DieselNet: Emission Standards

United States: Nonroad Diesel Engines

Background
Applicability
Tier 1-3 Emission Standards
Tier 4 Emission Standards
Test Cycles and Fuels
Environmental Benefit and Cost

Background

Tier 1-3 Standards. The first federal standards (Tier 1) for new nonroad (or off-road) diesel engines were adopted in 1994 for engines over 37 kW (50 hp), to be phased-in from 1996 to 2000. In 1996, a Statement of Principles (SOP) pertaining to nonroad diesel engines was signed between EPA, California ARB and engine makers (including Caterpillar, Cummins, Deere, Detroit Diesel, Deutz, Isuzu, Komatsu, Kubota, Mitsubishi, Navistar, New Holland, Wis-Con, and Yanmar). On August 27, 1998, the EPA signed the final rule reflecting the provisions of the SOP ^[2787]. The 1998 regulation introduced Tier 1 standards for equipment under 37 kW (50 hp) and increasingly more stringent Tier 2 and Tier 3 standards for all equipment with phase-in schedules from 2000 to 2008. The Tier 1-3 standards are met through advanced engine design, with no or only limited use of exhaust gas aftertreatment (oxidation catalysts). Tier 3 standards for NOx+HC are similar in stringency to the 2004 standards for highway engines, however Tier 3 standards for PM were never adopted.

Tier 4 Standards. On May 11, 2004, EPA signed the final rule introducing Tier 4 emission standards, which are phased-in over the period of 2008-2015 ^[2786]. The Tier 4 standards require that emissions of PM and NOx be further reduced by about 90%. Such emission reductions can be

Emission Standards: USA: Nonroad Diesel Engines

achieved through the use of control technologies—including advanced exhaust gas aftertreatment—similar to those required by the 2007-2010 standards for highway engines.

Nonroad Diesel Fuel. At the Tier 1-3 stage, the sulfur content in nonroad diesel fuels was not limited by environmental regulations. The oil industry specification was 0.5% (wt., max), with the average in-use sulfur level of about 0.3% = 3,000 ppm. To enable sulfur-sensitive control technologies in Tier 4 engines—such as catalytic particulate filters and NOx adsorbers—the EPA mandated reductions in sulfur content in nonroad diesel fuels, as follows:

- 500 ppm effective June 2007 for nonroad, locomotive and marine (NRLM) diesel fuels
- 15 ppm (ultra-low sulfur diesel) effective June 2010 for nonroad fuel, and June 2012 for locomotive and marine fuels

California. In most cases, federal nonroad regulations also apply in California, whose authority to set emission standards for new nonroad engines is limited. The federal Clean Air Act Amendments of 1990 (CAA) preempt California's authority to control emissions from new farm and construction equipment under 175 hp [CAA Section 209(e)(1)(A)] and require California to receive authorization from the federal EPA for controls over other off-road sources [CAA Section 209(e)(2)(A)].

The US nonroad emission standards are harmonized to a certain degree with European nonroad emission standards.

EPA emission standards for nonroad diesel engines are published in the US Code of Federal Regulations, Title 40, Part 89. Regulatory text, fact sheets and related documents are available from the EPA web site ^[2788].

Applicability

The nonroad standards cover mobile nonroad diesel engines of all sizes used in a wide range of construction, agricultural and industrial equipment. The EPA definition of the nonroad engine is based on the principle of mobility/portability, and includes engines installed on (1) self-propelled equipment, (2) on equipment that is propelled while performing its function, or (3) on equipment

that is portable or transportable, as indicated by the presence of wheels, skids, carrying handles, dolly, trailer, or platform ^[40 CFR 1068.30]. In other words, nonroad engines are all internal combustion engines except motor vehicle (highway) engines, stationary engines (or engines that remain at one location for more than 12 months), engines used solely for competition, or engines used in aircraft.

Effective May 14, 2003, the definition of nonroad engines was changed to also include all diesel powered engines—including stationary ones—used in agricultural operations in California. This change applies only to engines sold in the state of California; stationary engines sold in other states are not classified as nonroad engines.

The nonroad diesel emission regulations are not applicable to all nonroad diesel engines. Exempted are the following nonroad engine categories:

- Engines used in railway locomotives; those are subject to separate EPA regulations.
- Engines used in marine vessels, also covered by separate EPA regulations. Marine engines below 37 kW (50 hp) are subject to Tier 1-2—but not Tier 4—nonroad standards. Certain marine engines that are exempted from marine standards may be subject to nonroad regulations.
- Engines used in underground mining equipment. Diesel emissions and air quality in mines are regulated by the Mine Safety and Health Administration (MSHA).
- Hobby engines (below 50 cm³ per cylinder)

Examples of regulated applications include farm tractors, excavators, bulldozers, wheel loaders, backhoe loaders, road graders, diesel lawn tractors, logging equipment, portable generators, skid steer loaders, or forklifts.

A new definition of a compression-ignition (diesel) engine was introduced in the 1998 rule, consistent with definitions established for highway engines. The definition focuses on the engine cycle, rather than the ignition mechanism, with the presence of a throttle as an indicator to distinguish between diesel-cycle and otto-cycle operation. Regulating power by controlling the fuel supply in lieu of a throttle corresponds with lean combustion and diesel-cycle operation. This language allows the possibility that a natural gas-fueled engine equipped with a spark plug is considered a compression-ignition engine.

Tier 1-3 Emission Standards

The 1998 nonroad engine regulations were structured as a 3-tiered progression. Each tier involved a phase-in (by horsepower rating) over several years. Tier 1 standards were phased-in from 1996 to 2000. The more stringent Tier 2 standards took effect from 2001 to 2006, and yet more stringent Tier 3 standards phased-in from 2006 to 2008 (Tier 3 standards applied only for engines from 37-560 kW).

Tier 1-3 emissions standards are listed in Table 1. Nonroad regulations use the metric system of units, with regulatory limits expressed in grams of pollutant per kWh.

Engine Power	Tier	Year	CO	HC	NMHC+NOx	NOx	РМ
kW < 8	Tier 1	2000	8.0 (6.0)	-	10.5 (7.8)	-	1.0 (0.75)
(hp < 11)	Tier 2	2005	8.0 (6.0)	-	7.5 (5.6)	-	0.8 (0.6)
8 ≤ kW < 19	Tier 1	2000	6.6 (4.9)	-	9.5 (7.1)	-	0.8 (0.6)
(11 ≤ hp < 25)	Tier 2	2005	6.6 (4.9)	-	7.5 (5.6)	-	0.8 (0.6)
19≤ kW < 37	Tier 1	1999	5.5 (4.1)	-	9.5 (7.1)	-	0.8 (0.6)
(25 ≤ hp < 50)	Tier 2	2004	5.5 (4.1)	-	7.5 (5.6)	-	0.6 (0.45)
37 ≤ kW < 75	Tier 1	1998	-	-	-	9.2 (6.9)	-
(50 ≤ hp < 100)	Tier 2	2004	5.0 (3.7)	-	7.5 (5.6)	-	0.4 (0.3)
	Tier 3	2008	5.0 (3.7)	-	4.7 (3.5)	-	-†
75 ≤ kW < 130	Tier 1	1997	-	-	-	9.2 (6.9)	-
(100 ≤ hp < 175)	Tier 2	2003	5.0 (3.7)	-	6.6 (4.9)	-	0.3 (0.22)
	Tier 3	2007	5.0 (3.7)	-	4.0 (3.0)	-	-†
130 ≤ kW < 225	Tier 1	1996	11.4 (8.5)	1.3 (1.0)	-	9.2 (6.9)	0.54 (0.4)
(175 ≤ hp < 300)	Tier 2	2003	3.5 (2.6)	-	6.6 (4.9)	-	0.2 (0.15)
	Tier 3	2006	3.5 (2.6)	-	4.0 (3.0)	-	-†
225 ≤ kW < 450	Tier 1	1996	11.4 (8.5)	1.3 (1.0)	-	9.2 (6.9)	0.54 (0.4)
(300 ≤ hp < 600)		•	•			-	·1

Table 1EPA Tier 1-3 nonroad diesel engine emission standards, g/kWh (g/bhp·hr)

https://dieselnet.com/standards/us/nonroad.php

Emission Standards: USA: Nonroad Diesel Engines

Engine Power	Tier	Year	CO	HC	NMHC+NOx	NOx	РМ	
	Tier 2	2001	3.5 (2.6)	-	6.4 (4.8)	-	0.2 (0.15)	
	Tier 3	2006	3.5 (2.6)	-	4.0 (3.0)	-	-†	
450 ≤ kW < 560	Tier 1	1996	11.4 (8.5)	1.3 (1.0)	-	9.2 (6.9)	0.54 (0.4)	
(600 ≤ hp < 750)	Tier 2	2002	3.5 (2.6)	-	6.4 (4.8)	-	0.2 (0.15)	
	Tier 3	2006	3.5 (2.6)	-	4.0 (3.0)	-	-†	
kW ≥ 560 (hp ≥ 750)	Tier 1	2000	11.4 (8.5)	1.3 (1.0)	-	9.2 (6.9)	0.54 (0.4)	
	Tier 2	2006	3.5 (2.6)	-	6.4 (4.8)	-	0.2 (0.15)	
† Not adopted, engines must meet Tier 2 PM standard.								

Manufacturers who signed the 1998 Consent Decrees with the EPA may have been required to meet the Tier 3 standards one year ahead of schedule (i.e. beginning in 2005).

Voluntary, more stringent emission standards that manufacturers could use to earn a designation of "Blue Sky Series" engines (applicable to Tier 1-3 certifications) are listed in Table 2.

	T	1
Rated Power (kW)	NMHC+NOx	РМ
kW < 8	4.6 (3.4)	0.48 (0.36)
8 ≤ kW <19	4.5 (3.4)	0.48 (0.36)
19 ≤ kW <37	4.5 (3.4)	0.36 (0.27)
37 ≤ kW < 75	4.7 (3.5)	0.24 (0.18)
75 ≤ kW <130	4.0 (3.0)	0.18 (0.13)
130 ≤ kW < 560	4.0 (3.0)	0.12 (0.09)
kW ≥ 560	3.8 (2.8)	0.12 (0.09)

Table 2EPA voluntary emission standards for nonroad dieselengines, g/kWh (g/bhp·hr)

Engines of all sizes had to meet smoke standards of 20/15/50% opacity at acceleration/lug/peak modes, respectively.

The regulations included several other provisions, such as averaging, banking and trading of emission credits and maximum "family emission limits" (FEL) for emission averaging.

Tier 4 Emission Standards

The Tier 4 emission standards—phased-in from 2008 through 2015—introduce substantial reductions of NOx (for engines above 56 kW) and PM (above 19 kW), as well as more stringent HC limits. CO emission limits remain unchanged from the Tier 2-3 stage.

Engines up to 560 kW. Tier 4 emission standards for engines up to 560 kW are listed in Table 3.

Engine Power	Year	СО	NMHC	NMHC+NO _x	NO _x	РМ
kW < 8 (hp < 11)	2008	8.0 (6.0)	-	7.5 (5.6)	-	0.4 ^a (0.3)
8 ≤ kW < 19 (11 ≤ hp < 25)	2008	6.6 (4.9)	-	7.5 (5.6)	-	0.4 (0.3)
19 ≤ kW < 37	2008	5.5 (4.1)	-	7.5 (5.6)	-	0.3 (0.22)
(25 ≤ hp < 50)	2013	5.5 (4.1)	-	4.7 (3.5)	-	0.03 (0.022)
37 ≤ kW < 56 (50 ≤ hp < 75)	2008	5.0 (3.7)	-	4.7 (3.5)	-	0.3 ^b (0.22)
	2013	5.0 (3.7)	-	4.7 (3.5)	-	0.03 (0.022)
56 ≤ kW < 130 (75 ≤ hp < 175)	2012-2014 ^c	5.0 (3.7)	0.19 (0.14)	-	0.40 (0.30)	0.02 (0.015)
130 ≤ kW ≤ 560 (175 ≤ hp ≤ 750)	2011-2014 ^d	3.5 (2.6)	0.19 (0.14)	-	0.40 (0.30)	0.02 (0.015)

Table 3
Tier 4 emission standards—Engines up to 560 kW, g/kWh (g/bhp-hr)

a - hand-startable, air-cooled, DI engines may be certified to Tier 2 standards through 2009 and to an optional PM standard of 0.6 g/kWh starting in 2010

b - 0.4 g/kWh (Tier 2) if manufacturer complies with the 0.03 g/kWh standard from 2012

c - PM/CO: full compliance from 2012; NOx/HC: Option 1 (if banked Tier 2 credits used)—50% engines must comply in 2012-2013; Option 2 (if no Tier 2 credits claimed)—25% engines must comply in 2012-2014, with full compliance from 2014.12.31

d - PM/CO: full compliance from 2011; NOx/HC: 50% engines must comply in 2011-2013

In engines of 56-560 kW rated power, the NOx and HC standards are phased-in over a few year period, as indicated in the notes to Table 3. The initial standards (PM compliance) are sometimes referred to as the 'interim Tier 4' (or 'Tier 4i'), 'transitional Tier 4' or 'Tier 4 A', while the final standards (NOx/HC compliance) are sometimes referred to as 'Tier 4 B'.

As an alternative to introducing the required percentage of Tier 4 compliant engines, manufacturers may certify all their engines to an *alternative* NOx limit in each model year during the phase-in period. These alternative NOx standards are:

- Engines 56-130 kW:
 - Option 1: NOx = 2.3 g/kWh = 1.7 g/bhp-hr (Tier 2 credits used to comply, MY 2012-2013)
 - Option 2: NOx = 3.4 g/kWh = 2.5 g/bhp-hr (no Tier 2 credits claimed, MY 2012-2014)
- Engines 130-560 kW: NOx = 2.0 g/kWh = 1.5 g/bhp-hr (MY 2011-2013)

Engines Above 560 kW. Tier 4 emission standards for engines above 560 kW are listed in Table 4. The 2011 standards are sometimes referred to as 'transitional Tier 4', while the 2015 limits represent final Tier 4 standards.

Year	Category	CO	NMHC	NO _x	РМ
2011	Generator sets > 900 kW	3.5 (2.6)	0.40 (0.30)	0.67 (0.50)	0.10 (0.075)
	All engines except gensets > 900 kW	3.5 (2.6)	0.40 (0.30)	3.5 (2.6)	0.10 (0.075)
2015	Generator sets	3.5 (2.6)	0.19 (0.14)	0.67 (0.50)	0.03 (0.022)
	All engines except gensets	3.5 (2.6)	0.19 (0.14)	3.5 (2.6)	0.04 (0.03)

 Table 4

 Tier 4 emission standards—Engines above 560 kW, g/kWh (g/bhp-hr)

Other Provisions. The Tier 4 regulation and later amendments include a number of additional provisions:

- Smoke Opacity—Existing Tier 2-3 smoke opacity standards and procedures continue to apply in some engines. Exempted from smoke emission standards are engines certified to PM emission standards at or below 0.07 g/kWh (because an engine of such low PM level has inherently low smoke emission).
- Crankcase Ventilation—The Tier 4 regulation does not require closed crankcase ventilation in nonroad engines. However, in engines with open crankcases, crankcase emissions must be

measured and added to exhaust emissions in assessing compliance.

- DEF Refill Interval—For SCR-equipped nonroad diesel engines, a minimum <u>DEF</u> (urea solution) refill interval is defined as at least as long (in engine-hours) as the vehicle's fuel capacity ^[3408].
- Ammonia Emissions—While ammonia emissions are unregulated, the EPA recommends that ammonia slip should be below 10 ppm average over the applicable test cycles ^[3693].
- Emergency Operation—To facilitate the use of certain nonroad engines in temporary emergency situations, the engines can be equipped with an <u>AECD</u> to override performance inducements related to the emission control system—for example, to allow engine operation without urea in the SCR system during an emergency ^[3408]. This flexibility is intended primarily for engines used in construction equipment and portable equipment used for temporary power generation and flood control.
- ABT Program—Similarly to earlier standards, the Tier 4 regulation includes such provisions as averaging, banking and trading of emission credits and FEL limits for emission averaging.

Test Cycles and Fuels

Nonroad engine emissions are measured on a steady-state test cycle that is equivalent to the ISO 8178 C1, 8-mode steady-state test cycle. Other ISO 8178 test cycles are allowed for selected applications, such as constant-speed engines (D2 5-mode cycle), variable-speed engines rated under 19 kW (G2 cycle), and marine engines (E3 cycle).

Transient Testing. Tier 4 standards have to be met over both the steady-state test and the nonroad transient cycle, NRTC. The transient testing requirements started with MY 2013 for engines below 56 kW, MY 2012 for 56-130 kW, and MY 2011 for 130-560 kW engines. Engines above 560 kW are not tested on the transient test. Also constant-speed, variable-load engines of any power category are not subject to transient testing. The NRTC protocol includes a cold start test. The cold start emissions are weighted at 5% and hot start emissions are weighted at 95% in calculating the final result.

Tier 4 nonroad engines must also meet not-to-exceed standards (NTE), which are measured without reference to any specific test schedule. The NTE standards became effective in 2011 for

engines above 130 kW; in 2012 for 56-130 kW; and in 2013 for engines below 56 kW. In most engines, the NTE limits are set at 1.25 times the regular standard for each pollutant. In engines certified to NOx standards below 2.5 g/kWh or PM standards below 0.07 g/kWh, the NTE multiplier is 1.5. The NTE standards apply to engines at the time of certification, as well as in use throughout the useful life of the engine. The purpose of the added testing requirements is to prevent the possibility of "defeating" the test cycle by electronic engine controls.

Certification Fuels. Fuels with sulfur levels no greater than 0.2 wt% (2,000 ppm) were used for certification testing of Tier 1-3 engines. From 2011, all Tier 4 engines are tested using fuels of 7-15 ppm sulfur content. The transition from the 2000 ppm S specification to the 7-15 ppm specification took place in the 2006-2010 period (see Certification Diesel Fuel).

A change from measuring total hydrocarbons to nonmethane hydrocarbons (NMHC) has been introduced in the 1998 rule. Since there is no standardized EPA method for measuring methane in diesel engine exhaust, manufacturers can either use their own procedures to analyze nonmethane hydrocarbons or measure total hydrocarbons and subtract 2% from the measured hydrocarbon mass to correct for methane.

Environmental Benefit and Cost

1998 Regulation

At the time of signing the 1998 rule, the EPA estimated that by 2010 NO_x emissions would be reduced by about a million tons per year, the equivalent of taking 35 million passenger cars off the road.

The costs of meeting the emission standards were expected to add under 1% to the purchase price of typical new nonroad diesel equipment, although for some equipment the standards may cause price increases on the order of 2-3%. The program was expected to cost about \$600 per ton of NO_x reduced.

Tier 4 Regulation

When the full inventory of older nonroad engines are replaced by Tier 4 engines, annual emission reductions are estimated at 738,000 tons of NOx and 129,000 tons of PM. By 2030,

12,000 premature deaths would be prevented annually due to the implementation of the proposed standards.

The estimated costs for added emission controls for the vast majority of equipment was estimated at 1-3% as a fraction of total equipment price. For example, for a 175 hp bulldozer that costs approximately \$230,000 it would cost up to \$6,900 to add the advanced emission controls and to design the bulldozer to accommodate the modified engine.

EPA estimated that the average cost increase for 15 ppm S fuel would be 7 cents per gallon. This figure would be reduced to 4 cents by anticipated savings in maintenance costs due to low sulfur diesel.

Nonroad Compression-I nition nines n

	Rated Power	Tier	Model ⊡ear	NMHC	NMHC NO WW-hr	NO WW-hr	PM □□□□W-hr□	CO ⅢⅢW-hr□	Smo⊡e ª ⊡Percenta⊡e⊡	□sef□l Life ⊡ho□rs ⊡ears □ ^b	Warrant Period ho rs ears b
		1	2000- 2004	-	10.5	-	1.0	8.0		3,000/5	1,500/2
	kW < 8	2	2005- 2007	-	7.5	-	0.80	8.0			
		4	2008+	-	7.5	-	0.40 ^c	8.0			
		1	2000- 2004	-	9.5	-	0.80	6.6		3,000/5	
	8 ≤ kW < 19	2	2005- 2007	-	7.5	-	0.80	6.6			1,500/2
		4	2008+	-	7.5	-	0.40	6.6			
		1	1999- 2003	-	9.5	-	0.80	5.5		5,000/7 d	
	19 ≤ kW < 37	2	2004- 2007	-	7.5	-	0.60	5.5			3,000/5 °
	- 01	4	2008- 2012	-	7.5	-	0.30	5.5			
			2013+	-	4.7	-	0.03	5.5	_		
		1	1998- 2003	-	-	9.2	-	-	20/15/50		
	37 ≤ kW < 56	2	2004- 2007	-	7.5	-	0.40	5.0			
Federal		3 ^f	2008- 2011	-	4.7	-	0.40	5.0			
reactar		4 (Option 1) □	2008- 2012	-	4.7	-	0.30	5.0			
		4 (Option 2) □	2012	-	4.7	-	0.03	5.0			
		4	2013+	-	4.7	-	0.03	5.0			
		1	1998- 2003	-	-	9.2	-	-			
	50 41144	2	2004- 2007	-	7.5	-	0.40	5.0		8,000/10	3,000/5
	56 ≤ kW < 75	3	2008- 2011	-	4.7	-	0.40	5.0			
		4	2012- 2013 ^h	-	4.7	-	0.02	5.0			
			2014+ ⁱ	0.19	-	0.40	0.02	5.0			
		1	1997- 2002	-	-	9.2	-	-			
	75 ~ 1000	2	2003- 2006	-	6.6	-	0.30	5.0			
	75 ≤ kW < 130	3	2007- 2011	-	4.0	-	0.30	5.0			
		4	2012- 2013 ^h	-	4.0	-	0.02	5.0			
			2014+	0.19	-	0.40	0.02	5.0			

	Rated Power ⊡W⊡	Tier	Model ⊡ear	NMHC	NMHC NO W-hr	NO⊡ ⊞W-hr	PM ⊡⊡W-hr	CO ⅢⅢW-hr□	Smo⊡e ª ⊡Percenta⊡e⊡	□sef□l Life tho□rs ⊡ears □ ^b	Warrant Period ho rs ears b
		1	1996- 2002	1.3 🗆	-	9.2	0.54	11.4			
		2	2003- 2005	-	6.6	-	0.20	3.5			
	130 ≤ kW < 225	3	2006- 2010	-	4.0	-	0.20	3.5			
		4	2011- 2013 ^h	-	4.0	-	0.02	3.5			
			2014+ ⁱ	0.19	-	0.40	0.02	3.5			
		1	1996- 2000	1.3 🗆	-	9.2	0.54	11.4		8,000/10	3,000/5
		2	2001- 2005	-	6.4	-	0.20	3.5			
	225 ≤ kW < 450	3	2006- 2010	-	4.0	-	0.20	3.5	-		
		4	2011- 2013 ^h	-	4.0	-	0.02	3.5			
			2014+ ⁱ	0.19	-	0.40	0.02	3.5			
		1	1996- 2001	1.3 🗆	-	9.2	0.54	11.4	20/15/50		
Federal		2	2002- 2005	-	6.4	-	0.20	3.5			
	450 ≤ kW < 560	3	2006- 2010	-	4.0	-	0.20	3.5			
		4	2011- 2013 ^h	-	4.0	-	0.02	3.5			
			2014+ ⁱ	0.19	-	0.40	0.02	3.5			
		1	2000- 2005	1.3 🗆	-	9.2	0.54	11.4			
	560 ≤ kW	2	2006- 2010	-	6.4	-	0.20	3.5			
	< 900	4	2011- 2014	0.40	-	3.5	0.10	3.5			
			2015+ ⁱ	0.19	-	3.5 🗆	0.04 ^I	3.5			
		1	2000- 2005	1.3 🗆	-	9.2	0.54	11.4	_		
	kW > 900	2	2006- 2010	-	6.4	-	0.20	3.5			
		4	2011- 2014	0.40	-	3.5 🗆	0.10	3.5			
			2015+ ⁱ	0.19	-	3.5 🗆	0.04 ^I	3.5			

Notes on followin □ pa □e.

Notes

- For Tier 1, 2, and 3 standards, exhaust emissions of nitrogen oxides (NOx), carbon monoxide (CO), hydrocarbons (HC), and non-methane hydrocarbons (NMHC) are measured using the procedures in 40 Code of Federal Regulations (CFR) Part 89 Subpart E. For Tier 1, 2, and 3 standards, particulate matter (PM) exhaust emissions are measured using the California Regulations for New 1996 and Later Heavy-Duty Off-Road Diesel Cycle Engines.
- For Tier 4 standards, engines are tested for transient and steady-state exhaust emissions using the procedures in 40 CFR Part 1039 Subpart F. Transient standards do not apply to engines below 37 kilowatts (kW) before the 2013 model year, constant-speed engines, engines certified to Option 1, and engines above 560 kW.
- Tier 2 and later model naturally aspirated nonroad engines shall not discharge crankcase emissions into the atmosphere unless these emissions are permanently routed into the exhaust. This prohibition does not apply to engines using turbochargers, pumps, blowers, or superchargers.
- In lieu of the Tier 1, 2, and 3 standards for NOX, NMHC + NOX, and PM, manufacturers may elect to participate in the averaging, banking, and trading (ABT) program described in 40 CFR Part 89 Subpart C.
- a Smoke emissions may not exceed 20 percent during the acceleration mode, 15 percent during the lugging mode, and 50 percent during the peaks in either mode. Smoke emission standards do not apply to single-cylinder engines, constant-speed engines, or engines certified to a PM emission standard of 0.07 grams per kilowatt-hour (g/kW-hr) or lower. Smoke emissions are measured using procedures in 40 CFR Part 86 Subpart I.
- **b** Useful life and warranty period are expressed hours and years, whichever comes first.
- c Hand-startable air-cooled direct injection engines may optionally meet a PM standard of 0.60 g/kW-hr. These engines may optionally meet Tier 2 standards through the 2009 model years. In 2010 these engines are required to meet a PM standard of 0.60 g/kW-hr.
- **d** Useful life for constant speed engines with rated speed 3,000 revolutions per minute (rpm) or higher is 5 years or 3,000 hours, whichever comes first.

- e Warranty period for constant speed engines with rated speed 3,000 rpm or higher is 2 years or 1,500 hours, whichever comes first.
- f These Tier 3 standards apply only to manufacturers selecting Tier 4 Option 2. Manufacturers selecting Tier 4 Option 1 will be meeting those standards in lieu of Tier 3 standards.
- A manufacturer may certify all their engines to either Option 1 or Option 2 sets of standards starting in the indicated model year. Manufacturers selecting Option 2 must meet Tier 3 standards in the 2008-2011 model years.
- h These standards are phase-out standards. Not more than 50 percent of a manufacturer's engine production is allowed to meet these standards in each model year of the phase out period. Engines not meeting these standards must meet the final Tier 4 standards.
- These standards are phased in during the indicated years. At least 50 percent of a manufacturer's engine production must meet these standards during each year of the phase in. Engines not meeting these standards must meet the applicable phase-out standards.
- □ For Tier 1 engines the standard is for total hydrocarbons.
- □ The NOx standard for generator sets is 0.67 g/kW-hr.
- I The PM standard for generator sets is 0.03 g/kW-hr.

Citations Code of Federal Re lations CFR citations

- 40 CFR 89.112 = Exhaust emission standards
- 40 CFR 1039.101 = Exhaust emission standards for after 2014 model year
- 40 CFR 1039.102 = Exhaust emission standards for model year 2014 and earlier
- 40 CFR 1039 Subpart F = Exhaust emissions transient and steady state test procedures
- 40 CFR 86 Subpart I = Smoke emission test procedures
- 40 CFR 1065 = Test equipment and emissions measurement procedures

Image shown may not reflect actual engine

FEATURES

Emissions

Meets Tier 3, Stage IIIA emission requirements. Tier 3 refers to EPA (U.S.) standards. Stage IIIA refers to European standards.

Worldwide Supplier Capability

Caterpillar

- Casts engine blocks, heads, and cylinder liners
- Machines critical components
- Assembles complete engine

Ownership of these manufacturing processes enables Caterpillar to produce high quality, dependable product.

Factory-designed systems built at Caterpillar ISO 9001:2000 certified facilities.

Testing

Prototype testing on every model:

- proves computer design
- verifies system torsional stability
- tests functionality on every model

Every Caterpillar engine is dynamometer tested under full load to ensure proper engine performance.

Industrial Engine 205-280 bkW/ 275-375 bhp

C9 ACERT®

1800-2200 rpm

CATERPILLAR[®] ENGINE SPECIFICATIONS

I-6, 4-Stroke-Cycle Diesel Bore (mm, in) Stroke (mm, in) Displacement Aspiration Compression Ratio Rotation (from flywheel end) Cooling System Lube Oil System (refill) Weight, Net Dry (approximate kg, lb)

112.0 mm, 4.41 in. 149.0 mm, 5.87 in. 8.8 liters, 537 cu.in. Turbocharged/ATAAC 16:3 Counterclockwise 13.9 liters, 3.7 gallons 32.0 liters, 8.5 gallons 776 kg, 1711 lb.

Full Range of Attachments

Wide range of bolt-on system expansion attachments, factory designed and tested

Unmatched Product Support Offered Through Worldwide Caterpillar Dealer Network

More than 1,500 dealer outlets

Caterpillar factory-trained dealer technicians service every aspect of your industrial engine 99.7% of parts orders filled within 24 hours worldwide

Caterpillar parts and labor warranty Preventive maintenance agreements available for repair before failure options

Scheduled Oil Sampling program matches your oil sample against Caterpillar set standards to determine:

- internal engine component condition
- presence of unwanted fluids
- presence of combustion by-products

Web Site

For all your industrial power requirements, visit www.cat-industrial.com.

