JAYHAWK COMPRESSOR STATION Lea County, NM NSR Permit Modification Application

PREPARED BY: BEN SCHNEIDER ENVIRONMENTAL ENGINEER XTO ENERGY INC. 9/9/2020

JAYHAWK COMPRESSOR STATION

NSR Permit Modification Application

Table of Contents

UA1 Form - Company and Facility Information
UA2 Form - Application Tables
Section 3 - Application Summary
Section 4 - Process Flow Sheet
Section 5 - Plot Plan Drawn To Scale
Section 6 - All Calculations
Section 7 - Information Used To Determine Emissions
Section 8 - Map(s)
Section 9 - Proof of Public Notice
Section 10 - Written Description of the Routine Operations of the Facility
Section 11 -Source Determination
Section 12 - PSD Applicability Determination for All Sources
Section 13 - Determination of State & Federal Air Quality Regulations
Section 14 - Operational Plan to Mitigate Emissions
Section 15 - Alternative Operating Scenarios
Section 16 - Air Dispersion Modeling
Section 17 - Compliance Test History
Section 18 - Addendum for Streamline Applications (Not Applicable)
Section 19 - Requirements for Title V Program
Section 20 - Other Relevant Information
Section 21 - Addendum for Landfill Applications (Not Applicable)
Section 22 - Certification
Section 23 - UA4

Tab 1

UA1 Form - Company and Facility Information

Mail Application To:

New Mexico Environment Department Air Quality Bureau Permits Section 525 Camino de los Marquez, Suite 1 Santa Fe, New Mexico, 87505

Phone: (505) 476-4300 Fax: (505) 476-4375 www.env.nm.gov/aqb

AIRS No.:

For Department use only:

□ a PSD major modification

Universal Air Quality Permit Application

Use this application for NOI, NSR, or Title V sources.

Use this application for: the initial application, modifications, technical revisions, and renewals. For technical revisions, complete Sections, 1-A, 1-B, 2-E, 3, 9 and any other sections that are relevant to the requested action; coordination with the Air Quality Bureau permit staff prior to submittal is encouraged to clarify submittal requirements and to determine if more or less than these sections of the application are needed. Use this application for streamline permits as well. See Section 1-I for submittal instructions for other permits.

 This application is submitted as (check all that apply):
 □ Request for a No Permit Required Determination (no fee)

 □ Updating an application currently under NMED review. Include this page and all pages that are being updated (no fee required).

 Construction Status:
 □ Not Constructed

 ☑ Existing Permitted (or NOI) Facility
 □ Existing Non-permitted (or NOI) Facility

 Minor Source:
 □ a NOI 20.2.73 NMAC
 ☑ 20.2.72 NMAC application or revision

 □ Title V Source:
 □ Title V (new)
 □ Title V renewal

PSD Major Source: **Acknowledgements:**

 \square I acknowledge that a pre-application meeting is available to me upon request. \square Title V Operating, Title IV Acid Rain, and NPR applications have no fees.

 \blacksquare \$500 NSR application Filing Fee enclosed OR \Box The full permit fee associated with 10 fee points (required w/ streamline applications).

in minor modification to a PSD source

☑ Check No.: 2500132871 in the amount of \$500

☑ I acknowledge the required submittal format for the hard copy application is printed double sided 'head-to-toe', 2-hole punched (except the Sect. 2 landscape tables is printed 'head-to-head'), numbered tab separators. Incl. a copy of the check on a separate page. □ This facility qualifies to receive assistance from the Small Business Environmental Assistance program (SBEAP) and qualifies for 50% of the normal application and permit fees. Enclosed is a check for 50% of the normal application fee which will be verified with the Small Business Certification Form for your company.

□ This facility qualifies to receive assistance from the Small Business Environmental Assistance Program (SBEAP) but does not qualify for 50% of the normal application and permit fees. To see if you qualify for SBEAP assistance and for the small business certification form go to https://www.env.nm.gov/aqb/sbap/small_business_criteria.html).

Citation: Please provide the **low level citation** under which this application is being submitted: **20.2.72.219.B.1.d NMAC** (e.g. application for a new minor source would be 20.2.72.200.A NMAC, one example for a Technical Permit Revision is 20.2.72.219.B.1.b NMAC, a Title V acid rain application would be: 20.2.70.200.C NMAC)

Section 1 – Facility Information

Sect	tion 1-A: Company Information	AI # if known (see 1 st 3 to 5 #s of permit IDEA ID No.): 38799	Updating Permit/NOI #: 8152			
1	Facility Name: Jayhawk Compressor Station	Plant primary SIC Code (4 digits): 1311				
1		Plant NAIC code (6 digits): 211120				
a	a Facility Street Address (If no facility street address, provide directions from a prominent landmark): See 1-D.4.					
2	Plant Operator Company Name: XTO Energy Inc. Phone/Fax: (832) 624-4426					
a	a Plant Operator Address: 22777 Springwoods Village Parkway, W4.6B.374, Spring, TX 77389					
b	Plant Operator's New Mexico Corporate ID or Tax ID: 1522747					

3	Plant Operator Company Name: XTO Energy Inc.	Phone/Fax: (832) 624-4426			
a	Plant Owner(s) Mailing Address(s): 22777 Springwoods Village Parkway, W4.6B.374, Spring, TX 77389				
4	Bill To (Company): XTO Energy Inc.	Phone/Fax: (832) 624-4426			
a	Mailing Address: 22777 Springwoods Village Parkway, W4.6B.374, Spring, TX 77389	E-mail: Benjamin_Schneider@xtoenergy.com			
5	☑ Preparer: Benjamin_Schneider@xtoenergy.com □ Consultant:	Phone/Fax: (832) 624-2768			
a	Mailing Address: 22777 Springwoods Village Parkway, W4.6B.374, Spring, TX 77389	E-mail: Benjamin_Schneider@xtoenergy.com			
6	Plant Operator Contact: Benjamin Schneider	Phone/Fax: (832) 624-2768			
a	Mailing Address: 22777 Springwoods Village Parkway, W4.6B.374, Spring, TX 77389	E-mail: Benjamin_Schneider@xtoenergy.com			
7	Air Permit Contact: Benjamin Schneider	Title: Environmental Engineer			
a	E-mail: Benjamin_Schneider@xtoenergy.com	Phone/Fax: (832) 624-2768			
b	Mailing Address: 22777 Springwoods Village Parkway, W4.6B.374, Sprin	ng, TX 77389			
c	The designated Air permit Contact will receive all official correspondence (i.e. letters, permits) from the Air Quality Bureau.				

Section 1-B: Current Facility Status

1.a	Has this facility already been constructed? ☑ Yes □ No	1.b If yes to question 1.a, is it currently operating in New Mexico? □ Yes ☑ No			
2	If yes to question 1.a, was the existing facility subject to a Notice of Intent (NOI) (20.2.73 NMAC) before submittal of this application? □ Yes ☑ No	If yes to question 1.a, was the existing facility subject to a construction permit (20.2.72 NMAC) before submittal of this application? ✓ Yes □ No			
3	Is the facility currently shut down? Yes No If yes, give month and year of shut dow (MM/YY):				
4	Was this facility constructed before 8/31/1972 and continuously operated s	since 1972? □ Yes 🗹 No			
5	If Yes to question 3, has this facility been modified (see 20.2.72.7.P NMAC) or the capacity increased since $8/31/1972$?				
6	Does this facility have a Title V operating permit (20.2.70 NMAC)? □ Yes ☑ No	If yes, the permit No. is: P-			
7	Has this facility been issued a No Permit Required (NPR)? □ Yes ☑ No	If yes, the NPR No. is:			
8	Has this facility been issued a Notice of Intent (NOI)? □ Yes ☑ No	If yes, the NOI No. is:			
9	Does this facility have a construction permit (20.2.72/20.2.74 NMAC)? ☑ Yes □ No	If yes, the permit No. is: 8152			
10	Is this facility registered under a General permit (GCP-1, GCP-2, etc.)? □ Yes ☑ No	If yes, the register No. is:			

Section 1-C: Facility Input Capacity & Production Rate

1	What is the	What is the facility's maximum input capacity, specify units (reference here and list capacities in Section 20, if more room is required)							
a Current Hourly: 22.5 barrels; 8.8 MMscf Daily: 539.0 barrels; 210.1 MMscf Annually: 196,750 barrels									
b	b Proposed Hourly: 33.9 barrels; 10 MMscf Daily: 814 barrels; 240 MMscf Annually: 297,184 barrels; 87.6								
2	What is the facility's maximum production rate, specify units (reference here and list capacities in Section 20, if more room is required)								
	Comment								
а	Current	Hourly: 22.5 barrels; 8.8 MMscf	Daily: 539.0 barrels; 210.1 MMscf	Annually: 196,750 barrels; 76.7 Bscf					

Section 1-D: Facility Location Information

				1			
1	Section: 17	Range: 32E	Township: 20S	County: Le	a		Elevation (ft): 3489
2	UTM Zone:	□ 12 or ☑ 13		Datum:	□ NAD 27	□ NAD 8	3 🗹 WGS 84
а	UTM E (in meter	rs, to nearest 10 meter	s): 614061	UTM N (in	meters, to neares	t 10 meters): 3	605041
b	AND Latitude	(deg., min., sec.):	32° 34' 37.07"	Longitude	(deg., min., se	ec.): -103° 4	7' 5.30"
3	Name and zip of	code of nearest Ne	ew Mexico town: Carlsbad	- 88220			
4		ng Instructions fro ve 1.8 mi. to L tur		n a road map	if necessary):	Drive E on	NM 62 for 24.7 mi. to L on
5	The facility is 2	22 (distance) mile	s NE (direction) of Carlsba	d (nearest to	wn).		
6	Status of land at facility (check one): Private Indian/Pueblo Federal BLM Federal Forest Service Other (specify)						
7	List all municipalities, Indian tribes, and counties within a ten (10) mile radius (20.2.72.203.B.2 NMAC) of the property on which the facility is proposed to be constructed or operated: Eddy County, Lea County						
8	20.2.72 NMAC applications only : Will the property on which the facility is proposed to be constructed or operated be closer than 50 km (31 miles) to other states, Bernalillo County, or a Class I area (see <u>www.env.nm.gov/aqb/modeling/classIareas.html</u>)? □ Yes ☑ No (20.2.72.206.A.7 NMAC) If yes, list all with corresponding distances in kilometers:						
9	Name nearest Class I area: Carlsbad Caverns						
10	Shortest distance (in km) from facility boundary to the boundary of the nearest Class I area (to the nearest 10 meters): 69.93						
11	Distance (meters) from the perimeter of the Area of Operations (AO is defined as the plant site inclusive of all disturbed lands, including mining overburden removal areas) to nearest residence, school or occupied structure: < 2 miles						
12	Method(s) used to delineate the Restricted Area: None "Restricted Area" is an area to which public entry is effectively precluded. Effective barriers include continuous fencing, continuous walls, or other continuous barriers approved by the Department, such as rugged physical terrain with steep grade that would require special equipment to traverse. If a large property is completely enclosed by fencing, a restricted area within the property may be identified with signage only. Public roads cannot be part of a Restricted Area.						
13	Does the owner/operator intend to operate this source as a portable stationary source as defined in 20.2.72.7.X NMAC? □ Yes ☑ No A portable stationary source is not a mobile source, such as an automobile, but a source that can be installed permanently at one location or that can be re-installed at various locations, such as a hot mix asphalt plant that is moved to different job sites.						
14			unction with other air regulanit number (if known) of th	-	-	operty?	No Yes

Section 1-E: Proposed Operating Schedule (The 1-E.1 & 1-E.2 operating schedules may become conditions in the permit.)

1	Facility maximum operating $\left(\frac{\text{hours}}{\text{day}}\right)$: 24	$\left(\frac{\text{days}}{\text{week}}\right)$: 7	$(\frac{\text{weeks}}{\text{year}}): 52$	(<u>hours</u>): 8760		
2	Facility's maximum daily operating schedule (if less	s than $24 \frac{\text{hours}}{\text{day}}$)? Start:	□AM □PM	End:	□AM □PM	
3	Month and year of anticipated start of construction: Already started					
4	Month and year of anticipated construction completion: Train 1 completed by September 2020					
5	Month and year of anticipated startup of new or modified facility: Train 1 start-up is 3/1/2023					
6	Will this facility operate at this site for more than or	ne year? 🗹 Yes 🗆 No				

Section 1-F: Other Facility Information

1	Are there any current Notice of Violations (NOV), compliance orders, or any other compliance or enforcement issues related to this facility? \Box Yes \blacksquare No If yes, specify:		
a	If yes, NOV date or description of issue:	NOV Tracking No:	

b	Is this application in response to any issue listed in 1-F, 1 or 1a above? 🗆 Yes 🗆 No If Yes, provide the 1c & 1d info below:					
c	Document Title:	Date:	Requirement # (or page # and paragraph #):			
d	Provide the required text to be inserted in this permit:					
2	Is air quality dispersion modeling or modeling waiver bein	g submitted with this	application? ☑ Yes □ No			
3	Does this facility require an "Air Toxics" permit under 20.	2.72.400 NMAC & 2	0.2.72.502, Tables A and/or B? ☐ Yes ✓ No			
4	Will this facility be a source of federal Hazardous Air Pollutants (HAP)? ☑ Yes □ No					
a	If Yes, what type of source? \square Major ($\square \ge 10$ tpy of any single HAPOR $\square \ge 25$ tpy of any combination of HAPS)OR \square Minor ($\square < 10$ tpy of any single HAPAND $\square < 25$ tpy of any combination of HAPS)					
5	Is any unit exempt under 20.2.72.202.B.3 NMAC? □ Yes ☑ No					
	If yes, include the name of company providing commercial electric power to the facility:					
a	Commercial power is purchased from a commercial utility company, which specifically does not include power generated on site for the sole purpose of the user.					

Section 1-G: Streamline Application

(This section applies to 20.2.72.300 NMAC Streamline applications only)

1 🛛 I have filled out Section 18, "Addendum for Streamline Applications." 🗹 N/A (This is not a Streamline application.)

Section 1-H: Current Title V Information - Required for all applications from TV Sources

(Title V-source required information for all applications submitted pursuant to 20.2.72 NMAC (Minor Construction Permits), or 20.2.74/20.2.79 NMAC (Major PSD/NNSR applications), and/or 20.2.70 NMAC (Title V))

1	Responsible Official (R.O.) (20.2.70.300.D.2 NMAC):		Phone:		
а	R.O. Title:	R.O. e-mail:			
b	R. O. Address:				
2	Alternate Responsible Official (20.2.70.300.D.2 NMAC):		Phone:		
а	A. R.O. Title:	A. R.O. e-mail:			
b	A. R. O. Address:				
3	Company's Corporate or Partnership Relationship to any other Air Quality Permittee (List the names of any companies that have operating (20.2.70 NMAC) permits and with whom the applicant for this permit has a corporate or partnership relationship):				
4	Name of Parent Company ("Parent Company" means the primary name of the organization that owns the company to be permitted wholly or in part.):				
a					
5	Names of Subsidiary Companies ("Subsidiary Companies" means organizations, branches, divisions or subsidiaries, which are owned, wholly or in part, by the company to be permitted.):				
6	Telephone numbers & names of the owners' agents and site contact	ts familiar with plan	t operations:		
7	Affected Programs to include Other States, local air pollution contr Will the property on which the facility is proposed to be constructe states, local pollution control programs, and Indian tribes and pueblo ones and provide the distances in kilometers:	d or operated be clos	ser than 80 km (50 miles) from other		

Section 1-I – Submittal Requirements

Each 20.2.73 NMAC (**NOI**), a 20.2.70 NMAC (**Title V**), a 20.2.72 NMAC (**NSR** minor source), or 20.2.74 NMAC (**PSD**) application package shall consist of the following:

Hard Copy Submittal Requirements:

- One hard copy original signed and notarized application package printed double sided 'head-to-toe' <u>2-hole punched</u> as we bind the document on top, not on the side; except Section 2 (landscape tables), which should be head-to-head. Please use numbered tab separators in the hard copy submittal(s) as this facilitates the review process. For NOI submittals only, hard copies of UA1, Tables 2A, 2D & 2F, Section 3 and the signed Certification Page are required. Please include a copy of the check on a separate page.
- 2) If the application is for a minor NSR, PSD, NNSR, or Title V application, include one working hard **copy** for Department use. This <u>copy</u> should be printed in book form, 3-hole punched, and **must be double sided**. Note that this is in addition to the head-toto 2-hole punched copy required in 1) above. Minor NSR Technical Permit revisions (20.2.72.219.B NMAC) only need to fill out Sections 1-A, 1-B, 3, and should fill out those portions of other Section(s) relevant to the technical permit revision. TV Minor Modifications need only fill out Sections 1-A, 1-B, 1-H, 3, and those portions of other Section(s) relevant to the minor modification. NMED may require additional portions of the application to be submitted, as needed.
- 3) The entire NOI or Permit application package, including the full modeling study, should be submitted electronically. Electronic files for applications for NOIs, any type of General Construction Permit (GCP), or technical revisions to NSRs must be submitted with compact disk (CD) or digital versatile disc (DVD). For these permit application submittals, two CD copies are required (in sleeves, not crystal cases, please), with additional CD copies as specified below. NOI applications require only a single CD submittal. Electronic files for other New Source Review (construction) permits/permit modifications or Title V permits/permit modifications can be submitted on CD/DVD or sent through AQB's secure file transfer service.

Electronic files sent by (check one):

□ CD/DVD attached to paper application

☑ secure electronic transfer. Air Permit Contact Name Benjamin Schneider

Email benjamin_schneider@xtoenergy.com

Phone number (832) 624-2768

a. If the file transfer service is chosen by the applicant, after receipt of the application, the Bureau will email the applicant with instructions for submitting the electronic files through a secure file transfer service. Submission of the electronic files through the file transfer service needs to be completed within 3 business days after the invitation is received, so the applicant should ensure that the files are ready when sending the hard copy of the application. The applicant will not need a password to complete the transfer. **Do not use the file transfer service for NOIs, any type of GCP, or technical revisions to NSR permits.**

- 4) Optionally, the applicant may submit the files with the application on compact disk (CD) or digital versatile disc (DVD) following the instructions above and the instructions in 5 for applications subject to PSD review.
- 5) If air dispersion modeling is required by the application type, include the NMED Modeling Waiver and/or electronic air dispersion modeling report, input, and output files. The dispersion modeling <u>summary report only</u> should be submitted as hard copy(ies) unless otherwise indicated by the Bureau.
- 6) If the applicant submits the electronic files on CD and the application is subject to PSD review under 20.2.74 NMAC (PSD) or NNSR under 20.2.79 NMC include,
 - a. one additional CD copy for US EPA,
 - b. one additional CD copy for each federal land manager affected (NPS, USFS, FWS, USDI) and,
 - c. one additional CD copy for each affected regulatory agency other than the Air Quality Bureau.

If the application is submitted electronically through the secure file transfer service, these extra CDs do not need to be submitted.

Electronic Submittal Requirements [in addition to the required hard copy(ies)]:

- 1) All required electronic documents shall be submitted as 2 separate CDs or submitted through the AQB secure file transfer service. Submit a single PDF document of the entire application as submitted and the individual documents comprising the application.
- 2) The documents should also be submitted in Microsoft Office compatible file format (Word, Excel, etc.) allowing us to access the text and formulas in the documents (copy & paste). Any documents that cannot be submitted in a Microsoft Office compatible format shall be saved as a PDF file from within the electronic document that created the file. If you are unable to provide

Microsoft office compatible electronic files or internally generated PDF files of files (items that were not created electronically: i.e. brochures, maps, graphics, etc.), submit these items in hard copy format. We must be able to review the formulas and inputs that calculated the emissions.

- 3) It is preferred that this application form be submitted as 4 electronic files (3 MSWord docs: Universal Application section 1 [UA1], Universal Application section 3-19 [UA3], and Universal Application 4, the modeling report [UA4]) and 1 Excel file of the tables (Universal Application section 2 [UA2]). Please include as many of the 3-19 Sections as practical in a single MS Word electronic document. Create separate electronic file(s) if a single file becomes too large or if portions must be saved in a file format other than MS Word.
- 4) The electronic file names shall be a maximum of 25 characters long (including spaces, if any). The format of the electronic Universal Application shall be in the format: "A-3423-FacilityName". The "A" distinguishes the file as an application submittal, as opposed to other documents the Department itself puts into the database. Thus, all electronic application submittals should begin with "A-". Modifications to existing facilities should use the core permit number (i.e. '3423') the Department assigned to the facility as the next 4 digits. Use 'XXXX' for new facility applications. The format of any separate electronic submittals (additional submittals such as non-Word attachments, re-submittals, application updates) and Section document shall be in the format: "A-3423-9-description", where "9" stands for the section # (in this case Section 9-Public Notice). Please refrain, as much as possible, from submitting any scanned documents as this file format is extremely large, which uses up too much storage capacity in our database. Please take the time to fill out the header information throughout all submittals as this will identify any loose pages, including the Application Date (date submitted) & Revision number (0 for original, 1, 2, etc.; which will help keep track of subsequent partial update(s) to the original submittal. Do not use special symbols (#, @, etc.) in file names. The footer information should not be modified by the applicant.

Table of Contents

- Section 1: General Facility Information
- Section 2: Tables
- Section 3: Application Summary
- Section 4: Process Flow Sheet
- Section 5: Plot Plan Drawn to Scale
- Section 6: All Calculations
- Section 7: Information Used to Determine Emissions
- Section 8: Map(s)
- Section 9: Proof of Public Notice
- Section 10: Written Description of the Routine Operations of the Facility
- Section 11: Source Determination
- Section 12: PSD Applicability Determination for All Sources & Special Requirements for a PSD Application
- Section 13: Discussion Demonstrating Compliance with Each Applicable State & Federal Regulation
- Section 14: Operational Plan to Mitigate Emissions
- Section 15: Alternative Operating Scenarios
- Section 16: Air Dispersion Modeling
- Section 17: Compliance Test History
- Section 18: Addendum for Streamline Applications (streamline applications only)
- Section 19: Requirements for the Title V (20.2.70 NMAC) Program (Title V applications only)
- Section 20: Other Relevant Information
- Section 21: Addendum for Landfill Applications
- Section 22: Certification Page

Tab 2 UA2 Form - Application Tables

Cross reference	e table of all	units in	both permits
-----------------	----------------	----------	--------------

Previous Unit Number	Previous Source Description	New Unit Number	New Source Description	Notes
ENG1	Natural Gas Engine	ENG1	Natural Gas Compressor Engine	
ENG2	Natural Gas Engine	ENG2	Natural Gas Compressor Engine	Updated Caterpillar Gas Engine Rating Pr
ENG3	Natural Gas Engine	ENG3	Natural Gas Compressor Engine	(GERP) analysis with new fuel gas
ENG4	Natural Gas Engine	ENG4	Natural Gas Compressor Engine	analysis, which resulted in changes to
ENG5	Natural Gas Engine	ENG5	Natural Gas Compressor Engine	VOC/CO/formaldehyde emission factors.
ENG6	Natural Gas Engine	ENG6	Natural Gas Compressor Engine	Updated catalyst control efficiencies with
ENG7	Natural Gas Engine	ENG7	Natural Gas Compressor Engine	updated fuel gas specifications.
ENG8	Natural Gas Engine	ENG8	Natural Gas Compressor Engine	
ENG9	Natural Gas Engine	ENG9	Natural Gas Compressor Engine	
ENG10	Natural Gas Engine		· · ·	Removed
ENG11	Natural Gas Engine	ENG11	Natural Gas Compressor Engine	Same as ENG1-9.
ENG12	Natural Gas Engine	ENG12	Natural Gas Compressor Engine	Same as ENG1-9.
ENG13	Natural Gas Engine		· · ·	Removed
HTR1	Hot Oil Heater 1	HTR1	Fuel Line Heater	
HTR2	Hot Oil Heater 2			Removed
HTR3	Hot Oil Heater 3			Removed
RB1	Glycol Regenerator Reboiler	RB1	Glycol Regenerator Reboiler	
RB2	Glycol Regenerator Reboiler	RB2	Glycol Regenerator Reboiler	
RB3	Glycol Regenerator Reboiler	RB3	Glycol Regenerator Reboiler	
FL1	Flare 1	FL1	Flare 1	Changed combustion sources
FL2	Flare 2	FL2	Flare 2	Changed combustion sources
FL3	Flare 3			Removed
VC1	Combustor	VC1	Combustor	Changed combustion sources
GB1a	Gun Barrel Separator (Primary)	SKT1	Skim Tank	Renamed
GB1b	Gun Barrel Separator (Backup)	SKT2	Skim Tank (Backup)	Renamed
OT1	Condensate Tank	OT1	Condensate Tank	
OT2	Condensate Tank	OT2	Condensate Tank	
OT3	Condensate Tank	OT3	Condensate Tank	
OT4	Condensate Tank	OT4	Condensate Tank	
WT1	Produced Water Tank	WT1	Produced Water Tank	
WT2	Produced Water Tank	WT2	Produced Water Tank	
		VRU1	Low Pressure Separator VRU #1	Added control efficiency
		VRU2	Low Pressure Separator VRU Backup	Added control efficiency
DEHY1	TEG Dehydrator with Condenser	DEHY1	TEG Dehydrator with Condenser	, , , , , , , , , , , , , , , , , , ,
DEHY2	TEG Dehydrator with Condenser	DEHY2	TEG Dehydrator with Condenser	
DEHY3	TEG Dehydrator with Condenser	DEHY3	TEG Dehydrator with Condenser	
LPS	Low Pressure Separator	LPS	Low Pressure Separator	
LOAD	Truck Loading	LOAD	Condensate Truck Loading	
FUG	Fugitives	FUG	Fugitive Emissions	
SSM	SSM Activities	SSM	SSM Activities	
ROAD	HAUL ROAD EMISSIONS	ROAD	HAUL ROAD EMISSIONS	1

Unit numbers must correspond to unit numbers in the previous permit unless a complete cross reference table of all units in both permits

JAYHAWK COMPRESSOR STATION

Table 2-A: Regulated Emission Sources

Unit and stack numbering must correspond throughout the application package. Equipment exemptions under 2.72.202 NMAC do not apply to 20.2.73 NMAC. Identify process equipment that is used to reroute emissions back into the process or sales pipeline in Table 2-A, such as a VRU, VRT, ULPS, Flashing Vessel, or Blowcase.

					Manufact-urer's Rated		Date of Manufacture ²	Controlled by Unit #	Source Classi-		RICE Ignition	
Unit Number ¹	Source Description	Make	Model #	Serial #	Capacity ³ (Specify Units)	Requested Permitted Capacity ³ (Specify Units)	Date of Construction/ Reconstruction ²	Emissions vented to Stack #	fication Code (SCC)	For Each Piece of Equipment, Check One	Type (CI, SI, 4SLB, 4SRB, 2SLB) ⁴	Replacing Unit No.
ENG1	Natural Gas Compressor Engine	Caterpillar	G3616	TBD	5000	5000	TBD TBD	ENG1 CAT1	20200254	□ Existing (unchanged) □ To be Removed New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced	4SLB	N/A
ENG2	Natural Gas Compressor Engine	Caterpillar	G3616	TBD	5000	5000	TBD	ENG2 CAT2	20200254	Existing (unchanged) Development Existing (unchanged) Replacement Unit To be Modified To be Replaced	4SLB	N/A
ENG3	Natural Gas Compressor Engine	Caterpillar	G3616	TBD	5000	5000	TBD TBD	ENG3 CAT3	20200254	Existing (unchanged) To be Removed New/Additional Replacement Unit To be Modified To be Replaced	4SLB	N/A
ENG4	Natural Gas Compressor Engine	Caterpillar	G3616	TBD	5000	5000	TBD	ENG4 CAT4	20200254	Existing (unchanged) Cobe Removed New/Additional Replacement Unit To be Replaced	4SLB	N/A
ENG5	Natural Gas Compressor Engine	Caterpillar	G3616	TBD	5000	5000	TBD	ENG5 CAT5	20200254	Existing (unchanged) To be Removed New/Additional Replacement Unit To be Modified To be Replaced	4SLB	N/A
ENG6	Natural Gas Compressor Engine	Caterpillar	G3616	TBD	5000	5000	TBD TBD	ENG6 CAT6	20200254	Existing (unchanged) To be Removed New/Additional To Be Modified To be Replaced	4SLB	N/A
ENG7	Natural Gas Compressor Engine	Caterpillar	G3616	TBD	5000	5000	TBD TBD	ENG7 CAT7	20200254	Existing (unchanged)	4SLB	N/A
ENG8	Natural Gas Compressor Engine	Caterpillar	G3616	TBD	5000	5000	TBD TBD	ENG8 CAT8	20200254	Existing (unchanged) To be Removed New/Additional To Be Modified To be Replaced	4SLB	N/A
ENG9	Natural Gas Compressor Engine	Caterpillar	G3616	TBD	5000	5000	TBD TBD	ENG9 CAT9	20200254	Existing (unchanged) To be Removed New/Additional To Be Modified To be Replaced	4SLB	N/A
ENG11	Natural Gas Compressor Engine	Caterpillar	3516J TA	TBD	1380	1380	TBD TBD	ENG11 CAT11	20200254	Existing (unchanged) □ To be Removed New/Additional Replacement Unit To Be Modified To be Replaced	4SLB	N/A
ENG12	Natural Gas Compressor Engine	Caterpillar	3516J TA	TBD	1380	1380	TBD TBD	ENG12 CAT12	20200254	Existing (unchanged) To be Removed New/Additional Replacement Unit To Be Modified To be Replaced	4SLB	N/A
ENG10	Natural Gas Compressor Engine	Caterpillar	G3606TA	TBD	1775	1775	TBD TBD	ENG10 CAT10	20200254	□ Existing (unchanged) ■ To be Removed □ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced	4SLB	N/A
ENG13	Natural Gas Compressor Engine	Caterpillar	G3306TA	TBD	203	203	TBD TBD	ENG13 CAT13	20200254	Existing (unchanged) To be Removed New/Additional To Be Modified To be Replaced	4SRB	N/A
HTR1	Fuel Line Heater	Wenco Energy Corp	TBD	TBD	0.75 MMBtu/hr	0.75 MMBtu/hr	2019 2019	TBD HTR1	31000228	Existing (unchanged) To be Removed New/Additional Replacement Unit To Be Modified To be Replaced	N/A	N/A
RB1	Glycol Regenerator Reboiler	Flameco	TBD	TBD	2.0 MMBtu/hr	2.0 MMBtu/hr	2019 2019	N/A RB1	31000404	□ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit ■ To Be Modified □ To be Replaced	N/A	N/A
RB2	Glycol Regenerator Reboiler	TBD	TBD	TBD	2.0 MMBtu/hr	2.0 MMBtu/hr	TBD TBD	N/A RB2	31000404	Existing (unchanged) G To be Removed New/Additional G Be Modified To be Replaced	N/A	N/A
RB3	Glycol Regenerator Reboiler	TBD	TBD	TBD	2.0 MMBtu/hr	2.0 MMBtu/hr	TBD TBD	N/A RB3	31000404	Existing (unchanged) To be Removed New/Additional Replacement Unit To Be Modified To be Replaced	N/A	N/A
HTR2	Fuel Line Heater	N/A	N/A	N/A	0.75 MMBtu/hr	0.75 MMBtu/hr	TBD N/A	N/A HTR2	31000228	Existing (unchanged) To be Removed New/Additional To Be Modified To be Replaced	N/A	N/A
HTR3	Fuel Line Heater	N/A	N/A	N/A	1.5 MMBtu/hr	1.5 MMBtu/hr	TBD N/A	N/A HTR3	31000228	Existing (unchanged) To be Removed New/Additional To Be Modified To be Replaced	N/A	N/A

					Manufact-urer's Rated		Date of Manufacture ²	Controlled by Unit #	Source Classi-		RICE Ignition	
Unit Number ¹	Source Description	Make	Model #	Serial #	Capacity ³ (Specify Units)	Requested Permitted Capacity ³ (Specify Units)	Date of Construction/ Reconstruction ²	Emissions vented to Stack #	fication Code (SCC)	For Each Piece of Equipment, Check One	Type (CI, SI, 4SLB, 4SRB, 2SLB) ⁴	Replacing Unit No.
FL1	Flare 1	Tornado	TBD	TBD	70 MMscf/d	70 MMscf/d	2020 2020	N/A FL1	31000205	□ Existing (unchanged) □ To be Removed New/Additional □ To Be Modified □ To be Replaced	N/A	N/A
FL2	Flare 2	Tornado	TBD	TBD	70 MMscf/d	70 MMscf/d	TBD TBD	N/A FL2	31000205	Existing (unchanged) To be Removed New/Additional To Be Modified To be Replaced	N/A	N/A
VC1	Still Vent Emissions	CIMARRON ENERGY	N/A	TBD	N/A	N/A	2020 2020	N/A VC1	31000205	Existing (unchanged) To be Removed New/Additional To Be Modified To Be Replaced	N/A	N/A
FL3	Flare 3	Tornado	TBD	TBD	70 MMscf/d	70 MMscf/d	TBD TBD	N/A FL3	31000205	Existing (unchanged) To be Removed New/Additional To Be Modified To be Replaced	N/A	N/A
SKT1	Skim Tank	STELLMATION	TBD	TBD	1000 bbl	1000 bbl	2020 2020	FL1-FL2 FL1-FL2	40400311	Existing (unchanged) To be Removed New/Additional Replacement Unit To be Modified To be Replaced	N/A	N/A
SKT2	Skim Tank (Backup)	TBD	TBD	TBD	1000 bbl	1000 bbl	TBD TBD	FL1-FL2 FL1-FL2	40400311	Existing (unchanged) To be Removed New/Additional Replacement Unit To be Modified To be Replaced	N/A	N/A
OT1	Condensate Tank	STELLMATION	TBD	TBD	500 bbl	500 bbl	2020 2020	FL1-FL2 FL1-FL2	40400311	Existing (unchanged) To be Removed New/Additional Replacement Unit To be Modified To be Replaced	N/A	N/A
OT2	Condensate Tank	STELLMATION	TBD	TBD	500 bbl	500 bbl	2020 2020	FL1-FL2 FL1-FL2	40400311	Existing (unchanged) To be Removed New/Additional Replacement Unit To Be Modified To be Replaced	N/A	N/A
OT3	Condensate Tank	STELLMATION	TBD	TBD	500 bbl	500 bbl	2020 2020	FL1-FL2 FL1-FL2	40400311	Existing (unchanged) To be Removed New/Additional Replacement Unit To be Modified To be Replaced	N/A	N/A
OT4	Condensate Tank	STELLMATION	TBD	TBD	500 bbl	500 bbl	2020 2020	FL1-FL2 FL1-FL2	40400311	Existing (unchanged) To be Removed New/Additional Replacement Unit To Be Modified To be Replaced	N/A	N/A
WT1	Produced Water Tank	STELLMATION	TBD	TBD	500 bbl	500 bbl	2020 2020	FL1-FL2 FL1-FL2	40400315	Existing (unchanged) To be Removed New/Additional Replacement Unit To be Modified To be Replaced	N/A	N/A
WT2	Produced Water Tank	STELLMATION	TBD	TBD	500 bbl	500 bbl	2020 2020	FL1-FL2 FL1-FL2	40400315	Existing (unchanged) To be Removed New/Additional Replacement Unit To be Modified To be Replaced	N/A	N/A
VRU1	Low Pressure Separator VRU #1	TBD	TBD	N/A	125 HP	125 HP	2020 2020	FL1-FL2 FL1-FL2	N/A	Existing (unchanged) To be Removed New/Additional Replacement Unit To be Modified To be Replaced	N/A	N/A
VRU2	Low Pressure Separator VRU Backup	TBD	TBD	N/A	125 HP	125 HP	2020 2020	FL1-FL2 FL1-FL2	N/A	Existing (unchanged) To be Removed New/Additional To be Replacement Unit To be Modified To be Replaced	N/A	N/A
DEHY1	TEG Dehydrator with Condenser	N/A	N/A	N/A	80 MMscfd	80 MMscfd	2020 2019 2019	COND1 RB1	31000227	Is be included Is to be included	N/A	N/A
DEHY2	TEG Dehydrator with Condenser	N/A	N/A	N/A	80 MMscfd	80 MMscfd	TBD TBD	COND2 RB2	31000227	To be Modified To be Replaced To be Replaced New/Additional To be Modified To be Replaced	N/A	N/A
DEHY3	TEG Dehydrator with Condenser	N/A	N/A	N/A	80 MMscfd	80 MMscfd	TBD	COND3 RB3	31000227	To be Modified To be Replaced To be Removed New/Additional To be Replacement Unit To be Modified To be Replaced	N/A	N/A
LPS	Low Pressure Separator	N/A	N/A	N/A	N/A	N/A	2019	FL1-FL2 FL1-FL2	N/A	Existing (unchanged) Cobe Mediated New/Additional Replacement Unit To be Modified To be Replaced	N/A	N/A
LOAD	Condensate Truck Loading	N/A	N/A	N/A	223 bbl/d	223 bbl/d	N/A N/A	N/A N/A	40400250	Existing (unchanged) Cobe Replacement Unit New/Additional Replacement Unit To be Replaced	N/A	N/A
FUG	Fugitive Emissions	N/A	N/A	N/A	N/A	N/A	N/A N/A	N/A N/A	31088811	Is be Modified Is be Removed Is be Modified Is be Removed Replacement Unit To be Replaced	N/A	N/A
SSM	SSM Activities	N/A	N/A	N/A	N/A	N/A	N/A N/A	N/A N/A	31088811	Existing (unchanged) Cobe Replaced New/Additional Replacement Unit To be Replaced	N/A	N/A
Malfunction	Malfunction Emissions	N/A	N/A	N/A	N/A	N/A	N/A N/A	N/A N/A	31088811	To be Modified To be Replaced To be Replaced New/Additional To be Replaced	N/A	N/A

¹ Unit numbers must correspond to unit numbers in the previous NOI unless a complete cross reference table of all units in both NOIs is provided.

² Specify dates required to determine regulatory applicability.

³ To properly account for power conversion efficiencies, generator set rated capacity shall be reported as the rated capacity of the engine in horsepower, not the kilowatt capacity of the generator set. ⁴ "4SLB" means four stroke lean burn engine, "4SRB" means four stroke rich burn engine, "2SLB" means two stroke lean burn engine, "CI" means compression ignition, and "SI" means spark ignition

Table 2-B: Insignificant Activities¹ (20.2.70 NMAC) OR Exempted Equipment (20.2.72 NMAC)

All 20.2.70 NMAC (Title V) applications must list all Insignificant Activities in this table. All 20.2.72 NMAC applications must list Exempted Equipment in this table. If equipment listed on this table is exempt under 20.2.72.202.B.5, include emissions calculations and emissions totals for 202.B.5 "similar functions" units, operations, and activities in Section 6, Calculations. Equipment and activities exempted under 20.2.72.202 NMAC may not necessarily be Insignificant under 20.2.70 NMAC (and vice versa). Unit & stack numbering must be consistent throughout the application package. Per Exemptions Policy 02-012.00 (see http://www.env.nm.gov/aqb/permit/aqb_pol.html), 20.2.72.202.B NMAC Exemptions do not apply, but 20.2.72.202.A NMAC exemptions do apply to NOI facilities under 20.2.73 NMAC. List 20.2.72.301.D.4 NMAC Auxiliary Equipment for Streamline applications in Table 2-A. The List of Insignificant Activities (for TV) can be found online at

http://www.env.nm.gov/aqb/forms/InsignificantListTitleV.pdf. TV sources may elect to enter both TV Insignificant Activities and Part 72 Exemptions on this form.

Unit Number	Source Description	Manufacturer	Model No.	Max Capacity	List Specific 20.2.72.202 NMAC Exemption (e.g. 20.2.72.202.B.5)	Date of Manufacture /Reconstruction ²	For Each Piece of Equipment, Check Onc
	•		Serial No.	Capacity Units	Insignificant Activity citation (e.g. IA List Item #1.a)	Date of Installation /Construction ²	
			N/A	N/A	20.2.72.202.B.5	N/A	Z Existing (unchanged)
ROAD	Haul Road Emissions	N/A	N/A	N/A	20.2.72.202.B.5	N/A	New/Additional Replacement Unit To Be Modified To be Replaced
							 Existing (unchanged) To be Removed New/Additional Replacement Unit
							To Be Modified To be Replaced Existing (unchanged) To be Removed New/Additional Replacement Unit To Be Modified To be Replaced
							Existing (unchanged) To be Removed New/Additional Replacement Unit To Be Modified To be Replaced
							 Existing (unchanged) To be Removed New/Additional Replacement Unit To Be Modified To be Replaced
							 Existing (unchanged) To be Removed New/Additional Replacement Unit To Be Modified To be Replaced
							 Existing (unchanged) To be Removed New/Additional Replacement Unit To Be Modified To be Replaced
							 Existing (unchanged) To be Removed New/Additional Replacement Unit To Be Modified To be Replaced
							 Existing (unchanged) To be Removed New/Additional Replacement Unit To Be Modified To be Replaced
							 Existing (unchanged) To be Removed New/Additional Replacement Unit To Be Modified To be Replaced
							Existing (unchanged) To be Removed New/Additional Replacement Unit To Be Modified To be Replaced
							 Existing (unchanged) To be Removed New/Additional Replacement Unit To Be Modified To be Replaced
						15 2000 E	 Existing (unchanged) To be Removed New/Additional Replacement Unit To Be Modified To be Replaced

¹ Insignificant activities exempted due to size or production rate are defined in 20.2.70.300.D.6, 20.2.70.7.Q NMAC, and the NMED/AQB List of Insignificant Activities, dated September 15, 2008. Emissions from these insignificant activities do not need to be reported, unless specifically requested.

² Specify date(s) required to determine regulatory applicability.

Table 2-C: Emissions Control Equipment

Unit and stack numbering must correspond throughout the application package. The permittee shall report all control devices and list each pollutant controlled by the control device regardless if the applicant takes credit for the reduction in emissions. Flares, Enclosed Combustion Devices, Catalytic Converters and Air Fuel Ratio (AFR) Controllers shall be reported on Table 2-C. For each AFR, note whether the AFR are aftermarket or integral to the engine.

Control Equipment Unit No.	Control Equipment Description	Date Installed	Controlled Pollutant(s)	Controlling Emissions for Unit Number(s) ¹	Efficiency (% Control by Weight)	Method used to Estimate Efficiency
FL1	Flare 1	2019	VOC, HAP	Facility Inlet, OT1-OT4, WT1-WT2, SKTK1/SKTK2, LPS	98	Engineering Est.
FL2	Flare 2	TBD	VOC, HAP	Facility Inlet, OT1-OT4, WT1-WT2, SKTK1/SKTK2, LPS	98	Engineering Est.
VC1	Still Vent Emissions	2019	VOC, HAP	DEHY1-3 BTEX Condenser Vapors	98	Engineering Est.
FL3	Flare 3	TBD	VOC, HAP	Facility Inlet, OT1-OT4, WT1-WT2, SKTK1/SKTK2, LPS	98	Engineering Est.
VRU1	Low Pressure Separator VRU #1	2020	VOC, HAPs	LPS	98	Engineering Est.
VRU2	Low Pressure Separator VRU Backup	2020	VOC, HAPs	LPS	98	Engineering Est.
COND1- COND3	BTEX Condenser	2020	VOC, HAP	DEHY1-DEHY3	98	Engineering Est.
CAT1-9, CAT11-12	Engine Catalysts	2020	CO, VOC, HAP	ENG1-9, ENG11-12	CO-87, VOC-65, HAP-74	Engineering Est.
¹ List each con	ntrol device on a separate line. For each control device, list all er	nission units c	ontrolled by the control device.			

JAYHAWK COMPRESSOR STATION

Table 2-D: Maximum Emissions (under normal operating conditions)

Maximum Emissions are the emissions at maximum capacity and prior to (in the absence of) pollution control, emission-reducing process equipment, or any other emission reduction. Calculate the hourly emissions using the worst case hourly emissions for each pollutant. For each pollutant, calculate the annual emissions as if the facility were operating at maximum plant capacity without pollution controls for 8760 hours per year, unless otherwise approved by the Department. List Hazardous Air Pollutants (HAP) & Toxic Air Pollutants (TAPs) in Table 2-1. Unit & stack numbering must be consistent throughout the application package. Fill all cells in this table with the emission numbers or a "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expected. Numbers shall be expressed to at least 2 decimal points (e.g. 0.41, 1.41, or 1.41E-4).

TI '' N	N	Ox	C	0	V	OC	S	Ox	P	M1	PM	I 10 ¹	PM	2.5 ¹	Н	$_2S$	Le	ad
Unit No.	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
ENG1	4.13	18.11	33.73	147.74	9.90	43.37	0.42	1.84	0.38	1.65	0.38	1.65	0.38	1.65	-	-	-	-
ENG2	4.13	18.11	33.73	147.74	9.90	43.37	0.42	1.84	0.38	1.65	0.38	1.65	0.38	1.65	-	-	-	-
ENG3	4.13	18.11	33.73	147.74	9.90	43.37	0.42	1.84	0.38	1.65	0.38	1.65	0.38	1.65	-	-	-	-
ENG4	4.13	18.11	33.73	147.74	9.90	43.37	0.42	1.84	0.38	1.65	0.38	1.65	0.38	1.65	-	-	-	-
ENG5	4.13	18.11	33.73	147.74	9.90	43.37	0.42	1.84	0.38	1.65	0.38	1.65	0.38	1.65	-	-	-	-
ENG6	4.13	18.11	33.73	147.74	9.90	43.37	0.42	1.84	0.38	1.65	0.38	1.65	0.38	1.65	-	-	-	-
ENG7	4.13	18.11	33.73	147.74	9.90	43.37	0.42	1.84	0.38	1.65	0.38	1.65	0.38	1.65	-	-	-	-
ENG8	4.13	18.11	33.73	147.74	9.90	43.37	0.42	1.84	0.38	1.65	0.38	1.65	0.38	1.65	-	-	-	-
ENG9	4.13	18.11	33.73	147.74	9.90	43.37	0.42	1.84	0.38	1.65	0.38	1.65	0.38	1.65	-	-	-	-
ENG11	1.90	8.33	7.76	33.98	3.96	17.33	0.13	0.55	0.11	0.49	0.11	0.49	0.11	0.49	-	-	-	-
ENG12	1.90	8.33	7.76	33.98	3.96	17.33	0.13	0.55	0.11	0.49	0.11	0.49	0.11	0.49	-	-	-	-
HTR1	0.11	0.50	0.10	0.42	0.01	0.03	0.01	0.04	0.01	0.04	0.01	0.04	0.01	0.04	-	-	-	-
RB1	0.31	1.34	0.26	1.12	0.02	0.07	0.03	0.12	0.02	0.10	0.02	0.10	0.02	0.10	-	-	-	-
RB2	0.31	1.34	0.26	1.12	0.02	0.07	0.03	0.12	0.02	0.10	0.02	0.10	0.02	0.10	-	-	-	-
RB3	0.31	1.34	0.26	1.12	0.02	0.07	0.03	0.12	0.02	0.10	0.02	0.10	0.02	0.10	-	-	-	-
FL1-FL2 Pilot	0.67	2.93	1.33	5.84	0.94	4.13	0.01	0.03	0.03	0.13	0.03	0.13	0.03	0.13	-	-	-	-
FL1-FL2 Norm							Emissions	s are not rou	ited to flai	re in unco	ntrolled so	cenario.						
FL1-FL2 SSM							Emissions	s are not rou	ited to fla	re in unco	ntrolled so	cenario.						
VC1	0.41	1.80	0.82	3.59	2.61	11.43	0.29	1.26	0.01	0.04	0.01	0.04	0.01	0.04	-	-	-	-
SKT1	-	-	-	-	4.87	21.32	-	-	-	-	-	-	-	-	-	-	-	-
SKT2	-	-	-	-	4.87	21.32	-	-	-	-	-	-	-	-	-	-	-	-
OT1	-	-	-	-	138.24	295.64	-	-	-	-	-	-	-	-	-	-	-	-
OT2	-	-	-	-	138.24	295.64	-	-	-	-	-	-	-	-	-	-	-	-
OT3	-	-	-	-	138.24	295.64	-	-	-	-	-	-	-	-	-	-	-	-
OT4	-	-	-	-	138.24	295.64	-	-	-	-	-	-	-	-	-	-	-	-
WT1	-	-	-	-	0.11	0.47	-	-	-	-	-	-	-	-	-	-	-	-
WT2	-	-	-	-	0.11	0.47	-	-	-	-	-	-	-	-	-	-	-	-
DEHY1	-	-	-	-	43.51	190.56	-	-	-	-	-	-	-	-	-	-	-	-
DEHY2	-	-	-	-	43.51	190.56	-	-	-	-	-	-	-	-	-	-	-	-
DEHY3	-	-	-	-	43.51	190.56	-	-	-	-	-	-	-	-	-	-	-	-
LPS	-	-	-	-	698.88	354.13	-	-	-	-	-	-	-	-	-	-	-	-
LOAD	-	-	-	-	65.70	11.14	-	-	-	-	-	-	-	-	-	-	-	-
FUG	-	-	-	-	4.89	21.43	-	-	-	-	-	-	-	-	-	-	-	-
SSM	-	-	-	-	-	10.00	-	-	-	-	-	-	-	-	-	-	-	-
ROAD	-	-	-	-	-	-	-	-	0.15	0.02	0.15	0.02	0.15	0.02	-	-	-	-
MALFUNCTION	-	-	-	-	-	10.00	-	-	-	-	-	-	-	-	-	-	-	-
Totals	43.11	188.84	322.11	1410.82	1563.54	2625.34	4.42	19.37	-	-	3.73	16.32	3.73	16.32	-	-	-	-

¹Condensable Particulate Matter: Include condensable particulate matter emissions for PM10 and PM2.5 if the source is a combustion source. Do not include condensable particulate matter for PM unless PM is set equal to PM10 and PM2.5. Particulate matter (PM) is not subject to an ambient air quality standard, but it is a regulated air pollutant under PSD (20.2.74 NMAC) and Title V (20.2.70 NMAC).

Table 2-E: Requested Allowable Emissions

Unit & stack numbering must be consistent throughout the application package. Fill all cells in this table with the emission numbers or a "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expected. Numbers shall be expressed to at least 2 decimal points (e.g. 0.41, 1.41, or 1.41E⁴).

	N	Ox	C	0	V	DC	S	Ox	PI	M ¹	PM	I10 ¹	PM2	.5 ¹	Н	$_2S$	Le	ead
Unit No.	lb/hr	ton/vr	lb/hr	ton/yr	lb/hr	ton/vr	lb/hr	ton/yr	lb/hr	ton/vr	lb/hr	ton/yr	lb/hr	ton/vr	lb/hr	ton/vr	lb/hr	ton/vr
ENG1	4.13	18.11	4.38	19.21	3.47	15.18	0.42	1.84	0.38	1.65	0.38	1.65	0.38	1.65	-	-	-	-
ENG2	4.13	18.11	4.38	19.21	3.47	15.18	0.42	1.84	0.38	1.65	0.38	1.65	0.38	1.65	-	-	-	-
ENG3	4.13	18.11	4.38	19.21	3.47	15.18	0.42	1.84	0.38	1.65	0.38	1.65	0.38	1.65	-	-	-	-
ENG4	4.13	18.11	4.38	19.21	3.47	15.18	0.42	1.84	0.38	1.65	0.38	1.65	0.38	1.65	-	-	-	-
ENG5	4.13	18.11	4.38	19.21	3.47	15.18	0.42	1.84	0.38	1.65	0.38	1.65	0.38	1.65	-	-	-	-
ENG6	4.13	18.11	4.38	19.21	3.47	15.18	0.42	1.84	0.38	1.65	0.38	1.65	0.38	1.65	-	-	-	-
ENG7	4.13	18.11	4.38	19.21	3.47	15.18	0.42	1.84	0.38	1.65	0.38	1.65	0.38	1.65	-	-	-	-
ENG8	4.13	18.11	4.38	19.21	3.47	15.18	0.42	1.84	0.38	1.65	0.38	1.65	0.38	1.65	-	-	-	-
ENG9	4.13	18.11	4.38	19.21	3.47	15.18	0.42	1.84	0.38	1.65	0.38	1.65	0.38	1.65	-	-	-	-
ENG11	1.90	8.33	1.01	4.42	1.29	5.63	0.13	0.55	0.11	0.49	0.11	0.49	0.11	0.49	-	-	-	-
ENG12	1.90	8.33	1.01	4.42	1.29	5.63	0.13	0.55	0.11	0.49	0.11	0.49	0.11	0.49	-	-	-	-
HTR1	0.11	0.50	0.10	0.42	0.01	0.03	0.01	0.04	0.01	0.04	0.01	0.04	0.01	0.04	-	-	-	-
RB1	0.31	1.34	0.26	1.12	0.02	0.07	0.03	0.12	0.02	0.10	0.02	0.10	0.02	0.10	-	-	-	-
RB2	0.31	1.34	0.26	1.12	0.02	0.07	0.03	0.12	0.02	0.10	0.02	0.10	0.02	0.10	-	-	-	-
RB3	0.31	1.34	0.26	1.12	0.02	0.07	0.03	0.12	0.02	0.10	0.02	0.10	0.02	0.10	-	-	-	-
FL1-FL2 Pilot	0.67	2.93	1.33	5.84	0.94	4.13	0.01	0.03	0.03	0.13	0.03	0.13	0.03	0.13	-	-	-	-
FL1-FL2 Norm	1.85	7.72	3.69	15.41	11.53	25.60	0.01	0.04	0.03	0.15	0.03	0.15	0.03	0.15	-	-	-	-
VC1	0.41	1.80	0.82	3.59	2.61	11.43	0.29	1.26	0.01	0.04	0.01	0.04	0.01	0.04	-	-	-	-
SKT1			-					Emiss	ions Repr	esented at	FL1-FL2				_		-	
SKT2								Emiss	ions Repr	esented at	FL1-FL2							
OT1								Emiss	ions Repr	esented at	FL1-FL2							
OT2								Emiss	ions Repr	esented at	FL1-FL2							
OT3								Emiss	ions Repr	esented at	FL1-FL2							
OT4								Emiss	ions Repr	esented at	FL1-FL2							
WT1								Emiss	ions Repr	esented at	FL1-FL2							
WT2								Emiss	ions Repr	esented at	FL1-FL2							
DEHY1								Emi	ssions Re	presented	at VC1							
DEHY2										presented								
DEHY3								Emi	ssions Re	presented	at VC1							
LPS								Emiss	ions Repr	esented at	FL1-FL2							
LOAD	-	-	-	-	65.70	11.14	-	-	-	-	-	-	-	-	-	-	-	-
FUG	-	-	-	-	4.89	21.43	-	-	-	-	-	-	-	-	-	-	-	-
ROAD	-	-	-	-	-	-	-	-	0.15	0.02	0.15	0.02	0.15	0.02	-	-	-	-
MALFUNCTION	-	-	-	-	-	10.00	-	-	-	-	-	-	-	-	-	-	-	-
Totals	44.96	196.56	48.19	210.32	119.50	221.88	4.43	19.41	3.91	16.49	3.91	16.49	3.91	16.49	-	-	-	-

¹ Condensable Particulate Matter: Include condensable particulate matter emissions for PM10 and PM2.5 if the source is a combustion source. Do not include condensable particulate matter for PM unless PM is set equal to PM10 and PM2.5. Particulate matter (PM) is not subject to an ambient air quality standard, but it is a regulated air pollutant under PSD (20.2.74 NMAC) and Title V (20.2.70 NMAC).

Table 2-F: Additional Emissions during Startup, Shutdown, and Routine Maintenance (SSM)

This table is intentionally left blank since all emissions at this facility due to routine or predictable startup, shutdown, or scenduled maintenance are no higher than those listed in Table 2-E and a malfunction emission limit is not already permitted or requested. If you are required to report GHG emissions as described in Section 6a, include any GHG emissions during Startup, Shutdown, and/or Scheduled Maintenance (SSM) in Table 2-P. Provide an explanations of SSM emissions in Section 6 and 6a.

All applications for facilities that have emissions during routine our predictable startup, shutdown or scheduled maintenance $(SSM)^1$, including NOI applications, must include in this table the Maximum Emissions during routine or predictable startup, shutdown and scheduled maintenance (20.2.7 NMAC, 20.2.72.203.A.3 NMAC, 20.2.73.200.D.2 NMAC). In Section 6 and 6a, provide emissions calculations for all SSM emissions reported in this table. Refer to "Guidance for Submittal of Startup, Shutdown, Maintenance Emissions in Permit Applications (https://www.env.nm.gov/aph/germit/aph. pol.html) for more detailed instructions. Numbers shall be expressed to at least 2 decimal points (e.g. 0.41, 1.41, or 1.41E-4)

(https://www	.env.nm.go	ov/aqb/per	mit/aqb_p	ol.ntml) ic	or more det	tailed instr	uctions. N	umbers sn	all be expi	$\frac{1}{2}$	t least 2 de	ecimal poli	nts (e.g. 0.	41, 1.41, 0	or 1.41E-4	о. С	-	
Unit No.	N		С			DC		Ox	PI			110 ²		2.5^2	Н			ead
	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
SSM	-	-	-	-	-	10.00												
FL1-FL2 SSM	541.65	8.10	1081.35	16.17	992.97	18.36	4.91	0.08	22.25	0.31	22.25	0.31	22.25	0.31	-	-	-	-
Totals	541.65	8.10	1081.35	16.17	992.97	28.36	4.91	0.08	22.25	0.31	22.25	0.31	22.25	0.31				

¹ For instance, if the short term steady-state Table 2-E emissions are 5 lb/hr and the SSM rate is 12 lb/hr, enter 7 lb/hr in this table. If the annual steady-state Table 2-E emissions are 21.9 TPY, and the number of scheduled SSM events result in annual emissions of 31.9 TPY, enter 10.0 TPY in the table below.

² Condensable Particulate Matter: Include condensable particulate matter emissions for PM10 and PM2.5 if the source is a combustion source. Do not include condensable particulate matter for PM unless PM is set equal to PM10 and PM2.5. Particulate matter (PM) is not subject to an ambient air quality standard, but it is a regulated air pollutant under PSD (20.2.74 NMAC) and Title V (20.2.70 NMAC).

Table 2-G: Stack Exit and Fugitive Emission Rates for Special Stacks

□ I have elected to leave this table blank because this facility does not have any stacks/vents that split emissions from a single source or combine emissions from more than one source listed in table 2-A. Additionally, the emission rates of all stacks match the Requested allowable emission rates stated in Table 2-E.

Use this table to list stack emissions (requested allowable) from split and combined stacks. List Toxic Air Pollutants (TAPs) and Hazardous Air Pollutants (HAPs) in Table 2-I. List all fugitives that are associated with the normal, routine, and non-emergency operation of the facility. Unit and stack numbering must correspond throughout the application package. Refer to Table 2-E for instructions on use of the "-" symbol and on significant figures.

	Serving Unit		Ox	C	0	V	DC	S	Ox	P	М	PN	110	PM	[2.5	□ H ₂ S 0	r 🗆 Lead
Stack No.	Number(s) from Table 2-A	lb/hr	ton/yr	lb/hr	ton/yr												
																	[
,	Totals:	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00				

Table 2-H: Stack Exit Conditions

Unit and stack numbering must correspond throughout the application package. Include the stack exit conditions for each unit that emits from a stack, including blowdown venting parameters and tank emissions.

Stack	Serving Unit Number(s)	Orientation	Rain Caps	Height Above	Temp.	Flow	Rate	Moisture by	Velocity	Inside
Number	from Table 2-A	(H-Horizontal V=Vertical)	(Yes or No)	Ground (ft)	(F)	(acfs)	(dscfs)	Volume (%)	(ft/sec)	Diameter (ft)
ENG1	ENG1	V	No	25	809	523.40	Unknown	Unknown	296.18	1.50
ENG2	ENG2	V	No	25	809	523.40	Unknown	Unknown	296.18	1.50
ENG3	ENG3	V	No	25	809	523.40	Unknown	Unknown	296.18	1.50
ENG4	ENG4	V	No	25	809	523.40	Unknown	Unknown	296.18	1.50
ENG5	ENG5	V	No	25	809	523.40	Unknown	Unknown	296.18	1.50
ENG6	ENG6	V	No	25	809	523.40	Unknown	Unknown	296.18	1.50
ENG7	ENG7	V	No	25	809	523.40	Unknown	Unknown	296.18	1.50
ENG8	ENG8	V	No	25	809	523.40	Unknown	Unknown	296.18	1.50
ENG9	ENG9	V	No	25	809	523.40	Unknown	Unknown	296.18	1.50
ENG11	ENG11	V	No	20	997	135.13	Unknown	Unknown	172.06	1.00
ENG12	ENG12	V	No	20	997	135.13	Unknown	Unknown	172.06	1.00
HTR1	HTR1	V	Ν	15	800	5.07	Unknown	Unknown	6.45	0.75
RB1	RB1	V	N	15	800	13.52	Unknown	Unknown	7.65	1.00
RB2	RB2	V	N	15	800	13.52	Unknown	Unknown	7.65	1.00
RB3	RB3	V	N	15	800	13.52	Unknown	Unknown	7.65	1.00
FL1	FL1	V	No	145	1832	4123.47	Unknown	Unknown	65.60	0.83
FL2	FL2	V	No	145	1832	2873.47	Unknown	Unknown	65.60	0.83
VC1	VC1	V	No	20	1000	1331.91	Unknown	Unknown	65.60	1.00

Table 2-I: Stack Exit and Fugitive Emission Rates for HAPs and TAPs

In the table below, report the Potential to Emit for each HAP from each regulated emission unit listed in Table 2-A, only if the entire facility emits the HAP at a rate greater than or equal to one (1) ton per year For each such emission unit, HAPs shall be reported to the nearest 0.1 tpy. Each facility-wide Individual HAP total and the facility-wide Total HAPs shall be the sum of all HAP sources calculated to the nearest 0.1 ton per year. Per 20.2.72.403.A.1 NMAC, facilities not exempt [see 20.2.72.402.C NMAC] from TAP permitting shall report each TAP that has an uncontrolled emission rate in excess of its pounds per hour screening level specified in 20.2.72.502 NMAC. TAPs shall be reported using one more significant figure than the number of significant figures shown in the pound per hour threshold corresponding to the substance. Use the HAP nomenclature as it appears in Section 112 (b) of the 1990 CAAA and the TAP nomenclature as it listed in 20.2.72.502 NMAC. Include tank-flashing emissions estimates of HAPs in this table. For each HAP or TAP listed, fill all cells in this table with the emission numbers or a "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expected or the pollutant is emitted in a quantity less than the threshold amounts described above.

Stack No.	Unit No.(s)	Total	HAPs	🗹 HA	ldehyde .P or □ AP		xane P or □ \P	🗹 HA	zene .P or 🗆 AP		dehyde or 🗆 TAP	Provide Name	TT	NT	Pollutant e Here or 🗆 TAP	NT	Pollutant e Here or 🗆 TAP	N	Pollutant e Here or 🗆 TAP
		lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
ENG1	ENG1	0.54	2.36	0.4	1.9	-	-	-	-	0.1	0.5								
ENG2	ENG2	0.54	2.36	0.4	1.9	-	-	-	-	0.1	0.5								
ENG3	ENG3	0.54	2.36	0.4	1.9	-	-	-	-	0.1	0.5								
ENG4	ENG4	0.54	2.36	0.4	1.9	-	-	-	-	0.1	0.5								
ENG5	ENG5	0.54	2.36	0.4	1.9	-	-	-	-	0.1	0.5								
ENG6	ENG6	0.54	2.36	0.4	1.9	-	-	-	-	0.1	0.5								
ENG7	ENG7	0.54	2.36	0.4	1.9	-	-	-	-	0.1	0.5								
ENG8	ENG8	0.54	2.36	0.4	1.9	-	-	-	-	0.1	0.5								
ENG9	ENG9	0.54	2.36	0.4	1.9	-	-	-	-	0.1	0.5								
ENG11	ENG11	0.32	1.39	0.3	1.2	-	-	-	-	0.0	0.1								
ENG12	ENG12	0.32	1.39	0.3	1.2	-	-	-	-	0.0	0.1								
HTR1	HTR1	2.2E-03	0.01	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0								
RB1	RB1	0.01	0.03	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0								
RB1	RB2	0.01	0.03	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0								
RB1	RB3	0.01	0.03	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0								
FL1-FL2 Pilot	FL1-FL2 Pilot	0.01	0.04	-	-	0.0	0.0	4.9E-04	2.2E-03	-	-								
FL1-FL2 Norm	FL1-FL2 Norm	0.5	1.1	-	-	0.4	0.9	0.0	0.1	-	-								
FL1-FL2 SSM	FL1-FL2 SSM	27.5	0.5	-	-	24.3	0.5	1.3	0.0	-	-								
VC1	DEHY1	0.1	0.5	-	-	0.0	0.1	0.1	0.2	-	-								
VC1	DEHY2	0.1	0.5	-	-	0.0	0.1	0.1	0.2	-	-								
VC1	DEHY3	0.1	0.5	-	-	0.0	0.1	0.1	0.2	-	-								

Stack No.	Unit No.(s)	Total	HAPs	☑ HA	ldehyde ↓P or □ ↓P	☑ HA	exane P or 🗆 AP	☑ HA	zene P or 🗆 AP		dehyde or 🗆 TAP		eHere	Name	Pollutant e Here or 🗆 TAP	Nam	Pollutant e Here or 🗆 TAP	Name	Pollutant e Here or 🗆 TAP
		lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
FL1-FL2	SKT1				Emissi	ons Repres	sented at F	L1-FL2											
FL1-FL2	SKT2				Emissi	ons Repres	sented at F	L1-FL2											
FL1-FL2	OT1				Emissi	ons Repres	sented at F	L1-FL2											
FL1-FL2	OT2				Emissi	ons Repres	sented at F	L1-FL2											
FL1-FL2	OT3				Emissi	ons Repres	sented at F	L1-FL2											
FL1-FL2	OT4				Emissi	ons Repres	sented at F	L1-FL2											
FL1-FL2	WT1				Emissi	ons Repres	sented at F	L1-FL2											
FL1-FL2	WT2				Emissi	ons Repres	sented at F	L1-FL2											
FL1-FL2	LPS				Emissi	ons Repres	sented at F	L1-FL2											
LOAD	LOAD	0.0	0.0	-	-	-	-	-	-	-	-								
FUG	FUG	0.4	1.6	-	-	0.09	0.39	0.04	0.17	-	-								
SSM	SSM	-	-	-	-	-	-	-	-	-	-								
ROAD	ROAD	-	-	-	-	-	-	-	-	-	-								
Tot	als:	34.2	28.8	4.4	19.4	24.9	2.2	1.6	1.0	1.0	4.6								

JAYHAWK COMPRESSOR STATION

Table 2-J: Fuel

Specify fuel characteristics and usage. Unit and stack numbering must correspond throughout the application package.

	Fuel Type (low sulfur Diesel,	Fuel Source: purchased commercial,		Specif	fy Units		
Unit No.	ultra low sulfur diesel, Natural Gas, Coal,)	pipeline quality natural gas, residue gas, raw/field natural gas, process gas (e.g. SRU tail gas) or other	Lower Heating Value (btu/scf)	Hourly Usage (scf)	Annual Usage (mmscf)	% Sulfur	% Ash
ENG1	Natural Gas	Field Gas	1154	32394.2	283.77	Negligible	0
ENG2	Natural Gas	Field Gas	1154	32394.2	283.77	Negligible	0
ENG3	Natural Gas	Field Gas	1154	32394.2	283.77	Negligible	0
ENG4	Natural Gas	Field Gas	1154	32394.2	283.77	Negligible	0
ENG5	Natural Gas	Field Gas	1154	32394.2	283.77	Negligible	0
ENG6	Natural Gas	Field Gas	1154	32394.2	283.77	Negligible	0
ENG7	Natural Gas	Field Gas	1154	32394.2	283.77	Negligible	0
ENG8	Natural Gas	Field Gas	1154	32394.2	283.77	Negligible	0
ENG9	Natural Gas	Field Gas	1154	32394.2	283.77	Negligible	0
ENG11	Natural Gas	Field Gas	1154	9681.1	84.81	Negligible	0
ENG12	Natural Gas	Field Gas	1154	9681.1	84.81	Negligible	0
HTR1	Natural Gas	Field Gas	1154	590.9	5.18	Negligible	0
RB1	Natural Gas	Field Gas	1154	1575.7	13.80	Negligible	0
RB2	Natural Gas	Field Gas	1154	1575.7	13.80	Negligible	0
RB3	Natural Gas	Field Gas	1154	1575.7	13.80	Negligible	0
FL1	Natural Gas	Field Gas	1154	1906.3	16.70	Negligible	0
FL2	Natural Gas	Field Gas	1154	1906.3	16.70	Negligible	0
VC1	Natural Gas	Field Gas	1154	3812.5	33.40	Negligible	0

Table 2-K: Liquid Data for Tanks Listed in Table 2-L

For each tank, list the liquid(s) to be stored in each tank. If it is expected that a tank may store a variety of hydrocarbon liquids, enter "mixed hydrocarbons" in the Composition column for that tank and enter the corresponding data of the most volatile liquid to be stored in the tank. If tank is to be used for storage of different materials, list all the materials in the "All Calculations" attachment, run the newest version of TANKS on each, and use the material with the highest emission rate to determine maximum uncontrolled and requested allowable emissions rate. The permit will specify the most volatile category of liquids that may be stored in each tank. Include appropriate tank-flashing modeling input data. Use additional sheets if necessary. Unit and stack numbering must correspond throughout the application package.

					Vapor	Average Stor	age Conditions	Max Storage Conditions	
Tank No.	SCC Code	Material Name	Composition	Liquid Density (lb/gal)	Molecular Weight (lb/lb*mol)	Temperature (°F)	True Vapor Pressure (psia)	Temperature (°F)	True Vapor Pressure (psia)
SKT1	40400311	Produced Water	Produced Water	8.2	50	72.74	11.14	82.04	12.88
SKT2	40400311	Produced Water	Produced Water	8.2	50	72.74	11.14	82.04	12.88
OT1	40400311	Condensate	Condensate	6.6	55	69.43	9.14	78.60	10.63
OT2	40400311	Condensate	Condensate	6.6	55	69.43	9.14	78.60	10.63
OT3	40400311	Condensate	Condensate	6.6	55	69.43	9.14	78.60	10.63
OT4	40400311	Condensate	Condensate	6.6	55	69.43	9.14	78.60	10.63
WT1	40400315	Produced Water	Produced Water	8.2	0	73.51	12.87	82.69	14.43
WT2	40400315	Produced Water	Produced Water	8.2	0	73.51	12.87	82.69	14.43

Table 2-L: Tank Data

Include appropriate tank-flashing modeling input data. Use an addendum to this table for unlisted data categories. Unit and stack numbering must correspond throughout the application package. Use additional sheets if necessary. See reference Table 2-L2. Note: 1.00 bbl = 10.159 M3 = 42.0 gal

Tank No.	Date Installed	Materials Stored	Seal Type (refer to Table 2- LR below)	Roof Type (refer to Table 2- LR below)	Capacity		Diameter (M)	Vapor Space	Color (from Table VI-C)		Paint Condition (from Table VI	Annual Throughput	Turn- overs
			LK below)	LK below)	(bbl)	(M ³)		(M)	Roof	Shell	C)	(gal/yr)	(per year)
SKT1	Jul-05	Produced Water	N/A	FX	1000 bbl	159	4.75	9.1	Tan	Tan	Good	2,660,433	63
SKT2	TBD	Produced Water	N/A	FX	1000 bbl	159	4.75	9.1	Tan	Tan	Good	2,660,433	63
OT1	Jul-05	Condensate	N/A	FX	500 bbl	79.5	3.66	4.9	Tan	Tan	Good	3,120,436	149
OT2	Jul-05	Condensate	N/A	FX	500 bbl	79.5	3.66	4.9	Tan	Tan	Good	3,120,436	149
OT3	Jul-05	Condensate	N/A	FX	500 bbl	79.5	3.66	4.9	Tan	Tan	Good	3,120,436	149
OT4	Jul-05	Condensate	N/A	FX	500 bbl	79.5	3.66	4.9	Tan	Tan	Good	3,120,436	149
WT1	Jul-05	Produced Water	N/A	FX	500 bbl	79.5	3.66	4.9	Tan	Tan	Good	2,614,573	125
WT2	Jul-05	Produced Water	N/A	FX	500 bbl	79.5	3.66	4.9	Tan	Tan	Good	2,614,573	125
													1

Roof Type	Seal Type, We	elded Tank Seal Type	Seal Type, Rive	Roof, Shell Color	Paint Condition	
FX: Fixed Roof	Mechanical Shoe Seal	chanical Shoe Seal Liquid-mounted resilient seal Vapor-mounted res		Seal Type	WH: White	Good
IF: Internal Floating Roof	A: Primary only	A: Primary only	A: Primary only	A: Mechanical shoe, primary only	AS: Aluminum (specular)	Poor
EF: External Floating Roof	B: Shoe-mounted secondary	B: Weather shield	B: Weather shield	B: Shoe-mounted secondary	AD: Aluminum (diffuse)	
P: Pressure	C: Rim-mounted secondary	C: Rim-mounted secondary	C: Rim-mounted secondary	C: Rim-mounted secondary	LG: Light Gray	
					MG: Medium Gray	
Note: 1.00 bbl = 0.159 M	BL : Black	_				
					OT: Other (specify)	

Table 2-L2: Liquid Storage Tank Data Codes Reference Table

	18	ible 2-M: Materials Pr	ocesseu anu Frouuce	u (Use additional sheets as necessary.)						
	Materi	al Processed		Material Produced						
Description	Chemical Composition	Phase (Gas, Liquid, or Solid)	Quantity (specify units)	Description	Chemical Composition	Phase	Quantity (specify units)			
Mixed Hydrocarbons	Oil (BOPD)	Liquid	814	Mixed Hydrocarbons	Oil (BOPD)	Liquid	814			
	Produced Water (BWPD)	Liquid	341		Produced Water (BWPD)	Liquid	341			
	Natural Gas (MMSCFD)	Gas	240		Natural Gas (MMSCFD)	Gas	240			

Table 2-M: Materials Processed and Produced (Use additional sheets as necessary.)

