

NMED AIR QUALITY
TITLE V PERMIT RENEWAL APPLICATION
DCP Operating Company, LP
Linam Ranch Gas Plant

Prepared By:

Jennifer Hanna – Principal Environmental Specialist

DCP Operating Company, LP
10 Desta Drive, Suite 400 West
Midland, TX 79705
(432) 249-2702

Adam Erenstein – Manager of Consulting Services

TRINITY CONSULTANTS
9400 Holly Ave NE
Bldg 3 Suite 300
Albuquerque, NM 87122
(505) 266-6611

April 2019

Project 193201.0085

Trinity
Consultants
Environmental solutions delivered uncommonly well

9400 Holly Avenue NE | Bldg 3, Suite 300 | Albuquerque, NM 87122 | P (505) 266-6611
trinityconsultants.com

Trinity
Consultants

April 12, 2019

Mr. Ted Schooley
Permit Programs Manager
NMED Air Quality Bureau
525 Camino de los Marquez Suite 1
Santa Fe, NM 87505-1816

*RE: Application for Renewal of Title V Permit P094-R2
DCP Operating Company, LP – Linam Ranch Gas Plant*

Dear Mr. Schooley:

On behalf of DCP Operating Company, LP we are submitting this application to renew the Title V permit for the Linam Ranch Gas Plant. The facility is located approximately 7 miles west of Hobbs, NM. Linam Ranch Gas Plant is currently permitted under Operating Permit P094-R2 and NSR Permit 0039-M8R3. The facility removes hydrogen sulfide, water and carbon dioxide from field natural gas and separates natural gas liquids from the field natural gas stream.

The format and content of this application are consistent with the Bureau's current policy regarding Title V applications; it is a complete application package using the most current Universal Application Forms. Title V Permit P094-R2 expires on April 17, 2020. DCP Operating Company, LP is submitting this application in accordance with 20.2.70.300.B.2 NMAC, requiring a timely application for a Title V renewal be submitted at least 12 months prior to the date of permit expiration.

Enclosed are two hard copies of the application, including an original certification and two discs containing the electronic files. Please feel free to contact either myself at (505) 266-6611 or Jennifer Hanna, Principal Environmental Specialist for DCP Operating Company, LP at (432) 249-2702 if you have any questions regarding this application.

Sincerely,

Adam Erenstein
Manager of Consulting Services

Cc: Jennifer Hanna – DCP Operating Company, LP
Trinity Project File 193201.0085

Mail Application To:		For Department use only:
<p>New Mexico Environment Department Air Quality Bureau Permits Section 525 Camino de los Marquez, Suite 1 Santa Fe, New Mexico, 87505</p> <p>Phone: (505) 476-4300 Fax: (505) 476-4375 www.env.nm.gov/aqb</p>		AIRS No.:

Universal Air Quality Permit Application

Use this application for NOI, NSR, or Title V sources.

Use this application for: the initial application, modifications, technical revisions, and renewals. For technical revisions, complete Sections, 1-A, 1-B, 2-E, 3, 9 and any other sections that are relevant to the requested action; coordination with the Air Quality Bureau permit staff prior to submittal is encouraged to clarify submittal requirements and to determine if more or less than these sections of the application are needed. Use this application for streamline permits as well. For NOI applications, submit the entire UA1, UA2, and UA3 applications on a single CD (no copies are needed). For NOIs, hard copies of UA1, Tables 2A, 2D & 2F, Section 3 and the signed Certification Page are required.

This application is submitted as (check all that apply): Request for a No Permit Required Determination (no fee)
 Updating an application currently under NMED review. Include this page and all pages that are being updated (no fee required).
 Construction Status: Not Constructed Existing Permitted (or NOI) Facility Existing Non-permitted (or NOI) Facility
 Minor Source: a NOI 20.2.73 NMAC 20.2.72 NMAC application or revision 20.2.72.300 NMAC Streamline application
 Title V Source: Title V (new) Title V renewal TV minor mod. TV significant mod. TV Acid Rain: New Renewal
 PSD Major Source: PSD major source (new) minor modification to a PSD source a PSD major modification

Acknowledgements:

I acknowledge that a pre-application meeting is available to me upon request. Title V Operating, Title IV Acid Rain, and NPR applications have no fees.
 \$500 NSR application Filing Fee enclosed **OR** The full permit fee associated with 10 fee points (required w/ streamline applications).
 Check No.: N/A in the amount of N/A
 I acknowledge the required submittal format for the hard copy application is printed double sided 'head-to-toe', 2-hole punched (except the Sect. 2 landscape tables is printed 'head-to-head'), numbered tab separators. Incl. a copy of the check on a separate page.
 This facility qualifies to receive assistance from the Small Business Environmental Assistance program (SBEAP) and qualifies for 50% of the normal application and permit fees. Enclosed is a check for 50% of the normal application fee which will be verified with the Small Business Certification Form for your company.
 This facility qualifies to receive assistance from the Small Business Environmental Assistance Program (SBEAP) but does not qualify for 50% of the normal application and permit fees. To see if you qualify for SBEAP assistance and for the small business certification form go to https://www.env.nm.gov/aqb/sbap/small_business_criteria.html.

Citation: Please provide the **low level citation** under which this application is being submitted: **20.2.70.300.B.2 NMAC** (e.g. application for a new minor source would be 20.2.72.200.A NMAC, one example for a Technical Permit Revision is 20.2.72.219.B.1.b NMAC, a Title V acid rain application would be: 20.2.70.200.C NMAC)

Section 1 – Facility Information

Section 1-A: Company Information		AI # if known (see 1 st 3 to 5 #s of permit IDEA ID No.): 589	Updating Permit/NOI #: P094-R2
1	Facility Name: Linam Ranch Gas Plant	Plant primary SIC Code (4 digits): 1321	
		Plant NAIC code (6 digits): 211130	
a	Facility Street Address (If no facility street address, provide directions from a prominent landmark): From Hobbs, NM travel 7 miles west on Hwy 62/180. Plant is adjacent to highway on the south.		
2	Plant Operator Company Name: DCP Operating Company, LP	Phone/Fax: (432) 249-2702 / (432) 620-4143	
a	Plant Operator Address: 10 Desta Drive, Suite 400 West, Midland, TX 79705		

b	Plant Operator's New Mexico Corporate ID or Tax ID: 036785	
3	Plant Owner(s) name(s): DCP Operating Company, LP	Phone/Fax: (432) 249-2702 / (432) 620-4143
a	Plant Owner(s) Mailing Address(s): 10 Desta Drive, Suite 400 West, Midland, TX 79705	
4	Bill To (Company): DCP Operating Company, LP	Phone/Fax: (432) 249-2702 / (432) 620-4143
a	Mailing Address: 10 Desta Drive, Suite 400 West, Midland, TX 79705	E-mail: JHanna@dcpmidstream.com
5	<input checked="" type="checkbox"/> Preparer: <input checked="" type="checkbox"/> Consultant: Adam Erenstein / Trinity Consultants	Phone/Fax: (505) 266-6611 / N/A
a	Mailing Address: 9400 Holly Blvd NE, Building 3, Suite 300 Albuquerque, NM 87122	E-mail: aerenstein@trinityconsultants.com
6	Plant Operator Contact: Wade J. Lynch	Phone/Fax: (575) 394-5010 / N/A
a	Address: 136 State Hwy 175, Oil Center, NM 88240	E-mail: WJLynch@dcpmidstream.com
7	Air Permit Contact: Jennifer Hanna	Title: Principal Environmental Specialist
a	E-mail: JHanna@dcpmidstream.com	Phone/Fax: (432) 249-2702 / (432) 620-4143
b	Mailing Address: 10 Desta Drive, Suite 400 West, Midland, TX 79705	

Section 1-B: Current Facility Status

1.a	Has this facility already been constructed? <input checked="" type="checkbox"/> Yes <input type="checkbox"/> No	1.b If yes to question 1.a, is it currently operating in New Mexico? <input checked="" type="checkbox"/> Yes <input type="checkbox"/> No
2	If yes to question 1.a, was the existing facility subject to a Notice of Intent (NOI) (20.2.73 NMAC) before submittal of this application? <input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	If yes to question 1.a, was the existing facility subject to a construction permit (20.2.72 NMAC) before submittal of this application? <input checked="" type="checkbox"/> Yes <input type="checkbox"/> No
3	Is the facility currently shut down? <input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	If yes, give month and year of shut down (MM/YY): N/A
4	Was this facility constructed before 8/31/1972 and continuously operated since 1972? <input checked="" type="checkbox"/> Yes <input type="checkbox"/> No	
5	If Yes to question 3, has this facility been modified (see 20.2.72.7.P NMAC) or the capacity increased since 8/31/1972? <input checked="" type="checkbox"/> Yes <input type="checkbox"/> No <input type="checkbox"/> N/A	
6	Does this facility have a Title V operating permit (20.2.70 NMAC)? <input checked="" type="checkbox"/> Yes <input type="checkbox"/> No	If yes, the permit No. is: P-094-R2
7	Has this facility been issued a No Permit Required (NPR)? <input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	If yes, the NPR No. is: N/A
8	Has this facility been issued a Notice of Intent (NOI)? <input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	If yes, the NOI No. is: N/A
9	Does this facility have a construction permit (20.2.72/20.2.74 NMAC)? <input checked="" type="checkbox"/> Yes <input type="checkbox"/> No	If yes, the permit No. is: 0039-M8R3
10	Is this facility registered under a General permit (GCP-1, GCP-2, etc.)? <input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	If yes, the register No. is: N/A

Section 1-C: Facility Input Capacity & Production Rate

1	What is the facility's maximum input capacity, specify units (reference here and list capacities in Section 20, if more room is required)			
a	Current	Hourly: 9.44 MMscf (actual)	Daily: 225 MMscf (approximate)	Annually: 82,125 MMscf (approximate)
b	Proposed	Hourly: *	Daily: *	Annually: *
2	What is the facility's maximum production rate, specify units (reference here and list capacities in Section 20, if more room is required)			
a	Current	Hourly: 9.44 MMscf (actual)	Daily: 225 MMscf (approximate)	Annually: 82,125 MMscf (approximate)
b	Proposed	Hourly: *	Daily: *	Annually: *

** = There is not an increase in facility capacity or production with this application.

Section 1-D: Facility Location Information

1	Section: 6	Range: 37 E	Township: 19 S	County: Lea	Elevation (ft): 3,710
2	UTM Zone: <input type="checkbox"/> 12 or <input checked="" type="checkbox"/> 13		Datum: <input type="checkbox"/> NAD 27 <input type="checkbox"/> NAD 83 <input checked="" type="checkbox"/> WGS 84		
a	UTM E (in meters, to nearest 10 meters): 660,738 m E		UTM N (in meters, to nearest 10 meters): 3,618,810 m N		
b	AND Latitude (deg., min., sec.): 32° 41' 43"		Longitude (deg., min., sec.): -103° 17' 7"		
3	Name and zip code of nearest New Mexico town: Hobbs, NM 88240				
4	Detailed Driving Instructions from nearest NM town (attach a road map if necessary): From Hobbs, NM, travel 7 miles west on Hwy 62/180. Plant is adjacent to highway on the south.				
5	The facility is 7 (distance) miles west (direction) of Hobbs. (nearest town).				
6	Status of land at facility (check one): <input checked="" type="checkbox"/> Private <input type="checkbox"/> Indian/Pueblo <input type="checkbox"/> Federal BLM <input type="checkbox"/> Federal Forest Service <input type="checkbox"/> Other (specify)				
7	List all municipalities, Indian tribes, and counties within a ten (10) mile radius (20.2.72.203.B.2 NMAC) of the property on which the facility is proposed to be constructed or operated: Municipalities: Monument, Hobbs; Counties: Lea; Indian Tribes: None				
8	20.2.72 NMAC applications only: Will the property on which the facility is proposed to be constructed or operated be closer than 50 km (31 miles) to other states, Bernalillo County, or a Class I area (see www.env.nm.gov/aqb/modeling/class1areas.html)? <input type="checkbox"/> Yes <input type="checkbox"/> No (20.2.72.206.A.7 NMAC) If yes, list all with corresponding distances in kilometers: N/A – This application is submitted under 20.2.70 NMAC.				
9	Name nearest Class I area: Carlsbad Caverns National Park.				
10	Shortest distance (in km) from facility boundary to the boundary of the nearest Class I area (to the nearest 10 meters): 117 km				
11	Distance (meters) from the perimeter of the Area of Operations (AO is defined as the plant site inclusive of all disturbed lands, including mining overburden removal areas) to nearest residence, school or occupied structure: 220 m				
12	Method(s) used to delineate the Restricted Area: Continuous fencing “Restricted Area” is an area to which public entry is effectively precluded. Effective barriers include continuous fencing, continuous walls, or other continuous barriers approved by the Department, such as rugged physical terrain with steep grade that would require special equipment to traverse. If a large property is completely enclosed by fencing, a restricted area within the property may be identified with signage only. Public roads cannot be part of a Restricted Area.				
13	Does the owner/operator intend to operate this source as a portable stationary source as defined in 20.2.72.7.X NMAC? <input type="checkbox"/> Yes <input checked="" type="checkbox"/> No A portable stationary source is not a mobile source, such as an automobile, but a source that can be installed permanently at one location or that can be re-installed at various locations, such as a hot mix asphalt plant that is moved to different job sites.				
14	Will this facility operate in conjunction with other air regulated parties on the same property? <input checked="" type="checkbox"/> No <input type="checkbox"/> Yes If yes, what is the name and permit number (if known) of the other facility? N/A				

Section 1-E: Proposed Operating Schedule (The 1-E.1 & 1-E.2 operating schedules may become conditions in the permit.)

1	Facility maximum operating ($\frac{\text{hours}}{\text{day}}$): 24	$\frac{\text{days}}{\text{week}}$: 7	$\frac{\text{weeks}}{\text{year}}$: 52	$\frac{\text{hours}}{\text{year}}$: 8,760	
2	Facility's maximum daily operating schedule (if less than 24 $\frac{\text{hours}}{\text{day}}$)?	Start: N/A	<input type="checkbox"/> AM <input type="checkbox"/> PM	End: N/A	<input type="checkbox"/> AM <input type="checkbox"/> PM
3	Month and year of anticipated start of construction: N/A – No construction is proposed				
4	Month and year of anticipated construction completion: N/A – No construction is proposed				
5	Month and year of anticipated startup of new or modified facility: N/A – No construction is proposed				
6	Will this facility operate at this site for more than one year? <input checked="" type="checkbox"/> Yes <input type="checkbox"/> No				

Section 1-F: Other Facility Information

1	Are there any current Notice of Violations (NOV), compliance orders, or any other compliance or enforcement issues related to this facility? <input checked="" type="checkbox"/> Yes <input type="checkbox"/> No If yes, specify: NOVs 589-1702, 589-1801, and 589-1802
---	---

a	If yes, NOV date or description of issue: 589-1702 - 2/8/2018 589-1801 - 3/12/2018 589-1802 - 10/5/2018		NOV Tracking No: 589-1702, 589-1801, and 589-1802
b	Is this application in response to any issue listed in 1-F, 1 or 1a above? <input type="checkbox"/> Yes <input checked="" type="checkbox"/> No If Yes, provide the 1c & 1d info below:		
c	Document Title: N/A	Date: N/A	Requirement # (or page # and paragraph #): N/A
d	Provide the required text to be inserted in this permit: N/A		
2	Is air quality dispersion modeling or modeling waiver being submitted with this application? <input type="checkbox"/> Yes <input checked="" type="checkbox"/> No		
3	Does this facility require an "Air Toxics" permit under 20.2.72.400 NMAC & 20.2.72.502, Tables A and/or B? <input type="checkbox"/> Yes <input checked="" type="checkbox"/> No		
4	Will this facility be a source of federal Hazardous Air Pollutants (HAP)? <input checked="" type="checkbox"/> Yes <input type="checkbox"/> No		
a	If Yes, what type of source? <input checked="" type="checkbox"/> Major (<input checked="" type="checkbox"/> ≥10 tpy of any single HAP OR <input checked="" type="checkbox"/> ≥25 tpy of any combination of HAPS) OR <input type="checkbox"/> Minor (<input type="checkbox"/> <10 tpy of any single HAP AND <input type="checkbox"/> <25 tpy of any combination of HAPS)		
5	Is any unit exempt under 20.2.72.202.B.3 NMAC? <input type="checkbox"/> Yes <input checked="" type="checkbox"/> No		
a	If yes, include the name of company providing commercial electric power to the facility: <u>N/A</u> Commercial power is purchased from a commercial utility company, which specifically does not include power generated on site for the sole purpose of the user.		

Section 1-G: Streamline Application

(This section applies to 20.2.72.300 NMAC Streamline applications only)

1	<input type="checkbox"/> I have filled out Section 18, "Addendum for Streamline Applications." <input checked="" type="checkbox"/> N/A (This is not a Streamline application.)
---	--

Section 1-H: Current Title V Information - Required for all applications from TV Sources

(Title V-source required information for all applications submitted pursuant to 20.2.72 NMAC (Minor Construction Permits), or 20.2.74/20.2.79 NMAC (Major PSD/NNSR applications), and/or 20.2.70 NMAC (Title V))

1	Responsible Official (20.2.70.300.D.2 NMAC): Randy C. DeLaune		Phone: (713) 268-7488
a	R.O. Title: VP Operations Services	R.O. e-mail: RCDeLaune@Dcpmidstream.com	
b	R. O. Address: 5718 Westheimer, Suite 1900, Houston, TX 77057-7057		
2	Alternate Responsible Official (20.2.70.300.D.2 NMAC): Michael T. Allison		Phone: (575) 234-6425
a	A. R.O. Title: Asset Director I	A. R.O. e-mail: MTAllison@dcpmidstream.com	
b	A. R. O. Address: 1625 W Marland Street, Hobbs, NM 88240		
3	Company's Corporate or Partnership Relationship to any other Air Quality Permittee (List the names of any companies that have operating (20.2.70 NMAC) permits and with whom the applicant for this permit has a corporate or partnership relationship): None		
4	Name of Parent Company ("Parent Company" means the primary name of the organization that owns the company to be permitted wholly or in part.): None		
a	Address of Parent Company: None		
5	Names of Subsidiary Companies ("Subsidiary Companies" means organizations, branches, divisions or subsidiaries, which are owned, wholly or in part, by the company to be permitted.): None		
6	Telephone numbers & names of the owners' agents and site contacts familiar with plant operations: None		
7	Affected Programs to include Other States, local air pollution control programs (i.e. Bernalillo) and Indian tribes: Will the property on which the facility is proposed to be constructed or operated be closer than 80 km (50 miles) from other states, local pollution control programs, and Indian tribes and pueblos (20.2.70.402.A.2 and 20.2.70.7.B)? If yes, state which ones and provide the distances in kilometers: 20.6 kilometers from Texas.		

Section 1-I – Submittal Requirements

Each 20.2.73 NMAC (**NOI**), a 20.2.70 NMAC (**Title V**), a 20.2.72 NMAC (**NSR** minor source), or 20.2.74 NMAC (**PSD**) application package shall consist of the following:

Hard Copy Submittal Requirements:

- 1) One hard copy **original signed and notarized application package printed double sided 'head-to-toe' 2-hole punched** as we bind the document on top, not on the side; except Section 2 (landscape tables), which should be **head-to-head**. Please use **numbered tab separators** in the hard copy submittal(s) as this facilitates the review process. For NOI submittals only, hard copies of UA1, Tables 2A, 2D & 2F, Section 3 and the signed Certification Page are required. **Please include a copy of the check on a separate page.**
- 2) If the application is for a minor NSR, PSD, NNSR, or Title V application, include one working hard **copy** for Department use. This **copy** does not need to be 2-hole punched, but **must be double sided**. Minor NSR Technical Permit revisions (20.2.72.219.B NMAC) only need to fill out Sections 1-A, 1-B, 3, and should fill out those portions of other Section(s) relevant to the technical permit revision. TV Minor Modifications need only fill out Sections 1-A, 1-B, 1-H, 3, and those portions of other Section(s) relevant to the minor modification. NMED may require additional portions of the application to be submitted, as needed.
- 3) The entire NOI or Permit application package, including the full modeling study, should be submitted electronically on compact disk(s) (CD). For permit application submittals, **two CD** copies are required (in sleeves, not crystal cases, please), with additional CD copies as specified below. NOI applications require only a **single CD** submittal.
- 4) If **air dispersion modeling** is required by the application type, include the **NMED Modeling Waiver OR** one additional electronic copy of the air dispersion modeling including the input and output files. The dispersion modeling **summary report only** should be submitted as hard copy(ies) unless otherwise indicated by the Bureau. The complete dispersion modeling study, including all input/output files, should be submitted electronically as part of the electronic submittal.
- 5) If subject to PSD review under 20.2.74 NMAC (PSD) or NNSR under 20.2.79 NMC include,
 - a. one additional CD copy for US EPA,
 - b. one additional CD copy for each federal land manager affected (NPS, USFS, FWS, USDI) and,
 - c. one additional CD copy for each affected regulatory agency other than the Air Quality Bureau.

Electronic Submittal Requirements [in addition to the required hard copy(ies)]:

- 1) All required electronic documents shall be submitted in duplicate (2 separate CDs). A single PDF document of the entire application as submitted and the individual documents comprising the application.
- 2) The documents should also be submitted in Microsoft Office compatible file format (Word, Excel, etc.) allowing us to access the text and formulas in the documents (copy & paste). Any documents that cannot be submitted in a Microsoft Office compatible format shall be saved as a PDF file from within the electronic document that created the file. If you are unable to provide Microsoft office compatible electronic files or internally generated PDF files of files (items that were not created electronically: i.e. brochures, maps, graphics, etc,), submit these items in hard copy format with the number of additional hard copies corresponding to the number of CD copies required. We must be able to review the formulas and inputs that calculated the emissions.
- 3) It is preferred that this application form be submitted as 3 electronic files (**2 MSWord docs**: Universal Application section 1 and Universal Application section 3-19) and **1 Excel file** of the tables (Universal Application section 2) on the CD(s). Please include as many of the 3-19 Sections as practical in a single MS Word electronic document. Create separate electronic file(s) if a single file becomes too large or if portions must be saved in a file format other than MS Word.
- 4) The **electronic file names** shall be a maximum of 25 characters long (including spaces, if any). The format of the electronic Universal Application shall be in the format: "A-3423-FacilityName". The "A" distinguishes the file as an application submittal, as opposed to other documents the Department itself puts into the database. Thus, all electronic application submittals should begin with "A-". Modifications to existing facilities should use the **core permit number** (i.e. '3423') the Department assigned to the facility as the next 4 digits. Use 'XXXX' for new facility applications. The format of any separate electronic submittals (additional submittals such as non-Word attachments, re-submittals, application updates) and Section document shall be in the format: "A-3423-9-description", where "9" stands for the **section #** (in this case Section 9-Public Notice). Please refrain, as much as possible, from submitting any scanned documents as this file format is extremely large, which uses up too much storage capacity in our database. Please take the time to fill out the **header information** throughout all submittals as this will identify any loose pages, including the Application Date (date submitted) & Revision # (0 for original, 1, 2, etc.; which will help keep track of subsequent partial update(s) to the original submittal. The footer information should not be modified by the applicant.

Table of Contents

- Section 1: General Facility Information**
- Section 2: Tables**
- Section 3: Application Summary**
- Section 4: Process Flow Sheet**
- Section 5: Plot Plan Drawn to Scale**
- Section 6: All Calculations**
- Section 7: Information Used to Determine Emissions**
- Section 8: Map(s)**
- Section 9: Proof of Public Notice**
- Section 10: Written Description of the Routine Operations of the Facility**
- Section 11: Source Determination**
- Section 12: PSD Applicability Determination for All Sources & Special Requirements for a PSD Application**
- Section 13: Discussion Demonstrating Compliance with Each Applicable State & Federal Regulation**
- Section 14: Operational Plan to Mitigate Emissions**
- Section 15: Alternative Operating Scenarios**
- Section 16: Air Dispersion Modeling**
- Section 17: Compliance Test History**
- Section 18: Addendum for Streamline Applications (streamline applications only)**
- Section 19: Requirements for the Title V (20.2.70 NMAC) Program (Title V applications only)**
- Section 20: Other Relevant Information**
- Section 21: Addendum for Landfill Applications**
- Section 22: Certification Page**

Table 2-A: Regulated Emission Sources

Unit and stack numbering must correspond throughout the application package. If applying for a NOI under 20.2.73 NMAC, equipment exemptions under 2.72.202 NMAC do not apply.

Unit Number ¹	Source Description	Make	Model #	Serial #	Manufacturer's Rated Capacity ³ (Specify Units)	Requested Permitted Capacity ³ (Specify Units)	Date of Manufacture ²	Controlled by Unit #	Source Classification Code (SCC)	For Each Piece of Equipment, Check One	RICE Ignition Type (CI, SI, 4SLB, 4SRB, 2SLB) ⁴	Replacing Unit No.
							Date of Construction/Reconstruction ²	Emissions vented to Stack #				
2	Amine Plant Flare East	Flare King	N/A	N/A	1.2 MMBtu/hr	1.2 MMBtu/hr	2005	N/A	3100 0205	<input checked="" type="checkbox"/> Existing (unchanged) <input type="checkbox"/> New/Additional <input type="checkbox"/> To Be Modified <input type="checkbox"/> To be Removed <input type="checkbox"/> Replacement Unit <input type="checkbox"/> To be Replaced	N/A	N/A
							2005	2				
4A	ESD Flare	John Zink	N/A	N/A	3.2 MMBtu/hr	3.2 MMBtu/hr	2006	N/A	3100 0209	<input checked="" type="checkbox"/> Existing (unchanged) <input type="checkbox"/> New/Additional <input type="checkbox"/> To Be Modified <input type="checkbox"/> To be Removed <input type="checkbox"/> Replacement Unit <input type="checkbox"/> To be Replaced	N/A	N/A
							2008	4A				
6	2SLB RICE	Clark	TLA-6	73779	2000 HP	2000 HP	1974 or before	N/A	2020 0252	<input checked="" type="checkbox"/> Existing (unchanged) <input type="checkbox"/> New/Additional <input type="checkbox"/> To Be Modified <input type="checkbox"/> To be Removed <input type="checkbox"/> Replacement Unit <input type="checkbox"/> To be Replaced	2SLB	N/A
							1974	6				
7	2SLB RICE	Clark	TLA-6	73780	2000 HP	2000 HP	1974 or before	N/A	2020 0252	<input checked="" type="checkbox"/> Existing (unchanged) <input type="checkbox"/> New/Additional <input type="checkbox"/> To Be Modified <input type="checkbox"/> To be Removed <input type="checkbox"/> Replacement Unit <input type="checkbox"/> To be Replaced	2SLB	N/A
							1974	7				
8	2SLB RICE	Clark	HBA-6	36288	1267 HP	1267 HP	1951	N/A	2020 0252	<input checked="" type="checkbox"/> Existing (unchanged) <input type="checkbox"/> New/Additional <input type="checkbox"/> To Be Modified <input type="checkbox"/> To be Removed <input type="checkbox"/> Replacement Unit <input type="checkbox"/> To be Replaced	2SLB	N/A
							1954	8				
9	2SLB RICE	Clark	HBA-6	736290	1267 HP	1267 HP	1951	N/A	2020 0252	<input checked="" type="checkbox"/> Existing (unchanged) <input type="checkbox"/> New/Additional <input type="checkbox"/> To Be Modified <input type="checkbox"/> To be Removed <input type="checkbox"/> Replacement Unit <input type="checkbox"/> To be Replaced	2SLB	N/A
							1954	9				
10	2SLB RICE	Clark	HBA-6	36289	1267 HP	1267 HP	1951	N/A	2020 0252	<input checked="" type="checkbox"/> Existing (unchanged) <input type="checkbox"/> New/Additional <input type="checkbox"/> To Be Modified <input type="checkbox"/> To be Removed <input type="checkbox"/> Replacement Unit <input type="checkbox"/> To be Replaced	2SLB	N/A
							1954	10				
11	2SLB RICE	Clark	HBA-6	36303	1267 HP	1267 HP	1951	N/A	2020 0252	<input checked="" type="checkbox"/> Existing (unchanged) <input type="checkbox"/> New/Additional <input type="checkbox"/> To Be Modified <input type="checkbox"/> To be Removed <input type="checkbox"/> Replacement Unit <input type="checkbox"/> To be Replaced	2SLB	N/A
							1954	11				

Note regarding Units 6-11: These units will be dual-service (inlet / residue compression). These units will operate under either scenario A and B. These scenarios are described in Section 15 of this application.

28	Turbine	Solar	T-60	TC12227	63.4 MMBtu/hr	63.4 MMBtu/hr	2011	N/A	2020 0201	<input checked="" type="checkbox"/> Existing (unchanged) <input type="checkbox"/> New/Additional <input type="checkbox"/> To Be Modified <input type="checkbox"/> To be Removed <input type="checkbox"/> Replacement Unit <input type="checkbox"/> To be Replaced	N/A	N/A
29	Turbine	Solar	T-70	DCC0050	77.6 MMBtu/hr	77.6 MMBtu/hr	1995	N/A	2020 0201	<input checked="" type="checkbox"/> Existing (unchanged) <input type="checkbox"/> New/Additional <input type="checkbox"/> To Be Modified <input type="checkbox"/> To be Removed <input type="checkbox"/> Replacement Unit <input type="checkbox"/> To be Replaced	N/A	N/A
							1995	29				
30	Turbine	Solar	T-70	TC95593	73.95 MMBtu/hr	73.95 MMBtu/hr	1995	N/A	2020 0201	<input checked="" type="checkbox"/> Existing (unchanged) <input type="checkbox"/> New/Additional <input type="checkbox"/> To Be Modified <input type="checkbox"/> To be Removed <input type="checkbox"/> Replacement Unit <input type="checkbox"/> To be Replaced	N/A	N/A
							1995	30				
31	Turbine	Solar	T-4700	3000724	36.8 MMBtu/hr	36.8 MMBtu/hr	1995	N/A	2020 0201	<input checked="" type="checkbox"/> Existing (unchanged) <input type="checkbox"/> New/Additional <input type="checkbox"/> To Be Modified <input type="checkbox"/> To be Removed <input type="checkbox"/> Replacement Unit <input type="checkbox"/> To be Replaced	N/A	N/A
							1995	31				
32B	Turbine	Solar	T-4000	CM79453	36.2 MMBtu/hr	36.2 MMBtu/hr	1979	N/A	2020 0201	<input checked="" type="checkbox"/> Existing (unchanged) <input type="checkbox"/> New/Additional <input type="checkbox"/> To Be Modified <input type="checkbox"/> To be Removed <input type="checkbox"/> Replacement Unit <input type="checkbox"/> To be Replaced	N/A	N/A
							1995	32B				
34	Regenerator Heater	Heatec	Heatec	H191-095	15 MMBtu/hr	15 MMBtu/hr	1991	N/A	3100 0404	<input checked="" type="checkbox"/> Existing (unchanged) <input type="checkbox"/> New/Additional <input type="checkbox"/> To Be Modified <input type="checkbox"/> To be Removed <input type="checkbox"/> Replacement Unit <input type="checkbox"/> To be Replaced	N/A	N/A
							1995	34				

Unit Number ¹	Source Description	Make	Model #	Serial #	Manufacturer's Rated Capacity ³ (Specify Units)	Requested Permitted Capacity ³ (Specify Units)	Date of Manufacture ²	Controlled by Unit #	Source Classification Code (SCC)	For Each Piece of Equipment, Check One	RICE Ignition Type (CI, SI, 4SLB, 4SRB, 2SLB) ⁴	Replacing Unit No.
							Date of Construction/Reconstruction ²	Emissions vented to Stack #				
36	Boiler	Rentech/Zinc	N/A	9049307	99 MMBtu/hr	99 MMBtu/hr	2005	N/A	3100 0404	<input checked="" type="checkbox"/> Existing (unchanged) <input type="checkbox"/> To be Removed <input type="checkbox"/> New/Additional <input type="checkbox"/> Replacement Unit <input type="checkbox"/> To Be Modified <input type="checkbox"/> To be Replaced	N/A	N/A
							2006	36				
37	Boiler	Rentech/Zinc	N/A	9049303	99 MMBtu/hr	99 MMBtu/hr	2012	N/A	3100 0404	<input checked="" type="checkbox"/> Existing (unchanged) <input type="checkbox"/> To be Removed <input type="checkbox"/> New/Additional <input type="checkbox"/> Replacement Unit <input type="checkbox"/> To Be Modified <input type="checkbox"/> To be Replaced	N/A	N/A
							2010	37				
FUG	Fugitive Equipment Leak Emissions	N/A	N/A	N/A	N/A	N/A	N/A	N/A	3100 0306	<input checked="" type="checkbox"/> Existing (unchanged) <input type="checkbox"/> To be Removed <input type="checkbox"/> New/Additional <input type="checkbox"/> Replacement Unit <input type="checkbox"/> To Be Modified <input type="checkbox"/> To be Replaced	N/A	N/A
							N/A	FUG				
TK-2	Storage Tank - Gasoline	N/A	N/A	N/A	11.9 bbl	11.9 bbl	1985	N/A	4060 0061	<input checked="" type="checkbox"/> Existing (unchanged) <input type="checkbox"/> To be Removed <input type="checkbox"/> New/Additional <input type="checkbox"/> Replacement Unit <input type="checkbox"/> To Be Modified <input type="checkbox"/> To be Replaced	N/A	N/A
							2005	TK-2				
AGI Flare	AGI Flare	Flare King	Flare King	N/A	1.2 MMscf/d	1.2 MMscf/d	2009	N/A	3100 0209	<input checked="" type="checkbox"/> Existing (unchanged) <input type="checkbox"/> To be Removed <input type="checkbox"/> New/Additional <input type="checkbox"/> Replacement Unit <input type="checkbox"/> To Be Modified <input type="checkbox"/> To be Replaced	N/A	N/A
							2009	50				
AM-10	Amine Unit	N/A	N/A	N/A	225 MMscf/d	225 MMscf/d	N/A	2, AGI	3100 0305	<input checked="" type="checkbox"/> Existing (unchanged) <input type="checkbox"/> To be Removed <input type="checkbox"/> New/Additional <input type="checkbox"/> Replacement Unit <input type="checkbox"/> To Be Modified <input type="checkbox"/> To be Replaced	N/A	N/A
							N/A	2, AGI Flare				
DH-10	Glycol Dehydrator	N/A	N/A	N/A	27 MMscf/d	27 MMscf/d	2012	N/A	3100 0303	<input checked="" type="checkbox"/> Existing (unchanged) <input type="checkbox"/> To be Removed <input type="checkbox"/> New/Additional <input type="checkbox"/> Replacement Unit <input type="checkbox"/> To Be Modified <input type="checkbox"/> To be Replaced	N/A	N/A
							6/1/2012	4a				
CT-1	South Cooling Tower	N/A	N/A	N/A	12,800 gpm	12,800 gpm	Unknown	N/A	3850 0101	<input checked="" type="checkbox"/> Existing (unchanged) <input type="checkbox"/> To be Removed <input type="checkbox"/> New/Additional <input type="checkbox"/> Replacement Unit <input type="checkbox"/> To Be Modified <input type="checkbox"/> To be Replaced	N/A	N/A
								CT-1				
CT-2	North Cooling Tower	N/A	N/A	N/A	4,090 gpm	4,090 gpm	Unknown	N/A	3850 0101	<input checked="" type="checkbox"/> Existing (unchanged) <input type="checkbox"/> To be Removed <input type="checkbox"/> New/Additional <input type="checkbox"/> Replacement Unit <input type="checkbox"/> To Be Modified <input type="checkbox"/> To be Replaced	N/A	N/A
								CT-2				
TK-VRU ⁵	Seven Condensate Tanks controlled by common VRU	N/A	N/A	N/A	750 bbl x 5 (1-5), 400 bbl (6), 210 bbl (7)	750 bbl x 5 (1-5), 400 bbl (6), 210 bbl (7)	2012	VRU	4040 0321	<input checked="" type="checkbox"/> Existing (unchanged) <input type="checkbox"/> To be Removed <input type="checkbox"/> New/Additional <input type="checkbox"/> Replacement Unit <input type="checkbox"/> To Be Modified <input type="checkbox"/> To be Replaced	N/A	N/A
								TBD				
TK-VRUTMP	Two Condensate Tanks controlled by common VRU. (Previously listed as TK39 and 40)	N/A	N/A	N/A	1500 bbl x 2	1500 bbl x 2	1954	VRU-TMP	4040 0321	<input checked="" type="checkbox"/> Existing (unchanged) <input type="checkbox"/> To be Removed <input type="checkbox"/> New/Additional <input type="checkbox"/> Replacement Unit <input type="checkbox"/> To Be Modified <input type="checkbox"/> To be Replaced	N/A	N/A
								TK-VRUTMP				

¹ Unit numbers must correspond to unit numbers in the previous permit unless a complete cross reference table of all units in both permits is provided.

² Specify dates required to determine regulatory applicability.

³ To properly account for power conversion efficiencies, generator set rated capacity shall be reported as the rated capacity of the engine in horsepower, not the kilowatt capacity of the generator set.

⁴ "4SLB" means four stroke lean burn engine, "4SRB" means four stroke rich burn engine, "2SLB" means two stroke lean burn engine, "CI" means compression ignition, and "SI" means spark ignition

⁵ The TK-VRU units are currently permitted but have not been installed at the time of application. TK-VRU and TK-VRUTMP will not run simultaneously.

Table 2-B: Insignificant Activities¹ (20.2.70 NMAC) OR Exempted Equipment (20.2.72 NMAC)

All 20.2.70 NMAC (Title V) applications must list all Insignificant Activities in this table. All 20.2.72 NMAC applications must list Exempted Equipment in this table. If equipment listed on this table is exempt under 20.2.72.202.B.5, include emissions calculations and emissions totals for 202.B.5 "similar functions" units, operations, and activities in Section 6, Calculations. Equipment and activities exempted under 20.2.72.202 NMAC may not necessarily be Insignificant under 20.2.70 NMAC (and vice versa). Unit & stack numbering must be consistent throughout the application package. Per Exemptions Policy 02-012.00 (see http://www.env.nm.gov/aqb/permit/aqb_pol.html), 20.2.72.202.B NMAC Exemptions do not apply, but 20.2.72.202.A NMAC exemptions do apply to NOI facilities under 20.2.73 NMAC. List 20.2.72.301.D.4 NMAC Auxiliary Equipment for Streamline applications in Table 2-A. The List of Insignificant Activities (for TV) can be found online at <http://www.env.nm.gov/aqb/forms/InsignificantListTitleV.pdf>. TV sources may elect to enter both TV Insignificant Activities and Part 72 Exemptions on this form.

Unit Number	Source Description	Manufacturer	Model No.	Max Capacity	List Specific 20.2.72.202 NMAC Exemption (e.g. 20.2.72.202.B.5)	Date of Manufacture /Reconstruction ²	For Each Piece of Equipment, Check One
			Serial No.	Capacity Units	Insignificant Activity citation (e.g. IA List Item #1.a)		
TK-1	Firewater	Unknown	N/A	9065	Not a source of regulated pollutants	1/1/1995	<input checked="" type="checkbox"/> Existing (unchanged) <input type="checkbox"/> To be Removed <input type="checkbox"/> New/Additional <input type="checkbox"/> Replacement Unit <input type="checkbox"/> To Be Modified <input type="checkbox"/> To be Replaced
			N/A	bbls	Insignificant Activity Item #1.a	Unknown	
TK-2	Firewater	Unknown	N/A	3500	Not a source of regulated pollutants	1/1/1995	<input checked="" type="checkbox"/> Existing (unchanged) <input type="checkbox"/> To be Removed <input type="checkbox"/> New/Additional <input type="checkbox"/> Replacement Unit <input type="checkbox"/> To Be Modified <input type="checkbox"/> To be Replaced
			N/A	bbls	Insignificant Activity Item #1.a	Unknown	
TK-3	Firewater	Unknown	N/A	3500	Not a source of regulated pollutants	1/1/1995	<input checked="" type="checkbox"/> Existing (unchanged) <input type="checkbox"/> To be Removed <input type="checkbox"/> New/Additional <input type="checkbox"/> Replacement Unit <input type="checkbox"/> To Be Modified <input type="checkbox"/> To be Replaced
			N/A	bbls	Insignificant Activity Item #1.a	Unknown	
TK-4	Stoddard	Unknown	N/A	564	20.2.72.202.B.2.a NMAC	Unknown	<input checked="" type="checkbox"/> Existing (unchanged) <input type="checkbox"/> To be Removed <input type="checkbox"/> New/Additional <input type="checkbox"/> Replacement Unit <input type="checkbox"/> To Be Modified <input type="checkbox"/> To be Replaced
			N/A	gal	Insignificant Activity Item #5	Unknown	
TK-5	Detergent	Unknown	N/A	225	20.2.72.202.B.2.a NMAC	Unknown	<input checked="" type="checkbox"/> Existing (unchanged) <input type="checkbox"/> To be Removed <input type="checkbox"/> New/Additional <input type="checkbox"/> Replacement Unit <input type="checkbox"/> To Be Modified <input type="checkbox"/> To be Replaced
			N/A	gal	Insignificant Activity Item #5	Unknown	
TK-6	Detergent	Unknown	N/A	300	20.2.72.202.B.2.a NMAC	Unknown	<input checked="" type="checkbox"/> Existing (unchanged) <input type="checkbox"/> To be Removed <input type="checkbox"/> New/Additional <input type="checkbox"/> Replacement Unit <input type="checkbox"/> To Be Modified <input type="checkbox"/> To be Replaced
			N/A	gal	Insignificant Activity Item #5	Unknown	
TK-7	Solvent	Unknown	N/A	300	20.2.72.202.B.2.a NMAC	Unknown	<input checked="" type="checkbox"/> Existing (unchanged) <input type="checkbox"/> To be Removed <input type="checkbox"/> New/Additional <input type="checkbox"/> Replacement Unit <input type="checkbox"/> To Be Modified <input type="checkbox"/> To be Replaced
			N/A	gal	Insignificant Activity Item #5	Unknown	
TK-8	Lube Oil	Unknown	N/A	564	20.2.72.202.B.2.a NMAC	Unknown	<input checked="" type="checkbox"/> Existing (unchanged) <input type="checkbox"/> To be Removed <input type="checkbox"/> New/Additional <input type="checkbox"/> Replacement Unit <input type="checkbox"/> To Be Modified <input type="checkbox"/> To be Replaced
			N/A	gal	Insignificant Activity Item #5	Unknown	
TK-9	Ethylene Glycol	Unknown	N/A	564	20.2.72.202.B.2.a NMAC	Unknown	<input checked="" type="checkbox"/> Existing (unchanged) <input type="checkbox"/> To be Removed <input type="checkbox"/> New/Additional <input type="checkbox"/> Replacement Unit <input type="checkbox"/> To Be Modified <input type="checkbox"/> To be Replaced
			N/A	gal	Insignificant Activity Item #5	Unknown	
TK-10	Lube Oil	Unknown	N/A	30	20.2.72.202.B.2.a NMAC	Unknown	<input checked="" type="checkbox"/> Existing (unchanged) <input type="checkbox"/> To be Removed <input type="checkbox"/> New/Additional <input type="checkbox"/> Replacement Unit <input type="checkbox"/> To Be Modified <input type="checkbox"/> To be Replaced
			N/A	gal	Insignificant Activity Item #5	Unknown	
TK-11	Methanol	Unknown	N/A	168	20.2.72.202.B.5 NMAC	Unknown	<input checked="" type="checkbox"/> Existing (unchanged) <input type="checkbox"/> To be Removed <input type="checkbox"/> New/Additional <input type="checkbox"/> Replacement Unit <input type="checkbox"/> To Be Modified <input type="checkbox"/> To be Replaced
			N/A	gal	Insignificant Activity Item #1.a	Unknown	
TK-12	Sodium Hypochlorite	Unknown	N/A	479	20.2.72.202.B.2.a NMAC	Unknown	<input checked="" type="checkbox"/> Existing (unchanged) <input type="checkbox"/> To be Removed <input type="checkbox"/> New/Additional <input type="checkbox"/> Replacement Unit <input type="checkbox"/> To Be Modified <input type="checkbox"/> To be Replaced
			N/A	gal	Insignificant Activity Item #5	Unknown	
TK-13	Sodium Hypochlorite	Unknown	N/A	479	20.2.72.202.B.2.a NMAC	Unknown	<input checked="" type="checkbox"/> Existing (unchanged) <input type="checkbox"/> To be Removed <input type="checkbox"/> New/Additional <input type="checkbox"/> Replacement Unit <input type="checkbox"/> To Be Modified <input type="checkbox"/> To be Replaced
			N/A	gal	Insignificant Activity Item #5	Unknown	
TK-14	Chemtreat BL-4830	Unknown	N/A	500	20.2.72.202.B.5 NMAC	Unknown	<input checked="" type="checkbox"/> Existing (unchanged) <input type="checkbox"/> To be Removed <input type="checkbox"/> New/Additional <input type="checkbox"/> Replacement Unit <input type="checkbox"/> To Be Modified <input type="checkbox"/> To be Replaced
			N/A	gal	Insignificant Activity Item #1.a	Unknown	

Unit Number	Source Description	Manufacturer	Model No.	Max Capacity	List Specific 20.2.72.202 NMAC Exemption (e.g. 20.2.72.202.B.5)	Date of Manufacture /Reconstruction ²	For Each Piece of Equipment, Check One
			Serial No.	Capacity Units	Insignificant Activity citation (e.g. IA List Item #1.a)	Date of Installation /Construction ²	
TK-15	93% Sulfuric Acid	Unknown	N/A	7000	20.2.72.202.B.5 NMAC	Unknown	<input checked="" type="checkbox"/> Existing (unchanged) <input type="checkbox"/> To be Removed <input type="checkbox"/> New/Additional <input type="checkbox"/> Replacement Unit <input type="checkbox"/> To Be Modified <input type="checkbox"/> To be Replaced
			N/A	gal	Insignificant Activity Item #1.a	Unknown	<input checked="" type="checkbox"/> Existing (unchanged) <input type="checkbox"/> To be Removed <input type="checkbox"/> New/Additional <input type="checkbox"/> Replacement Unit <input type="checkbox"/> To Be Modified <input type="checkbox"/> To be Replaced
TK-16	Chemtreat BL-4830	Unknown	N/A	500	20.2.72.202.B.2.a NMAC	Unknown	<input checked="" type="checkbox"/> Existing (unchanged) <input type="checkbox"/> To be Removed <input type="checkbox"/> New/Additional <input type="checkbox"/> Replacement Unit <input type="checkbox"/> To Be Modified <input type="checkbox"/> To be Replaced
			N/A	gal	Insignificant Activity Item #5	Unknown	<input checked="" type="checkbox"/> Existing (unchanged) <input type="checkbox"/> To be Removed <input type="checkbox"/> New/Additional <input type="checkbox"/> Replacement Unit <input type="checkbox"/> To Be Modified <input type="checkbox"/> To be Replaced
TK-17	Chemtreat BL-1258	Unknown	N/A	550	20.2.72.202.B.2.a NMAC	Unknown	<input checked="" type="checkbox"/> Existing (unchanged) <input type="checkbox"/> To be Removed <input type="checkbox"/> New/Additional <input type="checkbox"/> Replacement Unit <input type="checkbox"/> To Be Modified <input type="checkbox"/> To be Replaced
			N/A	gal	Insignificant Activity Item #5	Unknown	<input checked="" type="checkbox"/> Existing (unchanged) <input type="checkbox"/> To be Removed <input type="checkbox"/> New/Additional <input type="checkbox"/> Replacement Unit <input type="checkbox"/> To Be Modified <input type="checkbox"/> To be Replaced
TK-18	Lube Oil	Unknown	N/A	55	20.2.72.202.B.5 NMAC	Unknown	<input checked="" type="checkbox"/> Existing (unchanged) <input type="checkbox"/> To be Removed <input type="checkbox"/> New/Additional <input type="checkbox"/> Replacement Unit <input type="checkbox"/> To Be Modified <input type="checkbox"/> To be Replaced
			N/A	gal	Insignificant Activity Item #1.a	Unknown	<input checked="" type="checkbox"/> Existing (unchanged) <input type="checkbox"/> To be Removed <input type="checkbox"/> New/Additional <input type="checkbox"/> Replacement Unit <input type="checkbox"/> To Be Modified <input type="checkbox"/> To be Replaced
TK-19	Lube Oil	Unknown	N/A	55	20.2.72.202.B.2.a NMAC	Unknown	<input checked="" type="checkbox"/> Existing (unchanged) <input type="checkbox"/> To be Removed <input type="checkbox"/> New/Additional <input type="checkbox"/> Replacement Unit <input type="checkbox"/> To Be Modified <input type="checkbox"/> To be Replaced
			N/A	gal	Insignificant Activity Item #5	Unknown	<input checked="" type="checkbox"/> Existing (unchanged) <input type="checkbox"/> To be Removed <input type="checkbox"/> New/Additional <input type="checkbox"/> Replacement Unit <input type="checkbox"/> To Be Modified <input type="checkbox"/> To be Replaced
TK-20	Ethylene Glycol	Unknown	N/A	1128	20.2.72.202.B.2.a NMAC	Unknown	<input checked="" type="checkbox"/> Existing (unchanged) <input type="checkbox"/> To be Removed <input type="checkbox"/> New/Additional <input type="checkbox"/> Replacement Unit <input type="checkbox"/> To Be Modified <input type="checkbox"/> To be Replaced
			N/A	gal	Insignificant Activity Item #5	Unknown	<input checked="" type="checkbox"/> Existing (unchanged) <input type="checkbox"/> To be Removed <input type="checkbox"/> New/Additional <input type="checkbox"/> Replacement Unit <input type="checkbox"/> To Be Modified <input type="checkbox"/> To be Replaced
TK-21	BL-4350	Unknown	N/A	500	20.2.72.202.B.2.a NMAC	Unknown	<input checked="" type="checkbox"/> Existing (unchanged) <input type="checkbox"/> To be Removed <input type="checkbox"/> New/Additional <input type="checkbox"/> Replacement Unit <input type="checkbox"/> To Be Modified <input type="checkbox"/> To be Replaced
			N/A	gal	Insignificant Activity Item #5	Unknown	<input checked="" type="checkbox"/> Existing (unchanged) <input type="checkbox"/> To be Removed <input type="checkbox"/> New/Additional <input type="checkbox"/> Replacement Unit <input type="checkbox"/> To Be Modified <input type="checkbox"/> To be Replaced
TK-22	BL-1558	Unknown	N/A	500	20.2.72.202.B.2.a NMAC	Unknown	<input checked="" type="checkbox"/> Existing (unchanged) <input type="checkbox"/> To be Removed <input type="checkbox"/> New/Additional <input type="checkbox"/> Replacement Unit <input type="checkbox"/> To Be Modified <input type="checkbox"/> To be Replaced
			N/A	gal	Insignificant Activity Item #5	Unknown	<input checked="" type="checkbox"/> Existing (unchanged) <input type="checkbox"/> To be Removed <input type="checkbox"/> New/Additional <input type="checkbox"/> Replacement Unit <input type="checkbox"/> To Be Modified <input type="checkbox"/> To be Replaced
TK-23	Water	Unknown	N/A	500	Not a source of regulated pollutants	Unknown	<input checked="" type="checkbox"/> Existing (unchanged) <input type="checkbox"/> To be Removed <input type="checkbox"/> New/Additional <input type="checkbox"/> Replacement Unit <input type="checkbox"/> To Be Modified <input type="checkbox"/> To be Replaced
			N/A	bbls	Insignificant Activity Item #1.a	Unknown	<input checked="" type="checkbox"/> Existing (unchanged) <input type="checkbox"/> To be Removed <input type="checkbox"/> New/Additional <input type="checkbox"/> Replacement Unit <input type="checkbox"/> To Be Modified <input type="checkbox"/> To be Replaced
TK-24	Water	Unknown	N/A	500	Not a source of regulated pollutants	Unknown	<input checked="" type="checkbox"/> Existing (unchanged) <input type="checkbox"/> To be Removed <input type="checkbox"/> New/Additional <input type="checkbox"/> Replacement Unit <input type="checkbox"/> To Be Modified <input type="checkbox"/> To be Replaced
			N/A	bbls	Insignificant Activity Item #1.a	Unknown	<input checked="" type="checkbox"/> Existing (unchanged) <input type="checkbox"/> To be Removed <input type="checkbox"/> New/Additional <input type="checkbox"/> Replacement Unit <input type="checkbox"/> To Be Modified <input type="checkbox"/> To be Replaced
TK-25	Sodium Hydroxide	Unknown	N/A	220	20.2.72.202.B.2.a NMAC	Unknown	<input checked="" type="checkbox"/> Existing (unchanged) <input type="checkbox"/> To be Removed <input type="checkbox"/> New/Additional <input type="checkbox"/> Replacement Unit <input type="checkbox"/> To Be Modified <input type="checkbox"/> To be Replaced
			N/A	gal	Insignificant Activity Item #5	Unknown	<input checked="" type="checkbox"/> Existing (unchanged) <input type="checkbox"/> To be Removed <input type="checkbox"/> New/Additional <input type="checkbox"/> Replacement Unit <input type="checkbox"/> To Be Modified <input type="checkbox"/> To be Replaced
TK-26	Nalco EC15380	Unknown	N/A	479	20.2.72.202.B.2.a NMAC	Unknown	<input checked="" type="checkbox"/> Existing (unchanged) <input type="checkbox"/> To be Removed <input type="checkbox"/> New/Additional <input type="checkbox"/> Replacement Unit <input type="checkbox"/> To Be Modified <input type="checkbox"/> To be Replaced
			N/A	gal	Insignificant Activity Item #5	Unknown	<input checked="" type="checkbox"/> Existing (unchanged) <input type="checkbox"/> To be Removed <input type="checkbox"/> New/Additional <input type="checkbox"/> Replacement Unit <input type="checkbox"/> To Be Modified <input type="checkbox"/> To be Replaced
TK-27	Lube Oil	Unknown	N/A	55	20.2.72.202.B.2.a NMAC	Unknown	<input checked="" type="checkbox"/> Existing (unchanged) <input type="checkbox"/> To be Removed <input type="checkbox"/> New/Additional <input type="checkbox"/> Replacement Unit <input type="checkbox"/> To Be Modified <input type="checkbox"/> To be Replaced
			N/A	gal	Insignificant Activity Item #5	Unknown	<input checked="" type="checkbox"/> Existing (unchanged) <input type="checkbox"/> To be Removed <input type="checkbox"/> New/Additional <input type="checkbox"/> Replacement Unit <input type="checkbox"/> To Be Modified <input type="checkbox"/> To be Replaced
TK-28	Lube Oil	Unknown	N/A	55	20.2.72.202.B.2.a NMAC	Unknown	<input checked="" type="checkbox"/> Existing (unchanged) <input type="checkbox"/> To be Removed <input type="checkbox"/> New/Additional <input type="checkbox"/> Replacement Unit <input type="checkbox"/> To Be Modified <input type="checkbox"/> To be Replaced
			N/A	gal	Insignificant Activity Item #5	Unknown	<input checked="" type="checkbox"/> Existing (unchanged) <input type="checkbox"/> To be Removed <input type="checkbox"/> New/Additional <input type="checkbox"/> Replacement Unit <input type="checkbox"/> To Be Modified <input type="checkbox"/> To be Replaced
TK-29	Nalco 1538A	Unknown	N/A	718	20.2.72.202.B.2.a NMAC	Unknown	<input checked="" type="checkbox"/> Existing (unchanged) <input type="checkbox"/> To be Removed <input type="checkbox"/> New/Additional <input type="checkbox"/> Replacement Unit <input type="checkbox"/> To Be Modified <input type="checkbox"/> To be Replaced
			N/A	bbl	Insignificant Activity Item #5	Unknown	<input checked="" type="checkbox"/> Existing (unchanged) <input type="checkbox"/> To be Removed <input type="checkbox"/> New/Additional <input type="checkbox"/> Replacement Unit <input type="checkbox"/> To Be Modified <input type="checkbox"/> To be Replaced
TK-30	Synergy Pertosolv	Unknown	N/A	300	20.2.72.202.B.2.a NMAC	Unknown	<input checked="" type="checkbox"/> Existing (unchanged) <input type="checkbox"/> To be Removed <input type="checkbox"/> New/Additional <input type="checkbox"/> Replacement Unit <input type="checkbox"/> To Be Modified <input type="checkbox"/> To be Replaced
			N/A	gal	Insignificant Activity Item #5	Unknown	<input checked="" type="checkbox"/> Existing (unchanged) <input type="checkbox"/> To be Removed <input type="checkbox"/> New/Additional <input type="checkbox"/> Replacement Unit <input type="checkbox"/> To Be Modified <input type="checkbox"/> To be Replaced
TK-31	Lube Oil	Unknown	N/A	564	20.2.72.202.B.2.a NMAC	unknown	<input checked="" type="checkbox"/> Existing (unchanged) <input type="checkbox"/> To be Removed <input type="checkbox"/> New/Additional <input type="checkbox"/> Replacement Unit <input type="checkbox"/> To Be Modified <input type="checkbox"/> To be Replaced
			N/A	gal	Insignificant Activity Item #5	Unknown	<input checked="" type="checkbox"/> Existing (unchanged) <input type="checkbox"/> To be Removed <input type="checkbox"/> New/Additional <input type="checkbox"/> Replacement Unit <input type="checkbox"/> To Be Modified <input type="checkbox"/> To be Replaced

Unit Number	Source Description	Manufacturer	Model No.	Max Capacity	List Specific 20.2.72.202 NMAC Exemption (e.g. 20.2.72.202.B.5)	Date of Manufacture /Reconstruction ²	For Each Piece of Equipment, Check One
			Serial No.	Capacity Units	Insignificant Activity citation (e.g. IA List Item #1.a)	Date of Installation /Construction ²	
TK-32	Synergy Pertosolv	Unknown	N/A	525	20.2.72.202.B.2.a NMAC	Unknown	<input checked="" type="checkbox"/> Existing (unchanged) <input type="checkbox"/> To be Removed <input type="checkbox"/> New/Additional <input type="checkbox"/> Replacement Unit <input type="checkbox"/> To Be Modified <input type="checkbox"/> To be Replaced
			N/A	gal	Insignificant Activity Item #5	Unknown	
TK-33	Synergy Pertosolv	Unknown	N/A	525	20.2.72.202.B.2.a NMAC	Unknown	<input checked="" type="checkbox"/> Existing (unchanged) <input type="checkbox"/> To be Removed <input type="checkbox"/> New/Additional <input type="checkbox"/> Replacement Unit <input type="checkbox"/> To Be Modified <input type="checkbox"/> To be Replaced
			N/A	bbl	Insignificant Activity Item #5	Unknown	
TK-34	Gyptron	Unknown	N/A	55	20.2.72.202.B.2.a NMAC	Unknown	<input checked="" type="checkbox"/> Existing (unchanged) <input type="checkbox"/> To be Removed <input type="checkbox"/> New/Additional <input type="checkbox"/> Replacement Unit <input type="checkbox"/> To Be Modified <input type="checkbox"/> To be Replaced
			N/A	bbl	Insignificant Activity Item #5	Unknown	
TK-35	Gyptron	Unknown	N/A	55	20.2.72.202.B.2.a NMAC	Unknown	<input checked="" type="checkbox"/> Existing (unchanged) <input type="checkbox"/> To be Removed <input type="checkbox"/> New/Additional <input type="checkbox"/> Replacement Unit <input type="checkbox"/> To Be Modified <input type="checkbox"/> To be Replaced
			N/A	bbl	Insignificant Activity Item #5	Unknown	
TK-36	Methanol	Unknown	N/A	564	20.2.72.202.B.2.a NMAC	Unknown	<input checked="" type="checkbox"/> Existing (unchanged) <input type="checkbox"/> To be Removed <input type="checkbox"/> New/Additional <input type="checkbox"/> Replacement Unit <input type="checkbox"/> To Be Modified <input type="checkbox"/> To be Replaced
			N/A	bbl	Insignificant Activity Item #5	Unknown	
TK-37	Lube Oil	Unknown	N/A	752	20.2.72.202.B.2.a NMAC	Unknown	<input checked="" type="checkbox"/> Existing (unchanged) <input type="checkbox"/> To be Removed <input type="checkbox"/> New/Additional <input type="checkbox"/> Replacement Unit <input type="checkbox"/> To Be Modified <input type="checkbox"/> To be Replaced
			N/A	gal	Insignificant Activity Item #5	Unknown	
TK-38	Methanol	Unknown	N/A	1128	20.2.72.202.B.5 NMAC	Unknown	<input checked="" type="checkbox"/> Existing (unchanged) <input type="checkbox"/> To be Removed <input type="checkbox"/> New/Additional <input type="checkbox"/> Replacement Unit <input type="checkbox"/> To Be Modified <input type="checkbox"/> To be Replaced
			N/A	gal	Insignificant Activity Item #1.a	Unknown	
TK-39	Defoam	Unknown	N/A	55	20.2.72.202.B.2.a NMAC	Unknown	<input checked="" type="checkbox"/> Existing (unchanged) <input type="checkbox"/> To be Removed <input type="checkbox"/> New/Additional <input type="checkbox"/> Replacement Unit <input type="checkbox"/> To Be Modified <input type="checkbox"/> To be Replaced
			N/A	gal	Insignificant Activity Item #5	Unknown	
TK-40	North Amine Tank	Unknown	N/A	5000	20.2.72.202.B.2.a NMAC	Unknown	<input checked="" type="checkbox"/> Existing (unchanged) <input type="checkbox"/> To be Removed <input type="checkbox"/> New/Additional <input type="checkbox"/> Replacement Unit <input type="checkbox"/> To Be Modified <input type="checkbox"/> To be Replaced
			N/A	gal	Insignificant Activity Item #5	Unknown	
TK-41	South Amine Tank	Unknown	N/A	5000	20.2.72.202.B.2.a NMAC	Unknown	<input checked="" type="checkbox"/> Existing (unchanged) <input type="checkbox"/> To be Removed <input type="checkbox"/> New/Additional <input type="checkbox"/> Replacement Unit <input type="checkbox"/> To Be Modified <input type="checkbox"/> To be Replaced
			N/A	gal	Insignificant Activity Item #5	Unknown	
TK-42	Glycol	Unknown	N/A	1128	20.2.72.202.B.2.a NMAC	Unknown	<input checked="" type="checkbox"/> Existing (unchanged) <input type="checkbox"/> To be Removed <input type="checkbox"/> New/Additional <input type="checkbox"/> Replacement Unit <input type="checkbox"/> To Be Modified <input type="checkbox"/> To be Replaced
			N/A	bbls	Insignificant Activity Item #5	Unknown	
TK-43	West Amine Surge Tank	Unknown	N/A	5000	20.2.72.202.B.2.a NMAC	Unknown	<input checked="" type="checkbox"/> Existing (unchanged) <input type="checkbox"/> To be Removed <input type="checkbox"/> New/Additional <input type="checkbox"/> Replacement Unit <input type="checkbox"/> To Be Modified <input type="checkbox"/> To be Replaced
			N/A	bbls	Insignificant Activity Item #5	Unknown	
TK-44	East Amine Surge Tank	Unknown	N/A	5000	20.2.72.202.B.2.a NMAC	Unknown	<input checked="" type="checkbox"/> Existing (unchanged) <input type="checkbox"/> To be Removed <input type="checkbox"/> New/Additional <input type="checkbox"/> Replacement Unit <input type="checkbox"/> To Be Modified <input type="checkbox"/> To be Replaced
			N/A	bbls	Insignificant Activity Item #5	Unknown	
TK-45	Lube Oil	Unknown	N/A	55	20.2.72.202.B.2.a NMAC	Unknown	<input checked="" type="checkbox"/> Existing (unchanged) <input type="checkbox"/> To be Removed <input type="checkbox"/> New/Additional <input type="checkbox"/> Replacement Unit <input type="checkbox"/> To Be Modified <input type="checkbox"/> To be Replaced
			N/A	gal	Insignificant Activity Item #5	Unknown	
TK-46	Detergent	Unknown	N/A	300	20.2.72.202.B.2.a NMAC	Unknown	<input checked="" type="checkbox"/> Existing (unchanged) <input type="checkbox"/> To be Removed <input type="checkbox"/> New/Additional <input type="checkbox"/> Replacement Unit <input type="checkbox"/> To Be Modified <input type="checkbox"/> To be Replaced
			N/A	gal	Insignificant Activity Item #5	Unknown	
TK-47	Lube Oil	Unknown	N/A	752	20.2.72.202.B.2.a NMAC	Unknown	<input checked="" type="checkbox"/> Existing (unchanged) <input type="checkbox"/> To be Removed <input type="checkbox"/> New/Additional <input type="checkbox"/> Replacement Unit <input type="checkbox"/> To Be Modified <input type="checkbox"/> To be Replaced
			N/A	gal	Insignificant Activity Item #5	Unknown	
TK-48	Lube Oil	Unknown	N/A	752	20.2.72.202.B.2.a NMAC	Unknown	<input checked="" type="checkbox"/> Existing (unchanged) <input type="checkbox"/> To be Removed <input type="checkbox"/> New/Additional <input type="checkbox"/> Replacement Unit <input type="checkbox"/> To Be Modified <input type="checkbox"/> To be Replaced
			N/A	gal	Insignificant Activity Item #5	Unknown	

Unit Number	Source Description	Manufacturer	Model No.	Max Capacity	List Specific 20.2.72.202 NMAC Exemption (e.g. 20.2.72.202.B.5)	Date of Manufacture /Reconstruction ²	For Each Piece of Equipment, Check One
			Serial No.	Capacity Units	Insignificant Activity citation (e.g. IA List Item #1.a)	Date of Installation /Construction ²	
TK-49	Lube Oil	Unknown	N/A	150	20.2.72.202.B.2.a NMAC	Unknown	<input checked="" type="checkbox"/> Existing (unchanged) <input type="checkbox"/> To be Removed <input type="checkbox"/> New/Additional <input type="checkbox"/> Replacement Unit <input type="checkbox"/> To Be Modified <input type="checkbox"/> To be Replaced
			N/A	gal	Insignificant Activity Item #5	Unknown	
TK-50	Clark Lube Oil Drain Tk	Unknown	N/A	564	20.2.72.202.B.2.a NMAC	Unknown	<input checked="" type="checkbox"/> Existing (unchanged) <input type="checkbox"/> To be Removed <input type="checkbox"/> New/Additional <input type="checkbox"/> Replacement Unit <input type="checkbox"/> To Be Modified <input type="checkbox"/> To be Replaced
			N/A	gal	Insignificant Activity Item #5	Unknown	
TK-51	Clark Lube Oil Drain Tk	Unknown	N/A	564	20.2.72.202.B.2.a NMAC	Unknown	<input checked="" type="checkbox"/> Existing (unchanged) <input type="checkbox"/> To be Removed <input type="checkbox"/> New/Additional <input type="checkbox"/> Replacement Unit <input type="checkbox"/> To Be Modified <input type="checkbox"/> To be Replaced
			N/A	gal	Insignificant Activity Item #5	Unknown	
TK-52	Clark Jacket Water Drain Tk	Unknownm	N/A	564	Not a source of regulated pollutants	Unknown	<input checked="" type="checkbox"/> Existing (unchanged) <input type="checkbox"/> To be Removed <input type="checkbox"/> New/Additional <input type="checkbox"/> Replacement Unit <input type="checkbox"/> To Be Modified <input type="checkbox"/> To be Replaced
			N/A	gal	Insignificant Activity Item #1.a	Unknown	
TK-53	Clark Jacket Water Feed Tk	Unknown	N/A	1128	Not a source of regulated pollutants	Unknown	<input checked="" type="checkbox"/> Existing (unchanged) <input type="checkbox"/> To be Removed <input type="checkbox"/> New/Additional <input type="checkbox"/> Replacement Unit <input type="checkbox"/> To Be Modified <input type="checkbox"/> To be Replaced
			N/A	gal	Insignificant Activity Item #1.a	Unknown	
TK-54	Lube Oil	Unknown	N/A	564	20.2.72.202.B.2.a NMAC	Unknown	<input checked="" type="checkbox"/> Existing (unchanged) <input type="checkbox"/> To be Removed <input type="checkbox"/> New/Additional <input type="checkbox"/> Replacement Unit <input type="checkbox"/> To Be Modified <input type="checkbox"/> To be Replaced
			N/A	gal	Insignificant Activity Item #5	Unknown	
TK-55	Lube Oil	Unknownm	N/A	564	20.2.72.202.B.2.a NMAC	Unknown	<input checked="" type="checkbox"/> Existing (unchanged) <input type="checkbox"/> To be Removed <input type="checkbox"/> New/Additional <input type="checkbox"/> Replacement Unit <input type="checkbox"/> To Be Modified <input type="checkbox"/> To be Replaced
			N/A	gal	Insignificant Activity Item #5	Unknown	
TK-56	Firewater Pump Diesel Tk	Unknown	N/A	564	20.2.72.202.B.2.a NMAC	Unknown	<input checked="" type="checkbox"/> Existing (unchanged) <input type="checkbox"/> To be Removed <input type="checkbox"/> New/Additional <input type="checkbox"/> Replacement Unit <input type="checkbox"/> To Be Modified <input type="checkbox"/> To be Replaced
			N/A	gal	Insignificant Activity Item #5	Unknown	
TK-57	Water	Unknown	N/A	224	20.2.72.202.B.5 NMAC	Unknown	<input checked="" type="checkbox"/> Existing (unchanged) <input type="checkbox"/> To be Removed <input type="checkbox"/> New/Additional <input type="checkbox"/> Replacement Unit <input type="checkbox"/> To Be Modified <input type="checkbox"/> To be Replaced
			N/A	gal	Insignificant Activity Item #1.a	Unknown	
TK-GBW1	Gunbarrel Water Tank	Lide	Lide	500	Not a source of regulated pollutants	N/A	<input checked="" type="checkbox"/> Existing (unchanged) <input type="checkbox"/> To be Removed <input type="checkbox"/> New/Additional <input type="checkbox"/> Replacement Unit <input type="checkbox"/> To Be Modified <input type="checkbox"/> To be Replaced
			1 9095	bbl	Insignificant Activity Item #1.a	Unknown	
TK-GBW2	Gunbarrel Water Tank	Lide	Lide	500	Not a source of regulated pollutants	N/A	<input checked="" type="checkbox"/> Existing (unchanged) <input type="checkbox"/> To be Removed <input type="checkbox"/> New/Additional <input type="checkbox"/> Replacement Unit <input type="checkbox"/> To Be Modified <input type="checkbox"/> To be Replaced
			1 9098	bbl	Insignificant Activity Item #1.a	Unknown	
TK-GBW3	Gunbarrel Water Tank	Lide	N/A	500	Not a source of regulated pollutants	N/A	<input checked="" type="checkbox"/> Existing (unchanged) <input type="checkbox"/> To be Removed <input type="checkbox"/> New/Additional <input type="checkbox"/> Replacement Unit <input type="checkbox"/> To Be Modified <input type="checkbox"/> To be Replaced
			N/A	bbl	Insignificant Activity Item #1.a	Unknown	

¹ Insignificant activities exempted due to size or production rate are defined in 20.2.70.300.D.6, 20.2.70.7.Q NMAC, and the NMED/AQB List of Insignificant Activities, dated September 15, 2008. Emissions from these insignificant activities do not need to be reported, unless specifically requested.

² Specify date(s) required to determine regulatory applicability.

Table 2-C: Emissions Control Equipment

Unit and stack numbering must correspond throughout the application package. Only list control equipment for TAPs if the TAP's maximum uncontrolled emissions rate is over its respective threshold as listed in 20.2.72 NMAC, Subpart V, Tables A and B. In accordance with 20.2.72.203.A(3) and (8) NMAC, 20.2.70.300.D(5)(b) and (e) NMAC, and 20.2.73.200.B(7) NMAC, the permittee shall report all control devices and list each pollutant controlled by the control device regardless if the applicant takes credit for the reduction in emissions.

¹ List each control device on a separate line. For each control device, list all emission units controlled by the control device.

Table 2-D: Maximum Emissions (under normal operating conditions)

This Table was intentionally left blank because it would be identical to Table 2-E.

Maximum Emissions are the emissions at maximum capacity and prior to (in the absence of) pollution control, emission-reducing process equipment, or any other emission reduction. Calculate the hourly emissions using the worst case hourly emissions for each pollutant. For each pollutant, calculate the annual emissions as if the facility were operating at maximum plant capacity without pollution controls for 8760 hours per year, unless otherwise approved by the Department. List Hazardous Air Pollutants (HAP) & Toxic Air Pollutants (TAPs) in Table 2-1. Unit & stack numbering must be consistent throughout the application package. Fill all cells in this table with the emission numbers or a “-” symbol. A “*” symbol indicates that emissions of this pollutant are not expected. Numbers shall be expressed to at least 2 decimal points (e.g. 0.41, 1.41, or 1.41E-4).

¹ **Condensable Particulate Matter:** Include condensable particulate matter emissions for PM10 and PM2.5 if the source is a combustion source. Do not include condensable particulate matter for TSP unless TSP is set equal to PM10 and PM2.5.

Table 2-E: Requested Allowable Emissions

Unit & stack numbering must be consistent throughout the application package. Fill all cells in this table with the emission numbers or a "-" symbol. A "--" symbol indicates that emissions of this pollutant are not expected. Numbers shall be expressed to at least 2 decimal points (e.g. 0.41, 1.41, or 1.41E⁴).

Unit No.	NOx		CO		VOC		SOx		TSP ^{1,2}		PM10 ¹		PM2.5 ¹		H ₂ S		Lead	
	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
2	0.085	0.37	0.39	1.69	0.027	0.12	0.0083	0.036	-	-	-	-	-	-	-	-	-	-
4A	0.23	1.00	1.05	4.58	0.17	0.76	0.023	0.10	-	-	-	-	-	-	-	-	-	-
6	39.29		19.84		3.05		0.010		-	-	0.86		0.86		-	-	-	-
7	39.29		566.08	19.84	283.08	3.05	0.010	0.12	-	-	0.86		10.01	0.86	10.01	-	-	-
8,9,10, or 11	47.49			23.52		6.45		0.0070	-	-	0.57		0.57		-	-	-	-
28	3.47	15.20	3.52	15.42	2.01	8.82	0.91	4.01	-	-	1.33	5.83	1.33	5.83	-	-	-	-
29	11.82	51.78	9.47	41.48	0.33	1.42	0.26	1.16	-	-	0.51	2.24	0.51	2.24	-	-	-	-
30	11.26	49.32	9.02	39.51	0.31	1.36	0.25	1.10	-	-	0.49	2.14	0.49	2.14	-	-	-	-
31	26.03	114.01	4.95	21.60	0.35	1.53	0.13	0.55	-	-	0.24	1.06	0.24	1.06	-	-	-	-
32B	23.72	103.88	4.38	19.19	2.50	10.94	0.12	0.54	-	-	0.24	1.05	0.24	1.05	-	-	-	-
34	1.67	7.30	1.40	6.13	0.092	0.40	0.010	0.044	-	-	0.13	0.044	0.13	0.044	-	-	-	-
36	5.53	24.21	9.29	40.68	0.61	2.66	0.066	0.29	-	-	0.84	3.68	0.84	3.68	-	-	-	-
37	5.53	24.21	9.29	40.68	0.61	2.66	0.066	0.29	-	-	0.84	3.68	0.84	3.68	-	-	-	-
TK-2	-	-	-	-	0.16	0.70	-	-	-	-	-	-	-	-	-	-	-	-
AGI Flare	0.085	0.37	0.39	1.69	0.027	0.12	0.0083	0.036	-	-	-	-	-	-	-	-	-	-
AM-10	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
DH-10	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
TK-VRU	-	-	-	-	27.54	6.03	-	-	-	-	-	-	-	-	-	-	-	-
TK-VRUTMP ³	-	-	-	-	24.56	5.38	-	-	-	-	-	-	-	-	-	-	-	-
CT-1	-	-	-	-	-	-	-	-	-	-	1.92	8.42	0.0078	0.034	-	-	-	-
CT-2	-	-	-	-	-	-	-	-	-	-	0.61	2.69	0.0025	0.011	-	-	-	-
FUG	-	-	-	-	17.74	77.01	-	-	-	-	-	-	-	-	0.11	0.48	-	-
Totals	215.48	957.74	116.34	515.72	89.59	175.32	1.89	8.27	-	-	9.44	40.85	6.92	29.79	0.11	0.48	-	-

¹ Condensable Particulate Matter: Include condensable particulate matter emissions for PM10 and PM2.5 if the source is a combustion source. Do not include condensable particulate matter for TSP unless TSP is set equal to PM10 and PM2.5.

² TSP not included because the the NM TSP standard was repealed on 11/30/2018.

³ Unit TK-VRUTMP will not run while unit TK-VRU is running. Emissions from unit TK-VRUTMP are shown here but are not included in the totals.

Table 2-F: Additional Emissions during Startup, Shutdown, and Routine Maintenance (SSM)

This table is intentionally left blank since all emissions at this facility due to routine or predictable startup, shutdown, or scheduled maintenance are no higher than those listed in Table 2-E and a malfunction emission limit is not already permitted or requested. If you are required to report GHG emissions as described in Section 6a, include any GHG emissions during Startup, Shutdown, and/or Scheduled Maintenance (SSM) in Table 2-P. Provide an explanations of SSM emissions in Section 6 and 6a.

All applications for facilities that have emissions during routine or predictable startup, shutdown or scheduled maintenance (SSM)¹, including NOI applications, must include in this table the Maximum Emissions during routine or predictable startup, shutdown and scheduled maintenance (20.2.7 NMAC, 20.2.72.203.A.3 NMAC, 20.2.73.200.D.2 NMAC). In Section 6 and 6a, provide emissions calculations for all SSM emissions reported in this table. Refer to "Guidance for Submittal of Startup, Shutdown, Maintenance Emissions in Permit Applications (https://www.env.nm.gov/aqb/permit/aqb_pol.html) for more detailed instructions. Numbers shall be expressed to at least 2 decimal points (e.g. 0.41, 1.41, or 1.41E-4).

Unit No.	NOx		CO		VOC		SOx		TSP ^{2,3}		PM10 ²		PM2.5 ²		H ₂ S		Lead	
	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
<i>Start-up, Shutdown & Maintenance Flaring</i>																		
2	14.80	0.88	80.51	4.77	1.56	0.0090	7751.21	45.59	-	-	-	-	-	-	84.02	0.48	-	-
4A	17.75	0.71	96.59	44.39	1.87	7.98E-04	9301.45	4.13	-	-	-	-	-	-	100.83	0.043	-	-
AGI Flare	287.65	4.33	1565.15	23.57	862.27	7.35	2148.40	18.91	-	-	-	-	-	-	23.29	0.20	-	-
<i>Start-up, Shutdown & Maintenance Venting</i>																		
SSM Venting	-	-	-	-	5,391.12	36.26	-	-	-	-	-	-	-	-	62.59	0.31	-	-
<i>Malfunction Flaring & Venting</i>																		
Malfunction ⁴	287.65	10.00	1565.15	10.00	3029.49	10.00	9301.45	10.00	-	-	-	-	-	-	100.83	10.00	-	-
Total SSM & Malfunction	320.20	15.92	1,742.25	82.73	6,021.35	53.63	19,201.06	78.64	-	-	-	-	-	-	270.73	11.04	-	-

¹ For instance, if the short term steady-state Table 2-E emissions are 5 lb/hr and the SSM rate is 12 lb/hr, enter 7 lb/hr in this table. If the annual steady-state Table 2-E emissions are 21.9 TPY, and the number of scheduled SSM events result in annual emissions of 31.9 TPY, enter 10.0 TPY in the table below.

² Condensable Particulate Matter: Include condensable particulate matter emissions for PM10 and PM2.5 if the source is a combustion source. Do not include condensable particulate matter for TSP unless TSP is set equal to PM10 and PM2.5.

³ TSP not included because the the NM TSP standard was repealed on 11/30/2018.

⁴ Hourly emission rate shown for informational purposes only; emissions were calculated assuming each activity lasts 1 hour.

Table 2-G: Stack Exit and Fugitive Emission Rates for Special Stacks

I have elected to leave this table blank because this facility does not have any stacks/vents that split emissions from a single source or combine emissions from more than one source listed in table 2-A. Additionally, the emission rates of all stacks match the Requested allowable emission rates stated in Table 2-E.

Use this table to list stack emissions (requested allowable) from split and combined stacks. List Toxic Air Pollutants (TAPs) and Hazardous Air Pollutants (HAPs) in Table 2-I. List all fugitives that are associated with the normal, routine, and non-emergency operation of the facility. Unit and stack numbering must correspond throughout the application package. Refer to Table 2-E for instructions on use of the “-“ symbol and on significant figures.

Table 2-H: Stack Exit Conditions

Unit and stack numbering must correspond throughout the application package. Include the stack exit conditions for each unit that emits from a stack, including blowdown venting parameters and tank emissions. If the facility has multiple operating scenarios, complete a separate Table 2-H for each scenario and, for each, type scenario name here:

Stack Number	Serving Unit Number(s) from Table 2-A	Orientation (H=Horizontal V=Vertical)	Rain Caps (Yes or No)	Height Above Ground (ft)	Temp. (F)	Flow Rate		Moisture by Volume (%)	Velocity (ft/sec)	Inside Diameter (ft)
						(acfs)	(dscfs)			
2	2	V	No	222.0	1832.0	131.2	-		65.6	2.0
4A	4A	V	No	175.0	1832.0	131.2	-	-	65.6	2.0
6	6	V	No	74.0	750.0	318.3	-	-	132.3	1.8
7	7	V	No	74.0	750.0	318.3	-	-	132.3	1.8
8	8	V	No	75.0	650.0	216.7	-	-	122.6	1.5
9	9	V	No	75.0	650.0	216.7	-	-	122.6	1.5
10	10	V	No	74.0	650.0	215.8	-	-	122.1	1.5
11	11	V	No	74.0	650.0	215.8	-	-	122.1	1.5
28	28	V	No	35.8	890.0	1787.4	-	-	154.9	3.8
29	29	V	No	44.0	858.0	1964.1	-	-	156.3	4.0
30	30	V	No	44.0	826.0	1916.4	-	-	67.8	6.0
31	31	V	No	44.0	817.0	1300.0	-	-	103.5	4.0
32B	32B	V	No	32.0	817.0	1307.7	-	-	104.1	4.0
34	34	V	No	45.0	600.0	114.1	-	-	36.3	2.0
36	36	V	No	50.0	300.0	552.2	-	-	50.0	3.8
37	37	V	No	50.0	300.0	552.2	-	-	50.0	3.8
AGI Flare	AGI Flare	V	No	210.0	1831.7	15.1	-	-	65.6	2.0

Table 2-I: Stack Exit and Fugitive Emission Rates for HAPs and TAPs

In the table below, report the Potential to Emit for each HAP from each regulated emission unit listed in Table 2-A, only if the entire facility emits the HAP at a rate greater than or equal to one (1) ton per year. For each such emission unit, HAPs shall be reported to the nearest 0.1 tpy. Each facility-wide Individual HAP total and the facility-wide Total HAPs shall be the sum of all HAP sources calculated to the nearest 0.1 ton per year. Per 20.2.72.403.A.1 NMAC, facilities not exempt [see 20.2.72.402.C NMAC] from TAP permitting shall report each TAP that has an uncontrolled emission rate in excess of its pounds per hour screening level specified in 20.2.72.502 NMAC. TAPs shall be reported using one more significant figure than the number of significant figures shown in the pound per hour threshold corresponding to the substance. Use the HAP nomenclature as it appears in Section 112 (b) of the 1990 CAAA and the TAP nomenclature as it listed in 20.2.72.502 NMAC. Include tank-flashing emissions estimates of HAPs in this table. For each HAP or TAP listed, fill all cells in this table with the emission numbers or a “-” symbol. A “-” symbol indicates that emissions of this pollutant are not expected or the pollutant is emitted in a quantity less than the threshold amounts described above.

