FAXR-100	MIX-103	
		Otras area			
			Composition	40	
Mole Fraction		13 %	15 %	16 %	
Carbon Dioxide		0.0135	0.193451	0.193451	
Nitrogen		0.02618	0.223622	0.193431	<u> </u>
Methane		1.84912	41.2118	41.2118	
Ethane		2.50262	23.1411	23.1411	
Propane		4.34866	17.9809	17.9809	
Isobutane		1.30604	2.76467	2.76467	
n-Butane		4.5915	7.06514	7.06514	
Isopentane		2.54353	1.71289	1.71289	
n-Pentane		3.67212	1.8944	1.8944	
n-Hexane		2.51901	0.444234	0.444234 0.0764284	
Cyclohexane i-C6		2.70515	0.0764284	0.0764284	
i-C7		10.9925	0.92326	0.92326	
Methylcyclohexan	e	0	0.0262674	0.0262674	
Octane		12.619	0.261233	0.261233	1
Nonane		5.88233	0.0441674	0.0441674	
Benzene		1.49547	0.220333	0.220333	
Toluene		2.85165	0.129835	0.129835	
Ethylbenzene		0.41215	0.00672601	0.00672601	
o-Xylene		2.28691	0.0305502	0.0305502	
H2S Water		0	0.00169289 0.942677	0.00169289 0.942677	
2,2,4-Trimethylpe	ntano	0.506	0.0284216	0.0284216	
Decanes Plus	liane	36.8766	0.000101039	0.000101039	
2 0 0 0 1 1 0 0 1 1 0 0			0.000.010000	0.000.0.000	
		13	15	16	
Mass Fraction		%	%	%	
Carbon Dioxide		0.00408509	0.259308	0.259308	
Nitrogen		0.00504263	0.1908	0.1908	
Methane		0.203966	20.1368	20.1368	
Ethane		0.517411	21.1935	21.1935	
Propane Isobutane		<u>1.31848</u> 0.521939	24.1493 4.89423	24.1493 4.89423	
n-Butane		1.83492	12.5072	12.5072	
Isopentane		1.26179	3.76406	3.76406	
n-Pentane		1.82166	4.16293	4.16293	
n-Hexane		1.49257	1.16599	1.16599	
Cyclohexane		0	0.19591	0.19591	
-C6		1.60286	1.77453	1.77453	
-C7		7.57344	2.81772	2.81772	
Methylcyclohexan	e	0	0.0785535	0.0785535	
Octane		9.9111	0.908866	0.908866	
Nonane		5.18735 0.803185	0.172534 0.524198	0.172534 0.524198	
Renzene		1.80658	0.36436	0.36436	
Benzene Toluene		0.300855	0.0217489	0.0217489	
Toluene			0.0987857	0.0987857	
Benzene Toluene Ethylbenzene o-Xylene		1.66937			
Toluene Ethylbenzene p-Xylene		<u>1.66937</u> 0	0.00175726	0.00175726	
Toluene Ethylbenzene o-Xylene H2S Water		0	0.00175726 0.517252	0.00175726 0.517252	
Toluene Ethylbenzene	ntane	0	0.00175726		

		All Sti	Process Streams Report All Streams Tabulated by Total Phase			
Client Name:	XTO ENERGY INC			Job: DELA	WARE DEVELOPMENT	
Location:	CC New TB					
Flowsheet:	Inlet					
				¥		
		13	15	16		
Mass Flow		lb/h	lb/h	lb/h		
Carbon Dioxide		2.40493	5.2399	5.2399		
Nitrogen		2.96864	3.85555	3.85555		
Methane		120.077	406.91	406.91		
Ethane		304.605	428.262	428.262		
Propane		776.199	487.992	487.992		
Isobutane		307.27	98.899	98.899		
n-Butane		1080.24	252.737	252.737		
Isopentane		742.828	76.0613	76.0613		
n-Pentane		1072.43	84.1215	84.1215		
n-Hexane		878.689	23.5614	23.5614		
Cyclohexane		0	3.9588	3.9588		
i-C6		943.619	35.8583	35.8583		
i-C7		4458.55	56.9385	56.9385		
Methylcyclohexa	ne	0	1.58735	1.58735		
Octane		5834.76	18.3657	18.3657		
Nonane		3053.84	3.48644	3.48644		
Benzene		472.843	10.5926	10.5926		
Toluene		1063.55	7.36273	7.36273		
Ethylbenzene		177.116	0.439486	0.439486		
o-Xylene		982.772	1.99619	1.99619		
H2S		0	0.0355095	0.0355095		
Water		0	10.4523	10.4523		
2,2,4-Trimethylpe	entane	233.963	1.99815	1.99815		
Decanes Plus		36362.2	0.0151486	0.0151486		

Stream Properties							
Property	Units	13	15	16			
Temperature	°F	86	218.081	90 *			
Pressure	psig	87	85 *	80 *			
Molecular Weight	lb/lbmol	145.438	32.8323	32.8323			
Mass Flow	lb/h	58870.9	2020.73	2020.73			
Std Vapor Volumetric Flow	MMSCFD	3.68661	0.560545	0.560545			
Std Liquid Volumetric Flow	sgpm	151.523	9.28282	9.28282			
Gross Ideal Gas Heating Value	Btu/ft^3	7673.74	1889.06	1889.06			

Simulation Initiated on 10/30/	/2019 12:30:22 PM	Expansion Section.pmx	Page 1 of 1
		Sales Plant Schematic	
Client Name:	XTO ENERGY INC	Job: DELAWARI	E DEVELOPMENT
Location:	CC New TB		
Flowsheet:	Sales		
		7	
		HP Gas	
		TL Vent 2 5 5 5 5 5 5 5 5 5 5 5 5 5	
		VRT Gas Vapor 	

Expansion Section.pmx

Simulation Initiated on 1	10/30/2019 12:30:22 PM		Expansion	Section.pmx			Page 1 of
			All St	reams Report reams y Total Phase			
Client Name:	XTO ENERGY				Joh: DELA		
-		NC .			JOD: DELA	WARE DEVELOPIN	IENI
Location:	CC New TB						
Flowsheet:	Sales						
			Conn	ections			
			Combined	Tanks VRU	zLP Vapors	1	2
			Sales Gas	Gas	ZEF Vapors	•	2
From Block			MIX-100	MIX-101	MIX-102	VRT Gas	XFS1
FIOIII DIUCK			IVIIA-100		1017-102	-	AF31
To Dia eli						Vapor	
To Block				CMPR-101	MIX-100	CMPR-100	MIX-101
			Stream Co	omposition			
			Combined	Tanks VRU	zLP Vapors	1	2
			Sales Gas	Gas	ZEF Vapors	•	2
Mole Fraction			Sales Gas %	%	0/	0/	0/
					%	%	%
Carbon Dioxide			0.176367	0.41057	0.164262	0.107653	0.0469615
Nitrogen			0.909388	0.180899	0.0523002	0.0227445	0.000362491
Methane			69.2643	27.8413	14.1113	10.9558	0.658086
Ethane			14.8437	20.1359	21.9225	22.3331	20.812
Propane			8.23516	23.4604	29.3774	30.7372	35.4572
Isobutane	-	-	1.10586	4.22952	5.46415	5.7479	7.04037
n-Butane			2.70979	11.5665	14.5968	15.2933	19.5465
Isopentane			0.603055	2.8435	3.64557	3.82991	5.04353
n-Pentane			0.645574	3.06759	4.00106	4.2156	5.56015
n-Hexane			0.13571	0.681475	0.895011	0.944088	1.29246
Cyclohexane			0.0232286	0.108174	0.152458	0.162636	0.167037
i-C6			0.215385	1.06238	1.39638	1.47314	1.94901
i-C7			0.269294	1.0648	1.74464	1.90089	0.744915
Methylcyclohexan	le		0.00747514	0.0327027	0.0495625	0.0534373	0.0549483
Octane			0.0671332	0.338624	0.457799	0.485189	0.628785
Nonane			0.0103221	0.0521656	0.0716484	0.0761261	0.0973366
Benzene			0.0679576	0.452749	0.469496	0.473345	0.472147
Toluene			0.0363366	0.244521	0.257182	0.260091	0.278635
Ethylbenzene			0.00172745	0.0116805	0.012363	0.0125198	0.0146621
o-Xylene			0.0077475	0.0509741	0.0553264	0.0563267	0.0553345
H2Ś			0.000915943	0.00332002	0.00239322	0.00218021	0.00175881
Water			0.655356	2.11822	1.04562	0.799107	0.000503706
2,2,4-Trimethylpe	ntane		0.00817974	0.0419491	0.0546772	0.0576025	0.0773519
Decanes Plus	Intario		1.23359E-05	6.2244E-05	9.11063E-05	9.77397E-05	8.16328E-05
Decanes Flus			1.233392-03	0.22442-03	9.11003E-03	9.113912-03	0.10320E-03
						· · ·	
			Combined	Tanks VRU	zLP Vapors	1	2
			Sales Gas	Gas		-	• ·
Mass Fraction			%	%	%	%	%
Carbon Dioxide				0 466103	0 160205	0.103361	0.0409346
			0.329296	0.466103	0.162395		
			1.08078	0.130722	0.0329122	0.0139004	0.000201125
Methane			1.08078 47.1415	0.130722 11.5215	0.0329122 5.08542	0.0139004 3.83441	0.000201125 0.209101
Methane			1.08078 47.1415 18.9358	0.130722 11.5215 15.6185	0.0329122 5.08542 14.808	0.0139004 3.83441 14.6505	0.000201125 0.209101 12.3947
Methane Ethane			1.08078 47.1415	0.130722 11.5215	0.0329122 5.08542	0.0139004 3.83441	0.000201125 0.209101
Methane Ethane Propane			1.08078 47.1415 18.9358 15.406	0.130722 11.5215 15.6185 26.6857	0.0329122 5.08542 14.808 29.1002	0.0139004 3.83441 14.6505 29.5695	0.000201125 0.209101 12.3947 30.9672
Methane Ethane Propane Isobutane			1.08078 47.1415 18.9358 15.406 2.72688	0.130722 11.5215 15.6185 26.6857 6.34134	0.0329122 5.08542 14.808 29.1002 7.13432	0.0139004 3.83441 14.6505 29.5695 7.28845	0.000201125 0.209101 12.3947 30.9672 8.10475
Methane Ethane Propane Isobutane n-Butane			1.08078 47.1415 18.9358 15.406 2.72688 6.68192	0.130722 11.5215 15.6185 26.6857 6.34134 17.3417	0.0329122 5.08542 14.808 29.1002 7.13432 19.0585	0.0139004 3.83441 14.6505 29.5695 7.28845 19.3922	0.000201125 0.209101 12.3947 30.9672 8.10475 22.5016
Methane Ethane Propane Isobutane n-Butane Isopentane			1.08078 47.1415 18.9358 15.406 2.72688 6.68192 1.8459	0.130722 11.5215 15.6185 26.6857 6.34134 17.3417 5.29212	0.0329122 5.08542 14.808 29.1002 7.13432 19.0585 5.90857	0.0139004 3.83441 14.6505 29.5695 7.28845 19.3922 6.0284	0.000201125 0.209101 12.3947 30.9672 8.10475 22.5016 7.20718
Methane Ethane Propane Isobutane n-Butane Isopentane n-Pentane			1.08078 47.1415 18.9358 15.406 2.72688 6.68192 1.8459 1.97605	0.130722 11.5215 15.6185 26.6857 6.34134 17.3417 5.29212 5.70919	0.0329122 5.08542 14.808 29.1002 7.13432 19.0585 5.90857 6.48473	0.0139004 3.83441 14.6505 29.5695 7.28845 19.3922 6.0284 6.63548	0.000201125 0.209101 12.3947 30.9672 8.10475 22.5016 7.20718 7.94544
Methane Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Hexane			1.08078 47.1415 18.9358 15.406 2.72688 6.68192 1.8459 1.97605 0.496155	0.130722 11.5215 15.6185 26.6857 6.34134 17.3417 5.29212 5.70919 1.51489	0.0329122 5.08542 14.808 29.1002 7.13432 19.0585 5.90857 6.48473 1.7326	0.0139004 3.83441 14.6505 29.5695 7.28845 19.3922 6.0284 6.63548 1.77492	0.000201125 0.209101 12.3947 30.9672 8.10475 22.5016 7.20718 7.94544 2.20598
Methane Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Hexane Cyclohexane			1.08078 47.1415 18.9358 15.406 2.72688 6.68192 1.8459 1.97605 0.496155 0.0829372	0.130722 11.5215 15.6185 26.6857 6.34134 17.3417 5.29212 5.70919 1.51489 0.23484	0.0329122 5.08542 14.808 29.1002 7.13432 19.0585 5.90857 6.48473 1.7326 0.288231	0.0139004 3.83441 14.6505 29.5695 7.28845 19.3922 6.0284 6.63548 1.77492 0.298609	0.000201125 0.209101 12.3947 30.9672 8.10475 22.5016 7.20718 7.94544 2.20598 0.278431
Methane Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Hexane Cyclohexane i-C6			1.08078 47.1415 18.9358 15.406 2.72688 6.68192 1.8459 1.97605 0.496155 0.0829372 0.787448	0.130722 11.5215 15.6185 26.6857 6.34134 17.3417 5.29212 5.70919 1.51489 0.23484 2.36162	0.0329122 5.08542 14.808 29.1002 7.13432 19.0585 5.90857 6.48473 1.7326 0.288231 2.70317	0.0139004 3.83441 14.6505 29.5695 7.28845 19.3922 6.0284 6.63548 1.77492 0.298609 2.76956	0.000201125 0.209101 12.3947 30.9672 8.10475 22.5016 7.20718 7.94544 2.20598 0.278431 3.32659
Methane Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Hexane Cyclohexane i-C6 i-C7			1.08078 47.1415 18.9358 15.406 2.72688 6.68192 1.8459 1.97605 0.496155 0.0829372 0.787448 1.14479	0.130722 11.5215 15.6185 26.6857 6.34134 17.3417 5.29212 5.70919 1.51489 0.23484 2.36162 2.75228	0.0329122 5.08542 14.808 29.1002 7.13432 19.0585 5.90857 6.48473 1.7326 0.288231 2.70317 3.92708	0.0139004 3.83441 14.6505 29.5695 7.28845 19.3922 6.0284 6.63548 1.77492 0.298609 2.76956 4.15544	0.000201125 0.209101 12.3947 30.9672 8.10475 22.5016 7.20718 7.94544 2.20598 0.278431 3.32659 1.47838
Methane Ethane Propane Isobutane Isopentane n-Pentane n-Hexane Cyclohexane i-C6 i-C7 Methylcyclohexar	16		1.08078 47.1415 18.9358 15.406 2.72688 6.68192 1.8459 1.97605 0.496155 0.0829372 0.787448 1.14479 0.0311381	0.130722 11.5215 15.6185 26.6857 6.34134 17.3417 5.29212 5.70919 1.51489 0.23484 2.36162 2.75228 0.0828287	0.0329122 5.08542 14.808 29.1002 7.13432 19.0585 5.90857 6.48473 1.7326 0.288231 2.70317 3.92708 0.109318	0.0139004 3.83441 14.6505 29.5695 7.28845 19.3922 6.0284 6.63548 1.77492 0.298609 2.76956 4.15544 0.114466	0.000201125 0.209101 12.3947 30.9672 8.10475 22.5016 7.20718 7.94544 2.20598 0.278431 3.32659 1.47838 0.106858
Methane Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Hexane Cyclohexane I-C6 I-C7 Methylcyclohexan Octane	16		1.08078 47.1415 18.9358 15.406 2.72688 6.68192 1.8459 1.97605 0.496155 0.0829372 0.787448 1.14479 0.0311381 0.325338	0.130722 11.5215 15.6185 26.6857 6.34134 17.3417 5.29212 5.70919 1.51489 0.23484 2.36162 2.75228 0.0828287 0.997791	0.0329122 5.08542 14.808 29.1002 7.13432 19.0585 5.90857 6.48473 1.7326 0.288231 2.70317 3.92708 0.109318 1.17473	0.0139004 3.83441 14.6505 29.5695 7.28845 19.3922 6.0284 6.63548 1.77492 0.298609 2.76956 4.15544 0.114466 1.20912	0.000201125 0.209101 12.3947 30.9672 8.10475 22.5016 7.20718 7.94544 2.20544 0.278431 3.32659 1.47838 0.106858 1.42259
Methane Ethane Propane Isobutane Isopentane Isopentane Cyclohexane -C6 -C7 Methylcyclohexan Octane	1e		1.08078 47.1415 18.9358 15.406 2.72688 6.68192 1.8459 1.97605 0.496155 0.0829372 0.787448 1.14479 0.0311381 0.325338 0.0561648	0.130722 11.5215 15.6185 26.6857 6.34134 17.3417 5.29212 5.70919 1.51489 0.23484 2.36162 2.75228 0.0828287 0.997791 0.172587	0.0329122 5.08542 14.808 29.1002 7.13432 19.0585 5.90857 6.48473 1.7326 0.288231 2.70317 3.92708 0.109318 1.17473 0.206428	0.0139004 3.83441 14.6505 29.5695 7.28845 19.3922 6.0284 6.63548 1.77492 0.298609 2.76956 4.15544 0.114466 1.20912 0.213006	0.000201125 0.209101 12.3947 30.9672 8.10475 22.5016 7.20718 7.94544 2.20598 0.278431 3.32659 1.47838 0.106858
Methane Ethane Propane Isobutane Isopentane Isopentane Cyclohexane -C6 -C7 Methylcyclohexan Octane Nonane	)e		1.08078 47.1415 18.9358 15.406 2.72688 6.68192 1.8459 1.97605 0.496155 0.0829372 0.787448 1.14479 0.0311381 0.325338	0.130722 11.5215 15.6185 26.6857 6.34134 17.3417 5.29212 5.70919 1.51489 0.23484 2.36162 2.75228 0.0828287 0.997791	0.0329122 5.08542 14.808 29.1002 7.13432 19.0585 5.90857 6.48473 1.7326 0.288231 2.70317 3.92708 0.109318 1.17473	0.0139004 3.83441 14.6505 29.5695 7.28845 19.3922 6.0284 6.63548 1.77492 0.298609 2.76956 4.15544 0.114466 1.20912	0.000201125 0.209101 12.3947 30.9672 8.10475 22.5016 7.20718 7.94544 2.20598 0.278431 3.32659 1.47838 0.106858 1.42259
Methane Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Hexane Cyclohexane -C6 -C7 Methylcyclohexan Octane Nonane Benzene	1ê		1.08078 47.1415 18.9358 15.406 2.72688 6.68192 1.8459 1.97605 0.496155 0.0829372 0.787448 1.14479 0.0311381 0.325338 0.0561648 0.225205	0.130722 11.5215 15.6185 26.6857 6.34134 17.3417 5.29212 5.70919 1.51489 0.23484 2.36162 2.75228 0.0828287 0.997791 0.172587	0.0329122 5.08542 14.808 29.1002 7.13432 19.0585 5.90857 6.48473 1.7326 0.288231 2.70317 3.92708 0.109318 1.17473 0.206428 0.823828	0.0139004 3.83441 14.6505 29.5695 7.28845 19.3922 6.0284 6.63548 1.77492 0.298609 2.76956 4.15544 0.114466 1.20912 0.213006 0.806638	0.000201125 0.209101 12.3947 30.9672 8.10475 22.5016 7.20718 7.94544 2.20598 0.278431 3.32659 1.47838 0.106858 1.42259 0.24726
Methane Ethane Propane Isobutane n-Butane Isopentane n-Pentane Oyclohexane -C6 -C7 Methylcyclohexan Octane Nonane Benzene Toluene	1e		1.08078 47.1415 18.9358 15.406 2.72688 6.68192 1.8459 1.97605 0.496155 0.0829372 0.787448 1.14479 0.0311381 0.325338 0.0561648 0.225205 0.142039	0.130722 11.5215 15.6185 26.6857 6.34134 17.3417 5.29212 5.70919 1.51489 0.23484 2.36162 2.75228 0.0828287 0.997791 0.172587 0.912268 0.581172	0.0329122 5.08542 14.808 29.1002 7.13432 19.0585 5.90857 6.48473 1.7326 0.288231 2.70317 3.92708 0.109318 1.17473 0.206428 0.823828 0.532315	0.0139004 3.83441 14.6505 29.5695 7.28845 19.3922 6.0284 6.63548 1.77492 0.298609 2.76956 4.15544 0.114466 1.20912 0.213006 0.806638 0.522818	0.000201125 0.209101 12.3947 30.9672 8.10475 22.5016 7.20718 7.94544 2.20598 0.278431 3.32659 1.47838 0.106858 1.42259 0.24726 0.730461 0.508486
Methane Ethane Propane Isobutane n-Butane Isopentane n-Pentane Oyclohexane -C6 -C7 Methylcyclohexan Octane Nonane Benzene Toluene Ethylbenzene	16 16		1.08078 47.1415 18.9358 15.406 2.72688 6.68192 1.8459 1.97605 0.496155 0.0829372 0.787448 1.14479 0.0311381 0.325338 0.0561648 0.225205 0.142039 0.00778052	0.130722 11.5215 15.6185 26.6857 6.34134 17.3417 5.29212 5.70919 1.51489 0.23484 2.36162 2.75228 0.0828287 0.997791 0.172587 0.912268 0.581172 0.0319883	0.0329122 5.08542 14.808 29.1002 7.13432 19.0585 5.90857 6.48473 1.7326 0.288231 2.70317 3.92708 0.109318 1.17473 0.206428 0.823828 0.532315 0.0294844	0.0139004 3.83441 14.6505 29.5695 7.28845 19.3922 6.0284 6.63548 1.77492 0.298609 2.76956 4.15544 0.114466 1.20912 0.213006 0.806638 0.522818 0.0289977	0.000201125 0.209101 12.3947 30.9672 8.10475 22.5016 7.20718 7.94544 2.20598 0.278431 3.32659 1.47838 0.106858 1.42259 0.24726 0.730461 0.508486 0.0308305
Methane Ethane Ethane Propane Isobutane n-Butane Isopentane n-Pentane N-Pentane Cyclohexane i-C6 i-C7 Methylcyclohexan Octane Nonane Benzene Toluene Ethylbenzene o-Xylene	16		1.08078 47.1415 18.9358 15.406 2.72688 6.68192 1.8459 1.97605 0.496155 0.0829372 0.787448 1.14479 0.0311381 0.325338 0.0561648 0.225205 0.142039 0.00778052 0.0348952	0.130722 11.5215 15.6185 26.6857 6.34134 17.3417 5.29212 5.70919 1.51489 0.23484 2.36162 2.75228 0.0828287 0.997791 0.172587 0.912268 0.581172 0.0319883 0.139598	0.0329122 5.08542 14.808 29.1002 7.13432 19.0585 5.90857 6.48473 1.7326 0.288231 2.70317 3.92708 0.109318 1.17473 0.206428 0.823828 0.532315 0.0294844 0.131948	0.0139004 3.83441 14.6505 29.5695 7.28845 19.3922 6.0284 6.63548 1.77492 0.298609 2.76956 4.15544 0.114466 1.20912 0.213006 0.806638 0.522818 0.0289977 0.130461	0.000201125 0.209101 12.3947 30.9672 8.10475 22.5016 7.20718 7.94544 2.20598 0.278431 3.32659 1.47838 0.106858 1.42259 0.24726 0.730461 0.508486 0.0308305 0.116354
Methane Ethane Ethane Propane Isobutane n-Butane Isopentane n-Pentane N-Pentane Cyclohexane Cyclohexane Cyclohexane Cyclohexane Cyclohexane Cyclohexane Cyclohexane Dotane Benzene Toluene Ethylbenzene O-Xylene H2S	1e		1.08078 47.1415 18.9358 15.406 2.72688 6.68192 1.8459 1.97605 0.496155 0.0829372 0.787448 1.14479 0.0311381 0.325338 0.0561648 0.225205 0.142039 0.00778052 0.0348952 0.00132435	0.130722 11.5215 15.6185 26.6857 6.34134 17.3417 5.29212 5.70919 1.51489 0.23484 2.36162 2.75228 0.0828287 0.997791 0.172587 0.912268 0.581172 0.0319883 0.139598 0.00291876	0.0329122 5.08542 14.808 29.1002 7.13432 19.0585 5.90857 6.48473 1.7326 0.288231 2.70317 3.92708 0.109318 1.17473 0.206428 0.823828 0.532315 0.0294844 0.131948 0.00183223	0.0139004 3.83441 14.6505 29.5695 7.28845 19.3922 6.0284 6.63548 1.77492 0.298609 2.76956 4.15544 0.114466 1.20912 0.213006 0.806638 0.522818 0.0289977 0.130461 0.00162104	0.000201125 0.209101 12.3947 30.9672 8.10475 22.5016 7.20718 7.94544 2.20598 0.278431 3.32659 1.47838 0.106858 1.42259 0.24726 0.730461 0.508486 0.0308305 0.116354 0.00118722
Nitrogen Methane Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Hexane Cyclohexane i-C6 i-C7 Methylcyclohexan Octane Nonane Benzene Toluene Ethylbenzene o-Xylene H2S Water 2,2,4-Trimethylpe			1.08078 47.1415 18.9358 15.406 2.72688 6.68192 1.8459 1.97605 0.496155 0.0829372 0.787448 1.14479 0.0311381 0.325338 0.0561648 0.225205 0.142039 0.00778052 0.0348952	0.130722 11.5215 15.6185 26.6857 6.34134 17.3417 5.29212 5.70919 1.51489 0.23484 2.36162 2.75228 0.0828287 0.997791 0.172587 0.912268 0.581172 0.0319883 0.139598	0.0329122 5.08542 14.808 29.1002 7.13432 19.0585 5.90857 6.48473 1.7326 0.288231 2.70317 3.92708 0.109318 1.17473 0.206428 0.823828 0.532315 0.0294844 0.131948	0.0139004 3.83441 14.6505 29.5695 7.28845 19.3922 6.0284 6.63548 1.77492 0.298609 2.76956 4.15544 0.114466 1.20912 0.213006 0.806638 0.522818 0.0289977 0.130461	0.000201125 0.209101 12.3947 30.9672 8.10475 22.5016 7.20718 7.94544 2.20598 0.278431 3.32659 1.47838 0.106858 1.42259 0.24726 0.730461 0.508486 0.0308305 0.116354

			All St	reams Report reams y Total Phase						
Client Name: XT	O ENERGY I	NC			Job: DELA		IENT			
	C New TB									
Flowsheet: Sa	les									
Maas Fraction			Combined Sales Gas	Tanks VRU Gas	zLP Vapors	1	2 %			
Mass Fraction			%	%	%					
Decanes Plus			0.000127489	0.000391132	0.000498556	0.000519436	0.000393862			
Mass Flow			Combined Sales Gas Ib/h	Tanks VRU Gas Ib/h	zLP Vapors Ib/h	1 Ib/h	2 Ib/h			
Carbon Dioxide			518.974	3.32057	7.1089	3.78833	0.042505			
Nitrogen			1703.32	0.931278	1.44074	0.509467	0.00020884			
Methane			74295.4	82.0802	222.616	140.536	0.217123			
Ethane			29843.1	111.268	648.228	536.96	12.8702			
Propane			24280	190.112	1273.87	1083.76	32.1552			
Isobutane			4297.59	45.1764	312.308	267.131	8.41567			
n-Butane			10530.8	123.544	834.294	710.75	23.3648			
Isopentane			2909.16	37.7016	258.65	220.949	7.48367			
n-Pentane			3114.27	40.6729	283.872	243.199	8.25025			
n-Hexane			781.945	10.7922	75.8455	65.0533	2.29061			
Cyclohexane			130.71	1.67303	12.6175	10.9444	0.289113			
i-C6			1241.03	16.8244	118.332	101.508	3.4542			
i-C7			1804.2	19.6075	171.91	152.302	1.53509			
Methylcyclohexane			49.0739	0.59008	4.78543	4.19535	0.110957			
Octane			512.735	7.10836	51.4242	44.3159	1.47716			
Nonane			88.5163	1.22952	9.03649	7.80696	0.256745			
Benzene			354.925	6.49909	36.0634	29.5644	0.758483			
Toluene			223.855	4.14033	23.3023	19.162	0.527992			
Ethylbenzene			12.2622	0.227888	1.29069	1.0628	0.0320133			
o-Xylene			54.9952	0.994509	5.77607	4.78156	0.120817			
H2S			2.08718	0.0207936	0.0802069	0.0594133	0.00123277			
Water			789.405	7.01278	18.524	11.5112	0.000186625			
2,2,4-Trimethylpentane			62.4735	0.880592	6.14185	5.26126	0.181718			
Decanes Plus			0.200923	0.00278646	0.0218245	0.019038	0.000408972			
			Stream	Properties						
Property		Units	Combined Sales Gas	Tanks VRU	zLP Vapors	1	2			

Stream Properties									
Property	Units	Combined Sales Gas	Tanks VRU Gas	zLP Vapors	1	2			
Temperature	°F	84.2603	95.8385	99.2365	100	110.616			
Pressure	psig	80	0.25	80	3	10.4493			
Molecular Weight	lb/lbmol	23.571	38.7661	44.5156	45.837	50.4891			
Mass Flow	lb/h	157601	712.41	4377.54	3665.13	103.836			
Std Vapor Volumetric Flow	MMSCFD	60.8956	0.167372	0.895618	0.728246	0.0187308			
Std Liquid Volumetric Flow	sgpm	851.202	2.9778	17.3659	14.3881	0.392023			
Gross Ideal Gas Heating Value	Btu/ft^3	1387.05	2186.53	2513.32	2588.42	2848.03			