Table 2-N: CEM Equipment

Enter Continuous Emissions Measurement (CEM) Data in this table. If CEM data will be used as part of a federally enforceable permit condition, or used to satisfy the requirements of a state or federal regulation, include a copy of the CEM's manufacturer specification sheet in the Information Used to Determine Emissions attachment. Unit and stack numbering must correspond throughout the application package. Use additional sheets if necessary.

Stack No.	Pollutant(s)	Manufacturer	Model No.	Serial No.	Sample Frequency	Averaging Time	Range	Sensitivity	Accuracy
N/A									

Table 2-O: Parametric Emissions Measurement Equipment

Unit and stack numbering must correspond throughout the application package. Use additional sheets if necessary.

Unit No.	Parameter/Pollutant Measured	Location of Measurement	Unit of Measure	Acceptable Range	Frequency of Maintenance	Nature of Maintenance	Method of Recording	Averaging Time
N/A								

Table 2-P: Greenhouse Gas Emissions

Applications submitted under 20.2.70, 20.2.72, & 20.2.74 NMAC are required to complete this Table. Power plants, Title V major sources, and PSD major sources must report and calculate all GHG emissions for each unit. Applicants must report potential emission rates in short tons per year (see Section 6.a for assistance). Include GHG emissions during Startup, Shutdown, and Scheduled Maintenance in this table. For minor source facilities that are not power plants, are not Title V, or are not PSD, there are three options for reporting GHGs 1) report GHGs for each individual piece of equipment; 2) report all GHGs from a group of unit types, for example report all combustion source GHGs as a single unit and all venting GHG as a second separate unit; OR 3) check the following box \square By checking this box, the applicant acknowledges the total CO2e emissions are less than 75,000 tons per year.

		CO ₂ ton/yr	N2O ton/yr	CH ₄ ton/yr	SF ₆ ton/yr	PFC/HFC ton/yr ²				Tota GHG M Basis to	fass CO ₂ e
Unit No.	GWPs ¹	1	298	25	22,800	footnote 3					
ENG1	mass GHG	21967.59	0.04	0.36						21968	
LIGI	-		10.758167	9.0253076							21987.4
ENG2	mass GHG	21967.59	0.04	0.36						21968	
	CO ₂ e	21967.59	10.76	9.03					 		21987.4
ENG3	mass GHG	21967.59	0.04	0.36						21968	
	CO ₂ e	21967.593		9.0253076							21987.4
ENG4	mass GHG	21967.59	0.04	0.36						21968	
	CO ₂ e	21967.59	10.76	9.03					 		21987.4
ENG5	mass GHG	21967.59	0.04	0.36						21968	
	CO ₂ e			9.0253076							21987.4
ENG6	mass GHG	21967.59	0.04	0.36						21968	
	CO ₂ e	21967.59	10.76	9.03					 		21987.4
ENG7	mass GHG	21967.59	0.04	0.36						21968	
	CO ₂ e	21967.593	10.758167	9.0253076							21987.4
ENG8	mass GHG	21967.59	0.04	0.36						21968	
	CO ₂ e	21967.59	10.76	9.03							21987.4
ENG9	mass GHG	21967.59	0.04	0.36						21968	
LINGS	CO ₂ e		10.758167	9.0253076							21987.4
ENG11	mass GHG	6689.35	0.01	0.11						6689	
2.1011	CO ₂ e	6689.35	3.22	2.70							6695.3
ENG12	mass GHG	6689.35	0.01	0.11						6689	
1.1012	CO ₂ e	6689.3492	3.2151031	2.6972342							6695.3
HTR1	mass GHG	519.34	0.00	0.32						519.	
IIIMI	CO ₂ e	519.34	0.22	7.95							527.5
RB1	mass GHG	1384.91	0.00	0.85						1385	
KDI	CO ₂ e	1384.9065	0.5755123	21.209347							1406.7
RB2	mass GHG	1384.91	0.00	0.85						1385	
	CO ₂ e	1384.91	0.58	21.21							1406.7
RB3	mass GHG	1384.91	0.00	0.85						1385	
KD5	CO ₂ e		0.5755123	21.209347							1406.7
FL1	mass GHG	10445.31	0.01	12.77						10458	
1.1.1	CO ₂ e	10445.31	4.46	319.35							10769.1
FL2	mass GHG	10445.31	0.01	12.77						10458	
1.172	CO ₂ e		4.4619051	319.35375							10769.1
VC1	mass GHG	20890.62	0.03	25.55						20916	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	CO ₂ e	20890.62	8.92	638.71							21538.2
Total	mass GHG	257,542	0	57						257,6	00
Total	CO ₂ e	257,542	123	1,436							259,101

¹ GWP (Global Warming Potential): Applicants must use the most current GWPs codified in Table A-1 of 40 CFR part 98. GWPs are subject to change, therefore, applicants need to check 40 CFR 98 to confirm GWP values.

² For HFCs or PFCs describe the specific HFC or PFC compound and use a separate column for each individual compound.

³ For each new compound, enter the appropriate GWP for each HFC or PFC compound from Table A-1 in 40 CFR 98.

⁴ Green house gas emissions on a mass basis is the ton per year green house gas emission before adjustment with its GWP.

⁵ CO₂e means Carbon Dioxide Equivalent and is calculated by multiplying the TPY mass emissions of the green house gas by its GWP.

⁶ For Heaters/Boilers, CO₂ CH4, N2O emissions calculated according to §98.233(z)(1) and (2).

Tab 3Section 3 - Application Summary

Section 3

Application Summary

The <u>Application Summary</u> shall include a brief description of the facility and its process, the type of permit application, the applicable regulation (i.e. 20.2.72.200.A.X, or 20.2.73 NMAC) under which the application is being submitted, and any air quality permit numbers associated with this site. If this facility is to be collocated with another facility, provide details of the other facility including permit number(s). In case of a revision or modification to a facility, provide the lowest level regulatory citation (i.e. 20.2.72.219.B.1.d NMAC) under which the revision or modification is being requested. Also describe the proposed changes from the original permit, how the proposed modification will affect the facility's operations and emissions, de-bottlenecking impacts, and changes to the facility's major/minor status (both PSD & Title V).

The **<u>Process</u>** Summary shall include a brief description of the facility and its processes.

<u>Startup, Shutdown, and Maintenance (SSM)</u> routine or predictable emissions: Provide an overview of how SSM emissions are accounted for in this application. Refer to "Guidance for Submittal of Startup, Shutdown, Maintenance Emissions in Permit Applications (http://www.env.nm.gov/aqb/permit/app_form.html) for more detailed instructions on SSM emissions.

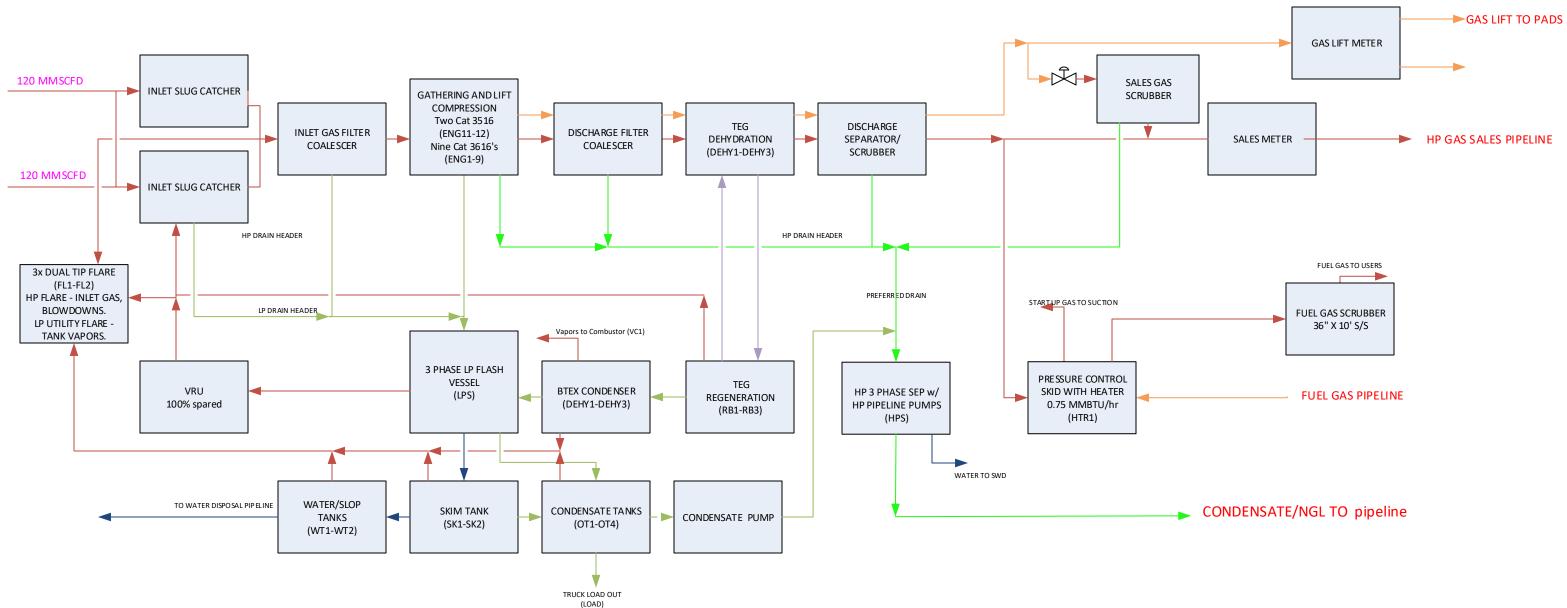
XTO Energy Inc. is planning modification of the Jayhawk Compressor Station in Lea County, NM. The facility is a typical compressor station with natural gas engines, dehydration, storage tanks, and flares. Site construction is planned under NSR Permit 8152. This is a New Source Review permit application being submitted in accordance with 20.2.72 NMAC.

Routine SSM combustion emissions are included with the regular emissions of the facility. SSM emissions from equipment maintenance are routed to either the low pressure or high pressure flare header (FL1/FL2). SSM-related VOC emissions (tank landings/cleanings) are included at a rate of 10 tons per year per NMAQB guidance. Detailed calculations are included in the application.

The facility is proposing the following modifications:

- 1) Remove HTR2 and HTR3;
- 2) Remove ENG10 and ENG13;
- 3) Increase glycol circulation rate for DEHY1-3;
- 4) Decrease glycol regenerator reboiler (RB1-RB3) unit heat input from 3 MMBtu/hr to 2.0 MMBtu/hr;
- 5) Increase flare purge gas rates;
- 6) Remove FL3;
- 7) Update FL1-FL2 heights to 145';
- 8) Update tank throughputs;
- 9) Decrease condensate truck loading;
- 10) Add inlet gas flaring;
- 11) Increasing steady state flaring associated with increased tank throughput and glycol circulation rate; update sources that vent to flare.
- 12) Change sources that vent to VC1, only combusts vapors from DEHY1-3 still vent and pilot gas.
- 13) Update ENG1-9 and ENG11-12 VOC/formaldehyde/CO control efficiencies and update emissions factors from Caterpillar Gas Engine Rating Pro (GERP) analysis.
- 14) Update nomenclature of Gb1a and GB2a to SKT1 and SKT2.
- 15) Update facility location coordinates
- 16) Update low pressure separator pressure from 2 psig to 15 psig.
- 17) Added VOC malfunction emissions.

Tab 4 Section 4 - Process Flow Sheet


Section 4

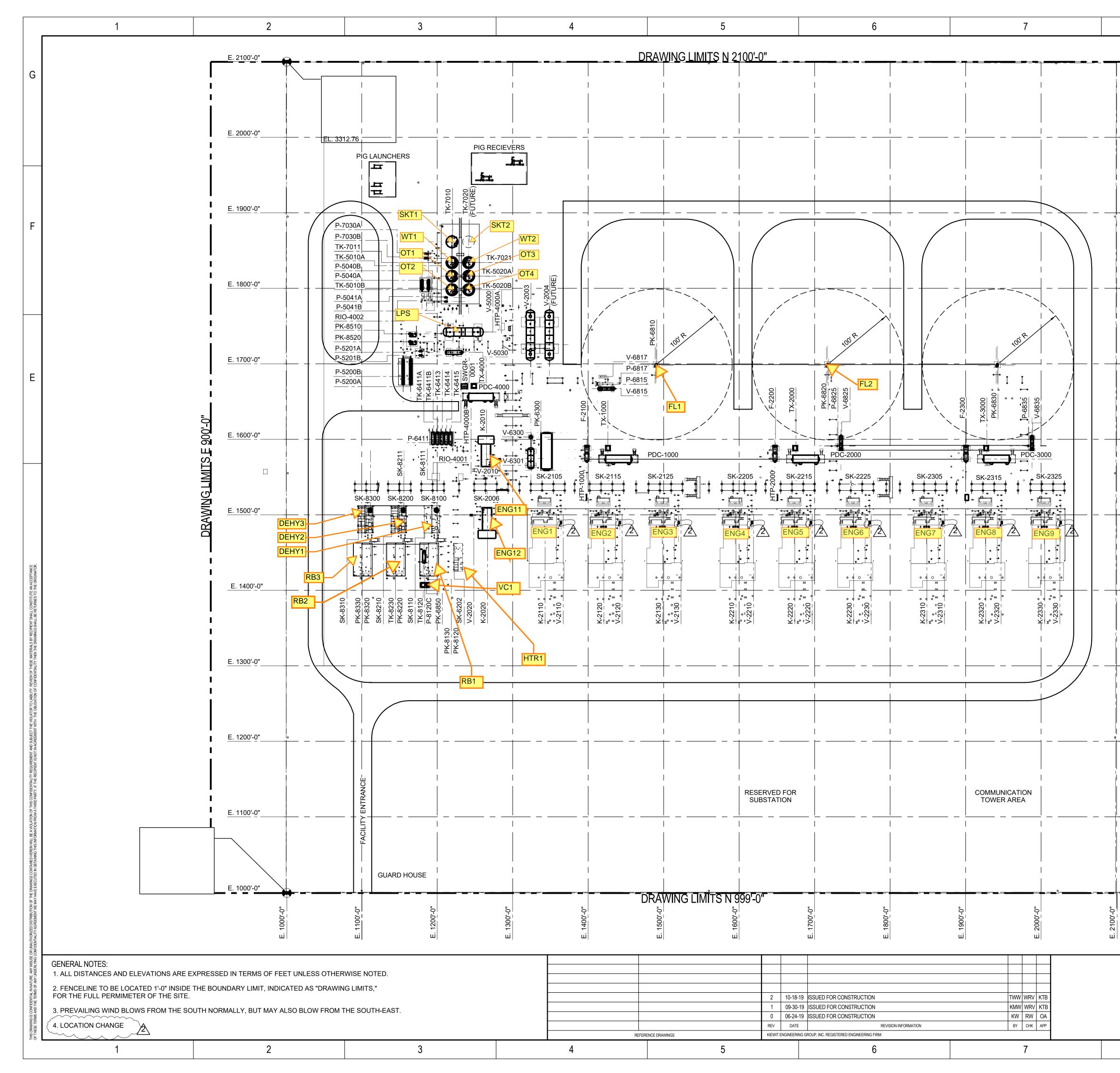
Process Flow Sheet

A **process flow sheet** and/or block diagram indicating the individual equipment, all emission points and types of control applied to those points. The unit numbering system should be consistent throughout this application.

A process flow diagram is presented on the following page.

XTO DELAWARE BASIN GEN 2 COMPRESSOR STATION

REV 11/19/19


Tab 5 Section 5 - Plot Plan Drawn To Scale

Section 5

Plot Plan Drawn To Scale

A <u>plot plan drawn to scale</u> showing emissions points, roads, structures, tanks, and fences of property owned, leased, or under direct control of the applicant. This plot plan must clearly designate the restricted area as defined in UA1, Section 1-D.12. The unit numbering system should be consistent throughout this application.

A proposed plot plan is presented on the following page.

STD_BRD_24x36

8	9			10	
•			Tag	Description	-]
		K-2010 K-2020		START-UP COMPRESSOR 1 START-UP COMPRESSOR 2]
N 2100' 0" ———		K-2110		TRAIN 1 COMPRESSOR 1	
		K-2120 K-2130		TRAIN 1 COMPRESSOR 2 TRAIN 1 COMPRESSOR 3	— G
		K-2210 K-2220		TRAIN 2 COMPRESSOR 1 TRAIN 2 COMPRESSOR 2	
		K-2230		TRAIN 2 COMPRESSOR 3	
		K-2310 K-2320		TRAIN 3 COMPRESSOR 1 TRAIN 3 COMPRESSOR 2	
N 2000' 0"		K-2330 P-5040A		TRAIN 3 COMPRESSOR 3 LP CONDENSATE TRANSFER PUMP	
		P-5040B		LP CONDENSATE TRANSFER PUMP	
		P-5041A P-5041B		BOOSTER PUMP BOOSTER PUMP	
		P-5200A		CONDENSATE PIPELINE PUMP	
		P-5200B P-5201A		CONDENSATE PIPELINE PUMP CONDENSATE PIPELINE TRANSFER PUMP	
		P-5201B P-6411		CONDENSATE PIPELINE TRANSFER PUMP DAY TANK SUMP PUMP	
N 1900' 0"		P-6815 P-6817		TRAIN 1 HP FLARE KNOCK-OUT PUMP TRAIN 1 LP FLARE KNOCK-OUT PUMP	
		P-6825		TRAIN 2 HP FLARE KNOCK-OUT PUMP	I F
		P-6835 P-7030A		TRAIN 3 HP FLARE KNOCK-OUT PUMP PRODUCED WATER PUMP	
		P-7030B PK-6300		PRODUCED WATER PUMP INSTRUMENT AIR SKID	
		PK-6810		TRAIN 1 HP/LP FLARE PACKAGE	
		PK-6820 PK-6830		TRAIN 2 HP FLARE PACKAGE TRAIN 3 HP FLARE PACKAGE	
N 1800' 0"		PK-6850 PK-8130		THERMAL OXIDIZER PACKAGE BTEX PACKAGE	
		PK-8230		BTEX PACKAGE	
		PK-8330 PK-8510		BTEX PACKAGE VAPOR RECOVERY UNIT	
i		PK-8520 SK-6202		VAPOR RECOVERY UNIT FUEL GAS SKID]
		SK-8110		DISCHARGE FILTER SKID]
N 1700' 0"		SK-8111 PK-8120		TEG CONTACTOR/SCRUBBER SKID TEG REGEN PACKAGE TRAIN 0	
		SK-8210 SK-8211		DISCHARGE FILTER SKID TEG CONTACTOR/SCRUBBER SKID	
		PK-8220		TEG REGEN PACKAGE TRAIN 1	╡╵
		SK-8310 SK-8311		DISCHARGE FILTER SKID TEG CONTACTOR/SCRUBBER SKID	
		<u>PK-8320</u> TK-6411A		TEG REGEN PACKAGE TRAIN 3 COMPRESSOR OIL TANK	_
)0		TK-6411B TK-6413		COMPRESSOR OIL TANK ENGINE OIL TANK	
N 1600' 0" -OC		TK-6414		ENGINE COOLANT TANK	
i iii		TK-6415 TK-7010		METHANOL TANK SKIM TANK	
L S		TK-8120 V-2003		GLYCOL MAKE-UP TANK INLET SLUG CATCHER	
		V-2004		INLET SLUG CATCHER (FUTURE)	
		V-2010 V-2020		START-UP COMPRESSOR 1 BLOWCASE START-UP COMPRESSOR 2 BLOWCASE	
N 1500' 0"		V-2110		TRAIN 1 COMPRESSOR 1 BLOWCASE	
→→N 1500' 0"		V-2120 V-2130		TRAIN 1 COMPRESSOR 2 BLOWCASE TRAIN 1 COMPRESSOR 3 BLOWCASE	
		V-2210 V-2220		TRAIN 2 COMPRESSOR 1 BLOWCASE TRAIN 2 COMPRESSOR 2 BLOWCASE	
		V-2230		TRAIN 2 COMPRESSOR 3 BLOWCASE	
		V-2310 V-2320		TRAIN 3 CONFRESSOR 2 BLOWGASE	
		V-2330 V-5000		TRAIN 3 COMPRESSOR 3 BLOWCASE L.P. 3-PHASE SEPARATOR	
N 1400' 0"		V-5030		H.P. 3-PHASE SEPARATOR	
		V-6300 V-6301		WET AIR RECEIVER DRY AIR VOLUME TANK	
		V-6815 V-6817		TRAIN 1 HP FLARE KNOCK-OUT DRUM TRAIN 1 LP FLARE KNOCK-OUT DRUM	
		V-6825		TRAIN 2 HP FLARE KNOCK-OUT DRUM	
		V-6835 F-2100		TRAIN 3 HP FLARE KNOCK-OUT DRUM TRAIN 1 INLET GAS FILTER COALESCER	
		F-2200 F-2300		TRAIN 2 INLET GAS FILTER COALESCER TRAIN 3 INLET GAS FILTER COALESCER	_
N 1300' 0"		TK-5010A		CONDENSATE TANK]
		<u>TK-5010B</u> TK-5020A		CONDENSATE TANK CONDENSATE TANK	C
		<u>TK-5020B</u> TK-7011		CONDENSATE TANK WATER TANK	
		TK-7021		WATER TANK	
		PDC-1000 HTP-1000		POWER DISTRIBUTION CENTER HEAT TRACE PANEL BOARD	
		TX-1000 PDC-2000		TRANSFORMER POWER DISTRIBUTION CENTER]
N 1200' 0" ■		HTP-2000		HEAT TRACE PANEL BOARD	
		TX-2000 PDC-3000		TRANSFORMER POWER DISTRIBUTION CENTER	
		HTP-3000 TX-3000		HEAT TRACE PANEL BOARD TRANSFORMER	
		PDC-4000		POWER DISTRIBUTION CENTER	
l I		HTP-4000 TX-4000		HEAT TRACE PANEL BOARD TRANSFORMER	
N 1100' 0"					
					В
N 1000' 0"					
1		60' 30'	0	60' 120'	
			1"=	60'	
1					
DISCIPLINE APP			XTU	ENERGY	-
PROCESS				MPRESSOR STATION	
PROCESS SAFETY MECHANICAL	ENERGY -	LUI		Y PLOT PLAN	A
PIPING CIVIL/STRUCTURAL					
18C		I: CARLSBAD, NM		SCALE: 1"=60'	
	Kiewit Engineering Group, Inc. Oil, Gas & Chemical	,		F	REV.
	Uil, Gas & Chemical		LH-0		2
0				STD BRD 24x36	

Tab 6Section 6 - All Calculations

Section 6

All Calculations

Show all calculations used to determine both the hourly and annual controlled and uncontrolled emission rates. All calculations shall be performed keeping a minimum of three significant figures. Document the source of each emission factor used (if an emission rate is carried forward and not revised, then a statement to that effect is required). If identical units are being permitted and will be subject to the same operating conditions, submit calculations for only one unit and a note specifying what other units to which the calculations apply. All formulas and calculations used to calculate emissions must be submitted. The "Calculations" tab in the UA2 has been provided to allow calculations to be linked to the emissions tables. Add additional "Calc" tabs as needed. If the UA2 or other spread sheets are used, all calculation spread sheet(s) shall be submitted electronically in Microsoft Excel compatible format so that formulas and input values can be checked. Format all spread sheets are not used, provide the original formulas with defined variables. Additionally, provide subsequent formulas showing the input values for each variable in the formula. All calculations, including those calculations are imbedded in the Calc tab of the UA2 portion of the application, the printed Calc tab(s), should be submitted under this section.

Tank Flashing Calculations: The information provided to the AQB shall include a discussion of the method used to estimate tank-flashing emissions, relative thresholds (i.e., NOI, permit, or major source (NSPS, PSD or Title V)), accuracy of the model, the input and output from simulation models and software, all calculations, documentation of any assumptions used, descriptions of sampling methods and conditions, copies of any lab sample analysis. If Hysis is used, all relevant input parameters shall be reported, including separator pressure, gas throughput, and all other relevant parameters necessary for flashing calculation.

SSM Calculations: It is the applicant's responsibility to provide an estimate of SSM emissions or to provide justification for not doing so. In this Section, provide emissions calculations for Startup, Shutdown, and Routine Maintenance (SSM) emissions listed in the Section 2 SSM and/or Section 22 GHG Tables and the rational for why the others are reported as zero (or left blank in the SSM/GHG Tables). Refer to "Guidance for Submittal of Startup, Shutdown, Maintenance Emissions in Permit Applications (http://www.env.nm.gov/aqb/permit/app_form.html) for more detailed instructions on calculating SSM emissions. If SSM emissions are greater than those reported in the Section 2, Requested Allowables Table, modeling may be required to ensure compliance with the standards whether the application is NSR or Title V. Refer to the Modeling Section of this application for more guidance on modeling requirements.

Glycol Dehydrator Calculations: The information provided to the AQB shall include the manufacturer's maximum design recirculation rate for the glycol pump. If GRI-Glycalc is used, the full input summary report shall be included as well as a copy of the gas analysis that was used.

Road Calculations: Calculate fugitive particulate emissions and enter haul road fugitives in Tables 2-A, 2-D and 2-E for:

- 1. If you transport raw material, process material and/or product into or out of or within the facility and have PER emissions greater than 0.5 tpy.
- 2. If you transport raw material, process material and/or product into or out of the facility more frequently than one round trip per day.

Significant Figures:

A. All emissions standards are deemed to have at least two significant figures, but not more than three significant figures.

B. At least 5 significant figures shall be retained in all intermediate calculations.

C. In calculating emissions to determine compliance with an emission standard, the following rounding off procedures shall be used:

- (1) If the first digit to be discarded is less than the number 5, the last digit retained shall not be changed;
- (2) If the first digit discarded is greater than the number 5, or if it is the number 5 followed by at least one digit other than the number zero, the last figure retained shall be increased by one unit; **and**
- (3) If the first digit discarded is exactly the number 5, followed only by zeros, the last digit retained shall be rounded upward if it is an odd number, but no adjustment shall be made if it is an even number.
- (4) The final result of the calculation shall be expressed in the units of the standard.

Control Devices: In accordance with 20.2.72.203.A(3) and (8) NMAC, 20.2.70.300.D(5)(b) and (e) NMAC, and 20.2.73.200.B(7) NMAC, the permittee shall report all control devices and list each pollutant controlled by the control device

XTO Energy Inc.

Jayhawk Compressor Station

September 2020: Revision 1

regardless if the applicant takes credit for the reduction in emissions. The applicant can indicate in this section of the application if they chose to not take credit for the reduction in emission rates. For notices of intent submitted under 20.2.73 NMAC, only uncontrolled emission rates can be considered to determine applicability unless the state or federal Acts require the control. This information is necessary to determine if federally enforceable conditions are necessary for the control device, and/or if the control device produces its own regulated pollutants or increases emission rates of other pollutants.

Caterpillar 3616TA (ENG-1 to ENG-9) and 3516TA (ENG-11 to ENG-12)

Emission factors for nitrogen oxides (NOx), carbon monoxide (CO), formaldehyde, and volatile organic compounds (VOC) are based on manufacturer's data. Emissions of particulate matter (PM/PM_{10} and $PM_{2.5}$) were calculated using AP-42 Table 3.2-3 factors. PM_{10} and $PM_{2.5}$ emissions are set equal to PM emissions. SO₂ emissions are based on the units' fuel consumption and a sulfur content of 5 grains per 100 standard cubic feet (5 gr/100 scf). Hazardous Air Pollutants (HAPs) except for formaldehyde were calculated using AP-42 factors.

Line Heater (HTR1) and Glycol Regenerator Heaters (RB1 to RB3)

Emission of NOx, CO, VOC, HAP, and $PM/PM_{10}/PM_{2.5}$ are based on AP-42 Table 3.2-3 emission factors. PM_{10} and $PM_{2.5}$ emissions are set equal to PM emissions. SO_2 emissions were based on the unit's fuel consumption and a maximum sulfur content of 5 grains per 100 standard cubic feet (5 gr/100 scf).

SSM/Emergency Flares (FL1 – FL2)

The facility will use two (2) dual-tip flares. NOx and CO emissions are based on factors from the Texas Commission on Environmental Quality (TCEQ) publication RG-360A/09. VOC emissions were calculated using a material balance and the manufacturer's guaranteed destruction efficiency (98%). Since gas can be routed to any or all of the flares, they are illustrated as one combine emission point. The flares have a control efficiency of 98%, with manufacturer documentation provided in Section 7 of the application. SSM activities routed to the flares could include process vessel purging and maintenance blowdowns for process equipment, high pressure gas flaring, and low pressure separator gas during VRU downtime. Tank vapors and 2% of the low pressure separator gas not collected by the VRU are continuously routed to the low pressure side of the flare.

Triethylene Glycol Dehydrators (DEHY1-DEHY3)

Emissions from the dehydrators are calculated using BR&E ProMax simulation software. Flash tank vapors are routed back to mixing with the inlet gas. Each dehydrator is equipped with a condenser. Condensed liquids are routed to the skim tank and any remaining gas is burned at the vapor combustor (VC1). The emissions being released at VC1 from the dehydration process are represented as a separate emission point (DEHY1-DEHY3).

Storage Tanks (SKT1-SKT2, OT1-OT4, WT1-WT2)

Flashing, working and breathing emissions from the skim tank, oil tanks, and water tanks were calculated using BR&E ProMax simulation software. Emissions from the tanks are controlled using FL1-FL2. The simulation reports are included in Section 7.

Truck Loading (LOAD)

Uncontrolled emissions from oil loading of trucks were calculated using Equation 1 of AP-42 Section 5.2. Maximum slop oil loading rates are calculated using 814 BOPD for 100 days of the year. Relevant portions of AP-42 Section 5.2 are included in Section 7. Oil truck loading will be uncontrolled.

Piping Component Fugitive Emissions (FUG)

Facility fugitive emissions were calculated using TCEQ's "Air Permit Technical Guidance for Chemical Sources – Fugitive Guidance" document, and conservatively assumed component counts. Reduction efficiencies were obtained from EPA's Protocol for Equipment Leak Emission Estimates (EPA-453/R-95-017). Relevant portions of the TCEQ document are included in Section 7.

Startup, Shutdown, and Maintenance (SSM)

SSM emissions not routed to the flare system were assumed equal to the flat 10 tpy of VOC per State guidance. Specific SSM emissions include small equipment blowdowns, tank emptying and refilling, tank roof landing, and miscellaneous activities. Other SSM emissions are routed to the flare and calculated in accordance with the flare methodology above.

Haul Road Fugitive Emissions

Fugitive haul road emissions were calculated using Equations 1a and 2 of AP-42 Section 13.2.2. Relevant portions of AP-42 Section 13.2.2 are included in Section 7.

Malfunction Emissions (MALFCUNTION)

Malfunction emissions not routed to the flare system were assumed equal to the flat 10 tpy of VOC per State guidance. Specific malfunction emissions include any sudden and unavoidable failure of air pollution control equipment or process equipment beyond the control of the owner or operator.

Section 6.a

Green House Gas Emissions

(Submitting under 20.2.70, 20.2.72 20.2.74 NMAC)

Title V (20.2.70 NMAC), Minor NSR (20.2.72 NMAC), and PSD (20.2.74 NMAC) applicants must estimate and report greenhouse gas (GHG) emissions to verify the emission rates reported in the public notice, determine applicability to 40 CFR 60 Subparts, and to evaluate Prevention of Significant Deterioration (PSD) applicability. GHG emissions that are subject to air permit regulations consist of the sum of an aggregate group of these six greenhouse gases: carbon dioxide (CO₂), nitrous oxide (N₂O), methane (CH₄), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride (SF₆).

Calculating GHG Emissions:

1. Calculate the ton per year (tpy) GHG mass emissions and GHG CO₂e emissions from your facility.

2. GHG mass emissions are the sum of the total annual tons of greenhouse gases without adjusting with the global warming potentials (GWPs). GHG CO₂e emissions are the sum of the mass emissions of each individual GHG multiplied by its GWP found in Table A-1 in 40 CFR 98 <u>Mandatory Greenhouse Gas Reporting</u>.

3. Emissions from routine or predictable start up, shut down, and maintenance must be included.

4. Report GHG mass and GHG CO_2e emissions in Table 2-P of this application. Emissions are reported in <u>short</u> tons per year and represent each emission unit's Potential to Emit (PTE).

5. All Title V major sources, PSD major sources, and all power plants, whether major or not, must calculate and report GHG mass and CO2e emissions for each unit in Table 2-P.

6. For minor source facilities that are not power plants, are not Title V, and are not PSD there are three options for reporting GHGs in Table 2-P: 1) report GHGs for each individual piece of equipment; 2) report all GHGs from a group of unit types, for example report all combustion source GHGs as a single unit and all venting GHGs as a second separate unit; 3) or check the following \Box By checking this box, the applicant acknowledges the total CO2e emissions are less than 75,000 tons per year.

Sources for Calculating GHG Emissions:

- Manufacturer's Data
- AP-42 Compilation of Air Pollutant Emission Factors at http://www.epa.gov/ttn/chief/ap42/index.html
- EPA's Internet emission factor database WebFIRE at http://cfpub.epa.gov/webfire/

• 40 CFR 98 <u>Mandatory Green House Gas Reporting</u> except that tons should be reported in short tons rather than in metric tons for the purpose of PSD applicability.

• API Compendium of Greenhouse Gas Emissions Methodologies for the Oil and Natural Gas Industry. August 2009 or most recent version.

• Sources listed on EPA's NSR Resources for Estimating GHG Emissions at http://www.epa.gov/nsr/clean-air-act-permitting-greenhouse-gases:

Global Warming Potentials (GWP):

Applicants must use the Global Warming Potentials codified in Table A-1 of the most recent version of 40 CFR 98 Mandatory Greenhouse Gas Reporting. The GWP for a particular GHG is the ratio of heat trapped by one unit mass of the GHG to that of one unit mass of CO_2 over a specified time period.

"Greenhouse gas" for the purpose of air permit regulations is defined as the aggregate group of the following six gases: carbon dioxide, nitrous oxide, methane, hydrofluorocarbons, perfluorocarbons, and sulfur hexafluoride. (20.2.70.7 NMAC, 20.2.74.7 NMAC). You may also find GHGs defined in 40 CFR 86.1818-12(a).

Metric to Short Ton Conversion:

Short tons for GHGs and other regulated pollutants are the standard unit of measure for PSD and title V permitting programs. 40 CFR 98 <u>Mandatory Greenhouse Reporting</u> requires metric tons.

1 metric ton = 1.10231 short tons (per Table A-2 to Subpart A of Part 98 – Units of Measure Conversions)

JAYHAWK COMPRESSOR STATION

FACILITY EMISSIONS SUMMARY

				1	EMISSIONS SU	MMARY TABI	.E								
					-						-				
EMISSION SOURCE DESCRIPTION	FACILITY IDENTIFICATION	STACK NUMBER	N	Ox	с	0	VO (INCLUDE	C IS HAPs)	S	O ₂	PM	10 & 2.5	н	APs	CO2e
	NUMBER		lb/hr	ТРҮ	lb/hr	ТРҮ	lb/hr	ТРҮ	lb/hr	ТРҮ	lb/hr	ТРҮ	lb/hr	ТРҮ	ТРҮ
Caterpillar G3616 Natural Gas Compressor Engine	ENG1	ENG1	4.13	18.11	4.38	19.21	3.47	15.18	0.42	1.84	0.38	1.65	0.54	2.36	21987
Caterpillar G3616 Natural Gas Compressor Engine	ENG2	ENG2	4.13	18.11	4.38	19.21	3.47	15.18	0.42	1.84	0.38	1.65	0.54	2.36	21987
Caterpillar G3616 Natural Gas Compressor Engine	ENG3	ENG3	4.13	18.11	4.38	19.21	3.47	15.18	0.42	1.84	0.38	1.65	0.54	2.36	21987
Caterpillar G3616 Natural Gas Compressor Engine	ENG4	ENG4	4.13	18.11	4.38	19.21	3.47	15.18	0.42	1.84	0.38	1.65	0.54	2.36	21987
Caterpillar G3616 Natural Gas Compressor Engine	ENG5	ENG5	4.13	18.11	4.38	19.21	3.47	15.18	0.42	1.84	0.38	1.65	0.54	2.36	21987
Caterpillar G3616 Natural Gas Compressor Engine	ENG6	ENG6	4.13	18.11	4.38	19.21	3.47	15.18	0.42	1.84	0.38	1.65	0.54	2.36	21987
Caterpillar G3616 Natural Gas Compressor Engine	ENG7	ENG7	4.13	18.11	4.38	19.21	3.47	15.18	0.42	1.84	0.38	1.65	0.54	2.36	21987
Caterpillar G3616 Natural Gas Compressor Engine	ENG8	ENG8	4.13	18.11	4.38	19.21	3.47	15.18	0.42	1.84	0.38	1.65	0.54	2.36	21987
Caterpillar G3616 Natural Gas Compressor Engine	ENG9	ENG9	4.13	18.11	4.38	19.21	3.47	15.18	0.42	1.84	0.38	1.65	0.54	2.36	21987
Caterpillar 3516J TA Natural Gas Compressor Engine	ENG11	ENG11	1.90	8.33	1.01	4.42	1.29	5.63	0.13	0.55	0.11	0.49	0.32	1.39	6695
Caterpillar 3516J TA Natural Gas Compressor Engine	ENG12	ENG12	1.90	8.33	1.01	4.42	1.29	5.63	0.13	0.55	0.11	0.49	0.32	1.39	6695
Fuel Line Heater (0.75 MMBtu/hr)	HTR1	HTR1	0.11	0.50	0.10	0.42	0.01	0.03	0.01	0.04	0.01	0.04	0.002	0.01	528
Glycol Regenerator Reboiler (2.0 MMBtu/hr)	RB1	RB1	0.31	1.34	0.26	1.12	0.02	0.07	0.03	0.12	0.02	0.10	0.006	0.03	1407
Glycol Regenerator Reboiler (2.0 MMBtu/hr)	RB2	RB1	0.31	1.34	0.26	1.12	0.02	0.07	0.03	0.12	0.02	0.10	0.006	0.03	1407
Glycol Regenerator Reboiler (2.0 MMBtu/hr)	RB3	RB1	0.31	1.34	0.26	1.12	0.02	0.07	0.03	0.12	0.02	0.10	0.006	0.03	1407
Total Flare Pilot/Purge Emissions	FL1-FL2 Pilot	FL1-FL2 Pilot	0.67	2.93	1.33	5.84	0.94	4.13	0.01	0.03	0.03	0.13	0.01	0.04	3489
Total Flare Normal Operations	FL1-FL2 Norm	FL1-FL2 Norm	1.85	7.72	3.69	15.41	11.53	25.60	0.01	0.04	0.03	0.15	0.48	1.10	8057
Total Flare SSM	FL1-FL2 SSM	FL1-FL2 SSM	541.65	8.10	1081.35	16.17	992.97	18.36	4.91	0.08	22.25	0.31	27.52	0.55	9993
BTEX Vapor Combustor	VC1	VC1	0.41	1.80	0.82	3.59	2.61	11.43	0.29	1.26	0.010	0.04	0.32	1.38	2461
TEG Dehydrator with Condenser	DEHY1	VC1						Emis	sions Represe	ented at VC1					
TEG Dehydrator with Condenser	DEHY2	VC1						Emis	sions Represe	ented at VC1					
TEG Dehydrator with Condenser	DEHY3	VC1						Emis	sions Represe	ented at VC1					
Skim Tank	SKT1	FL1-FL2						Emissi	ons Represen	ted at FL1-FL	2				
Skim Tank (Backup)	SKT2	FL1-FL2						Emissi	ons Represen	ted at FL1-FL	2				
Condensate Tank	OT1	FL1-FL2						Emissi	ons Represen	ted at FL1-FL	2				
Condensate Tank	OT2	FL1-FL2						Emissi	ons Represen	ted at FL1-FL	2				

JAYHAWK COMPRESSOR STATION

FACILITY EMISSIONS SUMMARY

				I	MISSIONS SU	MMARY TABI	Æ								
EMISSION SOURCE DESCRIPTION	FACILITY IDENTIFICATION	STACK NUMBER	N	Ox	с	0	VO (INCLUDE		S	O ₂	PM	10 & 2.5	н	APs	CO2e
	NUMBER	STICKTONISER	lb/hr	ТРҮ	lb/hr	ТРҮ	lb/hr	ТРҮ	lb/hr	ТРҮ	lb/hr	ТРҮ	lb/hr	ТРҮ	ТРҮ
Condensate Tank	OT3	FL1-FL2						Emissio	ons Represent	ted at FL1-FL2	2				
Condensate Tank	OT4	FL1-FL2						Emissio	ons Represent	ted at FL1-FL2	2				
Produced Water Tank	WT1	FL1-FL2						Emissio	ons Represent	ted at FL1-FL2	2				
Produced Water Tank	WT2	FL1-FL2						Emissio	ons Represent	ted at FL1-FL2	2				
Low Pressure Separator	LPS	FL1-FL2						Emissio	ons Represent	ted at FL1-FL2	2				
Condensate Truck Loading	LOAD	N/A	-	-	-	-	65.70	11.14	-	-	-	-	0.03	0.01	-
Fugitive Emissions	FUG	N/A	-	-	-	-	4.89	21.43	-	-	-	-	0.38	1.64	-
SSM Activities	SSM	N/A	-	-	-	-	-	10.00	-	-	-	-	-	-	-
ROAD EMISSIONS	ROAD	ROAD	-	-	-	-	-	-	-	-	0.15	0.02	-	-	-
Malfunction Emissions	MALFUNCTION	MALFUNCTION	-	-	-	-	-	10.00	-	-	-	-	-	-	-
			N	Ox	C	0	vo	с	0	O ₂	DM		HA	Pa	CO2e
TOTAL FACILITY WII	DE EMISSIONS		lb/hr	ТРҮ	lb/hr	ТРҮ	(INCLUDE lb/hr	S HAPs) TPY	lb/hr	02 ТРҮ	lb/hr	10 & 2.5	lb/hr	TPY	ТРҮ
TOTAL FACILITY WI	2 10001010		586.62	204.66	1129.54	226.49	1112.48	260.24	9.34	19.49	26.16	16.80	34.24	28.84	240,024

JAYHAWK COMPRESSOR STATION

Methodology for Burner Calculations

Burner Emission Calculations

AP 42 Emission Factors: Tables 1.4-1, 1.4-2, & 1.4-3

Emission Rate_X (lb/hr) = Burner Rating (MMBTU/hr) * EF_X (lb/MMSCF) / 1020 (Btu/scf) * Heating Value of Fuel Gas (BTU/SCF) / 1020 (Btu/scf) + 25%

Annual Emission Rate_x (TPY) = Emission Rate (lb/hr) * 8760 (hour/year) / 2000 (lb/ton)

Mass Balance - SO₂ & H₂S Calculations

 H_2S Mass Flow Rate (lb/hr) = P * V / 10.73 / T * MW_{GAS} * $H_2S_{WEIGHT \%}$ * (1 - DRE)

P = Pressure (psia), V = Fuel Consumed in a hour (ft³/hr), 10.73 = Ideal Gas Constant, T = Temperature (°R)

Uncontrolled H₂S Mass Flow Rate (lb/hr) = P * V / 10.73 / T * MW_{GAS} * H₂S_{WEIGHT %}

SO2 Emission Rate (lb/hr) = Uncontrolled H2S Mass Rate (lb/hr) * SO2 Conversion Efficiency * (MW of SO2 (lb/lb-mol) / MW of H2S (lb/lb-mol))

Annual Emission Rate (TPY) = Emission Rate (lb/hr) * 8760 (hour/year) / 2000 (lb/ton)

 $MW_{GAS} = Molecular Weight of the Gas, H_2S_{WEIGHT\%} = Weight Percent of the H_2S in the Fuel Gas, DRE = Burner Combustion Efficiency of H_2S_{WEIGHT\%} = Weight Percent of the W_2S_{WEIGHT\%} = Weight Percent of the W_2S_{WEIGHT\%} = Weight Percent o$

WILDCAT COMPRESSOR STATION

Methodology for Engine Calculations

Engine Emission Calculations

Manufacturer's Data or NSPS Subpart JJJJ Limit Calculations

Emission Rate_X (lb/hr) = Emission Factor_X (g/hp-hr) * Rated hp / 453.6 (g/lb)

Annual Emission Rate_X (TPY) = Emission Rate (lb/hr) * 8760 (hour/year) / 2000 (lb/ton)

AP 42 Emission Factors

Emission Rate_x (lb/hr) = Fuel Consumption (MMBTU/hp-hr) * EF_x (lb/MMBTU) * Rated hp

Annual Emission Rate_x (TPY) = Emission Rate_x (lb/hr) * 8760 (hour/year) / 2000 (lb/ton)

WILDCAT COMPRESSOR STATION

Methodology for Flare Calculations

Flare Calculations

VOC Flare Calculations - Uses the Ideal Gas Law for Mixtures

The mass flow rate of VOCs to the flare were modeled using Promax. The mass rate was then reduced by the destruction efficiency of the flare (98%).

NOx & CO Calculations - TCEQ Emission Factors Used

NOx (lb/day) = Heating Value (BTU/ft³) * EF (lb/MMBTU) * V (ft³/Day) / 10^{6} (BTU/MMBTU)

CO (lb/day) = Heating Value (BTU/ft³) * EF (lb/MMBTU) * V (ft³/Day) / 10^{6} (BTU/MMBTU)

COEF = 0.5496 or 0.2755, NOxEF = 0.138, EF = Emission Factor, V = Volume of Gas in a Day

SO₂ & H₂S Calculations - Mass Balance

H₂S Mass Flow Rate (lb/hr) = P * V / 10.73 / T * MW_{GAS} * H₂S_{WEIGHT %} * (1 - DRE)

P = Pressure (psia), V = Fuel Consumed in a hour (ft³/hr), 10.73 = Ideal Gas Constant, T = Temperature (°R)

Uncontrolled H₂S Mass Flow Rate (lb/hr) = P * V / 10.73 / T * MW_{GAS} * H₂S_{WEIGHT %}

SO₂ Emission Rate (lb/hr) = Uncontrolled H₂S Mass Rate (lb/hr) * SO₂ Conversion Efficiency * (MW of SO₂ (lb/lb-mol) / MW of H₂S (lb/lb-mol))

Annual Emission Rate (TPY) = Emission Rate (lb/hr) * 8760 (hour/year) / 2000 (lb/ton)

MW_{GAS} = Molecular Weight of the Gas, H₂S_{WEIGHT%} = Weight Percent of the H₂S in Gas Stream, DRE = Flare Destruction Efficiency of H₂S

XTO ENERGY, INC. JAYHAWK COMPRESSOR STATION COMPRESSOR ENGINES

									U	ncontrolle	d Emissio	ns Calc	ulation	s											
					Ma		urer's D	ata		AP-42 Facto						_			1						
		-	1	MMbtu/hp-		g/hj	p-hr ²			lb/MMBtu	3,4				lb/hi	r ⁵	1				1	tpy ⁵			
Source ID	Unit Description	Annual Hours	Rated HP	hr ¹ (HHV)	NOx	со	voc	нсно	SO_2	PM _{10 & 2.5}	Acetal- dehyde	NOx	со	VOC	нсно	SO_2	PM _{10 & 2.5}	Acetal- dehyde	NOx	со	voc	нсно	SO_2	PM _{10 & 2.5}	Acetal- dehyde
ENG1	Caterpillar G3616 Natural Gas Compressor Engine	8760	5000	0.007476	0.30	3.06	0.87	0.15	0.01125	0.01006	0.00836	4.13	33.73	9.90	1.65	0.42	0.38	0.31	18.11	147.74	43.37	7.24	1.84	1.65	1.37
ENG2	Caterpillar G3616 Natural Gas Compressor Engine	8760	5000	0.007476	0.30	3.06	0.87	0.15	0.01125	0.01006	0.00836	4.13	33.73	9.90	1.65	0.42	0.38	0.31	18.11	147.74	43.37	7.24	1.84	1.65	1.37
ENG3	Caterpillar G3616 Natural Gas Compressor Engine	8760	5000	0.007476	0.30	3.06	0.87	0.15	0.01125	0.01006	0.00836	4.13	33.73	9.90	1.65	0.42	0.38	0.31	18.11	147.74	43.37	7.24	1.84	1.65	1.37
ENG4	Caterpillar G3616 Natural Gas Compressor Engine	8760	5000	0.007476	0.30	3.06	0.87	0.15	0.01125	0.01006	0.00836	4.13	33.73	9.90	1.65	0.42	0.38	0.31	18.11	147.74	43.37	7.24	1.84	1.65	1.37
ENG5	Caterpillar G3616 Natural Gas Compressor Engine	8760	5000	0.007476	0.30	3.06	0.87	0.15	0.01125	0.01006	0.00836	4.13	33.73	9.90	1.65	0.42	0.38	0.31	18.11	147.74	43.37	7.24	1.84	1.65	1.37
ENG6	Caterpillar G3616 Natural Gas Compressor Engine	8760	5000	0.007476	0.30	3.06	0.87	0.15	0.01125	0.01006	0.00836	4.13	33.73	9.90	1.65	0.42	0.38	0.31	18.11	147.74	43.37	7.24	1.84	1.65	1.37
ENG7	Caterpillar G3616 Natural Gas Compressor Engine	8760	5000	0.007476	0.30	3.06	0.87	0.15	0.01125	0.01006	0.00836	4.13	33.73	9.90	1.65	0.42	0.38	0.31	18.11	147.74	43.37	7.24	1.84	1.65	1.37
ENG8	Caterpillar G3616 Natural Gas Compressor Engine	8760	5000	0.007476	0.30	3.06	0.87	0.15	0.01125	0.01006	0.00836	4.13	33.73	9.90	1.65	0.42	0.38	0.31	18.11	147.74	43.37	7.24	1.84	1.65	1.37
ENG9	Caterpillar G3616 Natural Gas Compressor Engine	8760	5000	0.007476	0.30	3.06	0.87	0.15	0.01125	0.01006	0.00836	4.13	33.73	9.90	1.65	0.42	0.38	0.31	18.11	147.74	43.37	7.24	1.84	1.65	1.37
ENG11	Caterpillar 3516J TA Natural Gas Compressor Engine	8760	1380	0.008095	0.50	2.55	0.91	0.36	0.01125	0.01006	0.00836	1.90	7.76	3.96	1.10	0.13	0.11	0.09	8.33	33.98	17.33	4.80	0.55	0.49	0.41
ENG12	Caterpillar 3516J TA Natural Gas Compressor Engine	8760	1380	0.008095	0.50	2.55	0.91	0.36	0.01125	0.01006	0.00836	1.90	7.76	3.96	1.10	0.13	0.11	0.09	8.33	33.98	17.33	4.80	0.55	0.49	0.41
	IV is based on the Fuel Consumption Rate @ 75% Load from the Gas Engine Rating Pro Report e VOC emission factor (g/hp-hr) includes HCHO. Emission factors based on Gas Engine Rating Pro Report @ 100% Load.																								
	ons were calculated using the emis			-	-	-													NOx	со	voc	нсно	SO ₂	PM _{10 & 2.5}	Acetal- dehyde
⁴ PM Emissio	on Factor = 7.71E-05 lb/MMBTU +	7.71E-05 lb/MN	1BTU + 9.9	1E-03 lb/MMBTU =	= 0.01006 lb/	MMBTU								Total I	missions	s Per Pol	lutant (TPY	:)	179.60	1397.60	425.02	74.77	17.69	15.81	13.14
⁵ 25% safety i	factor was added to NOx on all en	gines. 25% safe	ty factor w	as added to VOC o	n 3516. VO	C lb/hr ra	tes include	e acetaldehy	de emissions	s.															

XTO ENERGY, INC. JAYHAWK COMPRESSOR STATION

COMPRESSOR ENGINES

										Co	ntrolle	ed Emi	ssions Cal	culations	6													
					Cont	rol Efficie	angy (9/-)	м	anufactu (w/ co	ntrol)	ata		AP-42 Facto					lb/ł	- 4						ta			
Source ID	Unit Description	Annual Hours	Rated HP	MMbtu/hp- hr ¹ (HHV)	со	VOC	HCOH	NOx	g/hŗ CO		нсно	SO ₂	PM _{10 & 2.5}	u" Acetal- dehyde	NOx	со	voc	нсно		PM _{10 & 2.5}	Acetal- dehyde	NOx	со	voc	tр НСНО		PM _{10 & 2.5}	Acetal- dehyde
ENG1	Caterpillar G3616 Natural Gas Compressor Engine	8760	5000	0.007476	87.0	65.0	74.0	0.30	0.40	0.30	0.04	0.0113	0.01006	0.00836	4.13	4.38	3.47	0.43	0.42	0.38	0.11	18.11	19.21	15.18	1.88	1.84	1.65	0.48
ENG2	Caterpillar G3616 Natural Gas Compressor Engine	8760	5000	0.007476	87.0	65.0	74.0	0.30	0.40	0.30	0.04	0.0113	0.01006	0.00836	4.13	4.38	3.47	0.43	0.42	0.38	0.11	18.11	19.21	15.18	1.88	1.84	1.65	0.48
ENG3	Caterpillar G3616 Natural Gas Compressor Engine	8760	5000	0.007476	87.0	65.0	74.0	0.30	0.40	0.30	0.04	0.0113	0.01006	0.00836	4.13	4.38	3.47	0.43	0.42	0.38	0.11	18.11	19.21	15.18	1.88	1.84	1.65	0.48
ENG4	Caterpillar G3616 Natural Gas Compressor Engine	8760	5000	0.007476	87.0	65.0	74.0	0.30	0.40	0.30	0.04	0.0113	0.01006	0.00836	4.13	4.38	3.47	0.43	0.42	0.38	0.11	18.11	19.21	15.18	1.88	1.84	1.65	0.48
ENG5	Caterpillar G3616 Natural Gas Compressor Engine	8760	5000	0.007476	87.0	65.0	74.0	0.30	0.40	0.30	0.04	0.0113	0.01006	0.00836	4.13	4.38	3.47	0.43	0.42	0.38	0.11	18.11	19.21	15.18	1.88	1.84	1.65	0.48
ENG6	Caterpillar G3616 Natural Gas Compressor Engine	8760	5000	0.007476	87.0	65.0	74.0	0.30	0.40	0.30	0.04	0.0113	0.01006	0.00836	4.13	4.38	3.47	0.43	0.42	0.38	0.11	18.11	19.21	15.18	1.88	1.84	1.65	0.48
ENG7	Caterpillar G3616 Natural Gas Compressor Engine	8760	5000	0.007476	87.0	65.0	74.0	0.30	0.40	0.30	0.04	0.0113	0.01006	0.00836	4.13	4.38	3.47	0.43	0.42	0.38	0.11	18.11	19.21	15.18	1.88	1.84	1.65	0.48
ENG8	Caterpillar G3616 Natural Gas Compressor Engine	8760	5000	0.007476	87.0	65.0	74.0	0.30	0.40	0.30	0.04	0.0113	0.01006	0.00836	4.13	4.38	3.47	0.43	0.42	0.38	0.11	18.11	19.21	15.18	1.88	1.84	1.65	0.48
ENG9	Caterpillar G3616 Natural Gas Compressor Engine	8760	5000	0.007476	87.0	65.0	74.0	0.30	0.40	0.30	0.04	0.0113	0.01006	0.00836	4.13	4.38	3.47	0.43	0.42	0.38	0.11	18.11	19.21	15.18	1.88	1.84	1.65	0.48
ENG11	Caterpillar 3516J TA Natural Gas Compressor Engine	8760	1380	0.008095	87.0	65.0	74.0	0.50	0.33	0.32	0.09	0.0113	0.01006	0.00836	1.90	1.01	1.29	0.28	0.13	0.11	0.03	8.33	4.42	5.63	1.25	0.55	0.49	0.14
ENG12	Caterpillar 3516J TA Natural Gas Compressor Engine	8760	1380	0.008095	87.0	65.0	74.0	0.50	0.33	0.32	0.09	0.0113	0.01006	0.00836	1.90	1.01	1.29	0.28	0.13	0.11	0.03	8.33	4.42	5.63	1.25	0.55	0.49	0.14
² The VOC er	servatively based on the Fuel Consur mission factor (g/hp-hr) includes HCI	HO. Emission f	actors base	0	0																							
	ons were calculated using the emissio on Factor = 7.71E-05 lb/MMBTU + 7.71			3 1b/MMBTU = 0.0	1006 1b/MI	MBTU											Total	Emission	s Per P	ollutant (TP	Y)	NOx	со	voc	нсно	SO ₂	PM _{10 & 2.5}	Acet- aldehyde
	factor was added to NOx on all engin						clude acetalde	ehyde emis	sions.													179.60	181.69	147.89	19.44	17.69	15.81	4.60

XTO ENERGY, INC. JAYHAWK COMPRESSOR STATION COMPRESSOR ENGINES

					Gree	enhouse	Gas Emi	ssions C	alculati	ons								
					Engine Data g/hp-hr	Fac	FR 98 tors ² MBtu			lb/hr			[
Source ID	Unit Description	Annual Hours	Rated HP	MMbtu/hp- hr ¹ (HHV)	CO2	CH ₄	N ₂ O	CO2	CH ₄	N ₂ O	CH ₄ as CO2e	N ₂ O as CO2e	CO2	CH ₄	N ₂ O	py CH₄ as CO2e	N ₂ O as CO2e	Total CO2e
ENG1	Caterpillar G3616 Natural Gas Compressor Engine	8760	5000	0.007476	455	0.00221	0.00022	5015.43	0.0824	0.0082	2.06	2.46	21967.59	0.36	0.04	9.03	10.76	21987.38
ENG2	Caterpillar G3616 Natural Gas Compressor Engine	8760	5000	0.007476	455	0.00221	0.00022	5015.43	0.0824	0.0082	2.06	2.46	21967.59	0.36	0.04	9.03	10.76	21987.38
ENG3	Caterpillar G3616 Natural Gas Compressor Engine	8760	5000	0.007476	455	0.00221	0.00022	5015.43	0.0824	0.0082	2.06	2.46	21967.59	0.36	0.04	9.03	10.76	21987.38
ENG4	Caterpillar G3616 Natural Gas Compressor Engine	8760	5000	0.007476	455	0.00221	0.00022	5015.43	0.0824	0.0082	2.06	2.46	21967.59	0.36	0.04	9.03	10.76	21987.38
ENG5	Caterpillar G3616 Natural Gas Compressor Engine	8760	5000	0.007476	455	0.00221	0.00022	5015.43	0.0824	0.0082	2.06	2.46	21967.59	0.36	0.04	9.03	10.76	21987.38
ENG6	Caterpillar G3616 Natural Gas Compressor Engine	8760	5000	0.007476	455	0.00221	0.00022	5015.43	0.0824	0.0082	2.06	2.46	21967.59	0.36	0.04	9.03	10.76	21987.38
ENG7	Caterpillar G3616 Natural Gas Compressor Engine	8760	5000	0.007476	455	0.00221	0.00022	5015.43	0.0824	0.0082	2.06	2.46	21967.59	0.36	0.04	9.03	10.76	21987.38
ENG8	Caterpillar G3616 Natural Gas Compressor Engine	8760	5000	0.007476	455	0.00221	0.00022	5015.43	0.0824	0.0082	2.06	2.46	21967.59	0.36	0.04	9.03	10.76	21987.38
ENG9	Caterpillar G3616 Natural Gas Compressor Engine	8760	5000	0.007476	455	0.00221	0.00022	5015.43	0.0824	0.0082	2.06	2.46	21967.59	0.36	0.04	9.03	10.76	21987.38
ENG11	Caterpillar 3516J TA Natural Gas Compressor Engine	8760	1380	0.008095	502	0.00221	0.00022	1527.25	0.0246	0.0025	0.62	0.73	6689.35	0.11	0.01	2.70	3.22	6695.26
ENG12	Caterpillar 3516J TA Natural Gas Compressor 8760 1380 0.008095 502 0.00221 0.0022 1527.25 0.0246 0.0025 0.62 0.73 6689.35										0.11	0.01	2.70	3.22	6695.26			
	d on the Fuel Consumption Rate @ 75% I	oad from the	Gas Engine	Rating Pro Report														
² Warming pot	ential for CH4 is 25. N2O is 298.							Total Emissions (TPY)								Tota	al CO2e	
								211276.91										

JAYHAWK COMPRESSOR STATION

HEATERS - BURNER CALCULATIONS & EXHAUST STACK FLOW & FUEL CONSUMPTION RATES

							CRITERIA	& REGULA	TED POLL	UTANTS	EMISS	IONS								
								P-42 Factors ¹ lb/MMBtu					lb/hr ²					tpy2		
So	urce ID	Promax Fuel Gas Stream	Fuel Gas HHV (BTU/SCF)		Burner Rating (MMBTU/Hr)	NOx	СО	VOC	SO ₂	PM _{10 & 2.5}	NOx	СО	VOC	SO ₂	PM _{10 & 2.5}	NOx	со	VOC	SO ₂	PM _{10 & 2.5}
1	HTR1	3. Fuel Gas	1,269	8,760	0.75	0.10	0.08	0.01	0.01	0.01	0.11	0.10	0.01	0.01	0.01	0.50	0.42	0.03	0.04	0.04
	RB1	3. Fuel Gas	1,269	8,760	2.00	0.10	0.08	0.01	0.01	0.01	0.31	0.26	0.02	0.03	0.02	1.34	1.12	0.07	0.12	0.10
	RB2	3. Fuel Gas	1,269	8,760	2.00	0.10	0.08	0.01	0.01	0.01	0.31	0.26	0.02	0.03	0.02	1.34	1.12	0.07	0.12	0.10
	RB3	3. Fuel Gas	1,269	8,760	2.00	0.10	0.08	0.01	0.01	0.01	0.31	0.26	0.02	0.03	0.02	1.34	1.12	0.07	0.12	0.10
				1				•	L											
SO2	- 5 gr/100	scf	om AP-42, Chap	oter 1, Tables 1	.4-1, 1.4-2 and 1.4-3,	converted from l	b/MMscf to lb/Ml	Mbtu by dividing	by 1,020 Btu/scf	(per AP-42, Cl	1 apter 1 gui	dance).		Tota	ıl (tpy)	NOx	СО	VOC	SO ₂	PM _{10 & 2.5}
2Bui	mers - 25%	Safety Factor												100	u ((F))	4.51	3.79	0.25	0.39	0.34

JAYHAWK COMPRESSOR STATION

HEATERS - BURNER CALCULATIONS & EXHAUST STACK FLOW & FUEL CONSUMPTION RATES

						HAZA	RDOUS AIR P	OLLUTANTS	(HAP) EM	IISSIONS	5								
							P-42 Factors ¹ lb/MMBtu					lb/hr²					tpy2		
Source ID	Promax Stream	Fuel Gas (BTU/SCF)	Operating Hours	Burner Rating (MMBTU/Hr)	Benzene	Toluene	N- Hexane	НСНО	Dichloro benzene	Benzene	Toluene	N- Hexane	НСНО	Dichloro benzene	Benzene	Toluene	N- Hexane	нсно	Dichloro benzene
HTR1	3. Fuel Gas	1,269	8760	0.75	2.1E-06	3.3E-06	1.8E-03	7.4E-05	1.2E-06	<0.001	<0.001	0.00	<0.001	<0.001	<0.001	<0.001	0.01	<0.001	<0.001
RB1	3. Fuel Gas	1,269	8760	2.00	2.1E-06	3.3E-06	1.8E-03	7.4E-05	1.2E-06	< 0.001	<0.001	0.01	<0.001	< 0.001	<0.001	<0.001	0.02	0.00	<0.001
RB2	3. Fuel Gas	1,269	8760	2.00	2.1E-06	3.3E-06	1.8E-03	7.4E-05	1.2E-06	<0.001	<0.001	0.01	< 0.001	< 0.001	<0.001	<0.001	0.02	0.00	<0.001
RB3	3. Fuel Gas	1,269	8760	2.00	2.1E-06	3.3E-06	1.8E-03	7.4E-05	1.2E-06	< 0.001	<0.001	0.01	<0.001	<0.001	<0.001	<0.001	0.02	0.00	<0.001
																		•	
¹ Source: Emi SO2 - 5 gr/100		om AP-42, Chap	ter 1, Tables 1.	4-1, 1.4-2 and 1.4-3,	converted from ll	o/MMscf to lb/MM	Ibtu by dividing	by 1,020 Btu/scf (]	per AP-42, C	1 apter 1 gui	dance).		al Individ		Benzene	Toluene	N- Hexane	НСНО	Dichloro benzene
² Burners - 25%	% Safety Factor											I	IAPS (tp	y)	0.00	0.00	0.08	0.00	0.00
													al Combi IAPS (tp		0.08	I			

JAYHAWK COMPRESSOR STATION

HEATERS - BURNER CALCULATIONS & EXHAUST STACK FLOW & FUEL CONSUMPTION RATES

Source	HTR1	RB1	RB2	RB3		Promax Stream Name	3. F Ga
Burner Rating (btu/hr)	750000	2000000	2000000	2000000		Component	Mass
Gross Heating Value (btu/scf)	1269.3	1269.3	1269.3	1269.3		Triethylene Glycol	0
3" eclipse air mixer: (Air/Gas Ratio) ¹	5/1	5/1	5/1	5/1		Water	(
Stack Temperature (°F)	1000	1000	1000	1000	-	Hydrogen Sulfide	(
Stack Diameter (ft)	1	1.5	1.5	1.5	-	Carbon Dioxide	(
Stack Height (ft)	20	20	20	20		Nitrogen	(
Fuel Consumption (scf/hr)	591	1576	1576	1576		Methane	(
Fuel Consumption (scf/day)	14181	37816	37816	37816		Ethane	
Fuel Consumption (mmscf/year)	5	14	14	14		Propane	
Air Injection Rate (scf/hr)	5909	15757	15757	15757		Isobutane	
Total exhaust flow rate @ STP (scf/hr)	6500	17332	17332	17332		n-Butane	
Γotal exhaust flow rate @ STP (scf/sec)	2	5	5	5		Isopentane	
Total exhaust flow rate @ 1000 °F (acf/hr)	18249	48664	48664	48664		n-Pentane	
Гotal exhaust flow rate @ 1000 °F (acf/sec)	5.07	14	14	14		i-C6	
Exhaust Stack Exit Velocity @ STP (ft/sec)	2.30	3	3	3		i-C7	
Exhaust Stack Exit Velocity @ 1000 °F (ft/sec)	6.45	8	8	8		Octane	(
Total CH4 (ton/yr) ²	0.32	0.85	0.85	0.85		Nonane	
Γotal N2O (ton/yr) ²	0.001	0.002	0.002	0.002		Benzene	
Γotal CO2 (ton/yr) ²	519	1385	1385	1385		Toluene	
Total CO2e (ton/yr) ²	527.51	1407	1407	1407		Ethylbenzene	(
						o-Xylene	1
						n-Hexane	
						2,2,4-Trimethylpentane	(
						Decanes Plus	(
						Decanes Plus Sat	0

¹ Air/Gas Ratio is based on the Manufacturer's Data of XTO's typical burner installations

² GHG emissions source is 40 CFR § 98.233 (n), 40 CFR § 98.233(v) for CH4 and CO2 mass emissions, 40 CFR § 98.233(z) for N2O mass emissions,

XTO ENERGY, INC. JAYHAWK COMPRESSOR STATION

STORAGE TANK EMISSIONS SUMMARY

								0010100000	IMARY										
								[-				-					
								Wo	Uncontrollec king & Breathin				Uncontrolled Flash Losses			Uncon Total En		Contr Total En	
Unit Number	Gource Description	Material Type (Oil/Produced Water)	Number of Tanks in Category	Controlled by Unit #	Control Efficiency (%)	Promax Stream Liquid Material	Material Throughput (bbls/day)	Promax Stream (Hrly)	Promax Stream (Annual)	Lb/hr	ТРҮ	Promax Stream (Hrly)	Promax Stream (Annual)	Lb/hr	ТРҮ	Lb/hr	ТРҮ	Lb/hr	ТРҮ
SKT1	Skim Tank	Produced Water	2	FL1-FL2	98	14. Skim Tank Inlet	173.54	8. Skim Tank W&B	8. Skim Tank W&B	3.62	15.85	6. Skim Tank Flash Gas	6. Skim Tank Flash Gas	1.25	5.47	4.87	21.32	0.10	0.43
SKT2 Ski	kim Tank (Backup)	Produced Water	2	FL1-FL2	98	14. Skim Tank Inlet	173.54	8. Skim Tank W&B	8. Skim Tank W&B	3.62	15.85	6. Skim Tank Flash Gas	6. Skim Tank Flash Gas	1.25	5.47	4.87	21.32	0.10	0.43
OT1 C	Condensate Tank	Condensate	4	FL1-FL2	98	11. Condensate Sales Liquid	203.55	10. Condensate Tank W&B	10. Condensate Tank W&B	4.55	19.91	22. Condensate Flash Losses Hrly	7. Condensate Tank Flash Gas	133.69	275.73	138.24	295.64	2.76	5.91
OT2 C	Condensate Tank	Condensate	4	FL1-FL2	98	11. Condensate Sales Liquid	203.55	10. Condensate Tank W&B	10. Condensate Tank W&B	4.55	19.91	22. Condensate Flash Losses Hrly	7. Condensate Tank Flash Gas	133.69	275.73	138.24	295.64	2.76	5.91
OT3 C	Condensate Tank	Condensate	4	FL1-FL2	98	11. Condensate Sales Liquid	203.55	10. Condensate Tank W&B	10. Condensate Tank W&B	4.55	19.91	22. Condensate Flash Losses Hrly	7. Condensate Tank Flash Gas	133.69	275.73	138.24	295.64	2.76	5.91
OT4 C	Condensate Tank	Condensate	4	FL1-FL2	98	11. Condensate Sales Liquid	203.55	10. Condensate Tank W&B	10. Condensate Tank W&B	4.55	19.91	22. Condensate Flash Losses Hrly	7. Condensate Tank Flash Gas	133.69	275.73	138.24	295.64	2.76	5.91
WT1 Proc	oduced Water Tank	Produced Water	2	FL1-FL2	98	12. Produced Water Liquid	170.55	9. Water Tank W&B	9. Water Tank W&B	0.11	0.47	5. Water Tank Flash Gas	5. Water Tank Flash Gas	0.00	0.00	0.11	0.47	0.00	0.01
WT2 Proc	oduced Water Tank	Produced Water	2	FL1-FL2	98	12. Produced Water Liquid	170.55	9. Water Tank W&B	9. Water Tank W&B	0.11	0.47	5. Water Tank Flash Gas	5. Water Tank Flash Gas	0.00	0.00	0.11	0.47	0.00	0.01
			Storage Tank E	missions						25.64	112.28			537.26	1113.85	562.90	1226.13	11.26	24.52

XTO ENERGY, INC. JAYHAWK COMPRESSOR STATION OIL TRUCK LOADING LOSSES - UNCONTROLLED

Promax Stream Production 11. Condensate Sale	es Liquid	
Promax Stream Emissions 10. Condensate Ta	ınk W&B	
Controlled/Uncontrolled UNCONTROL	LLED	
Operating Schedule ^c 100	Day/Year	
Condensate Production 814	bbls / Day	
· · · · · · · · · · · · · · · · · · ·		
Promax Report Results		
LL= 12.46 * SPM/T * (1-EFF/100)		
Saturation Factor (S) =	0	.6
Average True Vapor Pressure of liquid loaded (P) ^a =	9.	14
Max True Vapor Pressure of liquid loaded (P) ^a =	10	.63
Average Temperature of bulk liquid loaded in Rankin (T) ^a =	529	9.10
Max Temperature of bulk liquid loaded in Rankin (T) ^a =	538	3.27
Molecular Weight (M) ^a =	54	.80
Control Efficiency * Collection Efficiency (EFF)=		0
Hydrocarbon Content (%wt) ^a =		00
VOC Content (wt%) ^a =		92
HAP Conent $(wt\%)^a =$		04
Average Uncontrolled LL (lb Total HC / bbl Throughput) ^b =		972
Average Uncontrolled LL (lb VOC / bbl Throughput) ^b =		736
Max Uncontrolled LL (lb Total HC / bbl Throughput) ^b =		398
Max Uncontrolled LL (lb VOC / bbl Throughput) ^b =		129
Estimated Throughput (bbls/Year) =		420
Truck Loading Rate (bbls/hour) = Estimated # of Loads (Approximately 1 hr/Load) =		10 88
Estimated # of Loads (Approximatery 111/Load) =		
	lb/hr	TPY
Total Hydrocarbon Emissions	71.36	12.10
Total VOC Emissions	lb/hr	TPY
Total VOC Emissions	65.70	11.14
	lb/hr	TPY
Total HAP Emissions	0.03	0.01

XTO ENERGY, INC. JAYHAWK COMPRESSOR STATION OIL TRUCK LOADING LOSSES - UNCONTROLLED

Component		Total Speciated Emitted During I	
	Mass Fraction ^d	lb/hr ^d	ton/yr
Triethylene Glycol	0.00	0.00	0.00
Water	0.00	0.00	0.00
Hydrogen Sulfide	0.00	0.00	0.00
Carbon Dioxide	0.00	0.00	0.00
Nitrogen	0.00	0.00	0.00
Methane	0.00	0.17	0.03
Ethane	0.08	5.49	0.93
Propane	0.24	17.42	2.95
Isobutane	0.08	5.87	1.00
n-Butane	0.24	17.45	2.96
Isopentane	0.08	5.99	1.02
n-Pentane	0.10	6.98	1.18
i-C6	0.08	5.93	1.01
i-C7	0.03	2.39	0.40
Octane	0.01	0.62	0.10
Nonane	0.00	0.09	0.01
Benzene	0.00	0.19	0.03
Toluene	0.00	0.16	0.03
Ethylbenzene	0.00	0.00	0.00
o-Xylene	0.00	0.03	0.01
n-Hexane	0.04	2.58	0.44
2,2,4-Trimethylpentane	0.00	0.00	0.00
Decanes Plus	0.00	0.00	0.00
Decanes Plus Sat	0.00	0.00	0.00
Total HC	1.00	71.36	12.10
Total VOC	0.92	65.70	11.14
Total HAP	0.04	2.97	0.50
Heating Value (Btu/scf)	3080.19	3080.19	3080.19
Molecular Weight (lb/lbmol)	54.80	54.80	54.80
SO2 Emissions (lb/hr)	N/A	N/A	N/A
Operating Hours (hr/yr)	N/A	N/A	2400
Mass Flow	N/A	71.36 lb/hr	12.10 ton/yr
Volumetric Flow (scf/hr)	N/A	494.13	83.78
Heat Release (MMBtu/hr)	N/A	1.52	0.26

Footnotes:

^a Values were obtained from Promax.