Stack No.	Unit No.(s)	Total HAPs		Benzene		Toluene		Ethylbenzene		Xylenes		Formaldehyde		Acetaldehyde		n-Hexane		Acrolein		Acrolein	
		<input checked="" type="checkbox"/> HAP or <input type="checkbox"/> TAP	<input type="checkbox"/> HAP or <input checked="" type="checkbox"/> TAP	<input checked="" type="checkbox"/> HAP or <input type="checkbox"/> TAP	<input type="checkbox"/> HAP or <input checked="" type="checkbox"/> TAP	<input checked="" type="checkbox"/> HAP or <input type="checkbox"/> TAP	<input type="checkbox"/> HAP or <input checked="" type="checkbox"/> TAP	<input checked="" type="checkbox"/> HAP or <input type="checkbox"/> TAP	<input type="checkbox"/> HAP or <input checked="" type="checkbox"/> TAP	<input checked="" type="checkbox"/> HAP or <input type="checkbox"/> TAP	<input type="checkbox"/> HAP or <input checked="" type="checkbox"/> TAP	<input checked="" type="checkbox"/> HAP or <input type="checkbox"/> TAP	<input type="checkbox"/> HAP or <input checked="" type="checkbox"/> TAP	<input checked="" type="checkbox"/> HAP or <input type="checkbox"/> TAP	<input type="checkbox"/> HAP or <input checked="" type="checkbox"/> TAP	<input checked="" type="checkbox"/> HAP or <input type="checkbox"/> TAP	<input type="checkbox"/> HAP or <input checked="" type="checkbox"/> TAP	<input checked="" type="checkbox"/> HAP or <input type="checkbox"/> TAP	<input type="checkbox"/> HAP or <input checked="" type="checkbox"/> TAP	<input checked="" type="checkbox"/> HAP or <input type="checkbox"/> TAP	<input type="checkbox"/> HAP or <input checked="" type="checkbox"/> TAP
		lb/hr	ton/yr																		
2	2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
4A	4A	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
6	6	1.36	5.97	0.034	0.15	0.017	0.075	0.0019	0.0084	0.0048	0.021	0.98	4.29	0.14	0.60	0.0079	0.035	0.14	0.60	0.044	0.19
7	7	1.36	5.97	0.034	0.15	0.017	0.075	0.0019	0.0084	0.0048	0.021	0.98	4.29	0.14	0.60	0.0079	0.035	0.14	0.60	0.044	0.19
8,9,10, or 11	8,9,10, or 11	0.91	4.00	0.023	0.10	0.011	0.050	0.0013	0.0056	0.0032	0.014	0.65	2.87	0.092	0.40	0.0053	0.023	0.092	0.40	0.029	0.13
28	28	0.17	0.75	7.61E-04	0.0033	0.0082	0.036	0.0020	0.0089	0.0041	0.018	0.15	0.67	0.0025	0.011	-	-	4.06E-04	0.0018	-	-
29	29	0.077	0.34	9.32E-04	0.0041	0.010	0.044	0.0025	0.011	0.0050	0.022	0.055	0.24	0.0031	0.014	-	-	4.97E-04	0.0022	-	-
30	30	0.074	0.32	8.87E-04	0.0039	0.0096	0.042	0.0024	0.010	0.0047	0.02	0.053	0.23	0.0030	0.013	-	-	4.73E-04	0.0021	-	-
31	31	0.037	0.16	4.42E-04	0.0019	0.0048	0.021	0.0012	0.0052	0.0024	0.010	0.026	0.11	0.0015	0.0064	-	-	2.36E-04	0.0010	-	-
32B	32B	0.036	0.16	4.35E-04	0.0019	0.0047	0.021	0.0012	0.0051	0.0023	0.010	0.026	0.11	0.0014	0.0063	-	-	2.32E-04	0.0010	-	-
34	34	0.031	0.14	3.50E-05	1.53E-04	5.67E-05	2.48E-04	-	-	-	-	0.0013	0.0055	-	-	0.030	0.13	-	-	-	-
36	36	0.21	0.91	2.32E-04	0.0010	3.76E-04	0.0016	-	-	-	-	0.0083	0.036	-	-	0.20	0.87	-	-	-	-
37	37	0.21	0.91	2.32E-04	0.0010	3.76E-04	0.0016	-	-	-	-	0.0083	0.036	-	-	0.20	0.87	-	-	-	-
TK-2	TK-2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
AM-10	AM-10	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
DH-10	DH-10	0.14	0.59	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
TK-VRU	TK-VRU	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
AGI flare	AGI flare	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
TK-VRUTMP	TK-VRUTMP	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CT-1	CT-1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CT-2	CT-2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
N/A	FUG	5.16	22.60	0.013	0.055	0.0064	0.028	0.00027	0.0012	0.0012	0.0052	-	-	-	-	5.14	22.51	-	-	-	-
N/A	SSM	71.33	5.38	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Totals:		81.11	48.21	0.11	0.47	0.090	0.40	0.015	0.064	0.032	0.14	2.94	12.88	0.38	1.66	5.59	24.48	0.37	1.62	0.12	0.51

Table 2-J: Fuel

Specify fuel characteristics and usage. Unit and stack numbering must correspond throughout the application package.

Unit No.	Fuel Type (low sulfur Diesel, ultra low sulfur diesel, Natural Gas, Coal, ...)	Fuel Source: purchased commercial, pipeline quality natural gas, residue gas, raw/field natural gas, process gas (e.g. SRU tail gas) or other	Specify Units				
			Lower Heating Value	Hourly Usage	Annual Usage	% Sulfur	% Ash
2	Natural Gas	Pipeline Quality Natural Gas	900 Btu/scf	1.2 Mscf	10.2 MMscf	5 grains/100 scf	-
4A	Natural Gas	Pipeline Quality Natural Gas	900 Btu/scf	3.2 Mscf	28.0 MMscf	5 grains/100 scf	-
6	Natural Gas	Pipeline Quality Natural Gas	900 Btu/scf	19.7 Mscf	172.5 MMscf	5 grains/100 scf	-
7	Natural Gas	Pipeline Quality Natural Gas	900 Btu/scf	19.7 Mscf	172.5 MMscf	5 grains/100 scf	-
8,9,10, or 11	Natural Gas	Pipeline Quality Natural Gas	900 Btu/scf	13.2 Mscf	115.4 MMscf	5 grains/100 scf	-
28	Natural Gas	Pipeline Quality Natural Gas	900 Btu/scf	64.1 Mscf	561.2 MMscf	5 grains/100 scf	-
29	Natural Gas	Pipeline Quality Natural Gas	900 Btu/scf	82.7 Mscf	724.2 MMscf	5 grains/100 scf	-
30	Natural Gas	Pipeline Quality Natural Gas	900 Btu/scf	78.7 Mscf	689.8 MMscf	5 grains/100 scf	-
31	Natural Gas	Pipeline Quality Natural Gas	900 Btu/scf	40.9 Mscf	358.2 MMscf	5 grains/100 scf	-
32B	Natural Gas	Pipeline Quality Natural Gas	900 Btu/scf	40.2 Mscf	352.4 MMscf	5 grains/100 scf	-
34	Natural Gas	Pipeline Quality Natural Gas	900 Btu/scf	16.7 Mscf	146.0 MMscf	5 grains/100 scf	-
36	Natural Gas	Pipeline Quality Natural Gas	900 Btu/scf	110.6 Mscf	968.5 MMscf	5 grains/100 scf	-
37	Natural Gas	Pipeline Quality Natural Gas	900 Btu/scf	110.6 Mscf	968.5 MMscf	5 grains/100 scf	-
AGI Flare	Natural Gas	Pipeline Quality Natural Gas	900 Btu/scf	1.2 Mscf	10.2 MMscf	5 grains/100 scf	-

Table 2-K: Liquid Data for Tanks Listed in Table 2-L

For each tank, list the liquid(s) to be stored in each tank. If it is expected that a tank may store a variety of hydrocarbon liquids, enter "mixed hydrocarbons" in the Composition column for that tank and enter the corresponding data of the most volatile liquid to be stored in the tank. If tank is to be used for storage of different materials, list all the materials in the "All Calculations" attachment, run the newest version of TANKS on each, and use the material with the highest emission rate to determine maximum uncontrolled and requested allowable emissions rate. The permit will specify the most volatile category of liquids that may be stored in each tank. Include appropriate tank-flashing modeling input data. Use additional sheets if necessary. Unit and stack numbering must correspond throughout the application package.

Table 2-L: Tank Data

Include appropriate tank-flashing modeling input data. Use an addendum to this table for unlisted data categories. Unit and stack numbering must correspond throughout the application package. Use additional sheets if necessary. See reference Table 2-L2. Note: 1.00 bbl = 10.159 M3 = 42.0 gal

Table 2-L2: Liquid Storage Tank Data Codes Reference Table

Roof Type	Seal Type, Welded Tank Seal Type		Seal Type, Riveted Tank Seal Type		Roof, Shell Color	Paint Condition
FX: Fixed Roof	Mechanical Shoe Seal	Liquid-mounted resilient seal	Vapor-mounted resilient seal	Seal Type	WH: White	Good
IF: Internal Floating Roof	A: Primary only	A: Primary only	A: Primary only	A: Mechanical shoe, primary only	AS: Aluminum (specular)	Poor
EF: External Floating Roof	B: Shoe-mounted secondary	B: Weather shield	B: Weather shield	B: Shoe-mounted secondary	AD: Aluminum (diffuse)	
P: Pressure	C: Rim-mounted secondary	C: Rim-mounted secondary	C: Rim-mounted secondary	C: Rim-mounted secondary	LG: Light Gray	
					MG: Medium Gray	
					BL: Black	
					OT: Other (specify)	

Note: 1.00 bbl = 0.159 M³ = 42.0 gal

Table 2-M: Materials Processed and Produced (Use additional sheets as necessary.)

Table 2-N: CEM Equipment

Enter Continuous Emissions Measurement (CEM) Data in this table. If CEM data will be used as part of a federally enforceable permit condition, or used to satisfy the requirements of a state or federal regulation, include a copy of the CEM's manufacturer specification sheet in the Information Used to Determine Emissions attachment. Unit and stack numbering must correspond throughout the application package. Use additional sheets if necessary.

Table 2-O: Parametric Emissions Measurement Equipment

Unit and stack numbering must correspond throughout the application package. Use additional sheets if necessary.

Table 2-P: Greenhouse Gas Emissions

Applications submitted under 20.2.70, 20.2.72, & 20.2.74 NMAC are required to complete this Table. Power plants, Title V major sources, and PSD major sources must report and calculate all GHG emissions for each unit. Applicants must report potential emission rates in short tons per year (see Section 6.a for assistance). Include GHG emissions during Startup, Shutdown, and Scheduled Maintenance in this table. For minor source facilities that are not power plants, are not Title V, or are not PSD, there are three options for reporting GHGs 1) report GHGs for each individual piece of equipment; 2) report all GHGs from a group of unit types, for example report all combustion source GHGs as a single unit and all venting GHG as a second separate unit; OR 3) check the following box By checking this box, the applicant acknowledges the total CO₂e emissions are less than 75,000 tons per year.

		CO ₂ ton/yr	N ₂ O ton/yr	CH ₄ ton/yr	SF ₆ ton/yr	PFC/HFC ton/yr ²										Total GHG Mass Basis ton/yr ⁴	Total CO ₂ e ton/yr ⁵
Unit No.	GWP ¹	1	298	25	22,800	footnote 3											
2	mass GHG	611.42	0.0012	3.65	-	-										615.07	
	CO ₂ e	611.42	0.36	91.29	-	-											703.07
4A	mass GHG	2,153.59	0.0042	12.86	-	-										2,166.46	
	CO ₂ e	2,153.59	1.26	321.54	-	-											2,476.40
6	mass GHG	10,369.98	0.020	0.20	-	-										10,370.19	
	CO ₂ e	10,369.98	5.83	4.89	-	-											10,380.69
7	mass GHG	10,369.98	0.020	0.20	-	-										10,370.19	
	CO ₂ e	10,369.98	5.83	4.89	-	-											10,380.69
8, 9, 10, or 11	mass GHG	6,933.34	0.013	0.13	-	-										6,933.49	
	CO ₂ e	6,933.34	3.90	3.27	-	-											6,940.51
28	mass GHG	33,718.89	0.064	0.64	-	-										33,719.59	
	CO ₂ e	33,718.89	18.95	15.90	-	-											33,753.74
29	mass GHG	43,513.05	0.082	0.82	-	-										43,513.95	
	CO ₂ e	43,513.05	24.46	20.52	-	-											43,558.02
30	mass GHG	41,446.86	0.078	0.78	-	-										41,447.72	
	CO ₂ e	41,446.86	23.30	19.54	-	-											41,489.70
31	mass GHG	21,521.01	0.041	0.41	-	-										21,521.45	
	CO ₂ e	21,521.01	12.10	10.15	-	-											21,543.25
32B	mass GHG	21,174.94	0.040	0.40	-	-										21,175.38	
	CO ₂ e	21,174.94	11.90	9.98	-	-											21,196.83
34	mass GHG	8,771.82	0.017	0.17	-	-										8,772.00	
	CO ₂ e	8,771.82	4.93	4.14	-	-											8,780.89
36	mass GHG	58,186.62	0.11	1.10	-	-										58,187.83	
	CO ₂ e	58,186.62	32.70	27.44	-	-											58,246.76
37	mass GHG	58,186.62	0.11	1.10	-	-										58,187.83	
	CO ₂ e	58,186.62	32.70	27.44	-	-											58,246.76
AGI Flare	mass GHG	611.42	0.0012	3.65	-	-										615.07	
	CO ₂ e	611.42	0.36	91.29	-	-											703.07
Fug	mass GHG	-	-	11.67	-	-										11.67	
	CO ₂ e	-	-	291.78	-	-											291.78
SSM	mass GHG	4,525.91	1.0E-04	31.48	-	-										4,557.39	
	CO ₂ e	4,525.91	0.030	787.05	-	-											5,312.98
Total	mass GHG	322,095.44	0.60	69.24	-	-										322,165.28	
	CO ₂ e	322,095.44	178.60	1,731.09	-	-											324,005.13

¹ GWP (Global Warming Potential): Applicants must use the most current GWPs codified in Table A-1 of 40 CFR part 98. GWPs are subject to change, therefore, applicants need to check 40 CFR 98 to confirm GWP values.

² For HFCs or PFCs describe the specific HFC or PFC compound and use a separate column for each individual compound.

³ For each new compound, enter the appropriate GWP for each HFC or PFC compound from Table A-1 in 40 CFR 98.

⁴ Green house gas emissions on a **mass basis** is the ton per year green house gas emission before adjustment with its GWP.

⁵ CO₂e means Carbon Dioxide Equivalent and is calculated by multiplying the TPY mass emissions of the green house gas by its GWP.

Section 3

Application Summary

The **Application Summary** shall include a brief description of the facility and its process, the type of permit application, the applicable regulation (i.e. 20.2.72.200.A.X, or 20.2.73 NMAC) under which the application is being submitted, and any air quality permit numbers associated with this site. If this facility is to be collocated with another facility, provide details of the other facility including permit number(s). In case of a revision or modification to a facility, provide the lowest level regulatory citation (i.e. 20.2.72.219.B.1.d NMAC) under which the revision or modification is being requested. Also describe the proposed changes from the original permit, how the proposed modification will affect the facility's operations and emissions, de-bottlenecking impacts, and changes to the facility's major/minor status (both PSD & Title V).

Routine or predictable emissions during Startup, Shutdown, and Maintenance (SSM): Provide an overview of how SSM emissions are accounted for in this application. Refer to "Guidance for Submittal of Startup, Shutdown, Maintenance Emissions in Permit Applications (http://www.env.nm.gov/aqb/permit/app_form.html) for more detailed instructions on SSM emissions.

Linam Ranch Gas Plant (Linam) is a natural gas processing plant owned and operated by DCP Operating Company, LP (DCP) located 7 miles west of Hobbs, New Mexico in Lea County. The facility removes hydrogen sulfide, water and carbon dioxide from field natural gas and separates natural gas liquids from the field natural gas stream. The facility is currently permitted under NSR permit 0039-M8R3 and Title V permit P094-R2.

DCP Operating Company, LP (DCP) is submitting this application to renew the current Title V permit in accordance with 20.2.70.300.B.2 NMAC, which requires a timely application be submitted at least 12 months prior to the expiration date of the current Title V permit. The facility is currently authorized to operate under Title V permit P094-R2, which expires on April 17, 2020.

The Linam Ranch Gas Plant is a major source under the Prevention of Significant Deterioration (PSD) rules as currently permitted, and will remain a major source after the proposed Title V renewal. This facility will also remain a major source for operating permit purposes under Title V (20.2.70 NMAC).

This renewal will incorporate three technical revisions made to the facility's NSR permit: 0039-M8R1 (issued April 30, 2015), 0039-M8R2 (issued May 6, 2016), and 0039-M8R3 (issued July 25, 2018). These revisions are described below. No other changes to the facility are proposed with this renewal.

Technical revision 0039-M8R1 was submitted to correct the transposed emission figures for flare units 4A and AGI flare in Table 107.A of the permit.

The 0039-M8R2 technical revision consisted of replacing the 2.2 gallon per minute glycol dehydrator pump associated with unit DH-10 (TEG dehydrator) with a 25 gallon per minute rated pump. In addition, this revision included updating the emissions calculation methodology for the following emission units: unit 2 (amine flare), unit 4A (ESD flare), and unit AGI flare. The criteria pollutant emissions for each of the flares were updated to utilize a new site-specific fuel gas analyses and the then new AP-42, Section 13 flaring emission factors. Additionally, since the controlled emissions from the TEG Dehydrator (unit DH-10) are sent to the ESD flare (unit 4A), the emission calculations for the ESD flare were further updated to account for the increased flow rate resulting from the dehydrator pump replacement. Finally, greenhouse gas emission calculations for each of these units was updated to be based on the 40 CFR Part 98 - Mandatory Greenhouse Gas Reporting methodology.

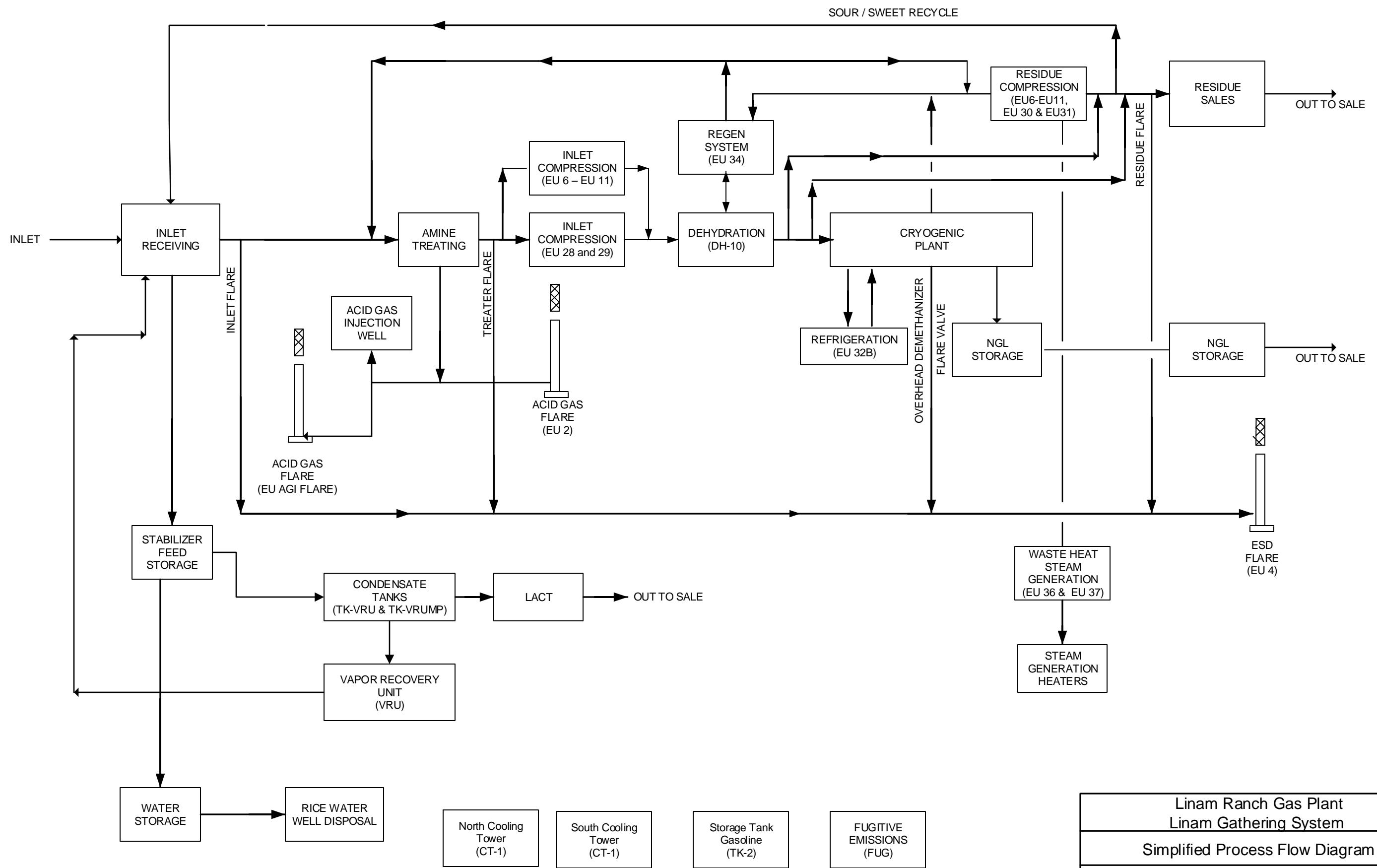
The 0039-M8R3 revision updated language in the monitoring requirement under NSR Permit Condition A212. The condition previously required monitoring of cooling tower TDS content on an annual basis (with one sample). This revision updated the monitoring condition to use an average of several samples as monitoring is performed on a daily basis for operational purposes.

Table 1, on the following page, is a list of emissions sources at the facility. Emissions from these units have been previously reviewed and approved. Start-up, Shutdown, Maintenance (SSM) and Malfunction emissions for all sources and operations that are performed at this site have been previously estimated and are included with this application. No changes are being made.

Table 1 – List of Regulated Emission Sources

Emission Source	Description
2	Amine Plant Flare East; Installed in 2005
4A	ESD Flare; Installed in 2008
6	Clark TLA-6; 2SLB; 2000 hp RICE with an installation date on or before 1974
7	Clark TLA-6; 2SLB; 1267 hp RICE with an installation date on or before 1974
8	Clark HBA-6; 2SLB; 800 hp RICE with an installation date of 1954
9	Clark HBA-6; 2SLB; 800 hp RICE with an installation date of 1954
10	Clark HBA-6; 2SLB; 800 hp RICE with an installation date of 1954
11	Clark HBA-6; 2SLB; 800 hp RICE with an installation date of 1954
28	Solar Saturn Turbine; 63.43 MMBtu/hr Turbine; Installed in 2012
29	Solar Saturn Turbine; 77.63 MMBtu/hr Turbine; Installed in 1995
30	Solar Saturn Turbine; 73.95 MMBtu/hr Turbine; Installed in 1995
31	Solar Saturn Turbine; 48.1 MMBtu/hr Turbine; Installed in 1995
32B	Solar Saturn Turbine; 36.2 MMBtu/hr Turbine; Installed in 1995
34	Regeneration Gas Heater; 15 MMBtu/hr; Installed in 1995
36	Boiler; 99 MMBtu/hr; Installed in 2006
37	Boiler; 99 MMBtu/hr; Installed in 2010
TK-2	Storage Tank – Gasoline; 11.9 bbl; Installed in 2005
AGI Flare	Acid Gas Flare; Installed in 2009
AM-10	Amine Unit; 225 MMscf/d
DH-10	Glycol Dehydrator; 27 MMscf/d
TK-VRU	Seven Condensate Tanks controlled by a common VRU; Five (1-5) 750 bbl tanks, one (6) 400 bbl tank, and one (7) 210 bbl tank. These tanks have not been installed.
TK-VRUTMP	Two Condensate Tanks controlled by a common VRU (previously listed as TK39 and TK40); Both tanks are 1,500 bbl tanks. Tanks were installed in 1996.
CT-1	South Cooling Tower; 3,200 gpm
CT-2	North Cooling Tower; 2,045 gpm
FUG	Facility-wide Fugitives

Section 4

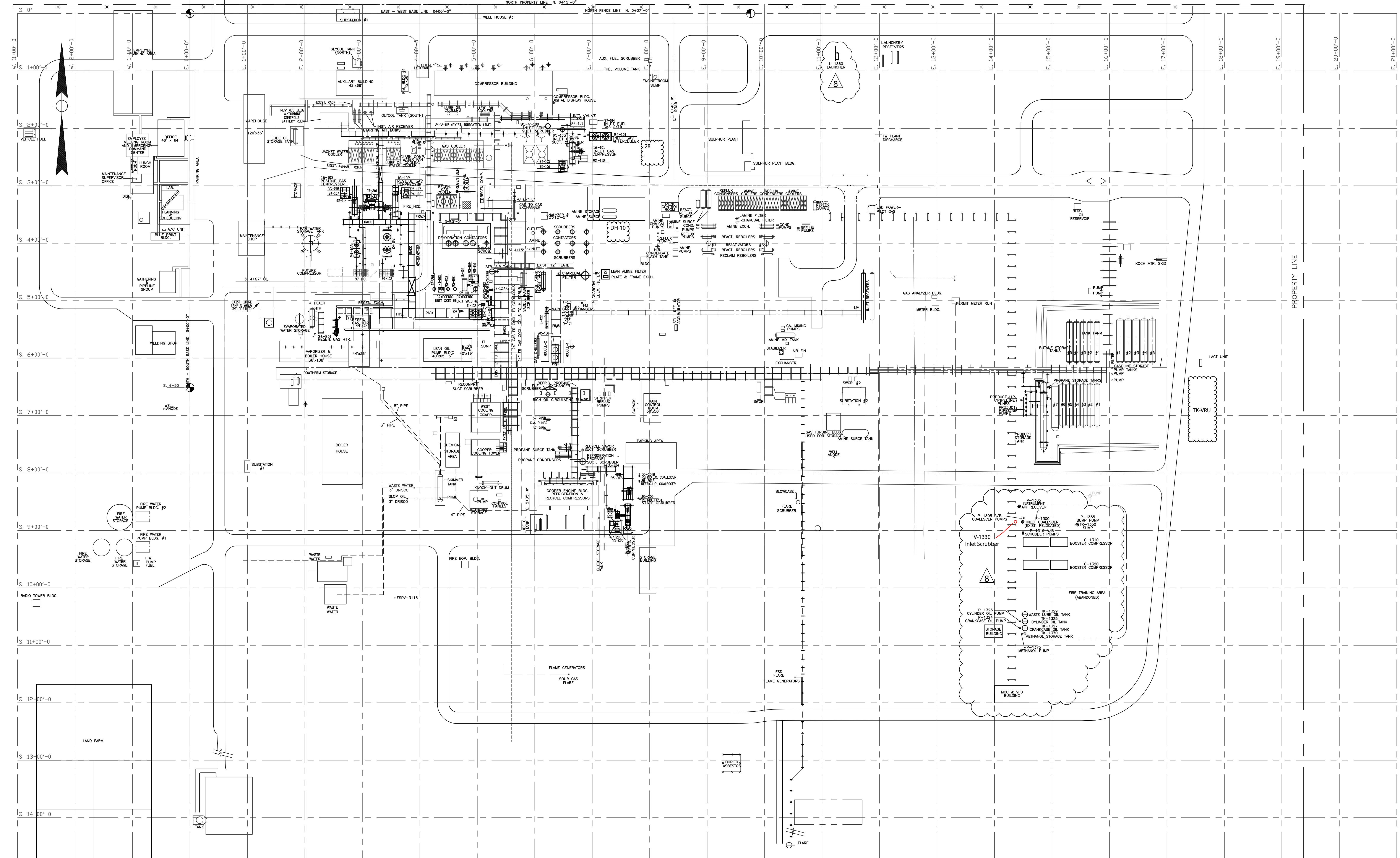

Process Flow Sheet

A **process flow sheet** and/or block diagram indicating the individual equipment, all emission points and types of control applied to those points. The unit numbering system should be consistent throughout this application.

A process flow diagram is included in this section.

December 2013

Section 5


Plot Plan Drawn To Scale

A **plot plan drawn to scale** showing emissions points, roads, structures, tanks, and fences of property owned, leased, or under direct control of the applicant. This plot plan must clearly designate the restricted area as defined in UA1, Section 1-D.12. The unit numbering system should be consistent throughout this application.

A plot plan is included in this section.

dcp
MidstreamSM

PLOT PLAN
LINAM RANCH
GAS PLANT

LINAM RANCH PLANT
WEST PERMIAN BASIN

JA NO. FILE NAME 07307MP002
AFE NO. SCALE 1"=80'
BASE NO. 07-3-07
DWG. NO. MP-002 /8

Section 6

All Calculations

Show all calculations used to determine both the hourly and annual controlled and uncontrolled emission rates. All calculations shall be performed keeping a minimum of three significant figures. Document the source of each emission factor used (if an emission rate is carried forward and not revised, then a statement to that effect is required). If identical units are being permitted and will be subject to the same operating conditions, submit calculations for only one unit and a note specifying what other units to which the calculations apply. All formulas and calculations used to calculate emissions must be submitted. The "Calculations" tab in the UA2 has been provided to allow calculations to be linked to the emissions tables. Add additional "Calc" tabs as needed. If the UA2 or other spread sheets are used, all calculation spread sheet(s) shall be submitted electronically in Microsoft Excel compatible format so that formulas and input values can be checked. Format all spread sheets and calculations such that the reviewer can follow the logic and verify the input values. Define all variables. If calculation spread sheets are not used, provide the original formulas with defined variables. Additionally, provide subsequent formulas showing the input values for each variable in the formula. All calculations, including those calculations are imbedded in the Calc tab of the UA2 portion of the application, the printed Calc tab(s), should be submitted under this section.

Tank Flashing Calculations: The information provided to the AQB shall include a discussion of the method used to estimate tank-flashing emissions, relative thresholds (i.e., NOI, permit, or major source (NSPS, PSD or Title V)), accuracy of the model, the input and output from simulation models and software, all calculations, documentation of any assumptions used, descriptions of sampling methods and conditions, copies of any lab sample analysis. If Hysis is used, all relevant input parameters shall be reported, including separator pressure, gas throughput, and all other relevant parameters necessary for flashing calculation.

SSM Calculations: It is the applicant's responsibility to provide an estimate of SSM emissions or to provide justification for not doing so. In this Section, provide emissions calculations for Startup, Shutdown, and Routine Maintenance (SSM) emissions listed in the Section 2 SSM and/or Section 22 GHG Tables and the rational for why the others are reported as zero (or left blank in the SSM/GHG Tables). Refer to "Guidance for Submittal of Startup, Shutdown, Maintenance Emissions in Permit Applications (http://www.env.nm.gov/aqb/permit/app_form.html) for more detailed instructions on calculating SSM emissions. If SSM emissions are greater than those reported in the Section 2, Requested Allowables Table, modeling may be required to ensure compliance with the standards whether the application is NSR or Title V. Refer to the Modeling Section of this application for more guidance on modeling requirements.

Glycol Dehydrator Calculations: The information provided to the AQB shall include the manufacturer's maximum design recirculation rate for the glycol pump. If GRI-Glycalc is used, the full input summary report shall be included as well as a copy of the gas analysis that was used.

Road Calculations: Calculate fugitive particulate emissions and enter haul road fugitives in Tables 2-A, 2-D and 2-E for:

1. If you transport raw material, process material and/or product into or out of or within the facility and have PER emissions greater than 0.5 tpy.
2. If you transport raw material, process material and/or product into or out of the facility more frequently than one round trip per day.

Significant Figures:

A. All emissions standards are deemed to have at least two significant figures, but not more than three significant figures.

B. At least 5 significant figures shall be retained in all intermediate calculations.

C. In calculating emissions to determine compliance with an emission standard, the following rounding off procedures shall be used:

- (1) If the first digit to be discarded is less than the number 5, the last digit retained shall not be changed;
- (2) If the first digit discarded is greater than the number 5, or if it is the number 5 followed by at least one digit other than the number zero, the last figure retained shall be increased by one unit; **and**
- (3) If the first digit discarded is exactly the number 5, followed only by zeros, the last digit retained shall be rounded upward if it is an odd number, but no adjustment shall be made if it is an even number.
- (4) The final result of the calculation shall be expressed in the units of the standard.

Control Devices: In accordance with 20.2.72.203.A(3) and (8) NMAC, 20.2.70.300.D(5)(b) and (e) NMAC, and 20.2.73.200.B(7) NMAC, the permittee shall report all control devices and list each pollutant controlled by the control device

regardless if the applicant takes credit for the reduction in emissions. The applicant can indicate in this section of the application if they chose to not take credit for the reduction in emission rates. For notices of intent submitted under 20.2.73 NMAC, only uncontrolled emission rates can be considered to determine applicability unless the state or federal Acts require the control. This information is necessary to determine if federally enforceable conditions are necessary for the control device, and/or if the control device produces its own regulated pollutants or increases emission rates of other pollutants.

Steady State Calculations

All calculations for existing permitted emission rates at the facility are shown in this section for convenience purposes.

Engines (Units 6, 7, 8, 9, 10, and 11)

Engine NO_x, CO, and VOC emissions were calculated using manufacturer's data. Total HAPs, formaldehyde, SO₂, and PM were calculated using EPA AP-42 emission factors from Table 3.2-1. Units 8 and 9 used manufacturer's data to estimate SO₂ emissions.

Turbine (Units 29, 30, 31, and 32B)

Turbine NO_x, CO, and VOC emissions were calculated using manufacturer's data. Total HAPs, formaldehyde, SO₂, and PM were calculated using EPA AP-42 emission factors from Tables 3.1-2a and 3.1-3.

Heaters/Boilers (Units 34, 36, and 37)

Heater/boiler emissions are calculated using emission factors from EPA AP-42 Tables 1.4-1, 1.4-2, and 1.4-3.

Tank (Unit TK-2)

Tank emissions were calculated using Tanks 4.09d. No flashing losses are associated with this tank as the contents are at atmospheric conditions.

Dehydrator (Unit DH-10)

Gri-GlyCalc was used to calculate emissions for the dehydrator. The simulation shows flow rates, the uncontrolled / controlled regeneration emissions as well as Flash Tank Off Gas. This calculations were done using a pump flow rate of 25 gpm.

Tanks (Units TK-VRU and TK-VRUTMP)

Tanks 4.09d was used to calculate working and breathing emissions from the tanks. ProMax analysis was used to calculate flash emissions from the tanks. All the tanks are controlled by a VRU. The VRU is 100% efficient as a control system for the tanks but a 95% annual control was used in the calculations to account for a 5% annual downtime for the VRU. The VRU is designed to minimize vapor losses and is inherent to the process at Linam Ranch. All recovered vapors are returned back into the low pressure gathering system.

Turbine (Unit 28)

Turbine NO_x, CO, and VOC emissions were calculated using manufacturer's data. A manufacturer-recommended emission factor was used for particulate emissions. PM₁₀ and PM_{2.5} emissions are set equal to PM emissions as a conservative measure. SO₂ emissions are based on fuel sulfur content of 5 grains of sulfur per 100 scf.

Unit 2 Gas Flare

Emissions associated with this unit was calculated using a site-specific gas analysis dated 1/20/2016. With this analysis, the specific heat value per volume for each of the gases detected was obtained using the Physical Properties of Hydrocarbon information as shown in the API Research Project 44, Fig. 16-1, Rev. 1981. Then, assist gas heating value was calculated based on the flare pilot and the purge gas activities, which was based on engineering judgment and technical information provided by DCP officials. With this information and AP-42 Tables 13.5-1 and 13.5-2 (4/15) NO_x, VOC and CO emissions were calculated. The GHG Emissions calculations are based on the 40 CFR Part 98- Mandatory Greenhouse Gas Reporting. Specifically on 98.233(n).

AGI Flare

Emissions associated with this unit were calculated using a site-specific gas analysis dated 1/20/2016. With this analysis, the specific heat value per volume for each of the gases detected was obtained using the Physical Properties of Hydrocarbon information as shown in the API Research Project 44, Fig. 16-1, Rev. 1981. Then, assist gas heating value was calculated based on the flare pilot and the purge gas activities, which was based on engineering judgment and technical information provided by DCP officials. With this information and AP-42 Tables 13.5-1 and 13.5-2 (4/15) NO_x, VOC and CO emissions were calculated. The GHG Emissions calculations are based on the 40 CFR Part 98- Mandatory Greenhouse Gas Reporting. Specifically on 98.233(n).

Unit 4A ESD Flare

These emissions were calculated in a similar form to those performed for the Unit 2 Gas Flare and AGI Flare. Calculations were done using residue-fuel and acid gas analysis results dated 1/20/2016. The rest of the calculations was performed in the same form as the two other flares with the only exception that this calculation takes into account a larger flow rate associated with unit DH-10 due to use of a bigger pump.

Cooling Towers (Units CT-1 and CT-2)

The particulate emissions were calculated using the procedure described in AP-42 Section 13.4 – Wet Cooling Towers. A Frisbee table was created to determine the particle distribution and subsequently PM₁₀ and PM_{2.5} emissions.

Fugitive Emissions (Unit FUG)

The EPA Protocol for Equipment Leak Emissions Estimates Table 2-4 (VOC fugitive emissions) and Table 2-10 (H₂S fugitive emissions) were used to calculate fugitive emissions. A conservative screening value of 35 ppmv was used for the H₂S fugitive emissions.

Methanol Tanks (TK-20, TK-21, TK-27, TK-77, TK-1370)

Emissions for the methanol tanks are calculated using Tanks 4.09d. No flashing losses are associated with these tanks as the tank contents are at atmospheric conditions. These tanks are exempt units per 20.2.72.202.B.5 NMAC.

Greenhouse Gas (GHG) Emissions

GHG emissions were calculated using 40 CFR 98 Subpart W. These emissions are shown on Table 2-P and the actual calculations are included in this section.

Routine or Predictable Emissions during Startup, Shutdown, and Scheduled Maintenance (SSM)

Emissions from Startup, Shutdown, and Maintenance (SSM) were estimated for SSM venting, Unit 2 Gas Flare, AGI Flare, and Unit 4A ESD Flare. SSM venting emissions include estimated emissions for the following activities: plant turnaround, plant startup (post turnaround), condensate tank degassing during VRU downtime, gas piping degassing, pig launcher degassing, vacuum trucks, engine startup, turbine blowdowns, and compressor blowdowns. Malfunction emissions are also accounted for. Hourly malfunction emissions are set equal to the largest anticipated SSM release for each pollutant.

Unit 2 Gas Flare & AGI Flare

SSM emissions from the acid gas and AGI flares are calculated using the estimated maximum hourly and annual SSM flow rates routed to the respective flares. VOC, HAP and H₂S emissions are a site-specific acid gas analysis dated 11/4/13. NO_x and CO emissions are calculated using AP-42 Tables 13.5-1 and 13.5-2 (4/15). SO₂ emissions are based on a sulfur content of 5 gr S / 100 scf. The GHG Emissions calculations are calculated using the methodology in 40 CFR Part 98 - Mandatory Greenhouse Gas Reporting.

Unit 4A ESD Flare

SSM emissions from the acid gas flare for are calculated using the estimated maximum hourly and annual SSM flow rates routed to the flare. VOC, HAP and H₂S emissions are a site-specific inlet gas analysis dated 11/11/13. NO_x and CO emissions are calculated using AP-42 Tables 13.5-1 and 13.5-2 (4/15). SO₂ emissions are based on a sulfur content of 5 gr S / 100 scf. The GHG Emissions calculations are calculated using the methodology in 40 CFR Part 98 - Mandatory Greenhouse Gas Reporting.

SSM Venting***Plant Turnaround***

Multiple steps comprise a plant turnaround. Step 1 - For the natural gas system, emissions to the atmosphere after opening pipelines are calculated using the Ideal Gas Law and are based on the entire pipe volume venting to the atmosphere at pipeline pressure. Step 2 - For systems in liquid service clinging emissions degassing emissions occur after the system is de-inventoryed. Degassing emissions are calculated using the Ideal Gas Law. Step 3 - After systems are degassed and opened, residual materials (clinging) may be emitted to the atmosphere. Clinging emissions are estimated using system volumes and an assumed clinging amount.

Total hourly emissions from each liquid system turnaround step (degassing, clingage) assume that any liquid system may undergo turnaround at any time. Maximum hourly emissions from all turnaround steps are calculated as the maximum hourly emission rate from any step.

Plant Startup (post turnaround)

For the natural gas system, emissions to the atmosphere occur from a three step pressure test and purge prior to plant startup. These emissions are calculated using the Ideal Gas Law and are based on the entire pipe volume venting to the atmosphere at each purge step pressure.

Gas Piping Degassing & Pig Launcher Degassing

Emissions to the atmosphere after opening pipelines are calculated using the Ideal Gas Law and are based on the entire pipe volume venting to the atmosphere at pipeline pressure.

Vacuum Trucks

Emissions from vacuum trucks are estimated using the loading loss method of AP-42, Chapter 5.2: Transportation and Marketing of Petroleum Liquids, 1995. Calculations are performed based on the concentrations of the individual organic species since the wastes contain significant non-volatile content (i.e. solids). A truck can be loaded in one hour; therefore the emissions per loading activity reflect the hourly emission rate.

Engine Startup & Compressor Blowdown

Emissions are calculated based on an estimated volume of gas released from each unit for engine startup and compressor blowdown multiplied by the number of activities throughout the year. This volume is then multiplied by the gas analysis mol% divided by the flow rate in scf/mol then multiplied by molecular weight to arrive at a lb/event.

Turbine Blowdown

Emissions to the atmosphere are from two types of turbine blowdowns: maintenance and washing related blowdowns. During a turbine wash blowdown occurs in three steps: a pre-wash blowdown to take the turbine out of service, a starter run (used to move turbine during washing) and finally a blowdown associated with turbine startup at completion of the wash. During a maintenance event blowdown occurs from an initial blowdown and starter blowdown. Emissions are calculated using a mass balance and are based on the volume vented to the atmosphere.

Compressor Blowdown

Emissions to the atmosphere are the result of a compressor blowdown activity and are calculated using a mass balance analysis and are based on the volume vented to the atmosphere. Setting the Compressor Blowdown volume to 2,500 scf per activity and using the chemical analysis of the inlet gas a unitary value, per each event, is obtained. Knowing that this installation has six (6) compressors and that the frequency of blowdowns per turbine per year is 20 the total amount of blowdowns equals 120. Thus, we multiple the yearly total amount of blowdown per unitary values previously obtained provide the emissions of regulated contaminants associated to this activity.

Section 6.a

Green House Gas Emissions

(Submitting under 20.2.70, 20.2.72 20.2.74 NMAC)

Title V (20.2.70 NMAC), Minor NSR (20.2.72 NMAC), and PSD (20.2.74 NMAC) applicants must estimate and report greenhouse gas (GHG) emissions to verify the emission rates reported in the public notice, determine applicability to 40 CFR 60 Subparts, and to evaluate Prevention of Significant Deterioration (PSD) applicability. GHG emissions that are subject to air permit regulations consist of the sum of an aggregate group of these six greenhouse gases: carbon dioxide (CO₂), nitrous oxide (N₂O), methane (CH₄), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride (SF₆).

Calculating GHG Emissions:

1. Calculate the ton per year (tpy) GHG mass emissions and GHG CO₂e emissions from your facility.
2. GHG mass emissions are the sum of the total annual tons of greenhouse gases without adjusting with the global warming potentials (GWPs). GHG CO₂e emissions are the sum of the mass emissions of each individual GHG multiplied by its GWP found in Table A-1 in 40 CFR 98 Mandatory Greenhouse Gas Reporting.
3. Emissions from routine or predictable start up, shut down, and maintenance must be included.
4. Report GHG mass and GHG CO₂e emissions in Table 2-P of this application. Emissions are reported in short tons per year and represent each emission unit's Potential to Emit (PTE).
5. All Title V major sources, PSD major sources, and all power plants, whether major or not, must calculate and report GHG mass and CO₂e emissions for each unit in Table 2-P.
6. For minor source facilities that are not power plants, are not Title V, and are not PSD there are three options for reporting GHGs in Table 2-P: 1) report GHGs for each individual piece of equipment; 2) report all GHGs from a group of unit types, for example report all combustion source GHGs as a single unit and all venting GHGs as a second separate unit; 3) or check the following By checking this box, the applicant acknowledges the total CO₂e emissions are less than 75,000 tons per year.

Sources for Calculating GHG Emissions:

- Manufacturer's Data
- AP-42 Compilation of Air Pollutant Emission Factors at <http://www.epa.gov/ttn/chief/ap42/index.html>
- EPA's Internet emission factor database WebFIRE at <http://cfpub.epa.gov/webfire/>
- 40 CFR 98 Mandatory Green House Gas Reporting except that tons should be reported in short tons rather than in metric tons for the purpose of PSD applicability.
- API Compendium of Greenhouse Gas Emissions Methodologies for the Oil and Natural Gas Industry. August 2009 or most recent version.
- Sources listed on EPA's NSR Resources for Estimating GHG Emissions at <http://www.epa.gov/nsr/clean-air-act-permitting-greenhouse-gases>:

Global Warming Potentials (GWP):

Applicants must use the Global Warming Potentials codified in Table A-1 of the most recent version of 40 CFR 98 Mandatory Greenhouse Gas Reporting. The GWP for a particular GHG is the ratio of heat trapped by one unit mass of the GHG to that of one unit mass of CO₂ over a specified time period.

"Greenhouse gas" for the purpose of air permit regulations is defined as the aggregate group of the following six gases: carbon dioxide, nitrous oxide, methane, hydrofluorocarbons, perfluorocarbons, and sulfur hexafluoride. **(20.2.70.7 NMAC, 20.2.74.7 NMAC)**. You may also find GHGs defined in 40 CFR 86.1818-12(a).

Metric to Short Ton Conversion:

Short tons for GHGs and other regulated pollutants are the standard unit of measure for PSD and title V permitting programs. 40 CFR 98 Mandatory Greenhouse Reporting requires metric tons.

1 metric ton = 1.10231 short tons (per Table A-2 to Subpart A of Part 98 – Units of Measure Conversions)

Greenhouse gas emissions are included in this section.

Steady-State Calculations

Summary of Steady State Emissions

Unit #	Description	Uncontrolled Emissions															
		NO _x		CO		VOC		SO ₂		TSP		PM ₁₀		PM _{2.5}		H ₂ S	
		lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
2	E. Amine Plnt Acid Gas Flare	0.085	0.37	0.39	1.7	1.3	5.9	0.0083	0.036	-	-	-	-	-	-	-	-
4A	ESD Flare	0.23	1.0	1.0	4.6	8.7	38.2	0.023	0.099	-	-	-	-	-	-	-	-
6	RICE, Clark TLA-6	39.3		19.8		3.1		0.010		0.86		0.86		0.86		-	
7	RICE Clark TLA-6	39.3		566.1		19.8		3.1		0.86		0.86		0.86		-	
8,9,10, or 11	RICE, Clark HBA-6	47.5		23.5		6.5		0.0070		10.0		10.0		10.0		-	
28	Solar T-60	3.5	15.2	3.5	15.4	2.0	8.8	0.91	4.0	1.3	5.8	1.3	5.8	1.3	5.8	-	-
29	Solar T-70-10302	11.8	51.8	9.5	41.5	0.3	1.4	0.26	1.2	0.51	2.2	0.51	2.2	0.51	2.2	-	-
30	Solar T-70-9702S	11.3	49.3	9.0	39.5	0.3	1.4	0.25	1.1	0.49	2.1	0.49	2.1	0.49	2.1	-	-
31	Solar T-4700	26.0	114.0	5.0	21.6	0.4	1.5	0.13	0.55	0.24	1.1	0.24	1.1	0.24	1.1	-	-
32B	Solar T-4700	23.7	103.9	4.4	19.2	2.5	10.9	0.12	0.54	0.24	1.0	0.24	1.0	0.24	1.0	-	-
34	Regenerative Heater	1.7	7.3	1.4	6.1	0.1	0.4	0.010	0.044	0.13	0.044	0.13	0.044	0.13	0.044	-	-
36	Rentech Boiler	5.5	24.2	9.3	40.7	0.6	2.7	0.066	0.29	0.84	3.7	0.84	3.7	0.84	3.7	-	-
37	Rentech Boiler	5.5	24.2	9.3	40.7	0.6	2.7	0.066	0.29	0.84	3.7	0.84	3.7	0.84	3.7	-	-
TK-2	11.9 bbl gasoline tank	-	-	-	-	0.2	0.7	-	-	-	-	-	-	-	-	-	-
AGI Flare	AGI Flare	0.085	0.37	0.39	1.7	1.3	5.9	0.0083	0.036	-	-	-	-	-	-	-	-
AM-10	Amine Unit	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
DH-10	Glycol Contactor Dehy & Mol Sieve Dehy.	-	-	-	-	5.1	22.2	-	-	-	-	-	-	-	-	-	-
TK-VRU	7 condensate tanks VRU controlled	-	-	-	-	27.5	6.0	-	-	-	-	-	-	-	-	-	-
TK-VRUTMP	7 condensate tanks VRUTMP controlled	-	-	-	-	24.6	5.4	-	-	-	-	-	-	-	-	-	-
CT-1	South Cooling Tower	-	-	-	-	-	-	-	-	3.6	15.9	1.9	8.4	0.0078	0.034	-	-
CT-2	North Cooling Tower	-	-	-	-	-	-	-	-	1.2	5.1	0.61	2.7	0.0025	0.011	-	-
FUG	Fugitive Leaks	-	-	-	-	17.7	77.0	-	-	-	-	-	-	-	-	0.11	0.48
TOTAL		215.5	957.7	116.3	515.7	81.3	246.6	1.9	8.3	11.7	50.8	9.4	40.8	6.9	29.8	0.11	0.48

** Denotes hourly emission limits are not applicable for this unit. Any hourly emissions shown for this unit are for informational purposes only.

"- Denotes emissions of this pollutant are not expected.

Summary of Steady State Emissions

Unit #	Description	Uncontrolled Emissions											
		CO ₂ e		Formaldehyde		Acetaldehyde		Acrolein		Hexane		Total HAP	
		lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
2	E. Amine Plnt Acid Gas Flare	*	703.1	-	-	-	-	-	-	-	-	-	-
4A	ESD Flare	*	2,476.4	-	-	-	-	-	-	-	-	-	-
6	RICE, Clark TLA-6	*	10,380.7	0.98	4.3	0.14	0.60	0.14	0.60	0.0079	0.035	1.4	6.0
7	RICE Clark TLA-6	*	10,380.7	0.98	4.3	0.14	0.60	0.14	0.60	0.0079	0.035	1.4	6.0
8,9,10, or 11	RICE, Clark HBA-6	*	6,940.5	0.65	2.9	0.092	0.40	0.092	0.40	0.0053	0.023	0.91	4.0
28	Solar T-60	*	33,753.7	0.15	0.67	0.0025	0.011	4.1E-04	0.0018	-	-	0.17	0.75
29	Solar T-70-10302	*	43,558.0	0.055	0.24	0.0031	0.014	5.0E-04	0.0022	-	-	0.077	0.34
30	Solar T-70-9702S	*	41,489.7	0.053	0.23	0.0030	0.013	4.7E-04	0.0021	-	-	0.074	0.32
31	Solar T-4700	*	21,543.2	0.026	0.11	0.0015	0.0064	2.4E-04	0.0010	-	-	0.037	0.16
32B	Solar T-4700	*	21,196.8	0.026	0.11	0.0015	0.0064	2.4E-04	0.0010	-	-	0.037	0.16
34	Regenerative Heater	*	8,780.9	0.0013	0.0055	-	-	-	-	0.030	0.13	0.031	0.14
36	Rentech Boiler	*	58,246.8	0.0083	0.036	-	-	-	-	0.20	0.87	0.21	0.91
37	Rentech Boiler	*	58,246.8	0.0083	0.036	-	-	-	-	0.20	0.87	0.21	0.91
TK-2	11.9 bbl gasoline tank	-	-	-	-	-	-	-	-	-	-	-	-
AGI Flare	AGI Flare	*	703.1	-	-	-	-	-	-	-	-	-	-
AM-10	Amine Unit	-	-	-	-	-	-	-	-	-	-	-	-
DH-10	Glycol Contactor Dehy & Mol Sieve Dehy.	-	-	-	-	-	-	-	-	-	-	0.0022	0.0096
TK-VRU	7 condensate tanks VRU controlled	-	-	-	-	-	-	-	-	-	-	-	-
TK-VRUTMP	7 condensate tanks VRUTMP controlled	-	-	-	-	-	-	-	-	-	-	-	-
CT-1	South Cooling Tower	-	-	-	-	-	-	-	-	-	-	-	-
CT-2	North Cooling Tower	-	-	-	-	-	-	-	-	-	-	-	-
FUG	Fugitive Leaks	-	291.8	-	-	-	-	-	-	5.1	22.5	5.2	22.6
TOTAL		-	318,692.1	2.9	12.9	0.38	1.7	0.37	1.6	5.6	24.5	9.6	42.2

*** Denotes hourly emission limits are not applicable for this unit. Any hourly emissions shown for this unit are for informational purposes only.

- Denotes emissions of this pollutant are not expected.

Summary of Steady State Emissions

Unit #	Description	Controlled Emissions															
		NO _x		CO		VOC		SO ₂		TSP		PM ₁₀		PM _{2.5}		H ₂ S	
lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
2	E. Amine Plnt Acid Gas Flare	0.085	0.37	0.39	1.7	0.027	0.12	0.0083	0.036	-	-	-	-	-	-	-	-
4A	ESD Flare	0.23	1.0	1.0	4.6	0.17	0.76	0.023	0.099	-	-	-	-	-	-	-	-
6	RICE, Clark TLA-6	39.3		19.8		3.1		0.010		0.86		0.86		0.86		-	
7	RICE Clark TLA-6	39.3		566.1		19.8		3.1		0.86		0.86		0.86		-	
8,9,10, or 11	RICE, Clark HBA-6	47.5		23.5		6.5		0.0070		0.57		0.57		0.57		-	
28	Solar T-60	3.5	15.2	3.5	15.4	2.0	8.8	0.91	4.0	1.3	5.8	1.3	5.8	1.3	5.8	-	-
29	Solar T-70-10302	11.8	51.8	9.5	41.5	0.33	1.4	0.26	1.2	0.51	2.2	0.51	2.2	0.51	2.2	-	-
30	Solar T-70-9702S	11.3	49.3	9.0	39.5	0.31	1.4	0.25	1.1	0.49	2.1	0.49	2.1	0.49	2.1	-	-
31	Solar T-4700	26.0	114.0	5.0	21.6	0.35	1.5	0.13	0.55	0.24	1.1	0.24	1.1	0.24	1.1	-	-
32B	Solar T-4700	23.7	103.9	4.4	19.2	2.5	10.9	0.12	0.54	0.24	1.0	0.24	1.0	0.24	1.0	-	-
34	Regenerative Heater	1.7	7.3	1.4	6.1	0.09	0.40	0.010	0.044	0.13	0.044	0.13	0.044	0.13	0.044	-	-
36	Rentech Boiler	5.5	24.2	9.3	40.7	0.61	2.7	0.066	0.29	0.84	3.7	0.84	3.7	0.84	3.7	-	-
37	Rentech Boiler	5.5	24.2	9.3	40.7	0.61	2.7	0.066	0.29	0.84	3.7	0.84	3.7	0.84	3.7	-	-
TK-2	11.9 bbl gasoline tank	-	-	-	-	0.16	0.70	-	-	-	-	-	-	-	-	-	-
AGI Flare	AGI Flare	0.085	0.37	0.39	1.7	0.027	0.12	0.0083	0.036	-	-	-	-	-	-	-	-
AM-10	Amine Unit	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
DH-10 ³	Glycol Contactor Dehy & Mol Sieve Dehy.	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
TK-VRU	7 condensate tanks VRU controlled	-	-	-	-	27.5	6.0	-	-	-	-	-	-	-	-	-	-
TK-VRUTMP	7 condensate tanks VRUTMP controlled	-	-	-	-	24.6	5.4	-	-	-	-	-	-	-	-	-	-
CT-1	South Cooling Tower	-	-	-	-	-	-	-	-	3.6	15.9	1.9	8.4	0.0078	0.034	-	-
CT-2	North Cooling Tower	-	-	-	-	-	-	-	-	1.2	5.1	0.61	2.7	0.0025	0.011	-	-
FUG	Fugitive Leaks	-	-	-	-	17.7	77.0	-	-	-	-	-	-	-	-	0.11	0.48
TOTAL		215.5	957.7	116.3	515.7	65.0	175.3	1.9	8.3	11.7	50.8	9.4	40.8	6.9	29.8	0.11	0.48

*** Denotes hourly emission limits are not applicable for this unit. Any hourly emissions shown for this unit are for informational purposes only.

-.- Denotes emissions of this pollutant are not expected.

¹ warming potential of CH₄ is 25 times greater than CO₂² warming potential of N₂O is 298 times greater than CO₂

Summary of Steady State Emissions

Unit #	Description	Controlled Emissions											
		CO ₂ e		Formaldehyde		Acetaldehyde		Acrolein		Hexane		Total HAP	
		lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
2	E. Amine Plnt Acid Gas Flare	*	703.1	-	-	-	-	-	-	-	-	-	-
4A	ESD Flare	*	2,476.4	-	-	-	-	-	-	-	-	-	-
6	RICE, Clark TLA-6	*	10,380.7	0.98	4.3	0.14	0.60	0.14	0.60	0.0079	0.035	1.4	6.0
7	RICE Clark TLA-6	*	10,380.7	0.98	4.3	0.14	0.60	0.14	0.60	0.0079	0.035	1.4	6.0
8,9,10, or 11	RICE, Clark HBA-6	*	6,940.5	0.65	2.9	0.092	0.40	0.092	0.40	0.0053	0.023	0.91	4.0
28	Solar T-60	*	33,753.7	0.15	0.67	0.0025	0.011	4.1E-04	0.0018	-	-	0.17	0.75
29	Solar T-70-10302	*	43,558.0	0.055	0.24	0.0031	0.014	5.0E-04	0.0022	-	-	0.077	0.34
30	Solar T-70-9702S	*	41,489.7	0.053	0.23	0.0030	0.013	4.7E-04	0.0021	-	-	0.074	0.32
31	Solar T-4700	*	21,543.2	0.026	0.11	0.0015	0.0064	2.4E-04	0.0010	-	-	0.037	0.16
32B	Solar T-4700	*	21,196.8	0.026	0.11	0.0015	0.0064	2.4E-04	0.0010	-	-	0.037	0.16
34	Regenerative Heater	*	8,780.9	0.0013	0.0055	-	-	-	-	0.030	0.13	0.031	0.14
36	Rentech Boiler	*	58,246.8	0.0083	0.036	-	-	-	-	0.20	0.87	0.21	0.91
37	Rentech Boiler	*	58,246.8	0.0083	0.036	-	-	-	-	0.20	0.87	0.21	0.91
TK-2	11.9 bbl gasoline tank	-	-	-	-	-	-	-	-	-	-	-	-
AGI Flare	AGI Flare	*	703.1	-	-	-	-	-	-	-	-	-	-
AM-10	Amine Unit	-	-	-	-	-	-	-	-	-	-	-	-
DH-10	Glycol Contactor Dehy & Mol Sieve Dehy.	-	-	-	-	-	-	-	-	-	-	-	-
TK-VRU	7 condensate tanks VRU controlled	-	-	-	-	-	-	-	-	-	-	-	-
TK-VRUTMP	7 condensate tanks VRUTMP controlled	-	-	-	-	-	-	-	-	-	-	-	-
CT-1	South Cooling Tower	-	-	-	-	-	-	-	-	-	-	-	-
CT-2	North Cooling Tower	-	-	-	-	-	-	-	-	-	-	-	-
FUG	Fugitive Leaks	-	291.8	-	-	-	-	-	-	5.1	22.5	5.2	22.6
TOTAL		-	318,692.1	2.9	12.9	0.38	1.7	0.37	1.6	5.6	24.5	9.6	42.2

** Denotes hourly emission limits are not applicable for this unit. Any hourly emissions shown for this unit are for informational purposes only.

- Denotes emissions of this pollutant are not expected.

GHG Summary Page

Facility: Linam Ranch Gas Plant

Emission Totals

Emission Unit #	Description	CH ₄ ¹ tonnes per year	CH ₄ ¹ TPY	CO ₂ tonnes per year	CO ₂ TPY	N ₂ O ² tonnes per year	N ₂ O ² TPY	CO ₂ e tonnes per year	CO ₂ e TPY
2	Fuel/Residue Gas Combustion	3.3	3.7	555	611	1.1E-03	1.2E-03	637.8	703
4A	Fuel/Residue Gas Combustion	11.7	12.9	1954	2,154	3.8E-03	4.2E-03	2246.6	2,476
6	Natural Gas Combustion	0.18	0.20	9407	10,370	1.8E-02	2.0E-02	9417.2	10,381
7	Natural Gas Combustion	0.18	0.20	9407	10,370	1.8E-02	2.0E-02	9417.2	10,381
8, 9, 10, or 11	Natural Gas Combustion	0.12	0.13	6290	6,933	1.2E-02	1.3E-02	6296.3	6,941
28	Natural Gas Combustion	0.58	0.64	30589	33,719	5.8E-02	6.4E-02	30620.9	33,754
29	Natural Gas Combustion	0.74	0.82	39474	43,513	7.4E-02	8.2E-02	39515.2	43,558
30	Natural Gas Combustion	0.71	0.78	37600	41,447	7.1E-02	7.8E-02	37638.8	41,490
31	Natural Gas Combustion	0.37	0.41	19524	21,521	3.7E-02	4.1E-02	19543.7	21,543
32B	Natural Gas Combustion	0.36	0.40	19210	21,175	3.6E-02	4.0E-02	19229.4	21,197
34	Natural Gas Combustion	0.15	0.17	7958	8,772	1.5E-02	1.7E-02	7965.9	8,781
36	Natural Gas Combustion	1.00	1.1	52786	58,187	1.0E-01	1.1E-01	52840.6	58,247
37	Natural Gas Combustion	1.00	1.1	52786	58,187	1.0E-01	1.1E-01	52840.6	58,247
AGI Flare	Fuel/Residue Gas Combustion	3.3	3.7	555	611	1.1E-03	1.2E-03	637.8	703

Total

318,400

1 warming potential of CH4 is 25 times greater than CO2

2 warming potential of N2O is 298 times greater than CO2

Flare

Emission Unit: 2
 Source Description: Amine Flare

Fuel Gas Composition: Used for Pilot and Purge Fuel

Component	MW	Flared Gas ¹ Mol%	MW * wet vol %	HHV Btu/scf ²	Btu/scf * wet vol %	Mass Fraction (wet)	Spec. Volume ² ft ³ /lb	Spec. Volume VOC ft ³ /lb
Water	18.02	0.000%	0.00	0.0	0.0	0.00	21.06	
Hydrogen Sulfide	34.08	0.000%	0.00	637.02	0.0	0.00	11.136	
Carbon Dioxide	44.01	0.003%	0.00	0.0	0.0	0.00	8.623	
Nitrogen	28.01	2.681%	0.75	0.0	0.0	0.04	13.547	
Oxygen	32.00	0.000%	0.00	0.0	0.0	0.00	13.5	
Methane	16.04	87.057%	13.97	1,010	879.0	0.78	23.65	
Ethane	30.07	9.274%	2.79	1,769	164.0	0.16	12.62	
Propane	44.10	0.959%	0.42	2,517	24.1	0.02	8.606	8.306
i-Butane	58.12	0.013%	0.01	3,253	0.4	0.00	6.529	0.115
n-Butane	58.12	0.013%	0.01	3,262	0.4	0.00	6.529	0.109
i-Pentane	72.15	0.0002%	0.00	3999.7	0.0	0.00	4.26	0.001
Pentanes	72.15	0.0001%	0.00	4008.7	0.0	0.00	5.26	0.001
Hexanes+	86.18	0.000%	0.00	4756.1	0.0	0.00	4.404	0.000
		100%	17.94		1068.0	1.00		8.533
NMNEHC (VOC)		0.99%				2.4%		

¹ Based on Linam Ranch Fuel Gas Analysis dated 1/20/2016² Component HHVs based on DCP Gas Analysis; specific volumes obtained from Physical Properties of Hydrocarbons, API Research Project 44, Fig. 16-1, Rev. 1981.

Fuel Data

Flare Pilot

1068 Btu/scf	Field gas heating value	Pipeline gas HHV, nominal
500 scf/hr	Fuel Usage Rate	Engineering judgement
0.50 Mscf/hr	Fuel Usage Rate	scf/hr / 1e3
0.000050 MMscf/hr	Fuel Usage Rate	scf/hr / 1e6
0.53 MMBtu/hr	Flare Pilot Heat Input	Gas heat value * Fuel usage rate/1e6

Purge Gas	16 Mscf/day	per DCP (Jennifer Corser 10/29/13 email)
	0.67 Mscf/hr	Mscf/d / 24 hr/day
	0.00067 MMscf/hr	Mscf/hr / 1000
	1068 Btu/scf	Pipeline Gas, HHV, nominal from Linam T5 app.
	0.71 MMBtu/hr	MMscf/hr * Btu/scf

Total	1.17 Mscf/hr	Fuel Usage Rate	pilot + purge
	1.2 MMBtu/hr	Total heat input	pilot + purge

Emission Rates

Flare Pilot & Purge	NOx	CO	VOC	SO2	Units	
	0.068	0.31			lb/MMBtu	AP-42 Table 13.5-1 and 13.5-2, published on April 2015
				50	grains sulfur per Mscf	FERC limit
			0.99%		mol%	Fuel Gas
			8.53		ft ³ /lb	Specific Volume
	0.085	0.39	1.3		lb/hr	pilot + purge
				0.0083	lb/hr	50gr S/Mscf * Mscf/hr * 0.00014 lb/gr
			98.0%			Flare DRE
Requested Emissisons	0.085	0.39	0.027	0.0083	lb/hr	Controlled Emission Rate
	0.37	1.7	0.12	0.036	tpy	lb/hr *{8760/2000}

Stack Parameters

1000 °C	Exhaust temperature	Per NMAQB guidelines
20 m/sec	Exhaust velocity	Per NMAQB guidelines
65.6 ft/s	Exhaust velocity	m/sec * 3.28ft/m
222.0 ft	Flare height	
17.94 lb/mol	Field gas molecular weight	See attached
87,223 cal/sec	Heat release (q)	MMBtu/hr * 10 ⁶ * 252 cal/Btu ÷ 3600 sec/hr
69,488	q _n	q _n = q(1-0.048(MW) ^{1/2})
0.26 m	Effective stack diameter (D)	D = (10 ⁻⁶ q _n) ^{1/2}

Flare GHG Emissions - Unit 2**698.233(n) Flare stack GHG emissions.**

Pilot & Purge Gas

Step 1. Calculate contribution of un-combusted CH₄ emissions

$$E_{a,CH4} (\text{un-combusted}) = V_a * (1 - \eta)^* X_{CH4} \quad (\text{Equation W-39B})$$

where:

 $E_{a,CH4}$ = contribution of annual un-combusted CH₄ emissions from regenerator in cubic feet under actual conditions. V_a = volume of gas sent to combustion unit during the year (cf) η = Fraction of gas combusted by a burning flare (or regenerator), default value from Subpart W =

0.98

For gas sent to an unlit flare, η is zero.X_{CH4} = Mole fraction of CH₄ in gas to the flare =

0.8706 (Client gas analysis)

Step 2. Calculate contribution of un-combusted CO₂ emissions

$$E_{a,CO2} = V_a * X_{CO2} \quad (\text{Equation W-20})$$

where:

 $E_{a,CO2}$ = contribution of annual un-combusted CO₂ emissions from regenerator in cubic feet under actual conditions. V_a = volume of gas sent to combustion unit during the year (cf)X_{CO2} = Mole fraction of CO₂ in gas to the flare =

0.00003

Step 3. Calculate contribution of combusted CO₂ emissions

$$E_{a,CO2} (\text{combusted}) = \sum (\eta * V_a * Y_j * R_j) \quad (\text{Equation W-21})$$

where:

 η = Fraction of gas combusted by a burning flare (or regenerator) =

0.98

For gas sent to an unlit flare, η is zero. V_a = volume of gas sent to combustion unit during the year (cf)Y_j = mole fraction of gas hydrocarbon constituents j:

Constituent j. Methane = 0.8706 (Client gas analysis)

Constituent j. Ethane = 0.0927

Constituent j. Propane = 0.0096

Constituent j. Butane = 0.00026

Constituent j. Pentanes Plus = 0.0000030

R_j = number of carbon atoms in the gas hydrocarbon constituent j:

Constituent j. Methane = 1

Constituent j. Ethane = 2

Constituent j. Propane = 3

Constituent j. Butane = 4

Constituent j. Pentanes Plus = 5

Step 4. Calculate GHG volumetric emissions at standard conditions (scf).

$$E_{s,n} = E_{a,n} * (459.67 + T_s) * P_a \quad (\text{Equation W-33})$$

where:

 $E_{s,n}$ = GHG i volumetric emissions at standard temperature and pressure (STP) in cubic feet $E_{a,n}$ = GHG i volumetric emissions at actual conditions (cf) T_s = Temperature at standard conditions (F) = 60 F T_a = Temperature at actual conditions (F) = 76 F P_s = Absolute pressure at standard conditions (psia) = 14.7 psia P_a = Absolute pressure at actual conditions (psia) = 14.7 psia

Constant = 459.67 (Assumption)

10³ = conversion factor from F to R

(Based on Annual Avg Max Temperature for Hobbs, NM from Western Regional Climate Center)

Step 5. Calculate annual CH₄ and CO₂ mass emissions (ton).

$$\text{Mass}_{s,i} = E_{s,i} * \rho_i * 0.0011023 \quad (\text{Equation W-36})$$

where:

 $\text{Mass}_{s,i}$ = GHG i (CO₂, CH₄, or N₂O) mass emissions at standard conditions in tons (tpy) $E_{s,i}$ = GHG i (CO₂, CH₄, or N₂O) volumetric emissions at standard conditions (cf) ρ_i = Density of GHG i. Use:CH₄: 0.0192 kg/ft³ (at 60F and 14.7 psia)CO₂: 0.0526 kg/ft³ (at 60F and 14.7 psia)**Step 6. Calculate annual N₂O emissions from portable or stationary fuel combustion sources under actual conditions (cf) using Equation W-40 .**

$$\text{Mass}_{N2O} = 0.0011023 * \text{Fuel} * \text{HHV} * \text{EF} \quad (\text{Equation W-40})$$

where:

 Mass_{N2O} = annual N₂O emissions from combustion of a particular type of fuel (tons).

Fuel = mass or volume of the fuel combusted

HHV = high heat value of the fuel

Pilot & Purge gas HHV = 1.068E-03 MMBtu/scf

EF = 1.00E-04 kg N₂O/MMBtu10³ = conversion factor from kg to metric tons.**Step 7. Calculate total annual emission from flare by summing Equations W-40, W-19, W-20, and W-21.**

Gas Sent to Flare	Gas Sent to Flare (cf/yr)	CH ₄ Un-Combusted, E _{a,CH4} (cf)	CO ₂ Un-Combusted, E _{a,CO2} (cf)	CO ₂ Combusted, E _{a,CO2} (cf)	CH ₄ Un-Combusted, E _{a,CH4} (scf)	CO ₂ Un-Combusted, E _{a,CO2} (scf)	CO ₂ Combusted, E _{a,CO2} (scf)	CH ₄ Un-Combusted, E _{a,CH4} (tpy)	CO ₂ Un-Combusted, E _{a,CO2} (tpy)	CO ₂ Combusted, E _{a,CO2} (tpy)	N ₂ O Mass Emissions (tpy)	CO _{2e} (tpy)
Pilot & Purge	10,220,000	177945	307	10,875,620	172,533	297	10,544,869	3.65	0.02	611.40	0.00120	703.1
								CO ₂	CH ₄	N ₂ O		
								1	25	298		
								GWP				

Flare

Emission Unit: 4A
 Source Description: ESD Flare

Fuel Gas Composition: Used for Pilot and Purge Fuel

Component	MW	Flared Gas ¹ Mol%	MW * wet vol %	HHV Btu/scf ²	Btu/scf * wet vol %	Mass Fraction (wet)	Spec. Volume ² ft ³ /lb	Spec. Volume VOC ft ³ /lb
Water	18.02	0.000%	0.00	0.0	0.0	0.00	21.06	
Hydrogen Sulfide	34.08	0.000%	0.00	637.02	0.0	0.00	11.136	
Carbon Dioxide	44.01	0.003%	0.00	0.0	0.0	0.00	8.623	
Nitrogen	28.01	2.681%	0.75	0.0	0.0	0.04	13.547	
Oxygen	32.00	0.000%	0.00	0.0	0.0	0.00	13.5	
Methane	16.04	87.057%	13.97	1,010	879.0	0.78	23.65	
Ethane	30.07	9.274%	2.79	1,769	164.0	0.16	12.62	
Propane	44.10	0.959%	0.42	2,517	24.1	0.02	8.606	8.306
i-Butane	58.12	0.013%	0.01	3,253	0.4	0.00	6.529	0.115
n-Butane	58.12	0.013%	0.01	3,262	0.4	0.00	6.529	0.109
i-Pentane	72.15	0.0002%	0.00	3999.7	0.0	0.00	4.26	0.001
Pentanes	72.15	0.0001%	0.00	4008.7	0.0	0.00	5.26	0.001
Hexanes+	86.18	0.000%	0.00	4756.1	0.0	0.00	4.404	0.000
		100%	17.94		1068.0	1.00		8.533
NMNEHC (VOC)			0.99%			2.4%		

¹ Based on Linam Ranch Fuel Gas Analysis dated 1/20/2016² Component HHVs based on DCP Gas Analysis; specific volumes obtained from Physical Properties of Hydrocarbons,

API Research Project 44, Fig. 16-1, Rev. 1981.

Fuel Data

Flare Pilot

1068 Btu/scf	Field gas heating value	Pipeline Natural Gas, nominal
500 scf/hr	Fuel Usage Rate	Engineering judgement
0.50 Mscf/hr	Fuel Usage Rate	scf/hr / 1e3
0.00050 MMscf/hr	Fuel Usage Rate	scf/hr / 1e6
0.53 MMBtu/hr	Flare Pilot Heat Input	Gas heat value * Fuel usage rate/1e6

Purge Gas

63.8 Mscf/day	per DCP (Jennifer Corser 10/29/13 email)
2.7 Mscf/hr	Mscf/d / 24 hr/day
0.0027 MMscf/hr	Mscf/hr / 1000
1068 Btu/scf	Pipeline Gas, HHV, nominal from Linam T5 app.
2.8 MMBtu/hr	MMscf/hr * Btu/scf

Total Pilot + Purge Gas	3.2 Mscf/hr	Fuel Usage Rate	pilot + purge
	3.4 MMBtu/hr	Total heat input	pilot + purge

DH-10¹

130.0 scf/hr	Condenser Vent Gas Stream from GlyCalc
821.0 scf/hr	DH-10 Flash Tank Off Gas stream from GlyCalc
951.0 scf/hr	Total DH-10
0.95 Mscf/hr	Total DH-10

Emission Rates

'are Pilot + Purge+DH-10	NOx	CO	VOC	SO2	Units	
	0.068	0.31		50	lb/MMBtu	AP-42 Table 13.5-1 and 13.5-2, published on April 2015
					grains sulfur per Mscf	FERC limit
			0.99%		mol%	Fuel Gas
			8.53		ft ³ /lb	Specific Volume
	0.23	1.05	3.6		lb/hr	pilot + purge
			1.6		lb/hr	DH-10 Regenerator Emissions from GRI-GLYCalc
			3.5		lb/hr	DH-10 Flash Tank Off Gas Emissions from GRI-GLYCalc
			98.0%	0.023	lb/hr	50gr S/Mscf *Mscf/hr *0.00014 lb/gr
						Flare DRE
Requested Emissisons	0.23	1.0	0.17	0.023	lb/hr	Controlled Emission Rate
	1.00	4.6	0.76	0.10	tpy	lb/hr *(8760/2000),

Stack Parameters

1000 °C	Exhaust temperature	Per NMAQB guidelines
20 m/sec	Exhaust velocity	Per NMAQB guidelines
66 ft/s	Exhaust velocity	m/sec * 3.28ft/m
175.0 ft	Flare height	
17.94 lb/mol	Field gas molecular weight	Attached
236,125 cal/sec	Heat release (q)	MMBtu/hr * 10 ⁶ * 252 cal/Btu ÷ 3600 sec/hr
188,113	q _n	q _n = q(1-0.048(MW) ^{1/2})
0.43 m	Effective stack diameter (D)	D = (10 ⁻⁶ q _n) ^{1/2}

Flare GHG Emissions - Unit 4A**698.233(n) Flare stack GHG emissions.****Pilot & Purge Gas****Step 1. Calculate contribution of un-combusted CH₄ emissions**

$$E_{a,CH4} (\text{un-combusted}) = V_a * (1 - \eta)^* X_{CH4} \quad (\text{Equation W-39B})$$

where:

 $E_{a,CH4}$ = contribution of annual un-combusted CH₄ emissions from regenerator in cubic feet under actual conditions. V_a = volume of gas sent to combustion unit during the year (cf) η = Fraction of gas combusted by a burning flare (or regenerator), default value from Subpart W =For gas sent to an unlit flare, η is zero.X_{CH4} = Mole fraction of CH₄ in gas to the flare =

0.8706 (Client gas analysis)

Step 2. Calculate contribution of un-combusted CO₂ emissions

$$E_{a,CO2} = V_a * X_{CO2} \quad (\text{Equation W-20})$$

where:

 $E_{a,CO2}$ = contribution of annual un-combusted CO₂ emissions from regenerator in cubic feet under actual conditions. V_a = volume of gas sent to combustion unit during the year (cf)X_{CO2} = Mole fraction of CO₂ in gas to the flare =

0.00003

Step 3. Calculate contribution of combusted CO₂ emissions

$$E_{a,CO2} (\text{combusted}) = \sum (\eta * V_a * Y_j * R_j) \quad (\text{Equation W-21})$$

where:

 η = Fraction of gas combusted by a burning flare (or regenerator) =For gas sent to an unlit flare, η is zero. V_a = volume of gas sent to combustion unit during the year (cf)Y_j = mole fraction of gas hydrocarbon constituents j:

Constituent j. Methane = 0.8706 (Client gas analysis)

Constituent j. Ethane = 0.0927

Constituent j. Propane = 0.0096

Constituent j. Butane = 0.00026

Constituent j. Pentanes Plus = 0.0000030

R_j = number of carbon atoms in the gas hydrocarbon constituent j:

Constituent j. Methane = 1

Constituent j. Ethane = 2

Constituent j. Propane = 3

Constituent j. Butane = 4

Constituent j. Pentanes Plus = 5

Step 4. Calculate GHG volumetric emissions at standard conditions (scf).

$$E_{s,n} = E_{a,n} * (459.67 + T_s) * P_a \quad (\text{Equation W-33})$$

where:

 $E_{s,n}$ = GHG i volumetric emissions at standard temperature and pressure (STP) in cubic feet $E_{a,n}$ = GHG i volumetric emissions at actual conditions (cf) T_s = Temperature at standard conditions (F) = 60 F T_a = Temperature at actual conditions (F) = 76 F P_s = Absolute pressure at standard conditions (psia) = 14.7 psia P_a = Absolute pressure at actual conditions (psia) = 14.7 psia (Assumption)

Constant = 459.67 (temperature conversion from F to R)

(Based on Annual Avg Max Temperature for Hobbs, NM from Western Regional Climate Center)

Step 5. Calculate annual CH₄ and CO₂ mass emissions (ton).

$$\text{Mass}_{s,i} = E_{s,i} * \rho_i * 0.0011023 \quad (\text{Equation W-36})$$

where:

 $\text{Mass}_{s,i}$ = GHG i (CO₂, CH₄, or N₂O) mass emissions at standard conditions in tons (tpy) $E_{s,i}$ = GHG i (CO₂, CH₄, or N₂O) volumetric emissions at standard conditions (cf) ρ_i = Density of GHG i. Use:CH₄: 0.0192 kg/ft³ (at 60F and 14.7 psia)CO₂: 0.0526 kg/ft³ (at 60F and 14.7 psia)**Step 6. Calculate annual N₂O emissions from portable or stationary fuel combustion sources under actual conditions (cf) using Equation W-40 .**

$$\text{Mass}_{N2O} = 0.0011023 * \text{Fuel} * \text{HHV} * \text{EF} \quad (\text{Equation W-40})$$

where:

 Mass_{N2O} = annual N₂O emissions from combustion of a particular type of fuel (tons).

Fuel = mass or volume of the fuel combusted

HHV = high heat value of the fuel

Pilot & Purge gas HHV = 1.068E-03 MMBtu/scf

EF = 1.00E-04 kg N₂O/MMBtu10⁻³ = conversion factor from kg to metric tons.**Step 7. Calculate total annual emission from flare by summing Equations W-40, W-19, W-20, and W-21.**

Gas Sent to Flare	Gas Sent to Flare (cf/yr)	CH ₄ Un-Combusted, E _{a,CH4} (cf)	CO ₂ Un-Combusted, E _{a,CO2} (cf)	CO ₂ Combusted, E _{a,CO2} (cf)	CH ₄ Un-Combusted, E _{a,CH4} (scf)	CO ₂ Un-Combusted, E _{a,CO2} (scf)	CO ₂ Combusted, E _{a,CO2} (scf)	CH ₄ Un-Combusted, E _{a,CH4} (tpy)	CO ₂ Un-Combusted, E _{a,CO2} (tpy)	CO ₂ Combusted, E _{a,CO2} (tpy)	N ₂ O Mass Emissions (tpy)	CO _{2e} (tpy)
Pilot & Purge	35,997,760	626772	1,080	38,307,039	607,711	1,047	37,142,040	12.86	0.06	2,153.53	0.00424	2476.4
									CO ₂	CH ₄	N ₂ O	
									1	25	298	
									GWP			

Flare

Emission Unit: AGI Flare
 Source Description: East Amine Flare

Fuel Gas Composition: Used for Pilot and Purge Fuel								
Component	MW	Flared Gas ¹ Mol%	MW * wet vol %	HHV Btu/scf ²	Btu/scf * wet vol %	Mass Fraction (wet)	Spec. Volume ² ft ³ /lb	Spec. Volume VOC ft ³ /lb
Water	18.02	0.000%	0.00	0.0	0.0	0.00	21.06	
Hydrogen Sulfide	34.08	0.000%	0.00	637.02	0.0	0.00	11.136	
Carbon Dioxide	44.01	0.003%	0.00	0.0	0.0	0.00	8.623	
Nitrogen	28.01	2.681%	0.75	0.0	0.0	0.04	13.547	
Oxygen	32.00	0.000%	0.00	0.0	0.0	0.00	13.5	
Methane	16.04	87.057%	13.97	1,010	879.0	0.78	23.65	
Ethane	30.07	9.274%	2.79	1,769	164.0	0.16	12.62	
Propane	44.10	0.959%	0.42	2,517	24.1	0.02	8.606	8.306
i-Butane	58.12	0.013%	0.01	3,253	0.4	0.00	6.529	0.115
n-Butane	58.12	0.013%	0.01	3,262	0.4	0.00	6.529	0.109
i-Pentane	72.15	0.0002%	0.00	3999.7	0.0	0.00	4.26	0.001
Pentanes	72.15	0.0001%	0.00	4008.7	0.0	0.00	5.26	0.001
Hexanes+	86.18	0.000%	0.00	4756.1	0.0	0.00	4.404	0.000
		100%	17.94		1068.0	1.00		8.533
NMNEHC (VOC)		0.99%				2.4%		

¹ Based on Linam Ranch Fuel Gas Analysis dated 1/20/2016² Component HHVs based on DCP Gas Analysis; specific volumes obtained from Physical Properties of Hydrocarbons,

API Research Project 44, Fig. 16-1, Rev. 1981.

