
Mail Application To:

New Mexico Environment Department Air Quality Bureau Permits Section 525 Camino de los Marquez, Suite 1 Santa Fe, New Mexico, 87505

Phone: (505) 476-4300 (505) 476-4375 Fax: www.env.nm.gov/aqb

AIRS No.:

Universal Air Quality Permit Application

Use this application for NOI, NSR, or Title V sources.

Use this application for: the initial application, modifications, technical revisions, and renewals. For technical revisions, complete Sections, 1-A, 1-B, 2-E, 3, 9 and any other sections that are relevant to the requested action; coordination with the Air Quality Bureau permit staff prior to submittal is encouraged to clarify submittal requirements and to determine if more or less than these sections of the application are needed. Use this application for streamline permits as well. See Section 1-I for submittal instructions for other permits.

This application is submitted as (check all that apply):
□ Request for a No Permit Required Determination (no fee) Updating an application currently under NMED review. Include this page and all pages that are being updated (no fee required). Existing Permitted (or NOI) Facility Construction Status: □ Not Constructed □ Existing Non-permitted (or NOI) Facility Minor Source: 🗆 a NOI 20.2.73 NMAC 🗹 20.2.72 NMAC application or revision 🗆 20.2.72.300 NMAC Streamline application Title V Source:
Title V (new)
Title V renewal
TV minor mod.
TV significant mod.
TV Acid Rain:
New
Renewal PSD Major Source:
PSD major source (new)
minor modification to a PSD source □ a PSD major modification

Acknowledgements:

🗹 I acknowledge that a pre-application meeting is available to me upon request. 🗆 Title V Operating, Title IV Acid Rain, and NPR applications have no fees.

🗹 \$500 NSR application Filing Fee enclosed OR 🗆 The full permit fee associated with 10 fee points (required w/ streamline applications).

☑ Check No.: in the amount of \$500

Z I acknowledge the required submittal format for the hard copy application is printed double sided 'head-to-toe', 2-hole punched (except the Sect. 2 landscape tables is printed 'head-to-head'), numbered tab separators. Incl. a copy of the check on a separate page. □ This facility qualifies to receive assistance from the Small Business Environmental Assistance program (SBEAP) and qualifies for 50% of the normal application and permit fees. Enclosed is a check for 50% of the normal application fee which will be verified with the Small Business Certification Form for your company.

□ This facility qualifies to receive assistance from the Small Business Environmental Assistance Program (SBEAP) but does not qualify for 50% of the normal application and permit fees. To see if you qualify for SBEAP assistance and for the small business certification form go to https://www.env.nm.gov/aqb/sbap/small_business_criteria.html).

Citation: Please provide the **low level citation** under which this application is being submitted: **20.2.72.219.D(1)(a) NMAC** (e.g. application for a new minor source would be 20.2.72.200.A NMAC, one example for a Technical Permit Revision is 20.2.72.219.B.1.b NMAC, a Title V acid rain application would be: 20.2.70.200.C NMAC)

Section 1 – Facility Information

Sec	tion 1-A: Company Information	AI # if known (see 1 st 3 to 5 #s of permit IDEA ID No.): 218	Updating Permit/NOI #: 0220- M10R1				
1	Facility Name: South Carlsbad Compressor Station	Plant primary SIC Cod	e (4 digits): 1311				
1		Plant NAIC code (6 dig	ant NAIC code (6 digits): 211130				
а	Facility Street Address (If no facility street address, provide directions from a prominent landmark): See Section 1-D.						
2	Plant Operator Company Name: Enterprise Products Operating, LLC	Phone/Fax: (713) 381-0	6595 / (713) 381-6811				
a	Plant Operator Address: PO Box 4324, Houston, TX 77210-4324						
b	Plant Operator's New Mexico Corporate ID or Tax ID: 3289188						

3	Plant Owner(s) name(s): Enterprise Field Services, LLC	Phone/Fax: (713) 381-6500 / (713) 381-6811			
a	Plant Owner(s) Mailing Address(s): PO Box 4324, Houston, TX 77210-43	24			
4	Bill To (Company): Enterprise Products Operating, LLC	Phone/Fax: (713) 381-6595 / (713) 381-6811			
а	Mailing Address: PO Box 4324, Houston, TX 77210-4324	E-mail: <u>environmental@eprod.com</u>			
5	☑ Preparer: Jing Li □ Consultant:	Phone/Fax: (713) 381-5766 / (713) 759-3931			
а	Mailing Address: PO Box 4324, Houston, TX 77210-4324	E-mail: jli@eprod.com			
6	Plant Operator Contact: Daryl Arredondo	Phone/Fax: (575) 628-6819			
а	Address: PO Box 4324, Houston, TX 77210-4324	E-mail: <u>ddarredondo@eprod.com</u>			
7	Air Permit Contact: Jing Li	Title: Senior Environmental Engineer			
а	E-mail: jli@eprod.com	Phone/Fax: (713) 381-5766 / (713) 759-3931			
b	Mailing Address: PO Box 4324, Houston, TX 77210-4324				
с	The designated Air permit Contact will receive all official correspondence	(i.e. letters, permits) from the Air Quality Bureau.			

Section 1-B: Current Facility Status

1.a	Has this facility already been constructed? ☑ Yes □ No	1.b If yes to question 1.a, is it currently operating in New Mexico? ☑ Yes □ No						
2	If yes to question 1.a, was the existing facility subject to a Notice of Intent (NOI) (20.2.73 NMAC) before submittal of this application? □ Yes ☑ No	If yes to question 1.a, was the existing facility subject to a construction permit (20.2.72 NMAC) before submittal of this application? ☑ Yes □ No						
3	Is the facility currently shut down? □ Yes ☑ No	If yes, give month and year of shut down (MM/YY): N/A						
4	Was this facility constructed before 8/31/1972 and continuously operated since 1972? ☑ Yes □ No							
5	If Yes to question 3, has this facility been modified (see 20.2.72.7.P NMAC) or the capacity increased since $\frac{8}{31}/1972$?							
6	Does this facility have a Title V operating permit (20.2.70 NMAC)? ☑ Yes □ No	If yes, the permit No. is: P-130-R3M1						
7	Has this facility been issued a No Permit Required (NPR)? □ Yes ☑ No	If yes, the NPR No. is: N/A						
8	Has this facility been issued a Notice of Intent (NOI)? □ Yes □ No	If yes, the NOI No. is: N/A						
9	Does this facility have a construction permit (20.2.72/20.2.74 NMAC)? ☑ Yes □ No	If yes, the permit No. is: 0220-M10R1						
10	Is this facility registered under a General permit (GCP-1, GCP-2, etc.)? □ Yes ☑ No	If yes, the register No. is: N/A						

Section 1-C: Facility Input Capacity & Production Rate

1	What is the facility's maximum input capacity, specify units (reference here and list capacities in Section 20, if more room is required)								
a	Current	Hourly: 8.33 MMscf	Daily: 200 MMscf	Annually: 73 Bscf					
b	Proposed	Hourly: 8.33 MMscf	Annually: 73 Bscf						
2	What is the facility's maximum production rate, specify units (reference here and list capacities in Section 20, if more room is required)								
a	Current	Hourly: 8.33 MMscf	Daily: 200 MMscf	Annually: 73 Bscf					
b	Proposed	Hourly: 8.33 MMscf	Daily: 200 MMscf	Annually: 73 Bscf					

Section 1-D: Facility Location Information

		denney Loca								
1	Section: 12	Range: 27E	Township: 23S	County: Eddy		Elevation (ft): 3,070				
2	UTM Zone:	□ 12 or ☑ 13		Datum: □ NAD 27 □ NAD 83 ☑ WGS 84						
a	UTM E (in mete	rs, to nearest 10 meter	s): 581, 300 m E	UTM N (in meters, to nearest	10 meters):	3,575,500 m N				
b	AND Latitude	(deg., min., sec.):	32° 18' 55.54" N	Longitude (deg., min., sec	c.): 104° 08	8' 11.55" W				
3	Name and zip									
4				h a road map if necessary): West 1.0 mile to the facility		ing, NM follow US-285 north				
5	The facility is 2	2.8 miles northwe	st of Loving, NM.							
6	Status of land a (specify)									
7	List all municipalities, Indian tribes, and counties within a ten (10) mile radius (20.2.72.203.B.2 NMAC) of the property on which the facility is proposed to be constructed or operated: Municipalities: Carlsbad, Loving, Malaga; Indian Tribes: None; Counties: Eddy									
8	20.2.72 NMAC applications only : Will the property on which the facility is proposed to be constructed or operated be closer than 50 km (31 miles) to other states, Bernalillo County, or a Class I area (see <u>www.env.nm.gov/aqb/modeling/class1areas.html</u>)? ☑ Yes □ No (20.2.72.206.A.7 NMAC) If yes, list all with corresponding distances in kilometers: States: Texas - 34.7 km; Class I Area: Carlsbad Caverns National Park - 26.1 km									
9	Name nearest (Class I area: Carls	bad Caverns National Park							
10	Shortest distan	ce (in km) from fa	cility boundary to the boundary	ndary of the nearest Class I	area (to the	nearest 10 meters): 26.1 km				
11				ions (AO is defined as the pest residence, school or occu						
12	Method(s) used to delineate the Restricted Area: Fencing, gates, and signage. " Restricted Area " is an area to which public entry is effectively precluded. Effective barriers include continuous fencing, continuous walls, or other continuous barriers approved by the Department, such as rugged physical terrain with steep grade that would require special equipment to traverse. If a large property is completely enclosed by fencing, a restricted area within the property may be identified with signage only. Public roads cannot be part of a Restricted Area.									
13	□ Yes ☑ N A portable stat	o ionary source is n	ot a mobile source, such as	an automobile, but a source as such as a hot mix asphalt p	e that can l					
14	Will this facilit	ty operate in conju		ated parties on the same pro		No Yes				

Section 1-E: Proposed Operating Schedule (The 1-E.1 & 1-E.2 operating schedules may become conditions in the permit.)

1	Facility maximum operating $(\frac{\text{hours}}{\text{day}})$: 24	$(\frac{\text{days}}{\text{week}})$: 7	$(\frac{\text{weeks}}{\text{year}}): 52$	$\left(\frac{\text{hours}}{\text{year}}\right)$: 8,760				
2	Facility's maximum daily operating schedule (if less	than $24 \frac{\text{hours}}{\text{day}}$)? Start: N/A	□AM □PM	End: N/A	□AM □PM			
3	Month and year of anticipated start of construction: Upon receipt of permit.							
4	Month and year of anticipated construction completion: N/A							
5	Month and year of anticipated startup of new or modified facility: N/A							
6	Will this facility operate at this site for more than one year? \square Yes \square No							

Section 1-F: Other Facility Information

1Are there any current Notice of Violations (NOV), compliance orders, or any other compliance or enforcement issues related
to this facility? \Box Yes \blacksquare NoIf yes, specify:

а	If yes, NOV date or description of issue: N/A		NOV Tracking No: N/A				
b	Is this application in response to any issue listed in 1-F, 1 or 1a above? 🗆 Yes 🗹 No If Yes, provide the 1c & 1d info below:						
c	Document Title: N/A	Date: N/A		nent # (or nd paragraph #): N/A			
d	Provide the required text to be inserted in this permit: N/A						
2	Is air quality dispersion modeling or modeling waiver being submitted with this application? \square Yes \square No						
3	Does this facility require an "Air Toxics" permit under 20.2.72.400 NMAC & 20.2.72.502, Tables A and/or B? 🗆 Yes 🗹 No						
4	Will this facility be a source of federal Hazardous Air Polle	utants (HAP)? 🗹 Ye	s 🗆 No				
a	If Yes, what type of source? \Box Major ($\Box \ge 10$ tpy of any single HAPOR $\Box \ge 25$ tpy of any combination of HAPS)OR \Box Minor (\Box <10 tpy of any single HAP						
5	Is any unit exempt under 20.2.72.202.B.3 NMAC? □ Yes ☑ No						
	If yes, include the name of company providing commercial electric power to the facility: <u>N/A</u>						
а	Commercial power is purchased from a commercial utility site for the sole purpose of the user.	company, which spe	cifically d	loes not include power generated on			

Section 1-G: Streamline Application (This section applies to 20.2.72.300 NMAC Streamline applications only)

1 □ I have filled out Section 18, "Addendum for Streamline Applications." ☑ N/A (This is not a Streamline application.)

Section 1-H: Current Title V Information - Required for all applications from TV Sources

(Title V-source required information for all applications submitted pursuant to 20.2.72 NMAC (Minor Construction Permits), or

20.2.74/20.2.79 NMAC (Ma	jor PSD/NNSR applications), and/o	r 20.2.70 NMAC (Title V))

1	Responsible Official (R.O.) (20.2.70.300.D.2 NMAC): Graham Bacon	Phone: (713) 381-6595					
a	R.O. Title: Executive Vice President-EHS&T	R.O. e-mail: environmental@eprod.com					
b	R. O. Address: PO Box 4324, Houston, TX 77210-4324						
2	Alternate Responsible Official (20.2.70.300.D.2 NMAC): Ivan W. ZirbesPhone: (713) 381-6595						
а	A. R.O. Title: Vice President-EHS&T	vironmental@eprod.com					
b	A. R. O. Address: PO Box 4324, Houston, TX 77210-4324						
3	Company's Corporate or Partnership Relationship to any other Air Quality Permittee (List the names of any companies that have operating (20.2.70 NMAC) permits and with whom the applicant for this permit has a corporate or partnership relationship): Enterprise Field Services, LLC and Enterprise Products Operating, LLC						
4	Name of Parent Company ("Parent Company" means the primary permitted wholly or in part.): Enterprise Product Partners, LP	name of the organiza	tion that owns the company to be				
а	Address of Parent Company: 1100 Louisiana St., Houston, TX 770	02					
5	Names of Subsidiary Companies ("Subsidiary Companies" means owned, wholly or in part, by the company to be permitted.): N/A	organizations, branc	hes, divisions or subsidiaries, which are				
6	Telephone numbers & names of the owners' agents and site contact 628-6819 / Jing Li (713) 381-5766 / (713) 759-3931	ts familiar with plan	t operations: Daryl Arredondo (575)				
7	Affected Programs to include Other States, local air pollution contr Will the property on which the facility is proposed to be constructed states, local pollution control programs, and Indian tribes and pueb ones and provide the distances in kilometers: Texas (~34.7 km)	d or operated be clo	ser than 80 km (50 miles) from other				

Section 1-I – Submittal Requirements

Each 20.2.73 NMAC (**NOI**), a 20.2.70 NMAC (**Title V**), a 20.2.72 NMAC (**NSR** minor source), or 20.2.74 NMAC (**PSD**) application package shall consist of the following:

Hard Copy Submittal Requirements:

- One hard copy original signed and notarized application package printed double sided 'head-to-toe' 2-hole punched as we bind the document on top, not on the side; except Section 2 (landscape tables), which should be head-to-head. Please use numbered tab separators in the hard copy submittal(s) as this facilitates the review process. For NOI submittals only, hard copies of UA1, Tables 2A, 2D & 2F, Section 3 and the signed Certification Page are required. Please include a copy of the check on a separate page.
- 2) If the application is for a minor NSR, PSD, NNSR, or Title V application, include one working hard copy for Department use. This copy should be printed in book form, 3-hole punched, and must be double sided. Note that this is in addition to the head-toto 2-hole punched copy required in 1) above. Minor NSR Technical Permit revisions (20.2.72.219.B NMAC) only need to fill out Sections 1-A, 1-B, 3, and should fill out those portions of other Section(s) relevant to the technical permit revision. TV Minor Modifications need only fill out Sections 1-A, 1-B, 1-H, 3, and those portions of other Section(s) relevant to the minor modification. NMED may require additional portions of the application to be submitted, as needed.
- 3) The entire NOI or Permit application package, including the full modeling study, should be submitted electronically. Electronic files for applications for NOIs, any type of General Construction Permit (GCP), or technical revisions to NSRs must be submitted with compact disk (CD) or digital versatile disc (DVD). For these permit application submittals, two CD copies are required (in sleeves, not crystal cases, please), with additional CD copies as specified below. NOI applications require only a single CD submittal. Electronic files for other New Source Review (construction) permits/permit modifications or Title V permits/permit modifications can be submitted on CD/DVD or sent through AQB's secure file transfer service.

Electronic files sent by (check one):

$\mathbf{\nabla}$	CD/DVD	attached	to	paper	application
-------------------	--------	----------	----	-------	-------------

☑ secure electronic transfer. Air Permit Contact Name_____

Email

Phone number _____

a. If the file transfer service is chosen by the applicant, after receipt of the application, the Bureau will email the applicant with instructions for submitting the electronic files through a secure file transfer service. Submission of the electronic files through the file transfer service needs to be completed within 3 business days after the invitation is received, so the applicant should ensure that the files are ready when sending the hard copy of the application. The applicant will not need a password to complete the transfer. **Do not use the file transfer service for NOIs, any type of GCP, or technical revisions to NSR permits.**

- 4) Optionally, the applicant may submit the files with the application on compact disk (CD) or digital versatile disc (DVD) following the instructions above and the instructions in 5 for applications subject to PSD review.
- 5) If air dispersion modeling is required by the application type, include the NMED Modeling Waiver and/or electronic air dispersion modeling report, input, and output files. The dispersion modeling <u>summary report only</u> should be submitted as hard copy(ies) unless otherwise indicated by the Bureau.
- 6) If the applicant submits the electronic files on CD and the application is subject to PSD review under 20.2.74 NMAC (PSD) or NNSR under 20.2.79 NMC include,
 - a. one additional CD copy for US EPA,
 - b. one additional CD copy for each federal land manager affected (NPS, USFS, FWS, USDI) and,
 - c. one additional CD copy for each affected regulatory agency other than the Air Quality Bureau.

If the application is submitted electronically through the secure file transfer service, these extra CDs do not need to be submitted.

Electronic Submittal Requirements [in addition to the required hard copy(ies)]:

- 1) All required electronic documents shall be submitted as 2 separate CDs or submitted through the AQB secure file transfer service. Submit a single PDF document of the entire application as submitted and the individual documents comprising the application.
- 2) The documents should also be submitted in Microsoft Office compatible file format (Word, Excel, etc.) allowing us to access the text and formulas in the documents (copy & paste). Any documents that cannot be submitted in a Microsoft Office compatible format shall be saved as a PDF file from within the electronic document that created the file. If you are unable to provide

Microsoft office compatible electronic files or internally generated PDF files of files (items that were not created electronically: i.e. brochures, maps, graphics, etc,), submit these items in hard copy format. We must be able to review the formulas and inputs that calculated the emissions.

- 3) It is preferred that this application form be submitted as 4 electronic files (3 MSWord docs: Universal Application section 1 [UA1], Universal Application section 3-19 [UA3], and Universal Application 4, the modeling report [UA4]) and 1 Excel file of the tables (Universal Application section 2 [UA2]). Please include as many of the 3-19 Sections as practical in a single MS Word electronic document. Create separate electronic file(s) if a single file becomes too large or if portions must be saved in a file format other than MS Word.
- 4) The electronic file names shall be a maximum of 25 characters long (including spaces, if any). The format of the electronic Universal Application shall be in the format: "A-3423-FacilityName". The "A" distinguishes the file as an application submittal, as opposed to other documents the Department itself puts into the database. Thus, all electronic application submittals should begin with "A-". Modifications to existing facilities should use the core permit number (i.e. '3423') the Department assigned to the facility as the next 4 digits. Use 'XXXX' for new facility applications. The format of any separate electronic submittals (additional submittals such as non-Word attachments, re-submittals, application updates) and Section document shall be in the format: "A-3423-9-description", where "9" stands for the section # (in this case Section 9-Public Notice). Please refrain, as much as possible, from submitting any scanned documents as this file format is extremely large, which uses up too much storage capacity in our database. Please take the time to fill out the header information throughout all submittals as this will identify any loose pages, including the Application Date (date submitted) & Revision number (0 for original, 1, 2, etc.; which will help keep track of subsequent partial update(s) to the original submittal. Do not use special symbols (#, @, etc.) in file names. The footer information should not be modified by the applicant.

Table of Contents

- Section 1: General Facility Information
- Section 2: Tables
- Section 3: Application Summary
- Section 4: Process Flow Sheet
- Section 5: Plot Plan Drawn to Scale
- Section 6: All Calculations
- Section 7: Information Used to Determine Emissions
- Section 8: Map(s)
- Section 9: Proof of Public Notice
- Section 10: Written Description of the Routine Operations of the Facility
- Section 11: Source Determination
- Section 12: PSD Applicability Determination for All Sources & Special Requirements for a PSD Application
- Section 13: Discussion Demonstrating Compliance with Each Applicable State & Federal Regulation
- Section 14: Operational Plan to Mitigate Emissions
- Section 15: Alternative Operating Scenarios
- Section 16: Air Dispersion Modeling
- Section 17: Compliance Test History
- Section 18: Addendum for Streamline Applications (streamline applications only)
- Section 19: Requirements for the Title V (20.2.70 NMAC) Program (Title V applications only)
- Section 20: Other Relevant Information
- Section 21: Addendum for Landfill Applications
- Section 22: Certification Page

 Table 2-A:
 Regulated Emission Sources

Unit and stack numbering must correspond throughout the application package. If applying for a NOI under 20.2.73 NMAC, equipment exemptions under 2.72.202 NMAC do not apply.

Unit Number ¹	Source Description	Make	Model #	Serial #	Manufact- urer's Rated Capacity ³ (Specify Units)	Requested Permitted Capacity ³ (Specify Units)	Date of Manufacture ² Date of Construction/ Reconstruction ²	Controlled by Unit # Emissions vented to Stack #	Source Classi- fication Code (SCC)	For Each Piece of Equipment, Check One	RICE Ignition Type (CI, SI, 4SLB, 4SRB, 2SLB) ⁴	Replacing Unit No.	
1							Sep-04	N/A		Existing (unchanged)	27/4	NT/A	
1	Natural Gas Turbine	Solar	T-4702	OHD10-C-	4700 hp	4328 hp	3/24/2010	1	20200201	 New/Additional Replacement Unit To Be Modified To be Replaced 	N/A	N/A	
C9101	Compressor	Centaur	1-4702	7915	4700 np	4328 np	Unknown	N/A	20200201	Existing (unchanged) To be Removed New/Additional Replacement Unit	N/A	N/A	
C9101	Compressor						< 8/23/2011	N/A		□ To Be Modified □ To be Replaced	IN/A	N/A	
2	Natural Gas Turbine						Sep-04	N/A		Existing (unchanged) To be Removed New/Additional Replacement Unit	N/A	N/A	
2	Natural Gas Turbine	Solar	T-4702	OHE12-C-	4700 hp	4328 hp	8/31/2013	2	20200201	□ To Be Modified □ To be Replaced	IN/A	N/A	
C9102	C	Centaur	1-4702	7057	4700 np	4328 np	Unknown	N/A	20200201	Existing (unchanged) To be Removed New/Additional Replacement Unit	N/A	N/A	
C9102	Compressor						< 8/23/2011	N/A			□ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced	IN/A	N/A
5	Natural Gas Turbine			TBD			Unknown	N/A		 □ Existing (unchanged) □ To be Removed ☑ New/Additional □ Replacement Unit 	N/A	N/A	
3	Natural Gas Turbine	Solar	T40 47008	IDD	4700 hp	4329 hp	< 8/23/2011	N/A	20200201	□ To Be Modified □ To be Replaced	IN/A	11/21	
C9103	C	Centaur	Centaur T40-4700S TBD 4700 hp	4329 np	N/A	N/A	20200201	□ Existing (unchanged) □ To be Removed ☑ New/Additional □ Replacement Unit	N/A	N/A			
C9105	Compressor			IDD			N/A	N/A	A	□ To Be Modified □ To be Replaced	IN/A	N/A	
3a	Gylcol Dehydrator Still	Gas Tech	Unknown	Unknown	200	200	1/1/1999	3a	31000302	Existing (unchanged) To be Removed New/Additional Replacement Unit	N/A	N/A	
34	Vent	Gas Tech	Ulikilowii	UIIKIIOWII	MMscf/day	MMscf/day	Unknown	3b	31000302	$\square \text{ New/Additional} \square \text{ Replacement Onit}$ $\square \text{ To Be Modified} \square \text{ To be Replaced}$	1N/PA	IN/A	
3b	Glycol Dehydrator	Gas Tech	Unknown	Unknown	3.0	3.0	1/1/1999	3b	31000302	Existing (unchanged) To be Removed New/Additional Replacement Unit	N/A	N/A	
30	Reboiler	Gas Tech	Ulikilowii	UIIKIIOWII	MMBtu/hr	MMBtu/hr	Unknown	3b	31000302	$\square \text{ New/Additional} \square \text{ Replacement Onit}$ $\square \text{ To Be Modified} \square \text{ To be Replaced}$	1N/PA	IN/A	
4a	Amine Unit	Externer	Unknown	Unknown	125	125	9/1/2010	N/A	40400311	□ Existing (unchanged) ☑ To be Removed □ New/Additional □ Replacement Unit	N/A	N/A	
4a	Amine Unit	Exterran	Unknown	Unknown	MMscf/day	MMscf/day	Unknown	4a	40400311	□ To Be Modified □ To be Replaced	IN/A	N/A	
41-	Amine Uniit Reboiler	T I 1	T	T.I., 1	55	44	9/1/2010	N/A	10100602	□ Existing (unchanged) ☑ To be Removed □ New/Additional □ Replacement Unit	NI/A	NI/A	
4b	Annue Onnt Reboner	Unknown	Unknown	Unknown	MMBtu/hr	MMBtu/hr	Unknown	4b	10100002	□ To Be Modified □ To be Replaced	N/A	N/A	
T-008	Stabilized Condensate	Unknown	Unknown	N/A	300 bbl	300 bbl	2013	N/A	40400311	Existing (unchanged) To be Removed New/Additional Replacement Unit	N/A	N/A	
1-008	Tank	UIIKIIOWII	UIIKIIOWII	IN/A	300 001	500 001	Unknown	N/A	40400511	□ New/Additional □ Replacement Onit ☑ To Be Modified □ To be Replaced	IN/A	N/A	
T-009	Stabilized Condensate	Unknown	Unknown	N/A	300 bbl	300 bbl	< 8/23/2011	N/A	40400311	Existing (unchanged) To be Removed New/Additional Replacement Unit	N/A	N/A	
1-009	Tank	UIKIIOWII	Ulikilowii	IN/A	300 001	500 001	< 8/23/2011	N/A	40400311	$\square \text{ Key/Additional} \square \text{ Keplacement Onit}$ $\square \text{ To be Replaced}$	1N/A	IN/A	
	Stabilized Condensate						Dec-06	N/A		□ Existing (unchanged) □ To be Removed			
T-011	Tank	Unknown	Unknown	N/A	300 bbl	300 bbl	Unknown	N/A	40400311	□ New/Additional □ Replacement Unit ☑ To Be Modified □ To be Replaced	N/A	N/A	

Unit	Source Description	Make	Model #	Serial #	Manufact- urer's Rated	Requested Permitted	Date of Manufacture ²	Controlled by Unit #	Source Classi- fication Code	For Each Piece of Equipment, Check One	RICE Ignition Type (CI, SI,	Replacing
Number ¹	Source Description	маке	Niodel #	Seriai #	Capacity ³ (Specify Units)	Capacity ³ (Specify Units)	Date of Construction/ Reconstruction ²	Emissions vented to Stack #	(SCC)	For Each Fiece of Equipment, Check One	4SLB, 4SRB, 2SLB) ⁴	Unit No.
T-012	Stabilized Condensate	Unknown	Unknown	N/A	300 bbl	300 bbl	Dec-06	N/A	40400311	 Existing (unchanged) To be Removed New/Additional Replacement Unit 	N/A	N/A
1-012	Tank	Unknown	Unknown	N/A	300 bbi	300 DDI	Unknown	N/A	40400511	$\square \text{ New/Additional} \square \text{ Replacement Only} \\ \square \text{ To Be Modified} \square \text{ To be Replaced} \\ \square$	IN/A	IN/A
Flare	Process Flare	Unknown	Unknown	N/A	72 Mscf/hr	72 Mscf/hr	Unknown	N/A	31000215	 Existing (unchanged) To be Removed New/Additional Replacement Unit 	N/A	N/A
Flate	Flocess Flate	Ulikilowli	UIKIIOWII	N/A	72 WISCI/III	72 WISCI/III	12/1/2006	Flare	31000213	To Be Modified To be Replaced	IN/A	IN/A
VENT	Vent for Startup, Shutdown and Blowdown	N/A	N/A	N/A	N/A	N/A	Unknown	N/A	31000299	 Existing (unchanged) To be Removed New/Additional Replacement Unit 	N/A	N/A
(SSM)	Emissions	10/21	10/11	14/21	10/1	10/1	Unknown	N/A	51000255	To Be Modified To be Replaced	10/21	10/21
F-001	Fugitives	N/A	N/A	N/A	N/A	N/A	N/A	N/A	31088811	 Existing (unchanged) To be Removed New/Additional Replacement Unit 	N/A	N/A
1 001	8	10/11	10/11	1071	1011		N/A	N/A	51000011	✓ To Be Modified □ To be Replaced	10/11	10/11
Flare	SSM Flare	N/A	N/A	N/A	N/A	N/A	N/A	N/A	31000215	 Existing (unchanged) To be Removed New/Additional Replacement Unit 	N/A	N/A
(SSM)	55.111.110	10/11	10/11	1071	1011		N/A	N/A	51000215	☑ To Be Modified □ To be Replaced	10/11	10/11
Load	Truck Loading Emission	N/A	N/A	N/A	69,350	69,350 bbl/yr	N/A	N/A	31000199	 Existing (unchanged) To be Removed New/Additional Replacement Unit 	N/A	N/A
Louid	Truck Lokaling Linission	10/11	10/11	1071	bbl/yr	0,000 001 91	N/A	N/A	51000177	□ To Be Modified □ To be Replaced	10/11	10/11
Haul	Haul Road Emission	N/A	N/A	N/A	N/A	N/A	N/A	N/A	31088811	 Existing (unchanged) To be Removed New/Additional Replacement Unit 	N/A	N/A
maur	That four Linission	11/71		11/71	10/1	10/1	N/A	N/A	51000011	To Be Modified To be Replaced	IV/A	11/1
MALE	Malfunction Emissions	N/A	N/A	N/A	N/A	N/A	N/A	N/A	31088811	 Existing (unchanged) To be Removed New/Additional Replacement Unit 	N/A	N/A
MALI	Manufaction Linissions		11/11		11/11	11/21	N/A	N/A	51000011	□ To Be Modified □ To be Replaced	11/13	11/71

¹ Unit numbers must correspond to unit numbers in the previous permit unless a complete cross reference table of all units in both permits is provided.

² Specify dates required to determine regulatory applicability.

³ To properly account for power conversion efficiencies, generator set rated capacity shall be reported as the rated capacity of the engine in horsepower, not the kilowatt capacity of the generator set.

⁴ "4SLB" means four stroke lean burn engine, "4SRB" means four stroke rich burn engine, "2SLB" means two stroke lean burn engine, "CI" means compression ignition, and "SI" means spark ignition

Table 2-B: Insignificant Activities1 (20.2.70 NMAC)ORExempted Equipment (20.2.72 NMAC)

All 20.2.70 NMAC (Title V) applications must list all Insignificant Activities in this table. All 20.2.72 NMAC applications must list Exempted Equipment in this table. If equipment listed on this table is exempt under 20.2.72.202.B.5, include emissions calculations and emissions totals for 202.B.5 "similar functions" units, operations, and activities in Section 6, Calculations. Equipment and activities exempted under 20.2.72.202 NMAC may not necessarily be Insignificant under 20.2.70 NMAC (and vice versa). Unit & stack numbering must be consistent throughout the application package. Per Exemptions Policy 02-012.00 (see http://www.env.nm.gov/aqb/permit/aqb_pol.html), 20.2.72.202.B NMAC Exemptions do not apply, but 20.2.72.202.A NMAC exemptions do apply to NOI facilities under 20.2.73 NMAC. List 20.2.72.301.D.4 NMAC Auxiliary Equipment for Streamline applications in Table 2-A. The List of Insignificant Activities (for TV) can be found online at https://www.env.nm.gov/air-quality/air-quality-title-v-operating-permits-guidance-page/. TV sources may elect to enter both TV Insignificant Activities and Part 72 Exemptions on this form.

Unit Number	Source Description	Manufactur	Model No.	Max Capacity	List Specific 20.2.72.202 NMAC Exemption (e.g. 20.2.72.202.B.5)	Date of Manufacture /Reconstruction ²	For Each Piece of Equipment, Check One
Chit Muniber	Source Description	er	Serial No.	Capacity Units	Insignificant Activity citation (e.g. IA List Item #1.a)	Date of Installation /Construction ²	For Dath Free of Equipment, Circk One
T-001	Lube Oil Tank	N/A	N/A	24	20.2.72.202.B(2)(a) NMAC	Unknown	Existing (unchanged) To be Removed New/Additional Replacement Unit
1-001	Lube Oli Talik	N/A	N/A	bbl	IA List Item #5	Unknown	□ To Be Modified □ To be Replaced
T-002	Methanol Tank	N/A	N/A	210	20.2.72.202.B(2)(a) NMAC	Unknown	 Existing (unchanged) To be Removed New/Additional Replacement Unit
1-002	Methanol Tank	N/A	N/A	bbl	IA List Item #5	Unknown	□ To Be Modified □ To be Replaced
T-003	Triethylene Glycol Tank	N/A	N/A	210	20.2.72.202.B(2)(a) NMAC	Unknown	Existing (unchanged) To be Removed New/Additional Replacement Unit
1-005	Themylene Grycol Talik	N/A	N/A	bbl	IA List Item #5	Unknown	□ To Be Modified □ To be Replaced
T-004	Used Oil Tank	N/A	N/A	210	20.2.72.202.B(2)(a) NMAC	Unknown	 Existing (unchanged) To be Removed New/Additional Replacement Unit
1-004	Used Oli Talik	N/A	N/A	bbl	IA List Item #5	Unknown	□ To Be Modified □ To be Replaced
T-005	Used Oil Tank	N/A	N/A	210	20.2.72.202.B(2)(a) NMAC	Unknown	 Existing (unchanged) To be Removed New/Additional Replacement Unit
1-005	Used Oli Talik	N/A	N/A	bbl	IA List Item #5	Unknown	□ To Be Modified □ To be Replaced
T-006	Slop Tank	N/A	N/A	TBD	20.2.72.202.B(5) NMAC	N/A	Existing (unchanged) To be Removed New/Additional Replacement Unit
1-000	Slop Talik	N/A	N/A	TBD	IA List Item #1.a.	N/A	$\square \text{ New/Additional} \square \text{ Replacement Only} \\ \square \text{ To Be Modified} \square \text{ To be Replaced} \\ \square$
Unload	Chemical Unloading	N/A	N/A	TBD	20.2.72.202.B(5) NMAC	N/A	 Existing (unchanged) To be Removed New/Additional Replacement Unit
Unioad	Chemical Unioading	N/A	N/A	TBD	IA List Item #1.a.	N/A	□ To Be Modified □ To be Replaced
GC-1	Gas Chromatograph	Daniel	700	350	20.2.72.202.B(5) NMAC	Unknown	 Existing (unchanged) To be Removed New/Additional Replacement Unit
60-1	Gas Chromatograph	Damei	Unknown	cc/min	IA List Item #1.a.	Unknown	□ To Be Modified □ To be Replaced
GC-2	Cas Chromotograph	ABB	NGC 8206	820	20.2.72.202.B(5) NMAC	Unknown	 Existing (unchanged) To be Removed New/Additional Replacement Unit
GC-2	Gas Chromatograph	ADD	Unknown	cc/min	IA List Item #1.a.	Unknown	New/Additional Replacement Unit To Be Modified To be Replaced
Dissing	Pig Receiver and Launcher	NI/A	N/A	280	20.2.72.202.B(5) NMAC	TBD	□ Existing (unchanged) □ To be Removed ☑ New/Additional □ Replacement Unit
Pigging	Emissions	N/A	N/A	scf/event	Insignificant Activity #1a	TBD	 ☑ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced
							Existing (unchanged) To be Removed New/Additional Replacement Unit To Be Modified To be Replaced

¹ Insignificant activities exempted due to size or production rate are defined in 20.2.70.300.D.6, 20.2.70.7.Q NMAC, and the NMED/AQB List of Insignificant Activities, dated September 15, 2008. Emissions from these insignificant activities do not need to be reported, unless specifically requested.

² Specify date(s) required to determine regulatory applicability.

Table 2-C: Emissions Control Equipment

Unit and stack numbering must correspond throughout the application package. Only list control equipment for TAPs if the TAP's maximum uncontrolled emissions rate is over its respective threshold as listed in 20.2.72 NMAC, Subpart V, Tables A and B. In accordance with 20.2.72.203.A(3) and (8) NMAC, 20.2.70.300.D(5)(b) and (e) NMAC, and 20.2.73.200.B(7) NMAC, the permittee shall report all control devices and list each pollutant controlled by the control device regardless if the applicant takes credit for the reduction in emissions.

Control Equipment Unit No.	Control Equipment Description	Date Installed	Controlled Pollutant(s)	Controlling Emissions for Unit Number(s) ¹	Efficiency (% Control by Weight)	Method used to Estimate Efficiency
Flare	Condensate Stabilizer Flare	Unknown	VOCs & HAPs	Condensate Stabilizer	98%	Engineering Estimate
3b	Glycol Dehydrator Reboiler	Unknown	VOCs & HAPs	3a	95%	Engineering Estimate
5	SoloNOx	TBD	NO _X	5	25 ppm	Manufacturers Spec.
¹ List each con	ntrol device on a separate line. For each control device, list all en	nission units	controlled by the control device.	•		

Application Date: September 2020

Table 2-D: Maximum Emissions (under normal operating conditions)

□ This Table was intentionally left blank because it would be identical to Table 2-E.

Maximum Emissions are the emissions at maximum capacity and prior to (in the absence of) pollution control, emission-reducing process equipment, or any other emission reduction. Calculate the hourly emissions using the worst case hourly emissions for each pollutant. For each pollutant, calculate the annual emissions as if the facility were operating at maximum plant capacity without pollution controls for 8760 hours per year, unless otherwise approved by the Department. List Hazardous Air Pollutants (HAP) & Toxic Air Pollutants (TAPs) in Table 2-I. Unit & stack numbering must be consistent throughout the application package. Fill all cells in this table with the emission numbers or a "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expected. Numbers shall be expressed to at least 2 decimal points (e.g. 0.41, 1.41, or 1.41E-4).

TT '4 N	Ν	NOx	С	0	V	/OC	S	Ox	PI	M ¹	PM	[10 ¹	PM	2.5 ¹	H	S	Le	ead
Unit No.	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
1	27.00	90.82	7.40	11.25	0.77	3.37	0.50	2.21	0.63	2.78	0.63	2.78	0.63	2.78	2.52E-04	0.0011	-	-
2	27.00	90.82	7.40	11.25	0.77	3.37	0.50	2.21	0.63	2.78	0.63	2.78	0.63	2.78	2.52E-04	0.0011	-	-
5	4.43	19.40	5.89	25.78	1.40	6.15	0.48	2.10	0.27	1.16	0.27	1.16	0.27	1.16	2.39E-04	0.0010	-	-
3a	-	-	-	-	291.46	1276.60	-	-	-	-	-	-	-	-	-	-	-	-
3b	0.29	1.29	0.25	1.08	0.016	0.071	0.036	0.16	0.022	0.098	0.022	0.098	0.022	0.098	8.93E-04	0.0039	-	-
T-008																		
T-009				_	*	18.85			_				_					
T-011	-	-	-	-		10.05	-	-	-	-	-	-	-	-	-	-	-	-
T-012																		
F-001	-	-	-	-	*	35.85	-	-	-	-	-	-	-	-	-	-	-	-
LOAD	-	-	-	-	*	9.82	-	-	-	-	-	-	-	-	-	-	-	-
Flare (process)	7.79	2.82	62.84	22.65	61.88	22.28	0.11	0.46	-	-	-	-	-	-	0.056	0.020	-	-
Totals	66.51	205.15	83.77	72.01	356.30	1376.36	1.63	7.12	1.56	6.82	1.56	6.82	1.56	6.82	0.06	0.03	0.00	0.00

¹Condensable Particulate Matter: Include condensable particulate matter emissions for PM10 and PM2.5 if the source is a combustion source. Do not include condensable particulate matter for PM unless PM is set equal to PM10 and PM2.5. Particulate matter (PM) is not subject to an ambient air quality standard, but PM is a regulated air pollutant under PSD (20.2.74 NMAC) and Title V (20.2.70 NMAC).

"*" Denotes an hourly emission rate is not appropriate

Table 2-E: Requested Allowable Emissions

Unit & stack numbering must be consistent throughout the application package. Fill all cells in this table with the emission numbers or a "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expected. Numbers shall be expressed to at least 2 decimal points (e.g. 0.41, 1.41, or 1.41E⁻⁴).

Linit No.	ľ	NOx	С	0	V	DC	SC	Ox	PI	M ¹	PM	[10 ¹	PM	2.5 ¹	Н	$_2S$	Le	ead
Unit No.	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
1	27.00	90.82	7.40	11.25	0.77	3.37	0.50	2.21	0.63	2.78	0.63	2.78	0.63	2.78	2.52E-04	0.0011	-	-
2	27.00	90.82	7.40	11.25	0.77	3.37	0.50	2.21	0.63	2.78	0.63	2.78	0.63	2.78	2.52E-04	0.0011	-	-
5	4.43	19.40	5.89	25.78	1.40	6.15	0.48	2.10	0.27	1.16	0.27	1.16	0.27	1.16	2.39E-04	0.0010	-	-
3a	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
3b	0.045	0.20	0.038	0.17	0.87	3.80	0.0065	0.028	0.0034	0.015	0.0034	0.015	0.0034	0.015	1.62E-04	7.08E-04	-	-
T-008																		
T-009					*	10.05												
T-011	-	-	-	-		18.85	-	-	-	-	-	-	-	-	-	-	-	-
T-012																		
F-001	-	-	-	-	*	35.85	-	-	-	-	-	-	-	-	-	-	-	-
LOAD	-	-	-	-	*	9.82	-	-	-	-	-	-	-	-	-	-	-	-
Flare	7.79	2.82	62.84	22.65	61.88	22.28	0.11	0.46	_	_	-	_	-	-	0.056	0.020	_	-
(Process)																		
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
-			-		-	-		-	-	-		-				-	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
							-	-		-			-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Totals	66.26	204.06	83.56	71.09	65.69	103.49	1.60	6.99	1.54	6.74	1.54	6.74	1.54	6.74	0.057	0.024	-	-

¹ Condensable Particulate Matter: Include condensable particulate matter emissions for PM10 and PM2.5 if the source is a combustion source. Do not include condensable particulate matter for PM unless PM is set equal to PM10 and PM2.5. Particulate matter (PM) is not subject to an ambient air quality standard, but it is a regulated air pollutant under PSD (20.2.74 NMAC) and Title V (20.2.70 NMAC).

"*" Denotes an hourly emission rate is not appropriate

Table 2-F: Additional Emissions during Startup, Shutdown, and Routine Maintenance (SSM)

This table is intentionally left blank since all emissions at this facility due to routine or predictable startup, shutdown, or scehduled maintenance are no higher than those listed in Table 2-E and a malfunction emission limit is not already permitted or requested. If you are required to report GHG emissions as described in Section 6a, include any GHG emissions during Startup, Shutdown, and/or Scheduled Maintenance (SSM) in Table 2-P. Provide an explanations of SSM emissions in Section 6 and 6a.

All applications for facilities that have emissions during routine our predictable startup, shutdown or scheduled maintenance (SSM)¹, including NOI applications, must include in this table the Maximum Emissions during routine or predictable startup, shutdown and scheduled maintenance (20.2.7 NMAC, 20.2.72.203.A.3 NMAC, 20.2.73.200.D.2 NMAC). In Section 6 and 6a, provide emissions calculations for all SSM emissions reported in this table. Refer to "Guidance for Submittal of Startup, Shutdown, Maintenance Emissions in Permit Applications

Unit No.	N	Ox	С	0	VC	DC	S	Ox	PI	M^2	PM	(10 ²	PM	2.5^{2}	Н	$_{2}S$	Le	ead
Unit No.	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
Flare (SSM)	7.73	0.20	62.48	1.62	76.13	1.98	-	-	-	-	-	-	-	-	-	-	-	-
Vent (SSM)	-	-	-	-	*	26.81	-	-	-	-	-	-	-	-	*	0.10	-	-
MALF	15.52	7.00	125.32	10.00	138.01	10.00	0.11	10.00	-	-	-	-	-	-	0.056	2.00	-	-
Totals	23.25	7.20	187.79	11.62	214.14	38.79	0.11	10.00	-	-	-	-	-	-	0.06	2.10	-	-

¹ For instance, if the short term steady-state Table 2-E emissions are 5 lb/hr and the SSM rate is 12 lb/hr, enter 7 lb/hr in this table. If the annual steady-state Table 2-E emissions are 21.9 TPY, and the number of scheduled SSM events result in annual emissions of 31.9 TPY, enter 10.0 TPY in the table below.

² Condensable Particulate Matter: Include condensable particulate matter emissions for PM10 and PM2.5 if the source is a combustion source. Do not include condensable particulate matter for PM unless PM is set equal to PM10 and PM2.5. Particulate matter (PM) is not subject to an ambient air quality standard, but it is a regulated air pollutant under PSD (20.2.74 NMAC) and Title V (20.2.70 NMAC).

³ Flare Malfunction pph emission rates reflect worst case emissions modeled for this unit. Flare Malfunction pph rates are maximums allowed for this unit and not additive with Flare SSM pph rates or Flare Process emission rates in Table 106.A.

"*" Denotes an hourly emission rate is not appropriate

Table 2-G: Stack Exit and Fugitive Emission Rates for Special Stacks

Z I have elected to leave this table blank because this facility does not have any stacks/vents that split emissions from a single source or combine emissions from more than one source listed in table 2-A. Additionally, the emission rates of all stacks match the Requested allowable emission rates stated in Table 2-E.

Use this table to list stack emissions (requested allowable) from split and combined stacks. List Toxic Air Pollutants (TAPs) and Hazardous Air Pollutants (HAPs) in Table 2-I. List all fugitives that are associated with the normal, routine, and non-emergency operation of the facility. Unit and stack numbering must correspond throughout the application package. Refer to Table 2-E for instructions on use of the "-" symbol and on significant figures.

<i>a</i>	Serving Unit	NO	X	C	0	VO	DC	SC)x	Р	М	PN	I 10	PM	2.5	□ H ₂ S or	r 🗆 Lead
Stack No.	Number(s) from Table 2-A	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr										
1	Totals:																

Table 2-H: Stack Exit Conditions

Unit and stack numbering must correspond throughout the application package. Include the stack exit conditions for each unit that emits from a stack, including blowdown venting parameters and tank emissions. If the facility has multiple operating scenarios, complete a separate Table 2-H for each scenario and, for each, type scenario name here:

Stack	Serving Unit	Orientation	Rain Caps	Height Above	Temp.	Flow	Rate	Moisture by	Velocity	Inside
Number	Number(s) from Table 2-A	(H-Horizontal V=Vertical)	(Yes or No)	Ground (ft)	(F)	(acfs)	(dscfs)	Volume (%)	(ft/sec)	Diameter (ft)
1	1	V	No	25	907	1542	-	N/A	177	3.30
2	2	V	No	25	907	1542	-	N/A	177	3.30
5	5	V	No	25	907	1542	-	N/A	177	3.30
Flare	Flare	V	No	65	1832	421	-	N/A	65.6	2.90
3b	3b	V	No	35	800	171	-	N/A	2.05	1.33

Revision #0

Table 2-I: Stack Exit and Fugitive Emission Rates for HAPs and TAPs

In the table below, report the Potential to Emit for each HAP from each regulated emission unit listed in Table 2-A, only if the entire facility emits the HAP at a rate greater than or equal to one (1) ton per year For each such emission unit, HAPs shall be reported to the nearest 0.1 tpy. Each facility-wide Individual HAP total and the facility-wide Total HAPs shall be the sum of all HAP sources calculated to the nearest 0.1 ton per year. Per 20.2.72.403.A.1 NMAC, facilities not exempt [see 20.2.72.402.C NMAC] from TAP permitting shall report each TAP that has an uncontrolled emission rate in excess of its pounds per hour screening level specified in 20.2.72.502 NMAC. TAPs shall be reported using one more significant figure than the number of significant figures shown in the pound per hour threshold corresponding to the substance. Use the HAP nomenclature as it appears in Section 112 (b) of the 1990 CAAA and the TAP nomenclature as it listed in 20.2.72.502 NMAC. Include tank-flashing emissions estimates of HAPs in this table. For each HAP or TAP listed, fill all cells in this table with the emission numbers or a "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expected or the pollutant is emitted in a quantity less than the threshold amounts described above.

Stack No.	Unit No.(s)	Total	HAPs	Formal	dehyde or 🗆 TAP		dehyde or 🗆 TAP	-	zene or 🗆 TAP	Toh ☑ HAP o		Xyl ☑ HAP (xane or 🗆 TAP		
		lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr		
1	1	0.33	1.45	0.13	0.59	0.14	0.60	0.0043	0.019	0.0033	0.014	0.0099	0.043	0.012	0.052		
2	2	0.33	1.45	0.13	0.59	0.14	0.60	0.0043	0.019	0.0033	0.014	0.0099	0.043	0.012	0.052		
5	5	0.038	0.17	0.029	0.13	0.0016	0.0070	4.82E-04	0.0021	0.0052	0.023	0.0026	0.011	-	-		
3a	3 a	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
3b	3b	0.22	0.97	0.0016	0.0069	0.0014	0.0060	0.11	0.46	0.07	0.29	0.01	0.04	0.023	0.10		
T-008	T-008																
T-009	T-009	*	0.79	-	_	_	_	*	0.086	0.0070	0.031	*	0.0027	*	0.67		
T-011	T-011		0.77		-	_	-		0.000	0.0070	0.051		0.0027		0.07		
T-012	T-012																
N/A	F-001	*	3.57	-	-	-	-	-	-	-	-	-	-	-	-		
LOAD	LOAD	*	0.45	-	-	-	-	*	0.043	*	7.00E-04	*	0.0012	*	0.39		
Flare	Flare (Process)	0.79	0.28	-	-	-	-	0.075	0.027	0.087	0.031	0.058	0.021	0.56	0.20		
Flare	Flare (SSM)	0.0080	2.07E-04	-	-	-	-	-	-	-	-	-	-	0.0080	2.07E-04		
VENT (SSM)	VENT (SSM)	*	0.69	-	-	-	-	*	0.11	*	0.075	*	0.010	*	0.49		
N/A	MALF	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
Tota	ls:	1.72	9.81	0.30	1.31	0.28	1.22	0.19	0.76	0.19	0.48	0.09	0.17	0.61	1.96		

Table 2-J: Fuel

Specify fuel characteristics and usage. Unit and stack numbering must correspond throughout the application package.

	Fuel Type (low sulfur Diesel,	Fuel Source: purchased commercial, pipeline quality natural gas,		Speci	fy Units		
Unit No.	ultra low sulfur diesel, Natural Gas, Coal,)	residue gas, raw/field natural gas, process gas (e.g. SRU tail gas) or other	Lower Heating Value	Hourly Usage	Annual Usage	% Sulfur	% Ash
1	Natural Gas	Pipeline Quality Natural Gas	1,200 Btu/scf	35.3 Mscf	309 MMscf	5%	Negligible
2	Natural Gas	Pipeline Quality Natural Gas	1,200 Btu/scf	35.3 Mscf	309 MMscf	5%	Negligible
3a	Natural Gas	Pipeline Quality Natural Gas	1,200 Btu/scf	2.5 Mscf	21.9 MMscf	5%	Negligible
5	Natural Gas	Pipeline Quality Natural Gas	1,200 Btu/scf	32.4 Mscf	284 MMscf	5%	Negligible
Flare (Process)	Natural Gas	Pipeline Quality Natural Gas	1,200 Btu/scf	0.10 Mscf	0.88 MMscf	5%	Negligible

Table 2-K: Liquid Data for Tanks Listed in Table 2-L

For each tank, list the liquid(s) to be stored in each tank. If it is expected that a tank may store a variety of hydrocarbon liquids, enter "mixed hydrocarbons" in the Composition column for that tank and enter the corresponding data of the most volatile liquid to be stored in the tank. If tank is to be used for storage of different materials, list all the materials in the "All Calculations" attachment, run the newest version of TANKS on each, and use the material with the highest emission rate to determine maximum uncontrolled and requested allowable emissions rate. The permit will specify the most volatile category of liquids that may be stored in each tank. Include appropriate tank-flashing modeling input data. Use additional sheets if necessary. Unit and stack numbering must correspond throughout the application package.

					Vapor	Average Stor	age Conditions	Max Storag	ge Conditions
Tank No.	SCC Code	Material Name	Composition	Liquid Density (lb/gal)	Molecular Weight (lb/lb*mol)	Temperature (°F)	True Vapor Pressure (psia)	Temperature (°F)	True Vapor Pressure (psia)
T-008	40400311	Stabilized Condensate	Mixed Hydrocarbons	Unknown	65	74.1	7.5	87.1	9.4
T-009	40400311	Stabilized Condensate	Mixed Hydrocarbons	Unknown	65	74.1	7.5	87.1	9.4
T-011	40400311	Stabilized Condensate	Mixed Hydrocarbons	Unknown	65	74.1	7.5	87.1	9.4
T-012	40400311	Stabilized Condensate	Mixed Hydrocarbons	Unknown	65	74.1	7.5	87.1	9.4

Table 2-L: Tank Data

Include appropriate tank-flashing modeling input data. Use an addendum to this table for unlisted data categories. Unit and stack numbering must correspond throughout the application package. Use additional sheets if necessary. See reference Table 2-L2. Note: 1.00 bbl = 10.159 M3 = 42.0 gal

Tank No.	Date Installed	Materials Stored		Roof Type (refer to Table 2-	Cap	acity	Diameter (m)	Vapor Space		lor ble VI-C)	Paint Condition (from Table	Annual Throughput	Turn- overs
			LR below)	LR below)	(bbl)	(m ³)	()	(m)	Roof	Shell	VI-C)	(gal/yr)	(per year)
T-008	2013	Stabilized Condensate	N/A	FX	300	48	3.7	4.6	MG	MG	Good	2,912,700	231.17
T-009	<8/23/2011	Condensate Stabilized Condensate	N/A	FX	300	48	3.7	4.6	MG	MG	Good	2,912,700	231.17
T-011	<8/23/2011	Stabilized Condensate	N/A	FX	300	48	3.7	4.6	MG	MG	Good	2,912,700	231.17
T-012	<8/23/2011	Stabilized Condensate	N/A	FX	300	48	3.7	4.6	MG	MG	Good	2,912,700	231.17

Revision #0

Roof Type	Seal Type, Welded Tar	ık Seal Type	Seal Type, Rive	eted Tank Seal Type	Roof, Shell Color	Paint Condition
FX: Fixed Roof	Mechanical Shoe Seal	Liquid-mounted resilient seal	Vapor-mounted resilient seal	Seal Type	WH: White	Good
IF: Internal Floating Roof	A: Primary only	A: Primary only	A: Primary only	A: Mechanical shoe, primary only	AS: Aluminum (specular)	Poor
EF: External Floating Roof	B: Shoe-mounted secondary	B: Weather shield	B: Weather shield	B: Shoe-mounted secondary	AD: Aluminum (diffuse)	
P: Pressure	C: Rim-mounted secondary	C: Rim-mounted s	C: Rim-mounted secondary	C: Rim-mounted secondary	LG: Light Gray	
					MG: Medium Gray	
Note: $1.00 \text{ bbl} = 0.159 \text{ M}$	$a^3 = 42.0$ gal				BL : Black	
					OT: Other (specify)	

Table 2-M: Materials Processed and Produced (Use additional sheets as necessary.)

	Material Proc	essed		Ν	Iaterial Produced		
Description	Chemical Composition	Phase	Quantity (specify units)	Description	Chemical Composition	Phase	Quantity (specify units)
Field Natural Gas	Metehane, low concentration VOC's	Gas	200 MMscf/day	Dry Gas	Methane, low concentration VOCs	G	200 MMscf/day
				Produced Water	Water with trace hydrocarbons	L	N/A (not a regulated substance)
				Stabilized Condensate	Heavy hydrocarbons	L	190 bbl/day

Table 2-N: CEM Equipment

Enter Continuous Emissions Measurement (CEM) Data in this table. If CEM data will be used as part of a federally enforceable permit condition, or used to satisfy the requirements of a state or federal regulation, include a copy of the CEM's manufacturer specification sheet in the Information Used to Determine Emissions attachment. Unit and stack numbering must correspond throughout the application package. Use additional sheets if necessary.

Stack No.	Pollutant(s)	Manufactur er	Model No.	Serial No.	Sample Frequency	Averaging Time	Range	Sensitivity	Accuracy
			N/A - No C	CEM equipment at this	s facility.				

Table 2-O: Parametric Emissions Measurement Equipment

Unit and stack numbering must correspond throughout the application package. Use additional sheets if necessary.

Unit No.	Parameter/Pollutant Measured	Location of Measurement	Unit of Measure	Acceptable Range	Frequency of Maintenance	Nature of Maintenance	Method of Recording	Averaging Time
			N/A - No PEM equ	ipment at this facility.				

Revision #0

Applications submitted under 20.2.70, 20.2.72, & 20.2.74 NMAC are required to complete this Table. Power plants, Title V major sources, and PSD major sources must report and calculate all GHG emissions for each unit. Applicants must report potential emission rates in short tons per year (see Section 6.a for assistance). Include GHG emissions during Startup, Shutdown, and Scheduled Maintenance in this table. For minor source facilities that are not power plants, are not Title V, or are not PSD, there are three options for reporting GHGs 1) report GHGs for each individual piece of equipment; 2) report all GHGs from a group of unit types, for example report all combustion source GHGs as a single unit and all venting GHG as a second separate unit; OR 3) check the following box \Box By checking this box, the applicant acknowledges the total CO2e emissions are less than 75,000 tons per year.

		CO ₂ ton/yr	N2O ton/yr	CH ₄ ton/yr	SF ₆ ton/yr	PFC/HFC ton/yr ²					Total GHG Mass Basis ton/yr ⁴	Total CO ₂ e ton/yr ⁵
Unit No.	GWPs ¹	1	298	25	22,800	footnote 3						
1	mass GHG	21685.12	0.04	0.41	-	-					21685.57	
	CO ₂ e	21685.12	12.18	10.22	-	-						21707.51
2	mass GHG	21685.12	0.04	0.41	-	-					 21685.57	
	CO ₂ e	21685.12	12.18	10.22	-	-						21707.52
5	mass GHG	20596.87	0.04	0.39	-	-					 20597.29	
	CO ₂ e	20596.87	11.57	9.70	-	-						20618.14
3a	mass GHG	-	-	-	-	-					-	
	CO ₂ e	-	-	-	-	-						-
3b	mass GHG	1537.07	0.0029	0.029	-	-		 			 1537.10	
	CO ₂ e	1537.07	0.86	12.06	-	-						1549.99
T-008	mass GHG	-	-	-	-	-					 -	
	CO ₂ e	-	-	-	-	-						-
T-009	mass GHG CO ₂ e	-	-	-	-	-					-	
	mass GHG	-	-	-	-	-						-
T-011	CO ₂ e	-	-	-	-	-					-	
	mass GHG	-	-	-	-	-						-
T-012	CO ₂ e	-	-	-	-	-				-	-	
	mass GHG	-	-	-	-	-					-	-
F-001	CO ₂ e	-	-	-	-	-					-	-
	mass GHG		_	_	_	_					_	_
LOAD	111035 0110		-		_	_					-	_
	mass GHG	-	-	-	-	-					-	
HAUL	CO ₂ e	_	-	_	-	-					1	_
Flare	mass GHG	5146.41	0.01	8.71	-	-					5155.13	
(process)	CO ₂ e	5146.41	2.74	217.66	-	-						5366.81
Flare	mass GHG	6842.42	0.01	5.02	-	-					6847.46	
(SSM)	CO ₂ e	6842.42	3.20	125.54	-	-						6971.17
Vent	mass GHG	4.00	-	70.00	-	-					74.00	
(SSM)	CO ₂ e	4.00	-	1750.50	-	-						1754.57
MALF	mass GHG	-	-	-	-	-					-	
WIALT	CO2e	-	-	-	-	-						-
Te4-1	mass GHG	55811.88	0.10	84.56	-	-					55896.55	
Total	CO ₂ e	77497.00	42.73	2135.90	-	-						79675.63

Global Warming Potential): Applicants must use the most current GWPs codified in Table A-1 of 40 CFR part 98. GWPs are subject to change, therefore, applicants need to check 40 CFR 98 to confirm GWP values.

² For HFCs or PFCs describe the specific HFC or PFC compound and use a separate column for each individual compound.

³ For each new compound, enter the appropriate GWP for each HFC or PFC compound from Table A-1 in 40 CFR 98.

⁴ Green house gas emissions on a **mass basis** is the ton per year green house gas emission before adjustment with its GWP.

⁵ CO₂e means Carbon Dioxide Equivalent and is calculated by multiplying the TPY mass emissions of the green house gas by its GWP.

Section 3

Application Summary

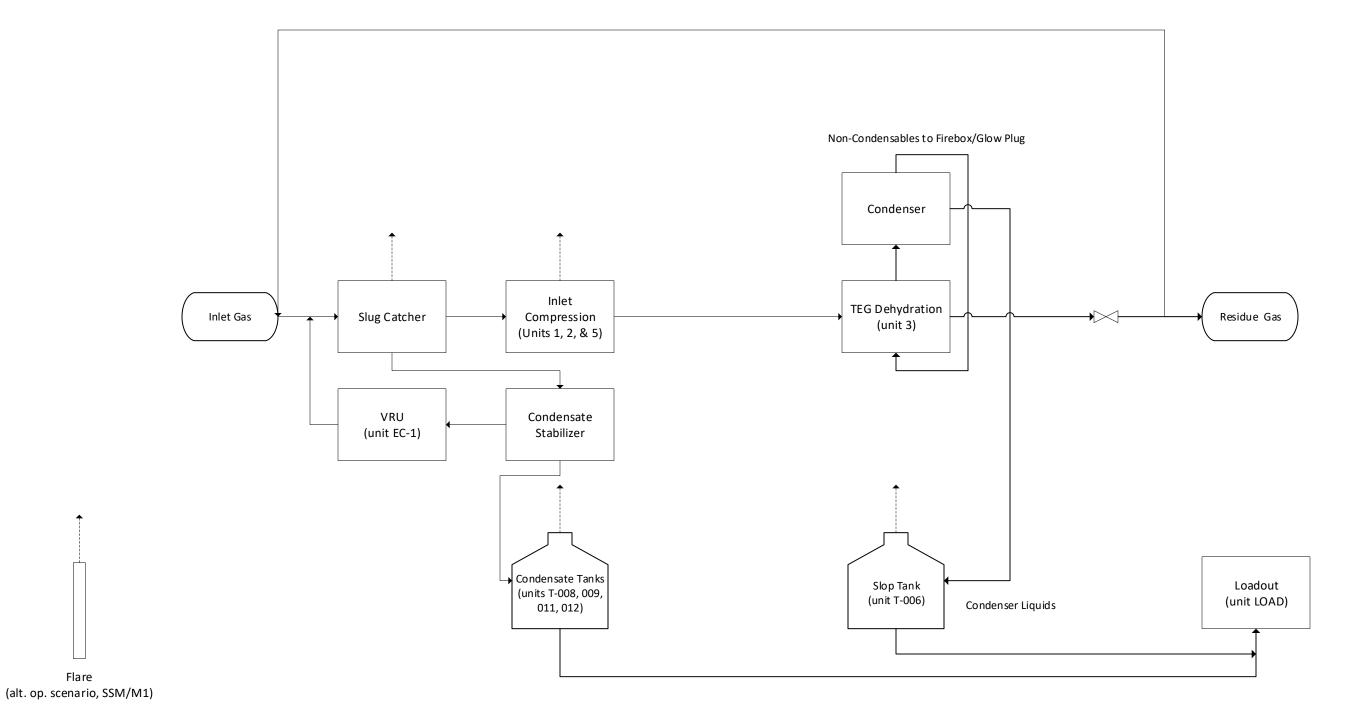
The <u>Application Summary</u> shall include a brief description of the facility and its process, the type of permit application, the applicable regulation (i.e. 20.2.72.200.A.X, or 20.2.73 NMAC) under which the application is being submitted, and any air quality permit numbers associated with this site. If this facility is to be collocated with another facility, provide details of the other facility including permit number(s). In case of a revision or modification to a facility, provide the lowest level regulatory citation (i.e. 20.2.72.219.B.1.d NMAC) under which the revision or modification is being requested. Also describe the proposed changes from the original permit, how the proposed modification will affect the facility's operations and emissions, de-bottlenecking impacts, and changes to the facility's major/minor status (both PSD & Title V).

Enterprise Field Services, LLC (Enterprise) is submitting this application and accompanying material pursuant to 20.2.72.219.D(1)(a) NMAC to apply for a significant revision to the existing NSR minor source permit for the South Carlsbad Compressor Station (South Carlsbad). The facility is located approximately 2.8 miles northwest of Loving, NM in Eddy County and is currently operating under NSR Permit No. 0220-M10R1. The facility is currently major with respect to Title V and is minor with respect to PSD and will remain so with this modification.

The purpose of this significant revision is to add a turbine (Unit ID 5), which will be controlled with a SoloNOx unit, to remove the dew point plant, and remove the amine system: amine unit (Unit ID 4a), amine reboiler (Unit ID 4d), and amine flare (Unit ID Amine Flare). Slop (Unit T-006) and condensate (Units T-008 to T-012) tank emissions are also being updated using BR&E ProMax and updated throughputs.

The facility is a natural gas compressor station. Gas enters the facility through a separator and is compressed by three gas turbine-driven compressors (Units 1, 2, & 5). After inlet compression, gas is sent to a glycol dehydrator and then to a chiller and cold separator, where liquids (primarily water) condense and are removed from the stream. The dry gas stream then goes to a pipeline for transport.

Startup, Shutdown, and Maintenance (SSM) routine or predictable emissions: Startup, Shutdown, and Maintenance (SSM) emissions are controlled by the process and SSM flare. This facility is currently permitted to vent VOC emissions during SSM events (Unit VENT (SSM)).


Section 4

Process Flow Sheet

A **process flow sheet** and/or block diagram indicating the individual equipment, all emission points and types of control applied to those points. The unit numbering system should be consistent throughout this application.

A process flow sheet is attached.

South Carlsbad

Section 5

Plot Plan Drawn To Scale

A <u>plot plan drawn to scale</u> showing emissions points, roads, structures, tanks, and fences of property owned, leased, or under direct control of the applicant. This plot plan must clearly designate the restricted area as defined in UA1, Section 1-D.12. The unit numbering system should be consistent throughout this application.

A plot plan is attached.

					4 ⁵	
				PROPE		
				FLARE RARE KO		
STATION VENT STACKS ⊕ ⊕ ⊕				*		
		REF, COUP. SKID				
			╣╟║╟┆╎━╳╷ ╶╫ _╹ ╆╌┝╼┾┥ि <u>┨</u>		STE WATER ORAGE V-5104 REGENERATOR RU-5401	
		MCC .			(MEM) FENO	
	FOR CONTINUATION SEE SCB-1-P1					
	SEE DMG SCB-2-P12	H=106 H=152UBBER 1 - UNIT VO G SCRUBBER ARA UUNIT VO G SCRUBER ARA UUNIT VO G SCRUBBER ARA UUNIT VO G SCRUBBER ARA UUNIT VO G SCRUBBER ARA UUNIT VO G SCRUBER ARA UUN				4' GATE
	CONDRISATE STORAGE	COMPRESS			v coos	
LEGEND: 1 "KEEP PLACE SAFE AND CLEAN" SIGN #52 2 "NO ADMITTANCE-APPLY AT OFFICE" SIGN #6			Солтась	AUXILIARY BU		
LEGEND: 1 "KEEP FLACE SAFE AND CLEAN" SIGN #52 2 "NO ADMITANCE-APPLY AT OFFICE" SIGN #6 3 KIDDE 15# CO2 EXTINUUISHERS 4 BULLETIN BOARD #57D-1-M1004 5 FLYNN CXYCEN VENTLATOR 4 WTH HARD CASE 60-1-8- 6 WTH HARD CASE 60-1-8- 7 WICH HARD CASE 60-1-8- 6 WTH HARD CASE 60-1-8- 7 WICH HARD CASE 60-1-8- 7 WICH HARD CASE 60-1-8- 7 WICH HARD CASE 60-1-8- 9 WICH HARD CASE 60-1-8- 9 WICH HARD CASE 60-1-8- 1 WICH HARD CASE 60-1-8- 1 VICH HARD CASE 10-1-8- 1 VICH HARD CASE 60-1-8- 1 VICH HARD VICH HARD CASE 10-1-8- 1 VICH HARD VICH VICH VICH VICH VICH VICH VICH VICH	[HOUSE & E	
9 OXYGEN ANALYZER AND GAS DECTOR WITH CARRING CASE (#PRZ-4550 10 "CAUTION-NO SMOKING OR 104" SIGN #5 10 "CAUTION-NO SMOKING OR 104" SIGN #5 11 "NOTICE-LIARD BAL PREA SIGN #53 13 EMERGENCY SHUT-DOWN SWITCH				FENCE		
					DAN RECORE DASS HAVTRO LA SALVARY CANADA HAVTRO LA SALVARY CONTROL SOUTH CARLSBA COMBINE HAVES LA COMBINE HAVES LA HAVES LA COMBINE HAVES LA HAVES LA	D DEW POINT PLANT D PLOT PLAN
erna (te. 4%)		8 3/7/03 54/2 NO. 1112 40, 54/7 NETRENCE DRAWHOS	S ² REVISED FOR OPERATIONS REVIEW HEETING CM ISSUE FOR APPROVAL BY DESCRIPTION REVISIONS	B.B LIMM 8.6 W.0. APF, PHT, S27, 6452 TO V.0 PPHT RCD400	AMAT DAT. // # AMARA COMPATING SCH_E: 1:30 DWG. NO. NO.	SCB-8-P1 B

Section 6

All Calculations

Show all calculations used to determine both the hourly and annual controlled and uncontrolled emission rates. All calculations shall be performed keeping a minimum of three significant figures. Document the source of each emission factor used (if an emission rate is carried forward and not revised, then a statement to that effect is required). If identical units are being permitted and will be subject to the same operating conditions, submit calculations for only one unit and a note specifying what other units to which the calculations apply. All formulas and calculations used to calculate emissions must be submitted. The "Calculations" tab in the UA2 has been provided to allow calculations to be linked to the emissions tables. Add additional "Calc" tabs as needed. If the UA2 or other spread sheets are used, all calculation spread sheet(s) shall be submitted electronically in Microsoft Excel compatible format so that formulas and input values can be checked. Format all spread sheets are not used, provide the original formulas with defined variables. Additionally, provide subsequent formulas showing the input values for each variable in the formula. All calculations, including those calculations are imbedded in the Calc tab of the UA2 portion of the application, the printed Calc tab(s), should be submitted under this section.

Tank Flashing Calculations: The information provided to the AQB shall include a discussion of the method used to estimate tank-flashing emissions, relative thresholds (i.e., NOI, permit, or major source (NSPS, PSD or Title V)), accuracy of the model, the input and output from simulation models and software, all calculations, documentation of any assumptions used, descriptions of sampling methods and conditions, copies of any lab sample analysis. If Hysis is used, all relevant input parameters shall be reported, including separator pressure, gas throughput, and all other relevant parameters necessary for flashing calculation.

SSM Calculations: It is the applicant's responsibility to provide an estimate of SSM emissions or to provide justification for not doing so. In this Section, provide emissions calculations for Startup, Shutdown, and Routine Maintenance (SSM) emissions listed in the Section 2 SSM and/or Section 22 GHG Tables and the rational for why the others are reported as zero (or left blank in the SSM/GHG Tables). Refer to "Guidance for Submittal of Startup, Shutdown, Maintenance Emissions in Permit Applications (http://www.env.nm.gov/aqb/permit/app_form.html) for more detailed instructions on calculating SSM emissions. If SSM emissions are greater than those reported in the Section 2, Requested Allowables Table, modeling may be required to ensure compliance with the standards whether the application is NSR or Title V. Refer to the Modeling Section of this application for more guidance on modeling requirements.

Glycol Dehydrator Calculations: The information provided to the AQB shall include the manufacturer's maximum design recirculation rate for the glycol pump. If GRI-Glycalc is used, the full input summary report shall be included as well as a copy of the gas analysis that was used.

Road Calculations: Calculate fugitive particulate emissions and enter haul road fugitives in Tables 2-A, 2-D and 2-E for:

- 1. If you transport raw material, process material and/or product into or out of or within the facility and have PER emissions greater than 0.5 tpy.
- 2. If you transport raw material, process material and/or product into or out of the facility more frequently than one round trip per day.

Significant Figures:

A. All emissions standards are deemed to have at least two significant figures, but not more than three significant figures.

B. At least 5 significant figures shall be retained in all intermediate calculations.

C. In calculating emissions to determine compliance with an emission standard, the following rounding off procedures shall be used:

- (1) If the first digit to be discarded is less than the number 5, the last digit retained shall not be changed;
- (2) If the first digit discarded is greater than the number 5, or if it is the number 5 followed by at least one digit other than the number zero, the last figure retained shall be increased by one unit; **and**
- (3) If the first digit discarded is exactly the number 5, followed only by zeros, the last digit retained shall be rounded upward if it is an odd number, but no adjustment shall be made if it is an even number.
- (4) The final result of the calculation shall be expressed in the units of the standard.

Control Devices: In accordance with 20.2.72.203.A(3) and (8) NMAC, 20.2.70.300.D(5)(b) and (e) NMAC, and 20.2.73.200.B(7) NMAC, the permittee shall report all control devices and list each pollutant controlled by the control device

Enterprise Field Services, LLC

regardless if the applicant takes credit for the reduction in emissions. The applicant can indicate in this section of the application if they chose to not take credit for the reduction in emission rates. For notices of intent submitted under 20.2.73 NMAC, only uncontrolled emission rates can be considered to determine applicability unless the state or federal Acts require the control. This information is necessary to determine if federally enforceable conditions are necessary for the control device, and/or if the control device produces its own regulated pollutants or increases emission rates of other pollutants.

Solar Centaur T-4702 turbines (Units 1 & 2)

NO_X and CO emission rates were updated using historical stack test results obtained from 2010 to 2016 stack tests with a safety factor. VOC emission rates are reproduced here from previous applications. SO₂ emissions are based on a conservative fuel sulfur content estimated of 5 gr S/100 scf and 100% conversion of elemental sulfur to SO₂. Particulate emission rates (PM_{2.5}, PM₁₀, and TSP) were updated based on Solar Turbines Inc, Product Information Letter 171, refer to Section 7. Total and individual HAP emissions are calculated using GRI-HAPCalc 3.01. Greenhouse gas emissions are estimated using emission factors from 40 CFR 98 Subpart C Tables C-1 and C-2.

Solar Centaur 40-4700S (Unit 5)

 NO_X , CO, and VOC emission rates were calculated using manufacturer specifications. SO_2 emissions are based on a conservative fuel sulfur content estimated of 5 gr S/100 scf and 100% conversion of elemental sulfur to SO_2 . Particulate ($PM_{2.5}$, PM_{10} , and TSP) and HAP emissions were calculated using AP-42 Table 3.1-2a. Greenhouse gas emissions are estimated using emission factors from 40 CFR 98 Subpart C Tables C-1 and C-2.

Glycol Dehydrator and Reboiler (Units 3a & 3b)

Glycol dehydrator emissions were updated using GRI GlyCalc and an extended gas analysis. VOC and HAP emissions from the regenerator are controlled with a BTEX condenser. Flash tank emissions are sent to the fuel line and are 100% controlled. The condenser overheads are routed to the reboiler where VOC and HAP emissions are combusted and controlled with a 98% efficiency.

 NO_X , CO, VOC an PM emission were calculated using emission factors from AP-42 Tables 1.4-1 and 1.4-2 taking into consideration that fuel heat value of the natural gas of 1,200 Btu/scf. Therefore, these emission factors were adjusted to account for the heat value difference.

Stabilized Condensate Storage Tanks (Units T-008, T-009, T-011, & T-012)

Working and breathing emissions from T-008, T-009, T-011, and T-012 are calculated in this application using a BR&E ProMax simulation.

Exempt Storage Tanks (Units T-001 through T-006)

Methanol storage tanks (T-002) and slop oil tank (T-006) are exempt pursuant to 20.2.72.202.B.(5) NMAC. Emissions from T-002 were conservatively estimated based on 3 anticipated turnovers per year. Emissions from T-006 were calculated with BR&E ProMax using condenser liquid streams from the GRI-GLYCalc process simulation. Emission calculations for both of these units are included in the application for reference. All other storage tanks at South Carlsbad Compressor Station are either exempt because they contain liquids with vapor pressure less than 10mmHg (T-001, T-004, and T-005) or are not a source of regulated pollutants (T-003).

Condensate Loading Emissions (Unit LOAD)

ProMax and GRI-HAPCalc were used to perform the loading emissions calculations. Specifically, a RVP11 ProMax simulation was used to determine the stream composition.

Unpaved Haul Road Emissions (Unit HAUL)

These emissions were calculated using Equation 2 of AP-42 Section 13.2.2. Haul road emissions at this facility are exempt pursuant to 20.2.72.202.B(5) NMAC. Emission calculations are included in the application for reference.

Flare (Unit Flare)

Emission calculations were updated to account for the possible presence of H_2S . An H2S composition of 0.5 mol % was assumed. Emissions of NO_x and CO are calculated using the larger of the AP-42 Table 13.5-1 and TNRCC RG-109 emission factors. Pilot H_2S emissions are calculated based on the conservative estimate of 0.25 g $H_2S/100$ scf and a 98% combustion efficiency of the flare. Pilot SO₂ emissions are based on a conservative fuel sulfur content estimated of 5 gr S/100 scf and 100% conversion of elemental sulfur to SO₂. SO₂ emissions were calculated assuming 98% combustion efficiency and conversion to SO₂. Emissions of VOCs and HAPs are estimated based on the gas analysis and an assumed 98% combustion efficiency.

During non-routine conditions such as when gas must be released from portions of the facility for maintenance or in the event

Enterprise Field Services, LLC

of an emergency, some VOCs will be directed to the flare. Gas streams 14 and 33 will be directed to the flare in the event of a plant shutdown. Additionally, during an emergency shutdown, pressure vessels or the gas contents of the refrigeration system may be released to the flare; however, the quantity of gas in these vessels or systems is less than the assumed maximum gas volume from streams 14 and 33.

Flare parameters are calculated using a temperature of 1000° C and a 20 m/sec velocity (per NMAQB guidelines), and an effective diameter calculated in accordance with the Modeling Guidelines.

Greenhouse gas emissions were estimated using 40 CFR 98 Subpart W calculation methodology.

Vent (Unit VENT)

A RVP11 Promax simulation was used to determine the emissions associated to this unit based on the mole fraction calculated for different components found on the SC Vapor process stream located before the first stage compressor. In addition, to overcome H₂S possible molar fraction changes, it was assumed 0.05% mole instead of zero, as forecasted by the mentioned simulation.

From time to time, the pressurized gas in a portion of the facility's system must be vented in order to relieve the pressure. At South Carlsbad Compressor Station, this is primarily done in order to perform maintenance on the compressors and the compressor turbines (Units 1 and 2). This pressure relief is termed "blow down". Blow down at this facility is and will continue to be directed to various vents, including but not limited to pressure relief valves and blowdown vent stacks, aggregated in this application as unit VENT.

During routine startup, shutdown, or blow down events, gas from the turbines is diverted to unit VENT. A table of the inlet gas composition (based on the combined gas analysis) and the anticipated number of blow down events per year (conservatively estimated) is included in this section. Venting volume and frequency were estimated based on operating history and engineering knowledge. It is assumed that the gas being vented will contain a maximum of 10 ppmv of H_2S .

Maximum hourly venting emissions were calculated assuming 1 hour per event for a worst-case scenario. Annual venting emissions were calculated using the total volume of gas vented annually based on the estimate of predicted annual events with a safety factor of 100% to overcome for components variations. In addition, a molar concentration of 0.05% of H_2S was assumed since the analysis used did not showed any H_2S concentration.

Fugitive Emissions (Unit F-001)

Fugitive emission calculations were completed using emission factors from Table 2-4 of EPA Protocol for Equipment Leak Emission Estimates, 1995. Subcomponent counts for each subcomponent are based on estimated average component counts for each piece of equipment.

Section 6.a

Green House Gas Emissions

(Submitting under 20.2.70, 20.2.72 20.2.74 NMAC)

Title V (20.2.70 NMAC), Minor NSR (20.2.72 NMAC), and PSD (20.2.74 NMAC) applicants must estimate and report greenhouse gas (GHG) emissions to verify the emission rates reported in the public notice, determine applicability to 40 CFR 60 Subparts, and to evaluate Prevention of Significant Deterioration (PSD) applicability. GHG emissions that are subject to air permit regulations consist of the sum of an aggregate group of these six greenhouse gases: carbon dioxide (CO₂), nitrous oxide (N₂O), methane (CH₄), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride (SF₆).

Calculating GHG Emissions:

1. Calculate the ton per year (tpy) GHG mass emissions and GHG CO₂e emissions from your facility.

2. GHG mass emissions are the sum of the total annual tons of greenhouse gases without adjusting with the global warming potentials (GWPs). GHG CO₂e emissions are the sum of the mass emissions of each individual GHG multiplied by its GWP found in Table A-1 in 40 CFR 98 <u>Mandatory Greenhouse Gas Reporting</u>.

3. Emissions from routine or predictable start up, shut down, and maintenance must be included.

4. Report GHG mass and GHG CO_2e emissions in Table 2-P of this application. Emissions are reported in <u>short</u> tons per year and represent each emission unit's Potential to Emit (PTE).

5. All Title V major sources, PSD major sources, and all power plants, whether major or not, must calculate and report GHG mass and CO2e emissions for each unit in Table 2-P.

6. For minor source facilities that are not power plants, are not Title V, and are not PSD there are three options for reporting GHGs in Table 2-P: 1) report GHGs for each individual piece of equipment; 2) report all GHGs from a group of unit types, for example report all combustion source GHGs as a single unit and all venting GHGs as a second separate unit; 3) or check the following \Box By checking this box, the applicant acknowledges the total CO2e emissions are less than 75,000 tons per year.

Sources for Calculating GHG Emissions:

- Manufacturer's Data
- AP-42 Compilation of Air Pollutant Emission Factors at http://www.epa.gov/ttn/chief/ap42/index.html
- EPA's Internet emission factor database WebFIRE at http://cfpub.epa.gov/webfire/

• 40 CFR 98 <u>Mandatory Green House Gas Reporting</u> except that tons should be reported in short tons rather than in metric tons for the purpose of PSD applicability.

• API Compendium of Greenhouse Gas Emissions Methodologies for the Oil and Natural Gas Industry. August 2009 or most recent version.

• Sources listed on EPA's NSR Resources for Estimating GHG Emissions at http://www.epa.gov/nsr/clean-air-act-permitting-greenhouse-gases:

Global Warming Potentials (GWP):

Applicants must use the Global Warming Potentials codified in Table A-1 of the most recent version of 40 CFR 98 Mandatory Greenhouse Gas Reporting. The GWP for a particular GHG is the ratio of heat trapped by one unit mass of the GHG to that of one unit mass of CO_2 over a specified time period.

"Greenhouse gas" for the purpose of air permit regulations is defined as the aggregate group of the following six gases: carbon dioxide, nitrous oxide, methane, hydrofluorocarbons, perfluorocarbons, and sulfur hexafluoride. (20.2.70.7 NMAC, 20.2.74.7 NMAC). You may also find GHGs defined in 40 CFR 86.1818-12(a).

Metric to Short Ton Conversion:

Short tons for GHGs and other regulated pollutants are the standard unit of measure for PSD and title V permitting programs. 40 CFR 98 <u>Mandatory Greenhouse Reporting</u> requires metric tons.

1 metric ton = 1.10231 short tons (per Table A-2 to Subpart A of Part 98 – Units of Measure Conversions)

	Maximum Uncontrolled Emissions Functional NOx CO VOC SOx PM PM10 PM2.5 H2S															
Equipment	N	0 _x	C	0	V	00	S	D _x	F	M	PN	И ₁₀	P	M _{2.5}	H	₂ S
Equipment	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
1	27.00	90.82	7.40	11.25	0.77	3.37	0.50	2.21	0.63	2.78	0.63	2.78	0.63	2.78	2.5E-04	0.0011
2	27.00	90.82	7.40	11.25	0.77	3.37	0.50	2.21	0.63	2.78	0.63	2.78	0.63	2.78	2.5E-04	0.0011
5	4.43	19.40	5.89	25.78	1.40	6.15	0.48	2.10	0.27	1.16	0.27	1.16	0.27	1.16	2.4E-04	0.0010
3a	-	-	-	-	291.46	1276.60	-	-	-	-	-	-	-	-	-	-
3b	0.29	1.29	0.25	1.08	0.016	0.071	0.036	0.16	0.022	0.098	0.022	0.098	0.022	0.098	8.9E-04	0.0039
T-008																
T-009		_		_	*	18.85	_									
T-011	-	-	_	-		10.05	-	-	-	-	-	-	-	-	_	-
T-012																
F-001	-	-	-	-	*	35.85	-	-	-	-	-	-	-	-	-	-
LOAD	-	-	-	-	*	9.82	-	-	-	-	-	-	-	-	-	-
Flare (Process)	7.79	2.82	62.84	22.65	61.88	22.28	0.11	0.46	-	-	-	-	-	-	0.056	0.020
Flare (SSM)	7.73	0.20	62.48	1.62	76.13	1.98	-	-	-	-	-	-	-	-	-	-
VENT (SSM)	-	-	-	-	*	26.81	-	-	-	-	-	-	-	-	*	0.097
MALF ¹	15.52	7.00	125.32	10.00	138.01	10.00	0.11	10.00	-	-	-	-	-	-	0.056	2.00
Total	89.76	212.35	271.57	83.63	570.43	1415.15	1.73	17.12	1.56	6.82	1.56	6.82	1.56	6.82	0.114	2.12

" Denotes an hourly emission rate is not appropriate

"-" Indicates emissions of this pollutant are not expected

¹ Flare malfunction hourly emission rates reflect worst case emissions modeled for this unit. These emissions are the maximum allowed for the flare and are not additive with the Process and SSM emissions requested under Unit Flare.

							Controll	ed Emissio	ons							
Equipment	N	0 _x	CC	C	V	OC	SC	D _x	P	M	PN	I ₁₀	PI	M _{2.5}	H	₂ S
Equipment	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
1	27.00	90.82	7.40	11.25	0.77	3.37	0.50	2.21	0.63	2.78	0.63	2.78	0.63	2.78	2.5E-04	0.0011
2	27.00	90.82	7.40	11.25	0.77	3.37	0.50	2.21	0.63	2.78	0.63	2.78	0.63	2.78	2.5E-04	0.0011
5	4.43	19.40	5.89	25.78	1.40	6.15	0.48	2.10	0.27	1.16	0.27	1.16	0.27	1.16	2.4E-04	0.0010
3a	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
3b	0.045	0.20	0.038	0.17	0.87	3.80	0.0065	0.028	0.0034	0.015	0.0034	0.02	0.0034	0.015	1.6E-04	7.1E-04
T-008																
T-009	_				*	18.85	_	_	_	_	_	_	_	_	_	_
T-011						10.05										
T-012																
F-001	-	-	-	-	*	35.85	-	-	-	-	-	-	-	-	-	-
LOAD	-	-	-	-	*	9.82	-	-	-	-	-	-	-	-	-	-
Flare (Process)	7.79	2.82	62.84	22.65	61.88	22.28	0.11	0.46	-	-	-	-	-	-	0.056	0.020
Flare (SSM)	7.73	0.201	62.5	1.62	76.13	1.98	-	-	-	-	-	-	-	-	-	-
VENT (SSM)	-	-	-	-	*	26.81	-	-	-	-	-	-	-	-	*	0.097
MALF ¹	15.52	7.00	125.32	10.00	138.01	10.00	0.11	10.00	-	-	-	-	-	-	0.056	2.00
Total	89.51	211.26	271.36	82.71	279.82	142.28	1.70	16.99	1.54	6.74	1.54	6.74	1.54	6.74	0.114	2.12

 "*" Denotes an hourly emission rate is not appropriate
 "-" Indicates emissions of this pollutant are not expected
 ¹ Flare malfunction hourly emission rates reflect worst case emissions modeled for this unit. These emissions are the maximum allowed for the flare and are not additive with the Process and SSM emissions requested under Unit Flare.

						Con	trolled HA	P and Gre	enhouse Gas	Emissions							
Equipment	Total	HAPs	Formal	dehyde	Acetal	dehyde	n-He	xane	Benz	zene	Tolu	iene	Xy	lenes	Ethylb	enzene	CO2e
Equipment	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	tpy
1	0.33	1.45	0.13	0.59	0.14	0.60	0.012	0.052	0.0043	0.019	0.0033	0.014	0.010	0.043	-	-	21,707.51
2	0.33	1.45	0.13	0.59	0.14	0.60	0.012	0.052	0.0043	0.019	0.0033	0.014	0.010	0.043	-	-	21,707.51
5	0.038	0.17	0.029	0.13	0.0016	0.0070	-	-	4.82E-04	0.0021	0.0052	0.023	0.0026	0.011	-	-	20,618.14
3a	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
3b	0.22	0.97	0.0016	0.0069	0.0014	0.0060	0.023	0.10	0.11	0.46	0.07	0.29	0.01	0.04	0.004	0.02	1,549.99
T-008																	
T-009	*	0.79					*	0.67	*	0.00/	*	0.031	*	0.0027	*	0.0014	
T-011		0.79	-	-	-	-		0.07		0.086		0.031		0.0027		0.0014	-
T-012																	
F-001	*	3.57	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
LOAD	*	0.45	-	-	-	-	*	0.39	*	0.043	*	0.001	*	0.0012	*	0.0013	-
Flare (Process)	0.79	0.28	-	-	-	-	0.56	0.20	0.075	0.027	0.087	0.031	0.058	0.021	0.0075	0.0027	5,366.81
Flare (SSM)	0.01	0.000	-	-	-	-	0.01	0.000	-	-	-	-	-	-	-	-	6,971.17
VENT (SSM)	*	0.69	-	-	-	-	*	0.49	*	0.11	*	0.075	*	0.010	-	0.0052	1,754.57
MALF	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Total	1.72	9.81	0.30	1.31	0.28	1.22	0.61	1.96	0.19	0.76	0.17	0.48	0.09	0.17	0.011	0.028	79,675.70

Unit:	1, 2		
Description:	Solar Cent	aur T-4702 I	NG turbines
Fuel consumption	35.3	Mscf/hr	As permitted
Fuel heat value	1200	Btu/scf	Nominal LHV of fuel gas
Heat rate	42.3	MMbtu/hr	Fuel consumption * fuel heat value / 1000
Annual fuel usage	309.0	MMscf/yr	8760 hrs/yr operation

Uncontrolled Emissions

N	D _x	со	voc	SO ₂ ¹	PM ²	H₂S ¹		
					0.015		lb/MMBtu	Solar Turbines Inc Product Information Letter 171 Particulates Emission Rate
15	.8	1.5					lbs/hr	Unit 1: 2010 Stack Test Report Maximum Recordable Rate
-	-	-					lbs/hr	Unit 2: 2010 Stack Test Report Maximum Recordable Rate
15	.2	0.8					lbs/hr	Unit 1: 2011 Stack Test Report Maximum Recordable Rate
15	.4	1.0					lbs/hr	Unit 2: 2011 Stack Test Report Maximum Recordable Rate
16	.4	1.2					lbs/hr	Unit 1: 2012 Stack Test Report Maximum Recordable Rate
15	.2	1.0					lbs/hr	Unit 2: 2012 Stack Test Report Maximum Recordable Rate
17.	.57 2	2.14					lbs/hr	Unit 1: 2014 Stack Test Report Maximum Recordable Rate
18.	.85 1	.87					lbs/hr	Unit 2: 2014 Stack Test Report Maximum Recordable Rate
15.	.63 1	1.87					lbs/hr	Unit 1: 2015 Stack Test Report Maximum Recordable Rate
16.	.62 1	.27					lbs/hr	Unit 2: 2015 Stack Test Report Maximum Recordable Rate
7.8	85 C).90					lbs/hr	Unit 1: 2016 Stack Test Report Maximum Recordable Rate
9.	75 1	1.21					lbs/hr	Unit 2: 2016 Stack Test Report Maximum Recordable Rate
18	1.9	2.1					lbs/hr	Maximum Recordable Rate
10	% 2	20%						Safety Factor
20).7	2.6					lbs/hr	Emission Rate with Safety Factor
27	.0	7.4	0.77				lb/hr	As permitted
27	.0 ·	7.4	0.77	0.50	0.63	2.5E-04	lb/hr	Hourly emission rate
90).8 1	1.2	3.4	2.2	2.8	1.1E-03	tpy	Annual emission rate (8760 hrs/yr)

Total HAP	³ n-Hexane ³	нсно	Acetaldehyde	Benzene ³	Toluene ³	Xylenes ³		
0.33	0.012	0.13	0.14	0.0043	0.0033	0.0099	lb/hr	Hourly emission rate
1.4	0.052	0.59	0.60	0.019	0.014	0.043	tpy	Annual emission rate (8760 hrs/yr)

¹ SO₂ emissions based on fuel sulfur content of 5 gr S/100 scf, or 0.00714 lb S/Mscf

lb/hr SO₂ = 5gr S/100scf * Fuel consumption (Mscf/hr) * 1lb/7000gr * 1000scf/Mscf * 64 lb SO₂/32 lb S

H₂S emissions based on 0.25 g/100 scf H₂S in fuel

lb/hr H₂S = 0.25 gr H₂S/100 scf * Fuel consumption (Mscf/hr) * 1000scf/Mscf * 1 lb/7000 gr * (1 - Comb. Eff [98%]) 2 Assumed TSP = PM₁₀ = PM_{2.5}

³ HAP emissions calculated from GRI-HAPCalc v3.01.

GHG Calculations

	CO ₂ ⁴	N_2O^4	CH4 ⁴	CO₂e ⁴	
1	53.06	0.0001	0.001		kg/MMBtu 40 CFR 98 Subpart C Tables C-1 and C-2
	1	298	25		GWP 40 CFR 98 Table A-1
	21685.1	0.041	0.41		tpy
	21685.1	12.2	10.2	21707.5	tpy CO ₂ e

 4 N₂O, CH₄, and CO₂ tpy Emission Rate = EF* Fuel Usage * Fuel Heat Value * 2.20462 lb/1 kg * 1 ton/2000 lb CO₂e tpy Emission Rate = CO₂ Emission Rate + N₂O Emission Rate*GWP Factor + CH₄ Emission Rate*GWP Factor

 Unit:
 5

 Description:
 Solar Centaur 40-4700 NG turbines

 Fuel consumption
 33.5
 Mscf/hr

 Fuel heat value
 1200
 Btu/scf
 Nominal LHV of fuel gas

 Heat rate
 40.2
 MMBtu/hr
 Fuel consumption * fuel heat value / 1000

 Annual fuel usage
 293.5
 MMscf/yr
 8760 hrs/yr operation

Uncontrolled Emissions

NO _x	со	voc	SO ₂ ¹	PM ²	H_2S^1		
				0.0066	-	lb/MMBtu	AP-42 Table 3.1-2a
0.100	0.122	0.035			-	lb/MMBtu	Hourly Emission Factors
0.100	0.122	0.035			-	lb/MMBtu	Annual emission rate (8760 hrs/yr)
4.03	4.90	1.40	0.48	0.27		lb/hr	
17.64	21.48	6.15	2.10	1.16	-	tpy	
10%	20%					_	Safety Factor
4.43	5.89	1.40	0.48	0.27	2.39E-04	lb/hr	Emission Rate with Safety Factor
19.40	25.78	6.15	2.10	1.16	1.05E-03	tpy	
Total HAP ³	HCHO ³	Acetaldehyde ³	Benzene ³	Toluene ³	Xylenes ³	_	
	7.10E-04	4.00E-05	1.20E-05	1.30E-04	6.40E-05	lb/MMBtu	AP-42 Table 3.1-3
0.038	0.029	0.002	4.82E-04	0.0052	0.0026	lb/hr	Hourly emission rate
0.17	0.13	0.0070	0.0021	0.023	0.011	tpy	Annual emission rate (8760 hrs/yr)

 $^1~{\rm SO_2}$ emissions based on fuel sulfur content of 5 gr S/100 scf, or 0.00714 lb S/Mscf

 $lb/hr SO_2 = 5gr S/100scf * Fuel consumption (Mscf/hr) * 1lb/7000gr * 1000scf/Mscf * 64 lb SO_2/32 lb S H_2S emissions based on 0.25 g/100 scf H_2S in fuel$

lb/hr H₂S = 0.25 gr H₂S/100 scf * Fuel consumption (Mscf/hr) * 1000scf/Mscf * 1 lb/7000 gr * (1 - Comb. Eff [98%]) ² Assumed TSP = PM_{10} = $PM_{2.5}$

 $^{\rm 3}$ HAP emissions calculated using emission factors from AP-42 Table 3.1-3.

GHG Calculations

CO24	N ₂ O ⁴	CH44	CO ₂ e ⁴		
53.06	0.0001	0.001		kg/MMBtu	40 CFR 98 Subpart C Tables C-1 and C-2
1	298	25		GWP	40 CFR 98 Table A-1
20596.9	0.039	0.39		tpy	
20596.87	11.6	9.7	20618.1	tpy CO ₂ e	

⁴ N₂O, CH₄, and CO₂ tpy Emission Rate= EF* Fuel Usage * Fuel Heat Value * 2.20462 lb/1 kg * 1 ton/2000 lb CO₂e tpy Emission Rate = CO₂ Emission Rate + N₂O Emission Rate*GWP Factor +CH₄ Emission Rate*GWP Factor

Unit:	3a and 3b
Description:	Gas Tech dehydrator with condenser & BTEX buster
3a	Glycol Dehydrator(Still Vent and FlashTank)
3b	3 MMBtu/hr Glycol Dehydrator Reboiler

Control Equipment: BTEX Buster to control dehydrator regenerator (3b) and flash tank (3c) emissions Manufacturer: Gas Tech

Uncontrolled Emissions - Glycol Dehydrator Venting to Atmosphere

Reboiler Fuel Usage Fuel Consumption Throughput Fuel heat value Hourly fuel usage Annual fuel usage Operation bours	3.0 200 1200 2.50 21.90 8760.00	MMBtu/hr MMscf/d Btu/scf Mscf/hr MMscf/yr br/yr	Input heat rate Throughput Nominal LHV of fuel gas Fuel usaqe Annual usage
Operating hours	8760.00	hr/yr	

	NOx	со	VOC	SO ₂ ¹	H ₂ S ¹	TSP		
Reboiler-unit 3b	100	84	5.5			7.6	lb/MMscf	Unit emission rates from AP-42 Table 1.4-1 & 2 (Assuming average NG heating value of 1,020 Btu/scf)
	117.6 0.29	98.8 0.25	6.5 0.016			8.9 0.022	lb/MMscf lb/hr	Adjusted emission factor: EFF X (Fuel Heat Value/1,020 Btu/scf) lb/MMscf * (Mscf/hr / 1000 Mscf/1 MMscf)
Regenerator-unit 3a Flash tank-unit 3a			56.35 17.30				lb/hr _lb/hr	GRI-GLYCalc (uncontrolled regenerator emissions) GRI-GLYCalc (flash tank off gas)
Total	0.29 1.29	0.25 1.08	73.7 322.6	0.036 0.156	0.00089 0.0039	0.022 0.098	lb/hr tpy	

n-Hexane	Benzene	Toluene	Ethylbenzene	Xylenes	HCOH	Acetaldehyde	Total HAPs	_	
0.0092	0.0049	0.0067	0.0139	0.0087	0.0055	0.0048	0.0946	tpy	GRI-HAPCalc (Reboiler-3b)
1.14	7.30	8.14	-	2.53	-	-	19.1	lb/hr	GRI-GLYCalc (Regenerator - 3a)
0.21	0.038	0.027	-	0.0030	-	-	0.28	lb/hr	GRI-GLYCalc (Flash tank-3a "off gas")
1.4	7.3	8.2	-	2.5	0.0013	0.0011	19.4	lb/hr	
5.9	32.1	35.8	-	11.1	0.0055	0.0048	85.0	tpy	

Controlled Emissions - Glycol Dehydrator with Condenser (on Regenerator) & BTEX Buster

Flow to BTEX Buster

362

0.36

scf/hr

GRI-GLYCalc - condenser vent gas stream

scf/hr GRI-GLYCalc - flash tank off gas stream (Sent to Fuel lint)

Mscf/hr Total fuel routed to BTEX Buster (condenser vent gas + flash tank off gas)

	NO _x	со	VOC	SO ₂ ¹	H ₂ S ¹	TSP		
- Reboiler-unit 3b (2)	100	84	5.5			7.6	lb/MMscf	Unit emission rates from AP-42 Table 1.4-1 & 2 (Assuming average NG heating value of 1,020 Btu/scf)
	117.6 0.036	98.8 0.030	6.5 0.0020			8.9 0.003	lb/MMscf lb/hr	Adjusted emission factor: EFF X (Fuel Heat Value/1,020 Btu/scf) lb/MMscf * (Mscf/hr / 1000 Mscf/1 MMscf)
Regenerator-unit 3a			34.59 0.69				lb/hr lb/hr	GRI-GLYCalc (controlled regenerator emissions) Emission rate assuming 98% combustion control
Flash tank-unit 3a			17.30 -				lb/hr lb/hr	GRI-GLYCalc (flash tank off gas) 100% is routed to fuel line
Total	0.04	0.03	0.69	0.0052	1.29E-04	0.0028	lb/hr	lb/hr of (3a + 3b)
	0.16	0.13	3.04	0.023	5.66E-04	0.012	tpy	lb/hr * 8760 hrs/yr / 2000 lb/ton
	25%	25%	25%	25%	25%	25%	Safety Fact	tor
	0.045	0.038	0.87	0.0065	1.62E-04	0.0034	lb/hr	Emission rate with 25% safety factor
	0.20	0.17	3.80	0.028	7.08E-04	0.015	tpy	lb/hr * 8760 hrs/yr / 2000 lb/ton

 1 SO $_2$ emissions based on fuel sulfur content of 5 gr S/100 scf, or 0.00714 lb S/Mscf

0.00714 lb S/Mscf * fuel consumption (Mscf/hr) * 64 lb SO₂/32 lb S = lb/hr SO₂

 H_2S emissions based on 0.25 g/100 scf H_2S in fuel

0.25 gr H_2 S/100 scf * fuel scf/hr * 1 lb/7000 gr = lb/hr H_2 S

² Flow to the BTEX Buster is either burned as fuel or ignited by a glow plug if the reboiler firebox is not burning.

n-Hexane	Benzene	Toluene	Ethylbenzene	Xylenes	нсон	Acetaldehyde	Total HAPs		
0.0092	0.0049	0.0067	0.0139	0.0087	0.0055	0.0048	0.0946	tpy	GRI-HAPCalc (Reboiler-3b)
0.80	4.155	2.587	-	0.278	-	-	7.82	lb/hr	GRI-GLYCalc (controlled regenerator emissions)
0.0159	0.0831	0.0517	-	0.0056	-	-	0.1564	lb/hr	Emission rate assuming 98% combustion
0.2122	0.0380	0.0270	-	0.0030	-	-	0.2802	lb/hr	GRI-GLYCalc (flash tank off gas)
-	-	-	-	-	-	-	-	lb/hr	100% is Routed to fuel line
0.018	0.08	0.05	0.0032	0.008	0.0013	0.0011	0.18	lb/hr	Controlled hourly emission rate
0.08	0.37	0.23	0.014	0.03	0.0055	0.0048	0.78	tpy	lb/hr * 8760 hrs/yr / 2000 lb/ton
25%	25%	25%	25%	25%	25%	25%	25%		Safety Factor
0.023	0.11	0.067	0.0040	0.0094	0.0016	0.0014	0.22	lb/hr	Emission rate with 25% safety factor
0.099	0.46	0.29	0.017	0.041	0.0069	0.0060	0.97	tpy	lb/hr * 8760 hrs/yr / 2000 lb/ton

GHG Calculations

CO23	N_2O^3	CH ₄ ³	CO ₂ e ³		
53.06	0.0001	0.001		kg/MMBtu	40 CFR 98 Subpart C Tables C-1 and C-2
1	298	25		GWP	40 CFR 98 Table A-1
<u>1537.1</u>	<u>0.0029</u>	<u>0.029</u>		tpy	
		22.668		tpy	GRI-GLYCalc (controlled regenerator emissions)
		-			GRI-GLYCalc (flash tank off gas, Routed to Fuel)
		22.668			GRI-GLYCalc (controlled regenerator emissions)
-	-	<u>0.45</u>		tpy	Controlled regenerator emissions+flash tank off gas with 98% Combustion Control
1537.1	0.86	12.06	1550.0	tpy CO ₂ e	

 3 N₂O, CH₄, and CO₂ tpy Emission Rate= EF* Fuel Usage * Fuel Heat Value * 2.20462 lb/1 kg * 1 ton/2000 lb

CO₂e tpy Emission Rate = CO₂ Emission Rate + N₂O Emission Rate*GWP Factor +CH₄ Emission Rate*GWP Factor

Slop Water Tank Emissions

Unit:	T-006
Description:	Slop Water Tank from 3-Phase Separator and Dehy

Tank Throughput

33 bbl/day	bbl/yr / 365 day/yr
12,000 bbl/yr	Maximum Throughput
504,000 gal/yr	bbl/yr * 42 gal/bbl

Promax Emissions Report

Annual	Emissions
--------	-----------

	Working Losses	Breathing Losses	Total Losses
Components	(ton/yr)	(ton/yr)	(ton/yr) ¹
Hydrogen Sulfide	3.28692E-05	1.89576E-05	5.18268E-05
Nitrogen	1.10618E-05	6.38002E-06	1.74418E-05
Carbon Dioxide	0.002045151	0.001179563	0.003224714
Methane	0.000521325	0.00030068	0.000822004
Ethane	0.00410824	0.002369471	0.006477712
Propane	0.009757611	0.005627806	0.015385417
i-Butane	0.001901042	0.001096446	0.002997489
n-Butane	0.00583467	0.003365208	0.009199879
2,2-Dimethylpropane	0	0	0
i-Pentane	0.001544366	0.00089073	0.002435096
n-Pentane	0.001627716	0.000938803	0.002566519
2,2-Dimethylbutane	0	0	0
Cyclopentane	0	0	0
2,3-Dimethylbutane	0	0	0
2-Methylpentane	0	0	0
3-Methylpentane	0	0	0
n-Hexane	0.000416481	0.00024021	0.00065669
Methylcyclopentane	0	0	0
Benzene	0.002117181	0.001221107	0.003338287
Cyclohexane	0.000822733	0.00047452	0.001297252
2-Methylhexane	0	0	0
3-Methylhexane	0	0	0
2,2,4-Trimethylpentane	0	0	0
n-Heptane	0.000369694	0.000213225	0.000582919
Methylcyclohexane	0.000511008	0.000294729	0.000805737
Toluene	0.00118465	0.00068326	0.00186791
n-Octane	0.000519775	0.000299786	0.000819561
Ethylbenzene	6.81112E-08	3.92839E-08	1.07395E-07
m-Xylene	0.000140878	8.12527E-05	0.00022213
p-Xylene	0	0	0
o-Xylene	0	0	0
n-Nonane	0	0	0
n-Decane	0	0	0
n-Undecane	0	0	0
Saftey Factor	100%	100%	100%
Total VOC	0.0535	0.0309	0.0843
Total HAP	7.72E-03	4.45E-03	1.22E-02

¹ Emissions are assumed to be 1% condensate.

Unit:T-008. 009, T-011, T-012Description:Stabilized condensate tanks# of tanks4Tank Throughput*

190 bbl/day

Tanks	4	4.09	9d	Emissions	Report

	Uncontr	olled Emissions per	[ank	Uncontrolled Tank Battery
	Working Losses	Breathing Losses	Total Losses	Duttery
Components	(ton/yr)	(ton/yr)	(ton/yr)	Total Losses (ton/yr)
Hydrogen Sulfide	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Nitrogen	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Carbon Dioxide	1.16E-11	1.10E-11	2.26E-11	9.04E-11
Methane	1.05E-13	1.00E-13	2.05E-13	8.19E-13
Ethane	7.64E-08	7.28E-08	1.49E-07	5.97E-07
Propane	4.13E-04	3.93E-04	8.06E-04	3.22E-03
i-Butane	2.98E-02	2.84E-02	5.83E-02	2.33E-01
n-Butane	7.27E-01	6.93E-01	1.42E+00	5.68E+00
2,2-Dimethylpropane	1.45E-02	1.39E-02	2.84E-02	1.14E-01
i-Pentane	6.38E-01	6.08E-01	1.25E+00	4.99E+00
n-Pentane	5.78E-01	5.51E-01	1.13E+00	4.51E+00
2,2-Dimethylbutane	5.63E-03	5.37E-03	1.10E-02	4.40E-02
Cyclopentane	0.00E+00	0.00E+00	0.00E+00	0.00E+00
2,3-Dimethylbutane	3.99E-02	3.80E-02	7.80E-02	3.12E-01
2-Methylpentane	9.24E-02	8.80E-02	1.80E-01	7.22E-01
3-Methylpentane	4.87E-02	4.65E-02	9.52E-02	3.81E-01
n-Hexane	8.57E-02	8.17E-02	1.67E-01	6.70E-01
Methylcyclopentane	3.96E-02	3.77E-02	7.73E-02	3.09E-01
Benzene	1.10E-02	1.05E-02	2.15E-02	8.58E-02
Cyclohexane	2.72E-02	2.59E-02	5.32E-02	2.13E-01
2-Methylhexane	7.08E-03	6.75E-03	1.38E-02	5.53E-02
3-Methylhexane	7.97E-03	7.59E-03	1.56E-02	6.22E-02
2,2,4-Trimethylpentane	0.00E+00	0.00E+00	0.00E+00	0.00E+00
n-Heptane	3.02E-02	2.88E-02	5.89E-02	2.36E-01
Methylcyclohexane	1.65E-02	1.58E-02	3.23E-02	1.29E-01
Toluene	3.94E-03	3.76E-03	7.70E-03	3.08E-02
n-Octane	7.97E-03	7.60E-03	1.56E-02	6.23E-02
Ethylbenzene	1.84E-04	1.76E-04	3.60E-04	1.44E-03
m-Xylene	1.71E-04	1.63E-04	3.33E-04	1.33E-03
p-Xylene	1.78E-04	1.70E-04	3.48E-04	1.39E-03
o-Xylene	0.00E+00	0.00E+00	0.00E+00	0.00E+00
n-Nonane	7.42E-04	7.07E-04	1.45E-03	5.80E-03
n-Decane	0.00E+00	0.00E+00	0.00E+00	0.00E+00
n-Undecane	0.00E+00	0.00E+00	0.00E+00	0.00E+00
TOTAL VOC	2.41	2.30	4.71	18.85
TOTAL HAPs	0.101	0.096	0.20	0.79

* Facility throughout will be 190 bbl/day. Each tank has the potential to route entire facility throughput through a give tank however actual throughput

 Unit:
 VENT

 Description:
 Emission rates from venting during startup, shutdown, and blowdown operation

Volume Vented Calculations

	Venting	Volume	Events/y	Gas	Volume Vented	
	Unit	(Mscf)	r	Stream	(Mscf/yr)	
	1	9	120	Inlet	1080	
_	2	9	120	Inlet	1080	_
Totals			240		2160	_
Total (hrs)			240			Assumes 1 hour per event

Source: Promax RVP11 Simulation, SC Vapor Stream, from File: ProMax Report South Carlsbad_8

					-		Spec.
		Wet	Dry		Mass	Spec.	Volume
		vol/mol	vol/mol	MW * dry	Fraction	Volume	voc
Component	MW	%	%	vol %	(dry)	ft ³ /lb	ft ³ /lb
Water	18.02	0.015%				21.06	
Nitrogen	28.01	2.72%	2.72%	0.762	3.54%	13.547	
CO ₂	44.01	1.61%	1.61%	0.706	3.28%	8.623	
H ₂ S*	34.08	0.05%	0.05%	1.70%	0.08%	11.136	
Methane	16.04	76.6%	76.58%	12.286	57.09%	23.65	
Ethane	30.07	10.1%	10.12%	3.044	14.14%	12.62	
Propane	44.10	5.4%	5.38%	2.375	11.03%	8.606	4.342
i-Butane	58.12	0.67%	0.67%	0.387	1.80%	6.529	0.537
n-Butane	58.12	1.6%	1.56%	0.908	4.22%	6.529	1.260
2,2 Dimethylpropane	72.15	0.010%	0.01%	0.007	0.03%	5.302	0.008
i-Pentane	72.15	0.37%	0.37%	0.264	1.23%	5.26	0.295
n-Pentane	72.15	0.38%	0.38%	0.276	1.28%	5.26	0.308
2,2 Dimethylbutane	86.18	0.0040%	0.00%	0.003	0.02%	5.26	0.004
Cyclopentane	70.14	0.00%	0.00%	0.000	0.00%	5.411	0.000
2,3 Dimethylbutane	86.18	0.035%	0.03%	0.030	0.14%	4.404	0.028
2 Methylpentane	86.18	0.087%	0.09%	0.075	0.35%	4.404	0.070
3 Methylpentane	86.18	0.049%	0.05%	0.043	0.20%	4.404	0.040
n-Hexane	86.18	0.10%	0.10%	0.087	0.40%	4.404	0.081
Methylcyclopentane	84.16	0.053%	0.05%	0.045	0.21%	4.509	0.043
Cyclohexane	84.16	0.048%	0.05%	0.040	0.19%	3.787	0.033
2-Methylhexane	100.20	0.013%	0.01%	0.013	0.06%	3.787	0.010
3-Methylhexane	100.20	0.014%	0.01%	0.015	0.07%	3.787	0.012
n-Heptanes	100.20	0.066%	0.07%	0.066	0.31%	3.787	0.053
Other Heptanes	100.20	0.00%	0.00%	0.000	0.00%	3.787	0.000
Methylcyclohexane	98.19	0.036%	0.04%	0.036	0.17%	3.865	0.029
2,2,4-Trimethylpentane	9 114.23	0.00%	0.00%	0.000	0.00%	3.322	0.000
Benzene	78.11	0.024%	0.02%	0.018	0.09%	4.858	0.019
Toluene	92.14	0.014%	0.01%	0.013	0.06%	4.119	0.011
Ethylbenzene	106.17	0.00087%	0.00%	0.001	0.00%	3.574	0.001
Xylenes	106.17	0.0017%	0.00%	0.002	0.01%	3.574	0.001
C8+ heavies	114.23	0.0037%	0.00%	0.004	0.02%	3.322	0.003
Total		100.0%	100.0%	21.52	100%		7.188
Dry total		100.0%	(n	nixture mol. v	vt)		
	MEHC (VOC)	8.92%					21.87%
Mixture	heating value	1241	BTU/scf				

Note: * Although the RVP 11 gas simulation did not account and H₂S it was determined that a 0.05% wet/mol % will be used to overcome gas composition fluctuations.

Unit:	VENT
Description:	Emission rates from venting during startup, shutdown, and blowdown operation

Emission Calculations

Engineering estimate Inlet Gas 1.0 Mcf/hr

	VOC	H₂S		
_	8.92%	0.0500%	mol%	VOC content from gas analysis; H2S content based on maximum possible estimated inlet concentration
	7.2	11.136	ft ³ /lb	Specific volume from gas analysis, calculated above
	12.4	0.04490	lb/hr	vol. gas * mole fraction / specific volume
	12.4	0.04490	lb/Mcf	lb/hr / Mcf/hr

Total Blowdown Emissions

These calculations estimate the total emission rate per blowdown event, based on duration and volume of gas

Vent

	2160 100% 4320 9 100% 18	Mcf/yr tota Safety Fact with SF Max Mcf/ev Safety Fact with SF	tor vent				
	VOC	H₂S	-				
Inlet Gas	12.4	0.04490	lb/Mcf vente	ed			
	223.4	0.808	lb/Max ever	nt	Max Mcf/eve	nt * lb/Mcf	
	223.4	0.808	lb/hr		lb/Max even	t / 1 hr/eve	Hourly emission rate shown for informational purposes only
	26.8	0.10	tpy vented		(Mcf/yr * lb/	Mcf) / 2000) lb/ton
			voc	Specific			
	H	IAP	content	Volume	lb/Mcf ¹	tpy ²	
-	n-H	lexane	0.1004%	4.404	0.2280	0.49	-
	2,2,	4-TMP	0.0000%	3.322	0.0000	0.00	
	Bei	nzene	0.0236%	4.858	0.0486	0.11	
	То	luene	0.0142%	4.119	0.0345	0.075	

 1 (Vol. gas * mole fraction / specific volume) / Mcf/hr 2 (Mcf/yr * lb/Mcf) / 2000 lb/ton

0.0009%

0.0017%

3.574

3.574

Ethylbenzene

Xylenes

Total HAPs

GHG Calculations

CO ₂	CH₄	CO ₂ e		
4.0	70.0		tpy	Mscf/yr * 1000scf/yr * density * 1.1023tons/MT * 1MT/1000kg*Safety Factor
1	25		GWP	40 CFR 98 Table A-1
4.0	1,750.5	1,754.6	tpy CO ₂ e	

0.0052

0.010

0.69

0.0024

0.0048

Unit: Description:	Flare (Proces Combustion of		m condensate	stabilizer - alt	ternative oper	ating scenari	0		
Pilot Emissions									
WW of fuel gas	16.04	lb/lb-mol	Estimated. n	ominal for nat	tural das				
Pilot fuel flow	100	scf/hr	Engineering						
Fuel heating value	1200	Btu/scf			V natural gas				
Heat rate	0.12		Btu/scf * scf						
Annual fuel usage	0.88	MMscf/yr	scf/hr * 8760						
Pilot Emission Calcul	lations								
	NOx	со	VOC ¹	H ₂ S ²	SO23	HAPs ¹	_		
	0.0680	0.3100					lb/MMBtu	AP-42 Table 13.5-1 (9/1991)	
	103%						%	Safety Factor ⁴	
				3.57E-05			lb H ₂ S/hr	Sweet natural gas fuel, 0.25 gr H ₂ S/100scf	
					0.0014		lb S0 ₂ /hr	Sweet natural gas fuel, 5 gr S/100scf	
				7.1E-07	6.6E-05		lb/hr	98% combustion H ₂ S: 100% H ₂ S -> SO ₂	
	0.0166	0.037	-	7.1E-07	0.0015	-	lb/hr		
	0.0181	0.041		7.8E-07	0.0016	-	tov	lb/hr * (2190 hr/vr operation)/ 2000 lb/ton	
	0.073	0.163 ased natural s based on 0	.25 q/100 scf	3.1E-06 d mainly of m H ₂ S in fuel, 98	0.0065 ethane. VOC : 3% combustic	m.	tov ssions from pilot onl	lb/hr * (8760 hr/vr operation)/ 2000 lb/ton ly are assumed to be negligible.	
ource: Armstron Gas La	0.073 ¹ Fuel is purch: ² H ₂ S emission ³ SO ₂ emission ⁴ TCEQ EF fact	0.163 ased natural s based on 0 0.25 gr H ₂ s based on s 5 gr S/100 ors were ren	gas, comprise .25 q/100 scf S/100 scf * fu ulfur content c I scf * fuel scf/	3.1E-06 d mainly of m H ₂ S in fuel, 98 el scf/hr * 1 ll of 5 g/100 scf 'hr * 1 lb/700	0.0065 ethane. VOC a 3% combustic b/7000 gr = II S in fuel and 0 gr * 64 lb S	n. c/hr H ₂ S (prio 100% combi O ₂ /32 lb S =	tov ssions from pilot onl or to combustion and ustion of H ₂ S to SO ₂ .	lb/hr * (8760 hr/vr oxeration)/ 2000 lb/ton ly are assumed to be negligible. d conversion to SO_2)	
iource: Armstron Gas La	0.073 ¹ Fuel is purch: ² H ₂ S emission ³ SO ₂ emission ⁴ TCEQ EF fact	0.163 ased natural s based on 0 0.25 gr H ₂ s based on s 5 gr S/100 ors were ren	gas, comprise .25 q/100 scf S/100 scf * fu ulfur content c I scf * fuel scf/	3.1E-06 d mainly of m H ₂ S in fuel, 98 el scf/hr * 1 ll of 5 g/100 scf 'hr * 1 lb/700	0.0065 ethane. VOC a 3% combustic b/7000 gr = II S in fuel and 0 gr * 64 lb S	n. c/hr H ₂ S (prio 100% combi O ₂ /32 lb S =	tov ssions from pilot onl or to combustion and ustion of H ₂ S to SO ₂ . Ib/hr SO ₂	lb/hr * (8760 hr/vr oxeration)/ 2000 lb/ton ly are assumed to be negligible. d conversion to SO_2)	
ource: Armstron Gas La	0.073 ¹ Fuel is purch: ² H ₂ S emission ³ SO ₂ emission ⁴ TCEQ EF fact	0.163 ased natural a s based on 0 0.25 gr H ₂ s based on s 5 gr S/100 ors were ren	gas, comprise .25 q/100 scf S/100 scf * fu ulfur content c I scf * fuel scf/	3.1E-06 d mainly of m H ₂ S in fuel, 98 el scf/hr * 1 ll of 5 g/100 scf 'hr * 1 lb/700	0.0065 ethane. VOC a 3% combustic b/7000 gr = II S in fuel and 0 gr * 64 lb S used to mainta	n. c/hr H ₂ S (prio 100% combi O ₂ /32 lb S =	tov ssions from pilot onl or to combustion and ustion of H ₂ S to SO ₂ . Ib/hr SO ₂	lb/hr * (8760 hr/vr oxeration)/ 2000 lb/ton ly are assumed to be negligible. d conversion to SO_2)	Annual Loading
	0.073 ¹ Fuel is purch: ² H ₂ S emission ³ SO ₂ emission ⁴ TCEQ EF fact	0.163 ased natural s based on 0 0.25 gr H ₂ s based on si 5 gr S/100 ors were ren 06 vol/mol % Gas	gas, comprise .25 q/100 scf S/100 scf * fu ulfur content c I scf * fuel scf/ noved from cal	3.1E-06 d mainly of m H ₂ S in fuel, 96 el scf/hr * 1 li of 5 g/100 scf /hr * 1 lb/700 lculation; SF u	0.0065 ethane. VOC ; 3% combustic b/7000 gr = II S in fuel and 0 gr * 64 lb S used to mainta	n. 5/hr H ₂ S (prie 100% combe O ₂ /32 lb S = ain emissions	tov ssions from pilot onl or to combustion and ustion of H ₂ S to SO ₂ . Ib/hr SO ₂	lb/hr * (8760 hr/vr oceration)/ 2000 lb/ton y are assumed to be negligible. d conversion to SO ₂) ted.	Annual Loading (Ib/yr)
Component	0.073 ¹ Fuel is purch: ² H ₂ S emission ³ SO ₂ emission ⁴ TCEQ EF fact ab Analysis No. 21130	0.163 ased natural s based on 0 0.25 gr H ₂ s based on si 5 gr S/100 ors were ren 06 vol/mol % Gas	gas, comprise .25 q/100 scf S/100 scf * fu ulfur content c I scf * fuel scf, noved from cal	3.1E-06 d mainly of m H ₂ S in fuel, 96 el scf/hr * 1 lk f 5 g/100 scf /hr * 1 lb/700 lculation; SF u MW * dry	0.0065 ethane. VOC i 3% combustio b/7000 gr = II 5 in fuel and 0 gr * 64 lb S used to mainta Spec. Volume	n. b/hr H ₂ S (priv 100% combu O ₂ /32 lb S = ain emissions Flow	tov ssions from pilot onl or to combustion and ustion of H ₂ S to SO ₂ . Ib/hr SO ₂ s as currently permit	lb/hr * (8760 hr/vr oceration)/ 2000 lb/ton y are assumed to be negligible. d conversion to SO ₂) ted.	
Component Vater	0.073 ¹ Fuel is purch: ² H ₂ S emission ³ SO ₂ emission ⁴ TCEQ EF fact ab Analysis No. 2113C MW	0.163 assed natural of s based on 0 0.25 gr H ₂ s based on si 5 gr S/100 ors were ren 06 vol/mol % Gas Analysis	gas, comprise .25 q/100 scf S/100 scf * fu ulfur content c I scf * fuel scf, noved from cal	3.1E-06 d mainly of m H ₂ S in fuel, 96 el scf/hr * 1 lk f 5 g/100 scf /hr * 1 lb/700 lculation; SF u MW * dry	0.0065 ethane. VOC i 3% combustio b/7000 gr = II 5 in fuel and 0 gr * 64 lb S used to mainta Spec. Volume	n. b/hr H ₂ S (priv 100% combu O ₂ /32 lb S = ain emissions Flow	tov ssions from pilot onl or to combustion and ustion of H ₂ S to SO ₂ . Ib/hr SO ₂ s as currently permit	lb/hr * (8760 hr/vr oceration)/ 2000 lb/ton y are assumed to be negligible. d conversion to SO ₂) ted.	
Component Vater Vitrogen	0.073 ¹ Fuel Is purch: ² H ₂ S emission ³ SO ₂ emission ⁴ TCEO EF fact ab Analysis No. 2113(MW 18.02	0.163 assed natural s bassed on 0 0.25 gr H ₂ s bassed on s 5 gr S/100 ors were ren 56 vol/mol % Gas Analysis 0.000%	gas, comprise .25 q/100 scf * S/100 scf * fu ulfur content c 0 scf * fuel scf, noved from cal Dry vol/mol%	3.1E-06 d mainly of m H ₂ S in fuel, 99 el scf/hr * 1 lt if 5 g/100 scf /hr * 1 lb/700 (culation: SF u MW * dry vol %	0.0065 ethane. VOC 3% combustic b/7000 gr = li S in fuel and 0 gr * 64 lb S issed to mainta Spec. Volume (scf/lb)	on. p/hr H ₂ S (prid 100% combit O ₂ /32 lb S = ain emissions Flow (scf/hr)	tov ssions from pilot onl or to combustion and ustion of H ₂ S to SO ₂ . Ib/hr SO ₂ is as currently permitt Loading (lb/hr)	Ib/hr * (8760 hr/vr oseration)/ 2000 lb/ton y are assumed to be negligible. d conversion to SO ₃) ted. Annual Flow (scf/yr)	(lb/yr)
Component Vater iltrogen 202	0.073 ¹ Fuel Is purch: ² H ₂ S emission ³ SO ₂ emission ⁴ TCEQ EF fact 4 TCEQ EF fact 10 MW 18.02 28.01	0.163 ased natural s s based on 0 0.25 gr H ₂ s based on s 5 gr S/100 ors were ren 5 wol/mol % Gas Analysis 0.000% 0.412%	gas, comprise .25 q/100 scf : \$/100 scf * fu ulfur content c scf * fuel scf/ noved from cal Dry vol/mol% 0.414%	3.1E-06 d mainly of m H ₂ S in fuel, 99 el scf/hr * 1 ll of 5 g/100 scf /hr * 1 lb/700 lculation; SF u MW * dry vol % 0.116	0.0065 ethane. VOC : 3% combustic b/7000 gr = II S in fuel and 0 gr * 64 lb S used to mainta Spec. Volume (scf/lb) 13.547	on. p/hr H ₂ S (prior 100% combin O ₂ /32 lb S = ain emissions Flow (scf/hr) 259	tov ssions from pilot onl or to combustion an ustion of H ₂ S to SO ₂ . Ib/hr SO ₃ : as currently permitt Loading (lb/hr) 19.102	Ib/hr * (8760 hr/vr oceration)/ 2000 lb/ton y are assumed to be negligible. d conversion to SO ₂) ted. Annual Flow (scf/yr) 186,314.1	(lb/yr) 13,753.2
Component Vater Jitrogen JO2 42S	0.073 ¹ Fuel Is purch: ² H ₂ S emission ³ SO ₂ emission ⁴ TCEO EF fact MW 18.02 28.01 44.01	0.163 ased natural / s based on 0 0.25 gr H ₂ / s based on s 5 gr S/100 ors were ren 5 vol/mol % Gas <u>Analysis</u> 0.000% 0.412%	gas, comprise .25 q/100 scf 5/100 scf * fu ulfur content c s cf * fuel scf, noved from cal Dry vol/mol% 0.414% 1.025% 0.0505%	3.1E-06 d mainly of m H ₂ S in fuel, % el scf/hr * 1 li of 5 g/100 scf hr * 1 lib/700 lculation; SF u MW * dry vol % 0.116 0.451	0.0065 ethane. VOC : 3% combustic b/7000 gr = II S in fuel and 0 gr * 64 lb S used to mainta Spec. Volume (scf/lb) 13.547 8.623	n. p/hr H ₂ S (prid 100% combit 0 ₂ /32 lb S = ain emissions Flow (scf/hr) 259 641	tov ssions from pilot onl or to combustion an ustion of H ₂ S to SO ₂ . Ib/hr SO ₂ as currently permit Loading (Ib/hr) 19.102 74.298	Ib/hr * (8760 hr/vr oceration)/ 2000 lb/ton y are assumed to be negligible. d conversion to SO ₂) ted. Annual Flow (scf/yr) 186,314.1 461,284.7	(lb/yr) 13,753.2 53,494.7
Component Water Vitrogen 202 42S Vethane	0.073 ¹ Fuel is purch: ² H ₂ S emission ³ SO ₂ emission ⁴ TCEQ EF fact MW 18.02 28.01 24.01 34.03	0.163 ased natural 1 s based on 0 0.25 gr H ₂ s based on s 5 gr S/100 ors were ren 06 vol/mol % Gas Analysis 0.000% 0.412% 1.020% 0.050%	gas, comprise .25 q/100 scf * fu ulfur content c 0 scf * fuel scf/ noved from cal Dry vol/mol% 0.414% 1.025% 0.50% 45.527%	3.1E-06 d mainly of m H ₂ S in fuel, % el scf/rr * 1 lb of 5 g/100 scf /hr * 1 lb/700 lculation: SF u MW * dry vol % 0.116 0.451 0.017	0.0065 ethane. VOC : 3% combustic b/7000 gr = II 5 in fuel and 0 gr * 64 lb S issed to mainta Spec. Volume (scf/lb) 13.547 8.623 11.136	n. p/hr H ₂ S (prid 100% combi 0 ₂ /32 lb S = ain emissions Flow (scf/hr) 259 641 31	tov ssions from pilot onl or to combustion an ustion of H ₂ 5 to SO ₂ . Ib/hr SO ₃ as a currently permitt Loading (Ib/hr) 19.102 74.298 2.821	Ib/hr * (8760 hr/vr oseration)/ 2000 lb/ton y are assumed to be negligible. d conversion to SO ₂) ted. Annual Flow (scf/yr) 186,314,1 461,284.7 22,616.4	(lb/yr) 13,753.2 53,494.7 2,030.9
Component Water Vitrogen 202 42S Wethane Tihane	0.073 ¹ Fuel Is purch ² H ₂ S emission ³ SO ₂ emission ⁴ TCEQ EF fact WW WW 18.02 28.01 44.01 34.08 16.04 30.07 44.10	0.163 ased natural is based on 0 0.25 gr H ₂ s based on 8 5 gr S/100 ors were rem 5 vol/mol % Gas Analysis 0.000% 0.412% 1.020% 0.050% 45.293% 15.926% 22.711%	gas, comprise .25 d/100 scf * fu ulfur content c l scf * fuel scf, noved from ca Dry vol/mol% 0.414% 1.025% 0.050% 45.527% 16.003% 22.889%	3.1E-06 d mainly of m H ₅ S in fuel, %e d scf/hr * 1 li of 5 g/100 scf hr * 1 lib/700 lculation; SF u wol %e 0.116 0.451 0.017 7.304 4.814 10.093	0.0065 ethane. VOC a 3% combustite b/7000 gr = li S in fuel and 0 gr * 64 lb S ussed to mainta Spec. Volume (scf/lb) 13.547 8.623 11.136 23.65 12.62 8.606	n. p/hr H ₂ S (prit 100% combu 0 ₂ /32 lb S = ain emissions Flow (scf/hr) 259 641 31 28455	tov ssions from pilot onlo or to combustion and ustion of H ₂ S to SO ₂ , ib/hr SO ₂ as currently permitt Loading (ib/hr) 19.102 74.298 2.821 1203.152 792.795 1662.258	Ib/hr * (8760 hr/vr oseration)/ 2000 lb/ton y are assumed to be negligible. d conversion to SO ₂) ted. Annual Flow (scf/yr) 186,314.1 461,284.7 22,616.4 20,487.273.4	(lb/yr) 13,753.2 53,494.7 2,030.9 866,269.5 570,812.2 1,196,825.9
Source: Armstron Gas La Component Water Witrogen 202 42S Welthane Thane Propane Butane	0.073 ¹ Fuel is purch: ² H ₂ S emission ³ SO ₂ emission ⁴ TCEQ EF fact MW 18.02 28.02 28.02 28.02 16.04 30.07	0.163 ased natural is based on 0 0.25 gr H ₂ 5 based on s 5 gr S/100 ors were rem % 6 vol/mol % Gas Analysis 0.000% 0.412% 1.020% 0.050% 45.293%	gas, comprise .25 q/100 scf * fu ulfur content c scf * fuel scf, noved from cal Dry vol/mol% 0.414% 0.050% 45.527% 16.008%	3.1E-06 d mainly of m H ₂ S in fuel, 96 el scf/hr * 1 li f5 g/100 scf hr * 1 lib/700 culation; SF L MW * dry vol % 0.116 0.451 0.017 7.304 4.814	0.0065 ethane. VOC i 3% combustic 1/7000 gr = II 5 in fuel and 0 gr * 64 lb S sised to mainta Spec. Volume (scf/lb) 13.547 8.623 11.136 23.65 12.62	n. o/hr H ₂ S (prit 100% combu 00%2 1b S = ain emissions Flow (scf/hr) 259 641 31 28455 10005	tov ssions from pilot onl or to combustion an ustion of H ₂ 5 to 5Q ₂ lib/hr SQ ₃ as a currently permitt Loading (lb/hr) 19.102 74.298 2.821 1203.152 792.795	Ib/hr * (8760 hr/vr oseration)/ 2000 lb/ton ly are assumed to be negligible. d conversion to SO ₂) ted. Annual Flow (scf/yr) 186,314,1 461,284,7 22,616,4 20,487,273,4 7,203,649,3	(lb/yr) 13,753.2 53,494.7 2,030.9 866,269.5 570,812.2

284,040.7 487,328.8 114,664.4 90,296.1 0.0 **20,164.6** 0.0 0.0 7,052.0 0.0 0.0 **0.0 7,052.0** 0.0 **0.0 2,715.5 3,124.6 2,070.6 12,978.8 2,227,532.2** n-Butane i-Pentane n-Pentane Cyclopentane **n-Hexane** Cyclohexane Other Hexanes Hentanes 3,181,769,7 603,134.9 506,517.5 0.0 88,804.9 0.0 26,705.8 0.0 13,192.0 12,870.3 965.3 7,400.4 43,115.4 58.12 72.15 72.15 70.14 86.18 84.16 100.20 98.19 114.23 78.11 92.14 106.17 106.17 114.23 7.034% 1.333% 1.120% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.029% 0.028% 0.028% 0.002% 1.340% 1.126% 0.000% 0.197% 0.000% 0.000% 0.000% 0.000% 0.000% 0.029% 0.029% 0.022% 4.110 0.967 0.812 0.000 0.000 0.000 0.000 0.000 0.000 0.023 0.026 0.002 0.017 0.002 5.26 5.26 5.411 4.404 4.509 3.787 3.865 3.322 4.858 4.119 3.574 3.574 3.322 076.846 159.256 133.745 0.000 **28.006** 0.000 9.794 0.000 **0.000 0.0000 0.000 0.0** 838 703 0 123 0 0 37 0 18 18 18 10 Uner Hexanes Methylcyclohexane 2,2,4-Trimethylpentane Benzene Toluene Ethylbenzene Xylenes C8+ heavies Total 0.096% 60 18.026

Total 99.5% 100.0% 20.83 62500 5186.0 45, Dry total 99.5% 100.0% 20.83 62500 5186.0 45, Note: "Although the RVP 11 gas simulation did not account and H_2S it was determined that a 0.05% wet/mol % will be used to overcome gas composition fluctuations

Uncontrolled Uncontrolled			36.98%		3,093.8 39.4		2,227,532.2 28,345.4			
Gas to Flare	62,500	scf/hr	maximum ex	pected flow of	1.5MMscf/	day; assume	d 24 hour operation			
	45,000,000		maximum ex	pected annual	flow					
	1,828.35									
		MMbtu/hr								
	82,275.84									
	20.83	MW								
Pilot Gas to Flare	100.00									
	16.04	MW								
Totals all streams	62,600.00	scf/hr								
Totals all streams	20.82		volume-weig	hted average						
	NOx	со	VOC	H₂S	SO ₂	n-Hexan	e Benzene	Toluene	Ethylbenzene	Xylenes
	0.0680	0.3100								
		77%								
					0.10					
Gas to Flare Stack	7.8	62.8								
			61.9	0.056	0.10	0.56	0.075	0.087	0.008	0.058
Gas to Flare Stack -	2.8	22.6		-	-					
annual emissions			22.3	0.020	0.46	0.20	0.027	0.031	0.003	0.021

¹ TCEQ EF factors were removed from calculation; SF used to maintain emissions as currently permitted.