^b Loading emissions include total hydrocarbons as calculated using AP-42, Section 5.2.

Condensate tanks are only trucked out when transfer to pipeline is unavailable.

d The component speciation was obtained from Promax Stream " and multiplied by the total hydrocarbon emissions. (VOC =

0.00 lb/hr * 0.00 wt% VOC = 0.00 lb/hr)

e Loading emissions are uncontrolled.

XTO ENERGY INC. JAYHAWK COMPRESSOR STATION FLARE 1-3 EMISSION SUMMARY

						F	lare Emis	sions Su	mmary T	able								
Stream Source	Stream Source	N	Ox	с	0		VOC Total HAPs)	s	O ₂	PM	0 & 2.5	Total	HAPs	CO2e	n-He	exane	Ben	zene
Stream Source	oliculi oblice	lb/hr	ТРҮ	lb/hr	ТРҮ	lb/hr	ТРҮ	lb/hr	ТРҮ	lb/hr	ТРҮ	lb/hr	ТРҮ	ТРҮ	lb/hr	ТРҮ	lb/hr	ТРҮ
FL1-FL2 Pilot	FL1 Pilot/Purge	0.33	1.46	0.67	2.92	0.47	2.07	0.00	0.01	0.01	0.06	0.00	0.02	1744.35	0.00	0.02	0.00	0.00
FLI-FL2 Fliot	FL2 Pilot / Purge	0.33	1.46	0.67	2.92	0.47	2.07	0.00	0.01	0.01	0.06	0.00	0.02	1744.35	0.00	0.02	0.00	0.00
	PW Tank Vapors (WT1-2)	0.00	0.00	0.00	0.01	0.00	0.02	0.00	0.00	0.00	0.00	0.00	0.01	5.77	0.00	0.00	0.00	0.00
FI 1 FLON	Skim Tank Vapors (SKT1-2)	0.03	0.13	0.06	0.26	0.19	0.85	0.00	0.00	0.00	0.00	0.01	0.05	133.28	0.01	0.04	0.00	0.00
FL1-FL2 Norm	Oil Tank Vapors (OT1-4)	1.76	7.35	3.52	14.68	11.06	23.65	0.01	0.03	0.03	0.14	0.46	1.00	7641.37	0.36	0.81	0.04	0.09
	Low Presure Separator Vapors Normal Operation	0.06	0.23	0.12	0.46	0.27	1.08	0.00	0.00	0.00	0.01	0.01	0.04	276.51	0.01	0.03	0.00	0.00
	Low Presure Separator Vapors VRU Downtime	2.94	1.29	5.86	2.57	13.70	6.00	0.04	0.02	0.08	0.03	0.47	0.21	1536.18	0.38	0.17	0.05	0.02
FL1-FL2 SSM	HP Flare Blowdowns	0.17	0.08	0.33	0.17	0.24	0.12	0.00	0.00	0.01	0.00	0.00	0.00	99.40	0.00	0.00	0.00	0.00
	HP Flare Inlet Gas Flaring	538.55	6.73	1075.15	13.44	979.03	12.24	4.87	0.06	22.17	0.28	27.05	0.34	8357.04	23.90	0.30	1.28	0.02
Total	Total Emissions	544.17	18.74	1086.37	37.42	1005.45	48.09	4.93	0.15	22.31	0.59	28.01	1.68	21538.25	24.66	1.38	1.37	0.14
FL1-FL2 Pilot	Total Flare Pilot/Purge Emissions	0.67	2.93	1.33	5.84	0.94	4.13	0.01	0.03	0.03	0.13	0.01	0.04	3488.70	0.01	0.04	0.00	0.00
FL1-FL2 Norm	Total Flare Normal Operations	1.85	7.72	3.69	15.41	11.53	25.60	0.01	0.04	0.03	0.15	0.48	1.10	8056.93	0.38	0.88	0.04	0.11
FL1-FL2 SSM	Total Flare SSM	541.65	8.10	1081.35	16.17	992.97	18.36	4.91	0.08	22.25	0.31	27.52	0.55	9992.62	24.28	0.47	1.33	0.04
Total	Total Emissions	544.17	18.74	1086.37	37.42	1005.45	48.09	4.93	0.15	22.31	0.59	28.01	1.68	21538.25	24.66	1.38	1.37	0.14
FL1-FL2 HP	High Pressure Gas Flaring (No Pilot)	538.72	6.82	1075.48	13.61	979.27	12.36	4.87	0.06	22.17	0.28	27.05	0.34	8456.44	23.90	0.30	1.28	0.02
FL1-FL2 LP	Low Pressure Gas Flaring (No Pilot)	4.79	9.00	9.56	17.98	25.23	31.61	0.05	0.06	0.11	0.18	0.95	1.30	9593.11	0.76	1.05	0.09	0.13

JAYHAWK COMPRESSOR STATION FLARE 1-3 HOURLY EMISSIONS WINTER SEASON - NORMAL OPERATIONS

							171	APE 1-2 HOURY	- NORMAL OPER	ATIONS									
							FL	ARE 1-5 HOURE 1	- NORMAL OF ER	ATIONS									
					Uncert	Mariana II	ourly Emission Rat	and Committie	a to Flam, a,b						1	Criter	ia Pollutant Emi	cions from	Elaro ^e
		SSM		HP Flare	LP Flare		apors (OT1-4)		apors (SKT1-2)	PW Tank Va	pors (WT1-2)	Low Pres Sep ^d				Cinei	a i onutant Enti-	5510115 110111	riare
Stream	HP Flare Blowdowns ^f	Low Pres Sep ^d Flash (VRU Off)	Inlet Gas Flaring ⁸	Pilot/Purge ^c	LP Flare Pilot/Purge ^c	Flash	W&B	Flash	W&B	Flash	W&B	Flash (VRU On) 98% Col Eff	Total Vapors to Flare	Destruction	Total		Emission Bata		
Promax Stream Name	17. HPF Blowdowns	1. LP Separator Gas	19. Inlet Flaring	15. HPF Pilot/ Purge Gas	16. LPF Pilot/ Purge Gas	22. Condensate Flash Losses Hrly	10. Condensate Tank W&B	6. Skim Tank Flash Gas	8. Skim Tank W&B	5. Water Tank Flash Gas	9. Water Tank W&B	1. LP Separator Gas	(Uncontrolled Max Hourly)	Efficiency	Flare Exhaust (controlled)	Component	Emission Rate	Emission Factor	Emission Factor Units
Component	(lb/hr)	(lb/hr)	(1b/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(%)	(1b/hr)		(lb/hr)		
Triethylene Glycol	0.00	0.00	0.98	0.00	0.00	0.00	0.00	0.00	0.00	0	0.00	0.00	0.98	98%	0.02	NO _X	544.17	0.138	lb/MMBtu
Water	0.00	7.45	5.62	0.00	0.00	0.00	0.00	0.03	0.13	0.00	0.13	0.15	13.52	0%	13.52	со	1086.37	0.2755	lb/MMBtu
Hydrogen Sulfide	0.00	0.02	2.59	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	2.62	98%	0.05	SO ₂	4.93		
Carbon Dioxide	0.14 0.64	1.27 0.93	411.01 1874.31	0.36	0.19	0.11 0.00	0.00	0.00	0.01	0.00	0.01	0.03	413.13 1878.46	0%	413.13	PM10	22.31	7.60 7.60	lb/MMscf
Nitrogen Methane	30.88	126.60	91413.17	81.13	42.59	1.27	0.00	0.00	0.00	0.00	0.00	2.53	91698.33	0% 98%	1878.46 1833.97	PM2.5 N2O	22.31 0.87	0.00022	lb/MMscf lb/MMBtu
Ethane	9.74	163.71	30115.57	25.59	13.43	42.37	1.52	0.08	0.01	0.00	0.01	3.27	30375.57	98%	607.51	H ₂ S	0.05	0.00022	ib/ wiwibiu
Propane	6.70	252.44	22642.86	17.60	9.24	42.37	4.82	0.25	0.67	0.00	0.05	5.05	23084.80	98%	461.70	<u> </u>	0.00		
Isobutane	1.08	63.24	4178.60	2.85	1.49	48.41	1.63	0.23	0.57	0.00	0.03	1.26	4299.39	98%	85.99	LPS Vap	or Controls / Fla	re DRE	
n-Butane	2.39	165.60	10051.87	6.29	3.30	152.63	4.83	0.65	2.39	0.00	0.04	3.31	10393.31	98%	207.87		ection Efficiency		
Isopentane	0.54	50.92	2947.97	1.43	0.75	50.52	1.66	0.23	0.86	0.00	0.01	1.02	3055.91	98%	61.12		Operations)	98%	
n-Pentane	0.56	58.45	3381.48	1.48	0.78	60.13	1.93	0.26	1.01	0.00	0.01	1.17	3507.27	98%	70.15	LPS VRU	Downtime	10.00%	(876 hrs)
i-C6	0.29	45.76	2735.89	0.77	0.40	24.30	1.64	0.22	0.83	0.00	0.01	0.92	2811.04	98%	56.22	(MSS O	perations)	10.00%	
i-C7	0.07	18.66	1239.87	0.18	0.10	26.60	0.66	0.09	0.34	0.00	0.00	0.37	1286.95	98%	25.74		ction Efficiency	98%	
Octane	0.01	5.44	373.94	0.02	0.01	4.92	0.17	0.03	0.10	0.00	0.00	0.11	384.73	98%	7.69		24+		
Nonane	0.00	0.87	46.16	0.00	0.00	0.54	0.02	0.00	0.02	0.00	0.00	0.02	47.64	98%	0.95		ction Efficiency	98%	
Benzene	0.01	2.30	63.97	0.02	0.01	1.84	0.05	0.01	0.04	0.00	0.04	0.05	68.33	98%	1.37		C3		l
Toluene	0.00	1.87 0.05	71.14 2.48	0.01	0.00	1.52	0.04	0.01	0.03	0.00	0.03	0.04	74.71 2.58	98% 98%	1.49 0.05				1
Ethylbenzene o-Xylene	0.00	0.05	19.96	0.00	0.00	0.30	0.00	0.00	0.00	0.00	0.00	0.00	2.58	98%	0.05	H2S molecula SO2 molecula		34.08 64.06	
n-Hexane	0.10	19.07	19.90	0.27	0.14	17.26	0.71	0.09	0.35	0.00	0.00	0.38	1233.17	98%	24.66	Molar Volum		379,484	
2,2,4-Trimethylpentane	0.00	0.00	0.00	0.00	0.00	1.06	0.00	0.00	0.00	0.00	0.00	0.00	1.06	98%	0.02	Flare Operatin		8760	
Decanes Plus	0.00	0.04	0.68	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.72	98%	0.01	Lease of each			1
Decanes Plus Sat	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	98%	0.00				
Total	53.17	985.17	172774.91	139.69	73.34	578.52	19.75	2.87	7.47	0.00	0.38	19.70	174654.97	-	5752.10				
Total VOC	11.77	685.17	48951.66	30.92	16.23	534.77	18.18	2.50	7.24	0.00	0.21	13.70	50258.65		1005.17				
Total HAP	0.11	23.75	1352.34	0.30	0.16	22.03	0.82	0.11	0.43	0.00	0.09	0.47	1400.61	-	28.01				
Heating Value (Btu/scf)	1,269.30	2,154.40	1,338.01	1269.30	1269.30	3064.41	3080.19	2769.57	3346.32	0.00	1149.83	2154.40	1343.20						
Molecular Weight (lb/lbmol)	21.20	37.83	22.48	21.20	21.20	54.51	54.80	49.73	61.12	0.00	32.03	37.83	-						
Operating Hours (hr/yr) Mass Flow (lb/hr)	1,000 53.17	876 985.17	20 172,774.91	8760 139.69	8760 73.34	8760 578.52	8760 19.75	8760 2.87	8760 7.47	8760 0.00	8760 0.38	7884 19.70	174654.97						
Volumetric Flow (scf/hr)	952	9.881	2,916,667	2,500	1,313	4,027	136.77	21.88	46.41	0.00	4.53	197.63	2935746.45						
Heat Release (MMBtu/hr)	1.21	21.29	3,902.54	3.17	1.67	12.34	0.42	0.06	0.16	0.00	0.01	0.43	3943.28						
				60000.00	31500.00														
	(lb/hr)	(1b/hr)	(lb/hr)	(1b/hr)	(lb/hr)	nbustion Emission (lb/hr)	s from Flare (lb/hr)	(1b/hr)	(1b/hr)	(lb/hr)	(1b/hr)	(lb/hr)	(1b/hr)						
Total NO _x	(lb/hr) 0.17	(lb/hr) 2.94	(1b/hr) 538.55	(lb/hr) 0.44	(1b/hr) 0.23	(lb/hr) 1.70	(1b/hr) 0.06	(1b/hr) 0.01	(1b/hr) 0.02	(lb/hr) 0.00	(1b/hr) 0.00	(1b/hr) 0.06	(lb/hr) 544.17						
Total CO	0.17	5.86	1075.15	0.44	0.23	3.40	0.08	0.01	0.02	0.00	0.00	0.08	1086.37						
Total SO2	0.00	0.04	4.87	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	4.93						
Total PM ₁₀	0.01	0.08	22.17	0.02	0.01	0.03	0.00	0.00	0.00	0.00	0.00	0.00	22.31						
Total PM25	0.01	0.08	22.17	0.02	0.01	0.03	0.00	0.00	0.00	0.00	0.00	0.00	22.31						
Total VOC after comb.	0.24	13.70	979.03	0.62	0.32	10.70	0.36	0.05	0.14	0.00	0.00	0.27	1005.45						
Total HAP after comb.	0.00	0.47	27.05	0.01	0.00	0.44	0.02	0.00	0.01	0.00	0.00	0.01	28.01						
Total n-Hexane after comb.	0.00	0.38	23.90	0.01	0.00	0.35	0.01	0.00	0.01	0.00	0.00	0.01	24.66						
Total Benzene after comb.	0.00	0.05	1.28	0.00	0.00	0.04	0.00	0.00	0.00	0.00	0.00	0.00	1.37						
Total CH ₄	0.47	1.08	1306.41	1.23	0.65	0.01	0.00	0.00	0.00	0.00	0.00	0.02	1309.86						
Total N ₂ O	0.000	0.01	1.90	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	1.92						
Total CO ₂	188.08	3587.65	647106.92	494.12	259.41	1795.42	61.31	9.39	22.63		1.32	71.75	653,598.01						
Total CO ₂ e	199.85	3617.61	680332.48	525.31	275.79	1797.39	61.38	9.42	22.66	0.00	1.32	72.35	686,915.56						

Footnotes: *Uncontrolled stream properties determined via ProMax.

Tank emissions determined in ProMax are calculated at the maximum daily liquid surface temperature.

Pilot fuel gas emissions are conservatively calculated based on observed flowrates

Controlled Emissions Were Calculated by the Following: Uncontrolled Emissions * (1 - VRU Efficiency) * (1 - Flare Destruction Efficiency)

Flare CO and NOx emission factors from TCEQ Air Permit Techincal Guidance for Chemical Sources. PM and PM2.5 emission factors from AP-42, Table 1.4-1 and 1.4-2, July 1998. SO2 emissions assume 100% conversion of H2S to SO2.

Blowdowns are estimated to be @ 952 SCF per blowdown. XTO conservatively estimates 1000 blowdowns per year and 1 blowdown per hour

 $_3$ XTO conservatively estimates 58 MMscf of inlet gas flaring per year @ 2.92 MMscf/hr max rate

1 GHG emissions source is 40 CFR § 98.233 (n), 40 CFR § 98.233(v) for CH4 and CO2 mass emissions, 40 CFR § 98.233(z) for N2O mass emissions.

XTO ENERGY INC. JAYHAWK COMPRESSOR STATION FLARE 1-3 ANNUAL EMISSIONS WINTER SEASON - NORMAL OPERATIONS

					Uncap		ourly Emission Rat				(1971)					Criter	ia Pollutant Emi	ssions from	Flare *
Stream	HP Flare	SSM Low Pres Sep ^d	Inlet Gas Flaring ⁸	HP Flare Pilot/Purge ^c	LP Flare Pilot/Purge ^c	Oil Tank V Flash	apors (OT1-4) W&B	Skim Tank V Flash	apors (SKT1-2) W&B	PW Tank Va Flash	pors (PWT1-2) W&B	Low Pres Sep ^d Flash (VRU On)	Total	Destruction	Total		Emission Rate		
Promax Stream Name	Blowdowns ^f 17. HPF	Flash (VRU Off) 1. LP Separator	19. Inlet Flaring	15. HPF Pilot/	16. LPF Pilot/	7. Condensate	10. Condensate	6. Skim Tank	8. Skim Tank	5. Water Tank	9. Water Tank	98% Col Eff 1. LP Separator	Vapors to Flare (uncontrolled)	Efficiency	Flare Exhaust (controlled)	Component		Emission Factor	Emise Factor
Component	Blowdowns (ton/vr)	Gas (ton/yr)	(han (an)	Purge Gas (ton/yr)	Purge Gas (ton/yr)	Tank Flash Gas	Tank W&B (ton/vr)	Flash Gas	W&B	Flash Gas (ton/vr)	W&B (ton/vr)	Gas (ton/vr)	(1	(%)	(ton/vr)		(transform)	-	
Triethylene Glycol	(ton/yr) 0.00	(ton/yr) 0.00	(ton/yr) 0.01	(ton/yr) 0.00	(ton/yr) 0.00	(ton/yr) 0.00	(ton/yr) 0.00	(ton/yr) 0.00	(ton/yr) 0.00	(ton/yr) 0.00	(ton/yr) 0.00	(ton/yr) 0.00	(ton/yr) 0.01	(%)	(ton/yr) 0.00	NO _X	(ton/yr) 18.74	0.138	lb/M
Water	0.00	3.26	0.07	0.02	0.00	3.00	0.00	0.15	0.56	0.00	0.56	0.59	8.24	0%	8.24	CO	37.42	0.2755	lb/M
Hydrogen Sulfide	0.00	0.01	0.03	0.01	0.01	0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.08	98%	0.00	SO ₂	0.15		10711
Carbon Dioxide	0.07	0.56	5.14	1.57	0.83	0.44	0.02	0.02	0.04	0.00	0.03	0.10	8.81	0%	8.81	PM ₁₀	0.59	7.60	lb/N
Nitrogen	0.32	0.41	23.43	7.35	3.86	0.04	0.00	0.00	0.00	0.00	0.00	0.07	35.48	0%	35.48	PM2.5	0.59	7.60	lb/N
Methane	15.44	55.45	1142.66	355.36	186.56	17.62	0.20	0.35	0.04	0.00	0.02	9.98	1783.70	98%	35.67	N ₂ O	0.03	0.00022	lb/M
Ethane	4.87	71.71	376.44	112.07	58.84	106.47	6.65	1.10	0.39	0.00	0.12	12.91	751.58	98%	15.03	H ₂ S	0.00		
Propane	3.35	110.57	283.04	77.10	40.48	320.02	21.11	2.97	2.95	0.00	0.22	19.90	881.70	98%	17.63				-
Isobutane	0.54	27.70	52.23	12.47	6.55	103.04	7.12	1.00	2.51	0.00	0.05	4.99	218.20	98%	4.36		or Controls / Fla	ire DRE	_
n-Butane	1.20	72.53	125.65	27.55	14.46	287.44	21.15	2.87	10.49	0.00	0.19	13.06	576.57	98%	11.53		ection Efficiency	98.0%	
Isopentane	0.27	22.30	36.85	6.27	3.29	95.82	7.26	0.99	3.76	0.00	0.05	4.01	180.88	98%	3.62		Operations)		_
n-Pentane	0.28	25.60	42.27	6.49	3.41	111.46	8.46	1.16	4.43	0.00	0.02	4.61	208.19	98%	4.16		Downtime	10.0%	(876 h
i-C6	0.15	20.04	34.20	3.38	1.77	89.49	7.19	0.94	3.65	0.00	0.02	3.61	164.45	98%	3.29		perations)		
i-C7 Octane	0.03	8.17 2.38	15.50 4.67	0.80	0.42	36.67 10.61	2.89 0.75	0.39	1.50 0.43	0.00	0.01	0.43	67.85 19.52	98% 98%	1.36 0.39		ction Efficiency C4+	98%	
Nonane	0.00	0.38	4.67	0.09	0.05	10.61	0.75	0.11 0.02	0.43	0.00	0.00	0.43	2.94	98%	0.39		C4+ ction Efficiency		
Benzene	0.00	1.01	0.58	0.00	0.00	4.49	0.23	0.02	0.18	0.00	0.18	0.07	7.22	98%	0.08		C3	98%	
Toluene	0.00	0.82	0.89	0.04	0.04	3.66	0.20	0.04	0.15	0.00	0.15	0.15	6.11	98%	0.14			·	-
Ethylbenzene	0.00	0.02	0.03	0.00	0.00	0.10	0.01	0.00	0.00	0.00	0.00	0.00	0.17	98%	0.00	H2S molecular	r weight	34.08	1
o-Xylene	0.00	0.20	0.25	0.00	0.00	0.90	0.04	0.01	0.04	0.00	0.04	0.04	1.52	98%	0.03	SO2 molecular		64.06	
n-Hexane	0.05	8.35	14.93	1.19	0.62	37.44	3.13	0.40	1.53	0.00	0.01	1.50	69.15	98%	1.38	Molar Volume		379.484	
2,2,4-Trimethylpentane	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	98%	0.00	Flare Operatin	ig Hours	8760	1
Decanes Plus	0.00	0.02	0.01	0.00	0.00	0.07	0.00	0.00	0.00	0.00	0.00	0.00	0.10	98%	0.00	-			_
Decanes Plus Sat	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	98%	0.00				
Total	26.58	431.51	2159.69	611.83	321.21	1230.50	86.51	12.56	32.74	0.00	1.67	77.67	4992.46	-	151.32				
Total VOC	5.88	300.11	611.90	135.44	71.10	1102.91	79.64	10.94	31.70	0.00	0.94	54.02	2404.57	-	48.09				
Total HAP	0.06	10.40	16.90	1.30	0.68	46.58	3.60	0.49	1.90	0.00	0.37	1.87	84.17	-	1.68]			
Heating Value (Btu/scf)	1269.30	2154.40	1338.01	1269.30	1269.30	2915.86	3080.19	2769.57	3346.32	0.00	1149.83	2154.40	1757.26						
Molecular Weight (lb/lbmol)	21.20	37.83	22.48	21.20	21.20	51.88	54.80	49.73	61.12	0.00	32.03	37.83	-						
Operating Hours (hr/yr)	1000 26.58	876 431.51	25 2159.69	8760 611.83	8760 321.21	8760 1230.50	8760	8760 12.56	8760 32.74	8760 0.00	8760 1.67	7884 77.67	- 4992.46						
Mass Flow (ton/yr) Volumetric Flow (MMscf/yr)	26.58	431.51 8.66	2159.69	611.83 21.90	321.21 11.50	1230.50 35.28	86.51 1.20	0.19	32.74	0.00	0.04	1.56	4992.46						
Heat Release (MMBtu/yr)	1207.83	18648.47	97563.43	27797.66	14593.77	102867.32	3690.47	530.88	1360.44	0.00	45.58	3356.72	271662.57						
	(ton/yr)	(ton/yr)	(ton/yr)	(ton/yr)	(ton/yr)	nbustion Emission (ton/yr)	s from Flare (ton/yr)	(ton/yr)	(ton/yr)	(ton/yr)	(ton/yr)	(ton/yr)	(ton/yr)						
Total NO _v	0.08	1.29	6.73	1.92	1.01	7.10	0.25	0.04	0.09	0.00	0.00	0.23	18.74						
Total CO	0.17	2.57	13.44	3.83	2.01	14.17	0.51	0.07	0.19	0.00	0.01	0.46	37.42						
Total SO2	0.00	0.02	0.06	0.02	0.01	0.03	0.00	0.00	0.00	0.00	0.00	0.00	0.15						
Total PM ₁₀	0.00	0.02	0.28	0.08	0.04	0.13	0.00	0.00	0.00	0.00	0.00	0.01	0.59						
Total PM2.5	0.00	0.03	0.28	0.08	0.04	0.13	0.00	0.00	0.00	0.00	0.00	0.01	0.59						
Total VOC after comb.	0.12	6.00	12.24	2.71	1.42	22.06	1.59	0.22	0.63	0.00	0.02	1.08	48.09						
Total HAP after comb.	0.00	0.21	0.34	0.03	0.01	0.93	0.07	0.01	0.04	0.00	0.01	0.04	1.68						
Total n-Hexane after comb.	0.00	0.17	0.30	0.02	0.01	0.75	0.06	0.01	0.03	0.00	0.00	0.03	1.38						
Total Benzene after comb.	0.00	0.02	0.02	0.00	0.00	0.09	0.00	0.00	0.00	0.00	0.00	0.00	0.14						
Total CH ₄	0.23	0.47	16.33	5.38	2.83	0.21	0.00	0.00	0.00	0.00	0.00	0.08	25.55						
Total N ₂ O	0.000	0.00	0.01	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.03						
Total CO2	93.51	1523.80	7945.58	2152.15	1129.88	7376.27	256.22	39.44	93.72	0.00	5.76	274.28	20890.62						
Total CO2e	99.40	1536.18	8357.04	2287.67	1201.03	7385.00	256.37	39.51	93.77	0.00	5.77	276.51	21,538.25						
Footnotes: "Uncontrolled stream properties detern ^b Tank emissions determined in ProMax Plof fuel gas emissions are cosservati ^d Controlled Emissions Were Cakulated "Flarc CO and NOx emission factors fr Blowdowns are estimated to be @ 952	nined via ProMax. care calculated at the r vely calculated based of by the Following: Uno om TCEQ Air Permit T SCF per blowdown. X	naximum daily liquid n observed flowrates controlled Emissions * echincal Guidance for TO conservatively est	surface temperature. (1 - VRU Efficiency) * Chemical Sources. Pl imates 1000 blowdow	(1 - Flare Destruc M and PM2.5 emi	tion Efficiency)	AP-42, Table 1.4-1 ar													
	SCF per blowdown. X scf of inlet gas flaring	TO conservatively est per year @ 2.92 MMsc	imates 1000 blowdow f/hr max rate	ns per year and 1	blowdown per ho	ur													

JAYHAWK COMPRESSOR STATION

HPF FLARE BLOWDOWN GAS ROUTED TO FLARE (EXAMPLE CALCULATION)

) $E_{s,CH4} = V_a * 1$	X _{CH4} * [(1- η)*	* Z _L + Z _U]	=	11,053.82	SCF/Yr		Source	Annual Volume
Va =	951,570.00						17. HPF Blowdowns	951,570.00
X _{CH4} =	0.580820292	2						
N =	0.98							
$Z_L =$	1.00						Total	951,570.00
$Z_U =$	0.00							
) E _{s,CO2} (uncor	nbusted) = V	* X _{CO2}	=	2,447.09	SCF/Yr			
	951,570.00				,			
$X_{CO2} =$	0.0026							
s) E _{s,CO2} (comb	usted) = Σ (η	* Va * Yj * Rj *	Z _L)					
N =	0.98				_			
$V_a =$			Rj =		$E_{a, CO2} =$			
Y _J =	Methane	0.5808	1		541,637.34			
	Ethane	0.1832	2		341,643.21			
	Propane	0.1260	3		352,523.10			
	Butane	0.0654	4		243,978.51			
_	Pentane +	0.0280	5		130,567.61			
Z _L =	1.00				1,610,349.77	SCF/Yr		
) Mass _{s,i} = E _{s,i}								
$E_{s,i}$ (CH4) =								
E _{s,i} (CO2) =	1,612,796.8							
p _i (CH4) =	0.0192	kg/ft3	=	0.21	metric tons			
$p_i(CO2) =$	0.0526	kg/ft3	=	84.83	metric tons			
5) $CO_2e = CO_2$	+ (CH ₄ X GW	VP)	short tons	CO ₂ e				
CO2 =	84.83	=	93.51	93.51				
CH4 =	0.21	=	0.23	5.85				
CH4 GWP =	25			99.36				

XTO ENERGY INC. JAYHAWK COMPRESSOR STATION DEHYDRATORS 1-3 VAPORS ROUTED TO VAPOR COMBUSTOR (VC1)

VOC/HAP Emissions for Dehydration Units (DEHY1 - DEHY3) - Routed to Vapor Combustor (VC1)

tolecular Weight (lb/lbmol) 21.2 perating Hours (hr/yr) 8.7 tass Flow 13.971 olumetric Flow 250 sc	r) (() 0 9, 0 9, 0 9, 4 - 5 - 5 - 3 - 0 3, 0 3, 0 3, 0 3, 0 3, 0 3, 0 3, 0 1, 0 1, 0 1, 0 1, 0 1, 0 1, 0 1, 0 1, 0 1, 0 1, 0 1, 0 1, 0 1, 0 1, 0 1, 0 1, 0 1, 0 1,	C1 Pilot Fuel (ton/yr) 967E-05 2.16E-03 957E-04 0.16 0.74 0.74 35.54 11.21 7.71 1.25 2.75 0.63 0.65 0.34 0.05 0.34 0.01 3.38E-03 0.01 3.38E-03 0.01 3.38E-03 0.01 0.332E-04 0.12	DEHY1-3 SHI (lb/lr) (lb/lr) (lb/lr) (lb/lr) 0.0 1.87 0.15 2.39 0.02 9.50 2.215 3.847 6.77 27.45 10.71 10.71 14.75 10.77 10.17 14.75 10.17 10.17 2.99 0.31 0.02 7.52 3.74 0.03 0.02 1.52 3.74 0.03 0.03 0.03 0.14 0.00 0	Column Emissions	Total Vapors to Con (Uncon 0.00 1.87 0.15 2.43 0.18 17.61 24.71 40.23 7.05 28.08 10.86 14.90 0.025 3.01 0.33 0.02 7.52 3.74 0.03 0.36 4.17 0.00 0.00	(ton/yr) 0.00 8.20 0.67 10.63 0.81 77.15 108.24 176.22 30.88 122.98 47.56 65.24 44.90 13.16 1.36 0.07 32.96 16.36 0.15 1.58 18.26 0.00	Destruction Efficiency (%) 98% 98% 98% 98% 98% 98% 98% 98% 98% 98%	Combustion D (cont (lb/hr) 0.00 2.43 0.18 0.35 0.49 0.80 0.14 0.56 0.22 0.30 0.21 0.06 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.08	otal everce(s) Exhaust rolled) (ton/yr) 0.00 8.20 0.01 10.63 0.81 1.54 2.16 3.52 0.62 2.46 0.95 1.30 0.26 0.03 0.00 0.66 0.33 0.00 0.03 0.03 0.03 0.03	Component NO _x CO SO ₂ PM ₁₀ PM ₃₅ PM ₅₅ PM ₅₀ H ₂ S Combustion Devi Efficient Combustion Devi H12S molecular wei SO2 molecular wei Molar Volume (scf, Combustor Operat	cy C4+ ice Efficiency C3 ght ght /lbmol)	Emission Factor 0.138 0.2755 7.60 0.00022 - 98% 98% 98% 98% 34.08 64.06 379.484 8760	Emission Factor Unit lb/MMBtt lb/MMBtt lb/MMsc lb/MMsc lb/MMBtt
Component (Ib/) Triethylene Glycol 0.0 Water 0.0 Hydrogen Sulfide 0.00 Carbon Dioxide 0.00 Nitrogen 0.1 Methane 8.1 Ethane 2.5 Propane 1.7 Isobutane 0.2 n-Butane 0.6 Isopentane 0.1 i-C6 0.00 i-C7 0.00 Octane 0.00 Benzene 0.00 Toluene 0.00 o-Xylene 0.00 o-Xylene 0.00 Decanes Plus 0.00 Total 135 Total HAP 0.00 cating Value (Btu/scf) 1.265 olocular Weight (Ib/Ibmol) 221 perating Hours (hy'y) 8.77 ass Flow 0.32 MM	r) (() 0 9, 0 9, 0 9, 4 - 5 - 5 - 3 - 0 3, 0 3, 0 3, 0 3, 0 3, 0 3, 0 3, 0 1, 0 1, 0 1, 0 1, 0 1, 0 1, 0 1, 0 1, 0 1, 0 1, 0 1, 0 1, 0 1, 0 1, 0 1, 0 1, 0 1, 0 1,	(ton/yr) (ton/yr) 9.67E-05 2 2.16E-03 5 0.16 0.74 0.16 0.74 3.55.4 1 1.12 7.71 1.25 2.75 0.63 0.65 0.34 0.08 0.01 3.38E-04 0.012 -	Combustion (lb/hr) 0.00 1.87 0.15 2.39 0.02 9.50 22.15 38.47 6.77 27.45 10.71 14.75 10.17 2.99 0.31 0.02 7.52 3.74 0.03 0.36 4.14 0.00	Combustion (ton/yr) 1.74E-07 8.20 0.67 10.47 0.07 41.62 97.03 168.51 29.63 120.23 46.93 44.59 44.56 13.08 1.3.6 0.07 32.95 16.36 0.15 1.58 18.14	0.00 1.87 0.15 2.43 0.18 17.61 24.71 40.23 7.05 28.08 10.86 14.90 10.25 3.01 0.02 7.52 3.74 0.03 0.02 7.52 3.74 0.03 0.36 4.17 0.00 0.00	0.00 8.20 0.67 10.63 0.81 17.15 108.24 176.22 30.88 122.98 47.56 65.24 44.90 13.16 1.36 0.07 32.96 16.36 0.15 1.58 18.26 0.00	98% 0% 0% 0% 0% 98% 98% 98% 98% 98% 98% 98% 98% 98% 98	(lb/hr) 0.00 1.87 0.00 2.43 0.18 0.35 0.49 0.80 0.14 0.56 0.22 0.30 0.21 0.06 0.01 0.00 0.01 0.00 0.01 0.00	(ton/yr) 0.00 8.20 0.01 10.63 0.81 1.54 2.16 3.52 0.62 2.46 0.95 1.30 0.95 1.30 0.26 0.03 0.00 0.66 0.33 0.00 0.03	CO SO ₂ PM ₁₀ PM ₁₅ PM ₁₅ Combustion Dev Efficient Combustion Devi H2S molecular weig Molar Volume (ef, Molar Volume (ef,	0.45 0.90 0.29 0.01 0.01 0.00 0.00 vice Destruction cy C4+ kce Efficiency C3 ght ght (lbmol)	0.138 0.2755 - 7.60 7.60 0.00022 - 98% 98% 98% 98% 34.08 64.06 379.484	lb/MMBt lb/MMBt lb/MMsc lb/MMsc lb/MMBt
Triethylene Glycol 0.0 Water 0.0 Hydrogen Sulfide 0.00 Carbon Dioxide 0.00 Carbon Dioxide 0.00 Nitrogen 0.1 Methane 8.1 Ethane 2.5 Propane 1.7 Isobutane 0.2 n-Butane 0.6 Isopentane 0.1 i-C6 0.00 i-C7 0.0 Octane 0.00 Benzene 0.00 Toluene 0.00 eXylene 0.00 o-Xylene 0.00 Decanes Plus 0.00 Decanes Plus Sat 0.00 Total 133 Total VOC 3.9 Total HAP 0.00 Learting Value (Btu/scf) 1.265 Lolecular Weight (Ib/Ibmol) 21.2 Jass Flow 13.977 Loinmetric Flow 13.971	9 9 9 2 0 9 4 7 7 1 5 5 3 4 5 5 3 2 0 3 0 3 0 3 0 3 0 3 0 3 0 1 0 1 0 1 0 1 0 1 0 1	9.67E-05 2.16E-03 9.57E-04 0.16 0.74 0.57E-04 0.74 0.57E-04 11.21 7.71 1.25 2.75 0.63 0.65 0.34 0.065 0.34 0.08 0.01 3.58E-04 0.01 3.38E-04 0.12 1.66E-06 	0.00 1.87 0.15 2.39 0.02 9.50 22.15 38.47 6.77 27.45 10.71 14.75 10.17 2.99 0.31 0.02 7.52 3.74 0.03 0.36 4.14 0.00 0.00	1.74E-07 8.20 0.67 10.47 0.07 41.62 97.03 168.51 29.63 120.23 46.93 64.59 44.56 13.08 1.38 1.36 0.07 32.95 16.36 0.15 1.58 18.14 -	0.00 1.87 0.15 2.43 0.18 17.61 24.71 40.23 7.05 28.08 10.86 14.90 10.25 3.01 0.02 7.52 3.74 0.03 0.02 7.52 3.74 0.03 0.36 4.17 0.00 0.00	0.00 8.20 0.67 10.63 0.81 17.15 108.24 176.22 30.88 122.98 47.56 65.24 44.90 13.16 1.36 0.07 32.96 16.36 0.15 1.58 18.26 0.00	98% 0% 0% 0% 0% 98% 98% 98% 98% 98% 98% 98% 98% 98% 98	0.00 1.87 0.00 2.43 0.18 0.35 0.49 0.80 0.14 0.56 0.22 0.30 0.21 0.06 0.01 0.00 0.15 0.07 0.00 0.01 0.08	0.00 8.20 0.01 10.63 0.81 1.54 2.16 3.52 0.62 2.46 0.95 1.30 0.99 0.26 0.03 0.00 0.66 0.33 0.00 0.03	CO SO ₂ PM ₁₀ PM ₁₅ PM ₁₅ Combustion Dev Efficient Combustion Devi H2S molecular weig Molar Volume (ef, Molar Volume (ef,	0.45 0.90 0.29 0.01 0.01 0.00 0.00 vice Destruction cy C4+ kce Efficiency C3 ght ght (lbmol)	0.2755 7.60 7.60 0.0022 98% 98% 98% 34.08 64.06 379.484	lb/MMBt lb/MMsc lb/MMsc lb/MMBt
Water 0.0 Hydrogen Sulfide 0.0 Carbon Dioxide 0.0 Nitrogen 0.1 Methane 8.1 Ethane 2.5 Propane 1.7 Isobutane 0.0 n-Butane 0.6 Isopentane 0.1 n-Pentane 0.1 i-C6 0.00 i-C7 0.0 Octane 0.00 Benzene 0.0 Toluene 0.00 p-Hexane 0.00 0.2,4-Trimethylpentane 0.00 Decanes Plus 0.00 Decanes Plus Sat 0.00 Total HAP 0.00 Checular Weight (thylbroh) 2.12.6 Otoclarig VoC 3.80 Total HAP 0.00 Decanes Plus Sat 0.00 Total HAP 0.00 Decanes (htylkrof) 1.265 Oflocular Weight (thylkroh) 2.17.10 Diparating Hours (hty/ry) 8.71	0 2. 0 9. 4 7 7 1 5 5 8 2 0 3. 0 3. 0 3. 0 3. 0 3. 0 3. 0 3. 0 3. 0 3. 0 1. 0 1. 0 1. 0 7	2.16E-03 9.57E-04 0.74 0.74 1.21 1.21 1.25 2.75 0.63 0.65 0.34 0.08 0.01 3.38E-04 0.01 3.38E-03 5.06E-05 3.32E-04 0.12 	1.87 0.15 2.39 0.02 9.50 22.15 38.47 6.77 27.45 10.71 14.75 10.17 2.99 0.31 0.02 7.52 3.74 0.03 0.36 4.14 0.00	8.20 0.67 10.47 0.07 41.62 97.03 168.51 29.63 120.23 46.93 64.59 44.56 13.08 1.36 0.07 32.95 16.36 0.15 1.58 18.14 -	1.87 0.15 2.43 0.18 17.61 24.71 40.23 7.05 28.08 10.86 14.90 10.25 3.01 0.02 7.52 3.74 0.03 0.36 4.17 0.00 0.00	8.20 0.67 10.63 0.81 77.15 108.24 176.22 30.88 122.98 47.56 65.24 44.90 13.16 1.36 0.07 32.96 16.36 0.15 1.58 18.26 0.00	0% 98% 0% 98% 98% 98% 98% 98% 98% 98% 98% 98% 98	1.87 0.00 2.43 0.18 0.35 0.49 0.80 0.22 0.30 0.21 0.06 0.01 0.00 0.015 0.07 0.00 0.01 0.08	8.20 0.01 10.63 0.81 1.54 2.16 3.52 0.42 2.46 0.95 1.30 0.95 1.30 0.26 0.33 0.00 0.66 0.33 0.00 0.03	CO SO ₂ PM ₁₀ PM ₁₅ PM ₁₅ Combustion Dev Efficient Combustion Devi H2S molecular weig Molar Volume (ef, Molar Volume (ef,	0.90 0.29 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.0	0.2755 7.60 7.60 0.0022 98% 98% 98% 34.08 64.06 379.484	lb/MMBt lb/MMsc lb/MMsc lb/MMBt
Hydrogen Sulfide 0.0 Carbon Dioxide 0.0 Nitrogen 0.1 Methane 8.1 Ethane 2.5 Propane 1.7 Isobutane 0.2 n-Butane 0.1 isopentane 0.1 i-C6 0.0 i-C7 0.00 Octane 0.00 Benzene 0.00 Toluene 0.00 n-Hexane 0.00 p-Aylene 0.00 n-Hexane 0.00 n-Hexane 0.00 cataly Yilene 0.00 n-Hexane 0.00 Decanes Plus 0.00 Decanes Plus Sat 0.00 Total VOC 3.00 Total HAP 0.00 cataly Yalue (Btu/scf) 1.265 olecular: Weight (Ib/Ibmol) 21.4 Dometric Flow 250 sc catal Release (MMBtu/hr) 0.32 MM	0 9. 4 7 1 5 5 5 8 2 0 3. 0 3. 0 3. 0 3. 0 3. 0 3. 0 1. 0 1. 0 1. 0 1. 0 1.	9.57E-04 0.16 0.74 0.74 35.54 11.21 7.71 1.25 2.75 0.63 0.65 0.34 0.65 0.04 0.01 3.38E-04 0.01 3.38E-03 5.06E-05 3.32E-04 0.01 1.66E-06	0.15 2.39 0.02 9.50 22.15 38.47 6.77 27.45 10.71 14.75 10.17 2.99 0.31 0.02 7.52 3.74 0.03 0.36 4.14 0.00 0.00	0.67 10.47 0.07 41.62 97.03 168.51 29.63 120.23 46.93 64.59 44.56 13.08 1.36 0.07 32.95 16.36 0.15 1.58 18.14 -	0.15 2.43 0.18 117.61 24.71 40.23 7.05 28.08 10.86 14.90 10.25 3.01 0.31 0.02 7.52 3.74 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.0	0.67 10.63 0.81 77.15 108.24 176.22 30.88 122.98 47.56 65.24 44.90 13.16 1.36 0.07 32.96 16.36 0.15 1.58 18.26 0.00	98% 0% 0% 98% 98% 98% 98% 98% 98% 98% 98% 98% 98	0.00 2.43 0.18 0.35 0.49 0.56 0.22 0.30 0.21 0.06 0.01 0.00 0.15 0.07 0.00 0.01 0.08	0.01 10.63 0.81 1.54 2.16 3.52 0.62 2.46 0.95 1.30 0.90 0.25 0.03 0.00 0.66 0.33 0.00 0.03	SO2 PM100 PM25 N2O H2S Combustion Devi Efficient Combustion Devi Efficient Combustion Devi H2S molecular weig Molar Volume (eff, Mune (eff, Mun	0.29 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.0	 7.60 7.60 0.00022 98% 98% 98% 34.08 64.06 379.484	lb/MMs lb/MMs lb/MMB
Carbon Dioxide 0.0 Nitrogen 0.1 Methane 8.1 Ethane 2.5 Propane 1.7 Isobutane 0.2 n-Butane 0.1 i-C6 0.0 i-C7 0.0 Octane 0.00 i-C6 0.0 i-C7 0.0 Octane 0.00 Benzene 0.0 o-Kylene 0.0 o-Kylene 0.0 o-Kylene 0.0 ctal 13: Total 13: Total 13: Total VOC 3.0 Total HAP 0.0 cating Value (Btu/scf) 1,265 lolecular Weight (Ib/Ibmol) 21: perating Hours (hylyr) 8.7 tass How 13.971 olumetric Flow 225 w eat Release (MMBtu/hr) 0.32 MM	4 4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	0.16 0.74 0.74 0.74 11.21 7.71 1.25 2.75 0.63 0.65 0.34 0.06 0.04 0.08 0.04 0.08 0.01 3.84E-04 0.01 5.06E-05 0.32E-04 0.12 	2.39 0.02 9.50 22.15 38.47 6.77 27.45 10.71 14.75 10.17 2.99 0.31 0.02 7.52 3.74 0.03 0.36 4.14 0.00 0.00	10.47 0.07 41.62 97.03 168.51 29.63 120.23 46.93 64.59 44.56 13.08 1.38 1.36 0.07 32.95 16.36 0.15 1.58 18.14 -	2.43 0.18 17.61 24.71 40.23 7.05 28.08 10.86 14.90 10.25 3.01 0.25 3.01 0.02 7.52 3.74 0.03 0.36 4.17 0.00 0.00	$\begin{array}{c} 10.63 \\ 0.81 \\ 77.15 \\ 108.24 \\ 176.22 \\ 30.88 \\ 122.98 \\ 47.56 \\ 65.24 \\ 44.90 \\ 13.16 \\ 1.36 \\ 0.07 \\ 32.96 \\ 16.36 \\ 0.15 \\ 1.58 \\ 18.26 \\ 0.00 \\ \end{array}$	0% 0% 98% 98% 98% 98% 98% 98% 98% 98% 98% 98	2.43 0.18 0.35 0.49 0.80 0.74 0.56 0.22 0.30 0.21 0.06 0.01 0.00 0.15 0.07 0.00 0.01 0.08	10.63 0.81 1.54 2.16 3.52 0.62 2.46 0.95 1.30 0.90 0.26 0.03 0.00 0.66 0.33 0.00 0.03	PM ₁₀ PM ₂₅ N ₅ O H ₂ S Combustion Deve Efficient Combustion Devi H2S molecular weig Molar Volume (scf,	0.01 0.01 0.00 0.00 ice Destruction cy C4+ ice Efficiency C3 ght ght ght flbmol)	7.60 7.60 0.00022 - 98% 98% 34.08 64.06 379.484	lb/MMs lb/MMs lb/MMB
Nitrogen 0.1 Methane 0.1 Rehane 0.2 Propane 1.7 Isobutane 0.2 n-Butane 0.6 Isopentane 0.1 n-Pentane 0.1 i-C6 0.00 i-C7 0.00 Octane 0.00 Benzene 0.00 Toluene 0.00 p-Hexane 0.00 Decanes Plus 0.00 Decanes Plus 0.00 Total HAP 0.00 Cating Hours (hr/yr) 8.7/ Ass Row 13.971 Olscutart Weight (ht/Dhou)) 21.47	7	0.74 35.54 11.21 7.71 1.25 2.75 0.63 0.65 0.34 0.08 0.01 3.38E-03 0.01 3.38E-03 5.06E-05 3.32E-04 0.12 	0.02 9,50 22,15 38,47 6,77 27,45 10,71 14,75 10,17 2,99 0,31 0,02 7,52 3,74 0,03 0,36 4,14 0,00 0,00	0.07 41.62 97.03 168.51 29.63 120.23 46.93 64.59 44.56 13.08 1.36 0.07 32.95 16.36 0.15 1.58 18.14 -	0.18 17.61 24.71 40.23 7.05 28.08 10.86 14.90 10.25 3.01 0.22 7.52 3.74 0.03 0.32 0.32 0.02 7.52 3.74 0.03 0.36 4.17 0.00 0.00	0.81 77.15 108.24 176.22 30.88 47.56 65.24 44.90 13.16 1.36 0.07 32.96 16.36 0.15 1.58 18.26 0.00	0% 98% 98% 98% 98% 98% 98% 98% 98% 98% 98	0.18 0.35 0.49 0.80 0.14 0.56 0.22 0.30 0.21 0.06 0.01 0.00 0.15 0.07 0.00 0.01 0.08	0.81 1.54 2.16 3.52 0.62 2.46 0.95 1.30 0.90 0.26 0.03 0.00 0.66 0.33 0.00 0.00 0.03	PM _{2.5} N ₂ O H ₂ S Combustion Dev Efficien Combustion Devi H2S molecular weij Molar Volume (scf,	0.01 0.00 0.00 vice Destruction cy C4+ ice Efficiency C3 ght ght /lbmol)	7.60 0.00022 - 98% 98% 34.08 64.06 379.484	lb/MMs lb/MMB
Methane 8.1 Ethane 2.5 Propane 1.7 Isobutane 0.2 n-Butane 0.0 isopentane 0.1 i-C6 0.0 i-C7 0.00 Octane 0.00 Benzene 0.00 Toluene 0.00 Propanes Plus 0.00 Decanes Plus 0.00 Decanes Plus Sat 0.00 Total HAP 0.00 Octure Weight (lb/bmol) 2.12 peraing Hours (hty'y) 8.77 ass Flow 0.32 MM	1	35.54 11.21 7.71 1.25 2.75 0.63 0.65 0.34 0.08 0.01 3.84E-04 0.01 3.38E-03 5.06E-05 3.32E-04 0.12	9.50 22.15 38.47 6.77 27.45 10.71 14.75 10.17 2.99 0.31 0.02 7.52 3.74 0.03 0.36 4.14 0.00	41.62 97.03 168.51 29.63 120.23 46.93 64.59 44.56 13.08 1.36 0.07 32.95 16.36 0.15 1.58 18.14 -	17.61 24.71 40.23 7.05 28.08 10.86 14.90 10.25 3.01 0.31 0.02 7.52 3.74 0.03 0.03 0.03 0.36 4.17 0.00 0.00	77.15 108.24 176.22 30.88 122.98 47.56 65.24 44.90 13.16 1.36 0.07 32.96 16.36 0.15 1.58 18.26 0.00	98% 98% 98% 98% 98% 98% 98% 98% 98% 98%	0.35 0.49 0.80 0.14 0.56 0.22 0.30 0.21 0.06 0.01 0.00 0.15 0.07 0.00 0.01 0.08	1.54 2.16 3.52 0.62 2.46 0.95 1.30 0.90 0.26 0.03 0.00 0.66 0.33 0.00 0.03	N2O H2S Combustion Devi Efficient Combustion Devi H2S molecular wei S02 molecular wei Molar Volume (scf,	0.00 0.00 vice Destruction cy C4+ ice Efficiency C3 ght ght /lbmol)	0.00022 98% 98% 34.08 64.06 379.484	lb/MME
Ethane 2.5 Propane 1.7 Isobutane 0.2 n-Butane 0.6 isopentane 0.1 n-Pentane 0.1 i-C6 0.0 i-C7 0.0 Octane 0.00 Nonane 0.00 Benzene 0.00 o-Xylene 0.00 o-Xylene 0.00 o-Xylene 0.00 c-2.24 Trimethylpentane 0.00 Decanes Plus 0.00 Total 133 Total VOC 3.00 Total VOC 3.00 Total HAP 0.00 olscular Weight (lb/lbmol) 21.1 perating Hours (hy/yr) 8.7.7 ass Flow 13.971 olmetric Flow 220 se cat Release (MMBtu/hr) 0.32 MM	5 5 5 5 3 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5	11.21 7.71 1.25 2.75 0.63 0.65 0.34 0.08 0.01 3.84E-04 0.01 3.84E-04 0.01 5.06E-05 5.06E-05 0.12 	22.15 38.47 6.77 27.45 10.71 14.75 10.17 2.99 0.31 0.02 7.52 3.74 0.03 0.36 4.14 0.00 0.00	97.03 168.51 29.63 120.23 46.93 64.59 44.56 13.08 1.36 0.07 32.95 16.36 0.15 1.58 18.14 -	24.71 40.23 7.05 28.08 10.86 14.90 10.25 3.01 0.31 0.02 7.52 3.74 0.03 0.36 4.17 0.00 0.00	108.24 176.22 30.88 122.98 47.56 65.24 44.90 13.16 1.36 0.07 3.2.96 16.36 0.15 1.58 18.26 0.00	98% 98% 98% 98% 98% 98% 98% 98% 98% 98%	0.49 0.80 0.14 0.56 0.22 0.30 0.21 0.06 0.01 0.00 0.15 0.07 0.00 0.01 0.08	2.16 3.52 0.62 2.46 0.95 1.30 0.90 0.26 0.03 0.00 0.66 0.33 0.00 0.03	H ₂ S Combustion Dev Efficient Combustion Devi H2S molecular wei S02 molecular wei Molar Volume (scf,	0.00 rice Destruction cy C4+ ice Efficiency C3 ght ght /Ibmol)	 98% 98% 34.08 64.06 379.484	
Propane 1.7 Isobutane 0.2 n-Butane 0.6 Isopentane 0.1 n-Pentane 0.1 i-C6 0.0 i-C7 0.0 Octane 0.00 Benzene 0.0 Toluene 0.00 n-Hexane 0.00 Decanes Plus 0.0 Decanes Plus 0.00 Total HAP 0.00 Iocular Way (hg/hcm)) 2.12 parating Hours (hg/yr) 8.7 Jass How 10.32 MM	5 5 8 - 5 - 5 - 2 - 0 .3.	7.71 1.25 2.75 0.63 0.65 0.34 0.05 0.04 0.01 3.84E-04 0.01 3.38E-03 3.38E-03 5.06E-05 3.33E-04 0.12 1.66E-06	38.47 6.77 27.45 10.71 14.75 10.17 2.99 0.31 0.02 7.52 3.74 0.03 0.36 4.14 0.00 0.00	168.51 29.63 120.23 46.93 64.59 44.56 13.08 1.36 0.07 32.95 16.36 0.15 1.58 18.14 -	40.23 7.05 28.08 10.86 14.90 0.31 0.02 7.52 3.74 0.03 0.36 4.17 0.00 0.00	176.22 30.88 122.98 47.56 65.24 44.90 13.16 1.36 0.07 32.96 16.36 0.05 1.58 1.826 0.00	98% 98% 98% 98% 98% 98% 98% 98% 98% 98%	0.80 0.14 0.56 0.22 0.30 0.21 0.06 0.01 0.00 0.15 0.07 0.00 0.01 0.00 0.01	3.52 0.62 2.46 0.95 1.30 0.26 0.03 0.00 0.66 0.33 0.00 0.03	Combustion Dev Efficienc Combustion Devi H2S molecular wei S02 molecular wei Molar Volume (scf,	rice Destruction cy C4+ ice Efficiency C3 ght ght /Ibmol)	98% 34.08 64.06 379.484	
Isobutane 0.2 n-Butane 0.6 Isopentane 0.1 n-Pentane 0.1 i-C6 0.0 i-C7 0.0 Octane 0.0 Nonane 0.0 Benzene 0.00 Toluene 0.00 Pripersene 0.00 active 0.00 p-trimethylpentane 0.00 Decanes Plus 0.00 Decanes Plus 0.00 Total VOC 3.0 Total HAP 0.00 eating Value (Btu/scf) 1.265 oliceular Weight (Ib/Ibmol) 21.1 pertaing Hours (hr/yr) 8.7 ass How 13.97 olmetric Flow 220 se eat Release (MMBtu/hr) 0.32 MM	8	1.25 2.75 0.63 0.65 0.34 0.08 0.01 3.84E-04 0.01 3.38E-03 5.06E-05 3.32E-04 0.12 	6.77 27.45 10.71 14.75 10.17 2.99 0.31 0.02 7.52 3.74 0.03 0.36 4.14 0.00 0.00	29.63 120.23 46.93 64.59 44.56 13.08 1.36 0.07 32.95 16.36 0.15 1.58 18.14 -	7.05 28.08 10.86 14.90 0.03 0.03 7.52 3.74 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.0	30.88 122.98 47.56 65.24 44.90 13.16 1.36 0.07 32.96 16.36 0.15 1.58 1.826 0.00	98% 98% 98% 98% 98% 98% 98% 98% 98% 98%	0.14 0.56 0.22 0.30 0.21 0.06 0.01 0.00 0.15 0.07 0.00 0.01 0.08	0.62 2.46 0.95 1.30 0.26 0.03 0.00 0.66 0.33 0.00 0.03	Efficience Combustion Devi H2S molecular wei SO2 molecular wei Molar Volume (scf,	cy C4+ ice Efficiency C3 ght ght /lbmol)	98% 34.08 64.06 379.484	
n-Butane 0.6 Isopentane 0.1 n-Pentane 0.1 i-C6 0.0 i-C7 0.0 Octane 0.00 Nonane 0.00 Benzene 0.00 Toluene 0.00 ektylbenzene 0.00 o-Xylene 0.00 Decanes Plus 0.00 Decanes Plus 0.00 Total 133 Total 134 Total 135 Total VOC 3.00 Total HAP 0.00 eating Value (Btu/scf) 1.265 lolecular Weight (Ib/Ibmol) 21.1 perating Hours (hu/yr) 8.7 tass How 13.971 olumetric Flow 220 se eat Release (MMBtu/hr) 0.32 MM	3 4 4 5 5 3 2 3 0 33 0 33 0 33 0 33 0 10 0 11 0 11 0 11 0 11 0 11 0 11 0 11	2.75 0.63 0.65 0.34 0.08 0.01 3.84E-04 0.01 3.84E-04 0.01 3.38E-03 3.32E-04 0.12 	27.45 10.71 14.75 10.17 2.99 0.31 0.02 7.52 3.74 0.03 0.36 4.14 0.00 0.00	120.23 46.93 64.59 44.56 13.08 1.36 0.07 32.95 16.36 0.15 1.58 18.14	28.08 10.86 14.90 10.25 3.01 0.31 0.02 7.52 3.74 0.03 0.36 4.17 0.00 0.00	122.98 47.56 65.24 44.90 13.16 1.36 0.07 32.96 16.36 0.15 1.58 18.26 0.00	98% 98% 98% 98% 98% 98% 98% 98% 98% 98%	0.56 0.22 0.30 0.21 0.06 0.01 0.00 0.15 0.07 0.00 0.01 0.08	2.46 0.95 1.30 0.90 0.26 0.03 0.00 0.66 0.33 0.00 0.03	Efficience Combustion Devi H2S molecular wei SO2 molecular wei Molar Volume (scf,	cy C4+ ice Efficiency C3 ght ght /lbmol)	98% 34.08 64.06 379.484	
Isopentane 0.1 n-Pentane 0.1 i-C6 0.0 i-C7 0.0 Octane 0.0 Nonane 0.0 Benzene 0.0 Toluene 0.0 Benzene 0.0 n-Hexane 0.0 Decanes Plus 0.0 Decanes Plus 0.0 Total VOC 3.0 Total HAP 0.0 Declarke (hg/hcol) 1.265 Dicclarke (hg/hcol) 2.17 parating Hours (hr/yr) 8.7 Jass How 0.32 MM	4 4 5 5 6 7 7 7 6 7 7 6 7 7 6 7 7 6 7 7 6 7 7 7 6 7	0.63 0.65 0.34 0.08 0.01 3.84E-04 0.01 3.38E-03 3.38E-03 3.38E-03 0.01 0.02 0.01 0.01 0.02 0.01 0.01 0.02 0.01 0.01 0.01 0.02 0.01 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.	10.71 14.75 10.17 2.99 0.31 0.02 7.52 3.74 0.03 0.36 4.14 0.00 0.00	46.93 64.59 13.08 1.36 0.07 32.95 16.36 0.15 1.58 18.14 -	10.86 14.90 10.25 3.01 0.31 0.02 7.52 3.74 0.03 0.36 4.17 0.00 0.00	47.56 65.24 44.90 13.16 1.36 0.07 32.96 16.36 0.15 1.58 18.26 0.00	98% 98% 98% 98% 98% 98% 98% 98% 98% 98%	0.22 0.30 0.21 0.06 0.01 0.00 0.15 0.07 0.00 0.01 0.01 0.08	0.95 1.30 0.90 0.26 0.03 0.00 0.66 0.33 0.00 0.03	Combustion Devi H2S molecular wei SO2 molecular wei Molar Volume (scf,	ght /lbmol)	34.08 64.06 379.484	
n-Pentane 0.1 i-C6 0.0 i-C7 0.00 Octane 0.0 Nonane 0.0 Benzene 0.00 Toluene 0.00 rbylbenzene 0.00 n-Hexane 0.00 p-Xylene 0.00 Decanes Plus 0.00 Decanes Plus 0.00 Total 133 Total VOC 3.00 Doclaular Weight (lb/lbmol) 214 perating Hours (hty/yr) 8.7/ Jass How 13.977 Olmetric Flow 2250 kg eat Release (MMBtty/hr) 0.32 MM	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	0.65 0.34 0.08 0.01 3.84E-04 0.01 3.38E-03 5.06E-05 3.32E-04 0.12 	14.75 10.17 2.99 0.31 0.02 7.52 3.74 0.03 0.36 4.14 0.00 0.00 0.00	64.59 44.56 13.08 1.36 0.07 32.95 16.36 0.15 1.58 18.14	14.90 10.25 3.01 0.02 7.52 3.74 0.03 0.36 4.17 0.00 0.00	65.24 44.90 13.16 1.36 0.07 32.96 16.36 0.15 1.58 1.826 0.00	98% 98% 98% 98% 98% 98% 98% 98% 98% 98%	0.30 0.21 0.06 0.01 0.00 0.15 0.07 0.00 0.01 0.08	1.30 0.90 0.26 0.03 0.66 0.33 0.00 0.03	H2S molecular wei SO2 molecular wei Molar Volume (scf,	ght ght /Ibmol)	34.08 64.06 379.484	
i-C6 0.0 i-C7 0.0 Octane 0.0 Octane 0.0 Benzene 0.0 Toluene 0.0 Ethylbenzene 0.0 o-Xylene 0.0 o-Xylene 0.0 z2,4-Trimethylpentane 0.0 Decanes Plus 0.0 Total 133 Total 134 Total VOC 3.0 Total HAP 0.0 lolecular Weight (lb/lbmol) 211 perating Hours (hy/yr) 8.7 tass How 13.971 olumetric Flow 220 se eat Release (MMBtu/hr) 0.32 MM	8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.34 0.08 0.01 3.84E-04 0.01 3.38E-03 5.06E-05 3.32E-04 0.12 	10.17 2.99 0.31 0.02 7.52 3.74 0.03 0.36 4.14 0.00 0.00	44.56 13.08 1.36 0.07 32.95 16.36 0.15 1.58 18.14 -	10.25 3.01 0.31 0.02 7.52 3.74 0.03 0.36 4.17 0.00 0.00	44.90 13.16 1.36 0.07 3.296 16.36 0.15 1.58 18.26 0.00	98% 98% 98% 98% 98% 98% 98% 98%	0.21 0.06 0.01 0.00 0.15 0.07 0.00 0.01 0.08	0.90 0.26 0.03 0.00 0.66 0.33 0.00 0.03	H2S molecular wei SO2 molecular wei Molar Volume (scf,	ght ght /Ibmol)	64.06 379.484	
i-C7 0.0 Octane 0.0 Nonane 0.0 Benzene 0.0 Toluene 0.0 Ethylbenzene 0.0 n-Hexane 0.0 2,2,4-Trimethylpentane 0.0 Decanes Plus 0.0 Decanes Plus 0.0 Ital VOC 3.0 Total HAP 0.0 localus (Btu/scf) 1,265 localus (Vsft) (Bt/Brool) 21.1 uparting Hours (hr/yr) 8.7 lass How 10.32 MM etatle Release (MMBtu/hr) 0.32 MM	2 3 3 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5	0.08 0.01 3.84E-04 0.01 3.38E-03 5.06E-05 5.06E-05 0.12 	2.99 0.31 0.02 7.52 3.74 0.03 0.36 4.14 0.00 0.00	13.08 1.36 0.07 32.95 16.36 0.15 1.58 18.14 -	3.01 0.31 0.02 7.52 3.74 0.03 0.36 4.17 0.00 0.00	13.16 1.36 0.07 32.96 16.36 0.15 1.58 18.26 0.00	98% 98% 98% 98% 98% 98% 98%	0.06 0.01 0.15 0.07 0.00 0.01 0.08	0.26 0.03 0.00 0.66 0.33 0.00 0.03	SO2 molecular wei Molar Volume (scf)	ght /lbmol)	64.06 379.484	
Octane 0.0 Nonane 0.0 Benzene 0.0 Tolsene 0.0 Ethylbenzene 0.0 o-Xylene 0.0 2,2,4:Trimethylpentane 0.0 Decanes Plus 0.0 Decanes Plus 0.0 Total 133 Total VOC 3.0 Total HAP 0.0 Declecular Weight (lb/tbmol) 21.1 Operating Hours (hty/r) 8.7 Jass Flow 13.971 Olmetric Flow 2250 kg Last Release (MMBtu/hr) 0.32 MM) 3.) 3.) 3.) 5.) 3.) 1.) 1.) 1.) 7.	0.01 3.84E-04 0.01 3.38E-04 0.01 5.06E-05 3.32E-04 0.12 	0.31 0.02 7.52 3.74 0.03 0.36 4.14 0.00 0.00	1.36 0.07 32.95 16.36 0.15 1.58 18.14	0.31 0.02 7.52 3.74 0.03 0.36 4.17 0.00 0.00	1.36 0.07 32.96 16.36 0.15 1.58 18.26 0.00	98% 98% 98% 98% 98% 98%	0.01 0.00 0.15 0.07 0.00 0.01 0.08	0.03 0.00 0.66 0.33 0.00 0.03	SO2 molecular wei Molar Volume (scf)	ght /lbmol)	64.06 379.484	
Nonane 0.0 Benzene 0.0 Toluene 0.0 Ethylbenzene 0.0 o-Xylene 0.0 n-Hexane 0.0 22,4-Trimethylpentane 0.0 Decanes Plus 0.0 Decanes Plus Sat 0.0 Total 133 Total VOC 3.0 Total VOC 3.0 Total VOC 3.0 Stoleular Weight (Bylbmol) 21.1 perating Hours (hr/yr) 8.7 Jass How 13.971 olumetric Flow 250 sc feat Release (MMBtu/hr) 0.32 MM	0 3. 0 3. 0 5. 0 3. 0 1. 0 1. 0 1. 0 7	3.84E-04 0.01 3.38E-03 5.06E-05 3.32E-04 0.12 	0.02 7.52 3.74 0.03 0.36 4.14 0.00 0.00	0.07 32.95 16.36 0.15 1.58 18.14	0.02 7.52 3.74 0.03 0.36 4.17 0.00 0.00	0.07 32.96 16.36 0.15 1.58 18.26 0.00	98% 98% 98% 98% 98%	0.00 0.15 0.07 0.00 0.01 0.08	0.00 0.66 0.33 0.00 0.03	Molar Volume (scf,	/lbmol)	379.484	
Benzene 0.0 Toluene 0.0 Ethylbenzene 0.0 o-Xylene 0.0 n-Hexane 0.0 2,2,4-Trimethylpentane 0.0 Decanes Plus 0.0 Decanes Plus 0.0 Decanes Plus 0.0 Decanes Plus 0.0 Ital 13: Total 13: Total IAP 0.0 localug Value (Btu/scf) 1.26: localuar Veight (It/Ibmol) 21: operating Hours (hr/yr) 8.7/ Jass How 13.971 olumetric Flow 250 sc teat Release (MMBtu/hr) 0.32 MM	0 3. 0 5. 0 3. 3 - 0 1. 0 1. 0 7	0.01 3.38E-03 5.06E-05 3.32E-04 0.12 - 1.66E-06 -	7.52 3.74 0.03 0.36 4.14 0.00 0.00	32.95 16.36 0.15 1.58 18.14	7.52 3.74 0.03 0.36 4.17 0.00 0.00	32.96 16.36 0.15 1.58 18.26 0.00	98% 98% 98% 98% 98%	0.15 0.07 0.00 0.01 0.08	0.66 0.33 0.00 0.03				
Toluene 0.0 Ethylbenzene 0.0 o-Xylene 0.0 n-Hexane 0.0 2,24-Trimethylpentane 0.0 Decanes Plus 0.0 Decanes Plus 0.0 Total 133 Total VOC 3.0 Total HAP 0.0 Iolecular Weight (lb/lbmol) 214 Oblecular Weight (lb/lbmol) 214 Parating Hours (hty/yr) 8.7 Jass Flow 13.971 Olumetric Flow 225 vs Leat Release (MMBtu/hr) 0.32 MM	0 3. 0 5. 0 3. 0 1. 0 1. 0 7.	3.38E-03 5.06E-05 3.32E-04 0.12 1.66E-06 	3.74 0.03 0.36 4.14 0.00 0.00	16.36 0.15 1.58 18.14	3.74 0.03 0.36 4.17 0.00 0.00	16.36 0.15 1.58 18.26 0.00	98% 98% 98% 98%	0.07 0.00 0.01 0.08	0.33 0.00 0.03	Combustor Operat	ing Hours	8760	
Ethylbenzene 0.0 o-Xylene 0.0 n-Hexane 0.0 2,2.4'Trimethylpentane 0.0 Decanes Plus 0.0 Decanes Plus 0.0 Total 133 Total 133 Total VOC 3.0 Total VOC 3.0 Total IAP 0.0 leating Value (Btu/scf) 1.265 folccular Weight (Bylbmol) 21.1 sea Flow 13.971 olumetric Flow 250 sc feat Release (MMBtu/hr) 0.32 MM	0 5. 0 3. 0 1. 0 1. 7 1.	5.06E-05 3.32E-04 0.12 1.66E-06 	0.03 0.36 4.14 0.00 0.00	0.15 1.58 18.14	0.03 0.36 4.17 0.00 0.00	0.15 1.58 18.26 0.00	98% 98% 98%	0.00 0.01 0.08	0.00 0.03				
o-Xylene 0.0 n-Hexane 0.0 2,2,4-Trimethylpentane 0.0 Decanes Plus 0.0 Ital 13.5 Total HAP 0.0 localura Vvight (lb/lbmol) 2.1.2 Obscular Vvight (lb/lbmol) 2.1.2 Joperating Hours (hr/yr) 8.7/ Jass Flow 13.971 olumetric Flow 220 se leat Release (MMBtu/hr) 0.32 MM	0 3. 3 0 1. 0 1. 7 7	3.32E-04 0.12 1.66E-06 	0.36 4.14 0.00 0.00	1.58 18.14 	0.36 4.17 0.00 0.00	1.58 18.26 0.00	98% 98%	0.01 0.08	0.03				
n-Hexane 0.0 2,24-Trimethylpentane 0.0 Decanes Plus 0.0 Decanes Plus 0.0 Total 13: Total VOC 3.0 Total HAP 0.0 eating Value (Btu/scf) 1,265 lolecular Weight (Ib/Ibmol) 21: perating Hours (htty/t) 8.7 lass How 13.97 olumetric Flow 225 es eat Release (MMBtu/hr) 0.32 MM	3	0.12 1.66E-06 	4.14 0.00 0.00	18.14	4.17 0.00 0.00	18.26 0.00	98%	0.08					
2,24-Trimethylpentane 0.0 Decanes Plus 0.0 Decanes Plus Sat 0.0 Total 13.3 Total 13.3 Total 14.3 Total 10.2 Decamp Value (Btu/scf) 1.265 Total Flow 2.1 Total Flow 1.3 Total Flow 1.3 Total Flow 1.3 Dometric Flow 2.20 sc teat Release (MMBtu/hr) 0.32 MM	0 1. 0 7	 1.66E-06 	0.00 0.00		0.00 0.00	0.00							
Decanes Plus 0.0 Decanes Plus Sat 0.0 Total 13.3 Total VOC 3.0 Total HAP 0.0 leading Value (Btu/scf) 1.265 lolecular Weight (Bty/Brob) 21.2 perating Hours (hr/yr) 8.77 Jass How 13.971 olumetric Flow 250 sc leat Release (MMBtu/hr) 0.32 MM	7 1.	1.66E-06	0.00		0.00				0.37				
Decanes Plus Sat 0.0 Total 13.1 Total VOC 3.0 Total HAP 0.0 iceating Value (Btu/scf) 1,265 lolecular Weight (Ib/Ibmol) 21.1 perating Hours (htty/tr) 8,77 lass Flow 13.971 olumetric Flow 225 es leat Release (MMBtu/hr) 0.32 MM	7			8.82E-04			98%	0.00	0.00				
Total 13.9 Total VOC 3.0 Total HAP 0.0 ieating Value (Btuysch) 1,265 tolecular Weight (Ib/Ibmol) 21.1 ass Flow 1.977 olumetric Flow 1.977 olaumetric Flow 250 sc teat Release (MMBtu/hr) 0.32 MM	7		0.00			0.00	98%	0.00	0.00				
Total VOC 3.0 Total TAP 0.0 Jeating Value (Btu/scf) 1.265 Adjecular Weight (Bh/Bmol) 21.1 Operating Hours (ht/yr) 8.7 Aass How 13.971 Olometric Flow 250 sc East Release (MMBtu/hr) 0.32 MM					0.00	0.00	98%	0.00	0.00				
Total HAP 0.0 Icating Value (Btu/scf) 1,265 Jolecular Weight (Ib/Ibmol) 211 Operating Hours (hty/yr) 8,71 Jass Flow 13,971 Olumetric Flow 250 sc Leat Release (MMBtu/hr) 0.32 MM		61.18	163.52	716.20	177.48	777.38		7.94	34.79				
leating Value (Btu/scf) 1,265 folecular Weight (Ib/Ibmol) 21.1 foreating Hours (ht/yr) 8,77 fass Flow 13.9771 'olumetric Flow 250 sc leat Release (MMBtu/hr) 0.32 MM		13.54	127.43	558.14	130.52	571.69		2.61	11.43				
Aolecular Weight (lb/Jbmol) 21.2 Operating Hours (hr/yr) 8.7 Aas Flow 13.97 'olumetric Flow 250 sc Teat Release (MMBtu/hr) 0.32 MM		0.13	15.80	69.18	15.83	69.31		0.32	1.39				
bperating Hours (hr/yr) 8.70 Iass Flow 13.971 ofumetric Flow 250 sc leat Release (MMBtu/hr) 0.32 MM		1,269.31	2,460.05	2,460.05	2460.05	2460.05							
Aass Flow 13.971 /olumetric Flow 250 sc Jeat Release (MMBtu/hr) 0.32 MM		21.20	44.85	44.85	-								
Volumetric Flow 250 sc Heat Release (MMBtu/hr) 0.32 MM		8,760	8,760	8,760	-								
Ieat Release (MMBtu/hr) 0.32 MM		.18 ton/yr	127.87 lb/hr	560.09 ton/yr	127.87 lb/hr	560.09 ton/yr							
		MMscf/yr 79 MMBtu/yr	1,082 scf/hr 2.66 MMBtu/hr	9 MMscf/yr 23,315.17 MMBtu/yr	1,332 scf/hr 3.28 MMBtu/hr	12 MMscf/yr 23,315.17 MMBtu/yr							
(lb/	btu/nr 2,779.75	79 MMBtu/ yr	2.00 MINIDIU/ nr	23,315.17 MMBtu/ yr	3.28 MMBtu/ nr	25,515.17 MMBtu/ yr	_						
(1b/1		Combustion Emission	ons from Combustion Device(s))									
		(ton/yr)	(lb/hr)	(ton/yr)	(lb/hr)	(ton/yr)							
Total NO _x 0.0		0.19	0.37	1.61	0.41	1.80							
Total CO 0.0		0.38	0.73	3.21	0.82	3.59							
Total SO ₂ 0.0		1.80E-03	0.29	1.26	0.29	1.26							
Total PM ₁₀ 0.00		0.01	0.008	0.04	0.01	0.04							
Total PM _{2.5} 0.0		0.01	0.01	0.04	0.01	0.04							
Total VOC (slip) 0.0		0.27	2.55	11.16	2.61	11.43							
Total HAP (slip) 0.0	0 2.	2.59E-03	0.32	1.38	0.32	1.39							
Total n-Hexane (slip) 0.0	0	0.00	0.08	0.36	0.08	0.37							
Total Benzene (slip) 0.0	0	0.00	0.15	0.66	0.15	0.66							
Total CH ₄ 0.1	2	0.54	0.07	0.30	0.19	0.84				Large	Glycol Unit - MAG	CT HH Check	×
Total N ₂ O 0.00		6.76E-04	0.001	0.01	0.00	0.01				# of Units	3	Limit	
Total CO ₂ 49.4		216.43	559.83	2,452.05	609.24	2,668.48				Flow per Dehy	10,655	85,000 SCF/	/Dav
Total CO ₂ e 52.5		230.09	561.92	2,461.19	614.45	2,691.28				Benzene Emissions		1 ton/yr	Day
	~ 4		301.72	4/101.17	011.15	4,071.40				Denzene Emussions	0.22	1 contryn	

⁶Flash tank emissions are routed back to inlet slug catcher.