Fuel Data

Flare Pilot

1068 Btu/scf	Field gas heating value	Pipeline gas HHV, nominal
500 scf/hr	Fuel Usage Rate	Engineering judgement
0.50 Mscf/hr	Fuel Usage Rate	scf/hr / 1e3
0.000050 MMscf/hr	Fuel Usage Rate	scf/hr / 1e6
0.53 MMBtu/hr	Flare Pilot Heat Input	Gas heat value * Fuel usage rate/1e6

Purge Gas	16 Mscf/day	per DCP
	0.67 Mscf/hr	Mscf/d / 24 hr/day
	0.00067 MMscf/hr	Mscf/hr / 1000
	1068 Btu/scf	Pipeline Gas, HHV, nominal from Linam T5 app.
	0.71 MMBtu/hr	MMscf/hr * Btu/scf

Total

1.2 Mscf/hr	Fuel Usage Rate	pilot + purge
1.2 MMBtu/hr	Total heat input	pilot + purge

Emission Rates

Flare Pilot & Purge	NOx	CO	VOC	SO2	Units	AP-42 Table 13.5-1 and 13.5-2, published on April 2015
	0.068	0.31		50	lb/MMBtu	AP-42 Table 13.5-1 and 13.5-2, published on April 2015
			0.99%		grains sulfur per Mscf FERC limit	
			8.53		mol%	Fuel Gas
	0.085	0.39	1.3		ft ³ /lb	Specific Volume
				0.0083	lb/hr	pilot + purge
			98.0%		lb/hr	50gr S/Mscf *Mscf/hr*0.00014 lb/gr
						Flare DRE
Requested Emissisons	0.085	0.39	0.027	0.0083	lb/hr	Controlled Emission Rate
	0.37	1.7	0.12	0.036	tpy	lb/hr *(8760/2000)

Stack Parameters

1000 °C	Exhaust temperature	Per NMAQB guidelines
20 m/sec	Exhaust velocity	Per NMAQB guidelines
66 ft/s	Exhaust velocity	m/sec * 3.28ft/m
222.0 ft	Flare height	
17.94 lb/mol	Field gas molecular weight	See attached
87,223 cal/sec	Heat release (q)	MMBtu/hr * 10 ⁶ * 252 cal/Btu ÷ 3600 sec/hr
69,488	q _n	q _n = q(1-0.048(MW) ^{1/2})
0.26 m	Effective stack diameter (D)	D = (10 ⁻⁶ q _n) ^{1/2}

Flare GHG Emissions - Unit AGI Flare**698.233(n) Flare stack GHG emissions.****Pilot & Purge Gas****Step 1. Calculate contribution of un-combusted CH₄ emissions**

$$E_{a,CH4} (\text{un-combusted}) = V_a * (1 - \eta)^* X_{CH4} \quad (\text{Equation W-39B})$$

where:

 $E_{a,CH4}$ = contribution of annual un-combusted CH₄ emissions from regenerator in cubic feet under actual conditions. V_a = volume of gas sent to combustion unit during the year (cf) η = Fraction of gas combusted by a burning flare (or regenerator), default value from Subpart W =

0.98

For gas sent to an unlit flare, η is zero.X_{CH4} = Mole fraction of CH₄ in gas to the flare =

0.8706 (Client gas analysis)

Step 2. Calculate contribution of un-combusted CO₂ emissions

$$E_{a,CO2} = V_a * X_{CO2} \quad (\text{Equation W-20})$$

where:

 $E_{a,CO2}$ = contribution of annual un-combusted CO₂ emissions from regenerator in cubic feet under actual conditions. V_a = volume of gas sent to combustion unit during the year (cf)X_{CO2} = Mole fraction of CO₂ in gas to the flare =

0.00003

Step 3. Calculate contribution of combusted CO₂ emissions

$$E_{a,CO2} (\text{combusted}) = \sum (\eta * V_a * Y_j * R_j) \quad (\text{Equation W-21})$$

where:

 η = Fraction of gas combusted by a burning flare (or regenerator) =

0.98

For gas sent to an unlit flare, η is zero. V_a = volume of gas sent to combustion unit during the year (cf)Y_j = mole fraction of gas hydrocarbon constituents j:

Constituent j. Methane = 0.8706 (Client gas analysis)

Constituent j. Ethane = 0.0927

Constituent j. Propane = 0.0096

Constituent j. Butane = 0.00026

Constituent j. Pentanes Plus = 0.0000030

R_j = number of carbon atoms in the gas hydrocarbon constituent j:

Constituent j. Methane = 1

Constituent j. Ethane = 2

Constituent j. Propane = 3

Constituent j. Butane = 4

Constituent j. Pentanes Plus = 5

Step 4. Calculate GHG volumetric emissions at standard conditions (scf).

$$E_{s,i} = E_{a,i} * (459.67 + T_s) * P_a \quad (\text{Equation W-33})$$

where:

 $E_{s,i}$ = GHG i volumetric emissions at standard temperature and pressure (STP) in cubic feet $E_{a,i}$ = GHG i volumetric emissions at actual conditions (cf) T_s = Temperature at standard conditions (F) = 60 F T_a = Temperature at actual conditions (F) = 76 F P_s = Absolute pressure at standard conditions (psia) = 14.7 psia P_a = Absolute pressure at actual conditions (psia) = 14.7 psia

Constant = 459.67 (Assumption)

10³ = conversion factor from F to R

(Based on Annual Avg Max Temperature for Hobbs, NM from Western Regional Climate Center)

Step 5. Calculate annual CH₄ and CO₂ mass emissions (ton).

$$\text{Mass}_{s,i} = E_{s,i} * \rho_i * 0.0011023 \quad (\text{Equation W-36})$$

where:

 $\text{Mass}_{s,i}$ = GHG i (CO₂, CH₄, or N₂O) mass emissions at standard conditions in tons (tpy) $E_{s,i}$ = GHG i (CO₂, CH₄, or N₂O) volumetric emissions at standard conditions (cf) ρ_i = Density of GHG i. Use:CH₄: 0.0192 kg/ft³ (at 60F and 14.7 psia)CO₂: 0.0526 kg/ft³ (at 60F and 14.7 psia)**Step 6. Calculate annual N₂O emissions from portable or stationary fuel combustion sources under actual conditions (cf) using Equation W-40 .**

$$\text{Mass}_{N2O} = 0.0011023 * \text{Fuel} * \text{HHV} * \text{EF} \quad (\text{Equation W-40})$$

where:

 Mass_{N2O} = annual N₂O emissions from combustion of a particular type of fuel (tons).

Fuel = mass or volume of the fuel combusted

HHV = high heat value of the fuel

Pilot & Purge gas HHV = 1.068E-03 MMBtu/scf

EF = 1.00E-04 kg N₂O/MMBtu10³ = conversion factor from kg to metric tons.**Step 7. Calculate total annual emission from flare by summing Equations W-40, W-19, W-20, and W-21.**

Gas Sent to Flare	Gas Sent to Flare (cf/yr)	CH ₄ Un-Combusted, E _{a,CH4} (cf)	CO ₂ Un-Combusted, E _{a,CO2} (cf)	CO ₂ Combusted, E _{a,CO2} (cf)	CH ₄ Un-Combusted, E _{a,CH4} (scf)	CO ₂ Un-Combusted, E _{a,CO2} (scf)	CO ₂ Combusted, E _{a,CO2} (scf)	CH ₄ Un-Combusted, E _{a,CH4} (tpy)	CO ₂ Un-Combusted, E _{a,CO2} (tpy)	CO ₂ Combusted, E _{a,CO2} (tpy)	N ₂ O Mass Emissions (tpy)	CO _{2e} (tpy)
Pilot & Purge	10,220,000	177945	307	10,875,620	172,533	297	10,544,869	3.65	0.02	611.40	0.00120	703.1
								CO ₂	CH ₄	N ₂ O		
								1	25	298		
								GWP				

Engine Scenarios

Scenario A

2 TLA Engines (Units 6+7) and 1 HBA Engine (Unit 8, 9, 10, or 11) for 8760 hr/yr

Unit 6 Operating 8760 hr/yr			Unit 7 Operating 8760 hr/yr			Unit 8,9,10 or 11 Operating 8760 hr/yr					
Pollutant	Hrs of Operation (hrs/yr)	Estimated Emissions (lb/hr) (tpy)	Pollutant	Hrs of Operation (hrs/yr)	Estimated Emissions (lb/hr) (tpy)	Pollutant	Hrs of Operation (hrs/yr)	Estimated Emissions (lb/hr) (tpy)			
Nitrogen Oxides	8760	39.28658039	172.0752	Nitrogen Oxides	8760	39.28658	172.0752221	Nitrogen Oxides	8760	47.48561	207.987
Carbon Monoxide	8760	19.84170727	86.90668	Carbon Monoxide	8760	19.84171	86.90667784	Carbon Monoxide	8760	23.51935	103.0147
VOC	8760	3.051213651	13.36432	VOC	8760	3.051214	13.36431579	VOC	8760	6.452457	28.26176
Formaldehyde	8760	0.9785856	4.286205	Formaldehyde	8760	0.978586	4.286204928	Formaldehyde	8760	0.654414	2.866332
Sulfur Dioxide	8760	0.010424064	0.045657	Sulfur Dioxide	8760	0.010424	0.0456574	PM10	8760	0.572612	2.50804
PM10	8760	0.85643968	3.751206	PM10	8760	0.85644	3.751205798	Sulfur Dioxide	8760	0.006995	0.030637

Total Potential Emission Rates for Scenario A

Pollutant	(tpy)
Nitrogen Oxides	552.1374369
Carbon Monoxide	276.8280897
VOC	54.99039353
Formaldehyde	11.43874146
Sulfur Dioxide	0.121951316
PM10	10.01045175

Scenario B

1 TLA Engine (Unit 6 or 7) and 2 HBA Engines (Units 8, 9, 10, or 11) for 3400 hr/yr

2 TLA Engines (Unit 6 +7) and 1 HBA Engine (Unit 8, 9, 10, or 11) for 5360 hr/yr

Unit 6 or 7 Operating 3400 hr/yr			Unit 8,9,10 or 11 Operating 3400 hr/yr			Unit 8,9,10 or 11 Operating 3400 hr/yr					
Pollutant	Hrs of Operation (hrs/yr)	Estimated Emissions (lb/hr) (tpy)	Pollutant	Hrs of Operation (hrs/yr)	Estimated Emissions (lb/hr) (tpy)	Pollutant	Hrs of Operation (hrs/yr)	Estimated Emissions (lb/hr) (tpy)			
Nitrogen Oxides	8760	15.24821613	66.78719	Nitrogen Oxides	8760	18.43049	80.7255451	Nitrogen Oxides	8760	18.43049	80.72555
Carbon Monoxide	8760	7.70111926	33.7309	Carbon Monoxide	8760	9.128513	39.98288763	Carbon Monoxide	8760	9.128513	39.98289
VOC	8760	1.184261006	5.187063	VOC	8760	2.504378	10.96917701	VOC	8760	2.504378	10.96918
Formaldehyde	8760	0.379816329	1.663596	Formaldehyde	8760	0.253996	1.112503135	Formaldehyde	8760	0.253996	1.112503
Sulfur Dioxide	8760	0.00404587	0.017721	PM10	8760	0.222247	0.973440243	PM10	8760	0.222247	0.97344
PM10	8760	0.332408095	1.455947	Sulfur Dioxide	8760	0.002715	0.011890885	Sulfur Dioxide	8760	0.002715	0.011891

Unit 6 Operating 5360 hr/yr

Unit 6 Operating 5360 hr/yr			Unit 7 Operating 5360 hr/yr			Unit 8,9,10 or 11 Operating 5360 hr/yr					
Pollutant	Hrs of Operation (hrs/yr)	Estimated Emissions (lb/hr) (tpy)	Pollutant	Hrs of Operation (hrs/yr)	Estimated Emissions (lb/hr) (tpy)	Pollutant	Hrs of Operation (hrs/yr)	Estimated Emissions (lb/hr) (tpy)			
Nitrogen Oxides	8760	24.03836426	105.288	Nitrogen Oxides	8760	24.03836	105.2880355	Nitrogen Oxides	8760	29.05513	127.2614
Carbon Monoxide	8760	12.14058801	53.17578	Carbon Monoxide	8760	12.14059	53.17577548	Carbon Monoxide	8760	14.39083	63.03185
VOC	8760	1.866952645	8.177253	VOC	8760	1.866953	8.177252585	VOC	8760	3.948079	17.29258
Formaldehyde	8760	0.598769271	2.622609	Formaldehyde	8760	0.598769	2.622609408	Formaldehyde	8760	0.400417	1.753828
Sulfur Dioxide	8760	0.006378194	0.027936	Sulfur Dioxide	8760	0.006378	0.027936492	PM10	8760	0.350365	1.5346
PM10	8760	0.524031585	2.295258	PM10	8760	0.524032	2.295258342	Sulfur Dioxide	8760	0.00428	0.018746

Total Potential Emission Rates for Scenario B

Pollutant	(tpy)
Nitrogen Oxides	566.0757953
Carbon Monoxide	283.080075
VOC	60.77250733
Formaldehyde	10.88764908
Sulfur Dioxide	0.116121292
PM10	9.52794454

Emissions Calculation:**ENGINE**

Facility ID: 54

Facility: Linam Ranch Gas Plant

Equipment Information

Source ID Number:	6	Model:	Clark TLA-6
Name 2:	Clark T1	Serial Number:	73779
Name 3:	#5TLA	Service Date:	
Coordinates:	Latitude/Longitude	Manufacture Date:	
Latitude:		Permit Status:	
Longitude:		SCC:	
Ownership:	DEFS owned	Horsepower (bhp):	2000
Status:	Active	Heat Rate (MMBtu/hr):	17.73
Service Type:	Other	Rotations per Minute (rpm):	300
Configuration:	2-Cycle, Lean Burn	Fuel Consumption (btu/hp-hr):	8864
Fuel Type:	Residue	Fuel Heat Value (btu/scf):	900
Oil Type:	Unknown	Oil Usage (gal/month):	30
Compression Ratio:		Cylinders:	
Ignition Timing:		Potential fuel usage (MMscf/yr):	172.55
Operating Range (%):		Potential fuel usage (Mscf/hr):	19.70

Stack Parameters

Stack Name:	6	Height (ft):	74
Stack Number:	1	Diameter (ft):	1.75
Emission Percent:	100.00%	Temperature (°F):	750
Stack Angle (°):	0	Flow (ACFM):	19100
Raincap:	No	Velocity (ft/s):	132.3

Control Model**Emission Controls:**

Potential operation: 8760 hr/yr

Potential Emissions

Pollutant	Emission Factor		Nominal Rating (hp)	Hrs of Operation (hrs/yr)	Estimated Emissions		Source of Emission Factor
	EF	Units			(lb/hr)	(tpy)	
Nitrogen Oxides	8.91	g/hp-hr	2000	8760	39.287	172.075	Other
Carbon Monoxide	4.50	g/hp-hr	2000	8760	19.842	86.907	Other
VOC	0.692	g/hp-hr	2000	8760	3.051	13.364	Other
Formaldehyde	0.0552	lb/mmBtu	2000	8760	0.979	4.286	AP42
Sulfur Dioxide	0.000588	lb/mmBtu	2000	8760	0.010	0.046	AP42
PM10	0.04831	lb/mmBtu	2000	8760	0.856	3.751	AP42

Emissions Calculation:**ENGINE****Facility ID:** 54**Facility:** Linam Ranch Gas Plant**Equipment Information**

Source ID Number:	7	Model:	Clark TLA-6
Name 2:	Clark T2	Serial Number:	73780
Name 3:	#6TLA	Service Date:	
Coordinates:	Latitude/Longitude	Manufacture Date:	
Latitude:		Permit Status:	
Longitude:		SCC:	

Ownership:	DEFS owned	Horsepower (bhp):	2000
Status:	Active	Heat Rate (MMBtu/hr):	17.73
Service Type:	Other	Rotations per Minute (rpm):	300
Configuration:	2-Cycle, Lean Burn	Fuel Consumption (btu/hp-hr):	8864
Fuel Type:	Residue	Fuel Heat Value (btu/scf):	900
Oil Type:	Unknown	Oil Usage (gal/month):	30
Compression Ratio:		Cylinders:	
Ignition Timing:		Potential fuel usage (MMscf/yr):	172.55
Operating Range (%):		Potential fuel usage (Mscf/hr):	19.70

Stack Parameters

Stack Name:	7	Height (ft):	74
Stack Number:	1	Diameter (ft):	1.75
Emission Percent:	100.00%	Temperature (°F):	750
Stack Angle (°):	0	Flow (ACFM):	19100
Raincap:	No	Velocity (ft/s):	132.3

Control Model**Emission Controls:****Potential operation:** 8760 hr/yr**Potential Emissions**

Pollutant	Emission Factor		Nominal Rating (hp)	Hrs of Operation (hrs/yr)	Estimated Emissions		Source of Emission Factor
	EF	Units			(lb/hr)	(tpy)	
Nitrogen Oxides	8.91	g/hp-hr	2000	8760	39.29	172.08	Other
Carbon Monoxide	4.50	g/hp-hr	2000	8760	19.84	86.91	Other
VOC	0.692	g/hp-hr	2000	8760	3.05	13.36	Other
Formaldehyde	0.0552	lb/mmBtu	2000	8760	0.98	4.29	AP42
Sulfur Dioxide	0.000588	lb/mmBtu	2000	8760	0.01	0.05	AP42
PM10	0.04831	lb/mmBtu	2000	8760	0.86	3.75	AP42

Engine GHG Calculation

40 CFR 98 Subpart C TIER 1

Emission unit(s): **Units 6 and 7**
 Source description: **2000 HP RICE**
 Manufacturer: **Clark**
 Maximum fuel usage: **172.6** MMscf/yr

CO₂ Calculation¹ (Eq C-1)

[Click here to view Table C-1 to Subpart C of Part 98.](#)

$$\text{CO}_2 = 1 \times 10^{-3} \times \frac{172.60 \text{ MMscf}}{\text{yr}} \times \frac{1028 \text{ MMbtu}}{\text{MMscf}} \times \frac{53 \text{ kg CO}_2}{\text{MMbtu}}$$

$$\text{CO}_2 = 9407 \text{ tonnes CO}_2 / \text{yr}$$

Fuel usage carried forward from engine calculations in previous permit application.

CH₄ Calculation² (Eq C-8)

[Click here to view Table C-1 to Subpart C of Part 98](#)

[Click here to view Table C-2 to Subpart C of Part 98](#)

$$\text{CH}_4 = 1 \times 10^{-3} \times \frac{172.60 \text{ MMscf}}{\text{yr}} \times \frac{1028 \text{ MMbtu}}{\text{MMscf}} \times \frac{1 \times 10^{-3} \text{ kg CH}_4}{\text{MMbtu}}$$

$$\text{CH}_4 = 1.8E-01 \text{ tonnes CH}_4 / \text{yr}$$

Fuel usage carried forward from engine calculations in previous permit application.

N₂O Calculation² (Eq C-8)

[Click here to view Table C-1 to Subpart C of Part 98](#)

[Click here to view Table C-2 to Subpart C of Part 98](#)

$$\text{N}_2\text{O} = 1 \times 10^{-3} \times \frac{172.60 \text{ MMscf}}{\text{yr}} \times \frac{1028 \text{ MMbtu}}{\text{MMscf}} \times \frac{1 \times 10^{-4} \text{ kg N}_2\text{O}}{\text{MMbtu}}$$

$$\text{N}_2\text{O} = 1.8E-02 \text{ tonnes N}_2\text{O} / \text{yr}$$

Fuel usage carried forward from engine calculations in previous permit application.

Notes: ¹ $\text{CO}_2 = 1 \times 10^{-3} \times \text{Fuel} \times \text{HHV} \times \text{EF}$

² $\text{CH}_4 \text{ or } \text{N}_2\text{O} = 1 \times 10^{-3} \times \text{Fuel} \times \text{HHV} \times \text{EF}$ (Eq. C-8)

Where:

CH₄ or N₂O = Annual CH₄ or N₂O emissions from the combustion of a particular type of fuel (metric tons).

Fuel = Mass or volume of the fuel combusted, either from company records or directly measured by a fuel flow meter, as applicable (mass or volume per year).

HHV = Default high heat value of the fuel from Table C-1 of this subpart (mmBtu per mass or volume).

EF = Fuel-specific default emission factor for CH₄ or N₂O, from Table C-2 of this subpart (kg CH₄ or N₂O per mmBtu).

1×10^{-3} = Conversion factor from kilograms to metric tons.

Emissions Calculation:**ENGINE**

Facility ID: 54 Facility: Linam Ranch Gas Plant

Equipment Information

Source ID Number:	8	Model:	Clark HBA-6
Name 2:	Clark H1	Serial Number:	36288
Name 3:	#1HBA	Service Date:	
Coordinates:	Latitude/Longitude	Manufacture Date:	
Latitude:		Permit Status:	
Longitude:		SCC:	

Ownership:	DCP owned	Horsepower (bhp):	1267
Status:	Active	Heat Rate (MMBtu/hr):	11.86
Service Type:	Inlet/Wet Gas	Rotations per Minute (rpm):	300
Configuration:	2-Cycle, Lean Burn	Fuel Consumption (btu/hp-hr):	9357
Fuel Type:	Residue	Fuel Heat Value (btu/scf):	900
Oil Type:	Unknown	Oil Usage (gal/month):	30
Compression Ratio:		Cylinders:	
Ignition Timing:		Potential fuel usage (MMscf/yr):	115.39
Operating Range (%):			

Stack Parameters

Stack Name:	8	Height (ft):	75
Stack Number:	1	Diameter (ft):	1.5
Emission Percent:	100.00%	Temperature (°F):	650
Stack Angle (°):	0	Flow (ACFM):	13000
Raincap:	No	Velocity (ft/s):	122.6

Control Model**Emission Controls:**

Potential operation: 8760 hr/yr

Potential Emissions

Pollutant	Emission Factor		Nominal Rating (hp)	Hrs of Operation (hrs/yr)	Estimated Emissions		Source of Emission Factor
	EF	Units			(lb/hr)	(tpy)	
Nitrogen Oxides	17	g/hp-hr	1267	8760	47.49	207.99	Manufacturer Data
Carbon Monoxide	8.42	g/hp-hr	1267	8760	23.52	103.01	Manufacturer Data
VOC	2.31	g/hp-hr	1267	8760	6.45	28.26	Manufacturer Data
Formaldehyde	0.0552	lb/mmBTU	1267	8760	0.65	2.87	AP42
PM10	0.0483	lb/mmBTU	1267	8760	0.57	2.51	AP42
Sulfur Dioxide	0.00059	lb/mmBTU	1267	8760	0.01	0.03	Manufacturer Data

Emissions Calculation:**ENGINE**

Facility ID: 54

Facility: Linam Ranch Gas Plant

Equipment Information

Source ID Number:	9	Model:	Clark HBA-6
Name 2:	Clark H2	Serial Number:	736290
Name 3:	#2HBA	Service Date:	
Coordinates:	Latitude/Longitude	Manufacture Date:	
Latitude:		Permit Status:	
Longitude:		SCC:	
Ownership:	DCP owned	Horsepower (bhp):	1267
Status:	Active	Heat Rate (MMBtu/hr):	11.86
Service Type:	Inlet/Wet Gas	Rotations per Minute (rpm):	300
Configuration:	2-Cycle, Lean Burn	Fuel Consumption (btu/hp-hr):	9357
Fuel Type:	Residue	Fuel Heat Value (btu/scf):	1019
Oil Type:	Unknown	Oil Usage (gal/month):	30
Compression Ratio:		Cylinders:	
Ignition Timing:		Potential fuel usage (MMscf/yr):	101.92
Operating Range (%):			

Stack Parameters

Stack Name:	9	Height (ft):	75
Stack Number:	1	Diameter (ft):	1.5
Emission Percent:	100.00%	Temperature (°F):	650
Stack Angle (°):	0	Flow (ACFM):	13000
Raincap:	No	Velocity (ft/s):	122.6

Control Model**Emission Controls:**

Potential operation: 8760 hr/yr

Potential Emissions

Pollutant	Emission Factor		Nominal Rating (hp)	Hrs of Operation (hrs/yr)	Estimated Emissions		Source of Emission Factor
	EF	Units			(lb/hr)	(tpy)	
Nitrogen Oxides	17	g/hp-hr	1267	8760	47.49	207.99	Manufacturer Data
Carbon Monoxide	8.42	g/hp-hr	1267	8760	23.52	103.01	Manufacturer Data
VOC	2.31	g/hp-hr	1267	8760	6.45	28.26	Manufacturer Data
Formaldehyde	0.0552	lb/mmBTU	1267	8760	0.65	2.87	AP42
PM10	0.0483	lb/mmBTU	1267	8760	0.57	2.51	AP42
Sulfur Dioxide	0.00059	lb/mmBTU	1267	8760	0.01	0.03	Manufacturer Data

Emissions Calculation: ENGINE

Facility ID: 54

Facility: Linam Ranch Gas Plant

Equipment Information

Source ID Number:	10	Model:	Clark HBA-6
Name 2:	Clark H3	Serial Number:	36289
Name 3:	#3HBA	Service Date:	
Coordinates:	Latitude/Longitude	Manufacture Date:	
Latitude:		Permit Status:	
Longitude:		SCC:	
Ownership:	DEFS owned	Horsepower (bhp):	1267
Status:	Active	Heat Rate (MMBtu/hr):	11.86
Service Type:	Other	Rotations per Minute (rpm):	300
Configuration:	2-Cycle, Lean Burn	Fuel Consumption (btu/hp-hr):	9357
Fuel Type:	Residue	Fuel Heat Value (btu/scf):	900
Oil Type:	Unknown	Oil Usage (gal/month):	30
Compression Ratio:		Cylinders:	
Ignition Timing:		Potential fuel usage (MMscf/yr):	115.39
Operating Range (%):		Potential fuel usage (Mscf/hr):	13.17

Stack Parameters

Stack Name:	10	Height (ft):	74
Stack Number:	1	Diameter (ft):	1.5
Emission Percent:	100.00%	Temperature (°F):	650
Stack Angle (°):	0	Flow (ACFM):	12950
Raincap:	No	Velocity (ft/s):	122.1

Control Model**Emission Controls:**

Potential operation: 8760 hr/yr

Potential Emissions

Pollutant	Emission Factor		Nominal Rating (hp)	Hrs of Operation (hrs/yr)	Estimated Emissions		Source of Emission Factor
	EF	Units			(lb/hr)	(tpy)	
Nitrogen Oxides	17	g/hp-hr	1267	8760	47.49	208.0	Other
Carbon Monoxide	8.42	g/hp-hr	1267	8760	23.52	103.00	Other
VOC	2.31	g/hp-hr	1267	8760	6.45	28.26	Other
Formaldehyde	0.0552	lb/mmBtu	1267	8760	0.65	2.8663	AP42
Sulfur Dioxide	0.000588	lb/mmBtu	1267	8760	0.01	0.03	AP42
PM10	0.04831	lb/mmBtu	1267	8760	0.57	2.51	AP42

Emissions Calculation:**ENGINE**

Facility ID: 54

Facility: Linam Ranch Gas Plant

Equipment Information

Source ID Number:	11	Model:	Clark HBA-6
Name 2:	Clark H4	Serial Number:	36303
Name 3:	#4HBA	Service Date:	
Coordinates:	Latitude/Longitude	Manufacture Date:	
Latitude:		Permit Status:	
Longitude:		SCC:	
Ownership:	DEFS owned	Horsepower (bhp):	1267
Status:	Active	Heat Rate (MMBtu/hr):	11.86
Service Type:	Other	Rotations per Minute (rpm):	300
Configuration:	2-Cycle, Lean Burn	Fuel Consumption (btu/hp-hr):	9357
Fuel Type:	Residue	Fuel Heat Value (btu/scf):	900
Oil Type:	Unknown	Oil Usage (gal/month):	30
Compression Ratio:		Cylinders:	
Ignition Timing:		Potential fuel usage (MMscf/yr):	115.39
Operating Range (%):		Potential fuel usage (Mscf/hr):	13.17

Stack Parameters

Stack Name:	11	Height (ft):	74
Stack Number:	1	Diameter (ft):	1.5
Emission Percent:	100.00%	Temperature (°F):	650
Stack Angle (°):	0	Flow (ACFM):	12950
Raincap:	No	Velocity (ft/s):	122.1

Control Model**Emission Controls:**

Potential operation: 8760 hr/yr

Potential Emissions

Pollutant	Emission Factor		Nominal Rating (hp)	Hrs of Operation (hrs/yr)	Estimated Emissions		Source of Emission Factor
	EF	Units			(lb/hr)	(tpy)	
Nitrogen Oxides	17	g/hp-hr	1267	8760	47.49	207.99	Other
Carbon Monoxide	8.42	g/hp-hr	1267	8760	23.52	103.01	Other
VOC	2.31	g/hp-hr	1267	8760	6.45	28.26	Other
Formaldehyde	0.0552	lb/mmBtu	1267	8760	0.65	2.87	AP42
Sulfur Dioxide	0.000588	lb/mmBtu	1267	8760	0.01	0.03	AP42
PM10	0.04831	lb/mmBtu	1267	8760	0.57	2.51	AP42

Furnace GHG Calculation

40 CFR 98 Subpart C TIER 1

Emission unit(s): 8, 9, 10, or 11

Source description: 1267 HP RICE

Manufacturer: Clark

Maximum fuel usage: 115.4 MMscf/yr

CO₂ Calculation¹ (Eq C-1)

[Click here to view Table C-1 to Subpart C of Part 98.](#)

$$\text{CO}_2 = 1 \times 10^{-3} \times \frac{115.40 \text{ MMscf}}{\text{yr}} \times \frac{1028 \text{ MMbtu}}{\text{MMscf}} \times \frac{53.02 \text{ kg CO}_2}{\text{MMbtu}}$$

$$\text{CO}_2 = 6290 \text{ tonnes CO}_2 / \text{yr}$$

Fuel usage carried forward from engine calculations in previous permit application.

CH₄ Calculation² (Eq C-8)

[Click here to view Table C-1 to Subpart C of Part 98](#)

[Click here to view Table C-2 to Subpart C of Part 98](#)

$$\text{CH}_4 = 1 \times 10^{-3} \times \frac{115.40 \text{ MMscf}}{\text{yr}} \times \frac{1028 \text{ MMbtu}}{\text{MMscf}} \times \frac{1 \times 10^{-3} \text{ kg CH}_4}{\text{MMbtu}}$$

$$\text{CH}_4 = 1.2E-01 \text{ tonnes CH}_4 / \text{yr}$$

Fuel usage carried forward from engine calculations in previous permit application.

N₂O Calculation² (Eq C-8)

[Click here to view Table C-1 to Subpart C of Part 98](#)

[Click here to view Table C-2 to Subpart C of Part 98](#)

$$\text{N}_2\text{O} = 1 \times 10^{-3} \times \frac{115.40 \text{ MMscf}}{\text{yr}} \times \frac{1028 \text{ MMbtu}}{\text{MMscf}} \times \frac{1 \times 10^{-4} \text{ kg N}_2\text{O}}{\text{MMbtu}}$$

$$\text{N}_2\text{O} = 1.2E-02 \text{ tonnes N}_2\text{O / yr}$$

Fuel usage carried forward from engine calculations in previous permit application.

Notes: ¹ $\text{CO}_2 = 1 \times 10^{-3} * \text{Fuel} * \text{HHV} * \text{EF}$

² $\text{CH}_4 \text{ or } \text{N}_2\text{O} = 1 \times 10^{-3} * \text{Fuel} * \text{HHV} * \text{EF}$ (Eq. C-8)

Where:

CH₄ or N₂O = Annual CH₄ or N₂O emissions from the combustion of a particular type of fuel (metric tons).

Fuel = Mass or volume of the fuel combusted, either from company records or directly measured by a fuel flow meter, as applicable (mass or volume per year).

HHV = Default high heat value of the fuel from Table C-1 of this subpart (mmBtu per mass or volume).

EF = Fuel-specific default emission factor for CH₄ or N₂O, from Table C-2 of this subpart (kg CH₄ or N₂O per mmBtu). 1×10^{-3} = Conversion factor from kilograms to metric tons.

Turbine

Emission Unit: 28

Source Description: Natural gas fueled turbine

Manufacturer: Solar

Model: T60-7800S

Fuel heat value 900 Btu/scf LHV heat content of fuel gas

Heat rate 57.66 MMbtu/hr Manufacturer's data (LHV)

63.43 MMbtu/hr Manufacturer's data (HHV)

Fuel consumption: 64.1 Mscf/hr Manufacturer's heat rate / fuel heat value

Annual fuel usage: 561.2 MMscf/yr Manufacturer's heat rate / fuel heat value * 8760 hrs

Emission Calculations

Uncontrolled Emissions

NOx	CO	VOC ¹	SO ₂ ²	PM	
3.47	3.52	2.01		lb/hr	Mfg Data; full load @ 0 degrees F
			0.915	lb/hr	Note 1
				0.021	lb/MMBtu Mfr rec'd emission factor (HHV basis)
3.470	3.520	2.014	0.915	1.332	lb/hr Hourly emission rate
15.199	15.418	8.821	4.007	5.834	tpy Annual emission rate (8760 hrs/yr)

Notes

¹ VOC emissions set equal to unburned hydrocarbon (UHC) emissions

² SO₂ emissions based on fuel sulfur content of 50 gr S/Mscf, or 0.00714 lb S/Mscf

0.007146 lb S/Mscf * fuel consumption (Mscf/hr) * 64 lb SO₂/32 lb S = lb/hr SO₂

Exhaust Parameters

Exhaust temp (Tstk): 890 °F Manufacturer data

Stack height: 35.78 ft Design

Stack diameter: 3.83 ft Design

Exhaust flow: 163,305 lb/hr Manufacturer data

28.58 MW; nominal exhaust for natural gas combustion

3610 ft MSL Site Elevation

12.88 psia Pressure at Elevation

1784.9 acfs; Ideal gas law, nominal MW and stack

Exhaust velocity: 154.7 ft/sec Exhaust flow ÷ stack area

Engine GHG Calculation

40 CFR 98 Subpart C TIER 1

Emission unit(s): **28**
 Source description: **Turbine**
 Manufacturer: **Solar**
 Maximum fuel usage: **561.2 MMscf/yr**

CO₂ Calculation¹ (Eq C-1)

[Click here to view Table C-1 to Subpart C of Part 98.](#)

$$\text{CO}_2 = 1 \times 10^{-3} \times \frac{561.22 \text{ MMscf}}{\text{yr}} \times \frac{1028 \text{ MMbtu}}{\text{MMscf}} \times \frac{53.02 \text{ kg CO}_2}{\text{MMbtu}}$$

$$\text{CO}_2 = \mathbf{30589 \text{ tonnes CO}_2 / yr}$$

Fuel usage carried forward from engine calculations in previous permit application.

CH₄ Calculation² (Eq C-8)

[Click here to view Table C-1 to Subpart C of Part 98](#)

[Click here to view Table C-2 to Subpart C of Part 98](#)

$$\text{CH}_4 = 1 \times 10^{-3} \times \frac{561.22 \text{ MMscf}}{\text{yr}} \times \frac{1028 \text{ MMbtu}}{\text{MMscf}} \times \frac{1 \times 10^{-3} \text{ kg CH}_4}{\text{MMbtu}}$$

$$\text{CH}_4 = \mathbf{5.8E-01 \text{ tonnes CH}_4 / yr}$$

Fuel usage carried forward from engine calculations in previous permit application.

N₂O Calculation² (Eq C-8)

[Click here to view Table C-1 to Subpart C of Part 98](#)

[Click here to view Table C-2 to Subpart C of Part 98](#)

$$\text{N}_2\text{O} = 1 \times 10^{-3} \times \frac{561.22 \text{ MMscf}}{\text{yr}} \times \frac{1028 \text{ MMbtu}}{\text{MMscf}} \times \frac{1 \times 10^{-4} \text{ kg N}_2\text{O}}{\text{MMbtu}}$$

$$\text{N}_2\text{O} = \mathbf{5.8E-02 \text{ tonnes N}_2\text{O / yr}}$$

Fuel usage carried forward from engine calculations in previous permit application.

Notes: ¹ $\text{CO}_2 = 1 \times 10^{-3} * \text{Fuel} * \text{HHV} * \text{EF}$

² $\text{CH}_4 \text{ or } \text{N}_2\text{O} = 1 \times 10^{-3} * \text{Fuel} * \text{HHV} * \text{EF}$ (Eq. C-8)

Where:

CH₄ or N₂O = Annual CH₄ or N₂O emissions from the combustion of a particular type of fuel (metric tons).

Fuel = Mass or volume of the fuel combusted, either from company records or directly measured by a fuel flow meter, as applicable (mass or volume per year).

HHV = Default high heat value of the fuel from Table C-1 of this subpart (mmBtu per mass or volume).

EF = Fuel-specific default emission factor for CH₄ or N₂O, from Table C-2 of this subpart (kg CH₄ or N₂O per mmBtu).

1×10^{-3} = Conversion factor from kilograms to metric tons.

Emissions Calculation: TURBINE

Facility ID: 54 Facility: Linam Ranch Gas Plant

Equipment Information

Source ID Number:	29	Model:	Solar Taurus 70-10302S
Name 2:	Turbine 1	Serial Number:	0021B
Name 3:	Inlet	Service Date:	
Coordinates:	Latitude/Longitude	Manufacture Date:	
Latitude:		Permit Status:	
Longitude:		SCC:	

Ownership:	DEFS owned	Turbine HP (hp):	10702
Status:	Active	Fuel Heat Value (btu/scf):	939
Fuel Type:	Other	Heat Rate (MMBtu/hr):	77.63
Service Type:	Other	Oil Usage (gal/month):	30
Cycle Type:	Other	Potential fuel usage (MMscf/yr)	724.24
Oil Type:	Unknown	Potential fuel usage (Mscf/hr):	82.68
		Heat Rate (BTU/bhp-hr)	7254

Stack Parameters

Stack Name:	29	Height (ft):	44
Stack Number:	1	Diameter (ft):	4
Emission Percent:	100.00%	Temperature (°F):	858
Stack Angle (°):	0	Flow (ACFM):	117844
Raincap:	No	Velocity (ft/s):	156.3
		Exh Flow (lbm/hr):	216169

Control Model

119609.8833 (ACFM=lb/hr*(T+460)/2382)

Emission Controls:

Potential operation: 8760 hr/yr

Potential Emissions

Pollutant	Emission Factor		Nominal Rating (hp)	Hrs of Operation (hrs/yr)	Estimated Emissions		Source of Emission Factor
	EF	Units			(lb/hr)	(tpy)	
Nitrogen Oxides	11.82	lb/hr	10702	8760	11.823	51.785	Manufacturer Data
Carbon Monoxide	9.47	lb/hr	10702	8760	9.470	41.479	Manufacturer Data
VOC	0.33	lb/hr	10702	8760	0.325	1.424	Manufacturer Data
Formaldehyde	0.00071	lb/mmBtu	10702	8760	0.055	0.241	AP42
Sulfur Dioxide	0.0034	lb/mmBtu	10702	8760	0.264	1.156	AP42
PM10	0.0066	lb/mmBtu	10702	8760	0.512	2.244	AP42

Engine GHG Calculation

40 CFR 98 Subpart C TIER 1

Emission unit(s): **29**Source description: **Turbine**Manufacturer: **Solar**Maximum fuel usage: **724.24** MMscf/yr

CO₂ Calculation¹ (Eq C-1)

[Click here to view Table C-1 to Subpart C of Part 98.](#)

$$\text{CO}_2 = 1 \times 10^{-3} \times \frac{724.24 \text{ MMscf}}{\text{yr}} \times \frac{1028 \text{ MMbtu}}{\text{MMscf}} \times \frac{53.02 \text{ kg CO}_2}{\text{MMbtu}}$$

$$\text{CO}_2 = 39474 \text{ tonnes CO}_2 / \text{yr}$$

Fuel usage carried forward from engine calculations in previous permit application.

CH₄ Calculation² (Eq C-8)

[Click here to view Table C-1 to Subpart C of Part 98](#)

[Click here to view Table C-2 to Subpart C of Part 98](#)

$$\text{CH}_4 = 1 \times 10^{-3} \times \frac{724.24 \text{ MMscf}}{\text{yr}} \times \frac{1028 \text{ MMbtu}}{\text{MMscf}} \times \frac{1 \times 10^{-3} \text{ kg CH}_4}{\text{MMbtu}}$$

$$\text{CH}_4 = 7.4E-01 \text{ tonnes CH}_4 / \text{yr}$$

Fuel usage carried forward from engine calculations in previous permit application.

N₂O Calculation² (Eq C-8)

[Click here to view Table C-1 to Subpart C of Part 98](#)

[Click here to view Table C-2 to Subpart C of Part 98](#)

$$\text{N}_2\text{O} = 1 \times 10^{-3} \times \frac{724.24 \text{ MMscf}}{\text{yr}} \times \frac{1028 \text{ MMbtu}}{\text{MMscf}} \times \frac{1 \times 10^{-4} \text{ kg N}_2\text{O}}{\text{MMbtu}}$$

$$\text{N}_2\text{O} = 7.4E-02 \text{ tonnes N}_2\text{O / yr}$$

Fuel usage carried forward from engine calculations in previous permit application.

Notes: ¹ $CO_2 = 1 \times 10^{-3} * \text{Fuel} * HHV * EF$

² $CH_4 \text{ or } N_2O = 1 \times 10^{-3} * \text{Fuel} * HHV * EF \quad (\text{Eq. C-8})$

Where:

CH₄ or N₂O = Annual CH₄ or N₂O emissions from the combustion of a particular type of fuel (metric tons).

Fuel = Mass or volume of the fuel combusted, either from company records or directly measured by a fuel flow meter, as applicable (mass or volume per year).

HHV = Default high heat value of the fuel from Table C-1 of this subpart (mmBtu per mass or volume).

EF = Fuel-specific default emission factor for CH₄ or N₂O, from Table C-2 of this subpart (kg CH₄ or N₂O per mmBtu).

1×10^{-3} = Conversion factor from kilograms to metric tons.

Emissions Calculation: TURBINE

Facility ID: 54 Facility: Linam Ranch Gas Plant

Equipment Information

Source ID Number:	30	Model:	Solar Taurus 70-9702S
Name 2:	Solar Taurus 70	Serial Number:	0146B
Name 3:	Residue	Service Date:	
Coordinates:	Latitude/Longitude	Manufacture Date:	
Latitude:		Permit Status:	
Longitude:		SCC:	

Ownership:	DEFS owned	Turbine HP (hp):	9990
Status:	Active	Fuel Heat Value (btu/scf):	939
Fuel Type:	Other	Heat Rate (MMBtu/hr):	73.95
Service Type:	Other	Oil Usage (gal/month):	30
Cycle Type:	Other	Potential fuel usage (MMscf/yr)	689.85
Oil Type:	Unknown	Potential fuel usage (Mscf/hr):	78.75
		Heat Rate (BTU/bhp-hr)	7402

Stack Parameters

Stack Name:	30	Height (ft):	44
Stack Number:	1	Diameter (ft):	6
Emission Percent:	100.00%	Temperature (°F):	826
Stack Angle (°):	0	Flow (ACFM):	114983
Raincap:	No	Velocity (ft/s):	67.8
		Exh Flow (lbm/hr):	216169

Control Model**Emission Controls:**

Potential operation: 8760 hr/yr

Potential Emissions

Pollutant	Emission Factor		Nominal Rating (hp)	Hrs of Operation (hrs/yr)	Estimated Emissions		Source of Emission Factor
	EF	Units			(lb/hr)	(tpy)	
Nitrogen Oxides	11.26	lb/hr	9990	8760	11.3	49.32	Manufacturer Data
Carbon Monoxide	9.02	lb/hr	9990	8760	9.02	39.51	Manufacturer Data
VOC	0.31	lb/hr	9990	8760	0.31	1.36	Manufacturer Data
Formaldehyde	0.00071	lb/mmBtu	9990	8760	0.05	0.23	AP42
Sulfur Dioxide	0.0034	lb/mmBtu	9990	8760	0.25	1.10	AP42
PM10	0.0066	lb/mmBtu	9990	8760	0.49	2.14	AP42

Engine GHG Calculation

40 CFR 98 Subpart C TIER 1

Emission unit(s): 30

Source description: Turbine

Manufacturer: Solar

Maximum fuel usage: 689.85 MMscf/yr

CO₂ Calculation¹ (Eq C-1)

[Click here to view Table C-1 to Subpart C of Part 98.](#)

$$\text{CO}_2 = \frac{1 \times 10^{-3} \times 689.85 \text{ MMscf}}{\text{yr}} \times \frac{1028 \text{ MMbtu}}{\text{MMscf}} \times \frac{53.02 \text{ kg CO}_2}{\text{MMbtu}}$$

$$\text{CO}_2 = 37600 \text{ tonnes CO}_2 / \text{yr}$$

Fuel usage carried forward from engine calculations in previous permit application.

CH₄ Calculation² (Eq C-8)

[Click here to view Table C-1 to Subpart C of Part 98](#)

[Click here to view Table C-2 to Subpart C of Part 98](#)

$$\text{CH}_4 = \frac{1 \times 10^{-3} \times 689.85 \text{ MMscf}}{\text{yr}} \times \frac{1028 \text{ MMbtu}}{\text{MMscf}} \times \frac{1 \times 10^{-3} \text{ kg CH}_4}{\text{MMbtu}}$$

$$\text{CH}_4 = 7.1\text{E-01} \text{ tonnes CH}_4 / \text{yr}$$

Fuel usage carried forward from engine calculations in previous permit application.

N₂O Calculation² (Eq C-8)

[Click here to view Table C-1 to Subpart C of Part 98](#)

[Click here to view Table C-2 to Subpart C of Part 98](#)

$$\text{N}_2\text{O} = \frac{1 \times 10^{-3} \times 689.85 \text{ MMscf}}{\text{yr}} \times \frac{1028 \text{ MMbtu}}{\text{MMscf}} \times \frac{1 \times 10^{-4} \text{ kg N}_2\text{O}}{\text{MMbtu}}$$

$$\text{N}_2\text{O} = 7.1\text{E-02} \text{ tonnes N}_2\text{O / yr}$$

Fuel usage carried forward from engine calculations in previous permit application.

Notes: ¹ $CO_2 = 1 \times 10^{-3} \times Fuel \times HHV \times EF$

² $CH_4 \text{ or } N_2O = 1 \times 10^{-3} \times Fuel \times HHV \times EF \quad (\text{Eq. C-8})$

Where:

CH₄ or N₂O = Annual CH₄ or N₂O emissions from the combustion of a particular type of fuel (metric tons).

Fuel = Mass or volume of the fuel combusted, either from company records or directly measured by a fuel flow meter, as applicable (mass or volume per year).

HHV = Default high heat value of the fuel from Table C-1 of this subpart (mmBtu per mass or volume).

EF = Fuel-specific default emission factor for CH₄ or N₂O, from Table C-2 of this subpart (kg CH₄ or N₂O per mmBtu).

1×10^{-3} = Conversion factor from kilograms to metric tons.

Emissions Calculation:**TURBINE**

Facility ID: 54

Facility: Linam Ranch Gas Plant

Equipment Information

Source ID Number:	31	Model:	Solar Centaur T-4700
Name 2:	Turbine 2	Serial Number:	OHK06-C0131
Name 3:	#2 Res	Service Date:	
Coordinates:	Latitude/Longitude	Manufacture Date:	
Latitude:		Permit Status:	
Longitude:		SCC:	

Ownership:	DEFS owned	Turbine HP (hp):	3915
Status:	Active	Fuel Heat Value (btu/scf):	900
Fuel Type:	Residue	Heat Rate (MMBtu/hr):	36.8
Service Type:	Residue	Oil Usage (gal/month):	30
Cycle Type:	Other	Potential fuel usage (MMscf/yr)	358.2
Oil Type:	Unknown	Potential fuel usage (Mscf/hr):	40.9
		Heat Rate (BTU/bhp-hr)	9400

Stack Parameters

Stack Name:	31	Height (ft):	44
Stack Number:	1	Diameter (ft):	4
Emission Percent:	100.00%	Temperature (°F):	817
Stack Angle (°):	0	Flow (ACFM):	78000
Raincap:	No	Velocity (ft/s):	103.5

Control Model**Emission Controls:**

Potential operation: 8760 hr/yr

Potential Emissions

Pollutant	Emission Factor		Nominal Rating (hp)	Hrs of Operation (hrs/yr)	Estimated Emissions		Source of Emission Factor
	EF	Units			(lb/hr)	(tpy)	
Nitrogen Oxides	26.0	lb/hr	3915	8760	26.030	114.011	Manufacturer Data
Carbon Monoxide	5.0	lb/hr	3915	8760	4.950	21.600	Manufacturer Data
VOC	0.4	lb/hr	3915	8760	0.350	1.533	Manufacturer Data
Formaldehyde	0.00071	lb/mmBtu	3915	8760	0.026	0.114	AP42
Sulfur Dioxide	0.0034	lb/mmBtu	3915	8760	0.125	0.548	AP42
PM10	0.0066	lb/mmBtu	3915	8760	0.243	1.064	AP42

Engine GHG Calculation

40 CFR 98 Subpart C TIER 1

Emission unit(s): 31

Source description: Turbine

Manufacturer: Solar

Maximum fuel usage: 358.2 MMscf/yr

CO₂ Calculation¹ (Eq C-1)

[Click here to view Table C-1 to Subpart C of Part 98.](#)

$$\text{CO}_2 = 1 \times 10^{-3} \times \frac{358.20 \text{ MMscf}}{\text{yr}} \times \frac{1028 \text{ MMbtu}}{\text{MMscf}} \times \frac{53.02 \text{ kg CO}_2}{\text{MMbtu}}$$

$$\text{CO}_2 = 19524 \text{ tonnes CO}_2 / \text{yr}$$

Fuel usage carried forward from engine calculations in previous permit application.

CH₄ Calculation² (Eq C-8)

[Click here to view Table C-1 to Subpart C of Part 98](#)

[Click here to view Table C-2 to Subpart C of Part 98](#)

$$\text{CH}_4 = 1 \times 10^{-3} \times \frac{358.20 \text{ MMscf}}{\text{yr}} \times \frac{1028 \text{ MMbtu}}{\text{MMscf}} \times \frac{1 \times 10^{-3} \text{ kg CH}_4}{\text{MMbtu}}$$

$$\text{CH}_4 = 3.7E-01 \text{ tonnes CH}_4 / \text{yr}$$

Fuel usage carried forward from engine calculations in previous permit application.

N₂O Calculation² (Eq C-8)

[Click here to view Table C-1 to Subpart C of Part 98](#)

[Click here to view Table C-2 to Subpart C of Part 98](#)

$$\text{N}_2\text{O} = 1 \times 10^{-3} \times \frac{358.20 \text{ MMscf}}{\text{yr}} \times \frac{1028 \text{ MMbtu}}{\text{MMscf}} \times \frac{1 \times 10^{-4} \text{ kg N}_2\text{O}}{\text{MMbtu}}$$

$$\text{N}_2\text{O} = 3.7E-02 \text{ tonnes N}_2\text{O / yr}$$

Fuel usage carried forward from engine calculations in previous permit application.

Notes: ¹ $CO_2 = 1 \times 10^{-3} * \text{Fuel} * HHV * EF$

² $CH_4 \text{ or } N_2O = 1 \times 10^{-3} * \text{Fuel} * HHV * EF \quad (\text{Eq. C-8})$

Where:

CH₄ or N₂O = Annual CH₄ or N₂O emissions from the combustion of a particular type of fuel (metric tons).

Fuel = Mass or volume of the fuel combusted, either from company records or directly measured by a fuel flow meter, as applicable (mass or volume per year).

HHV = Default high heat value of the fuel from Table C-1 of this subpart (mmBtu per mass or volume).

EF = Fuel-specific default emission factor for CH₄ or N₂O, from Table C-2 of this subpart (kg CH₄ or N₂O per mmBtu).

1×10^{-3} = Conversion factor from kilograms to metric tons.

Emissions Calculation: TURBINE

Facility ID: 54 Facility: Linam Ranch Gas Plant

Equipment Information

Source ID Number:	32B	Model:	Solar Centaur T-4000
Name 2:	Turbine 4	Serial Number:	4678C
Name 3:	Refrig	Service Date:	
Coordinates:	Latitude/Longitude	Manufacture Date:	
Latitude:		Permit Status:	
Longitude:		SCC:	

Ownership:	DEFS owned	Turbine HP (hp):	3684
Status:	Active	Fuel Heat Value (btu/scf):	900
Fuel Type:	Other	Heat Rate (MMBtu/hr):	36.21
Service Type:	Other	Oil Usage (gal/month):	30
Cycle Type:	Other	Potential fuel usage (MMscf/yr)	352.44
Oil Type:	Unknown	Potential fuel usage (Mscf/hr):	40.23
		Heat Rate (BTU/bhp-hr)	9829

Stack Parameters

Stack Name:	Height (ft):	32
Stack Number:	Diameter (ft):	4
Emission Percent:	Temperature (°F):	817
Stack Angle (°):	Flow (ACFM):	78464
Raincap:	Velocity (ft/s):	104.1
	Exh Flow (lbm/hr):	116568

Control Model**Emission Controls:**

Potential operation: 8760 hr/yr

Potential Emissions

Pollutant	Emission Factor		Nominal Rating (hp)	Hrs of Operation (hrs/yr)	Estimated Emissions		Source of Emission Factor
	EF	Units			(lb/hr)	(tpy)	
Nitrogen Oxides	0.655	lb/mmBtu	3684	8760	23.718	103.883	Manufacturer Data
Carbon Monoxide	0.121	lb/mmBtu	3684	8760	4.381	19.191	Manufacturer Data
VOC	0.069	lb/mmBtu	3684	8760	2.498	10.943	Manufacturer Data
Formaldehyde	0.00071	lb/mmBtu	3684	8760	0.026	0.113	AP42
Sulfur Dioxide	0.0034	lb/mmBtu	3684	8760	0.123	0.539	AP42
PM10	0.0066	lb/mmBtu	3684	8760	0.239	1.047	AP42

Engine GHG Calculation

40 CFR 98 Subpart C TIER 1

Emission unit(s): 32B

Source description: Turbine

Manufacturer: Solar

Maximum fuel usage: 352.44 MMscf/yr

CO₂ Calculation¹ (Eq C-1)

[Click here to view Table C-1 to Subpart C of Part 98.](#)

$$\text{CO}_2 = \frac{1 \times 10^{-3} \times 352.44 \text{ MMscf}}{\text{yr}} \times \frac{1028 \text{ MMbtu}}{\text{MMscf}} \times \frac{53.02 \text{ kg CO}_2}{\text{MMbtu}}$$

$$\text{CO}_2 = 19210 \text{ tonnes CO}_2 / \text{yr}$$

Fuel usage carried forward from engine calculations in previous permit application.

CH₄ Calculation² (Eq C-8)

[Click here to view Table C-1 to Subpart C of Part 98](#)

[Click here to view Table C-2 to Subpart C of Part 98](#)

$$\text{CH}_4 = \frac{1 \times 10^{-3} \times 352.44 \text{ MMscf}}{\text{yr}} \times \frac{1028 \text{ MMbtu}}{\text{MMscf}} \times \frac{1 \times 10^{-3} \text{ kg CH}_4}{\text{MMbtu}}$$

$$\text{CH}_4 = 3.6E-01 \text{ tonnes CH}_4 / \text{yr}$$

Fuel usage carried forward from engine calculations in previous permit application.

N₂O Calculation² (Eq C-8)

[Click here to view Table C-1 to Subpart C of Part 98](#)

[Click here to view Table C-2 to Subpart C of Part 98](#)

$$\text{N}_2\text{O} = \frac{1 \times 10^{-3} \times 352.44 \text{ MMscf}}{\text{yr}} \times \frac{1028 \text{ MMbtu}}{\text{MMscf}} \times \frac{1 \times 10^{-4} \text{ kg N}_2\text{O}}{\text{MMbtu}}$$

$$\text{N}_2\text{O} = 3.6E-02 \text{ tonnes N}_2\text{O / yr}$$

Fuel usage carried forward from engine calculations in previous permit application.

Notes: ¹ $CO_2 = 1 \times 10^{-3} \times Fuel \times HHV \times EF$

² $CH_4 \text{ or } N_2O = 1 \times 10^{-3} \times Fuel \times HHV \times EF \quad (\text{Eq. C-8})$

Where:

CH₄ or N₂O = Annual CH₄ or N₂O emissions from the combustion of a particular type of fuel (metric tons).

Fuel = Mass or volume of the fuel combusted, either from company records or directly measured by a fuel flow meter, as applicable (mass or volume per year).

HHV = Default high heat value of the fuel from Table C-1 of this subpart (mmBtu per mass or volume).

EF = Fuel-specific default emission factor for CH₄ or N₂O, from Table C-2 of this subpart (kg CH₄ or N₂O per mmBtu).

1×10^{-3} = Conversion factor from kilograms to metric tons.

Emissions Calculation: HEATER/BOILER/REBOILER

Facility ID: 54 Facility: Linam Ranch Gas Plant

Equipment Information

Source ID Number:	34	Model:	Other External Combustion Device
Name 2:	Furnace B	Serial Number:	91-2348
Name 3:	Regen	Service Date:	
Coordinates:	Latitude/Longitude	Manufacture Date:	
Latitude:		Permit Status:	
Longitude:		SCC:	

Ownership:	DEFS owned	Heat Input Fuel (mmbtu/hr):	15
Status:	Active	Fuel Heat Value (btu/scf):	900.00
Ext. Comb.Type:	Heaters	Heat Input Wste (mmbtu/hr):	
Fuel Type:	Residue	Waste heat Value (btu/scf):	
Equipment Usage:		Potential fuel usage (MMscf/yr):	146.00
Configuration:		Potential fuel usage (Mscf/hr):	16.67

Stack Parameters

Stack Name:	34	Height (ft):	45
Stack Number:	1	Diameter (ft):	2
Emission Percent:	100.00%	Temperature (°F):	600
Stack Angle (°):	0	Flow (ACFM):	6843
Raincap:	No	Velocity (ft/s):	36.3

Control Model**Emission Controls:****Potential operation:** 8760 hr/yr**Potential Emissions**

Pollutant	Emission Factor		Nominal Rating (MMBtu/hr)	Hrs of Operation (hrs/yr)	(lb/hr)	(tpy)	Source of Emission Factor
	EF	Units					
Nitrogen Oxides	100	lb/MMscf	15	8760	1.667	7.300	AP42
Carbon Monoxide	84	lb/MMscf	15	8760	1.400	6.132	AP42
VOC	5.5	lb/MMscf	15	8760	0.092	0.402	AP42
PM10	7.6	lb/MMscf	15	8760	0.127	0.555	AP42
Sulfur Dioxide	0.6	lb/MMscf	15	8760	0.010	0.044	AP42

Engine GHG Calculation

40 CFR 98 Subpart C TIER 1

Emission unit(s): 34

Source description: Turbine

Manufacturer: Solar

Maximum fuel usage: 146 MMscf/yr

CO₂ Calculation¹ (Eq C-1)

[Click here to view Table C-1 to Subpart C of Part 98.](#)

$$\text{CO}_2 = \frac{1 \times 10^{-3} \times 146.00 \text{ MMscf}}{\text{yr}} \times \frac{1028 \text{ MMbtu}}{\text{MMscf}} \times \frac{53.02 \text{ kg CO}_2}{\text{MMbtu}}$$

$$\text{CO}_2 = 7958 \text{ tonnes CO}_2 / \text{yr}$$

Fuel usage carried forward from engine calculations in previous permit application.

CH₄ Calculation² (Eq C-8)

[Click here to view Table C-1 to Subpart C of Part 98](#)

[Click here to view Table C-2 to Subpart C of Part 98](#)

$$\text{CH}_4 = \frac{1 \times 10^{-3} \times 146.00 \text{ MMscf}}{\text{yr}} \times \frac{1028 \text{ MMbtu}}{\text{MMscf}} \times \frac{1 \times 10^{-3} \text{ kg CH}_4}{\text{MMbtu}}$$

$$\text{CH}_4 = 1.5E-01 \text{ tonnes CH}_4 / \text{yr}$$

Fuel usage carried forward from engine calculations in previous permit application.

N₂O Calculation² (Eq C-8)

[Click here to view Table C-1 to Subpart C of Part 98](#)

[Click here to view Table C-2 to Subpart C of Part 98](#)

$$\text{N}_2\text{O} = \frac{1 \times 10^{-3} \times 146.00 \text{ MMscf}}{\text{yr}} \times \frac{1028 \text{ MMbtu}}{\text{MMscf}} \times \frac{1 \times 10^{-4} \text{ kg N}_2\text{O}}{\text{MMbtu}}$$

$$\text{N}_2\text{O} = 1.5E-02 \text{ tonnes N}_2\text{O / yr}$$

Fuel usage carried forward from engine calculations in previous permit application.

Notes: ¹ $CO_2 = 1 \times 10^{-3} \times \text{Fuel} \times HHV \times EF$

² $CH_4 \text{ or } N_2O = 1 \times 10^{-3} \times \text{Fuel} \times HHV \times EF \quad (\text{Eq. C-8})$

Where:

CH₄ or N₂O = Annual CH₄ or N₂O emissions from the combustion of a particular type of fuel (metric tons).

Fuel = Mass or volume of the fuel combusted, either from company records or directly measured by a fuel flow meter, as applicable (mass or volume per year).

HHV = Default high heat value of the fuel from Table C-1 of this subpart (mmBtu per mass or volume).

EF = Fuel-specific default emission factor for CH₄ or N₂O, from Table C-2 of this subpart (kg CH₄ or N₂O per mmBtu). 1×10^{-3} = Conversion factor from kilograms to metric tons.

Emissions Calculation: HEATER/BOILER/REBOILER

Facility ID: 54 Facility: Linam Ranch Gas Plant

Equipment Information

Source ID Number:	36	Model:	Other External Combustion Device
Name 2:	Boiler 36	Serial Number:	
Name 3:	Boiler	Service Date:	
Coordinates:	Latitude/Longitude	Manufacture Date:	
Latitude:		Permit Status:	
Longitude:		SCC:	

Ownership:	DEFS owned	Heat Input Fuel (mmbtu/hr):	99.5
Status:	Active	Fuel Heat Value (btu/scf):	900.00
Ext. Comb. Type:	Heaters	Heat Input Wste (mmbtu/hr):	
Fuel Type:	Residue	Waste heat Value (btu/scf):	
Equipment Usage:		Potential fuel usage (MMscf/yr):	968.47
Configuration:		Potential fuel usage (Mscf/hr):	110.56

Stack Parameters

Stack Name:	36	Height (ft):	50
Stack Number:	36	Diameter (ft):	3.75
Emission Percent:	100.00%	Temperature (°F):	300
Stack Angle (°):	0	Velocity (ft/s):	50
Raincap:	No	Flow (ACFM):	33134.0

Control Model

Emission Controls: Low-NOx Burners: Other Control

Potential operation: 8760 hr/yr

Potential Emissions

Pollutant	Emission Factor		Nominal Rating (MMBtu/hr)	Hrs of Operation (hrs/yr)	Estimated Emissions		Source of Emission Factor
	EF	Units			(lb/hr)	(tpy)	
Nitrogen Oxides	50	lb/MMscf	99.5	8760	5.528	24.212	AP42
Carbon Monoxide	84	lb/MMscf	99.5	8760	9.287	40.676	AP42
VOC	5.5	lb/MMscf	99.5	8760	0.608	2.663	AP42
PM10	7.6	lb/MMscf	99.5	8760	0.840	3.680	AP42
Sulfur Dioxide	0.6	lb/MMscf	99.5	8760	0.066	0.291	AP42

Emissions Calculation: HEATER/BOILER/REBOILER

Facility ID: 54 Facility: Linam Ranch Gas Plant

Equipment Information

Source ID Number:	37	Model:	Other External Combustion Device
Name 2:	Boiler 37	Serial Number:	
Name 3:	Boiler	Service Date:	
Coordinates:	Latitude/Longitude	Manufacture Date:	
Latitude:		Permit Status:	
Longitude:		SCC:	

Ownership:	DEFS owned	Heat Input Fuel (mmbtu/hr):	99.5
Status:	Active	Fuel Heat Value (btu/scf):	900.00
Ext. Comb. Type:	Heaters	Heat Input Wste (mmbtu/hr):	
Fuel Type:	Residue	Waste heat Value (btu/scf):	
Equipment Usage:		Potential fuel usage (MMscf/yr):	968.47
Configuration:		Potential fuel usage (Mscf/hr):	110.56

Stack Parameters

Stack Name:	37	Height (ft):	50
Stack Number:	37	Diameter (ft):	3.75
Emission Percent:	100.00%	Temperature (°F):	300
Stack Angle (°):	0	Velocity (ft/s):	50
Raincap:	No	Flow (ACFM):	33134.0

Control Model

Emission Controls: Low-NOx Burners: Other Control

Potential operation: 8760 hr/yr

Potential Emissions

Pollutant	Emission Factor		Nominal Rating (MMBtu/hr)	Hrs of Operation (hrs/yr)	Estimated Emissions		Source of Emission Factor
	EF	Units			(lb/hr)	(tpy)	
Nitrogen Oxides	50	lb/MMscf	99.5	8760	5.53	24.21	AP42
Carbon Monoxide	84	lb/MMscf	99.5	8760	9.29	40.68	AP42
VOC	5.5	lb/MMscf	99.5	8760	0.61	2.66	AP42
PM10	7.6	lb/MMscf	99.5	8760	0.84	3.68	AP42
Sulfur Dioxide	0.6	lb/MMscf	99.5	8760	0.07	0.29	AP42

Engine GHG Calculation

40 CFR 98 Subpart C TIER 1

Emission unit(s): 36 and 37

Source description: Turbine

Manufacturer: Solar

Maximum fuel usage: 968.47 MMscf/yr

CO₂ Calculation¹ (Eq C-1)

[Click here to view Table C-1 to Subpart C of Part 98.](#)

$$\text{CO}_2 = \frac{1 \times 10^{-3} \times 968.47 \text{ MMscf}}{\text{yr}} \times \frac{1028 \text{ MMbtu}}{\text{MMscf}} \times \frac{53.02 \text{ kg CO}_2}{\text{MMbtu}}$$

$$\text{CO}_2 = 52786 \text{ tonnes CO}_2 / \text{yr}$$

Fuel usage carried forward from engine calculations in previous permit application.

CH₄ Calculation² (Eq C-8)

[Click here to view Table C-1 to Subpart C of Part 98](#)

[Click here to view Table C-2 to Subpart C of Part 98](#)

$$\text{CH}_4 = \frac{1 \times 10^{-3} \times 968.47 \text{ MMscf}}{\text{yr}} \times \frac{1028 \text{ MMbtu}}{\text{MMscf}} \times \frac{1 \times 10^{-3} \text{ kg CH}_4}{\text{MMbtu}}$$

$$\text{CH}_4 = 1.0E+00 \text{ tonnes CH}_4 / \text{yr}$$

Fuel usage carried forward from engine calculations in previous permit application.

N₂O Calculation² (Eq C-8)

[Click here to view Table C-1 to Subpart C of Part 98](#)

[Click here to view Table C-2 to Subpart C of Part 98](#)

$$\text{N}_2\text{O} = \frac{1 \times 10^{-3} \times 968.47 \text{ MMscf}}{\text{yr}} \times \frac{1028 \text{ MMbtu}}{\text{MMscf}} \times \frac{1 \times 10^{-4} \text{ kg N}_2\text{O}}{\text{MMbtu}}$$

$$\text{N}_2\text{O} = 1.0E-01 \text{ tonnes N}_2\text{O / yr}$$

Fuel usage carried forward from engine calculations in previous permit application.

Notes: ¹ $CO_2 = 1 \times 10^{-3} \times Fuel \times HHV \times EF$

² $CH_4 \text{ or } N_2O = 1 \times 10^{-3} \times Fuel \times HHV \times EF \quad (\text{Eq. C-8})$

Where:

CH₄ or N₂O = Annual CH₄ or N₂O emissions from the combustion of a particular type of fuel (metric tons).

Fuel = Mass or volume of the fuel combusted, either from company records or directly measured by a fuel flow meter, as applicable (mass or volume per year).

HHV = Default high heat value of the fuel from Table C-1 of this subpart (mmBtu per mass or volume).

EF = Fuel-specific default emission factor for CH₄ or N₂O, from Table C-2 of this subpart (kg CH₄ or N₂O per mmBtu).

1×10^{-3} = Conversion factor from kilograms to metric tons.

Linam Ranch Gas Plant: Engine and Turbine HAP Calculations

Emission Unit ID No.	Emission Unit Description	Horsepower Site Rating hp	Heat Input mmBtu/hr	Benzene		Toluene		Ethylbenzene		Xylenes	
				EF lb/MMBtu	Emiss Rate TPY	EF lb/MMBtu	Emiss Rate TPY	EF lb/MMBtu	Emiss Rate TPY	EF lb/MMBtu	Emiss Rate TPY
6 7 10 or 11 28 29 30 31 32B	Clark TLA-6	2000	17.73	1.94E-03	0.151	9.63E-04	0.075	1.08E-04	0.008	2.68E-04	0.021
	Clark TLA-6	2000	17.73	1.94E-03	0.151	9.63E-04	0.075	1.08E-04	0.008	2.68E-04	0.021
	Clark HBA-6	1267	11.86	1.94E-03	0.101	9.63E-04	0.050	1.08E-04	0.006	2.68E-04	0.014
	Solar Taurus T-60-7800S	7340	63.43	1.20E-05	0.003	1.30E-04	0.036	3.20E-05	0.009	6.40E-05	0.018
	Solar Taurus 70-10302S	10702	77.63	1.20E-05	0.004	1.30E-04	0.044	3.20E-05	0.011	6.40E-05	0.022
	Solar Taurus 70-9702S	9990	73.95	1.20E-05	0.004	1.30E-04	0.042	3.20E-05	0.010	6.40E-05	0.021
	Solar Centaur T-4700	3915	36.80	1.20E-05	0.002	1.30E-04	0.021	3.20E-05	0.005	6.40E-05	0.010
	Solar Centaur T-4000	3684	36.21	1.20E-05	0.002	1.30E-04	0.021	3.20E-05	0.005	6.40E-05	0.010
Total HAP				0.42		0.36		0.06		0.14	

Emission Unit ID No.	Description	Formaldehyde		Acetaldehyde		n-Hexane		Acrolein		Methanol	
		EF lb/MMBtu	Emiss Rate TPY	EF lb/MMBtu	Emiss Rate TPY	EF lb/MMBtu	Emiss Rate TPY	EF lb/MMBtu	Emiss Rate TPY	EF lb/MMBtu	Emiss Rate TPY
6 7 10 or 11 28 29 30 31 32B	Clark TLA-6	0.05520	4.286	7.76E-03	0.603	4.45E-04	0.035	7.78E-03	0.604	2.48E-03	0.193
	Clark TLA-6	0.05520	4.286	7.76E-03	0.603	4.45E-04	0.035	7.78E-03	0.604	2.48E-03	0.193
	Clark HBA-6	0.05520	2.866	7.76E-03	0.403	4.45E-04	0.023	7.78E-03	0.404	2.48E-03	0.129
	Solar Taurus T-60-7800S	0.00241	0.670	4.00E-05	0.011	0	0.000	6.40E-06	0.002	0	0.000
	Solar Taurus 70-10302S	0.00071	0.241	4.00E-05	0.014	0	0.000	6.40E-06	0.002	0	0.000
	Solar Taurus 70-9702S	0.00071	0.230	4.00E-05	0.013	0	0.000	6.40E-06	0.002	0	0.000
	Solar Centaur T-4700	0.00071	0.114	4.00E-05	0.006	0	0.000	6.40E-06	0.001	0	0.000
	Solar Centaur T-4000	0.00071	0.113	4.00E-05	0.006	0	0.000	6.40E-06	0.001	0	0.000
Total HAP			12.81		1.66		0.09		1.62		0.51

EPA-AP42 Tables 3.2-1 (7/00) & 3.1-3 (4/00) emission factors were used for HAP calculations for all units except Unit 28 formaldehyde.

Manufacturer's emission factor (HHV basis) was used for Unit 28 formaldehyde. Unit 28 HAP emissions are based in HHV.

Linam Ranch Gas Plant: External Combustion Source HAP Calculations

Emission Unit ID No.	Emission Unit Description	Fuel Use MMscf/yr	Benzene		Toluene		Formaldehyde		Hexane	
			EF lb/MMscf	Emiss Rate TPY	EF lb/MMscf	Emiss Rate TPY	EF lb/MMscf	Emiss Rate TPY	EF lb/MMscf	Emiss Rate TPY
2 **	Amine Plant Flare	14.2	0.00E+00	0.000	0.00E+00	0.000	0.00E+00	0.000	0	0.000
4A **	ESD (Plant) Flare	14.2	0.00E+00	0.000	0.00E+00	0.000	0.00E+00	0.000	0	0.000
34	Furnace B	146.0	2.10E-03	0.000	3.40E-03	0.000	7.50E-02	0.005	1.8	0.131
36	Boiler 36	968.5	2.10E-03	0.001	3.40E-03	0.002	7.50E-02	0.036	1.8	0.872
37	Boiler 37	968.5	2.10E-03	0.001	3.40E-03	0.002	7.50E-02	0.036	1.8	0.872
Total HAPs				0.002		0.003		0.073		1.743

EPA-AP42 Table 1.4-3 emission factors (7/98) were used for HAP calculations.

** Pilot only during normal operation

TEG Dehydrator

Emission unit number: DH-10
 Source description: TEG Dehydrator
 Manufacturer: Unknown
 Capacity: 27 MMscfd

Emission Rates

Condenser Controlled Regenerator and Uncontrolled Flash Tank Emissions¹

VOC ¹	Total HAPs ¹		
1.6	0.0012	lb/hr	Condenser Controlled Regenerator Emissions from GlyCalc
3.5	0.0010	lb/hr	Flash Tank Off Gas Emissions from GRI-GLYCalc
5.1	0.0022	lb/hr	
22.2	0.010	tons/yr	
CO ₂	CH ₄	CO ₂ e ²	
0.00	1.6	41.16	lb/hr
0.00	24.6	615.46	lb/hr
0.00	26.26	656.62	lb/hr
0.00	115.04	2876.01	tons/yr

Condenser Controlled Regenerator and Uncontrolled Flash Tank Emissions sent to Flare 4a³

VOC ¹	Total HAPs ¹		
-	-	lb/hr	
-	-	tpy	
CO ₂	CH ₄	CO ₂ e ²	
-	-	-	lb/hr
-	-	-	tons/yr

¹ Emissions are from GLYCalc 4.0; Total HAPs are estimated based on N-Pentane+

² Warming potential of CH₄ is 25 times greater than CO₂

³ The glycol dehydrator is a controlled system. Emissions are controlled by the flare, unit 4A. Controlled emissions for these units are included in unit 4a emissions.

Gasoline Tank

Emission units: TK-2

Source Description: 500 gallon horizontal gasoline tank

General Tank Information

Volume	500	gallon
Length (shell)	5.25	ft
Diameter	4	ft
Throughput	250	gal/mo
Throughput	3000	gal/yr
Turnovers	5.0	turnovers/yr
Turnovers	6.0	maximum turnovers/yr
Throughput	8.2	maximum gal/day
		bbl/mo * 12 mo/yr
		bbl/yr / Volume
		Turnovers x 1.2 (per 40 CFR 63.760 (subpart HH))
		Maximum turnovers * Volume / 365 days/year

VOC Emissions

	VOCs	
	1399.0	lb/yr
	0.70	tpy
	N/A	tpy
Total VOCs	0.70	tpy
	0.16	lb/hr

TANKS 4.09 d
tpy = lb/hr x [(8760hr/yr) / (2000lb/ton)]
No flashing losses from this tank at atmospheric conditions
Working and Breathing + Flash
tpy * 2000 lb/ton / 8760 hrs/yr

TK-VRU Emissions

Source: TK-VRU: (RVP 10) Seven (7) condensate tanks routed to a common VRU.

VOC Emissions for Condensate Tanks

VOCs	
106,656	lb/yr
134,575	lb/yr
5%	%
100%	%
12,062	lb/yr
27.54	lb/hr
6.03	tpy

*Maximum throughput for all five 750-bbl tanks combined is 1,800 bbl/day. Since each bbl of throughput will be routed through only one tank, working losses are counted only once. However, since each tank may contain condensate, the breathing losses from the TANKS 4.09 output are multiplied by five. Total working losses for the 400-bbl and 210-bbl condensate tanks are also included here.

TK-VRU -Tanks Flashing Emissions

Source: TK-VRU: (RVP 10) Five (5) fixed-roof vertical tanks routed to VRU.

ProMax Condensate Vapor Analysis

Component	MW	Mol %	MW * Mol %	Mass Fraction	Specific Volume scf/lb	Specific Vapor scf/lb
Nitrogen	28.01	0.00%	0.0000	0.00%	13.547	0.0000
Oxygen	32.00	0.00%	0.0000	0.00%	13.5	0.0000
CO ₂	44.01	0.01%	0.0023	0.00%	8.623	0.0003
H ₂ S	34.08	0.02%	0.0081	0.01%	11.136	0.0013
Methane	16.04	0.01%	0.0023	0.00%	23.65	0.0008
Ethane	30.07	0.57%	0.1716	0.25%	12.62	0.0310
Propane	44.10	7.38%	3.2550	4.66%	8.606	0.4008
I-Butane	58.12	5.86%	3.4046	4.87%	6.529	0.3181
N-Butane	58.12	24.46%	14.2169	20.34%	6.529	1.3281
I-Pentane	72.15	13.94%	10.0588	14.39%	5.26	0.7570
N-Pentane	72.15	16.94%	12.2207	17.49%	5.26	0.9197
n-Hexane	86.18	30.81%	26.5496	37.99%	4.404	1.6730
Heptanes	100.21	0.00%	0.0000	0.00%	3.787	0.0000
Benzene	78.11	0.00%	0.0000	0.00%	4.858	0.0000
Toluene	92.14	0.00%	0.0000	0.00%	4.119	0.0000
Ethylbenzene	106.17	0.00%	0.0000	0.00%	3.574	0.0000
Xylenes	106.17	0.00%	0.0000	0.00%	3.574	0.0000
C8+	114.23	0.00%	0.0000	0.00%	3.322	0.0000
Total		100%		100%		
Wtd. Average			69.89			5.430
NMEHC (VOC)		99.39%		99.74%		
GHG Component		0.02%		0.01%		

Flow Rate Summary: September - October, 2010

Raw Data

	E G-Tank	W G-Tank	Total Tanks
Average	0.331	0.485	0.816 Mcfd
Max	0.995	0.992	1.987 Mcfd

Corrected to STP

	E G-Tank	W G-Tank	Total Tanks	
Average	0.335	0.490	0.825 Mscfd	$V_{corrected} = V_{raw} * (T_{STP}/T_{site}) * (P_{site}/P_{STP})$
Max	1.005	1.002	2.007 Mscfd	

Site Pressure	29.9 in. Hg	Sept-Oct. 2010 Climate Data, NWS Midland
Site Temperature	71.2 °F	International.

Emission Calculations

	Total Tanks Flow Rate		mass flow = corrected flow * mass % NMNEHC / specific vol. vapor
	Average	Maximum	
Flashing losses	151.5	368.7	VOC, lb/day
	55,280.0	134,575.5	VOC, lb/yr.
GHG Emissions	0.01	0.02	(methane + CO ₂) lb/day
	4	9	(methane + CO ₂) lb/yr' / specific vol. vapor

TK-VRUTMP Emissions

Source: TK-TMP: (RVP 10) Two (2) horizontal bullet tanks routed to a common VRU.

General Information for Each Tank

Volume	1,500	bbl
Diameter	12	ft
Throughput	1800	bpd
Throughput	27,594,000	gallons/yr
Turnovers	438	turnovers/yr

VOC Emissions for Condensate Tanks

VOCs		
80,594	lb/yr	VOC Working & Breathing Emissions: TANKS 4.09 d*
134,575	lb/yr	Flashing emissions; Promax and max. flow meter data
5%	%	VRU downtime
100%	%	VRU recovery (emissions are routed to process, only uncontrolled emissions are during VRU downtime)
10,758	lb/yr	
24.56	lb/hr	
5.38	tpy	

*Maximum throughput for these two tanks combined is 1,800 bbl/day. Since each bbl of throughput will be routed through only one tank, working losses are counted only once. However, since each tank may contain condensate, the breathing losses from the TANKS 4.09 output are multiplied by two.

TK-VRUTMP -Tanks Flashing Emissions

Source: TK-TMP: (RVP 10) Two (2) horizontal bullet tanks routed to a common VRU.

ProMax Condensate Vapor Analysis

Component	MW	Mol %	MW * Mol %	Mass Fraction	Specific Volume scf/lb	Specific Volume Vapor scf/lb
Nitrogen	28.01	0.00%	0.0000	0.00%	13.547	0.0000
Oxygen	32.00	0.00%	0.0000	0.00%	13.5	0.0000
CO ₂	44.01	0.01%	0.0023	0.00%	8.623	0.0003
H ₂ S	34.08	0.02%	0.0081	0.01%	11.136	0.0013
Methane	16.04	0.01%	0.0023	0.00%	23.65	0.0008
Ethane	30.07	0.57%	0.1716	0.25%	12.62	0.0310
Propane	44.10	7.38%	3.2550	4.66%	8.606	0.4008
I-Butane	58.12	5.86%	3.4046	4.87%	6.529	0.3181
N-Butane	58.12	24.46%	14.2169	20.34%	6.529	1.3281
I-Pentane	72.15	13.94%	10.0588	14.39%	5.26	0.7570
N-Pentane	72.15	16.94%	12.2207	17.49%	5.26	0.9197
n-Hexane	86.18	30.81%	26.5496	37.99%	4.404	1.6730
Heptanes	100.21	0.00%	0.0000	0.00%	3.787	0.0000
Benzene	78.11	0.00%	0.0000	0.00%	4.858	0.0000
Toluene	92.14	0.00%	0.0000	0.00%	4.119	0.0000
Ethylbenzene	106.17	0.00%	0.0000	0.00%	3.574	0.0000
Xylenes	106.17	0.00%	0.0000	0.00%	3.574	0.0000
C8+	114.23	0.00%	0.0000	0.00%	3.322	0.0000
Total		100%		100%		
Wtd. Average			69.89			5.430
NMEHC (VOC)		99.39%		99.74%		
GHG Component		0.02%		0.01%		

Flow Rate Summary: September - October, 2010

Raw Data

	E G-Tank	W G-Tank	Total Tanks
Average	0.331	0.485	0.816 Mcfd
Max	0.995	0.992	1.987 Mcfd

Corrected to STP

	E G-Tank	W G-Tank	Total Tanks	
Average	0.335	0.490	0.825 Mscfd	$V_{\text{corrected}} = V_{\text{raw}} * (T_{\text{STP}}/T_{\text{site}}) * (P_{\text{site}}/P_{\text{STP}})$
Max	1.005	1.002	2.007 Mscfd	

Site Pressure 29.9 in. Hg Sept-Oct. 2010 Climate Data, NWS Midland

Site Temperature 71.2 °F International.