							·g
			All St	eams Report reams _{y Total Phase}			
Client Name: XTO	ENERGY I	NC			Job: DELA	WARE DEVELOPM	1ENT
Location: CC N	lew TB						
Flowsheet: Sales	8						
			Conn	ections			
			3	4	5	6	7
From Block			CMPR-100	CMPR-101	FAXR-100	FAXR-101	HP Gas
To Block			FAXR-101	FAXR-100	MIX-102	MIX-102	MIX-100
			Stream Co	omposition			
<b></b>			3	4	5	6	7
Mole Fraction			%	%	%	%	%
Carbon Dioxide			0.107653 0.0227445	0.41057 0.180899	0.41057 0.180899	0.107653 0.0227445	0.176548 0.922182
Nitrogen Methane			10.9558	27.8413	27.8413	10.9558	0.922182
Ethane			22.3331	27.0413	20.1359	22.3331	14.738
Propane			30.7372	23.4604	23.4604	30.7372	7.91957
sobutane			5.7479	4.22952	4.22952	5.7479	1.04081
n-Butane			15.2933	11.5665	11.5665	15.2933	2.53236
sopentane			3.82991	2.8435	2.8435	3.82991	0.55764
n-Pentane			4.2156	3.06759	3.06759	4.2156	0.595487
n-Hexane			0.944088	0.681475	0.681475	0.944088	0.124376
Cyclohexane			0.162636	0.108174	0.108174	0.162636	0.0212996
-C6			1.47314	1.06238	1.06238	1.47314	0.197757
-C7			1.90089	1.0648	1.0648	1.90089	0.247271
Methylcyclohexane			0.0534373	0.0327027	0.0327027	0.0534373	0.0068469
Octane			0.485189	0.338624	0.338624	0.485189	0.0613017
Nonane			0.0761261	0.0521656	0.0521656	0.0761261 0.473345	0.00940667
Benzene Toluene			0.473345	0.452749 0.244521	0.452749 0.244521	0.260091	0.0619638
Ethylbenzene			0.0125198	0.0116805	0.0116805	0.0125198	0.00156869
o-Xylene			0.0563267	0.0509741	0.0509741	0.0563267	0.00703729
H2S			0.00218021	0.00332002	0.00332002	0.00218021	0.000893892
Water			0.799107	2.11822	2.11822	0.799107	0.64953
2,2,4-Trimethylpentane			0.0576025	0.0419491	0.0419491	0.0576025	0.00748567
Decanes Plus			9.77397E-05	6.2244E-05	6.2244E-05	9.77397E-05	1.11601E-05
			· ·		· · ·	· · ·	
Mass Fraction			3 %	4 %	5 %	6 %	7 %
Carbon Dioxide			0.103361	0.466103	0.466103	0.103361	0.334064
Nitrogen			0.0139004	0.130722	0.466103	0.0139004	1.11072
Vethane			3.83441	11.5215	11.5215	3.83441	48.343
Ethane			14.6505	15.6185	15.6185	14.6505	19.0538
Propane			29.5695	26.6857	26.6857	29.5695	15.0148
sobutane			7.28845	6.34134	6.34134	7.28845	2.60096
n-Butane			19.3922	17.3417	17.3417	19.3922	6.32832
sopentane			6.0284	5.29212	5.29212	6.0284	1.72983
n-Pentane			6.63548	5.70919	5.70919	6.63548	1.84724
n-Hexane			1.77492	1.51489	1.51489	1.77492	0.46083
Cyclohexane -C6			0.298609	0.23484	0.23484	0.298609	0.077072
-1.11			2.76956 4.15544	2.36162 2.75228	2.36162 2.75228	2.76956 4.15544	0.732717
			4.10044		0.0828287	0.114466	0.0289045
-C7			0 114466	0 0828287			
-C7 Methylcyclohexane			0.114466	0.0828287			0.301071
-C7 Methylcyclohexane Octane			1.20912	0.997791	0.997791	1.20912	
-C7 Methylcyclohexane Octane Nonane							0.0518719
-C7 Methylcyclohexane Octane Nonane Benzene			1.20912 0.213006	0.997791 0.172587	0.997791 0.172587	1.20912 0.213006	0.0518719 0.208102
-C7 Methylcyclohexane Octane Nonane Benzene Toluene			1.20912 0.213006 0.806638 0.522818 0.0289977	0.997791 0.172587 0.912268 0.581172 0.0319883	0.997791 0.172587 0.912268	1.20912 0.213006 0.806638 0.522818 0.0289977	0.0518719 0.208102 0.130889
-C7 Methylcyclohexane Octane Nonane Benzene Foluene Ethylbenzene D-Xylene			1.20912 0.213006 0.806638 0.522818 0.0289977 0.130461	0.997791 0.172587 0.912268 0.581172 0.0319883 0.139598	0.997791 0.172587 0.912268 0.581172 0.0319883 0.139598	1.20912 0.213006 0.806638 0.522818 0.0289977 0.130461	0.0518719 0.208102 0.130889 0.00716045 0.0321224
-C7 Methylcyclohexane Octane Nonane Benzene Toluene Ethylbenzene D-Xylene H2S			1.20912 0.213006 0.806638 0.522818 0.0289977 0.130461 0.00162104	0.997791 0.172587 0.912268 0.581172 0.0319883 0.139598 0.00291876	0.997791 0.172587 0.912268 0.581172 0.0319883 0.139598 0.00291876	1.20912 0.213006 0.806638 0.522818 0.0289977 0.130461 0.00162104	0.0518719 0.208102 0.130889 0.00716045 0.0321224 0.00130984
-C7 Methylcyclohexane Octane Nonane Benzene Toluene Ethylbenzene D-Xylene H2S Water			1.20912 0.213006 0.806638 0.522818 0.0289977 0.130461 0.00162104 0.314073	0.997791 0.172587 0.912268 0.581172 0.0319883 0.139598 0.00291876 0.984374	0.997791 0.172587 0.912268 0.581172 0.0319883 0.139598 0.00291876 0.984374	1.20912 0.213006 0.806638 0.522818 0.0289977 0.130461 0.00162104 0.314073	0.0518719 0.208102 0.130889 0.00716045 0.0321224 0.00130984 0.503109
-C7 Methylcyclohexane Octane Nonane Benzene Toluene Ethylbenzene o-Xylene H2S Water 2,2,4-Trimethylpentane Decanes Plus			1.20912 0.213006 0.806638 0.522818 0.0289977 0.130461 0.00162104	0.997791 0.172587 0.912268 0.581172 0.0319883 0.139598 0.00291876	0.997791 0.172587 0.912268 0.581172 0.0319883 0.139598 0.00291876	1.20912 0.213006 0.806638 0.522818 0.0289977 0.130461 0.00162104	0.301071 0.0518719 0.208102 0.130889 0.00716045 0.0321224 0.00130984 0.503109 0.0367644 0.00367644

			Process Stre All Str Tabulated by	reams			
Client Name:	XTO ENERGY I	NC			Job: DELA	WARE DEVELOPME	NT
Location:	CC New TB						
Flowsheet:	Sales						
			3	4	5	6	7
Mass Flow			lb/h	lb/h	lb/h	lb/h	lb/h
Carbon Dioxide			3.78833	3.32057	3.32057	3.78833	511.865
Nitrogen			0.509467	0.931278	0.931278	0.509467	1701.88
Methane			140.536	82.0802	82.0802	140.536	74072.8
Ethane			536.96	111.268	111.268	536.96	29194.8
Propane			1083.76	190.112	190.112	1083.76	23006.1
Isobutane			267.131	45.1764	45.1764	267.131	3985.28
n-Butane			710.75	123.544	123.544	710.75	9696.47
Isopentane			220.949	37.7016	37.7016	220.949	2650.51
n-Pentane			243.199	40.6729	40.6729	243.199	2830.4
n-Hexane			65.0533	10.7922	10.7922	65.0533	706.099
Cyclohexane			10.9444	1.67303	1.67303	10.9444	118.092
i-C6			101.508	16.8244	16.8244	101.508	1122.69
i-C7			152.302	19.6075	19.6075	152.302	1632.29
Methylcyclohexan	е		4.19535	0.59008	0.59008	4.19535	44.2885
Octane			44.3159	7.10836	7.10836	44.3159	461.311
Nonane			7.80696	1.22952	1.22952	7.80696	79.4799
Benzene			29.5644	6.49909	6.49909	29.5644	318.861
Toluene			19.162	4.14033	4.14033	19.162	200.552
Ethylbenzene			1.0628	0.227888	0.227888	1.0628	10.9715
o-Xylene			4.78156	0.994509	0.994509	4.78156	49.2191
H2S			0.0594133	0.0207936	0.0207936	0.0594133	2.00698
Water			11.5112	7.01278	7.01278	11.5112	770.881
2,2,4-Trimethylper	ntane		5.26126	0.880592	0.880592	5.26126	56.3316
Decanes Plus			0.019038	0.00278646	0.00278646	0.019038	0.179099

Stream Properties								
Property	Units	3	4	5	6	7		
Temperature	°F	275 *	305 *	100 *	100 *	85.8503		
Pressure	psig	85 *	85 *	80 *	80 *	80		
Molecular Weight	lb/lbmol	45.837	38.7661	38.7661	45.837	23.2583		
Mass Flow	lb/h	3665.13	712.41	712.41	3665.13	153223		
Std Vapor Volumetric Flow	MMSCFD	0.728246	0.167372	0.167372	0.728246	60		
Std Liquid Volumetric Flow	sgpm	14.3881	2.9778	2.9778	14.3881	833.837		
Gross Ideal Gas Heating Value	Btu/ft^3	2588.42	2186.53	2186.53	2588.42	1370.24		

		Pro	Process Streams Report All Streams Tabulated by Total Phase				
Client Name: X	TO ENERGY IN	IC			Job: DEL	WARE DEVELOPM	1ENT
	C New TB						
Flowsheet: Sa	ales						
			Conn	ections			
					10		
			8	9	10	11	
From Block			Vent	OT Vapor	PW	STK Vapor	
To Block		MIX	(-101	MIX-101	MIX-101	MIX-101	
		S	tream C	omposition			
			8	9	10	11	
Nole Fraction			%	%	%	%	
Carbon Dioxide			0444992	0.091822	0.959497	0.959497	
Nitrogen			0134288	0.0188339	0.457802	0.457802	
Vethane			.464773	6.93073	65.4089	65.4089	
Ethane			21.4402	21.7957	17.7409	17.7409	
Propane			35.9079	32.731	6.76893	6.76893	
sobutane			6.98352	6.19754	0.588841	0.588841	
n-Butane			19.2547	16.5762	1.93944	1.93944	
sopentane			4.90781	4.1487	0.289024	0.289024	
n-Pentane			5.3953	4.57465	0.14167	0.14167	
n-Hexane			1.24382	1.00585	0.0192141	0.0192141	
Cyclohexane		C	.160468	0.141937	0.0417009	0.0417009	
-Ĉ6			1.8794	1.56824	0.0593841	0.0593841	
-C7			.711011	2.05236	0.0450756	0.0450756	
/lethylcyclohexane			0526263	0.0461195	0.00677265	0.00677265	
Octane		C	.598863	0.511544	0.00281935	0.00281935	
Nonane			0922738	0.0787404	0.000367459	0.000367459	
Benzene			.453433	0.510645	0.378015	0.378015	
Toluene			.266248	0.27789	0.191031	0.191031	
Ethylbenzene			0139503	0.0132007	0.00860348	0.00860348	
p-Xylene			0525826	0.0592069	0.0396156	0.0396156	
H2S			0179951	0.00182156	0.00582271	0.00582271	
Water			)492959	0.604265	4.90552	4.90552	
2,2,4-Trimethylpentane			0741125	0.0629151	0.00106504	0.00106504	
2,2,4-minethylpentane Decanes Plus			188E-05	8.84893E-05	2.31467E-05	2.31467E-05	
		/ .40	1002-00	0.04093E-00	2.01407 E-00	2.31407E-03	
					40		
Mana Frantian			8	9	10	11	
Mass Fraction			%	%	%	%	
Carbon Dioxide			.039006	0.0846951	1.85931	1.85931	
Nitrogen			267E-05	0.0110579	0.564684	0.564684	
<i>M</i> ethane		0	.148506	2.33032	46.203	46.203	
Ethane			12.8405	13.7359	23.4886	23.4886	
Propane			31.5368	30.2496	13.1425	13.1425	
sobutane			8.08442	7.54965	1.50696	1.50696	
n-Butane			22.2901	20.1926	4.96341	4.96341	
sopentane			7.05261	6.27344	0.918174	0.918174	
n-Pentane			7.75313	6.91755	0.450058	0.450058	
n-Hexane			2.13487	1.8167	0.0729064	0.0729064	
Cyclohexane			.268982	0.250359	0.154529	0.154529	
-C6			3.22578	2.83244	0.225328	0.225328	
-C7			1.41901	4.31018	0.198875	0.198875	
Methylcyclohexane		(	.102917	0.0949074	0.02928	0.02928	
			1.36249	1.22468	0.0141803	0.0141803	
Jotane			0.235714	0.211659	0.00207513	0.00207513	
			0.705444	0.83599	1.30013	1.30013	
Vonane			.488607	0.536636	0.775009	0.775009	
Nonane Benzene			.+0000/			0.0402177	
Nonane Benzene Foluene		(	1204002	0 0000706			
Nonane Benzene Foluene Ethylbenzene		0.	0294983	0.0293726	0.0402177		
Nonane Benzene Toluene Ethylbenzene p-Xylene		0.	0294983 0.111188	0.13174	0.185187	0.185187	
Nonane Benzene Foluene Ethylbenzene D-Xylene H2S		0. C 0.0	0294983 0.111188 0122151	0.13174 0.00130112	0.185187 0.00873773	0.185187 0.00873773	
Nonane Benzene Foluene Ethylbenzene D-Xylene H2S Water		0. 0.0 0.00	0294983 0.111188 0122151 0176882	0.13174 0.00130112 0.228157	0.185187 0.00873773 3.89124	0.185187 0.00873773 3.89124	
Octane Nonane Benzene Toluene Ethylbenzene o-Xylene H2S Water 2,2,4-Trimethylpentane Decanes Plus		0.0 0.0 0.00 0.00	0294983 0.111188 0122151	0.13174 0.00130112	0.185187 0.00873773	0.185187 0.00873773	

Client Name: XTO ENERGY I	NC		Job: DELA		IENT
Location: CC New TB					
Flowsheet: Sales					
	8	9	10	11	
Mass Flow	lb/h	lb/h	lb/h	lb/h	
Carbon Dioxide	0.022879	0.332625	0.0584511	2.8641	
Nitrogen	4.39494E-0	0.043428	0.017752	0.869846	
Methane	0.087108	9.15192	1.45248	71.1716	
Ethane	7.5317	53.9452	0.738411	36.1821	
Propane	18.498	118.8	0.41316	20.2448	
Isobutane	4.74204	29.6499	0.0473743	2.32134	
n-Butane	13.074	5 79.3031	0.156034	7.64569	
Isopentane	4.1368	2 24.6379	0.0288646	1.41437	
n-Pentane	4.5477	2 27.1675	0.0141485	0.693275	
n-Hexane	1.2522	7.13477	0.00229196	0.112306	
Cyclohexane	0.15777	0.983242	0.00485793	0.238039	
i-C6	1.8921	3 11.1239	0.00708363	0.347098	
i-C7	0.832343	2 16.9275	0.00625203	0.306349	
Methylcyclohexane	0.0603673	0.372732	0.000920473	0.0451032	
Octane	0.799193		0.000445786	0.0218435	
Nonane	0.138262		6.52358E-05	0.00319656	
Benzene	0.41378		0.0408722	2.00274	
Toluene	0.286		0.0243639	1.19383	
Ethylbenzene	0.017302		0.00126432	0.0619518	
o-Xylene	0.065218		0.00582171	0.285264	
H2S	0.000716498	0.00510994	0.000274688	0.0134597	
Water	0.00010375		0.122329	5.99411	
2,2,4-Trimethylpentane	0.098904		0.0001684	0.0082516	
Decanes Plus	0.00021293	8 0.00177431	7.80492E-06	0.000382441	

Stream Properties								
Property	Units	8	9	10	11			
Temperature	°F	109.332	95	86.9396	86.9396			
Pressure	psig	10.7367	0.25	0.25	0.25			
Molecular Weight	lb/lbmol	50.2074	47.7128	22.7111	22.7111			
Mass Flow	lb/h	58.6566	392.733	3.1437	154.041			
Std Vapor Volumetric Flow	MMSCFD	0.0106403	0.0749665	0.00126069	0.0617737			
Std Liquid Volumetric Flow	sgpm	0.222257	1.51582	0.0169541	0.830752			
Gross Ideal Gas Heating Value	Btu/ft^3	2833.39	2690.88	1280.96	1280.96			
0					ł			

Simulation Initiated on 10/30/2019 12:30:22 PM	Expansion Section.pmx	Page 1 of 1
	Tankage Plant Schematic	
Client Name: XTO ENERGY INC	Job: DELAWARE DEVELOPMEN	IT
Location: CC New TB		
Flowsheet: Tankage		
	<pre>Market and water for for the second for the se</pre>	

Expansion Section.pmx

A11				reams Report treams by Total Phase			
Client Name:	XTO ENERGY I	NC			Job: DELA	WARE DEVELOP	IENT
Location:	CC New TB						
Flowsheet:	Tankage						
				ections			
			Oil Sales	Oil Tank Vapors	Oil W&B	PW to SWD	PW Vapors
From Block			OIL TANKS	OIL TANKS		PW TANKS	PW TANKS
To Block			SPLT-100	OT Vapor	XFS1		PW
				omposition	· · · · · · · · · · ·		
			Oil Sales	Oil Tank	Oil W&B	PW to SWD	PW Vapors
Mole Fraction			%	Vapors %	%	%	%
Carbon Dioxide			0.000872576	0.091822	0.0469615	0.000364911	0.959497
Nitrogen			2.39761E-05	0.091822	0.000362491	4.43828E-06	0.959497
Methane			0.0259368	6.93073	0.658086	0.00130262	65.4089
Ethane			0.454009	21.7957	20.812	0.000501961	17.7409
Propane			2.36551	32.731	35.4572	0.000134185	6.76893
Isobutane			1.11203	6.19754	7.04037	7.62466E-06	0.588841
n-Butane			4.26399	16.5762	19.5465	3.53962E-05	1.93944
Isopentane			2.71139	4.1487	5.04353	3.56001E-06	0.289024
n-Pentane			3.91945	4.57465	5.56015	7.67557E-07	0.14167
n-Hexane			2.8751	1.00585	1.29246	6.91861E-08	0.0192141
Cyclohexane			0.566585	0.141937 1.56824	0.167037	2.64996E-06	0.0417009
i-C6 i-C7			<u>3.17204</u> 11.591	2.05236	1.94901 0.744915	4.20515E-07 1.9668E-07	0.0593841 0.0450756
Methylcyclohexan	۵		0.381615	0.0461195	0.0549483	1.83812E-07	0.00677265
Octane	•		13.3478	0.511544	0.628785	3.18517E-09	0.00281935
Nonane			6.26009	0.0787404	0.0973366	3.66031E-10	0.000367459
Benzene			1.63059	0.510645	0.472147	0.0008731	0.378015
Toluene			3.04622	0.27789	0.278635	0.000334551	0.191031
Ethylbenzene			0.434843	0.0132007	0.0146621	1.2932E-05	0.00860348
o-Xylene			2.422	0.0592069	0.0553345	8.9233E-05	0.0396156
H2S			6.43241E-05	0.00182156	0.00175881	6.76044E-06	0.00582271
Water 2,2,4-Trimethylper	ntana		0.0103885 0.504207	0.604265 0.0629151	0.000503706 0.0773519	99.9963 3.64293E-09	4.90552 0.00106504
Decanes Plus	liane		38.9042	8.84893E-05	8.16328E-05	3.06397E-09	2.31467E-05
Decaries r lus			30.3042	0.04093L-03	0.103202-03	3.003972-09	2.31407 2-03
			Oil Sales	Oil Tank Vapors	Oil W&B	PW to SWD	PW Vapors
Mass Fraction			%	%	%	%	%
Carbon Dioxide			0.000251801	0.0846951	0.0409346	0.000891389	1.85931
Nitrogen			4.40406E-06	0.0110579	0.000201125	6.90103E-06	0.564684
Methane			0.00272832	2.33032	0.209101	0.0011599	46.203
Ethane			0.0895142	13.7359	12.3947	0.000837768	23.4886
Propane			0.683957	30.2496	30.9672 8 10475	0.000328423	13.1425
Isobutane n-Butane			0.423805	7.54965 20.1926	8.10475 22.5016	2.45978E-05 0.000114191	1.50696 4.96341
Isopentane			1.02505	6.27344	7.20718	1.42565E-05	0.918174
n-Pentane			1.85422	6.91755	7.94544	3.07378E-06	0.450058
n-Hexane			1.62459	1.8167	2.20598	3.3093E-07	0.0729064
Cyclohexane			0.312663	0.250359	0.278431	1.23787E-05	0.154529
i-C6			1.79238	2.83244	3.32659	2.0114E-06	0.225328
i-C7			7.61562	4.31018	1.47838	1.09388E-06	0.198875
Methylcyclohexan	e		0.245688	0.0949074	0.106858	1.00175E-06	0.02928
Octane			9.99756 5.26458	1.22468 0.211659	1.42259 0.24726	2.01949E-08 2.60571E-09	0.0141803
Nonane Benzene			0.83516	0.211659	0.24726	0.00378542	0.00207513 1.30013
Toluene			1.84039	0.536636	0.730461	0.00378542	0.775009
Ethylbenzene			0.302707	0.0293726	0.0308305	7.62044E-05	0.0402177
o-Xylene			1.68603	0.13174	0.116354	0.000525824	0.185187
H2S			1.43745E-05	0.00130112	0.00118722	1.27885E-05	0.00873773
Water			0.00122717	0.228157	0.00017973	99.9905	3.89124
2,2,4-Trimethylper	ntane		0.377652	0.150624	0.175004	2.30972E-08	0.00535675
Decanes Plus			62.1415	0.000451787	0.000393862	4.14281E-08	0.000248272

* User Specified Values ? Extrapolated or Approximate Values

Licensed to Esso Exploration, Inc.

r

Location: CC	DENERGY INC New TB kage	Oil Sales Ib/h 0.736663 0.0128844	Oil Tank Vapors Ib/h 0.332625	Job: DELA Oil W&B Ib/h	PW to SWD	PW Vapors
Flowsheet: Tan Mass Flow Carbon Dioxide Nitrogen Methane		<b>Ib/h</b> 0.736663	Vapors Ib/h			-
Mass Flow Carbon Dioxide Nitrogen Methane	kage	<b>Ib/h</b> 0.736663	Vapors Ib/h			-
Carbon Dioxide Nitrogen Methane		<b>Ib/h</b> 0.736663	Vapors Ib/h			-
Carbon Dioxide Nitrogen Methane		<b>Ib/h</b> 0.736663	Vapors Ib/h			-
Carbon Dioxide Nitrogen Methane		<b>Ib/h</b> 0.736663	Vapors Ib/h			-
Carbon Dioxide Nitrogen Methane		0.736663		lb/h	lh/h	
Nitrogen Methane			0 332625			lb/h
Methane		0.0128844		0.042505	7.80283	0.0584511
			0.043428	0.00020884	0.0604086	0.017752
Ethane		7.98189	9.15192	0.217123	10.1533	1.45248
		261.881	53.9452	12.8702	7.33345	0.738411
Propane		2000.97	118.8	32.1552	2.87487	0.41316
Isobutane		1239.87	29.6499	8.41567	0.215318	0.0473743
n-Butane		4754.2	79.3031	23.3648	0.999578	0.156034
Isopentane		3752.66	24.6379	7.48367	0.124795	0.0288646
n-Pentane		5424.67	27.1675	8.25025	0.0269066	0.0141485
n-Hexane		4752.87	7.13477	2.29061	0.00289681	0.00229196
Cyclohexane		914.718	0.983242	0.289113	0.108358	0.00485793
i-C6		5243.73	11.1239	3.4542	0.0176069	0.00708363
i-C7		22280.1	16.9275	1.53509	0.00957534	0.00625203
Methylcyclohexane		718.778	0.372732	0.110957	0.00876886	0.000920473
Octane		29248.6	4.80972	1.47716	0.000176777	0.000445786
Nonane		15401.9	0.831256	0.256745	2.28092E-05	6.52358E-05
Benzene		2443.32	3.28321	0.758483	33.1359	0.0408722
Toluene		5384.2	2.10754	0.527992	14.9769	0.0243639
Ethylbenzene		885.591	0.115356	0.0320133	0.66706	0.00126432
o-Xylene		4932.6	0.517388	0.120817	4.60283	0.00582171
H2S		0.0420536	0.00510994	0.00123277	0.111945	0.000274688
Water		3.59017	0.896047	0.000186625	875273	0.122329
2,2,4-Trimethylpentane		1104.85	0.59155	0.181718	0.000202183	0.0001684
Decanes Plus		181800	0.00177431	0.000408972	0.000362644	7.80492E-06

Property	Units	Oil Sales	Oil Tank Vapors	Oil W&B	PW to SWD	PW Vapors			
Temperature	°F	95	95 *	110.616	86.9396	86.9396			
Pressure	psig	0.25	0.25 *	10.4493	0.25	0.25 *			
Molecular Weight	lb/lbmol	152.508	47.7128	50.4891	18.0163	22.7111			
Mass Flow	lb/h	292557	392.733	103.836	875356	3.1437			
Std Vapor Volumetric Flow	MMSCFD	17.4712	0.0749665	0.0187308	442.51	0.00126069			
Std Liquid Volumetric Flow	sgpm	743.75	1.51582	0.392023	1750	0.0169541			
Gross Ideal Gas Heating Value	Btu/ft^3	8035.75	2690.88	2848.03	50.3883	1280.96			