Industrial Engine

205-280 bkW/ 275-375 bhp

STANDARD ENGINE EQUIPMENT

Air Inlet System

Air to air aftercooled (ATAAC) Turbocharged

Control System

Electronic governing, PTO speed control Programmable ratings Cold mode start strategy Automatic altitude compensation Power compensation for fuel temperature Programmable low and high idle and total engine limit Electronic diagnostics and fault logging Engine monitoring system J1939 Broadcast (diagnostic and engine status) ADEM[™] A4

Cooling System

Thermostats and housing, vertical outlet Jacket water pump, centrifugal Water pump, inlet

Exhaust System

Exhaust manifold, dry Optional exhaust outlet

Flywheels and Flywheel Housing

SAE No. 1 Flywheel housing

C9 ACERT®

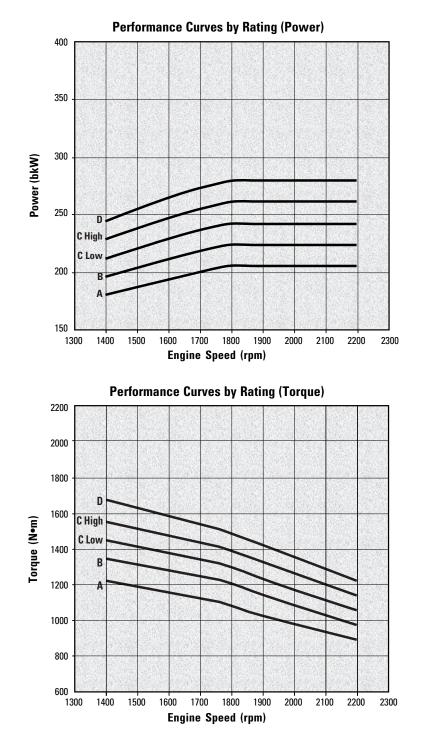
Fuel System

HEUI™ injection Fuel filter, secondary (2 micron high performance) Fuel transfer pump Fuel priming pump ACERT[®] Technology

Lube System

Crankcase breather Oil cooler Oil filler Oil filter Oil pan front sump Oil dipstick Oil pump (gear driven)

General


Paint, Caterpillar Yellow Vibration damper Lifting eyes

Industrial Engine

C9 ACERT®

205-280 bkW/ 275-375 bhp

PERFORMANCE CURVES

DIMENSIONS

Length	mm (in)	1198 (47)
Width	mm (in)	819 (32)
Height	mm (in)	1002 (39)

Industrial Engine

C9 ACERT®

205-280 bkW/ 275-375 bhp

INDUSTRIAL RATINGS AND CONDITIONS

IND - A (Continuous) Continuous heavy duty service where the engine is operated at maximum power and speed up to 100% of the time without interruption or load cycling.

IND - B For service where power and/or speed are cyclic (time at full load not to exceed 80%).

IND - C (Intermittent) Intermittent service where maximum power and/or speed are cyclic (time at full load not to exceed 50%).

IND - D For service where maximum power is required for periodic overloads.

Engine Performance Engine performance is corrected to inlet air standard conditions of 99 kPa (29.31 in Hg) dry barometer and 25° C (77° F) temperature. These values correspond to the standard atmospheric pressure and temperature as shown in SAE J1995.

Performance measured using a standard fuel with fuel gravity of 35 degrees API having a lower heating value of 42 780 kJ/kg (18,390 Btu/lb) when used at 29° C (84.2° F) where the density is 838.9 g/liter (7.001 lb/U.S. gal).

The corrected performance values shown for Caterpillar engines will approximate the values obtained when the observed performance data is corrected to SAE J1995, ISO 3046-2 and 8665 and 2288 and 9249 and 1585, EEC 80/1269 and DIN 70020 standard reference conditions.

Units ENV-101 and ENV-111

4045TF250

4.5L Industrial Diesel Engine

- PowerTech[™]
- 86 93 kW (115 125 hp)

Contact a Distributor

Diesel Engine Technology > Industrial PowerSource Magazine >

Features

Collapse All

- Dynamically balanced crankshaft

• Crankshafts are formed from nodular iron

Forged-steel connecting rods

- Unique 45-degree design permits use of larger crankshaft connecting-rod bearings for increased durability
- Self-adjusting poly-vee fan drive
 - Self-adjusting, eight-groove, poly-vee fan drive provides multiple fan drive ratios and fan heights that can be matched to specific application requirements
 - Poly-vee design provides more than twice the drive capacity of comparable vee-belts

- Replaceable wet-type cylinder liners

- Provides excellent heat dissipation
- Precision machined for long life

Either-side service

• Engine installation and maintenance simplified and convenient by providing dipstick and oil filter options on both sides of the engine

- Standard gear auxiliary drive

• Standard gear auxiliary drive produces up to 50 hp (37 kW) for gear-driven accessories

- Mounting points

• Standard front and side mounting points provide easy installation and application flexibility

- Optional engine-balancer shafts

• Provides smooth engine operation

Show Less

Specifications

Emissions Certifications

Non-Emissions Certified

General engine data

Model	4045TF250
Number of cylinders	4
Displacement L (cu in)	4.5 (275)
Bore and Stroke mm (in)	106 x 127 (4.17 x 5.00)
Compression Ratio	17.0:1
Engine Type	In-line, 4-Cycle
Aspiration	Turbocharged
Length – mm (in)	860 (33.9)
Width mm (in)	612 (24.1)
Height mm (in)	994 (39.1)
Weight, dry – kg (lb)	396 (873)

Performance data range

Intermittent - Rated

Intermittent - Peak power

Intermittent - Peak torque

Intermittent - Torque rise

4045TF250 | Industrial Diesel Engine | John Deere US

85-93 kW (114-125 hp) @2200-2400 rpm

85-93 kW (114-125 hp) @2200-2400 rpm

445-446 N·m (328-329 ft-lb) @1400-1500 rpm

NA

Show Less

Drivetrain Components	Accessories	Parts
Pump Drives	Engine Accessories Brochure	Engine Parts
Transmissions		
Axles		
Planetary Gear Drives		
Vehicle Electrification		

Resources

Confidence is Built In

Backed by a powerful support network

Engine Parts > Engine Support >

Warranty

Safety

Warranty & Prote ction Plans >

Register Your Eng ine or Drivetrain Component > Safety Tips & Mai ntenance >

Manuals

Manuals & Traini ng >

 This engine is certified to run on Diesel Fuel. This engine conforms to 2005

 U.S. EPA and California regulations for large non-road compression-ignition engines.

 Family No. 5JDX106.8082
 Displacement 4.51

 Engine Model 4045TF275B,C
 Displacement 4.51

 Power: 82 kW @2400 rpm, 86 kW @2500 rpm

 FEL 5.9 g/kW-hr NOx + NMHC
 Europe Family No. 5JDX106.8041

 EU No: e11*97/68FA*00/000XX*0424*00
 Europe Family No. 5JDX106.8041

 R521139
 IS00001 Resident

 For Engine Service and Parts Call 1-800-JD File
 File

PRODUCT SPECIFICATIONS FOR 3054C

POWER RATING	
Maximum Power	97 kW
Maximum Torque	500 Nm @ 1400 rpm
Rated Speed	2200-2400 rpm
Minimum Power	52 kW
EMISSION STANDARDS	
Emissions	U.S. EPA Tier 2 Equivalent, EU Stage II Equivalent
GENERAL	
Engine Configuration	Inline 4, 4-Stroke-Cycle Diesel
Bore	105 mm
Stroke	127 mm
Displacement	4.4
Compression Ratio	16.2:1
Aspiration	Naturally Aspirated (NA), Turbocharged (T) or Turbocharged Aftercooled (TA)
Combustion System	Direct Injection
Rotation from Flywheel End	Counterclockwise
Aftertreatment	-

ENGINE DIMENSIONS - APPROXIMATE

Width	620 mm
Height	810 mm
Weight - Net Dry - Basic Operating Engine Without Optional Attachments	306 kg

3054C STANDARD EQUIPMENT

AIR INLET SYSTEM

Inlet manifold with choice of inlets.

CONTROL SYSTEM

Alternator

Starter motor

Control Panel

Glow plug starting aid

COOLING SYSTEM

Top tank temperature 108° C (226° F) as standard to minimize cooling pack size

50:50 water glycol mix

FLYWHEELS AND FLYWHEEL HOUSING

SAE No. 3 flywheel housing

Flywheel and starter rings

FUEL SYSTEM

Fuel filter positions

LUBE SYSTEM

Lubricating oil filters and breathers

Oil filter positions

Lube oil sump

POWER TAKE OFF

SAE B Power Take Off (PTO)

GENERAL

Timing case and gear-driven auxiliaries

Belt-driven auxiliaries

Engine mountings

Gauges

Displays

Power and torque curve tailoring

Paint: Caterpillar yellow, with optional colors available at request

Shown with Optional Equipment

STANDARD EQUIPMENT

Air inlet manifold heater

- Cooling: belt-driven jacket water pump,
- oil cooler
- Crankcase breather
- Electronic Control Module (ECM)
- Electronic Data Link, SAE J1922, J1939, ATA J1587
- HEUI Fuel System (Hydraulically actuated, Electronically controlled Unit Injector)
- Flywheel and SAE No. 1 or SAE No. 2 housing
- Fuel: spin-on secondary filter, transfer pump,

hand priming pump

Governor: full-range, electronically controlled Lifting eyes

- Lubrication: gear-driven pump, front or rear sump, full flow spin-on filter, left-hand side oil level gauge (dipstick) Turbocharger
- Vibration damper

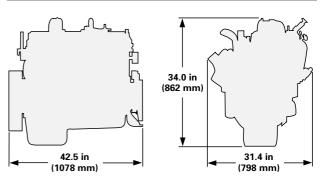
Diesel **3126B** Truck 175-330 hp

420-860 lb-ft @ 1440 rpm Peak Torque

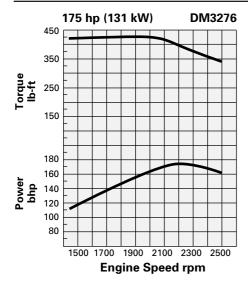
CATERPILLAR® ENGINE SPECIFICATIONS

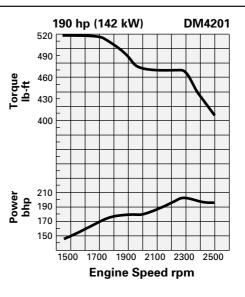
6-Cylinder, 4-Stroke-Cycle Diesel
Bore — in (mm) 4.33 (110)
Stroke — in (mm) 5.0 (127)
Displacement — cu in (L) 439 (7.2)
Aspiration ATAAC ¹
Compression Ratio
175-300 hp 16:1
Rotation (from flywheel end) Counterclockwise
Cooling System ² — gal (L) 3.5 (13.2)
Lube Oil System (refill) — gal (L) $4.75 (18.0)^3$
Weight, Net Dry (approx) — Ib (kg)
Including Flywheel 1295 (588)

¹ Air-to-Air AfterCooling


² Engine Only. Capacity will vary with radiator size and use of cab heater.

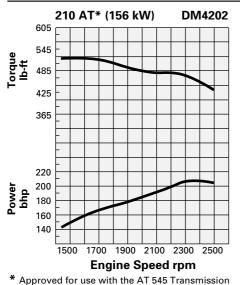
³ Optional 28L (7.5 gal) oil pan also available in some chassis.


ACCESSORY EQUIPMENT


Air compressor: gear driven, 0.37 m³/min (13.2 cfm) or 0.46 m³/min(16.5 cfm) Air conditioner compressor mounting Air inlet elbow Auxiliary brake compatible (exhaust) Ether starting aid/adaptation Fan drive mounting bracket Fan drive Front engine support Front PTO adapter Jacket water heater Rear power take-off Starting motor: 12 V or 24 V Turbocharger compressor outlet elbow Hydraulic pump drive, SAE A

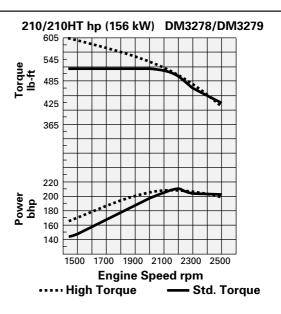
DIMENSIONS

PERFORMANCE CURVES

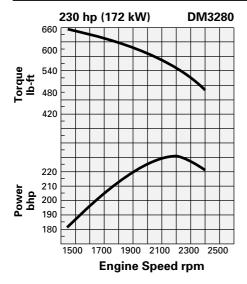


PERFORMANCE DATA

Max hp (kW)
Operating Range (rpm) 1440-2500 (1060)
Maximum Engine rpm 2640
Governed Speed rpm 2500
Peak Torque — Ib-ft (N•m) 420 (569)
Peak Torque rpm 1440
Torque Rise (%) (Gov. rpm)
Altitude Capability — ft (m) 10 000 (3050)

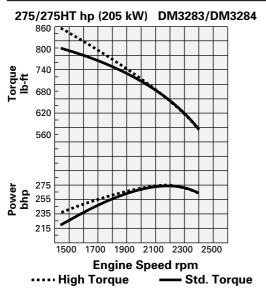

PERFORMANCE CURVES

PERFORMANCE DATA

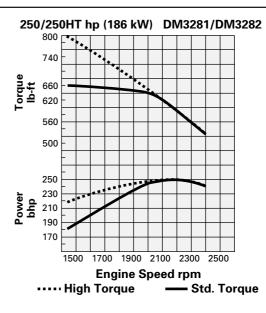

Max hp (kW)
Operating Range (rpm) 1440-2500 (1060)
Maximum Engine rpm 2640
Governed Speed rpm 2500
Peak Torque — Ib-ft (N•m) 520 (705)
Peak Torque rpm 1440
Torque Rise (%) (Gov. rpm)
Altitude Capability — ft (m) 10 000 (3050)

Max hp (kW) 207 (154)	
Advertised hp (kW) 190 (142)	
Operating Range (rpm) 1440-2500 (1060)	
Maximum Engine rpm 2640	
Governed Speed rpm 2500	
Peak Torque — Ib-ft (N•m) 520 (705)	
Peak Torque rpm 1440	
Torque Rise (%) (Gov. rpm)	
Altitude Capability — ft (m) 10 000 (3050)	

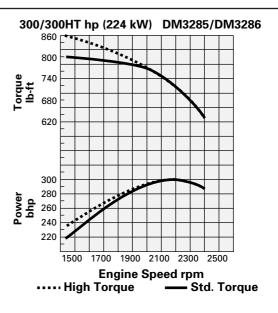
Max hp (kW)
Operating Range (rpm) 1440-2500 (1060)
Maximum Engine rpm 2640
Governed Speed rpm 2500
Peak Torque — Ib-ft (N•m) 520 (705)/605 (820)
Peak Torque rpm 1440
Torque Rise (%) (Gov. rpm)
Altitude Capability — ft (m) 10 000 (3050)


PERFORMANCE CURVES

PERFORMANCE DATA

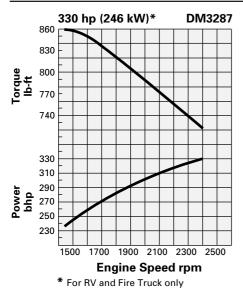

Max hp (kW)
Operating Range (rpm) 1440-2400 (960)
Maximum Engine rpm 2640
Governed Speed rpm 2400
Peak Torque — Ib-ft (N•m) 660 (895)
Peak Torque rpm 1440
Torque Rise (%) (Gov. rpm)
Altitude Capability — ft (m) 10 000 (3050)

PERFORMANCE CURVES

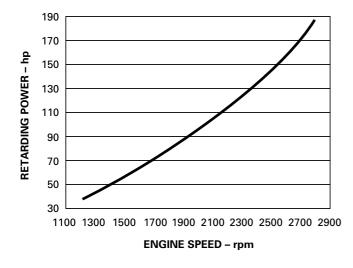


PERFORMANCE DATA

Max hp (kW)
Operating Range (rpm) 1440-2400 (960)
Maximum Engine rpm 2640
Governed Speed rpm 2400
Peak Torque — Ib-ft (N•m) 800 (1085)/860 (1166)
Peak Torque rpm 1440
Torque Rise (%) (Gov. rpm) 39/49
Altitude Capability — ft (m) 10 000 (3050)



Max hp (kW))
Operating Range (rpm) 1440-2400 (960)	
Maximum Engine rpm	
Governed Speed rpm 2400)
Peak Torque — Ib-ft (N•m) 660 (895)/800 (1085)	
Peak Torque rpm)
Torque Rise (%) (Gov. rpm)	2
Altitude Capability — ft (m) 10 000 (3050))


Max hp (kW) 300	(224)
Advertised hp (kW) 300	(224)
Operating Range (rpm) 1440-2400	(960)
Maximum Engine rpm	2640
Governed Speed rpm	2400
Peak Torque — Ib-ft (N•m) 800 (1085)/860 (1	
Peak Torque rpm	1440
Torque Rise (%) (Gov. rpm)	27/37
Altitude Capability — ft (m) 10 000 (3	

PERFORMANCE CURVES

PERFORMANCE DATA

Max hp (kW)
Operating Range (rpm) 1440-2400 (960)
Maximum Engine rpm 2640
Governed Speed rpm 2400
Peak Torque — Ib-ft (N•m) 860 (1166)
Peak Torque rpm 1440
Torque Rise (%) (Gov. rpm)
Altitude Capability — ft (m) 10 000 (3050)

Exhaust Brake Performance

Three operational modes can be programmed: Coast, Latch, or Manual

ELECTRONIC FEATURES

Electronic self-diagnostics

- Compatible with Caterpillar electronic technician (ET), electronic control analyzer programmer (ECAP), and MPSI Pro-Link service tools
- Cold weather startup strategy and electronic idle control functions
- ECM storage of operational, maintenance, and diagnostic data

J1939 compatible — ABS, Allison WT Customer selectable, re-programmable operational parameters:

- Engine Monitoring System off, warning, derate, or shutdown
- Cruise control with exclusive SoftCruise
- Vehicle speed [mph (km/h)] limiting and protection
- · Idle shutdown timer & override
- · 2-speed fast idle
- Maintenance monitor [miles (km) or hours]
- Cooling fan control
- · Customer password protection
- · Exhaust brake operational modes
- · Theft deterrent
- · Adjustable low idle rpm
- OEM parameter lockout

Programmable Power Take-Off (PTO) functions:

- Adjustable speed control [mph (km/h)] of vehicle while in PTO mode
- Adjustable maximum engine rpm speed
- Adjustable minimum engine rpm speed
- Limit engine torque to driven equipment
- Adjustable ramp rate up or down between PTO set speed(s)
- · Adjustable rpm "bump" intervals
- Selectable PTO configuration for "in cab" or station of remote operation

GEARING CONSIDERATIONS

The 3126B is designed and built to take full advantage of a "gear fast, run slow" strategy. Unlike mechanically governed engines of the past, the fully electronic 3126B need not be gear-bound to limit maximum vehicle speed — this should be done using Vehicle Speed Limiting (VSL) and Protection.

For the best <u>balance</u> of performance and fuel economy, spec axle ratios and tire sizes to obtain: **2000 rpm @ 60 mph** (97 km/h) subject to the following: Maximum cruise speed of **65 mph** (105 km/h) **or below**. Maximum recommended engine speed at cruise — 2400 rpm. Minimum recommended engine speed at a cruise speed of 55 mph (89 km/hr) — **1800 rpm**

Depending on the application, the absolute minimum startability in first gear should be 6 percent, preferably in excess of 10 percent. On/off highway severe service applications will require considerably greater startability. Minimum gradeability should be 1.5 percent (1.8 percent recommended) at peak torque in top gear, and 0.5 percent at cruise rpm.

To further optimize the matching of your truck to the performance characteristics of the engine, a computerized spec'ing tool called Caterpillar Truck Engine Pro (TEP) is offered by your Caterpillar dealer. It calculates the effects of various driveline variables on engine operation such as transmissions, axles, and tires. This lets you see the results before you finalize your truck specs.

CATERPILLAR[®]

RATING DEFINITIONS AND CONDITIONS

Performance is based on SAE J1349 standard conditions of 29.61 in. Hg (100 kPa) and 77° F (25° C).

The curves shown are for a standard engine without fan, but equipped with air compressor and fuel, lubricating oil, and jacket water pumps.

Materials and specifications are subject to change without notice. LEHT9055

The International System of Units (SI) is used in this publication.

Unit OP-2

The 400 Series compact engine family has been developed alongside customers to fulfil their needs in the construction, materials handling, agricultural/turf, genset and compressor markets, becoming the latest classleading diesel range from Perkins.

Built to the most demanding standards, the 400 Series engines meet all the requirements of EC Stage 2 and USA EPA Tier 2 off-highway emissions legislation and bring significant improvements over their predecessors.

Perkins IOPUs offer the advantages of an industrial engine, with the convenience of a cost effective cooling and filtration solution. This minimises machine development time and costs, and enables applications to be powered with ease.

The 403C-15 IOPU is a powerful but quiet 1.5 litre packaged unit. It delivers impressive performance with low operating costs in a small, efficient package ideal for a range of industrial applications.

400 Series 403C-15 Industrial Open Power Unit

24.2 kW/32.5 bhp

Outstanding performance

- 25.1 kW (33.7 bhp) performance from a compact complete radiator cooled unit
- Torque backup has risen to over 20%, providing excellent responsiveness when load is increased
- Durability and reliability have been enhanced through product design and process improvements
- A new governor, valve seat inserts and new compliance testing deliver reliability and 6000 hours durability
- Standard two year warranty demonstrates our confidence in the engine

Clean and quiet

- Full-load smoke emissions levels are invisible to the naked eye, measuring less than 2 Bosch
- Noise levels have been kept to a minimum. Subjective harshness has also been controlled, making the engine sound even quieter

Compact fit

- The open power unit benefits from a compact engine design combined with a newly designed more compact radiator package
- The air filter position has also been lowered to further improve compactness

Low operating costs

- Oil and filter changes are now set at 500 hours as standard
- Engine durability and reliability, the warranty offering, and ease of installation combine to drive down the cost of ownership

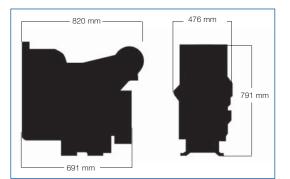
Product support

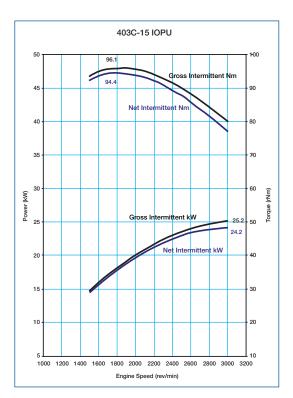
Total worldwide service is provided through 4000 service points around the world

Performance Data	Net Intermittent (ISO/TR 14396)	Speed (rev/min)
Power Output (kW)	24.2	3000
Power Output (bhp)	32.5	3000
Peak Torque (Nm)	128.0	1800
Peak Torque (lbf ft)	94.4	1800

Power output for a run-in engine after 60 hours.

Photographs are for illustrative purposes only and may not reflect final specification.


400 Series 403C-15


Engine Specification

- Cast iron engine block
- SAE Flywheel size 6¹/₂
- SAE 5 flywheel housing
- Fuel injection pump
- Fuel filter
- Glow plug starting aid
- Lub oil sump
- Spin on lub oil filter
- Inlet manifold
- Cast iron exhaust manifold side outlet
- Coolant pump belt driven
- Mounted radiator and fan
- Mounted air cleaner
- Starter motor 12 volt
- Alternator 12 volt 65 amp
- ESOS
- Lub oil pressure switch
- Coolant temperature switch

General Data

Number of cylinders Bore and stroke Displacement Aspiration Cycle Combustion system Compression ratio Rotation Cooling system Total lubrication capacity Total coolant capacity Dimensions 3 in-line 84 x 90 mm 1.5 litres Naturally aspirated 4 stroke Indirect injection 22.5:1 Anti-clockwise viewed on flywheel Pressurised water 6 litres 5.98 litres Length 820 mm Width 476 mm Height 791 mm 175 kg

Final weight and dimensions will depend on completed specification.

Option Groups

Dry weight

A selection of optional items is available to enable the customer to prepare a specification precisely matched to their needs.

Perkins

Perkins Engines Company Limited Peterborough PE1 5NA United Kingdom Telephone +44 (0)1733 583000 Fax +44 (0)1733 582240 www.perkins.com

Distributed by

P C Industries, LLC 1088 N. Washington P.O. Box 490 Afton, Wyoming 83110 Phone # 307-885-4724 Fax # 307-885-3215

All information in this document is substantially correct at time of printing and may be altered subsequently Publication No. 1777/10/05 Produced in England ©2005 Perkins Engines Company Limited

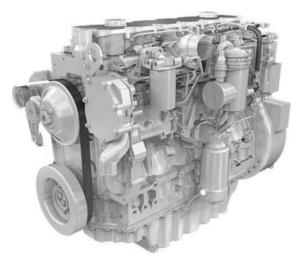


Image shown may not reflect actual engine

FEATURES

Emissions

Meets Tier 3, Stage IIIA emission requirements. Tier 3 refers to EPA (U.S.) standards. Stage IIIA refers to European standards.

Worldwide Supplier Capability

Caterpillar

- Casts engine blocks, heads, and cylinder liners
- Machines critical components
- Assembles complete engine

Ownership of these manufacturing processes enables Caterpillar to produce high quality, dependable product.

Factory-designed systems built at Caterpillar ISO 9001:2000 certified facilities.

Testing

Prototype testing on every model:

- proves computer design
- verifies system torsional stability
- tests functionality on every model

Every Caterpillar engine is dynamometer tested under full load to ensure proper engine performance.

Industrial Engine C6.6 ACERT®

88-186 bkW/120-250 bhp 2200 rpm

CATERPILLAR[®] ENGINE SPECIFICATIONS

I-6, 4-Stroke-Cycle Diesel Bore (mm, in) Stroke (mm, in) Displacement Aspiration Rotation (from flywheel end) Cooling System Weight, Net Dry (approximate kg, lb)

105 mm, 4.13 in. 127 mm, 5.00 in. 6.6 liters, 402.8 cu. in. Turbocharged/ATAAC Counterclockwise Liquid 525 kg, 1157 lb.

Full Range of Attachments

Wide range of bolt-on system expansion attachments, factory designed and tested

Unmatched Product Support Offered Through Worldwide Caterpillar Dealer Network

More than 1,500 dealer outlets

Caterpillar factory-trained dealer technicians service every aspect of your industrial engine 99.7% of parts orders filled within 24 hours worldwide

Caterpillar parts and labor warranty Preventive maintenance agreements available for repair before failure options

Scheduled Oil Sampling program matches your oil sample against Caterpillar set standards to determine:

- internal engine component condition
- presence of unwanted fluids
- presence of combustion by-products

Web Site

For all your industrial power requirements, visit www.cat-industrial.com.

Industrial Engine

C6.6 ACERT[®]

88-186 bkW/ 120-250 bhp

STANDARD ENGINE EQUIPMENT

Air Inlet System

Air to air aftercooled (ATAAC) Turbocharged

Control System

Electronic governing, PTO speed control Programmable ratings Cold mode start strategy Automatic altitude compensation Power compensation for fuel temperature Programmable low and high idle and total engine limit Electronic diagnostics and fault logging Engine monitoring system J1939 Broadcast (diagnostic and engine status) ADEM™ A4

Cooling System

Thermostats and housing, vertical outlet Jacket water pump, centrifugal Water pump, inlet

Exhaust System

Exhaust manifold, dry Optional exhaust outlet

Flywheels and Flywheel Housing

SAE No. 1 Flywheel housing

INDUSTRIAL RATINGS AND CONDITIONS

IND - A (Continuous) Continuous heavy duty service where the engine is operated at maximum power and speed up to 100% of the time without interruption or load cycling.

IND - B For service where power and/or speed are cyclic (time at full load not to exceed 80%).

IND - C (Intermittent) Intermittent service where maximum power and/or speed are cyclic (time at full load not to exceed 50%).

IND - D For service where maximum power is required for periodic overloads.

Fuel System

Caterpillar Single Fluid Injection Fuel filter, secondary (2 micron high performance) Fuel transfer pump Fuel priming pump ACERT® Technology

Lube System

Crankcase breather Oil cooler Oil filler Oil filter Oil pan front sump Oil dipstick Oil pump (gear driven)

General

Paint, Caterpillar Yellow Vibration damper Lifting eyes

DIMENSIONS

Length	mm (in)	929 (36.6)
Width	mm (in)	620 (24.4)
Height*	mm (in)	1115 (43.9)

*From Crank Center Line

Engine Performance Engine performance is corrected to inlet air standard conditions of 99 kPa (29.31 in Hg) dry barometer and 25° C (77° F) temperature. These values correspond to the standard atmospheric pressure and temperature as shown in SAE J1995.

Performance measured using a standard fuel with fuel gravity of 35 degrees API having a lower heating value of 42 780 kJ/kg (18,390 Btu/lb) when used at 29° C (84.2° F) where the density is 838.9 g/liter (7.001 lb/U.S. gal).

The corrected performance values shown for Caterpillar engines will approximate the values obtained when the observed performance data is corrected to SAE J1995, ISO 3046-2 and 8665 and 2288 and 9249 and 1585, EEC 80/1269 and DIN 70020 standard reference conditions.