Emission Calculations

	Total Tanks Flow Rate		mass flow = corrected flow * mass	% NMNEHC / specific vol. vapor
	Average	Maximum		
Flashing losses	151.5	368.7	VOC, lb/day	
	55,280.0	134,575.5	VOC, lb/yr.	
GHG Emissions	0.01	0.02	(methane + CO ₂) lb/day	mass flow = corrected flow * mass
	4	9	(methane + CO ₂) lb/yr'	% GHG / specific vol. vapor

Methanol Tanks

Emission units: TK-20, TK-21, TK-27, TK-77, TK-1370

Source Description: 500 - 7050 gallon horizontal or vertical methanol tanks

General Tank Information

Tank	TK-20	TK-21	TK-27	TK-77	TK-1370	
Volume	1,130	660	7,050	500	500	gallon
Length (shell)	6.5	5.5	12	5.25	5.25	ft
Diameter	5.5	4.5	10	4	4	ft
Throughput	13,560	7,920	29,375	6,000	6,000	gal/mo
Throughput	162,720	95,040	352,500	72,000	72,000	gal/yr
Turnovers	144.0	144.0	50.0	144.0	144.0	turnovers/yr
Turnovers	172.8	172.8	60.0	172.8	172.8	maximum turnovers/yr
Throughput	535.0	312.5	1158.9	236.7	236.7	maximum gal/day

VOC Emissions

	VOC	VOC	VOC	VOC	VOC	
	234.1	138.0	968.6	105.7	105.7	lb/yr
	0.12	0.069	0.48	0.053	0.053	tpy
	N/A	N/A	N/A	N/A	N/A	tpy
Total VOCs	0.12	0.069	0.48	0.053	0.053	Working and Breathing + Flash
	0.027	0.016	0.11	0.012	0.012	tpy * 2000 lb/ton / 8760 hrs/yr
						lb/hr

TANKS 4.09 d

tpy = lb/hr x [(8760hr/yr) / (2000lb/ton)]

No flashing losses from this tank at atmospheric conditions

Working and Breathing + Flash

tpy * 2000 lb/ton / 8760 hrs/yr

North Cooling Tower Emissions

	Cooling Water Recirculation Rate (gpm)	Drift Rate fraction of Circulating Flow %	Total Drift Mass lb/min	Circulating Water Total Dissolved Solids (mg/l)	Circulating Water Total Dissolved Solids (ppm _w)
Note	1	2	3	4	
Cooling Tower	4,090	0.02%	6.8	3,000	3,000

	Hourly Uncontrolled Particulate Emissions (lb/hr)	Annual Uncontrolled Particulate Emissions (tpy)	Hourly Uncontrolled TSP Emissions (lb/hr)	Annual Uncontrolled TSP Emissions (tpy)	Hourly Uncontrolled PM ₁₀ Emissions (lb/hr)	Annual Uncontrolled PM ₁₀ Emissions (tpy)	Hourly Uncontrolled PM _{2.5} Emissions (lb/hr)	Annual Uncontrolled PM _{2.5} Emissions (tpy)
Note	5	5	6	6	6	6	6	6
Cooling Tower	1.23	5.38	1.16	5.09	0.61	2.69	0.00250	0.0110

Notes

- 1 Cooling Tower Water Recirc rate based on site data: 2045 gpm* 2 pumps = 4,090 gpm
- 2 Uncontrolled circulating water flow percent drift estimated based on AP-42 factors for induced draft cooling towers (Table 13.4-1)
- 3 Total Drift Mass = Recirculation rate * Drift Rate Fraction * Drift Density (8.34 lb/gal)
- 4 TDS measured at 5000 mg/l as a conservative measure.
- 5 Total particulate emission calculated using procedure described in Section 13.4 of AP-42 (01/95), Wet Cooling Towers.

PM = Water Circulation Rate * Drift Rate* Percent drift mass escape * TDS

Particulate Hourly Emissions:

$$\begin{array}{c|c|c|c|c|c|c|c}
 4,090 \text{ gal} & 60 \text{ min} & 0.0002 \text{ gal drift} & 31.30\% & 8.34 \text{ lb drift} & 3000 \text{ lb PM} & = & 1.23 \text{ lb} \\
 \hline
 \text{min} & \text{hr} & \text{gal recirculation} & & \text{gal drift} & 10^6 \text{ lb drift} & & \text{hr}
 \end{array}$$

Particulate annual emissions = Hourly emissions (lb/hr) * 8760 (hrs/yr) / 2000 (lb/ton)

- 6 Particle size distribution based on the following distribution (from Frisbie data)

Particle Distribution

Particle	Mass % of Total Particulates	
TSP (PM 30)	94.7	Frisbie data
PM10	50.0	Frisbie data
PM2.5	0.20	Frisbie data

North Cooling Tower Frisbee Table

Facility TDS 5000

EPRI Droplet			Particle Mass		Solid Particle		Interpolated Particulate Fraction based on facility TDS	
Diameter (µm)	Droplet Volume (µm³)	Droplet Mass (µg)	(Solids) (µg)	Solid Particle Volume (µm³)	Diameter (µm)	EPRI % Mass Smaller	3000	
10	524	5.24E-04	4.03E-06	1.83	1.52	0.00	1.11	
20	4189	4.19E-03	3.23E-05	14.66	3.04	0.20	2.22	
30	14137	1.41E-02	1.09E-04	49.48	4.56	0.23	3.33	
40	33510	3.35E-02	2.58E-04	117.29	6.07	0.51	4.44	
50	65450	6.54E-02	5.04E-04	229.07	7.59	1.82	5.54	
60	113097	1.13E-01	8.71E-04	395.84	9.11	5.70	6.65	
70	179594	1.80E-01	1.38E-03	628.58	10.63	21.35	7.76	
90	381704	3.82E-01	2.94E-03	1335.96	13.67	49.81	9.98	
110	696910	6.97E-01	5.37E-03	2439.18	16.70	70.51	12.20	
130	1150347	1.15E+00	8.86E-03	4026.21	19.74	82.02	14.42	
150	1767146	1.77E+00	1.36E-02	6185.01	22.77	88.01	16.63	
180	3053628	3.05E+00	2.35E-02	10687.7	27.33	91.03	19.96	
210	4849048	4.85E+00	3.73E-02	16971.67	31.88	92.47	23.29	
240	7238229	7.24E+00	5.57E-02	25333.8	36.44	94.09	26.61	
270	10305995	1.03E+01	7.94E-02	36070.98	40.99	94.69	29.94	
300	14137167	1.41E+01	1.09E-01	49480.08	45.55	96.29	33.27	
350	22449298	2.24E+01	1.73E-01	78572.54	53.14	97.01	38.81	
400	33510322	3.35E+01	2.58E-01	117286.13	60.73	98.34	44.36	
450	47712938	4.77E+01	3.67E-01	166995.28	68.32	99.07	49.90	
500	65449847	6.54E+01	5.04E-01	229074.46	75.92	99.07	55.45	
600	113097336	1.13E+02	8.71E-01	395840.67	91.10	100.00	66.54	
			PM2.5/Total	2.5	0.204			
			PM10/Total	10	49.996			
			TSP/Total	30	94.717			

South Cooling Tower Emissions

	Cooling Water Recirculation Rate (gpm)	Drift Rate fraction of Circulating Flow %	Total Drift Mass lb/min	Circulating Water Total Dissolved Solids (mg/l)	Circulating Water Total Dissolved Solids (ppm _w)
Note	1	2	3	4	
Cooling Tower	12,800	0.02%	21.4	3,000	3,000

	Hourly Uncontrolled Particulate Emissions (lb/hr)	Annual Uncontrolled Particulate Emissions (tpy)	Hourly Uncontrolled TSP Emissions (lb/hr)	Annual Uncontrolled TSP Emissions (tpy)	Hourly Uncontrolled PM ₁₀ Emissions (lb/hr)	Annual Uncontrolled PM ₁₀ Emissions (tpy)	Hourly Uncontrolled PM _{2.5} Emissions (lb/hr)	Annual Uncontrolled PM _{2.5} Emissions (tpy)
Note	5	5	6	6	6	6	6	6
Cooling Tower	3.84	16.83	3.64	15.94	1.92	8.42	0.00783	0.0343

Notes

- 1 Cooling Tower Water Recirc rate based on site data: 3200 gpm* 4 pumps = 12,800 gpm
- 2 Uncontrolled circulating water flow percent drift estimated based on AP-42 factors for induced draft cooling towers (Table 13.4-1)
- 3 Total Drift Mass = Recirculation rate * Drift Rate Fraction * Drift Density (8.34 lb/gal)
- 4 TDS measured at 5,000 ppm as a conservative measure. Actual snapshot of concentration indicates TDS level of ~2,500 ppm.
- 5 Total particulate emission calculated using procedure described in Section 13.4 of AP-42 (01/95), Wet Cooling Towers.

PM = Water Circulation Rate * Drift Rate* Percent drift mass escape * TDS

Particulate Hourly Emissions:

$$\frac{12,800 \text{ gal}}{\text{min}} \times \frac{60 \text{ min}}{\text{hr}} \times \frac{0.0002 \text{ gal drift}}{\text{gal recirculation}} \times \frac{31.30\%}{\text{}} \times \frac{8.34 \text{ lb drift}}{\text{gal drift}} \times \frac{3000 \text{ lb PM}}{10^6 \text{ lb drift}} = \frac{3.84 \text{ lb}}{\text{hr}}$$

Particulate annual emissions = Hourly emissions (lb/hr) * 8760 (hrs/yr) / 2000 (lb/ton)

- 6 Particle size distribution based on the following distribution (from Frisbie data)

Particle Distribution		
Particle	Mass % of Total Particulates	
TSP (PM 30)	94.7	Frisbie data
PM10	50.0	Frisbie data
PM2.5	0.20	Frisbie data

DCP Operating Company, LP - Linam Ranch Gas Plant
South Cooling Tower Frisbee Table

Facility TDS 5000

Diameter (μm)	Droplet Volume (μm^3)	Droplet Mass (μg)	(Solids) (μg)	Solid Particle Volume (μm^3)	Diameter (μm)	EPRI % Mass Smaller	Interpolated Particulate Fraction based on facility TDS	
							3000	1.11
10	524	5.24E-04	4.03E-06	1.83	1.52	0.00	0.20	2.22
20	4189	4.19E-03	3.23E-05	14.66	3.04	0.23	0.51	3.33
30	14137	1.41E-02	1.09E-04	49.48	4.56	0.51	1.82	4.44
40	33510	3.35E-02	2.58E-04	117.29	6.07	5.70	21.35	6.65
50	65450	6.54E-02	5.04E-04	229.07	7.59	49.81	49.81	9.98
60	113097	1.13E-01	8.71E-04	395.84	9.11	70.51	70.51	12.20
70	179594	1.80E-01	1.38E-03	628.58	10.63	82.02	82.02	14.42
90	381704	3.82E-01	2.94E-03	1335.96	13.67	88.01	88.01	16.63
110	696910	6.97E-01	5.37E-03	2439.18	16.70	91.03	91.03	19.96
130	1150347	1.15E+00	8.86E-03	4026.21	19.74	92.47	92.47	23.29
150	1767146	1.77E+00	1.36E-02	6185.01	22.77	94.09	94.09	26.61
180	3053628	3.05E+00	2.35E-02	10687.7	27.33	96.29	96.29	29.94
210	4849048	4.85E+00	3.73E-02	16971.67	31.88	97.01	97.01	33.27
240	7238229	7.24E+00	5.57E-02	25333.8	36.44	98.34	98.34	38.81
270	10305995	1.03E+01	7.94E-02	36070.98	40.99	99.07	99.07	44.36
300	14137167	1.41E+01	1.09E-01	49480.08	45.55	100.00	100.00	49.90
350	22449298	2.24E+01	1.73E-01	78572.54	53.14	PM2.5/Total	2.5	0.204
400	33510322	3.35E+01	2.58E-01	117286.13	60.73	PM10/Total	10	49.996
450	47712938	4.77E+01	3.67E-01	166995.28	68.32	TSP/Total	30	94.717
500	65449847	6.54E+01	5.04E-01	229074.46	75.92			
600	113097336	1.13E+02	8.71E-01	395840.67	91.10			

Total Fugitive Emissions

DCP Operating Company, LP - Linam Ranch Gas Plant

Fugitive Emissions - Summary

Emission units: FUG

Stream	VOC Fugitive Emissions (lb/hr)	VOC Fugitive Emissions (tpy)
Inlet Gas	1.9	8.5
Fuel Gas	0.019	0.084
Sweet Gas	0.45	1.3
Dry Gas	0.39	1.7
Residue Gas	0.010	0.044
Y-Grade Liquids	0.31	1.3
Natural Gas Liquids	2.6	11
Condensate	3.8	17
Refrigerant	3.9	17
Rich Amine	0	0
Project	4.3	19
TOTALS	18	77

Fugitive Emissions - Summary

Emission units: FUG

Short-Term VOC Fugitive HAPs

Stream	Hexane (lb/hr)	Benzene (lb/hr)	Toluene (lb/hr)	Ethylbenzene (lb/hr)	Xylenes (lb/hr)	Total VOC Fugitive HAPs (lb/hr)
Inlet Gas	0.019	0.0087	2.1E-03	4.3E-05	8.6E-05	0.030
Fuel Gas	-	-	-	-	-	-
Sweet Gas	0.040	0.00042	7.1E-04	3.7E-05	1.8E-04	0.042
Dry Gas	0.034	0.00036	6.1E-04	3.1E-05	1.6E-04	0.035
Residue Gas	-	-	-	-	-	-
Y-Grade Liquids	0.027	0.00015	2.5E-04	1.3E-05	6.4E-05	0.027
Natural Gas Liquids	1.1	0.00060	1.0E-03	5.2E-05	2.6E-04	1.1
Condensate	2.7	0.00089	1.5E-03	7.7E-05	3.8E-04	2.7
Refrigerant	-	-	-	-	-	-
Rich Amine	-	-	-	-	-	-
Project	1.3	0.0013	2.0E-04	1.1E-05	5.0E-05	1.3
TOTALS	5.1	0.012	0.006	0.000	0.001	5.2

Long-term VOC Fugitive HAPs

Stream	Hexane (tpy)	Benzene (tpy)	Toluene (tpy)	Ethylbenzene (tpy)	Xylenes (tpy)	Total VOC Fugitive HAPs (tpy)
Inlet Gas	0.083	0.038	0.0092	0.00019	0.00038	0.13
Fuel Gas	-	-	-	-	-	-
Sweet Gas	0.18	0.0018	0.0031	0.00016	0.00080	0.182
Dry Gas	0.15	0.0016	0.0027	0.00014	0.00068	0.155
Residue Gas	-	-	-	-	-	-
Y-Grade Liquids	0.12	0.00064	0.0011	0.00006	0.00028	0.119
Natural Gas Liquids	4.6	0.0026	0.0044	0.00023	0.0011	4.6
Condensate	12	0.0039	0.0066	0.00034	0.0017	12
Refrigerant	-	-	-	-	-	-
Rich Amine	-	-	-	-	-	-
Project	5.5	0.0057	0.00088	0.000047	0.00022	5.5
TOTALS	23	0.054	0.028	0.0012	0.0052	23

Fugitive Emissions - Inlet Gas

Inlet Gas Fugitives				
Component	No. of Components	EPA Component Emission Factor (kg/hr/source)	THC Fugitive Emissions (lb/hr)	THC Fugitive Emissions (tpy)
Valves	680	0.0045	6.732	29.486
Flanges/Connectors	1771	0.00039	1.520	6.655
Relief Valves	31	0.0088	0.600	2.629
Sample Points	2	0.002	0.009	0.039
Pump Seals	1	0.0024	0.005	0.023
Compressor Seals	8	0.0088	0.155	0.678
TOTALS	2493		9.021	39.510

Inlet Gas Fugitives - Speciated						
Compound	Mole Fraction	Molecular Weight	Weight Per Mole	Weight %	Fugitive Emissions (lb/hr)	Fugitive Emissions (tpy)
Methane	0.735375	16	12	53	4.8	20.88
Ethane	0.125872	30	3.8	17	1.5	6.7
Propane	0.061477	44	2.7	12	1.1	4.8
Butanes	0.023154	58	1.3	6.0	0.54	2.4
Pentanes	0.006754	72	0.49	2.2	0.20	0.87
Hexanes+	0.0029	86	0.25	1.1	0.10	0.44
Hydrogen Sulfide	0.003803	34	0.13	0.58	0.053	0.23
Other (Non-HC)	0.040693	44	1.8	8.0	0.73	3.2
TOTALS	1.0000	385	22	100	9.0	40

VOC Emissions = Total Emissions-(Methane+Ethane+Hydrogen Sulfide+Other)

Hourly Emission Rate = **1.942 lb/hr**
Annual Emission Rate = **8.506 tpy**

Note: Based on DCP's recent 11/11/13 Linam Ranch inlet gas analysis from 11/6/13 sample

Inlet Gas Fugitive HAPs						
HAP Component	Mole Fraction	Molecular Weight	Weight Per Mole	Wt. % of Stream	HAP Fugitive Emissions (lb/hr)	HAP Fugitive Emissions (tpy)
Hexane	0.000541	86.178	0.047	0.21	0.019	0.083
Benzene	0.000276	78.11	0.022	0.10	0.0087	0.038
Toluene	0.000056	92.14	0.0052	0.023	0.0021	0.0092
Ethyl Benzene	0.000001	106.17	0.00011	0.00048	0.000043	0.00019
Xylenes	0.000002	106.17	0.00021	0.0010	0.000086	0.00038
TOTALS	0.000876	469	0.074	0.33	0.030	0.13

Note: Based on DCP's recent 11/11/13 Linam Ranch inlet gas analysis from 11/6/13 sample

Fugitive Emissions - Fuel Gas

Fuel Gas Fugitives				
Component	No. of Components	EPA Component Emission Factor (kg/hr/source)	THC Fugitive Emissions (lb/hr)	THC Fugitive Emissions (tpy)
Valves	377	0.0045	3.732	16.347
Flanges/Connectors	1256	0.00039	1.078	4.720
Relief Valves	38	0.0088	0.736	3.222
Sample Points	2	0.002	0.009	0.039
Pump Seals	0	0.0024	0.000	0.000
Compressor Seals	10	0.0088	0.194	0.848
TOTALS	1683		5.748	25.176

Fuel Gas Fugitives - Speciated						
Compound	Mole Fraction	Molecular Weight	Weight Per Mole	Weight %	Fugitive Emissions (lb/hr)	Fugitive Emissions (tpy)
Methane	0.912431	16	14.599	82.53	4.744	20.777
Ethane	0.054849	30.1	1.651	9.33	0.536	2.350
Propane	0.00131	44.1	0.058	0.33	0.019	0.082
Butanes	0.000021	58.1	0.001	0.01	0.000	0.002
Pentanes	-	72.2	-	-	-	-
Hexanes+	-	86.2	-	-	-	-
Hydrogen Sulfide	-	34.1	-	-	-	-
Other (Non-HC)	0.031389	44	1.381	7.81	0.449	1.966
TOTALS	1.00	384.80	17.69	100	5.748	25.176

VOC Emissions = Total Emissions-(Methane+Ethane+Hydrogen Sulfide+Other)

Hourly Emission Rate = **0.019 lb/hr**Annual Emission Rate = **0.084 tpy**

Note: Based on DCP's recent 10/21/13 Linam Ranch fuel/residue gas analysis from 10/14/13 sample

Fuel Gas Fugitive HAPs			
HAP Component	Mole % of Stream	HAP Fugitive Emissions (lb/hr)	HAP Fugitive Emissions (tpy)
Hexane	-	-	-
Benzene	-	-	-
Toluene	-	-	-
Ethyl Benzene	-	-	-
Xylenes	-	-	-
TOTALS	-	-	-

Note: Based on DCP's recent 10/21/13 Linam Ranch fuel/residue gas analysis from 10/14/13 sample

Fugitive Emissions - Sweet Gas

Sweet Gas Fugitives				
Component	No. of Components	EPA Component Emission Factor (kg/hr/source)	THC Fugitive Emissions (lb/hr)	THC Fugitive Emissions (tpy)
Valves	156	0.0045	1.544	6.764
Flanges/Connectors	318	0.00039	0.273	1.195
Relief Valves	0	0.0088	0.000	0.000
Sample Points	2	0.002	0.009	0.039
Pump Seals	0	0.0024	0.000	0.000
Compressor Seals	0	0.0088	0.000	0.000
TOTALS	476		1.826	7.998

Sweet Gas Fugitives - Speciated						
Compound	Mole Fraction	Molecular Weight	Weight Per Mole	Weight %	Fugitive Emissions (lb/hr)	Fugitive Emissions (tpy)
Methane	0.7	16	11.200	47.73	0.871	3.817
Ethane	0.12	30.1	3.612	15.39	0.281	1.231
Propane	0.067	44.1	2.955	12.59	0.230	1.007
Butanes	0.028	58.1	1.627	6.93	0.127	0.554
Pentanes	0.01	72.2	0.722	3.08	0.056	0.246
Hexanes+	0.006	86.2	0.517	2.20	0.040	0.176
Hydrogen Sulfide	0.007	34.1	0.239	1.02	0.019	0.081
Other (Non-HC)	0.059	44	2.596	11.06	0.202	0.885
TOTALS	1.00	384.80	23.47	100	1.826	7.998

VOC Emissions = Total Emissions-(Methane+Ethane+Hydrogen Sulfide+Other)

Hourly Emission Rate = 1.826-(0.871+0.281+0.019+0.202) =

Annual Emission Rate = 7.998-(3.817+1.231+0.081+0.885) =

0.453 lb/hr**1.255 tpy**

Sweet Gas Fugitive HAPs			
HAP Component	Wt. % of Stream	HAP Fugitive Emissions (lb/hr)	HAP Fugitive Emissions (tpy)
Hexane	2.2	0.040	0.176
Benzene	0.023	0.000	0.002
Toluene	0.039	0.001	0.003
Ethyl Benzene	0.002	0.000	0.000
Xylenes	0.01	0.000	0.001
TOTALS	2.274	0.042	0.182

Note 1: Hexane content estimated from fugitive speciation in previous spreadsheet

Note 2: BTEX Content of inlet gas stream from Table 4-6 GRI-HAP Calc Manual for NG. Speciation based on API/GRI bag study

Fugitive Emissions - Dry Gas

Dry Gas Fugitives

Component	No. of Components	EPA Component Emission Factor (kg/hr/source)	THC Fugitive Emissions (lb/hr)	THC Fugitive Emissions (tpy)
Valves	135	0.0045	1.337	5.854
Flanges/Connectors	261	0.00039	0.224	0.981
Relief Valves	0	0.0088	0.000	0.000
Sample Points	0	0.002	0.000	0.000
Pump Seals	0	0.0024	0.000	0.000
Compressor Seals	0	0.0088	0.000	0.000
TOTALS	396		1.560	6.835

Dry Gas Fugitives - Speciated

Compound	Mole Fraction	Molecular Weight	Weight Per Mole	Weight %	Fugitive Emissions (lb/hr)	Fugitive Emissions (tpy)
Methane	0.71	16	11.360	48.48	0.756	3.313
Ethane	0.12	30.1	3.612	15.41	0.241	1.054
Propane	0.068	44.1	2.999	12.80	0.200	0.875
Butanes	0.028	58.1	1.627	6.94	0.108	0.474
Pentanes	0.01	72.2	0.722	3.08	0.048	0.211
Hexanes+	0.006	86.2	0.517	2.21	0.034	0.151
Hydrogen Sulfide	0	34.1	0.000	0.00	0.000	0.000
Other (Non-HC)	0.059	44	2.596	11.08	0.173	0.757
TOTALS	1.00	384.80	23.43	100	1.560	6.835

VOC Emissions = Total Emissions-(Methane+Ethane+Hydrogen Sulfide+Other)

Hourly Emission Rate = $1.56 - (0.756 + 0.241 + 0 + 0.173) =$ Annual Emission Rate = $6.835 - (3.313 + 1.054 + 0 + 0.757) =$ **0.39 lb/hr****1.711 tpy**

Dry Gas Fugitive HAPs

HAP Component	Wt. % of Stream	HAP Fugitive Emissions (lb/hr)	HAP Fugitive Emissions (tpy)
Hexane	2.2	0.034	0.150
Benzene	0.023	0.000	0.002
Toluene	0.039	0.001	0.003
Ethyl Benzene	0.002	0.000	0.000
Xylenes	0.01	0.000	0.001
TOTALS	2.274	0.035	0.155

Note 1: Hexane content estimated from fugitive speciation in previous spreadsheet

Note 2: BTEX Content of inlet gas stream from Table 4-6 GRI-HAP Calc Manual for NG. Speciation based on API/GRI bag study

Fugitive Emissions - Residue Gas

Residue Gas Fugitives

Component	No. of Components	EPA Component Emission Factor (kg/hr/source)	THC Fugitive Emissions (lb/hr)	THC Fugitive Emissions (tpy)
Valves	200	0.0045	1.980	8.672
Flanges/Connectors	694	0.00039	0.595	2.608
Relief Valves	18	0.0088	0.348	1.526
Sample Points	5	0.002	0.022	0.096
Pump Seals	0	0.0024	0.000	0.000
Compressor Seals	3	0.0088	0.058	0.254
TOTALS	920		3.004	13.158

Residue Gas Fugitives - Speciated

Compound	Mole Fraction	Molecular Weight	Weight Per Mole	Weight %	Fugitive Emissions (lb/hr)	Fugitive Emissions (tpy)
Methane	0.912431	16	14.599	82.53	2.479	10.858
Ethane	0.054849	30.1	1.651	9.33	0.280	1.228
Propane	0.00131	44.1	0.058	0.33	0.010	0.043
Butanes	0.000021	58.1	0.001	0.01	0.000	0.001
Pentanes	-	72.2	-	-	-	-
Hexanes+	-	86.2	-	-	-	-
Hydrogen Sulfide	-	34.1	-	-	-	-
Other (Non-HC)	0.031389	44	1.381	7.81	0.235	1.027
TOTALS	1.00	384.80	17.69	100	3.004	13.158

VOC Emissions = Total Emissions-(Methane+Ethane+Hydrogen Sulfide+Other)

Hourly Emission Rate = **0.010 lb/hr**
Annual Emission Rate = **0.044 tpy**

Note: Based on DCP's recent 10/21/13 Linam Ranch fuel/residue gas analysis from 10/14/13 sample

Residue Gas Fugitive HAPs

HAP Component	Mole % of Stream	HAP Fugitive Emissions (lb/hr)	HAP Fugitive Emissions (tpy)
Hexane	-	-	-
Benzene	-	-	-
Toluene	-	-	-
Ethyl Benzene	-	-	-
Xylenes	-	-	-
TOTALS	-	-	-

Note: Based on DCP's recent 10/21/13 Linam Ranch fuel/residue gas analysis from 10/14/13 sample

Fugitive Emissions - Y-Grade

Y-Grade Fugitives				
Component	No. of Components	EPA Component Emission Factor (kg/hr/source)	THC Fugitive Emissions (lb/hr)	THC Fugitive Emissions (tpy)
Valves	95	0.0025	0.523	2.289
Flanges/Connectors	135	0.00021	0.062	0.273
Relief Valves	3	0.0075	0.050	0.217
Sample Points	6	0.00014	0.002	0.008
Pump Seals	0	0.013	0.000	0.000
Compressor Seals	0	0.0075	0.000	0.000
TOTALS	239		0.636	2.787

Y-Grade Fugitives - Speciated						
Compound	Mole Fraction	Molecular Weight	Weight Per Mole	Weight %	Fugitive Emissions (lb/hr)	Fugitive Emissions (tpy)
Methane	0	16	0.000	0.00	0.000	0.000
Ethane	0.41	30.1	12.341	29.89	0.190	0.833
Propane	0.23	44.1	10.143	24.56	0.156	0.685
Butanes	0.095	58.1	5.520	13.37	0.085	0.372
Pentanes	0.034	72.2	2.455	5.94	0.038	0.166
Hexanes+	0.02	86.2	1.724	4.18	0.027	0.116
Hydrogen Sulfide	0.022	34.1	0.750	1.82	0.012	0.051
Other (Non-HC)	0.19	44	8.360	20.25	0.129	0.564
TOTALS	1.00	384.80	41.29	100	0.636	2.787

VOC Emissions = Total Emissions-(Methane+Ethane+Hydrogen Sulfide+Other)

Hourly Emission Rate = $0.636 - (0 + 0.190 + 0.012 + 0.129) =$ Annual Emission Rate = $2.787 - (0 + 0.833 + 0.051 + 0.564) =$ **0.305 lb/hr****1.339 tpy**

Y-Grade Fugitive HAPs			
HAP Component	Wt. % of Stream	HAP Fugitive Emissions (lb/hr)	HAP Fugitive Emissions (tpy)
Hexane	4.18	0.027	0.116
Benzene	0.023	0.000	0.001
Toluene	0.039	0.000	0.001
Ethyl Benzene	0.002	0.000	0.000
Xylenes	0.01	0.000	0.000
TOTALS	4.254	0.027	0.119

Note 1: Hexane content estimated from fugitive speciation in previous spreadsheet

Note 2: BTEX Content of inlet gas stream from Table 4-6 GRI-HAP Calc Manual for NG. Speciation based on API/GRI bag study

DCP Operating Company, LP - Linam Ranch Gas Plant
 Fugitive Emissions - Natural Gas Liquids

Natural Gas Liquids Fugitives

Component	No. of Components	EPA Component Emission Factor (kg/hr/source)	THC Fugitive Emissions (lb/hr)	THC Fugitive Emissions (tpy)
Valves	340	0.0025	1.870	8.191
Flanges/Connectors	767	0.00021	0.354	1.552
Relief Valves	9	0.0075	0.149	0.650
Sample Points	4	0.00014	0.001	0.005
Pump Seals	8	0.013	0.229	1.002
Compressor Seals	0	0.0075	0.000	0.000
TOTALS	1128		2.603	11.401

Natural Gas Liquids Fugitives - Speciated

Compound	Mole Fraction	Molecular Weight	Weight Per Mole	Weight %	Fugitive Emissions (lb/hr)	Fugitive Emissions (tpy)
Methane	0	16	0.000	0.00	0.000	0.000
Ethane	0.01	30.1	0.301	0.49	0.013	0.056
Propane	0.4	44.1	17.640	28.55	0.743	3.255
Butanes	0.2	58.1	11.620	18.81	0.490	2.144
Pentanes	0.1	72.2	7.220	11.69	0.304	1.332
Hexanes+	0.29	86.2	24.998	40.46	1.053	4.613
Hydrogen Sulfide	0	34.1	0.000	0.00	0.000	0.000
Other (Non-HC)	0	44	0.000	0.00	0.000	0.000
TOTALS	1.00	384.80	61.78	100	2.603	11.401

$$\begin{aligned}
 \text{VOC Emissions} &= \text{Total Emissions} - (\text{Methane} + \text{Ethane} + \text{Hydrogen Sulfide} + \text{Other}) \\
 \text{Hourly Emission Rate} &= 2.603 - (0 + 0.013 + 0 + 0) = 2.59 \text{ lb/hr} \\
 \text{Annual Emission Rate} &= 11.401 - (0 + 0.056 + 0 + 0) = 11.345 \text{ tpy}
 \end{aligned}$$

Natural Gas Liquids Fugitive HAPs

HAP Component	Wt. % of Stream	HAP Fugitive Emissions (lb/hr)	HAP Fugitive Emissions (tpy)
Hexane	40.5	1.054	4.617
Benzene	0.023	0.001	0.003
Toluene	0.039	0.001	0.004
Ethyl Benzene	0.002	0.000	0.000
Xylenes	0.01	0.000	0.001
TOTALS	40.574	1.056	4.626

Note 1: Hexane content estimated from fugitive speciation in previous spreadsheet

Note 2: BTEX Content of inlet gas stream from Table 4-6 GRI-HAP Calc Manual for NG. Speciation based on API/GRI bag study

Fugitive Emissions - Condensate

Condensate Fugitives				
Component	No. of Components	EPA Component Emission Factor (kg/hr/source)	THC Fugitive Emissions (lb/hr)	THC Fugitive Emissions (tpy)
Valves	419	0.0025	2.305	10.094
Flanges/Connectors	1172	0.00021	0.541	2.372
Relief Valves	12	0.0075	0.198	0.867
Sample Points	10	0.00014	0.003	0.013
Pump Seals	28	0.013	0.801	3.508
Compressor Seals		0.0075	0.000	0.000
TOTALS	1641		3.848	16.854

Condensate Fugitives - Speciated						
Compound	Mole Fraction	Molecular Weight	Weight Per Mole	Weight %	Fugitive Emissions (lb/hr)	Fugitive Emissions (tpy)
Methane	0	16	0.000	0.00	0.000	0.000
Ethane	0.007	30.1	0.211	0.27	0.010	0.045
Propane	0.031	44.1	1.367	1.75	0.067	0.294
Butanes	0.11	58.1	6.391	8.16	0.314	1.376
Pentanes	0.21	72.2	15.162	19.36	0.745	3.264
Hexanes+	0.64	86.2	55.168	70.46	2.711	11.875
Hydrogen Sulfide	0	34.1	0.000	0.00	0.000	0.000
Other (Non-HC)	0	44	0.000	0.00	0.000	0.000
TOTALS	1.00	384.80	78.30	100	3.848	16.854

VOC Emissions = Total Emissions-(Methane+Ethane+Hydrogen Sulfide+Other)

Hourly Emission Rate = 3.848-(0+0.010+0+0) = **3.838 lb/hr**Annual Emission Rate = 16.854-(0+0.045+0+0) = **16.809 tpy**

Condensate Fugitive HAPs			
HAP Component	Wt. % of Stream	HAP Fugitive Emissions (lb/hr)	HAP Fugitive Emissions (tpy)
Hexane	70.3	2.705	11.848
Benzene	0.023	0.001	0.004
Toluene	0.039	0.002	0.007
Ethyl Benzene	0.002	0.000	0.000
Xylenes	0.01	0.000	0.002
TOTALS	70.374	2.708	11.861

Note 1: Hexane content estimated from fugitive speciation in previous spreadsheet

Note 2: BTEX Content of inlet gas stream from Table 4-6 GRI-HAP Calc Manual for NG. Speciation based on API/GRI bag study

Fugitive Emissions - Amine

Amine Fugitives

Component	No. of Components	EPA Component Emission Factor (kg/hr/source)	THC Fugitive Emissions (lb/hr)	THC Fugitive Emissions (tpy)
Valves	419	0.0025	2.305	10.094
Flanges/Connectors	1172	0.00021	0.541	2.372
Relief Valves	12	0.0075	0.198	0.867
Sample Points	10	0.0014	0.031	0.135
Pump Seals	28	0.013	0.801	3.508
Compressor Seals		0.0075	0.000	0.000
TOTALS	1641		3.876	16.975

Amine Fugitives - Speciated

Compound	Mole Fraction	Molecular Weight	Weight Per Mole	Weight %	Fugitive Emissions (lb/hr)	Fugitive Emissions (tpy)
Propane	1	44.1	44.100	100.00	3.876	16.975
TOTALS	1.00	44.10	44.10	100	3.876	16.975

VOC Emissions = Total Emissions

Hourly Emission Rate =

Annual Emission Rate =

3.876 lb/hr**16.975 tpy**

Fugitive Emissions - Rich Amine

Rich Amine Fugitives				
Component	No. of Components	EPA Component Emission Factor (kg/hr/source)	THC Fugitive Emissions (lb/hr)	THC Fugitive Emissions (tpy)
Valves	72	0.0025	0.396	1.734
Flanges/Connectors	2	0.00021	0.001	0.004
Relief Valves	0	0.0075	0.000	0.000
Open Ends	0	0.0014	0.000	0.000
Pump Seals	0	0.013	0.000	0.000
Compressor Seals	0	0.0075	0.000	0.000
TOTALS	74		0.397	1.739

Rich Amine Fugitives - Speciated						
Compound	Mole Fraction	Molecular Weight	Weight Per Mole	Weight %	Fugitive Emissions (lb/hr)	Fugitive Emissions (tpy)
Monoethanolamine	0.213	105.1	22.386	58.85	0.234	1.023
Hydrogen Sulfide	0.018	34.1	0.614	1.61	0.006	0.028
Carbon Dioxide	0.046	44.1	2.029	5.33	0.021	0.093
Water	0.723	18	13.014	34.21	0.136	0.595
TOTALS	1.00	201.30	38.04	100	0.397	1.739

Note 1: MEA is not a HAP; therefore, there are no HAP fugitives associated with the Rich Amine System.

Note 2: MEA is not significant (VP<10 mm Hg). Fugitives were calculated for rich amine only top obtain H2S H2S is significant (VP>10 mm Hg).

Fugitive Emissions - Acid Gas

Acid Gas Fugitives

Component	No. of Components	EPA Component Emission Factor (kcal/hr/source)	THC Fugitive Emissions (lb/hr)	THC Fugitive Emissions (tpy)
Valves	548	0.0045	5.425	23.762
Flanges/Connectors	2083	0.00039	1.787	7.828
Relief Valves	18	0.0088	0.348	1.526
Sample Points	9	0.002	0.040	0.173
Pump Seals	0.0E+00	0.0024	0.0E+00	0.0E+00
Compressor Seals	10	0.0088	0.194	0.848
TOTALS	2668		7.794	34.138

ACID GAS	TOTAL
VALVES	548
FLANGES	788
SCREWED CONNECTIONS	1228
PRV'S	18
UNIONS	67
COMPRESSOR SEALS	10
SAMPLE POINTS	9

Acid Gas Fugitives - Speciated

Compound	Mole Fraction	Molecular Weight	Weight Per Mole	Weight %	Fugitive Emissions (lb/hr)	Fugitive Emissions (tpy)
Methane	0.0036	16	0.058	0.14	0.011	0.047
Ethane	0.0008	30.1	0.024	0.06	0.004	0.020
Hydrogen Sulfide	0.1871	34.1	6.380	15.14	1.18	5.17
Carbon Dioxide	0.8065	44.1	35.567	84.40	6.58	28.81
Propane	0.0003	44.1	0.013	0.03	0.002	0.011
Butanes	0.0008	58.1	0.046	0.11	0.009	0.038
Pentanes	0.00014	72.2	0.010	0.02	0.002	0.008
Hexanes+	0.0005	86.2	0.043	0.10	0.008	0.035
TOTALS	1.00	124.30	42.03	100.00	7.79	34.14

VOC Emissions = (Propane+Butanes+Pentanes+Hexanes)

Hourly Emission Rate = 0.021

Annual Emission Rate = 0.091

Based on DCP's recent 11/1/13 Linam Ranch Acid Gas Analysis

Fugitive Emissions - Sour Water

Sour Water Fugitives

Component	No. of Components	EPA Component Emission Factor (kg/hr/source)	THC Fugitive Emissions (lb/hr)	THC Fugitive Emissions (tpy)
Valves	45	0.0025	0.25	1.084
Flanges/Connectors	135	0.00021	0.062	0.273
Relief Valves	3	0.0075	0.050	0.217
Sample Points	2	0.0014	0.0062	0.027
Pump Seals	0.0E+00	0.013	0.0E+00	0.0E+00
Compressor Seals	0.0E+00	0.0075	0.0E+00	0.0E+00
TOTALS	185		0.366	1.601

SOUR WATER	TOTAL
VALVES	45
FLANGES	31
SCREWED CONNECTIONS	82
PRV'S	3
UNIONS	22
COMPRESSOR SEALS	0
SAMPLE POINTS	2

Sour Water Fugitives - Speciated

Compound	Mole Fraction	Molecular Weight	Weight Per Mole	Weight %	Fugitive Emissions (lb/hr)	Fugitive Emissions (tpy)
Methane	0.0036	16	0.058	0.14	5.0E-04	0.002
Ethane	0.0008	30	0.024	0.057	2.1E-04	0.001
Hydrogen Sulfide	0.1871	34	6.4	15	5.5E-02	0.242
Carbon Dioxide	0.8065	44	36	84	3.1E-01	1.351
Propane	0.0003	44	0.013	0.031	1.1E-04	0.001
Butanes	0.0008	58	0.046	0.11	4.0E-04	0.002
Pentanes	0.00014	72	0.010	0.023	8.5E-05	0.000
Hexanes+	0.0005	86	0.043	0.10	3.7E-04	0.002
TOTALS	1.00	124.30	42.03	100.00	0.366	1.601

VOC Emissions = (Propane+Butanes+Pentanes+Hexanes)

Hourly Emission Rate = 0.001

Annual Emission Rate = 0.004

Based on DCP's recent 11/1/13 Linam Ranch Acid Gas Analysis

COMPONENTS AND NET VOC and GHG FUGITIVE EMISSIONS BY UNIT / SERVICE / COMPONENT
DCP Operating, Linam Ranch Gas Plant

Number of Components

Unit	Gas					Light Oil					Water / Oil				
	Valves	Pumps	Others	Connectors	Flanges	Valves	Pumps	Others	Connectors	Flanges	Valves	Pumps	Others	Connectors	Flanges
Inlet System	29	0	34	0	95	0	0	0	0	0	0	0	0	0	0
Dual Service	16	0	24	0	40	0	0	0	0	0	0	0	0	0	0
Turbine	30	0	40	0	110	12	6	18	0	30	0	0	0	0	0
Amine System	0	0	0	0	0	0	0	0	0	0	17	4	28	0	42
VRU	22	1	29	0	70	47	2	30	0	130	0	0	0	0	0
Turboexpander	12	0	20	0	40	16	2	20	0	40	0	0	0	0	0
Totals	109	1	147	0	355	75	10	68	0	200	17	4	28	0	42

Emission Factor (lb/hr/component)	9.99E-03	5.29E-03	1.94E-02	4.41E-04	8.60E-04	5.51E-03	2.87E-02	1.65E-02	4.63E-04	2.43E-04	2.16E-04	5.29E-05	3.09E-02	2.43E-04	6.39E-06
-----------------------------------	----------	----------	----------	----------	----------	----------	----------	----------	----------	----------	----------	----------	----------	----------	----------

Emission by Unit / Service / Component, lbs/hr

Unit	Gas					Light Oil					Water / Oil				
	Valves	Pumps	Others	Connectors	Flanges	Valves	Pumps	Others	Connectors	Flanges	Valves	Pumps	Others	Connectors	Flanges
Inlet System	0.2896		0.6596		0.0817										
Dual Service	0.1598		0.4656		0.0344										
Turbine	0.2996		0.7760		0.0946	0.0661	0.1720	0.2976		0.0073					
Amine System											0.0037	0.0002	0.8642		0.0003
VRU	0.2197	0.0053	0.5626		0.0602	0.2590	0.0573	0.4960		0.0315					
Turboexpander	0.1198		0.3880		0.0344	0.0882	0.0573	0.3307		0.0097					
Total Service / Component (lb/hr)	1.0886	0.0053	2.8519	0.0000	0.3052	0.4134	0.2866	1.1243	0	0.0485	0.0037	0.0002	0.8642	0.0000	0.0003

¹ Based on information provided by DCP personnel February 2011 ("Components" spreadsheet, REV-07)

Unit	VOC		GHG		Hexane		Benzene		Toluene		Ethylbenzene		Xylenes	
	fraction	lb/hr	fraction	lb/hr	fraction	lb/hr	fraction	lb/hr	fraction	lb/hr	fraction	lb/hr	fraction	lb/hr
Inlet System	0.25	0.26	0.75	0.78	0.022	0.023	0.00023	2.37E-04	0.00039	4.02E-04	0.00002	2.06E-05	0.00010	1.03E-04
Dual Service	0.25	0.16	0.75	0.50	0.022	0.015	0.00023	1.52E-04	0.00039	2.57E-04	0.00002	1.32E-05	0.00010	6.60E-05
Turbine	0.25	0.29	0.75	0.88	0.022	0.038	0.00023	3.94E-04	0.00039	6.68E-04	0.00002	3.43E-05	0.00010	1.71E-04
Turbine - Lube Oil	1.00	0.54												
Amine System	1.00	0.87												
VRU	1.00	1.69			0.703	1.189	0.00023	3.89E-04	0.00039	6.60E-04	0.00002	3.38E-05	0.00010	1.69E-04
Turboexpander - Lube Oil	1.00	0.49												
Turboexpander	0.05	0.03	0.95	0.52			0.00023	1.25E-04	0.00039	2.11E-04	0.00002	1.08E-05	0.00010	5.42E-05
Total Service / Component (lb/hr)	4.32		2.66		1.26		1.30E-03		2.20E-03		1.13E-04		5.64E-04	

Unit	VOC		GHG	
	fraction	lb/hr	fraction	lb/hr
Total Net Change	4.32	2.66	lb/hr	
	18.94	11.67		tpy

H₂S FUGITIVE EMISSIONS using PETROLEUM INDUSTRY LEAK RATE/SCREENING VALUE CORRELATIONS
DCP Operating, Linam Ranch Gas Plant

Number of Components

Unit	Gas					Water / Oil				
	Valves	Pumps	Others	Connectors	Flanges	Valves	Pumps	Others	Connectors	Flanges
Acid Gas	548	0	37	1295	788	0	0	0	0	0
Sour Water	0	0	0	0	0	45	0	5	104	31
Totals	593	0	42	1399	819					

SV (Screening Value)= 35 ppmv¹
Components in simultaneous service. 50%

Component	Number of Components	Correlation Factor (kg/hr)	Exponent	EPA Component Emission Factor ² (kg/hr/source)	H ₂ S Fugitive Emissions (lb/hr)	H ₂ S Fugitive Emissions (tpy)
Valves/all	593	2.29E-06	0.746	3.25E-05	0.021	0.093
Pump seals/a	0	5.03E-05	0.610	4.40E-04	0.000	0.000
Others	42	1.36E-05	0.589	1.10E-04	0.005	0.022
Connectors/a	1399	1.53E-06	0.735	2.09E-05	0.032	0.141
Flanges/all	819	4.61E-06	0.703	5.61E-05	0.051	0.222
Open-ended	0	2.20E-06	0.704	2.69E-05	0.000	0.000
Totals					0.109	0.478

¹ In-plant monitors are set at 10 ppm. Therefore, DCP is conservatively estimating emissions by assuming a screening value (correlated to leakage rate) for each component is 35 ppmv. Some components may leak at higher rates, but most will leak at lower rates. concentration and represents a further conservative assumption.

²

EPA Protocol for Equipment Leak Emission Estimates (November, 1995, Publication No. EPA-453 /R-95-017), Table 2-10.

	Frac. Total	Emission rate
AGI Compression	0.4	0.044
AGI well or AGI Flare	0.1	0.011
Plant Compression	0.4	0.044
Plant pipe	0.1	0.011

SSM Calculations

DCP Operating Company, LP
Linam Ranch Gas Plant
SSM & M ACTIVITY EMISSIONS SUMMARY

Activity/Unit		NOx		CO		VOCs		SOx		PM10		PM2.5		H ₂ S		Total HAPs		CO ₂ e	
		lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
SSM Venting	Plant turnaround	-	-	-	-	3,029.49	14.50	-	-	-	-	-	-	0.19	9.5E-05	0.11	5.4E-05	-	21.63
	Plant Startup (post turnaround)	-	-	-	-	1,990.00	6.96	-	-	-	-	-	-	53.77	0.19	30.56	0.11	-	429.23
	Condensate Tank Degassing (5% VRU Downtime)	-	-	-	-	27.54	6.03	-	-	-	-	-	-	-	-	10.49	2.30	-	-
	Condensate Tank Degassing (5% VRUTMP Downtime)	-	-	-	-	24.56	5.38	-	-	-	-	-	-	-	-	9.36	2.05	-	-
	Gas Piping Degassing (meter proving and line isolation)	-	-	-	-	7.59	0.14	-	-	-	-	-	-	0.20	0.0037	0.12	0.0021	-	8.42
	Pigging	-	-	-	-	4.47	0.12	-	-	-	-	-	-	0.12	0.0031	0.069	0.0018	-	7.16
	Vacuum Trucks (All Tank Cleanout)	-	-	-	-	72.00	0.093	-	-	-	-	-	-	1.95	0.0025	1.11	0.0014	-	5.71
	Engine Startup ¹	-	-	-	-	0.034	0.0030	-	-	-	-	-	-	-	-	-	-	-	18.77
	Turbine Blowdown ¹	-	-	-	-	203.79	1.14	-	-	-	-	-	-	5.51	0.066	3.13	0.020	-	67.88
	Compressor Blowdown ¹	-	-	-	-	31.64	1.90	-	-	-	-	-	-	0.85	0.051	0.49	0.029	-	117.01
SSM Venting Total		-	-	-	-	5,391.12	36.26	-	-	-	-	-	-	62.59	0.31	55.41	4.51	-	675.81
Unit 2- E. Amine Acid Gas Flare		14.80	0.88	80.51	4.77	1.56	0.0090	7,751.21	45.59	-	-	-	-	84.02	0.48	0.62	0.0036	-	136.78
AGI Flare		17.75	0.71	96.59	44.39	1.87	8.0E-04	9,301.45	4.13	-	-	-	-	100.83	0.043	0.75	0.75	-	0.20
Unit 4A - ESD Flare		287.65	4.33	1,565.15	23.57	862.27	7.35	2,148.40	18.91	-	-	-	-	23.29	0.20	14.55	0.12	-	4,500.20
SSM Emission Totals		320.20	5.92	1,742.25	72.73	6,021.35	43.63	19,201.06	68.64	-	-	-	-	270.73	1.04	71.33	5.38	-	5,312.98

¹ Hourly emission rate shown for informational purposes only and not included in hourly total limit; emissions were calculated assuming each activity lasts 1 hour.

Unit	NOx		CO		VOCs		SOx		PM10		PM2.5		H ₂ S	
	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
Malfunction	287.65	10.00	1,565.15	10.00	3,029.49	10.00	9,301.45	10.00	-	-	-	-	100.83	10.00
Malfunction Total	287.65	10.00	1,565.15	10.00	3,029.49	10.00	9,301.45	10.00	-	-	-	-	100.83	10.00

The highest hourly emission rates above are used for malfunction activities.

Unit	NOx		CO		VOCs		SOx		PM10		PM2.5		H ₂ S		Total HAPs		CO ₂ e	
	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
SSM & Malfunction Emission Totals	320.20	15.92	1,742.25	82.73	6,021.35	53.63	19,201.06	78.64	-	-	-	-	270.73	11.04	71.33	5.38	-	5,312.98

Total annual SSM & Malfunction emissions includes annual SSM plus annual malfunction emissions. Hourly SSM & malfunction emissions are the highest of hourly SSM or malfunction emission rates.

DCP Operating Company, LP - Linam Ranch Gas Plant

Inlet Gas Analysis

Inlet:

M0500#

Component	MW	Mol%	MW * vol %	Mass Fraction
Water	18.02	0.00%	0.0000	0.00%
Nitrogen	28.01	2.46%	0.6894	3.15%
Argon/Oxygen	31.99	0.00%	0.0000	0.00%
Carbon Dioxide	44.01	1.61%	0.7079	3.23%
Hydrogen Sulfide	34.08	0.38%	0.1296	0.59%
Methane	16.04	73.54%	11.7976	53.85%
Ethane	30.07	12.59%	3.7850	17.28%
Propane	44.10	6.15%	2.7110	12.37%
i-Butane	58.12	0.70%	0.4046	1.85%
n-Butane	58.12	1.62%	0.9412	4.30%
i- & n-Pentane	72.15	0.65%	0.4670	2.13%
Cyclopentane	70.14	0.028%	0.0197	0.0900%
C6 HC _s	86.18	0.15%	0.1281	0.58%
C7 HC _s	100.21	0.04%	0.0445	0.20%
C8 HC _s	114.23	0.01%	0.0059	0.03%
C9 HC _s	128.26	0.001%	0.0017	0.01%
n-Hexane	86.18	0.05%	0.0466	0.21%
Benzene	78.11	0.028%	0.0216	0.10%
Toluene	92.14	0.006%	0.0052	0.02%
Ethyl Benzene	106.17	0.0001%	0.0001	0.0005%
Xylenes	106.17	0.0002%	0.0002	0.001%
Total		100%	21.91	100%
¹ Composition is based on Linam M0500# inlet gas analysis dated 11/11/13				
MW of Gas =	21.9068			
Weight % VOCs =		22%		
Universal Gas Content =	379.4 scf/lb-mol	@ 60 F and 14.696 psia		

Atmospheric Pressure

Site Elevation	3710	ft MSL	
Site Air Pressure	26.10	in Hg	Calculated based on elevation
Site Air Pressure	12.82	psia	Conversion factor

DCP Operating Company, LP - Linam Ranch Gas Plant
Fuel Gas Analysis

Inlet: Residue/Fuel Gas Analysis

Component	MW	Mol%	MW * wet vol %	Mass Fraction (wet)
Water	18.02	0.0000%	0.0000	0.00%
Nitrogen	28.01	3.1359%	0.8785	5.10%
Argon/Oxygen	31.99	0.0000%	0.0000	0.00%
Carbon Dioxide	44.01	0.0030%	0.0013	0.01%
Hydrogen Sulfide	34.08	0.0000%	0.0000	0.00%
Methane	16.04	91.2431%	14.6381	84.98%
Ethane	30.07	5.4849%	1.6493	9.57%
Propane	44.10	0.1310%	0.0578	0.34%
i-Butane	58.12	0.0012%	0.0007	0.00%
n-Butane	58.12	0.0009%	0.0005	0.00%
i-Pentane	72.15	0.0000%	0.0000	0.00%
n-Pentane	72.15	0.0000%	0.0000	0.00%
Hexanes +	86.18	0.0000%	0.0000	0.00%
Total		100%	17.23	100%

¹ Composition is based on the 10/21/13 Linam Ranch Fuel Gas extended analysis

DCP Operating Company, LP - Linam Ranch Gas Plant
SAMPLE EMISSIONS CALCULATIONS -TURNAROUND EMISSIONS

Calculation Basis:

Multiple steps comprise a plant turnaround. Step 1 - For the natural gas system, emissions to the atmosphere after opening pipelines are calculated using the Ideal Gas Law and are based on the entire pipe volume venting to the atmosphere at pipeline pressure. Step 2 - For systems in liquid service clingage emissions degassing emissions occur after the system is de-inventoried. Degassing emissions are calculated using the Ideal Gas Law. Step 3 - After systems are degassed and opened, residual materials (clingage) may be emitted to the atmosphere. Clingage emissions are estimated using system volumes and an assumed clingage amount.

Total lb/hr emissions from each liquid system turnaround step (degassing, clingage) assume that any liquid system may undergo turnaround at any time. Maximum lb/hr emissions from all turnaround steps is calculated as the maximum lb/hr emission rate from any step.

Constants and Variables:

	System/Service Name							
	N.G. (gas)	Glycol	Lube oil	Amine	NGL Product	Propane (lin)	Methanol	Condensate
fluid type (8 atm)								
Volume:	Gas	3,997	220,925	14,150	107,397	6,280	4,807	2,203
Process Temperature:					95.00			
Ideal Gas Constant:					10.73			
Density:	0.0578	9.28	7.50	8.66	0.23	0.20	6.66	6.00
Vapor Pressure:	N/A	0.001	0.010	0.002	24.7	24.7	3.868	5.52
Molecular Weight:	21.91	62.07	170	119.16	51	44	32	92
VOC Content:	21.9%	100	100	100	100	100	99.74	
Total HAPs Content:	0.3%	N/A	N/A	N/A	N/A	N/A	N/A	
H2S Content:	0.6%	N/A	N/A	N/A	N/A	N/A	N/A	
CO2 Content:	3.23%	N/A	N/A	N/A	N/A	N/A	N/A	
CH4 Content:	53.85%	N/A	N/A	N/A	N/A	N/A	N/A	

scf (for N.G.), gal (for liquids)

* F

(ft³)(psi)/(lbmol)(°R)

lb/scf (for gas), lb/gal (for liquid) - from DCP turnaround quantity calculations

psi MSDS, or Tanks 4.0d for condensate

lb/lbmol MSDS, or Tanks 4.0d for condensate

Wt. % For N.G., from Residue Gas Analysis for Condensate from ProMax Gas Composition

Wt. % For N.G., from Gas Composition Sheet. Assumes all Hexanes+ are HAPs

Wt. % For N.G., from Gas Composition Sheet

Wt. % from Gas Composition Sheet

Wt. % from Gas Composition Sheet

VOC Emissions, N.G. System Blowdowns

Volume of system =	3,549,116 ft ³			
Amount HC vented to atmosphere (lb) =	(Volume x density)			
	= 3,549,116 ft ³	0.058 lb		
		ft ³		
= 25,643	lbs N.G. (lb/hr)	8 hours for plant blowdown		
= 56	lbs VOC (lb/hr)			
Maximum number of turnarounds = 1.00	activity/yr	from site data sheet		
= 0.22	tpy VOC			
= 0.11	lb/hr Total HAPs			
= 5.30E-05	tpy Total HAPs			
= 0.19	lb/hr H2S			
= 9.48E-05	tpy H2S			
= 103.6	lb/hr CO2			
= 5.18E-02	tpy CO2			
= 1726.2	lb/hr CH4			
= 8.63E-01	tpy CH4			
= 21.63	tpy CO2e			

Liquid system opening loss (vapor space, atm liquid systems only)

Amount emitted (lbs) = $P \cdot V \cdot MW / (R \cdot T)$

Amount VOC vented to atmosphere (lb) =	(Volume x molecular weight x vapor pressure) / (Gas Constant x Temperature [°R]) * MW			
	= $\frac{3,997 \text{ gal}}{10.73 \text{ ft}^3 \cdot \text{psi} / \text{R} \cdot \text{lb-mol}} \cdot 1 \cdot 0.13368 \text{ ft}^3$			
		62.07 lb	0.001 psi	100 % VOC
= 7.33E-03	lbs VOC/hr	assume degassing occurs in one hour		
= 3.86E-06	tpy VOC			

Lube Oil system:

Amount VOC vented to atmosphere (lb) =	(Volume x molecular weight x vapor pressure) / (Gas Constant x Temperature [°R]) * MW			
	= $\frac{220,925 \text{ gal}}{10.73 \text{ ft}^3 \cdot \text{psi} / \text{R} \cdot \text{lb-mol}} \cdot 1 \cdot 0.13368 \text{ ft}^3$			
		170.00 lb	0.010 psi	100 % VOC
= 8.43	lbs VOC/hr	assume degassing occurs in one hour		
= 4.21E-03	tpy VOC			

Amine system:

Amount VOC vented to atmosphere (lb) =	(Volume x molecular weight x vapor pressure) / (Gas Constant x Temperature [°R]) * MW			
	= $\frac{14,150 \text{ gal}}{10.73 \text{ ft}^3 \cdot \text{psi} / \text{R} \cdot \text{lb-mol}} \cdot 1 \cdot 0.13368 \text{ ft}^3$			
		119.16 lb	0.0025 psi	100 % VOC
= 0.094	lbs VOC/hr	assume degassing occurs in one hour		
= 4.68E-05	tpy VOC			

DCP Operating Company, LP - Linam Ranch Gas Plant
SAMPLE EMISSIONS CALCULATIONS -TURNAROUND EMISSIONS

Methanol system:

Amount VOC vented to atmosphere (lb) =	(Volume x molecular weight x vapor pressure) / (Gas Constant x Temperature [°R]) * MW						
	= $\frac{4,807 \text{ gal}}{10.73 \text{ ft}^3 \cdot \text{psi} / \text{R} \cdot \text{lb-mol}}$	1	0.13368 ft ³	gal	32.00 lb	3.87 psi	100 % VOC
	= 13.35 lbs VOC/hr	assume degassing occurs in one hour					
	= 6.68E-03 tpy VOC						

Condensate system:

Amount VOC vented to atmosphere (lb) =	(Volume x molecular weight x vapor pressure) / (Gas Constant x Temperature [°R]) * MW						
	= $\frac{2,203 \text{ gal}}{10.73 \text{ ft}^3 \cdot \text{psi} / \text{R} \cdot \text{lb-mol}}$	1	0.13368 ft ³	gal	92.00 lb	5.52 psi	99.7 % VOC
	= 25.06 lbs VOC/hr	assume degassing occurs in one hour					
	= 1.25E-02 tpy VOC						

NGL Product system:

Amount VOC vented to atmosphere (lb) =	(Volume x molecular weight x vapor pressure) / (Gas Constant x Temperature [°R]) * MW						
	= $\frac{107,397 \text{ scf}}{10.73 \text{ ft}^3 \cdot \text{psi} / \text{R} \cdot \text{lb-mol}}$	1	51.00 lb	lb-mol	24.70 psi	100.0 % VOC	
	= 2839.31 lbs VOC/hr	assume degassing occurs in 8 hours					
	= 11.36 tpy VOC						

Propane (lqg) system:

Amount VOC vented to atmosphere (lb) =	(Volume x molecular weight x vapor pressure) / (Gas Constant x Temperature [°R]) * MW						
	= $\frac{6,280 \text{ scf}}{10.73 \text{ ft}^3 \cdot \text{psi} / \text{R} \cdot \text{lb-mol}}$	1	44.00 lb	lb-mol	24.70 psi	100.0 % VOC	
	= 143.24 lbs VOC/hr	assume degassing occurs in 8 hours					
	= 0.57 tpy VOC						

Total degassing (all systems): 3029.5 lbs VOC/hr
11.95 tpy VOC

System clingage loss (vapor space)

Assume: 0.25 % of liquid volume remains as clingage and is emitted to atm.
Assume: 0.05 % of NGL and Propane liquid system volume remains as clingage and is emitted to atm.

Duration of clingage losses: 24 hrs

System:	Glycol	Lube oil	Amine	Methanol	Condensate
fluid type (@ atm):	Liquid	Liquid	Liquid	Liquid	
Clingage volume:	9.99	552	35.38	12.02	5.51
Density:	9.28	750	8.66	6.66	6.00
% VOC:	1.00	1.00	1.00	1.00	0.974
VOC Emissions:	92.68	4,140.68	306.47	80.1	32.96
	4	173	13	3.34	1.37
	0.046	2.07	0.153	0.040	0.016

Total clingage (all systems): 193.9 lbs VOC/hr
2.33 tpy VOC

Example calculation: Glycol system

Amount VOC vented to atmosphere (lb) =	(System volume x % clingage x density x % VOC)						
	= $\frac{3,997 \text{ gal}}{0.25 \text{ % clingage}}$	0.25 % clingage	9.28 lb	gal	100 % VOC		

Total Turnaround Activity Emissions:

Ib/hr VOC: 3,029 Maximum hourly emissions from blowdown, liquid system venting or clingage steps.
Ipy VOC: 14.50 Sum of emissions from all turnaround steps.

Ib/hr H2S: 0.19

Ipy H2S: 9.8E-05

Ib/hr Total HAPs: 0.11

Ipy Total HAPs: 5.39E-05

Ipy CO2e 21.630

These example calculations are not intended to be representations under 116.116(a), but are an example of the emission calculation approach for a sub-category of SSM emissions activities. The basis of the example emission calculation (such as volume, concentration, pressure) are example conditions and should not be interpreted as representations of a specific plant or activity condition under 116.116(a). Individual activities in this MSS sub-category are performed which may have slight variations in procedure or equipment configuration.

DCP Operating Company, LP - Linam Ranch Gas Plant
Engine Startup/Warmup Calculations

Example Calculations:

Per Activity Propane Emissions Calculation:

$$ER \text{ (lb propane/startup)} = \text{Gas released (scf/release)} \times \text{mol \%} / 379 \text{ scf/mol} * \text{MW}$$

$$= \frac{324 \text{ scf}}{\text{release}} \quad \frac{0.13 \text{ mol \%}}{100} \quad \frac{44.097 \text{ lb}}{\text{lb mol}} \quad \frac{\text{lb-mol}}{379 \text{ scf}} = 0.05 \text{ lb propane/startup}$$

Annual VOC Emissions Calculation:

$$\text{Annual ER (tpy)} = \text{Gas Released per activity (lb/startup)} \times \text{No. of activities per year} / 2000 \text{ lb}$$

$$= \frac{\text{lb}}{\text{activity}} \quad \frac{\# \text{ of startups}}{\text{yr}} \quad \frac{\text{ton}}{2000 \text{ lb}}$$

Startup Emissions Calculations:

Calculation of gas released for each unit:

Activity	Gas Released (scf/release)	Gas Released in lb mol/release
Engine Startup	324	0.85

Note: Gas Release based on input from Site Data sheet.

Calculation of gas emissions from engine startup events:

0/21/13 Residue Gas Analy	Molecular		Gas Weight per engine startup (lb/activity)
Component	Weight	Mole %	
Carbon Dioxide	44	0.003	0.00
Hydrogen Sulfide	34	0.000	0.00
Nitrogen	28	3.136	0.75
Methane	16	91.243	12.51
ethane	30	5.485	1.41
propane	44	0.131	0.0494
i-butane	58	0.001	0.0006
N-butane	58	0.001	0.0004
i-Pentane	72	0.000	0.00
n-Pentane	72	0.000	0.00
Hexanes +	86	0.000	0.00
Total Gas Released		100.00	14.73
Total VOC Released		0.133	0.05

Engine startup summary of VOC, H₂S and Total HAP emissions:

Pollutant	Activity E.R (lb/activity)	Number of Annual Activities	ER (lb/year)	Annual ER (tpy)	Hourly ER* (lb/hr)
VOC	0.0504	120	6.05	0.003	0.034
Hydrogen Sulfide	0.0000		0.00	0.000	0.00
Total HAPs	0.0000		0.00	0.000	0.00

*Hourly emission rate shown for informational purposes only; emissions were calculated assuming each activity lasts 1 hour.

GHG Pollutant	Hourly ER (lb/activity)	Number of Annual Activities	Annual ER (tpy)
CO ₂	0.0011	120	0.0001
CH ₄	12.51		0.7508
CO ₂ e			18.77

These example calculations are not intended to be representations under 116.116(a), but are an example of the emission calculation approach for a sub-category of MSS emissions activities. The basis of the example emission calculation (such as volume, concentration, pressure) are example conditions and should not be interpreted as representations of a specific plant or activity condition under 116.116(a). Individual activities in this MSS sub-category are performed which may have slight variations in procedure or equipment configuration.

DCP Operating Company, LP - Linam Ranch Gas Plant
SAMPLE EMISSIONS CALCULATIONS -STARTUP EMISSIONS, POST TURNAROUND

Calculation Basis:

For the natural gas system, emissions to the atmosphere occur from a three step pressure test and purge prior to plant startup. These emissions are calculated using the Ideal Gas Law and are based on the entire pipe volume venting to the atmosphere at each purge step pressure.

Constants and Variables:

N.G. (gas) System		
Plant startup duration:	7	hrs
Annual startup frequency:	1	activity/yr (equivalent to turnaround frequency)
Gas System Equipment Volume:	91,796	cu. Ft., from DCP turnaround quantity calculations
Process Temperature :	95.0	° F
Density:	0.0455	lb/scf (for gas)- from DCP turnaround quantity calculations
VOC Content :	22%	Wt. %
Total HAP Content:	0.34%	Wt. %
H2S Content:	0.59%	Wt. %
CO2 Content:	3.23%	Wt. %
CH4 Content:	53.85%	Wt. %

VOC Emissions, N.G. System Blowdown:

Amount of gas vented to atmosphere (scf) =
$$[\text{Equipment volume} \times (\text{system purge step pressure (psi)} + 14.7)] / [554 \text{ deg R} \times 14.7 \text{ psi}] \times 520 \text{ deg R}$$

System Purge Step #:	1	2	3	
System pressure prior to Purge:	30	50	100	psi
Amount of gas vented to atm:	279,136	404,029	716,261	scf @ 95 deg F [1]
	279.14	404.03	716.26	Mscf @ 95 deg F [1]
Total gas vented to atm (all steps):	1399.43			Mscf
	63.61			Mlbs
Hourly gas emission rate:	9087.18			lb/hr
Hourly VOC emission rate:	1990.00			lb/hr
Hourly Total HAP emission rate:	30.56			lb/hr
Hourly H2S emission rate:	53.77			lb/hr
Annual VOC Emission rate:	6.96			tpy
Annual Total HAP emission rate:	0.11			tpy
Annual H2S emission rate:	0.19			tpy

Note: [1] TCEQ guidance of final temperature for depressurizing to atmosphere, from chemical sector MSS permitting.

GHG Emissions	lb/hr	tpy
CO2	293.6	1.03
CH4	4893.8	17.1
Total CO2e		429.2

These example calculations are not intended to be representations under 116.116(a), but are an example of the emission calculation approach for a sub-category of MSS emissions activities. The basis of the example emission calculation (such as volume, concentration, pressure) are example conditions and should not be interpreted as representations of a specific plant or activity condition under 116.116(a). Individual activities in this MSS sub-category are performed which may have slight variations in procedure or equipment configuration.

DCP Operating Company, LP - Linam Ranch Gas Plant Compressor Blowdown Emission Calculations

Calculation Basis:

Emissions to the atmosphere from the blowdown of the compressors, attached to either engines or turbines. During a compressor blowdown gas will be released to the atmosphere. Emissions are calculated using a mass balance and are based on the volume vented to the atmosphere.

Example Calculations:

Compressor Blowdown, Propane Emissions Calculation:

$$ER \text{ (lb propane/blowdown)} = \text{Gas released (scf/release)} \times \text{mol \%} / 379 \text{ scf/mol} * \text{MW}$$

$$= \frac{2500 \text{ scf}}{\text{release}} \left| \begin{array}{c} 6.15 \text{ mol \%} \\ 100 \end{array} \right| \frac{44.097 \text{ lb}}{\text{lb mol}} \left| \begin{array}{c} \text{lb-mol} \\ 379 \text{ scf} \end{array} \right| = 17.88 \text{ lb propane/Compressor blowdown}$$

Annual VOC Emissions Calculation:

$$\text{Annual ER (tpy)} = \text{Gas Released per activity (lb/blowdown)} \times \text{No. of activities per year} / 2000 \text{ lb}$$

$$= \frac{\text{lb}}{\text{activity}} \left| \begin{array}{c} \# \text{ of blowdowns} \\ \text{yr} \end{array} \right| \frac{\text{ton}}{2000 \text{ lb}}$$

Blowdown Emissions Calculations:

Calculation of gas released for each compressor unit during a blowdown event:

Activity	Gas Released (scf/activity)	Gas Released in lb mol/activity
Blowdown Volume[1]	2,500	6.60

Notes:

[1] Blowdown based on site-specific blowdown volume (From site data sheet).

Calculation of gas emissions from compressor blowdown events:

Residue Gas Analysis Component	Molecular Weight	Mole %	Gas Weight per compressor (lb/activity)
Water	18.02	0.00	0.00
Nitrogen	28.01	2.46	4.55
Argon/Oxygen	31.99	0.00	0.00
Carbon Dioxide	44.01	1.61	4.67
Hydrogen Sulfide	34.08	0.38	0.85
Methane	16.04	73.54	77.82
Ethane	30.07	12.59	24.97
Propane	44.10	6.15	17.88
i-Butane	58.12	0.70	2.67
n-Butane	58.12	1.62	6.21
i- & n-Pentane	72.15	0.65	3.08
Cyclopentane	70.14	0.0281	0.13
C6 HC _s	86.18	0.1487	0.85
C7 HC _s	100.21	0.0444	0.293
C8 HC _s	114.23	0.0052	0.0392
C9 HC _s	128.26	0.0013	0.0110
n-Hexane	86.18	0.0541	0.3075
Benzene	78.11	0.0276	0.1422
Toluene	92.14	0.0056	0.0340
Ethyl Benzene	106.17	0.000100	0.00070
Xylenes	106.17	0.000200	0.00140
Total Gas Released		100	144.50
Total VOC Released		9.43	31.64

Number of Compressors =	6	
Frequency of Blowdowns =	20	releases/yr/compressor
Total Number of Blowdowns =	120	releases/year
Total Annual VOC Emissions =	1.90	tpy
Total Annual H₂S Emissions =	0.051	tpy
Total Annual HAP emissions =	0.0292	tpy
		Conservatively assumes all Hexanes+ are HAPs
Hourly VOC Emissions =	31.6	lb/hr
Hourly H₂S Emissions =	0.855	lb/hr
Hourly HAP Emissions =	0.486	lb/hr

*Hourly emission rate shown for informational purposes only; emissions were calculated assuming each activity lasts 1 hour.

GHG Pollutant	Hourly ER (lb/activity)	Number of Annual Activities	Annual ER (tpy)
CO ₂	4.6692		0.280
CH ₄	77.8207	120.0	4.67
CO ₂ e			117.01

DCP Operating Company, LP - Linam Ranch Gas Plant
Turbine Blowdown Emission Calculations

Calculation Basis:

Emissions to the atmosphere from two types of turbine blowdowns: maintenance and washing related blowdowns. During a turbine wash blowdown occurs in three steps: a pre-wash blowdown to take the turbine out of service, a starter run (used to move turbine during washing) and finally a blowdown associated with turbine startup at completion of the wash. During a maintenance event blowdown occurs from an initial blowdown and starter blowdown. Emissions are calculated using a mass balance and are based on the volume vented to the atmosphere.

Example Calculations:

Turbine wash Blowdown, Propane Emissions Calculation:

$$ER \text{ (lb propane/blowdown)} = \text{Gas released (scf/release)} \times \text{mol \%} / 379 \text{ scf/mol} \times \text{MW}$$

$$= \frac{16100 \text{ scf}}{\text{activity}} \times \frac{6.15 \text{ mol \%}}{100} \times \frac{44,096 \text{ lb}}{\text{lb mol}} \times \frac{\text{lb-mol}}{379 \text{ scf}} = 115.16 \text{ lb propane/ turbine wash blowdown}$$

Annual VOC Emissions Calculation:

$$\text{Annual ER (tpy)} = \text{Gas Released per activity (lb/blowdown)} \times \text{No. of activities per year} / 2000 \text{ lb}$$

$$= \frac{\text{lb}}{\text{activity}} \times \frac{\# \text{ of blowdowns}}{\text{yr}} \times \frac{\text{ton}}{2000 \text{ lb}}$$

Blowdown Emissions Calculations:

Calculation of gas released for each unit during a turbine wash:

Activity	Gas Released (scf/activity)	Gas Released in lb mol/activity
Pre-wash blowdown [1]	700	1.85
Blowdown during wash [2]	14,000	36.94
Starter blowdown [3]	1,400	3.69
Total (all steps) [4]	16,100	42.48

Notes:

- [1] Pre-wash blowdown based on site-specific turbine blowdown volume (From site data sheet).
- [2] Wash blowdown based on running 2 starters per turbine, with 1,400 scf/min, run for 5 minutes each
- [3] Post-wash startup blowdown emissions from 3, 10-sec startups @ 1,400 scf/min for two starters.
- [4] Maximum of one turbine wash per hour.

Calculation of gas released for each unit during a maintenance blowdown:

Activity	Gas Released (scf/activity)	Gas Released in lb mol/activity
Initial blowdown	700	1.85
Starter blowdown [3]	1,400	3.69
Total (both steps)	2,100	5.54

Calculation of gas emissions from turbine washing and non-wash blowdown events, using Residue Gas Analysis:

Residue Gas Analysis	Molecular Weight	Mole %	Gas Weight per turbine wash (lb/activity) [1]	Gas Weight per maintenance blowdown (lb/activity) [1]
Component				
Carbon Dioxide	44.01	1.608	30.07	0.72
Hydrogen Sulfide	34.08	0.38	5.51	3.82
Nitrogen	28.00	2.46	29.27	65.19
methane	16.00	73.54	499.82	20.97
ethane	30.07	12.59	160.79	15.02
propane	44.10	6.15	115.16	2.24
i-butane	58.12	0.70	17.19	5.21
N-butane	58.12	1.62	39.98	2.59
i- & n-Pentane	72.15	0.65	19.84	0.11
Cyclopentane	70.14	0.03	0.84	0.11
C6 HC _s	86.18	0.15	5.44	0.71
C7 HC _s	100.21	0.04	1.89	0.25
C8 HC _s	114.23	0.01	0.25	0.03
C9 HC _s	128.26	0.001	0.07	0.01
n-Hexane	86.18	0.05	1.98	0.26
Benzene	78.11	0.03	0.92	0.12
Toluene	92.14	0.01	0.22	0.03
Ethyl Benzene	106.17	0.00	0.00	0.00
Xylenes	106.17	0.00	0.01	0.00
Total Gas Released		100	929.24	117.39
Total VOC Released		9.43	203.79	11.67

Note: [1] The highest hourly emission rate is the maximum of either blowdown scenario: turbine washing or maintenance blowdown.

Frequency of Turbine Washing =	2	times/yr/turbine
Frequency of Maintenance blowdowns =	4	times/yr/turbine
Number of Turbines =	5	from site data sheet
Annual VOC from Turbine Washing =	1.02	tpy
Annual VOC from Maintenance Blowdowns =	0.1167	tpy
Total Annual VOC Emissions =	1.14	tpy
Total annual H2S from Turbine Washing =	0.028	tpy
Total annual H2S from Maint blowdown =	0.038	tpy
Total annual HAPs from Turbine Washing =	0.016	tpy
Total annual HAPs from Maint blowdown =	0.004	tpy
Total annual CO2 from Turbine Washing =	0.150	tpy
Total annual CO2 from Maint blowdown =	0.007	tpy
Total annual CH4 from Turbine Washing =	2.499	tpy
Total annual CH4 from Maint blowdown =	0.210	tpy
Total annual CO2e =	67.9	tpy

Hours per activity each year, assuming each activity takes 1 hour:

Hours of Turbine Washing per year =	10	Five turbines are washed twice per year each
Hours of Maintenance Blowdowns per year =	20	Five turbines are blown down four times per year each.

Hourly VOC from Turbine Washing =	203.79	lb/hr
Hourly VOC from Maintenance Blowdowns =	11.67	lb/hr
Hourly H2S from Turbine Washing =	5.51	lb/hr
Hourly H2S from Maintenance Blowdowns =	3.82	lb/hr
Hourly HAPs from Turbine Washing =	3.13	lb/hr
Hourly HAPs from Maintenance Blowdowns =	0.41	lb/hr

Note: [1] The highest hourly emission rate is the maximum of either blowdown scenario: turbine washing or maintenance blowdown.

[2] Hourly emission rate shown for informational purposes only; emissions were calculated assuming each activity lasts 1 hour.

These example calculations are not intended to be representations under 116.116(a), but are an example of the emission calculation approach for a sub-category of MSS emitter activities. The basis of the example emission calculation (such as volume, concentration, pressure) are example conditions and should not be interpreted as representations of a specific plant or activity condition under 116.116(a). Individual activities in this MSS sub-category are performed which may have slight variations in procedure or equipment configuration.

DCP Operating Company, LP - Linam Ranch Gas Plant
SAMPLE EMISSIONS CALCULATIONS - PIPING OPENED TO ATMOSPHERE

Calculation Basis:

Emissions to the atmosphere after opening pipelines are calculated using the Ideal Gas Law and are based on the entire pipe volume venting to the atmosphere at pipeline pressure.

Constants and Variables:

Venting Pressure :	1200	psia	Default
Piping Volume :	7.85	ft ³	Represents a 10ft. length of 12 in. diameter line
Process Temperature :	95.00	° F	
Ideal Gas Constant :	10.73	(ft ³)(psi)/(lbmol)(°R)	
Molecular Weight:	21.91	lb/lb mol	From Gas Composition Sheet
Activities per year :	36	count/year	Monthly meter proving and twice monthly line repair
VOC Content :	21.90	Wt. %	From Gas Composition Sheet
HAPs Content:	0.34	Wt. %	
H2S Content:	0.38	mol %	
CO ₂ Concentration:	1.61	mol %	
CH ₄ Concentration:	73.54	mol %	

Example Calculation - VOC Emissions

$$\begin{aligned}
 \text{Volume of system} &= 7.85 \text{ ft}^3 \\
 \text{Amount HC vented to atmosphere (lb)} &= \frac{(\text{Pressure} \times \text{Volume}) / (\text{Gas Constant} \times \text{Temperature [°R]}) * \text{MW}}{1200.00 \text{ psia}} \\
 &= \frac{1200.00 \text{ psia}}{10.73 \text{ ft}^3 * \text{psi} / \text{°R} * \text{lb-mol}} \quad \frac{8 \text{ ft}^3}{555 \text{ °R}} \quad \frac{21.91 \text{ lb}}{1 \text{ lb-mol}} \\
 &= 34.65 \text{ lbs HC/activity (lb/hr)} \\
 &= 7.59 \text{ lbs VOC/activity (lb/hr)} \\
 &= 0.14 \text{ tpy VOC} \\
 &= 0.12 \text{ lbs HAPs} \\
 &= 2.10E-03 \text{ tpy HAPs}
 \end{aligned}$$

Example Calculation - H2S Emissions

$$\begin{aligned}
 \text{Volume of system} &= 7.85 \text{ ft}^3 \\
 \text{Amount vented to atmosphere (lb)} &= \frac{(\text{Pressure} \times \text{Volume}) / (\text{Gas Constant} \times \text{Temperature [°R]}) * \text{MW}}{1200.00 \text{ psia}} \\
 &= \frac{1200.00 \text{ psia}}{10.73 \text{ ft}^3 * \text{psi} / \text{°R} * \text{lb-mol}} \quad \frac{8 \text{ ft}^3}{555 \text{ °R}} \quad \frac{0.38 \text{ lb-mol H2S}}{100 \text{ lb-mol Gas}} \quad \frac{34.08 \text{ lb H2S}}{1 \text{ lb-mol H2S}} \\
 &= 2.05E-01 \text{ lbs H2S/activity (lb/hr)} \\
 &= 3.69E-03 \text{ tpy H2S}
 \end{aligned}$$

Example Calculation - CO₂ Emissions

$$\begin{aligned}
 \text{Volume of system} &= 7.85 \text{ ft}^3 \\
 \text{Amount vented to atmosphere (lb)} &= \frac{(\text{Pressure} \times \text{Volume}) / (\text{Gas Constant} \times \text{Temperature [°R]}) * \text{MW}}{1200.00 \text{ psia}} \\
 &= \frac{1200.00 \text{ psia}}{10.73 \text{ ft}^3 * \text{psi} / \text{°R} * \text{lb-mol}} \quad \frac{8 \text{ ft}^3}{555 \text{ °R}} \quad \frac{1.61 \text{ lb-mol CO2}}{100 \text{ lb-mol Gas}} \quad \frac{44.01 \text{ lb CO2}}{1 \text{ lb-mol CO2}} \\
 &= 1.12E+00 \text{ lbs CO2/activity (lb/hr)} \\
 &= 2.02E-02 \text{ tpy CO2}
 \end{aligned}$$

Example Calculation - CH₄ Emissions

$$\begin{aligned}
 \text{Volume of system} &= 7.85 \text{ ft}^3 \\
 \text{Amount vented to atmosphere (lb)} &= \frac{(\text{Pressure} \times \text{Volume}) / (\text{Gas Constant} \times \text{Temperature [°R]}) * \text{MW}}{1200.00 \text{ psia}} \\
 &= \frac{1200.00 \text{ psia}}{10.73 \text{ ft}^3 * \text{psi} / \text{°R} * \text{lb-mol}} \quad \frac{8 \text{ ft}^3}{555 \text{ °R}} \quad \frac{73.54 \text{ lb-mol CH4}}{100 \text{ lb-mol Gas}} \quad \frac{16.04 \text{ lb CH4}}{1 \text{ lb-mol CH4}} \\
 &= 1.87E+01 \text{ lbs CH4/activity (lb/hr)} \\
 &= 0.3 \text{ tpy CH4}
 \end{aligned}$$

Total CO₂e 8.4 tpy CO₂e

DCP Operating Company, LP - Linam Ranch Gas Plant

SAMPLE EMISSIONS CALCULATIONS - PIGGING

Calculation Basis:

Emissions to the atmosphere after opening pipelines are calculated using the Ideal Gas Law and are based on the entire pipe volume venting to the atmosphere at pipeline pressure.