			All S	reams Report treams by Total Phase			
Client Name:	XTO ENERGY	NC			Job: DELA	WARE DEVELOPM	IENT
Location:	CC New TB						
Flowsheet:	Tankage						
			Conn	ections			
			PW W&B	Skim Tank	Skim to PW	Skim W&B	VRT Gas
			FWWQD	Vapors	Skill to PVV	Skill Wab	VIT Gas
From Block To Block				SKIM TANKS STK Vapor	SKIM TANKS PW TANKS		VRT VRT Gas
							Vapor
			Stream C	omposition			
			PW W&B	Skim Tank	Skim to PW	Skim W&B	VRT Gas
				Vapors			
Mole Fraction			%	%	%	%	%
Carbon Dioxide Nitrogen			0.288052	0.959497 0.457802	0.000367644 5.74251E-06	0.535811 0.00274808	0.107653
Methane			0.934125	65.4089	0.00148896	1.09637	10.9558
Ethane			0.228596	17.7409	0.000552503	0.414019	22.3331
Propane			0.0161301	6.76893	0.000153469	0.0254097	30.7372
Isobutane			0.000255743	0.588841	9.30221E-06	0.000493648	5.7479
n-Butane			0.00124276	1.93944	4.09214E-05	0.00177891	15.2933
Isopentane n-Pentane			4.91802E-05 1.16039E-05	0.289024 0.14167	4.38341E-06 1.17116E-06	6.43019E-05 1.18757E-05	3.82991 4.2156
n-Hexane			3.65837E-07	0.0192141	1.23926E-07	3.15427E-07	0.944088
Cyclohexane			1.54103E-06	0.0417009	2.76876E-06	7.48498E-06	0.162636
i-C6			3.08953E-06	0.0593841	5.89696E-07	2.55856E-06	1.47314
i-C7			9.94639E-08	0.0450756	3.25097E-07	1.02508E-07	1.90089
Methylcyclohexan	e		9.33932E-08	0.00677265	2.03107E-07	2.39772E-07	0.0534373
Octane			1.93893E-09	0.00281935	1.12173E-08	1.45406E-09	0.485189
Nonane Benzene			5.66329E-11 0.000919264	0.000367459 0.378015	1.4129E-09 0.000874175	4.34819E-11 0.00305445	0.0761261 0.473345
Toluene			0.000193634	0.191031	0.000335094	0.000359271	0.260091
Ethylbenzene			2.36327E-06	0.00860348	1.29565E-05	4.95741E-06	0.0125198
o-Xylene			1.97575E-05	0.0396156	8.93456E-05	2.34296E-05	0.0563267
H2S			0.00245505	0.00582271	6.77701E-06	0.0032967	0.00218021
Water			98.518	4.90552	99.9961	97.9165	0.799107
2,2,4-Trimethylper Decanes Plus	ntane		0 4.52421E-16	0.00106504 2.31467E-05	6.67715E-09 3.1299E-09	4.16015E-09 4.19811E-14	0.0576025 9.77397E-05
Decalles Plus			4.524210-10	2.31407 E-03	3.1299E-09	4.19011E-14	9.77397E-05
			PW W&B	Skim Tank	Skim to PW	Skim W&B	VRT Gas
			PW W&B	Skim Tank Vapors	Skim to PW	Skim W&B	VRT Gas
			%	Vapors %	%	%	%
Carbon Dioxide			<b>%</b> 0.700146	Vapors % 1.85931	% 0.000898063	% 1.29612	% 0.103361
Carbon Dioxide Nitrogen			% 0.700146 0.0154279	Vapors % 1.85931 0.564684	% 0.000898063 8.92897E-06	% 1.29612 0.00423138	% 0.103361 0.0139004
Carbon Dioxide Nitrogen Methane			% 0.700146 0.0154279 0.827652	Vapors % 1.85931 0.564684 46.203	% 0.000898063 8.92897E-06 0.00132583	% 1.29612 0.00423138 0.966752	% 0.103361 0.0139004 3.83441
Carbon Dioxide Nitrogen Methane Ethane			% 0.700146 0.0154279 0.827652 0.37963	Vapors % 1.85931 0.564684 46.203 23.4886	% 0.000898063 8.92897E-06 0.00132583 0.00092212	% 1.29612 0.00423138 0.966752 0.68427	% 0.103361 0.0139004 3.83441 14.6505
Carbon Dioxide Nitrogen Methane Ethane Propane			% 0.700146 0.0154279 0.827652	Vapors % 1.85931 0.564684 46.203	% 0.000898063 8.92897E-06 0.00132583	% 1.29612 0.00423138 0.966752	% 0.103361 0.0139004 3.83441
Carbon Dioxide Nitrogen Methane Ethane Propane Isobutane			% 0.700146 0.0154279 0.827652 0.37963 0.0392829 0.000820952 0.000398935	Vapors % 1.85931 0.564684 46.203 23.4886 13.1425 1.50696 4.96341	% 0.000898063 8.92897E-06 0.00132583 0.00092212 0.000375621 3.00097E-05 0.000132016	% 1.29612 0.00423138 0.966752 0.68427 0.0615861 0.00157706 0.00568308	% 0.103361 0.0139004 3.83441 14.6505 29.5695 7.28845 19.3922
Carbon Dioxide Nitrogen Methane Ethane Propane Isobutane n-Butane Isopentane			% 0.700146 0.0154279 0.827652 0.37963 0.0392829 0.000820952 0.000820952 0.000398935 0.000195971	Vapors % 1.85931 0.564684 46.203 23.4886 13.1425 1.50696 4.96341 0.918174	%           0.000898063           8.92897E-06           0.00132583           0.00092212           0.000375621           3.00097E-05           0.000132016           1.75539E-05	% 1.29612 0.00423138 0.966752 0.68427 0.0615861 0.00157706 0.00568308 0.000255	% 0.103361 0.0139004 3.83441 14.6505 29.5695 7.28845 19.3922 6.0284
Carbon Dioxide Nitrogen Methane Ethane Propane Isobutane n-Butane Isopentane n-Pentane			% 0.700146 0.0154279 0.827652 0.37963 0.0392829 0.000820952 0.000820952 0.000398935 0.000195971 4.62385E-05	Vapors % 1.85931 0.564684 46.203 23.4886 13.1425 1.50696 4.96341 0.918174 0.450058	%           0.000898063           8.92897E-06           0.00132583           0.00092212           0.000375621           3.00097E-05           0.000132016           1.75539E-05           4.69008E-06	% 1.29612 0.00423138 0.966752 0.68427 0.0615861 0.00157706 0.00568308 0.000255 4.70951E-05	% 0.103361 0.0139004 3.83441 14.6505 29.5695 7.28845 19.3922 6.0284 6.63548
Carbon Dioxide Nitrogen Methane Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Hexane			% 0.700146 0.0154279 0.827652 0.37963 0.0392829 0.000820952 0.00398935 0.000195971 4.62385E-05 1.74117E-06	Vapors % 1.85931 0.564684 46.203 23.4886 13.1425 1.50696 4.96341 0.918174 0.450058 0.0729064	%           0.000898063           8.92897E-06           0.00132583           0.00092212           0.000375621           3.00097E-05           0.000132016           1.75539E-05           4.69008E-06           5.92759E-07	% 1.29612 0.00423138 0.966752 0.68427 0.0615861 0.00157706 0.00568308 0.000255 4.70951E-05 1.49406E-06	% 0.103361 0.0139004 3.83441 14.6505 29.5695 7.28845 19.3922 6.0284 6.63548 1.77492
Carbon Dioxide Nitrogen Methane Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Hexane Cyclohexane			% 0.700146 0.0154279 0.827652 0.37963 0.0392829 0.000820952 0.00398935 0.000195971 4.62385E-05 1.74117E-06 7.16285E-06	Vapors % 1.85931 0.564684 46.203 23.4886 13.1425 1.50696 4.96341 0.918174 0.450058 0.0729064 0.154529	%           0.000898063           8.92897E-06           0.00132583           0.00092212           0.000375621           3.00097E-05           0.000132016           1.75539E-05           4.69008E-06           5.92759E-07           1.29337E-05	% 1.29612 0.00423138 0.966752 0.68427 0.0615861 0.00157706 0.00568308 0.000255 4.70951E-05 1.49406E-06 3.46243E-05	% 0.103361 0.0139004 3.83441 14.6505 29.5695 7.28845 19.3922 6.0284 6.63548 1.77492 0.298609
Carbon Dioxide Nitrogen Methane Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Hexane Cyclohexane			% 0.700146 0.0154279 0.827652 0.37963 0.0392829 0.000820952 0.000398935 0.000195971 4.62385E-05 1.74117E-06 7.16285E-06 1.47044E-05	Vapors % 1.85931 0.564684 46.203 23.4886 13.1425 1.50696 4.96341 0.918174 0.450058 0.0729064 0.154529 0.225328	%           0.000898063           8.92897E-06           0.00132583           0.00092212           0.000375621           3.00097E-05           0.000132016           1.75539E-05           4.69008E-06           5.92759E-07           1.29337E-05           2.82062E-06	% 1.29612 0.00423138 0.966752 0.68427 0.0615861 0.00157706 0.00568308 0.000255 4.70951E-05 1.49406E-06 3.46243E-05 1.2119E-05	% 0.103361 0.0139004 3.83441 14.6505 29.5695 7.28845 19.3922 6.0284 6.63548 1.77492 0.298609 2.76956
Carbon Dioxide Nitrogen Methane Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Hexane Cyclohexane i-C6 i-C7	e		% 0.700146 0.0154279 0.827652 0.37963 0.0392829 0.000820952 0.00398935 0.000195971 4.62385E-05 1.74117E-06 7.16285E-06	Vapors % 1.85931 0.564684 46.203 23.4886 13.1425 1.50696 4.96341 0.918174 0.450058 0.0729064 0.154529	%           0.000898063           8.92897E-06           0.00132583           0.00092212           0.000375621           3.00097E-05           0.000132016           1.75539E-05           4.69008E-06           5.92759E-07           1.29337E-05	% 1.29612 0.00423138 0.966752 0.68427 0.0615861 0.00157706 0.00568308 0.000255 4.70951E-05 1.49406E-06 3.46243E-05	% 0.103361 0.0139004 3.83441 14.6505 29.5695 7.28845 19.3922 6.0284 6.63548 1.77492 0.298609
Carbon Dioxide Nitrogen Methane Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Hexane Cyclohexane i-C6 i-C7 Methylcyclohexane Octane	e		% 0.700146 0.0154279 0.827652 0.37963 0.0392829 0.000820952 0.00398935 0.000195971 4.62385E-05 1.74117E-06 7.16285E-06 1.47044E-05 5.50444E-07 5.0645E-07 1.22323E-08	Vapors % 1.85931 0.564684 46.203 23.4886 13.1425 1.50696 4.96341 0.918174 0.450058 0.0729064 0.154529 0.225328 0.198875 0.02928 0.0141803	%           0.000898063           8.92897E-06           0.00132583           0.00092212           0.000375621           3.00097E-05           0.000132016           1.75539E-05           4.69008E-06           5.92759E-07           1.29337E-05           2.82062E-06           1.8081E-06           1.1069E-06           7.11208E-08	% 1.29612 0.00423138 0.966752 0.68427 0.0615861 0.00157706 0.00568308 0.000255 4.70951E-05 1.49406E-06 3.46243E-05 1.2119E-05 5.64576E-07 1.294E-06 9.12942E-09	% 0.103361 0.0139004 3.83441 14.6505 29.5695 7.28845 19.3922 6.0284 6.63548 1.77492 0.298609 2.76956 4.15544 0.114466 1.20912
Carbon Dioxide Nitrogen Methane Ethane Propane Isobutane n-Butane Isopentane n-Pentane Cyclohexane i-C6 i-C7 Methylcyclohexane Octane Nonane	e		% 0.700146 0.0154279 0.827652 0.37963 0.0392829 0.000820952 0.00398935 0.000195971 4.62385E-05 1.74117E-06 7.16285E-06 1.47044E-05 5.50444E-07 5.50444E-07 1.22323E-08 4.01158E-10	Vapors % 1.85931 0.564684 46.203 23.4886 13.1425 1.50696 4.96341 0.918174 0.450058 0.0729064 0.154529 0.225328 0.198875 0.02928 0.0141803 0.00207513	%           0.000898063           8.92897E-06           0.00132583           0.00092212           0.000375621           3.00097E-05           0.000132016           1.75539E-05           4.69008E-06           5.92759E-07           1.29337E-05           2.82062E-06           1.8081E-06           1.1069E-06           7.11208E-08           1.00582E-08	% 1.29612 0.00423138 0.966752 0.68427 0.0615861 0.00157706 0.00568308 0.000255 4.70951E-05 1.49406E-06 3.46243E-05 1.2119E-05 5.64576E-07 1.294E-06 9.12942E-09 3.06528E-10	% 0.103361 0.0139004 3.83441 14.6505 29.5695 7.28845 19.3922 6.0284 6.63548 1.77492 0.298609 2.76956 4.15544 0.114466 1.20912 0.213006
Carbon Dioxide Nitrogen Methane Ethane Propane Isobutane n-Butane n-Pentane n-Pentane Cyclohexane -C6 -C7 Methylcyclohexane Octane Nonane Benzene	e		%           0.700146           0.0154279           0.827652           0.37963           0.0392829           0.000820952           0.00398935           0.000195971           4.62385E-05           1.74117E-06           7.16285E-06           1.47044E-05           5.50444E-07           5.0645E-07           1.22323E-08           4.01158E-10           0.00396578	Vapors % 1.85931 0.564684 46.203 23.4886 13.1425 1.50696 4.96341 0.918174 0.450058 0.0729064 0.154529 0.225328 0.198875 0.02928 0.0141803 0.00207513 1.30013	%           0.000898063           8.92897E-06           0.00132583           0.00092212           0.000375621           3.00097E-05           0.000132016           1.75539E-05           4.69008E-06           5.92759E-07           1.29337E-05           2.82062E-06           1.8081E-06           1.1069E-06           7.11208E-08           0.00379008	%           1.29612           0.00423138           0.966752           0.68427           0.00157706           0.00255           4.70951E-05           1.49406E-06           3.46243E-05           1.2119E-05           5.64576E-07           1.2942E-09           3.06528E-10           0.0131141	% 0.103361 0.0139004 3.83441 14.6505 29.5695 7.28845 19.3922 6.0284 6.63548 1.77492 0.298609 2.76956 4.15544 0.114466 1.20912 0.213006 0.806638
Carbon Dioxide Nitrogen Methane Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Pentane Cyclohexane i-C6 i-C7 Methylcyclohexane Octane Nonane Benzene Toluene	e		%           0.700146           0.0154279           0.827652           0.37963           0.0392829           0.000820952           0.00398935           0.000195971           4.62385E-05           1.74117E-06           7.16285E-06           1.47044E-05           5.50444E-07           5.0645E-07           1.22323E-08           4.01158E-10           0.00396578           0.00098536	Vapors % 1.85931 0.564684 46.203 23.4886 13.1425 1.50696 4.96341 0.918174 0.450058 0.0729064 0.154529 0.225328 0.198875 0.02928 0.0141803 0.00207513 1.30013 0.775009	%           0.000898063           8.92897E-06           0.00132583           0.00092212           0.000375621           3.00097E-05           0.000132016           1.75539E-05           4.69008E-06           5.92759E-07           1.29337E-05           2.82062E-06           1.8081E-06           1.1069E-06           7.11208E-08           0.00379008           0.00171372	%           1.29612           0.00423138           0.966752           0.68427           0.00157706           0.00157706           0.000255           4.70951E-05           1.49406E-06           3.46243E-05           1.2119E-05           5.64576E-07           1.2942E-09           3.06528E-10           0.0131141           0.00181949	%           0.103361           0.0139004           3.83441           14.6505           29.5695           7.28845           19.3922           6.0284           6.63548           1.77492           0.298609           2.76956           4.15544           0.114466           1.20912           0.213006           0.806638           0.522818
Mass Fraction Carbon Dioxide Nitrogen Methane Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Hexane Cyclohexane i-C6 i-C7 Methylcyclohexane Octane Nonane Benzene Toluene Ethylbenzene o-Xylene	e		%           0.700146           0.0154279           0.827652           0.37963           0.0392829           0.000820952           0.00398935           0.000195971           4.62385E-05           1.74117E-06           7.16285E-06           1.47044E-05           5.50444E-07           5.0645E-07           1.22323E-08           4.01158E-10           0.00396578           0.00098536           1.38569E-05	Vapors % 1.85931 0.564684 46.203 23.4886 13.1425 1.50696 4.96341 0.918174 0.450058 0.0729064 0.154529 0.225328 0.198875 0.02928 0.0141803 0.00207513 1.30013 0.775009 0.0402177	%           0.000898063           8.92897E-06           0.00132583           0.00092212           0.000375621           3.00097E-05           0.000132016           1.75539E-05           4.69008E-06           5.92759E-07           1.29337E-05           2.82062E-06           1.1069E-06           7.11208E-08           1.00582E-08           0.00379008           0.00171372           7.63486E-05	%           1.29612           0.00423138           0.966752           0.68427           0.00157706           0.00255           4.70951E-05           1.49406E-06           3.46243E-05           1.2119E-05           5.64576E-07           1.294E-06           9.12942E-09           3.06528E-10           0.0131141           0.00181949           2.89283E-05	%           0.103361           0.0139004           3.83441           14.6505           29.5695           7.28845           19.3922           6.0284           6.63548           1.77492           0.298609           2.76956           4.15544           0.114466           1.20912           0.213006           0.806638           0.522818           0.0289977
Carbon Dioxide Nitrogen Methane Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Hexane Cyclohexane i-C6 i-C7 Methylcyclohexane Octane Benzene Toluene Ethylbenzene o-Xylene	e		% 0.700146 0.0154279 0.827652 0.37963 0.0392829 0.000820952 0.00398935 0.000195971 4.62385E-05 1.74117E-06 7.16285E-06 1.47044E-05 5.50444E-07 5.0645E-07 1.22323E-08 4.01158E-10 0.00396578 0.00098536 1.38569E-05 0.000115847	Vapors % 1.85931 0.564684 46.203 23.4886 13.1425 1.50696 4.96341 0.918174 0.450058 0.0729064 0.154529 0.225328 0.0192875 0.02928 0.0141803 0.00207513 1.30013 0.775009 0.0402177 0.185187	%           0.000898063           8.92897E-06           0.00132583           0.00092212           0.000375621           3.00097E-05           0.000132016           1.75539E-05           4.69008E-06           5.92759E-07           1.29337E-05           2.82062E-06           1.8081E-06           1.1069E-06           7.11208E-08           0.00379008           0.00171372           7.63486E-05           0.000526487	%           1.29612           0.00423138           0.966752           0.68427           0.00157706           0.00568308           0.000255           4.70951E-05           1.49406E-06           3.46243E-05           1.2119E-05           5.64576E-07           1.2942E-09           3.06528E-10           0.0131141           0.00181949           2.89283E-05           0.000136721	% 0.103361 0.0139004 3.83441 14.6505 29.5695 7.28845 19.3922 6.0284 6.63548 1.77492 0.298609 2.76956 4.15544 0.114466 1.20912 0.213006 0.80638 0.522818 0.0289977 0.130461
Carbon Dioxide Nitrogen Methane Ethane Propane Isobutane n-Butane Isopentane n-Pentane Cyclohexane -C6 -C7 Methylcyclohexane Octane Benzene Toluene Ethylbenzene	e		%           0.700146           0.0154279           0.827652           0.37963           0.0392829           0.000820952           0.00398935           0.000195971           4.62385E-05           1.74117E-06           7.16285E-06           1.47044E-05           5.50444E-07           5.0645E-07           1.22323E-08           4.01158E-10           0.00396578           0.00098536           1.38569E-05	Vapors % 1.85931 0.564684 46.203 23.4886 13.1425 1.50696 4.96341 0.918174 0.450058 0.0729064 0.154529 0.225328 0.198875 0.02928 0.0141803 0.00207513 1.30013 0.775009 0.0402177	%           0.000898063           8.92897E-06           0.00132583           0.00092212           0.000375621           3.00097E-05           0.000132016           1.75539E-05           4.69008E-06           5.92759E-07           1.29337E-05           2.82062E-06           1.1069E-06           7.11208E-08           1.00582E-08           0.00379008           0.00171372           7.63486E-05	%           1.29612           0.00423138           0.966752           0.68427           0.00157706           0.00255           4.70951E-05           1.49406E-06           3.46243E-05           1.2119E-05           5.64576E-07           1.294E-06           9.12942E-09           3.06528E-10           0.0131141           0.00181949           2.89283E-05	%           0.103361           0.0139004           3.83441           14.6505           29.5695           7.28845           19.3922           6.0284           6.63548           1.77492           0.298609           2.76956           4.15544           0.114466           1.20912           0.213006           0.806638           0.522818           0.0289977

* User Specified Values ? Extrapolated or Approximate Values

ProMax 5.0.19050.0 Copyright © 2002-2019 BRE Group, Ltd.

Licensed to Esso Exploration, Inc.

			Cess Stream All Stream Tabulated by Tota	ms			
Client Name:	XTO ENERGY I	NC			Job: DELA		MENT
Location:	CC New TB				-	-	
Flowsheet:	Tankage						
					•		
		PW		im Tank ′apors	Skim to PW	Skim W&B	VRT Gas
Mass Fraction		9	6	%	%	%	%
Decanes Plus		6.086	685E-15 0.0	00248272	4.23196E-08	5.62106E-13	0.000519436
			V	im Tank /apors	Skim to PW	Skim W&B	VRT Gas
Mass Flow		lb		lb/h	lb/h	lb/h	lb/h
Carbon Dioxide			479158	2.8641	7.86128	0.0681258	3.78833
Nitrogen			105584	0.869846	0.0781605	0.000222407	0.509467
Methane			566419	71.1716	11.6058	0.0508137	140.536
Ethane			259807	36.1821	8.07186	0.0359661	536.96
Propane			026884	20.2448	3.28803	0.00323704	1083.76
Isobutane			34E-05	2.32134	0.262693	8.28921E-05	267.131
n-Butane			273019	7.64569	1.15561	0.00029871	710.75
Isopentane n-Pentane			16E-05 42E-06	1.41437	0.15366	1.34031E-05 2.47538E-06	220.949 243.199
			42E-06 016E-07	0.093275	0.00518877	7.85298E-08	65.0533
n-Hexane Cyclohexane			203E-07	0.112306	0.00518877	1.8199E-06	10.9444
i-C6			32E-06	0.238039	0.0246905	6.36988E-07	101.508
i-C7			07E-08	0.306349	0.0158274	2.96748E-08	152.302
Methylcyclohexane	<u> </u>			0.0451032	0.00968933	6.80144E-08	4.19535
Octane	•			0.0218435	0.000622563	4.79854E-10	44.3159
Nonane				.00319656	8.80451E-05	1.61115E-11	7.80696
Benzene			271406	2.00274	33.1768	0.000689292	29.5644
Toluene			49E-05	1.19383	15.0012	9.56349E-05	19.162
Ethylbenzene				0.0619518	0.668324	1.52051E-06	1.0628
o-Xylene			22E-06	0.285264	4.60866	7.18621E-06	4.78156
H2Ś		0.000	316252 (	0.0134597	0.11222	0.000324597	0.0594133
Water			6.70839	5.99411	875273	5.09625	11.5112
	tane		0 (	0.0082516	0.000370583	1.37289E-09	5.26126
2,2,4-Trimethylpen			65E-16 0.0	00382441	0.000370449	2.9545E-14	0.019038

Stream Properties										
Property	Units	PW W&B	Skim Tank Vapors	Skim to PW	Skim W&B	VRT Gas				
Temperature	°F	107.006	86.9396	86.9396	104.818	100 *				
Pressure	psig	-11.5427	0.25	0.25	-11.6098	3				
Molecular Weight	lb/lbmol	18.1062	22.7111	18.0163	18.1934	45.837				
Mass Flow	lb/h	6.84368	154.041	875359	5.25613	3665.13				
Std Vapor Volumetric Flow	MMSCFD	0.00344244	0.0617737	442.511	0.00263123	0.728246				
Std Liquid Volumetric Flow	sgpm	0.0140671	0.830752	1750.02	0.0109123	14.3881				
Gross Ideal Gas Heating Value	Btu/ft^3	63.5618	1280.96	50.3918	68.5318	2588.42				

			All St	reams Report reams y Total Phase			
Client Name:	XTO ENERGY I	NC			Job: DELA	WARE DEVELOPM	1ENT
Location:	CC New TB						
Flowsheet:	Tankage						
				ections			1
			Z-Oil Load	1	2	3	4
From Block To Block			 TL Vent	Treater Oil VRT	Dead Oil MIX-100	VRT MIX-100	SPLT-100
TO BIOCK			IL Vent	VKI	IVIIX-100	IVIIX-100	
			Streem C.				
			Z-Oil Load	omposition 1	2	3	4
Mole Fraction			2-OII LOau %	%	%	3 %	4 %
Carbon Dioxide			0.0444992	0.00640796	0.00150602	0.00120271	0.000872576
Nitrogen			0.000134288	0.00114543	0.000394928	3.49746E-05	2.39761E-05
Methane			0.464773	0.582281	0.0825859	0.0489569	0.0259368
Ethane			21.4402	1.60823	0.555552	0.542718	0.454009
Propane			35.9079	3.92018	2.30169	2.54146	2.36551
sobutane			6.98352	1.38717	1.01135	1.16298	1.11203
n-Butane Isopentane			19.2547 4.90781	4.94554 2.81931	3.91048 2.50879	4.41354 2.76736	4.26399 2.71139
isopentane n-Pentane			<u>4.90781</u> 5.3953	3.98473	2.50879	3.97286	3.91945
n-Hexane			1.24382	2.81407	2.6866	2.91021	2.8751
Cyclohexane			0.160468	0.673334	0	0.69959	0.566585
-C6			1.8794	3.15238	2.85715	3.23872	3.17204
-C7			0.711011	11.0093	11.8546	11.4776	11.591
Methylcyclohexane			0.0526263	0.450522	0	0.470937	0.381615
Octane			0.598863	12.5679	13.7281	13.1891	13.3478
Nonane			0.0922738	5.89279	6.40898	6.19184	6.26009
Benzene			0.453433	1.57566	1.59847	1.63233	1.63059
			0.266248	2.88563	3.09209	3.02062	3.04622
Ethylbenzene p-Xylene			0.0139503 0.0525826	0.408951 2.27902	0.448578	0.429333 2.39329	0.434843
H2S			0.00179951	0.000191237	2.4099	8.89793E-05	6.43241E-05
Water			0.000492959	0.0543035	0	0.0160115	0.0103885
2,2,4-Trimethylpent	tane		0.0741125	0.47032	0.547493	0.491539	0.504207
Decanes Plus			7.48188E-05	36.5106	40.2054	38.3877	38.9042
			Z-Oil Load	1	2	3	4
Mass Fraction			% 0.039006	%	%	%	%
Carbon Dioxide Nitrogen			0.039006	0.00192861	0.000427927	0.00034964	0.000251801
				0 000210420	7 1/20/ = 05	6 47102 06	
Methane			7.49267E-05	0.000219439	7.14294E-05 0.00855403	6.47192E-06 0.00518799	
			7.49267E-05 0.148506	0.0638827	0.00855403	0.00518799	0.00272832
Ethane			7.49267E-05				0.00272832 0.0895142
Ethane Propane			7.49267E-05 0.148506 12.8405 31.5368 8.08442	0.0638827 0.33071 1.18217 0.55138	0.00855403 0.107855 0.655293 0.379523	0.00518799 0.107797 0.740274 0.446506	0.00272832 0.0895142 0.683957 0.423805
Ethane Propane Isobutane n-Butane			7.49267E-05 0.148506 12.8405 31.5368 8.08442 22.2901	0.0638827 0.33071 1.18217 0.55138 1.96578	0.00855403 0.107855 0.655293 0.379523 1.46746	0.00518799 0.107797 0.740274 0.446506 1.69451	0.00272832 0.0895142 0.683957 0.423805 1.62505
Methane Ethane Propane Isobutane n-Butane Isopentane			7.49267E-05 0.148506 12.8405 31.5368 8.08442 22.2901 7.05261	0.0638827 0.33071 1.18217 0.55138 1.96578 1.39108	0.00855403 0.107855 0.655293 0.379523 1.46746 1.16866	0.00518799 0.107797 0.740274 0.446506 1.69451 1.31889	0.00272832 0.0895142 0.683957 0.423805 1.62505 1.28271
Ethane Propane Isobutane n-Butane Isopentane n-Pentane			7.49267E-05 0.148506 12.8405 31.5368 8.08442 22.2901 7.05261 7.75313	0.0638827 0.33071 1.18217 0.55138 1.96578 1.39108 1.96611	0.00855403 0.107855 0.655293 0.379523 1.46746 1.16866 1.72833	0.00518799 0.107797 0.740274 0.446506 1.69451 1.31889 1.89342	0.00272832 0.0895142 0.683957 0.423805 1.62505 1.28271 1.85422
Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Hexane			7.49267E-05 0.148506 12.8405 31.5368 8.08442 22.2901 7.05261 7.75313 2.13487	0.0638827 0.33071 1.18217 0.55138 1.96578 1.39108 1.96611 1.65843	0.00855403 0.107855 0.655293 0.379523 1.46746 1.16866 1.72833 1.49479	0.00518799 0.107797 0.740274 0.446506 1.69451 1.31889 1.89342 1.65662	0.00272832 0.0895142 0.683957 0.423805 1.62505 1.28271 1.85422 1.62459
Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Hexane Cyclohexane			7.49267E-05 0.148506 12.8405 31.5368 8.08442 22.2901 7.05261 7.75313 2.13487 0.268982	0.0638827 0.33071 1.18217 0.55138 1.96578 1.39108 1.96611 1.65843 0.387536	0.00855403 0.107855 0.655293 0.379523 1.46746 1.16866 1.72833 1.49479 0	0.00518799 0.107797 0.740274 0.446506 1.69451 1.31889 1.89342 1.65662 0.388921	0.00272832 0.0895142 0.683957 0.423805 1.62505 1.28271 1.85422 1.62459 0.312663
Ethane Propane sobutane n-Butane sopentane n-Pentane n-Hexane Cyclohexane -C6			7.49267E-05 0.148506 12.8405 31.5368 8.08442 22.2901 7.05261 7.75313 2.13487 0.268982 3.22578	0.0638827 0.33071 1.18217 0.55138 1.96578 1.39108 1.96611 1.65843 0.387536 1.85781	0.00855403 0.107855 0.655293 0.379523 1.46746 1.16866 1.72833 1.49479 0 1.58968	0.00518799 0.107797 0.740274 0.446506 1.69451 1.31889 1.89342 1.65662 0.388921 1.84362	0.00272832 0.0895142 0.683957 0.423805 1.62505 1.28271 1.85422 1.62459 0.312663 1.79238
Ethane Propane sobutane n-Butane n-Pentane n-Hexane Cyclohexane -C6 -C7			7.49267E-05 0.148506 12.8405 31.5368 8.08442 22.2901 7.05261 7.75313 2.13487 0.268982 3.22578 1.41901	0.0638827 0.33071 1.18217 0.55138 1.96578 1.39108 1.96611 1.65843 0.387536 1.85781 7.54423	0.00855403 0.107855 0.655293 0.379523 1.46746 1.16866 1.72833 1.49479 0	0.00518799 0.107797 0.740274 0.446506 1.69451 1.31889 1.89342 1.65662 0.388921 1.84362 7.59698	0.00272832 0.0895142 0.683957 0.423805 1.62505 1.28271 1.85422 1.62459 0.312663 1.79238 7.61562
Ethane Propane sobutane n-Butane sopentane n-Pentane n-Hexane Cyclohexane -C6 -C7 Methylcyclohexane			7.49267E-05 0.148506 12.8405 31.5368 8.08442 22.2901 7.05261 7.75313 2.13487 0.268982 3.22578	0.0638827 0.33071 1.18217 0.55138 1.96578 1.39108 1.96611 1.65843 0.387536 1.85781	0.00855403 0.107855 0.655293 0.379523 1.46746 1.16866 1.72833 1.49479 0 1.58968 7.66935	0.00518799 0.107797 0.740274 0.446506 1.69451 1.31889 1.89342 1.65662 0.388921 1.84362	0.00272832 0.0895142 0.683957 0.423805 1.62505 1.28271 1.85422 1.62459 0.312663 1.79238 7.61562 0.245688
Ethane Propane sobutane n-Butane n-Pentane n-Hexane Cyclohexane -C6 -C7 Methylcyclohexane Octane			7.49267E-05 0.148506 12.8405 31.5368 8.08442 22.2901 7.05261 7.75313 2.13487 0.268982 3.22578 1.41901 0.102917 1.36249 0.235714	0.0638827 0.33071 1.18217 0.55138 1.96578 1.39108 1.96611 1.65843 0.387536 1.85781 7.54423 0.302514 9.81788 5.16862	0.00855403 0.107855 0.655293 0.379523 1.46746 1.16866 1.72833 1.49479 0 1.58968 7.66935 0 10.1246 5.3071	0.00518799 0.107797 0.740274 0.446506 1.69451 1.31889 1.89342 1.65662 0.388921 1.84362 7.59698 0.305441 9.9519 5.24576	0.00272832 0.0895142 0.683957 0.423805 1.62505 1.28271 1.85422 1.62459 0.312663 1.79238 7.61562 0.245688 9.99756 5.26458
Ethane Propane Isobutane Isopentane Isopentane Isopentane Centexane Cyclohexane -C6 -C7 Methylcyclohexane Octane Nonane Benzene			7.49267E-05 0.148506 12.8405 31.5368 8.08442 22.2901 7.05261 7.75313 2.13487 0.268982 3.22578 1.41901 0.102917 1.36249 0.235714 0.705444	0.0638827 0.33071 1.18217 0.55138 1.96578 1.39108 1.96611 1.65843 0.387536 1.85781 7.54423 0.302514 9.81788 5.16862 0.841701	0.00855403 0.107855 0.655293 0.379523 1.46746 1.16866 1.72833 1.49479 0 1.58968 7.66935 0 10.1246 5.3071 0.806146	0.00518799 0.107797 0.740274 0.446506 1.69451 1.31889 1.89342 1.65662 0.388921 1.84362 7.59698 0.305441 9.9519 5.24576 0.842247	0.00272832 0.0895142 0.683957 0.423805 1.62505 1.28271 1.85422 1.62459 0.312663 1.79238 7.61562 0.245688 9.99756 5.26458 0.83516
Ethane Propane Isobutane Isopentane n-Pentane Oyclohexane -C6 -C7 Methylcyclohexane Octane Nonane Benzene Toluene			7.49267E-05 0.148506 12.8405 31.5368 8.08442 22.2901 7.05261 7.75313 2.13487 0.268982 3.22578 1.41901 0.102917 1.36249 0.235714 0.705444 0.488607	0.0638827 0.33071 1.18217 0.55138 1.96578 1.39108 1.96611 1.65843 0.387536 1.85781 7.54423 0.302514 9.81788 5.16862 0.841701 1.81828	0.00855403 0.107855 0.655293 0.379523 1.46746 1.16866 1.72833 1.49479 0 1.58968 7.66935 0 10.1246 5.3071 0.806146 1.83944	0.00518799 0.107797 0.740274 0.446506 1.69451 1.31889 1.89342 1.65662 0.388921 1.84362 7.59698 0.305441 9.9519 5.24576 0.842247 1.83845	0.00272832 0.0895142 0.683957 0.423805 1.62505 1.28271 1.85422 1.62459 0.312663 1.79238 7.61562 0.245688 9.99756 5.26458 0.83516 1.84039
Ethane Propane sobutane n-Butane n-Pentane n-Pentane Cyclohexane -C6 -C7 Methylcyclohexane Octane Nonane Benzene Foluene Ethylbenzene			7.49267E-05 0.148506 12.8405 31.5368 8.08442 22.2901 7.05261 7.75313 2.13487 0.268982 3.22578 1.41901 0.102917 1.36249 0.235714 0.705444 0.488607 0.0294983	0.0638827 0.33071 1.18217 0.55138 1.96578 1.39108 1.96611 1.65843 0.387536 1.85781 7.54423 0.302514 9.81788 5.16862 0.841701 1.81828 0.296915	0.00855403 0.107855 0.655293 0.379523 1.46746 1.16866 1.72833 1.49479 0 1.58968 7.66935 0 10.1246 5.3071 0.806146 1.83944 0.307478	0.00518799 0.107797 0.740274 0.446506 1.69451 1.31889 1.89342 1.65662 0.388921 1.84362 7.59698 0.305441 9.9519 5.24576 0.842247 1.83845 0.301085	0.00272832 0.0895142 0.683957 0.423805 1.62505 1.28271 1.85422 1.62459 0.312663 1.79238 7.61562 0.245688 9.99756 5.26458 0.83516 1.84039 0.302707
Ethane Propane Isobutane Isopentane Isopentane D-Pentane D-Pentane Cyclohexane Cyclohexane CG CG C7 Methylcyclohexane Octane Nonane Benzene Toluene Ethylbenzene D-Xylene			7.49267E-05 0.148506 12.8405 31.5368 8.08442 22.2901 7.05261 7.75313 2.13487 0.268982 3.22578 1.41901 0.102917 1.36249 0.235714 0.705444 0.488607 0.0294983 0.111188	0.0638827 0.33071 1.18217 0.55138 1.96578 1.39108 1.96611 1.65843 0.387536 1.85781 7.54423 0.302514 9.81788 5.16862 0.841701 1.81828 0.296915 1.65466	0.00855403 0.107855 0.655293 0.379523 1.46746 1.16866 1.72833 1.49479 0 1.58968 7.66935 0 10.1246 5.3071 0.806146 1.83944 0.307478 1.7067	0.00518799 0.107797 0.740274 0.446506 1.69451 1.31889 1.89342 1.65662 0.388921 1.84362 7.59698 0.305441 9.9519 5.24576 0.842247 1.83845 0.301085 1.67838	4.40406E-06 0.00272832 0.0895142 0.683957 0.423805 1.62505 1.28271 1.85422 1.62459 0.312663 1.79238 7.61562 0.245688 9.99756 5.26458 0.83516 1.84039 0.302707 1.68603
Ethane Propane sobutane n-Butane n-Pentane n-Pentane Cyclohexane -C6 -C7 Methylcyclohexane Octane Senzene Senzene Ethylbenzene Ethylbenzene -Xylene H2S			7.49267E-05 0.148506 12.8405 31.5368 8.08442 22.2901 7.05261 7.75313 2.13487 0.268982 3.22578 1.41901 0.102917 1.36249 0.235714 0.705444 0.705444 0.488607 0.0294983 0.111188 0.00122151	0.0638827 0.33071 1.18217 0.55138 1.96578 1.39108 1.96611 1.65843 0.387536 1.85781 7.54423 0.302514 9.81788 5.16862 0.841701 1.81828 0.296915 1.65466 4.4572E-05	0.00855403 0.107855 0.655293 0.379523 1.46746 1.16866 1.72833 1.49479 0 1.58968 7.66935 0 10.1246 5.3071 0.806146 1.83944 0.307478 1.7067 0	0.00518799 0.107797 0.740274 0.446506 1.69451 1.31889 1.89342 1.65662 0.388921 1.84362 7.59698 0.305441 9.9519 5.24576 0.842247 1.83845 0.301085 1.67838 2.00315E-05	0.00272832 0.0895142 0.683957 0.423805 1.62505 1.28271 1.85422 1.62459 0.312663 1.79238 7.61562 0.245688 9.99756 5.26458 0.83516 1.84039 0.302707 1.68603 1.43745E-05
Ethane Propane Isobutane Isopentane Isopentane In-Pentane Cyclohexane -C6 -C7 Methylcyclohexane Octane Nonane Benzene Toluene Ethylbenzene			7.49267E-05 0.148506 12.8405 31.5368 8.08442 22.2901 7.05261 7.75313 2.13487 0.268982 3.22578 1.41901 0.102917 1.36249 0.235714 0.705444 0.488607 0.0294983 0.111188	0.0638827 0.33071 1.18217 0.55138 1.96578 1.39108 1.96611 1.65843 0.387536 1.85781 7.54423 0.302514 9.81788 5.16862 0.841701 1.81828 0.296915 1.65466	0.00855403 0.107855 0.655293 0.379523 1.46746 1.16866 1.72833 1.49479 0 1.58968 7.66935 0 10.1246 5.3071 0.806146 1.83944 0.307478 1.7067	0.00518799 0.107797 0.740274 0.446506 1.69451 1.31889 1.89342 1.65662 0.388921 1.84362 7.59698 0.305441 9.9519 5.24576 0.842247 1.83845 0.301085 1.67838	0.00272832 0.0895142 0.683957 0.423805 1.62505 1.28271 1.85422 1.62459 0.312663 1.79238 7.61562 0.245688 9.99756 5.26458 0.83516 1.84039 0.302707 1.68603