PRODUCT SPECIFICATIONS FOR C7

POWER RATING

Maximum Power300 HPRated Speed1800-2200 rpmMinimum Power225 HP

EMISSION STANDARDS

Emissions

China Stage II, U.S. EPA Tier 3 Equivalent, EU Stage IIIA Equivalent

GENERAL

Engine Configuration	Inline 6, 4-Stroke-Cycle Diesel
Bore	4.3 in
Stroke	5 in
Displacement	442 in ³
Compression Ratio	16.2:1
Aspiration	Turbocharged Aftercooled (TA)
Combustion System	Direct Injection
Rotation from Flywheel End	Counterclockwise
Aftertreatment	-

ENGINE DIMENSIONS - APPROXIMATE

Length	41.5 in
Width	29.8 in
Height	40.6 in
Weight - Net Dry - Basic Operating Engine Without Optional Attachments	1296 lb

C7 STANDARD EQUIPMENT

AIR INLET SYSTEM

• Turbocharged

• Air-to-Air Aftercooled

CONTROL SYSTEM

- Electronic governing, PTO speed control
- Programmable ratings
- Automatic altitude compensation
- Power compensation for fuel temperature
- Programmable low and high idle and total engine limit
- Electronic diagnostics and fault logging
- Engine monitoring system SAE J1939 broadcast and control
- ADEM[™] A4 Electronic Control Unit (ECU)

COOLING SYSTEM

- Thermostats and housing, vertical outlet
- Jacket water pump, centrifugal
- Water pump, inlet

EXHAUST SYSTEM

- Exhaust manifold, dry
- Optional exhaust outlet

FLYWHEELS AND FLYWHEEL HOUSING

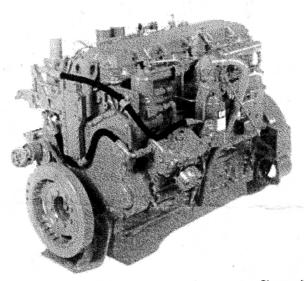
• SAE No. 1 flywheel housing

FUEL SYSTEM

- HEUI™ injection
- Fuel filter, secondary (2 micron)
- ACERT™ Technology
- Fuel transfer pump
- Fuel priming pump

LUBE SYSTEM

Crankcase breather


- Oil cooler
- Oil filler
- Lube oil filter
- Front sump oil pan
- Oil dipstick
- Gear driven oil pump

GENERAL

- Vibration damper
- Lifting eyes
- Cold start capability to -20° C (-4° F)
- Paint: Caterpillar yellow, with optional colors available at request

Unit EMP-1

CATERPILLAR

Shown with Optional Equipment

STANDARD EQUIPMENT

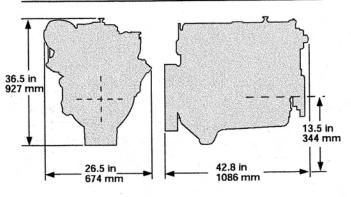
Air inlet manifold heater Cooling, belt driven jacket water pump, oil cooler Crankcase breather Dipstick (L.H. side) Electronic Control Module (ECM) Electronic Data Link, ATA/SAE Flywheel and SAE No. 2 housing Fuel, spin-on filter, transfer pump Governor – full-range electronically controlled Hydraulic Electronic Unit Injection (HEUI) system Lifting eyes Lubricating, spin-on filter, pump, front or rear sump pan Turbocharger Vibration damper

Diesel Truck Engine

3126 175 hp, 210 hp @ 2400 rpm 190 hp, 210 hp, 230 hp @ 2200 rpm 250 hp, 275 hp, 300 hp @ 2200 rpm

SPECIFICATIONS

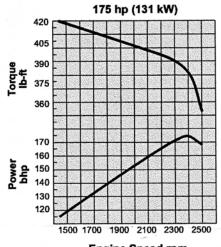
6 Cylinder, 4-Stroke-Cycle Diesel	
Bore – in (mm) 4.33 (110)	
Stroke – in (mm)	
Displacement – cu in (L) 439 (7.2)	
Aspiration ATAAC**	
Compression Ratio	
175-300 hp	
AMA Rating for USA Tax Purposes – hp 40.94	
Rotation (from flywheel end) Counterclockwise	
Capacity for Liquids – U.S. gal (L)	
Cooling System*	
Lube Oil System (refill) 5.25 (20.0)	
Weight, Net Dry (approx) - lb (kg)	
Including Flywheel 1,250 (568)	
* Engine Only, Capacity will vary with radiator size and use of cab	

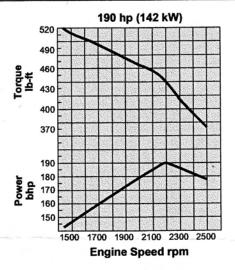

 Engine Only. Capacity will vary with radiator size and use of cab heater

** Air-to-Air AfterCooling

ACCESSORY EQUIPMENT

Air compressor, gear driven, 13.2 cfm (0.37 m³/min), or (16.5 cfm [.46m³/min]) with gear driven pump drive Air inlet elbow Alternator, 12 Volt, 115 Ampere; 21SI and drive Block heater, 1000 Ampere Coolant, conditioners Exhaust adapters Fan drives Front PTO adapter Front support Hydraulic pump drive, SAE A or SAE B Turbocharger compressor outlet elbow Starting motor, 12 volt


DIMENSIONS



CATERPILLAR[®]

3126 TRUCK ENGINES - 175-300 hp

PERFORMANCE CURVES

Engine Speed rpm


PERFORMANCE DATA

Rated hp (kW) 175 (131	1)
Rated rpm	
Governor Speed rpm* 250	
Low Idle rpm	
Operating Range (rpm) 106	0
Altitude Capability - ft (m) 10,000 (3050	
Peak Torque - Ib-ft (N•m)	
Peak Torque rpm144	
Torque Rise (%) (Gov. rpm) 1	

* Selection of Rear Axle Ratio should be based on Governed Speed rpm.

Rated hp (kW)	190 (142)
Rated rpm	
Governor Speed rpm*	
Low Idle rpm	
Operating Range (rpm)	1060
Altitude Capability - ft (m)	10,000 (3050)
Peak Torque – Ib-ft (N•m)	520 (705)
Peak Torque rpm	
Torque Rise (%) (Gov. rpm)	

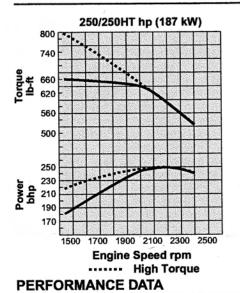
PERFORMANCE CURVES

----- High Torque

PERFORMANCE DATA

Rated hp (kW)	
Rated rpm	
Governor Speed rpm*	
Low Idle rpm	
Operating Range (rpm)	
Altitude Capability - ft (m)	10,000 (3050)
Peak Torque - Ib-ft (N•m)	
Peak Torque rpm	
Torque Rise (%) (Gov. rpm)	

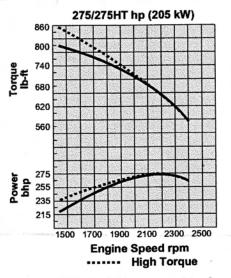
* Selection of Rear Axle Ratio should be based on Governed Speed rpm.


Rated hp (kW)	230 (172)
Rated rpm	2200
Governor Speed rpm*	2400
Low Idle rpm	700
Operating Range (rpm)	960
Altitude Capability - ft (m) 10,00	00 (3050)
Peak Torque – Ib-ft (N•m)	660 (898)
Peak Torque rpm	1440
Torque Rise (%) (Gov. rpm)	36

3126 TRUCK ENGINES - 175-300 hp

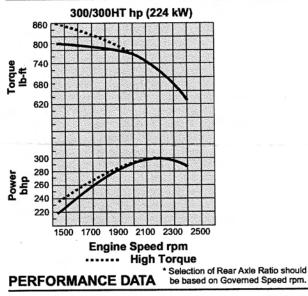
...... 250 (187)

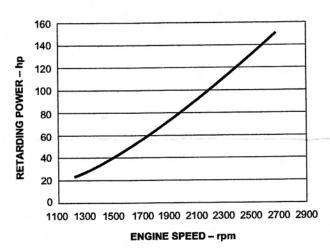
CATERPILLAR


PERFORMANCE CURVES

Rated hp (kW)

Governor Speed rpm*


Rated rpm.....


* Selection of Rear Axle Ratio should be based on Governed Speed rpm.

Rated hp (kW)	275 (205)
Rated rpm	2200
Governor Speed rpm*	
Low Idle rpm	700
Operating Range (rpm)	960
Altitude Capability – ft (m) 1	0,000 (3050)
Peak Torque - Ib-ft (N•m) 800 (1088	8)/860 (1170)
Peak Torque rpm	
Torque Rise (%) (Gov. rpm)	

PERFORMANCE CURVES

Rated hp (kW)	
Rated rpm	
Governor Speed rpm*	
Low Idle rpm	
Operating Range (rpm)	
Altitude Capability - ft (m)	
Peak Torque - Ib-ft (N•m)	800 (1088)/860 (1170)
Peak Torque rpm	
Torque Rise (%) (Gov. rpm)	

Exhaust Brake Performance

Three operational modes can be programmed: Coast, Latch or Manual

3126 TRUCK ENGINES - 175-300 hp

ELECTRONIC FEATURES

Electronic self-diagnostics

- Compatible with Caterpillar electronic technician, electronic control analyzer programmer and MPSI
 - Pro-Link service tools
- Cold weather startup strategy and electronic idle control functions
- ECM storage of operational, maintenance and diagnostic data.

Customer selectable, re-programmable operational parameters:

- Engine Monitoring System
- Cruise control with exclusive SoftCruise
- Vehicle speed [mph (km/h)] limiting and protection
- Idle shutdown timer & override
- Maintenance monitor (miles (km's) or hours)
- Customer password protection
- Exhaust brake operational modes
- Adjustable low idle rpm
- Programmable Power Take-Off (PTO) functions:
 - Adjustable speed control [mph (km/h)] of vehicle while in PTO mode
 - Adjustable maximum engine rpm speed
 - Adjustable minimum engine rpm speed
 - Limit engine torque to driven equipment
 - Adjustable ramp rate up or down from PTO set speed
 - Adjustable rpm "bump" rate
 - Selectable PTO configuration for "in cab" or station of remote operation

GEARING CONSIDERATIONS

Selection of a rear axle ratio should be based on the governed rpm speed of the engine. For the 175, 190, 210 hp ratings the governed speed is **2500 rpm**. For all other ratings (210HT-300HT) the governed speed is **2400 rpm**.

For the best <u>balance</u> of performance and fuel economy, spec axle ratios and tire sizes to obtain: **2000 rpm @ 60 mph** (96 km/h) subject to the following: Maximum cruise speed of **65 mph** (105 km/h) **or below.** Maximum recommended engine speed at cruise – 2400 rpm. Minimum recommended engine speed at a cruise speed of 55 mph (88 km/hr) – **2000 rpm**

Depending on the application, the absolute minimum startability in first gear should be 6%, preferably in excess of 10%. On/off highway severe service applications will require considerably greater startability. Minimum gradeability should be 0.5% at cruise rpm.

To further optimize the matching of your truck to the performance characteristics of the engine, a computerized spec'ing tool called Truck Performance Analysis (TPA) is offered by your Caterpillar[®] dealer. It calculates the effects of various driveline variables on engine operation such as transmissions, axles, and tires. This lets you see the results before you finalize your truck specs.

RATING CONDITIONS

Performance is based on SAE J1349 standard conditions of 29.61 in. Hg (100 kPa) and 77°F (25°C).

Fuel consumption is based on fuel oil having an LHV of 18,390 Btu/lb (42 780 kJ/kg) and weighing 7.001 lb/U.S. gal (839 g/L).

The curves shown are for a standard engine without fan, but equipped with air compressor and fuel, lubricating oil, and jacket water pumps.

Materials and specifications are subject to change without notice. LEHT5019 (1-95)

© 1995 Caterpillar Inc.

The International System of Units (SI) is used in this publication. Printed in U.S.A.

Shown with Optional Equipment

STANDARD EQUIPMENT

Air inlet manifold heater

- Cooling: belt-driven jacket water pump,
- oil cooler
- Crankcase breather
- Electronic Control Module (ECM)
- Electronic Data Link, SAE J1922, J1939, ATA J1587
- HEUI Fuel System (Hydraulically actuated, Electronically controlled Unit Injector)
- Flywheel and SAE No. 1 or SAE No. 2 housing
- Fuel: spin-on secondary filter, transfer pump,

hand priming pump

Governor: full-range, electronically controlled Lifting eyes

- Lubrication: gear-driven pump, front or rear sump, full flow spin-on filter, left-hand side oil level gauge (dipstick) Turbocharger
- Vibration damper

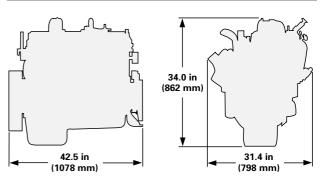
Diesel **3126B** Truck 175-330 hp

420-860 lb-ft @ 1440 rpm Peak Torque

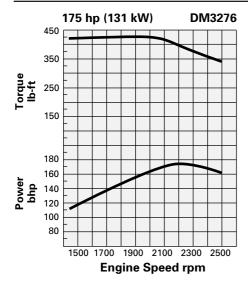
CATERPILLAR® ENGINE SPECIFICATIONS

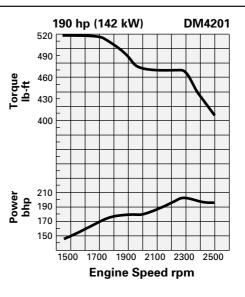
6-Cylinder, 4-Stroke-Cycle Diesel
Bore — in (mm) 4.33 (110)
Stroke — in (mm) 5.0 (127)
Displacement — cu in (L) 439 (7.2)
Aspiration ATAAC ¹
Compression Ratio
175-300 hp 16:1
Rotation (from flywheel end) Counterclockwise
Rotation (from flywheel end) Counterclockwise Cooling System ² — gal (L) 3.5 (13.2)
Cooling System ² — gal (L) 3.5 (13.2)
Cooling System ² — gal (L) 3.5 (13.2) Lube Oil System (refill) — gal (L) 4.75 (18.0) ³

¹ Air-to-Air AfterCooling


² Engine Only. Capacity will vary with radiator size and use of cab heater.

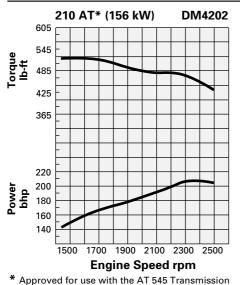
³ Optional 28L (7.5 gal) oil pan also available in some chassis.


ACCESSORY EQUIPMENT


Air compressor: gear driven, 0.37 m³/min (13.2 cfm) or 0.46 m³/min(16.5 cfm) Air conditioner compressor mounting Air inlet elbow Auxiliary brake compatible (exhaust) Ether starting aid/adaptation Fan drive mounting bracket Fan drive Front engine support Front PTO adapter Jacket water heater Rear power take-off Starting motor: 12 V or 24 V Turbocharger compressor outlet elbow Hydraulic pump drive, SAE A

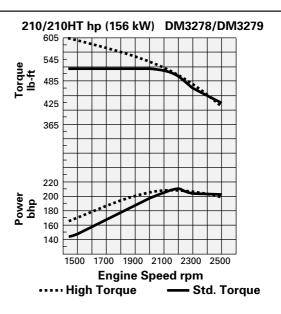
DIMENSIONS

PERFORMANCE CURVES

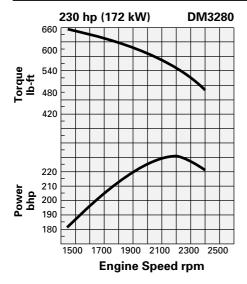


PERFORMANCE DATA

Max hp (kW)
Operating Range (rpm) 1440-2500 (1060)
Maximum Engine rpm 2640
Governed Speed rpm 2500
Peak Torque — Ib-ft (N•m) 420 (569)
Peak Torque rpm 1440
Torque Rise (%) (Gov. rpm)
Altitude Capability — ft (m) 10 000 (3050)

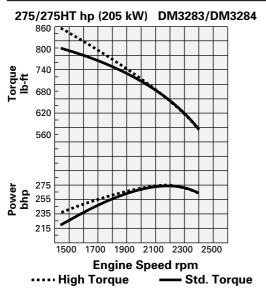

PERFORMANCE CURVES

PERFORMANCE DATA

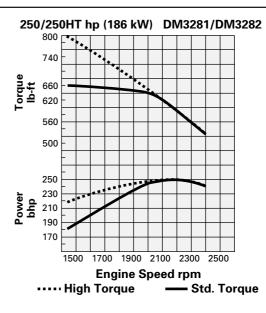

Max hp (kW)
Operating Range (rpm) 1440-2500 (1060)
Maximum Engine rpm 2640
Governed Speed rpm 2500
Peak Torque — Ib-ft (N•m) 520 (705)
Peak Torque rpm 1440
Torque Rise (%) (Gov. rpm)
Altitude Capability — ft (m) 10 000 (3050)

Max hp (kW) 207 (154)	
Advertised hp (kW) 190 (142)	
Operating Range (rpm) 1440-2500 (1060)	
Maximum Engine rpm 2640	
Governed Speed rpm 2500	
Peak Torque — Ib-ft (N•m) 520 (705)	
Peak Torque rpm 1440	
Torque Rise (%) (Gov. rpm)	
Altitude Capability — ft (m) 10 000 (3050)	

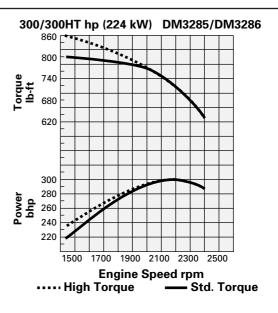
Max hp (kW)
Operating Range (rpm) 1440-2500 (1060)
Maximum Engine rpm 2640
Governed Speed rpm 2500
Peak Torque — Ib-ft (N•m) 520 (705)/605 (820)
Peak Torque rpm 1440
Torque Rise (%) (Gov. rpm)
Altitude Capability — ft (m) 10 000 (3050)


PERFORMANCE CURVES

PERFORMANCE DATA

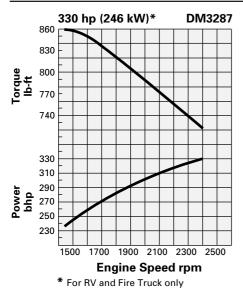

Max hp (kW)
Operating Range (rpm) 1440-2400 (960)
Maximum Engine rpm 2640
Governed Speed rpm 2400
Peak Torque — Ib-ft (N•m) 660 (895)
Peak Torque rpm 1440
Torque Rise (%) (Gov. rpm)
Altitude Capability — ft (m) 10 000 (3050)

PERFORMANCE CURVES

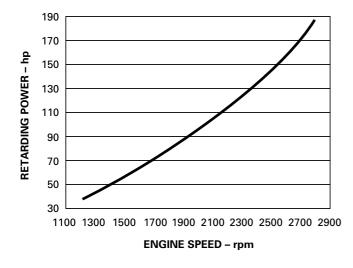


PERFORMANCE DATA

Max hp (kW)
Operating Range (rpm) 1440-2400 (960)
Maximum Engine rpm 2640
Governed Speed rpm 2400
Peak Torque — Ib-ft (N•m) 800 (1085)/860 (1166)
Peak Torque rpm 1440
Torque Rise (%) (Gov. rpm) 39/49
Altitude Capability — ft (m) 10 000 (3050)



Max hp (kW))
Operating Range (rpm) 1440-2400 (960)	
Maximum Engine rpm	
Governed Speed rpm 2400)
Peak Torque — Ib-ft (N•m) 660 (895)/800 (1085)	
Peak Torque rpm)
Torque Rise (%) (Gov. rpm)	2
Altitude Capability — ft (m) 10 000 (3050))


Max hp (kW) 300	(224)
Advertised hp (kW) 300	(224)
Operating Range (rpm) 1440-2400	(960)
Maximum Engine rpm	2640
Governed Speed rpm	2400
Peak Torque — Ib-ft (N•m) 800 (1085)/860 (1	
Peak Torque rpm	1440
Torque Rise (%) (Gov. rpm)	27/37
Altitude Capability — ft (m) 10 000 (3	

PERFORMANCE CURVES

PERFORMANCE DATA

Max hp (kW)
Operating Range (rpm) 1440-2400 (960)
Maximum Engine rpm 2640
Governed Speed rpm 2400
Peak Torque — Ib-ft (N•m) 860 (1166)
Peak Torque rpm 1440
Torque Rise (%) (Gov. rpm)
Altitude Capability — ft (m) 10 000 (3050)

Exhaust Brake Performance

Three operational modes can be programmed: Coast, Latch, or Manual

ELECTRONIC FEATURES

Electronic self-diagnostics

- Compatible with Caterpillar electronic technician (ET), electronic control analyzer programmer (ECAP), and MPSI Pro-Link service tools
- Cold weather startup strategy and electronic idle control functions
- ECM storage of operational, maintenance, and diagnostic data

J1939 compatible — ABS, Allison WT Customer selectable, re-programmable operational parameters:

- Engine Monitoring System off, warning, derate, or shutdown
- Cruise control with exclusive SoftCruise
- Vehicle speed [mph (km/h)] limiting and protection
- · Idle shutdown timer & override
- · 2-speed fast idle
- Maintenance monitor [miles (km) or hours]
- Cooling fan control
- · Customer password protection
- · Exhaust brake operational modes
- · Theft deterrent
- · Adjustable low idle rpm
- OEM parameter lockout

Programmable Power Take-Off (PTO) functions:

- Adjustable speed control [mph (km/h)] of vehicle while in PTO mode
- Adjustable maximum engine rpm speed
- Adjustable minimum engine rpm speed
- Limit engine torque to driven equipment
- Adjustable ramp rate up or down between PTO set speed(s)
- · Adjustable rpm "bump" intervals
- Selectable PTO configuration for "in cab" or station of remote operation

GEARING CONSIDERATIONS

The 3126B is designed and built to take full advantage of a "gear fast, run slow" strategy. Unlike mechanically governed engines of the past, the fully electronic 3126B need not be gear-bound to limit maximum vehicle speed — this should be done using Vehicle Speed Limiting (VSL) and Protection.

For the best <u>balance</u> of performance and fuel economy, spec axle ratios and tire sizes to obtain: **2000 rpm @ 60 mph** (97 km/h) subject to the following: Maximum cruise speed of **65 mph** (105 km/h) **or below**. Maximum recommended engine speed at cruise — 2400 rpm. Minimum recommended engine speed at a cruise speed of 55 mph (89 km/hr) — **1800 rpm**

Depending on the application, the absolute minimum startability in first gear should be 6 percent, preferably in excess of 10 percent. On/off highway severe service applications will require considerably greater startability. Minimum gradeability should be 1.5 percent (1.8 percent recommended) at peak torque in top gear, and 0.5 percent at cruise rpm.

To further optimize the matching of your truck to the performance characteristics of the engine, a computerized spec'ing tool called Caterpillar Truck Engine Pro (TEP) is offered by your Caterpillar dealer. It calculates the effects of various driveline variables on engine operation such as transmissions, axles, and tires. This lets you see the results before you finalize your truck specs.

CATERPILLAR[®]

RATING DEFINITIONS AND CONDITIONS

Performance is based on SAE J1349 standard conditions of 29.61 in. Hg (100 kPa) and 77° F (25° C).

The curves shown are for a standard engine without fan, but equipped with air compressor and fuel, lubricating oil, and jacket water pumps.

Materials and specifications are subject to change without notice. LEHT9055

The International System of Units (SI) is used in this publication.

Units GEN-1 through GEN-4

14/17/20 kW

True Power[™] Electrical Technology

Evolution[™] Controller (English/Spanish/

Two Transfer Switch Options Available:

Two Line LCD Multilingual Digital

100 Amp Pre-Wired Switch or

French/Portuguese)

INCLUDES:

GENERAC

GUARDIAN® SERIES Residential Standby Generators Air-Cooled Gas Engine

Standby Power Rating

Models 006240-0, 006241-0, 006247-0 (Steel - Bisque) - 14 kW 60 Hz Models 006242-0, 006248-0 (Steel - Bisque) - 17 kW 60 Hz Models 006243-0, 006249-0 (Aluminum - Gray) - 17 kW 60 Hz Models 006244-0, 006250-0 (Aluminum - Gray) - 20 kW 60 Hz

GENERAC

Guardian Sarie

QUIET TEST

- 200 Amp Smart Switch.
 See Page 4 for Details.
 Electronic Governor
 External Main Circuit Breaker, System Status & Maintenance Interval LED Indicators
 GFCI Duplex Outlet (17 & 20 kW units only)
- Sound Attenuated Enclosure
- Flexible Fuel Line Connector
- · Composite Mounting Pad
- Natural Gas or LP Gas Operation
- 5 Year Limited Warranty
- Capability to be installed within 18" (457 mm) of a building*

Note: Quiet-Test[™] only available on 17 & 20 kW units. Note: CUL certification only applies to unbundled units and units packaged with pre-wired switches. Units packaged with the Smart Switch are UL certified in the USA only.

*Only if located away from doors, windows and fresh air intakes, and unless otherwise directed by local codes.

FEATURES

- INNOVATIVE DESIGN & PROTOTYPE TESTING are key components of GENERAC'S success in "IMPROVING POWER BY DESIGN." But it doesn't stop there. Total commitment to component testing, reliability testing, environmental testing, destruction and life testing, plus testing to applicable CSA, NEMA, EGSA, and other standards, allows you to choose GENERAC POWER SYSTEMS with the confidence that these systems will provide superior performance.
- O TRUE POWER™ ELECTRICAL TECHNOLOGY: Superior harmonics and sine wave form produce less than 5% Total Harmonic Distortion for utility quality power. This allows confident operation of sensitive electronic equipment and micro-chip based appliances, such as variable speed HVAC systems.
- O TEST CRITERIA:
 - PROTOTYPE TESTED
 - SYSTEM TORSIONAL TESTED
- NEMA MG1-22 EVALUATION
 MOTOR STARTING ABILITY

- SOLID-STATE, FREQUENCY COMPENSATED VOLTAGE REGULATION. This state-of-the-art power maximizing regulation system is standard on all Generac models. It provides optimized FAST RESPONSE to changing load conditions and MAXIMUM MOTOR STARTING CAPABILITY by electronically torque-matching the surge loads to the engine. Digital voltage regulation at ±1%.
- SINGLE SOURCE SERVICE RESPONSE from Generac's extensive dealer network provides parts and service know-how for the entire unit, from the engine to the smallest electronic component.
- GENERAC TRANSFER SWITCHES. Long life and reliability are synonymous with GENERAC POWER SYSTEMS. One reason for this confidence is that the GENERAC product line includes its own transfer systems and controls for total system compatibility.

2 of 5

14/17/20 kW

GENERAC

features and benefits

14/11/20 KW	
Engine	
•Generac (OHVI) design	Maximizes engine "breathing" for increased fuel efficiency. Plateau honed cylinder walls and plasma moly rings helps the engine run cooler, reducing oil consumption resulting in longer engine life.
 Quiet-Test[™] (17 & 20 kW units only) 	Greatly reduces sound output and fuel consumption during weekly exercise, compared to other brands.
"Spiny-lok" cast iron cylinder walls	Rigid construction and added durability provide long engine life.
 Electronic ignition/spark advance 	These features combine to assure smooth, quick starting every time.
Full pressure lubrication system	Pressurized lubrication to all vital bearings means better performance, less maintenance and longer engine life Now featuring up to a 2 year/200 hour oil change interval.
 Low oil pressure shutdown system 	Shutdown protection prevents catastrophic engine damage due to low oil.
High temperature shutdown	Prevents damage due to overheating.
Generator	
Revolving field	Allows for a smaller, light weight unit that operates 25% more efficiently than a revolving armature generator.
Skewed stator	Produces a smooth output waveform for compatibility with electronic equipment.
Displaced phase excitation	Maximizes motor starting capability.
Automatic voltage regulation	Regulates the output voltage to $\pm 1\%$ prevents damaging voltage spikes.
• UL 2200 listed	For your safety.
Transfer Switch	
Fully automatic	Transfers your vital electrical loads to the energized source of power.
Pre-wired, color-coded conduits (Pre-wired switches only)	Ensures the easiest, trouble-free installation.
DPM Technology (Smart Switch only)	Digital Power Management Technology allows for the smart control of two air conditioners without any additiona items.
Remote mounting	Mounts near your existing distribution panel for simple, low-cost installation.
Evolution™ Controls	
Auto/Manual/Off illuminated buttons	Selects the operating mode and provides easy, at-a-glance status indication in any condition.
 Sealed, raised buttons 	Smooth, weather-resistant user interface for programming and operations.
Utility voltage sensing	Constantly monitors utility voltage, setpoints 60% dropout, 80% pick-up, of standard voltage.
 Generator voltage sensing 	Constantly monitors generator voltage to ensure the cleanest power delivered to the home.
Utility interrupt delay	Prevents nuisance start-ups of the engine, adjustable 2-1500 seconds from the factory default setting of 5 seconds by a qualified dealer.
Engine warm-up	Ensures engine is ready to assume the load, setpoint approximately 5 seconds.
Engine cool-down	Allows engine to cool prior to shutdown, setpoint approximately 1 minute.
Programmable seven day exerciser	Operates engine to prevent oil seal drying and damage between power outages by running the generator for 12 minutes every week.
 Smart battery charger 	Delivers charge to the battery only when needed at varying rates depending on outdoor air temperature.
Main line circuit breaker	Protects generator from overload.
Electronic governor	Maintains constant 60 Hz frequency.
Jnit	
SAE weather protective enclosure	Sound attenuated enclosure ensures quiet operation and protection against mother nature, withstanding winds u to 150 mph. Hinged key locking roof panel for security. Lift-out front for easy access to all routine maintenance items. Electrostatically applied textured epoxy paint for added durability.
 Enclosed critical grade muffler 	Quiet, critical grade muffler is mounted inside the unit to prevent injuries.
Small, compact, attractive	Makes for an easy, eye appealing installation.
nstallation System	
1 ft (305 mm) flexible fuel line connectorComposite mounting pad	Easy installation.