Flare Emission Totals (Pilot + Inlet Gases)

	NOx 7.8 2.8	CO 62.8 22.6	VOC 61.9 22.3	H ₂ S 5.6E-02 2.0E-02	SO ₂ 1.1E-01 4.6E-01	n-Hexane 0.56 0.20	Benzene 0.075 0.027	Toluene 0.087 0.031	Ethylbenzene 0.0075 0.0027	Xylenes 0.058 0.021	HAPs 0.79 0.28	lb/hr tov
Stack Parameters	1000 20 65	m/sec	Exhaust tem Exhaust velo Flare height			Per NMAQB aui Per NMAQB qui Engineering de:	delines					
	Pilot only 8,400 6,785 0.08	cal/sec m	Heat release q _n Effective sta	(q) ck diameter (l	D)	$\begin{array}{l} \text{MMBtu/hr} \ ^* \ 10^6 \\ q_n \ = \ q (1 \text{-} 0.048 \\ D \ = \ (10^{-6} q_n)^{1/2} \end{array}$		0 sec/hr				
	Pilot and Nor 114.4 20.82	MMBtu/hr					d flare qas heating val ed average of gas MV					
	8,007,440 6,253,560 2.501		Heat release q _n Effective sta	(q) ck diameter (l	D)	$\begin{array}{l} \text{MMBtu/hr} \ ^* \ 10^6 \\ \text{q}_{n} \ = \ q (1 \text{-} 0.048 \\ \text{D} \ = \ (10^{-6} \text{q}_{n})^{1/2} \end{array}$	⁶ * 252 cal/Btu ÷ 360 (MW) ^{1/2})	0 sec/hr				

AP-42 Table 13.5-1 Safety Factor 98% combustion H₂S: 100% H₂S -> SO₂ 10/MBRu */ MMBtu//r 98% destruction of calculated content 10/MBRu */ MMBtu//200 98% destruction of calculated content

HAPs lb/MMBtu

0.79 tov tpy

0.28

% lb/hr lb/hr lb/hr

Flare GHG Emissions

	gas & Assist Gas							
Step 1. C	Calculate contribution of u							
	$E_{a,CH4}$ (un-combusted) =	V _a * (1- η)* X _{CH}	4 (Equation V	(-39B)				
	where:							
	$E_{a,CH4}$ = contribution of				erator in cul	bic feet under a	ctual condition	ns.
	V _a = volume of gas sent							
	η = Fraction of gas comb	ousted by a burn	ing flare (or regen	erator), defaul	t value fron	N Subpart W = Pilot NG		0.98
	For gas sent to a X_{CH4} = Mole fraction of C				nt Analysis .452929	Composition 0.9500		
	A _{CH4} = Wible fraction of C	ri ₄ in gas to the	nare -	· · ·	.432727	0.9300		
Step 2. C	Calculate contribution of u							
	$E_{a,CO2} = V_a * X_{CO2}$ where:	(Equation W-20)						
	E _{a.CO2} = contribution of	annual un-comb	ousted CO ₂ emission	ns from regen	erator in cu	bic feet under a	actual condition	ns
	La.co2 = contribution of			is nonn regen		Pilot NG		
	V _a = volume of gas sent	to combustion u	init during the year	(cf) Clie	nt Analysis	Composition		
	X_{CO2} = Mole fraction of C				.010198	0.005		
Step 3. C	Calculate contribution of c	combusted CO-	emissions					
5100 0. 0	$E_{a.CO2}$ (combusted) = Σ (-21)				
	where:	wated by a house	ing flaxe (or re	venter) -			0.98	
	η = Fraction of gas comb For gas sent to a			nator) =			0.98	
	V _a = volume of gas sent			(cf)				
	va – volume or gas sent	to compustion u	and during the year	(0)/		Pilot NG		
	Y _i = mole fraction of gas	hydrocarbon co	instituents i:	Clie	nt Analysis			
	.1	Constituent			.452929	0.9500		
		Constituent			.159257	0.0320		
		Constituent			.227708	0.0020		
		Constituent		C	.111341	0.00060		
			j, Pentanes Plus =		28800006	0.015		
	R _i = number of carbon at			tuent j:				
		Constituent		,	1			
		Constituent	j, Ethane =		2			
		Constituent Constituent			2			
		Constituent Constituent	j, Propane = j, Butane =		3 4			
		Constituent Constituent	j, Propane =		3			
Step 4. 0	Calculate GHG volumetric	Constituent Constituent Constituent	j, Propane = j, Butane = j, Pentanes Plus =	ns (scf).	3 4			
-	Calculate GHG volumetric	Constituent Constituent Constituent	j, Propane = j, Butane = j, Pentanes Plus = tandard conditio		3 4			
-		Constituent Constituent Constituent	j, Propane = j, Butane = j, Pentanes Plus =		3 4			
E _{s,n}	$a = \frac{E_{a,n} * (459.67 + T_s) * P_a}{(459.67 + T_a) * P_s}$	Constituent Constituent Constituent	j, Propane = j, Butane = j, Pentanes Plus = tandard conditio		3 4			
-	$a = \frac{E_{a,n} * (459.67 + T_s) * P_a}{(459.67 + T_a) * P_s}$ re:	Constituent Constituent Constituent	j, Propane = j, Butane = j, Pentanes Plus = tandard conditio (Equation W-3	3)	3 4 5			
E _{s,n}	$a_{n} = \frac{E_{a,n} * (459.67 + T_{s}) * P_{a}}{(459.67 + T_{a}) * P_{s}}$ re: $E_{s,n} = GHG i volumetric e$	Constituent Constituent Constituent emissions at s	j, Propane = j, Butane = j, Pentanes Plus = tandard conditio <i>(Equation W-3</i>) adard temperature =	3)	3 4 5	ic feet		
E _{s,n}	$ \begin{array}{l} {}_{a}=\frac{E_{a,n}*}{(459.67+T_{a})}*P_{a} \\ {}_{(459.67+T_{a})}*P_{s} \\ re: \\ {}_{s,n}=GHG \ i \ volumetric \ e \\ {}_{a,n}=GHG \ i \ volumetric \ e \\ {}_{a,n}=GHG \ i \ volumetric \ e \end{array} $	Constituent Constituent Constituent emissions at s emissions at stan emissions at actu	j, Propane = j, Butane = j, Pentanes Plus = tandard conditio <i>(Equation W-3</i>) adard temperature : ual conditions (cf)	3)	3 4 5			
E _{s,n}	$a_{n} = \frac{E_{a,n} * (459.67 + T_{s}) * P_{a}}{(459.67 + T_{a}) * P_{s}}$ re: $E_{s,n} = GHG i volumetric e$	Constituent Constituent Constituent emissions at s emissions at stan emissions at actu	j, Propane = j, Butane = j, Pentanes Plus = tandard conditio <i>(Equation W-3</i>) adard temperature : ual conditions (cf)	3)	3 4 5) F	
E _{s,n}	$\begin{array}{l} s=\frac{E_{a,n}*\left(459.67+T_{a}\right)*P_{a}}{\left(459.67+T_{a}\right)*P_{s}}\\ \text{re:}\\ E_{s,n}=\text{GHG i volumetric e}\\ E_{a,n}=\text{GHG i volumetric e}\\ T_{s}=\text{Temperature at star} \end{array}$	Constituent Constituent Constituent emissions at stan emissions at stan emissions at actur ndard conditions	j, Propane = j, Butane = j, Pentanes Plus = tandard conditio <i>(Equation W-3</i>) dard temperature : ial conditions (cf) (F) =	3)	3 4 5	60		(Based on Annual Avg Max Temperature for Hobbs, NM fror
E _{s,n}	$\begin{split} s &= \frac{E_{a,n} * (459.67 + T_s) * P_a}{(459.67 + T_a) * P_s} \\ re: \\ E_{s,n} &= GHG \ i \ volumetric \ e \\ E_{a,n} &= GHG \ i \ volumetric \ e \\ T_s &= Temperature \ at \ star \\ T_a &= Temperature \ at \ at \end{split}$	Constituent Constituent constituent emissions at stan emissions at stan emissions at actu- dard conditions (F	j, Propane = j, Butane = j, Pentanes Plus = tandard conditio <i>(Equation W-3</i> dard temperature : ial conditions (cf) (F) =) =	3)	3 4 5	60 76	F F	(Based on Annual Avg Max Temperature for Hobbs, NM fror Regional Climate Center)
E _{s,n}	$\begin{array}{l} s=\frac{E_{a,n}*\left(459.67+T_{a}\right)*P_{a}}{\left(459.67+T_{a}\right)*P_{s}}\\ \text{re:}\\ E_{s,n}=\text{GHG i volumetric e}\\ E_{a,n}=\text{GHG i volumetric e}\\ T_{s}=\text{Temperature at star} \end{array}$	Constituent Constituent constituent emissions at stan emissions at stan emissions at actu- dard conditions (F	j, Propane = j, Butane = j, Pentanes Plus = tandard conditio <i>(Equation W-3</i> dard temperature : ial conditions (cf) (F) =) =	3)	3 4 5	60 76		
E _{s,n}	$\begin{split} s &= \frac{E_{a,n} * (459.67 + T_s) * P_a}{(459.67 + T_a) * P_s} \\ re: \\ E_{s,n} &= GHG \ i \ volumetric \ e \\ E_{a,n} &= GHG \ i \ volumetric \ e \\ T_s &= Temperature \ at \ star \\ T_a &= Temperature \ at \ at \end{split}$	Constituent Constituent Constituent emissions at stan missions at stan dard conditions (F t standard condi	i, Propane = j, Butane = i, Pentanes Plus = tandard conditio <i>(Equation W-3</i> and and temperature : ala conditions (cf) (F) =) = tions (psia) =	3)	3 4 5	60 76 14.7	F F	
E _{s,n}	$\begin{array}{l} _{s}=\underline{E_{a,n}}^{*}\left(459.67+T_{s}\right)^{*}P_{a}\\ (459.67+T_{a})^{*}P_{s}\\ \end{array}$ re: $\begin{array}{l} E_{s,n}=GHG\ i\ volumetric\ e\\ E_{a,n}=GHC\ i\ volumetric\ e\\ T_{s}=Temperature\ at\ star\\ T_{a}=Temperature\ at\ att\\ P_{s}=Absolute\ pressure\ at\ att\\ \end{array}$	Constituent Constituent Constituent emissions at stan missions at stan dard conditions (F t standard condi	i, Propane = j, Butane = i, Pentanes Plus = tandard conditio <i>(Equation W-3</i> and and temperature : ala conditions (cf) (F) =) = tions (psia) =	3) and pressure (3 4 5	60 76 14.7	F / psia	Regional Climate Center)
E _{s.n}	$\begin{array}{l} = \underbrace{E_{a,n}}_{i} \left(\frac{459.67}{15} + T_{a} \right)^{*} P_{a} \\ \left(\frac{459.67}{15} + T_{a} \right)^{*} P_{a} \end{array}$ re: $\begin{array}{l} E_{a,n} = GHG \ i \ volumetric \ e \\ T_{a} = GHG \ i \ volumetric \ e \\ T_{a} = Temperature \ at \ star \\ T_{a} = Temperature \ at \ star \\ P_{a} = Absolute \ pressure \ a \\ P_{a} = Absolute \ pressure \ a \\ Constant = 459.67 \end{array}$	Constituent Constituent Constituent emissions at stan missions at actu- ndard conditions ual conditions t actual condition	j, Propane = j, Pentanes Plus = tandard conditio (Equation W-2) dard temperature : ala conditions (cf) (F) =) = tions (psia) = ns (psia) = (temperature :	3) and pressure (3 4 5	60 76 14.7	F / psia	Regional Climate Center)
E _{s.n}	$= \underbrace{E_{a,n}}_{(459.67 + T_a)} * P_a$ $(459.67 + T_a)^* P_a$ re: $\underbrace{E_{a,n}}_{a} = GHG i volumetric e$ $\underbrace{E_{a,n}}_{a} = GHG i volumetric e$ $\underbrace{E_{a,n}}_{a} = GHG i volumetric e$ $\underbrace{F_{a,n}}_{a} = GHG i volumetric e$ F	Constituent Constituent Constituent emissions at stan emissions at stan emissions at actu- dard conditions ual conditions (F t standard condi t actual condition CO ₂ mass emi	j, Propane = j, Pentanes Plus = tandard conditio (Equation W-2) dard temperature : ala conditions (cf) (F) =) = tions (psia) = ns (psia) = (temperature :	3) and pressure (3 4 5	60 76 14.7	F / psia	Regional Climate Center)
E _{s.n}	$ _{s} = \underbrace{E_{s,n}}_{(459,67} + T_s) * P_s \\ (459,67 + T_s) * P_s \\ (459,67 + T_s) * P_s \\ Fer \\ E_{s,n} = GHG i volumetric e \\ T_s = GHG i volumetric e \\ T_s = Temperature at star \\ T_s = Temperature at acts \\ P_s = Absolute pressure a \\ P_s = Absolute pressure a Constant = 459.67 \\ Calculate annual CH_4 and (Mass_s) = E_s) * 0, * 0.01 \\ where: $	Constituent Constituent Constituent emissions at stan missions at stan missions at actu- ndard conditions (Ft standard conditions t actual conditions (Ft standard conditions) (CO2 mass emi 11023 (Et standard conditions)	j. Propane = j. Pentanes Plus = tandard conditio (Equation W-2 dard temperature : ald conditions (cf) (F) =) = tions (psia) = ns (psia) = (temperature : ssions (ton). quation W-36)	and pressure (3 4 5 STP) in cub m F to R)	60 76 14.7 14.7	F / psia	Regional Climate Center)
E _{s.n}	$\begin{split} &= \underbrace{E_{a,n}}_{i} \left(\frac{459}{67} + T_{u} \right)^{*} P_{a} \\ &\left(\frac{455}{67} + T_{a} \right)^{*} P_{a} \\ &\text{re:} \\ & E_{a,n} = GHG \ i \ volumetric \ e \\ & E_{a,n} = GHG \ i \ volumetric \ e \\ & T_{a} = Temperature \ at \ star \\ & T_{a} = Temperature \ at \ star \\ & T_{a} = Absolute \ pressure \ a \\ & P_{a} = Absolute \ pressure \ a \\ & P_{a} = Absolute \ pressure \ a \\ & Calculate \ annual \ CH_{a} \ and \\ & Mas_{u,i} = E_{i,i} * p_{i} * 0.001 \\ & where: \\ & Mas_{u,i} = E_{i,i} * p_{i} * 0.001 \end{split}$	Constituent Constituent Constituent constituent emissions at stan missions at actu dard conditions (F t standard conditions t actual conditions t actual conditions (CO ₂ mass emi 11023 (É G i (CO ₂ , CH ₄ , or	 j. Propane = j. Protanes Plus = tandard condition (Equation W-2) (dard temperature :	and pressure (conversion fro	3 4 5 STP) in cub m F to R) d condition:	60 76 14.7 14.7	F / psia	Regional Climate Center)
E _{s.n}	$\begin{array}{l} = \underbrace{E_{a,n}}_{i} \left(\frac{459.67}{15} + T_{a} \right)^{*} P_{a} \\ \left(\frac{459.67}{15} + T_{a} \right)^{*} P_{a} \\ \text{re:} \\ E_{a,n} = GHG \ i \ volumetric \ e \\ E_{a,n} = GHG \ i \ volumetric \ e \\ T_{a} = Temperature \ at \ star \\ T_{a} = Temperature \ at \ star \\ P_{a} = Absolute \ pressure \ a \\ Constant \ = \ 459.67 \\ \hline \begin{array}{c} \text{Calculate annual CH}_{a} \ and \\ Mass_{a,i} = GHG \ i \ volumetric \\ Hass_{a,i} = GHG \ i \\ ublack \ star \\ ublack \ star \\ s_{a,i} = GHG \ i \\ ublack \ star \\ s_{a,i} = GHG \ i \\ \end{array}$	Constituent Constituent Constituent constituent emissions at stan missions at actu- ndard conditions (F t standard conditions t actual conditions t actual conditions (CO2 mass emii 11023 (/E G i (CO2, CH4, or N2	j. Propane = j. Pentanes Plus = tandard conditio (Equation W-2 dard temperature : ald conditions (cf) (F) =) = tions (psia) = ns (psia) = (temperature : ssions (ton). quation W-36)	and pressure (conversion fro	3 4 5 STP) in cub m F to R) d condition:	60 76 14.7 14.7	F / psia	Regional Climate Center)
E _{s.n}	$\begin{array}{l} = \underbrace{E_{a,n}}_{i} \left(\frac{459.67}{15} + T_{a} \right)^{*} P_{a} \\ \left(\frac{459.67}{15} + T_{a} \right)^{*} P_{a} \\ \text{re:} \\ E_{a,n} = GHG \ i \ volumetric \ e \\ E_{a,n} = GHG \ i \ volumetric \ e \\ T_{a} = Temperature \ at \ star \\ T_{a} = Temperature \ at \ star \\ P_{a} = Absolute \ pressure \ a \\ Constant \ = \ 459.67 \\ \hline \begin{array}{c} \text{Calculate annual CH}_{a} \ and \\ Mass_{a,i} = GHG \ i \ volumetric \\ Hass_{a,i} = GHG \ i \\ ublack \ star \\ ublack \ star \\ s_{a,i} = GHG \ i \\ ublack \ star \\ s_{a,i} = GHG \ i \\ \end{array}$	Constituent Constituent Constituent constituent emissions at stan missions at actu dard conditions (F t standard conditions t actual conditions t actual conditions (CO ₂ mass emi 11023 (É G i (CO ₂ , CH ₄ , or	 j. Propane = j. Protanes Plus = tandard condition (Equation W-2) (dard temperature :	3) and pressure (conversion fro pons at standar sions at standar	3 4 5 STP) in cub m F to R) d condition ard condition	60 76 14.7 14.7 14.7 s in tons (tpy) ons (cf)	o F † psia † psia	Regional Climate Center) (Assumption)
E _{s.n}	$\begin{array}{l} = \underbrace{E_{a,n}}_{i} \left(\frac{459.67}{15} + T_{a} \right)^{*} P_{a} \\ \left(\frac{459.67}{15} + T_{a} \right)^{*} P_{a} \\ \text{re:} \\ E_{a,n} = GHG \ i \ volumetric \ e \\ E_{a,n} = GHG \ i \ volumetric \ e \\ T_{a} = Temperature \ at \ star \\ T_{a} = Temperature \ at \ star \\ P_{a} = Absolute \ pressure \ a \\ Constant \ = \ 459.67 \\ \hline \begin{array}{c} \text{Calculate annual CH}_{a} \ and \\ Mass_{a,i} = GHG \ i \ volumetric \\ Hass_{a,i} = GHG \ i \\ ublack \ star \\ ublack \ star \\ s_{a,i} = GHG \ i \\ ublack \ star \\ s_{a,i} = GHG \ i \\ \end{array}$	Constituent Constituent Constituent constituent emissions at stan missions at actu- ndard conditions (F t standard conditions t actual conditions t actual conditions (CO2 mass emii 11023 (/E G i (CO2, CH4, or N2	 j. Propane = j. Protanes Plus = tandard condition (Equation W-2) (dard temperature :	(3) and pressure (conversion fro ons at standar sions at stand CH4:	3 4 5 STP) in cub m F to R) d condition ard condition 0.0192	66 76 14.7 14.7 s in tons (tpy) nns (cf) ± kg/ft ³ (at 60F	 F / psia / psia and 14.7 psia) 	Regional Climate Center) (Assumption)
E _{s.n}	$\begin{array}{l} = \underbrace{E_{a,n}}_{i} \left(\frac{459.67}{15} + T_{a} \right)^{*} P_{a} \\ \left(\frac{459.67}{15} + T_{a} \right)^{*} P_{a} \\ \text{re:} \\ E_{a,n} = GHG \ i \ volumetric \ e \\ E_{a,n} = GHG \ i \ volumetric \ e \\ T_{a} = Temperature \ at \ star \\ T_{a} = Temperature \ at \ star \\ P_{a} = Absolute \ pressure \ a \\ Constant \ = \ 459.67 \\ \hline \begin{array}{c} \text{Calculate annual CH}_{a} \ and \\ Mass_{a,i} = GHG \ i \ volumetric \\ Hass_{a,i} = GHG \ i \\ ublack \ star \\ ublack \ star \\ s_{a,i} = GHG \ i \\ ublack \ star \\ s_{a,i} = GHG \ i \\ \end{array}$	Constituent Constituent Constituent constituent emissions at stan missions at actu- ndard conditions (F t standard conditions t actual conditions t actual conditions (CO2 mass emii 11023 (/E G i (CO2, CH4, or N2	 j. Propane = j. Protanes Plus = tandard condition (Equation W-2) (dard temperature :	3) and pressure (conversion fro pons at standar sions at standar	3 4 5 STP) in cub m F to R) d condition ard condition 0.0192	60 76 14.7 14.7 14.7 s in tons (tpy) ons (cf)	 F / psia / psia and 14.7 psia) 	Regional Climate Center) (Assumption)
E _{s.n} wher Step 5. C	$\begin{split} &= \underbrace{E_{a,n}}{459.67} + T_{a,0} * P_{a} \\ &(459.67 + T_{a,0}) * P_{a} \\ &Fe: \\ &E_{a,n} = GHG \ i \ volumetric \ e \\ &E_{a,n} = GHG \ i \ volumetric \ e \\ &T_{a} = Temperature \ at \ star \\ &T_{a} = Temperature \ at \ star \\ &P_{a} = Absolute \ pressure \ a \\ &P_{a} = Absolute \ pressure \ a \\ &Constant \ = \ 459.67 \\ \hline \\ &Calculate \ annual \ CH_{a} \ and \ H_{a} \ and \ h$	Constituent Constituent Constituent constituent emissions at stan missions at actu- ndard conditions t actual conditions t actual conditions t actual condition CO2 mass emi 11023 (<i>E</i> G i (CO2, CH4, or N2 or GHG i. Use: ssions from poi	 i, Propane = j, Pentanes Plus = tandard condition (Equation W-2) idard temperature = idard temperature =	3) and pressure (conversion fro ons at standar sions at stand CH ₄ : CO ₂ :	3 4 5 STP) in cub m F to R) d condition: ard condition 0.0192 0.0526	60 74 14.7 14.7 s in tons (tpy) ons (cf) kg/ft ³ (at 60F kg/ft ³ (at 60F	 F psia psia and 14.7 psia) and 14.7 psia) 	Regional Climate Center) (Assumption)
E _{s.n} wher Step 5. C	$ _{i} = \underbrace{E_{a,n}}_{i} (459.67 + T_{a}) * P_{a} \\ (459.67 + T_{a}) * P_{a} \\ re: \\ E_{a,n} = GHG i volumetric e \\ T_{a} = GHG i volumetric e \\ T_{a} = Temperature at star \\ T_{a} = Temperature at at \\ P_{a} = Absolute pressure a \\ P_{a} = Absolute pressure a \\ Absolute pressure a Constant = 459.67 \\ Calculate annual (H_{a} and Mass_{a,i} = E_{a,i} * \rho_{i} * 0.001 \\ where: Mass_{a,i} = GHI \\ E_{a,i} = GHI \\ \rho_{i} = Density \\ Calculate annual N_2O emis \\ Mass_{N00} = 0.0011023 * f \\ $	Constituent Constituent Constituent constituent emissions at stan missions at actu- ndard conditions t actual conditions t actual conditions t actual condition CO2 mass emi 11023 (<i>E</i> G i (CO2, CH4, or N2 or GHG i. Use: ssions from poi	 i, Propane = j, Pentanes Plus = tandard condition (Equation W-2) idard temperature : idard temperature :	3) and pressure (conversion fro ons at standar sions at stand CH ₄ : CO ₂ : ry fuel comb	3 4 5 STP) in cub m F to R) d condition: ard condition 0.0192 0.0526	60 74 14.7 14.7 s in tons (tpy) ons (cf) kg/ft ³ (at 60F kg/ft ³ (at 60F	 F / psia / psia and 14.7 psia) and 14.7 psia) 	Regional Climate Center) (Assumption))
E _{s.n} wher Step 5. C	$\begin{split} &= \underbrace{E_{a,n}}{459.67} + T_{u}\right)^* P_a \\ &(459.67 + T_a\right)^* P_s \\ &Fe: \\ &E_{a,n} = GHG \ i \ volumetric \ e \\ &E_{a,n} = GHG \ i \ volumetric \ e \\ &T_s = Temperature \ at \ star \\ &T_a = Temperature \ at \ star \\ &P_a = Absolute \ pressure \ a \\ &P_a = Absolute \ pressure \ a \\ &Costant = 459.67 \\ \hline \\ &Mass_{u,i} = GH \\ &Mass_{u,i} = GH \\ &Mass_{u,i} = GH \\ &E_{a,i} = GHG \ i \\ &p_i = Density \\ \hline \\ &Calculate \ annual \ N_20 \ emis \\ &Mass_{NO2} = 0.0011023^* f \\ &Mass_{NO2} = 0.0011023^* f \\ &Mass_{NO2} = 0.0011023^* f \\ \hline \end{aligned}$	Constituent Constituent Constituent constituent emissions at stan missions at atundard conditions (F t standard conditions t actual conditions (F t standard conditions t actual conditions (F G i (CO ₂ , CH ₄ , or N ₂ or G GHG i. Use: ssions from poi cuel * HHV * EF	 propane = propane = Butane = Pentanes Plus = tandard condition	3) and pressure (conversion fro ons at standar sions at stand CH ₄ : CO ₂ : ry fuel comb ry fuel comb	3 4 5 STP) in cub m F to R) d condition: ard condition: 0.0192 0.0526 bustion sou	60 74 14.7 14.7 14.7 14.7 14.7 14.7 14.7 1	 F / psia / psia and 14.7 psia) and 14.7 psia) 	Regional Climate Center) (Assumption))
E _{s.n} wher Step 5. C	$\begin{split} & = \underbrace{E_{a,n}}_{i} + \underbrace{(459.67}_{i} + T_{a})^* P_a \\ & (459.67 + T_{a})^* P_i \\ & re: \\ & E_{a,n} = GHG \ i \ volumetric \ e \\ & T_a = GHG \ i \ volumetric \ e \\ & T_a = Temperature \ at \ star \\ & T_a = Temperature \ at \ star \\ & P_a = Absolute \ pressure \ a \\ & P_a = Absolute \ pressure \ a \\ & Calculate \ annual \ IA_{and} \ Mass_{a,i} = GH_{a,i} = GH_{a,i} \\ & Fin_{a,i} = K_{a,i} + P_{a} \cdot N_{and} \\ & K_{a,i} = K_{a,i} + P_{a} \cdot N_{and} \\ & K_{a,i} = K_{a,i} + P_{a} \cdot N_{and} \\ & Mass_{a,i} = R_{a,i} + P_{a} \cdot N_{and} \\ & K_{a,i} = R_{a,i} + P_{a} \cdot N_{and} \\ & K_{a,i} = R_{a,i} + P_{a,i} \\ & R_{a,i} = R_{a,i} \\ &$	Constituent Constituent Constituent constituent emissions at stan missions at stan missions at actu dard conditions (Ft standard conditions (Ft standard conditions (Ft standard conditions (CO2, CH4, or N2 OG (CO2, CH4, or N2 OG (CO2, CH4, or N2 OG GHG I. Use: ssions from poo Fuel * HHV * EF missions from co	j. Propane = j. Propane = j. Pentanes Plus = tandard conditio (Equation W-2 dard temperature - ial conditions (cf) (F) =) = tions (psia) = ns (psia) = ns (psia) = (temperature - ssions (ton). (guation W-36) N N ₂ O) mass emissi O) volumetric emiss (Equation mbustion of a parti	3) and pressure (conversion fro ons at standar sions at stand CH ₄ : CO ₂ : ry fuel comb ry fuel comb	3 4 5 STP) in cub m F to R) d condition: ard condition: 0.0192 0.0526 bustion sou	60 74 14.7 14.7 14.7 14.7 14.7 14.7 14.7 1	 F / psia / psia and 14.7 psia) and 14.7 psia) 	Regional Climate Center) (Assumption))
E _{s.n} wher Step 5. C	$\begin{split} &= \underbrace{E_{a,n}}_{(459,67} + T_{u}) * P_{a} \\ &(459,67 + T_{a})^* P_{a} \\ &re: \\ &E_{a,n} = GHG \ i \ volumetric \ e \\ &E_{a,n} = GHG \ i \ volumetric \ e \\ &T_{a} = Temperature \ at \ star \\ &T_{a} = Temperature \ at \ star \\ &T_{a} = Absolute \ pressure \ a \\ &P_{a} = Absolute \ pressure \ a \\ &Calculate \ annual \ CH_{4} \ and \ Mass_{a} = Fa_{4} * P_{a} + Absolute \ pressure \ a \\ &Calculate \ annual \ CH_{4} \ Calculate \ annual \ Ng \ Calculate \ annual \ NgO \ emist \\ &Mass_{a;0} = O.0011023 * f \\ &Mass_{a;0} = onnual \ NgO \ emist \\ &Mass_{a;0} = annual \ NgO \ emist \\ &Mass_{a;0} = annual \ NgO \ emist \\ &Mass \ voltheres \ mass \ voltheres \\ &Mass \ voltheres \ mass \$	Constituent Constituent Constituent constituent emissions at stan emissions at actu- missions at actu- dard conditions t actual conditions t actual conditions t actual conditions (CO2, mass emi 11023 (E G i (CO2, CH4, or N2, r of GHG i. Use: ssions from por Fuel * HHV * EF nissions from com	j. Propane = j. Propane = j. Pentanes Plus = tandard conditio (Equation W-2 dard temperature - ial conditions (cf) (F) =) = tions (psia) = ns (psia) = ns (psia) = (temperature - ssions (ton). (guation W-36) N N ₂ O) mass emissi O) volumetric emiss (Equation mbustion of a parti	3) and pressure (conversion fro ons at standar sions at stand CH ₄ : CO ₂ : ry fuel comb ry fuel comb	3 4 5 STP) in cub m F to R) d condition: ard condition: 0.0192 0.0526 bustion sou	60 74 14.7 14.7 14.7 14.7 14.7 14.7 14.7 1	 F / psia / psia and 14.7 psia) and 14.7 psia) 	Regional Climate Center) (Assumption))
E _{s.n} wher Step 5. C	$\begin{split} &= \underbrace{E_{a,n}}_{(459,67} + T_{a}) * P_{a} \\ &(459,67 + T_{a})^* P_{a} \\ &re: \\ & E_{a,n} = GHG \ i \ volumetric \ e \\ & E_{a,n} = GHG \ i \ volumetric \ e \\ & T_{a} = Temperature \ at \ star \\ & T_{a} = Temperature \ at \ star \\ & T_{a} = Temperature \ at \ star \\ & T_{a} = Temperature \ at \ star \\ & T_{a} = Absolute \ pressure \ a \\ & P_{a} = Absolute \ pressure \ a \\ & P_{a} = Absolute \ pressure \ a \\ & Calculate \ annual \ C4_{4} \ and \ i \\ & Mass_{a,i} = GH_{i} e_{i} \ e_{i} \ o_{i} \ o_{i} \ o_{i} \\ & e_{i} = GHG \ i \ o_{i} \ e_{i} \\ & e_{i} = GHG \ i \ o_{i} \ e_{i} \\ & e_{i} = GHG \ i \ o_{i} \ e_{i} \\ & Mass_{a,i} = GH_{i} \\ & E_{a,i} = GHG \ i \\ & i_{a} = GHG \ i \\ & Mass_{a,i} = GH_{i} \\ & E_{a,i} = GHG \ i \\ & Mass_{a,i} = GH_{i} \\ & E_{a,i} = GHG \ i \\ & Mass_{a,i} = GH_{i} \\ & e_{a,i} = GHG \ i \\ & Mass_{a,i} = i \\ & i \ i \ i \\ & i \\ & i \ $	Constituent Constituent Constituent constituent emissions at stan missions at actu- ndard conditions ual conditions (F t standard conditions ual conditions (F t standard conditions (CO2 mass emi 11023 (<i>E</i> G i (CO2, CH4, or K) of GHG i. Use: conditions from poor Fuel * HHV * EF missions from con of the fuel combu	j. Propane = j. Propane = j. Pentanes Plus = tandard conditio (Equation W-2 dard temperature - ial conditions (cf) (F) =) = tions (psia) = ns (psia) = ns (psia) = (temperature - ssions (ton). quation W-36) r N ₂ O) mass emissi O) volumetric emiss rtable or stationa (Equatio mbustion of a part isted	and pressure (conversion fro ons at standar CH ₄ : CO ₂ : ry fuel comb <i>n W-40</i>) cular type of f	3 4 5 STP) in cub m F to R) d condition: ard condition 0.0192 0.0526 bustion sol	60 74 14.7 14.7 14.7 14.7 14.7 14.7 14.7 1	 F / psia / psia and 14.7 psia) and 14.7 psia) 	Regional Climate Center) (Assumption))
E _{s.n} wher Step 5. C	$\begin{split} &= \underbrace{E_{a,n}}_{(459,67+T_{a})} * P_{a} \\ &(459,67+T_{a})^* P_{a} \\ &(459,67+T_{a})^* P_{a} \\ &re: \\ & E_{a,n} = GHG \ i \ volumetric \ e \\ & E_{a,n} = GHG \ i \ volumetric \ e \\ & T_{a} = Temperature \ at \ star \\ & T_{a} = Temperature \ at \ star \\ & T_{a} = Absolute \ pressure \ a \\ & Pas = Absolute \ pressure \ a \\ & Calculate \ annual \ CH_{a} \ add \\ & Mass_{a} = E_{a} & P_{a} + 0.01 \\ & Mass_{a} = CHG \ i \ n \\ & Mass_{a} = ChG \ i \ n \\ & E_{a} = GHG \ i \ n \\ & Mass_{a} = ChG \ i \ n \\ & Calculate \ annual \ NJ_{a} \ Omsl \\ & Mass_{a00} = 0.0011023 * f \\ & Mass_{a00} = 0.0011023 * f \\ & Mass \ n \\ & Mass \ o \ n \\ & Here: \\ & Mass_{a00} = nnual \ NJ_{a} \ Omsl \\ & Mass \ o \ n \\ & Here: \\ & Mass_{a00} = nnual \ NJ_{a} \ Omsl \\ & Mass \ o \ n \\ & Mass \ o \ ohd \ n \\ & Mas \ o \ ohd \ n \\ & NJ_{a} \ ohd \ n \\ & Mass \ ohd \ n \ ohd \ n \\ & Mass \ ohd \ n \\ & NJ_{a} \ n \ n \ n \\ & NJ_{a} \ n \ n \ n \ n \\ & NJ_{a} \ n \ n \ n \ n \\ & NJ_{a} \ n \$	Constituent Constituent Constituent Constituent emissions at stan emissions at stan emissions at actu dard conditions (Et standard conditions t actual conditions (Ed conditions) (CO2, mass emi 11023 (E G i (CO2, CH4, or N2 or of GHG i. Use: essions from poor Fuel * HHV * EF missions from coo f the fuel combu f the fuel s =	j. Propane = j. Propane = j. Pentanes Plus = tandard conditio (Equation W-3 idard temperature: ial conditions (cf) (f) =) = tions (psia) = rs (psia) = (temperature: ssions (ton). <i>equation W-36</i>) r N ₂ O) mass emissi O) volumetric emiss O) volumetric emiss (Equation mbustion of a part usted 1.	and pressure (conversion fro ons at standar sions at stand CH ₄ : CO ₂ : ry fuel comb <i>n W-40</i>) cular type of 1 200E-03 MMB	3 4 5 STP) in cub m F to R) d condition: ard condition: 0.0192 0.0526 bustion sou iuel (tons) tu/scf	60 74 14.7 14.7 14.7 14.7 14.7 14.7 14.7 1	 F / psia / psia and 14.7 psia) and 14.7 psia) 	Regional Climate Center) (Assumption))
E _{s.n} wher Step 5. C	$\begin{split} &= \underbrace{E_{a,n}}{459.67} + T_{a,0} * P_{a} \\ &(459.67 + T_{a,0} * P_{a} \\ &(459.67 + T_{a,0} * P_{a} \\ &re: \\ &E_{a,n} = GHG i volumetric e \\ &E_{a,n} = GHG i volumetric e \\ &T_{a} = Temperature at star \\ &T_{a} = Temperature at actt \\ &P_{a} = Absolute pressure a \\ &P_{a} = Absolute pressure a \\ &Constant = 459.67 \\ &Calculate annual CH_{4} and (Mass_{a,1} = GHG H) \\ &Mass_{a,1} = F_{a,1} * P_{a} * 0.001023 * F \\ &Where: \\ &Mass_{b00} = 0.0011023 * F \\ &Where: \\ &Mass_{b00} = annual N_{v}0 en \\ &Fuel = mass or volume o \\ &HH = high heat value o \\ &Pliot Gas \\ &Inelt Ga \\ &Inelt Ga \\ &Inelt Ca \\ &I$	Constituent Constituent Constituent Constituent emissions at stan emissions at stan emissions at actu dard conditions (Et standard conditions t actual conditions (Ed conditions) (CO2, mass emi 11023 (E G i (CO2, CH4, or N2 or of GHG i. Use: essions from poor Fuel * HHV * EF missions from coo f the fuel combu f the fuel s =	j. Propane = j. Propane = j. Pentanes Plus = tandard conditio (Equation W-2 dard temperature - laid conditions (cf) (F) =) = tions (psia) = ns (psia) = ns (psia) = (temperature - ssions (ton). quation W-36) r N ₂ O) mass emissi O) volumetric emis rtable or stationa (Equatio mbustion of a part usted 1.	and pressure (conversion fro ons at standar sions at stand CH ₄ : CO ₂ : ry fuel comt <i>n W-40</i>) cular type of 1 200E-03 MMB 328E-03 MMB	3 4 5 STP) in cub m F to R) d condition ard condition ard condition 0.0192 0.0526 bustion sou fuel (tons) tu/scf	60 74 14.7 14.7 14.7 14.7 14.7 14.7 14.7 1	 F / psia / psia and 14.7 psia) and 14.7 psia) 	Regional Climate Center) (Assumption))
E _{s.n} wher Step 5. C	$\begin{split} &= \underbrace{E_{a,n}}_{(459,67+T_{a})} * P_{a} \\ &(459,67+T_{a})^* P_{a} \\ &(459,67+T_{a})^* P_{a} \\ &re: \\ & E_{a,n} = GHG \ i \ volumetric \ e \\ & E_{a,n} = GHG \ i \ volumetric \ e \\ & T_{a} = Temperature \ at \ star \\ & T_{a} = Temperature \ at \ star \\ & T_{a} = Absolute \ pressure \ a \\ & Pas = Absolute \ pressure \ a \\ & Calculate \ annual \ CH_{a} \ add \\ & Mass_{a} = E_{a} & P_{a} + 0.01 \\ & Mass_{a} = CHG \ i \ n \\ & Mass_{a} = ChG \ i \ n \\ & E_{a} = GHG \ i \ n \\ & Mass_{a} = ChG \ i \ n \\ & Calculate \ annual \ NJ_{a} \ Omsl \\ & Mass_{a00} = 0.0011023 * f \\ & Mass_{a00} = 0.0011023 * f \\ & Mass \ n \\ & Mass \ o \ n \\ & Here: \\ & Mass_{a00} = nnual \ NJ_{a} \ Omsl \\ & Mass \ o \ n \\ & Here: \\ & Mass_{a00} = nnual \ NJ_{a} \ Omsl \\ & Mass \ o \ n \\ & Mass \ o \ ohd \ n \\ & Mas \ o \ ohd \ n \\ & NJ_{a} \ ohd \ n \\ & Mass \ ohd \ n \ ohd \ n \\ & Mass \ ohd \ n \\ & NJ_{a} \ n \ n \ n \\ & NJ_{a} \ n \ n \ n \ n \\ & NJ_{a} \ n \ n \ n \ n \\ & NJ_{a} \ n \$	Constituent Constituent Constituent Constituent emissions at stan missions at stan emissions at actu dard conditions (Ft standard conditions t actual conditions (CO2 mass emi 11023 (E G i (CO2, CH4, or N2 or G GHG i. Use: constored for the fuel sesions from poor fuel * HHV * EF missions from con of the fuel s = is =	j. Propane = j. Propane = j. Pentanes Plus = tandard conditio (Equation W-3 dard temperature : ial conditions (cf) (f) =) = tions (psia) = ns (psia) = (temperature : ssions (ton). quation W-36) r N ₂ O) mass emissi O) volumetric emiss O) volumetric emiss (Equatio mbustion of a part usted 1. 1.	and pressure (conversion fro ons at standar sions at stand CH ₄ : CO ₂ : ry fuel comb <i>n W-40</i>) cular type of 1 200E-03 MMB	3 4 5 STP) in cub m F to R) d condition ard condition ard condition 0.0192 0.0526 bustion sou fuel (tons) tu/scf	60 74 14.7 14.7 14.7 14.7 14.7 14.7 14.7 1	 F / psia / psia and 14.7 psia) and 14.7 psia) 	Regional Climate Center) (Assumption))

 Gas Sent
 CH4 Un-Combuste

 Gas Sent
 to Flare
 d, E_{actu}

 to Flare
 (cf/yr)
 (cf)

 Inlet
 Gas
 45,000,000
 407,636.1

 Pilot Gas
 876,000
 16,644.0
 CO₂ 0n-Combusted, E_{a,CO2} (scf) 444,953.6 CH₄ Un-Combusted, E_{a,CH4} (scf) Combusted, E_{a,CO2} (scf) CH₄ Un-Combusted E_{a,CH4} (tpy) CO₂ Un-Combuste d, E_{a,CO2} (tpy) Combuste d, E_{a,CO2} (tpy) (tpy) CO₂ Combusted, E_{a,CO2} (cf) 90,137,358.4 943,812.9 CO2e (tpy) CO₂ Un-Combusted, E_{a,CO2} (cf) 458,910.0 4,380.0 87,396,087. 915,109.5 304. 395.239.0 5.067.3 0.0091 0.0001 16,137.8 4,246.8 0.34 0.25 53.1 5,120.4 61.9 5,366.8

 CO2
 CH4
 N2O

 GWP
 1
 25
 298

 Unit:
 Flare (SSM)

 Description:
 Flare controlling blowdown and emergency emissions from the facility

Flaring Excess Gas When Plant is Down

Stream 11	26274.78	scf/hr
	2163.24	Btu/scf
	56.84	MMbtu/hr
	37.87	lb/lbmol

Totals all streams 26274.78 scf/hr

37.87 MW volume-weighted average

	NOx	CO	VOC	H₂S	SO ₂	HAPs	PM	Units	
	0.0680	0.3700						lb/MMBtu	AP-42 Table 13.5-1
	0.0641	0.5496						lb/MMBtu	TNRCC RG-109 High Btu ("Other")
				0.0000				% H2S	Max est. concentration from inlet
Stream 11	3.8650	31.2386	-	-	-	-	-	lb/hr	lb/MMBtu * MMBtu/hr
	-	-	38.0652	-	-	0.0040	-	lb/hr	98% destruction of calculated content
	-	-	-	-	-	-	-	lb/hr	Estimated 100% conversion of combusted H ₂ S to SO ₂
	3.87	31.24	38.07	-	-	0.0040	-	lb/hr	Total; Flared gas (upset)
	100%	100%	100%	-	-	100%	100%	%	Safety Factor
	7.7	62.5	76.1	-	-	0.0080	-	lb/hr	
	0.201	1.62	1.98	-	-	2.07E-04	-	tpy	Total; Upset Flared gas
								Assume 52	events of 1 hr duration for upset conditions

Unit:Flare (SSM)Description:Flare controlling blowdown and emergency emissions from the facility

Stack Parameters

1000 °C	Exhaust temperature	Per NMAQB guidelines
20 m/sec	Exhaust velocity	Per NMAQB guidelines
65 ft	Flare height	Engineering design
Upset flare gas		
56.8 MMBtu/hr	Total heat input	Sum of fuel and flare gas heating values
37.87 g/mol	Total mean MW	Volume weighted average of gas MWs
3,978,713 cal/sec	Heat release (q)	MMBtu/hr * 10 ⁶ * 252 cal/Btu ÷ 3600 sec/hr
2,803,389	q _n	$q_n = q(1-0.048(MW)^{1/2})$
1.674 m	Effective stack diameter (D)	$D = (10^{-6}q_n)^{1/2}$

Combined Normal and SSM Emission Scenario

_	NOx	CO	VOC	SO ₂	H2S	Units	
	15.52	125.32	138.0	-	-	lb/hr	
	3.02	24.27	24.25	-	-	tpy	

Pilot, Normal and Upset Combined Flow

171.2 MMBtu/hr 37.87 g/mol	Total heat input Total mean MW	Sum of fuel and flare gas heating values Volume weighted average of gas MWs
1.20E+07 cal/sec	Heat release (q)	MMBtu/hr * 10^{6} * 252 cal/Btu ÷ 3600 sec/hr
8,445,408	q _n	q _n = q(1-0.048(MW) ^{1/2})
2.9061 m	Effective stack diameter (D)	D = (10^{-6} q _n) ^{1/2}

Flare SSM GHG Emissions

<pre>since A statuse desi since A statuse design of a statuse design of the statuse des</pre>	98.233(n)	Flare stac	k GHG emis	sions.									
$ \int_{-\infty}^{\infty} (\operatorname{constraints} - \sqrt{-1}^{-1} (-1)^{1} X_{0n} \qquad (Factor MP 4380) \\ \operatorname{whene} \operatorname{constraints} $	red Amine v	vent gas &	Assist Gas										
<pre>vince:</pre>	:	Step 1. Cal											
<pre>Figure - contribution of annual us-conclused (24, emissions from subport W = 0.08</pre>				mbusted) = $V_a * (1 - \eta) * X_{CH4}$	(Equation W-39B)								
<pre>Vi = obtained gas some to combination of darking the year (c)</pre>				the time of one column combinet	ad CUL aminaiana fram			atural annulitions					
<pre>n = fraction of gis combusted by a tuning there (or regionerator), default value from Subpart V = 0.98 Simon 11 K_m = . Multi kard, in gis to the line - 0.27 Simon 12 K_m = . Multi kard, in gis to the line - 0.27 Simon 12 K_m = . Multi kard, in gis to the line - 0.27 Simon 12 K_m = . Multi kard, in gis to the line - 0.27 Simon 22 K_m = . Multi kard, in gis to the line - 0.27 Simon 22 K_m = . Multi kard, in gis to the line - 0.27 Simon 22 K_m = . Multi kard, in gis to the line - 0.27 Simon 22 K_m = . Multi kard, in gis to the line - 0.24 Simon 2 K_m = . Multi kard, in gis to the line - 0.24 Simon 2 K_m = . Multi kard, in gis to the line - 0.24 N_m = . Multi kard, in gis to the line - 0.24 N_m = . Multi kard, in gis to the line - 0.27 N_m = . Multi kard, in gis to the line - 0.27 N_m = . Multi kard, in gis to the line - 0.27 N_m = . Multi kard, in gis to the line - 0.24 N_m = . Multi kard, in gis to the line - 0.27 N_m = . Multi kard, in gis to the line - 0.27 N_m = . Multi kard, in gis to the line - 0.27 N_m = . Multi kard, in gis to the line - 0.27 N_m = . Multi kard, in gis to the line - 0.27 N_m = . Multi kard, in gis to the line - 0.27 N_m = . Multi kard, in gis to the line - 0.27 N_m = . Multi kard, in gis to the line - 0.27 N_m = . Multi kard, in gis to the line - 0.27 N_m = . Multi kard, in gis to the line - 0.27 N_m = . Multi kard, in gis to the line - 0.27 N_m = . Multi kard, in gis to the line - 0.27 N_m = . Multi kard, in gis to the line - 0.27 N_m = . Multi kard, in gis to the line - 0.27 N_m = . Multi kard, in gis to the line in standard conditions (to - 0.20 N_m = . Multi kard, in gis to the line - 0.23 N_m = . Multi kard, in gis to the line - 0.23 N_m = . Multi kard, and continues (to - 1.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2</pre>						regenerator in cui	bic feet under a	ctual conditions					
<pre>Sing 2. Calculate contribution of use sets the use a 0.27</pre> Sing 2. Calculate contribution of use and the time a 0.27 Sing 2. Calculate contribution of use and the use a 0.27 Sing 2. Calculate contribution of use and the use a 0.28 Sing 3. Calculate contribution of convoluted CO, emissions from regimerator in cubic feet under actual conditions. Y, = where factors of CO, ings to the line = 0.404 Sing 3. Calculate contribution of convoluted CO, emissions Y, = where factors of CO, ings to the line = 0.404 Sing 3. Calculate contribution of convoluted CO, emissions Y, = where factors of CO, ings to the line = 0.404 Sing 3. Calculate contribution of convoluted CO, emissions Y, = where factors of y be burning func (or regenerator) = 0.99 Ferg as set to a unsit line = 1 Convolute of a sing theoreton convoluted Sing 4.200 Constituent J. Program = 0.1056 Constituent J. Program = 0.1056 Constituent J. Program = 0.1056 Constituent J. Program = 0.010579069 R, = number of calculate continuents is the advectation continuent; i Constituent J. Program = 1 Cons						default value from	n Subpart W =			0.98			
$ \begin{aligned} & \mathcal{L}_{n} = \text{Mell radius of Ch_{n} ups is the film - 0.27 \\ & \mathbf{J}_{n} = \frac{1}{10000000000000000000000000000000000$							i bubpuit iii			0.70			
$ \begin{aligned} & \int_{-\infty}^{\infty} - \int_{-\infty}^{\infty} \int_$													
$ \begin{bmatrix} c_{xyy} - c_y - T_{xyy}^* C_{yyy}^* C_{yyy}^* C_{yyy}^* C_{yyyy}^* C_{yyyyy}^* C_{yyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyy$													
<pre>where:: Ly</pre>	9	Step 2. Cal			2 emissions								
Example - contribution of annual un-conduction (or Survami 1) Survami 40 (or Survami 4) Y ₁₀ - Vector of gas to the time - 0.44 Step 1. Calculate contribution (for regenerator) = 0.98 For gas contributed by a burning flare (or regenerator) = 0.98 For gas contributed by a burning flare (or regenerator) = 0.98 For gas contributed by a burning flare (or regenerator) = 0.98 For gas contributed by a burning flare (or regenerator) = 0.98 For gas contributed by a burning flare (or regenerator) = 0.98 For gas contributed by a burning flare (or regenerator) = 0.98 Constituent 1, frogane - 0.1356 Constituent 1, frogane - 0.28 Constituent 4, 64 (outurettic emissions at standard co				X _{CO2} (Equation W-20)									
<pre>V</pre>				atribution of annual un-combust	ed CO. emissions from	regenerator in cul	hic foot under a	ctual conditions					
X ₁₀₀ = Node introlution of Converse of Conversions 0.44 Step 1. Calculate contribution 0 = C(n * V _n * n) (Cquaritors W-27) (C								ctual conditions	•-				
Step 3. Calculate contribution of combated 0, emissions E_cross (combated 0 = 2 (n **, *', *', *') (Combated 0 = 2 (n **, *', *') n = Tor gas sent to an unit later, n a zero. 0.98 n = Tor gas sent to an unit later, n p zero. 0.98 V_ = uniter of care sent to constituter b j: Stream 11 Constituent j: 0.91 Constituent j: 0.93 Constituent j: 0.94													
$ \begin{aligned} & F_{arrow} (combusted) = $ (n + V_a + V_1 + R_b)^{-1} (Equation W-21) \\ & Where: \\ n = Fact as served to a unit flave, n across the served by a burning flave (or respensator) = 0.98 \\ & Far as served to a unit flave, n across the served by a burning flave (or respensator) = 0.98 \\ & V_a = volume of gas served to combustion unit during the year (of V_a = volume of gas served to combustion unit during the year (of V_a = volume of gas served to combustion of during the year (of V_a = volume of gas served to combustion unit during the year (of V_a = volume of gas served to combustion of Cas served to combustion (Gas served to combustion of Gas served to combustion (Gas) = 0 F (Gas served to combustion (Gas) = 0 F (Gas served to combustion (Gas) = 14.7 pria (Gas served to combustion (Gas) = (Gas served to combustion$				-									
where: h = Fraction of gas combusted by a burning flee (or regenerator) = 0.98 h = Gradits of gas spect combusted by a burning flee (or regenerator) = 0.98 h = Gradits of gas hydrocabur constituents is part (c) h = made fraction of gas hydrocabur constituents is part (c) h = made fraction of gas hydrocabur constituents is part (c) constituent j. Herhame = 0.2219 Constituent j. Herhame = 0.2286 Constituent j. Herhame = 0.2386 Constituent j. Partane = 0.2386 Constituent j. Partane = 0.2386 Constituent j. Butane = 0.2386 Constituent j. Partane Shue = 5 Step 4. Calculate OHG volumetric emissions at standard conditions (cf) f _n = femperature at standard conditions (cf) f _n = femperature at standard conditions (f) = 60 F f _n = femperature at standard conditions (f) = 70 F Regional Climate Center) f _n = femperature at standard conditions (gia) = 11.7 paia f _n = Abouting present at standard conditions (gia) = 11.7 paia f _n = Abouting present at standard conditions (gia) = 11.7 paia f _n = Abouting present at standard conditions (n) = 11.7 paia f _n = Abouting present at standard conditions (cf) g = Oberlay of Gradits in Standard conditions in fore (tpy) f _n = Abouting present at standard conditions (cf) g = Oberlay of Gradits in Standard conditions in fore (tpy) f _n = Abouting present at standard conditions (cf) g = Oberlay of Gradits in Standard conditions (cf) g = Oberlay of Gradits in Standard conditions (cf) g = Oberlay of Gradits in Standard conditions in fore (tpy) f _n = Gradits of mo of the fiel Standard Conditions in fore (tpy) M = <u>s</u> = 0.001023 ⁻ F	!	Step 3. Cal											
n = Fraction of gas combusted by a burning flare (or regenerator) = 0.98 For gas set to a null flere, h 5 zero. V, whuther of gas set to combation unit during the year (c) Constituent], Houthan = 0.2719 Constituent], Houthan = 0.27866 Constituent], Houthan = 0.1556 Constituent], Peranaes Pike = 5 Step 4. Calculate GHS volumetric emissions at standard conditions (scf). $f_{c,n} = f_{m,n} + (4596 d) + 1.0^{-2} F_{n} (Equation W-32)$ $f_{c,n} = -(641 volumetric emissions at standard conditions (scf) T_{n} = - Inequarkation (S) = 0.052 Figure 8 F_{n} = - 0.01002 J + 1.0^{-2} F_{n} (Equation W-32) Constituent], Peranaes Pike = 0.14.7 psia F_{n} = - Neodule pressure at standard conditions (f) = 1.1.7 psia F_{n} = - Neodule pressure at standard conditions (f) = 1.1.7 psia F_{n} = - Neodule pressure at standard conditions (f) = 1.1.7 psia P_{n} = - Neodule pressure at standard conditions (f) = 1.1.7 psia Neodule Constant = 459.67 (tenders N-3.2) Neodule Constant = 0.0122 (Equation W-3.2) Neodule Constant = 0.0122 (Equation W-3.2) Neodule Constant = 0.0122 (Equation W-3.2) Neodule Diseave at standard conditions (f) = (1.1.7 psia Neodule Constant = 0.01022 (Equation W-3.2) Neodule Constant = 0.01022 (Equation W-3.2) Neodule Constant = 0.01022 (Equation W-3.2) Neodule Diseave at standard conditions (f) = (1.1.7 psia Neodule Constant = 0.01022 (Equation W-3.2) Neodule Diseave at standard conditions (f) = (1.1.7 psia Neodule Diseave at standard conditions (f) = (1.1.7 psia Neodule Diseave at standard conditions (f) = (1.1.7 psia) Neodule Diseave at standard conditions (f) = (1.1.7 psia) Neodule D$				usted) = $\Sigma (\eta * V_a * Y_i * R_i)$	(Equation W-21)								
For gas sent to an utili finite, his zero. Y ₁ = wolke fraction of gas hydrocarbon constitutions 1;: Stream 11 Constituent 1; Ethine = 0.1365 Constituent 1; Ethine = 0.1365 Constituent 1; Home = 0.034979868 R ₁ = number of constituent 1; Ethine = 1 Constituent 1; Home = 0.034979868 R ₁ = number of constituent 1; Ethine = 1 Constituent 1; Home = 2 Constituent 2; Home = 5 Step 4. Calculate GHG volumetric emissions at standard conditions (scf). E F _x = 0 GHG volumetric emissions on a tail an conditions (f) = 60 F F _x = 1 GHG volumetric emissions on tailout 14, 17 pia (Based on Annual Ang Max Temperature for Hobbe, NM from Wester F _x = 1 GHG volumetric				of and combusted by a huming		_		0.00					
V _a = volume of gas synot no constituents (): Stream 11 Constituent J, Methane = 0.2719 Constituent J, Ethane = 0.2788 Constituent J, Pennae Phus = 0.034979668 R _i = number of carbon atoms in the gas hydrocarbon constituents (): Constituent J, Pennae Phus = Constituent J, Pennae Phus = 0.034979668 Constituent J, Pennae Phus = 1 Constituent J, Pennae Phus = 2 Constituent J, Pennae Phus = 3 Constituent J, Pennae Phus = 3 Constituent J, Pennae Phus = 5 Step 4. Calculate GHG volumetric emissions at standard conditions (scf). E _{x1} = (459.6) + T, 3 * P ₁ (Caudion W-32) (Caudion W-32) where: E _{x2} = 0.461 i volumetric emissions at standard conditions (C) = 0 F T, = Temperature at standard conditions (C) = 12 F Regional Climate Center) P, = Absolute pressure at actual conditions (G) = 12 F Regional Climate Center) P, = Absolute pressure at actual conditions (G) = 12 F Regional Climate Center) P, = Absolute pressure at actual conditions (G) = 14.7 paia (Resumption) Where: Mass = Chi (C) O_C, CH, or A(O) mass emissions at standar						-		0.98					
<pre>v = mole fraction of gas typicoration constituents j: Stream 11 Constituent j, Methane 0.2719 Constituent j, Pename Pois 0.2786 Constituent j, Pename Pois 0.2 Constituent</pre>													
						Stream 11							
$ \begin{cases} Constituent J, Etinane = 0.1906 \\ Constituent J, Butane = 0.3286 \\ Constituent J, Butane = 0.03857968 \\ R_{j} = number of carbon atoms in the gas hydroachon constituent J Constituent J, Portanes Plus = 0 \\ Constituent J, Ethane = 4 \\ Constituent J, Butane = 4 \\ Constituent J, Butane = 4 \\ Constituent J, Porpane = 3 \\ Constituent J, Butane = 4 \\ Constituent J, Porpane = 5 \\ \ $				Constituent j, Meth	nane =	0.2719							
$ \begin{array}{c} \label{eq:constructure} J, Butane P = 0.1556 \\ Constituent J, Butane P = 0.03479888 \\ R_1 = number of carbon atoms in the gas hydrocarbon constituent J: \\ Constituent J, Butane P = 1 \\ Constituent J, Butane P = 2 \\ Constituent J, Butane P = 4 \\ T_{a} = Temperature a standard conditions (ch) \\ T_{a} = Temperature a standard conditions (ch) = 14.7 psia \\ P_{a} = Absolute pressure at standard conditions (pia) = 14.7 psia \\ P_{a} = Absolute pressure at standard conditions (ch) = 14.7 psia \\ Mass{a} = C_{a} + 0.001023 (C_{a} utin N+30) \\ where: \\ Mass{a} = -0.011023 (C_{a} utin N+30) \\ Where: \\ Mass{a} = -0.011023 (C_{a} utin N+30) \\ Where: \\ Mass{a} = -0.011023 (C_{a} utin N+30) \\ Where: \\ Mass{a} = -0.011023 (C_{a} utin N+30) \\ Where: \\ Mass{a} = -0.011023 (Mass HWA + B F \\ (C_{a} utin N+40) \\ Where: \\ Mas$													
Constituent j, Pentanes Pus = 0.03479968 R_{i} = number of constants with the gas hydrocarbon constituent j: Constituent j, Methane = 1 Constituent j, Pentanes Pus = 2 Constituent j, Pentanes Pus = 5 Step 4. Calculate GHC volumetric emissions at standard conditions (scf). $f_{u_{i}} = \frac{F_{u_{i}}^{-1} (459.6^{2} + T_{i})^{+} P_{u}$ (Equation W-33) ($459.5^{2} + T_{i}$) $^{+} P_{u}$ (Equation W-33) ($459.5^{2} + T_{i}$) $^{+} P_{u}$ (Equation W-33) where: $E_{u_{i}} = 646$ i volumetric emissions at standard temperature and pressure (STP) in cubic feet $E_{u_{i}} = 646$ i volumetric emissions at standard temperature and pressure (STP) in cubic feet $E_{u_{i}} = 646$ i volumetric emissions at at cul conditions (c) $T_{i} = Temperature at standard conditions (p) = 60 F$ (Based on Arnual Avg Max Temperature for Hobbs, NM from Wester $T_{i} = Temperature at standard conditions (pis) = 167 F$ (Regional Climate Center) $P_{i} = Absolute pressure a standard conditions (pis) = 11.7 pisa P_{i} = Absolute Derssure at standard conditions (pis) = 11.7 pisa (Constant = 459.67) (Equation W-38) where: Mass_{u} = Geti (CO_{i}, CH_{u} or H_{O}) nouse emissions at standard conditions in tons (tpy)E_{u} = Ch(i (CO_{i}, CH_{u} or H_{O}) nouse emissions at standard conditions (c)P_{i} = Density of GHG i. Use:CH_{i} = 0.0192 kg/m^{2} (et 60 F and 14.7 psia)CO_{i} = 0.0192 kg/m^{2} (et 60 F and 14.7 psia)CO_{i} = 0.0192 kg/m^{2} (et 60 F and 14.7 psia)CH_{i} = 0.0192 kg/m^{2} (et 60 F and 14.7 psia)CH_{i} = 0.0192 kg/m^{2} (et 60 F and 14.7 psia)CH_{i} = 0.0192 kg/m^{2} (et 60 F and 14.7 psia)CH_{i} = 0.0192 kg/m^{2} (et 60 F and 14.7 psia)CH_{i} = 0.0192 kg/m^{2} (et 60 F and 14.7 psia)CH_{i} = 0.0192 kg/m^{2} (et 60 F and 14.7 psia)CH_{i} = 0.0192 kg/m^{2} (et 60 F and 14.7 psia)CH_{i} = 0.0192 kg/m^{2} (et 60 F and 14.7 psia)CH_{i} = 0.0192 kg/m^{2} (et 60 F and 14.7 psia)CH_{i} = 0.0192 kg/m^{2} (et 60 F and 14.7 psia)CH_{i} = 0.0192 kg/m^{2} (e$													
R ₁ = number of carbon atoms in the giss hydrocarbon constituent j: Constituent j, Brithane = 2 Constituent j, Butane = 3 Constituent j, Butane = 4 Constituent j, Butane = 4 Constituent j, Butane = 4 Step 4. Calculate GHG volumetric emissions at standard conditions (sc). E _{xx} = C _{xx} = (£59.67 + T.) * P _x (Equation W-3.3) (E39.60 + T.) * P _x (Equation W-3.3) where: E _{xx} = 0446 i volumetric emissions at standard conditions (cf) T _x = Temperature at standard conditions (f) = 60 F (Based on Annual Avg Max Temperature for Hobbs, NM from Wester P _x = Absolute pressure at standard conditions (f) = 7 F P _x = Absolute pressure at standard conditions (f) = 7 F P _x = Absolute pressure at standard conditions (f) = 7 F P _x = Absolute pressure at standard conditions (f) = 7 F P _x = Absolute pressure at standard conditions (f) = 7 F P _x = Absolute pressure at standard conditions (f) = 14.7 piai P _x = Absolute pressure at standard conditions (f) (emperature conversion from F to R) (Based on Annual Avg Max Temperature for Hobbs, NM from Wester P _x = Absolute pressure at standard conditions (f) (f) P _x = Absolute pressure at standard conditions (f) (f) P _x = Absolute pressure at standard conditions (f) (f) P _x = Absolute pressure at standard conditions (f) (f) P _x = 0.01023 (Equation W-3.0) (Equation W-3.0) (Equat													
Constituent J., Ehmane – 2 Constituent J., Ehmane – 2 Constituent J., Propane – 3 Constituent J., Benare – 4 Constituent J., Benare – 4 Constituent J., Pentanes Plus = 5 Step 4. Calculate GW of the termination of termination of the termination of the termination of the termination of the termination o			R _i = number			0.001777000							
$ \begin{bmatrix} Constituent j, Peppen = & 3 \\ Constituent j, Pepne = & 4 \\ Constituent j, Pentanes Plus = & 5 \end{bmatrix} $ Step 4. Calculate CHG volumetric emissions at standard conditions (scf) . $ \begin{bmatrix} F_{u,n} = \frac{F_{u,n}}{4(59.6^{7} + T_{u})^{2} P_{u}} & (Equation W-33) \\ (E59.6^{7} + T_{u})^{2} P_{u} & (Equation W-33) \\ T_{u} = Temperature at standard conditions (f) = & 00 F \\ T_{u} = Temperature at standard conditions (f) = & 00 F \\ R_{u} = 0.600 \text{ (Based on Annual Avg Max Temperature for Hobbs, NM from Wester PSU + Absolute pressure at standard conditions (for) = & 0.7 F \\ R_{u} = Absolute pressure at standard conditions (for) = & 14.7 psia \\ P_{u} = Absolute pressure at standard conditions (foria) = & 14.7 psia \\ Where: & Mass_{u} = -6.161 (CO_{u}, CH_{u}, or N_{U}) mass emissions torm F to R \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $				Constituent j, Meth	nane =	1							
Constituent j, Buriane = 4 Constituent j, Pertane Plus = 5 Step 4. Calculate GHG volumetric emissions at standard conditions (scf). F _{a,n} = E _{a,a} - (459, 67 + T _a) * P _a (Equation W-32) (459, 67 + T _a) * P _a (Equation W-32) (459, 67 + T _a) * P _a (Equation W-32) (459, 67 + T _a) * P _a (Equation W-32) (459, 67 + T _a) * P _a (Equation W-32) (459, 67 + T _a) * P _a (Equation W-32) (459, 67 + T _a) * P _a (Equation W-32) (147, 7 + Temperature at standard conditions (F) = 0 T _a = temperature at standard conditions (F) = 0 P _a = Absolute pressure at standard conditions (F) = 14.7 psia P _a = Absolute pressure at standard conditions (psia) = 14.7 psia P _a = Absolute pressure at standard conditions (psia) = 14.7 psia P _a = Absolute pressure at standard conditions (f) = 14.7 psia P _a = Absolute pressure at standard conditions (f) = 0 (Equation W-36) where: Mass _{a1} = E _a * * P _a * (0.01102) (Equation W-36) where: Mass _{a2} = 0.616 (CO ₂ , CH ₄ , or N ₂ O) mass emissions at standard conditions (f) P _a = Density of GHG i. Use: (Equation W-36) (C) 0.0526 kg/ft ² (at 60F and 14.7 psia) (C) 0.0526 kg/ft ² (a													
Constituent j, Pentanes Plus = 5 Step 4. Calculate GHG volumetric emissions at standard conditions (scf).													
Step 4. Calculate GHG volumetric emissions at standard conditions (scf). $\begin{aligned} E_{x,s} &= E_{x,s}^{-1} (459.67 + T_{0})^{+} P_{s} & (Equation W-32) \\ (459047 + T_{0})^{+} P_{s} & (Equation W-32) \\ where: \\ E_{x,s} &= GHG i volumetric emissions at standard temperature and pressure (STP) in cubic feet \\ E_{x,s} &= GHG i volumetric emissions at actual conditions (f) = 60 F \\ T_{s} &= Temperature at standard conditions (f) = 60 F \\ R_{s} &= Absolute pressure at actual conditions (f) = 76 F Regional Climate Center) \\ P_{s} &= Absolute pressure at standard conditions (gia) = 14.7 pia \\ P_{s} &= Absolute pressure at cula conditions (gia) = 14.7 pia \\ P_{s} &= Absolute pressure at cula conditions (gia) = 14.7 pia \\ P_{s} &= Absolute pressure at cula conditions (gia) = 14.7 pia \\ P_{s} &= Absolute pressure at cula conditions (gia) = 16.7 \\ Where: \\ Where: \\ Where: \\ Where: \\ Where: \\ H_{x} &= GHG (CO_{2}, CH_{u} \text{ or } N_{0}) \text{ volumetric emissions at standard conditions (rd)} \\ P_{s} &= Absolute pressure at cula conditions (rd) \\ P_{s} &= Outlow Partial OP (CO_{s}, CH_{u} \text{ or } N_{0}) \text{ volumetric emissions at standard conditions (rd)} \\ Where: \\ CH_{i} &= 0.0192 kg/H^{2} (at 60F and 14.7 pia) \\ CO_{2} &= 0.0528 kg/H^{2} (at 60F and 14.7 pia) \\ CO_{2} &= 0.0528 kg/H^{2} (at 60F and 14.7 pia) \\ CO_{2} &= 0.0528 kg/H^{2} (at 60F and 14.7 pia) \\ CO_{2} &= 0.0011023^{+} Fuel^{+} HHV^{+} F (Equation W-40) \\ Where: \\ Hass_{hot} O= 0.0011023^{+} Fuel^{+} HHV^{+} F (Equation W-40) \\ Where: \\ Hass_{hot} O= nunuel N_{Q} emissions from combustion of a particular type of fuel (tons). \\ Fuel = nass or volume of the fuel Combusted \\ HTV = high baar value of the fuel \\ Stream 11 = 2.163E-03 MMBHU/scf \\ F = 1.00E-64 kg N_{Q}OMMBHu \\ 10^{+} onversion factor from kg to metric tors. \\ $ 5by 7. Calculate total annual emission from face by summing Equations W-40, W-40, W-40. Hv-41. \\													
$ \begin{aligned} & F_{xx} = \frac{F_{xx}^{-1}(459.67 + T_{x})^{+}P_{x} \\ & (Equation W-33) \\ & (4596.74 + T_{x})^{+}P_{x} \\ & (Equation W-33) $				constituent J, Pent	alles Plus =	5							
	5	Step 4. Cal	culate GHG	volumetric emissions at star	ndard conditions (scf	Ŋ.							
		E _{sn} =	Ean * (459.6	7 + T _s) * P _a	(Equation W-33)								
$E_{k,n} = GHG i volumetric emissions at standard temperature and pressure (STP) in cubic feet E_{k,n} = GHG i volumetric emissions at actual conditions (cf) Tn = Temperature at actual conditions (F) = 60 F (Based on Annual Avg Max Temperature for Hobbs, NM from Wester Pn = Absolute pressure at standard conditions (psia) = 14.7 psia Pn = Absolute pressure at attual conditions (psia) = 14.7 psia Pn = Absolute pressure at attual conditions (psia) = 14.7 psia Pn = Absolute pressure at attual conditions (psia) = 14.7 psia Pn = Absolute pressure at attual conditions (psia) = 14.7 psia Pn = Absolute pressure at attual conditions (psia) = 14.7 psia Pn = Absolute pressure at attual conditions (psia) = 14.7 psia Pn = Absolute pressure at attual conditions (psia) = 14.7 psia Pn = Absolute pressure at attual conditions (psia) = 14.7 psia Pn = Absolute pressure at attual conditions (psia) = 14.7 psia Pn = Absolute pressure at attual conditions (psia) = 14.7 psia Pn = Absolute pressure at attual conditions (f) Massk1 = Ek1* n (Co2, CH4 or N4O) mass emissions at standard conditions in tons (tpy) Ek2 = GHG i (CO2, CH4 or N4O) volumetric emissions at standard conditions (cf) p1 = Density of GHG i. Use: CH4: 0.0192 kg/ft1 (at 60F and 14.7 psia) CO2: 0.0526 kg/ft4 (at 60F and 14.7 psia) CO2: 0.0526 kg/ft4 (at 60F and 14.7 psia) Step 6. Calculate annual N2O emissions from combustion of a particular type of fuel (tons). Fuel = mass or volume of the fuel combusted HHV = high heat value of the fuel combusted HHV = high heat value of the fuel combusted HHV = high heat value of the fuel combusted HHV = high heat value of the fuel combusted HHV = high heat value of the fuel ombusted Step 7. Calculate total annual emission from flare by summing Equations W-40, W-19, W-20, and W-21.$													
Ex,n = 0HG i volumetric emissions at actual conditions (f) 60 F T_s = Temperature at standard conditions (F) = 60 F T_s = Temperature at standard conditions (F) = 76 F P_s = Absolute pressure at standard conditions (psia) = 14.7 psia P_s = Absolute pressure at actual conditions (psia) = 14.7 psia P_s = Absolute pressure at actual conditions (psia) = 14.7 psia Constant = 459.67 (temperature conversion from F to R) Step 5. Calculate annual CH_s and CO2 mass emissions (torn). Mass.i = Ex.i * 0, * 0.001023 (Equation W-36) where: Mass.i = GHG i (CO2, CH_s or NyO) volumetric emissions at standard conditions (rCf) 0.192 kg/ft ³ (at 60F and 14.7 psia) CO2: 0.0526 kg/ft ³ (at 60F and 14.7 psia) CO2: 0.0526 kg/ft ³ (at 60F and 14.7 psia) Mass.ing = 0.0011023 * Fuel * HW * EF (Equation W-40) where: Mass.ing = 0.0011023 * Fuel * HW * EF (Equation W-40) where: Mass.ing = 0.0011023 * Fuel * HW * EF (Equation W-40) where: Mass.ing = 0.0011023 * Fuel * HW * EF (Equation W-40) where: Mass.ing = 0.0011023 * Fuel * HW * EF (Equation W-40) where: mass or volume of the fuel combustion of a particular type of fuel (tons). Fuel = mass or volume of the fuel combusted		where:											
T _s = Temperature at standard conditions (F) = 60 F (Based on Annual Avg Max Temperature for Hobbs, NM from Wester Regional Climate Center) P _s = Absolute pressure at standard conditions (psia) = 14.7 psia P _s = Absolute pressure at actual conditions (psia) = 14.7 psia P _s = Absolute pressure at actual conditions (psia) = 14.7 psia P _s = Absolute pressure at actual conditions (psia) = 14.7 psia Constant = 459.67 (temperature conversion from F to R) Step 5. Calculate annual CH ₄ and CO ₂ mass emissions (ton). Mass _{s1} = E _{s1} * p ₁ * 0.0011023 (Equation W-36) where: Mass _{s2} = GHG i (CO ₂ , CH ₄ , or N ₂ O) mass emissions at standard conditions (cf) P ₁ = Density of GHG i. Use: CH ₄ : 0.0192 kg/ft ² (at 60F and 14.7 psia) CO ₂ : 0.0526 kg/ft ³ (at 60F and 14.7 psia) CO ₂ : Step 6. Calculate annual N ₂ O emissions from portable or stationary fuel combustion sources under actual conditions (cf) using Equation W-40 . Mass _{N20} = annual N ₂ O emissions from portable or stationary fuel combustion sources under actual conditions (cf) using Equation W-40 . Mass _{N20} = annual N ₂ O emissions from portable or stationary fuel combustion sources under actual conditions (cf) using Equation W-40 . Mass _{N20} = annual N ₂ O emissions from portable or stationanty fuel combusted						ssure (STP) in cub	pic feet						
(Based on Annual Avg Max Temperature for Hobbs, NM from Wester T _a = Temperature at actual conditions (psia) = 76 F P _a = Absolute pressure at standard conditions (psia) = 14.7 psia P _a = Absolute annual CH ₄ and CO ₂ mass emissions (ton). (Assumption) Step 5. Calculate annual CH ₄ and CO ₂ mass emissions (ton). (Bass ₁ = E ₁₁ * ρ, * 0.0011023 (Equation W-36) where: Mass ₁ = E ₁₁ * ρ, * 0.0011023 (Equation W-36) (Cop. CH ₄ or N ₂ O) mass emissions at standard conditions (cf) ρ = Density of GHG i. Use: CH ₄ : 0.0192 kg/ft ³ (at 60F and 14.7 psia) CO ₂ : 0.0526 kg/ft ³ (at 60F and 14.7 psia) Step 6. Calculate annual N ₂ O emissions from portable or stationary fuel combustion sources under actual conditions (cf) using Equation W-40. Mass _{N20} = 0.0011023 * Fuel * HW * EF (Equation W-40) where: mass rovolume of the fuel combustion of a particular type of fuel (tons). Fuel * HW = high heat value of the fuel Streas 1.25.03 MMBitu/scf EF = 1.00E-04 kg N ₂ O/MMBitu 10 ³ = conversion factor from kg to metric tons. Step 7. Calculate total annual emission from flare by summing Equations W-40, W-20, and W-21.							(0	-					
T _n = Temperature at actual conditions (p) = 76 F Regional Climate Center) P _n = Absolute pressure at actual conditions (psia) = 14.7 psia P _n = Absolute pressure at actual conditions (psia) = 14.7 psia Constant = 459.67 (temperature conversion from F to R) Step 5. Calculate annual CH ₄ and CO ₂ mass emissions (ton). Mass _{1,1} = E _{1,1} * ρ ^ 0.01023 (Equation W-36) where: Mass _{1,2} = GHG i (CO ₂ , CH ₄ , or N ₂ O) volumetric emissions at standard conditions (cf) ρ_1 = Density of GH I. Use: CH ₄ : 0.0192 kg/ft ³ (at 60F and 14.7 psia) CO ₂ : 0.0526 kg/ft ³ (at 60F and 14.7 psia) CO ₂ : Step 6. Calculate annual N ₂ O emissions from portable or stationary fuel combustion sources under actual conditions (cf) using Equation W-40. Mass _{N20} = 0.0011023 * Fuel * HHV * EF (Equation W-40) where: Mass _{N20} = annual N ₂ O emissions from combustion of a particular type of fuel (tons). Fuel = mass or volume of the fuel Strea = 1.00E-04 kg N ₂ O/MMBtu HHY = high heat value of the fuel Strea = 1.00E-04 kg N ₂ O/MMBtu 10 ³ = conversion factor from kg to metric tons. Step 7. Calculate total annual emission from flare by summing Equations W-40, W-19, W-20, and W-21.			$I_s = 1 \text{ emper}$	ature at standard conditions (F)	=		60	F	(Pacad on Ann		Tomporatur	o for Hobbe N	M from Wostorn
P _s = Absolute pressure at standard conditions (psia) = 14.7 psia P _a = Absolute pressure at actual conditions (psia) = 14.7 psia Constant = 459.67 (temperature conversion from F to R) Step 5. Calculate annual CH ₄ and CO ₂ mass emissions (ton). Mass ₁ = E _{s1} * p ₁ * 0, *0.0011023 (Equation W-36) where: Mass ₂ = GHG i (CO ₂ , CH ₄ , or N ₂ O) mass emissions at standard conditions in tons (tpy) E _{s1} = 6HG i (CO ₂ , CH ₄ , or N ₂ O) volumetric emissions at standard conditions (cf) p ₁ = Density of GHG i. Use: CH ₄ : 0.0192 kg/ft ³ (at 60F and 14.7 psia) CO ₂ : 0.0526 kg/ft ³ (at 60F and 14.7 psia) CO ₂ : 0.0526 kg/ft ³ (at 60F and 14.7 psia) CO ₂ : 0.0526 kg/ft ³ (at 60F and 14.7 psia) CO ₂ : 0.0526 kg/ft ³ (at 60F and 14.7 psia) CO ₂ : 0.0526 kg/ft ³ (at 60F and 14.7 psia) CO ₂ : 0.0526 kg/ft ³ (at 60F and 14.7 psia) CO ₂ : 0.0526 kg/ft ³ (at 60F and 14.7 psia) CO ₂ : 0.0526 kg/ft ³ (at 60F and 14.7 psia) CO ₂ : 0.0526 kg/ft ³ (at 60F and 14.7 psia) CO ₂ : 0.0526 kg/ft ³ (at 60F and 14.7 psia) CO ₂ : 0.0526 kg/ft ³ (at 60F and 14.7 psia) Massuo = annual N ₂ O emissions from combustion of a particular type of fuel (tons).			T – Tompor	ature at actual conditions (F) -			76	F			remperatur	e lui hubbs, i	www.inoini.western
P _n = Absolute pressure at actual conditions (pria) = 14.7 psia (Assumption) Constant = 459.67 (temperature conversion from F to R) (Assumption) Step 5. Calculate annual CH ₄ and CO ₂ mass emissions (ton). Mass _{x1} = 0, * 0.0011023 (Equation W-36) Where: Mass _{x1} = GHG i (CO ₂ , CH ₄ , or N ₂ O) wass emissions at standard conditions (rf) P ₁ = Density of GHG i. Use: CH ₄ : 0.0192 kg/ft ³ (at 60F and 14.7 psia) CStep 6. Calculate annual N ₂ O emissions from portable or stationary fuel combustion sources under actual conditions (cf) using Equation W-40. Mass _{N200} = 0.0011023 * Fuel * HHV * EF (Equation W-40) where: Mass _{N200} = 0.0011023 * Fuel * HHV * EF (Equation W-40) (Here anso or volume of the fuel combustion of a particular type of fuel (tons). Fuel = mass or volume of the fuel Step annual N ₂ O emissions from combustion of a particular type of fuel (tons). EF = 1.00E-04 kg N ₂ O/MMBtu 10 ³ = conversion factor from kg to metric tons. Step 7. Calculate total annual emission from flare by summing Equations W-40, W-19, W-20, and W-21.					ns (psia) =				Regional onna	ne oemer)			
Constant = 459.67 (temperature conversion from F to R) Step 5. Calculate annual CH4 and CO2 mass emissions (ton). Mass _{x1} = 6, * 0.0011023 (Equation W-36) where: Mass _{x2} = GHG i (CO2, CH4, or N20) mass emissions at standard conditions in tons (tpy) Exis = GHG i (CO2, CH4, or N20) volumetric emissions at standard conditions (cf) P ₁ = Density of GHG i. Use: CH4: 0.0192 kg/ft ³ (at 60F and 14.7 psia) CO2: 0.0526 kg/ft ³ (at 60F and 14.7 psia) CO2: 0.0526 kg/ft ³ (at 60F and 14.7 psia) CO2: 0.0526 kg/ft ³ (at 60F and 14.7 psia) CO2: 0.0526 kg/ft ³ (at 60F and 14.7 psia) CO2: 0.0526 kg/ft ³ (at 60F and 14.7 psia) CO2: 0.0526 kg/ft ³ (at 60F and 14.7 psia) CO2: 0.0526 kg/ft ³ (at 60F and 14.7 psia) CO2: 0.0526 kg/ft ³ (at 60F and 14.7 psia) CO2: 0.0526 kg/ft ³ (at 60F and 14.7 psia) CO2: 0.0526 kg/ft ³ (at 60F and 14.7 psia) CO2: 0.0526 kg/ft ³ (at 60F and 14.7 psia) Where: (Equation W-40) where: (Equation W-40) where: (Equation W-40) Were: (Equation from combustion of a particular type of fuel (tons). Fuel = masso rolume of the fuel (Ef = 1									(Assumption)				
$ \begin{aligned} & \text{Mass}_{x_1} = \mathbb{E}_{x_1} * \rho_1 * 0.0011023 (Equation W-36) \\ & \text{where:} \\ & \text{Mass}_{x_2_1} = \text{GHG i} (CO_2, CH_4, \text{ or } N_2 O) \text{ volumetric emissions at standard conditions in tons (tpy)} \\ & \mathbb{E}_{x_1} = \text{GHG i} (CO_2, CH_4, \text{ or } N_2 O) \text{ volumetric emissions at standard conditions (cf)} \\ & \rho_1 = \text{Density of GHG i. Use:} \\ & CH_4: 0.0192 \text{ kg/ft}^3 (\text{at 60F and } 14.7 \text{ psia}) \\ & CO_2: 0.0526 \text{ kg/ft}^3 (\text{at 60F and } 14.7 \text{ psia}) \\ & CO_2: 0.0526 \text{ kg/ft}^3 (\text{at 60F and } 14.7 \text{ psia}) \\ & \text{Step 6. Calculate annual N_2O emissions from portable or stationary fuel combustion sources under actual conditions (cf) using Equation W-40 . \\ & \text{Mass}_{N20} = 0.0011023 * Fuel * \text{HHV * EF} \qquad (Equation W-40) \\ & \text{where:} \\ & \text{Mass}_{N20} = \text{ annual N_2O emissions from combustion of a particular type of fuel (tons). \\ & Fuel = \text{ mass or volume of the fuel combusted} \\ & \text{HW } = \text{high heat value of the fuel} \\ & \text{Strem 11} = \qquad 2.163E-03 \text{ MMBtu/scf} \\ & \text{EF} = \qquad 1.00E-04 \text{ kg N_2O/MMBtu} \\ & 10^3 = \text{ conversion factor from kg to metric tons.} \\ \end{aligned}$						on from F to R)			())				
$ \begin{aligned} & \text{Mass}_{x_i1} = \mathbb{E}_{x_i1} * \rho_i * 0.0011023 \qquad (Equation W-36) \\ & \text{where:} \\ & \text{Mass}_{x_i1} = \text{GHG i} (CO_2, CH_4, \text{ or } N_2 O) \text{ volumetric emissions at standard conditions in tons (tpy)} \\ & \mathbb{E}_{x_i1} = \text{GHG i} (CO_2, CH_4, \text{ or } N_2 O) \text{ volumetric emissions at standard conditions (cf)} \\ & \rho_i = \text{Density of GHG i. Use:} \\ & CH_4: & 0.0192 \text{ kg/ft}^3 (at 60F \text{ and } 14.7 \text{ psia}) \\ & CO_2: & 0.0526 \text{ kg/ft}^3 (at 60F \text{ and } 14.7 \text{ psia}) \\ & CO_2: & 0.0526 \text{ kg/ft}^3 (at 60F \text{ and } 14.7 \text{ psia}) \\ & \text{Mass}_{N20} = 0.0011023 * \text{Fuel} * \text{HHV} * \text{EF} \qquad (Equation W-40) \\ & \text{where:} \\ & \text{Mass}_{N20} = \text{ annual N_2O emissions from combustion of a particular type of fuel (tons).} \\ & \text{Fuel} = \text{mass or volume of the fuel combusted} \\ & \text{HW} = \text{high heat value of the fuel} \\ & \text{Strem 11} = & 2.163E-03 \text{ MMBtu/scf} \\ & \text{EF} = & 1.00E-04 \text{ kg N_2O/MMBtu} \\ & 10^3 = \text{ conversion factor from kg to metric tons.} \\ \end{aligned}$													
where: Mass _{k,i} = GHG i (CO ₂ , CH ₄ , or N ₂ O) mass emissions at standard conditions in tons (tpy) E ₁ = GHG i (CO ₂ , CH ₄ , or N ₂ O) volumetric emissions at standard conditions (cf) p _i = Density of GHG i. Use: CH ₄ : 0.0192 kg/ft ³ (at 60F and 14.7 psia) CO ₂ : 0.0526 kg/ft ³ (at 60F and 14.7 psia) CO ₂ : 0.0526 kg/ft ³ (at 60F and 14.7 psia) CO ₂ : 0.0526 kg/ft ³ (at 60F and 14.7 psia) CO ₂ : 0.0526 kg/ft ³ (at 60F and 14.7 psia) CO ₂ : 0.0526 kg/ft ³ (at 60F and 14.7 psia) CO ₂ : 0.0526 kg/ft ³ (at 60F and 14.7 psia) CO ₂ : 0.0526 kg/ft ³ (at 60F and 14.7 psia) CO ₂ : 0.0526 kg/ft ³ (at 60F and 14.7 psia) CO ₂ : 0.0526 kg/ft ³ (at 60F and 14.7 psia) CO ₃ : 0.0526 kg/ft ³ (at 60F and 14.7 psia) Mass _{N20} = annual N ₂ O emissions from combustion of a particular type of fuel (tons). Fuel = mass or volume of the fuel combusted HHV = high heat value of the fuel Strear 11 = 2.163E-03 MMBtu/scf EF = 1.00E-04 kg N ₂ O/MMBtu 10 ³ = conversion factor from kg to metric tons.	:	Step 5. Cal											
$\begin{array}{llllllllllllllllllllllllllllllllllll$					ntion W-36)								
Exit GHG i (C02, CH4, or N2O) volumetric emissions at standard conditions (cf) pi = Density of GHG i. Use: CH4: 0.0192 kg/ft ³ (at 60F and 14.7 psia) CO2: 0.0526 kg/ft ³ (at 60F and 14.7 psia) CO2: 0.0526 kg/ft ³ (at 60F and 14.7 psia) CO2: 0.0526 kg/ft ³ (at 60F and 14.7 psia) Step 6. Calculate annual N2O emissions from portable or stationary fuel combustion sources under actual conditions (cf) using Equation W-40. Mass _{N200} = 0.0011023 * Fuel * HHV * EF (Equation W-40) (Equation W-40) where: (Mass _{N200} e annual N2O emissions from combustion of a particular type of fuel (tons). Fuel = mass or volume of the fuel combusted (tons). HHV = high heat value of the fuel Stream 11 = Stream 11 = 2.163E-03 MMBtu/scf EF = 1.00E-04 kg N ₂ O/MMBtu 10 ³ = conversion factor from kg to metric tons. Step 7. Calculate total annual emission from flare by summing Equations W-40, W-19, W-20, and W-21.)) mass emissions at st	andard conditions	in tons (tov)						
ρ _i = Density of GHG i. Use: CH ₄ : 0.0192 kg/ft ³ (at 60F and 14.7 psia) C2: 0.0526 kg/ft ³ (at 60F and 14.7 psia) Step 6. Calculate annual N ₂ O emissions from portable or stationary fuel combustion sources under actual conditions (cf) using Equation W-40. Mass _{N20} = 0.0011023 * Fuel * HHV * EF (Equation W-40) where: Mass _{N20} = annual N ₂ O emissions from combustion of a particular type of fuel (tons). Fuel = mass or volume of the fuel combusted HHV = high heat value of the fuel Stream 11 = 2.163E-03 MMBtu/scf EF = 1.00E-04 kg N ₂ O/MMBtu 10 ³ = conversion factor from kg to metric tons. Step 7. Calculate total annual emission from flare by summing Equations W-40, W-19, W-20, and W-21.													
CH4: 0.0192 kg/ft ³ (at 60F and 14.7 psia) CO2: 0.0526 kg/ft ³ (at 60F and 14.7 psia) Step 6. Calculate annual N2O emissions from portable or stationary fuel combustion sources under actual conditions (cf) using Equation W-40. Mass _{N2O} = 0.0011023 * Fuel * HHV * EF (Equation W-40) where: (Equation W-40) Mass _{N2O} = annual N2O emissions from combustion of a particular type of fuel (tons). Fuel = mass or volume of the fuel combusted HHV = high heat value of the fuel Stream 11 = 2.163E-03 MMBtu/scf EF = 1.00E-04 kg N2O/MMBtu 10 ³ = conversion factor from kg to metric tons. Step 7. Calculate total annual emission from flare by summing Equations W-40, W-19, W-20, and W-21.													
CO2: 0.0526 kg/ft ³ (at 60F and 14.7 psia) Step 6. Calculate annual N ₂ O emissions from portable or stationary fuel combustion sources under actual conditions (cf) using Equation W-40. Mass _{N20} = 0.0011023 * Fuel * HHV * EF (Equation W-40) where: Mass _{N20} = annual N ₂ O emissions from combustion of a particular type of fuel (tons). Fuel = mass or volume of the fuel combusted HHV = high heat value of the fuel Stream 11 = 2.163E-03 MMBtu/scf EF = 1.00E-04 kg N ₂ O/MMBtu 10 ⁻³ = conversion factor from kg to metric tons. Step 7. Calculate total annual emission from flare by summing Equations W-40, W-19, W-20, and W-21.				-	CH4:	0.0192	kg/ft3 (at 60F	and 14.7 psia)					
Step 6. Calculate annual N2O emissions from portable or stationary fuel combustion sources under actual conditions (cf) using Equation W-40 . Massyao = 0.0011023 * Fuel * HHV * EF (Equation W-40) where: Massyao = annual N2O emissions from combustion of a particular type of fuel (tons). Fuel = mass or volume of the fuel combusted HHV = high heat value of the fuel Stream 11 = 2.163E-03 MMBtu/scf EF = 1.00E-04 kg N2O/MMBtu 10 ³ = conversion factor from kg to metric tons.							kg/ft ³ (at 60F	and 14.7 psia)					
Mass _{N20} = 0.0011023 * Fuel * HHV * EF (Equation W-40) where: Mass _{N20} = annual N ₂ O emissions from combustion of a particular type of fuel (tons). Fuel = mass or volume of the fuel combusted HHV = high heat value of the fuel Stream 11 = 2.163E-03 MMBtu/scf EF = 1.00E-04 kg N ₂ O/MMBtu 10 ⁻³ = conversion factor from kg to metric tons.													
where: Mass _{N20} = annual N ₂ 0 emissions from combustion of a particular type of fuel (tons). Fuel = mass or volume of the fuel HHV = high heat value of the fuel Stream 11 = 2.163E-03 MMBtu/scf EF = 1.00E-04 kg N ₂ O/MMBtu 10 ⁻³ = conversion factor from kg to metric tons. Step 7. Calculate total annual emission from flare by summing Equations W-40, W-19, W-20, and W-21.	:	Step 6. Cal					ources under	actual condition	ons (cf) using	Equation W	/-40 .		
Mass _{N20} = annual N ₂ O emissions from combustion of a particular type of fuel (tons). Fuel = mass or volume of the fuel combusted HHV = high heat value of the fuel Stream 11 = 2.163E-03 MMBtu/scf EF = 1.00E-04 kg N ₂ O/MMBtu 10 ⁻³ = conversion factor from kg to metric tons. Step 7. Calculate total annual emission from flare by summing Equations W-40, W-19, W-20, and W-21.					(Equation W-40)	1							
Fuel = mass or volume of the fuel combusted HHV = high heat value of the fuel Stream 11 = 2.163E-03 MMBtu/scf EF = 1.00E-04 kg N ₂ O//MMBtu 10 ⁻³ = conversion factor from kg to metric tons. Step 7. Calculate total annual emission from flare by summing Equations W-40, W-19, W-20, and W-21.					ustion of a particular ty	pe of fuel (tops)							
HHV = high heat value of the fuel Stream 11 = $2.163E-03$ MMBtu/scf EF = 1.00E-04 kg N ₂ O/MMBtu 10 ⁻³ = conversion factor from kg to metric tons. Step 7. Calculate total annual emission from flare by summing Equations W-40, W-19, W-20, and W-21.						0. 1001 (1013)	-						
EF = 1.00E-04 kg N ₂ O/MMBtu 10 ³ = conversion factor from kg to metric tons. Step 7. Calculate total annual emission from flare by summing Equations W-40, W-19, W-20, and W-21.													
10 ³ = conversion factor from kg to metric tons. Step 7. Calculate total annual emission from flare by summing Equations W-40, W-19, W-20, and W-21.			-	Stream 11 =									
Step 7. Calculate total annual emission from flare by summing Equations W-40, W-19, W-20, and W-21.			1 0 ⁻³			kg N ₂ O/MMBtu							
			10° = conve	rsion factor from kg to metric to	ons.								
	:	Step 7. Cal	lculate total	annual emission from flare l	by summing Equation	ns W-40, W-19,	W-20, and W	-21.					
	Т		CH4 UN-			CH4 UN-	CO2 Un-	CO ₂	CH4 UN-	co ₂ un-	CO ₂		
Gas Sent Combusted Conbusted Combusted, Combusted, Combusted, Combusted, Combusted, Combusted Co													CO2e
$\begin{array}{c c c c c c c c c c c c c c c c c c c $													(tpy)

	Gas Sent to Flare		d, E _{a,CH4} (cf)	CO ₂ Un-Combusted, E _{a,CO2} (cf)	E _{a,CO2} (cf)	Combusted, E _{a,CH4} (scf)	E _{a,co2} (scf)	E _{a,co2} (scf)	Combusted, E _{a,CH4} (tpy)	d, E _{a,CO2} (tpy)	d, E _{a,CO2} (tpy)	N ₂ O Mass Emissions (tpy)	CO2e (tpy)
	Stream 11	45,000,000	244,718	20,898,382.3	100,814,700.3	237,275.5		97,748,708.5	5.0	1,174.9	5,667.6	0.0107	6,971.2
ļ								Total	5.0	1,174.9	5,667.6	0.0	6,971.2

 CO2
 CH4
 N2O

 1
 25
 298
 GWP

Emission unit: F-001

		e of Equipment					
Subco	mponent	Emission Factor ¹ (lb/hr/comp)	Control Efficiency	VOC Content ² (wt%)	H ₂ S Content ² (wt%)	HAP Content ² (wt%)	Subcomponent Counts ³
	Gas	9.92E-03	0.0%	21.99%	0.00%	0.56%	871
Valves	Light Oil	5.51E-03	0.0%	100.00%	0.00000%	12.51%	871
	Heavy Oil	1.85E-05	0.0%	0.00%	0.00000%	0.00%	0
	Gas	8.60E-04	0.0%	21.99%	0.0000%	0.56%	0
Flanges	Light Oil	2.43E-04	0.0%	100.00%	0.000000%	12.51%	0
_	Heavy Oil	8.60E-07	0.0%	0.00%	0.000000%	0.00%	0
	Gas	4.41E-04	0.0%	21.99%	0.00%	0.56%	2138
Connectors	Light Oil	4.63E-04	0.0%	100.00%	0.00000%	12.51%	2138
	Heavy Oil	1.65E-05	0.0%	0.00%	0.00000%	0.00%	0
Dumma	Light Oil	2.87E-02	0.0%	100.00%	0.00000%	12.51%	10
Pumps	Heavy Oil	2.87E-02	0.0%	0.00%	0.00000%	0.00%	0
	Gas	1.94E-02	0.0%	21.99%	0.00%	0.56%	0
Other	Light Oil	1.65E-02	0.0%	100.00%	0.00000%	12.51%	0
	Heavy Oil	7.06E-05	0.0%	0.00%	0.00000%	0.00%	0
				Hourly VC	8.18		
				Annual V	OC Emission R	ate (tpy) ⁵	35.85
					S Emission Rat		0.00
				Annual H	I ₂ S Emission Ra	ate (tpy)⁵	0.00
				Hourly HA	AP Emission Ra	te (lb/hr) ⁴	0.81
				Annual H	IAP Emission Ra	ate (tpy)⁵	3.57

¹ Emission factors from Table 2-4 of EPA Protocol for Equipment Leak Emission Estimates, 1995.

² Weight percent of gas and liquid components are referenced from flash gas and liquid streams from a ProMax simulation for this facility.

³ Subcomponent counts for each subcomponent are based on estimated average component counts for each piece of equipment.

⁴ Hourly Emissions [lb/hr] = Emissions Factor [lb/hr/component] * Weight Content of Chemical Component [%] * Subcomponent Count. ⁵ Annual Emissions [ton/yr] = Hourly Emissions [lb/hr] * 8760 [hr/yr] * 1/2000 [ton/lb].

Unit: LOAD

Description: Emissions from Truck Loading of Condensate

Emission Calculations

69,350 2,912,700	Throughput (Throughput (Expected condensate throughput bbl/d * 42 gal/bbl * 365 d/yr							
9.82	tpy VOC		GRI-HAPCa	lc 3.01						
Total HAPs	n-Hexane	Benzene	Toluene	e-Benzene	Xylenes	_				
0.4	0.39	0.04	0.00	0.001	0.0012	tpy	GRI-HAPCalc3.01			

Slop Water Loading Emissions

 Unit:
 LOAD_SLOP

 Description:
 Emissions from Truck Loading of Slop Water

Emission Calculations

10.3 tpy VOC GRI-H 1% Based on 1% Crude Oil ¹ GRI-H 0.10 tpy VOC GRI-H	IAPCalc 3.01

Tota	al HAPs	n-Hexane	Benzene	Toluene	e-Benzene	Xylenes		
	0.5	0.41	0.05	0.02	0.0007	0.0012	tpy	GRI-HAPCalc3.01
	1%	1%	1%	1%	1%	1%	%	Based on 1% Crude Oil ¹
4.7	1E-03	4.08E-03	4.56E-04	1.51E-04	7.00E-06	1.20E-05	tpy	_

¹Assume slop water contains 1% hydrocarbons per TCEQ guidance.

Input Data

Empty vehicle weight ¹	16	tons
Load weight ²	21.2	tons
Loaded vehicle ³	37.2	tons
Mean vehicle weight ⁴	26.6	tons
Vehicle frequency	1.2	vehicles/day
Vehicle frequency	1.2	trips/hour
Round-trip distance	0.40	mile/trip
Operating hours	8760	hours/yr
Surface silt content ⁵	1.8	%
Annual wet days ⁶	60	days/yr
Vehicle miles traveled'	0.5	mile/hr

Throughput (gal/yr) * (1 yr/365 days) * (1 truck/7,560 gal) Maximum

Emission Factors and Constants

Parameter	PM ₃₀	PM ₁₀	PM _{2.5}
k, lb/VMT ⁸	4.9	1.5	0.15
a, lb/VMT [∞]	0.70	0.90	0.90
b, lb/VMT ⁸	0.45	0.45	0.45
Hourly EF, Ib/VMT ⁹	3.47	0.73	0.07
Annual EF, lb/VMT [™]	2.90	0.61	0.06

Uncontrolled Emissions

PM ₃₀	PM ₁₀	PM _{2.5}	
1.7	0.36	0.036	lb/hr''
0.26	0.055	0.0055	ton/yr'

Footnotes

- ¹ Empty vehicle weight includes driver and occupants and full fuel load.
- ² Cargo, transported materials, etc. (lb/gal RVP11 *7560 gal truck/ 2000lb/ton)
- ³ Loaded vehicle weight = Empty + Load Size
- ⁴ Mean Vehicle weight = (Loaded Weight + Empty Weight) / 2
- ⁵ AP-42 Table 13.2.2-1, Taconite mining and processing mean silt content
- A 60% reduction in silt is used based on the use of gravel roads at this facility. $^{\rm 6}$ AP-42 Figure 13.2.2-1
- 7 VMT/hr = Vehicle Miles Traveled per hour = Trips per hour * Miles per trip
- ⁸ Table 13.2.2-2, Industrial Roads
- ⁹ AP-42 13.2.2, Equation 1a
- ¹⁰ AP-42 13.2.2, Equation 2
- ¹¹ lb/hr = Hourly EF (lb/VMT) * VMT (mile/hr)
- ¹² ton/yr = Annual EF (lb/VMT) * Truck/day * Mile/truck * 365day/yr * 1ton/2000lb

Unit:MALFDescription:Facility-wide malfunction emissions

Emission Calculations

Requested NO _X MALF:	7 tons/yr	
Requested CO MALF:	10 tons/yr	
Requested VOC MALF:	10 tons/yr	
Requested SO _x MALF:	10 tons/yr	
Requested H ₂ S MALF:	2 tons/yr	
Inlet gas VOC content:	21.99 Mass %	
Inlet gas CO ₂ content:	3.28 Mass %	
Inlet gas CH ₄ content:	57.05 Mass %	

Unit(s): Description: Exemption:	PIGGING Pig Receiver and Launcher Emissions 20.2.72.202.B(5) NMAC		Pig Receiver and Launcher Emission		
Inlet Receiver Volume	140.00	scf/event	Estir		
Safety Factor Inlet Receiver Volume	100% 280.00	scf/event	Calc		
	200.00	# of	ould		

events/yr

hr/event

24

0.5

1

Annual Events:

Duration of Event

Number of Receivers:

Estimate based on similar Facility Design Calculated Estimate based on similar Facility Design Estimate Estimate based on similar Facility Design

Pigging Emissions based on Inlet Analysis Mass Mass Spec. Mass Wet Composition MW² Dry vol/mol% MW*Mol% Volume Flow Flow Flow vol/mol%1 (scf/lb)² (lb/hr)³ (lb/vr4 (ton/yr)⁵ Water 18.015 0.015% 21.06 Nitrogen 28.013 2.72% 2.720% 0.76 13.55 1.12E-02 1.35E-01 6.75E-05 CO2 44.010 1.605% 0.71 8.62 1.04E-02 1.25E-01 6.25E-05 1.61% H2S* 34.082 0.05% 0.050% 0.02 11.14 2.51E-04 3.02E-03 1.51E-06 1.81E-01 2.18E+00 Methane 16.043 76.6% 76.581% 12.29 23.65 1.09E-03 Ethane 30.070 10.1% 10.122% 12.62 4.49E-02 5.39E-01 2.70E-04 3.04 44.097 5.385% 3.50E-02 4.20E-01 2.10E-04 Propane 5.4% 2.37 8.61 i-Butane 58.123 0.67% 0.666% 0.39 6.53 5.71E-03 6.86E-02 3.43E-05 n-Butane 58.123 1.6% 1.563% 0.91 6.53 1.34E-02 1.61E-01 8.04E-05 2,2 Dimethylpropane 72.150 0.010% 0.010% 0.01 5.30 1.05E-04 1.26E-03 6.32E-07 i-Pentane 72.150 0.37% 0.366% 0.26 5.26 3.89E-03 4.67E-02 2.34E-05 0.382% 0.28 4.07E-03 4.88E-02 2.44E-05 n-Pentane 72 150 0.38% 5 26 2,2 Dimethylbutane 86.180 0.0040% 0.004% 0.003 5.26 4.23E-05 5.07E-04 2.54E-07 0.00E+00 0.00E+00 70.140 0.00% 0.000% 0.000 5.41 0.00E+00 Cyclopentane 2,3 Dimethylbutane 86.180 0.035% 0.035% 0.030 4.40 4.40E-04 5.28E-03 2.64E-06 2 Methylpentane 86.180 0.087% 0.087% 0.075 4 40 1.11E-03 1.33E-02 6.64E-06 3 Methylpentane 86.180 0.049% 0.049% 0.043 4.40 6.28E-04 7.53E-03 3.77E-06 0.100% 0.087 1.28E-03 1.53E-02 7.66E-06 n-Hexane 86.180 0.10% 4.40 Methylcyclopentane 84.160 0.053% 0.053% 0.045 4.51 6.60E-04 7.92E-03 3.96E-06 Cyclohexane 84.160 0.048% 0.048% 0.040 3.79 7.10E-04 8.52E-03 4.26E-06 2-Methylhexane 100.200 0.013% 0.013% 0.013 3.79 1.86E-04 2.23E-03 1.12E-06 3-Methylhexane 100.200 0.014% 0.014% 0.015 3.79 2.14E-04 2.57E-03 1.29E-06 n-Heptanes 100.200 0.066% 0.066% 0.066 3.79 9.78E-04 1.17E-02 5.87E-06 Other Heptanes 100.200 0.00% 0.000% 0.000 3.79 0.00E+00 0.00E+00 0.00E+00 Methylcyclohexane 98.190 0.036% 0.036% 0.036 3 87 5.27E-04 6.32E-03 3 16F-06 2,2,4-Trimethylpentane 114.230 0.00% 0.000% 0.000 3.32 0.00E+00 0.00E+00 0.00E+00 Benzene 78.110 0.024% 0.024% 0.018 4.86 2.72E-04 3.27E-03 1.63E-06 0.014% 0.014% 0.013 4.12 2.32E-03 1.16E-06 Toluene 92.140 1.93E-04 Ethylbenzene 106.170 0.00087% 0.001% 0.001 3.57 1.36E-05 1.63E-04 8.14E-08 **Xylenes** 106.170 0.0017% 0.002% 0.002 3.57 2.66E-05 3.19E-04 1.60E-07 7.41E-04 C8+ heavies 114.230 0.0037% 0.004% 0.004 3.32 6.18E-05 3.71E-07 Total 100.0% 100.0% 21.52 Dry Total 100.0% 0.32 3.81 0.0019 VOC Total 0.19 7.75 6.87E-04 0.11 1.37

Notes

¹ Source: Promax RVP11 Simulation, SC Vapor Stream, from File: ProMax Report South Carlsbad_8

² From "Physical Properties of Hydrocarbons"

³ Flow (lb/hr) = Volume (scf/event) / Duration (hr/event) / Sp. Vol. (scf/lb) * Mol%

⁴ Flow (tons/yr) = Volume (scf/yr) / Sp. Vol. (scf/lb) * Mol%

⁵ Flow (tons/yr) = Flow (lb/yr) / 2000 lb/ton

Section 7

Information Used To Determine Emissions

Information Used to Determine Emissions shall include the following:

- \square If manufacturer data are used, include specifications for emissions units <u>and</u> control equipment, including control efficiencies specifications and sufficient engineering data for verification of control equipment operation, including design drawings, test reports, and design parameters that affect normal operation.
- \square If test data are used, include a copy of the complete test report. If the test data are for an emissions unit other than the one being permitted, the emission units must be identical. Test data may not be used if any difference in operating conditions of the unit being permitted and the unit represented in the test report significantly effect emission rates.
- \blacksquare If the most current copy of AP-42 is used, reference the section and date located at the bottom of the page. Include a copy of the page containing the emissions factors, and clearly mark the factors used in the calculations.
- \blacksquare If an older version of AP-42 is used, include a complete copy of the section.
- \blacksquare If an EPA document or other material is referenced, include a complete copy.
- \blacksquare Fuel specifications sheet.
- ☑ If computer models are used to estimate emissions, include an input summary (if available) and a detailed report, and a disk containing the input file(s) used to run the model. For tank-flashing emissions, include a discussion of the method used to estimate tank-flashing emissions, relative thresholds (i.e., permit or major source (NSPS, PSD or Title V)), accuracy of the model, the input and output from simulation models and software, all calculations, documentation of any assumptions used, descriptions of sampling methods and conditions, copies of any lab sample analysis.

This section contains the following references or actual documentation to support the emissions in the required forms and the calculations in Section 6:

- Current version of AP-42 located online at: <u>http://www.epa.gov/ttn/chief/ap42/index.html</u>. Specific sections used in this application:
 - Section 1.4 –Natural Gas External Combustion Sources-Natural Gas (Table 1.4-1,2)
 - Section 3.1- Stationary Natural Gas Turbines (Table 3.1-2a)
 - Section 13.2.2 Introduction to Fugitive Dust sources Unpaved Roads
 - Section 13.5 Industrial Flares (Table 13.5-1)
- o HAPCalc® 3.01 run results loading
- o ProMax Output for slop and condensate working and breathing emissions
- o TCEQ TNRCC RG-109 Flare guidance documentation
- Turbine Stack Test Data Reports (for Units 1 and 2)
- Turbine manufacturer specifications (for Unit 5)
- o Armstrong Gas Lab Analysis No. 211306
- Stream 11 properties used for Unit Flare (SSM)
- Gas and liquid stream compositions used for Unit F-001

Table 1.4-1. EMISSION FACTORS FOR NITROGEN OXIDES (NOx) AND CARBON MONOXIDE (CO)FROM NATURAL GAS COMBUSTIONa

	NO _x ^b		СО	
Combustor Type (MMBtu/hr Heat Input) [SCC]	Emission Factor (lb/10 ⁶ scf)	Emission Factor Rating	Emission Factor (lb/10 ⁶ scf)	Emission Factor Rating
Large Wall-Fired Boilers (>100) [1-01-006-01, 1-02-006-01, 1-03-006-01]				
Uncontrolled (Pre-NSPS) ^c	280	А	84	В
Uncontrolled (Post-NSPS) ^c	190	А	84	В
Controlled - Low NO _x burners	140	А	84	В
Controlled - Flue gas recirculation	100	D	84	В
Small Boilers (<100) [1-01-006-02, 1-02-006-02, 1-03-006-02, 1-03-006-03]				
Uncontrolled	100	В	84	В
Controlled - Low NO _x burners	50	D	84	В
Controlled - Low NO _x burners/Flue gas recirculation	32	С	84	В
Tangential-Fired Boilers (All Sizes) [1-01-006-04]				
Uncontrolled	170	А	24	С
Controlled - Flue gas recirculation	76	D	98	D
Residential Furnaces (<0.3) [No SCC]				
Uncontrolled	94	В	40	В

^a Reference 11. Units are in pounds of pollutant per million standard cubic feet of natural gas fired. To convert from $lb/10^{6}$ scf to $kg/10^{6}$ m³, multiply by 16. Emission factors are based on an average natural gas higher heating value of 1,020 Btu/scf. To convert from $1b/10^{6}$ scf to lb/MMBtu, divide by 1,020. The emission factors in this table may be converted to other natural gas heating values by multiplying the given emission factor by the ratio of the specified heating value to this average heating value. SCC = Source Classification Code. ND = no data. NA = not applicable. ^b Expressed as NO₂. For large and small wall fired boilers with SNCR control, apply a 24 percent reduction to the appropriate NO x emission factor. For

^b Expressed as NO₂. For large and small wall fired boilers with SNCR control, apply a 24 percent reduction to the appropriate NO x emission factor. For tangential-fired boilers with SNCR control, apply a 13 percent reduction to the appropriate NO x emission factor.
 ^c NSPS=New Source Performance Standard as defined in 40 CFR 60 Subparts D and Db. Post-NSPS units are boilers with greater than 250 MMBtu/hr of

^c NSPS=New Source Performance Standard as defined in 40 CFR 60 Subparts D and Db. Post-NSPS units are boilers with greater than 250 MMBtu/hr of heat input that commenced construction modification, or reconstruction after August 17, 1971, and units with heat input capacities between 100 and 250 MMBtu/hr that commenced construction modification, or reconstruction after June 19, 1984.

Pollutant	Emission Factor (lb/10 ⁶ scf)	Emission Factor Rating
CO ₂ ^b	120,000	А
Lead	0.0005	D
N ₂ O (Uncontrolled)	2.2	Е
N ₂ O (Controlled-low-NO _X burner)	0.64	Е
PM (Total) ^c	7.6	D
PM (Condensable) ^c	5.7	D
PM (Filterable) ^c	1.9	В
SO_2^{d}	0.6	А
TOC	11	В
Methane	2.3	В
VOC	5.5	С

TABLE 1.4-2. EMISSION FACTORS FOR CRITERIA POLLUTANTS AND GREENHOUSE GASES FROM NATURAL GAS COMBUSTION^a

^a Reference 11. Units are in pounds of pollutant per million standard cubic feet of natural gas fired. Data are for all natural gas combustion sources. To convert from $lb/10^6$ scf to $kg/10^6$ m³, multiply by 16. To convert from $lb/10^6$ scf to 1b/MMBtu, divide by 1,020. The emission factors in this table may be converted to other natural gas heating values by multiplying the given emission factor by the ratio of the specified heating value to this average heating value. TOC = Total Organic Compounds. VOC = Volatile Organic Compounds.

- ^b Based on approximately 100% conversion of fuel carbon to CO_2 . $CO_2[lb/10^6 \text{ scf}] = (3.67)$ (CON) (C)(D), where CON = fractional conversion of fuel carbon to CO_2 , C = carbon content of fuel by weight (0.76), and D = density of fuel, $4.2 \times 10^4 \text{ lb}/10^6 \text{ scf}$.
- ^c All PM (total, condensible, and filterable) is assumed to be less than 1.0 micrometer in diameter. Therefore, the PM emission factors presented here may be used to estimate PM_{10} , $PM_{2.5}$ or PM_1 emissions. Total PM is the sum of the filterable PM and condensible PM. Condensible PM is the particulate matter collected using EPA Method 202 (or equivalent). Filterable PM is the particulate matter collected on, or prior to, the filter of an EPA Method 5 (or equivalent) sampling train.

^d Based on 100% conversion of fuel sulfur to SO_2 . Assumes sulfur content is natural gas of 2,000 grains/10⁶ scf. The SO_2 emission factor in this table can be converted to other natural gas sulfur contents by multiplying the SO_2 emission factor by the ratio of the site-specific sulfur content (grains/10⁶ scf) to 2,000 grains/10⁶ scf.

Emission Factors^a - Uncontrolled Natural Gas-Fired Turbines^b Distillate Oil-Fired Turbines^d Pollutant (lb/MMBtu)^c (lb/MMBtu)^e **Emission Factor Emission Factor** (Fuel Input) (Fuel Input) Rating Rating \rm{CO}_2^{f} 110 A 157 Α 0.003^g N_2O Е ND NA ND NA 1.4 E-05 С Lead $0.94S^{h}$ $1.01S^{h}$ SO_2 В В 8.6 E-03 ND Methane C NA

D

В

С

С

С

4.1 E-04^j

 $4.0 \text{ E-}03^{1}$

 $7.2 \text{ E-}03^{1}$

4.3 E-03¹

 $1.2 \text{ E-}02^{l}$

Е

С

С

С

С

Table 3.1-2a. EMISSION FACTORS FOR CRITERIA POLLUTANTS AND GREENHOUSEGASES FROM STATIONARY GAS TURBINES

^a Factors are derived from units operating at high loads (≥ 80 percent load) only. For information on units operating at other loads, consult the background report for this chapter (Reference 16), available at "www.epa.gov/ttn/chief". ND = No Data, NA = Not Applicable.

^b SCCs for natural gas-fired turbines include 2-01-002-01, 2-02-002-01 & 03, and 2-03-002-02 & 03.

^c Emission factors based on an average natural gas heating value (HHV) of 1020 Btu/scf at 60°F. To convert from (lb/MMBtu) to (lb/10⁶ scf), multiply by 1020. Similarly, these emission factors can be converted to other natural gas heating values.

^d SCCs for distillate oil-fired turbines are 2-01-001-01, 2-02-001-01, 2-02-001-03, and 2-03-001-02.

^e Emission factors based on an average distillate oil heating value of 139 MMBtu/10³ gallons. To convert from (lb/MMBtu) to (lb/10³ gallons), multiply by 139.

- ^f Based on 99.5% conversion of fuel carbon to CO₂ for natural gas and 99% conversion of fuel carbon to CO₂ for distillate oil. CO₂ (Natural Gas) [lb/MMBtu] = (0.0036 scf/Btu)(% CON)(C)(D), where % CON = weight percent conversion of fuel carbon to CO₂, C = carbon content of fuel by weight, and D = density of fuel. For natural gas, C is assumed at 75%, and D is assumed at 4.1 E+04 lb/10⁶ scf. For distillate oil, CO₂ (Distillate Oil) [lb/MMBtu] = (26.4 gal/MMBtu) (% CON)(C)(D), where C is assumed at 87%, and the D is assumed at 6.9 lb/gallon.
- ^g Emission factor is carried over from the previous revision to AP-42 (Supplement B, October 1996) and is based on limited source tests on a single turbine with water-steam injection (Reference 5).
- ^h All sulfur in the fuel is assumed to be converted to SO₂. S = percent sulfur in fuel. Example, if sulfur content in the fuel is 3.4 percent, then S = 3.4. If S is not available, use 3.4 E-03 lb/MMBtu for natural gas turbines, and 3.3 E-02 lb/MMBtu for distillate oil turbines (the equations are more accurate).
- ^j VOC emissions are assumed equal to the sum of organic emissions.

2.1 E-03

1.1 E-02

4.7 E-03¹

1.9 E-03¹

 $6.6 \text{ E-}03^{1}$

- ^k Pollutant referenced as THC in the gathered emission tests. It is assumed as TOC, because it is based on EPA Test Method 25A.
- ¹ Emission factors are based on combustion turbines using water-steam injection.

VOC

 TOC^k

PM (condensible)

PM (filterable)

PM (total)

GRI-HAPCalc [®] 3.01 Truck Loading Report

	Facility ID:	SOUTH CAR	LSBAD	Notes:		
	Operation Type: COMPRESSOR STATION					
	Facility Name: SOUTH CARLSBAD					
	User Name:					
	Units of Measure:	U.S. STANDA	ARD			
_	These emissions are indi	cated on the rep	nnes) per year are considered i port with a "0". 05 tons (or tonnes) per year are	-		
	_)				
Ľ	Jnit Name: LOAD					0.00
	Annual Th	•••	69,350.00 bbl/yr	Control Efficier	ncy:	0.00 %
		emperature:	74.00 °F			
	Loading Fa	actor:	0			
	Type of Lo	ading:	0.6 - Submerged loading,	dedicated service		
	Is Truck Re	equired to Pa	ass Annual Inspection?:	NO		
	Are Vapors	s Routed to C	Control Device?:	NO		
			User Concentration	on Inputs		
			Chemical Name	Feed Wt %		
			Ethane	0.0000		
			Propane	0.0000		
			Butane	3.7430		
			Pentane C6+	32.4470 63.8100		
			n-Hexane	8.7170		
			Benzene	1.5710		
			Toluene	1.7570		
			Ethylbenzene	0.2380		
			Xylenes(m,p,o)	0.5100		
			2,2,4-Trimethylpentane	0.0000		
					-	
			Calculated Emis	<u>ssions</u> (ton/yr)		
			Chemical Name	<u> </u>	issions	
		<u>HAPs</u>				
			Benzene		0.0433	
			Toluene		0.0144	
			Ethylbenzene		0.0007	
			Xylenes(m,p,o)		0.0012	
			n-Hexane		0.3880	
		Total	Dellutente		0.4476	
		<u>Criteria I</u>	Pollutants		0.0000	
			NMHC		9.8020	
			NMEHC		9.8020	

Other Pollutants

Butane	2.0418
Pentane	4.9199
C6+	2.8402

FESCO, Ltd. 105 Medical Dr. - Ozona, Texas 76943

For: Enterprise Field Services, LLC P. O. Box 1508 Carlsbad, New Mexico 88221

Sample: South Carlsbad Gas Plant Inlet to the Plant Gas Spot Gas Sample @ 280 psig & 53 °F

Equipment: Normal Operating Conditions as per Customer Date Sampled: 01/08/2020 @ 10:59 CST

Job Number: 200013.104

COC No.: 3560

CHROMATOGRAPH EXTENDED ANALYSIS - GPA 2286

COMPONENT	MOL%	GPM
Hydrogen Sulfide*	< 0.001	
Nitrogen	1.313	
Carbon Dioxide	0.319	
Methane	80.464	
Ethane	10.387	2.771
Propane	4.642	1.276
Isobutane	0.609	0.199
n-Butane	1.341	0.422
2-2 Dimethylpropane	0.001	0.000
Isopentane	0.299	0.109
n-Pentane	0.304	0.110
Hexanes	0.163	0.067
Heptanes Plus	<u>0.158</u>	0.062
Totals	100.000	5.016

Computed Real Characteristics Of Heptanes Plus:

Specific Gravity	3.254	(Air=1)
Molecular Weight	93.94	
Gross Heating Value	4831	BTU/CF

Computed Real Characteristics Of Total Sample:

Specific Gravity	0.708	(Air=1)
Compressibility (Z)	0.9967	
Molecular Weight	20.44	
Gross Heating Value		
Dry Basis	1217	BTU/CF
Saturated Basis	1196	BTU/CF
tragen Sulfide tested on leastion by: S	tain Tuba	Mathad (C

*Hydrogen Sulfide tested on location by: Stain Tube Method (GPA 2377)

0.016 Gr/100 CF, 0.3 PPMV or <0.0001 Mol%

Detector Tube: Gastec 4LT 0.05 to 4.0 ppm (Meas. Range)

Base Conditions: 14.650 PSI & 60 Deg F

Sampled By: (08)McCollum Analyst: JBM Processor: BMc Cylinder ID: X-0933 Certified: FESCO, Ltd. - Ozona, Texas

CHROMATOGRAPH EXTENDED ANALYSIS - GPA 2286 TOTAL REPORT

COMPONENT	MOL %	GPM	WT %
Hydrogen Sulfide*	< 0.001		< 0.001
Nitrogen	1.313		1.799
Carbon Dioxide	0.319		0.687
Methane	80.464		63.138
Ethane	10.387	2.771	15.277
Propane	4.642	1.276	10.012
Isobutane	0.609	0.199	1.731
n-Butane	1.341	0.422	3.812
2,2 Dimethylpropane	0.001	0.000	0.004
Isopentane	0.299	0.109	1.055
n-Pentane	0.304	0.110	1.073
2,2 Dimethylbutane	0.005	0.002	0.021
Cyclopentane	0.000	0.000	0.000
2,3 Dimethylbutane	0.018	0.007	0.076
2 Methylpentane	0.052	0.022	0.219
3 Methylpentane	0.028	0.011	0.118
n-Hexane	0.060	0.025	0.253
Methylcyclopentane	0.025	0.009	0.103
Benzene	0.010	0.003	0.038
Cyclohexane	0.029	0.010	0.119
2-Methylhexane	0.007	0.003	0.034
3-Methylhexane	0.008	0.004	0.039
2,2,4 Trimethylpentane	0.000	0.000	0.000
Other C7's	0.018	0.008	0.087
n-Heptane	0.013	0.006	0.064
Methylcyclohexane	0.023	0.009	0.110
Toluene	0.007	0.002	0.032
Other C8's	0.012	0.006	0.065
n-Octane	0.003	0.002	0.017
Ethylbenzene	0.000	0.000	0.000
M & P Xylenes	0.001	0.000	0.005
O-Xylene	0.000	0.000	0.000
Other C9's	0.002	0.001	0.012
n-Nonane	0.000	0.000	0.000
Other C10's	0.000	0.000	0.000
n-Decane	0.000	0.000	0.000
Undecanes (11)	<u>0.000</u>	<u>0.000</u>	<u>0.000</u>
Totals	100.000	5.016	100.000

Computed Real Characteristics Of Total Sample:

Specific Gravity	0.708	(Air=1)
Compressibility (Z)	0.9967	
Molecular Weight	20.44	
Gross Heating Value		
Dry Basis	1217	BTU/CF
Saturated Basis	1196	BTU/CF

Page: 1

GRI-GLYCalc VERSION 4.0 - AGGREGATE CALCULATIONS REPORT

Case Name: Enterprise South Carlsbad

File Name: C:\Users\jzenker\Trinity Consultants, Inc\Enterprise Products - PROJECT\153201.0159 NSR Sig Rev\06 CALCULATIONS\GlyCalc\South Carlsbad GLYCalc VOC_v0.4.ddf Date: September 04, 2020

DESCRIPTION:

Description: Updated gas analysis for dehy based on South Carlsbad Max Hourly Rate.pmx - Sweet gas stream received from Ms. Jing Li (EPCO)

Annual Hours of Operation: 8760.0 hours/yr

EMISSIONS REPORTS:

CONTROLLED REGENERATOR EMISSIONS

Component	lbs/hr	lbs/day	tons/yr
Hydrogen Sulfide	e 0.034	5 0.82	
Methane	2.0630		9.0357
Ethane	4.0149	96.358	17.5854
Propane			
Isobutane	2.2448	53.875	9.8322
n-Butane			
Isopentane			
n-Pentane	-	58.585	
n-Hexane			
Cyclohexane	1.5682	37.63	6 6.8685
Other Hexanes	1.377	2 33.05	52 6.0320
Heptanes	0.8359		3.6613
Methylcyclohexan		44 26.9	
Benzene			
Toluene			
Xylenes	0.2782	6.677	1.2185
C8+ Heavies	0.0125	0.300	0.0548
Total Emissions	40.704	0 976.8	 97 178.2836
Total Hydrocarbon Emis Total VOC Emissio Total HAP Emissio	ons 34.8 ns 7.8	179 187	.628 34.2422
Total BTEX Emissio	ons 7.0	160	8.493 30.7500

Page: 2 UNCONTROLLED REGENERATOR EMISSIONS

Component	lbs/hr	lbs/day	tons/yr	
Hydrogen Sulfide	e 0.037	 71 0.89	0 0.1624	
Methane				
Ethane	4.0347	96.832	17.6719	
Propane	8.5299	204.717	37.3609	
Isobutane				
n-Butane	7.3974	177.539	32.4008	
Isopentane	2.0747	49.793	9.0871	
n-Pentane	2.8323	67.976	12.4056	
n-Hexane	1.1418	27.403	5.0011	
Cyclohexane	2.5465	5 61.11	7 11.1538	
Other Hexanes				
Heptanes				
Methylcyclohexar				
			31.9618	
Toluene	8.1400	195.361	35.6534	
Xylenes	2 5339	60 814	11 0986	
C8+ Heavies				
Total Emissions		54 1499.6		
Total Hydrocarbon Emissions 62.4483 1498.760 273.5238 Total VOC Emissions 56.3473 1352.336 246.8013 Total HAP Emissions 19.1130 458.711 83.7148				
Total BTEX Emissio				

FLASH TANK OFF GAS

Component	lbs/hr	lbs/day	tons/yr
Hydrogen Sulfide	e 0.003	6 0.08	7 0.0158
Methane	19.7893	474.943	86.6771
Ethane	11.4918	275.803	50.3340
Propane	8.9269	214.245	39.0996
Isobutane		38.123	6.9575
n-Butane	3.7218	89.323	16.3014
Isopentane	0.9009	21.622	3.9460
n-Pentane	0.9619	23.085	4.2130
n-Hexane	0.2122	5.094	0.9297
Cyclohexane	0.1358	3.260	0.5950
Other Hexanes	0.4529	9 10.87	0 1.9837
Heptanes	0.1711	4.107	0.7494
Methylcyclohexar	ne 0.10 [°]	17 2.44	42 0.4456
Benzene	0.0380	0.912	0.1664
Toluene	0.0270	0.647	0.1181
Xylenes	0.0030	0.073	0.0133

C8+ Heavies	Page: 3 C8+ Heavies			
	0.0000	1.502	-	
Total Emissions	48.5832	1165.996	212.7943	
Total Hydrocarbon Emissio Total VOC Emissions Total HAP Emissions Total BTEX Emissions	s 17.298 0.2802	65 415.16 2 6.725	3 75.7673 1.2274	

EQUIPMENT REPORTS:

CONDENSER

[Condenser Outlet Tem Condenser Pres Condenser D Hydrocarbon Red Produced Wa VOC Control Effici HAP Control Effici BTEX Control Effici Dissolved Hydrocarbons	sure: 13 uty: 7.69e-(covery: 1 tter: 68.5 ency: 38 ency: 59 iency: 60	.10 psia 001 MM BTU/hr I.70 bbls/day 64 bbls/day .61 % .10 % 0.93 %
	Component	Emitted	Condensed
	Water	0 17%	99.83%
	Carbon Dioxide		
	Hydrogen Sulfide		
	Nitrogen		
	Methane		
	Ethane	99.51%	0.49%
	Propane Isobutane n-Butane	98.08%	1.92%
	Isobutane	96.26%	3.74%
	n-Butane	94.66%	5.34%
	Isopentane	86.82%	13.18%
	n-Pentane	86.19%	13.81%
	n-Hexane	69.83%	13.81% 30.17%
	Cyclohexane		
	Other Hexanes		
	Heptanes	44.59%	55.41%
	Methylcyclohexar	ne 44.41	% 55.59%
	Benzene		43.06%
	Toluene	31.78%	68.22%
		10.98%	89.02%
	7()101100		

Calculated Absorber Stages: 2.05 Specified Dry Gas Dew Point: 7.00 lbs. H2O/MMSCF Temperature: 120.0 deg. F Pressure: 750.0 psig Dry Gas Flow Rate: 200.0000 MMSCF/day Glycol Losses with Dry Gas: 5.8623 lb/hr Wet Gas Water Content: Saturated Calculated Wet Gas Water Content: 126.81 lbs. H2O/MMSCF Calculated Lean Glycol Recirc. Ratio: 1.20 gal/lb H2O

Remaining Absorbed Component in Dry Gas in Glycol ----- -----Water 5.51% 94.49% Carbon Dioxide 99.90% 0.10% Hydrogen Sulfide 99.46% 0.54% Nitrogen 99.99% 0.01% Methane 99.99% 0.01% Ethane 99.98% 0.02% Propane 99.96% 0.04% Isobutane 99.95% 0.05% n-Butane 99.94% 0.06% 99.94% Isopentane 0.06% 99.92% 0.08% n-Pentane n-Hexane 99.88% 0.12% Cyclohexane 99.50% 0.50% Other Hexanes 99.91% 0.09% Heptanes 99.80% 0.20% 99.47% Methylcyclohexane 0.53% Benzene 95.72% 4.28% Toluene 94.23% 5.77% Xylenes 89.11% 10.89% C8+ Heavies 99.16% 0.84%

FLASH TANK

Flash Control: Vented to atmosphere Flash Temperature: 100.0 deg. F Flash Pressure: 73.0 psig

Left in Removed in Component Glycol Flash Gas Water 99.99% 0.01% Carbon Dioxide 61.37% 38.63% Hydrogen Sulfide 91.11% 8.89% Nitrogen 8.57% 91.43%

Methane 9.45% 90.55%

Page: 5

Ethane	25.99%	74.01%
Propane	48.86%	51.14%
Isobutane	59.48%	40.52%
n-Butane	66.53%	33.47%
Isopentane	69.87%	30.13%
n-Pentane	74.77%	25.23%
n-Hexane	84.40%	15.60%
Cyclohexane	95.10%	4.90%
Other Hexanes	80.13%	19.87%
Heptanes	91.68%	8.32%
Methylcyclohexan	e 96.299	% 3.71%
Benzene	99.51%	0.49%
Toluene	99.70%	0.30%
Xylenes	99.90%	0.10%
C8+ Heavies	99.07%	0.93%

REGENERATOR

No Stripping Gas used in regenerator.

Remaining Distilled			
Component		Overhead	
Water	10.11%	89.89%	
Carbon Dioxide	0.00%	100.00%	
Hydrogen Sulfide	e 0.00%	5 100.00%	
Nitrogen	0.00%	100.00%	
Methane			
Ethane	0.00%	100.00%	
Propane			
Isobutane			
n-Butane			
Isopentane	0.72%	99.28%	
n-Pentane	0.67%	99.33%	
n-Hexane	0.59%	99.41%	
Cyclohexane	3.37%	96.63%	
Other Hexanes	s 1.25%	98.75%	
Heptanes	0.55%	99.45%	
Methylcyclohexar	ne 4.16	% 95.84%	
	5.03%		
Toluene			
Xylenes			
C8+ Heavies			
Cot Heavies	12.1070	07.0270	

Page: 6

WET GAS STREAM

Temperature:120.00 deg. FPressure:764.70 psiaFlow Rate:8.36e+006 scfh

Component Conc. Loading (vol%) (lb/hr)

Water 2.67e-001 1.06e+003 Carbon Dioxide 3.18e-001 3.08e+003 Hydrogen Sulfide 9.97e-004 7.49e+000 Nitrogen 1.31e+000 8.08e+003 Methane 8.02e+001 2.83e+005

> Ethane 1.04e+001 6.86e+004 Propane 4.63e+000 4.50e+004 Isobutane 6.07e-001 7.77e+003 n-Butane 1.34e+000 1.71e+004 Isopentane 2.98e-001 4.74e+003

n-Pentane 3.03e-001 4.82e+003 n-Hexane 5.98e-002 1.14e+003 Cyclohexane 2.89e-002 5.36e+002 Other Hexanes 1.28e-001 2.42e+003 Heptanes 4.59e-002 1.01e+003

Methylcyclohexane 2.29e-002 4.96e+002 Benzene 9.97e-003 1.72e+002 Toluene 6.98e-003 1.42e+002 Xylenes 9.97e-004 2.33e+001 C8+ Heavies 1.70e-002 6.36e+002

----- -----

Total Components 100.00 4.50e+005

DRY GAS STREAM

Temperature: 120.00 deg. F Pressure: 764.70 psia Flow Rate: 8.33e+006 scfh

> Component Conc. Loading (vol%) (lb/hr)

Water 1.47e-002 5.83e+001 Carbon Dioxide 3.19e-001 3.08e+003 Hydrogen Sulfide 9.95e-004 7.45e+000 Nitrogen 1.31e+000 8.08e+003 Methane 8.05e+001 2.83e+005

Ethane 1.04e+001 6.86e+004

Page: 7 Propane 4.64e+000 4.49e+004 Isobutane 6.09e-001 7.77e+003 n-Butane 1.34e+000 1.71e+004 Isopentane 2.99e-001 4.74e+003

n-Pentane 3.04e-001 4.81e+003 n-Hexane 5.99e-002 1.13e+003 Cyclohexane 2.89e-002 5.33e+002 Other Hexanes 1.28e-001 2.42e+003 Heptanes 4.59e-002 1.01e+003

Methylcyclohexane 2.29e-002 4.93e+002 Benzene 9.57e-003 1.64e+002 Toluene 6.60e-003 1.34e+002 Xylenes 8.91e-004 2.08e+001 C8+ Heavies 1.69e-002 6.31e+002

Total Components 100.00 4.49e+005

LEAN GLYCOL STREAM

Temperature: 120.00 deg. F Flow Rate: 2.00e+001 gpm

> Component Conc. Loading (wt%) (lb/hr)

TEG 9.90e+001 1.11e+004 Water 1.00e+000 1.13e+002 Carbon Dioxide 2.61e-012 2.94e-010 Hydrogen Sulfide 3.61e-014 4.07e-012 Nitrogen 5.97e-013 6.72e-011

> Methane 6.52e-018 7.34e-016 Ethane 6.51e-008 7.33e-006 Propane 6.31e-009 7.11e-007 Isobutane 1.04e-009 1.18e-007 n-Butane 2.45e-009 2.76e-007

Isopentane 1.33e-004 1.50e-002 n-Pentane 1.69e-004 1.91e-002 n-Hexane 6.04e-005 6.81e-003 Cyclohexane 7.87e-004 8.87e-002 Other Hexanes 2.02e-004 2.28e-002

Heptanes 9.13e-005 1.03e-002 Methylcyclohexane 9.75e-004 1.10e-001 Benzene 3.43e-003 3.86e-001 Toluene 6.23e-003 7.01e-001 Xylenes 3.36e-003 3.78e-001

C8+ Heavies 6.54e-003 7.36e-001

Total Components 100.00 1.13e+004

RICH GLYCOL STREAM

Temperature:120.00 deg. FPressure:764.70 psiaFlow Rate:2.22e+001 gpmNOTE:Stream has more than one phase.

Component Conc. Loading (wt%) (lb/hr)

TEG 9.00e+001 1.11e+004 Water 9.02e+000 1.11e+003 Carbon Dioxide 2.38e-002 2.94e+000 Hydrogen Sulfide 3.29e-004 4.07e-002 Nitrogen 5.40e-003 6.67e-001

> Methane 1.77e-001 2.19e+001 Ethane 1.26e-001 1.55e+001 Propane 1.41e-001 1.75e+001 Isobutane 3.17e-002 3.92e+000 n-Butane 9.00e-002 1.11e+001

Isopentane 2.42e-002 2.99e+000 n-Pentane 3.09e-002 3.81e+000 n-Hexane 1.10e-002 1.36e+000 Cyclohexane 2.24e-002 2.77e+000 Other Hexanes 1.84e-002 2.28e+000

Heptanes 1.66e-002 2.06e+000 Methylcyclohexane 2.22e-002 2.74e+000 Benzene 6.25e-002 7.72e+000 Toluene 7.18e-002 8.87e+000 Xylenes 2.36e-002 2.92e+000

C8+ Heavies 4.94e-002 6.11e+000

Total Components 100.00 1.24e+004

----- -----

FLASH TANK OFF GAS STREAM

Temperature: 100.00 deg. F Pressure: 87.70 psia Flow Rate: 7.59e+002 scfh

> Component Conc. Loading (vol%) (lb/hr)

Water 2.41e-001 8.69e-002 Carbon Dioxide 1.29e+000 1.13e+000 Hydrogen Sulfide 5.31e-003 3.62e-003 Nitrogen 1.09e+000 6.10e-001 Methane 6.16e+001 1.98e+001 Page: 9 Ethane 1.91e+001 1.15e+001 Propane 1.01e+001 8.93e+000 Isobutane 1.37e+000 1.59e+000 n-Butane 3.20e+000 3.72e+000 Isopentane 6.24e-001 9.01e-001

n-Pentane 6.66e-001 9.62e-001 n-Hexane 1.23e-001 2.12e-001 Cyclohexane 8.07e-002 1.36e-001 Other Hexanes 2.63e-001 4.53e-001 Heptanes 8.53e-002 1.71e-001

Methylcyclohexane 5.18e-002 1.02e-001 Benzene 2.43e-002 3.80e-002 Toluene 1.46e-002 2.70e-002 Xylenes 1.43e-003 3.03e-003 C8+ Heavies 1.66e-002 5.68e-002

----- -----

Total Components 100.00 5.04e+001

FLASH TANK GLYCOL STREAM

Temperature: 100.00 deg. F Flow Rate: 2.21e+001 gpm

Component Conc. Loading (wt%) (lb/hr)

TEG 9.04e+001 1.11e+004 Water 9.05e+000 1.11e+003 Carbon Dioxide 1.46e-002 1.80e+000 Hydrogen Sulfide 3.01e-004 3.71e-002 Nitrogen 4.65e-004 5.72e-002

> Methane 1.68e-002 2.07e+000 Ethane 3.28e-002 4.03e+000 Propane 6.93e-002 8.53e+000 Isobutane 1.90e-002 2.33e+000 n-Butane 6.01e-002 7.40e+000

Isopentane 1.70e-002 2.09e+000 n-Pentane 2.32e-002 2.85e+000 n-Hexane 9.33e-003 1.15e+000 Cyclohexane 2.14e-002 2.64e+000 Other Hexanes 1.48e-002 1.83e+000

Heptanes 1.53e-002 1.89e+000 Methylcyclohexane 2.15e-002 2.64e+000 Benzene 6.24e-002 7.68e+000 Toluene 7.19e-002 8.84e+000 Xylenes 2.37e-002 2.91e+000

C8+ Heavies 4.92e-002 6.05e+000

REGENERATOR OVERHEADS STREAM

Temperature:212.00 deg. FPressure:14.70 psiaFlow Rate:2.15e+004 scfh

Component Conc. Loading (vol%) (lb/hr)

Water 9.81e+001 1.00e+003 Carbon Dioxide 7.22e-002 1.80e+000 Hydrogen Sulfide 1.92e-003 3.71e-002 Nitrogen 3.60e-003 5.72e-002 Methane 2.27e-001 2.07e+000

> Ethane 2.37e-001 4.03e+000 Propane 3.41e-001 8.53e+000 Isobutane 7.08e-002 2.33e+000 n-Butane 2.25e-001 7.40e+000 Isopentane 5.07e-002 2.07e+000

n-Pentane 6.93e-002 2.83e+000 n-Hexane 2.34e-002 1.14e+000 Cyclohexane 5.34e-002 2.55e+000 Other Hexanes 3.69e-002 1.80e+000 Heptanes 3.30e-002 1.87e+000

Methylcyclohexane 4.55e-002 2.53e+000 Benzene 1.65e-001 7.30e+000 Toluene 1.56e-001 8.14e+000 Xylenes 4.21e-002 2.53e+000 C8+ Heavies 5.50e-002 5.31e+000

----- -----

Total Components 100.00 1.07e+003

CONDENSER VENT GAS STREAM

Temperature: 110.00 deg. F Pressure: 13.10 psia Flow Rate: 3.62e+002 scfh

Component Conc. Loading (vol%) (lb/hr)

Water 9.80e+000 1.68e+000 Carbon Dioxide 4.20e+000 1.76e+000 Hydrogen Sulfide 1.06e-001 3.45e-002 Nitrogen 2.14e-001 5.72e-002 Methane 1.35e+001 2.06e+000

> Ethane 1.40e+001 4.01e+000 Propane 1.99e+001 8.37e+000

Page: 11 Isobutane 4.05e+000 2.24e+000 n-Butane 1.26e+001 7.00e+000 Isopentane 2.62e+000 1.80e+000

n-Pentane 3.55e+000 2.44e+000 n-Hexane 9.70e-001 7.97e-001 Cyclohexane 1.95e+000 1.57e+000 Other Hexanes 1.68e+000 1.38e+000 Heptanes 8.74e-001 8.36e-001

Methylcyclohexane 1.20e+000 1.12e+000 Benzene 5.58e+000 4.16e+000 Toluene 2.94e+000 2.59e+000 Xylenes 2.75e-001 2.78e-001 C8+ Heavies 7.70e-003 1.25e-002

------ ------

Total Components 100.00 4.42e+001

CONDENSER PRODUCED WATER STREAM

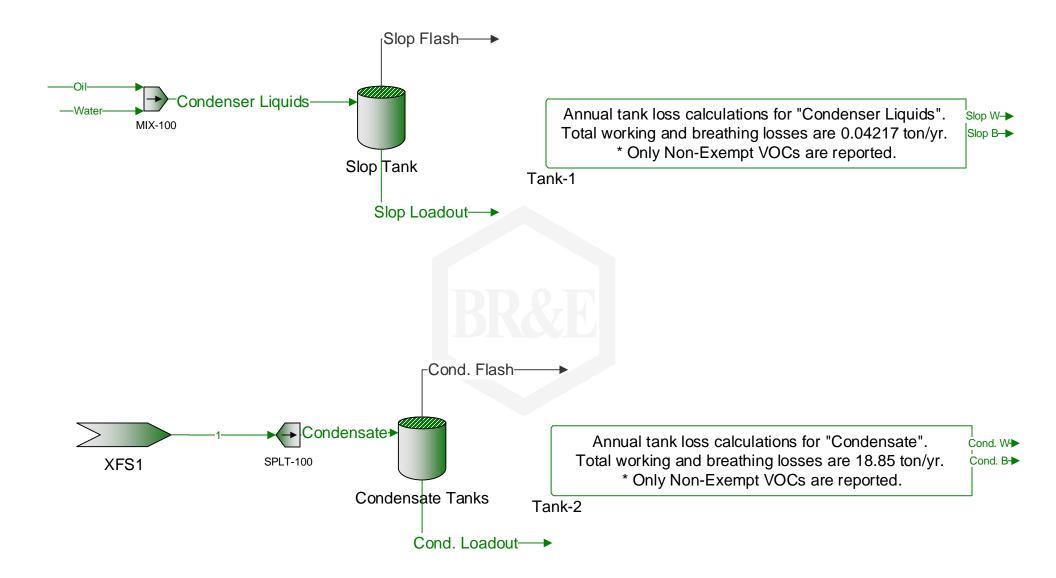
Temperature: 110.00 deg. F Flow Rate: 2.00e+000 gpm

Component Conc. Loading (wt%) (lb/hr) (ppm)	
Water 9.99e+001 1.00e+003 99	99318.
Carbon Dioxide 3.65e-003 3.65e-002	37.
Hydrogen Sulfide 2.31e-004 2.31e-003	2.
Nitrogen 2.89e-006 2.89e-005	0.
Methane 2.06e-004 2.06e-003	2.
Ethane 4.67e-004 4.68e-003	5.
Propane 9.27e-004 9.27e-003	9.
Isobutane 1.37e-004 1.37e-003	1.
n-Butane 5.74e-004 5.74e-003	6.
Isopentane 1.06e-004 1.06e-003	1.
n-Pentane 1.55e-004 1.55e-003	2.
n-Hexane 4.27e-005 4.27e-004	0.
Cyclohexane 4.90e-004 4.91e-003	5.
Other Hexanes 5.90e-005 5.90e-004	1.
Heptanes 2.51e-005 2.51e-004	0.
Toluene 2.01e-002 2.01e-001 2	2. 386. 201. 23. 0.