XTO ENERGY, INC. JAYHAWK COMPRESSOR STATION

ROAD EMISSIONS

Total Suspended Particle Emis	sions
$E = k(sL/2)^{a}(W/3)^{b}$	
a	0.7
b	0.45
k	4.9
Silt %	4.8
Vehicle Weight (tons)	28
E (lbs/VMT)	7.05
Rain Days	70
E-Annual (lbs/VMT)	5.70
Truckloads per year	210
Driving Distance Per Load (ft)	1000
Annual Distance (miles)	40
Control Efficiency - 15 MPH Limit	0.44
Emissions (lbs/hr)	0.60
Emissions (tpy)	0.06

PM ₁₀ Emissions	
$E = k(sL/2)^{a}(W/3)^{b}$	
a	0.9
b	0.45
k	1.5
Silt %	4.8
Vehicle Weight (tons)	28
E (lbs/VMT)	1.80
Rain Days	70
E-Annual (lbs/VMT)	1.45
Truckloads per day	210
Driving Distance Per Load (ft)	1000
Annual Distance (miles)	40
Control Efficiency - 15 MPH Limit	0.44
Emissions (lbs/hr)	0.15
Emissions (tpy)	0.02

PM _{2.5} Emissions	
$E = k(sL/2)^{a}(W/3)^{b}$	
a	0.9
b	0.45
k	0.15
Silt %	4.8
Vehicle Weight (tons)	28
E (lbs/VMT)	0.18
Rain Days	70
E-Annual (lbs/VMT)	0.15
Truckloads per day	210
Driving Distance Per Load (ft)	1000
Annual Distance (miles)	40
Control Efficiency - 15 MPH Limit	0.44
Emissions (lbs/hr)	0.02
Emissions (tpy)	0.00

Emissions (lbs/hr) = Driving Distance (ft)/ 5280 * E (lbs/VMT) Emissions (tpy) = Annual Distance * E / 2000

References:

EPA. "Compilation of Air Pollutant Emission Factors, Volume 1: Stationary Point and Area Sources," Section 13.2.2 AP-42, Ofice of Air Quality Planning and Standards, Research Triangle Park, NC. 5th edition (11/2006).

XTO ENERGY, INC. JAYHAWK COMPRESSOR STATION FUGITIVE EMISSIONS

	Operating Hours:					8760 hours	/vear				
	Emission Factor So	111700				Standard EFs - EPA-453/		bla 2.4			
	Control Efficiency					None		IDIE 2-4			
						0					
	Emission Buffer (%	/0]:		ļ		0					
	1			n Factor		[Mass	Uncontrolled	Uncontrolled	Controlled	Controlled
Service	Component Type	Count	(lb/hr-s Table 2-4	ource) ^a Table 2-8	Control (%) ^b	Pollutant	Fraction ^c	Emissions (lb/hr)	Emissions (tpy)	Emissions (lb/hr)	Emissions (tpy)
	Valves	720	9.92E-03	5.51E-05	0.0%	VOC	0.300	2.6726	11.7061	2.6726	11.7061
	Pump Seals	0	5.29E-03	7.72E-04	0.0%	H2S	0.000	0.0001	0.0004	0.0001	0.0004
	Connectors	1440	4.41E-04	2.20E-05	0.0%	Benzene	0.001	0.0045	0.0199	0.0045	0.0199
	Flanges	720	8.60E-04	1.26E-05	0.0%	Toluene	0.001	0.0072	0.0316	0.0072	0.0316
Gas	Open-Ended Lines	72	4.41E-03	3.31E-05	0.0%	E-Benzene	0.000	0.0004	0.0020	0.0004	0.0020
	Other	10	1.94E-02	2.65E-04	0.0%	Xylenes	0.000	0.0041	0.0179	0.0041	0.0179
	Relief Valves	0	1.94E-02	2.65E-04	0.0%	n-Hexane	0.008	0.0742	0.3250	0.0742	0.3250
		-				2,2,4 Trimethylpentane	0.000	0.0000	0.0000	0.0000	0.0000
	Valves	0	1.85E-05	1.85E-05	0.0%	VOC	0.978	0.0000	0.0000	0.0000	0.0000
	Pump Seals	0	0.00E+00	0.00E+00	0.0%	H2S	0.000	0.0000	0.0000	0.0000	0.0000
	Connectors	0	1.65E-05	1.65E-05	0.0%	Benzene	0.015	0.0000	0.0000	0.0000	0.0000
	Flanges	0	8.60E-06	8.60E-07	0.0%	Toluene	0.005	0.0000	0.0000	0.0000	0.0000
Heavy Oil	Open-Ended Lines	0	3.09E-04	1.59E-05	0.0%	E-Benzene	0.012	0.0000	0.0000	0.0000	0.0000
	Other	0	3.09E-04	7.05E-05	0.0%	Xylenes	0.001	0.0000	0.0000	0.0000	0.0000
	Relief Valves	0	3.09E-04	7.05E-05	0.0%	n-Hexane	0.007	0.0000	0.0000	0.0000	0.0000
						2,2,4 Trimethylpentane	0.085	0.0000	0.0000	0.0000	0.0000
	Valves	236	5.51E-03	4.19E-05	0.0%	VOC	0.978	1.9625	8.5958	1.9625	8.5958
	Pump Seals	15	2.87E-02	1.12E-03	0.0%	H2S	0.000	0.0000	0.0000	0.0000	0.0000
	Connectors	472	4.63E-04	2.14E-05	0.0%	Benzene	0.015	0.0303	0.1327	0.0303	0.1327
Linkt Oil	Flanges	236	2.43E-04	5.29E-06	0.0%	Toluene	0.005	0.0100	0.0438	0.0100	0.0438
Light Oil	Open-Ended Lines	0	2.87E-03	3.09E-05	0.0%	E-Benzene	0.012	0.0242	0.1058	0.0242	0.1058
	Other	0	1.65E-02	2.43E-04	0.0%	Xylenes	0.001	0.0026	0.0112	0.0026	0.0112
	Relief Valves	0	1.65E-02	2.43E-04	0.0%	n-Hexane	0.007	0.0135	0.0593	0.0135	0.0593
						2,2,4 Trimethylpentane	0.085	0.1713	0.7502	0.1713	0.7502
	Valves	153	2.16E-04	2.14E-05	0.0%	VOC	0.978	0.2573	1.1272	0.2573	1.1272
	Pump Seals	10	5.29E-05	5.29E-05	0.0%	H2S	0.000	0.0000	0.0000	0.0000	0.0000
	Connectors	306	2.43E-04	2.20E-05	0.0%	Benzene	0.015	0.0040	0.0174	0.0040	0.0174
Water/Oil	Flanges	153	6.39E-06	6.39E-06	0.0%	Toluene	0.005	0.0013	0.0057	0.0013	0.0057
water/Oli	Open-Ended Lines	0	5.51E-04	7.72E-06	0.0%	E-Benzene	0.012	0.0032	0.0139	0.0032	0.0139
	Other	5	3.09E-02	1.30E-04	0.0%	Xylenes	0.001	0.0003	0.0015	0.0003	0.0015
	Relief Valves	0	3.09E-02	1.30E-04	0.0%	n-Hexane	0.007	0.0018	0.0078	0.0018	0.0078
						2,2,4 Trimethylpentane	0.085	0.0225	0.0984	0.0225	0.0984

Fugitive Emission Summary

Pollutant	Uncontroll	ed Emissions	Controlled	Emissions
	(lb/hr)	(tpy)	(lb/hr)	(tpy)
VOC	4.89	21.43	4.89	21.43
HAPs	0.38	1.64	0.38	1.64
H2S	0.00	0.00	0.00	0.00
Benzene	0.04	0.17	0.04	0.17
Toluene	0.02	0.08	0.02	0.08
E-Benzene	0.03	0.12	0.03	0.12
Xylenes	0.01	0.03	0.01	0.03
n-Hexane	0.09	0.39	0.09	0.39
2,2,4 Trimethylpentane	0.19	0.85	0.19	0.85

Footnotes:

^a Factors are taken from EPA Document EPA-453/R-095-017, November 1995, Table 2-4

^bControl efficiencies are taken from EPA Document EPA-453/R-095-017, November 1995, Table 5-2

Gas/Vapor based inlet gas. Heavy Oil, Light Oil, and Water/Oil fugitives were based on liquid analysis of inlet separator hydrocarbon liquid.

XTO ENERGY, INC. JAYHAWK COMPRESSOR STATION FACILITY INLET GAS ANALYSIS - PROMAX

(Gas Composition	
Component	Mole %	Weight %
TEG	0.000	0.0000
Water	0.000	0.0000
Hydrogen Sulfide	0.001	0.0010
Carbon Dioxide	0.121	0.2330
Nitrogen	0.864	1.0580
Methane	73.632	51.6360
Ethane	12.988	17.0720
Propane	6.704	12.9230
Isobutane	0.949	2.4110
n-Butane	2.303	5.8510
Isopentane	0.551	1.7380
n-Pentane	0.664	2.0950
Other C-6's	0.482	1.8000
Heptanes	0.327	1.4200
Octanes	0.111	0.5390
Nonanes	0.032	0.1770
Benzene	0.015	0.0510
Toluene	0.020	0.0810
E-Benzene	0.001	0.0050
Xylenes	0.010	0.0460
n-Hexane	0.221	0.8330
2,2,4 Trimethylpentane	0.000	0.0000
Decanes Plus	0.005	0.0310
Decanes Plus Satellite	0.000	0.0000
Total	100.001	100.0010
MOLECULAR	WEIGHT	22.88
SATURATEI		1371
NMHC (W		47.073
VOCs (WT		30.00
HAPs (WI	,	1.02
H2S (MOL	/	0.00

XTO ENERGY, INC. JAYHAWK COMPRESSOR STATION FACILITY INLET FLUID ANALYSIS - PROMAX

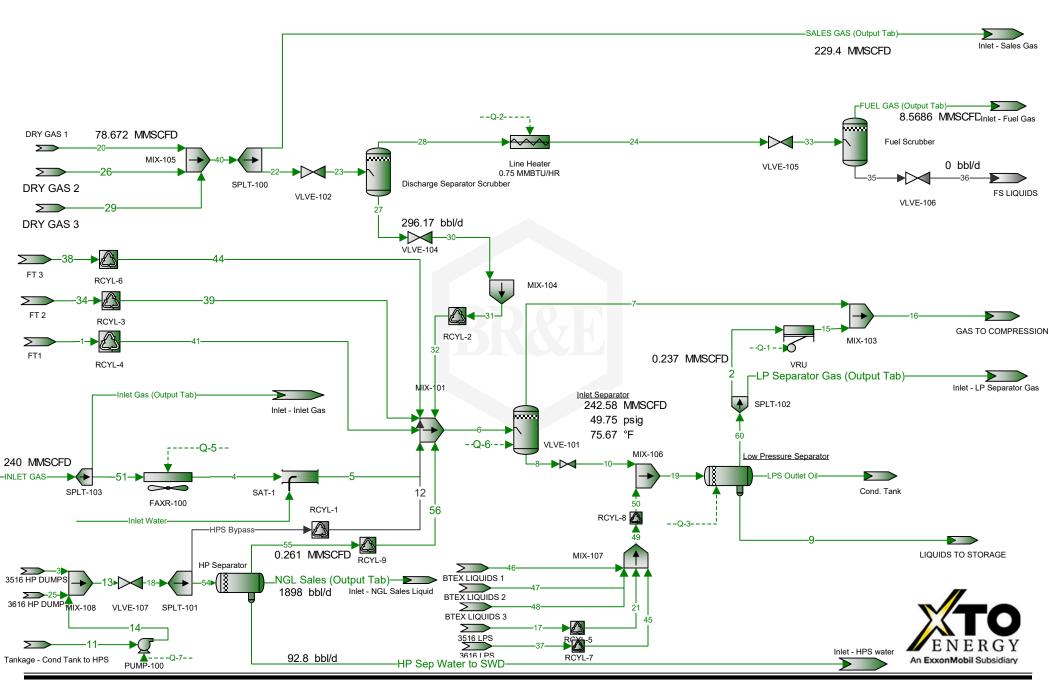
FI	uid Composition	
		-
Component	Mole %	Weight %
TEG	0.0000	0.0000
Water	0.0000	0.0000
Hydrogen Sulfide	0.0000	0.0000
Carbon Dioxide	0.0129	0.0075
Nitrogen	0.0167	0.0062
Methane	2.8473	0.6026
Ethane	3.9579	1.5701
Propane	8.4770	4.9315
Isobutane	3.2673	2.5054
n-Butane	12.1250	9.3186
Isopentane	8.1300	7.7386
n-Pentane	12.6670	12.0571
Other C-6's	7.9339	9.0203
Heptanes	17.1885	20.9987
Octanes	10.5388	14.6036
Nonanes	1.6426	2.7426
Benzene	0.7463	1.5099
Toluene	0.4833	0.4981
E-Benzene	0.9907	1.2043
Xylenes	0.0912	0.1277
n-Hexane	0.4815	0.6744
2,2,4 Trimethylpentane	7.5090	8.5370
Decanes Plus	0.8930	1.3457
Decanes Plus Satellite	0.0000	0.0000
Total	100.000	100.0000
	JEICHT	75.80
MOLECULAR WEIGHT SATURATED BTU		75.80
NMHC (WT%)		99.38
VOCs (WT%)		99.38
HAPs (WT%)		12.55
H2S (MOL%)		0.000

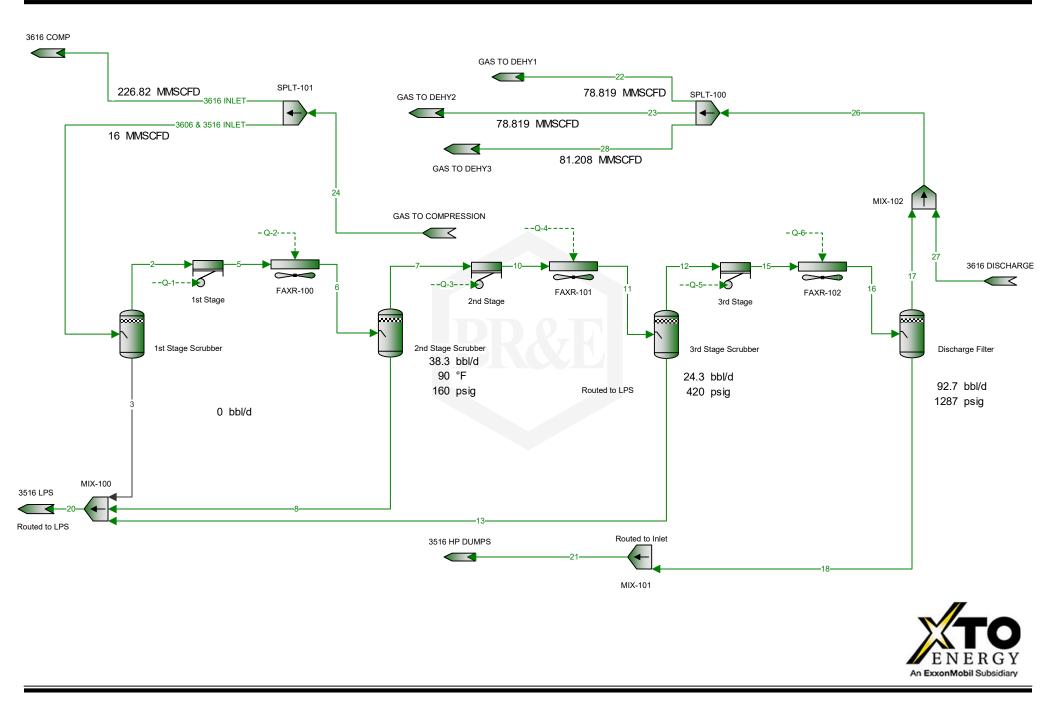
Tab 7

Section 7 - Information Used To Determine Emissions

Section 7

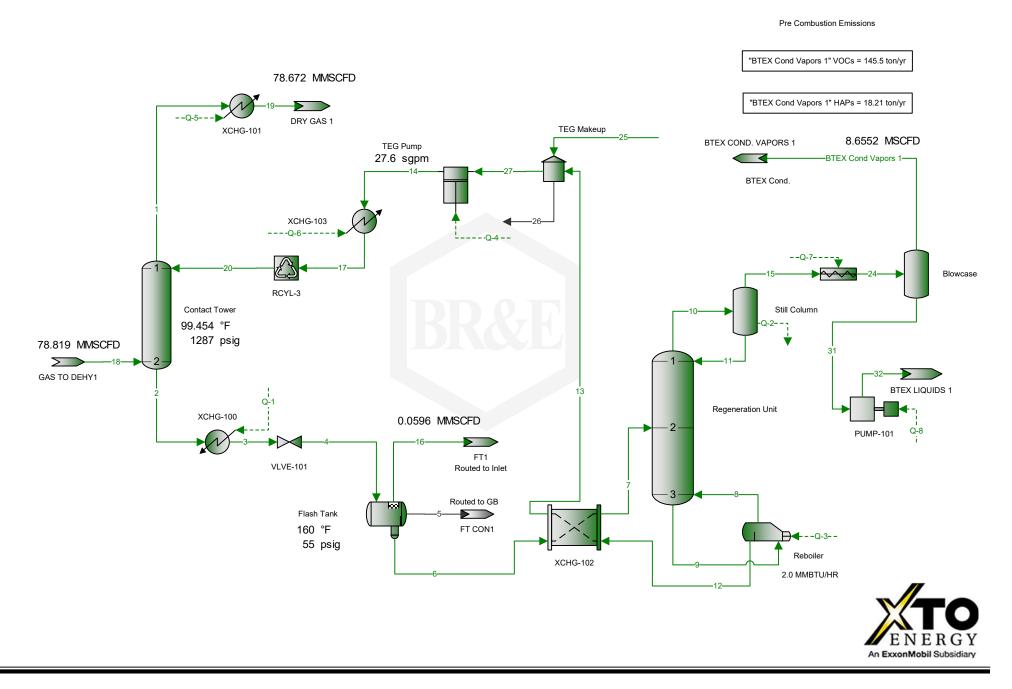
Information Used To Determine Emissions

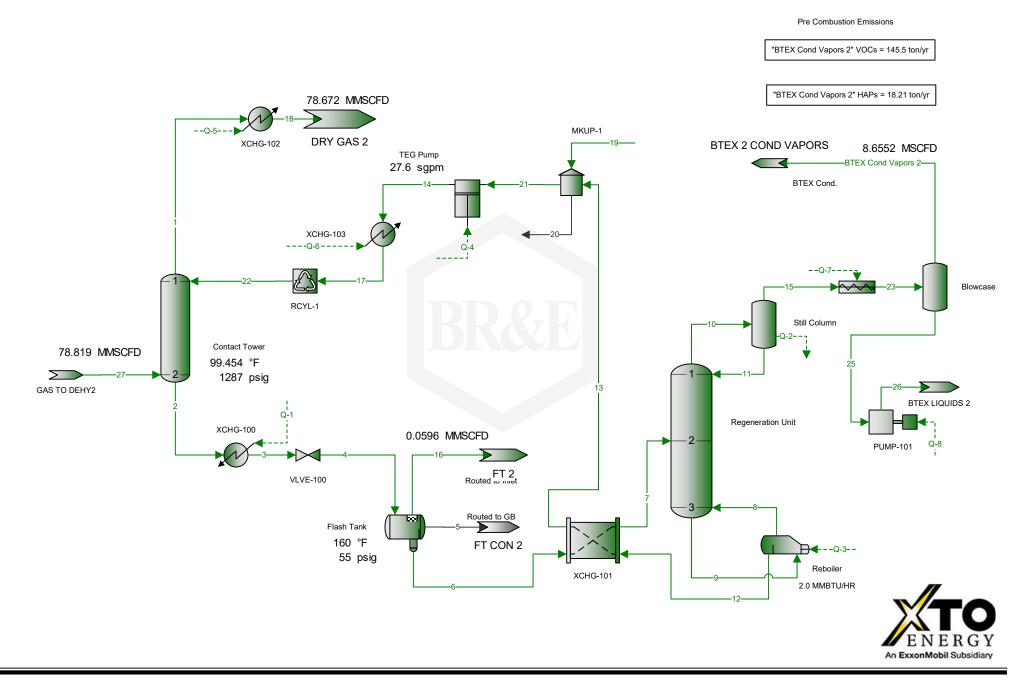

Information Used to Determine Emissions shall include the following:

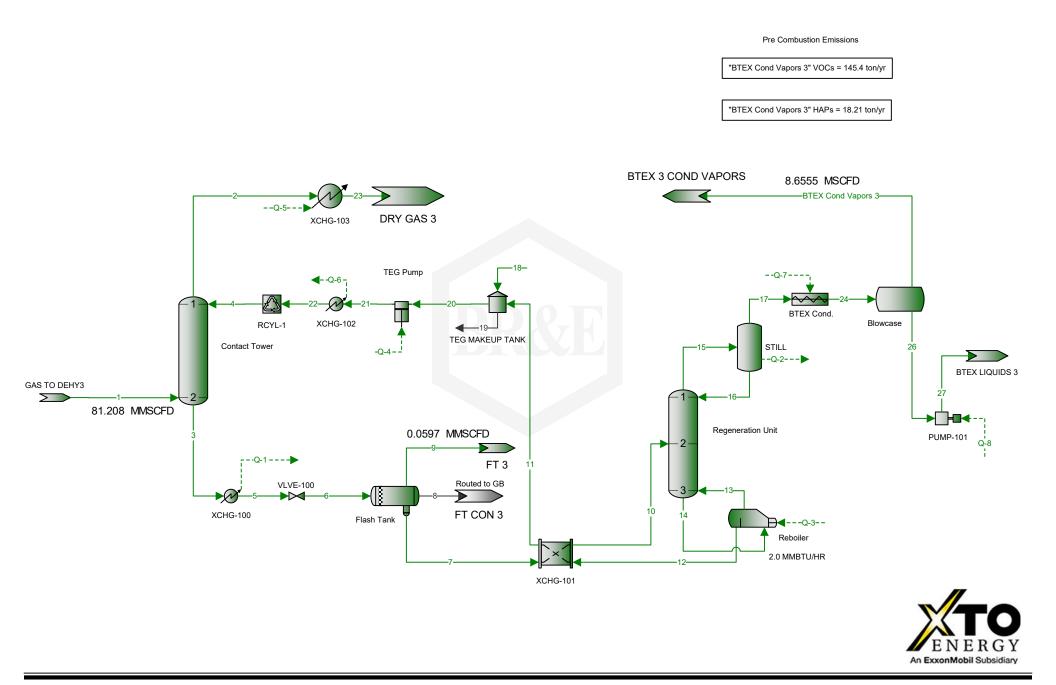

- \square If manufacturer data are used, include specifications for emissions units <u>and</u> control equipment, including control efficiencies specifications and sufficient engineering data for verification of control equipment operation, including design drawings, test reports, and design parameters that affect normal operation.
- □ If test data are used, include a copy of the complete test report. If the test data are for an emissions unit other than the one being permitted, the emission units must be identical. Test data may not be used if any difference in operating conditions of the unit being permitted and the unit represented in the test report significantly effect emission rates.
- ☑ If the most current copy of AP-42 is used, reference the section and date located at the bottom of the page. Include a copy of the page containing the emissions factors, and clearly mark the factors used in the calculations.
- □ If an older version of AP-42 is used, include a complete copy of the section.
- \blacksquare If an EPA document or other material is referenced, include a complete copy.
- □ Fuel specifications sheet.
- ☑ If computer models are used to estimate emissions, include an input summary (if available) and a detailed report, and a disk containing the input file(s) used to run the model. For tank-flashing emissions, include a discussion of the method used to estimate tank-flashing emissions, relative thresholds (i.e., permit or major source (NSPS, PSD or Title V)), accuracy of the model, the input and output from simulation models and software, all calculations, documentation of any assumptions used, descriptions of sampling methods and conditions, copies of any lab sample analysis.

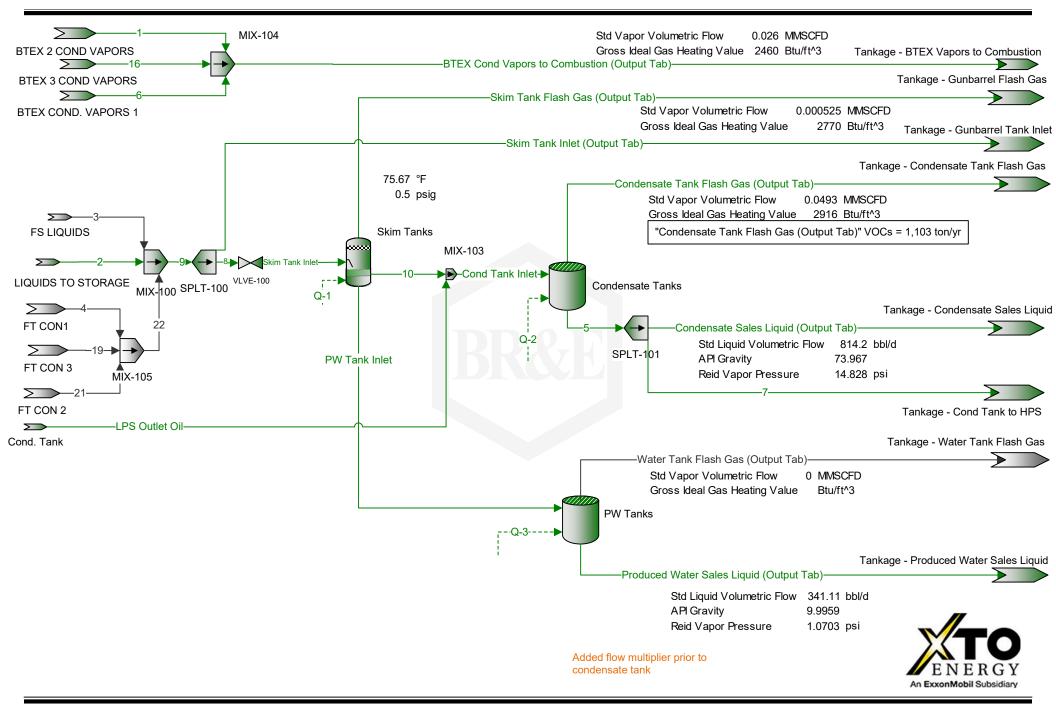
The Jayhawk Compressor Station gas inlet composition was obtained from the Muy Wano 18 Tank Battery Inlet Separator hydrocarbon gas sample. The Muy Wano 18 Tank Battery gas analysis is representative of the hydrocarbons from the surrounding wells and batteries. The sales gas composition from this battery was used as the inlet gas composition for the station in the ProMax process simulation.

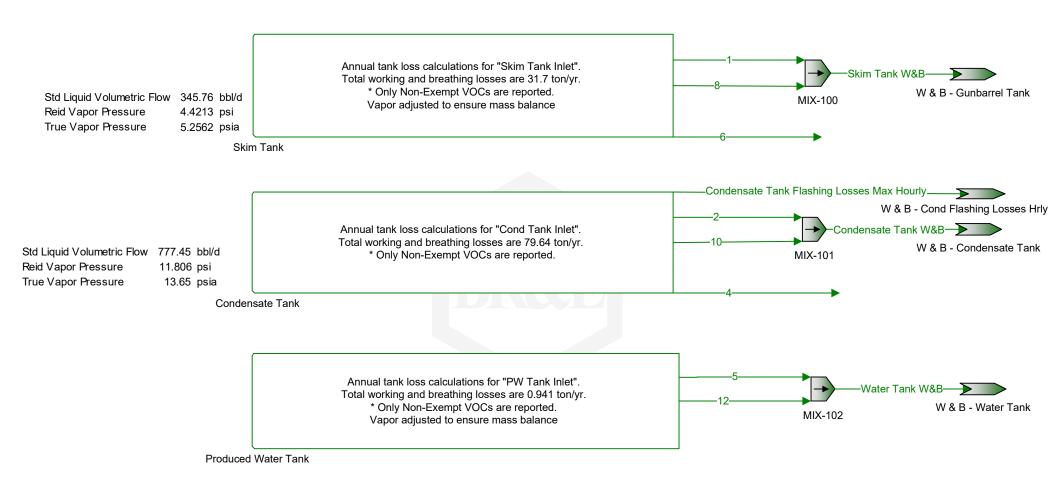
A liquid sample was taken from the Wolverine Compressor station Inlet Separator Hydrocarbon liquid sample was used for the decanes plus speciation in the ProMax process simulation.


All supporting documentation is provided in this section.

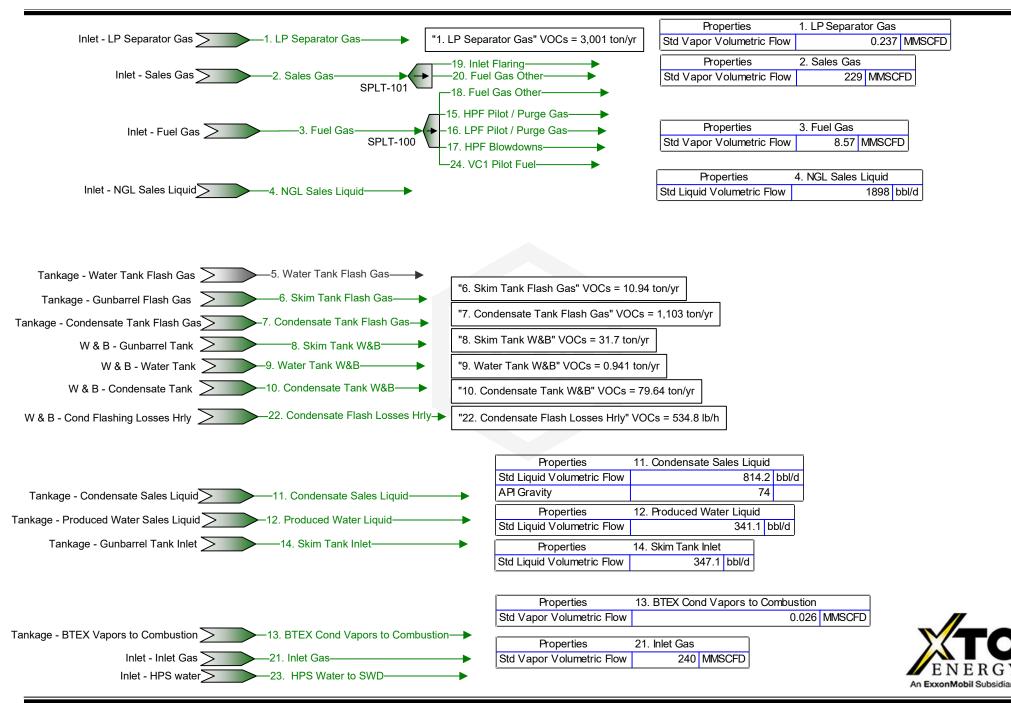








JAYHAWK COMPRESSOR STATION


JAYHAWK COMPRESSOR STATION

JAYHAWK COMPRESSOR STATION

			All St	reams Report treams by Total Phase			
Client Name:					lahi		
					Job:		
	Jayhawk Compr	essor Station					
Flowsheet:	Output						
			Conn	ections			
			1. LP	2. Sales Gas	3. Fuel Gas	4. NGL Sales	5. Water Tank
			Separator Gas	2. 50185 005	5. Fuel Gas	4. NGL Sales	Flash Gas
From Block			Inlet - LP	Inlet - Sales	Inlet - Fuel Gas	Inlet - NGL	Tankage -
FIOIII BIOCK			Separator Gas	Gas	The Fuel Gas	Sales Liquid	Water Tank
			Separator Gas	Gas		Sales Liquid	Flash Gas
To Block				SPLT-101	SPLT-100		Flash Gas
TU DIUCK				SPLI-IUI	3FL1-100		
			Stream C	omposition			
			1. LP	2. Sales Gas	3. Fuel Gas	4. NGL Sales	5. Water Tank
			Separator Gas			Liquid	Flash Gas
Mass Flow			lb/h	lb/h	lb/h	lb/h	lb/h
Triethylene Glycol			2.37625E-08	3.22561	0.00440314	4.28295E-08	
Water			7.45215	18.4076	0.703934	3.21159	
Hydrogen Sulfide			0.0215286	8.48825	0.312073	0.0660887	
Carbon Dioxide			1.27446	1346.94	51.3005		
-			0.93287	6142.43	239.69	4.37797 2.01282	
Nitrogen							
Methane			126.605	299577	11586.5	399.866	
Ethane			163.713	98694	3654.16	632.061	
Propane			252.436	74204.6	2513.69	1211.24	
Isobutane			63.245	13694	406.627	456.031	
n-Butane			165.6	32941.7	898.152	1521.54	
Isopentane			50.9199	9661.03	204.434	887.67	
n-Pentane			58.4506	11081.7	211.527	1279.22	
i-C6			45.7636	8966	110.123	2169.81	
i-C7			18.6612	4063.28	25.9636	2386.48	
Octane			5.43716	1225.46	2.82376	2667.63	
Nonane			0.874389	151.26	0.125044	1224.52	
Benzene			2.30013	209.647	2.30186	112.905	
Toluene			1.87123	233.133	1.17281	311.96	
Ethylbenzene			0.0512527	8.12908	0.0183593	25.2738	
o-Xylene			0.460731	65.4087	0.123331	274.284	
n-Hexane			19.0656	3915.53	38.7864	1249.82	
2,2,4-Trimethylpentar							
Z, Z, 4-IIIIIEIIIyipeiilai	ne		0	0	0	0	
Decanes Plus	1e		0	-	•	-	
Decanes Plus	1e			0 2.21742 0	0.000503746	0 279.402 0	
	16		0 0.0363429	2.21742	0.000503746	279.402	
Decanes Plus			0 0.0363429	2.21742	0.000503746	279.402	5. Water Tank
Decanes Plus Decanes Plus Sat	16		0 0.0363429 0 1. LP Separator Gas	2.21742 0 2. Sales Gas	0.000503746 0 3. Fuel Gas	279.402 0 4. NGL Sales Liquid	5. Water Tank Flash Gas
Decanes Plus Decanes Plus Sat Mole Fraction	16		0 0.0363429 0 1. LP Separator Gas %	2.21742 0 2. Sales Gas %	0.000503746 0 3. Fuel Gas %	279.402 0 4. NGL Sales Liquid %	
Decanes Plus Decanes Plus Sat Mole Fraction Triethylene Glycol			0 0.0363429 0 1. LP Separator Gas % 6.0769E-10	2.21742 0 2. Sales Gas % 8.52759E-05	0.000503746 0 3. Fuel Gas % 3.11649E-06	279.402 0 4. NGL Sales Liquid % 1.17031E-10	Flash Gas
Decanes Plus Decanes Plus Sat Mole Fraction Triethylene Glycol Water			0 0.0363429 0 1. LP Separator Gas % 6.0769E-10 1.58862	2.21742 0 2. Sales Gas % 8.52759E-05 0.00405662	0.000503746 0 3. Fuel Gas % 3.11649E-06 0.00415324	279.402 0 4. NGL Sales Liquid % 1.17031E-10 0.0731522	Flash Gas
Decanes Plus Decanes Plus Sat Mole Fraction Triethylene Glycol Water Hydrogen Sulfide	16		0 0.0363429 0 1. LP Separator Gas % 6.0769E-10 1.58862 0.00242597	2.21742 0 2. Sales Gas % 8.52759E-05 0.00405662 0.000988813	0.000503746 0 3. Fuel Gas % 3.11649E-06 0.00415324 0.000973289	279.402 0 4. NGL Sales Liquid % 1.17031E-10 0.0731522 0.000795728	Flash Gas
Decanes Plus Decanes Plus Sat Mole Fraction Triethylene Glycol Water			0 0.0363429 0 1. LP Separator Gas % 6.0769E-10 1.58862	2.21742 0 2. Sales Gas % 8.52759E-05 0.00405662 0.000988813 0.121509	0.000503746 0 3. Fuel Gas % 3.11649E-06 0.00415324	279.402 0 4. NGL Sales Liquid % 1.17031E-10 0.0731522 0.000795728 0.0408202	Flash Gas
Decanes Plus Decanes Plus Sat Mole Fraction Triethylene Glycol Water Hydrogen Sulfide			0 0.0363429 0 1. LP Separator Gas % 6.0769E-10 1.58862 0.00242597	2.21742 0 2. Sales Gas % 8.52759E-05 0.00405662 0.000988813	0.000503746 0 3. Fuel Gas % 3.11649E-06 0.00415324 0.000973289	279.402 0 4. NGL Sales Liquid % 1.17031E-10 0.0731522 0.000795728	Flash Gas
Decanes Plus Decanes Plus Sat Mole Fraction Triethylene Glycol Water Hydrogen Sulfide Carbon Dioxide	16		0 0.0363429 0 1. LP Separator Gas % 6.0769E-10 1.58862 0.00242597 0.111214	2.21742 0 2. Sales Gas % 8.52759E-05 0.00405662 0.000988813 0.121509	0.000503746 0 3. Fuel Gas % 3.11649E-06 0.00415324 0.000973289 0.1239	279.402 0 4. NGL Sales Liquid % 1.17031E-10 0.0731522 0.000795728 0.0408202	Flash Gas
Decanes Plus Decanes Plus Sat Mole Fraction Triethylene Glycol Water Hydrogen Sulfide Carbon Dioxide Nitrogen			0 0.0363429 0 1. LP Separator Gas % 6.0769E-10 1.58862 0.00242597 0.111214 0.12789 30.3082	2.21742 0 2. Sales Gas % 8.52759E-05 0.00405662 0.000988813 0.121509 0.870525 74.1386	0.000503746 0 3. Fuel Gas % 3.11649E-06 0.00415324 0.000973289 0.1239 0.909452	279.402 0 4. NGL Sales Liquid % 1.17031E-10 0.0731522 0.000795728 0.0408202 0.029484 10.228	Flash Gas
Decanes Plus Decanes Plus Sat Mole Fraction Triethylene Glycol Water Hydrogen Sulfide Carbon Dioxide Nitrogen Methane			0 0.0363429 0 1. LP Separator Gas % 6.0769E-10 1.58862 0.00242597 0.111214 0.12789 30.3082 20.9095	2.21742 0 2. Sales Gas % 8.52759E-05 0.00405662 0.000988813 0.121509 0.870525 74.1386 13.031	0.000503746 0 3. Fuel Gas % 3.11649E-06 0.00415324 0.000973289 0.1239 0.909452 76.7678	279.402 0 4. NGL Sales Liquid % 1.17031E-10 0.0731522 0.000795728 0.0408202 0.029484 10.228 8.62557	Flash Gas
Decanes Plus Decanes Plus Sat Mole Fraction Triethylene Glycol Water Hydrogen Sulfide Carbon Dioxide Nitrogen Methane Ethane			0 0.0363429 0 1. LP Separator Gas % 6.0769E-10 1.58862 0.00242597 0.111214 0.12789 30.3082 20.9095 21.9855	2.21742 0 2. Sales Gas % 8.52759E-05 0.00405662 0.000988813 0.121509 0.870525 74.1386 13.031 6.68101	0.000503746 0 3. Fuel Gas % 3.11649E-06 0.00415324 0.000973289 0.1239 0.909452 76.7678 12.9171 6.05916	279.402 0 4. NGL Sales Liquid % 1.17031E-10 0.0731522 0.000795728 0.0408202 0.029484 10.228 8.62557 11.2715	Flash Gas
Decanes Plus Decanes Plus Sat Mole Fraction Triethylene Glycol Water Hydrogen Sulfide Carbon Dioxide Nitrogen Methane Ethane Propane Isobutane			0 0.0363429 0 1. LP Separator Gas % 6.0769E-10 1.58862 0.00242597 0.111214 0.12789 30.3082 20.9095 21.9855 4.17893	2.21742 0 2. Sales Gas % 8.52759E-05 0.00405662 0.000988813 0.121509 0.870525 74.1386 13.031 6.68101 0.935396	0.000503746 0 3. Fuel Gas % 3.11649E-06 0.00415324 0.000973289 0.1239 0.909452 76.7678 12.9171 6.05916 0.743618	279.402 0 4. NGL Sales Liquid % 1.17031E-10 0.0731522 0.000795728 0.0408202 0.029484 10.228 8.62557 11.2715 3.21959	Flash Gas
Decanes Plus Decanes Plus Sat Mole Fraction Triethylene Glycol Water Hydrogen Sulfide Carbon Dioxide Nitrogen Methane Ethane Propane Isobutane n-Butane			0 0.0363429 0 1. LP Separator Gas % 6.0769E-10 1.58862 0.00242597 0.111214 0.12789 30.3082 20.9095 21.9855 4.17893 10.9421	2.21742 0 2. Sales Gas % 8.52759E-05 0.00405662 0.000988813 0.121509 0.870525 74.1386 13.031 6.68101 0.935396 2.25015	0.000503746 0 3. Fuel Gas % 3.11649E-06 0.00415324 0.000973289 0.1239 0.909452 76.7678 12.9171 6.05916 0.743618 1.64249	279.402 0 4. NGL Sales Liquid % 1.17031E-10 0.0731522 0.000795728 0.0408202 0.029484 10.228 8.62557 11.2715 3.21959 10.7421	Flash Gas
Decanes Plus Decanes Plus Sat Mole Fraction Triethylene Glycol Water Hydrogen Sulfide Carbon Dioxide Nitrogen Methane Ethane Propane Isobutane n-Butane Isopentane			0 0.0363429 0 1. LP Separator Gas % 6.0769E-10 1.58862 0.00242597 0.111214 0.12789 30.3082 20.9095 21.9855 4.17893 10.9421 2.71044	2.21742 0 2. Sales Gas % 8.52759E-05 0.00405662 0.000988813 0.121509 0.870525 74.1386 13.031 6.68101 0.935396 2.25015 0.53162	0.000503746 0 3. Fuel Gas % 3.11649E-06 0.00415324 0.000973289 0.1239 0.909452 76.7678 12.9171 6.05916 0.743618 1.64249 0.301176	279.402 0 4. NGL Sales Liquid % 1.17031E-10 0.0731522 0.000795728 0.0408202 0.029484 10.228 8.62557 11.2715 3.21959 10.7421 5.0486	Flash Gas
Decanes Plus Decanes Plus Sat Mole Fraction Triethylene Glycol Water Hydrogen Sulfide Carbon Dioxide Nitrogen Methane Ethane Propane Isobutane n-Butane Isopentane n-Pentane			0 0.0363429 0 1. LP Separator Gas % 6.0769E-10 1.58862 0.00242597 0.111214 0.12789 30.3082 20.9095 21.9855 4.17893 10.9421 2.71044 3.11129	2.21742 0 2. Sales Gas % 8.52759E-05 0.00405662 0.000988813 0.121509 0.870525 74.1386 13.031 6.68101 0.935396 2.25015 0.53162 0.609797	0.000503746 0 3. Fuel Gas % 3.11649E-06 0.00415324 0.000973289 0.1239 0.909452 76.7678 12.9171 6.05916 0.743618 1.64249 0.301176 0.311625	279.402 0 4. NGL Sales Liquid % 1.17031E-10 0.0731522 0.000795728 0.0408202 0.029484 10.228 8.62557 11.2715 3.21959 10.7421 5.0486 7.27551	Flash Gas
Decanes Plus Decanes Plus Sat Mole Fraction Triethylene Glycol Water Hydrogen Sulfide Carbon Dioxide Nitrogen Methane Ethane Propane Isobutane n-Butane Isopentane n-Pentane i-C6			0 0.0363429 0 1. LP Separator Gas % 6.0769E-10 1.58862 0.00242597 0.111214 0.12789 30.3082 20.9095 21.9855 4.17893 10.9421 2.71044 3.11129 2.03947	2.21742 0 2. Sales Gas % 8.52759E-05 0.00405662 0.000988813 0.121509 0.870525 74.1386 13.031 6.68101 0.935396 2.25015 0.53162 0.609797 0.413069	0.000503746 0 3. Fuel Gas % 3.11649E-06 0.00415324 0.000973289 0.1239 0.909452 76.7678 12.9171 6.05916 0.743618 1.64249 0.301176 0.311625 0.135828	279.402 0 4. NGL Sales Liquid % 1.17031E-10 0.0731522 0.000795728 0.0408202 0.029484 10.228 8.62557 11.2715 3.21959 10.7421 5.0486 7.27551 10.3321	Flash Gas
Decanes Plus Decanes Plus Sat Mole Fraction Triethylene Glycol Water Hydrogen Sulfide Carbon Dioxide Nitrogen Methane Ethane Propane Isobutane n-Butane Isopentane n-Pentane i-C6 i-C7			0 0.0363429 0 1. LP Separator Gas % 6.0769E-10 1.58862 0.00242597 0.111214 0.12789 30.3082 20.9095 21.9855 4.17893 10.9421 2.71044 3.11129 2.03947 0.715228	2.21742 0 2. Sales Gas % 8.52759E-05 0.00405662 0.000988813 0.121509 0.870525 74.1386 13.031 6.68101 0.935396 2.25015 0.53162 0.609797 0.413069 0.160993	0.000503746 0 3. Fuel Gas % 3.11649E-06 0.00415324 0.000973289 0.1239 0.909452 76.7678 12.9171 6.05916 0.743618 1.64249 0.301176 0.311625 0.135828 0.0275413	279.402 0 4. NGL Sales Liquid % 1.17031E-10 0.0731522 0.000795728 0.0408202 0.029484 10.228 8.62557 11.2715 3.21959 10.7421 5.0486 7.27551 10.3321 9.77305	Flash Gas
Decanes Plus Decanes Plus Sat Mole Fraction Triethylene Glycol Water Hydrogen Sulfide Carbon Dioxide Nitrogen Methane Ethane Propane Isobutane n-Butane Isopentane n-Pentane i-C6 i-C7 Octane			0 0.0363429 0 1. LP Separator Gas % 6.0769E-10 1.58862 0.00242597 0.111214 0.12789 30.3082 20.9095 21.9855 4.17893 10.9421 2.71044 3.11129 2.03947 0.715228 0.182801	2.21742 0 2. Sales Gas % 8.52759E-05 0.00405662 0.000988813 0.121509 0.870525 74.1386 13.031 6.68101 0.935396 2.25015 0.53162 0.609797 0.413069 0.160993 0.0425924	0.000503746 0 3. Fuel Gas % 3.11649E-06 0.00415324 0.000973289 0.1239 0.909452 76.7678 12.9171 6.05916 0.743618 1.64249 0.301176 0.311625 0.135828 0.0275413 0.00262754	279.402 0 4. NGL Sales Liquid % 1.17031E-10 0.0731522 0.000795728 0.0408202 0.029484 10.228 8.62557 11.2715 3.21959 10.7421 5.0486 7.27551 10.3321 9.77305 9.58295	Flash Gas
Decanes Plus Decanes Plus Sat Mole Fraction Triethylene Glycol Water Hydrogen Sulfide Carbon Dioxide Nitrogen Methane Ethane Propane Isobutane n-Butane Isopentane n-Pentane i-C6 i-C7 Octane Nonane			0 0.0363429 0 1. LP Separator Gas % 6.0769E-10 1.58862 0.00242597 0.111214 0.12789 30.3082 20.9095 21.9855 4.17893 10.9421 2.71044 3.11129 2.03947 0.715228 0.182801 0.0261825	2.21742 0 2. Sales Gas % 8.52759E-05 0.00405662 0.000988813 0.121509 0.870525 74.1386 13.031 6.68101 0.935396 2.25015 0.53162 0.609797 0.413069 0.160993 0.0425924 0.00468226	0.000503746 0 3. Fuel Gas % 3.11649E-06 0.00415324 0.000973289 0.1239 0.909452 76.7678 12.9171 6.05916 0.743618 1.64249 0.301176 0.311625 0.135828 0.0275413 0.00262754 0.00010363	279.402 0 4. NGL Sales Liquid % 1.17031E-10 0.0731522 0.000795728 0.0408202 0.029484 10.228 8.62557 11.2715 3.21959 10.7421 5.0486 7.27551 10.3321 9.77305 9.58295 3.91776	Flash Gas
Decanes Plus Decanes Plus Sat Mole Fraction Triethylene Glycol Water Hydrogen Sulfide Carbon Dioxide Nitrogen Methane Ethane Propane Isobutane n-Butane Isopentane n-Pentane i-C6 i-C7 Octane Nonane Benzene			0 0.0363429 0 1. LP Separator Gas % 6.0769E-10 1.58862 0.00242597 0.111214 0.12789 30.3082 20.9095 21.9855 4.17893 10.9421 2.71044 3.11129 2.03947 0.715228 0.182801 0.0261825 0.113088	2.21742 0 2. Sales Gas % 8.52759E-05 0.00405662 0.000988813 0.121509 0.870525 74.1386 13.031 6.68101 0.935396 2.25015 0.53162 0.609797 0.413069 0.160993 0.0425924 0.00468226 0.0106556	0.000503746 0 3. Fuel Gas % 3.11649E-06 0.00415324 0.000973289 0.1239 0.909452 76.7678 12.9171 6.05916 0.743618 1.64249 0.301176 0.311625 0.135828 0.0275413 0.00262754 0.00010363 0.00313226	279.402 0 4. NGL Sales Liquid % 1.17031E-10 0.0731522 0.000795728 0.0408202 0.029484 10.228 8.62557 11.2715 3.21959 10.7421 5.0486 7.27551 10.3321 9.77305 9.58295 3.91776 0.593121	Flash Gas
Decanes Plus Decanes Plus Sat Decanes Plus Sat Mole Fraction Triethylene Glycol Water Hydrogen Sulfide Carbon Dioxide Nitrogen Methane Ethane Propane Isobutane n-Butane Isopentane Isopentane n-Pentane i-C6 i-C7 Octane Nonane Benzene Toluene			0 0.0363429 0 1. LP Separator Gas % 6.0769E-10 1.58862 0.00242597 0.111214 0.12789 30.3082 20.9095 21.9855 4.17893 10.9421 2.71044 3.11129 2.03947 0.715228 0.182801 0.0261825 0.113088 0.077995	2.21742 0 2. Sales Gas % 8.52759E-05 0.00405662 0.000988813 0.121509 0.870525 74.1386 13.031 6.68101 0.935396 2.25015 0.53162 0.609797 0.413069 0.160993 0.0425924 0.00468226 0.0106556 0.0100455	0.000503746 0 3. Fuel Gas % 3.11649E-06 0.00415324 0.000973289 0.1239 0.909452 76.7678 12.9171 6.05916 0.743618 1.64249 0.301176 0.311625 0.135828 0.0275413 0.00262754 0.00010363 0.00313226 0.00135296	279.402 0 4. NGL Sales Liquid % 1.17031E-10 0.0731522 0.000795728 0.0408202 0.029484 10.228 8.62557 11.2715 3.21959 10.7421 5.0486 7.27551 10.3321 9.77305 9.58295 3.91776 0.593121 1.38933	Flash Gas
Decanes Plus Decanes Plus Sat Decanes Plus Sat Mole Fraction Triethylene Glycol Water Hydrogen Sulfide Carbon Dioxide Nitrogen Methane Ethane Propane Isobutane n-Butane Isopentane n-Pentane i-C6 i-C7 Octane Nonane Benzene Toluene Ethylbenzene			0 0.0363429 0 1. LP Separator Gas % 6.0769E-10 1.58862 0.00242597 0.111214 0.12789 30.3082 20.9095 21.9855 4.17893 10.9421 2.71044 3.11129 2.03947 0.715228 0.182801 0.0261825 0.113088 0.077995 0.00185403	2.21742 0 2. Sales Gas % 8.52759E-05 0.00405662 0.000988813 0.121509 0.870525 74.1386 13.031 6.68101 0.935396 2.25015 0.53162 0.609797 0.413069 0.160993 0.0425924 0.00468226 0.0106556 0.0100455 0.000303995	0.000503746 0 3. Fuel Gas % 3.11649E-06 0.00415324 0.000973289 0.1239 0.909452 76.7678 12.9171 6.05916 0.743618 1.64249 0.301176 0.311625 0.135828 0.0275413 0.00262754 0.00010363 0.000135296 1.83811E-05	279.402 0 4. NGL Sales Liquid % 1.17031E-10 0.0731522 0.000795728 0.0408202 0.029484 10.228 8.62557 11.2715 3.21959 10.7421 5.0486 7.27551 10.3321 9.77305 9.58295 3.91776 0.593121 1.38933 0.097687	Flash Gas
Decanes Plus Decanes Plus Sat Decanes Plus Sat Mole Fraction Triethylene Glycol Water Hydrogen Sulfide Carbon Dioxide Nitrogen Methane Ethane Propane Isobutane n-Butane Isopentane n-Pentane i-C6 i-C7 Octane Nonane Benzene Toluene Ethylbenzene o-Xylene			0 0.0363429 0 1. LP Separator Gas % 6.0769E-10 1.58862 0.00242597 0.111214 0.12789 30.3082 20.9095 21.9855 4.17893 10.9421 2.71044 3.11129 2.03947 0.715228 0.182801 0.0261825 0.113088 0.077995 0.00185403 0.0166666	2.21742 0 2. Sales Gas % 8.52759E-05 0.00405662 0.000988813 0.121509 0.870525 74.1386 13.031 6.68101 0.935396 2.25015 0.53162 0.609797 0.413069 0.160993 0.0425924 0.00468226 0.0106556 0.0100455 0.000303995 0.00244603	0.000503746 0 3. Fuel Gas % 3.11649E-06 0.00415324 0.000973289 0.1239 0.909452 76.7678 12.9171 6.05916 0.743618 1.64249 0.301176 0.311625 0.135828 0.0275413 0.00262754 0.00010363 0.00313226 1.83811E-05 0.000123477	279.402 0 4. NGL Sales Liquid % 1.17031E-10 0.0731522 0.000795728 0.0408202 0.029484 10.228 8.62557 11.2715 3.21959 10.7421 5.0486 7.27551 10.3321 9.77305 9.58295 3.91776 0.593121 1.38933 0.097687 1.06015	Flash Gas
Decanes Plus Decanes Plus Sat Decanes Plus Sat Mole Fraction Triethylene Glycol Water Hydrogen Sulfide Carbon Dioxide Nitrogen Methane Ethane Propane Isobutane n-Butane Isopentane n-Pentane i-C6 i-C7 Octane Nonane Benzene Toluene Ethylbenzene			0 0.0363429 0 1. LP Separator Gas % 6.0769E-10 1.58862 0.00242597 0.111214 0.12789 30.3082 20.9095 21.9855 4.17893 10.9421 2.71044 3.11129 2.03947 0.715228 0.182801 0.0261825 0.113088 0.077995 0.00185403	2.21742 0 2. Sales Gas % 8.52759E-05 0.00405662 0.000988813 0.121509 0.870525 74.1386 13.031 6.68101 0.935396 2.25015 0.53162 0.609797 0.413069 0.160993 0.0425924 0.00468226 0.0106556 0.0100455 0.000303995	0.000503746 0 3. Fuel Gas % 3.11649E-06 0.00415324 0.000973289 0.1239 0.909452 76.7678 12.9171 6.05916 0.743618 1.64249 0.301176 0.311625 0.135828 0.0275413 0.00262754 0.00010363 0.000135296 1.83811E-05	279.402 0 4. NGL Sales Liquid % 1.17031E-10 0.0731522 0.000795728 0.0408202 0.029484 10.228 8.62557 11.2715 3.21959 10.7421 5.0486 7.27551 10.3321 9.77305 9.58295 3.91776 0.593121 1.38933 0.097687	Flash Gas

				reams Report treams by Total Phase			
	ELAWARE DI				Job:		
Location: Ja	ayhawk Comp	ressor Station					
Flowsheet: O	utput						
Mole Fraction			1. LP Separator Gas %	2. Sales Gas %	3. Fuel Gas %	4. NGL Sales Liquid %	5. Water Tank Flash Gas %
Decanes Plus			0.000909861	5.73892E-05	3.49045E-07	0.747399	
ecanes Plus Sat		0	0	0	0		
					1		
Acco Freetien			1. LP Separator Gas	2. Sales Gas %	3. Fuel Gas %	4. NGL Sales Liquid %	5. Water Tank Flash Gas %
Mass Fraction			2.41202E-09	0.00056968	2.20724E-05	2.50474E-10	70
Vater			0.75643	0.003251	0.00352874	0.0187819	
lydrogen Sulfide			0.00218526	0.00149912	0.00156439	0.000386498	
Carbon Dioxide			0.129364	0.237886	0.257163	0.0256031	
Nitrogen			0.094691	1.08483	1.20154	0.0117713	
/lethane			12.851	52.9088	58.082	2.33849	
Ethane			16.6177	17.4305	18.3179	3.6964	
Propane			25.6236	13.1054	12.6008	7.08351	
sobutane			6.41968	2.41852	2.03837	2.66695	
n-Butane			16.8092	5.8179	4.50233	8.89825	
sopentane			5.16863	1.70625	1.0248	5.19124	
n-Pentane			5.93303	1.95716	1.06036	7.48107	
-C6			4.64524	1.5835	0.552033	12.6894	
-C7			1.89421	0.717624	0.130152	13.9565	
Octane			0.551899	0.216431	0.0141552	15.6007	
Nonane			0.0887549	0.0267142	0.000626833	7.16117	
Benzene Foluene			0.233475	0.0370262 0.041174	0.011539 0.00587918	0.660285	
Ethylbenzene			0.00520241	0.00143569	9.2033E-05	0.147805	
-Xylene			0.0467665	0.00145509	0.000618245	1.60406	
n-Hexane			1.93525	0.691528	0.194432	7.30913	
2,2,4-Trimethylpentane			0	0.051520	0.134432	0	
Decanes Plus			0.00368899	0.000391623	2.52522E-06	1.63399	
Decanes Plus Sat			0	0	0	0	
					1		
			Stream	Properties			
Property		Units	1. LP Separator Gas	2. Sales Gas	3. Fuel Gas	4. NGL Sales Liquid	5. Water Tank Flash Gas
Temperature		°F	75.7	93.2634	76.5751	94.2513	
Pressure		psig	15	1272	120	400	0.2
/lolecular Weight		lb/lbmo1	37.8349	22.4795	21.2035	70.1663	
Mass Flow		lb/h	985.173	566214	19948.6	17099.4	(
Std Vapor Volumetric F		MMSCFD	0.237151	229.402	8.56858	2.21951	
Std Liquid Volumetric F	low	sgpm	4.19696	3145.36	114.762	55.3492	
API Gravity		Dtuille	0454.5	4000.07	4000.0	90.3641	
Gross Ideal Gas Heatin	ng value	Btu/ft^3	2154.4	1338.01	1269.3	3872.94	1

			All S	reams Report treams by Total Phase			
Client Name:	DELAWARE DI	VISION			Job:		
Location:	Jayhawk Compr						
Flowsheet:	Output						
			Conn	ections			
			6. Skim Tank Flash Gas	7. Condensate Tank Flash Gas	8. Skim Tank W&B	9. Water Tank W&B	10. Condensate Tank W&B
From Block			Tankage - Gunbarrel Flash Gas	Tankage - Condensate Tank Flash Gas	W & B - Gunbarrel Tank	W & B - Water Tank	W & B - Condensate Tank
To Block							
			Stream C	omposition			
			6. Skim Tank Flash Gas	7. Condensate Tank Flash Gas	8. Skim Tank W&B	9. Water Tank W&B	10. Condensate Tank W&B
Mass Flow			lb/h	lb/h	lb/h	lb/h	lb/h
Triethylene Glycol			1.05113E-10	9.89993E-09	3.35172E-10	3.50942E-10	5.18578E-13
Water			0.0344037	0.685708	0.128969	0.128727	1.48305E-05
Hydrogen Sulfide			8.67221E-05	0.00376113	0.000328176	0.00033994	0.000156105
Carbon Dioxide			0.004085	0.101373	0.00808979	0.00583444	0.00415695
Nitrogen			0.000266502	0.00858354	1.25307E-05	9.23318E-06	2.02214E-05
Methane			0.0797425	4.02196	0.00905685	0.00566605	0.045702
Ethane Propane			0.251762	24.3092 73.0639	0.0896923 0.673562	0.0265713 0.0503116	1.51883 4.81968
Isobutane			0.078089	23.5242	0.572777	0.0118203	1.62503
n-Butane			0.654127	65.6254	2.39439	0.0442942	4.82784
Isopentane			0.225636	21.8774	0.858766	0.0107872	1.65793
n-Pentane			0.264221	25.4475	1.0121	0.00503188	1.93243
i-C6			0.215024	20.4322	0.834406	0.00561285	1.64047
i-C7			0.0886189	8.37174	0.34338	0.00158052	0.660169
Octane			0.0256788	2.42189	0.0981846	0.000103378	0.170885
Nonane			0.00414491	0.39021	0.0156978	1.70199E-05	0.0241421
Benzene			0.0106819	1.02405	0.041327	0.0409704	0.0530051
Toluene			0.00881074	0.835936	0.0339768	0.0338291	0.0446708
Ethylbenzene o-Xylene			0.000241112 0.00216757	0.0228023	0.000920905 0.00827137	0.000917679 0.00826299	0.00124543 0.00960647
n-Hexane			0.0902174	8.54749	0.00827137	0.00828299	0.714413
2,2,4-Trimethylpenta	ane		0.0902174	0.54749	0.349037	0.00110802	0.714413
Decanes Plus			0.000168879	0.0159356	0.00062722	0.000139556	0.000862324
Decanes Plus Sat			0	0	0	0	0
			6. Skim Tank Flash Gas	7. Condensate Tank Flash Gas	8. Skim Tank W&B	9. Water Tank W&B	10. Condensate Tank W&B
Mole Fraction			%	%	%	%	%
Triethylene Glycol			1.21388E-09	1.21739E-09	1.825E-09	1.95962E-08	9.5811E-13
Water			3.3119	0.70289	5.8537	59.9177	0.000228406
Hydrogen Sulfide			0.00441298	0.00203796	0.00787378	0.083641	0.00127086
Carbon Dioxide			0.160975	0.0425368	0.150306	1.11168	0.0262073
Nitrogen Methane			0.0164986 8.62049	0.00565835 4.62974	0.000365759 0.461629	0.00276384 2.96167	0.000200281 0.79042
Ethane			14.5206	4.62974	2.43906	7.41005	14.0147
Propane			26.6688	30.5982	12.4902	9.56755	30.3261
Isobutane			6.83681	7.47414	8.05807	1.70535	7.75734
n-Butane			19.5179	20.8506	33.6853	6.39047	23.0465
Isopentane			5.42366	5.59959	9.73269	1.25374	6.37576
n-Pentane			6.35113	6.51335	11.4705	0.584829	7.43136
i-C6			4.32729	4.37845	7.91737	0.54617	5.28175
i-C7			1.53378	1.54287	2.80211	0.132267	1.82798
Octane			0.389864	0.391533	0.702839	0.00758893	0.41507
Nonane			0.0560471	0.056184	0.100081	0.00111278	0.052227
Benzene			0.237161	0.2421	0.432618	4.39827	0.188276
* User Specified Values			0.165838	0.167541	0.301528	3.07877	0.134517