			Process Stre All Str Tabulated by	eams				
Client Name:	XTO ENERGY I	NC			Job: DELAV			
Location:	CC New TB							
Flowsheet:	Tankage							
					Į			
			Z-Oil Load	1	2	3	4	
Mass Flow			lb/h	lb/h	lb/h	lb/h	lb/h	
Carbon Dioxide			0.0228796	4.61155	0.246073	0.823215	0.144444	
Nitrogen			4.39494E-05	0.524705	0.0410744	0.0152379	0.00252635	
Methane			0.0871087	152.751	4.91887	12.2149	1.56508	
Ethane			7.53179	790,766	62.0201	253.806	51,3491	
Propane			18.4984	2826.71	376.816	1742.95	392.347	
Isobutane			4.74204	1318.41	218.239	1051.28	243.112	
n-Butane			13.0746	4700.41	843.841	3989.66	932.197	
Isopentane			4.13682	3326.23	672.019	3105.28	735.817	
n-Pentane			4.54772	4701.19	993.849	4457.99	1063.66	
n-Hexane			1.25224	3965.5	859.556	3900.45	931.936	
Cyclohexane			0.157776	926.645	0	915.701	179.357	
i-C6			1.89213	4442.24	914.121	4340.73	1028.18	
i-C7			0.832342	18039.1	4410.14	17886.8	4368.64	
Methylcyclohexa	ne		0.0603673	723.346	0	719.15	140.937	
Octane			0.799192	23475.7	5822.01	23431.4	5735.02	
Nonane			0.138262	12358.8	3051.77	12351	3019.98	
Benzene			0.413789	2012.61	463.563	1983.04	479.083	
Toluene			0.2866	4347.72	1057.75	4328.56	1055.73	
Ethylbenzene			0.0173027	709.958	176.81	708.896	173.645	
o-Xylene			0.0652188	3956.48	981.414	3951.7	967.176	
H2S			0.000716498	0.106577	0	0.0471636	0.00824582	
Water			0.000103753	15.9974	0	4.48621	0.703955	
2,2,4-Trimethylpe	entane		0.0989043	878.513	232.189	873.251	216.637	
Decanes Plus			0.00021293	145437	36362.2	145437	35647	

Stream Properties									
Property	Units	Z-Oil Load	1	2	3	4			
Temperature	°F	109.332	113.779	85.9447	100	95			
Pressure	psig	10.7367	3	25	3	0.25			
Molecular Weight	lb/lbmol	50.2074	146.225	154.884	151.386	152.508			
Mass Flow	lb/h	58.6566	239112	57503.5	235447	57364.2			
Std Vapor Volumetric Flow	MMSCFD	0.0106403	14.8931	3.38137	14.1648	3.42574			
Std Liquid Volumetric Flow	sgpm	0.222257	613.82	145.833	599.432	145.833 *			
Gross Ideal Gas Heating Value	Btu/ft^3	2833.39	7715.03	8156.66	7978.6	8035.75			

			All St	eams Report reams ^{y Total Phase}			
Client Name:	XTO ENERGY I	NC			Job DELA		IENT
	CC New TB						
Flowsheet.	Tankage						
			Conn	ections			
			5	7	8	10	
From Blook			SPLT-100	MIX-100	Prod. Water	SKIM TANKS	
From Block							
To Block				OIL TANKS	SKIM TANKS	MIX-100	
			Stream Co	omposition			
			5	7	8	10	
Mole Fraction			%	%	%	%	
Carbon Dioxide			0.000872576	0.00126116	0.000501518	/0	
			2.39761E-05	0.000126116	6.9641E-05		
Nitrogen							
Methane			0.0259368	0.0554376	0.0106184		
Ethane			0.454009	0.545192	0.00302867		
Propane			2.36551	2.49525	0.00109824		
Isobutane			1.11203	1.13376	9.14905E-05		
n-Butane			4.26399	4.3166	0.000311619		
Isopentane			2.71139	2.71753	4.47243E-05		
n-Pentane			3.91945	3.92225	2.09451E-05		
n-Hexane			2.8751	2.86712	2.80579E-06		
Cyclohexane			0.566585	0.56477	8.58892E-06		
-C6			3.17204	3.16518	8.87836E-06		
-C7			11.591	11.5502	6.61664E-06		
Methylcyclohexane			0.381615	0.380182	1.14839E-06		
Octane			13.3478	13.293	4.04736E-07		
Nonane	-		6.26009	6.23368	5.27021E-08		· · · · · · · · · · · · · · · · · · ·
Benzene			1.63059	1.6258	0.000926815		
Toluene			3.04622	3.03439	0.000361711		
Ethylbenzene			0.434843	0.433041	1.41555E-05		
o-Xylene			2.422	2.41191	9.48626E-05		
H2S			6.43241E-05	7.18319E-05	7.58879E-06		
				0.0129259			
Water			0.0103885		99.9828		
2,2,4-Trimethylpentan	e		0.504207	0.502322	1.55333E-07		
Decanes Plus			38.9042	38.738	6.36024E-09		
			5	7	8	10	
Mass Fraction			%	%	%	%	
Carbon Dioxide			0.000251801	0.000365007	0.00122504		
Nitrogen			4.40406E-06	1.92225E-05	0.00010828		
Methane							
				0 0058/871	0 00045472		i -
			0.00272832	0.00584871	0.00945472		
Ethane			0.00272832 0.0895142	0.107809	0.00505463		
Ethane Propane			0.00272832 0.0895142 0.683957	0.107809 0.723593	0.00505463 0.00268789		
Ethane Propane Isobutane			0.00272832 0.0895142 0.683957 0.423805	0.107809 0.723593 0.433358	0.00505463 0.00268789 0.000295145		
Ethane Propane Isobutane n-Butane			0.00272832 0.0895142 0.683957 0.423805 1.62505	0.107809 0.723593 0.433358 1.64994	0.00505463 0.00268789 0.000295145 0.00100527		
Ethane Propane Isobutane n-Butane Isopentane			0.00272832 0.0895142 0.683957 0.423805 1.62505 1.28271	0.107809 0.723593 0.433358 1.64994 1.2894	0.00505463 0.00268789 0.000295145 0.00100527 0.000179098		
Ethane Propane Isobutane n-Butane Isopentane			0.00272832 0.0895142 0.683957 0.423805 1.62505 1.28271 1.85422	0.107809 0.723593 0.433358 1.64994 1.2894 1.86101	0.00505463 0.00268789 0.000295145 0.00100527 0.000179098 8.38742E-05		
Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Hexane			0.00272832 0.0895142 0.683957 0.423805 1.62505 1.28271	0.107809 0.723593 0.433358 1.64994 1.2894	0.00505463 0.00268789 0.000295145 0.00100527 0.000179098		
Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Hexane			0.00272832 0.0895142 0.683957 0.423805 1.62505 1.28271 1.85422	0.107809 0.723593 0.433358 1.64994 1.2894 1.86101 1.62485	0.00505463 0.00268789 0.000295145 0.00100527 0.000179098 8.38742E-05		
Ethane Propane sobutane n-Butane sopentane n-Pentane n-Hexane Cyclohexane			0.00272832 0.0895142 0.683957 0.423805 1.62505 1.28271 1.85422 1.62459 0.312663	0.107809 0.723593 0.433358 1.64994 1.2894 1.86101 1.62485 0.312579	0.00505463 0.00268789 0.000295145 0.00100527 0.000179098 8.38742E-05 1.34201E-05 4.01198E-05		
Ethane Propane sobutane n-Butane sopentane n-Pentane n-Hexane Cyclohexane -C6			0.00272832 0.0895142 0.683957 0.423805 1.62505 1.28271 1.85422 1.62459 0.312663 1.79238	0.107809 0.723593 0.433358 1.64994 1.2894 1.86101 1.62485 0.312579 1.79377	0.00505463 0.00268789 0.000295145 0.00100527 0.000179098 8.38742E-05 1.34201E-05 4.01198E-05 4.24652E-05		
Ethane Propane sobutane n-Butane sopentane n-Pentane n-Hexane Cyclohexane -C6 -C7			0.00272832 0.0895142 0.683957 0.423805 1.62505 1.28271 1.85422 1.62459 0.312663 1.79238 7.61562	0.107809 0.723593 0.433358 1.64994 1.2894 1.86101 1.62485 0.312579 1.79377 7.61119	0.00505463 0.00268789 0.000295145 0.00100527 0.000179098 8.38742E-05 1.34201E-05 4.01198E-05 4.24652E-05 3.67986E-05		
Ethane Propane sobutane n-Butane sopentane n-Pentane n-Hexane Cyclohexane -C6 -C7 Methylcyclohexane			0.00272832 0.0895142 0.683957 0.423805 1.62505 1.28271 1.85422 1.62459 0.312663 1.79238 7.61562 0.245688	0.107809 0.723593 0.433358 1.64994 1.2894 1.86101 1.62485 0.312579 1.79377 7.61119 0.245486	0.00505463 0.00268789 0.000295145 0.00100527 0.000179098 8.38742E-05 1.34201E-05 4.01198E-05 4.24652E-05 3.67986E-05 6.25833E-06		
Ethane Propane sobutane n-Butane sopentane n-Pentane n-Hexane Cyclohexane -C6 -C7 Methylcyclohexane Octane			0.00272832 0.0895142 0.683957 0.423805 1.62505 1.28271 1.85422 1.62459 0.312663 1.79238 7.61562 0.245688 9.99756	0.107809 0.723593 0.433358 1.64994 1.2894 1.86101 1.62485 0.312579 1.79377 7.61119 0.245486 9.9858	0.00505463 0.00268789 0.000295145 0.00100527 0.000179098 8.38742E-05 1.34201E-05 4.01198E-05 4.24652E-05 3.67986E-05 6.25833E-06 2.56605E-06		
Ethane Propane sobutane n-Butane sopentane n-Pentane Dyclohexane -C6 -C7 Methylcyclohexane Octane Nonane			0.00272832 0.0895142 0.683957 0.423805 1.62505 1.28271 1.85422 1.62459 0.312663 1.79238 7.61562 0.245688 9.99756 5.26458	0.107809 0.723593 0.433358 1.64994 1.2894 1.86101 1.62485 0.312579 1.79377 7.61119 0.245486 9.9858 5.2578	0.00505463 0.00268789 0.000295145 0.00100527 0.000179098 8.38742E-05 1.34201E-05 4.01198E-05 4.24652E-05 3.67986E-05 6.25833E-06 2.56605E-06 3.75163E-07		
Ethane Propane Isobutane Isopentane Isopentane In-Pentane Cyclohexane -C6 -C7 Methylcyclohexane Octane Nonane Benzene			0.00272832 0.0895142 0.683957 0.423805 1.62505 1.28271 1.85422 1.62459 0.312663 1.79238 7.61562 0.245688 9.99756 5.26458 0.83516	0.107809 0.723593 0.433358 1.64994 1.2894 1.86101 1.62485 0.312579 1.79377 7.61119 0.245486 9.9858 5.2578 0.835161	0.00505463 0.00268789 0.000295145 0.00100527 0.000179098 8.38742E-05 1.34201E-05 4.01198E-05 4.24652E-05 3.67986E-05 6.25833E-06 2.56605E-06 3.75163E-07 0.00401816		
Ethane Propane Isobutane n-Butane Isopentane n-Pentane Oyclohexane i-C6 i-C7 Methylcyclohexane Octane Nonane Benzene Toluene			0.00272832 0.0895142 0.683957 0.423805 1.62505 1.28271 1.85422 1.62459 0.312663 1.79238 7.61562 0.245688 9.99756 5.26458 0.83516 1.84039	0.107809 0.723593 0.433358 1.64994 1.2894 1.86101 1.62485 0.312579 1.79377 7.61119 0.245486 9.9858 5.2578 0.835161 1.83864	0.00505463 0.00268789 0.000295145 0.00100527 0.000179098 8.38742E-05 1.34201E-05 4.01198E-05 4.24652E-05 3.67986E-05 6.25833E-06 2.56605E-06 3.75163E-07 0.00401816 0.00184978		
Ethane Propane Isobutane n-Butane n-Pentane n-Pentane Cyclohexane -C6 -C7 Methylcyclohexane Octane Nonane Benzene Toluene			0.00272832 0.0895142 0.683957 0.423805 1.62505 1.28271 1.85422 1.62459 0.312663 1.79238 7.61562 0.245688 9.99756 5.26458 0.83516	0.107809 0.723593 0.433358 1.64994 1.2894 1.86101 1.62485 0.312579 1.79377 7.61119 0.245486 9.9858 5.2578 0.835161	0.00505463 0.00268789 0.000295145 0.00100527 0.000179098 8.38742E-05 1.34201E-05 4.01198E-05 4.24652E-05 3.67986E-05 6.25833E-06 2.56605E-06 3.75163E-07 0.00401816		
Ethane Propane Isobutane n-Butane Isopentane n-Pentane Cyclohexane i-C6 i-C7 Methylcyclohexane Octane Nonane Benzene Toluene Ethylbenzene			0.00272832 0.0895142 0.683957 0.423805 1.62505 1.28271 1.85422 1.62459 0.312663 1.79238 7.61562 0.245688 9.99756 5.26458 0.83516 1.84039	0.107809 0.723593 0.433358 1.64994 1.2894 1.86101 1.62485 0.312579 1.79377 7.61119 0.245486 9.9858 5.2578 0.835161 1.83864 0.30234	0.00505463 0.00268789 0.000295145 0.00100527 0.000179098 8.38742E-05 1.34201E-05 4.01198E-05 4.24652E-05 3.67986E-05 6.25833E-06 2.56605E-06 3.75163E-07 0.00401816 0.00184978		
Ethane Ethane Propane Isobutane Isopentane n-Pentane Cyclohexane i-C6 i-C7 Methylcyclohexane Octane Benzene Toluene Ethylbenzene o-Xylene			0.00272832 0.0895142 0.683957 0.423805 1.62505 1.28271 1.85422 1.62459 0.312663 1.79238 7.61562 0.245688 9.99756 5.26458 0.83516 1.84039 0.302707 1.68603	0.107809 0.723593 0.433358 1.64994 1.2894 1.86101 1.62485 0.312579 1.79377 7.61119 0.245486 9.9858 5.2578 0.835161 1.83864 0.30234 1.68394	0.00505463 0.00268789 0.000295145 0.00100527 0.000179098 8.38742E-05 1.34201E-05 4.01198E-05 4.24652E-05 3.67986E-05 6.25833E-06 2.56605E-06 3.75163E-07 0.00401816 0.00184978 8.34112E-05 0.000558977		
Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Hexane Cyclohexane i-C6 i-C7 Methylcyclohexane Octane Nonane Benzene Toluene Ethylbenzene o-Xylene H2S			0.00272832 0.0895142 0.683957 0.423805 1.62505 1.28271 1.85422 1.62459 0.312663 1.79238 7.61562 0.245688 9.99756 5.26458 0.83516 1.84039 0.302707 1.68603 1.43745E-05	0.107809 0.723593 0.433358 1.64994 1.2894 1.86101 1.62485 0.312579 1.79377 7.61119 0.245486 9.9858 5.2578 0.835161 1.83864 0.30234 1.68394 1.60995E-05	0.00505463 0.00268789 0.000295145 0.00100527 0.000179098 8.38742E-05 1.34201E-05 4.01198E-05 4.24652E-05 3.67986E-05 6.25833E-06 2.56605E-06 3.75163E-07 0.00401816 0.00184978 8.34112E-05 0.000558977 1.43549E-05		
Ethane Propane Isobutane Isobutane Isopentane n-Pentane n-Hexane Cyclohexane i-C6 i-C7 Methylcyclohexane Octane Nonane Benzene Toluene Ethylbenzene o-Xylene H2S Water			0.00272832 0.0895142 0.683957 0.423805 1.62505 1.28271 1.85422 1.62459 0.312663 1.79238 7.61562 0.245688 9.99756 5.26458 0.83516 1.84039 0.302707 1.68603 1.43745E-05 0.00122717	0.107809 0.723593 0.433358 1.64994 1.2894 1.86101 1.62485 0.312579 1.79377 7.61119 0.245486 9.9858 5.2578 0.835161 1.83864 0.30234 1.68394 1.60995E-05 0.00153139	0.00505463 0.00268789 0.000295145 0.00100527 0.000179098 8.38742E-05 1.34201E-05 4.01198E-05 4.24652E-05 3.67986E-05 6.25833E-06 2.56605E-06 3.75163E-07 0.00401816 0.00184978 8.34112E-05 0.000558977 1.43549E-05 99.9732		
Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Hexane Cyclohexane i-C6 i-C7 Methylcyclohexane Octane Nonane Benzene Toluene Ethylbenzene o-Xylene H2S	I6		0.00272832 0.0895142 0.683957 0.423805 1.62505 1.28271 1.85422 1.62459 0.312663 1.79238 7.61562 0.245688 9.99756 5.26458 0.83516 1.84039 0.302707 1.68603 1.43745E-05	0.107809 0.723593 0.433358 1.64994 1.2894 1.86101 1.62485 0.312579 1.79377 7.61119 0.245486 9.9858 5.2578 0.835161 1.83864 0.30234 1.68394 1.60995E-05	0.00505463 0.00268789 0.000295145 0.00100527 0.000179098 8.38742E-05 1.34201E-05 4.01198E-05 4.24652E-05 3.67986E-05 6.25833E-06 2.56605E-06 3.75163E-07 0.00401816 0.00184978 8.34112E-05 0.000558977 1.43549E-05		

			Process Stre All Sti Tabulated by	reams			
Client Name:	XTO ENERGY I	NC			Job: DELA	WARE DEVELOP	PMENT
Location:	CC New TB						
Flowsheet:	Tankage						
					•		
			5	7	8	10	
Mass Flow			lb/h	lb/h	lb/h	lb/h	
Carbon Dioxide			0.592219	1.06929	10.7254		
Nitrogen			0.010358	0.0563124	0.948006		
Methane			6.41682	17.1338	82.7773		
Ethane			210.531	315.826	44.254		
Propane			1608.62	2119.77	23.5329		
Isobutane			996.76	1269.52	2.58403		
n-Butane			3822	4833.5	8.8013		
Isopentane			3016.85	3777.3	1.56803		
n-Pentane			4361.01	5451.84	0.73433		
n-Hexane			3820.93	4760	0.117495		
Cyclohexane			735.361	915.701	0.351254		
i-C6			4215.55	5254.85	0.371789		
i-C7			17911.4	22297	0.322177		
Methylcyclohexa	ne		577.841	719.15	0.0547925		
Octane			23513.6	29253.4	0.0224661		
Nonane			12381.9	15402.7	0.0032846		
Benzene			1964.24	2446.61	35.1796		
Toluene			4328.47	5386.3	16.1951		
Ethylbenzene			711.945	885.706	0.730276		
o-Xylene			3965.42	4933.11	4.89392		
H2S			0.0338078	0.0471636	0.125679		
Water			2.88621	4.48621	875279		
2,2,4-Trimethylpe	entane		888.212	1105.44	0.00862218		
Decanes Plus			146153	181800	0.00075289		
			Stream P	roperties			
		Lin Ma			•	40	

Property	Units	5	7	8	10	
Temperature	°F	95	97.2936	86.9396		
Pressure	psig	0.25	3	0.25	0.25	
Molecular Weight	lb/lbmol	152.508	152.06	18.017		
Mass Flow	lb/h	235193	292950	875513	0	
Std Vapor Volumetric Flow	MMSCFD	14.0455	17.5462	442.573	0	
Std Liquid Volumetric Flow	sgpm	597.916	745.266	1750.85	0	
Gross Ideal Gas Heating Value	Btu/ft^3	8035.75	8012.91	50.5636		

			lue Sets Report	
Client Name:	XTO ENERGY I	NC		Job: DELAWARE DEVELOPMENT
Location:	CC New TB			
		T	ANKS - OIL	
		Use	r Value [TVP]	
* Parameter		9.71304 psia	Upper Bound	psia
Lower Bound		psia	* Enforce Bounds	False
			Value [MaxVP]	
* Parameter		11.9225 psia	Upper Bound	psia
Lower Bound		psia	* Enforce Bounds	False
		Llear Valu	e [AvgLiqSurfaceT]	
* Parameter		93.9699 °F	Upper Bound	°F
Lower Bound		°F	* Enforce Bounds	False
		User Valu	e [MaxLiqSurfaceT]	
* Parameter		110.616 °F	Upper Bound	°F
Lower Bound Remarks	et was programmat	°F	* Enforce Bounds	False 9C99647F}
Lower Bound Remarks	et was programmat	°F ically generated. GUID={4DEE	* Enforce Bounds	
Lower Bound Remarks	iet was programmat	°F iically generated. GUID={4DEE <b>T</b> /	* Enforce Bounds A3E7-0953-4810-A14D-88888 ANKS - PW	
Lower Bound Remarks This User Value S	iet was programmat	°F tically generated. GUID={4DEE T/ Use	* Enforce Bounds A3E7-0953-4810-A14D-88889 ANKS - PW r Value [TVP]	9C99647F}
Lower Bound Remarks This User Value S	iet was programmat	°F tically generated. GUID={4DEE <b>T</b> / <b>Use</b> 0.674383 psia	* Enforce Bounds A3E7-0953-4810-A14D-88889 ANKS - PW r Value [TVP] Upper Bound	9C99647F} psia
Lower Bound Remarks This User Value S	et was programmat	°F tically generated. GUID={4DEE T/ Use	* Enforce Bounds A3E7-0953-4810-A14D-88889 ANKS - PW r Value [TVP]	9C99647F}
Lower Bound Remarks This User Value S	et was programmat	°F tically generated. GUID={4DEE <b>T</b> / <b>Use</b> 0.674383 psia psia	* Enforce Bounds A3E7-0953-4810-A14D-88888 ANKS - PW r Value [TVP] Upper Bound * Enforce Bounds	9C99647F} psia
Lower Bound Remarks This User Value S	iet was programmat	°F tically generated. GUID={4DEE T <i>i</i> Use 0.674383 psia psia User	* Enforce Bounds A3E7-0953-4810-A14D-88889 ANKS - PW r Value [TVP] Upper Bound * Enforce Bounds Value [MaxVP]	9C99647F} psia
Lower Bound Remarks This User Value S * Parameter Lower Bound	iet was programmat	°F tically generated. GUID={4DEE <b>T</b> / <b>Use</b> 0.674383 psia psia	* Enforce Bounds A3E7-0953-4810-A14D-88888 ANKS - PW r Value [TVP] Upper Bound * Enforce Bounds	9C99647F} psia False
Lower Bound Remarks This User Value S * Parameter Lower Bound * Parameter	et was programmat	°F tically generated. GUID={4DEE T/ Use 0.674383 psia psia User 1.11194 psia psia	* Enforce Bounds     * Enforce Bounds     * Enforce Bounds     * Enforce Bound	9C99647F} psia False psia
Lower Bound Remarks This User Value S * Parameter Lower Bound * Parameter Lower Bound	iet was programmat	°F iically generated. GUID={4DEE T <i>i</i> Use 0.674383 psia psia User 1.11194 psia psia	* Enforce Bounds  A3E7-0953-4810-A14D-88889  ANKS - PW      value [TVP]     Upper Bound     * Enforce Bounds  Value [MaxVP]     Upper Bound     * Enforce Bounds  e [AvgLiqSurfaceT]	9C99647F} psia False psia False
Lower Bound  Remarks  This User Value S  * Parameter Lower Bound  * Parameter Lower Bound  * Parameter Lower Bound  * Parameter * Parameter * Parameter * Parameter * Parameter	Get was programmat	°F iically generated. GUID={4DEE T/ Use 0.674383 psia psia User 1.11194 psia psia User Valu 88.1716 °F	* Enforce Bounds     * A3E7-0953-4810-A14D-88888     ANKS - PW     Upper Bound     * Enforce Bounds     Value [MaxVP]     Upper Bound     * Enforce Bounds      Value [MaxVP]     Upper Bound     * Enforce Bounds      e [AvgLiqSurfaceT]     Upper Bound	9C99647F} psia False psia False False
Lower Bound Remarks This User Value S * Parameter Lower Bound * Parameter Lower Bound	Set was programmat	°F iically generated. GUID={4DEE T <i>i</i> Use 0.674383 psia psia User 1.11194 psia psia	* Enforce Bounds  A3E7-0953-4810-A14D-88889  ANKS - PW      value [TVP]     Upper Bound     * Enforce Bounds  Value [MaxVP]     Upper Bound     * Enforce Bounds  e [AvgLiqSurfaceT]	9C99647F} psia False psia False
Lower Bound  Remarks  This User Value S  * Parameter Lower Bound  * Parameter Lower Bound  * Parameter Lower Bound  * Parameter * Parameter * Parameter * Parameter * Parameter	iet was programmat	°F iically generated. GUID={4DEE T/ Use 0.674383 psia psia User 1.11194 psia psia User Valu 88.1716 °F °F	* Enforce Bounds  A3E7-0953-4810-A14D-88889  ANKS - PW      value [TVP]     Upper Bound     * Enforce Bounds  Value [MaxVP]     Upper Bound     * Enforce Bounds  e [AvgLiqSurfaceT]     Upper Bound     * Enforce Bounds	9C99647F} psia False psia False False
Lower Bound  Remarks  This User Value S  * Parameter Lower Bound  * Parameter Lower Bound  * Parameter Lower Bound	iet was programmat	°F iically generated. GUID={4DEE T/ Use 0.674383 psia psia User 1.11194 psia psia User Valu 88.1716 °F °F	* Enforce Bounds     * A3E7-0953-4810-A14D-88889     ANKS - PW     Upper Bound     * Enforce Bounds     Value [MaxVP]     Upper Bound     * Enforce Bounds     e [AvgLiqSurfaceT]     Upper Bound     * Enforce Bounds     e [MaxLiqSurfaceT]	9C99647F} psia False psia False
Lower Bound  Remarks  This User Value S  * Parameter Lower Bound  * Parameter Lower Bound  * Parameter Lower Bound  * Parameter Lower Bound  * Parameter	et was programmat	°F iically generated. GUID={4DEE T/ Use 0.674383 psia psia User 1.11194 psia psia User Valu 88.1716 °F °F	* Enforce Bounds     * A3E7-0953-4810-A14D-88889     ANKS - PW     value [TVP]         Upper Bound     * Enforce Bounds     value [MaxVP]         Upper Bound     * Enforce Bounds  e [AvgLiqSurfaceT]         Upper Bound     * Enforce Bounds  e [MaxLiqSurfaceT]         Upper Bound     * Enforce Bounds	9C99647F} psia psia False psia False °F False °F False °F
Lower Bound  Remarks  This User Value S  * Parameter Lower Bound  * Parameter Lower Bound  * Parameter Lower Bound	eet was programmat	°F ically generated. GUID={4DEE T/ Use 0.674383 psia psia User 1.11194 psia psia User Valu 88.1716 °F °F User Valu 104.818 °F	* Enforce Bounds     * A3E7-0953-4810-A14D-88889     ANKS - PW     Upper Bound     * Enforce Bounds     Value [MaxVP]     Upper Bound     * Enforce Bounds     e [AvgLiqSurfaceT]     Upper Bound     * Enforce Bounds     e [MaxLiqSurfaceT]	9C99647F} psia False psia False
Lower Bound  Remarks  This User Value S  * Parameter Lower Bound		°F iically generated. GUID={4DEE T/ Use 0.674383 psia psia User 1.11194 psia psia User Valu 88.1716 °F °F User Valu 104.818 °F °F	* Enforce Bounds     * A3E7-0953-4810-A14D-88888  ANKS - PW     value [TVP]     Upper Bound     * Enforce Bounds  Value [MaxVP]     Upper Bound     * Enforce Bounds  e [AvgLiqSurfaceT]     Upper Bound     * Enforce Bounds  e [MaxLiqSurfaceT]     Upper Bound     * Enforce Bounds	PC99647F} psia False psia False  °F False °F False °F False
Lower Bound  Remarks  This User Value S  * Parameter Lower Bound		°F ically generated. GUID={4DEE T/ Use 0.674383 psia psia User 1.11194 psia psia User Valu 88.1716 °F °F User Valu 104.818 °F	* Enforce Bounds     * A3E7-0953-4810-A14D-88888  ANKS - PW     value [TVP]     Upper Bound     * Enforce Bounds  Value [MaxVP]     Upper Bound     * Enforce Bounds  e [AvgLiqSurfaceT]     Upper Bound     * Enforce Bounds  e [MaxLiqSurfaceT]     Upper Bound     * Enforce Bounds	PC99647F} psia False psia False  °F False °F False °F False

June 27, 2019



XTO Energy Inc. 6401 N. Holiday Hill Rd. Midland, TX 79707

Attention: To Whom It May Concern

Subject: Compliance with 40 CFR 60.18 Flare Requirements and Destruction Removal Efficiency Confirmation The Tornado Combustion Technologies Inc. (TCTI) designed a high pressure gas assisted flare system for XTO Energy Inc. Facilities designed on February 20, 2018 (TCTI Design Reference No.: TOR1017D Rev. 2).