Total Components 100.00 1.00e+003 1000000.

Temperature: 110.00 deg. F Flow Rate: 4.97e-002 gpm

> Component Conc. Loading (wt%) (lb/hr)


Water 3.79e-002 8.02e-003 Carbon Dioxide 1.52e-002 3.22e-003 Hydrogen Sulfide 1.20e-003 2.55e-004 Nitrogen 1.70e-004 3.59e-005 Methane 6.22e-003 1.32e-003

Ethane 7.13e-002 1.51e-002 Propane 7.31e-001 1.55e-001 Isobutane 4.06e-001 8.59e-002 n-Butane 1.84e+000 3.89e-001 Isopentane 1.29e+000 2.72e-001

n-Pentane 1.84e+000 3.90e-001 n-Hexane 1.63e+000 3.44e-001 Cyclohexane 4.60e+000 9.73e-001 Other Hexanes 2.01e+000 4.25e-001 Heptanes 4.91e+000 1.04e+000

Methylcyclohexane 6.65e+000 1.41e+000 Benzene 1.30e+001 2.76e+000 Toluene 2.53e+001 5.35e+000 Xylenes 1.06e+001 2.23e+000 C8+ Heavies 2.51e+001 5.30e+000

Total Components 100.00 2.11e+001

APPENDIX

Summary of Results Quality Assurance/Quality Control Summary Example Calculations Calibration Certifications Data Logger Files

Summary of Results

Company: Location: Source:	Enterprise Proc South Carlsbac Solar Centaur	l Compressor	-	
Engine Rating:	4500hp @ 150		0010090	
Technician:	RAT			
Test Run Number	1	2	3]
Unit	2	2	2	Ī
Date	4/20/2010	4/20/2010	4/20/2010	
Start Time	16:12	16:36	17:02	
Stop Time	16:32	16:56	17:22	
Unit Operational Data				
Engine Speed (rpm)	15000	15000	15000	1
Unit Horse Power (Hp)*	4320	4320	4320	
NPT Load (%)	90.0	90.0	90.0	
NGP Load (%)	96.0	96.0	96.0	
Compressor Suction Pressure (psig)	258	258	258	
Compressor Discharge Pressure (psig)	446	446	446	
Compressor Suction Temperature (°F)	69	69	69	
Compressor Discharge Pressure (°F)	408	408	408	
T1 Temperature (°F)	95	95	95	
T5 Temperature (°F)	1155	1155	1155	
Lube Oil Pressure (psig)	46.0	46.0	46.0	
Fuel ΔP (psid)	9.0	9.0	9.0	
PCD (psig)	95.0	95.0	95.0	
Fuel Data				
Calculated Fuel Consumption (SCFH)	34000	34000	34000	
O2 F-Factor (DSCF/MMBtu, HHV basis)	8710	8710	8710	
Fuel Heating Value (Btu/SCF, HHV basis)	1093	1093	1093	
BHp Specific Fuel Rate (Btu/Hp-hr, HHV basis)	8602	8602	8602	
BHp Specific Fuel Rate (Btu/Hp-hr, LHV basis)	7750	7750	7750	
Ambient Conditions				
Pressure Altitude (MSL)	3230	3230	3230	Ī
Atmospheric Pressure ("Hg)	26.62	26.62	26.62	
Dry Bulb Temperature (°F)	63	65	68	
Wet Bulb Temperature (°F)	55	54	52	
Humidity (lb/lb air)	0.0084	0.0073	0.0055	
Measured Exhaust Emissions (Corrected)		•		Average
O ₂ (% Vol)	16.86	16.88	16.95	16.90
NOx (ppmv)	73.59	74.50	75.46	74.52
CO (ppmv)	8.30	8.11	8.06	8.2
Exhaust Flow Rate (DSCFH)	-			
Dry SCFH (dry basis, calc. from Hp/BSFR/HHV)	1.67E+06	1.68E+06	1.71E+06	1689983.
Calculated Mass Emission Rates (Based on btu Specif				
NOx (lbs/hr) {Permit Limit = 27}	14.7	14.9	15.4	15.00
$CO (lbs/hr) {Permit Limit = 7.4}$	1.0	0.9	1.0	0.97
*Based on gas producer speed	1.0	0.9	1.0	0.77

*Based on gas producer speed.

Quality Assurance

Method 7E Non-Dilution Measurement System Performance Test Procedures Method 7E Calculated Emission Gas Concentration Project No.: 0023 Technician: RAT

Date:04/20/10Client:Enterprise Products OperatingLocation:South Carlsbad Compressor Station

Calibration Gas Certified	alibration Gas Certified Values Gas Selection, % of Span										
	<u>Span</u>	Low Gas	Mid Gas	<u>High Gas</u>	Analyzer	Analyzer Serial Number	Low (<20%)	Mid (40%-60%)			
O ₂ (% Vol)	20.96	0.00	11.97	20.96	AII GPR-29	001666832	0.0%	57.1%			
NOx (ppmv)	98.18	0.00	50.51	98.18	TECO 42C	03040000000842	0.0%	51.4%			
CO (ppmv)	100.60	0.00	50.05	100.60	TECO 48C	48C-67940-359	0.0%	49.8%			

Initial Lineari	ty Data												
Calibration Error	Analyzer Calibration Response			Abs	olute Differen	ce	Differ	ence (% of Sp	<u>an)</u>				
		Low	Mid	High	Low	Mid	High	Low	Mid	High			
O2 (% Vol)		0.20	12.03	20.90	0.20	0.06	0.06	0.95%	0.29%	0.29%			
NOx (ppmv)		0.00	49.50	98.60	0.00	1.01	0.42	0.00%	1.03%	0.43%			
CO (ppmv)		0.00	50.50	100.81	0.00	0.45	0.21	0.00%	0.45%	0.21%			

 Run Number 1	Start:	16:12	End:	16:32											
Bias and Drift	Upscale	Cal. Resp	onse	Initial V	/alues	Initial Sys	tem Bias	Final '	Values	Final S	ystem Bias	Dri	ft	Emission	Calculation
Dias and Diffe	Gas	Low	Upscale	Low	Upscale	Low	Upscale	Low	Upscale	Low	Upscale	Low	Upscale	Raw Avg	Run Avg
O2 (% Vol)	20.96	0.20	20.90	0.20	20.90	0.00%	0.00%	0.20	20.90	0.00%	0.00%	0.00%	0.00%	16.85	16.86 O2 (% Vol)
NOx (ppmv)	50.51	0.00	49.50	0.00	50.73	0.00%	1.25%	0.00	50.65	0.00%	1.17%	0.00%	-0.08%	73.85	73.59 NOx (ppmv)
CO (ppmv)	50.05	0.00	50.50	0.00	49.98	0.00%	-0.52%	0.00	49.10	0.00%	-1.39%	0.00%	-0.87%	8.22	8.30 CO (ppmv)

 Run Number 2	Start:	16:36	End:	16:56											
Bias and Drift	Upscale	Cal. Respo	onse	Initial V	alues/	Initial Sys	tem Bias	Final '	Values	Final S	ystem Bias	Dri	ft	Emission	Calculation
Dias and Diffe	Gas	Low	Upscale	Low	Upscale	Low	Upscale	Low	Upscale	Low	Upscale	Low	Upscale	Raw Avg	Run Avg
O2(% Vol)	20.96	0.20	20.90	0.20	20.90	0.00%	0.00%	0.20	20.90	0.00%	0.00%	0.00%	0.00%	16.87	16.88 O2 (% Vol)
NOx (ppmv)	50.51	0.00	49.50	0.00	50.73	0.00%	1.25%	0.00	50.65	0.00%	1.17%	0.00%	-0.08%	74.77	74.50 NOx (ppmv)
CO (ppmv)	50.05	0.00	50.50	0.00	49.98	0.00%	-0.52%	0.00	49.10	0.00%	-1.39%	0.00%	-0.87%	8.03	8.11 CO (ppmv)

Run Number 3	Start:	17:02	End:	17:22											
Bias and Drift	Upscale	Cal. Respo	onse	Initial V	/alues	Initial Sys	tem Bias	Final	Values	Final S	ystem Bias	Dri	ft	Emission	Calculation
Dias and Diffe	Gas	Low	Upscale	Low	Upscale	Low	Upscale	Low	Upscale	Low	Upscale	Low	Upscale	Raw Avg	Run Avg
O2(% Vol)	20.96	0.20	20.90	0.20	20.90	0.00%	0.00%	0.20	20.90	0.00%	0.00%	0.00%	0.00%	16.94	16.95 O2 (% Vol)
NOx (ppmv)	50.51	0.00	49.50	0.00	50.73	0.00%	1.25%	0.00	50.65	0.00%	1.17%	0.00%	-0.08%	75.73	75.46 NOx (ppmv)
CO (ppmv)	50.05	0.00	50.50	0.00	49.98	0.00%	-0.52%	0.00	49.10	0.00%	-1.39%	0.00%	-0.87%	7.98	8.06 CO (ppmv)

Example Calculations

	Drift Corrected Emission Concentrations									
	Formula									
	$CGAS = (\mathbf{Q} - \mathbf{Co}) \times \frac{\mathbf{CMA}}{\mathbf{CM} - \mathbf{Co}} (eq.7e-5)$									
All	All Calculations Refer to Test Run 1 or an Average of Runs 1-3									
Çnox =	Raw Concentration of NOx	= 73.85 ppmv								
Co =	Avg. of Initial and Final Zero Checks	= 0.00 ppmv								
См =	Avg. of Initial and Final Span Checks	= 50.69 ppmv								
Сма =	Certified Concentration of Span Gas	= 50.51 ppmv								
CNO _x =	(73.85 - 0) x <u>50.51</u>	= 73.59 ppmv								
	(50.7 - 0)									
Çco =	Raw Concentration of CO	= 8.22 ppmv								
Co =	Avg. of Initial and Final Zero Checks	= 0.00 ppmv								
См =	Avg. of Initial and Final Span Checks	= 49.54 ppmv								
Сма =	Certified Concentration of Span Gas	= 50.05 ppmv								
Cco =	(8.22+0) x 50.05	= 8.30 ppmv								
	(49.5 + 0)									
Ç02 =	Raw Concentration of O2	= 16.85%								
Co =	Avg. of initial and final zero bias checks	= 0.20%								
См =	Avg. of initial and final span bias checks	= 20.90%								
Сма =	Actual concentration of span gas	= 20.96%								
Co2 =	(16.85 - 0.2) x 20.96 = 16.86%									
	(20.9 - 0.2)									

Example Calculations

	Exhaust Calcu	ılati	ions				
	Measured Data and	Con	stants				
CNOx =	Corrected Concentra	tion o	of NOx =	73.59	ppmv		
Cco =	Corrected Concentr	ation	of CO =	8.30	ppmv		
Horsepower =	Observed Horse	-		= 4320	Нр		
lb / mole =	EPA STP for Id				SCF		
lbs / hr to tpy =	Mass Conversio				hrs-tons / lbs-yr		
$C_F =$	PPMV Normal				1 / ppmv		
$MW_{NOx} =$	Molecular Weigh				lb/lb-mol		
MWco =	Molecular Weig				lb / lb-mol		
Stack Gas	Flow Rate via btu Spe	cific	Fuel Rate (.	BSFR)			
Hp =	Engine Horse	powe	r =	4320	Нр		
Fbtu =	FBTU = btu Specific Fuel Rate						
Fo2 =	=	= 8710	DSCF/MMBtu				
Co2 =	of O2 =	= 16.86	%				
$Q_{SM19} =$	2 x 10^6 x	20.9	DSCF/H				
X (1), X (1)				20.9 - %O2	_		
$Q_{SM19} =$	4320.00 x 8602	х	8710		x 1E-06		
$Q_{SM19} =$	1.67E+06	DS	CF/H				
	Formulas						
Bounda non Houn (lba/ba) .							
Pounds per Hour (lbs/hr) :		N 433 7		`			
Ex (lb/	$hr) = Cx * CF * Qs * {$	MW	x / (lb / mole	e) }			
Tons per Year (tpy) :							
Ex (tpy) =	Ex (lb/hr) * { 8760 (h	r / yr)) / 2000 (lb /	ton) }			
Grams per Horsepower-hour (§	g/Hp-hr) :						
Ex (g/	$hp-hr) = \{ Ex (lb/hr) / \}$	Hp }	/ 454 (g / lb)) }			
-	Emission Rates From 1	-	_		utes		
	Enox						
		*	1.675.06*	16	14.50		
lbs/hr =	73.59 * 1 x e-6	~	1.0/E+00 *		_ = 14.72		
				385.15			
tpy =	14.72 lb/br						
·PJ —	14.72 lb/hr	*	4.38		= 64.46		
		*		hrs-ton lbs-yr	-		
g/Hp-hr =	14.72 lb/hr	**	454 g		_ = 64.46 = 1.55		
					-		
	14.72 lb/hr		454 g		-		
	14.72 lb/hr		454 g		-		
	14.72 lb/hr 4320 Hp		454 g	lbs-yr	-		
g/Hp-hr =	14.72 lb/hr 4320 Hp Eco	_*	454 g 1 lb	lbs-yr	- = 1.55		
g/Hp-hr =	14.72 lb/hr 4320 Hp Eco	_*	454 g 1 lb	lbs-yr 28	- = 1.55		
g/Hp-hr = bs/hr =	14.72 lb/hr 4320 Hp Eco 8.30 * 1 x e-6	_ * _	454 g 1 lb 1.67E+06 *	lbs-yr 28 385.15	= 1.55 = 1.01		
g/Hp-hr = bs/hr =	14.72 lb/hr 4320 Hp Eco 8.30 * 1 x e-6	_ * _	454 g 1 lb 1.67E+06 *	28 385.15 hrs-ton	= 1.55 = 1.01		

Airgas Specialty Gases

1075 Cinclare Drive Port Allen, LA 70767 225.388.0900 FAX: 225.388.0959 www.airgas.com

CERTIFICATE OF ANALYSIS Grade of Product: EPA Protocol

Part Number: Cylinder Number: Laboratory: Analysis Date:

E03NI74E15A3384 CC59336 ASG - Port Allen - LA May 25, 2010

Reference Number: 83-124220680-1 Cylinder Volume: Cylinder Pressure: Valve Outlet: 590 Expiration Date: May 25, 2013

149 Cu.Ft. 2015 PSIG

Certification performed in accordance with "EPA Traceability Protocol (Sept. 1997)" using the assay procedures listed. Analytical Methodology does not require correction for analytical interferences. This cylinder has a total analytical uncertainty as stated below with a confidence level of 95%. There are no significant impurities which affect the use of this calibration mixture. All concentrations are on a volume/volume basis unless otherwise noted. Do Not Use This Cylinder below 150 psig.i.e. 1 Mega Pascat

	A. silar silar		ANAL	YTICAL RESULT	rs			
Compor	nent	Re	quested	Actual	Protocol	Total Relative	20205	
		Co	ncentration	Concentration	Method	Uncertainty		
CARBON	DIOXIDE	4.9	00 %	5.110 %	G1	+/- 1% NIST Traceable		
OXYGEN	I	21.	1.00 % 20.96 %		G1	+/- 1% NIST Traceable		
NITROGE	EN	Bal	ance				a ta	
			CALIBR	ATION STANDA	RDS			
Туре	Lot ID	Cylinder No	Concent			Expiration Date		
NTRM	06060806	cc206103	22.51% O	XYGEN/NITROGEN		May 01, 2016		
	06060806 10060118	cc206103 CC281370		XYGEN/NITROGEN ARBON DIOXIDE/NITRO	GEN	May 01, 2016 Nov 01, 2015		
			5.207% CA					
NTRM		CC281370	5.207% C/	ARBON DIOXIDE/NITRO			'n	
NTRM NTRM Instrum	10060118 ent/Make/Model	CC281370	5.207% C/ ANALY Analytica	ARBON DIOXIDE/NITRO		Nov 01, 2015	n	

Triad Data Available Upon Request

Notes: SUMMANNA

Approved for Release

Page 1 of 83-124220680-1

CERTIFICATE OF ANALYSIS Grade of Product: EPA Protocol

Part Number:	E03NI76E1
Cylinder Number:	CC318799
Laboratory:	ASG - Port
Analysis Date:	Oct 15, 201

5A0295 Allen - LA 0

Reference Number: 83-124237642-1 Cylinder Volume: Cylinder Pressure: Valve Outlet: 590

153 Cu.Ft. 2015 PSIG

Expiration Date: Oct 15, 2013

Certification performed in accordance with "EPA Traceability Protocol (Sept. 1997)" using the assay procedures listed. Analytical Methodology does not require correction for analytical interferences. This cylinder has a total analytical uncertainty as stated below with a confidence level of 95%. There are no significant impurities which affect the use of this calibration mixture. All concentrations are on a volume/volume basis unless otherwise noted.

Do Not Use This Cylinder below 150 psig.i.e. 1 Mega Pascal

ANALYTICAL RESULTS								
Component	Requested Concentration	Actual Concentration	Protocol Method	Total Relative Uncertainty				
CARBON DIOXIDE	12.00 %	11.98 %	G1	+/- 1% NIST Traceable				
OXYGEN	12.00 %	11.97 %	G1	+/- 1% NIST Traceable				
NITROGEN	Balance							

	CALIBRATION STANDARDS										
Туре	Lot ID	Cylinder No	Concentration	Expiration Date							
NTRM	00040210	CC108973	10.00% OXYGEN/NITROGEN	Oct 02, 2011							
NTRM	09060612	CC262107	9.921% CARBON DIOXIDE/NITROGEN	Apr 10, 2013							
		AN	VALYTICAL EQUIPMENT								
Instrument	/Make/Model		Analytical Principle	Last Multipoint Calibration							
SCO2GM			NonDispersive Infrared	Sep 24, 2010							
HO2GH			PMO2	Sep 16, 2010							

Triad Data Available Upon Request

Notes:

Signature on file

QA Approval

CERTIFICATE OF ANALYSIS Grade of Product: EPA Protocol

Airgas Specialty Gases 1075 Cinctare Drive

1075 Cinclare Drive
Port Allan, LA 70767
225.388.0900
FAX: 225.388.0959
www.sinnde.com

Part Number:
Cylinder Number:
Laboratory:
Analysis Date:

E04NI99E15A3530 CC265550 ASG - Port Allen - LA Dec 02, 2009

530Reference Number:83-124198943-4Cylinder Volume:144 Cu.Ft.- LACylinder Pressure:2015 PSIGValve Outlet:660Expiration Date:Dec 02, 2011

Certification performed in accordance with "EPA Traceability Protocol (Sept. 1997)" using the assay procedures listed. Analytical Methodology does not require correction for analytical interferences. This cylinder has a total analytical uncertainty as stated below with a confidence level of 95%. There are no significant impurities which affect the use of this calibration mixture. All concentrations are on a volume/volume basis unless otherwise noted. Do Not Use This Cylinder below 150 psig.i.e. 1 Mega Pascal

Manufacture on	ANAL	YTICAL RESULT	ГS	
Component	Requested Concentration	Actual Concentration	Protocol Method	Total Relative Uncertainty
PROPANE	90.00 PPM	90.89 PPM	G1	+/- 1% NIST Traceable
CARBON MONOXIDE	100.0 PPM	100.6 PPM	G1	+/- 1% NIST Traceable
NITRIC OXIDE	100.0 PPM	97.37 PPM	G1	+/- 1% NIST Traceable
NITROGEN	Balance			
Total oxides of nitrogen		98.18 PPM		For Reference Only

CALIBRATION STANDARDS Туре Lot ID Cylinder No Concentration **Expiration Date** NTRM 06060325 CC207559 490PPM NITRIC OXIDE/NITROGEN Jan 01, 2010 08060207 NTRM CC255258 51.26PPM CARBON MONOXIDE/NITROGEN Jan 15, 2012 NTRM 000520 SG9105901BAL 50.5PPM PROPANE/NITROGEN Apr 03, 2010 NTRM 06060241 CC207849 257.0PPM NITRIC OXIDE/NITROGEN Jan 01, 2010 ANALYTICAL EQUIPMENT Analytical Principle Instrument/Make/Model Last Multipoint Calibration ETIR2MCO FTIR Nov 11, 2009 FTIR2MNO FTIR Nov 04, 2009 FTIR2PROPANE (50-500 ppm) FTIR Oct 29, 2009

Triad Data Available Upon Request

Notes:

Im

QA Approval

Page 1 of 83-124198943-4

Airgas Specialty Gases 1075 Cinclare Drive

Port Allen: LA 70767 225 388 0900

FAX: 225.388.0959 www.airgas.com

CERTIFICATE OF ANALYSIS Grade of Product: EPA Protocol

Part Number: Cylinder Number: Laboratory: Analysis Date:

E04NI99E15A3528 SG9135772BAL ASG - Port Allen - LA Dec 02, 2009

Reference Number: 83-124198943-3 Cylinder Volume: Cylinder Pressure: 2015 PSIG Valve Outlet:

144 Cu.Ft. 660

Expiration Date: Dec 02, 2011

Certification performed in accordance with "EPA Traceability Protocol (Sept. 1997)" using the assay procedures listed. Analytical Methodology does not require correction for analytical interferences. This cylinder has a total analytical uncertainty as stated below with a confidence level of 95%. There are no significant impunities which affect the use of this calibration mixture. All concentrations are on a volume/volume basis unless otherwise noted. Do Not Use This Cylinder below 150 psig.i e 1 Mega Pascal

ANALYTICAL RESULTS						
Component	Requested Concentration	Actual Concentration	Protocol Method	Total Relative Uncertainty		
PROPANE	45.00 PPM	44.07 PPM	G1	+/- 1% NIST Traceable		
CARBON MONOXIDE	50.00 PPM	50.05 PPM	G1	+/- 1% NIST Traceable		
NITRIC OXIDE	50.00 PPM	50.50 PPM	G1	+/- 1% NIST Traceable		
NITROGEN	Balance					
Total oxides of nitrogen		50.51 PPM		For Reference Only		

CALIBRATION STANDARDS

Туре	Lot ID	Cylinder No	Concentration	Expiration Date
NTRM	060610	CC206050	49.38PPM NITRIC OXIDE/NITROGEN	Oct 02, 2012
NTRM	08060207	CC255258	51.26PPM CARBON MONOXIDE/NITROGEN	Jan 15, 2012
NTRM	99060203	CC263030	49.62PPM PROPANE/NITROGEN	Jul 08, 2012
			ANALYTICAL EQUIPMENT	
Instrum	ent/Make/Mode	l .	Analytical Principle	Last Multipoint Calibration
FTIR2MC	0		FTIR	Nov 11, 2009
FTIR2LN	0		FTIR	Nov 10, 2009
FTIR2PR	OPANE (10-50 PF	PM)	FTIR	Oct 29, 2009

Triad Data Available Upon Request

Notes 1 2

QA Approval

Page 1 of 83-124198943-3

Droiget Number	Client	Source	Dun Number	Data	Time	O2(0/Val)	NO ₂ (nnmu)	CO (namu)
Project Number 0116	Client Enterprise Products	Source	Run Number	Date 6/22/2011	Time 9:04:05 AM	17.70	NOx (ppmv) 0.00	CO (ppmv) 0.00
0116	Enterprise Products			6/22/2011	9:05:05 AM	17.68	0.00	0.00
0116	Enterprise Products			6/22/2011	9:06:05 AM	17.68	0.00	0.00
0116	Enterprise Products			6/22/2011	9:07:05 AM	17.68	0.00	0.00
0116	Enterprise Products			6/22/2011	9:08:05 AM	17.68	0.00	0.00
0116	Enterprise Products			6/22/2011	9:09:05 AM	17.68	0.00	0.00
0116	Enterprise Products			6/22/2011	9:10:05 AM	17.68	0.00	0.00
0116	Enterprise Products			6/22/2011	9:10:38 AM	17.68	0.00	0.00
0116	Enterprise Products			6/22/2011	9:11:08 AM	17.63	0.00	0.00
0116	Enterprise Products			6/22/2011	9:11:38 AM	17.65	0.00	0.00
0116	Enterprise Products			6/22/2011	9:12:08 AM	1.20	0.00	0.00
0116	Enterprise Products			6/22/2011	9:12:38 AM 9:13:08 AM	0.68	0.00	0.00
0116 0116	Enterprise Products Enterprise Products			6/22/2011 6/22/2011	9:13:08 AM 9:13:38 AM	0.20 0.20	0.00 0.00	0.00 0.00
0116	Enterprise Products			6/22/2011	9:13:38 AM 9:14:08 AM	0.20	0.00	0.00
0116	Enterprise Products			6/22/2011	9:14:38 AM	0.20	0.00	0.00
0116	Enterprise Products			6/22/2011	9:15:08 AM	0.20	0.00	0.00
0116	Enterprise Products			6/22/2011	9:15:38 AM	0.20	0.00	0.00
0116	Enterprise Products			6/22/2011	9:16:08 AM	0.20	0.00	0.00
0116	Enterprise Products			6/22/2011	9:16:38 AM	0.20	0.00	0.00
0116	Enterprise Products			6/22/2011	9:17:08 AM	0.20	0.00	0.00
0116	Enterprise Products			6/22/2011	9:17:34 AM	0.20	0.00	0.00
0116	Enterprise Products			6/22/2011	9:17:34 AM	0.20	0.00	0.00
0116	Enterprise Products			6/22/2011	9:17:34 AM	0.20	0.00	0.00
0116	Enterprise Products			6/22/2011	9:17:34 AM	0.20	0.00	0.00
0116	Enterprise Products			6/22/2011	9:17:34 AM	0.20	0.00	0.00
0116	Enterprise Products			6/22/2011	9:17:34 AM	0.20	0.00	0.00
0116	Enterprise Products			6/22/2011	9:17:34 AM	0.20	0.00	0.00
0116 0116	Enterprise Products Enterprise Products			6/22/2011 6/22/2011	9:17:34 AM 9:17:34 AM	16.50 17.35	0.00 57.62	0.00 25.41
0116	Enterprise Products			6/22/2011	9:17:34 AM	20.50	99.65	50.50
0116	Enterprise Products			6/22/2011	9:17:34 AM	20.90	100.40	50.50
0116	Enterprise Products			6/22/2011	9:17:34 AM	20.90	100.40	50.50
0116	Enterprise Products			6/22/2011	9:17:34 AM	20.90	100.70	50.50
0116	Enterprise Products			6/22/2011	9:17:34 AM	20.90	98.60	50.50
0116	Enterprise Products			6/22/2011	9:17:34 AM	20.90	98.60	50.50
0116	Enterprise Products			6/22/2011	9:17:34 AM	20.90	65.12	85.02
0116	Enterprise Products			6/22/2011	9:17:34 AM	12.63	50.05	100.81
0116	Enterprise Products			6/22/2011	9:17:34 AM	12.08	49.50	100.81
0116	Enterprise Products			6/22/2011	9:17:34 AM	12.03	49.50	100.81
0116	Enterprise Products			6/22/2011	9:17:34 AM	12.03	49.50	100.81
0116	Enterprise Products			6/22/2011	9:17:34 AM	12.03	49.95	100.81
0116	Enterprise Products			6/22/2011	9:17:34 AM	12.03	0.00	100.81
0116 0116	Enterprise Products Enterprise Products			6/22/2011 6/22/2011	9:17:34 AM 9:17:34 AM	12.03 12.03	0.00 0.00	100.81 100.46
0116	Enterprise Products			6/22/2011	9:17:34 AM	12.03	0.00	100.40
0116	Enterprise Products			6/22/2011	9:17:34 AM	1.93	0.00	96.56
0116	Enterprise Products			6/22/2011	9:17:34 AM	0.73	0.00	15.92
0116	Enterprise Products			6/22/2011	9:17:34 AM	0.58	0.00	0.00
0116	Enterprise Products			6/22/2011	9:17:34 AM	0.20	0.00	0.00
0116	Enterprise Products			6/22/2011	9:17:34 AM	0.20	0.00	0.00
0116	Enterprise Products			6/22/2011	9:17:34 AM	0.20	0.00	0.00
0116	Enterprise Products			6/22/2011	9:17:34 AM	0.20	0.00	0.00
0116	Enterprise Products			6/22/2011	9:17:34 AM	0.20	0.00	0.00
0116	Enterprise Products			6/22/2011	9:17:34 AM	0.20	0.00	0.00
0116	Enterprise Products			6/22/2011	9:17:34 AM	0.20	0.00	0.00
0116	Enterprise Products			6/22/2011	9:17:34 AM	0.20	0.00	0.00
0116 0116	Enterprise Products Enterprise Products			6/22/2011 6/22/2011	9:17:34 AM 9:17:34 AM	0.20 0.20	0.00 0.00	0.00 0.00
0116	Enterprise Products			6/22/2011	9:17:34 AM 9:17:34 AM	0.20	0.00	0.00
0116	Enterprise Products			6/22/2011	9:17:34 AM 9:17:34 AM	0.20	0.00	0.00
0116	Enterprise Products			6/22/2011	9:17:34 AM	0.20	0.00	0.00
0116	Enterprise Products			6/22/2011	9:17:34 AM	0.20	0.00	0.00
0116	Enterprise Products			6/22/2011	9:17:34 AM	0.20	0.00	0.00
0116	Enterprise Products			6/22/2011	9:17:34 AM	0.20	0.00	0.00
0116	Enterprise Products			6/22/2011	9:17:34 AM	0.20	0.00	0.00
0116	Enterprise Products			6/22/2011	9:17:34 AM	0.20	0.00	0.00
0116	Enterprise Products			6/22/2011	9:17:34 AM	0.20	0.00	0.00
0116	Enterprise Products			6/22/2011	9:17:34 AM	0.20	0.00	0.00
0116	Enterprise Products			6/22/2011	9:17:34 AM	0.20	0.00	0.00
0116	Enterprise Products			6/22/2011	9:17:34 AM	0.20	0.00	0.00
0116	Enterprise Products			6/22/2011	9:17:34 AM	0.20	0.00	0.00

0116	Enterprise Products			6/22/2011	9:17:34 AM	0.20	0.00	0.00
0116	Enterprise Products			6/22/2011	9:17:34 AM	0.20	0.00	0.00
0116	Enterprise Products			6/22/2011	9:17:34 AM	0.20	0.00	0.00
0116	•			6/22/2011	9:17:34 AM	0.20	0.00	0.00
	Enterprise Products							
0116	Enterprise Products			6/22/2011	9:17:34 AM	0.20	0.00	0.00
0116	Enterprise Products			6/22/2011	9:17:34 AM	0.20	0.00	0.00
0116	Enterprise Products			6/22/2011	9:17:34 AM	0.20	0.00	0.00
0116	Enterprise Products			6/22/2011	9:17:34 AM	0.20	0.00	0.00
	•							
0116	Enterprise Products			6/22/2011	9:17:34 AM	0.20	0.00	0.00
0116	Enterprise Products			6/22/2011	9:17:34 AM	0.20	0.00	0.00
0116	Enterprise Products			6/22/2011	9:17:34 AM	0.20	0.00	0.00
0116	Enterprise Products			6/22/2011	9:17:34 AM	0.20	0.00	0.00
	•							
0116	Enterprise Products			6/22/2011	9:17:34 AM	0.20	0.00	0.00
0116	Enterprise Products			6/22/2011	9:17:34 AM	0.20	0.00	0.00
0116	Enterprise Products			6/22/2011	9:17:34 AM	0.20	0.00	0.00
0116	Enterprise Products			6/22/2011	9:17:34 AM	0.20	0.00	0.00
	•							
0116	Enterprise Products			6/22/2011	9:17:34 AM	0.20	0.00	0.00
0116	Enterprise Products			6/22/2011	9:17:34 AM	0.20	0.00	0.00
0116	Enterprise Products			6/22/2011	9:17:34 AM	0.20	0.00	0.00
0116	Enterprise Products			6/22/2011	9:17:34 AM	0.20	0.00	0.00
	•							
0116	Enterprise Products			6/22/2011	9:17:34 AM	0.20	0.00	0.00
0116	Enterprise Products			6/22/2011	9:17:34 AM	0.20	0.00	0.00
0116	Enterprise Products			6/22/2011	9:17:34 AM	0.20	0.00	0.00
0116	Enterprise Products			6/22/2011	9:17:34 AM	0.20	38.21	45.87
	•							
0116	Enterprise Products			6/22/2011	9:17:34 AM	0.20	49.80	50.70
0116	Enterprise Products			6/22/2011	9:17:34 AM	0.20	49.90	50.80
0116	Enterprise Products			6/22/2011	9:17:34 AM	0.20	49.90	50.80
0116	Enterprise Products			6/22/2011	9:17:34 AM	0.20	49.90	50.80
	•							
0116	Enterprise Products			6/22/2011	9:17:34 AM	0.20	49.90	50.80
0116	Enterprise Products			6/22/2011	9:17:34 AM	19.10	3.75	1.31
0116	Enterprise Products			6/22/2011	9:17:34 AM	20.90	0.00	0.00
0116	Enterprise Products			6/22/2011	9:17:34 AM	20.90	0.00	0.00
	•							
0116	Enterprise Products			6/22/2011	9:17:34 AM	20.90	0.00	0.00
0116	Enterprise Products			6/22/2011	9:17:34 AM	20.90	0.00	0.00
0116	Enterprise Products			6/22/2011	9:17:34 AM	14.23	1.17	1.23
0116	Enterprise Products			6/22/2011	9:17:34 AM	14.90	61.22	6.47
0116	•						72.33	7.23
	Enterprise Products			6/22/2011	9:17:34 AM	15.25		
0116	Enterprise Products			6/22/2011	9:17:34 AM	15.50	73.23	7.23
0116	Enterprise Products			6/22/2011	9:17:34 AM	15.70	73.83	7.23
0116	Enterprise Products			6/22/2011	9:17:34 AM	15.90	73.98	7.23
0116	•			6/22/2011	10:03:08 AM	16.05	74.28	7.23
	Enterprise Products							
0116	Enterprise Products			6/22/2011	10:03:17 AM	16.08	74.13	7.23
0116	Enterprise Products			6/22/2011	10:03:29 AM	16.13	74.13	7.22
0116	Enterprise Products	South Carlsbad Turbine #1	Run 1	6/22/2011	10:03:59 AM	16.25	74.28	7.07
0116	Enterprise Products	South Carlsbad Turbine #1	Run 1	6/22/2011	10:04:29 AM	16.33	74.13	7.23
	•							
0116	Enterprise Products	South Carlsbad Turbine #1	Run 1	6/22/2011	10:04:59 AM	16.38	74.43	7.23
0116	Enterprise Products	South Carlsbad Turbine #1	Run 1	6/22/2011	10:05:29 AM	16.43	74.13	7.07
0116	Enterprise Products	South Carlsbad Turbine #1	Run 1	6/22/2011	10:05:59 AM	16.48	74.28	7.23
0116	Enterprise Products	South Carlsbad Turbine #1	Run 1	6/22/2011	10:06:29 AM	16.50	73.83	7.23
	•							
0116	Enterprise Products	South Carlsbad Turbine #1	Run 1	6/22/2011	10:06:59 AM	16.53	73.83	7.23
0116	Enterprise Products	South Carlsbad Turbine #1	Run 1	6/22/2011	10:07:29 AM	16.53	74.13	7.23
0116	Enterprise Products	South Carlsbad Turbine #1	Run 1	6/22/2011	10:07:59 AM	16.55	74.13	7.22
0116	Enterprise Products	South Carlsbad Turbine #1	Run 1	6/22/2011	10:08:29 AM	16.55	74.28	7.23
	•							
0116	Enterprise Products	South Carlsbad Turbine #1	Run 1	6/22/2011	10:08:59 AM	16.58	74.43	7.23
0116	Enterprise Products	South Carlsbad Turbine #1	Run 1	6/22/2011	10:09:29 AM	16.58	74.43	7.22
0116	Enterprise Products	South Carlsbad Turbine #1	Run 1	6/22/2011	10:09:59 AM	16.58	74.43	7.23
0116	Enterprise Products	South Carlsbad Turbine #1	Run 1	6/22/2011	10:10:29 AM	16.60	75.03	7.23
0116	Enterprise Products	South Carlsbad Turbine #1	Run 1	6/22/2011	10:10:59 AM	16.60	75.03	7.23
	•							
0116	Enterprise Products	South Carlsbad Turbine #1	Run 1	6/22/2011	10:11:29 AM	16.60	75.03	7.07
0116	Enterprise Products	South Carlsbad Turbine #1	Run 1	6/22/2011	10:11:59 AM	16.60	74.43	7.23
0116	Enterprise Products	South Carlsbad Turbine #1	Run 1	6/22/2011	10:12:29 AM	16.60	74.73	7.23
0116	Enterprise Products	South Carlsbad Turbine #1	Run 1	6/22/2011	10:12:59 AM	16.60	74.43	7.23
	*							
0116	Enterprise Products	South Carlsbad Turbine #1	Run 1	6/22/2011	10:13:29 AM	16.60	74.73	7.22
0116	Enterprise Products	South Carlsbad Turbine #1	Run 1	6/22/2011	10:13:59 AM	16.60	74.28	7.07
0116	Enterprise Products	South Carlsbad Turbine #1	Run 1	6/22/2011	10:14:29 AM	16.60	74.58	7.07
0116	Enterprise Products	South Carlsbad Turbine #1	Run 1	6/22/2011	10:14:59 AM	16.60	74.28	7.07
0116	•		Run 1			16.60	74.28	7.07
	Enterprise Products	South Carlsbad Turbine #1		6/22/2011	10:15:29 AM			
0116	Enterprise Products	South Carlsbad Turbine #1	Run 1	6/22/2011	10:15:59 AM	16.63	74.13	7.07
0116	Enterprise Products	South Carlsbad Turbine #1	Run 1	6/22/2011	10:16:29 AM	16.60	74.43	7.07
0116	Enterprise Products	South Carlsbad Turbine #1	Run 1	6/22/2011	10:16:59 AM	16.60	74.28	7.23
0116	Enterprise Products	South Carlsbad Turbine #1	Run 1	6/22/2011	10:17:29 AM	16.60	74.28	7.07
	-							
0116	Enterprise Products	South Carlsbad Turbine #1	Run 1	6/22/2011	10:17:59 AM	16.60	74.13	7.07
0116	Enterprise Products	South Carlsbad Turbine #1	Run 1	6/22/2011	10:18:29 AM	16.63	73.98	7.07

0116	Enterprise Products	South Carlsbad Turbine #1	Run 1	6/22/2011	10:18:59 AM	16.63	73.98	7.07
	*							
0116	Enterprise Products	South Carlsbad Turbine #1	Run 1	6/22/2011	10:19:29 AM	16.63	73.98	7.07
0116	Enterprise Products	South Carlsbad Turbine #1	Run 1	6/22/2011	10:19:59 AM	16.63	73.98	7.07
0116	Enterprise Products	South Carlsbad Turbine #1	Run 1	6/22/2011	10:20:29 AM	16.63	73.98	7.07
0116	Enterprise Products	South Carlsbad Turbine #1	Run 1	6/22/2011	10:20:59 AM	16.63	73.98	7.07
	*							
0116	Enterprise Products	South Carlsbad Turbine #1	Run 1	6/22/2011	10:21:29 AM	16.63	73.83	7.07
0116	Enterprise Products	South Carlsbad Turbine #1	Run 1	6/22/2011	10:21:59 AM	16.63	73.83	7.07
0116	Enterprise Products	South Carlsbad Turbine #1	Run 1	6/22/2011	10:22:29 AM	16.63	73.83	7.07
0116	Enterprise Products	South Carlsbad Turbine #1	Run 1	6/22/2011	10:22:59 AM	16.63	73.98	7.07
	*							
0116	Enterprise Products	South Carlsbad Turbine #1	Run 1	6/22/2011	10:23:29 AM	16.63	73.83	7.07
		Averages				16.56	74.26	7.14
0116	Enterprise Products	South Carlsbad Turbine #1		6/22/2011	10:23:59 AM	16.63	73.98	6.93
0116	Enterprise Products	South Carlsbad Turbine #1		6/22/2011	10:24:29 AM	16.63	73.98	7.07
	Enterprise Products	South Carlsbad Turbine #1			10:24:59 AM			
0116	1			6/22/2011		16.60	74.13	7.07
0116	Enterprise Products	South Carlsbad Turbine #1		6/22/2011	10:25:29 AM	16.63	73.98	7.07
0116	Enterprise Products	South Carlsbad Turbine #1	Run 2	6/22/2011	10:25:59 AM	16.63	74.13	7.08
0116	Enterprise Products	South Carlsbad Turbine #1	Run 2	6/22/2011	10:26:29 AM	16.63	73.98	7.07
0116	Enterprise Products	South Carlsbad Turbine #1	Run 2	6/22/2011	10:26:59 AM	16.60	74.43	7.07
0116		South Carlsbad Turbine #1	Run 2	6/22/2011	10:27:29 AM	16.63	74.13	7.23
	Enterprise Products							
0116	Enterprise Products	South Carlsbad Turbine #1	Run 2	6/22/2011	10:27:59 AM	16.63	74.28	7.07
0116	Enterprise Products	South Carlsbad Turbine #1	Run 2	6/22/2011	10:28:29 AM	16.63	74.13	7.07
0116	Enterprise Products	South Carlsbad Turbine #1	Run 2	6/22/2011	10:28:59 AM	16.63	74.43	7.07
0116	Enterprise Products	South Carlsbad Turbine #1	Run 2	6/22/2011	10:29:29 AM	16.63	74.28	7.07
0116	Enterprise Products	South Carlsbad Turbine #1	Run 2	6/22/2011	10:29:59 AM	16.60	74.58	7.07
	•							
0116	Enterprise Products	South Carlsbad Turbine #1	Run 2	6/22/2011	10:30:29 AM	16.63	74.28	6.92
0116	Enterprise Products	South Carlsbad Turbine #1	Run 2	6/22/2011	10:30:59 AM	16.63	74.58	7.07
0116	Enterprise Products	South Carlsbad Turbine #1	Run 2	6/22/2011	10:31:29 AM	16.63	74.43	7.23
0116	Enterprise Products	South Carlsbad Turbine #1	Run 2	6/22/2011	10:31:59 AM	16.63	74.58	7.07
0116		South Carlsbad Turbine #1	Run 2	6/22/2011	10:32:29 AM	16.63	74.58	7.07
	Enterprise Products							
0116	Enterprise Products	South Carlsbad Turbine #1	Run 2	6/22/2011	10:32:59 AM	16.63	74.73	7.07
0116	Enterprise Products	South Carlsbad Turbine #1	Run 2	6/22/2011	10:33:29 AM	16.60	74.88	6.92
0116	Enterprise Products	South Carlsbad Turbine #1	Run 2	6/22/2011	10:33:59 AM	16.63	74.88	7.07
0116	Enterprise Products	South Carlsbad Turbine #1	Run 2	6/22/2011	10:34:29 AM	16.63	74.88	6.92
0116	Enterprise Products	South Carlsbad Turbine #1	Run 2	6/22/2011	10:34:59 AM	16.63	74.73	6.93
	*							
0116	Enterprise Products	South Carlsbad Turbine #1	Run 2	6/22/2011	10:35:29 AM	16.63	74.73	7.07
0116	Enterprise Products	South Carlsbad Turbine #1	Run 2	6/22/2011	10:35:59 AM	16.63	74.58	7.07
0116	Enterprise Products	South Carlsbad Turbine #1	Run 2	6/22/2011	10:36:29 AM	16.63	74.73	7.07
0116	Enterprise Products	South Carlsbad Turbine #1	Run 2	6/22/2011	10:36:59 AM	16.63	74.43	7.07
0116	Enterprise Products	South Carlsbad Turbine #1	Run 2	6/22/2011	10:37:29 AM	16.63	74.88	7.07
0116	Enterprise Products	South Carlsbad Turbine #1	Run 2	6/22/2011	10:37:59 AM	16.63	74.58	7.07
0116	Enterprise Products	South Carlsbad Turbine #1	Run 2	6/22/2011	10:38:29 AM	16.63	74.88	6.93
0116	Enterprise Products	South Carlsbad Turbine #1	Run 2	6/22/2011	10:38:59 AM	16.63	74.73	7.07
0116	Enterprise Products	South Carlsbad Turbine #1	Run 2	6/22/2011	10:39:29 AM	16.65	74.88	6.93
0116	Enterprise Products	South Carlsbad Turbine #1	Run 2	6/22/2011	10:39:59 AM	16.63	74.73	7.07
	<u>^</u>							
0116	Enterprise Products	South Carlsbad Turbine #1	Run 2	6/22/2011	10:40:29 AM	16.65	74.73	7.07
0116	Enterprise Products	South Carlsbad Turbine #1	Run 2	6/22/2011	10:40:59 AM	16.63	74.88	7.07
0116	Enterprise Products	South Carlsbad Turbine #1	Run 2	6/22/2011	10:41:29 AM	16.65	74.58	7.07
0116	Enterprise Products	South Carlsbad Turbine #1	Run 2	6/22/2011	10:41:59 AM	16.65	74.58	7.07
0116	Enterprise Products	South Carlsbad Turbine #1	Run 2	6/22/2011	10:42:29 AM	16.65	74.58	7.07
	*							
0116	Enterprise Products	South Carlsbad Turbine #1	Run 2	6/22/2011	10:42:59 AM	16.65	74.73	8.72
0116	Enterprise Products	South Carlsbad Turbine #1	Run 2	6/22/2011	10:43:29 AM	16.68	74.73	7.37
0116	Enterprise Products	South Carlsbad Turbine #1	Run 2	6/22/2011	10:43:59 AM	16.65	74.73	7.07
0116	Enterprise Products	South Carlsbad Turbine #1	Run 2	6/22/2011	10:44:29 AM	16.65	74.58	6.93
0116	Enterprise Products	South Carlsbad Turbine #1	Run 2	6/22/2011	10:44:59 AM	16.68	74.73	7.07
0116	Enterprise Products	South Carlsbad Turbine #1	Run 2	6/22/2011	10:45:29 AM	16.68	74.58	7.07
0110	Enterprise Froducts		Kull 2	0/22/2011	10.45.29 AM			
		Averages				16.63	74.57	7.10
0116	Enterprise Products	South Carlsbad Turbine #1		6/22/2011	10:45:59 AM	16.68	74.58	7.07
0116	Enterprise Products	South Carlsbad Turbine #1		6/22/2011	10:46:29 AM	16.68	74.58	7.07
0116	Enterprise Products	South Carlsbad Turbine #1		6/22/2011	10:46:59 AM	16.68	74.88	7.07
0116	Enterprise Products	South Carlsbad Turbine #1		6/22/2011	10:47:29 AM	16.68	74.73	6.93
	*		D 2					
0116	Enterprise Products	South Carlsbad Turbine #1	Run 3	6/22/2011	10:47:59 AM	16.68	75.03	7.07
0116	Enterprise Products	South Carlsbad Turbine #1	Run 3	6/22/2011	10:48:29 AM	16.70	74.88	7.07
0116	Enterprise Products	South Carlsbad Turbine #1	Run 3	6/22/2011	10:48:59 AM	16.68	74.88	6.93
0116	Enterprise Products	South Carlsbad Turbine #1	Run 3	6/22/2011	10:49:29 AM	16.70	75.03	7.07
0116	Enterprise Products	South Carlsbad Turbine #1	Run 3	6/22/2011	10:49:59 AM	16.70	74.88	7.07
	*							
0116	Enterprise Products	South Carlsbad Turbine #1	Run 3	6/22/2011	10:50:29 AM	16.70	74.88	7.07
0116	Enterprise Products	South Carlsbad Turbine #1	Run 3	6/22/2011	10:50:59 AM	16.70	74.58	7.07
0116	Enterprise Products	South Carlsbad Turbine #1	Run 3	6/22/2011	10:51:29 AM	16.70	75.03	7.07
0116	Enterprise Products	South Carlsbad Turbine #1	Run 3	6/22/2011	10:51:59 AM	16.70	74.88	7.07
0116	Enterprise Products	South Carlsbad Turbine #1	Run 3	6/22/2011	10:52:29 AM	16.70	75.48	7.07
0116	Enterprise Products	South Carlsbad Turbine #1	Run 3	6/22/2011	10:52:59 AM	16.70	75.33	7.07
	*							7.07
0116	Enterprise Products	South Carlsbad Turbine #1	Run 3	6/22/2011	10:53:29 AM	16.70	75.48	
0116	Enterprise Products	South Carlsbad Turbine #1	Run 3	6/22/2011	10:53:59 AM	16.70	75.33	7.07

0116	Enterprise Products	South Carlsbad Turbine #1	Run 3	6/22/2011	10:54:29 AM	16.70	75.33	7.07
0116	Enterprise Products	South Carlsbad Turbine #1	Run 3	6/22/2011	10:54:59 AM	16.70	75.63	7.07
0116	Enterprise Products	South Carlsbad Turbine #1	Run 3	6/22/2011	10:55:29 AM	16.70	75.48	7.07
	*							
0116	Enterprise Products	South Carlsbad Turbine #1	Run 3	6/22/2011	10:55:59 AM	16.70	75.93	7.07
0116	Enterprise Products	South Carlsbad Turbine #1	Run 3	6/22/2011	10:56:29 AM	16.70	75.78	7.07
0116	Enterprise Products	South Carlsbad Turbine #1	Run 3	6/22/2011	10:56:59 AM	16.70	76.08	7.07
0116	Enterprise Products	South Carlsbad Turbine #1	Run 3	6/22/2011	10:57:29 AM	16.70	75.78	7.07
0116	Enterprise Products	South Carlsbad Turbine #1	Run 3	6/22/2011	10:57:59 AM	16.70	76.08	7.07
0116	Enterprise Products	South Carlsbad Turbine #1	Run 3	6/22/2011	10:58:29 AM	16.70	76.08	7.07
	*							
0116	Enterprise Products	South Carlsbad Turbine #1	Run 3	6/22/2011	10:58:59 AM	16.70	75.93	7.07
0116	Enterprise Products	South Carlsbad Turbine #1	Run 3	6/22/2011	10:59:29 AM	16.70	76.23	7.07
0116	Enterprise Products	South Carlsbad Turbine #1	Run 3	6/22/2011	10:59:59 AM	16.70	75.78	7.07
0116	Enterprise Products	South Carlsbad Turbine #1	Run 3	6/22/2011	11:00:29 AM	16.70	76.08	7.07
0116	Enterprise Products	South Carlsbad Turbine #1	Run 3	6/22/2011	11:00:59 AM	16.70	76.08	7.07
	Enterprise Products							
0116	I I	South Carlsbad Turbine #1	Run 3	6/22/2011	11:01:29 AM	16.70	76.08	7.07
0116	Enterprise Products	South Carlsbad Turbine #1	Run 3	6/22/2011	11:01:59 AM	16.70	76.38	7.07
0116	Enterprise Products	South Carlsbad Turbine #1	Run 3	6/22/2011	11:02:29 AM	16.70	76.23	7.07
0116	Enterprise Products	South Carlsbad Turbine #1	Run 3	6/22/2011	11:02:59 AM	16.70	76.08	7.07
0116	Enterprise Products	South Carlsbad Turbine #1	Run 3	6/22/2011	11:03:29 AM	16.70	76.08	7.07
0116	Enterprise Products	South Carlsbad Turbine #1	Run 3	6/22/2011	11:03:59 AM	16.70	76.38	7.07
	*							
0116	Enterprise Products	South Carlsbad Turbine #1	Run 3	6/22/2011	11:04:29 AM	16.68	76.23	7.07
0116	Enterprise Products	South Carlsbad Turbine #1	Run 3	6/22/2011	11:04:59 AM	16.70	76.38	7.07
0116	Enterprise Products	South Carlsbad Turbine #1	Run 3	6/22/2011	11:05:29 AM	16.68	76.38	7.07
0116	Enterprise Products	South Carlsbad Turbine #1	Run 3	6/22/2011	11:05:59 AM	16.70	76.23	7.07
0116	Enterprise Products	South Carlsbad Turbine #1	Run 3	6/22/2011	11:06:29 AM	16.70	76.38	7.23
0116	•	South Carlsbad Turbine #1	Run 3	6/22/2011		16.70	76.08	7.07
	Enterprise Products				11:06:59 AM			
0116	Enterprise Products	South Carlsbad Turbine #1	Run 3	6/22/2011	11:07:29 AM	16.70	76.38	7.07
		Averages				16.70	75.71	7.06
0116	Enterprise Products	South Carlsbad Turbine #1		6/22/2011	11:07:59 AM	16.70	76.08	7.07
0116	Enterprise Products	South Carlsbad Turbine #1		6/22/2011	11:08:29 AM	16.70	75.93	7.23
0116	Enterprise Products	South Carlsbad Turbine #1		6/22/2011	11:08:59 AM	1.68	75.63	7.23
0116	Enterprise Products	South Carlsbad Turbine #1		6/22/2011	11:09:29 AM	0.20	55.33	45.77
	•							
0116	Enterprise Products	South Carlsbad Turbine #1		6/22/2011	11:09:59 AM	0.20	5073	49.98
0116	Enterprise Products	South Carlsbad Turbine #1		6/22/2011	11:10:29 AM	0.20	50.73	49.98
0116	Enterprise Products	South Carlsbad Turbine #1		6/22/2011	11:10:59 AM	0.20	50.73	49.98
0116	Enterprise Products	South Carlsbad Turbine #1		6/22/2011	11:11:29 AM	19.98	4.43	1.77
0116	Enterprise Products	South Carlsbad Turbine #1		6/22/2011	11:11:59 AM	20.90	0.00	0.00
0116	•	South Carlsbad Turbine #1		6/22/2011	11:12:29 AM	20.90	0.00	0.00
	Enterprise Products							
0116	Enterprise Products	South Carlsbad Turbine #1		6/22/2011	11:12:59 AM	20.90	0.00	0.00
0116	Enterprise Products	South Carlsbad Turbine #1		6/22/2011	11:13:29 AM	16.68	73.98	6.17
0116	Enterprise Products	South Carlsbad Turbine #1		6/22/2011	11:13:59 AM	16.73	73.53	5.73
0116	Enterprise Products	South Carlsbad Turbine #1		6/22/2011	11:14:29 AM	16.73	72.18	5.73
0116	Enterprise Products	South Carlsbad Turbine #1		6/22/2011	11:14:59 AM	16.70	71.43	4.38
0116	Enterprise Products	South Carlsbad Turbine #1		6/22/2011	11:15:29 AM	16.70	70.98	2.13
	*							
0116	Enterprise Products	South Carlsbad Turbine #1		6/22/2011	11:15:59 AM	16.73	50.57	1.23
0116	Enterprise Products	South Carlsbad Turbine #1		6/22/2011	11:16:29 AM	16.75	27.45	0.63
0116	Enterprise Products	South Carlsbad Turbine #1		6/22/2011	11:16:59 AM	17.10	15.74	0.33
0116	Enterprise Products	South Carlsbad Turbine #1		6/22/2011	11:17:29 AM	17.93	10.49	0.33
0116	Enterprise Products	South Carlsbad Turbine #1		6/22/2011	11:17:59 AM	18.68	7.34	0.33
0116	Enterprise Products	South Carlsbad Turbine #1		6/22/2011		19.23	5.69	0.18
	*				11:18:29 AM			
0116	Enterprise Products	South Carlsbad Turbine #1		6/22/2011	11:18:59 AM	19.63	4.79	0.18
0116	Enterprise Products	South Carlsbad Turbine #1		6/22/2011	11:19:29 AM	19.90	4.34	0.18
0116	Enterprise Products	South Carlsbad Turbine #1		6/22/2011	11:19:59 AM	20.08	4.04	0.33
0116	Enterprise Products	South Carlsbad Turbine #1		6/22/2011	11:20:29 AM	20.10	4.04	0.48
0116	Enterprise Products	South Carlsbad Turbine #1		6/22/2011	11:20:59 AM	20.20	4.34	0.18
0116	Enterprise Products	South Carlsbad Turbine #1		6/22/2011	11:21:29 AM	20.28	4.04	0.17
	*	South Carlsbad Turbine #1						
0116	Enterprise Products			6/22/2011	11:21:59 AM	20.33	3.59	2.88
0116	Enterprise Products	South Carlsbad Turbine #1		6/22/2011	11:22:29 AM	20.38	3.29	5.87
0116	Enterprise Products	South Carlsbad Turbine #2		6/22/2011	11:22:54 AM	20.40	17.24	6.17
0116	Enterprise Products	South Carlsbad Turbine #2		6/22/2011	11:23:24 AM	17.10	56.12	8.12
0116	Enterprise Products	South Carlsbad Turbine #2		6/22/2011	11:23:54 AM	16.93	71.73	8.12
0116	Enterprise Products	South Carlsbad Turbine #2		6/22/2011	11:24:17 AM	16.90	73.98	8.12
0116	Enterprise Products	South Carlsbad Turbine #2	Run 1	6/22/2011	11:24:47 AM	16.88	74.13	8.42
	•							
0116	Enterprise Products	South Carlsbad Turbine #2	Run 1	6/22/2011	11:25:17 AM	16.88	74.28	8.27
0116	Enterprise Products	South Carlsbad Turbine #2	Run 1	6/22/2011	11:25:47 AM	16.85	73.98	8.27
		South Carlsbad Turbine #2	Run 1	6/22/2011	11:26:17 AM	16.85	73.98	8.42
0116	Enterprise Products	South Carisbau Turbine #2						
	•	South Carlsbad Turbine #2	Run 1	6/22/2011	11:26:47 AM	16.85	73.98	8.27
0116	Enterprise Products	South Carlsbad Turbine #2	Run 1 Run 1	6/22/2011 6/22/2011	11:26:47 AM 11:27:17 AM	16.85 16.85	73.98 73.98	8.27 8.12
0116 0116	Enterprise Products Enterprise Products	South Carlsbad Turbine #2 South Carlsbad Turbine #2	Run 1	6/22/2011	11:27:17 AM	16.85	73.98	8.12
0116 0116 0116	Enterprise Products Enterprise Products Enterprise Products	South Carlsbad Turbine #2 South Carlsbad Turbine #2 South Carlsbad Turbine #2	Run 1 Run 1	6/22/2011 6/22/2011	11:27:17 AM 11:27:47 AM	16.85 16.85	73.98 74.13	8.12 8.12
0116 0116 0116 0116	Enterprise Products Enterprise Products Enterprise Products Enterprise Products	South Carlsbad Turbine #2 South Carlsbad Turbine #2 South Carlsbad Turbine #2 South Carlsbad Turbine #2	Run 1 Run 1 Run 1	6/22/2011 6/22/2011 6/22/2011	11:27:17 AM 11:27:47 AM 11:28:17 AM	16.85 16.85 16.85	73.98 74.13 73.83	8.12 8.12 8.57
0116 0116 0116 0116 0116	Enterprise Products Enterprise Products Enterprise Products Enterprise Products Enterprise Products	South Carlsbad Turbine #2 South Carlsbad Turbine #2 South Carlsbad Turbine #2 South Carlsbad Turbine #2 South Carlsbad Turbine #2	Run 1 Run 1 Run 1 Run 1	6/22/2011 6/22/2011 6/22/2011 6/22/2011	11:27:17 AM 11:27:47 AM 11:28:17 AM 11:28:47 AM	16.85 16.85 16.85 16.83	73.98 74.13 73.83 74.28	8.12 8.12 8.57 8.42
0116 0116 0116 0116	Enterprise Products Enterprise Products Enterprise Products Enterprise Products	South Carlsbad Turbine #2 South Carlsbad Turbine #2 South Carlsbad Turbine #2 South Carlsbad Turbine #2	Run 1 Run 1 Run 1	6/22/2011 6/22/2011 6/22/2011	11:27:17 AM 11:27:47 AM 11:28:17 AM	16.85 16.85 16.85	73.98 74.13 73.83	8.12 8.12 8.57
0116 0116 0116 0116 0116	Enterprise Products Enterprise Products Enterprise Products Enterprise Products Enterprise Products	South Carlsbad Turbine #2 South Carlsbad Turbine #2 South Carlsbad Turbine #2 South Carlsbad Turbine #2 South Carlsbad Turbine #2	Run 1 Run 1 Run 1 Run 1	6/22/2011 6/22/2011 6/22/2011 6/22/2011	11:27:17 AM 11:27:47 AM 11:28:17 AM 11:28:47 AM	16.85 16.85 16.85 16.83	73.98 74.13 73.83 74.28	8.12 8.12 8.57 8.42

0116	Enterprise Products	South Carlsbad Turbine #2	Run 1	6/22/2011	11:30:17 AM	16.85	74.43	8.12
	1 L							
0116	Enterprise Products	South Carlsbad Turbine #2	Run 1	6/22/2011	11:30:47 AM	16.85	74.13	8.27
0116	Enterprise Products	South Carlsbad Turbine #2	Run 1	6/22/2011	11:31:17 AM	16.83	74.28	8.12
	*							
0116	Enterprise Products	South Carlsbad Turbine #2	Run 1	6/22/2011	11:31:47 AM	16.83	74.13	8.12
0116	Enterprise Products	South Carlsbad Turbine #2	Run 1	6/22/2011	11:32:17 AM	16.83	74.13	8.12
	*							
0116	Enterprise Products	South Carlsbad Turbine #2	Run 1	6/22/2011	11:32:47 AM	16.85	73.98	8.12
0116	Enterprise Products	South Carlsbad Turbine #2	Run 1	6/22/2011	11:33:17 AM	16.85	73.53	8.27
	1							
0116	Enterprise Products	South Carlsbad Turbine #2	Run 1	6/22/2011	11:33:47 AM	16.85	73.53	8.12
0116	Enterprise Products	South Carlsbad Turbine #2	Run 1	6/22/2011	11:34:17 AM	16.85	73.08	8.42
	*							
0116	Enterprise Products	South Carlsbad Turbine #2	Run 1	6/22/2011	11:34:47 AM	16.85	73.23	8.87
0116	Enterprise Products	South Carlsbad Turbine #2	Run 1	6/22/2011	11:35:17 AM	16.85	72.93	8.42
	*							
0116	Enterprise Products	South Carlsbad Turbine #2	Run 1	6/22/2011	11:35:47 AM	16.85	72.78	8.72
0116	Enterprise Products	South Carlsbad Turbine #2	Run 1	6/22/2011	11:36:17 AM	16.85	72.78	8.27
	*							
0116	Enterprise Products	South Carlsbad Turbine #2	Run 1	6/22/2011	11:36:47 AM	16.85	72.63	8.27
0116	Enterprise Products	South Carlsbad Turbine #2	Run 1	6/22/2011	11:37:17 AM	16.85	72.63	8.57
	*							
0116	Enterprise Products	South Carlsbad Turbine #2	Run 1	6/22/2011	11:37:47 AM	16.85	72.78	8.12
0116	Enterprise Products	South Carlsbad Turbine #2	Run 1	6/22/2011	11:38:17 AM	16.85	72.93	7.97
	•							
0116	Enterprise Products	South Carlsbad Turbine #2	Run 1	6/22/2011	11:38:47 AM	16.85	73.08	7.97
0116	Enterprise Products	South Carlsbad Turbine #2	Run 1	6/22/2011	11:39:17 AM	16.85	73.23	7.97
	*							
0116	Enterprise Products	South Carlsbad Turbine #2	Run 1	6/22/2011	11:39:47 AM	16.85	73.23	7.97
0116	Enterprise Products	South Carlsbad Turbine #2	Run 1	6/22/2011	11:40:17 AM	16.85	73.68	7.97
	*							
0116	Enterprise Products	South Carlsbad Turbine #2	Run 1	6/22/2011	11:40:47 AM	16.85	73.38	8.12
0116	Enterprise Products	South Carlsbad Turbine #2	Run 1	6/22/2011	11:41:17 AM	16.85	74.13	8.12
	•	South Carlsbad Turbine #2						
0116	Enterprise Products	South Carisbad Turbine #2	Run 1	6/22/2011	11:41:47 AM	16.85	74.28	8.27
0116	Enterprise Products	South Carlsbad Turbine #2	Run 1	6/22/2011	11:42:17 AM	16.85	74.73	8.12
	*	Sauth Carlahad Truthing #2						
0116	Enterprise Products	South Carlsbad Turbine #2	Run 1	6/22/2011	11:42:47 AM	16.85	75.33	8.12
0116	Enterprise Products	South Carlsbad Turbine #2	Run 1	6/22/2011	11:43:17 AM	16.85	75.18	7.97
	*							
0116	Enterprise Products	South Carlsbad Turbine #2	Run 1	6/22/2011	11:43:47 AM	16.85	75.48	8.12
0116	Enterprise Products	South Carlsbad Turbine #2	Run 1	6/22/2011	11:44:17 AM	16.85	75.33	8.12
	i i i i i i i i i i i i i i i i i i i					16.85	73.85	8.22
		Averages						
0116	Enterprise Products	South Carlsbad Turbine #2		6/22/2011	11:44:47 AM	16.85	75.03	7.97
0116	Enterprise Products	South Carlsbad Turbine #2		6/22/2011	11:45:17 AM	16.85	75.18	7.97
	*							
0116	Enterprise Products	South Carlsbad Turbine #2		6/22/2011	11:45:47 AM	16.85	74.73	7.97
0116	Enterprise Products	South Carlsbad Turbine #2		6/22/2011	11:46:17 AM	16.85	75.03	8.12
	*				11.40.17 AM			
0116	Enterprise Products	South Carlsbad Turbine #2		6/22/2011	11:46:47 AM	16.85	75.03	8.27
0116	Enterprise Products	South Carlsbad Turbine #2	Run 2	6/22/2011	11:47:17 AM	16.85	74.88	8.27
	*							
0116	Enterprise Products	South Carlsbad Turbine #2	Run 2	6/22/2011	11:47:47 AM	16.85	75.18	8.12
0116	•	South Carlsbad Turbine #2	Run 2	6/22/2011	11.48.17 AM	16.85	74.88	7.97
	Enterprise Products				11:48:17 AM			
0116	Enterprise Products	South Carlsbad Turbine #2	Run 2	6/22/2011	11:48:47 AM	16.85	75.18	8.12
0116	•	South Carlsbad Turbine #2	Run 2	6/22/2011	11.40.17 AM	16.85	75.18	8.12
	Enterprise Products				11:49:17 AM			
0116	Enterprise Products	South Carlsbad Turbine #2	Run 2	6/22/2011	11:49:47 AM	16.85	74.88	8.12
0116	Enterprise Products	South Carlsbad Turbine #2	Run 2	6/22/2011	11:50:17 AM	16.85	75.33	7.97
	•							
0116	Enterprise Products	South Carlsbad Turbine #2	Run 2	6/22/2011	11:50:47 AM	16.85	74.88	7.97
0116	Enterprise Products	South Carlsbad Turbine #2	Run 2	6/22/2011	11:51:17 AM	16.85	75.03	8.12
	•							
0116	Enterprise Products	South Carlsbad Turbine #2	Run 2	6/22/2011	11:51:47 AM	16.85	75.03	8.12
0116	Enterprise Products	South Carlsbad Turbine #2	Run 2	6/22/2011	11:52:17 AM	16.85	74.88	8.12
	*							
0116	Enterprise Products	South Carlsbad Turbine #2	Run 2	6/22/2011	11:52:47 AM	16.85	74.88	8.12
0116	Enterprise Products	South Carlsbad Turbine #2	Run 2	6/22/2011	11:53:17 AM	16.85	74.58	8.12
	_							
0116	Enterprise Products	South Carlsbad Turbine #2	Run 2	6/22/2011	11:53:47 AM	16.85	75.03	7.97
0116	Enterprise Products	South Carlsbad Turbine #2	Run 2	6/22/2011	11:54:17 AM	16.88	75.03	8.12
	•							
0116	Enterprise Products	South Carlsbad Turbine #2	Run 2	6/22/2011	11:54:47 AM	16.85	74.88	8.12
0116	Enterprise Products	South Carlsbad Turbine #2	Run 2	6/22/2011	11:55:17 AM	16.88	75.03	8.12
	•							
0116	Enterprise Products	South Carlsbad Turbine #2	Run 2	6/22/2011	11:55:47 AM	16.88	74.88	7.97
0116	Enterprise Products	South Carlsbad Turbine #2	Run 2	6/22/2011	11:56:17 AM	16.88	75.18	7.97
	•							
0116	Enterprise Products	South Carlsbad Turbine #2	Run 2	6/22/2011	11:56:47 AM	16.88	75.18	7.97
0116	Enterprise Products	South Carlsbad Turbine #2	Run 2	6/22/2011	11:57:17 AM	16.88	75.18	8.12
0116	Enterprise Products	South Carlsbad Turbine #2	Run 2	6/22/2011			75.48	7.97
	*				11:57:47 AM	16.88		
0116	Enterprise Products	South Carlsbad Turbine #2	Run 2	6/22/2011	11:58:17 AM	16.88	75.33	7.97
0116	Enterprise Products	South Carlsbad Turbine #2	Run 2	6/22/2011	11:58:47 AM	16.88	75.33	7.97
	*							
0116	Enterprise Products	South Carlsbad Turbine #2	Run 2	6/22/2011	11:59:17 AM	16.88	75.33	7.97
0116	Enterprise Products	South Carlsbad Turbine #2	Run 2	6/22/2011	11:59:47 AM	16.88	75.18	7.97
	1							
0116	Enterprise Products	South Carlsbad Turbine #2	Run 2	6/22/2011	12:00:17 PM	16.88	75.03	8.12
0116	Enterprise Products	South Carlsbad Turbine #2	Run 2	6/22/2011	12:00:47 PM	16.88	74.73	8.27
	•							
0116	Enterprise Products	South Carlsbad Turbine #2	Run 2	6/22/2011	12:01:17 PM	16.88	74.58	8.13
0116	Enterprise Products	South Carlsbad Turbine #2	Run 2	6/22/2011	12:01:47 PM	16.88	74.28	7.97
	•							
0116	Enterprise Products	South Carlsbad Turbine #2	Run 2	6/22/2011	12:02:17 PM	16.88	74.13	7.97
0116	Enterprise Products	South Carlsbad Turbine #2	Run 2	6/22/2011	12:02:47 PM	16.88	74.28	7.97
	•							
0116	Enterprise Products	South Carlsbad Turbine #2	Run 2	6/22/2011	12:03:17 PM	16.88	73.98	7.97
0116	Enterprise Products	South Carlsbad Turbine #2	Run 2	6/22/2011	12:03:47 PM	16.88	74.13	7.97
	•							
0116	Enterprise Products	South Carlsbad Turbine #2	Run 2	6/22/2011	12:04:17 PM	16.90	73.83	7.97
0116	Enterprise Products	South Carlsbad Turbine #2	Run 2	6/22/2011	12:04:47 PM	16.90	74.13	7.97
	*							
0116	Enterprise Products	South Carlsbad Turbine #2	Run 2	6/22/2011	12:05:17 PM	16.90	73.83	7.97
0116	Enterprise Products	South Carlsbad Turbine #2	Run 2	6/22/2011	12:05:47 PM	16.90	73.98	7.97
0110	Enterprise i fouuets	Soun Carisbau Turblic #2	ixull 2	0/22/2011	12.00.4/1101	10.70	15.70	1.71

0116	Enterprise Products	South Carlsbad Turbine #2	Run 2	6/22/2011	12:06:17 PM	16.90	74.13	7.82
0116	Enterprise Products	South Carlsbad Turbine #2	Run 2	6/22/2011	12:06:47 PM	16.90	74.28	7.97
0116	Enterprise Products	South Carlsbad Turbine #2	Run 2	6/22/2011	12:07:17 PM	16.90	74.28	7.97
011.6		Averages		6/22/2011	10.05.15.01.6	16.87	74.77	8.03
0116	Enterprise Products	South Carlsbad Turbine #2		6/22/2011	12:07:47 PM	16.90	74.43	7.97
0116	Enterprise Products	South Carlsbad Turbine #2		6/22/2011	12:08:17 PM	16.90	74.58	7.97
0116	Enterprise Products	South Carlsbad Turbine #2		6/22/2011	12:08:47 PM	16.90	74.43	7.97
0116	Enterprise Products	South Carlsbad Turbine #2		6/22/2011	12:09:17 PM	16.90	74.73	7.97
0116	Enterprise Products	South Carlsbad Turbine #2		6/22/2011	12:09:47 PM	16.90	74.58	8.27
0116	Enterprise Products	South Carlsbad Turbine #2		6/22/2011	12:10:17 PM	16.90	74.73	8.27
0116	Enterprise Products	South Carlsbad Turbine #2	D 2	6/22/2011	12:10:47 PM	16.90	74.58	8.43
0116	Enterprise Products	South Carlsbad Turbine #2	Run 3	6/22/2011	12:11:17 PM	16.90	74.58	8.12 8.12
0116	Enterprise Products	South Carlsbad Turbine #2	Run 3	6/22/2011	12:11:47 PM 12:12:17 PM	16.90	74.73	8.12 7.97
0116	Enterprise Products	South Carlsbad Turbine #2 South Carlsbad Turbine #2	Run 3	6/22/2011 6/22/2011		16.93	74.28 75.03	
0116	Enterprise Products		Run 3	6/22/2011	12:12:47 PM	16.93	75.05	8.43 7.97
0116 0116	Enterprise Products	South Carlsbad Turbine #2 South Carlsbad Turbine #2	Run 3 Run 3	6/22/2011	12:13:17 PM 12:13:47 PM	16.93 16.93	74.88 75.18	8.12
0116	Enterprise Products	South Carlsbad Turbine #2	Run 3	6/22/2011	12:13:47 PM 12:14:17 PM	16.93	75.33	8.12 7.97
0116	Enterprise Products Enterprise Products	South Carlsbad Turbine #2	Run 3	6/22/2011	12:14:17 PM	16.93	75.48	7.97
0116	•	South Carlsbad Turbine #2	Run 3	6/22/2011	12:14:47 PM 12:15:17 PM	16.93	75.93	7.97
0116	Enterprise Products	South Carlsbad Turbine #2	Run 3	6/22/2011	12:15:47 PM	16.93	75.63	7.97
0116	Enterprise Products Enterprise Products	South Carlsbad Turbine #2	Run 3	6/22/2011	12:16:17 PM	16.93	75.93	7.97
0116	Enterprise Products	South Carlsbad Turbine #2	Run 3	6/22/2011	12:16:47 PM	16.93	75.78	8.12
0116	Enterprise Products	South Carlsbad Turbine #2	Run 3	6/22/2011	12:17:17 PM	16.93	75.63	7.97
0116	Enterprise Products	South Carlsbad Turbine #2	Run 3	6/22/2011	12:17:47 PM	16.93	75.78	7.97
0116	Enterprise Products	South Carlsbad Turbine #2	Run 3	6/22/2011	12:17:47 PM	16.93	75.48	7.97
0116	Enterprise Products	South Carlsbad Turbine #2	Run 3	6/22/2011	12:18:47 PM	16.93	75.78	7.97
0116	Enterprise Products	South Carlsbad Turbine #2	Run 3	6/22/2011	12:10:47 PM	16.93	75.78	7.97
0116	Enterprise Products	South Carlsbad Turbine #2	Run 3	6/22/2011	12:19:47 PM	16.93	75.48	7.97
0116	Enterprise Products	South Carlsbad Turbine #2	Run 3	6/22/2011	12:20:17 PM	16.93	75.78	7.97
0116	Enterprise Products	South Carlsbad Turbine #2	Run 3	6/22/2011	12:20:47 PM	16.93	75.63	7.97
0116	Enterprise Products	South Carlsbad Turbine #2	Run 3	6/22/2011	12:20:47 PM	16.95	75.93	7.97
0116	Enterprise Products	South Carlsbad Turbine #2	Run 3	6/22/2011	12:21:47 PM	16.95	75.78	7.97
0116	Enterprise Products	South Carlsbad Turbine #2	Run 3	6/22/2011	12:22:17 PM	16.95	75.48	7.97
0116	Enterprise Products	South Carlsbad Turbine #2	Run 3	6/22/2011	12:22:47 PM	16.95	75.93	7.97
0116	Enterprise Products	South Carlsbad Turbine #2	Run 3	6/22/2011	12:23:17 PM	16.95	75.78	7.97
0116	Enterprise Products	South Carlsbad Turbine #2	Run 3	6/22/2011	12:23:47 PM	16.95	76.08	7.97
0116	Enterprise Products	South Carlsbad Turbine #2	Run 3	6/22/2011	12:24:17 PM	16.95	76.23	7.97
0116	Enterprise Products	South Carlsbad Turbine #2	Run 3	6/22/2011	12:24:47 PM	16.95	76.08	7.97
0116	Enterprise Products	South Carlsbad Turbine #2	Run 3	6/22/2011	12:25:17 PM	16.95	76.23	7.97
0116	Enterprise Products	South Carlsbad Turbine #2	Run 3	6/22/2011	12:25:47 PM	16.95	76.08	7.82
0116	Enterprise Products	South Carlsbad Turbine #2	Run 3	6/22/2011	12:26:17 PM	16.98	76.08	7.97
0116	Enterprise Products	South Carlsbad Turbine #2	Run 3	6/22/2011	12:26:47 PM	16.98	76.23	7.97
0116	Enterprise Products	South Carlsbad Turbine #2	Run 3	6/22/2011	12:27:17 PM	16.98	76.08	7.97
0116	Enterprise Products	South Carlsbad Turbine #2	Run 3	6/22/2011	12:27:47 PM	16.98	76.23	7.97
0116	Enterprise Products	South Carlsbad Turbine #2	Run 3	6/22/2011	12:28:17 PM	16.98	76.23	7.82
0116	Enterprise Products	South Carlsbad Turbine #2	Run 3	6/22/2011	12:28:47 PM	16.98	76.23	7.97
0116	Enterprise Products	South Carlsbad Turbine #2	Run 3	6/22/2011	12:29:17 PM	16.98	76.53	7.97
0116	Enterprise Products	South Carlsbad Turbine #2	Run 3	6/22/2011	12:29:47 PM	16.98	76.08	7.82
0116	Enterprise Products	South Carlsbad Turbine #2	Run 3	6/22/2011	12:30:17 PM	16.98	76.08	7.97
0116	Enterprise Products	South Carlsbad Turbine #2	Run 3	6/22/2011	12:30:47 PM	16.98	75.78	7.97
0116	Enterprise Products	South Carlsbad Turbine #2	Run 3	6/22/2011	12:31:17 PM	16.98	75.48	7.82
		Averages				16.94	75.73	7.98
0116	Enterprise Products	South Carlsbad Turbine #2		6/22/2011	12:31:47 PM	17.05	75.48	7.97
0116	Enterprise Products	South Carlsbad Turbine #2		6/22/2011	12:32:17 PM	9.50	52.78	7.97
0116	Enterprise Products	South Carlsbad Turbine #2		6/22/2011	12:32:47 PM	0.75	50.65	22.80
0116	Enterprise Products	South Carlsbad Turbine #2		6/22/2011	12:33:17 PM	0.20	50.65	49.10
0116	Enterprise Products	South Carlsbad Turbine #2		6/22/2011	12:33:47 PM	0.20	50.65	49.10
0116	Enterprise Products	South Carlsbad Turbine #2		6/22/2011	12:34:17 PM	19.85	29.00	26.10
0116	Enterprise Products	South Carlsbad Turbine #2		6/22/2011	12:34:47 PM	20.88	0.00	0.00
0116	Enterprise Products	South Carlsbad Turbine #2		6/22/2011	12:35:17 PM	20.90	0.00	0.00
0116								0.00

Nolan, Shiver

From:	Heap, James
Sent:	Monday, July 02, 2012 12:55 PM
То:	Nolan, Shiver
Cc:	Thompson, Roger
Subject:	FW: Carlsbad Testing
Attachments:	EPCO_SC_Unit_1_Report.pdf; EPCO_SC_Unit_2_Report.pdf

The annual testing for SoCarlsbad has been received. The reports are to be included with the next semi-annual report in October. These are for loading to the portal.

From: Ross Thompson [mailto:rthompson@relienteti.com] Sent: Tuesday, June 26, 2012 4:37 PM To: Heap, James Subject: RE: Carlsbad Testing

Attached. I reduced the file size, in case your mail server is booting it due to size.

Thank you,

Ross A. Thompson

Principal Scientist Relient Emissions Testing. Inc. 806-773-8851 Tel 806-771-2894 Fax

From: Heap, James [mailto:JKHEAP@eprod.com] Sent: Tuesday, June 26, 2012 1:01 PM To: 'Ross Thompson' Subject: RE: Carlsbad Testing

This is the last email I have in my inbox from you.

Can you re-transmit?

Thanks

From: Ross Thompson [mailto:rthompson@relienteti.com] Sent: Wednesday, May 23, 2012 12:04 PM To: Heap, James Subject: Re: Carlsbad Testing

I'll be there at 08:00 local time.

Ross Thompson Principal Scientist Relient Emissions Testing, Inc. TEL: 806-773-8851 email: <u>rthompson@relienteti.com</u>

Connected by DROID on Verizon Wireless

From: "Heap, James" <<u>JKHEAP@eprod.com</u>> Sent: Wed May 23 12:01:19 CDT 2012 To: 'Ross Thompson' <<u>rthompson@relienteti.com</u>> Subject: Carlsbad Testing

Do you have an approximate arrival time for the Carlsbad testing tomorrow?

This message (including any attachments) is confidential and intended for a specific individual and purpose. If you are not the intended recipient, please notify the sender immediately and delete this message.

Annual Turbine Emissions TEST REPORT ON EXHAUST EMISSIONS FROM

ONE NATURAL GAS FIRED TURBINE

AT THE SOUTH CARLSBAD COMPRESSOR STATION LOVING, NM

> PREPARED FOR SEMINOLE PIPELINE COMPANY

> > MAY 2012

Relient Emissions Testing, Inc Project Number: 0181

05/21/2012

Mr. Jim Heap Enterprise Products, LLC Midland, TX (432) 686-5404

Re: Annual emissions testing at the South Carlsbad Compressor Station on unit 1

Mr. Heap,

Exhaust emissions from one compressor turbine was tested at the South Carlsbad compressor station near Loving, New Mexico on. Testing was conducted to demonstrate compliance with emission limits set forth by NMED permit. The engine is identified as follows:

Engine Information								
Unit Number:	Unit 1							
Manufacturer:	Solar							
Serial Number:	49240							
Model:	CENTAUR 40							
Mfr. Rated Hp:	4500hp							
Mfr. Rated Speed:	15,000							

This is a natural gas fired turbine used for compression of natural gas for transportation through the pipeline.

The test matrix consisted of three 60-minute test runs on the turbine in accordance with NMED requirements. For each test, the average emission concentrations of nitrogen oxides (NO_X), oxygen (O₂), and carbon monoxide (CO) were measured using analytical instrumentation. Operational data such as Gas Producer Speed, Turbine Speed, and suction and discharge pressures were recorded during each run from available operational data on the unit.

Results of the tests are presented in tabular format in this report. Included in this table are engine operational data, ambient conditions, emission concentrations, and mass emission rates.

Continuous emission monitors housed in an air-conditioned mobile laboratory were used to measure the exhaust concentrations of NO_X , CO and O_2 . This testing utilized the following analytical methods:

EPA Reference Method 3a	O ₂ concentration
EPA Reference Method 7e	NO _X concentration
EPA Reference Method 10	CO concentration
EPA Reference Method 19	Mass emission rates

A computerized data recorder was used to record output from the analyzers. The data logger record provides documentation of the emission measurements and the instrument calibrations. The data logger records are also useful for indicating trends in the data.

Mass emission rates were calculated using EPA Method 19 calculations (combustion stoichiometry). Emission rates in terms of lbs/hr and TPY were calculated using the pollutant concentration (ppmv), the oxygen F-factor (DSCFex/MMBtu) and the horsepower specific fuel consumption rate (Btu/Hp-hr). The O₂ F-Factor used in this test series was 8710 (DSCFex/MMBtu), the EPA default value for engines burning natural gas.

A summary of the quality assurance procedures associated with the EPA test methods is presented in tabular format in the appendix of this report. Examples of these procedures include daily multipoint calibrations, zero and span checks between each test run, NO₂ to NO converter efficiency check results, sample system bias check results, and analyzer interference test results.

The appendix of this report also includes supporting test documentation, example calculations, and data logger records.

If you have any questions, please feel free to contact me at (806) 773-8851.

Sincerely, Cossilian

Ross Thompson Principal Scientist Relient Emissions Testing, Inc

APPENDIX

Summary of Results Quality Assurance/Quality Control Summary Example Calculations Calibration Certifications Data Logger Files

Company:Enterprise Products OperatingLocation:South Carlsbad Compressor Station										
Location:		-	Station S/N: 49240							
Source:	Solar Centaur 4									
Engine Rating:	4500hp @ 150	00RPM								
Technician:	RAT	-	-	1						
Test Run Number	1	2	3							
Unit	1	1	1							
Date	5/24/2012	5/24/2012	5/24/2012							
Start Time	8:48	9:53	11:55							
Stop Time	9:48	10:53	12:55							
Unit Operational Data	1.7000	1 70 00	1 7 0 0 0							
Engine Speed (rpm)	15000	15000	15000							
Unit Horse Power (Hp)*	4307	4307	4307							
NPT Load (%)	91.6	91.6	91.6							
NGP Load (%)	95.7	95.7	95.7							
Compressor Suction Pressure (psig)	385	385	385							
Compressor Discharge Pressure (psig)	634	634	634							
T5 Temperature (°F)	1173	1173	1173							
PCD (psig)	96	96	96							
Fuel Data										
Calculated Fuel Consumption (SCFH)	35440	35440	35440							
O2 F-Factor (DSCF/MMBtu, HHV basis)	8710	8710	8710							
Fuel Heating Value (Btu/SCF, HHV basis)	1093	1093	1093							
BHp Specific Fuel Rate (Btu/Hp-hr, HHV basis)	8995	8995	8995							
BHp Specific Fuel Rate (Btu/Hp-hr, LHV basis)	8103	8103	8103							
Ambient Conditions										
Pressure Altitude (MSL)	3250	3250	3250							
Atmospheric Pressure ("Hg)	26.60	26.60	26.60							
Dry Bulb Temperature (°F)	78	81	85							
Wet Bulb Temperature (°F)	61	63	65							
Humidity (lb/lb air)	0.0087	0.0094	0.0099							
Measured Exhaust Emissions (Corrected)				Average						
O ₂ (% Vol)	16.73	16.58	16.52	16.61						
NOx (ppmv)	74.36	84.53	85.65	81.51						
CO (ppmv)	10.12	9.21	9.02	9.5						
Exhaust Flow Rate (DSCFH)										
Dry SCFH (dry basis, calc. from Hp/BSFR/HHV)	1.69E+06	1.63E+06	1.61E+06	1644398.03						
Calculated Mass Emission Rates (Based on btu Specific										
NOx (lbs/hr) { Permit Limit = 27 lb/hr }	15.0	16.4	16.4	15.93						
$CO (lbs/hr) {Permit Limit = 7.4 lb/hr}$	1.2	1.0	1.0	1.07						
* Based on gas producer speed	1.4	1.0	1.0	1.07						

* Based on gas producer speed

Quality Assurance

Method 7E Non-Dilution Measurement System Performance Test Procedures Method 7E Calculated Emission Gas Concentration Project No.: 0023 Technician: RAT

Date:05/24/12Client:Enterprise Products OperatingLocation:South Carlsbad Compressor Station

Calibration Gas Certified	Calibration Gas Certified Values Gas Selection, % of Span											
	Span	Low Gas	Mid Gas	<u>High Gas</u>	Analyzer	Analyzer Serial Number	Low (<20%)	Mid (40%-60%)				
O2 (% Vol)	20.90	0.00	11.70	20.90	AII GPR-29	001666832	0.0%	56.0%				
NOx (ppmv)	251.40	0.00	90.00	251.40	TECO 42C	03040000000842	0.0%	35.8%				
CO (ppmv)	257.00	0.00	99.00	257.00	TECO 48C	48C-67940-359	0.0%	38.5%				

Initial Lineari	<u>ty Data</u>									
Calibration Error	Analyzer	Calibration Re	esponse	Abs	olute Differen	<u>ce</u>	Differ			
		Low	Mid	High	Low	Mid	High	Low	Mid	High
O ₂ (% Vol)		-0.01	11.70	20.87	0.01	0.00	0.03	0.05%	0.00%	0.14%
NOx (ppmv)		-0.05	91.00	251.55	0.05	1.00	0.15	0.02%	0.40%	0.06%
CO (ppmv)		0.00	101.20	255.95	0.00	2.20	1.05	0.00%	0.86%	0.41%

 Run Number 1	Start:	8:48	End:	9:48											
Bias and Drift	<u>Upscale</u>	Cal. Resp	onse	Initial V	/alues	Initial Sys	tem Bias	Final V	Values	Final S	ystem Bias	Dri	ft	Emission	Calculation
Dias and Diffe	Gas	Low	Upscale	Low	Upscale	Low	Upscale	Low	Upscale	Low	Upscale	Low	Upscale	Raw Avg	Run Avg
O2 (% Vol)	20.90	-0.01	20.87	-0.01	20.77	0.00%	-0.48%	0.09	20.87	0.48%	0.00%	0.48%	0.48%	16.67	16.73 O2 (% Vol)
NOx (ppmv)	90.00	-0.05	91.00	-0.55	87.45	-0.20%	-1.41%	0.00	86.45	0.02%	-1.81%	0.22%	-0.40%	71.79	74.36 NOx (ppmv)
CO (ppmv)	99.00	0.00	101.20	-0.50	97.95	-0.19%	-1.26%	0.00	99.45	0.00%	-0.68%	0.19%	0.58%	9.86	10.12 CO (ppmv)

	Run Number 2	Start:	9:53	End:	10:53											
	Bias and Drift	Upscale	Cal. Respo	onse	Initial V	/alues	Initial Sys	tem Bias	Final V	Values	Final S	ystem Bias	Dri	ft	Emission	Calculation
	Dias and Diffe	Gas	Low	Upscale	Low	Upscale	Low	Upscale	Low	Upscale	Low	Upscale	Low	Upscale	Raw Avg	Run Avg
	O2 (% Vol)	20.90	-0.01	20.87	0.09	20.87	0.48%	0.00%	0.00	20.80	0.05%	-0.33%	-0.43%	-0.33%	16.54	16.58 O2 (% Vol)
I	NOx (ppmv)	90.00	-0.05	91.00	0.00	86.45	0.02%	-1.81%	0.50	90.40	0.22%	-0.24%	0.20%	1.57%	83.07	84.53 NOx (ppmv)
	CO (ppmv)	99.00	0.00	101.20	0.00	99.45	0.00%	-0.68%	0.00	99.35	0.00%	-0.72%	0.00%	-0.04%	9.25	9.21 CO (ppmv)

Run Number 3	Start:	11:55	End:	12:55											
Bias and Drift	Upscale	Cal. Resp	onse	Initial V	/alues	Initial Sys	tem Bias	Final	Values	Final S	ystem Bias	Dri	ft	Emission	Calculation
Dias and Dim	Gas	Low	Upscale	Low	Upscale	Low	Upscale	Low	Upscale	Low	Upscale	Low	Upscale	Raw Avg	Run Avg
O2(% Vol)	20.90	-0.01	20.87	0.00	20.80	0.05%	-0.33%	-0.01	20.90	0.00%	0.14%	-0.05%	0.48%	16.48	16.52 O ₂ (% Vol)
NOx (ppmv)	90.00	-0.05	91.00	0.50	90.40	0.22%	-0.24%	0.00	90.21	0.02%	-0.31%	-0.20%	-0.08%	85.95	85.65 NOx (ppmv)
CO (ppmv)	99.00	0.00	101.20	0.00	99.35	0.00%	-0.72%	0.00	99.45	0.00%	-0.68%	0.00%	0.04%	9.06	9.02 CO (ppmv)

Example Calculations

Drift Corrected Emission Concentrations											
	Formula										
	$CGAS = (\mathbf{\hat{C}} - \mathbf{Co}) \times \frac{\mathbf{CMA}}{\mathbf{CM} - \mathbf{Co}} (eq.7e-5)$	5)									
All	Calculations Refer to Test Run 1 or an Average	e of Runs 1-3									
Çnox =	Raw Concentration of NOx	= 71.79 ppmv									
Co =	Avg. of Initial and Final Zero Checks	= -0.28 ppmv									
См =	Avg. of Initial and Final Span Checks	= 86.95 ppmv									
Сма =	Certified Concentration of Span Gas	= 90.00 ppmv									
CNO _x =	(71.790.28) x <u>90</u>	= 74.36 ppmv									
	(87 0.3)										
Çco =	Raw Concentration of CO	= 9.86 ppmv									
Co =	Avg. of Initial and Final Zero Checks	= -0.25 ppmv									
См =	Avg. of Initial and Final Span Checks	= 98.70 ppmv									
Сма =	Certified Concentration of Span Gas	= 99.00 ppmv									
Cco =	(9.86 + 0.25) x 99	= 10.12 ppmv									
	(98.7 + 0.3)										
Ç02 =	Raw Concentration of O2	= 16.67%									
Co =	Avg. of initial and final zero bias checks	= 0.04%									
См =	Avg. of initial and final span bias checks	= 20.82%									
Сма =	Actual concentration of span gas	= 20.90%									
C02 =	(16.67 - 0.04) x <u>20.9</u>	= 16.73%									
	(20.8 - 0.04)										

Example Calculations

	Exhaust Calc	ulatio	ons								
	Measured Data and	l Cons	tants								
CNO _x =	Corrected Concentry	ation o	f NOx =	74.36	ppmv						
Cco =	Corrected Concentr	ation o	of CO =	10.12	ppmv						
Horsepower =	Observed Hors	epowe	r =	4307	Нр						
lb / mole =	EPA STP for Id	leal Ga	is =	385.15	SCF						
lbs / hr to tpy =	Mass Conversion	on Fact	or =	4.38	hrs-tons / lbs-yr						
CF =	PPMV Norma				1 / ppmv						
$MW_{NOx} =$	Molecular Weig			46	lb / lb-mol						
MWco =	Molecular Weig			28	lb / lb-mol						
S tack Gas	s Flow Rate via btu Sp	ecific l	Fuel Rate (B	SFR)							
Hp =	Engine Horse	power	=	4307	Нр						
Fbtu =	btu Specific Fu	iel Rat	e =	8995	Btu/Hp-Hr						
Fo2 =	O2 F-Fac	tor	=	8710	DSCF/MMBtu						
Co2 =	Measured Concent	ration of	of O2 =	16.73	%						
$Q_{S M19} =$	Нр х Гвти			20.9	DSCF/H						
(Comp				0.9 - %O2							
QS M19 =	4306.50 x 8995	х	8710 x	5.01	x 1E-06						
Q S M19 =	1.69E+06	DSC	CF/H								
Formulas											
Pounds per Hour (lbs/hr) :											
	/hr) = Cx * CF * Qs * +	MWx	/ (lb / mole)	}							
Tons per Year (tpy) :	(11) (11) (11) (11)		()	,							
	= Ex (lb/hr) * { 8760 (ł	r / vr)	/ 2000 (lb / t	on)]							
		u / yı)	/ 2000 (10 / 1	011) }							
Grams per Horsepower-hour (II) /	A = A (- 11)								
Dxygen Correction (Cx @ 15%	$/hp-hr) = \{ Ex (lb/hr) / (hp-hr) = \{ Ex (lb/hr) / (hp-hr) \} \}$	пр } /	434 (g / 10)	}							
	-	5)/(20)		ad)							
	$15\%O_2$ = (X* (20.9-1		-		4						
Calculatea Mass	Emission Rates From	Meino	a 19 Exnaus	α Γιον Κα	ies						
	ENOX										
lbs/hr =	74.36 * 1 x e-6	*	1.69E+06 *	46	_ = 15.02						
				385.15							
tpy =	15.02 lb/hr	*	4.38	hrs-ton							
					= 65.78						
				lbs-yr	_= 65.78						
g/Hp-hr =_	15.02 lb/hr	*	454 g		_= 65.78 = 1.58						
g/Hp-hr =_	15.02 lb/hr 4307 Hp	*			_						
g/Hp-hr =_	4307 Hp	*	454 g		_						
	4307 Нр Есо		454 g 1 lb	lbs-yr	- = 1.58						
g/Hp-hr =	4307 Hp		454 g	lbs-yr 28	_						
lbs/hr =	4307 Hp Eco 10.12 * 1 x e-6		454 g 1 lb	lbs-yr 28 385.15	- = 1.58						
	4307 Нр Есо		454 g 1 lb	lbs-yr 28 385.15 hrs-ton	- = 1.58						
lbs/hr =	4307 Hp Eco 10.12 * 1 x e-6	*	454 g 1 lb	lbs-yr 28 385.15	 _ = 1.58 = 1.24						
lbs/hr =	4307 Hp Eco 10.12 * 1 x e-6	*	454 g 1 lb	lbs-yr 28 385.15 hrs-ton	 _ = 1.58 = 1.24						

Relient Emissions Testing, Inc.

Project Number	Client	Source	Run Number	Date	Time	O2 (% Vol)	NOX (pppyd)	CO (pppyd)
0181	Enterprise Products	Source	Kun Number	5/24/2012	8:52:04 AM	02 (% V01)	NOX (ppmvd) 0.00	CO (ppmvd) 0.00
0181	Enterprise Products			5/24/2012	8:53:04 AM	-0.01	0.00	0.00
0181	Enterprise Products			5/24/2012	8:54:04 AM	-0.01	0.00	0.00
0181	Enterprise Products			5/24/2012	8:55:04 AM	-0.01	0.00	0.00
0181	Enterprise Products			5/24/2012	8:56:04 AM	-0.01	-0.05	0.00
0181	Enterprise Products			5/24/2012	8:57:04 AM	-0.01	-0.05	0.00
0181	Enterprise Products			5/24/2012	8:58:04 AM	-0.01	-0.05	0.00
0181	Enterprise Products			5/24/2012	8:59:04 AM	-0.01	0.00	0.00
0181	Enterprise Products			5/24/2012	9:00:04 AM	-0.01	0.00	0.00
0181	Enterprise Products			5/24/2012	9:01:04 AM	-0.01	0.00	-0.05
0181	Enterprise Products			5/24/2012	9:02:04 AM	-0.01	-0.05	0.00
0181	Enterprise Products			5/24/2012	9:03:04 AM	-0.01	-0.05	0.00
0181	Enterprise Products			5/24/2012	9:04:04 AM	-0.01	0.00	0.00
0181	Enterprise Products			5/24/2012	9:05:04 AM	-0.01	0.00	0.00
0181	Enterprise Products			5/24/2012	9:06:04 AM	<u>-0.01</u>	<u>-0.05</u>	<u>0.00</u>
0181 0181	Enterprise Products			5/24/2012	9:07:04 AM	-0.01	-0.05	0.90
0181	Enterprise Products Enterprise Products			5/24/2012 5/24/2012	9:08:04 AM 9:09:04 AM	21.16 20.87	70.00 90.50	255.45 255.95
0181	Enterprise Products			5/24/2012	9:10:04 AM	12.19	90.50 91.00	<u>101.20</u>
0181	Enterprise Products			5/24/2012	9:11:04 AM	11.70	<u>91.00</u> 251.44	38.00
0181	Enterprise Products			5/24/2012	9:12:04 AM	11.70	<u>251.55</u>	0.00
0181	Enterprise Products			5/24/2012	9:13:04 AM	11.70	76.95	0.00
0181	Enterprise Products			5/24/2012	9:14:04 AM	11.80	-0.50	-0.05
0181	Enterprise Products			5/24/2012	9:15:04 AM	11.80	-0.50	-0.05
0181	Enterprise Products			5/24/2012	9:16:04 AM	11.80	218.10	0.00
0181	Enterprise Products			5/24/2012	9:17:04 AM	11.90	254.10	0.00
0181	Enterprise Products			5/24/2012	9:18:04 AM	11.90	128.50	0.00
0181	Enterprise Products			5/24/2012	9:19:04 AM	11.90	28.45	0.00
0181	Enterprise Products			5/24/2012	9:20:04 AM	11.90	418.70	0.00
0181	Enterprise Products			5/24/2012	9:21:04 AM	11.90	499.75	-0.05
0181	Enterprise Products			5/24/2012	9:22:04 AM	11.90	300.15	0.00
0181	Enterprise Products			5/24/2012	9:23:04 AM	11.99	104.50	0.00
0181	Enterprise Products			5/24/2012	9:24:04 AM	12.00	89.50	0.00
0181	Enterprise Products			5/24/2012	9:25:04 AM	12.00	89.00	0.00
0181	Enterprise Products			5/24/2012	9:26:04 AM	12.00	19.95	-0.05
0181	Enterprise Products			5/24/2012	9:27:04 AM	12.00	5.95	0.00
0181	Enterprise Products			5/24/2012	9:28:04 AM	12.00	4.95	0.00
0181 0181	Enterprise Products Enterprise Products			5/24/2012	9:29:04 AM	12.10	4.95 4.95	0.00 0.00
0181	Enterprise Products			5/24/2012 5/24/2012	9:30:04 AM 9:31:04 AM	12.09 12.09	4.93	0.00
0181	Enterprise Products			5/24/2012	9:32:04 AM	12.09	4.90	0.00
0181	Enterprise Products			5/24/2012	9:33:04 AM	12.19	4.45	0.00
0181	Enterprise Products			5/24/2012	9:34:04 AM	12.19	4.45	-0.05
0181	Enterprise Products			5/24/2012	9:35:04 AM	12.19	4.45	0.00
0181	Enterprise Products			5/24/2012	9:36:04 AM	12.19	4.40	0.00
0181	Enterprise Products			5/24/2012	9:37:04 AM	12.19	4.40	0.90
0181	Enterprise Products			5/24/2012	9:38:04 AM	20.68	2.90	0.00
0181	Enterprise Products			5/24/2012	9:39:04 AM	20.68	-0.55	-0.05
0181	Enterprise Products			5/24/2012	9:40:04 AM	20.68	-0.55	-0.55
0181	Enterprise Products			5/24/2012	9:41:04 AM	<u>20.77</u>	<u>-0.55</u>	<u>-0.50</u>
0181	Enterprise Products			5/24/2012	9:42:04 AM	20.68	-0.55	20.25
0181	Enterprise Products			5/24/2012	9:43:04 AM	17.55	1.40	5.90
0181	Enterprise Products			5/24/2012	9:44:04 AM	16.77	67.00	11.30
0181	Enterprise Products			5/24/2012	9:45:04 AM	16.77	71.50	10.80
0181	Enterprise Products			5/24/2012	9:46:04 AM	0.28	71.00	85.10
0181	Enterprise Products			5/24/2012	9:47:04 AM	<u>-0.01</u>	<u>87.45</u>	<u>97.95</u>
0181	Enterprise Products	South Carlsbad #1		5/24/2012	9:47:43 AM	13.46	87.45	62.30
0181	Enterprise Products	South Carlsbad #1		5/24/2012	9:48:13 AM	16.67	81.45	11.85
0181	Enterprise Products	South Carlsbad #1		5/24/2012	9:48:43 AM	16.67	73.00	10.30
0181 0181	Enterprise Products Enterprise Products	South Carlsbad #1 South Carlsbad #1	Run 1	5/24/2012 5/24/2012	9:48:46 AM 9:49:16 AM	16.67 16.67	73.00 72.50	10.30 9.85
0181	Enterprise Products	South Carlsbad #1	Run 1	5/24/2012 5/24/2012	9:49:16 AM 9:49:46 AM	16.67	72.30	9.85 9.85
0181	Enterprise Products	South Carlsbad #1	Run 1	5/24/2012 5/24/2012	9:49:40 AM 9:50:16 AM	16.67	72.43	9.85
0181	Enterprise Products	South Carlsbad #1	Run 1	5/24/2012	9:50:46 AM	16.67	72.45	10.30
0181	Enterprise Products	South Carlsbad #1	Run 1	5/24/2012	9:51:16 AM	16.67	72.45	10.80
0181	Enterprise Products	South Carlsbad #1	Run 1	5/24/2012	9:51:46 AM	16.67	72.50	10.30
0181	Enterprise Products	South Carlsbad #1	Run 1	5/24/2012	9:52:16 AM	16.67	72.00	10.30
0181	Enterprise Products	South Carlsbad #1	Run 1	5/24/2012	9:52:46 AM	16.67	71.95	10.30
0181	Enterprise Products	South Carlsbad #1	Run 1	5/24/2012	9:53:16 AM	16.67	72.00	9.85
	-							

Project Number	Client	Source	Run Number	Data	Timo	02 (% Vol)	NOV (nonwed)	CO (nonword)
Project Number 0181	Enterprise Products	Source South Carlsbad #1	Run Number Run 1	Date 5/24/2012	Time 9:53:46 AM	O2 (% Vol) 16.67	NOX (ppmvd) 72.50	CO (ppmvd) 9.85
0181	Enterprise Products	South Carlsbad #1	Run 1	5/24/2012	9:54:16 AM	16.67	72.00	10.30
0181	Enterprise Products	South Carlsbad #1	Run 1	5/24/2012	9:54:46 AM	16.67	72.50	9.85
0181	Enterprise Products	South Carlsbad #1	Run 1	5/24/2012	9:55:16 AM	16.67	73.00	9.35
0181	Enterprise Products	South Carlsbad #1	Run 1	5/24/2012	9:55:46 AM	16.67	72.95	9.35
0181	Enterprise Products	South Carlsbad #1	Run 1	5/24/2012	9:56:16 AM	16.67	73.00	10.30
0181	Enterprise Products	South Carlsbad #1	Run 1	5/24/2012	9:56:46 AM	16.67	73.50	10.30
0181 0181	Enterprise Products Enterprise Products	South Carlsbad #1 South Carlsbad #1	Run 1 Run 1	5/24/2012 5/24/2012	9:57:16 AM 9:57:46 AM	16.67 16.67	73.45 73.00	10.30 10.30
0181	Enterprise Products	South Carlsbad #1	Run 1	5/24/2012	9:58:16 AM	16.67	72.00	9.85
0181	Enterprise Products	South Carlsbad #1	Run 1	5/24/2012	9:58:46 AM	16.67	71.95	9.85
0181	Enterprise Products	South Carlsbad #1	Run 1	5/24/2012	9:59:16 AM	16.67	71.95	9.85
0181	Enterprise Products	South Carlsbad #1	Run 1	5/24/2012	9:59:46 AM	16.67	71.45	9.85
0181	Enterprise Products	South Carlsbad #1	Run 1	5/24/2012	10:00:16 AM	16.67	71.50	10.80
0181	Enterprise Products	South Carlsbad #1	Run 1	5/24/2012	10:00:46 AM	16.67	71.45	10.80
0181	Enterprise Products	South Carlsbad #1	Run 1	5/24/2012	10:01:16 AM	16.67	71.50	9.85
0181 0181	Enterprise Products Enterprise Products	South Carlsbad #1 South Carlsbad #1	Run 1 Run 1	5/24/2012 5/24/2012	10:01:46 AM 10:02:16 AM	16.67 16.67	72.00 71.50	9.85 10.80
0181	Enterprise Products	South Carlsbad #1	Run 1	5/24/2012	10:02:46 AM	16.67	71.45	9.35
0181	Enterprise Products	South Carlsbad #1	Run 1	5/24/2012	10:03:16 AM	16.67	71.50	9.85
0181	Enterprise Products	South Carlsbad #1	Run 1	5/24/2012	10:03:46 AM	16.67	71.45	9.85
0181	Enterprise Products	South Carlsbad #1	Run 1	5/24/2012	10:04:16 AM	16.67	72.00	9.85
0181	Enterprise Products	South Carlsbad #1	Run 1	5/24/2012	10:04:46 AM	16.67	72.50	10.30
0181	Enterprise Products	South Carlsbad #1	Run 1	5/24/2012	10:05:16 AM	16.67	72.00	10.30
0181	Enterprise Products	South Carlsbad #1	Run 1	5/24/2012	10:05:46 AM	16.67	71.95	10.30
0181 0181	Enterprise Products	South Carlsbad #1	Run 1	5/24/2012 5/24/2012	10:06:16 AM 10:06:46 AM	16.67	72.00 72.00	10.85 10.85
0181	Enterprise Products Enterprise Products	South Carlsbad #1 South Carlsbad #1	Run 1 Run 1	5/24/2012	10:00:40 AM 10:07:16 AM	16.67 16.67	72.00	9.85
0181	Enterprise Products	South Carlsbad #1	Run 1	5/24/2012	10:07:46 AM	16.67	71.50	10.80
0181	Enterprise Products	South Carlsbad #1	Run 1	5/24/2012	10:08:16 AM	16.67	71.45	9.85
0181	Enterprise Products	South Carlsbad #1	Run 1	5/24/2012	10:08:46 AM	16.67	71.50	9.85
0181	Enterprise Products	South Carlsbad #1	Run 1	5/24/2012	10:09:16 AM	16.67	71.50	9.35
0181	Enterprise Products	South Carlsbad #1	Run 1	5/24/2012	10:09:46 AM	16.67	71.50	9.85
0181	Enterprise Products	South Carlsbad #1	Run 1	5/24/2012	10:10:16 AM	16.67	71.45	9.85
0181	Enterprise Products	South Carlsbad #1	Run 1	5/24/2012	10:10:46 AM	16.67	71.50	10.80
0181 0181	Enterprise Products Enterprise Products	South Carlsbad #1 South Carlsbad #1	Run 1 Run 1	5/24/2012 5/24/2012	10:11:16 AM 10:11:46 AM	16.67 16.67	71.50 72.00	10.30 10.30
0181	Enterprise Products	South Carlsbad #1	Run 1	5/24/2012	10:11:40 AM	16.67	71.95	9.85
0181	Enterprise Products	South Carlsbad #1	Run 1	5/24/2012	10:12:46 AM	16.67	72.00	9.35
0181	Enterprise Products	South Carlsbad #1	Run 1	5/24/2012	10:13:16 AM	16.67	72.00	8.85
0181	Enterprise Products	South Carlsbad #1	Run 1	5/24/2012	10:13:46 AM	16.67	72.00	9.85
0181	Enterprise Products	South Carlsbad #1	Run 1	5/24/2012	10:14:16 AM	16.67	72.00	9.85
0181	Enterprise Products	South Carlsbad #1	Run 1	5/24/2012	10:14:46 AM	16.67	72.00	9.85
0181	Enterprise Products	South Carlsbad #1	Run 1	5/24/2012	10:15:16 AM	16.67	71.95	9.35
0181 0181	Enterprise Products Enterprise Products	South Carlsbad #1 South Carlsbad #1	Run 1 Run 1	5/24/2012 5/24/2012	10:15:46 AM 10:16:16 AM	16.67 16.67	71.95 72.00	9.35 9.85
0181	Enterprise Products	South Carlsbad #1	Run 1	5/24/2012	10:16:46 AM	16.67	72.00	10.30
0181	Enterprise Products	South Carlsbad #1	Run 1	5/24/2012	10:17:16 AM	16.67	72.00	9.35
0181	Enterprise Products	South Carlsbad #1	Run 1	5/24/2012	10:17:46 AM	16.67	72.00	9.35
0181	Enterprise Products	South Carlsbad #1	Run 1	5/24/2012	10:18:16 AM	16.67	72.00	10.30
0181	Enterprise Products	South Carlsbad #1	Run 1	5/24/2012	10:18:46 AM	16.67	72.00	10.30
0181	Enterprise Products	South Carlsbad #1	Run 1	5/24/2012	10:19:16 AM	16.67	72.00	9.85
0181	Enterprise Products	South Carlsbad #1	Run 1	5/24/2012	10:19:46 AM	16.67	71.50	9.85
0181	Enterprise Products	South Carlsbad #1	Run 1	5/24/2012	10:20:16 AM	16.67	72.00	9.85
0181 0181	Enterprise Products Enterprise Products	South Carlsbad #1 South Carlsbad #1	Run 1 Run 1	5/24/2012 5/24/2012	10:20:46 AM 10:21:16 AM	16.67 16.67	72.00 71.45	9.35 9.85
0181	Enterprise Products	South Carlsbad #1	Run 1	5/24/2012	10:21:46 AM	16.67	71.50	9.85
0181	Enterprise Products	South Carlsbad #1	Run 1	5/24/2012	10:22:16 AM	16.67	71.50	10.30
0181	Enterprise Products	South Carlsbad #1	Run 1	5/24/2012	10:22:46 AM	16.67	71.50	10.30
0181	Enterprise Products	South Carlsbad #1	Run 1	5/24/2012	10:23:16 AM	16.67	71.45	10.30
0181	Enterprise Products	South Carlsbad #1	Run 1	5/24/2012	10:23:46 AM	16.67	71.50	10.30
0181	Enterprise Products	South Carlsbad #1	Run 1	5/24/2012	10:24:16 AM	16.67	72.00	10.30
0181	Enterprise Products	South Carlsbad #1	Run 1	5/24/2012	10:24:46 AM	16.67	71.50	9.85
0181 0181	Enterprise Products	South Carlsbad #1 South Carlsbad #1	Run 1 Run 1	5/24/2012 5/24/2012	10:25:16 AM	16.67 16.67	71.50 72.00	10.30 10.30
0181	Enterprise Products Enterprise Products	South Carlsbad #1	Run 1 Run 1	5/24/2012 5/24/2012	10:25:46 AM 10:26:16 AM	16.67 16.67	72.00	9.35
0181	Enterprise Products	South Carlsbad #1	Run 1	5/24/2012	10:26:46 AM	16.67	71.95	9.35
0181	Enterprise Products	South Carlsbad #1	Run 1	5/24/2012	10:27:16 AM	16.67	71.50	9.35
0181	Enterprise Products	South Carlsbad #1	Run 1	5/24/2012	10:27:46 AM	16.67	72.00	9.35

		0		D.	T.	00 (N X 1)	NOV	
Project Number 0181	Client	Source South Carlsbad #1	Run Number Run 1	Date 5/24/2012	Time 10:28:16 AM	O2 (% Vol) 16.67	NOX (ppmvd) 71.50	CO (ppmvd) 9.85
0181	Enterprise Products Enterprise Products	South Carlsbad #1	Run 1 Run 1	5/24/2012	10:28:16 AM 10:28:46 AM	16.67	71.50	9.85 10.30
0181	Enterprise Products	South Carlsbad #1	Run 1	5/24/2012	10:28:40 AM 10:29:16 AM	16.67	71.50	9.85
0181	*			5/24/2012	10:29:16 AM 10:29:46 AM			9.83 9.35
0181	Enterprise Products	South Carlsbad #1 South Carlsbad #1	Run 1 Run 1	5/24/2012 5/24/2012	10:29:46 AM 10:30:16 AM	16.67 16.67	71.45 71.50	9.33 9.35
0181	Enterprise Products	South Carlsbad #1	Run 1	5/24/2012	10:30:10 AM 10:30:46 AM	16.67	71.50	9.35 9.35
0181	Enterprise Products	South Carlsbad #1	Run 1	5/24/2012	10:30:40 AM 10:31:16 AM	16.67	71.50	9.35 9.35
0181	Enterprise Products Enterprise Products	South Carlsbad #1	Run 1	5/24/2012	10:31:10 AM 10:31:46 AM	16.67	71.00	9.33 9.75
0181	Enterprise Products	South Carlsbad #1	Run 1	5/24/2012	10:31:40 AM 10:32:16 AM	16.67	71.50	9.75
0181	Enterprise Products	South Carlsbad #1	Run 1	5/24/2012	10:32:10 AM 10:32:46 AM	16.67	71.50	9.35
0181	Enterprise Products	South Carlsbad #1	Run 1	5/24/2012	10:33:16 AM	16.67	71.50	9.85
0181	Enterprise Products	South Carlsbad #1	Run 1	5/24/2012	10:33:46 AM	16.67	71.50	10.80
0181	Enterprise Products	South Carlsbad #1	Run 1	5/24/2012	10:34:16 AM	16.67	71.50	9.85
0181	Enterprise Products	South Carlsbad #1	Run 1	5/24/2012	10:34:46 AM	16.67	71.50	9.85
0181	Enterprise Products	South Carlsbad #1	Run 1	5/24/2012	10:35:16 AM	16.67	71.00	9.85
0181	Enterprise Products	South Carlsbad #1	Run 1	5/24/2012	10:35:46 AM	16.67	71.50	8.85
0181	Enterprise Products	South Carlsbad #1	Run 1	5/24/2012	10:36:16 AM	16.67	70.95	9.85
0181	Enterprise Products	South Carlsbad #1	Run 1	5/24/2012	10:36:46 AM	16.67	71.50	9.35
0181	Enterprise Products	South Carlsbad #1	Run 1	5/24/2012	10:37:16 AM	16.67	71.50	9.85
0181	Enterprise Products	South Carlsbad #1	Run 1	5/24/2012	10:37:46 AM	16.67	71.50	9.85
0181	Enterprise Products	South Carlsbad #1	Run 1	5/24/2012	10:38:16 AM	16.67	71.50	9.85
0181	Enterprise Products	South Carlsbad #1	Run 1	5/24/2012	10:38:46 AM	16.67	71.50	9.85
0181	Enterprise Products	South Carlsbad #1	Run 1	5/24/2012	10:39:16 AM	16.67	71.50	9.85
0181	Enterprise Products	South Carlsbad #1	Run 1	5/24/2012	10:39:46 AM	16.67	71.50	9.85
0181	Enterprise Products	South Carlsbad #1	Run 1	5/24/2012	10:40:16 AM	16.67	71.50	8.85
0181	Enterprise Products	South Carlsbad #1	Run 1	5/24/2012	10:40:46 AM	16.67	71.50	8.85
0181	Enterprise Products	South Carlsbad #1	Run 1	5/24/2012	10:41:16 AM	16.67	71.50	9.35
0181	Enterprise Products	South Carlsbad #1	Run 1	5/24/2012	10:41:46 AM	16.67	71.50	9.85
0181	Enterprise Products	South Carlsbad #1	Run 1	5/24/2012	10:42:16 AM	16.67	71.45	9.35
0181	Enterprise Products	South Carlsbad #1	Run 1	5/24/2012	10:42:46 AM	16.67	71.50	8.85
0181	Enterprise Products	South Carlsbad #1	Run 1	5/24/2012	10:43:16 AM	16.67	71.50	9.35
0181	Enterprise Products	South Carlsbad #1	Run 1	5/24/2012	10:43:46 AM	16.67	71.50	9.35
0181	Enterprise Products	South Carlsbad #1	Run 1	5/24/2012	10:44:16 AM	16.67	71.50	8.85
0181	Enterprise Products	South Carlsbad #1	Run 1	5/24/2012	10:44:46 AM	16.67	71.50	9.35
0181	Enterprise Products	South Carlsbad #1	Run 1	5/24/2012	10:45:16 AM	16.67	71.50	10.30
0181	Enterprise Products	South Carlsbad #1	Run 1	5/24/2012	10:45:46 AM	16.67	71.45	9.35
0181	Enterprise Products	South Carlsbad #1	Run 1	5/24/2012	10:46:16 AM	16.67	71.50	9.85
0181	Enterprise Products	South Carlsbad #1	Run 1	5/24/2012	10:46:46 AM	16.67	71.45	9.35
0181	Enterprise Products	South Carlsbad #1	Run 1	5/24/2012	10:47:16 AM	16.67	71.50	10.30
0181	Enterprise Products	South Carlsbad #1	Run 1	5/24/2012	10:47:46 AM	16.67	71.50	9.85
0181	Enterprise Products	South Carlsbad #1	Run 1	5/24/2012	10:48:16 AM	16.67	71.50	9.35
0181	Enterprise Products	South Carlsbad #1	Run 1	5/24/2012	10:48:46 AM	16.58	71.50	9.35
0101		Run Averages		5/24/2012	10.40.16.134	16.67	71.79	9.86
0181	Enterprise Products	South Carlsbad #1		5/24/2012	10:49:16 AM	16.57	71.45	9.85
0181 0181	Enterprise Products Enterprise Products	South Carlsbad #1		5/24/2012 5/24/2012	10:49:46 AM	16.58 20.87	71.95 0.00	9.85 0.00
0181	Enterprise Products	South Carlsbad #1 South Carlsbad #1			10:50:16 AM			0.00 <u>0.00</u>
0181	Enterprise Products	South Carlsbad #1		5/24/2012 5/24/2012	10:50:46 AM 10:51:16 AM	<u>20.87</u> 2.04	<u>0.00</u> 82.00	49.35
0181	Enterprise Products	South Carlsbad #1		5/24/2012	10:51:46 AM	<u>0.09</u>	86.45	<u>99.45</u>
0181	Enterprise Products	South Carlsbad #1		5/24/2012	10:52:16 AM	9.55	<u>86.45</u>	75.20
0181	Enterprise Products	South Carlsbad #1		5/24/2012	10:52:46 AM	16.48	84.50	13.80
0181	Enterprise Products	South Carlsbad #1		5/24/2012	10:52:58 AM	16.58	77.50	9.85
0181	Enterprise Products	South Carlsbad #1	Run 2	5/24/2012	10:53:28 AM	16.58	72.50	9.35
0181	Enterprise Products	South Carlsbad #1	Run 2	5/24/2012	10:53:58 AM	16.58	72.00	9.85
0181	Enterprise Products	South Carlsbad #1	Run 2	5/24/2012	10:54:28 AM	16.58	72.00	9.35
0181	Enterprise Products	South Carlsbad #1	Run 2	5/24/2012	10:54:58 AM	16.58	72.00	10.85
0181	Enterprise Products	South Carlsbad #1	Run 2	5/24/2012	10:55:28 AM	16.57	71.45	10.30
0181	Enterprise Products	South Carlsbad #1	Run 2	5/24/2012	10:55:58 AM	16.58	71.50	9.35
0181	Enterprise Products	South Carlsbad #1	Run 2	5/24/2012	10:56:28 AM	16.57	72.00	9.85
0181	Enterprise Products	South Carlsbad #1	Run 2	5/24/2012	10:56:58 AM	16.58	71.95	10.30
0181	Enterprise Products	South Carlsbad #1	Run 2	5/24/2012	10:57:28 AM	16.58	72.00	9.85
0181	Enterprise Products	South Carlsbad #1	Run 2	5/24/2012	10:57:58 AM	16.58	72.00	10.30
0181	Enterprise Products	South Carlsbad #1	Run 2	5/24/2012	10:58:28 AM	16.58	72.00	10.30
0181	Enterprise Products	South Carlsbad #1	Run 2	5/24/2012	10:58:58 AM	16.57	72.00	9.85
0181	Enterprise Products	South Carlsbad #1	Run 2	5/24/2012	10:59:28 AM	16.58	72.00	9.35
0181	Enterprise Products	South Carlsbad #1	Run 2	5/24/2012	10:59:58 AM	16.58	72.00	9.35
0181	Enterprise Products	South Carlsbad #1	Run 2	5/24/2012	11:00:28 AM	16.58	72.00	9.35
0181	Enterprise Products	South Carlsbad #1	Run 2	5/24/2012	11:00:58 AM	16.58	72.00	9.35
0181	Enterprise Products	South Carlsbad #1	Run 2	5/24/2012	11:01:28 AM	16.57	72.00	8.85

		<i>c</i>				00 (N N N		
Project Number	Client	Source	Run Number	Date	Time	O2 (% Vol)	NOX (ppmvd)	CO (ppmvd)
0181 0181	Enterprise Products Enterprise Products	South Carlsbad #1	Run 2	5/24/2012	11:01:58 AM	16.57	71.45	8.85
0181	Enterprise Products	South Carlsbad #1 South Carlsbad #1	Run 2 Run 2	5/24/2012 5/24/2012	11:02:28 AM 11:02:58 AM	16.58 16.58	71.50 71.50	8.85 8.85
0181	Enterprise Products	South Carlsbad #1	Run 2	5/24/2012	11:02:38 AM	16.57	71.50	9.35
0181	Enterprise Products	South Carlsbad #1	Run 2	5/24/2012	11:03:58 AM	16.57	72.00	9.85
0181	Enterprise Products	South Carlsbad #1	Run 2	5/24/2012	11:04:28 AM	16.58	72.00	10.30
0181	Enterprise Products	South Carlsbad #1	Run 2	5/24/2012	11:04:58 AM	16.57	77.50	10.30
0181	Enterprise Products	South Carlsbad #1	Run 2	5/24/2012	11:05:28 AM	16.58	84.50	9.85
0181	Enterprise Products	South Carlsbad #1	Run 2	5/24/2012	11:05:58 AM	16.58	84.00	9.85
0181	Enterprise Products	South Carlsbad #1	Run 2	5/24/2012	11:06:28 AM	16.58	84.00	8.85
0181	Enterprise Products	South Carlsbad #1	Run 2	5/24/2012	11:06:58 AM	16.58	84.00	9.35
0181	Enterprise Products	South Carlsbad #1	Run 2	5/24/2012	11:07:28 AM	16.58	84.50	9.35
0181	Enterprise Products	South Carlsbad #1	Run 2	5/24/2012	11:07:58 AM	16.57	84.50	10.30
0181	Enterprise Products	South Carlsbad #1	Run 2	5/24/2012	11:08:28 AM	16.58	84.50	10.30
0181	Enterprise Products	South Carlsbad #1	Run 2	5/24/2012	11:08:58 AM	16.58	84.50	9.35
0181	Enterprise Products	South Carlsbad #1	Run 2	5/24/2012	11:09:28 AM	16.58	84.50	8.85
0181	Enterprise Products	South Carlsbad #1	Run 2	5/24/2012	11:09:58 AM	16.57	84.50	8.85
0181	Enterprise Products	South Carlsbad #1	Run 2	5/24/2012	11:10:28 AM	16.58	84.50	9.85
0181	Enterprise Products	South Carlsbad #1	Run 2	5/24/2012	11:10:58 AM	16.58	84.50	9.85
0181	Enterprise Products	South Carlsbad #1	Run 2	5/24/2012	11:11:28 AM	16.57	85.00	8.85
0181	Enterprise Products	South Carlsbad #1	Run 2	5/24/2012 5/24/2012	11:11:58 AM 11:12:28 AM	16.48	85.00	9.35
0181 0181	Enterprise Products Enterprise Products	South Carlsbad #1 South Carlsbad #1	Run 2 Run 2	5/24/2012 5/24/2012	11:12:28 AM 11:12:58 AM	16.48 16.48	85.50 86.00	8.85 9.35
0181	Enterprise Products	South Carlsbad #1	Run 2	5/24/2012	11:12:38 AM 11:13:28 AM	16.48	86.00	9.33 8.85
0181	Enterprise Products	South Carlsbad #1	Run 2	5/24/2012	11:13:58 AM	16.48	86.50	8.30
0181	Enterprise Products	South Carlsbad #1	Run 2	5/24/2012	11:14:28 AM	16.48	86.50	8.35
0181	Enterprise Products	South Carlsbad #1	Run 2	5/24/2012	11:14:58 AM	16.48	86.50	8.35
0181	Enterprise Products	South Carlsbad #1	Run 2	5/24/2012	11:15:28 AM	16.48	86.50	8.85
0181	Enterprise Products	South Carlsbad #1	Run 2	5/24/2012	11:15:58 AM	16.48	86.00	9.35
0181	Enterprise Products	South Carlsbad #1	Run 2	5/24/2012	11:16:28 AM	16.57	86.00	9.85
0181	Enterprise Products	South Carlsbad #1	Run 2	5/24/2012	11:16:58 AM	16.57	86.00	9.85
0181	Enterprise Products	South Carlsbad #1	Run 2	5/24/2012	11:17:28 AM	16.48	86.00	8.85
0181	Enterprise Products	South Carlsbad #1	Run 2	5/24/2012	11:17:58 AM	16.48	86.00	8.85
0181	Enterprise Products	South Carlsbad #1	Run 2	5/24/2012	11:18:28 AM	16.48	86.00	8.35
0181	Enterprise Products	South Carlsbad #1	Run 2	5/24/2012	11:18:58 AM	16.48	86.00	8.35
0181	Enterprise Products	South Carlsbad #1	Run 2	5/24/2012	11:19:28 AM	16.58	86.00	8.85
0181	Enterprise Products	South Carlsbad #1	Run 2	5/24/2012	11:19:58 AM	16.48	86.00	8.85
0181	Enterprise Products	South Carlsbad #1	Run 2	5/24/2012	11:20:28 AM	16.57	86.00	9.85
0181	Enterprise Products	South Carlsbad #1	Run 2	5/24/2012	11:20:58 AM	16.58	86.00	9.35
0181	Enterprise Products	South Carlsbad #1	Run 2	5/24/2012	11:21:28 AM	16.48	86.00	9.35
0181	Enterprise Products	South Carlsbad #1	Run 2	5/24/2012	11:21:58 AM	16.48	86.50	8.85
0181	Enterprise Products	South Carlsbad #1	Run 2	5/24/2012	11:22:28 AM	16.48	86.50	8.35
0181	Enterprise Products	South Carlsbad #1 South Carlsbad #1	Run 2 Run 2	5/24/2012 5/24/2012	11:22:58 AM	16.48	87.00 86.50	8.85 9.35
0181 0181	Enterprise Products Enterprise Products	South Carlsbad #1	Run 2	5/24/2012 5/24/2012	11:23:28 AM 11:23:58 AM	16.58 16.48	80.50 87.00	9.35 9.35
0181	Enterprise Products	South Carlsbad #1	Run 2	5/24/2012	11:24:28 AM	16.48	86.50	9.35
0181	Enterprise Products	South Carlsbad #1	Run 2	5/24/2012	11:24:58 AM	16.48	87.00	9.35
0181	Enterprise Products	South Carlsbad #1	Run 2	5/24/2012	11:25:28 AM	16.48	88.00	9.85
0181	Enterprise Products	South Carlsbad #1	Run 2	5/24/2012	11:25:58 AM	16.48	88.50	9.35
0181	Enterprise Products	South Carlsbad #1	Run 2	5/24/2012	11:26:28 AM	16.48	88.50	9.35
0181	Enterprise Products	South Carlsbad #1	Run 2	5/24/2012	11:26:58 AM	16.48	87.50	9.35
0181	Enterprise Products	South Carlsbad #1	Run 2	5/24/2012	11:27:28 AM	16.48	87.00	8.85
0181	Enterprise Products	South Carlsbad #1	Run 2	5/24/2012	11:27:58 AM	16.48	87.00	8.85
0181	Enterprise Products	South Carlsbad #1	Run 2	5/24/2012	11:28:28 AM	16.58	87.00	8.85
0181	Enterprise Products	South Carlsbad #1	Run 2	5/24/2012	11:28:58 AM	16.48	87.00	8.85
0181	Enterprise Products	South Carlsbad #1	Run 2	5/24/2012	11:29:28 AM	16.48	87.00	9.35
0181	Enterprise Products	South Carlsbad #1	Run 2	5/24/2012	11:29:58 AM	16.48	88.00	9.85
0181	Enterprise Products	South Carlsbad #1	Run 2	5/24/2012	11:30:28 AM	16.48	88.50	9.35
0181	Enterprise Products	South Carlsbad #1	Run 2	5/24/2012	11:30:58 AM	16.48	87.50	9.35
0181	Enterprise Products	South Carlsbad #1	Run 2	5/24/2012	11:31:28 AM	16.48	87.00	8.85
0181	Enterprise Products	South Carlsbad #1	Run 2	5/24/2012	11:31:58 AM	16.48	86.50	8.85 8.25
0181	Enterprise Products	South Carlsbad #1	Run 2	5/24/2012	11:32:28 AM	16.57	86.00	8.35 8.35
0181	Enterprise Products	South Carlsbad #1	Run 2 Run 2	5/24/2012	11:32:58 AM	16.58 16.58	86.00 85.50	8.35
0181 0181	Enterprise Products	South Carlsbad #1	Run 2	5/24/2012 5/24/2012	11:33:28 AM	16.58 16.58	85.50 85.50	8.85 9.35
0181	Enterprise Products	South Carlsbad #1 South Carlsbad #1	Run 2 Run 2	5/24/2012 5/24/2012	11:33:58 AM		85.50 85.50	9.35 8.85
0181	Enterprise Products Enterprise Products	South Carlsbad #1 South Carlsbad #1	Run 2 Run 2	5/24/2012 5/24/2012	11:34:28 AM 11:34:58 AM	16.58 16.58	85.50 86.00	8.85 9.35
0181	Enterprise Products	South Carlsbad #1	Run 2 Run 2	5/24/2012 5/24/2012	11:34:38 AM 11:35:28 AM	16.58	86.00 85.50	9.33 9.35
0181	Enterprise Products	South Carlsbad #1	Run 2	5/24/2012 5/24/2012	11:35:58 AM	16.48	85.50 85.50	9.35
0101	Linerprise i roducio		Kuli Z	5,27,2012	11.55.50 AW	10.70	55.50	1.55