			Process St All S Tabulated				
Client Name: DELA	WARE DI	/ISION			Job:		
Location: Jayha	wk Compre	essor Station					
Flowsheet: Output	ut .						
					· ·		
Mala Francisco			6. Skim Tank Flash Gas	7. Condensate Tank Flash Gas	8. Skim Tank W&B	9. Water Tank W&B	10. Condensate Tank W&B
Mole Fraction			%	%	% 0.00709285	% 0.0724832	%
Ethylbenzene			0.00393867 0.0354082	0.0039663	0.0637064	0.652655	0.00325484
o-Xylene n-Hexane			1.8156	0.0356564	3.31967	0.052055	0.0251059 2.30017
2,2,4-Trimethylpentane			0	1.63166	3.31907	0.113057	2.30017
Decanes Plus			0.00190925	0.00191837	0.00334335	0.00762869	0.00155969
Decanes Plus Sat			0.00190925	0.00191037	0.00334335	0.00702809	0.00155969
			0	0	0	0	U
			6. Skim Tank Flash Gas	7. Condensate Tank Flash Gas	8. Skim Tank W&B	9. Water Tank W&B	10. Condensate Tank W&B
Mass Fraction			%	%	%	%	%
Triethylene Glycol			3.66591E-09	3.52391E-09	4.48427E-09	9.1871E-08	2.62554E-12
Water			1.19986	0.24408	1.72547	33.6986	7.50861E-05
Hydrogen Sulfide			0.00302452	0.00133878	0.00439067	0.0889909	0.000790354
Carbon Dioxide			0.142468	0.036084	0.108233	1.52736	0.0210465
Nitrogen			0.00929453	0.00305533	0.000167648	0.0024171	0.00010238
Methane			2.7811	1.43163	0.121172	1.48328	0.231388
Ethane			8.78044	8.65291	1.19999	6.95594	7.68981
Propane			23.649	26.0073	9.01159	13.1708	24.4019
Isobutane			7.99114	8.37349	7.6632	3.09437	8.22747
n-Butane			22.8133	23.3595	32.0346	11.5955	24.4432
Isopentane			7.86928	7.78734	11.4894	2.82392	8.39407
n-Pentane			9.21497	9.05809	13.5409	1.31727	9.78383
i-C6			7.49916	7.27289	11.1635	1.46935	8.30562
i-C7			3.09067	2.97994	4.59408	0.413756	3.34241
Octane			0.895573	0.862078	1.31361	0.0270627	0.865182
Nonane			0.144558	0.138896	0.210021	0.00445554	0.122231
Benzene			0.37254	0.364514	0.552915	10.7254	0.268363
Toluene			0.307283	0.297554	0.454575	8.85591	0.226167
Ethylbenzene			0.00840901	0.00811653	0.0123208	0.240234	0.00630555
o-Xylene			0.0755961	0.0729662	0.110663	2.16312	0.0486372
n-Hexane			3.14642	3.0425	4.68074	0.305769	3.61705
2,2,4-Trimethylpentane			0	0	0	0	0
Decanes Plus			0.00588982	0.00567233	0.00839158	0.0365334	0.00436592
Decanes Plus Sat			0	0	0	0	0
			Stream	Properties			
Property		Units	6. Skim Tank Flash Gas	7. Condensate Tank Flash	8. Skim Tank W&B	9. Water Tank W&B	10. Condensate Tank W&B
Tomporatura		°F	75.67	Gas	00.0060	00 6055	
Temperature Pressure		psig	75.67 0.5	75.67 0.25	82.0362 -3.9673	82.6855 -11.8056	78.6044 0.0439129
Molecular Weight		lb/lbmol	49.7263	51.8796	61.1171	32.032	54.801
Mass Flow		lb/h	2.8673	280.936	7.4744	0.381994	19.7513
Std Vapor Volumetric Flow		MMSCFD	0.00052516	0.0493191	0.00111383	0.000108612	0.00328255
Std Liquid Volumetric Flow			0.0106263	1.0366	0.024787	0.00111847	0.00328255
API Gravity		sgpm	0.0100203	1.0300	0.024707	0.00111047	0.07 14132
Gross Ideal Gas Heating Va	alue	Btu/ft^3	2769.57	2915.86	3346.32	1149.83	3080.19
Contraction out housing vi			2100.01	2010.00	00 70.02	1110.00	0000.10

Remarks

	All St Tabulated b						
Client Name: DELAWARE DIV Location: Jayhawk Compr			Job:				
Flowsheet: Output							
	Conn	ections					
	11.	12. Produced	13. BTEX	14. Skim Tank	15. HPF Pilot /		
	Condensate Sales Liquid	Water Liquid	Cond Vapors to Combustion	Inlet	Purge Gas		
From Block	Tankage - Condensate Sales Liquid	Tankage - Produced Water Sales Liquid	Tankage - BTEX Vapors to Combustion	Tankage - Gunbarrel Tank Inlet	SPLT-100		
To Block							
	Stream C	omposition					
	11. Condensate Sales Liquid	12. Produced Water Liquid	13. BTEX Cond Vapors to Combustion	14. Skim Tank Inlet	15. HPF Pilot / Purge Gas		
Mass Flow	lb/h	lb/h	lb/h	lb/h	lb/h		
Triethylene Glycol	6.33307E-05	1.07682	3.11343E-08	1.07682	3.08322E-05		
Water Hydrogen Sulfide	0.170596	4975 0.000559356	1.46396 0.119759	4975.04 0.000680464	0.00492918 0.00218524		
Carbon Dioxide	0.0208007	0.00862534	1.86983	0.0132616	0.359223		
Nitrogen	0.00017029	1.36499E-05	0.01261	0.000283619	1.67839		
Methane	0.29209	0.00837641	7.43021	0.0919205	81.1328		
Ethane	11.4203	0.0392817	17.3237	0.36877	25.5877		
Propane	122.333	0.0743783	30.0862	1.49888	17.6017		
Isobutane n-Butane	98.6614 407.601	0.0174746 0.0654824	5.29049 21.4663	0.87855 3.3908	2.84734 6.28916		
Isopentane	335.495	0.0054824	8.37887	2.51756	1.43152		
n-Pentane	518.971	0.00743889	11.5326	3.81717	1.48118		
i-C6	1039	0.00829776	7.95601	7.41869	0.771116		
i-C7	1347.49	0.00233657	2.33582	9.48463	0.181805		
Octane	1840.94	0.000152829 2.51614E-05	0.242183	12.8911	0.0197729		
Nonane Benzene	976.464 75.3806	0.149919	0.0121609 5.88284	6.83122 0.679596	0.000875601 0.0161184		
Toluene	214.168	0.0925825	2.92114	1.59148	0.00821242		
Ethylbenzene	18.3062	0.00225858	0.0270334	0.130307	0.000128558		
o-Xylene	203.647	0.0301824	0.282454	1.454	0.000863606		
n-Hexane	632.092	0.00172674	3.23896	4.48253	0.271595		
2,2,4-Trimethylpentane Decanes Plus	<u> </u>	0	0	0	0		
Decanes Plus Sat	203.039	0.000206312	0.000157435	1.84393 0	3.52739E-06 0		
		-			-		
	11. Condensate Sales Liquid	12. Produced Water Liquid	13. BTEX Cond Vapors to Combustion	14. Skim Tank Inlet	15. HPF Pilot / Purge Gas		
Mole Fraction	%	%	%	%	%		
Triethylene Glycol	4.82495E-07	0.00259642	7.27194E-09	0.00259024	3.11649E-06		
Water	0.0108342	99.9942	2.8503	99.7571	0.00415324		
Hydrogen Sulfide	7.60547E-05	5.94292E-06	0.123254	7.21244E-06	0.000973289		
Carbon Dioxide	0.000540756	7.09664E-05	1.49025	0.000108853	0.1239 0.909452		
Nitrogen Methane	6.95492E-06 0.0208313	1.76435E-07 0.000189064	0.0157889 16.2455	3.65727E-06 0.0020698	0.909452 76.7678		
Ethane	0.434539	0.000473035	20.2081	0.0020098	12.9171		
Propane	3.17407	0.000610764	23.9318	0.0122789	6.05916		
Isobutane	1.94212	0.000108865	3.19269	0.00546025	0.743618		
n-Butane	8.02349	0.000407948	12.9544	0.021074	1.64249		
Isopentane	5.32019 8.2297	8.0035E-05	4.07342 5.60661	0.0126049 0.0191118	0.301176 0.311625		
n-Pentane i-C6	13.7944	3.73337E-05 3.48659E-05	3.23829	0.0191118	0.311625		
i-C7	15.3858	8.44354E-06	0.817649	0.031098	0.0275413		
Octane	18.4389	4.84455E-07	0.0743657	0.0407663	0.00262754		

			All S	reams Report treams by Total Phase				
Client Name: [DELAWARE DI	/ISION			Job:			
	Jayhawk Compr	essor Station						
Flowsheet: 0	Output							
				· · · · · · · ·	· · · -			
			11. Condensate Sales Liquid	12. Produced Water Liquid	13. BTEX Cond Vapors to Combustion	14. Skim Tank Inlet	15. HPF Pilot / Purge Gas	
Mole Fraction			%	%	%	%	%	
Nonane			8.71067	7.10367E-08	0.00332577	0.0192403	0.00010363	
Benzene			1.10411	0.000694964	2.64164	0.00314284	0.00313226	
Toluene			2.6594	0.00036384	1.11203	0.00623948	0.00135296	
Ethylbenzene			0.197281	7.70328E-06	0.00893145	0.000443378	1.83811E-05	
o-Xylene n-Hexane			2.19465 8.39203	0.000102942 7.25549E-06	0.093319 1.31833	0.00494735 0.0187901	0.000123477 0.0478401	
2,2,4-Trimethylpentan	۵		0.39203	7.25549E-00 0	1.31633	0.0187901	0.0478401	
Decanes Plus	~		1.96632	4.86992E-07	3.5998E-05	0.00434218	3.49045E-07	
Decanes Plus Sat			0	0	0.00002.00	0.00404210	0.400402 07	
			11. Condensate Sales Liquid	12. Produced Water Liquid	13. BTEX Cond Vapors to	14. Skim Tank Inlet	15. HPF Pilot / Purge Gas	
Mass Fraction			%	%	Combustion %	%	%	
Triethylene Glycol			7.81272E-07	0.0216377	2.43478E-08	0.0213846	2.20724E-05	
Water			0.00210454	99.9678	1.14485	98.7993	0.00352874	
Hydrogen Sulfide			2.79483E-05	1.12397E-05	0.0936543	1.35133E-05	0.00156439	
Carbon Dioxide Nitrogen			0.000256606 2.10076E-06	0.000173318 2.74281E-07	1.46225 0.00986132	0.000263363 5.63239E-06	0.257163	
Methane			0.00360334	0.000168316	5.8106	0.00182545	58.082	
Ethane			0.140886	0.000789328	13.5476	0.0073234	18.3179	
Propane			1.50914	0.00149456	23.5281	0.0297662	12.6008	
Isobutane			1.21713	0.000351134	4.13729	0.0174471	2.03837	
n-Butane			5.02833	0.00131581	16.7872	0.0673378	4.50233	
Isopentane			4.1388	0.000320445	6.55248	0.0499962	1.0248	
n-Pentane			6.40223	0.000149477	9.01875	0.0758052	1.06036	
i-C6 i-C7			12.8175	0.000166736 4.6951E-05	6.2218	0.147328	0.552033	
Octane			16.6232 22.7106	4.6951E-05 3.07095E-06	1.82667 0.189393	0.188355 0.256003	0.130152 0.0141552	
Nonane			12.046	5.05594E-07	0.00951008	0.135661	0.000626833	
Benzene			0.929925	0.00301248	4.60052	0.0134961	0.011539	
Toluene			2.64206	0.00186036	2.2844	0.0316052	0.00587918	
Ethylbenzene			0.225832	4.53839E-05	0.0211408	0.00258776	9.2033E-05	
o-Xylene			2.51226	0.000606485	0.220886	0.0288751	0.000618245	
n-Hexane			7.79773	3.46972E-05	2.53294	0.0890185	0.194432	
2,2,4-Trimethylpentan	e		0	0	0	0	0	
Decanes Plus			3.25235	4.14564E-06	0.000123118	0.0366186	2.52522E-06	
Decanes Plus Sat			0	0	0	0	0	
				Properties				
Property		Units	11. Condensate Sales Liquid	12. Produced Water Liquid	13. BTEX Cond Vapors to	14. Skim Tank Inlet	15. HPF Pilot / Purge Gas	
_					Combustion			
Temperature		°F	75.67	75.8095	70	75.7	76.5751	
Pressure Melecular Weight		psig	0.25	0.25	0	15	120	
Molecular Weight Mass Flow		lb/lbmol lb/h	<u>92.7432</u> 8106.1	18.02 4976.6	44.8521 127.873	18.1899 5035.5	21.2035 139.687	
1114331101	Flow	MMSCFD	0.79604	2.51525	0.0259658	2.52125	0.06	
Std Vapor Volumetric	1 10 11		0.73004	2.01020				
Std Vapor Volumetric Std Liquid Volumetric		sapm	23 7476	9 94891	0 49092	10 1234	0 8036	
Std Vapor Volumetric Std Liquid Volumetric API Gravity		sgpm	23.7476 73.9665	9.94891 9.99586	0.49092	10.1234 10.7657	0.8036	

Remarks

		Process Streams Report All Streams Tabulated by Total Phase			
Client Name:	DELAWARE DI	/ISION		Job:	
Location:	Jayhawk Compr	essor Station			
Flowsheet:	Output				

			All St	reams Report reams ry Total Phase			
Client Name:	DELAWARE DI				Job:		
Location: Flowsheet:	Jayhawk Compr Output	essor Station					
			Conn	ections			
			16. LPF Pilot /	17. HPF	18. Fuel Gas	19. Inlet	20. Fuel Gas
			Purge Gas	Blowdowns	Other	Flaring	Other
From Block To Block			SPLT-100	SPLT-100	SPLT-100	SPLT-101	SPLT-101
TOBIOCK							
			Stream C	omposition			
			16. LPF Pilot / Purge Gas	17. HPF Blowdowns	18. Fuel Gas Other	19. Inlet Flaring	20. Fuel Gas Other
Mass Flow			lb/h	10/h	lb/h	lb/h	lb/h
Triethylene Glycol Water			1.61869E-05 0.00258782	1.17356E-05 0.00187618	0.00653115 1.04414	0.984264 5.61692	2.24134 12.7907
Hydrogen Sulfide			0.00114725	0.000831763	0.462897	2.59011	5.89814
Carbon Dioxide			0.188592	0.13673	76.0938	411.007	935.936
Nitrogen			0.881154	0.638841	355.531	1874.31	4268.12
Methane Ethane			42.5947 13.4335	30.8814 9.73938	17186.3 5420.2	91413.2 30115.6	208164 68578.4
Propane			9.24089	6.6997	3728.54	22642.9	51561.8
Isobutane			1.49485	1.08378	603.147	4178.6	9515.41
n-Butane			3.30181	2.39383	1332.22	10051.9	22889.9
Isopentane n-Pentane			0.751546	0.544875 0.563778	303.236 313.756	2947.97 3381.48	6713.05 7700.23
i-C6			0.404836	0.293508	163.345	2735.89	6230.11
i-C7			0.0954478	0.0692002	38.5116	1239.87	2823.41
Octane			0.0103808	0.00752611	4.18846	373.938	851.523
Nonane Benzene			0.000459691	0.000333278 0.00613511	0.185478 3.41434	46.1555 63.972	105.104 145.675
Toluene			0.00431152	0.00312588	1.73963	71.1383	161.994
Ethylbenzene			6.74929E-05	4.89327E-05	0.0272322	2.48051	5.64856
o-Xylene			0.000453393	0.000328713	0.182937	19.9589	45.4499
n-Hexane 2,2,4-Trimethylpen	ntane		0.142587 0	0.103377	57.5316 0	1194.79 0	2720.74
Decanes Plus			1.85188E-06	1.34262E-06	0.000747203	0.676627	1.5408
Decanes Plus Sat			0	0	0	0	0
Mole Fraction			16. LPF Pilot / Purge Gas %	17. HPF Blowdowns %	18. Fuel Gas Other %	19. Inlet Flaring %	20. Fuel Gas Other %
Triethylene Glycol			3.11649E-06	3.11649E-06	3.11649E-06	8.52759E-05	8.52759E-05
Water			0.00415324	0.00415324	0.00415324	0.00405662	0.00405662
Hydrogen Sulfide Carbon Dioxide			0.000973289 0.1239	0.000973289 0.1239	0.000973289 0.1239	0.000988813 0.121509	0.000988813 0.121509
Nitrogen			0.1239	0.1239	0.1239	0.121509	0.121509
Methane			76.7678	76.7678	76.7678	74.1386	74.1386
Ethane			12.9171	12.9171	12.9171	13.031	13.031
Propane Isobutane			6.05916 0.743618	6.05916 0.743618	6.05916 0.743618	6.68101 0.935396	6.68101 0.935396
n-Butane			1.64249	1.64249	1.64249	2.25015	2.25015
Isopentane			0.301176	0.301176	0.301176	0.53162	0.53162
n-Pentane			0.311625	0.311625	0.311625	0.609797	0.609797
i-C6 i-C7			0.135828 0.0275413	0.135828 0.0275413	0.135828 0.0275413	0.413069 0.160993	0.413069 0.160993
Octane			0.0275413	0.0275413	0.0275413	0.160993	0.160993
Nonane			0.00010363	0.00010363	0.00010363	0.00468226	0.00468226
Benzene			0.00313226	0.00313226	0.00313226	0.0106556	0.0106556
Toluene			0.00135296	0.00135296	0.00135296	0.0100455	0.0100455
Ethylbenzene o-Xylene			1.83811E-05 0.000123477	1.83811E-05 0.000123477	1.83811E-05 0.000123477	0.000303995 0.00244603	0.000303995 0.00244603
n-Hexane			0.0478401	0.0478401	0.0478401	0.180391	0.180391
2,2,4-Trimethylper	ntane		0	0	0	0	0
Decanes Plus Decanes Plus Sat			3.49045E-07 0	3.49045E-07 0	3.49045E-07 0	5.73892E-05 0	5.73892E-05 0
Decanes Plus Sat			U	U	U	U	U

Client Name:	DELAWARE DI	/ISION			Job:		
Location:	Jayhawk Compr	essor Station					
Flowsheet:	Output						
			16. LPF Pilot / Purge Gas	17. HPF Blowdowns	18. Fuel Gas Other	19. Inlet Flaring	20. Fuel Gas Other
Mass Fraction			%	%	%	%	%
Triethylene Glycol			2.20724E-05	2.20724E-05	2.20724E-05	0.00056968	0.00056968
Water			0.00352874	0.00352874	0.00352874	0.003251	0.003251
Hydrogen Sulfide			0.00156439	0.00156439	0.00156439	0.00149912	0.00149912
Carbon Dioxide			0.257163	0.257163	0.257163	0.237886	0.237886
Nitrogen			1.20154	1.20154	1.20154	1.08483	1.08483
Methane			58.082	58.082	58.082	52.9088	52.9088
Ethane			18.3179	18.3179	18.3179	17.4305	17.4305
Propane			12.6008	12.6008	12.6008	13.1054	13.1054
Isobutane			2.03837	2.03837	2.03837	2.41852	2.41852
n-Butane			4.50233	4.50233	4.50233	5.8179	5.8179
Isopentane			1.0248	1.0248	1.0248	1.70625	1.70625
n-Pentane			1.06036	1.06036	1.06036	1.95716	1.95716
i-C6			0.552033	0.552033	0.552033	1.5835	1.5835
i-C7			0.130152	0.130152	0.130152	0.717624	0.717624
Octane			0.0141552	0.0141552	0.0141552	0.216431	0.216431
Nonane			0.000626833	0.000626833	0.000626833	0.0267142	0.0267142
Benzene			0.011539	0.011539	0.011539	0.0370262	0.0370262
Toluene			0.00587918	0.00587918	0.00587918	0.041174	0.041174
Ethylbenzene			9.2033E-05	9.2033E-05	9.2033E-05	0.00143569	0.00143569
o-Xylene			0.000618245	0.000618245	0.000618245	0.011552	0.011552
n-Hexane			0.194432	0.194432	0.194432	0.691528	0.691528
2,2,4-Trimethylpent	ane		0	0	0	0	0
Decanes Plus			2.52522E-06	2.52522E-06	2.52522E-06	0.000391623	0.000391623
Decanes Plus Sat			0	0	0	0	0
			Stream	Properties			
Property		Units	16. LPF Pilot /	17. HPF	18. Fuel Gas	19. Inlet	20. Fuel Gas
			Purge Gas	Blowdowns	Other	Flaring	Other
Temperature		°F	76.5751	76.5751	76.5751	93.2634	93.2634

		Purge Gas	Blowdowns	Other	Flaring	Other
Temperature	°F	76.5751	76.5751	76.5751	93.2634	93.2634
Pressure	psig	120	120	120	1272	1272
Molecular Weight	lb/lbmo1	21.2035	21.2035	21.2035	22.4795	22.4795
Mass Flow	lb/h	73.3355	53.1686	29589.6	172775	393439
Std Vapor Volumetric Flow	MMSCFD	0.0315 *	0.0228377 *	12.7097	70 *	159.402
Std Liquid Volumetric Flow	sgpm	0.42189	0.305873	170.226	959.779	2185.59
API Gravity						
Gross Ideal Gas Heating Value	Btu/ft^3	1269.3	1269.3	1269.3	1338.01	1338.01

Remarks

	All St	reams Report treams by Total Phase			
Client Name: DELAWARE D Location: Jayhawk Comp			Job:		
Flowsheet: Output					
	Conn	ections			
	21. Inlet Gas	22.	23. HPS	24. VC1 Pilot	
		Condensate Flash Losses Hrly	Water to SWD	Fuel	
From Block	Inlet - Inlet Gas	W & B - Cond Flashing Losses Hrly	Inlet - HPS water	SPLT-100	
To Block					
	Stream C	omposition			
Mass Flow	21. Inlet Gas Ib/h	22. Condensate Flash Losses Hrly Ib/h	23. HPS Water to SWD Ib/h	24. VC1 Pilot Fuel Ib/h	
Triethylene Glycol	0	1.05542E-11	6.32885E-05	1.47995E-05	
Water	0	0.000371915	1350.9	0.00236601	
Hydrogen Sulfide	8.98948	0.00504789	0.000733058	0.00104892	
Carbon Dioxide	1404.61	0.114158	0.0419495	0.172427	
Nitrogen	6384.15	0.000752227	0.00410197	0.805626	
Methane Ethane	<u>311574</u> 103011	1.26894 42.3671	0.513033 0.199228	38.9438 12.2821	
Propane	77974.6	42.3671	0.199228	8.44881	
Isobutane	14549	48.413	0.00802087	1.36672	
n-Butane	35306.9	152.628	0.0276614	3.0188	
Isopentane	10676.2	50.5162	0.00443203	0.687127	
n-Pentane	12446	60.1251	0.00235678	0.710966	
i-C6	10956	24.3019	0.00211499	0.370136	
i-C7 Octane	6078.94 3344.42	26.5986 4.91654	0.000458523 3.44751E-05	0.0872666 0.00949098	
Nonane	1082.55	0.543479	3.89191E-06	0.000420289	
Benzene	309.052	1.83996	0.027322	0.00773682	
Toluene	486.065	1.52189	0.0178629	0.00394196	
Ethylbenzene	28.003	0.044416	0.00040446	6.17077E-05	
o-Xylene	280.03	0.300355	0.00538719	0.000414531	
n-Hexane 2,2,4-Trimethylpentane	5023.42	17.2603 1.06002	0.000445207	0.130366	
Decanes Plus	202.311	0.000358566	3.05808E-05	1.69315E-06	
Decanes Plus Sat	0	0	0	0	
	21. Inlet Gas	22. Condensate Flash Losses Hrly	23. HPS Water to SWD	24. VC1 Pilot Fuel	
Mole Fraction	%	%	%	%	
Triethylene Glycol	0	6.62247E-13	5.61696E-07	3.11649E-06	
Water Hydrogen Sulfide	0.00100096	0.000194532 0.00139568	99.9428 2.86679E-05	0.00415324 0.000973289	
Carbon Dioxide	0.121116	0.0244426	0.00127042	0.1239	
Nitrogen	0.86483	0.000253029	0.000195162	0.909452	
Methane	73.7028	0.745348	0.0426229	76.7678	
Ethane	13.0005	13.2769	0.00883077	12.9171	
Propane Isobutane	<u> </u>	30.9207 7.84887	0.00246456	6.05916 0.743618	
n-Butane	2.30521	24.7445	0.000183928	1.64249	
Isopentane	0.561539	6.59765	8.18732E-05	0.301176	
n-Pentane	0.654628	7.85262	4.3537E-05	0.311625	
i-C6	0.482463	2.65732	3.27109E-05	0.135828	
i-C7	0.230221	2.50133	6.09893E-06	0.0275413	
Octane Nonane	0.111107 0.0320307	0.405576 0.0399297	4.02253E-07 4.04442E-08	0.00262754 0.00010363	

Oligate Name				reams Report treams by Total Phase			
	DELAWARE DI				Job:		
	Jayhawk Compre	essor Station					
Flowsheet:	Output						
					00 1100		
Mole Fraction			21. Inlet Gas	22. Condensate Flash Losses Hrly %	23. HPS Water to SWD %	24. VC1 Pilot Fuel %	
Benzene			0.0150144	0.221963	0.000466191	0.00313226	
Toluene			0.0200192	0.155643	0.000258392	0.00135296	
Ethylbenzene			0.00100096	0.00394226	5.07764E-06	1.83811E-05	
o-Xylene			0.0100096	0.0266588	6.76316E-05	0.000123477	
n-Hexane			0.221212	1.88736	6.88568E-06	0.0478401	
2,2,4-Trimethylpentar	ne		0.221212	0.0874435	0.000002.00	0.0470401	
Decanes Plus			0.0050048	2.20258E-05	2.657E-07	3.49045E-07	
Decanes Plus Sat			0.0030040	0	0	0.400402-07	
Decando Filio Odi			U	U	0	0	I
				00	00 1150	04 V04 5" 4	
			21. Inlet Gas	22. Condensate Flash Losses Hrly	23. HPS Water to SWD	24. VC1 Pilot Fuel	
Mass Fraction			%	%	%	%	
Triethylene Glycol			0	1.82433E-12	4.68165E-06	2.20724E-05	
Water			0	6.42871E-05	99.9307	0.00352874	
Hydrogen Sulfide			0.00149544	0.00087255	5.42267E-05	0.00156439	
Carbon Dioxide			0.233663	0.0197327	0.00310314	0.257163	
Nitrogen			1.06203	0.000130026	0.000303436	1.20154	
Methane			51.8317	0.219342	0.0379507	58.082	
Ethane			17.1364	7.32333	0.0147375	18.3179	
Propane			12.9714	25.0113	0.00603172	12.6008	
Isobutane			2.42028	8.36839	0.00059333	2.03837	
n-Butane			5.87345	26.3823	0.00059333	4.50233	
			1.77603	8.73194	0.000327851	1.0248	
Isopentane							
n-Pentane			2.07045	10.3929	0.000174339	1.06036	
i-C6			1.82259	4.20068	0.000156452	0.552033	
i-C7			1.01126	4.59769	3.39184E-05	0.130152	
Octane			0.556359	0.849845	2.55023E-06	0.0141552	
Nonane			0.180087	0.0939427	2.87897E-07	0.000626833	
Benzene			0.0514122	0.318045	0.0020211	0.011539	
Toluene			0.080859	0.263065	0.00132138	0.00587918	
Ethylbenzene			0.00465842	0.00767749	2.99192E-05	9.2033E-05	
o-Xylene			0.0465842	0.0519176	0.000398508	0.000618245	
n-Hexane			0.835667	2.98352	3.29334E-05	0.194432	
2,2,4-Trimethylpentar	ne		0	0.183229	0	0	
Decanes Plus			0.0336553	6.19796E-05	2.26216E-06	2.52522E-06	
Decanes Plus Sat			0	0	0	0	
			Stream	Properties			
Property		Units	21. Inlet Gas	22.	23. HPS	24. VC1 Pilot	
Ргорепу		Units	21. Inlet Gas	22. Condensate Flash Losses Hrly	Water to SWD	Fuel	
Temperature		°F	110	92.65	94.2513	76.5751	
Pressure		psig	124	6.06136	400	120	
Molecular Weight		lb/lbmol	22.8118	54.5139	18.0175	21.2035	
Mass Flow		lb/h	601127	578.522	1351.84	67.0496	
Std Vapor Volumetric	Flow	MMSCFD	240	0.0966534	0.683339	0.0288 *	
Std Liquid Volumetric		sgpm	3309.52	2.09364	2.7058	0.385728	
API Gravity		Sabin	0000.02	2.00004	10.0439	0.000720	
	ting Value	Btu/ft^3	1355 71	3064 41		1260 3	
Gross Ideal Gas Hea	ting Value	Btu/ft^3	1355.71	3064.41	50.997	1269.3	

Remarks

	User Value Sets Report	
Client Name: Location:	DELAWARE DIVISION Job: Jayhawk Compressor Station	
	Skim Tank	
	User Value [BlockReady]	
* Parameter	1 * Enforce Bounds	False
	User Value [ShellLength]	
* Parameter	30 ft * Enforce Bounds	False
* Parameter	User Value [ShellDiam] 15.5 ft * Enforce Bounds	False
		1 430
	User Value [BreatherVP]	
* Parameter	0.03 psig * Enforce Bounds	False
	User Value [BreatherVacP]	
* Parameter	-0.03 psig * Enforce Bounds	False
	User Value [DomeRadius]	
* Enforce Bounds	False	
* Denementen	User Value [OpPress] 0.25 psig * Enforce Bounds	
* Parameter	0.25 psig * Enforce Bounds	False
	User Value [AvgPercentLiq]	
* Parameter	80 % * Enforce Bounds	False
	User Value [MaxPercentLiq]	
* Parameter	90 % * Enforce Bounds	False
* Parameter	User Value [MinPercentLiq] 10 % * Enforce Bounds	False
		T dioc
	User Value [AnnNetTP]	
* Parameter	347.202 bbl/day * Enforce Bounds	False
	User Value [OREff]	
* Enforce Bounds	False	
	User Value [MaxAvgT]	
* Parameter	75.8 °F * Enforce Bounds	False
* Parameter	User Value [MinAvgT] 47.6 °F * Enforce Bounds	False
* Parameter		raise
	User Value [BulkLiqT]	
* Parameter	75.6428 °F * Enforce Bounds	False
	User Value [AvgP]	
* Parameter	12.88 psia * Enforce Bounds	False
* Parameter	User Value [Thermi] 1722 Btu/ft^2/day * Enforce Bounds	False
i aramotor		1 4100

	User Value Sets Report	
Client Name:	DELAWARE DIVISION Job:	
Location:	Jayhawk Compressor Station	
	User Value [AvgWindSpeed]	
* Parameter	8.7 mi/h * Enforce Bounds	False
	User Value [MaxHourlyLoadingRate]	
* Enforce Bounds	False	
	User Value [SumLiqLevelInc]	
* Enforce Bounds	False	
	User Value [FlashingT]	
* Parameter	82.0362 °F * Enforce Bounds	False
	User Value [EntrainedOilFrac]	
* Parameter	1 % * Enforce Bounds	False
	User Value [TurnoverRate]	
* Parameter	78.5512 * Enforce Bounds	False
* Enforce Bounds	User Value [LLossSatFactor] False	
	User Value [AtmPressure]	
* Parameter	12.88 psia * Enforce Bounds	False
	User Value [TVP]	
* Parameter	11.1351 psia * Enforce Bounds	False
	User Value [MaxVP]	
* Parameter	12.88 psia * Enforce Bounds	False
	User Value [MinVP]	
* Parameter	9.59201 psia * Enforce Bounds	False
	User Value [AvgLiqSurfaceT]	
* Parameter	72.7396 °F * Enforce Bounds	False
	User Value [MaxLiqSurfaceT]	
* Parameter	82.0362 °F * Enforce Bounds	False
	User Value [TotalLosses]	
* Parameter	31.7035 ton/yr * Enforce Bounds	False
	User Value [WorkingLosses]	
* Parameter	12.6077 ton/yr * Enforce Bounds	False
	User Value [StandingLosses]	
* Parameter	3.24402 ton/yr * Enforce Bounds	False
	User Value [RimSealLosses]	
* Parameter	0 ton/yr * Enforce Bounds	False
	User Value [WithdrawalLoss]	
* Parameter	0 ton/yr * Enforce Bounds	False

05 411	User Value Sets Report	
Client Name: Location:	DELAWARE DIVISION Job: Jayhawk Compressor Station	
Location.		
	Here Males Des d'autoses 1	
* Parameter	User Value [LoadingLosses] 0 ton/yr * Enforce Bounds	False
Falameter		Faise
	User Value [MaxHourlyLoadingLoss]	
* Parameter	0 lb/hr * Enforce Bounds	False
	User Value [PStar]	
* Enforce Bounds	False	
	User Value [AllCTotalLosses]	
* Parameter	32.7379 ton/yr * Enforce Bounds	False
	User Value [AllCLoadingLosses]	
* Parameter	0 ton/yr * Enforce Bounds	False
	User Value [AllCMaxHLoadingLoss]	
* Parameter	0 lb/hr * Enforce Bounds	False
	User Value [AllCFlashingLosses]	
* Parameter	17.0612 ton/yr * Enforce Bounds	False
1 didificiei		1 4/30
	User Value [DeckFittingLosses]	
* Parameter	0 ton/yr * Enforce Bounds	False
	User Value [DeckSeamLosses]	
* Parameter	0 ton/yr * Enforce Bounds	False
	User Value [FlashingLosses]	
* Parameter	15.2029 ton/yr * Enforce Bounds	False
T didifictor		1000
	User Value [TotalResidual]	
* Parameter	22005.7 ton/yr * Enforce Bounds	False
	User Value [GasMoleWeight]	
* Parameter	0.0510921 kg/mol * Enforce Bounds	False
	User Value [VapReportableFrac]	
* Parameter	96.8406 % * Enforce Bounds	False
		·
	User Value [LiqReportableFrac]	
* Parameter	1.12322 % * Enforce Bounds	False
* Dama (User Value [FlashReportableFrac]	
* Parameter	89.108 % * Enforce Bounds	False
Remarks This User Value Set	was programmatically generated. GUID={60FADE6C-8D03-40FF-A704-07DD6E91075D}	
	Condensate Tank	
* Parameter	User Value [BlockReady] 1 * Enforce Bounds	False
* User Specified Values	ProMax 5.0.19050.0	Licensed to Esso Exploration. Inc

* User Specified Values ? Extrapolated or Approximate Values

* Enforce Bounds ProMax 5.0.19050.0 Copyright © 2002-2019 BRE Group, Ltd.

	User Value Sets Report	
Client Name:	DELAWARE DIVISION Job:	
Location:	Jayhawk Compressor Station	
* Parameter	User Value [ShellLength] 16 ft * Enforce Bounds	False
Falameter		Faise
	User Value [ShellDiam]	
* Parameter	15.5 ft * Enforce Bounds	False
	Lines Males (Decotlos)(D)	
* Parameter	User Value [BreatherVP] 0.03 psig * Enforce Bounds	False
Falameter		T also
	User Value [BreatherVacP]	
* Parameter	-0.03 psig * Enforce Bounds	False
* Enforce Bounds	User Value [DomeRadius]	
Enforce Bounds	raise	
	User Value [OpPress]	
* Parameter	0.25 psig * Enforce Bounds	False
* Denementen	User Value [AvgPercentLiq] 50 % * Enforce Bounds	Falsa
* Parameter	50 % Enforce Bounds	False
	User Value [MaxPercentLiq]	
* Parameter	90 % * Enforce Bounds	False
* Denementen	User Value [MinPercentLiq] 10 % * Enforce Bounds	E-la-
* Parameter	10 % * Enforce Bounds	False
	User Value [AnnNetTP]	
* Parameter	778.81 bbl/day * Enforce Bounds	False
* Deremeter	User Value [OREff] 0 % * Enforce Bounds	False
* Parameter		raise
	User Value [MaxAvgT]	
* Parameter	75.8 °F * Enforce Bounds	False
* D	User Value [MinAvgT]	E.L.
* Parameter	47.6 °F * Enforce Bounds	False
	User Value [BulkLiqT]	
* Parameter	68.8214 °F * Enforce Bounds	False
* D	User Value [AvgP]	E.L.
* Parameter	12.88 psia * Enforce Bounds	False
	User Value [Therml]	
* Parameter	1722 Btu/ft^2/day * Enforce Bounds	False
	User Value [AvgWindSpeed]	
* Parameter	8.7 mi/h * Enforce Bounds	False

	User Value Sets Report	
Client Name:	DELAWARE DIVISION Job:	
Location:	Jayhawk Compressor Station	
	User Value [MaxHourlyLoadingRate]	
* Parameter	210 bbl/hr * Enforce Bounds	False
	User Value [SumLiqLevelInc]	
* Enforce Bounds	False	
	Licer Value (ElectionaT)	
* Parameter	User Value [FlashingT] 92.65 °F * Enforce Bounds	False
Falailletei	92.03 P Eniorce Dounds	T alse
	User Value [EntrainedOilFrac]	
* Parameter	1 % * Enforce Bounds	False
	User Value [TurnoverRate]	
* Parameter	165.186 * Enforce Bounds	False
* 5	User Value [LLossSatFactor]	<u> </u>
* Parameter	0.6 * Enforce Bounds	False
	User Value [AtmPressure]	
* Parameter	12.88 psia * Enforce Bounds	False
Talameter		
	User Value [TVP]	
* Parameter	9.13802 psia * Enforce Bounds	False
	User Value [MaxVP]	
* Parameter	10.6294 psia * Enforce Bounds	False
	User Value [MinVP]	
* Parameter	7.82126 psia * Enforce Bounds	False
* Parameter	User Value [AvgLiqSurfaceT] 69.4251 °F * Enforce Bounds	False
		1 460
	User Value [MaxLiqSurfaceT]	
* Parameter	78.6044 °F * Enforce Bounds	False
	User Value [TotalLosses]	
* Parameter	79.6388 ton/yr * Enforce Bounds	False
* Demana stars	User Value [WorkingLosses]	False
* Parameter	16.2044 ton/yr * Enforce Bounds	False
	User Value [StandingLosses]	
* Parameter	3.7053 ton/yr * Enforce Bounds	False
raramotor		
	User Value [RimSealLosses]	
* Parameter	0 ton/yr * Enforce Bounds	False
	User Value [WithdrawalLoss]	
* Parameter	0 ton/yr * Enforce Bounds	False
	User Value [LoadingLosses]	
* Parameter	38.8844 ton/yr * Enforce Bounds	False

ProMax 5.0.19050.0 Copyright © 2002-2019 BRE Group, Ltd.

Location: Jayhawk Compressor Station User Value [MaxHourlyLoadingLoss] Parameter Parameter Value [AllCTotalLosses] Parameter Value [AllCTotalLosses] Parameter Value [AllCLoadingLosses] Parameter Value [AllCLoad	Oliset News	User Value Sets Report		
User Value [MaxHourlyLoadingLoss] * Parameter 57.4514 Ib/tr * Enforce Bounds False User Value [FStar] * Enforce Bounds False User Value [AIICTotalLosses] * Parameter 86.5105 tentyr * Enforce Bounds False User Value [AIICTotalLosses] * Parameter 86.5105 tentyr * Enforce Bounds False User Value [AIICTotalLosses] * Parameter 42.2385 tontyr * Enforce Bounds False User Value [AIICFlashingLosses] Parameter User Value [AIICFlashingLosses] Parameter User Value [DeckFittingLosses] Parameter User Value [DeckSeamLosses] Parameter User Value [CotaResidual] Parameter User Value [CotaResidual] Parameter User Value [CotaResidual] Parameter User Value [CotaResounds False	Client Name:	DELAWARE DIVISION Job: Jaybawk Compressor Station		
Parameter S7.4514 tb/hr Enforce Bounds False User Value [PStar] Enforce Bounds False User Value [AliCTotalLosses] Parameter B6.5106 tonyr Enforce Bounds False User Value [AliCLoadingLosses] Parameter B6.5106 tonyr Enforce Bounds False User Value [AliCLoadingLosses] Parameter B6.5106 tonyr Enforce Bounds False User Value [AliCLoadingLosses] Parameter B2.33.03 tonyr Enforce Bounds False User Value [AliCFlashingLosses] Parameter B2.33.03 tonyr Enforce Bounds False User Value [DeckFittingLosses] Parameter Diser Value [DeckFittingLosses] Diser Value [DeckFittingLosses] Parameter Diser Value [DeckFittingLosses] Diser Value [DeckFittingLosses] Diser Value [DeckFittingLosses] Parameter Diser Value [CockSeamLosses] Diser Value [CockSeamLosses] Diser Value [CockSeamLosses] Diser Value [CockBeamLosses] Diser Value [CockBeamLosses] Diser Value [CockBeamLosses] Parameter Diser Value [CockBeamLosses] Diser Value				
Parameter S7.4514 tb/h Enforce Bounds False User Value [PStar] Enforce Bounds False User Value [AliCTotalLosses] User Value [AliCLoadingLosses] Dearmeter B6.5106 tonyr Enforce Bounds False User Value [AliCLoadingLosses] Parameter B6.5106 tonyr Enforce Bounds False User Value [AliCLoadingLosses] Parameter B6.5106 tonyr Enforce Bounds False User Value [AliCLoadingLosses] Parameter B6.5106 tonyr Enforce Bounds False User Value [AliCLoadingLosses] Parameter B2.4086 tb/h False User Value [AliCFlashingLosses] Parameter Diser Value [AliCFlashingLosses] Parameter Diser Value [DeckFittingLosses] Parameter Diser Value [DeckFittingLosses] Parameter Diser Value [DeckFittingLosses] Parameter Diser Value [DeckFittingLosses] Parameter Diser Value [CockSeamLosses] User Value [DeckFittingLosses] Parameter Diser Value [CockSeamLosses] Parameter Diser Value [CockSeamLosses] User Value [CockSeamLosses] User Value [CockSeamLosses] Parameter Diser Value [CockSeamLosses] Parameter Diser Value [CockBounds False User Value [CockBounds False User Value [CockBounds False User Value [CockBounds False User Value [CockBounds False User Value [CockBounds False User Value [CockBounds False User Value [CockBounds False User Value [CockBounds False User Value [CockBounds False User Value [CockBounds False User Value [CockBounds False User Value [CockBounds False User Value [CockBounds False User Value [CockBounds False User Value [CockBounds False User Value [CockBounds False User Value [CockBounds False User Value [CockBounds False User Value [CockBounds False User Value [CockBounds False User Value [CockBounds False User Va				
Parameter S7.4514 tb/hr Enforce Bounds False User Value [PStar] Enforce Bounds False User Value [AliCTotalLosses] Parameter B6.5106 tonyr Enforce Bounds False User Value [AliCLoadingLosses] Parameter B6.5106 tonyr Enforce Bounds False User Value [AliCLoadingLosses] Parameter B6.5106 tonyr Enforce Bounds False User Value [AliCLoadingLosses] Parameter B2.33.03 tonyr Enforce Bounds False User Value [AliCFlashingLosses] Parameter B2.33.03 tonyr Enforce Bounds False User Value [DeckFittingLosses] Parameter Diser Value [DeckFittingLosses] Diser Value [DeckFittingLosses] Parameter Diser Value [DeckFittingLosses] Diser Value [DeckFittingLosses] Diser Value [DeckFittingLosses] Parameter Diser Value [CockSeamLosses] Diser Value [CockSeamLosses] Diser Value [CockSeamLosses] Diser Value [CockBeamLosses] Diser Value [CockBeamLosses] Diser Value [CockBeamLosses] Parameter Diser Value [CockBeamLosses] Diser Value		Liser Value MaxHourlyLeadingLess		
User Value [PStar] • Erforce Bounds False Lefforce Bounds • Parameter 86.5106 fortyrr False Enforce Bounds False Parameter 42.2366 fortyrr * Enforce Bounds False Parameter 42.2366 fortyrr * Enforce Bounds False Parameter 42.2366 fortyr * Enforce Bounds False User Value [AllChasthingLosses] Parameter 62.4086 Bhr * Enforce Bounds False User Value [DeckFittingLosses] Parameter 0 fortyr * Enforce Bounds False User Value [DeckSeamLosses] Parameter 0 fortyr * Enforce Bounds False User Value [TotalResidual] Parameter 0.054001 kg/mol * Enforce Bounds False <td c<="" td=""><td>* Parameter</td><td></td><td>False</td></td>	<td>* Parameter</td> <td></td> <td>False</td>	* Parameter		False
False User Value [AllCTotalLosses] Parameter 86.5106 ton/yr * Enforce Bounds False User Value [AllCLoadingLosses] Parameter 42.2396 ton/yr * Enforce Bounds False User Value [AllCCloadingLosses] Parameter 42.2396 ton/yr * Enforce Bounds False User Value [AllCFlashingLosses] Parameter 24.086 lb/hr * Enforce Bounds False User Value [AllCFlashingLosses] Parameter 2533.93 ton/yr * Enforce Bounds False User Value [DecKFittingLosses] Parameter 0 ton/yr * Enforce Bounds False User Value [DecKSeamLosses] Verameter 0 ton/yr * Enforce Bounds False User Value [FlashingLosses] Verameter 0 ton/yr * Enforce Bounds False User Value [FlashingLosses] Verameter 0 ton/yr * Enforce Bounds False User Value [CotAResidual] Verameter 0 ton/yr * Enforce Bounds False User Value [CotAResidual] * Parameter 0 ton/yr * Enforce Bounds False User Value [CotAResidual] * Parameter 0 ton/yr * Enforce Bounds False User Value [CotAResidual] * Parameter 0 ton/yr * Enforce Bounds False User Value [CotAResidual] * Parameter 0 ton/yr * Enforce Bounds False User Value [CotAResidual] * Parameter 0 ton/yr * Enforce Bounds False User Value [CotAResidual] * Parameter 0.054801 kg/mol * Enforce Bounds False User Value [CotAResidual] * Parameter 0.054801 kg/mol * Enforce Bounds False User Value [CotAResotan] * Parameter 0.054801 kg/mol * Enforce Bounds False User Value [CotAResotan] * Parameter 0.054801 kg/mol * Enforce Bounds False User Value [CotABounds False User Value [CatAReportableFrac] * Parameter 0.05480 * Enforce Bounds False User Value [CatAReportableFrac] * Parameter 0.05480 * Enforce Bounds False			. aloc	
User Value [AllCTotalLosses] * Parameter 86.5106 ton'yr * Enforce Bounds False User Value [AllCLoadingLosses] * Parameter 42.2396 ton'yr * Enforce Bounds False User Value [AllCMaxHLoadingLoss] * Parameter 62.4086 lb/hr * Enforce Bounds False User Value [AllCFlashingLosses] * Parameter User Value [DeckFittingLosses] * Parameter User Value [DeckSeamLosses] * Parameter User Value [DeckSeamLosses] * Parameter User Value [DeckSeamLosses] * Parameter User Value [TotalResidual] * Parameter User Value [CasMoleWeight] * Parameter User Value [CasMoleVeight] * Parameter User Value [CasMoleVeight] * Parameter User Value [CasMoleVeight] * Parameter User Value [CasMoleVeight] <td col<="" td=""><td></td><td>User Value [PStar]</td><td></td></td>	<td></td> <td>User Value [PStar]</td> <td></td>		User Value [PStar]	
* Parameter 86.5106 tonlyr * Enforce Bounds False User Value [AllCLoadingLosses] * Parameter 42.2396 tonlyr * Enforce Bounds False User Value [AllCMaxHLoadingLoss] * Parameter 62.4086 B/hr * Enforce Bounds False Parameter 62.4086 B/hr * Enforce Bounds False * Parameter 2533.93 tonlyr * Enforce Bounds False User Value [DeckFittingLosses] * Parameter 0 tonlyr * Enforce Bounds False User Value [DeckSeamLosses] * Parameter 0 tonlyr * Enforce Bounds False User Value [DeckSeamLosses] * Parameter 0 tonlyr * Enforce Bounds False User Value [CostReaudys False User Value [CostReaudys False User Value [CostReportableFrac] * * Parameter 0.054801 # Enforce Bounds False User Value [CasMoleWei	* Enforce Bounds	False		
* Parameter 86.5106 tonlyr * Enforce Bounds False User Value [AllCLoadingLosses] * Parameter 42.2396 tonlyr * Enforce Bounds False User Value [AllCMaxHLoadingLoss] * Parameter 62.4086 B/hr * Enforce Bounds False Parameter 62.4086 B/hr * Enforce Bounds False * Parameter 2533.93 tonlyr * Enforce Bounds False User Value [DeckFittingLosses] * Parameter 0 tonlyr * Enforce Bounds False User Value [DeckSeamLosses] * Parameter 0 tonlyr * Enforce Bounds False User Value [DeckSeamLosses] * Parameter 0 tonlyr * Enforce Bounds False User Value [CostReaudys False User Value [CostReaudys False User Value [CostReportableFrac] * * Parameter 0.054801 # Enforce Bounds False User Value [CasMoleWei		Liser Value [AllCTotal] esses		
User Value [AllCLoadingLosses] * Parameter 42.2396 torlyr * Enforce Bounds False User Value [AllCMaxHLoadingLoss] * Parameter 62.4096 lb/hr * Enforce Bounds False User Value [AllCFlashingLosses] * Parameter 62.4096 lb/hr * Enforce Bounds False User Value [DeckFittingLosses] * Parameter 0 tonlyr * Enforce Bounds False User Value [DeckFittingLosses] * Parameter 0 tonlyr * Enforce Bounds False User Value [DeckSeamLosses] * Parameter 0 tonlyr * Enforce Bounds False User Value [TotalResidual] * Parameter 2381.84 tonlyr * Enforce Bounds False User Value [TotalResidual] * Parameter 2381.84 tonlyr * Enforce Bounds False User Value [GasMoleWeight] * Parameter 20.054801 kg/mol * Enforce Bounds False User Value [GasMoleWeight] * Enforce Bounds False <td colsp<="" td=""><td>* Parameter</td><td></td><td>False</td></td>	<td>* Parameter</td> <td></td> <td>False</td>	* Parameter		False
* Parameter 42.2396 tonyr * Enforce Bounds False User Value [AllCMaxHLoadingLoss] * Parameter 62.4086 lb/hr * Enforce Bounds False User Value [AllCFlashingLosses] * Parameter 2533.93 tonyr * Enforce Bounds False User Value [DeckFittingLosses] * Parameter 0 tonyr * Enforce Bounds False User Value [DeckSeamLosses] * Parameter 0 tonyr * Enforce Bounds False User Value [DeckSeamLosses] * Parameter 0 tonyr * Enforce Bounds False User Value [FlashingLosses] * Parameter 2381.84 tonyr * Enforce Bounds False User Value [TotalResidual] * Parameter 2381.84 tonyr * Enforce Bounds False User Value [CasMoleWeight] * Parameter 20.568 % * Enforce Bounds False User Value [CasMoleWeight] * * Parameter 92.568 % * Enforce Bounds False <td< td=""><td></td><td></td><td></td></td<>				
User Value [AllCMaxHLoadingLoss] * Parameter 62.4086 b/hr * Enforce Bounds False User Value [AllCFIashingLosses] * Parameter 2533.93 tonlyr * Enforce Bounds False User Value [DeckFittingLosses] * Parameter 0 tonlyr * Enforce Bounds False User Value [DeckSeamLosses] * Parameter 0 tonlyr * Enforce Bounds False User Value [TotalReshingLosses] * Parameter 2381.84 tonlyr * Enforce Bounds False User Value [TotalResidual] * Parameter 2381.84 tonlyr * Enforce Bounds False User Value [GasMoleWeight] * Parameter 0.55401 kg/mol * Enforce Bounds False User Value [GasMoleWeight] * Parameter 0.55401 kg/mol * Enforce Bounds False User Value [GasMoleWeight] * Parameter 0.55401 kg/mol * Enforce Bounds False User Value [GasM				
* Parameter 62.4086 Ib/hr * Enforce Bounds False User Value [AllCFlashingLosses] * Parameter 2533.93 ton/yr * Enforce Bounds False User Value [Deck/FittingLosses] * Parameter 0 ton/yr * Enforce Bounds False User Value [Deck/SeamLosses] * Parameter 0 ton/yr * Enforce Bounds False User Value [Deck/SeamLosses] * Parameter 0 ton/yr * Enforce Bounds False User Value [FlashingLosses] * Parameter 0 ton/yr * Enforce Bounds False User Value [TotalResidual] * Parameter 2381.84 ton/yr * Enforce Bounds False User Value [GasMoleWeight] * Parameter 0.054801 kg/moi * Enforce Bounds False User Value [VapReportableFrac] * Parameter 99.9191 % * Enforce Bounds False User Value [LiqReportableFrac] * * Parameter 99.9191	* Parameter	42.2396 ton/yr * Enforce Bounds	False	
* Parameter 62.4086 Ib/hr * Enforce Bounds False User Value [AllCFlashingLosses] * Parameter 2533.93 ton/yr * Enforce Bounds False User Value [Deck/FittingLosses] * Parameter 0 ton/yr * Enforce Bounds False User Value [Deck/SeamLosses] * Parameter 0 ton/yr * Enforce Bounds False User Value [Deck/SeamLosses] * Parameter 0 ton/yr * Enforce Bounds False User Value [FlashingLosses] * Parameter 0 ton/yr * Enforce Bounds False User Value [TotalResidual] * Parameter 2381.84 ton/yr * Enforce Bounds False User Value [GasMoleWeight] * Parameter 0.054801 kg/moi * Enforce Bounds False User Value [VapReportableFrac] * Parameter 99.9191 % * Enforce Bounds False User Value [LiqReportableFrac] * * Parameter 99.9191		Lisor Value [AllCMaxH] and and		
User Value [AllCFlashingLosses] * Parameter 2533.93 ton/yr * Enforce Bounds False User Value [DeckFittingLosses] * Parameter 0 ton/yr * Enforce Bounds False User Value [DeckSeamLosses] * Parameter 0 ton/yr * Enforce Bounds False User Value [FlashingLosses] * Parameter User Value [FlashingLosses] * Parameter User Value [TotalResidual] * Parameter User Value [CosMoleWeight] * Parameter User Value [CasMoleWeight] * Parameter User Value [CasMoleWeight] * Parameter User Value [CasMoleWeight] * Parameter User Value [CasMoleFrac] * Parameter User Value [CasMoleFrac] * Parameter User Value [LiqReportableFrac] * Parameter User Value [FlashReportableFrac] * Parame	* Parameter		False	
* Parameter 2533.93 ton/yr * Enforce Bounds False User Value [DeckFittingLosses] * Parameter 0 ton/yr * Enforce Bounds False User Value [DeckSeamLosses] * Parameter 0 ton/yr * Enforce Bounds False User Value [DeckSeamLosses] * Parameter 0 ton/yr * Enforce Bounds False User Value [FlashingLosses] * Parameter 2381.84 ton/yr * Enforce Bounds False User Value [TotalResidual] * Parameter 34114.8 ton/yr * Enforce Bounds False User Value [GasMoleWeight] * Parameter 0.054801 kg/mol * Enforce Bounds False User Value [CasPortableFrac] * Parameter 92.0568 * Enforce Bounds False User Value [LiqReportableFrac] * Parameter 93.998 * Enforce Bounds False * Parameter 93.998 * Enforce Bounds False <td></td> <td></td> <td></td>				
* Parameter 2533.93 ton/yr * Enforce Bounds False User Value [DeckFittingLosses] * Parameter 0 ton/yr * Enforce Bounds False User Value [DeckSeamLosses] * Parameter 0 ton/yr * Enforce Bounds False User Value [DeckSeamLosses] * Parameter 0 ton/yr * Enforce Bounds False User Value [FlashingLosses] * Parameter 2381.84 ton/yr * Enforce Bounds False User Value [TotalResidual] * Parameter 34114.8 ton/yr * Enforce Bounds False User Value [GasMoleWeight] * Parameter 0.054801 kg/mol * Enforce Bounds False User Value [CasPortableFrac] * Parameter 92.0568 * Enforce Bounds False User Value [LiqReportableFrac] * Parameter 93.998 * Enforce Bounds False * Parameter 93.998 * Enforce Bounds False <td></td> <td>User Value [AllCFlashingLosses]</td> <td></td>		User Value [AllCFlashingLosses]		
* Parameter 0 ton/yr * Enforce Bounds False User Value [DeckSeamLosses] * Parameter 0 ton/yr * Enforce Bounds False User Value [FlashingLosses] * Parameter 2381.84 ton/yr * Enforce Bounds False User Value [TotalResidual] * Parameter 34114.8 ton/yr * Enforce Bounds False User Value [GasMoleWeight] * Parameter 0.054801 kg/mol * Enforce Bounds False User Value [GasMoleWeight] * Parameter 0.054801 kg/mol * Enforce Bounds False User Value [VapReportableFrac] * Parameter 92.0568 % * Enforce Bounds False User Value [LiqReportableFrac] * Parameter 92.0568 % * Enforce Bounds False User Value [LiqReportableFrac] * Parameter 92.0568 % * Enforce Bounds False User Value [FlashReportableFrac] * Parameter 93.998 % * Enforce Bounds False Produced Water Tank User Value [BlockReady]	* Parameter		False	
* Parameter 0 ton/yr * Enforce Bounds False User Value [DeckSeamLosses] * Parameter 0 ton/yr * Enforce Bounds False User Value [FlashingLosses] * Parameter 2381.84 ton/yr * Enforce Bounds False User Value [TotalResidual] * Parameter 34114.8 ton/yr * Enforce Bounds False User Value [GasMoleWeight] * Parameter 0.054801 kg/mol * Enforce Bounds False User Value [GasMoleWeight] * Parameter 0.054801 kg/mol * Enforce Bounds False User Value [VapReportableFrac] * Parameter 92.0568 % * Enforce Bounds False User Value [LiqReportableFrac] * Parameter 92.0568 % * Enforce Bounds False User Value [LiqReportableFrac] * Parameter 92.0568 % * Enforce Bounds False User Value [FlashReportableFrac] * Parameter 93.998 % * Enforce Bounds False Produced Water Tank User Value [BlockReady]				
User Value [DeckSeamLosses] * Parameter 0 ton/yr * Enforce Bounds False User Value [FlashingLosses] * Parameter 2381.84 ton/yr * Enforce Bounds False User Value [TotalResidual] * Parameter 2381.84 ton/yr * Enforce Bounds False User Value [TotalResidual] * Parameter 34114.8 ton/yr * Enforce Bounds False User Value [GasMoleWeight] * Parameter 0.054801 kg/mol * Enforce Bounds False User Value [GasMoleWeight] * Parameter 0.054801 kg/mol * Enforce Bounds False User Value [VapReportableFrac] * Parameter 92.0568 % * Enforce Bounds False User Value [LiqReportableFrac] * Parameter 99.9191 % * Enforce Bounds False User Value [FlashReportableFrac] * Parameter 93.998 % * Enforce Bounds False Produced Water Tank User Value [BlockReady] * Parameter 1 * Enforce	* Denementen		Falsa	
Yearameter O ton/yr * Enforce Bounds False User Value [FlashingLosses] Varameter 2381.84 ton/yr * Enforce Bounds False User Value [TotalResidual] * Parameter 34114.8 ton/yr * Enforce Bounds False User Value [CasMoleWeight] * Parameter 34114.8 ton/yr * Enforce Bounds False User Value [CasMoleWeight] * Parameter 0.054801 kg/mol * Enforce Bounds False User Value [VapReportableFrac] * Parameter 92.0568 % * Enforce Bounds False User Value [LiqReportableFrac] * Parameter 99.9191 % * Enforce Bounds False User Value [FlashReportableFrac] * Parameter 93.998 % * Enforce Bounds False User Value [FlashReportableFrac] False User Value [FlashReportableFrac] False User Value [FlashReportableFrac] Salse User Value [FlashReportableFrac] Salse	* Parameter	U ton/yr * Enforce Bounds	False	
Yearameter O ton/yr * Enforce Bounds False User Value [FlashingLosses] Varameter 2381.84 ton/yr * Enforce Bounds False User Value [TotalResidual] * Parameter 34114.8 ton/yr * Enforce Bounds False User Value [CasMoleWeight] * Parameter 34114.8 ton/yr * Enforce Bounds False User Value [CasMoleWeight] * Parameter 0.054801 kg/mol * Enforce Bounds False User Value [VapReportableFrac] * Parameter 92.0568 % * Enforce Bounds False User Value [LiqReportableFrac] * Parameter 99.9191 % * Enforce Bounds False User Value [FlashReportableFrac] * Parameter 93.998 % * Enforce Bounds False User Value [FlashReportableFrac] False User Value [FlashReportableFrac] False User Value [FlashReportableFrac] Salse User Value [FlashReportableFrac] Salse		User Value [DeckSeamLosses]		
User Value [FlashingLosses] * Parameter 2381.84 ton/yr * Enforce Bounds False User Value [TotalResidual] * Parameter 34114.8 ton/yr * Enforce Bounds False User Value [CasMoleWeight] * Parameter 0.054801 kg/mol Enforce Bounds False User Value [VapReportableFrac] * Parameter 92.0568 % * Enforce Bounds False User Value [LiqReportableFrac] * Parameter 99.9191 % * Enforce Bounds False User Value [FlashReportableFrac] * Parameter 93.998 % * Enforce Bounds False Produced Water Tank User Value [BlockReady] * Parameter 1 * Enforce Bounds False	* Parameter		False	
Parameter 2381.84 ton/yr * Enforce Bounds False User Value [TotalResidual] * Parameter 34114.8 ton/yr * Enforce Bounds False User Value [GasMoleWeight] * Parameter 0.054801 kg/mol * Enforce Bounds False User Value [CasMoleWeight] * Parameter 0.054801 kg/mol * Enforce Bounds False User Value [VapReportableFrac] * Parameter 92.0568 % * Enforce Bounds False User Value [LiqReportableFrac] * Parameter 92.0568 % * Enforce Bounds False User Value [LiqReportableFrac] * Parameter 93.998 % * Enforce Bounds False User Value [FlashReportableFrac] * Parameter 93.998 % * Enforce Bounds False User Value Set was programmatically generated. GUID={AE1B16B2-2B8A-47A4-8AEF-7E4BCD819B7B} Produced Water Tank User Value [BlockReady] * Parameter 1 * Parameter 1 * Enforce Bounds False				
User Value [TotalResidual] * Parameter 34114.8 ton/yr * Enforce Bounds False User Value [GasMoleWeight] * Parameter 0.054801 kg/mol * Enforce Bounds False User Value [GasMoleWeight] * Parameter 0.054801 kg/mol * Enforce Bounds False User Value [VapReportableFrac] * Parameter 92.0568 % * Enforce Bounds False User Value [LiqReportableFrac] * Parameter 92.0568 % * Enforce Bounds False User Value [LiqReportableFrac] * Parameter 93.9191 % * Enforce Bounds False User Value [FlashReportableFrac] * Parameter 93.998 % * Enforce Bounds False User Value [FlashReportableFrac] * Parameter 93.998 % * Enforce Bounds False Produced Water Tank User Value [BlockReady] * Parameter 1 * Enforce Bounds False User Value [BlockReady]				
Parameter 34114.8 tonlyr * Enforce Bounds False User Value [GasMoleWeight] * Parameter 0.054801 kg/mol * Enforce Bounds False User Value [VapReportableFrac] * Parameter 92.0568 % * Enforce Bounds False User Value [LiqReportableFrac] * Parameter 99.9191 % * Enforce Bounds False User Value [FlashReportableFrac] Varameter 93.998 % * Enforce Bounds False Remarks This User Value Set was programmatically generated. GUID={AE1B16B2-2B8A-47A4-8AEF-7E4BCD819B7B} Parameter 1 * Parameter 1 * Enforce Bounds False User Value [BlockReady] * Parameter 1 * Enforce Bounds False	* Parameter	2381.84 ton/yr * Enforce Bounds	False	
Parameter 34114.8 tonlyr * Enforce Bounds False User Value [GasMoleWeight] * Parameter 0.054801 kg/mol * Enforce Bounds False User Value [VapReportableFrac] * Parameter 92.0568 % * Enforce Bounds False User Value [LiqReportableFrac] * Parameter 99.9191 % * Enforce Bounds False User Value [FlashReportableFrac] Varameter 93.998 % * Enforce Bounds False Remarks This User Value Set was programmatically generated. GUID={AE1B16B2-2B8A-47A4-8AEF-7E4BCD819B7B} Parameter 1 * Parameter 1 * Enforce Bounds False User Value [BlockReady] * Parameter 1 * Enforce Bounds False		Lisor Value [TotalPosidual]		
User Value [GasMoleWeight] * Parameter 0.054801 kg/mol * Enforce Bounds False User Value [VapReportableFrac] * Parameter 92.0568 % * Enforce Bounds False User Value [LiqReportableFrac] * Parameter 92.0568 % * Enforce Bounds False User Value [LiqReportableFrac] * Parameter 99.9191 % * Enforce Bounds False User Value [FlashReportableFrac] * Parameter 93.998 % * Enforce Bounds False User Value [FlashReportableFrac] * Parameter 93.998 % * Enforce Bounds False Produce [FlashReportableFrac] * Parameter 93.998 % * Enforce Bounds False Produced Water Tank User Value [BlockReady] * Parameter 1 * Enforce Bounds False User Value [BlockReady]	* Parameter		False	
* Parameter 0.054801 kg/mol * Enforce Bounds False User Value [VapReportableFrac] ' Parameter 92.0568 % * Enforce Bounds False User Value [LiqReportableFrac] * Parameter 99.9191 % * Enforce Bounds False User Value [FlashReportableFrac] * Parameter 93.998 % * Enforce Bounds False User Value [FlashReportableFrac] * Parameter 93.998 % * Enforce Bounds False User Value [FlashReportableFrac] * Parameter 93.998 % * Enforce Bounds False User Value Set was programmatically generated. GUID={AE1B16B2-2B8A-47A4-8AEF-7E4BCD819B7B} Produced Water Tank User Value [BlockReady] * Parameter 1 * Enforce Bounds False	T didificier		1 4150	
* Parameter 0.054801 kg/mol * Enforce Bounds False User Value [VapReportableFrac] ' Parameter 92.0568 % * Enforce Bounds False User Value [LiqReportableFrac] * Parameter 99.9191 % * Enforce Bounds False User Value [FlashReportableFrac] * Parameter 93.998 % * Enforce Bounds False User Value [FlashReportableFrac] * Parameter 93.998 % * Enforce Bounds False User Value [FlashReportableFrac] * Parameter 93.998 % * Enforce Bounds False User Value Set was programmatically generated. GUID={AE1B16B2-2B8A-47A4-8AEF-7E4BCD819B7B} Produced Water Tank User Value [BlockReady] * Parameter 1 * Enforce Bounds False		User Value [GasMoleWeight]		
* Parameter 92.0568 % * Enforce Bounds False User Value [LiqReportableFrac] * Parameter 99.9191 % * Enforce Bounds False User Value [FlashReportableFrac] * Parameter 93.998 % * Enforce Bounds False Remarks This User Value Set was programmatically generated. GUID={AE1B16B2-2B8A-47A4-8AEF-7E4BCD819B7B} Produced Water Tank User Value [BlockReady] * Parameter 1 * Enforce Bounds	* Parameter		False	
* Parameter 92.0568 % * Enforce Bounds False User Value [LiqReportableFrac] * Parameter 99.9191 % * Enforce Bounds False User Value [FlashReportableFrac] * Parameter 93.998 % * Enforce Bounds False Remarks This User Value Set was programmatically generated. GUID={AE1B16B2-2B8A-47A4-8AEF-7E4BCD819B7B} Produced Water Tank User Value [BlockReady] * Parameter 1 * Enforce Bounds				
User Value [LiqReportableFrac] * Parameter 99.9191 % * Enforce Bounds False User Value [FlashReportableFrac] * Parameter 93.998 % * Enforce Bounds False Remarks This User Value Set was programmatically generated. GUID={AE1B16B2-2B8A-47A4-8AEF-7E4BCD819B7B} Produced Water Tank User Value [BlockReady] * Parameter 1 * Enforce Bounds False	* Denementen		Falsa	
* Parameter 99.9191 % * Enforce Bounds False User Value [FlashReportableFrac] * Parameter 93.998 % * Enforce Bounds False Remarks This User Value Set was programmatically generated. GUID={AE1B16B2-2B8A-47A4-8AEF-7E4BCD819B7B} Produced Water Tank User Value [BlockReady] * Parameter 1 * Enforce Bounds False User Value [BlockReady] * Enforce Bounds False	Parameter	92.0568 % Enforce Bounds	False	
* Parameter 99.9191 % * Enforce Bounds False User Value [FlashReportableFrac] * Parameter 93.998 % * Enforce Bounds False Remarks This User Value Set was programmatically generated. GUID={AE1B16B2-2B8A-47A4-8AEF-7E4BCD819B7B} Produced Water Tank User Value [BlockReady] * Parameter 1 * Enforce Bounds False User Value [BlockReady] * Enforce Bounds False		User Value [LigReportableFrac]		
* Parameter 93.998 % * Enforce Bounds False Remarks This User Value Set was programmatically generated. GUID={AE1B16B2-2B8A-47A4-8AEF-7E4BCD819B7B} Produced Water Tank User Value [BlockReady] * Parameter 1 * Enforce Bounds False User Value [ShellLength]	* Parameter		False	
* Parameter 93.998 % * Enforce Bounds False Remarks This User Value Set was programmatically generated. GUID={AE1B16B2-2B8A-47A4-8AEF-7E4BCD819B7B} Produced Water Tank User Value [BlockReady] * Parameter 1 * Enforce Bounds False User Value [ShellLength]				
Remarks This User Value Set was programmatically generated. GUID={AE1B16B2-2B8A-47A4-8AEF-7E4BCD819B7B} Produced Water Tank User Value [BlockReady] * Parameter 1 * Enforce Bounds False User Value [ShellLength]				
This User Value Set was programmatically generated. GUID={AE1B16B2-2B8A-47A4-8AEF-7E4BCD819B7B} Produced Water Tank User Value [BlockReady] * Parameter 1 * Enforce Bounds False User Value [ShellLength]	* Parameter	93.998 % * Enforce Bounds	False	
User Value [BlockReady] * Parameter 1 * Enforce Bounds False User Value [ShellLength]		was programmatically generated. GUID={AE1B16B2-2B8A-47A4-8AEF-7E4BCD819B7B}		
User Value [BlockReady] * Parameter 1 * Enforce Bounds False User Value [ShellLength]		Droducod Water Tank		
* Parameter 1 * Enforce Bounds False User Value [ShellLength]				
User Value [ShellLength]	* Paramotor		Eako	
	Falameter			
		User Value [ShellLength]		
* Parameter 16 ft * Enforce Bounds False	* Parameter	16 ft * Enforce Bounds	False	
* User Specified Values ProMax 5.0.19050.0 Licensed to Esso Explora ? Extrapolated or Approximate Values Copyright © 2002-2019 BRE Group, Ltd.			Licensed to Esso Exploration, Inc.	

	User Value Sets Report	
Client Name:	DELAWARE DIVISION Job:	
Location:	Jayhawk Compressor Station	
	User Value [ShellDiam]	
* Parameter	15.5 ft * Enforce Bounds	False
i alametei		1 0.55
	User Value [BreatherVP]	
* Parameter	0.03 psig * Enforce Bounds	False
	User Value [BreatherVacP]	
* Parameter	-0.03 psig * Enforce Bounds	False
	User Value [DomeRadius]	
* Enforce Bounds	False	
* Parameter	User Value [OpPress] 0.25 psig * Enforce Bounds	False
Falameter		รลเรย
	User Value [AvgPercentLiq]	
* Parameter	50 % * Enforce Bounds	False
1 didinition		1460
	User Value [MaxPercentLiq]	
* Parameter	90 % * Enforce Bounds	False
	User Value [MinPercentLiq]	
* Parameter	10 % * Enforce Bounds	False
	User Value [AnnNetTP]	
* Parameter	341.738 bbl/day * Enforce Bounds	False
	User Value [OREff]	
* Parameter	0 % * Enforce Bounds	False
T didinotor		1000
	User Value [MaxAvgT]	
* Parameter	75.8 °F * Enforce Bounds	False
	User Value [MinAvgT]	
* Parameter	47.6 °F * Enforce Bounds	False
* 5	User Value [BulkLiqT]	
* Parameter	75.67 °F * Enforce Bounds	False
* Parameter	User Value [AvgP] 12.88 psia * Enforce Bounds	False
F aidilielei		
	User Value [Therml]	
* Parameter	1722 Btu/ft^2/day * Enforce Bounds	False
	User Value [AvgWindSpeed]	
* Parameter	8.7 mi/h * Enforce Bounds	False
	User Value [MaxHourlyLoadingRate]	
* Parameter	210 bbl/hr * Enforce Bounds	False

	User Value Sets Report		
Client Name: Location:	DELAWARE DIVISION J Jayhawk Compressor Station J	ob:	
Location.			
	User Value [SumLiqLevelInc]		
* Enforce Bounds	False		
* Deverseter	User Value [FlashingT] 82.6855 °F * Enforce Bounds	Falsa	
* Parameter	82.6855 °F * Enforce Bounds	False	
	User Value [EntrainedOilFrac]		
* Parameter	1 % * Enforce Bounds	False	
	User Value [TurnoverRate]		
* Parameter	144.966 * Enforce Bounds	False	
* 5	User Value [LLossSatFactor]		
* Parameter	0.6 * Enforce Bounds	False	
	User Value [AtmPressure]		
* Parameter	12.88 psia * Enforce Bounds	False	
Talameter		1 8156	
	User Value [TVP]		
* Parameter	12.8672 psia * Enforce Bounds	False	
	User Value [MaxVP]		
* Parameter	14.4348 psia * Enforce Bounds	False	
* Deremeter	User Value [MinVP] 11.3779 psia * Enforce Bounds	False	
* Parameter	TI.3779 psia Enforce Bounds	Faise	
	User Value [AvgLiqSurfaceT]		
* Parameter	73.5062 °F * Enforce Bounds	False	
	User Value [MaxLiqSurfaceT]		
* Parameter	82.6855 °F * Enforce Bounds	False	
* Denene eten	User Value [TotalLosses] 0.941029 ton/yr * Enforce Bounds	Falsa	
* Parameter	0.941029 ton/yr * Enforce Bounds	False	
	User Value [WorkingLosses]		
* Parameter	0.378072 ton/yr * Enforce Bounds	False	
	User Value [StandingLosses]		
* Parameter	0.0924424 ton/yr * Enforce Bounds	False	
* D	User Value [RimSealLosses]		
* Parameter	0 ton/yr * Enforce Bounds	False	
	User Value [WithdrawalLoss]		
* Parameter	0 ton/yr * Enforce Bounds	False	
raianotor		1 4150	
User Value [LoadingLosses]			
* Parameter	0.450142 ton/yr * Enforce Bounds	False	
	User Value [MaxHourlyLoadingLoss]		
* Parameter	1.5157 lb/hr * Enforce Bounds	False	

ProMax 5.0.19050.0 Copyright © 2002-2019 BRE Group, Ltd.