The flare has a 14-inch outer diameter tip, with a set of twelve (12) high pressure gas assisted injection nozzles for facility emergency relieving cases and heater treater off gas. The tip as previously described is mounted on a riser and guy wire supporting structure so that the overall flare height is 145-feet tall. To date TCTI has provided twenty-nine (29) flares of this design to XTO Energy Inc. Facilities, under the following job numbers:

- 14144/16470;
- 14184/16523; •
- 14203/16519; •
- 14204/16520; •
- 14205/16521;
- 14330/16628; •
- 14464/16785; •
- 14490/16805;
- 14530/16847; •
- 14532/16849;
- 14549/16867; 14550/16868: • 14551/16869; • 14555/16885; • 14571/16890; ٠ 14572/16891; ٠ 14586/16928; •
- 14587/16929;
- 14588/16930;
- 14634/16977;

- 14643/16987;
- 14652/16992; •
- 14707/17042; •
- 14708/17043; •
- 14709/17044;
- 14710/17045; •
- 14711/17046; ٠
- 14743/17099;
- 14766/17129.

This flare design is intended to operate such that:

- i) The maximum emergency flow rate does not exceed a maximum flow rate of 60,000,000 SCFD, and a maximum net heat release of 3,572,833,240.71 BTU/h; and,
- The maximum continuous flowrate from the heater treater of 2,000,000 SCFD which will operate without ii) visible emissions (i.e. excessive soot formation) and a maximum net heat release of 219,758,943.81 BTU/h.


For more detailed information please refer to the design datasheets of the flare stack.

Due to the volume of sales of this flare design to XTO Energy specifically TCTI has provided this flare with the following model designation moving forward:

TOR1017DR2-145FT.

Thus either the above provided TCTI job numbers or above model number can be used to relate back to this design and the intended operating parameters of the flare system design.

To meet the requirements of 40 CFR 60.18 and industry best practices Tornado has designed the flare to operate as follows:



Pursuant to Section 213 of the Clean Air Act (42 U.S.C. section 7547) and 40 CFR Part 1048, 40 CFR Part 60, 1065, 1068, and 60 (stationary only and combined stationary and mobile) and subject to the terms and conditions prescribed in those provisions, this certificate of conformity is hereby issued with respect to the test engines which have been found to conform to applicable requirements and which represent the following nonroad engines, by engine family, more fully described in the documentation required by 40 CFR Part 1048, 40 CFR Part 60 and produced in the stated model year.

This certificate of conformity covers only those new nonroad spark-ignition engines which conform in all material respects to the design specifications that applied to those engines described in the documentation required by 40 CFR Part 1048, 40 CFR Part 60 and which are produced during the model year stated on this certificate of the said manufacturer, as defined in 40 CFR Part 1048, 40 CFR Part 60. This certificate of conformity does not cover nonroad engines imported prior to the effective date of the certificate.

It is a term of this certificate that the manufacturer shall consent to all inspections described in 40 CFR 1068.20 and authorized in a warrant or court order. Failure to comply with the requirements of such a warrant or court order may lead to revocation or suspension of this certificate for reasons specified in 40 CFR Part 1048, 40 CFR Part 60. It is also a term of this certificate that this certificate may be revoked or suspended or rendered void *ab initio* for other reasons specified in 40 CFR Part 60.

This certificate does not cover large nonroad engines sold, offered for sale, or introduced, or delivered for introduction, into commerce in the U.S. prior to the effective date of the certificate.

<b>PSI</b> HEAVY-DUTY	Rev:			11.	1		
	Rev:		,				
	<u> </u>	E	1 L				
	Ur	nits		11.	1L		1
	Std	Metric	15	 i00		800	4
neral Engine Data	-						
Туре	N	√A		In-Line	4 cycle		
Number of cylinders		V/A			6		
Aspiration		N/A	Τυ	urbo Charg	e Air Coole	ed	1
Bore	in	mm	4.84	123	4.84	123	
Stroke	in	mm	6.1	155	6.1	155	1
Displacement	in^3	L	673	11.1	673	11.1	1
Compression Ratio	N/A			10	).5		1
Mean Piston Speed	ft/min	m/s	1525	7.75	1830	9.3	Rating
Gross Standby Power Rating ^{1,2,3} Per ISO 3046 at the Flywheel							I tating
NG	Нр	kW	268 <	200	315	235	
LP	Нр	kW	180	134	208	155	1
MEP (@ rated Load on NG)	psi	bar	210	14	206	14	
MEP (@ rated Load on LP)	psi	bar	141	10	136	9	
Gross Prime Power Rating ^{1,2,3} Per ISO 3046 at the Flywheel							
NG	Hp	kW	241	180	268	200	
LP	Нр	kW	162	121	177	132	
MEP (@ rated Load on NG)	psi	bar	189	13	175	12	
MEP (@ rated Load on LP)	psi	bar	127	8.7	115	8.0	
RPM Range (Min-Max)		PM		-	-2000	0.0	
Rotation Viewed from Flywheel		N/A		Counter C			-
Firing Order		V/A			-6-2-4		1
Dry Weight				100			1
Fan to Flywheel	lb	kg	2600	1179	2600	1179	1
Rad to Flywheel	lb	kg	3125	1417	3125	1417	1
Wet Weight			0.20		0.20		1
Fan to Flywheel	lb	kg	2695	1206	2695	2627	1
Rad to Flywheel	lb	kg	3377	1530	3377	1530	1
CG			0011	1000	0011	1000	1
Distance from FW housing	in	mm	24	605	24	605	1
Distance above center of crankshaft	in	mm	6	160	6	160	1
gine Mounting							1
Maximum Allowable Bending Moment at Rear of Block	lb ft	Nm	4425	6000	4425	6000	
Moment of Inertia About Roll Axis	lb ft^2						1
Flywheel housing		VA		SAE	No.1	1	1
Flywheel		V/A			. 14		1
Number of Flywheel Teeth		V/A			52		1
haust System							1
Type			V	Vater Cool	ed Manifol	d	1
Maximum allowable Back pressure	in HG	kPa	3	10.2	3	10.2	1
Standard Catalyst Back pressure	in HG		1.5	5.1	1.5	5.1	1
Exhaust Outlet Pipe Size		in u	1.0	0.1		0.1	Discharge
Maximum Turbine Inlet Temperature	F	С	1382	/ 750	1382	750	Loischarge
Exhaust Flow at Rated Power	lb/hr	kg/hr	1654	750	1869	848	1
Exhaust Flow at Rated Power @1350F	cfm	m^3/min		35.7	1425	40.3	1
Induction System	UIII		1201.13	00.1	1720	-0.0	1
							1
Maximum allowable Intake Air Restriction with Air Cleaner							4
Maximum allowable Intake Air Restriction with Air Cleaner	inH2O	kPa	5	1 2/	5	1 2/	
Clean	inH2O	kPa kPa	5	1.24	5	1.24	-
	inH2O inH2O Ib/hr		5 15 1561	1.24 3.74 708	5 15 1764	1.24 3.74 800	

<b>PSI</b> HEAVY-DUTY				11.	1L	
	-	E				
	Ur	nits		11.		
	Std	Metric	15	500	18	00
ectrical System						
Minimum Recommended Battery Capacity	A	λH		15	50	
Cold Cranking Current						
Engine only	С	CA		90	00	
Engine with Drive train	С	CA		90	00	
Maximum Allowable Resistance of Starting Circuit	Oł	nms		0.0	02	
Starting Motor Power	HP	kW	9.4	7	9.4	7
Battery Charging Alternator						
Voltage	Ve	olts		2	4	
Current		nps		4		
Coil primary Resistance		npo nms		0.59Ω	-	
Spark Plug p/n	01	1113		IFR7		
Spark ridg p/n	inches	mm	015" (	·0/+.008") .		1 2mm)
	inches	111111	.015 (•	-0/+.008 ) .	30mm (-0/-	+.2000)
oling System						
Coolant Capacity				05.0		05.0
Engine only	gal	L	5.5	25.0	5.5	25.0
Engine with Radiator	gal	L	23	105	23	105
Engine Coolant Flow	gal/min		69	260	82	310
Water Pump Speed		PM		362		35
Heat rejected to Cooling water at rated Load		kcal/sec	9285	39	11071	46.5
Maximum Intake Air Temperature (IAT)	F	С	155	68	155	68
ECU IAT Warning	F	С	140	60	140	60
ECU IAT Shutdown	F	С	155	69	155	69
Maximum Coolant Friction Head External to the engine	psi	bar	5.8	0.4	5.8	0.4
Maximum Air Restriction Across a Radiator	inH2O	mmH2O	0.5	12.8	0.5	12.8
Standard Thermostat Range						
Cracking Temperature	F	С	160	71	160	71
Full Open Temperature	F	С	185	85	185	85
Maximum Output Pressure of Engine Water Pump						
Maximum Allowable Pressure Cap	psi	bar	14.7	1	14.7	1
Ambient Clearance Open Genset (water) (Air-to-Boil)	- P0.	20.				
Specified	F	С	142	61	142	61
Acutal	F	C	172	01	150	66
Ambient Clearance (Oil)	- '	U			150	00
Specified	F	С	142	61	142	61
Acutal	F	C	142	01	142	59
	Г	U			139	59
CAC Rise over Ambient (Charge)	-	0	4.5		15	•
Specified	F	C	15	9	15	9
Acutal	F	С			4	2
Maximum Allowable Top Tank Temperature	F	C	230	110	230	110
ECU Warning	F	С	220	104	220	104
ECU Shutdown	F	С	230	110	230	110
Fan Power	HP	kW	5	4.0	9	6.7
Fan Diameter, including blades	in	mm	38	965	38	965
Fan Speed	R	PM	15	500	18	00
			15,429	437	18,000	51
Cooling Fan Air Flow @ 1" Static H2O Pressure and 125F @ radiator	CFM	m^3/min	10,429	437	10,000	5
Cooling Fan Air Flow @ 1" Static H2O Pressure and 125F @ radiator Charge Air Cooler	CFM	m^3/min	15,429	437	10,000	51
Charge Air Cooler	CFM F					
		m^3/min C kg/hr	235 1654	114 750	255 1869	125 848

<b>PSI</b> HEAVY-DUTY				11	11		
ΠΕΑΥΤ-ΟΟΙΤ	Rev:	E					
	Ur	Units		11	.1L		1
	Std	Metric	15	500	18	300	
ubrication System							
Oil Specification					Ash Gas e PI CD/CF (		
Oil Pressure							
Idle		-					4
Min	Psi	Bar	11	0.8	11	0.8	_
Max	Psi	Bar	20.3	1.4	20.3	1.4	-
Rated Speed			00.0		00.0		-
Min	Psi	Bar	20.3	1.4	20.3	1.4	4
Max Maximum Allowable Oil Temperature	Psi F	Bar C	70 250	4.8 121	70 250	4.8	-
Engine Oil Capacity	Г	U	200	121	200	121	-
Min	Qts	1	20	19	20	19	-
Max	Qts	L	26.5	25	26.5	25	-
Oil Filter Capacity	Qts	-	3.75	3.5	3.75	3.5	-
ECU Oil Pressure Warning ⁵	psi		0.10		30	0.0	1
ECU Oil Pressure Shut Down ⁵	psi				25		-
uel System	por			<u> </u>			<b></b>
Fuel Consumption ⁶							Fuel use
NG	Ft ³ /hr	kg/hr	2028	41	2431	49	
LP	Ft ³ /hr	kg/hr	591	32	706	38	4
Maximum EPR Rated Pressure	psi	kPa	1.0	6.9	1.0	6.9	4
Maximum Running pressure to Electronic Pressure Regulator (EPR)	inH2O	kPa	11.0	2.7	11.0	2.7	1
Minimum Running pressure to EPR	inH2O	kPa	7.0	1.7	7.0	1.7	1
Minimum Gas Supply Pipe Size			-		NPT	•	1
							1
Maximum EPR Rated Pressure	psi	kPa	1.0	6.9	1.0	6.9	1
Maximum Running Pressure to EPR	inH2O	kPa	11.0	2.7	11.0	2.7	]
Minimum Running Pressure to EPR	inH2O	kPa	7.0	1.7	7.0	1.7	]

Minimum LPG Supply Pipe Size⁴

¹Standby and overload ratings based on ISO3046.

 2  All ratings are gross flywheel horsepower corrected to  $77^\circ F$  at an altitude of 328feet with no cooling fan or alternator losses using heating value for NG of 1015 BTU/SCF.

³ Production tolerances in engines and installed components can account for power variations of +/- 5%. Altitude, temperature and excessive exhaust and intake restrictions should be applied

to power calculations. ⁴ The preceeding pipe sizes are only suggestions and piping sizes may vary with temperature, pressure, distance from supply and application of local codes. Gas must be available at adequate volume and pressure for engine at the EPR.

⁵ >1400RPM

⁶ See PSI HD Technical Spec. 56300002 - Fuel Specification. Gas properties for fuel consumption data: NG: Density =0.717 kg/m3, LHV = 927 BTU/scf; Propane: Density = 1.882 kg/m3, LHV = 2316 BTU/scf

2" NPT

# Table 1.4-1. EMISSION FACTORS FOR NITROGEN OXIDES (NOx) AND CARBON MONOXIDE (CO)FROM NATURAL GAS COMBUSTIONa

	NO _x ^b		(	CO
Combustor Type (MMBtu/hr Heat Input) [SCC]	Emission Factor (lb/10 ⁶ scf)	Emission Factor Rating	Emission Factor (lb/10 ⁶ scf)	Emission Factor Rating
Large Wall-Fired Boilers (>100) [1-01-006-01, 1-02-006-01, 1-03-006-01]				
Uncontrolled (Pre-NSPS) ^c	280	А	84	В
Uncontrolled (Post-NSPS) ^c	190	А	84	В
Controlled - Low NO _x burners	140	А	84	В
Controlled - Flue gas recirculation	100	D	84	В
Small Boilers (<100) [1-01-006-02, 1-02-006-02, 1-03-006-02, 1-03-006-03]				
Uncontrolled	100	В	84	В
Controlled - Low NO _x burners	50	D	84	В
Controlled - Low NO _x burners/Flue gas recirculation	32	С	84	В
Tangential-Fired Boilers (All Sizes) [1-01-006-04]				
Uncontrolled	170	А	24	С
Controlled - Flue gas recirculation	76	D	98	D
Residential Furnaces (<0.3) [No SCC]				
Uncontrolled	94	В	40	В

^a Reference 11. Units are in pounds of pollutant per million standard cubic feet of natural gas fired. To convert from  $lb/10^{6}$  scf to  $kg/10^{6}$  m³, multiply by 16. Emission factors are based on an average natural gas higher heating value of 1,020 Btu/scf. To convert from  $1b/10^{6}$  scf to lb/MMBtu, divide by 1,020. The emission factors in this table may be converted to other natural gas heating values by multiplying the given emission factor by the ratio of the specified heating value to this average heating value. SCC = Source Classification Code. ND = no data. NA = not applicable. ^b Expressed as NO₂. For large and small wall fired boilers with SNCR control, apply a 24 percent reduction to the appropriate NO x emission factor. For

^b Expressed as NO₂. For large and small wall fired boilers with SNCR control, apply a 24 percent reduction to the appropriate NO x emission factor. For tangential-fired boilers with SNCR control, apply a 13 percent reduction to the appropriate NO x emission factor.
 ^c NSPS=New Source Performance Standard as defined in 40 CFR 60 Subparts D and Db. Post-NSPS units are boilers with greater than 250 MMBtu/hr of

^c NSPS=New Source Performance Standard as defined in 40 CFR 60 Subparts D and Db. Post-NSPS units are boilers with greater than 250 MMBtu/hr of heat input that commenced construction modification, or reconstruction after August 17, 1971, and units with heat input capacities between 100 and 250 MMBtu/hr that commenced construction modification, or reconstruction after June 19, 1984.

1.4-5

Pollutant	Emission Factor (lb/10 ⁶ scf)	Emission Factor Rating
CO ₂ ^b	120,000	А
Lead	0.0005	D
N ₂ O (Uncontrolled)	2.2	Е
N ₂ O (Controlled-low-NO _X burner)	0.64	Е
PM (Total) ^c	7.6	D
PM (Condensable) ^c	5.7	D
PM (Filterable) ^c	1.9	В
$SO_2^{d}$	0.6	А
TOC	11	В
Methane	2.3	В
VOC	5.5	С

# TABLE 1.4-2. EMISSION FACTORS FOR CRITERIA POLLUTANTS AND GREENHOUSE GASES FROM NATURAL GAS COMBUSTION^a

^a Reference 11. Units are in pounds of pollutant per million standard cubic feet of natural gas fired. Data are for all natural gas combustion sources. To convert from  $lb/10^6$  scf to  $kg/10^6$  m³, multiply by 16. To convert from  $lb/10^6$  scf to 1b/MMBtu, divide by 1,020. The emission factors in this table may be converted to other natural gas heating values by multiplying the given emission factor by the ratio of the specified heating value to this average heating value. TOC = Total Organic Compounds. VOC = Volatile Organic Compounds.

- ^b Based on approximately 100% conversion of fuel carbon to  $CO_2$ .  $CO_2[lb/10^6 \text{ scf}] = (3.67)$  (CON) (C)(D), where CON = fractional conversion of fuel carbon to  $CO_2$ , C = carbon content of fuel by weight (0.76), and D = density of fuel,  $4.2 \times 10^4 \text{ lb}/10^6 \text{ scf}$ .
- ^c All PM (total, condensible, and filterable) is assumed to be less than 1.0 micrometer in diameter. Therefore, the PM emission factors presented here may be used to estimate  $PM_{10}$ ,  $PM_{2.5}$  or  $PM_1$  emissions. Total PM is the sum of the filterable PM and condensible PM. Condensible PM is the particulate matter collected using EPA Method 202 (or equivalent). Filterable PM is the particulate matter collected on, or prior to, the filter of an EPA Method 5 (or equivalent) sampling train.

^d Based on 100% conversion of fuel sulfur to  $SO_2$ . Assumes sulfur content is natural gas of 2,000 grains/10⁶ scf. The  $SO_2$  emission factor in this table can be converted to other natural gas sulfur contents by multiplying the  $SO_2$  emission factor by the ratio of the site-specific sulfur content (grains/10⁶ scf) to 2,000 grains/10⁶ scf. loading operation, resulting in high levels of vapor generation and loss. If the turbulence is great enough, liquid droplets will be entrained in the vented vapors.

A second method of loading is submerged loading. Two types are the submerged fill pipe method and the bottom loading method. In the submerged fill pipe method, the fill pipe extends almost to the bottom of the cargo tank. In the bottom loading method, a permanent fill pipe is attached to the cargo tank bottom. During most of submerged loading by both methods, the fill pipe opening is below the liquid surface level. Liquid turbulence is controlled significantly during submerged loading, resulting in much lower vapor generation than encountered during splash loading.

The recent loading history of a cargo carrier is just as important a factor in loading losses as the method of loading. If the carrier has carried a nonvolatile liquid such as fuel oil, or has just been cleaned, it will contain vapor-free air. If it has just carried gasoline and has not been vented, the air in the carrier tank will contain volatile organic vapors, which will be expelled during the loading operation along with newly generated vapors.

Cargo carriers are sometimes designated to transport only one product, and in such cases are practicing "dedicated service". Dedicated gasoline cargo tanks return to a loading terminal containing air fully or partially saturated with vapor from the previous load. Cargo tanks may also be "switch loaded" with various products, so that a nonvolatile product being loaded may expel the vapors remaining from a previous load of a volatile product such as gasoline. These circumstances vary with the type of cargo tank and with the ownership of the carrier, the petroleum liquids being transported, geographic location, and season of the year.

One control measure for vapors displaced during liquid loading is called "vapor balance service", in which the cargo tank retrieves the vapors displaced during product unloading at bulk plants or service stations and transports the vapors back to the loading terminal. Figure 5.2-5 shows a tank truck in vapor balance service filling a service station underground tank and taking on displaced gasoline vapors for return to the terminal. A cargo tank returning to a bulk terminal in vapor balance service normally is saturated with organic vapors, and the presence of these vapors at the start of submerged loading of the tanker truck results in greater loading losses than encountered during nonvapor balance, or "normal", service. Vapor balance service is usually not practiced with marine vessels, although some vessels practice emission control by means of vapor transfer within their own cargo tanks during ballasting operations, discussed below.

Emissions from loading petroleum liquid can be estimated (with a probable error of  $\pm 30$  percent)⁴ using the following expression:

$$L_{\rm L} = 12.46 \ \frac{\rm SPM}{\rm T} \tag{1}$$

where:

- $L_L$  = loading loss, pounds per 1000 gallons (lb/10³ gal) of liquid loaded
- S = a saturation factor (see Table 5.2-1)
- P = true vapor pressure of liquid loaded, pounds per square inch absolute (psia) (see Figure 7.1-5, Figure 7.1-6, and Table 7.1-2)
- M = molecular weight of vapors, pounds per pound-mole (lb/lb-mole) (see Table 7.1-2)
- T = temperature of bulk liquid loaded,  $^{\circ}$ R ( $^{\circ}$ F + 460)

1/95

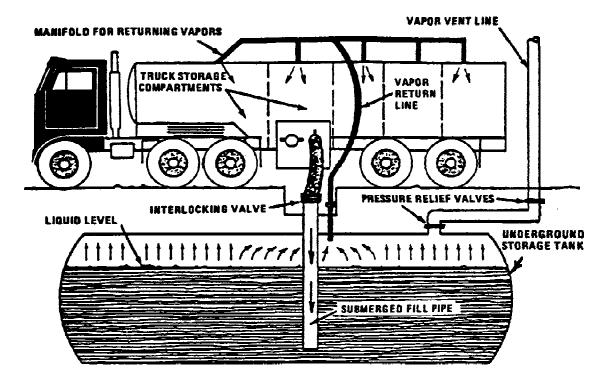



Figure 5.2-5. Tank truck unloading into a service station underground storage tank and practicing "vapor balance" form of emission control.

# Table 5.2-1. SATURATION (S) FACTORS FOR CALCULATING PETROLEUM LIQUID LOADING LOSSES

Cargo Carrier	Mode Of Operation	S Factor
Tank trucks and rail tank cars	Submerged loading of a clean cargo tank	0.50
	Submerged loading: dedicated normal service	0.60
	Submerged loading: dedicated vapor balance service	1.00
	Splash loading of a clean cargo tank	1.45
	Splash loading: dedicated normal service	1.45
	Splash loading: dedicated vapor balance service	1.00
Marine vessels ^a	Submerged loading: ships	0.2
	Submerged loading: barges	0.5

^a For products other than gasoline and crude oil. For marine loading of gasoline, use factors from Table 5.2-2. For marine loading of crude oil, use Equations 2 and 3 and Table 5.2-3.

## **Development of TNRCC Emission Factors**

In 1994, the TNRCC published emission factors primarily based on statistical data from the original study performed by the CMA and EPA in 1983. To achieve higher accuracy for estimating actual emissions from elevated flares, the TNRCC emission factors accounted for the flare type and lower heating value of the relief gas. The emission factors developed by the TNRCC are shown below in Table 1.

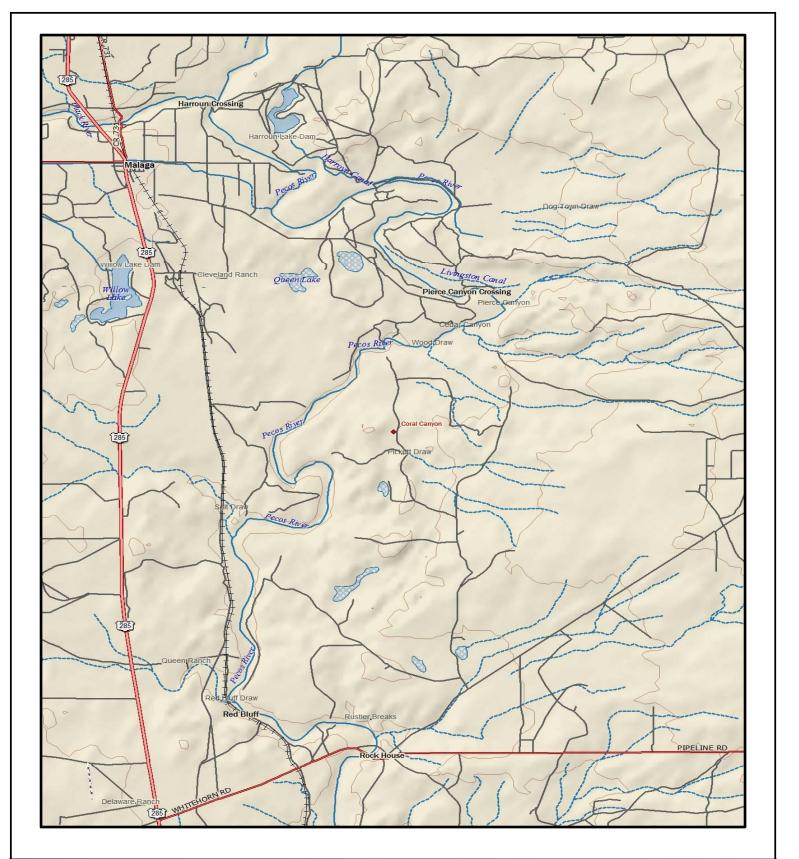
Table 1. Emission factors developed by the TNRCC for NOx and CO						
Туре	Waste Gas	NOx Ib/MM Btu of Waste Gas	CO Ib/MM Btu of Waste Gas			
Steam-Assisted	High Btu (>1000/scf	0.0485	0.3503			
Steam-Assisted	Low Btu (192-1000/scf)	0.0680	0.3465			
Air and Non-Assisted	High Btu (>1000/scf	0.1380	0.2755			
Air and Non-Assisted	Low Btu (184-1000/scf)	0.0641	0.5496			

Upon reviewing the statistical data collected during the CMA testing, the emission factors shown in Table 1 reflect an average of the derived  $NO_x$  and CO emission factors pertaining to the flare type and lower heating value of the relief gas. When calculating the emission factors for steam-assisted flares relieving a low Btu waste gas and air-assisted flares relieving a high Btu waste gas, all test data collected during the CMA testing was included in the average of the derived emission factors.