		<i>a</i>			T :		NOV	GO (1)
Project Number	Client	Source	Run Number	Date	Time	O2 (% Vol)	NOX (ppmvd)	CO (ppmvd)
0181	Enterprise Products	South Carlsbad #1	Run 2	5/24/2012	11:36:28 AM	16.48	85.50	9.35
0181	Enterprise Products	South Carlsbad #1	Run 2	5/24/2012	11:36:58 AM	16.48	85.50	9.35
0181	Enterprise Products	South Carlsbad #1	Run 2	5/24/2012	11:37:28 AM	16.58	85.50	8.85
0181	Enterprise Products	South Carlsbad #1	Run 2	5/24/2012	11:37:58 AM	16.57	85.50	8.85
0181	Enterprise Products	South Carlsbad #1	Run 2	5/24/2012	11:38:28 AM	16.58	85.50	9.35
0181	Enterprise Products	South Carlsbad #1	Run 2	5/24/2012	11:38:58 AM	16.58	85.00	9.35
0181	Enterprise Products	South Carlsbad #1	Run 2	5/24/2012	11:39:28 AM	16.57	85.50	9.35
0181	Enterprise Products	South Carlsbad #1	Run 2	5/24/2012	11:39:58 AM	16.58	85.50	8.85
0181	Enterprise Products	South Carlsbad #1	Run 2	5/24/2012	11:40:28 AM	16.58	85.00	8.85
0181	Enterprise Products	South Carlsbad #1	Run 2	5/24/2012	11:40:58 AM	16.58	85.00	8.85
0181	Enterprise Products	South Carlsbad #1	Run 2	5/24/2012	11:41:28 AM	16.48	85.00	8.85
0181	Enterprise Products	South Carlsbad #1	Run 2	5/24/2012	11:41:58 AM	16.48	85.00	8.85
0181	Enterprise Products	South Carlsbad #1	Run 2	5/24/2012	11:42:28 AM	16.58	85.00	9.35
0181	Enterprise Products	South Carlsbad #1	Run 2	5/24/2012	11:42:58 AM	16.58	85.50	9.35
0181	Enterprise Products	South Carlsbad #1	Run 2	5/24/2012	11:43:28 AM	16.57	85.50	9.35
0181	Enterprise Products	South Carlsbad #1	Run 2	5/24/2012	11:43:58 AM	16.48	85.50	9.35
0181 0181	Enterprise Products	South Carlsbad #1 South Carlsbad #1	Run 2 Run 2	5/24/2012 5/24/2012	11:44:28 AM 11:44:58 AM	16.58 16.57	85.50 85.50	9.35 9.35
0181	Enterprise Products Enterprise Products	South Carlsbad #1	Run 2	5/24/2012	11:44.38 AM 11:45:28 AM	16.58	85.50	9.35
0181	Enterprise Products	South Carlsbad #1	Run 2	5/24/2012	11:45:58 AM	16.58	85.50	9.85
0181	Enterprise Products	South Carlsbad #1	Run 2	5/24/2012	11:45:38 AM	16.58	85.50	9.35
0181	Enterprise Products	South Carlsbad #1	Run 2	5/24/2012	11:46:28 AM	16.58	85.50	9.35
0181	Enterprise Products	South Carlsbad #1	Run 2	5/24/2012	11:40:38 AM 11:47:28 AM	16.58	85.00	9.85 8.85
0181			Run 2				85.50	8.30
0181	Enterprise Products	South Carlsbad #1	Run 2	5/24/2012	11:47:58 AM	16.58 16.58	85.00	8.30
0181	Enterprise Products Enterprise Products	South Carlsbad #1 South Carlsbad #1	Run 2	5/24/2012 5/24/2012	11:48:28 AM 11:48:58 AM	16.58	85.00	8.85
0181	Enterprise Products	South Carlsbad #1	Run 2	5/24/2012	11:49:28 AM	16.58	85.50	8.85
0181	Enterprise Products	South Carlsbad #1	Run 2	5/24/2012	11:49:58 AM	16.57	85.50	8.85
0181	Enterprise Products	South Carlsbad #1	Run 2	5/24/2012	11:49:38 AM 11:50:28 AM	16.58	85.50	8.85
0181	Enterprise Products	South Carlsbad #1	Run 2	5/24/2012	11:50:58 AM	16.58	85.00	8.85
0181	Enterprise Products	South Carlsbad #1	Run 2	5/24/2012	11:50:38 AM	16.58	85.00	9.35
0181	Enterprise Products	South Carlsbad #1	Run 2	5/24/2012	11:51:58 AM	16.58	85.50	8.85
0181	Enterprise Products	South Carlsbad #1	Run 2	5/24/2012	11:52:28 AM	16.58	85.50	9.35
0181	Enterprise Products	South Carlsbad #1	Run 2	5/24/2012	11:52:58 AM	16.58	85.50	9.85
0101	Enterprise Troducts		Itali 2	5/21/2012	11.52.50 / 101	10.50	05.50	
		Run Averages				16.54	83.07	9.25
0181	Enterprise Products	Run Averages South Carlsbad #1		5/24/2012	11:53:28 AM	16.54 20.80	83.07 0.50	9.25 0.00
0181 0181	Enterprise Products Enterprise Products			5/24/2012 5/24/2012	11:53:28 AM 11:53:58 AM			
		South Carlsbad #1				<u>20.80</u>	<u>0.50</u>	<u>0.00</u>
0181	Enterprise Products	South Carlsbad #1 South Carlsbad #1		5/24/2012	11:53:58 AM	<u>20.80</u> 20.80	<u>0.50</u> 0.00	<u>0.00</u> 0.00
0181 0181	Enterprise Products Enterprise Products	South Carlsbad #1 South Carlsbad #1 South Carlsbad #1	Run 3	5/24/2012 5/24/2012	11:53:58 AM 11:54:28 AM	<u>20.80</u> 20.80 <u>0.00</u>	<u>0.50</u> 0.00 <u>90.40</u>	<u>0.00</u> 0.00 <u>99.35</u>
0181 0181 0181	Enterprise Products Enterprise Products Enterprise Products	South Carlsbad #1 South Carlsbad #1 South Carlsbad #1 South Carlsbad #1	Run 3 Run 3	5/24/2012 5/24/2012 5/24/2012	11:53:58 AM 11:54:28 AM 11:54:45 AM	<u>20.80</u> 20.80 <u>0.00</u> 0.00	<u>0.50</u> 0.00 <u>90.40</u> 90.40	<u>0.00</u> 0.00 <u>99.35</u> 99.35
0181 0181 0181 0181	Enterprise Products Enterprise Products Enterprise Products Enterprise Products	South Carlsbad #1 South Carlsbad #1 South Carlsbad #1 South Carlsbad #1 South Carlsbad #1		5/24/2012 5/24/2012 5/24/2012 5/24/2012	11:53:58 AM 11:54:28 AM 11:54:45 AM 11:55:15 AM	<u>20.80</u> 20.80 <u>0.00</u> 0.00 16.58	<u>0.50</u> 0.00 <u>90.40</u> 90.40 85.50	<u>0.00</u> 0.00 <u>99.35</u> 99.35 8.35
0181 0181 0181 0181 0181	Enterprise Products Enterprise Products Enterprise Products Enterprise Products Enterprise Products	South Carlsbad #1 South Carlsbad #1 South Carlsbad #1 South Carlsbad #1 South Carlsbad #1 South Carlsbad #1	Run 3	5/24/2012 5/24/2012 5/24/2012 5/24/2012 5/24/2012	11:53:58 AM 11:54:28 AM 11:54:45 AM 11:55:15 AM 11:55:45 AM	20.80 20.80 0.00 16.58 16.58	<u>0.50</u> 0.00 <u>90.40</u> 90.40 85.50 85.50	<u>0.00</u> 0.00 <u>99.35</u> 99.35 8.35 8.85
0181 0181 0181 0181 0181 0181 0181	Enterprise Products Enterprise Products Enterprise Products Enterprise Products Enterprise Products Enterprise Products	South Carlsbad #1 South Carlsbad #1 South Carlsbad #1 South Carlsbad #1 South Carlsbad #1 South Carlsbad #1 South Carlsbad #1	Run 3 Run 3	5/24/2012 5/24/2012 5/24/2012 5/24/2012 5/24/2012 5/24/2012	11:53:58 AM 11:54:28 AM 11:54:45 AM 11:55:15 AM 11:55:45 AM 11:56:15 AM	20.80 20.80 0.00 16.58 16.58 16.58	0.50 0.00 90.40 85.50 85.50 85.50 85.50 85.50 85.50	0.00 0.00 99.35 8.35 8.85 8.95 8.85 9.85
0181 0181 0181 0181 0181 0181 0181	Enterprise Products Enterprise Products Enterprise Products Enterprise Products Enterprise Products Enterprise Products Enterprise Products	South Carlsbad #1 South Carlsbad #1 South Carlsbad #1 South Carlsbad #1 South Carlsbad #1 South Carlsbad #1 South Carlsbad #1	Run 3 Run 3 Run 3	5/24/2012 5/24/2012 5/24/2012 5/24/2012 5/24/2012 5/24/2012 5/24/2012	11:53:58 AM 11:54:28 AM 11:54:45 AM 11:55:15 AM 11:55:45 AM 11:56:15 AM 11:56:45 AM	20.80 20.80 0.00 16.58 16.58 16.58 16.58	<u>0.50</u> 0.00 <u>90.40</u> 90.40 85.50 85.50 85.50 85.50	0.00 0.00 99.35 99.35 8.35 8.85 8.95 8.85
0181 0181 0181 0181 0181 0181 0181 0181	Enterprise Products Enterprise Products Enterprise Products Enterprise Products Enterprise Products Enterprise Products Enterprise Products Enterprise Products Enterprise Products	South Carlsbad #1 South Carlsbad #1	Run 3 Run 3 Run 3 Run 3	5/24/2012 5/24/2012 5/24/2012 5/24/2012 5/24/2012 5/24/2012 5/24/2012 5/24/2012	11:53:58 AM 11:54:28 AM 11:54:45 AM 11:55:15 AM 11:55:45 AM 11:56:15 AM 11:56:45 AM 11:57:15 AM	20.80 20.80 0.00 16.58 16.58 16.58 16.58 16.58	0.50 0.00 90.40 85.50 85.50 85.50 85.50 85.50 85.50	0.00 0.00 99.35 8.35 8.85 8.95 8.85 9.85
0181 0181 0181 0181 0181 0181 0181 0181	Enterprise Products Enterprise Products Enterprise Products Enterprise Products Enterprise Products Enterprise Products Enterprise Products Enterprise Products Enterprise Products Enterprise Products	South Carlsbad #1 South Carlsbad #1	Run 3 Run 3 Run 3 Run 3 Run 3	5/24/2012 5/24/2012 5/24/2012 5/24/2012 5/24/2012 5/24/2012 5/24/2012 5/24/2012 5/24/2012	11:53:58 AM 11:54:28 AM 11:54:45 AM 11:55:15 AM 11:55:45 AM 11:56:15 AM 11:56:45 AM 11:57:15 AM 11:57:45 AM	20.80 20.80 0.00 16.58 16.58 16.58 16.58 16.58 16.57 16.58	0.50 0.00 90.40 85.50 85.50 85.50 85.50 85.50 85.50 85.50	0.00 0.00 99.35 8.35 8.85 8.85 8.85 8.85 9.85 9.85 9.35
0181 0181 0181 0181 0181 0181 0181 0181	Enterprise Products Enterprise Products	South Carlsbad #1 South Carlsbad #1	Run 3 Run 3 Run 3 Run 3 Run 3 Run 3	5/24/2012 5/24/2012 5/24/2012 5/24/2012 5/24/2012 5/24/2012 5/24/2012 5/24/2012 5/24/2012 5/24/2012	11:53:58 AM 11:54:28 AM 11:54:45 AM 11:55:15 AM 11:55:45 AM 11:56:15 AM 11:56:45 AM 11:57:15 AM 11:57:45 AM 11:57:45 AM	20.80 20.80 0.00 16.58 16.58 16.58 16.58 16.58 16.57 16.58 16.58 16.48	0.50 0.00 90.40 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50	0.00 0.00 99.35 8.35 8.85 8.85 8.85 9.85 9.85 9.35 9.35
0181 0181 0181 0181 0181 0181 0181 0181	Enterprise Products Enterprise Products	South Carlsbad #1 South Carlsbad #1	Run 3 Run 3 Run 3 Run 3 Run 3 Run 3 Run 3	5/24/2012 5/24/2012 5/24/2012 5/24/2012 5/24/2012 5/24/2012 5/24/2012 5/24/2012 5/24/2012 5/24/2012 5/24/2012	11:53:58 AM 11:54:28 AM 11:54:45 AM 11:55:15 AM 11:55:45 AM 11:56:15 AM 11:56:45 AM 11:57:15 AM 11:57:45 AM 11:58:15 AM 11:58:45 AM	20.80 20.80 0.00 16.58 16.58 16.58 16.58 16.58 16.57 16.58 16.48 16.48 16.48 16.48	0.50 0.00 90.40 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50	0.00 0.00 99.35 8.35 8.85 8.85 8.85 9.85 9.35 9.35 9.35 9.35 8.85 9.35
0181 0181 0181 0181 0181 0181 0181 0181	Enterprise Products Enterprise Products	South Carlsbad #1 South Carlsbad #1	Run 3 Run 3 Run 3 Run 3 Run 3 Run 3 Run 3 Run 3 Run 3 Run 3	5/24/2012 5/24/2012 5/24/2012 5/24/2012 5/24/2012 5/24/2012 5/24/2012 5/24/2012 5/24/2012 5/24/2012 5/24/2012 5/24/2012 5/24/2012	11:53:58 AM 11:54:28 AM 11:54:45 AM 11:55:15 AM 11:55:45 AM 11:56:15 AM 11:56:45 AM 11:57:15 AM 11:57:45 AM 11:58:15 AM 11:58:45 AM 11:59:15 AM	20.80 20.80 0.00 16.58 16.58 16.58 16.58 16.58 16.57 16.58 16.48 16.48 16.58 16.48	0.50 0.00 90.40 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50	0.00 0.00 99.35 8.35 8.85 8.85 9.85 9.35 9.35 9.35 9.35 8.85 9.35 8.35 8.35
0181 0181 0181 0181 0181 0181 0181 0181	Enterprise Products Enterprise Products	South Carlsbad #1 South Carlsbad #1	Run 3 Run 3 Run 3 Run 3 Run 3 Run 3 Run 3 Run 3 Run 3	5/24/2012 5/24/2012 5/24/2012 5/24/2012 5/24/2012 5/24/2012 5/24/2012 5/24/2012 5/24/2012 5/24/2012 5/24/2012 5/24/2012 5/24/2012 5/24/2012	11:53:58 AM 11:54:28 AM 11:54:45 AM 11:55:15 AM 11:55:45 AM 11:56:15 AM 11:56:45 AM 11:57:15 AM 11:57:45 AM 11:58:15 AM 11:58:45 AM 11:59:15 AM	20.80 20.80 0.00 16.58 16.58 16.58 16.58 16.58 16.58 16.58 16.48 16.48 16.48 16.48 16.48 16.48 16.57 16.58	0.50 0.00 90.40 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50	0.00 0.00 99.35 8.35 8.85 8.85 9.85 9.35 9.35 9.35 9.35 8.85 9.35 8.35 8.35 8.35 8.35 8.35
0181 0181 0181 0181 0181 0181 0181 0181	Enterprise Products Enterprise Products	South Carlsbad #1 South Carlsbad #1	Run 3 Run 3	5/24/2012 5/24/2012 5/24/2012 5/24/2012 5/24/2012 5/24/2012 5/24/2012 5/24/2012 5/24/2012 5/24/2012 5/24/2012 5/24/2012 5/24/2012	11:53:58 AM 11:54:28 AM 11:54:45 AM 11:55:15 AM 11:55:45 AM 11:56:15 AM 11:56:45 AM 11:57:15 AM 11:57:45 AM 11:58:45 AM 11:59:15 AM 11:59:45 AM 12:00:15 PM 12:00:45 PM 12:01:15 PM	20.80 20.80 0.00 16.58 16.58 16.58 16.58 16.58 16.57 16.58 16.48 16.48 16.48 16.48 16.48 16.48	0.50 0.00 90.40 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50	0.00 99.35 99.35 8.35 8.85 8.85 9.35 9.35 9.35 9.35 8.85 9.35 8.85 9.35 8.85 9.35 8.85 9.35 8.85 8.35 8.85 8.35 8.35 8.35 8.35 8.35 8.35 8.35 8.35 8.35 8.35 8.35 8.35 8.35 8.35 8.35 8.35 8.85 8.35 8.85 8.35 8.35 8.35 8.35 8.35 8.35 8.35 8.35 8.85
0181 0181 0181 0181 0181 0181 0181 0181	Enterprise Products Enterprise Products	South Carlsbad #1 South Carlsbad #1	Run 3 Run 3	5/24/2012 5/24/2012 5/24/2012 5/24/2012 5/24/2012 5/24/2012 5/24/2012 5/24/2012 5/24/2012 5/24/2012 5/24/2012 5/24/2012 5/24/2012 5/24/2012 5/24/2012	11:53:58 AM 11:54:28 AM 11:54:45 AM 11:55:15 AM 11:55:15 AM 11:56:15 AM 11:56:15 AM 11:57:15 AM 11:57:15 AM 11:58:15 AM 11:59:15 AM 11:59:15 AM 11:59:45 AM 12:00:15 PM 12:00:45 PM 12:01:15 PM	$\begin{array}{r} \underline{20.80}\\ 20.80\\ \underline{0.00}\\ 0.00\\ 16.58\\ 16.58\\ 16.58\\ 16.58\\ 16.58\\ 16.58\\ 16.58\\ 16.48\\ 16.48\\ 16.48\\ 16.57\\ 16.58\\ 16.58\\ 16.58\\ 16.58\\ 16.58\\ 16.58\\ 16.48\\ 16.58\\ 16.58\\ 16.48\\ 16.58\\ 16.48\\ 16.58\\ 16.48\\ 16.58\\ 16.48\\ 16.58\\ 16.48\\ 16.58\\ 16.48\\ 16.58\\ 16.48\\ 16.58\\ 16.48\\ 16.58\\ 16.48\\ 16.58\\ 16.48\\ 16.58\\ 16.48\\ 16.58\\ 16.48\\ 16.58\\ 16.48\\ 16.58\\ 16.48\\ 16.58\\ 16.48\\ 16.58\\ 16.48\\ 16.58\\ 16.58\\ 16.58\\ 16.58\\ 16.48\\ 16.58$	0.50 0.00 90.40 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50 85.50	0.00 99.35 99.35 8.35 8.85 8.85 9.35 9.35 9.35 9.35 8.85 9.35 8.85 9.35 8.85 9.35 8.85 8.35
0181 0181 0181 0181 0181 0181 0181 0181	Enterprise Products Enterprise Products	South Carlsbad #1 South Carlsbad #1	Run 3 Run 3	5/24/2012 5/24/2012 5/24/2012 5/24/2012 5/24/2012 5/24/2012 5/24/2012 5/24/2012 5/24/2012 5/24/2012 5/24/2012 5/24/2012 5/24/2012 5/24/2012 5/24/2012 5/24/2012 5/24/2012	11:53:58 AM 11:54:28 AM 11:54:25 AM 11:55:15 AM 11:55:15 AM 11:56:15 AM 11:56:45 AM 11:57:45 AM 11:57:45 AM 11:59:15 AM 11:59:15 AM 11:59:15 AM 11:59:15 AM 12:00:15 PM 12:00:45 PM 12:01:15 PM 12:01:45 PM	$\begin{array}{r} \underline{20.80}\\ 20.80\\ \underline{0.00}\\ 0.00\\ 16.58\\ 16.58\\ 16.58\\ 16.58\\ 16.58\\ 16.58\\ 16.58\\ 16.48\\ 16.48\\ 16.48\\ 16.58\\ 16.58\\ 16.58\\ 16.58\\ 16.58\\ 16.58\\ 16.48$	0.50 0.00 90.40 85.50	0.00 99.35 99.35 8.35 8.85 8.85 9.35 9.35 9.35 9.35 9.35 8.85 9.35 8.85 8.85 8.85 8.85 8.85 8.85 8.85 8.85 8.85
0181 0181 0181 0181 0181 0181 0181 0181	Enterprise Products Enterprise Products	South Carlsbad #1 South Carlsbad #1	Run 3 Run 3	5/24/2012 5/24/2012 5/24/2012 5/24/2012 5/24/2012 5/24/2012 5/24/2012 5/24/2012 5/24/2012 5/24/2012 5/24/2012 5/24/2012 5/24/2012 5/24/2012 5/24/2012 5/24/2012 5/24/2012 5/24/2012	11:53:58 AM 11:54:28 AM 11:54:25 AM 11:55:15 AM 11:55:15 AM 11:55:15 AM 11:56:15 AM 11:57:15 AM 11:57:45 AM 11:59:15 AM 11:59:15 AM 11:59:15 AM 12:00:15 PM 12:00:15 PM 12:01:15 PM 12:01:15 PM 12:01:25 PM	$\begin{array}{r} \underline{20.80}\\ 20.80\\ \underline{0.00}\\ 0.00\\ 16.58\\ 16.58\\ 16.58\\ 16.58\\ 16.58\\ 16.58\\ 16.58\\ 16.48\\ 16.58\\ 16.48\\ 16.58\\ 16.58\\ 16.58\\ 16.58\\ 16.58\\ 16.48$	0.50 0.00 90.40 85.50	0.00 99.35 99.35 8.35 8.85 8.85 9.35 9.35 9.35 9.35 8.85 9.35 8.85 9.35 8.35 8.35 8.35 8.85 8.35 8.85 8.35 8.85 8.35 8.85 8.35 8.85 8.35 8.85 8.85 8.85 8.35 8.85 8.85 8.85 8.85 8.35 8.85
0181 0181 0181 0181 0181 0181 0181 0181	Enterprise Products Enterprise Products	South Carlsbad #1 South Carlsbad #1	Run 3 Run 3	5/24/2012 5/24/2012 5/24/2012 5/24/2012 5/24/2012 5/24/2012 5/24/2012 5/24/2012 5/24/2012 5/24/2012 5/24/2012 5/24/2012 5/24/2012 5/24/2012 5/24/2012 5/24/2012 5/24/2012 5/24/2012	11:53:58 AM 11:54:28 AM 11:54:25 AM 11:55:15 AM 11:55:15 AM 11:56:15 AM 11:56:15 AM 11:57:15 AM 11:57:45 AM 11:58:15 AM 11:59:15 AM 11:59:15 AM 12:00:15 PM 12:00:15 PM 12:01:45 PM 12:01:45 PM 12:02:15 PM 12:02:15 PM	$\begin{array}{r} \underline{20.80}\\ 20.80\\ \underline{0.00}\\ 0.00\\ 16.58\\ 16.58\\ 16.58\\ 16.58\\ 16.58\\ 16.58\\ 16.58\\ 16.48\\ 16.58\\ 16.48\\ 16.57\\ 16.58\\ 16.58\\ 16.58\\ 16.48$	0.50 0.00 90.40 85.50	0.00 99.35 99.35 8.35 8.85 8.85 9.35 9.35 9.35 9.35 8.85 9.35 8.35 8.35 8.35 8.85 8.35 8.35 8.85 8.30
0181 0181 0181 0181 0181 0181 0181 0181	Enterprise Products Enterprise Products	South Carlsbad #1 South Carlsbad #1	Run 3 Run 3	5/24/2012 5/24/2012 5/24/2012 5/24/2012 5/24/2012 5/24/2012 5/24/2012 5/24/2012 5/24/2012 5/24/2012 5/24/2012 5/24/2012 5/24/2012 5/24/2012 5/24/2012 5/24/2012 5/24/2012 5/24/2012 5/24/2012	11:53:58 AM 11:54:28 AM 11:54:25 AM 11:55:15 AM 11:55:15 AM 11:56:15 AM 11:56:15 AM 11:57:15 AM 11:57:15 AM 11:58:15 AM 11:59:15 AM 11:59:15 AM 12:00:15 PM 12:00:15 PM 12:01:15 PM 12:01:15 PM 12:02:15 PM 12:02:15 PM 12:02:15 PM 12:02:15 PM	$\begin{array}{r} \underline{20.80}\\ 20.80\\ \underline{0.00}\\ 0.00\\ 16.58\\ 16.58\\ 16.58\\ 16.58\\ 16.58\\ 16.58\\ 16.58\\ 16.48\\ 16.48\\ 16.57\\ 16.58\\ 16.58\\ 16.58\\ 16.48$	0.50 0.00 90.40 85.50	0.00 99.35 99.35 8.35 8.85 8.85 9.35 9.35 9.35 9.35 8.85 9.35 8.35 8.35 8.35 8.85 8.35 8.85 8.35 8.85
0181 0181 0181 0181 0181 0181 0181 0181	Enterprise Products Enterprise Products	South Carlsbad #1 South Carlsbad #1	Run 3 Run 3	5/24/2012 5/24/2012 5/24/2012 5/24/2012 5/24/2012 5/24/2012 5/24/2012 5/24/2012 5/24/2012 5/24/2012 5/24/2012 5/24/2012 5/24/2012 5/24/2012 5/24/2012 5/24/2012 5/24/2012 5/24/2012 5/24/2012 5/24/2012	11:53:58 AM 11:54:28 AM 11:54:25 AM 11:55:15 AM 11:55:15 AM 11:55:45 AM 11:56:15 AM 11:57:15 AM 11:57:45 AM 11:58:15 AM 11:59:15 AM 11:59:15 AM 12:00:15 PM 12:00:45 PM 12:01:45 PM 12:02:15 PM 12:02:15 PM 12:03:15 PM 12:03:15 PM 12:03:15 PM	$\begin{array}{r} \underline{20.80}\\ 20.80\\ \underline{0.00}\\ 0.00\\ 16.58\\ 16.58\\ 16.58\\ 16.58\\ 16.58\\ 16.58\\ 16.48\\ 16.48\\ 16.48\\ 16.57\\ 16.58\\ 16.48$	0.50 0.00 90.40 85.50	0.00 99.35 99.35 8.35 8.85 8.85 9.35 9.35 9.35 9.35 9.35 8.85 9.35 8.35 8.35 8.85 8.35 8.85 8.35 8.85 8.35 8.85 8.35 8.35 8.35 8.35 8.85 8.35 8.85 8.35 8.85 8.35 8.85 8.85 8.85 8.35 8.85 8.35
0181 0181 0181 0181 0181 0181 0181 0181	Enterprise Products Enterprise Products	South Carlsbad #1 South Carlsbad #1	Run 3 Run 3	5/24/2012 5/24/2012	11:53:58 AM 11:54:28 AM 11:54:25 AM 11:55:15 AM 11:55:15 AM 11:56:15 AM 11:56:15 AM 11:57:15 AM 11:57:45 AM 11:58:15 AM 11:59:15 AM 11:59:15 AM 12:00:15 PM 12:00:45 PM 12:01:15 PM 12:02:15 PM 12:02:15 PM 12:02:15 PM 12:02:45 PM 12:03:15 PM 12:04:45 PM	$\begin{array}{r} \underline{20.80}\\ \underline{0.00}\\ 0.00\\ 16.58\\ 16.58\\ 16.58\\ 16.58\\ 16.58\\ 16.58\\ 16.58\\ 16.48\\ 16.58\\ 16.48\\ 16.48\\ 16.58\\ 16.58\\ 16.48$	0.50 0.00 90.40 85.50	0.00 99.35 99.35 8.35 8.85 8.85 9.35 9.35 9.35 9.35 9.35 8.85 8.35 8.35 8.85 8.35 8.85 8.35 8.85 8.35 8.85 8.35 8.85 8.35 8.35 8.85 8.35 8.85 8.35 8.85 8.35 8.85 8.35 8.85 8.85 8.35 8.85 8.85 8.85 8.35 8.85 8.35 8.35 8.85 8.35
0181 0181 0181 0181 0181 0181 0181 0181	Enterprise Products Enterprise Products	South Carlsbad #1 South Carlsbad #1	Run 3 Run 3	5/24/2012 5/24/2012	11:53:58 AM 11:54:28 AM 11:54:25 AM 11:55:15 AM 11:55:15 AM 11:56:15 AM 11:56:15 AM 11:57:15 AM 11:57:15 AM 11:57:45 AM 11:59:15 AM 11:59:15 AM 12:00:15 PM 12:00:45 PM 12:02:15 PM 12:02:15 PM 12:03:15 PM 12:03:15 PM 12:04:15 PM 12:04:15 PM 12:04:15 PM	$\begin{array}{r} \underline{20.80}\\ \underline{20.80}\\ \underline{0.00}\\ 0.00\\ 16.58\\ 16.58\\ 16.58\\ 16.58\\ 16.58\\ 16.58\\ 16.48\\ 16.48\\ 16.48\\ 16.57\\ 16.58\\ 16.48\\ 16$	0.50 0.00 90.40 85.50 <td>0.00 99.35 99.35 8.35 8.85 8.85 9.85 9.35 9.35 9.35 8.85 8.35 8.35 8.85 8.85 8.85 8.85 8.85 8.85 8.85 8.85 8.85 8.85 8.85 8.85 8.85 8.85 8.85 8.85 8.35 9.35 9.35 9.35 9.35</td>	0.00 99.35 99.35 8.35 8.85 8.85 9.85 9.35 9.35 9.35 8.85 8.35 8.35 8.85 8.85 8.85 8.85 8.85 8.85 8.85 8.85 8.85 8.85 8.85 8.85 8.85 8.85 8.85 8.85 8.35 9.35 9.35 9.35 9.35
0181 0181 0181 0181 0181 0181 0181 0181	Enterprise Products Enterprise Products	South Carlsbad #1 South Carlsbad #1	Run 3 Run 3	5/24/2012 5/24/2012	11:53:58 AM 11:54:28 AM 11:54:25 AM 11:55:15 AM 11:55:15 AM 11:56:15 AM 11:56:15 AM 11:57:15 AM 11:57:15 AM 11:57:45 AM 11:59:15 AM 11:59:15 AM 12:00:15 PM 12:00:15 PM 12:01:45 PM 12:02:45 PM 12:03:15 PM 12:03	$\begin{array}{r} \underline{20.80} \\ \underline{20.80} \\ \underline{0.00} \\ 0.00 \\ 16.58 \\ 16.58 \\ 16.58 \\ 16.58 \\ 16.58 \\ 16.58 \\ 16.48 \\ 16.48 \\ 16.57 \\ 16.58 \\ 16.48 \\ $	0.50 0.00 90.40 85.50 <td>0.00 99.35 99.35 8.35 8.85 8.85 9.85 9.35 9.35 9.35 9.35 8.85 8.35 8.35 8.85 8.85 8.85 8.85 8.85 8.85 8.35 8.35 8.35 8.35 8.35 8.35 8.35 8.35 8.35 8.35 8.35 8.35 8.35 8.35 8.85 8.85 8.35 8.35 8.85</td>	0.00 99.35 99.35 8.35 8.85 8.85 9.85 9.35 9.35 9.35 9.35 8.85 8.35 8.35 8.85 8.85 8.85 8.85 8.85 8.85 8.35 8.35 8.35 8.35 8.35 8.35 8.35 8.35 8.35 8.35 8.35 8.35 8.35 8.35 8.85 8.85 8.35 8.35 8.85
0181 0181 0181 0181 0181 0181 0181 0181	Enterprise Products Enterprise Products	South Carlsbad #1 South Carlsbad #1	Run 3 Run 3	5/24/2012 5/24/2012	11:53:58 AM 11:54:28 AM 11:54:25 AM 11:55:15 AM 11:55:15 AM 11:56:15 AM 11:56:15 AM 11:57:15 AM 11:57:15 AM 11:57:45 AM 11:59:15 AM 11:59:15 AM 12:00:15 PM 12:00:45 PM 12:02:45 PM 12:02:45 PM 12:03:15 PM 12:05:15 PM 12:05:15 PM 12:05:15 PM 12:05:15 PM 12:05:15 PM	$\begin{array}{r} \underline{20.80} \\ \underline{20.80} \\ \underline{0.00} \\ 0.00 \\ 16.58 \\ 16.58 \\ 16.58 \\ 16.58 \\ 16.58 \\ 16.58 \\ 16.48 \\ $	0.50 0.00 90.40 85.50 <td>0.00 99.35 99.35 8.35 8.85 8.85 9.35 9.35 9.35 9.35 9.35 8.85 8.35 8.35 8.85 8.85 8.85 8.85 8.35</td>	0.00 99.35 99.35 8.35 8.85 8.85 9.35 9.35 9.35 9.35 9.35 8.85 8.35 8.35 8.85 8.85 8.85 8.85 8.35
0181 0181 0181 0181 0181 0181 0181 0181	Enterprise Products Enterprise Products	South Carlsbad #1 South Carlsbad #1	Run 3 Run 3	5/24/2012 5/24/2012	11:53:58 AM 11:54:28 AM 11:54:25 AM 11:55:15 AM 11:55:15 AM 11:56:15 AM 11:56:15 AM 11:57:15 AM 11:57:15 AM 11:57:45 AM 11:59:15 AM 11:59:15 AM 11:59:45 AM 12:00:15 PM 12:00:45 PM 12:02:15 PM 12:03:15 PM 12:03:15 PM 12:03:15 PM 12:03:15 PM 12:03:15 PM 12:03:15 PM 12:03:15 PM 12:03:15 PM 12:03:15 PM 12:05:15 PM 12:05:15 PM 12:05:15 PM 12:05:15 PM 12:06:45 PM	$\begin{array}{r} \underline{20.80} \\ \underline{20.80} \\ \underline{0.00} \\ 0.00 \\ 16.58 \\ 16.58 \\ 16.58 \\ 16.58 \\ 16.58 \\ 16.58 \\ 16.48 \\ $	0.50 0.00 90.40 85.50 <td>0.00 99.35 99.35 8.35 8.85 8.85 9.35 9.35 9.35 9.35 9.35 8.85 8.85 8.85 8.85 8.85 8.85 8.85 8.35</td>	0.00 99.35 99.35 8.35 8.85 8.85 9.35 9.35 9.35 9.35 9.35 8.85 8.85 8.85 8.85 8.85 8.85 8.85 8.35
0181 0181 0181 0181 0181 0181 0181 0181	Enterprise Products Enterprise Products	South Carlsbad #1 South Carlsbad #1	Run 3 Run 3	5/24/2012 5/24/2012	11:53:58 AM 11:54:28 AM 11:54:25 AM 11:55:15 AM 11:55:15 AM 11:56:15 AM 11:56:15 AM 11:57:15 AM 11:57:15 AM 11:57:45 AM 11:59:15 AM 11:59:45 AM 11:59:45 AM 12:00:15 PM 12:00:45 PM 12:02:15 PM 12:03:45 PM 12:03:15 PM 12:03:15 PM 12:03:15 PM 12:05:15 PM 12:05:15 PM 12:05:15 PM 12:05:15 PM 12:06:15 PM 12:06:15 PM 12:06:15 PM 12:06:15 PM 12:07:15 PM	$\begin{array}{r} \underline{20.80} \\ \underline{20.80} \\ \underline{0.00} \\ 0.00 \\ 16.58 \\ 16.58 \\ 16.58 \\ 16.58 \\ 16.58 \\ 16.58 \\ 16.48 \\ $	0.50 0.00 90.40 85.50 <td>0.00 99.35 99.35 8.35 8.85 8.85 9.35 9.35 9.35 9.35 9.35 8.85 8.85 8.85 8.85 8.85 8.85 8.35 8.85</td>	0.00 99.35 99.35 8.35 8.85 8.85 9.35 9.35 9.35 9.35 9.35 8.85 8.85 8.85 8.85 8.85 8.85 8.35 8.85
0181 0181 0181 0181 0181 0181 0181 0181	Enterprise Products Enterprise Products	South Carlsbad #1 South Carlsbad #1	Run 3 Run 3	5/24/2012 5/24/2012	11:53:58 AM 11:54:28 AM 11:54:25 AM 11:55:15 AM 11:55:15 AM 11:56:15 AM 11:56:15 AM 11:57:15 AM 11:57:15 AM 11:57:45 AM 11:59:15 AM 11:59:15 AM 11:59:45 AM 12:00:15 PM 12:00:45 PM 12:01:45 PM 12:03:45 PM 12:03:15 PM 12:03:15 PM 12:03:45 PM 12:05:15 PM 12:05:15 PM 12:05:15 PM 12:05:15 PM 12:06:15 PM 12:06:15 PM 12:07:15 PM 12:07:15 PM 12:07:15 PM 12:07:15 PM 12:07:15 PM 12:07:15 PM 12:07:15 PM 12:07:15 PM	$\begin{array}{r} \underline{20.80}\\ \underline{20.80}\\ \underline{0.00}\\ 0.00\\ 16.58\\ 16.58\\ 16.58\\ 16.58\\ 16.58\\ 16.58\\ 16.48\\ 16$	0.50 0.00 90.40 85.50 86.00 86.00 86.00 86.00 <td>0.00 99.35 99.35 8.35 8.85 8.85 9.35 9.35 9.35 9.35 8.85 9.35 8.85 8.85 8.85 8.85 8.85 8.35 8.85 9.35 9.35 8.85 9.35 8.85 9.35 8.85 9.35 9.35 8.85 9.35 8.5 9.35 8.5 9.35 8.5 9.35 8.5 9.35 8.5 9.35 8.5 9.35 8.5 9.35 8.5 9.35 8.5 9.35 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.</td>	0.00 99.35 99.35 8.35 8.85 8.85 9.35 9.35 9.35 9.35 8.85 9.35 8.85 8.85 8.85 8.85 8.85 8.35 8.85 9.35 9.35 8.85 9.35 8.85 9.35 8.85 9.35 9.35 8.85 9.35 8.5 9.35 8.5 9.35 8.5 9.35 8.5 9.35 8.5 9.35 8.5 9.35 8.5 9.35 8.5 9.35 8.5 9.35 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.
0181 0181 0181 0181 0181 0181 0181 0181	Enterprise Products Enterprise Products	South Carlsbad #1 South Carlsbad #1	Run 3 Run 3	5/24/2012 5/24/2012	11:53:58 AM 11:54:28 AM 11:54:25 AM 11:55:15 AM 11:55:15 AM 11:56:15 AM 11:56:15 AM 11:57:15 AM 11:57:45 AM 11:57:45 AM 11:59:15 AM 11:59:15 AM 11:59:45 AM 12:00:15 PM 12:00:45 PM 12:01:45 PM 12:02:45 PM 12:03:15 PM 12:03:45 PM 12:03:45 PM 12:05:15 PM 12:05:45 PM 12:05:15 PM 12:05:45 PM 12:06:45 PM 12:07:15 PM	$\begin{array}{r} \underline{20.80} \\ \underline{20.80} \\ \underline{0.00} \\ 0.00 \\ 16.58 \\ 16.58 \\ 16.58 \\ 16.58 \\ 16.58 \\ 16.58 \\ 16.48 \\ $	0.50 0.00 90.40 85.50 86.00 86.00 86.00 86.00 86.00 <td>0.00 99.35 99.35 8.35 8.85 9.35 9.35 9.35 9.35 9.35 8.85 9.35 8.85 8.85 8.85 8.85 8.85 8.85 8.85 9.35 9.35 9.35 8.85 8.85 9.35</td>	0.00 99.35 99.35 8.35 8.85 9.35 9.35 9.35 9.35 9.35 8.85 9.35 8.85 8.85 8.85 8.85 8.85 8.85 8.85 9.35 9.35 9.35 8.85 8.85 9.35
0181 0181 0181 0181 0181 0181 0181 0181	Enterprise Products Enterprise Products	South Carlsbad #1 South Carlsbad #1	Run 3 Run 3	5/24/2012 5/24/2012	11:53:58 AM 11:54:28 AM 11:54:25 AM 11:55:15 AM 11:55:15 AM 11:56:15 AM 11:56:15 AM 11:57:15 AM 11:57:15 AM 11:57:45 AM 11:59:15 AM 11:59:15 AM 11:59:45 AM 12:00:15 PM 12:00:45 PM 12:01:15 PM 12:02:45 PM 12:03:15 PM 12:03:15 PM 12:03:45 PM 12:05:15 PM 12:05:15 PM 12:05:15 PM 12:05:15 PM 12:05:15 PM 12:06:15 PM 12:07:15 PM	$\begin{array}{r} \underline{20.80} \\ \underline{20.80} \\ \underline{0.00} \\ 0.00 \\ 16.58 \\ 16.58 \\ 16.58 \\ 16.58 \\ 16.58 \\ 16.58 \\ 16.48 \\ $	0.50 0.00 90.40 85.50 86.00 86.00 86.00 86.00 86.00 86.00 <td>0.00 99.35 99.35 8.35 8.85 9.35 9.35 9.35 9.35 9.35 9.35 8.85 9.35 8.85 8.35 8.85 8.85 8.85 8.85 8.30 8.85 9.35 9.35 9.35 8.85 9.35 9.35 8.85 9.35</td>	0.00 99.35 99.35 8.35 8.85 9.35 9.35 9.35 9.35 9.35 9.35 8.85 9.35 8.85 8.35 8.85 8.85 8.85 8.85 8.30 8.85 9.35 9.35 9.35 8.85 9.35 9.35 8.85 9.35
0181 0181 0181 0181 0181 0181 0181 0181	Enterprise Products Enterprise Products	South Carlsbad #1 South Carlsbad #1	Run 3 Run 3	5/24/2012 5/24/2012	11:53:58 AM 11:54:28 AM 11:54:28 AM 11:55:15 AM 11:55:15 AM 11:55:15 AM 11:56:15 AM 11:56:15 AM 11:57:15 AM 11:57:15 AM 11:59:15 AM 11:59:15 AM 11:59:15 AM 12:00:15 PM 12:00:45 PM 12:01:45 PM 12:02:15 PM 12:03:45 PM 12:04:15 PM 12:04:45 PM 12:06:15 PM 12:06:15 PM 12:06:15 PM 12:07:15 PM 12:07:45 PM	$\begin{array}{r} \underline{20.80} \\ \underline{20.80} \\ \underline{0.00} \\ 0.00 \\ 16.58 \\ 16.58 \\ 16.58 \\ 16.58 \\ 16.58 \\ 16.58 \\ 16.48 \\ $	0.50 0.00 90.40 85.50 86.00 86.00 86.00 86.00 86.00 86.00 86.00 <td>0.00 99.35 99.35 8.35 8.85 9.35 9.35 9.35 9.35 9.35 9.35 8.85 9.35 8.85 8.35 8.85 8.85 8.85 8.85 8.85 9.35 8.85 9.35 8.85 9.35 8.85 9.35 8.85 9.35 8.85 9.35 8.85 9.35</td>	0.00 99.35 99.35 8.35 8.85 9.35 9.35 9.35 9.35 9.35 9.35 8.85 9.35 8.85 8.35 8.85 8.85 8.85 8.85 8.85 9.35 8.85 9.35 8.85 9.35 8.85 9.35 8.85 9.35 8.85 9.35 8.85 9.35
0181 0181 0181 0181 0181 0181 0181 0181	Enterprise Products Enterprise Products	South Carlsbad #1 South Carlsbad #1	Run 3 Run 3	5/24/2012 5/24/2012	11:53:58 AM 11:54:28 AM 11:54:25 AM 11:55:15 AM 11:55:15 AM 11:56:15 AM 11:56:15 AM 11:57:15 AM 11:57:15 AM 11:57:45 AM 11:59:15 AM 11:59:15 AM 11:59:45 AM 12:00:15 PM 12:00:45 PM 12:01:15 PM 12:02:45 PM 12:03:15 PM 12:03:15 PM 12:03:45 PM 12:05:15 PM 12:05:15 PM 12:05:15 PM 12:05:15 PM 12:05:15 PM 12:06:15 PM 12:07:15 PM	$\begin{array}{r} \underline{20.80} \\ \underline{20.80} \\ \underline{0.00} \\ 0.00 \\ 16.58 \\ 16.58 \\ 16.58 \\ 16.58 \\ 16.58 \\ 16.58 \\ 16.48 \\ $	0.50 0.00 90.40 85.50 86.00 86.00 86.00 86.00 86.00 86.00 <td>0.00 99.35 99.35 8.35 8.85 9.35 9.35 9.35 9.35 9.35 8.85 9.35 8.85 8.85 8.85 8.85 8.85 8.85 8.85 9.35 9.35 9.35 8.85 8.85 9.35 9.35 9.35 8.85 9.35</td>	0.00 99.35 99.35 8.35 8.85 9.35 9.35 9.35 9.35 9.35 8.85 9.35 8.85 8.85 8.85 8.85 8.85 8.85 8.85 9.35 9.35 9.35 8.85 8.85 9.35 9.35 9.35 8.85 9.35

Due is at Manula a	Clinet	C	Deer Meensheer	Dete	T :	O2(0)(11-1)	NOV (manual)	CO (manual)
Project Number 0181	Client	Source South Carlsbad #1	Run Number Run 3	Date 5/24/2012	Time 12:10:15 PM	O2 (% Vol) 16.48	NOX (ppmvd) 86.00	CO (ppmvd) 9.35
0181	Enterprise Products Enterprise Products	South Carlsbad #1	Run 3	5/24/2012	12:10:15 PM 12:10:45 PM	16.48	86.00	9.35
0181	Enterprise Products	South Carlsbad #1	Run 3	5/24/2012	12:10:45 FM	16.48	86.00	9.35
0181	Enterprise Products	South Carlsbad #1	Run 3	5/24/2012	12:11:45 PM	16.48	86.00	9.85
0181	Enterprise Products	South Carlsbad #1	Run 3	5/24/2012	12:12:15 PM	16.48	86.00	9.35
0181	Enterprise Products	South Carlsbad #1	Run 3	5/24/2012	12:12:45 PM	16.48	86.00	8.85
0181	Enterprise Products	South Carlsbad #1	Run 3	5/24/2012	12:13:15 PM	16.48	85.50	8.85
0181	Enterprise Products	South Carlsbad #1	Run 3	5/24/2012	12:13:45 PM	16.48	85.50	8.85
0181	Enterprise Products	South Carlsbad #1	Run 3	5/24/2012	12:14:15 PM	16.48	85.50	8.85
0181	Enterprise Products	South Carlsbad #1	Run 3	5/24/2012	12:14:45 PM	16.48	85.50	9.35
0181	Enterprise Products	South Carlsbad #1	Run 3	5/24/2012	12:15:15 PM	16.48	85.50	9.85
0181	Enterprise Products	South Carlsbad #1	Run 3	5/24/2012	12:15:45 PM	16.48	86.00	9.85
0181	Enterprise Products	South Carlsbad #1	Run 3	5/24/2012	12:16:15 PM	16.48	86.00	9.35
0181	Enterprise Products	South Carlsbad #1	Run 3	5/24/2012	12:16:45 PM	16.48	86.50	9.35
0181	Enterprise Products	South Carlsbad #1	Run 3 Run 3	5/24/2012	12:17:15 PM	16.48	86.00	8.85 9.35
0181 0181	Enterprise Products Enterprise Products	South Carlsbad #1 South Carlsbad #1	Run 3	5/24/2012 5/24/2012	12:17:45 PM 12:18:15 PM	16.48 16.48	86.00 85.50	9.35 9.35
0181	Enterprise Products	South Carlsbad #1	Run 3	5/24/2012	12:18:45 PM	16.48	86.00	8.85
0181	Enterprise Products	South Carlsbad #1	Run 3	5/24/2012	12:19:15 PM	16.48	86.00	9.35
0181	Enterprise Products	South Carlsbad #1	Run 3	5/24/2012	12:19:45 PM	16.48	86.00	8.85
0181	Enterprise Products	South Carlsbad #1	Run 3	5/24/2012	12:20:15 PM	16.48	86.00	8.85
0181	Enterprise Products	South Carlsbad #1	Run 3	5/24/2012	12:20:45 PM	16.48	86.00	9.35
0181	Enterprise Products	South Carlsbad #1	Run 3	5/24/2012	12:21:15 PM	16.48	86.00	8.35
0181	Enterprise Products	South Carlsbad #1	Run 3	5/24/2012	12:21:45 PM	16.48	86.00	8.35
0181	Enterprise Products	South Carlsbad #1	Run 3	5/24/2012	12:22:15 PM	16.48	86.00	8.85
0181	Enterprise Products	South Carlsbad #1	Run 3	5/24/2012	12:22:45 PM	16.48	85.50	8.85
0181	Enterprise Products	South Carlsbad #1	Run 3	5/24/2012	12:23:15 PM	16.48	86.00	8.85
0181	Enterprise Products	South Carlsbad #1	Run 3	5/24/2012	12:23:45 PM	16.48	86.00	8.85
0181	Enterprise Products	South Carlsbad #1	Run 3	5/24/2012	12:24:15 PM	16.48	86.00	8.35
0181	Enterprise Products	South Carlsbad #1	Run 3	5/24/2012	12:24:45 PM	16.48	86.00	8.85
0181 0181	Enterprise Products Enterprise Products	South Carlsbad #1 South Carlsbad #1	Run 3 Run 3	5/24/2012 5/24/2012	12:25:15 PM 12:25:45 PM	16.48 16.48	86.00 86.00	8.85 8.85
0181	Enterprise Products	South Carlsbad #1	Run 3	5/24/2012	12:26:15 PM	16.48	86.00	8.85
0181	Enterprise Products	South Carlsbad #1	Run 3	5/24/2012	12:26:45 PM	16.48	86.00	8.85
0181	Enterprise Products	South Carlsbad #1	Run 3	5/24/2012	12:27:15 PM	16.48	86.00	9.35
0181	Enterprise Products	South Carlsbad #1	Run 3	5/24/2012	12:27:45 PM	16.48	86.00	8.85
0181	Enterprise Products	South Carlsbad #1	Run 3	5/24/2012	12:28:15 PM	16.48	86.00	8.30
0181	Enterprise Products	South Carlsbad #1	Run 3	5/24/2012	12:28:45 PM	16.48	86.00	8.85
0181	Enterprise Products	South Carlsbad #1	Run 3	5/24/2012	12:29:15 PM	16.48	86.00	8.85
0181	Enterprise Products	South Carlsbad #1	Run 3	5/24/2012	12:29:45 PM	16.48	86.00	8.85
0181	Enterprise Products	South Carlsbad #1	Run 3	5/24/2012	12:30:15 PM	16.48	86.00	8.30
0181	Enterprise Products	South Carlsbad #1	Run 3	5/24/2012	12:30:45 PM	16.48	85.50	8.85
0181	Enterprise Products	South Carlsbad #1	Run 3	5/24/2012	12:31:15 PM	16.48	86.00	8.85
0181	Enterprise Products	South Carlsbad #1	Run 3	5/24/2012	12:31:45 PM	16.48	85.50	9.85
0181	Enterprise Products	South Carlsbad #1	Run 3 Run 2	5/24/2012	12:32:15 PM	16.48	86.00 85.50	8.85
0181 0181	Enterprise Products Enterprise Products	South Carlsbad #1 South Carlsbad #1	Run 3 Run 3	5/24/2012 5/24/2012	12:32:45 PM 12:33:15 PM	16.48 16.48	85.50 86.00	8.35 8.35
0181	Enterprise Products	South Carlsbad #1	Run 3	5/24/2012	12:33:45 PM	16.48	86.00	8.85
0181	Enterprise Products	South Carlsbad #1	Run 3	5/24/2012	12:34:15 PM	16.48	86.00	8.85
0181	Enterprise Products	South Carlsbad #1	Run 3	5/24/2012	12:34:45 PM	16.48	86.00	8.85
0181	Enterprise Products	South Carlsbad #1	Run 3	5/24/2012	12:35:15 PM	16.48	86.00	9.35
0181	Enterprise Products	South Carlsbad #1	Run 3	5/24/2012	12:35:45 PM	16.48	86.00	9.85
0181	Enterprise Products	South Carlsbad #1	Run 3	5/24/2012	12:36:15 PM	16.48	86.00	8.85
0181	Enterprise Products	South Carlsbad #1	Run 3	5/24/2012	12:36:45 PM	16.48	86.00	9.35
0181	Enterprise Products	South Carlsbad #1	Run 3	5/24/2012	12:37:15 PM	16.48	86.00	9.85
0181	Enterprise Products	South Carlsbad #1	Run 3	5/24/2012	12:37:45 PM	16.48	86.00	9.85
0181	Enterprise Products	South Carlsbad #1	Run 3	5/24/2012	12:38:15 PM	16.48	86.00	9.35
0181	Enterprise Products	South Carlsbad #1	Run 3	5/24/2012	12:38:45 PM	16.48	86.50	9.35
0181	Enterprise Products	South Carlsbad #1	Run 3	5/24/2012	12:39:15 PM	16.48	86.00	9.35 8.35
0181	Enterprise Products	South Carlsbad #1	Run 3	5/24/2012	12:39:45 PM	16.48 16.48	86.00 86.50	8.35
0181 0181	Enterprise Products	South Carlsbad #1 South Carlsbad #1	Run 3 Run 3	5/24/2012	12:40:15 PM 12:40:45 PM	16.48 16.48	86.50 86.50	8.85 10.30
0181	Enterprise Products Enterprise Products	South Carlsbad #1	Run 3 Run 3	5/24/2012 5/24/2012	12:40:45 PM 12:41:15 PM	16.48 16.48	86.50 86.50	9.85
0181	Enterprise Products	South Carlsbad #1	Run 3	5/24/2012	12:41:15 PM 12:41:45 PM	16.48	86.00	9.85
0181	Enterprise Products	South Carlsbad #1	Run 3	5/24/2012	12:42:15 PM	16.48	86.50	9.35
0181	Enterprise Products	South Carlsbad #1	Run 3	5/24/2012	12:42:45 PM	16.48	86.50	10.85
0181	Enterprise Products	South Carlsbad #1	Run 3	5/24/2012	12:43:15 PM	16.48	86.50	9.35
0181	Enterprise Products	South Carlsbad #1	Run 3	5/24/2012	12:43:45 PM	16.48	86.50	8.85
0181	Enterprise Products	South Carlsbad #1	Run 3	5/24/2012	12:44:15 PM	16.48	86.50	8.35

0181Enterprise ProductsSouth Carlsbad #1Run 35/24/201212:44:45 PM16.4886.008.850181Enterprise ProductsSouth Carlsbad #1Run 35/24/201212:45:15 PM16.4886.008.850181Enterprise ProductsSouth Carlsbad #1Run 35/24/201212:45:45 PM16.4885.509.850181Enterprise ProductsSouth Carlsbad #1Run 35/24/201212:46:15 PM16.4886.008.850181Enterprise ProductsSouth Carlsbad #1Run 35/24/201212:46:45 PM16.4886.009.350181Enterprise ProductsSouth Carlsbad #1Run 35/24/201212:47:15 PM16.4886.009.850181Enterprise ProductsSouth Carlsbad #1Run 35/24/201212:47:45 PM16.4886.009.850181Enterprise ProductsSouth Carlsbad #1Run 35/24/201212:47:45 PM16.4886.509.350181Enterprise ProductsSouth Carlsbad #1Run 35/24/201212:48:45 PM16.4886.508.850181Enterprise ProductsSouth Carlsbad #1Run 35/24/201212:49:15 PM16.4886.508.850181Enterprise ProductsSouth Carlsbad #1Run 35/24/201212:49:45 PM16.4886.508.850181Enterprise ProductsSouth Carlsbad #1Run 35/24/201212:49:45 PM16.4886.508.3501	Project Number	Client	Source	Run Number	Date	Time	O2 (% Vol)	NOX (ppmvd)	CO (ppmvd)
0181Enterprise ProductsSouth Carlsbad #1Run 35/24/201212:45:45 PM16.4885.509.850181Enterprise ProductsSouth Carlsbad #1Run 35/24/201212:46:15 PM16.4886.008.850181Enterprise ProductsSouth Carlsbad #1Run 35/24/201212:46:45 PM16.4886.009.350181Enterprise ProductsSouth Carlsbad #1Run 35/24/201212:47:15 PM16.4886.009.850181Enterprise ProductsSouth Carlsbad #1Run 35/24/201212:47:45 PM16.4886.009.850181Enterprise ProductsSouth Carlsbad #1Run 35/24/201212:48:15 PM16.4886.509.350181Enterprise ProductsSouth Carlsbad #1Run 35/24/201212:48:45 PM16.4886.508.850181Enterprise ProductsSouth Carlsbad #1Run 35/24/201212:49:15 PM16.4886.508.850181Enterprise ProductsSouth Carlsbad #1Run 35/24/201212:49:45 PM16.4886.508.350181Enterprise ProductsSouth Carlsbad #1Run 35/24/201212:50:15 PM16.4886.508.350181Enterprise ProductsSouth Carlsbad #1Run 35/24/201212:50:15 PM16.4886.508.350181Enterprise ProductsSouth Carlsbad #1Run 35/24/201212:50:45 PM16.4886.508.3501	0181	Enterprise Products	South Carlsbad #1	Run 3	5/24/2012	12:44:45 PM	16.48	86.00	8.85
0181Enterprise ProductsSouth Carlsbad #1Run 35/24/201212:46:15 PM16.4886.008.850181Enterprise ProductsSouth Carlsbad #1Run 35/24/201212:46:45 PM16.4886.009.350181Enterprise ProductsSouth Carlsbad #1Run 35/24/201212:47:15 PM16.4886.008.850181Enterprise ProductsSouth Carlsbad #1Run 35/24/201212:47:45 PM16.4886.009.850181Enterprise ProductsSouth Carlsbad #1Run 35/24/201212:48:15 PM16.4886.509.350181Enterprise ProductsSouth Carlsbad #1Run 35/24/201212:48:45 PM16.4886.508.850181Enterprise ProductsSouth Carlsbad #1Run 35/24/201212:49:15 PM16.4886.508.850181Enterprise ProductsSouth Carlsbad #1Run 35/24/201212:49:45 PM16.4886.508.850181Enterprise ProductsSouth Carlsbad #1Run 35/24/201212:49:45 PM16.4886.508.350181Enterprise ProductsSouth Carlsbad #1Run 35/24/201212:50:15 PM16.4886.508.350181Enterprise ProductsSouth Carlsbad #1Run 35/24/201212:50:45 PM16.4886.508.350181Enterprise ProductsSouth Carlsbad #1Run 35/24/201212:50:45 PM16.4886.508.3501	0181	Enterprise Products	South Carlsbad #1	Run 3	5/24/2012	12:45:15 PM	16.48	86.00	8.85
0181Enterprise ProductsSouth Carlsbad #1Run 35/24/201212:46:45 PM16.4886.009.350181Enterprise ProductsSouth Carlsbad #1Run 35/24/201212:47:15 PM16.4886.008.850181Enterprise ProductsSouth Carlsbad #1Run 35/24/201212:47:45 PM16.4886.009.850181Enterprise ProductsSouth Carlsbad #1Run 35/24/201212:47:45 PM16.4886.509.350181Enterprise ProductsSouth Carlsbad #1Run 35/24/201212:48:45 PM16.4886.508.850181Enterprise ProductsSouth Carlsbad #1Run 35/24/201212:49:15 PM16.4886.508.850181Enterprise ProductsSouth Carlsbad #1Run 35/24/201212:49:45 PM16.4886.508.350181Enterprise ProductsSouth Carlsbad #1Run 35/24/201212:50:15 PM16.4886.508.350181Enterprise ProductsSouth Carlsbad #1Run 35/24/201212:50:45 PM16.4886.508.350181Enterprise ProductsSouth Carlsbad #1Run 35/24/201212:50:45 PM16.4886.508.350181Enterprise ProductsSouth Carlsbad #1Run 35/24/201212:50:45 PM16.4886.508.350181Enterprise ProductsSouth Carlsbad #1Run 35/24/201212:51:15 PM16.4886.508.3501	0181	Enterprise Products	South Carlsbad #1	Run 3	5/24/2012	12:45:45 PM	16.48	85.50	9.85
0181Enterprise ProductsSouth Carlsbad #1Run 35/24/201212:47:15 PM16.4886.008.850181Enterprise ProductsSouth Carlsbad #1Run 35/24/201212:47:45 PM16.4886.009.850181Enterprise ProductsSouth Carlsbad #1Run 35/24/201212:47:45 PM16.4886.509.350181Enterprise ProductsSouth Carlsbad #1Run 35/24/201212:48:45 PM16.4886.508.850181Enterprise ProductsSouth Carlsbad #1Run 35/24/201212:49:15 PM16.4886.508.850181Enterprise ProductsSouth Carlsbad #1Run 35/24/201212:49:45 PM16.4886.508.350181Enterprise ProductsSouth Carlsbad #1Run 35/24/201212:50:15 PM16.4886.508.350181Enterprise ProductsSouth Carlsbad #1Run 35/24/201212:50:45 PM16.4886.509.350181Enterprise ProductsSouth Carlsbad #1Run 35/24/201212:50:45 PM16.4886.508.350181Enterprise ProductsSouth Carlsbad #1Run 35/24/201212:51:15 PM16.4886.508.350181Enterprise ProductsSouth Carlsbad #1Run 35/24/201212:51:15 PM16.4886.508.350181Enterprise ProductsSouth Carlsbad #1Run 35/24/201212:51:45 PM16.4886.508.3501	0181	Enterprise Products	South Carlsbad #1	Run 3	5/24/2012	12:46:15 PM	16.48	86.00	8.85
0181 Enterprise Products South Carlsbad #1 Run 3 5/24/2012 12:47:45 PM 16.48 86.00 9.85 0181 Enterprise Products South Carlsbad #1 Run 3 5/24/2012 12:47:45 PM 16.48 86.00 9.85 0181 Enterprise Products South Carlsbad #1 Run 3 5/24/2012 12:48:15 PM 16.48 86.50 9.35 0181 Enterprise Products South Carlsbad #1 Run 3 5/24/2012 12:48:45 PM 16.48 86.50 8.85 0181 Enterprise Products South Carlsbad #1 Run 3 5/24/2012 12:49:45 PM 16.48 86.50 8.85 0181 Enterprise Products South Carlsbad #1 Run 3 5/24/2012 12:49:45 PM 16.48 86.50 8.35 0181 Enterprise Products South Carlsbad #1 Run 3 5/24/2012 12:50:15 PM 16.48 86.50 8.35 0181 Enterprise Products South Carlsbad #1 Run 3 5/24/2012 12:50:45 PM 16.48 86.50 </td <td>0181</td> <td>Enterprise Products</td> <td>South Carlsbad #1</td> <td>Run 3</td> <td>5/24/2012</td> <td>12:46:45 PM</td> <td>16.48</td> <td>86.00</td> <td>9.35</td>	0181	Enterprise Products	South Carlsbad #1	Run 3	5/24/2012	12:46:45 PM	16.48	86.00	9.35
0181 Enterprise Products South Carlsbad #1 Run 3 5/24/2012 12:48:15 PM 16.48 86.50 9.35 0181 Enterprise Products South Carlsbad #1 Run 3 5/24/2012 12:48:45 PM 16.48 86.50 8.85 0181 Enterprise Products South Carlsbad #1 Run 3 5/24/2012 12:49:15 PM 16.48 86.50 8.85 0181 Enterprise Products South Carlsbad #1 Run 3 5/24/2012 12:49:45 PM 16.48 86.50 8.85 0181 Enterprise Products South Carlsbad #1 Run 3 5/24/2012 12:50:15 PM 16.48 86.50 8.35 0181 Enterprise Products South Carlsbad #1 Run 3 5/24/2012 12:50:15 PM 16.48 86.50 8.35 0181 Enterprise Products South Carlsbad #1 Run 3 5/24/2012 12:50:45 PM 16.48 86.50 9.35 0181 Enterprise Products South Carlsbad #1 Run 3 5/24/2012 12:51:15 PM 16.48 86.50 </td <td>0181</td> <td>Enterprise Products</td> <td>South Carlsbad #1</td> <td>Run 3</td> <td>5/24/2012</td> <td>12:47:15 PM</td> <td>16.48</td> <td>86.00</td> <td>8.85</td>	0181	Enterprise Products	South Carlsbad #1	Run 3	5/24/2012	12:47:15 PM	16.48	86.00	8.85
0181 Enterprise Products South Carlsbad #1 Run 3 5/24/2012 12:48:45 PM 16.48 86.50 8.85 0181 Enterprise Products South Carlsbad #1 Run 3 5/24/2012 12:49:15 PM 16.48 86.50 8.85 0181 Enterprise Products South Carlsbad #1 Run 3 5/24/2012 12:49:45 PM 16.48 86.50 8.85 0181 Enterprise Products South Carlsbad #1 Run 3 5/24/2012 12:50:15 PM 16.48 86.50 8.35 0181 Enterprise Products South Carlsbad #1 Run 3 5/24/2012 12:50:15 PM 16.48 86.50 8.35 0181 Enterprise Products South Carlsbad #1 Run 3 5/24/2012 12:50:45 PM 16.48 86.50 9.35 0181 Enterprise Products South Carlsbad #1 Run 3 5/24/2012 12:51:15 PM 16.48 86.50 8.35 0181 Enterprise Products South Carlsbad #1 Run 3 5/24/2012 12:51:45 PM 16.48 86.50 </td <td>0181</td> <td>Enterprise Products</td> <td>South Carlsbad #1</td> <td>Run 3</td> <td>5/24/2012</td> <td>12:47:45 PM</td> <td>16.48</td> <td>86.00</td> <td>9.85</td>	0181	Enterprise Products	South Carlsbad #1	Run 3	5/24/2012	12:47:45 PM	16.48	86.00	9.85
0181 Enterprise Products South Carlsbad #1 Run 3 5/24/2012 12:49:15 PM 16.48 86.50 8.85 0181 Enterprise Products South Carlsbad #1 Run 3 5/24/2012 12:49:45 PM 16.48 87.00 8.35 0181 Enterprise Products South Carlsbad #1 Run 3 5/24/2012 12:50:15 PM 16.48 86.50 8.35 0181 Enterprise Products South Carlsbad #1 Run 3 5/24/2012 12:50:45 PM 16.48 86.50 8.35 0181 Enterprise Products South Carlsbad #1 Run 3 5/24/2012 12:50:45 PM 16.48 86.50 9.35 0181 Enterprise Products South Carlsbad #1 Run 3 5/24/2012 12:51:15 PM 16.48 86.50 8.35 0181 Enterprise Products South Carlsbad #1 Run 3 5/24/2012 12:51:45 PM 16.48 86.50 8.35 0181 Enterprise Products South Carlsbad #1 Run 3 5/24/2012 12:51:45 PM 16.48 86.50 </td <td>0181</td> <td>Enterprise Products</td> <td>South Carlsbad #1</td> <td>Run 3</td> <td>5/24/2012</td> <td>12:48:15 PM</td> <td>16.48</td> <td>86.50</td> <td>9.35</td>	0181	Enterprise Products	South Carlsbad #1	Run 3	5/24/2012	12:48:15 PM	16.48	86.50	9.35
0181 Enterprise Products South Carlsbad #1 Run 3 5/24/2012 12:49:45 PM 16.48 87.00 8.35 0181 Enterprise Products South Carlsbad #1 Run 3 5/24/2012 12:50:15 PM 16.48 86.50 8.35 0181 Enterprise Products South Carlsbad #1 Run 3 5/24/2012 12:50:45 PM 16.48 86.50 9.35 0181 Enterprise Products South Carlsbad #1 Run 3 5/24/2012 12:51:15 PM 16.48 86.50 9.35 0181 Enterprise Products South Carlsbad #1 Run 3 5/24/2012 12:51:15 PM 16.48 86.50 8.35 0181 Enterprise Products South Carlsbad #1 Run 3 5/24/2012 12:51:45 PM 16.48 86.50 8.35 0181 Enterprise Products South Carlsbad #1 Run 3 5/24/2012 12:51:45 PM 16.48 86.50 8.35	0181	Enterprise Products	South Carlsbad #1	Run 3	5/24/2012	12:48:45 PM	16.48	86.50	8.85
0181 Enterprise Products South Carlsbad #1 Run 3 5/24/2012 12:50:15 PM 16.48 86.50 8.35 0181 Enterprise Products South Carlsbad #1 Run 3 5/24/2012 12:50:15 PM 16.48 86.50 9.35 0181 Enterprise Products South Carlsbad #1 Run 3 5/24/2012 12:51:15 PM 16.48 86.50 8.35 0181 Enterprise Products South Carlsbad #1 Run 3 5/24/2012 12:51:15 PM 16.48 86.50 8.35 0181 Enterprise Products South Carlsbad #1 Run 3 5/24/2012 12:51:45 PM 16.48 86.50 8.35	0181	Enterprise Products	South Carlsbad #1	Run 3	5/24/2012	12:49:15 PM	16.48	86.50	8.85
0181 Enterprise Products South Carlsbad #1 Run 3 5/24/2012 12:50:45 PM 16.48 86.50 9.35 0181 Enterprise Products South Carlsbad #1 Run 3 5/24/2012 12:51:15 PM 16.48 86.50 8.35 0181 Enterprise Products South Carlsbad #1 Run 3 5/24/2012 12:51:15 PM 16.48 86.50 8.35 0181 Enterprise Products South Carlsbad #1 Run 3 5/24/2012 12:51:45 PM 16.48 86.50 8.35	0181	Enterprise Products	South Carlsbad #1	Run 3	5/24/2012	12:49:45 PM	16.48	87.00	8.35
0181 Enterprise Products South Carlsbad #1 Run 3 5/24/2012 12:51:15 PM 16.48 86.50 8.35 0181 Enterprise Products South Carlsbad #1 Run 3 5/24/2012 12:51:15 PM 16.48 86.50 8.35 0181 Enterprise Products South Carlsbad #1 Run 3 5/24/2012 12:51:45 PM 16.48 86.50 8.35	0181	Enterprise Products	South Carlsbad #1	Run 3	5/24/2012	12:50:15 PM	16.48	86.50	8.35
0181 Enterprise Products South Carlsbad #1 Run 3 5/24/2012 12:51:45 PM 16.48 86.50 8.35	0181	Enterprise Products	South Carlsbad #1	Run 3	5/24/2012	12:50:45 PM	16.48	86.50	9.35
L	0181	Enterprise Products	South Carlsbad #1	Run 3	5/24/2012	12:51:15 PM	16.48	86.50	8.35
	0181	Enterprise Products	South Carlsbad #1	Run 3	5/24/2012	12:51:45 PM	16.48	86.50	8.35
0181 Enterprise Products South Carlsbad #1 Run 3 5/24/2012 12:52:15 PM 16.48 86.50 8.85	0181	Enterprise Products	South Carlsbad #1	Run 3	5/24/2012	12:52:15 PM	16.48	86.50	8.85
0181 Enterprise Products South Carlsbad #1 Run 3 5/24/2012 12:52:45 PM 16.48 86.50 8.85	0181	Enterprise Products	South Carlsbad #1	Run 3	5/24/2012	12:52:45 PM	16.48	86.50	8.85
0181 Enterprise Products South Carlsbad #1 Run 3 5/24/2012 12:53:15 PM 16.48 86.50 8.85	0181	Enterprise Products	South Carlsbad #1	Run 3	5/24/2012	12:53:15 PM	16.48	86.50	8.85
0181 Enterprise Products South Carlsbad #1 Run 3 5/24/2012 12:53:45 PM 16.48 86.00 9.35	0181	Enterprise Products	South Carlsbad #1	Run 3	5/24/2012	12:53:45 PM	16.48	86.00	9.35
0181 Enterprise Products South Carlsbad #1 Run 3 5/24/2012 12:54:15 PM 16.48 86.50 9.35	0181	Enterprise Products	South Carlsbad #1	Run 3	5/24/2012	12:54:15 PM	16.48	86.50	9.35
0181 Enterprise Products South Carlsbad #1 Run 3 5/24/2012 12:54:45 PM 16.48 86.00 8.85	0181	Enterprise Products	South Carlsbad #1	Run 3	5/24/2012	12:54:45 PM	16.48	86.00	8.85
Run Averages 16.48 85.95 9.06			Run Averages				16.48	85.95	9.06
0181 Enterprise Products South Carlsbad #1 5/24/2012 12:55:16 PM 16.48 86.50 8.85	0181	Enterprise Products	South Carlsbad #1		5/24/2012	12:55:16 PM	16.48	86.50	8.85
0181 Enterprise Products South Carlsbad #1 5/24/2012 12:55:46 PM 16.48 86.50 8.85	0181	Enterprise Products	South Carlsbad #1		5/24/2012	12:55:46 PM	16.48	86.50	8.85
0181 Enterprise Products South Carlsbad #1 5/24/2012 12:56:16 PM -0.01 90.21 99.35	0181	Enterprise Products	South Carlsbad #1		5/24/2012	12:56:16 PM	-0.01	90.21	99.35
0181 Enterprise Products South Carlsbad #1 5/24/2012 12:56:46 PM -0.01 90.21 99.45	0181	Enterprise Products	South Carlsbad #1		5/24/2012	12:56:46 PM	<u>-0.01</u>	<u>90.21</u>	<u>99.45</u>
0181 Enterprise Products South Carlsbad #1 5/24/2012 12:57:16 PM 19.99 0.50 5.90	0181	Enterprise Products	South Carlsbad #1		5/24/2012	12:57:16 PM	19.99	0.50	5.90
0181 Enterprise Products South Carlsbad #1 5/24/2012 12:57:46 PM 20.90 0.00 0.00	0181	Enterprise Products	South Carlsbad #1		5/24/2012	12:57:46 PM	20.90	0.00	0.00
0181 Enterprise Products South Carlsbad #1 5/24/2012 12:58:16 PM 20.90 0.00 0.00	0181	Enterprise Products	South Carlsbad #1		5/24/2012	12:58:16 PM	20.90	<u>0.00</u>	<u>0.00</u>
0181 Enterprise Products South Carlsbad #1 5/24/2012 12:58:46 PM 20.48 0.00 0.00	0181	Enterprise Products	South Carlsbad #1		5/24/2012	12:58:46 PM	20.48	0.00	0.00
0181 Enterprise Products South Carlsbad #1 5/24/2012 12:59:16 PM 20.48 0.00 0.00	0181	Enterprise Products	South Carlsbad #1		5/24/2012	12:59:16 PM	20.48	0.00	0.00
0181 Enterprise Products South Carlsbad #1 5/24/2012 12:59:46 PM 20.48 0.00 0.00	0181	Enterprise Products	South Carlsbad #1		5/24/2012	12:59:46 PM	20.48	0.00	0.00
0181 Enterprise Products South Carlsbad #1 5/24/2012 1:00:16 PM 20.48 -0.50 0.00	0181	Enterprise Products	South Carlsbad #1		5/24/2012	1:00:16 PM	20.48	-0.50	0.00

		ΔΝΔΙ ΥΤΙ	CAL REPORT	r	
Certificate ID:	110711019	ANALITI	Date:	11/7/2011	
Sertificate iD: Sustomer Name:	B&J Welding S	XT vlaau	Date.	11112011	
Customer Address:	1512 East 50th				
	Lubbock	ТХ	79404		
Purchase Order:	17436		Work Order:	127416-01	
ot Number:	1024UB11		Product Name:	3-Component M	xture, EPA Protocol
Size:	A31		Pressure:	2210 psig @ 84	Deg F
Content:	Ven ID# C1201	1			
Serial #:	EB0002836				
Analysis Date:	11/2/2011				
Shelf Life:	36 months		Expiration Date:	11/2/2014	
Component	Nominal	Actual	Accuracy	Method	
Oxygen Carbon Dioxide Nitrogen	12.0% 12.0% Balance	11.7% 12.2% Balance	+/- 1% rel +/- 1% rel	Paramagneti FTIR	c
REFERENCE STANDA	ARD <u>Std Type</u> GMIS GMIS	<u>Std #</u> 0606JG11 0625HE10	EB0001508	<u>Concentration</u> 15.1500 19.8500	<u>Exp Date</u> 6/7/2013 6/28/2012
INSTRUMENTATION	Instrument Servomex 5 MKS 2031			<u>Component</u> O2 CO2	

0711012 J Welding Supply, TX 12 East 50th Street bbock TX 436	Date: 79404	11/7/2011	
12 East 50th Street bbock TX	79404		
bbock TX	79404		
	79404		
436			
100	Work Order:	127416-03	
24UA11	Product Name:	3-Component Mix	ture, EPA Protocol
31	Pressure:	2220 psig @ 82 D	eg F
en ID# C12011			
30004610			
/2/2011			
months	Expiration Date:	11/2/2014	
Nominal <u>Actual</u>	Accuracy	Method	
20.9% 20.9% 5.00% 5.10% Balance Balance	+/- 1% rel +/- 1% rel	Paramagnetic FTIR	
Std Type Std # GMIS 0318XA11 GMIS 0625HE10	EB0028214	20.9700	<u>Exp Date</u> 3/18/2013 6/28/2012
Instrument / ID Servomex 5200 MKS 2031		<u>Component</u> O2 CO2	
3 //	1 n ID# C12011 0004610 2/2011 months 200% 20.9% 0.0% 5.10% Balance Balance Std Type Std # GMIS 0318XA11 GMIS 0625HE10 Instrument / ID Servomex 5200	1 Pressure: 1 ID# C12011 0004610 2/2011 Expiration Date: months Actual lominal Actual 0.9% 20.9% 0.0% 5.10% 0.0% 5.10% Balance Balance Std Type Std # Cyl # GMIS 0318XA11 EB0028214 GMIS 0325HE10 EB0023062	1 Pressure: 2220 psig @ 82 D n ID# C12011 0004610 2/2011 Expiration Date: 11/2/2014 Months Expiration Date: 11/2/2014 Months Actual Accuracy Method 0.9% 20.9% +/- 1% rel Paramagnetic .00% 5.10% +/- 1% rel FTIR Balance Balance EB0028214 20.9700 GMIS 0318XA11 EB0023062 19.8500 Instrument / ID EB0023062 19.8500 Servomex 5200 Q2 Q2

GLOP INPATION CASES LLC	Analytical Laboratory					
Customer: CGA: Customer PO #: Cylinder #:	B&J Spe 660 EB00348	ecialty Gas 305	Expirat	ation Date: 1/ ion Date: 1/	1612 - 2 16/12 16/14 000	
		nalyzed according to EPA Tra s, Procedure G1 (September		ocol for Assay and Co	ertification of Gaseous	
ANALYZED CYLINDER -						
Components		Certified Concentratio	n	Analy	tical Accuracy	
NO		90.0 ppm		±1%		
NOx		> 1 %		±1%		
Propane		105.0 ppm			±1%	
Methane		109.0 ppm		±1%		
Carbon Monoxide		99.0 ppm BALANCE			±1%	
REFERENCE STANDARI		Cylinder#			Concentration	
NO/ SRM 2735		Cal015838		784.4 ppm		
NOx/ SRM 2735		Cal015838			787.5 ppm	
Propane/ GMIS		EB0026425			310.9 ppm	
Methane/ GMIS		EB0019166		94.6 ppm		
CO/ GMIS		CC118813			95.5 ppm	
INSTRUMENT -	-1	Control #	Last	to Calibrate d	Ampletiant Blathad	
Instrument/Mod		Serial #	Last Da	te Calibrated	Analytical Method	
California Analyti Instrument Model		Y09003		1/5/12	Chemiluminescence	
Agilent		US02002031		/10/12	Thermal conductivity	
accuracy throughout the ta ASTM E617-97 Class 1 to 06. This report states accure fort has been made to do Gases LLC shall have no	arget mass ra lerances. Th arately the re etermine obj liability in exe	ange against applicable NIST his calibration is referenced b sults of the investigation made ectively the information reque	F traceable wei by serial # 7210 de upon the ma asted. Howeve rester Howeve ressure is bel Ro	ghts. We certify that -1, Certificate # 511 aterial submitted to the er, in connection with ce. Assayed at Glob	to filling the scale is verified for the weights are calibrated to 635 and NIST Inst # 822/272103- he analytical laboratory. Every this report, Global Calibration bal Calibration Gases LLC,	

STORE OF	0		leiding Supp amesa, Tx	ły	
12:3					EPA Protocol
ene		Acc: 6915	editation No		Gas Mixture
	/	NUA PGV N12	P Vendor ID 012	R-BA herrang	
Customer:	B&J W	elding Supply		Reference#:	011112-1
CGA:	660			Certification Date:	01/11/2012
Customer PO#	17784			Expiration Date:	01/11/2014
Cylinder #:	EB003	2807		Pressure, psig:	2000
Components Nitric Oxide NOx Carbon Monoxide Methane Propane Nitrogen			Centified Conce 251.4 ppm <1% 257 ppm 248.6 ppm 251.6 ppm Belaince	nçalaşır.	Analytical Accuracy +/-1% +/-1% +/-1% +/-1% +/-1%
Reference Standard Type/SRM Sample NO/SRM 2735 Nox/ SRM 2735 CO/ GMIS Propane/ GMIS	F		Cylinder # Cel015838 Cel015838 E80019151 CC80838		Concentration 784.4 ppm 787 5 ppm 1.96% 2984 ppm
Methana/ GMIS Instrument-			EB0026384		148.3 ppm
Instrument/ Model	nstument	Serial Number		Last Oate Calibra	ted Analytical Method

 I
 Serial Number
 Last Onte C

 al Instument
 Y09003
 01/05/2012

 III
 US02002031
 01/11/12

 F-04300058
 01/04/2012

Thermal Conductivity Non-Dispersice Infrared

These initiates were prepared gravimetrically using a high load high sensitivity electronic scale. Prior to filling the scale is vertiled for accuracy throughout the target mass range against applicable NIST traceable weights.

We certify that the weights are calibrated to ASTM E617-97 Class 1 tolerances. This calibration is relevanced by serial #7210-1, Certificate # 511635 and NIST Inst # 822/272103-06.

This report states accurately the results of the investigation made upon the material submitted to the analytical laboratory. Every effort has been made to determine objectively the information requested. However, in connection with this report, Global Calibration Gases LLC shall have no liability in excess of the established charge for this service. Assayed at Global Calibration Gases LLC, Palmetto, Florida. *Do not use this standard when cylinder pressure is below 150 psig.

Produced by:

Model 600

gilent Qued Server

Rosomount BBOA

Global Calibration Gases LLC. 1500 15th Avenue Drive, East Suite# 109 Palmetto, Florida 34221 Accreditation No.: 69191 PGVP Vendor ID.: N12012

1 Principal Analyst: Date: 1-11-12

Fil Il Principal Reviewer: Date: 1-11-12-

Annual Turbine Emissions TEST REPORT ON EXHAUST EMISSIONS FROM

ONE NATURAL GAS FIRED TURBINE

AT THE SOUTH CARLSBAD COMPRESSOR STATION LOVING, NM

PREPARED FOR ENTERPRISE PRODUCTS OPERATING

MAY 2012

Relient Emissions Testing, Inc Project Number: 0181

May 20, 2012

Mr. Jim Heap Enterprise Products, LLC (432) 686-5404 Midland, TX

Re: Annual emissions testing at the South Carlsbad Compressor Station on Unit 2

Mr. Heap,

Exhaust emissions from one compressor turbine was tested at the South Carlsbad compressor station near Loving, New Mexico on. Testing was conducted to demonstrate compliance with emission limits set forth by NMED permit. The engine is identified as follows:

Engine Information							
Unit Number:	Unit 2						
Manufacturer:	Solar						
Serial Number:	3001096						
Model:	CENTAUR 40						
Mfr. Rated Hp:	4500hp						
Mfr. Rated Speed:	15,000						

This is a natural gas fired turbine used for compression of natural gas for transportation through the pipeline.

The test matrix consisted of three 60-minute test runs on the turbine in accordance with NMED requirements. For each test, the average emission concentrations of nitrogen oxides (NO_X), oxygen (O₂), and carbon monoxide (CO) were measured using analytical instrumentation. Operational data such as Gas Producer Speed, Turbine Speed, and suction and discharge pressures were recorded during each run from available operational data on the unit.

Results of the tests are presented in tabular format in this report. Included in this table are engine operational data, ambient conditions, emission concentrations, and mass emission rates.

Continuous emission monitors housed in an air-conditioned mobile laboratory were used to measure the exhaust concentrations of NO_X , CO and O_2 . This testing utilized the following analytical methods:

EPA Reference Method 3a	O ₂ concentration
EPA Reference Method 7e	NO _X concentration
EPA Reference Method 10	CO concentration
EPA Reference Method 19	Mass emission rates

A computerized data recorder was used to record output from the analyzers. The data logger record provides documentation of the emission measurements and the instrument calibrations. The data logger records are also useful for indicating trends in the data.

Mass emission rates were calculated using EPA Method 19 calculations (combustion stoichiometry). Emission rates in terms of lbs/hr and TPY were calculated using the pollutant concentration (ppmv), the oxygen F-factor (DSCFex/MMBtu) and the horsepower specific fuel consumption rate (Btu/Hp-hr). The O₂ F-Factor used in this test series was 8710 (DSCFex/MMBtu), the EPA default value for engines burning natural gas.

A summary of the quality assurance procedures associated with the EPA test methods is presented in tabular format in the appendix of this report. Examples of these procedures include daily multipoint calibrations, zero and span checks between each test run, NO₂ to NO converter efficiency check results, sample system bias check results, and analyzer interference test results.

The appendix of this report also includes supporting test documentation, example calculations, and data logger records.

If you have any questions, please feel free to contact me at (806) 773-8851.

Sincerely, Cossilian

Ross Thompson Principal Scientist Relient Emissions Testing, Inc

APPENDIX

Summary of Results Quality Assurance/Quality Control Summary Example Calculations Calibration Certifications Data Logger Files

Summary of Results

Company:Enterprise Products OperatingLocation:South Carlsbad Compressor StationSource:Solar Centaur 40Solar Centaur 40S/N: 30010096										
Source:	Solar Centaur 4		0010096							
Engine Rating:	4500hp @ 150	JORPM								
Technician:	RAT 1 2 3									
Test Run Number										
Unit	2	2	2							
Date	4/20/2010	4/20/2010	4/20/2010							
Start Time	12:02	13:04	14:07							
Stop Time	12:22	13:24	14:27							
Unit Operational Data	15000	15000	15000							
Engine Speed (rpm)	15000	15000	15000							
Unit Horse Power (Hp)*	4320	4320	4320							
NPT Load (%)	93.0	93.0	93.0							
NGP Load (%)	96.0	96.0	96.0							
Compressor Suction Pressure (psig)	225	225	225							
Compressor Discharge Pressure (psig)	382	382	382							
T5 Temperature (°F)	1190	1190	1190							
PCD (psig)	93.0	93.0	93.0							
Fuel Data	-									
Calculated Fuel Consumption (SCFH)	34000	34000	34000							
O2 F-Factor (DSCF/MMBtu, HHV basis)	8710	8710	8710							
Fuel Heating Value (Btu/SCF, HHV basis)	1093	1093	1093							
BHp Specific Fuel Rate (Btu/Hp-hr, HHV basis)	8602	8602	8602							
BHp Specific Fuel Rate (Btu/Hp-hr, LHV basis)	7750	7750	7750							
Ambient Conditions										
Pressure Altitude (MSL)	3250	3250	3250							
Atmospheric Pressure ("Hg)	26.60	26.60	26.60							
Dry Bulb Temperature (°F)	87	86	86							
Wet Bulb Temperature (°F)	65	64	64							
Humidity (lb/lb air)	0.0095	0.0090	0.0090							
Measured Exhaust Emissions (Corrected)				Average						
O ₂ (% Vol)	16.28	16.32	16.29	16.30						
NOx (ppmv)	86.22	86.64	85.20	86.02						
CO (ppmv)	9.60	9.51	9.67	9.6						
Exhaust Flow Rate (DSCFH)										
Dry SCFH (dry basis, calc. from Hp/BSFR/HHV)	1.46E+06	1.48E+06	1.47E+06	1469592.84						
Calculated Mass Emission Rates (Based on btu Specific										
NOx (lbs/hr) {Permit Limit = 27}	15.0	15.2	14.9	15.03						
$CO (lbs/hr) {Permit Limit = 7.4}$	1.0	1.0	1.0	1.00						
	1.0	1.0	1.0	1.00						

*Based on gas producer speed.

Quality Assurance

Method 7E Non-Dilution Measurement System Performance Test Procedures Method 7E Calculated Emission Gas Concentration Project No.: 0023 Technician: RAT

Date:04/20/10Client:Enterprise Products OperatingLocation:South Carlsbad Compressor Station

Calibration Gas Certified Values Gas Selection, % of Span											
	Span	Low Gas	Mid Gas	<u>High Gas</u>	Analyzer	Analyzer Serial Number	Low (<20%)	Mid (40%-60%)			
O2 (% Vol)	20.90	0.00	11.70	20.90	AII GPR-29	001666832	0.0%	56.0%			
NOx (ppmv)	251.40	0.00	90.00	251.40	TECO 42C	03040000000842	0.0%	35.8%			
CO (ppmv)	257.00	0.00	99.00	257.00	TECO 48C	48C-67940-359	0.0%	38.5%			

Initial Lineari	ty Data									
Calibration Error	Analyzer	Calibration Re	esponse	Abs	olute Differen	ce	Differ	ence (% of Sp	<u>an)</u>	
		Low	Mid	High	Low	Mid	High	Low	Mid	High
O2(% Vol)		-0.01	11.70	20.87	0.01	0.00	0.03	0.05%	0.00%	0.14%
NOx (ppmv)		-0.05	91.00	251.55	0.05	1.00	0.15	0.02%	0.40%	0.06%
CO (ppmv)		0.00	101.20	255.95	0.00	2.20	1.05	0.00%	0.86%	0.41%

_	Run Number 1	Start:	12:02	End:	12:22											
	Bias and Drift	Upscale	Cal. Resp	onse	Initial V	/alues	Initial Sys	tem Bias	Final V	Values	Final S	ystem Bias	Dri	ft	Emission	Calculation
	Dias and Diff	Gas	Low	Upscale	Low	Upscale	Low	Upscale	Low	Upscale	Low	Upscale	Low	Upscale	Raw Avg	Run Avg
	O2 (% Vol)	20.90	-0.01	20.87	-0.01	20.90	0.00%	0.14%	-0.01	20.90	0.00%	0.14%	0.00%	0.00%	16.28	16.28 O2 (% Vol)
	NOx (ppmv)	90.00	-0.05	91.00	0.00	90.21	0.02%	-0.31%	0.00	90.40	0.02%	-0.24%	0.00%	0.08%	86.51	86.22 NOx (ppmv)
	CO (ppmv)	99.00	0.00	101.20	0.00	99.45	0.00%	-0.68%	0.00	99.50	0.00%	-0.66%	0.00%	0.02%	9.65	9.60 CO (ppmv)

 Run Number 2	Start:	13:04	End:	13:24											
Bias and Drift	Upscale	Cal. Resp	onse	Initial V	alues/	Initial Sys	tem Bias	Final V	Values	Final S	ystem Bias	Dri	ft	Emission	Calculation
Dias and Diffe	Gas	Low	Upscale	Low	Upscale	Low	Upscale	Low	Upscale	Low	Upscale	Low	Upscale	Raw Avg	Run Avg
O2(% Vol)	20.90	-0.01	20.87	-0.01	20.90	0.00%	0.14%	-0.01	20.85	0.00%	-0.10%	0.00%	-0.24%	16.30	16.32 O ₂ (% Vol)
NOx (ppmv)	90.00	-0.05	91.00	0.00	90.40	0.02%	-0.24%	0.00	90.50	0.02%	-0.20%	0.00%	0.04%	87.07	86.64 NOx (ppmv)
CO (ppmv)	99.00	0.00	101.20	0.00	99.50	0.00%	-0.66%	0.00	99.60	0.00%	-0.62%	0.00%	0.04%	9.56	9.51 CO (ppmv)

Run Numb	<u>er 3</u>	Start:	14:07	End:	14:27											
Bias and Drit	ft	Upscale	Cal. Resp	onse	Initial V	/alues	Initial Sys	tem Bias	Final	Values	Final S	ystem Bias	Dri	ft	Emission	Calculation
Dias and Diff	<u></u>	Gas	Low	Upscale	Low	Upscale	Low	Upscale	Low	Upscale	Low	Upscale	Low	Upscale	Raw Avg	Run Avg
O2(% Vol)	20.90	-0.01	20.87	-0.01	20.85	0.00%	-0.10%	-0.01	20.90	0.00%	0.14%	0.00%	0.24%	16.27	16.29 O2(% Vol)
NOx (ppmy	v)	90.00	-0.05	91.00	0.00	90.50	0.02%	-0.20%	0.00	90.20	0.02%	-0.32%	0.00%	-0.12%	85.53	85.20 NOx (ppmv)
CO (ppmv)	99.00	0.00	101.20	0.00	99.60	0.00%	-0.62%	-0.50	99.30	-0.19%	-0.74%	-0.19%	-0.12%	9.49	9.67 CO (ppmv)

Example Calculations

	Drift Corrected Emission Concentrations									
Formula										
	$CGAS = (\mathbf{\hat{C}} - \mathbf{Co}) \mathbf{x} - \frac{\mathbf{CMA}}{\mathbf{CM} - \mathbf{Co}} (eq.7e-5)$	i)								
All	Calculations Refer to Test Run 1 or an Average	e of Runs 1-3								
Çnox =	Raw Concentration of NOx	= 86.51 ppmv								
Co =	Avg. of Initial and Final Zero Checks	= 0.00 ppmv								
См =	Avg. of Initial and Final Span Checks	= 90.31 ppmv								
Сма =	Certified Concentration of Span Gas	= 90.00 ppmv								
CNO _x =	(86.51 - 0) x <u>90</u>	= 86.22 ppmv								
	(90.3 - 0)									
Çco =	Raw Concentration of CO	= 9.65 ppmv								
Co =	Avg. of Initial and Final Zero Checks	= 0.00 ppmv								
См =	Avg. of Initial and Final Span Checks	= 99.48 ppmv								
Сма =	Certified Concentration of Span Gas	= 99.00 ppmv								
Cco =	(9.65+0) x <u>99</u>	= 9.60 ppmv								
	(99.5 + 0)									
Ç02 =	Raw Concentration of O2	= 16.28%								
Co =	Avg. of initial and final zero bias checks	= -0.01%								
См =	Avg. of initial and final span bias checks	= 20.90%								
Сма =	Actual concentration of span gas	= 20.90%								
Co2 =	(16.280.01) x20.9	= 16.28%								
	(20.9 - 0)									

Example Calculations

	Exhaust Calcu	ulations									
	Measured Data and	<i>Constants</i>									
CNO _x =	Corrected Concentra	tion of NOx	=	86.22	ppmv						
Cco =	Corrected Concentr	ation of CO	=	9.60	ppmv						
Horsepower =	Observed Hors	-	=	4320	Нр						
lb / mole =	EPA STP for Id		=	385.15	SCF						
lbs / hr to tpy =	Mass Conversio		=	4.38	hrs-tons / lbs-yr						
CF =	PPMV Normal		=	1 x e-6	1 / ppmv						
$MW_{NOx} = MW_{CO} =$	Molecular Weigh		=	46 28	lb / lb-mol						
MWco = Molecular Weight of CO = 28 lb / lb-mol S tack Gas Flow Rate via btu Specific Fuel Rate (BSFR)											
Stack Gas	Flow Rate via btu Spe	ecific Fuel R	ate (B								
Hp =	Engine Horse	power	=	4320	Нр						
$F_{BTU} =$	btu Specific Fu	el Rate	=	8602	Btu/Hp-Hr						
Fo2 =	O2 F-Fact	or	=	8710	DSCF/MMBtu						
Co2 =	Measured Concentr	ation of O2	=	16.28	%						
Qs m19 =	Нр х Гвти	x Fo2 x 10^	6 x	20.9	DSCF/H						
	1			0.9 - %O2	_						
Qs m19 =	4320.00 x 8602	x 8710	x	4.52	x 1E-06						
$Q_{SM19} =$	1.46E+06	DSCF/H									
	Formulas	5									
Pounds per Hour (lbs/hr) :											
		NATE / (11, /		1							
×	$hr) = Cx * CF * Qs * {$	IVI W X / (ID /	mole)	}							
Tons per Year (tpy) :											
Ex (tpy) =	Ex (lb/hr) * { 8760 (h	r / yr) / 2000	(lb / to	on) }							
Grams per Horsepower-hour (g	g/Hp-hr) :										
Ex (g/	$hp-hr) = \{ Ex (lb/hr) / \}$	Hp } / 454 (g	g / lb)	}							
Calculated Mass H	Emission Rates From	Method 19 E	Exhaus	t Flow Ra	tes						
	Enox										
lbs/hr =	86.22 * 1 x e-6	* 1.46E-	-06 *	46	= 15.08						
			-	385.15	_						
tpy =	15.08 lb/hr	* 4.38		hrs-ton	= 66.04						
cpy –	19.00 10/11	1.50	-	lbs-yr							
g/Hp-hr =	15.08 lb/hr	* 454 (100 91	= 1.58						
g/mp-m =	4320 Hp	_ * <u>454 ş</u> 1 lb	<u></u>		- 1.30						
	4520 Hp	1 10									
	Eco										
lbs/hr =	9.60 * 1 x e-6	* 1.46E-	-06 *	28	= 1.02						
105/111 -	7.00 I X C-0	1.40L4	-	385.15	1.02						
4	1.02.11-/1	* 100			_ 1 19						
$\mathbf{tpy} =$	1.02 lb/hr	* 4.38	-	hrs-ton	_= 4.48						
				lbs-yr							
					0.11						
g/Hp-hr =	1.02 lb/hr 4320 Hp	* <u>454 g</u> 1 lb	5		= 0.11						

Project Number	Client	Source	Run Number	Data	Time	O2 (% Vol)	NOX (ppmvd)	CO (ppmvd)
0181	Enterprise Products	Source	Run Number	Date 5/24/2012	8:52:04 AM	0.18	0.00	0.00
0181	Enterprise Products			5/24/2012	8:53:04 AM	-0.01	0.00	0.00
0181	Enterprise Products			5/24/2012	8:54:04 AM	-0.01	0.00	0.00
0181	Enterprise Products			5/24/2012	8:55:04 AM	-0.01	0.00	0.00
0181	Enterprise Products			5/24/2012	8:56:04 AM	-0.01	-0.05	0.00
0181	Enterprise Products			5/24/2012	8:57:04 AM	-0.01	-0.05	0.00
0181	Enterprise Products			5/24/2012	8:58:04 AM	-0.01	-0.05	0.00
0181	Enterprise Products			5/24/2012	8:59:04 AM	-0.01	0.00	0.00
0181	Enterprise Products			5/24/2012	9:00:04 AM	-0.01	0.00	0.00
0181	Enterprise Products			5/24/2012	9:01:04 AM	-0.01	0.00	-0.05
0181	Enterprise Products			5/24/2012	9:02:04 AM	-0.01	-0.05	0.00
0181	Enterprise Products			5/24/2012	9:03:04 AM	-0.01	-0.05	0.00
0181	Enterprise Products			5/24/2012	9:04:04 AM	-0.01	0.00	0.00
0181	Enterprise Products			5/24/2012	9:05:04 AM	-0.01	0.00	0.00
0181	Enterprise Products			5/24/2012	9:06:04 AM	<u>-0.01</u>	<u>-0.05</u>	<u>0.00</u>
0181	Enterprise Products			5/24/2012	9:07:04 AM	-0.01	-0.05	0.90
0181	Enterprise Products			5/24/2012	9:08:04 AM	21.16	70.00	255.45
0181	Enterprise Products			5/24/2012	9:09:04 AM	<u>20.87</u>	90.50	<u>255.95</u> 101.20
0181 0181	Enterprise Products Enterprise Products			5/24/2012 5/24/2012	9:10:04 AM	12.19	<u>91.00</u> 251.44	<u>101.20</u> 38.00
0181	-			5/24/2012	9:11:04 AM 9:12:04 AM	11.70 <u>11.70</u>	251.44 251.55	0.00
0181	Enterprise Products Enterprise Products			5/24/2012	9:12:04 AM 9:13:04 AM	<u>11.70</u> 11.70	76.95	0.00
0181	Enterprise Products			5/24/2012	9:14:04 AM	11.80	-0.50	-0.05
0181	Enterprise Products			5/24/2012	9:15:04 AM	11.80	-0.50	-0.05
0181	Enterprise Products			5/24/2012	9:16:04 AM	11.80	218.10	0.00
0181	Enterprise Products			5/24/2012	9:17:04 AM	11.90	254.10	0.00
0181	Enterprise Products			5/24/2012	9:18:04 AM	11.90	128.50	0.00
0181	Enterprise Products			5/24/2012	9:19:04 AM	11.90	28.45	0.00
0181	Enterprise Products			5/24/2012	9:20:04 AM	11.90	418.70	0.00
0181	Enterprise Products			5/24/2012	9:21:04 AM	11.90	499.75	-0.05
0181	Enterprise Products			5/24/2012	9:22:04 AM	11.90	300.15	0.00
0181	Enterprise Products			5/24/2012	9:23:04 AM	11.99	104.50	0.00
0181	Enterprise Products			5/24/2012	9:24:04 AM	12.00	89.50	0.00
0181	Enterprise Products			5/24/2012	9:25:04 AM	12.00	89.00	0.00
0181	Enterprise Products			5/24/2012	9:26:04 AM	12.00	19.95	-0.05
0181	Enterprise Products			5/24/2012	9:27:04 AM	12.00	5.95	0.00
0181	Enterprise Products			5/24/2012	9:28:04 AM	12.00	4.95	0.00
0181	Enterprise Products			5/24/2012	9:29:04 AM	12.10	4.95	0.00
0181	Enterprise Products			5/24/2012	9:30:04 AM	12.09	4.95	0.00
0181	Enterprise Products			5/24/2012	9:31:04 AM	12.09	4.95	0.00
0181	Enterprise Products Enterprise Products			5/24/2012	9:32:04 AM	12.09	4.90	0.00 0.00
0181 0181	Enterprise Products			5/24/2012 5/24/2012	9:33:04 AM	12.19 12.19	4.45 4.45	-0.05
0181	Enterprise Products			5/24/2012	9:34:04 AM 9:35:04 AM	12.19	4.45	-0.03
0181	Enterprise Products			5/24/2012	9:36:04 AM	12.19	4.40	0.00
0181	Enterprise Products			5/24/2012	9:37:04 AM	12.19	4.40	0.90
0181	Enterprise Products			5/24/2012	9:38:04 AM	20.68	2.90	0.00
0181	Enterprise Products			5/24/2012	9:39:04 AM	20.68	-0.55	-0.05
0181	Enterprise Products			5/24/2012	9:40:04 AM	20.68	-0.55	-0.55
0181	Enterprise Products			5/24/2012	9:41:04 AM	20.77	-0.55	-0.50
0181	Enterprise Products			5/24/2012	9:42:04 AM	20.68	-0.55	20.25
0181	Enterprise Products			5/24/2012	9:43:04 AM	17.55	1.40	5.90
0181	Enterprise Products			5/24/2012	9:44:04 AM	16.77	67.00	11.30
0181	Enterprise Products			5/24/2012	9:45:04 AM	16.77	71.50	10.80
0181	Enterprise Products			5/24/2012	9:46:04 AM	0.28	71.00	85.10
0181	Enterprise Products			5/24/2012	9:47:04 AM	<u>-0.01</u>	87.45	<u>97.95</u>
0181	Enterprise Products	South Carlsbad #1		5/24/2012	9:47:43 AM	13.46	87.45	62.30
0181	Enterprise Products	South Carlsbad #1		5/24/2012	9:48:13 AM	16.67	81.45	11.85
0181	Enterprise Products	South Carlsbad #1		5/24/2012	9:48:43 AM	16.67	73.00	10.30
0181	Enterprise Products	South Carlsbad #1		5/24/2012	9:48:46 AM	16.67	73.00	10.30
0181	Enterprise Products	South Carlsbad #1		5/24/2012	12:55:46 PM	16.48	86.50	8.85
0181	Enterprise Products	South Carlsbad #1		5/24/2012	12:56:16 PM	-0.01	90.21	99.35
0181	Enterprise Products	South Carlsbad #1		5/24/2012	12:56:46 PM	<u>-0.01</u>	<u>90.21</u>	<u>99.45</u>
0181	Enterprise Products	South Carlsbad #1		5/24/2012	12:57:16 PM	19.99	0.50	5.90
0181	Enterprise Products	South Carlsbad #1		5/24/2012	12:57:46 PM	20.90	0.00	0.00
0181 0181	Enterprise Products	South Carlsbad #1 South Carlsbad #1		5/24/2012 5/24/2012	12:58:16 PM	<u>20.90</u> 20.48	<u>0.00</u> 0.00	<u>0.00</u> 0.00
0181	Enterprise Products Enterprise Products	South Carlsbad #1		5/24/2012 5/24/2012	12:58:46 PM 12:59:16 PM	20.48 20.48	0.00	0.00
0181	Enterprise Products	South Carlsbad #1		5/24/2012 5/24/2012	12:59:10 PM 12:59:46 PM	20.48	0.00	0.00
0101	Sinceptibe Froducts	South Curisoud #1		5, 2 1/2012	12.09.101141	20.10	0.00	0.00

		a.			T :			
Project Number	Client	Source	Run Number	Date	Time	O2 (% Vol)	NOX (ppmvd)	CO (ppmvd)
0181 0181	Enterprise Products Enterprise Products	South Carlsbad #1		5/24/2012	1:00:16 PM 1:00:46 PM	20.48	-0.50	0.00 0.00
0181	Enterprise Products	South Carlsbad #1 South Carlsbad #1		5/24/2012 5/24/2012	1:00:46 PM 1:01:16 PM	20.48 20.38	-0.50 0.00	0.00
0181	Enterprise Products	South Carlsbad #1		5/24/2012	1:01:46 PM	16.38	0.45	8.85
0181	Enterprise Products	South Carlsbad #1		5/24/2012	1:02:15 PM	16.28	75.50	9.35
0181	Enterprise Products	South Carlsbad #2		5/24/2012	1:02:17 PM	16.28	75.50	9.35
0181	Enterprise Products	South Carlsbad #2	Run 4	5/24/2012	1:02:47 PM	16.28	85.00	9.35
0181	Enterprise Products	South Carlsbad #2	Run 4	5/24/2012	1:03:17 PM	16.28	85.50	8.85
0181	Enterprise Products	South Carlsbad #2	Run 4	5/24/2012	1:03:47 PM	16.28	85.50	8.85
0181	Enterprise Products	South Carlsbad #2	Run 4	5/24/2012	1:04:17 PM	16.28	85.50	8.85
0181	Enterprise Products	South Carlsbad #2	Run 4	5/24/2012	1:04:47 PM	16.28	86.00	8.85
0181	Enterprise Products	South Carlsbad #2	Run 4	5/24/2012	1:05:17 PM	16.28	86.00	9.85
0181	Enterprise Products	South Carlsbad #2	Run 4	5/24/2012	1:05:47 PM	16.28	86.00	10.30
0181	Enterprise Products	South Carlsbad #2	Run 4	5/24/2012	1:06:17 PM	16.28	86.50	9.85
0181	Enterprise Products	South Carlsbad #2	Run 4	5/24/2012	1:06:47 PM	16.28	86.50	9.85
0181	Enterprise Products	South Carlsbad #2	Run 4	5/24/2012	1:07:17 PM	16.28	87.50	9.85
0181	Enterprise Products	South Carlsbad #2	Run 4	5/24/2012	1:07:47 PM	16.28	88.00	9.35
0181	Enterprise Products	South Carlsbad #2	Run 4	5/24/2012	1:08:17 PM	16.28	88.00	9.85
0181	Enterprise Products	South Carlsbad #2	Run 4	5/24/2012	1:08:47 PM	16.28	89.00	9.85
0181	Enterprise Products	South Carlsbad #2	Run 4	5/24/2012	1:09:17 PM	16.28	89.50	9.85
0181	Enterprise Products Enterprise Products	South Carlsbad #2	Run 4	5/24/2012	1:09:47 PM	16.28	89.50	9.85
0181 0181	1	South Carlsbad #2 South Carlsbad #2	Run 4 Run 4	5/24/2012 5/24/2012	1:10:17 PM 1:10:47 PM	16.28 16.28	89.00 88.50	9.85 9.35
0181	Enterprise Products Enterprise Products	South Carlsbad #2	Run 4	5/24/2012	1:10:47 PM 1:11:17 PM	16.28	89.00	9.35
0181	Enterprise Products	South Carlsbad #2	Run 4	5/24/2012	1:11:47 PM	16.28	88.50	9.85
0181	Enterprise Products	South Carlsbad #2	Run 4	5/24/2012	1:12:17 PM	16.28	89.00	9.85
0181	Enterprise Products	South Carlsbad #2	Run 4	5/24/2012	1:12:47 PM	16.28	89.00	9.85
0181	Enterprise Products	South Carlsbad #2	Run 4	5/24/2012	1:13:17 PM	16.28	88.50	9.85
0181	Enterprise Products	South Carlsbad #2	Run 4	5/24/2012	1:13:47 PM	16.28	88.50	9.85
0181	Enterprise Products	South Carlsbad #2	Run 4	5/24/2012	1:14:17 PM	16.28	88.50	9.85
0181	Enterprise Products	South Carlsbad #2	Run 4	5/24/2012	1:14:47 PM	16.28	88.00	9.85
0181	Enterprise Products	South Carlsbad #2	Run 4	5/24/2012	1:15:17 PM	16.28	88.00	9.85
0181	Enterprise Products	South Carlsbad #2	Run 4	5/24/2012	1:15:47 PM	16.28	88.00	9.85
0181	Enterprise Products	South Carlsbad #2	Run 4	5/24/2012	1:16:17 PM	16.28	88.00	9.85
0181	Enterprise Products	South Carlsbad #2	Run 4	5/24/2012	1:16:47 PM	16.28	88.50	8.85
0181	Enterprise Products	South Carlsbad #2	Run 4	5/24/2012	1:17:17 PM	16.28	88.00	9.35
0181	Enterprise Products	South Carlsbad #2	Run 4	5/24/2012	1:17:47 PM	16.28	87.50	9.85
0181	Enterprise Products	South Carlsbad #2	Run 4	5/24/2012	1:18:17 PM	16.28	87.00	9.85
0181	Enterprise Products	South Carlsbad #2	Run 4	5/24/2012	1:18:47 PM	16.28	87.00	9.85
0181	Enterprise Products	South Carlsbad #2	Run 4	5/24/2012	1:19:17 PM	16.28	86.50	9.85
0181	Enterprise Products	South Carlsbad #2	Run 4	5/24/2012	1:19:47 PM	16.28	86.50	9.85
0181	Enterprise Products	South Carlsbad #2	Run 4	5/24/2012	1:20:17 PM	16.28	86.50	9.85
0181	Enterprise Products	South Carlsbad #2 South Carlsbad #2	Run 4 Run 4	5/24/2012 5/24/2012	1:20:47 PM	16.28 16.28	86.50 86.00	10.30 9.85
0181 0181	Enterprise Products Enterprise Products	South Carlsbad #2	Run 4	5/24/2012 5/24/2012	1:21:17 PM 1:21:47 PM	16.28	86.00	9.85 9.35
0181	Enterprise Products	South Carlsbad #2	Run 4	5/24/2012	1:22:17 PM	16.28	86.00	9.35
0181	Enterprise Products	South Carlsbad #2	Run 4	5/24/2012	1:22:47 PM	16.28	86.00	9.85
0181	Enterprise Products	South Carlsbad #2	Run 4	5/24/2012	1:23:17 PM	16.28	86.00	9.85
0181	Enterprise Products	South Carlsbad #2	Run 4	5/24/2012	1:23:47 PM	16.28	86.00	9.85
0181	Enterprise Products	South Carlsbad #2	Run 4	5/24/2012	1:24:17 PM	16.28	86.00	8.85
0181	Enterprise Products	South Carlsbad #2	Run 4	5/24/2012	1:24:47 PM	16.28	85.50	8.85
0181	Enterprise Products	South Carlsbad #2	Run 4	5/24/2012	1:25:17 PM	16.28	85.50	9.35
0181	Enterprise Products	South Carlsbad #2	Run 4	5/24/2012	1:25:47 PM	16.28	85.50	9.85
0181	Enterprise Products	South Carlsbad #2	Run 4	5/24/2012	1:26:17 PM	16.28	85.50	9.35
0181	Enterprise Products	South Carlsbad #2	Run 4	5/24/2012	1:26:47 PM	16.28	85.50	9.85
0181	Enterprise Products	South Carlsbad #2	Run 4	5/24/2012	1:27:17 PM	16.28	85.50	9.85
0181	Enterprise Products	South Carlsbad #2	Run 4	5/24/2012	1:27:47 PM	16.28	85.50	9.85
0181	Enterprise Products	South Carlsbad #2	Run 4	5/24/2012	1:28:17 PM	16.28	85.50	9.85
0181	Enterprise Products	South Carlsbad #2	Run 4	5/24/2012	1:28:47 PM	16.28	85.50	9.85
0181	Enterprise Products	South Carlsbad #2	Run 4	5/24/2012	1:29:17 PM	16.28	85.50	9.35
0181	Enterprise Products	South Carlsbad #2	Run 4	5/24/2012	1:29:47 PM	16.28	85.50	9.35
0181	Enterprise Products	South Carlsbad #2	Run 4	5/24/2012	1:30:17 PM	16.28	85.50	9.85
0181	Enterprise Products	South Carlsbad #2	Run 4	5/24/2012	1:30:47 PM	16.28	85.50 85.50	9.35
0181	Enterprise Products	South Carlsbad #2	Run 4 Run 4	5/24/2012	1:31:17 PM	16.28	85.50 85.00	9.35
0181	Enterprise Products	South Carlsbad #2	Run 4 Run 4	5/24/2012 5/24/2012	1:31:47 PM	16.28 16.28	85.00 85.50	9.85 9.85
0181 0181	Enterprise Products	South Carlsbad #2 South Carlsbad #2	Run 4 Run 4	5/24/2012 5/24/2012	1:32:17 PM 1:32:47 PM	16.28 16.28	85.50 85.50	9.85 9.85
0181	Enterprise Products Enterprise Products	South Carlsbad #2	Run 4 Run 4	5/24/2012 5/24/2012	1:32:47 PM 1:33:17 PM	16.28 16.28	85.50 86.00	9.83 9.35
0181	Enterprise Products	South Carlsbad #2	Run 4	5/24/2012 5/24/2012	1:33:47 PM	16.28	86.00	9.35 9.85
0101	Zitterprise i fouuets	South Carisbau #2	Kun 4	5,27,2012	1.55.771111	10.20	50.00	2.05

		G		D.	m :	00 (N X 1)	NOV	
Project Number 0181	Client Enterprise Products	Source South Carlsbad #2	Run Number Run 4	Date 5/24/2012	Time 1:34:17 PM	O2 (% Vol) 16.28	NOX (ppmvd) 85.50	CO (ppmvd) 9.85
0181	Enterprise Products	South Carlsbad #2	Run 4	5/24/2012	1:34:17 PM 1:34:47 PM	16.28	85.50	9.85
0181	Enterprise Products	South Carlsbad #2	Run 4	5/24/2012	1:35:17 PM	16.28	86.00	9.85
0181	Enterprise Products	South Carlsbad #2	Run 4	5/24/2012	1:35:47 PM	16.28	86.00	9.85
0181	Enterprise Products	South Carlsbad #2	Run 4	5/24/2012	1:36:17 PM	16.28	86.00	9.35
0181	Enterprise Products	South Carlsbad #2	Run 4	5/24/2012	1:36:47 PM	16.28	86.00	9.35
0181	Enterprise Products	South Carlsbad #2	Run 4	5/24/2012	1:37:17 PM	16.28	86.00	9.85
0181	Enterprise Products	South Carlsbad #2	Run 4	5/24/2012	1:37:47 PM	16.28	86.50	9.85
0181	Enterprise Products	South Carlsbad #2	Run 4	5/24/2012	1:38:17 PM	16.28	86.50	9.85
0181	Enterprise Products	South Carlsbad #2	Run 4	5/24/2012	1:38:47 PM	16.28	86.00	9.85
0181	Enterprise Products	South Carlsbad #2	Run 4	5/24/2012	1:39:17 PM	16.28	86.00	9.85
0181	Enterprise Products	South Carlsbad #2	Run 4	5/24/2012	1:39:47 PM	16.28	86.00	10.30
0181	Enterprise Products	South Carlsbad #2	Run 4	5/24/2012	1:40:17 PM	16.28	86.00	9.85
0181	Enterprise Products	South Carlsbad #2	Run 4	5/24/2012	1:40:47 PM	16.28	86.00	9.85
0181	Enterprise Products	South Carlsbad #2	Run 4	5/24/2012	1:41:17 PM	16.28	86.00	9.85
0181 0181	Enterprise Products	South Carlsbad #2 South Carlsbad #2	Run 4 Run 4	5/24/2012	1:41:47 PM	16.28 16.28	85.50 86.00	9.35 9.85
0181	Enterprise Products Enterprise Products	South Carlsbad #2	Run 4	5/24/2012 5/24/2012	1:42:17 PM 1:42:47 PM	16.28	86.00	9.85
0181	Enterprise Products	South Carlsbad #2	Run 4	5/24/2012	1:43:17 PM	16.28	86.50	9.35
0181	Enterprise Products	South Carlsbad #2	Run 4	5/24/2012	1:43:47 PM	16.28	86.00	9.35
0181	Enterprise Products	South Carlsbad #2	Run 4	5/24/2012	1:44:17 PM	16.28	86.00	9.85
0181	Enterprise Products	South Carlsbad #2	Run 4	5/24/2012	1:44:47 PM	16.28	86.00	9.35
0181	Enterprise Products	South Carlsbad #2	Run 4	5/24/2012	1:45:17 PM	16.28	86.00	9.85
0181	Enterprise Products	South Carlsbad #2	Run 4	5/24/2012	1:45:47 PM	16.28	86.00	9.35
0181	Enterprise Products	South Carlsbad #2	Run 4	5/24/2012	1:46:17 PM	16.28	86.00	9.35
0181	Enterprise Products	South Carlsbad #2	Run 4	5/24/2012	1:46:47 PM	16.28	86.50	9.85
0181	Enterprise Products	South Carlsbad #2	Run 4	5/24/2012	1:47:17 PM	16.28	86.00	9.85
0181	Enterprise Products	South Carlsbad #2	Run 4	5/24/2012	1:47:47 PM	16.28	86.00	9.35
0181	Enterprise Products	South Carlsbad #2	Run 4	5/24/2012	1:48:17 PM	16.28	86.50	9.85
0181	Enterprise Products	South Carlsbad #2	Run 4	5/24/2012	1:48:47 PM	16.28	86.50	9.85
0181	Enterprise Products	South Carlsbad #2	Run 4	5/24/2012	1:49:17 PM	16.28	86.50	9.35
0181	Enterprise Products	South Carlsbad #2	Run 4	5/24/2012	1:49:47 PM	16.28	86.00	9.35
0181	Enterprise Products	South Carlsbad #2	Run 4	5/24/2012	1:50:17 PM	16.28	86.50	9.85
0181	Enterprise Products	South Carlsbad #2	Run 4	5/24/2012	1:50:47 PM	16.28	86.50	9.85 9.85
0181 0181	Enterprise Products Enterprise Products	South Carlsbad #2 South Carlsbad #2	Run 4 Run 4	5/24/2012 5/24/2012	1:51:17 PM 1:51:47 PM	16.28 16.28	86.50 86.50	9.85 9.85
0181	Enterprise Products	South Carlsbad #2	Run 4	5/24/2012	1:52:17 PM	16.28	86.50	9.85
0181	Enterprise Products	South Carlsbad #2	Run 4	5/24/2012	1:52:47 PM	16.28	86.50	9.85
0181	Enterprise Products	South Carlsbad #2	Run 4	5/24/2012	1:53:17 PM	16.28	86.50	9.85
0181	Enterprise Products	South Carlsbad #2	Run 4	5/24/2012	1:53:47 PM	16.28	86.50	9.85
0181	Enterprise Products	South Carlsbad #2	Run 4	5/24/2012	1:54:17 PM	16.28	86.50	9.85
0181	Enterprise Products	South Carlsbad #2	Run 4	5/24/2012	1:54:47 PM	16.28	87.00	9.35
0181	Enterprise Products	South Carlsbad #2	Run 4	5/24/2012	1:55:17 PM	16.28	86.50	9.35
0181	Enterprise Products	South Carlsbad #2	Run 4	5/24/2012	1:55:47 PM	16.28	86.50	9.35
0181	Enterprise Products	South Carlsbad #2	Run 4	5/24/2012	1:56:17 PM	16.28	86.50	9.35
0181	Enterprise Products	South Carlsbad #2	Run 4	5/24/2012	1:56:47 PM	16.28	86.50	9.35
0181	Enterprise Products	South Carlsbad #2	Run 4	5/24/2012	1:57:17 PM	16.28	86.50	9.35
0181	Enterprise Products	South Carlsbad #2	Run 4	5/24/2012	1:57:47 PM	16.28	86.50	9.35
0181	Enterprise Products	South Carlsbad #2	Run 4	5/24/2012	1:58:17 PM	16.28	86.50	9.35
0181	Enterprise Products	South Carlsbad #2	Run 4	5/24/2012	1:58:47 PM	16.38	86.50	9.85
0181	Enterprise Products	South Carlsbad #2	Run 4	5/24/2012	1:59:17 PM	16.28	86.50	9.85
0181	Enterprise Products	South Carlsbad #2	Run 4	5/24/2012	1:59:47 PM	16.38	86.50	9.35
0181 0181	Enterprise Products	South Carlsbad #2 South Carlsbad #2	Run 4 Run 4	5/24/2012	2:00:17 PM	16.38 16.38	86.50 86.00	9.35 9.85
0181	Enterprise Products Enterprise Products	South Carlsbad #2	Run 4	5/24/2012 5/24/2012	2:00:47 PM 2:01:17 PM	16.28	86.00	9.85
0181	Enterprise Products	South Carlsbad #2	Run 4	5/24/2012	2:01:17 PM	16.28	86.50	9.35
0181	Enterprise Products	South Carlsbad #2	Run 4	5/24/2012	2:02:17 PM	16.28	86.50	9.35
0101	Enterprise Froudeus	Run Averages	Run	5/2 1/2012	2.02.17 1.11	16.28	86.51	9.65
0181	Enterprise Products	South Carlsbad #2		5/24/2012	2:02:47 PM	-0.01	86.50	9.35
0181	Enterprise Products	South Carlsbad #2		5/24/2012	2:03:17 PM	<u>-0.01</u>	<u>90.40</u>	<u>99.50</u>
0181	Enterprise Products	South Carlsbad #2		5/24/2012	2:03:47 PM	20.80	0.00	0.00
0181	Enterprise Products	South Carlsbad #2		5/24/2012	2:04:17 PM	<u>20.90</u>	<u>0.00</u>	<u>0.00</u>
0181	Enterprise Products	South Carlsbad #2		5/24/2012	2:04:38 PM	16.28	86.65	9.35
0181	Enterprise Products	South Carlsbad #2	Run 5	5/24/2012	2:05:08 PM	16.28	86.50	9.35
0181	Enterprise Products	South Carlsbad #2	Run 5	5/24/2012	2:05:38 PM	16.28	87.00	9.35
0181	Enterprise Products	South Carlsbad #2	Run 5	5/24/2012	2:06:08 PM	16.28	86.50	9.35
0181	Enterprise Products	South Carlsbad #2	Run 5	5/24/2012	2:06:38 PM	16.28	86.50	9.85
0181	Enterprise Products	South Carlsbad #2	Run 5	5/24/2012	2:07:08 PM	16.28	86.50	9.85
0181	Enterprise Products	South Carlsbad #2	Run 5	5/24/2012	2:07:38 PM	16.28	86.50	9.85

Due is at Manula a	Client	C	Deer Meensheer	Dete	T '	O2(0(M-1))	NOV (manual)	CO (1)
Project Number 0181	Client Enterprise Products	Source South Carlsbad #2	Run Number Run 5	Date 5/24/2012	Time 2:08:08 PM	O2 (% Vol) 16.28	NOX (ppmvd) 86.50	CO (ppmvd) 9.35
0181	Enterprise Products	South Carlsbad #2	Run 5	5/24/2012	2:08:38 PM	16.28	86.50	9.35
0181	Enterprise Products	South Carlsbad #2	Run 5	5/24/2012	2:09:08 PM	16.28	86.50	9.35
0181	Enterprise Products	South Carlsbad #2	Run 5	5/24/2012	2:09:38 PM	16.28	86.50	9.35
0181	Enterprise Products	South Carlsbad #2	Run 5	5/24/2012	2:10:08 PM	16.28	86.50	9.35
0181	Enterprise Products	South Carlsbad #2	Run 5	5/24/2012	2:10:38 PM	16.28	86.50	9.35
0181	Enterprise Products	South Carlsbad #2	Run 5	5/24/2012	2:11:08 PM	16.28	86.50	9.35
0181	Enterprise Products	South Carlsbad #2	Run 5	5/24/2012	2:11:38 PM	16.28	86.50	9.35
0181	Enterprise Products	South Carlsbad #2	Run 5	5/24/2012	2:12:08 PM	16.28	87.00	9.35
0181	Enterprise Products	South Carlsbad #2	Run 5	5/24/2012	2:12:38 PM	16.28	86.50	9.85
0181	Enterprise Products	South Carlsbad #2	Run 5	5/24/2012	2:13:08 PM	16.28	87.00	9.85
0181	Enterprise Products	South Carlsbad #2	Run 5	5/24/2012	2:13:38 PM	16.28	87.00	9.85
0181	Enterprise Products	South Carlsbad #2	Run 5	5/24/2012	2:14:08 PM	16.38	86.50	8.85
0181 0181	Enterprise Products	South Carlsbad #2	Run 5 Run 5	5/24/2012	2:14:38 PM	16.28 16.38	86.50 86.50	9.35 9.35
0181	Enterprise Products Enterprise Products	South Carlsbad #2 South Carlsbad #2	Run 5	5/24/2012 5/24/2012	2:15:08 PM 2:15:38 PM	16.28	86.50	9.35
0181	Enterprise Products	South Carlsbad #2	Run 5	5/24/2012	2:15:38 PM 2:16:08 PM	16.28	86.50	9.85
0181	Enterprise Products	South Carlsbad #2	Run 5	5/24/2012	2:16:38 PM	16.28	86.50	9.35
0181	Enterprise Products	South Carlsbad #2	Run 5	5/24/2012	2:17:08 PM	16.28	86.50	9.35
0181	Enterprise Products	South Carlsbad #2	Run 5	5/24/2012	2:17:38 PM	16.28	86.50	9.35
0181	Enterprise Products	South Carlsbad #2	Run 5	5/24/2012	2:18:08 PM	16.38	86.50	9.35
0181	Enterprise Products	South Carlsbad #2	Run 5	5/24/2012	2:18:38 PM	16.38	86.00	9.85
0181	Enterprise Products	South Carlsbad #2	Run 5	5/24/2012	2:19:08 PM	16.38	86.00	9.85
0181	Enterprise Products	South Carlsbad #2	Run 5	5/24/2012	2:19:38 PM	16.38	86.50	9.35
0181	Enterprise Products	South Carlsbad #2	Run 5	5/24/2012	2:20:08 PM	16.38	86.50	9.35
0181	Enterprise Products	South Carlsbad #2	Run 5	5/24/2012	2:20:38 PM	16.38	86.00	9.85
0181	Enterprise Products	South Carlsbad #2	Run 5	5/24/2012	2:21:08 PM	16.38	86.50	8.85
0181	Enterprise Products	South Carlsbad #2	Run 5	5/24/2012	2:21:38 PM	16.28	86.50	9.85
0181	Enterprise Products	South Carlsbad #2	Run 5	5/24/2012	2:22:08 PM	16.38	86.50	9.85
0181 0181	Enterprise Products Enterprise Products	South Carlsbad #2 South Carlsbad #2	Run 5 Run 5	5/24/2012	2:22:38 PM	16.38 16.38	86.50 86.50	9.85 9.85
0181	Enterprise Products	South Carlsbad #2 South Carlsbad #2	Run 5	5/24/2012 5/24/2012	2:23:08 PM 2:23:38 PM	16.38	86.50 86.50	9.85 9.35
0181	Enterprise Products	South Carlsbad #2	Run 5	5/24/2012	2:23:38 PM 2:24:08 PM	16.38	86.50	9.85
0181	Enterprise Products	South Carlsbad #2	Run 5	5/24/2012	2:24:38 PM	16.38	87.00	9.35
0181	Enterprise Products	South Carlsbad #2	Run 5	5/24/2012	2:25:08 PM	16.38	86.50	9.85
0181	Enterprise Products	South Carlsbad #2	Run 5	5/24/2012	2:25:38 PM	16.38	86.50	9.35
0181	Enterprise Products	South Carlsbad #2	Run 5	5/24/2012	2:26:08 PM	16.38	86.50	9.85
0181	Enterprise Products	South Carlsbad #2	Run 5	5/24/2012	2:26:38 PM	16.38	86.50	9.85
0181	Enterprise Products	South Carlsbad #2	Run 5	5/24/2012	2:27:08 PM	16.38	86.50	9.35
0181	Enterprise Products	South Carlsbad #2	Run 5	5/24/2012	2:27:38 PM	16.38	86.50	9.85
0181	Enterprise Products	South Carlsbad #2	Run 5	5/24/2012	2:28:08 PM	16.38	87.00	9.85
0181	Enterprise Products	South Carlsbad #2	Run 5	5/24/2012	2:28:38 PM	16.38	86.50	9.35
0181	Enterprise Products	South Carlsbad #2	Run 5	5/24/2012	2:29:08 PM	16.38	86.50	9.85
0181	Enterprise Products	South Carlsbad #2	Run 5	5/24/2012	2:29:38 PM	16.38	86.50 87.00	10.30
0181 0181	Enterprise Products Enterprise Products	South Carlsbad #2 South Carlsbad #2	Run 5 Run 5	5/24/2012 5/24/2012	2:30:08 PM 2:30:38 PM	16.38 16.38	87.00 87.00	9.85 9.85
0181	Enterprise Products	South Carlsbad #2	Run 5	5/24/2012	2:30:38 PM	16.38	87.00	9.85
0181	Enterprise Products	South Carlsbad #2	Run 5	5/24/2012	2:31:38 PM	16.38	87.00	9.85
0181	Enterprise Products	South Carlsbad #2	Run 5	5/24/2012	2:32:08 PM	16.38	87.00	9.85
0181	Enterprise Products	South Carlsbad #2	Run 5	5/24/2012	2:32:38 PM	16.28	87.00	9.35
0181	Enterprise Products	South Carlsbad #2	Run 5	5/24/2012	2:33:08 PM	16.28	87.00	9.35
0181	Enterprise Products	South Carlsbad #2	Run 5	5/24/2012	2:33:38 PM	16.38	87.00	9.85
0181	Enterprise Products	South Carlsbad #2	Run 5	5/24/2012	2:34:08 PM	16.38	87.00	9.35
0181	Enterprise Products	South Carlsbad #2	Run 5	5/24/2012	2:34:38 PM	16.38	87.00	9.85
0181	Enterprise Products	South Carlsbad #2	Run 5	5/24/2012	2:35:08 PM	16.38	87.00	9.85
0181	Enterprise Products	South Carlsbad #2	Run 5	5/24/2012	2:35:38 PM	16.38	87.00	9.35
0181	Enterprise Products	South Carlsbad #2	Run 5	5/24/2012	2:36:08 PM	16.28	87.00	8.85
0181	Enterprise Products	South Carlsbad #2	Run 5	5/24/2012	2:36:38 PM	16.28	86.50	9.35
0181 0181	Enterprise Products	South Carlsbad #2	Run 5 Run 5	5/24/2012	2:37:08 PM	16.28 16.28	87.00 86.50	9.85 9.35
0181	Enterprise Products Enterprise Products	South Carlsbad #2 South Carlsbad #2	Run 5 Run 5	5/24/2012 5/24/2012	2:37:38 PM 2:38:08 PM	16.28 16.28	86.50 87.00	9.35 9.35
0181	Enterprise Products	South Carlsbad #2	Run 5	5/24/2012 5/24/2012	2:38:08 PM 2:38:38 PM	16.28	86.50	9.35
0181	Enterprise Products	South Carlsbad #2	Run 5	5/24/2012	2:39:08 PM	16.28	86.50	9.35
0181	Enterprise Products	South Carlsbad #2	Run 5	5/24/2012	2:39:38 PM	16.28	86.50	9.35
0181	Enterprise Products	South Carlsbad #2	Run 5	5/24/2012	2:40:08 PM	16.28	86.50	9.35
0181	Enterprise Products	South Carlsbad #2	Run 5	5/24/2012	2:40:38 PM	16.28	86.50	9.35
0181	Enterprise Products	South Carlsbad #2	Run 5	5/24/2012	2:41:08 PM	16.28	86.50	9.35
0181	Enterprise Products	South Carlsbad #2	Run 5	5/24/2012	2:41:38 PM	16.28	87.00	9.85
0181	Enterprise Products	South Carlsbad #2	Run 5	5/24/2012	2:42:08 PM	16.28	87.00	9.85

		_		_				
Project Number	Client	Source	Run Number	Date	Time	O2 (% Vol)	NOX (ppmvd)	CO (ppmvd)
0181	Enterprise Products	South Carlsbad #2	Run 5	5/24/2012	2:42:38 PM	16.28	88.00	9.85
0181	Enterprise Products	South Carlsbad #2	Run 5	5/24/2012	2:43:08 PM	16.28	88.50	9.85
0181	Enterprise Products	South Carlsbad #2	Run 5	5/24/2012	2:43:38 PM	16.28	89.00	9.35
0181	Enterprise Products	South Carlsbad #2	Run 5	5/24/2012	2:44:08 PM	16.28	89.00	9.35
0181	Enterprise Products	South Carlsbad #2	Run 5	5/24/2012	2:44:38 PM	16.28	89.00	9.35
0181	Enterprise Products	South Carlsbad #2	Run 5	5/24/2012	2:45:08 PM	16.28	89.00	9.35
0181	Enterprise Products	South Carlsbad #2	Run 5	5/24/2012	2:45:38 PM	16.28	89.00	9.35
0181	Enterprise Products	South Carlsbad #2	Run 5	5/24/2012	2:46:08 PM	16.28	89.50	9.35
0181	Enterprise Products	South Carlsbad #2	Run 5	5/24/2012	2:46:38 PM	16.28	90.00	9.35
0181	Enterprise Products	South Carlsbad #2	Run 5	5/24/2012	2:47:08 PM	16.28	90.00	9.85
0181	Enterprise Products	South Carlsbad #2	Run 5	5/24/2012	2:47:38 PM	16.28	90.00	9.85
0181	Enterprise Products	South Carlsbad #2	Run 5	5/24/2012	2:48:08 PM	16.28	90.50	9.85
0181	Enterprise Products	South Carlsbad #2	Run 5	5/24/2012	2:48:38 PM	16.28	90.00	9.85
0181	Enterprise Products	South Carlsbad #2	Run 5	5/24/2012	2:49:08 PM	16.28	90.00	9.85
0181	Enterprise Products	South Carlsbad #2	Run 5	5/24/2012	2:49:38 PM	16.28	89.50	9.35
0181	Enterprise Products	South Carlsbad #2	Run 5	5/24/2012	2:50:08 PM	16.28	89.50	9.35
	*							
0181	Enterprise Products	South Carlsbad #2	Run 5	5/24/2012	2:50:38 PM	16.28	89.00	9.85
0181	Enterprise Products	South Carlsbad #2	Run 5	5/24/2012	2:51:08 PM	16.28	89.00	10.30
0181	Enterprise Products	South Carlsbad #2	Run 5	5/24/2012	2:51:38 PM	16.28	89.00	9.85
0181	Enterprise Products	South Carlsbad #2	Run 5	5/24/2012	2:52:08 PM	16.28	89.00	9.85
0181	Enterprise Products	South Carlsbad #2	Run 5	5/24/2012	2:52:38 PM	16.28	88.50	9.35
0181	Enterprise Products	South Carlsbad #2	Run 5	5/24/2012	2:53:08 PM	16.28	88.00	9.35
0181	Enterprise Products	South Carlsbad #2	Run 5	5/24/2012	2:53:38 PM	16.28	87.50	9.35
0181	Enterprise Products	South Carlsbad #2	Run 5	5/24/2012	2:54:08 PM	16.28	87.00	9.35
0181	Enterprise Products	South Carlsbad #2	Run 5	5/24/2012	2:54:38 PM	16.28	87.00	9.35
0181	Enterprise Products	South Carlsbad #2	Run 5	5/24/2012	2:55:08 PM	16.28	86.50	9.35
0181	Enterprise Products	South Carlsbad #2	Run 5	5/24/2012	2:55:38 PM	16.28	86.50	9.85
0181	Enterprise Products	South Carlsbad #2	Run 5	5/24/2012	2:56:08 PM	16.28	86.50	9.35
0181	Enterprise Products	South Carlsbad #2	Run 5	5/24/2012	2:56:38 PM	16.28	86.50	9.85
0181	Enterprise Products	South Carlsbad #2	Run 5	5/24/2012	2:57:08 PM	16.28	86.50	9.35
0181	Enterprise Products	South Carlsbad #2	Run 5	5/24/2012	2:57:38 PM	16.28	86.50	9.35
0181	Enterprise Products	South Carlsbad #2	Run 5	5/24/2012	2:58:08 PM	16.18	86.50	9.85
0181	Enterprise Products	South Carlsbad #2	Run 5	5/24/2012	2:58:38 PM	16.18	86.50	9.85
0181	Enterprise Products	South Carlsbad #2	Run 5	5/24/2012	2:59:08 PM	16.18	86.50	9.35
	*							9.35
0181	Enterprise Products	South Carlsbad #2	Run 5	5/24/2012	2:59:38 PM	16.18	86.50	
0181	Enterprise Products	South Carlsbad #2	Run 5	5/24/2012	3:00:08 PM	16.18	86.00	9.85
0181	Enterprise Products	South Carlsbad #2	Run 5	5/24/2012	3:00:38 PM	16.18	86.50	9.85
0181	Enterprise Products	South Carlsbad #2	Run 5	5/24/2012	3:01:08 PM	16.18	86.00	9.85
0181	Enterprise Products	South Carlsbad #2	Run 5	5/24/2012	3:01:38 PM	16.28	86.50	9.85
0181	Enterprise Products	South Carlsbad #2	Run 5	5/24/2012	3:02:08 PM	16.18	86.00	9.85
0181	Enterprise Products	South Carlsbad #2	Run 5	5/24/2012	3:02:38 PM	16.18	86.00	9.85
0181	Enterprise Products	South Carlsbad #2	Run 5	5/24/2012	3:03:08 PM	16.18	86.00	8.85
0181	Enterprise Products	South Carlsbad #2	Run 5	5/24/2012	3:03:38 PM	16.28	86.00	8.85
0181	Enterprise Products	South Carlsbad #2	Run 5	5/24/2012	3:04:08 PM	16.28	86.00	8.85
0181	Enterprise Products	South Carlsbad #2	Run 5	5/24/2012	3:04:38 PM	16.28	86.00	8.85
		Run Averages				16.30	87.07	9.56
0181	Enterprise Products	South Carlsbad #2		5/24/2012	3:05:08 PM	16.28	86.00	9.35
0181	Enterprise Products	South Carlsbad #2		5/24/2012	3:05:38 PM	-0.01	90.50	99.60
0181	Enterprise Products	South Carlsbad #2		5/24/2012	3:06:08 PM	<u>-0.01</u>	90.50	99.60
0181	Enterprise Products	South Carlsbad #2		5/24/2012	3:06:38 PM	20.85	0.00	0.00
0181	Enterprise Products	South Carlsbad #2		5/24/2012	3:07:08 PM	20.85	<u>0.00</u>	0.00
0181	Enterprise Products	South Carlsbad #2		5/24/2012	3:07:13 PM	16.28	86.00	9.35
0181	Enterprise Products	South Carlsbad #2	Run 6	5/24/2012	3:07:43 PM	16.28	85.50	9.35
0181	Enterprise Products	South Carlsbad #2	Run 6	5/24/2012	3:08:13 PM	16.28	85.50	9.35
	*	South Carlsbad #2					86.00	9.35
0181	Enterprise Products	South Carlsbad #2	Run 6	5/24/2012	3:08:43 PM 3:09:13 PM	16.28		
0181	Enterprise Products		Run 6	5/24/2012		16.28	85.50	9.85
0181	Enterprise Products	South Carlsbad #2	Run 6	5/24/2012	3:09:43 PM	16.28	86.00	9.35
0181	Enterprise Products	South Carlsbad #2	Run 6	5/24/2012	3:10:13 PM	16.28	86.00	9.85
0181	Enterprise Products	South Carlsbad #2	Run 6	5/24/2012	3:10:43 PM	16.28	86.00	9.85
0181	Enterprise Products	South Carlsbad #2	Run 6	5/24/2012	3:11:13 PM	16.28	86.00	9.70
0181	Enterprise Products	South Carlsbad #2	Run 6	5/24/2012	3:11:43 PM	16.28	86.00	9.85
0181	Enterprise Products	South Carlsbad #2	Run 6	5/24/2012	3:12:13 PM	16.28	86.00	9.85
0181	Enterprise Products	South Carlsbad #2	Run 6	5/24/2012	3:12:43 PM	16.28	86.00	9.85
0181	Enterprise Products	South Carlsbad #2	Run 6	5/24/2012	3:13:13 PM	16.28	86.50	9.85
0181	Enterprise Products	South Carlsbad #2	Run 6	5/24/2012	3:13:43 PM	16.28	86.50	8.85
0181	Enterprise Products	South Carlsbad #2	Run 6	5/24/2012	3:14:13 PM	16.28	86.00	8.85
0181	Enterprise Products	South Carlsbad #2	Run 6	5/24/2012	3:14:43 PM	16.28	86.00	8.85
0181	Enterprise Products	South Carlsbad #2	Run 6	5/24/2012	3:15:13 PM	16.28	86.00	8.35
0181	Enterprise Products	South Carlsbad #2	Run 6	5/24/2012	3:15:43 PM	16.28	86.00	9.35
	1							

		C.			T :	00 (N X I)		
Project Number	Client	Source	Run Number	Date	Time	O2 (% Vol)	NOX (ppmvd)	CO (ppmvd)
0181 0181	Enterprise Products Enterprise Products	South Carlsbad #2 South Carlsbad #2	Run 6 Run 6	5/24/2012 5/24/2012	3:16:13 PM 3:16:43 PM	16.28 16.28	86.00 86.00	9.35 8.85
0181	Enterprise Products	South Carlsbad #2	Run 6	5/24/2012	3:10:43 PM 3:17:13 PM	16.28	86.05	8.85
0181	Enterprise Products	South Carlsbad #2	Run 6	5/24/2012	3:17:43 PM	16.28	86.00	8.85
0181	Enterprise Products	South Carlsbad #2	Run 6	5/24/2012	3:18:13 PM	16.28	86.00	8.85
0181	Enterprise Products	South Carlsbad #2	Run 6	5/24/2012	3:18:43 PM	16.28	86.00	8.85
0181	Enterprise Products	South Carlsbad #2	Run 6	5/24/2012	3:19:13 PM	16.28	86.00	9.85
0181	Enterprise Products	South Carlsbad #2	Run 6	5/24/2012	3:19:43 PM	16.28	86.00	9.85
0181	Enterprise Products	South Carlsbad #2	Run 6	5/24/2012	3:20:13 PM	16.28	86.00	9.85
0181	Enterprise Products	South Carlsbad #2	Run 6	5/24/2012	3:20:43 PM	16.28	86.00	9.85
0181	Enterprise Products	South Carlsbad #2	Run 6	5/24/2012	3:21:13 PM	16.28	86.00	9.85
0181	Enterprise Products	South Carlsbad #2	Run 6	5/24/2012	3:21:43 PM	16.28	85.50	9.85
0181	Enterprise Products	South Carlsbad #2	Run 6	5/24/2012	3:22:13 PM	16.28	86.00	9.35
0181	Enterprise Products	South Carlsbad #2	Run 6	5/24/2012	3:22:43 PM	16.28	86.00	9.85
0181	Enterprise Products	South Carlsbad #2	Run 6	5/24/2012	3:23:13 PM	16.28	86.00	9.85
0181	Enterprise Products	South Carlsbad #2	Run 6	5/24/2012	3:23:43 PM	16.28	86.00	9.85
0181	Enterprise Products	South Carlsbad #2	Run 6	5/24/2012	3:24:13 PM	16.28	86.05	9.35
0181	Enterprise Products	South Carlsbad #2	Run 6	5/24/2012	3:24:43 PM	16.28	86.00	9.85
0181	Enterprise Products	South Carlsbad #2	Run 6	5/24/2012	3:25:13 PM	16.28	86.00	9.85
0181	Enterprise Products	South Carlsbad #2	Run 6	5/24/2012	3:25:43 PM	16.28	86.00	9.35
0181	Enterprise Products Enterprise Products	South Carlsbad #2	Run 6 Run 6	5/24/2012	3:26:13 PM	16.28	85.50	9.35
0181 0181	Enterprise Products	South Carlsbad #2 South Carlsbad #2	Run 6	5/24/2012 5/24/2012	3:26:43 PM 3:27:13 PM	16.28 16.28	85.50 85.50	9.35 9.35
0181	Enterprise Products	South Carlsbad #2	Run 6	5/24/2012	3:27:13 PM 3:27:43 PM	16.28	85.50	9.35
0181	Enterprise Products	South Carlsbad #2	Run 6	5/24/2012	3:28:13 PM	16.28	85.50	9.35
0181	Enterprise Products	South Carlsbad #2	Run 6	5/24/2012	3:28:43 PM	16.28	86.00	9.85
0181	Enterprise Products	South Carlsbad #2	Run 6	5/24/2012	3:29:13 PM	16.28	85.50	9.35
0181	Enterprise Products	South Carlsbad #2	Run 6	5/24/2012	3:29:43 PM	16.28	86.00	8.85
0181	Enterprise Products	South Carlsbad #2	Run 6	5/24/2012	3:30:13 PM	16.28	85.50	8.85
0181	Enterprise Products	South Carlsbad #2	Run 6	5/24/2012	3:30:43 PM	16.28	86.00	8.85
0181	Enterprise Products	South Carlsbad #2	Run 6	5/24/2012	3:31:13 PM	16.28	86.00	9.35
0181	Enterprise Products	South Carlsbad #2	Run 6	5/24/2012	3:31:43 PM	16.28	86.00	9.85
0181	Enterprise Products	South Carlsbad #2	Run 6	5/24/2012	3:32:13 PM	16.28	86.00	9.85
0181	Enterprise Products	South Carlsbad #2	Run 6	5/24/2012	3:32:43 PM	16.28	86.00	9.85
0181	Enterprise Products	South Carlsbad #2	Run 6	5/24/2012	3:33:13 PM	16.28	86.00	9.85
0181	Enterprise Products	South Carlsbad #2	Run 6	5/24/2012	3:33:43 PM	16.28	85.50	10.30
0181	Enterprise Products	South Carlsbad #2	Run 6	5/24/2012	3:34:13 PM	16.28	86.00	9.85
0181	Enterprise Products	South Carlsbad #2	Run 6	5/24/2012	3:34:43 PM	16.28	85.50	9.35
0181	Enterprise Products	South Carlsbad #2	Run 6	5/24/2012	3:35:13 PM	16.28	85.50	8.85
0181	Enterprise Products	South Carlsbad #2	Run 6	5/24/2012	3:35:43 PM	16.28	85.50	9.35
0181	Enterprise Products	South Carlsbad #2	Run 6	5/24/2012	3:36:13 PM	16.28	85.50	9.35
0181	Enterprise Products	South Carlsbad #2	Run 6	5/24/2012	3:36:43 PM	16.28	85.50	9.85
0181	Enterprise Products Enterprise Products	South Carlsbad #2 South Carlsbad #2	Run 6 Run 6	5/24/2012	3:37:13 PM 3:37:43 PM	16.28 16.28	85.50 85.50	9.35 9.85
0181 0181	Enterprise Products	South Carlsbad #2	Run 6	5/24/2012 5/24/2012	3:38:13 PM	16.28	85.00	9.85
0181	Enterprise Products	South Carlsbad #2	Run 6	5/24/2012	3:38:43 PM	16.28	85.50	9.85
0181	Enterprise Products	South Carlsbad #2	Run 6	5/24/2012	3:39:13 PM	16.28	85.50	9.35
0181	Enterprise Products	South Carlsbad #2	Run 6	5/24/2012	3:39:43 PM	16.28	85.00	9.35
0181	Enterprise Products	South Carlsbad #2	Run 6	5/24/2012	3:40:13 PM	16.28	85.50	9.35
0181	Enterprise Products	South Carlsbad #2	Run 6	5/24/2012	3:40:43 PM	16.28	85.00	9.35
0181	Enterprise Products	South Carlsbad #2	Run 6	5/24/2012	3:41:13 PM	16.28	85.55	9.35
0181	Enterprise Products	South Carlsbad #2	Run 6	5/24/2012	3:41:43 PM	16.28	85.00	9.35
0181	Enterprise Products	South Carlsbad #2	Run 6	5/24/2012	3:42:13 PM	16.28	85.00	9.85
0181	Enterprise Products	South Carlsbad #2	Run 6	5/24/2012	3:42:43 PM	16.28	85.00	9.35
0181	Enterprise Products	South Carlsbad #2	Run 6	5/24/2012	3:43:13 PM	16.28	85.00	8.85
0181	Enterprise Products	South Carlsbad #2	Run 6	5/24/2012	3:43:43 PM	16.28	85.50	8.85
0181	Enterprise Products	South Carlsbad #2	Run 6	5/24/2012	3:44:13 PM	16.28	85.50	8.85
0181	Enterprise Products	South Carlsbad #2	Run 6	5/24/2012	3:44:43 PM	16.28	85.50	8.85
0181	Enterprise Products	South Carlsbad #2	Run 6	5/24/2012	3:45:13 PM	16.28	85.50	8.85
0181	Enterprise Products	South Carlsbad #2	Run 6	5/24/2012	3:45:43 PM	16.28	85.50	8.85
0181	Enterprise Products	South Carlsbad #2	Run 6	5/24/2012	3:46:13 PM	16.28	85.50	8.85
0181	Enterprise Products	South Carlsbad #2	Run 6	5/24/2012	3:46:43 PM	16.28	85.50	9.35
0181	Enterprise Products	South Carlsbad #2	Run 6	5/24/2012	3:47:13 PM	16.28	85.50 85.00	9.35
0181	Enterprise Products	South Carlsbad #2	Run 6	5/24/2012	3:47:43 PM	16.28	85.00 85.00	9.85 9.85
0181	Enterprise Products	South Carlsbad #2	Run 6	5/24/2012	3:48:13 PM 3:48:43 PM	16.28 16.28	85.00 85.00	9.85 9.85
0181 0181	Enterprise Products	South Carlsbad #2 South Carlsbad #2	Run 6 Run 6	5/24/2012	3:48:43 PM	16.28 16.28	85.00 85.55	9.85 10.30
0181	Enterprise Products Enterprise Products	South Carlsbad #2	Run 6	5/24/2012 5/24/2012	3:49:13 PM 3:49:43 PM	16.28	85.00	9.85
0181	Enterprise Products	South Carlsbad #2	Run 6	5/24/2012 5/24/2012	3:50:13 PM	16.28	85.00 85.00	9.85
0101	Zitterprise i fouuets		Kun U	5, 27, 2012	5.55.151 141	10.20	35.00	1.55

Project Number	Client	Source	Run Number	Date	Time	O2 (% Vol)	NOX (ppmvd)	CO (ppmvd)
0181	Enterprise Products	South Carlsbad #2	Run 6	5/24/2012	3:50:43 PM	16.28	85.50	9.85
0181	Enterprise Products	South Carlsbad #2	Run 6	5/24/2012	3:51:13 PM	16.28	85.00	9.85
0181	Enterprise Products	South Carlsbad #2	Run 6	5/24/2012	3:51:43 PM	16.28	85.50	9.85
0181	Enterprise Products	South Carlsbad #2	Run 6	5/24/2012	3:52:13 PM	16.28	85.50	9.85
0181	Enterprise Products	South Carlsbad #2	Run 6	5/24/2012	3:52:43 PM	16.28	85.50	9.85
0181	Enterprise Products	South Carlsbad #2	Run 6	5/24/2012	3:53:13 PM	16.28	85.50	9.35
0181	Enterprise Products	South Carlsbad #2	Run 6	5/24/2012	3:53:43 PM	16.28	85.50	9.85
0181	Enterprise Products	South Carlsbad #2	Run 6	5/24/2012	3:54:13 PM	16.28	85.00	9.35
0181	Enterprise Products	South Carlsbad #2	Run 6	5/24/2012	3:54:43 PM	16.28	85.00	9.35
0181	Enterprise Products	South Carlsbad #2	Run 6	5/24/2012	3:55:13 PM	16.28	85.00	9.35
0181	Enterprise Products	South Carlsbad #2	Run 6	5/24/2012	3:55:43 PM	16.28	85.00	9.85
0181	Enterprise Products	South Carlsbad #2	Run 6	5/24/2012	3:56:13 PM	16.28	85.00	8.85
0181	Enterprise Products	South Carlsbad #2	Run 6	5/24/2012	3:56:43 PM	16.28	85.00	8.85
0181	Enterprise Products	South Carlsbad #2	Run 6	5/24/2012	3:57:13 PM	16.28	85.00	8.85
0181	Enterprise Products	South Carlsbad #2	Run 6	5/24/2012	3:57:43 PM	16.28	85.00	8.85
0181	Enterprise Products	South Carlsbad #2	Run 6	5/24/2012	3:58:13 PM	16.28	85.00	9.35
0181	Enterprise Products	South Carlsbad #2	Run 6	5/24/2012	3:58:43 PM	16.18	85.00	9.85
0181	Enterprise Products	South Carlsbad #2	Run 6	5/24/2012	3:59:13 PM	16.28	85.00	9.35
0181	Enterprise Products	South Carlsbad #2	Run 6	5/24/2012	3:59:43 PM	16.28	85.00	9.35
0181	Enterprise Products	South Carlsbad #2	Run 6	5/24/2012	4:00:13 PM	16.28	85.00	9.85
0181	Enterprise Products	South Carlsbad #2	Run 6	5/24/2012	4:00:43 PM	16.20	85.00	9.85
0181	Enterprise Products	South Carlsbad #2	Run 6	5/24/2012	4:01:13 PM	16.18	85.00	9.85
0181	Enterprise Products	South Carlsbad #2	Run 6	5/24/2012	4:01:43 PM	16.28	85.00	9.35
0181	Enterprise Products	South Carlsbad #2	Run 6	5/24/2012	4:02:13 PM	16.28	85.00	8.85
0181	Enterprise Products	South Carlsbad #2	Run 6	5/24/2012	4:02:43 PM	16.28	85.00	9.85
0181	Enterprise Products	South Carlsbad #2	Run 6	5/24/2012	4:03:13 PM	16.28	85.00	9.85
0181	Enterprise Products	South Carlsbad #2	Run 6	5/24/2012	4:03:43 PM	16.28	85.00	9.85
0181	Enterprise Products	South Carlsbad #2	Run 6	5/24/2012	4:04:13 PM	16.18	85.55	9.35
0181	Enterprise Products	South Carlsbad #2	Run 6	5/24/2012	4:04:43 PM	16.28	85.00	9.85
0181	Enterprise Products	South Carlsbad #2	Run 6	5/24/2012	4:05:13 PM	16.18	85.50	9.85
0181	Enterprise Products	South Carlsbad #2	Run 6	5/24/2012	4:05:43 PM	16.18	85.00	9.85
0181	Enterprise Products	South Carlsbad #2	Run 6	5/24/2012	4:06:13 PM	16.18	85.00	9.85
0181	Enterprise Products	South Carlsbad #2	Run 6	5/24/2012	4:06:43 PM	16.18	85.00	9.85
0181	Enterprise Products	South Carlsbad #2	Run 6	5/24/2012	4:07:13 PM	16.18	85.50	9.85
		Run Averages				16.27	85.53	9.49
0181	Enterprise Products	South Carlsbad #2		5/24/2012	4:07:43 PM	16.18	85.50	9.85
0181	Enterprise Products	South Carlsbad #2		5/24/2012	4:08:13 PM	-0.01	90.20	99.30
0181	Enterprise Products	South Carlsbad #2		5/24/2012	4:08:43 PM	<u>-0.01</u>	<u>90.20</u>	<u>99.30</u>
0181	Enterprise Products	South Carlsbad #2		5/24/2012	4:09:13 PM	-0.01	90.20	99.30
0181	Enterprise Products	South Carlsbad #2		5/24/2012	4:09:43 PM	20.90	0.00	0.00
0181	Enterprise Products	South Carlsbad #2		5/24/2012	4:10:13 PM	<u>20.90</u>	<u>0.00</u>	<u>-0.50</u>
0181	Enterprise Products	South Carlsbad #2		5/24/2012	4:10:43 PM	20.90	0.00	-0.55
0181	Enterprise Products	South Carlsbad #2		5/24/2012	4:11:13 PM	20.90	0.00	-0.55
0181	Enterprise Products	South Carlsbad #2		5/24/2012	4:11:43 PM	20.90	0.00	-0.50
0181	Enterprise Products	South Carlsbad #2		5/24/2012	4:12:13 PM	20.90	0.00	-0.50
0181	Enterprise Products	South Carlsbad #2		5/24/2012	4:12:43 PM	20.90	0.00	-0.50
0181	Enterprise Products	South Carlsbad #2		5/24/2012	4:13:13 PM	20.90	0.00	-0.50

		ΔΝΔΙ ΥΤΙ	CAL REPORT	r	
Certificate ID:	110711019	ANALITI	Date:	11/7/2011	
Customer Name:	B&J Welding S	XT vlaau	Date.	11112011	
Customer Address:	1512 East 50th				
	Lubbock	ТХ	79404		
Purchase Order:	17436		Work Order:	127416-01	
ot Number:	1024UB11		Product Name:	3-Component Mi	xture, EPA Protocol
Size:	A31		Pressure:	2210 psig @ 84	Deg F
Content:	Ven ID# C1201	1			
Serial #:	EB0002836				
Analysis Date:	11/2/2011				
Shelf Life:	36 months		Expiration Date:	11/2/2014	
Component	Nominal	Actual	Accuracy	Method	
Oxygen Carbon Dioxide Nitrogen	12.0% 12.0% Balance	11.7% 12.2% Balance	+/- 1% rel +/- 1% rel	Paramagneti FTIR	2
REFERENCE STANDA	ARD <u>Std Type</u> GMIS GMIS	<u>Std #</u> 0606JG11 0625HE10	<u>Cyl #</u> EB0001508 EB0023062	<u>Concentration</u> 15.1500 19.8500	<u>Exp Date</u> 6/7/2013 6/28/2012
INSTRUMENTATION	Instrument Servomex 5 MKS 2031			<u>Component</u> O2 CO2	

0711012 kJ Welding Supply, TX 12 East 50th Street bbock TX	Date: 79404	11/7/2011	
12 East 50th Street bbock TX	79404		
bbock TX	79404		
	79404		
436	Work Order:	127416-03	
24UA11	Product Name:	3-Component Mix	ture, EPA Protocol
31	Pressure:	2220 psig @ 82 D	eg F
en ID# C12011			
30004610			
/2/2011			
months	Expiration Date:	11/2/2014	
Nominal <u>Actual</u>	Accuracy	Method	
20.9% 20.9% 5.00% 5.10% Balance Balance	+/- 1% rel +/- 1% rel	Paramagnetic FTIR	
Std Type Std # GMIS 0318XA11 GMIS 0625HE10	EB0028214	20.9700	<u>Exp Date</u> 3/18/2013 6/28/2012
<u>Instrument / ID</u> Servomex 5200 MKS 2031		<u>Component</u> O2 CO2	
	1 n ID# C12011 0004610 /2/2011 months Nominal Actual 20.9% 20.9% 300% 5.10% 3alance Balance Std Type Std # GMIS 0318XA11 GMIS 0625HE10 Instrument / ID Servomex 5200	1 Pressure: n ID# C12011 0004610 /2/2011 Expiration Date: Mominal Actual 20.9% 20.9% 20.9% 5.10% 3alance Balance Std Type Std # Cyl # GMIS 0318XA11 EB0028214 GMIS 0625HE10 EB0023062	1 Pressure: 2220 psig @ 82 D n ID# C12011 0004610 /2/2011 Expiration Date: 11/2/2014 Mominal Actual Accuracy Method 20.9% 20.9% +/- 1% rel Paramagnetic 20.9% 5.10% +/- 1% rel Paramagnetic 300% 5.10% +/- 1% rel FTIR Std Type Std # Cyl # Concentration GMIS 0318XA11 EB0028214 20.9700 GMIS 0625HE10 EB0023062 19.8500 Linstrument / ID Servomex 5200 Q2

GLOU INPATION GASES LLC	1500 1 Pa B A Acci	Calibration Gases LLC 5 th Avenue Drive East, #109 Ilmetto, FL 34221 Iending Plant & nalytical Laboratory editation No: 69191 P Vandor ID: N12011						
Customer: CGA: Customer PO #: Cylinder #:	B&J Spe 660 EB00344	ecialty Gas 805		tion Date: 1/ on Date: 1/	1612 - 2 16/12 16/14 00			
		nalyzed according to EPA Tra s, Procedure G1 (September		col for Assay and Ce	ertification of Gaseous			
ANALYZED CYLINDER -								
Components				Analytical Accuracy				
NO		90.0 ppm		± 1 %				
NOx		> 1 %		±1%				
Propane		105.0 ppm			±1%			
Methane		109.0 ppm			±1%			
Carbon Monoxide		99.0 ppm BALANCE			±1%			
REFERENCE STANDARI		Cylinder#			Concentration			
NO/ SRM 2735		Cal015838			784.4 ppm			
NOx/ SRM 2735		Cal015838		787.5 ppm				
Propane/ GMIS		EB0026425			310.9 ppm			
Methane/ GMIS		EB0019166		94.6 ppm				
CO/ GMIS		CC118813			95.5 ppm			
INSTRUMENT - Instrument/Mod	0	Serial #	Laet Dat	e Calibrated	Analytical Method			
California Analyti								
Instrument Model		Y09003	1	/5/12	Chemiluminescence			
Agilent		US02002031	1/	10/12	Thermal conductivity			
accuracy throughout the ta ASTM E617-97 Class 1 to 06. This report states accu effort has been made to do Gases LLC shall have no	arget mass r lerances. T arately the re etermine obj liability in ex	ange against applicable NIST his calibration is referenced b sults of the investigation made ectively the information reque	F traceable weig by serial # 7210- de upon the mat asted. However ge for this servic ressure is belo Ret	hts. We certify that 1. Certificate # 5110 erial submitted to th in connection with e. Assayed at Glob	535 and NIST Inst # 822/272103- le analytical laboratory. Every this report, Global Calibration bal Calibration Gases LLC,			

STORE OF	0		leiding Supp amesa, Tx	ły	
12:3					EPA Protocol
ene		Acc: 6915	editation No		Gas Mixture
	/	NUA PGV N12	P Vendor ID 012	R-BA herrang	
Customer:	B&J W	elding Supply		Reference#:	011112-1
CGA:	660			Certification Date:	01/11/2012
Customer PO#	17784			Expiration Date:	01/11/2014
Cylinder #:	EB003	2807		Pressure, psig:	2000
Components Nitric Oxide NOx Carbon Monoxide Methane Propane Nitrogen			Centified Conce 251.4 ppm <1% 257 ppm 248.6 ppm 251.6 ppm Belaince	nçalaşır.	Analytical Accuracy +/-1% +/-1% +/-1% +/-1% +/-1%
Reference Standard Type/SRM Sample NO/SRM 2735 Nox/ SRM 2735 CO/ GMIS Propane/ GMIS	F		Cylinder # Cel015838 Cel015838 E80019151 CC80838		Concentration 784.4 ppm 787 5 ppm 1.96% 2984 ppm
Methana/ GMIS Instrument-			EB0026384		148.3 ppm
Instrument/ Model	nstument	Serial Number		Last Oate Calibra	ted Analytical Method

 I
 Serial Number
 Last Onte C

 al Instument
 Y09003
 01/05/2012

 III
 US02002031
 01/11/12

 F-04300058
 01/04/2012

Thermal Conductivity Non-Dispersice Infrared

These initiates were prepared gravimetrically using a high load high sensitivity electronic scale. Prior to filling the scale is vertiled for accuracy throughout the target mass range against applicable NIST traceable weights.