GENERAC

14/17/20 kW

specifications

Model	006240-0, 006241-0, 006247-0, (14 kW)	006242-0, 006243-0, 006248-0, 006249-0 (17 kW)	006244-0, 006250 (20 kW)
Rated Maximum Continuous Power Capacity (LP)	14,000 Watts*	17,000 Watts*	20,000 Watts*
Rated Maximum Continuous Power Capacity (NG)	14,000 Watts*		
Rated Voltage		16,000 Watts*	18,000 Watts*
Rated Maximum Continuous Load Current – 240 Volts (LP/NG)	240	240	240
Total Harmonic Distortion	58.3/58.3	70.8/66.6	83.3/75
	Less than 5%	Less than 5%	Less than 5%
Main Line Circuit Breaker	60 Amp	65 Amp	90 Amp
Phase	1	1	1
Number of Rotor Poles	2	2	2
Rated AC Frequency	60 Hz	60 Hz	60 Hz
Power Factor	1.0	1.0	
Battery Requirement (not included)	1.0		1.0
		Group 26R, 12 Volts and 525 CCA Minimum	
Unit Weight (Ib/kg)	435/197.3	471/213.6 (Steel); 437/198.2 (Aluminum)	451/204.6
Dimensions (L x W x H) in/mm		48 x 25 x 29/1218 x 638 x 732	
Sound output in dB(A) at 23 ft (7 m) with generator operating at normal load**	66	66	66
Sound output in dB(A) at 23 ft (7 m) with generator in Quiet-Test™ low-speed			
exercise mode**	N/A	60	60
ngine			
Type of Engine	GENERAC OHVI V-TWIN	GENERAC OHVI V-TWIN	GENERAC OHVI V-TW
Number of Cylinders	2		
Displacement		2	2
	992 cc	992 cc	999 cc
Cylinder Block		Aluminum w/ Cast Iron Sleeve	
/alve Arrangement	Overhead Valve	Overhead Valve	Overhead Valve
gnition System	Solid-state w/ Magneto	Solid-state w/ Magneto	Solid-state w/ Magne
Governor System	Electronic	Electronic	Electronic
Compression Ratio	9.5:1		
Starter		9.5:1	9.5:1
	12 Vdc	12 Vdc	12 Vdc
Dil Capacity Including Filter	Approx. 1.9 qt/1.8 L	Approx. 1.9 qt/1.8 L	Approx. 1.9 qt/1.8 L
Operating rpm	3,600	3,600	3,600
Fuel Consumption			
Vatural Gas ft ³ /hr (m ³ /hr)			
1/2 Load	177 (5.01)	193 (5.47)	205 (5.8)
Full Load	279 (7.9)	312 (8.83)	308 (8.72)
iquid Bronona (13/hz (act/hz) 11/hz)		012 (0.00)	500 (0.72)
iquiu riopane IIV/nr (gal/nr) [l/nr]			
Liquid Propane ft ³ /hr (gal/hr) [l/hr] 1/2 Load	67 2 (1 85) [6 99]	72 4 (1 99) [7 53]	75 6 (2 08) [7 87]
	67.2 (1.85) [6.99] 111 6 (3 07) [11 61]	72.4 (1.99) [7.53]	75.6 (2.08) [7.87]
1/2 Load Full Load Note: Fuel pipe must be sized for full load . Required fuel pressure to generator fuel	111.6 (3.07) [11.61]	130 (3.57) [13.53]	140 (3 85) [14 57]
1/2 Load Full Load Iote: Fuel pipe must be sized for full load. Required fuel pressure to generator fuel nercury) for LP gas. For Btu content, multiply ft ³ /hr x 2500 (LP) or ft ³ /hr x 1000 (NG).	111.6 (3.07) [11.61]	130 (3.57) [13.53]	140 (3 85) [14 57]
1/2 Load Full Load Note: Fuel pipe must be sized for full load. Required fuel pressure to generator fuel mercury) for LP gas. For Btu content, multiply ft ³ /hr x 2500 (LP) or ft ³ /hr x 1000 (NG).	111.6 (3.07) [11.61]	130 (3.57) [13.53] rater column (7-13 mm mercury) for natural gas, 10-12" m∛hr x 93.15 (LP) or m∛hr x 37.26 (NG)	140 (3 85) [14 57]
1/2 Load Full Load Note: Fuel pipe must be sized for full load. Required fuel pressure to generator fuel nercury) for LP gas. For Btu content, multiply ft ³ /hr x 2500 (LP) or ft ³ /hr x 1000 (NG). ontrols -Line Plain Text Multilingual LCD Display	111.6 (3.07) [11.61]	130 (3.57) [13.53] rater column (7-13 mm mercury) for natural gas, 10-12° m∜hr x 93.15 (LP) or m³/hr x 37.26 (NG) Simple user interface for ease of operation.	140 (3 85) [14 57]
1/2 Load Full Load Note: Fuel pipe must be sized for full load. Required fuel pressure to generator fuel nercury) for LP gas. For Btu content, multiply ft ³ /hr x 2500 (LP) or ft ³ /hr x 1000 (NG). Ontrols -Line Plain Text Multilingual LCD Display Mode Buttons: Auto	111.6 (3.07) [11.61] inlet at all load ranges - 3.5-7" w For Megajoule content, multiply	130 (3.57) [13.53] rater column (7-13 mm mercury) for natural gas, 10-12" m∛hr x 93.15 (LP) or m³/hr x 37.26 (NG) Simple user interface for ease of operation. Automatic Start on Utility failure. 7 day exerciser.	140 (3.85) [14.57] water column (19-22 mm
1/2 Load Full Load Note: Fuel pipe must be sized for full load. Required fuel pressure to generator fuel nercury) for LP gas. For Btu content, multiply ft ³ /hr x 2500 (LP) or ft ³ /hr x 1000 (NG). ontrols -Line Plain Text Multilingual LCD Display	111.6 (3.07) [11.61] inlet at all load ranges - 3.5-7" w For Megajoule content, multiply	130 (3.57) [13.53] rater column (7-13 mm mercury) for natural gas, 10-12" m∛hr x 93.15 (LP) or m³/hr x 37.26 (NG) Simple user interface for ease of operation. Automatic Start on Utility failure. 7 day exerciser.	140 (3.85) [14.57] water column (19-22 mm
1/2 Load Full Load Note: Fuel pipe must be sized for full load. Required fuel pressure to generator fuel nercury) for LP gas. For Btu content, multiply ft ³ /hr x 2500 (LP) or ft ³ /hr x 1000 (NG). Ontrols -Line Plain Text Multilingual LCD Display Node Buttons: Auto Manual Off	111.6 (3.07) [11.61] inlet at all load ranges - 3.5-7" w For Megajoule content, multiply Start with star	130 (3.57) [13.53] rater column (7-13 mm mercury) for natural gas, 10-12" m³/hr x 93.15 (LP) or m³/hr x 37.26 (NG) Simple user interface for ease of operation. Automatic Start on Utility failure. 7 day exerciser. ter control, unit stays on. If utility fails, transfer to load tai	140 (3.85) [14.57] water column (19-22 mn
1/2 Load Full Load Note: Fuel pipe must be sized for full load. Required fuel pressure to generator fuel mercury) for LP gas. For Btu content, multiply ft ³ /hr x 2500 (LP) or ft ³ /hr x 1000 (NG). Ontrols P-Line Plain Text Multilingual LCD Display Node Buttons: Auto Manual Off	111.6 (3.07) [11.61] inlet at all load ranges - 3.5-7" w For Megajoule content, multiply Start with star	130 (3.57) [13.53] rater column (7-13 mm mercury) for natural gas, 10-12" m³/hr x 93.15 (LP) or m³/hr x 37.26 (NG) Simple user interface for ease of operation. Automatic Start on Utility failure. 7 day exerciser. ter control, unit stays on. If utility fails, transfer to load tai s unit. Power is removed. Control and charger still operate	140 (3.85) [14.57] water column (19-22 mm
1/2 Load Full Load Note: Fuel pipe must be sized for full load. Required fuel pressure to generator fuel mercury) for LP gas. For Btu content, multiply ft ³ /hr x 2500 (LP) or ft ³ /hr x 1000 (NG). Ontrols P-Line Plain Text Multilingual LCD Display Adde Buttons: Auto Manual Off leady to Rur/Maintenance Messages	111.6 (3.07) [11.61] inlet at all load ranges - 3.5-7" w For Megajoule content, multiply Start with star	130 (3.57) [13.53] vater column (7-13 mm mercury) for natural gas, 10-12" m³/hr x 93.15 (LP) or m³/hr x 37.26 (NG) Simple user interface for ease of operation. Automatic Start on Utility failure. 7 day exerciser. ter control, unit stays on. If utility fails, transfer to load tat s unit. Power is removed. Control and charger still operate Standard	140 (3.85) [14.57] water column (19-22 mm
1/2 Load Full Load Note: Fuel pipe must be sized for full load. Required fuel pressure to generator fuel mercury) for LP gas. For Btu content, multiply ft ³ /hr x 2500 (LP) or ft ³ /hr x 1000 (NG). ontrols -Line Plain Text Multilingual LCD Display Adde Buttons: Auto Manual Off leady to Run/Maintenance Messages ngine Run Hours Indication	111.6 (3.07) [11.61] inlet at all load ranges - 3.5-7" w For Megajoule content, multiply Start with star	130 (3.57) [13.53] vater column (7-13 mm mercury) for natural gas, 10-12" m³/hr x 93.15 (LP) or m³/hr x 37.26 (NG) Simple user interface for ease of operation. Automatic Start on Utility failure. 7 day exerciser. ter control, unit stays on. If utility fails, transfer to load ta s unit. Power is removed. Control and charger still operate Standard Standard	140 (3.85) [14.57] water column (19-22 mm
1/2 Load Full Load Note: Fuel pipe must be sized for full load. Required fuel pressure to generator fuel mercury) for LP gas. For Btu content, multiply ft ³ /hr x 2500 (LP) or ft ³ /hr x 1000 (NG). ontrols L-Line Plain Text Multilingual LCD Display Adde Buttons: Auto Manual Off teady to Run/Maintenance Messages ngine Run Hours Indication rogrammable start delay between 2-1500 seconds	111.6 (3.07) [11.61] inlet at all load ranges - 3.5-7" w For Megajoule content, multiply Start with star	130 (3.57) [13.53] vater column (7-13 mm mercury) for natural gas, 10-12" m?/hr x 93.15 (LP) or m?/hr x 37.26 (NG) Simple user interface for ease of operation. Automatic Start on Utility failure. 7 day exerciser. ter control, unit stays on. If utility fails, transfer to load tai s unit. Power is removed. Control and charger still operate Standard Standard Standard Standard (programmable by dealer only)	140 (3.85) [14.57] water column (19-22 mn
1/2 Load Full Load Note: Fuel pipe must be sized for full load. Required fuel pressure to generator fuel mercury) for LP gas. For Blu content, multiply ft ³ /hr x 2500 (LP) or ft ³ /hr x 1000 (NG). ontrols -Line Plain Text Multilingual LCD Display Mode Buttons: Auto Manual Off leady to Run/Maintenance Messages ngine Run Hours Indication rogrammable start delay between 2-1500 seconds tility Voltage Loss/Return to Utility Adjustable	111.6 (3.07) [11.61] inlet at all load ranges - 3.5-7" w For Megajoule content, multiply Start with star	130 (3.57) [13.53] vater column (7-13 mm mercury) for natural gas, 10-12" m?/hr x 93.15 (LP) or m?/hr x 37.26 (NG) Simple user interface for ease of operation. Automatic Start on Utility failure. 7 day exerciser. ter control, unit stays on. If utility fails, transfer to load tai s unit. Power is removed. Control and charger still operate Standard Standard Standard Standard (programmable by dealer only) From 140-171 V/190-216 V	140 (3.85) [14.57] water column (19-22 mn
1/2 Load Full Load Iote: Fuel pipe must be sized for full load. Required fuel pressure to generator fuel nercury) for LP gas. For Btu content, multiply ft ³ /hr x 2500 (LP) or ft ³ /hr x 1000 (NG). ontrols -Line Plain Text Multillingual LCD Display Adde Buttons: Auto Manual Off eady to Run/Maintenance Messages ngine Run Hours Indication rogrammable start delay between 2-1500 seconds tillty Voltage Loss/Return to Utility Adjustable uture Set Capable Exerciser/Exercise Set Error Warning	111.6 (3.07) [11.61] inlet at all load ranges - 3.5-7" w For Megajoule content, multiply Start with star	130 (3.57) [13.53] vater column (7-13 mm mercury) for natural gas, 10-12" m³/hr x 93.15 (LP) or m³/hr x 37.26 (NG) Simple user interface for ease of operation. Automatic Start on Utility failure. 7 day exerciser. ter control, unit stays on. If utility fails, transfer to load tal s unit. Power is removed. Control and charger still operate Standard Standard Standard Standard Standard (programmable by dealer only) From 140-171 V/190-216 V Standard	140 (3.85) [14.57] water column (19-22 mn
1/2 Load Full Load Note: Fuel pipe must be sized for full load. Required fuel pressure to generator fuel nercury) for LP gas. For Btu content, multiply ft ³ /hr x 2500 (LP) or ft ³ /hr x 1000 (NG). ontrols -Line Plain Text Multilingual LCD Display Mode Buttons: Auto Manual Off eady to Run/Maintenance Messages ngine Run Hours Indication rogrammable start delay between 2-1500 seconds tility Voltage Loss/Return to Utility Adjustable uture Set Capable Exercise/Exercise Set Error Warning un/Alarmr/Maintenance Logs	111.6 (3.07) [11.61] inlet at all load ranges - 3.5-7" w For Megajoule content, multiply Start with star Stops	130 (3.57) [13.53] vater column (7-13 mm mercury) for natural gas, 10-12" m³/hr x 93.15 (LP) or m³/hr x 37.26 (NG) Simple user interface for ease of operation. Automatic Start on Utility failure. 7 day exerciser. ter control, unit stays on. If utility fails, transfer to load tais s unit. Power is removed. Control and charger still operate Standard Standard Standard Standard Standard (programmable by dealer only) From 140-171 V/190-216 V Standard 50 Events Each	140 (3.85) [14.57] water column (19-22 mn kes place.
1/2 Load Full Load Note: Fuel pipe must be sized for full load. Required fuel pressure to generator fuel nercury) for LP gas. For Btu content, multiply ft ³ /hr x 2500 (LP) or ft ³ /hr x 1000 (NG). ontrols -Line Plain Text Multilingual LCD Display Mode Buttons: Auto Manual Off eady to Rur/Maintenance Messages ngine Run Hours Indication rogrammable start delay between 2-1500 seconds tilly Voltage Loss/Return to Utility Adjustable uture Set Capable Exercise/Exercise Set Error Warning un/Alarm/Maintenance Logs ngine Start Sequence	111.6 (3.07) [11.61] inlet at all load ranges - 3.5-7" w For Megajoule content, multiply Start with star Stops	130 (3.57) [13.53] vater column (7-13 mm mercury) for natural gas, 10-12" m³/hr x 93.15 (LP) or m³/hr x 37.26 (NG) Simple user interface for ease of operation. Automatic Start on Utility failure. 7 day exerciser. ter control, unit stays on. If utility fails, transfer to load tal s unit. Power is removed. Control and charger still operate Standard Standard Standard Standard Standard (programmable by dealer only) From 140-171 V/190-216 V Standard	140 (3.85) [14.57] water column (19-22 mn kes place.
1/2 Load Full Load Note: Fuel pipe must be sized for full load. Required fuel pressure to generator fuel nercury) for LP gas. For Btu content, multiply ft ³ /hr x 2500 (LP) or ft ³ /hr x 1000 (NG). Ontrols -Line Plain Text Multilingual LCD Display Mode Buttons: Auto Manual Off eady to Rur/Maintenance Messages ngine Run Hours Indication rogrammable start delay between 2-1500 seconds tility Voltage Loss/Return to Utility Adjustable uture Set Capable Exerciser/Exercise Set Error Warning ur/Alarm/Waintenance Logs ngine Start Sequence tarter Lock-out	111.6 (3.07) [11.61] inlet at all load ranges - 3.5-7" w For Megajoule content, multiply Start with star Stops	130 (3.57) [13.53] vater column (7-13 mm mercury) for natural gas, 10-12" m³/hr x 93.15 (LP) or m³/hr x 37.26 (NG) Simple user interface for ease of operation. Automatic Start on Utility failure. 7 day exerciser. ter control, unit stays on. If utility fails, transfer to load tais s unit. Power is removed. Control and charger still operate Standard Standard Standard Standard Standard (programmable by dealer only) From 140-171 V/190-216 V Standard 50 Events Each	140 (3.85) [14.57] water column (19-22 mn kes place. e.
1/2 Load Full Load Full Load Note: Fuel pipe must be sized for full lead. Required fuel pressure to generator fuel nercury) for LP gas. For Btu content, multiply ft ³ /hr x 2500 (LP) or ft ³ /hr x 1000 (NG). ontrols -Line Plain Text Multilingual LCD Display Mode Buttons: Auto Manual Off eady to Run/Maintenance Messages ngine Run Hours Indication rogrammable start delay between 2-1500 seconds tillty Voltage Loss/Return to Utility Adjustable uture Set Capable Exerciser/Exercise Set Error Warning un/Alarry/Maintenance Logs ngine Start Sequence tarter Lock-out mart Battery Charger	111.6 (3.07) [11.61] inlet at all load ranges - 3.5-7" w For Megajoule content, multiply Start with star Stops	130 (3.57) [13.53] vater column (7-13 mm mercury) for natural gas, 10-12" m³/hr x 93.15 (LP) or m³/hr x 37.26 (NG) Simple user interface for ease of operation. Automatic Start on Utility failure. 7 day exerciser. ter control, unit stays on. If utility fails, transfer to load tais s unit. Power is removed. Control and charger still operate Standard Standard Standard Standard Standard (programmable by dealer only) From 140-171 V/190-216 V Standard 50 Events Each c cranking: 16 sec on, 7 rest (90 sec maximum duration)	140 (3.85) [14.57] water column (19-22 mn kes place. e.
1/2 Load Full Load Full Load Rote: Fuel pipe must be sized for full load. Required fuel pressure to generator fuel nercury) for LP gas. For Btu content, multiply ft ³ /hr x 2500 (LP) or ft ³ /hr x 1000 (NG). Controls -Line Plain Text Multilingual LCD Display fode Buttons: Auto Manual Off eady to Run/Maintenance Messages ngine Run Hours Indication rogrammable start delay between 2-1500 seconds tillity Voltage Loss/Return to Utility Adjustable uture Set Capable Exercise/Exercise Set Error Warning un/Alarm/Maintenance Logs ngine Start Sequence tarter Lock-out mart Battery Charger harger Fault/Missing AC Warning	111.6 (3.07) [11.61] inlet at all load ranges - 3.5-7" w For Megajoule content, multiply Start with star Stops	130 (3.57) [13.53] vater column (7-13 mm mercury) for natural gas, 10-12" m³/hr x 93.15 (LP) or m³/hr x 37.26 (NG) Simple user interface for ease of operation. Automatic Start on Utility failure. 7 day exerciser. ter control, unit stays on. If utility fails, transfer to load tai s unit. Power is removed. Control and charger still operate Standard Standard Standard (programmable by dealer only) From 140-171 V/190-216 V Standard 50 Events Each c cranking: 16 sec on, 7 rest (90 sec maximum duration) er cannot re-engage until 5 sec after engine has stopped. Standard	140 (3.85) [14.57] water column (19-22 mn kes place. e.
1/2 Load Full Load Full Load Note: Fuel pipe must be sized for full load. Required fuel pressure to generator fuel nercury) for LP gas. For Btu content, multiply ft ³ /hr x 2500 (LP) or ft ³ /hr x 1000 (NG). Ontrols -Line Plain Text Multilingual LCD Display Mode Buttons: Auto Manual Off eady to Rur/Maintenance Messages ngine Run Hours Indication rogrammable start delay between 2-1500 seconds tility Voltage Loss/Return to Utility Adjustable uture Set Capable Exerciser/Exercise Set Error Warning un/Alarm/Maintenance Logs ngine Start Sequence tarter Lock-out mart Battery Charger harger Fault/Missing AC Warning	111.6 (3.07) [11.61] inlet at all load ranges - 3.5-7" w For Megajoule content, multiply Start with star Stops	130 (3.57) [13.53] vater column (7-13 mm mercury) for natural gas, 10-12" m³/hr x 93.15 (LP) or m³/hr x 37.26 (NG) Simple user interface for ease of operation. Automatic Start on Utility failure. 7 day exerciser. ter control, unit stays on. If utility fails, transfer to load tai s unit. Power is removed. Control and charger still operate Standard Standard Standard (programmable by dealer only) From 140-171 V/190-216 V Standard 50 Events Each c cranking: 16 sec on, 7 rest (90 sec maximum duration) er cannot re-engage until 5 sec after engine has stopped. Standard Standard	140 (3.85) [14.57] water column (19-22 mn kes place. e.
1/2 Load Full Load Rote: Fuel pipe must be sized for full load. Required fuel pressure to generator fuel nercury) for LP gas. For Btu content, multiply ft ³ /hr x 2500 (LP) or ft ³ /hr x 1000 (NG). controls -Line Plain Text Multilingual LCD Display tode Buttons: Auto Manual Off eady to Rur/Maintenance Messages ngine Run Hours Indication rogrammable start delay between 2-1500 seconds tillity Voltage Loss/Return to Utility Adjustable uture Set Capable Exerciser/Exercise Set Error Warning un/Alarm/Maintenance Logs ngine Start Sequence Tarter Lock-out mart Battery Charger harger Fault/Missing AC Warning w Battery/Eattery Problem Protection and Battery Condition Indication	111.6 (3.07) [11.61] inlet at all load ranges - 3.5-7" w For Megajoule content, multiply Start with star Stops	130 (3.57) [13.53] vater column (7-13 mm mercury) for natural gas, 10-12" m³/hr x 93.15 (LP) or m³/hr x 37.26 (NG) Simple user interface for ease of operation. Automatic Start on Utility failure. 7 day exerciser. ter control, unit stays on. If utility fails, transfer to load tal s unit. Power is removed. Control and charger still operate Standard Standard Standard (programmable by dealer only) From 140-171 V/190-216 V Standard 50 Events Each c cranking: 16 sec on, 7 rest (90 sec maximum duration) er cannot re-engage until 5 sec after engine has stopped. Standard Standard Standard Standard	140 (3.85) [14.57] water column (19-22 mn kes place. e.
1/2 Load Full Load Full Load Rote: Fuel pipe must be sized for full load. Required fuel pressure to generator fuel nercury) for LP gas. For Btu content, multiply ft ³ /hr x 2500 (LP) or ft ³ /hr x 1000 (NG). Ontrols -Line Plain Text Multilingual LCD Display Mode Buttons: Auto Manual Off eady to Rur/Maintenance Messages ngine Run Hours Indication rogrammable start delay between 2-1500 seconds tility Voltage Loss/Return to Utility Adjustable uture Set Capable Exerciser/Exercise Set Error Warning un/Alarm/Maintenance Logs ngine Start Sequence tarter Lock-out mart Battery Charger harger Fault/Missing AC Warning w Battery/Battery Problem Protection and Battery Condition Indication utomatic Voltage Regulation with Over and Under Voltage Protection	111.6 (3.07) [11.61] inlet at all load ranges - 3.5-7" w For Megajoule content, multiply Start with star Stops	130 (3.57) [13.53] vater column (7-13 mm mercury) for natural gas, 10-12" m³/hr x 93.15 (LP) or m³/hr x 37.26 (NG) Simple user interface for ease of operation. Automatic Start on Utility failure. 7 day exerciser. ter control, unit stays on. If utility fails, transfer to load tal s unit. Power is removed. Control and charger still operate Standard Standard Standard Standard Standard 50 Events Each c oranking: 16 sec on, 7 rest (90 sec maximum duration) er cannot re-engage until 5 sec after engine has stopped. Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard	140 (3.85) [14.57] water column (19-22 mn kes place. e.
1/2 Load Full Load Aote: Fuel pipe must be sized for full load. Required fuel pressure to generator fuel mercury) for LP gas. For Btu content, multiply ft ³ /hr x 2500 (LP) or ft ³ /hr x 1000 (NG). ontrols Chine Plain Text Multilingual LCD Display Aode Buttons: Auto Manual Off leady to Run/Maintenance Messages Off nogrammable start delay between 2-1500 seconds Itility Voltage Loss/Return to Utility Adjustable uture Set Capable Exerciser/Exercise Set Error Warning un/Alarm/Maintenance Logs ngine Start Sequence Later Lock-out mart Battery Charger Harger Fault/Missing AC Warning bw Battery/Battery Problem Protection and Battery Condition Indication utoratic Voltage Protection utomatic Voltage Regulation with Over and Under Voltage Protection Indication	111.6 (3.07) [11.61] inlet at all load ranges - 3.5-7" w For Megajoule content, multiply Start with star Stops	130 (3.57) [13.53] vater column (7-13 mm mercury) for natural gas, 10-12" m³/hr x 93.15 (LP) or m³/hr x 37.26 (NG) Simple user interface for ease of operation. Automatic Start on Utility failure. 7 day exerciser. ter control, unit stays on. If utility fails, transfer to load tal is unit. Power is removed. Control and charger still operate Standard Standard Standard (programmable by dealer only) From 140-171 V/190-216 V Standard 50 Events Each c cranking: 16 sec on, 7 rest (90 sec maximum duration) er cannot re-engage until 5 sec after engine has stopped. Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard	140 (3.85) [14.57] water column (19-22 mn kes place. e.
1/2 Load Full Load Note: Fuel pipe must be sized for full load. Required fuel pressure to generator fuel nercury) for LP gas. For Btu content, multiply ft ³ /hr x 2500 (LP) or ft ³ /hr x 1000 (NG). ontrols -Line Plain Text Multilingual LCD Display Mode Buttons: Auto Manual Off eady to Run/Maintenance Messages ngine Run Hours Indication rogrammable start delay between 2-1500 seconds tility Voltage Loss/Return to Utility Adjustable uture Set Capable Exerciser/Exercise Set Error Warning un/Alarm/Maintenance Logs ngine Start Sequence tarter Lock-out mart Battery Charger harger Fault/Missing AC Warning we Battery/Battery Problem Protection and Battery Condition Indication utomatic Voltage Regulation with Over and Under Voltage Protection nder-Frequency/Overload/Stepper Overcurrent Protection afety Fused/Fuse Problem Protection	111.6 (3.07) [11.61] inlet at all load ranges - 3.5-7" w For Megajoule content, multiply Start with star Stops	130 (3.57) [13.53] vater column (7-13 mm mercury) for natural gas, 10-12" m³/hr x 93.15 (LP) or m³/hr x 37.26 (NG) Simple user interface for ease of operation. Automatic Start on Utility failure. 7 day exerciser. ter control, unit stays on. If utility fails, transfer to load tal s unit. Power is removed. Control and charger still operate Standard Standard Standard Standard (programmable by dealer only) From 140-171 V/190-216 V Standard 50 Events Each c cranking: 16 sec on, 7 rest (90 sec maximum duration) er cannot re-engage until 5 sec after engine has stopped. Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard	140 (3.85) [14.57] water column (19-22 mn kes place. e.
1/2 Load Full Load Note: Fuel pipe must be sized for full load. Required fuel pressure to generator fuel nercury) for LP gas. For Btu content, multiply ft ³ /hr x 2500 (LP) or ft ³ /hr x 1000 (NG). ontrols -Line Plain Text Multilingual LCD Display Mode Buttons: Auto Manual Off eady to Rur/Maintenance Messages ngine Run Hours Indication rogrammable start delay between 2-1500 seconds tility Voltage Loss/Return to Utility Adjustable uture Set Capable Exercise/Exercise Set Error Warning un/Alarm/Maintenance Logs ngine Start Sequence tarter Lock-out mart Battery Charger harger Faul/Missing AC Warning bw Battery/Battery Problem Protection and Battery Condition Indication utomatic Voltage Regulation with Over and Under Voltage Protection nder-Frequency/Overload/Stepper Overcurrent Protection afety Fused/Fuse Problem Protection utomatic Low Oil Pressure/High Oil Temperature Shutdown	111.6 (3.07) [11.61] inlet at all load ranges - 3.5-7" w For Megajoule content, multiply Start with star Stops	130 (3.57) [13.53] vater column (7-13 mm mercury) for natural gas, 10-12" m³/hr x 93.15 (LP) or m³/hr x 37.26 (NG) Simple user interface for ease of operation. Automatic Start on Utility failure. 7 day exerciser. ter control, unit stays on. If utility fails, transfer to load tal is unit. Power is removed. Control and charger still operate Standard Standard Standard (programmable by dealer only) From 140-171 V/190-216 V Standard 50 Events Each c cranking: 16 sec on, 7 rest (90 sec maximum duration) er cannot re-engage until 5 sec after engine has stopped. Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard	140 (3.85) [14.57] water column (19-22 mn kes place. e.
1/2 Load Full Load Note: Fuel pipe must be sized for full load. Required fuel pressure to generator fuel nercury) for LP gas. For Btu content, multiply ft ³ /hr x 2500 (LP) or ft ³ /hr x 1000 (NG). ontrols -Line Plain Text Multilingual LCD Display Mode Buttons: Auto Manual Off eady to Rur/Maintenance Messages ngine Run Hours Indication rogrammable start delay between 2-1500 seconds tility Voltage Loss/Return to Utility Adjustable uture Set Capable Exercise/Exercise Set Error Warning un/Alarm/Maintenance Logs ngine Start Sequence tarter Lock-out mart Battery Charger harger Fault/Missing AC Warning we Battery/Battery Problem Protection and Battery Condition Indication utomatic Voltage Regulation with Over and Under Voltage Protection nder-Frequency/Overload/Stepper Overcurrent Protection afety Fused/Fuse Problem Protection utomatic Low Oil Pressure/High Oil Temperature Shutdown vercrank/Overspeed (@ 72 Hz)/rpm Sense Loss Shutdown	111.6 (3.07) [11.61] inlet at all load ranges - 3.5-7" w For Megajoule content, multiply Start with star Stops	130 (3.57) [13.53] vater column (7-13 mm mercury) for natural gas, 10-12" m³/hr x 93.15 (LP) or m³/hr x 37.26 (NG) Simple user interface for ease of operation. Automatic Start on Utility failure. 7 day exerciser. ter control, unit stays on. If utility fails, transfer to load tal s unit. Power is removed. Control and charger still operate Standard Standard Standard Standard (programmable by dealer only) From 140-171 V/190-216 V Standard 50 Events Each c cranking: 16 sec on, 7 rest (90 sec maximum duration) er cannot re-engage until 5 sec after engine has stopped. Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard	140 (3.85) (14.57) water column (19-22 mr kes place. e.
1/2 Load Full Load Note: Fuel pipe must be sized for full load. Required fuel pressure to generator fuel nercury) for LP gas. For Btu content, multiply ft ³ /hr x 2500 (LP) or ft ³ /hr x 1000 (NG). Ontrols -Line Plain Text Multilingual LCD Display Mode Buttons: Auto Manual Off eady to Rur/Maintenance Messages ngine Run Hours Indication rogrammable start delay between 2-1500 seconds tility Voltage Loss/Return to Utility Adjustable uture Set Capable Exerciser/Exercise Set Error Warning ur/Alarrry/Maintenance Logs ngine Start Sequence tarter Lock-out mart Battery Charger harger Fault/Missing AC Warning w Battery/Battery Problem Protection and Battery Condition Indication utomatic Voltage Regulation with Over and Under Voltage Protection nder-Frequency/Overload/Stepper Overcurrent Protection afety Fused/Fuse Problem Protection utomatic Low Oil Pressure/High Oil Temperature Shutdown vercrank/Overspeed (@ 72 H2/Jrpm Sense Loss Shutdown gh Engine Temperature Shutdown	111.6 (3.07) [11.61] inlet at all load ranges - 3.5-7" w For Megajoule content, multiply Start with star Stops	130 (3.57) [13.53] vater column (7-13 mm mercury) for natural gas, 10-12" m³/hr x 93.15 (LP) or m³/hr x 37.26 (NG) Simple user interface for ease of operation. Automatic Start on Utility failure. 7 day exerciser. ter control, unit stays on. If utility fails, transfer to load tal s unit. Power is removed. Control and charger still operate Standard Standard Standard Standard (programmable by dealer only) From 140-171 V/190-216 V Standard 50 Events Each c cranking: 16 sec on, 7 rest (90 sec maximum duration) er cannot re-engage until 5 sec after engine has stopped. Standard	140 (3.85) (14.57) water column (19-22 mr kes place. e.
1/2 Load Full Load Note: Fuel pipe must be sized for full load. Required fuel pressure to generator fuel nercury) for LP gas. For Btu content, multiply ft ³ /hr x 2500 (LP) or ft ³ /hr x 1000 (NG). Ontrols -Line Plain Text Multilingual LCD Display Mode Buttons: Auto Manual Off eady to Rur/Maintenance Messages ngine Run Hours Indication rogrammable start delay between 2-1500 seconds tility Voltage Loss/Return to Utility Adjustable uture Set Capable Exerciser/Exercise Set Error Warning ur/Alarrry/Maintenance Logs ngine Start Sequence tarter Lock-out mart Battery Charger harger Fault/Missing AC Warning w Battery/Battery Problem Protection and Battery Condition Indication utomatic Voltage Regulation with Over and Under Voltage Protection nder-Frequency/Overload/Stepper Overcurrent Protection afety Fused/Fuse Problem Protection utomatic Low Oil Pressure/High Oil Temperature Shutdown vercrank/Overspeed (@ 72 H2/Jrpm Sense Loss Shutdown gh Engine Temperature Shutdown	111.6 (3.07) [11.61] inlet at all load ranges - 3.5-7" w For Megajoule content, multiply Start with star Stops	130 (3.57) [13.53] vater column (7-13 mm mercury) for natural gas, 10-12" m³/hr x 93.15 (LP) or m³/hr x 37.26 (NG) Simple user interface for ease of operation. Automatic Start on Utility failure. 7 day exerciser. ter control, unit stays on. If utility fails, transfer to load tai s unit. Power is removed. Control and charger still operate Standard Standard Standard (programmable by dealer only) From 140-171 V/190-216 V Standard 50 Events Each c cranking: 16 sec on, 7 rest (90 sec maximum duration) er cannot re-engage until 5 sec after engine has stopped. Standard	140 (3.85) (14.57) water column (19-22 mr kes place. e.
1/2 Load Full Load Note: Fuel pipe must be sized for full load. Required fuel pressure to generator fuel nercury) for LP gas. For Btu content, multiply ft ³ /hr x 2500 (LP) or ft ³ /hr x 1000 (NG). ontrols -Line Plain Text Multilingual LCD Display Mode Buttons: Auto Manual Off eady to Rur/Maintenance Messages ngine Run Hours Indication rogrammable start delay between 2-1500 seconds tility Voltage Loss/Return to Utility Adjustable uture Set Capable Exercise/Exercise Set Error Warning un/Alarm/Maintenance Logs ngine Start Sequence tarter Lock-out mart Battery Charger harger Fault/Missing AC Warning we Battery/Battery Problem Protection and Battery Condition Indication utomatic Voltage Regulation with Over and Under Voltage Protection nder-Frequency/Overload/Stepper Overcurrent Protection afety Fused/Fuse Problem Protection utomatic Low Oil Pressure/High Oil Temperature Shutdown vercrank/Overspeed (@ 72 Hz)/rpm Sense Loss Shutdown	111.6 (3.07) [11.61] inlet at all load ranges - 3.5-7" w For Megajoule content, multiply Start with star Stops	130 (3.57) [13.53] vater column (7-13 mm mercury) for natural gas, 10-12" m³/hr x 93.15 (LP) or m³/hr x 37.26 (NG) Simple user interface for ease of operation. Automatic Start on Utility failure. 7 day exerciser. ter control, unit stays on. If utility fails, transfer to load tal s unit. Power is removed. Control and charger still operate Standard Standard Standard Standard (programmable by dealer only) From 140-171 V/190-216 V Standard 50 Events Each c cranking: 16 sec on, 7 rest (90 sec maximum duration) er cannot re-engage until 5 sec after engine has stopped. Standard	140 (3.85) [14.57] water column (19-22 mn kes place. e.