Constants and Variables:

Venting Pressure :	400 psia	Default discharge pressure
Piping Volume :	13.9 ft ³	
Process Temperature :	95 °F	
Ideal Gas Constant :	10.73 (ft ³)(psi)/(lbmol)(°R)	
Molecular Weight:	21.91 lb/lb mol	From Gas Composition Sheet
Activities per year :	52 count/year	From MSS Activity Summary Sheet
VOC Content :	21.90 Wt. %	From Gas Composition Sheet
HAPs Content:	0.34 Wt. %	
H ₂ S Content:	0.38 mol %	
CO ₂ Concentration:	1.61 mol %	
CH ₄ Concentration:	73.54 mol %	

Example Calculation - VOC Emissions

$$\begin{aligned}
 \text{Amount HC vented to atmosphere (lb)} &= \frac{(\text{Pressure} \times \text{Volume}) / (\text{Gas Constant} \times \text{Temperature [°R]}) * \text{MW}}{400.00 \text{ psia}} \quad | \quad 14 \text{ ft}^3 \quad | \quad 21.91 \text{ lb} \\
 &= \frac{10.73 \text{ ft}^3 * \text{psi} / \text{°R} * \text{lb-mol}}{555 \text{ °R}} \quad | \quad \text{lb-mol} \\
 &= 20.41 \text{ lbs HC/activity (lb/hr)} \\
 &= 4.47 \text{ lbs VOC/activity (lb/hr)} \\
 &= 0.12 \text{ tpy VOC} \\
 &= 6.86E-02 \text{ lbs HAPs/activity (lb/hr)} \\
 &= 1.78E-03 \text{ tpy HAPs}
 \end{aligned}$$

Example Calculation - H₂S Emissions

$$\begin{aligned}
 \text{Amount vented to atmosphere (lb)} &= \frac{(\text{Pressure} \times \text{Volume}) / (\text{Gas Constant} \times \text{Temperature [°R]}) * \text{MW}}{400.00 \text{ psia}} \quad | \quad 14 \text{ ft}^3 \quad | \quad 0.380 \text{ lb-mol H}_2\text{S} \quad | \quad 34.08 \text{ lb H}_2\text{S} \\
 &= \frac{10.73 \text{ ft}^3 * \text{psi} / \text{°R} * \text{lb-mol}}{555 \text{ °R}} \quad | \quad 100 \text{ lb-mol Gas} \quad | \quad 1 \text{ lb-mol H}_2\text{S} \\
 &= 1.21E-01 \text{ lbs H}_2\text{S} \\
 &= 3.14E-03 \text{ tpy H}_2\text{S}
 \end{aligned}$$

Example Calculation - CO₂ Emissions

$$\begin{aligned}
 \text{Amount vented to atmosphere (lb)} &= \frac{(\text{Pressure} \times \text{Volume}) / (\text{Gas Constant} \times \text{Temperature [°R]}) * \text{MW}}{400.00 \text{ psia}} \quad | \quad 14 \text{ ft}^3 \quad | \quad 1.608 \text{ lb-mol CO}_2 \quad | \quad 44.01 \text{ lb CO}_2 \\
 &= \frac{10.73 \text{ ft}^3 * \text{psi} / \text{°R} * \text{lb-mol}}{555 \text{ °R}} \quad | \quad 100 \text{ lb-mol Gas} \quad | \quad 1 \text{ lb-mol CO}_2 \\
 &= 0.66 \text{ lbs CO}_2 \\
 &= 1.71E-02 \text{ tpy CO}_2
 \end{aligned}$$

Example Calculation - CH₄ Emissions

$$\begin{aligned}
 \text{Amount vented to atmosphere (lb)} &= \frac{(\text{Pressure} \times \text{Volume}) / (\text{Gas Constant} \times \text{Temperature [°R]}) * \text{MW}}{400.00 \text{ psia}} \quad | \quad 14 \text{ ft}^3 \quad | \quad 73.538 \text{ lb-mol CH}_4 \quad | \quad 16.04 \text{ lb CH}_4 \\
 &= \frac{10.73 \text{ ft}^3 * \text{psi} / \text{°R} * \text{lb-mol}}{555 \text{ °R}} \quad | \quad 100 \text{ lb-mol Gas} \quad | \quad 1 \text{ lb-mol CH}_4 \\
 &= 11.0 \text{ lbs CH}_4 \\
 &= 0.29 \text{ tpy CH}_4
 \end{aligned}$$

Total CO₂e 7.2 tpy CO₂e

DCP Operating Company, LP - Linam Ranch Gas Plant
EMISSION CALCULATIONS - VACUUM TRUCKS (TANK CLEANING)

Calculation Basis:

Emissions from vacuum trucks are estimated using the loading loss method of AP-42, Chapter 5.2: Transportation and Marketing of Petroleum Liquids, 1995. Calculations are performed based on the concentrations of the individual organic species since the wastes contain significant non-volatile content (i.e. water, solids). A truck can be loaded in one hour, therefore the emissions per loading activity reflect the lb/hr emission rate.

$$L_L = 12.46 \text{ SPM/T} * (\text{SF})$$

where:

L_L = loading loss, pounds VOC per 1000 gallons (lb/10³ gal) of liquid loaded

S = a saturation factor

P = true vapor pressure of liquid loaded, pounds per square inch absolute (psia)

M = molecular weight of vapors, pounds per pound-mole (lb/lb-mole)

T = temperature of bulk liquid loaded, °R (°F+460)

SF = safety factor due to vacuum loading

Example Calculation:

Volume of Constituent Loaded (gal) = 6300 gal

$$\text{Loading Loss (lb/1000 gal)} = L_L = 12.46 \text{ SPM/T} * (\text{SF}) = (12.46) * (0.6) * (5.5219) * (92) / (95 + 460) * 2 = 13.6862 \text{ lb/1000 gal}$$

$$\text{VOC Emissions per Condensate Offload Cleanout (lb/hr)} = (6300 \text{ gal}) / (1000) * (13.6862 \text{ lb/1000 gal}) * (0.22 \text{ VOC wt. Fraction}) = 18.88 \text{ lb/hr}$$

Material Collected by Vacuum Truck	Organic Constituent	Tank Volume (gal)	Constituent Concentration (% volume)	Liquid Heel (% volume of tank)	Amount Loaded (gal)	S, Saturation Loss Factor	P, Vapor Pressure (psia)	M, Molecular Weight (lb/lb-mole)	T, Bulk Loading Temp (°F)	VOC Wt. Fraction	SF, Safety Factor	L_L (lb/1000 gal)	Loss (lbs/activity) (lb/hr)
Product Tanks VRU1 - VRU5	Condensate	31500	100	20	6300	0.60	5.52	92.00	95	0.22	2	13.69	18.88
Gunbarrel Tank VRU6	Condensate	16800	100	20	3360	0.60	5.52	92.00	95	0.22	2	13.69	10.07
Oil Tank VRU7	Condensate	8820	100	20	1764	0.60	5.52	92.00	95	0.22	2	13.69	5.29
Tanks VRUTMP1 VRUTMP2	Condensate	63000	100	20	12600	0.60	5.52	92.00	95	0.22	2	13.69	37.76

Number of Vacuum Trucks per year, per tank: 1 From Site Data Sheet

	Product Tanks VRU1 - VRU5	Gunbarrel Tank VRU6	Oil Tank VRU7	Tanks VRUTMP1 VRUTMP2	Total
Number of Tanks:	5	1	1	2	9
H2S Concentration (wt frac):	0.0059	0.0059	0.0059	0.0059	-
Total Haps (wt frac):	0.0034	0.0034	0.0034	0.0034	-
CO2 Concentration (wt frac):	0.0323	0.0323	0.0323	0.0323	-
CH4 Concentration (wt frac):	0.5385	0.5385	0.5385	0.5385	-
VOC Emissions per Cleanout (lb/hr) =	18.88	10.07	5.29	37.76	72.00
H2S Emissions per Cleanout (lb/hr) =	0.51	0.27	0.14	1.02	1.95
Total HAPs Emissions per Cleanout (lb/hr) =	0.29	0.15	0.08	0.58	1.11
CO2 Emissions per Cleanout (lb/hr) =	2.79	1.49	0.78	5.57	10.62
CH4 Emissions per Cleanout (lb/hr) =	46.43	24.76	13.00	92.87	177.07
Cleanout VOC Annual Emissions (tpy) =	4.72E-02	5.04E-03	2.64E-03	3.78E-02	0.09
Cleanout H2S Annual Emissions (tpy) =	1.28E-03	1.36E-04	7.14E-05	1.02E-03	0.003
Cleanout Total HAPS Annual Emissions (tpy) =	7.25E-04	7.73E-05	4.06E-05	5.80E-04	0.001
Cleanout CO2 Annual Emissions (tpy) =	6.97E-03	7.43E-04	3.90E-04	5.57E-03	0.014
Cleanout CH4 Annual Emissions (tpy) =	1.16E-01	1.24E-02	6.50E-03	9.29E-02	0.228
Cleanout CO2e Annual Emissions (tpy) =	2.91E+00	3.10E-01	1.63E-01	2.33E+00	5.710

From Site Data Sheet
From Tank & Flash Calculations tab
From Tank & Flash Calculations tab

These example calculations are not intended to be representations under 116.116(a), but are an example of the emission calculation approach for a sub-category of MSS emissions activities. The basis of the example emission calculation (such as volume, concentration, pressure) are example conditions and should not be interpreted as representations of a specific plant or activity condition under 116.116(a). Individual activities in this MSS category are performed which may have slight variations in procedure or equipment configuration.

Acid Gas Flare- Measured Gas Analysis (per 11/4/13 DCP email)

Emission Unit:		Acid Gas Flare																
Meter #	Name	Date	Carbon Dioxide	Nitrogen	Methane	Ethane	Propane	iso-Butane	n-Butane	iso-Pentane	n-Pentane	Hexane	Heptane	Octane	Nonane	Decane	Water	Hydrogen Sulfide
M0489-00	Linam Acid Gas	11/1/2013 0:00	80.65%	0.01%	0.36%	0.08%	0.03%	0.06%	0.02%	5.2E-05	8.3E-05	0.055%	-	-	-	-	1.1%	18.71%
Average			80.653%	0.011%	0.360%	0.081%	0.034%	0.056%	0.024%	5.2E-05	8.3E-05	0.055%	-	-	-	-	1.1%	18.714%

E. Amine Unit Acid Gas Flare- Acid Gas Analysis (per 11/4/13 DCP Email)

Emission Unit:

Acid Gas Flare

Estimated Flared Gas Composition Used for Calculations								
Component	MW	Flared Gas ¹ Mol%	MW * wet vol %	HHV Btu/scf ²	Btu/scf * wet vol %	Mass Fraction (wet)	Spec. Volume ² ft ³ /lb	Spec. Volume VOC ft ³ /lb
Water	18.02	1.13%	0.20	0.0	0.0	0.00	21.06	
Hydrogen Sulfide	34.08	18.71%	6.38	637.02	119.2	0.15	11.136	
Carbon Dioxide	44.01	80.65%	35.50	0.0	0.0	0.84	8.623	
Nitrogen	28.01	0.01%	0.00	0.0	0.0	0.00	13.547	
Oxygen	32.00	0.00%	0.00	0.0	0.0	0.00	11.859	
Methane	16.04	0.36%	0.06	1009.7	3.6	0.00	23.65	
Ethane	30.07	0.08%	0.02	1768.7	1.4	0.00	12.62	
Propane	44.10	0.03%	0.02	2517.2	0.9	0.00	8.606	1.094
i-Butane	58.12	0.06%	0.03	3252.6	1.8	0.00	6.529	1.790
n-Butane	58.12	0.02%	0.01	3262	0.8	0.00	6.529	0.764
i-Pentane	72.15	0.01%	0.00	3999.7	0.2	0.00	5.26	0.167
n-Pentane	72.15	0.01%	0.01	4008.7	0.3	0.00	5.26	0.266
Hexanes	86.18	0.05%	0.05	4756.1	2.6	0.00	4.404	1.759
		101%	42.28		130.9	1.00	5.840	
NMNEHC (VOC)		0.2%				0.3%		

¹ Based on DCP's recent 11/1/13 Linam Ranch Acid Gas Flare Gas Analysis
to provide conservative estimates for sulfur dioxide and heat release estimate.
² Component HHVs and specific volumes obtained from Physical Properties of Hydrocarbons,
API Research Project 44, Fig. 16-1, Rev. 1981.

Fuel Data

Flare Pilot	500 scf/hr	Engineering judgement
	0.00050 MMscf/hr	
	1000 Btu/scf	Pipeline Gas, HHV, nominal
	0.50 MMBtu/hr	MMscf/hr * Btu/scf
Purge Gas	16 Mscf/day	per DCP Midstream (Jennifer Corser 10/29/13 email)
	0.67 Mscf/hr	Mscf/d / 24 hr/day
	0.001 MMscf/hr	Mscf/hr / 1000
	1000 Btu/scf	Pipeline Gas, HHV, nominal from Linam T5 app.
	0.67 MMBtu/hr	MMscf/hr * Btu/scf
Assist Gas		
	135 Btu/scf	Heating value of Pilot + Purge gas + Flared gas
	500 Btu/scf	target heat content
	1000 Btu/scf	Assist gas-assumed sweet
	0.18 MMscf/hr	Assist gas volume
	182.5 MMBtu/hr	Assist gas heat input
Assist gas - Annual*	5.0 MMscf/yr	Estimated Maximum annual SSM flow rate. Not a requested limit; for calculation only.

Note: Flared gas annual/ ratio of assist gas: flared gas hourly usage) ex: 10.5 MMscf/yr / (1-.8054)

Flared Gas - Short Term	0.25 MMscf/hr	High end representative SSM hourly flowrate taken from 2010 - 2013 Blowdown Data for Unit 2
	131 Btu/scf	Heating value calculated from gas composition above.
	33 MMBtu/hr	Hourly heat rate = Heating value * Effective hourly flow rate.
Flared Gas - Annual	2.9 MMscf/yr	Estimated Maximum annual SSM flow rate. Taken from avg of 2010 - 2013 SSM blowdown data for Linam Ranch GP. Not a requested limit; for calculation only.
Total	216 MMBtu/hr	Pilot + Purge gas + Flared gas

Stack Parameters

1,832 °F	Exhaust temperature
65.6 ft/sec	Exhaust velocity
222.0 ft	Flare height

Pilot+ Purge Gas only

16.04 g/mol	Pilot & Purge gas molecular weight	Mol. wt. of methane, the dominant species
81,667 cal/sec	Heat release (q)	MMBtu/hr * 10 ⁶ * 252 cal/Btu ÷ 3600 sec/hr
65,967	q _a	q _a = q(1-0.048(MW) ^{1/2})
0.26 m	Effective stack diameter (D)	D = (10 ⁶ q _a) ^{1/2}

Pilot + Purge Gas+ Flared Gas + Assist Gas

42.16 g/mol	Flared gas molecular weight	Volume weighted mol. wt. of all components
1.52E+07 cal/sec	Heat release (q)	MMBtu/hr * 10 ⁶ * 252 cal/Btu ÷ 3600 sec/hr
1.04E+07	q _a	q _a = q(1-0.048(MW) ^{1/2})
3.23 m	Effective stack diameter (D)	D = (10 ⁶ q _a) ^{1/2}

E. Amine Unit Acid Gas Flare- Acid Gas Analysis (per 11/4/13 DCP Email)

Emission Unit: Acid Gas Flare

Emission Rates*Pilot+ Purge Gas*

NOx	CO	VOC	H ₂ S	SO ₂	Units	
0.068	0.370		3.6E-04	lb/MMBtu		AP-42 Table 13.5-1 (9/91) (Reformatted 1/95)
			4.2E-04	lb H ₂ S/Mscf		Purchased sweet natural gas fuel, 0.25 gr H ₂ S/100scf
				lb H ₂ S/hr		H ₂ S rate * fuel usage
				7.1E-03	lb S/Mscf	Sweet natural gas fuel, 5 gr S/100scf
				8.3E-03	lb SO ₂ /hr	SO ₂ rate * fuel usage
		0.00%			mol%	Assume no VOC content in purchased fuel (methane)
		23.7			ft ³ /lb	Specific volume (methane)
		0.00			lb/hr	vol. Gas * mole fraction / specific volume
100%	100%	100%	100%	100%	%	Safety Factor
0.14	0.74				lb/MMBtu	Unit emission rate with Safety Factor
0.16	0.86				lb/hr	lb/MMBtu * MMBtu/hr
0.69	3.8	-	1.7E-05	1.7E-02	lb/hr	98% combustion H ₂ S; 100% conversion to SO ₂
					tpy	8760 hrs/yr

Assist gas

NOx	CO	VOC	H ₂ S	SO ₂	Units	
0.0680	0.3700		4E-04	lb/MMBtu		AP-42 Table 13.5-1 (9/91) (Reformatted 1/95)
			6.52E-02	lb H ₂ S/Mscf		Purchased sweet natural gas fuel, 0.25 gr H ₂ S/100scf
				lb H ₂ S/hr		H ₂ S rate * fuel usage
				7.1E-03	lb S/Mscf	Purchased sweet natural gas fuel, 5 gr S/100scf
				1.3	lb SO ₂ /hr	SO ₂ rate * fuel usage
		0.00%			mol%	Assume no VOC content in purchased fuel (methane)
		23.7			ft ³ /lb	Specific volume (methane)
		0.000			lb/hr	vol. Gas * mole fraction / specific volume
12.4	67.5				lb/hr	lb/MMBtu * MMBtu/hr
0.17	0.92	-	1.3E-03	1.3	lb/hr	98% combustion H ₂ S; 100% conversion to SO ₂
					tpy	

Flared Gas

NOx	CO	VOC	H ₂ S	SO ₂	Total HAPs	Units	
0.068	0.370				lb/MMBtu		AP-42 Table 13.5-1 (9/91) (Reformatted 1/95)
		0.18%	0.187		0.05%	mol%	Flare Gas
		5.8	11.1		4.4	ft ³ /lb	Specific volume
		77.9	4201		31.1	lb/hr	vol. Gas * mole fraction / specific volume
2.2	12.1				lb/hr	lb/MMBtu * MMBtu/hr	
2.2	12	78	4201	7750	31	lb/hr	Uncontrolled emissions at maximum rate
0.013	0.070	0.45	24	46	0.18	tpy	

Controlled #2 Acid Gas Flare	NOx	CO	VOC	H ₂ S	SO ₂	HAPs	Units
Pilot + Purge Gas+ Flared Gas	1.5E+01	8.1E+01	1.6	8.4E+01	7.8E+03	0.62	lb/hr

Pilot + Purge Gas+ Flared Gas

0.88

4.8

0.0090

0.48

45.6

0.0036

tpy

GHG EmissionsCO₂e Short Tons/yr

CO ₂	137	Eq 4-15	API Compendium
CH ₄	1.1E-03	Eq 4-16	API Compendium
N ₂ O	4.8E-06	Eq 4-17	API Compendium
Total CO₂e	137		

AGI Flare- Measured Acid Gas Analysis (per 11/4/13 DCP email)

Emission Unit:		AGI Flare																
Meter #	Name	Date	Carbon Dioxide	Nitrogen	Methane	Ethane	Propane	iso-Butane	n-Butane	iso-Pentane	n-Pentane	Hexane	Heptane	Octane	Nonane	Decane	Water	Hydrogen Sulfide
M0489-00	Linam Acid Gas	11/1/2013 0:00	80.65%	0.01%	0.36%	0.08%	0.03%	0.056%	0.024%	5.2E-05	8.3E-05	0.055%	-	-	-	-	1.1%	18.71%
Average			80.653%	0.011%	0.360%	0.081%	0.034%	0.056%	0.024%	5.2E-05	8.3E-05	0.055%	-	-	-	-	1.1%	18.714%

AGI Flare- Acid Gas Analysis (per 11/4/13 DCP Email)

Emission Unit: AGI Flare

Estimated Flared Gas Composition Used for Calculations								
Component	MW	Flared Gas ¹ Mol%	MW * wet vol %	HHV Btu/scf ²	Btu/scf * wet vol %	Mass Fraction (wet)	Spec. Volume ² ft ³ /lb	Spec. Volume VOC ft ³ /lb
Water	18.02	1.13%	0.20	0.0	0.0	0.00	21.06	
Hydrogen Sulfide	34.08	18.71%	6.38	637.02	119.2	0.15	11.136	
Carbon Dioxide	44.01	80.65%	35.50	0.0	0.0	0.84	8.623	
Nitrogen	28.01	0.01%	0.00	0.0	0.0	0.00	13.547	
Oxygen	32.00	0.00%	0.00	0.0	0.0	0.00	11.859	
Methane	16.04	0.36%	0.06	1009.7	3.6	0.00	23.65	
Ethane	30.07	0.08%	0.02	1768.7	1.4	0.00	12.62	
Propane	44.10	0.03%	0.02	2517.2	0.9	0.00	8.606	1.094
i-Butane	58.12	0.06%	0.03	3252.6	1.8	0.00	6.529	1.790
n-Butane	58.12	0.02%	0.01	3262	0.8	0.00	6.529	0.764
i-Pentane	72.15	0.01%	0.00	3999.7	0.2	0.00	5.26	0.167
n-Pentane	72.15	0.01%	0.01	4008.7	0.3	0.00	5.26	0.266
Hexane	86.18	0.05%	0.05	4756.1	2.6	0.00	4.404	1.759
		101%	42.28		130.9	1.00	5.840	
NMNEHC (VOC)		0.2%				0.3%		

¹ Based on DCP's recent 11/1/13 Linam Ranch Acid Gas Flare Gas Analysis

to provide conservative estimates for sulfur dioxide and heat release estimate.

² Component HHVs and specific volumes obtained from Physical Properties of Hydrocarbons,

API Research Project 44, Fig. 16-1, Rev. 1981.

Fuel Data

<i>Flare Pilot</i>	500 scf/hr	Engineering judgement
	0.0005 MMscf/hr	
	1000 Btu/scf	Pipeline Gas, HHV, nominal from Linam T5 app.
	0.50 MMBtu/hr	MMscf/hr * Btu/scf
<i>Purge Gas</i>	16 Mscf/day	per DCP Midstream (Jennifer Corser 10/29/13 email)
	0.67 Mscf/hr	Mscf/d / 24 hr/day
	0.001 MMscf/hr	Mscf/hr / 1000
	1000 Btu/scf	Pipeline Gas, HHV, nominal from Linam T5 app.
	0.67 MMBtu/hr	MMscf/hr * Btu/scf
<i>Assist Gas</i>		
	134 Btu/scf	Heating value of Pilot + Purge gas + Flared gas
	500 Btu/scf	target heat content
	1000 Btu/scf	Assist gas-assumed sweet
	0.22 MMscf/hr	Assist gas volume
	219 MMBtu/hr	Assist gas heat input
<i>Assist gas - Annual*</i>	0.44 MMscf/yr	Estimated Maximum annual SSM flow rate. Not a requested limit; for calculation only.

Note: Flared gas annual/ ratio of assist gas: flared gas hourly usage) ex: 10.5 MMscf/yr / (1-.8054)

<i>Flared Gas - Short Term</i>	0.30 MMscf/hr	Maximum Effective hourly flowrate taken from 2010 - 2013 Blowdown Data for AGI Flare
	131 Btu/scf	Heating value calculated from gas composition above.
	39 MMBtu/hr	Hourly heat rate = Heating value * Effective hourly flow rate.
<i>Flared Gas - Annual</i>	0.26 MMscf/yr	Estimated Maximum annual SSM flow rate. Taken from avg of 2010 - 2013 SSM blowdown data for Linam Ranch GP. Not a requested limit; for calculation only.
<i>Total</i>	260 MMBtu/hr	<i>Pilot + Purge gas + Flared gas</i>

Stack Parameters

1,832 °F	Exhaust temperature	Per Linam 2-H sheet
65.6 ft/sec	Exhaust velocity	Per Linam 2-H sheet
210.0 ft	Flare height	

Pilot+ Purge Gas only

16.04 g/mol	Pilot & Purge gas molecular weight	Mol. wt. of methane, the dominant species
-------------	------------------------------------	---

AGI Flare- Acid Gas Analysis (per 11/4/13 DCP Email)

Emission Unit:

AGI Flare

81,667	cal/sec	Heat release (q)	MMBTu/hr * $10^6 * 252 \text{ cal/Btu} \div 3600 \text{ sec/hr}$
65,967	q _n		$q_n = q(1-0.048(\text{MW})^{1/2})$
0.26 m	Effective stack diameter (D)		$D = (10^6 q_n)^{1/2}$

Pilot + Purge Gas + Flared Gas + Assist Gas

42.18	g/mol	Flared gas molecular weight	Volume weighted mol. wt. of all components
1.82E+07	cal/sec	Heat release (q)	MMBTu/hr * $10^6 * 252 \text{ cal/Btu} \div 3600 \text{ sec/hr}$
1.25E+07	q _n		$q_n = q(1-0.048(\text{MW})^{1/2})$
3.5 m	Effective stack diameter (D)		$D = (10^6 q_n)^{1/2}$

Emission Rates

Pilot+ Purge Gas

NOx	CO	VOC	H ₂ S	SO ₂	Units	
0.068	0.37				lb/MMBTu	AP-42 Table 13.5-1 (9/91) (Reformatted 1/95)
			3.6E-04		lb H ₂ S/Mscf	Purchased sweet natural gas fuel, 0.25 gr H ₂ S/100scf
			4.17E-04		lb H ₂ S/hr	H ₂ S rate * fuel usage
				7.1E-03	lb S/Mscf	Sweet natural gas fuel, 5 gr S/100scf
				8.3E-03	lb SO ₂ /hr*	SO ₂ rate * fuel usage
		0.00%			mol%	Assume no VOC content in purchased fuel (methane)
		13			ft ³ /lb	Specific volume (methane)
		0.00			lb/hr	vol. Gas * mole fraction / specific volume
100%	100%	100%	100%	100%	%	Safety Factor
0.14	0.74				lb/MMBTu	Unit emission rate with Safety Factor
0.16	0.86				lb/hr	lb/MMBTu * MMBtu/hr
		-	1.7E-05	1.7E-02	lb/hr	98% combustion H ₂ S; 100% conversion to SO ₂
0.69	3.8	-	7.3E-05	7.3E-02	tpy	8760 hrs/yr

Assist gas

NOx	CO	VOC	H ₂ S	SO ₂	Units	
0.068	0.370				lb/MMBTu	AP-42 Table 13.5-1 (9/91) (Reformatted 1/95)
			3.6E-04		lb H ₂ S/Mscf	Purchased sweet natural gas fuel, 0.25 gr H ₂ S/100scf
			7.84E-02		lb H ₂ S/hr	H ₂ S rate * fuel usage
				7.1E-03	lb S/Mscf	Purchased sweet natural gas fuel, 5 gr S/100scf
				1.6E+00	lb SO ₂ /hr	SO ₂ rate * fuel usage
		0.00%			mol%	Assume no VOC content in purchased fuel (methane)
		12.6			ft ³ /lb	Specific volume (methane)
		0.000			lb/hr	vol. Gas * mole fraction / specific volume
14.9	81.2				lb/hr	lb/MMBTu * MMBtu/hr
0.015	40.6	-	1.6E-03	1.6E+00	lb/hr	98% combustion H ₂ S; 100% conversion to SO ₂
		-	1.6E-06	1.6E-03	tpy	Uncontrolled emissions at maximum rate

Flared Gas

NOx	CO	VOC	H ₂ S	SO ₂	Total HAPs	Units	
0.0680	0.3700					lb/MMBTu	AP-42 Table 13.5-1 (9/91) (Reformatted 1/95)
		0.18%	18.71%		0.05%	mol%	Flare Gas
		5.840	11.136		4.404	ft ³ /lb	Specific volume
		93.5	5,041.4		37.3	lb/hr	vol. Gas * mole fraction / specific volume
2.67	14.53					lb/hr	lb/MMBTu * MMBtu/hr
2.7	14.5	93.5	5,041.4	9,299.9	37.3	lb/hr	Uncontrolled emissions at maximum rate
0.0011	0.0062	0.040	2.2	4.1	0.016	tpy	

Controlled AGI Flare

NOx	CO	VOC	H ₂ S	SO ₂	HAPs	Units
18	97	1.9	101	9,301	0.75	lb/hr
0.71	44	8.0E-04	0.043	4.1	0.00032	tpy

Total HAPs conservatively assumed to be Hexanes+

GHG Emissions

CO₂e Short Tons/yr

CO ₂	0.2	Eq 4-15	API Compendium
CH ₄	9.7E-05	Eq 4-16	API Compendium
N ₂ O	4.2E-07	Eq 4-17	API Compendium

Total CO₂e **0**

ESD Flare- per 11/11/13 Extended Inlet Gas Analysis

Emission Unit:		ESD Flare																				
Meter #	Name	Date	Carbon Dioxide	Nitrogen	Methane	Ethane	Propane	iso-Butane	n-Butane	iso-Pentanes	Pentane	non-HAP	non-HAP	non-HAP	HAPs				Hydrogen Sulfide			
			1.61%	2.46%	73.54%	12.59%	6.15%	0.70%	1.62%	0.65%	0.03%	0.15%	0.044%	5.2E-05	0.001%	0.054%	0.028%	5.6E-05	1.0E-06	2.0E-06	0.0E+00	
M0500-00	Inlet Gas	11/6/2013																			0.38%	
	Average		1.608%	2.461%	73.538%	12.587%	6.148%	0.696%	1.619%	0.647%	0.028%	0.149%	0.044%	5.2E-05	0.001%	0.054%	0.028%	5.6E-05	1.0E-06	2.0E-06	0.0E+00	0.380%

ESD Flare- per 11/11/13 Extended Inlet Gas Analysis

Emission Unit:

ESD Flare

Estimated Flared Gas Composition Used for Calculations								
Component	MW	Flared Gas ¹ Mol%	MW * wet vol %	HHV Btu/scf ²	Btu/scf * wet vol %	Mass Fraction (wet)	Spec. Volume ² ft ³ /lb	Spec. Volume VOC ft ³ /lb
Water	18.02	0.00%	0.00	0.0	0.0	0.00	21.06	
Hydrogen Sulfide	34.08	0.38%	0.13	637.02	2.4	0.01	11.136	
Carbon Dioxide	44.01	1.61%	0.71	0.0	0.0	0.03	8.623	
Nitrogen	28.01	2.46%	0.69	0.0	0.0	0.03	13.547	
Oxygen	32.00	0.00%	0.00	0.0	0.0	0.00	11.859	
Methane	16.04	73.54%	11.80	1009.7	742.5	0.54	23.65	
Ethane	30.07	12.59%	3.78	1768.7	222.6	0.17	12.62	
Propane	44.10	6.15%	2.71	2517.2	154.7	0.12	8.606	4.863
i-Butane	58.12	0.70%	0.40	3252.6	22.6	0.02	6.529	0.551
n-Butane	58.12	1.62%	0.94	3262	52.8	0.04	6.529	1.281
n- & iso-Pentanes	72.15	0.65%	0.47	3999.7	25.9	0.02	5.26	0.512
Cyclopentane	70.14	0.03%	0.02	4008.7	1.1	0.00	5.26	0.022
C6 HC _s	86.18	0.15%	0.13	4747.3	7.1	0.006	4.404	0.118
C7 HC _s	100.21	0.04%	0.04	5498.6	2.4	0.002	3.787	0.035
C8 HC _s	114.23	0.01%	0.01	6248.9	0.3	0.0003	3.322	0.004
C9 HC _s	128.26	0.00%	0.00	6996.3	0.1	0.0001	2.959	0.001
n-Hexane	86.18	0.05%	0.05	4756.1	2.6	0.00213	4.404	0.043
Benzene	78.11	0.03%	0.02	3741.9	1.0	0.00098	4.858	0.022
Toluene	92.14	0.01%	0.01	4474.8	0.3	0.00024	4.119	0.004
Ethyl Benzene	106.17	0.0001%	0.00	5222.1	0.0	0.000005	3.574	0.000
Xylenes	106.17	0.0002%	0.00	5207.8	0.0	0.00001	3.574	0.000
		100%	21.91		1238.6	1.00	7.456	
NMNEHC (VOC)		9.4%				21.9%		

¹ Based on DCP's recent 11/11/13 Linam Ranch inlet gas analysis from 11/6/13 sample to provide accurate estimates for sulfur dioxide and heat release.

² Component HHVs and specific volumes obtained from *Physical Properties of Hydrocarbons, API Research Project 44, Fig. 16-1, Rev. 1981.*

Fuel Data

<i>Flare Pilot</i>	500 scf/hr	Engineering judgement
	0.00050 MMscf/hr	
	1000 Btu/scf	Pipeline Gas, HHV, nominal from Linam T5 app.
	0.50 MMBtu/hr	MMscf/hr * Btu/scf
<i>Purge Gas</i>	63.8 Mscf/day	per DCP Midstream (Jennifer Corser 10/29/13 email)
	2.7 Mscf/hr	Mscf/d / 24 hr/day
	0.0027 MMscf/hr	Mscf/hr / 1000
	1000 Btu/scf	Pipeline Gas, HHV, nominal from Linam T5 app.
	2.7 MMBtu/hr	MMscf/hr * Btu/scf
<i>Flared Gas - Short Term</i>	3.410 MMscf/hr	Maximum Effective hourly flowrate taken from 2010 - 2013 Blowdown Data for AGI Flare
	1,239 Btu/scf	Heating value calculated from gas composition above.
	4,224 MMBtu/hr	Hourly heat rate = Heating value * Effective hourly flow rate.
<i>Flared Gas - Annual</i>	58.2 MMscf/yr	Estimated Maximum annual SSM flow rate. Taken from avg of 2010 - 2013 SSM blowdown data for Linam Ranch GP. Not a requested limit; for calculation only.

Total 4227 MMBtu/hr **Pilot + Purge gas + Flared gas****Stack Parameters**

1,832 °F	Exhaust temperature	Per Linam 2-H sheet
65.6 ft/sec	Exhaust velocity	Per Linam 2-H sheet
175.0 ft	Flare height	

Pilot+ Purge Gas only

16.04 g/mol Pilot & Purge gas molecular weight Mol. wt. of methane, the dominant species

ESD Flare- per 11/11/13 Extended Inlet Gas Analysis

Emission Unit:	ESD Flare						
221,083 cal/sec	Heat release (q)		MMBtu/hr * $10^6 * 252 \text{ cal/Btu} \div 3600 \text{ sec/hr}$				
178,582	q_n		$q_n = q(1-0.048(\text{MW})^{1/2})$				
0.42 m	Effective stack diameter (D)		$D = (10^6 q_n)^{1/2}$				
<i>Pilot + Purge Gas+ Flared Gas</i>							
21.90 g/mol	Flared gas molecular weight		Volume weighted mol. wt. of all components				
2.96E+08 cal/sec	Heat release (q)		MMBtu/hr * $10^6 * 252 \text{ cal/Btu} \div 3600 \text{ sec/hr}$				
2.29E+08	q_n		$q_n = q(1-0.048(\text{MW})^{1/2})$				
15.1 m	Effective stack diameter (D)		$D = (10^6 q_n)^{1/2}$				
Emission Rates							
<i>Pilot+ Purge Gas</i>							
NOx	CO	VOC	H ₂ S	SO ₂	Units		
0.068	0.370				lb/MMBtu	AP-42 Table 13.5-1 (9/91) (Reformatted 1/95)	
			4E-04		lb H ₂ S/Mscf	Purchased sweet natural gas fuel, 0.25 gr H ₂ S/100scf	
			1.1E-03		lb H ₂ S/hr	H ₂ S rate * fuel usage	
				7E-03	lb S/Mscf	Sweet natural gas fuel, 5 gr S/100scf	
				2E-02	lb SO ₂ /hr*	SO ₂ rate * fuel usage	
			0.00%		mol%	Assume no VOC content in purchased fuel (methane)	
			12.6		ft ³ /lb	Specific volume (methane)	
			0.00		lb/hr	vol. Gas * mole fraction / specific volume	
100%	100%	100%	100%	100%	%	Safety Factor	
0.14	0.74				lb/MMBtu	Unit emission rate with Safety Factor	
0.43	2.3				lb/hr	lb/MMBtu * MMBtu/hr	
1.9	10.2	-	4.5E-05	4.5E-02	lb/hr	98% combustion H ₂ S; 100% conversion to SO ₂	
			2.0E-04	2.0E-01	tpy	8760 hrs/yr	
<i>Flared Gas</i>							
NOx	CO	VOC	H ₂ S	SO ₂	Total HAPs	Units	
0.068	0.370				lb/MMBtu	AP-42 Table 13.5-1 (9/91) (Reformatted 1/95)	
		9.43%	0.38%		mol%	Flare Gas	
		7.5	11		ft ³ /lb	Specific volume	
		43,114	1,165		lb/hr	vol. Gas * mole fraction / specific volume	
287	1563				lb/hr	lb/MMBtu * MMBtu/hr	
287	1563	43,114	1,165	2,148	728	lb/hr	
2.4	13	368	9.9	19	6.2	tpy	Uncontrolled emissions at maximum rate
Controlled AGI Flare	NOx	CO	VOC	H₂S	SO₂	HAPs	Units
Pilot + Purge Gas+ Flared Gas	288	1,565	862	23.3	2,148	15	lb/hr
	4.3	24	7.4	0.20	19	0.12	tpy

Total HAPs conservatively assumed to be Hexanes+

GHG EmissionsCO₂e Short Tons/yr

CO ₂	4,387	Eq 4-15	API Compendium
CH ₄	4.5E+00	Eq 4-16	API Compendium
N ₂ O	9.6E-05	Eq 4-17	API Compendium
Total CO2e	4,500		

Section 7

Information Used To Determine Emissions

Information Used to Determine Emissions shall include the following:

- If manufacturer data are used, include specifications for emissions units and control equipment, including control efficiencies specifications and sufficient engineering data for verification of control equipment operation, including design drawings, test reports, and design parameters that affect normal operation.
- If test data are used, include a copy of the complete test report. If the test data are for an emissions unit other than the one being permitted, the emission units must be identical. Test data may not be used if any difference in operating conditions of the unit being permitted and the unit represented in the test report significantly effect emission rates.
- If the most current copy of AP-42 is used, reference the section and date located at the bottom of the page. Include a copy of the page containing the emissions factors, and clearly mark the factors used in the calculations.
- If an older version of AP-42 is used, include a complete copy of the section.
- If an EPA document or other material is referenced, include a complete copy.
- Fuel specifications sheet.
- If computer models are used to estimate emissions, include an input summary (if available) and a detailed report, and a disk containing the input file(s) used to run the model. For tank-flashing emissions, include a discussion of the method used to estimate tank-flashing emissions, relative thresholds (i.e., permit or major source (NSPS, PSD or Title V)), accuracy of the model, the input and output from simulation models and software, all calculations, documentation of any assumptions used, descriptions of sampling methods and conditions, copies of any lab sample analysis.

Information used to Determine Emissions during Steady State Operation

Engines (Units 6, 7, 8, 9, 10, and 11)

- Manufacturer's data for Clark TLA-6 engines
- Manufacturer's data for Clark HBA-6 engines
- EPA AP-42 Table 3.2-1

Turbine (Units 29, 30, 31, and 32B)

- Manufacture data for Solar Turbine Taurus 70-10302S
- Manufacture data for Solar Turbine Taurus 70-9702S
- Manufacture data for Solar Turbine Centaur T-4700
- Manufacture data for Solar Turbine Centaur T-4000
- EPA AP-42 Tables 3.1-2a and 3.1-3

Heaters/Boilers (Units 34, 36, and 37)

- EPA AP-42 Tables 1.4-1, 1.4-2, and 1.4-3

Tank (Unit TK-2)

- Tanks 4.09d

Dehydrator (Unit DH-10)

- Gri-GlyCalc

Tanks (Units TK-VRU and TK-VRUTMP)

- Tanks 4.09d
- ProMax analysis

Turbine (Unit 28)

- Manufacture data for Solar Turbine Taurus 60-7800S
- Manufacture emission estates for Turbine particulate matter

Unit 2 Gas Flare, AGI Flare, and Unit 4A ESD Flare

- Site-specific gas analysis dated 1/20/2016
- AP-42 Tables 13.5-1 and 13.5-2 (4/15)
- 40 CFR Part 98- Mandatory Greenhouse Gas Reporting

Cooling Towers (Units CT-1 and CT-2)

- AP-42 Section 13.4 – Wet Cooling Towers

Fugitive Emissions (Unit FUG)

- The EPA Protocol for Equipment Leak Emissions Estimates Tables 2-4 and 2-10

Methanol Tanks (TK-20, TK-21, TK-27, TK-77, TK-1370)

- Tanks 4.09d. These tanks are exempt units per 20.2.72.202.B.5 NMAC

Greenhouse Gas (GHG) Emissions

- 40 CFR 98 Subpart W

Information used to Determine Emissions during Startup, Shutdown, and Scheduled Maintenance (SSM)

Unit 2 Flare and AGI Flare, and

- Site-specific acid gas analysis dated 11/11/13
- AP-42 Tables 13.5-1 and 13.5-2 (4/15)
- 40 CFR Part 98- Mandatory Greenhouse Gas Reporting

Unit 4A ESD Flare

- Site-specific inlet gas analysis dated 11/11/13
- AP-42 Tables 13.5-1 and 13.5-2 (4/15)
- 40 CFR Part 98- Mandatory Greenhouse Gas Reporting

SSM Venting*Plant Turnaround*

- Site-specific inlet gas analysis dated 11/11/13

Plant Startup (post turnaround)

- Site-specific inlet gas analysis dated 11/11/13

Gas Piping Degassing & Pig Launcher Degassing

- Site-specific inlet gas analysis dated 11/11/13

Vacuum Trucks

- Site-specific inlet gas analysis dated 11/11/13
- AP-42, Chapter 5.2: Transportation and Marketing of Petroleum Liquids, 1995

Engine Startup

- Site-specific residue gas analysis dated 10/21/13

Turbine Blowdown & Compressor Blowdown

- Site-specific inlet gas analysis dated 11/11/13
- Expected volume venting to the atmosphere and events per year

DUKE ENERGY FIELD SERVICES

Portable Flue Gas Analyzer

TABLE II

Emission Calculations - Fuel Flow (SCFH) & Fuel Heating Value (Btu/scf)

Unit Designation:
P.B. Number

Linam Ranch #6
162335

TLA-6

PARAMETERS:

Test No.	1	2	3
Date:	1/25/05	1/25/05	1/25/05
Start Time:	14:32	15:09	15:41
Test Duration (min.)	20	20	20

EQUIPMENT DESIGN DATA:

Equipment Description:	Inlet Compression
Manufacturer:	Clark
Serial Number	73780
Engine rpm	300
* Engine H.P.	2000

OPERATING DATA:

				Average : (1)
Engine Load, %	92.2	92.2	92.2	92.2
* Engine Horsepower, BHP	1843	1843	1843	1843
* Fuel Flow, scfh	13447	13493	13427	13456
* Fuel Heating Value Btu, hhv	989	989	989	989
Fired Duty, MMBtu/hr	13.30	13.34	13.28	13.31

FLUE GAS:

Exhaust Temp., °F	689	688	690	689
* % O2 ,dry	14.3	14.4	14.5	14.4
Method 19 "F" Factor	8710	8710	8710	8710
Stack flow, dscfm (F-factor)	6114	6229	6295	6213

EMISSION DATA:

				Permit Limit:
* NOX, ppmvd	398.0	411.0	349.0	385.3
NOX, lb/hr (F-factor)	17.36	18.35	15.75	17.15
NOX, gm/Hp-hr	4.28	4.52	3.88	4.23
* CO, ppmvd	402.0	400.0	407.0	403.0
CO, lb/hr (F-factor)	10.72	10.86	11.17	10.92
CO, gm/Hp-hr	2.64	2.68	2.75	2.69

NOTES:

* items marked with " * " are required input values.

(1) Must enter data in all three (3) columns to calculate proper average.

FUELFLOW.WK1

PRELIMINARY TEST-Method 1, 2C, 3A, 4, 7E and 10

Clark - Unit No. 3

GPM GAS CORPORATION
Hobbs Gas Plant
Hobbs, New Mexico

HBA-6

Test Date:
August 31, 1994

Report Date: September 16, 1994
CETCON Job Number: CJ-1309C

* We certify that we have personally examined and we are familiar with the information submitted herein, and base on our inquiries of those individual immediately responsible for obtaining the information. We believe the submitted information is true, accurate, and complete..

Gerald L. McCloskey
Consulting Engineer

Andrew J. Williams
Andrew J. Williams
Project Coordinator

Randall J. Swedeon
Consulting Engineer

Robert A. Steinberg
Sr. Environmental Technician

L. Kelly Sandberg
Consulting Engineer

Galen T. McCloskey
Galen T. McCloskey
Environmental Technician

CETCON

EXECUTIVE SUMMARY

Preliminary testing of Clark Unit #3, at the Hobbs Gas Plant, located approximately 5 miles West of Hobbs, New Mexico, was conducted Wednesday, August 31, 1994. Preliminary testing was conducted to document mass emission rates of oxides of nitrogen (NO_x) and carbon monoxide (CO). A series of three one hour test runs were conducted.

Testing was conducted in accordance with procedures set forth in the Code of Federal Regulations (CFR) Title 40, Part 60, Appendix A, Methods 1, 2C, 3A, 4, 7E and 10.

The average NO_x and CO emissions for the three one hour test runs were as follows:

Clark Unit #3

	PPM	lb/hr	Tons/yr (1)
NO _x	556.8	31.93	139.9
CO	509.9	17.78	77.9

A complete breakdown of all test data can be found on the following page of this report titled "Summary of Results".

Note: (1) Based on 8760 hours per year.

CETCON, Inc.**Reciprocating Gas Engine Data
Engine Operation Record****Test Operator:** GPM Gas Corporation **Date:** 8/31/94**Engine Identification:**

Manufacturer	Clark
Model	HBA-6
Serial No.	36289

Emission Control:

Fuel / Air Ratio Controller	NA
Catalytic Converter	NA

Location:

Plant	Hobbs Gas Plant
City	Hobbs, New Mexico
Ambient temperature, °F	82
Ambient humidity, % RH	NA
Test time start	1544
Test time finish	1931
Fuel flow rate, MMBtu/hr	NA
Ambient pressure, IN. Hg	30.06
Elevation, Ft above sea level	3500

Fuel analysis:

Fuel type	Natural Gas
HHV, Btu/scf	NA
LHV, Btu/scf	NA

Operating Conditions:

Engine Speed, RPM	305
Exhaust Temp, °F	502
Air Manifold Press., in. Hg	5.6
Ignition Timing, ° BTC	11
1st Stage Suction Press, psig	234
1st Stage Discharge Press, psig	615
2nd Stage Discharge Press, psig	NA
3rd Stage Discharge Press, psig	NA

CETCON, Inc.

SUMMARY OF RESULTS

Unit Designation:

GPM - HOBBS

Clark Unit #3

PARAMETERS:

Test No.	P7	P8	P9
Date:	8/31/94	8/31/94	8/31/94
Start Time:	1544	1712	1831
Test Duration (min.)	60	60	60

EQUIPMENT DESIGN DATA:

Equipment Description:	HBA-6
Manufacturer:	Clark
Serial Number:	36269
Engine rpm:	300
Engine Hp:	1267 (Site Rated)

OPERATING DATA:

			Average
Engine Load, %	84	84	84
Fuel Flow, scfm	NA	NA	NA
Fuel Heating Value, Btu/scf, HHV	NA	NA	NA
Fixed Duty, mmBar/hr	NA	NA	NA
Engine Horsepower, Bhp w/air	1068	1068	1066

FLUE GAS:

Stack Temp., F	503	503	500	502
% Moisture	5.49	6.03	6.66	6.67
% O ₂ , dry	16.60	16.80	16.60	16.60
% CO ₂ , dry	2.80	2.80	2.80	2.80
Method 19 F Factor	NA	NA	NA	NA
Stack flow, dscfm (F-factor)	NA	NA	NA	NA
Stack flow, dscfm (measured) *	8029	8026	7936	7897

EMISSION DATA:

				Permit Limit:
NO _x , ppm (1)	631.3	524.8	514.3	556.8
NO _x , lb/hr	36.34	30.20	29.26	31.93
NO _x , gm/Hp-hr	16.46	12.84	12.46	13.58
CO, ppm (2)	511.5	516.5	501.6	509.9
CO, lb/hr	17.91	18.07	17.36	17.78
CO, gm/Hp-hr	7.61	7.68	7.39	7.56

(1) Corrected per Bias check, NO_x (ppm) CORR = NO_x (ppm) • NO_x Span Gas (ppm) / NO_x Bias (ppm)

CETCON, Inc.

Job Number: OJ-1309C
 Customer: GPM
 Plant: HOBBS

Run No.: 1308P7 - P2
 Engine ID: HBA-8 / 38269
 Manufacture: Clark

Barometer No.: NO. 3
 Barometric Pressure, P_s : 30.00
 Ambient Temp., °F: 83

File Name: 08CENG.WK1

Clock Time	Engine Rpm	Fuel Gas CF-DAY	Manifold in. Hd.	1st Stage Suction psig / temp.	1st Stage Discharge psig / temp.	2nd Stage Suction psig / temp.	2nd Stage Discharge psig / temp.	3rd Stage Suction psig / temp.	3rd Stage Discharge psig / temp.	Exhaust Temp. °F	Ambient Temp. °F	Compressor Gas Flow MMold	By-pass Flow MMold
1856	306	314.1	5.6	232 / 97	618 / 210	NA	NA	NA	NA	503	83	NA	NA
1823	304	314.1	5.6	232 / 97	616 / 210	NA	NA	NA	NA	503	83	NA	NA
1718	301	314.1	5.6	235 / 98	618 / 209	NA	NA	NA	NA	503	84	NA	NA
1745	307	314.1	5.6	235 / 96	616 / 209	NA	NA	NA	NA	503	84	NA	NA
1843	306	314.1	5.6	235 / 94	612 / 208	NA	NA	NA	NA	500	80	NA	NA
1813	306	314.1	5.6	236 / 93	615 / 205	NA	NA	NA	NA	500	80	NA	NA
Average:	305	314.1	5.6	234 / 96	615 / 208	NA	NA	NA	NA	502	82	NA	NA

GETCON, A

Page 9

Job No. CJ-1309
Date 8/31/94
Customer GPM
Unit #3 CLARK
Operator AJW/GTM
File Name 1309P8.WK

Field Date	Moist./ Vol.	
Run No.	PS	
Time of Run, T ₁	.00	min
Sample Box No.	1	
Meter Box No.	CM #3	
Stack Area, A.	1111122223	DE

Berometric Pressure, P_b	20.06	
Ambient Temp., °F	80	
Stack Pressure, P_s	0.1	in. H_2O = 20.07 in. Hg
Initial Leak @	15.0	in. Hg = 0.000 cfm
Final Leak @	10.0	in. Hg = 0.000 cfm
Purge To:		Times

Avg ΔP_2	0.849	Avg P_M	0.800	Avg T_e	500
Avg(ΔP_2) ^{1/2}	0.971				

Volume DGM 23.988 CF x C_f 0.961 = V_m 23.052 BC

Measuring No.	(1)	(2)	(3)	(4)	(5)	(6)	Total
Final Wt. gm	629.7	585.1	508.8	785.5			2509.2
Initial Wt. gm	653.0	583.5	507.7	780.7			2464.9
Difference, gm	36.7	1.6	0.9	5.1			44.3

$$V_{H,10} = 17.65 V_M \left[\left(P_0 + (P_M / 13.6) \right) / T_M \right]$$

Filter No.	
Final Wt., gm	
Initial Wt., gm	
Difference, gm	
I_w (gm)	44.3000
CO_2 gm (-)	
$\text{I}_\text{w} -$	

ORSAT	
%CO ₂	2.6
%O ₂ (dry)	18.8
%CO	
%N ₂	80.8
% Excess Air	348.8

Avg ΔP	0.646	In.
Avg $(\Delta P)_{100}$	0.971	
Avg. P_u	0.600	In.
Avg. T_1	500	°F
Avg. T_2	600	°F
Avg. T_H	64	°F
Avg. T_H	344	°F

$MW_D = (\% CO_2 \times 0.44) + (\% O_2 \times 0.32) + (\% N_2 \times 0.28)$	29.112	lb/mole
$MW = M_D \times MW_D + 18 (1 - M_D)$	28.17	lb/mole
$V_e = 5129.4 \times C_p \left(T_e / (P_e \times MW) \right)^{1/2} \times \text{Avg}(\Delta P_e)^{1/2}$	5,248	PPM
$Q_A = (V_e \times A_p) / 144$	15,634	ACF
$Q_e = (0.123 \times V_e \times M_D \times P_p \times A_p) / T_e$	7935	SOF
$\%I = (1040.1 \times V_{\text{blend}} \times T_e) / (M_D \times P_p \times V_e \times T_e \times D_N^{-2})$	%	

CLARK HBA-6

05/01/88

ENGINE TEST 140, TEST SITE 37 EXHAUST STACK AREA SQ FT. 1.268
 CLARK HBA-6 RATED 1320. HP AT 300. RPM, 2-STROKE SC
 SOURCE: PR-15-613 HCR-3.90 NOX-CLH CO-NDIR, HC- FID O2-POL FLOW-CB

RUN DATE TIME	1 10/19/87 1000	2 10/19/87 1100	3 10/19/87 1145	4 10/19/87 1300	5 10/19/87 1350
---------------------	-----------------------	-----------------------	-----------------------	-----------------------	-----------------------

OPERATIONAL DATA

BAROMETER IN. HG.	29.70	29.73	29.73	29.78	29.69
AMBIENT TEMP. DEG. F	56.	56.	56.	59.	60.
INLET MAN. TEMP DEG. F	121.	121.	118.	120.	118.
EXHAUST VEL. FT/SEC	133.22	132.79	133.81	142.47	131.40
SP. HUMIDITY GRAIN/LB	59.	67.	67.	66.	69.
ENGINE SPEED RPM	300	300	300	300	300
HORSEPOWER	1320.	1165.	1320.	1150.	1320.
SCAV. AIR PRES. IN. HG	7.6	7.2	7.4	7.0	7.2
IGNIT. TIME DEG. BTDC	12.0	12.0	12.0	12.0	12.0
FUEL SP. GR. (STP)	.5802	.5802	.5802	.5802	.5802
HI HEAT VALUE BTU/SCF	1006.	1006.	1006.	1006.	1006.
LO HEAT VALUE BTU/SCF	906.	906.	906.	906.	906.
CALC. EXH. FLOW LB/HR	21608.	22160.	21845.	24151.	21402.
EXHAUST SP. GR. (STP)	.9794	.9793	.9787	.9803	.9785
EXHAUST TEMP. DEG. F	649.	619.	643.	604.	644.
FUEL FLOW SCF/HR	10956.	10835.	11088.	10695.	10956.
FUEL MIL. BTU/HR (HHV)	11.023	10.901	11.156	10.760	11.023
FUEL FLOW LB/HR	486.	481.	492.	475.	486.
AIR FLOW LB/HR (WET)	21122.	21679.	21352.	23677.	20916.
AIR/FUEL RATIO (WET)	43.4	45.1	43.4	49.9	43.0
BSFC BTU/HP-HR(HHV)	8351.	9357.	8451.	9357.	8351.
EXHAUST H2O PERCENT	8.36	8.33	8.52	7.65	8.62
AVG. PEAK PRESSURE	ND	ND	ND	ND	ND
PEAK PRESS. STD. DEV.	ND	ND	ND	ND	ND

EMISSIONS AS MEASURED

NOX PPM	1560.00	940.00	1529.00	614.00	1498.00
NO PPM	1446.00	897.00	1405.00	565.00	1325.00
NO2 PPM	114.00	43.00	124.00	49.00	173.00
CO2 PERCENT	3.94	3.83	3.94	3.43	3.98
HC g/HP HR	3100.00	2700.00	3200.00	2600.00	3200.00
CO PPM	153.00	130.00	144.00	144.00	144.00
O2 PERCENT	13.75	14.25	13.75	14.63	13.75
NO/NOX	.927	.954	.919	.920	.885

CALCULATED EMISSIONS

NOX LB/HR	50.445	31.182	49.931	22.343	47.884
HC LB/HR TOTAL	34.825	31.115	36.303	32.868	35.536
CO LB/HR	2.874	2.508	2.732	3.060	2.673
NOX LB/MIL BTU	4.576	2.860	4.476	2.076	4.344
HC LB/MIL BTU TOTAL	3.159	2.854	3.254	3.055	3.224
CO LB/MIL BTU	.261	.230	.245	.284	.242
NOX G/BHP HR	17.335	12.141	17.158	8.813	16.455
HC G/BHP HR TOTAL	11.967	12.115	12.475	12.964	12.211
CO G/BHP HR	.988	.976	.939	1.207	.918
NOX PPM CORR TO 15 PCT O2 1287.	834.	1262.	578.	1236.	

NOTE: NOX AS NO2 AND BTU AS HHV FOR ALL CALCULATED EMISSIONS

CLARK HBA-6

05/01/88

ENGINE TEST 141, TEST SITE 37 EXHAUST STACK AREA SQ FT. 1.268
 CLARK HBA-6 RATED 1320. HP AT 300. RPM, 2-STROKE SC
 SOURCE: PR-15-613 HCR-3.90 NOX-CLH CO-NDIR, HC- FID 02-POL FLOW-CB

RUN	1	2	3	4	5
DATE	10/19/87	10/19/87	10/20/87	10/20/87	10/20/87
TIME	1430	1500	800	900	1000

OPERATIONAL DATA

BAROMETER IN. HG.	29.67	29.67	29.84	29.85	29.85
AMBIENT TEMP. DEG. F	57.	58.	56.	55.	55.
INLET MAN. TEMP DEG. F	121.	127.	122.	121.	122.
EXHAUST VEL. FT/SEC	137.11	135.42	148.11	144.15	141.46
SP. HUMIDITY GRAIN/LB	66.	64.	55.	61.	53.
ENGINE SPEED RPM	300	300	300	300	300
HPSEPOWER	1305.	1150.	1300.	1270.	1265.
SCAV. AIR PRES. IN. HG	7.6	7.4	7.6	7.7	7.7
IGNIT. TIME DEG. BTDC	12.0	12.0	12.0	12.0	12.0
FUEL SP. GR. (STP)	.5802	.5802	.5802	.5802	.5802
HI HEAT VALUE BTU/SCF	1006.	1006.	1006.	1006.	1006.
LO HEAT VALUE BTU/SCF	906.	906.	906.	906.	906.
CALC. EXH. FLOW LB/HR	22297.	22387.	24694.	23756.	23441.
EXHAUST SP. GR. (STP)	.9790	.9799	.9811	.9801	.9808
EXHAUST TEMP. DEG. F	645.	627.	624.	637.	631.
FUEL FLOW SCF/HR	11484.	10695.	11050.	11430.	11258.
FUEL MIL. BTU/HR (HHV)	11.554	10.760	11.118	11.500	11.327
FUEL FLOW LB/HR	510.	475.	490.	507.	500.
AIR FLOW LB/HR (WET)	21788.	21912.	24204.	23249.	22941.
AIR/FUEL RATIO (WET)	42.8	46.2	49.4	45.8	45.9
BSFC BTU/HP-HR(HHV)	8854.	9357.	8552.	9055.	8954.
EXHAUST H2O PERCENT	8.48	7.90	7.29	7.89	7.74
AVG. PEAK PRESSURE	ND	ND	ND	ND	ND
PEAK PRESS. STD. DEV.	ND	ND	ND	ND	ND

EMISSIONS AS MEASURED

NOX PPM	1338.00	996.00	918.00	1244.00	1066.00
NO PPM	1228.00	899.00	846.00	1138.00	993.00
NO2 PPM	110.00	97.00	72.00	106.00	73.00
CO2 PERCENT	3.94	3.61	3.36	3.65	3.65
HC PPM	3850.00	3800.00	3600.00	3700.00	3698.00
CO PPM	112.00	126.00	117.00	117.00	108.00
O2 PERCENT	14.18	14.50	14.63	14.38	14.50
NO/NOX	.918	.903	.922	.915	.932

CALCULATED EMISSIONS

NOX LB/HR	44.603	33.520	34.259	44.417	37.594
HC LB/HR TOTAL	44.586	44.428	46.672	45.895	44.082
CO LB/HR	2.169	2.472	2.552	2.434	2.219
NOX LB/MIL BTU	3.860	3.115	3.081	3.862	3.319
HC LB/MIL BTU TOTAL	3.859	4.129	4.198	3.991	3.892
CO LB/MIL BTU	.188	.230	.230	.212	.196
NOX G/BHP HR	15.503	12.221	11.954	15.864	13.480
HC G/BHP HR TOTAL	15.497	17.524	16.285	16.392	15.807
CO G/BHP HR	.754	.975	.890	.869	.796
NOX PPM CORR TO 15 PCT O2 1175.	918.	864.	1126.	983.	

NOTE: NOX AS NO2 AND BTU AS HHV FOR ALL CALCULATED EMISSIONS

- A) INLET COMPRESSOR CLARK MODEL TLA-6
EXHAUST FLOW 19,100 lb/Hr
EXHAUST TEMPERATURE 720 DEG.F
EXHAUST GAS DENSITY @ 720 DEG. F 0.032874 lb/cu ft
STACK HEIGHT 75 FEET
STACK I.D. 29"

- B) INLET COMPRESSOR CLARK MODEL TLA-6
EXHAUST FLOW 19,100 lb/Hr
EXHAUST TEMPERATURE 720 DEG.F
EXHAUST GAS DENSITY @ 720 DEG. F 0.032874 lb/cu ft
STACK HEIGHT 75 FEET
STACK I.D. 23"

- C) INLET COMPRESSOR CLARK MODEL HBA-6
EXHAUST FLOW 12,915 lb/Hr
EXHAUST TEMPERATURE 700 DEG.F
EXHAUST GAS DENSITY @ 700 DEG. F 0.033441 lb/cu ft
STACK HEIGHT 75 FEET
STACK I.D. 23"

- D) INLET COMPRESSOR CLARK MODEL HBA-6
EXHAUST FLOW 12,915 lb/Hr
EXHAUST TEMPERATURE 700 DEG.F
EXHAUST GAS DENSITY @ 700 DEG. F 0.033441 lb/cu ft
STACK HEIGHT 75 FEET
STACK I.D. 23"

- F) INLET COMPRESSOR CLARK MODEL HBA-6
EXHAUST FLOW 12,915 lb/Hr
EXHAUST TEMPERATURE 700 DEG.F
EXHAUST GAS DENSITY @ 700 DEG. F 0.033441 lb/cu ft
STACK HEIGHT 75 FEET
STACK I.D. 23"

- E) INLET COMPRESSOR CLARK MODEL HBA-6
EXHAUST FLOW 12,915 lb/Hr
EXHAUST TEMPERATURE 700 DEG.F
EXHAUST GAS DENSITY @ 700 DEG. F 0.033441 lb/cu ft
STACK HEIGHT 75 FEET
STACK I.D. 23"

TABLE 3.2-1 UNCONTROLLED EMISSION FACTORS FOR 2-STROKE LEAN-BURN ENGINES^a
(SCC 2-02-002-52)

Pollutant	Emission Factor (lb/MMBtu) ^b (fuel input)	Emission Factor Rating
Criteria Pollutants and Greenhouse Gases		
NO _x ^c 90 - 105% Load	3.17 E+00	A
NO _x ^c <90% Load	1.94 E+00	A
CO ^c 90 - 105% Load	3.86 E-01	A
CO ^c <90% Load	3.53 E-01	A
CO ₂ ^d	1.10 E+02	A
SO ₂ ^e	5.88 E-04	A
TOC ^f	1.64 E+00	A
Methane ^g	1.45 E+00	C
VOC ^h	1.20 E-01	C
PM10 (filterable) ⁱ	3.84 E-02	C
PM2.5 (filterable) ⁱ	3.84 E-02	C
PM Condensable ^j	9.91 E-03	E
Trace Organic Compounds		
1,1,2,2-Tetrachloroethane ^k	6.63 E-05	C
1,1,2-Trichloroethane ^k	5.27 E-05	C
1,1-Dichloroethane	3.91 E-05	C
1,2,3-Trimethylbenzene	3.54 E-05	D
1,2,4-Trimethylbenzene	1.11 E-04	C
1,2-Dichloroethane	4.22 E-05	D
1,2-Dichloropropane	4.46 E-05	C
1,3,5-Trimethylbenzene	1.80 E-05	D
1,3-Butadiene ^k	8.20 E-04	D
1,3-Dichloropropene ^k	4.38 E-05	C
2,2,4-Trimethylpentane ^k	8.46 E-04	B
2-Methylnaphthalene ^k	2.14 E-05	C
Acenaphthene ^k	1.33 E-06	C

Table 3.2-1. UNCONTROLLED EMISSION FACTORS FOR 2-STROKE LEAN-BURN ENGINES

(Continued)

Pollutant	Emission Factor (lb/MMBtu) ^b (fuel input)	Emission Factor Rating
Acenaphthylene ^k	3.17 E-06	C
Acetaldehyde ^{k,l}	7.76 E-03	A
Acrolein ^{k,l}	7.78 E-03	A
Anthracene ^k	7.18 E-07	C
Benz(a)anthracene ^k	3.36 E-07	C
Benzene ^k	1.94 E-03	A
Benzo(a)pyrene ^k	5.68 E-09	D
Benzo(b)fluoranthene ^k	8.51 E-09	D
Benzo(e)pyrene ^k	2.34 E-08	D
Benzo(g,h,i)perylene ^k	2.48 E-08	D
Benzo(k)fluoranthene ^k	4.26 E-09	D
Biphenyl ^k	3.95 E-06	C
Butane	4.75 E-03	C
Butyr/Isobutyraldehyde	4.37 E-04	C
Carbon Tetrachloride ^k	6.07 E-05	C
Chlorobenzene ^k	4.44 E-05	C
Chloroform ^k	4.71 E-05	C
Chrysene ^k	6.72 E-07	C
Cyclohexane	3.08 E-04	C
Cyclopentane	9.47 E-05	C
Ethane	7.09 E-02	A
Ethylbenzene ^k	1.08 E-04	B
Ethylene Dibromide ^k	7.34 E-05	C
Fluoranthene ^k	3.61 E-07	C
Fluorene ^k	1.69 E-06	C
Formaldehyde ^{k,l}	5.52 E-02	A

Table 3.2-1. UNCONTROLLED EMISSION FACTORS FOR 2-STROKE LEAN-BURN ENGINES
(Concluded)

Pollutant	Emission Factor (lb/MMBtu) ^b (fuel input)	Emission Factor Rating
Indeno(1,2,3-c,d)pyrene ^k	9.93 E-09	D
Isobutane	3.75 E-03	C
Methanol ^k	2.48 E-03	A
Methylcyclohexane	3.38 E-04	C
Methylene Chloride ^k	1.47 E-04	C
n-Hexane ^k	4.45 E-04	C
n-Nonane	3.08 E-05	C
n-Octane	7.44 E-05	C
n-Pentane	1.53 E-03	C
Naphthalene ^k	9.63 E-05	C
PAH ^k	1.34 E-04	D
Perylene ^k	4.97 E-09	D
Phenanthrene ^k	3.53 E-06	C
Phenol ^k	4.21 E-05	C
Propane	2.87 E-02	C
Pyrene ^k	5.84 E-07	C
Styrene ^k	5.48 E-05	A
Toluene ^k	9.63 E-04	A
Vinyl Chloride ^k	2.47 E-05	C
Xylene ^k	2.68 E-04	A

^a Reference 7. Factors represent uncontrolled levels. For NO_x, CO, and PM10, “uncontrolled” means no combustion or add-on controls; however, the factor may include turbocharged units. For all other pollutants, “uncontrolled” means no oxidation control; the data set may include units with control techniques used for NOx control, such as PCC and SCR for lean burn engines, and PSC for rich burn engines. Factors are based on large population of engines. Factors are for engines at all loads, except as indicated. SCC = Source Classification Code. TOC = Total Organic Compounds. PM10 = Particulate Matter \leq 10 microns (μm) aerodynamic diameter. A “<“ sign in front of a factor means that the corresponding emission factor is based on one-half of the method detection limit.

^b Emission factors were calculated in units of (lb/MMBtu) based on procedures in EPA

Method 19. To convert from (lb/MMBtu) to (lb/ 10^6 scf), multiply by the heat content of the fuel. If the heat content is not available, use 1020 Btu/scf. To convert from (lb/MMBtu) to (lb/hp-hr) use the following equation:

$$\text{lb/hp-hr} = (\text{lb/MMBtu}) \cdot (\text{heat input, MMBtu/hr}) \cdot (1/\text{operating HP}) \cdot (1/\text{hp})$$

^c Emission tests with unreported load conditions were not included in the data set.

^d Based on 99.5% conversion of the fuel carbon to CO₂. CO₂ [lb/MMBtu] = (3.67)(%CON)(C)(D)(1/h), where %CON = percent conversion of fuel carbon to CO₂, C = carbon content of fuel by weight (0.75), D = density of fuel, 4.1 E+04 lb/ 10^6 scf, and h = heating value of natural gas (assume 1020 Btu/scf at 60°F).

^e Based on 100% conversion of fuel sulfur to SO₂. Assumes sulfur content in natural gas of 2,000 gr/ 10^6 scf.

^f Emission factor for TOC is based on measured emission levels of 43 tests.

^g Emission factor for methane is determined by subtracting the VOC and ethane emission factors from the TOC emission factor. Measured emission factor for methane compares well with the calculated emission factor, 1.48 lb/MMBtu vs. 1.45 lb/MMBtu, respectively.

^h VOC emission factor is based on the sum of the emission factors for all speciated organic compounds less ethane and methane.

ⁱ Considered $\leq 1 \mu\text{m}$ in aerodynamic diameter. Therefore, for filterable PM emissions, PM10(filterable) = PM2.5(filterable).

^j No data were available for condensable PM emissions. The presented emission factor reflects emissions from 4SLB engines.

^k Hazardous Air Pollutant as defined by Section 112(b) of the Clean Air Act.

^l For lean burn engines, aldehyde emissions quantification using CARB 430 may reflect interference with the sampling compounds due to the nitrogen concentration in the stack. The presented emission factor is based on FTIR measurements. Emissions data based on CARB 430 are available in the background report.

Solar Turbines

A Caterpillar Company

PREDICTED ENGINE PERFORMANCE

Customer	Model
Duke Energy Field Services	TAURUS 70-10302S
Job ID	Package Type
Linam Ranch T70	CS/MD
Run By	Match
Eric L. Moore	59F MATCH
Engine Performance Code	Fuel System
REV. 3.40	GAS
Engine Performance Data	Fuel Type
REV. 0.5	SD NATURAL GAS

DATA FOR MINIMUM PERFORMANCE

Elevation	feet	3710					
Inlet Loss	in H2O	3.0					
Exhaust Loss	in H2O	4.0					
Accessory on GP Shaft	HP	26.0					
		1	2	3	4	5	6
Engine Inlet Temperature	deg F	0	20.0	40.0	60.0	80.0	100.0
Relative Humidity	%	60.0	60.0	60.0	60.0	60.0	60.0
Driven Equipment Speed	RPM	11279	11205	11099	10964	10799	10587
Specified Load	HP	FULL	FULL	FULL	FULL	FULL	FULL
Net Output Power	HP	10702	10010	9301	8510	7687	6876
Fuel Flow	mmBtu/hr	77.63	73.70	69.62	64.99	60.38	56.35
Heat Rate	Btu/HP-hr	7254	7362	7486	7638	7855	8195
Therm Eff	%	35.076	34.560	33.991	33.315	32.394	31.047
Engine Exhaust Flow	lbm/hr	216159	204605	193208	181710	168939	156979
Exhaust Temperature	deg F	858	885	908	927	952	981

Fuel Gas Composition (Volume Percent)	Methane (CH4)	92.79
	Ethane (C2H6)	4.16
	Propane (C3H8)	0.84
	N-Butane (C4H10)	0.18
	N-Pentane (C5H12)	0.04
	Hexane (C6H14)	0.04
	Carbon Dioxide (CO2)	0.44
	Hydrogen Sulfide (H2S)	0.0001
	Nitrogen (N2)	1.51

Fuel Gas Properties	LHV (Btu/Scf)	939.2	Specific Gravity	0.5970	Wobbe Index at 60F	1215.6
---------------------	---------------	-------	------------------	--------	--------------------	--------

Solar Turbines

A Caterpillar Company

PREDICTED EMISSION PERFORMANCE

Customer Duke Energy Field Services	Engine Model TAURUS 70-10302S
Job ID Linam Ranch T70	CS/MD 59F MATCH
Inquiry Number Linam Ranch T70	
Run By Eric L Moore	Date Run 4-Feb-06
	Fuel Type SD NATURAL GAS
	Water Injection NO
	Engine Emissions Data REV. 0.1
	Engines Tested 0

	NOx EMISSIONS		CO EMISSIONS		UHC EMISSIONS	
	Nominal	Maximum	Nominal	Maximum	Nominal	Maximum
4	8510 Hp	100.0% Load	Elev. 3710 ft	Rel. Humidity 60.0%	Temperature 60.0 Deg. F	
PPMvd at 15% O2	*	38.00	*	50.00	*	25.00
ton/yr	*	43.05	*	34.49	*	9.88
Ibm/MMBtu (Fuel LHV)	*	0.151	*	0.121	*	0.035
Ibm/(MW-hr)	*	1.55	*	1.24	*	0.36
(gas turbine shaft pwr)						
Ibm/hr	*	9.83	*	7.87	*	2.25
5	7687 Hp	100.0% Load	Elev. 3710 ft	Rel. Humidity 60.0%	Temperature 80.0 Deg. F	
PPMvd at 15% O2	*	38.00	*	50.00	*	25.00
ton/yr	*	39.70	*	31.80	*	9.11
Ibm/MMBtu (Fuel LHV)	*	0.150	*	0.120	*	0.034
Ibm/(MW-hr)	*	1.58	*	1.27	*	0.36
(gas turbine shaft pwr)						
Ibm/hr	*	9.06	*	7.26	*	2.08
6	6876 Hp	100.0% Load	Elev. 3710 ft	Rel. Humidity 60.0%	Temperature 100.0 Deg. F	
PPMvd at 15% O2	*	38.00	*	50.00	*	25.00
ton/yr	*	36.56	*	29.29	*	8.39
Ibm/MMBtu (Fuel LHV)	*	0.148	*	0.119	*	0.034
Ibm/(MW-hr)	*	1.63	*	1.30	*	0.37
(gas turbine shaft pwr)						
Ibm/hr	*	8.35	*	6.69	*	1.91

Important Notes

1. For short-term emission limits such as lbs/hr., Solar recommends using "worst case" anticipated operating conditions specific to the application and the site conditions. Worst case for one pollutant is not necessarily the same for another. The emission values on this form are only predicted emissions at the specific operating conditions listed.
2. Solar's typical SoLoNOx warranty is for greater than 0 deg F, and between 50% and 100% load for gas fuel, and between 80% and 100% load for liquid fuel. An emission warranty for non-SoLoNOx equipment is for greater than 0 deg F and between 80% and 100% load.
3. Fuel must meet Solar standard fuel specification ES 9-98. Predicted emissions are based on the attached fuel composition, or, San Diego natural gas or equivalent.
4. If needed, Solar can provide generic documents to address turbine operation outside typical warranty ranges, as well as non-warranted emissions of SO2, PM10/2.5, VOC, and formaldehyde.
5. Solar can optionally provide factory testing in San Diego to ensure the actual unit(s) meet the above values within the tolerances quoted. Pricing and schedule impact will be provided upon request.

Solar Turbines

A Caterpillar Company

PREDICTED EMISSION PERFORMANCE

Customer Duke Energy Field Services	Engine Model TAURUS 70-10302S
Job ID Linam Ranch T70	CS/MD 59F MATCH
Inquiry Number Linam Ranch T70	
Run By Eric L Moore	Date Run 4-Feb-06
	Fuel Type SD NATURAL GAS
	Water Injection NO
	Engine Emissions Data REV. 0.1
	Engines Tested 0

	10702 Hp	100.0% Load	Elev. 3710 ft	NOx EMISSIONS		CO EMISSIONS		UHC EMISSIONS	
				Nominal	Maximum	Nominal	Maximum	Nominal	Maximum
1	10702 Hp	100.0% Load	Elev. 3710 ft	Rel. Humidity	60.0%	Temperature	0 Deg. F		
	PPMvd at 15% O2			*	38.00	*	50.00	*	25.00
	ton/yr			*	51.78	*	41.48	*	11.88
	Ibm/MMBtu (Fuel LHV)			*	0.152	*	0.122	*	0.035
	Ibm/(MW-hr)			*	1.48	*	1.19	*	0.34
	(gas turbine shaft pwr)			*	11.82	*	9.47	*	2.71
2	10010 Hp	100.0% Load	Elev. 3710 ft	Rel. Humidity	60.0%	Temperature	20.0 Deg. F		
	PPMvd at 15% O2			*	38.00	*	50.00	*	25.00
	ton/yr			*	49.11	*	39.34	*	11.27
	Ibm/MMBtu (Fuel LHV)			*	0.152	*	0.122	*	0.035
	Ibm/(MW-hr)			*	1.50	*	1.20	*	0.34
	(gas turbine shaft pwr)			*	11.21	*	8.98	*	2.57
3	9301 Hp	100.0% Load	Elev. 3710 ft	Rel. Humidity	60.0%	Temperature	40.0 Deg. F		
	PPMvd at 15% O2			*	38.00	*	50.00	*	25.00
	ton/yr			*	46.30	*	37.09	*	10.62
	Ibm/MMBtu (Fuel LHV)			*	0.152	*	0.122	*	0.035
	Ibm/(MW-hr)			*	1.52	*	1.22	*	0.35
	(gas turbine shaft pwr)			*	10.57	*	8.47	*	2.43

Important Notes

1. For short-term emission limits such as lbs/hr., Solar recommends using "worst case" anticipated operating conditions specific to the application and the site conditions. Worst case for one pollutant is not necessarily the same for another. The emission values on this form are only predicted emissions at the specific operating conditions listed.
2. Solar's typical SoLoNOx warranty is for greater than 0 deg F, and between 50% and 100% load for gas fuel, and between 80% and 100% load for liquid fuel. An emission warranty for non-SoLoNOx equipment is for greater than 0 deg F and between 80% and 100% load.
3. Fuel must meet Solar standard fuel specification ES 9-98. Predicted emissions are based on the attached fuel composition, or, San Diego natural gas or equivalent.
4. If needed, Solar can provide generic documents to address turbine operation outside typical warranty ranges, as well as non-warranted emissions of SO2, PM10/2.5, VOC, and formaldehyde.
5. Solar can optionally provide factory testing in San Diego to ensure the actual unit(s) meet the above values within the tolerances quoted. Pricing and schedule impact will be provided upon request.

Solar Turbines

A Caterpillar Company

PREDICTED EMISSION PERFORMANCE

Customer Duke Energy	Job ID
Inquiry Number	
Run By Michael E Clay	Date Run 12-Jan-06

Engine Model TAURUS 70-9702S	Water Injection
Fuel Type SD NATURAL GAS	NO
Engine Emissions Data REV. 0.1	Engines Tested 0

	NOx EMISSIONS		CO EMISSIONS		UHC EMISSIONS	
	Nominal	Maximum	Nominal	Maximum	Nominal	Maximum

SOLAR TURBINE 70-9702S (FUEL: SD NATURAL GAS) - 60% LOAD (100% FUEL INJECTION)		
PPMvd at 15% O ₂	*	38.00
ton/yr	*	41.31
Ibm/MMBtu (Fuel LHV)	*	0.151
Ibm/(MW-hr)	*	1.59
(gas turbine shaft pwr)	*	9.43
Ibm/hr	*	2.16
PPMvd at 15% O ₂	*	50.00
ton/yr	*	33.09
Ibm/MMBtu (Fuel LHV)	*	0.121
Ibm/(MW-hr)	*	1.27
(gas turbine shaft pwr)	*	7.55
Ibm/hr	*	0.36

SOLAR TURBINE 70-9702S (FUEL: SD NATURAL GAS) - 100% LOAD (100% FUEL INJECTION)		
PPMvd at 15% O ₂	*	38.00
ton/yr	*	38.07
Ibm/MMBtu (Fuel LHV)	*	0.150
Ibm/(MW-hr)	*	1.63
(gas turbine shaft pwr)	*	8.69
Ibm/hr	*	0.37
PPMvd at 15% O ₂	*	50.00
ton/yr	*	30.50
Ibm/MMBtu (Fuel LHV)	*	0.120
Ibm/(MW-hr)	*	1.31
(gas turbine shaft pwr)	*	6.96
Ibm/hr	*	1.99

SOLAR TURBINE 70-9702S (FUEL: SD NATURAL GAS) - 125% LOAD (100% FUEL INJECTION)		
PPMvd at 15% O ₂	*	38.00
ton/yr	*	35.09
Ibm/MMBtu (Fuel LHV)	*	0.148
Ibm/(MW-hr)	*	1.69
(gas turbine shaft pwr)	*	8.01
Ibm/hr	*	0.39
PPMvd at 15% O ₂	*	50.00
ton/yr	*	28.11
Ibm/MMBtu (Fuel LHV)	*	0.119
Ibm/(MW-hr)	*	1.35
(gas turbine shaft pwr)	*	6.42
Ibm/hr	*	1.84

Important Notes

1. For short-term emission limits such as lbs/hr., Solar recommends using "worst case" anticipated operating conditions specific to the application and the site conditions. Worst case for one pollutant is not necessarily the same for another. The emission values on this form are only predicted emissions at the specific operating conditions listed.
2. Solar's typical SoLoNOx warranty is for greater than 0 deg F, and between 50% and 100% load for gas fuel, and between 80% and 100% load for liquid fuel. An emission warranty for non-SoLoNOx equipment is for greater than 0 deg F and between 80% and 100% load.
3. Fuel must meet Solar standard fuel specification ES 9-98. Predicted emissions are based on the attached fuel composition, or, San Diego natural gas or equivalent.
4. If needed, Solar can provide generic documents to address turbine operation outside typical warranty ranges, as well as non-warranted emissions of SO₂, PM10/2.5, VOC, and formaldehyde.
5. Solar can optionally provide factory testing in San Diego to ensure the actual unit(s) meet the above values within the tolerances quoted. Pricing and schedule impact will be provided upon request.

Solar Turbines

A Caterpillar Company

PREDICTED EMISSION PERFORMANCE

Customer Duke Energy	Engine Model TAURUS 70-9702S
Job ID	CS/MD 59F MATCH
Inquiry Number	
Run By Michael E Clay	Date Run 12-Jan-06
	Fuel Type SD NATURAL GAS
	Water Injection NO
	Engine Emissions Data REV. 0.1
	Engines Tested 0

	NOx EMISSIONS		CO EMISSIONS	
	Nominal	Maximum	Nominal	Maximum
PPMvd at 15% O2	*	38.00	*	50.00
ton/yr	*	49.32	*	39.50
Ibm/MMBtu (Fuel LHV)	*	0.152	*	0.122
Ibm/(MW-hr)	*	1.51	*	1.21
(gas turbine shaft pwr)				
Ibm/hr	*	11.26	*	9.02
				*
				2.58
PPMvd at 15% O2	*	38.00	*	50.00
ton/yr	*	46.90	*	37.57
Ibm/MMBtu (Fuel LHV)	*	0.152	*	0.122
Ibm/(MW-hr)	*	1.53	*	1.23
(gas turbine shaft pwr)				
Ibm/hr	*	10.71	*	8.58
				*
				2.46
PPMvd at 15% O2	*	38.00	*	50.00
ton/yr	*	44.32	*	35.51
Ibm/MMBtu (Fuel LHV)	*	0.152	*	0.122
Ibm/(MW-hr)	*	1.56	*	1.25
(gas turbine shaft pwr)				
Ibm/hr	*	10.12	*	8.11
				*
				2.32

Important Notes

1. For short-term emission limits such as lbs/hr., Solar recommends using "worst case" anticipated operating conditions specific to the application and the site conditions. Worst case for one pollutant is not necessarily the same for another. The emission values on this form are only predicted emissions at the specific operating conditions listed.
2. Solar's typical SoLoNOx warranty is for greater than 0 deg F, and between 50% and 100% load for gas fuel, and between 80% and 100% load for liquid fuel. An emission warranty for non-SoLoNOx equipment is for greater than 0 deg F and between 80% and 100% load.
3. Fuel must meet Solar standard fuel specification ES 9-98. Predicted emissions are based on the attached fuel composition, or, San Diego natural gas or equivalent.
4. If needed, Solar can provide generic documents to address turbine operation outside typical warranty ranges, as well as non-warranted emissions of SO₂, PM10/2.5, VOC, and formaldehyde.
5. Solar can optionally provide factory testing in San Diego to ensure the actual unit(s) meet the above values within the tolerances quoted. Pricing and schedule impact will be provided upon request.

Table 3.1-2a. EMISSION FACTORS FOR CRITERIA POLLUTANTS AND GREENHOUSE GASES FROM STATIONARY GAS TURBINES

Pollutant	Emission Factors ^a - Uncontrolled			
	Natural Gas-Fired Turbines ^b		Distillate Oil-Fired Turbines ^d	
	(lb/MMBtu) ^c (Fuel Input)	Emission Factor Rating	(lb/MMBtu) ^e (Fuel Input)	Emission Factor Rating
CO ₂ ^f	110	A	157	A
N ₂ O	0.003 ^g	E	ND	NA
Lead	ND	NA	1.4 E-05	C
SO ₂	0.94S ^h	B	1.01S ^h	B
Methane	8.6 E-03	C	ND	NA
VOC	2.1 E-03	D	4.1 E-04 ^j	E
TOC ^k	1.1 E-02	B	4.0 E-03 ^l	C
PM (condensable)	4.7 E-03 ^l	C	7.2 E-03 ^l	C
PM (filterable)	1.9 E-03 ^l	C	4.3 E-03 ^l	C
PM (total)	6.6 E-03 ^l	C	1.2 E-02 ^l	C

^a Factors are derived from units operating at high loads (≥ 80 percent load) only. For information on units operating at other loads, consult the background report for this chapter (Reference 16), available at "www.epa.gov/ttn/chief". ND = No Data, NA = Not Applicable.

^b SCCs for natural gas-fired turbines include 2-01-002-01, 2-02-002-01 & 03, and 2-03-002-02 & 03.

^c Emission factors based on an average natural gas heating value (HHV) of 1020 Btu/scf at 60°F. To convert from (lb/MMBtu) to (lb/10⁶ scf), multiply by 1020. Similarly, these emission factors can be converted to other natural gas heating values.