We certify that the weights are calibrated to ASTM E617-97 Class 1 tolerances. This calibration is relevanced by serial #7210-1, Certificate # 511635 and NIST Inst # 822/272103-06.

This report states accurately the results of the investigation made upon the material submitted to the analytical laboratory. Every effort has been made to determine objectively the information requested. However, in connection with this report, Global Calibration Gases LLC shall have no liability in excess of the established charge for this service. Assayed at Global Calibration Gases LLC, Palmetto, Florida. *Do not use this standard when cylinder pressure is below 150 psig.

Produced by:

Model 600

gilent Qued Server

Rosomount BBOA

Global Calibration Gases LLC. 1500 15th Avenue Drive, East Suite# 109 Palmetto, Florida 34221 Accreditation No.: 69191 PGVP Vendor ID.: N12012

1 Principal Analyst: Date: 1-11-12

Fil Il Principal Reviewer: Date: 1-11-12-

Nolan, Shiver

From:	Heap, James K
Sent:	Monday, May 12, 2014 3:08 PM
То:	'stacktest.aqb@state.nm.us'; Nolan, Shiver
Cc:	Thompson, Roger A; Babinski, Dina J.; Sage, Sondra, NMENV
	(Sondra.Sage@state.nm.us); Morris, Allan, NMENV
Subject:	Annual Monitoring Report
Attachments:	14-0152-2_EPROD_SCarlsbad_T2_AnnualReport.pdf; 14-0152-1_EPROD_SCarlsbad_T1 _AnnualReport.pdf; Test Report T1&T2 Annual monitoring MAY2014.pdf

Pursuant to Section A205 of Permit P130-R2, attached is the submittal form and Periodic Test-report for: Enterprise Field Services LLC South Carlsbad Compressor Station AIRS: 350150044, Operating Permit (Title V): P130-R2

If you have any questions or require further information, please contact me using the info below.

New Mexico Environment Department Air Quality Bureau 1301 Siler Road Building B Santa Fe, NM 87507 Phone (505) 476-4300 Fax (505) 476-4375

Version 1/1	/2010			
NMED USE ONLY				
DTS				
ТЕМРО				
	1			

UNIVERSAL STACK TEST NOTIFICATION, PROTOCOL AND REPORT FORM

NME	ED USE ONLY
Staff	
Admin	

Submit to: Stacktest.aqb@state.nm.us

	I. DATABASE H	EADER INFORM	ATION (drop down men	us in bold)
a. Al# 0218 Test Report		Periodio	c Test (EPA Method)	
d. Company Name: e. Facility Name:				
Enterprise Field Services LLC South Carlsbad Compressor Station			npressor Station	
f. Emission Unit Numbers: T1, T2 g. Emission Unit Description (boiler, Waukesha 7042, etc) Turbines: GE Solar T4702			2, etc)	
h. Reports - Tracking Number from notification response: CMT i. Proposed Test Date: j. Actual test date: 03JAN14,04JAN14				
	est (name permit requirement, NSPS formance Test of exist			

	II. GENI	RAL COMPAN	Y AND FACILITY INFORMA	TION		
a.Company Address:			k Facility Address:			
PO Box 4324		Roberson Road, Eddy	Roberson Road, Eddy County			
b. City:	c. State:	d. Zip:	I. City:	m. State:	n. Zip:	
Houston	ТХ	77210 [⊥]	Loving	NM	88526	
e. Environmental Contact:	f. Title:		o. Facility Contact:	p. Title:	L =	
Jim Heap Sr. Env. Scientist		Dave Kresta	Area M	gr OPS		
g. Phone Number:	h. Cell Nu	mber:	q. Phone Number:	r. Cell Nu	umber:	
432-686-5404 432-260-0239		432-943-1801	325-27	7-5728		
i. Email Address:		s. Email Address:	l	•		
jkheap@eprod.com		dkresta@eprod.com				
j. Title V Permit Number:			t. NSR Permit Number:	t. NSR Permit Number:		
P-130-R2		0220-M7				
u. Detailed driving directions f From Loving: US385N Roberson Road west t	to Roberson F		· · · · · ·			

III. TESTING FIRM					
a. Company: Nordon Corporation		g. Contact: Shunil Jacob			
b. Address 1:		h. Title:	h. Title:		
PO Box 1415			Operations Manager		
c. Address 2:			i. Office Phone: 512-355-3786	j. Cell Phone: 512-750-9226	
d. City: Round Rock	e. State: TX	f. Zip: 78680	k. Email Address: shunil@nordoncorp.com		

NMED Air Quality Bureau

UNIVERSAL STACK TEST NOTIFICATION, PROTOCOL AND REPORT FORM

IV. EMIS	STACK PARAMETERS	
a. Emission Unit Number:	b. Make & Model Number	m. Velocity (ft/sec):
1 and 2	GE Solar Centaur T-4702	n. Temperature (°C):
c. Serial Number:	d. Permitted Capacity:	o. Stack Diameter, D (in.):
1. OHD10C7915, 2. OHE12C7057	3609 hp	p. Distance to Stack Bends or Obstructions:
e Exceptions: Explain if test is late, reschedu	led, related to an enforcement action:	Upstream, Distance A (in.):
NA		Downstream, Distance B (in.):
g. Emission Unit Description and brief proces Natural-gas fired turbines and cor	B B B C C C C C C C C C C C C C C C C C	
h. Installation Date: i. Startup Da	te: k. Date Reached Max. Capacity:	
I. Control Equipment Description as listed in NA	permit (model, ser. # etc. if applicable):	FLOW DIRECTION FLOW DISTURBANCE EXAMPLE VIEW SHOWING DISTANCES FROM SAMPLE PORT TO FLOW DISTURBANCES Attach an explanation or drawing to explain any difficult or unusual stack geometry or parameters.

Pollutant or Parameter'	eviation to Test thod Requested				
NOx EPA Method 7E CO EPA Method 10 SO2 EPA Method 6 VOCs (Specify) HAPs (Specify) PM (TSP) EPA Method 5 PM10 EPA Method 201 PM2.5 (Specify)					
CO EPA Method 10 SO2 EPA Method 6 VOCs (Specify) HAPs (Specify) PM (TSP) EPA Method 5 PM10 EPA Method 201 PM2.5 (Specify)					
SO2 EPA Method 6 VOCs (Specify) HAPs (Specify) PM (TSP) EPA Method 5 PM10 EPA Method 201 PM2.5 (Specify)					
VOCs (Specify) HAPs (Specify) PM (TSP) EPA Method 5 PM10 EPA Method 201 PM2.5 (Specify)					
HAPs (Specify) PM (TSP) EPA Method 5 PM10 EPA Method 201 PM2.5 (Specify)					
PM (TSP) EPA Method 5 PM10 EPA Method 201 PM2.5 (Specify)					
PM10 EPA Method 201 PM2.5 (Specify)					
PM2.5 (Specify)					
Opacity EPA Method 9					
Visual E. EPA Method 22					
Stack Flow EPA Methods 1 - 3					
Moisture EPA Method 4					
Other (Specify) Method 3A (O2)					
Other (Specify) Method 19 (Stack Flow)					
List Specific VOC's and HAP's:					

NMED Air Quality Bureau

UNIVERSAL STACK TEST NOTIFICATION, PROTOCOL AND REPORT FORM

	VI. PROPOSEI	D TEST RUN	AND TEST LOAD INFOR	MATION	
a. Number of Test Runs:	b. Run Duration c. Required by (regulation or permit number): d. Specific Condition or Section:			Condition or Section:	
3	00:30:00	Title V Peri	mit P130-R2	A205 A.	
PLEASE NOTE - Default run	duration is 60 minutes, u	nless otherwise	specified by an applicable regulat	ion.	
e. Expected Load:	f. Percent of Permitted	Capacity:	g. Is this an opacity te	st?	h. If yes, no. of observation pts.:
	90-110%		Yes 🗌 No 🛛]	
i. If expected load during test is	s less than 90% of capaci	ity, explain:	···· ·		Ann
-	•				
NOTE – Failure to test at 90-100% of permitted load will limit unit operation to 110% of tested load until a new initial compliance test is conducted.					
PLANT OR UNIT OPERATING PARAMETERS TO BE MONITORED					
j. List and explain the plant operating parameters that will be monitored and applicable permit conditions or regulatory standards.					
Stack emissions of NC)x and CO				
	·				

VII. ADDITIONAL DETAILS (where applicable)		
RATA and INSTRUMENTAL ANALYZER CALIBRATION PROCEDURES		
a. Do any of the methods you are proposing utilize instrumental analyzers (i.e.; EPA Methods 3A, 6C, 7E, 10, 18, 25/25A, 320 etc.)? If yes, briefly describe analyzer calibration procedures and/or calibration standard procedures. Enter the highest pollutant concentration expected and the proposed concentrations of calibration gases.	Yes	No No
SAMPLING TRAIN LEAK CHECK PROCEDURES		
b. Do any of the methods you are proposing utilize the EPA Method 5 sampling train (i.e.; EPA Methods 1-4, 5, 17, 26/26A, 29, etc.)? If yes, briefly describe sampling train and pitot tube leak check procedures:	Yes	No No
EPA METHOD 19 IN LIEU OF EPA METHODS 1-4		
c. Are you proposing to utilize EPA Method 19 in lieu of EPA Methods 1-4? If yes, explain why you believe this proposal is justified:	Yes Yes	🗌 No
Method 19 is being used to avoid specific safety concerns regarding the uninsulated stack (burn	hazard).	
PLEASE NOTE – EPA Method 19 may be utilized in lieu of EPA Methods 1-4, subject to the approval of the Department. If you are EPA Method 19 in lieu of EPA Methods 1-4, you MUST include a recent fuel gas heating value analysis as well as a recent fuel flow certificate, preferably conducted on the day of the test, but no earlier than three months prior to the test date. If the analyses have to the test date, you MUST append the certificates to the protocol. If conducted on the day of the test, you MUST append the certificates report.	w meter calib been conduc	ration

UNIVERSAL STACK TEST NOTIFICATION, PROTOCOL AND REPORT FORM

5	N INTE	VIII. ATTACHMENTS (as needed to support proposed test; check all that apply)			
NO ⁻	TIFICAT	ION/PROTOCOL ATTACHMENTS			
		ap Indicating Directions from Nearest New Mexico Town to Facility			
	Schemat	tic of process being tested showing emission points, sampling sites and stack cross-section			
	Copy of	proposed test methods (except for those promulgated test methods found in 40 CFR 51, 60, 61 and 63)			
	Fuel Hea	ating Value Analysis			
	Fuel Flow	w Meter Calibration Certificate			
	Other:				
	Other:				
TES	ST REPO	DRT ATTACHMENTS			
\boxtimes	Section 2. Tables of Results				
	Supporting Documents (Specify)				
Ret	ain Rep	ort Section 3 - Test Procedures, Data, Calculations, Appendices – 2 years NSR permits, 5 years TV			
	0				
		IX. CERTIFICATION			
This	documen	It has been prepared under my supervision and is accurate and complete to the best of my knowledge. I understand that			

	pervision and is accurate and complete to the best of my knowld requirements of any permit or regulation. I understand that any rmit holder.	
Signature:	Print Name and Title: James K. Heap, Senior Environmental Scientist	Date: 12MAY2014
Responsible Official for Title V?	No (R.O signature not required for routine p	periodic testing)

Heap, James K

From:Sage, Sondra, NMENV <Sondra.Sage@state.nm.us>Sent:Thursday, May 01, 2014 4:11 PMTo:Heap, James KCc:Morris, Allan, NMENV; Samaniego, Robert, NMENVSubject:FW: Test Substitution Request

Mr. Heap,

Following a review of the additional information you provided regarding the previous periodic test, it appears that the test conducted for Initial GG compliance falls within the required timeframe for the Annual Monitoring test. If you wish to reformat the results and use them for the Annual Monitoring Test, please submit a test protocol showing the test as the Annual Monitoring Test, then submit the results in the appropriate format. This will essentially qualify as a case of enforcement discretion, since it will require waiving the 30 day notice for the test, as well as the requirement to report the test in a timely manner. This acceptance of the GG Initial Test results for the Annual Monitoring Test is applicable only to this instance. If, in future, you wish to use the results of a single testing event to comply with two requirements, it will be necessary to submit timely testing notifications and testing results indicating this is the case. It will not be acceptable to request this after the fact in future instances.

Sondra Sage Compliance Specialist NMED-Air Quality Bureau 525 Camino de los Marquez, Suite 1 Santa Fe, NM 87505 (505)476-4358 "Never cruel nor cowardly. Never give up, never give in." - the Doctor

From: Morris, Allan, NMENV Sent: Wednesday, April 30, 2014 10:30 AM To: Sage, Sondra, NMENV Cc: Samaniego, Robert, NMENV Subject: FW: Test Substitution Request

From: Heap, James K [mailto:JKHEAP@eprod.com]
Sent: Tuesday, April 29, 2014 6:11 PM
To: Morris, Allan, NMENV; Nolan, Shiver
Cc: Thompson, Roger A; Babinski, Dina J.; Shunil Jacob
Subject: Test Substitution Request

Pursuant to your request during our phone call today, I am providing you detail regarding Enterprise's desire to utilize our January Initial GG test for the permit required Annual Monitoring Test at the South Carlsbad Compressor Station (0218).

Annual Emission Test Report for one Solar Centaur T4702 Compressor Turbine Unit Number T1 located at the South Carlsbad Compressor Station

> Prepared for Enterprise Field Services, LLC P. O. Box 4324 Houston, TX 77210

January 2014 Nordon Project No. 14-0152-1

This test report has been reviewed and approved for submittal to the New Mexico Environment Department (NMED) by the following representatives:

Donald W. Haynes Nordon Corporation

Enterprise Field Services, LLC

P. O. Box 1415 Round Rock, Texas 78680 Phone (512) 355-3786 Fax (512) 355-3785

SUMMARY OF RESULTS

Exhaust emission testing was performed on one Solar Centaur T4702 (Unit # T1) compressor turbine for Enterprise Field Services, LLC located at the South Carlsbad Compressor Station, near Loving, Eddy County, New Mexico. The turbine is used for natural gas compression. The testing was performed to demonstrate the continued compliance with the emission limits set forth in the NMED permit. Nordon Corporation of Round Rock, Texas, performed the exhaust emissions testing on January 3, 2014.

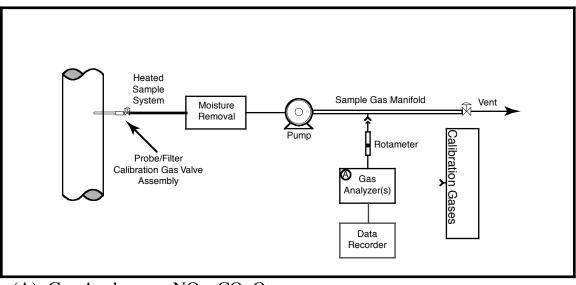
Continuous emission instruments housed in a mobile analysis unit were used to determine the concentrations of NO_x , CO, and O_2 in the exhaust stack of the compressor turbine. The following <u>Code of Federal Regulations</u>, Title 40, Part 60 (40<u>CFR</u>60), Appendix A reference methods were used to determine stack gas concentrations: Method 7E for nitrogen oxides (NO_x), Method 10 for carbon monoxide (CO), and Method 3A for oxygen (O₂). Mass emission rates were determined stoichiometrically according to Method 19 data reduction procedures using measured fuel flow rate.

Three thirty-minute test runs were performed on the exhaust of the turbine while firing on natural gas. The results of the testing are presented in a summary of results table. This table includes all the relevant information pertaining to the turbine/compressor operations, exhaust emissions, and ambient conditions. Exhaust concentrations are presented in part per million by volume (ppmv) or percent (%) by volume. The mass emission rates are presented in pound per hour (lb/hr) and ton per year (tpy). Turbine/compressor operational data was collected during each test run.

Summary of Results

NORDON CORPORATION

P.O. Box 1415 Round Rock, Texas 78680 PHONE (512) 355-3786 • FAX (512)355-3785


Plant: South Carlsbad Compressor Station Facility Owner:Enterprise Field Services, LLC Location: Loving, Eddy County, New Mexico Unit Make/Model: Solar Centaur T4702 Unit Number: T1, Ser. No.OHD10C7915 Test Personnel: DWH / KRJ

RUN NUMBER	DH-010314.01	DH-010314.02	DH-010314.03	
Date	1/3/14	1/3/14	1/3/14	
Start Time (hr)	9:23	10:12	10:49	
Stop Time (hr)	10:04	10:42	11:19	
TURBINE DATA				
Rated Horsepower (Hp)	3609	3609	3609	
Fuel Pressure (psig)	193	195	207	
Gas Producer Speed (%)	94.8	94.8	94.8	
Power Turbine Speed (%)	92.8	92.3	91.9	
Turbine Compressor Discharge Pressure (psig)	105	104	102	
Exhaust Temperature (°F)	1078	1082	1091	
Horsepower (Hp)	3508	3478	3418	
Heat Rate (MMBtu/hr)	43.0	43.0	42.4	
COMPRESSOR DATA				
Suction Pressure (psig)	293	294	295	
Suction Temperature (°F)	58	62	64	
Discharge Pressure (psig)	529	532	535	
Discharge Temperature (°F)	145	147	148	
Gas Production (MMscfd)	37	38	37	
FUEL & EXHAUST DATA				
O2 F-factor (dscf/MMBtu)	8698	8698	8698	
Fuel Heating Value (HHV Btu/scf)	1098	1098	1098	
Stoichiometric Exhaust Flow (dscfh)	1.94E+06	1.96E+06	1.96E+06	
AMBIENT CONDITIONS				
Temperature (°F): Dry bulb	39	44	47	
Temperature (°F): Wet bulb	32	37	39	
Atmospheric Pressure ("Hg)	26.90	26.88	26.84	
Humidity (lb water/lb air)	0.0026	0.0035	0.0037	
Humidity (% vol)	0.4	0.5	0.6	
MEASURED EXHAUST OUTLET CONCENTRATIONS				AVERAGES
NOx (ppmv)	74.0	74.1	75.0	74.4
CO (ppmv)	15.2	14.0	13.7	14.3
O2 (%)	16.9	16.9	17.0	16.9
EMISSION RATES				
NOx (lb/hr) LIMIT=27.0	17.14	17.36	17.57	17.35
CO (lb/hr) LIMIT=7.4	2.14	2.00	1.95	2.03
NOx (tpy, @8760 hr/yr) LIMIT=118.3	75.06	76.03	76.95	76.01
CO (tpy, @8760 hr/yr) LIMIT=32.5	9.39	8.77	8.55	8.91

PROCEDURES

Continuous emission instruments housed in the mobile analysis unit were used to determine the concentrations of pollutants found in the turbine exhaust stack. The following $40\underline{CFR}60$, Appendix A reference methods were used to determine stack gas concentrations: Method 7E for NO_x, Method 10 for CO, and Method 3A for O₂. Mass emission rates were determined according to data reduction procedures provided in Method 19.

As depicted in Figure 1, Sample System and Instrumentation, a stainless steel sample probe was located in the centroid of the stack. Sample gas enters the stainless steel probe into a stainless steel 3-way valve. The 3-way valve is used to perform leak checks and sample system bias checks. From the valve, the gas flows through a 3/8" Teflon® heat traced sample line to a stainless steel minimum contact condenser to dry the sample. From the condenser, a 3/8" Teflon sample line brings the exhaust gas to a manifold in the mobile analysis unit via a Teflon-lined diaphragm pump. The manifold partitions the gas through quick-connects so that each instrument can directly sample exhaust gas. Each instrument is equipped with a rotometer to maintain correct sample pressure and flow. The instruments are connected to a computer data acquisition system to document its response during quality assurance activities and testing.

Figure 1: Sample System and Instrumentation

(A) Gas Analyzers - NO_X , CO, O_2

Analyzer Make	Analyzer Model	Detection Principle
NO _x Analyzer:	42i-HL	Chemiluminescence
Thermo Environmental		
CO Analyzer :	48i-HL	Non-dispersive Infra-red
Thermo Environmental		
O_2 Analyzer:	48i-HL	Paramagnetic Cell
Thermo Environmental		

A continuous analyzer is used to determine NO_X concentrations according to EPA Reference Method 7E. This instrument employs a chemiluminescent detection principle. The NO_X concentration and mass emission rates are expressed as NO_2 per the reference method.

A continuous analyzer is used to determine CO concentrations according to EPA Reference Method 10. The instrument employs a nondispersive infrared detector coupled to a gas filter correlation wheel, which eliminates the interferences due to water and carbon dioxide.

A continuous analyzer is used to determine O_2 concentrations according to EPA Reference Method 3A. The instrument is equipped with either an electrochemical or paramagnetic cell.

Data obtained from the continuous emission analyzers were recorded by a National Instruments data acquisition (DAQ) system using Labview software. A copy of the DAQ records can be found in the appendix of this report.

Quality assurance activities meeting the requirements of the EPA reference methods were performed during the turbine testing. Tables documenting quality assurance procedures are located in the appendix of this report.

Exhaust flow rate was determined according to the data reduction procedures provided in EPA Method 19. The O_2 F-Factor used in the emission rate calculation was either calculated based on a recent fuel analysis or the standard 8710 value for natural gas provided by EPA Method 19.

Nordon personnel recorded turbine compressor operating parameters. Ambient conditions were collected using a wet/dry bulb sling psychrometer to measure temperature and a barometer to measure absolute atmospheric pressure.

APPENDIX

Field Data Sheets Example Calculations Gas Certifications Quality Assurance Activities DAQ Records

Plant: South Carlshad Compressor Station Facility Owner Enterprise Unit Owner. Enterprise Lond Owner. Enterprise London Locying, Eddy County, New Mexico Applicable Regulation: 40CFR60, Subpart GG Unit Make/Model Solar Centaur T-4702 Unit Number T Test Personnel. DWH / KRJ	Station Station tew Mexico Subpart GG Ser. No. OHD10C7915			2	¥	5335353535	2.5624 5.5624 5.5620 5.5620 5.5620 7.5920 7.92200 7.92200 7.92200 7.92200 7.92200 7.92200 7.92200 7.92200 7.92200 7.92200 7.92200 7.92200 7.92200 7.92200 7.92200 7.92200 7.92200 7.92000 7.92000 7.92000 7.92000 7.92000 7.92000 7.92000 7.92000 7.92000 7.92000 7.92000 7.92000 7.92000 7.92000000000000000000000000000000000000	25568268	30	2		ç
san tunner Step Line TurbineCommesor Oneration	526	1912	Pre-	1120	573	the chal		HARE!	184	150%	sts1	22.01
CD (psig) (psig) re (psig) ure (°F) ure (°F) variature (°F) variature (°F)	14:4 14:4 14:5 14:5 36:09 14:5 14:5 14:5 14:5 14:5 14:5 14:5 14:5	941 941 941 3405 3405 3405 342 2422 2422 2422 2422 2422 2422 2422	91.19 94.8 94.8 94.8 10.91 10.92 10 10 10 10 10 10 10 10 10 10 10 10 10	847 3447 756 555 555 555 555 555 555 555 555 55	871 90.9 91.09 91.09 91.09 1.00 1.00 1.00	865 965 965 3604 3604 3709 3709 3709 3709 3709 3709 3709 3709	652 1961 1961 1961 1961 1961 1961 1961 196	890 94.8 3109 3109 311 324 324 324 324 324 324 324 324 324 324	884 884 884 14.7 32.0 33.0 33.0 33.0 33.0 33.0 33.0 33.0	6.16 641.8 641.8 3809 3809 38 196 196 196 196 196 196 196 196	741 741 36.2 36.0 36.0 36.0 37.2 37.4 37.4 37.4 37.4 37.4 37.4 37.4 37.4	677 677 94.8 94.8 94.8 34.8 1609 1609 1609 1609 1600 1600 1600

Testing by Nordon Corporation

Certificate of Analysis

Number: 1030-14010388-001A

Thor Olsen Nordon Corporation PO Box 1415 Round Rock, TX 78680 Jan. 21, 2014

Station Name:South Calrsbad Compressor StitionStation Location:Loving, NMSample Point:Turbine Fuel GasCylinder No:0298Analyzed:01/16/2014 05:34:22 by JD

Sampled By: Sample Of: Gas Spot Sample Date: 01/04/2014 10:00 Sample Conditions: 190 psig, @ 65 °F Method: GPA-2261M

Analytical Data										
Components	Mol. %	Wt. %	GPM at 14.65 psia							
Nitrogen Carbon Dioxide Methane Ethane Propane Iso-butane n-Butane Iso-pentane n-Pentane Hexanes Plus	1.204 1.556 86.800 6.877 2.516 0.292 0.552 0.086 0.072 0.045 100.000	1.797 3.648 74.184 11.016 5.911 0.904 1.709 0.331 0.277 0.223 100.000	1.834 0.691 0.095 0.173 0.031 0.026 0.020 2.870	GPM TOTAL C2+ GPM TOTAL C3+ GPM TOTAL iC5+	2.870 1.036 0.077					
Physical Properties Relative Density Rel Calculated Molecula Compressibility Fact GPA 2172-09 Calcu Calculated Gross E Real Gas Dry BTU Water Sat. Gas Bas	al Gas tr Weight tor Ilation: 3TU per ft³ @ e BTU	2 14.65 psi	1097 1078	C6+ 3.2176 93.19 5113 5024						
Comments: H2O N Reran	Vol% : 1.750 Sample Cor									

Hydrocarbon Laboratory Manager The above analyses are performed in accordance with ASTM, UOP, GPA guidelines for quality assurance, unless otherwise stated.

Quality Assurance:

Page 8 of 29 Page 1 of 5

Fuel Gas Analysis

O ₂ F - H H ₂ O F	Gross Btu/scf -Factor dscf/MMBtu Factor (wscf/MMBtu) -Factor (scf/MMBtu) tor (scf CO ₂ /MMBtu) Btu/lb Sp. Gr. F _o Moisture Factor	8698 10660 1962 1058 22164 0.6516 1.719				
	VOC Fraction 0.063					
Compound	Mol. Formula	Mol. %				
Methane	CH4	86.800				
Ethane	C2H6	6.877				
Propane	C3H8	2.516				
Isobutane	C4H10	0.292				
n-Butane	C4H10	0.552				
Isopentane	C5H12	0.086				
n-Pentane	C5H12	0.072				
NeoPentane	C5H12					
n-Hexane	C6H14	0.045				
n-Heptane	C7H16					
n-Octane	C8H18					
Carbon dioxide	CO2	1.556				
Nitrogen	N2	1.204				
Total		100.000				

TTO: Nordon Corporation Phone: Don Harnes Phone: 512-355-3786 PLO Box 1415 Round Rock, TX 78800 PH: 512.355.3786 PAX: 512.355.3785 PH: 512.355.3785 PAX: 512.355.3785 PH: 512.355.3786 PAX: 512.355.3785 PH: 512.355.3786 PAX: 512.355.3785 PH: 512.355.3786 PAX: 512.355.3785 PH: 512.355.3786 PAX: 512.355.3785 PAH: 512.355.3786 PAX: 512.355.3	tion Client Name: Enterprise Products Client Name: Enterprise Products Facility Name: South Carlsbad Compressor Station Facility Location: Loving, NM Project #: 14-0001	Analysis Requested	(ÓH	D1942 D00002 stpoq 203 stpoq 203 22 (NH3) 1 353 (HC	Collection Date PPA Me EPA Me EPA Me EPA Me EPA Me	1/4/14 X X Cylinder	1/4/14 x x a natural gas cylinder										Date: Received By: Date:
--	--	--------------------	-----	--	---	---------------------	-----------------------------------	--	--	--	--	--	--	--	--	--	------------------------------

Chain of Custody Form

Test Run #: DH-010314.01

Component: NOx

Observed N	bserved Measurements/Data:		Scale, Certified Concentrations		
	Direct Calibration Results				
0.17	NOx direct zero, Cdiro	94.7	NOx chart scale, CS		
95.20	NOx direct span, Cdirm	94.7	NOx actual calibration gas concentration, Cma		
	System Calibration Results	0	Actual low-level gas concentration, Coa		
2.74	NOx, initial zero reading, Csoi		-		
92.63	NOx inital span reading, Csmi				
2.72	NOx final zero reading, Cof				
91.44	NOx final span reading, Csmf				
	Run Results				
72.48	NOx run average, Caverage				

Bias Check Initial Zero (SBoi)

$$SBoi = \frac{(Csoi - Cdiro)}{CS}$$
$$= 2.71 (\%)$$

Bias Check Final Zero (SBof)

$$SBof = \frac{(Csof - Cdiro)}{CS}$$
$$= 2.69 (\%)$$

Drift Check Zero (Do)

Bias- Average Zero (Coavg)

$$= \left(\frac{Csoi + Csof}{2}\right)$$
$$= 2.730 \text{ (ppmv)}$$

NOx Concentration Correction

$$= (Caverage - Coavg) \times \left(\frac{Cma}{Cmavg - Coavg}\right)$$

74.0 (ppmv)

Bias Check Initial Span (SBmi)

$$SBmi = \frac{(Csmi - Cdirm)}{CS}$$
$$= -2.72 (\%)$$

Bias Check Final Span (SBmf)

$$SBmf = \frac{(Csmf - Cdirm)}{CS}$$
$$= -3.97 (\%)$$

.

= 1.26

Bias-Average Span (Cmavg)

$$= \left(\frac{CSmi + CSmf}{2}\right)$$
$$= 92.04 \text{ (ppmv)}$$

Test Run #: DH-010314.01

Component: CO

Observed M	Observed Measurements/Data:		Scale, Certified Concentrations		
	Direct Calibration Results				
-0.02	CO direct zero, Cdiro	193	CO chart scale, CS		
193.21	CO direct span, Cdirm	193	CO actual calibration gas concentration, Cma		
	System Calibration Results	0	Actual low-level gas concentration, Coa		
-0.71	CO, initial zero reading, Csoi		•		
192.18	CO inital span reading, Csmi				
-1.00	CO final zero reading, Cof				
191.53	CO final span reading, Csmf				
	Run Results				
14.33	CO run average, Caverage				

Bias Check Initial Zero (SBoi)

$$SBoi = \frac{(Csoi - Cdiro)}{CS}$$
$$= -0.35 (\%)$$

Bias Check Final Zero (SBof)

$$SBof = \frac{(Csof - Cdiro)}{CS}$$
$$= -0.50 (\%)$$

Drift Check Zero (Do)

SBof – SBoi

Bias- Average Zero (Coavg)

$$= \left(\frac{Csoi + Csof}{2}\right)$$
$$= -0.851 \text{ (pp)}$$

-0.851 (ppmv)

CO Concentration Correction

$$= (Caverage - Coavg) \times \left(\frac{Cma}{Cmavg - Coavg}\right)$$

15.2 (ppmv)

Bias Check Initial Span (SBmi)

$$SBmi = \frac{(Csmi - Cdirm)}{CS}$$
$$= -0.53 (\%)$$

Bias Check Final Span (SBmf)

$$SBmf = \frac{(Csmf - Cdirm)}{CS}$$
$$= -0.87 (\%)$$

0.34 =

Bias-Average Span (Cmavg)
$$= \left(\frac{CSmi + CSmf}{2}\right)$$

191.85 (ppmv) =

Test Run #: DH-010314.01

Component: O2

10.99 (%)

=

Observed M	Observed Measurements/Data:		fied Concentrations
	Direct Calibration Results		
0.05	O2 direct zero, Cdiro	20.92	O2 chart scale, CS
11.02	O2 direct span, Cdirm	10.99	O2 actual calibration gas Concentration, Cma
	System Calibration Results	0	Actual low-level gas Concentration, Coa
0.05	O2, initial zero reading, Csoi		-
10.98	O2 inital span reading, Csmi		
0.16	O2 final zero reading, Csof		
10.99	O2 final span reading, Csmf		
	Run Results		
16.81	O2 run average, Caverage		

Bias Check Initial Zero (SBoi) Bias Check Initial Span (SBmi) $SBoi = \frac{(Csoi - Cdiro)}{CS}$ $SBmi = \frac{(Csmi - Cdirm)}{CS}$ = 0.03 (%) -0.18 (%) = Bias Check Final Span (SBmf) Bias Check Final Zero (SBof) $SBof = \frac{(Csof - Cdiro)}{CS}$ $SBmf = \frac{(Csmf - Cdirm)}{CS}$ 0.55 (%) -0.16 (%) = = Drift Check Zero (Do) Drift Check Span (Ds) SBof – SBoi SBmf – SBmi 0.51 = = 0.02 Bias- Average Zero (O2avg) Bias-Average Span (Cmavg) $=\left(\frac{Csoi+Csof}{2}\right)$ $=\left(\frac{CSmi+CSmf}{2}\right)$

O2 Concentration Correction

=

 $= (Caverage - Coavg) \times \left(\frac{Cma}{Cmavg - Coavg}\right)$

0.107 (%)

16.9 (%)

Example Calculations: Method 19 Exhaust Flow

Test Run #: DH-010314.01

Component: Stack Flow

Observed	Measurements/Data:	Standards/Constants/Conversion Factors		
39208 8698 1098 16.9	Fuel Flow Rate (scfh) Fuel O2 F-Factor (dscf/MMBtu) Fuel Heating Value (Btu/scf) O2 final concentration (%)	1000000 Btu per MMBtu 20.9 O2 % in air		

Derivation of Exhaust Flow using Equation 19-1 from Method 19

$$E\left(\frac{lb}{MMBtu}\right) = C_d\left(\frac{lb}{scf}\right)F_d\left(\frac{dscf}{MMBtu}\right) \times \frac{20.9}{\left(20.9 - \%O_2\right)}$$
 Eq. 19-1

divide each side of equation by Cd to obtain the following

$$\left(\frac{scf}{MMBtu}\right) = F_d\left(\frac{dscf}{MMBtu}\right) \times \frac{20.9}{(20.9 - \%O_2)}$$

multiply each side of equation by heat input (MMBtu/hr)

$$\left(\frac{scf}{hr}\right) = HeatInput\left(\frac{MMBtu}{hr}\right) \times F_d\left(\frac{dscf}{MMBtu}\right) \times \frac{20.9}{(20.9 - \%O_2)}$$

Fuel Gas Heat Rate/Heat Input (MMBtu/hr)

=
$$\left(\text{Fuel Flow Rate } \frac{scf}{hr}\right) \times \left(\text{Fuel Heating Value } \frac{Btu}{scf}\right) \times \left(\frac{1MMBtu}{1000000Btu}\right)$$

= 43.04 (MMBtu/hr)

Stack Gas Volumetric Flow Rate, Q (dscfh)

$$= \left(\text{HeatInput } \frac{MMBtu}{hr}\right) \times \left(\text{Fuel O}_2 \text{ F-Factor } \frac{dscf}{MMBtu}\right) \times \left(\frac{20.9}{20.9 - O_2}\right)$$
$$= 1.94\text{E+06 (dscfh)}$$

Example Calculations: Emissions Calculations

Component: NOx

bserved N	leasurements/Data:	Standards/C	Constants/Conversion Factors
74.0 1940680	NOx final concentration, Cd (ppmv) Average Stack Gas Flow Rate, Q (DSCFH)	528 29.92	EPA Standard Temperature, Tstd (°R) EPA Standard Pressure, Pstd (in. Hg)
16.9	O2 final concentration (%)	385.3	Gas Constant @ EPA STP (SCF/lb-mol)
3508	Horsepower (Hp)	28.317	Liters per Cubic Foot
8698	Fuel O2 Factor (DSCF/MMBtu)	46	NOx molecular wt. (NO2), MW (lb/lb-mol)
		0.001912	Conversion constant (NOx ppm to g/m3)
		8760	hours per year
		2000	pounds per ton
		0.028317	cubic meters per cubic feet

NOx Emissions (ppmv @ 15%O2): Applicable yes
= ppmv@15%O₂ =
$$Cd \times \left(\frac{20.9-15}{20.9-O_2 \text{ concentration (\%)}}\right)$$

NOx Emission Rate (g/hp-hr): Applicable _____ no

=

=

Test Run #: DH-010314.01

$$= \left(\frac{g}{HP - hr}\right) = \frac{Cd \times .001912 \times Q \times \left(\frac{0.028317m^3}{ft^3}\right)}{HP}$$

NOT APPLICABLE

NOx Emission Rate (lb/hr):

ir): Applicable yes
=
$$\left(\frac{ppmv}{10^6}\right) \times \text{Average Stack Flow}, Q \times \left(\frac{MW}{385.3}\right)$$

= 17.14 (lb/hr)

NOx Emission Rate (tons/year):

$$= \left(\frac{\text{tons}}{\text{yr}}\right) = \frac{\text{lb}}{\text{hr}} \times \frac{8760 \text{ hr}}{\text{year}} \times \frac{\text{ton}}{2000 \text{ lb}}$$
$$= 75.06 \text{ (tons/yr)}$$

$$\begin{array}{ll} \textbf{stu}: & Applicable \underline{\quad no} \\ = \left(\frac{lb}{MMBtu}\right) = \left(\frac{Cd}{10^6}\right) \times \left(\frac{MW}{385.3}\right) \times \left(\frac{DSCF}{MMBtu}\right) \times \left(\frac{20.9}{(20.9 - O_2 \text{ concentration (\%)})}\right) \\ = & \textbf{NOT APPLICABLE} \end{array}$$

Example Calculations: Emissions Calculations

Component: CO

Observed M	easurements/Data:	Standards/0	Constants/Conversion Factors			
15.2 1940680 16.9 3508 8698	CO final concentration, Cd (ppmv) Average Stack Gas Flow Rate, Q (DSCFH) O2 final concentration (%) Horsepower (Hp) Fuel O2 Factor (DSCF/MMBtu)	528 29.92 385.3 28.317 28 0.001164 8760 2000 0.028317	EPA Standard Temperature, Tstd (°R) EPA Standard Pressure, Pstd (in. Hg) Gas Constant @ EPA STP (SCF/lb-mol) Liters per Cubic Foot CO molecular wt., MW (lb/lb-mol) Conversion constant (CO ppm to g/m3) hours per year pounds per ton cubic meters per cubic feet			
CO Emissio	CO Emissions (ppmv @ 15%O2): Applicable no = ppmv@15%O ₂ = $Cd \times \left(\frac{20.9-15}{20.9-O_2 \text{ concentration (\%)}}\right)$					
	$= ppinv@15 \pi O_2 - Ca \wedge \left(\frac{1}{20.9 - O_2}\right)$ $= NOT APPLICAE$		(%))			

CO Emission Rate (g/hp-hr):

Test Run #: DH-010314.01

Applicable no

$$= \left(\frac{g}{HP - hr}\right) = \frac{Cd \times .001164 \times Q \times \left(\frac{0.028317m^3}{ft^3}\right)}{HP}$$

NOT APPLICABLE

CO Emission Rate (lb/hr):

=

r): Applicable yes
=
$$\left(\frac{ppmv}{10^6}\right)$$
 × Average Stack Flow,Q × $\left(\frac{MW}{385.3}\right)$

= 2.14 (lb/hr)

CO Emission Rate (tons/year):

$$= \left(\frac{\text{tons}}{\text{yr}}\right) = \frac{\text{lb}}{\text{hr}} \times \frac{8760 \text{ hr}}{\text{year}} \times \frac{\text{ton}}{2000 \text{ lb}}$$
$$= 9.39 \text{ (tons/yr)}$$

u): Applicable no
=
$$\left(\frac{lb}{MMBtu}\right) = \left(\frac{Cd}{10^6}\right) \times \left(\frac{MW}{385.3}\right) \times \left(\frac{DSCF}{MMBtu}\right) \times \left(\frac{20.9}{(20.9 \cdot O_2 \text{ concentration (\%)})}\right)$$

= **NOT APPLICABLE**

THE LINDE GROUP

Linde

CERTIFICATE OF ANALYSIS

PGVP ID#:	I12013
CUSTOMER:	UNION CITY
SALES#:	501210969
PROD#:	1254051
P.O.# :	4501210969
MATERIAL#:	24091202
CERTIFICATION DATE:	01-May-2013
EXPIRATION DATE:	02-May-2021
(Using the May 2012 Revision	
CERTIFICATION HISTORY	

EPA PROTOCOL MIXTURE PROCEDURE #: G1 GAS CODE: APPVD CYLINDER #: CC-310704 CYLINDER PRES: 2000 PSIG CYLINDER VALVE: CGA 660 CYLINDER SIZE: 2A CYLINDER MATERIAL: Aluminum GAS VOLUME: 4000 Liter BLEND TOLERANCE: 5% Relative PAGE: 1 of 1

COMPONENT	DATE OF ASSAY	MEAN CONCENTRATION	CERTIFIED CONCENTRATION	ANALYTICAL ACCURACY
Propane	01-May-2013	30.0 ppm	30.0 ppm	+/- 1%
Nitric Oxide	24-Apr-2013 01-May-2013	47.4 ppm 47.3 ppm	47.3 ppm	+/- 1%
NOx			47.3 ppm	Reference Value Only
Carbon Monoxide	01-May-2013	95.3 ppm	95.3 ppm	+/- 1%
BALANCE	Nites			

BALANCE

Nitrogen

PREVIOUS CERTIFICATION DATES: None

REFERENCE STANDARDS

COMPONENT	SRM/NTRM#	CYLINDER#	CONCENTRATION
Propane	GMIS-1	cc-113884	100.5 ppm
Nitric Oxide	GMIS-1	CC-278874	100.7 ppm
Carbon Monoxide	GMIS-1	cc-88590	96.8 ppm

INSTRUMENTATION

COMPONENT	MAKE/MODEL	SERIAL #	DETECTOR	CALIBRATION DATE(S)
Propane	H. Packard 6890	US00001434	GC - FID	01-May-2013
Nitric Oxide	CAI 400-CLD	6L09004	Cheml	01-Apr-2013
Carbon Monoxide	Horiba VIA-510	570423011	NDIR	19-Apr-2013

THIS STANDARD IS NIST TRACEABLE. IT WAS CERTIFIED ACCORDING TO THE 1997 EPA PROTOCOL PROCEDURES. DO NOT USE THIS STANDARD IF THE CYLINDER PRESSURE IS LESS THAN 100 PSIG.

ANALYST:

MATTHEW JACKSON

Linde Gas North America LLC

DATE: 01-May-2013

CERTIFICATE OF ANALYSIS EPA PROTOCOL GAS

Cylinder Number:	EB0027577	Certification Date:	10/29/2012
Product ID Number:	124749	Expiration Date:	10/22/2016
Cylinder Pressure:	1900 PSIG	MFG Facility:	RBTGS-Shreveport-LA
COA Number:	GC1210170814-0	Lot Number:	GC1210170814
Customer PO. NO.:		Tracking Number:	048358699
Customer		Previous Certificatio	n Dates:

This calibration standard has been certified per the 1997 EPA Traceability Protocol, Document EPA-600/97/121, using procedure G1 and/or G2. All values so noted are certified to be +/-1% NIST Traceable.

Do Not Use This Cylinder Below 150 psig (1.0 Megapascal).

Compone	<u>nt</u>	Concentration	<u>A</u>	nalytical Principle		Accuracy
Nitric C	Dxide	94.5 PPM	Non Dispe	ersive Infrared Absorpt	ometry	:ulate: High Unc
Total Oxides of Nitrogen Propane		94.7 PPM Non Disp		persive Infrared Absorptiometry		_
		51 PPM	FTIR			+/- 1% NIST
Carbon Monoxide Nitrogen		193 PPM Balance	Gas Correlation Filter		+/- 1% NIST	
			Reference Standa	rd(s)		
Type GMIS	Component Nitric Oxide	Balance Gas Nitrogen	Concentration 98.6 PPM	Cylinder Number CC238350	Expiration 2/14/2013	NIST Reference SRM 1686b
GMIS	Nitric Oxide	Nitrogen	98.6 PPM	CC238350	2/14/2013	SRM 1686b

GMIS	Carbon Monoxide	Nitrogen	398 PPM	EB0005726	1/5/2014	NTRM 021003	
SRM	Propane	Nitrogen	49 PPM	CAL018150	8/17/2017	SRM 1667b	

Analytical Information

Component		Nitric Oxide		
	Analysis Date:			10/22/2012
Z 0.152	S 16.337		C 15.549	Conc. 93.5 PPM
S 16.399	C 15.733		Z 0.109	Conc. 94.6 PPM
C 15.71	Z 0.088		S 16.451	Conc. 94.4 PPM
	Analysis Date:			10/29/2012
Z 0.295	S 16.912		C 16.321	Conc. 94.9 PPM
S 16.961	C 16.303		Z 0.281	Conc. 94.8 PPM
C 16.31	Z 0.325		S 16.9825	Conc. 94.8 PPM

0.901	0 10.303	2 0.201	CUIIC. 94.0 FFIN	
5.31	Z 0.325	S 16.9825	Conc. 94.8 PPM	
		r		
	Component	Car	bon Monoxide	
^	nalveie Data:	1	10/22/2012	1

Ar	alysis Date:		10/22/2012		
Z 0.3390	S 41.027	C 19.9610	Conc. 192 PPM		
S 41.0170	C 20.021	Z 0.294	Conc. 193 PPM		
C 20.036	Z 0.3510	S 40.98	Conc. 193 PPM		
-					
С	omponent		Propane		
	omponent alysis Date:		Propane 10/26/2012		
		C 50.7800			
Ar	alysis Date:		10/26/2012		

·	

Z= Zero Gas S= Span Gas C= Candidate Gas

S 49.03

Conc. 51 PPM

Hall rel 14

Z 0.0060

C 50.8

Fred Holt, CHMM Quality Control

Red Ball Technical Gas Service PGVP Vendor ID # G12012 Information and Ordering 800-551-8150 Fax (318-425-6309)

Page 18 of 29

Assay Laboratory: Red Ball TGS 555 Craig Kennedy Way Shreveport, LA 71107 800-551-8150

EPA PROTOCOL GAS CERTIFICATE OF ANALYSIS

Cylinder Number: Product ID Number: Cylinder Pressure: COA # Customer PO. NO.: Customer: EB0046618 124752 1900 PSIG ML130726.170231.3-0

Certification Date: Expiration Date: MFG Facility: Lot Number: Tracking Number: Previous Certification Dates: 07/29/2013 07/27/2021 RBTGS-Shreveport-LA ML130726.170231.3 065271430

This calibration standard has been certified per the May 2012 EPA Traceability Protocol, Document EPA-600/R-12/531, using procedure G1.

Do Not Use This Cylinder Below 100 psig (0.7 Megapascal).

Certified Concentration(s)

Component	Concentration	Uncertainty	Analytical Principle
Carbon Dioxide	13.9 %	±0.11 %	NDIR
Oxygen	10.99 %	±0.07 %	MPA
Nitrogen	Balance		
haogon	Balance		

Analyitcal Measurement Data Available Online. Reference Standard(s) Balance Concentration Uncertainty(%) NIST Reference Component Lot Expiration Туре GC1106080848 09/07/2013 GMIS N2 CO2 12.57 % 0.384 3221755 GC0807251121 04/28/2019 GMIS N2 02 24.43 % 0.52 71001

Analytical Instrumentation					
Component	Analytical Principle	Make	Model	Serial	MPC Date
CO2	NDIR	Horiba	VA-3013	H0000P11	07/10/2013
O2	MPA	Horiba	VA-3013	H0000P11	07/11/2013

Z= Zero Gas S= Span Gas C= Candidate Gas

Red Ball Technical Gas Service PGVP Vendor ID # G12013 Information and Ordering 800-551-8150 Fax (318-425-6309)

Jul Holt Fred Holt, CHMM

Fred Holt, CHMM Quality Control

Assay Laboratory: Red Ball TGS 555 Craig Kennedy Way Shreveport, LA 71107 800-551-8150

EPA PROTOCOL GAS CERTIFICATE OF ANALYSIS

Cylinder Number: Product ID Number: Cylinder Pressure: COA # Customer PO. NO.: Customer: EB0039038 124753 1900 PSIG ML130726.170120.1-0

Certification Date: Expiration Date: MFG Facility: Lot Number: Tracking Number: Previous Certification Dates:

08/02/2013	
07/31/2021	
RBTGS-Shreveport-LA	
ML130726.170120.1	
065155673	
	_

This calibration standard has been certified per the May 2012 EPA Traceability Protocol, Document EPA-600/R-12/531, using procedure G1.

Do Not Use This Cylinder Below 100 psig (0.7 Megapascal).

Certified Concentration(s)

Component	Concentration	Uncertainty	Analytical Principle
Carbon Dioxide	6.99 %	±0.03 %	NDIR
Oxygen	20.92 %	±0.08 %	MPA

Nitrogen

Balance Analyitcal Measurement Data Available Online.

Lot	Expiration	Туре	Balance	Component	Concentration	Uncertainty(%)	NIST Reference
1106080848	09/07/2013	GMIS	N2	CO2	12.57 %	0.384	3221755
0807251121	04/28/2019	GMIS	N2	O2	24.43 %	0.52	71001

Analytical Instrumentation					
Component	Analytical Principle	Make	Model	Serial	MPC Date
CO2	NDIR	Horiba	VA-3013	H0000P11	07/31/2013
02	MPA	Horiba	VA-3013	H0000P11	07/11/2013

Z= Zero Gas S= Span Gas C= Candidate Gas

Red Ball Technical Gas Service PGVP Vendor ID # G12013 Information and Ordering 800-551-8150 Fax (318-425-6309)

fred Holt Fred Holt, CHMM

Fred Holt, CHMM Quality Control

1700 Scepter Rd

Waverly, TN 37185

931-296-3357

Certificate of Analysis - EPA Protocol Mixtures

Customer: NORDON

		Protocol
Cylinder Number:	SX49930	G1
Cylinder Pressure:	1900psig	
Last Analysis Date:	11/19/2012	
Expiration Date:	11/19/2014	

	OT USE THIS CYLINI ESSURE FALLS BEL	
	T176792-1	9302603567
tocol:	Reference #:	Lot#:

REPLICATE RESPONSES

				Date:	11/2/2012	Date:	11/19/2012
Component:	Nitrogen Die	oxide			45.60		45.20
					45.60		45.26
Certified Conc:	45.38ppm	+/-	1% REL		45.40		45.25

BALANCE GAS: Air

REFERENCE STANDARDS:

Component: Nitrogen Dioxide Reference Standard: SRM Cylinder #: CAL016152 Concentration: 98.0ppm Exp Date: 12/31/2015 Lot #: 2660-C-57

CERTIFICATION INSTRUMENTS

1	Nitrogen Dioxide HORIBA CLA-510SS
Serial Number:	
Measurement Principle: Last Calibration:	

Notes:

This Certification was performed according to EPA Traceability Protocol for Assay & Certification of Gaseous Calibration Standards September 1997, using procedure G1 and/or G2.

U.S. EPA Vendor ID No.: D52012: PGVP Participation Date: 1/1/2012: PGVP Renewal Date: 12/31/12

Julie Higgins

Date: 11/26/2012

Julie Higgins

Analyst:

NOx Converter Efficiency and Response Times

Date:

January 3, 2014

METHOD 7E NOx CONVERTER EFFICIENCY TEST

Certified NO ₂ Conc. (ppmv)	45.38
Measured NOx Conc. (ppmv)	41.83
Converter Efficiency (%)	92

Criteria: Converter Efficiency should be 90% or greater

METHOD 7E RESPONSE TIMES

	NOx (ppmv)	CO (ppmv)	O ₂ (%)
Low-Level Gas Concentration	0	0	0
Upscale Gas Concentration	94.70	193.00	10.99
95% of Upscale Gas	90.0	183.4	10.4

	NOx	СО	O ₂
Low-Level Gas RT (sec)	88	75	50
Upscale Gas RT (sec)	82	73	37
Longer Analyzer RT Interval (sec)	88	75	50
System Response Time (sec)	88		
*System Response Time (min)	1.5		
†System Purge Time (min)	2.9		

*Longer interval of time to reach 95% of stable stable response for low & upscale level gases.

Criteria: \uparrow System Purge Time shall be \geq 2 times the System Response Time

Test Run:	0	H-010314.0)1
Parameter	NOx	CO	02
CALIBRATION ERROR DATA			
Range/Span Data			
Analyzer Range	100	200	25
Method 7E Span	94.7	193.0	20.9
Certified Calibration Gas Data			
Zero Level Certified Value (ppm or %)	0	0	0
Low Level Certified Value (ppm or %)	0.0	0.0	0.0
Mid Level Certified Value (ppm or %)	47.3	95.3	10.99
High Level Certified Value (ppm or %)	94.7	193.0	20.92
Calibration Error Observations (Direct)			
Zero Level Observed (ppm or %)	n/a	n/a	n/a
Low Level Observed (ppm or %)	0.2	0.0	0.0
Mid Level Observed (ppm or %)	47.6	95.7	11.0
High Level Observed (ppm or %)	95.2	193.2	21.0
Calibration Error Results			
Difference from Zero Level (%)	n/a	n/a	n/a
Difference from Low Level (%)	0.18	0.01	0.22
Difference from Mid Level (%)	0.32	0.22	0.15
Difference from High Level (%)	0.53	0.11	0.37
Allowable Difference (%)	(±2%)	(±2%)	(±2%)
TEST RUN DATA			
Bias Observations			
Low/Zero Level Cal. Gas Certified Value (ppm or %)	0.00	0.00	0.00
Upscale Cal. Gas Certified Value (ppm or %)	94.70	193.00	10.99
Initial Low/Zero Level Observed (ppm or %)	0.17	-0.02	0.05
Initial Upscale Level Observed (ppm or %)	95.20	193.21	11.02
Initial Bias Low/Zero Level Gas (ppm or %)	2.74	-0.71	0.05
Initial Bias Upscale Level Gas (ppm or %)	92.63	192.18	10.98
Final Bias Low/Zero Level Gas (ppm or %)	2.72	-1.00	0.16
Final Bias Upscale Level Gas (ppm or %)	91.44	191.53	10.99
Bias and Drift Results			
Initial Bias Low/Zero Level (%)	2.71	-0.35	0.03
Initial Bias Upscale Level (%)	-2.72	-0.53	-0.18
Final Bias Low/Zero Level (%)	2.69	-0.50	0.55
Final Bias Upscale Level (%)	-3.97	-0.87	-0.16
Allowable Bias (%)	(±5%)	(±5%)	(±5%)
Low/Zero Level Drift Calculation (%)	0.03	0.15	0.51
Upscale Level Drift Calculation (%)	1.26	0.34	0.02
Allowable Drift (%)	(±3%)	(±3%)	(±3%)
Raw Results (ppmv or %)	72.48	14.33	16.81
Minimum Detection Limit (MDL)	0.5	1.0	0.1
Corrected Results (ppmv or %)	74.0	15.2	16.9
*Final Results (ppmv or %)	74.0	15.2	16.9

*Final Results which are shown in Italics

represent the MDL for that analyte

Test Run:	0	H-010314.0	2
Parameter	NOx	CO	02
CALIBRATION ERROR DATA			
Range/Span Data			
Analyzer Range	100	200	25
Method 7E Span	94.7	193.0	20.9
Certified Calibration Gas Data			
Zero Level Certified Value (ppm or %)	0	0	0
Low Level Certified Value (ppm or %)	0.0	0.0	0.0
Mid Level Certified Value (ppm or %)	47.3	95.3	10.99
High Level Certified Value (ppm or %)	94.7	193.0	20.92
Calibration Error Observations (Direct)			
Zero Level Observed (ppm or %)	0.0	0.0	0.0
Low Level Observed (ppm or %)	0.2	0.0	0.0
Mid Level Observed (ppm or %)	47.6	95.7	11.0
High Level Observed (ppm or %)	95.2	193.2	21.0
Calibration Error Results			
Difference from Zero Level (%)	n/a	n/a	n/a
Difference from Low Level (%)	0.18	0.01	0.22
Difference from Mid Level (%)	0.32	0.22	0.15
Difference from High Level (%)	0.53	0.11	0.37
Allowable Difference (%)	(±2%)	(±2%)	(±2%)
TEST RUN DATA			
Bias Observations			
Low/Zero Level Cal. Gas Certified Value (ppm or %)	0.00	0.00	0.00
Upscale Cal. Gas Certified Value (ppm or %)	94.70	193.00	10.99
Initial Low/Zero Level Observed (ppm or %)	0.17	-0.02	0.05
Initial Upscale Level Observed (ppm or %)	95.20	193.21	11.02
Initial Bias Low/Zero Level Gas (ppm or %)	2.72	-1.00	0.16
Initial Bias Upscale Level Gas (ppm or %)	91.44	191.53	10.99
Final Bias Low/Zero Level Gas (ppm or %)	1.70	-0.96	0.18
Final Bias Upscale Level Gas (ppm or %)	90.59	191.32	10.99
Bias and Drift Results			
Initial Bias Low/Zero Level (%)	2.69	-0.50	0.55
Initial Bias Upscale Level (%)	-3.97	-0.87	-0.16
Final Bias Low/Zero Level (%)	1.61	-0.48	0.64
Final Bias Upscale Level (%)	-4.86	-0.98	-0.13
Allowable Bias (%)	(±5%)	(±5%)	(±5%)
Low/Zero Level Drift Calculation (%)	1.07	0.02	0.09
Upscale Level Drift Calculation (%)	0.89	0.11	0.02
Allowable Drift (%)	(±3%)	(±3%)	(±3%)
Raw Results (ppmv or %)	71.69	13.03	16.82
Minimum Detection Limit (MDL)	0.5	1.0	0.1
Corrected Results (ppmv or %)	74.1	14.0	16.9
*Final Results (ppmv or %)	74.1	14.0	16.9

*Final Results which are shown in Italics

represent the MDL for that analyte

Test Run:	0	H-010314.0	3
Parameter	NOx	CO	02
CALIBRATION ERROR DATA			
Range/Span Data			
Analyzer Range	100	200	25
Method 7E Span	94.7	193.0	20.9
Certified Calibration Gas Data			
Zero Level Certified Value (ppm or %)	0	0	0
Low Level Certified Value (ppm or %)	0.0	0.0	0.0
Mid Level Certified Value (ppm or %)	47.3	95.3	10.99
High Level Certified Value (ppm or %)	94.7	193.0	20.92
Calibration Error Observations (Direct)			
Zero Level Observed (ppm or %)	0.0	0.0	0.0
Low Level Observed (ppm or %)	0.2	0.0	0.0
Mid Level Observed (ppm or %)	47.6	95.7	11.0
High Level Observed (ppm or %)	95.2	193.2	21.0
Calibration Error Results			
Difference from Zero Level (%)	n/a	n/a	n/a
Difference from Low Level (%)	0.18	0.01	0.22
Difference from Mid Level (%)	0.32	0.22	0.15
Difference from High Level (%)	0.53	0.11	0.37
Allowable Difference (%)	(±2%)	(±2%)	(±2%)
TEST RUN DATA			
Bias Observations			
Low/Zero Level Cal. Gas Certified Value (ppm or %)	0.00	0.00	0.00
Upscale Cal. Gas Certified Value (ppm or %)	94.70	193.00	10.99
Initial Low/Zero Level Observed (ppm or %)	0.17	-0.02	0.05
Initial Upscale Level Observed (ppm or %)	95.20	193.21	11.02
Initial Bias Low/Zero Level Gas (ppm or %)	1.70	-0.96	0.18
Initial Bias Upscale Level Gas (ppm or %)	90.59	191.32	10.99
Final Bias Low/Zero Level Gas (ppm or %)	0.19	-4.17	0.01
Final Bias Upscale Level Gas (ppm or %)	91.34	189.89	10.91
Bias and Drift Results			
Initial Bias Low/Zero Level (%)	1.61	-0.48	0.64
Initial Bias Upscale Level (%)	-4.86	-0.98	-0.13
Final Bias Low/Zero Level (%)	0.02	-2.15	-0.16
Final Bias Upscale Level (%)	-4.08	-1.72	-0.55
Allowable Bias (%)	(±5%)	(±5%)	(±5%)
Low/Zero Level Drift Calculation (%)	1.59	1.66	0.80
Upscale Level Drift Calculation (%)	0.78	0.74	0.42
Allowable Drift (%)	(±3%)	(±3%)	(±3%)
Raw Results (ppmv or %)	72.28	11.15	16.86
Minimum Detection Limit (MDL)	0.5	1.0	0.1
Corrected Results (ppmv or %)	75.0	13.7	17.0
*Final Results (ppmv or %)	75.0	13.7	17.0

*Final Results which are shown in Italics

represent the MDL for that analyte

DAQ Logs

Company	Plant Name	Unit Make	Unit Model	Unit Number	Status	Date	Time	NOx	со	02
								(ppmvd)	(ppmvd)	(%, dry)
Enterprise Products	South Carlsbad CS	Solar	Centaur	Calibration Error	0NOx/0CO/0O2	1/3/14	7:41	0.17	-0.02	0.05
Enterprise Products		Solar	Centaur			1/3/14	7:42	10.35	0.12	13.77
Enterprise Products		Solar Solar	Centaur Centaur			1/3/14 1/3/14	7:43 7:44	60.42 95.27	0.01 -0.04	20.54 20.97
Enterprise Products Enterprise Products		Solar	Centaur			1/3/14	7:44	95.27 95.85	-0.04 -0.03	20.97
Enterprise Products		Solar	Centaur	Calibration Error	94.7NOx20.92O2	1/3/14	7:46	95.20	-0.05	21.00
Enterprise Products	South Carlsbad CS	Solar	Centaur			1/3/14	7:47	55.30	-0.06	11.02
Enterprise Products		Solar	Centaur	Calibration Error	47.3NOx10.99O2	1/3/14	7:48	47.60	-0.20	11.02
Enterprise Products		Solar	Centaur			1/3/14	7:49	44.34	14.90	0.22
Enterprise Products Enterprise Products		Solar Solar	Centaur Centaur	Calibration Error	193CO	1/3/14 1/3/14	7:50 7:51	24.23 24.25	54.47 193.21	0.03 0.03
Enterprise Products		Solar	Centaur		10000	1/3/14	7:52	10.00	134.83	0.03
Enterprise Products		Solar	Centaur			1/3/14	7:53	0.57	95.44	0.03
Enterprise Products		Solar	Centaur	Calibration Error	95.3CO	1/3/14	7:54	0.51	95.73	0.02
Enterprise Products		Solar	Centaur			1/3/14	7:55	0.45	81.22	0.05
Enterprise Products Enterprise Products		Solar Solar	Centaur Centaur			1/3/14 1/3/14	7:56 7:57	2.69 3.30	47.66 47.74	0.04 0.03
Enterprise Products		Solar	Centaur			1/3/14	7:58	38.19	47.68	0.05
Enterprise Products		Solar	Centaur			1/3/14	7:59	41.29	1.88	0.01
Enterprise Products		Solar	Centaur	CE Test	NO2	1/3/14	8:00	42.18	0.10	0.02
Enterprise Products		Solar	Centaur			1/3/14	8:01	43.07	0.52	0.03
Enterprise Products		Solar	Centaur			1/3/14	8:02	43.06	0.48	0.02
Enterprise Products Enterprise Products		Solar Solar	Centaur Centaur			1/3/14 1/3/14	8:03 8:04	15.10 0.68	0.18 0.41	0.03 0.03
Enterprise Products		Solar	Centaur			1/3/14	8:05	0.00	0.41	-0.01
Enterprise Products		Solar	Centaur			1/3/14	8:06	0.47	0.25	0.02
Enterprise Products		Solar	Centaur			1/3/14	8:07	0.45	0.06	0.00
Enterprise Products		Solar	Centaur			1/3/14	8:08	0.45	0.03	0.01
Enterprise Products		Solar	Centaur			1/3/14	8:09	0.52	0.36	0.01
Enterprise Products		Solar	Centaur			1/3/14 1/3/14	8:10 8:11	0.61	0.36	0.02
Enterprise Products Enterprise Products		Solar Solar	Centaur Centaur			1/3/14	8:12	0.85 0.87	0.13 -0.14	0.03 0.06
Enterprise Products		Solar	Centaur			1/3/14	8:13	1.38	0.34	0.10
Enterprise Products		Solar	Centaur			1/3/14	8:14	1.43	0.30	0.14
Enterprise Products		Solar	Centaur			1/3/14	8:15	1.36	0.51	0.19
Enterprise Products		Solar	Centaur			1/3/14	8:16	-3.41	-4.24	0.04
Enterprise Products		Solar Solar	Centaur			1/3/14 1/3/14	8:17 8:18	-4.31	-4.96	0.07
Enterprise Products Enterprise Products		Solar	Centaur Centaur			1/3/14	8:19	1.10 1.40	0.42 0.88	0.44 0.57
Enterprise Products		Solar	Centaur			1/3/14	8:20	1.18	0.76	0.65
Enterprise Products		Solar	Centaur			1/3/14	8:21	1.45	1.13	0.77
Enterprise Products		Solar	Centaur			1/3/14	8:22	1.22	0.75	0.89
Enterprise Products		Solar	Centaur			1/3/14	8:23	0.80	0.43	0.98
Enterprise Products		Solar	Centaur Centaur			1/3/14 1/3/14	8:24 8:25	1.27	4.47 25.73	6.67 0 1 0
Enterprise Products Enterprise Products		Solar Solar	Centaur			1/3/14	8:26	1.74 1.75	26.08	8.18 8.33
Enterprise Products		Solar	Centaur			1/3/14	8:27	1.67	26.02	8.33
Enterprise Products		Solar	Centaur			1/3/14	8:28	1.68	25.67	8.38
Enterprise Products		Solar	Centaur			1/3/14	8:29	0.80	24.64	8.38
Enterprise Products		Solar	Centaur			1/3/14	8:30	1.79	25.60	8.49
Enterprise Products Enterprise Products		Solar Solar	Centaur Centaur			1/3/14 1/3/14	8:31 8:32	1.46 1.48	25.27 25.16	8.57 8.61
Enterprise Products		Solar	Centaur			1/3/14	8:33	1.40	25.21	8.68
Enterprise Products		Solar	Centaur			1/3/14	8:34	1.37	24.91	8.71
Enterprise Products		Solar	Centaur			1/3/14	8:35	1.44	24.83	8.79
Enterprise Products		Solar	Centaur			1/3/14	8:36	1.47	24.80	8.83
Enterprise Products		Solar	Centaur			1/3/14	8:37	1.49	24.50	8.92
Enterprise Products Enterprise Products		Solar Solar	Centaur Centaur			1/3/14 1/3/14	8:38 8:39	1.53 1.67	24.59 24.53	8.98 9.03
Enterprise Products		Solar	Centaur			1/3/14	8:40	1.07	24.55 23.95	9.03 9.11
Enterprise Products		Solar	Centaur			1/3/14	8:41	1.50	24.19	9.19
Enterprise Products		Solar	Centaur			1/3/14	8:42	1.67	24.38	9.30
Enterprise Products		Solar	Centaur			1/3/14	8:43	1.68	24.09	9.40
Enterprise Products		Solar	Centaur			1/3/14	8:44	1.73	24.08	9.47
Enterprise Products		Solar Solar	Centaur			1/3/14 1/3/14	8:45 8:46	1.79 1.71	24.04	9.52
Enterprise Products Enterprise Products		Solar	Centaur Centaur			1/3/14	0.40 8:47	1.76	23.62 23.54	9.64 9.74
		Colui	00.100				0.17		_0.01	J I

Testing by Nordon Corporation

Enterprise Products South Carlsbad CS	Solar	Centaur			1/3/14	8:48	1.78	23.47	9.86
Enterprise Products South Carlsbad CS	Solar	Centaur			1/3/14	8:49	1.81	23.06	9.93
Enterprise Products South Carlsbad CS	Solar	Centaur			1/3/14	8:50	1.64	22.77	10.00
-									
Enterprise Products South Carlsbad CS	Solar	Centaur			1/3/14	8:51	1.69	22.79	10.10
Enterprise Products South Carlsbad CS	Solar	Centaur			1/3/14	8:52	1.69	22.63	10.14
Enterprise Products South Carlsbad CS	Solar	Centaur			1/3/14	8:53	1.68	22.36	10.22
Enterprise Products South Carlsbad CS	Solar	Centaur			1/3/14	8:54	1.58	22.43	10.28
•		Centaur			1/3/14	8:55	1.43	21.99	10.37
Enterprise Products South Carlsbad CS	Solar								
Enterprise Products South Carlsbad CS	Solar	Centaur			1/3/14	8:56	1.77	21.78	9.54
Enterprise Products South Carlsbad CS	Solar	Centaur			1/3/14	8:57	1.14	1.82	0.04
Enterprise Products South Carlsbad CS	Solar	Centaur			1/3/14	8:58	0.90	1.12	0.02
Enterprise Products South Carlsbad CS	Solar	Centaur			1/3/14	8:59	1.47	0.02	10.73
•									
Enterprise Products South Carlsbad CS	Solar	Centaur			1/3/14	9:00	1.61	-0.52	10.94
Enterprise Products South Carlsbad CS	Solar	Centaur			1/3/14	9:01	14.47	47.84	0.10
Enterprise Products South Carlsbad CS	Solar	Centaur			1/3/14	9:02	46.49	95.85	0.02
Enterprise Products South Carlsbad CS	Solar	Centaur			1/3/14	9:03	39.52	53.59	20.65
Enterprise Products South Carlsbad CS	Solar	Centaur			1/3/14	9:04	2.02	2.08	20.90
-									
Enterprise Products South Carlsbad CS	Solar	Centaur			1/3/14	9:05	1.96	1.82	20.92
Enterprise Products South Carlsbad CS	Solar	Centaur			1/3/14	9:06	2.35	1.77	20.93
Enterprise Products South Carlsbad CS	Solar	Centaur			1/3/14	9:07	1.55	1.98	20.91
Enterprise Products South Carlsbad CS	Solar	Centaur			1/3/14	9:08	45.63	188.72	16.54
•					1/3/14				
Enterprise Products South Carlsbad CS	Solar	Centaur				9:17	4.15	-0.08	11.00
Enterprise Products South Carlsbad CS	Solar	Centaur	Bias Check	0NOx/0CO/10.99O2	1/3/14	9:18	2.74	-0.71	10.98
Enterprise Products South Carlsbad CS	Solar	Centaur			1/3/14	9:19	6.49	20.56	4.10
Enterprise Products South Carlsbad CS	Solar	Centaur	Bias Check	94.7NOx/193CO/0O2	1/3/14	9:20	92.63	192.18	0.05
Enterprise Products South Carlsbad CS	Solar	Centaur			1/3/14	9:21	86.04	152.17	13.07
•					1/3/14	9:22		17.67	
Enterprise Products South Carlsbad CS	Solar	Centaur					68.42		16.30
Enterprise Products South Carlsbad CS	Solar	Centaur	T1, P1	DH-010314.01	1/3/14	9:23	73.69	21.48	16.68
Enterprise Products South Carlsbad CS	Solar	Centaur	T1, P1	DH-010314.01	1/3/14	9:24	74.87	21.03	16.76
Enterprise Products South Carlsbad CS	Solar	Centaur	T1, P1	DH-010314.01	1/3/14	9:25	74.57	20.79	16.76
Enterprise Products South Carlsbad CS	Solar	Centaur	T1, P1	DH-010314.01	1/3/14	9:26	74.35	20.08	16.79
Enterprise Products South Carlsbad CS	Solar	Centaur	T1, P2	DH-010314.01	1/3/14	9:27	73.61	16.91	16.79
Enterprise Products South Carlsbad CS	Solar	Centaur	T1, P2	DH-010314.01	1/3/14	9:28	71.53	12.47	16.80
Enterprise Products South Carlsbad CS	Solar	Centaur	T1, P2	DH-010314.01	1/3/14	9:29	71.55	12.53	16.78
Enterprise Products South Carlsbad CS	Solar	Centaur	T1, P3	DH-010314.01	1/3/14	9:30	71.67	11.92	16.83
Enterprise Products South Carlsbad CS	Solar	Centaur	T1, P3	DH-010314.01	1/3/14	9:31	70.63	11.73	16.80
•									
Enterprise Products South Carlsbad CS	Solar	Centaur	T1, P3	DH-010314.01	1/3/14	9:32	69.26	11.35	16.81
Enterprise Products South Carlsbad CS	Solar	Centaur	T1, P4	DH-010314.01	1/3/14	9:33	70.91	11.30	16.78
Enterprise Products South Carlsbad CS	Solar	Centaur	T1, P4	DH-010314.01	1/3/14	9:34	72.54	12.14	16.81
Enterprise Products South Carlsbad CS	Solar	Centaur	T1, P4	DH-010314.01	1/3/14	9:35	72.63	12.57	16.84
Enterprise Products South Carlsbad CS	Solar	Centaur	T1, P5	DH-010314.01	1/3/14	9:36	72.20	12.62	16.84
•									
Enterprise Products South Carlsbad CS	Solar	Centaur	T1, P5	DH-010314.01	1/3/14	9:37	72.14	12.24	16.84
Enterprise Products South Carlsbad CS	Solar	Centaur	T1, P5	DH-010314.01	1/3/14	9:38	72.31	12.53	16.83
Enterprise Products South Carlsbad CS	Solar	Centaur	T1, P6	DH-010314.01	1/3/14	9:39	72.42	12.16	16.82
Enterprise Products South Carlsbad CS	Solar	Centaur	T1, P6	DH-010314.01	1/3/14	9:40	74.48	14.44	16.81
Enterprise Products South Carlsbad CS	Solar	Centaur	T1, P6	DH-010314.01	1/3/14	9:41	73.29	15.86	16.79
•									
Enterprise Products South Carlsbad CS	Solar	Centaur	T1, P6	DH-010314.01	1/3/14	9:42	73.43	16.39	16.82
Enterprise Products South Carlsbad CS	Solar	Centaur			1/3/14	9:43	70.14	12.09	18.89
Enterprise Products South Carlsbad CS	Solar	Centaur			1/3/14	9:44	71.29	19.84	16.82
Enterprise Products South Carlsbad CS	Solar	Centaur			1/3/14	9:45	72.99	29.72	16.82
Enterprise Products South Carlsbad CS	Solar	Centaur	T1, P7	DH-010314.01	1/3/14	9:46	71.34	25.55	16.80
Enterprise Products South Carlsbad CS	Solar	Centaur	T1, P7	DH-010314.01	1/3/14	9:47	72.35	21.74	16.81
-									
Enterprise Products South Carlsbad CS	Solar	Centaur	T1, P7	DH-010314.01	1/3/14	9:48	72.91	18.04	16.86
Enterprise Products South Carlsbad CS	Solar	Centaur	T1, P8	DH-010314.01	1/3/14	9:49	72.82	14.70	16.82
Enterprise Products South Carlsbad CS	Solar	Centaur	T1, P8	DH-010314.01	1/3/14	9:50	72.16	12.22	16.83
Enterprise Products South Carlsbad CS	Solar	Centaur	T1, P8	DH-010314.01	1/3/14	9:51	72.84	12.04	16.83
Enterprise Products South Carlsbad CS	Solar	Centaur	T1, P9	DH-010314.01	1/3/14	9:52	72.70	12.01	16.84
-									
Enterprise Products South Carlsbad CS	Solar	Centaur	T1, P9	DH-010314.01	1/3/14	9:53	72.17	11.98	16.81
Enterprise Products South Carlsbad CS	Solar	Centaur	T1, P9	DH-010314.01	1/3/14	9:54	71.87	11.92	16.82
Enterprise Products South Carlsbad CS	Solar	Centaur	T1, P10	DH-010314.01	1/3/14	9:55	72.13	11.81	16.83
Enterprise Products South Carlsbad CS	Solar	Centaur	T1, P10	DH-010314.01	1/3/14	9:56	72.34	11.67	16.82
Enterprise Products South Carlsbad CS	Solar	Centaur	T1, P10	DH-010314.01	1/3/14	9:57	69.00	8.15	16.60
-									
Enterprise Products South Carlsbad CS	Solar	Centaur	T1, P11	DH-010314.01	1/3/14	9:58	70.88	9.84	16.74
Enterprise Products South Carlsbad CS	Solar	Centaur	T1, P11	DH-010314.01	1/3/14	9:59	73.33	11.94	16.83
Enterprise Products South Carlsbad CS	Solar	Centaur	T1, P11	DH-010314.01	1/3/14	10:00	73.24	11.96	16.85
Enterprise Products South Carlsbad CS	Solar	Centaur	T1, P12	DH-010314.01	1/3/14	10:01	73.18	13.23	16.94
Enterprise Products South Carlsbad CS	Solar	Centaur	T1, P12	DH-010314.01	1/3/14	10:02	71.83	13.05	16.71
-									
Enterprise Products South Carlsbad CS	Solar	Centaur	T1, P12	DH-010314.01	1/3/14	10:03	74.03	16.96	16.85
Enterprise Products South Carlsbad CS	Solar	Centaur	T1, P12	DH-010314.01	1/3/14	10:04	73.42	17.59	16.85
				DH-010314.01 Average	S		72.48	14.33	16.81

DAQ Logs

Testing by Nordon Corporation

Enterprise Products	South Carlsbad CS	Solar	Centaur			1/3/14	10:05	70.42	22.30	10.94
Enterprise Products		Solar	Centaur	Bias Check	0NOx/0CO/10.99O2	1/3/14	10:06	2.72	-1.00	10.99
				Dias Offeck	01102/000/10.9902					
Enterprise Products		Solar	Centaur			1/3/14	10:07	-1.86	4.38	5.33
Enterprise Products	South Carlsbad CS	Solar	Centaur			1/3/14	10:08	85.09	183.30	-0.21
Enterprise Products	South Carlsbad CS	Solar	Centaur	Bias Check	94.7NOx/193CO/0O2	1/3/14	10:09	91.44	191.53	0.16
Enterprise Products		Solar	Centaur			1/3/14	10:10	79.65	166.97	5.05
Enterprise Products		Solar	Centaur			1/3/14	10:11	67.55	11.61	16.38
Enterprise Products	South Carlsbad CS	Solar	Centaur	T1	DH-010314.02	1/3/14	10:12	71.03	13.91	16.79
Enterprise Products	South Carlsbad CS	Solar	Centaur	T1	DH-010314.02	1/3/14	10:13	71.20	14.14	16.82
Enterprise Products	South Carlsbad CS	Solar	Centaur	T1	DH-010314.02	1/3/14	10:14	71.43	13.10	16.77
Enterprise Products				T1						
		Solar	Centaur		DH-010314.02	1/3/14	10:15	72.15	13.91	16.83
Enterprise Products	South Carlsbad CS	Solar	Centaur	T1	DH-010314.02	1/3/14	10:16	72.15	14.32	16.85
Enterprise Products	South Carlsbad CS	Solar	Centaur	T1	DH-010314.02	1/3/14	10:17	71.94	14.28	16.84
Enterprise Products	South Carlsbad CS	Solar	Centaur	T1	DH-010314.02	1/3/14	10:18	69.80	13.20	16.81
Enterprise Products		Solar	Centaur	T1	DH-010314.02	1/3/14	10:19	71.20	13.06	16.81
Enterprise Products		Solar	Centaur	T1	DH-010314.02	1/3/14	10:20	71.94	13.80	16.83
Enterprise Products	South Carlsbad CS	Solar	Centaur	T1	DH-010314.02	1/3/14	10:21	71.94	13.74	16.86
Enterprise Products	South Carlsbad CS	Solar	Centaur	T1	DH-010314.02	1/3/14	10:22	71.72	13.54	16.81
Enterprise Products		Solar	Centaur	T1	DH-010314.02	1/3/14	10:23	72.01	13.53	16.83
Enterprise Products		Solar	Centaur	T1	DH-010314.02	1/3/14	10:24	71.91	13.39	16.84
Enterprise Products	South Carlsbad CS	Solar	Centaur	T1	DH-010314.02	1/3/14	10:25	71.93	13.34	16.83
Enterprise Products	South Carlsbad CS	Solar	Centaur	T1	DH-010314.02	1/3/14	10:26	71.83	13.35	16.83
Enterprise Products		Solar	Centaur	T1	DH-010314.02	1/3/14	10:27	71.77	13.25	16.83
				T1						
Enterprise Products		Solar	Centaur		DH-010314.02	1/3/14	10:28	71.70	13.03	16.82
Enterprise Products	South Carlsbad CS	Solar	Centaur	T1	DH-010314.02	1/3/14	10:29	71.96	13.13	16.82
Enterprise Products	South Carlsbad CS	Solar	Centaur	T1	DH-010314.02	1/3/14	10:30	71.72	13.07	16.83
Enterprise Products	South Carlsbad CS	Solar	Centaur	T1	DH-010314.02	1/3/14	10:31	70.62	12.93	16.82
Enterprise Products		Solar	Centaur	T1	DH-010314.02	1/3/14	10:32	69.81	10.57	16.71
Enterprise Products	South Carlsbad CS	Solar	Centaur	T1	DH-010314.02	1/3/14	10:33	72.48	12.90	16.83
Enterprise Products	South Carlsbad CS	Solar	Centaur	T1	DH-010314.02	1/3/14	10:34	72.42	12.60	16.84
Enterprise Products	South Carlsbad CS	Solar	Centaur	T1	DH-010314.02	1/3/14	10:35	72.19	12.46	16.83
Enterprise Products		Solar	Centaur	T1	DH-010314.02	1/3/14	10:36	72.21	12.67	16.86
Enterprise Products		Solar	Centaur	T1	DH-010314.02	1/3/14	10:37	72.18	12.38	16.85
Enterprise Products	South Carlsbad CS	Solar	Centaur	T1	DH-010314.02	1/3/14	10:38	72.19	12.43	16.83
Enternrice Producte	Couth Corlahad CC	~ '								40.04
	South Carlsbad CS	Solar	Centaur	T1	DH-010314.02	1/3/14	10:39	72.17	12.52	16.84
Enterprise Products	South Carlsbad CS	Solar	Centaur	T1	DH-010314.02	1/3/14	10:40	72.27	12.26	16.86
Enterprise Products S Enterprise Products S	South Carlsbad CS South Carlsbad CS	Solar Solar	Centaur Centaur	T1 T1	DH-010314.02 DH-010314.02	1/3/14 1/3/14	10:40 10:41	72.27 71.75	12.26 11.87	16.86 16.83
Enterprise Products	South Carlsbad CS South Carlsbad CS	Solar	Centaur	T1	DH-010314.02	1/3/14	10:40	72.27 71.75 70.91	12.26 11.87 11.17	16.86 16.83 16.77
Enterprise Products S Enterprise Products S	South Carlsbad CS South Carlsbad CS	Solar Solar	Centaur Centaur	T1 T1 T1	DH-010314.02 DH-010314.02	1/3/14 1/3/14 1/3/14	10:40 10:41	72.27 71.75	12.26 11.87	16.86 16.83
Enterprise Products S Enterprise Products S	South Carlsbad CS South Carlsbad CS South Carlsbad CS	Solar Solar	Centaur Centaur	T1 T1 T1	DH-010314.02 DH-010314.02 DH-010314.02	1/3/14 1/3/14 1/3/14	10:40 10:41	72.27 71.75 70.91 71.69	12.26 11.87 11.17 13.03	16.86 16.83 16.77
Enterprise Products S Enterprise Products S Enterprise Products S Enterprise Products S	South Carlsbad CS South Carlsbad CS South Carlsbad CS South Carlsbad CS	Solar Solar Solar Solar	Centaur Centaur Centaur Centaur	T1 T1 T1	DH-010314.02 DH-010314.02 DH-010314.02 DH-010314.02 DH-010314.02 Average	1/3/14 1/3/14 1/3/14 s 1/3/14	10:40 10:41 10:42 10:43	72.27 71.75 70.91 71.69 36.04	12.26 11.87 11.17 13.03 10.05	16.86 16.83 16.77 16.82 10.66
Enterprise Products S Enterprise Products S Enterprise Products S Enterprise Products S Enterprise Products S	South Carlsbad CS South Carlsbad CS South Carlsbad CS South Carlsbad CS South Carlsbad CS	Solar Solar Solar Solar Solar	Centaur Centaur Centaur Centaur Centaur	T1 T1 T1	DH-010314.02 DH-010314.02 DH-010314.02 DH-010314.02 DH-010314.02 Average	1/3/14 1/3/14 1/3/14 s 1/3/14 1/3/14	10:40 10:41 10:42 10:43 10:44	72.27 71.75 70.91 71.69 36.04 1.70	12.26 11.87 11.17 13.03 10.05 -0.96	16.86 16.83 16.77 16.82 10.66 10.99
Enterprise Products S Enterprise Products S Enterprise Products S Enterprise Products S Enterprise Products S Enterprise Products S	South Carlsbad CS South Carlsbad CS South Carlsbad CS South Carlsbad CS South Carlsbad CS South Carlsbad CS South Carlsbad CS	Solar Solar Solar Solar Solar Solar	Centaur Centaur Centaur Centaur Centaur Centaur	T1 T1 T1 Bias Check	DH-010314.02 DH-010314.02 DH-010314.02 DH-010314.02 Average 0NOx/0CO/10.99O2	1/3/14 1/3/14 1/3/14 s 1/3/14 1/3/14 1/3/14	10:40 10:41 10:42 10:43 10:44 10:45	72.27 71.75 70.91 71.69 36.04 1.70 31.08	12.26 11.87 11.17 13.03 10.05 -0.96 84.95	16.86 16.83 16.77 16.82 10.66 10.99 -0.14
Enterprise Products S Enterprise Products S Enterprise Products S Enterprise Products S Enterprise Products S Enterprise Products S Enterprise Products S	South Carlsbad CS South Carlsbad CS	Solar Solar Solar Solar Solar Solar Solar	Centaur Centaur Centaur Centaur Centaur Centaur Centaur	T1 T1 T1	DH-010314.02 DH-010314.02 DH-010314.02 DH-010314.02 DH-010314.02 Average	1/3/14 1/3/14 1/3/14 s 1/3/14 1/3/14 1/3/14 1/3/14	10:40 10:41 10:42 10:43 10:44 10:45 10:46	72.27 71.75 70.91 71.69 36.04 1.70 31.08 90.59	12.26 11.87 11.17 13.03 10.05 -0.96 84.95 191.32	16.86 16.83 16.77 16.82 10.66 10.99 -0.14 0.18
Enterprise Products S Enterprise Products S Enterprise Products S Enterprise Products S Enterprise Products S Enterprise Products S	South Carlsbad CS South Carlsbad CS	Solar Solar Solar Solar Solar Solar	Centaur Centaur Centaur Centaur Centaur Centaur	T1 T1 T1 Bias Check	DH-010314.02 DH-010314.02 DH-010314.02 DH-010314.02 Average 0NOx/0CO/10.99O2	1/3/14 1/3/14 1/3/14 s 1/3/14 1/3/14 1/3/14	10:40 10:41 10:42 10:43 10:44 10:45	72.27 71.75 70.91 71.69 36.04 1.70 31.08	12.26 11.87 11.17 13.03 10.05 -0.96 84.95	16.86 16.83 16.77 16.82 10.66 10.99 -0.14
Enterprise Products S Enterprise Products S	South Carlsbad CS South Carlsbad CS	Solar Solar Solar Solar Solar Solar Solar Solar	Centaur Centaur Centaur Centaur Centaur Centaur Centaur Centaur	T1 T1 T1 Bias Check	DH-010314.02 DH-010314.02 DH-010314.02 DH-010314.02 Average 0NOx/0CO/10.99O2	1/3/14 1/3/14 1/3/14 s 1/3/14 1/3/14 1/3/14 1/3/14 1/3/14	10:40 10:41 10:42 10:43 10:44 10:45 10:46 10:47	72.27 71.75 70.91 71.69 36.04 1.70 31.08 90.59 90.76	12.26 11.87 11.17 13.03 10.05 -0.96 84.95 191.32 124.36	16.86 16.83 16.77 16.82 10.66 10.99 -0.14 0.18 16.57
Enterprise Products S Enterprise Products S	South Carlsbad CS South Carlsbad CS	Solar Solar Solar Solar Solar Solar Solar Solar Solar	Centaur Centaur Centaur Centaur Centaur Centaur Centaur Centaur Centaur	T1 T1 T1 Bias Check Bias Check	DH-010314.02 DH-010314.02 DH-010314.02 DH-010314.02 Average 0NOx/0CO/10.99O2 94.7NOx/193CO/0O2	1/3/14 1/3/14 1/3/14 s 1/3/14 1/3/14 1/3/14 1/3/14 1/3/14	10:40 10:41 10:42 10:43 10:44 10:45 10:46 10:47 10:48	72.27 71.75 70.91 71.69 36.04 1.70 31.08 90.59 90.76 72.21	12.26 11.87 11.17 13.03 10.05 -0.96 84.95 191.32 124.36 11.95	16.86 16.83 16.77 16.82 10.66 10.99 -0.14 0.18 16.57 16.79
Enterprise Products S Enterprise Products S	South Carlsbad CS South Carlsbad CS	Solar Solar Solar Solar Solar Solar Solar Solar Solar Solar	Centaur Centaur Centaur Centaur Centaur Centaur Centaur Centaur Centaur Centaur	T1 T1 T1 Bias Check Bias Check T1	DH-010314.02 DH-010314.02 DH-010314.02 DH-010314.02 Average 0NOx/0CO/10.99O2 94.7NOx/193CO/0O2 DH-010314.03	1/3/14 1/3/14 1/3/14 s 1/3/14 1/3/14 1/3/14 1/3/14 1/3/14 1/3/14	10:40 10:41 10:42 10:43 10:44 10:45 10:46 10:47 10:48 10:49	72.27 71.75 70.91 71.69 36.04 1.70 31.08 90.59 90.76 72.21 72.12	12.26 11.87 11.17 13.03 10.05 -0.96 84.95 191.32 124.36 11.95 12.12	16.86 16.83 16.77 16.82 10.66 10.99 -0.14 0.18 16.57 16.79 16.84
Enterprise Products S Enterprise Products S	South Carlsbad CS South Carlsbad CS	Solar Solar Solar Solar Solar Solar Solar Solar Solar Solar	Centaur Centaur Centaur Centaur Centaur Centaur Centaur Centaur Centaur Centaur	T1 T1 T1 Bias Check Bias Check T1 T1	DH-010314.02 DH-010314.02 DH-010314.02 DH-010314.02 Average 0NOx/0CO/10.99O2 94.7NOx/193CO/0O2 DH-010314.03 DH-010314.03	1/3/14 1/3/14 1/3/14 s 1/3/14 1/3/14 1/3/14 1/3/14 1/3/14 1/3/14 1/3/14 1/3/14	10:40 10:41 10:42 10:43 10:44 10:45 10:46 10:47 10:48 10:49 10:50	72.27 71.75 70.91 71.69 36.04 1.70 31.08 90.59 90.76 72.21 72.12 72.37	12.26 11.87 11.17 13.03 10.05 -0.96 84.95 191.32 124.36 11.95 12.12 11.47	16.86 16.83 16.77 16.82 10.66 10.99 -0.14 0.18 16.57 16.79 16.84 16.83
Enterprise Products S Enterprise Products S	South Carlsbad CS South Carlsbad CS	Solar Solar Solar Solar Solar Solar Solar Solar Solar Solar Solar Solar	Centaur Centaur Centaur Centaur Centaur Centaur Centaur Centaur Centaur Centaur Centaur	T1 T1 T1 Bias Check Bias Check T1 T1 T1 T1	DH-010314.02 DH-010314.02 DH-010314.02 DH-010314.02 Average 0NOx/0CO/10.99O2 94.7NOx/193CO/0O2 DH-010314.03 DH-010314.03 DH-010314.03	1/3/14 1/3/14 1/3/14 s 1/3/14 1/3/14 1/3/14 1/3/14 1/3/14 1/3/14 1/3/14 1/3/14 1/3/14	10:40 10:41 10:42 10:43 10:44 10:45 10:46 10:47 10:48 10:49 10:50 10:51	72.27 71.75 70.91 71.69 36.04 1.70 31.08 90.76 72.21 72.12 72.37 72.38	12.26 11.87 11.17 13.03 10.05 -0.96 84.95 191.32 124.36 11.95 12.12 11.47 11.70	16.86 16.83 16.77 16.82 10.66 10.99 -0.14 0.18 16.57 16.79 16.84
Enterprise Products S Enterprise Products S	South Carlsbad CS South Carlsbad CS	Solar Solar Solar Solar Solar Solar Solar Solar Solar Solar	Centaur Centaur Centaur Centaur Centaur Centaur Centaur Centaur Centaur Centaur	T1 T1 T1 Bias Check Bias Check T1 T1 T1 T1 T1	DH-010314.02 DH-010314.02 DH-010314.02 DH-010314.02 Average 0NOx/0CO/10.99O2 94.7NOx/193CO/0O2 DH-010314.03 DH-010314.03	1/3/14 1/3/14 1/3/14 s 1/3/14 1/3/14 1/3/14 1/3/14 1/3/14 1/3/14 1/3/14 1/3/14	10:40 10:41 10:42 10:43 10:44 10:45 10:46 10:47 10:48 10:49 10:50	72.27 71.75 70.91 71.69 36.04 1.70 31.08 90.59 90.76 72.21 72.12 72.37	12.26 11.87 11.17 13.03 10.05 -0.96 84.95 191.32 124.36 11.95 12.12 11.47	16.86 16.83 16.77 16.82 10.66 10.99 -0.14 0.18 16.57 16.79 16.84 16.83
Enterprise Products S Enterprise Products S	South Carlsbad CS South Carlsbad CS	Solar Solar Solar Solar Solar Solar Solar Solar Solar Solar Solar Solar	Centaur Centaur Centaur Centaur Centaur Centaur Centaur Centaur Centaur Centaur Centaur	T1 T1 T1 Bias Check Bias Check T1 T1 T1 T1	DH-010314.02 DH-010314.02 DH-010314.02 DH-010314.02 Average 0NOx/0CO/10.99O2 94.7NOx/193CO/0O2 DH-010314.03 DH-010314.03 DH-010314.03	1/3/14 1/3/14 1/3/14 s 1/3/14 1/3/14 1/3/14 1/3/14 1/3/14 1/3/14 1/3/14 1/3/14 1/3/14	10:40 10:41 10:42 10:43 10:44 10:45 10:46 10:47 10:48 10:49 10:50 10:51	72.27 71.75 70.91 71.69 36.04 1.70 31.08 90.76 72.21 72.12 72.37 72.38	12.26 11.87 11.17 13.03 10.05 -0.96 84.95 191.32 124.36 11.95 12.12 11.47 11.70	16.86 16.83 16.77 16.82 10.66 10.99 -0.14 0.18 16.57 16.79 16.84 16.83 16.85
Enterprise Products S Enterprise Products S	South Carlsbad CS South Carlsbad CS	Solar Solar Solar Solar Solar Solar Solar Solar Solar Solar Solar Solar Solar	Centaur Centaur Centaur Centaur Centaur Centaur Centaur Centaur Centaur Centaur Centaur Centaur Centaur Centaur	T1 T1 T1 Bias Check Bias Check T1 T1 T1 T1 T1 T1 T1 T1	DH-010314.02 DH-010314.02 DH-010314.02 DH-010314.02 Average 0NOx/0CO/10.99O2 94.7NOx/193CO/0O2 DH-010314.03 DH-010314.03 DH-010314.03 DH-010314.03 DH-010314.03	1/3/14 1/3/14 1/3/14 s 1/3/14 1/3/14 1/3/14 1/3/14 1/3/14 1/3/14 1/3/14 1/3/14 1/3/14 1/3/14	10:40 10:41 10:42 10:43 10:44 10:45 10:46 10:47 10:48 10:49 10:50 10:51 10:52 10:53	72.27 71.75 70.91 71.69 36.04 1.70 31.08 90.59 90.76 72.21 72.37 72.38 72.39 72.37	12.26 11.87 11.17 13.03 10.05 -0.96 84.95 191.32 124.36 11.95 12.12 11.47 11.70 11.50 11.27	16.86 16.83 16.77 16.82 10.66 10.99 -0.14 0.18 16.57 16.79 16.84 16.83 16.85 16.88 16.86
Enterprise Products S Enterprise Products S	South Carlsbad CS South Carlsbad CS	Solar Solar Solar Solar Solar Solar Solar Solar Solar Solar Solar Solar Solar Solar	Centaur Centaur Centaur Centaur Centaur Centaur Centaur Centaur Centaur Centaur Centaur Centaur Centaur Centaur Centaur	T1 T1 T1 Bias Check Bias Check T1 T1 T1 T1 T1 T1 T1 T1 T1	DH-010314.02 DH-010314.02 DH-010314.02 DH-010314.02 Average 0NOx/0CO/10.99O2 94.7NOx/193CO/0O2 DH-010314.03 DH-010314.03 DH-010314.03 DH-010314.03 DH-010314.03 DH-010314.03	1/3/14 1/3/14 1/3/14 s 1/3/14 1/3/14 1/3/14 1/3/14 1/3/14 1/3/14 1/3/14 1/3/14 1/3/14 1/3/14 1/3/14 1/3/14	10:40 10:41 10:42 10:43 10:44 10:45 10:46 10:47 10:48 10:50 10:51 10:52 10:53 10:54	72.27 71.75 70.91 71.69 36.04 1.70 31.08 90.59 90.76 72.21 72.21 72.37 72.38 72.39 72.37 72.33	12.26 11.87 11.17 13.03 10.05 -0.96 84.95 191.32 124.36 11.95 12.12 11.47 11.70 11.50 11.27 11.46	16.86 16.83 16.77 16.82 10.66 10.99 -0.14 0.18 16.57 16.79 16.84 16.83 16.85 16.88 16.86 16.85
Enterprise Products S Enterprise Products S	South Carlsbad CS South Carlsbad CS	Solar Solar Solar Solar Solar Solar Solar Solar Solar Solar Solar Solar Solar Solar Solar	Centaur Centaur Centaur Centaur Centaur Centaur Centaur Centaur Centaur Centaur Centaur Centaur Centaur Centaur Centaur Centaur	T1 T1 T1 Bias Check Bias Check T1 T1 T1 T1 T1 T1 T1 T1 T1 T1	DH-010314.02 DH-010314.02 DH-010314.02 DH-010314.02 Average 0NOx/0CO/10.9902 94.7NOx/193CO/0O2 DH-010314.03 DH-010314.03 DH-010314.03 DH-010314.03 DH-010314.03 DH-010314.03 DH-010314.03	1/3/14 1/3/14 1/3/14 s 1/3/14 1/3/14 1/3/14 1/3/14 1/3/14 1/3/14 1/3/14 1/3/14 1/3/14 1/3/14 1/3/14 1/3/14	10:40 10:41 10:42 10:43 10:44 10:45 10:46 10:47 10:48 10:50 10:51 10:52 10:53 10:54 10:55	72.27 71.75 70.91 71.69 36.04 1.70 31.08 90.59 90.76 72.21 72.21 72.37 72.38 72.39 72.37 72.33 72.30	12.26 11.87 11.17 13.03 10.05 -0.96 84.95 191.32 124.36 11.95 12.12 11.47 11.70 11.50 11.27 11.46 11.44	16.86 16.83 16.77 16.82 10.66 10.99 -0.14 0.18 16.57 16.79 16.84 16.83 16.85 16.88 16.85 16.85
Enterprise Products S Enterprise Products S	South Carlsbad CS South Carlsbad CS	Solar Solar Solar Solar Solar Solar Solar Solar Solar Solar Solar Solar Solar Solar	Centaur Centaur Centaur Centaur Centaur Centaur Centaur Centaur Centaur Centaur Centaur Centaur Centaur Centaur Centaur	T1 T1 T1 Bias Check Bias Check T1 T1 T1 T1 T1 T1 T1 T1 T1	DH-010314.02 DH-010314.02 DH-010314.02 DH-010314.02 Average 0NOx/0CO/10.99O2 94.7NOx/193CO/0O2 DH-010314.03 DH-010314.03 DH-010314.03 DH-010314.03 DH-010314.03 DH-010314.03	1/3/14 1/3/14 1/3/14 s 1/3/14 1/3/14 1/3/14 1/3/14 1/3/14 1/3/14 1/3/14 1/3/14 1/3/14 1/3/14 1/3/14 1/3/14	10:40 10:41 10:42 10:43 10:44 10:45 10:46 10:47 10:48 10:50 10:51 10:52 10:53 10:54	72.27 71.75 70.91 71.69 36.04 1.70 31.08 90.59 90.76 72.21 72.21 72.37 72.38 72.39 72.37 72.33	12.26 11.87 11.17 13.03 10.05 -0.96 84.95 191.32 124.36 11.95 12.12 11.47 11.70 11.50 11.27 11.46	16.86 16.83 16.77 16.82 10.66 10.99 -0.14 0.18 16.57 16.79 16.84 16.83 16.85 16.88 16.86 16.85
Enterprise Products S Enterprise Products S	South Carlsbad CS South Carlsbad CS	Solar Solar Solar Solar Solar Solar Solar Solar Solar Solar Solar Solar Solar Solar Solar	Centaur Centaur Centaur Centaur Centaur Centaur Centaur Centaur Centaur Centaur Centaur Centaur Centaur Centaur Centaur Centaur	T1 T1 T1 Bias Check Bias Check T1 T1 T1 T1 T1 T1 T1 T1 T1 T1	DH-010314.02 DH-010314.02 DH-010314.02 DH-010314.02 Average 0NOx/0CO/10.9902 94.7NOx/193CO/0O2 DH-010314.03 DH-010314.03 DH-010314.03 DH-010314.03 DH-010314.03 DH-010314.03 DH-010314.03	1/3/14 1/3/14 1/3/14 s 1/3/14 1/3/14 1/3/14 1/3/14 1/3/14 1/3/14 1/3/14 1/3/14 1/3/14 1/3/14 1/3/14 1/3/14	10:40 10:41 10:42 10:43 10:44 10:45 10:46 10:47 10:48 10:50 10:51 10:52 10:53 10:54 10:55	72.27 71.75 70.91 71.69 36.04 1.70 31.08 90.59 90.76 72.21 72.21 72.37 72.38 72.39 72.37 72.33 72.30	12.26 11.87 11.17 13.03 10.05 -0.96 84.95 191.32 124.36 11.95 12.12 11.47 11.70 11.50 11.27 11.46 11.44	16.86 16.83 16.77 16.82 10.66 10.99 -0.14 0.18 16.57 16.79 16.84 16.83 16.85 16.88 16.85 16.85
Enterprise Products S Enterprise Products S	South Carlsbad CS South Carlsbad CS	Solar Solar Solar Solar Solar Solar Solar Solar Solar Solar Solar Solar Solar Solar Solar	Centaur Centaur Centaur Centaur Centaur Centaur Centaur Centaur Centaur Centaur Centaur Centaur Centaur Centaur Centaur Centaur Centaur Centaur Centaur	T1 T1 T1 Bias Check Bias Check T1 T1 T1 T1 T1 T1 T1 T1 T1 T1 T1 T1 T1	DH-010314.02 DH-010314.02 DH-010314.02 DH-010314.02 Average 0NOx/0CO/10.99O2 94.7NOx/193CO/0O2 DH-010314.03 DH-010314.03 DH-010314.03 DH-010314.03 DH-010314.03 DH-010314.03 DH-010314.03 DH-010314.03 DH-010314.03 DH-010314.03	1/3/14 1/3/14 1/3/14 s 1/3/14 1/3/14 1/3/14 1/3/14 1/3/14 1/3/14 1/3/14 1/3/14 1/3/14 1/3/14 1/3/14 1/3/14 1/3/14 1/3/14	10:40 10:41 10:42 10:43 10:44 10:45 10:46 10:47 10:48 10:49 10:50 10:51 10:52 10:53 10:54 10:55 10:56 10:57	72.27 71.75 70.91 71.69 36.04 1.70 31.08 90.76 72.21 72.32 72.37 72.38 72.39 72.37 72.33 72.30 72.39 72.30	12.26 11.87 11.17 13.03 10.05 -0.96 84.95 191.32 124.36 11.95 12.12 11.47 11.70 11.50 11.27 11.46 11.44 11.22 11.32	$\begin{array}{c} 16.86\\ 16.83\\ 16.77\\ \textbf{16.82}\\ 10.66\\ 10.99\\ -0.14\\ 0.18\\ 16.57\\ 16.79\\ 16.84\\ 16.83\\ 16.85\\ 16.88\\ 16.85\\ 16.85\\ 16.88\\ 16.85\\ 16.88\\ 16.87\\ \end{array}$
Enterprise Products S Enterprise Products S	South Carlsbad CS South Carlsbad CS	Solar Solar Solar Solar Solar Solar Solar Solar Solar Solar Solar Solar Solar Solar Solar Solar	Centaur Centaur	T1 T1 T1 Bias Check Bias Check T1 T1 T1 T1 T1 T1 T1 T1 T1 T1 T1 T1 T1	DH-010314.02 DH-010314.02 DH-010314.02 DH-010314.02 Average 0NOx/0CO/10.99O2 94.7NOx/193CO/0O2 DH-010314.03 DH-010314.03 DH-010314.03 DH-010314.03 DH-010314.03 DH-010314.03 DH-010314.03 DH-010314.03 DH-010314.03 DH-010314.03 DH-010314.03	1/3/14 1/3/14 1/3/14 s 1/3/14 1/3/14 1/3/14 1/3/14 1/3/14 1/3/14 1/3/14 1/3/14 1/3/14 1/3/14 1/3/14 1/3/14 1/3/14 1/3/14 1/3/14	10:40 10:41 10:42 10:43 10:44 10:45 10:46 10:47 10:48 10:49 10:50 10:51 10:52 10:53 10:54 10:55 10:56 10:57 10:58	72.27 71.75 70.91 71.69 36.04 1.70 31.08 90.76 72.21 72.32 72.37 72.38 72.39 72.37 72.33 72.30 72.39 72.36 72.27	12.26 11.87 11.17 13.03 10.05 -0.96 84.95 191.32 124.36 11.95 12.12 11.47 11.70 11.50 11.27 11.46 11.44 11.22 11.32 11.11	16.86 16.83 16.77 16.82 10.66 10.99 -0.18 16.57 16.79 16.84 16.83 16.85 16.88 16.85 16.85 16.85 16.85 16.85
Enterprise Products S Enterprise Products S	South Carlsbad CS South Carlsbad CS	Solar Solar Solar Solar Solar Solar Solar Solar Solar Solar Solar Solar Solar Solar Solar Solar Solar	Centaur Centaur	T1 T1 T1 Bias Check Bias Check T1 T1 T1 T1 T1 T1 T1 T1 T1 T1 T1 T1 T1	DH-010314.02 DH-010314.02 DH-010314.02 DH-010314.02 Average 0NOx/0CO/10.99O2 94.7NOx/193CO/0O2 DH-010314.03 DH-010314.03 DH-010314.03 DH-010314.03 DH-010314.03 DH-010314.03 DH-010314.03 DH-010314.03 DH-010314.03 DH-010314.03 DH-010314.03 DH-010314.03	1/3/14 1/3/14 1/3/14 s 1/3/14 1/3/14 1/3/14 1/3/14 1/3/14 1/3/14 1/3/14 1/3/14 1/3/14 1/3/14 1/3/14 1/3/14 1/3/14 1/3/14 1/3/14 1/3/14	10:40 10:41 10:42 10:43 10:44 10:45 10:46 10:47 10:48 10:49 10:50 10:51 10:52 10:53 10:54 10:55 10:56 10:57 10:58 10:59	72.27 71.75 70.91 71.69 36.04 1.70 31.08 90.76 72.21 72.32 72.33 72.33 72.33 72.33 72.30 72.30 72.36 72.27 72.28	12.26 11.87 11.17 13.03 10.05 -0.96 84.95 191.32 124.36 11.95 12.12 11.47 11.70 11.50 11.27 11.46 11.44 11.22 11.32 11.11 11.18	16.86 16.83 16.77 16.82 10.66 10.99 -0.14 0.18 16.57 16.79 16.84 16.83 16.85 16.88 16.85 16.85 16.85 16.85 16.85 16.85 16.85
Enterprise Products S Enterprise Products S	South Carlsbad CS South Carlsbad CS	Solar Solar Solar Solar Solar Solar Solar Solar Solar Solar Solar Solar Solar Solar Solar Solar Solar Solar	Centaur Centaur	T1 T1 T1 Bias Check Bias Check T1 T1 T1 T1 T1 T1 T1 T1 T1 T1 T1 T1 T1	DH-010314.02 DH-010314.02 DH-010314.02 DH-010314.02 Average 0NOx/0CO/10.99O2 94.7NOx/193CO/0O2 DH-010314.03 DH-010314.03 DH-010314.03 DH-010314.03 DH-010314.03 DH-010314.03 DH-010314.03 DH-010314.03 DH-010314.03 DH-010314.03 DH-010314.03 DH-010314.03 DH-010314.03 DH-010314.03 DH-010314.03	1/3/14 1/3/14 1/3/14 s 1/3/14 1/3/14 1/3/14 1/3/14 1/3/14 1/3/14 1/3/14 1/3/14 1/3/14 1/3/14 1/3/14 1/3/14 1/3/14 1/3/14 1/3/14 1/3/14 1/3/14	10:40 10:41 10:42 10:43 10:44 10:45 10:46 10:47 10:48 10:49 10:50 10:51 10:52 10:53 10:55 10:55 10:55 10:55 10:55 10:59 11:00	72.27 71.75 70.91 71.69 36.04 1.70 31.08 90.76 72.21 72.32 72.37 72.38 72.39 72.37 72.33 72.30 72.30 72.30 72.36 72.27 72.28 72.37	12.26 11.87 11.17 13.03 10.05 -0.96 84.95 191.32 124.36 11.95 12.12 11.47 11.70 11.50 11.27 11.46 11.44 11.22 11.32 11.11 11.18 11.18	16.86 16.83 16.77 16.82 10.66 10.99 -0.14 0.18 16.57 16.79 16.84 16.83 16.85 16.88 16.85 16.85 16.85 16.85 16.85 16.85
Enterprise Products S Enterprise Products S	South Carlsbad CS South Carlsbad CS	Solar Solar Solar Solar Solar Solar Solar Solar Solar Solar Solar Solar Solar Solar Solar Solar Solar	Centaur Centaur	T1 T1 T1 Bias Check Bias Check T1 T1 T1 T1 T1 T1 T1 T1 T1 T1 T1 T1 T1	DH-010314.02 DH-010314.02 DH-010314.02 DH-010314.02 Average 0NOx/0CO/10.99O2 94.7NOx/193CO/0O2 DH-010314.03 DH-010314.03 DH-010314.03 DH-010314.03 DH-010314.03 DH-010314.03 DH-010314.03 DH-010314.03 DH-010314.03 DH-010314.03 DH-010314.03 DH-010314.03	1/3/14 1/3/14 1/3/14 s 1/3/14 1/3/14 1/3/14 1/3/14 1/3/14 1/3/14 1/3/14 1/3/14 1/3/14 1/3/14 1/3/14 1/3/14 1/3/14 1/3/14 1/3/14 1/3/14	10:40 10:41 10:42 10:43 10:44 10:45 10:46 10:47 10:48 10:49 10:50 10:51 10:52 10:53 10:54 10:55 10:56 10:57 10:58 10:59	72.27 71.75 70.91 71.69 36.04 1.70 31.08 90.76 72.21 72.32 72.33 72.33 72.33 72.33 72.30 72.30 72.36 72.27 72.28	12.26 11.87 11.17 13.03 10.05 -0.96 84.95 191.32 124.36 11.95 12.12 11.47 11.70 11.50 11.27 11.46 11.44 11.22 11.32 11.11 11.18	16.86 16.83 16.77 16.82 10.66 10.99 -0.14 0.18 16.57 16.79 16.84 16.83 16.85 16.88 16.85 16.85 16.85 16.85 16.85 16.85 16.85
Enterprise Products S Enterprise Products S	South Carlsbad CS South Carlsbad CS	Solar Solar Solar Solar Solar Solar Solar Solar Solar Solar Solar Solar Solar Solar Solar Solar Solar Solar	Centaur Centaur	T1 T1 T1 Bias Check Bias Check T1 T1 T1 T1 T1 T1 T1 T1 T1 T1 T1 T1 T1	DH-010314.02 DH-010314.02 DH-010314.02 DH-010314.02 Average 0NOx/0CO/10.99O2 94.7NOx/193CO/0O2 DH-010314.03 DH-010314.03 DH-010314.03 DH-010314.03 DH-010314.03 DH-010314.03 DH-010314.03 DH-010314.03 DH-010314.03 DH-010314.03 DH-010314.03 DH-010314.03 DH-010314.03 DH-010314.03 DH-010314.03	1/3/14 1/3/14 1/3/14 s 1/3/14 1/3/14 1/3/14 1/3/14 1/3/14 1/3/14 1/3/14 1/3/14 1/3/14 1/3/14 1/3/14 1/3/14 1/3/14 1/3/14 1/3/14 1/3/14 1/3/14	10:40 10:41 10:42 10:43 10:44 10:45 10:46 10:47 10:48 10:49 10:50 10:51 10:52 10:53 10:55 10:55 10:55 10:55 10:57 10:58 10:59 11:00	72.27 71.75 70.91 71.69 36.04 1.70 31.08 90.76 72.21 72.32 72.37 72.38 72.39 72.37 72.33 72.30 72.30 72.30 72.36 72.27 72.28 72.37	12.26 11.87 11.17 13.03 10.05 -0.96 84.95 191.32 124.36 11.95 12.12 11.47 11.70 11.50 11.27 11.46 11.44 11.22 11.32 11.11 11.18 11.18	16.86 16.83 16.77 16.82 10.66 10.99 -0.14 0.18 16.57 16.79 16.84 16.83 16.85 16.88 16.85 16.85 16.85 16.85 16.85 16.85
Enterprise Products S Enterprise Products S	South Carlsbad CS South Carlsbad CS	Solar Solar Solar Solar Solar Solar Solar Solar Solar Solar Solar Solar Solar Solar Solar Solar Solar Solar Solar	Centaur Centaur	T1 T1 T1 Bias Check Bias Check T1 T1 T1 T1 T1 T1 T1 T1 T1 T1 T1 T1 T1	DH-010314.02 DH-010314.02 DH-010314.02 DH-010314.02 Average 0NOx/0CO/10.99O2 94.7NOx/193CO/0O2 0H-010314.03 DH-010314.03 DH-010314.03 DH-010314.03 DH-010314.03 DH-010314.03 DH-010314.03 DH-010314.03 DH-010314.03 DH-010314.03 DH-010314.03 DH-010314.03 DH-010314.03 DH-010314.03 DH-010314.03 DH-010314.03 DH-010314.03 DH-010314.03 DH-010314.03	1/3/14 1/3/14 1/3/14 s 1/3/14 1/3/14 1/3/14 1/3/14 1/3/14 1/3/14 1/3/14 1/3/14 1/3/14 1/3/14 1/3/14 1/3/14 1/3/14 1/3/14 1/3/14 1/3/14 1/3/14	10:40 10:41 10:42 10:43 10:44 10:45 10:46 10:47 10:48 10:50 10:51 10:52 10:53 10:54 10:55 10:56 10:57 10:58 10:59 11:00 11:01 11:02	72.27 71.75 70.91 71.69 36.04 1.70 31.08 90.59 90.76 72.21 72.32 72.33 72.30 72.30 72.39 72.30 72.30 72.28 72.30 72.30 72.30	12.26 11.87 11.17 13.03 10.05 -0.96 84.95 191.32 124.36 11.95 12.12 11.47 11.70 11.50 11.27 11.46 11.44 11.22 11.11 11.18 11.18 11.18 11.16 11.24	16.86 16.83 16.77 16.82 10.66 10.99 -0.14 0.18 16.57 16.79 16.84 16.83 16.85 16.85 16.85 16.85 16.85 16.85 16.85 16.85 16.85 16.87 16.85
Enterprise Products S Enterprise Products S	South Carlsbad CS South Carlsbad CS	Solar Solar Solar Solar Solar Solar Solar Solar Solar Solar Solar Solar Solar Solar Solar Solar Solar Solar Solar Solar	Centaur Centaur	T1 T1 T1 Bias Check Bias Check T1 T1 T1 T1 T1 T1 T1 T1 T1 T1 T1 T1 T1	DH-010314.02 DH-010314.02 DH-010314.02 DH-010314.02 Average 0NOx/0CO/10.99O2 94.7NOx/193CO/0O2 DH-010314.03	1/3/14 1/3/14	10:40 10:41 10:42 10:43 10:44 10:45 10:46 10:47 10:48 10:49 10:50 10:51 10:52 10:53 10:54 10:55 10:56 10:57 10:58 10:59 11:00 11:01 11:02 11:03	72.27 71.75 70.91 71.69 36.04 1.70 31.08 90.59 90.76 72.21 72.37 72.38 72.39 72.37 72.33 72.30 72.39 72.36 72.27 72.28 72.37 72.30 72.33 72.30 72.33 72.30	12.26 11.87 11.17 13.03 10.05 -0.96 84.95 191.32 124.36 11.95 12.12 11.47 11.70 11.50 11.27 11.46 11.44 11.22 11.32 11.11 11.18 11.18 11.18 11.16 11.24 10.91	16.86 16.83 16.77 16.82 10.66 10.99 -0.14 0.18 16.57 16.79 16.84 16.83 16.85 16.85 16.85 16.85 16.85 16.85 16.85 16.85 16.85 16.85 16.85 16.85 16.85 16.85 16.85 16.85
Enterprise Products S Enterprise Products S	South Carlsbad CS South Carlsbad CS	Solar Solar	Centaur Centaur	T1 T1 T1 Bias Check Bias Check T1 T1 T1 T1 T1 T1 T1 T1 T1 T1 T1 T1 T1	DH-010314.02 DH-010314.02 DH-010314.02 DH-010314.02 Average 0NOx/0CO/10.99O2 94.7NOx/193CO/0O2 94.7NOx/193CO/0O2 DH-010314.03	1/3/14 1/3/14	10:40 10:41 10:42 10:43 10:44 10:45 10:46 10:47 10:48 10:50 10:51 10:52 10:53 10:54 10:55 10:56 10:57 10:58 10:59 11:00 11:01 11:02 11:03 11:04	72.27 71.75 70.91 71.69 36.04 1.70 31.08 90.59 90.76 72.21 72.37 72.38 72.39 72.37 72.33 72.30 72.39 72.36 72.27 72.28 72.27 72.28 72.30 72.30 72.33 72.30	12.26 11.87 11.17 13.03 10.05 -0.96 84.95 191.32 124.36 11.95 12.12 11.47 11.70 11.50 11.27 11.46 11.44 11.22 11.32 11.11 11.18 11.18 11.16 11.24 10.91 11.13	16.86 16.83 16.77 16.82 10.66 10.99 -0.14 0.18 16.57 16.79 16.84 16.83 16.85 16.88 16.85 16.85 16.85 16.85 16.85 16.85 16.85 16.85 16.85 16.85 16.85 16.85 16.85
Enterprise Products S Enterprise Products S	South Carlsbad CS South Carlsbad CS	Solar Solar	Centaur Centaur	T1 T1 T1 Bias Check Bias Check T1 T1 T1 T1 T1 T1 T1 T1 T1 T1 T1 T1 T1	DH-010314.02 DH-010314.02 DH-010314.02 DH-010314.02 Average 0NOx/0CO/10.99O2 94.7NOx/193CO/0O2 94.7NOx/193CO/0O2 DH-010314.03	1/3/14 1/3/14	10:40 10:41 10:42 10:43 10:44 10:45 10:46 10:47 10:48 10:49 10:50 10:51 10:52 10:53 10:54 10:55 10:56 10:57 10:58 10:59 11:00 11:01 11:02 11:03 11:04 11:03	72.27 71.75 70.91 71.69 36.04 1.70 31.08 90.59 90.76 72.21 72.12 72.37 72.38 72.39 72.37 72.30 72.30 72.30 72.28 72.37 72.28 72.30 72.33 72.30 72.33 72.30 72.33 72.28 72.33 72.28 72.33 72.28	12.26 11.87 11.17 13.03 10.05 -0.96 84.95 191.32 124.36 11.95 12.12 11.47 11.50 11.50 11.27 11.46 11.44 11.22 11.32 11.11 11.18 11.18 11.18 11.24 10.91 11.13 10.73	$\begin{array}{c} 16.86\\ 16.83\\ 16.77\\ \textbf{16.82}\\ 10.66\\ 10.99\\ -0.14\\ 0.18\\ 16.57\\ 16.79\\ 16.84\\ 16.83\\ 16.85\\ $
Enterprise Products S Enterprise Products S	South Carlsbad CS South Carlsbad CS	Solar Solar	Centaur Centaur	T1 T1 T1 Bias Check Bias Check T1 T1 T1 T1 T1 T1 T1 T1 T1 T1 T1 T1 T1	DH-010314.02 DH-010314.02 DH-010314.02 DH-010314.02 Average 0NOx/0CO/10.99O2 94.7NOx/193CO/0O2 94.7NOx/193CO/0O2 DH-010314.03	1/3/14 1/3/14	10:40 10:41 10:42 10:43 10:44 10:45 10:46 10:47 10:48 10:50 10:51 10:52 10:53 10:54 10:55 10:56 10:57 10:58 10:59 11:00 11:01 11:02 11:03 11:04	72.27 71.75 70.91 71.69 36.04 1.70 31.08 90.59 90.76 72.21 72.37 72.38 72.39 72.37 72.33 72.30 72.39 72.36 72.27 72.28 72.27 72.28 72.30 72.30 72.33 72.30	12.26 11.87 11.17 13.03 10.05 -0.96 84.95 191.32 124.36 11.95 12.12 11.47 11.70 11.50 11.27 11.46 11.44 11.22 11.32 11.11 11.18 11.18 11.16 11.24 10.91 11.13	16.86 16.83 16.77 16.82 10.66 10.99 -0.14 0.18 16.57 16.79 16.84 16.83 16.85 16.88 16.85 16.85 16.85 16.85 16.85 16.85 16.85 16.85 16.85 16.85 16.85 16.85 16.85
Enterprise Products S Enterprise Products S	South Carlsbad CS South Carlsbad CS	Solar Solar	Centaur Centaur	T1 T1 T1 Bias Check Bias Check T1 T1 T1 T1 T1 T1 T1 T1 T1 T1 T1 T1 T1	DH-010314.02 DH-010314.02 DH-010314.02 DH-010314.02 Average 0NOx/0CO/10.99O2 94.7NOx/193CO/0O2 94.7NOx/193CO/0O2 DH-010314.03	1/3/14 1/3/14	10:40 10:41 10:42 10:43 10:44 10:45 10:46 10:47 10:48 10:49 10:50 10:51 10:52 10:53 10:54 10:55 10:56 10:57 10:58 10:59 11:00 11:01 11:02 11:03 11:04 11:03	72.27 71.75 70.91 71.69 36.04 1.70 31.08 90.59 90.76 72.21 72.12 72.37 72.38 72.39 72.37 72.30 72.30 72.30 72.28 72.37 72.28 72.30 72.33 72.30 72.33 72.30 72.33 72.28 72.33 72.28 72.33 72.28	12.26 11.87 11.17 13.03 10.05 -0.96 84.95 191.32 124.36 11.95 12.12 11.47 11.50 11.50 11.27 11.46 11.44 11.22 11.32 11.11 11.18 11.18 11.18 11.24 10.91 11.13 10.73	$\begin{array}{c} 16.86\\ 16.83\\ 16.77\\ \textbf{16.82}\\ 10.66\\ 10.99\\ -0.14\\ 0.18\\ 16.57\\ 16.79\\ 16.84\\ 16.83\\ 16.85\\ $
Enterprise Products S Enterprise Products S	South Carlsbad CS South Carlsbad CS	Solar Solar	Centaur Centaur	T1 T1 T1 Bias Check Bias Check T1 T1 T1 T1 T1 T1 T1 T1 T1 T1 T1 T1 T1	DH-010314.02 DH-010314.02 DH-010314.02 DH-010314.02 Average 0NOx/0CO/10.99O2 94.7NOx/193CO/0O2 DH-010314.03	1/3/14 1/3/14	10:40 10:41 10:42 10:43 10:44 10:45 10:46 10:47 10:48 10:49 10:50 10:51 10:52 10:53 10:54 10:55 10:56 10:57 10:58 10:59 11:00 11:01 11:02 11:03 11:04 11:05 11:06 11:07	72.27 71.75 70.91 71.69 36.04 1.70 31.08 90.76 72.21 72.32 72.33 72.39 72.37 72.38 72.39 72.37 72.30 72.39 72.30 72.39 72.36 72.27 72.28 72.37 72.30 72.33 72.30 72.33 72.30 72.33 72.30 72.33 72.30 72.33 72.30 72.33 72.30 72.33 72.33 72.33 72.33	12.26 11.87 11.17 13.03 10.05 -0.96 84.95 191.32 124.36 11.95 12.12 11.47 11.70 11.50 11.27 11.46 11.44 11.22 11.11 11.18 11.18 11.18 11.18 11.18 11.24 10.91 11.13 10.73 10.71 10.84	$\begin{array}{c} 16.86\\ 16.83\\ 16.77\\ \textbf{16.82}\\ 10.66\\ 10.99\\ -0.14\\ 0.18\\ 16.57\\ 16.79\\ 16.84\\ 16.83\\ 16.85\\ 16.88\\ 16.85\\ $
Enterprise Products S Enterprise Products S	South Carlsbad CS South Carlsbad CS	Solar Solar	Centaur Centaur	T1 T1 T1 Bias Check Bias Check T1 T1 T1 T1 T1 T1 T1 T1 T1 T1 T1 T1 T1	DH-010314.02 DH-010314.02 DH-010314.02 DH-010314.02 Average 0NOx/0CO/10.99O2 94.7NOx/193CO/0O2 DH-010314.03	1/3/14 1/3/14	10:40 10:41 10:42 10:43 10:44 10:45 10:46 10:47 10:48 10:49 10:50 10:51 10:52 10:53 10:54 10:55 10:56 10:57 10:58 10:59 11:00 11:01 11:02 11:03 11:04 11:05 11:06 11:07 11:08	72.27 71.75 70.91 71.69 36.04 1.70 31.08 90.76 72.21 72.32 72.37 72.38 72.39 72.37 72.33 72.30 72.39 72.36 72.27 72.28 72.37 72.30 72.30 72.33 72.30 72.33 72.30 72.33 72.36 72.27 72.30 72.33 72.30 72.36 72.33 72.30 72.33 72.30 72.33 72.30 72.33 72.30 72.33 72.30 72.33 72.30 72.33 72.30 72.35 72.30 72.35 72.30 72.35 72.30 72.33 72.30 72.33 72.30 72.36 72.37 72.30 72.36 72.37 72.30 72.36 72.37 72.30 72.36 72.37 72.36 72.37 72.36 72.37 72.30 72.36 72.37 72.30 72.36 72.37 72.30 72.36 72.37 72.30 72.30 72.36 72.37 72.30 72.30 72.36 72.37 72.30 72.30 72.37 72.30 72.37 72.30 72.30 72.37 72.30 72.37 72.30 72.30 72.37 72.30 72.30 72.37 72.30 72.30 72.30 72.30 72.30 72.33	12.26 11.87 11.17 13.03 10.05 -0.96 84.95 191.32 124.36 11.95 12.12 11.47 11.70 11.50 11.27 11.46 11.44 11.22 11.32 11.11 11.18 11.18 11.18 11.18 11.18 11.24 10.91 11.13 10.73 10.71 10.84 8.22	$\begin{array}{c} 16.86\\ 16.83\\ 16.77\\ \textbf{16.82}\\ 10.66\\ 10.99\\ -0.14\\ 0.18\\ 16.57\\ 16.79\\ 16.84\\ 16.83\\ 16.85\\ 16.88\\ 16.85\\ $
Enterprise Products S Enterprise Products S	South Carlsbad CS South Carlsbad CS	Solar Solar	Centaur Centaur	T1 T1 T1 Bias Check Bias Check T1 T1 T1 T1 T1 T1 T1 T1 T1 T1 T1 T1 T1	DH-010314.02 DH-010314.02 DH-010314.02 DH-010314.02 Average 0NOx/0CO/10.99O2 94.7NOx/193CO/0O2 94.7NOx/193CO/0O2 DH-010314.03	1/3/14 1/3/14	10:40 10:41 10:42 10:43 10:44 10:45 10:46 10:47 10:50 10:51 10:52 10:53 10:54 10:55 10:50 10:57 10:50 10:50 10:57 10:50 10:50 10:57 10:50 10:50 10:57 10:58 10:50 11:00 11:01 11:02 11:03 11:04 11:05	72.27 71.75 70.91 71.69 36.04 1.70 31.08 90.76 72.21 72.32 72.33 72.30 72.33 72.30 72.36 72.27 72.38 72.30 72.33 72.30 72.33 72.30 72.33 72.30 72.33 72.30 72.33 72.28 72.33 72.28 72.33 72.28 72.33 72.28 72.30 72.33 72.28 72.30 72.33 71.55 72.26 72.30	12.26 11.87 11.17 13.03 10.05 -0.96 84.95 191.32 124.36 11.95 12.12 11.47 11.70 11.50 11.27 11.46 11.44 11.22 11.32 11.11 11.18 11.18 11.18 11.18 11.18 11.13 10.73 10.71 10.84 8.22 12.01	16.86 16.83 16.77 16.82 10.66 10.99 -0.14 16.79 16.84 16.85 16.88 16.85 16.85 16.85 16.85 16.85 16.85 16.85 16.85 16.85 16.85 16.85 16.85 16.85 16.85 16.85 16.85 16.85 16.85
Enterprise Products S Enterprise Products S	South Carlsbad CS South Carlsbad CS	Solar Solar	Centaur Centaur	T1 T1 T1 T1 Bias Check Bias Check T1 T1 T1 T1 T1 T1 T1 T1 T1 T1 T1 T1 T1	DH-010314.02 DH-010314.02 DH-010314.02 DH-010314.02 Average 0NOx/0CO/10.99O2 94.7NOx/193CO/0O2 94.7NOx/193CO/0O2 DH-010314.03	1/3/14 1/3/14	10:40 10:41 10:42 10:43 10:44 10:45 10:46 10:47 10:48 10:49 10:50 10:51 10:52 10:53 10:55 10:55 10:55 10:55 10:55 10:55 10:55 10:57 10:58 10:59 11:00 11:01 11:02 11:03 11:04 11:05 11:06 11:07 11:08 11:09 11:10	72.27 71.75 70.91 71.69 36.04 1.70 31.08 90.59 90.76 72.21 72.32 72.33 72.30 72.33 72.30 72.30 72.30 72.33 72.27 72.28 72.30 72.33 72.27 72.30 72.33 72.28 72.37 72.30 72.33 72.28 72.37 72.30 72.33 72.28 72.37 72.30 72.33 72.28 72.37 72.30 72.36 69.57 71.66 69.57 71.66 71.98	12.26 11.87 11.17 13.03 10.05 -0.96 84.95 191.32 124.36 11.95 12.12 11.47 11.70 11.50 11.27 11.46 11.44 11.22 11.32 11.11 11.18 11.18 11.18 11.18 11.16 11.24 10.91 11.13 10.73 10.71 10.84 8.22 12.01 14.94	16.86 16.83 16.77 16.82 10.66 10.99 -0.14 0.18 16.57 16.83 16.85
Enterprise Products S Enterprise Products S	South Carlsbad CS South Carlsbad CS	Solar Solar	Centaur Centaur	T1 T1 T1 Bias Check Bias Check T1 T1 T1 T1 T1 T1 T1 T1 T1 T1 T1 T1 T1	DH-010314.02 DH-010314.02 DH-010314.02 DH-010314.02 Average 0NOx/0CO/10.99O2 94.7NOx/193CO/0O2 94.7NOx/193CO/0O2 DH-010314.03	1/3/14 1/3/14	10:40 10:41 10:42 10:43 10:44 10:45 10:46 10:47 10:50 10:51 10:52 10:53 10:54 10:55 10:50 10:57 10:50 10:50 10:57 10:50 10:50 10:57 10:50 10:50 10:57 10:58 10:50 11:01 10:50 10:57 10:58 10:50 11:00 11:01 11:02 11:03 11:04 11:05	72.27 71.75 70.91 71.69 36.04 1.70 31.08 90.76 72.21 72.32 72.33 72.30 72.33 72.30 72.36 72.27 72.38 72.30 72.33 72.30 72.33 72.30 72.33 72.30 72.33 72.30 72.33 72.28 72.33 72.28 72.33 72.28 72.33 72.28 72.30 72.33 72.28 72.30 72.33 71.55 72.26 72.30	12.26 11.87 11.17 13.03 10.05 -0.96 84.95 191.32 124.36 11.95 12.12 11.47 11.70 11.50 11.27 11.46 11.44 11.22 11.32 11.11 11.18 11.18 11.18 11.18 11.18 11.13 10.73 10.71 10.84 8.22 12.01	16.86 16.83 16.77 16.82 10.66 10.99 -0.14 16.79 16.84 16.85
Enterprise Products S Enterprise Products S	South Carlsbad CS South Carlsbad CS	Solar Solar	Centaur Centaur	T1 T1 T1 Bias Check Bias Check T1 T1 T1 T1 T1 T1 T1 T1 T1 T1 T1 T1 T1	DH-010314.02 DH-010314.02 DH-010314.02 DH-010314.02 Average 0NOx/0CO/10.99O2 94.7NOx/193CO/0O2 94.7NOx/193CO/0O2 DH-010314.03	1/3/14 1/3/14	10:40 10:41 10:42 10:43 10:44 10:45 10:46 10:47 10:48 10:49 10:50 10:51 10:52 10:53 10:55 10:55 10:55 10:55 10:55 10:55 10:55 10:57 10:58 10:59 11:00 11:01 11:02 11:03 11:04 11:05 11:06 11:07 11:08 11:09 11:10	72.27 71.75 70.91 71.69 36.04 1.70 31.08 90.59 90.76 72.21 72.32 72.33 72.30 72.33 72.30 72.30 72.30 72.33 72.27 72.28 72.30 72.33 72.27 72.30 72.33 72.28 72.37 72.30 72.33 72.28 72.37 72.30 72.33 72.28 72.37 72.30 72.33 72.28 72.37 72.30 72.36 69.57 71.66 69.57 71.66 71.98	12.26 11.87 11.17 13.03 10.05 -0.96 84.95 191.32 124.36 11.95 12.12 11.47 11.70 11.50 11.27 11.46 11.44 11.22 11.32 11.11 11.18 11.18 11.18 11.18 11.16 11.24 10.91 11.13 10.73 10.71 10.84 8.22 12.01 14.94	16.86 16.83 16.77 16.82 10.66 10.99 -0.14 0.18 16.57 16.83 16.85
Enterprise Products S Enterprise Products S	South Carlsbad CS South Carlsbad CS	Solar Solar	Centaur Centaur	T1 T1 T1 Bias Check Bias Check T1 T1 T1 T1 T1 T1 T1 T1 T1 T1 T1 T1 T1	DH-010314.02 DH-010314.02 DH-010314.02 DH-010314.02 Average 0NOx/0CO/10.99O2 94.7NOx/193CO/0O2 94.7NOx/193CO/0O2 DH-010314.03	1/3/14 1/3/14	10:40 10:41 10:42 10:43 10:44 10:45 10:46 10:47 10:48 10:50 10:51 10:52 10:53 10:54 10:55 10:56 10:57 10:58 10:59 11:00 11:01 11:02 11:03 11:04 11:05 11:06 11:07 11:108 11:10 11:11 11:12	72.27 71.75 70.91 71.69 36.04 1.70 31.08 90.59 90.76 72.21 72.37 72.38 72.39 72.37 72.33 72.30 72.30 72.30 72.30 72.33 72.28 72.30 72.33 72.28 72.33 72.28 72.33 72.28 72.33 72.28 72.33 72.28 72.33 72.28 72.30 72.33 72.28 72.30 72.33 72.28 72.30	12.26 11.87 11.17 13.03 10.05 -0.96 84.95 191.32 124.36 11.95 12.12 11.47 11.70 11.50 11.27 11.46 11.44 11.22 11.32 11.11 11.18 11.18 11.18 11.18 11.18 11.13 10.73 10.71 10.84 8.22 12.01 14.94 11.00 10.90	16.86 16.83 16.77 16.82 10.66 10.99 -0.14 0.18 16.57 16.79 16.84 16.83 16.85
Enterprise Products S Enterprise Products S	South Carlsbad CS South Carlsbad CS	Solar Solar	Centaur Centaur	T1 T1 T1 Bias Check Bias Check T1 T1 T1 T1 T1 T1 T1 T1 T1 T1 T1 T1 T1	DH-010314.02 DH-010314.02 DH-010314.02 DH-010314.02 Average 0NOx/0CO/10.99O2 94.7NOx/193CO/0O2 94.7NOx/193CO/0O2 DH-010314.03	1/3/14 1/3/14	10:40 10:41 10:42 10:43 10:44 10:45 10:46 10:47 10:48 10:49 10:50 10:51 10:52 10:53 10:54 10:55 10:56 10:57 10:58 10:59 11:00 11:01 11:02 11:03 11:04 11:07 11:08 11:09 11:10	72.27 71.75 70.91 71.69 36.04 1.70 31.08 90.59 90.76 72.21 72.32 72.33 72.30 72.30 72.30 72.30 72.30 72.30 72.33 72.28 72.30 72.33 72.28 72.33 72.28 72.33 72.28 72.33 72.28 72.33 72.28 72.30 72.33 72.28 72.30	12.26 11.87 11.17 13.03 10.05 -0.96 84.95 191.32 124.36 11.95 12.12 11.47 11.70 11.50 11.27 11.46 11.44 11.22 11.32 11.11 11.18 11.18 11.18 11.18 11.18 11.13 10.73 10.71 10.84 8.22 12.01 14.94 11.00	16.86 16.83 16.77 16.82 10.66 10.99 -0.14 0.18 16.57 16.79 16.84 16.85

Testing by Nordon Corporation

Enterprise Products South Carlsbad CS	Solar	Centaur	T1	DH-010314.03	1/3/14	11:14	72.51	10.79	16.87
Enterprise Products South Carlsbad CS	Solar	Centaur	T1	DH-010314.03	1/3/14	11:15	72.71	11.41	16.86
Enterprise Products South Carlsbad CS	Solar	Centaur	T1	DH-010314.03	1/3/14	11:16	72.76	10.61	16.88
Enterprise Products South Carlsbad CS	Solar	Centaur	T1	DH-010314.03	1/3/14	11:17	72.71	10.57	16.87
Enterprise Products South Carlsbad CS	Solar	Centaur	T1	DH-010314.03	1/3/14	11:18	72.56	10.54	16.88
Enterprise Products South Carlsbad CS	Solar	Centaur	T1	DH-010314.03	1/3/14	11:19	72.46	10.40	16.86
				DH-010314.03 Average	s		72.28	11.15	16.86
Enterprise Products South Carlsbad CS	Solar	Centaur			1/3/14	11:20	42.04	9.45	11.03
Enterprise Products South Carlsbad CS	Solar	Centaur	Bias Check	0NOx/0CO/10.99O2	1/3/14	11:21	0.19	-4.17	10.91
Enterprise Products South Carlsbad CS	Solar	Centaur			1/3/14	11:22	38.35	107.72	0.03
Enterprise Products South Carlsbad CS	Solar	Centaur	Bias Check	94.7NOx/193CO/0O2	1/3/14	11:23	91.34	189.89	0.01
Enterprise Products South Carlsbad CS	Solar	Centaur			1/3/14	11:24	79.14	101.49	16.20
Enterprise Products South Carlsbad CS	Solar	Centaur			1/3/14	17:01	12.37	-4.16	0.08
Enterprise Products South Carlsbad CS	Solar	Centaur			1/3/14	17:02	38.35	-4.79	0.07
Enterprise Products South Carlsbad CS	Solar	Centaur	CE Test	NO2	1/3/14	17:03	41.83	-4.42	0.08
Enterprise Products South Carlsbad CS	Solar	Centaur			1/3/14	17:04	30.41	-4.57	0.08

Testing by Nordon Corporation Page 29 of 29 Annual Emission Test Report for one Solar Centaur T4702 Compressor Turbine Unit Number T2 located at the South Carlsbad Compressor Station

> Prepared for Enterprise Field Services, LLC P. O. Box 4324 Houston, TX 77210

January 2014 Nordon Project No. 14-0152-2

This test report has been reviewed and approved for submittal to the New Mexico Environment Department (NMED) by the following representatives:

Donald W. Haynes Nordon Corporation

Enterprise Field Services, LLC

P. O. Box 1415 Round Rock, Texas 78680 Phone (512) 355-3786 Fax (512) 355-3785

SUMMARY OF RESULTS

Exhaust emission testing was performed on one Solar Centaur T4702 (Unit # T2) compressor turbine for Enterprise Field Services, LLC located at the South Carlsbad Compressor Station, near Loving, Eddy County, New Mexico. The turbine is used for natural gas compression. The testing was performed to demonstrate the continued compliance with the emission limits set forth in the NMED permit. Nordon Corporation of Round Rock, Texas, performed the exhaust emissions testing on January 4, 2014.