**Sound levels are taken from the front of the generator. Sound levels taken from other sides of the generator may be higher depending on installation parameters. Rating definitions - Standby: Applicable for supplying emergency power for the duration of the utility power outage. No overload capability is available for this rating. (All ratings in accordance with BS5514, ISO3046 and DIN6271). * Maximum wattage and current are subject to and limited by such factors as fuel Btu/megajoule content, ambient temperature, altitude, engine power and condition, etc. Maximum power decreases about 3.5 percent for each 1,000 feet (304.8 meters) above sea level; and also will decrease about 1 percent for each 6 °C (10 °F) above 16 °C (60 °F).

3 of 5

GENERAC

switch options

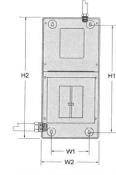
000040 0 /47 140

14/17/20 kW

Pre-wired Features available on 14 & 17 kW models only

- Electrically operated, mechanically-held contacts for fast, positive connections.
- Rated for all classes of load, 100% equipment rated, both inductive and resistive.
- · 2 pole, 250 VAC contactors.
- 30 millisecond transfer time.
- Dual coil design.
- · Main contacts are silver plated or silver alloy to resist welding and sticking.
- · NEMA 1 (indoor rated) enclosure is standard on the pre-wired switch.
- Pre-wired 30 foot (9.1 meter) whip to connect to the provided 5 foot prewired whip and external connection box.
- Pre-wired 2 foot (0.61 meter) whip, color coded to connect into the existing electrical panel.

Mechanical Dimensions


-			
110	mon	onono	
UII		sions	

UU624U-U (14 kW)	006242-0 (17 kW)
2	2
100	100
250	120/240, 1Ø
	· · · · · · · · · · · · · · · · · · ·
80% 60%	80% 60%
approx. 15 sec.	approx. 15 sec.
Standard	Standard
Standard	Standard
14	16
4	5
6	5
1	1
-	-
1	1
-	1
10.000	10.000
	100 250 80% approx. 15 sec. Standard 14 4 6 1 - 1 -

006240 0 /14 140

*Function of Evolution Controller

Model

006241-0 /14 kW)/006243-0 (17 kW)/006244-0 (20 kW)

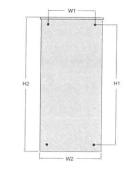
	Height		Width		Death
	H1	H2	W1	W2	Depth
in	23.5	26.4	8.3	12.6	6.3
mm	597	671.7	211 ·	320.7	159.6

Wire Ranges		
Conductor Lug	Neutral Lug	Ground Lug
2/0 - #14	2/0 - #14	2/0 - #14

Smart Switch Features

- Includes Digital Power Management Technology standard (DPM).
- Intelligently manages two air conditioner loads with no additional hardware.
- Up to four more large (120/240 VAC) loads can be managed when used in conjunction with Power Management Modules (PMM**).
- Electrically operated, mechanically-held contacts for fast, clean connections.
- Rated for all classes of load, 100% equipment rated, both inductive and resistive.
- 2 pole, 250 VAC contactors.
- · Service equipment rated, dual coil design.
- · Rated for both aluminum and copper conductors.
- NEMA/UL 3R aluminum outdoor enclosure.
- Main contacts are silver plated or silver alloy to resist welding and sticking.

**Note: PMM starter kit is required prior to using the modules.


Dimensions

	200 Amps 120/240, 1ø Open Transition Service Rated						
	Hei	ight	Width		Death		
	H1	H2	W1	W2	Depth		
in	27.24	30.0	11.4	13.5	7.09		
mm	692.0	762.4	289.0	343.0	180.0		

Model

000241-0 (14 KW)/000243-0 (17 KW)/000244-0 (20 KW)
2
200
120/240, 1Ø
80% 60%
approx. 13 sec.
Standard
Standard
NEMA/UL 3R
22,000
250 MCM - #6

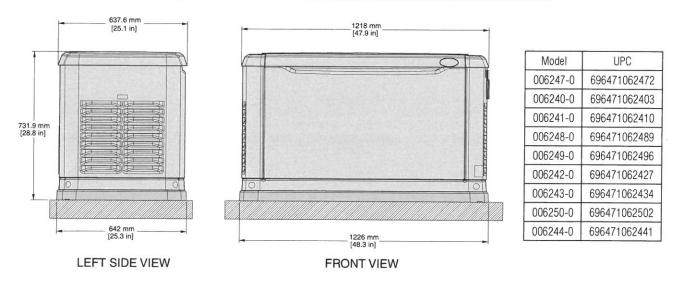
*Function of Evolution Controller

DEPTH

4 of 5

GENERAC

14/17/20 kW


available accessories

Model #	Product	Description
005819-0	26R Wet Cell Battery	Every standby generator requires a battery to start the system. Generac offers the recommended 26R wet cell battery for use with all air-cooled standby product.
006212-0	Cold Weather Kit	If the temperature regularly falls below 32 °F (0 °C), install a cold weather kit to maintain optimal battery and oil temperatures. Kit consists of a battery warmer and oil filter heater with built-in thermostats.
005621-0	Auxiliary Transfer Switch Contact Kit	The auxiliary transfer switch contact kit allows the transfer switch to lock out a single large electrical load you may not need. Not compatible with 50 amp pre-wired switches.
005839-0 - Bisque 005666-0 - Gray	Fascia Base Wrap Kit* (Standard on 20 kW)	The fascia base wrap snaps together around the bottom of the new air cooled generators. This offers a sleek, contoured appearance as well as offering protection from rodents and insects by covering the lifting holes located in the base.
005703-0 - Bisque 005704-0 - Gray	Paint Kit*	If the generator enclosure is scratched or damaged, it is important to touch-up the paint to protect from future corrosion. The paint kit includes the necessary paint to properly maintain or touch-up a generator enclosure.
006484-0 - 14 & 17 kW 006485-0 - 20 kW	Scheduled Maintenance Kit	Generac's scheduled maintenance kits provide all the hardware necessary to perform complete routine maintenance on a Generac automatic standby generator.
005928-0	Wireless Remote	Completely wireless and battery powered, Generac's wireless remote monitor provides you with instant status information without ever leaving the house. Not compatible with CorePower or EcoGen systems.
006199-0	PMM Starter Kit	The PMM Starter Kit consists of a 24 VAC, field installed transformer that enables the use of the 24 VAC Power Management Modules (PMMs) and one PMM. The standard controller (without starter kit) can control two HVAC loads with no additional hardware. Not compatible with pre-wired switches.
006186-0	Power Management Module (50 Amps)	Power Management Modules are used in conjunction with the Smart Switch to increase its power management capabilities. It gives the Smart Switch additional power management flexibility not found in any other transfer switch. Not compatible with pre-wired switches. Note: PMM Starter Kit required.
006463-1	Mobile Link™	Generac's Mobile Link allows you to check the status of your generator from anywhere that you have access to an Internet connection from a PC or with any smart device. You will even be notified when a change in the generator's status occurs via e-mail or text message.

* Note: Bisque kits are used in conjunction with steel enclosures. Gray kits are used in conjunction with aluminum enclosures.

dimensions & UPCs

Dimensions shown are approximate. Refer to installation manual for exact dimensions. DO NOT USE THESE DIMENSIONS FOR INSTALLATION PURPOSES.

Generac Power Systems, Inc. • S45 W29290 HWY. 59, Waukesha, WI 53189 • generac.com ©2014 Generac Power Systems, Inc. All rights reserved. All specifications are subject to change without notice. Builetin 019799058Y-H Printed in U.S.A. 03/12/14

Units Generac Emergency Generator 1 and Generac Emergency Generator 2

GRI-HAPCalc [®] 3.01 Engines Report

Or Fa Us	acility ID: TYRONE peration Type: GAS PLAI acility Name: TYRONE ser Name: hits of Measure: U.S. STAN		Notes:	
Thes Emis	e emissions are indicated on the	tonnes) per year are considered insig report with a "0". E-05 tons (or tonnes) per year are rep		
)			
Unit	Name: GEN 1 & 2			
	Hours of Operation:	500 Yearly		
	Rate Power:	19 hp		
	Fuel Type:	NATURAL GAS		
	Engine Type:	4-Stroke, Lean Burn	다 물건 것을 받는 것	
	Emission Factor Set:	FIELD > EPA > LITERATURE		
	Additional EF Set:	-NONE-		
		Calculated Emissi	ons (ton/yr)	
	Chemical Name	Emissions	Emission Factor	Emission Factor Set
н	IAPs			
	Tetrachloroethane	0.0000	0.00000820 g/bhp-hr	EPA
	Formaldehyde	0.0012	0.11500000 g/bhp-hr	GRI Field
	Methanol	0.0000	0.00437210 g/bhp-hr	GRI Field
	Acetaldehyde	0.0001	0.00500000 g/bhp-hr	GRI Field
	1,3-Butadiene	0.0000	0.00088120 g/bhp-hr	EPA
	Acrolein	0.0002	0.01696380 g/bhp-hr	EPA
	Benzene	0.0000	0.00020500 g/bhp-hr	GRI Field
	Toluene	0.0000	0.00134650 g/bhp-hr	EPA
	Ethylbenzene	0.0000	0.00013100 g/bhp-hr	EPA
	Xylenes(m,p,o)	0.0000	0.00060730 g/bhp-hr	EPA
	2,2,4-Trimethylpentane	0.0000	0.00082510 g/bhp-hr	EPA
	n-Hexane	0.0000	0.00005050 g/bhp-hr	GRI Field
	Phenol	0.0000	0.00008850 g/bhp-hr	GRI Field
	Styrene	0.0000	0.00002450 g/bhp-hr	GRI Field
	Naphthalene	0.0000	0.00003800 g/bhp-hr	GRI Field
	2-Methylnaphthalene	0.0000	0.00010960 g/bhp-hr	EPA
	Acenaphthylene	0.0000	0.00001830 g/bhp-hr	EPA
	Biphenyl	0.0000	0.00078500 g/bhp-hr	GRI Field
	Acenaphthene	0.0000	0.00000410 g/bhp-hr	EPA
	Fluorene	0.0000	0.00003650 g/bhp-hr	GRI Field
	Phenanthrene	0.0000	0.00003430 g/bhp-hr	EPA
	Ethylene Dibromide	0.0000	0.00014620 g/bhp-hr	EPA
	Fluoranthene	0.0000	0.00000370 g/bhp-hr	EPA
	Pyrene	0.0000	0.00000450 g/bhp-hr	EPA
/31/2018	10:31:11	GRI-HAPCalc 3.01		Page 1 of 1

Chrysene	0.0000	0.00000230 g/bhp-hr	EPA
Benzo(b)fluoranthene	0.0000	0.00000050 g/bhp-hr	EPA
Benzo(e)pyrene	0.0000	0.00000140 g/bhp-hr	EPA
Benzo(g,h,i)perylene	0.0000	0.00000140 g/bhp-hr	EPA
Vinyl Chloride	0.0000	0.00004920 g/bhp-hr	EPA
Methylene Chloride	0.0000	0.00006600 g/bhp-hr	EPA
1,1-Dichloroethane	0.0000	0.00007790 g/bhp-hr	EPA
1,3-Dichloropropene	0.0000	0.00008710 g/bhp-hr	EPA
Chlorobenzene	0.0000	0.00010030 g/bhp-hr	EPA
Chloroform	0.0000	0.00009410 g/bhp-hr	EPA
1,1,2-Trichloroethane	0.0000	0.00010500 g/bhp-hr	EPA
1,1,2,2-Tetrachloroethane	0.0000	0.00013200 g/bhp-hr	EPA
Carbon Tetrachloride	0.0000	0.00012110 g/bhp-hr	EPA
otal –	0.0015		
Criteria Pollutants			
PM	0.0003	0.03296090 g/bhp-hr	EPA
co	0.0087	0.83333330 g/bhp-hr	GRI Field
NMEHC	0.0041	0.38944040 g/bhp-hr	EPA
NOx	0.1491	14.25000000 g/bhp-hr	GRI Field
SO2	0.0000	0.00194060 g/bhp-hr	EPA
Other Pollutants	0.0000		
Butryaldehyde	0.0000	0.00033330 g/bhp-hr	EPA
Chloroethane	0.0000	0.00000620 g/bhp-hr	EPA
Methane	0.0570	5.45250000 g/bhp-hr	GRI Field
Ethane	0.0016	0.15750000 g/bhp-hr	GRI Field
Propane	0.0002	0.01500000 g/bhp-hr	GRI Field
Butane	0.0000	0.00200000 g/bhp-hr	GRI Field
Cyclopentane	0.0000	0.00074920 g/bhp-hr	EPA
n-Pentane	0.0000	0.00235000 g/bhp-hr	GRI Field
Methylcyclohexane	0.0000	0.00405940 g/bhp-hr	EPA
1,2-Dichloroethane	0.0000	0.00007790 g/bhp-hr	EPA
1,2-Dichloropropane	0.0000	0.00008880 g/bhp-hr	EPA
n-Octane	0.0000	0.00115840 g/bhp-hr	EPA
1,2,3-Trimethylbenzene	0.0000	0.00007590 g/bhp-hr	EPA
1,2,4-Trimethylbenzene	0.0000	0.00004720 g/bhp-hr	EPA
1,3,5-Trimethylbenzene	0.0000	0.00011160 g/bhp-hr	EPA
n-Nonane	0.0000	0.00036300 g/bhp-hr	EPA
CO2	3.7983	363.03769350 g/bhp-hr	EPA

Unit Name: GEN 3 & 4 Units Generac Emergency Generator 3 and Generac Emergency Generator 4

		- J J	
Hours of Operation:	500	Yearly	
Rate Power:	22	hp	
Fuel Type:	NATURAL GAS		
Engine Type:	4-Stroke, Lean Burn		
Emission Factor Set:	FIELD > EPA > LITERATURE		
Additional EF Set:	-NONE-		

Calculated Emissions (ton/yr)

Emissions

Emission Factor

HAPS			
Tetrachloroethane	0.0000	0.00000820 g/bhp-hr	EPA
Formaldehyde	0.0014	0.11500000 g/bhp-hr	GRI Field
Methanol	0.0001	0.00437210 g/bhp-hr	GRI Field
Acetaldehyde	0.0001	0.00500000 g/bhp-hr	GRI Field
1,3-Butadiene	0.0000	0.00088120 g/bhp-hr	EPA
Acrolein	0.0002	0.01696380 g/bhp-hr	EPA
Benzene	0.0000	0.00020500 g/bhp-hr	GRI Field
Toluene	0.0000	0.00134650 g/bhp-hr	EPA
Ethylbenzene	0.0000	0.00013100 g/bhp-hr	EPA
Xylenes(m,p,o)	0.0000	0.00060730 g/bhp-hr	EPA
2,2,4-Trimethylpentane	0.0000	0.00082510 g/bhp-hr	EPA
n-Hexane	0.0000	0.00005050 g/bhp-hr	GRI Field
Phenol	0.0000	0.00008850 g/bhp-hr	GRI Field
Styrene	0.0000	0.00002450 g/bhp-hr	GRI Field
Naphthalene	0.0000	0.00003800 g/bhp-hr	GRI Field
2-Methylnaphthalene	0.0000	0.00010960 g/bhp-hr	EPA
Acenaphthylene	0.0000	0.00001830 g/bhp-hr	EPA
Biphenyl	0.0000	0.00078500 g/bhp-hr	GRI Field
Acenaphthene	0.0000	0.00000410 g/bhp-hr	EPA
Fluorene	0.0000	0.00003650 g/bhp-hr	GRI Field
Phenanthrene	0.0000	0.00003430 g/bhp-hr	EPA
Ethylene Dibromide	0.0000	0.00014620 g/bhp-hr	EPA
Fluoranthene	0.0000	0.00000370 g/bhp-hr	EPA
Pyrene	0.0000	0.00000450 g/bhp-hr	EPA
Chrysene	0.0000	0.00000230 g/bhp-hr	EPA
Benzo(b)fluoranthene	0.0000	0.00000050 g/bhp-hr	EPA
Benzo(e)pyrene	0.0000	0.00000140 g/bhp-hr	EPA
Benzo(g,h,i)perylene	0.0000	0.00000140 g/bhp-hr	EPA
Vinyl Chloride	0.0000	0.00004920 g/bhp-hr	EPA
Methylene Chloride	0.0000	0.00006600 g/bhp-hr	EPA
1,1-Dichloroethane	0.0000	0.00007790 g/bhp-hr	EPA
1,3-Dichloropropene	0.0000	0.00008710 g/bhp-hr	EPA
Chlorobenzene	0.0000	0.00010030 g/bhp-hr	EPA
Chloroform	0.0000	0.00009410 g/bhp-hr	EPA
1,1,2-Trichloroethane	0.0000	0.00010500 g/bhp-hr	EPA
1,1,2,2-Tetrachloroethane	0.0000	0.00013200 g/bhp-hr	EPA
Carbon Tetrachloride	0.0000	0.00012110 g/bhp-hr	EPA
	0.0018		
otal	0.0018		
<u>Criteria Pollutants</u>			
PM	0.0004	0.03296090 g/bhp-hr	EPA
CO	0.0101	0.83333330 g/bhp-hr	GRI Field
NMEHC	0.0047	0.38944040 g/bhp-hr	EPA
NOx	0.1726	14.25000000 g/bhp-hr	GRI Field
SO2	0.0000	0.00194060 g/bhp-hr	EPA
Other Pollutants			
Butryaldehyde	0.0000	0.00033330 g/bhp-hr	EPA
Chloroethane	0.0000	0.00000620 g/bhp-hr	EPA
		5 45050000 ///	GRI Field
Methane	0.0661	5.45250000 g/bhp-hr	GRIFIEID
Methane Ethane	0.0661 0.0019	5.45250000 g/bhp-hr 0.15750000 g/bhp-hr	GRI Field

HAPs

Butane	0.0000	0.00200000 g/bhp-hr	GRI Field
Cyclopentane	0.0000	0.00074920 g/bhp-hr	EPA
n-Pentane	0.0000	0.00235000 g/bhp-hr	GRI Field
Methylcyclohexane	0.0000	0.00405940 g/bhp-hr	EPA
1,2-Dichloroethane	0.0000	0.00007790 g/bhp-hr	EPA
1,2-Dichloropropane	0.0000	0.00008880 g/bhp-hr	EPA
n-Octane	0.0000	0.00115840 g/bhp-hr	EPA
1,2,3-Trimethylbenzene	0.0000	0.00007590 g/bhp-hr	EPA
1,2,4-Trimethylbenzene	0.0000	0.00004720 g/bhp-hr	EPA
1,3,5-Trimethylbenzene	0.0000	0.00011160 g/bhp-hr	EPA
n-Nonane	0.0000	0.00036300 g/bhp-hr	EPA
CO2	4.3980	363.03769350 g/bhp-hr	EPA

Unit IPG	UNITED STATES ENVIRONM 2013 MC CERTIFICATE WITH THE CLEA	OFFICE OF TRANS AND AIR QU ANN ARBOR, MICH	ALITY		
Certificate Issued To: Gen (U.S. M Certificate Number: DGNX	Manufacturer or Importer)	Effective Date: 03/28/2013 Expiration Date: 12/31/2013		r, Division Director nce Division	Issue Date: 03/28/2013 Revision Date: N/A
Manufacturer: Generac Pow Engine Family: DGNXS.992 Certificate Number: DGNX Useful Life : 500 Hours / 2 Y Engine Class : Nonhandheld Fuel : Natural Gas (CNG/LNG LPG/Propane Emission Standards : CO (g	2DB S.9922DB-013 ears -Class II G)				
FELS : HC + NOx (g/kW-hr)	: 7.5NMHC + NOx (g/kW-hr) : 7.5	SHITEDSTA	153		

Pursuant to Section 213 of the Clean Air Act (42 U.S.C. section 7547), 40 CFR Part 1054, 40 CFR Part 1068 and 40 CFR Part 60 (stationary only and combined stationary and mobile), and subject to the terms and conditions prescribed in those provisions, this certificate of conformity is hereby issued for the following small nonroad engine family, more fully described in the documentation required by 40 CFR Part 1054 and produced in the stated model year.

This certificate of conformity covers only those new small nonroad engines which conform in all material respects to the design specifications that applied to those engines described in the documentation required by 40 CFR Part 1054 and which are produced during the model year stated on this certificate of the said manufacturer, as defined in 40 CFR Part 1054. This certificate of conformity does not cover small nonroad engines imported prior to the effective date of the certificate.

This certificate of conformity is conditional upon compliance of said manufacturer with the averaging, banking and trading provisions of 40 CFR Part 1054, Subpart H both during and after model year production. Failure to comply with these provisions may render this certificate void *ab initio*.

It is a term of this certificate that the manufacturer shall consent to all inspections described in 40 CFR 1068.20 and 1068, Subpart E and authorized in a warrant or court order. Failure to comply with the requirements of such a warrant or court order may lead to revocation or suspension of this certificate for reasons specified in 40 CFR Part 1054. It is also a term of this certificate that this certificate may be revoked or suspended or rendered void *ab initio* for other reasons specified in 40 CFR Part 1054, 40 CFR Part 1068.

This certificate does not cover small nonroad engines sold, offered for sale, or introduced, or delivered for introduction, into commerce in the U.S. prior to the effective date of the certificate.