^d SCCs for distillate oil-fired turbines are 2-01-001-01, 2-02-001-01, 2-02-001-03, and 2-03-001-02.

^e Emission factors based on an average distillate oil heating value of 139 MMBtu/10³ gallons. To convert from (lb/MMBtu) to (lb/10³ gallons), multiply by 139.

^f Based on 99.5% conversion of fuel carbon to CO₂ for natural gas and 99% conversion of fuel carbon to CO₂ for distillate oil. CO₂ (Natural Gas) [lb/MMBtu] = (0.0036 scf/Btu)(%CON)(C)(D), where %CON = weight percent conversion of fuel carbon to CO₂, C = carbon content of fuel by weight, and D = density of fuel. For natural gas, C is assumed at 75%, and D is assumed at 4.1 E+04 lb/10⁶scf. For distillate oil, CO₂ (Distillate Oil) [lb/MMBtu] = (26.4 gal/MMBtu) (%CON)(C)(D), where C is assumed at 87%, and the D is assumed at 6.9 lb/gallon.

^g Emission factor is carried over from the previous revision to AP-42 (Supplement B, October 1996) and is based on limited source tests on a single turbine with water-steam injection (Reference 5).

^h All sulfur in the fuel is assumed to be converted to SO₂. S = percent sulfur in fuel. Example, if sulfur content in the fuel is 3.4 percent, then S = 3.4. If S is not available, use 3.4 E-03 lb/MMBtu for natural gas turbines, and 3.3 E-02 lb/MMBtu for distillate oil turbines (the equations are more accurate).

^j VOC emissions are assumed equal to the sum of organic emissions.

^k Pollutant referenced as THC in the gathered emission tests. It is assumed as TOC, because it is based on EPA Test Method 25A.

^l Emission factors are based on combustion turbines using water-steam injection.

Table 3.1-3. EMISSION FACTORS FOR HAZARDOUS AIR POLLUTANTS
FROM NATURAL GAS-FIRED STATIONARY GAS TURBINES^a

Emission Factors ^b - Uncontrolled		
Pollutant	Emission Factor (lb/MMBtu) ^c	Emission Factor Rating
1,3-Butadiene ^d	< 4.3 E-07	D
Acetaldehyde	4.0 E-05	C
Acrolein	6.4 E-06	C
Benzene ^e	1.2 E-05	A
Ethylbenzene	3.2 E-05	C
Formaldehyde ^f	7.1 E-04	A
Naphthalene	1.3 E-06	C
PAH	2.2 E-06	C
Propylene Oxide ^d	< 2.9 E-05	D
Toluene	1.3 E-04	C
Xylenes	6.4 E-05	C

^a SCC for natural gas-fired turbines include 2-01-002-01, 2-02-002-01, 2-02-002-03, 2-03-002-02, and 2-03-002-03. Hazardous Air Pollutants as defined in Section 112 (b) of the *Clean Air Act*.

^b Factors are derived from units operating at high loads (≥ 80 percent load) only. For information on units operating at other loads, consult the background report for this chapter (Reference 16), available at “www.epa.gov/ttn/chief”.

^c Emission factors based on an average natural gas heating value (HHV) of 1020 Btu/scf at 60°F. To convert from (lb/MMBtu) to (lb/ 10^6 scf), multiply by 1020. These emission factors can be converted to other natural gas heating values by multiplying the given emission factor by the ratio of the specified heating value to this heating value.

^d Compound was not detected. The presented emission value is based on one-half of the detection limit.

^e Benzene with SCONOX catalyst is 9.1 E-07, rating of D.

^f Formaldehyde with SCONOX catalyst is 2.0 E-05, rating of D.

Table 1.4-1. EMISSION FACTORS FOR NITROGEN OXIDES (NO_x) AND CARBON MONOXIDE (CO)
FROM NATURAL GAS COMBUSTION^a

Combustor Type (MMBtu/hr Heat Input) [SCC]	NO _x ^b		CO	
	Emission Factor (lb/10 ⁶ scf)	Emission Factor Rating	Emission Factor (lb/10 ⁶ scf)	Emission Factor Rating
Large Wall-Fired Boilers (>100) [1-01-006-01, 1-02-006-01, 1-03-006-01]				
Uncontrolled (Pre-NSPS) ^c	280	A	84	B
Uncontrolled (Post-NSPS) ^c	190	A	84	B
Controlled - Low NO _x burners	140	A	84	B
Controlled - Flue gas recirculation	100	D	84	B
Small Boilers (<100) [1-01-006-02, 1-02-006-02, 1-03-006-02, 1-03-006-03]				
Uncontrolled	100	B	84	B
Controlled - Low NO _x burners	50	D	84	B
Controlled - Low NO _x burners/Flue gas recirculation	32	C	84	B
Tangential-Fired Boilers (All Sizes) [1-01-006-04]				
Uncontrolled	170	A	24	C
Controlled - Flue gas recirculation	76	D	98	D
Residential Furnaces (<0.3) [No SCC]				
Uncontrolled	94	B	40	B

^a Reference 11. Units are in pounds of pollutant per million standard cubic feet of natural gas fired. To convert from lb/10⁶ scf to kg/10⁶ m³, multiply by 16. Emission factors are based on an average natural gas higher heating value of 1,020 Btu/scf. To convert from 1b/10⁶ scf to lb/MMBtu, divide by 1,020. The emission factors in this table may be converted to other natural gas heating values by multiplying the given emission factor by the ratio of the specified heating value to this average heating value. SCC = Source Classification Code. ND = no data. NA = not applicable.

^b Expressed as NO₂. For large and small wall fired boilers with SNCR control, apply a 24 percent reduction to the appropriate NO_x emission factor. For tangential-fired boilers with SNCR control, apply a 13 percent reduction to the appropriate NO_x emission factor.

^c NSPS=New Source Performance Standard as defined in 40 CFR 60 Subparts D and Db. Post-NSPS units are boilers with greater than 250 MMBtu/hr of heat input that commenced construction modification, or reconstruction after August 17, 1971, and units with heat input capacities between 100 and 250 MMBtu/hr that commenced construction modification, or reconstruction after June 19, 1984.

TABLE 1.4-2. EMISSION FACTORS FOR CRITERIA POLLUTANTS AND GREENHOUSE GASES FROM NATURAL GAS COMBUSTION^a

Pollutant	Emission Factor (lb/10 ⁶ scf)	Emission Factor Rating
CO ₂ ^b	120,000	A
Lead	0.0005	D
N ₂ O (Uncontrolled)	2.2	E
N ₂ O (Controlled-low-NO _x burner)	0.64	E
PM (Total) ^c	7.6	D
PM (Condensable) ^c	5.7	D
PM (Filterable) ^c	1.9	B
SO ₂ ^d	0.6	A
TOC	11	B
Methane	2.3	B
VOC	5.5	C

^a Reference 11. Units are in pounds of pollutant per million standard cubic feet of natural gas fired. Data are for all natural gas combustion sources. To convert from lb/10⁶ scf to kg/10⁶ m³, multiply by 16. To convert from lb/10⁶ scf to 1b/MMBtu, divide by 1,020. The emission factors in this table may be converted to other natural gas heating values by multiplying the given emission factor by the ratio of the specified heating value to this average heating value. TOC = Total Organic Compounds. VOC = Volatile Organic Compounds.

^b Based on approximately 100% conversion of fuel carbon to CO₂. CO₂[lb/10⁶ scf] = (3.67) (CON) (C)(D), where CON = fractional conversion of fuel carbon to CO₂, C = carbon content of fuel by weight (0.76), and D = density of fuel, 4.2x10⁴ lb/10⁶ scf.

^c All PM (total, condensable, and filterable) is assumed to be less than 1.0 micrometer in diameter. Therefore, the PM emission factors presented here may be used to estimate PM₁₀, PM_{2.5} or PM₁ emissions. Total PM is the sum of the filterable PM and condensable PM. Condensable PM is the particulate matter collected using EPA Method 202 (or equivalent). Filterable PM is the particulate matter collected on, or prior to, the filter of an EPA Method 5 (or equivalent) sampling train.

^d Based on 100% conversion of fuel sulfur to SO₂. Assumes sulfur content is natural gas of 2,000 grains/10⁶ scf. The SO₂ emission factor in this table can be converted to other natural gas sulfur contents by multiplying the SO₂ emission factor by the ratio of the site-specific sulfur content (grains/10⁶ scf) to 2,000 grains/10⁶ scf.

TABLE 1.4-3. EMISSION FACTORS FOR SPECIATED ORGANIC COMPOUNDS FROM
NATURAL GAS COMBUSTION (Continued)

TABLE 1.4-3. EMISSION FACTORS FOR SPECIATED ORGANIC COMPOUNDS FROM
NATURAL GAS COMBUSTION^a

CAS No.	Pollutant	Emission Factor (lb/10 ⁶ scf)	Emission Factor Rating
91-57-6	2-Methylnaphthalene ^{b,c}	2.4E-05	D
56-49-5	3-Methylchloranthrene ^{b,c}	<1.8E-06	E
	7,12-Dimethylbenz(a)anthracene ^{b,c}	<1.6E-05	E
83-32-9	Acenaphthene ^{b,c}	<1.8E-06	E
203-96-8	Acenaphthylene ^{b,c}	<1.8E-06	E
120-12-7	Anthracene ^{b,c}	<2.4E-06	E
56-55-3	Benz(a)anthracene ^{b,c}	<1.8E-06	E
71-43-2	Benzene ^b	2.1E-03	B
50-32-8	Benzo(a)pyrene ^{b,c}	<1.2E-06	E
205-99-2	Benzo(b)fluoranthene ^{b,c}	<1.8E-06	E
191-24-2	Benzo(g,h,i)perylene ^{b,c}	<1.2E-06	E
207-08-9	Benzo(k)fluoranthene ^{b,c}	<1.8E-06	E
106-97-8	Butane	2.1E+00	E
218-01-9	Chrysene ^{b,c}	<1.8E-06	E
53-70-3	Dibenzo(a,h)anthracene ^{b,c}	<1.2E-06	E
25321-22-6	Dichlorobenzene ^b	1.2E-03	E
74-84-0	Ethane	3.1E+00	E
206-44-0	Fluoranthene ^{b,c}	3.0E-06	E
86-73-7	Fluorene ^{b,c}	2.8E-06	E
50-00-0	Formaldehyde ^b	7.5E-02	B
110-54-3	Hexane ^b	1.8E+00	E
193-39-5	Indeno(1,2,3-cd)pyrene ^{b,c}	<1.8E-06	E
91-20-3	Naphthalene ^b	6.1E-04	E
109-66-0	Pentane	2.6E+00	E
85-01-8	Phenanathrene ^{b,c}	1.7E-05	D
74-98-6	Propane	1.6E+00	E

TABLE 1.4-3. EMISSION FACTORS FOR SPECIATED ORGANIC COMPOUNDS FROM
NATURAL GAS COMBUSTION (Continued)

CAS No.	Pollutant	Emission Factor (lb/10 ⁶ scf)	Emission Factor Rating
129-00-0	Pyrene ^{b, c}	5.0E-06	E
108-88-3	Toluene ^b	3.4E-03	C

^a Reference 11. Units are in pounds of pollutant per million standard cubic feet of natural gas fired. Data are for all natural gas combustion sources. To convert from lb/10⁶ scf to kg/10⁶ m³, multiply by 16. To convert from 1b/10⁶ scf to lb/MMBtu, divide by 1,020. Emission Factors preceded with a less-than symbol are based on method detection limits.

^b Hazardous Air Pollutant (HAP) as defined by Section 112(b) of the Clean Air Act.

^c HAP because it is Polycyclic Organic Matter (POM). POM is a HAP as defined by Section 112(b) of the Clean Air Act.

^d The sum of individual organic compounds may exceed the VOC and TOC emission factors due to differences in test methods and the availability of test data for each pollutant.

TANKS 4.0.9d
Emissions Report - Detail Format
Tank Identification and Physical Characteristics

Identification

User Identification: Linam Ranch TK-2
City: Near Hobbs
State: New Mexico
Company: DCP Midstream, LP
Type of Tank: Horizontal Tank
Description: 500 gallon gasoline tank

Tank Dimensions

Shell Length (ft):	5.25
Diameter (ft):	4.00
Volume (gallons):	500.00
Turnovers:	6.00
Net Throughput(gal/yr):	3,000.00
Is Tank Heated (y/n):	N
Is Tank Underground (y/n):	N

Paint Characteristics

Shell Color/Shade: Red/Primer
Shell Condition: Poor

Breather Vent Settings

Vacuum Settings (psig):	-0.03
Pressure Settings (psig)	0.03

Meteorological Data used in Emissions Calculations: Roswell, New Mexico (Avg Atmospheric Pressure = 12.73 psia)

TANKS 4.0.9d
Emissions Report - Detail Format
Detail Calculations (AP-42)

Linam Ranch TK-2 - Horizontal Tank
Near Hobbs, New Mexico

Annual Emission Calculations

Standing Losses (lb): 1,358.4042
 Vapor Space Volume (cu ft): 42.0213
 Vapor Density (lb/cu ft): 0.1006
 Vapor Space Expansion Factor: 1.7509
 Vented Vapor Saturation Factor: 0.5026

Tank Vapor Space Volume:
 Vapor Space Volume (cu ft): 42.0213
 Tank Diameter (ft): 4.0000
 Effective Diameter (ft): 5.1722
 Vapor Space Outage (ft): 2.0000
 Tank Shell Length (ft): 5.2500

Vapor Density
 Vapor Density (lb/cu ft): 0.1006
 Vapor Molecular Weight (lb/lb-mole): 62.0000
 Vapor Pressure at Daily Average Liquid Surface Temperature (psia): 9.3367
 Daily Avg. Liquid Surface Temp. (deg. R): 535.9964
 Daily Average Ambient Temp. (deg. F): 60.8167
 Ideal Gas Constant R
 (psi cuft / (lb-mol-deg R)): 10.731
 Liquid Bulk Temperature (deg. R): 524.9467
 Tank Paint Solar Absorbance (Shell): 0.9100
 Daily Total Solar Insulation Factor (Btu/sqft day): 1,810.0000

Vapor Space Expansion Factor
 Vapor Space Expansion Factor: 1.7509
 Daily Vapor Temperature Range (deg. R): 67.5988
 Daily Vapor Pressure Range (psia): 5.5751
 Breather Vent Press. Setting Range(psia): 0.0600
 Vapor Pressure at Daily Average Liquid Surface Temperature (psia): 9.3367
 Vapor Pressure at Daily Minimum Liquid Surface Temperature (psia): 6.8731
 Vapor Pressure at Daily Maximum Liquid Surface Temperature (psia): 12.4481
 Daily Avg. Liquid Surface Temp. (deg R): 535.9964
 Daily Min. Liquid Surface Temp. (deg R): 519.0967
 Daily Max. Liquid Surface Temp. (deg R): 552.8961
 Daily Ambient Temp. Range (deg. R): 29.8333

Vented Vapor Saturation Factor
 Vented Vapor Saturation Factor: 0.5026
 Vapor Pressure at Daily Average Liquid Surface Temperature (psia): 9.3367
 Vapor Space Outage (ft): 2.0000

Working Losses (lb): 41.3484
 Vapor Molecular Weight (lb/lb-mole): 62.0000
 Vapor Pressure at Daily Average Liquid Surface Temperature (psia): 9.3367
 Annual Net Throughput (gal/yr.): 3,000.0000
 Annual Turnovers: 6.0000
 Turnover Factor: 1.0000
 Tank Diameter (ft): 4.0000
 Working Loss Product Factor: 1.0000

Total Losses (lb): 1,399.7525

TANKS 4.0.9d
Emissions Report - Detail Format
Individual Tank Emission Totals

Emissions Report for: Annual

Linam Ranch TK-2 - Horizontal Tank
Near Hobbs, New Mexico

Components	Losses(lbs)		
	Working Loss	Breathing Loss	Total Emissions
Gasoline (RVP 13)	41.35	1,358.40	1,399.75
Hexane (-n)	0.19	6.22	6.41
Benzene	0.21	7.02	7.23
Isooctane	0.26	8.55	8.81
Toluene	0.25	8.14	8.39
Ethylbenzene	0.02	0.57	0.58
Xylene (-m)	0.07	2.37	2.44
Isopropyl benzene	0.00	0.10	0.10
1,2,4-Trimethylbenzene	0.01	0.21	0.21
Cyclohexane	0.03	0.96	0.99
Unidentified Components	40.31	1,324.27	1,364.58

GRI-GLYCalc VERSION 4.0 - AGGREGATE CALCULATIONS REPORT

Case Name: Linam DH-10, 27MM/day, 25gpm, 100% control
 File Name: P:\1. CLIENTS\DCP Midstream\Linam Ranch\Projects\163201.0074 Linam Ranch GP
 Tech Rev\04 REFERENCE\Linam DH-10 2016 pump uprate.ddf
 Date: February 25, 2016

DESCRIPTION:

Description: Linam DH-10, 27MM/day, 25gpm, 100% control
 Flash and Cond to flare

Annual Hours of Operation: 8760.0 hours/yr

EMISSIONS REPORTS:

CONTROLLED REGENERATOR EMISSIONS

Component	lbs/hr	lbs/day	tons/yr
Methane	1.6465	39.517	7.2119
Ethane	3.3535	80.483	14.6881
Propane	1.4901	35.763	6.5267
Isobutane	0.0509	1.221	0.2228
n-Butane	0.0734	1.762	0.3215
Isopentane	0.0016	0.039	0.0071
n-Pentane	0.0012	0.028	0.0051
Total Emissions	6.6172	158.812	28.9832
Total Hydrocarbon Emissions	6.6172	158.812	28.9832
Total VOC Emissions	1.6172	38.812	7.0832

UNCONTROLLED REGENERATOR EMISSIONS

Component	lbs/hr	lbs/day	tons/yr
Methane	1.6466	39.519	7.2122
Ethane	3.3537	80.488	14.6891
Propane	1.4902	35.765	6.5270
Isobutane	0.0509	1.221	0.2228
n-Butane	0.0734	1.762	0.3215
Isopentane	0.0016	0.039	0.0071
n-Pentane	0.0012	0.028	0.0051
Total Emissions	6.6176	158.821	28.9849
Total Hydrocarbon Emissions	6.6176	158.821	28.9849
Total VOC Emissions	1.6173	38.814	7.0836

FLASH TANK OFF GAS

Component	lbs/hr	lbs/day	tons/yr
Methane	24.6184	590.841	107.8285
Ethane	14.7762	354.629	64.7199
Propane	3.2959	79.102	14.4361
Isobutane	0.0769	1.847	0.3370
n-Butane	0.0867	2.081	0.3798

Isopentane	0.0017	0.041	0.0076
n-Pentane	0.0010	0.024	0.0044
-----	-----	-----	-----
Total Emissions	42.8569	1028.566	187.7133
Total Hydrocarbon Emissions	42.8569	1028.566	187.7133
Total VOC Emissions	3.4623	83.095	15.1649

EQUIPMENT REPORTS:

CONDENSER

Condenser Outlet Temperature:	80.00 deg. F
Condenser Pressure:	2.00 psia
Condenser Duty:	7.84e-002 MM BTU/hr
Produced Water:	6.31 bbls/day
VOC Control Efficiency:	0.00 %
HAP Control Efficiency:	0.00 %
BTEX Control Efficiency:	0.00 %
Dissolved Hydrocarbons in Water:	4.05 mg/L

Component	Emitted	Condensed
Water	1.69%	98.31%
Carbon Dioxide	99.88%	0.12%
Nitrogen	100.00%	0.00%
Methane	100.00%	0.00%
Ethane	99.99%	0.01%
Propane	100.00%	0.00%
Isobutane	100.00%	0.00%
n-Butane	100.00%	0.00%
Isopentane	100.00%	0.00%
n-Pentane	100.00%	0.00%

ABSORBER

NOTE: Because the Calculated Absorber Stages was below the minimum allowed, GRI-GLYCalc has set the number of Absorber Stages to 1.25 and has calculated a revised Dry Gas Dew Point.

Calculated Absorber Stages:	1.25
Calculated Dry Gas Dew Point:	3.27 lbs. H ₂ O/MMSCF
Temperature:	100.0 deg. F
Pressure:	600.0 psig
Dry Gas Flow Rate:	27.0000 MMSCF/day
Glycol Losses with Dry Gas:	0.1869 lb/hr
Wet Gas Water Content:	Saturated
Calculated Wet Gas Water Content:	86.45 lbs. H ₂ O/MMSCF
Calculated Lean Glycol Recirc. Ratio:	16.03 gal/lb H ₂ O

Component	Remaining in Dry Gas	Absorbed in Glycol
Water	3.77%	96.23%
Carbon Dioxide	99.13%	0.87%
Nitrogen	99.93%	0.07%
Methane	99.94%	0.06%

Ethane	99.78%	0.22%
Propane	99.62%	0.38%
Isobutane	99.44%	0.56%
n-Butane	99.26%	0.74%
Isopentane	99.22%	0.78%
n-Pentane	98.99%	1.01%

FLASH TANK

Flash Control: Vented to atmosphere
 Flash Temperature: 150.0 deg. F
 Flash Pressure: 30.0 psig

Component	Left in Glycol	Removed in Flash Gas
Water	99.94%	0.06%
Carbon Dioxide	40.32%	59.68%
Nitrogen	6.16%	93.84%
Methane	6.27%	93.73%
Ethane	18.50%	81.50%
Propane	31.14%	68.86%
Isobutane	39.80%	60.20%
n-Butane	45.84%	54.16%
Isopentane	48.87%	51.13%
n-Pentane	54.05%	45.95%

REGENERATOR

No Stripping Gas used in regenerator.

Component	Remaining in Glycol	Distilled Overhead
Water	69.27%	30.73%
Carbon Dioxide	0.00%	100.00%
Nitrogen	0.00%	100.00%
Methane	0.00%	100.00%
Ethane	0.00%	100.00%
Propane	0.00%	100.00%
Isobutane	0.00%	100.00%
n-Butane	0.00%	100.00%
Isopentane	1.02%	98.98%
n-Pentane	0.93%	99.07%

STREAM REPORTS:

WET GAS STREAM

Temperature: 100.00 deg. F
 Pressure: 614.70 psia
 Flow Rate: 1.13e+006 scfh

Component	Conc. (vol%)	Loading (lb/hr)
-----------	-----------------	--------------------

Water	1.82e-001	9.75e+001
Carbon Dioxide	2.99e-003	3.92e+000
Nitrogen	2.68e+000	2.23e+003
Methane	8.69e+001	4.14e+004
Ethane	9.26e+000	8.27e+003
Propane	9.57e-001	1.25e+003
Isobutane	1.33e-002	2.29e+001
n-Butane	1.26e-002	2.17e+001
Isopentane	2.00e-004	4.28e-001
n-Pentane	9.98e-005	2.14e-001
Total Components	100.00	5.33e+004

DRY GAS STREAM

Temperature: 100.00 deg. F
 Pressure: 614.70 psia
 Flow Rate: 1.13e+006 scfh

Component	Conc.	Loading
	(vol%)	(lb/hr)
Water	6.89e-003	3.68e+000
Carbon Dioxide	2.98e-003	3.88e+000
Nitrogen	2.68e+000	2.23e+003
Methane	8.71e+001	4.14e+004
Ethane	9.26e+000	8.26e+003
Propane	9.56e-001	1.25e+003
Isobutane	1.32e-002	2.28e+001
n-Butane	1.25e-002	2.16e+001
Isopentane	1.99e-004	4.25e-001
n-Pentane	9.91e-005	2.12e-001
Total Components	100.00	5.32e+004

LEAN GLYCOL STREAM

Temperature: 100.00 deg. F
 Flow Rate: 2.50e+001 gpm

Component	Conc.	Loading
	(wt%)	(lb/hr)
TEG	9.85e+001	1.39e+004
Water	1.50e+000	2.11e+002
Carbon Dioxide	2.42e-014	3.40e-012
Nitrogen	1.09e-012	1.53e-010
Methane	6.27e-018	8.82e-016
Ethane	6.08e-008	8.56e-006
Propane	1.38e-009	1.95e-007
Isobutane	2.72e-011	3.83e-009
n-Butane	2.82e-011	3.97e-009
Isopentane	1.20e-007	1.69e-005
n-Pentane	7.71e-008	1.09e-005
Total Components	100.00	1.41e+004

RICH GLYCOL STREAM

Temperature: 100.00 deg. F

Pressure: 614.70 psia

Flow Rate: 2.53e+001 gpm

NOTE: Stream has more than one phase.

Component	Conc. (wt%)	Loading (lb/hr)
TEG	9.75e+001	1.39e+004
Water	2.14e+000	3.05e+002
Carbon Dioxide	2.39e-004	3.40e-002
Nitrogen	1.07e-002	1.52e+000
Methane	1.85e-001	2.63e+001
Ethane	1.27e-001	1.81e+001
Propane	3.37e-002	4.79e+000
Isobutane	8.99e-004	1.28e-001
n-Butane	1.13e-003	1.60e-001
Isopentane	2.37e-005	3.37e-003
n-Pentane	1.53e-005	2.17e-003
Total Components	100.00	1.42e+004

FLASH TANK OFF GAS STREAM

Temperature: 150.00 deg. F

Pressure: 44.70 psia

Flow Rate: 8.21e+002 scfh

Component	Conc. (vol%)	Loading (lb/hr)
Water	4.34e-001	1.69e-001
Carbon Dioxide	2.13e-002	2.03e-002
Nitrogen	2.35e+000	1.42e+000
Methane	7.09e+001	2.46e+001
Ethane	2.27e+001	1.48e+001
Propane	3.45e+000	3.30e+000
Isobutane	6.12e-002	7.69e-002
n-Butane	6.89e-002	8.67e-002
Isopentane	1.10e-003	1.72e-003
n-Pentane	6.39e-004	9.97e-004
Total Components	100.00	4.45e+001

FLASH TANK GLYCOL STREAM

Temperature: 150.00 deg. F

Flow Rate: 2.52e+001 gpm

Component	Conc. (wt%)	Loading (lb/hr)
TEG	9.78e+001	1.39e+004
Water	2.15e+000	3.05e+002
Carbon Dioxide	9.67e-005	1.37e-002
Nitrogen	6.59e-004	9.34e-002
Methane	1.16e-002	1.65e+000
Ethane	2.37e-002	3.35e+000
Propane	1.05e-002	1.49e+000
Isobutane	3.59e-004	5.09e-002
n-Butane	5.18e-004	7.34e-002
Isopentane	1.16e-005	1.65e-003

n-Pentane 8.28e-006 1.17e-003

Total Components 100.00 1.42e+004

REGENERATOR OVERHEADS STREAM

Temperature: 212.00 deg. F

Pressure: 14.70 psia

Flow Rate: 2.07e+003 scfh

Component	Conc. (vol%)	Loading (lb/hr)
Water	9.53e+001	9.37e+001
Carbon Dioxide	5.71e-003	1.37e-002
Nitrogen	6.12e-002	9.34e-002
Methane	1.88e+000	1.65e+000
Ethane	2.04e+000	3.35e+000
Propane	6.19e-001	1.49e+000
Isobutane	1.60e-002	5.09e-002
n-Butane	2.32e-002	7.34e-002
Isopentane	4.14e-004	1.63e-003
n-Pentane	2.95e-004	1.16e-003
Total Components	100.00	1.00e+002

CONDENSER VENT GAS STREAM

Temperature: 80.00 deg. F

Pressure: 2.00 psia

Flow Rate: 1.30e+002 scfh

Component	Conc. (vol%)	Loading (lb/hr)
Water	2.57e+001	1.58e+000
Carbon Dioxide	9.11e-002	1.37e-002
Nitrogen	9.77e-001	9.34e-002
Methane	3.01e+001	1.65e+000
Ethane	3.27e+001	3.35e+000
Propane	9.90e+000	1.49e+000
Isobutane	2.56e-001	5.09e-002
n-Butane	3.70e-001	7.34e-002
Isopentane	6.62e-003	1.63e-003
n-Pentane	4.72e-003	1.16e-003
Total Components	100.00	8.30e+000

CONDENSER PRODUCED WATER STREAM

Temperature: 80.00 deg. F

Flow Rate: 1.84e-001 gpm

Component	Conc. (wt%)	Loading (lb/hr)	(ppm)
Water	1.00e+002	9.21e+001	999996.
Carbon Dioxide	1.77e-005	1.63e-005	0.
Nitrogen	2.37e-006	2.18e-006	0.
Methane	8.92e-005	8.21e-005	1.
Ethane	2.37e-004	2.19e-004	2.

Propane	7.40e-005	6.81e-005	1.
Isobutane	1.45e-006	1.34e-006	0.
n-Butane	2.93e-006	2.69e-006	0.
Isopentane	4.90e-008	4.51e-008	0.
n-Pentane	3.88e-008	3.57e-008	0.
<hr/>			
Total Components	100.00	9.21e+001	1000000.

CONDENSER RECOVERED OIL STREAM

Temperature: 80.00 deg. F

The calculated flow rate is less than 0.000001 #mol/hr.
The stream flow rate and composition are not reported.

TANKS 4.0.9d
Emissions Report - Detail Format
Tank Identification and Physical Characteristics

Identification

User Identification: TK-VRU
City: Hobbs, NM
State: DCP Midstream
Company: Vertical Fixed Roof Tank
Type of Tank: 750 bbl Linam Ranch Gas Plant
Description:

Tank Dimensions

Shell Height (ft):	24.00
Diameter (ft):	15.50
Liquid Height (ft) :	24.00
Avg. Liquid Height (ft):	12.00
Volume (gallons):	31,500.00
Turnovers:	876.00
Net Throughput(gal/yr):	27,594,000.00
Is Tank Heated (y/n):	N

Paint Characteristics

Shell Color/Shade:	White/White
Shell Condition	Good
Roof Color/Shade:	White/White
Roof Condition:	Good

Roof Characteristics

Type:	Cone
Height (ft)	0.00
Slope (ft/ft) (Cone Roof)	0.06

Breather Vent Settings

Vacuum Settings (psig):	-0.03
Pressure Settings (psig)	0.03

Meteorological Data used in Emissions Calculations: Roswell, New Mexico (Avg Atmospheric Pressure = 12.73 psia)

TANKS 4.0.9d
Emissions Report - Detail Format
Liquid Contents of Storage Tank

LRGP G-Tank - Vertical Fixed Roof Tank
Artesia, New Mexico

Mixture/Component	Month	Daily Liquid Surf. Temperature (deg F)			Liquid Bulk Temp (deg F)			Vapor Pressure (psia)			Vapor Mol. Weight.	Liquid Mass Fract.	Vapor Mass Fract.	Mol. Weight	Basis for Vapor Pressure Calculations
		Avg.	Min.	Max.	Avg.	Min.	Max.	Avg.	Min.	Max.					
Gasoline (RVP 10)	All	63.26	55.73	70.78	60.84	5.5219	4.7708	6.3647	66.0000			92.00			Option 4: RVP=10, ASTM Slope=3

TANKS 4.0.9d
Emissions Report - Detail Format
Detail Calculations (AP-42)

LRGP G-Tank - Vertical Fixed Roof Tank
Artesia, New Mexico

Annual Emission Calculations	
Standing Losses (lb):	3,225,4083
Vapor Space Volume (cu ft):	2,294,7688
Vapor Density (lb/cu ft):	0.0649
Vapor Space Expansion Factor:	0.2703
Ventted Vapor Saturation Factor:	0.2193
Tank Vapor Space Volume:	
Vapor Space Volume (cu ft):	2,294,7688
Tank Diameter (ft):	15.5000
Vapor Space Outage (ft):	12.1615
Tank Shell Height (ft):	24.0000
Average Liquid Height (ft):	12.0000
Roof Outage (ft):	0.1615
Roof Outage (Cone Roof)	
Roof Outage (ft):	0.1615
Roof Height (ft):	0.0000
Roof Slope (ft/ft):	0.0625
Shell Radius (ft):	7.7500
Vapor Density	
Vapor Density (lb/cu ft):	0.0649
Vapor Molecular Weight (lb/lb-mole):	66.0000
Vapor Pressure at Daily Average Liquid Surface Temperature (psia):	5.5219
Daily Avg. Liquid Surface Temp. (deg R):	522.9287
Daily Average Ambient Temp. (deg F):	60.8167
Ideal Gas Constant R (psia cuft / (lb-mol-deg R)):	10.731
Liquid Bulk Temperature (deg R):	520.5067
Tank Paint Solar Absorptance (Shell):	0.1700
Tank Paint Solar Absorptance (Roof):	0.1700
Daily Total Solar Insulation Factor (Btu/sqft day):	1,810.0000
Vapor Space Expansion Factor	
Vapor Space Expansion Factor:	0.2703
Daily Vapor Temperature Range (deg R):	30.0956
Daily Vapor Pressure Range (psia):	1.5939
Breathable Vapor Pressure Sensitive Range (psia):	0.0600
Vapor Pressure at Daily Average Liquid Surface Temperature (psia):	5.5219
Vapor Pressure at Daily Minimum Liquid Surface Temperature (psia):	4.7708
Vapor Pressure at Daily Maximum Liquid Surface Temperature (psia):	6.3647
Daily Avg. Liquid Surface Temp. (deg R):	522.9287
Daily Min. Liquid Surface Temp. (deg R):	515.4048
Daily Max. Liquid Surface Temp. (deg R):	530.4526
Daily Ambient Temp. Range (deg R):	29.8333
Ventted Vapor Saturation Factor	
Ventted Vapor Saturation Factor:	0.2193
Vapor Pressure at Daily Average Liquid Surface Temperature (psia):	5.5219
Vapor Space Outage (ft):	12.1615
Working Losses (lb):	48,106.3704
Vapor Molecular Weight (lb/lb-mole):	66.0000
Vapor Pressure at Daily Average Liquid Surface Temperature (psia):	5.5219
Annual Net Throughput (gal/yr.):	27,594,000.0000
Annual Turnovers:	876.0000
Turnover Factor:	0.2009
Maximum Liquid Volume (gal):	31,500.0000
Maximum Liquid Height (ft):	24.0000
Tank Diameter (ft):	15.5000
Working Loss Product Factor:	1.0000
Total Losses (lb):	51,331.7787

TANKS 4.0.9d
Emissions Report - Detail Format
Individual Tank Emission Totals

Emissions Report for: Annual

LRGP G-Tank - Vertical Fixed Roof Tank
Artesia, New Mexico

Components	Losses(lbs)		
	Working Loss	Breathing Loss	Total Emissions
Gasoline (RVP 10)	48,106.37	3,225.41	51,331.78

TANKS 4.0.9d
Emissions Report - Detail Format
Tank Identification and Physical Characteristics

Identification

User Identification: TK-VRUTMP 1 and 2
City: Hobbs
State: New Mexico
Company: DCP Midstream
Type of Tank: Horizontal Tank
Description: Horizontal bullet tanks, 1500 bbl

Tank Dimensions

Shell Length (ft):	72.50
Diameter (ft):	12.00
Volume (gallons):	63,000.00
Turnovers:	438.00
Net Throughput(gal/yr):	27,594,000.00
Is Tank Heated (y/n):	N
Is Tank Underground (y/n):	N

Paint Characteristics

Shell Color/Shade: White/White
Shell Condition: Good

Breather Vent Settings

Vacuum Settings (psig):	-0.03
Pressure Settings (psig)	0.03

Meteorological Data used in Emissions Calculations: Roswell, New Mexico (Avg Atmospheric Pressure = 12.73 psia)

TANKS 4.0.9d
Emissions Report - Detail Format
Liquid Contents of Storage Tank

TK-VRUTMP 1 and 2 - Horizontal Tank
Hobbs, New Mexico

Mixture/Component	Month	Daily Liquid Surf. Temperature (deg F)			Liquid Bulk Temp (deg F)	Vapor Pressure (psia)			Vapor Mol. Weight.	Liquid Mass Fract.	Vapor Mass Fract.	Mol. Weight	Basis for Vapor Pressure Calculations
		Avg.	Min.	Max.		Avg.	Min.	Max.					
Gasoline (RVP 10)	All	63.26	55.73	70.78	60.84	5.5219	4.7708	6.3647	66.0000			92.00	Option 4: RVP=10, ASTM Slope=3

TANKS 4.0.9d
Emissions Report - Detail Format
Detail Calculations (AP-42)

TK-VRUTMP 1 and 2 - Horizontal Tank
Hobbs, New Mexico

Annual Emission Calculations

Standing Losses (lb): 12,143.6488
 Vapor Space Volume (cu ft): 5,222.6477
 Vapor Density (lb/cu ft): 0.0649
 Vapor Space Expansion Factor: 0.2703
 Vented Vapor Saturation Factor: 0.3629

Tank Vapor Space Volume:
 Vapor Space Volume (cu ft): 5,222.6477
 Tank Diameter (ft): 12.0000
 Effective Diameter (ft): 33.2908
 Vapor Space Outage (ft): 6.0000
 Tank Shell Length (ft): 72.5000

Vapor Density
 Vapor Density (lb/cu ft): 0.0649
 Vapor Molecular Weight (lb/lb-mole): 66.0000
 Vapor Pressure at Daily Average Liquid
 Surface Temperature (psia): 5.5219
 Daily Avg. Liquid Surface Temp. (deg. R): 522.9287
 Daily Average Ambient Temp. (deg. F): 60.8167
 Ideal Gas Constant R
 (psia cuft / (lb-mol-deg R)): 10.731
 Liquid Bulk Temperature (deg. R): 520.5067
 Tank Paint Solar Absorptance (Shell): 0.1700
 Daily Total Solar Insulation
 Factor (Btu/sqft day): 1,810.0000

Vapor Space Expansion Factor
 Vapor Space Expansion Factor: 0.2703
 Daily Vapor Temperature Range (deg. R): 30.0956
 Daily Vapor Pressure Range (psia): 1.5939
 Breather Vent Press. Setting Range(psia): 0.0600
 Vapor Pressure at Daily Average Liquid
 Surface Temperature (psia): 5.5219
 Vapor Pressure at Daily Minimum Liquid
 Surface Temperature (psia): 4.7708
 Vapor Pressure at Daily Maximum Liquid
 Surface Temperature (psia): 6.3647
 Daily Avg. Liquid Surface Temp. (deg R): 522.9287
 Daily Min. Liquid Surface Temp. (deg R): 515.4048
 Daily Max. Liquid Surface Temp. (deg R): 530.4526
 Daily Ambient Temp. Range (deg. R): 29.8333

Vented Vapor Saturation Factor
 Vented Vapor Saturation Factor: 0.3629
 Vapor Pressure at Daily Average Liquid
 Surface Temperature (psia): 5.5219
 Vapor Space Outage (ft): 6.0000

Working Losses (lb): 56,306.3199
 Vapor Molecular Weight (lb/lb-mole): 66.0000
 Vapor Pressure at Daily Average Liquid
 Surface Temperature (psia): 5.5219
 Annual Net Throughput (gal/yr.): 27,594,000.0000

Annual Turnovers:	438.0000
Turnover Factor:	0.2352
Tank Diameter (ft):	12.0000
Working Loss Product Factor:	1.0000

Total Losses (lb):	68,449.9687
--------------------	-------------

TANKS 4.0.9d
Emissions Report - Detail Format
Individual Tank Emission Totals

Emissions Report for: Annual

TK-VRUTMP 1 and 2 - Horizontal Tank
Hobbs, New Mexico

	Losses(lbs)		
Components	Working Loss	Breathing Loss	Total Emissions
Gasoline (RVP 10)	56,306.32	12,143.65	68,449.97

Gas Analysis: Meter #M0501-00 Linam total inlet West from PGAS dated 4/22/05

Gas Constituent	Mol. Wt. (lb/lbmole)	Mole % (Vol %)	Weight (lb/lbmole Gas)	Wt. % (Wt %)
Methane	16.0	78.957	12.63	60.83
Ethane	30.0	9.477	2.84	13.69
Hydrogen Sulfide	34.1	0.661	0.23	1.08
Propane	44.0	4.757	2.09	10.08
i-Butane	58.0	0.678	0.39	1.89
n-Butane	58.0	1.390	0.81	3.88
i-Pentane	72.0	0.301	0.22	1.04
n-Pentane	72.0	0.284	0.20	0.98
Hexanes+	86.0	0.270	0.23	1.12
n-Hexane	86.0	0.000	0.00	0.00
Carbon Dioxide	44.0	1.359	0.60	2.88
Helium	4.0	0.000	0.00	0.00
Nitrogen	28.0	1.866	0.52	2.52
Total		100.00	20.77	100.0

Gas Analysis: Meter #M0500-00 Linam total inlet East from PGAS dated 7/27/05

Gas Constituent	Mol. Wt. (lb/lbmole)	Mole % (Vol %)	Weight (lb/lbmole Gas)	Wt. % (Wt %)
Methane	16.0	79.337	12.69	61.12
Ethane	30.0	9.553	2.87	13.80
Hydrogen Sulfide	34.1	0.300	0.10	0.49
Propane	44.0	4.578	2.01	9.70
i-Butane	58.0	0.596	0.35	1.66
n-Butane	58.0	1.314	0.76	3.67
i-Pentane	72.0	0.363	0.26	1.26
n-Pentane	72.0	0.363	0.26	1.26
Hexanes+	86.0	0.549	0.47	2.27
n-Hexane	86.0	0.000	0.00	0.00
Carbon Dioxide	44.0	1.280	0.56	2.71
Helium	4.0	0.000	0.00	0.00
Nitrogen	28.0	1.767	0.49	2.38
Total		100.00	20.84	100.3

Solar Turbines

A Caterpillar Company

PREDICTED EMISSION PERFORMANCE

Customer	Engine Model TAURUS 60-7800S CS/MD 59F MATCH		
Job ID			
Inquiry Number			
Run By	Date Run	Water Injection	
David A Pocengal	7-Mar-11	SD NATURAL GAS	NO
		Engine Emissions Data	
		REV. 0.1	

NOx EMISSIONS

CO EMISSIONS

UHC EMISSIONS

1	7340 HP	100.0% Load	Elev. 3647 ft	Rel. Humidity 60.0%	Temperature 0 Deg. F
PPMvd at 15% O2	15.00			25.00	25.00
ton/yr	15.18			15.41	8.82
Ibm/MMBtu (Fuel LHV)	0.060			0.061	0.035
Ibm/(MW-hr)	0.63			0.64	0.37
(gas turbine shaft pwr)					
Ibm/hr	3.47			3.52	2.01
g/(Hp-hr)	0.21			0.22	0.12
(gas turbine shaft pwr)					
2	7121 HP	100.0% Load	Elev. 3647 ft	Rel. Humidity 60.0%	Temperature 20.0 Deg. F
PPMvd at 15% O2	15.00			25.00	25.00
ton/yr	14.84			15.05	8.62
Ibm/MMBtu (Fuel LHV)	0.060			0.061	0.035
Ibm/(MW-hr)	0.64			0.65	0.37
(gas turbine shaft pwr)					
Ibm/hr	3.39			3.44	1.97
g/(Hp-hr)	0.22			0.22	0.13
(gas turbine shaft pwr)					

Notes

1. For short-term emission limits such as lbs/hr., Solar recommends using "worst case" anticipated operating conditions specific to the application and the site conditions. Worst case for one pollutant is not necessarily the same for another.
2. Solar's typical SoLoNOx warranty, for ppm values, is available for greater than 0 deg F, and between 50% and 100% load for gas fuel, and between 65% and 100% load for liquid fuel (except for the Centaur 40). An emission warranty for non-SoLoNOx equipment is available for greater than 0 deg F and between 80% and 100% load.
3. Fuel must meet Solar standard fuel specification ES 9-98. Emissions are based on the attached fuel composition, or, San Diego natural gas or equivalent.
4. If needed, Solar can provide Product Information Letters to address turbine operation outside typical warranty ranges, as well as non-warranted emissions of SO2, PM10/2.5, VOC, and formaldehyde.
5. Solar can provide factory testing in San Diego to ensure the actual unit(s) meet the above values within the tolerances quoted. Pricing and schedule impact will be provided upon request.
6. Any emissions warranty is applicable only for steady-state conditions and does not apply during start-up, shut-down, malfunction, or transient event.

Solar Turbines

A Caterpillar Company

PREDICTED EMISSION PERFORMANCE

Customer	Engine Model TAURUS 60-7800S CS/MD 59F MATCH		
Job ID			
Inquiry Number			
Run By David A Pocengal	Date Run 7-Mar-11	Fuel Type SD NATURAL GAS	Water Injection NO
		Engine Emissions Data REV. 0.1	

NOx EMISSIONS

CO EMISSIONS

UHC EMISSIONS

3	6868 HP	100.0% Load	Elev. 3647 ft	Rel. Humidity 60.0%	Temperature 40.0 Deg. F
PPMvd at 15% O2	15.00			25.00	25.00
ton/yr	14.40			14.61	8.37
Ibm/MMBtu (Fuel LHV)	0.060			0.061	0.035
Ibm/(MW-hr)	0.64			0.65	0.37
(gas turbine shaft pwr)					
Ibm/hr	3.29			3.34	1.91
g/(Hp-hr)	0.22			0.22	0.13
(gas turbine shaft pwr)					
4	6520 HP	100.0% Load	Elev. 3647 ft	Rel. Humidity 60.0%	Temperature 60.0 Deg. F
PPMvd at 15% O2	15.00			25.00	25.00
ton/yr	13.82			14.02	8.03
Ibm/MMBtu (Fuel LHV)	0.060			0.061	0.035
Ibm/(MW-hr)	0.65			0.66	0.38
(gas turbine shaft pwr)					
Ibm/hr	3.16			3.20	1.83
g/(Hp-hr)	0.22			0.22	0.13
(gas turbine shaft pwr)					

Notes

1. For short-term emission limits such as lbs/hr., Solar recommends using "worst case" anticipated operating conditions specific to the application and the site conditions. Worst case for one pollutant is not necessarily the same for another.
2. Solar's typical SoLoNOx warranty, for ppm values, is available for greater than 0 deg F, and between 50% and 100% load for gas fuel, and between 65% and 100% load for liquid fuel (except for the Centaur 40). An emission warranty for non-SoLoNOx equipment is available for greater than 0 deg F and between 80% and 100% load.
3. Fuel must meet Solar standard fuel specification ES 9-98. Emissions are based on the attached fuel composition, or, San Diego natural gas or equivalent.
4. If needed, Solar can provide Product Information Letters to address turbine operation outside typical warranty ranges, as well as non-warranted emissions of SO2, PM10/2.5, VOC, and formaldehyde.
5. Solar can provide factory testing in San Diego to ensure the actual unit(s) meet the above values within the tolerances quoted. Pricing and schedule impact will be provided upon request.
6. Any emissions warranty is applicable only for steady-state conditions and does not apply during start-up, shut-down, malfunction, or transient event.

Solar Turbines

A Caterpillar Company

PREDICTED EMISSION PERFORMANCE

Customer	
Job ID	
Inquiry Number	
Run By David A Pocengal	Date Run 7-Mar-11

Engine Model TAURUS 60-7800S	
CS/MD 59F MATCH	
Fuel Type SD NATURAL GAS	Water Injection NO
Engine Emissions Data REV. 0.1	

NOx EMISSIONS

CO EMISSIONS

UHC EMISSIONS

3	6868 HP	100.0% Load	Elev. 3647 ft	Rel. Humidity 60.0%	Temperature 40.0 Deg. F
PPMvd at 15% O2	15.00			25.00	25.00
ton/yr	14.40			14.61	8.37
Ibm/MMBtu (Fuel LHV)	0.060			0.061	0.035
Ibm/(MW-hr)	0.64			0.65	0.37
(gas turbine shaft pwr)					
Ibm/hr	3.29			3.34	1.91
g/(Hp-hr)	0.22			0.22	0.13
(gas turbine shaft pwr)					
4	6520 HP	100.0% Load	Elev. 3647 ft	Rel. Humidity 60.0%	Temperature 60.0 Deg. F
PPMvd at 15% O2	15.00			25.00	25.00
ton/yr	13.82			14.02	8.03
Ibm/MMBtu (Fuel LHV)	0.060			0.061	0.035
Ibm/(MW-hr)	0.65			0.66	0.38
(gas turbine shaft pwr)					
Ibm/hr	3.16			3.20	1.83
g/(Hp-hr)	0.22			0.22	0.13
(gas turbine shaft pwr)					

Notes

1. For short-term emission limits such as lbs/hr., Solar recommends using "worst case" anticipated operating conditions specific to the application and the site conditions. Worst case for one pollutant is not necessarily the same for another.
2. Solar's typical SoLoNOx warranty, for ppm values, is available for greater than 0 deg F, and between 50% and 100% load for gas fuel, and between 65% and 100% load for liquid fuel (except for the Centaur 40). An emission warranty for non-SoLoNOx equipment is available for greater than 0 deg F and between 80% and 100% load.
3. Fuel must meet Solar standard fuel specification ES 9-98. Emissions are based on the attached fuel composition, or, San Diego natural gas or equivalent.
4. If needed, Solar can provide Product Information Letters to address turbine operation outside typical warranty ranges, as well as non-warranted emissions of SO2, PM10/2.5, VOC, and formaldehyde.
5. Solar can provide factory testing in San Diego to ensure the actual unit(s) meet the above values within the tolerances quoted. Pricing and schedule impact will be provided upon request.
6. Any emissions warranty is applicable only for steady-state conditions and does not apply during start-up, shut-down, malfunction, or transient event.

Solar Turbines

A Caterpillar Company

PREDICTED EMISSION PERFORMANCE

Customer	
Job ID	
Inquiry Number	
Run By David A Pocengal	Date Run 7-Mar-11

Engine Model TAURUS 60-7800S	
CS/MD 59F MATCH	
Fuel Type SD NATURAL GAS	Water Injection NO
Engine Emissions Data REV. 0.1	

NOx EMISSIONS

CO EMISSIONS

UHC EMISSIONS

5	6006 HP	100.0% Load	Elev. 3647 ft	Rel. Humidity 60.0%	Temperature 80.0 Deg. F
PPMvd at 15% O2		15.00		25.00	25.00
ton/yr		12.98		13.17	7.54
Ibm/MMBtu (Fuel LHV)		0.059		0.060	0.034
Ibm/(MW-hr)		0.66		0.67	0.38
(gas turbine shaft pwr)					
Ibm/hr		2.96		3.01	1.72
g/(Hp-hr)		0.22		0.23	0.13
(gas turbine shaft pwr)					
6	5169 HP	100.0% Load	Elev. 3647 ft	Rel. Humidity 60.0%	Temperature 110.0 Deg. F
PPMvd at 15% O2		15.00		25.00	25.00
ton/yr		11.59		11.76	6.74
Ibm/MMBtu (Fuel LHV)		0.058		0.059	0.034
Ibm/(MW-hr)		0.69		0.70	0.40
(gas turbine shaft pwr)					
Ibm/hr		2.65		2.69	1.54
g/(Hp-hr)		0.23		0.24	0.13
(gas turbine shaft pwr)					

Notes

1. For short-term emission limits such as lbs/hr., Solar recommends using "worst case" anticipated operating conditions specific to the application and the site conditions. Worst case for one pollutant is not necessarily the same for another.
2. Solar's typical SoLoNOx warranty, for ppm values, is available for greater than 0 deg F, and between 50% and 100% load for gas fuel, and between 65% and 100% load for liquid fuel (except for the Centaur 40). An emission warranty for non-SoLoNOx equipment is available for greater than 0 deg F and between 80% and 100% load.
3. Fuel must meet Solar standard fuel specification ES 9-98. Emissions are based on the attached fuel composition, or, San Diego natural gas or equivalent.
4. If needed, Solar can provide Product Information Letters to address turbine operation outside typical warranty ranges, as well as non-warranted emissions of SO2, PM10/2.5, VOC, and formaldehyde.
5. Solar can provide factory testing in San Diego to ensure the actual unit(s) meet the above values within the tolerances quoted. Pricing and schedule impact will be provided upon request.
6. Any emissions warranty is applicable only for steady-state conditions and does not apply during start-up, shut-down, malfunction, or transient event.

Customer	
Job ID	
Run By David A Pocengal	Date Run 7-Mar-11
Engine Performance Code REV. 3.48	Engine Performance Data REV. 0.8

Model TAURUS 60-7800S
Package Type CS/MD
Match 59F MATCH
Fuel System GAS
Fuel Type SD NATURAL GAS

DATA FOR NOMINAL PERFORMANCE

Elevation	feet	3647				
Inlet Loss	in H ₂ O	4.0				
Exhaust Loss	in H ₂ O	4.0				
Accessory on GP Shaft	HP	14.0				
		1	2	3	4	5
Engine Inlet Temperature	deg F	0	20.0	40.0	60.0	80.0
Relative Humidity	%	60.0	60.0	60.0	60.0	60.0
Driven Equipment Speed	RPM	13721	13769	13815	13846	13803
Specified Load	HP	FULL	FULL	FULL	FULL	FULL
Net Output Power	HP	7340	7121	6868	6520	6006
Fuel Flow	mmBtu/hr	57.66	56.39	54.84	52.84	5169
Heat Rate	Btu/HP-hr	7855	7918	7985	8104	45.70
Therm Eff	%	32.391	32.133	31.864	31.397	30.569
Engine Exhaust Flow	Ibm/hr	163305	158768	153869	148153	128015
Exhaust Temperature	deg F	890	914	937	957	1013

Fuel Gas Composition (Volume Percent)	Methane (CH ₄)	92.79
	Ethane (C ₂ H ₆)	4.16
	Propane (C ₃ H ₈)	0.84
	N-Butane (C ₄ H ₁₀)	0.18
	N-Pentane (C ₅ H ₁₂)	0.04
	Hexane (C ₆ H ₁₄)	0.04
	Carbon Dioxide (CO ₂)	0.44
	Hydrogen Sulfide (H ₂ S)	0.0001
	Nitrogen (N ₂)	1.51

Fuel Gas Properties	LHV (Btu/Scf)	939.2	Specific Gravity	0.5970	Wobbe Index at 60F	1215.6
---------------------	---------------	-------	------------------	--------	--------------------	--------

This performance was calculated with a basic inlet and exhaust system. Special equipment such as low noise silencers, special filters, heat recovery systems or cooling devices will affect engine performance. Performance shown is "Expected" performance at the pressure drops stated, not guaranteed.

Particulate Matter Emission Estimates

Leslie Witherspoon
Solar Turbines Incorporated

PURPOSE

Since particulate matter is a regulated pollutant, most air permitting agencies require customers to provide particulate matter emission estimates during the air permitting process. In addition, many air permit agencies require dispersion modeling analyses for particulate matter. More and more often, regulatory agencies are including a particulate matter compliance testing requirement in the air permit.

This document summarizes Solar's recommended PM_{10/2.5} emission levels for our combustion turbines. The recommended levels are based on an analysis of emissions tests collected from customer sites.

Particulate Matter Definition

National Ambient Air Quality Standards (NAAQS) for particulate matter were first set in 1971. Total suspended particulate (TSP) was the first indicator used to represent suspended particles in the ambient air. Since July 1, 1987, the Environmental Protection Agency (EPA) has used the indicator PM₁₀, which includes only the particles with aerodynamic diameter smaller than 10 micrometers. PM₁₀ (coarse particles) come from sources such as windblown dust from the desert or agricultural fields and dust kicked up on unpaved roads by vehicle traffic.

The EPA added a PM_{2.5} ambient air standard in 1997. PM_{2.5} includes particles with an aerodynamic diameter less than 2.5 micrometers. PM_{2.5} (fine particles) are generally emitted from activities such as industrial and residential combustion and from vehicle exhaust. Fine particles are also formed in the atmosphere when gases such as sulfur dioxide, nitrogen oxides, and volatile organic compounds, emitted by combustion activities, are transformed by chemical reactions.

Nearly all particulate matter from gas turbine exhaust is less than one micrometer (micron) in diameter. Thus the emission rates of TSP, PM₁₀, and PM_{2.5} from gas turbines are theoretically equivalent although source testing will show significant variation due to test method detection levels and processes.

TESTING FOR PARTICULATE MATTER

The turbine combustion process has little effect on the particulate matter generated and measured. The largest contributor to particulate matter emissions for gas and liquid fired combustion turbines is measurement technique and error. Other, minor contributing, sources of particulate matter emissions include carbon, ash, fuel-bound sulfur, artifact sulfate formation, compressor/lubricating oils, and inlet air.

Historical customer particulate matter source test data show that there is significant variability from test to test. The source test results support the common industry argument that particulate matter from natural gas fired combustion sources is difficult to measure accurately. The reference test methods for particulate matter were developed primarily for measuring emissions from coal-fired power plants and other major emitters of particulates. Particulate concentrations from gas turbine can be 100 to 10,000 times lower than the "traditional" particulate sources. The test methods were not developed or verified for low emission levels. There

are interferences, insignificant at higher exhaust particulate matter concentrations that result in emissions greater than the actual emissions from gas turbines. New methods are being developed to address this problem.

Due to measurement and procedural errors, the measured results, in most cases, may not be representative of actual particulate matter emitted. There are many potential error sources in measuring particulate matter. Most of these have to do with contamination of the samples, material from the sampling apparatus getting into the samples, and general sloppiness in samples and analysis.

Recommended Particulate Matter Emission Factors

When necessary to support the air permitting process Solar recommends using a PM_{10/2.5} emission factor of 0.021 lb/MMBtu fuel input (HHV) for natural gas. For landfill gas, the recommended emission factor is 0.03 lb/MMBtu fuel input (HHV). For liquid fuel, the recommended emission factor is 0.06 lb/MMBtu fuel input (HHV). The liquid fuel emission factor assumes fuel sulfur content is <500 ppm and ash content is <0.005% by wt.

The emission levels cited above are only for engine operation with the fuels listed. Other fuels may not yield similar results.

At this time, Solar does not recommend using AP-42 (EPA AP-42 "Compilation of Air Pollutant Emission Factors.") AP-42. While some source tests have had similar results to AP-42, others are higher.

Test Method Recommendation

For customers who conduct emission source tests for particulate matter, Solar recommends that EPA Methods 201/201A¹ be used to measure the "front half". "Front half" represents filterable particulate matter.

EPA Method 202² (with nitrogen purge and field blanks) should be used to measure the "back half". "Back half" measurements represent the condensable portion of particulate matter.

EPA Method 5³, which measures the front and back halves may be substituted (e.g. where exhaust temperatures do not allow the use of Method 202).

Testing should include three test runs of 4 hours each.

Solar recommends using the aforementioned test methods until more representative test methods are developed and made commercially available.

References

¹ EPA Method 201, Determination of PM10 Emissions, Exhaust Gas Recycle Procedure. EPA Method 201A, Determination of PM10 Emissions, Constant Sampling Rate Procedure, 40 CFR 60, Part 60, Appendix A.

² EPA Method 202, Determination of Condensable Particulate Emissions from Stationary Sources, 40 CFR 60, Part 60, Appendix A.

³ EPA Method 5, Determination of Particulate Emissions from Stationary Sources, 40 CFR 60, Part 60, Appendix

Solar Turbines Incorporated
9330 Sky Park Court
San Diego, CA 92123-5398

Caterpillar is a registered trademark of Caterpillar Inc.
Solar is a trademark of Solar Turbines Incorporated. All other trademarks are the intellectual property of their respective companies. Specifications are subject to change without notice.

Volatile Organic Compound, Sulfur Dioxide, and Formaldehyde Emission Estimates

Leslie Witherspoon

Solar Turbines Incorporated

PURPOSE

This Product Information Letter summarizes methods that are available to estimate emissions of volatile organic compounds (VOC), sulfur dioxide (SO_2), and formaldehyde from gas turbines. Most customers are required to estimate emissions of these pollutants during the air permitting process.

INTRODUCTION

In absence of site-specific or representative source test data, Solar refers customers to a United States Environmental Protection Agency (EPA) document titled "AP-42" or other appropriate EPA reference documents. AP-42 is a collection of emission factors for different emission sources. The emission factors found in AP-42 provide a generally accepted way of estimating emissions when more representative data are not available. The most recent version of AP-42 (dated April 2000) can be found at:

<http://www.epa.gov/ttn/chief/ap42/ch03/index.html>

Solar does not typically warranty the emission rates for VOC, SO_2 or formaldehyde.

Volatile Organic Compounds

Most permitting agencies require gas turbine users to estimate emissions of VOC, a subpart of the unburned hydrocarbon (UHC) emissions, during the air permitting process. Volatile organic compounds, non-methane hydrocarbons (NMHC), and reactive organic gases (ROG) are some of the many ways of referring to the non-methane (and non-ethane) portion of an "unburned hydrocarbon" emission estimate.

For natural gas fuel, most of Solar's customers use 10-20% of the UHC emission rate to represent VOC emissions. The estimate of 10-20% is based on a ratio of total non-methane hydrocarbons to total organic compounds. The use of 10 up to 20% provides a conservative estimate of VOC emissions. The balance of the UHC is assumed to be primarily methane.

For liquid fuel, it is appropriate to estimate that 100% of the UHC emission estimate is VOC.

Sulfur Dioxide

Sulfur dioxide emissions are produced by conversion of sulfur in the fuel to SO_2 . Since Solar does not control the amount of sulfur in the fuel, we are unable to generically predict SO_2 emissions. Customers generally estimate SO_2 emissions with a mass balance calculation by assuming that any sulfur in the fuel will convert to SO_2 . For reference, the typical mass balance equation is shown below.

Variables: wt % of sulfur in fuel
Btu/lb fuel (LHV*)
MMBtu/hr fuel flow (LHV)

$$\frac{\text{lb } \text{SO}_2}{\text{hr}} = \left(\frac{\text{wt\% Sulfur}}{100} \right) \left(\frac{\text{lb fuel}}{\text{Btu}} \right) \left(\frac{10^6 \text{ Btu}}{\text{MMBtu}} \right) \left(\frac{\text{MMBtu fuel}}{\text{hr}} \right) \left(\frac{\text{MW } \text{SO}_2}{\text{MW Sulfur}} \right)$$

As an alternative to a mass balance calculation, EPA's AP-42 document can be used. AP-42 (Table 3.1-2a, April 2000) suggests emission factors of 0.0034 lb/MMBtu for gas fuel (HHV*) and 0.033 lb/MMBtu for liquid fuel (HHV).

*LHV = Lower Heating Value; HHV = Higher Heating Value

Formaldehyde

In gas turbines, formaldehyde emissions are a result of incomplete combustion. Formaldehyde in the exhaust stream is unstable and very difficult to measure. In addition to turbine characteristics including combustor design, size, maintenance history, and load profile, the formaldehyde emission level is also affected by:

- Ambient temperature
- Humidity
- Atmospheric pressure
- Fuel quality
- Formaldehyde concentration in the ambient air
- Test method measurement variability
- Operational factors

The emission factor data in Table 1 is an excerpt from an EPA memo: "Revised HAP Emission Factors for Stationary Combustion Turbines, 8/22/03." The memo presents hazardous air pollutant (HAP) emission factor data in several categories including: mean, median, maximum, and minimum. The emission factors in the memo are a compilation of the HAP data EPA collected during the Maximum Achievable Control Technology (MACT) standard development process. The emission factor documentation shows there is a high degree of variability in formaldehyde emissions from gas turbines, depending on the manufacturer, rating size of equipment, combustor design, and testing events. To estimate formaldehyde emissions from gas turbines, users should use the emission factor(s) that best represent the gas turbines actual / planned operating profile. Refer to the memo for alternative emission factors.

Table 1. EPA's Total HAP and Formaldehyde Emission Factors for <50 MW Lean-Premix Gas Turbines burning Natural Gas

(Source: Revised HAP Emission Factors for Stationary Combustion Turbines, OAR-2002-0060, IV-B-09, 8/22/03)

Pollutant	Engine Load	95% Upper Confidence of Mean, lb/MMBtu HHV	95% Upper Confidence of Data, lb/MMBtu HHV	Memo Reference
Total HAP	> 90%	0.00144	0.00258	Table 19
Total HAP	All	0.00160	0.00305	Table 16
Formaldehyde	> 90%	0.00127	0.00241	Table 19
Formaldehyde	All	0.00143	0.00288	Table 16

Solar Turbines Incorporated
9330 Sky Park Court
San Diego, CA 92123-5398

Caterpillar is a registered trademark of Caterpillar Inc.
Solar is a trademark of Solar Turbines Incorporated. Specifications subject to change without notice.
Printed in U.S.A. © 2008 Solar Turbines Incorporated. All rights reserved.

MOBILE ANALYTICAL LABS, INC.

P.O. BOX 69210
ODESSA, TEXAS 79769

GAS EXTENDED ANALYSIS

01/20/16

LAB # 31643

DCP MIDSTREAM
LINAM RANCH
FUEL GAS
STATION NO. M0483-00

	MOL %	GPM
HYDROGEN SULFIDE	0.0000	0.000
NITROGEN	2.6809	0.000
METHANE	87.0571	0.000
CARBON DIOXIDE	0.0030	0.000
ETHANE	9.2738	2.472
PROPANE	0.9590	0.263
ISO-BUTANE	0.0133	0.004
N-BUTANE	0.0126	0.004
ISO-PENTANE	0.0002	0.000
N-PENTANE	0.0001	0.000
NEOHEXANE	0.0000	0.000
CYCLOPENTANE	0.0000	0.000
2-METHYLPENTANE	0.0000	0.000
3-METHYLPENTANE	0.0000	0.000
N-HEXANE	0.0000	0.000
METHYLCYCLOPENTANE	0.0000	0.000
BENZENE	0.0000	0.000
CYCLOHEXANE	0.0000	0.000
2-METHYLHEXANE	0.0000	0.000
3-METHYLHEXANE	0.0000	0.000
DIMETHYLCYCLOPENTANES	0.0000	0.000
N-HEPTANE	0.0000	0.000
METHYLCYCLOHEXANE	0.0000	0.000
TRIMETHYLCYCLOPENTANES	0.0000	0.000
TOLUENE	0.0000	0.000
2-METHYLHEPTANE	0.0000	0.000
3-METHYLHEPTANE	0.0000	0.000
DIMETHYLCYCLOHEXANES	0.0000	0.000
N-OCTANE	0.0000	0.000
ETHYL BENZENE	0.0000	0.000
M&P-XYLENES	0.0000	0.000
O-XYLENE	0.0000	0.000
C9 NAPHTHENES	0.0000	0.000
C9 PARAFFINS	0.0000	0.000
N-NONANE	0.0000	0.000
N-DECANE	0.0000	0.000
UNDECANE PLUS	0.0000	0.000
TOTALS	100.0000	2.743

SPECIFIC GRAVITY 0.621
GROSS DRY BTU/CU.FT. 1067.6
GROSS WET BTU/CU.FT. 1049.3
TOTAL MOL. WT. 17.945

NOTES:
SAMPLED 01/18/16 BY: SR
597 PSIG @ 85 °F
H2S = 0 PPM
CYLINDER NO. 823
SPOT

DISTRIBUTION
MR. JON BEBBINGTON

BASIS: 14.65 PSIA @ 60 °F

MOBILE ANALYTICAL LABORATORIES, INC.
P.O. BOX 69210
ODESSA, TEXAS 79769
432-337-4744

01/20/16

GAS EXTENDED SULFUR ANALYSIS

LAB NO. 31644

DCP MIDSTREAM
LINAM RANCH
FUEL GAS
STATION NO. M0483-00

	ppm
Hydrogen Sulfide	ND
Carbonyl Sulfide	ND
Methyl Mercaptan	ND
Ethyl Mercaptan	ND
Dimethyl Sulfide	ND
Carbon Disulfide	ND
I-Propyl Mercaptan	ND
T-Butyl Mercaptan	ND
N-Propyl Mercaptan	ND
Methyl Ethyl Sulfide	ND
S-Butyl Mercaptan/Thiophene	ND
I-Butyl Mercaptan	ND
Diethyl Sulfide	ND
N-Butyl Mercaptan	ND
Dimethyl Disulfide	ND
3-Methyl Thiophene	ND
2-Methyl Thiophene	ND
Dimethyl Thiophene	ND
Diethyl Disulfide	ND
Trimethyl Thiophene	ND
Undetermined Organic Sulfur	0.2
	0.2

Test Methods: H₂S by ASTM D4084, Other Sulfur compounds by Capillary GC with SCD Detector ASTM D5504.

Sampled: 01/18/16 BY: SR
ND = NONE DETECTED (< 0.1 PPM)

Distribution:
Mr. Jon Bebbington

Table 13.5-1 (English Units). THC, NO_x AND SOOT EMISSIONS FACTORS FOR FLARE OPERATIONS FOR CERTAIN CHEMICAL MANUFACTURING PROCESSES^a

Pollutant	SCC ^e	Emissions Factor Value	Emissions Factor Units	Grade or Representativeness
THC, elevated flares ^c	30190099; 30119701; 30119705; 30119709; 30119741	0.14 ^{b,f}	lb/10 ⁶ Btu	B
THC, enclosed ground flares ^{g,h} Low Percent Load ⁱ		8.37 ^j or 3.88e-3 ^f	lb/10 ⁶ scf gas burned lb/10 ⁶ Btu heat input	Moderately
THC, enclosed ground flares ^{g,h} Normal to High Percent Load ⁱ		2.56 ^j or 1.20e-3 ^f	lb/10 ⁶ scf gas burned lb/10 ⁶ Btu heat input	Moderately
Nitrogen oxides, elevated flares ^d		0.068 ^{b,k}	lb/10 ⁶ Btu	B
Soot, elevated flares ^d		0 – 274 ^b	µg/L	B

^a All of the emissions factors in this table represent the emissions exiting the flare. Since the flare is not the originating source of the THC emissions, but rather the device controlling these pollutants routed from a process at the facility, the emissions factors are representative of controlled emissions rates for THC. These values are not representative of the uncontrolled THC routed to the flare from the associated process, and as such, they may not be appropriate for estimating the uncontrolled THC emissions or potential to emit from the associated process.

^b Reference 1. Based on tests using crude propylene containing 80% propylene and 20% propane.

^c Measured as methane equivalent. The THC emissions factor may not be appropriate for reporting volatile organic compounds (VOC) emissions when a VOC emissions factor exists.

^d Soot in concentration values: nonsmoking flares, 0 micrograms per liter (µg/L); lightly smoking flares, 40 µg/L; average smoking flares, 177 µg/L; and heavily smoking flares, 274 µg/L.

^e See Table 13.5-4 for a description of these SCCs.

^f Factor developed using the lower (net) heating value of the vent gas.

^g THC measured as propane by US EPA Method 25A.

^h These factors apply to well operated ground flares achieving at least 98% destruction efficiency and operating in compliance with the current General Provisions requirements of 40 CFR Part 60, i.e. >200 btu/scf net heating value in the vent gas and less than the specified maximum exit velocity. The emissions factor data set had an average destruction efficiency of 99.99%. Based on tests using pure propylene fuel. References 12 through 33 and 39 through 45.

ⁱ The dataset for these tests were broken into four different test conditions: ramping back and forth between 0 and 30% of load; ramping back and forth between 30% and 70% of load; ramping back and forth between 70% and 100% of load; and a fixed rate maximum load condition. Analyses determined that only the first condition was statistically different. Low percent load is represented by a unit operating at approximately less than 30% of maximum load.

^j Heat input is an appropriate basis for combustion emissions factor. However, based on available data, heat input data is not always known, but gas flowrate is generally available. Therefore, the emissions factor is presented in two different forms.

^k Factor developed using the higher (gross) heating value of the vent gas.

Table 13.5-2 (English Units). VOC and CO EMISSIONS FACTORS FOR ELEVATED FLARE OPERATIONS FOR CERTAIN REFINERY AND CHEMICAL MANUFACTURING PROCESSES^{a,b}

Pollutant	SCC ^e	Emissions Factor (lb/10 ⁶ Btu) ^f	Representativeness
Volatile organic compounds ^c	30190099; 30600904; 30119701; 30119705; 30119709; 30119741; 30119799; 30130115;	0.66	Poorly
Carbon monoxide ^d	30600201; 30600401; 30600508; 30600903; 30600999; 30601701; 30601801; 30688801; 40600240	0.31	Poorly

^a The emissions factors in this table represent the emissions exiting the flare. Since the flare is not the originating source of the VOC emissions, but rather the device controlling these pollutants routed from a process at the facility, the emissions factor is representative of controlled emissions rates for VOC. This values is not representative of the uncontrolled VOC routed to the flare from the associated process, and as such, it may not be appropriate for estimating the uncontrolled VOC emissions or potential to emit from the associated process.

^b These factors apply to well operated flares achieving at least 98% destruction efficiency and operating in compliance with the current General Provisions requirements of 40 CFR Part 60, i.e. >300 btu/scf net heating value in the vent gas and less than the specified maximum flare tip velocity. The VOC emissions factor data set had an average destruction efficiency of 98.9%, and the CO emissions factor data set had an average destruction efficiency of 99.1% (based on test reports where destruction efficiency was provided). These factors are based on steam-assisted and air-assisted flares burning a variety of vent gases.

^c References 4 through 9 and 11.

^d References 1, 4 through 8, and 11.

^e See Table 13.5-4 for a description of these SCCs.

^f Factor developed using the lower (net) heating value of the vent gas.

*Federal Environment and Safety Codified Regulations
TITLE 40—Protection of Environment
PART 98—MANDATORY GREENHOUSE GAS REPORTING
SUBPART A—General Provision*

Table A-1 to Subpart A of Part 98 —Global Warming Potentials

[100-Year Time Horizon]

Name	CAS No.	Chemical formula	Global warming potential (100 yr.)
Chemical-Specific GWPs			
Carbon dioxide	124-38-9	CO ₂	1
Methane	74-82-8	CH ₄	^a 25
Nitrous oxide	10024-97-2	N ₂ O	^a 298
Fully Fluorinated GHGs			
Sulfur hexafluoride	2551-62-4	SF ₆	^a 22,800
Trifluoromethyl sulphur pentafluoride	373-80-8	SF ₅ CF ₃	17,700
Nitrogen trifluoride	7783-54-2	NF ₃	17,200
PFC-14 (Perfluoromethane)	75-73-0	CF ₄	^a 7,390
PFC-116 (Perfluoroethane)	76-16-4	C ₂ F ₆	^a 12,200
PFC-218 (Perfluoropropane)	76-19-7	C ₃ F ₈	^a 8,830
Perfluorocyclopropane	931-91-9	C-C ₃ F ₆	17,340
PFC-3-1-10 (Perfluorobutane)	355-25-9	C ₄ F ₁₀	^a 8,860
PFC-318 (Perfluorocyclobutane)	115-25-3	C-C ₄ F ₈	^a 10,300
PFC-4-1-12 (Perfluoropentane)	678-26-2	C ₅ F ₁₂	^a 9,160
PFC-5-1-14 (Perfluorohexane, FC-72)	355-42-0	C ₆ F ₁₄	^a 9,300
PFC-6-1-12	335-57-9	C ₇ F ₁₆ ; CF ₃ (CF ₂) ₅ CF ₃	^b 7,820
PFC-7-1-18	307-34-6	C ₈ F ₁₈ ; CF ₃ (CF ₂) ₆ CF ₃	^b 7,620
PFC-9-1-18	306-94-5	C ₁₀ F ₁₈	7,500
PFPMIE (HT-70)		NA CF ₃ OCF(CF ₃)CF ₂ OCF ₂ OCF ₃	10,300
Perfluorodecalin (cis)	60433-11-6	Z-C ₁₀ F ₁₈	^b 7,236
Perfluorodecalin (trans)	60433-12-7	E-C ₁₀ F ₁₈	^b 6,288
Saturated Hydrofluorocarbons (HFCs) With Two or Fewer Carbon-Hydrogen Bonds			
HFC-23	75-46-7	CHF ₃	^a 14,800
HFC-32	75-10-5	CH ₂ F ₂	^a 675
HFC-125	354-33-6	C ₂ HF ₅	^a 3,500
HFC-134	359-35-3	C ₂ H ₂ F ₄	^a 1,100
HFC-134a	811-97-2	CH ₂ FCF ₃	^a 1,430
HFC-227ca	2252-84-8	CF ₃ CF ₂ CHF ₂	

**Environment & Safety
Resource Center™**
Federal Environment and Safety Codified Regulations
TITLE 40—Protection of Environment
PART 98—MANDATORY GREENHOUSE GAS REPORTING
SUBPART C—General Stationary Fuel Combustion Sources
Table C-1 to Subpart C of Part 98 —Default CO₂ Emission Factors and High Heat Values for Various Types of Fuel

Fuel type	Default high heat value	Default CO₂ emission factor
Coal and coke	mmBtu/short ton	kg CO ₂ /mmBtu
Anthracite	25.09	103.69
Bituminous	24.93	93.28
Subbituminous	17.25	97.17
Lignite	14.21	97.72
Coal Coke	24.80	113.67
Mixed (Commercial sector)	21.39	94.27
Mixed (Industrial coking)	26.28	93.90
Mixed (Industrial sector)	22.35	94.67
Mixed (Electric Power sector)	19.73	95.52
Natural gas	mmBtu/scf	kg CO ₂ /mmBtu
(Weighted U.S. Average)	1.026×10^{-3}	53.06
Petroleum products	mmBtu/gallon	kg CO ₂ /mmBtu
Distillate Fuel Oil No. 1	0.139	73.25
Distillate Fuel Oil No. 2	0.138	73.96
Distillate Fuel Oil No. 4	0.146	75.04
Residual Fuel Oil No. 5	0.140	72.93
Residual Fuel Oil No. 6	0.150	75.10
Used Oil	0.138	74.00
Kerosene	0.135	75.20
Liquefied petroleum gases (LPG) ¹	0.092	61.71
Propane ¹	0.091	62.87
Propylene ²	0.091	67.77
Ethane ¹	0.068	59.60
Ethanol	0.084	68.44
Ethylene ²	0.058	65.96
Isobutane ¹	0.099	64.94
Isobutylene ¹	0.103	68.86
Butane ¹	0.103	64.77
Butylene ¹	0.105	68.72
Naphtha (<401 deg F)	0.125	68.02
Natural Gasoline	0.110	66.88
Other Oil (>401 deg F)	0.139	76.22
Pentanes Plus	0.110	70.02
Petrochemical Feedstocks	0.125	71.02
Petroleum Coke	0.143	102.41
Special Naphtha	0.125	72.34

Unfinished Oils	0.139	74.54
Heavy Gas Oils	0.148	74.92
Lubricants	0.144	74.27
Motor Gasoline	0.125	70.22
Aviation Gasoline	0.120	69.25
Kerosene-Type Jet Fuel	0.135	72.22
Asphalt and Road Oil	0.158	75.36
Crude Oil	0.138	74.54
Other fuels—solid	mmBtu/short ton	kg CO ₂ /mmBtu
Municipal Solid Waste	9.95 ³	90.7
Tires	28.00	85.97
Plastics	38.00	75.00
Petroleum Coke	30.00	102.41
Other fuels—gaseous	mmBtu/scf	kg CO ₂ /mmBtu
Blast Furnace Gas	0.092 x 10 ⁻³	274.32
Coke Oven Gas	0.599 x 10 ⁻³	46.85
Propane Gas	2.516 x 10 ⁻³	61.46
Fuel Gas ⁴	1.388 x 10 ⁻³	59.00
Biomass fuels—solid	mmBtu/short ton	kg CO ₂ /mmBtu
Wood and Wood Residuals (dry basis) ⁵	17.48	93.80
Agricultural Byproducts	8.25	118.17
Peat	8.00	111.84
Solid Byproducts	10.39	105.51
Biomass fuels—gaseous	mmBtu/scf	kg CO ₂ /mmBtu
Landfill Gas	0.485 x 10 ⁻³	52.07
Other Biomass Gases	0.655 x 10 ⁻³	52.07
Biomass Fuels—Liquid	mmBtu/gallon	kg CO ₂ /mmBtu
Ethanol	0.084	68.44
Biodiesel (100%)	0.128	73.84
Rendered Animal Fat	0.125	71.06
Vegetable Oil	0.120	81.55

¹ The HHV for components of LPG determined at 60 °F and saturation pressure with the exception of ethylene.

² Ethylene HHV determined at 41 °F (5 °C) and saturation pressure.

³ Use of this default HHV is allowed only for: (a) Units that combust MSW, do not generate steam, and are allowed to use Tier 1; (b) units that derive no more than 10 percent of their annual heat input from MSW and/or tires; and (c) small batch incinerators that combust no more than 1,000 tons of MSW per year.

⁴ Reporters subject to subpart X of this part that are complying with § 98.243(d) or subpart Y of this part may only use the default HHV and the default CO₂ emission factor for fuel gas combustion under the conditions prescribed in § 98.243(d)(2)(i) and (d)(2)(ii) and § 98.252(a)(1) and (a)(2), respectively. Otherwise, reporters subject to subpart X or subpart Y shall use either Tier 3 (Equation C-5) or Tier 4.

⁵ Use the following formula to calculate a wet basis HHV for use in Equation C-1: HHV_w = ((100 - M)/100)*HHV_d where HHV_w = wet basis HHV, M = moisture content (percent) and HHV_d = dry basis HHV from Table C-1.

[78 FR page 71950, Nov. 29, 2013]

Contact us at <http://www.bna.com/contact-us> or call 1-800-372-1033

ISSN 2167-8065

Copyright © 2016, The Bureau of National Affairs, Inc. Reproduction or redistribution, in whole or in part, and in any form, without express written permission, is prohibited except as permitted by the BNA Copyright Policy.

Federal Environment and Safety Codified Regulations
TITLE 40—Protection of Environment
PART 98—MANDATORY GREENHOUSE GAS REPORTING
SUBPART C—General Stationary Fuel Combustion Sources

Table C-2 to Subpart C of Part 98 —Default CH₄ and N₂O Emission Factors for Various Types of Fuel

Fuel type	Default CH₄ emission factor (kg CH₄/mmBtu)	Default N₂O emission factor (kg N₂O/mmBtu)
Coal and Coke (All fuel types in Table C-1)	1.1×10^{-02}	1.6×10^{-03}
Natural Gas	1.0×10^{-03}	1.0×10^{-04}
Petroleum (All fuel types in Table C-1)	3.0×10^{-03}	6.0×10^{-04}
Fuel Gas	3.0×10^{-03}	6.0×10^{-04}
Municipal Solid Waste	3.2×10^{-02}	4.2×10^{-03}
Tires	3.2×10^{-02}	4.2×10^{-03}
Blast Furnace Gas	2.2×10^{-05}	1.0×10^{-04}
Coke Oven Gas	4.8×10^{-04}	1.0×10^{-04}
Biomass Fuels—Solid (All fuel types in Table C-1, except wood and wood residuals)	3.2×10^{-02}	4.2×10^{-03}
Wood and wood residuals	7.2×10^{-03}	3.6×10^{-03}
Biomass Fuels—Gaseous (All fuel types in Table C-1)	3.2×10^{-03}	6.3×10^{-04}
Biomass Fuels—Liquid (All fuel types in Table C-1)	1.1×10^{-03}	1.1×10^{-04}

Note: Those employing this table are assumed to fall under the IPCC definitions of the "Energy Industry" or "Manufacturing Industries and Construction". In all fuels except for coal the values for these two categories are identical. For coal combustion, those who fall within the IPCC "Energy Industry" category may employ a value of 1g of CH₄/mmBtu.

[75 FR page 79154, Dec. 17, 2010; 78 FR page 71952, Nov. 29, 2013]

Contact us at <http://www.bna.com/contact-us> or call 1-800-372-1033

ISSN 2167-8065

Copyright © 2016, The Bureau of National Affairs, Inc. Reproduction or redistribution, in whole or in part, and in any form, without express written permission, is prohibited except as permitted by the BNA Copyright Policy.

13.4 Wet Cooling Towers

13.4.1 General¹

Cooling towers are heat exchangers that are used to dissipate large heat loads to the atmosphere. They are used as an important component in many industrial and commercial processes needing to dissipate heat. Cooling towers may range in size from less than $5.3(10)^6$ kilojoules (kJ) ($5[10]^6$ British thermal units per hour [Btu/hr]) for small air conditioning cooling towers to over $5275(10)^6$ kJ/hr ($5000[10]^6$ Btu/hr) for large power plant cooling towers.

When water is used as the heat transfer medium, wet, or evaporative, cooling towers may be used. Wet cooling towers rely on the latent heat of water evaporation to exchange heat between the process and the air passing through the cooling tower. The cooling water may be an integral part of the process or may provide cooling via heat exchangers.