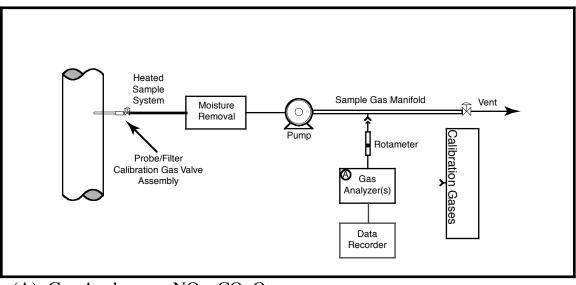
Continuous emission instruments housed in a mobile analysis unit were used to determine the concentrations of NO_x , CO, and O_2 in the exhaust stack of the compressor turbine. The following <u>Code of Federal Regulations</u>, Title 40, Part 60 (40<u>CFR</u>60), Appendix A reference methods were used to determine stack gas concentrations: Method 7E for nitrogen oxides (NO_x), Method 10 for carbon monoxide (CO), and Method 3A for oxygen (O₂). Mass emission rates were determined stoichiometrically according to Method 19 data reduction procedures using measured fuel flow rate.

Three thirty-minute test runs were performed on the exhaust of the turbine while firing on natural gas. The results of the testing are presented in a summary of results table. This table includes all the relevant information pertaining to the turbine/compressor operations, exhaust emissions, and ambient conditions. Exhaust concentrations are presented in part per million by volume (ppmv) or percent (%) by volume. The mass emission rates are presented in pound per hour (lb/hr) and ton per year (tpy). Turbine/compressor operational data was collected during each test run.

Summary of Results

NORDON CORPORATION

P.O. Box 1415 Round Rock, Texas 78680 PHONE (512) 355-3786 • FAX (512)355-3785


Plant: South Carlsbad Compressor Station Facility Owner:Enterprise Field Services, LLC Location: Loving, Eddy County, New Mexico Unit Make/Model: Solar Centaur T4702 Unit Number: T2, Ser. No.OHE12C7057 Test Personnel: DWH / KRJ

DH-010414.01	DH-010414.02	DH-010414.03	
1/4/14	1/4/14	1/4/14	
8:20	9:10	9:47	
8:50	9:40	10:17	
3609	3609	3609	
195	188	192	
95	95	95	
86	86	84	
109	107	103	
1047	1060	1073	
3630	3571	3452	
42.9	38.4	39.9	
330	330	338	
88	93	97	
560	561	562	
171	176	177	
38	34	33	
8698	8698	8698	
1098	1098	1098	
1.97E+06	1.75E+06	1.82E+06	
42	49	64	
36	41	47	
26.64	26.64	26.64	
0.0036	0.0042	0.0037	
0.5	0.6	0.5	
			AVERAGES
		84.1	81.1
		12.7	12.7
16.9	16.9	16.9	16.9
18.54	16.85	18.27	17.88
1.87	1.57	1.68	1.71
81.19	73.78	80.02	78.33
8.20	6.89	7.35	7.48
	1/4/14 8:20 8:50 3609 195 95 86 109 1047 3630 42.9 330 88 560 171 38 8698 1098 1.97E+06 42 36 26.64 0.0036 0.5 78.7 13.1 16.9 18.54 1.87 81.19	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

PROCEDURES

Continuous emission instruments housed in the mobile analysis unit were used to determine the concentrations of pollutants found in the turbine exhaust stack. The following $40\underline{CFR}60$, Appendix A reference methods were used to determine stack gas concentrations: Method 7E for NO_x, Method 10 for CO, and Method 3A for O₂. Mass emission rates were determined according to data reduction procedures provided in Method 19.

As depicted in Figure 1, Sample System and Instrumentation, a stainless steel sample probe was located in the centroid of the stack. Sample gas enters the stainless steel probe into a stainless steel 3-way valve. The 3-way valve is used to perform leak checks and sample system bias checks. From the valve, the gas flows through a 3/8" Teflon® heat traced sample line to a stainless steel minimum contact condenser to dry the sample. From the condenser, a 3/8" Teflon sample line brings the exhaust gas to a manifold in the mobile analysis unit via a Teflon-lined diaphragm pump. The manifold partitions the gas through quick-connects so that each instrument can directly sample exhaust gas. Each instrument is equipped with a rotometer to maintain correct sample pressure and flow. The instruments are connected to a computer data acquisition system to document its response during quality assurance activities and testing.

Figure 1: Sample System and Instrumentation

(A) Gas Analyzers - NO_X , CO, O_2

Analyzer Make	Analyzer Model	Detection Principle
NO _x Analyzer:	42i-HL	Chemiluminescence
Thermo Environmental		
CO Analyzer :	48i-HL	Non-dispersive Infra-red
Thermo Environmental		
O_2 Analyzer:	48i-HL	Paramagnetic Cell
Thermo Environmental		

A continuous analyzer is used to determine NO_x concentrations according to EPA Reference Method 7E. This instrument employs a chemiluminescent detection principle. The NO_x concentration and mass emission rates are expressed as NO_2 per the reference method.

A continuous analyzer is used to determine CO concentrations according to EPA Reference Method 10. The instrument employs a nondispersive infrared detector coupled to a gas filter correlation wheel, which eliminates the interferences due to water and carbon dioxide.

A continuous analyzer is used to determine O_2 concentrations according to EPA Reference Method 3A. The instrument is equipped with either an electrochemical or paramagnetic cell.

Data obtained from the continuous emission analyzers were recorded by a National Instruments data acquisition (DAQ) system using Labview software. A copy of the DAQ records can be found in the appendix of this report.

Quality assurance activities meeting the requirements of the EPA reference methods were performed during the turbine testing. Tables documenting quality assurance procedures are located in the appendix of this report.

Exhaust flow rate was determined according to the data reduction procedures provided in EPA Method 19. The O_2 F-Factor used in the emission rate calculation was either calculated based on a recent fuel analysis or the standard 8710 value for natural gas provided by EPA Method 19.

Nordon personnel recorded turbine compressor operating parameters. Ambient conditions were collected using a wet/dry bulb sling psychrometer to measure temperature and a barometer to measure absolute atmospheric pressure.

APPENDIX

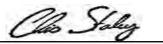
Field Data Sheets Example Calculations Gas Certifications Quality Assurance Activities Run Data Logs

1

Testing by Nordon Corporation

Page 7 of 28

Certificate of Analysis


Number: 1030-14010388-001A

Thor Olsen Nordon Corporation PO Box 1415 Round Rock, TX 78680 Jan. 21, 2014

Station Name:South Calrsbad Compressor StitionStation Location:Loving, NMSample Point:Turbine Fuel GasCylinder No:0298Analyzed:01/16/2014 05:34:22 by JD

Sampled By:Sample Of:GasSpotSample Date:01/04/2014 10:00Sample Conditions: 190 psig, @ 65 °FMethod:GPA-2261M

Analytical Data						
Components	Mol. %	Wt. %	GPM at 14.65 psia			
Nitrogen Carbon Dioxide Methane Ethane Propane Iso-butane n-Butane Iso-pentane n-Pentane Hexanes Plus	1.204 1.556 86.800 6.877 2.516 0.292 0.552 0.086 0.072 0.045 100.000	1.797 3.648 74.184 11.016 5.911 0.904 1.709 0.331 0.277 0.223 100.000	1.834 0.691 0.095 0.173 0.031 0.026 0.020 2.870	GPM TOTAL C2+ GPM TOTAL C3+ GPM TOTAL iC5+	2.870 1.036 0.077	
Physical PropertiesTotalRelative Density Real Gas0.6496Calculated Molecular Weight18.77Compressibility Factor0.9973GPA 2172-09 Calculation:Calculated Gross BTU per ft³ @ 14.65 psia & 60°FReal Gas Dry BTU1097Water Sat. Gas Base BTU1078				C6+ 3.2176 93.19 5113 5024		
Comments: H2O N Reran	Mol% : 1.750 Sample Cor					

Hydrocarbon Laboratory Manager The above analyses are performed in accordance with ASTM, UOP, GPA guidelines for quality assurance, unless otherwise stated. Page 8 of 28 Page 1 of 5

Quality Assurance:

Fuel Gas Analysis

Gross Btu/scf 1098 O2 F-Factor dscf/MMBtu 8698 O2 F-Factor (wscf/MMBtu) 10660 H2O F-Factor (scf/MMBtu) 1962 CO2 F-Factor (scf CO2/MMBtu) 1058 Btu/lb 22164 Sp. Gr. 0.6516 F. 1.719 Moisture Factor 18.407						
	VOC Fraction 0.063					
Compound	Mol. Formula	Mol. %				
Methane	CH4	86.800				
Ethane	C2H6	6.877				
Propane	C3H8	2.516				
Isobutane	C4H10	0.292				
n-Butane	C4H10	0.552				
Isopentane	C5H12	0.086				
n-Pentane	C5H12	0.072				
NeoPentane	C5H12					
n-Hexane	C6H14	0.045				
n-Heptane	C7H16					
n-Octane	C8H18					
Carbon dioxide	CO2	1.556				
Nitrogen	N2	1.204				
Total		100.000				

pressor Station		rap hujert#:	: E		Sample Container Matrix Type Remarks (volumes, special notes, etc.)	natural gas cylinder	natural gas cylinder				NOTES:	
INFO: e: ne: ation:	Project #: 14-0001	Analysis Requested	· · · · · · · · · · · · · · · · · · ·	I D1642 I D6667 Jefrod 202 Jefrod 201	M A93 M A93 MT2A	x	×				Date:	(Date:
Î		A		252 (ИНЗ) 1933 (НС	0-МТЭ	1/4/14	1/4/14				Relinquished By:	Received By:
Nordon Corporation Don Haynes 512-355-3786	don@nordoncorp.com		ORDON Corporation P.D Box 1415 Round Rock, TX 78680 PH: 512.355.3786 FAX: 512.355.3785		Sample Description	natural gas	natural gas		() () ()		Date: Date:	Date:
REPORT TO: Company: Contact: Contact Phone: 5	Contact Email:		NORDON Corporation POBox 1415 Round Rock, TX 78680 PH: 5123553786 FAX: 5123553785		Sample Lab ID Identification	1030-00406					Relinquished By:	Raceived By

Chain of Custody Form

Test Run #: DH-010414.01

Component: NOx

Observed Measurements/Data:			Scale, Certified Concentrations				
	Direct Calibration Results						
0.42	NOx direct zero, Cdiro	94.7	NOx chart scale, CS				
94.68	NOx direct span, Cdirm	94.7	NOx actual calibration gas concentration, Cma				
	System Calibration Results	0	Actual low-level gas concentration, Coa				
1.66	NOx, initial zero reading, Csoi		-				
92.45	NOx inital span reading, Csmi						
0.85	NOx final zero reading, Cof						
91.68	NOx final span reading, Csmf						
	Run Results						
76.69	NOx run average, Caverage						
	3 2 3						

Bias Check Initial Zero (SBoi)

$$SBoi = \frac{(Csoi - Cdiro)}{CS}$$
$$= 1.31 (\%)$$

Bias Check Final Zero (SBof)

$$SBof = \frac{(Csof - Cdiro)}{CS}$$
$$= 0.45 (\%)$$

Drift Check Zero (Do)

Bias-Average Zero (Coavg)

$$= \left(\frac{Csoi + Csof}{2}\right)$$
$$= 1.256 \text{ (ppmv)}$$

NOx Concentration Correction

$$= (Caverage - Coavg) \times \left(\frac{Cma}{Cmavg - Coavg}\right)$$

Bias Check Initial Span (SBmi)

$$SBmi = \frac{(Csmi - Cdirm)}{CS}$$
$$= -2.36 (\%)$$

Bias Check Final Span (SBmf)

$$SBmf = \frac{(Csmf - Cdirm)}{CS}$$
$$= -3.17 (\%)$$

Bias-Average Span (Cmavg) $=\left(\frac{CSmi+CSmf}{2}\right)$ =

92.06 (ppmv)

Test Run #: DH-010414.01

Component: CO

Observed M	leasurements/Data:	Scale, Cert	Scale, Certified Concentrations				
	Direct Calibration Results						
0.63	CO direct zero, Cdiro	193	CO chart scale, CS				
194.59	CO direct span, Cdirm	193	CO actual calibration gas concentration, Cma				
	System Calibration Results	0	Actual low-level gas concentration, Coa				
-0.63	CO, initial zero reading, Csoi		-				
192.76	CO inital span reading, Csmi						
0.00	CO final zero reading, Cof						
191.43	CO final span reading, Csmf						
	Run Results						
12.70	CO run average, Caverage						

Bias Check Initial Zero (SBoi)

$$SBoi = \frac{(Csoi - Cdiro)}{CS}$$
$$= -0.65 (\%)$$

Bias Check Final Zero (SBof)

$$SBof = \frac{(Csof - Cdiro)}{CS}$$
$$= -0.32 (\%)$$

Drift Check Zero (Do)

Bias- Average Zero (Coavg)

$$= \left(\frac{Csoi + Csof}{2}\right)$$
$$= -0.315 \text{ (ppmv)}$$

CO Concentration Correction

$$= (Caverage - Coavg) \times \left(\frac{Cma}{Cmavg - Coavg}\right)$$

Bias Check Initial Span (SBmi)

$$SBmi = \frac{(Csmi - Cdirm)}{CS}$$
$$= -0.95 (\%)$$

Bias Check Final Span (SBmf)

$$SBmf = \frac{(Csmf - Cdirm)}{CS}$$
$$= -1.63 (\%)$$

Drift Check Span (Ds)
$$|SBmf - SBmi|$$

= 0.69

Bias-Average Span (Cmavg)
=
$$\left(\frac{CSmi + CSmf}{2}\right)$$

= 192.10 (ppmv)

Test Run #: DH-010414.01

Component: O2

Observed N	leasurements/Data:	Scale, Certi	Scale, Certified Concentrations				
	Direct Calibration Results						
0.13	O2 direct zero, Cdiro	20.92	O2 chart scale, CS				
21.26	O2 direct span, Cdirm	20.92	O2 actual calibration gas Concentration, Cma				
	System Calibration Results	0	Actual low-level gas Concentration, Coa				
0.25	O2, initial zero reading, Csoi		-				
21.19	O2 inital span reading, Csmi						
0.28	O2 final zero reading, Csof						
21.21	O2 final span reading, Csmf						
	Run Results						
17.22	O2 run average, Caverage						

Bias Check Initial Zero (SBoi)

$$SBoi = \frac{(Csoi - Cdiro)}{CS}$$

= 0.57 (%)

Bias Check Final Zero (SBof)

$$SBof = \frac{(Csof - Cdiro)}{CS}$$

= 0.75 (%)

Drift Check Zero (Do) |SBof - SBoi|

= 0.17

Bias-Average Zero (O2avg) $= \left(\frac{Csoi + Csof}{2}\right)$

= 0.263 (%)

O2 Concentration Correction

$$= (Caverage - Coavg) \times \left(\frac{Cma}{Cmavg - Coavg}\right)$$

16.9 (%)

Bias Check Initial Span (SBmi) $SBmi = \frac{(Csmi - Cdirm)}{CS}$ = -0.37 (%)Bias Check Final Span (SBmf) $SBmf = \frac{(Csmf - Cdirm)}{CS}$ = -0.25 (%)

Drift Check Span (Ds) |SBmf – SBmi

= 0.12

Bias-Average Span (Cmavg)
=
$$\left(\frac{CSmi + CSmf}{2}\right)$$

Example Calculations: Method 19 Exhaust Flow

Component: Stack Flow

Observed I	Measurements/Data:	Standards/Constants/Conversion Factors				
39083 8698 1098 16.9	Fuel Flow Rate (scfh) Fuel O2 F-Factor (dscf/MMBtu) Fuel Heating Value (Btu/scf) O2 final concentration (%)	1000000 Btu per MMBtu 20.9 O2 % in air				

Derivation of Exhaust Flow using Equation 19-1 from Method 19

$$E\left(\frac{lb}{MMBtu}\right) = C_d\left(\frac{lb}{scf}\right)F_d\left(\frac{dscf}{MMBtu}\right) \times \frac{20.9}{\left(20.9 - \%O_2\right)}$$
 Eq. 19-1

divide each side of equation by Cd to obtain the following

$$\left(\frac{scf}{MMBtu}\right) = F_d\left(\frac{dscf}{MMBtu}\right) \times \frac{20.9}{\left(20.9 - \%O_2\right)}$$

multiply each side of equation by heat input (MMBtu/hr)

$$\left(\frac{scf}{hr}\right) = HeatInput\left(\frac{MMBtu}{hr}\right) \times F_d\left(\frac{dscf}{MMBtu}\right) \times \frac{20.9}{(20.9 - \%O_2)}$$

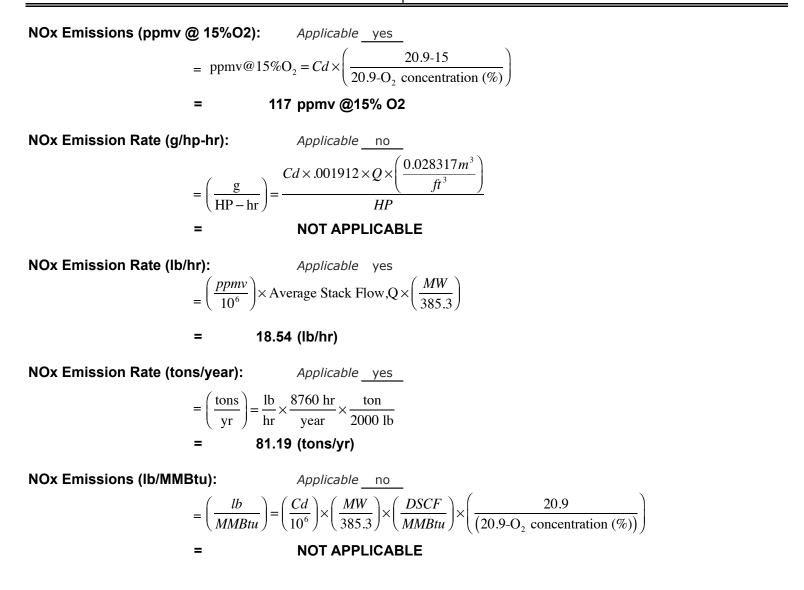
Fuel Gas Heat Rate/Heat Input (MMBtu/hr)

Test Run #: DH-010414.01

=
$$\left(\text{Fuel Flow Rate } \frac{scf}{hr} \right) \times \left(\text{Fuel Heating Value } \frac{Btu}{scf} \right) \times \left(\frac{1MMBtu}{1000000Btu} \right)$$

= 42.90 (MMBtu/hr)

Stack Gas Volumetric Flow Rate, Q (dscfh)

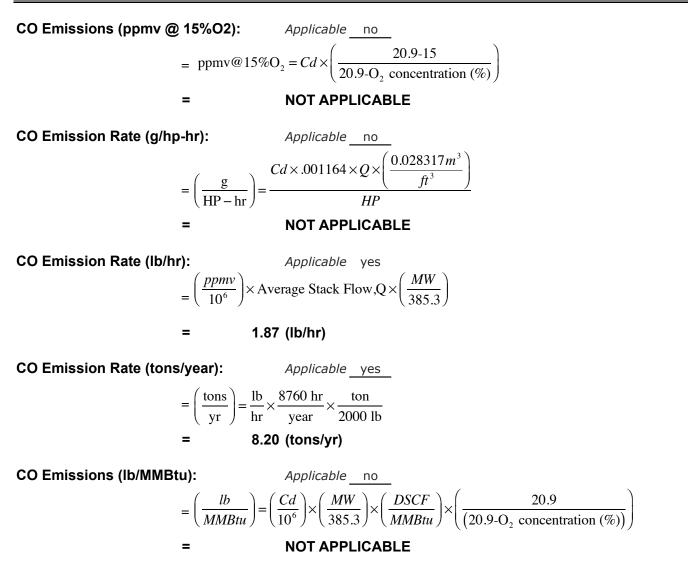

$$= \left(\text{HeatInput } \frac{MMBtu}{hr}\right) \times \left(\text{Fuel } O_2 \text{ F-Factor } \frac{dscf}{MMBtu}\right) \times \left(\frac{20.9}{20.9 - O_2}\right)$$
$$= 1.97\text{E+06 (dscfh)}$$

Example Calculations: Emissions Calculations

Test Run #: DH-010414.01

Component: NOx

Observed N	leasurements/Data:	Standards/Constants/Conversion Factors				
78.7 1973673 16.9 3630 8698	NOx final concentration, Cd (ppmv) Average Stack Gas Flow Rate, Q (DSCFH) O2 final concentration (%) Horsepower (Hp) Fuel O2 Factor (DSCF/MMBtu)	528 29.92 385.3 28.317 46 0.001912 8760 2000 0.028317	EPA Standard Temperature, Tstd (°R) EPA Standard Pressure, Pstd (in. Hg) Gas Constant @ EPA STP (SCF/lb-mol) Liters per Cubic Foot NOx molecular wt. (NO2), MW (lb/lb-mol) Conversion constant (NOx ppm to g/m3) hours per year pounds per ton cubic meters per cubic feet			



Example Calculations: Emissions Calculations

Test Run #: DH-010414.01

Component: CO

Observed Measurements/Data:		Standards/Constants/Conversion Factors		
13.1 1973673 16.9 3630 8698	CO final concentration, Cd (ppmv) Average Stack Gas Flow Rate, Q (DSCFH) O2 final concentration (%) Horsepower (Hp) Fuel O2 Factor (DSCF/MMBtu)	528 29.92 385.3 28.317 28 0.001164 8760 2000 0.028317	EPA Standard Temperature, Tstd (°R) EPA Standard Pressure, Pstd (in. Hg) Gas Constant @ EPA STP (SCF/lb-mol) Liters per Cubic Foot CO molecular wt., MW (lb/lb-mol) Conversion constant (CO ppm to g/m3) hours per year pounds per ton cubic meters per cubic feet	

THE LINDE GROUP

Linde

CERTIFICATE OF ANALYSIS

PGVP ID#:	I12013
CUSTOMER:	UNION CITY
SALES#:	501210969
PROD#:	1254051
P.O.# :	4501210969
MATERIAL#:	24091202
CERTIFICATION DATE:	01-May-2013
EXPIRATION DATE:	02-May-2021
(Using the May 2012 Revision	on of the EPA Protocol)
CERTIFICATION HISTORY	

EPA PROTOCOL MIXTURE PROCEDURE #: G1 GAS CODE: APPVD CYLINDER #: CC-310704 CYLINDER PRES: 2000 PSIG CYLINDER VALVE: CGA 660 CYLINDER SIZE: 2A CYLINDER MATERIAL: Aluminum GAS VOLUME: 4000 Liter BLEND TOLERANCE: 5% Relative PAGE: 1 of 1

COMPONENT	DATE OF ASSAY	MEAN CONCENTRATION	CERTIFIED CONCENTRATION	ANALYTICAL ACCURACY
Propane	01-May-2013	30.0 ppm	30.0 ppm	+/- 1%
Nitric Oxide	24-Apr-2013 01-May-2013	47.4 ppm 47.3 ppm	47.3 ppm	+/- 1%
NOx	1		47.3 ppm	Reference Value Only
Carbon Monoxide	01-May-2013	95.3 ppm	95.3 ppm	+/- 1%
	Nitra			

BALANCE

Nitrogen

PREVIOUS CERTIFICATION DATES: None

REFERENCE STANDARDS

COMPONENT	SRM/NTRM#	CYLINDER#	CONCENTRATION
Propane	GMIS-1	cc-113884	100.5 ppm
Nitric Oxide	GMIS-1	CC-278874	100.7 ppm
Carbon Monoxide	GMIS-1	cc-88590	96.8 ppm

INSTRUMENTATION

COMPONENT	MAKE/MODEL	SERIAL #	DETECTOR	CALIBRATION DATE(S)
Propane	H. Packard 6890	US00001434	GC - FID	01-May-2013
Nitric Oxide	CAI 400-CLD	6L09004	Cheml	01-Apr-2013
Carbon Monoxide	Horiba VIA-510	570423011	NDIR	19-Apr-2013

THIS STANDARD IS NIST TRACEABLE. IT WAS CERTIFIED ACCORDING TO THE 1997 EPA PROTOCOL PROCEDURES. DO NOT USE THIS STANDARD IF THE CYLINDER PRESSURE IS LESS THAN 100 PSIG.

ANALYST:

MATTHEW JACKSON

Linde Gas North America LLC

DATE: 01-May-2013

CERTIFICATE OF ANALYSIS EPA PROTOCOL GAS

Cylinder Number:	EB0027577	Certification Date:	10/29/2012
Product ID Number:	124749	Expiration Date:	10/22/2016
Cylinder Pressure:	1900 PSIG	MFG Facility:	RBTGS-Shreveport-LA
COA Number:	GC1210170814-0	Lot Number:	GC1210170814
Customer PO. NO.:		Tracking Number:	048358699
Customer		Previous Certification	n Dates:

This calibration standard has been certified per the 1997 EPA Traceability Protocol, Document EPA-600/97/121, using procedure G1 and/or G2. All values so noted are certified to be +/-1% NIST Traceable.

Do Not Use This Cylinder Below 150 psig (1.0 Megapascal).

<u>Compone</u> Nitric C		Concentration 94.5 PPM	Analytical Principle Non Dispersive Infrared Absorptiometry		ometry	Accuracy ulate: High Unc:	
Total O	xides of Nitrogen	94.7 PPM	Non Dispersive Infrared Absorptiometry FTIR Gas Correlation Filter				
Propan	e	51 PPM				+/- 1% NIST	
Carbor Nitrogen	Monoxide	193 PPM Balance			+/- 1% NIST		
			Reference Standa	rd(s)			
Type GMIS	<u>Component</u> Nitric Oxide	<u>Balance Gas</u> Nitrogen	Concentration 98.6 PPM	Cylinder Number CC238350	Expiration 2/14/2013	NIST Reference SRM 1686b	
GMIS	Nitric Oxide	Nitrogen	98.6 PPM	CC238350	2/14/2013	SRM 1686b	

GMIS	Carbon Monoxide	Nitrogen	398 PPM	EB0005726	1/5/2014	NTRM 021003	
SRM	Propane	Nitrogen	49 PPM	CAL018150	8/17/2017	SRM 1667b	

Analytical Information

Γ

	Component	Nitric Oxide	
	Analysis Date:		10/22/2012
Z 0.152	S 16.337	C 15.549	Conc. 93.5 PPM
S 16.399	C 15.733	Z 0.109	Conc. 94.6 PPM
C 15.71	Z 0.088	S 16.451	Conc. 94.4 PPM
	Analysis Date:		10/29/2012
Z 0.295	S 16.912	C 16.321	Conc. 94.9 PPM
S 16.961	C 16.303	Z 0.281	Conc. 94.8 PPM
C 16.31	Z 0.325	S 16.9825	Conc. 94.8 PPM

0.301	0 10.000	2 0.201	CONC. 34.0 F F M	
6.31	Z 0.325	S 16.9825	Conc. 94.8 PPM	
				- ·
	Component		bon Monoxide	
Δ	nalvoia Data:		10/22/2012	1

Ar	alysis Date:		10/22/2012
Z 0.3390	S 41.027	C 19.9610	Conc. 192 PPM
S 41.0170	C 20.021	Z 0.294	Conc. 193 PPM
C 20.036	Z 0.3510	S 40.98	Conc. 193 PPM
	omponent		Propane
	omponent alysis Date:		Propane 10/26/2012
		C 50.7800	
Ar	alysis Date:		10/26/2012

<u> </u>

Z= Zero Gas S= Span Gas C= Candidate Gas

S 49.03

Conc. 51 PPM

Hall rel 14

Z 0.0060

C 50.8

Fred Holt, CHMM Quality Control

Red Ball Technical Gas Service PGVP Vendor ID # G12012 Information and Ordering 800-551-8150 Fax (318-425-6309)

Page 18 of 28

Assay Laboratory: Red Ball TGS 555 Craig Kennedy Way Shreveport, LA 71107 800-551-8150

EPA PROTOCOL GAS CERTIFICATE OF ANALYSIS

Cylinder Number: Product ID Number: Cylinder Pressure: COA # Customer PO. NO.: Customer: EB0046618 124752 1900 PSIG ML130726.170231.3-0

Certification Date: Expiration Date: MFG Facility: Lot Number: Tracking Number: Previous Certification Dates: 07/29/2013 07/27/2021 RBTGS-Shreveport-LA ML130726.170231.3 065271430

This calibration standard has been certified per the May 2012 EPA Traceability Protocol, Document EPA-600/R-12/531, using procedure G1.

Do Not Use This Cylinder Below 100 psig (0.7 Megapascal).

Certified Concentration(s)

	ooranioa o	eneenaalen(e)	
Component	Concentration	Uncertainty	Analytical Principle
Carbon Dioxide	13.9 %	±0.11 %	NDIR
Oxygen	10.99 %	±0.07 %	MPA
	D .		
Nitrogen	Balance		

Analyitcal Measurement Data Available Online. Reference Standard(s) Balance Uncertainty(%) NIST Reference Component Concentration Lot Expiration Туре GC1106080848 09/07/2013 GMIS N2 CO2 12.57 % 0.384 3221755 GC0807251121 04/28/2019 GMIS N2 02 24.43 % 0.52 71001

		Analytical	Instrumentation		
Component	Analytical Principle	Make	Model	Serial	MPC Date
CO2	NDIR	Horiba	VA-3013	H0000P11	07/10/2013
02	MPA	Horiba	VA-3013	H0000P11	07/11/2013

Z= Zero Gas S= Span Gas C= Candidate Gas

Red Ball Technical Gas Service PGVP Vendor ID # G12013 Information and Ordering 800-551-8150 Fax (318-425-6309)

Jul Halt Fred Holt, CHMM

Fred Holt, CHMM Quality Control

Assay Laboratory: Red Ball TGS 555 Craig Kennedy Way Shreveport, LA 71107 800-551-8150

EPA PROTOCOL GAS CERTIFICATE OF ANALYSIS

Cylinder Number: Product ID Number: Cylinder Pressure: COA # Customer PO. NO.: Customer: EB0039038 124753 1900 PSIG ML130726.170120.1-0

Certification Date: Expiration Date: MFG Facility: Lot Number: Tracking Number: Previous Certification Dates:

08/02/2013	
07/31/2021	
RBTGS-Shreveport-LA	
ML130726.170120.1	
065155673	
	_

This calibration standard has been certified per the May 2012 EPA Traceability Protocol, Document EPA-600/R-12/531, using procedure G1.

Do Not Use This Cylinder Below 100 psig (0.7 Megapascal).

Certified Concentration(s)

Component	Concentration	Uncertainty	Analytical Principle
Carbon Dioxide	6.99 %	±0.03 %	NDIR
Oxygen	20.92 %	±0.08 %	MPA

Nitrogen

Balance Analyitcal Measurement Data Available Online.

Lot	Expiration	Туре	Balance	Component	Concentration	Uncertainty(%)	NIST Reference
C1106080848	09/07/2013	GMIS	N2	CO2	12.57 %	0.384	3221755
C0807251121	04/28/2019	GMIS	N2	O2	24.43 %	0.52	71001

Analytical Instrumentation							
Component	Analytical Principle	Make	Model	Serial	MPC Date		
CO2	NDIR	Horiba	VA-3013	H0000P11	07/31/2013		
02	MPA	Horiba	VA-3013	H0000P11	07/11/2013		

Z= Zero Gas S= Span Gas C= Candidate Gas

Red Ball Technical Gas Service PGVP Vendor ID # G12013 Information and Ordering 800-551-8150 Fax (318-425-6309)

fred Holt Fred Holt, CHMM

Fred Holt, CHMM Quality Control

1700 Scepter Rd

Waverly, TN 37185

931-296-3357

Certificate of Analysis - EPA Protocol Mixtures

Customer: NORDON

		Protoco
Cylinder Number:	SX49930	G1
Cylinder Pressure:	1900psig	
Last Analysis Date:	11/19/2012	
Expiration Date:	11/19/2014	

	OT USE THIS CYLINE ESSURE FALLS BEL	
	T176792-1	9302603567
otocol:	Reference #:	Lot#:

REPLICATE RESPONSES

				Date:	11/2/2012	Date:	11/19/2012
Component:	Nitrogen Die	oxide			45.60		45.20
					45.60		45.26
Certified Conc:	45.38ppm	+/-	1% REL		45.40		45.25

BALANCE GAS: Air

REFERENCE STANDARDS:

Component: Nitrogen Dioxide Reference Standard: SRM Cylinder #: CAL016152 Concentration: 98.0ppm Exp Date: 12/31/2015 Lot #: 2660-C-57

CERTIFICATION INSTRUMENTS

1	Nitrogen Dioxide
Serial Number:	HORIBA CLA-510SS 8H4SOCTJ
Measurement Principle:	CHEMI
Last Calibration:	11/2/2012

Notes:

This Certification was performed according to EPA Traceability Protocol for Assay & Certification of Gaseous Calibration Standards September 1997, using procedure G1 and/or G2.

U.S. EPA Vendor ID No.: D52012: PGVP Participation Date: 1/1/2012: PGVP Renewal Date: 12/31/12

Julie Higgins

Date: 11/26/2012

Julie Higgins

Analyst:

NOx Converter Efficiency and Response Times

Date:

January 4, 2014

METHOD 7E NOx CONVERTER EFFICIENCY TEST

Certified NO ₂ Conc. (ppmv)	45.38
Measured NOx Conc. (ppmv)	41.03
Converter Efficiency (%)	90

Criteria: Converter Efficiency should be 90% or greater

METHOD 7E RESPONSE TIMES

	NOx (ppmv)	CO (ppmv)	O ₂ (%)
Low-Level Gas Concentration	0	0	0
Upscale Gas Concentration	94.7	193	20.92
95% of Upscale Gas	90.0	183.4	19.9

	NOx	CO	O ₂
Low-Level Gas RT (sec)	70	66	30
Upscale Gas RT (sec)	63	63	33
Longer Analyzer RT Interval (sec)	70	66	33
System Response Time (sec)	70		
*System Response Time (min)	1.2		
†System Purge Time (min)	2.3		

*Longer interval of time to reach 95% of stable stable response for low & upscale level gases.

Criteria: \uparrow System Purge Time shall be \geq 2 times the System Response Time

Test Run:	D	H-010414.0)1
Parameter	NOx	CO	02
CALIBRATION ERROR DATA			
Range/Span Data			
Analyzer Range	100	200	25
Method 7E Span	94.7	193.0	20.9
Certified Calibration Gas Data			
Zero Level Certified Value (ppm or %)	0	0	0
Low Level Certified Value (ppm or %)	0.0	0.0	0.0
Mid Level Certified Value (ppm or %)	47.3	95.3	10.99
High Level Certified Value (ppm or %)	94.7	193.0	20.92
Calibration Error Observations (Direct)			
Zero Level Observed (ppm or %)	n/a	n/a	n/a
Low Level Observed (ppm or %)	0.4	0.6	0.1
Mid Level Observed (ppm or %)	46.9	96.7	11.2
High Level Observed (ppm or %)	94.7	194.6	21.3
Calibration Error Results			
Difference from Zero Level (%)	n/a	n/a	n/a
Difference from Low Level (%)	0.44	0.33	0.60
Difference from Mid Level (%)	0.39	0.71	0.87
Difference from High Level (%)	0.02	0.82	1.64
Allowable Difference (%)	(±2%)	(±2%)	(±2%)
TEST RUN DATA			
Bias Observations			
Low/Zero Level Cal. Gas Certified Value (ppm or %)	0.00	0.00	0.00
Upscale Cal. Gas Certified Value (ppm or %)	94.70	193.00	20.92
Initial Low/Zero Level Observed (ppm or %)	0.42	0.63	0.13
Initial Upscale Level Observed (ppm or %)	94.68	194.59	21.26
Initial Bias Low/Zero Level Gas (ppm or %)	1.66	-0.63	0.25
Initial Bias Upscale Level Gas (ppm or %)	92.45	192.76	21.19
Final Bias Low/Zero Level Gas (ppm or %)	0.85	0.00	0.28
Final Bias Upscale Level Gas (ppm or %)	91.68	191.43	21.21
Bias and Drift Results			
Initial Bias Low/Zero Level (%)	1.31	-0.65	0.57
Initial Bias Upscale Level (%)	-2.36	-0.95	-0.37
Final Bias Low/Zero Level (%)	0.45	-0.32	0.75
Final Bias Upscale Level (%)	-3.17	-1.63	-0.25
Allowable Bias (%)	(±5%)	(±5%)	(±5%)
Low/Zero Level Drift Calculation (%)	0.86	0.33	0.17
Upscale Level Drift Calculation (%)	0.81	0.69	0.12
Allowable Drift (%)	(±3%)	(±3%)	(±3%)
Raw Results (ppmv or %)	76.69	12.70	17.22
Minimum Detection Limit (MDL)	0.5	1.0	0.1
Corrected Results (ppmv or %)	78.7	13.1	16.9
*Final Results (ppmv or %)	78.7	13.1	16.9

*Final Results which are shown in Italics

represent the MDL for that analyte

Test Run:	0	H-010414.0	2
Parameter	NOx	CO	02
CALIBRATION ERROR DATA			
Range/Span Data			
Analyzer Range	100	200	25
Method 7E Span	94.7	193.0	20.9
Certified Calibration Gas Data			
Zero Level Certified Value (ppm or %)	0	0	0
Low Level Certified Value (ppm or %)	0.0	0.0	0.0
Mid Level Certified Value (ppm or %)	47.3	95.3	10.99
High Level Certified Value (ppm or %)	94.7	193.0	20.92
Calibration Error Observations (Direct)			
Zero Level Observed (ppm or %)	0.0	0.0	0.0
Low Level Observed (ppm or %)	0.4	0.6	0.1
Mid Level Observed (ppm or %)	46.9	96.7	11.2
High Level Observed (ppm or %)	94.7	194.6	21.3
Calibration Error Results			
Difference from Zero Level (%)	n/a	n/a	n/a
Difference from Low Level (%)	0.44	0.33	0.60
Difference from Mid Level (%)	0.39	0.71	0.87
Difference from High Level (%)	0.02	0.82	1.64
Allowable Difference (%)	(±2%)	(±2%)	(±2%)
TEST RUN DATA			
Bias Observations			
Low/Zero Level Cal. Gas Certified Value (ppm or %)	0.00	0.00	0.00
Upscale Cal. Gas Certified Value (ppm or %)	94.70	193.00	20.92
Initial Low/Zero Level Observed (ppm or %)	0.42	0.63	0.13
Initial Upscale Level Observed (ppm or %)	94.68	194.59	21.26
Initial Bias Low/Zero Level Gas (ppm or %)	0.85	0.00	0.28
Initial Bias Upscale Level Gas (ppm or %)	91.68	191.43	21.21
Final Bias Low/Zero Level Gas (ppm or %)	2.50	-1.50	0.34
Final Bias Upscale Level Gas (ppm or %)	91.54	190.52	21.25
Bias and Drift Results			
Initial Bias Low/Zero Level (%)	0.45	-0.32	0.75
Initial Bias Upscale Level (%)	-3.17	-1.63	-0.25
Final Bias Low/Zero Level (%)	2.20	-1.11	1.00
Final Bias Upscale Level (%)	-3.32	-2.11	-0.05
Allowable Bias (%)	(±5%)	(±5%)	(±5%)
Low/Zero Level Drift Calculation (%)	1.75	0.78	0.26
Upscale Level Drift Calculation (%)	0.15	0.47	0.20
Allowable Drift (%)	(±3%)	(±3%)	(±3%)
Raw Results (ppmv or %)	78.07	11.51	17.23
Minimum Detection Limit (MDL)	0.5	1.0	0.1
Corrected Results (ppmv or %)	80.4	12.3	16.9
*Final Results (ppmv or %)	80.4	12.3	16.9

*Final Results which are shown in Italics

represent the MDL for that analyte

Test Run:	0	H-010414.0	3
Parameter	NOx	CO	02
CALIBRATION ERROR DATA			
Range/Span Data			
Analyzer Range	100	200	25
Method 7E Span	94.7	193.0	20.9
Certified Calibration Gas Data			
Zero Level Certified Value (ppm or %)	0	0	0
Low Level Certified Value (ppm or %)	0.0	0.0	0.0
Mid Level Certified Value (ppm or %)	47.3	95.3	10.99
High Level Certified Value (ppm or %)	94.7	193.0	20.92
Calibration Error Observations (Direct)			
Zero Level Observed (ppm or %)	0.0	0.0	0.0
Low Level Observed (ppm or %)	0.4	0.6	0.1
Mid Level Observed (ppm or %)	46.9	96.7	11.2
High Level Observed (ppm or %)	94.7	194.6	21.3
Calibration Error Results			
Difference from Zero Level (%)	n/a	n/a	n/a
Difference from Low Level (%)	0.44	0.33	0.60
Difference from Mid Level (%)	0.39	0.71	0.87
Difference from High Level (%)	0.02	0.82	1.64
Allowable Difference (%)	(±2%)	(±2%)	(±2%)
TEST RUN DATA			
Bias Observations			
Low/Zero Level Cal. Gas Certified Value (ppm or %)	0.00	0.00	0.00
Upscale Cal. Gas Certified Value (ppm or %)	94.70	193.00	20.92
Initial Low/Zero Level Observed (ppm or %)	0.42	0.63	0.13
Initial Upscale Level Observed (ppm or %)	94.68	194.59	21.26
Initial Bias Low/Zero Level Gas (ppm or %)	2.50	-1.50	0.34
Initial Bias Upscale Level Gas (ppm or %)	91.54	190.52	21.25
Final Bias Low/Zero Level Gas (ppm or %)	2.11	-2.63	0.36
Final Bias Upscale Level Gas (ppm or %)	91.12	189.62	21.30
Bias and Drift Results			
Initial Bias Low/Zero Level (%)	2.20	-1.11	1.00
Initial Bias Upscale Level (%)	-3.32	-2.11	-0.05
Final Bias Low/Zero Level (%)	1.79	-1.69	1.13
Final Bias Upscale Level (%)	-3.76	-2.58	0.18
Allowable Bias (%)	(±5%)	(±5%)	(±5%)
Low/Zero Level Drift Calculation (%)	0.41	0.58	0.12
Upscale Level Drift Calculation (%)	0.45	0.47	0.23
Allowable Drift (%)	(±3%)	(±3%)	(±3%)
Raw Results (ppmv or %)	81.34	10.56	17.27
Minimum Detection Limit (MDL)	0.5	1.0	0.1
Corrected Results (ppmv or %)	84.1	12.7	16.9
*Final Results (ppmv or %)	84.1	12.7	16.9

*Final Results which are shown in Italics

represent the MDL for that analyte

DAQ Logs

Company	Plant Name	Unit Make	Unit Model	Unit Number	Status	Date	Time	NOx	со	02
								(ppmvd)	(ppmvd)	(%, dry)
Enterprise Products		Solar	Centaur	Calibration Error	0NOx/0CO/0O2	1/4/14	7:21	0.42	0.63	0.13
Enterprise Products		Solar	Centaur			1/4/14	7:22	3.92	0.66	20.19
Enterprise Products		Solar	Centaur		04 700.000	1/4/14	7:23	93.51	0.21	21.24
Enterprise Products		Solar	Centaur	Calibration Error	94.7NOx/20.92O2	1/4/14	7:24 7:25	94.68	0.27	21.26
Enterprise Products Enterprise Products		Solar Solar	Centaur Centaur			1/4/14 1/4/14	7:25	71.35 39.61	-6.37 -7.87	10.85 10.79
Enterprise Products		Solar	Centaur	Calibration Error	47.3NOx/10.99O2	1/4/14	7:20	46.93	-1.12	10.79
Enterprise Products		Solar	Centaur		47.51107/10.5502	1/4/14	7:28	38.41	116.68	0.17
Enterprise Products		Solar	Centaur	Calibration Error	193CO	1/4/14	7:29	24.61	194.59	0.17
Enterprise Products		Solar	Centaur		10000	1/4/14	7:30	24.27	169.53	0.16
Enterprise Products		Solar	Centaur	Calibration Error	95.3CO	1/4/14	7:31	1.07	96.67	0.14
Enterprise Products	South Carlsbad CS	Solar	Centaur			1/4/14	7:32	3.55	62.58	0.13
Enterprise Products	South Carlsbad CS	Solar	Centaur			1/4/14	7:33	38.71	48.57	0.15
Enterprise Products	South Carlsbad CS	Solar	Centaur	CE Test	NO2	1/4/14	7:34	41.77	44.67	0.17
Enterprise Products		Solar	Centaur			1/4/14	7:35	25.81	1.20	0.14
Enterprise Products		Solar	Centaur			1/4/14	7:36	1.02	1.21	0.14
Enterprise Products		Solar	Centaur			1/4/14	7:37	0.81	0.97	0.14
Enterprise Products		Solar	Centaur			1/4/14	7:38	0.82	1.23	0.15
Enterprise Products		Solar	Centaur Centaur			1/4/14 1/4/14	7:39 7:40	0.76	1.12 0.82	0.14
Enterprise Products Enterprise Products		Solar Solar	Centaur			1/4/14	7:40	0.87 0.84	1.17	0.15 0.13
Enterprise Products		Solar	Centaur			1/4/14	7:42	0.04	1.39	0.16
Enterprise Products		Solar	Centaur			1/4/14	7:43	0.76	0.92	0.14
Enterprise Products		Solar	Centaur			1/4/14	7:44	0.69	0.78	0.15
Enterprise Products		Solar	Centaur			1/4/14	7:45	1.06	0.94	0.19
Enterprise Products	South Carlsbad CS	Solar	Centaur			1/4/14	7:46	1.12	0.83	0.28
Enterprise Products	South Carlsbad CS	Solar	Centaur			1/4/14	7:47	1.26	1.15	0.52
Enterprise Products	South Carlsbad CS	Solar	Centaur			1/4/14	7:48	1.14	1.10	0.74
Enterprise Products		Solar	Centaur			1/4/14	7:49	1.19	1.02	0.93
Enterprise Products		Solar	Centaur			1/4/14	7:50	1.29	0.91	1.21
Enterprise Products		Solar	Centaur			1/4/14	7:51	1.38	1.42	1.39
Enterprise Products		Solar	Centaur			1/4/14	7:52	1.16	1.35	1.53
Enterprise Products Enterprise Products		Solar Solar	Centaur Centaur			1/4/14 1/4/14	7:53 7:54	1.41 1.37	1.26 1.21	1.78 1.94
Enterprise Products		Solar	Centaur			1/4/14	7:55	1.37	1.13	2.16
Enterprise Products		Solar	Centaur			1/4/14	7:56	1.40	1.07	2.39
Enterprise Products		Solar	Centaur			1/4/14	7:57	1.37	1.29	2.66
Enterprise Products		Solar	Centaur			1/4/14	7:58	1.52	1.44	2.89
Enterprise Products		Solar	Centaur			1/4/14	7:59	1.42	1.31	3.07
Enterprise Products	South Carlsbad CS	Solar	Centaur			1/4/14	8:00	1.52	1.22	3.31
Enterprise Products		Solar	Centaur			1/4/14	8:01	1.45	1.23	3.51
Enterprise Products		Solar	Centaur			1/4/14	8:02	1.46	1.38	3.72
Enterprise Products		Solar	Centaur			1/4/14	8:03	1.57	1.59	3.97
Enterprise Products		Solar	Centaur			1/4/14	8:04	1.54	1.23	4.19
Enterprise Products		Solar	Centaur			1/4/14		1.57	1.22	4.41
Enterprise Products Enterprise Products		Solar Solar	Centaur Centaur			1/4/14 1/4/14	8:06 8:07	1.42 0.81	1.18 0.92	1.45 0.19
Enterprise Products		Solar	Centaur			1/4/14	8:08	0.73	0.92	0.19
Enterprise Products		Solar	Centaur			1/4/14	8:09	0.78	0.90	0.18
Enterprise Products		Solar	Centaur			1/4/14	8:10	0.82	0.66	0.18
Enterprise Products		Solar	Centaur			1/4/14	8:11	22.76	13.77	17.03
Enterprise Products		Solar	Centaur			1/4/14	8:12	75.09	27.54	17.19
Enterprise Products	South Carlsbad CS	Solar	Centaur			1/4/14	8:13	76.40	20.20	18.18
Enterprise Products	South Carlsbad CS	Solar	Centaur			1/4/14	8:14	4.32	0.07	21.20
Enterprise Products		Solar	Centaur	Bias Check	0NOx/0CO/20.92O2	1/4/14	8:15	1.66	-0.63	21.19
Enterprise Products		Solar	Centaur			1/4/14	8:16	28.78	86.95	0.47
Enterprise Products		Solar	Centaur	Bias Check	94.7NOx/193CO/0O2		8:17	92.45	192.76	0.25
Enterprise Products		Solar	Centaur			1/4/14	8:18	88.63	101.50	17.01
Enterprise Products		Solar Solar	Centaur	T2 D1		1/4/14	8:19 8:20	76.49 76.40	16.82 31.71	17.18
Enterprise Products Enterprise Products		Solar Solar	Centaur Centaur	T2, P1 T2, P1	DH-010414.01	1/4/14 1/4/14	8:20 8:21	76.40 76.70	31.71 19.32	17.19 17.19
Enterprise Products		Solar	Centaur	T2, P1 T2, P1	DH-010414.01 DH-010414.01	1/4/14	0.21 8:22	76.70	19.32 16.99	17.19
Enterprise Products		Solar	Centaur	T2, P1	DH-010414.01	1/4/14	8:23	76.52	12.25	17.20
Enterprise Products		Solar	Centaur	T2, P2	DH-010414.01	1/4/14	8:24	76.64	9.08	17.19
Enterprise Products		Solar	Centaur	T2, P2	DH-010414.01	1/4/14	8:25	77.06	21.17	17.18
Enterprise Products		Solar	Centaur	T2, P2	DH-010414.01	1/4/14	8:26	77.23	14.08	17.22
Enterprise Products		Solar	Centaur	T2, P3	DH-010414.01	1/4/14	8:27	76.98	8.87	17.21

Testing by Nordon Corporation

DAQ Logs

Company	Plant Name	Unit Make	Unit Model	Unit Number	Status	Date	Time	NOx	со	02
									(ppmvd)	
Enterprise Products		Solar	Centaur	T2, P3	DH-010414.01	1/4/14	8:28	77.28	13.24	17.20
Enterprise Products		Solar	Centaur	T2, P3	DH-010414.01	1/4/14	8:29	76.89	25.32	17.20
Enterprise Products		Solar	Centaur	T2, P4	DH-010414.01	1/4/14	8:30	76.32	10.29	17.20
Enterprise Products		Solar	Centaur	T2, P4	DH-010414.01	1/4/14	8:31	76.24	14.23	17.20
Enterprise Products		Solar	Centaur	T2, P4	DH-010414.01	1/4/14	8:32	76.73	14.74	17.23
Enterprise Products		Solar	Centaur	T2, P5	DH-010414.01	1/4/14 1/4/14	8:33 8:34	76.75 77.70	15.37	17.21
Enterprise Products Enterprise Products		Solar Solar	Centaur Centaur	T2, P5 T2, P5	DH-010414.01 DH-010414.01	1/4/14	0.34 8:35	77.61	12.23 12.50	17.21 17.22
Enterprise Products		Solar	Centaur	T2, P5	DH-010414.01	1/4/14	8:36	77.56	12.06	17.22
Enterprise Products		Solar	Centaur	T2, P6	DH-010414.01	1/4/14	8:37	77.71	12.00	17.23
Enterprise Products		Solar	Centaur	T2, P6	DH-010414.01	1/4/14	8:38	77.66	12.70	17.23
Enterprise Products		Solar	Centaur	12,10	Birotorritor	1/4/14	8:39	77.64	11.35	19.70
Enterprise Products		Solar	Centaur			1/4/14	8:40	4.26	1.07	21.24
Enterprise Products		Solar	Centaur			1/4/14	8:41	3.69	3.05	18.20
Enterprise Products		Solar	Centaur			1/4/14	8:42	77.11	13.11	17.23
Enterprise Products	South Carlsbad CS	Solar	Centaur	T2, P7	DH-010414.01	1/4/14	8:43	77.46	14.12	17.22
Enterprise Products	South Carlsbad CS	Solar	Centaur	T2, P7	DH-010414.01	1/4/14	8:44	77.58	14.16	17.22
Enterprise Products	South Carlsbad CS	Solar	Centaur	T2, P7	DH-010414.01	1/4/14	8:45	77.43	12.11	17.20
Enterprise Products	South Carlsbad CS	Solar	Centaur	T2, P7	DH-010414.01	1/4/14	8:46	77.61	11.83	17.21
Enterprise Products	South Carlsbad CS	Solar	Centaur	T2, P8	DH-010414.01	1/4/14	8:47	77.62	4.15	17.22
Enterprise Products	South Carlsbad CS	Solar	Centaur	T2, P8	DH-010414.01	1/4/14	8:48	77.03	11.53	17.24
Enterprise Products	South Carlsbad CS	Solar	Centaur	T2, P8	DH-010414.01	1/4/14	8:49	77.02	11.62	17.23
Enterprise Products	South Carlsbad CS	Solar	Centaur	T2, P9	DH-010414.01	1/4/14	8:50	76.36	8.02	17.20
Enterprise Products	South Carlsbad CS	Solar	Centaur	T2, P9	DH-010414.01	1/4/14	8:51	75.50	3.66	17.26
Enterprise Products	South Carlsbad CS	Solar	Centaur	T2, P9	DH-010414.01	1/4/14	8:52	75.09	10.41	17.59
Enterprise Products	South Carlsbad CS	Solar	Centaur	T2, P10	DH-010414.01	1/4/14	8:53	74.59	6.33	17.22
Enterprise Products	South Carlsbad CS	Solar	Centaur	T2, P10	DH-010414.01	1/4/14	8:54	73.10	9.95	17.09
Enterprise Products	South Carlsbad CS	Solar	Centaur	T2, P10	DH-010414.01	1/4/14	8:55	76.57	11.42	17.27
Enterprise Products	South Carlsbad CS	Solar	Centaur	T2, P11	DH-010414.01	1/4/14	8:56	75.47	9.41	17.20
Enterprise Products	South Carlsbad CS	Solar	Centaur	T2, P11	DH-010414.01	1/4/14	8:57	75.35	8.14	17.23
Enterprise Products	South Carlsbad CS	Solar	Centaur	T2, P11	DH-010414.01	1/4/14	8:58	76.93	13.24	17.25
Enterprise Products	South Carlsbad CS	Solar	Centaur	T2, P12	DH-010414.01	1/4/14	8:59	75.55	9.57	17.26
Enterprise Products	South Carlsbad CS	Solar	Centaur	T2, P12	DH-010414.01	1/4/14	9:00	77.90	12.98	17.24
Enterprise Products	South Carlsbad CS	Solar	Centaur	T2, P12	DH-010414.01	1/4/14	9:01	77.66	11.54	17.24
					DH-010414.01 Averag			76.69	12.70	17.22
Enterprise Products		Solar	Centaur			1/4/14	9:02	70.88	6.28	16.79
Enterprise Products		Solar	Centaur			1/4/14	9:03	12.04	2.26	20.77
Enterprise Products		Solar	Centaur	Bias Check	0NOx/20.92O2	1/4/14	9:04	0.85	0.00	21.21
Enterprise Products		Solar	Centaur			1/4/14	9:05	23.26	94.71	0.26
Enterprise Products		Solar	Centaur	Bias Check	94.7NOx/0O2	1/4/14	9:06	91.68	191.43	0.28
Enterprise Products		Solar	Centaur			1/4/14	9:07	88.96	113.37	16.91
Enterprise Products		Solar	Centaur		DU 040444.00	1/4/14	9:08	77.33	13.19	17.22
Enterprise Products		Solar	Centaur	T2	DH-010414.02	1/4/14	9:09	77.43	13.64	17.21
Enterprise Products		Solar	Centaur	T2	DH-010414.02	1/4/14	9:10	77.51	11.03	17.23
Enterprise Products		Solar	Centaur	T2	DH-010414.02	1/4/14	9:11	77.43	11.77	17.22
Enterprise Products		Solar	Centaur	T2	DH-010414.02	1/4/14	9:12	77.41	12.91	17.22
Enterprise Products		Solar	Centaur	T2	DH-010414.02	1/4/14	9:13	77.71	11.17	17.22
Enterprise Products		Solar	Centaur	T2 T2	DH-010414.02	1/4/14	9:14	77.45	10.93	17.21
Enterprise Products		Solar	Centaur	T2 T2	DH-010414.02	1/4/14	9:15 0:16	77.52	10.80	17.24 17.23
Enterprise Products		Solar	Centaur	T2	DH-010414.02	1/4/14 1/4/14	9:16 9:17	77.58 77.80	12.10 11.00	17.23
Enterprise Products Enterprise Products		Solar	Centaur Centaur	T2	DH-010414.02	1/4/14	9:17 9:18			17.23
Enterprise Products		Solar Solar	Centaur	T2	DH-010414.02 DH-010414.02	1/4/14	9:10 9:19	77.75 77.70	11.32 12.53	17.24
Enterprise Products		Solar	Centaur	T2	DH-010414.02	1/4/14	9:20	77.79	14.40	17.23
Enterprise Products		Solar	Centaur	T2	DH-010414.02	1/4/14	9:20	77.73	11.35	17.24
Enterprise Products		Solar	Centaur	T2	DH-010414.02	1/4/14	9:22	77.88	10.97	17.24
Enterprise Products		Solar	Centaur	T2	DH-010414.02	1/4/14	9:22	77.92	10.37	17.24
Enterprise Products		Solar	Centaur	T2	DH-010414.02	1/4/14	9:24	78.15	10.71	17.23
Enterprise Products		Solar	Centaur	T2	DH-010414.02	1/4/14	9:25	77.92	10.31	17.23
Enterprise Products		Solar	Centaur	T2	DH-010414.02	1/4/14	9:20	78.19	10.31	17.23
Enterprise Products		Solar	Centaur	T2	DH-010414.02	1/4/14	9:27	78.74	10.32	17.24
Enterprise Products		Solar	Centaur	T2	DH-010414.02	1/4/14	9:28	79.05	10.17	17.24
Enterprise Products		Solar	Centaur	T2	DH-010414.02	1/4/14	9:29	78.60	10.36	17.24
Enterprise Products		Solar	Centaur	T2	DH-010414.02	1/4/14	9:30	78.49	10.61	17.25
Enterprise Products		Solar	Centaur	T2	DH-010414.02	1/4/14	9:31	78.74	10.00	17.24
Enterprise Products		Solar	Centaur	T2	DH-010414.02	1/4/14	9:32	78.91	10.30	17.25
Enterprise Products		Solar	Centaur	T2	DH-010414.02	1/4/14	9:33	78.91	11.49	17.25
Enterprise Products		Solar	Centaur	T2	DH-010414.02	1/4/14	9:34	78.51	12.79	17.23
,									-	-

Testing by Nordon Corporation

DAQ Logs

Company	Plant Name	Unit Make	Unit Model	Unit Number	Status	Date	Time	NOx	со	02
Enternice Dreducte	Couth Corlahad CC	Calar	Contour	то		414144	0.25	,	(ppmvd)	
Enterprise Products		Solar	Centaur	T2	DH-010414.02	1/4/14	9:35	78.71	11.39	17.26
Enterprise Products		Solar	Centaur	T2 T2	DH-010414.02	1/4/14 1/4/14	9:36 9:37	78.28	10.84	17.21 17.24
Enterprise Products Enterprise Products		Solar Solar	Centaur Centaur	T2 T2	DH-010414.02 DH-010414.02	1/4/14	9:37 9:38	78.48 78.47	10.99 12.85	17.24
Enterprise Products		Solar	Centaur	T2 T2	DH-010414.02 DH-010414.02	1/4/14	9.30 9:39	76.47	12.65	17.25
Enterprise Products		Solar	Centaur	T2 T2	DH-010414.02 DH-010414.02	1/4/14	9.39 9:40	77.63	14.62	17.24
	South Carisbau CS	Solai	Centaul	12	DH-010414.02 Averag		9.40	78.07	11.51	17.24
Enterprise Products	South Carlshad CS	Solar	Centaur		DII-010414.02 Averag	1/4/14	9:41	61.99	16.81	21.18
Enterprise Products		Solar	Centaur	Bias Check	0NOx/20.92O2	1/4/14	9:42	2.50	-1.50	21.10
Enterprise Products		Solar	Centaur	Blac chook	0110/020.0202	1/4/14	9:43	21.31	58.04	1.49
Enterprise Products		Solar	Centaur	Bias Check	94.7NOx/0O2	1/4/14	9:44	91.54	190.52	0.34
Enterprise Products		Solar	Centaur		0	1/4/14	9:45	86.46	73.20	17.17
Enterprise Products		Solar	Centaur			1/4/14	9:46	78.59	12.03	17.24
Enterprise Products		Solar	Centaur	T2	DH-010414.03	1/4/14	9:47	79.11	10.31	17.26
Enterprise Products		Solar	Centaur	T2	DH-010414.03	1/4/14	9:48	79.25	11.30	17.27
Enterprise Products		Solar	Centaur	T2	DH-010414.03	1/4/14	9:49	79.52	9.92	17.26
Enterprise Products	South Carlsbad CS	Solar	Centaur	T2	DH-010414.03	1/4/14	9:50	79.99	9.71	17.24
Enterprise Products		Solar	Centaur	T2	DH-010414.03	1/4/14	9:51	80.48	9.48	17.26
Enterprise Products	South Carlsbad CS	Solar	Centaur	T2	DH-010414.03	1/4/14	9:52	80.27	9.44	17.24
Enterprise Products	South Carlsbad CS	Solar	Centaur	T2	DH-010414.03	1/4/14	9:53	80.31	9.91	17.26
Enterprise Products	South Carlsbad CS	Solar	Centaur	T2	DH-010414.03	1/4/14	9:54	80.31	10.72	17.25
Enterprise Products	South Carlsbad CS	Solar	Centaur	T2	DH-010414.03	1/4/14	9:55	80.18	9.00	17.25
Enterprise Products	South Carlsbad CS	Solar	Centaur	T2	DH-010414.03	1/4/14	9:56	80.76	10.20	17.27
Enterprise Products	South Carlsbad CS	Solar	Centaur	T2	DH-010414.03	1/4/14	9:57	81.01	16.00	17.28
Enterprise Products	South Carlsbad CS	Solar	Centaur	T2	DH-010414.03	1/4/14	9:58	81.36	11.69	17.26
Enterprise Products		Solar	Centaur	T2	DH-010414.03	1/4/14	9:59	82.09	16.89	17.28
Enterprise Products		Solar	Centaur	T2	DH-010414.03	1/4/14	10:00	82.44	11.24	17.28
Enterprise Products		Solar	Centaur	T2	DH-010414.03	1/4/14	10:01	82.25	10.23	17.26
Enterprise Products		Solar	Centaur	T2	DH-010414.03	1/4/14	10:02	82.07	10.78	17.24
Enterprise Products		Solar	Centaur	T2	DH-010414.03	1/4/14		82.19	10.41	17.26
Enterprise Products		Solar	Centaur	T2	DH-010414.03	1/4/14	10:04	82.13	9.73	17.27
Enterprise Products		Solar	Centaur	T2	DH-010414.03	1/4/14		82.25	10.93	17.25
Enterprise Products		Solar	Centaur	T2	DH-010414.03	1/4/14	10:06	82.14	10.30	17.27
Enterprise Products		Solar	Centaur	T2	DH-010414.03	1/4/14	10:07	82.23	9.32	17.27
Enterprise Products		Solar	Centaur	T2	DH-010414.03	1/4/14	10:08	82.22	9.21	17.28
Enterprise Products		Solar	Centaur	T2	DH-010414.03	1/4/14		81.95	11.52	17.27
Enterprise Products		Solar	Centaur	T2	DH-010414.03	1/4/14	10:10	82.35	9.54	17.29
Enterprise Products		Solar	Centaur	T2	DH-010414.03	1/4/14	10:11	82.21	10.07	17.29
Enterprise Products		Solar	Centaur Centaur	T2 T2	DH-010414.03	1/4/14	10:12 10:13	82.23 82.22	9.75 9.70	17.28 17.28
Enterprise Products		Solar	Centaur	T2 T2	DH-010414.03	1/4/14		82.22 82.17		17.20
Enterprise Products Enterprise Products		Solar Solar	Centaur	T2 T2	DH-010414.03	1/4/14 1/4/14	10:14	82.17 82.24	9.18 9.96	17.27
Enterprise Products		Solar	Centaur	T2 T2	DH-010414.03 DH-010414.03	1/4/14		82.24 82.21	9.96 9.92	17.29
Enterprise Products		Solar	Centaur	T2	DH-010414.03	1/4/14		82.23	9.52 9.58	17.20
	South Carisbau CS	Solai	Centaul	12	DH-010414.03 Averag		10.17	81.34	10.56	17.23
Enterprise Products	South Carlshad CS	Solar	Centaur		Director 14.05 Averag	1/4/14	10.18	49.14	12.33	21.26
Enterprise Products		Solar	Centaur	Bias Check	0NOx/20.92O2	1/4/14		2.11	-2.63	21.20
Enterprise Products		Solar	Centaur	Dido Offeck	01107/20.0202	1/4/14		38.80	116.05	0.41
Enterprise Products		Solar	Centaur	Bias Check	94.7NOx/0O2	1/4/14		91.12	189.62	0.36
Enterprise Products		Solar	Centaur	2.20 011000	CCAUCE	1/4/14		86.39	62.81	17.20
·										
Enterprise Products		Solar	Centaur			1/4/14		40.92	1.54	0.08
Enterprise Products		Solar	Centaur	RT	NO2	1/4/14		41.03	1.46	0.09
Enterprise Products		Solar	Centaur			1/4/14		19.78	1.46	0.08
Enterprise Products	South Carlsbad CS	Solar	Centaur			1/4/14	16:07	-2.28	0.24	0.01

New Mexico Environment Department 525 Camino de los Marquez, Suite 1 Santa Fe, NM 87505 Phone (505) 476-4300 Fax (505) 476-4375

Version 1/1	/2010
NM	IED USE ONLY
DTS	
TENDO	
TEMPO	

UNIVERSAL STACK TEST NOTIFICATION, PROTOCOL AND REPORT FORM

NME	ED USE ONLY
Staff	
Admin	

Submit to: Stacktest.aqb@state.nm.us

	I. DATABASE HEADER INFORMATION (drop down menus in bold)					
a. Al# 218	Test Report Periodic Test (Portable Analyzer)					
d. Company Name: e. Facility Name:						
Enterpris	Enterprise Field Services LLC South Carlsbad Compressor Station					
f. Emission Unit N				on (boiler, Waukesha 7042		
1, 2		Turbines,	Sol	ar Centaur T-47	702	
h. Reports - Track			i. I	Proposed Test Date:	j. Actual test date:	
from notification re	. Reports - Tracking Number CMT I. Proposed Test Date: j. Actual test date: om notification response: Week of 1/19/15 1/20/2015					
Annual pe	Annual performance test of existing turbines pursuant to NSR condition A205C.					

II. GENERAL COMPANY AND FACILITY INFORMATION							
a.Company Address:			k Facility Address:				
PO Box 4324			Roberson Road, I	Eddv Cou	ntv		
b. City:	c. State:	d. Zip:	I. City:	m. State:	n. Zip:		
Houston	ТХ	77210 ⊥	Loving	NM	88526		
e. Environmental Contact:			o. Facility Contact:	p. Title:			
Dina Babinski	Dina Babinski ENV Supervisor		Thomas Green	Area	Supervisor		
g. Phone Number:	h. Cell Nu		q. Phone Number:	r. Cell Nu			
210-528-3824	210-2	32-4880	575-885-7235	575-708-0015			
i. Email Address:			s. Email Address:				
dibabinski@epro	od.com		tdgreen@eprod.com				
j. Title V Permit Number:			t. NSR Permit Number:				
P-130-R2			NSR 220M8-R1				
u. Detailed driving directions from							
From Loving, U	From Loving, UN285 north to Roberson Road west, Roberson Road west to						
station.							

III. TEST	ING FIRM	
a. Company:	g. Contact:	
Compliance Services and Testing	Chris Spencer	
b. Address 1:	h. Title:	
7108 Washington NE Ste. A	Director	
c. Address 2:	i. Office Phone:	j. Cell Phone:
PO Box 94191-87199		505-681-4909

NMED Air Quality Bureau

UNIVERSAL STACK TEST NOTIFICATION, PROTOCOL AND REPORT FORM

Page 2 of 4

d. City:	e. State:	f. Zip:	k. Email Addre	ess:	
Albuquerque	NM	87109	cspence	er@comptesting.c	om
	IV. EMISSIO		STACK PARA	METERS	
a. Emission Unit Number:	b.	Make & Model Num	ber	m. Velocity (ft/sec):	177
1 and 2	S	olar Centa	ur T-4702	n. Temperature (°C):	486
c. Serial Number:	d.	Permitted Capacity:		o. Stack Diameter, D (in.):	NA
See section g.	3	609 hp		p. Distance to Stack Bends or	Obstructions:
e Exceptions: Explain if test is late, rescheduled, related to an enforcement action:			Upstream, Distance A (in.):	NA	
				Downstream, Distance B (in.):	NA
g. Emission Unit Description and Turbine 1 SN: OH Turbine 2 SN: OH Natural gas-fired t compression.	D10C7915 E12C7057		as	A ↓ A A ↓ A A ↓ A A ↓ A A ↓ A A A A A A A A A A A A A	IPLE PORT SION
h. Installation Date: i	. Startup Date:	k. Date F	Reached Max. Capacity:		
I. Control Equipment Description	as listed in permit	(model, ser. # etc. if	applicable):	EXAMPLE VIEW SHOWING SAMPLE PORT TO FLOV	VDISTURBANCES
				Attach an explanation or dra difficult or unusual stack get	

	V. POLLUTANTS AND PROPOSED TEST METHODS						
Pollutant	Pollutant or Parameter: Proposed Test Methods (Deviations from approved methods require supporting documentation and prior authorization)						
\square	☑ Portable Analyzer Methods for NOx, CO, SO₂						
	NOx	EPA Method 7E					
	со	EPA Method 10					
	SO2	EPA Method 6					
	VOCs	(Specify)					
	HAPs	(Specify)					
	PM (TSP)	EPA Method 5					
	PM10	EPA Method 201					
	PM2.5	(Specify)					
	Opacity	EPA Method 9					
	Visual E.	EPA Method 22					
	Stack Flow	EPA Methods 1 - 3					
	Moisture	EPA Method 4					
	Other	(Specify)					
	Other	(Specify)					

List Specific VOC's and HAP's:

	VI. PROPOSE	D TEST RUN	I AND TEST LOAD INFOR	MATION			
a. Number of Test Runs:	b. Run Duration	Run Duration c. Required by (regulation or permit number): d. Specific Condition or Section:					
3	20 min	NSR 220 A205C A205C					
PLEASE NOTE – Default run	duration is 60 minutes, ur	nless otherwise	specified by an applicable regula	tion.			
e. Expected Load:	f. Percent of Permitted	Capacity:	g. Is this an opacity te	est?	h. If yes, no. of observation pts .:		
>90%	>90%		Yes 🗌 🛛 No 🖄	3			
conducted.	100% of permitted load	will limit unit o	peration to 110% of tested load	until a new	v initial compliance test is		
PLANT OR UNIT OPER	RATING PARAMETE	RS TO BE N	MONITORED				
j. List and explain the plant op	erating parameters that w	ill be monitored	and applicable permit conditions	or regulator	y standards.		
Fuel usage, com	pressor operation	ating pai	rameters, turbine	operat	ing parameters.		

VII. ADDITIONAL DETAILS (where applicable)		
RATA and INSTRUMENTAL ANALYZER CALIBRATION PROCEDURES		
a. Do any of the methods you are proposing utilize instrumental analyzers (i.e.; EPA Methods 3A, 6C, 7E, 10, 18, 25/25A, 320 etc.)? If yes, briefly describe analyzer calibration procedures and/or calibration standard procedures. Enter the highest pollutant concentration expected and the proposed concentrations of calibration gases.	🛛 Yes	🗌 No
As described in the methods.		
SAMPLING TRAIN LEAK CHECK PROCEDURES		
b. Do any of the methods you are proposing utilize the EPA Method 5 sampling train (i.e.; EPA Methods 1-4, 5, 17, 26/26A, 29, etc.)? If yes, briefly describe sampling train and pitot tube leak check procedures:	Yes	🛛 No
EPA METHOD 19 IN LIEU OF EPA METHODS 1-4		
c. Are you proposing to utilize EPA Method 19 in lieu of EPA Methods 1-4? If yes, explain why you believe this proposal is justified:	Xes	🗌 No
Method 19 with use of a calibrated fuel meter and current fuel gas anal	ysis.	
PLEASE NOTE – EPA Method 19 may be utilized in lieu of EPA Methods 1-4, subject to the approval of the Department. If you are p		
EPA Method 19 in lieu of EPA Methods 1-4, you MUST include a recent fuel gas heating value analysis as well as a recent fuel flow r certificate, preferably conducted on the day of the test, but no earlier than three months prior to the test date. If the analyses have be	een conduct	ed prior
to the test date, you MUST append the certificates to the protocol. If conducted on the day of the test, you MUST append the certificate report.	ates to the f	inal test

_						
	VIII. ATTACHMENTS (as needed to support proposed test; check all that apply)					
NO	TIFICATION/PROTOCOL ATTACHMENTS					
	Road Map Indicating Directions from Nearest New Mexico Town to Facility					
	Schematic of process being tested showing emission points, sampling sites and stack cross-section					
	Copy of proposed test methods (except for those promulgated test methods found in 40 CFR 51, 60, 61 and 63)					
	Fuel Heating Value Analysis					
	Fuel Flow Meter Calibration Certificate					
	Other:					
	Other:					
TES	ST REPORT ATTACHMENTS					
	Section 2. Tables of Results					
	Supporting Documents (Specify)					
Ret	ain Report Section 3 - Test Procedures, Data, Calculations, Appendices – 2 years NSR permits, 5 years TV					
	IX. CERTIFICATION					
acce	document has been prepared under my supervision and is accurate and complete to the best of my knowledge. I understand that eptance of this protocol does not waive the requirements of any permit or regulation. I understand that any procedural errors or ssions are the sole responsibility of the permit holder.					

Signature:	Print Name and Title:	Date:
	Jon E. Fields, Director-Field Compliance	
Lon Field		8-18.2014
And made		0.10.0011
Responsible Official for Title V?	No (R.O signature not required for routine pe	riadia teating)
Besponsible Official for Title V? These	∠ No (R.O signature not required for routine pe	nodic testing)

2015 COMPLIANCE TEST REPORT

ON EXHAUST EMISSIONS

FROM TWO SOLAR CENTAUR T-4702 CENTRIFUGAL INTERNAL COMBUSTION ENGINE

AT THE SOUTH CARLSBAD COMPRESSOR STATION

> NEAR LOVING, NEW MEXICO

> > PREPARED FOR

ENTERPRISE FIELD SERVICES

JANUARY 2015

PROJECT NUMBER 1187

STATE OF NEW MEXICO ENVIRONMENT DEPARTMENT AIR QUALITY BUREAU PERMIT NUMBER 0220-M8-R1

PREPARED BY COMPLIANCE SERVICES & TESTING

P.O. Box 94191-87199 7108 Washington St. NE Suite A Albuquerque, NM 87109 (505) 681-4909 Phone www.comptesting.com February 5, 2015

Dina Babinski Enterprise Field Services PO Box 4324 Houston, TX 77210

RE: Annual testing at the South Carlsbad Compressor Station.

Mrs. Babinski:

On January 20, 2015 CST performed annual emissions testing at the South Carlsbad Compressor Station to satisfy the requirements of the New Mexico Environment Department Air Quality Bureau Permit Number 0220-M8-R1. The unit is identified as follows:

Engine Information										
Unit Number	1	2								
Engine Make	So	lar								
Engine Model	T-4702									
Serial Number	OHD10-C-7915	OHE12-C-7057								
Rated Horsepower	3609									
Rated Speed 15000										

The testing followed procedures found in the NMED "SOP for Using Portable Analyzers in Performance Testing." Mass emission rates were calculated using EPA Method 19 (combustion stoichiometry). The rates in terms of pounds per hour and tons per year were calculated using the oxygen F-factor (DSCFex/MMBtu), the fuel consumption rate (SCFH), the fuel higher heating value (Btu/SCF), and the pollutant concentration. Fuel consumption was monitored from a fuel meter. Three twenty-minute test runs were performed. The attached data sheet gives a detailed summary of the results of this test. Quality assurance data sheets are also attached. Strip charts are on file, and are available if needed.

Respectfully,

Derang Calm

Jeremy Cahn Compliance Services and Testing

Summary of Results South Carlsbad Compressor Station, Unit #1

Company: Enterprise Field Services Location: South Carlsbad Compressor Station Source: Solar Centaur 40-T4702 SN: OHD10C7915 Engine Site Rating: 3609 Hp @ 15000 RPM

Technician: SR				
Test Run Number	1	2	3	
EU Number	1	1	1	
Date	1/20/15	1/20/15	1/20/15	
Start Time	9:51	10:16	10:41	
Stop Time	10:11	10:36	11:01	
Engine/Compressor Operation	•		•	
Gas Producer Speed (%)	95.0	95.4	95.4	
Power Turbine Speed (%)	82.0	82.6	82.5	
Engine Horsepower (Hp)	3429	3443	3443	
Engine Compressor Discharge, PCD (psig)	101	102	102	
Fuel Valve Output (%)	58.7	59.3	59.4	
Suction Pressure (psig)	404	404	404	
Discharge Pressure (psig)	689	691	690	
Suction Temperature (°F)	130	132	133	
Discharge Temperature (°F)	167	172	173	
Air Inlet Temperature (T1) (°F)	61	64	65	
Average Exhaust Temperature (T5) (°F)	1104	1121	1126	
Compressor Throughput (MMCFD)	78.9	78.9	78.9	
Fuel Data	1		1	
Measured Fuel Consumption (MSCFD)	788.7	788.7	788.7	
Measured Fuel Consumption (SCFH)	32861	32861	32861	
O2 F-Factor (DSCF/MMBtu, HHV basis)	8697	8697	8697	
Fuel Heating Value (Btu/SCF, HHV)	1148	1148	1148	
BHp Specific Fuel Rate (Btu/Hp-hr, HHV basis)	9871	9871	9871	
Ambient Conditions	1		1	
Pressure Altitude (MSL)	3010	3010	3010	
Atmospheric Pressure ("Hg)	26.83	26.83	26.83	
Dry Bulb Temperature (°F)	60.3	62.4	63.7	
Wet Bulb Temperature (°F)	47.3	48.2	49.1	
Humidity (lb/lb air)	0.0046	0.0046	0.0048	
Measured Exhaust Emissions (Corrected)	•		•	Average
NOx (ppmv)	82.52	83.57	83.12	83.07
CO (ppmv)	16.45	15.56	15.41	15.81
O2 (vol %)	16.52	16.52	16.53	16.52
CO2 (vol %)	2.52	2.54	2.57	2.54
Moisture Content (% - from Method 4)	4.64	4.64	4.64	4.64
Fo (Natural Gas)	1.74	1.73	1.70	1.72
Exhaust Flow Rates (EPA Method 19 - Fuel Based)	·	·	·	
Dry SCFH (dry basis, calc. from Fuel Consumption)	1.57E+06	1.57E+06	1.57E+06	1.57E+0
Calculated Mass Emission Rates (EPA Methods 1-4)				
NOx (lbs/hr) { Permit Limit = 27.0 }	15.43	15.63	15.58	15.55
CO (lbs/hr) { Permit Limit = 7.4 }	1.87	1.77	1.76	1.80
NOx (tons/yr) { Permit Limit = 118.3 }	67.60	68.46	68.24	68.10
CO (tons/yr) { Permit Limit = 32.5 }	8.20	7.76	7.70	7.89

Summary of Results South Carlsbad Compressor Station, Unit #2

Company: Enterprise Field Services Location: South Carlsbad Compressor Station Source: Solar Centaur 40-T4702 SN: OHE12C7057 Engine Site Rating: 3609 Hp @ 15000 RPM

Technician: SR				
Test Run Number	1	2	3	
EU Number	2	2	2	
Date	1/20/15	1/20/15	1/20/15	
Start Time	8:29	8:54	9:19	
Stop Time	8:49	9:14	9:39	
Engine/Compressor Operation	•			
Gas Producer Speed (%)	94.8	94.7	94.8	
Power Turbine Speed (%)	84.1	83.7	83.6	
Engine Horsepower (Hp)	3421	3418	3421	
Engine Compressor Discharge, PCD (psig)	105	105	104	
Fuel Valve Output (%)	37.8	37.7	38.1	
Suction Pressure (psig)	237	238	238	
Discharge Pressure (psig)	416	414	413	
Suction Temperature (°F)	49	49	49	
Discharge Temperature (°F)	129	127	127	
Air Inlet Temperature (T1) (°F)	52	53	54	
Average Exhaust Temperature (T5) (°F)	1054	1056	1059	
Compressor Throughput (MMCFD)	80.6	80.6	80.6	
Fuel Data		1	1	•
Measured Fuel Consumption (MSCFD)	788.7	788.7	788.7	
Measured Fuel Consumption (SCFH)	32861	32861	32861	
O2 F-Factor (DSCF/MMBtu, HHV basis)	8697	8697	8697	
Fuel Heating Value (Btu/SCF, HHV)	1148	1148	1148	
BHp Specific Fuel Rate (Btu/Hp-hr, HHV basis)	9871	9871	9871	
Ambient Conditions		1	1	
Pressure Altitude (MSL)	3000	3000	3010	
Atmospheric Pressure ("Hg)	26.84	26.84	26.83	
Dry Bulb Temperature (°F)	47.7	48.7	51.1	
Wet Bulb Temperature (°F)	40.6	41.7	43	
Humidity (lb/lb air)	0.0043	0.0045	0.0046	
Measured Exhaust Emissions (Corrected)				Avera
NOx (ppmv)	81.07	83.33	84.59	83.0
CO (ppmv)	10.51	9.99	10.61	10.3
O2 (vol %)	16.71	16.71	16.73	16.7
CO2 (vol %)	2.41	2.41	2.45	2.43
Moisture Content (% - from Method 4)	4.64	4.64	4.64	4.64
Fo (Natural Gas)	1.74	1.74	1.70	1.72
Exhaust Flow Rates (EPA Method 19 - Fuel Based)				
Dry SCFH (dry basis, calc. from Fuel Consumption)	1.64E+06	1.64E+06	1.64E+06	1.64E-
Calculated Mass Emission Rates (EPA Methods 1-4)				
NOx (lbs/hr) { Permit Limit = 27.0 }	15.85	16.29	16.62	16.2
CO (lbs/hr) { Permit Limit = 7.4 }	1.25	1.19	1.27	1.24
NOx (tons/yr) { Permit Limit = 118.3 }	69.42	71.36	72.79	71.1
CO (tons/yr) { Permit Limit = 32.5 }	5.48	5.21	5.56	5.41

Quality Assurance Report - Sample System #1 Converter Efficiency Test, Interference Test, Response Time and Bias Test, Mass Flow Controller Check, Pre and Post Leak Checks

		Ν	Ox Converter	Efficiency Chec	ek –				
Method: 7E Secti	ion 8.2.4								
Frequency: Befor	re each field te	est							
Criteria: Equal to	o or greater th	an 90% convers	ion efficiency						
Test Date:	1/19/15	Technician:	SR						
-		NO2/N2	Ralance	Res	sults				
		Certifie			ppmv				
Observed Value 47.1 ppmv									
		Converter	Efficiency		5%				
			Interference R	esponse Checks		-			
Mathad: 7E Seat	ion 9 2 7		0						
<u>Method:</u> 7E Secta Frequency: Prior		in the field or at	ter major alter	tion or modific	ation				
<u>Criteria:</u> Sum of		<i>v v</i>		nion or mousice	illon				
		•							
Test Date:	1/20/15	Technician:	SR		<u>.</u>				
Interference			Analyzer Response (ppmv or % as applicable)						
Type Gas	Conc.	NOx (ppmv)	CO (ppmv)	SO2 (ppmv)	THC (ppmv)	O2 (%)	CO2 (%)		
NOx in N2	50 ppm		N/A			0.00	0.01		
CO in N2	50 ppm	N/A				0.00	0.01		
O2 in N2	10.0%	0.23	-0.21				N/A		
CO2 in N2	10.0%	0.23	-0.21			N/A			
THC in air									
		Gas Diluti	on Calibration	- 2 Mass Flow	Controllers				
<u>Method:</u> 205									
Frequency: Befor									
Criteria: Produce	e Calibration	gases whose mea	usured values a	re within $\pm 2\%$ c	of predicted value	es.			
Ν	Manufacturer:	Environics		Cal Gas:	NOx				
M	odel Number:	Series 4040		Test Date:	1/19/15				
Se	erial Number:	4456		Technician:	SR				
		MFC 3			MFC 2				
-	Direct Inject	Diluted Conc.	Diluted Conc.	Direct Inject	Diluted Conc.	Diluted Conc.			
Certified Value:	242	2957	2957	242	2957	2957			
Ex. Dilution:		242	150		750	900			
Injection 1	246	239	147	245	743	896			
Injection 2	248	238	148	244	746	894			
Injection 3 Average	246 246.67	237 238.00	147 147.33	245 244.67	742 743.67	897 895.67			
% Variation	0.47%	0.42%	0.39%	0.24%	0.28%	0.17%			
% Difference	-1.91%	1.67%	1.79%	-1.10%	0.85%	0.48%			
L		Sampla	Sustam Rias &	Response Time	a Chaak				
		Sumple	System Dius a	Kesponse Time	e Check				
Method: 7E Section									
Frequency: Befor									
<u>Criteria:</u> 5% of c			a voor over time						
<u>Criteria:</u> Note the			*						
Test Date:	1/20/15	Technician:	SR	-					
			<u>Sample Syste</u>	<u>m Bias Check</u>					
Introduction '		NOx (ppmv)	CO (ppmv)	SO2 (ppmv)	THC (ppmv)	O2 (%)	CO2 (%)		
Direct Zer	1	0	0.0			0.0	0.0		
Bias In Zero B		-1	-0.3			0.0	0.1		
Zero B Direct Spa		-0.4% 49.6	-0.3% 50.1	I		0.0%	<u>1.0%</u> 10.0		
Bias In		50.6	50.1			10.0	10.0		
Span B		1.1%	0.3%			0.0%	1.0%		
				Response Time	,				
Param	eter	NOx (ppmv)	CO (ppmv)	SO2 (ppmv)	THC (ppmv)	O2 (%)	CO2 (%)		
Upscale Re		35	45	502 (ppmv)	THC (ppmv)	50	55		
Downscale I		40	50			55	55		
Purge Time 110 seconds									
			Sample System	m Leak Check					
Frequency: Daily	or when over	the sample moto	1 1		ST SOP				
<u><i>rrequency:</i></u> Daily Criteria: Less tha		1 2		(51 501)				
<u>erneru.</u> Less Int	Test Date	crease in pressu	i e in one minut	(101 501)					
	1/20/15	Vacuum Initial:	0.0 inches	/ minute at	13 inches Hg				
		Vacuum Final:	0.0 inches	/ minute at	13 inches Hg				
					U				

Quality Assurance Worksheet Instrument Calibration and Drift Correction

Company: Enterprise Field Services

Location: South Carlsbad Compressor Station

Source: Solar Centaur 40-T4702 SN: OHD10C7915

Engine Site Rating: 3609 Hp @ 15000 RPM Test Date: Tuesday, January 20, 15

	UNIT	NUMBER	1			TEST RUN 1					TEST	F RUN 2				TEST	RUN 3		
GAS	CALIBRATI	ON GAS	INITIAL CA	LIBRATION	Start Run	Start Run ZERO and SPAN		Start Run	Start Run ZERO and SPAN				Start Run ZERO and SPAN		PAN				
LEVELS	CONCENTR	ATIONS	& LINEAR	ITY CHECK	9:51	CAI	IBRATION	CHECK		10:16	CAL	LIBRATION	CHECK		10:41	CAI	IBRATION	СНЕСК	
PER	Certified	Target	Analyzer	Calibration	Stop Run	Initial	Final	Drift	Bias	Stop Run	Initial	Final	Drift	Bias	Stop Run	Initial	Final	Drift	Bias
METHOD	Concentration	(% Span)	Response	Error < 2%	10:11	Response	Response	< 3%	< 5%	10:36	Response	Response	< 3%	< 5%	11:01	Response	Response	< 3%	< 5%
	NOx				Avg. ppmv					Avg. ppmv					Avg. ppmv	I			
Zero	0.0 ppmv	0.0	-0.4 ppmv	-0.4%	82.00	-1.6 ppmv	-0.6 ppmv	1.1%	0.6%	83.00	-0.6 ppmv	-0.7 ppmv	0.1%	0.7%	83.00	-0.7 ppmv	0.8 ppmv	1.6%	0.8%
					Corr. ppmv					Corr. ppmv					Corr. ppmv				
Mid	50.0 ppmv	52.6	49.6 ppmv	-0.4%	82.52	49.3 ppmv	49.2 ppmv	0.2%	0.8%	83.57	49.2 ppmv	49.6 ppmv	0.8%	0.4%	83.12	49.6 ppmv	50.3 ppmv	1.4%	0.3%
High	95.0 ppmv	100.0	95.8 ppmv	0.8%	Cal. Span					Cal. Span					Cal. Span				
1	Analyzer Range =	100 ppmv	Span =	95.0	95					95					95				
	CO				Avg. ppmv					Avg. ppmv					Avg. ppmv				
Zero	0.0 ppmv	0.0	0 ppmv	0.0%	15.00	-1.5 ppmv	-1.8 ppmv	0.3%	1.9%	14.00	-1.8 ppmv	-1.5 ppmv	0.3%	1.6%	14.00	-1.5 ppmv	-1.5 ppmv	0.0%	1.6%
					Corr. ppmv					Corr. ppmv					Corr. ppmv				
Mid	50.0 ppmv	52.6	50.1 ppmv	0.1%	16.45	49.3 ppmv	48.6 ppmv	1.4%	1.5%	15.56	48.6 ppmv	48.7 ppmv	0.2%	1.4%	15.41	48.7 ppmv	48.9 ppmv	0.4%	1.2%
High	95.0 ppmv	100.0	95.6 ppmv	0.6%	Cal. Span					Cal. Span					Cal. Span				
1	Analyzer Range =	100 ppmv	Span =	95.0	95					95					95				
	02				Avg.%					Avg.%					Avg.%				
Zero	0.0%	0.0	0.0%	0.0%	16.52	0.0%	0.0%	0.0%	0.0%	16.52	0.0%	0.0%	0.0%	0.0%	16.53	0.0%	0.0%	0.0%	0.0%
					Corr. %					Corr. %					Corr. %				
Mid	10.0%	47.6	10.0%	0.0%	16.52	10.0%	10.0%	0.0%	0.0%	16.52	10.0%	10.0%	0.0%	0.0%	16.53	10.0%	10.0%	0.0%	0.0%
High	21.0%	100.0	21.0%	0.0%	Cal. Span					Cal. Span					Cal. Span				
1	Analyzer Range =	22.0%	Span =	= 21.0	21					21					21				
	CO2				Avg.%					Avg.%					Avg.%				
Zero	0.0%	0.0	0.0%	0.0%	2.79	0.3%	0.3%	0.0%	3.0%	2.81	0.3%	0.3%	0.0%	3.0%	2.83	0.3%	0.3%	0.0%	3.0%
					Corr. %					Corr. %					Corr. %				
Mid	5.0%	50.0	5.2%	2.0%	2.52					2.54					2.57				
High	10.0%	100.0	10.0%	0.0%	Cal. Span	10.2%	10.2%	0.0%	2.0%	Cal. Span	10.2%	10.2%	0.0%	2.0%	Cal. Span	10.2%	10.1%	1.0%	1.0%
1	Analyzer Range =	11.0%	Span =	10.0	10					10					10				

Quality Assurance Worksheet Instrument Calibration and Drift Correction

Company: Enterprise Field Services

Location: South Carlsbad Compressor Station

Source: Solar Centaur 40-T4702 SN: OHE12C7057

Engine Site Rating: 3609 Hp @ 15000 RPM Test Date: Tuesday, January 20, 15

	UNIT	NUMBER	2			TEST RUN 1				TEST	FRUN 2				TEST	TRUN 3			
GAS	CALIBRATI	ON GAS	INITIAL CA	LIBRATION	Start Run		ZERO and S	PAN		Start Run		ZERO and S	PAN		Start Run ZERO and SPA		PAN		
LEVELS	CONCENTR	ATIONS	& LINEAR	ITY CHECK	8:29	CAI	JBRATION	СНЕСК		8:54	CAL	LIBRATION	СНЕСК		9:19	CAI	IBRATION	СНЕСК	
PER	Certified	Target	Analyzer	Calibration	Stop Run	Initial	Final	Drift	Bias	Stop Run	Initial	Final	Drift	Bias	Stop Run	Initial	Final	Drift	Bias
METHOD	Concentration	(% Span)	Response	Error < 2%	8:49	Response	Response	< 3%	< 5%	9:14	Response	Response	< 3%	< 5%	9:39	Response	Response	< 3%	< 5%
	NOx				Avg. ppmv					Avg. ppmv					Avg. ppmv				
Zero	0.0 ppmv	0.0	-0.4 ppmv	-0.4%	82.00	-0.8 ppmv	-0.9 ppmv	0.1%	0.9%	83.00	-0.9 ppmv	-0.6 ppmv	0.3%	0.6%	84.00	-0.6 ppmv	-1.6 ppmv	1.1%	1.7%
					Corr. ppmv					Corr. ppmv					Corr. ppmv				
Mid	50.0 ppmv	52.6	49.6 ppmv	-0.4%	81.07	50.6 ppmv	49.9 ppmv	1.4%	0.1%	83.33	49.9 ppmv	49.1 ppmv	1.6%	0.9%	84.59	49.1 ppmv	49.3 ppmv	0.4%	0.7%
High	95.0 ppmv	100.0	95.8 ppmv	0.8%	Cal. Span					Cal. Span					Cal. Span				
1	Analyzer Range =	100 ppmv	Span =	95.0	95					95					95				
	СО				Avg. ppmv					Avg. ppmv					Avg. ppmv				
Zero	0.0 ppmv	0.0	0 ppmv	0.0%	10.00	-0.3 ppmv	-1.1 ppmv	0.8%	1.2%	9.00	-1.1 ppmv	-1.3 ppmv	0.2%	1.4%	9.40	-1.3 ppmv	-1.5 ppmv	0.2%	1.6%
					Corr. ppmv					Corr. ppmv					Corr. ppmv				
Mid	50.0 ppmv	52.6	50.1 ppmv	0.1%	10.51	50.4 ppmv	50.0 ppmv	0.8%	0.0%	9.99	50.0 ppmv	49.7 ppmv	0.6%	0.3%	10.61	49.7 ppmv	49.3 ppmv	0.8%	0.7%
High	95.0 ppmv	100.0	95.6 ppmv	0.6%	Cal. Span					Cal. Span					Cal. Span				
1	Analyzer Range =	100 ppmv	Span =	95.0	95					95					95				
	02				Avg.%					Avg.%					Avg.%				
Zero	0.0%	0.0	0.0%	0.0%	16.71	0.0%	0.0%	0.0%	0.0%	16.71	0.0%	0.0%	0.0%	0.0%	16.73	0.0%	0.0%	0.0%	0.0%
					Corr. %					Corr. %					Corr. %				
Mid	10.0%	47.6	10.0%	0.0%	16.71	10.0%	10.0%	0.0%	0.0%	16.71	10.0%	10.0%	0.0%	0.0%	16.73	10.0%	10.0%	0.0%	0.0%
High	21.0%	100.0	21.0%	0.0%	Cal. Span					Cal. Span					Cal. Span				
1	Analyzer Range =	22.0%	Span =	21.0	21					21					21				
	CO2				Avg.%					Avg.%					Avg.%				
Zero	0.0%	0.0	0.0%	0.0%	2.56	0.1%	0.2%	1.0%	2.0%	2.65	0.2%	0.3%	1.0%	3.0%	2.73	0.3%	0.3%	0.0%	3.0%
					Corr. %					Corr. %					Corr. %				
Mid	5.0%	50.0	5.2%	2.0%	2.41					2.41					2.45				
High	10.0%	100.0	10.0%	0.0%	Cal. Span	10.1%	10.2%	1.0%	2.0%	Cal. Span	10.2%	10.2%	0.0%	2.0%	Cal. Span	10.2%	10.2%	0.0%	2.0%
1	Analyzer Range =	11.0%	Span =	10.0	10					10					10				

AVG GPM:

CORPORATE MEASUREMENT SYSTEM

Gas Quality Report - Detail

Prod date: 01/2015 thru 02/2015 Report Date: 01/29/2015 14:58

Request: Meter: 16961

Production month: 01/2015 Sample Type: Hourly Chrom Meter Number: 16961 01 Gpa Version: 2145-09 Gas Quality Source: 1696101 SO CARLSBAD TURB FUEL C1 C2 C3 IC4 NC4 IC5 NC5 NeoC5 Iso lso Neo Carbon N2 Date/Time Btu Gravity Co2 Methane Ethane Propane Butane Butane Pntn Pntn Pntn C6 Plus H2s Hydrogen Oxygen Helium Argon Monoxide 0.0010 2.8563 0.0000 01 07:00 1136.1 0.6631 83.6352 8.7108 3.5983 0.3324 0.6696 0.0887 0.0739 0.0000 0.0338 0.0000 0.0000 0.0000 0.0000 0 0000 0 0000 02 07:00 1131.9 0.6623 3.0501 83.5036 8.7941 3.5326 0.3155 0 6255 0.0818 0.0673 0.0000 0 0295 0 0000 0 0000 0.0000 0.0000 0 0000 0.0000 03 07:00 1144.6 0.6699 0.0005 2.9842 82.6472 9.2540 3.8378 0.3545 0 7048 0.0964 0.0819 0.0000 0.0387 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 04 07:00 1147.0 0.6710 0.0007 2.9347 82.6754 9.1282 3 9093 0.3730 0.7572 0.1013 0.0839 0.0000 0.0363 0.0000 0 0000 0.0000 0.0000 0.0000 0.0000 05 07:00 1137.1 0.6715 0.1691 2.7855 83 1382 8 9093 3 7070 0.3526 0 7133 0.1012 0.0859 0.0000 0.0379 0.0000 0 0000 0.0000 0.0000 0 0000 0 0000 0.6678 0.0001 83.0808 3.7825 0.0831 0.0000 0.0000 0.0000 06 07:00 1145.9 2.7198 9.1256 0.3571 0.7129 0.0977 0.0000 0.0404 0.0000 0.0000 0.0000 0.0000 0.0000 07 07:00 1143.7 0.6680 0.0000 2.8722 82.8418 9.3017 3.7556 0.3455 0.6793 0.0918 0.0759 0.0000 0.0362 0.0000 0.0000 0.0000 0.0000 0.6701 0.0365 0.0000 0.0000 08 07:00 1145.5 0.0000 2.9626 82.5880 9.3120 3.8738 0.3561 0.7034 0.0917 0.0759 0.0000 0.0000 0.0000 0.0000 0.0000 09 07:00 1150.8 0.6718 0.0007 2.7886 82.4602 9.4905 3.9595 0.3627 0.7254 0.0950 0.0789 0.0000 0.0385 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 10 07:00 1149.5 0.6724 0.0007 2.9273 82.3088 9.4880 3.9740 0.3640 0.7325 0.0924 0.0766 0.0000 0.0357 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 11 07:00 1149.0 0.6750 0.1284 2.9126 82.0913 9.5789 3.9495 0.3732 0.7553 0.0963 0.0788 0.0000 0.0357 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 12 07:00 1144.4 0.6781 0.4807 3.0357 81.5945 9.6236 3.9708 0.3597 0.7277 0.0938 0.0772 0.0000 0.0363 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 13 07:00 1147.9 0.6768 0.2911 2.9947 81.6992 9.7065 4.0125 0.3615 0.7320 0.0929 0.0757 0.0000 0.0339 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 14 07:00 1148.3 0.6770 0.3226 2.9553 81.6891 9.7146 4.0303 0.3580 0.7251 0.0927 0.0766 0.0000 0.0357 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 15 07:00 1144.8 0.6764 0.3676 3.0413 81.7852 9.5369 3.9848 0.3579 0.7222 0.0938 0.0766 0.0000 0.0337 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 16 07:00 1146.7 0.6761 0.3418 2.9360 81.8389 9.6164 3.9933 0.3578 0.7135 0.0924 0.0757 0.0000 0.0342 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 17 07:00 1147.6 0.6768 0.3276 2.9696 81.6666 9.7419 4.0432 0.3548 0.6993 0.0905 0.0742 0.0000 0.0323 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 18 07:00 1147.0 0.6753 0.3235 2.8677 81.9681 9.5738 4.0126 0.3541 0.6991 0.0917 0.0759 0.0000 0.0335 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 19 07:00 1145.5 0.6751 0.3013 2.9786 81.8912 9.6138 3.9732 0.3507 0.6937 0.0898 0.0743 0.0000 0.0334 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 20 07:00 1145.7 0.6746 0.3163 2.8955 81.9762 9.6418 3.9297 0.3515 0.6939 0.0885 0.0729 0.0000 0.0337 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 21 07:00 1146.7 0.6732 0.2871 2.7472 82.3412 9.4139 3.9329 0.3620 0.7168 0.0908 0.0745 0.0000 0.0336 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 22 07:00 1144.0 0.6735 0.3042 2.9108 82.1824 9.4289 3.9351 0.3518 0.6991 0.0857 0.0706 0.0000 0.0314 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 23 07:00 1143.6 0.6744 0.3243 2.9862 82.0282 9.4913 3.9240 0.3490 0.7001 0.0882 0.0746 0.0000 0.0341 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 24 07:00 1143.9 0.6717 0.2962 2.7363 82.5729 9.2893 3.8392 0.3561 0.7125 0.0889 0.0742 0.0000 0.0344 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0350 25 07:00 1139.9 0.6721 0.2491 2.9321 82.5773 9.1645 3.8167 0.3529 0.7087 0.0894 0.0743 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 26 07:00 1140.0 0.6725 0.4310 2.8624 82.4850 9.1263 3.8349 0.3525 0.7065 0.0909 0.0749 0.0000 0.0356 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 27 07:00 1142.3 0.6734 0.3694 2.9020 82.3455 3.8931 0.3606 0.7254 0.0942 0.0771 0.0000 0.0331 0.0000 0.0000 0.0000 0.0000 0.0000 9.1996 0.0000 28 07:00 0.6745 0.4682 2.9293 82.1582 3.8447 0.3595 0.7259 0.0930 0.0760 0.0000 0.0327 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1141.0 9.3125 Average: 1144.3 0.6727 0.2180 2.9098 82.3489 9.3675 3.8875 0.3549 0.7100 0.0922 0.0763 0.0000 0.0348 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.2238

0.1161

0.0337

0.0277

0.0000

0.0156

TOTAL AVG GPM:

3.9921

2.5046

1.0707

Fuel Gas Analysis Diluent F Factors, Higher Heating Value Calculation, Predicted Fo, Fuel VOC Content

Company: Enterprise

Sample ID: South Carlsbad Turbine Fuel

Time: N/A Date: 1/20/15

	CA	LCULATION	N OF DENSI	TYAND HEA	ATING VALU	VE @ 68°F an	d 29.92 in H	g	
				% volume		Component		Gross	Volume
	%	Molecular	Density	x		Gross	Weight	Htng. Val.	Fract.
Component	Volume	Wt.	(lb/ft3)	Density	weight %	Btu/lb	Fract. Btu	(Btu/SCF)	Btu
Hydrogen		2.016	0.0052	0.00000	0.0000	61100	0.00	325.0	0.000
Oxygen		32.000	0.0831	0.00000	0.0000	0	0.00	0.0	0.000
Nitrogen	2.8955	28.016	0.0731	0.00212	4.1617	0	0.00	0.0	0.000
CO2	0.3163	44.010	0.1149	0.00036	0.7149	0	0.00	0.0	0.000
CO		28.010	0.0727	0.00000	0.0000	4347	0.00	322.0	0.000
Methane	81.9762	16.041	0.0417	0.03414	67.1515	23879	16035.10	1013.0	830.419
Ethane	9.6418	30.067	0.0789	0.00760	14.9562	22320	3338.23	1792.0	172.781
Ethylene		28.051	0.0733	0.00000	0.0000	21644	0.00	1614.0	0.000
Propane	3.9297	44.092	0.1175	0.00462	9.0790	21661	1966.61	2590.0	101.779
propylene		42.077	0.1090	0.00000	0.0000	21041	0.00	2336.0	0.000
Isobutane	0.3515	58.118	0.1554	0.00055	1.0742	21308	228.90	3363.0	11.821
n-butane	0.6939	58.118	0.1554	0.00108	2.1207	21257	450.79	3370.0	23.384
Isobutene		56.102	0.1454	0.00000	0.0000	20840	0.00	3068.0	0.000
Isopentane	0.0885	72.144	0.1870	0.00017	0.3255	21091	68.66	4008.0	3.547
n-pentane	0.0729	72.144	0.1870	0.00014	0.2681	21052	56.45	4016.0	2.928
n-hexane +	0.0337	86.169	0.2234	0.00008	0.1480	20940	31.00	4762.0	1.605
H2S		34.076	0.0895	0.00000	0.0000	7100	0.00	647.0	0.000
Totals	100.00	731.25	1.91	0.0508	100.00		Gross Hea	ting Value	
Total D	ensity:	0.0508	Specific	Gravity:	0.665	Btu/lb:	22176	Btu/SCF:	1148

	CALCULATION OF F FACTORS											
							We	eight Percent	S			
Component	Mol. Wt.	C Factor	H Factor	% volume	Fract. Wt.	Carbon	Hydrogen	Nitrogen	Oxygen	Sulfur		
Hydrogen	2.016	0.0000	1.0000	0.0000	0.0000		0.0000					
Oxygen	32.000	0.0000	0.0000	0.0000	0.0000				0.0000			
Nitrogen	28.016	0.0000	0.0000	2.8955	81.1203			4.1632				
CO2	44.010	0.2723	0.0000	0.3163	13.9204	0.1945			0.5194			
СО	28.010	0.4259	0.0000	0.0000	0.0000	0.0000			0.0000			
Methane	16.041	0.7500	0.2500	81.9762	1314.9802	50.6153	16.8718					
Ethane	30.067	0.8000	0.2000	9.6418	289.9000	11.9025	2.9756					
Ethylene	28.051	0.8571	0.1429	0.0000	0.0000	0.0000	0.0000					
Propane	44.092	0.8182	0.1818	3.9297	173.2683	7.2756	1.6168					
Propene	42.077	0.8571	0.1429	0.0000	0.0000	0.0000	0.0000					
Isobutane	58.118	0.8276	0.1725	0.3515	20.4285	0.8677	0.1808					
n-butane	58.118	0.8276	0.1725	0.6939	40.3281	1.7129	0.3570					
Isobutene	56.102	0.8571	0.1429	0.0000	0.0000	0.0000	0.0000					
Isopentane	72.144	0.8333	0.1667	0.0885	6.3847	0.2731	0.0546					
n-pentane	72.144	0.8333	0.1667	0.0729	5.2593	0.2249	0.0450					
n-hexane	86.169	0.8372	0.1628	0.0337	2.9039	0.1248	0.0243					
H2S	34.076	0.0000	0.0587	0.0000	0.0000	0.0000	0.0000			0.0000		
Totals	731.25	9.80	2.96	100.00	1948.494	73.191	22.126	4.163	0.519	0.000		

	CALCULATED VALUES								
O2 F Factor (dry)	8697	DSCF of Exhaust/MMBtu of Fuel Burned @ 0% excess air							
O2 F Factor (wet)	10623	SCF of Exhaust/MMBtu of Fuel Burned @ 0% excess air							
Moisture F Factor	1926	SCF of Water/MMBtu of Fuel Burned @ 0% excess air							
Combust. Moisture	18.13	Volume % water in flue gas @ 0% excess air							
CO2 F Factor	1059	DSCF of CO2/MMBtu of Fuel Burned @ 0% excess air							
Carbon Dioxide	12.18	Volume % CO2 in flue gas @ 0% O2							
Predicted Fo Factor	1.72	EPA Method 3b Fo value							
Fuel VOC %	29.17%	Non-methane							
Fuel VOC %	13.56%	Non-methane, non-ethane							

Nolan, Shiver

From:	Nolan, Shiver
Sent:	Tuesday, February 09, 2016 8:30 AM
То:	'stacktest.aqb@state.nm.us'
Cc:	Ferguson, Dina; Polk, Alena (ampolk@eprod.com)
Subject:	South Carlsbad Eng 1 & 2 Solar Centaur T-4702
Attachments:	201601 South Carlsbad Annual Test Report.pdf - Adobe Acrobat Pro.pdf

Attached are the two stack test referenced above. Contact Information has been included on the NMED forms.

Shiver Nolan Sr. Compliance Administrator

New Mexico Environment Department 525 Camino de los Marquez, Suite 1 Santa Fe, NM 87505 Phone (505) 476-4300 Fax (505) 476-4375

Version 1/1	Version 1/1/2010								
NM	NMED USE ONLY								
DTS									
TEMPO	TEMPO								

UNIVERSAL STACK TEST NOTIFICATION, PROTOCOL AND REPORT FORM

NME	ED USE ONLY
Staff	
Admin	

Submit to: Stacktest.aqb@state.nm.us

	I. DATABASE HEADER INFORMATION (drop down menus in bold)					
a. Al# 218	Test Report			Periodic Test (Portable Analyzer)		
d. Company Name: e. Facility Name:						
Enterprise Field Services LLC South Carlsbad Compressor Station						
f. Emission Unit Numbers: g. Emission Unit Description (boiler, Waukesha 7042, etc)						
1, 2						
h. Reports - Tracking Number			i. F	Proposed Test Date:	j. Actual test date:	
h. Reports - Tracking Number CMT II. Proposed Test Date: J. Actual test date: J. Actual test date: 1/20/16			1/20/16			
k. Reason for test (name permit requirement, NSPS, MACT, consent decree, etc. Indicate here is this notification is a revised test date only)						
Annual pe	erformance tes	t of existing turb	oine	s pursuant to N	ISR condition A205C.	
k. Reason for te						

II. GENERAL COMPANY AND FACILITY INFORMATION						
a.Company Address:		k Facility Address:				
PO Box 4324			Roberson Road, E	Eddy Cour	nty	
b. City:	c. State:	d. Zip:	I. City:	m. State:	n. Zip:	
Houston	ТХ	77210	Loving	NM	88526	
e. Environmental Contact: f. Title:		o. Facility Contact:	p. Title:			
Alena Polk Sr. Env. Engineer		Thomas Green	Area	Supervisor		
g. Phone Number:	h. Cell Nu		q. Phone Number:	r. Cell Nu		
575-706-4926 575-706-4926		575-885-7235	575-7	575-708-0015		
i. Email Address:			s. Email Address:	·		
ampolk@eprod.co	om		tdgreen@eprod.c	om		
j. Title V Permit Number:			t. NSR Permit Number:			
P-130-M1R2			NSR 220M9			
u. Detailed driving directions from						
From Loving, UN	l285 nor	th to Robers	son Road west, Ro	oberson F	Road west to	
station.						

III. TESTING FIRM						
a. Company:	g. Contact:					
Compliance Services and Testing	Chris Spencer					
. Address 1: h. Title:						
7108 Washington NE Ste. A Director						
c. Address 2:	i. Office Phone:	j. Cell Phone:				
PO Box 94191-87199		505-681-4909				

NMED Air Quality Bureau

UNIVERSAL STACK TEST NOTIFICATION, PROTOCOL AND REPORT FORM

Page 2 of 4

d. City:	e. State		k. Email Addre	-		
Albuquerque	NM	87109	cspence	er@comptesting.co)m	
IV. EMISSION UNIT			STACK PARAMETERS			
a. Emission Unit Number:		b. Make & Model I	Number	m. Velocity (ft/sec):	177	
1 and 2		Solar Cen	taur T-4702	n. Temperature (°C):	486	
c. Serial Number:		d. Permitted Capa	acity:	o. Stack Diameter, D (in.):	NA	
See section g.		3609 hp		p. Distance to Stack Bends or C		
e Exceptions: Explain if tes		, related to an enfor	rcement action:	Upstream, Distance A (in.):	NA	
			Downstream, Distance B (in.):	NA		
g. Emission Unit Description and brief process name or description: Turbine 1 SN: OHD10C795 Turbine 2 SN: OHE12C7057 Natural gas-fired turbines for natural gas compression.			A A A A A A A A A A A A A A A A A A A	DISTURBANCE PLE PORT ION		
h. Installation Date:	i. Startup Date:	k. [Date Reached Max. Capacity:	│		
I. Control Equipment Desc	ription as listed in per	mit (model, ser. # e	tc. if applicable):		DISTURBANCES	
	V. P	OLLUTANTS A	ND PROPOSED TES			
	Proposed Test Meth	ode (Deviations from	n approved methods requi	ure supporting documentation and	Deviation to Tes	

		V. POLLUTANTS AND PROPOSED TEST METHODS	
Pollutant	or Parameter:	Proposed Test Methods (Deviations from approved methods require supporting documentation and prior authorization)	Deviation to Test Method Requested
\square	Portable A	nalyzer Methods for NOx, CO, SO ₂	
	NOx	EPA Method 7E	
	со	EPA Method 10	
	SO2	EPA Method 6	
	VOCs	(Specify)	
	HAPs	(Specify)	
	PM (TSP)	EPA Method 5	
	PM10	EPA Method 201	
	PM2.5	(Specify)	
	Opacity	EPA Method 9	
	Visual E.	EPA Method 22	
	Stack Flow	EPA Methods 1 - 3	
	Moisture	EPA Method 4	
\square	Other	(Specify) EPA Method 19	
	Other	(Specify)	

List Specific VOC's and HAP's:

VI. PROPOSED TEST RUN AND TEST LOAD INFORMATION						
a. Number of Test Runs:	b. Run Duration	c. Required by	(regulation or permit number):	d. Specific	Condition or Section:	
3	20 min	NSR 22	D M9	A2050	C	
PLEASE NOTE – Default run	duration is 60 minutes, ur	less otherwise	specified by an applicable regula	tion.		
e. Expected Load:	f. Percent of Permitted	Capacity:	g. Is this an opacity te	st?	h. If yes, no. of observation pts .:	
>90%	>90%		Yes 🗌 🛛 No 🖄	3		
 i. If expected load during test is NOTE – Failure to test at 90- conducted. 	·		peration to 110% of tested load	until a new	v initial compliance test is	
PLANT OR UNIT OPER	ATING PARAMETE	RS TO BE N	IONITORED			
j. List and explain the plant operating parameters that will be monitored and applicable permit conditions or regulatory standards.						
Fuel usage, com	pressor operation	ating par	ameters, turbine	operati	ing parameters.	

VII. ADDITIONAL DETAILS (where applicable)		
RATA and INSTRUMENTAL ANALYZER CALIBRATION PROCEDURES		
a. Do any of the methods you are proposing utilize instrumental analyzers (i.e.; EPA Methods 3A, 6C, 7E, 10, 18, 25/25A, 320 etc.)? If yes, briefly describe analyzer calibration procedures and/or calibration standard procedures. Enter the highest pollutant concentration expected and the proposed concentrations of calibration gases.	Yes	🗌 No
As described in the methods.		
SAMPLING TRAIN LEAK CHECK PROCEDURES		
b. Do any of the methods you are proposing utilize the EPA Method 5 sampling train (i.e.; EPA Methods 1-4, 5, 17, 26/26A, 29, etc.)? If yes, briefly describe sampling train and pitot tube leak check procedures:	Yes	🛛 No
EPA METHOD 19 IN LIEU OF EPA METHODS 1-4		
c. Are you proposing to utilize EPA Method 19 in lieu of EPA Methods 1-4? If yes, explain why you believe this proposal is justified:	🛛 Yes	🗌 No
Method 19 with use of a calibrated fuel meter and current fuel gas ana	lysis.	
-	•	
PLEASE NOTE – EPA Method 19 may be utilized in lieu of EPA Methods 1-4, subject to the approval of the Department. If you are EPA Method 19 in lieu of EPA Methods 1-4, you MUST include a recent fuel gas heating value analysis as well as a recent fuel flow certificate, preferably conducted on the day of the test, but no earlier than three months prior to the test date. If the analyses have be	meter calibr	ation ted prior
to the test date, you MUST append the certificates to the protocol. If conducted on the day of the test, you MUST append the certific report.	cates to the	final test

	VIII. ATTACHMENTS (as	eeded to support proposed test; check all that apply)
NO	OTIFICATION/PROTOCOL ATTACHMENT	
	Road Map Indicating Directions from Nearest New	Aexico Town to Facility
	Schematic of process being tested showing emissi	n points, sampling sites and stack cross-section
	Copy of proposed test methods (except for those p	omulgated test methods found in 40 CFR 51, 60, 61 and 63)
	Fuel Heating Value Analysis	
	Fuel Flow Meter Calibration Certificate	
] Other:	
	Other:	
TES	EST REPORT ATTACHMENTS	
\boxtimes	Section 2. Tables of Results	
	Supporting Documents (Specify)	
Ret	etain Report Section 3 - Test Procedures	Data, Calculations, Appendices – 2 years NSR permits, 5 years TV
_		
		DL CERTIFICATION
acce		on and is accurate and complete to the best of my knowledge. I understand that ments of any permit or regulation. I understand that any procedural errors or der.
	nature: Print	lame and Title: E. Fields - Director, Field Environmental 2-9-20/6

Responsible Official for Title V?
Yes

 \boxtimes No (R.O signature not required for routine periodic testing)

2016 COMPLIANCE TEST REPORT

ON EXHAUST EMISSIONS

FROM TWO SOLAR CENTAUR T-4702 CENTRIFUGAL INTERNAL COMBUSTION ENGINE

AT THE SOUTH CARLSBAD COMPRESSOR STATION

> NEAR LOVING, NEW MEXICO

> > PREPARED FOR

ENTERPRISE FIELD SERVICES

PROJECT NUMBER 1377

STATE OF NEW MEXICO ENVIRONMENT DEPARTMENT AIR QUALITY BUREAU PERMIT NUMBER 0220-M8-R1

PREPARED BY COMPLIANCE SERVICES & TESTING

P.O. Box 94191-87199 7108 Washington St. NE Suite A Albuquerque, NM 87109 (505) 681-4909 Phone www.comptesting.com February 3, 2016

Dina Ferguson Enterprise Field Services PO Box 4324 Houston, TX 77210

RE: Annual testing at the South Carlsbad Compressor Station.

Mrs. Ferguson:

On January 20, 2016 CST performed annual emissions testing at the South Carlsbad Compressor Station to satisfy the requirements of the New Mexico Environment Department Air Quality Bureau Permit Number 0220-M8-R1. The unit is identified as follows:

Engine Information						
Unit Number	1	2				
Engine Make	Solar					
Engine Model	Centaur T-4702					
Serial Number	OHD10-C-7915	OHE12-C-7057				
Rated Horsepower	3609					
Rated Speed	150	000				

The testing followed procedures found in the NMED "ASTM D 6522-00 SOP". The mass emission rates were determined using EPA Method 19 (combustion stoichiometry). The rates in terms of pounds per hour and tons per year were calculated using the oxygen F-factor (DSCFex/MMBtu), the fuel consumption rate (SCFH), the fuel higher heating value (Btu/SCF), and the pollutant concentration. Fuel consumption was monitored from a fuel meter. The attached data sheet gives a detailed summary of the results of this test. Quality assurance data sheets are also attached.