<u>GRI-HAPCalc ® 3.01</u> <u>Engines Report</u>

	Facility ID: Operation Type: Facility Name: User Name: Units of Measure:	18.8 HP COMPRESSOR ST TYRONE MINE U.S. STANDARD	ΑΤΙΟ	'n	Notes:			
7	Note: Emissions less than 5.00E-09 tons (or tonnes) per year are considered insignificant and are treated as zero. These emissions are indicated on the report with a "0". Emissions between 5.00E-09 and 5.00E-05 tons (or tonnes) per year are represented on the report with "0.0000". Engine Unit							
U	Init Name: 18.8 HP							
	Hours of C	peration: 8	,760	Yearly				
	Rate Powe	er:	19	hp				
	Fuel Type:	NATUR	AL G	AS				
	Engine Ty	be: 4-Stroke	, Lea	in Burn				
	Emission F	actor Set: EPA > F	IELD	> LITERATURE				

Calculated Emissions (ton/yr)

-NONE-

Additional EF Set:

Chemical Name	Emissions	Emission Factor	Emission Factor Set
APs			
Tetrachloroethane	0.0000	0.00000820 g/bhp-hr	EPA
Formaldehyde	0.0319	0.17425810 g/bhp-hr	EPA
Methanol	0.0015	0.00825090 g/bhp-hr	EPA
Acetaldehyde	0.0051	0.02759090 g/bhp-hr	EPA
1,3-Butadiene	0.0002	0.00088120 g/bhp-hr	EPA
Acrolein	0.0031	0.01696380 g/bhp-hr	EPA
Benzene	0.0003	0.00145220 g/bhp-hr	EPA
Toluene	0.0002	0.00134650 g/bhp-hr	EPA
Ethylbenzene	0.0000	0.00013100 g/bhp-hr	EPA
Xylenes(m,p,o)	0.0001	0.00060730 g/bhp-hr	EPA
2,2,4-Trimethylpentane	0.0002	0.00082510 g/bhp-hr	EPA
n-Hexane	0.0007	0.00366340 g/bhp-hr	EPA
Phenol	0.0000	0.00007920 g/bhp-hr	EPA
Styrene	0.0000	0.00007790 g/bhp-hr	EPA
Naphthalene	0.0000	0.00024550 g/bhp-hr	EPA
2-Methylnaphthalene	0.0000	0.00010960 g/bhp-hr	EPA
Acenaphthylene	0.0000	0.00001830 g/bhp-hr	EPA
Biphenyl	0.0001	0.00069970 g/bhp-hr	EPA
Acenaphthene	0.0000	0.00000410 g/bhp-hr	EPA
Fluorene	0.0000	0.00001870 g/bhp-hr	EPA
Phenanthrene	0.0000	0.00003430 g/bhp-hr	EPA
Ethylene Dibromide	0.0000	0.00014620 g/bhp-hr	EPA
luoranthene	0.0000	0.00000370 g/bhp-hr	EPA
^o yrene	0.0000	0.00000450 g/bhp-hr	EPA

	Chrysene	0.0000	0.00000230 g/bhp-h	r EPA
	Benzo(b)fluoranthene	0.0000	0.00000050 g/bhp-h	r EPA
	Benzo(e)pyrene	0.0000	0.00000140 g/bhp-h	r EPA
	Benzo(g,h,i)perylene	0.0000	0.00000140 g/bhp-h	r EPA
	Vinyl Chloride	0.0000	0.00004920 g/bhp-h	r EPA
	Methylene Chloride	0.0000	0.00006600 g/bhp-h	r EPA
	1,1-Dichloroethane	0.0000	0.00007790 g/bhp-h	r EPA
	1,3-Dichloropropene	0.0000	0.00008710 g/bhp-h	r EPA
	Chlorobenzene	0.0000	0.00010030 g/bhp-h	r EPA
	Chloroform	0.0000	0.00009410 g/bhp-h	r EPA
	1,1,2-Trichloroethane	0.0000	0.00010500 g/bhp-h	r EPA
	1,1,2,2-Tetrachloroethane	0.0000	0.00013200 g/bhp-h	r EPA
	Carbon Tetrachloride	0.0000	0.00012110 g/bhp-h	r EPA
Tot	al	0.0434		
Cr	iteria Pollutants			
	PM	0.0000	0.00000000 - #11 1	504
	CO	0.0060	0.03296090 g/bhp-h	
		0.1918	1.04620860 g/bhp-h	
	NMEHC	0.0714	0.38944040 g/bhp-hi	
	NOX	2.4683	13.46539810 g/bhp-h	
~	SO2	0.0004	0.00194060 g/bhp-h	r EPA
Ot	her Pollutants			
	Chloroethane	0.0000	0.00000620 g/bhp-hi	r EPA
	Butryaldehyde	0.0001	0.00033330 g/bhp-hi	r EPA
	Methane	0.7562	4.12542830 g/bhp-hi	
	Ethane	0.0635	0.34653600 g/bhp-hr	
	Propane	0.0253	0.13828440 g/bhp-hr	r EPA
	Butane	0.0003	0.00178550 g/bhp-hr	EPA
	Cyclopentane	0.0001	0.00074920 g/bhp-hr	EPA
	n-Pentane	0.0016	0.00858090 g/bhp-hr	EPA
	Methylcyclohexane	0.0007	0.00405940 g/bhp-hr	
	1,2-Dichloroethane	0.0000	0.00007790 g/bhp-hr	EPA
	1,2-Dichloropropane	0.0000	0.00008880 g/bhp-hr	EPA
	n-Octane	0.0002	0.00115840 g/bhp-hr	EPA
	1,2,3-Trimethylbenzene	0.0000	0.00007590 g/bhp-hr	EPA
	1,2,4-Trimethylbenzene	0.0000	0.00004720 g/bhp-hr	EPA
	1,3,5-Trimethylbenzene	0.0000	0.00011160 g/bhp-hr	EPA
	n-Nonane	0.0001	0.00036300 g/bhp-hr	EPA
	CO2	66.5462	363.03769350 g/bhp-hr	EPA

Unit GO Generator Backup E1-128

Generator Set

Natural Gas - 20.0 kW, 25.0 kVA, Standby Propane - 20.0 kW, 25.0 kVA, Standby GGDB 60 Hz Generator Set

Optional Features Shown

Description

The Cummins[®] Onan[®] GGDB series spark ignited generator set is a fully integrated power generation system, providing optimum performance, reliability, and versatility for standby operation in stationary applications.

A primary feature of the GGDB GenSet is strong motor starting capability and fast recovery from transient load changes. The GGDB torque matched system includes a heavy-duty Ford 4-cycle liquid cooled spark ignited engine, an AC alternator with high motor starting capacity, and an electronic voltage regulator for precise regulation under steady-state or transient loads. The GGDB GenSet accepts 100% of the nameplate standby rating in one step, in compliance with NFPA110 requirements.

An LP vapor fuel system is standard with several options for natural gas and LP liquid as well as dual fuel.

The GGDB GenSet offers both user and environment friendly operation. The standard two wire remote control system provides for automatic remote operation and automatic shutdown for fault detection. Controls may be upgraded to the DetectorTM Control for NFPA110 compliance.

A wide range of options, accessories, and services are available, allowing configuration to your specific power generation needs.

Every production unit is factory tested at rated load and power factor. This testing includes demonstration of rated power and single-step rated load pickup. Cummins Onan manufacturing facilities are registered to ISO9001 quality standards, emphasizing our commitment to high quality in the design, manufacture, and support of our products. The GenSet is CSA certified.

All Cummins Onan brand power generation systems are backed by a comprehensive warranty program and supported by a worldwide network of 170 distributors and service branches, to assist you with warranty, service, parts, and planned maintenance support.

Features

- Ford Heavy-Duty Gas Engine Rugged 4-cycle industrial spark-ignited engine delivers reliable power. The electronic governor provides fast response to load changes.
- Electronic voltage regulator Torque-matched regulator provides fast recovery from transient load changes, underfrequency compensation, and precise regulation.
- Alternator Several alternator sizes offer selectable motor starting capability with low reactance 2/3 pitch windings, low waveform distortion with non-linear loads and fault clearing short-circuit capability.
- Control systems The standard 2-wire remote control system provides capability for automatic remote starting and stopping, and fault protection features. Upgrade to the DetectorTM Control for NFPA110 compliance.
- Cooling systems Standard cooling package provides reliable running up to 40°C ambient temperature. Optional remote cooling capability is offered.
- Integral Vibration Isolation Robust skid base supports the engine, alternator, and radiator on isolators, minimizing transmitted vibration.
- E-Coat Finish Dual electro-deposition paint system provides high resistance to scratches, corrosion, or fading.
- **Housings** Optional weather proof and sound attenuated enclosures are available.
- Certifications Generator sets are designed, manufactured, tested, and certified to relevant UL, NFPA, ISO, IEC, and CSA standards.
- Warranty and Service Backed by a comprehensive warranty and world wide distributor network.

Generator Set

The general specifications in this document provide representative configuration details, but the outline drawing must be used for installation design.

See outline drawing 500-3194 for installation design specifications.

Unit Width, in.(mm)	26.0 (660)
Unit Height, in.(mm)	39.9 (1013)
Unit Length, in.(mm)	64.0 (1626)
Unit Dry Weight, Ibs. (kgs)	847 (384)
Unit Wet Weight, Ibs. (kgs)	880 (399)
Rated Speed, rpm	1800
Voltage Regulation, No Load to Full Load	±2.0%
Random Voltage Variation	±1.0%
Frequency Regulation	Isochronous
Random Frequency Variation	±0.3% @ 60Hz, ±0.8% @ 50Hz
Radio Frequency Interference	Meets requirements of most industrial and commerical applications

	Natural Gas	Propane
Cooling	Standby	Standby
Fan Load, HP (kW)	2.2 (1.6)	2.2 (1.6)
Coolant Capacity with radiator, US Gal (L)	3.0 (11.4)	3.0 (11)
Coolant Flow Rate, Gal/min (L/min)	18.8 (71.2)	18.8 (71)
Heat Rejection To Coolant, Btu/min (MJ/min)	1200.0 (1.3)	1200 (1.3)
Heat Radiated To Room, Btu/min (MJ/min)	638.0 (0.7)	638 (0.7)
Air		
Combustion Air, cfm (m ³ /min)	65.0 (1.8)	65.0 (1.8)
Alternator Cooling Air, cfm (m ³ /min)	250.0 (7.1)	250.0 (7.1)
Radiator Cooling Air, scfm (m ³ /min)	2690.0 (76.1)	2690.0 (76.1)
Minimum Air Opening to Room, ft ² (m ²)	3.9 (0.4)	3.9 (0.4)
Minimum Discharge Opening, ft ² (m ²)	2.6 (0.2)	2.6 (0.2)
Max. Static Restriction, in H ₂ O (Pa)	0.2 (62.5)	0.2 (62.5)

Rating Definitions

Standby Rating based on: Applicable for supplying emergency power for the duration of normal power interruption. No sustained overload capability is available for this rating. (Equivalent to Fuel Stop Power in accordance with ISO3046, AS2789, DIN6271 and BS5514). Nominally rated.

Prime (Unlimited Running Time) Rating based on: Applicable for supplying power in lieu of commercially purchased power. Prime power is the maximum power available at a variable load for an unlimited number of hours. A 10% overload capability is available for limited time. (Equivalent to Prime Power in accordance with ISO8528 and Overload Power in accordance with ISO3046, AS2789, DIN6271, and BS5514). This rating is not applicable to all generator set models. **Base Load (Continuous) Rating based on:** Applicable for supplying power continuously to a constant load up to the full output rating for unlimited hours. No sustained overload capability is available for this rating. Consult authorized distributor for rating. (Equivalent to Continuous Power in accordance with ISO8528, ISO3046, AS2789, DIN6271, and BS5514). This rating is not applicable to all generator set models.

Site Derating Factors

Natural Gas

Engine power available up to 3500 ft (1067 m) at ambient temperatures up to 85°F (29°C). Above 3500 ft (1067 m) derate at 5% per 1000 ft (305 m), and 1% per 10°F (2% per 11°C) above 85°F (29°C).

Propane

Engine power available up to 6000 ft (1829 m) at ambient temperatures up to 85°F (29°C). Above 6000 ft (1829 m) derate at 4% per 1000 ft (305 m), and 1% per 10°F (2% per 11°C) above 85°F (29°C).

Engine

Rugged Ford[®] spark ignited engines are designed to operate efficiently on gaseous fuels. Fuel system options available for natural gas, LP vapor, and LP liquid. In addition, for extra system reliability combination natural gas/LP vapor or natural gas/LP liquid with automatic changeover are available.

Electronic governing provides precise speed regulation, especially useful for applications requiring constant (isochronous) frequency regulation such as Uninterruptible Power Supply systems, non-linear loads, or sensitive electronic loads. Optional coolant heaters are recommended for all emergency standby installations or any application requiring fast load acceptance after start-up.

Specifications – Engine

Base Engine	Ford Model LRG-425I, naturally aspirated
Displacement in ³ (L)	150.0 (2.5)
Overspeed Limit, rpm	2500 ±50
Cylinder Block Configuration	Cast iron, In-line 4 cylinder
Cranking Current	150 amps at ambient temperature of 32°F (0°C)
Battery Charging Alternator	95 amps
Starting Voltage	12-volt, negative ground
Lube Oil Filter Types	Spin-on, full flow
Standard Cooling System	104°F (40°C) ambient cooling system
Standard Fuel	LP vapor is standard. Optional LP liquid, natural gas, LP liquid/natural gas and LP vapor/natural gas

				Natura	al Gas		Pro	opane
Power Output			St	andby			Standby	
Gross Engine Power Output, bhp (k)	Vm)		40.	0 (29.8)			42.0 (31.3)	
BMEP, psi (kPa)			105.	105.0 (723.9)		1	05.0 (723.9)	
Bore, in. (mm)			3.7	4 (95.0)			3.74 (95.0)	
Stroke, in. (mm)		3.4	0 (86.4)			3.40 (86.4)		
Piston Speed, ft/min (m/s)		102	1.0 (5.2)			1021.0 (5.2)		
Compression Ratio			ę	9.4:1			9.4:1	
Lube Oil Capacity, qt. (L)			4.:	5 (4.3)			4.5 (4.3)	
Fuel Flow								
Minimum Operating Pressure, in. H ₂	O (kPa)		7.0	0 (1.7)			7 (2)	
Maximum Operating Pressure, in. H2	2O (kPa)		13	.6 (3.4)			14 (3)	
Air Cleaner								
Maximum Air Cleaner Restriction, in	. H ₂ O (kF	Pa)	15	.0 (3.7)			15.0 (3.7)	
Exhaust								
Gas Flow (Full Load), cfm (m ³ /min)			210).0 (5.9)			210.0 (5.9)	
Gas Temperature,°F (°C)			125	50 (677)			1250 (677)	
Maximum Back Pressure, in. H_2O (k	Pa)		41.	0 (10.2)			41.0 (10.2)	
Fuel Consumption - Natural Gas			Sta	ndby				
60 Hz Ratings, kW (kVA)			20.0	(25.0)				
	Load	1/4	1/2	3/4	Full			
	cfh	122.0	163.0	201.0	252.0			
	m³/hr	461.8	617.0	760.8	953.8			
Fuel Consumption - Propane	•		Sta	ndby				ł
60 Hz Ratings, kW (kVA)			20.0	(25.0)				
	Load	1/4	1/2	3/4	Full			
	cfh	44.0	64.0	74.0	84.0		1	
	m³/hr	1.2	1.8	2.1	2.4		1	

Alternator

Single-bearing alternators couple directly to the engine flywheel with flexible discs for drivetrain reliability and durability. No gear reducers or speed changers are used. Two-thirds pitch windings eliminate third-order harmonic content of the AC voltage waveform and provide the standardization desired for paralleling of generator sets. The excitation system is a self (shunt) excited system with the voltage regulator powered directly from the generator set output. The standard alternator is a single phase 4 lead, 105°C rise. Optional alternators include 3 phase and 3 phase with full single phase output capability.

Alternator Application Notes

Alternator Space Heater - is recommended to inhibit condensation.

Available Output Voltages

Three Phas	Sing	le Phase	Non-Reconnectable	Three Pha	ase Nor	n-Reconnectable	
[]	120/208		[]	120/240	[]		347/600
[]	120/240						
[]	127/220						
[]	139/240						
[]	220/380						
[]	240/415						
[]	254/440						
[]	277/480						

Specifications – Alternator

Design			Revo	lving fie	ld, singl	e bearin	g, 4-pole	e, brush	less, dri	p-proof	construc	ction.	
Stator					or and 2	/3 pitch	windings	s minimi	ize field	heating	and volt	tage	
-			harmonics. Dynamically balanced assembly. Direct coupled to engine by a flexible drive disc.										
Rotor										0			
										nize volt			and
									e rotor is	s suppor	rted by a	a pre-	
				,			ball bea	0					
Insulation System							and BS						
Standard Temperat	ure Rise		At rat	ed load	is less t	han 105	6°C at st	andby ra	ating, pe	er NEMA	A MG1.2	2.40, IE	EE
			115 a	15 and IEC 34-1.									
Exciter Type			The e	excitatio	n syster	n derive	s its pow	ver from	the ma	in outpu	t of the	generato	or,
			elimir	nating th	ie need	for a se	parate e	xcitatior	n power	source.		-	
Phase Rotation			A (U)	, B (Ŭ),	C (W)				•				
Alternator Cooling			Direc	t drive c	entrifug	al blowe	r						
AC Waveform Tota	Harmonic Dis	tortion	Less	than 7%	6 total n	o load to	full line	ar load,	and les	s than 3	% for ar	ny single	;
			harm	onic.									
Telephone Influenc	e Factor (TIF)		Less	than 40	per NE	MA MG	1-22.43.						
Telephone Harmon	ic Factor (THF)	Less than 3										
-	•	Natural Gas											
Three Phase Table		105° C	105° C							1	1	1	
Feature Code		B268	B256	B304									

Inree Phase Table		105°C	105°C	105°C					
Feature Code		B268	B256	B304					
Alternator Data Sheet Number		107	106	106					
Voltage Ranges		120/208 Thru 139/240 240/416 Thru 277/480	Thru 139/240 240/416 Thru						
Surge kW		25	25.6	24.7					
Motor Starting kVA (at 90% sustained voltage)	Shunt	70	52	52					
Full Load Current - Amps at Standby Rating	<u>120/208</u> <u>127/2</u> 69 66					/ <u>600</u> 4			

Notes:

1. Single phase power can be taken from a three phase generator set at up to 2/3 set rated 3-phase kW at 1.0 power factor. Also see Note 2 below.

					Natural	Gas				
Single Phase Table)	105° C	105° C	105° C						
Feature Code		B274	B256	B268						
Alternator Data Sheet Number		106	106	107						
Voltage Ranges		120/240	120/240	120/240						
Surge kW		23.5	23.5	24						
Motor Starting kVA (at 90% sustained voltage)	Shunt	38	39	49						
Full Load Current - Amps at Standby Rating	<u>120/240</u> 1 <u>120/2</u> 56 83									

Notes:

1. The broad range alternators can supply single phase output up to 2/3 set rated 3-phase kW at 1.0 power factor.

2. The extended stack (full single phase output) and 4 lead alternators can supply single phase output at full set rated kW at 1.0 power factor.

					Propa	ne					
Three Phase Table ¹		105° C	105° C	105° C	•						
Feature Code		B268	B256	B304							
Alternator Data Sheet Number		107	106	106							
Voltage Ranges		120/208 Thru 139/240 240/416 Thru 277/480									
Surge kW		26.3	26.9	25.9							
Motor Starting kVA (at 90% sustained voltage)	Shunt	70	52	52							
Full Load Current - Amps at Standby Rating		<u>120/208</u> 69	<u>127/220</u> 66	<u>139/240</u> 60	<u>220/380</u> 38	<u>240/416</u> 35	<u>277/480</u> 30	<u>347/600</u> 24			
Neteo											

Notes:

1. Single phase power can be taken from a three phase generator set at up to 2/3 set rated 3-phase kW at 1.0 power factor. Also see Note 2 below.

					Propar	ie				
Single Phase Table		105° C	105° C	105° C						
Feature Code		B274	B256	B268						
Alternator Data Sheet Number		106	106	107						
Voltage Ranges		120/240	120/240	120/240						
Surge kW		24.8	24.8	25.2						
Motor Starting kVA (at 90% sustained voltage)	Shunt	38	39	49						
Full Load Current - Amps at Standby Rating		<u>120/240</u> 1 56	<u>120/240</u> ² 83							

Notes:

 The broad range alternators can supply single phase output up to 2/3 set rated 3-phase kW at 1.0 power factor.
 The extended stack (full single phase output) and 4 lead alternators can supply single phase output at full set rated kW at 1.0 power factor.

Control System

	Standard 2-Wire Remote Control S	ystem
	 Automatic remote starting Controls generator set starting and shutdown Control components designed to withstand the 	vibration levels typical in generator sets
	Standard Co	ontrol Description
	Crank timer	Remote starting, 12 V, 2 wire
	Fault reset button	Run-off-auto switch
	Standard Features	Optional Features
	Field circuit breaker	AC meter package
Optional Features Shown	 High temperature shutdown 	 Oil pressure gauge (engine-mounted)
Optional reatures Shown	 Low oil pressure shutdown 	 Running time meter (engine-mounted)
	 Overcrank shutdown 	 Water temperature gauge (engine-mounted)
	 Overspeed shutdown 	
	Running time meter	
	Optional Detector Control System	
		t (NFPA110) Control Description
Takas	 12 light engine monitor (NFPA110 level) 	Lamp test switch
	 Common alarm contact 	Oil pressure gauge
	 Coolant temperature gauge 	 Remote starting, 12 V, 2 wire
	 Cycle cranking control 	Reset switch
	DC Voltmeter	Run-Off-Auto switch
	 Field circuit breaker 	Running time meter
Optional Features Shown	Individual 1/2 A relay signals	
Standa	ard Features	Optional Features
 5% voltage adjust rheostat 	 Overcrank shutdown (red light) 	Audible alarm
 AC ammeter (dual scale) 	 Overspeed shutdown (red light) 	Emergency stop
 AC voltmeter (dual scale) 	 Pre-alarm high coolant temp (yellow light) 	 Low battery voltage warning
 Dual scale frequency/tachometer 	 Pre-alarm low oil pressure (yellow light) 	 Low coolant level warning or shutdown
Engine gauges	 Run indicator (green light) 	Remote fault signal package
High coolant temperature shutdown (red	 Two customer selected faults (red light) 	 Speed adjust rheostat
light)	 Voltmeter/Ammeter phase selector 	Time delay start/stop
Low coolant temperature (yellow light)		
Low fuel (yellow light)		
Low oil pressure shutdown (red light)		

Generator Set Options

Engine	Control Panel	Generator Set
 120/240 V, 1500 W coolant heaters Engine gauges 	 [] 120/240 V, 100 W control anti- condensation heater [] CSA 282 compliance package 	 Coolant drain extension Duct Adapter Enclosure II, Quiet Site, sound-
Cooling System [] Remote radiator cooling Fuel System [] Fuel strainer [] LP liquid [] Natural gas [] Natural gas/LP vapor with automatic changeover [] Natural gas/LP liquid with automatic changeover [] Vacuum safety switch	 [] Detector 12 control (required for any NFPA 110 application) [] Emergency stop [] Low battery voltage warning [] Low coolant level warning/shutdown [] Remote fault signal package Exhaust System [] Mounted residential muffler 	 [] Enclosure if, dulet site, sound- attenuated [] Enclosure, weather protective, wit residential silencer [] Export box packaging [] Main line circuit breakers [] Remote annunciator panel [] 2 year standby warranty [] 5 year basic power warranty
Alternator		
[] 120/240 V, 150 W anti-condensation heater		
[] 12-lead broad range (full output single phase)		
[] Single phase (4-lead)		

Accessories and Services

A wide range of products and services is available to match your power generation system requirements. Cummins Onan products and services include:

- Diesel and Spark-Ignited Generator Sets
- Transfer Switches
- Bypass Switches
- Parallel Load Transfer Equipment
- Digital Paralleling Switchgear
- PowerCommand Network and Software
- Distributor Application Support
- Planned Maintenance Agreements

Warranty

All components and subsystems are covered by an express limited one-year warranty. Other optional and extended factory warranties and local distributor maintenance agreements are available.

Other available warranties include: 2-year prime power, 2-year standby, 5-year basic power, 5-year comprehensive power and 10-year major component. The 2-year prime power and the 10-year major component warranties are available in North America only.

Certifications

ISO9001 - This generator set was designed and manufactured in facilities certified to ISO9001.

CSA - This generator set is CSA certified to product class 4215-01.

NFPA Testing - The Prototype Test Support program verifies the performance integrity of the generator set design. Cummins Onan products bearing the PTS symbol meet the prototype test requirements of NFPA 110 for Level 1 systems. A complete representative prototype generator set has been subjected to a number of demanding tests to verify the design integrity and performance under both normal and abnormal operating conditions per the requirements of NFPA 110 for Level 1 systems. Tests include short circuit, endurance, temperature rise, torsional vibration, and transient response, including full load pickup in one step.

See your distributor for more information

Important: Backfeed to a utility system can cause electrocution and/or property damage. Do not connect to any building's electrical system except through an approved device or after building main switch is open.

Unit SX/EW Fire Water Pump

QSB4.5 (Tier 3)

Overview

The Cummins QSB4.5 achieves Tier 3 and Stage IIIA compliance with in-cylinder technology that maintains a compact, simple installation that provides premium performance to every application.

The QSB4.5 makes every piece of construction equipment work harder, smarter, quieter and longer. Every time. It shares technology with the rest of our highly successful B Series, including charge air cooling and turbocharging for strong performance. Power ratings range from 110-170 hp (82-127 kW).

This engine combines proven full-authority electronic controls with the impressive reliability and durability and long maintenance intervals you expect from one of the world's most successful and durable designs.

Every QSB4.5 has improved cold-start capability and is 5-9 decibels quieter in operation than its predecessor. Plus, it runs as quietly at full load as the previous QSB did with no load! A wide range of features are standard.

To ensure that every QSB4.5 is perfectly matched to every piece of equipment, Cummins PowerMatch and Advisor are ready to provide expert assistance with your spec'ing and installation process.

Every QSB4.5 engine is covered by Cummins three-step warranty, one of the most comprehensive and simplest plans in the industry.

Specifications

Engine Type	In-Line, 4-Cylinder
Displacement	4.5 L* (275 cu in)
Advertised Horsepower	⁻ 109-170 hp (81-127 kW)
Peak Torque	460 lb-ft (624 N•m)
Aspiration	Turbocharged and Charge Air Cooled
Oil System Capacity	11.6 U.S. qt (11 L*)
Coolant Capacity	9 U.S. qt (8.5 L*)
Length	32.2 in (818 mm)
Width	28.1 in (713 mm)
Height	34.5 in (878 mm)
Wet Weight	818 lb (371 kg)

*L=Liters/Litres

Product Finder Specifications

Markets	Off-Highway Construction	
Certification Level	Tier 3 / Stage IIIA	
Power	109 - 170 hp / 81 - 127 kW	
Torque	360 - 460 lb-ft / 488 - 624 N•m	

Ratings

Engine	Advertised	Peak	Peak Torque
Model	hp (kW) @ rpm	hp (kW) @ rpm	lb-ft (N•m) @ rpm
QSB4.5 170*	170 (127) @ 2500	170 (127) @ 2500	459 (622) @ 1500
QSB4.5 160	160 (119) @ 2500	165 (123) @ 2300	460 (624) @ 1500
QSB4.5 160	160 (119) @ 2400	165 (123) @ 2200	460 (624) @ 1500
QSB4.5 160**	160 (119) @ 2300	165 (122) @ 2200	460 (624) @ 1500
QSB4.5 160	160 (225) @ 2200	168 (125) @ 2000	459 (622) @ 1500
QSB4.5 160**	160 (225) @ 2200	165 (123) @ 2000	460 (624) @ 1500
QSB4.5 155	155 (116) @ 2000	155 (116) @ 2000	460 (622) @ 1500
QSB4.5 152	152 (110) @ 2200	152 (110) @ 2200	405 (537) @ 1500
QSB4.5 148	148 (110) @ 2300	156 (116) @ 2000	441 (598) @ 1500
QSB4.5 139	139 (104) @ 2000	139 (104) @ 2000	371 (503) @ 1800
QSB4.5 132	132 (98) @ 2000	132 (98) @ 2000	368 (499) @ 1500
QSB4.5 130	130 (97) @ 2500	140 (104) @ 2400	459 (622) @ 1500
QSB4.5 130	130 (97) @ 2300	130 (97) @ 2300	377 (511) @ 1500
QSB4.5 130**	130 (97) @ 2200	140 (104) @ 2000	459 (622) @ 1500
QSB4.5 130	130 (97) @ 2000	135 (101) @ 1800	457 (620) @ 1500
QSB4.5 130	130 (97) @ 1800	130 (97) @ 1800	400 (452) @ 1400
QSB4.5 121**	121 (90) @ 2200	121 (90) @ 2200	347 (470) @ 1500
QSB4.5 110	110 (82) @ 2500	115 (86) @ 2300	360 (489) @ 1500
QSB4.5 110**	110 (82) @ 2200	115 (86) @ 2000	360 (489) @ 1500
QSB4.5 110	110 (82) @ 1800	110 (82) @ 1800	360 (488) @ 1300

Additional ratings may be available. Check with your Cummins distributor.

*Indicates a restricted rating.

**Indicates a continuous rating.

Features

The QSB4.5 delivers lasting value for your farming operation, with standard features that include:

- **High Pressure Common Rail Fuel System** Delivers high injection pressure (1600 bar) for improved performance and fuel efficiency at every rpm
- In-Cylinder Combustion Technology Meets emissions standards without external components; is compatible with high-sulfur fuels for worldwide use
- Rear Gear Train Significantly lowers noise output to meet worldwide noise emission standards
- Wastegated Turbocharger Designed by Cummins Turbo Technology. Wastegated for better lowspeed performance and high-speed boost
- **Two-Stage Dual Fuel Filter** Provides a balanced level of particle separation to maximize fuel filter life and protect vital fuel system components
- Parent Bore Cylinder Block Designed for reduced noise and increased durability
- Directed Piston Cooling Lower piston temperatures lead to longer life
- Wider Camshaft Lobes and Larger Tappet Wear Surface Enhance durability and reliability

Maintenance

The QSB4.5 has been designed for minimal maintenance procedures. Dual stage fuel filtration will improve particle separation and filter life, and protect vital fuel system components. The QSB4.5 is designed to run up to 500 hours between scheduled fuel and oil filter changes.

For complete maintenance information, please consult your Owner's Manual or Operations and Maintenance Manual.

Brochures Available

Search Our Complete Brochure Library for More Product Information >>

Title	Bulletin Number
Cummins Power Products Brochure	4087018
Encompass Tri-Fold Mailer	3624570
Every Solution - Tier 3 Engine Brochure	4087035
QSB Tier 3 for Industrial Applications Spec Sheet	4087063
QSB Tier 3 for Industrial Applications Spec Sheet - French	4087085
Underground Mining Engines Brochure	4087284

Case Studies Available

Search Our Complete Case Studies Library for More Product Information >>

Title

Show all information

Get More Information:

Overview Specifications Ratings Features Maintenance Brochures

Cummins Inc, Box 3005, Columbus, IN 47202-3005 USA

©2014-2018 Cummins Inc. All Rights Reserved.

Caterpillar is leading the power generation marketplace with Power Solutions engineered to deliver unmatched flexibility, expandability, reliability, and cost-effectiveness.

Image shown may not reflect actual configuration

Specifications

Generator Set Specifications	
Rating (Natural Gas)	50 ekW (50 kVA)
Rating (LP Vapor)	50 ekW (50 kVA)
Voltage	240 Volts
Frequency	60 Hz
Speed	1800 rpm

Generator Set Configurations	
Emissions/Fuel Strategy	U.S. EPA Certified for Stationary Emergency Application

Engine Specifications		
Engine Model		5.7L V8, 4-cycle
Bore	101.6 mm	4.0 in
Displacement	5.7 L	350 in³
Stroke	88.4 mm	3.48 in
Compression Ratio		9.4:1
Aspiration		Naturally Aspirated
Governor Type		Electronic
Fuel Type		Natural Gas, LP Vapor
Fuel Pressure Operating Range*	2.7 - 3.5 kPa	11 - 14 in. water

Package Dimensions**		
Length	2117 mm	83.3 in
Width	1000 mm	39.4 in
Height	1360 mm	53.5 in
Weight ⁺	920 kg	2028 lb

*Optional fuel pressure options may be available, please contact your local dealer.