Although cooling towers can be classified several ways, the primary classification is into dry towers or wet towers, and some hybrid wet-dry combinations exist. Subclassifications can include the draft type and/or the location of the draft relative to the heat transfer medium, the type of heat transfer medium, the relative direction of air movement, and the type of water distribution system.

In wet cooling towers, heat transfer is measured by the decrease in the process temperature and a corresponding increase in both the moisture content and the wet bulb temperature of the air passing through the cooling tower. (There also may be a change in the sensible, or dry bulb, temperature, but its contribution to the heat transfer process is very small and is typically ignored when designing wet cooling towers.) Wet cooling towers typically contain a wetted medium called "fill" to promote evaporation by providing a large surface area and/or by creating many water drops with a large cumulative surface area.

Cooling towers can be categorized by the type of heat transfer; the type of draft and location of the draft, relative to the heat transfer medium; the type of heat transfer medium; the relative direction of air and water contact; and the type of water distribution system. Since wet, or evaporative, cooling towers are the dominant type, and they also generate air pollutants, this section will address only that type of tower. Diagrams of the various tower configurations are shown in Figure 13.4-1 and Figure 13.4-2.

13.4.2 Emissions And Controls¹

Because wet cooling towers provide direct contact between the cooling water and the air passing through the tower, some of the liquid water may be entrained in the air stream and be carried out of the tower as "drift" droplets. Therefore, the particulate matter constituent of the drift droplets may be classified as an emission.

The magnitude of drift loss is influenced by the number and size of droplets produced within the cooling tower, which in turn are determined by the fill design, the air and water patterns, and other interrelated factors. Tower maintenance and operation levels also can influence the formation of drift droplets. For example, excessive water flow, excessive airflow, and water bypassing the tower drift eliminators can promote and/or increase drift emissions.

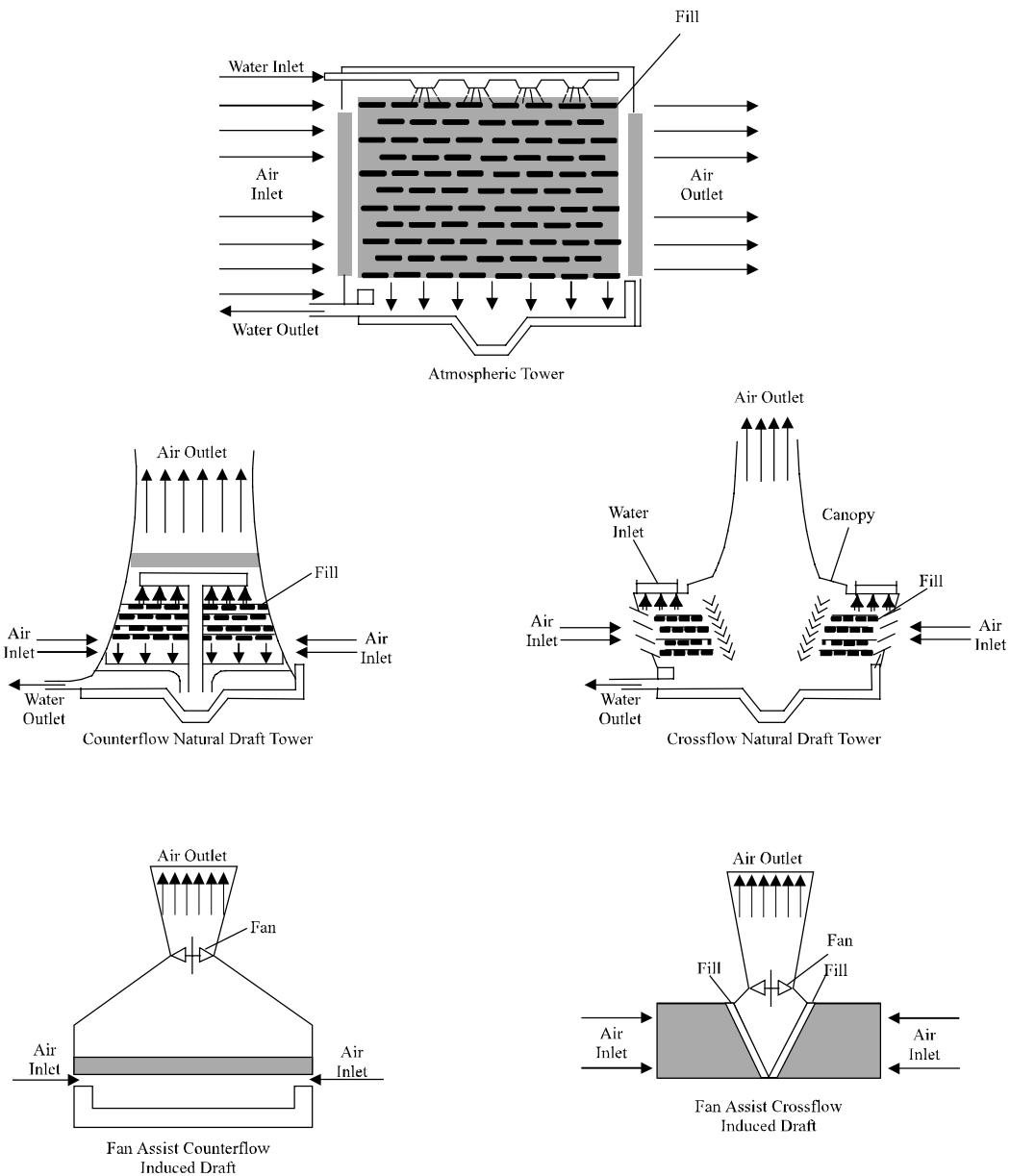


Figure 13.4-1 Atmospheric and natural draft cooling towers.

Because the drift droplets generally contain the same chemical impurities as the water circulating through the tower, these impurities can be converted to airborne emissions. Large drift droplets settle out of the tower exhaust air stream and deposit near the tower. This process can lead to wetting, icing, salt deposition, and related problems such as damage to equipment or to vegetation. Other drift droplets may evaporate before being deposited in the area surrounding the tower, and they also can produce PM-10 emissions. PM-10 is generated when the drift droplets evaporate and leave fine particulate matter formed by crystallization of dissolved solids. Dissolved solids found in cooling tower drift can consist of mineral matter, chemicals for corrosion inhibition, etc.

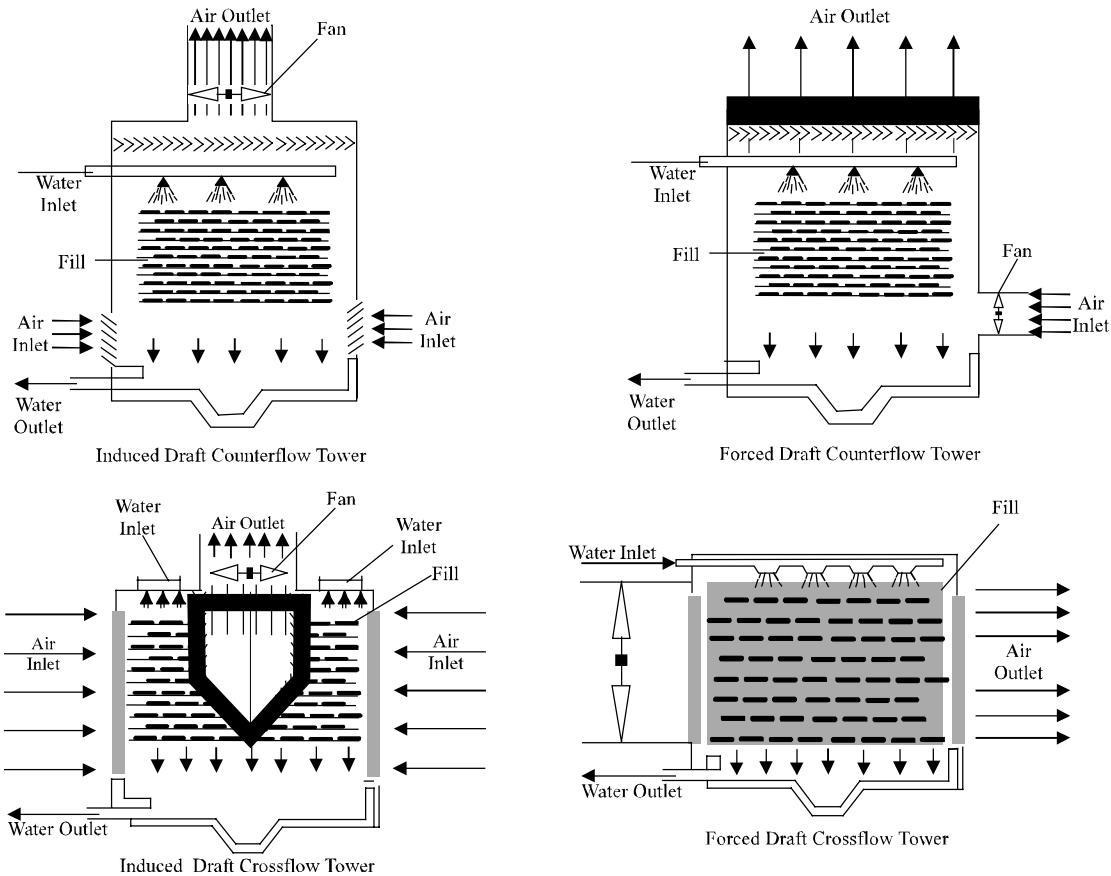


Figure 13.4-2. Mechanical draft cooling towers.

To reduce the drift from cooling towers, drift eliminators are usually incorporated into the tower design to remove as many droplets as practical from the air stream before exiting the tower. The drift eliminators used in cooling towers rely on inertial separation caused by direction changes while passing through the eliminators. Types of drift eliminator configurations include herringbone (blade-type), wave form, and cellular (or honeycomb) designs. The cellular units generally are the most efficient. Drift eliminators may include various materials, such as ceramics, fiber reinforced cement, fiberglass, metal, plastic, and wood installed or formed into closely spaced slats, sheets, honeycomb assemblies, or tiles. The materials may include other features, such as corrugations and water removal channels, to enhance the drift removal further.

Table 13.4-1 provides available particulate emission factors for wet cooling towers. Separate emission factors are given for induced draft and natural draft cooling towers. Several features in Table 13.4-1 should be noted. First, a *conservatively high* PM-10 emission factor can be obtained by (a) multiplying the total liquid drift factor by the total dissolved solids (TDS) fraction in the circulating water and (b) assuming that, once the water evaporates, all remaining solid particles are within the PM-10 size range.

Second, if TDS data for the cooling tower are not available, a source-specific TDS content can be estimated by obtaining the TDS data for the make-up water and multiplying them by the cooling tower cycles of concentration. The cycles of concentration ratio is the ratio of a measured

Table 13.4-1 (Metric And English Units). PARTICULATE EMISSIONS FACTORS FOR WET COOLING TOWERS^a

Tower Type ^d	Total Liquid Drift ^b			PM-10 ^c			
	Circulating Water Flow ^b	g/daL	lb/10 ³ gal	EMISSION FACTOR RATING	g/daL ^e	lb/10 ³ gal	EMISSION FACTOR RATING
Induced Draft (SCC 3-85-001-01, 3-85-001-20, 3-85-002-01)	0.020	2.0	1.7	D	0.023	0.019	E
Natural Draft (SCC 3-85-001-02, 3-85-002-02)	0.00088	0.088	0.073	E	ND	ND	—

^a References 1-17. Numbers are given to 2 significant digits. ND = no data. SCC = Source Classification Code.

^b References 2,5-7,9-10,12-13,15-16. Total liquid drift is water droplets entrained in the cooling tower exit air stream. Factors are for % of circulating water flow (10^{-2} L drift/L [10^{-2} gal drift/gal] water flow) and g drift/daL (lb drift/ 10^3 gal) circulating water flow. 0.12 g/daL = 0.1 lb/ 10^3 gal; 1 daL = 10^1 L.

^c See discussion in text on how to use the table to obtain PM-10 emission estimates. Values shown above are the arithmetic average of test results from References 2,4,8, and 11-14, and they imply an effective TDS content of approximately 12,000 parts per million (ppm) in the circulating water.

^d See Figure 13.4-1 and Figure 13.4-2. Additional SCCs for wet cooling towers of unspecified draft type are 3-85-001-10 and 3-85-002-10.

^e Expressed as g PM-10/daL (lb PM-10/ 10^3 gal) circulating water flow.

parameter for the cooling tower water (such as conductivity, calcium, chlorides, or phosphate) to that parameter for the make-up water. This estimated cooling tower TDS can be used to calculate the PM-10 emission factor as above. If neither of these methods can be used, the arithmetic average PM-10 factor given in Table 13.4-1 can be used. Table 13.4-1 presents the arithmetic average PM-10 factor calculated from the test data in References 2, 4, 8, and 11 - 14. Note that this average corresponds to an effective cooling tower recirculating water TDS content of approximately 11,500 ppm for induced draft towers. (This can be found by dividing the total liquid drift factor into the PM-10 factor.)

As an alternative approach, if TDS data are unavailable for an induced draft tower, a value may be selected from Table 13.4-2 and then be combined with the total liquid drift factor in Table 13.4-1 to determine an apparent PM-10 factor.

As shown in Table 13.4-2, available data do not suggest that there is any significant difference between TDS levels in counter and cross flow towers. Data for natural draft towers are not available.

Table 13.4-2. SUMMARY STATISTICS FOR TOTAL DISSOLVED SOLIDS (TDS) CONTENT IN CIRCULATING WATER^a

Type Of Draft	No. Of Cases	Range Of TDS Values (ppm)	Geometric Mean TDS Value (ppm)
Counter Flow	10	3700 - 55,000	18,500
Cross Flow	7	380 - 91,000	24,000
Overall ^b	17	380 - 91,000	20,600

^a References 2,4,8,11-14.

^b Data unavailable for natural draft towers.

References For Section 13.4

1. *Development Of Particulate Emission Factors For Wet Cooling Towers*, EPA Contract No. 68-D0-0137, Midwest Research Institute, Kansas City, MO, September 1991.
2. *Cooling Tower Test Report, Drift And PM-10 Tests T89-50, T89-51, And T89-52*, Midwest Research Institute, Kansas City, MO, February 1990.
3. *Cooling Tower Test Report, Typical Drift Test*, Midwest Research Institute, Kansas City, MO, January 1990.
4. *Mass Emission Measurements Performed On Kerr-McGee Chemical Corporation's Westend Facility*, Kerr-McGee Chemical Corporation, Trona, CA, And Environmental Systems Corporation, Knoxville, TN, December 1989.
5. Confidential Cooling Tower Drift Test Report For Member Of The Cooling Tower Institute, Houston, TX, Midwest Research Institute, Kansas City, MO, January 1989.
6. Confidential Cooling Tower Drift Test Report For Member Of The Cooling Tower Institute, Houston, TX, Midwest Research Institute, Kansas City, MO, October 1988.
7. Confidential Cooling Tower Drift Test Report For Member Of The Cooling Tower Institute, Houston, TX, Midwest Research Institute, Kansas City, MO, August 1988.
8. *Report Of Cooling Tower Drift Emission Sampling At Argus And Sulfate #2 Cooling Towers*, Kerr-McGee Chemical Corporation, Trona, CA, and Environmental Systems Corporation, Knoxville, TN, February 1987.
9. Confidential Cooling Tower Drift Test Report For Member Of The Cooling Tower Institute, Houston, TX, Midwest Research Institute, Kansas City, MO, February 1987.
10. Confidential Cooling Tower Drift Test Report For Member Of The Cooling Tower Institute, Houston, TX, Midwest Research Institute, Kansas City, MO, January 1987.

11. *Isokinetic Droplet Emission Measurements Of Selected Induced Draft Cooling Towers*, Kerr-McGee Chemical Corporation, Trona, CA, and Environmental Systems Corporation, Knoxville, TN, November 1986.
12. Confidential Cooling Tower Drift Test Report For Member Of The Cooling Tower Institute, Houston, TX, Midwest Research Institute, Kansas City, MO, December 1984.
13. Confidential Cooling Tower Drift Test Report For Member Of The Cooling Tower Institute, Houston, TX, Midwest Research Institute, Kansas City, MO, August 1984.
14. Confidential Cooling Tower Drift Test Report, Midwest Research Institute, Kansas City, MO, November 1983.
15. *Chalk Point Cooling Tower Project*, Volumes 1 and 2, JHU PPSP-CPCTP-16, John Hopkins University, Laurel, MD, August 1977.
16. *Comparative Evaluation Of Cooling Tower Drift Eliminator Performance*, MIT-EL 77-004, Energy Laboratory And Department of Nuclear Engineering, Massachusetts Institute Of Technology, Cambridge, MA, June 1977.
17. G. O. Schrecker, *et al.*, *Drift Data Acquired On Mechanical Salt Water Cooling Devices*, EPA-650/2-75-060, U. S. Environmental Protection Agency, Cincinnati, OH, July 1975.

United States
Environmental Protection
Agency

Office of Air Quality
Planning and Standards
Research Triangle Park NC 27711

EPA-453/R-95-017
November 1995

Air

Protocol for Equipment Leak Emission Estimates

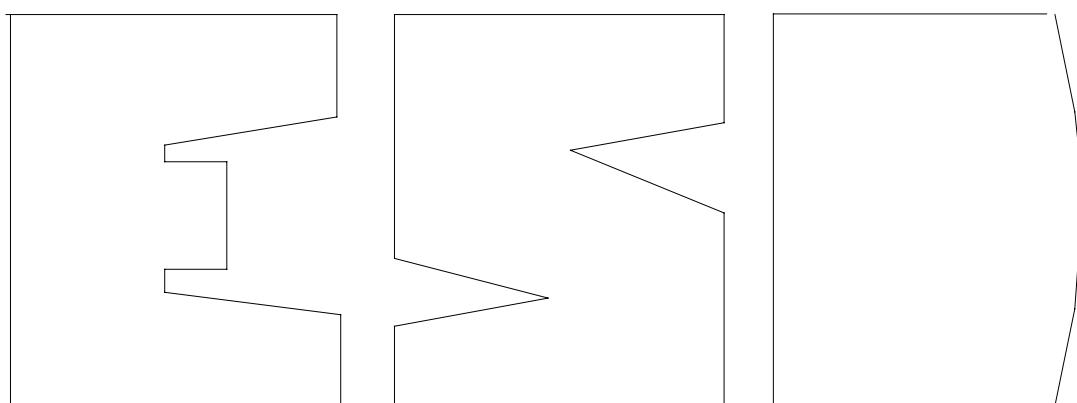


TABLE 2-4. OIL AND GAS PRODUCTION OPERATIONS AVERAGE EMISSION FACTORS (kg/hr/source)

Equipment Type	Service ^a	Emission Factor (kg/hr/source) ^b
Valves	Gas	4.5E-03
	Heavy Oil	8.4E-06
	Light Oil	2.5E-03
	Water/Oil	9.8E-05
Pump seals	Gas	2.4E-03
	Heavy Oil	NA
	Light Oil	1.3E-02
	Water/Oil	2.4E-05
Others ^c	Gas	8.8E-03
	Heavy Oil	3.2E-05
	Light Oil	7.5E-03
	Water/Oil	1.4E-02
Connectors	Gas	2.0E-04
	Heavy Oil	7.5E-06
	Light Oil	2.1E-04
	Water/Oil	1.1E-04
Flanges	Gas	3.9E-04
	Heavy Oil	3.9E-07
	Light Oil	1.1E-04
	Water/Oil	2.9E-06
Open-ended lines	Gas	2.0E-03
	Heavy Oil	1.4E-04
	Light Oil	1.4E-03
	Water/Oil	2.5E-04

^aWater/Oil emission factors apply to water streams in oil service with a water content greater than 50%, from the point of origin to the point where the water content reaches 99%. For water streams with a water content greater than 99%, the emission rate is considered negligible.

^bThese factors are for total organic compound emission rates (including non-VOC's such as methane and ethane) and apply to light crude, heavy crude, gas plant, gas production, and off shore facilities. "NA" indicates that not enough data were available to develop the indicated emission factor.

^cThe "other" equipment type was derived from compressors, diaphragms, drains, dump arms, hatches, instruments, meters, pressure relief valves, polished rods, relief valves, and vents. This "other" equipment type should be applied for any equipment type other than connectors, flanges, open-ended lines, pumps, or valves.

TABLE 2-10. PETROLEUM INDUSTRY LEAK RATE/SCREENING VALUE CORRELATIONS^a

Equipment type/service	Correlation ^{b,c}
Valves/all	Leak rate (kg/hr) = 2.29E-06 × (SV) ^{0.746}
Pump seals/all	Leak rate (kg/hr) = 5.03E-05 × (SV) ^{0.610}
Others ^d	Leak rate (kg/hr) = 1.36E-05 × (SV) ^{0.589}
Connectors/all	Leak rate (kg/hr) = 1.53E-06 × (SV) ^{0.735}
Flanges/all	Leak rate (kg/hr) = 4.61E-06 × (SV) ^{0.703}
Open-ended lines/all	Leak rate (kg/hr) = 2.20E-06 × (SV) ^{0.704}

^aThe correlations presented in this table are revised petroleum industry correlations.

^bSV = Screening value in ppmv.

^cThese correlations predict total organic compound emission rates (including non-VOC's such as methane and ethane).

^dThe "other" equipment type was derived from instruments, loading arms, pressure relief valves, stuffing boxes, and vents. This "other" equipment type should be applied to any equipment type other than connectors, flanges, open-ended lines, pumps, or valves.

TANKS 4.0.9d
Emissions Report - Detail Format
Tank Identification and Physical Characteristics

Identification

User Identification: Linam Ranch TK-1370
City: Near Hobbs
State: New Mexico
Company: DCP Midstream, LP
Type of Tank: Horizontal Tank
Description: 500 gallon methanol tank

Tank Dimensions

Shell Length (ft):	5.25
Diameter (ft):	4.00
Volume (gallons):	500.00
Turnovers:	144.00
Net Throughput(gal/yr):	72,000.00
Is Tank Heated (y/n):	N
Is Tank Underground (y/n):	N

Paint Characteristics

Shell Color/Shade: Red/Primer
Shell Condition: Poor

Breather Vent Settings

Vacuum Settings (psig):	-0.03
Pressure Settings (psig)	0.03

Meteorological Data used in Emissions Calculations: Roswell, New Mexico (Avg Atmospheric Pressure = 12.73 psia)

TANKS 4.0.9d
Emissions Report - Detail Format
Liquid Contents of Storage Tank

Linam Ranch TK-1370 - Horizontal Tank
Near Hobbs, New Mexico

Mixture/Component	Month	Daily Liquid Surf. Temperature (deg F)			Liquid Bulk Temp (deg F)	Vapor Pressure (psia)			Vapor Mol. Weight.	Liquid Mass Fract.	Vapor Mass Fract.	Mol. Weight	Basis for Vapor Pressure Calculations
		Avg.	Min.	Max.		Avg.	Min.	Max.					
Methyl alcohol	All	76.33	59.43	93.23	65.28	2.3677	1.4163	3.8159	32.0400			32.04	Option 2: A=7.897, B=1474.08, C=229.13

TANKS 4.0.9d
Emissions Report - Detail Format
Detail Calculations (AP-42)

Linam Ranch TK-1370 - Horizontal Tank
Near Hobbs, New Mexico

Annual Emission Calculations

Standing Losses (lb): 56.9023
 Vapor Space Volume (cu ft): 42.0213
 Vapor Density (lb/cu ft): 0.0132
 Vapor Space Expansion Factor: 0.3519
 Vented Vapor Saturation Factor: 0.7994

Tank Vapor Space Volume:
 Vapor Space Volume (cu ft): 42.0213
 Tank Diameter (ft): 4.0000
 Effective Diameter (ft): 5.1722
 Vapor Space Outage (ft): 2.0000
 Tank Shell Length (ft): 5.2500

Vapor Density
 Vapor Density (lb/cu ft): 0.0132
 Vapor Molecular Weight (lb/lb-mole): 32.0400
 Vapor Pressure at Daily Average Liquid Surface Temperature (psia): 2.3677
 Daily Avg. Liquid Surface Temp. (deg. R): 535.9964
 Daily Average Ambient Temp. (deg. F): 60.8167
 Ideal Gas Constant R
 (psi cuft / (lb-mol-deg R)): 10.731
 Liquid Bulk Temperature (deg. R): 524.9467
 Tank Paint Solar Absorbance (Shell): 0.9100
 Daily Total Solar Insulation Factor (Btu/sqft day): 1,810.0000

Vapor Space Expansion Factor
 Vapor Space Expansion Factor: 0.3519
 Daily Vapor Temperature Range (deg. R): 67.5988
 Daily Vapor Pressure Range (psia): 2.3996
 Breather Vent Press. Setting Range(psia): 0.0600
 Vapor Pressure at Daily Average Liquid Surface Temperature (psia): 2.3677
 Vapor Pressure at Daily Minimum Liquid Surface Temperature (psia): 1.4163
 Vapor Pressure at Daily Maximum Liquid Surface Temperature (psia): 3.8159
 Daily Avg. Liquid Surface Temp. (deg R): 535.9964
 Daily Min. Liquid Surface Temp. (deg R): 519.0967
 Daily Max. Liquid Surface Temp. (deg R): 552.8961
 Daily Ambient Temp. Range (deg R): 29.8333

Vented Vapor Saturation Factor
 Vented Vapor Saturation Factor: 0.7994
 Vapor Pressure at Daily Average Liquid Surface Temperature (psia): 2.3677
 Vapor Space Outage (ft): 2.0000

Working Losses (lb): 48.7688
 Vapor Molecular Weight (lb/lb-mole): 32.0400
 Vapor Pressure at Daily Average Liquid Surface Temperature (psia): 2.3677
 Annual Net Throughput (gal/yr.): 72,000.0000
 Annual Turnovers: 144.0000
 Turnover Factor: 0.3750
 Tank Diameter (ft): 4.0000
 Working Loss Product Factor: 1.0000

Total Losses (lb): 105.6711

TANKS 4.0.9d
Emissions Report - Detail Format
Individual Tank Emission Totals

Emissions Report for: Annual

Linam Ranch TK-1370 - Horizontal Tank
Near Hobbs, New Mexico

	Losses(lbs)		
Components	Working Loss	Breathing Loss	Total Emissions
Methyl alcohol	48.77	56.90	105.67

TANKS 4.0.9d
Emissions Report - Detail Format
Tank Identification and Physical Characteristics

Identification

User Identification: Linam Ranch TK-20
City: Near Hobbs
State: New Mexico
Company: DCP Midstream, LP
Type of Tank: Horizontal Tank
Description: 1130 gallon methanol tank

Tank Dimensions

Shell Length (ft):	6.50
Diameter (ft):	5.50
Volume (gallons):	1,130.00
Turnovers:	144.00
Net Throughput(gal/yr):	162,720.00
Is Tank Heated (y/n):	N
Is Tank Underground (y/n):	N

Paint Characteristics

Shell Color/Shade: Red/Primer
Shell Condition: Poor

Breather Vent Settings

Vacuum Settings (psig):	-0.03
Pressure Settings (psig)	0.03

Meteorological Data used in Emissions Calculations: Roswell, New Mexico (Avg Atmospheric Pressure = 12.73 psia)

TANKS 4.0.9d
Emissions Report - Detail Format
Liquid Contents of Storage Tank

Linam Ranch TK-20 - Horizontal Tank
Near Hobbs, New Mexico

Mixture/Component	Month	Daily Liquid Surf. Temperature (deg F)			Liquid Bulk Temp (deg F)	Vapor Pressure (psia)			Vapor Mol. Weight.	Liquid Mass Fract.	Vapor Mass Fract.	Mol. Weight	Basis for Vapor Pressure Calculations
		Avg.	Min.	Max.		Avg.	Min.	Max.					
Methyl alcohol	All	76.33	59.43	93.23	65.28	2.3677	1.4163	3.8159	32.0400			32.04	Option 2: A=7.897, B=1474.08, C=229.13

TANKS 4.0.9d
Emissions Report - Detail Format
Detail Calculations (AP-42)

Linam Ranch TK-20 - Horizontal Tank
Near Hobbs, New Mexico

Annual Emission Calculations

Standing Losses (lb): 123.8757
 Vapor Space Volume (cu ft): 98.3624
 Vapor Density (lb/cu ft): 0.0132
 Vapor Space Expansion Factor: 0.3519
 Vented Vapor Saturation Factor: 0.7434

Tank Vapor Space Volume:
 Vapor Space Volume (cu ft): 98.3624
 Tank Diameter (ft): 5.5000
 Effective Diameter (ft): 6.7484
 Vapor Space Outage (ft): 2.7500
 Tank Shell Length (ft): 6.5000

Vapor Density
 Vapor Density (lb/cu ft): 0.0132
 Vapor Molecular Weight (lb/lb-mole): 32.0400
 Vapor Pressure at Daily Average Liquid Surface Temperature (psia): 2.3677
 Daily Avg. Liquid Surface Temp. (deg. R): 535.9964
 Daily Average Ambient Temp. (deg. F): 60.8167
 Ideal Gas Constant R
 (psia cuft / (lb-mol-deg R)): 10.731
 Liquid Bulk Temperature (deg. R): 524.9467
 Tank Paint Solar Absorptance (Shell): 0.9100
 Daily Total Solar Insulation Factor (Btu/sqft day): 1,810.0000

Vapor Space Expansion Factor
 Vapor Space Expansion Factor: 0.3519
 Daily Vapor Temperature Range (deg. R): 67.5988
 Daily Vapor Pressure Range (psia): 2.3996
 Breather Vent Press. Setting Range(psia): 0.0600
 Vapor Pressure at Daily Average Liquid Surface Temperature (psia): 2.3677
 Vapor Pressure at Daily Minimum Liquid Surface Temperature (psia): 1.4163
 Vapor Pressure at Daily Maximum Liquid Surface Temperature (psia): 3.8159
 Daily Avg. Liquid Surface Temp. (deg R): 535.9964
 Daily Min. Liquid Surface Temp. (deg R): 519.0967
 Daily Max. Liquid Surface Temp. (deg R): 552.8961
 Daily Ambient Temp. Range (deg. R): 29.8333

Vented Vapor Saturation Factor
 Vented Vapor Saturation Factor: 0.7434
 Vapor Pressure at Daily Average Liquid Surface Temperature (psia): 2.3677
 Vapor Space Outage (ft): 2.7500

Working Losses (lb): 110.2175
 Vapor Molecular Weight (lb/lb-mole): 32.0400
 Vapor Pressure at Daily Average Liquid Surface Temperature (psia): 2.3677
 Annual Net Throughput (gal/yr.): 162,720.0000
 Annual Turnovers: 144.0000
 Turnover Factor: 0.3750
 Tank Diameter (ft): 5.5000
 Working Loss Product Factor: 1.0000

Total Losses (lb): 234.0931

TANKS 4.0.9d
Emissions Report - Detail Format
Individual Tank Emission Totals

Emissions Report for: Annual

Linam Ranch TK-20 - Horizontal Tank
Near Hobbs, New Mexico

Components	Losses(lbs)		
	Working Loss	Breathing Loss	Total Emissions
Methyl alcohol	110.22	123.88	234.09

TANKS 4.0.9d
Emissions Report - Detail Format
Tank Identification and Physical Characteristics

Identification

User Identification: Linam Ranch TK-21
City: Near Hobbs
State: New Mexico
Company: DCP Midstream, LP
Type of Tank: Horizontal Tank
Description: 659 gallon methanol tank

Tank Dimensions

Shell Length (ft):	5.50
Diameter (ft):	4.50
Volume (gallons):	660.00
Turnovers:	144.00
Net Throughput(gal/yr):	95,040.00
Is Tank Heated (y/n):	N
Is Tank Underground (y/n):	N

Paint Characteristics

Shell Color/Shade: Red/Primer
Shell Condition: Poor

Breather Vent Settings

Vacuum Settings (psig):	-0.03
Pressure Settings (psig)	0.03

Meteorological Data used in Emissions Calculations: Roswell, New Mexico (Avg Atmospheric Pressure = 12.73 psia)

TANKS 4.0.9d
Emissions Report - Detail Format
Liquid Contents of Storage Tank

Linam Ranch TK-21 - Horizontal Tank
Near Hobbs, New Mexico

Mixture/Component	Month	Daily Liquid Surf. Temperature (deg F)			Liquid Bulk Temp (deg F)	Vapor Pressure (psia)			Vapor Mol. Weight.	Liquid Mass Fract.	Vapor Mass Fract.	Mol. Weight	Basis for Vapor Pressure Calculations
		Avg.	Min.	Max.		Avg.	Min.	Max.					
Methyl alcohol	All	76.33	59.43	93.23	65.28	2.3677	1.4163	3.8159	32.0400			32.04	Option 2: A=7.897, B=1474.08, C=229.13

TANKS 4.0.9d
Emissions Report - Detail Format
Detail Calculations (AP-42)

Linam Ranch TK-21 - Horizontal Tank
Near Hobbs, New Mexico

Annual Emission Calculations

Standing Losses (lb): 73.6006
 Vapor Space Volume (cu ft): 55.7157
 Vapor Density (lb/cu ft): 0.0132
 Vapor Space Expansion Factor: 0.3519
 Vented Vapor Saturation Factor: 0.7798

Tank Vapor Space Volume:
 Vapor Space Volume (cu ft): 55.7157
 Tank Diameter (ft): 4.5000
 Effective Diameter (ft): 5.6150
 Vapor Space Outage (ft): 2.2500
 Tank Shell Length (ft): 5.5000

Vapor Density
 Vapor Density (lb/cu ft): 0.0132
 Vapor Molecular Weight (lb/lb-mole): 32.0400
 Vapor Pressure at Daily Average Liquid Surface Temperature (psia): 2.3677
 Daily Avg. Liquid Surface Temp. (deg. R): 535.9964
 Daily Average Ambient Temp. (deg. F): 60.8167
 Ideal Gas Constant R
 (psi cuft / (lb-mol-deg R)): 10.731
 Liquid Bulk Temperature (deg. R): 524.9467
 Tank Paint Solar Absorbance (Shell): 0.9100
 Daily Total Solar Insulation Factor (Btu/sqft day): 1,810.0000

Vapor Space Expansion Factor
 Vapor Space Expansion Factor: 0.3519
 Daily Vapor Temperature Range (deg. R): 67.5988
 Daily Vapor Pressure Range (psia): 2.3996
 Breather Vent Press. Setting Range(psia): 0.0600
 Vapor Pressure at Daily Average Liquid Surface Temperature (psia): 2.3677
 Vapor Pressure at Daily Minimum Liquid Surface Temperature (psia): 1.4163
 Vapor Pressure at Daily Maximum Liquid Surface Temperature (psia): 3.8159
 Daily Avg. Liquid Surface Temp. (deg R): 535.9964
 Daily Min. Liquid Surface Temp. (deg R): 519.0967
 Daily Max. Liquid Surface Temp. (deg R): 552.8961
 Daily Ambient Temp. Range (deg R): 29.8333

Vented Vapor Saturation Factor
 Vented Vapor Saturation Factor: 0.7798
 Vapor Pressure at Daily Average Liquid Surface Temperature (psia): 2.3677
 Vapor Space Outage (ft): 2.2500

Working Losses (lb): 64.3748
 Vapor Molecular Weight (lb/lb-mole): 32.0400
 Vapor Pressure at Daily Average Liquid Surface Temperature (psia): 2.3677
 Annual Net Throughput (gal/yr.): 95,040.0000
 Annual Turnovers: 144.0000
 Turnover Factor: 0.3750
 Tank Diameter (ft): 4.5000
 Working Loss Product Factor: 1.0000

Total Losses (lb): 137.9754

TANKS 4.0.9d
Emissions Report - Detail Format
Individual Tank Emission Totals

Emissions Report for: Annual

Linam Ranch TK-21 - Horizontal Tank
Near Hobbs, New Mexico

	Losses(lbs)		
Components	Working Loss	Breathing Loss	Total Emissions
Methyl alcohol	64.37	73.60	137.98

TANKS 4.0.9d
Emissions Report - Detail Format
Tank Identification and Physical Characteristics

Identification

User Identification: Linam Ranch TK-27
 City: Near Hobbs
 State: New Mexico
 Company: DCP Midstream, LP
 Type of Tank: Vertical Fixed Roof Tank
 Description: 7050 gallon methanol storage tank

Tank Dimensions

Shell Height (ft): 12.00
 Diameter (ft): 10.00
 Liquid Height (ft): 11.00
 Avg. Liquid Height (ft): 5.50
 Volume (gallons): 7,050.00
 Turnovers: 50.00
 Net Throughput(gal/yr): 352,500.00
 Is Tank Heated (y/n): N

Paint Characteristics

Shell Color/Shade: Red/Primer
 Shell Condition: Poor
 Roof Color/Shade: Red/Primer
 Roof Condition: Poor

Roof Characteristics

Type: Cone
 Height (ft) 0.00
 Slope (ft/ft) (Cone Roof) 0.06

Breather Vent Settings

Vacuum Settings (psig): -0.03
 Pressure Settings (psig) 0.03

Meteorological Data used in Emissions Calculations: Roswell, New Mexico (Avg Atmospheric Pressure = 12.73 psia)

TANKS 4.0.9d
Emissions Report - Detail Format
Liquid Contents of Storage Tank

Linam Ranch TK-27 - Vertical Fixed Roof Tank
 Near Hobbs, New Mexico

Mixture/Component	Month	Daily Liquid Surf. Temperature (deg F)			Liquid Bulk Temp (deg F)	Vapor Pressure (psia)			Vapor Mol. Weight.	Liquid Mass Fract.	Vapor Mass Fract.	Mol. Weight	Basis for Vapor Pressure Calculations
		Avg.	Min.	Max.		Avg.	Min.	Max.					
Methyl alcohol	All	76.33	59.43	93.23	65.28	2.3677	1.4163	3.8159	32.0400		32.04		Option 2: A=7.897, B=1474.08, C=229.13

TANKS 4.0.9d
Emissions Report - Detail Format
Detail Calculations (AP-42)

Linam Ranch TK-27 - Vertical Fixed Roof Tank
 Near Hobbs, New Mexico

Annual Emission Calculations

Standing Losses (lb): 480.4657
 Vapor Space Volume (cu ft): 518.6900
 Vapor Density (lb/cu ft): 0.0132
 Vapor Space Expansion Factor: 0.3519
 Vented Vapor Saturation Factor: 0.5468

Tank Vapor Space Volume:
 Vapor Space Volume (cu ft): 518.6900
 Tank Diameter (ft): 10.0000
 Vapor Space Outage (ft): 6.6042
 Tank Shell Height (ft): 12.0000
 Average Liquid Height (ft): 5.5000
 Roof Outage (ft): 0.1042

Roof Outage (Cone Roof)
 Roof Outage (ft): 0.1042
 Roof Height (ft): 0.0000
 Roof Slope (ft/ft): 0.0625
 Shell Radius (ft): 5.0000

Vapor Density
 Vapor Density (lb/cu ft): 0.0132
 Vapor Molecular Weight (lb/lb-mole): 32.0400
 Vapor Pressure at Daily Average Liquid
 Surface Temperature (psia): 2.3677
 Daily Avg. Liquid Surface Temp. (deg. R): 535.9964
 Daily Average Ambient Temp. (deg. F): 60.8167
 Ideal Gas Constant R
 (psia cuft / (lb-mol-deg R)): 10.731
 Liquid Bulk Temperature (deg. R): 524.9467
 Tank Paint Solar Absorptance (Shell): 0.9100
 Tank Paint Solar Absorptance (Roof): 0.9100
 Daily Total Solar Insulation Factor (Btu/sqft day): 1,810.0000

Vapor Space Expansion Factor
 Vapor Space Expansion Factor: 0.3519
 Daily Vapor Temperature Range (deg. R): 67.5988
 Daily Vapor Pressure Range (psia): 2.3996
 Breather Vent Press. Setting Range(psia): 0.0600
 Vapor Pressure at Daily Average Liquid Surface Temperature (psia): 2.3677
 Vapor Pressure at Daily Minimum Liquid Surface Temperature (psia): 1.4163
 Vapor Pressure at Daily Maximum Liquid Surface Temperature (psia): 3.8159
 Daily Avg. Liquid Surface Temp. (deg R): 535.9964
 Daily Min. Liquid Surface Temp. (deg R): 519.0967
 Daily Max. Liquid Surface Temp. (deg R): 552.8961
 Daily Ambient Temp. Range (deg. R): 29.8333

Vented Vapor Saturation Factor
 Vented Vapor Saturation Factor: 0.5468
 Vapor Pressure at Daily Average Liquid Surface Temperature (psia): 2.3677
 Vapor Space Outage (ft): 6.6042

Working Losses (lb): 488.1395
 Vapor Molecular Weight (lb/lb-mole): 32.0400
 Vapor Pressure at Daily Average Liquid Surface Temperature (psia): 2.3677
 Annual Net Throughput (gal/yr.): 352,500.0000
 Annual Turnovers: 50.0000
 Turnover Factor: 0.7667
 Maximum Liquid Volume (gal): 7,050.0000
 Maximum Liquid Height (ft): 11.0000
 Tank Diameter (ft): 10.0000
 Working Loss Product Factor: 1.0000

Total Losses (lb): 968.6051

TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: Annual

Linam Ranch TK-27 - Vertical Fixed Roof Tank
 Near Hobbs, New Mexico

Components	Losses(lbs)		
	Working Loss	Breathing Loss	Total Emissions
Methyl alcohol	488.14	480.47	968.61

MOBILE ANALYTICAL LABS, INC.

P.O. BOX 69210
ODESSA, TEXAS 79769

GAS EXTENDED ANALYSIS

11/11/13

LAB # 18951

DCP MIDSTREAM
LINAM RANCH
INLET GAS
STATION NO. M0500

	MOL %	GPM
HYDROGEN SULFIDE	0.3803	0.000
NITROGEN	2.4609	0.000
METHANE	73.5375	0.000
CARBON DIOXIDE	1.6084	0.000
ETHANE	12.5872	3.360
PROPANE	6.1477	1.690
ISO-BUTANE	0.6961	0.227
N-BUTANE	1.6193	0.509
ISO-PENTANE	0.3336	0.122
N-PENTANE	0.3137	0.113
NEOHEXANE	0.0031	0.001
CYCLOPENTANE	0.0281	0.012
2-METHYLPENTANE	0.0532	0.022
3-METHYLPENTANE	0.0299	0.012
N-HEXANE	0.0541	0.022
METHYLCYCLOPENTANE	0.0333	0.012
BENZENE	0.0276	0.008
CYCLOHEXANE	0.0292	0.010
2-METHYLHEXANE	0.0057	0.003
3-METHYLHEXANE	0.0072	0.003
DIMETHYLCYCLOPENTANES	0.0115	0.005
N-HEPTANE	0.0070	0.003
METHYLCYCLOHEXANE	0.0130	0.005
TRIMETHYLCYCLOPENTANES	0.0008	0.000
TOLUENE	0.0056	0.002
2-METHYLHEPTANE	0.0023	0.001
3-METHYLHEPTANE	0.0005	0.000
DIMETHYLCYCLOHEXANES	0.0011	0.000
N-OCTANE	0.0005	0.000
ETHYL BENZENE	0.0001	0.000
M&P-XYLENES	0.0002	0.000
O-XYLENE	0.0000	0.000
C9 NAPHTHENES	0.0005	0.000
C9 PARAFFINS	0.0008	0.000
N-NONANE	0.0000	0.000
N-DECANE	0.0000	0.000
UNDECANE PLUS	0.0000	0.000
TOTALS	100.0000	6.142

SPECIFIC GRAVITY	0.759
GROSS DRY BTU/CU.FT.	1239.4
GROSS WET BTU/CU.FT.	1218.3
TOTAL MOL. WT.	21.907
MOL. WT. C6+	86.919
SP. GRAVITY C6+	3.342
MOL. WT. C7+	100.411
SP. GRAVITY C7+	4.187

BASIS: 14.65 PSIA @ 60 °F

NOTES:
SAMPLLED 11/06/13 BY: SR
285 PSIG @ 58 °F
H2S = 3803 PPM
CYLINDER NO. 1293
SPOT

DISTRIBUTION:
MR. STEVEN BOATENHAMER
MS. DENA RAGSDALE

MOBILE ANALYTICAL LABS, INC.

P.O. BOX 69210
ODESSA, TEXAS 79769

GAS EXTENDED ANALYSIS

10/21/13

LAB # 18489

DCP MIDSTREAM
LINAM RANCH
FUEL GAS

	MOL %	GPM
HYDROGEN SULFIDE	0.0000	0.000
NITROGEN	3.1359	0.000
METHANE	91.2431	0.000
CARBON DIOXIDE	0.0030	0.000
ETHANE	5.4849	1.462
PROPANE	0.1310	0.036
ISO-BUTANE	0.0012	0.000
N-BUTANE	0.0009	0.000
ISO-PENTANE	0.0000	0.000
N-PENTANE	0.0000	0.000
NEOHEXANE	0.0000	0.000
CYCLOPENTANE	0.0000	0.000
2-METHYLPENTANE	0.0000	0.000
3-METHYLPENTANE	0.0000	0.000
N-HEXANE	0.0000	0.000
METHYLCYCLOPENTANE	0.0000	0.000
BENZENE	0.0000	0.000
CYCLOHEXANE	0.0000	0.000
2-METHYLHEXANE	0.0000	0.000
3-METHYLHEXANE	0.0000	0.000
DIMETHYLCYCLOPENTANES	0.0000	0.000
N-HEPTANE	0.0000	0.000
METHYLCYCLOHEXANE	0.0000	0.000
TRIMETHYLCYCLOPENTANES	0.0000	0.000
TOLUENE	0.0000	0.000
2-METHYLHEPTANE	0.0000	0.000
3-METHYLHEPTANE	0.0000	0.000
DIMETHYLCYCLOHEXANES	0.0000	0.000
N-OCTANE	0.0000	0.000
ETHYL BENZENE	0.0000	0.000
M&P-XYLENES	0.0000	0.000
O-XYLENE	0.0000	0.000
C9 NAPHTHENES	0.0000	0.000
C9 PARAFFINS	0.0000	0.000
N-NONANE	0.0000	0.000
N-DECANE	0.0000	0.000
UNDECANE PLUS	0.0000	0.000
TOTALS	100.0000	1.498

SPECIFIC GRAVITY 0.596
GROSS DRY BTU/CU.FT. 1021.0
GROSS WET BTU/CU.FT. 1003.4
TOTAL MOL. WT. 17.226

NOTES:
SAMPLED 10/14/13 BY: SR
175 PSIG @ 79 °F
H2S = 0 PPM
CYLINDER NO. 1102
ANNUAL SPOT

DISTRIBUTION
MR. JON BEBBINGTON

BASIS: 14.65 PSIA @ 60 °F

5.2 Transportation And Marketing Of Petroleum Liquids¹⁻³

5.2.1 General

The transportation and marketing of petroleum liquids involve many distinct operations, each of which represents a potential source of evaporation loss. Crude oil is transported from production operations to a refinery by tankers, barges, rail tank cars, tank trucks, and pipelines. Refined petroleum products are conveyed to fuel marketing terminals and petrochemical industries by these same modes. From the fuel marketing terminals, the fuels are delivered by tank trucks to service stations, commercial accounts, and local bulk storage plants. The final destination for gasoline is usually a motor vehicle gasoline tank. Similar distribution paths exist for fuel oils and other petroleum products. A general depiction of these activities is shown in Figure 5.2-1.

5.2.2 Emissions And Controls

Evaporative emissions from the transportation and marketing of petroleum liquids may be considered, by storage equipment and mode of transportation used, in four categories:

1. Rail tank cars, tank trucks, and marine vessels: loading, transit, and ballasting losses.
2. Service stations: bulk fuel drop losses and underground tank breathing losses.
3. Motor vehicle tanks: refueling losses.
4. Large storage tanks: breathing, working, and standing storage losses. (See Chapter 7, "Liquid Storage Tanks".)

Evaporative and exhaust emissions are also associated with motor vehicle operation, and these topics are discussed in AP-42 *Volume II: Mobile Sources*.

5.2.2.1 Rail Tank Cars, Tank Trucks, And Marine Vessels -

Emissions from these sources are from loading losses, ballasting losses, and transit losses.

5.2.2.1.1 Loading Losses -

Loading losses are the primary source of evaporative emissions from rail tank car, tank truck, and marine vessel operations. Loading losses occur as organic vapors in "empty" cargo tanks are displaced to the atmosphere by the liquid being loaded into the tanks. These vapors are a composite of (1) vapors formed in the empty tank by evaporation of residual product from previous loads, (2) vapors transferred to the tank in vapor balance systems as product is being unloaded, and (3) vapors generated in the tank as the new product is being loaded. The quantity of evaporative losses from loading operations is, therefore, a function of the following parameters:

- Physical and chemical characteristics of the previous cargo;
- Method of unloading the previous cargo;
- Operations to transport the empty carrier to a loading terminal;
- Method of loading the new cargo; and
- Physical and chemical characteristics of the new cargo.

The principal methods of cargo carrier loading are illustrated in Figure 5.2-2, Figure 5.2-3, and Figure 5.2-4. In the splash loading method, the fill pipe dispensing the cargo is lowered only part way into the cargo tank. Significant turbulence and vapor/liquid contact occur during the splash.

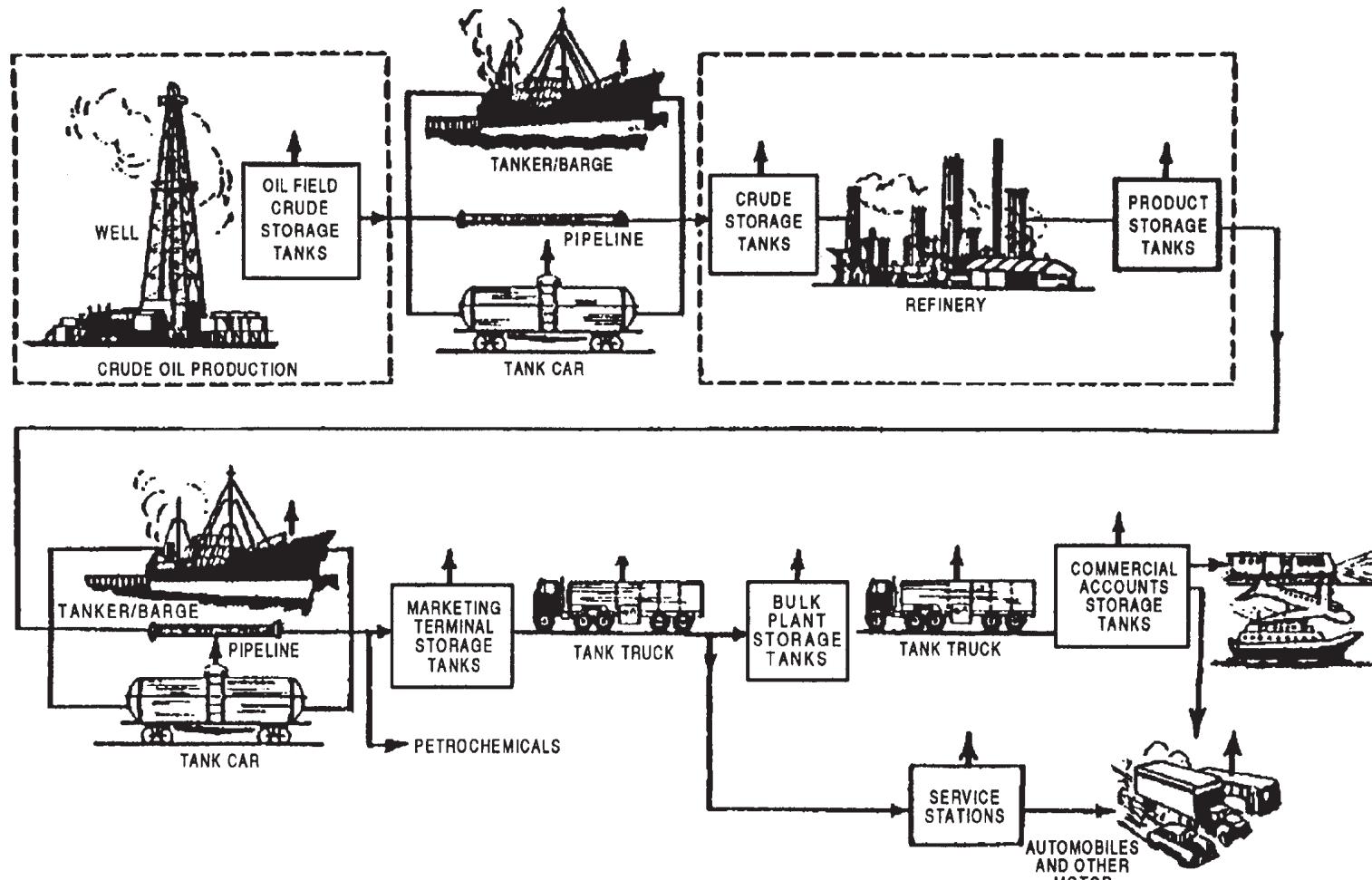


Figure 5.2-1. Flow sheet of petroleum production, refining, and distribution systems.
(Points of organic emissions are indicated by vertical arrows.)

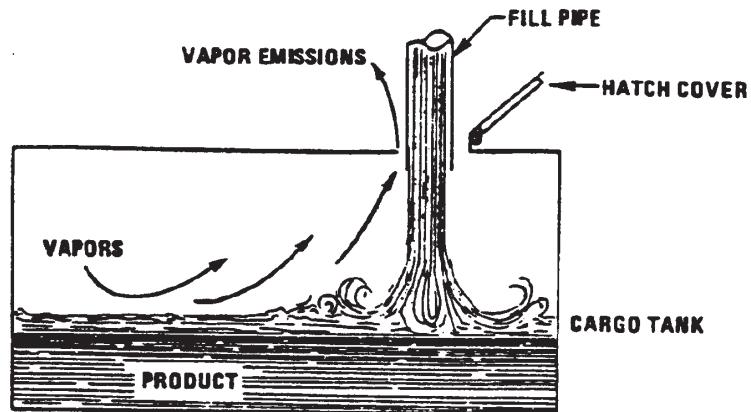


Figure 5.2-2. Splash loading method.

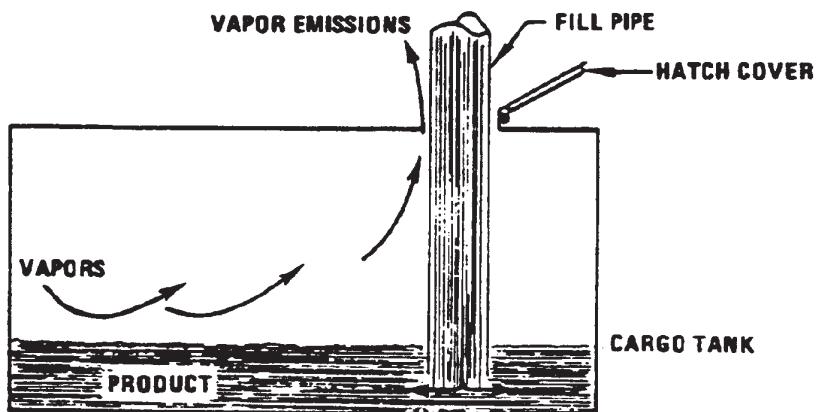


Figure 5.2-3. Submerged fill pipe.

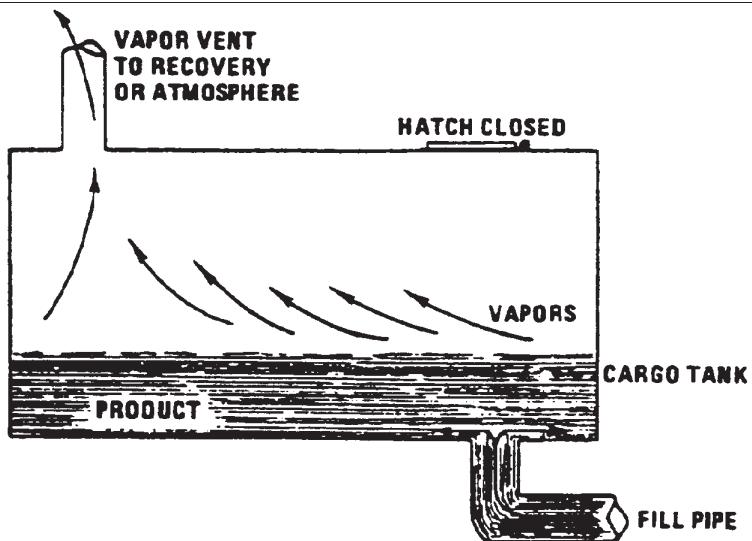


Figure 5.2-4. Bottom loading.

loading operation, resulting in high levels of vapor generation and loss. If the turbulence is great enough, liquid droplets will be entrained in the vented vapors.

A second method of loading is submerged loading. Two types are the submerged fill pipe method and the bottom loading method. In the submerged fill pipe method, the fill pipe extends almost to the bottom of the cargo tank. In the bottom loading method, a permanent fill pipe is attached to the cargo tank bottom. During most of submerged loading by both methods, the fill pipe opening is below the liquid surface level. Liquid turbulence is controlled significantly during submerged loading, resulting in much lower vapor generation than encountered during splash loading.

The recent loading history of a cargo carrier is just as important a factor in loading losses as the method of loading. If the carrier has carried a nonvolatile liquid such as fuel oil, or has just been cleaned, it will contain vapor-free air. If it has just carried gasoline and has not been vented, the air in the carrier tank will contain volatile organic vapors, which will be expelled during the loading operation along with newly generated vapors.

Cargo carriers are sometimes designated to transport only one product, and in such cases are practicing "dedicated service". Dedicated gasoline cargo tanks return to a loading terminal containing air fully or partially saturated with vapor from the previous load. Cargo tanks may also be "switch loaded" with various products, so that a nonvolatile product being loaded may expel the vapors remaining from a previous load of a volatile product such as gasoline. These circumstances vary with the type of cargo tank and with the ownership of the carrier, the petroleum liquids being transported, geographic location, and season of the year.

One control measure for vapors displaced during liquid loading is called "vapor balance service", in which the cargo tank retrieves the vapors displaced during product unloading at bulk plants or service stations and transports the vapors back to the loading terminal. Figure 5.2-5 shows a tank truck in vapor balance service filling a service station underground tank and taking on displaced gasoline vapors for return to the terminal. A cargo tank returning to a bulk terminal in vapor balance service normally is saturated with organic vapors, and the presence of these vapors at the start of submerged loading of the tanker truck results in greater loading losses than encountered during nonvapor balance, or "normal", service. Vapor balance service is usually not practiced with marine vessels, although some vessels practice emission control by means of vapor transfer within their own cargo tanks during ballasting operations, discussed below.

Emissions from loading petroleum liquid can be estimated (with a probable error of ± 30 percent)⁴ using the following expression:

$$L_L = 12.46 \frac{SPM}{T} \quad (1)$$

where:

L_L = loading loss, pounds per 1000 gallons (lb/ 10^3 gal) of liquid loaded

S = a saturation factor (see Table 5.2-1)

P = true vapor pressure of liquid loaded, pounds per square inch absolute (psia)
(see Section 7.1, "Organic Liquid Storage Tanks")

M = molecular weight of vapors, pounds per pound-mole (lb/lb-mole) (see Section 7.1, "Organic Liquid Storage Tanks")

T = temperature of bulk liquid loaded, $^{\circ}$ R ($^{\circ}$ F + 460)

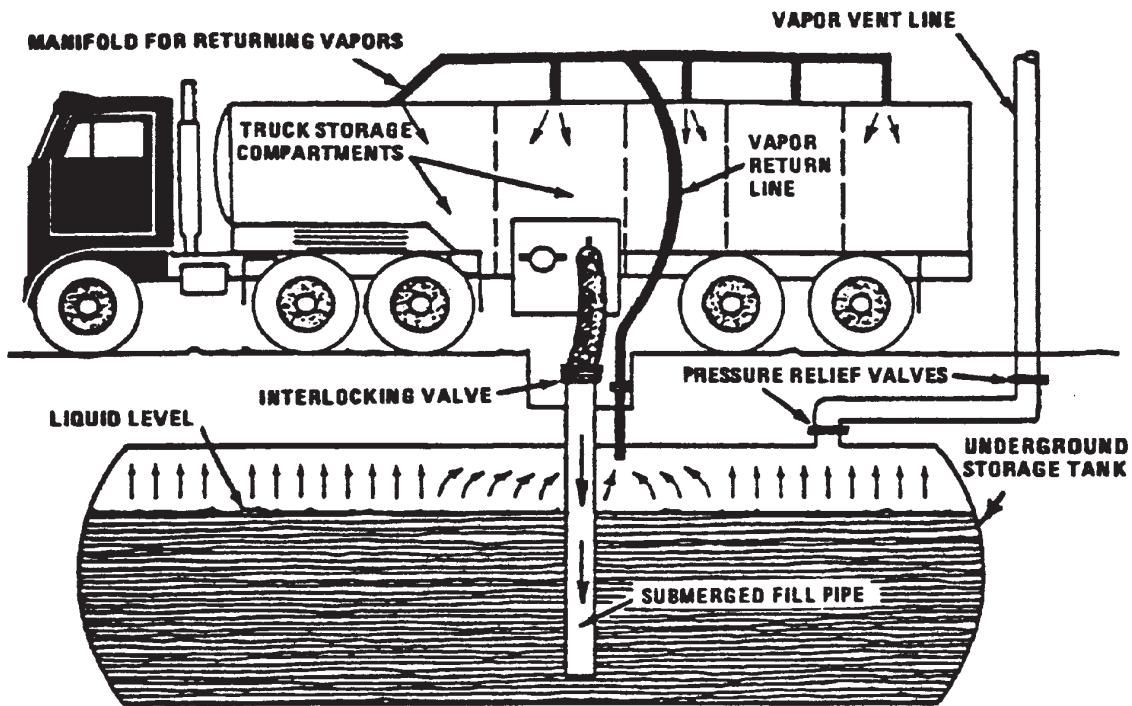


Figure 5.2-5. Tank truck unloading into a service station underground storage tank and practicing "vapor balance" form of emission control.

Table 5.2-1. SATURATION (S) FACTORS FOR CALCULATING PETROLEUM LIQUID LOADING LOSSES

Cargo Carrier	Mode Of Operation	S Factor
Tank trucks and rail tank cars	Submerged loading of a clean cargo tank	0.50
	Submerged loading: dedicated normal service	0.60
	Submerged loading: dedicated vapor balance service	1.00
	Splash loading of a clean cargo tank	1.45
	Splash loading: dedicated normal service	1.45
	Splash loading: dedicated vapor balance service	1.00
	Submerged loading: ships	0.2
Marine vessels ^a	Submerged loading: barges	0.5

^a For products other than gasoline and crude oil. For marine loading of gasoline, use factors from Table 5.2-2. For marine loading of crude oil, use Equations 2 and 3 and Table 5.2-3.

The saturation factor, S , represents the expelled vapor's fractional approach to saturation, and it accounts for the variations observed in emission rates from the different unloading and loading methods. Table 5.2-1 lists suggested saturation factors.

Emissions from controlled loading operations can be calculated by multiplying the uncontrolled emission rate calculated in Equation 1 by an overall reduction efficiency term:

$$\left(1 - \frac{\text{eff}}{100} \right)$$

The overall reduction efficiency should account for the capture efficiency of the collection system as well as both the control efficiency and any downtime of the control device. Measures to reduce loading emissions include selection of alternate loading methods and application of vapor recovery equipment. The latter captures organic vapors displaced during loading operations and recovers the vapors by the use of refrigeration, absorption, adsorption, and/or compression. The recovered product is piped back to storage. Vapors can also be controlled through combustion in a thermal oxidation unit, with no product recovery. Figure 5.2-6 demonstrates the recovery of gasoline vapors from tank trucks during loading operations at bulk terminals. Control efficiencies for the recovery units range from 90 to over 99 percent, depending on both the nature of the vapors and the type of control equipment used.⁵⁻⁶ However, not all of the displaced vapors reach the control device, because of leakage from both the tank truck and collection system. The collection efficiency should be assumed to be 99.2 percent for tanker trucks passing the MACT-level annual leak test (not more than 1 inch water column pressure change in 5 minutes after pressurizing to 18 inches water followed by pulling a vacuum of 6 inches water).⁷ A collection efficiency of 98.7 percent (a 1.3 percent leakage rate) should be assumed for trucks passing the NSPS-level annual test (3 inches pressure change). A collection efficiency of 70 percent should be assumed for trucks not passing one of these annual leak tests⁶.

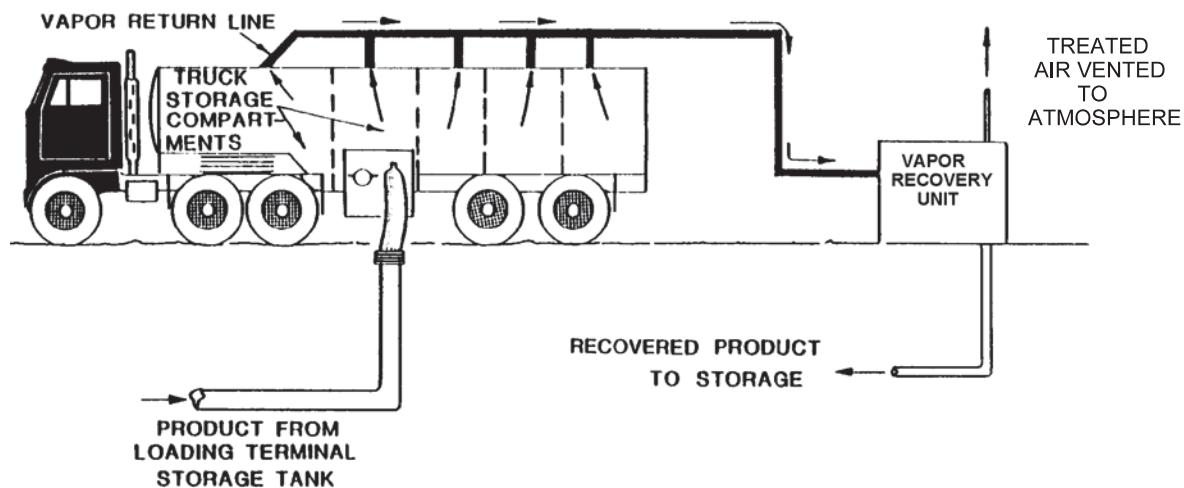


Figure 5.2-6. Tank truck loading with vapor recovery.

Sample Calculation -

Loading losses (L_L) from a gasoline tank truck in dedicated vapor balance service and practicing vapor recovery would be calculated as follows, using Equation 1:

Design basis -

Cargo tank volume is 8000 gal

Gasoline Reid vapor pressure (RVP) is 9 psia

Product temperature is 80°F

Vapor recovery efficiency is 95 percent

Vapor collection efficiency is 98.7 percent (NSPS-level annual leak test)

Loading loss equation -

$$L_L = 12.46 \frac{SPM}{T} \left(1 - \frac{eff}{100} \right)$$

where:

S = saturation factor (see Table 5.2-1) - 1.00

P = true vapor pressure of gasoline = 6.6 psia

M = molecular weight of gasoline vapors = 66

T = temperature of gasoline = 540°F

eff = overall reduction efficiency (95 percent control x 98.7 percent collection) = 94 percent

$$L_L = 12.46 \frac{(1.00)(6.6)(66)}{540} \left(1 - \frac{94}{100} \right)$$

$$= 0.60 \text{ lb}/10^3 \text{ gal}$$

Total loading losses are:

$$(0.60 \text{ lb}/10^3 \text{ gal}) (8.0 \times 10^3 \text{ gal}) = 4.8 \text{ pounds (lb)}$$

Measurements of gasoline loading losses from ships and barges have led to the development of emission factors for these specific loading operations.⁸ These factors are presented in Table 5.2-2 and should be used instead of Equation 1 for gasoline loading operations at marine terminals. Factors are expressed in units of milligrams per liter (mg/L) and pounds per 1000 gallons (lb/10³ gal).

Table 5.2-2 (Metric And English Units). VOLATILE ORGANIC COMPOUND (VOC) EMISSION FACTORS FOR GASOLINE LOADING OPERATIONS AT MARINE TERMINALS^a

Vessel Tank Condition	Previous Cargo	Ships/Ocean Barges ^b		Barges ^b	
		mg/L Transferred	lb/10 ³ gal Transferred	mg/L Transferred	lb/10 ³ gal Transferred
Uncleaned	Volatile ^c	315	2.6	465	3.9
Ballasted	Volatile	205	1.7	— ^d	— ^d
Cleaned	Volatile	180	1.5	ND	ND
Gas-freed	Volatile	85	0.7	ND	ND
Any condition	Nonvolatile	85	0.7	ND	ND
Gas-freed	Any cargo	ND	ND	245	2.0
Typical overall situation ^e	Any cargo	215	1.8	410	3.4

^a References 2,9. Factors are for both VOC emissions (which excludes methane and ethane) and total organic emissions, because methane and ethane have been found to constitute a negligible weight fraction of the evaporative emissions from gasoline. ND = no data.

^b Ocean barges (tank compartment depth about 12.2 m [40 ft]) exhibit emission levels similar to tank ships. Shallow draft barges (compartment depth 3.0 to 3.7 m [10 to 12 ft]) exhibit higher emission levels.

^c Volatile cargoes are those with a true vapor pressure greater than 10 kilopascals (kPa) (1.5 psia).

^d Barges are usually not ballasted.

^e Based on observation that 41% of tested ship compartments were uncleaned, 11% ballasted, 24% cleaned, and 24% gas-freed. For barges, 76% were uncleaned.

In addition to Equation 1, which estimates emissions from the loading of petroleum liquids, Equation 2 has been developed specifically for estimating emissions from the loading of crude oil into ships and ocean barges:

$$C_L = C_A + C_G \quad (2)$$

where:

C_L = total loading loss, lb/10³ gal of crude oil loaded

C_A = arrival emission factor, contributed by vapors in the empty tank compartment before loading, lb/10³ gal loaded (see Note below)

C_G = generated emission factor, contributed by evaporation during loading, lb/10³ gal loaded

Note: Values of C_A for various cargo tank conditions are listed in Table 5.2-3.

5.2-3 (English Units). AVERAGE ARRIVAL EMISSION FACTORS, C_A , FOR CRUDE OIL LOADING EMISSION EQUATION^a

Ship/Ocean Barge Tank Condition	Previous Cargo	Arrival Emission Factor, lb/10 ³ gal
Uncleaned	Volatile ^b	0.86
Ballasted	Volatile	0.46
Cleaned or gas-freed	Volatile	0.33
Any condition	Nonvolatile	0.33

^a Arrival emission factors (C_A) to be added to generated emission factors (C_G) calculated in Equation 3 to produce total crude oil loading loss (C_L). Factors are for total organic compounds; VOC emission factors average about 15% lower, because VOC does not include methane or ethane.

^b Volatile cargoes are those with a true vapor pressure greater than 10 kPa (1.5 psia).

This equation was developed empirically from test measurements of several vessel compartments.⁸ The quantity C_G can be calculated using Equation 3:

$$C_G = 1.84 (0.44 P - 0.42) \frac{MG}{T} \quad (3)$$

where:

P = true vapor pressure of loaded crude oil, psia

M = molecular weight of vapors, lb/lb-mole

G = vapor growth factor = 1.02 (dimensionless)

T = temperature of vapors, °R ($^{\circ}\text{F} + 460$)

Emission factors derived from Equation 3 and Table 5.2-3 represent total organic compounds. Volatile organic compound (VOC) emission factors (which exclude methane and ethane because they are exempted from the regulatory definition of "VOC") for crude oil vapors have been found to range from approximately 55 to 100 weight percent of these total organic factors. When specific vapor composition information is not available, the VOC emission factor can be estimated by taking 85 percent of the total organic factor.³

5.2.2.1.2 Ballasting Losses -

Ballasting operations are a major source of evaporative emissions associated with the unloading of petroleum liquids at marine terminals. It is common practice to load several cargo tank compartments with sea water after the cargo has been unloaded. This water, termed "ballast", improves the stability of the empty tanker during the subsequent voyage. Although ballasting practices vary, individual cargo tanks are ballasted typically about 80 percent, and the total vessel 15 to 40 percent, of capacity. Ballasting emissions occur as vapor-laden air in the "empty" cargo tank is displaced to the atmosphere by ballast water being pumped into the tank. Upon arrival at a loading port, the ballast water is pumped from the cargo tanks before the new cargo is loaded. The ballasting of cargo tanks reduces the quantity of vapors returning in the empty tank, thereby reducing the quantity of vapors emitted during subsequent tanker loading. Regulations administered by the U. S. Coast Guard require that, at marine terminals located in ozone nonattainment areas, large tankers with crude oil washing systems contain the organic vapors from ballasting.¹⁰ This is accomplished principally by displacing the vapors during ballasting into a cargo tank being simultaneously unloaded. In other areas, marine vessels emit organic vapors directly to the atmosphere.

Equation 4 has been developed from test data to calculate the ballasting emissions from crude oil ships and ocean barges⁸:

$$L_B = 0.31 + 0.20 P + 0.01 PU_A \quad (4)$$

where:

L_B = ballasting emission factor, lb/ 10^3 gal of ballast water
 P = true vapor pressure of discharged crude oil, psia
 U_A = arrival cargo true ullage, before dockside discharge, measured from the deck, feet;
 (the term "ullage" here refers to the distance between the cargo surface level and the deck level)

Table 5.2-4 lists average total organic emission factors for ballasting into uncleaned crude oil cargo compartments. The first category applies to "full" compartments wherein the crude oil true ullage just before cargo discharge is less than 1.5 meters (m) (5 ft). The second category applies to lightered, or short-loaded, compartments (part of cargo previously discharged, or original load a partial fill), with an arrival true ullage greater than 1.5 m (5 ft). It should be remembered that these tabulated emission factors are examples only, based on average conditions, to be used when crude oil vapor pressure is unknown. Equation 4 should be used when information about crude oil vapor pressure and cargo compartment condition is available. The following sample calculation illustrates the use of Equation 4.

5.2-4 (Metric And English Units). TOTAL ORGANIC EMISSION FACTORS FOR CRUDE OIL BALLASTING^a

Compartment Condition Before Cargo Discharge	Average Emission Factors			
	By Category		Typical Overall ^b	
	mg/L Ballast Water	lb/ 10^3 gal Ballast Water	mg/L Ballast Water	lb/ 10^3 gal Ballast Water
Fully loaded ^c	111	0.9		
Lightered or previously short loaded ^d	171	1.4	129	1.1

^a Assumes crude oil temperature of 16°C (60°F) and RVP of 34 kPa (5 psia). VOC emission factors average about 85% of these total organic factors, because VOCs do not include methane or ethane.

^b Based on observation that 70% of tested compartments had been fully loaded before ballasting. May not represent average vessel practices.

^c Assumed typical arrival ullage of 0.6 m (2 ft).

^d Assumed typical arrival ullage of 6.1 m (20 ft).

Sample Calculation -

Ballasting emissions from a crude oil cargo ship would be calculated as follows, using Equation 4:

Design basis -

Vessel and cargo description: 80,000 dead-weight-ton tanker, crude oil capacity 500,000 barrels (bbl); 20 percent of the cargo capacity is filled with ballast water after cargo discharge. The crude oil has an RVP of 6 psia and is discharged at 75°F.

Compartment conditions: 70 percent of the ballast water is loaded into compartments that had been fully loaded to 2 ft ullage, and 30 percent is loaded into compartments that had been lightered to 15 ft ullage before arrival at dockside.

Ballasting emission equation -

$$L_B = 0.31 + 0.20 P + 0.01 PU_A$$

where:

$$\begin{aligned} P &= \text{true vapor pressure of crude oil} \\ &= 4.6 \text{ psia} \end{aligned}$$

$$U_A = \text{true cargo ullage for the full compartments} = 2 \text{ ft, and true cargo ullage for the lightered compartments} = 15 \text{ ft}$$

$$\begin{aligned} L_B &= 0.70 [0.31 + (0.20)(4.6) + (0.01)(4.6)(2)] \\ &\quad + 0.30 [0.31 + (0.20)(4.6) + (0.01)(4.6)(15)] \\ &= 1.5 \text{ lb}/10^3 \text{ gal} \end{aligned}$$

Total ballasting emissions are:

$$(1.5 \text{ lb}/10^3 \text{ gal})(0.20)(500,000 \text{ bbl})(42 \text{ gal/bbl}) = 6,300 \text{ lb}$$

Since VOC emissions average about 85 percent of these total organic emissions, emissions of VOCs are about: $(0.85)(6,300 \text{ lb}) = 5,360 \text{ lb}$

5.2.2.1.3 Transit Losses -

In addition to loading and ballasting losses, losses occur while the cargo is in transit. Transit losses are similar in many ways to breathing losses associated with petroleum storage (see Section 7.1, "Organic Liquid Storage Tanks"). Experimental tests on ships and barges⁴ have indicated that transit losses can be calculated using Equation 5:

$$L_T = 0.1 PW \quad (5)$$

where:

L_T = transit loss from ships and barges, lb/week- 10^3 gal transported

P = true vapor pressure of the transported liquid, psia

W = density of the condensed vapors, lb/gal

Emissions from gasoline truck cargo tanks during transit have been studied by a combination of theoretical and experimental techniques, and typical emission values are presented in Table 5.2-5.¹¹⁻¹² Emissions depend on the extent of venting from the cargo tank during transit, which in turn depends on the vapor tightness of the tank, the pressure relief valve settings, the pressure in the tank at the start of the trip, the vapor pressure of the fuel being transported, and the degree of fuel vapor saturation of the space in the tank. The emissions are not directly proportional to the time spent in transit. If the vapor leakage rate of the tank increases, emissions increase up to a point, and then the rate changes as other determining factors take over. Truck tanks in dedicated vapor balance service usually contain saturated vapors, and this leads to lower emissions during transit because no additional fuel evaporates to raise the pressure in the tank to cause venting. Table 5.2-5 lists "typical" values for transit emissions and "extreme" values that could occur in the unlikely event that all determining factors combined to cause maximum emissions.

Table 5.2-5 (Metric And English Units). TOTAL UNCONTROLLED ORGANIC EMISSION FACTORS FOR PETRÖLEUM LIQUID RAIL TANK CARS AND TANK TRUCKS

Emission Source	Gasoline ^a	Crude Oil ^b	Jet Naphtha (JP-4)	Jet Kerosene	Distillate Oil No. 2	Residual Oil No. 6
Loading operations ^c						
Submerged loading - Dedicated normal service ^d						
mg/L transferred	590	240	180	1.9	1.7	0.01
lb/ 10^3 gal transferred	5	2	1.5	0.016	0.014	0.0001
Submerged loading - Vapor balance service ^d						
mg/L transferred	980	400	300	— ^e	— ^e	— ^e
lb/ 10^3 gal transferred	8	3	2.5	— ^e	— ^e	— ^e
Splash loading - Dedicated normal service						
mg/L transferred	1,430	580	430	5	4	0.03
lb/ 10^3 gal transferred	12	5	4	0.04	0.03	0.0003
Splash loading - Vapor balance service						
mg/L transferred	980	400	300	— ^e	— ^e	— ^e
lb/ 10^3 gal transferred	8	3	2.5	— ^e	— ^e	— ^e

Table 5.2-5 (cont.).

Emission Source	Gasoline ^a	Crude Oil ^b	Jet Naphtha (JP-4)	Jet Kerosene	Distillate Oil No. 2	Residual Oil No. 6
Transit losses						
Loaded with product						
mg/L transported						
Typical	0 - 1.0	ND	ND	ND	ND	ND
Extreme	0 - 9.0	ND	ND	ND	ND	ND
lb/10 ³ gal transported						
Typical	0 - 0.01	ND	ND	ND	ND	ND
Extreme	0 - 0.08	ND	ND	ND	ND	ND
Return with vapor						
mg/L transported						
Typical	0 - 13.0	ND	ND	ND	ND	ND
Extreme	0 - 44.0	ND	ND	ND	ND	ND
lb/10 ³ gal transported						
Typical	0 - 0.11	ND	ND	ND	ND	ND
Extreme	0 - 0.37	ND	ND	ND	ND	ND

^a Reference 2. Gasoline factors represent emissions of VOC as well as total organics, because methane and ethane constitute a negligible weight fraction of the evaporative emissions from gasoline. VOC factors for crude oil can be assumed to be 15% lower than the total organic factors, to account for the methane and ethane content of crude oil evaporative emissions. All other products should be assumed to have VOC factors equal to total organics. The example gasoline has an RVP of 69 kPa (10 psia). ND = no data.

^b The example crude oil has an RVP of 34 kPa (5 psia).

^c Loading emission factors are calculated using Equation 1 for a dispensed product temperature of 16°C (60°F).

^d Reference 2.

^e Not normally used.

In the absence of specific inputs for Equations 1 through 5, the typical evaporative emission factors presented in Tables 5.2-5 and 5.2-6 should be used. It should be noted that, although the crude oil used to calculate the emission values presented in these tables has an RVP of 5, the RVP of crude oils can range from less than 1 up to 10. Similarly, the RVP of gasolines ranges from 7 to 13. In areas where loading and transportation sources are major factors affecting air quality, it is advisable to obtain the necessary parameters and to calculate emission estimates using Equations 1 through 5.

5.2.2.2 Service Stations -

Another major source of evaporative emissions is the filling of underground gasoline storage tanks at service stations. Gasoline is usually delivered to service stations in 30,000-liter (8,000-gal) tank trucks or smaller account trucks. Emissions are generated when gasoline vapors in the underground storage tank are displaced to the atmosphere by the gasoline being loaded into the tank. As with other loading losses, the quantity of loss in service station tank filling depends on several variables, including the method and rate of filling, the tank configuration, and the gasoline temperature, vapor pressure and composition. An average emission rate for submerged filling is 880 mg/L (7.3 lb/1000 gal) of transferred gasoline, and the rate for splash filling is 1380 mg/L (11.5 lb/1000 gal) transferred gasoline (see Table 5.2-7).⁵

Table 5.2-6 (Metric And English Units). TOTAL ORGANIC EMISSION FACTORS FOR PETROLEUM MARINE VESSEL SOURCES^a

Emission Source	Gasoline ^b	Crude Oil ^c	Jet Naphtha (JP-4)	Jet Kerosene	Distillate Oil No. 2	Residual Oil No. 6
Loading operations						
Ships/ocean barges						
mg/L transferred	— ^d	73	60	0.63	0.55	0.004
lb/10 ³ gal transferred	— ^d	0.61	0.50	0.005	0.005	0.00004
Barges						
mg/L transferred	— ^d	120	150	1.60	1.40	0.011
lb/10 ³ gal transferred	— ^d	1.0	1.2	0.013	0.012	0.00009
Tanker ballasting						
mg/L ballast water	100	— ^e	ND	ND	ND	ND
lb/10 ³ gal ballast water	0.8	— ^e	ND	ND	ND	ND
Transit						
mg/week-L transported	320	150	84	0.60	0.54	0.003
lb/week-10 ³ gal transported	2.7	1.3	0.7	0.005	0.005	0.00003

^a Factors are for a dispensed product of 16°C (60°F). ND = no data.

^b Factors represent VOC as well as total organic emissions, because methane and ethane constitute a negligible fraction of gasoline evaporative emissions. All products other than crude oil can be assumed to have VOC factors equal to total organic factors. The example gasoline has an RVP of 69 kPa (10 psia).

^c VOC emission factors for a typical crude oil are 15% lower than the total organic factors shown, in order to account for methane and ethane. The example crude oil has an RVP of 34 kPa (5 psia).

^d See Table 5.2-2 for these factors.

^e See Table 5.2-4 for these factors.

Emissions from underground tank filling operations at service stations can be reduced by the use of a vapor balance system such as in Figure 5.2-5 (termed Stage I vapor control). The vapor balance system employs a hose that returns gasoline vapors displaced from the underground tank to the tank truck cargo compartments being emptied. The control efficiency of the balance system ranges from 93 to 100 percent. Organic emissions from underground tank filling operations at a service station employing a vapor balance system and submerged filling are not expected to exceed 40 mg/L (0.3 lb/1000 gal) of transferred gasoline.