In order to calculate emission factors for the remaining categories, multiple tests had to be disregarded due to various reasons. For instance, during testing in the high Btu steam-assisted category, the emission probe was placed into the flare flame during test 67, resulting in a substantial increase in the concentration level of both THC and carbon monoxide. During tests 61 and 55, it was noted that the flare was capped by the assist steam, contributing to destruction efficiencies well below 98%. Omitting tests 67, 61 and 55 from the high Btu steam-assisted waste gas data, the average of the derived NO_x and CO emission factor of the remaining tests resulted in the values shown above in Table 1.

To calculate the emission factor for air and non-assisted flares relieving low Btu waste gas, certain CMA test data were excluded in the calculation performed by TNRCC. Upon detailed review of the CMA test data, one possible method for calculating the emission factors in Table 1 entails disregarding tests 66, 29, 29a, 29b, and 62. Reasoning for this assumption may be due to the lower heating value of the relief gas being below 184 Btu/SCF. However, data from test 33 appears to be included in the overall average

Tab 8 Section 8 - Map(s)


# Section 8

# Map(s)

<u>A map</u> such as a 7.5 minute topographic quadrangle showing the exact location of the source. The map shall also include the following:

The UTM or Longitudinal coordinate system on both axes	An indicator showing which direction is north
A minimum radius around the plant of 0.8km (0.5 miles)	Access and haul roads
Topographic features of the area	Facility property boundaries
The name of the map	The area which will be restricted to public access
A graphical scale	

A site location map and aerial image illustrating access roads are provided.



KEY:

PROJECT	14204.1			
PREPARED FOR	XTO Energy,	Inc.		
LOCATION	32.1519N, 10	)3.9982W		GENERAL VICINITY MAP
SHEET 1 of 1	<b>DRAWN BY</b> ET	<b>REVIEWED BY</b> TLJ	<b>DATE</b> 3/4/15	Coral Canyon Tank Battery



# **Corral Canyon Tank Battery**

Aerial Image with Access Roads

Legend Corral Canyon CTB

> ^ N

4000 ft

Corral Canyon CLB

-16 - 14.5

Google Earth

S 2018 Google 👘

Tab 9Section 9 - Proof of Public Notice

# Section 9

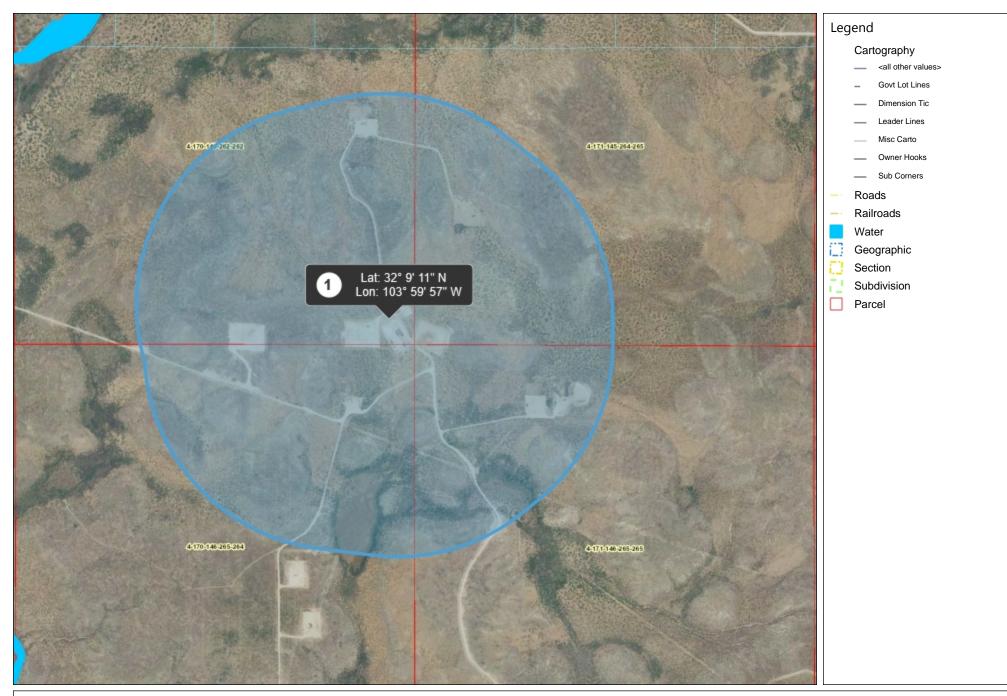
## **Proof of Public Notice**

(for NSR applications submitting under 20.2.72 or 20.2.74 NMAC) (This proof is required by: 20.2.72.203.A.14 NMAC "Documentary Proof of applicant's public notice")

☑ I have read the AQB "Guidelines for Public Notification for Air Quality Permit Applications" This document provides detailed instructions about public notice requirements for various permitting actions. It also provides public notice examples and certification forms. Material mistakes in the public notice will require a re-notice before issuance of the permit.

Unless otherwise allowed elsewhere in this document, the following items document proof of the applicant's Public Notification. Please include this page in your proof of public notice submittal with checkmarks indicating which documents are being submitted with the application.

New Permit and Significant Permit Revision public notices must include all items in this list.


Technical Revision public notices require only items 1, 5, 9, and 10.

Per the Guidelines for Public Notification document mentioned above, include:

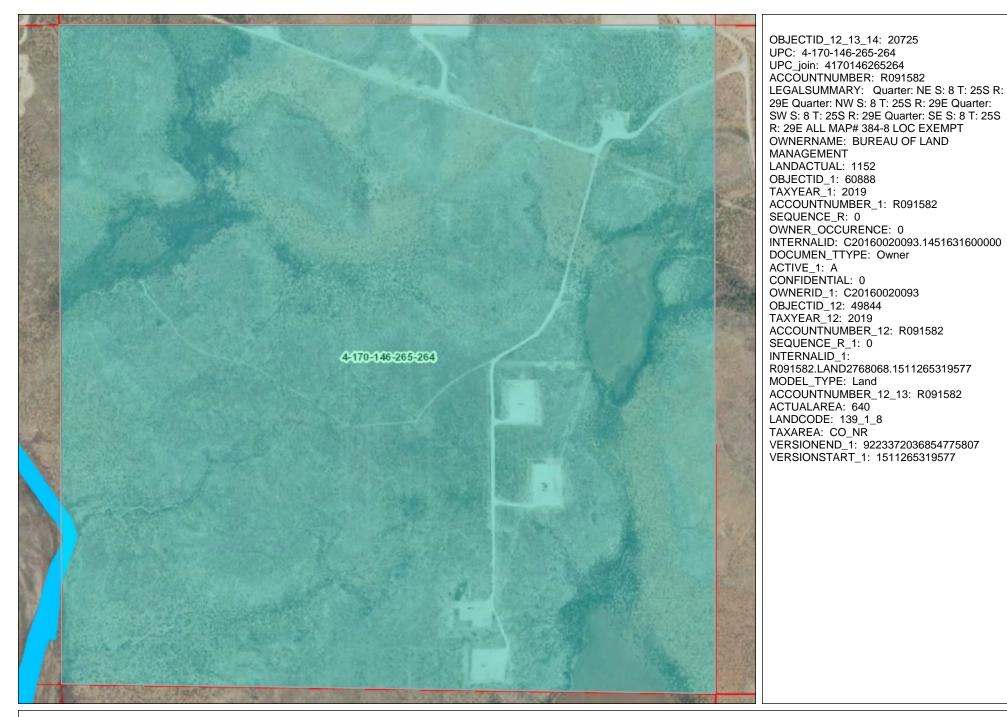
- 1. Z A copy of the certified letter receipts with post marks (20.2.72.203.B NMAC)
- 2. ☑ A list of the places where the public notice has been posted in at least four publicly accessible and conspicuous places, including the proposed or existing facility entrance. (e.g: post office, library, grocery, etc.)
  - a. Site
  - b. Albertson's Carlsbad
  - c. Carlsbad Post Office
  - d. Carlsbad Library
- 3.  $\blacksquare$  A copy of the property tax record (20.2.72.203.B NMAC).
- 4.  $\blacksquare$  A sample of the letters sent to the owners of record.
- 5. Z A sample of the letters sent to counties, municipalities, and Indian tribes.
- 6.  $\blacksquare$  A sample of the public notice posted and a verification of the local postings.
- 7. 🗹 A table of the noticed citizens, counties, municipalities and tribes and to whom the notices were sent in each group.
  - a. BLM Federal Official
  - b. Eddy County County Manager
- 8. Z A copy of the public service announcement (PSA) sent to a local radio station and documentary proof of submittal.
- 9. ☑ A copy of the <u>classified or legal</u> ad including the page header (date and newspaper title) or its affidavit of publication stating the ad date, and a copy of the ad. When appropriate, this ad shall be printed in both English and Spanish.
- 10. A copy of the <u>display</u> ad including the page header (date and newspaper title) or its affidavit of publication stating the ad date, and a copy of the ad. When appropriate, this ad shall be printed in both English and Spanish.
- 11. A map with a graphic scale showing the facility boundary and the surrounding area in which owners of record were notified by mail. This is necessary for verification that the correct facility boundary was used in determining distance for notifying land owners of record.

5	CERTIFIED MAIL® RECEIPT
-	
L L	For delivery information, visit our website at www.usps.com . CARLSB6D ; NM 88220
r	UFFICIAL USE
5.5	Certified Mall Fee \$3.50 0425
-	Extra Services & Fees (check box, add fee as approvide)
0000	
	Adult Signature Required \$ \$0.00 2
-	Adult Signature Restricted Delivery \$
BHDE	\$0.55
H	Total Postage and Fees \$4.05
-	P
7017	Sont To Eddy County Manager
2	Street and Apt. No., or NO Box No.
	City State, 210+48 W. Greene St
	Carlsbard, NM 88220
	L CARISDER, NOT OUCEU
	PS Form 3800, April 2015 PSN 7530-02-000-9047 See Reverse for Instructions
TO	
TUT	PS Form 3800, April 2015 PSN 7830-02-000-9047 See Reverse for Instructions U.S. Postal Service [™] CERTIFIED MAIL [®] RECEIPT Domestic Mail Only
14	PS Form 3800, April 2015 PSN 7830-02-000-9047 See Reverse for Instructions U.S. Postal Service [™] CERTIFIED MAIL [®] RECEIPT Domestic Mail Only For delivery information, visit our website at www.usps.com [®] . CARLSBAD, NN 88220 ALUSE
0 1 1 L	PS Form 3800, April 2015 PSN 7530-02-000-9047 See Reverse for Instructions U.S. Postal Service [™] CERTIFIED MAIL [®] RECEIPT Domestic Mail Only For delivery information, visit our website at www.usps.com [®] . CARCSBAD, NN 88220 ALUSE
17017	PS Form 3800, April 2015 PSN 7530-02-000-9047 See Reverse for Instructions U.S. Postal Service [™] CERTIFIED MAIL [®] RECEIPT Domestic Mail Only For delivery information, visit our website at www.usps.com [®] . CARCSBAD, NN 88220 ALUSE Certified Mail Fee \$3.50 0425 07
17017	PS Form 3800, April 2015 PSN 7830-02-000-9047 See Reverse for Instructions U.S. Postal Service [™] CERTIFIED MAIL [®] RECEIPT Domestic Mail Only For delivery information, visit our website at www.usps.com [®] . CARCSBAD, NN 88220 ALUSE Certified Mail Fee \$3.50 0425
17017	PS Form 3800, April 2015 PSN 7530-02-000-9047 See Reverse for Instructions U.S. Postal Service [™] CERTIFIED MAIL [®] RECEIPT Domestic Mail Only For delivery information, visit our website at www.usps.com [®] . CARCSBAD , INI 88220 A L USE Certified Mail Fee \$3.50 \$
17017	PS Form 3800, April 2015 PSN 7830-02-000-9047 See Reverse for Instructions U.S. Postal Service [™] CERTIFIED MAIL® RECEIPT Domestic Mail Only  For delivery information, visit our website at www.usps.com [®] . CARCSBAD, NN 88220 ALUSE Certified Mail Fee \$3.50 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 0425 \$ 04
17017	PS Form 3800, April 2015 PSN 7530-02-000-9047 See Reverse for Instructions U.S. Postal Service [™] CERTIFIED MAIL [®] RECEIPT Domestic Mail Only For delivery information, visit our website at www.usps.com [®] . CARCSBAD , INI 88220 A L USE Certified Mail Fee \$3.50 \$
יר ימכר טטטט	PS Form 3800, April 2015 PSN 7530-02-000-9047 U.S. Postal Service TM CERTIFIED MAIL® RECEIPT Domestic Mail Only For delivery information, visit our website at www.usps.com CARESBAD ; NM 88220 A LUSE Certified Mail Fee \$3.50 Postner Return Receipt (hardcopy) Return Receipt (hardcopy) Return Receipt (electronic) Return Receipt (electronic) Return Receipt (electronic) Return Receipt (electronic) Return Receipt (electronic) Return Receipt (electronic) Adult Signature Restricted Delivery \$ Adult Signature Restricted Delivery \$ Postnere
יר ימכר טטטט	PS Form 3800, April 2015 PSN 7530-02-000-9047 U.S. Postal Service [™] CERTIFIED MAIL® RECEIPT Domestic Mail Only Tor delivery information, visit our website at www.usps.com CARLSBAD, NM 88220 ALUSE Certified Mail Fee \$3.50 Certified Mail Restricted Delivery \$50.000 Certified Mail Restricted Delivery \$0.55 Certified Mail Fee \$0.55 Certified Mail Fee \$20.55 Certified Mail Fee \$
יר ימכר טטטט	PS Form 3800, April 2015 PSN 7530-02-000-9047 U.S. Postal Service [™] CERTIFIED MAIL® RECEIPT Domestic Mail Only For delivery information, visit our website at www.usps.com CARLSBAD, NM 88220 A LOSE Certified Mail Fee \$3.50 Certified Mail Fee \$3.50 \$0.425 \$0.000 Beaum Receipt (stectrond) Beaum Receipt (s
14 1944 NUNU NANG	PS Form 3800, April 2015 PSN 7530-02-000-9047 U.S. Postal Service [™] CERTIFIED MAIL® RECEIPT Domestic Mail Only For delivery information, visit our website at www.usps.com [®] . CARUSBAD, MIL 38220 ALUSE Certified Mail Fee \$3.50 Certified Mail Fee \$3.50 Certified Mail Reservices & Fees (sheek box, add fee at the deliver) Return Receipt (sectronic) Return Receipt (sectronic) Certified Mail Restricted Delivery Certified Mail Restricted Delivery Certified Mail Restricted Delivery Certified Mail Restricted Delivery Contai Signature Restricted Delivery State Signature Restricted Delivery Certified Mail Restricted Delivery State Signature Restricted Delive
The rost none under a	PS Form 3800, April 2015 PSN 7830-02-000-9047 U.S. Postal Service TM CERTIFIED MAIL® RECEIPT Domestic Mail Only For delivery information, visit our website at www.usps.com CARLSBAD ; NM 38220 A L USE Certified Mail Fee \$3.50 Certified Mail Fee \$3.50 Certified Mail Reseipt (block box, add fee af to the day Return Receipt (block box, add fee af to the day Return Receipt (block box, add fee af to the day Return Receipt (block box, add fee af to the day Return Receipt (block box, add fee af to the day Return Receipt (block box, add fee af to the day Return Receipt (block box, add fee af to the day Return Receipt (block box, add fee af to the day Return Receipt (block box, add fee af to the day Return Receipt (block box, add fee af to the day Return Receipt (block box, add fee af to the day Return Receipt (block box, add fee af to the day Return Receipt (block box, add fee af to the day Return Receipt (block box, add fee af to the day Return Receipt (block box, add fee af to the day Return Receipt (block box, add fee af to the day Return Receipt (block box, add fee af to the day Return Receipt (block box, add fee af to the day Return Receipt (block box, add fee af to the day Return Receipt (block box, add fee af to the day Return Receipt (block box, add fee af to the day Return Receipt (block box, add fee af to the day Return Receipt (block box, add fee af to the day Return Receipt (block box, add fee af to the day Return Receipt (block box, add fee af to the day Return Receipt (block box, add fee af to the day Return Receipt (block box, add fee af to the day Return Receipt (block box, add fee af to the day Return Receipt (block box, add fee af to the day Return Receipt (block box, add fee af to the day Return Receipt (block box, add fee af to the day Return Receipt (block box, add fee af to the day Return Receipt (block box, add fee af to the day Return Receipt (block box, add fee af to the day Return Receipt (block box, add fee af to the day Return Receipt (block box,
The Jack noun utue hard	PS Form 3800, April 2015 PSN 7830-02-000-9047 U.S. Postal Service TM CERTIFIED MAIL® RECEIPT Domestic Mail Only For delivery information, visit our website at www.usps.com CARLSBAD; NN 38220 A USE Certified Mail Fee \$3.50 Certified Mail Fee \$3.50 Certified Mail Restricted Delivery Return Receipt (electronic) Return Receipt (electronic) Certified Mail Restricted Delivery Adult Signature Restricted Delivery \$40.05 Services & Fees \$4.05
לה ומכר טטטט טיטכ ועטו	PS Form 3800, April 2015 PSN 7830-02-000-9047 U.S. Postal Service TM CERTIFIED MAIL® RECEIPT Domestic Mail Only Tor delivery information, visit our website at www.usps.com CARUSBAD, M1 88220 ALUSE Certified Mail Fee \$3.50 Certified Mail Fee \$3.50 Certified Mail Fee \$3.50 Certified Mail Restricted Delivery Beturn Receipt (electronic) Certified Mail Restricted Delivery Certified Mail Restricted Delivery Certified Mail Restricted Delivery Certified Mail Restricted Delivery Certified Mail Restricted Delivery Sub 000 Sector 200 Sector
יר זמכר טטטט טרטכ זעטו	PS Form 3800, April 2015 PSN 7830-02-000-9047 U.S. Postal Service TM CERTIFIED MAIL® RECEIPT Domestic Mail Only For delivery information, visit our website at www.usps.com CARLSBAD; NN 38220 A USE Certified Mail Fee \$3.50 Certified Mail Fee \$3.50 Certified Mail Restricted Delivery Return Receipt (electronic) Return Receipt (electronic) Certified Mail Restricted Delivery Adult Signature Restricted Delivery \$40.05 Services & Fees \$4.05

חחחה הוחר רוחר



Corral Canyon Surrounding Properties Web Print: 11/08/2019


This map is a user generated static output from an Internet mapping site and is for reference only. Data layers that appear on this map may or may not be accurate, current, or otherwise reliable.

0

1,505 3,009 Feet

©2019 Sidwell. All rights reserved.











November 21, 2019

Certified Mail 7017 3040 0000 9587 9701

Bureau of Land Management 620 Greene St. Suite 110 Carlsbad, New Mexico 88220-6292

## RE: NSR Permit Application Corral Canyon Tank Battery XTO Energy Inc.

Dear County Manager,

In accordance with the application requirements of 20.2.72 NMAC, XTO Energy Inc. is providing notification of the planned construction of the Corral Canyon Tank Battery on your property in Eddy County, NM. A public notice will be posted in the Carlsbad Current Argus newspaper, at the proposed site location, and three other locations in Carlsbad, NM. A copy of the notice is attached. Please contact me at (865) 8502007 or etullos@pei-tx.com should you have any questions.

Sincerely,

varfullo

Evan Tullos Vice President

Attachment: Public Notice



November 21, 2019

Certified Mail 7017 3040 0000 9587 9695

Eddy County 101 W. Greene St. Suite 110 Carlsbad, New Mexico 88220

## RE: NSR Permit Application Corral Canyon Tank Battery XTO Energy Inc.

Dear County Manager,

In accordance with the application requirements of 20.2.72 NMAC, XTO Energy Inc. is providing notification of the planned construction of the Corral Canyon Tank Battery in Eddy County, NM. A public notice will be posted in the Carlsbad Current Argus newspaper, at the proposed site location, and three other locations in Carlsbad, NM. A copy of the notice is attached. Please contact me at (865) 8502007 or etullos@pei-tx.com should you have any questions.

Sincerely,

varfullos

Evan Tullos Vice President

Attachment: Public Notice

## NOTICE OF AIR QUALITY PERMIT APPLICATION

XTO Energy Inc. announces its application to the New Mexico Environment Department for an air quality permit for the modification of a tank battery. The application will be submitted to the Air Quality Bureau around November 22, 2019. The exact location for the facility known as the Corral Canyon Tank Battery will be latitude 32 deg, 09 min, 11 sec and longitude -103 deg, 59 min, 57 sec. The approximate location of this facility is 7 miles southeast of Malaga in Eddy County, New Mexico. The facility is a typical tank battery with storage tanks, separation equipment, and flares. The permit is being updated to include produced gas flaring and remove certain equipment.

The estimated maximum quantities of any regulated air contaminants will be as follows in pound per hour (pph) and tons per year (tpy). These reported emissions could change slightly during the course of the Department's review:

Pollutant:	Pounds per hour	Tons per year
Total Suspended Particulates (TSP)	25	5
PM 10	25	5
PM 2.5	25	5
Sulfur Dioxide (SO ₂ )	5	2
Nitrogen Oxides (NO _x )	550	90
Carbon Monoxide (CO)	1100	170
Volatile Organic Compounds (VOC)	1100	245
Total sum of all Hazardous Air Pollutants (HAPs)	45	12
Toxic Air Pollutant (TAP)	n/a	n/a
Green House Gas Emissions as Total CO2e	n/a	< 75,000

The standard and maximum operating schedule of the facility will be 24 hours per day, 7 days a week and a maximum of 52 weeks per year. The owner and/or operator of the Facility is: XTO Energy, Inc.; 22777 Springwoods Village Pkwy-W4.6B.344; Spring, Texas 77389.

If you have any comments about the construction or operation of this facility, and you want your comments to be made as part of the permit review process, you must submit your comments in writing to this address: Permit Programs Manager; New Mexico Environment Department; Air Quality Bureau; 525 Camino de los Marquez, Suite 1; Santa Fe, New Mexico; 87505-1816; (505) 476-4300; 1 800 224-7009; <u>https://www.env.nm.gov/aqb/permit/aqb_draft_permits.html</u>. Other comments and questions may be submitted verbally.

With your comments, please refer to the company name and facility name, or send a copy of this notice along with your comments. This information is necessary since the Department may have not yet received the permit application. Please include a legible return mailing address. Once the Department has completed its preliminary review of the application and its air quality impacts, the Department's notice will be published in the legal section of a newspaper circulated near the facility location.

#### Attención

Este es un aviso de la oficina de Calidad del Aire del Departamento del Medio Ambiente de Nuevo México, acerca de las emisiones producidas por un establecimiento en esta área. Si usted desea información en español, por favor comuníquese con esa oficina al teléfono 505-476-5557.

#### Notice of Non-Discrimination

NMED does not discriminate on the basis of race, color, national origin, disability, age or sex in the administration of its programs or activities, as required by applicable laws and regulations. NMED is responsible for coordination of compliance efforts and receipt of inquiries concerning non-discrimination requirements implemented by 40 C.F.R. Part 7, including Title VI of the Civil Rights Act of 1964, as amended; Section 504 of the Rehabilitation Act of 1973; the Age Discrimination Act of 1975, Title IX of the Education Amendments of 1972, and Section 13 of the Federal Water Pollution Control Act Amendments of 1972. If you have any questions about this notice or any of NMED's non-discrimination programs, policies or procedures, or if you believe that you have been discriminated against with respect to a NMED program or activity, you may contact: Kristine Yurdin, Non-Discrimination Coordinator, NMED, 1190 St. Francis Dr., Suite N4050, P.O. Box 5469, Santa Fe, NM 87502, (505) 827-2855, nd.coordinator@state.nm.us. You may also visit our website at https://www.env.nm.gov/non-employee-discrimination-complaint-page/ to learn how and where to file a complaint of discrimination.

# NOTICE

XTO Energy Inc. announces its application to the New Mexico Environment Department for an air quality permit for the modification of a tank battery. The application will be submitted to the Air Quality Bureau around November 22, 2019. The exact location for the facility known as the Corral Canyon Tank Battery will be latitude 32 deg, 09 min, 11 sec and longitude -103 deg, 59 min, 57 sec. The approximate location of this facility is 7 miles southeast of Malaga in Eddy County, New Mexico. The facility is a typical tank battery with storage tanks, separation equipment, and flares. The permit is being updated to include produced gas flaring and remove certain equipment.

The estimated maximum quantities of any regulated air contaminants will be as follows in pound per hour (pph) and tons per year (tpy). These reported emissions could change slightly during the course of the Department's review:

Pollutant:	Pounds per hour	Tons per year
Total Suspended Particulates (TSP)	25	5
PM 10	25	5
PM _{2.5}	25	5
Sulfur Dioxide (SO ₂ )	5	2
Nitrogen Oxides (NO _x )	550	90
Carbon Monoxide (CO)	1100	170
Volatile Organic Compounds (VOC)	1100	245
Total sum of all Hazardous Air Pollutants (HAPs)	45	12
Toxic Air Pollutant (TAP)	n/a	n/a
Green House Gas Emissions as Total CO2e	n/a	< 75,000

The standard and maximum operating schedule of the facility will be 24 hours per day, 7 days a week and a maximum of 52 weeks per year. The owner and/or operator of the Facility is: XTO Energy, Inc.; 22777 Springwoods Village Pkwy-W4.6B.344; Spring, Texas 77389.

If you have any comments about the construction or operation of this facility, and you want your comments to be made as part of the permit review process, you must submit your comments in writing to this address: Permit Programs Manager; New Mexico Environment Department; Air Quality Bureau; 525 Camino de los Marquez, Suite 1; Santa Fe, New Mexico; 87505-1816; (505) 476-4300; 1 800 224-7009; <u>https://www.env.nm.gov/aqb/permit/aqb_draft_permits.html</u>. Other comments and questions may be submitted verbally.

With your comments, please refer to the company name and facility name, or send a copy of this notice along with your comments. This information is necessary since the Department may have not yet received the permit application. Please include a legible return mailing address. Once the Department has completed its preliminary review of the application and its air quality impacts, the Department's notice will be published in the legal section of a newspaper circulated near the facility location.

#### Attención

Este es un aviso de la oficina de Calidad del Aire del Departamento del Medio Ambiente de Nuevo México, acerca de las emisiones producidas por un establecimiento en esta área. Si usted desea información en español, por favor comuníquese con esa oficina al teléfono 505-476-5557.

#### **Notice of Non-Discrimination**

NMED does not discriminate on the basis of race, color, national origin, disability, age or sex in the administration of its programs or activities, as required by applicable laws and regulations. NMED is responsible for coordination of compliance efforts and receipt of inquiries concerning non-discrimination requirements implemented by 40 C.F.R. Part 7, including Title VI of the Civil Rights Act of 1964, as amended; Section 504 of the Rehabilitation Act of 1973; the Age Discrimination Act of 1975, Title IX of the Education Amendments of 1972, and Section 13 of the Federal Water Pollution Control Act Amendments of 1972. If you have any questions about this notice or any of NMED's non-discrimination programs, policies or procedures, or if you believe that you have been discriminated against with respect to a NMED program or activity, you may contact: Kristine Yurdin, Non-Discrimination Coordinator, NMED, 1190 St. Francis Dr., Suite N4050, P.O. Box 5469, Santa Fe, NM 87502, (505) 827-2855, nd.coordinator@state.nm.us. You may also visit our website at https://www.env.nm.gov/non-employee-discrimination-complaint-page/ to learn how and where to file a complaint of discrimination.

## <u>Submittal of Public Service Announcement – Certification</u>

I, _Evan Tullos, the undersigned, certify that on **November 21, 2019**, submitted a public service announcement to **Carlsbad Radio** that serves Carlsbad, **Eddy** County, New Mexico, in which the source is or is proposed to be located and that Carlsbad Radio did not respond regarding the airing of the announcement.

Signed this 22nd day of November	, 2019 ,
Evan Jullos	11/22/19
Signature	Date

Evan Tullos Printed Name Vice President Title

## **Evan Tullos**

From:	Evan Tullos
Sent:	Thursday, November 21, 2019 2:12 PM
То:	'psa@carlsbadradio.com'
Subject:	Request for PSA
Attachments:	Public Service Announcement_XTO Corral.pdf

Please note the attached request for PSA. Thank you.

## EVAN TULLOS



- m: (865) 850-2007
- e: etullos@pei-tx.com
- w: www.pei-tx.com

November 21, 2019

KATK 92.1 FM (575) 887-7000

Re: Public Service Announcement

As part of the air quality permitting process in New Mexico, applicants for certain air permits must attempt to provide notice to the public of the proposed permit action via public service announcement (PSA). The announcement is attached. Will you air the PSA? Thank you.

Evan Tullos PEI (865) 850-2007

### NOTICE OF AIR QUALITY PERMIT APPLICATION

XTO Energy Inc. announces its application to the New Mexico Environment Department for an air quality permit for the modification of a tank battery. The application will be submitted to the Air Quality Bureau around November 7, 2019. The exact location for the facility known as the Corral Canyon will be latitude 32 deg, 09 min, 11 sec and longitude -103 deg, 59 min, 57 sec. The approximate location of this facility is 7 miles southeast of Malaga in Eddy County, New Mexico. The facility is a typical tank battery with storage tanks, separation equipment, and flares. The permit is being updated to include produced gas flaring and update onsite equipment.

The notice was posted at the facility and three other public locations in Carlsbad such as the library, post office, and grocery store. If you have any comments about the construction or operation of the above facility, and you want your comments to be made as part of the permit review process, you must submit your comments in writing to the address below:

Permit Programs Manager New Mexico Environment Department Air Quality Bureau 525 Camino de los Marquez, Suite 1 Santa Fe, New Mexico 87505-1816 (505) 476-4300

# CURRENT-ARGUS

### AFFIDAVIT OF PUBLICATION

Ad No. GCI0311688

PORTNOY ENVIRONMENTAL, INC 5 CARDINAL CT EDWARDSVILLE, IL 62025

I, a legal clerk of the Carlsbad Current-Argus, a newspaper published daily at the City of Carlsbad, in said county of Eddy, state of New Mexico and of general paid circulation in said county; that the same is a duly qualified newspaper under the laws of the State wherein legal notices and advertisements may be published; that the printed notice attached hereto was published in the regular and entire edition of said newspaper and not in supplement thereof on the date as follows, to wit:

11/15/2019

Legal Clerk

Subscribed and sworn before me this 22ND of NOVEMBER 2019.