**Note: For reference only – do not use for installation design. Please contact your local dealer for exact weight and dimensions.

[†]Weight includes: Oversize generator, skid base, circuit breaker, oil, and coolant. LEHE1005-01

Benefits & Features

Generator

- · Matched to the performance and output characteristics of engine
- · Industry-leading mechanical and electrical design
- Industry-leading motor starting capabilities
- High efficiency

Cat[®] EMCP Control Panel

The EMCP 4 controller features the reliability and durability you have come to expect from your Cat equipment. EMCP 4 is a scalable control platform designed to ensure reliable generator set operation, providing extensive information about power output and engine operation. EMCP 4 systems can be further customized to meet your needs through programming and expansion modules.

Design Criteria

- The generator set facilitates compliance with NFPA 110 and meets ISO 8528-5 requirements for transient response
- Cooling system designed to operate in 50°C/122°F ambient temperatures with an air flow restriction of 0.5 in. water

UL 2200/CSA - Optional

- UL 2200 Listed
- CSA Certified

Certain restrictions may apply. Consult with your Cat dealer.

Worldwide Product Support

Cat dealers provide extensive post-sale support including maintenance and repair agreements. Cat dealers have over 1,800 dealer branch stores operating in 200 countries.

Standard Equipment

Air Inlet

• Single element air filter

Cooling

- · Radiator and cooling fan complete with protective guards
- Standard ambient temperatures up to 50°C (122°F)

Exhaust

• Exhaust outlet with 3" pipe

Fuel

- Natural Gas or LP Vapor
- · Dual lock off valves
- NPT connection

Generator

- · Matched to the performance and output characteristics of engine
- IP23 protection
- Integrated Voltage Regulator

Governor

• Electronic governor (non adjustable)

Control Panels

• EMCP 4.2 Series generator set controller

Mounting

Rubber vibration isolators

Starting/Charging

- 12 volt starting motor
- Batteries with rack and cables

Optional Equipment

Generator

- Excitation: [] Permanent Magnet Excited (PM)
- Oversize and premium generators
- Anti Condenstation heater

Starting/Charging

- Battery charger UL Listed 10 amp
- Jacket water heater
- Battery heater
- Lube oil sump heater

General

- UL 2200 Listed
- CSA Certified
- Enclosures: sound attenuated, weather protective
- Automatic transfer switches (ATS)
- Suitable for Use as Service Equipment (SUSE)

DG50-2 50 ekW/ 50 kVA/ 60 Hz/ 1800 rpm/ 240V/ 1.0 Power Factor

Rating Type: STANDBY

Emissions: U.S. EPA Certified for Stationary Emergency Application

DG50-2 50 ekW/ 50 kVA 60 Hz/ 1800 rpm/ 240V

Image shown may not reflect actual configuration

Package Performance		
Fuel	Natural Gas	LP Vapor
Generator Set Power Rating with Fan @ 1.0 Power Factor	50 ekW	50 ekW
Generator Set Power Rating	50 kVA	50 kVA

Fuel Consumption with Natural Gas		
100% Load With Fan	20.9 m³/hr	738 ft³/hr
75% Load With Fan	18.1 m³/hr	640 ft³/hr
50% Load With Fan	13.9 m³/hr	490 ft ³ /hr

Fuel Consumption with LP Vapor		
100% Load With Fan	8.2 m³/hr	288 ft³/hr
75% Load With Fan	7.0 m³/hr	247 ft ³ /hr
50% Load With Fan	5.4 m³/hr	192 ft³/hr

Cooling System ¹		
Engine Coolant Capacity	7.8 L	2.1 gal
Radiator Coolant Capacity	8.8 L	2.3 gal
Engine Coolant Capacity with Radiator/Exp Tank	16.6 L	4.4 gal
Air Flow Restriction (System)	0.12 kPa	0.48 in. water

Inlet Air		
Combustion Air Inlet Flow Rate	4.9 m³/min	173 cfm

DG50-2 50 ekW/ 50 kVA/ 60 Hz/ 1800 rpm/ 240V/ 1.0 Power Factor

Rating Type: STANDBY

Emissions: U.S. EPA Certified for Stationary Emergency Application

Exhaust System		
Exhaust Stack Gas Temperature	743°C	1369°F
Exhaust Gas Flow Rate	15.8 m³/min	553 cfm
Exhaust System Backpressure (maximum allowable)	10.2 kPa	40.9 in. water

Heat Rejection		
Heat Rejection to Coolant (total)	54.9 kW	3120 Btu/min
Heat Rejection to Atmosphere from Generator	5.1 kW	290 Btu/min

Alternator ²						
Motor Starting Capability @ 30% Voltage Dip 114 skVA						
Frame	LCB1514P					
Temperature Rise	130°C 234°F					
Excitation	Self Excited					

Lube System		
Sump Refill with Filter	4.7 L	1.24 gal

Emissions (Nominal) ³	
NOx + HC	13.4 g/kW-hr
СО	519 g/kW-hr

¹ For ambient and altitude capabilities consult your Cat dealer. Air flow restriction (system) is added to the existing restriction from the factory.

²Generator temperature rise is based on a 40°C (104°F) ambient per NEMA MG1-32.

³The nominal emissions data shown is subject to environment, instrumentation, measurement, facility and engine to engine variations.

DG50-2 50 ekW/ 50 kVA/ 60 Hz/ 1800 rpm/ 240V/ 1.0 Power Factor

Rating Type: STANDBY

Emissions: U.S. EPA Certified for Stationary Emergency Application

DEFINITIONS AND CONDITIONS

Applicable Codes and Standards:

CSA C22.2 No 100-04, UL 489, UL 869, UL 2200, NFPA 37, NFPA 70, NFPA 99, NFPA 110, IBC, IEC60034-1, ISO3046, ISO8528, NEMA MG 1-22, NEMA MG 1-33.

STANDBY: Output available with varying load for the duration of the interruption of the normal source power. Average power output is 70% of the standby power rating. Typical operation is 200 hours per year, with maximum expected usage of 500 hours per year.

Ratings are based on SAE J1349 standard conditions. These ratings also apply at ISO3046 standard conditions.

Fuel Rates are based on heat values of 1015 BTU/SCF for Natural Gas and 2500 BTU/SFC for Propane Vapor @77°F (25°C) and 328 ft (100m) above sea level.

Additional ratings may be available for specific customer requirements, contact your Cat representative for details.

Genset Ratings are based on ambient temperature of 77°F and elevation of 1200 ft above sea level.

For higher temperatures and elevations the following derate specifications are to be used: Altitude: Derate 3.0% per every 1000ft (305 m.) above 1200ft (365 m.) Temperature: Derate 1.0% per 10°F (5.55°C) temperature above 77°F (25°C)

Feature Code: 57LGE02 Generator Arrangement: 467-6056 Date: 12/03/2018 Source Country: U.S.

Materials and specifications are subject to change without notice. The International System of Units (SI) is used in this publication.

CAT, CATERPILLAR, their respective logos, ADEM, S•O•S, "Caterpillar Yellow", the "Power Edge" trade dress as well as corporate and product identity used herein, are trademarks of Caterpillar and may not be used without permission.

SNOROUNITED STATES - DUBBY	UNITED STATES ENVIRON 2018 M CERTIFICATE WITH THE	OFFICE OF TRANSI AND AIR QUA ANN ARBOR, MICH	ALITY		
	er Solutions International, Inc. Manufacturer or Importer) 5.702ED-019	Effective Date: 10/03/2017 Expiration Date: 12/31/2018		r, Division Director nce Division	Issue Date: 10/03/2017 Revision Date: N/A
Manufacturer: Power Solution Engine Family: JPSIB5.702F Mobile/Stationary Certificat Fuel : Natural Gas (CNG/LNM LPG/Propane Emission Standards : Part 90 Phase 1 NMHC + NOX (g/kW-hr) CO (g/kW-hr): 519.0 Emergency Use Only : Y	ED tion Type: Stationary G) -hr) : 13.4 : 13.4	HITED STA	Teo		

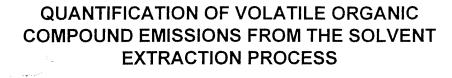
Pursuant to Section 213 of the Clean Air Act (42 U.S.C. section 7547) and 40 CFR Part 60, 1065, 1068, and 60 (stationary only and combined stationary and mobile) and subject to the terms and conditions prescribed in those provisions, this certificate of conformity is hereby issued with respect to the test engines which have been found to conform to applicable requirements and which represent the following nonroad engines, by engine family, more fully described in the documentation required by 40 CFR Part 60 and produced in the stated model year.

This certificate of conformity covers only those new nonroad spark-ignition engines which conform in all material respects to the design specifications that applied to those engines described in the documentation required by 40 CFR Part 60 and which are produced during the model year stated on this certificate of the said manufacturer, as defined in 40 CFR Part 60. This certificate of conformity does not cover nonroad engines imported prior to the effective date of the certificate.

It is a term of this certificate that the manufacturer shall consent to all inspections described in 40 CFR 1068.20 and authorized in a warrant or court order. Failure to comply with the requirements of such a warrant or court order may lead to revocation or suspension of this certificate for reasons specified in 40 CFR Part 60. It is also a term of this certificate that this certificate may be revoked or suspended or rendered void *ab initio* for other reasons specified in 40 CFR Part 60.

This certificate does not cover large nonroad engines sold, offered for sale, or introduced, or delivered for introduction, into commerce in the U.S. prior to the effective date of the certificate.

Policy: CARB Emission Factors for CI Diesel Engines – Percent HC in Relation to NMHC + NOx


Policy	When the non-methane hydrocarbon (NMHC) and nitrogen oxide (NOx) emission factor is combined, assume a breakdown of 5% and 95%, respectively.										
Effective date	June 28, 2004										
Definitions	The following is a list of associated definitions.										
Contact	 <i>CI Engine</i> – Compression Ignition Engine is an internal combustion engine with operating characteristics significantly similar to the theoretical diesel combustion cycle. <i>HC</i> – Organic compound consistently entirely of hydrogen and carbon. <i>NMHC</i> – Non-Methane Hydrocarbon is the sum of all hydrocarbon air pollutants except methane. <i>NOx</i> – Nitrogen Oxides are compounds of nitric oxide (NO), nitrogen dioxide (NO₂), and other oxides of nitrogen, which are typically created during combustion processes. 										
		azier, x4672	-								
Document	Version	Revised By	Description	Date							
Control	1.1	HL	New Policy: CARB Emission Factors – Percent HC in Relation to NMHC + NOx	06/28/04							
	1.2	MCL	Mapping of Policy	3/13/08							
Approval	Name & '	Title	Signature	Date							
	Brian Bateman, Director of Engineering		Signed by Brian Bateman	2/28/2008							

Section 7

Information Used to Determine Emissions

SX/EW Mixer/Settler Tank and Raffinate Tanks (Units SX/EW-1, SX/EW-3, and SX/EW-4)

 "Quantification of Volatile Organic Compound Emissions from the Solvent Extraction Process" prepared for BHP Copper, July 16, 1997.

SAN MANUEL OPERATIONS

SAN MANUEL, ARIZONA

Prepared for BHP-COPPER July 15, 1997

Prepared by

for an endow to

. .

n sander a f

EMCON 3922 East University Drive, Suite 7 Phoenix, Arizona 85034-7223

Project 22537-303.003

CONTENTS

LIST OF TABLES	iii
1 INTRODUCTION	1-1
2 OVERALL APPROACH	2-1
3 DIFFUSIVE FLUX CALCULATIONS	3-1
3.1 Problem Statement	3-1
3.2 Assumptions and Procedure	3-1
REFERENCES	

TABLES

APPENDIX A PHILLIPS CHEMICAL REPORT

APPENDIX B SAN MANUEL ANALYTICAL RESULTS AND FLOW DATA

TABLES

Tables

- Table 1 Vapor Pressures of Chemical Constituents
- Table 2 Calculated Chemical Diffusivities
- Table 3 Solvent Extraction Tanks Diffusive Fluxes and Calculated Annual Emissions
- Table 4 Raffinate Pond Diffusive Fluxes and Calculated Annual Emissions

1 INTRODUCTION

BHP Copper (BHP) operates a copper mining facility in the town of San Manuel, Arizona. Operations at the San Manuel Operations (SMO) include an underground block caving system sulfide ore mine and a leach facility for recovery of oxide ores. Sulfide ores are processed at the SMO mill and smelter, and the pregnant leach solution from the oxide ore heaps is processed at the SMO solvent extraction/electrowinning (SXEW) facility.

Over the past two years BHP has made several attempts to quantify the emissions from the solvent extraction (SX) facility. The approaches taken to date include a pan evaporation emissions estimating method, modeling using the U.S. Environmental Protection Agency's TANKS and WATER8 models, and a mass balance over the processing unit. None of these approaches resulted in a reasonable emissions estimate.

Subsequently, BHP has had the headspace in the tankhouse tested to determine the concentrations of volatile organic compounds (VOCs) in general and specific hazardous air pollutants (HAPs) in the air above the solvent extraction solution. Initial testing was performed on the solvent tanks and raffinate pond using gas chromatography - mass spectrometry (GC-MS). Samples were collected in Tedlar® bags and analyzed in an offsite laboratory. In addition, a second technology, Fourier transform infrared spectroscopy (FTIR), was utilized to measure near-real time concentrations above the solution while the GC-MS samples were being collected. The FTIR system employed at BHP San Manuel was an open path configuration consisting of optical components, a computer, special software, and spectral references against which field measurements are compared. Concurrent climatological measurements were taken during the headspace sampling including air temperature (dry bulb), wet bulb temperature, solution temperation, wind speed and direction, and solar radiation. Statistical analyses were performed to determine whether or not the concentrations of VOCs in the tank house were dependent on climatological conditions. This study indicated that no dependence exists and did not result in any more reasonable emission rate from the SX tanks and raffinate pond.

2 OVERALL APPROACH

The overall approach taken in this part of the ongoing solvent extraction study at San Manuel was to estimate the emissions of VOCs from the SX tanks and raffinate pond. A diffusive flux calculation was used to perform the estimate. The results of the FTIR and GC-MS chemical analysis previously conducted were used in the diffusive flux calculation.

n narrige

3 DIFFUSIVE FLUX CALCULATIONS

In order to estimate the emissions from the SX tanks, the diffusive flux was calculated for three separate scenarios. Since bulk mass transfer is already accounted for in the flows to and from other parts of the process, diffusion is expected to be the only significant contributor to mass removal from the SX tanks remaining. The result of the calculation is a flux with units of g/m^2 *s. Given the surface area of each tank, a ton/year emission rate can be calculated.

3.1 Problem Statement

The SX tanks at BHP San Manuel are essentially enclosed by the tank house on the top and three sides and left open on the fourth side. There has been some difficulty in developing an emissions estimating technique for these tanks because of the partial enclosure. In a completely open or completely enclosed configuration, common engineering assumptions could be applied to estimate the emissions from these tanks. However since the tanks fall in between the easily modeled scenarios, concentration data were required in order to make this estimate. Given the concentration data, the diffusive flux calculations described in the following section were performed. Since analytical results of the air above the raffinate pond were available, the same calculations were performed for that area.

3.2 Assumptions and Procedure

3.2.1 Assumptions

Several assumptions were made in the process of performing this calculation. The first was made to narrow down the list of chemicals that can potentially volatilize from the tanks and the pond. Using the chemical details provided by Phillips Petroleum (Phillips), the vapor pressures of the listed chemicals were used to decide which components may volatilize and which are likely to remain in solution. Only those chemicals with a significant vapor pressure were included in the emissions losses calculation. After this analysis, all components except naphthalene were included in the total VOCs calculation.

A second assumption pertains to the concentrations of each compound at the solution surface and in the headspace of the tank house. The driving force for diffusion is the concentration gradient that exists between the surface of the solution and the headspace. The concentrations provided by Phillips were used as the initial concentrations for each volatile component. The headspace concentrations were taken from GC-MS data previously collected at the San Manuel SX tanks. An average concentration reported for the sampling period was used as the headspace concentration for each chemical. The concentration measurements were made at approximately one meter above the liquid surface. This is thought to be reasonable since the samples were collected at various locations in each tank. FTIR data confirms the trends observed in the GC-MS data.

Finally, it was assumed that the partial enclosure of the tanks effectively limits the ventilation of the headspace over each tank. This was confirmed by measurements of little or no wind speed within the enclosed headspace. For this exercise it was conservatively estimated that approximately two-thirds of the headspace in each tank is affected by the tank enclosure and that the enclosure allows only about 50 percent of the affected headspace to vent to the atmosphere. This results in an overall control efficiency of 33 percent.

3.2.2 Procedure

The diffusive flux calculation began with the elimination of naphthalene as a chemical of concern from an emissions perspective. In order to accomplish this, the vapor pressure for each chemical listed by Phillips was found and listed. The list of vapor pressures is presented in Table 1. The Phillips chemical component report is included as Appendix A. Based on this list, it was determined that naphthalene has such a low vapor pressure that any losses due to volatilization would be insignificant relative to the other components considered. The remainder of the list was considered in this analysis.

In order to calculate the diffusive flux of each species, the diffusivity in air, D_{i-air} , must be known for each component (where 'i' is the component of interest). Diffusivities can be calculated using any of several methods. The Fuller, Schettler, and Giddings (FSG) method was used for the calculation in this project. Diffusivities were calculated using the following formula:

$$D_{A-B} = \frac{10^{-3} * T^{1.75} [(M_A + M_B)/M_A M_B]^{1/2}}{P[(\Sigma \nu)_A^{1/3} + (\Sigma \nu)_B^{1/3}]^2}$$

where:

 D_{A-B} = The diffusivity of gas A in gas B (cm²/s)

T = Temperature (K) M_i = Molecular weight of the species (g/gmole) P = Pressure (atm) ν = Sum of atomic diffusion volume increments by atom and structure

The calculated diffusivity for each component is shown in Table 2. Because the GC-MS did not distinguish between some the larger hydrocarbon species, the analytical results for these components were reported as GC-MS kerosene. For this analysis it was assumed that anything listed by Phillips that was not specifically reported on the GC-MS analysis was in this category. These are noted as 'others' throughout this analysis. The diffusivity for each of the Phillips-listed components in this category was calculated, and a common diffusivity was derived which accounted for each individual contribution based on the concentration in solution.

Typically, single components will behave differently in a mixture than they do in a binary system. The diffusivities for three chemicals were calculated to determine the effects of the mixture on the binary system calculations. The diffusivities in the mixture were not significantly different from those for the binary systems. The previously calculated diffusivities, therefore, were not altered.

The diffusive flux of each component was calculated according to Fick's First Law which can be written as:

$$F = (C_i^0 - C_i^H)D/H$$

where:

F = Diffusive flux of component 'i' in air (g/m^2-s) Ci⁰ = Component concentration at the surface (g/m^3) Ci^H = Component concentration at the measured height (g/m^3) D = Diffusivity of the chemical in air (m^2/s) H = Height at which concentration measurement was taken (m)

The calculated diffusive fluxes and the resulting annual emission rates for the SX tanks are shown in Table 3. Annual emissions rates were calculated by multiplying the flux by the total area of the 12 tanks at San Manuel and the number of seconds per year. The calculated diffusive fluxes and resulting annual emission rates for the raffinate pond are given in Table 4.

REFERENCES

Bird, R. B., W. E. Stewart, and E. N. Lightfoot, *Transport Phenomena*, John Wiley & Sons, New York City, NY, 1960.

. ج

- Green, D. W., *Perry's Chemical Engineers' Handbook*, 6th ed., McGraw-Hill Inc., San Francisco, CA, 1984.
- "Volatile Organics Emission Testing, Solvent Extraction Facility, San Manuel Mining Division," EMCON, 1996.

TABLES

.

.

TABLE 1 VAPOR PRESSURES OF CHEMICAL CONSTITUENTS

	Vapor Pressure
Component	(mm Hg)
benzene	77.2
toluene	22.4
ethylbenzene	7.5
m-xylene	6.4
o-xylene	4.97
p-xylene	6.9
n-octane	10.6
n-heptane	36.4
n-hexane	126.6
pentane	430.7
naphthalene	0.054
1,2,4-trimethylbenzene	2.04
1,3,5-trimethylbenzene	7.34

		Diffusion		
	M.W.	Volume		
Component	(g/gmole)	(V)	D _{A-air}	$C_A(ppmv)$
air	28.97	20.1		
benzene	78.11	90.68	0.0894	25
toluene	92.13	111.14	0.0804	350
ethylbenzene	106.16	131.6	0.0736	1400
octane	114.22	167.64	0.0656	2300
m-xylene	106.16	131.6	0.0736	410
o-xylene	106.16	131.6	0.0736	770
p-xylene	106.16	131.6	0.0736	732
heptane	100.2	147.18	0.0705	66.67
hexane	86.17	129.72	0.0758	66.67
pentane	72.15	106.26	0.0846	66.67
1,2,4-trimethylbenzene	120.19	172.26	0.0645	385
1,3,5-trimethylbenzene	120.19	172.26	0.0645	385

TABLE 2 CALCULATED CHEMICAL DIFFUSIVITIES

TABLE 3 SOLVENT EXTRACTION TANKS DIFFUSIVE FLUXES AND CALCULATED ANNUAL EMISSIONS

		Molecular							Controlled	Controlled
		Wt.							Emission Rate*	Emission Rate*
Component	D _{i-air} (cm^2/s)	(g/gmole)	C _i ⁰ (ppmv)	C _i ^H (ppmv)	H (m)	C _i ⁰ (g/m^3)	C _i ^H (g/m^3)	Diff F (g/m	(ton/yr-tank)	(ton/yr)
benzene	0.09	78.11	25	0.0018	1	0.079965	5.76E-06	7.2E-07	0.007475238	0.089702855
toluene	0.08	92.13	350	0.0668	1	1.320453	0.000252	1.06E-05	0.109709274	1.316511282
ethylbenzene	0.07	106.16	1400	0.0568	1	6.086153	0.000247	4.26E-05	0.442523663	5.31028395
xylenes	0.07	106.16	1912	0.0371	1	8.311946	0.000161	5.82E-05	0.604373681	7.252484173
others	0.07	112.06	2500	16.921	1	11.47214	0.077648	7.98E-05	0.828526356	9.942316269
1,2,4-trimethylbenzen	0.06	120.19	385	0.0230	1	1.894885	0.000113	1.14E-05	0.118092279	1.417107343
1,3,5-trimethylbenzen	0.06	120.19	385	0.0101	1	1.894885	4.97E-05	1.14E-05	0.118096236	1.417154828
									2.228796725	26.7455607

* Controlled emission rate is based on the conservative assumption that each tank is 66% enclosed and that the enclosure results in a 50 % control of VOC emissions. The uncontrolled emission rate is, therefore, reduced by 66% x 0.5 = 33%.

 TABLE 4

 RAFFINATE POND DIFFUSIVE FLUXES AND CALCULATED ANNUAL EMISSIONS

						[Uncontrolled
		Molecular Wt.							Emission Rate
Component	D _{i-air} (cm^2/s)	(g/gmole)	C _i ⁰ (ppmv)	CiH (ppmv)	H (m)	Ci0 (g/m^3)	CiH (g/m^3)	Diff. F (g/m^2-s)	(ton/yr)
benzene	0.09	78.11	25	0.0011	1	0.08014086	3.5262E-06	7.21236E-07	0.011181906
toluene	0.08	92.13	350	0.00645	1	1.32335532	2.43875E-05	1.05866E-05	0.164133366
ethylbenzene	0.07	106.16	1400	0.001	1	6.09952896	4.35681E-06	4.26967E-05	0.661961073
xylenes	0.07	106.16	1912	0.00198	1	8.33021384	8.62648E-06	5.83114E-05	0.904049404
others	0.07	112.06	2500	3.983	1	11.497356	0.018317588	8.03533E-05	1.245781775
1,2,4-trimethylbenzene	0.06	120.19	385	0.0022	1	1.89905008	1.08517E-05	1.13942E-05	0.176654054
1,3,5-trimethylbenzene	0.06	120.19	385	0.00103	1	1.89905008	5.08058E-06	1.13943E-05	0.176654591
									3.34041617

APPENDIX A PHILLIPS CHEMICAL REPORT

.

309 Short Street Bartlesville Oklahoma 74004 Telephone 918-661-8617 Telex 49-2455 TWX 910-841-2560

July 19, 1996

Mr. John Kline BHP Copper Florence Project 14605 E. Hunt Highway Florence, AZ 85232

Facsimile #: 520-868-0463

Dear Mr. Kline:

We have reviewed the July 15, 1992, list of chemicals shown in Arizona Ambient Air Quality Guidelines. This list is the most recent we have available and was supplied to us on February 13, 1996. The following compounds are listed in the Guidelines and are present in Orfom* SX 7 solvent extraction diluent.

<u>Sı</u>	<u>ibstance Name</u>	CAS #	Formula	Typical Concentration
	Benzene	71-43-2	C ₆ H ₆	20 - 30 ppm
	Ethylbenzene	100-41-4	C ₈ H ₁₀	1400 ppm
	Naphthalene	91-20-3	C ₁₀ H ₈	3100 ppm
ł.	Octane	111-65-9	C,H18	0.23%
	Tolucne	108-88-3	C,H ₈	350 ppm
	Xylene (meta)	108-38-3	C.H.10	410 ppm
	Xviene (ortho)	95-47-6	$C_{8}H_{10}$	770 ppm
	Xylene (para)	106-42-3	C ₈ H ₁₀	732 ppm

Although the Guidelines did not specify the octane isomer in question, the CAS number indicates n-octane is the specific chemical substance. We have not analyzed specifically for n-octane. The typical concentration of all C_s isomers is 0.23%. SX 7 is likely to contain some n-octane, but the concentration would be expected to be significantly less than the total C_s concentration.

We have not specifically analyzed for the following chemical substances:

n-Heptane	142-82-5	C,H14
n-Hexane	110-54-3	C_6H_{14}
Pentane	109-66-0	C.H.

We do, however, have information on the hydrocarbon distribution. The total combined concentration of C_3 and lower hydrocarbons is less than 200 ppm. This would indicate that the concentration of n-heptane, n-hexane, and pentane would be very low. The CAS number listed in the guidelines for pentane is specific to n-pentane.

Neither have we analyzed for the following specific chemical substances:

1,2,4 trimethylbenzene	95-63-6	C ₉ H ₁₂
1,3,5 trimethylbenzene	108-67-8	C ₉ H ₁₂

PERFORMANCE CHEMICALS FOR MINING WORLDWIDE

Page 2 Mr. John Kline July 19, 1996

Again, referring to the hydrocarbon distribution, the total C_9 concentration is about 0.5%. Therefore, we would expect the levels of these two substances to be very low, if they are present at all.

A copy of the carbon number distribution for your information is attached.

The molecular formulas, shown in the Guidelines, for n-heptane, n-hexane, and octane are incorrect. The correct formulas are provided above.

I hope this information proves helpful. Please do not hesitate to call either Tom Young at 520-742-3440, or me at 800-221-1956, if you have any questions or require additional information.

Sincerely, Markal D. Dichop

Marshall D. Bishop MiningChemicalsDirector

cc: T.L. Young

MDB:lja

ORFOM® SX 7 SOLVENT EXTRACTION DILUENT

TYPICAL CARBON NUMBER DISTRIBUTION

CARBON NUMBER	WEIGHT PERCENT
$< OR = C_7$	0.02
C ₈	0.12
С,	0.56
C ₁₀	2.76
C ₁₁	8.06
C ₁₂	17.11
C ₁₃	22.89
C ₁₄	19.52
C ₁₅	15.25
C ₁₆	10.29
C ₁₇	2.72
C ₁₈	0.65
$> 0r = C_{19}$	0.05

-

SAN MANUEL ANALYTICAL RESULTS AND FLOW DATA

ENVIRONMENTAL

 Facsumile Communication
 BHP Copper

 DATE.
 11/20/96

 TO:
 EMCON

 ATTENTION:
 Illia Amerson

 FACSIMILE NUMBER:
 (602) 470-0587

 FROM.
 Brent Fletcher

 TOTAL NUMBER OF PAGES INCLUDING THIS HEADER.
 1

 If there are any problems with this transmission please telephone (520) 385-3699

OUR FAX NUMBER IS SAN MANUEL. (520) 385-3349

Illa, It is my understanding that the flow rates listed below are the most current. Any additional flow information you may need for the SX mass balance can be obtained from Wendy Gort at ext. 8665 or myself at ext. 3699.

SX feed - 18,500 gpm Lean Electrolyte - 1,250 gpm Raffinate in - 18,500 Raffinate out to leach dumps - 11,000 gpm Raffinate out to in-situ - 8,000 gpm Leachate - 3 to 3.5 million gallons per month

Brent R. Fletcher Environmental Engineer 11-12-96 : 11:51 :

DELMAR-

15203853349;# 2/ 3

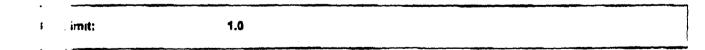
JASS ARON AVE TVINE CA 82714 1014 5. Cooley Dr., Suite A. Culluli, CA 92324 (HOR) 870-4687 FAX (908) 370-11 2565 W. 12th St. Suite 1, Tompe, A& B\$281

(714) 281-1022 PAX 714 261 1 (602) 968-8272 FAX (802) 964-12

oer CoSan Manuai	
eddington Rd	
181, AZ 85631	
Brent Eletcher	

\$

¥


Del Mar Analytical

and the second statement of the second statement of the second statement of the second statement of the second Client Project ID: SXEW Mess Balance Analysis Method: EPA 418 1 (I.R. with clean-up) First Sample #: 0110323

Nov 5, 1998 Sampled: Nov 7, 1996 Received: Extracted: Nov 8, 19961 Analyzad. Nov 8, 1998 Reported. Nov 12, 1996 The second s

TOTAL RECOVERABLE PETROLEUM HYDROCARBONS (EPA 418.1)

atory her	Sample Description Liquid	Petrolaum Hydrocarbons mg/L (ppm)
:23	Lean Electrolyte	N.D.
24	SX-Feed	N.D.
1 5	Raffinate	12
.'6	Leachata	ND.

ted as N.D. were not present above the stated limit of detection.