	User Value Sets Report	
lient Name:	DELAWARE DIVISION Job:	
ocation:	Jayhawk Compressor Station	
	User Value [PStar]	
Enforce Bounds		
	User Value [AllCTotalLosses]	
Parameter	1.67313 ton/yr * Enforce Bounds	False
	User Value [AllCLoadingLosses]	
Parameter	0.800346 ton/yr * Enforce Bounds	False
	User Value [AllCMaxHLoadingLoss]	
Parameter	2.69489 lb/hr * Enforce Bounds	False
	User Value [AllCFlashingLosses]	
Parameter	0 ton/yr * Enforce Bounds	False
Parameter	User Value [DeckFittingLosses] 0 ton/yr * Enforce Bounds	False
Parameter		Faise
	User Value [DeckSeamLosses]	
Parameter	0 ton/yr * Enforce Bounds	False
	Licer Volue [Elechingl.ecces]	
Parameter	User Value [FlashingLosses] 0 ton/yr * Enforce Bounds	False
		Tubb
	User Value [TotalResidual]	
Parameter	21795.8 ton/yr * Enforce Bounds	False
	User Value [GasMoleWeight]	
Parameter	0.0497059 kg/mol * Enforce Bounds	False
	User Value [VapReportableFrac]	
Parameter	56.2435 % * Enforce Bounds	False
	User Value [LiqReportableFrac]	
Parameter	0.0310499 % * Enforce Bounds	False
Parameter	User Value [FlashReportableFrac] 0 % * Enforce Bounds	False
rarameter		raise

01/03/2020

FESCO, Ltd. 1100 Fesco Ave. - Alice, Texas 78332

For: XTO Energy, Inc. 22777 Springswoods Village Pkwy., W4.6B.345 Spring, Texas 77389

Sample: Muy Wano 18 Tank Battery Inlet Separator Spot Gas Sample @ 124 psig & 110 °F

Date Sampled: 12/17/2019

Job Number: 193997.011

CHROMATOGRAPH EXTENDED ANALYSIS - GPA 2286

COMPONENT Hydrogen Sulfide*	MOL% < 0.001 0.864	GPM
Nitrogen Carbon Dioxide	0.004	
Methane	73.632	
Ethane	12.988	3.558
Propane	6.704	1.892
Isobutane	0.949	0.318
n-Butane	2.303	0.744
2-2 Dimethylpropane	0.010	0.004
Isopentane	0.551	0.206
n-Pentane	0.654	0.243
Hexanes	0.513	0.216
Heptanes Plus	<u>0.711</u>	<u>0.302</u>
Totals	100.000	7.484

Computed Real Characteristics Of Heptanes Plus:

Specific Gravity	3.402	(Air=1)
Molecular Weight	98.09	
Gross Heating Value	5217	BTU/CF

Computed Real Characteristics Of Total Sample:

Specific Gravity	0.793	(Air=1)
Compressibility (Z)	0.9955	
Molecular Weight	22.88	
Gross Heating Value		
Dry Basis	1394	BTU/CF
Saturated Basis	1371	BTU/CF

*Hydrogen Sulfide tested on location by: Stain Tube Method (GPA 2377) Results: 0.038 Gr/100 CF, 0.6 PPMV or <0.0001 Mol%

Base Conditions: 15.025 PSI & 60 Deg F

Sampled By: (24) DF Analyst: LPJ Processor: RG Cylinder ID: T-5881 Certified: FESCO, Ltd. - Alice, Texas

David Dannhaus 361-661-7015

Page 1 of 3

FESCO, Ltd.

O-Xylene Other C9's

n-Nonane

n-Decane

Totals

Other C10's

Undecanes (11)

Gross Heating Value Dry Basis ---

TOTAL REPORT			
COMPONENT	MOL %	GPM	WT %
Hydrogen Sulfide*	< 0.001		< 0.001
Nitrogen	0.864		1.058
Carbon Dioxide	0.121		0.233
Methane	73.632		51.636
Ethane	12.988	3.558	17.072
Propane	6.704	1.892	12.923
Isobutane	0.949	0.318	2.411
n-Butane	2.303	0.744	5.851
2,2 Dimethylpropane	0.010	0.004	0.032
Isopentane	0.551	0.206	1.738
n-Pentane	0.654	0.243	2.063
2,2 Dimethylbutane	0.008	0.003	0.030
Cyclopentane	0.000	0.000	0.000
2,3 Dimethylbutane	0.045	0.019	0.170
2 Methylpentane	0.156	0.066	0.588
3 Methylpentane	0.083	0.035	0.313
n-Hexane	0.221	0.093	0.833
Methylcyclopentane	0.088	0.031	0.324
Benzene	0.015	0.004	0.051
Cyclohexane	0.102	0.036	0.375
2-Methylhexane	0.032	0.015	0.140
3-Methylhexane	0.034	0.016	0.149
2,2,4 Trimethylpentane		0.000	0.000
Other C7's	0.088	0.039	0.382
n-Heptane	0.076	0.036	0.333
Methylcyclohexane	0.097	0.040	0.416
Toluene	0.020	0.007	0.081
Other C8's	0.087	0.041	0.419
n-Octane	0.024	0.013	0.120
Ethylbenzene	0.001	0.000	0.005
M & P Xylenes	0.008	0.003	0.037
O-Xylene	0.002	0.001	0.009
Other COle	0 0 0 7	0.014	0 4 4 0

0.014

0.003

0.002

0.001

0.000

7.484

0.9955

22.88

0.793 (Air=1)

1394 BTU/CF

1371 BTU/CF

0.149

0.028

0.025

0.006

<u>0.000</u>

100.000

CHROMATOGRAPH EXTENDED ANALYSIS - GPA 2286 TOTAL REPORT

Page 2 of 3

0.027

0.005

0.004

0.001 <u>0.000</u>

100.000

Computed Real Characteristics of Total Sample Specific Gravity -----Compressibility (Z) -----

Molecular Weight -----

Saturated Basis -----

FESCO, Ltd. 1100 Fesco Ave. - Alice, Texas 78332

Sample: Muy Wano 18 Tank Battery Inlet Separator

Spot Gas Sample @ 124 psig & 110 °F

Date Sampled: 12/17/2019

Job Number: 193997.011

	GLYCALC FORM	AT	
COMPONENT	MOL%	GPM	Wt %
Carbon Dioxide	0.121		0.233
Hydrogen Sulfide	< 0.001		< 0.001
Nitrogen	0.864		1.058
Methane	73.632		51.636
Ethane	12.988	3.558	17.072
Propane	6.704	1.892	12.923
Isobutane	0.949	0.318	2.411
n-Butane	2.313	0.748	5.883
Isopentane	0.551	0.206	1.738
n-Pentane	0.654	0.243	2.063
Cyclopentane	0.000	0.000	0.000
n-Hexane	0.221	0.093	0.833
Cyclohexane	0.102	0.036	0.375
Other C6's	0.292	0.123	1.101
Heptanes	0.318	0.137	1.328
Methylcyclohexane	0.097	0.040	0.416
2,2,4 Trimethylpentane	0.000	0.000	0.000
Benzene	0.015	0.004	0.051
Toluene	0.020	0.007	0.081
Ethylbenzene	0.001	0.000	0.005
Xylenes	0.010	0.004	0.046
Octanes Plus	<u>0.148</u>	0.074	<u>0.747</u>
Totals	100.000	7.484	100.000

Real Characteristics Of Octanes Plus:

Specific Gravity	4.004	(Air=1)
Molecular Weight	115.46	
Gross Heating Value	6049	BTU/CF

Real Characteristics Of Total Sample:

Specific Gravity	0.793	(Air=1)
Compressibility (Z)	0.9955	
Molecular Weight	22.88	
Gross Heating Value		
Dry Basis	1394	BTU/CF
Saturated Basis	1371	BTU/CF

Page 3 of 3

FESCO, Ltd. 1100 FESCO Avenue - Alice, Texas 78332

For: XTO Energy, Inc. 22777 Springswoods Village Pkwy., W4.6B.345 Spring, Texas 77389

Sample: Wolverine Compressor Station Inlet Separator Hydrocarbon Liquid Sampled @ 100 psig & 61 °F

Date Sampled: 12/17/19

Job Number: 193998.012

CHROMATOGRAPH EXTENDED ANALYSIS - GPA 2186-M

COMPONENT	MOL %	LIQ VOL %	WT %
Nitrogen	0.017	0.005	0.006
Carbon Dioxide	0.013	0.006	0.008
Methane	2.847	1.310	0.603
Ethane	3.958	2.874	1.570
Propane	8.477	6.341	4.931
Isobutane	3.267	2.903	2.505
n-Butane	12.011	10.281	9.210
2,2 Dimethylpropane	0.114	0.119	0.109
Isopentane	8.130	8.073	7.739
n-Pentane	12.667	12.467	12.057
2,2 Dimethylbutane	0.157	0.178	0.179
Cyclopentane	0.000	0.000	0.000
2,3 Dimethylbutane	0.947	1.054	1.077
2 Methylpentane	4.348	4.900	4.943
3 Methylpentane	2.482	2.751	2.821
n-Hexane	7.509	8.384	8.537
Heptanes Plus	<u>33.056</u>	<u>38.355</u>	<u>43.705</u>
Totals:	100.000	100.000	100.000

Characteristics of Heptanes Plus: Specific Crowitz

naracteristics of Heptanes Plus:		
Specific Gravity	0.7431	(Water=1)
°API Gravity	58.92	@ 60°F
Molecular Weight	100.2	
Vapor Volume	22.95	CF/Gal
Weight	6.19	Lbs/Gal

Characteristics of Total Sample:

Specific Gravity	0.6521	(Water=1)
°API Gravity	85.48	@ 60°F
Molecular Weight	75.8	
Vapor Volume	26.62	CF/Gal
Weight	5.43	Lbs/Gal

Base Conditions: 15.025 PSI & 60 °F

Certified: FESCO, Ltd. - Alice, Texas

Sampled By: (24) DF Analyst: RR Processor: RLdjv Cylinder ID: W-1544

David Dannhaus 361-661-7015

FESCO, Ltd.

TANKS DATA INPUT REPORT - GPA 2186-M

COMPONENT	Mol %	LiqVol %	Wt %
Carbon Dioxide	0.013	0.006	0.008
Nitrogen	0.017	0.005	0.006
Methane	2.847	1.310	0.603
Ethane	3.958	2.874	1.570
Propane	8.477	6.341	4.931
Isobutane	3.267	2.903	2.505
n-Butane	12.125	10.400	9.319
Isopentane	8.130	8.073	7.739
n-Pentane	12.667	12.467	12.057
Other C-6's	7.934	8.883	9.020
Heptanes	17.188	18.903	20.999
Octanes	10.539	12.691	14.604
Nonanes	1.643	2.375	2.743
Decanes Plus	0.746	1.256	1.510
Benzene	0.483	0.367	0.498
Toluene	0.991	0.901	1.204
E-Benzene	0.091	0.096	0.128
Xylenes	0.481	0.505	0.674
n-Hexane	7.509	8.384	8.537
2,2,4 Trimethylpentane	<u>0.893</u>	<u>1.260</u>	1.346
Totals:	100.000	100.000	100.000
Characteristics of Total Sample:			
Specific Gravity		0.6521	(Water=1)
°API Gravity		85.48	@ 60°F
Molocular Waight		75.9	0

Molecular Weight	75.8	0
Vapor Volume	26.62	CF/Gal
Weight	5.43	Lbs/Gal
Characteristics of Decanes (C10) Plus: Specific Gravity Molecular Weight	0.7837 153.4	(Water=1)

Characteristics of Atmospheric Sample:

°API Gravity	73.81	@ 60°F
Reid Vapor Pressure Equivalent (D-6377)	15.83	psi

QUALITY CONTROL CHECK			
	Sampling		
	Conditions	Test S	amples
Cylinder Number		W-1544*	
Pressure, PSIG	100	110	
Temperature, °F	61	61	

* Sample used for analysis

FESCO, Ltd.

TOTAL EXTENDED REPORT - GPA 2186-M

Job Number: 193998.012

COMPONENT	Mol %	LiqVol %	Wt %
Nitrogen	0.017	0.005	0.006
Carbon Dioxide	0.013	0.006	0.008
Methane	2.847	1.310	0.603
Ethane	3.958	2.874	1.570
Propane	8.477	6.341	4.931
Isobutane	3.267	2.903	2.505
n-Butane	12.011	10.281	9.210
2,2 Dimethylpropane	0.114	0.119	0.109
Isopentane	8.130	8.073	7.739
n-Pentane	12.667	12.467	12.057
2,2 Dimethylbutane Cyclopentane	0.157 0.000	0.178 0.000	0.179 0.000
2,3 Dimethylbutane	0.947	1.054	1.077
2 Methylpentane	4.348	4.900	4.943
3 Methylpentane	2.482	2.751	2.821
n-Hexane	7.509	8.384	8.537
Methylcyclopentane	3.546	3.407	3.937
Benzene	0.483	0.367	0.498
Cyclohexane	4.466	4.128	4.958
2-Methylhexane	1.797	2.268	2.375
3-Methylhexane	1.575	1.964	2.083
2,2,4 Trimethylpentane	0.893	1.260	1.346
Other C-7's	2.140	2.545	2.800
n-Heptane	3.665	4.591	4.845
Methylcyclohexane Toluene	4.915 0.991	5.364 0.901	6.366 1.204
Other C-8's	4.505	5.771	6.551
n-Octane	1.119	1.556	1.686
E-Benzene	0.091	0.096	0.128
M & P Xylenes	0.393	0.413	0.550
O-Xylene	0.089	0.092	0.125
Other C-9's	1.383	1.979	2.304
n-Nonane	0.259	0.396	0.438
Other C-10's	0.442	0.696	0.825
n-decane	0.058	0.096	0.108
Undecanes(11)	0.142	0.229	0.275
Dodecanes(12)	0.044	0.077	0.094
Tridecanes(13) Tetradecanes(14)	0.020	0.037	0.045
Pentadecanes(15)	0.006 0.004	0.013 0.008	0.016 0.010
Hexadecanes(16)	0.004	0.005	0.006
Heptadecanes(17)	0.002	0.005	0.006
Octadecanes(18)	0.000	0.000	0.000
Nonadecanes(19)	0.000	0.001	0.002
Eicosanes(20)	0.001	0.004	0.005
Heneicosanes(21)	0.001	0.002	0.002
Docosanes(22)	0.002	0.007	0.009
Tricosanes(23)	0.001	0.003	0.004
Tetracosanes(24)	0.003	0.009	0.013
Pentacosanes(25)	0.001	0.004	0.006
Hexacosanes(26)	0.004	0.015	0.020
Heptacosanes(27)	0.003	0.012	0.016
Octacosanes(28)	0.007	0.025	0.034
Nonacosanes(29)	0.003	0.011	0.015
Triacontanes(30) Hentriacontanes Plus(31+)	0.000 <u>0.000</u>	0.000 <u>0.000</u>	0.000 <u>0.000</u>
Total	100.000	100.000	100.000
	100.000	100.000	100.000

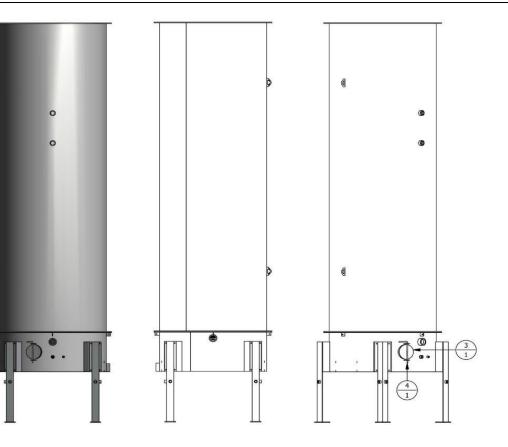
Page 3 of 3

Tab 8 Section 8 - Map(s)

ITEM 2 - ECD - 60" Combustor 57.6 MCF/D Max - skid package with blowcase

Combustor details

Combustor:	• Dimensions 60"D x 13'	
p/n ECD60STD	Atmospheric MAWP	
	• 6.1 MMBTU/HR	
Plumbing:	Stainless Steel Jets	
per ARC config	• Flamecell	
· -	• 34"L x 41"W Burner	
Concrete pad:	3" Wenco Flame Arrestor	
p/n n/a	3" NPT Inlet Connection	
	• ¼" Fisher 67CR-206 Pilot Regulator	
BMS p/n:	• Installed on a 6' x 10' skid, with (1) 24"x48" knockout drum, (1) 10.75"x36" blowcase, (1) 1" Kimray Direct acting, (1) 1"	
p/n 148392	Kimray Reverse acting, (1)Kimray CUA Level Control, fully assembled and plumbed	
	Paint color: Black	
	• ARC™ PREMIER BMS Package includes: smart auto-ignition, CLS I, DIV II (pending),Modbus RTU over RS-485, Advance	


(pending), Modbus RTU over RS-485, Advanced Datalogging, Premier combustion Kit: Includes (2) 1/4" 0.55W ASCO Solenoid Valves, 1/4" 0-5 PSI Transducer, (1) Dual Process Type K Thermocouple w/ Thermowell, no solar package, shipped loose

Item 2 Description		Price Each
ECD - 60" Combustor 57.6 MCF/D Max w/ skid package with blowcase	1 to 4	\$27,760
CCD - 80 Composion 37.0 MCL/D Max w/ skid package with blowcase	5+	\$25,817
ARC™ PREMIER BMS Package		\$4,112

Terms/Delivery

Subject to Prior Sale / 7-8 weeks ARO, Ex Works Mfg Facility: Evans, CO, based on availability at time of quote. Availability will be confirmed after receipt of Purchase Order. Expediting 1-3 business days - 15% upcharge; 4-10 business days - 5% upcharge

Drawing is for information only. Unit specific drawing available upon request.

ENCLOSED COMBUSTORS

Cimarron's enclosed combustion units provide a clean, safe, and efficient solution for eliminating tank vapors and ensuring regulatory compliance. Their performance has been proven to exceed the US EPA's strict requirements with a greater than 99% destruction rate. Designed for both low and high volume applications, the enclosed flares are easy to install and require little ongoing maintenance. Ignition systems include automation capability and data logging features. Standard models have flame cells ranging from 24" to 60", with capacity of 2,000 to 75,000 SCFD. The larger high volume units contain four 24" flame cells and can accommodate up to 200,000 SCFD. ECDs typically operate at pressures of 1 to 12 oz/in².

DESIGN FEATURES AND OPTIONS

- Five Models Manufacturer Performance Tested as per NSPS OOOO §60.5413(d)
- Demonstrated VOC Destruction Efficiency >99%
- Eliminates the requirement for in-field testing to demonstrate continous compliance.
- Solar powered BMS and data logging functions
- Cimarron actuator package for low flow and flameout shutdown
- Drip tank for free liquid removal
- Blowcase skids and modular package options available
- User friendly and easy to install

Confidential [8]

March 15, 2019

XTO Energy 3104 E Greene St. Carlsbad, NM 88220

Attention: To Whom It May Concern

Subject: Compliance with 40 CFR 60.18 Flare Requirements and Destruction Removal Efficiency Confirmation

The Tornado Combustion Technologies Inc. (TCTI) designed two (2) separate dual air assisted flare systems for XTO Energy Midstream Operations Compressor Facilities designed with a maximum buildout design flowrate of 100 to 180 MMSCFD, as per XTO Energy/Select Engineering Flare Specification 1332-SP-P-013 (XTO Energy/Select Engineering Project No.: 1332) on February 20, 2018 (TCTI Design Reference No.: TOR0218 Rev. 0).

The first flare has a 30-inch outer diameter air tip, 22-inch outer diameter annular low pressure air assisted waste gas tip for continuous flaring operations, and 20-inch outer diameter high pressure waste gas tip for facility emergency relieving cases. The tip as previously described is mounted on a riser and guy wire supporting structure so that the overall flare height is 140-feet tall. To date TCTI has provided One (1) flare of this design to XTO Energy Midstream Operations Compressor Facilities, under the following job number:

• 14170 (16495).

This flare design is intended to operate such that:

- i) The maximum high pressure emergency flow rate does not exceed a maximum flow rate of 59,767,069 SCFD, and a maximum net heat release of 6,069,175,258.85 BTU/h; and,
- ii) The maximum low pressure intermittent flow rate does not exceed a maximum flow rate of 952,833 SCFD, a maximum continuous flowrate of 124,363 SCFD which will operate without visible emissions (i.e. excessive soot formation) and a maximum net heat release of 104,435,128.72 BTU/h. For more detailed information please refer to the enclosed design datasheets.

To meet the requirements of 40 CFR 60.18 and industry best practices Tornado has designed the flare to operate as follows:

• TCTI has been designed the flare so each riser of the dual flare system will operate independently. Thus the calculated 40 CFR 60.18 maximum exit velocity for the high pressure non-assisted flare is 391.39 ft/s, 377.63 ft/s and 400 ft/s, for the winter and summer heavy, and winter and summer rich and lean cases respectfully, and low pressure air assisted flare is 170.85 ft/s, 258.33 ft/s, 220.10 ft/s, 146.38 ft/s, 248.24 ft/s and 219.78 ft/s, for the winter and summer heavy, rich and lean cases respectfully, as per paragraphs (c)(3)(ii), (c)(4)(iii), (c)(5), and (f)(6). The actual exit velocities of the flare as determined by paragraph (f)(4) in 40 CFR 60.18, are 364.15 ft/s, 348.57 ft/s, 356.60 ft/s, 367.91 ft/s, 366.37 ft/s, and 372.10 ft/s, for the winter and summer heavy, rich and lean cases respectfully, and low pressure air assisted flare is 11.05 ft/s, 41.31 ft/s, 7.79 ft/s, 18.71 ft/s, 27.39 ft/s and 17.56 ft/s, for the winter and summer heavy, rich and lean cases respectfully, and low pressure air assisted flare is 11.05 ft/s, 41.31 ft/s, 7.79 ft/s, 18.71 ft/s, 27.39 ft/s and 17.56 ft/s, for the winter and summer heavy, rich and lean cases respectfully. As can be seen the actual exit velocity of each low pressure air assisted flare is within the requirements of 40 CFR 60.18. The high pressure air assisted flare's exit velocity although greater than the requirements of 40 CFR

60.18, is exempt from compliance with the standard as per Section 40 CFR 60.11 paragraph (a), and 40 CFR 60.8 paragraph (c), as all cases presented to TCTI for the high pressure air assisted flare have been presented as emergency cases, that are not representative of the flare's performance;

- The calculated lower heating value of the waste gas for the high pressure non-assisted flare are 992.73 BTU/SCF, 1,233.19 BTU/SCF, 1,262.23 BTU/SCF, 979.52 BTU/SCF, 1,222.20 BTU/SCF, and 1,287.62 BTU/SCF, for the winter and summer heavy, rich and lean cases respectfully, and low pressure air assisted flare are 1,641.36 BTU/SCF, 2,650.44 BTU/SCF, 742.52 BTU/SCF, 1,926.09 BTU/SCF, 2,965.73 BTU/SCF, and 1,658.18 BTU/SCF, for the winter and summer heavy, rich and lean cases respectfully. The lower heating value of the provided waste gas composition was calculated as per paragraph (f)(3) of 40 CFR 60.18. This complies with paragraphs (c)(3)(ii) of 40 CFR 60.18 for both a non-assisted and an air assisted flare, as the heating value of the waste gas is greater than 200 BTU/SCF and 300 BTU/SCF, respectfully;
- Tornado has designed this flare to operate with a TSI #6 pilot and TPMR automatic relight and pilot monitoring system. If the flame failure contact is monitored by the client to the satisfaction of the local environmental authority having jurisdiction, then this complies with paragraph (f)(2) of 40 CFR 60.18;
- Tornado has designed the flare to modulate the air flow based upon the waste gas flow rate to the flare for the cases presented which are not considered startup, shutdown, or malfunction as per 40 CFR 60.8(c). By doing this in conjunction with proper flare tuning, the flare's air blower cannot introduce too much air into the jet exit stream thus lowering the destruction efficiency of the flare by quenching mechanisms.

The second flare has a 30-inch outer diameter air tip, 22.5-inch outer diameter annular low pressure air assisted waste gas tip for continuous flaring operations, and 21-inch outer diameter high pressure waste gas tip for facility emergency relieving cases. The tip as previously described is mounted on a riser and guy wire supporting structure so that the overall flare height is 145-feet tall. To date TCTI has provided eleven (11) flares of this design to XTO Energy Midstream Operations Compressor Facilities, under the following job numbers:

- 14274;
- 14275;
- 14276;
- 14277A;
- 14277B;
- 14278A;
- 14278B;
- 14287;
- 14318;
- 14319A;
- 14319B.

This flare design is intended to operate such that:

- i) The maximum high pressure emergency flow rate does not exceed a maximum flow rate of 70,000,000 SCFD, and a maximum net heat release of 7,108,300,193 BTU/h; and,
- ii) The maximum low pressure intermittent flow rate does not exceed a maximum flow rate of 952,833 SCFD, a maximum continuous flowrate of 124,363 SCFD which will operate without visible emissions (i.e. excessive soot formation) and a maximum net heat release of 104,435,128.72 BTU/h. For more detailed information please refer to the enclosed design datasheets.

Due to the volume of sales of this flare design to XTO Energy specifically TCTI has provided this flare with the following model designation moving forward:

• XTO0218R0-145FT.

Thus either the above provided TCTI job numbers or above model number can be used to relate back to this design and the intended operating parameters of the flare system design.

To meet the requirements of 40 CFR 60.18 and industry best practices Tornado has designed the flare to operate as follows:

- TCTI has been designed the flare so each riser of the dual flare system will operate independently. Thus the calculated 40 CFR 60.18 maximum exit velocity for the high pressure non-assisted flare is 391.39 ft/s, 377.63 ft/s and 400 ft/s, for the winter and summer heavy, and winter and summer rich and lean cases respectfully, and low pressure air assisted flare is 170.85 ft/s, 258.33 ft/s, 220.10 ft/s, 146.38 ft/s, 248.24 ft/s and 219.78 ft/s, for the winter and summer heavy, rich and lean cases respectfully, as per paragraphs (c)(3)(ii), (c)(4)(iii), (c)(5), and (f)(6). The actual exit velocities of the flare as determined by paragraph (f)(4) in 40 CFR 60.18, are 415.42 ft/s, 400.47 ft/s, 409.91 ft/s, 420.94 ft/s, 420.19 ft/s, and 426.12 ft/s, for the winter and summer heavy, rich and lean cases respectfully, and low pressure air assisted flare is 11.05 ft/s, 41.31 ft/s, 7.79 ft/s, 18.71 ft/s, 27.39 ft/s and 17.56 ft/s, for the winter and summer heavy, rich and lean cases respectfully. As can be seen the actual exit velocity of each low pressure air assisted flare is within the requirements of 40 CFR 60.18. The high pressure air assisted flare's exit velocity although greater than the requirements of 40 CFR 60.18, is exempt from compliance with the standard as per Section 40 CFR 60.11 paragraph (a), and 40 CFR 60.8 paragraph (c), as all cases presented to TCTI for the high pressure air assisted flare have been presented as emergency cases, that are not representative of the flare's performance;
- The calculated lower heating value of the waste gas for the high pressure non-assisted flare are 992.73 BTU/SCF, 1,233.19 BTU/SCF, 1,262.23 BTU/SCF, 979.52 BTU/SCF, 1,222.20 BTU/SCF, and 1,287.62 BTU/SCF, for the winter and summer heavy, rich and lean cases respectfully, and low pressure air assisted flare are 1,641.36 BTU/SCF, 2,650.44 BTU/SCF, 742.52 BTU/SCF, 1,926.09 BTU/SCF, 2,965.73 BTU/SCF, and 1,658.18 BTU/SCF, for the winter and summer heavy, rich and lean cases respectfully. The lower heating value of the provided waste gas composition was calculated as per paragraph (f)(3) of 40 CFR 60.18. This complies with paragraphs (c)(3)(ii) of 40 CFR 60.18 for both a non-assisted and an air assisted flare, as the heating value of the waste gas is greater than 200 BTU/SCF and 300 BTU/SCF, respectfully;
- Tornado has designed this flare to operate with a TSI #6 pilot and TPMR automatic relight and pilot monitoring system. If the flame failure contact is monitored by the client to the satisfaction of the local environmental authority having jurisdiction, then this complies with paragraph (f)(2) of 40 CFR 60.18;
- Tornado has designed the flare to modulate the air flow based upon the waste gas flow rate to the flare for the cases presented which are not considered startup, shutdown, or malfunction as per 40 CFR 60.8(c). By doing this in conjunction with proper flare tuning, the flare's air blower cannot introduce too much air into the jet exit stream thus lowering the destruction efficiency of the flare by quenching mechanisms.

With both flares being designed to operate as described above the Tornado Combustion Technologies Inc. flare system has been designed to operate in compliance with 40 CFR 60.18. As per EPA studies EPA-600/2-83-052, EPA-600/2-86-080, and EPA-600/2-85-106 meeting the criteria of 40 CFR 60.18 will attain a minimum Destruction Removal Efficiency (DRE) of 98% for hydrocarbon compounds.

XTO Energy has advised that the site under consideration does not need to meet the requirements of 40 CFR 60 Subpart OOOO and only the general requirements must be adhered.

Regards,

Brian Herrler, P.Eng Combustion Engineering **Tornado Combustion Technologies Inc.** 200 – 261200 Wagon Wheel Way Municipal District of Rocky View, Alberta T4A 0E3 Phone: (403) 244-3333 Direct: (403) 567-2223 Mobile: (403) 669-3400 Email: bherrler@tornadotech.com

Cc:(4) Gene Kazmir, General Manager USA, Tornado Combustion Technologies Inc; Cliff Kazmir, General Manager USA, Tornado Combustion Technologies Inc; Bryce Thomas, Flare Manager, Tornado Combustion Technologies Inc; Ian Burge, Combustion Engineering, Tornado Combustion Technologies Inc.

G3516J

GAS COMPRESSION APPLICATION

GAS ENGINE SITE SPECIFIC TECHNICAL DATA Jayhawk Compressor Station 3516J

RATING STRATEGY:

SITE CONDITIONS:

FUEL SYSTEM:

1400

SCAC

130

201

210

ΤA

0.5 28

ADEM3

ASWC

JW+OC+1AC, 2AC

LOW EMISSION

8

STANDARD CAT WIDE RANGE WITH AIR FUEL RATIO CONTROL

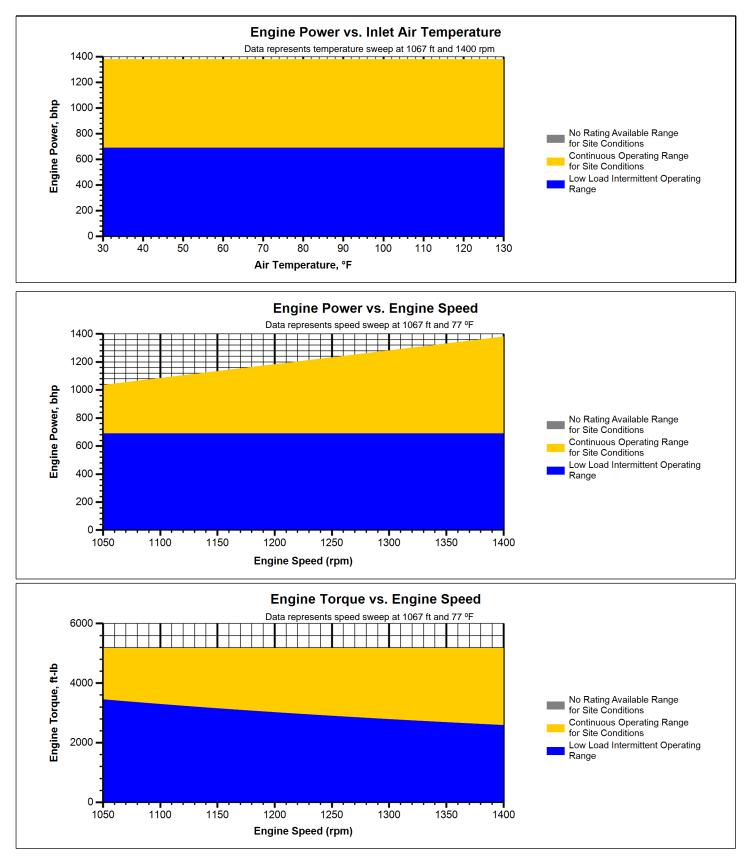
FUEL: FUEL PRESSURE RANGE(psig): (See note 1) FUEL METHANE NUMBER: FUEL LHV (Btu/scf): ALTITUDE(ft): INLET AIR TEMPERATURE(°F): STANDARD RATED POWER:

7.0-40.0 48.1 1126 1067 77 1380 bhp@1400rpm

- - - -

				MAXIMUM RATING	-	TING AT M IR TEMPEI	
RATING		NOTES	LOAD	100%	100%	75%	50%
ENGINE POWER	(WITHOUT FAN)	(2)	bhp	1380	1380	1035	690
INLET AIR TEMPERATURE			°F	77	77	77	77
ENGINE DATA							
FUEL CONSUMPTION (LHV)		(3)	Btu/bhp-hr	7344	7344	7709	8286
FUEL CONSUMPTION (HHV)		(3)	Btu/bhp-hr	8095	8095	8497	9133
AIR FLOW (@inlet air temp, 14.7 psia)	(WET)	(4)(5)	ft3/min	3130	3130	2392	1642
AIR FLOW	(WET)	(4)(5)	lb/hr	13879	13879	10606	7283
FUEL FLOW (60°F, 14.7 psia)			scfm	150	150	118	85
INLET MANIFOLD PRESSURE		(6)	in Hg(abs)	87.9	87.9	69.9	48.1
EXHAUST TEMPERATURE - ENGINE OUTLET		(7)	°F	837	837	835	892
EXHAUST GAS FLOW (@engine outlet temp, 14.5 psia)	(WET)	(8)(5)	ft3/min	8108	8108	6197	4453
EXHAUST GAS MASS FLOW	(WET)	(8)(5)	lb/hr	14383	14383	11002	7567
EMISSIONS DATA - ENGINE OUT							
NOx (as NO2)		(9)(10)	g/bhp-hr	0.50	0.50	0.50	0.50
co		(9)(10)	g/bhp-hr	2.55	2.55	2.56	2.47
THC (mol. wt. of 15.84)		(9)(10)	g/bhp-hr	3.77	3.77	3.68	3.47
NMHC (mol. wt. of 15.84)		(9)(10)	g/bhp-hr	1.52	1.52	1.49	1.41
NMNEHC (VOCs) (mol. wt. of 15.84)		(9)(10)(11)	g/bhp-hr	0.91	0.91	0.89	0.84
HCHO (Formaldehyde)		(9)(10)	g/bhp-hr	0.36	0.36	0.34	0.33
CO2		(9)(10)	g/bhp-hr	502	502	525	568
EXHAUST OXYGEN		(9)(12)	% DRY	9.1	9.1	8.8	8.4
HEAT REJECTION							
HEAT REJ. TO JACKET WATER (JW)		(13)	Btu/min	36153	36153	31130	25945
HEAT REJ. TO ATMOSPHERE		(13)	Btu/min	5313	5313	4428	3543
HEAT REJ. TO LUBE OIL (OC)		(13)	Btu/min	4370	4370	3763	3136
HEAT REJ. TO A/C - STAGE 1 (1AC)		(13)(14)	Btu/min	7839	7839	5810	1168
HEAT REJ. TO A/C - STAGE 2 (2AC)		(13)(14)	Btu/min	5064	5064	4393	2761
COOLING SYSTEM SIZING CRITERIA							
TOTAL JACKET WATER CIRCUIT (JW+OC+1AC)		(14)(15)	Btu/min	53243]		
TOTAL AFTERCOOLER CIRCUIT (2AC)		(14)(15)	Btu/min	5317			
A cooling system safety factor of 0% has been added to the cool	ing system sizing criteria.		1		1		
	<u> </u>				,		

CONDITIONS AND DEFINITIONS


Engine rating obtained and presented in accordance with ISO 3046/1, adjusted for fuel, site altitude and site inlet air temperature. 100% rating at maximum inlet air temperature is the maximum engine capability for the specified fuel at site altitude and maximum site inlet air temperature. Maximum rating is the maximum capability at the specified aftercooler inlet temperature for the specified fuel at site altitude and reduced inlet air temperature. Lowest load point is the lowest continuous duty operating load allowed. No overload permitted at rating shown.

For notes information consult page three.

GAS COMPRESSION APPLICATION

GAS ENGINE SITE SPECIFIC TECHNICAL DATA Jayhawk Compressor Station 3516J

CATERPILLAR®

Note:

At site conditions of 1067 ft and 77°F inlet air temp., constant torque can be maintained down to 1050 rpm. The minimum speed for loading at these conditions is 1050 rpm.

G3516J

GAS ENGINE SITE SPECIFIC TECHNICAL DATA Jayhawk Compressor Station 3516J

GAS COMPRESSION APPLICATION

NOTES:

1. Fuel pressure range specified is to the engine fuel pressure regulator. Additional fuel train components should be considered in pressure and flow calculations.

2. Engine rating is with two engine driven water pumps. Tolerance is \pm 3% of full load.

3. Engine rating obtained and presented in accordance with ISO 3046/1, adjusted for fuel, site altitude and site ambient temperature.

4. Air flow value is on a 'wet' basis. Flow is a nominal value with a tolerance of ± 5 %.

5. Inlet and Exhaust Restrictions must not exceed A&I limits based on full load flow rates from the standard technical data sheet.

6. Inlet manifold pressure is a nominal value with a tolerance of ± 5 %.

7. Exhaust temperature is a nominal value with a tolerance of (+)63°F, (-)54°F.

8. Exhaust flow value is on a "wet" basis. Flow is a nominal value with a tolerance of \pm 6 %.

9. Emissions data is at engine exhaust flange prior to any after treatment.

10. Values listed are higher than nominal levels to allow for instrumentation, measurement, and engine-to-engine variations. They indicate the maximum values expected under steady state conditions. Fuel methane number cannot vary more than ± 3. THC, NMHC, and NMNEHC do not include aldehydes. An oxidation catalyst may be required to meet Federal, State or local CO or HC requirements.

11. VOCs - Volatile organic compounds as defined in US EPA 40 CFR 60, subpart JJJJ

12. Exhaust Oxygen level is the result of adjusting the engine to operate at the specified NOx level. Tolerance is ± 0.5 .

13. Heat rejection values are nominal. Tolerances, based on treated water, are ± 10% for jacket water circuit, ± 50% for radiation, ± 20% for lube oil circuit, and ± 5% for aftercooler circuit.

14. Aftercooler heat rejection includes an aftercooler heat rejection factor for the site elevation and inlet air temperature specified. Aftercooler heat rejection values at part load are for reference only. Do not use part load data for heat exchanger sizing.

15. Cooling system sizing criteria are maximum circuit heat rejection for the site, with applied tolerances.

G3516J

GAS ENGINE SITE SPECIFIC TECHNICAL DATA Jayhawk Compressor Station 3516J

GAS COMPRESSION APPLICATION

Constituent	Abbrev	Mole %	Norm		
Water Vapor	H2O	0.0000	0.0000	Fuel Makeup:	_
Methane	CH4	78.0190	78.0190	Unit of Measure:	E
Ethane	C2H6	10.6670	10.6670		
Propane	C3H8	4.8170	4.8170	Calculated Fuel Properties	
Isobutane	iso-C4H10	0.5560	0.5560	Caterpillar Methane Number:	
Norbutane	nor-C4H10	1.4030	1.4030		
Isopentane	iso-C5H12	0.3190	0.3190	Lower Heating Value (Btu/scf):	
Norpentane	nor-C5H12	0.3610	0.3610	Higher Heating Value (Btu/scf):	
Hexane	C6H14	0.3720	0.3720	WOBBE Index (Btu/scf):	
Heptane	C7H16	0.5440	0.5440		
Nitrogen	N2	2.0010	2.0010	THC: Free Inert Ratio:	
Carbon Dioxide	CO2	0.9410	0.9410	Total % Inerts (% N2, CO2, He):	2
Hydrogen Sulfide	H2S	0.0000	0.0000	RPC (%) (To 905 Btu/scf Fuel):	
Carbon Monoxide	CO	0.0000	0.0000		
Hydrogen	H2	0.0000	0.0000	Compressibility Factor:	
Oxygen	O2	0.0000	0.0000	Stoich A/F Ratio (Vol/Vol):	
Helium	HE	0.0000	0.0000	Stoich A/F Ratio (Mass/Mass):	
Neopentane	neo-C5H12	0.0000	0.0000	Specific Gravity (Relative to Air):	
Octane	C8H18	0.0000	0.0000		
Nonane	C9H20	0.0000	0.0000	Fuel Specific Heat Ratio (K):	
Ethylene	C2H4	0.0000	0.0000		
Propylene	C3H6	0.0000	0.0000		
TOTAL (Volume %)	_	100.0000	100.0000		

CONDITIONS AND DEFINITIONS

Caterpillar Methane Number represents the knock resistance of a gaseous fuel. It should be used with the Caterpillar Fuel Usage Guide for the engine and rating to determine the rating for the fuel specified. A Fuel Usage Guide for each rating is included on page 2 of its standard technical data sheet.

RPC always applies to naturally aspirated (NA) engines, and turbocharged (TA or LE) engines only when they are derated for altitude and ambient site conditions.

Project specific technical data sheets generated by the Caterpillar Gas Engine Rating Pro program take the Caterpillar Methane Number and RPC into account when generating a site rating.

Fuel properties for Btu/scf calculations are at 60F and 14.696 psia.

Caterpillar shall have no liability in law or equity, for damages, consequently or otherwise, arising from use of program and related material or any part thereof.

FUEL LIQUIDS

Field gases, well head gases, and associated gases typically contain liquid water and heavy hydrocarbons entrained in the gas. To prevent detonation and severe damage to the engine, hydrocarbon liquids must not be allowed to enter the engine fuel system. To remove liquids, a liquid separator and coalescing filter are recommended, with an automatic drain and collection tank to prevent contamination of the ground in accordance with local codes and standards.

To avoid water condensation in the engine or fuel lines, limit the relative humidity of water in the fuel to 80% at the minimum fuel operating temperature.

CATERPILLAR®

G3616

ASPIRATION:

COMBUSTION:

COOLING SYSTEM:

CONTROL SYSTEM:

SET POINT TIMING:

EXHAUST MANIFOLD:

ENGINE SPEED (rpm):

COMPRESSION RATIO:

AFTERCOOLER TYPE:

GAS COMPRESSION APPLICATION

AFTERCOOLER - STAGE 2 INLET (°F):

AFTERCOOLER - STAGE 1 INLET (°F): JACKET WATER OUTLET (°F):

NOx EMISSION LEVEL (g/bhp-hr NOx):

GAS ENGINE SITE SPECIFIC TECHNICAL DATA	A
Jayhawk Compressor Station 3616	

1000

SCAC

7.6

130

174

190

ΤA

ADEM4

LOW EMISSION

DRY

0.3

16

STANDARD GAV WITH AIR FUEL RATIO CONTROL

SITE CONDITIONS: FUEL: FUEL METHANE NUMBER: FUEL LHV (Btu/scf): JW+1AC, OC+2AC ALTITUDE(ft): INLET AIR TEMPERATURE(°F): STANDARD RATED POWER:

RATING STRATEGY:

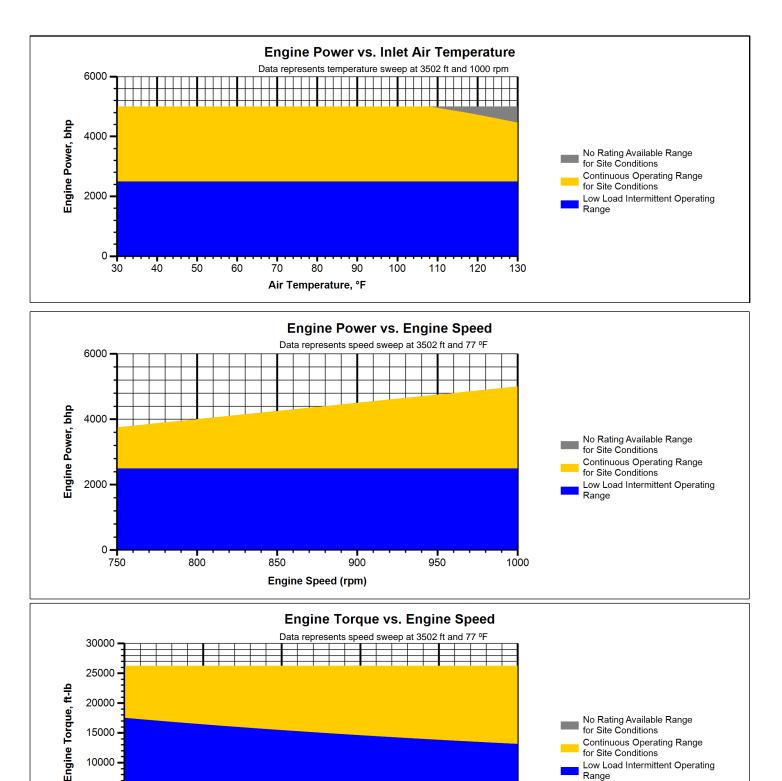
FUEL SYSTEM:

FUEL PRESSURE RANGE(psig): (See note 1)

BEU DI 4 Bat Inlet Sep Gas 58.0-70.3 48.1 1126 3502 77 5000 bhp@1000rpm

.

RATING NOTES LOAD 100% 75% 50% ENGINE POWER (WITHOUT FAN) (2) bhp 5000 3750 2500 INLET AIR TEMPERATURE (WITHOUT FAN) (2) bhp 5000 5000 3750 2500 FUEL CONSUMPTION (LHV) (3) Btu/bhp-hr 777 776 7661 8173 AIR FLOW (@inlet air temp, 14.7 psia) (WET) (4)(5) ft3/min 12542 12542 9468 6445 FUEL CONSUMPTION (HHV) (3) Btu/bhp-hr 55614 55614 41981 22579 AIR FLOW (@07F, 14.7 psia) (WET) (4)(5) ft3/min 108.6 805 851 916 EXHAUST TEMPERATURE - ENGINE OUTLET (7) "F 805 805 851 916 EXHAUST GAS FLOW (@engine outlet temp, 14.5 psia) (WET) (8)(5) ft3/min 31404 34004 24582 17603 CO (9)(10) g/bhp-hr 3.06 3.06 3.06 3.07					MAXIMUM RATING	-	TING AT M IR TEMPEI	-
INLET AIR TEMPERATURE r <	RATING		NOTES	LOAD	100%	100%	75%	50%
ENGINE DATA Item Item< Item<		(WITHOUT FAN)	(2)		1			
FUEL CONSUMPTION (LHV) (3) Btw/bhp-hr 6783 6783 6951 7415 FUEL CONSUMPTION (HHV) (3) Btw/bhp-hr 7476 7476 7661 8173 AIR FLOW (emlet air temp, 14.7 psia) (WET) (4)(5) ft3/min 12542	INLET AIR TEMPERATURE			°F	77	77	77	77
FUEL CONSUMPTION (HHV) (3) Btw/bip-hr 7476 <t< td=""><td>ENGINE DATA</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	ENGINE DATA							
AIR FLOW (@inlet air temp, 14.7 psia) (WET) (4)(5) ft3/min 12542 12542 9468 6445 AIR FLOW (@inlet air temp, 14.7 psia) (WET) (4)(5) Ib/hr 55614 41981 28579 INLET MANIFOLD PRESSURE (6) in Hg(abs) 108.6 108.6 81.1 56.6 EXHAUST TEMPERATURE - ENGINE OUTLET (7) °F 805 805 851 916 EXHAUST GAS FLOW (@inlet air temp, 14.5 psia) (WET) (8)(5) ft3/min 31404 24582 17603 EXHAUST GAS RLOW (WET) (8)(5) ft3/min 31404 24582 12502 EMISSIONS DATA - ENGINE OUT (WET) (8)(5) ft3/min 31404 24582 12603 CO (9)(10) g/bp-hr 0.30 0.30 0.30 0.30 0.30 CO (9)(10) g/bp-hr 3.66 3.06 3.06 3.07 THC (mol. wt. of 15.84) (9)(10) g/bp-hr 3.59 3.93 4.17 NMHEC (VOCs) (mol. wt. of 15.84) (9)(10) g/bp-hr 0.45 1.59 1.69	FUEL CONSUMPTION (LHV)		(3)	Btu/bhp-hr	6783	6783	6951	7415
AR FLOW (WET) (4)(5) Ib/hr 55614 56614 41981 28579 FUEL FLOW (60°F, 14.7 psia) interi MANIFOLD PRESSURE (6) in Hg(abs) 108.6 101.5 502 306 274 INLET MANIFOLD PRESSURE (6) in Hg(abs) 108.6 81.1 56.6 81.1 56.6 81.1 56.6 81.1 56.6 81.1 56.6 81.1 56.6 81.1 56.6 81.1 56.6 81.1 56.6 81.1 56.6 81.1 56.6 81.1 56.6 81.1 56.6 81.1 56.6 81.1 56.6 81.1 56.0 80.5 85.1 916 245.2 176.03 245.2 176.03 245.2 176.03 245.2 126.03 432.78 295.02 432.78 295.02 432.78 295.02 432.78 295.02 432.78 295.02 432.78 295.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 <td>FUEL CONSUMPTION (HHV)</td> <td></td> <td>(3)</td> <td>Btu/bhp-hr</td> <td>7476</td> <td>7476</td> <td>7661</td> <td>8173</td>	FUEL CONSUMPTION (HHV)		(3)	Btu/bhp-hr	7476	7476	7661	8173
FUEL FLOW (60°F, 14.7 psia) scfm 502 502 386 274 INLET MANIFOLD PRESSURE (6) in Hig(abs) 108.6 81.1 56.6 EXHAUST TEMPERATURE - ENGINE OUTLET (7) ° % 80.6 85.1 916.6 EXHAUST GAS FLOW (@engine outlet temp, 14.5 psia) (WET) (8)(5) ft3/min 31404 31404 24582 17603 EXHAUST GAS MASS FLOW (WET) (8)(5) ft3/min 31404 31404 24582 12603 EXHAUST GAS MASS FLOW (WET) (8)(5) ft3/min 31404 31404 24582 12603 CO (9)(10) g/bhp-hr 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.01 1.69 1.69 1.02 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.60 2.20			(4)(5)	ft3/min	12542	12542	9468	6445
INLET MANIFOLD PRESSURE (6) in Hg(abs) 108.6 81.1 56.6 EXHAUST TEMPERATURE - ENGINE OUTLET (7) °F 805 805 851 916 EXHAUST TEMPERATURE - ENGINE OUTLET (WET) (8)(5) ft3/min 31404 34404 24582 17603 EXHAUST GAS FLOW (WET) (8)(5) ft3/min 57302 57302 43278 29502 EMISSIONS DATA - ENGINE OUT (WET) (9)(10) g/bhp-hr 0.30 0.417 <td< td=""><td>-</td><td>(WET)</td><td>(4)(5)</td><td>lb/hr</td><td></td><td>55614</td><td>41981</td><td></td></td<>	-	(WET)	(4)(5)	lb/hr		55614	41981	
EXHAUST TEMPERATURE - ENGINE OUTLET (7) (9) (7) (9) (7) (9) (7)								
EXHAUST GAS FLOW (@engine outlet temp, 14.5 psia) (WET) (8)(5) ft3/min 31404 31404 24582 17603 EXHAUST GAS MASS FLOW (WET) (8)(5) ft3/min 31404 31404 24582 17603 EXHAUST GAS MASS FLOW (WET) (8)(5) ft3/min 57302 43278 29502 EMISSIONS DATA - ENGINE OUT (WET) (9)(10) g/bhp-hr 0.30 0							-	
EXHAUST GAS MASS FLOW Metry (a)(5) lb/hr 57302 57302 43278 29502 EMISSIONS DATA - ENGINE OUT NOx (as NO2) CO (9)(10) g/bhp-hr 0.30 0.30 0.30 0.30 CO (9)(10) g/bhp-hr 3.06 3.06 3.06 3.07 THC (mol. wt. of 15.84) (9)(10) g/bhp-hr 3.59 3.59 3.93 4.17 NMHC (mol. wt. of 15.84) (9)(10) g/bhp-hr 1.45 1.45 1.59 1.69 NMNEHC (VOCs) (mol. wt. of 15.84) (9)(10) g/bhp-hr 0.87 0.95 1.01 HCHO (Formaldehyde) (9)(10) g/bhp-hr 0.15 0.16 0.20 CO2 (9)(10) g/bhp-hr 455 473 500 EXHAUST OXYGEN (13) Btu/min 18158 17058 15595 HEAT REJ. TO ATMOSPHERE (13) Btu/min 18158 17058 15595 HEAT REJ. TO A/C - STAGE 1 (1AC) (13)(14) Btu/min 1				1 .				
EMISSIONS DATA - ENGINE OUT NOx (as NO2) (9)(10) g/bhp-hr 0.30 0.30 0.30 CO (9)(10) g/bhp-hr 3.06 3.06 3.06 3.06 THC (mol. wt. of 15.84) (9)(10) g/bhp-hr 3.59 3.59 3.93 4.17 NMHE (mol. wt. of 15.84) (9)(10) g/bhp-hr 1.45 1.45 1.59 1.69 NMNEHC (VOCs) (mol. wt. of 15.84) (9)(10) g/bhp-hr 0.87 0.87 0.95 1.01 HCHO (Formaldehyde) (9)(10) g/bhp-hr 0.15 0.16 0.20 CO2 (9)(10) g/bhp-hr 0.87 0.87 0.95 1.01 HCHO (Formaldehyde) (9)(10) g/bhp-hr 0.15 0.16 0.20 CO2 (9)(10) g/bhp-hr 455 455 473 500 EXALUST OXYGEN (13) Btu/min 18158 18158 17058 15595 HEAT REJ. TO JACKET WATER (JW) (13) Btu/min 18158 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>								
NOx (as NO2) CO (9)(10) (9)(10) g/bhp-hr (9)(10) 0.30 0.30 0.30 0.30 THC (mol. wt. of 15.84) NMHC (mol. wt. of 15.84) (9)(10) g/bhp-hr 3.59 3.59 3.93 4.17 NMHE (mol. wt. of 15.84) (9)(10) g/bhp-hr 3.66 3.06 3.07 NMNEHC (VOCs) (mol. wt. of 15.84) (9)(10) g/bhp-hr 1.45 1.45 1.59 1.69 MCH (Gromaldehyde) (9)(10) g/bhp-hr 0.87 0.87 0.95 1.01 HCHO (Formaldehyde) (9)(10) g/bhp-hr 0.15 0.16 0.20 CO2 (9)(10) g/bhp-hr 455 455 473 500 EXHAUST OXYGEN (13) Btu/min 53193 43314 36619 HEAT REJ. TO JACKET WATER (JW) (13) Btu/min 18158 18158 17058 15595 HEAT REJ. TO ATMOSPHERE (13) Btu/min 18158 18158 15595 HEAT REJ. TO A/C - STAGE 1 (1AC) (13)(14) Btu/min 54824	EXHAUST GAS MASS FLOW	(WET)	(8)(5)	lb/hr	57302	57302	43278	29502
NOx (as NO2) CO (9)(10) (9)(10) g/bhp-hr (9)(10) 0.30 0.30 0.30 0.30 THC (mol. wt. of 15.84) NMHC (mol. wt. of 15.84) (9)(10) g/bhp-hr 3.59 3.59 3.93 4.17 NMHE (mol. wt. of 15.84) (9)(10) g/bhp-hr 3.66 3.06 3.07 NMNEHC (VOCs) (mol. wt. of 15.84) (9)(10) g/bhp-hr 1.45 1.45 1.59 1.69 MCH (Gromaldehyde) (9)(10) g/bhp-hr 0.87 0.87 0.95 1.01 HCHO (Formaldehyde) (9)(10) g/bhp-hr 0.15 0.16 0.20 CO2 (9)(10) g/bhp-hr 455 455 473 500 EXHAUST OXYGEN (13) Btu/min 53193 43314 36619 HEAT REJ. TO JACKET WATER (JW) (13) Btu/min 18158 18158 17058 15595 HEAT REJ. TO ATMOSPHERE (13) Btu/min 18158 18158 15595 HEAT REJ. TO A/C - STAGE 1 (1AC) (13)(14) Btu/min 54824	EMISSIONS DATA - ENGINE OUT							
CO (9)(10) g/bhp-hr 3.06 3.06 3.06 3.06 3.07 THC (mol. wt. of 15.84) (9)(10) g/bhp-hr 3.59 3.59 3.93 4.17 NMHC (mol. wt. of 15.84) (9)(10) g/bhp-hr 1.45 1.45 1.59 1.69 NMNEHC (VOCS) (mol. wt. of 15.84) (9)(10) g/bhp-hr 0.87 0.95 1.01 HCHO (Formaldehyde) (9)(10) g/bhp-hr 0.15 0.15 0.16 0.20 CO2 (9)(10) g/bhp-hr 455 455 473 500 EXHAUST OXYGEN (9)(12) % DRY 11.2 11.2 10.9 10.6 HEAT REJ. TO JACKET WATER (JW) (13) Btu/min 18158 17058 15595 HEAT REJ. TO ATMOSPHERE (13) Btu/min 18158 17058 15595 HEAT REJ. TO A/C - STAGE 1 (1AC) (13)(14) Btu/min 30493 27342 24076 HEAT REJ. TO A/C - STAGE 2 (2AC) (13)(14) Btu/min 11970 8316 <td></td> <td></td> <td>(0)(10)</td> <td>g/bbp.br</td> <td>0.30</td> <td>0.30</td> <td>0.30</td> <td>0.30</td>			(0)(10)	g/bbp.br	0.30	0.30	0.30	0.30
THC (mol. wt. of 15.84) (9)(10) g/bhp-hr 3.59 3.59 3.93 4.17 NMHC (mol. wt. of 15.84) (9)(10) g/bhp-hr 1.45 1.45 1.59 1.69 NMNEHC (VOCs) (mol. wt. of 15.84) (9)(10) g/bhp-hr 0.87 0.87 0.95 1.01 HCH0 (Formaldehyde) (9)(10) g/bhp-hr 0.15 0.15 0.16 0.20 CO2 (9)(10) g/bhp-hr 455 455 473 500 EXHAUST OXYGEN (9)(12) % DRY 11.2 11.2 10.9 10.6 HEAT REJ. TO JACKET WATER (JW) (13) Btu/min 53193 53193 43314 36619 HEAT REJ. TO JACKET WATER (JCO) (13) Btu/min 18158 18158 17058 15595 HEAT REJ. TO ATMOSPHERE (13) Btu/min 30493 30493 27342 24076 HEAT REJ. TO A/C - STAGE 1 (1AC) (13)(14) Btu/min 118158 18158 28221 8232 HEAT REJ. TO A/C - STAGE 2 (2AC) (13)(14) Btu/min 11970 8316 5067								
NMHC (mol. wt. of 15.84) (9)(10) g/bhp-hr 1.45 1.45 1.59 1.69 NMNEHC (VOCs) (mol. wt. of 15.84) (9)(10)(11) g/bhp-hr 0.87 0.87 0.95 1.01 HCHO (Formaldehyde) (9)(10) g/bhp-hr 0.15 0.15 0.16 0.20 CO2 (9)(10) g/bhp-hr 455 455 473 500 EXHAUST OXYGEN (9)(10) g/bhp-hr 455 455 473 500 HEAT REJ. TO JACKET WATER (JW) (13) Btu/min 53193 53193 43314 36619 HEAT REJ. TO JACKET WATER (JW) (13) Btu/min 18158 18158 17058 15595 HEAT REJ. TO ATMOSPHERE (13) Btu/min 18158 13043 30493 27342 24076 HEAT REJ. TO A/C - STAGE 1 (1AC) (13)(14) Btu/min 54824 54824 24821 24821 24821 242076 HEAT REJ. TO A/C - STAGE 2 (2AC) (13)(14) Btu/min 11970 8316 5067 <								
NMNEHC (VOCs) (mol. wt. of 15.84) (9)(10)(11) g/bhp-hr 0.87 0.95 1.01 HCHO (Formaldehyde) (9)(10) g/bhp-hr 0.15 0.15 0.16 0.20 CO2 (9)(10) g/bhp-hr 455 455 473 500 EXHAUST OXYGEN (9)(12) % DRY 11.2 11.2 10.9 10.6 HEAT REJECTION HEAT REJ. TO JACKET WATER (JW) (13) Btu/min 53193 43314 36619 HEAT REJ. TO ATMOSPHERE (13) Btu/min 18158 18158 17058 15595 HEAT REJ. TO LUBE OIL (OC) (13) Btu/min 30493 27342 24076 HEAT REJ. TO A/C - STAGE 1 (1AC) (13)(14) Btu/min 54824 28621 8232 HEAT REJ. TO A/C - STAGE 2 (2AC) (13)(14) Btu/min 11970 8316 5067 COOLING SYSTEM SIZING CRITERIA TOTAL JACKET WATER CIRCUIT (JW+1AC) (14)(15) Btu/min 116078 TOTAL STAGE 2 AFTERCOOLER CIRCUIT (OC+2AC) (14)(15) Btu/min 49160								
HCHO (Formaldehyde) (9)(10) g/bhp-hr 0.15 0.16 0.20 CO2 (9)(10) g/bhp-hr 455 455 473 500 EXHAUST OXYGEN (9)(12) % DRY 11.2 11.2 10.9 10.6 HEAT REJECTION HEAT REJ. TO JACKET WATER (JW) (13) Btu/min 53193 43314 36619 HEAT REJ. TO ATMOSPHERE (13) Btu/min 18158 18158 17058 15595 HEAT REJ. TO LUBE OIL (OC) (13) Btu/min 30493 27342 24076 HEAT REJ. TO A/C - STAGE 1 (1AC) (13)(14) Btu/min 54824 54824 28621 8232 HEAT REJ. TO A/C - STAGE 2 (2AC) (13)(14) Btu/min 11970 11970 8316 5067 COOLING SYSTEM SIZING CRITERIA (14)(15) Btu/min 116078 5067 TOTAL JACKET WATER CIRCUIT (JW+1AC) (14)(15) Btu/min 49160 49160						-		
CO2 (9)(10) g/bhp-hr 455 455 473 500 EXHAUST OXYGEN (9)(12) % DRY 11.2 11.2 10.9 10.6 HEAT REJECTION HEAT REJ. TO JACKET WATER (JW) (13) Btu/min 53193 43314 36619 HEAT REJ. TO ATMOSPHERE (13) Btu/min 18158 18158 17058 15595 HEAT REJ. TO LUBE OIL (OC) (13) Btu/min 30493 27342 24076 HEAT REJ. TO A/C - STAGE 1 (1AC) (13)(14) Btu/min 54824 54824 28621 8232 HEAT REJ. TO A/C - STAGE 2 (2AC) (13)(14) Btu/min 11970 8316 5067 COOLING SYSTEM SIZING CRITERIA (14)(15) Btu/min 116078 54824								
EXHAUST OXYGEN (9)(12) % DRY 11.2 11.2 10.9 10.6 HEAT REJECTION HEAT REJ. TO JACKET WATER (JW) (13) Btu/min 53193 53193 43314 36619 HEAT REJ. TO JACKET WATER (JW) (13) Btu/min 18158 18158 17058 15595 HEAT REJ. TO LUBE OIL (OC) (13) Btu/min 30493 27342 24076 HEAT REJ. TO A/C - STAGE 1 (1AC) (13)(14) Btu/min 54824 54824 28621 8232 HEAT REJ. TO A/C - STAGE 2 (2AC) (13)(14) Btu/min 11970 8316 5067 COOLING SYSTEM SIZING CRITERIA TOTAL JACKET WATER CIRCUIT (JW+1AC) (14)(15) Btu/min 116078 TOTAL STAGE 2 AFTERCOOLER CIRCUIT (OC+2AC) (14)(15) Btu/min 49160								
HEAT REJECTION HEAT REJ. TO JACKET WATER (JW) (13) Btu/min 53193 53193 43314 36619 HEAT REJ. TO ATMOSPHERE (13) Btu/min 18158 18158 17058 15595 HEAT REJ. TO LUBE OIL (OC) (13) Btu/min 30493 27342 24076 HEAT REJ. TO A/C - STAGE 1 (1AC) (13)(14) Btu/min 54824 54824 28621 8232 HEAT REJ. TO A/C - STAGE 2 (2AC) (13)(14) Btu/min 11970 11970 8316 5067 COOLING SYSTEM SIZING CRITERIA TOTAL JACKET WATER CIRCUIT (JW+1AC) (14)(15) Btu/min 116078 TOTAL STAGE 2 AFTERCOOLER CIRCUIT (OC+2AC) (14)(15) Btu/min 49160								
HEAT REJ. TO JACKET WATER (JW) (13) Btu/min 53193 53193 43314 36619 HEAT REJ. TO ATMOSPHERE (13) Btu/min 18158 18158 17058 15595 HEAT REJ. TO LUBE OIL (OC) (13) Btu/min 30493 27342 24076 HEAT REJ. TO A/C - STAGE 1 (1AC) (13)(14) Btu/min 54824 54824 28621 8232 HEAT REJ. TO A/C - STAGE 2 (2AC) (13)(14) Btu/min 11970 11970 8316 5067 COOLING SYSTEM SIZING CRITERIA TOTAL JACKET WATER CIRCUIT (JW+1AC) (14)(15) Btu/min 116078 TOTAL STAGE 2 AFTERCOOLER CIRCUIT (OC+2AC) (14)(15) Btu/min 49160	HEAT REJECTION			•				
HEAT REJ. TO ATMOSPHERE (13) Btu/min 18158 18158 17058 15595 HEAT REJ. TO LUBE OIL (OC) (13) Btu/min 30493 27342 24076 HEAT REJ. TO A/C - STAGE 1 (1AC) (13)(14) Btu/min 54824 54824 28621 8232 HEAT REJ. TO A/C - STAGE 2 (2AC) (13)(14) Btu/min 11970 11970 8316 5067 COOLING SYSTEM SIZING CRITERIA TOTAL JACKET WATER CIRCUIT (JW+1AC) (14)(15) Btu/min 116078 TOTAL STAGE 2 AFTERCOOLER CIRCUIT (OC+2AC) (14)(15) Btu/min 49160			(13)	Btu/min	53193	53193	43314	36619
HEAT REJ. TO LUBE OIL (OC) (13) Btu/min 30493 27342 24076 HEAT REJ. TO A/C - STAGE 1 (1AC) (13)(14) Btu/min 54824 54824 28621 8232 HEAT REJ. TO A/C - STAGE 2 (2AC) (13)(14) Btu/min 11970 11970 8316 5067 COOLING SYSTEM SIZING CRITERIA TOTAL JACKET WATER CIRCUIT (JW+1AC) (14)(15) Btu/min 116078 TOTAL STAGE 2 AFTERCOOLER CIRCUIT (OC+2AC) (14)(15) Btu/min 49160				Btu/min				
HEAT REJ. TO A/C - STAGE 1 (1AC) (13)(14) Btu/min 54824 54824 28621 8232 HEAT REJ. TO A/C - STAGE 2 (2AC) (13)(14) Btu/min 11970 11970 8316 5067 COOLING SYSTEM SIZING CRITERIA TOTAL JACKET WATER CIRCUIT (JW+1AC) (14)(15) Btu/min 116078 TOTAL STAGE 2 AFTERCOOLER CIRCUIT (OC+2AC) (14)(15) Btu/min 49160	HEAT REJ. TO LUBE OIL (OC)			Btu/min		30493		
HEAT REJ. TO A/C - STAGE 2 (2AC) (13)(14) Btu/min 11970 11970 8316 5067 COOLING SYSTEM SIZING CRITERIA Image: Control of the state of the s			. ,	Btu/min	54824	54824	28621	8232
TOTAL JACKET WATER CIRCUIT (JW+1AC) (14)(15) Btu/min 116078 TOTAL STAGE 2 AFTERCOOLER CIRCUIT (OC+2AC) (14)(15) Btu/min 49160				Btu/min			8316	
TOTAL JACKET WATER CIRCUIT (JW+1AC) (14)(15) Btu/min 116078 TOTAL STAGE 2 AFTERCOOLER CIRCUIT (OC+2AC) (14)(15) Btu/min 49160	COOLING SYSTEM SIZING CRITERIA							
TOTAL STAGE 2 AFTERCOOLER CIRCUIT (OC+2AC) (14)(15) Btu/min 49160			(14)(15)	Btu/min	116078			
	TOTAL STAGE 2 AFTERCOOLER CIRCUIT (OC+2AC)			Btu/min	49160			
	· · · · · · · · · · · · · · · · · · ·	ing system sizing criteria.						


CONDITIONS AND DEFINITIONS

Engine rating obtained and presented in accordance with ISO 3046/1, adjusted for fuel, site altitude and site inlet air temperature. 100% rating at maximum inlet air temperature is the maximum engine capability for the specified fuel at site altitude and maximum site inlet air temperature. Maximum rating is the maximum capability at the specified aftercooler inlet temperature for the specified fuel at site altitude and reduced inlet air temperature. Lowest load point is the lowest continuous duty operating load allowed. No overload permitted at rating shown.

For notes information consult page three.

GAS COMPRESSION APPLICATION

CATERPILLAR®

Note:

At site conditions of 3502 ft and 77°F inlet air temp., constant torque can be maintained down to 750 rpm. The minimum speed for loading at these conditions is 750 rpm.

900

Engine Speed (rpm)

950

1000

800

850

15000

10000

5000

0

750

Continuous Operating Range for Site Conditions

Range

Low Load Intermittent Operating

G3616

GAS COMPRESSION APPLICATION

GAS ENGINE SITE SPECIFIC TECHNICAL DATA Jayhawk Compressor Station 3616

NOTES:

1. Fuel pressure range specified is to the engine gas shutoff valve (GSOV). Additional fuel train components should be considered in pressure and flow calculations.

2. Engine rating is with two engine driven water pumps. Tolerance is \pm 3% of full load.

3. Engine rating obtained and presented in accordance with ISO 3046/1, adjusted for fuel, site altitude and site ambient temperature.

4. Air flow value is on a 'wet' basis. Flow is a nominal value with a tolerance of ± 5 %.

5. Inlet and Exhaust Restrictions must not exceed A&I limits based on full load flow rates from the standard technical data sheet.

6. Inlet manifold pressure is a nominal value with a tolerance of ± 5 %.

7. Exhaust temperature is a nominal value with a tolerance of (+)63°F, (-)54°F.

8. Exhaust flow value is on a "wet" basis. Flow is a nominal value with a tolerance of \pm 6 %.

9. Emissions data is at engine exhaust flange prior to any after treatment.

10. Values listed are higher than nominal levels to allow for instrumentation, measurement, and engine-to-engine variations. They indicate the maximum values expected under steady state conditions. Fuel methane number cannot vary more than ± 3. THC, NMHC, and NMNEHC do not include aldehydes. An oxidation catalyst may be required to meet Federal, State or local CO or HC requirements.

11. VOCs - Volatile organic compounds as defined in US EPA 40 CFR 60, subpart JJJJ

12. Exhaust Oxygen level is the result of adjusting the engine to operate at the specified NOx level. Tolerance is ± 0.5 .

13. Heat rejection values are nominal. Tolerances, based on treated water, are ± 10% for jacket water circuit, ± 50% for radiation, ± 20% for lube oil circuit, and ± 5% for aftercooler circuit.

14. Aftercooler heat rejection includes an aftercooler heat rejection factor for the site elevation and inlet air temperature specified. Aftercooler heat rejection values at part load are for reference only. Do not use part load data for heat exchanger sizing.