Table 5.2-7 (Metric And English Units). EVAPORATIVE EMISSIONS FROM GASOLINE SERVICE STATION OPERATIONS^a

Emission Source	Emission Rate	
	mg/L Throughput	lb/10 ³ gal Throughput
Filling underground tank (Stage I)		
Submerged filling	880	7.3
Splash filling	1,380	11.5
Balanced submerged filling	40	0.3
Underground tank breathing and emptying ^b	120	1.0
Vehicle refueling operations (Stage II)		
Displacement losses (uncontrolled) ^c	1,320	11.0
Displacement losses (controlled)	132	1.1
Spillage	80	0.7

^a Factors are for VOC as well as total organic emissions, because of the methane and ethane content of gasoline evaporative emissions is negligible.

^b Includes any vapor loss between underground tank and gas pump.

^c Based on Equation 6, using average conditions.

A second source of vapor emissions from service stations is underground tank breathing. Breathing losses occur daily and are attributable to gasoline evaporation and barometric pressure changes. The frequency with which gasoline is withdrawn from the tank, allowing fresh air to enter to enhance evaporation, also has a major effect on the quantity of these emissions. An average breathing emission rate is 120 mg/L (1.0 lb/1000 gal) of throughput.

5.2.2.3 Motor Vehicle Refueling -

Service station vehicle refueling activity also produces evaporative emissions. Vehicle refueling emissions come from vapors displaced from the automobile tank by dispensed gasoline and from spillage. The quantity of displaced vapors depends on gasoline temperature, auto tank temperature, gasoline RVP, and dispensing rate. Equation 6 can be used to estimate uncontrolled displacement losses from vehicle refueling for a particular set of conditions.¹⁴

$$E_R = 264.2 [(-5.909) - 0.0949 (\Delta T) + 0.0884 (T_D) + 0.485 (RVP)] \quad (6)$$

where:

E_R = refueling emissions, mg/L

ΔT = difference between temperature of fuel in vehicle tank and temperature of dispensed fuel, °F

T_D = temperature of dispensed fuel, °F

RVP = Reid vapor pressure, psia

Note that this equation and the spillage loss factor are incorporated into the *MOBILE* model. The *MOBILE* model allows for disabling of this calculation if it is desired to include these emissions in the stationary area source portion of an inventory rather than in the mobile source portion. It is estimated that the uncontrolled emissions from vapors displaced during vehicle refueling average 1320 mg/L (11.0 lb/1000 gal) of dispensed gasoline.^{5,13}

Spillage loss is made up of contributions from prefill and postfill nozzle drip and from spit-back and

overflow from the vehicle's fuel tank filler pipe during filling. The amount of spillage loss can depend on several variables, including service station business characteristics, tank configuration, and operator techniques. An average spillage loss is 80 mg/L (0.7 lb/1000 gal) of dispensed gasoline.^{5,13}

Control methods for vehicle refueling emissions are based on conveying the vapors displaced from the vehicle fuel tank to the underground storage tank vapor space through the use of a special hose and nozzle, as depicted in Figure 5.2-7 (termed Stage II vapor control). In "balance" vapor control systems, the vapors are conveyed by natural pressure differentials established during refueling. In "vacuum assist" systems, the conveyance of vapors from the auto fuel tank to the underground storage tank is assisted by a vacuum pump. Tests on a few systems have indicated overall systems control efficiencies in the range of 88 to 92 percent.^{5,13} When inventorying these emissions as an area source, rule penetration and rule effectiveness should also be taken into account. *Procedures For Emission Inventory Preparation, Volume IV: Mobile Sources*, EPA-450/4-81-026d, provides more detail on this.

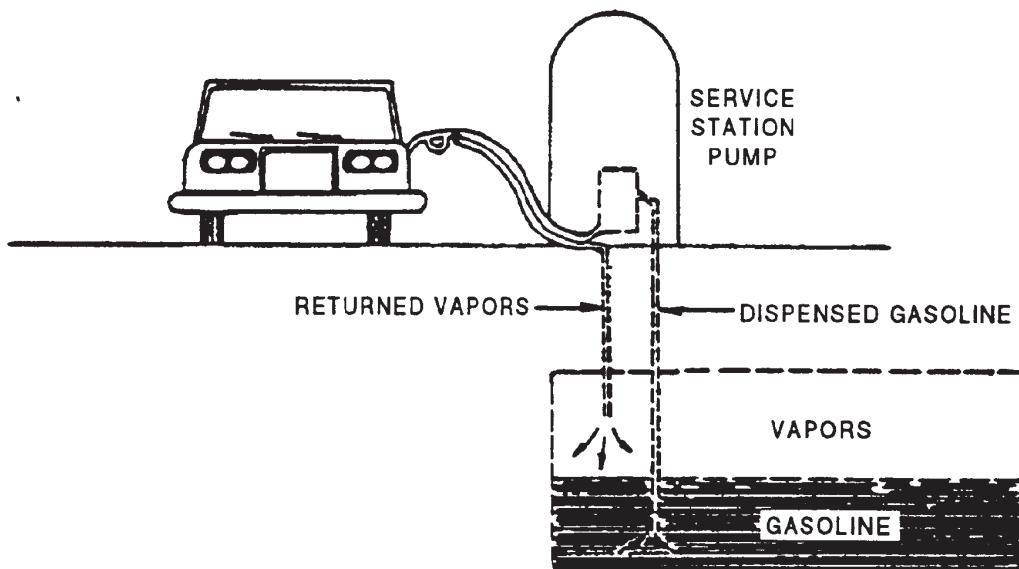


Figure 5.2-7. Automobile refueling vapor recovery system.

References For Section 5.2

1. C. E. Burklin and R. L. Honercamp, *Revision Of Evaporative Hydrocarbon Emission Factors*, EPA-450/3-76-039, U. S. Environmental Protection Agency, Research Triangle Park, NC, August 1976.
2. G. A. LaFlam, *et al.*, *Revision Of Tank Truck Loading Hydrocarbon Emission Factors*, Pacific Environmental Services, Inc., Durham, NC, May 1982.
3. G. A. LaFlam, *Revision Of Marine Vessel Evaporative Emission Factors*, Pacific Environmental Services, Inc., Durham, NC, November 1984.
4. *Evaporation Loss From Tank Cars, Tank Trucks And Marine Vessels*, Bulletin No. 2514, American Petroleum Institute, Washington, DC, 1959.
5. C. E. Burklin, *et al.*, *A Study Of Vapor Control Methods For Gasoline Marketing Operations*, EPA-450/3-75-046A and -046B, U. S. Environmental Protection Agency, Research Triangle Park, NC, May 1975.
6. *Bulk Gasoline Terminals - Background Information For Proposed Standards*, EPA-450/3-80-038a, U. S. Environmental Protection Agency, Research Triangle Park, NC, December 1980.

7. *Gasoline Distribution Industry (Stage I) - Background Information for Promulgated Standards*, EPA-453/R-94-002b, U.S. Environmental Protection Agency, Research Triangle Park, NC, 1995.
8. *Atmospheric Hydrocarbon Emissions From Marine Vessel Transfer Operations*, Publication 2514A, American Petroleum Institute, Washington, DC, 1981.
9. C. E. Burklin, *et al.*, *Background Information On Hydrocarbon Emissions From Marine Terminal Operations*, EPA-450/3-76-038a and -038b, U. S. Environmental Protection Agency, Research Triangle Park, NC, November 1976.
10. *Rules For The Protection Of The Marine Environment Relating To Tank Vessels Carrying Oil In Bulk*, 45 FR 43705, June 30, 1980.
11. R. A. Nichols, *Analytical Calculation Of Fuel Transit Breathing Loss*, Chevron USA, Inc., San Francisco, CA, March 21, 1977.
12. R. A. Nichols, *Tank Truck Leakage Measurements*, Chevron USA, Inc., San Francisco, CA, June 7, 1977.
13. *Investigation Of Passenger Car Refueling Losses: Final Report, 2nd Year Program*, APTD-1453, U. S. Environmental Protection Agency, Research Triangle Park, NC, September 1972.
14. *Refueling Emissions From Uncontrolled Vehicles*, EPA-AA-SDSB-85-6, U. S. Environmental Protection Agency, Ann Arbor, MI, June 1985.

MOBILE ANALYTICAL LABORATORIES, INC.
P.O. BOX 69210
ODESSA, TEXAS 79769
432-337-4744

10/21/13

GAS EXTENDED SULFUR ANALYSIS

LAB NO. 18490

DCP MIDSTREAM
LINAM RANCH
FUEL GAS

	ppm
Hydrogen Sulfide	ND
Carbonyl Sulfide	ND
Methyl Mercaptan	ND
Ethyl Mercaptan	ND
Dimethyl Sulfide	ND
Carbon Disulfide	ND
I-Propyl Mercaptan	ND
T-Butyl Mercaptan	ND
N-Propyl Mercaptan	ND
Methyl Ethyl Sulfide	ND
S-Butyl Mercaptan/Thiophene	ND
I-Butyl Mercaptan	ND
Diethyl Sulfide	ND
N-Butyl Mercaptan	ND
Dimethyl Disulfide	ND
3-Methyl Thiophene	ND
2-Methyl Thiophene	ND
Dimethyl Thiophene	ND
Diethyl Disulfide	ND
Trimethyl Thiophene	ND
Undetermined Organic Sulfur	ND
	ND

Test Methods: H2S by ASTM D4084, Other Sulfur compounds by Capillary GC with SCD Detector ASTM D5504.

Sampled: 10/14/13 BY: SR
ND = NONE DETECTED (< 0.1 PPM)

Distribution:
Mr. Jon Bebbington

Section 8

Map(s)

A map such as a 7.5 minute topographic quadrangle showing the exact location of the source. The map shall also include the following:

The UTM or Longitudinal coordinate system on both axes	An indicator showing which direction is north
A minimum radius around the plant of 0.8km (0.5 miles)	Access and haul roads
Topographic features of the area	Facility property boundaries
The name of the map	The area which will be restricted to public access
A graphical scale	

A facility map is included in this section.

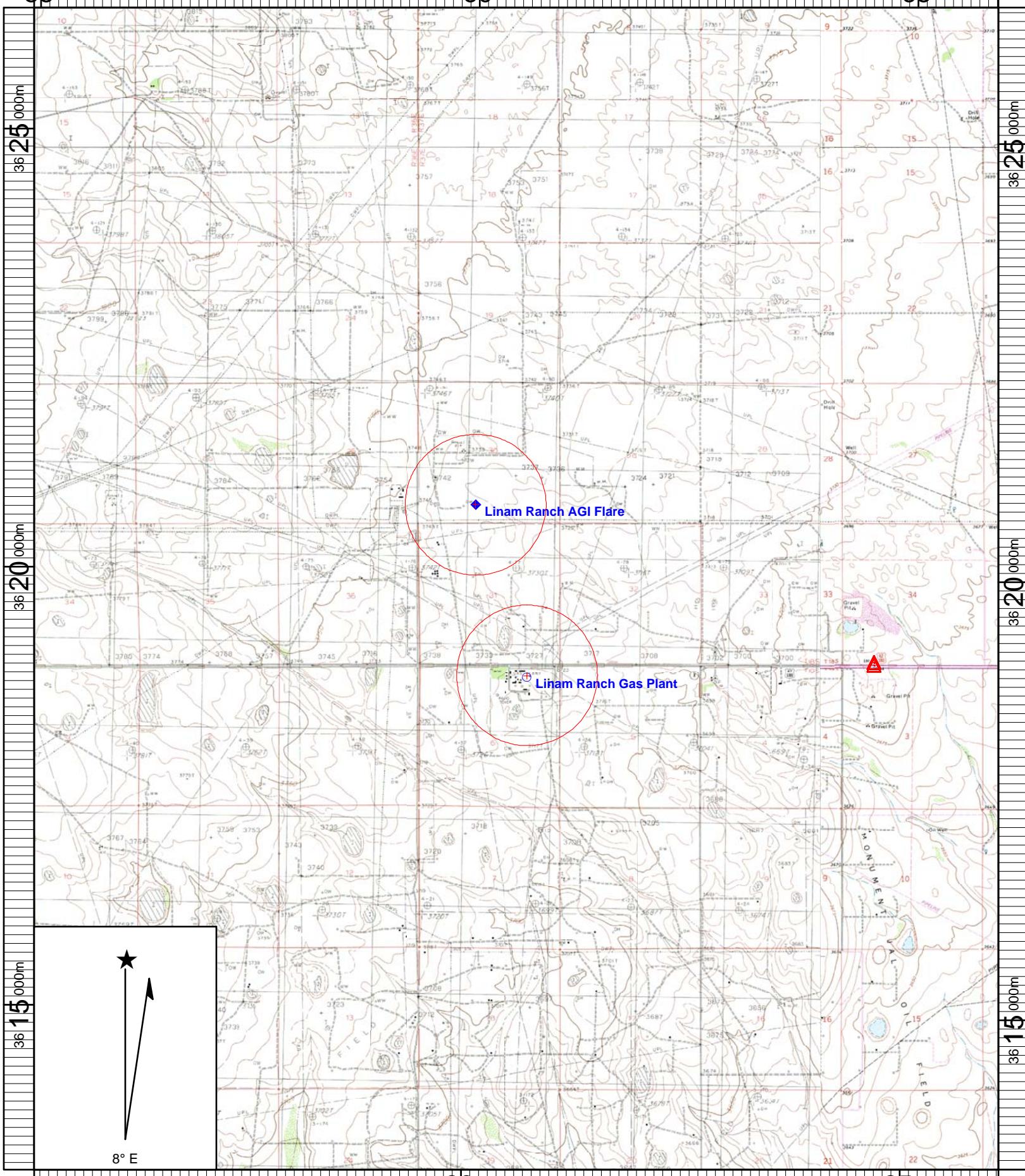
3 6 55 000m

13 6 60 000m

13 6 65 000m

36 25 000m

36 20 000m


36 15 000m

13 6 60 000m

13 6 65 000m

Name: MONUMENT NORTH
 Date: 8/11/2008
 Scale: 1 inch equals 4545 feet

Location: 13 0660523 E 3619841 N
 Caption: Site Location
 DCP Linam Ranch Gas Plant
 DCP Linam Ranch AGI Flare

Section 9

Proof of Public Notice

(for NSR applications submitting under 20.2.72 or 20.2.74 NMAC)

(This proof is required by: 20.2.72.203.A.14 NMAC "Documentary Proof of applicant's public notice")

I have read the AQB "Guidelines for Public Notification for Air Quality Permit Applications"

This document provides detailed instructions about public notice requirements for various permitting actions. It also provides public notice examples and certification forms. Material mistakes in the public notice will require a re-notice before issuance of the permit.

Unless otherwise allowed elsewhere in this document, the following items document proof of the applicant's Public Notification. Please include this page in your proof of public notice submittal with checkmarks indicating which documents are being submitted with the application.

New Permit and Significant Permit Revision public notices must include all items in this list.

Technical Revision public notices require only items 1, 5, 9, and 10.

Per the Guidelines for Public Notification document mentioned above, include:

1. A copy of the certified letter receipts with post marks (20.2.72.203.B NMAC)
2. A list of the places where the public notice has been posted in at least four publicly accessible and conspicuous places, including the proposed or existing facility entrance. (e.g: post office, library, grocery, etc.)
3. A copy of the property tax record (20.2.72.203.B NMAC).
4. A sample of the letters sent to the owners of record.
5. A sample of the letters sent to counties, municipalities, and Indian tribes.
6. A sample of the public notice posted and a verification of the local postings.
7. A table of the noticed citizens, counties, municipalities and tribes and to whom the notices were sent in each group.
8. A copy of the public service announcement (PSA) sent to a local radio station and documentary proof of submittal.
9. A copy of the classified or legal ad including the page header (date and newspaper title) or its affidavit of publication stating the ad date, and a copy of the ad. When appropriate, this ad shall be printed in both English and Spanish.
10. A copy of the display ad including the page header (date and newspaper title) or its affidavit of publication stating the ad date, and a copy of the ad. When appropriate, this ad shall be printed in both English and Spanish.
11. A map with a graphic scale showing the facility boundary and the surrounding area in which owners of record were notified by mail. This is necessary for verification that the correct facility boundary was used in determining distance for notifying land owners of record.

N/A – This application is being submitted under 20.2.70 NMAC.

Section 10

Written Description of the Routine Operations of the Facility

A written description of the routine operations of the facility. Include a description of how each piece of equipment will be operated, how controls will be used, and the fate of both the products and waste generated. For modifications and/or revisions, explain how the changes will affect the existing process. In a separate paragraph describe the major process bottlenecks that limit production. The purpose of this description is to provide sufficient information about plant operations for the permit writer to determine appropriate emission sources.

Linam Ranch Plant is a natural gas processing plant permitted to process up to 225 MM standard cubic feet of natural gas per day. The natural gas processed at Linam Ranch is mostly methane, but contains other hydrocarbons heavier than methane that can be condensed into liquids in the plant. The gas also contains impurities including water, hydrogen sulfide, and carbon dioxide.

The plant consists of an Inlet Receiving System, Amine Treater, Acid Gas Injection well, Sulfur Recovery Unit, Inlet Compression and Dehydration System, Cryogenic/Turbo Expander Plant with external Propane Refrigeration, Residue Compression, and Product Sales for Residue Gas, NGL Liquids, Stabilized Oil, Slop Oil, and Molten Liquid Sulfur. Additionally, the Fuel Gas Systems, Instrument and Starting Air Systems, Steam Systems, Cooling Towers, ESD Flare, Acid Gas Flare, Acid Gas Injection Flare and Drain Systems are supporting units that aid the processes. Processing operations involve chemical reaction processes, thermodynamic processes and physical processes. The chemical reactions that take place are exothermic in nature; that is, they generate heat.

Amine (DGA) Treating:

Amine treating is used to remove H₂S and CO₂ from the gas. This is known as the gas sweetening process. Amine treating is an exothermic chemical reaction process. The treating solution is made up DGA (Diglycolamine) in water solution. This aqueous mixture is regenerated and reused. Lean DGA solution is pumped to the top of the Contactor (trayed tower) and allowed to flow downward. Sour inlet gas is fed into the bottom of the Contactor and flows upward.

As lean DGA solution flows down through the Contactor, it comes into contact with the sour gas. The sour gas contains H₂S and CO₂, which react with the amine to form an amine sulfide complex and carbonate, i.e., the amine absorbs the H₂S and CO₂ and is known as sour (rich) amine. The remaining gas is known as sweet gas and leaves the Contactor containing less than 4 ppm of H₂S.

Rich DGA solution leaves the bottom of the Contactor and is fed into a flash tank so any absorbed hydrocarbons can be flashed out of the liquid prior to amine regeneration. Due to weak chemical bonds between the sour gas components and the DGA, H₂S and CO₂ can be stripped from the amine by heating up the amine at low pressures. Rich amine is fed into a stripper column known as a Still, which is operated at low pressure and high temperature. 45 # Steam is used to supply heat to the Still reboiler. H₂S, and CO₂, known as "acid gases", with small amounts of hydrocarbons and water vapors exit the top of the Still and normally routed to the Acid Gas Injection (AGI) well system. Alternately, during maintenance or upsets of the AGI system, the acid gas stream may be routed to the sulfur plant (SRU). The Lean DGA is now regenerated and leaves the stripper column to be cooled and recirculated to the Contactor.

Acid Gas Injection (AGI) System

Acid gas from the Amine Treating system routed to the AGI well located approximately 1 ½ miles north of the main Linam Ranch facility for injection into sub-surface strata. The acid gas consists of electrically-driven compressors, tanks and ancillary devices. During normal operation of the AGI system, a low volume of gas is flared at the AGI flare. Under upset conditions that require depressurization of the AGI system, the acid gas contained within the system may be flared.

Waste Heat Recovery Units and Boilers:

The Linam Ranch Plant (Volcano) Heat Recovery Unit is used to produce high pressure 250# steam from the Residue Turbine Exhaust. Additionally, two (2) fuel gas Fired Boilers producing 250# steam are available. This 250# steam is used primarily to operate the various Steam Driven Turbines throughout the plant. Some of the 250# Steam is used to supply heat for the stabilizer reboiler.

Cooling Water System:

The cooling water system is a thermodynamic process that provides cooling for process and utility services. Water is circulated from the South Cooling Tower to various heat exchangers and then back to the cooling tower. The North Cooling Tower is a 'Bay Tower' with cooling water circulated over exposed process coils.

To minimize corrosion, scaling, and fouling of plant equipment, chemicals are added to the cooling water. This chemical addition also helps control microbiological growth in the Cooling Towers, since these systems are open to the atmosphere and microbiological growth can be a problem.

Stabilized Product System:

The stabilized product system is a heat added process, which is used to reduce the vapor pressure of inlet condensate, and closed drain liquids. Inlet liquids are sent to the stabilizer feed tanks where their pressure is reduced to allow certain light hydrocarbons to flash off to the gathering system. From the stabilizer system feed tanks, the liquid condensate is fed to the stabilizer tower where the pressure is further reduced and the process is heated significantly to flash off more of the light hydrocarbons. Liquids are dumped to the stabilized condensate storage tanks and are pumped to a sales pipeline or shipped by truck.

Units TK-VRU and TK-VRUTMP are a combined group of 9 tanks with integrated vapor recovery units (VRU). The VRUs at the facility are inherent to the process and design of the facility. The VRUs are designed to recover vapors and return the vapors back into the low pressure gathering system.

Molecular Sieve Dehydration (Mole Sieve):

Process gas is dehydrated to prevent hydrate formation in the turbo expander process unit. Molecular sieve dehydration is a solid bed adsorption process used to remove moisture from the inlet gas.

There are four packed towers in the Linam Ranch system. Three towers are dehydrating gas while the other is being regenerated. The towers are packed with a molecular sieve desiccant. The Linam Ranch mole sieve is a Type 4A sieve (pore size) and does not slip minor amounts of H₂S. This trace contaminant of H₂S and Water Vapor are released from the mole sieve in the regeneration cycle.

The mole sieve is a crystalline aluminosilicate material selected for its ability to adsorb water. Water is removed from the gas due to a weak bonding reaction between the solid mole sieve desiccant and water. The bonding action generates only a small amount of heat. Fresh molecular sieve can adsorb about 10% of its weight in water.

Sweet gas compressed to about 660 psig flows from the top of the mole sieve packed tower to the bottom of the tower. As the gas flows downward, the mole sieve adsorbs water and other trace contaminants. The moisture content of the mole sieve is monitored and once it becomes saturated, it must be regenerated. Regeneration of a tower is accomplished by passing hot (450°F+)-residue gas through the tower from the bottom to the top of the tower. The hot gas breaks the water/desiccant weak bond and absorbs the free water and removes it from the tower.

The regeneration (regen) gas is cooled downstream of the desiccant beds so absorbed water will condense and drop out of the regen gas stream. After the water is separated from the regen gas in a separator, the gas is further cooled in the Regeneration Gas Propane Chiller Unit to remove additional water vapors and then is compressed to the Residue Compression System and thence the gas goes to the residue gas sales stream.

Cryogenic / TurboExpander Plant:

The purpose of the Cryogenic Plant is to recover the natural gas liquids (NGL) from the Plant feed gas. The NGL product is composed of ethane and heavier hydrocarbons when the plant is operated in ethane recovery mode and the residue gas is mostly methane. The plant can also be operated in an ethane rejection mode where most of the ethane will be rejected from the NGL product and into the residue gas stream.

The inlet gas passes through the Dehydration Outlet Filters to remove solid particles that can potentially plug downstream equipment. The inlet gas is then split into two streams. The first stream goes to the Inlet Gas Chiller and the second goes to the Demethanizer Reboiler. The main inlet gas stream enters the Inlet Gas Chiller, which is a multiple stream, brazed aluminum plate-fin exchanger. Physically, the exchanger is combined with the Reflux Condenser. The inlet gas is cooled to -60 °F by cross exchanging with the residue gas, and with propane refrigerant. The other portion of the inlet gas stream enters the Demethanizer Reboiler, which is a multiple stream, brazed aluminum plate-fin exchanger. The inlet gas is cooled to -76 °F by cross exchanging with the Demethanizer bottom liquid product, reboiling the Demethanizer liquids, and heating the liquid stream from the Expander Inlet Separator. The chilled inlet gas stream is then combined with the inlet gas from the outlet of the Inlet Gas Chiller.

The combined stream enters the Expander Inlet Separator where the condensed liquids are separated from the vapors. The vapors flow to the Turbo Expander and the liquid flows to the Liquid Gas Exchanger. The gas enters the Turbo Expander and the pressure is let down isentropically to about 170 psig. The energy released from the expansion, 2150 BHP, is used to drive the Booster Compressor. The expansion process cools the gas to -150 °F. In the event that the Turbo Expander/Booster Compressor is removed from service, flow can be bypassed around the unit by using the J-T valve to throttle the pressure. After the Turbo Expander, the inlet gas enters the Demethanizer. The liquid from the Expander Inlet Separator flows through the Liquid Gas Exchanger to the Cold Gas Separator.

In the Cold Gas Separator, the vapor is separated from the liquid. The liquid flows to the Demethanizer and the vapors flow to the Reflux Condenser. In the Reflux Condenser, the vapors from the Cold Gas Separator are condensed to provide reflux at the top section of the Demethanizer using cold residue gas from the overhead of the Demethanizer. The exchanger is a brazed aluminum plate-fin exchanger and is physically attached to the Inlet Gas Chiller.

The Demethanizer accomplishes the separation of the inlet gas into the residue gas and NGL product that meets the required specifications. The residue gas leaves as column overhead and is composed mostly of methane. In the ethane rejection mode the residue gas will contain an increased amount of ethane and propane. The NGL product, which is composed of ethane and heavier hydrocarbons, leaves as the column bottoms. During ethane rejection most of the Demethanizer reboiler passes will be bypassed and the Demethanizer Trim Reboiler will be the operational reboiler. The Demethanizer Trim Reboiler is a once through reboiler using condensing 45# steam. From the Demethanizer the residue gas flows to the Reflux Condenser and the NGL product flows to the Demethanizer Bottoms Transfer Pumps.

From the Demethanizer, the NGL is pumped by the Demethanizer Bottoms Pump to the NGL Product Heater. During ethane rejection the NGL bypasses the NGL Product Heater and goes directly to the NGL Storage Tank. The residue gas flows to the Reflux Condenser and the Inlet Gas Chiller where the residue gas is heated by the Inlet gas stream. During ethane rejection there will not be a vapor flow coming from the Cold Gas Separator, but the residue gas will still flow through the Reflux Condenser.

The residue gas enters the Booster Compressor where it is compressed to 215 psig. The gas flows to the Booster Compressor Aftercooler, a forced draft air cooled exchanger. A side stream is taken off at the discharge of the Booster Compressor as warm regen gas that goes to the Regeneration Gas Heater. Downstream of the Booster Compressor Aftercooler part of the residue gas is taken for fuel gas to run the plant. Further downstream, past the existing Cooling Tower, a side stream is taken as cool regeneration gas to the Dehydrators with the remainder of the residue gas continuing on to the Residue Compression System.

Propane Refrigeration System:

The purpose of the Propane Refrigeration System is to provide the additional refrigeration required at the Inlet Gas Chiller to achieve high ethane recoveries at the cryogenic plant. The refrigeration system also supplies refrigeration duty to the Regen Gas Chiller to cool the regen gas to achieve the required water specification on the residue gas and to the Refrigeration Compressor Lube Oil Cooler. Refrigeration is supplied at -37 °F and at 18 °F for the Inlet Gas Chiller and at 40 °F for the Regen Gas Chiller.

Water Wash System:

A 200-MMscfd Water Wash System is operating at the facility. The process makes use of the existing utilities including electrical power, steam, cooling water, plant and acid gas flare(s), and instrument air. All heat trace are sourced from the 40# steam system. A stand-alone Reverse Osmosis water treatment system was installed as part of this project to provide make-up water for the Water Wash System and replacement Boilers. Waste water from the Still Reflux Accumulator and Still Bottoms are dumped to the existing water holding tanks (referred to as the "A" Tanks). Vapors from the Still Inlet Surge Tank and Reflux Accumulator discharge to the low pressure gathering system or to the existing plant flare if the gathering system is inaccessible. NGL from the Still Inlet Surge Tank and Reflux Accumulator are dumped to a battery of existing holding tanks (referred to as the "B" Tanks). In general, lighter than air releases are vented to the atmosphere and heavier than air releases are vented to the Plant Flare. Blanket gas to the Still Inlet and Bottoms Surge Tanks are sourced from the Residue System.

Section 11

Source Determination

Source submitting under 20.2.70, 20.2.72, 20.2.73, and 20.2.74 NMAC

Sources applying for a construction permit, PSD permit, or operating permit shall evaluate surrounding and/or associated sources (including those sources directly connected to this source for business reasons) and complete this section. Responses to the following questions shall be consistent with the Air Quality Bureau's permitting guidance, Single Source Determination Guidance, which may be found on the Applications Page in the Permitting Section of the Air Quality Bureau website.

Typically, buildings, structures, installations, or facilities that have the same SIC code, that are under common ownership or control, and that are contiguous or adjacent constitute a single stationary source for 20.2.70, 20.2.72, 20.2.73, and 20.2.74 NMAC applicability purposes. Submission of your analysis of these factors in support of the responses below is optional, unless requested by NMED.

A. Identify the emission sources evaluated in this section (list and describe):

Please see Table 2-A for a more detailed description of sources located at the facility.

B. Apply the 3 criteria for determining a single source:

SIC Code: Surrounding or associated sources belong to the same 2-digit industrial grouping (2-digit SIC code) as this facility, OR surrounding or associated sources that belong to different 2-digit SIC codes are support facilities for this source.

Yes No

Common Ownership or Control: Surrounding or associated sources are under common ownership or control as this source.

Yes No

Contiguous or Adjacent: Surrounding or associated sources are contiguous or adjacent with this source.

Yes No

C. Make a determination:

- The source, as described in this application, constitutes the entire source for 20.2.70, 20.2.72, 20.2.73, or 20.2.74 NMAC applicability purposes. If in "A" above you evaluated only the source that is the subject of this application, all "YES" boxes should be checked. If in "A" above you evaluated other sources as well, you must check **AT LEAST ONE** of the boxes "NO" to conclude that the source, as described in the application, is the entire source for 20.2.70, 20.2.72, 20.2.73, and 20.2.74 NMAC applicability purposes.
- The source, as described in this application, **does not** constitute the entire source for 20.2.70, 20.2.72, 20.2.73, or 20.2.74 NMAC applicability purposes (A permit may be issued for a portion of a source). The entire source consists of the following facilities or emissions sources (list and describe):

Section 12

Section 12.A

PSD Applicability Determination for All Sources

(Submitting under 20.2.72, 20.2.74 NMAC)

A PSD applicability determination for all sources. For sources applying for a significant permit revision, apply the applicable requirements of 20.2.74.AG and 20.2.74.200 NMAC and to determine whether this facility is a major or minor PSD source, and whether this modification is a major or a minor PSD modification. It may be helpful to refer to the procedures for Determining the Net Emissions Change at a Source as specified by Table A-5 (Page A.45) of the [EPA New Source Review Workshop Manual](#) to determine if the revision is subject to PSD review.

A. This facility is:

- a minor PSD source before and after this modification (if so, delete C and D below).
- a major PSD source before this modification. This modification will make this a PSD minor source.
- an existing PSD Major Source that has never had a major modification requiring a BACT analysis.
- an existing PSD Major Source that has had a major modification requiring a BACT analysis
- a new PSD Major Source after this modification.

B. This facility **[is or is not]** one of the listed 20.2.74.501 Table I – PSD Source Categories. The “project” emissions for this modification are **[significant or not significant]. [Discuss why.]** The “project” emissions listed below **[do or do not]** only result from changes described in this permit application, thus no emissions from other **[revisions or modifications, past or future]** to this facility. Also, specifically discuss whether this project results in “de-bottlenecking”, or other associated emissions resulting in higher emissions. The project emissions (before netting) for this project are as follows [see Table 2 in 20.2.74.502 NMAC for a complete list of significance levels]:

- a. NOx: **XX.X TPY**
- b. CO: **XX.X TPY**
- c. VOC: **XX.X TPY**
- d. SOx: **XX.X TPY**
- e. TSP (PM): **XX.X TPY**
- f. PM10: **XX.X TPY**
- g. PM2.5: **XX.X TPY**
- h. Fluorides: **XX.X TPY**
- i. Lead: **XX.X TPY**
- j. Sulfur compounds (listed in Table 2): **XX.X TPY**
- k. GHG: **XX.X TPY**

- C. Netting **[is required, and analysis is attached to this document.] OR [is not required (project is not significant)] OR [Applicant is submitting a PSD Major Modification and chooses not to net.]**
- D. BACT is **[not required for this modification, as this application is a minor modification.] OR [required, as this application is a major modification. List pollutants subject to BACT review and provide a full top down BACT determination.]**
- E. If this is an existing PSD major source, or any facility with emissions greater than 250 TPY (or 100 TPY for 20.2.74.501 Table 1 – PSD Source Categories), determine whether any permit modifications are related, or could be considered a single project with this action, and provide an explanation for your determination whether a PSD modification is triggered.

N/A – This application is being submitted under 20.2.70 NMAC.

Section 13

Determination of State & Federal Air Quality Regulations

This section lists each state and federal air quality regulation that may apply to your facility and/or equipment that are stationary sources of regulated air pollutants.

Not all state and federal air quality regulations are included in this list. Go to the Code of Federal Regulations (CFR) or to the Air Quality Bureau's regulation page to see the full set of air quality regulations.

Required Information for Specific Equipment:

For regulations that apply to specific source types, in the 'Justification' column **provide any information needed to determine if the regulation does or does not apply. For example**, to determine if emissions standards at 40 CFR 60, Subpart IIII apply to your three identical stationary engines, we need to know the construction date as defined in that regulation; the manufacturer date; the date of reconstruction or modification, if any; if they are or are not fire pump engines; if they are or are not emergency engines as defined in that regulation; their site ratings; and the cylinder displacement.

Required Information for Regulations that Apply to the Entire Facility:

See instructions in the 'Justification' column for the information that is needed to determine if an 'Entire Facility' type of regulation applies (e.g. 20.2.70 or 20.2.73 NMAC).

Regulatory Citations for Regulations That Do Not, but Could Apply:

If there is a state or federal air quality regulation that does not apply, but you have a piece of equipment in a source category for which a regulation has been promulgated, you must **provide the low level regulatory citation showing why your piece of equipment is not subject to or exempt from the regulation. For example** if you have a stationary internal combustion engine that is not subject to 40 CFR 63, Subpart ZZZZ because it is an existing 2 stroke lean burn stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions, your citation would be 40 CFR 63.6590(b)(3)(i). **We don't want a discussion of every non-applicable regulation, but if it is possible a regulation could apply, explain why it does not.** **For example**, if your facility is a power plant, you do not need to include a citation to show that 40 CFR 60, Subpart OOO does not apply to your non-existent rock crusher.

Regulatory Citations for Emission Standards:

For each unit that is subject to an emission standard in a source specific regulation, such as 40 CFR 60, Subpart OOO or 40 CFR 63, Subpart HH, include the low level regulatory citation of that emission standard. Emission standards can be numerical emission limits, work practice standards, or other requirements such as maintenance. **Here are examples:** a glycol dehydrator is subject to the general standards at 63.764C(1)(i) through (iii); an engine is subject to 63.6601, Tables 2a and 2b; a crusher is subject to 60.672(b), Table 3 and all transfer points are subject to 60.672(e)(1)

Federally Enforceable Conditions:

All federal regulations are federally enforceable. All Air Quality Bureau State regulations are federally enforceable except for the following: affirmative defense portions at 20.2.7.6.B, 20.2.7.110(B)(15), 20.2.7.11 through 20.2.7.113, 20.2.7.115, and 20.2.7.116; 20.2.37; 20.2.42; 20.2.43; 20.2.62; 20.2.63; 20.2.86; 20.2.89; and 20.2.90 NMAC. Federally enforceable means that EPA can enforce the regulation as well as the Air Quality Bureau and federally enforceable regulations can count toward determining a facility's potential to emit (PTE) for the Title V, PSD, and nonattainment permit regulations.

INCLUDE ANY OTHER INFORMATION NEEDED TO COMPLETE AN APPLICABILITY DETERMINATION OR THAT IS RELEVANT TO YOUR FACILITY'S NOTICE OF INTENT OR PERMIT.

EPA Applicability Determination Index for 40 CFR 60, 61, 63, etc: <http://cfpub.epa.gov/adi/>

Example of a Table for STATE REGULATIONS:

<u>STATE REGU- LATIONS CITATION</u>	<u>Title</u>	<u>Applies? Enter Yes or No</u>	<u>Unit(s) or Facility</u>	JUSTIFICATION: (You may delete instructions or statements that do not apply in the justification column to shorten the document.)
20.2.1 NMAC	General Provisions	Yes	Facility	General Provisions apply to Notice of Intent, Construction, and Title V permit applications.
20.2.3 NMAC	Ambient Air Quality Standards NMAAQs	Yes	Facility	20.2.3 NMAC is a SIP approved regulation that limits the maximum allowable concentration of Total Suspended Particulates, Sulfur Compounds, Carbon Monoxide and Nitrogen Dioxide. The facility meets maximum allowable concentrations of particulates, SO ₂ , H ₂ S, NO _x , and CO under this regulation.
20.2.7 NMAC	Excess Emissions	Yes	Facility	This regulation establishes requirements for the facility if operations at the facility result in any excess emissions. The owner or operator will operate the source at the facility having an excess emission, to the extent practicable, including associated air pollution control equipment, in a manner consistent with good air pollution control practices for minimizing emissions. The facility will also notify the NMED of any excess emission per 20.2.7.110 NMAC.
20.2.33 NMAC	Gas Burning Equipment - Nitrogen Dioxide	No	N/A	This facility does not have existing gas burning equipment having a heat input of greater than 1,000,000 million British Thermal Units per year per unit. The facility is not subject to this regulation and does not have emission sources that meet the applicability requirements under 20.2.33.108 NMAC.
20.2.34 NMAC	Oil Burning Equipment: NO ₂	No	N/A	This facility does not have oil burning equipment having a heat input of greater than 1,000,000 million British Thermal Units per year per unit. The facility is not subject to this regulation and does not have emission sources that meet the applicability requirements under 20.2.34.108 NMAC.
20.2.35 NMAC	Natural Gas Processing Plant – Sulfur	Yes	Facility	This facility is subject to the requirements of NMAC 2.35 for “New Natural Gas Processing Plants for which a modification commenced on or after July 1, 1974”. This facility meets the requirements established under 20.2.35.100.A-D NMAC.
20.2.37 and 20.2.36 NMAC	Petroleum Processing Facilities and Petroleum Refineries	N/A	N/A	These regulations were repealed by the Environmental Improvement Board. If you had equipment subject to 20.2.37 NMAC before the repeal, your combustion emission sources are now subject to 20.2.61 NMAC.
<u>20.2.38</u> NMAC	Hydrocarbon Storage Facility	Yes	TK-VRU and TK-VRUTMP	This regulation could apply to storage tanks at petroleum production facilities, processing facilities, tanks batteries, or hydrocarbon storage facilities.
<u>20.2.39</u> NMAC	Sulfur Recovery Plant - Sulfur	No	N/A	This regulation establishes sulfur emission standards for sulfur recovery plants which are not part of petroleum or natural gas processing facilities. This regulation does not apply as 20.2.35 NMAC applies.
20.2.61.109 NMAC	Smoke & Visible Emissions	Yes	Facility	This regulation that limits opacity to 20% applies to Stationary Combustion Equipment, such as engines, boilers, heaters, and flares unless your equipment is subject to another state regulation that limits particulate matter such as 20.2.19 NMAC (see 20.2.61.109 NMAC). This facility was subject to the repealed regulation 20.2.37 NMAC; therefore it is now subject to 20.2.61 NMAC.
20.2.70 NMAC	Operating Permits	Yes	Facility	This regulation establishes requirements for obtaining an operating permit. This facility is a major source of NO _x , CO, and VOC and complies by operating under Title V Permit P094-M2.
20.2.71 NMAC	Operating Permit Fees	Yes	Facility	This regulation establishes a schedule of operating permit emission fees. The facility is subject to 20.2.70 NMAC and is therefore subject to requirements of this regulation.
20.2.72 NMAC	Construction Permits	Yes	Facility	This regulation establishes the requirements for obtaining a construction permit. The facility is a stationary source that has potential emission rates great than 10 pounds per hour or 25 tons per year of any regulated air contaminant for which there is a National or New Mexico Air Quality Standard. The facility has a construction permit (NSR Permit) 0039-M7 to meet the requirements of this regulation.

<u>STATE REGULATIONS CITATION</u>	Title	Applies? Enter Yes or No	Unit(s) or Facility	JUSTIFICATION: (You may delete instructions or statements that do not apply in the justification column to shorten the document.)
20.2.73 NMAC	NOI & Emissions Inventory Requirements	Yes	Facility	This regulation establishes emission inventory requirements. The facility meets the applicability requirements of 20.2.73.300 NMAC. The facility will meet all applicable reporting requirements under 20.2.73.300.B.1 NMAC.
20.2.74 NMAC	Permits – Prevention of Significant Deterioration (PSD)	Yes	Facility	This regulation establishes requirements for obtaining a PSD permit. This facility is a major source for PSD purposes and is in compliance with the applicable requirements of this regulation.
20.2.75 NMAC	Construction Permit Fees	No	N/A	This regulation establishes the guidelines and requirements for construction permitting fees. This facility is subject to 20.2.72 NMAC and is in turn subject to 20.2.75 NMAC. This facility is exempt from annual fees under this part (20.2.75.11.E NMAC) as it is subject to fees pursuant to 20.2.71 NMAC.
20.2.77 NMAC	New Source Performance	Yes	2, 4A, 28, 29, 30, 31 32B, 34, 36, 37, FUG, AM-10, TK-VRU and TK-VRUTMP	<p>The facility is subject to this regulation as this is a stationary source which is subject to the requirements of 40 CFR Part 60, as amended through January 15, 2017. The following regulations apply:</p> <ul style="list-style-type: none"> • Subpart A <ul style="list-style-type: none"> ○ Unit 2 ○ Unit 4A • Subpart Dc <ul style="list-style-type: none"> ○ 34, 36, and 37 • Subpart GG <ul style="list-style-type: none"> ○ 29-31 ○ 32B • Subpart Kb <ul style="list-style-type: none"> ○ TK-VRU ○ TK-VRUTMP • Subpart KKK <ul style="list-style-type: none"> ○ FUG • Subpart KKKK <ul style="list-style-type: none"> ○ 28 • Subpart OOOO <ul style="list-style-type: none"> ○ Equipment added in NSR 0039-M6 ○ 28 ○ AM-10
20.2.78 NMAC	Emission Standards for HAPS	Yes (Potentially)	Facility	This regulation applies to all sources subject to a 40 CFR 60 regulation, as amended through January 15, 2017. Although this standard does not apply to this facility under routine operating conditions, in the case of asbestos demolition, Subpart M would apply.
20.2.79 NMAC	Permits – Nonattainment Areas	No	N/A	This regulation establishes the requirements for obtaining a nonattainment area permit. The facility is not located in a non-attainment area and therefore is not subject to this regulation.
20.2.80 NMAC	Stack Heights	No	N/A	This regulation establishes requirements for the evaluation of stack heights and other dispersion techniques. This regulation does not apply as all stacks at the facility follow good engineering practice.
20.2.82 NMAC	MACT Standards for source categories of HAPS	Yes	6-11, 28, 34, 36, 37, DH-10	<p>This regulation established state authority to implement MACT Standards for source categories of HAPS. This regulation applies to all sources emitting hazardous air pollutants, which are subject to the requirements of 40 CFR Part 63, as amended through January 15, 2017. The following regulations apply:</p> <ul style="list-style-type: none"> • Subpart HH <ul style="list-style-type: none"> ○ DH-10 • Subpart YYYY <ul style="list-style-type: none"> ○ 28 • Subpart ZZZZ <ul style="list-style-type: none"> ○ 6-11 • Subpart DDDDD <ul style="list-style-type: none"> ○ 34, 36, and 37

Table for Applicable FEDERAL REGULATIONS (Note: This is not an exhaustive list):

<u>FEDERAL REGULATIONS CITATION</u>	<u>Title</u>	<u>Applies? Enter Yes or No</u>	<u>Unit(s) or Facility</u>	<u>JUSTIFICATION:</u>
40 CFR 50	NAAQS	Yes	Facility	This regulation defines national ambient air quality standards. The facility meets all applicable national ambient air quality standards for NO _x , CO, SO ₂ , H ₂ S, PM ₁₀ , and PM _{2.5} under this regulation.
NSPS 40 CFR 60, Subpart A	General Provisions	Yes	2, 4A, 28, 29, 30, 31 32B, 34, 36, 37, FUG, AM-10, TK-VRU and TK-VRUTMP	<p>This regulation defines general provisions for relevant standards that have been set under this part. The facility is subject to this regulation because the following subparts apply:</p> <ul style="list-style-type: none"> • Subpart A <ul style="list-style-type: none"> ◦ Unit 2 ◦ Unit 4A • Subpart Dc <ul style="list-style-type: none"> ◦ 34, 36, and 37 • Subpart GG <ul style="list-style-type: none"> ◦ 29-31 ◦ 32B • Subpart Kb <ul style="list-style-type: none"> ◦ TK-VRU ◦ TK-VRUTMP • Subpart KKK <ul style="list-style-type: none"> ◦ FUG • Subpart KKKK <ul style="list-style-type: none"> ◦ 28 • Subpart OOOO <ul style="list-style-type: none"> ◦ Equipment added in NSR 0039-M6 ◦ 28 ◦ AM-10
NSPS 40 CFR60.40a, Subpart Da	Subpart Da, Performance Standards for Electric Utility Steam Generating Units	No	N/A	This regulation establishes standards of performance for electric utility steam generating units. This regulation does not apply because the facility does not operate any electric utility steam generating units.
NSPS 40 CFR60.40b Subpart Db	Electric Utility Steam Generating Units	No	N/A	This regulation establishes standards of performance for industrial-commercial-institutional steam generating units. There are no steam generating units that commenced construction, modification, or reconstruction after June 19, 1984, and that have a heat input capacity greater than 100 MMBtu/hr at the facility.
40 CFR 60.40c, Subpart Dc	Standards of Performance for Small Industrial-Commercial-Institutional Steam Generating Units	Yes	34, 36, and 37	This regulation establishes standards of performance for small industrial-commercial-institutional steam generating units. Units 34, 36, and 37 will be installed or modified after June 9, 1989 with a heat input capacity greater than or equal to 10 MMBtu/hr but less than 100 MMBtu/hr. The units will only burn natural gas and therefore will not be subject to performance tests, reporting requirements, or emission limits under this regulation. The facility will follow all record keeping requirements for these units.

<u>FEDERAL REGU- LATIONS CITATION</u>	Title	Applies? Enter Yes or No	Unit(s) or Facility	JUSTIFICATION:
NSPS 40 CFR 60, Subpart Ka	Standards of Performance for Storage Vessels for Petroleum Liquids for which Construction, Reconstruction, or Modification Commenced After May 18, 1978, and Prior to July 23, 1984	No	N/A	<p>This regulation establishes standards of performance for petroleum liquids for which construction, reconstruction, or modification commenced after May 18, 1978, and prior to July 23, 1984. The tanks at the facility commenced construction after the July 23, 1984 regulation date and are therefore not subject to this regulation.</p> <p>Note: The two (2) Condensate Tanks controlled by the VRU which have a capacity of 1,500 bbl were built by 1954, thus they are also exempted from this regulation.</p>
NSPS 40 CFR 60, Subpart Kb	Standards of Performance for Volatile Organic Liquid Storage Vessels (Including Petroleum Liquid Storage Vessels) for Which Construction, Reconstruction, or Modification Commenced After July 23, 1984	Yes	TK-VRU, TK- VRUTMP P	<p>This facility has storage vessels with a capacity greater than or equal to 75 cubic meters (m^3) that are used to store volatile organic liquids (VOL) for which construction, reconstruction, or modification is commenced after July 23, 1984. However TK39-41, TK44-48 and TK53,54 are pressure vessels and pursuant to §60.110b(d)(2) are not subject to this subpart.</p> <p>TK-VRU and TK-VRUTMP</p> <p>As discussed under Section 10 of this permit application, this facility operates a combine group of nine (9) tanks that ranges from 210 to 1,500 bbl (33.39 to 238.5 m^3) that are part of the vapor recovery units. From these nine tanks, two tanks, one of 210 bbl and one of 400 bbl, have capacity lower than the threshold of 75 m^3, thus they are exempted to comply with this regulation.</p> <p>The five (5) 750 bbl tanks are covered under this regulations since they were installed after July 23, 1984, implementation date, and they have a capacity equivalent to 119.2 m^3.</p> <p>The remainder two (2) 1,500 bbl tanks were installed in 1954 and are also covered with this regulation since these tanks used to be pressurized tanks that were modified to be atmospheric tanks after the date this rule was implemented.</p> <p>Note: The VRUs at the facility are inherent to the process and design of the facility. The VRUs are designed to recover vapor and return the vapors back into the low pressure gathering system. The tanks that meet this capacity and date of construction date are subject to this regulations and compliant with this subpart because VOC emissions are routed to a VRU with 95% efficiency.</p>
NSPS 40 CFR 60.330 Subpart GG	Stationary Gas Turbines	Yes	29, 30, 31 and 32B	<p>This regulation establishes standards of performance for certain stationary gas turbines. The turbines at Linam Ranch all have heat inputs greater than the 10 MMBtu/hour were installed on after the October 3, 1977 applicability date and prior to February 18, 2005.</p>
NSPS 40 CFR 60, Subpart KKK	Leaks of VOC from Onshore Gas Plants	Yes	Facility	<p>Linam Ranch is an affected facility as it is an onshore natural gas processing plant that commenced construction, reconstruction, or modification after January 20, 1984. The group of all equipment (each pump, pressure relief device, open-ended valve or line, valve, compressor, and flange or other connector that is in VOC service or in wet gas service, and any device or system required by this subpart) except compressors (defined in § 60.631) within a process unit is an affected facility. A compressor station, dehydration unit, sweetening unit, underground storage tank, field gas gathering system, or liquefied natural gas unit is covered by this subpart if it is located at an onshore natural gas processing plant. If the unit is not located at the plant site, then it is exempt from the provisions of this subpart.</p> <p>Linam Ranch has instituted a Leak Detection and Repair program and submits reports twice annually.</p>

<u>FEDERAL REGU- LATIONS CITATION</u>	Title	Applies? Enter Yes or No	Unit(s) or Facility	JUSTIFICATION:
NSPS 40 CFR Part 60 Subpart LLL	Standards of Performance for Onshore Natural Gas Processing: SO ₂ Emissions	Yes	Facility	<p>This regulation establishes standards of performance for SO₂ emissions from onshore natural gas processing for which construction, reconstruction, or modification of the amine sweetening unit commenced after January 20, 1984 and on or before August 23, 2011.</p> <p>The sweetening units produce acid gas that is completely re-injected into geologic strata or that is otherwise not released to the atmosphere; pursuant to §60.640(e) the sweetening units are not subject to this subpart.</p>
NSPS 40 CFR Part 60 Subpart OOOO	Standards of Performance for Crude Oil and Natural Gas Production, Transmission, and Distribution for which construction, modification or reconstruction commenced after August 23, 2011 and before September 18, 2015	Yes	Equipment leaks associate with equipment added in NSR 0039-M6, 28, AM-10	<p>This regulation establishes emission standards and compliance schedule for the control of volatile organic compounds (VOC) and sulfur dioxide (SO₂) emissions from affected facilities that commence construction, modification or reconstruction after August 23, 2011. The following are equipment constructed after August 23, 2011 and subject to this regulation: Turbine (Unit 28), and equipment leaks associated with the equipment added in NSR 0039-M6R1.</p> <p>The acid gas from the amine unit (sweetening unit) at the facility is completely injected into oil or gas-bearing geological strata (AGI wells) and is not subject to 60.5405 through 60.5407, 60.5410(g), and 60.5423 of this subpart [per NSPS OOOO 60.5365(g)(4)]. When the acid gas flare is used during planned SSM and, the acid gas is not sent to the AGI wells, the facility is subject to SO₂ standards for the amine unit. Since the flare will be used as a control device during planned SSM, the flare is subject to NSPS 60.18. The facility will comply with this regulation upon startup.</p> <p>The pneumatic devices located at the facility are not continuous bleed and therefore will not have applicable requirements under this regulation.</p> <p>The tanks are subject to NSPS Kb and are therefore not subject to this regulation.</p>
NSPS 40 CFR Part 60 Subpart OOOOa	Standards of Performance for Crude Oil and Natural Gas Facilities for which Construction, Modification or Reconstruction Commenced After September 18, 2015	No	N/A	<p>This regulation establishes standards of performance for crude oil and natural gas production, transmission and distribution. The facility does not have any affected units that have been modified or reconstructed on or after September 18, 2015.</p>
NSPS 40 CFR 60 Subpart IIII	Standards of performance for Stationary Compression Ignition Internal Combustion Engines	No	N/A	<p>This regulation establishes standards of performance for stationary compression ignition internal combustion engines. All engines at this facility commenced construction prior to July 11, 2005. This regulation does not apply.</p>
NSPS 40 CFR Part 60 Subpart JJJJ	Standards of Performance for Stationary Spark Ignition Internal Combustion Engines	No	N/A	<p>This regulation establishes standards of performance for stationary spark ignition internal combustion engines. All engines at this facility commenced construction prior to June 12, 2006. This regulation does not apply.</p>
NSPS 40 CFR Part 60 Subpart KKKK	Standards of Performance for Stationary Combustion Turbines	Yes	28	<p>This regulation establishes standards of performance for new stationary gas turbines. Unit 28 is subject to this regulation as the unit commenced construction after February 18, 2005.</p>

<u>FEDERAL REGU- LATIONS CITATION</u>	Title	Applies? Enter Yes or No	Unit(s) or Facility	JUSTIFICATION:
NSPS 40 CFR 60 Subpart TTTT	Standards of Performance for Greenhouse Gas Emissions for Electric Generating Units	No	N/A	This facility does not have any affected equipment; therefore, this subpart does not apply.
NSPS 40 CFR 60 Subpart UUUU	Emissions Guidelines for Greenhouse Gas Emissions and Compliance Times for Electric Utility Generating Units	No	N/A	This facility does not have any affected equipment; therefore, this subpart does not apply.
NSPS 40 CFR 60, Subparts WWW, XXX, Cc, and Cf	Standards of performance for Municipal Solid Waste (MSW) Landfills	No	N/A	This facility does not have any affected equipment; therefore, this subpart does not apply.
NESHAP 40 CFR 61 Subpart A	General Provisions	Yes (Potentially)	Facility	This part applies to the owner or operator of any stationary source for which a standard is prescribed under this part. There is one potentially applicable NESHAP. (See discussion of 40 CFR 61, part M below.)
NESHAP 40 CFR 61 Subpart E	National Emission Standards for Mercury	No	N/A	The provisions of this subpart are applicable to those stationary sources which process mercury ore to recover mercury, use mercury chlor-alkali cells to produce chlorine gas and alkali metal hydroxide, and incinerate or dry wastewater treatment plant sludge. This subpart does not apply.
NESHAP 40 CFR 61 Subpart M	National Emission Standards for Asbestos	Yes (Potentially)	Facility	Although this standard does not apply to this facility under routine operating conditions, in the case of asbestos demolition, Subpart M would apply.
NESHAP 40 CFR 61 Subpart V	National Emission Standards for Equipment Leaks (Fugitive Emission Sources)	No	N/A	This regulation establishes national emission standards for equipment leaks (fugitive emission sources). The facility does not have equipment that operates in volatile hazardous air pollutant (VHAP) service [40 CFR Part 61.240]. The regulated activities subject to this regulation do not take place at this facility. The facility is not subject to this regulation.
MACT 40 CFR 63, Subpart A	General Provisions	Yes	6-11, 28, 34, 36, 37, DH- 10	This regulation defines general provisions for relevant standards that have been set under this part. This regulation applies to all sources emitting hazardous air pollutants, which are subject to the requirements of 40 CFR Part 63, as amended through August 29, 2013. The following subparts apply: <ul style="list-style-type: none"> • Subpart HH <ul style="list-style-type: none"> ○ DH-10 • Subpart YYYY <ul style="list-style-type: none"> ○ 28 • Subpart ZZZZ <ul style="list-style-type: none"> ○ 6-11 • Subpart DDDDD <ul style="list-style-type: none"> ○ 34, 36, and 37
MACT 40 CFR 63.760 Subpart HH	Oil and Natural Gas Production Facilities	Yes	DH-10	This regulation establishes national emission standards for hazardous air pollutants from oil and natural gas production facilities. The glycol contactor added to the dehydration process to regulate moisture with the existing regenerator gas system and is subject to Subpart HH but exempt from requirements due to emissions less than 1.0 Mg/yr benzene. <p>According to current estimates, the storage tanks do not meet the definition of "storage vessels with the potential for flash emissions" since the gas-to-oil-ratio (GOR) is less than 0.31 m³/l (40 CFR 63.761). If the GOR of the storage tanks changes at the facility and the tanks are later determined to meet the definition of "storage vessels with the potential for flash emissions" given in Subpart HH, DCP will comply with applicable requirements.</p>

<u>FEDERAL REGU- LATIONS CITATION</u>	Title	Applies? Enter Yes or No	Unit(s) or Facility	JUSTIFICATION:
MACT 40 CFR 63 Subpart HHH	National Emission Standards for Hazardous Air Pollutants From Natural Gas Transmission and Storage Facilities	No	N/A	This subpart applies to owners and operators of natural gas transmission and storage facilities that transport or store natural gas prior to entering the pipeline to a local distribution company or to a final end user (if there is no local distribution company), and that are major sources of hazardous air pollutants (HAP) emissions as defined in §63.1271. This facility is not a natural gas transmission and storage facility as defined in this subpart. This regulation does not apply.
MACT 40 CFR 63 Subpart YYYY	NESHAP for Stationary Combustion Turbines	Yes	28	This subpart sets national emission standards for new stationary combustion turbines. Units 29, 30, 31 and 32B are existing units and pursuant to §63.6090(b)(4) have no requirements under this subpart or subpart A. Unit 28 is a new or reconstructed gas-fired combustion turbine. Pursuant to §63.6095(d), this unit is subject to the initial notification requirements set forth in §63.6145 but need not comply with any other requirement of Subpart YYYY until final action on compliance by the EPA is taken.
MACT 40 CFR 63 Subpart DDDDD	National Emission Standards for Hazardous Air Pollutants for Major Industrial, Commercial, and Institutional Boilers & Process Heaters	Yes	34, 36, and 37	The facility is a major source of HAPS. Units 34, 36 and 37 will be subject to MACT 40 CFR 63 Subpart DDDDD as they will be constructed after the June 4, 2010 applicability date. The boilers will be combusting natural gas and will have the following compliance requirement in MACT DDDDD: Per 63.7540 (a)(10) - Tune up every year (except for boilers and process heaters with continuous oxygen trim system which conduct a tune-up every 5 years). Units 34, 36, and 37 do not have emission limits under this regulation. DCP will comply with all applicable MACT DDDDD requirements.
MACT 40 CFR 63 Subpart UUUUU	National Emission Standards for Hazardous Air Pollutants Coal & Oil Fire Electric Utility Steam Generating Unit	No	N/A	This facility does not have any affected equipment; therefore, this subpart does not apply.
MACT 40 CFR 63 Subpart ZZZZ	National Emissions Standards for Hazardous Air Pollutants for Stationary Reciprocating Internal Combustion Engines (RICE MACT)	Yes	6-11	This regulation defines national emissions standards for HAPs for stationary Reciprocating Internal Combustion Engines. These engines are subject to MACT ZZZZ but have no requirements as they are existing 2 stroke lean burn engines which are less than 500 horsepower located at a major source of HAPs [§63.6600(c)]
40 CFR 64	Compliance Assurance Monitoring	Yes	AM-10	The sulfur recovery unit (Unit 5) has been removed and is no longer subject to CAM. The amine unit (Unit AM-10) is a controlled major source and is subject to CAM. Units TK-VRU and TK-VRUTMP are a combined group of 9 tanks with integrated vapor recovery units (VRU). The VRUs at the facility are inherent to the process and design of the facility and are not subject to CAM. The VRUs are designed to recover vapors and return the vapors back into the low pressure gathering system.

<u>FEDERAL REGU- LATIONS CITATION</u>	Title	Applies? Enter Yes or No	Unit(s) or Facility	JUSTIFICATION:
40 CFR 68	Chemical Accident Prevention	Yes	Facility	This facility has quantities of materials regulated by this requirement that are in excess of the triggering threshold. A RMP has been submitted to and approved by the EPA on 6/29/2015
Title IV – Acid Rain 40 CFR 72	Acid Rain	No	N/A	This part establishes the acid rain program. This part does not apply because the facility is not covered by this regulation [40 CFR Part 72.6].
Title IV – Acid Rain 40 CFR 73	Sulfur Dioxide Allowance Emissions	No	N/A	This part establishes the acid rain program. This part does not apply because the facility is not covered by this regulation.
Title IV-Acid Rain 40 CFR 75	Continuous Emissions Monitoring	No	N/A	This part establishes the acid rain program. This part does not apply because the facility is not covered by this regulation.
Title IV – Acid Rain 40 CFR 76	Acid Rain Nitrogen Oxides Emission Reduction Program	No	N/A	This facility has quantities of materials regulated by this requirement that are in excess of the triggering threshold. A RMP has been submitted to and approved by the EPA on 6/29/2015
Title VI – 40 CFR 82	Protection of Stratospheric Ozone	Yes	Facility	DCP owns appliances containing CFCs and is therefore subject to this requirement. DCP uses only certified technicians for the maintenance, service, repair and disposal of appliances and maintains the appropriate records for this requirement. Note: Disposal definition in 82.152: Disposal means the process leading to and including: (1) The discharge, deposit, dumping or placing of any discarded appliance into or on any land or water; (2) The disassembly of any appliance for discharge, deposit, dumping or placing of its discarded component parts into or on any land or water; or (3) The disassembly of any appliance for reuse of its component parts. "Major maintenance, service, or repair means" any maintenance, service, or repair that involves the removal of any or all of the following appliance components: compressor, condenser, evaporator, or auxiliary heat exchange coil; or any maintenance, service, or repair that involves uncovering an opening of more than four (4) square inches of "flow area" for more than 15 minutes.
CAA Section 112(r)	Chemical Accident Prevention Provisions	Yes	Facility	Linam Ranch is subject to the chemical accident prevention provisions of the Clean Air Act.

Section 14

Operational Plan to Mitigate Emissions

(Submitting under 20.2.70, 20.2.72, 20.2.74 NMAC)

Title V Sources (20.2.70 NMAC): By checking this box and certifying this application the permittee certifies that it has developed an Operational Plan to Mitigate Emissions During Startups, Shutdowns, and Emergencies defining the measures to be taken to mitigate source emissions during startups, shutdowns, and emergencies as required by 20.2.70.300.D.5(f) and (g) NMAC. This plan shall be kept on site to be made available to the Department upon request. This plan should not be submitted with this application.

NSR (20.2.72 NMAC), **PSD** (20.2.74 NMAC) & **Nonattainment** (20.2.79 NMAC) **Sources**: By checking this box and certifying this application the permittee certifies that it has developed an Operational Plan to Mitigate Source Emissions During Malfunction, Startup, or Shutdown defining the measures to be taken to mitigate source emissions during malfunction, startup, or shutdown as required by 20.2.72.203.A.5 NMAC. This plan shall be kept on site to be made available to the Department upon request. This plan should not be submitted with this application.

Title V (20.2.70 NMAC), **NSR** (20.2.72 NMAC), **PSD** (20.2.74 NMAC) & **Nonattainment** (20.2.79 NMAC) **Sources**: By checking this box and certifying this application the permittee certifies that it has established and implemented a Plan to Minimize Emissions During Routine or Predictable Startup, Shutdown, and Scheduled Maintenance through work practice standards and good air pollution control practices as required by 20.2.7.14.A and B NMAC. This plan shall be kept on site or at the nearest field office to be made available to the Department upon request. This plan should not be submitted with this application.

DCP Operating Company, LP has developed an Operational Plan to Mitigate Source Emission during Malfunction, Startup or Shutdown as required by 20.2.72.203.A.5 NMAC. This plan is available at the project site for evaluation and review.

Section 15

Alternative Operating Scenarios

(Submitting under 20.2.70, 20.2.72, 20.2.74 NMAC)

Alternative Operating Scenarios: Provide all information required by the department to define alternative operating scenarios. This includes process, material and product changes; facility emissions information; air pollution control equipment requirements; any applicable requirements; monitoring, recordkeeping, and reporting requirements; and compliance certification requirements. Please ensure applicable Tables in this application are clearly marked to show alternative operating scenario.

Construction Scenarios: When a permit is modified authorizing new construction to an existing facility, NMED includes a condition to clearly address which permit condition(s) (from the previous permit and the new permit) govern during the interval between the date of issuance of the modification permit and the completion of construction of the modification(s). There are many possible variables that need to be addressed such as: Is simultaneous operation of the old and new units permitted and, if so for example, for how long and under what restraints? In general, these types of requirements will be addressed in Section A100 of the permit, but additional requirements may be added elsewhere. Look in A100 of our NSR and/or TV permit template for sample language dealing with these requirements. Find these permit templates at: https://www.env.nm.gov/aqb/permit/aqb_pol.html. Compliance with standards must be maintained during construction, which should not usually be a problem unless simultaneous operation of old and new equipment is requested.

In this section, under the bolded title “Construction Scenarios”, specify any information necessary to write these conditions, such as: conservative-realistic estimated time for completion of construction of the various units, whether simultaneous operation of old and new units is being requested (and, if so, modeled), whether the old units will be removed or decommissioned, any PSD ramifications, any temporary limits requested during phased construction, whether any increase in emissions is being requested as SSM emissions or will instead be handled as a separate Construction Scenario (with corresponding emission limits and conditions, etc.

Scenario A

This is the primary operating scenario. Under Scenario A of one (1) of the four (4) HBAs is operating at any given time, while simultaneously being allowed to operate all other equipment at the facility at maximum capacity without limits on the hours of operation.

Scenario B

This is the alternative operating scenario. Under Scenario B, two (2) of the four (4) HBAs would operate when one of the TLA engines is down. In order to preserve the PSD netting result for NO_x and VOC, the number of hours this scenario is allowed to run is up to 3,400 hours in any rolling 12-month period.

If DCP exceeds this threshold, DCP must perform an updated PSD netting analysis for these pollutants to show that the SERs were not exceeded based on actual hours of operation in each rolling 12-month period.

The following formula shall be used to calculate tons per year emissions for each HBA and TLA. The sum of each of the HBA and TLA emissions calculated by the formula is then compared to the limits shown in Table 2-E of this application. The sum should be less than or equal to these limits to demonstrate that the SERs for NOx and VOC were not exceeded.

Formula to calculate emissions for NOx and VOC, in tons, for a given HBA or TLA unit over a rolling 12-month period:

$$\frac{[\text{Permit Limit (lb/hr)}] \times [\text{Rolling 12-month hours of operation (hr)}] \times [\text{Actual power (hp)} \div \text{Permitted power (hp)}]}{2000 \text{ (lb/ton)}}$$

Then, for NO_x and VOC, calculate the sum:

Unit 6 + Unit 7 + Unit 8 + Unit 9 +Unit 10 + Unit 11 = Total All Units

Then, compare the sum “Total All Units” for each pollutant to the corresponding tons per year limit shown in Table 2-E.

Section 16

Air Dispersion Modeling

- 1) Minor Source Construction (20.2.72 NMAC) and Prevention of Significant Deterioration (PSD) (20.2.74 NMAC) ambient impact analysis (modeling): Provide an ambient impact analysis as required at 20.2.72.203.A(4) and/or 20.2.74.303 NMAC and as outlined in the Air Quality Bureau's Dispersion Modeling Guidelines found on the Planning Section's modeling website. If air dispersion modeling has been waived for one or more pollutants, attach the AQB Modeling Section modeling waiver approval documentation.
- 2) SSM Modeling: Applicants must conduct dispersion modeling for the total short term emissions during routine or predictable startup, shutdown, or maintenance (SSM) using realistic worst case scenarios following guidance from the Air Quality Bureau's dispersion modeling section. Refer to "Guidance for Submittal of Startup, Shutdown, Maintenance Emissions in Permit Applications (http://www.env.nm.gov/aqb/permit/app_form.html) for more detailed instructions on SSM emissions modeling requirements.
- 3) Title V (20.2.70 NMAC) ambient impact analysis: Title V applications must specify the construction permit and/or Title V Permit number(s) for which air quality dispersion modeling was last approved. Facilities that have only a Title V permit, such as landfills and air curtain incinerators, are subject to the same modeling required for preconstruction permits required by 20.2.72 and 20.2.74 NMAC.

What is the purpose of this application?	Enter an X for each purpose that applies
New PSD major source or PSD major modification (20.2.74 NMAC). See #1 above.	
New Minor Source or significant permit revision under 20.2.72 NMAC (20.2.72.219.D NMAC). See #1 above. Note: Neither modeling nor a modeling waiver is required for VOC emissions.	
Reporting existing pollutants that were not previously reported.	
Reporting existing pollutants where the ambient impact is being addressed for the first time.	
Title V application (new, renewal, significant, or minor modification. 20.2.70 NMAC). See #3 above.	X
Relocation (20.2.72.202.B.4 or 72.202.D.3.c NMAC)	
Minor Source Technical Permit Revision 20.2.72.219.B.1.d.vi NMAC for like-kind unit replacements.	
Other: i.e. SSM modeling. See #2 above.	
This application does not require modeling since this is a No Permit Required (NPR) application.	
This application does not require modeling since this is a Notice of Intent (NOI) application (20.2.73 NMAC).	
This application does not require modeling according to 20.2.70.7.E(11), 20.2.72.203.A(4), 20.2.74.303, 20.2.79.109.D NMAC and in accordance with the Air Quality Bureau's Modeling Guidelines.	

Check each box that applies:

- See attached, approved modeling **waiver for all** pollutants from the facility.
- See attached, approved modeling **waiver for some** pollutants from the facility.
- Attached in Universal Application Form 4 (UA4) is a **modeling report for all** pollutants from the facility.
- Attached in UA4 is a **modeling report for some** pollutants from the facility.
- No modeling is required.

This application is being submitted under 20.2.70 NMAC. Modeling is not required for Title V applications.

Section 17

Compliance Test History

(Submitting under 20.2.70, 20.2.72, 20.2.74 NMAC)

To show compliance with existing NSR permits conditions, you must submit a compliance test history. The table below provides an example.

Compliance Test History Table

Unit No.	Test Description	Test Date
6	Tested using portable emission analyzer in accordance with NSR Permit 0039-M7 Condition A201.B	10/17/2017 12/11/2018 3/26/2019
7	Tested using portable emission analyzer in accordance with NSR Permit 0039-M7 Condition A201.B	12/11/2018 3/26/2019
8	Tested using portable emission analyzer in accordance with NSR Permit 0039-M7 Condition A201.B	2/19/2014 Unit out of service
9	Tested using portable emission analyzer in accordance with NSR Permit 0039-M7 Condition A201.B	4/10/2013 Unit out of service
10	Tested using portable emission analyzer in accordance with NSR Permit 0039-M7 Condition A201.B	3/1/2017 12/11/2018 3/26/2019
11	Tested using portable emission analyzer in accordance with NSR Permit 0039-M7 Condition A201.B	10/19/2017 12/11/2018 2019 test date TBD
28	Tested using portable emission analyzer in accordance with NSR Permit 0039-M7 Condition A205.A	2/20/2017 3/21/2018 3/13/2019
29	Tested using portable emission analyzer in accordance with NSR Permit 0039-M7 Condition A205.A	2/20/2017 3/20/2018 3/20/2019
30	Tested using portable emission analyzer in accordance with NSR Permit 0039-M7 Condition A205.A	3/1/2017 8/20/2018 3/20/2019
31a	Tested using portable emission analyzer in accordance with NSR Permit 0039-M7 Condition A205.A	3/1/2017 3/20/2018 3/20/2019
32b	Tested using portable emission analyzer in accordance with NSR Permit 0039-M7 Condition A205.A	10/19/2017 10/10/2018 2019 test date TBD

Section 19

Requirements for Title V Program

Who Must Use this Attachment:

- * Any major source as defined in 20.2.70 NMAC.
- * Any source, including an area source, subject to a standard or other requirement promulgated under Section 111 - Standards of Performance for New Stationary Sources, or Section 112 Hazardous Air Pollutants, of the 1990 federal Clean Air Act ("federal Act"). Non-major sources subject to Sections 111 or 112 of the federal Act are exempt from the obligation to obtain an 20.2.70 NMAC operating permit until such time that the EPA Administrator completes rulemakings that require such sources to obtain operating permits. In addition, sources that would be required to obtain an operating permit solely because they are subject to regulations or requirements under Section 112(r) of the federal Act are exempt from the requirement to obtain an Operating Permit.
- * Any Acid Rain source as defined under title IV of the federal Act. The Acid Rain program has additional forms. See <http://www.env.nm.gov/aqb/index.html>. Sources that are subject to both the Title V and Acid Rain regulations are encouraged to submit both applications simultaneously.
- * Any source in a source category designated by the EPA Administrator ("Administrator"), in whole or in part, by regulation, after notice and comment.

19.1 - 40 CFR 64, Compliance Assurance Monitoring (CAM) (20.2.70.300.D.10.e NMAC)

Any source subject to 40CFR, Part 64 (Compliance Assurance Monitoring) must submit all the information required by section 64.7 with the operating permit application. The applicant must prepare a separate section of the application package for this purpose; if the information is already listed elsewhere in the application package, make reference to that location. Facilities not subject to Part 64 are invited to submit periodic monitoring protocols with the application to help the AQB to comply with 20.2.70 NMAC. Sources subject to 40 CFR Part 64, must submit a statement indicating your source's compliance status with any enhanced monitoring and compliance certification requirements of the federal Act.

The sulfur recovery unit (Unit 5) has been removed and is no longer subject to CAM.

The amine unit (Unit AM-10) is a controlled major source and is subject to CAM. A CAM plan for the AGI system (the AGI flare and AGI well) which controls the amine unit is attached to this section.

Units TK-VRU and TK-VRUTMP are a combined group of 9 tanks with integrated vapor recovery units (VRU). The VRUs at the facility are inherent to the process and design of the facility and are not subject to CAM. The VRUs are designed to recover vapors and return the vapors back into the low pressure gathering system.

19.2 - Compliance Status (20.2.70.300.D.10.a & 10.b NMAC)

Describe the facility's compliance status with each applicable requirement at the time this permit application is submitted. This statement should include descriptions of or references to all methods used for determining compliance. This statement should include descriptions of monitoring, recordkeeping and reporting requirements and test methods used to determine compliance with all applicable requirements. Refer to Section 2, Tables 2-N and 2-O of the Application Form as necessary. (20.2.70.300.D.11 NMAC) For facilities with existing Title V permits, refer to most recent Compliance Certification for existing requirements. Address new requirements such as CAM, here, including steps being taken to achieve compliance.

Based on information and belief formed after reasonable inquiry, DCP believes that the Linam Ranch Gas Plant is in compliance with each applicable requirement identified in Section 13. In the event that DCP should discover new information affecting the compliance status of the facility, DCP will make appropriate notifications and/or take corrective actions.

19.3 - Continued Compliance (20.2.70.300.D.10.c NMAC)

Provide a statement that your facility will continue to be in compliance with requirements for which it is in compliance at the time of permit application. This statement must also include a commitment to comply with other applicable requirements as they come into effect during the permit term. This compliance must occur in a timely manner or be consistent with such schedule expressly required by the applicable requirement.

The facility will continue to be in compliance with requirements for which it is in compliance at the time of this permit application and will comply with other applicable requirements as they come into effect during the permit term.

19.4 - Schedule for Submission of Compliance (20.2.70.300.D.10.d NMAC)

You must provide a proposed schedule for submission to the department of compliance certifications during the permit term. This certification must be submitted annually unless the applicable requirement or the department specifies a more frequent period. A sample form for these certifications will be attached to the permit.

Compliance certification will be submitted annually, as required by Title V Permit P094-R2, Condition B112(D).

19.5 - Stratospheric Ozone and Climate Protection

In addition to completing the four (4) questions below, you must submit a statement indicating your source's compliance status with requirements of Title VI, Section 608 (National Recycling and Emissions Reduction Program) and Section 609 (Servicing of Motor Vehicle Air Conditioners).

1. Does your facility have any air conditioners or refrigeration equipment that uses CFCs, HCFCs or other ozone-depleting substances? Yes No
2. Does any air conditioner(s) or any piece(s) of refrigeration equipment contain a refrigeration charge greater than 50 lbs? Yes No
(If the answer is yes, describe the type of equipment and how many units are at the facility.)
3. Do your facility personnel maintain, service, repair, or dispose of any motor vehicle air conditioners (MVACs) or appliances ("appliance" and "MVAC" as defined at 82. 152)? Yes No
4. Cite and describe which Title VI requirements are applicable to your facility (i.e. 40 CFR Part 82, Subpart A through G.)

No 40 CFR 82 requirements apply to this facility.

19.6 - Compliance Plan and Schedule

Applications for sources, which are not in compliance with all applicable requirements at the time the permit application is submitted to the department, must include a proposed compliance plan as part of the permit application package. This plan shall include the information requested below:

A. Description of Compliance Status: (20.2.70.300.D.11.a NMAC)

A narrative description of your facility's compliance status with respect to all applicable requirements (as defined in 20.2.70 NMAC) at the time this permit application is submitted to the department.

B. Compliance plan: (20.2.70.300.D.11.B NMAC)

A narrative description of the means by which your facility will achieve compliance with applicable requirements with which it is not in compliance at the time you submit your permit application package.

C. Compliance schedule: (20.2.70.300D.11.c NMAC)

A schedule of remedial measures that you plan to take, including an enforceable sequence of actions with milestones, which will lead to compliance with all applicable requirements for your source. This schedule of compliance must be at least as stringent as that contained in any consent decree or administrative order to which your source is subject. The obligations of any consent decree or administrative order are not in any way diminished by the schedule of compliance.

D. Schedule of Certified Progress Reports: (20.2.70.300.D.11.d NMAC)

A proposed schedule for submission to the department of certified progress reports must also be included in the compliance schedule. The proposed schedule must call for these reports to be submitted at least every six (6) months.

E. Acid Rain Sources: (20.2.70.300.D.11.e NMAC)

If your source is an acid rain source as defined by EPA, the following applies to you. For the portion of your acid rain source subject to the acid rain provisions of title IV of the federal Act, the compliance plan must also include any additional requirements under the acid rain provisions of title IV of the federal Act. Some requirements of title IV regarding the schedule and methods the source will use to achieve compliance with the acid rain emissions limitations may supersede the requirements of title V and 20.2.70 NMAC. You will need to consult with the Air Quality Bureau permitting staff concerning how to properly meet this requirement.

NOTE: The Acid Rain program has additional forms. See <http://www.env.nm.gov/aqb/index.html>. Sources that are subject to both the Title V and Acid Rain regulations are **encouraged** to submit both applications **simultaneously**.

No compliance plan is required.

19.7 - 112(r) Risk Management Plan (RMP)

Any major sources subject to section 112(r) of the Clean Air Act must list all substances that cause the source to be subject to section 112(r) in the application. The permittee must state when the RMP was submitted to and approved by EPA.

The RMP was submitted to EPA on 8/31/2010 (electronic submittal) and approved by EPA on 8/31/2010.

19.8 - Distance to Other States, Bernalillo, Indian Tribes and Pueblos

Will the property on which the facility is proposed to be constructed or operated be closer than 80 km (50 miles) from other states, local pollution control programs, and Indian tribes and pueblos (20.2.70.402.A.2 and 20.2.70.7.B NMAC)? (If the answer is yes, state which apply and provide the distances.)

Yes, 20.6 kilometers from Texas.

19.9 - Responsible Official

Provide the Responsible Official as defined in 20.2.70.7.AD NMAC:

R.O. : Randy C. DeLaune
R.O. Title: VP Operations Services
R.O. Address: 5718 Westheimer, Suite 1900, Houston, TX 77057-7057
R.O. Phone: (713) 268-7488
R.O. Email: RCDeLaune@Depmidstream.com

Compliance Assurance Monitoring Plan

I. Background

a. Emission Unit Description

The emission source covered by this Compliance Assurance Monitoring (CAM) Plan is the Amine Sweetening System equipped with an Acid Gas Injection (AGI) System to control H₂S (and CO₂) emissions; the units that make up the Amine Sweetening System are the Amine Regeneration Still and the Amine Contactor.

b. Applicable Regulation, Emission Limitations, Monitoring Requirements

The Amine Sweetening System and AGI System are not subject to Federal regulation other than the CAM Rule at 40 CFR Part 64.

The Amine Sweetening System and AGI System do not have emission limits per se; the facility wide emission total for H₂S (the air toxic designed to be controlled by the AGI System) is about 30.0 tons per year.

Monitoring for the Amine Sweetening System and AGI System includes monitoring the AGI compressor discharge pressure, metering the acid gas to the AGI System, and metering the acid gas routed to the acid gas flare.

c. Control Technology

Control technology employed the Amine Sweetening System is the Acid Gas Injection (AGI) System.

II. Justification - Proper operation of the AGI System results in zero emissions to the atmosphere. Proper operation of the system is verified by monitoring compressor discharge pressure. Compressor discharge pressure indicates that the acid gas from the Amine Sweetening System is being injected into the subterranean formation. Monitoring of this pressure can also indicate any problems with the injection well or injecting gas into the formation. A low compressor discharge pressure may indicate problems with the well or piping within the well. A high compressor discharge pressure may indicate difficulty injecting gas into the formation. Based on DCP's experience with this AGI System, the compressor pressure range represented in the Monitoring Plan is representative.

III. Monitoring Plan

	Indicator No. 1	Other Monitoring/Verification
I. AGI Performance Indicator	Compressor discharge pressure (psig)	Metering of acid gas flow to the AGI System; metering of then acid gas flow to the Acid Gas Flare; Monthly sulfur reports submitted to the NMED.
II. Indicator Range*	1000 – 2700 psig	DCP will investigate any excursion outside the specified range and perform corrective action as required. All information will be recorded and included in the required semi-annual Monitoring Report.
III. Performance Criteria		
a. Data Representativeness	Pressure is to be measured by a pressure transducer	Proper operation of the pressure transducer is verified no less frequently than annually.
b. QA/QC Practices/Criteria	Pressure transducer operation is verified no less frequently than annually.	Inlet gas flow meters calibrated monthly.
c. Monitoring Frequency	Compressor discharge pressure is monitored once per calendar day.	AGI motor and compressor are maintained according to manufacturer's specifications.
d. Data Collection Procedures	Compressor discharge pressure is recorded once per calendar day. No observation is required on days when the AGI System is not operated.	Record any AGI System shutdowns. Report flaring of acid gas, as required.
e. Averaging Time	None; pressure will not vary outside the specified range.	N/A

Section 20

Other Relevant Information

Other relevant information. Use this attachment to clarify any part in the application that you think needs explaining. Reference the section, table, column, and/or field. Include any additional text, tables, calculations or clarifying information.

Additionally, the applicant may propose specific permit language for AQB consideration. In the case of a revision to an existing permit, the applicant should provide the old language and the new language in track changes format to highlight the proposed changes. If proposing language for a new facility or language for a new unit, submit the proposed operating condition(s), along with the associated monitoring, recordkeeping, and reporting conditions. In either case, please limit the proposed language to the affected portion of the permit.

There is no other relevant information.

Section 22: Certification

Company Name: DCP Operating Company, LP

I, Todd Allison, hereby certify that the information and data submitted in this application are true and as accurate as possible, to the best of my knowledge and professional expertise and experience.

Signed this 10th day of April, 2019, upon my oath or affirmation, before a notary of the State of

New Mexico.

Todd Allison

*Signature

4-10-2019

Date

Todd Allison

Printed Name

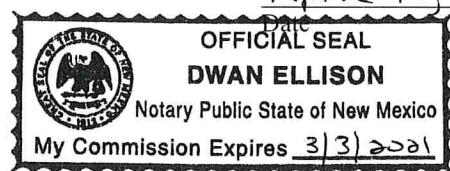
Asset Director

Title

Scribed and sworn before me on this 10th day of April, 2019.

My authorization as a notary of the State of New Mexico expires on the

3rd


day of March, 2021.

Dwan Ellison

Notary's Signature

Dwan Ellison

Notary's Printed Name

*For Title V applications, the signature must be of the Responsible Official as defined in 20.2.70.7.AE NMAC.