Respectfully,

Detery Calm

Jeremy Cahn Compliance Services and Testing

Summary of Results South Carlsbad Compressor Station, Unit #1

Company: Enterprise Field Services

Company: Enterprise Field Services				
Location: South Carlsbad Compressor Station				
Source: Solar Centaur 40-T4702 SN: OHD10C7915				
Engine Site Rating: 3609 Hp @ 15000 RPM				
Technician: JC,FC				
Sample System #: 1				1
Test Run Number	1	2	3	
Emissions Unit	1	1	1	
Date	1/20/16	1/20/16	1/20/16	
Start Time	7:53	8:18	8:43	
Stop Time	8:13	8:38	9:03	
Engine/Compressor Operation				
Turbine Load (%)	94.7	95.0	95.2	
Gas Producer Speed (%)	94.7	95.0	95.2	
Power Turbine Speed (%)	82.7	83.0	83.1	
Engine Horsepower (Hp)	3418	3429	3436	
Engine Compressor Discharge, PCD (psig)	104	105	105	
Fuel Valve Output (%)	59.9	61.3	60	
Suction Pressure (psig)	419	423	424	
Discharge Pressure (psig)	659	712	712	
Suction Temperature (°F)	98	98	99	
Discharge Temperature (°F)	123	124	177	
Air Inlet Temperature (T1) (°F)	40.2	39	43.2	
Average Exhaust Temperature (T5) (°F)	1080	1047	1090	
Compressor Throughput (MCFD)	72	72	72	
Fuel Data				
Measured Fuel Consumption (MSCFD)	788	788	788	
Calculated Fuel Consumption (SCFH)	17905	17905	17905	
O2 F-Factor (DSCF/MMBtu, HHV basis)	8696	8696	8696	
Fuel Heating Value (Btu/SCF, HHV)	1155	1155	1155	
BHp Specific Fuel Rate (Btu/Hp-hr, HHV basis)	198790	196897	6017	
Ambient Conditions				
Pressure Altitude (MSL)	3090	3090	3090	
Atmospheric Pressure ("Hg)	26.75	26.75	26.75	
Dry Bulb Temperature (°F)	41.7	42.1	44.8	
Wet Bulb Temperature (°F)	35.8	35.1	38.5	
Humidity (lb/lb air)	0.0035	0.0032	0.0040	
Measured Exhaust Emissions (Corrected)	•			Average
NOx (ppmv)	67.41	71.88	69.61	69.63
CO (ppmv)	13.62	8.90	8.16	10.23
O2 (vol %)	16.77	16.79	16.79	16.78
CO2 (vol %)	2.46	2.54	2.53	2.51
Fo (Natural Gas)	1.67	1.62	1.62	1.64
Exhaust Flow Rates (EPA Method 19 - Fuel Based)				
Dry SCFH (dry basis, calc. from Fuel Consumption)	910,503	914,424	913,092	912,673
Calculated Mass Emission Rates (EPA Method 19)	,10,505	717,727	715,072	714,015
	7 22	7 05	7.50	7 50
NOx (lbs/hr) { Permit Limit = 27.0 } CO (lbs/hr) { Dermit Limit = 7.4 }	7.33	7.85	7.59	7.59
CO (lbs/hr) { Permit Limit = 7.4 }	0.90	0.59	0.54	0.68
NOx $(tons/yr)$ { Permit Limit = 118.3 }	32.11	34.38	33.25	33.25
CO (tons/yr) { Permit Limit = 32.5 }	3.95	2.59	2.37	2.97

Summary of Results South Carlsbad Compressor Station, Unit #2

Company: Enterprise Field Services

1	2	3	
	1	1	
0.15	0.50	7.05	
94.7	95.2	95 3	
12	12	12	
788	788	788	
0049	0017	0011	
2000	2000	2000	
0.0055	0.0052	0.0010	Average
71 70	75.00	72 52	73.44
			12.23
			12.23
			2.10
			1.65
1.00	1.05	1.00	1.00
1,134,456	1,087,659	1,044,190	1,088,76
	1,007,007	1,044,170	1,000,70
1,154,450			
	0.75	0.17	0.55
9.71	9.75	9.17	9.55
	9.75 0.95 42.72	9.17 0.76 40.17	9.55 0.97 41.81
	1 2 1/20/16 7:53 8:13 94.7 94.7 94.7 94.7 95.2 3418 109 39.2 237 427 41 123 40.2 1080 72 788 17905 8696 1155 6049 3090 26.75 41.7 35.8 0.0035 71.70 14.67 17.59 2.00 1.66	$\begin{array}{c c c c c c c c c } 2 & 2 \\ 1/20/16 & 1/20/16 \\ 7:53 & 8:18 \\ 8:13 & 8:38 \\ \hline \\ 94.7 & 95.2 \\ 94.7 & 95.2 \\ 85.2 & 85.7 \\ 3418 & 3436 \\ 109 & 110 \\ 39.2 & 39.5 \\ 237 & 236 \\ 427 & 428 \\ 41 & 42 \\ 123 & 124 \\ 40.2 & 39 \\ 1080 & 1047 \\ 72 & 72 \\ \hline \\ 788 & 788 \\ 17905 & 1047 \\ 72 & 72 \\ \hline \\ \hline \\ 788 & 788 \\ 17905 & 8696 \\ 1155 & 1155 \\ 6049 & 6017 \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ 3090 & 3090 \\ 26.75 & 26.75 \\ 41.7 & 42.1 \\ 35.8 & 35.1 \\ 0.0035 & 0.0032 \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ 71.70 & 75.09 \\ 14.67 & 12.03 \\ 17.59 & 17.45 \\ 2.00 & 2.12 \\ \hline \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Quality Assurance Report - Sample System #1 Converter Efficiency Test, Interference Test, Response Time and Bias Test, Mass Flow Controller Check, Pre and Post Leak Checks

8.2.7 initial use	est Technician: <u>Nec</u> Certified Observe Converter	sion efficiency JC D2 d Value d Value Efficiency Interference Ra fter major alter ion span JC	48.9 49.0	ppmv ppmv 0%		
* greater th 1/20/16 8.2.7 initial use ponses < 2. 1/20/16 t Gases Conc. 4.5 ppm	an 90% conver Technician: NC Certifie Observe Converter in the field or a .5 % of calibrat Technician:	JC J2 d Value d Value Efficiency Interference Ra fter major alter ion span JC	48.9 49.0 10 esponse Checks	ppmv ppmv 0%		
8.2.7 initial use ponses < 2. 1/20/16 t Gases Conc. 4.5 ppm	Technician: NC Certifier Observe Converter in the field or a .5 % of calibrat Technician:	JC J2 d Value d Value Efficiency Interference Ra fter major alter ion span JC	48.9 49.0 10 esponse Checks	ppmv ppmv 0%		
8.2.7 initial use ponses < 2. 1/20/16 t Gases <i>Conc.</i> 4.5 ppm	NC Certified Observe Converter in the field or a .5 % of calibrat Technician:	D2 d Value d Value Efficiency Interference Ra fter major alter ion span JC	48.9 49.0 10 esponse Checks	ppmv ppmv 0%		
8.2.7 initial use ponses < 2. 1/20/16 t Gases <i>Conc.</i> 4.5 ppm	NC Certified Observe Converter in the field or a .5 % of calibrat Technician:	D2 d Value d Value Efficiency Interference Ra fter major alter ion span JC	48.9 49.0 10 esponse Checks	ppmv ppmv 0%		
<i>initial use</i> <i>ponses</i> < 2. 1/20/16 Gases <i>Conc.</i> 4.5 ppm	Certified Observe Converter in the field or a .5 % of calibrat Technician:	d Value d Value Efficiency Interference Ra fter major alter ion span JC	48.9 49.0 10 esponse Checks	ppmv ppmv 0%		
<i>initial use</i> <i>ponses</i> < 2. 1/20/16 Gases <i>Conc.</i> 4.5 ppm	Observe <u>Converter</u> in the field or a .5 % of calibrat Technician:	d Value Efficiency Interference Ra fter major alter ion span JC	49.0 10 esponse Checks	ppmv 0%		
<i>initial use</i> <i>ponses</i> < 2. 1/20/16 Gases <i>Conc.</i> 4.5 ppm	<i>in the field or a</i> .5 % of calibrat Technician:	Interference Ra fter major alter ion span JC	esponse Checks			
<i>initial use</i> <i>ponses</i> < 2. 1/20/16 Gases <i>Conc.</i> 4.5 ppm	<i>in the field or a</i> .5 % of calibrat Technician:	fter major alter ion span JC	-			
<i>initial use</i> <i>ponses</i> < 2. 1/20/16 Gases <i>Conc.</i> 4.5 ppm	.5 % of calibrat Technician:	ion span JC	ation or modific	cation		
bonses < 2. 1/20/16 t Gases Conc. 4.5 ppm	.5 % of calibrat Technician:	ion span JC	ation or modific	cation		
t Gases <i>Conc.</i> 4.5 ppm	-					
t Gases <i>Conc.</i> 4.5 ppm	-	Analyze				
<i>Conc.</i> 4.5 ppm	NOx (ppmv)		r Response (pp	omv or % as app	olicable)	
		CO (ppmv)	SO2 (ppmv)	THC (ppmv)	O2 (%)	CO2 (%)
		N/A			0.00	-0.03
	N/A				0.00	-0.03
9.6%	0.05	-0.24				N/A
6.5%	0.05	-0.24			N/A	
	Sample	System Bias &	Response Time	e Check		
bration spa nger of the	n two times as th	-				
1/20/16	Technician:					
.						G00 (0()
			SO2 (ppmv)	THC (ppmv)		CO2 (%)
						0.0
						0.0%
put		44.8				6.5
	43.7	44.8			9.6	6.5
	-1.1%	0.0%			0.0%	0.0%
	<u> </u>	Sample System	<u>Response Time</u>	2		
•	NOx (ppmv)	CO (ppmv)	SO2 (ppmv)	THC (ppmv)	O2 (%)	CO2 (%)
	40	35			50	50
	40	35	110 a	aanda	45	55
		Sample System		econus		
1	41	1 1				
one inch de				LST SOP)		
	Vacuum Initial.	0.0 inches	/ minute at	14 inches Ho		
	bration spanger of the hnique hnique put put put put whenever onse bon	8.2.5-6 ampling begins bration span nger of the two times as th 1/20/16 Technician: hnique NOx (ppmv) put 0.0 0.0 0.0% put 44.6 43.7 -1.1% v NOx (ppmv) put 40 conse 40 conse 40 conse 40 conse 40 conse 40 conse 40	8.2.5-6 ampling begins bration span nger of the two times as the response time 1/20/16 Technician: JC Sample System hnique NOx (ppmv) CO (ppmv) put 0.0 0.0 0.0 0.0 0.0 put 44.6 44.8 43.7 44.8 -1.1% 0.0% Sample System Sample System	3.2.5-6 ampling begins bration span nger of the two times as the response time 1/20/16 Technician: JC Sample System Bias Check hnique NOx (ppmv) CO (ppmv) SO2 (ppmv) put 0.0 0.0 0.0 0.0 0.0 0.0 0.0% 0.0% put 44.6 44.8 43.7 44.8 -1.1% 0.0% 0.0% -1.1% onse 40 35 conse 40 35	ampling begins bration span nger of the two times as the response time 1/20/16 Technician: JC Sample System Bias Check hnique NOx (ppmv) CO (ppmv) SO2 (ppmv) THC (ppmv) put 0.0 0.0 0.0 0.0 0.0 put 0.0 0.0 0.0 0.0 0.0 put 44.6 44.8 0 0.0 put Adv.6 Put Adv.6 Put Adv.6 Put Adv.6 Put Sample System Response Time Put Put (ppmv) Put (ppmv) Put Put	Sample System Bias & Response Time Check 3.2.5-6 ampling begins bration span nger of the two times as the response time 1/20/16 Technician: JC Sample System Bias Check hnique NOx (ppmv) CO (ppmv) SO2 (ppmv) THC (ppmv) O2 (%) put 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 put 0.0 0.0 0.0 0.0 0.00 0.0% 0.0% 0.0% 0.0% 0.0% put 44.6 44.8 9.6 43.7 44.8 9.6 -1.1% 0.0% 0.0% 0.0% 0.0% 0.0% sample System Response Time Sample System Response Time 50 0.0% Sample System Response Time 110 seconds 45 50 ponse 40 35 110 seconds 45 sample System Leak Check 110 seconds 45 50 sconds Sample System is moved or disassembled (CST SOP) me inch decrease in pressure in one minute (CST SOP) 14 inches Hg

Quality Assurance Worksheet Instrument Calibration and Drift Correction

Company: Enterprise Field Services

Location: South Carlsbad Compressor Station

Source: Solar Centaur 40-T4702 SN: OHD10C7915

Engine Site Rating: 3609 Hp @ 15000 RPM

Test Date: Wednesday, January 20, 2016

Sample	System	#:	1	

Sample Sy:		IT NUMBI	ER 1			TEST	FRUN 1				TEST	Γ RUN 2				TEST	FRUN 3		
GAS	CALIBRAT	ION GAS	INITIAL CA	LIBRATION	Start Run		ZERO and Sl	PAN		Start Run		ZERO and S	SPAN		Start Run		ZERO and S	PAN	
LEVELS	CONCENT	RATIONS	& LINEAR	ITY CHECK	7:53	CAI	IBRATION	СНЕСК		8:18	CA	LIBRATION	СНЕСК		8:43	CAI	JBRATION	СНЕСК	
PER	Certified	Target	Analyzer	Calibration	Stop Run	Initial	Final	Drift	Bias	Stop Run	Initial	Final	Drift	Bias	Stop Run	Initial	Final	Drift	Bias
METHOD	Concentration	(% Span)	Response	Error < 2%	8:13	Response	Response	< 3%	< 5%	8:38	Response	Response	< 3%	< 5%	9:03	Response	Response	< 3%	< 5%
NOx		Avg. ppmv					Avg. ppmv					Avg. ppmv							
Zero	0.0 ppmv	0.0	0.0 ppmv	0.0%	66.35	0.0 ppmv	0.0 ppmv	0.0%	0.0%	71.15	0.0 ppmv	0.0 ppmv	0.0%	0.0%	69.49	0.0 ppmv	1.0 ppmv	1.2%	1.2%
	•••• PP		pp		Corr. ppmv	•••• PP	ore pper			Corr. ppmv	•••• PP	ore pper			Corr. ppmv	FF	re pp.		
Mid	44.5 ppmv	52.0	44.6 ppmv	0.1%	67.41	43.7 ppmv	43.9 ppmv	0.4%	0.7%	71.88	43.9 ppmv	44.2 ppmv	0.7%	0.4%	69.61	44.2 ppmv	45.0 ppmv	1.8%	0.6%
High	85.5 ppmv	100.0	85.7 ppmv	0.2%	Cal. Span					Cal. Span					Cal. Span				
An	alyzer Range =	100 ppmv	Span =	85.5	85.5					85.5					85.5				
		СО			Avg. ppmv					Avg. ppmv					Avg. ppmv	Ī			
Zero	0.0 ppmv	0.0	0.0 ppmv	0.0%	13.52	0.0 ppmv	0.0 ppmv	0.0%	0.0%	8.80	0.0 ppmv	0.0 ppmv	0.0%	0.0%	7.71	0.0 ppmv	-1.0 ppmv	1.2%	1.2%
					Corr. ppmv					Corr. ppmv					Corr. ppmv				
Mid	44.8 ppmv	53.7	44.8 ppmv	0.0%	13.62	44.8 ppmv	44.1 ppmv	1.6%	0.8%	8.90	44.1 ppmv	44.5 ppmv	0.9%	0.4%	8.16	44.5 ppmv	44.7 ppmv	0.4%	0.1%
High	83.4 ppmv	100.0	83.0 ppmv	-0.5%	Cal. Span					Cal. Span					Cal. Span				
An	alyzer Range =	100 ppmv	Span =	83.4	83.4					83.4					83.4				
		02			Avg.%					Avg.%					Avg.%				
Zero	0.0%	0.0	0.0%	0.0%	16.77	0.0%	0.0%	0.0%	0.0%	16.79	0.0%	0.0%	0.0%	0.0%	16.79	0.0%	0.0%	0.0%	0.0%
					Corr. %					Corr. %					Corr. %				
Mid	9.6%	45.5	9.6%	0.0%	16.77	9.6%	9.6%	0.0%	0.0%	16.79	9.6%	9.6%	0.0%	0.0%	16.79	9.6%	9.6%	0.0%	0.0%
High	21.1%	100.0	21.0%	-0.5%	Cal. Span					Cal. Span					Cal. Span				
An	alyzer Range =	22.0%	Span =	21.1	21.1					21.1					21.1				
		<i>CO2</i>			Avg.%					Avg.%					Avg.%				
Zero	0.0%	0.0	0.0%	0.0%	2.46	0.0%	0.0%	0.0%	0.0%	2.54	0.0%	0.0%	0.0%	0.0%	2.53	0.0%	0.0%	0.0%	0.0%
					Corr. %					Corr. %					Corr. %				
Mid	4.0%	61.5	4.1%	1.5%	2.46					2.54					2.53				
High	6.5%	100.0	6.5%	0.0%	Cal. Span	6.5%	6.5%	0.0%	0.0%	Cal. Span	6.5%	6.5%	0.0%	0.0%	Cal. Span	6.5%	6.5%	0.0%	0.0%
An	alyzer Range =	7.0%	Span =	6.5	6.5					6.5					6.5				

Quality Assurance Report - Sample System #2 Converter Efficiency Test, Interference Test, Response Time and Bias Test, Mass Flow Controller Check, Pre and Post Leak Checks

		Λ	Ox Converter	Efficiency Chec	k		
Method: 7E Sec	tion 8.2.4						
Frequency: Befo		est					
Criteria: Equal	-		sion efficiency				
Test Date:	1/20/16	Technician:	JC				
1000 2 4000	1/20/10	N		Pas	ults		
		Certifie			ppmv		
		Observe			ppmv		
		Converter	Efficiency		1%		
			Interference R	esponse Checks			
<u>Method:</u> 7E Sec	tion 8.2.7						
<u>Frequency:</u> Pric <u>Criteria:</u> Sum of				ation or modific	ration		
U	1	v					
Test Date:		Technician:	JC			1 .	
Interference					mv or % as app		
Type Gas	Conc.	NOx (ppmv)	CO (ppmv)	SO2 (ppmv)	THC (ppmv)	O2 (%)	CO2 (%)
NOx in N2	44.5 ppm		N/A			0.01	0.02
CO in N2	44.8 ppm	N/A				0.01	0.02
O2 in N2	9.6% 6.5%	0.37	-0.12			 NI/A	N/A
CO2 in N2 THC in air	0.3%	0.37	-0.12			N/A	
		C 1	C / D' 0	ת תי	CI 1		
Method: 7E Sect	ion 8.2.5-6	Sample	System Bias &	Response Time	e Check		
<u>Frequency:</u> Befo <u>Criteria:</u> 5% of	ore sampling b calibration spe	egins In			e Check		
<u>Frequency:</u> Befa <u>Criteria:</u> 5% of <u>Criteria:</u> Note th	ore sampling b calibration spo ne longer of the	egins an e two times as th	e response time		e Check		
<u>Frequency:</u> Befo <u>Criteria:</u> 5% of <u>Criteria:</u> Note th	ore sampling b calibration spe	egins an e two times as th	e response time JC		<u>e Check</u>		
<u>Frequency:</u> Befo <u>Criteria:</u> 5% of <u>Criteria:</u> Note th Test Date: Introduction	ore sampling b calibration spa the longer of the 1/20/16 Technique	egins an e two times as th	e response time JC		e Check	O2 (%)	CO2 (%)
<u>Frequency:</u> Befo <u>Criteria:</u> 5% of <u>Criteria:</u> Note th Test Date: <u>Introduction</u> Direct Zen	ore sampling by calibration spo the longer of the 1/20/16 Technique To Input	egins an e two times as th Technician: <u>NOx (ppmv)</u> 0.0	e response time JC <u>Sample Syste</u> <u>CO (ppmv)</u> 0.0	m Bias Check		0.0	0.0
<u>Frequency:</u> Befo <u>Criteria:</u> 5% of <u>Criteria:</u> Note th Test Date: <u>Introduction</u> Direct Zet Bias In	ore sampling by calibration spa the longer of the 1/20/16 Technique to Input nput	egins an e two times as th Technician: NOx (ppmv) 0.0 0.0	e response time JC <u>Sample Syste</u> <u>CO (ppmv)</u> 0.0 0.0	m Bias Check		0.0 0.0	0.0 0.0
<u>Frequency:</u> Befo <u>Criteria:</u> 5% of <u>Criteria:</u> Note th Test Date: <u>Introduction</u> Direct Zer Bias In Zero I	ore sampling by calibration spa the longer of the 1/20/16 Technique to Input aput Bias	egins an e two times as th Technician: <u>NOx (ppmv)</u> 0.0 0.0 0.0%	e response time JC <u>Sample Syste</u> <u>CO (ppmv)</u> 0.0 0.0 0.0%	m Bias Check		0.0 0.0 0.0%	0.0 0.0 0.0%
<u>Frequency:</u> Befo <u>Criteria:</u> 5% of <u>Criteria:</u> Note th Test Date: <u>Introduction</u> Direct Zen Bias In Zero I Direct Spa	ore sampling by calibration spa the longer of the 1/20/16 Technique To Input aput Bias	egins an e two times as th Technician: <u>NOx (ppmv)</u> 0.0 0.0 0.0% 44.1	e response time JC <u>Sample Syste</u> <u>CO (ppmv)</u> 0.0 0.0 0.0% 45.0	m Bias Check		0.0 0.0 0.0% 9.6	0.0 0.0 0.0% 6.5
<u>Frequency:</u> Befo <u>Criteria:</u> 5% of <u>Criteria:</u> Note th Test Date: <u>Introduction</u> Direct Zer Bias In Zero I Direct Spa Bias I	ore sampling by calibration spa- ne longer of the 1/20/16 Technique To Input 1put Bias 1n Input 1put	egins an e two times as th Technician: 0.0 0.0 0.0% 44.1 43.6	e response time JC <u>Sample Syste</u> <u>CO (ppmv)</u> 0.0 0.0% 45.0 43.9	m Bias Check		0.0 0.0% 9.6 9.6	0.0 0.0 0.0% 6.5 6.5
<u>Frequency:</u> Befo <u>Criteria:</u> 5% of <u>Criteria:</u> Note th Test Date: <u>Introduction</u> Direct Zen Bias In Zero I Direct Spa	ore sampling by calibration spa- ne longer of the 1/20/16 Technique To Input 1put Bias 1n Input 1put	egins an two times as th Technician: <u>NOx (ppmv)</u> 0.0 0.0 0.0 0.0% 44.1 43.6 -0.6%	<i>e response time</i> JC <u>Sample Syste</u> <u>CO (ppmv)</u> 0.0 0.0 0.0% 45.0 43.9 -1.3%	m Bias Check	THC (ppmv)	0.0 0.0 0.0% 9.6	0.0 0.0 0.0% 6.5
<u>Frequency:</u> Befo <u>Criteria:</u> 5% of <u>Criteria:</u> Note th Test Date: <u>Introduction</u> Direct Zer Bias In Zero I Direct Spa Bias I	ore sampling by calibration spa the longer of the 1/20/16 Technique To Input 1put Bias 1n Input 1put Bias	egins an two times as th Technician: <u>NOx (ppmv)</u> 0.0 0.0 0.0 0.0% 44.1 43.6 -0.6%	e response time JC <u>Sample Syste</u> <u>CO (ppmv)</u> 0.0 0.0% 45.0 43.9 -1.3% Sample System	m Bias Check SO2 (ppmv)	THC (ppmv)	0.0 0.0% 9.6 9.6	0.0 0.0 0.0% 6.5 6.5
Frequency: Befo Criteria: 5% of Criteria: Note th Test Date: Introduction Direct Zero I Direct Spa Bias I Direct Spa Bias I Span I Param Upscale R	ore sampling by calibration spo the longer of the 1/20/16 Technique to Input aput Bias the Input Bias the Input Bias	egins an e two times as th Technician: 0.0 0.0 0.0 44.1 43.6 -0.6%	<i>e response time</i> JC <u>Sample Syste</u> <u>CO (ppmv)</u> 0.0 0.0 0.0% 45.0 43.9 -1.3%	<u>m Bias Check</u> SO2 (ppmv) Response Time	THC (ppmv)	0.0 0.0% 9.6 9.6 0.0%	0.0 0.0% 6.5 6.5 0.0%
Frequency: Befo Criteria: 5% of Criteria: Note th Test Date: Introduction Direct Zen Bias In Zero I Direct Spa Bias I Span I Upscale R Downscale	ore sampling by calibration spo the longer of the 1/20/16 Technique to Input aput Bias an Input Bias theter esponse Response	egins an e two times as th Technician: 0.0 0.0 0.0 44.1 43.6 -0.6%	<i>E response time</i> JC <u>Sample Syste</u> <u>CO (ppmv)</u> 0.0 0.0 0.0% 45.0 43.9 -1.3% <u>Sample System</u> CO (ppmv)	<u>m Bias Check</u> SO2 (ppmv) Response Time SO2 (ppmv)	THC (ppmv)	0.0 0.0% 9.6 9.6 0.0% O2 (%)	0.0 0.0% 6.5 6.5 0.0%
Frequency: Befo Criteria: 5% of Criteria: Note th Test Date: Introduction Direct Zero I Direct Spa Bias I Direct Spa Bias I Span I Param Upscale R	ore sampling by calibration spo the longer of the 1/20/16 Technique to Input aput Bias tin Input Bias teter esponse Response	egins an e two times as th Technician: <u>NOx (ppmv)</u> 0.0 0.0 0.0% 44.1 43.6 -0.6%	e response time JC <u>Sample Syste</u> <u>CO (ppmv)</u> 0.0 0.0 0.0 45.0 43.9 -1.3% <u>Sample System</u> <u>CO (ppmv)</u> 40 40	m Bias Check SO2 (ppmv) Response Time SO2 (ppmv)	THC (ppmv)	0.0 0.0% 9.6 9.6 0.0% 02 (%) 45	0.0 0.0% 6.5 6.5 0.0% CO2 (%) 55
Frequency: Befo Criteria: 5% of Criteria: Note th Test Date: Introduction Direct Zen Bias In Zero I Direct Spa Bias I Span I Upscale R Downscale	ore sampling by calibration spo the longer of the 1/20/16 Technique to Input aput Bias tin Input Bias teter esponse Response	egins an e two times as th Technician: <u>NOx (ppmv)</u> 0.0 0.0 0.0% 44.1 43.6 -0.6%	e response time JC <u>Sample Syste</u> <u>CO (ppmv)</u> 0.0 0.0 0.0 45.0 43.9 -1.3% <u>Sample System</u> <u>CO (ppmv)</u> 40 40	<u>m Bias Check</u> SO2 (ppmv) Response Time SO2 (ppmv)	THC (ppmv)	0.0 0.0% 9.6 9.6 0.0% 02 (%) 45	0.0 0.0% 6.5 6.5 0.0% CO2 (%) 55
Frequency: Befo Criteria: 5% of Criteria: Note th Test Date: Introduction Direct Zen Bias In Zero I Direct Spa Bias I Span I Direct Spa Bias I Span I Direct Spa Bias I Span I Direct Spa Bias I Span I	ore sampling by calibration spon the longer of the 1/20/16 Technique To Input aput Bias an Input an Input Bias etter esponse Response Time by or whenever an one inch de	egins an e two times as th Technician: <u>NOx (ppmv)</u> 0.0 0.0 0.0 0.0 44.1 43.6 -0.6% <u>NOx (ppmv)</u> 35 35 35	e response time JC <u>Sample Syste</u> <u>CO (ppmv)</u> 0.0 0.0 0.0 45.0 43.9 -1.3% <u>Sample System</u> <u>CO (ppmv)</u> 40 40 40 Example System em is moved or	m Bias Check SO2 (ppmv) Response Time SO2 (ppmv) 110 so n Leak Check disassembled ((THC (ppmv)	0.0 0.0% 9.6 9.6 0.0% 02 (%) 45	0.0 0.0% 6.5 6.5 0.0% CO2 (%) 55
Frequency: Befo Criteria: 5% of Criteria: Note th Test Date: Introduction Direct Zen Bias In Zero I Direct Spa Bias I Span I Direct Spa Bias I Span I Direct Spa Bias I Span I Direct Spa Bias I Span I	ere sampling be calibration spo e longer of the 1/20/16 Technique To Input put Bias In Input nput Bias Eter esponse Response Response Time by or whenever an one inch de Test Date	egins an e two times as th Technician: <u>NOx (ppmv)</u> 0.0 0.0 0.0% 44.1 43.6 -0.6% <u>NOx (ppmv)</u> 35 35 35 <i>Constant Constant Constan</i>	e response time JC <u>Sample Syste</u> <u>CO (ppmv)</u> 0.0 0.0 45.0 43.9 -1.3% <u>Sample System</u> <u>CO (ppmv)</u> 40 40 40 Example System em is moved or ure in one minut	m Bias Check SO2 (ppmv) Response Time SO2 (ppmv) 110 so n Leak Check disassembled (C	THC (ppmv)	0.0 0.0% 9.6 9.6 0.0% 02 (%) 45	0.0 0.0% 6.5 6.5 0.0% CO2 (%) 55
Introduction Direct Zer Bias In Zero I Direct Spa Bias I Span I Param Upscale R Downscale	ore sampling by calibration spon the longer of the 1/20/16 Technique To Input aput Bias an Input an Input Bias etter esponse Response Time by or whenever an one inch de	egins an e two times as th Technician: <u>NOx (ppmv)</u> 0.0 0.0 0.0 0.0 44.1 43.6 -0.6% <u>NOx (ppmv)</u> 35 35 35	e response time JC <u>Sample Syste</u> <u>CO (ppmv)</u> 0.0 0.0 45.0 43.9 -1.3% <u>Sample System</u> <u>CO (ppmv)</u> 40 40 40 Example System em is moved or ure in one minut	m Bias Check SO2 (ppmv) Response Time SO2 (ppmv) 110 so n Leak Check disassembled ((THC (ppmv)	0.0 0.0% 9.6 9.6 0.0% 02 (%) 45	0.0 0.0% 6.5 6.5 0.0% CO2 (%) 55

Quality Assurance Worksheet Instrument Calibration and Drift Correction

TEST RUN 2

TEST RUN 3

Company: Enterprise Field Services

Location: South Carlsbad Compressor Station

Source: Solar Centaur 40-T4702 SN: OHE12C7057

Engine Site Rating: 3609 Hp @ 15000 RPM

Test Date: Wednesday, January 20, 2016 Sample System #: 2

	UN	IT NUMBE	CR 2				TEST	TRUN 1
GAS	CALIBRAT	TON GAS	INITIAL CA	LIBRATION	Start Ru	ın		ZERO and
LEVELS	CONCENT	RATIONS	& LINEAR	ITY CHECK	7:53		CAL	IBRATIO
PER	Certified	Target	Analyzer	Calibration	Stop Ru	n In	itial	Final
METHOD	Concentration	(% Span)	Response	Error < 2%	8:13	Res	ponse	Response

	UT U	плолы				1201	I KUN I				125	I KUIVZ				1101	Reite		
GAS	CALIBRAT	ION GAS	INITIAL CA	ALIBRATION	Start Run		ZERO and S	PAN		Start Run		ZERO and S	PAN		Start Run		ZERO and S	PAN	
LEVELS	CONCENTI	RATIONS	& LINEAR	ITY CHECK	7:53	CAL	LIBRATION	CHECK		8:18	CAL	LIBRATION	CHECK		8:43	CAI	IBRATION	СНЕСК	
PER	Certified	Target	Analyzer	Calibration	Stop Run	Initial	Final	Drift	Bias	Stop Run	Initial	Final	Drift	Bias	Stop Run	Initial	Final	Drift	Bias
METHOD	Concentration	(% Span)	Response	Error < 2%	8:13	Response	Response	< 3%	< 5%	8:38	Response	Response	< 3%	< 5%	9:03	Response	Response	< 3%	< 5%
		NOx			Avg. ppmv					Avg. ppmv					Avg. ppmv				
Zero	0.0 ppmv	0.0	0.0 ppmv	0.0%	70.49	0.0 ppmv	0.0 ppmv	0.0%	0.0%	73.73	0.0 ppmv	1.0 ppmv	1.2%	1.2%	72.22	1.0 ppmv	1.0 ppmv	0.0%	1.2%
					Corr. ppmv					Corr. ppmv					Corr. ppmv				
Mid	44.5 ppmv	52.0	44.1 ppmv	-0.5%	71.70	43.6 ppmv	43.9 ppmv	0.7%	0.7%	75.09	43.9 ppmv	43.9 ppmv	0.0%	0.7%	73.53	43.9 ppmv	44.3 ppmv	0.9%	0.2%
High	85.5 ppmv	100.0	84.8 ppmv	-0.8%	Cal. Span					Cal. Span					Cal. Span				
A	nalyzer Range =	100 ppmv	Span =	= 85.5	85.5					85.5					85.5				
		СО			Avg. ppmv					Avg. ppmv					Avg. ppmv				
Zero	0.0 ppmv	0.0	0.0 ppmv	0.0%	14.43	0.0 ppmv	0.0 ppmv	0.0%	0.0%	11.91	0.0 ppmv	0.0 ppmv	0.0%	0.0%	9.57	0.0 ppmv	-1.0 ppmv	1.2%	1.2%
					Corr. ppmv					Corr. ppmv					Corr. ppmv				
Mid	44.8 ppmv	53.7	45.0 ppmv	0.2%	14.67	43.9 ppmv	44.2 ppmv	0.7%	0.7%	12.03	44.2 ppmv	44.5 ppmv	0.7%	0.4%	9.98	44.5 ppmv	44.9 ppmv	0.9%	0.1%
High	83.4 ppmv	100.0	83.9 ppmv	0.6%	Cal. Span					Cal. Span					Cal. Span				
A	nalyzer Range =	100 ppmv	Span =	= 83.4	83.4					83.4					83.4				
		02			Avg.%					Avg.%					Avg.%				
Zero	0.0%	0.0	0.0%	0.0%	17.59	0.0%	0.0%	0.0%	0.0%	17.45	0.0%	0.0%	0.0%	0.0%	17.39	0.0%	0.0%	0.0%	0.0%
					Corr. %					Corr. %					Corr. %				
Mid	9.6%	45.5	9.6%	0.0%	17.59	9.6%	9.6%	0.0%	0.0%	17.45	9.6%	9.6%	0.0%	0.0%	17.30	9.6%	9.7%	1.0%	0.5%
High	21.1%	100.0	21.1%	0.0%	Cal. Span					Cal. Span					Cal. Span				
A	nalyzer Range =	22.0%	Span =	= 21.1	21.1					21.1					21.1				
		<i>CO2</i>			Avg.%					Avg.%					Avg.%				
Zero	0.0%	0.0	0.0%	0.0%	2.00	0.0%	0.0%	0.0%	0.0%	2.10	0.0%	0.0%	0.0%	0.0%	2.14	0.0%	0.0%	0.0%	0.0%
					Corr. %					Corr. %					Corr. %				
Mid	4.0%	61.5	4.0%	0.0%	2.00					2.12					2.18				
High	6.5%	100.0	6.5%	0.0%	Cal. Span	6.5%	6.5%	0.0%	0.0%	Cal. Span	6.5%	6.4%	1.5%	1.5%	Cal. Span	6.4%	6.4%	0.0%	1.5%
Α	nalyzer Range =	7.0%	Span =	= 6.5	6.5					6.5					6.5				

PRISE TM Measurement Processing System					in a second
IPS Home Meter Data Find	Reports	Work Orders	Communications	On Call	Paging

Snap	o-shot	G	eneral Inf	formation For	16961-01		Measu	rement
		WellName		SO CARLS	BAD TURB FUEL			
Trees of		PIN		1	1696101		Provide State	
20/201 Itic	6 8:00:00 198.13 63.18	Group Number	5	Local Address	57		Static	6 8:00:00 198.13
np	33.28	System	GTTAES2	Scada Server	AESTX2	-	DP Temp	63.18 33.28
me	1,575.00 1,463.88	DAL / OrgID	661 / EPF	Team	C2		Volume Flow	65.63
cast	1,575.17	Model	827	Load File	AESORIF		Time	60.00
		Business Party	0	Operator Name	ENTERPRISE FI SERVICES LLC	IELD		
		Pipe: 4.03	P	late: 1.5	B/R: 0.37			
		Meter Type	Non WATT	Meter			1	
		S/T/R	12/235/27	E			1	
10	°]			Graph for 16961-01		100	-	Static Temp DP
100 80 60			M	Graph for 16961-01		80	-	
8 6 4 2		1/9 1/8 1/10	1/11 1/13 1/12	Africa	A //7 1/19 1/18 1/20	80 60 40 20	-	Temp

03

07

031

01

05

14

Copyright © 2005, Enterprise Products. For problems or questions regarding this web site contact Bob Bevers [rbevers@eprod.com] .

○75 ● 150 ○ 300 ○ 800

Diff. Pressure Range

● 250 ○ 500 ○ 1000 ○ 1500 ○ 2000

Print

Fuel Gas Analysis, Gas Fuel O2 F-Factor, Moisture Content, Fuel VOC%, and Heating Value Calculation

Company: Enterprise Field Services

Sample ID: South Carlsbad Time: N/A

Date: 2/2/16

Date:	2/2/16									4
	СА	LCULATION	OF DENSI	TY AND HEA	ATING VALU	UE @ 68°F an	id 29.92 in H	Ig		1
ī	I	ر <u> </u>		% volume		Component		Gross	Volume	1
ļ	%	Molecular	Density	x	1	Gross	Weight	Htng. Val.	Fract.	1
Component	Volume	Wt.	(lb/ft3)	Density	weight %	Btu/lb	Fract. Btu	(Btu/SCF)	Btu	1
Hydrogen	í	2.016	0.0052	0.00000	0.0000	61100	0.00	325.0	0.000	1
Öxygen		32.000	0.0831	0.00000	0.0000	0	0.00	0.0	0.000	1
Nitrogen	2.9591	28.016	0.0731	0.00216	4.2554	0	0.00	0.0	0.000	1
CO2	0.0001	44.010	0.1149	0.00000	0.0002	0	0.00	0.0	0.000	1
CO		28.010	0.0727	0.00000	0.0000	4347	0.00	322.0	0.000	1
Methane	81.9206	16.041	0.0417	0.03412	67.1414	23879	16032.70	1013.0	829.856	1
Ethane	9.7466	30.067	0.0789	0.00769	15.1268	22320	3376.30	1792.0	174.659	1
Ethylene		28.051	0.0733	0.00000	0.0000	21644	0.00	1614.0	0.000	1
Propane	4.1308	44.092	0.1175	0.00485	9.5487	21661	2068.34	2590.0	106.988	1
propylene		42.077	0.1090	0.00000	0.0000	21041	0.00	2336.0	0.000	1
Isobutane	0.3608	58.118	0.1554	0.00056	1.1032	21308	235.08	3363.0	12.134	1
n-butane	0.7075	58.118	0.1554	0.00110	2.1634	21257	459.87	3370.0	23.843	1
Isobutene		56.102	0.1454	0.00000	0.0000	20840	0.00	3068.0	0.000	1
Isopentane	0.0822	72.144	0.1870	0.00015	0.3025	21091	63.80	4008.0	3.295	1
n-pentane	0.0662	72.144	0.1870	0.00012	0.2436	21052	51.29	4016.0	2.659	1
n-hexane +	0.0261	86.169	0.2234	0.00006	0.1147	20940	24.02	4762.0	1.243	1
H2S	I	34.076	0.0895	0.00000	0.0000	7100	0.00	647.0	0.000	1
Totals	100.00	731.25	1.91	0.0508	100.00		Gross Hea	ating Value		1
Average I	Density:	0.0508	Specific	Gravity:	0.664	Btu/lb:	22311	Btu/SCF:	1155	1
				CALCULATIO	ON OF FE	ACTORS				
		,,					W	eight Percent	ts	
Component	Mol. Wt.	C Factor	H Factor	% volume	Fract. Wt.	Carbon	Hydrogen	Nitrogen	Oxygen	Sulf
Hydrogen	2.016	0.0000	1.0000	0.0000	0.0000		0.0000	,	· · · · · · · · · · · · · · · · · · ·	
Oxygen	32.000	0.0000	0.0000	0.0000	0.0000			; ;	0.0000	}
Nitrogen	28.016	0.0000	0.0000	2.9591	82.9021	· [4.2575	!	{
CO2	44.010	0.2723	0.0000	0.0001	0.0044	0.0001			0.0002	{
CO	28.010	0.4259	0.0000	0.0000	0.0000	0.0000		,	0.0000	{
Methane	16.041	0.7500	0.2500	81.9206	1314.0883	50.6139	16.8713	· · · · · · · · · · · · · · · · · · ·	, ,	{
Ethane	30.067	0.8000	0.2000	9.7466	293.0510	12.0397	3.0099	; ;	; ;	{
Ethylene	28.051	0.8571	0.1429	0.0000	0.0000	0.0000	0.0000	· · · · · · · · · · · · · · · · · · ·	,	(
Propane	44.092	0.8182	0.1818	4.1308	182.1352	7.6529	1.7007	: : :	· · · · · · · · · · · · · · · · · · ·	1
D	42.077	0.0571	0.1420	0.0000	0.0000	0.0000	0.0000	· · · · · · · · · · · · · · · · · · ·	{	{

				CALC	ULATED VAI	LUES				
Totals	731.25	9.80	2.96	100.00	1947.224	73.500	22.242	4.257	0.000	0.000
H2S	34.076	0.0000	0.0587	0.0000	0.0000	0.0000	0.0000			0.0000
n-hexane	86.169	0.8372	0.1628	0.0261	2.2490	0.0967	0.0188			
n-pentane	72.144	0.8333	0.1667	0.0662	4.7759	0.2044	0.0409			
Isopentane	72.144	0.8333	0.1667	0.0822	5.9302	0.2538	0.0508			
Isobutene	56.102	0.8571	0.1429	0.0000	0.0000	0.0000	0.0000			
n-butane	58.118	0.8276	0.1725	0.7075	41.1185	1.7476	0.3642			
Isobutane	58.118	0.8276	0.1725	0.3608	20.9690	0.8912	0.1857			
Propene	42.077	0.8571	0.1429	0.0000	0.0000	0.0000	0.0000			
Propane	44.092	0.8182	0.1818	4.1308	182.1352	7.6529	1.7007			
Ethylene	28.051	0.8571	0.1429	0.0000	0.0000	0.0000	0.0000			
Ethane	30.067	0.8000	0.2000	9.7466	293.0510	12.0397	3.0099			
Methane	16.041	0.7500	0.2500	81.9206	1314.0883	50.6139	16.8713			
СО	28.010	0.4259	0.0000	0.0000	0.0000	0.0000			0.0000	
CO2	44.010	0.2723	0.0000	0.0001	0.0044	0.0001			0.0002	
Nitrogen	28.016	0.0000	0.0000	2.9591	82.9021			4.2575		
Oxygen	32.000	0.0000	0.0000	0.0000	0.0000		{ }		0.0000	

	CALC	ULATED VALUES
O2 F Factor (dry)	8696	DSCF of Exhaust/MMBtu of Fuel Burned @ 0% excess air
O2 F Factor (wet)	10620	SCF of Exhaust/MMBtu of Fuel Burned @ 0% excess air
Moisture F Factor	1924	SCF of Water/MMBtu of Fuel Burned @ 0% excess air
Combust. Moisture	18.12	Volume % water in flue gas @ 0% excess air
CO2 F Factor	1057	DSCF of CO2/MMBtu of Fuel Burned @ 0% excess air
Carbon Dioxide	12.16	Volume % CO2 in flue gas @ 0% O2
Predicted Fo Factor	1.72	EPA Method 3b Fo value
Fuel VOC %	Non-methane	
Fuel VOC %	13.94%	Non-methane, non-ethane

Example Calculations

FormulaCGAS = (Ç - Co) xCMA CM - Co(eq. 7E-5)All Calculations Refer to Test Run 1 Unit #1CNOX =Raw Concentration of NOX= 66.35 ppmvCO =Avg. of Initial and Final Zero Checks= 0.00 ppmvCM =Avg. of Initial and Final Span Checks= 43.80 ppmvCMA =Certified Concentration of Span Gas= 44.50 ppmvCMA =Certified Concentration of CO= 13.52 ppmvCOA =Avg. of Initial and Final Zero Checks= 0.00 ppmvCO =Avg. of Initial and Final Span Checks= 44.45 ppmvCMA =Certified Concentration of CO= 13.52 ppmvCG =Avg. of Initial and Final Span Checks= 44.45 ppmvCMA =Certified Concentration of Span Gas= 44.80 ppmvCco =(44.45 - 0.00)x <u>44.80 ppmv</u> Cco =Avg. of initial and final zero bias checks= 0.00%CMA =Actual concentration of O2= 16.77%Co =Avg. of initial and final zero bias checks= 9.60%CMA =Actual concentration of Span gas= 9.60%Co2 =(16.77 - 0.00) x <u>9.60= 16.77%Co2 =Raw Concentration of CO2= 2.46%CoA =Avg. of initial and final zero bias checks= 0.00%CMA =Actual concentration of Span gas= 6.50%CMA =Actual concentration of Span gas= 6.50%CMA =Actual concentration of CO2= 2.46%Co =Avg. of initial and final zero bias checks</u>		Drift Corrected Emission Concentration	ations
$CGAS = (C - C0) X - \frac{CM - C0}{CM - C0} (24, 72-3)$ $All Calculations Refer to Test Run 1 Unit #1$ $C_{NOx} = Raw Concentration of NOx = 66.35 ppmv Co = Avg. of Initial and Final Zero Checks = 0.00 ppmv CM = Avg. of Initial and Final Span Checks = 43.80 ppmv CMA = Certified Concentration of Span Gas = 44.50 ppmv CNox = (66.35 - 0.00) x 44.50 = 67.41 ppmv CO = Avg. of Initial and Final Zero Checks = 0.00 ppmv CM = Avg. of Initial and Final Zero Checks = 0.00 ppmv CM = Avg. of Initial and Final Zero Checks = 0.00 ppmv CM = Avg. of Initial and Final Zero Checks = 0.00 ppmv CM = Avg. of Initial and Final Zero Checks = 0.00 ppmv CM = Avg. of Initial and Final Span Checks = 44.45 ppmv CM = Certified Concentration of Span Gas = 44.80 ppmv CCo = (13.52 - 0.00) x 44.80 = 13.62 ppmv CCo = Avg. of initial and final zero bias checks = 0.00% CM = Avg. of initial and final zero bias checks = 0.00% CM = Avg. of initial and final zero bias checks = 9.60% CM = Avg. of initial and final span bias checks = 9.60% CM = Avg. of initial and final zero bias checks = 0.00% CM = Avg. of initial and final zero bias checks = 0.00% CM = Avg. of initial and final zero bias checks = 0.00% CM = Avg. of initial and final zero bias checks = 0.00% CM = Avg. of initial and final zero bias checks = 0.00% CM = Avg. of initial and final zero bias checks = 0.00% CM = Avg. of initial and final zero bias checks = 0.00% CM = Avg. of initial and final zero bias checks = 0.00% CM = Avg. of initial and final zero bias checks = 0.00% CM = Avg. of initial and final zero bias checks = 0.00% CM = Avg. of initial and final zero bias checks = 0.00% CM = Avg. of initial and final zero bias checks = 0.00% CM = Avg. of initial and final zero bias checks = 0.00% CM = Avg. of initial and final zero bias checks = 0.00% CM = Avg. of initial and final span bias checks = 0.00% CM = Avg. of initial and final span bias checks = 0.00% CM = Avg. of initial and final zero bias checks = 0.00% CM = Avg. of initial and final span bias checks = 0.00% CM = Avg. of initial an$		Formula	
$C_{NOX} =$ Raw Concentration of NOX= 66.35 ppmv $C_{O} =$ Avg. of Initial and Final Zero Checks= 0.00 ppmv $C_{M} =$ Avg. of Initial and Final Span Checks= 43.80 ppmv $C_{MA} =$ Certified Concentration of Span Gas= 44.50 ppmv $C_{NOX} =$ (66.35 - 0.00) x $\underline{44.50}$ (43.80 - 0.00)= 67.41 ppmv $C_{OC} =$ Raw Concentration of CO= 13.52 ppmv $C_{O} =$ Avg. of Initial and Final Zero Checks= 0.00 ppmv $C_{M} =$ Avg. of Initial and Final Span Checks= 44.45 ppmv $C_{MA} =$ Certified Concentration of Span Gas= 44.80 ppmv $C_{MA} =$ Certified Concentration of Span Gas= 44.80 ppmv $C_{MA} =$ Certified Concentration of Span Gas= 13.62 ppmv $C_{MA} =$ Certified Concentration of O2= 16.77% $C_{O2} =$ Raw Concentration of O2= 16.77% $C_{O2} =$ Raw Concentration of Span gas= 9.60% $C_{MA} =$ Actual concentration of Span gas= 9.60% $C_{MA} =$ Actual concentration of CO2= 2.46% $C_{O2} =$ Raw Concentration of CO2= 2.46% $C_{MA} =$ Actual concentration of Span gas= 6.50% $C_{MA} =$ Actual concentration of CO2= 2.46% $C_{MA} =$ <t< th=""><th></th><th>$(CAS = (0 - 0) \times (0) \times$</th><th>5)</th></t<>		$(CAS = (0 - 0) \times (0) \times$	5)
$C_{O} = Avg. of Initial and Final Zero Checks = 0.00 ppmv C_M = Avg. of Initial and Final Span Checks = 43.80 ppmv C_MA = Certified Concentration of Span Gas = 44.50 ppmv C_{NOX} = (66.35 - 0.00) \times \frac{44.50}{(43.80 - 0.00)} = 67.41 ppmv C_{O} = Raw Concentration of CO = 13.52 ppmv Co = Avg. of Initial and Final Zero Checks = 0.00 ppmv C_M = Avg. of Initial and Final Span Checks = 44.45 ppmv C_MA = Certified Concentration of Span Gas = 44.80 ppmv C_MA = Certified Concentration of Span Gas = 44.80 ppmv C_MA = Certified Concentration of Span Gas = 44.80 ppmv C_CO = (13.52 - 0.00) \times 44.80 = 13.62 ppmv C_{CO} = Avg. of initial and final zero bias checks = 0.00\% C_MA = Avg. of initial and final zero bias checks = 0.00\% C_MA = Avg. of initial and final zero bias checks = 9.60\% C_MA = Actual concentration of Span gas = 9.60\% C_MA = Actual concentration of Span gas = 9.60\% C_O = Avg. of initial and final zero bias checks = 0.00% C_MA = Actual concentration of CO2 = 2.46\% C_O = Avg. of initial and final zero bias checks = 0.00% C_MA = Actual concentration of Span gas = 6.50% C_MA = Actual concentration of Span gas = 6.50% C_MA = Actual concentration of Span gas = 6.50% C_MA = Actual concentration of Span gas = 6.50% C_MA = Actual concentration of Span gas = 6.50% C_MA = Actual concentration of Span gas = 2.46% C_O = Avg. of initial and final span bias checks = 6.50% C_O2 = (2.46 - 0.00) x 6.50 (6.50 - 0.00) Fo Calculation to Verify O2 / CO2 Measurements (Eq. 3b-1) C_O2 = Corrected Concentration of O2 = 2.46% Th. Fo = Theoretical Fo from FGA = 1.72 Fo = (20.9 - 02\%) CO2 % Fo = (20.9 - 16.77) = 1.67$		All Calculations Refer to Test Run 1 Unit	#1
$C_{M} = Avg. of Initial and Final Span Checks = 43.80 ppmv$ $C_{MA} = Certified Concentration of Span Gas = 44.50 ppmv$ $C_{MA} = (66.35 - 0.00) \times 44.50 = 67.41 ppmv$ $C_{NOX} = (66.35 - 0.00) \times 44.50 = 67.41 ppmv$ $C_{O} = Raw Concentration of CO = 13.52 ppmv$ $C_{O} = Avg. of Initial and Final Zero Checks = 0.00 ppmv$ $C_{M} = Avg. of Initial and Final Span Checks = 44.45 ppmv$ $C_{MA} = Certified Concentration of Span Gas = 44.80 ppmv$ $C_{CO} = (13.52 - 0.00) \times 44.80 = 13.62 ppmv$ $C_{CO} = (13.52 - 0.00) \times 44.80 = 13.62 ppmv$ $C_{CO} = (13.52 - 0.00) \times 44.80 = 13.62 ppmv$ $C_{CO} = Avg. of initial and final zero bias checks = 0.00\%$ $C_{M} = Avg. of initial and final span bias checks = 9.60\%$ $C_{MA} = Actual concentration of Span gas = 9.60\%$ $C_{O} = Avg. of initial and final span bias checks = 0.00\%$ $C_{MA} = Actual concentration of CO2 = 2.46\%$ $C_{O} = Avg. of initial and final zero bias checks = 0.00\%$ $C_{MA} = Actual concentration of CO2 = 2.46\%$ $C_{O} = Avg. of initial and final zero bias checks = 0.00\%$ $C_{MA} = Actual concentration of CO2 = 2.46\%$ $C_{O} = Avg. of initial and final zero bias checks = 6.50\%$ $C_{MA} = Actual concentration of Span gas = 6.50\%$ $C_{MA} = Actual concentration of span gas = 6.50\%$ $C_{MA} = Actual concentration of span gas = 6.50\%$ $C_{MA} = Actual concentration of span gas = 6.50\%$ $C_{MA} = Actual concentration of span gas = 6.50\%$ $C_{MA} = Actual concentration of Span gas = 6.50\%$ $C_{MA} = Actual concentration of Span gas = 6.50\%$ $C_{MA} = Actual concentration of Span gas = 6.50\%$ $C_{MA} = Actual concentration of Span gas = 2.46\%$ $C_{MA} = Actual concentration of CO2 = 2.46\%$ $C_{MA} = Actual concentration of CO2 = 2.46\%$ $C_{MA} = Cotentration of $	Ç _{NOx} =	Raw Concentration of NOx	= 66.35 ppmv
$C_{MA} = Certified Concentration of Span Gas = 44.50 ppmv$ $C_{Nox} = (66.35 - 0.00) \times 444.50 = 67.41 ppmv$ $C_{CO} = Raw Concentration of CO = 13.52 ppmv$ $C_{O} = Avg. of Initial and Final Zero Checks = 0.00 ppmv$ $C_{M} = Avg. of Initial and Final Span Checks = 44.45 ppmv$ $C_{MA} = Certified Concentration of Span Gas = 44.80 ppmv$ $C_{CO} = (13.52 - 0.00) \times 44.80 = 13.62 ppmv$ $C_{CO} = (13.52 - 0.00) \times 44.80 = 13.62 ppmv$ $C_{CO} = (13.52 - 0.00) \times 44.80 = 13.62 ppmv$ $C_{CO} = Avg. of initial and final zero bias checks = 0.00\%$ $C_{M} = Avg. of initial and final zero bias checks = 0.00\%$ $C_{MA} = Actual concentration of Span gas = 9.60\%$ $C_{O2} = (16.77 - 0.00) \times 9.60 = 16.77\%$ $C_{CO2} = Raw Concentration of CO2 = 2.46\%$ $C_{O} = Avg. of initial and final zero bias checks = 0.00\%$ $C_{MA} = Actual concentration of CO2 = 2.46\%$ $C_{O} = Avg. of initial and final zero bias checks = 0.00\%$ $C_{MA} = Actual concentration of CO2 = 2.46\%$ $C_{O} = Avg. of initial and final zero bias checks = 0.00\%$ $C_{MA} = Actual concentration of Span gas = 6.50\%$ $C_{MA} = Actual concentration of CO2 = 2.46\%$ $C_{O2} = (2.46 - 0.00) \times 6.50 = 2.46\%$ $C_{O2} = Corrected Concentration of O2 = 16.77\%$ $C_{CO2} = Corrected Concentration of CO2 = 2.46\%$ $Th. Fo = Theoretical Fo from FGA = 1.72$ $Fo = (20.9 - 0.2\%)$ $C_{O2} = 0.00 + 0.00 = 0.00$	Co =	Avg. of Initial and Final Zero Checks	= 0.00 ppmv
$C_{NOX} = (66.35 - 0.00) \times \frac{44.50}{(43.80 - 0.00)} = 67.41 \text{ pmv}$ $C_{CO} = Raw Concentration of CO = 13.52 \text{ pmv}$ $C_{O} = Avg. of Initial and Final Zero Checks = 0.00 \text{ pmv}$ $C_{M} = Avg. of Initial and Final Span Checks = 44.45 \text{ ppmv}$ $C_{MA} = Certified Concentration of Span Gas = 44.80 \text{ ppmv}$ $C_{CO} = (13.52 - 0.00) \times \frac{44.80}{(44.45 - 0.00)} = 13.62 \text{ ppmv}$ $C_{CO} = (13.52 - 0.00) \times \frac{44.80}{(44.45 - 0.00)} = 16.77\%$ $C_{O} = Avg. of initial and final zero bias checks = 0.00\%$ $C_{M} = Avg. of initial and final span bias checks = 9.60\%$ $C_{MA} = Actual concentration of Span gas = 9.60\%$ $C_{O2} = (16.77 - 0.00) \times \frac{9.60}{(9.60 - 0.00)} = 16.77\%$ $C_{CO2} = Raw Concentration of CO2 = 2.46\%$ $C_{O} = Avg. of initial and final zero bias checks = 0.00\%$ $C_{MA} = Actual concentration of CO2 = 2.46\%$ $C_{O} = Avg. of initial and final span bias checks = 6.50\%$ $C_{MA} = Actual concentration of span gas = 6.50\%$ $C_{MA} = Actual concentration of span gas = 6.50\%$ $C_{CO2} = (2.46 - 0.00) \times \frac{6.50}{(6.50 - 0.00)} = 2.46\%$ $Th. Fo = Theoretical Fo from FGA = 1.72$ $F_{O} = \frac{(20.9 - 16.77)}{(20.9 - 16.77)} = 1.67$	См =	Avg. of Initial and Final Span Checks	= 43.80 ppmv
$(43.80 - 0.00)$ $(43.80 - 0.00)$ $C_{CO} =$ Raw Concentration of CO $= 13.52 \text{ ppmv}$ $C_{O} =$ Avg. of Initial and Final Zero Checks $= 0.00 \text{ ppmv}$ $C_{M} =$ Avg. of Initial and Final Span Checks $= 44.45 \text{ ppmv}$ $C_{MA} =$ Certified Concentration of Span Gas $= 44.80 \text{ ppmv}$ $C_{CO} =$ (13.52 - 0.00) x 44.80 $= 13.62 \text{ ppmv}$ $C_{CO} =$ (13.52 - 0.00) x 44.80 $= 13.62 \text{ ppmv}$ $C_{CO} =$ (13.52 - 0.00) x 44.80 $= 13.62 \text{ ppmv}$ $C_{CO} =$ Avg. of initial and final zero bias checks $= 0.00\%$ $C_{M} =$ Avg. of initial and final span bias checks $= 9.60\%$ $C_{MA} =$ Actual concentration of span gas $= 9.60\%$ $C_{O2} =$ Raw Concentration of CO2 $= 2.46\%$ $C_{O2} =$ Raw Concentration of CO2 $= 2.46\%$ $C_{O2} =$ Raw Concentration of Span gas $= 6.50\%$ $C_{MA} =$ Actual concentration of Span gas $= 6.50\%$ $C_{MA} =$ Actual concentration of span gas $= 6.50\%$ $C_{MA} =$ Actual concentration of span gas $= 6.50\%$ $C_{MA} =$ Actual concentration of span gas $= 6.50\%$ $C_{MA} =$ Actual concentration of Span gas $= 6.50\%$ $C_{MA} =$ Actual concentration of span gas $= 6.50\%$ $C_{MA} =$ Actual concentration of Span gas $= 6.50\%$ $C_{MA} =$ Actual concentration of Span gas $= 6.50\%$ $C_{MA} =$ Actual concentration of O2 $= 16.77\%$ <	Cma =	Certified Concentration of Span Gas	= 44.50 ppmv
$C_{CO} =$ Raw Concentration of CO= 13.52 ppmv $C_{O} =$ Avg. of Initial and Final Zero Checks= 0.00 ppmv $C_{M} =$ Avg. of Initial and Final Span Checks= 44.45 ppmv $C_{MA} =$ Certified Concentration of Span Gas= 44.80 ppmv $C_{CO} =$ (13.52 - 0.00) x44.80 $(44.45 - 0.00)$ (44.45 - 0.00)= 13.62 ppmv $C_{CO} =$ Raw Concentration of O2= 16.77% $C_{O} =$ Avg. of initial and final zero bias checks= 0.00% $C_{MA} =$ Actual concentration of span gas= 9.60% $C_{MA} =$ Actual concentration of span gas= 9.60% $C_{O2} =$ Raw Concentration of CO2= 2.46% $C_{O2} =$ Raw Concentration of CO2= 2.46% $C_{O2} =$ Raw Concentration of span gas= 6.50% $C_{MA} =$ Actual concentration of span gas= 6.50% $C_{CO2} =$ (2.46 - 0.00) x6.50-0.00) $C_{O2} =$ Corrected Concentration of CO2= 2.46% $C_{O2} =$ Corrected Concentration of CO2= 16.77% $C_{CO2} =$ Corrected Concentration of CO2= 2.46%Th. Fo =Theoretical Fo from FGA= 1.72Fo =(20.9 - 0.22%) (CO2 %= 1.67Fo =(20.9 - 0.22%) (CO2 % <t< th=""><th>CNO_x =</th><th>(66.35 - 0.00) x <u>44.50</u></th><th>= 67.41 ppmv</th></t<>	CNO _x =	(66.35 - 0.00) x <u>44.50</u>	= 67.41 ppmv
$C_{O} = Avg. of Initial and Final Zero Checks = 0.00 ppmv$ $C_{M} = Avg. of Initial and Final Span Checks = 44.45 ppmv$ $C_{MA} = Certified Concentration of Span Gas = 44.80 ppmv$ $C_{CO} = (13.52 - 0.00) \times 44.80 = 13.62 ppmv$ $C_{CO} = (13.52 - 0.00) \times 44.80 = 13.62 ppmv$ $C_{CO} = Avg. of initial and final zero bias checks = 0.00\%$ $C_{M} = Avg. of initial and final zero bias checks = 9.60\%$ $C_{MA} = Actual concentration of Span gas = 9.60\%$ $C_{O2} = (16.77 - 0.00) \times 9.60 = 16.77\%$ $C_{O2} = Raw Concentration of CO2 = 2.46\%$ $C_{O} = Avg. of initial and final zero bias checks = 0.00\%$ $C_{MA} = Actual concentration of CO2 = 2.46\%$ $C_{O} = Avg. of initial and final zero bias checks = 6.50\%$ $C_{MA} = Actual concentration of span gas = 6.50\%$ $C_{MA} = Actual concentration of span gas = 6.50\%$ $C_{MA} = Actual concentration of span gas = 6.50\%$ $C_{CO2} = (2.46 - 0.00) \times 6.50 = 2.46\%$ $C_{CO2} = Corrected Concentration of O2 = 16.77\%$ $C_{CO2} = Corrected Concentration of O2 = 2.46\%$ $Th. Fo = Theoretical Fo from FGA = 1.72$ $Fo = (20.9 - 02\%)$ $Fo = (20.9 - 16.77) = 1.67$		(43.80 - 0.00)	
$C_{M} = Avg. of Initial and Final Span Checks = 44.45 ppmv$ $C_{MA} = Certified Concentration of Span Gas = 44.80 ppmv$ $C_{CO} = (13.52 - 0.00) \times 44.80 = 13.62 ppmv$ $C_{CO} = (13.52 - 0.00) \times 44.80 = 13.62 ppmv$ $C_{CO} = Avg. of initial and final zero bias checks = 0.00\%$ $C_{M} = Avg. of initial and final span bias checks = 9.60\%$ $C_{MA} = Actual concentration of CO2 = 2.46\%$ $C_{O} = Avg. of initial and final zero bias checks = 0.00\%$ $C_{CO2} = Raw Concentration of CO2 = 2.46\%$ $C_{O} = Avg. of initial and final zero bias checks = 0.00\%$ $C_{MA} = Actual concentration of CO2 = 2.46\%$ $C_{O} = Avg. of initial and final zero bias checks = 0.00\%$ $C_{M} = Avg. of initial and final zero bias checks = 6.50\%$ $C_{MA} = Actual concentration of span gas = 6.50\%$ $C_{MA} = Actual concentration of span gas = 6.50\%$ $C_{CO2} = (2.46 - 0.00) \times 6.50 = 2.46\%$ $C_{CO2} = Corrected Concentration of O2 = 16.77\%$ $C_{CO2} = Corrected Concentration of CO2 = 2.46\%$ $Th. Fo = Theoretical Fo from FGA = 1.72$ $Fo = (20.9 - 02\%)$ $Fo = (20.9 - 16.77) = 1.67$	Çco =	Raw Concentration of CO	= 13.52 ppmv
$C_{MA} = Certified Concentration of Span Gas = 44.80 ppmv$ $C_{CO} = (13.52 - 0.00) \times 44.80 = 13.62 ppmv$ $C_{CO} = (13.52 - 0.00) \times 44.80 = 13.62 ppmv$ $C_{CO} = (13.52 - 0.00) \times 44.80 = 13.62 ppmv$ $C_{O} = Avg. of initial and final zero bias checks = 0.00\%$ $C_{M} = Avg. of initial and final span bias checks = 9.60\%$ $C_{MA} = Actual concentration of span gas = 9.60\%$ $C_{O2} = (16.77 - 0.00) \times 9.60 = 16.77\%$ $C_{O2} = Raw Concentration of CO2 = 2.46\%$ $C_{M} = Avg. of initial and final zero bias checks = 0.00\%$ $C_{M} = Avg. of initial and final zero bias checks = 0.00\%$ $C_{M} = Avg. of initial and final zero bias checks = 0.00\%$ $C_{M} = Avg. of initial and final zero bias checks = 0.00\%$ $C_{M} = Avg. of initial and final span bias checks = 6.50\%$ $C_{MA} = Actual concentration of span gas = 6.50\%$ $C_{CO2} = (2.46 - 0.00) \times 6.50 = 2.46\%$ $C_{CO2} = Corrected Concentration of O2 = 16.77\%$ $C_{CO2} = Corrected Concentration of CO2 = 2.46\%$ $Th. Fo = Theoretical Fo from FGA = 1.72$ $Fo = (20.9 - 0.2\%) = 1.67$	Co =	Avg. of Initial and Final Zero Checks	= 0.00 ppmv
$Cco = (13.52 - 0.00) \times \frac{44.80}{(44.45 - 0.00)} = 13.62 \text{ ppmv}$ $Cco = (13.52 - 0.00) \times \frac{44.80}{(44.45 - 0.00)} = 13.62 \text{ ppmv}$ $Co = Avg. of initial and final zero bias checks = 0.00\%$ $CM = Avg. of initial and final span bias checks = 9.60\%$ $CMA = Actual concentration of span gas = 9.60\%$ $Co2 = (16.77 - 0.00) \times \frac{9.60}{(9.60 - 0.00)} = 16.77\%$ $Co = Avg. of initial and final zero bias checks = 0.00\%$ $CMA = Actual concentration of CO2 = 2.46\%$ $CMA = Actual concentration of Span gas = 6.50\%$ $CMA = Actual concentration of span gas = 6.50\%$ $CMA = Actual concentration of span gas = 6.50\%$ $CCo2 = (2.46 - 0.00) \times \frac{6.50}{(6.50 - 0.00)} = 2.46\%$ $Cco2 = Corrected Concentration of CO2 = 2.46\%$ $Th. Fo = Theoretical Fo from FGA = 1.72$ $Fo = \frac{(20.9 - 02\%)}{CO2\%}$ $Fo = (2.09 - 16.77) = 1.67$	См =	Avg. of Initial and Final Span Checks	= 44.45 ppmv
$\frac{1}{(44.45 - 0.00)}$ $C_{02} = Raw Concentration of O2 = 16.77\%$ $C_{0} = Avg. of initial and final zero bias checks = 0.00\%$ $C_{M} = Avg. of initial and final span bias checks = 9.60\%$ $C_{MA} = Actual concentration of span gas = 9.60\%$ $C_{02} = (16.77 - 0.00) \times 9.60 = 16.77\%$ $C_{02} = Raw Concentration of CO2 = 2.46\%$ $C_{0} = Avg. of initial and final zero bias checks = 0.00\%$ $C_{MA} = Actual concentration of CO2 = 2.46\%$ $C_{MA} = Actual concentration of span gas = 6.50\%$ $C_{MA} = Actual concentration of span gas = 6.50\%$ $C_{CO2} = (2.46 - 0.00) \times 6.50 - 0.00)$ $Fo Calculation to Verify O2 / CO2 Measurements (Eq. 3b-1)$ $C_{02} = Corrected Concentration of CO2 = 2.46\%$ $Th. Fo = Theoretical Fo from FGA = 1.72$ $Fo = (20.9 - 02\%) CO2 \%$ $Fo = (20.9 - 16.77) = 1.67$	Cma =	Certified Concentration of Span Gas	= 44.80 ppmv
$C_{O2} =$ Raw Concentration of O2 $= 16.77\%$ $C_{O} =$ Avg. of initial and final zero bias checks $= 0.00\%$ $C_{M} =$ Avg. of initial and final span bias checks $= 9.60\%$ $C_{MA} =$ Actual concentration of span gas $= 9.60\%$ $C_{O2} =$ (16.77 - 0.00) x 9.60 $= 16.77\%$ $(9.60 - 0.00)$ (9.60 - 0.00) $= 16.77\%$ $C_{C02} =$ Raw Concentration of CO2 $= 2.46\%$ $C_{O} =$ Avg. of initial and final zero bias checks $= 0.00\%$ $C_{MA} =$ Actual concentration of span gas $= 6.50\%$ $C_{MA} =$ Actual concentration of span gas $= 6.50\%$ $C_{MA} =$ Actual concentration of span gas $= 6.50\%$ $C_{MA} =$ Actual concentration of span gas $= 6.50\%$ $C_{C02} =$ (2.46 - 0.00) x $6.50 - 0.00$ $= 2.46\%$ $C_{C02} =$ Corrected Concentration of O2 $= 16.77\%$ $C_{C02} =$ Corrected Concentration of CO2 $= 2.46\%$ Th. Fo =Theoretical Fo from FGA $= 1.72$ Fo = $(20.9 - 02\%)$ $CO2\%$ Fo = $(20.9 - 02\%)$ $CO2\%$ Fo = $(20.9 - 02\%)$ $CO2\%$	Cco =		= 13.62 ppmv
Co = Avg. of initial and final zero bias checks = 0.00% CM = Avg. of initial and final span bias checks = 9.60% CMA = Actual concentration of span gas = 9.60% Co2 = $(16.77 - 0.00) \times 9.60 = 16.77\%$ Co2 = Raw Concentration of CO2 = 2.46% Co = Avg. of initial and final zero bias checks = 0.00% CM = Avg. of initial and final span bias checks = 6.50% CMA = Actual concentration of span gas = 6.50% CC02 = $(2.46 - 0.00) \times 6.50 = 2.46\%$ CC02 = $(2.46 - 0.00) \times 6.50 = 2.46\%$ CC02 = $(2.46 - 0.00) \times 6.50 = 2.46\%$ CC02 = $Corrected Concentration of O2 = 16.77\%$ CC02 = $Corrected Concentration of CO2 = 2.46\%$ Th. Fo = Theoretical Fo from FGA = 1.72 Fo = $(20.9 - 0.2\%)$ Fo = $(20.9 - 16.77) = 1.67$		(44.45 - 0.00)	
$C_{M} = Avg. of initial and final span bias checks = 9.60\%$ $C_{MA} = Actual concentration of span gas = 9.60\%$ $Co2 = (16.77 - 0.00) \times 9.60 = 16.77\%$ $Co2 = Raw Concentration of CO2 = 2.46\%$ $C_{O} = Avg. of initial and final zero bias checks = 0.00\%$ $C_{M} = Avg. of initial and final span bias checks = 6.50\%$ $C_{MA} = Actual concentration of span gas = 6.50\%$ $C_{CO2} = (2.46 - 0.00) \times 6.50 = 2.46\%$ $C_{CO2} = (2.46 - 0.00) \times 6.50 = 2.46\%$ $C_{CO2} = Corrected Concentration of O2 = 16.77\%$ $C_{CO2} = Corrected Concentration of CO2 = 2.46\%$ $Th. Fo = Theoretical Fo from FGA = 1.72$ $Fo = (20.9 - 02\%) CO2\%$ $Fo = (20.9 - 16.77) = 1.67$	Ç02 =	Raw Concentration of O2	= 16.77%
$C_{MA} = Actual concentration of span gas = 9.60\%$ $Co2 = (16.77 - 0.00) \times 9.60 = 16.77\%$ $(9.60 - 0.00)$ $C_{CO2} = Raw Concentration of CO2 = 2.46\%$ $C_{O} = Avg. of initial and final zero bias checks = 0.00\%$ $C_{M} = Avg. of initial and final span bias checks = 6.50\%$ $C_{MA} = Actual concentration of span gas = 6.50\%$ $C_{CO2} = (2.46 - 0.00) \times 6.50 = 2.46\%$ $(6.50 - 0.00)$ $Fo Calculation to Verify O2 / CO2 Measurements (Eq. 3b-1)$ $C_{O2} = Corrected Concentration of CO2 = 2.46\%$ $Th. Fo = Theoretical Fo from FGA = 1.72$ $Fo = (20.9 - 02\%) CO2\%$ $Fo = (20.9 - 16.77) = 1.67$	Co =	Avg. of initial and final zero bias checks	= 0.00%
$Co2 = (16.77 - 0.00) \times 9.60 = 16.77\%$ $Co2 = Raw Concentration of CO2 = 2.46\%$ $Co = Avg. of initial and final zero bias checks = 0.00\%$ $CM = Avg. of initial and final span bias checks = 6.50\%$ $CMA = Actual concentration of span gas = 6.50\%$ $Cco2 = (2.46 - 0.00) \times 6.50 = 2.46\%$ $(6.50 - 0.00)$ $Fo Calculation to Verify O2 / CO2 Measurements (Eq. 3b-1)$ $Co2 = Corrected Concentration of CO2 = 2.46\%$ $Th. Fo = Theoretical Fo from FGA = 1.72$ $Fo = (20.9 - 02\%)$ $Co2 \%$ $Fo = (20.9 - 16.77) = 1.67$	См =	Avg. of initial and final span bias checks	= 9.60%
(9.60 - 0.00)	Cma =	Actual concentration of span gas	= 9.60%
$C_{CO2} =$ Raw Concentration of CO2 $= 2.46\%$ $C_{O} =$ Avg. of initial and final zero bias checks $= 0.00\%$ $C_{M} =$ Avg. of initial and final span bias checks $= 6.50\%$ $C_{MA} =$ Actual concentration of span gas $= 6.50\%$ $C_{CO2} =$ $(2.46 - 0.00)$ x 6.50 $C_{CO2} =$ $(2.46 - 0.00)$ x 6.50 $C_{CO2} =$ Corrected Concentration of O2 $= 16.77\%$ $C_{CO2} =$ Corrected Concentration of CO2 $= 2.46\%$ Th. Fo =Theoretical Fo from FGA $= 1.72$ Fo = $(20.9 - 02\%)$ $CO2\%$ Fo = $(20.9 - 16.77)$ $= 1.67$	Co2 =		= 16.77%
$C_{O} = Avg. \text{ of initial and final zero bias checks} = 0.00\%$ $C_{M} = Avg. \text{ of initial and final span bias checks} = 6.50\%$ $C_{MA} = Actual \text{ concentration of span gas} = 6.50\%$ $C_{CO2} = (2.46 - 0.00) \times 6.50 = 2.46\%$ $(6.50 - 0.00)$ $Fo Calculation to Verify O2 / CO2 Measurements (Eq. 3b-1)$ $C_{O2} = Corrected Concentration of O2 = 16.77\%$ $C_{CO2} = Corrected Concentration of CO2 = 2.46\%$ $Th. Fo = Theoretical Fo from FGA = 1.72$ $Fo = (20.9 - 02\%)$ $CO2 \%$ $Fo = (20.9 - 16.77) = 1.67$		(9.60 - 0.00)	
$C_{M} = Avg. \text{ of initial and final span bias checks} = 6.50\%$ $C_{MA} = Actual \text{ concentration of span gas} = 6.50\%$ $Cco2 = (2.46 - 0.00) \times 6.50 = 2.46\%$ $Cco2 = (2.46 - 0.00) \times 6.50 = 2.46\%$ $Cco2 = Corrected Concentration of O2 = 16.77\%$ $Cco2 = Corrected Concentration of CO2 = 2.46\%$ $Th. Fo = Theoretical Fo from FGA = 1.72$ $Fo = (20.9 - 02\%)$ $Cco2 \% = 1.67$	Çco2 =	Raw Concentration of CO2	= 2.46%
$C_{MA} = Actual concentration of span gas = 6.50\%$ $C_{CO2} = (2.46 - 0.00) \times 6.50 = 2.46\%$ $(6.50 - 0.00)$ $Fo Calculation to Verify O2 / CO2 Measurements (Eq. 3b-1)$ $C_{O2} = Corrected Concentration of O2 = 16.77\%$ $C_{CO2} = Corrected Concentration of CO2 = 2.46\%$ $Th. Fo = Theoretical Fo from FGA = 1.72$ $Fo = (20.9 - 02\%)$ $CO2 \%$ $Fo = (20.9 - 16.77) = 1.67$	Co =	Avg. of initial and final zero bias checks	= 0.00%
$Cco2 = (2.46 - 0.00) \times \underline{6.50}_{(6.50 - 0.00)} = 2.46\%$ $Fo Calculation to Verify O2 / CO2 Measurements (Eq. 3b-1)$ $Co2 = Corrected Concentration of O2 = 16.77\%$ $Cco2 = Corrected Concentration of CO2 = 2.46\%$ $Th. Fo = Theoretical Fo from FGA = 1.72$ $Fo = (20.9 - 02\%)_{CO2}\%$ $Fo = (20.9 - 16.77) = 1.67$	См =	Avg. of initial and final span bias checks	= 6.50%
(6.50 - 0.00)Fo Calculation to Verify O2 / CO2 Measurements (Eq. 3b-1) $C_{02} =$ Corrected Concentration of $O2$ = 16.77% $C_{C02} =$ Corrected Concentration of $CO2$ = 2.46%Th. Fo =Theoretical Fo from FGA= 1.72Fo = $(20.9 - 02\%)$ $CO2\%$ Fo = $(20.9 - 16.77)$ = 1.67	Cma =	Actual concentration of span gas	= 6.50%
Fo Calculation to Verify O2 / CO2 Measurements (Eq. 3b-1) $Co2 =$ Corrected Concentration of O2= 16.77% $Cco2 =$ Corrected Concentration of CO2= 2.46%Th. Fo =Theoretical Fo from FGA= 1.72Fo = $(20.9 - 02\%)$ $CO2\%$ Fo = $(20.9 - 16.77)$ = 1.67	Cco2 =		= 2.46%
$C_{O2} =$ Corrected Concentration of O2 $= 16.77\%$ $C_{CO2} =$ Corrected Concentration of CO2 $= 2.46\%$ Th. Fo =Theoretical Fo from FGA $= 1.72$ Fo = $(20.9 - 02\%)$ $CO2\%$ Fo = $(20.9 - 16.77)$ $= 1.67$		· · · · ·	
$C_{CO2} = Corrected Concentration of CO2 = 2.46\%$ Th. Fo = Theoretical Fo from FGA = 1.72 Fo = $(20.9 - 02\%)$ CO2 % Fo = $(20.9 - 16.77)$ = 1.67			
Th. Fo = Theoretical Fo from FGA = 1.72 Fo = $(20.9 - 02\%)$ CO2 % Fo = $(20.9 - 16.77)$ = 1.67			
Fo = $(20.9 - 02\%)$ CO2 % Fo = $(20.9 - 16.77)$ = 1.67			
$\mathbf{Fo} = (20.9 - 16.77) = 1.67$			=
	Fo =		= 1.67

Compliance Services and Testing

Example Calculations

М	ass Emission Rate	es via H	EPA M	ethod 19	
Ме	asured Data and Consta	ints from	ı Test Ru	n 1 Unit #1	1
$C_{NOx} =$ $C_{CO} =$ Horsepower = $Q_{S M19} =$ $lb / mole =$ $lbs / hr to tpy =$ $C_{F} =$ $MW_{NOx} =$ $MW_{CO} =$	Corrected Concentration Corrected Concentration Observed Horsep Measured Stack Flue EPA STP for Ide Mass Conversion PPMV Normaliz Molecular Weight Molecular Weight	tion of C power ow Rate al Gas Factor zation of NOx t of CO	0 = = = = = = = = = = = = = = = = = = =	67.41 13.62 3418 910,503 385.15 4.38 1.00E-06 46 28	ppmv ppmv Hp SCF/H Dry SCF hrs-tons / lbs-yr 1 / ppmv lb / lb-mol lb / lb-mol
	Stack Gas Flow Rate				
$Q_{F} =$ $F_{BTU} =$ $F_{O2} =$ $C_{O2} =$	Fuel Flow (Meas Fuel Higher Heatir O2 F-Facto Corrected Concentra	ng Value r	= = = 2 =	17905 1155 8696 16.77	SCF/H Btu/SCF DSCF/MMBtu %
Q _{S M19} =	Qf x Fbtu 2	x Fo2 x 1	0^6 x	20.9 - %O2)	
$Q_{S M19} =$	17905 x 1155		696 x	5.06	x 1.00E-06
$Q_{S M19} =$	910,503 ist Measured Concentra	DSCF/I		(E - (0.225	-
Cx @ 15% O2 CNOx @ 15% O2	= Cx (ppmv) x = 67.41 x))2%)) =	96.37	@ 15% O2
	For	mulas			
	Pounds per Ex (lb/hr) = Cx x CF x Q Tons per (tpy) = Ex (lb/hr) x { 870	Qs x { MV Year (tj 60 (hr / y	Wx / (lb / py) rr) / 2000	(lb / ton) }	
Calculated	Mass Emission Rates		thod 19	Exhaust Flo	ow Rate
	E	NOx			
lbs/hr =	67.41 x 1.00E-06	x 91	0,503 x	46 385.15	_ = 7.33
tpy =	7.33 lb/hr	x 4.	38	hrs-ton lbs-yr	_ = 32.11
	E	Co			
lbs/hr =	13.62 x 1.00E-06	x 91	0,503 x	28 385.15	_ = 0.90
tpy =	0.90 lb/hr	x 4.	38	hrs-ton lbs-yr	_= 3.95

Compliance Services and Testing

c	MATHESON	
	askThe Gas Professionals**	

, I

1700 Scepter Rd

Waverly, TN 37185

931-296-3357

Certificate of Analysis - EPA Protocol Mixtures Customer: CST Customer PO#: Protocol: Reference #: Lot#: 9303606470 G1 T186938-4 Cylinder Number: CC203971 DO NOT USE THIS CYLINDER WHEN THE Cylinder Pressure: 1900 PSIG PRESSURE FALLS BELOW 100 PSIG Last Analysis Date: 8/22/2013 Expiration Date: 8/23/2016 REPLICATE RESPONSES Date: 8/15/2013 Date: 8/22/2013 Component: Nitric Oxide 49.0 48.9 49.0 48.8 Certified Conc: 48.9 PPM +/- 0.2 PPM ABS 48.7 49.1 NOx: 49.9 PPM Reference Only **BALANCE GAS:** Nitrogen REFERENCE STANDARDS: Component: Nitric Oxide Reference Standard: NTRM Cylinder #: ND44693 Concentration: 98.17 PPM Exp Date: 9/20/2015 NIST Sample #: 121101 CERTIFICATION INSTRUMENTS Component: Nitric Oxide Make/Model: Antaris IGS Serial Number: AKS1000151 Measurement Principle: FTIR Last Calibration: 8/12/2013

Notes:

The certification was performed according to EPA Traceability Protocol for Assay and Certification of Gaseous Calibration Standards May 2012, using procedure G1 and/or G2. U.S EPA Vendor ID Number: D62013, PGVP Participation Date: 01/01/13, PGVP Renewal Date: 01/01/14

Analyst:

Daylor Wallace

8/22/2013 Date:

And a second second		5	-	5		1700 Scepter Waverly, TN 3 931-296-3357	37185
		Certific	ate of Analy		EPA Prot		
Customer: CST			Customer PO#	r.		Part #	G2676958
			Protocol:	Refere	ence #:	Lot#:	
			G1	T2049	60-2	930561	2744
Cylinder Number	SX37028						
Cylinder Pressure.	1900 psig		DO NOT US			HEN THE PRES	SURE
Last Analysis Date:	2/18/2015			FALL	S BELOW 10	PSIG	
			1				
Expiration Date:	2/19/2018						
					REPLICATE	E RESPONSE	S
Component:	Carbon Mon	oxide		Date:	2/9/2015		
			ALC: NO		44.85		
Certified Conc:	44.84 ppm	+/- 0.06 ppm	ABS		44.83		
Company	Nitrio Oulda			Date	44.84 2/9/2015	Date:	2/18/2015
Component	Nitric Oxide			Date	44.6	Date.	44.6
Certified Conc:	44.5 ppm	+/- 0.2 ppm	ABS		44.4		44.6
	2.00 Million	C. Scatter, C.	10 C		44.4		44.5
NOx:	44.6 ppm	Reference Or	nly				
BALANCE GAS:	Nitrogen						
REFERENCE STANDAR	DS:	-					
Component	Carbon Monor		Component:		lxide		
Reference Standard		Re	ference Standard:				
	FF10672		Cylinder #:				
Concentration:			Concentration:	10 Ter 1	220		
Exp. Date: NIST Sample #:	3/28/2021		Exp. Date: NIST Sample #:		2 M 1		
And Income the survey of the second second	and the state of the second		mon oampie #.	00.0.0	-	-	
CERTIFICATION INSTRU		ida	Component	Nitrie O	shive		
	Carbon Mono		Make/Model:				
	Horiba VIA-51	u.	Serial Number:		and the second second second		
Serial Number	Service and the service of the servi			1.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2			
		Meas					
Measurement Principle: Last Calibration:		Meas	urement Principle: Last Calibration:				

Notes:

The certification was performed according to EPA Traceability Protocol for Assay and Certification of Gaseous Calibration Standards May 2012, using procedure G1 and/or G2. U.S EPA Vendor ID Number: D62015, PGVP Participation Date: 01/01/15, PGVP Renewal Date: 01/01/16

Ĩ 1 王义 j.

Analyst:

Roman Khidekel

Date:

2/26/2015

Sec. 1		IESON s Professionals [™]		ate of An	alys	is - I		1700 Scept Waverly, Tl 931-296-33 DCOI MiD	N 37185 357
Customer:	Matheson Tri	-Gas			-		ner PO#:		
				Protocol:	F	Refere	nce #:	Lot#:	
Cylinder Num	ber:	SX46823		G1	1	Г2017	19-3	9304611	1567
Cylinder Pres		1900 psig					IIS CYLINDER ALLS BELOW		E.
Last Analysis		10/28/2014			NE OO	UNC IN			
Expiration Da		10/29/2022							
Matheson Pa	rt Number:	G2687072					REPLICATE	RESPON	ISES
	Component:	Carbon Mono	xide		ſ	Date:	10/21/2014 83.39		
Ce	rtified Conc:	83.39 ppm	+/- 0.08 ppm	ABS			83.25 83.53		
	Component:	Nitric Oxide			ļ	Date:	10/21/2014 85.4	Date:	10/28/2014 85.9
Ce	ertified Conc:	85.5 ppm	+/- 0.3 ppm	ABS			85.3 85.5		85.7 86.0
	NOx:	86.3 ppm	Reference Or	nly					
BALANCE G	AS:	Nitrogen							
REFERENCI	E STANDARI	DS:							
		Carbon Monoxid		Compor			Dxide		
Refere	ence Standard: Cylinder #:		Re	Cylind			04		
	Concentration:	and the second second		Concentra					
		2/24/2021				9/20/20			
N	NIST Sample #:			NIST Samp					
CERTIFICAT	TION INSTRU	JMENTS							
S. M. San S.		Carbon Monoxi	de	Compor					
		Antaris IGS		Make/Me					
	Serial Number:	AKS1000151		Serial Num			000151		
Measure	ement Principle:	FTIR	Mea	surement Princ					
L	ast Calibration:	9/30/2014		Last Calibra	ation:	10/27/	2014		

Notes:

The certification was performed according to EPA Traceability Protocol for Assay and Certification of Gaseous Calibration Standards May 2012, using procedure G1 and/or G2. U.S EPA Vendor ID Number: D62014, PGVP Participation Date: 01/01/14, PGVP Renewal Date: 01/01/15

Analyst:

Roman Khidekel

11

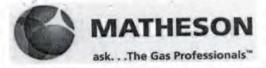
10

Date:

10/29/2014

100						700 Scepter Ro	i i
A INA	ATH	ESON			1	Waverly, TN 37	185
N.S. Contraction	- 10 - 10 G					31-296-3357	
ask	.The Gas	Professionals"	Certificate of Analy	sis - EPA Pr	otocol Mi	xtures	
100 A.	_		Sertificate of Analy			Part #	G2689319
Customer: WHS	5: 710					Fall#	02000010
				2		1	
			Protocol:	*Reference #:		Lot#:	
Cylinder Number:		SX35534	G1	T212837-01		93056159	
Cylinder Pressure		1900 psig	DO NOT USE	THIS CYLINDER W	HEN THE PRE	SSURE FALLS	BELOW
		10/16/2015	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1				Chill Barry
Last Analysis Date	в:				1. 1. 10	A 1.7	
Expiration Date:		10/16/2023		F	REPLICATE	RESPONSE	S
0.000	ponent:	Carbon Dioxide			10/16/2015		
Com	ponent.	Carbon Dioxide			6.46		
Certified	d Conc:	6.46% +/-	0.02% ABS		6.46		
				100 C	6.46		
Com	ponent:	Oxygen		Date:	10/16/2015 9.56		
			0.000/ ABS		9.56		
Certified	d Conc:	9.56 % +/-	0.02% ABS		9.55		
BALANCE GAS:		Nitrogen					
						-	
REFERENCE ST		ns:					
REFERENCE ST	mponent:	Carbon Dioxide	Component:	Oxygen			
Reference			Reference Standard:				
	ylinder #:			CAL016848			
Conc	centration:	6.944 %	Concentration:	9.918 %			
E	Exp. Date:	7/14/2018		6/1/2017			
NIST	Sample#	7-H-18	NIST Sample#	72-D-11			
CERTIFICATION	INSTRU	JMENTS					
Co	omponent:	Carbon Dioxide	Component				
	ke/Model:			HORIBA MPA 510)		
Seria	I Number:	41679080021	Serial Number	U1LSAGS6			
Measurement	Principle:	NDIR	Measurement Principle				
Last C	alibration:	10/14/2015	Last Calibration	: 10/13/2015			

Notes:


The certification was performed according to EPA Traceability Protocol for Assay and Certification of Gaseous Calibration Standards May 2012, using procedure G1 and/or G2. U.S EPA Vendor ID Number: D62015, PGVP Participation Date: 01/01/15, PGVP Renewal Date: 01/01/16 The expanded uncertainty listed for each component was calculated at a coverage factor of k=2 and at a level of confidence of 95%.

tokes

Analyst:

Ashley Stokes

Date: 10/19/2015

1700 Scepter Rd

Waverly, TN 37185

931-296-3357

Certificate of Analysis - EPA Protocol Mixtures

Customer: CST

		Protoco	I: Refer	ence #:	Lot#:
Cylinder Number:	SX48140	G1	T189	541-5	9303607405
Cylinder Pressure:	1900psig		DO NOT USE T PRESSURE	HIS CYLINDE	R WHEN THE W 100 PSIG
Last Analysis Date:	11/13/2013		No Success	Erei	
Expiration Date:	11/14/2021			REPLICAT	E RESPONSES
Component	Carbon Dioxide		Date		
Certified Conc	3.97% +/- 0.03%	ABS		3.97 3.97	
Component	Oxygen		Date	: 11/13/201 21.1	3
Certified Conc	21.1% +/- 0.4%	ABS		21.1 21.0	
BALANCE GAS:	Nitrogen				

Component:	Carbon Dioxide	Component	on)gon
Reference Standard:	PRM	Reference Standard:	SRM
Cylinder #:		Cylinder #:	CAL015730
Concentration:		Concentration:	23.03%
Exp. Date:	4/4/2018	Exp. Date:	1/1/2016
NIST Sample #:		NIST Sample #:	71-D-36
CERTIFICATION INSTRU	MENTS		
	Carbon Dioxide	Component:	Oxygen
	HORIBA VIA-510	Make/Model:	HORIBA MPA-510
Serial Number:		Serial Number:	U1LSAGS6
Measurement Principle:		Measurement Principle:	PARAMAGNETIC
Last Calibration:		Last Calibration:	

Notes:

Analyst:

This Certification was performed according to EPA Traceability Protocol for Assay & Certification of Gaseous Calibration Standards May 2012, using procedure G1 and/or G2.

U.S. EPA Vendor ID No.: D62013 PGVP Participation Date: 01/01/13: PGVP Renewal Date: 1/1/2014

La Shawn Heisen - Brown

Date: 11/13/2013

La'Shawn Grissom-Brown

Data Log Records Unit #1

Time	Date	NOx	CO	02	CO2	Event	Time	Date	NOx	CO	02	CO2	Event
7.20	1/20/16	PPMV 0.26	PPMV	%VOL 0.01	%VOL 0.01	NOn Commenter	9.14	1/20/16	PPMV	PPMV	%VOL 0.01	%VOL	
7:30 7:31	1/20/16 1/20/16	0.26 44.55	0.13 44.81	0.01	-0.01	NOx Converter Efficiency Test	8:14 8:15	1/20/16	0.36 43.90	-0.18 44.07	0.01	0.01 -0.03	
7:31	1/20/16	44.33 85.74	82.99	0.01	-0.01	Initial Linearity	8:16	1/20/16	0.34	-0.24	9.59	-0.03 6.46	
7:32	1/20/16	-0.11	-0.20	9.56	-0.01 6.49	fintial Entearity	8:17	1/20/16	67.69	-0.24 9.65	16.80	2.55	
7:34	1/20/16	0.44	-0.47	20.97	4.10		8:18	1/20/16	68.60	9.30	16.80	2.55	Start Run 2
7:35	1/20/16	49.02	-0.57	0.04	0.01	Response Time /	8:19	1/20/16	68.60	9.30	16.79	2.55	Start Rul 2
7:36	1/20/16	0.23	-0.12	0.04	-0.03	Bias Check /	8:20	1/20/16	69.77	8.93	16.80	2.55	
7:37	1/20/16	43.67	44.80	0.00	-0.03	Interference Test	8:21	1/20/16	70.88	8.99	16.80	2.55	
7:38	1/20/16	0.05	-0.24	9.57	6.45	Interference rest	8:22	1/20/16	70.31	8.95	16.79	2.55	
7:39	1/20/16	0.34	-0.61	-0.01	0.01		8:23	1/20/16	71.37	8.90	16.79	2.53	
7:40	1/20/16	66.96	13.09	16.80	2.41	Stratification Test	8:24	1/20/16	71.84	8.97	16.79	2.53	
7:41	1/20/16	71.08	12.65	16.80	2.41	Point 1	8:25	1/20/16	71.39	8.60	16.79	2.53	
7:42	1/20/16	70.91	12.61	16.79	2.41		8:26	1/20/16	72.28	8.93	16.79	2.53	
7:43	1/20/16	71.35	12.52	16.78	2.41		8:27	1/20/16	72.21	8.58	16.79	2.53	
7:44	1/20/16	70.57	12.44	16.78	2.43		8:28	1/20/16	71.83	8.98	16.79	2.53	
7:45	1/20/16	70.81	12.64	16.78	2.43	Point 2	8:29	1/20/16	72.31	8.97	16.79	2.53	
7:46	1/20/16	69.75	13.29	16.78	2.43		8:30	1/20/16	71.38	8.56	16.78	2.53	
7:47	1/20/16	69.39	12.85	16.77	2.43		8:31	1/20/16	72.64	8.60	16.79	2.53	
7:48	1/20/16	69.95	12.76	16.77	2.45		8:32	1/20/16	72.26	8.63	16.78	2.53	
7:49	1/20/16	69.31	12.72	16.77	2.45	Point 3	8:33	1/20/16	71.81	8.23	16.79	2.53	
7:50	1/20/16	69.98	13.29	16.76	2.46		8:34	1/20/16	71.91	8.64	16.79	2.53	
7:51	1/20/16	68.65	13.19	16.76	2.45		8:35	1/20/16	71.32	8.94	16.79	2.53	
7:52	1/20/16	68.61	13.78	16.76	2.46		8:36	1/20/16	71.45	8.60	16.79	2.52	
7:53	1/20/16	68.93	13.33	16.76	2.45	Start Run 1	8:37	1/20/16	69.78	8.61	16.79	2.53	
7:54	1/20/16	68.05	13.98	16.77	2.45		8:38	1/20/16	70.24	8.62	16.79	2.52	
7:55	1/20/16	68.44	13.19	16.78	2.45	-		n 2 Average	71.15	8.80	16.79	2.54	
7:56	1/20/16	67.22	13.41	16.79	2.45		8:39	1/20/16	0.45	-0.34	0.01	0.01	
7:57	1/20/16	64.52	13.27	16.80	2.45		8:40	1/20/16	44.18	44.45	0.01	-0.03	
7:58	1/20/16	64.48	13.18	16.80	2.45		8:41	1/20/16	0.70	-0.48	9.60	6.50	
7:59	1/20/16	63.99	13.49	16.79	2.46		8:42	1/20/16	69.49	8.26	16.79	2.52	
8:00	1/20/16	64.96	13.06	16.78	2.46		8:43	1/20/16	69.55	8.40	16.79	2.53	Start Run 3
8:01	1/20/16	66.31	13.33	16.77	2.46		8:44	1/20/16	69.00	8.24	16.79	2.53	
8:02	1/20/16	67.47	13.16	16.77	2.46		8:45	1/20/16	70.87	7.92	16.79	2.53	
8:03	1/20/16	68.35	13.46	16.78	2.45		8:46	1/20/16	69.25	7.90	16.79	2.53	
8:04	1/20/16	66.12	13.31	16.78	2.46		8:47	1/20/16	69.25	7.89	16.79	2.54	
8:05	1/20/16	65.71	12.60	16.78	2.46		8:48	1/20/16	69.55	8.25	16.79	2.54	
8:06	1/20/16	65.72	12.51	16.78	2.46		8:49	1/20/16	69.22	7.94	16.79	2.53	
8:07	1/20/16	66.15	12.44	16.77	2.46		8:50	1/20/16	70.03	7.90	16.79	2.54	
8:08	1/20/16	67.26	14.07	16.77	2.46		8:51	1/20/16	68.83	7.89	16.78	2.54	
8:09	1/20/16	68.57	13.97	16.77	2.46		8:52	1/20/16	69.42	7.92	16.78	2.54	
8:10	1/20/16	66.10	13.88	16.76	2.48		8:53	1/20/16	68.77	7.88	16.78	2.53	
8:11	1/20/16	65.44	13.44	16.77	2.48		8:54	1/20/16	70.00	7.90	16.79	2.54	
8:12	1/20/16	63.77	14.34	16.75	2.52		8:55	1/20/16	69.62	7.54	16.78	2.53	
8:13	1/20/16	65.75	16.42	16.75	2.52		8:56	1/20/16	69.38	7.52	16.78	2.53	
Rui	n 1 Average	66.35	13.52	16.77	2.46		8:57	1/20/16	68.86	7.16	16.79	2.54	
							8:58	1/20/16	69.15	7.51	16.78	2.54	
							8:59	1/20/16	69.90	7.17	16.78	2.53	
							9:00	1/20/16	69.39	7.17	16.78	2.54	
							9:01	1/20/16	70.06	7.57	16.78	2.54	
							9:02	1/20/16	69.40	7.15	16.78	2.53	
						-	9:03	1/20/16	69.72	7.18	16.78	2.53	

Run 3 Average

1/20/16

1/20/16

9:04 1/20/16

9:05

9:06

69.49

0.73

44.96

0.59

7.71

-0.59

-0.31

44.72

16.79

0.01

0.01

9.60

2.53 -0.01

-0.03

6.53

Data Log Records Unit #2

Time	Date	NOx PPMV	CO PPMV	O2 %VOL	CO2 %VOL	Event	Time	Date	NOx PPMV	CO PPMV	O2 %VOL	CO2 %VOL	Event
7:30	1/20/16	0.08	-0.15	0.00	-0.01	NOx Converter	8:14	1/20/16	0.37	-0.45	0.03	-0.03	
7:31	1/20/16	0.21	-0.25	9.62	6.49	Efficiency Test	8:15	1/20/16	0.38	-0.39	9.63	6.46	
7:32	1/20/16	0.11	-0.05	21.12	3.99	Initial Linearity	8:16	1/20/16	43.93	44.19	0.01	-0.02	
7:33	1/20/16	44.14	44.95	-0.01	0.01		8:17	1/20/16	74.03	11.19	17.40	2.08	
7:34	1/20/16	84.78	83.93	-0.02	0.00		8:18	1/20/16	73.80	11.18	17.41	2.10	Start Run 2
7:35	1/20/16	49.35	-0.35	0.01	-0.02	Response Time /	8:19	1/20/16	73.80	11.19	17.42	2.10	5001110002
7:36	1/20/16	0.32	-0.05	0.00	0.00	Bias Check /	8:20	1/20/16	73.75	11.19	17.43	2.09	
7:37	1/20/16	0.37	-0.12	9.59	6.51	Interference Test	8:21	1/20/16	73.67	11.19	17.43	2.11	
7:38	1/20/16	43.63	43.94	0.01	0.02		8:22	1/20/16	73.57	11.19	17.44	2.09	
7:39	1/20/16	0.02	-0.04	0.00	0.02		8:23	1/20/16	73.36	11.19	17.44	2.09	
7:40	1/20/16	71.19	11.95	17.38	1.92	Stratification Test	8:24	1/20/16	73.69	12.20	17.44	2.09	
7:41	1/20/16	72.71	10.94	17.43	1.96	Point 1	8:25	1/20/16	73.69	12.19	17.45	2.12	
7:42	1/20/16	72.35	10.94	17.46	1.97		8:26	1/20/16	73.77	12.20	17.45	2.09	
7:43	1/20/16	72.54	10.94	17.49	1.98		8:27	1/20/16	73.89	12.20	17.45	2.09	
7:44	1/20/16	72.15	10.94	17.51	1.97		8:28	1/20/16	73.73	12.20	17.45	2.10	
7:45	1/20/16	71.62	11.95	17.52	1.99	Point 2	8:29	1/20/16	73.85	11.19	17.46	2.10	
7:46	1/20/16	69.86	17.94	17.52	1.99	rome 2	8:30	1/20/16	73.71	11.19	17.46	2.10	
7:47	1/20/16	70.53	15.94	17.53	2.01		8:31	1/20/16	73.81	11.19	17.46	2.10	
7:48	1/20/16	70.63	15.95	17.53	2.02		8:32	1/20/16	73.68	12.20	17.46	2.10	
7:49	1/20/16	70.52	16.94	17.53	2.02	Point 3	8:32	1/20/16	73.44	12.20	17.40	2.10	
7:50	1/20/16	70.32	16.95	17.53	2.02	r onit 5	8:35	1/20/16	74.03	12.20	17.46	2.10	
7:51	1/20/16	71.13	16.94	17.53	2.03		8:34	1/20/16	73.66	13.18	17.46	2.10	
7:52	1/20/16	71.03	16.96	17.52	2.04		8:36	1/20/16	73.72	12.20	17.46	2.11	
7:52	1/20/16	72.01	14.95	17.52	2.03	Start Run 1	8:30	1/20/16	73.81	12.20	17.40	2.10	
7:54	1/20/16	72.01	12.94	17.52	2.04	Start Kull I	8:38	1/20/16	73.94	13.19	17.45	2.11	
7:55	1/20/16	72.23	13.94	17.54	2.02	-		n 2 Average	73.73	11.91	17.45	2.10	
7:56	1/20/16	72.24	14.95	17.54	2.03		8:39	1/20/16	0.63	-0.34	0.03	-0.03	
7:57	1/20/16	71.80	14.95	17.54	2.03		8:40	1/20/16	0.48	-0.52	9.62	6.44	
7:58	1/20/16	71.86	14.95	17.54	2.03		8:41	1/20/16	43.86	44.49	0.03	-0.01	
7:59	1/20/16	71.49	14.95	17.53	2.03		8:42	1/20/16	72.68	9.96	17.39	2.15	
8:00	1/20/16	71.30	14.96	17.55	2.04		8:43	1/20/16	72.63	9.96	17.39	2.15	Start Run 3
8:01	1/20/16	71.17	14.95	17.56	2.02		8:44	1/20/16	72.45	9.96	17.39	2.13	Start Kun 5
8:02	1/20/16	71.06	14.95	17.50	2.02		8:45	1/20/16	72.45	9.95	17.40	2.15	
8:02	1/20/16	70.39	14.95	17.60	2.00		8:46	1/20/16	72.20	9.96	17.40	2.13	
8:04	1/20/16	70.18	12.94	17.62	1.99		8:47	1/20/16	72.24	9.87	17.40	2.14	
8:05	1/20/16	70.21	11.95	17.63	1.99		8:48	1/20/16	72.36	9.96	17.39	2.14	
8:06	1/20/16	70.21	11.95	17.63	1.97		8:49	1/20/16	72.61	9.96	17.39	2.13	
8:07	1/20/16	70.13	11.95	17.64	1.97		8:50	1/20/16	72.24	9.95	17.40	2.15	
8:08	1/20/16	69.49	12.94	17.64	1.96		8:51	1/20/16	72.21	9.96	17.39	2.15	
8:09	1/20/16	67.93	16.96	17.64	1.98		8:52	1/20/16	72.32	9.96	17.39	2.15	
8:10	1/20/16	67.51	18.95	17.64	1.99		8:53	1/20/16	72.32	9.96	17.39	2.13	
8:11	1/20/16	68.81	14.96	17.63	1.97		8:54	1/20/16	72.31	9.96	17.40	2.14	
8:12	1/20/16	68.66	15.95	17.63	1.97		8:55	1/20/16	72.25	8.95	17.40	2.14	
8:13	1/20/16	69.48	12.94	17.64	1.95		8:56	1/20/16	72.19	9.96	17.39	2.15	
-	n 1 Average	70.49	14.43	17.59	2.00	_	8:57	1/20/16	72.06	8.95	17.39	2.13	
Kul		/ 0.7/	14.45	11.07	2.00		8:58	1/20/16	72.00	8.95	17.39	2.14	
							8:59	1/20/16	72.34	8.95	17.39	2.14	
							9:00	1/20/16	71.57	8.95	17.39	2.14	
							9:01	1/20/16	72.02	8.95	17.38	2.14	
							9:02	1/20/16	72.02	8.95	17.38	2.13	
							9:02	1/20/16	72.03	8.95	17.38	2.14	
						-	9.05 D	1/20/10	72.21	0.93	17.30	2.14	•

Run 3 Average

1/20/16

1/20/16

9:04 1/20/16

9:05

9:06

72.22

0.87

0.29

44.29

9.57

-0.63

-0.66

44.94

17.39

0.04

9.66

0.04

2.14

-0.04

6.43

-0.04

Particulate Matter Emission Estimates

Leslie Witherspoon Solar Turbines Incorporated

PURPOSE

This document summarizes Solar's recommended $PM_{10/2.5}$ emission levels for our combustion turbines. The recommended levels are based on an analysis of emissions tests collected from customer sites.

Particulate Matter Definition

National Ambient Air Quality Standards (NAAQS) for particulate matter were first set in 1971. Total suspended particulate (TSP) was the first indicator used to represent suspended particles in the ambient air. Since July 1, 1987, the Environmental Protection Agency (EPA) has used the indicator PM_{10} , which includes only the particles with aerodynamic diameter smaller than 10 micrometers. PM_{10} (coarse particles) come from sources such as windblown dust from the desert or agricultural fields and dust kicked up on unpaved roads by vehicle traffic.

The EPA added a $PM_{2.5}$ ambient air standard in 1997. $PM_{2.5}$ includes particles with an aerodynamic diameter less than 2.5 micrometers. $PM_{2.5}$ (fine particles) are generally emitted from activities such as industrial and residential combustion and from vehicle exhaust. Fine particles are also formed in the atmosphere when gases such as sulfur dioxide, nitrogen oxides, and volatile organic compounds, emitted by combustion activities, are transformed by chemical reactions.

Nearly all particulate matter from gas turbine exhaust is less than one micrometer (micron) in diameter. Thus the emission rates of TSP, PM_{10} , and $PM_{2.5}$ from gas turbines are theoretically equivalent although source testing will show variation due to test method detection levels and processes.

TESTING FOR PARTICULATE MATTER

The turbine combustion process has little effect on the particulate matter generated and measured. The largest contributor to particulate matter emissions for gas and liquid fired combustion turbines is measurement technique and error. Other, minor contributing, sources of particulate matter emissions include carbon, ash, fuel-bound sulfur, artifact sulfate formation, compressor/lubricating oils, and inlet air.

Historical customer particulate matter source test data show that there is significant variability from test to test. The source test results support the common industry argument that particulate matter from natural gas fired combustion sources is difficult to measure accurately. The reference test methods for particulate matter were developed primarily for measuring emissions from coal-fired power plants and other major emitters of particulates. Particulate concentrations from gas turbine can be 100 to 10,000 times lower than the "traditional" particulate sources. The test methods were not developed or verified for low emission levels. There are interferences, insignificant at higher exhaust particulate matter concentrations that result in emissions greater than the actual emissions from gas turbines. New methods are being developed to address this problem.

Due to measurement and procedural errors, the measured results, in most cases, may not be representative of actual particulate matter emitted. There are many potential error sources in measuring particulate matter. Most of these have to do with contamination of the samples, material from the sampling apparatus getting into the samples, and general human error in samples and analysis.

Recommended Particulate Matter Emission Factors

When necessary to support the air permitting process Solar recommends the following $PM_{10/2.5}$ emission factors:

- Natural Gas: 0.015 lb/MMBtu fuel input (HHV)
- Landfill Gas: 0.03 lb/MMBtu fuel input (HHV)
- Liquid Fuel: 0.06 lb/MMBtu fuel input (HHV). The liquid fuel emission factor assumes fuel sulfur content is <500 ppm and ash content is <0.005% by wt.

The emission levels cited above are only for engine operation with the fuels listed. Other fuels may not yield similar results.

Recent customer source testing has shown that AP-42 (EPA AP-42 "Compilation of Air Pollutant Emission Factors.") emission factors for natural gas are achievable in the field, when the test method recommendations shown below are followed. Historically, Solar did not recommend using AP-42 because while some source test firms have measured below AP-42 levels, others have measured higher. Because particulate matter emissions levels are highly dependent on the test firm and have very little to do with the turbine, Solar does not warrant AP-42 levels but does recognize they are achievable in the field. Customers generally choose a particulate matter emissions factor at or above the AP-42 level that works for their site permitting recognizing that the lower the emissions factor the higher the risk for source testing. Any Solar warranty on particulate matter would be at the recommended levels above, e.g. 0.015 lb/MMBtu (HHV) for natural gas.

Test Method Recommendation

Solar recommends that EPA Methods 201/201A¹ be used to measure the "front half". "Front half" represents filterable particulate matter.

EPA Method 202² (with nitrogen purge and field blanks) should be used to measure the "back half". "Back half" measurements represent the condensable portion of particulate matter.

EPA Method 5³, which measures the front and back halves may be substituted (e.g. where exhaust temperatures do not allow the use of Method 202).

Testing should include three test runs of 4 hours each.

Solar recommends using the aforementioned test methods until more representative test methods are developed and made commercially available.

References

¹ EPA Method 201, Determination of PM10 Emissions, Exhaust Gas Recycle Procedure. EPA Method 201A, Determination of PM10 Emissions, Constant Sampling Rate Procedure, 40 CFR 60, Part 60, Appendix A.

² EPA Method 202, Determination of Condensible Particulate Emissions from Stationary Sources, 40 CFR 60, Part 60, Appendix A.

³ EPA Method 5, Determination of Particulate Emissions from Stationary Sources, 40 CFR 60, Part 60, Appendix

Solar Turbines Incorporated 9330 Sky Park Court San Diego, CA 92123-5398

Cat and Caterpillar are registered trademarks of Caterpillar Inc. Solar, Saturn, Centaur, Taurus, Mercury, Mars, Titan, SoLoNOx, Turbotronic, InSight System, and InSight Connect, are trademarks of Solar Turbines Incorporated. All other trademarks are the intellectual property of their respective companies.

© 2014 Solar Turbines Incorporated. All rights reserved. Specifications are subject to change without notice.

PIL 171 Revision 4

10 February 2014

Caterpillar Confidential Green: Information contained herein is to be treated as Confidential and Proprietary to Caterpillar. © 2014 Solar Turbines Incorporated

PREDICTED EMISSION PERFORMANCE

A Caterpillar Company

Customer						Engine Model CENTAUR 40-4700					
Job ID						CS/M	D 80F N	АТСН			
Inquiry Number						Fuel Type Water Injection SD NATURAL GAS NO					
Run By Date Run Javier Marquez 9-Jul-20						Engine REV.	Emissions Da 1.2	ta			
		NOx	EMISSIC	ONS	СО	EMISS	IONS	UHC E	MISSIONS		
1	4111 HP	100.0% Load	Elev.	3075 ft	Rel. Hun	nidity	60.0%	Temperature	20.0 Deg. F		
PPMvd at 15% O2		02	165.00			50.00] 5	0.00		
ton/yr		/yr	112.54			20.76] 1	1.89		
Ibm/MMBtu (Fuel LHV)		IV)	0.661			0.122] C	.070		
	lbm/(MW-		8.38		1.55				0.89		
(gas)	turbine shaft Ibm	pwr) /hr	25.69		4.74			2.71			
2	3583 HP	100.0% Load	Elev.	3075 ft	Rel. Hun	nidity	60.0%	Temperature	80.0 Deg. F		
Р	PMvd at 15%	02	165.00			50.00		50.00			
	ton	/yr	100.38			18.52] [1	0.61		
lbm/M	MBtu (Fuel LH	1V)	0.652			0.120		0	.069		
	lbm/(MW-		8.58			1.58			0.91		
(gas turbine shaft pwr)		pwr) /hr	22.92			4.23		2.42			

- necessarily the same for another.
- Solar's typical SoLoNOx warranty, for ppm values, is available for greater than and between 50% and 100% load for gas fuel, and between 65% and 100% load for the Centaur 40). An emission warranty for non-SoLoNOx equipment is available or -20 deg F and between 80% and 100% load.
- 3. Fuel must meet Solar standard fuel specification ES 9-98. Emissions are based composition, or, San Diego natural gas or equivalent.
- 4. If needed, Solar can provide Product Information Letters to address turbine ope warranty ranges, as well as non-warranted emissions of SO2, PM10/2.5, VOC, and
- 5. Solar can provide factory testing in San Diego to ensure the actual unit(s) mee the tolerances quoted. Pricing and schedule impact will be provided upon reque
- 6. Any emissions warranty is applicable only for steady-state conditions and does shut-down, malfunction, or transient event.

A Caterpillar Company

Customer	
Job ID	
Run By	Date Run
Javier Marquez	9-Jul-20
Engine Performance Code	Engine Performance Data
REV. 4.20.1.25.13	REV. 2.1

lodel
CENTAUR 40-4700
CS/MD
latch
BOF MATCH
uel System
GAS
uel Type
SD NATURAL GAS

DATA FOR MINIMUM PERFORMANCE

Elevation	feet	3075	
Inlet Loss	in H2O	3.5	
Exhaust Loss	in H2O	2.0	
Accessory on GP Shaft	HP	15.5	
Engine Inlet Temperature Relative Humidity	deg F %	1 20.0 60.0	2 80.0 60.0
Driven Equipment Speed	RPM	15500	15500
Specified Load	HP	FULL	FULL
Net Output Power	HP	4111	3583
Fuel Flow	mmBtu/hr	38.90	35.14
Heat Rate	Btu/HP-hr	9462	9809
Therm Eff	%	26.891	25.938
Engine Exhaust Flow	lbm/hr	143144	126652
PT Exit Temperature	deg F	771	850
Exhaust Temperature	deg F	771	850

Fuel Gas Composition (Volume Percent)	Methane (CH4)		92.79			
(volume Percent)	Ethane (C2H6)		4.16			
	Propane (C3H8)	0.84				
	N-Butane (C4H10)		0.18			
	N-Pentane (C5H12)		0.04			
	Hexane (C6H14)		0.04			
	Carbon Dioxide (CO2)		0.44			
	Hydrogen Sulfide (H2S)		0.0001			
	Nitrogen (N2)		1.51			
Fuel Gas Properties	LHV (Btu/Scf)	939.2	Specific Gravity			

0.5970 Wobbe Index at 60F 1215.6

This performance was calculated with a basic inlet and exhaust system. Special noise silencers, special filters, heat recovery systems or cooling devices will Performance shown is "Expected" performance at the pressure drops stated, not g

shut-down, malfunction, or transient event.

A Caterpillar Company

Customer Enterprise Job ID S.Carlsbad							Engine Model CENTAUR 40-4700S CS/MD 80F MATCH						
S.Carisba							Fuel Typ SD N		GAS	Wate NO	er Injection		
Run By Jose Gui	llen	Date Run 1-Sep- 2	20				Engine I REV.	Emissions Da 0.1	ta				
	NOx EMISSIONS			CO EMISSIONS				UHC EMISSIONS					
1	4329 HP 100.	0% Load	Elev.	3070 ft	Rel. H	un	nidity	60.0%	Tempe	rature	0 Deg. F		
P	PMvd at 15% O2 [2	25.00				50.00			2	5.00		
	ton/yr	1	7.64				21.48			6	6.15		
lbm/M	MBtu (Fuel LHV)		.100				0.122				.035		
(000)	lbm/(MW-hr)		1.25				1.52			().44		
(yas i	(gas turbine shaft pwr) Ibm/hr 4.03 4.90						1	.40					
2	4056 HP 100.	0% Load	Elev.	3070 ft	Rel. H	un	nidity	60.0%	Tempe	rature	40.0 Deg. F		
PPMvd at 15% O2			25.00		50.00			25.00					
ton/yr 16.54						20.14			5.77				
Ibm/MMBtu (Fuel LHV)			0.100				0.122		0.035				
lbm/(MW-hr) 1.25						1.52			0).44			
(gas t	urbine shaft pwr) Ibm/hr		3.78		4.60				1	.32			
3	3666 HP 100.	0% Load	Elev.	3070 ft	Rel. H	un	nidity	60.0%	Tempe	rature	80.0 Deg. F		
P		2	25.00			50.00			25.00				
	ton/yr	1	5.19		18.50			5.30					
lbm/M	MBtu (Fuel LHV)		.099		0.120			0.034					
(lbm/(MW-hr)		1.27				1.54			().44		
(yas i	urbine shaft pwr) Ibm/hr [3.47				4.22			1	.21		
Notes													
conditi	ort-term emission lim ons specific to the ap sarily the same for ar	oplication ar											
and be the Ce	typical SoLoNOx wa etween 50% and 100 entaur 40). An emiss deg F and between	% load for ion warrant	gas fuel ty for no	I, and betw on-SoLoN	veen 65	%	and 10	0% load f	or				
	ust meet Solar stand sition, or, San Diego				8. Emis	si	ons are	based					
	led, Solar can provid ity ranges, as well as								l				
	can provide factory te erances quoted. Prio												
6. Any en	nissions warranty is	applicable c	only for s	steady-sta	ite condi	itic	ons and	does					

A Caterpillar Company

Customer Enterpr	rise			Engine Model CENTAUR 40-4700S CS/MD 80F MATCH					
Job ID									
S.Carlsb	Carlsbad								
Inquiry Numb	er			Fuel Type Water Injection SD NATURAL GAS NO					
Run By Jose Gui	illen	Date Run 1-Sep-20		Engine Emissions Data REV. 0.1					
	[NOX EMISSIONS	СО	EMISSIONS	UHC EMISSIONS				
4	3163 HP 100.	.0% Load Elev. 3070 ft	Rel. Hur	midity 60.0%	Temperature 105.0 Deg. F				
PPMvd at 15% O2 25.00				50.00	25.00				
	ton/yr	13.55		16.50	4.72				
lbm/M	MBtu (Fuel LHV)	0.097		0.118	0.034				
	lbm/(MW-hr)	1.31	1.60		0.46				
(gas t	turbine shaft pwr) Ibm/hr	3.09		3.77	1.08				
Notes									
conditi		nits such as lbs/hr., Solar rec pplication and the site condit nother.							
and be the Ce	etween 50% and 100 entaur 40). An emiss	arranty, for ppm values, is av 0% load for gas fuel, and bet ion warranty for non-SoLoN 80% and 100% load.	ween 65%	and 100% load for					

- 3. Fuel must meet Solar standard fuel specification ES 9-98. Emissions are based composition, or, San Diego natural gas or equivalent.
- 4. If needed, Solar can provide Product Information Letters to address turbine ope warranty ranges, as well as non-warranted emissions of SO2, PM10/2.5, VOC, and
- 5. Solar can provide factory testing in San Diego to ensure the actual unit(s) mee the tolerances quoted. Pricing and schedule impact will be provided upon reque
- 6. Any emissions warranty is applicable only for steady-state conditions and does shut-down, malfunction, or transient event.

A Caterpillar Company

Customer	
Enterprise	
Job ID	
S.Carlsbad	
Run By	Date Run
Jose Guillen	1-Sep-20
Engine Performance Code	Engine Performance Data
REV. 4.20.1.25.13	REV. 2.2

CENTAUR 40-4700S
Package Type CS/MD
80F MATCH
Fuel System GAS
Fuel Type SD NATURAL GAS

DATA FOR NOMINAL PERFORMANCE

Elevation Inlet Loss Exhaust Loss Accessory on GP Shaft	feet in H2O in H2O HP	3070 4.0 4.0 15.5			
		1	2	3	4
Engine Inlet Temperature	deg F	0	40.0	80.0	105.0
Relative Humidity	~	60.0	60.0	60.0	60.0
Driven Equipment Speed	RPM	15500	15500	15500	15042
Specified Load	HP	FULL	FULL	FULL	FULL
Net Output Power	HP	4329	4056	3666	3163
Fuel Flow	mmBtu/hr	40.20	37.80	35.10	31.87
Heat Rate	Btu/HP-hr	9286	9321	9574	10075
Therm Eff	%	27.400	27.299	26.575	25.255
Engine Exhaust Flow	lbm/hr	147450	138006	126500	115569
PT Exit Temperature	deg F	754	800	852	876
Exhaust Temperature	deg F	754	800	852	876

Fuel Gas Composition (Volume Percent)	Methane (CH4)	92.79			
(volume Percent)	Ethane (C2H6)	4.16			
	Propane (C3H8)	0.84			
	N-Butane (C4H10)	0.18			
	N-Pentane (C5H12)	0.04			
	Hexane (C6H14)	0.04			
	Carbon Dioxide (CO2)	0.44			
	Hydrogen Sulfide (H2S)	0.0001			
	Nitrogen (N2)	1.51			
Fuel Cae Brenertice					
Fuel Gas Properties	LHV (Btu/Scf) 93	9.2 Specific Grav	vity 0.5970	Wobbe Index at 60F	1215.6

This performance was calculated with a basic inlet and exhaust system. Special noise silencers, special filters, heat recovery systems or cooling devices will Performance shown is "Expected" performance at the pressure drops stated, not g

Notes			
3070 FT			

	Road Use Or	Plant	No. Of	Silt Conte	ent (%)
Industry	Surface Material	Sites	Samples	Range	Mean
Copper smelting	Plant road	1	3	16 - 19	17
Iron and steel production	Plant road	19	135	0.2 - 19	6.0
Sand and gravel processing	Plant road	1	3	4.1 - 6.0	4.8
	Material storage area	1	1	-	7.1
Stone quarrying and processing	Plant road	2	10	2.4 - 16	10
	Haul road to/from pit	4	20	5.0-15	8.3
Taconite mining and processing	Service road	1	8	2.4 - 7.1	4.3
	Haul road to/from pit	1	12	3.9 - 9.7	5.8
Western surface coal mining	Haul road to/from pit	3	21	2.8 - 18	8.4
	Plant road	2	2	4.9 - 5.3	5.1
	Scraper route	3	10	7.2 - 25	17
	Haul road (freshly graded)	2	5	18 - 29	24
Construction sites	Scraper routes	7	20	0.56-23	8.5
Lumber sawmills	Log yards	2	2	4.8-12	8.4
Municipal solid waste landfills	Disposal routes	4	20	2.2 - 21	6.4

Table 13.2.2-1. TYPICAL SILT CONTENT VALUES OF SURFACE MATERIAL ON INDUSTRIAL UNPAVED ROADS^a

^aReferences 1,5-15.

The following empirical expressions may be used to estimate the quantity in pounds (lb) of size-specific particulate emissions from an unpaved road, per vehicle mile traveled (VMT):

For vehicles traveling on unpaved surfaces at industrial sites, emissions are estimated from the following equation:

$$E = k (s/12)^{a} (W/3)^{b}$$
(1a)

and, for vehicles traveling on publicly accessible roads, dominated by light duty vehicles, emissions may be estimated from the following:

$$E = \frac{k (s/12)^{a} (S/30)^{d}}{(M/0.5)^{c}} - C$$
(1b)

where k, a, b, c and d are empirical constants (Reference 6) given below and

- E = size-specific emission factor (lb/VMT)
- s = surface material silt content (%)
- W = mean vehicle weight (tons)
- M = surface material moisture content (%)
- S = mean vehicle speed (mph)
- C = emission factor for 1980's vehicle fleet exhaust, brake wear and tire wear.

The source characteristics s, W and M are referred to as correction parameters for adjusting the emission estimates to local conditions. The metric conversion from lb/VMT to grams (g) per vehicle kilometer traveled (VKT) is as follows:

1 lb/VMT = 281.9 g/VKT

The constants for Equations 1a and 1b based on the stated aerodynamic particle sizes are shown in Tables 13.2.2-2 and 13.2.2-4. The PM-2.5 particle size multipliers (k-factors) are taken from Reference 27.

Industrial Roads (Equation 1a)		Public Roads (Equation 1b)				
Constant	PM-2.5	PM-10	PM-30*	PM-2.5	PM-10	PM-30*
k (lb/VMT)	0.15	1.5	4.9	0.18	1.8	6.0
а	0.9	0.9	0.7	1	1	1
b	0.45	0.45	0.45	-	-	-
с	-	-	-	0.2	0.2	0.3
d	-	-	-	0.5	0.5	0.3
Quality Rating	В	В	В	В	В	В

Table 13.2.2-2. CONSTANTS FOR EQUATIONS 1a AND 1b

*Assumed equivalent to total suspended particulate matter (TSP)

"-" = not used in the emission factor equation

Table 13.2.2-2 also contains the quality ratings for the various size-specific versions of Equation 1a and 1b. The equation retains the assigned quality rating, if applied within the ranges of source conditions, shown in Table 13.2.2-3, that were tested in developing the equation:

Table 13.2.2-3. RANGE OF SOURCE CONDITIONS USED IN DEVELOPING EQUATION 1a AND 1b

			Vehicle ight		Vehicle eed	Mean	Surface Moisture
Emission Factor	Surface Silt Content, %	Mg	ton	km/hr	mph	No. of Wheels	Content, %
Industrial Roads (Equation 1a)	1.8-25.2	1.8-260	2-290	8-69	5-43	4-17 ^a	0.03-13
Public Roads (Equation 1b)	1.8-35	1.4-2.7	1.5-3	16-88	10-55	4-4.8	0.03-13

^a See discussion in text.

As noted earlier, the models presented as Equations 1a and 1b were developed from tests of traffic on unpaved surfaces. Unpaved roads have a hard, generally nonporous surface that usually dries quickly after a rainfall or watering, because of traffic-enhanced natural evaporation. (Factors influencing how fast a road dries are discussed in Section 13.2.2.3, below.) The quality ratings given above pertain to the mid-range of the measured source conditions for the equation. A higher mean vehicle weight and a higher than normal traffic rate may be justified when performing a worst-case analysis of emissions from unpaved roads.

The emission factors for the exhaust, brake wear and tire wear of a 1980's vehicle fleet (*C*) was obtained from EPA's MOBILE6.2 model 23 . The emission factor also varies with aerodynamic size range

average uncontrolled conditions (but including natural mitigation) under the simplifying assumption that annual average emissions are inversely proportional to the number of days with measurable (more than 0.254 mm [0.01 inch]) precipitation:

$$E_{ext} = E [(365 - P)/365]$$
 (2)

where:

 E_{ext} = annual size-specific emission factor extrapolated for natural mitigation, lb/VMT

E = emission factor from Equation 1a or 1b

P = number of days in a year with at least 0.254 mm (0.01 in) of precipitation (see

below)

Figure 13.2.2-1 gives the geographical distribution for the mean annual number of "wet" days for the United States.

Equation 2 provides an estimate that accounts for precipitation on an annual average basis for the purpose of inventorying emissions. It should be noted that Equation 2 does not account for differences in the temporal distributions of the rain events, the quantity of rain during any event, or the potential for the rain to evaporate from the road surface. In the event that a finer temporal and spatial resolution is desired for inventories of public unpaved roads, estimates can be based on a more complex set of assumptions. These assumptions include:

1. The moisture content of the road surface material is increased in proportion to the quantity of water added;

2. The moisture content of the road surface material is reduced in proportion to the Class A pan evaporation rate;

3. The moisture content of the road surface material is reduced in proportion to the traffic volume; and

4. The moisture content of the road surface material varies between the extremes observed in the area. The CHIEF Web site (http://www.epa.gov/ttn/chief/ap42/ch13/related/c13s02-2.html) has a file which contains a spreadsheet program for calculating emission factors which are temporally and spatially resolved. Information required for use of the spreadsheet program includes monthly Class A pan evaporation values, hourly meteorological data for precipitation, humidity and snow cover, vehicle traffic information, and road surface material information.

It is emphasized that <u>the simple assumption underlying Equation 2 and the more complex set of</u> <u>assumptions underlying the use of the procedure which produces a finer temporal and spatial resolution</u> have not been verified in any rigorous manner. For this reason, the quality ratings for either approach should be downgraded one letter from the rating that would be applied to Equation 1.

13.2.2.3 Controls¹⁸⁻²²

A wide variety of options exist to control emissions from unpaved roads. Options fall into the following three groupings:

1. Vehicle restrictions that limit the speed, weight or number of vehicles on the road;

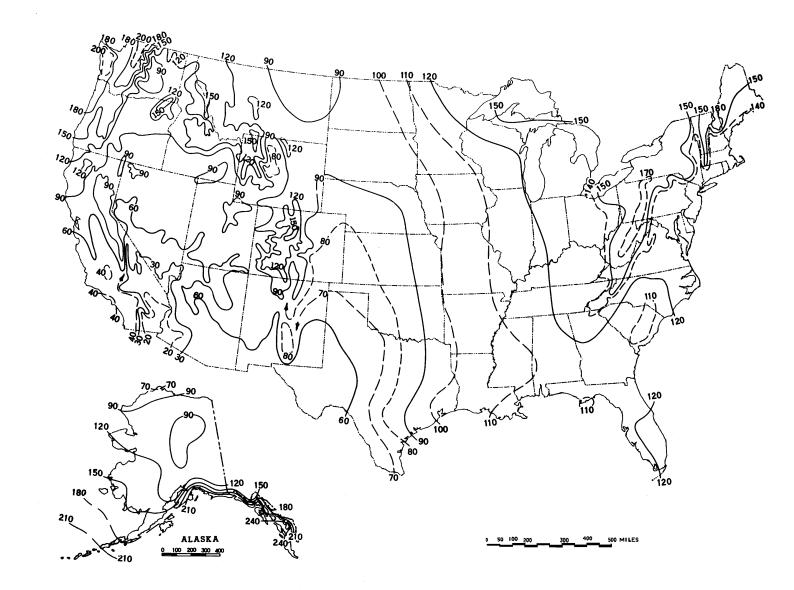


Figure 13.2.2-1. Mean number of days with 0.01 inch or more of precipitation in United States.

Since flares do not lend themselves to conventional emission testing techniques, only a few attempts have been made to characterize flare emissions. Recent EPA tests using propylene as flare gas indicated that efficiencies of 98 percent can be achieved when burning an offgas with at least $11,200 \text{ kJ/m}^3$ (300 Btu/ft³). The tests conducted on steam-assisted flares at velocities as low as 39.6 meters per minute (m/min) (130 ft/min) to 1140 m/min (3750 ft/min), and on air-assisted flares at velocities of 180 m/min (617 ft/min) to 3960 m/min (13,087 ft/min) indicated that variations in incoming gas flow rates have no effect on the combustion efficiency. Flare gases with less than 16,770 kJ/m³ (450 Btu/ft³) do not smoke.

Table 13.5-1 presents flare emission factors, and Table 13.5-2 presents emission composition data obtained from the EPA tests.¹ Crude propylene was used as flare gas during the tests. Methane was a major fraction of hydrocarbons in the flare emissions, and acetylene was the dominant intermediate hydrocarbon species. Many other reports on flares indicate that acetylene is always formed as a stable intermediate product. The acetylene formed in the combustion reactions may react further with hydrocarbon radicals to form polyacetylenes followed by polycyclic hydrocarbons.²

In flaring waste gases containing no nitrogen compounds, NO is formed either by the fixation of atmospheric nitrogen (N) with oxygen (O) or by the reaction between the hydrocarbon radicals present in the combustion products and atmospheric nitrogen, by way of the intermediate stages, HCN, CN, and OCN.² Sulfur compounds contained in a flare gas stream are converted to SO₂ when burned. The amount of SO₂ emitted depends directly on the quantity of sulfur in the flared gases.

Table 13.5-1 (English Units). EMISSION FACTORS FOR FLARE OPERATIONS^a

Component	Emission Factor (lb/10 ⁶ Btu)
Total hydrocarbons ^b	0.14
Carbon monoxide	0.37
Nitrogen oxides	0.068
Soot ^c	0 - 274

EMISSION FACTOR RATING: B

^a Reference 1. Based on tests using crude propylene containing 80% propylene and 20% propane.

^b Measured as methane equivalent.

^c Soot in concentration values: nonsmoking flares, 0 micrograms per liter (μ g/L); lightly smoking flares, 40 μ g/L; average smoking flares, 177 μ g/L; and heavily smoking flares, 274 μ g/L.

FESCO, Ltd. 105 Medical Dr. - Ozona, Texas 76943

For: Enterprise Field Services, LLC P. O. Box 1508 Carlsbad, New Mexico 88221

Sample: South Carlsbad Gas Plant Inlet to the Plant Gas Spot Gas Sample @ 280 psig & 53 °F

Equipment: Normal Operating Conditions as per Customer Date Sampled: 01/08/2020 @ 10:59 CST

Job Number: 200013.104

COC No.: 3560

CHROMATOGRAPH EXTENDED ANALYSIS - GPA 2286

COMPONENT	MOL%	GPM
Hydrogen Sulfide*	< 0.001	
Nitrogen	1.313	
Carbon Dioxide	0.319	
Methane	80.464	
Ethane	10.387	2.771
Propane	4.642	1.276
Isobutane	0.609	0.199
n-Butane	1.341	0.422
2-2 Dimethylpropane	0.001	0.000
Isopentane	0.299	0.109
n-Pentane	0.304	0.110
Hexanes	0.163	0.067
Heptanes Plus	<u>0.158</u>	0.062
Totals	100.000	5.016

Computed Real Characteristics Of Heptanes Plus:

Specific Gravity	3.254	(Air=1)
Molecular Weight	93.94	
Gross Heating Value	4831	BTU/CF

Computed Real Characteristics Of Total Sample:

Specific Gravity	0.708	(Air=1)
Compressibility (Z)	0.9967	
Molecular Weight	20.44	
Gross Heating Value		
Dry Basis	1217	BTU/CF
Saturated Basis	1196	BTU/CF
tragen Sulfide tested on location by: S	tain Tuba	Mathad (C

*Hydrogen Sulfide tested on location by: Stain Tube Method (GPA 2377)

0.016 Gr/100 CF, 0.3 PPMV or <0.0001 Mol%

Detector Tube: Gastec 4LT 0.05 to 4.0 ppm (Meas. Range)

Base Conditions: 14.650 PSI & 60 Deg F

Sampled By: (08)McCollum Analyst: JBM Processor: BMc Cylinder ID: X-0933 Certified: FESCO, Ltd. - Ozona, Texas

Process Streams		Cond. B	Cond. W	Slop B	Slop W
Composition	Status:	Solved	Solved	Solved	Solved
Phase: Vapor	From Block:				
	To Block:				
Mass Flow		lb/h	lb/h	lb/h	lb/h
Hydrogen Sulfide		0	0	0	0
Nitrogen		0	0	0	0
Carbon Dioxide		4.81714E-12	5.06326E-12	9.90791E-16	3.56382E-15
Methane		8.17987E-14	8.59780E-14	1.68244E-17	6.05164E-17
Ethane		5.61920E-08	5.90630E-08	1.15576E-11	4.15720E-11
Propane		0.000295640	0.000310745	6.08073E-08	2.18720E-07
i-Butane		0.0211533	0.0222341	4.35082E-06	1.56497E-05
n-Butane		0.562185	0.590909	0.000115631	0.000415917
2,2-Dimethylpropane		0.0126659	0.0133130	2.60512E-06	9.37047E-06
i-Pentane		0.593853	0.624194	0.000122144	0.000439345
n-Pentane		0.536838	0.564267	0.000110417	0.000397164
2,2-Dimethylbutane		0.00518274	0.00544754	1.06599E-06	3.83430E-06
Cyclopentane		0	0	0	0
2,3-Dimethylbutane		0.0363321	0.0381884	7.47281E-06	2.68793E-05
2-Methylpentane		0.0838566	0.0881411	1.72477E-05	6.20389E-05
3-Methylpentane		0.0440194	0.0462685	9.05393E-06	3.25665E-05
n-Hexane		0.0766362	0.0805517	1.57626E-05	5.66971E-05
Methylcyclopentane		0.0352034	0.0370020	7.24065E-06	2.60442E-05
Benzene		0.00854433	0.00898088	1.75740E-06	6.32127E-06
Cyclohexane		0.0239256	0.0251480	4.92102E-06	1.77006E-05
2-Methylhexane		0.00606139	0.00637108	1.24671E-06	4.48434E-06
3-Methylhexane		0.00676702	0.00711276	1.39184E-06	5.00638E-06
2,2,4-Trimethylpentane		0	0	0	0
n-Heptane		0.0251696	0.0264556	5.17689E-06	1.86210E-05
Methylcyclohexane		0.0137544	0.0144572	2.82902E-06	1.01758E-05
Toluene		0.00287912	0.00302623	5.92179E-07	2.13004E-06
n-Octane		0.00615584	0.00647036	1.26614E-06	4.55422E-06
Ethylbenzene		0.000131317	0.000138026	2.70093E-08	9.71510E-08
m-Xylene		0.000120060	0.000126194	2.46939E-08	8.88227E-08
p-Xylene		0.000125494	0.000131906	2.58117E-08	9.28432E-08
o-Xylene		0	0	0	0
n-Nonane		0.000544887	0.000572726	1.12073E-07	4.03119E-07

Process Streams		Cond. B	Cond. W	Slop B	Slop W
Properties	Status:	Solved	Solved	Solved	Solved
Phase: Vapor	From Block:				
	To Block:				
Property	Units				
Temperature	°F	82.6768	82.6768	82.6768	82.6768
Pressure	psia	9.75052	9.75052	0.568983	0.568983
Mole Fraction Vapor	%	100	100	100	100
Mole Fraction Light Liquid	%	0	0	0	0
Mole Fraction Heavy Liquid	%	0	0	0	0
Molecular Weight	lb/lbmol	69.6863	69.6863	19.4093	19.4093
Mass Density	lb/ft^3	0.119713	0.119713	0.00189852	0.00189852
Std Vapor Volumetric Flow	MMSCFD	0.000274772	0.000288811	2.09476E-06	7.53472E-06
Std Liquid Volumetric Flow	sgpm	0.00673106	0.00707497	9.44417E-06	3.39702E-05
Compressibility		0.975200	0.975200	0.999435	0.999435
Specific Gravity		2.40609	2.40609	0.670154	0.670154
API Gravity					
Mass Cp	Btu/(lb*°F)	0.400239	0.400239	0.444343	0.444343
Ideal Gas CpCv Ratio		1.07725	1.07725	1.29931	1.29931
Dynamic Viscosity	cP	0.00719181	0.00719181	0.0100547	0.0100547
Kinematic Viscosity	cSt	3.75039	3.75039	330.622	330.622
Net Ideal Gas Heating Value	Btu/ft^3	3576.44	3576.44	96.4902	96.4902
Net Liquid Heating Value	Btu/lb	19326.7	19326.7	914.987	914.987
Gross Ideal Gas Heating Value	Btu/ft^3	3867.34	3867.34	153.291	153.291
Gross Liquid Heating Value	Btu/lb	20911.4	20911.4	2025.59	2025.59

Inlet Stream for F-001 (Gas)		Condensate Strea	am for F-001 (LL)	
Component	Mass Fraction (%)	Component	Mass Fraction (
Hydrogen Sulfide	0	Hydrogen Sulfide		
Nitrogen	3.538829845	Nitrogen		
Carbon Dioxide	3.280317616	Carbon Dioxide	1.56E	
Methane	57.05313454	Methane	3.41E	
Ethane	14.13458413	Ethane	2.94E	
Propane	11.02638721	Propane	0.000634	
i-Butane	1.798158364	i-Butane	0.128229	
n-Butane	4.216596727	n-Butane	5.031456	
2,2-Dimethylpropane	0.033428867	2,2-Dimethylpropane	0.158545	
i-Pentane	1.224412919	i-Pentane	14.05103	
n-Pentane	1.279324499	n-Pentane	17.18954	
2,2-Dimethylbutane	0.015859292	2,2-Dimethylbutane	0.266527	
Cyclopentane	0	Cyclopentane		
2,3-Dimethylbutane	0.138343572	2,3-Dimethylbutane	2.563416	
2-Methylpentane	0.347523529	2-Methylpentane	6.596582	
3-Methylpentane	0.19713613	3-Methylpentane	3.881328	
n-Hexane	0.400739155	n-Hexane	8.492380	
Methylcyclopentane	0.207266998	Methylcyclopentane	4.295514	
Benzene	0.085429758	Benzene	1.519673	
Cyclohexane	0.187366259	Cyclohexane	4.138898	
2-Methylhexane	0.058323127	2-Methylhexane	1.565672	
3-Methylhexane	0.067035915	3-Methylhexane	1.873134	
2,2,4-Trimethylpentane	0	2,2,4-Trimethylpentane		
n-Heptane	0.305009246	n-Heptane	9.463728	
Methylcyclohexane	0.164664219	Methylcyclohexane	5.067089	
Toluene	0.060471679	Toluene	1.749635	
n-Octane	0.147028817	n-Octane	8.41525	
Ethylbenzene	0.004176951	Ethylbenzene	0.244897	
m-Xylene	0.004116063	m-Xylene	0.256298	
p-Xylene	0.004145743	p-Xylene	0.249932	
o-Xylene	0	o-Xylene		
n-Nonane	0.02018884	n-Nonane	2.800062	

Process Streams		SC Vapor
Composition	Status:	Solved
Phase: Total	From Block:	V-8201
	To Block:	First Stage Compressor
Mole Fraction		%
Hydrogen Sulfide		0
Nitrogen		2.72040
Carbon Dioxide		1.60514
Methane		76.5858
Ethane		10.1231
Propane		5.38529
i-Butane		0.666348
n-Butane		1.56272
2,2-Dimethylpropar	ne	0.00998088
i-Pentane		0.365680
n-Pentane		0.382158
2,2-Dimethylbutane)	0.00396908
Cyclopentane		0
2,3-Dimethylbutane)	0.0346373
2-Methylpentane		0.0869974
3-Methylpentane		0.0493657
n-Hexane		0.100417
Methylcyclopentane	e	0.0531306
Benzene		0.0236183
Cyclohexane		0.0480196
2-Methylhexane		0.0125769
3-Methylhexane		0.0144867
2,2,4-Trimethylpent	tane	0
n-Heptane		0.0661237
Methylcyclohexane		0.0363511
Toluene		0.0142309
n-Octane		0.0284272
Ethylbenzene		0.000866152
m-Xylene		0.000846199
p-Xylene		0.000852961
o-Xylene		0
n-Nonane		0.00366520
n-Decane		0
n-Undecane		0

Process Streams		11
Composition	Status:	Solved
Phase: Vapor	From Block:	MIX-102
	To Block:	Stab-Off Gas Suction
Mass Flow		lb/h
Hydrogen Sulfide		0
Nitrogen		6.05600
Carbon Dioxide		14.1511
Methane		302.022
Ethane		396.811
Propane		850.564
i-Butane		240.437
n-Butane		626.047
2,2-Dimethylpropane		3.96168
i-Pentane		76.2225
n-Pentane		64.1347
2,2-Dimethylbutane		0.518399
Cyclopentane		0
2,3-Dimethylbutane		3.64221
2-Methylpentane		8.53074
3-Methylpentane		4.48824
n-Hexane		7.81511
Methylcyclopentane		4.07930
Benzene		1.56366
Cyclohexane		3.33121
2-Methylhexane		0.694155
3-Methylhexane		0.775936
2,2,4-Trimethylpentane		0
n-Heptane		3.15518
Methylcyclohexane		1.66868
Toluene		0.505030
n-Octane		0.954325
Ethylbenzene		0.0252741
m-Xylene		0.0235965
p-Xylene		0.0235656
o-Xylene		0
n-Nonane		0.0981057

Process Streams		11
Properties	Status:	Solved
Phase: Vapor	From Block:	MIX-102
	To Block:	Stab-Off Gas Suction
Property	Units	
Temperature	°F	94.3754
Pressure	psia	114.696
Mole Fraction Vapor	%	100
Mole Fraction Light Liquid	%	0
Mole Fraction Heavy Liquid	%	0
Molecular Weight	lb/lbmol	37.8745
Mass Density	lb/ft^3	0.802495
Std Vapor Volumetric Flow	MMSCFD	0.630595
Std Liquid Volumetric Flow	sgpm	11.2189
Compressibility		0.910424
Specific Gravity		1.30770
API Gravity		
Mass Cp	Btu/(lb*°F)	0.448998
Ideal Gas CpCv Ratio		1.14048
Dynamic Viscosity	cP	0.00940355
Kinematic Viscosity	cSt	0.731524
Net Ideal Gas Heating Value	eBtu/ft^3	1985.94
Net Liquid Heating Value	Btu/lb	19758.4
Gross Ideal Gas Heating Va	Btu/ft^3	2163.24
Gross Liquid Heating Value	Btu/lb	21534.9

October 2000 RG-109 (Draft)

Air Permit Technical Guidance for Chemical Sources:

Flares and Vapor Oxidizers

printed on recycled paper

Air Permits Division

TEXAS NATURAL RESOURCE CONSERVATION COMMISSION

Waste Stream	Destruction/Re	emoval Efficie	ncy (DRE)		
VOC	98 percent (gen	98 percent (generic)			
	99 percent for compounds containing no more than 3 carbons that contain no elements other than carbon and hydrogen in addition to the following compounds: methanol, ethanol, propanol, ethylene oxide and propylene oxide				
H_2S	98 percent				
NH ₃	case by case				
со	case by case				
Air Contaminants	Emission Factors				
thermal NO _x	steam-assist:	high Btu low Btu	0.0485 lb/MMBtu 0.068 lb/MMBtu		
	other:	high Btu low Btu	0.138 lb/MMBtu 0.0641 lb/MMBtu		
fuel NO _x	NO _x is 0.5 wt p	ercent of inlet	$\rm NH_3$, other fuels case by case		
со	steam-assist:	high Btu low Btu	0.3503 lb/MMBtu 0.3465 lb/MMBtu		
	other:	high Btu low Btu	0.2755 lb/MMBtu 0.5496 lb/MMBtu		
PM	none, required to be smokeless				
SO ₂	100 percent S ii	n fuel to SO_2			

*The only exeption of this is if inorganics might be emitted from the flare. In the case of landfills, the AP-42 PM factor may be used. In other cases, the emissions should be based on the composition of the waste stream routed to the flare.

www.zeeco.com sales@zeeco.com

April 13, 2016

Enterprise Products 1100 Louisiana St Houston, TX 77002

Attention: Jing Li

RE: South Carlsbad Flare Zeeco Ref.: 2016-00271RE-01 Rev 1

Dear Mr. Li,

The hydrocarbon destruction efficiency for the UF-24-38 Flare system proposed in quote number 2016-00271RE-01 Rev 1 will be 99% or higher for C1-C3 compounds and 98% or higher for all other compounds given as long as the flare is operated and maintained within the design operating parameters and accepted industry standard practices for this type of equipment.