15. Cooling system sizing criteria are maximum circuit heat rejection for the site, with applied tolerances.

G3616

GAS ENGINE SITE SPECIFIC TECHNICAL DATA Jayhawk Compressor Station 3616

GAS COMPRESSION APPLICATION

Constituent	Abbrev	Mole %	Norm		
Water Vapor	H2O	0.0000	0.0000	Fuel Makeup:	BEU DI 4 Bat Inlet Sep Gas
Methane	CH4	78.0190	78.0190	Unit of Measure:	English
Ethane	C2H6	10.6670	10.6670		
Propane	C3H8	4.8170	4.8170	Calculated Fuel Properties	
Isobutane	iso-C4H10	0.5560	0.5560	Caterpillar Methane Number:	48.1
Norbutane	nor-C4H10	1.4030	1.4030		
Isopentane	iso-C5H12	0.3190	0.3190	Lower Heating Value (Btu/scf):	1126
Norpentane	nor-C5H12	0.3610	0.3610	Higher Heating Value (Btu/scf):	1241
Hexane	C6H14	0.3720	0.3720	WOBBE Index (Btu/scf):	1313
Heptane	C7H16	0.5440	0.5440		
Nitrogen	N2	2.0010	2.0010	THC: Free Inert Ratio:	32.99
Carbon Dioxide	CO2	0.9410	0.9410	Total % Inerts (% N2, CO2, He):	2.942%
Hydrogen Sulfide	H2S	0.0000	0.0000	RPC (%) (To 905 Btu/scf Fuel):	100%
Carbon Monoxide	CO	0.0000	0.0000		
Hydrogen	H2	0.0000	0.0000	Compressibility Factor:	0.996
Oxygen	O2	0.0000	0.0000	Stoich A/F Ratio (Vol/Vol):	11.68
Helium	HE	0.0000	0.0000	Stoich A/F Ratio (Mass/Mass):	15.87
Neopentane	neo-C5H12	0.0000	0.0000	Specific Gravity (Relative to Air):	0.736
Octane	C8H18	0.0000	0.0000		
Nonane	C9H20	0.0000	0.0000	Fuel Specific Heat Ratio (K):	1.285
Ethylene	C2H4	0.0000	0.0000		1.200
Propylene	C3H6	0.0000	0.0000		
TOTAL (Volume %)	-	100.0000	100.0000		

CONDITIONS AND DEFINITIONS

Caterpillar Methane Number represents the knock resistance of a gaseous fuel. It should be used with the Caterpillar Fuel Usage Guide for the engine and rating to determine the rating for the fuel specified. A Fuel Usage Guide for each rating is included on page 2 of its standard technical data sheet.

RPC always applies to naturally aspirated (NA) engines, and turbocharged (TA or LE) engines only when they are derated for altitude and ambient site conditions.

Project specific technical data sheets generated by the Caterpillar Gas Engine Rating Pro program take the Caterpillar Methane Number and RPC into account when generating a site rating.

Fuel properties for Btu/scf calculations are at 60F and 14.696 psia.

Caterpillar shall have no liability in law or equity, for damages, consequently or otherwise, arising from use of program and related material or any part thereof.

FUEL LIQUIDS

Field gases, well head gases, and associated gases typically contain liquid water and heavy hydrocarbons entrained in the gas. To prevent detonation and severe damage to the engine, hydrocarbon liquids must not be allowed to enter the engine fuel system. To remove liquids, a liquid separator and coalescing filter are recommended, with an automatic drain and collection tank to prevent contamination of the ground in accordance with local codes and standards.

To avoid water condensation in the engine or fuel lines, limit the relative humidity of water in the fuel to 80% at the minimum fuel operating temperature.

CATERPILLAR®

Power Emission Group 311 Riggs Street, Bloomer, WI 54724 Tel: (715) 568-2882 • Fax: (715)568-2884 Email bweninger@catalyticcombustion.com

EMISSION TECHNOLOGIES

To XTO					Our Ref. 001-00-268588.00
Attn Ben					Date: 09 July, 2020
Via E-mail					Page: 1 of 2
			Catalyst Performance		
For :			Project/Location : Jayhav	wk	
Parameters					
Engine Manufacturer	Cater	pillar			Raw Exhaust
Engine Model	G361	5	NOx	0.30	g/bhp-hr
Horsepower	ļ	5000 bhp	со	3.06	g/bhp-hr
Speed	:	1000 rpm	NMHC	1.45	g/bhp-hr
Exhaust Flowrate	3	1404 acfm	NMNEHC (VOC)	0.87	g/bhp-hr
Exhaust Temperature		805 ° F	НСНО	0.15	g/bhp-hr
Fuel st Description and Perforn	Natur nance Expecto		Oxygen	11.20	%
st Description and Perforn	nance Expecte	ntions			
st Description and Perforn Catalyst Model	nance Expecte RGTB		Overall Dimensions	24.7	5 x 15.44 x 3.7
st Description and Perforn Catalyst Model Cell Pattern, Substrate	nance Expecto RGTB 20HF	ntions	Overall Dimensions Catalyst Qty Required	24.7 12 p	5 x 15.44 x 3.7 er Unit
st Description and Perforn Catalyst Model Cell Pattern, Substrate Formulation	nance Expecto RGTB 20HF HFX4	ntions	Overall Dimensions	24.7 12 p	5 x 15.44 x 3.7
st Description and Perforn Catalyst Model Cell Pattern, Substrate Formulation	nance Expecto RGTB 20HF	ntions	Overall Dimensions Catalyst Qty Required	24.7 12 p	5 x 15.44 x 3.7 er Unit
st Description and Perforn Catalyst Model Cell Pattern, Substrate	nance Expecto RGTB 20HF HFX4 8000	ntions	Overall Dimensions Catalyst Qty Required	24.7 12 p	5 x 15.44 x 3.7 er Unit
st Description and Perforn Catalyst Model Cell Pattern, Substrate Formulation	nance Expecto RGTB 20HF HFX4 8000	ations -2516F-D-20HF-HFX4	Overall Dimensions Catalyst Qty Required	24.7 12 p	5 x 15.44 x 3.7 er Unit
st Description and Perforn Catalyst Model Cell Pattern, Substrate Formulation Warranty Period [hrs] NOx	nance Expecto RGTB 20HF HFX4 8000	ations -2516F-D-20HF-HFX4	Overall Dimensions Catalyst Qty Required	24.7 12 p	5 x 15.44 x 3.7 er Unit
st Description and Perforn Catalyst Model Cell Pattern, Substrate Formulation Warranty Period [hrs]	nance Expecte RGTB 20HF HFX4 8000	Performance	Overall Dimensions Catalyst Qty Required	24.7 12 p	5 x 15.44 x 3.7 er Unit
st Description and Perform Catalyst Model Cell Pattern, Substrate Formulation Warranty Period [hrs] NOx CO	nance Expecte RGTB 20HF HFX4 8000	Performance	Overall Dimensions Catalyst Qty Required	24.7 12 p	5 x 15.44 x 3.7 er Unit

Please contact us if you have any questions or to let us know how we can be of further help.

Best regards,

inger Brian Weninger

Product and Application Engineer, Power Emission Group

Power Emission Group 311 Riggs Street, Bloomer, WI 54724 Tel: (715) 568-2882 • Fax: (715)568-2884 Email bweninger@catalyticcombustion.com

EMISSION TECHNOLOGIES

To XTO					Our Ref. 001-00-268588.00
Attn Ben					Date: 09 July, 2020
Via E-mail					Page: 2 of 2
			Catalyst Performance		
For :			Project/Location : Jayhav	wk	
Parameters					
Engine Manufacturer	Cate	rpillar			Raw Exhaust
Engine Model	G351	L6J	NOx	0.50	g/bhp-hr
Horsepower		1380 bhp	со	2.55	g/bhp-hr
Speed		1400 rpm	NMHC	1.52	g/bhp-hr
Exhaust Flowrate		8108 acfm	NMNEHC (VOC)	0.91	g/bhp-hr
Exhaust Temperature		837 ° F	НСНО	0.36	g/bhp-hr
Fuel st Description and Perforn		ral Gas	Oxygen	9.10	%
st Description and Perforn	nance Expect	ations			
st Description and Perforn Catalyst Model	n ance Expect RGTE	ations 3-2516F-D-20HF-HFX4	Overall Dimensions	24.7	5 x 15.44 x 3.7
st Description and Perforn Catalyst Model Cell Pattern, Substrate	n ance Expect RGTE 20HF	ations 3-2516F-D-20HF-HFX4 :	Overall Dimensions Catalyst Qty Required	24.7 3 pe	5 x 15.44 x 3.7 r Unit
st Description and Perforn Catalyst Model Cell Pattern, Substrate Formulation	nance Expect RGTE 20HF HFX4	ations 3-2516F-D-20HF-HFX4 :	Overall Dimensions	24.7 3 pe	5 x 15.44 x 3.7
st Description and Perforn Catalyst Model Cell Pattern, Substrate	n ance Expect RGTE 20HF	ations 3-2516F-D-20HF-HFX4 :	Overall Dimensions Catalyst Qty Required	24.7 3 pe	5 x 15.44 x 3.7 r Unit
st Description and Perforn Catalyst Model Cell Pattern, Substrate Formulation	nance Expect RGTE 20HF HFX4 1600	ations 3-2516F-D-20HF-HFX4 :	Overall Dimensions Catalyst Qty Required	24.7 3 pe	5 x 15.44 x 3.7 r Unit
st Description and Perforn Catalyst Model Cell Pattern, Substrate Formulation	nance Expect RGTE 20HF HFX4 1600	Pations 3-2516F-D-20HF-HFX4 :	Overall Dimensions Catalyst Qty Required	24.7 3 pe	5 x 15.44 x 3.7 r Unit
st Description and Perforn Catalyst Model Cell Pattern, Substrate Formulation Warranty Period [hrs]	nance Expect RGTE 20HF HFX4 1600	Pations 3-2516F-D-20HF-HFX4 :	Overall Dimensions Catalyst Qty Required	24.7 3 pe	5 x 15.44 x 3.7 r Unit
st Description and Perforn Catalyst Model Cell Pattern, Substrate Formulation Warranty Period [hrs] NOx	nance Expect RGTE 20HF HFX4 1600	Partions 3-2516F-D-20HF-HFX4 4 10 Performance	Overall Dimensions Catalyst Qty Required	24.7 3 pe	5 x 15.44 x 3.7 r Unit
st Description and Perform Catalyst Model Cell Pattern, Substrate Formulation Warranty Period [hrs] NOx CO	nance Expect RGTE 20HF HFX4 1600	Partions 3-2516F-D-20HF-HFX4 4 10 Performance	Overall Dimensions Catalyst Qty Required	24.7 3 pe	5 x 15.44 x 3.7 r Unit

Please contact us if you have any questions or to let us know how we can be of further help.

Best regards,

unger Brian Weninger

Product and Application Engineer, Power Emission Group

Table 1.4-1. EMISSION FACTORS FOR NITROGEN OXIDES (NOx) AND CARBON MONOXIDE (CO)FROM NATURAL GAS COMBUSTIONa

	NO _x ^b		(CO
Combustor Type (MMBtu/hr Heat Input) [SCC]	Emission Factor (lb/10 ⁶ scf)	Emission Factor Rating	Emission Factor (lb/10 ⁶ scf)	Emission Factor Rating
Large Wall-Fired Boilers (>100) [1-01-006-01, 1-02-006-01, 1-03-006-01]				
Uncontrolled (Pre-NSPS) ^c	280	А	84	В
Uncontrolled (Post-NSPS) ^c	190	А	84	В
Controlled - Low NO _x burners	140	А	84	В
Controlled - Flue gas recirculation	100	D	84	В
Small Boilers (<100) [1-01-006-02, 1-02-006-02, 1-03-006-02, 1-03-006-03]				
Uncontrolled	100	В	<mark>84</mark>	В
Controlled - Low NO _x burners	50	D	84	В
Controlled - Low NO _x burners/Flue gas recirculation	32	С	84	В
Tangential-Fired Boilers (All Sizes) [1-01-006-04]				
Uncontrolled	170	А	24	С
Controlled - Flue gas recirculation	76	D	98	D
Residential Furnaces (<0.3) [No SCC]				
Uncontrolled	94	В	40	В

^a Reference 11. Units are in pounds of pollutant per million standard cubic feet of natural gas fired. To convert from $lb/10^{6}$ scf to $kg/10^{6}$ m³, multiply by 16. Emission factors are based on an average natural gas higher heating value of 1,020 Btu/scf. To convert from $1b/10^{6}$ scf to lb/MMBtu, divide by 1,020. The emission factors in this table may be converted to other natural gas heating values by multiplying the given emission factor by the ratio of the specified heating value to this average heating value. SCC = Source Classification Code. ND = no data. NA = not applicable. ^b Expressed as NO₂. For large and small wall fired boilers with SNCR control, apply a 24 percent reduction to the appropriate NO x emission factor. For

^b Expressed as NO₂. For large and small wall fired boilers with SNCR control, apply a 24 percent reduction to the appropriate NO x emission factor. For tangential-fired boilers with SNCR control, apply a 13 percent reduction to the appropriate NO x emission factor.
 ^c NSPS=New Source Performance Standard as defined in 40 CFR 60 Subparts D and Db. Post-NSPS units are boilers with greater than 250 MMBtu/hr of

^c NSPS=New Source Performance Standard as defined in 40 CFR 60 Subparts D and Db. Post-NSPS units are boilers with greater than 250 MMBtu/hr of heat input that commenced construction modification, or reconstruction after August 17, 1971, and units with heat input capacities between 100 and 250 MMBtu/hr that commenced construction modification, or reconstruction after June 19, 1984.

1.4-5

Pollutant	Emission Factor (lb/10 ⁶ scf)	Emission Factor Rating
CO ₂ ^b	120,000	А
Lead	0.0005	D
N ₂ O (Uncontrolled)	2.2	Е
N ₂ O (Controlled-low-NO _X burner)	0.64	Е
PM (Total) ^c	7.6	D
PM (Condensable) ^c	5.7	D
PM (Filterable) ^c	1.9	В
SO_2^{d}	0.6	А
TOC	11	В
Methane	2.3	В
VOC	5.5	С

TABLE 1.4-2. EMISSION FACTORS FOR CRITERIA POLLUTANTS AND GREENHOUSE GASESFROM NATURAL GAS COMBUSTION^a

^a Reference 11. Units are in pounds of pollutant per million standard cubic feet of natural gas fired. Data are for all natural gas combustion sources. To convert from $lb/10^6$ scf to $kg/10^6$ m³, multiply by 16. To convert from $lb/10^6$ scf to 1b/MMBtu, divide by 1,020. The emission factors in this table may be converted to other natural gas heating values by multiplying the given emission factor by the ratio of the specified heating value to this average heating value. TOC = Total Organic Compounds. VOC = Volatile Organic Compounds.

- ^b Based on approximately 100% conversion of fuel carbon to CO_2 . $CO_2[lb/10^6 \text{ scf}] = (3.67)$ (CON) (C)(D), where CON = fractional conversion of fuel carbon to CO_2 , C = carbon content of fuel by weight (0.76), and D = density of fuel, $4.2 \times 10^4 \text{ lb}/10^6 \text{ scf}$.
- ^c All PM (total, condensible, and filterable) is assumed to be less than 1.0 micrometer in diameter. Therefore, the PM emission factors presented here may be used to estimate PM_{10} , $PM_{2.5}$ or PM_1 emissions. Total PM is the sum of the filterable PM and condensible PM. Condensible PM is the particulate matter collected using EPA Method 202 (or equivalent). Filterable PM is the particulate matter collected on, or prior to, the filter of an EPA Method 5 (or equivalent) sampling train.

^d Based on 100% conversion of fuel sulfur to SO_2 . Assumes sulfur content is natural gas of 2,000 grains/10⁶ scf. The SO_2 emission factor in this table can be converted to other natural gas sulfur contents by multiplying the SO_2 emission factor by the ratio of the site-specific sulfur content (grains/10⁶ scf) to 2,000 grains/10⁶ scf.

CAS No.	Pollutant	Emission Factor (lb/10 ⁶ scf)	Emission Factor Rating
91-57-6	2-Methylnaphthalene ^{b, c}	2.4E-05	D
56-49-5	3-Methylchloranthrene ^{b, c}	<1.8E-06	Е
	7,12-Dimethylbenz(a)anthracene ^{b,c}	<1.6E-05	Е
83-32-9	Acenaphthene ^{b,c}	<1.8E-06	Е
203-96-8	Acenaphthylene ^{b,c}	<1.8E-06	Е
120-12-7	Anthracene ^{b,c}	<2.4E-06	Е
56-55-3	Benz(a)anthracene ^{b,c}	<1.8E-06	Е
71-43-2	Benzene ^b	2.1E-03	В
50-32-8	Benzo(a)pyrene ^{b,c}	<1.2E-06	Е
205-99-2	Benzo(b)fluoranthene ^{b,c}	<1.8E-06	Е
191-24-2	Benzo(g,h,i)perylene ^{b,c}	<1.2E-06	Е
205-82-3	Benzo(k)fluoranthene ^{b,c}	<1.8E-06	Е
106-97-8	Butane	2.1E+00	Е
218-01-9	Chrysene ^{b,c}	<1.8E-06	Е
53-70-3	Dibenzo(a,h)anthracene ^{b,c}	<1.2E-06	Е
25321-22-6	Dichlorobenzene ^b	1.2E-03	Е
74-84-0	Ethane	3.1E+00	Е
206-44-0	Fluoranthene ^{b,c}	3.0E-06	Е
86-73-7	Fluorene ^{b,c}	2.8E-06	Е
50-00-0	Formaldehyde ^b	7.5E-02	В
110-54-3	Hexane ^b	1.8E+00	Е
193-39-5	Indeno(1,2,3-cd)pyrene ^{b,c}	<1.8E-06	Е
91-20-3	Naphthalene ^b	6.1E-04	Е
109-66-0	Pentane	2.6E+00	Е
85-01-8	Phenanathrene ^{b,c}	1.7E-05	D

TABLE 1.4-3. EMISSION FACTORS FOR SPECIATED ORGANIC COMPOUNDS FROM NATURAL GAS COMBUSTION^a

TABLE 1.4-3. EMISSION FACTORS FOR SPECIATED ORGANIC COMPOUNDS FROM NATURAL GAS COMBUSTION (Continued)

CAS No.	Pollutant	Emission Factor (lb/10 ⁶ scf)	Emission Factor Rating
74-98-6	Propane	1.6E+00	Е
129-00-0	Pyrene ^{b, c}	5.0E-06	Е
108-88-3	Toluene ^b	3.4E-03	С

^a Reference 11. Units are in pounds of pollutant per million standard cubic feet of natural gas fired. Data are for all natural gas combustion sources. To convert from lb/10⁶ scf to kg/10⁶ m³, multiply by 16. To convert from 1b/10⁶ scf to lb/MMBtu, divide by 1,020. Emission Factors preceeded with a less-than symbol are based on method detection limits.

^b Hazardous Air Pollutant (HAP) as defined by Section 112(b) of the Clean Air Act.

^c HAP because it is Polycyclic Organic Matter (POM). POM is a HAP as defined by Section 112(b) of the Clean Air Act.

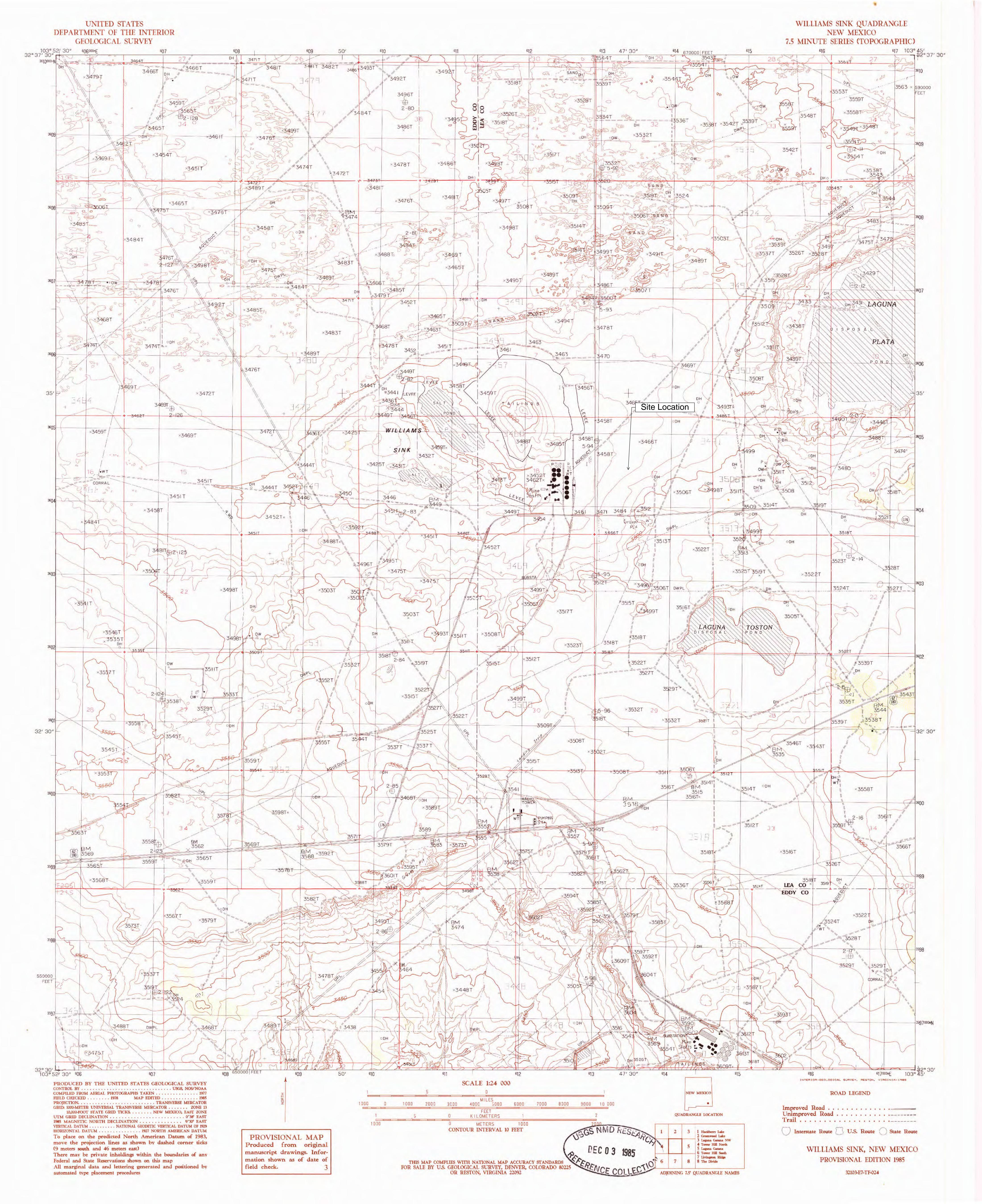
^d The sum of individual organic compounds may exceed the VOC and TOC emission factors due to differences in test methods and the availability of test data for each pollutant.

Pollutant	Emission Factor (lb/MMBtu) ^b (fuel input)	Emission Factor Rating
Criteria Pollutants and Greenhou	ise Gases	
NO _x ^c 90 - 105% Load	4.08 E+00	В
NO _x ^c <90% Load	8.47 E-01	В
CO ^c 90 - 105% Load	3.17 E-01	С
CO ^c <90% Load	5.57 E-01	В
$\mathrm{CO_2}^d$	1.10 E+02	А
SO ₂ ^e	5.88 E-04	А
TOC ^f	1.47 E+00	А
Methane ^g	1.25 E+00	С
VOC ^h	1.18 E-01	С
PM10 (filterable) ⁱ	7.71 E-05	D
PM2.5 (filterable) ⁱ	7.71 E-05	D
PM Condensable ^j	9.91 E-03	D
Trace Organic Compounds		
1,1,2,2-Tetrachloroethane ^k	<4.00 E-05	Е
1,1,2-Trichloroethane ^k	<3.18 E-05	Е
1,1-Dichloroethane	<2.36 E-05	Е
1,2,3-Trimethylbenzene	2.30 E-05	D
1,2,4-Trimethylbenzene	1.43 E-05	С
1,2-Dichloroethane	<2.36 E-05	Е
1,2-Dichloropropane	<2.69 E-05	Е
1,3,5-Trimethylbenzene	3.38 E-05	D
1,3-Butadiene ^k	2.67E-04	D
1,3-Dichloropropene ^k	<2.64 E-05	Е
2-Methylnaphthalene ^k	3.32 E-05	С
2,2,4-Trimethylpentane ^k	2.50 E-04	С
Acenaphthene ^k	1.25 E-06	С

Table 3.2-2. UNCONTROLLED EMISSION FACTORS FOR 4-STROKE LEAN-BURN ENGINESa(SCC 2-02-002-54)

Pollutant	Emission Factor (lb/MMBtu) ^b (fuel input)	Emission Factor Rating
Acenaphthylene ^k	5.53 E-06	С
Acetaldehyde ^{k,1}	8.36 E-03	А
Acrolein ^{k,1}	5.14 E-03	А
Benzene ^k	4.40 E-04	А
Benzo(b)fluoranthene ^k	1.66 E-07	D
Benzo(e)pyrene ^k	4.15 E-07	D
Benzo(g,h,i)perylene ^k	4.14 E-07	D
Biphenyl ^k	2.12 E-04	D
Butane	5.41 E-04	D
Butyr/Isobutyraldehyde	1.01 E-04	С
Carbon Tetrachloride ^k	<3.67 E-05	Е
Chlorobenzene ^k	<3.04 E-05	Е
Chloroethane	1.87 E-06	D
Chloroform ^k	<2.85 E-05	E
Chrysene ^k	6.93 E-07	С
Cyclopentane	2.27 E-04	С
Ethane	1.05 E-01	С
Ethylbenzene ^k	3.97 E-05	В
Ethylene Dibromide ^k	<4.43 E-05	Е
Fluoranthene ^k	1.11 E-06	С
Fluorene ^k	5.67 E-06	С
Formaldehyde ^{k,1}	5.28 E-02	А
Methanol ^k	2.50 E-03	В
Methylcyclohexane	1.23 E-03	С
Methylene Chloride ^k	2.00 E-05	С
n-Hexane ^k	1.11 E-03	С
n-Nonane	1.10 E-04	С

Table 3.2-2. UNCONTROLLED EMISSION FACTORS FOR 4-STROKE LEAN-BURN ENGINES (Continued)


Section 8

Map(s)

<u>A map</u> such as a 7.5 minute topographic quadrangle showing the exact location of the source. The map shall also include the following:

The UTM or Longitudinal coordinate system on both axes	An indicator showing which direction is north
A minimum radius around the plant of 0.8km (0.5 miles)	Access and haul roads
Topographic features of the area	Facility property boundaries
The name of the map	The area which will be restricted to public access
A graphical scale	

A site location map and aerial image illustrating the property boundary and surrounding access roads is provided.

Section 9

Proof of Public Notice

(for NSR applications submitting under 20.2.72 or 20.2.74 NMAC) (This proof is required by: 20.2.72.203.A.14 NMAC "Documentary Proof of applicant's public notice")

☑ I have read the AQB "Guidelines for Public Notification for Air Quality Permit Applications" This document provides detailed instructions about public notice requirements for various permitting actions. It also provides public notice examples and certification forms. Material mistakes in the public notice will require a re-notice before issuance of the permit.

Unless otherwise allowed elsewhere in this document, the following items document proof of the applicant's Public Notification. Please include this page in your proof of public notice submittal with checkmarks indicating which documents are being submitted with the application.

New Permit and Significant Permit Revision public notices must include all items in this list.

Technical Revision public notices require only items 1, 5, 9, and 10.

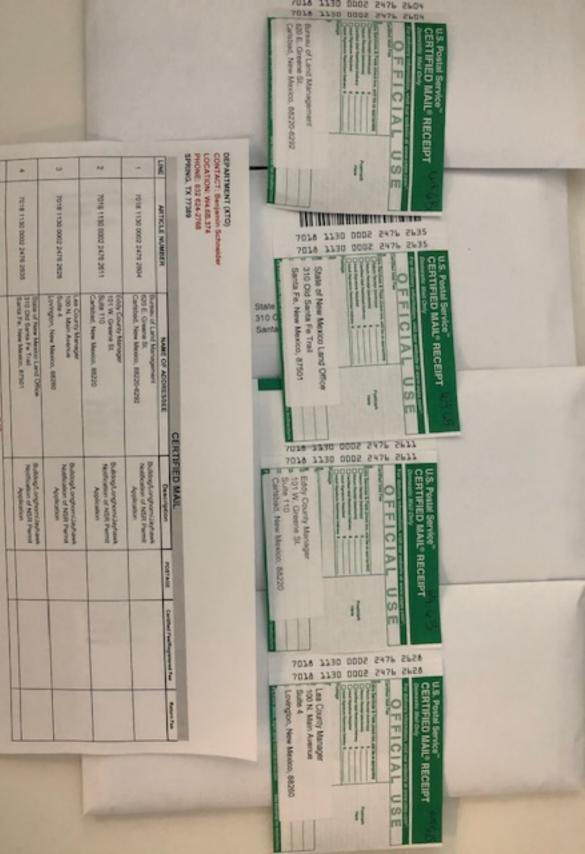
Per the Guidelines for Public Notification document mentioned above, include:

- 1. A copy of the certified letter receipts with post marks (20.2.72.203.B NMAC)
- 2. ☑ A list of the places where the public notice has been posted in at least four publicly accessible and conspicuous places, including the proposed or existing facility entrance. (e.g: post office, library, grocery, etc.)
- 3. \square A copy of the property tax record (20.2.72.203.B NMAC).
- 4. \square A sample of the letters sent to the owners of record.
- 5. I A sample of the letters sent to counties, municipalities, and Indian tribes.
- 6. \square A sample of the public notice posted and a verification of the local postings.
- 7. 🗹 A table of the noticed citizens, counties, municipalities and tribes and to whom the notices were sent in each group.
- 8. 🗹 A copy of the public service announcement (PSA) sent to a local radio station and documentary proof of submittal.
- 9. ☑ A copy of the <u>classified or legal</u> ad including the page header (date and newspaper title) or its affidavit of publication stating the ad date, and a copy of the ad. When appropriate, this ad shall be printed in both English and Spanish.
- 10. A copy of the <u>display</u> ad including the page header (date and newspaper title) or its affidavit of publication stating the ad date, and a copy of the ad. When appropriate, this ad shall be printed in both English and Spanish.
- 11. A map with a graphic scale showing the facility boundary and the surrounding area in which owners of record were notified by mail. This is necessary for verification that the correct facility boundary was used in determining distance for notifying land owners of record.

The public notice documents are included.

Tab 9 Section 9 - Proof of Public Notice Item 1.

Certified Mail Receipts with Postmarks


DEPARTMENT (XTO) CONTACT: Benjamin Schneider LOCATION: W4.6B.374 PHONE: 832 624-2768 SPRING, TX 77389

5

Mail	4	ω	N	-	LINE	
Center: Please have this	7018 1130 0002 2476 2635	7018 1130 0002 2476 2628	7018 1130 0002 2476 2611	7018 1130 0002 2476 2604 🗸	ARTICLE NUMBER	
Mail Center: Please have this form stamped by the Post Office	State of New Mexico Land Office 310 Old Santa Fe Trail Santa Fe, New Mexico, 87501	Lea County Manager 100 N. Main Avenue Suite 4 Lovington, New Mexico, 88260	Eddy County Manager 101 W. Greene St. Suite 110 Carlsbad, New Mexico, 88220	Bureau of Land Management 620 E. Greene St. Carlsbad, New Mexico, 88220-6292	NAME OF ADDRESSEE	CER
	Bulldog/Longhom/Jayhawk Notification of NSR Permit Application	Bulldog/Longhorn/Jayhawk Notification of NSR Permit Application	Bulldog/Longhorn/Jayhawk Notification of NSR Permit Application	Bulldog/Longhom/Jayhawk Notification of NSR Permit Application	Description	CERTIFIED MAIL
AUS 31 2020				6.65	POSTAGE	
18ELL NOILDIC				3.55	Certified Fee/Registered Fee	ALAN CONTRACTOR
				2.85	Return Fee	at the second second

Mail Center : Please have this form date stamped by the Post Office.

SdSy

Mail Center: Please have this form stamped by the Post Office

DEPARTMENT (XTO) CONTACT: Benjamin Schneider LOCATION: W4.6B.374 PHONE: 832 624-2768 SPRING, TX 77389

130 0002 2476 2642 Intrepid Potash New Mexico LLC Jayhawk 1001 17th st. Notification of NSR Permit Denver, CO 80202 Denver, CO 80202	LINE	ARTICLE NUMBER
	"	642
	V Denver, C	Denver, C

Mail Center: Please have this form stamped by the Post Office

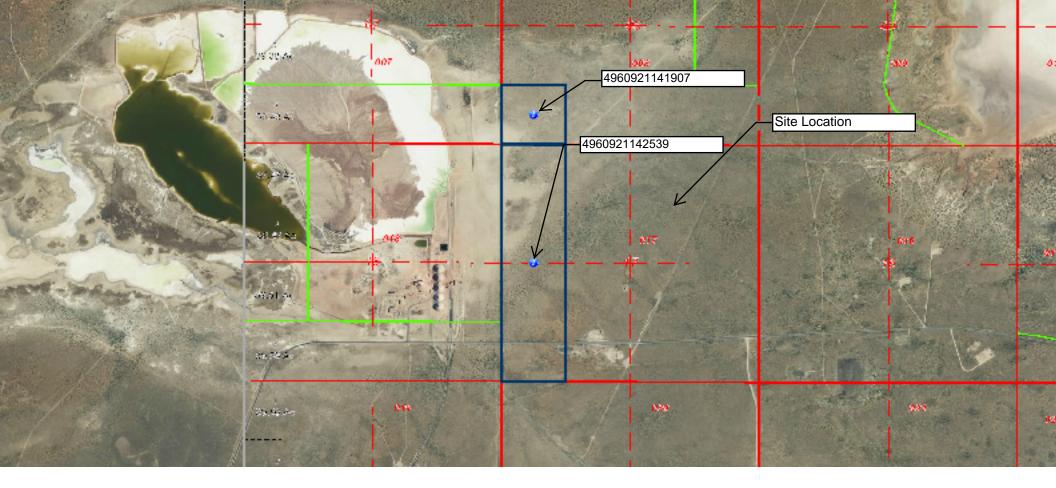
0

Mail Center : Please have this form date stamped by the Post Office.

Item 2.

List of Places Posted

Site Location


Carlsbad Post Office

Carlsbad Public Library

Hobbs Post Office

Item 3.

Property Tax Records

* The remaining properties are not detailed in the Lea County GIS system since they are owned by the State of NM or the Bureau of Land Management, which are not private entities.

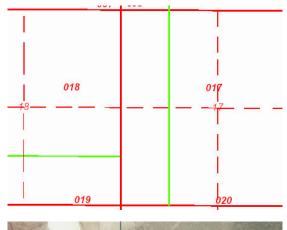
Lea County GIS INTERNET REPORT

Page 1 of 3

Assessment Information

 OWNER NUMBER:
 90109

 PARCEL NUMBER:
 4960921142539


UPC CODE: 4960921142539

Owner Information			
Owner:	INTREPID POTASH NEW MEXICO LLC		
Mailing Address:	1001 17TH STREET SUITE 1050 DENVER CO 80202		
Property Address:			

Subdivision Information		
Name:		
Unit:		
Block		
Lot:		

Legal	Information
-------	-------------

160 AC BEING THE W2NW4 & W2SW4

Lea County, New Mexico Disclaimer

Lea County GIS INTERNET REPORT

Page 2 of 3

Other Information			
Taxable Value:	\$4,367,636.00	Deed Book:	1900
Exempt Value:	\$0.00	Deed Page:	234
Net Value	\$4,367,636.00	District:	160
Livestock Value:	\$0.00	Section:	17
Manufactured Home Value:	\$0.00	Township:	20
Personal Property:	\$0.00	Range:	32
Land Value:	\$0.00	Date Filed:	
Improvement Value:	\$0.00	Most Current Tax:	\$120,123.08
Full Value:	\$13,102,908.00	Year Recorded:	

Square Foot and Year Built listed only to be used for comparative purposes, NOT to be used for commerce.

Lea County, New Mexico Disclaimer

Lea County, New Mexico Disclaimer

Information deeded reliable but not guaranteed. Copyright ©2012. MAP TO BE USED FOR TAX PURPOSES ONLY. NOT TO BE USED FOR CONVEYANCE.

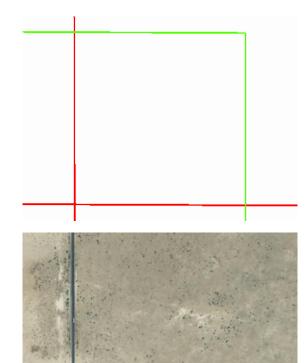
Lea County GIS INTERNET REPORT

Page 1 of 3

Assessment Information

OWNER NUMBER: 90109

UPC CODE: 4960921141907


PARCEL NUMBER: 4960921141907

Owner Information		
Owner:	INTREPID POTASH NEW MEXICO LLC	
Mailing Address:	1001 17TH STREET SUITE 1050 DENVER CO 80202	
Property Address:		

Subdivision Information		
Name:		
Unit:		
Block		
Lot:		

Legal Information

40 AC BEING SW4SW4

Lea County, New Mexico Disclaimer

Information deeded reliable but not guaranteed. Copyright ©2012. MAP TO BE USED FOR TAX PURPOSES ONLY. NOT TO BE USED FOR CONVEYANCE.

Lea County GIS INTERNET REPORT

Page 2 of 3

Other Information			
Taxable Value:	\$4,367,636.00	Deed Book:	1900
Exempt Value:	\$0.00	Deed Page:	234
Net Value	\$4,367,636.00	District:	160
Livestock Value:	\$0.00	Section:	8
Manufactured Home Value:	\$0.00	Township:	20
Personal Property:	\$0.00	Range:	32
Land Value:	\$0.00	Date Filed:	
Improvement Value:	\$0.00	Most Current Tax:	\$120,123.08
Full Value:	\$13,102,908.00	Year Recorded:	

Square Foot and Year Built listed only to be used for comparative purposes, NOT to be used for commerce.

Lea County, New Mexico Disclaimer

Lea County, New Mexico Disclaimer

Information deeded reliable but not guaranteed. Copyright ©2012. MAP TO BE USED FOR TAX PURPOSES ONLY. NOT TO BE USED FOR CONVEYANCE. Items 4 & 5.

Letters to Owners of Record and Applicable Counties, Municipalities, and Tribes

September 2, 2020

Certified Mail No. 7018 1130 0002 2476 2604

Bureau of Land Management 620 E. Greene St. Carlsbad, New Mexico, 88220-6292

RE: NSR Permit Application Jayhawk Compressor Station XTO Energy Inc.

Dear Federal Official,

In accordance with the application requirements of 20.2.72 NMAC, XTO Energy Inc. is providing notification of the planned modification of the Jayhawk Compressor Station on your property in Lea County, NM. A public notice will be published in the Hobbs News-Sun newspaper, at the proposed site location, two other locations in Carlsbad, NM and one location in Hobbs, NM. A copy of the notice is attached. Please contact me at (832) 624-2768 should you have any questions.

Sincerely,

Bon Schneider

Benjamin Schneider Environmental Engineer

Attachment: Public Notice

Certified Mail No. 7018 1130 0002 2476 2611

Eddy County Manager 101 W. Greene St. Suite 110 Carlsbad, New Mexico, 88220

RE: NSR Permit Application Jayhawk Compressor Station XTO Energy Inc.

Dear County Manager,

In accordance with the application requirements of 20.2.72 NMAC, XTO Energy Inc. is providing notification of the planned modification of the Jayhawk Compressor Station in Lea County, NM. A public notice will be published in the Hobbs News-Sun newspaper, at the proposed site location, two other locations in Carlsbad, NM and one location in Hobbs, NM. A copy of the notice is attached. Please contact me at (832) 624-2768 should you have any questions.

Sincerely,

Ben Schneider

Benjamin Schneider Environmental Engineer

Certified Mail No. 7018 1130 0002 2476 2628

Lea County Manager 100 N. Main Avenue Suite 4 Lovington, New Mexico, 88260

RE: NSR Permit Application Jayhawk Compressor Station XTO Energy Inc.

Dear County Manager,

In accordance with the application requirements of 20.2.72 NMAC, XTO Energy Inc. is providing notification of the planned modification of the Jayhawk Compressor Station in Lea County, NM. The proposed site is within 10 miles of Lea County. A public notice will be published in the Hobbs News-Sun newspaper, at the proposed site location, two other locations in Carlsbad, NM and one location in Hobbs, NM. A copy of the notice is attached. Please contact me at (832) 624-2768 should you have any questions.

Sincerely,

Ben Schneider

Benjamin Schneider Environmental Engineer

Certified Mail No. 7018 1130 0002 2476 2635

State of New Mexico Land Office 310 Old Santa Fe Trail Santa Fe, New Mexico, 87501

RE: NSR Permit Application Jayhawk Compressor Station XTO Energy Inc.

Dear Commissioner,

In accordance with the application requirements of 20.2.72 NMAC, XTO Energy Inc. is providing notification of the planned modification of the Jayhawk Compressor Station near your property in Lea County, NM. A public notice will be published in the Hobbs News-Sun newspaper, at the proposed site location, two other locations in Carlsbad, NM and one location in Hobbs, NM. A copy of the notice is attached. Please contact me at (832) 624-2768 should you have any questions.

Sincerely,

Bon Schneider

Benjamin Schneider Environmental Engineer

Certified Mail No. 7018 1130 0002 2476 2642

Intrepid Potash New Mexico LLC 1001 17th St. Suite 1050 Denver, CO 80202

RE: NSR Permit Application Jayhawk Compressor Station XTO Energy Inc.

Dear Commissioner,

In accordance with the application requirements of 20.2.72 NMAC, XTO Energy Inc. is providing notification of the planned modification of the Jayhawk Compressor Station within one-half ($\frac{1}{2}$) mile your property in Lea County, NM.. A public notice will be published in the Hobbs News-Sun newspaper, at the proposed site location, two other locations in Carlsbad, NM and one location in Hobbs, NM. A copy of the notice is attached. Please contact me at (832) 624-2768 should you have any questions.

Sincerely,

Ben Schneider

Benjamin Schneider Environmental Engineer

Item 6.

Sample of Notice posted and Verification of Postings

NOTICE OF AIR QUALITY PERMIT APPLICATION

XTO Energy, Inc. announces its application to the New Mexico Environment Department for an air quality permit for the modification of the Jayhawk Compressor Station. The expected date of application submittal to the Air Quality Bureau is September 4, 2020.

The exact location for the facility known as the Jayhawk Compressor Station will be latitude 32 deg, 34 min, 37.07 sec and longitude -103 deg, 47 min, 5.30 sec. The approximate location of this facility is 26 miles northeast of Carlsbad in Lea County.

The proposed modification consists removing two engines, updating engine emission rates, updating glycol recirculation rate, removing two heaters, and updating oil/water production rates.

The estimated maximum quantities of any regulated air contaminants will be as follows in pound per hour (pph) and tons per year (tpy). These reported emissions could change slightly during the course of the Department's review:

Pollutant:	Pounds per hour	Tons per year
Particulate Matter (PM)	27 pph	17 tpy
PM 10	27 pph	17 tpy
PM 2.5	27 pph	17 tpy
Sulfur Dioxide (SO ₂)	10 pph	20 tpy
Nitrogen Oxides (NO _x)	587 pph	206 tpy
Carbon Monoxide (CO)	1130 pph	228 tpy
Volatile Organic Compounds (VOC)	1113 pph	260 tpy
Total sum of all Hazardous Air Pollutants (HAPs)	35 pph	29 tpy
Toxic Air Pollutant (TAP)	35 pph	29 tpy
Green House Gas Emissions as Total CO2e	n/a	240,024 tpy

The standard and maximum operating schedule of the facility will be 24 hours per day, 7 days a week and a maximum of 52 weeks per year. The owner and/or operator of the Facility is: XTO Energy, Inc.; 22777 Springwoods Village Pkwy-W4.6B.347; Spring, Texas 77389.

If you have any comments about the construction or operation of this facility, and you want your comments to be made as part of the permit review process, you must submit your comments in writing to this address: Permit Programs Manager; New Mexico Environment Department; Air Quality Bureau; 525 Camino de los Marquez, Suite 1; Santa Fe, New Mexico; 87505-1816; (505) 476-4300; 1 800 224-7009; https://www.env.nm.gov/aqb/permit/aqb_draft_permits.html. Other comments and questions may be submitted verbally.

Please refer to the company name and site name, or send a copy of this notice along with your comments, since the Department may have not yet received the permit application. Please include a legible return mailing address with your comments. Once the Department has performed a preliminary review of the application and its air quality impacts, the Department's notice will be published in the legal section of a newspaper circulated near the facility location.

General information about air quality and the permitting process can be found at the Air Quality Bureau's web site. The regulation dealing with public participation in the permit review process is 20.2.72.206 NMAC. This regulation can be found in the "Permits" section of this web site.

Attención

Este es un aviso de la oficina de Calidad del Aire del Departamento del Medio Ambiente de Nuevo México, acerca de las emisiones producidas por un establecimiento en esta área. Si usted desea información en español, por favor comuníquese con esa oficina al teléfono 505-476-5557.

Notice of Non-Discrimination

NMED does not discriminate on the basis of race, color, national origin, disability, age or sex in the administration of its programs or activities, as required by applicable laws and regulations. NMED is responsible for coordination of compliance efforts and receipt of inquiries concerning non-discrimination requirements implemented by 40 C.F.R. Part 7, including Title VI of the Civil Rights Act of 1964, as amended; Section 504 of the Rehabilitation Act of 1973; the Age Discrimination Act of 1975, Title IX of the Education Amendments of 1972, and Section 13 of the Federal Water Pollution Control Act Amendments of 1972. If you have any questions about this notice or any of NMED's non-discrimination programs, policies or procedures, or if you believe that you have been discriminated against with respect to a NMED program or activity, you may contact: Kristine Yurdin, Non-Discrimination Coordinator, NMED, 1190 St. Francis Dr., Suite N4050, P.O. Box 5469, Santa Fe, NM 87502, (505) 827-2855, nd.coordinator@state.nm.us. You may also visit our website at https://www.env.nm.gov/non-employee-discrimination-complaint-page/ to learn how and where to file a complaint of discrimination.

General Posting of Notices - Certification

Bulldog Compressor Station Longhorn Compressor Station Jayhawk Compressor Station

I. Gary G. Goodgome, the undersigned, certify that on {DATE}, posted a true and correct copy of the attached Public Notice in the following publicly accessible and conspicuous places in the Carlsbad of Eddy County, State of New Mexico on the following dates:

All locations lited above:

- 1. Eacility entrance (DATE) Constant Post Office 8-27-20 2. (Location 2) (DATE) Constant Public Library 8-27-20 3. (Location 3) (DATE) Hobbs Past Office 8-28-20

- 4. {Location 4}{DATE}

Signed this 27 day of August, 2010.

Jay A. Roodyane

8-27-20

Printed Name C. Boodgame

Environmental & Daste Coordina tor Title (APPLICANT OR RELATIONSHIP TO APPLICANT)

General Posting of Notices - Certification

Bulldog Compressor Station Longhorn Compressor Station Javhawk Compressor Station

I, <u>Gary G. Coochama</u>, the undersigned, certify that on {DATE}, posted a true and correct copy of the attached Public Notice in the following publicly accessible and conspicuous places in the Carlsbad of Eddy County, State of New Mexico on the following dates:

- 1. Facility entrance {DATE} Bulldog CS off of 62/180 8.27-20 2. {Location 2}{DATE} Jayhow & CS off of 243 8-27-20 3. {Location 3}{DATE} Longhorn CS off of 128 8-27-20

- 4. {Location 4}{DATE}

Signed this 27 day of August, 2020,


Hoodyame

Signature

8-27-20

G. Goodgame

Environmental + Waste Coordinator

Item 7.

A table of the noticed citizens, counties, munipalities and tribes and to whom the notices were sent in each group.

Noticed Citizens, Counties, Municipalities, and Tribes

Eddy County: Eddy County Manager

Lea County: Lea County Manager

Bureau Of Land Management: Carlsbad Field Office (David Evans)

State of NM: Commissioner

Item 8.

A copy of the public service announcement (PSA) sent to a local radio station and documentary proof of submittal.

Activity Report

Date/Time	08-31-2020	02:53:47 p.m.	Transmit Header Text
Local ID 1	8326252631		Local Name 1

Completed Jobs : 1

No.	Job	Remote Station	Start Time	Duration	Pages	Line	Mode	Job Type	Results
001	450	VFD212M6N22	02:51:05 p.m. 08-31-2020	00:02:04	6/6	1	G3	HS	CP14400

Abbreviations: HS: Host send

HR: Host receive	
W5: Waiting send	

PL: Polled local PR: Polled remote MS: Mallbox save MP: Mallbox print RP: Report FF: Fax Forward CP: Completed FA: Fall TU: Terminated by user TS: Terminated by system G3: Group 3 EC: Error Correct Date/Time Local ID 1 08–31–2020 02:53:47 p.m. 8326252631 **Transmission Report**

Transmit Header Text Local Name 1

This document : Confirmed (reduced sample and details below) Document size : 8.5"x11"

August 31, 2020

KATK 92.1 FM (575) 887-7000

Rc: Public Service Announcement

As part of the sir quality permitting process in New Mexico, applicants for certain sir permits must attempt to provide notice to the public of the proposed permit action via public service announcement (PSA). The announcement is attached. Will you air the PSA?

Thank you.

Benjamin Schneider XTO Energy Inc. (832) 624-2768

Total Pages Scanned : 6

Total Pages Confirmed : 6

No.	Jop	Remote Station	Start Time	Duration	Pages	Line	Mode	Job Type	Results
001	450	VFD212M6N22	02:51:05 p.m. 08-31-2020	00:02:04	6/6	1	G3	HS	CP14400

Abbreviations: HS: Host send

HR: Host receive

WS: Waiting send

PL: Polled local PR: Polled remote MS: Mailbox save MP: Mailbox print RP: Report FF: Fax Forward CP: Completed FA: Fall TU: Terminated by user TS: Terminated by system G3: Group 3 EC: Error Correct August 31, 2020

KATK 92.1 FM (575) 887-7000

Re: Public Service Announcement

As part of the air quality permitting process in New Mexico, applicants for certain air permits must attempt to provide notice to the public of the proposed permit action via public service announcement (PSA). The announcement is attached. Will you air the PSA?

Thank you.

Benjamin Schneider XTO Energy Inc. (832) 624-2768

NOTICE OF AIR QUALITY PERMIT APPLICATION

XTO Energy, Inc. announces its application to the New Mexico Environment Department for an air quality permit for the modification of the Jayhawk Compressor Station. The expected date of application submittal to the Air Quality Bureau is September 4, 2020. XTO Energy Inc. is planning to remove engines, updating engine emission rates, removing heaters, and update oil/water production rate.

The exact location for the facility known as the Jayhawk Compressor Station will be latitude 32 deg, 34 min, 37.07 sec and longitude -103 deg, 47 min, 5.30 sec. The approximate location of this facility is 26 miles northeast of Carlsbad in Lea County.

The notice was posted at the facility and three other public locations: The Carlsbad post office, the Carlsbad public library, and the Hobbs post office. If you have any comments about the construction or operation of the above facility, and you want your comments to be made as part of the permit review process, you must submit your comments in writing to the address below:

Permit Programs Manager New Mexico Environment Department Air Quality Bureau 525 Camino de los Marquez, Suite 1 Santa Fe, New Mexico 87505-1816 (505) 476-4300 Item 9.

A copy of the classified or legal ad including the page header (date and newspaper title)

or its affidavit of publication stating the ad date, and a copy of the ad.

LEGAL

TUESDAY, SEPTEMBER 8, 2020

LEGAL

LEGAL NOTICE September 1, 8 and 15, 2020

LEGAL

STATE OF NEW MEXICO COUNTY OF LEA FIFTH STATE OF NEW MEXICO COUNTY OF LEA FIFTH JUDICIAL DISTRICT COURT No. D-506-CV-2019-01778 HIGH ROLLER LOGISTICS, LLC, Plaintiff, v. FRANCISCO HERNANDEZ a/k/a FRANKIE HERNANDEZ d/b/a F&F BLADE SERVICES, Defendant. NOTICE OF SUIT STATE OF NEW MEXICO to the above-named Defendant: GREETINGS: You are hereby notified that the above-named Plaintiff bas filed a civil action against above-named Plaintiff has filed a civil action against you in the above-entitled Court and cause, the general object thereof being a Complaint On A Contract And For Debt And Money Due. That unless you enter your appearance in said cause on or before thirty (30) days after the last date of publication, judgment by default will be entered against you. Name and address of Plaintiff's attorney: George H. Pigg, Attorney for Plaintiff 2626 Cole Ave., Ste. 650, Dallas, Texas 75204, (936) 590-7350 WITNESS the Hon. Lee A. Kirksey, District Judge of the Fifth Judicial District Court of the State of New Mexico, and the Seal of the District Court of Lea County, this 10/18/2019. Fifth Judicial District Court Clerk of the Court (COURT SEAL) By: /s/ C Hagerdoorn Deputy Clerk #35788

LEGAL NOTICE September 1 and 8, 2020

Publication of Notice of Lien Sale

In accordance with the New Mexico Self Storage Lien Act (48-11-1), Zia Stor-All, 4128 N. Grimes Street, Hobbs, NM 88240, will sell the contents of the following storage units, to satisfy a storage lien and related charges, the auction will be held online on www.lockerfox.com on September 17, 2020 at 1:30 p.m. The contents of the units will be sold to the highest offer in cash. Zia Stor-All may withdraw any unit from the sale prior to the time of the sale.

Lillian Gonzales Unit # 10137 1122 S. Jefferson Hobbs, NM 88240 Bags, duffel bag, totes, skateboard, Chuckie doll, misc. household goods

Ernest C Hodge, Jr. Unit # 10337 800 W. Cochiti Hobbs, NM 88240 Boxes, pew cushions, misc. household goods

Krisilda Martinez Unit # 10349 402 E. Palace Hobbs, NM 88240 Bags, boxes, clothing, chair cushion, foam, Christmas decorations, totes, pillows, toys, RC car, baby stroller, misc. household goods

Yvonne Tyree Unit # 10404 815 N. Selman Hobbs, NM 88240 Bags, crib mattresses, boxes, shelf, lockbox, crates, skateboard, toys, totes, misc. household goods

Shilo C Howell Unit # 10440 500 A. Chance Dr. Hobbs, NM 88240 Baskets, clothing, dresser, mirror, pictures, dishes, totes, clothes rack, purses, misc. household goods


Luis Duenas Unit # 10525 566 Cindy Ann Rd Frnt Grand Junction CO 81501 Bags, clothing, small refrigerator, luggage, weights, Keurig machine, dishes, hangers, papers, misc. household goods

Brianna Renee Howard Unit # 20840 1601 San Andres Hobbs, NM 88240 Baskets, boxes, chairs, dresser, trash can, toys, baby swing, carrier/car seat, baby bouncer, misc. household goods

Melissa Mata Unit # 10670 100 W. Skelly Hobbs, NM 88240 Baby crib, baby car seat, baby carrier, toy, stand, misc. household goods

Richard Johnson Unit # 20947 5008 W. Big Red Road Hobbs, NM 88240 Bags, baskets, bed box spring, bed mattress, boxes, clothing, dresser, lamp, self, duffel bag, wall art, chest w/o drawers, suitcases, totes, tubs, misc. household goods

Douglas Charles Raymond Unit # 38025 1110 W. Dogwood Denver City, TX 79323 Baby swing, scuba tanks, exercise equipment, weights, misc. household goods #35768

LEGAL NOTICE August 18, 25 September 1 and 8, 2020

LEGAL

STATE OF NEW MEXICO COUNTY OF LEA FIFTH JUDICIAL DISTRICT COURT

No. D-506-CV-2018-00259

LEGAL

U.S. BANK, N.A. AS TRUSTEE FOR MANUFACTURED HOUSING CONTRACT SENIOR/SUBORDINATE PASS-THROUGH CERTIFICATE 2001-3, AS SERVICER WITH DELEGATED AUTHORITY UNDER THE TRANSACTION DOCUMENTS.

Plaintiff.

VS.

BARRY K. STEPHENS SR., REENE STEPHENS, AND GARTA L. JIMENEZ,

Defendants.

NOTICE OF SALE

NOTICE IS HEREBY GIVEN that on September 25, 2020, at the hour of 10:00 AM, the undersigned Special Master, or his designee, will, at the front entrance of the Lea County Courthouse, at 100 North Main, Lovington, NM 88260, sell all of the rights, title, and interests of the above-named Defendant(s), in and to the hereinatter described real property to the highest bidder for cash. The property to be sold is located at 1714 Katy Ln., Hobbs, New Mexico 88242, and is more particularly described as follows:

Lot Ten (10), Second Unit of the Douglas Acres Subdivision to Lea County. New Mexico.

including a 2001 Town & Country, Vehicle Identification No. TC01TX015842AB, (hereinafter the "Property"). If there is a conflict between the legal description

and the street address, the legal description shall control. The foregoing sale will be made to satisfy a foreclosure judgment rendered by this Court in the above-entitled and numbered cause on July 27, 2020, being an action to foreclose a mortgage on the Property. Plaintiff's judgment is in the amount of \$83,071.67, and the same bears interest at the rate of 10.5000% per amount of \$83,071.67, and the same bears interest at the fate of 10.5000% per annum, accruing at the rate of \$23.90 per diem. The Court reserves entry of final judgment against Defendant(s), Barry K. Stephens Sr. and Reene Stephens, for the amount due after foreclosure sale, including interest, costs, and fees as may be assessed by the Court. Plaintiff has the right to bid at the foregoing sale in an amount equal to its judgment, and to submit its bid either verbally or in writing. Plaintiff may apply all or any part of its judgment to the purchase price in lieu of cash

In accordance with the Court's decree, the proceeds of sale are to be applied first to the costs of sale, including the Special Master's fees, and then to satisfy the above-described judgment, including interest, with any remaining balance to be paid unto the registry of the Court in order to satisfy any future adjudication of priority lienholders.

NOTICE IS FURTHER GIVEN that in the event that the Property is not sooner redeemed, the undersigned Special Master will, as set forth above, offer for sale and sell the Property to the highest bidder for cash or equivalent, for the purpose of satisfying, in the adjudged order of priorities, the judgment and decree of foreclosure described herein, together with any additional costs and attorney's fees, including the costs of advertisement and publication for the foregoing sale, and, reasonable receiver and Special Master's fees in an amount to be fixed by the Court. The amount of the judgment due is \$83,071.67, plus interest to and including date of sale in the amount of \$5,042.90, for a total judgment of \$88,114.57.

The foregoing sale may be postponed and rescheduled at the discretion of the Special Master, and is subject to all taxes, utility liens and other restrictions and easements of record, and subject to a one (1) month right of redemption held by the Defendant(s) upon entry of an order approving **sale**, and subject to the entry of an order of the Court approving the terms and conditions of sale.

Witness my hand this 13th day of August, 2020.

/s/ David Washburn DAVID WASHBURN, Special Master 8100 Wyoming Blvd NE Suite M-4, Box 272 Albuquerque, NM 87113 Telephone: (505) 318-0300 E-mail: sales@nsi.legal

#35742

LEGAL NOTICE September 8, 2020

NOTICE OF AIR QUALITY PERMIT APPLICATION

#35782 UMBLI THAT SCRAMBLED WORD GAME 12 By David L. Hoyt and Jeff Knure Unscramble these Jumbles, one letter to each square, to form four ordinary words. Fido's Famous Bone Bites @Play.lumble We have a winner! Who's a good boy? Scout is! DUNEP us on Twitter NOONI Follow I NY AF app JUMBLE BHPAUC JUST THE WINNER OF THE DOG BONE EATING TDOMEH Sat the CONTEST WAS THE Now arrange the circled letters to form the surprise answer, as suggested by the above cartoon. 020 Tribune Content Agency, LLC All Rights Reserved. Print your answer here: (Answers tomorrow) Yesterday's Jumbles: ROVER Answer: The com INCOME AHEAD HECTIC The company was growing quickly, so the number of employees needed to go — "HIRE" AND "HIRE"

Tim Williams 1637 N. Penasco Hobbs, NM 88240 Unit: #AA38 Size: 10 X 20 Tim Williams

PO Box 246 Jal, NM 88252 Unit #D26 Size 10 X 10 Twin mattresses, bags, totes, table, heater Chancey Heavington 1101 W Christopher Lane # 57 Hobbs, NM 88240 Unit #E7 Size 10 X 10 Couch, table, speaker

Marvlin Warrick 4512 W Illinois Hobbs NM, 88242 Unit: #AA94 Size: 10 X 15 Speaker, boxes, bags with clothes, rugs, dresser, lamp, walker, chairs,

Tires, boxes, bags with clothes, rugs, dresser, lamp, walker, chairs

LEGAL

REASON.

Matthew Brown

Julie Spencer

TUESDAY

1637 N. Penasco Hobbs, NM 88240 Unit: #AA62 Size: 5 X 10 Tools, boxes, totes, clothes, lamp

2204 N Thomas Hobbs, NM 88240 Unit #C27 Size 10 X 15 Boxes, bags, mattress, rugs, foot board, chairs

LEGAL

LEGAL NOTICE September 1 and 8, 2020

NOTICE IS HERBY GIVEN PURSUANT TO THE NEW MEXICO SELF STORAGE LIEN ACT THAT THE FOLLOWING UNITS WILL BE AUCTIONED OR OTHERWISE DISPOSED OF IN ORDER TO SATISFY LIENS CLAIMED FOR DELINQUENT RENT AND OTHER RELATED CHARGES. BIDING AND VIEWING OF AUCTIONED OR DISPOSITION ITEMS WILL BE ONLINE AT

WWW.STORAGETREASURES.COM UNTIL 9 A.M., September 18th, 2020. ALL WINNING BIDS MUST BE PAID BY 5 P.M., September 21st, 2020 AT EAGLE SELF STORAGE 620 E. Navajo Dr., Hobbs, NM 88240. EAGLE SELF STORAGE RESERVES THE RIGHT TO REFUSE ANY BID FOR ANY

LEGAL

Melissa Ochoa 1122 E Broadway Ave Hobbs, NM 88240 Unit #D1 Size 10 X 20

Bed sets, boxes, dressers, strollers, microwave, night stands Terrance Petties PO Box 452 Eunice, NM 88231 unit #G5 Size 10 X 10

golf clubs, mattress, fake tree, totes, boxes, suitcase

XTO Energy, Inc. announces its application to the New Mexico Environment Department for an air quality permit for the modification of the Jayhawk Compressor Station. The expected date of application submittal to the Air Quality Bureau is September 4, 2020.

The exact location for the facility known as the Jayhawk Compressor Station will be latitude 32 deg, 34 min, 37.07 sec and longitude -103 deg, 47 min, 5.30 sec. The approximate location of this facility is 26 miles northeast of Carlsbad in Lea

The proposed modification consists removing two engines, updating engine emission rates, updating glycol recirculation rate, removing two heaters, and updating oil/water production rates.

The estimated maximum quantities of any regulated air contaminants will be as follows in pound per hour (pph) and tons per year (tpy). These reported emissions could change slightly during the course of the Department's review:

Pollutant: Particulate Matter (PM) PM 10 PM 2.5 Sulfur Dioxide (SO2) Nitrogen Oxides (NOx) Carbon Monoxide (CO) Volatile Organic Compounds (VOC) Total sum of all Hazardous Air Pollutants (HAPs) Toxic Air Pollutant (TAP) Caroon House Case Emicines as Total C	Pounds per hour 27 pph 27 pph 27 pph 10 pph 587 pph 1130 pph 1113 pph 35 pph 35 pph	Tons per year 17 tpy 17 tpy 17 tpy 20 tpy 206 tpy 228 tpy 260 tpy 29 tpy 29 tpy 29 tpy 29 tpy 29 tpy
Green House Gas Emissions asTotal C		240,024 tpy

The standard and maximum operating schedule of the facility will be 24 hours per day, 7 days a week and a maximum of 52 weeks per year. The owner and/or operator of the Facility is: XTO Energy, Inc.; 22777 Springwoods Village Pkwy-W4.6B.347; Spring, Texas 77389.

If you have any comments about the construction or operation of this facility, and you want your comments to be made as part of the permit review process, you must submit your comments in writing to this address: Permit Programs Manager; New Mexico Environment Department; Air Quality Bureau; 525 Camino de los Marquez, Suite 1; Santa Fe, New Mexico; 87505-1816; (505) 4 7 6 - 4 3 0 0 ; 1 8 0 0 2 2 4 - 7 0 0 9 ; https://www.env.nm.gov/aqb/permit/aqb_draft_permits.html. Other comments and questions may be submitted verbally.

Please refer to the company name and site name, or send a copy of this notice along with your comments, since the Department may have not yet received the permit application. Please include a legible return mailing address with your comments. Once the Department has performed a preliminary review of the application and its air quality impacts, the Department's notice will be published in the legal section of a newspaper circulated near the facility location.

General information about air quality and the permitting process can be found at the Air Quality Bureau's web site. The regulation dealing with public participation in the permit review process is 20.2.72.206 NMAC. This regulation can be found in the "Permits" section of this web site.

Attención

Este es un aviso de la oficina de Calidad del Aire del Departamento del Medio Ambiente de Nuevo México, acerca de las emisiones producidas por un establecimiento en esta área. Si usted desea información en español, por favor comuníquese con esa oficina al teléfono 505-476-5557.

Notice of Non-Discrimination

NMED does not discriminate on the basis of race, color, national origin, disability, age or sex in the administration of its programs or activities, as required by applicable laws and regulations. NMED is responsible for coordination of compliance efforts and receipt of inquiries concerning non-discrimination requirements implemented by 40 C.F.R. Part 7, including Title VI of the Civil Rights Act of 1964, as amended; Section 504 of the Rehabilitation Act of 1973; the Age Discrimination Act of 1975, Title IX of the Education Amendments of 1972, and Section 13 of the Federal Water Pollution Control Act Amendments of 1972. If you have any questions about this notice or any of NMED's non-discrimination programs, policies or procedures, or if you believe that you have been discrimination programs, policies of procedures, of it you believe that you have been discriminated against with respect to a NMED program or activity, you may contact: Kristine Yurdin, Non-Discrimination Coordinator, NMED, 1190 St. Francis Dr., Suite N4050, P.O. Box 5469, Santa Fe, NM 87502, (505) 827-2855, nd.coordinator@state.nm.us. You may also visit our website at https://www.env.nm.gov/non-employee-discrimination-complaint-page/ to learn how and where to file a complaint of discrimination. #35802

			SEP. 8
A. 9:30		10:30	11 P.M.
Id Creative Li Sheryl Bor	iving/ rden demic. (N) (S) (Amanpour and Company (N)
	leroes Carol Burnett		erry investigates a
(CC) ws at (9:35) The	and Friends Late Show With Ste-	plane crash. (cc)	te Late Show With
phen Colb		James Corden	
íntimo El Cóndor y P			Titulares y más
Ferrer. (N) (cc) IId You Do? (N) (S)	Mexico) (cc) Action 7 News	mundo con vs (10:35) Jimmy	(N) (S) (cc) (11:06) Nightlin
	Live at 10 (N)	Kimmel Live!	(N) (cc)
nsplant Bash joins th norial. (N) (S)	the staff Eyewitness News 4 at 10		night Show Star-
	Tonight Show Starri		ght With Seth Mey
Jimmy Fall		ers (S) (cc)	
Wanted (S) (cc)	KRQE News 1 at 10 (N) (cc)	phen Colbert (S	te Show With Ste- S) (cc)
on News 13 o	n Funny You	News 13 on	(11:05) Pawn
pm KASY	Should Ask (S	. / .	Stars (cc) NYPD Blue "It
mission. (cc)	embarks Star Trek: Ent the Enterprise. (Takes a Village"
Seinfeld	Seinfeld	Conan (CC)	Imp. Jokers
cc) Mom (S) (co	cc) Two and a Ha Men (S) (cc)	alf Two and a Half Men (S) (cc)	f Seinfeld "The Cadillac" (cc)
lon Life Today		atch Issues & An-	Wretched With
James Rok		swers	Todd Friel
ase Field in Phoenix.	(N) (Live) (CC)	Diamondbacks Post Game	 Diamondbacks Post Game
er, Sienna Miller, Jake	e McDorman. Navy SEAL		Cannonball "Ca
			nonballed"
erica's Book of Se lerground of America's	ecrets: Special Editio 's wealthiest. (S) (cc)	on the Power of Mon-	 America's Bool of Secrets
tered "OutValentined	d" Counting On		Counting On (S
ly) Adam Sandler, Kev n. (S) 'PG-13' (cc)	vin James, Chris Rock. L	Lenny Feder and his fan	n- Dumb & Dumb *** 'NR'
nter (N) (Live) (cc)	SportsCenter	r (N) (Live) (cc)	SportsCenter
s. From IMG Academy			NFL Live (CC)
ght with Don Lemo	on Anderson Co	2000r 260 (cc)	Prime Time
	Lives of Ozzy Osbou		
S) (cc)		-	Want My MTV
e Swap Couple dress s. (S) (cc)	s as (10:01) Super Christina is rese	rnanny "Bailey Family' entful of Katie	" (11:01) Super- nanny (S) (cc)
Catch Sad news ratt	tles the I Quit The work	k to expand their busi-	Alaskan Bush
rie. (N) (cc)	nesses. (N) (S)		People (CC)
ler, Andy Samberg. (S	ner Vacation ** (2018 S) 'PG' (cc)	o, children s) voices of	f Hotel Transylva nia 3
Arnold Schwarzenegç	ger, Jamie Lee Curtis, To	om Arnold. A man lives	the double life of a
Hour	The Bachel M	Maddow Show	The Last Word
	ueens King of Queen		
	niere. Robert Langdon mu		
ise House Hur	nters Good Bones	(cc) ma (S) (cc)	ma (S) (cc) (11:01) House
c) Internation		(00)	Hunters (CC)
at Night		on Tonight (cc)	Hannity (cc)
Show (9:45) Sout Park (cc)	th (10:15) South Park (CC)	h (10:45) South Park (cc)	The Daily Show
ay Night SmackDo			TMZ Sports (N)
P.D. (S) (cc) (DVS)	Chicago P.D.	(S) (cc) (DVS)	(S) (CC) Chicago P.D.
"Basket Buzz" Chewy		ket includes a sauce an	
heese entrees.	a sandwich. (cc)	, ,	Sweets (cc)
en The Golder Girls (S) (co		The Golden Girls (S) (cc)	Frasier "Sliding Frasiers" (cc)
Below Zero (CC)	Life Below Ze	() ()	Life Below Zero
(CC)		now Cleveland Shore	(/ (/
"Coopersburg Sports ct to Inside the	s" The Profit "Sta NBA (N) (S Live) (cc)		The Profit II Conference Semifi-
uto inside the	NDA (IV) (3 LIVE) (CC)	nal: Teams TBA. (
reach Women of	Daily Mass		Mother
Your leeds urs.	Hobbs	s, New M	exico
le	eds	eds Hobbs	eds HODDS, NEW M

Item 10.

A copy of the display ad including the page header (date and newspaper title) or its affidavit of publication stating the ad date, and a copy of the ad.

Sheriff's reports

Lea County Sheriff's Office activity for 09-05-20

80 calls for service. One accident: with injury W.

Hwy. 128 and Battle Axe Rd., Jal. Four criminal incidents: cus-

tody zero block Mohawk St., Hobbs; attempt to locate S. Commercial St. and E. Ave. D, Lovington; trouble with subject 7900 block S. Stone Rd., Monument; suspicious 100 block W. Broom Dr., Hobbs.

County Sheriff's Lea Office activity for 09-06-20

56 calls for service.

- One accident: no injury Hwy. 18 and Teague Switch Rd., Eunice.
- Two criminal incidents: reckless 800 block W. Ponderosa Dr., Hobbs; unattend death 300 block W. Frey Ave., Hobbs.

Fire reports

Hobbs Fire Department activity for 09-05-20

28 calls for service. Three fire incidents: smell of smoke 300 block W. Castle Ave., structure fire 1400 block S. Grimes St., fire 200 block N. Elm St.

Two non-emergency transports.

23 ambulance runs.

Hobbs Fire Department activity for 08-06-20

21 calls for service. No fire incidents. Two non-emergency transports. 19 ambulance runs.

Lovington Fire activity for 09-05-20

Six calls for service. Two fire incidents: grass fire E. Washington Ave. and N. English St., structure fire 800 block Tatum Hwy. Four ambulance runs.