State of WI, County of Brown NOTARY PUBLIC

My Commission Expires



Ad#:GCI0311688 P O : # of Affidavits :1

# NOTICE OF AIR QUALITY PERMIT APPLICATION

XTO Energy Inc. announces its application to the New Mexico Environment Department for an air quality permit for the modification of a tank battery. The application will be submitted to the Air Quality Bureau around November 22, 2019. The exact location for the facility known as the Corral Canyon Tank Battery will be latitude 32 deg, 09 min, 11 sec and longitude -103 deg, 59 min, 57 sec. The approximate location of this facility is 7 miles southeast of Malaga in Eddy County, New Mexico. The facility is a typical tank battery with storage tanks, separation equipment, and flares. The permit is being updated to include produced gas flaring and remove certain equipment.

The estimated maximum quantities of any regulated air contaminants will be as follows in pound per hour (pph) and tons per year (tpy). These reported emissions could change slightly during the course of the Department's review:

Pollutant:	Pounds per hour	Tons per year
Total Suspended Particulates (TSP)	25	5
PM 10	25	5
PM 2.5	25	5
Sulfur Dioxide (SO2)	5	2
Nitrogen Oxides (NOx)	550	90
Carbon Monoxide (CO)	1100	170
Volatile Organic Compounds (VOC)	1100	245
Total sum of all Hazardous Air Pollutants (HAPs)	45	12
Toxic Air Pollutant (TAP)	n/a	n/a
Green House Gas Emissions as Total CO2e	n/a	< 75,000

The standard and maximum operating schedule of the facility will be 24 hours per day, 7 days a week and a maximum of 52 weeks per year. The owner and/or operator of the Facility is: XTO Energy, Inc.; 22777 Springwoods Village Pkwy-W4.6B.344; Spring, Texas 77389.

If you have any comments about the construction or operation of this facility, and you want your comments to be made as part of the permit review process, you must submit your comments in writing to this address: Permit Programs Manager; New Mexico Environment Department; Air Quality Bureau; 525 Camino de los Marquez, Suite 1; Santa Fe, New Mexico; 87505-1816; (505) 476-4300; 1 800 224-7009; <u>https://www.env.nm.gov/aqb/permit/aqb_draft_permits.html</u>. Other comments and questions may be submitted verbally.

With your comments, please refer to the company name and facility name, or send a copy of this notice along with your comments. This information is necessary since the Department may have not yet received the permit application. Please include a legible return mailing address. Once the Department has completed its preliminary review of the application and its air quality impacts, the Department's notice will be published in the legal section of a newspaper circulated near the facility location.

## Attención

Este es un aviso de la oficina de Calidad del Aire del Departamento del Medio Ambiente de Nuevo México, acerca de las emisiones producidas por un establecimiento en esta área. Si usted desea información en español, por favor comuníquese con esa oficina al teléfono 505-476-5557.

## **Notice of Non-Discrimination**

NMED does not discriminate on the basis of race, color, national origin, disability, age or sex in the administration of its programs or activities, as required by applicable laws and regulations. NMED is responsible for coordination of compliance efforts and receipt of inquiries concerning non-discrimination requirements implemented by 40 C.F.R. Part 7, including Title VI of the Civil Rights Act of 1964, as amended; Section 504 of the Rehabilitation Act of 1973; the Age Discrimination Act of 1975, Title IX of the Education Amendments of 1972, and Section 13 of the Federal Water Pollution Control Act Amendments of 1972. If you have any questions about this notice or any of NMED's non-discrimination programs, policies or procedures, or if you believe that you have been discriminated against with respect to a NMED program or activity, you may contact: Kristine Yurdin, Non-Discrimination Coordinator, NMED, 1190 St. Francis Dr., Suite N4050, P.O. Box 5469, Santa Fe, NM 87502, (505) 827-2855, nd.coordinator@state.nm.us. You may also visit our website at https://www.env.nm.gov/non-employee-discrimination-complaint-page/ to learn how and where to file a complaint of discrimination.

## **Carlsbad Current Argus.**

### Affidavit of Publication Ad # 0003900062

#### PORTNOY ENVIRONMENTA L, INC. 5 CARDINAL CT

#### EDWARDSVILLE, IL 62025

I, a legal clerk of the **Carlsbad Current Argus**, a newspaper published daily at the City of Carlsbad, in said county of Eddy, state of New Mexico and of general paid circulation in said county; that the same is a duly qualified newspaper under the laws of the State wherein legal notices and advertisements may be published; that the printed notice attached hereto was published in the regular and entire edition of said newspaper and not in supplement thereof on the date as follows, to wit:

November 15, 2019

Legal Clerk

Subscribed and sworn before me this November 15,

2019:

State of WI) County of Brown NOTARY PUBLIC

My commission expires



Ad # 0003900062 PO #: XTO Corral #2 # of Affidavits : 1

#### NOTICE OF AIR QUALITY PERMIT APPLICATION

XTO Energy Inc. announces its application to the New Mexico Environment Department for an air quality permit for the modification of a tank battery. The application will be submitted to the Air Quality Bureau around November 22, 2019. The exact location for the facility known as the Corral Canyon Tank Battery will be latitude 32 deg, 09 min, 11 sec and longitude -103 deg, 59 min, 57 sec. The approximate location of this facility is 7 miles southeast of Malaga in Eddy County, New Mexico. The facility is a typical tank battery with storage tanks, separation equipment, and flares. The permit is being updated to include produced gas flaring and remove certain equipment.

The estimated maximum quantities of any regulated air contaminants will be as follows in pound per hour (pph) and tons per year (tpy). These reported emissions could change slightly during the course of the Department's review:

Pollutant:	Pounds per hour	Tons per year
Total Suspended Particulates (TSP)	25	5
PM 10	25	5
PM 2.5	25	5
Sulfur Dioxide (SO2)	5	2
Nitrogen Oxides (NOx)	550	90
Carbon Monoxide (CO)	1100	170
Volatile Organic Compounds (VOC)	1100	245
Total sum of all Hazardous Air Pollutants (HAP	rs) 45	12
Toxic Air Pollutant (TAP)	n/a	n/a
Green House Gas Emissions as Total CO2e	n/a	< 75,000

The standard and maximum operating schedule of the facility will be 24 hours per day, 7 days a week and a maximum of 52 weeks per year. The owner and/or operator of the Facility is: XTO Energy, Inc.; 22777 Springwoods Village Pkwy-W4.6B.344; Spring, Texas 77389.

If you have any comments about the construction or operation of this facility, and you want your comments to be made as part of the permit review process, you must submit your comments in writing to this address: Permit Programs Manager; New Mexico Environment Department; Air Quality Bureau; 525 Camino de los Marquez, Suite 1; Santa Fe, New Mexico; 87505-1816; (505) 476-4300; 1 800 224-7009; https://www.env.nm.gov/aqb/permit/aqb_draft_ permits.html. Other comments and questions may be submitted verbally.

With your comments, please refer to the company name and facility name, or send a copy of this notice along with your comments. This information is necessary since the Department may have not yet received the permit application. Please include a legible return mailing address. Once the Department has completed its preliminary review of the application and its air quality impacts, the Department's notice will be published in the legal section of a newspaper circulated near the facility location.

#### Attención

Este es un aviso de la oficina de Calidad del Aire del Departamento del Medio Ambiente de Nuevo México, acerca de las emisiones producidas por un establecimiento en esta área. Si usted desea información en español, por favor comuniquese con esa oficina al teléfono 505-476-5557.

#### **Notice of Non-Discrimination**

NMED does not discriminate on the basis of race, color, national origin, disability, age or sex in the administration of its programs or activities, as required by applicable laws and regulations. NMED is responsible for coordination of compliance efforts and receipt of inquiries concerning non-discrimination requirements implemented by 40 C.F.R. Part 7, including Title VI of the Civil Rights Act of 1964, as amended; Section 504 of the Rehabilitation Act of 1973; the Age Discrimination Act of 1975, Title IX of the Education Amendments of 1972, and Section 13 of the Federal Water Pollution Control Act Amendments of 1972. If you have any questions about this notice or any of NMED's non-discrimination programs, policies or procedures, or if you believe that you have been discriminated against with respect to a NMED program or activity, you may contact: Kristine Yurdin, Non-Discrimination Coordinator, NMED, 1190 St. Francis Dr., Suite N4050, P.O. Box 5469, Santa Fe, NM 87502, (505) 827-2855, nd.coordinator@state.nm.us. You may also visit our website at https://www.env.nm.gov/non -employee-discrimination-complaint-page/ to learn how and where to file a complaint of discrimination.

#3900062, Current Argus, Nov. 15, 2019

# Tab 10 Section 10 - Written Description of the Routine Operations of the Facility

# Section 10

## Written Description of the Routine Operations of the Facility

<u>A written description of the routine operations of the facility</u>. Include a description of how each piece of equipment will be operated, how controls will be used, and the fate of both the products and waste generated. For modifications and/or revisions, explain how the changes will affect the existing process. In a separate paragraph describe the major process bottlenecks that limit production. The purpose of this description is to provide sufficient information about plant operations for the permit writer to determine appropriate emission sources.

Mixed hydrocarbons (20,500 BOPD/60,000 BWPD) enter the facility through inlet separators, flowing next to heater treaters (HTR1/HTR2). The site can also accept up to 5,000 BOPD of dead oil from the surrounding area. The low pressure gas is picked up by electric booster compressors (BC1/BC2) to increase the line pressure for sales. During booster downtime (876 hours), all of the gas is flared at the HPF1. Some of the sales gas can be routed to electric compressors (GLC1/GLC2) and reinjected for gas lift.

Water from the inlet is routed to water skim tanks (SKTK1/SKTK2), then to six (6) water storage tanks (PWTK1-PWTK6). The water skim tank is used to collect any residual oils from the incoming water. All tank vapors are controlled using a low pressure flare (LPF1). Any skimmed oil is piped to the heater treaters. Water is piped offsite.

Oil flows from the heaters to vapor recovery towers (VRT1-VRT2), then to six (6) sales tanks (TK1-TK6). Most flashing occurs in the VRT since it drops the pressure to approximately 1.5-2 psig. Gas from the VRT is routed to an electric VRU (VRU1/VRU2). Any remaining vapors in the closed vent system would be routed to the LPF1. During VRU downtime (438 hours), all of the gas is routed to LPF1. Gas from the oil tanks is routed to a VRU/flare closed vent system (VRU3/LPF1) for emissions control. The VRU recovers 98% of the gas with the remaining 2% routed to LPF1. During VRU downtime (438 hours), all vapors are routed to LPF1. Oil is normally shipped offsite via pipeline LACT; however, a volume of 5,000 BOPD was included, with emissions being routed to LPF1.

HPF1 is also used to flare inlet gas from this portion of the facility if necessary. For conservative emissions estimation, XTO assumed a maximum of 60.90 mmscfd instantaneous flow could be routed to the flare for approximately 210 hours per year. HPF1 would also be used in the event of an emergency that required gas flaring.

Tab 11Section 11 -Source Determination

## Section 11 Source Determination

Source submitting under 20.2.70, 20.2.72, 20.2.73, and 20.2.74 NMAC

Sources applying for a construction permit, PSD permit, or operating permit shall evaluate surrounding and/or associated sources (including those sources directly connected to this source for business reasons) and complete this section. Responses to the following questions shall be consistent with the Air Quality Bureau's permitting guidance, <u>Single Source Determination Guidance</u>, which may be found on the Applications Page in the Permitting Section of the Air Quality Bureau website.

Typically, buildings, structures, installations, or facilities that have the same SIC code, that are under common ownership or control, and that are contiguous or adjacent constitute a single stationary source for 20.2.70, 20.2.72, 20.2.73, and 20.2.74 NMAC applicability purposes. Submission of your analysis of these factors in support of the responses below is optional, unless requested by NMED.

**A. Identify the emission sources evaluated in this section** (list and describe): See Table 2A

#### **B.** Apply the 3 criteria for determining a single source:

<u>SIC</u> <u>Code</u>: Surrounding or associated sources belong to the same 2-digit industrial grouping (2-digit SIC code) as this facility, <u>OR</u> surrounding or associated sources that belong to different 2-digit SIC codes are support facilities for this source.

🗹 Yes 🗆 🗆 No

<u>Common</u> <u>Ownership</u> or <u>Control</u>: Surrounding or associated sources are under common ownership or control as this source.

☑ Yes □ No

<u>Contiguous</u> or <u>Adjacent</u>: Surrounding or associated sources are contiguous or adjacent with this source.

☑ Yes □ No

#### C. Make a determination:

- ☑ The source, as described in this application, constitutes the entire source for 20.2.70, 20.2.72, 20.2.73, or 20.2.74 NMAC applicability purposes. If in "A" above you evaluated only the source that is the subject of this application, all "YES" boxes should be checked. If in "A" above you evaluated other sources as well, you must check AT LEAST ONE of the boxes "NO" to conclude that the source, as described in the application, is the entire source for 20.2.70, 20.2.72, 20.2.73, and 20.2.74 NMAC applicability purposes.
- □ The source, as described in this application, <u>does not</u> constitute the entire source for 20.2.70, 20.2.72, 20.2.73, or 20.2.74 NMAC applicability purposes (A permit may be issued for a portion of a source). The entire source consists of the following facilities or emissions sources (list and describe):

Tab 12 Section 12 - PSD Applicability Determination for All Sources

### Section 12.A PSD Applicability Determination for All Sources

(Submitting under 20.2.72, 20.2.74 NMAC)

<u>A PSD applicability determination for all sources</u>. For sources applying for a significant permit revision, apply the applicable requirements of 20.2.74.AG and 20.2.74.200 NMAC and to determine whether this facility is a major or minor PSD source, and whether this modification is a major or a minor PSD modification. It may be helpful to refer to the procedures for Determining the Net Emissions Change at a Source as specified by Table A-5 (Page A.45) of the <u>EPA New Source Review</u> <u>Workshop Manual</u> to determine if the revision is subject to PSD review.

- A. This facility is:
  - **a** minor PSD source before and after this modification (if so, delete C and D below).
  - □ a major PSD source before this modification. This modification will make this a PSD minor source.
  - □ an existing PSD Major Source that has never had a major modification requiring a BACT analysis.
  - □ an existing PSD Major Source that has had a major modification requiring a BACT analysis
  - □ a new PSD Major Source after this modification.

Tab 13 Section 13 - Determination of State & Federal Air Quality Regulations

### **Determination of State & Federal Air Quality Regulations**

## This section lists each state and federal air quality regulation that may apply to your facility and/or equipment that are stationary sources of regulated air pollutants.

Not all state and federal air quality regulations are included in this list. Go to the Code of Federal Regulations (CFR) or to the Air Quality Bureau's regulation page to see the full set of air quality regulations.

#### **Required Information for Specific Equipment:**

For regulations that apply to specific source types, in the 'Justification' column **provide any information needed to determine if the regulation does or does not apply**. For example, to determine if emissions standards at 40 CFR 60, Subpart IIII apply to your three identical stationary engines, we need to know the construction date as defined in that regulation; the manufacturer date; the date of reconstruction or modification, if any; if they are or are not fire pump engines; if they are or are not emergency engines as defined in that regulation; their site ratings; and the cylinder displacement.

#### **Required Information for Regulations that Apply to the Entire Facility:**

See instructions in the 'Justification' column for the information that is needed to determine if an 'Entire Facility' type of regulation applies (e.g. 20.2.70 or 20.2.73 NMAC).

#### **Regulatory Citations for Regulations That Do Not, but Could Apply:**

If there is a state or federal air quality regulation that does not apply, but you have a piece of equipment in a source category for which a regulation has been promulgated, you must **provide the low level regulatory citation showing why your piece of equipment is not subject to or exempt from the regulation.** For example if you have a stationary internal combustion engine that is not subject to 40 CFR 63, Subpart ZZZZ because it is an existing 2 stroke lean burn stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions, your citation would be 40 CFR 63.6590(b)(3)(i). We don't want a discussion of every non-applicable regulation, but if it is possible a regulation could apply, explain why it does not. For example, if your facility is a power plant, you do not need to include a citation to show that 40 CFR 60, Subpart OOO does not apply to your non-existent rock crusher.

#### **Regulatory Citations for Emission Standards:**

For each unit that is subject to an emission standard in a source specific regulation, such as 40 CFR 60, Subpart OOO or 40 CFR 63, Subpart HH, include the low level regulatory citation of that emission standard. Emission standards can be numerical emission limits, work practice standards, or other requirements such as maintenance. Here are examples: a glycol dehydrator is subject to the general standards at 63.764C(1)(i) through (iii); an engine is subject to 63.6601, Tables 2a and 2b; a crusher is subject to 60.672(b), Table 3 and all transfer points are subject to 60.672(e)(1)

#### Federally Enforceable Conditions:

All federal regulations are federally enforceable. All Air Quality Bureau State regulations are federally enforceable except for the following: affirmative defense portions at 20.2.7.6.B, 20.2.7.110(B)(15), 20.2.7.11 through 20.2.7.113, 20.2.7.115, and 20.2.7.116; 20.2.37; 20.2.42; 20.2.43; 20.2.62; 20.2.63; 20.2.86; 20.2.89; and 20.2.90 NMAC. Federally enforceable means that EPA can enforce the regulation as well as the Air Quality Bureau and federally enforceable regulations can count toward determining a facility's potential to emit (PTE) for the Title V, PSD, and nonattainment permit regulations.

## INCLUDE ANY OTHER INFORMATION NEEDED TO COMPLETE AN APPLICABILITY DETERMINATION OR THAT IS RELEVENT TO YOUR FACILITY'S NOTICE OF INTENT OR PERMIT.

EPA Applicability Determination Index for 40 CFR 60, 61, 63, etc: <u>http://cfpub.epa.gov/adi/</u>

STATE REGU- LATIONS CITATION	Title	Applies? Enter Yes or No	Unit(s) or Facility		
20.2.1 NMAC	General Provisions	Yes	Facility	General Provisions apply to Notice of Intent, Construction, and Title V permit applications.	
20.2.3 NMAC	Ambient Air Quality Standards NMAAQS	Yes	Facility	20.2.3 NMAC is a State Implementation Plan (SIP) approved regulation that limits the maximum allowable concentration of Total Suspended Particulates, Sulfur Compounds, Carbon Monoxide and Nitrogen Dioxide. Title V applications, see exemption at 20.2.3.9 NMAC	
20.2.7 NMAC	Excess Emissions	Yes	Facility	XTO will comply with this regulation, as appropriate.	
20.2.33 NMAC	Gas Burning Equipment - Nitrogen Dioxide	No	N/A	None of the equipment has a rating greater than 1,000,000 MMBtu/hr.	
20.2.34 NMAC	Oil Burning Equipment: NO ₂	No	N/A	This facility has no oil burning equipment.	
20.2.35 NMAC	Natural Gas Processing Plant – Sulfur	No	N/A	The facility is not a gas processing plant.	
20.2.38 NMAC	Hydrocarbon Storage Facility	Yes	All Oil Storage Tanks	The site uses VRUs and flares to comply with 20.2.38.112 NMAC.	
20.2.39 NMAC	Sulfur Recovery Plant - Sulfur	No	N/A	The facility does not operate a sulfur recovery plant.	
20.2.61.109 NMAC	Smoke & Visible Emissions	Yes	HPF1, LPF1, HTR1- HTR2	This regulation that limits opacity to 20% applies to Stationary Combustion Equipment, such as engines, boilers, heaters, and flares unless your equipment is subject to another state regulation that limits particulate matter such as 20.2.19 NMAC (see 20.2.61.109 NMAC).	
20.2.70 NMAC	Operating Permits	Yes	Facility	XTO is submitting a Title V permit application.	
20.2.71 NMAC	Operating Permit Fees	Yes	Facility	XTO will pay appropriate Title V fees.	
20.2.72 NMAC	Construction Permits	Yes	Facility	This application requests a NSR permit in accordance with 20.2.72.	
20.2.73 NMAC	NOI & Emissions Inventory Requirements	Yes	Facility	The site is subject to the emissions inventory requirements of 20.2.72.300 NMAC.	
20.2.74 NMAC	Permits – Prevention of Significant Deterioration (PSD)	No	N/A	The facility is not a major PSD site.	
20.2.75 NMAC	Construction Permit Fees	Yes	Facility	A permit fee is included with this application.	
20.2.77 NMAC	New Source Performance	Yes	Facility	See regulatory discussion in Federal Regulations Citation section.	
20.2.78 NMAC	Emission Standards for HAPS	No	N/A	The facility does not fit into any of the source categories.	
20.2.79 NMAC	Permits – Nonattainment Areas	No	N/A	The facility is not located in a nonattainment area.	

STATE REGU- LATIONS CITATION	Title	Applies? Enter Yes or No	Unit(s) or Facility	JUSTIFICATION: (You may delete instructions or statements that do not apply in the justification column to shorten the document.)	
20.2.80 NMAC	Stack Heights         No         N/A         There are no stacks to which this regulation would		There are no stacks to which this regulation would apply.		
20.2.82 NMAC	MACT Standards for source categories of HAPS	No	N/A	See regulatory discussion in Federal Regulations Citation section.	

FEDERAL REGU- LATIONS CITATION	Title	Applies? Enter Yes or No	Unit(s) or Facility	JUSTIFICATION:	
40 CFR 50	NAAQS	Yes	Facility	Modeling was conducted to ensure compliance with NAAQS.	
NSPS 40 CFR 60, Subpart A	General Provisions	Yes	Facility	See regulatory discussion below.	
NSPS 40 CFR60.40a, Subpart Da	Subpart Da, Performance Standards for Electric Utility Steam Generating Units	No	N/A	The facility does not operate any electric utility steam generating units.	
NSPS 40 CFR60.40b Subpart Db	Electric Utility Steam Generating Units	No	N/A	The facility does not operate any electric utility steam generating units.	
NSPS 40 CFR 60, Subpart Ka	Petroleum Liquids Commenced After May 18, 1978, and Prior to July 23, 1984	No	N/A	The hydrocarbons are stored prior to custody transfer.	
NSPS 40 CFR 60, Subpart Kb	Volatile Organic Liquid Storage Commenced After July 23, 1984	No	N/A	The hydrocarbons are stored prior to custody transfer.	
NSPS 40 CFR 60.330 Subpart GG	Stationary Gas Turbines	No	N/A	There are no turbines.	
NSPS 40 CFR 60, Subpart KKK	Leaks of VOC from Onshore Gas Plants	No	N/A	This is not a gas plant.	
NSPS 40 CFR Part 60 Subpart LLL	Standards of Performance for Onshore Natural Gas Processing: SO2 Emissions	No	N/A	The facility does not operate a sweetening unit.	
NSPS 40 CFR Part 60 Subpart JJJJ	Spark Ignition Internal Combustion Engines	No	N/A	The facility does not operate any affected sources.	

NSPS 40 CFR Part 60 Subpart OOOO	Crude Oil and Natural Gas Production, Transmission, and Distribution commenced after August 23, 2011 and before September 18, 2015	No	N/A	The site was constructed after 9/18/15. See NSPS OOOOa discussion below.
NSPS 40 CFR Part 60 Subpart OOOOa	Standards of Performance for Crude Oil and Natural Gas Facilities for which Construction, Modification or Reconstruction Commenced After September 18, 2015	Yes	FUG	<ul> <li>The storage tanks were constructed after the applicability date of the rule; however enforceable emissions are less than 6 tpy.</li> <li>The site uses low-bleed pneumatic controllers.</li> <li>By definition in 60.5430, the screw compressors on the VRUs are exempt. The electric booster and sales compressors may use screw or reciprocating compressors; however, per 60.5365a(b) and (c), compressors at well sites or servicing well sites are not affected facilities.</li> <li>The site will be subject to leak monitoring from fugitive components.</li> </ul>
NSPS 40 CFR 60 Subpart IIII	Standards of performance for Stationary Compression Ignition Internal Combustion Engines	No	N/A	The facility does not operate any affected sources.
NSPS 40 CFR 60 Subpart TTTT	Standards of Performance for Greenhouse Gas Emissions for Electric Generating Units	No	N/A	The facility does not operate any affected sources.
NSPS 40 CFR 60 Subpart UUUU	Emissions Guidelines for Greenhouse Gas Emissions and Compliance Times for Electric Utility Generating Units	No	N/A	The facility does not operate any affected sources.
NSPS 40 CFR 60, Subparts WWW, XXX, Cc, and Cf	Standards of performance for Municipal Solid Waste (MSW) Landfills	No	N/A	The facility does not operate any affected sources.
NESHAP 40 CFR 61 Subpart A	General Provisions	No	N/A	The facility does not operate any affected sources.
NESHAP 40 CFR 61 Subpart E	National Emission Standards for Mercury	No	N/A	The facility does not operate any affected sources.
NESHAP 40 CFR 61 Subpart V	National Emission Standards for Equipment Leaks (Fugitive Emission Sources)	No	N/A	The facility does not operate any affected sources.
MACT 40 CFR 63, Subpart A	General Provisions	No	N/A	See regulatory discussion below.

MACT 40 CFR 63.760 Subpart HH	Oil and Natural Gas Production Facilities	No	N/A	The facility does not operate any affected sources.
MACT 40 CFR 63 Subpart HHH		No	N/A	The facility does not operate any affected sources.
MACT 40 CFR 63 Subpart DDDDD	NESHAP for Major Industrial, Commercial, and Institutional Boilers & Process Heaters	No	N/A	The facility does not operate any affected sources.
MACT 40 CFR 63 Subpart UUUUU	NESHAP Coal & Oil Fire Electric Utility Steam Generating Unit	No	N/A	The facility does not operate any affected sources.
MACT 40 CFR 63 Subpart ZZZZ	RICE MACT	No	N/A	The facility does not operate any affected sources.
40 CFR 64	Compliance Assurance Monitoring	No	N/A	The facility is not subject to CAM.
40 CFR 68	Chemical Accident Prevention	No	N/A	The facility does not store any chemicals above threshold quantities.
Title IV – Acid Rain 40 CFR 72	Acid Rain	No	N/A	The facility does not have any units subject to the Acid Rain regulations.
Title IV – Acid Rain 40 CFR 73	Sulfur Dioxide Allowance Emissions	No	N/A	The facility does not have any units subject to the Acid Rain regulations.
Title IV-Acid Rain 40 CFR 75	Continuous Emissions Monitoring	No	N/A	The facility does not have any units subject to the Acid Rain regulations.
Title IV – Acid Rain 40 CFR 76	Acid Rain Nitrogen Oxides Emission Reduction Program	No	N/A	The facility does not have any units subject to the Acid Rain regulations.
Title VI – 40 CFR 82	Protection of Stratospheric Ozone	No	N/A	The facility does not service, maintain, or repair equipment containing refrigerants.

Tab 14Section 14 - Operational Plan to Mitigate Emissions

### **Operational Plan to Mitigate Emissions**

(Submitting under 20.2.70, 20.2.72, 20.2.74 NMAC)

☑ Title V Sources (20.2.70 NMAC): By checking this box and certifying this application the permittee certifies that it has developed an <u>Operational Plan to Mitigate Emissions During Startups</u>, <u>Shutdowns</u>, <u>and Emergencies</u> defining the measures to be taken to mitigate source emissions during startups, shutdowns, and emergencies as required by 20.2.70.300.D.5(f) and (g) NMAC. This plan shall be kept on site to be made available to the Department upon request. This plan should not be submitted with this application.

- ✓ NSR (20.2.72 NMAC), PSD (20.2.74 NMAC) & Nonattainment (20.2.79 NMAC) Sources: By checking this box and certifying this application the permittee certifies that it has developed an <u>Operational Plan to Mitigate Source Emissions</u> <u>During Malfunction, Startup, or Shutdown</u> defining the measures to be taken to mitigate source emissions during malfunction, startup, or shutdown as required by 20.2.72.203.A.5 NMAC. This plan shall be kept on site to be made available to the Department upon request. This plan should not be submitted with this application.
- ☑ Title V (20.2.70 NMAC), NSR (20.2.72 NMAC), PSD (20.2.74 NMAC) & Nonattainment (20.2.79 NMAC) Sources: By checking this box and certifying this application the permittee certifies that it has established and implemented a Plan to Minimize Emissions During Routine or Predictable Startup, Shutdown, and Scheduled Maintenance through work practice standards and good air pollution control practices as required by 20.2.7.14.A and B NMAC. This plan shall be kept on site or at the nearest field office to be made available to the Department upon request. This plan should not be submitted with this application.

Emissions during startups, shutdowns, maintenance and emergencies (ESDs) will be minimized through the application of industry standards and /or manufacturer recommended operating practices as described below. Trained technicians are responsible for the timely and effective implementation of these actions.

Tab 15Section 15 - Alternative Operating Scenarios

### **Alternative Operating Scenarios**

(Submitting under 20.2.70, 20.2.72, 20.2.74 NMAC)

Alternative Operating Scenarios: Provide all information required by the department to define alternative operating scenarios. This includes process, material and product changes; facility emissions information; air pollution control equipment requirements; any applicable requirements; monitoring, recordkeeping, and reporting requirements; and compliance certification requirements. Please ensure applicable Tables in this application are clearly marked to show alternative operating scenario.

**Construction Scenarios**: When a permit is modified authorizing new construction to an existing facility, NMED includes a condition to clearly address which permit condition(s) (from the previous permit and the new permit) govern during the interval between the date of issuance of the modification permit and the completion of construction of the modification(s). There are many possible variables that need to be addressed such as: Is simultaneous operation of the old and new units permitted and, if so for example, for how long and under what restraints? In general, these types of requirements will be addressed in Section A100 of the permit, but additional requirements may be added elsewhere. Look in A100 of our NSR and/or TV permit template for sample language dealing with these requirements. Find these permit templates at: <a href="https://www.env.nm.gov/aqb/permit/aqb_pol.html">https://www.env.nm.gov/aqb/permit/aqb_pol.html</a>. Compliance with standards must be maintained during construction, which should not usually be a problem unless simultaneous operation of old and new equipment is requested.

In this section, under the bolded title "Construction Scenarios", specify any information necessary to write these conditions, such as: conservative-realistic estimated time for completion of construction of the various units, whether simultaneous operation of old and new units is being requested (and, if so, modeled), whether the old units will be removed or decommissioned, any PSD ramifications, any temporary limits requested during phased construction, whether any increase in emissions is being requested as SSM emissions or will instead be handled as a separate Construction Scenario (with corresponding emission limits and conditions, etc.

XTO is not proposing any alternative operating scenarios.