Sincerely,

Andrew Grider Applications Engineer Zeeco Combustion Rental & Rapid Response Group

Zeeco, Inc. 22151 E. 91st St. Broken Arrow, Oklahoma 74014 Phone: (918) 258-8551 Fax: (918) 251-5519

DELIVER TO: Jenessa Duncan	DATE: February 10, 2016
COMPANY: Enterprise Products	
SENDERS NAME: Andrew Grider / Andrew_Grider@zeeco.com	PHONE: (918) 893-8448
YOUR REFERENCE: Budgetary Low BTU Flare Quote	QUOTE #: 2016-00271RE-01 Rev 1

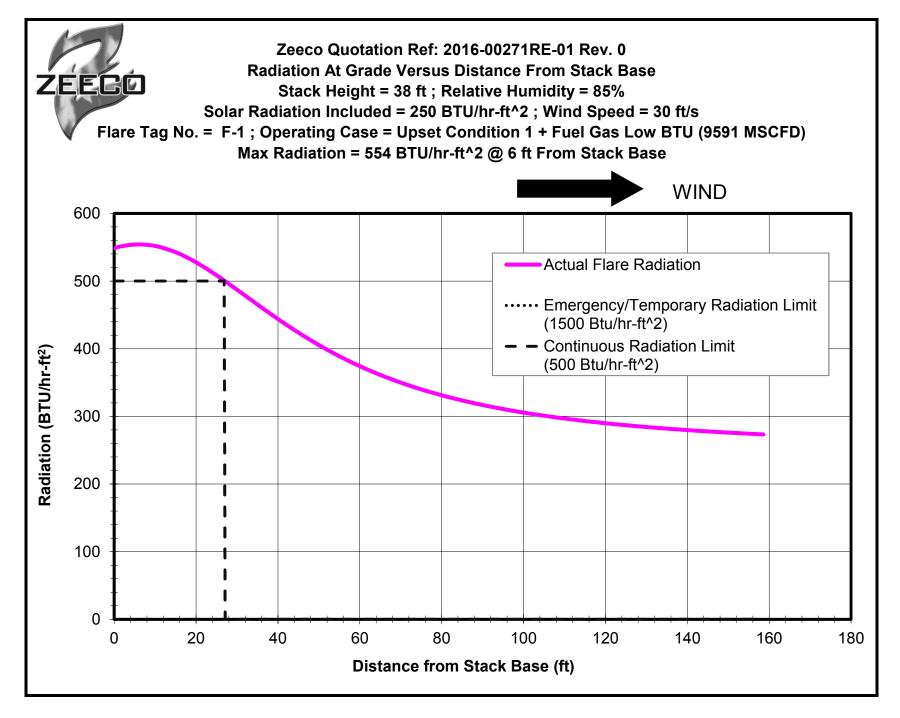
Design Information (Estimated):

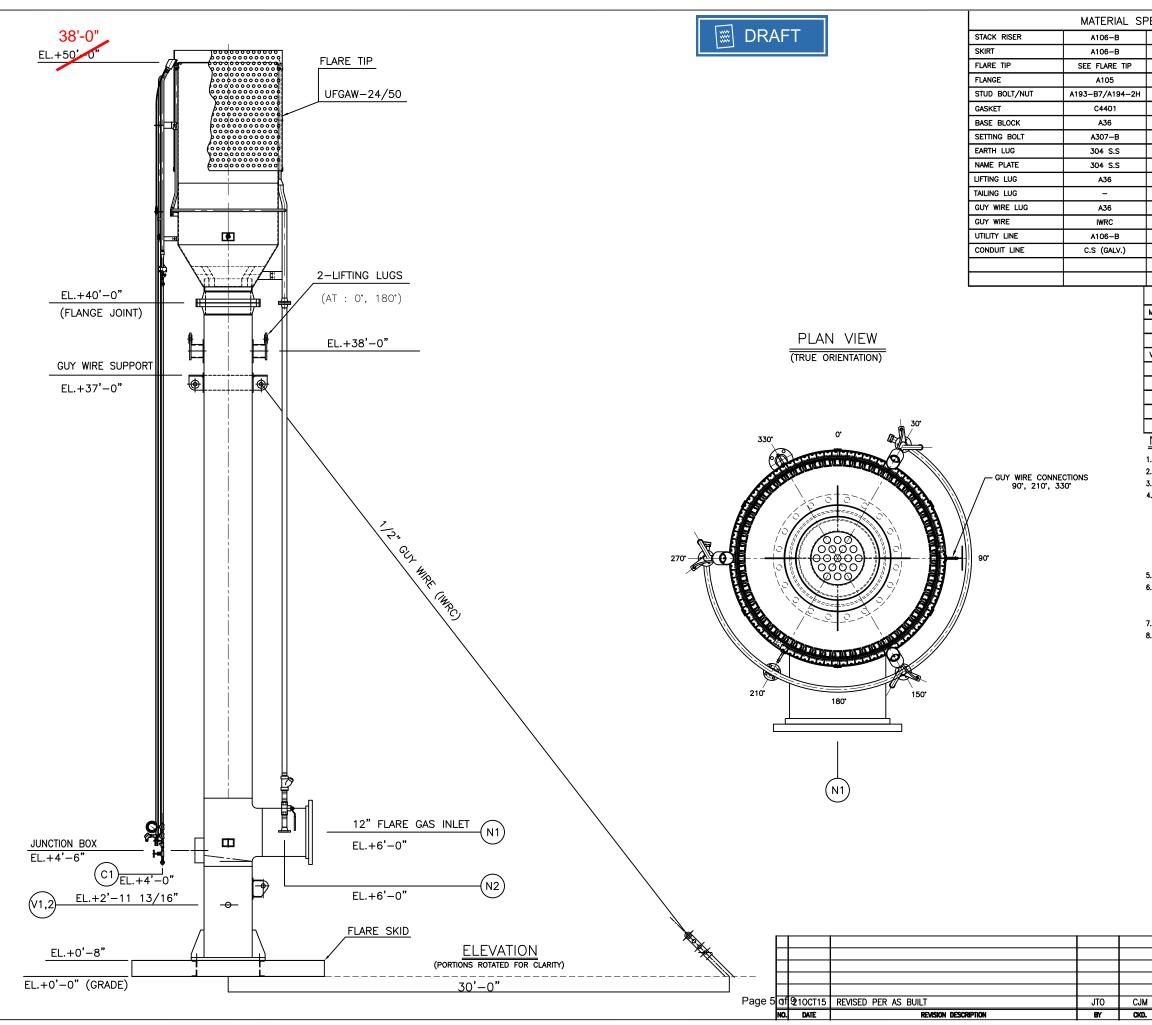
	Design - Upset	Fuel Gas-	Fuel Gas-	Fuel Gas-	Design + Fuel
	Condition 1	<u>Normal</u>	<u>High BTU</u>	Low BTU	Gas Low BTU
Gas MW (lb/mol)	33.27	19.42	20.58	18.76	30.40
Gas LHV (Btu/Scf)	6	1,033	1,086	986	200
Flow Rate (MScfd)	7,690*	1,793*	1,685*	1,901*	9,591*
Available Pressure (psig)	6.97	>6.97	>6.97	>6.97	6.97

Scope of Supply:

- 1. (1) 38' OAH guy supported flare stack
- 2. (1) Utility (UF) flare tip w/ Integral Purge Reducing Velocity Seal
- 3. (1) Shepherd Ring
- 4. (1) Low Btu Windshield
- 5. (3) HSLF-Z-HEI Electric Ignition Pilot assembly with Retractable HEI & Type K Thermocouple
- 6. (1) Nema 4, Skid Mounted Pilot Ignition and Monitoring Panel
- 7. (1) Optional Manual Knock Out Drum

Required Utilities:


Pilot Fuel Gas:	65 Scfh Natural Gas at 15 Psig OR 25 Scfh Propane at 7 psig (per pilot)
Electricity:	120V / 1 Phase / 60 Hz
Shepherd Ring:	3.016 MMBtu/hr
*Enrichment Gas:	Flow rates for the 3 different fuel gas compositions are listed in the design information above. For the fuel gas that is being used, the specified flow rate is to be added to the gas being flared as far as possible upstream in the header in order to enrich the combined stream to a minimum required heating value of 200 Btu/SCF
Purge Gas:	435 Scfh of a gas that does not contain oxygen and will not go to its dew point at jobsite conditions


Equipment Description:

- <u>Skid Mounted Guy Supported Flare Stack</u>: The stack is mounted on a carbon steel skid that eliminates the need for a concrete foundation. The skid only needs to be set on firm, flat soil and anchored with the provided guy wires and screw anchors. Design wind speed for this type of installation is 90 mph.
- <u>UF Flare Tip</u>: The UF style flare tip provides high stability flaring while also ensuring reliability of the flame from purge all the way to max flow rates. Components located in the high heat zone will be made of 310SS or equivalent casting material. The flare tip will provide a VOC destruction efficiency of at least 98 wt%. An integral purge reducing velocity seal is also included to reduce the quantity of purge gas to prevent oxygen ingress through the flare tip at low rates.
- <u>Shepherd Ring</u>: A major key to obtaining high destruction efficiency with low Btu gases is to have a consistent ignition source circumferentially around the flare tip to ignite gases exiting the tip. High Btu flares usually have 3 pilots equally spaced around the tip and this is more than adequate. However, with low Btu flares three pilots are insufficient. This is a special concern with flares that are being enriched upstream. Not only do three pilots not provide the coverage required to ensure a cross sectional light off of flames across the tip. But with enriched gases, there is further danger of inadequate mixing of the gases and enrichment gas which can result in pilots being located in areas that do not have sufficient heating value to ignite. Addition of a Shepherd Ring to the flare tip has the same effect as adding an infinite number of pilots. The ring completely surrounds the exit of the tip and is drilled with burner ports that establish a "ring of fire" around the flare tip. The ring itself is lit with pilots but once the Shepherd Ring's fire has been established, it becomes the primary ignition source for the gases.
- <u>Low BTU Windshield</u>: Since gases have to be burned at very low velocities to ensure stable flames and meet national and state guidelines, the resultant flames are extremely vulnerable to atmospheric wind conditions. Even with only light to moderate wind conditions, flames can become unstable or be blown out. Addition of a Low Btu Windshield reduces the impact of wind on the flames. The addition of the low Btu windshield also helps capture a portion of the heat emitted as the gases are burned. This heat in turn helps produce higher destruction efficiencies by increasing the heat present at the tip exit which in turn promotes more consistent ignition of the gases.
- <u>HSLF-HEI Ignition Pilot</u>: The pilot is proven to stay lit in hurricane force weather conditions. Testing has shown that a stable flame is present even in wind speeds greater than 150 mph in addition to rainfall of over 10 inches per hour. The pilot will be equipped with a Type K thermocouple for continuous monitoring of the pilot status. The pilot also meets API 537 design requirements.
- <u>Retractable Pilot Components</u>: For ease of service, instead of retracting the entire pilot, only the components that need service are made retractable. This ensures that the location of the pilot with relation to the flare tip is maintained, ensuring proper ignition every time. The ignition probe and thermocouple are the only components that can need maintenance. Both components will be retractable so that maintenance can be performed without needing a shutdown of the flare or any special equipment.
- <u>Automatic Ignition/Monitoring Panel</u>: The automatic pilot ignition and monitoring panel will continuously monitor the pilot and attempt to relight if a pilot failure signal is received. The control panel (Nema 4 enclosure) will also be skid mounted.
- <u>Knock Out (KO) Drum</u> For areas where liquid entrainment is possible in the flare header, we can offer a separate KO drum. The knock out drum will separate any liquids that condense as the flare gas moves through the header. The KO drum vessel comes complete with level gage and manual drain line. As an option, the drum can also be equipped with automatic liquid level monitoring, alarming and draining capabilities.

COMMERCIAL

BUDGETARY PUI	<u>Unit</u>				
Guy-Supported 38' Tall Flare as Detailed (UF-24-38)			\$100,000		
OPTIONAL EQUI	OPTIONAL EQUIPMENT BUDGETARY PURCHASE PRICING (+/- 15%)				
4' dia x 8' length Manual KOD			\$30,000		
Freight:	Prepaid	and added to	our invoice at cost + 15%		
Shipping:	Ex-worl	ks (Point of M	Ianufacture) per Incoterms 2010		
Schedule:		ne flare equipment offered can be readied for shipment within 6-8 weeks ARO. ease contact Zeeco if your project requires a faster delivery.			
Storage:	of readine months,	Zeeco will provide space for storage of each unit up to 2 months after notification of readiness to ship free of charge. If you require storage periods longer than 2 months, a fee of 1% of the equipment value will be charged per month until the equipment is moved off site.			
Warranty:	conditio	Length; 18 months from date of shipment or 12 months after startup, whichever condition occurs first. Refer to Zeeco terms and conditions of sale for further clarifications.			
Pricing Validity:]	Pricing quoted is valid for 30 days.			
Payment Schedule:]	Net 60 -25% Upon Order Placement75% Upon Notification of Readiness to Ship			
Terms and Condition	Terms and Conditions: This proposal is contingent upon acceptance of Zeeco, Inc Standard Terms and Conditions of Sale (attached).			Standard	

ECIFICATIONS		DESIGN DATA	
A36	TYPE	GUY WIRE SUPPORT TYPE	:
	DESIGN CODE	ASME STS-1	
	WIND LOAD	ASCE 7-05	
	SEISMIC LOAD	-	
	FLUID	FLARE GAS	
	DESIGN PRESS.	N/A	psig
	DESIGN TEMP.	0" ~ 350"	۰F
	M.A.W.P.(NEW & COLD)	-	psig
	OPERATING PRESS.	-	psig
	OPERATING TEMP.	-	۰F
	HYDRO'C TEST PRESS.	-	psig
	PNEUM'C TEST PRESS.	-	psig
	P.W.H.T.	NO	
	RADIOGRAPH	AS PER ITP, SPOT	
	JOINT EFFICIENCY	85	%
	CORROSION ALLOWANCE	N/A	
	PAINTING	SEE NOTE 6	
	A36	DESIGN CODE WIND LOAD SEISMIC LOAD FLUID DESIGN PRESS. DESIGN TEMP. M.A.W.P.(NEW & COLD) OPERATING PRESS. OPERATING TEMP. HYDRO'C TEST PRESS. PNEUM'C TEST PRESS. PNEUM'C TEST PRESS. P.W.H.T. RADIOGRAPH JOINT EFFICIENCY CORROSION ALLOWANCE	A36 TYPE GUY WIRE SUPPORT TYPE DESIGN CODE ASME STS-1 WIND LOAD ASCE 7-05 SEISMIC LOAD - FLUID FLARE GAS DESIGN PRESS. N/A DESIGN TEMP. 0° ~ 350° MA.W.P. (NEW & COLD) - OPERATING PRESS. - OPERATING TEMP. - HYDRO'C TEST PRESS. - P.W.H.T. NO RADIOGRAPH AS PER ITP. (SPOT) JOINT EFFICIENCY 85 CORROSION ALLOWANCE N/A

NOZZLE AND CONNECTIONS

MARK	Q'TY	SIZE	SCH.	RATING	FACING	SERVICE	REMARKS	φ TO FACE	PIPING SPEC.
N1	1	12"	STD.	ASME #150	WN, RF	FLARE GAS INLET		SEE DWG.	
N2	1	2"	STD.	ASME #150	WN, RF	ASSIST GAS INLET	ORIEN.: 180°	SEE DWG.	
V1,2	2	4"	40	-	-	VENT		SEE DWG.	
C1	1	1"	40	ASME #150	SW, RF	PILOT GAS		SEE DWG.	

NOTE

- 1. PILOT MIXER ORIFICE DRILLED: 3/64" DIA
- 2. PILOT GAS CONSUMPTION: 65 SCFH @ 15 PSIG PER PILOT
- 3. PILOT ORIFICE DRILLING BASED ON 1000 BTU/SCF (LHV) GAS WITH 0.6 SP. GR.
- 4. THE FLARE TIP REQUIRES A MINIMUM CONTINUOUS PURGE RATE OF
- 45 SCFH OF A GAS THAT WILL NOT GO TO DEW POINT
- AT OPERATING TEMPERATURES TO ENSURE AIR DOES NOT MIGRATE DOWN
- THE FLARE STACK. IT SHOULD BE NOTED THAT DEPENDING UPON THE
- TURNDOWN OPERATION OF THE FAN AND THE TYPE OF PURGE GAS USED IT MAY BENECESSARY TO INCREASE THIS MINIMUM PURGE RATE TO ENSURE
- PROPER COMBUSTION OF THE PURGE GAS DURING IDLE OPERATION.
- 5. ALL FLANGE BOLTING TO STRADDLE NORMAL CENTERLINES.
- 6. ALL EXTERNAL CARBON STEEL SURFACES TO BE PREPARED PER SSPC-SP6.
- PRIME WITH ONE COAT INORGANIC ZINC (2 1/2 MILS DFT MIN.)
- PAINT ONE COAT HIGH TEMP ALUMINUM (1 MIL DFT MIN.)
- THE PILOT THERMOCOUPLE IS FOR ON/OFF INDICATION ONLY, NOT FOR ACCURATE PILOT FLAME MEASUREMENT.
 FLAME ARRESTOR (IF APPLICABLE) SHALL BE MOUNTED DIRECTLY TO GAS INLET NOZZLE NO PIPING ALLOWED BETWEEN FLAME ARRESTOR AND FLARE GAS INLET NOZZLE.

-				1.004944	0.175
┦		ZEECO, INC. 22151 EAST 91st STREET BROKEN ARROW, OK 74014		DRAWN SK	DATE 01SEP15
+		PHONE: (918) 258-8551 ZEED®	GUY WIRE SUPPORTED FLARE STACK SYSTEM	снк МN	APP JO
		WWW.2000.com Sales@zoeco.com PROPRIETARY DATA IS INCLUDED IN THE INFORMATION	GENERAL ARRANGEMENT	SCALE NTS	rev 1
╉	JTO	PROPRIETARY DATA IS INCLUDED IN THE INFORMATION DISCLOSED HEREM AND IS THE PROPERTY OF ZECOUNC. THIS INFORMATION IS SUBMITTED IN CONFIDENCE AND MAST BE USED IN CONFECTION WITH WORK DONE FOR ZEEDO, INC. AND ALL RIGHTS OF DESIGN OR INVENTION ARE RESERVED. UNMUTHORIZED DISCLOSURE OR USE IS	FOR:	DRAWING NUME	
1	APP.	ZEECO, INC. AND ALL RIGHTS OF DESIGN OR INVENTION ARE RESERVED. UNAUTHORIZED DISCLOSURE OR USE IS PROMUMED BY LAW.			3224 IT. 1 OF 2

THE SALE OF EQUIPMENT, PARTS, MATERIALS, SUPPLIES, SOFTWARE AND OTHER GOODS (THE "GOODS") OR SERVICES (THE "SERVICES"), AS DESCRIBED IN SELLER'S QUOTATION OR PROPOSAL (THE "PROPOSAL"), ARE EXPRESSLY CONDITIONED UPON BUYER'S AGREEMENT TO THESE TERMS & CONDITIONS. ANY ADDITIONAL OR DIFFERENT TERMS PROPOSED BY BUYER ARE EXPRESSLY OBJECTED TO AND WILL NOT BE BINDING UPON SELLER UNLESS AGREED TO IN WRITING BY SELLER. ANY PURCHASE ORDER (THE "ORDER") ISSUED BY BUYER FOR THE PURCHASE OF GOODS OR SERVICES SHALL CONSTITUTE BUYER'S AGREEMENT TO THESE TERMS & CONDITIONS. UNLESS OTHERWISE SPECIFIED IN THE PROPOSAL OR THE ORDER, ANY PROPOSAL BY SELLER SHALL EXPIRE THIRTY (30) DAYS FROM ITS DATE AND MAY BE MODIFIED OR WITHDRAWN BY SELLER BEFORE RECEIPT OF BUYER'S ACCEPTANCE. THE GOODS AND SERVICES ARE COLLECTIVELY REFERRED TO AS THE "WORK." UNLESS OTHERWISE STATED, THE SELLER SHALL BE ZEECO, INC., 22151 EAST 91ST STREET, BROKEN ARROW, OKLAHOMA 74014 (USA), AND THE BUYER SHALL BE THE PARTY IDENTIFIED AS SUCH ON THE ORDER.

1. PRICE: Unless otherwise stated in the Proposal, the price of the Order (the "Price") is fixed and firm and is exclusive of all taxes, duties, fees, charges or assessments of any nature levied by any governmental authority. Additionally, unless otherwise stated in the Proposal, the Price is contingent upon the use of sub-contractors and sub-suppliers listed on Seller's Approved Manufacturers List ("AML") as may be amended from time-to-time, and the manufacture of Goods pursuant to Seller's standard painting procedures. Payment terms shall be as stated in the Proposal and Seller's acceptance of the Order is subject to credit approval that may include payment by means of an irrevocable documentary letter of credit issued by a first-class U.S. bank acceptable to Seller with funds payable upon delivery of customary presentation documents. The form of the letter of credit shall be negotiated by the parties and submitted to Seller for approval prior to issuance. All costs and fees of the letter of credit shall be to Buyer's account. Seller shall not be required to obtain any form of payment or performance security in favor of the Buyer, including but not limited to, bank guarantees, standby letters of credit, or surety bonds. Buyer's breach of agreed payment terms may result in: (a) Seller's suspension of the Work; (b) Seller's termination of the Order due to Buyer's default; (c) Buyer's liability for Seller's mobilization and demobilization costs in the event of suspension or termination by Seller, in addition to other damages; (d) Seller's demand for further assurances of performance by Buyer which may include, without limitation: (i) alteration of payment terms or milestones; (ii) full payment prior to shipment; (iii) additional payment security; (iv) or a delay in shipment that may exceed the length of Buyer's delay in payment.

2. CHANGES: Order changes by Buyer may significantly and disproportionately affect both the Price and completion or delivery date(s) (the "Delivery Schedule"). If Buyer desires to make a modification to the quantity, place, Delivery Schedule, or method of delivery, or the drawings, designs, or specifications of the Work (a "Change"), then Buyer shall so notify Seller in writing and provide sufficient details and descriptions of the price, Delivery Schedule, or both. Under no circumstances shall Seller be obligated to perform a Change without an agreement concerning modifications to the Price, Delivery Schedule, or both.

3. DELAYS BY BUYER: If Buyer delays delivery for any reason, including but not limited to technical modifications or Changes, suspension, failure to review drawings submitted by Seller within the time specified, or any other cause (whether or not within Buyer's control), such delays may significantly and disproportionately affect both the Price and Delivery Schedule, which shall then be subject to a reasonable adjustment. The impact of Buyer caused delays on the Delivery Schedule may, in some cases, be more significant or of a longer duration than the actual period of Buyer's delay. In the event of Buyer's delay for any reason Seller shall be entitled to invoice Buyer, and Buyer agrees to pay timely, for materials on hand, fabrication completed or in process, and services provided. Unless specified in the Order, or otherwise by written agreement, where the Order requires submission of certain documents (including but not limited to drawings, manuals, or other documents related to the Goods) by Seller to Buyer for approval, then Buyer shall respond to such submission with approval or rejection within fourteen (14) days after Seller's issuance of such document(s) to Buyer. The failure of Buyer to approve or reject the document(s) by such time shall result in the document(s) being deemed approved and accepted.

4. LIMITED WARRANTY FOR GOODS: Seller warrants the Goods will operate substantially in conformance with Seller's specifications stated the

Proposal and will be free from defects in material and workmanship for a period of twelve (12) months from the date of initial operation, or eighteen (18) months from the date of shipment, whichever is earlier (the "Warranty Period") when subjected to normal, proper and intended usage by properly trained personnel. Seller agrees during the Warranty Period, to repair or replace, at Seller's option, defective Goods so as to cause the Goods to operate in substantial conformance with Seller's specifications; provided that Buyer shall: (a) promptly notify Seller in writing upon the discovery of any defect and specify details of the warranty claim; (b) provide Seller with all operating data that Seller may reasonably request in order for Seller to evaluate the warranty claim; and (c) after Seller's review of the warranty claim, return the defective Goods to Seller with costs prepaid by Buyer if required to do so by Seller. Replacement parts may be new or refurbished. Shipment to Buyer of repaired or replaced Goods shall be in accordance with the delivery terms of the Order. Notwithstanding any other provision of this warranty, Seller may at its option, elect to send a service technician to Buyer's site to inspect, repair or replace (if applicable) warranted Goods, or otherwise to determine whether the Goods should be returned to Seller for repair or replacement. Goods or components thereof that are obtained by Seller from an original manufacturer or third party supplier are not warranted by Seller, but Seller will, to the extent possible, assign to Buyer any warranty rights in such Goods or components that Seller received from the original manufacturer or third party supplier. Consumables such as, but not limited to, bulbs, fuses, thermocouples, gaskets, and similar items are outside the scope of this warranty. Seller's warranty assumes the Goods are "at grade," and all responsibility for and costs of removal and/or reinstallation of warranted parts or Goods as well as the cost of and responsibility for gaining access to the warranted parts or Goods, are excluded from this warranty. If the Goods are not placed into service within six (6) months after shipment, in order to validate the warranty, the Goods shall be inspected by Seller at the time of commissioning and refurbished, if necessary, to like new condition at the Buyer's expense. For any extended time of storage at the jobsite without assembly/installation, the Goods shall be stored and protected in accordance with Seller's instructions and industry standard long-term storage methods. This warranty shall be void if the Goods have been: (w) exposed to corrosion, erosion, or chemical attack; (x) operated contrary to Seller's instructions or accepted industry practices; (y) improperly maintained or operated, or subjected to accident, abuse, or vandalism; or (z) operated in conditions other than those stated in Buyer's written specifications. Additionally, this warranty shall be void if the Buyer is not in compliance with its payment obligations to Seller pursuant to the Order. Seller shall have no obligation to make repairs, replacements or corrections resulting from normal wear and tear to the Goods. If Seller determines that a warranty claim is not valid, then Buyer shall pay or reimburse Seller for all costs of investigating and responding to such claim, including nonwarranty parts sold or installed, at Seller's then prevailing daily service rates and materials rates. ANY INSTALLATION, MAINTENANCE, REPAIR, SERVICE, RELOCATION OR ALTERATION OR OTHER TAMPERING WITH THE GOODS, THAT IS PERFORMED BY ANY PERSON OR ENTITY OTHER THAN SELLER WITHOUT SELLER'S PRIOR WRITTEN APPROVAL, OR ANY USE OF REPLACEMENT PARTS NOT SUPPLIED BY SELLER, SHALL IMMEDIATELY VOID AND CANCEL ALL WARRANTIES WITH RESPECT TO THE GOODS. IF THE WARRANTY BECOMES VOID, THE BUYER MAY PURCHASE FROM SELLER, IF AVAILABLE, A SERVICE AGREEMENT OR ONE-TIME SERVICE AT THEN CURRENT RATES. THE OBLIGATIONS CREATED BY THIS WARRANTY TO REPAIR OR REPLACE DEFECTIVE GOODS SHALL BE THE SOLE REMEDY OF BUYER IN THE EVENT OF A WARRANTY CLAIM. SELLER MAKES NO WARRANTY, EITHER EXPRESS OR IMPLIED, OTHER THAN AS STATED HEREIN. SELLER DISCLAIMS ALL IMPLIED WARRANTIES.

5. LIMITED WARRANTY FOR SERVICES: Seller warrants the Services will conform to the specifications stated in the Proposal and will be performed in a workmanlike manner. The warranty on Services shall be for a period of three (3) months following completion of the Services (the "Service Warranty Period"). Seller agrees during the Service Warranty Period, to re-perform any defective Services; provided that Buyer shall promptly notify Seller in writing upon the discovery of any defect and specify details of the warranty claim. THE OBLIGATIONS CREATED BY THIS WARRANTY TO REPERFORM DEFECTIVE SERVICES SHALL BE THE SOLE REMEDY OF BUYER IN THE EVENT OF A WARRANTY CLAIM. SELLER MAKES NO WARRANTY, EITHER EXPRESS OR IMPLIED, OTHER THAN AS STATED HEREIN. SELLER DISCLAIMS ALL IMPLIED WARRANTIES.

6. BACKCHARGES: No backcharges will be paid or allowed by Seller unless Seller is notified in writing of any claim of defect in the Goods or Services and Seller is given a minimum of thirty (30) days within which to begin remediation of such defect. All backcharges must be approved in writing by Seller before

GENERAL TERMS & CONDITIONS OF SALE – ENGINEERED GOODS & SERVICES (Revised 19 October 2010) CONFIDENTIAL & PROPRIETARY © Copyright Zeeco, Inc. 2010 – All rights reserved.

any Services are reperformed or any Goods are repaired, replaced, or altered in any manner by Buyer or returned to Seller.

7. CANCELLATION FEE: Buyer may cancel the Order for convenience prior to delivery upon written notice to Seller, in which case Seller will cease activity (except that related to the cancellation) and promptly terminate all related subcontracts. In such event, Buyer shall pay the greater of: (a) Seller's total costs incurred in performing the Order up to the date of receipt of notice of cancellation and all costs associated with the cancellation, including but not limited to, costs of canceling related subcontracts and any currency hedge(s) maintained by Seller relative to the Order, plus reasonable overhead and profit; or (b) a cancellation fee of twenty-five percent (25%) of the Price. However, the amount payable to Seller for cancellation will not exceed the Price.

8. TERMINATION FOR DEFAULT: Buyer may declare Seller in default only if: (a) Seller breaches a material provision of the Order; (b) Buyer provides Seller thirty (30) days written notice specifying Seller's alleged breach in detail; and (c) Seller fails to reasonably cure such alleged breach with the thirty (30) day period following Seller's receipt of Buyer's written notice. In the event of Seller's uncured default, Buyer's sole remedy shall be to terminate the Order and recover any payments made to Seller for the Order.

9. INTELLECTUAL PROPERTY INFRINGEMENT & INDEMNITY: Seller warrants the Goods do not infringe any United States patent. Seller shall, subject to the limitations herein, indemnify Buyer for reasonable damages if the Goods are held to constitute infringement of a United States patent. This indemnity shall not apply: (a) to Goods or parts thereof manufactured pursuant to Buyer's design, or to changes in Seller's design requested by Buyer; and (b) if the infringement is a result of Buyer's operation of the Goods. Buyer shall promptly notify Seller in writing of any alleged claim of infringement, permit Seller to control the defense or compromise of any such claim, and render such assistance as Seller may require. Seller shall have no indemnity obligations to Buyer under this Section if the Buyer is not in compliance with its payment obligations to Seller pursuant to the Order.

10. INDEMNITY: Seller shall be responsible for any illness, injury or death, of the employees of the Seller, its subsidiaries, and their officers, directors, employees, agents, and contractors (collectively, the "Seller Group") and for the loss or damage to the property of any member of the Seller Group, arising out of or relating to the performance of this Order and REGARDLESS OF WHETHER CAUSED OR BROUGHT ABOUT BY THE NEGLIGENCE (INCLUDING ACTIVE, PASSIVE, SOLE, JOINT OR CONCURRENT NEGLIGENCE) OF THE BUYER, ITS SUBSIDIARIES AND ITS CUSTOMER OR ULTIMATE RECIPIENT OR USER OF THE GOODS OR SERVICES AND THEIR OFFICERS. DIRECTORS, EMPLOYEES, AGENTS AND CONTRACTORS (COLLECTIVELY, THE "BUYER GROUP") OR ANY OTHER THEORY OF LEGAL LIABILITY, and Seller shall release, defend, protect, indemnify and hold harmless all members of the Buyer Group from and against any loss, cost, claim, suit, judgment, award or damage (including reasonable attorney's fees) on account of such illness, injury or death, loss or damage. In exchange, Buyer shall be responsible for any illness, injury or death, of the employees of any member of the Buyer Group and for the loss or damage to the property of any member of the Buyer Group, arising out of or relating to the performance of this Order and REGARDLESS OF WHETHER CAUSED OR BROUGHT ABOUT BY THE NEGLIGENCE (INCLUDING ACTIVE, PASSIVE, SOLE, JOINT OR CONCURRENT NEGLIGENCE) OF ANY MEMBER OF THE SELLER GROUP OR ANY OTHER THEORY OF LEGAL LIABILITY, and Buyer shall release, defend, protect, indemnify and hold harmless all members of the Seller Group from and against any loss, cost, claim, suit, judgment, award or damage (including reasonable attorney's fees) on account of such illness, injury or death, loss or damage. Seller and Buyer shall each release, defend, protect, indemnify and hold harmless each other, and the applicable members of the Seller Group or Buyer Group, from and against any loss, cost, claim, suit, judgment, award or damage (including reasonable attorney's fees) for illness, injury, death, or damage to property of third parties (not included within the definitions of Seller Group or Buyer Group) but only to the extent caused by the negligent acts or omissions of such party. Seller shall have no indemnity obligations to Buyer under this Section if the Buyer is not in compliance with its payment obligations to Seller pursuant to the Order. Should any of the preceding indemnities be judged unenforceable or be limited by applicable law, then each party's indemnity obligations to the other shall be limited to the extent that liability for any such illness, injury, death or damage to property is caused by the negligent acts or omissions of such party.

11. GOVERNING LAW: To the maximum extent permissible, this Order shall be governed and construed in accordance with the laws of the State of

GENERAL TERMS & CONDITIONS OF SALE – ENGINEERED GOODS & SERVICES (Revised 19 October 2010) CONFIDENTIAL & PROPRIETARY © Copyright Zeeco, Inc. 2010 – All rights reserved. Oklahoma (U.S.A.), exclusive of any principles of conflicts of laws that would require application of the substantive laws of another jurisdiction. The exclusive venue for all legal actions under this Order shall be the State or Federal Courts sitting in Tulsa, Oklahoma (U.S.A.), and the parties submit to the personal jurisdiction thereof and waive any other venue that may be applicable to such action. This Order excludes the application of the United Nations Convention on Contracts for the International Sale of Goods.

12. FORCE MAJEURE: Except for Buyer's obligations to pay sums to Seller when due, neither party shall be liable for its failure to perform obligations under the Order if such failure results from fire, flood, earthquake, storm, hurricane or other natural disaster, war, invasion, act of foreign enemies, rebellion, terrorist activities, nationalization, government sanction, blockage, embargo, or interruption or failure of electricity, water, telephone or utility service.

13. ASSIGNMENT: Buyer shall not assign the Order without the prior written consent of Seller, and such consent shall not be unreasonably withheld; however, any assignment shall not relieve Buyer of its payment and indemnity obligations to Seller.

14. ENFORCEABILITY: Should a court of competent jurisdiction rule that any provision herein is invalid or unenforceable, such ruling shall not affect the validity or enforceability of any other provision.

15. WAIVER: Seller's failure to enforce any provisions herein shall not constitute a waiver of such rights, or preclude their later enforcement.

16. WAIVER OF CONSEQUENTIAL DAMAGES: SELLER SHALL NOT BE LIABLE FOR PUNITIVE, INDIRECT, INCIDENTAL OR CONSEQUENTIAL DAMAGES, INCLUDING, BUT NOT LIMITED TO, LIABILITY FOR REMOVAL AND REINSTALLATION COSTS, LOSS OF USE, LOSS OF BUSINESS OPPORTUNITY, LOSS OF PROFIT OR REVENUE, LOSS OF PRODUCT OR OUTPUT, OR BUSINESS INTERRUPTION.

ANYTHING TO THE CONTRARY **17. LIMITATION OF LIABILITY:** A CONTAINED IN THIS ORDER NOTWITHSTANDING. SELLER'S CUMULATIVE LIABILITY ARISING OUT OF OR IN ANY MANNER RELATED TO ITS PERFORMANCE SHALL NOT EXCEED, IN THE AGGREGATE, ONE HUNDRED PERCENT (100%) OF THE MONIES RECEIVED BY SELLER UNDER THIS ORDER. THE REMEDIES PROVIDED TO BUYER UNDER THIS ORDER ARE IN LIEU OF ALL OTHER REMEDIES WHICH MAY BE OR BECOME AVAILABLE TO BUYER AT LAW OR IN EQUITY. THE LIMITATIONS SET FORTH HEREIN APPLY WHETHER CLAIMS ARISE PURSUANT TO CONTRACT, TORT, INDEMNITY, STATUTE, EQUITY OR ANY OTHER THEORY OF LAW, INCLUDING, BUT NOT LIMITED TO, THE BREACH OF ANY LEGAL DUTY OR THE FAULT, NEGLIGENCE, PROFESSIONAL LIABILITY OR STRICT LIABILITY OF SELLER. THIS LIMITATION SHALL BE INCLUSIVE OF ALL INSURANCE, BOND, AND LETTER OF CREDIT PROCEEDS, WHICH MAY BE PAID TO THE BUYER BY THE INSURERS, SURETIES OR BANKS OF SELLER. SHOULD THESE REMEDIES BE FOUND INADEQUATE OR TO HAVE FAILED IN THEIR ESSENTIAL PURPOSE FOR ANY REASON WHATSOEVER, THEN THE BUYER AGREES THAT THE SELLER'S RETURN TO THE BUYER OF NO GREATER THAN ONE HUNDRED PERCENT (100%) OF THE MONIES RECEIVED BY SELLER UNDER THIS ORDER SHALL PREVENT THE REMEDIES FROM FAILING THEIR ESSENTIAL PURPOSE AND SHALL BE CONSIDERED BY BUYER AS A FAIR AND ADEQUATE REMEDY.

18. ENTIRE AGREEMENT: This Order contains the entire agreement of the parties and supersedes any and all prior course of dealing, agreements, understandings and communications between Buyer and Seller related to the subject matter of this Order. No amendment or modification of this Order shall be binding unless it is in writing and is signed by an authorized representative of Buyer and Seller.

ATTACHMENT A START-UP/MAINTENANCE SERVICES, EQUIPMENT DATA/DRAWINGS AND STANDARD TERMS AND CONDITIONS

START-UP/MAINTENANCE SERVICES ١.

RATES	DOMESTIC (Within US)	FOREIGN (Outside US)
Base Rates for Start-Up/Maintenance personnel on all non-holiday (U.S Government recognized) Monday through Friday, inclusive, up to a maximum of ten (10) hours per day.	\$1,600.00 per day	2,300.00 per day
Hours in Excess of ten (10) hours per day Monday through Friday, non-holiday.	\$240.00 per hour	\$345.00 per hour
Saturdays and Sundays - up to a maximum of ten (10) hours per day	\$2,400.00	\$3,450.00
Hours in Excess of ten (10) hours per day Saturday and Sunday, non-holiday	\$368.00 per hour	\$518.00 per hour
Holidays (U.S. Government Recognized) - up to a maximum of ten (10) hours per day	\$3,200.00	\$4,600.00
Hours in Excess of ten (10) hours per day Holidays	\$480.00 per hour	\$690.00 per hour
Air Travel (Class) Ground Transportation	Coach Mid-Sized Rental Car	Business Mid-Sized Rental Car
Engineering Rates	\$375.00 per hour	\$375.00 per hour
Design / Drafting Rates	\$185.00 per hour	\$185.00 per hour

** The above Domestic and Foreign rates do not include OFFSHORE assistance. Please contact Zeeco if you are interested in obtaining a proposal for OFFSHORE assistance

Compensable Days

Per diem rates will apply from, and including, the day the start-up/maintenance personnel leaves his basing point up to, and including, his date of return to the basing point.

Expenses

Zeeco shall be reimbursed at actual cost plus 15% for all non-Buyer provided living and travel expenses incurred, which are related to the supply of services rendered.

Engineering / Drafting Charges

Engineering and/or drafting charges will apply for all work performed by Zeeco personnel as required to support Start-Up/Maintenance personnel. These charges will apply at the rate indicated in the chart above.

Independent Contractor

Zeeco personnel shall be considered an independent contractor with respect to services provided hereunder and the start-up/maintenance personnel shall in no respect be considered an employee of the Buyer. Zeeco reserves the right to recall, replace, or return the personnel at Zeeco's sole discretion.

EQUIPMENT DATA/DRAWINGS Ш

Α STANDARD QUANTITY

Priced quotation for equipment include three (3) print copies of approval drawings; three (3) print copies and one (1) reproducible copy of the final drawings; and three (3) copies of an operational manual. Additional copies of drawings will be provided at \$30.00 per print and \$45.00 per reproducible. Additional operational manuals will be prices on application, and based on the complexity of the equipment.

Drawings and data provided hereunder are the property of Zeeco. Inc. and may not be used for any purpose other than the repair, operation and maintenance of the equipment depicted.

III TERMS AND CONDITIONS

- А All service and data provided under this Attachment are in accordance with Zeeco's Standard Terms and Conditions of Sale.
- B. All rates quoted herein are subject to change without notice.
- Zeeco will require a purchase order from the Buyer accepting the terms and condition set forth herein, as well as an estimate of duration and C. nature of the work to be done.
- Prior to dispatch of Zeeco personnel, Buyer may be required to provide a deposit equal to the charges for the anticipated duration of service, or D. two weeks of service, whichever is greater. This requirement will be enforced at the discretion of Zeeco, Inc.
- E. The transportation modes and carriers and all arrangements therefore, and the choice of lodgings and all arrangements therefore, will be at the sole discretion of Zeeco, Inc.
- F. Where on-site room and board are furnished by the customer, Zeeco, Inc. expects their personnel to be roomed and boarded in a comfortable environment similar to Buyer's personnel or mutually agreed upon accommodations.
- G. It is the Buyer's responsibility to secure all work permits, licenses, and other documents required to allow our personnel to complete their assignment in accordance with local government regulations and labor laws.
- All tools, materials, and equipment for use by Zeeco personnel will be furnished by the Buyer, unless other mutually agreed upon arrangements H. have been made.
- The service rates and expenses described herein do not include any taxes of any kind that may be assessed by any governmental department 1. outside the U.S.A. Any such taxes that may be applicable to the service rates and expenses will be for the Buyer's account. Page 8 of 9

Effective Date: August 1, 2013

THE SALE OF SERVICES (THE "SERVICES"), AS DESCRIBED IN CONTRACTOR'S QUOTATION OR PROPOSAL (THE "PROPOSAL"), IS EXPRESSLY CONDITIONED UPON BUYER'S AGREEMENT TO THESE TERMS & CONDITIONS. ANY ADDITIONAL OR DIFFERENT TERMS PROPOSED BY BUYER ARE EXPRESSLY OBJECTED TO AND WILL NOT BE BINDING UPON CONTRACTOR UNLESS AGREED TO IN WRITING BY CONTRACTOR. ANY PURCHASE ORDER (THE "ORDER") ISSUED BY BUYER FOR THE PURCHASE OF SERVICES SHALL CONSTITUTE BUYER'S AGREEMENT TO THESE TERMS & CONDITIONS. UNLESS OTHERWISE SPECIFIED IN THE PROPOSAL OR THE ORDER, ANY PROPOSAL BY CONTRACTOR SHALL EXPIRE THIRTY (30) DAYS FROM ITS DATE AND MAY BE MODIFIED OR WITHDRAWN BY CONTRACTOR BEFORE RECEIPT OF BUYER'S ACCEPTANCE. UNLESS OTHERWISE STATED, THE CONTRACTOR SHALL BE ZEECO, INC., 22151 EAST 91ST STREET, BROKEN ARROW, OKLAHOMA 74014 (USA), AND THE BUYER SHALL BE THE PARTY IDENTIFIED AS SUCH ON THE ORDER.

1. PRICE: Unless otherwise stated in the Proposal, the price of the Order (the "Price") is exclusive of all taxes, duties, fees, charges or assessments of any nature levied by any governmental authority. Payment terms shall be as stated in the Proposal and Contractor's acceptance of the Order is subject to credit approval.

2. LIMITED WARRANTY: Contractor warrants the Services will be performed in a workmanlike manner. The warranty on Services shall be for a period of three (3) months following completion of the Services (the "Service Warranty Period"). Contractor agrees during the Service Warranty Period, to re-perform any defective Services; provided that Buyer shall promptly notify Contractor in writing upon the discovery of any defect and specify details of the warranty claim. Contractor warrants all parts manufactured by Contractor and sold in conjunction with the Services (the "Goods") will be free from defects in material and workmanship for a period of twelve (12) months from the date of installation (the "Goods Warranty Period") when subjected to normal, proper and intended usage by properly trained personnel. Contractor agrees during the Goods Warranty Period, to repair or replace any defective Goods; provided that Buyer shall promptly notify Contractor in writing upon the discovery of any defect and specify details of the warranty claim. Goods that are obtained by Contractor from an original manufacturer or third party supplier are not warranted by Contractor, but Contractor will, to the extent possible, assign to Buyer any warranty rights in such Goods that Contractor received from the original manufacturer or third party supplier. Consumables such as, but not limited to, bulbs, fuses, thermocouples, gaskets, and similar items are outside the scope of this warranty. All responsibility for and costs of removal and/or reinstallation of warranted Goods as well as the cost of and responsibility for gaining access to the warranted Goods, are excluded from this warranty. This warranty shall be void if the Goods have been: (a) exposed to corrosion, erosion, or chemical attack; (b) operated contrary to Contractor's instructions or accepted industry practices; (c) improperly maintained or operated, or subjected to accident, abuse, or vandalism; or (d) operated in conditions other than those stated in Buyer's written specifications. Additionally, this warranty shall be void if the Buyer is not in compliance with its payment obligations to Contractor pursuant to the Order. Contractor shall have no obligation to make repairs, replacements or corrections resulting from normal wear and tear to the Goods. If Contractor determines that a warranty claim is not valid, then Buyer shall pay or reimburse Contractor for all costs of investigating and responding to such claim, including non-warranty parts sold or installed, at Contractor's then prevailing to same and materials rates. THE OBLIGATIONS CREATED BY THIS WARRANTY TO REPERFORM DEFECTIVE SERVICES, OR REPAIR OR REPLACE DEFECTIVE GOODS, SHALL BE THE SOLE REMEDY OF BUYER IN THE EVENT OF A WARRANTY CLAIM. CONTRACTOR MAKES NO WARRANTY, EITHER EXPRESS OR IMPLIED, OTHER THAN AS STATED HEREIN. CONTRACTOR DISCLAIMS ALL IMPLIED WARRANTIES.

3. BACKCHARGES: No backcharges will be paid or allowed by Contractor unless Contractor is notified in writing of any claim of defect and Contractor is given a minimum of thirty (30) days within which to begin remediation of such defect. All backcharges must be approved in writing by Contractor before any Services are reperformed and charged to Contractor's account or any Goods are repaired, replaced or altered in any manner by Buyer or returned to Contractor.

4. TERMINATION FOR DEFAULT: Buyer may declare Contractor in default only if: (a) Contractor breaches a material provision of the Order; (b) Buyer provides Contractor thirty (30) days written notice specifying Contractor's alleged breach in detail; and (c) Contractor fails to reasonably cure such alleged breach with the thirty (30) day period following Contractor's receipt of Buyer's written notice. In the event of Contractor's uncured default, Buyer's sole remedy shall be to terminate the Order and recover any payments made to Contractor for the Order.

5. INDEMNITY: Contractor shall be responsible for any illness, injury or death, of the employees of the Contractor, its subsidiaries, and their officers, directors, employees, agents, and contractors (collectively, the "Contractor Group,") and for the loss or damage to the property of any member of the Contractor Group, arising out of or relating to the performance of this Order and REGARDLESS OF WHETHER CAUSED OR BROUGHT ABOUT BY THE NEGLIGENCE (INCLUDING ACTIVE, PASSIVE, SOLE, JOINT OR CONCURRENT NEGLIGENCE) OF THE BUYER, ITS SUBSIDIARIES AND ITS CUSTOMER OR ULTIMATE RECIPIENT OR USER OF THE GOODS OR SERVICES AND THEIR OFFICERS, DIRECTORS, EMPLOYEES, AGENTS AND CONTRACTORS (COLLECTIVELY, THE "BUYER GROUP") OR ANY OTHER THEORY OF LEGAL LIABILITY, and Contractor shall release, defend, protect, indemnify and hold harmless all members of the Buyer Group from and against any loss, cost, claim, suit, judgment, award or damage. In exchange, Buyer shall be responsible for any illness, injury or death, of the employees of any member of the Buyer Group and for the loss or damage to the property of any member of the Buyer Group and for the loss or damage to the isorder and REGARDLESS OF WHETHER CAUSED OR BROUGHT ABOUT BY THE

NEGLIGENCE (INCLUDING ACTIVE, PASSIVE, SOLE, JOINT OR CONCURRENT NEGLIGENCE) OF ANY MEMBER OF THE CONTRACTOR GROUP OR ANY OTHER THEORY OF LEGAL LIABILITY, and Buyer shall release, defend, protect, indemnify and hold harmless all members of the Contractor Group from and against any loss, cost, claim, suit, judgment, award or damage (including reasonable attorney's fees) on account of such illness, injury or death, loss or damage. Contractor and Buyer shall each release, defend, protect, indemnify and hold harmless each other, and the applicable members of the Contractor Group or Buyer Group, from and against any loss, cost, claim, suit, judgment, award or damage (including reasonable attorney's fees) for illness, injury, death, or damage to property of third parties (not included within the definitions of Contractor Group or Buyer Group) but only to the extent caused by the negligent acts or omissions of such party. Contractor shall have no indemnity obligations to Buyer under this Section if the Buyer is not in compliance with its payment obligations to Contractor pursuant to the Order. Should any of the preceding indemnities be judged unenforceable or be limited by applicable law, then each party's indemnity obligations to the other shall be limited to the extent that liability for any such illness, injury, death or damage to property is caused by the negligent acts or omissions of such party.

6. INSURANCE: Contractor shall maintain the following insurance coverage and, at Buyer's request, shall provide Buyer with certificates evidencing such coverage: (a) Statutory Workers' Compensation and Employer's Liability Insurance with limits of USD \$1,000,000 per occurrence; (b) Commercial General Liability Insurance with a combined single limit for bodily injury and property damage of USD \$1,000,000 per occurrence and in the aggregate; and (c) Automobile Liability Insurance with a combined single limit for bodily injury and property damage of USD \$1,000,000 per occurrence and in the aggregate; and (c) Automobile Liability Insurance with a combined single limit for bodily injury and property damage of USD \$1,000,000 per accident.

7. GOVERNING LAW: To the maximum extent permissible, this Order shall be governed and construed in accordance with the laws of the State of Oklahoma (U.S.A.), exclusive of any principles of conflicts of laws that would require application of the substantive laws of another jurisdiction. The exclusive venue for all legal actions under this Order shall be the State or Federal Courts sitting in Tulsa, Oklahoma (U.S.A.), and the parties submit to the personal jurisdiction thereof and waive any other venue that may be applicable to such action.

8. FORCE MAJEURE: Except for Buyer's obligations to pay sums to Contractor when due, neither party shall be liable for its failure to perform obligations under the Order if such failure results from fire, flood, earthquake, storm, hurricane or other natural disaster, war, invasion, act of foreign enemies, rebellion, terrorist activities, nationalization, government sanction, blockage, embargo, or interruption or failure of electricity, water, telephone or utility service.

9. ASSIGNMENT: Buyer shall not assign the Order without the prior written consent of Contractor, and such consent shall not be unreasonably withheld; however, any assignment shall not relieve Buyer of its payment and indemnity obligations to Contractor.

10. ENFORCEABILITY: Should a court of competent jurisdiction rule that any provision herein is invalid or unenforceable, such ruling shall not affect the validity or enforceability of any other provision.

11. WAIVER: Contractor's failure to enforce any provisions herein shall not constitute a waiver of such rights, or preclude their later enforcement.

12. WAIVER OF CONSEQUENTIAL DAMAGES: CONTRACTOR SHALL NOT BE LIABLE FOR PUNITIVE, INDIRECT, INCIDENTAL OR CONSEQUENTIAL DAMAGES, INCLUDING, BUT NOT LIMITED TO, LIABILITY FOR REMOVAL AND REINSTALLATION COSTS, LOSS OF USE, LOSS OF BUSINESS OPPORTUNITY, LOSS OF PROFIT OR REVENUE, LOSS OF PRODUCT OR OUTPUT, OR BUSINESS INTERRUPTION.

13. LIMITATION OF LIABILITY: ANYTHING TO THE CONTRARY CONTAINED IN THIS ORDER NOTWITHSTANDING, CONTRACTOR'S CUMULATIVE LIABILITY ARISING OUT OF OR IN ANY MANNER RELATED TO ITS PERFORMANCE SHALL NOT EXCEED, IN THE AGGREGATE, ONE HUNDRED PERCENT (100%) OF THE MONIES RECEIVED BY CONTRACTOR UNDER THIS ORDER. THE REMEDIES PROVIDED TO BUYER UNDER THIS ORDER ARE IN LIEU OF ALL OTHER REMEDIES WHICH MAY BE OR BECOME AVAILABLE TO BUYER AT LAW OR IN EQUITY. THE LIMITATIONS SET FORTH HEREIN APPLY WHETHER CLAIMS ARISE PURSUANT TO CONTRACT, TORT, INDEMNITY, STATUTE, EQUITY OR ANY OTHER THEORY OF LAW, INCLUDING, BUT NOT LIMITED TO, THE BREACH OF ANY LEGAL DUTY OR THE FAULT, NEGLIGENCE, PROFESSIONAL LIABILITY OR STRICT LIABILITY OF CONTRACTOR. THIS UMITATION SHALL BE INCLUSIVE OF ALL INSURANCE, BOND, AND LETTER OF CREDIT PROCEEDS, WHICH MAY BE PAID TO THE BUYER BY THE INSURERS, SURETIES OR BANKS OF CONTRACTOR. SHOULD THESE REMEDIES BE FOUND INADEQUATE OR TO HAVE FAILED IN THEIR ESSENTIAL PURPOSE FOR ANY REASON WHATSOEVER, THEN THE BUYER AGREES THAT THE CONTRACTOR'S RETURN TO THE BUYER OF NO GREATER THAN ONE HUNDRED PERCENT (100%) OF THE MONIES RECEIVED BY CONTRACTOR UNDER THIS ORDER SHALL PREVENT THE REMEDIES FROM FAILING THEIR ESSENTIAL PURPOSE AND SHALL BE CONSIDERED BY CONTRACTOR UNDER THIS ORDER SHALL PREVENT THE REMEDIES FROM FAILING THEIR ESSENTIAL PURPOSE AND SHALL BE CONSIDERED BY BUYER AS A FAIR AND ADEQUATE REMEDY.

14. ENTIRE AGREEMENT: This Order contains the entire agreement of the parties and supersedes any and all prior course of dealing, agreements, understandings and communications between Buyer and Contractor related to the subject matter of this Order. No amendment or modification of this Order shall be binding unless it is in writing and is signed by an authorized representative of Buyer and Contractor.

Annual Turbine Emissions TEST REPORT ON EXHAUST EMISSIONS FROM

ONE NATURAL GAS FIRED TURBINE

AT THE SOUTH CARLSBAD COMPRESSOR STATION LOVING, NM

PREPARED FOR ENTERPRISE PRODUCTS OPERATING

May 2010

Relient Emissions Testing, Inc Project Number: 0023

05/15/2010

Ms. Jennifer Courser Enterprise Products Operating 2162 Commerce Dr. Midland, TX 79707 (432) 681-2600

Re: Annual emissions testing at the South Carlsbad Compressor Station on Unit 1

Ms. Courser,

Exhaust emissions from one compressor turbine was tested at the South Carlsbad compressor station near Loving, New Mexico on. Testing was conducted to demonstrate compliance with emission limits set forth by NMED permit. The engine is identified as follows:

Engine Information		
Unit Number:	Unit 1	
Manufacturer:	Solar	
Serial Number:	4920	
Model:	CENTAUR 40	
Mfr. Rated Hp:	4500hp	
Mfr. Rated Speed:	15,000	

This is a natural gas fired turbine used for compression of natural gas for transportation through the pipeline.

The test matrix consisted of three 20-minute test runs on the turbine in accordance with NMED requirements. For each test, the average emission concentrations of nitrogen oxides (NO_X), oxygen (O₂), and carbon monoxide (CO) were measured using analytical instrumentation. Operational data such as Gas Producer Speed, Turbine Speed, and suction and discharge pressures were recorded during each run from available operational data on the unit.

Results of the tests are presented in tabular format in this report. Included in this table are engine operational data, ambient conditions, emission concentrations, and mass emission rates.

Continuous emission monitors housed in an air-conditioned mobile laboratory were used to measure the exhaust concentrations of NO_X , CO and O_2 . This testing utilized the following analytical methods:

EPA Reference Method 3a	O ₂ concentration
EPA Reference Method 7e	NO _X concentration
EPA Reference Method 10	CO concentration
EPA Reference Method 19	Mass emission rates

A computerized data recorder was used to record output from the analyzers. The data logger record provides documentation of the emission measurements and the instrument calibrations. The data logger records are also useful for indicating trends in the data.

Mass emission rates were calculated using EPA Method 19 calculations (combustion stoichiometry). Emission rates in terms of lbs/hr and TPY were calculated using the pollutant concentration (ppmv), the oxygen F-factor (DSCFex/MMBtu) and the horsepower specific fuel consumption rate (Btu/Hp-hr). The O₂ F-Factor used in this test series was 8710 (DSCFex/MMBtu), the EPA default value for engines burning natural gas. The horsepower specific fuel rate used in the test was 9080 Btu/Hp-hr.

A summary of the quality assurance procedures associated with the EPA test methods is presented in tabular format in the appendix of this report. Examples of these procedures include daily multipoint calibrations, zero and span checks between each test run, NO_2 to NO converter efficiency check results, sample system bias check results, and analyzer interference test results.

The appendix of this report also includes supporting test documentation, example calculations, and data logger records.

If you have any questions, please feel free to contact me at (806) 773-8851.

Sincerely,

Ross Thompson Principal Scientist Relient Emissions Testing, Inc

A Caterpillar Company

Solar Turbines Incorporated

9330 Sky Park Court San Diego, CA 92123 Tel: (858) 694-1616

Submitted Electronically

September 4, 2019

Attn: Jing Li Enterprise Products

Subject: Centaur 40 Routine Maintenance Overhaul South Carlsbad (NM)

The Centaur 40 turbine package (S/N 3020123) at the above facility recently underwent a routine maintenance overhaul utilizing Solar Turbine's engine exchange program.

The overhaul engine core that Solar Turbines provided to Enterprise was a like-for-like replacement with the same guarantees on performance and emissions as the core that was replaced.

Per 40 CFR 60, Subpart KKKK rule language, an overhaul does not trigger the definition of "modification" because it is a like-for-like exchange with the same performance and emissions specifications as the original equipment. In addition, an overhaul is not "reconstruction" as the cost of a routine overhaul is well less than 50% of the cost of a new comparable unit.

This turbine package "commenced construction" in 1973. Routine overhaul exchange of turbine components does not signify a new affected facility per the NSPS provisions in 40 CFR 60.

Because routine overhaul exchange of components on an existing facility does not trigger the definitions of "new", "modification" or "reconstruction" there are no federal NSPS ramifications. Solar recommends a review of the State-issued operating permit for any facility specific requirements associated with the overhaul which typically may include agency notification and/or emissions testing.

Please call me at 858.505.8554 if you have any questions.

Sincerely,

Anthony Pocengal Solar Turbines Incorporated

cc: Joey Guillen, Solar Turbines

A Caterpillar Company

Solar Turbines Incorporated

9330 Sky Park Court San Diego, CA 92123 Tel: (858) 694-1616

Submitted Electronically

October 3, 2019

- Attn: Alena Miro Enterprise Products
- Subject: Centaur 40 Routine Maintenance Overhaul South Carlsbad Unit 2 (NM)

The Centaur 40 turbine (S/N CC79419) at the above facility underwent a routine maintenance overhaul utilizing Solar Turbine's engine exchange program in September 2018.

The overhauled turbine core (gas producer and power turbine) that Solar Turbines provided Enterprise is a like-kind replacement with the same guarantees on performance and emissions as the core that was replaced.

Per 40 CFR 60, Subparts GG and KKKK rule language, an overhaul does not trigger the definition of "modification" because it is a like-for-like exchange with the same performance and emissions specifications as the original equipment. In addition, the engine exchange is not "reconstruction" as the cost of a routine overhaul is well less than 50% of the cost of a new comparable unit.

The overhauled engine is not "new" as per the NSPS General Provisions in 40 CFR 60, Subpart A, this turbine "commenced construction" in 1979. Routine overhaul exchange of turbine components does not signify a new affected facility per either of the Subpart GG or KKKK definitions.

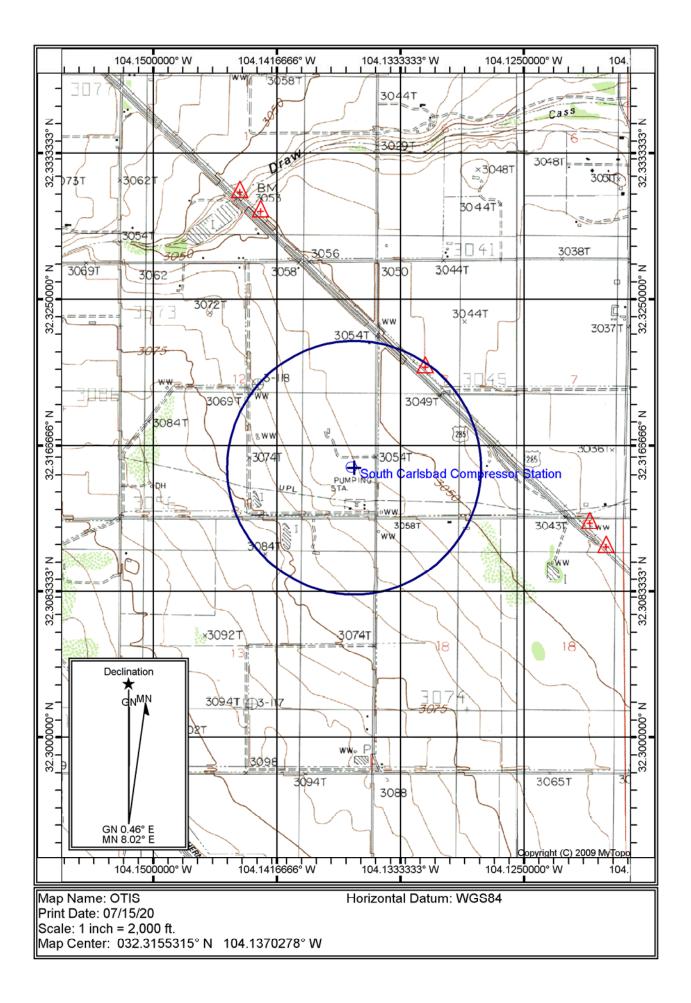
Because routine overhaul exchange of components on an existing facility does not trigger the definitions of "new", "modification" or "reconstruction", there are no NSPS ramifications due to this activity.

Please call me at 858.505.8554 if you have any questions.

Sincerely,

Anthony Pocengal Solar Turbines Incorporated

cc: Joey Guillen, Solar Turbines Incorporated


Section 8

Map(s)

<u>A map</u> such as a 7.5 minute topographic quadrangle showing the exact location of the source. The map shall also include the following:

The UTM or Longitudinal coordinate system on both axes	An indicator showing which direction is north
A minimum radius around the plant of 0.8km (0.5 miles)	Access and haul roads
Topographic features of the area	Facility property boundaries
The name of the map	The area which will be restricted to public access
A graphical scale	

A topographic map is attached.

Section 9

Proof of Public Notice

(for NSR applications submitting under 20.2.72 or 20.2.74 NMAC) (This proof is required by: 20.2.72.203.A.14 NMAC "Documentary Proof of applicant's public notice")

☑ I have read the AQB "Guidelines for Public Notification for Air Quality Permit Applications" This document provides detailed instructions about public notice requirements for various permitting actions. It also provides public notice examples and certification forms. Material mistakes in the public notice will require a re-notice before issuance of the permit.

Unless otherwise allowed elsewhere in this document, the following items document proof of the applicant's Public Notification. Please include this page in your proof of public notice submittal with checkmarks indicating which documents are being submitted with the application.

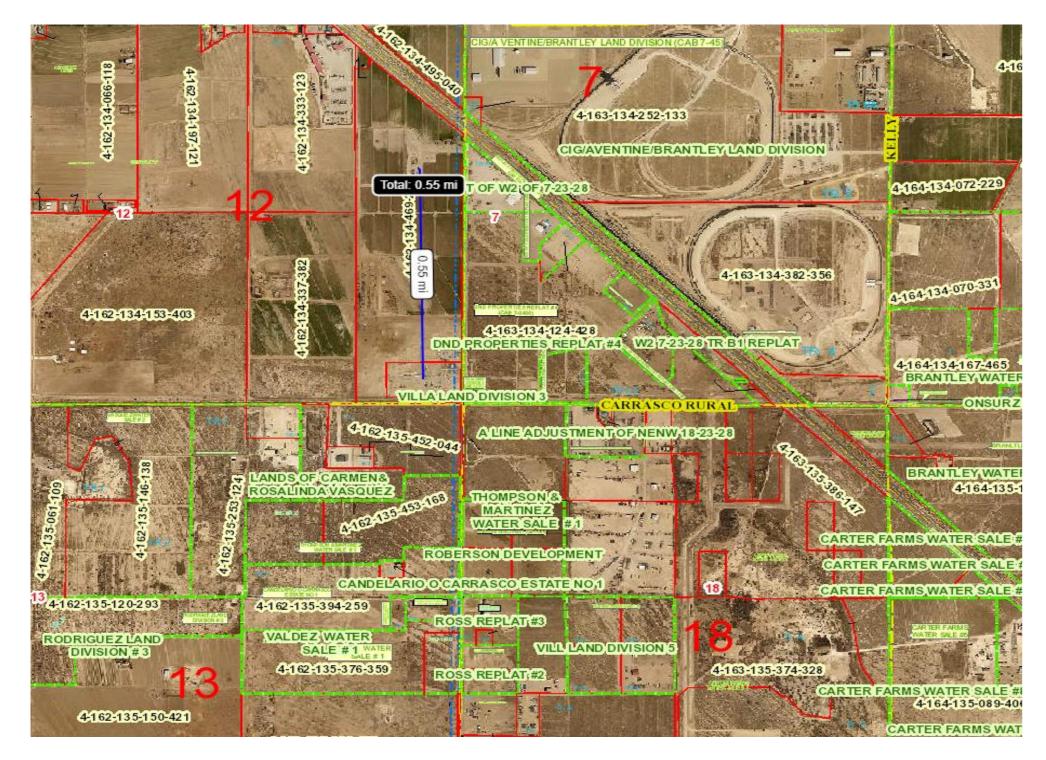
New Permit and Significant Permit Revision public notices must include all items in this list.

Technical Revision public notices require only items 1, 5, 9, and 10.

Per the Guidelines for Public Notification document mentioned above, include:

- 1. A copy of the certified letter receipts with post marks (20.2.72.203.B NMAC)
- 2. ☑ A list of the places where the public notice has been posted in at least four publicly accessible and conspicuous places, including the proposed or existing facility entrance. (e.g: post office, library, grocery, etc.)
- 3. \square A copy of the property tax record (20.2.72.203.B NMAC).
- 4. \square A sample of the letters sent to the owners of record.
- 5. A sample of the letters sent to counties, municipalities, and Indian tribes.
- 6. \square A sample of the public notice posted and a verification of the local postings.
- 7. 🗹 A table of the noticed citizens, counties, municipalities and tribes and to whom the notices were sent in each group.
- 8. 🗹 A copy of the public service announcement (PSA) sent to a local radio station and documentary proof of submittal.
- 9. ☑ A copy of the <u>classified or legal</u> ad including the page header (date and newspaper title) or its affidavit of publication stating the ad date, and a copy of the ad. When appropriate, this ad shall be printed in both English and Spanish.
- 10. A copy of the <u>display</u> ad including the page header (date and newspaper title) or its affidavit of publication stating the ad date, and a copy of the ad. When appropriate, this ad shall be printed in both English and Spanish.
- 11. A map with a graphic scale showing the facility boundary and the surrounding area in which owners of record were notified by mail. This is necessary for verification that the correct facility boundary was used in determining distance for notifying land owners of record.

All public notice requirements have been completed and are included in this section.



a series and a series of the s

÷.

https://portico.mygisonline.com/html5/?viewer=eddynm

耸 4-162-135-311-173	>
Owner: THOMPSON, MELINDA & MARTINEZ, GREG Owner Address: 8270 CHASE WAY ARVADA CO 80003 Site Address: W OF 130 S ROBERSON ROAD	
A-163-134-119-320	>
Owner: DND PROPERTIES LLC Owner Address: 25528 GENESEE TRAIL RD GOLDEN CO 80401 Site Address: 2409 PECOS HIGHWAY	
A-163-134-094-298	>
Owner: MOSS FAMILY TRUST Owner Address: 25274 CAMINO DE TIERRA DESCANSO CA 919116 Site Address: 2413 PECOS HIGHWAY	
A-163-134-040-236	>
Owner: PERFORMANCE RENTALS LLC Owner Address: 2149 EAST BRIDGE ST BRIGHTON CO 80601 Site Address: 2431 PECOS HIGHWAY	

Owner:	
WOFFORD TRUCK PARTS INC	
Owner Address:	
9420 GATEWAY BLVD EAST	
EL PASO TX 79907	
Site Address:	
2393-2 PECOS HIGHWAY	
A-163-134-127-497	>
Owner:	
DND PROPERTIES LLC	
Owner Address:	
25528 GENESEE TRAIL RD	
GOLDEN CO 80401	
Site Address:	
2393-4 PECOS HIGHWAY	
A-163-135-181-039	>
Owner:	
HB PROPERTIES LLC	
Owner Address:	
PO BOX 5182	
CARLSBAD NM 88220	
Site Address:	
221 CARRASCO ROAD RURAL	
4-163-135-198-095	> ••••
Owner:	
HB PROPERTIES LLC	
Owner Address:	
PO BOX 5182	
CARLSBAD NM 882215182	
Site Address:	
233-1 CARRASCO ROAD RURAL	
4-163-135-036-166	>
Owner:	
HUGHES, TREY & KALI (JT)	
noones, mer a kaer (m	
Owner Address:	

Owner: ONSUREZ, CONCEPCION C REVOO Owner Address: PO BOX 393 LOVING NM 882560393 Site Address: ROBERSON ROAD

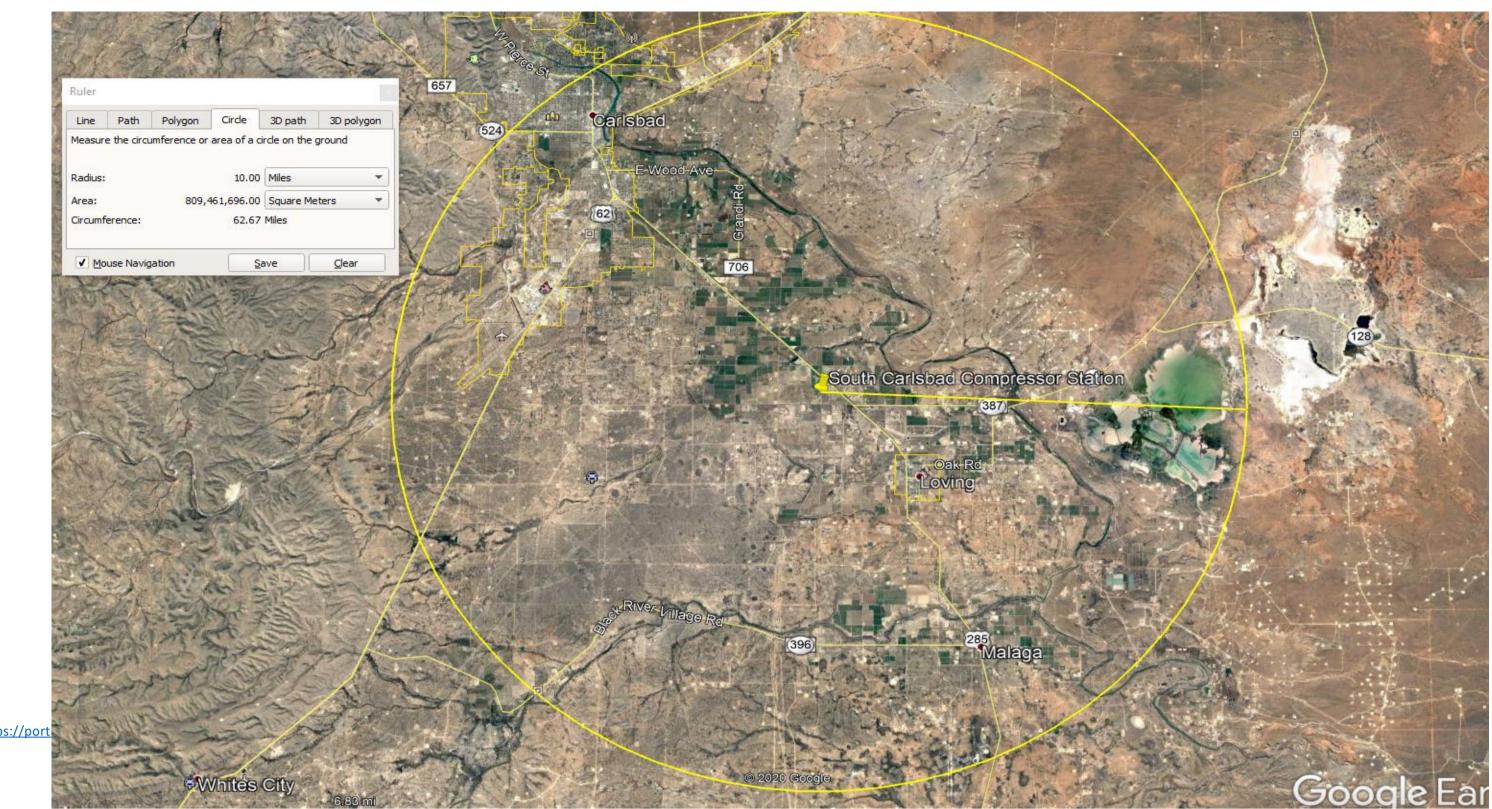
☆ 4-162-135-448-229 Owner:

VALDEZ, CELIA ET AL Owner Address: 4204 THOMASON RD CARLSBAD NM 88220 Site Address: W OF 130 S ROBERSON ROAD

🔆 4-163-135-035-233

Owner: HUGHES, TREY & KALI (JT) Owner Address: PO BOX 5097 CARLSBAD NM 882215097 Site Address: 130 S ROBERSON ROAD


🛧 4-163-135-098-233


Owner: HUGHES, TREY & KALI (JT) Owner Address: PO BOX 5097 CARLSBAD NM 882215097

riesungy added to mesung	~
A 4-162-134-153-403 > Owner: PINA, JOSE L & MARTHA A (JT) Owner Address:	
7320 PORTER ROAD CARLSBAD NM 88220 Site Address: 7320 PORTER ROAD	ł
A 4-162-134-337-382 Neme: IONES, ROBERT C & GREENWOOD, KATHY L (JT) Owner Address:	
27896 VIA LA CAPILLA SAN PATRICIO NM 883489633 Site Address: 4301 BRANTLEY ROAD	
A 4-162-134-469-279 > Owner: CARRASCO, JESUS N Owner Address:	
47 ROBERSON ROAD CARLSBAD NM 88220 Site Address: 3 S ROBERSON ROAD	
A 4-162-134-333-123	
PO BOX 477 CARLSBAD NM 882210477 Site Address: 2493 PECOS HIGHWAY	
A 4-163-134-124-428 > Owner: DND PROPERTIES LLC	

🔆 4-163-135-066-066	>	
Owner:		
BRANTLEY, TOM		
Owner Address:		
1002 W RIVERSIDE DRIVE		
CARLSBAD NM 88220		
Site Address:		
86 S ROBERSON ROAD		
A-162-135-453-168	>	
Owner:		
THOMPSON, MELINDA AND MARTINEZ, GREG	;	
Owner Address:		
8270 CHASE WAY		
ARVADA CO 80003		
Site Address:		
N OF 130 S ROBERSON ROAD		
A-162-135-371-110	>	
Owner:		
JURVA, NATHAN & KRISTA (N-JT)		
Owner Address:		
5110 OLD CAVERN HWY		
CARLSBAD NM 88220		
Site Address:		
E OF 4405 CARRASCO ROAD		
A-162-135-389-072	>	
Owner:		
CARRASCO, JESUS MICHAEL ADAN		
Owner Address:		
6016 GRANDI ROAD		
CARLSBAD NM 88220		
Site Address:		
4405 CARRASCO_ROAD		

OCABLE TRUST	 ☆ 4-163-134-124-428 Owner: DND PROPERTIES LLC Owner Address: 25528 GENESEE TRAIL RD GOLDEN CO 80401 Site Address: 2393-3 PECOS HIGHWAY 	> ••••
> ••••	 ☆ 4-162-135-452-044 Owner: URQUIDEZ FAMILY LIVING TRUST Owner Address: URQUIDEZ, CORINA TRUSTEE 9021 N 63RD DRIVE GLENDALE AZ 85302 Site Address: E OF 4405 CARRASCO ROAD 	> ••••
> ••••	 ☆ 4-162-135-304-025 Owner: VASQUEZ, STEVEN A Owner Address: 601 FREEDOM LN CARLSBAD NM 882209792 Site Address: 4405 CARRASCO ROAD 	> ••••
> ••••	 ☆ 4-162-135-253-124 Owner: VASQUEZ, CARMEN M Owner Address: 406 S MESA CARLSBAD NM 88220 Site Address: S OF 4405 CARRASCO ROAD 	>

Section 9 South Carlsbad Compressor Station - Enterprise Field Services, LLC PROPERTY OWNERS

PROPERTY OWNERS				
Account	OWNER NAME	ADDRESS	CITYSTATEZIP	
102_15000	PINA, JOSE L & MARTHA A (JT)	7320 PORTER ROAD	CARLSBAD, NM 88220	
102_15000	JONES, ROBERT C & GREENWOOD, KATHY L (JT)	27896 VIA LA CAPILLA	SAN PATRICIO, NM 88348	
102_15000	CARRASCO, JESUS N	47 ROBERSON ROAD	CARLSBAD, NM 88220	
131_450	ELLYSON, STEVEN F	PO BOX 477	CARLSBAD, NM 88221	
111_21780	DND PROPERTIES LLC	25528 GENESEE TRAIL RD	GOLDEN, CO 80401	
106_450	URQUIDEZ FAMILY LIVING TRUST	URQUIDEZ, CORINA TRUSTEE	GLENDALE, AZ 85302	
111_21780	VASQUEZ, STEVEN A	601 FREEDOM LN	CARLSBAD, NM 88220	
192_99_99	VASQUEZ, CARMEN M	406 S MESA	CARLSBAD, NM 88220	
111_7841	BRANTLEY, TOM	1002 W RIVERSIDE DRIVE	CARLSBAD, NM 88220	
106_450	THOMPSON, MELINDA AND MARTINEZ, GREG	8270 CHASE WAY	ARVADA, CO 80003	
114_450	JURVA, NATHAN & KRISTA (N-JT)	5110 OLD CAVERN HWY	CARLSBAD, NM 88220	
106_450	CARRASCO, JESUS MICHAEL ADAN	6016 GRANDI ROAD	CARLSBAD, NM 88220	
111_30492	MOSS FAMILY TRUST	25274 CAMINO DE TIERRA	DESCANSO, CA 919116	
111_15246	PERFORMANCE RENTALS LLC	2149 EAST BRIDGE ST	BRIGHTON, CO 80601	
106_450	WOFFORD TRUCK PARTS INC	9420 GATEWAY BLVD EAST	EL PASO, TX 79907	
111_15246	HB PROPERTIES LLC	PO BOX 5182	CARLSBAD, NM 88220	
111_11760_99	HUGHES, TREY & KALI (JT)	PO BOX 5097	CARLSBAD, NM 88221	
192_99_99	ONSUREZ, CONCEPCION C REVOCABLE TRUST	PO BOX 393	LOVING, NM 88256	
114_450	VALDEZ, CELIA ET AL	4204 THOMASON RD	CARLSBAD, NM 88220	

Section 9 South Carlsbad Compressor Station - Enterprise Field Services, LLC TRIBES, COUNTIES & MUNICIPALITIES WITHIN 10 MILE RADIUS

TRIBES				
	N/A			
	COUN	FIES		
EDDY COUNTY	COUNTY MANAGER	101 W GREENE STREET	CARLSBAD	NM
	MUNICIP	ALITIES		
LOVING	CITY MANAGER	415 W CEDAR STREET	LOVING	NM
CARLSBAD	CITY MANAGER	101 N HALAGUENO ST	CARLSBAD	NM
MALAGA	CITY MANAGER	415 W CEDAR STREET	LOVING	NM

88220
88256
88221
88256

General Posting of Notices – Certification

I, <u>Alena Miro</u>, the undersigned, certify that on 7/28/20, posted a true and correct copy of the attached Public Notice in the following publicly accessible and conspicuous places in the **City of Loving of Eddy County**, State of New Mexico on the following dates:

- 1. Facility Entrance
- 2. Allsups 105 N 8th St. Loving, NM 88256
- 3. Loving Municipal Court 415 W Cedar St. Loving, NM 88256
- 4. United States Post Office 402 W Beech St. Loving, NM 88256

Signed this <u>29</u> day of <u>July</u>, <u>2020</u>,

Signature

<u>7/29/20</u> Date

Alena Miro Printed Name

Senior Environmental Engineer Title

NOTICE OF AIR QUALITY PERMIT APPLICATION

Enterprise Products Operating, LLC announces its application submittal to the New Mexico Environment Department for an air quality permit for the **modification** of its **gas compression** facility. The expected date of application submittal to the Air Quality Bureau is **July 31, 2020.**

The exact location for the proposed facility known as, **South Carlsbad Compressor Station**, is at **32°18'55.54'' N, 104°08'11.55'' W**. From Loving, NM follow US-285 north 2.5 miles to Roberson Road West. Follow Roberson Road West 1.0 mile to the facility. The approximate location of this facility is **2.8** miles **northwest** of Loving, NM in Eddy County.

The proposed **modification** consists of adding one turbine and removing the dew point plant, glycol dehydrator and associated reboiler, and removing the entirety of the amine system: consisting of the amine unit, amine reboiler, and amine flare.

The estimated maximum quantities of any regulated air contaminant will be as follows in pound per hour (pph) and tons per year (tpy) and could change slightly during the course of the Department's review:

Pollutant:	Pounds per hour	Tons per year
PM 10	3 pph	8 tpy
PM 2.5	3 pph	8 tpy
Sulfur Dioxide (SO ₂)	3 pph	17 tpy
Nitrogen Oxides (NO _x)	125 pph	345 tpy
Carbon Monoxide (CO)	300 pph	90 tpy
Volatile Organic Compounds (VOC)	310 pph	160 tpy
Total sum of all Hazardous Air Pollutants (HAPs)	2 pph	10 tpy
Green House Gas Emissions as Total CO ₂ e	N/A	85,000 tpy

The standard operating schedule of the facility will be 24 hours a day, 7 days a week, and 52 weeks per year.

The owner and/or operator of the Facility is:

South Carlsbad Compressor Station – Enterprise Products Operating, LLC PO Box 4324 Houston, TX 77210-4324

If you have any comments about the construction or operation of this facility, and you want your comments to be made as part of the permit review process, you must submit your comments in writing to this address: Permit Programs Manager; New Mexico Environment Department; Air Quality Bureau; 525 Camino de los Marquez, Suite 1; Santa Fe, New Mexico; 87505-1816; (505) 476-4300; 1 800 224-7009; https://www.env.nm.gov/aqb/permit/aqb_draft_permits.html. Other comments and questions may be submitted verbally.

Please refer to the company name and site name, or send a copy of this notice along with your comments, since the Department may have not yet received the permit application. Please include a legible return mailing address with your comments. Once the Department has performed a preliminary review of the application and its air quality impacts, the Department's notice will be published in the legal section of a newspaper circulated near the facility location.

General information about air quality and the permitting process can be found at the Air Quality Bureau's web site. The regulation dealing with public participation in the permit review process is 20.2.72.206 NMAC. This regulation can be found in the "Permits" section of this web site.

Attención

Este es un aviso de la oficina de Calidad del Aire del Departamento del Medio Ambiente de Nuevo México, acerca de las emisiones producidas por un establecimiento en esta área. Si usted desea información en español, por favor comuníquese con esa oficina al teléfono 505-476-5557.

Notice of Non-Discrimination

NMED does not discriminate on the basis of race, color, national origin, disability, age or sex in the administration of its programs or activities, as required by applicable laws and regulations. NMED is responsible for coordination of compliance efforts and receipt of inquiries concerning non-discrimination requirements implemented by 40 C.F.R. Part 7, including Title VI of the Civil Rights Act of 1964, as amended; Section 504 of the Rehabilitation Act of 1973; the Age Discrimination Act of 1975, Title IX of the Education Amendments of 1972, and Section 13 of the Federal Water Pollution Control Act Amendments of 1972. If you have any questions about this notice or any of NMED's non-discrimination programs, policies or procedures, or if you believe that you have been discriminated against with respect to a NMED program or activity, you may contact: Kristine Yurdin, Non-Discrimination Coordinator, NMED, 1190 St. Francis Dr., Suite N4050, P.O. Box 5469, Santa Fe, NM 87502, (505) 827-2855, nd.coordinator@state.nm.us. You may also visit our website at https://www.env.nm.gov/non-employee-discrimination-complaint-page/ to learn how and where to file a complaint of discrimination.

Annuavit	of Publication
	No.
State of New Mexico	Publisher
County of Eddy: Danny Scott	in Ace
being duly sworn sayes t	at he is the Publisher
of the Artesia Daily Pres	, a daily newspaper of General
circulation, published in	English at Artesia, said county
and state, and that the he	eto attached
Displa	y Ad
was published in a regul	ar and entire issue of the said
Artesia Daily Press, a da	ly newspaper duly qualified
for that purpose within the	e meaning of Chapter 167 of
the 1937 Session Laws of	f the state of New Mexico for
1 Consecutive	weeks/day on the same
day as follows:	
First Publication	July 30, 2020
Second Publication	
Third Publication	
Fourth Publication	
Fifth Publication	
Sixth Publication	
Seventh Publication	
Subscribed and sworn be	fore me this
30th day of	July 2020
OFFICIAL SEAL Latisha Romine NOTARY PUBLICA My commission	TATE OF NEW MEXICO
Latisha Romine Notary Public, Eddy C	Demine ounty, New Mexico

Copy of Publication:

NOTICE OF AIR QUALITY PERMIT APPLICATION

Enterprise Products Operating, LLC announces its application submittal to the New Mexico Environment Department for an air quality permit for the modification of its gas compression facility. The expected date of application submittal to the Air Quality Bureau is July 31, 2020.

The exact location for the proposed facility known as, South Carlsbad Compressor Station, is at 32°18'55.54" N, 104°08'11.55" W. From Loving, NM follow US-285 north 2.5 miles to Roberson Road West. Follow Roberson Road West 1.0 mile to the facility. The approximate location of this facility is 2.8 miles northwest of Loving, NM in Eddy County.

The proposed modification consists of adding one turbine and removing the dew point plant, glycol dehydrator and associated reboiler, and removing the entirety of the amine system: consisting of the amine unit, amine reboiler, and amine flare.

The estimated maximum quantities of any regulated air contaminant will be as follows in pound per hour (pph) and tons per year (tpy) and could change slightly during the course of the Department's review:

Pollutant:	Pounds per hour	Tons per year
PM 10	3 pph	8 tpy
PM 2.5	3 pph	8 tpy
Sulfur Dioxide (SO2)	3 pph	17 tpy
Nitrogen Oxides (NO	x) 125 pph 125 pph	345 tpy
Carbon Monoxide (Co Volatile Organic	O) 300 pph	90 tpy
Volatile Organic	liff at to the arumit	passed a law mail
Compounds (VOC)	310 pph	160 tpy
Total sum of all Hazar	dous	
Air Pollutants (HAPs)	2 pph	· 10 tpy
Green House Gas Emi	issions	·P /
as Total CO2e	N/A	85,000 tpy

The standard operating schedule of the facility will be 24 hours a day, 7 days a week, and 52 weeks per year.

The owner and/or operator of the Facility is: South Carlsbad Compressor Station – Enterprise Products Operating, LLC PO Box 4324

Houston, TX 77210-4324

If you have any comments about the construction or operation of this facility, and you want your comments to be made as part of the permit review process, you must submit your comments in writing to this address: Permit Programs Manager; New Mexico Environment Department; Air Quality Bureau; 525 Camino de los Marquez, Suite 1; Santa Fe, New Mexico; 87505-1816; (505) 476-4300; 1 800 224-7009; https:// www.env.nm.gov/aqb/permit/aqb_draft_permits.html. Other comments and questions may be submitted verbally.

Please refer to the company name and site name, or send a copy of this notice along with your comments, since the Department may have not yet received the permit application. Please include a legible return mailing address with your comments. Once the Department has performed a preliminary review of the application and its air quality impacts, the Department's notice will be published in the legal section of a newspaper circulated near the facility location.

General information about air quality and the

Affidavi	t of Public	cation
	No.	25507
State of New Mexico	_	Publisher
County of Eddy:	/ /	
Danny Scott	any Ala	\supset
being duly sworn sayes	s that he is the	Publisher
of the Artesia Daily Pr	ess, a daily newspaper	· of General
circulation, published	in English at Artesia, s	aid county
and state, and that the	hereto attached	
Leg	gal Ad	
was published in a reg	ular and entire issue o	of the said
Artesia Daily Press, a d	daily newspaper duly o	qualified
for that purpose within	the meaning of Chapt	er 167 of
the 1937 Session Law	s of the state of New M	Aexico for
1 Consecutiv	we weeks/day on the sa	ime
day as follows:		
First Publication	July 30,	2020
Second Publication		
Third Publication		
Fourth Publication		
Fifth Publication		
Sixth Publication		
Seventh Publication		
Subscribed and sworn	before me this	
30th day of	July	2020
100-1012-0 10-1012-0	omine	2023
Ratione	2 Domin	l
Latisha Romine		
Notary Public, Eddy	County, New Mexic	0.0

Copy of Publication:

Legal Notice

NOTICE OF AIR QUALITY PERMIT APPLICATION

Enterprise Products Operating, LLC announces its application submittal to the New Mexico Environment Department for an air quality permit for the **modification** of its **gas compression** facility. The expected date of application submittal to the Air Quality Bureau is **July 31, 2020**.

The exact location for the proposed facility known as, South Carlsbad Compressor Station, is at 32°18'55.54" N, 104°08'11.55" W. From Loving, NM follow US-285 north 2.5 miles to Roberson Road West. Follow Roberson Road West 1.0 mile to the facility. The approximate location of this facility is 2.8 miles northwest of Loving, NM in Eddy County.

The proposed modification consists of adding one turbine and removing the dew point plant, glycol dehydrator and associated reboiler, and removing the entirety of the amine system: consisting of the amine unit, amine reboiler, and amine flare.

The estimated maximum quantities of any regulated air contaminant will be as follows in pound per hour (pph) and tons per year (tpy) and could change slightly during the course of the Department's review:

Pollutant:	Pounds per hour	Tons per year
PM 10	3 pph	8 tpy
PM 2.5	3 pph	8 tpy
Sulfur Dioxide (SO2)	3 pph	17 tpy
Nitrogen Oxides (NOx		345 tpy
Carbon Monoxide (CC) 300 pph	90 tpy
Volatile Organic		
Compounds (VOC)	310 pph	160 tpy
Total sum of all Hazard		the field and a straight
Air Pollutants (HAPs)	2 pphillinio	10 tpy
Green House Gas Emis		
as Total CO2e	N/A	85,000 tpy

The standard operating schedule of the facility will be 24 hours a day, 7 days a week, and 52 weeks per year.

The owner and/or operator of the Facility is: South Carlsbad Compressor Station – Enterprise Products Operating, LLC PO Box 4324 Houston, TX 77210-4324

If you have any comments about the construction or operation of this facility, and you want your comments to be made as part of the permit review process, you must submit your comments in writing to this address: Permit Programs Manager; New Mexico Environment Department; Air Quality Bureau; 525 Camino de los Marquez, Suite 1; Santa Fe, New Mexico; 87505-1816; (505) 476-4300; 1 800 224-7009; https:// www.env.nm.gov/aqb/permit/aqb_draft_permits.html. Other comments and questions may be submitted verbally.

Please refer to the company name and site name, or send a copy of this notice along with your comments, since the Department may have not yet received the permit application. Please include a legible return mailing address with your comments. Once the Department has performed a preliminary review of the application and its air quality impacts, the Department's notice will be published in the legal section of a newspaper circulated near the facility location.

RETURN RECEIPT REQUESTED (certified mail is required, return receipt is optional)

Dear Property Owner:

Enterprise Products Operating, LLC announces its application submittal to the New Mexico Environment Department for an air quality permit for the modification of its gas compression facility. The expected date of application submittal to the Air Quality Bureau is July 31, 2020.

The exact location for the proposed facility known as, **South Carlsbad Compressor Station**, is at **32°18'55.54'' N, 104°08'11.55'' W**. From Loving, NM follow US-285 north 2.5 miles to Roberson Road West. Follow Roberson Road West 1.0 mile to the facility. The approximate location of this facility is **2.8** miles **northwest** of Loving, NM in Eddy County.

The proposed **modification** consists of adding one turbine and removing the dew point plant, glycol dehydrator and associated reboiler, and removing the entirety of the amine system: consisting of the amine unit, amine reboiler, and amine flare.

The estimated maximum quantities of any regulated air contaminant will be as follows in pound per hour (pph) and tons per year (tpy) and could change slightly during the course of the Department's review:

Pollutant:	Pounds per hour	Tons per year
PM 10	3 pph	8 tpy
PM _{2.5}	3 pph	8 tpy
Sulfur Dioxide (SO ₂)	3 pph	17 tpy
Nitrogen Oxides (NO _x)	125 pph	345 tpy
Carbon Monoxide (CO)	300 pph	90 tpy
Volatile Organic Compounds (VOC)	310 pph	160 tpy
Total sum of all Hazardous Air Pollutants (HAPs)	2 pph	10 tpy
Green House Gas Emissions as Total CO2e	N/A	85,000 tpy

The standard operating schedule of the facility will be 24 hours a day, 7 days a week, and 52 weeks per year.

The owner and/or operator of the Facility is:

South Carlsbad Compressor Station – Enterprise Products Operating, LLC PO Box 4324 Houston, TX 77210-4324

If you have any comments about the construction or operation of this facility, and you want your comments to be made as part of the permit review process, you must submit your comments in writing to this address: Permit Programs Manager; New Mexico Environment Department; Air Quality Bureau; 525 Camino de los Marquez, Suite 1; Santa Fe, New Mexico; 87505-1816; (505) 476-4300; 1 800 224-7009; https://www.env.nm.gov/aqb/permit/aqb_draft_permits.html. Other comments and questions may be submitted verbally.

Please refer to the company name and facility name, or send a copy of this notice along with your comments, since the Department may have not yet received the permit application. Please include a legible return mailing address with your comments. Once the Department has performed a preliminary review of the application and its air quality impacts, the Department's notice will be published in the legal section of a newspaper circulated near the facility location.

Attención

Este es un aviso de la oficina de Calidad del Aire del Departamento del Medio Ambiente de Nuevo México, acerca de las emisiones producidas por un establecimiento en esta área. Si usted desea información en español, por favor comuníquese con esa oficina al teléfono 505-476-5557.

Sincerely, South Carlsbad Compressor Station – Enterprise Products Operating, LLC PO Box 4324 Houston, TX 77210-4324

Notice of Non-Discrimination

NMED does not discriminate on the basis of race, color, national origin, disability, age or sex in the administration of its programs or activities, as required by applicable laws and regulations. NMED is responsible for coordination of compliance efforts and receipt of inquiries concerning non-discrimination requirements implemented by 40 C.F.R. Part 7, including Title VI of the Civil Rights Act of 1964, as amended; Section 504 of the Rehabilitation Act of 1973; the Age Discrimination Act of 1975, Title IX of the Education Amendments of 1972, and Section 13 of the Federal Water Pollution Control Act Amendments of 1972. If you have any questions about this notice or any of NMED's non-discrimination programs, policies or procedures, or if you believe that you have been discriminated against with respect to a NMED program or activity, you may contact: Kristine Yurdin, Non-Discrimination Coordinator, NMED, 1190 St. Francis Dr., Suite N4050, P.O. Box 5469, Santa Fe, NM 87502, (505) 827-2855, nd.coordinator@state.nm.us. You may also visit our website at https://www.env.nm.gov/non-employee-discrimination-complaint-page/ to learn how and where to file a complaint of discrimination.

<u>CERTIFIED MAIL</u> <u>RETURN RECEIPT REQUESTED (certified mail is required, return receipt is optional)</u>

Dear Whom it May Concern:

Enterprise Products Operating, LLC announces its application submittal to the New Mexico Environment Department for an air quality permit for the modification of its gas compression facility. The expected date of application submittal to the Air Quality Bureau is July 31, 2020.

The exact location for the proposed facility known as, **South Carlsbad Compressor Station**, is at **32°18'55.54'' N, 104°08'11.55'' W**. From Loving, NM follow US-285 north 2.5 miles to Roberson Road West. Follow Roberson Road West 1.0 mile to the facility. The approximate location of this facility is **2.8** miles **northwest** of Loving, NM in Eddy County.

The proposed **modification** consists of adding one turbine and removing the dew point plant, glycol dehydrator and associated reboiler, and removing the entirety of the amine system: consisting of the amine unit, amine reboiler, and amine flare.

The estimated maximum quantities of any regulated air contaminant will be as follows in pound per hour (pph) and tons per year (tpy) and could change slightly during the course of the Department's review:

Pollutant:	Pounds per hour	Tons per year
PM 10	3 pph	8 tpy
PM 2.5	3 pph	8 tpy
Sulfur Dioxide (SO ₂)	3 pph	17 tpy
Nitrogen Oxides (NO _x)	125 pph	345 tpy
Carbon Monoxide (CO)	300 pph	90 tpy
Volatile Organic Compounds (VOC)	310 pph	160 tpy
Total sum of all Hazardous Air Pollutants (HAPs)	2 pph	10 tpy
Green House Gas Emissions as Total CO2e	N/A	85,000 tpy

The standard operating schedule of the facility will be 24 hours a day, 7 days a week, and 52 weeks per year.

The owner and/or operator of the Facility is:

South Carlsbad Compressor Station – Enterprise Products Operating, LLC PO Box 4324 Houston, TX 77210-4324

If you have any comments about the construction or operation of this facility, and you want your comments to be made as part of the permit review process, you must submit your comments in writing to this address: Permit Programs Manager; New Mexico Environment Department; Air Quality Bureau; 525 Camino de los Marquez, Suite 1; Santa Fe, New Mexico; 87505-1816; (505) 476-4300; 1 800 224-7009; https://www.env.nm.gov/aqb/permit/aqb_draft_permits.html. Other comments and questions may be submitted verbally.

Please refer to the company name and facility name, or send a copy of this notice along with your comments, since the Department may have not yet received the permit application. Please include a legible return mailing address with your comments. Once the Department has performed a preliminary review of the application and its air quality impacts, the Department's notice will be published in the legal section of a newspaper circulated near the facility location.

Attención

Este es un aviso de la oficina de Calidad del Aire del Departamento del Medio Ambiente de Nuevo México, acerca de las emisiones producidas por un establecimiento en esta área. Si usted desea información en español, por favor comuníquese con esa oficina al teléfono 505-476-5557.

Sincerely, South Carlsbad Compressor Station – Enterprise Products Operating, LLC PO Box 4324 Houston, TX 77210-4324

Notice of Non-Discrimination

NMED does not discriminate on the basis of race, color, national origin, disability, age or sex in the administration of its programs or activities, as required by applicable laws and regulations. NMED is responsible for coordination of compliance efforts and receipt of inquiries concerning non-discrimination requirements implemented by 40 C.F.R. Part 7, including Title VI of the Civil Rights Act of 1964, as amended; Section 504 of the Rehabilitation Act of 1973; the Age Discrimination Act of 1975, Title IX of the Education Amendments of 1972, and Section 13 of the Federal Water Pollution Control Act Amendments of 1972. If you have any questions about this notice or any of NMED's non-discrimination programs, policies or procedures, or if you believe that you have been discriminated against with respect to a NMED program or activity, you may contact: Kristine Yurdin, Non-Discrimination Coordinator, NMED, 1190 St. Francis Dr., Suite N4050, P.O. Box 5469, Santa Fe, NM 87502, (505) 827-2855, nd.coordinator@state.nm.us. You may also visit our website at https://www.env.nm.gov/non-employee-discrimination-complaint-page/ to learn how and where to file a complaint of discrimination.

From: Naudiea Davis
Sent: Thursday, July 30, 2020 12:57 PM
To: don@carlsbadradio.com
Subject: South Carlsbad Compressor Station Public Service Announcement

Dear Radio 92.1 KATK-FM,

Per New Mexico Administrative Code 20.2.72.203.B NMAC and according to the Guidance for Public Notice for Air Quality Permit Applications - (5) Notifications: Submittal of Public Service Announcement (PSA): A public service announcement required for permits or significant permit revisions must be submitted to at least one radio or television station, which services the municipality, or county which the facility is or will be located. Therefore, based on the above, we respectfully ask you to air the information shown below as a Public Service Announcement.

The public service announcement request must contain the following information about the facility or proposed facility (20.2.72.203.D NMAC).

- a) The name: <u>South Carlsbad Compressor Station– Enterprise Field Services, LLC</u>, location: <u>32° 18'</u> <u>55.54" N and 104° 08' 11.55" W</u> and type of business: <u>Compressor Station.</u>
- b) The name and principal owner or operator: Enterprise Field Services, LLC owner and operator.
- c) The type of process or change for which the permit is sought: **NSR Significant Revision modification and removal of existing equipment**.
- d) Locations where the notices have been posted in Portales, NM 88130: (1) South Carlsbad Compressor Station-Facility Entrance (2) Allsups 105 N 8th St. (3) Loving Municipal Court - 415 W Cedar St. (4) United States Post Office – 402 W Beech St.
- e) The Department's address or telephone number to which comments may be directed: <u>Permit Programs</u> <u>Manager; New Mexico Environment Department; Air Quality Bureau; 525 Camino de los Marquez,</u> <u>Suite 1, Santa Fe, New Mexico; 87505-1816; (505) 476-4300; 1 (800) 224-7009.</u>

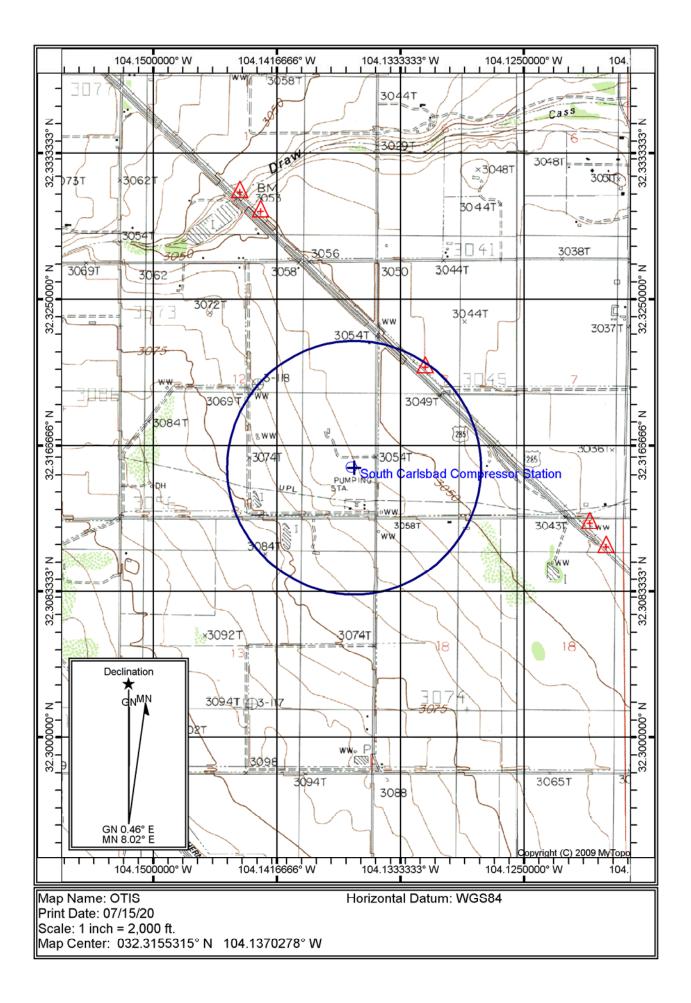
Best Regards, Naudiea

Naudiea Davis Environmental Intern

P 505.266.6611 9400 Holly Avenue NE, Building 3, Suite 300, Albuquerque, NM 87122 Email: <u>ndavis@trinityconsultants.com</u>

Submittal of Public Service Announcement – Certification

_____, the undersigned, certify that on July 30, 2020, I, submitted a public service announcement to RADIO KATK that serves the city of LOVING, EDDY County, New Mexico, in which the source is or is proposed to be located and that **RADIO KATK DID NOT RESPOND.**


Signed this 30 day of ______ 2020 Jauclei Jus

Davis

7/30/2020

Naudiea "

Trinity Consultants Title {APPLICANT OR RELATIONSHIP TO APPLICANT}

Section 10

Written Description of the Routine Operations of the Facility

<u>A written description of the routine operations of the facility</u>. Include a description of how each piece of equipment will be operated, how controls will be used, and the fate of both the products and waste generated. For modifications and/or revisions, explain how the changes will affect the existing process. In a separate paragraph describe the major process bottlenecks that limit production. The purpose of this description is to provide sufficient information about plant operations for the permit writer to determine appropriate emission sources.

The facility is a natural gas compressor station or transport of natural gas. Gas enters the facility through a separator and is compressed by three gas turbine-driven compressors (Units 1, 2, & 5). The gas is then routed through a dehydrator, Unit 3, where water is removed. The water from the dehydrator regenerator, which contains some hydrocarbons, is routed through a condenser to recover salable hydrocarbons, which are routed to T-006. The non-condensable gas from the condenser are routed to a packaged burner system for use as burner fuel in the dehydrator reboiler (commonly called a "BTEX Buster"). During periods when the reboiler is not operating, the non-condensable gas stream is routed to the stack of the reboiler where it is ignited by a glow plug and burned. The gas stream from the flash tank is send to the fuels system and is not a source of emissions. After inlet compression, gas is sent directly to a chiller and cold separator, where liquids (primarily water) condense and are removed from the stream. The dry gas stream then goes to a pipeline for transport.

Liquids from the inlet separator are routed to a 3-phase separator, where water, hydrocarbon liquids, and gas are separated. The gas stream from the 3-phase separator is used as turbine fuel (along with makeup fuel if needed from the discharge residue gas stream and/or the gas stream from the condensate stabilizer). The water goes to tanks for storage. The hydrocarbon liquids from the 3-phase separator and from the cold separator go to the condensate stabilizer where the water and hydrocarbons are further separated. Liquid hydrocarbons and water are stored in separate tanks, and hydrocarbon gases are added to the turbine fuel stream.

In the event of an emergency, the gas streams from the 3-phase separator and from the condensate stabilizer may be routed to the flare. During non-routine conditions such as when gas must be released from portions of the facility for maintenance or in the event of an emergency, some VOCs will be directed to the flare. Gas from the 3-phase separator and stabilizer overheads will be directed to the flare in the event of a plant shutdown. Additionally, during an emergency shutdown, pressure vessels or the gas contents of the refrigeration system may be released to the flare; however, the quantity of gas in these vessels or systems is less than the assumed maximum gas volume from the 3-phase separator and stabilizer overheads.

Section 11 Source Determination

Source submitting under 20.2.70, 20.2.72, 20.2.73, and 20.2.74 NMAC

Sources applying for a construction permit, PSD permit, or operating permit shall evaluate surrounding and/or associated sources (including those sources directly connected to this source for business reasons) and complete this section. Responses to the following questions shall be consistent with the Air Quality Bureau's permitting guidance, <u>Single Source Determination Guidance</u>, which may be found on the Applications Page in the Permitting Section of the Air Quality Bureau website.

Typically, buildings, structures, installations, or facilities that have the same SIC code, that are under common ownership or control, and that are contiguous or adjacent constitute a single stationary source for 20.2.70, 20.2.72, 20.2.73, and 20.2.74 NMAC applicability purposes. Submission of your analysis of these factors in support of the responses below is optional, unless requested by NMED.

A. Identify the emission sources evaluated in this section (list and describe):

All sources listed in Table 2-A of this application.

B. Apply the 3 criteria for determining a single source:

<u>SIC</u> <u>Code</u>: Surrounding or associated sources belong to the same 2-digit industrial grouping (2-digit SIC code) as this facility, <u>OR</u> surrounding or associated sources that belong to different 2-digit SIC codes are support facilities for this source.

☑ Yes □ No

<u>Common</u> <u>Ownership</u> or <u>Control</u>: Surrounding or associated sources are under common ownership or control as this source.

🗹 Yes 🗆 🗆 No

<u>Contiguous or Adjacent</u>: Surrounding or associated sources are contiguous or adjacent with this source.

 \blacksquare Yes \Box No

C. Make a determination:

- ☑ The source, as described in this application, constitutes the entire source for 20.2.70, 20.2.72, 20.2.73, or 20.2.74 NMAC applicability purposes. If in "A" above you evaluated only the source that is the subject of this application, all "YES" boxes should be checked. If in "A" above you evaluated other sources as well, you must check AT LEAST ONE of the boxes "NO" to conclude that the source, as described in the application, is the entire source for 20.2.70, 20.2.72, 20.2.73, and 20.2.74 NMAC applicability purposes.
- □ The source, as described in this application, <u>does not</u> constitute the entire source for 20.2.70, 20.2.72, 20.2.73, or 20.2.74 NMAC applicability purposes (A permit may be issued for a portion of a source). The entire source consists of the following facilities or emissions sources (list and describe):

Section 12

Section 12.A PSD Applicability Determination for All Sources

(Submitting under 20.2.72, 20.2.74 NMAC)

A PSD applicability determination for all sources. For sources applying for a significant permit revision, apply the applicable requirements of 20.2.74.AG and 20.2.74.200 NMAC and to determine whether this facility is a major or minor PSD source, and whether this modification is a major or a minor PSD modification. It may be helpful to refer to the procedures for Determining the Net Emissions Change at a Source as specified by Table A-5 (Page A.45) of the <u>EPA New Source Review</u> <u>Workshop Manual</u> to determine if the revision is subject to PSD review.

- A. This facility is:
 - **a** minor PSD source before and after this modification (if so, delete C and D below).
 - □ a major PSD source before this modification. This modification will make this a PSD minor source.
 - □ an existing PSD Major Source that has never had a major modification requiring a BACT analysis.
 - □ an existing PSD Major Source that has had a major modification requiring a BACT analysis
 - □ a new PSD Major Source after this modification.
- B. This facility is one of the listed 20.2.74.501 Table I PSD Source Categories. This facility is a minor source. With this permit application emissions for this facility will be less than 250 TPY for all regulated pollutants making this a PSD minor source.

Determination of State & Federal Air Quality Regulations

This section lists each state and federal air quality regulation that may apply to your facility and/or equipment that are stationary sources of regulated air pollutants.

Not all state and federal air quality regulations are included in this list. Go to the Code of Federal Regulations (CFR) or to the Air Quality Bureau's regulation page to see the full set of air quality regulations.

Required Information for Specific Equipment:

For regulations that apply to specific source types, in the 'Justification' column **provide any information needed to determine if the regulation does or does not apply**. **For example**, to determine if emissions standards at 40 CFR 60, Subpart IIII apply to your three identical stationary engines, we need to know the construction date as defined in that regulation; the manufacturer date; the date of reconstruction or modification, if any; if they are or are not fire pump engines; if they are or are not emergency engines as defined in that regulation; their site ratings; and the cylinder displacement.

Required Information for Regulations that Apply to the Entire Facility:

See instructions in the 'Justification' column for the information that is needed to determine if an 'Entire Facility' type of regulation applies (e.g. 20.2.70 or 20.2.73 NMAC).

Regulatory Citations for Regulations That Do Not, but Could Apply:

If there is a state or federal air quality regulation that does not apply, but you have a piece of equipment in a source category for which a regulation has been promulgated, you must **provide the low level regulatory citation showing why your piece of equipment is not subject to or exempt from the regulation. For example** if you have a stationary internal combustion engine that is not subject to 40 CFR 63, Subpart ZZZZ because it is an existing 2 stroke lean burn stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions, your citation would be 40 CFR 63.6590(b)(3)(i). We don't want a discussion of every non-applicable regulation, but if it is possible a regulation could apply, explain why it does not. For example, if your facility is a power plant, you do not need to include a citation to show that 40 CFR 60, Subpart OOO does not apply to your non-existent rock crusher.

Regulatory Citations for Emission Standards:

For each unit that is subject to an emission standard in a source specific regulation, such as 40 CFR 60, Subpart OOO or 40 CFR 63, Subpart HH, include the low level regulatory citation of that emission standard. Emission standards can be numerical emission limits, work practice standards, or other requirements such as maintenance. Here are examples: a glycol dehydrator is subject to the general standards at 63.764C(1)(i) through (iii); an engine is subject to 63.6601, Tables 2a and 2b; a crusher is subject to 60.672(b), Table 3 and all transfer points are subject to 60.672(e)(1)

Federally Enforceable Conditions:

All federal regulations are federally enforceable. All Air Quality Bureau State regulations are federally enforceable except for the following: affirmative defense portions at 20.2.7.6.B, 20.2.7.110(B)(15), 20.2.7.11 through 20.2.7.113, 20.2.7.115, and 20.2.7.116; 20.2.37; 20.2.42; 20.2.43; 20.2.62; 20.2.63; 20.2.86; 20.2.89; and 20.2.90 NMAC. Federally enforceable means that EPA can enforce the regulation as well as the Air Quality Bureau and federally enforceable regulations can count toward determining a facility's potential to emit (PTE) for the Title V, PSD, and nonattainment permit regulations.

INCLUDE ANY OTHER INFORMATION NEEDED TO COMPLETE AN APPLICABILITY DETERMINATION OR THAT IS RELEVENT TO YOUR FACILITY'S NOTICE OF INTENT OR PERMIT.

EPA Applicability Determination Index for 40 CFR 60, 61, 63, etc: http://cfpub.epa.gov/adi/

Table for STATE REGULATIONS:

<u>STATE</u> <u>REGU-</u> LATIONS	Title	Applies? Enter Yes or	Unit(s) or Facility	JUSTIFICATION:
CITATION		No		(You may delete instructions or statements that do not apply in the justification column to shorten the document.)
20.2.1 NMAC	General Provisions	Yes	Facility	General Provisions apply to Notice of Intent, Construction, and Title V permit applications.
20.2.3 NMAC	Ambient Air Quality Standards NMAAQS	Yes	Facility	20.2.3 NMAC is a SIP approved regulation that limits the maximum allowable concentration of Total Suspended Particulates, Sulfur Compounds, Carbon Monoxide and Nitrogen Dioxide. The facility meets maximum allowable concentrations of TSP, SO ₂ , H ₂ S, NO _x , and CO under this regulation.
20.2.7 NMAC	Excess Emissions	Yes	Facility	This regulation establishes requirements for the facility if operations at the facility result in any excess emissions. The owner or operator will operate the source at the facility having an excess emission, to the extent practicable, including associated air pollution control equipment, in a manner consistent with good air pollution control practices for minimizing emissions. The facility will also notify the NMED of any excess emission per 20.2.7.110 NMAC.
20.2.23 NMAC	Fugitive Dust Control	No	N/A	This regulation does not apply as the facility has no need to fugitive dust control measures as the facility does not generate enough particulate matter.
20.2.33 NMAC	Gas Burning Equipment - Nitrogen Dioxide	No	N/A	This facility does not have gas burning equipment (external combustion emission sources, such as gas fired boilers and heaters) having a heat input of greater than 1,000,000 million British Thermal Units per year per unit. The facility is not subject to this regulation and does not have emission sources that meet the applicability requirements under 20.2.33.108 NMAC.
20.2.34 NMAC	Oil Burning Equipment: NO2	No	N/A	This facility does not have oil burning equipment (external combustion emission sources, such as oil fired boilers and heaters) having a heat input of greater than 1,000,000 million British Thermal Units per year per unit. The facility is not subject to this regulation and does not have emission sources that meet the applicability requirements under 20.2.34.108 NMAC.
20.2.35 NMAC	Natural Gas Processing Plant – Sulfur	Yes	Facility	This regulation establishes sulfur emission standards for natural gas processing plants. This facility is a new natural gas processing plant as defined in 20.2.35.7.B NMAC. The facility does not meet the minimum sulfur emission requirement of an average of 5 tpy [20.2.35.110.A NMAC]. This facility is subject to the stack height, recordkeeping, and reporting requirements of this regulation [20.2.35.111-112 NMAC].
20.2.37 and 20.2.36 NMAC	Petroleum Processing Facilities and Petroleum Refineries	N/A	N/A	These regulations were repealed by the Environmental Improvement Board. If you had equipment subject to 20.2.37 NMAC before the repeal, your combustion emission sources are now subject to 20.2.61 NMAC.
20.2.38 NMAC	Hydrocarbon Storage Facility	No	N/A	This facility is not a petroleum production facility as defined in 20.2.38.7.D NMAC. Natural gas enters this facility via pipeline and inlet separator. Condensate stored at this facility comes from the pipeline, not a well. Accordingly, the tanks at this facility do not meet the definition of a tank battery as defined in 20.2.38.7.E.
20.2.39 NMAC	Sulfur Recovery Plant - Sulfur	No	N/A	This regulation establishes sulfur emission standards for sulfur recovery plants that are not part of petroleum or natural gas processing facilities. This regulation does not apply to the facility because this facility does not have a sulfur recovery plant.
20.2.61.109 NMAC	Smoke & Visible Emissions	Yes	1, 2, 3b, 5, Flare	This regulation establishes controls on smoke and visible emissions from certain sources, including stationary combustion equipment. This regulation is applicable to the following stationary combustion units: 1, 2, 3b, 5, and Flare.
20.2.70 NMAC	Operating Permits	Yes	Facility	This regulation establishes requirements for obtaining an operating permit. This facility is a major source with respect to Title V and is permitted under P-130-R3M1. The facility will comply with all operating permit conditions as applicable."
20.2.71 NMAC	Operating Permit Fees	Yes	Facility	This regulation establishes a schedule of operating permit emission fees. The facility is subject to 20.2.70 NMAC and is therefore subject to requirements of this regulation.
20.2.72 NMAC	Construction Permits	Yes	Facility	This regulation establishes the requirements for obtaining a construction permit. This facility is subject to the requirements of this subpart and complies with NSR Permit 0220-M10R1.

STATE REGU- LATIONS CITATION	Title	Applies? Enter Yes or No	Unit(s) or Facility	JUSTIFICATION: (You may delete instructions or statements that do not apply in the justification column to shorten the document.)
20.2.73 NMAC	NOI & Emissions Inventory Requirements	Yes	Facility	This regulation establishes emission inventory requirements. The facility meets the applicability requirements of 20.2.73.300 NMAC. The facility will meet all applicable reporting requirements under 20.2.73.300.B.1 NMAC.
20.2.74 NMAC	Permits – Prevention of Significant Deterioration (PSD)	No	Facility	This regulation establishes requirements for obtaining a prevention of significant deterioration permit. This facility is not a major source with respect to PSD and is therefore not subject to 20.2.74 NMAC.
20.2.75 NMAC	Construction Permit Fees	Yes	Facility	This regulation establishes a schedule of operating permit emission fees. This facility is subject to 20.2.72 NMAC and in turn subject to 20.2.75 NMAC. The facility is exempt from annual fees under this part (20.2.75.11.E NMAC) as it is subject to fees pursuant to 20.2.71 NMAC.
20.2.77 NMAC	New Source Performance	Yes	F-001, 2, & 5	This regulation establishes state authority to implement new source performance standards (NSPS) for stationary sources, as amended through January 15, 2017. F-001 applies as it is subject to NSPS OOOOa and units 2 and 5 are subject to NSPS GG.
20.2.78 NMAC	Emission Standards for HAPS	No	N/A	regulation establishes state authority to implement emission standards for hazardous air pollutants subject to 40 CFR Part 61. This facility does not emit hazardous air pollutants which are subject to the requirements of 40 CFR Part 61 and is therefore not subject to this regulation.
20.2.79 NMAC	Permits – Nonattainment Areas	No	Facility	This regulation establishes the requirements for obtaining a nonattainment area permit. The facility is not located in a non-attainment area and therefore is not subject to this regulation.
20.2.80 NMAC	Stack Heights	No	N/A	This regulation establishes requirements for the evaluation of stack heights and other dispersion techniques. This regulation does not apply, as all stacks at the facility will follow good engineering practice.
20.2.82 NMAC	MACT Standards for source categories of HAPS	Yes	3a	This glycol dehydrator at this facility is Subject to the requirements of 40 CFR 63 Subpart HH. Therefore this regulation applies.

Table for FEDERAL REGULATIONS:

FEDERAL REGU- LATIONS CITATION	Title	Applies? Enter Yes or No	Unit(s) or Facility	JUSTIFICATION:	
40 CFR 50	NAAQS	Yes	Facility	This regulation defines national ambient air quality standards. The facility meets all applicable national ambient air quality standards for NOx, CO, SO2, H2S, PM10, and PM2.5 under this regulation.	
NSPS 40 CFR 60, Subpart A	General Provisions	Yes	2, 5, F-001	 This regulation defines general provisions for relevant standards that have been set under this part. The facility is subject to this regulation because the following subparts apply: Units 1, 2 & 5 are subject to NSPS GG. Unit F-001 is subject to the leak detection requirements of NSPS OOOOa. 	
NSPS 40 CFR60.40a, Subpart Da	Subpart Da, Performance Standards for Electric Utility Steam Generating Units	No	N/A	This regulation establishes standards of performance for fossil-fuel-fired stream generators. This regulation does not apply as the facility does not have any fossil-fuel-fired steam generating units with a heat input rate of 250 MMBtu/hr [60.40(a)(1)].	
NSPS 40 CFR60.40b Subpart Db	Electric Utility Steam Generating Units	No	N/A	This regulation establishes standards of performance for electric utility steam generating units. This regulation does not apply because the facility does not operate any electric utility steam generating units.	
40 CFR 60.40c, Subpart Dc	Standards of Performance for Small Industrial- Commercial- Institutional Steam Generating Units	No	N/A	This regulation does not apply as the facility does not have any steam generating units.	
NSPS 40 CFR 60, Subpart Ka	Standards of Performance for Storage Vessels for Petroleum Liquids for which Construction, Reconstruction, or Modification Commenced After May 18, 1978, and Prior to July 23, 1984	No	N/A	This regulation establishes performance standards for storage vessels for petroleum liquids for which construction, reconstruction, or modification commenced after May 18, 1978, and prior to July 23, 1984. The tanks at the facility, which are regulated emission sources, are 300 bbl (12,600 gallons) and 210 bbl (8,820 gallons). The capacities of the tanks at the facility are less than 40,000 gallons and are not subject to this regulation. [40 CFR Part 60.110a(a)]	

FEDERAL REGU- LATIONS CITATION	Title	Applies? Enter Yes or No	Unit(s) or Facility	JUSTIFICATION:
NSPS 40 CFR 60, Subpart Kb	Standards of Performance for Volatile Organic Liquid Storage Vessels (Including Petroleum Liquid Storage Vessels) for Which Construction, Reconstruction, or Modification Commenced After July 23, 1984	No	N/A	This regulation establishes performance standards for volatile organic liquid storage vessels (including petroleum liquid storage vessels) for which construction, reconstruction, or modification commenced after July 23, 1984. This facility does not have any storage vessels with a capacity greater than or equal to 75 cubic meters that were constructed, reconstructed or modified after July 23, 1984. This regulation is not applicable."
NSPS 40 CFR 60.330 Subpart GG	Stationary Gas Turbines	Yes	2 & 5	This regulation establishes standards of performance for stationary gas turbines with a heat input of 10 MMBtu/hr or greater. Units 1, 2 & 5 each have heat inputs of 35.3 MMBtu/hour and commenced construction after October 3, 1977. Accordingly, these units are subject to this regulation. [60.330(b)]
NSPS 40 CFR 60, Subpart KKK	Leaks of VOC from Onshore Gas Plants	No	N/A	This regulation defines standards of performance for equipment leaks of VOC emissions from onshore natural gas processing plants for which construction, reconstruction, or modification commenced after January 20, 1984, and on or before August 23, 2011. The facility is not subject to this regulation because the operations performed at this site are no longer consistent to those carried out at an onshore natural gas processing plant. The removal of the dew point plant ensured that the facility is no longer subject to this regulation.
NSPS 40 CFR Part 60 Subpart LLL	Standards of Performance for Onshore Natural Gas Processing : SO ₂ Emissions	No	N/A	This regulation establishes standards of performance for SO ₂ emissions from onshore natural gas processing for which construction, reconstruction, or modification of the amine sweetening unit commenced after January 20, 1984 and on or before August 23, 2011. This regulation is not applicable as the amine sweetening unit (Unit 4a) commenced construction after August 23, 2011.
NSPS 40 CFR Part 60 Subpart 0000	Standards of Performance for Crude Oil and Natural Gas Production, Transmission, and Distribution for which construction, modification or reconstruction commenced after August 23, 2011 and before September 18, 2015	No	N/A	This regulation establishes standards of performance for crude oil and natural gas production, transmission, and distribution. Because the dew point plant is being removed this change the facility to be a compressor station; therefore, this regulation does not apply. Facility fugitive emissions are not subject to the leak detection requirements of this regulation. Compressors associated with units 1, 2, 5, and unit EC-1 were manufactured prior to August 23, 2011. Relocation does not constitute a modification; therefore, compressors associated with units 1,2,5 and unit EC-1 are not subject to this regulation. Unit T- 006 is an existing exempt tank. This unit was constructed prior to 8/23/2011 and is not subject to this regulation T-008 through T-012 are also constructed prior to 8/23/2011 and are not subject to this regulation.
NSPS 40 CFR Part 60 Subpart 0000a	Standards of Performance for Crude Oil and Natural Gas Facilities for which Construction, Modification or Reconstruction Commenced After September 18, 2015	F-001	Yes	This regulation establishes standards of performance for crude oil and natural gas production, transmission and distribution. As this facility is a compressor station, fugitive emissions (F-001) are subject to the leak detection requirements of this regulation. Compressors associated with units 1,2,5 and unit EC-1 were manufactured prior to August 23, 2011 and prior to September 18, 2015. Relocation does not constitute a modification; therefore, compressors associated with units 1,2,5 and unit EC-1 are not subject to this regulation. Unit T- 006 is an existing exempt tank. This unit was constructed prior to 8/23/2011 and is not subject to this regulation. Facility wide LDAR monitoring will be conducted by using optical gas imaging for the compressor station. T-008 through T-012 are also constructed prior to 8/23/2011 prior to 9/18/2015 and are not subject to this regulation.

FEDERAL REGU- LATIONS CITATION	Title	Applies? Enter Yes or No	Unit(s) or Facility	JUSTIFICATION:
NSPS 40 CFR 60 Subpart IIII	Standards of performance for Stationary Compression Ignition Internal Combustion Engines	No	N/A	This regulation establishes standards of performance for stationary compression ignition internal combustion engines. This rule applies to IC engines (diesel engines) that commenced construction after July 11, 2005. This regulation does not apply, as there are no stationary compression ignition internal combustion engines at this facility.
NSPS 40 CFR Part 60 Subpart JJJJ	Standards of Performance for Stationary Spark Ignition Internal Combustion Engines	No	N/A	This regulation establishes standards of performance for stationary spark ignition combustion engines. However, the unit is a portable non-road engine that will be at the facility for less than 12 months. In accordance with 40 CFR 60.4230(f), this unit is not subject to the requirements of this subpart.
NSPS 40 CFR 60 Subpart TTTT	Standards of Performance for Greenhouse Gas Emissions for Electric Generating Units	No	N/A	This facility does not generate electricity; therefore, this regulation does not apply.
NSPS 40 CFR 60 Subpart UUUU	Emissions Guidelines for Greenhouse Gas Emissions and Compliance Times for Electric Utility Generating Units	No	N/A	This facility does not generate electricity; therefore, this regulation does not apply.
NSPS 40 CFR 60, Subparts WWW, XXX, Cc, and Cf	Standards of performance for Municipal Solid Waste (MSW) Landfills	No	N/A	This facility is not a landfill; therefore, this regulation does not apply.
NESHAP 40 CFR 61 Subpart A	General Provisions	No	N/A	NSPS 40 CFR 61 does not apply to the facility because the facility does not emit or have the triggering substances on site and/or the facility is not involved in the triggering activity. The facility is not subject to this regulation. None of the subparts of Part 61 apply to the facility.
NESHAP 40 CFR 61 Subpart E	National Emission Standards for Mercury	No	N/A	The provisions of this subpart are applicable to those stationary sources which process mercury ore to recover mercury, use mercury chlor-alkali cells to produce chlorine gas and alkali metal hydroxide, and incinerate or dry wastewater treatment plant sludge. This facility does not process mercury ore, use mercury chlor-alkali cells, or incinerate or dry wastewater treatment plant sludge. Therefore, this facility is not subject to this regulation.
NESHAP 40 CFR 61 Subpart V	National Emission Standards for Equipment Leaks (Fugitive Emission Sources)	No	N/A	This regulation establishes national emission standards for equipment leaks (fugitive emission sources). The facility does not have equipment that operates in volatile hazardous air pollutant (VHAP) service [40 CFR Part 61.240]. The regulated activities subject to this regulation do not take place at this facility. The facility is not subject to this regulation.
MACT 40 CFR 63, Subpart A	General Provisions	No	N/A	This regulation defines general provisions for relevant standards that have been set under this part. The facility does not have any equipment that falls under this category; therefore the regulation does not apply.
MACT 40 CFR 63.760 Subpart HH	Oil and Natural Gas Production Facilities	Yes	3a	This regulation establishes national emission standards for hazardous air pollutants from oil and natural gas production facilities. This facility is an Area Source of HAPs, therefore Unit 3 (200 MMscf/day Glycol Dehydrator) is subject to this regulation per 40 CFR 63.760(d)(2).

FEDERAL REGU- LATIONS CITATION	Title	Applies? Enter Yes or No	Unit(s) or Facility	JUSTIFICATION:
MACT 40 CFR 63 Subpart HHH	Natural Gas Transmission and Storage Facilities	No	N/A	This regulation establishes national emission standards for hazardous air pollutants from boilers and heaters at major sources for HAPs. This facility is an area source for HAPs therefore this regulation does not apply. [63.1270(a)]. Additionally, this facility is not a natural gas transmission or storage facility, as defined by this regulation.
MACT 40 CFR 63 Subpart DDDDD	National Emission Standards for Hazardous Air Pollutants for Major Industrial, Commercial, and Institutional Boilers & Process Heaters	No	N/A	The facility does not have any heaters or boilers on site; therefore, this regulation does not apply.
MACT 40 CFR 63 Subpart UUUUU	National Emission Standards for Hazardous Air Pollutants Coal & Oil Fire Electric Utility Steam Generating Unit	No	N/A	This subpart establishes national emission limitations and work practice standards for hazardous air pollutants (HAP) emitted from coal- and oil-fired electric utility steam generating units (EGUs) as defined in §63.10042 of this subpart. This subpart also establishes requirements to demonstrate initial and continuous compliance with the emission limitations. This facility does not contain the affected units and is therefore not subject to this regulation.
MACT 40 CFR 63 Subpart ZZZZ	National Emissions Standards for Hazardous Air Pollutants for Stationary Reciprocating Internal Combustion Engines (RICE MACT)	No	N/A	This regulation defines national emissions standards for HAPs from stationary reciprocating Internal Combustion Engines. Unit GEN-1 is a portable non-road engine that will be at the facility for less than 12 months. In accordance with 40 CFR 63.6585(a), this unit is not subject to the requirements of this regulation.
40 CFR 64	Compliance Assurance Monitoring	No	N/A	This regulation does not apply as the amine units were removed from the facility.
40 CFR 68	Chemical Accident Prevention	No	N/A	Enterprise has more than a threshold quantity of a regulated substance in a process, as determined under §68.115, and is therefore subject to this regulation. Enterprise complies by maintaining a Risk Management Plan.
Title IV – Acid Rain 40 CFR 72	Acid Rain	No	N/A	This part establishes the acid rain program. This facility is not an acid rain source. This regulation does not apply.
Title IV – Acid Rain 40 CFR 73	Sulfur Dioxide Allowance Emissions	No	N/A	This regulation establishes sulfur dioxide allowance emissions for certain types of facilities. This facility is not an acid rain source. This regulation does not apply.
Title IV-Acid Rain 40 CFR 75	Continuous Emissions Monitoring	No	N/A	This facility does not produce commercial electricity for sale; therefore, this regulation does not apply.
Title IV – Acid Rain 40 CFR 76	Acid Rain Nitrogen Oxides Emission Reduction Program	No	N/A	This regulation establishes an acid rain nitrogen oxides emission reduction program. This regulation applies to each coal-fired utility unit that is subject to an acid rain emissions limitation or reduction requirement for SO ₂ . This part does not apply because the facility does not operate any coal-fired units [40 CFR Part 76.1].
Title VI – 40 CFR 82	Protection of Stratospheric Ozone	No	N/A	Enterprise owns appliances containing CFCs and is therefore subject to this requirement. However, this requirement imposes no obligations on the facility beyond those imposed on any individual or corporate owner of such appliances, and is mentioned here only in the interest of being thorough. Enterprise uses only certified technicians for the maintenance, service, repair and disposal of appliances and maintains the appropriate records for this requirement.

Operational Plan to Mitigate Emissions

(Submitting under 20.2.70, 20.2.72, 20.2.74 NMAC)

□ **Title V Sources** (20.2.70 NMAC): By checking this box and certifying this application the permittee certifies that it has developed an <u>Operational Plan to Mitigate Emissions During Startups</u>, <u>Shutdowns</u>, <u>and Emergencies</u> defining the measures to be taken to mitigate source emissions during startups, shutdowns, and emergencies as required by 20.2.70.300.D.5(f) and (g) NMAC. This plan shall be kept on site to be made available to the Department upon request. This plan should not be submitted with this application.

- ✓ NSR (20.2.72 NMAC), PSD (20.2.74 NMAC) & Nonattainment (20.2.79 NMAC) Sources: By checking this box and certifying this application the permittee certifies that it has developed an <u>Operational Plan to Mitigate Source Emissions</u> <u>During Malfunction, Startup, or Shutdown</u> defining the measures to be taken to mitigate source emissions during malfunction, startup, or shutdown as required by 20.2.72.203.A.5 NMAC. This plan shall be kept on site to be made available to the Department upon request. This plan should not be submitted with this application.
- ☑ Title V (20.2.70 NMAC), NSR (20.2.72 NMAC), PSD (20.2.74 NMAC) & Nonattainment (20.2.79 NMAC) Sources: By checking this box and certifying this application the permittee certifies that it has established and implemented a Plan to Minimize Emissions During Routine or Predictable Startup, Shutdown, and Scheduled Maintenance through work practice standards and good air pollution control practices as required by 20.2.7.14.A and B NMAC. This plan shall be kept on site or at the nearest field office to be made available to the Department upon request. This plan should not be submitted with this application.

Startup and shutdown procedures are either based on manufacturer's recommendations or based on Enterprise's experience with specific equipment. These procedures are designed to proactively address the potential for malfunction to the greatest extent possible. These procedures dictate a sequence of operations that are designed to minimize emissions from the facility during events that result in shutdown and subsequent startup.

Equipment located at this facility is equipped with various safety devices and features that aid in the prevention of excess emissions in the event of an operational emergency. If an operational emergency does occur and excess emissions occur, Enterprise will submit the required Excess Emissions Report as per 20.2.7 NMAC. Corrective action to eliminate the excess emissions and prevent recurrence in the future will be undertaken as quickly as safety allows.

Alternative Operating Scenarios

(Submitting under 20.2.70, 20.2.72, 20.2.74 NMAC)

Alternative Operating Scenarios: Provide all information required by the department to define alternative operating scenarios. This includes process, material and product changes; facility emissions information; air pollution control equipment requirements; any applicable requirements; monitoring, recordkeeping, and reporting requirements; and compliance certification requirements. Please ensure applicable Tables in this application are clearly marked to show alternative operating scenario.

Construction Scenarios: When a permit is modified authorizing new construction to an existing facility, NMED includes a condition to clearly address which permit condition(s) (from the previous permit and the new permit) govern during the interval between the date of issuance of the modification permit and the completion of construction of the modification(s). There are many possible variables that need to be addressed such as: Is simultaneous operation of the old and new units permitted and, if so for example, for how long and under what restraints? In general, these types of requirements will be addressed in Section A100 of the permit, but additional requirements may be added elsewhere. Look in A100 of our NSR and/or TV permit template for sample language dealing with these requirements. Find these permit templates at: https://www.env.nm.gov/aqb/permit/aqb_pol.html. Compliance with standards must be maintained during construction, which should not usually be a problem unless simultaneous operation of old and new equipment is requested.

In this section, under the bolded title "Construction Scenarios", specify any information necessary to write these conditions, such as: conservative-realistic estimated time for completion of construction of the various units, whether simultaneous operation of old and new units is being requested (and, if so, modeled), whether the old units will be removed or decommissioned, any PSD ramifications, any temporary limits requested during phased construction, whether any increase in emissions is being requested as SSM emissions or will instead be handled as a separate Construction Scenario (with corresponding emission limits and conditions, etc.

There are no alternative operating scenarios.

Section 16 Air Dispersion Modeling

- Minor Source Construction (20.2.72 NMAC) and Prevention of Significant Deterioration (PSD) (20.2.74 NMAC) ambient impact analysis (modeling): Provide an ambient impact analysis as required at 20.2.72.203.A(4) and/or 20.2.74.303 NMAC and as outlined in the Air Quality Bureau's Dispersion Modeling Guidelines found on the Planning Section's modeling website. If air dispersion modeling has been waived for one or more pollutants, attach the AQB Modeling Section modeling waiver approval documentation.
- 2) SSM Modeling: Applicants must conduct dispersion modeling for the total short term emissions during routine or predictable startup, shutdown, or maintenance (SSM) using realistic worst case scenarios following guidance from the Air Quality Bureau's dispersion modeling section. Refer to "Guidance for Submittal of Startup, Shutdown, Maintenance Emissions in Permit Applications (<u>http://www.env.nm.gov/aqb/permit/app_form.html</u>) for more detailed instructions on SSM emissions modeling requirements.
- 3) Title V (20.2.70 NMAC) ambient impact analysis: Title V applications must specify the construction permit and/or Title V Permit number(s) for which air quality dispersion modeling was last approved. Facilities that have only a Title V permit, such as landfills and air curtain incinerators, are subject to the same modeling required for preconstruction permits required by 20.2.72 and 20.2.74 NMAC.

What is the purpose of this application?	Enter an X for each purpose that applies
New PSD major source or PSD major modification (20.2.74 NMAC). See #1 above.	
New Minor Source or significant permit revision under 20.2.72 NMAC (20.2.72.219.D NMAC). See #1 above. Note: Neither modeling nor a modeling waiver is required for VOC emissions.	Х
Reporting existing pollutants that were not previously reported.	
Reporting existing pollutants where the ambient impact is being addressed for the first time.	
Title V application (new, renewal, significant, or minor modification. 20.2.70 NMAC). See #3 above.	
Relocation (20.2.72.202.B.4 or 72.202.D.3.c NMAC)	
Minor Source Technical Permit Revision 20.2.72.219.B.1.d.vi NMAC for like-kind unit replacements.	
Other: i.e. SSM modeling. See #2 above.	
This application does not require modeling since this is a No Permit Required (NPR) application.	
This application does not require modeling since this is a Notice of Intent (NOI) application (20.2.73 NMAC).	
This application does not require modeling according to 20.2.70.7.E(11), 20.2.72.203.A(4), 20.2.74.303, 20.2.79.109.D NMAC and in accordance with the Air Quality Bureau's Modeling Guidelines.	

Check each box that applies:

- □ See attached, approved modeling **waiver for all** pollutants from the facility.
- □ See attached, approved modeling **waiver for some** pollutants from the facility.
- ☑ Attached in Universal Application Form 4 (UA4) is a **modeling report for all** pollutants from the facility.
- □ Attached in UA4 is a **modeling report for some** pollutants from the facility.
- \Box No modeling is required.

Compliance Test History

(Submitting under 20.2.70, 20.2.72, 20.2.74 NMAC)

	Compliance rest instory rable	
Unit No.	Test Description	Test Date
1, 2	Tested for NOx and CO as required by Title V Permit P118-R2	May 2008
1, 2	Tested for NOx and CO as required by Title V Permit P118-R2	July 2009
1, 2	Tested for NOx and CO as required by Title V Permit P118-R2	May 2010
1, 2	Tested for NOx and CO as required by Title V Permit P118-R2	June 2011
1, 2	Tested for NOx and CO as required by Title V Permit P118-R2	May 2012
1, 2	Tested for NOx and CO as required by Title V Permit P118-R2	April 2013
1, 2	Tested for NOx and CO as required by Title V Permit P118-R2	January 2014
1, 2	Tested for NOx and CO as required by Title V Permit P118-R2	January 2018
2	Tested for NOx and CO as required by Title V Permit P118-R2	April 2018
1	Tested for NOx and CO as required by Title V Permit P118-R2	May 2018
1, 2	Tested for NOx and CO as required by Title V Permit P118-R2	February 2019
1, 2	Tested for NOx and CO as required by Title V Permit P118-R2	June 2019
1, 2	Tested for NOx and CO as required by Title V Permit P118-R2	August 2019
1, 2	Tested for NOx and CO as required by Title V Permit P118-R2	November 2019
1, 2	Tested for NOx and CO as required by Title V Permit P118-R2	March 2020
1, 2	Tested for NOx and CO as required by Title V Permit P118-R2	May 2020

Compliance Test History Table

Other Relevant Information

<u>Other relevant information</u>. Use this attachment to clarify any part in the application that you think needs explaining. Reference the section, table, column, and/or field. Include any additional text, tables, calculations or clarifying information.

Additionally, the applicant may propose specific permit language for AQB consideration. In the case of a revision to an existing permit, the applicant should provide the old language and the new language in track changes format to highlight the proposed changes. If proposing language for a new facility or language for a new unit, submit the proposed operating condition(s), along with the associated monitoring, recordkeeping, and reporting conditions. In either case, please limit the proposed language to the affected portion of the permit.

No other relevant information is being submitted as part of this application.

Section 22: Certification

Company Name:	
I,, hereb and as accurate as possible, to the best of my knowle	by certify that the information and data submitted in this application are true edge and professional expertise and experience.
	, upon my oath or affirmation, before a notary of the State of
*Signature	Date
Printed Name	Title
Scribed and sworn before me on this day of	,
My authorization as a notary of the State of	expires on the
day of	,
Notary's Signature	Date
Notary's Printed Name	

*For Title V applications, the signature must be of the Responsible Official as defined in 20.2.70.7.AE NMAC.