Lovington Fire activity for 09-06-20

One call for service. One ambulance run.

Lea County Environmental activity for 09-05-20 One call for service.

One animal controls call.

FOR THE RECORD

Police reports

Hobbs Police Department activity for 09-05-20 221 calls for service.

One accident: no injury 2800 block N. Dal Paso St.

37 criminal incidents: subject on bike 200 block N. Marland Blvd., close patrol 200 block W. Marland Blvd., auto burglary 2200 block N. Adobe Dr., criminal trespass 2000 block E. Clinton St., auto burglary 200 block W. Silver Ave., unwanted subject 700 block N. Linam St., auto burglary 2700 block N. Gold Ct., auto burglary 400 block W. Coal Ave., auto burglary 2800 block N. Vista Dr., auto burglary 2800 block N. Vista Dr., auto burglary 700 block W. Coal Ave., 700 block W. Coal Ave., auto burglary 2700 block N. Jade Ave., auto burglary 600 block W. Iron Ave., auto burglary 600 block W. Iron Ave., auto burglary 500 block W. St. Anne Pl., auto burglary 2500 block N. Cielo Dr., auto burglary 2600 block N. Jade Ave., auto burglary 500 block W. Cielo Dr., 600 block W. Cielo Dr., auto burglary 400 block W. Cielo Dr., auto burglary 300 block W. Gold Ave., auto burglary 2100 block N. Kingsley Dr., auto burglary 2200 block N. Acoma Dr., auto burglary 2200 block N. Cielo Dr., auto burglary 2200 block N. Acoma Dr., auto burglary 500 block E. Jemez Rd., warrant service N. Marland Blvd. and N. Clinton St., warrant service 600 block S. Eighth St., 911 1200 block E. Main St., attempt to locate 100 block S. Eastern Ave., gas skip 600 block W. Marland Blvd., investigative S. Eastern Ave. and E. Dunnam St., auto burglary 2000 block N. Dal Paso St., criminal trespass 2000 block E. Clinton St., walk through 2000 block E. Clinton St., warrant service 2000 block E. Clinton St.

Hobbs Police Department activity for 09-06-20

187 calls for service.

Three accidents: no injury 300 block N. Bond St., no injury 400 block E. Dunnam St., with injury E. Byers St. and S. Jefferson St.

17 criminal incidents: unknown 3400 block N. Dal Paso St., criminal trespass 100 E. Marland Blvd., criminal damage 1200 block E. Scharbauer St., fight 200 block W. Scharbauer St., threats 2900 block N. Mckinley Dr., shots fired E. Glorietta Dr. and N. Mckinley Dr., warrant service S. Cochran St. and W. Castle Ave., warrant service 300 block N. Dalmont St., warrant service E. Marland Blvd. and S. Dalmont St., battery 900 block S. Leech St., breaking and entering 1400 block E. Navajo Dr., warrant service 500 block E. Albertson Cir., unwanted subject 100 block N. Turner St., warrant service 300 block N. Turner St., domestic 100 block E. Corbett St., stolen vehicle 300 block N. Turner St., battery 1600 block E. Main St.

Lovington Police Department activity for 09-04-20 through 09-07-20

157 calls for service.

Two accidents: no injury 800 block W. Jefferson, no injury 9th St. and Ave. D.

11 criminal incidents: interference with child custody 200 block S. Love St., throwing or shooting stones arrows missles zero block W. Mesquite Ave., criminal damage to property zero block W. Ave. E, ambulance 500 block N. Chavez St., unwanted subject 1100 block W. Polk Ave., resisting evading obstructing an officer 500 block E. Gum St., lost or stolen 200 block S. Love St., suspicious 1600 block S. Main St., tampering 500 block N. East St., larceny 800 block W. Birch Ave., trouble with subject 200 block S. Love St.

Correction policy

The News-Sun is committed to accuracy in its news reports. Although numerous safeguards are in place to ensure accurate reporting, mistakes may occur. Confirmed factual errors will be corrected in this space daily. If you find

Court

from PAGE 1

possibly be delayed but looks forward to when the building is completed.

"I know it would be nice for Lea County to have one of the nicer courts in the state," Finger said. "I think some of the discussions indicate we are going to end up with a really great facility. That's going to be great for the community."

He added with COVID-19 social distancing is difficult because of the large caseload in the Magistrate Court and a new court building could help accommodate that.

"Quite frankly we have outgrown this facility and it is an older building so it is going to make things a lot easier for the community and the people coming to court as well," Finger said.

Mayor David Trujillo said it is disappointing the project has had a set back with the architect because construction gives encouragement to the community and shows Lovington is moving forward.

"In the current situation, that we're in, I would like to see construction going on," Trujillo said. "I wish that would have happened because right now it would

be nice be driving down Main seeing the Avenue D construction of the sidewalks, plus all the new businesses that are moved in, and then seeing the Magistrate Court being done. A lot of positive atmosphere."

The State currently leases the current Magistrate Court Building on Central and 1st Street. The new complex will be located on Main Street and Avenue A, across the street from the Lovington Public Library.

Trujillo said the building will bring more activity to the downtown area. Although there are vacant buildings downtown, there have been people starting to move in. He hopes the magistrate building will bring even more businesses to the downtown area.

The city has financed it through a New Mexico Finance Authority approved loan, and the rehiring of an architect will not cost the city anymore due to the state's termination of the contract.

"Based on the needs of the AOC, it was determined that they would like to construct a new, up to date facility that would meet their needs now

and in the future," Williams said. The state will sign a

30-year lease agreement to the city for the updated facility and that will cover the cost of financing the facility, according to Williams. The lease agreement is also going to provide the funding for equipment, building repair, utilities, and janitorial services.

"Debt service payments will not begin until construction is complete and the facility is occupied," Williams said. "The payments for the debt service will be paid for by ...the State to the City as the monthly rent."

Trujillo said three buildings will be torn down to accommodate the magistrate building. He thinks the new building will add to the "vibe" of Main Street and downtown.

"It's going to bring a lot of beauty to the downtown area," Trujillo said. "Long term I think it is going to help rejuvenate the downtown area, to bring more business to the downtown area."

Christina Rankin may be reached at courts@ hobbsnews.com.

The Southwest Symphony is delaying its season until next year due to COVID-19 restrictions.

Symphony from PAGE 1

Lea County.

email at director@swsym-

seven concerts that includes classical, semi-classical, and non music performed by the Southwest Symphony Orchestra. Additionally, the Symphony acts as a presenter to bring performers that includes a variety of music and dance genres.

cial now than ever to contin- executive eirector Deb Walk- season Southwest Symphoue musical performances in er at (575) 738-1041 or via ny traditionally presents

Southwest Symphony was

"Southwest Symphony is phony.org. revamping their website and finding new ways to engage founded in 1983. From its the community and cultivate new arts enthusiasts," Anderson said.

a mistake, call 391-5435.

Shooting

Davis told her "this is your fault," before running out of the room.

The victim was shot in the right ear and right shoulder, according to the report. After being transported to Lea Regional Hospital, Seward was airlifted to Covenant Medical Center in Lubbock.

As officers taped off the u-shaped parking lot and questioned witnesses. The Chrysler was spotted in the parking lot of a hardware store on the 1800 block of N. Turner St.

"The vehicle began moving as officers approached the area with lights and sirens,' the report states.

Davis allegedly refused to stop and hit the police car, damaging the rear fender and pushing the vehicle out of the way, while an officer tried to block off a portion of Turner Street, the report said.

Davis then led officers on the high-speed chase.

Officers began chasing Davis south on Turner where he made his way to Sanger Street and turned west.

"The vehicle (Davis) continued west on Sanger at a high rate of speed passing other vehicles using the center turn lane and failing to stop at red lights," the report

states. "The Chrysler lost control at Sanger and Denson and crashed into a school zone flashing light pole.'

Officers reported Davis exited the vehicle with his hands up and was arrested and taken to Hobbs City Jail. Officers found a black and silver Ruger SR40 on the passenger floorboard of the Chrysler.

The report stated Davis has two prior felony convictions.

In 2018, Davis took a plea for charges of unlawful taking of a motor vehicle and aggravated fleeing. Later the same year he took a plea on charges for possession of a controlled substance, according to court documents.

Davis was issued no bond by Judge Willie Henry in Magistrate Court on Friday. That same day the Fifth Judicial District Attorney's Office filed for pretrial detention to keep Davis behind bars while he is tried for the crime.

"The defendant poses a significant danger to the community. ... The defendant is a flight risk." the motion for pretrial detention states.

Christina Rankin may be reached at courts@hobbsnews.com.

Raffle

from PAGE 1

Auto Group.

Clampitt said planning for this year's raffle didn't start out with the idea of holding a virtual raffle. In the past, the event was held at the Lea County Event Center with a banquet.

"We knew we couldn't do at the Event Center, even in the parking lot," Clampitt said about discussions he and the club board had. "We talked about moving it to October, but that didn't seem like it would work so well. We would have to make people stay in their cars and how would we get them the food?'

One activity that is sticking around is the silent auction, which Clampitt said also will be performed online and starts Sept. 24.

Going into its 37th year, the club's raffle is one of two major annual fundraisers that

Encore SUV, all courtesy of the Permian has raised as much as \$100,000 annually, in recent years.

> "We have a generous community," Clampitt said. "That's about the best way to put it. There are so many people in this community who care about these kids and care about the work we are doing. I will always be thankful."

> The second fundraiser has been a trap shoot partnered with ConocoPhillips, but that is not taking place. Clampitt said there are plans to have a smaller event later in the year.

He added there is a need for additional funding since the club has lost out on potential revenue from flag football, no after-school programs, reimbursements on snacks during school time.

"Finances are pretty tough right now," Clampitt said. "The raffle means more than ever right now."

Inquiries may be directed to Southwest Symphony

inception the Symphony has strived to bring a variety of music and dance programs to the citizens of Southeastern New Mexico. Each

NOTICE OF AIR QUALITY PERMIT APPLICATION

XTO Energy, Inc. announces its application to the New Mexico Environment Department for an air quality permit for the modification of the Jayhawk Compressor Station. The expected date of application submittal to the Air Quality Bureau is September 4, 2020.

The exact location for the facility known as the Jayhawk Compressor Station will be latitude 32 deg, 34 min, 37.07 sec and longitude -103 deg, 47 min, 5.30 sec. The approximate location of this facility is 26 miles northeast of Carlsbad in Lea County

The proposed modification consists removing two engines, updating engine emission rates, updating glycol recirculation rate, removing two heaters, and updating oil/water production rates.

The estimated maximum quantities of any regulated air contaminants will be as follows in pound per hour (pph) and tons per year (tpy). These reported emissions could change slightly during the course of the Department's review:

Pollutant:	Pounds per hour	Tons per year
Particulate Matter (PM)	27 pph	17 tpy
PM 10	27 pph	17 tpy
PM _{2.5}	27 pph	17 tpy
Sulfur Dioxide (SO ₂)	10 pph	20 tpy
Nitrogen Oxides (NO _x)	587 pph	206 tpy
Carbon Monoxide (CO)	1130 pph	228 tpy
Volatile Organic Compounds (VOC)	1113 pph	260 tpy
Total sum of all Hazardous Air Pollutants (HAPs)	35 pph	29 tpy
Toxic Air Pollutant (TAP)	35 pph	29 tpy
Green House Gas Emissions as Total CO2e	n/a	240,024 tpy

The standard and maximum operating schedule of the facility will be 24 hours per day, 7 days a week and a maximum of 52 weeks per year. The owner and/or operator of the Facility is: XTO Energy, Inc.; 22777 Springwoods Village Pkwy-W4.6B.347; Spring, Texas 77389

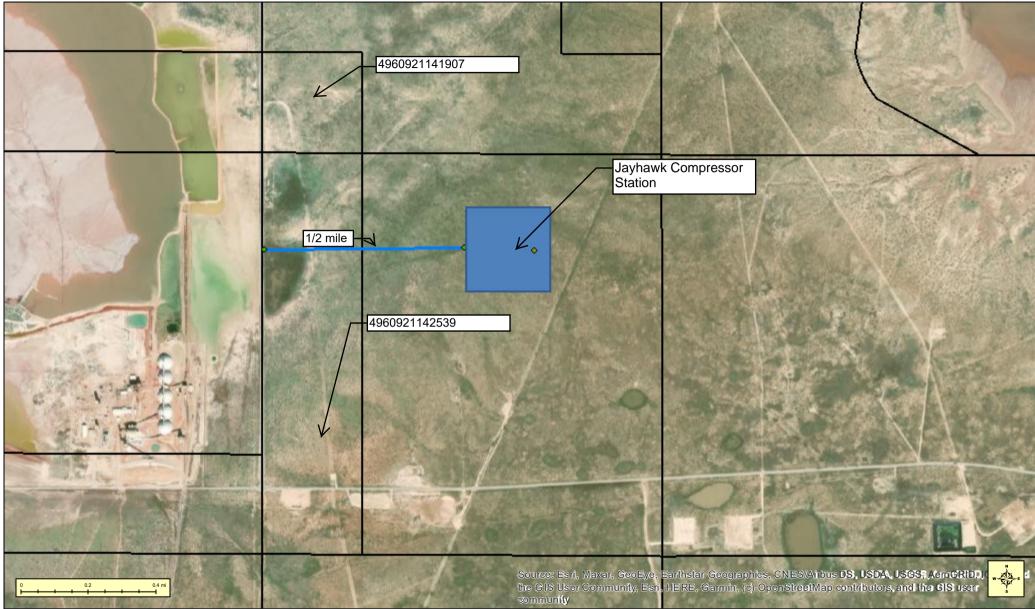
If you have any comments about the construction or operation of this facility, and you want your comments to be made as part of the permit review process, you must submit your comments in writing to this address: Permit Programs Manager; New Mexico Environment Department; Air Quality Bureau; 525 Camino de los Marquez, Suite 1; Santa Fe, New Mexico; 87505-1816; (505) 476-4300; 1 800 224-7009; https://www.env.nm.gov/aqb/permit/aqb_draft_permits.html. Other comments and questions may be submitted verbally.

Please refer to the company name and site name, or send a copy of this notice along with your comments, since the Department may have not yet received the permit application. Please include a legible return mailing address with your comments. Once the Department has performed a preliminary review of the application and its air quality impacts, the Department's notice will be published in the legal section of a newspaper circulated near the facility location.

General information about air quality and the permitting process can be found at the Air Quality Bureau's web site. The regulation dealing with public participation in the permit review process is 20.2.72.206 NMAC. This regulation can be found in the "Permits" section of this web site.

Attención

Este es un aviso de la oficina de Calidad del Aire del Departamento del Medio Ambiente de Nuevo México, acerca de las emisiones producidas por un establecimiento en esta área. Si usted desea información en español, por favor comuníquese con esa oficina al teléfono 505-476-5557


Notice of Non-Discrimination

NMED does not discriminate on the basis of race, color, national origin, disability, age or sex in the administration of its programs or activities, as required by applicable laws and regulations. NMED is responsible for coordination of compliance efforts and receipt of inquiries concerning non-discrimination requirements implemented by 40 C.F.R. Part 7, including Title VI of the Civil Rights Act of 1964, as amended; Section 504 of the Rehabilitation Act of 1973; the Age Discrimination Act of 1975, Title IX of the Education Amendments of 1972, and Section 13 of the Federal Water Pollution Control Act Amendments of 1972. If you have any questions about this notice or any of NMED's non-discrimination programs, policies or procedures, or if you believe that you have been discriminated against with respect to a NMED program or activity, you may contact: Kristine Yurdin, Non-Discrimination Coordinator, NMED, 1190 St. Francis Dr., Suite N4050, P.O. Box 5469, Santa Fe, NM 87502, (505) 827-2855, nd.coordinator@state.nm.us. You may also visit our website at https://www.env.nm.gov/non-employee-discrimination-complaint-page/ to learn how and where to file a complaint of discrimination

ltem 11.

A map with a graphic scale showing the facility boundary and the surrounding area in which owners of record were notified by mail.

JayHawk Compressor Station with 1/2 Mile Radius

Date: 9/1/2020

New Mexico Parcels

XTO - Jayhawk Compressor Station

Information depicted on this map is subject to change and is considered confidential, privileged, and intended for the sole use of the recipient. Any additional dissemination, distribution, or copying of this map or its contents is strictly prohibited without the express written consent of XTO Energy Inc. Neither XTO Energy Inc. Nor its subsidiaries guarantees the accuracy of information depicted herein.

Tab 10

Section 10 - Written Description of the Routine Operations of the Facility

Section 10

Written Description of the Routine Operations of the Facility

<u>A written description of the routine operations of the facility</u>. Include a description of how each piece of equipment will be operated, how controls will be used, and the fate of both the products and waste generated. For modifications and/or revisions, explain how the changes will affect the existing process. In a separate paragraph describe the major process bottlenecks that limit production. The purpose of this description is to provide sufficient information about plant operations for the permit writer to determine appropriate emission sources.

Field gas flows into two inlet slug catchers. The site uses natural gas engines to compress the field gas to 1200-1300 psig, including nine (9) Caterpillar 3616TA engines (ENG1-ENG9) and two (2) Caterpillar 3516J engines (ENG11-ENG12). The Caterpillar engines are equipped with oxidation catalysts to reduce CO, VOC, and formaldehyde emissions.

The high-pressure gas is then dehydrated using triethylene glycol dehydration units (DEHY1-DEHY3), each handling up to 80 MMscfd each. The systems are equipped with flash tanks and condensers. Flash tank vapors are recycled in the dehydration system. The glycol still vent vapors are routed to condensers. Uncondensed vapors are controlled by the vapor combustor (VC1). Dehydrated gas is then transferred to a sales pipeline.

Low pressure liquids generated anywhere in the system are routed to a low pressure three phase separator (LPS). Vapors from the LPS are controlled by a VRU and routed to compression. When the LPS VRU is not operational, vapors from the LPS are routed to the flare system (FL1/FL2). From the LPS, oil at approximately 15 psig is dumped to four (4) oil storage tanks (OT1-OT4), which are controlled by the flare system (FL1/FL2). Water from the LPS flows to redundant skim tanks (SKT1/SKT2). The skim tanks are arranged as a redundant system in which one unit can be used if another is down for unforeseen circumstances. Water is then dumped to two (2) water tanks (WT1-WT2).

Any residual oil flows from the skim tanks into the oil storage tanks. The oil from the oil storage tanks are then pumped back into the high pressure three phase separator (HPS), to be transferred offsite via pipeline. Vapors from the water storage tanks and skim tanks are also controlled by the flare system (FL1/FL2). Oil can be trucked offsite or pumped offsite via pipeline, water is transferred offsite via pipeline to saltwater disposal (SWD).

High pressure liquids generated anywhere in the system are routed to high pressure three phase separator (HPS). Vapors from the high pressure separator are routed back to the inlet slug catchers. From the HPS, liquid hydrocarbons at approximately 400 psig are transferred offsite via pipeline pipeline. Water from the HPS is transferred offsite via pipeline to SWD.

The flare system (FL1/FL2) is also used to flare gas in the event of an emergency.

Tab 11 Section 11 -Source Determination

Section 11

Source Determination

Source submitting under 20.2.70, 20.2.72, 20.2.73, and 20.2.74 NMAC

Sources applying for a construction permit, PSD permit, or operating permit shall evaluate surrounding and/or associated sources (including those sources directly connected to this source for business reasons) and complete this section. Responses to the following questions shall be consistent with the Air Quality Bureau's permitting guidance, <u>Single Source Determination Guidance</u>, which may be found on the Applications Page in the Permitting Section of the Air Quality Bureau website.

Typically, buildings, structures, installations, or facilities that have the same SIC code, that are under common ownership or control, and that are contiguous or adjacent constitute a single stationary source for 20.2.70, 20.2.72, 20.2.73, and 20.2.74 NMAC applicability purposes. Submission of your analysis of these factors in support of the responses below is optional, unless requested by NMED.

A. Identify the emission sources evaluated in this section (list and describe): See Table 2A

B. Apply the 3 criteria for determining a single source:

<u>SIC</u> <u>Code</u>: Surrounding or associated sources belong to the same 2-digit industrial grouping (2-digit SIC code) as this facility, <u>OR</u> surrounding or associated sources that belong to different 2-digit SIC codes are support facilities for this source.

☑ Yes □ No

<u>Common</u> <u>Ownership</u> or <u>Control</u>: Surrounding or associated sources are under common ownership or control as this source.

☑ Yes □ No

<u>Contiguous</u> or <u>Adjacent</u>: Surrounding or associated sources are contiguous or adjacent with this source.

☑ Yes □ No

C. Make a determination:

- ☑ The source, as described in this application, constitutes the entire source for 20.2.70, 20.2.72, 20.2.73, or 20.2.74 NMAC applicability purposes. If in "A" above you evaluated only the source that is the subject of this application, all "YES" boxes should be checked. If in "A" above you evaluated other sources as well, you must check AT LEAST ONE of the boxes "NO" to conclude that the source, as described in the application, is the entire source for 20.2.70, 20.2.72, 20.2.73, and 20.2.74 NMAC applicability purposes.
- □ The source, as described in this application, <u>does not</u> constitute the entire source for 20.2.70, 20.2.72, 20.2.73, or 20.2.74 NMAC applicability purposes (A permit may be issued for a portion of a source). The entire source consists of the following facilities or emissions sources (list and describe):

Tab 12

Section 12 - PSD Applicability Determination for All Sources

Section 12

Section 12.A PSD Applicability Determination for All Sources

(Submitting under 20.2.72, 20.2.74 NMAC)

A PSD applicability determination for all sources. For sources applying for a significant permit revision, apply the applicable requirements of 20.2.74.AG and 20.2.74.200 NMAC and to determine whether this facility is a major or minor PSD source, and whether this modification is a major or a minor PSD modification. It may be helpful to refer to the procedures for Determining the Net Emissions Change at a Source as specified by Table A-5 (Page A.45) of the <u>EPA New Source Review Workshop Manual</u> to determine if the revision is subject to PSD review.

- A. This facility is:
 - **a** minor PSD source before and after this modification (if so, delete C and D below).
 - $\hfill\square$ a major PSD source before this modification. This modification will make this a PSD minor source.
 - □ an existing PSD Major Source that has never had a major modification requiring a BACT analysis.
 - □ an existing PSD Major Source that has had a major modification requiring a BACT analysis
 - □ a new PSD Major Source after this modification.

Tab 13

Section 13 - Determination of State & Federal Air Quality Regulations

Section 13

Determination of State & Federal Air Quality Regulations

This section lists each state and federal air quality regulation that may apply to your facility and/or equipment that are stationary sources of regulated air pollutants.

Not all state and federal air quality regulations are included in this list. Go to the Code of Federal Regulations (CFR) or to the Air Quality Bureau's regulation page to see the full set of air quality regulations.

Required Information for Specific Equipment:

For regulations that apply to specific source types, in the 'Justification' column **provide any information needed to determine if the regulation does or does not apply**. For example, to determine if emissions standards at 40 CFR 60, Subpart IIII apply to your three identical stationary engines, we need to know the construction date as defined in that regulation; the manufacturer date; the date of reconstruction or modification, if any; if they are or are not fire pump engines; if they are or are not emergency engines as defined in that regulation; their site ratings; and the cylinder displacement.

Required Information for Regulations that Apply to the Entire Facility:

See instructions in the 'Justification' column for the information that is needed to determine if an 'Entire Facility' type of regulation applies (e.g. 20.2.70 or 20.2.73 NMAC).

Regulatory Citations for Regulations That Do Not, but Could Apply:

If there is a state or federal air quality regulation that does not apply, but you have a piece of equipment in a source category for which a regulation has been promulgated, you must **provide the low level regulatory citation showing why your piece of equipment is not subject to or exempt from the regulation. For example** if you have a stationary internal combustion engine that is not subject to 40 CFR 63, Subpart ZZZZ because it is an existing 2 stroke lean burn stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions, your citation would be 40 CFR 63.6590(b)(3)(i). We don't want a discussion of every non-applicable regulation, but if it is possible a regulation could apply, explain why it does not. For example, if your facility is a power plant, you do not need to include a citation to show that 40 CFR 60, Subpart OOO does not apply to your non-existent rock crusher.

Regulatory Citations for Emission Standards:

For each unit that is subject to an emission standard in a source specific regulation, such as 40 CFR 60, Subpart OOO or 40 CFR 63, Subpart HH, include the low level regulatory citation of that emission standard. Emission standards can be numerical emission limits, work practice standards, or other requirements such as maintenance. Here are examples: a glycol dehydrator is subject to the general standards at 63.764C(1)(i) through (iii); an engine is subject to 63.6601, Tables 2a and 2b; a crusher is subject to 60.672(b), Table 3 and all transfer points are subject to 60.672(e)(1)

Federally Enforceable Conditions:

All federal regulations are federally enforceable. All Air Quality Bureau State regulations are federally enforceable except for the following: affirmative defense portions at 20.2.7.6.B, 20.2.7.110(B)(15), 20.2.7.11 through 20.2.7.113, 20.2.7.115, and 20.2.7.116; 20.2.37; 20.2.42; 20.2.43; 20.2.62; 20.2.63; 20.2.86; 20.2.89; and 20.2.90 NMAC. Federally enforceable means that EPA can enforce the regulation as well as the Air Quality Bureau and federally enforceable regulations can count toward determining a facility's potential to emit (PTE) for the Title V, PSD, and nonattainment permit regulations.

INCLUDE ANY OTHER INFORMATION NEEDED TO COMPLETE AN APPLICABILITY DETERMINATION OR THAT IS RELEVENT TO YOUR FACILITY'S NOTICE OF INTENT OR PERMIT.

EPA Applicability Determination Index for 40 CFR 60, 61, 63, etc: http://cfpub.epa.gov/adi/

STATE REGU- LATIONS CITATION	Title	Applies? Enter Yes or No	Unit(s) or Facility	JUSTIFICATION: (You may delete instructions or statements that do not apply in the justification column to shorten the document.)
20.2.1 NMAC	General Provisions	Yes	Facility	General Provisions apply to Notice of Intent, Construction, and Title V permit applications.
20.2.3 NMAC	Ambient Air Quality Standards NMAAQS	Yes	Facility	If subject, this would normally apply to the entire facility. 20.2.3 NMAC is a State Implementation Plan (SIP) approved regulation that limits the maximum allowable concentration of Total Suspended Particulates, Sulfur Compounds, Carbon Monoxide and Nitrogen Dioxide. Title V applications, see exemption at 20.2.3.9 NMAC
20.2.7 NMAC	Excess Emissions	Yes	Facility	If subject, this would normally apply to the entire facility. If your entire facility or individual pieces of equipment are subject to emissions limits in a permit or numerical emissions standards in a federal or state regulation, this applies. This would not apply to Notices of Intent since these are not permits.
20.2.33 NMAC	Gas Burning Equipment - Nitrogen Dioxide	No	N/A	None of the equipment has a rating greater than 1 MMBtu/hr.
20.2.34 NMAC	Oil Burning Equipment: NO ₂	No	N/A	This facility has no oil burning equipment.
20.2.35 NMAC	Natural Gas Processing Plant – Sulfur	No	N/A	The facility is not a gas processing plant.
20.2.38 NMAC	Hydrocarbon Storage Facility	Yes	OT1- OT4	The site uses a flare to comply with 20.2.38 NMAC.
20.2.39 NMAC	Sulfur Recovery Plant - Sulfur	No	N/A	The facility does not operate a sulfur recovery plant.
20.2.61.109 NMAC	Smoke & Visible Emissions	Yes	FL1-3, RB1-3, ENG1- 9, ENG11 -12, HTR1	This regulation that limits opacity to 20% applies to Stationary Combustion Equipment, such as engines, boilers, heaters, and flares unless your equipment is subject to another state regulation that limits particulate matter such as 20.2.19 NMAC (see 20.2.61.109 NMAC).
20.2.70 NMAC	Operating Permits	Yes	Facility	The facility is a major source and will apply for a Title V Operating Permit.
20.2.71 NMAC	Operating Permit Fees	Yes	Facility	The facility is a major source and will apply for a Title V Operating Permit.
20.2.72 NMAC	Construction Permits	Yes	Facility	This application requests a NSR in accordance with 20.2.72.
20.2.73 NMAC	NOI & Emissions Inventory Requirements	No	N/A	The site is subject to 20.2.72 NMAC.
20.2.74 NMAC	Permits – Prevention of Significant Deterioration (PSD)	No	N/A	The facility is not a major PSD site.
20.2.75 NMAC	Construction Permit Fees	Yes	Facility	A permit fee is included with this application.

STATE REGU- LATIONS CITATION	Title	Applies? Enter Yes or No	Unit(s) or Facility	JUSTIFICATION: (You may delete instructions or statements that do not apply in the justification column to shorten the document.)
20.2.77 NMAC	New Source Performance	Yes	Facility	See regulatory discussion in Federal Regulations Citation section.
20.2.78 NMAC	Emission Standards for HAPS	No	N/A	The facility does not fit into any of the source categories.
20.2.79 NMAC	Permits – Nonattainment Areas	No	N/A	The facility is not located in a nonattainment area.
20.2.80 NMAC	Stack Heights	No	N/A	There are no stacks to which this regulation would apply.
20.2.82 NMAC	MACT Standards for source categories of HAPS	Yes	DEHY1- 3, ENG1-9, ENG11- 12	See regulatory discussion in Federal Regulations Citation section.
20.2.1 NMAC	General Provisions	Yes	Facility	General Provisions apply to Notice of Intent, Construction, and Title V permit applications.
20.2.3 NMAC	Ambient Air Quality Standards NMAAQS	Yes	Facility	If subject, this would normally apply to the entire facility. 20.2.3 NMAC is a State Implementation Plan (SIP) approved regulation that limits the maximum allowable concentration of Total Suspended Particulates, Sulfur Compounds, Carbon Monoxide and Nitrogen Dioxide. Title V applications, see exemption at 20.2.3.9 NMAC

FEDERAL REGU- LATIONS CITATION	Title	Applies? Enter Yes or No	Unit(s) or Facility	JUSTIFICATION:
40 CFR 50	NAAQS	Yes	Facility	Compliance with the requirements of the GCP indicates compliance with NAAQS.
NSPS 40 CFR 60, Subpart A	General Provisions	Yes	Facility	See regulatory discussion below.
NSPS 40 CFR60.40a, Subpart Da	Subpart Da, Performance Standards for Electric Utility Steam Generating Units	No	N/A	The facility does not operate any electric utility steam generating units.
NSPS 40 CFR60.40b Subpart Db	Electric Utility Steam Generating Units	No	N/A	The facility does not operate any electric utility steam generating units.

<u>FEDERAL</u> <u>REGU-</u> <u>LATIONS</u> CITATION	Title	Applies? Enter Yes or No	Unit(s) or Facility	JUSTIFICATION:
NSPS 40 CFR 60, Subpart Ka	Storage Vessels for Petroleum Liquids Commenced After May 18, 1978, and Prior to July 23, 1984	No	N/A	The hydrocarbons are stored prior to custody transfer.
NSPS 40 CFR 60, Subpart Kb	Standards of Performance for Volatile Organic Liquid Storage Commenced After July 23, 1984	No	N/A	The hydrocarbons are stored prior to custody transfer.
NSPS 40 CFR 60.330 Subpart GG	Stationary Gas Turbines	No	N/A	There are no turbines.
NSPS 40 CFR 60, Subpart KKK	Leaks of VOC from Onshore Gas Plants	No	N/A	This is not a gas plant.
NSPS 40 CFR Part 60 Subpart LLL	Standards of Performance for Onshore Natural Gas Processing: SO2 Emissions	No	N/A	The facility does not operate a sweetening unit.
NSPS 40 CFR Part 60 Subpart OOOO	Crude Oil and Natural Gas Production, Transmission, and Distribution after August 23, 2011 and before September 18, 2015	No	N/A	The site will be constructed after 9/18/15. See NSPS OOOOa discussion below.
NSPS 40 CFR Part 60 Subpart OOOOa	Crude Oil and Natural Gas Facilities for which Construction, Modification or Reconstruction Commenced After September 18, 2015	Yes	FUG	The storage tanks were constructed after the applicability date of the rule; however, XTO is requesting emissions be limited by permit to less than 6 tpy. The regulation is applicable to the storage tanks but the tanks are not affected sources. The site uses low-bleed pneumatic controllers. The site is subject to leak monitoring from fugitive components.
NSPS 40 CFR 60 Subpart IIII	Standards of performance for Stationary Compression Ignition Internal Combustion Engines	No	N/A	The facility does not operate any affected sources.
NSPS 40 CFR Part 60 Subpart JJJJ	Standards of Performance for Stationary Spark Ignition Internal Combustion Engines	TBD	ENG1-9, ENG11- 12	ENG1-ENG3 are subject to the engines are subject to the limitations in Table 1 per 40 CFR 60.4233(e). A determination of applicability will be made for each engine to be used at the site.

FEDERAL REGU- LATIONS CITATION	Title	Applies? Enter Yes or No	Unit(s) or Facility	JUSTIFICATION:
NSPS 40 CFR 60 Subpart TTTT	Greenhouse Gas Emissions for Electric Generating Units	No	N/A	The facility does not operate any affected sources.
NSPS 40 CFR 60 Subpart UUUU	Greenhouse Gas Emissions and Compliance Times for Electric Utility Generating Units	No	N/A	The facility does not operate any affected sources.
NSPS 40 CFR 60, Subparts WWW, XXX, Cc, and Cf	Standards of performance for Municipal Solid Waste (MSW) Landfills	No	N/A	The facility does not operate any affected sources.
NESHAP 40 CFR 61 Subpart A	General Provisions	See Below	See Below	See regulatory discussion below.
NESHAP 40 CFR 61 Subpart E	National Emission Standards for Mercury	No	N/A	The facility does not operate any affected sources.
NESHAP 40 CFR 61 Subpart V	National Emission Standards for Equipment Leaks (Fugitive Emission Sources)	No	N/A	The facility does not operate any affected sources.
MACT 40 CFR 63, Subpart A	General Provisions	No	N/A	See regulatory discussion below.
MACT 40 CFR 63.760 Subpart HH	Oil and Natural Gas Production Facilities	Yes	DEHY1- 3	As a major source of HAP, sources subject to HH include storage vessels with flash emissions, fugitive components, and compressors in VHAP service ((see §63.760(b)(1)(ii), (iii), and (iv)). Fugitives and compressors are exempt per §63.769(b) since they are subject to NSPS OOOO. Storage vessels use a closed vent system connected to a combustor to comply with §63.766(b). The dehydrators process more than 3 mmscfd; however, since benzene emissions are less than 1 tpy, there are no applicable requirements. (See §63.764(E)(1))
MACT 40 CFR 63 Subpart HHH	Natural Gas Transmission and Storage Facilities	No	N/A	This regulation does not apply as the plant is not a natural gas transmission and storage facility as defined by the subpart (§63.1270(a)).
MACT 40 CFR 63 Subpart DDDDD	Major Industrial, Commercial, and Institutional Boilers & Process Heaters	No	N/A	The facility is not a major source of HAP as defined in §63.7575 "Major source for oil and natural gas production facilities". Therefore, MACT 40 CFR 63 Subpart DDDDD does not apply.
MACT 40 CFR 63 Subpart JJJJJJ	Boilers and Process Heaters	No	N/A	The units are exempt per §63.1195(e) since they burn natural gas.
MACT 40 CFR 63 Subpart UUUUU	NESHAP Coal & Oil Fire Electric Utility Steam Generating Unit	No	N/A	The facility does not operate any affected sources.
MACT 40 CFR 63 Subpart ZZZZ	RICE MACT	TBD	ENG1-9, ENG11- 12	ENG1-ENG3 comply with NSPS JJJJ to comply with NESHAP ZZZZ per 60.6590(c)(1). A determination of applicability will be made for each engine to be used at the site.

<u>FEDERAL</u> <u>REGU-</u> <u>LATIONS</u> CITATION	Title	Applies? Enter Yes or No	Unit(s) or Facility	JUSTIFICATION:
40 CFR 64	Compliance Assurance Monitoring	No	N/A	The facility is not subject to CAM.
40 CFR 68	Chemical Accident Prevention	No	N/A	The facility does not store any chemicals above threshold quantities.
Acid Rain 40 CFR 72	Acid Rain	No	N/A	The facility does not have any units subject to the Acid Rain regulations.
Title IV – Acid Rain 40 CFR 73	Sulfur Dioxide Allowance Emissions	No	N/A	The facility does not have any units subject to the Acid Rain regulations.
Title IV-Acid Rain 40 CFR 75	Continuous Emissions Monitoring	No	N/A	The facility does not have any units subject to the Acid Rain regulations.
Title IV – Acid Rain 40 CFR 76	Acid Rain Nitrogen Oxides Emission Reduction Program	No	N/A	The facility does not have any units subject to the Acid Rain regulations.
Title VI – 40 CFR 82	Protection of Stratospheric Ozone	No	N/A	The facility does not service, maintain, or repair equipment containing refrigerants.

Tab 14Section 14 - Operational Plan to Mitigate Emissions

Section 14

Operational Plan to Mitigate Emissions

(Submitting under 20.2.70, 20.2.72, 20.2.74 NMAC)

✓ Title V Sources (20.2.70 NMAC): By checking this box and certifying this application the permittee certifies that it has developed an <u>Operational Plan to Mitigate Emissions During Startups</u>, <u>Shutdowns</u>, <u>and Emergencies</u> defining the measures to be taken to mitigate source emissions during startups, shutdowns, and emergencies as required by 20.2.70.300.D.5(f) and (g) NMAC. This plan shall be kept on site to be made available to the Department upon request. This plan should not be submitted with this application.

- ✓ NSR (20.2.72 NMAC), PSD (20.2.74 NMAC) & Nonattainment (20.2.79 NMAC) Sources: By checking this box and certifying this application the permittee certifies that it has developed an <u>Operational Plan to Mitigate Source Emissions</u> <u>During Malfunction, Startup, or Shutdown</u> defining the measures to be taken to mitigate source emissions during malfunction, startup, or shutdown as required by 20.2.72.203.A.5 NMAC. This plan shall be kept on site to be made available to the Department upon request. This plan should not be submitted with this application.
- ☑ Title V (20.2.70 NMAC), NSR (20.2.72 NMAC), PSD (20.2.74 NMAC) & Nonattainment (20.2.79 NMAC) Sources: By checking this box and certifying this application the permittee certifies that it has established and implemented a Plan to Minimize Emissions During Routine or Predictable Startup, Shutdown, and Scheduled Maintenance through work practice standards and good air pollution control practices as required by 20.2.7.14.A and B NMAC. This plan shall be kept on site or at the nearest field office to be made available to the Department upon request. This plan should not be submitted with this application.

Emissions during startups, shutdowns, maintenance and emergencies (ESDs) will be minimized through the application of industry standards and /or manufacturer recommended operating practices as described below. Trained technicians are responsible for the timely and effective implementation of these actions.

Startup procedures for the engines are normally completed in less than 15 minutes and shutdown procedures are normally completed in less than 5 minutes. During a cold startup, the units may emit at a higher rate than normal as the units warm to operating temperature; however, if the unit has been shut down for long enough that a warm up is required, the small excess emissions occurring during warmup will be more than offset by the lack of emissions during the shutdown period. Similarly, if the unit is restarted while warm, there should be no excess emissions as the unit is already at operating temperature.

Tab 15Section 15 - Alternative Operating Scenarios

Alternative Operating Scenarios

(Submitting under 20.2.70, 20.2.72, 20.2.74 NMAC)

Alternative Operating Scenarios: Provide all information required by the department to define alternative operating scenarios. This includes process, material and product changes; facility emissions information; air pollution control equipment requirements; any applicable requirements; monitoring, recordkeeping, and reporting requirements; and compliance certification requirements. Please ensure applicable Tables in this application are clearly marked to show alternative operating scenario.

Construction Scenarios: When a permit is modified authorizing new construction to an existing facility, NMED includes a condition to clearly address which permit condition(s) (from the previous permit and the new permit) govern during the interval between the date of issuance of the modification permit and the completion of construction of the modification(s). There are many possible variables that need to be addressed such as: Is simultaneous operation of the old and new units permitted and, if so for example, for how long and under what restraints? In general, these types of requirements will be addressed in Section A100 of the permit, but additional requirements may be added elsewhere. Look in A100 of our NSR and/or TV permit template for sample language dealing with these requirements. Find these permit templates at: https://www.env.nm.gov/aqb/permit/aqb_pol.html. Compliance with standards must be maintained during construction, which should not usually be a problem unless simultaneous operation of old and new equipment is requested.

In this section, under the bolded title "Construction Scenarios", specify any information necessary to write these conditions, such as: conservative-realistic estimated time for completion of construction of the various units, whether simultaneous operation of old and new units is being requested (and, if so, modeled), whether the old units will be removed or decommissioned, any PSD ramifications, any temporary limits requested during phased construction, whether any increase in emissions is being requested as SSM emissions or will instead be handled as a separate Construction Scenario (with corresponding emission limits and conditions, etc.

XTO is not proposing any alternative operating scenarios.

Tab 16Section 16 - Air Dispersion Modeling

Section 16 Air Dispersion Modeling

- Minor Source Construction (20.2.72 NMAC) and Prevention of Significant Deterioration (PSD) (20.2.74 NMAC) ambient impact analysis (modeling): Provide an ambient impact analysis as required at 20.2.72.203.A(4) and/or 20.2.74.303 NMAC and as outlined in the Air Quality Bureau's Dispersion Modeling Guidelines found on the Planning Section's modeling website. If air dispersion modeling has been waived for one or more pollutants, attach the AQB Modeling Section modeling waiver approval documentation.
- 2) SSM Modeling: Applicants must conduct dispersion modeling for the total short term emissions during routine or predictable startup, shutdown, or maintenance (SSM) using realistic worst case scenarios following guidance from the Air Quality Bureau's dispersion modeling section. Refer to "Guidance for Submittal of Startup, Shutdown, Maintenance Emissions in Permit Applications (<u>http://www.env.nm.gov/aqb/permit/app_form.html</u>) for more detailed instructions on SSM emissions modeling requirements.
- 3) Title V (20.2.70 NMAC) ambient impact analysis: Title V applications must specify the construction permit and/or Title V Permit number(s) for which air quality dispersion modeling was last approved. Facilities that have only a Title V permit, such as landfills and air curtain incinerators, are subject to the same modeling required for preconstruction permits required by 20.2.72 and 20.2.74 NMAC.

What is the purpose of this application?	Enter an X for each purpose that applies
New PSD major source or PSD major modification (20.2.74 NMAC). See #1 above.	
New Minor Source or significant permit revision under 20.2.72 NMAC (20.2.72.219.D NMAC).	Х
See #1 above. Note: Neither modeling nor a modeling waiver is required for VOC emissions.	
Reporting existing pollutants that were not previously reported.	
Reporting existing pollutants where the ambient impact is being addressed for the first time.	
Title V application (new, renewal, significant, or minor modification. 20.2.70 NMAC). See #3	
above.	
Relocation (20.2.72.202.B.4 or 72.202.D.3.c NMAC)	
Minor Source Technical Permit Revision 20.2.72.219.B.1.d.vi NMAC for like-kind unit	
replacements.	
Other: i.e. SSM modeling. See #2 above.	
This application does not require modeling since this is a No Permit Required (NPR) application.	
This application does not require modeling since this is a Notice of Intent (NOI) application	
(20.2.73 NMAC).	
This application does not require modeling according to 20.2.70.7.E(11), 20.2.72.203.A(4),	
20.2.74.303, 20.2.79.109.D NMAC and in accordance with the Air Quality Bureau's Modeling	
Guidelines.	

Check each box that applies:

- \Box See attached, approved modeling waiver for all pollutants from the facility.
- □ See attached, approved modeling **waiver for some** pollutants from the facility.
- Attached in Universal Application Form 4 (UA4) is a **modeling report for all** pollutants from the facility.
- □ Attached in UA4 is a **modeling report for some** pollutants from the facility.
- \Box No modeling is required.

Tab 17Section 17 - Compliance Test History

Compliance Test History

(Submitting under 20.2.70, 20.2.72, 20.2.74 NMAC)

To show compliance with existing NSR permits conditions, you must submit a compliance test history. The table below provides an example.

No tests have been performed.

Tab 18

Section 18 - Addendum for Streamline Applications (Not Applicable)

Addendum for Streamline Applications

Do not print this section unless this is a streamline application.

Streamline Applications do not require a complete application. Submit Sections 1-A, 1-B, 1-D, 1-F, 1-G, 2-A, 2-C thru L, Sections 3 thru 8, Section 13, Section 18, Section 22, and Section 23 (Certification). Other sections may be required at the discretion of the Department. 20.2.72.202 NMAC Exemptions do not apply to Streamline sources. 20.2.72.219 NMAC revisions and modifications do not apply to Streamline sources, thus 20.2.72.219 type actions require a complete new application submittal. Please do not print sections of a streamline application that are not required.

This section is not applicable since this is not a Streamline Permit Application.

Tab 19

Section 19 - Requirements for Title V Program

Requirements for Title V Program

Do not print this section unless this is a Title V application.

Who Must Use this Attachment:

* Any major source as defined in 20.2.70 NMAC.

- * Any source, including an area source, subject to a standard or other requirement promulgated under Section 111 Standards of Performance for New Stationary Sources, or Section 112 Hazardous Air Pollutants, of the 1990 federal Clean Air Act ("federal Act"). Non-major sources subject to Sections 111 or 112 of the federal Act are exempt from the obligation to obtain an 20.2.70 NMAC operating permit until such time that the EPA Administrator completes rulemakings that require such sources to obtain operating permits. In addition, sources that would be required to obtain an operating permit solely because they are subject to regulations or requirements under Section 112(r) of the federal Act are exempt from the requirement to obtain an Operating Permit.
- * Any Acid Rain source as defined under title IV of the federal Act. The Acid Rain program has additional forms. See <u>http://www.env.nm.gov/aqb/index.html</u>. Sources that are subject to both the Title V and Acid Rain regulations are encouraged to submit both applications simultaneously.
- * Any source in a source category designated by the EPA Administrator ("Administrator"), in whole or in part, by regulation, after notice and comment.

This is not a Title V application.

Tab 20Section 20 - Other Relevant Information

Other Relevant Information

<u>Other relevant information</u>. Use this attachment to clarify any part in the application that you think needs explaining. Reference the section, table, column, and/or field. Include any additional text, tables, calculations or clarifying information.

Additionally, the applicant may propose specific permit language for AQB consideration. In the case of a revision to an existing permit, the applicant should provide the old language and the new language in track changes format to highlight the proposed changes. If proposing language for a new facility or language for a new unit, submit the proposed operating condition(s), along with the associated monitoring, recordkeeping, and reporting conditions. In either case, please limit the proposed language to the affected portion of the permit.

No other relevant information is provided.

Tab 21

Section 21 - Addendum for Landfill Applications (Not Applicable)

Addendum for Landfill Applications

Do not print this section unless this is a landfill application.

Landfill Applications are not required to complete Sections 1-C Input Capacity and Production Rate, 1-E Operating Schedule, 17 Compliance Test History, and 18 Streamline Applications. Section 12 – PSD Applicability is required only for Landfills with Gas Collection and Control Systems and/or landfills with other non-fugitive stationary sources of air emissions such as engines, turbines, boilers, heaters. All other Sections of the Universal Application Form are required.

EPA Background Information for MSW Landfill Air Quality Regulations: https://www3.epa.gov/airtoxics/landfill/landfipg.html

NM Solid Waste Bureau Website: https://www.env.nm.gov/swb/

This is not a landfill.

Tab 22Section 22 - Certification

Section 22: Certification

Company Name: ____XTO Energy Inc.

I, Benjamin Schneider, hereby certify that the information and data submitted in this application are true and as accurate as possible, to the best of my knowledge and professional expertise and experience.

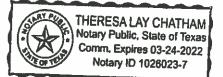
Signed this 24 day of 5 cok abor. 2020, upon my oath or affirmation, before a notary of the State of Illinois.

Bur Schnech

Benjamin Schneider_ Printed Name

Scribed and sworn before me on this 24th day and sworn before me on this 24th day

My authorization as a notary of the State of expires on the day of made, 2002


Theres by Chattan Notary's Signature

242020

9/24/2020

Environmental Engineer

Title

*For Title V applications, the signature must be of the Responsible Official as defined in 20.2.70.7.AE NMAC.

Tab 23 Section 23 - UA4

Universal Application 4

Air Dispersion Modeling Report

Refer to and complete Section 16 of the Universal Application form (UA3) to assist your determination as to whether modeling is required. If, after filling out Section 16, you are still unsure if modeling is required, e-mail the completed Section 16 to the AQB Modeling Manager for assistance in making this determination. If modeling is required, a modeling protocol would be submitted and approved prior to an application submittal. The protocol should be emailed to the modeling manager. A protocol is recommended but optional for minor sources and is required for new PSD sources or PSD major modifications. Fill out and submit this portion of the Universal Application form (UA4), the "Air Dispersion Modeling Report", only if air dispersion modeling is required for this application submittal. This serves as your modeling report submittal and should contain all the information needed to describe the modeling. No other modeling report or modeling protocol should be submitted with this permit application.

16	16-A: Identification			
1 Name of facility:		Jayhawk Compressor Station		
2	Name of company:	XTO Energy Inc.		
3	Current Permit number:	8152		
4	Name of applicant's modeler:	Bruce Ferguson		
5	Phone number of modeler:	(601) 824-1860		
6	E-mail of modeler:	bferguson@fce-engineering.com		

16	16-B: Brief					
1	Was a modeling protocol submitted and approved?	Yes□	No⊠			
2	Why is the modeling being done? Other (describe below)					
3	Describe the permit changes relevant to the modeling.					
	d.					
4	What geodetic datum was used in the modeling?	NAD83				
5	How long will the facility be at this location? Indefinite					
6	Is the facility a major source with respect to Prevention of Significant Deterioration (PSD)?	Yes□	No⊠			
7	Identify the Air Quality Control Region (AQCR) in which the facility is located	155				

0	List the PSD baseline dates for this region (minor or major, as appropriate).						
	NO2	3/16/1988					
8	SO2	7/28/1978					
	PM10	2/20/1979					
	PM2.5	11/13/2013					
	Provide the name and distance to Cl	lass I areas within 50 km of the facility (300 km for P	SD permits).				
9	None						
,	None						
-	None Is the facility located in a non-attain	nment area? If so describe below	Yes	No⊠			
10	Is the facility located in a non-attain		Yes	No⊠			
-	Is the facility located in a non-attain	nment area? If so describe below irements, such as streamline permit requirements.	Yes	No⊠			

16	-C: Modeling H	listory of Facility					
	Describe the modeling history of the facility, including the air permit numbers, the pollutants modeled, the National Ambient Air Quality Standards (NAAQS), New Mexico AAQS (NMAAQS), and PSD increments modeled. (Do not include modeling waivers).						
	Pollutant	Latest permit and modification number that modeled the pollutant facility-wide.	Date of Permit	Comments			
	СО	8152	5/7/2019				
	NO ₂	8152	5/7/2019				
1	SO ₂	8152	5/7/2019				
	H_2S						
	PM2.5	8152	5/7/2019				
	PM10	8152	5/7/2019				
	TSP						
	Lead						
	Ozone (PSD only)						
	NM Toxic Air Pollutants (20.2.72.402 NMAC)						

16-D: Modeling performed for this application

For each pollutant, indicate the modeling performed and submitted with this application.	
Choose the most complicated modeling applicable for that pollutant, i.e., culpability analysis assumes ROI and cumulat	ive
analysis were also performed.	

	Pollutant	ROI	Cumulative analysis	Culpability analysis	Waiver approved	Pollutant not emitted or not changed.
	СО	\boxtimes				
	NO ₂	\boxtimes	\boxtimes			
1	SO ₂	\boxtimes	\boxtimes			
1	H_2S					\boxtimes
	PM2.5	\boxtimes	\boxtimes			
	PM10	\boxtimes	\boxtimes			
	TSP*					
	Lead					\boxtimes
	Ozone*					
	State air toxic(s) (20.2.72.402 NMAC)					

*Modeling was not performed for TSP because the standard was removed. Ozone was not evaluated because the permitting action is a minor NSR.

16-E: New Mexico toxic air pollutants modeling

1	List any New Mexico toxic air pollutants (NMTAPs) from Tables A and B in 20.2.72.502 NMAC that are modeled for this							
1	application.							
		None						
	List any NI	MTAPs that are em	itted but not modeled becaus	se stack height con	rection factor. Add additi	onal rows to the table		
	below, if re	equired.						
	Pollutant	Emission Rate	Emission Rate Screening	Stack Height	Correction Factor	Emission Rate/		
2	Tonutant	(pounds/hour)	Level (pounds/hour)	(meters)	Concetion Pactor	Correction Factor		

16-	6-F: Modeling options					
1	Was the latest version of AERMOD used with regulatory default options? If not explain below.	Yes⊠	No□			

16-	16-G: Surrounding source modeling				
1	¹ Date of surrounding source retrieval		March 11, 2020, MergeMaster File Spoke with Eric Peters by phone 8/19/20, and Eric relayed that the 3/11/20 was the best available data and could be used.		
2	sources modeled	surrounding source inventory provided by the Air Quality Bureau was believed to be inaccurate, describe how the es modeled differ from the inventory provided. If changes to the surrounding source inventory were made, use the table to describe them. Add rows as needed.			
	AQB Source ID	Description of Corrections All neighboring sources within 10 km were retained for cumulative modeling.			
	Various	Neighboring sources between 10 and 25 km with source IDs less than 10,000 were removed from the inventory.			
	Various	None of the neighboring sources were found to have emissions of 1000 lb/hr or greater and neighboring sources greater than 25 km were removed from the inventory.			
	39046E4	The flare diameter was changed to 13.2 meters based on the effective diameter of flares for similar facilities at the same $PM_{2.5}$ emission rate.			

16	16-H: Building and structure downwash					
1	¹ How many buildings are present at the facility? None, only eight above ground storage tanks					
2	2 How many above ground storage tanks are present at the facility? There are 8 above ground storage tanks, no buildings					
3	$\frac{\text{Was building downwash modeled for all buildings and tanks? If not explain why below.} \qquad \text{Yes} \boxtimes \qquad \text{No} \square$					
4	Building comments	No buildings onsite				

16-I: Receptors and modeled property boundary "Restricted Area" is an area to which public entry is effectively precluded. Effective barriers include continuous fencing, continuous walls, or other continuous barriers approved by the Department, such as rugged physical terrain with a steep grade that would require special equipment to traverse. If a large property is completely enclosed by fencing, a restricted area within the property may be identified with signage only. Public roads cannot be part of a Restricted Area. A Restricted Area is required in order to exclude receptors from the facility property. If the facility does not have a Restricted Area, then 1 receptors shall be placed within the property boundaries of the facility. Describe the fence or other physical barrier at the facility that defines the restricted area. A fence is to be placed 1 ft inside the drawing line indicated on the plot plan. Receptors must be placed along publicly accessible roads in the restricted area. 2 Are there public roads passing through the restricted area? Yes□ No⊠ 3 Are restricted area boundary coordinates included in the modeling files? Yes⊠ No⊠ Describe the receptor grids and their spacing. The table below may be used, adding rows as needed. Start distance from End distance from Grid Type Shape Spacing restricted area or restricted area or Comments center of facility center of facility 0 m Cartesian Circle 50 m 1 km 4 Cartesian Circle 100 m 1 km 3 km Circle 250 m 3 km 6 km Cartesian Cartesian Circle 500 m 6 km 10 km Cartesian Circle 1 km 10 km 50 km Describe receptor spacing along the fence line. 5 Receptors were placed at 50-meter spacing along the fence line. Receptors within the fence line were removed. Describe the PSD Class I area receptors. 6 None

16	16-J: Sensitive areas					
1	Are there schools or hospitals or other sensitive areas near the facility? If so describe below. This information is optional (and purposely undefined) but may help determine issues related to public notice.	Yes□	No⊠			
3	The modeling review process may need to be accelerated if there is a public hearing. Are there likely to be public comments opposing the permit application?	Yes□	No⊠			

16	-K: Mo	deling	Scena	rios								
1	Identify, define, and describe all modeling scenarios. Examples of modeling scenarios include using different production rates, times of day, times of year, simultaneous or alternate operation of old and new equipment during transition periods, etc. Alternative operating scenarios should correspond to all parts of the Universal Application and should be fully described in Section 15 of the Universal Application (UA3).											
	Three scena distributed					der normal	operation	s, flaring fo	or SSM ever	nts and all	l flare e	missions
	Which scen	nario produ	ices the high	ghest conc	entrations	? Why?						
2	maximum g results in a	ground lev lower plui	el impacts me rise for	. Evenly di the same of	stributing emission r	the emission the emission the emission the emission the emission of the emissi	ons betwee	en the flare	not the contr s produces a			
3	Were emission factor sets used to limit emission rates or hours of operation?Yes□(This question pertains to the "SEASON", "MONTH", "HROFDY" and related factor sets, not to the factors used for calculating the maximum emission rate.)Yes□											
4	If so, describe factors for each group of sources. List the sources in each group before the factor table for that group. (Modify or duplicate table as necessary. It's ok to put the table below section 16-K if it makes formatting easier.) Sources:											
	Hour of Day	Factor	Hour of Day	Factor								
5	Not Applied If hourly, v	variable em	ission rate	s were use	d that wer	e not descr	ibed above	e, describe	them below			
				1.0			1.11	<u> </u>				
6	Were differ	rent emissi	on rates us	sed for sho	rt-term and	d annual m	odeling? I	t so descri	be below.	Yes□		No⊠

16-	L: NO ₂	Modeling						
		Which types of NO ₂ modeling were used?						
	Check all th	Check all that apply.						
	\boxtimes	ARM2						
1		100% NO _X to NO ₂ conversion						
		PVMRM						
		OLM						
		Other:						
2	Describe the NO ₂ modeling.							
2	The modeled scenarios were modeled using source groups for NOx considering full conversion to NO ₂ . The scenario for evenly distributing the emissions between the flares was modeled using the ARM2 method.							
2		Were default NO_2/NO_X ratios (0.5 minimum, 0.9 maximum or equilibrium) used? If not Yes \square No \square						
3	describe and justify the ratios used below. Yes \square No \square							
4	Describe the	design value used for each averaging period modeled.						
4	0	n eighth high						
	Annual: One	e Year Annual Average						

	Select the pol	lutants for which	h plume depletion m	odeling was	used.			
1		PM2.5		-				
-		PM10						
	\boxtimes	None						
2	Describe the p	particle size dist	ributions used. Inclue	de the source	of information.			
3	Sources that e	mit at least 40 t emit significant	40 tons per year of NOx ons per year of NOx	or at least 40) tons per year of S	O_2 are	Yes⊠	No□
4	Was secondar	y PM modeled	for PM2.5?				Yes□	No⊠
	If MERPs were used to account for secondary PM2.5 fill out the information below. If another method w below.				was used describe			
	NO _X (ton/yr)		SO ₂ (ton/yr)		[PM2.5] _{annual}	[PM2.5] _{annual}		5] _{24-hour}
	204.66 (including SSM)		19.49 (including S	19.49 (including SSM)			0.076 ı	ug/m ³
	Southwest Climate Zone Lowest MERPs							
	State	County	Metric	Precurso	r Emissions	Stack	MERP	
	Colorado	Weld Co	Annual PM _{2.5}	NOx	1000	10	10530	
5	Colorado	Weld Co	Annual PM _{2.5}	SO ₂	1000	10	7359	
	Colorado	Weld Co	Daily PM _{2.5}	NOx	1000	10	5215	
	Colorado	Weld Co	Daily PM _{2.5}	SO ₂	1000	10	814	
		$[PM2.5]_{annual} = SIL x [NO_x Annual Emissions/10530 + SO_2 Annual Emissions/7359] = (0.2 ug/m3)[(204.66/10530) + (19.49/7359)] = 0.004 ug/m3 [PM2.5]_{24-hour} = SIL x [NO_x Annual Emissions/5215 + SO2 Annual Emissions/814] = (1.2 ug/m3)[(204.66/5215)+(19.49/814)] = 0.076 ug/m3 [PM2.5]_{24-hour} = SIL x [NO_x Annual Emissions/5215 + SO2 Annual Emissions/814] = (1.2 ug/m3)[(204.66/5215)+(19.49/814)] = 0.076 ug/m3 [PM2.5]_{24-hour} = SIL x [NO_x Annual Emissions/5215 + SO2 Annual Emissions/814] = (1.2 ug/m3)[(204.66/5215)+(19.49/814)] = 0.076 ug/m3 [PM2.5]_{24-hour} = SIL x [NO_x Annual Emissions/5215 + SO2 Annual Emissions/814] = (1.2 ug/m3)[(204.66/5215)+(19.49/814)] = 0.076 ug/m3 [PM2.5]_{24-hour} = SIL x [NO_x Annual Emissions/5215 + SO2 Annual Emissions/814] = (1.2 ug/m3)[(204.66/5215)+(19.49/814)] = 0.076 ug/m3 [PM2.5]_{24-hour} = SIL x [NO_x Annual Emissions/5215 + SO2 Annual Emissions/814] = (1.2 ug/m3)[(204.66/5215)+(19.49/814)] = 0.076 ug/m3 [PM2.5]_{24-hour} = SIL x [NO_x Annual Emissions/5215 + SO2 Annual Emissions/814] = (1.2 ug/m3)[(204.66/5215)+(19.49/814)] = 0.076 ug/m3 [PM2.5]_{24-hour} = SIL x [NO_x Annual Emissions/5215 + SO2 Annual Emissions/814] = (1.2 ug/m3)[(204.66/5215)+(19.49/814)] = (1.2 ug/m3)[(204.66/814)] = (1.2 ug/m3$						

16	-N: Setback Distances
1	Portable sources or sources that need flexibility in their site configuration requires that setback distances be determined between the emission sources and the restricted area boundary (e.g. fence line) for both the initial location and future locations. Describe the setback distances for the initial location. None
2	Describe the requested, modeled, setback distances for future locations, if this permit is for a portable stationary source. Include a haul road in the relocation modeling.

16-	16-O: PSD Increment and Source IDs						
	The unit numbers in the Tables 2-A, 2-B, 2-C, 2-E, 2-F, and 2-I should match the ones in the modeling files. Do these match? If not, provide a cross-reference table between unit numbers if they do not match below.					Yes⊠	No□
	Unit Number in UA-2	Unit Number	in Modeling Files	5			
1						ng Emissions so	enario)
	FL1			FL1_SSM (S	SM scenario)		
				FL1_Even (A	All flare emissions	distributed eve	nly)
		FL2_Normal	(Normal Operatin	ng Emissions so	enario)		
	FL2			FL2_SSM (S	SM scenario)		
				FL2_Even (All flare emissions distributed evenly)			
2	The emission rates in the Tables 2-E and 2-F should match the these match? If not, explain why below.			e ones in the modeling files. Do		Yes⊠	No□
	two flares, this should pr plume rise.	2-E. SSM matches 2-F. oduce the maximum flari	ng emissions	as it would res	sult in the maximu		
3	Have the minor NSR exe been modeled?	empt sources or Title V In	significant A	Activities" (Tab	le 2-B) sources	Yes⊠	No□
	Which units consume increment for which pollutants?						
4	Unit ID	NO	C				PM2.5
	All Facility Units	$\frac{NO_2}{X}$		O ₂ X	PM10 X		YM2.5 X
5	PSD increment description (for unusual cases, i.e., b) after baseline date).	on for sources. aseline unit expanded em	issions			I	
6	Are all the actual installation dates included in Table 2A of the application form, as required? This is necessary to verify the accuracy of PSD increment modeling. If not please explain how increment consumption status is determined for the missing installation dates below.					Yes⊠	No□
	Facility has not begun construction						

16-P: Flare Modeling

1	For each flare or flaring scenario, complete the following					
	Flare ID (and scenario)	Average Molecular Weight	Gross Heat Release (cal/s)	Effective Flare Diameter (m)		
	FL1_Normal	43.98	1,107,992	0.869		
	FL1_SSM	21.20	169,394	0.363		
	FL1_Even	22.58	138,014,571	10.322		
	FL2_Normal	21.20	169,394	0.363		
	FL2_SSM	22.53	274,921,149	14.570		
	FL2_Even	22.58	138,014,571	10.322		

16-	16-Q: Volume and Related Sources						
1	Were the dimensions of volume sources different from standard dimensions in the Air Quality Bureau (AQB) Modeling Guidelines?	Yes□	No⊠				
2	Describe the determination of sigma-Y and sigma-Z for fugitive sources.						
	Values for large trucks in the NMED Guideline						
	Describe how the volume sources are related to unit numbers.						
3	Or say they are the same.						
	Unit No. ROAD represented by L0000001 through L0000024						
4	Describe any open pits.						
	None						
5	Describe emission units included in each open pit.						
	None						

16-	R: Back	ground Concentrations				
	Were NMED provided background concentrations used? Identify the background station used					
	below. If non	-NMED provided background concentrations were used describe the data that	Yes⊠	No□		
	was used.					
	CO: Del Nort	e High School (350010023)				
	NO ₂ : Hobbs-Jefferson (350250008)					
1	PM2.5: Hobbs-Jefferson (350450019)					
	PM10: Hobbs-Jefferson (350250008)					
	SO ₂ : Amarillo (483751025)					
	Other:					
	Comments:					
2	Were backgro	bund concentrations refined to monthly or hourly values? If so describe below.	Yes□	No⊠		

16-	16-S: Meteorological Data					
	Was NMED provided meteorological data used? If so select the station used.					
1	Artesia Year 2015	Yes⊠	No□			
2	If NMED provided meteorological data was not used describe the data set(s) used below. Discu handled, how stability class was determined, and how the data were processed.	ss how missing	data were			

16-T: Terrain					
1	Was complex terrain used in the modeling? If not, describe why below.	Yes⊠	No□		
2	What was the source of the terrain data? NED data through http://www.webgis.com/, downloaded through the Lakes Environmental GU	I			

Describe the modeling files:						
File name (or folder and file name)	Pollutant(s)	Purpose (ROI/SIA, cumulative, culpability analysis, other)				
SIA\NOx.zip	NO2	ROI				
SIA\CO.zip	СО	ROI				
SIA\SO2.zip	SO2	ROI & Cumulative				
SIA\PM10.zip	PM10	ROI				
SIA\PM25.zip	PM2.5	ROI				
CIA\NO2.zip	NO2	Cumulative				
CIA\PM10.zip	PM10	Cumulative				
CIA\PM25.zip	PM2.5	Cumulative				
Generic zip file contents are summarized below						
Artesia-Midland_2015.PFL & .SFC	Met Data as downloaded from NMED					
jayhawk.jgw, .jpg, .wdt	Georeferenced facility layout					
Surrounding Sources\	Surrounding source files generated by MergeMaster					
MERPs table_export.xlsx	MERPs downloaded from EPA for Southwest Climate Zone					
File structure within zip file						
[Pollutant].ADI	AERMOD input file					
[Pollutant].ADO	AERMOD output file					
[Pollutant].sum	AERMOD output summary file					
[Pollutant].bpi	BPIP input file					
[Pollutant].pro	BPIP output file					
\[Pollutant].AD\	Plot File Directory					
[Avg Period][Rank]G[xxx].PLT	Plot file naming convention. Where facility source groups were used G001 denotes normal operation, G002 denotes SSM operations and G003 denotes flaring evenly distributed between flares. For PM10 & PM2.5 cumulative G001 denotes NAAQS modeling and G002 denotes PSD increment modeling.					

16-	16-V: PSD New or Major Modification Applications (Not Applicable)						
1	A new PSD major source or a major modification to an existing PSD major source requires additional analysis. Was preconstruction monitoring done (see 20.2.74.306 NMAC and PSD Preapplication Guidance on the AQB website)?	Yes□	No□				
2	If not, did AQB approve an exemption from preconstruction monitoring?	Yes□	No□				
3	Describe how preconstruction monitoring has been addressed or attach the approved preconstruction monitoring or monitoring exemption.						
4	Describe the additional impacts analysis required at 20.2.74.304 NMAC.						
5	If required, have ozone and secondary PM2.5 ambient impacts analyses been completed? If so describe below.	Yes□	No□				

16-W: Mod	elin	g Result	ts										
1	requ signi	ambient standards are exceeded because of surrounding sources, a culpability analysis is uired for the source to show that the contribution from this source is less than the nificance levels for the specific pollutant. Was culpability analysis performed? If so cribe below.						is is	Yes□ No⊠				
2		ntify the maximum concentrations from the modeling analysis. Rows may be modified, added and removed from the table below necessary.											
Pollutant, Time Period and Standard		cility tion	Modeled Concentration with Surrounding Sources (µg/m3)	Secondary PM (µg/m3)	Background Concentration (μg/m3)	Cumulative Concentration (µg/m3)	ndard)	andard	Location				
		Modeled Facility Concentration (µg/m3)					Value of Standard (µg/m3)	Percent of Standard	UTN	A E (m)	UTM N (m)	Elevation (ft)	
CO 1hr NMAAQS		190.41094	N/A	N/A	2,203	2,393.41	9,960.1	24%	61	614150 3605050		3,481	
CO 8hr NMAAQS		91.30822	N/A	N/A	1,524	1,615.31	14,997.5	11%	61	4150	3605050	3,481	
NO ₂ 1hr NAAQS		109.90173	N/A	N/A	64.2	174.10	188.03	93%	61	4150 3605100		3,481	
NO ₂ Annual NMAAQS		7.85998	N/A	N/A	8.1	15.96	94.02	17%	613756.38 360522		3605221.00	3,472	
NO ₂ Annual PSD		7.85998	N/A	N/A	8.1	15.96	25	64%	613756.38 36052		3605221.00	3,472	
SO ₂ 1hr NAAQS		18.88118	N/A	N/A	47.0	65.88	196.4	34%	614150		3605050	3,481	
SO ₂ Annual NMAAQS		0.96430	N/A	N/A	0.670	1.63	52.4	3%	613707.55 3		3605172.93	3,472	
SO2 3-hr PSD		Compliance	with 1-hr NA	AQS stan	dard indica	tes compliar	ce with incre	ement					
SO2 24-hr PSD*		5.35741	N/A	N/A	<47.0	52.36	91	58%	614000		3604850	3,483	
SO ₂ Annual PSD		0.96430	N/A	N/A	0.670	1.63	20	8%	613707.55		3605172.93	3,472	
PM10 24hr NAAQS			13.37085	N/A	37.3	50.67	150	34%	613707.55		3605172.93	3,472	
PM ₁₀ 24hr PSD			10.75343	N/A	N/A	10.75	30	36%	613756.38		3605221.00	3,472	
PM ₁₀ Annual PSD			3.86279	N/A	N/A	3.86	17	23%	613756.38		3605221.00	3,472	
PM _{2.5} 24hr NAAQS			2.91080	0.076	13.4	16.39	35	47%	613	613756.38 36		3,472	
PM _{2.5} Annual NAAQS			1.36168	0.004	5.9	7.27	12	61%	613756.38 3		3605221.00	3,472	
PM _{2.5} 24hr PSD			3.29279	0.076	N/A	3.37	9	37%	613	613707.55 36		3,472	
PM _{2.5} Annual PSD			1.25929	0.004	N/A	1.26	4	32%	613	756.38	3605221.00	3,472	

1

16-X: Summary/conclusions

A statement that modeling requirements have been satisfied and that the permit can be issued.

A significant impact analysis was performed for pollutants identified in Section 16-D. CO impacts were found to be below the modeling significance level. Impacts for the remaining pollutants were found to be above the modeling significance level and a cumulative impact was required for these pollutants.

 PM_{10} and $PM_{2.5}$ impacts from surrounding sources were accounted for by explicitly modeling all sources within 10 km of the project and all increment consuming sources within 25 km of the project. Existing air quality modeling values were added to the modeled PM_{10} and $PM_{2.5}$ impacts to account for distant surrounding sources. EPA MERPs guidance was used to estimate the PM2.5 secondary formation and the estimated impacts were added to the modeled and monitored impacts. Receptors for the cumulative modeling consisted of those receptors found to be above the modeling significant impact level in the significant impact analysis. Estimates of PM2.5 secondary formation were added to the significant impact analysis to determine receptors to retain for the cumulative analysis. Nearby and distant surrounding sources impacts for SO₂, NO_x and CO were accounted for in the analysis by using existing air quality monitoring in the area.

The modeled impacts combined with the existing air quality in the area were found to be compliant with the ambient air quality standards, i.e., NAAQS, NMAAQS and PSD increment. The proposed project will not cause or contribute to an exceedance of the ambient air quality standards, the NMED modeling requirements have been satisfied and the permit can be issued.