Tab 16 Section 16 - Air Dispersion Modeling

## Section 16 Air Dispersion Modeling

- Minor Source Construction (20.2.72 NMAC) and Prevention of Significant Deterioration (PSD) (20.2.74 NMAC) ambient impact analysis (modeling): Provide an ambient impact analysis as required at 20.2.72.203.A(4) and/or 20.2.74.303 NMAC and as outlined in the Air Quality Bureau's Dispersion Modeling Guidelines found on the Planning Section's modeling website. If air dispersion modeling has been waived for one or more pollutants, attach the AQB Modeling Section modeling waiver approval documentation.
- 2) SSM Modeling: Applicants must conduct dispersion modeling for the total short term emissions during routine or predictable startup, shutdown, or maintenance (SSM) using realistic worst case scenarios following guidance from the Air Quality Bureau's dispersion modeling section. Refer to "Guidance for Submittal of Startup, Shutdown, Maintenance Emissions in Permit Applications (<u>http://www.env.nm.gov/aqb/permit/app_form.html</u>) for more detailed instructions on SSM emissions modeling requirements.
- 3) Title V (20.2.70 NMAC) ambient impact analysis: Title V applications must specify the construction permit and/or Title V Permit number(s) for which air quality dispersion modeling was last approved. Facilities that have only a Title V permit, such as landfills and air curtain incinerators, are subject to the same modeling required for preconstruction permits required by 20.2.72 and 20.2.74 NMAC.

What is the purpose of this application?	Enter an X for each purpose that applies
New PSD major source or PSD major modification (20.2.74 NMAC). See #1 above.	
New Minor Source or significant permit revision under 20.2.72 NMAC (20.2.72.219.D NMAC).	Х
See #1 above. Note: Neither modeling nor a modeling waiver is required for VOC emissions.	
Reporting existing pollutants that were not previously reported.	
Reporting existing pollutants where the ambient impact is being addressed for the first time.	
Title V application (new, renewal, significant, or minor modification. 20.2.70 NMAC). See #3	
above.	
Relocation (20.2.72.202.B.4 or 72.202.D.3.c NMAC)	
Minor Source Technical Permit Revision 20.2.72.219.B.1.d.vi NMAC for like-kind unit replacements.	
Other: i.e. SSM modeling. See #2 above.	
This application does not require modeling since this is a No Permit Required (NPR) application.	
This application does not require modeling since this is a Notice of Intent (NOI) application (20.2.73 NMAC).	
This application does not require modeling according to 20.2.70.7.E(11), 20.2.72.203.A(4), 20.2.74.303, 20.2.79.109.D NMAC and in accordance with the Air Quality Bureau's Modeling Guidelines.	

#### Check each box that applies:

 $\hfill\square$  See attached, approved modeling waiver for all pollutants from the facility.

□ See attached, approved modeling **waiver for some** pollutants from the facility.

ZAttached in Universal Application Form 4 (UA4) is a modeling report for all pollutants from the facility.

 $\hfill\square$  Attached in UA4 is a **modeling report for some** pollutants from the facility.

 $\Box$  No modeling is required.

Tab 17Section 17 - Compliance Test History

### **Compliance Test History**

(Submitting under 20.2.70, 20.2.72, 20.2.74 NMAC)

To show compliance with existing NSR permits conditions, you must submit a compliance test history. The table below provides an example.

Compliance testing has not been required.

Tab 18 Section 18 - Addendum for Streamline Applications (Not Applicable)

#### **Addendum for Streamline Applications**

Do not print this section unless this is a streamline application.

Streamline Applications do not require a complete application. Submit Sections 1-A, 1-B, 1-D, 1-F, 1-G, 2-A, 2-C thru L, Sections 3 thru 8, Section 13, Section 18, Section 22, and Section 23 (Certification). Other sections may be required at the discretion of the Department. 20.2.72.202 NMAC Exemptions do not apply to Streamline sources. 20.2.72.219 NMAC revisions and modifications do not apply to Streamline sources, thus 20.2.72.219 type actions require a complete new application submittal. Please do not print sections of a streamline application that are not required.

This is not a streamline permit application.

Tab 19Section 19 - Requirements for Title V Program

### **Requirements for Title V Program**

Do not print this section unless this is a Title V application.

#### Who Must Use this Attachment:

* Any major source as defined in 20.2.70 NMAC.

- ^{*} Any source, including an area source, subject to a standard or other requirement promulgated under Section 111 Standards of Performance for New Stationary Sources, or Section 112 Hazardous Air Pollutants, of the 1990 federal Clean Air Act ("federal Act"). Non-major sources subject to Sections 111 or 112 of the federal Act are exempt from the obligation to obtain an 20.2.70 NMAC operating permit until such time that the EPA Administrator completes rulemakings that require such sources to obtain operating permits. In addition, sources that would be required to obtain an operating permit solely because they are subject to regulations or requirements under Section 112(r) of the federal Act are exempt from the requirement to obtain an Operating Permit.
- * Any Acid Rain source as defined under title IV of the federal Act. The Acid Rain program has additional forms. See <a href="http://www.env.nm.gov/aqb/index.html">http://www.env.nm.gov/aqb/index.html</a>. Sources that are subject to both the Title V and Acid Rain regulations are encouraged to submit both applications simultaneously.
- * Any source in a source category designated by the EPA Administrator ("Administrator"), in whole or in part, by regulation, after notice and comment.

This is not a Title V application.

Tab 20Section 20 - Other Relevant Information

### **Other Relevant Information**

<u>Other relevant information</u>. Use this attachment to clarify any part in the application that you think needs explaining. Reference the section, table, column, and/or field. Include any additional text, tables, calculations or clarifying information.

Additionally, the applicant may propose specific permit language for AQB consideration. In the case of a revision to an existing permit, the applicant should provide the old language and the new language in track changes format to highlight the proposed changes. If proposing language for a new facility or language for a new unit, submit the proposed operating condition(s), along with the associated monitoring, recordkeeping, and reporting conditions. In either case, please limit the proposed language to the affected portion of the permit.

No other relevant information is provided.

Tab 21 Section 21 - Addendum for Landfill Applications (Not Applicable)

### **Addendum for Landfill Applications**

Do not print this section unless this is a landfill application.

Landfill Applications are not required to complete Sections 1-C Input Capacity and Production Rate, 1-E Operating Schedule, 17 Compliance Test History, and 18 Streamline Applications. Section 12 – PSD Applicability is required only for Landfills with Gas Collection and Control Systems and/or landfills with other non-fugitive stationary sources of air emissions such as engines, turbines, boilers, heaters. All other Sections of the Universal Application Form are required.

EPA Background Information for MSW Landfill Air Quality Regulations: https://www3.epa.gov/airtoxics/landfill/landflpg.html

NM Solid Waste Bureau Website: <u>https://www.env.nm.gov/swb/</u>

This is not a landfill.

Tab 22 Section 22 - Certification

November 2019: Revision 0

## **Section 22: Certification**

Company Name: <u>XTO Energy, Inc.</u>

I, <u>Raymond P. Tole Jr.</u>, hereby certify that the information and data submitted in this application are true and as accurate as possible, to the best of my knowledge and professional expertise and experience.

Signed this 20 day of 0 ec, 2019 upon my oath or affirmation, before a notary of the State of Texay.

M.

*Signature

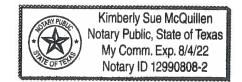
Raymond P. Tole Jr. Printed Name Environmental Engineer

December 20, 2019

Scribed and sworn before me on this 20 day of ______ 2019.

My authorization as a notary of the State of  $\underline{Texas}$  expires on the  $\underline{\mathcal{U}}$  day of  $\underline{august}$  2022

Notary's Signature


miduillen Imperin

120/19

Title

Notary's Printed Name

*For Title V applications, the signature must be of the Responsible Official as defined in 20.2.70.7.AE NMAC.



Form-Section 22 last revised: 3/7/2016

Saved Date: 12/20/2019

## Tab 23 Section 23 - UA4

# **Universal Application 4**

### **Air Dispersion Modeling Report**

Refer to and complete Section 16 of the Universal Application form (UA3) to assist your determination as to whether modeling is required. If, after filling out Section 16, you are still unsure if modeling is required, e-mail the completed Section 16 to the AQB Modeling Manager for assistance in making this determination. If modeling is required, a modeling protocol would be submitted and approved prior to an application submittal. The protocol should be emailed to the modeling manager. A protocol is recommended but optional for minor sources and is required for new PSD sources or PSD major modifications. Fill out and submit this portion of the Universal Application form (UA4), the "Air Dispersion Modeling Report", only if air dispersion modeling is required for this application submittal. This serves as your modeling report submittal and should contain all the information needed to describe the modeling. No other modeling report or modeling protocol should be submitted with this permit application.

16	16-A: Identification				
1	Name of facility: Corral Canyon Tank Battery				
2	Name of company: XTO Energy Inc				
3	Current Permit number: 6275				
4	Name of applicant's modeler: Bruce Ferguson				
5	Phone number of modeler: (601) 824-1860				
6	E-mail of modeler: bferguson@fce-engineering.com				

16-	B: Brief		
1	<ul><li>Why is the modeling being done?</li><li>Other (describe below)</li><li>Production rates are adjusted, and engine is being added, and a portion of the facility is being shut down</li></ul>	vn.	
2	Describe the permit changes relevant to the modeling. Adding engine, removing equipment and changing flare emissions.		
3	What geodetic datum was used in the modeling? NAD83		
4	How long will the facility be at this location? Indefinite		
5	Is the facility a major source with respect to Prevention of Significant Deterioration (PSD)?	Yes	No X

16-	-B: Brief									
6	Identify the Air Quality Control Region (AQCR) in which the facility is located. 155-Pecos Permian Basin									
	List the PSD baseline dates for this region (minor or major, as appropriate).									
	Pollutant	Major Source Baseline Date	Minor Source Baseline Date							
7	РМ	January 6, 1975	February 20, 1979							
	SO ₂	January 6, 1975	July 28, 1978							
	NO ₂	February 8, 1988	March 16, 1988							
	PM2.5	October 20, 2010	November 13, 2013							
8	Provide the name and distance to Class I areas within 50 km of the facility (300 km for PSD permits). Carlsbad Cavern NP is located 35 km to the West of the tank battery.									
9	Is the facility located in a non-attainment area? If so, describe. No									
10	Describe any sp	pecial modeling requirements, such as st	reamline permit requirements.							

16	16-C: Modeling History of Facility									
1	Describe the modeling history of the facility, including the air permit numbers, the pollutants modeled, the National Ambient Air Quality Standards (NAAQS), New Mexico AAQS (NMAAQS), and PSD increments modeled. (Do not include modeling waivers).									
	Pollutant	Latest permit and modification number that modeled the pollutant facility-wide.	Date of Permit	Comments						
	СО	6275M2	2018							
	NO ₂	6275M2	2018							
	SO ₂	6275M2	2018							
	H ₂ S									
	PM2.5	6275M2	2018							
	PM10	6275M2	2018							
	TSP ¹									
	Lead									
	NM Toxic Air Pollutants (20.2.72.402 NMAC)									

1. The New Mexico Ambient Air Quality Standard for TSP was repealed by the Environmental Improvement Board effective November 30, 2018.

### 16-D: Modeling performed for this application

analysis were also Pollutant	ROI	Cumulative analysis	Culpability analysis	Waiver approved	Pollutant not emitted or not changed.
СО	Х	**			
NO ₂	Х	Х			
SO ₂	Х	**			
$H_2S$					X
PM2.5	Х	Х			
PM10	Х	X			
Lead					Х
Ozone					*
State air toxic(s) (20.2.72.402 NMAC)					x

16-	16-E: New Mexico toxic air pollutants modeling										
1	List any New Mexico toxic air pollutants (NMTAPs) from Tables A and B in 20.2.72.502 NMAC that are modeled for this application. None										
	List any N below, if re		itted but not modeled becaus	se stack height co	prrection factor. Add add	litional rows to the table					
	PollutantEmission Rate (pounds/hour)Emission Rate Screening Level (pounds/hour)Stack Height (meters)Correction FactorEmission Rate/ Correction Factor										

16	16-F: Modeling options					
	What model(s) were used for the modeling? Why?					
1	AERMOD Version 19191. The preferred regulatory model for near field impacts.					
2	What model options were used and why were they considered appropriate to the application? Default regulatory options were used.					

16-	16-G: Surrounding source modeling						
1	If the surrounding source inventory provided by the Air Quality Bureau was believed to be inaccurate, describe how the sources modeled differ from the inventory provided. If changes to the surrounding source inventory were made, use the unmerged list of sources to describe the changes.						
2	Date of surrounding source retrieval.						
	10/28/2019 email	from Eric Peters					
	AQB Source ID	Description of Corrections					
	39104E1       Flare effective diameter of 14.3646 meters was used instead of the actual flare diameter included in NMED inventory.						
	39103E1	Flare effective diameter of 14.3646 meters was used instead of the actual flare diameter included in NMED inventory.					

16-H: Building and structure downwash						
1	How many buildings are present at the facility?	1				
2	How many above ground storage tanks are present at the facility?	14				
3	Was building downwash modeled for all buildings?	Yes X	No			
4	If not, explain why.					
5	Building comments 40 structures were included in the downwa	ash analysis including ASTs, bui	ilding and process vessels			

16-	I: Receptors and modeled property boundary					
1	"Restricted Area" is an area to which public entry is effectively precluded. Effective barric continuous walls, or other continuous barriers approved by the Department, such as rugge grade that would require special equipment to traverse. If a large property is completely e area within the property may be identified with signage only. Public roads cannot be part Area is required in order to exclude receptors from the facility property. If the facility doe receptors shall be placed within the property boundaries of the facility. Describe the fence or other physical barrier at the facility that defines the restricted area. On-site receptors were included at 10-meter spacing; no fence was considered.	d physical ter enclosed by fe of a Restricte	rain with a steep encing, a restricted ad Area. A Restricted			
2	Receptors must be placed along publicly accessible roads in the restricted area. Are there public roads passing through the restricted area?	Yes	No X			
3	Are restricted area boundary coordinates included in the modeling files?	Yes	No X			
4	Describe the receptor grids and their spacing. 10 meters within 0.25 km of facility center 50 meters within 0.5 km of facility center 100 meters from 0.5 km to 3km 250 meters from 3 km to 6km 500 meters from 6km to 10 km 1000 meters from 10 km to 50 km					
5	Describe receptor spacing along the fence line. No fence line was considered. Onsite receptors at 10-meter spacing was used.					
6	Describe the PSD Class I area receptors. The Class I area is within the 1-km coarse grid used for the Class I modeling. The Class I the XTO facility. The radius of impact to the Class I significance level was well below 35					

16-	J: Sensitive areas		
1	Are there schools or hospitals or other sensitive areas near the facility? This information is optional (and purposely undefined) but may help determine issues related to public notice.	Yes	No X
2	If so, describe.		
3	The modeling review process may need to be accelerated if there is a public hearing. Are there likely to be public comments opposing the permit application?	Yes	No X

1	-K: Modeling Scenarios Identify, define, and describe all modeling scenarios. Examples of modeling scenarios include using different production rates, times of day, times of year, simultaneous or alternate operation of old and new equipment during transition periods, etc. Alternative operating scenarios should correspond to all parts of the Universal Application and should be fully described in Section 15 of the Universal Application (UA3).											
2	described in Section 15 of the Universal Application (UA3).         Which scenario produces the highest concentrations? Why?											
Were emission factor sets used to limit emission rates or hours of operation?         (This question pertains to the "SEASON", "MONTH", "HROFDY" and related factor sets, not to the factors used for calculating the maximum emission rate.)												
4	If so, describe factors for each group of sources. List the sources in each group before the factor table for that group. (Modify or duplicate table as necessary. It's ok to put the table below section 16-K if it makes formatting easier.) Sources:											
	Hour of Day	Factor	Hour of Day	Factor								
	1		13									
	2		14 15									
	3		15									
	5		10									
;	6		18									
	7		19									
	8		20									
	9		21									
	10		22									
	11		23									
	12		24									
	If hourly	, variable	emission r	ates were ı	ised that w	vere not d	escribed at	ove, desc	ribe them h	ere:		
5	annual n	nodeling?	ssion rates	used for s	hort-term	and	Yes X No					
7	If yes, describe. The maximum short-term emission rate was used for all analyses except for the NO ₂ annual average. The facility flare emissions (HPF & LPF) hourly emissions were adjusted to the maximum TPY emissions divided by 8760 hours.											

#### 16-L: NO₂ Modeling Which types of NO₂ modeling were used? Check all that apply. 100% NO_X to NO₂ conversion ARM 1 **PVMRM** OLM Х ARM2 Other: Describe the NO₂ modeling. 2 Ox emissions levels were converted within the model using ARM2 at the in-stack ratios stated below. 3 In-stack NO₂/NO_X ratio(s) used in modeling. Equilibrium NO₂/NO_X ratio(s) used in modeling. 4 0.5 minimum, 0.9 maximum Describe/justify the use of the ratios chosen. 5 Default Describe the design value used for each averaging period modeled. 6 1-hour: High eighth high Annual: Highest annual average

16	-M: Pa	articulate Matter Modeling							
	Select the pollutants for which plume depletion modeling was used.								
		PM2.5							
1		PM10							
	X	None							
2	Describe the particle size distributions used. Include the source of information.								
3	Only requ	ndary PM modeled for PM2.5? uired for PSD major modifications that are significant for NOx and/or SOx. Optional sources but allows use of high eighth high.	Yes X	No					
	$[PM_{2.5}] an ((NO_X en ((89.77/3) = 0.006 \mu_g)))) = (1000 m_g) = (1$	$\frac{1}{1} = \frac{1}{1} + \frac{1}$							

16-	N: Setback Distances and Source Classification						
1	Portable sources or sources that need flexibility in their site configuration requires that setback distances be determined between the emission sources and the restricted area boundary (e.g. fence line) for both the initial location and future locations. Describe the setback distances for the initial location.						
2	Describe the requested, modeled, setback distances for future locations, if this permit is for a po- Include a haul road in the relocation modeling.	ortable stationa	ry source.				
3	The unit numbers in the Tables 2-A, 2-B, 2-C, 2-E, 2-F, and 2-I should match the ones in the Meridian						
4	Provide a cross-reference table between unit numbers if they do not match. It's ok to place the table below section 16-N for easier formatting.						
5	The emission rates in the Tables 2-E and 2-F should match the ones in the modeling files. Do these match?	Yes X	No				
6	If not, explain why.						
7	Have the minor NSR exempt sources or Title V Insignificant Activities" (Table 2-B) sources been modeled?	Yes	No X				
8	Which units consume increment for which pollutants? All of the minor source baseline dates have been set and all of the units consume increment						
9	PSD increment description for sources. (for unusual cases, i.e., baseline unit expanded emissions after baseline date).						
10	Are all the actual installation dates included in Table 2A of the application form, as required?	Yes X	No				
	This is necessary to verify the accuracy of PSD increment modeling.						
11	If not please explain how increment consumption status is determined for the missing installation	on dates.					

16	-O: Flare Modeli	ng							
1	For each flare or flaring scenario, complete the following								
	Flare ID (and scenario)	Average Molecular Weight	Gross Heat Release (cal/s)	Effective Flare Diameter (m)					
	HPF								
	Pilot	23.57	38837.31395						
	Booster Compressor	32.83	3088475.646	13.83					
	Sales Gas Flaring	23.57	246356544.4						
	LPF								
	Pilot	23.57	19418.65698						
	Vapor Recovery Tower (VRT)	45.84	5497945.257						
	Oil Storage Tanks	50.49	778319.6155	212					
	Truck Loading of Oil	50.21	87931.96531						
	Skim & Water Tanks	22.71	258196.6251						

16	-P: Volume and Related Sources					
1	Were the dimensions of volume sources different from standard dimensions in the Air Quality Bureau (AQB) Modeling Guidelines?	Yes	No X			
2	If the dimensions of volume sources are different from standard dimensions in the AQB Modeling Guidelines, describe how the dimensions were determined.					
3	Describe the determination of sigma-Y and sigma-Z for fugitive sources. Road sources used the NMED guideline values for large trucks.					
4	Describe how the volume sources are related to unit numbers. Or say they are the same. The only volume sources used were for the haul road. The model IDs L1-L24 represent the haul road.					
5	Describe any open pits.					
6	Describe emission units included in each open pit.					

#### **16-Q: Background Concentrations** Identify and justify the background concentrations used. Background values were selected from the NMED Air Dispersion Modeling Guidelines, Revised June 6, 2019 Pollutant Monitor ID **Monitor Location** Avg. Period Concentration Units $\mu g/m^{3}$ 1-hour 2203 CO 350010023 Del Norte High School 8-hour $\mu g/m^3$ 1524 1-hour μg/m³ 38.7 1 NO₂ 350151005 Outside Carlsbad Annual 5.0 $\mu g/m^3$ μg/m³ 24-hour 13.4 PM_{2.5} Annual 5.9 $\mu g/m^3$ Hobbs-Jefferson 350250008 24-hour 37.3 μg/m³ $PM_{10}$ Annual $\mu g/m^3$ 24 1-hour 47 $\mu g/m^3$ SO₂ 483751025 Amarillo, 24th Ave Annual 0.67 μg/m³ 2 Were background concentrations refined to monthly or hourly values? Yes No X

**16-R: Meteorological Data** 

 Identify and justify the meteorological data set(s) used.

 1
 Identify and justify the meteorological data set(s) used.

 1
 Carlsbad 2015. The Carlsbad data is posted on the NMED website and is located approximately 31 km northwest of the project site. The year 2015 is the only year processed with default options. The project site and Carlsbad monitor are within the same terrain feature.

 2
 Discuss how missing data were handled, how stability class was determined, and how the data were processed, if the Bureau did not provide the data.

 2
 The meteorological file was used as downloaded from the NMED website

16	16-S: Terrain				
1	Was complex terrain used in the modeling? If no, describe why.				
	Yes				
2	What was the source of the terrain data? USGS NED data, downloaded from https://www.mrlc.gov/viewerjs/				

#### **16-T: Modeling Files**

1

Describe the modeling files:

The significance analysis was run with only the Corral Canyon sources. Impacts were found to be insignificant for CO and the SO2 3-hr averaging period.

Cumulative NO2 NAAQS and NMAAQS impacts for the 1-hr and annual averaging periods were determined using the SIA analysis and monitored background. An additional NOx SIA analysis was run with the flaring emissions annualized (NOx_Ann) to determine compliance with the PSD increment. Receptors with significant annual impacts were carried forward to the NOx cumulative analysis. The sources identified in the NMED inventory with IDs less than 10,000 were removed from the inventory prior to the analysis.

Cumulative SO2 1-hr impacts were determined from the SIA analysis using the H1H and monitored background. Cumulative SO2 PSD impacts were determined by using significant receptors from the SIA analysis and the inventory provided by the NMED. No sources were removed from the NMED inventory.

The cumulative impacts for PM10 and PM2.5 were determined using significant receptors from the SIA analysis, modeling the surrounding sources provided by the NMED and adding monitored background. Estimates of secondary PM2.5 formation were added to the PM2.5 impacts.

File name (or folder and file name)	Pollutant(s)	Purpose (ROI/SIA, cumulative, culpability analysis, other)		
SIA\CO\ *.ADI, *.ADO, *.SUM		ROI & cumulative input/output and summary files		
SIA\CO\CO.AD	СО	Plot files Ex: [01][H1]G[ALL].PLT [Avg][Rank]G[Source grp].PLT		
SIA\NOx\ *.ADI, *.ADO, *.SUM	NO2 1-hr	ROI & Cumulative input/output and summary files		
SIA\NOx\NOx.AD	NO2 1-III	Plot Files		
SIA\NOx_Ann*.ADI, *.ADO, *.SUM	NO2 Annual	ROI input/output and summary files		
SIA\NOx_Ann.AD	average	Plot Files		
SIA\PM10*.ADI, *.ADO, *.SUM	DM10	ROI input/output and summary files		
SIA\PM10\PM10.AD	PM10	Plot Files		
SIA\PM25*.ADI, *.ADO, *.SUM	D) (25	ROI input/output and summary files		
SIA\PM25\PM10.AD	PM25	Plot Files		
SIA\SO2*.ADI, *.ADO, *.SUM	SO2	ROI input/output and summary files		
SIA\SO2\SO2.AD\	302	Plot Files		
Surrounding Sources\NOx *.ADI, *.ADO, *.SUM	NO2 Ammal	CIA input/output and summary files		
Surrounding Sources\NOx\NOx.AD	NO2 Annual	Plot Files		
Surrounding Sources\PM10 *.ADI, *.ADO, *.SUM	PM10	CIA input/output and summary files		
Surrounding Sources\PM10\PM10.AD	PIVITO	Plot Files		
Surrounding Sources\PM25 *.ADI, *.ADO, *.SUM	DM2.5	CIA input/output and summary files		
Surrounding Sources\PM25\PM25.AD	PM2.5	Plot Files		
Surrounding Sources\SO2 *.ADI, *.ADO, *.SUM	502	CIA input/output and summary files		
Surrounding Sources\SO2\SO2.AD	SO2	Plot Files		

16	-U: PSD New or Major Modification Applications					
1	A new PSD major source or a major modification to an existing PSD major source requires additional analysis. Was preconstruction monitoring done (see 20.2.74.306 NMAC and PSD Preapplication Guidance on the AQB website)?	Yes	No			
2	If not, did AQB approve an exemption from preconstruction monitoring?	Yes	No			
3	Describe how preconstruction monitoring has been addressed or attach the approved preconstruction monitoring or monitoring exemption.					
4	Describe the additional impacts analysis required at 20.2.74.304 NMAC.					
5	If required, have ozone and secondary PM2.5 ambient impacts analyses been completed?					

16-	V: Mod	eling Re	sults								
1	If ambient standards are exceeded because of surrounding sources, a culpability analysis is required for the source to show that the contribution from this source is less than the significance levels for the specific pollutant.										
2	Identify the maximum concentrations from the modeling analysis.										
Pollutant	Period	Facility Concentration (µg/m3)	Total Modeled Concentration (μg/m3)	Total Modeled Concentration (PPM)	Background Concentration	Cumulative Concentration	Standard	Value of Standard	Units of Standard, Background, and Total	Percent of Standard	
CO	1-hr	427.24983	427.24983		N/A	427.24983	SIL	2000	µg/m ³	21.4	
CO	8-hr	322.55422	322.55422		N/A	322.55422	SIL	500	$\mu g/m^3$	64.5	
$SO_2$	1-hr	9.71262	9.71262		47	56.1	NAAQS	196.4	$\mu g/m^3$	28.6	
$SO_2$	3-hr	8.08214	8.08214		N/A	8.08214	SIL	25	$\mu g/m^3$	32.3	
$SO_2$	24-hr	5.67460	5.70750		N/A	5.70750	PSD	91	μg/m ³	6.3	
$SO_2$	Annual	1.04436	1.32757		N/A	1.32757	PSD	20	$\mu g/m^3$	6.6	
$NO_2$	1-hr	134.37925	134.37925		38.7	173.08	NAAQS	188.03	μg/m ³	92.0	
$NO_2$	Annual	20.90006	20.90006		5.0	25.9	NMAAQS	94.02	μg/m ³	27.5	
$NO_2$	Annual	5.89500	8.85298		N/A	8.85298	PSD	25	μg/m ³	35.4	
PM10		33.39695	40.69324		37.3	77.99	NAAQS	150	$\mu g/m^3$	52.0	
PM ₁₀		28.91388	29.79795		N/A	29.79795	PSD	30	µg/m ³	99.3	
PM ₁₀		12.51699	13.15767		N/A	13.15767	PSD	17	μg/m ³	77.4	
PM _{2.5}		6.72485	6.73505		0.089*	6.82	PSD	9	μg/m ³	75.8	
PM _{2.5}		1.58701	1.76858		0.002*	1.7688	PSD	4	μg/m ³	44.2	
PM _{2.5}		3.14650	8.49991		13.489*	21.099	NAAQS	35	μg/m ³	62.8	
PM _{2.5}	Annual	1.58701	3.58269		5.902*	9.48	NAAQS	12	µg/m ³	79.0	

16-W: Location of maximum concentrations							
1 Identify	fy the locations of the maximum concentrations.						
Pollutant	Period	UTM East (m)	UTM North (m)	Elevation (ft)	Distance (m)	Radius of Impact (ROI) (m)	
СО	1-hr	594750.00	3557950.00	899.74	404	0	
СО	8-hr	594340.00	3557930.00	900.88	On-site	0	
SO ₂	1-hr	594340.00	3557930.00	900.88	On-site	On-site	
SO ₂	3-hr	594340.00	3557930.00	900.88	On-site	0 (Class I 544 m)	
SO ₂	24-hr	594340.00	3557930.00	900.88	On-site	On-site	
SO ₂	Annual	594330.00	3557920.00	900.88	On-site	On-site (Class I 174 m)	
NO ₂	1-hr	594320.00	3557910.00	900.88	On-site	50,000	
NO ₂	Annual	594360.00	3557940.00	901.90	On-site	428 m (Class I 21,724 m)	
PM ₁₀ PSD	24-hr	594470.00	3557740.00	896.82	On-site	417 m (Class I 3,365 m)	
PM ₁₀ NAAQS	24-hr	594440.00	3557800.00	897.74	On-site	417 m	
PM ₁₀	Annual	594360.00	3557830.00	898.43	On-site	306 m (Class I 796 m)	
PM _{2.5} PSD 24-hr		594340.00	3557930.00	900.88	On-site	559 m (Class I 1,155 m)	
PM _{2.5} PSD	Annual	594330.00 3557920.00 900.88 On-site 305 m (Class I 3,323)					
PM _{2.5} NAAQS	_{.5} NAAQS 24-hr 594470.00 3557760.00 897.05 On-site 559 m		559 m				
PM _{2.5} NAAQS	Annual	594330.00	3557920.00	900.88	On-site	305 m	

Distance to maximum determined from center of facility source locations (594348.8, 3557898.8). Maximum concentration locations on the site pad are indicted by "On-site"

#### **16-X:** Summary/conclusions

1

A statement that modeling requirements have been satisfied and that the permit can be issued.

Modeling has been performed following the guidance "New Mexico Air Quality Bureau Air Dispersion Modeling Guidelines, Revised June 6, 2019." Modeled impacts were found to be below the modeling significance levels or the ambient air quality standards. The facility will not cause or contribute to an exceedance of the ambient air quality standards and the permit can be issued.