ANALYTICAL, PHOENIX (AZ0426) £

nder ager

> ie vervoe in the leberships. This report shall not be renaded. extent in Ris. without written permission from Dal Mar Analysical

6110323.8HP <1 of \$>

1	-13-	88	;	7.58 :	
---	------	----	---	--------	--

DELMAR-

15203853349;# 2/ 3

Del	Mar	Analytical
-----	-----	------------

. .

1

2/152 Algori Ave., Invine, CA 92714 (714) 251-1022 FAX (714) 261-1. - 6525 Sherman wwy Suite C.U.F. Von Nuvel CA 91406 - 10184 / 19-1844 -4X (810) 770-18 Start Start and starts I have a start the same of the same

	Copper CoSan Manuel		SXEW Mass Balance	Sampled:	Nov 6, 1986
-	Reddington Rd			Received:	Nov 7, 1998
Ц.	1anuel, AZ 85831	Analysis Method:	EPA 418.1 (I.R. with clean-up)	Extracted	Nov 12, 1998
	on: Brent Fletcher	First Sample #	3110319	Analyzed:	Nov 12, 1996
				Reported:	Nov 12 1998 2
	h - A	the the all the table of section diam - it was		and the second s	······································

TOTAL RECOVERABLE PETROLEUM HYDROCARBONS (EPA 418.1)

Concerning the rest of the second second

:oratory umber	Sample Description Water	Petroleum Hydrocerbone mg/L (ppm)
10319	Lean Electrolyte	N.D.
0320	SX-Feed	N D.
: 0 321	Raffinate	21
0322	Leschate	N.D.

|--|--|

parted as N.D. were not present above the stated limit of detection.

4R ANALYTICAL, PHOENIX (AZ0426)

Asneger

Results partain any to campile leader in the leaderstory. Trie report shall not be reproduced, senior in full without written permission from Del Mar Analysisa.

6110319 BHP <1 of 3>

DELMAR-

)el MarAnalytical

1014 E. Cooley Dr., Butte A. Corton, CA 92324 [900] 370 4667 HAX SOD 370 1644 - 16525 Sherman Way, Suice Critic Vim Nova, CA 03406 - - (818) 779-1844 (RAX (016) 779-1842 2465 W. 12th St., Suite E. Jempe, AZ en zhi

2853 Alton Ave. Inne, CA 92714 (714) 261-1022 FAX (714) 761 1221 (507) 968-8272 FAX (802) 968-1151

per CoSan Manuel	Client Project (D.	SXEW Mass Balance	Sampled:	Nov 4.	1996 🕻
adington Rd		•	Received:	Nov 7,	1996
.el, AZ 85531	Analysis Method:	EPA 418.1 (LR. with clean-up)	Extracted:	Nov 8	1996
Brent Fletcher	First Sample #:	6110315	Analyzed:	Nov 8.	1996
	•		Recorted:	Nov 12.	1996

TOTAL RECOVERABLE PETROLEUM HYDROCARBONS (EPA 418.1)

lory ser	Sample Description Water	Petroleum Hydrocarbone mg/L (ppm)	
:15	Lean Electrolyte	N.D .	
16	SX-Feed	N.D.	
17	Raffinate	N.D.	
18	Leachate	N.D.	

······		
Limit:	1.0	

ported as N.D. were not present above the stated limit of detection.

LANALYTICAL, PHOENIX (AZ0426)

nendez Inager

Results pertain only to esublish likeled in the leosratory. Environment results reproduced, ascent in hit, without whites permission from Del Mar Analytesi.

1

DELMAR-

15203853349;# 3/ 4

1947 ANOR AVE . INVIDE. CA 92714 (714) 261-1022 FAX (714) 261-1231

540

Del Mar Analytical

1014 E. Cuoloy Dr., Sults A. Cohon, CA 02324 (009) 370-4667 (PAX 1909) 370-1044 15525 Sherman Way, Bulle G.11, Van Nuys, CA 91406 👘 (518) 779-1844 - FAX (818) 779-1844

7455 W. 12th St. Suite 1. Tompo, AZ 80281 (002) 068 8272 FAX (602) 968-1551

per CoSan Manuel	
adington Rd	
Jel, AZ 85831	
Classes & Classes and	

Sample Descript: Weber First Sample # 8110315

Brent Fletcher

.

Client Project ID: SXEW Mass Balance

..... Sampled: Nov 4, 1996 Received: Nov 7, 1998 £ Nov 13, 1998 Nov 13, 1998 Nov 13, 1998 Extracted: Analyzed: Reported: ----

TOTAL ORGANIC CARBON (EPA 415.2)

eatory nber	Sample Description	Detection Limit mg/L (ppm)	Semple Result mg/L (ppm)	
315	Lean Electrolyte	10	6.1	
118	SX-Feed	1.0	5.1	
.17	Raffinate	1.0	63	
118	Laschate	1.0	90	

ompleted at Del Mar Analyticel-IRVINE (AZD428)

ported as N.D. were not present above the stated limit of detection.

AR ANALYTICAL, PHOENIX (AZ0428)

Inendez anader

as bened in the subdratory. This report shell flor be Results contain only to seri represional, encope in Bull, without written partnermon from Dai Mar Anelvisce)

6110315.8HP <2 of 3>

11-14-96 : 11:50 ;

DELMAR-

المراجع الأراجع 15203853349;# 2/ 3

2852 Alma Ave. Invine. CA 92714 (714) 261 1022. FAX (714) 281-1225 1014 K. Cobley Dr., Sublia, Collan, CA 92324 (909) 370-4687, #AX (909) 370-1046 2466 W. 1251 32, Suite L. Lembel AZ 85281 (602) 968-6272 PAX (603) 968-1558

ノレン

el MarAnalytica	
-----------------	--

r Co.-San Manuel Client Project ID: SXEW Maes Balance aington Rd . AZ 85631

irent Flatchar

Sample Descript: Liquid First Sample # 6110323

Sampled: Nov 5, 1996 5 Received Nov 7, 1996 Extracted Nov 13, 1996 Analyzed: Nov 13, 1998 a Reported Nov 14. 1996 the second s

-TOTAL ORGANIC CARBON (EPA 415.2)

ula ry 2 ar	Sample Description	Detection Limit mg/L (ppm)	Sample Result mg/L (ppm)	
1	Laan Electrolyte	1.0	4.8	
	SX-Feed	1.0	5 1	
,	Ralfinate	1.0	6. 8	
	Leachate	10	92	

opieted at Del Mar Analytical-IRVINE (A29425)

crited as N.D. were not present above the stated limit of detection.

ANALYTICAL, PHOENIX (AZ0426)

22 3ndez nager

nd bei fran indooraalus yn . Thân rastricht as and rich bru La parlain draiy ilo a ducted, encapt in full, without written permission from (he Mar Analyscus

6110323.8HP <2 of \$>

DEL MAR-

المالية الالتاد 15203853349:# 2/ 3

2002 Alban Avol, stylne, CA \$2714 (114) 241-1022 FAX (214) 261-1

س سالي

Del MarAnalytical

1014 E. Couliny Dr., Suite A. Comon, CA 92324 (2009) 370-4663, FAX (2009) 370-11 18526 Sherman Wuy, Suice C-11, Van Nuya, CA 01408 (818) 779-1844 (FAX (818) 779-1 2466 W. 12th Rt., Suite 1, Trimpe, AZ 85281 (602) 968-3372 FAX (403) RAR 10

per CoBen Manuel	Client Project ID:	SXEW Mass Balance	Sampled:	Nov	6,	1298
addington Rd			Received:	Nov	7.	1996
Jel, AZ 85631	Sample Descript:	Water	Extracted:	Nov	18.	1996
Brent Fleicher	First Sample #:	6110319	Analyzed:	Nov	13,	1996
	•		Reported:	Nov	14	1998

TOTAL ORGANIC CARBON (EPA 415.2)

:tory per	Sampia Description	Detection Limit mg/L (ppm)	Sample Result mg/L (ppm)
19	Lean Electrolyte	2.0	3.9
20	SX-Feed	2.0	37
?1	Raffinate	2.0	44
2:2	Leschate	10	110

pieted at Dai Mar Analytical-SRVINE (AZD428)

ted as N.D. were not present above the stated limit of detection.

ANALYTICAL, PHOENIX (AZ0426)

2 0 Indez ager

Herewise partient every to second an every later of the later regions. This report enter not be representations, exception hall, without writises permission from Del Mar Avleyants

DELMAR-

15203853349;# 3/ 4

1847 Alton Ave . Invite. CA \$2714 (714) 281-1022 FAX (714) 261-1221 1014 F. Cubley Dr., Suits A. Conda, CA 02324 (009) 3704867 (PAR 1909) 570-1044 15525 Sheman Wey, sulle C-11, Van Nuys, CA 91406 — (516) 779-1644. FAX (010) 779-1844

-

-----Sa Re

per Co.-Sen Manuel addington Rd Jel, AZ 85831

Sample Descript: Weter First Sample #: 6110315

Client Project ID' SXEW Mass Balance

Brent Fletcher

Del Mar Analytical

and an and a second state of the second s -TOTAL ORGANIC CARBON (EPA 415.2)

atory nber	Sampia Description	Detection Limit mg/L (ppm)	Sampie Result mg/L (ppm)
315	Loan Electrolyte	10	6.1
18	SX-Feed	1.0	5.1
17	Raffinate	1.0	63
. `* 8	Leschate	1.0	90

ompleted at Dei Mar Analyticei-IRVINE (AZ0428)

-ported as N.D. were not preserv above the stated limit of detection.

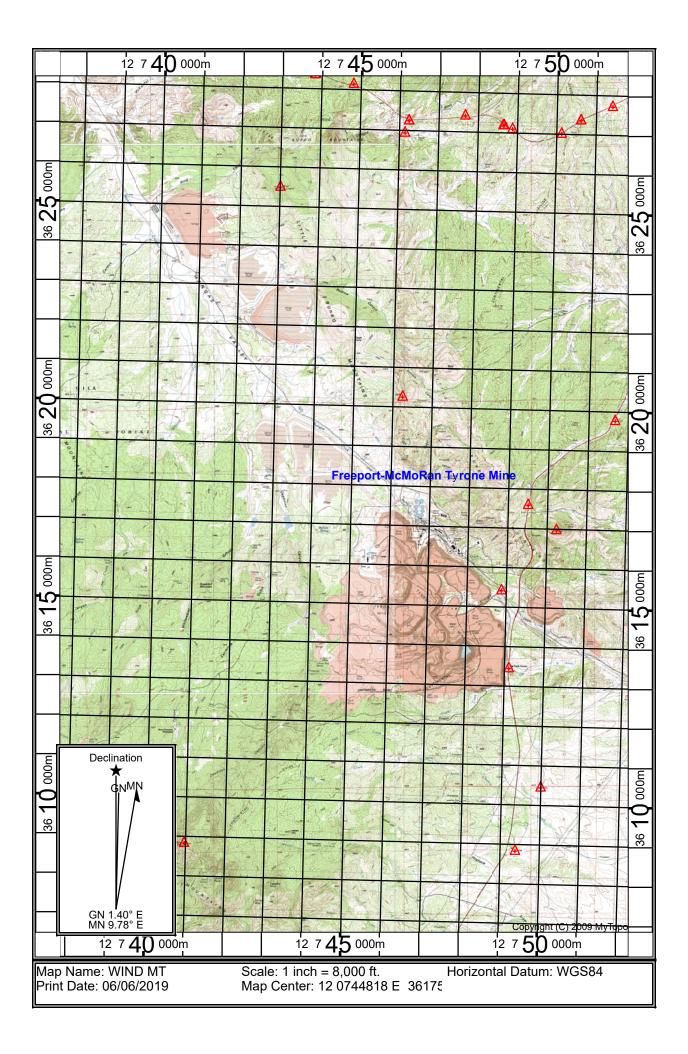
R ANALYTICAL, PHOENIX (AZ0426)

97. mendez anager

OFV THIS FAMOR BOAR THE DR represented, except in R.R. without writish permissions from One Mar American

6110315.BHP <2 of 3>

Sampiad	Nov 4	1996 🧉
Received:	Nov 7	1998£
Extracted:	Nov 13	1996 8
Anelyzed:	Nov 13	1998
Reported:		1996 🖁
Cineran and an an an an	and the second second	


Section 8

Map(s)

<u>A map</u> such as a 7.5 minute topographic quadrangle showing the exact location of the source. The map shall also include the following:

The UTM or Longitudinal coordinate system on both axes	An indicator showing which direction is north
A minimum radius around the plant of 0.8km (0.5 miles)	Access and haul roads
Topographic features of the area	Facility property boundaries
The name of the map	The area which will be restricted to public access
A graphical scale	

Please see the enclosed quad map.

Section 9

Proof of Public Notice

(for NSR applications submitting under 20.2.72 or 20.2.74 NMAC) (This proof is required by: 20.2.72.203.A.14 NMAC "Documentary Proof of applicant's public notice")

☑ I have read the AQB "Guidelines for Public Notification for Air Quality Permit Applications" This document provides detailed instructions about public notice requirements for various permitting actions. It also provides public notice examples and certification forms. Material mistakes in the public notice will require a re-notice before issuance of the permit.

Unless otherwise allowed elsewhere in this document, the following items document proof of the applicant's Public Notification. Please include this page in your proof of public notice submittal with checkmarks indicating which documents are being submitted with the application.

New Permit and Significant Permit Revision public notices must include all items in this list.

Technical Revision public notices require only items 1, 5, 9, and 10.

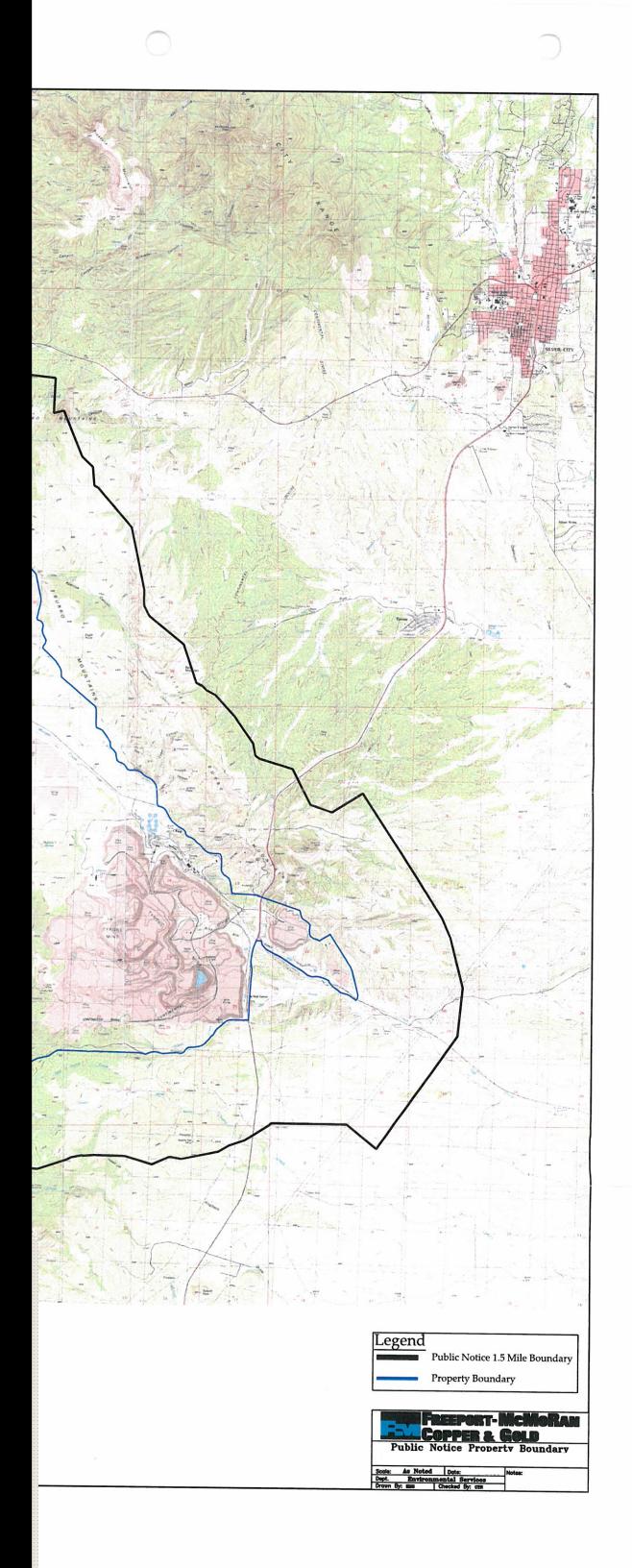
Per the Guidelines for Public Notification document mentioned above, include:

- 1. A copy of the certified letter receipts with post marks (20.2.72.203.B NMAC)
- 2. ☑ A list of the places where the public notice has been posted in at least four publicly accessible and conspicuous places, including the proposed or existing facility entrance. (e.g: post office, library, grocery, etc.)
- 3. \square A copy of the property tax record (20.2.72.203.B NMAC).
- 4. \square A sample of the letters sent to the owners of record.
- 5. A sample of the letters sent to counties, municipalities, and Indian tribes.
- 6. \square A sample of the public notice posted and a verification of the local postings.
- 7. 🗹 A table of the noticed citizens, counties, municipalities and tribes and to whom the notices were sent in each group.
- 8. 🗹 A copy of the public service announcement (PSA) sent to a local radio station and documentary proof of submittal.
- 9. ☑ A copy of the <u>classified or legal</u> ad including the page header (date and newspaper title) or its affidavit of publication stating the ad date, and a copy of the ad. When appropriate, this ad shall be printed in both English and Spanish.
- 10. A copy of the <u>display</u> ad including the page header (date and newspaper title) or its affidavit of publication stating the ad date, and a copy of the ad. When appropriate, this ad shall be printed in both English and Spanish.
- 11. A map with a graphic scale showing the facility boundary and the surrounding area in which owners of record were notified by mail. This is necessary for verification that the correct facility boundary was used in determining distance for notifying land owners of record.

Please see the enclosed proof of public notice.

Section 9 - Public Notice

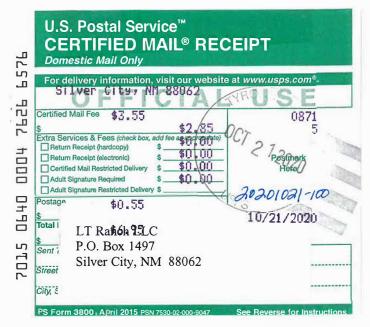
Property Owners

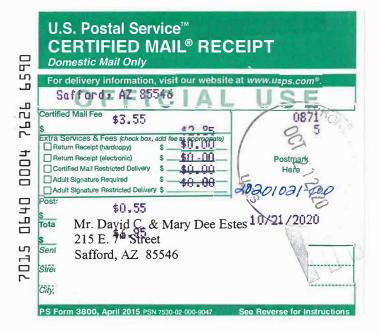

Recipient	Addre	255	City	State	Zip Code
Pacific Western Land Compar	лу	PO Box 571	Tyrone	NM	88065
U Bar Ranch	HCR 88061-Box 10199	Hwy 180 W.	Silver City	NM	88061
Las Cruces District Office	Bureau of Land Management	1800 Marquess Street	Las Cruces	NM	88005
Mr. George Bender & Diana I	Bender	PO Box 1126	Silver City	NM	88062
US Forest Service		3005 Camino del Bosque	Silver City	NM	88061
Annie A. Brown Estate Trust	c/o James McCauley	PO Box 1497	Silver City	NM	88062
Mr. David C. & Mary Dee Este	25	215 E. 7th Street	Safford	AZ	85546
Cordova Associates		1039 E. Badillo St.	Covina	CA	91724
Mr. David R. Woodward		PO Box 231	Tyrone	NM	88065
Mr. Jason & Julie Turner		PO Box 2222	Silver City	NM	88062
LT Ranch LLC		PO Box 1497	Silver City	NM	88062

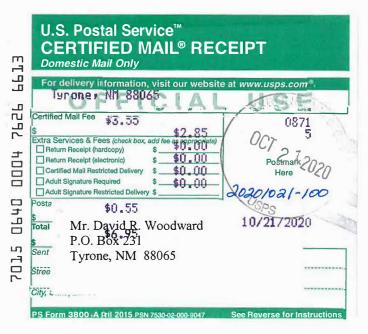
Municipalities

Recipient	Addro	City	State	Zip Code	
Mr. Alex Brown	Manager, Town of Silver City	PO Box 1188	Silver City	NM	88062
The Honorable Ken Ladner	Mayor, Town of Silver City	PO Box 1188	Silver City	NM	88062

Counties							
Recipient	Add	ress	City	State	Zip Code		
Ms. Charlene Webb	Manager, County of Grant	PO Box 898	Silver City	NM	88062		


There are no Indian Tribes within a 10 mile radius of the facility boundary.





. 0 _ п гù 76 + 1 1 061 Б 707

Summary

Account Id P000229
Parcel Number
Owners TURNER JASON & TURNER JULIE
Address PO BOX 2222
SILVER CITY, NM 88062
Situs Address
Legal

Inquiry

As Of	02/15/2018	E III
Payment Type	O First	
	Full	

Total Due \$0.00

Value

Special Assessment	Area Id DCLPEN	Taxes \$37.60
Area Id		Mill Levy
010_NR - 010_NR		20.8240000
	Actual	Assessed
CATTLE-COWS - 500	66,774	22,258
CATTLE-HEIFERS CALVES - 530	14,975	4,992
CATTLE-STEER CALVES - 540	19,578	6,526
CATTLE-BULLS - 550	7,062	2,354
Total Value	108,389	36,130
Taxes		\$752.36
	Area Id	Taxes
Special Assessment	951 - CATTLE INDEMNITY	\$361.30
Total Billed		\$1,151.26

Summary

Account Id	R085738
Parcel Number	3086114330264
Owners	LT RANCH LLC

Address	PO BOX 1497
	SILVER CITY, NM 88062

Situs Address

Legal	Quarter: NE S: 35 T: 19S R: 15W GOV LOT 2 GOV LOT 4 GOV LOT 5 (PT NEQ) NWQNEQ Quarter: SE S: 35 T:
	19S R: 15W GOV LOT 6 GOV LOT 7 (PT EHSEQ) WHSEQ Quarter: SW S: 35 T: 19S R: 15W SWQ Quarter: NW S:
	35 T: 19S R: 15W GOV LOT 1 GOV LOT 3 (PT WHNWQ) EHNWQ 571.200 AC, SELF GRAZED P066643

Inquiry

As Of	02/15/2018	
Payment Type	O First	-
	• Full	
Total Due \$0.0	0	

Value

Area Id		Mill Levy
010_NR - 010_NR		20.8240000
	Actual	Assessed
GRAZING - ALL ONE CLASS - 0010	3.084	1,028
Taxes		\$21.40

Summary

Account Id R087845

Parcel Number 3087114185238

Owners BROWN ANNIE A ESTATE TRUST Address PO BOX 1497

SILVER CITY, NM 88062

Situs Address

Legal Quarter: NE S: 34 T: 19S R: 15W Quarter: SE S: 34 T: 19S R: 15W MINE: CHERRY CREEK - MS 1782 13.96 MineAcres 13.960 AC, LEASE LT RANCH P066643

Inquiry

As Of	02/15/2018	u l
Payment Type	First Full	
Total Due \$0.0	00	

Value

Supplied Approximate	Area Id	Taxes
Special Assessment	MINTAX	\$0.00
	Area Id	Taxes
Special Assessment	ADMINFEE	\$4.48
Area Id		Mill Levy
010_NR - 010_NR		20.8240000
	Actual	Assessed
GRAZING - ALL ONE CLASS - 0010	75	25
Taxes		\$0.52
Original Taxes		\$5.00
Adjustments		\$0.00
Total Billed		\$5.00

Summary

Account Id	R088189
Parcel Number	3088113376071
Owners	ESTES ROCKY
Address	215 E 7TH ST SAFFORD, AZ 85546

Situs Address

Legal Quarter: NW S: 28 T: 19S R: 15W GOV LOT 2 (PT EHNWQ) 18.190 AC, NOTE: PROCESSED WITH RECOGNIZED DEED ERROR - CHAIN OF TITLE

Inquiry

As Of	02/1 5/2018	C
Payment Type	O First	
	• Full	
Total Due \$0.0	00	

Value

Area Id		Mill Levy
010_NR - 010_NR		20.8240000
	Actual	Assessed
MISC N/R LAND - 0081	72,760	24,253
Taxes		\$505.04

Page 1 of 1

Tax Account

Summary

400
ASSOCIATES
DILLO ST A 91724

Legal Quarter: SE S: 12 T: 19S R: 15W PT GOV LOTS 1, 6 LYING E OF NM HWY 90 R/W 5.786 AC

Inquiry

As Of	02/15/2018	
Payment T	ype O First	
	Second	
Taxes Due	\$11.04	
Total Due	\$11.04	

Value

Area Id		Mill Levy
010_NR - 010_NR	20.8240000	
	Actual	Assessed
MISC N/R LAND - 0081	3,182	1,061
Taxes		\$22.08

Summary

Account Id	R087488
Parcel Number	3084109396132
Owners	WOODWARD DAVID R WOODWARD JOAN M
Address	PO BOX 231 TYRONE, NM 88065
Situs Address	190 BALD MTN RANCH RD
Legal	Quarter: NW S: 06 T: 19S R: 14W GOV LOT 3 (NEQNWQ) GOV LOT 4 (NWQNWQ) GOV LOT 5 (SWQNWQ) SEQNWQ 165.600 AC, SELF GRAZED P066921

Inquiry

As Of	02/1 52018	
Payment Ty	/pe O First	
	• Full	
Total Due S	50.00	
Value		
		34:11

Area Id		Mill Levy
010_NR - 010_NR		20.8240000
	Actual	Assessed
GRAZING - ALL ONE CLASS - 0010	894	298
Taxes		\$6.20

Summary

Account Id	P065988
Parcel Number	L00363540508D154548
Owners	U BAR RANCH PARTNERSHIP
Address	PO BOX 10
	GILA, NM 88038
Situs Address	
Legal	

Inquiry

As Of	02/15/2018	D
Payment Type	O First	
	• Full	

Total Due \$0.00

Value

Area Id		Mill Levy
010_NR - 010_NR		20.8240000
	Actual	Assessed
CATTLE-COWS - 500	809,186	269,729
CATTLE-HEIFERS CALVES - 530	99,434	33,145
CATTLE-BULLS - 550	153,010	51,003
CATTLE-HEIFER (REPLACEMENT) - 551	122,464	40,821
CATTLE-REG. COWS - 560	210,092	70,031
CATTLE-REG. HEIFER CALVES - 580	33,040	11,013
CATTLE-REG.BULLS - 590	11,368	3,789
CATTLE-REG. HEIFER (REPLACEMENT) - :	591 41,244	13,748
HORSES-HORSES - 900	15,300	5,100
Total Value	1,495,138	498,379
Taxes		\$10,378.24
	Area Id	Taxes
Special Assessment	951 - CATTLE INDEMNITY	\$4,932.80
	Area Id	Taxes
Special Assessment	954 - EQUINE	\$35.52

Total Billed

\$15,346.56

Summary

Account Id	R087725
Parcel Number	3088109099033
Owners	PACIFIC WESTERN LAND COMPANY
Address	PO BOX 571
	TYRONE, NM 88065
Situs Address	

Legal Quarter: NE S: 04 T: 19S R: 15W GOV LOT 1 (NEQNEQ) PT GOV LOT 2 (NWQNEQ) 71.460 AC

Inquiry

As Of	02/1 5201 8	5
Payment Type	FirstFull	

Total Due \$0.00

Value

Special Assessment	Area Id MINTAX	Taxes \$0.00
	Area Id	Taxes
Special Assessment	ADMINFEE	\$2.32
Area Id		Mill Levy
010_NR - 010_NR		20.8240000
	Actual	Assessed
GRAZING - ALL ONE CLASS - 0010	386	129
Taxes		\$2.68
Original Taxes		\$5.00
Adjustments		\$0.00
Total Billed		\$5.00

October 21, 2020

Certified Mail #70150640000476266569 Return Receipt Requested

Dear Neighbor:

Freeport-McMoRan Tyrone Inc. announces its application to the New Mexico Environment Department for an air quality permit for the **modification** of its **mine** facility. The expected date of application submittal to the Air Quality Bureau is **October 30, 2020.**

The exact location for the facility known as, **Tyrone Mine** is at latitude 32 deg, 40 min, 34.5 sec and longitude -108 deg, 23 min, 35.8 sec. The approximate location of this facility is 4.5 miles southwest of **Tyrone, NM** in **Grant County.**

The proposed **significant revision** consists of updating emissions associated with new mine operating scenarios, updating emissions associated with reclamation activities, updating emissions associated with the crushing and screening plant, adding two new boilers, updating emissions associated with the currently permitted engines, and updating emissions associated with the currently permitted gasoline tanks in accordance with EPA's updated calculation methodologies.

The estimated maximum quantities of the **fugitive + stack** regulated air contaminants will be as follows in pound per hour (pph) and tons per year (tpy). These reported emissions could change slightly during the course of the Department's review:

Pollutant:	Pounds per hour	Tons per year
Particulate Matter (PM)	1,660 pph	4,660 tpy
PM 10	640 pph	1,350 tpy
PM 2.5	70 pph	140 tpy
Sulfur Dioxide (SO ₂)	30 pph	30 tpy
Nitrogen Oxides (NO _x)	860 pph	360 tpy
Carbon Monoxide (CO)	5,210 pph	3,260 tpy
Volatile Organic Compounds (VOC)	50 pph	70 tpy
Total sum of all Hazardous Air Pollutants (HAPs)	10 pph	20 tpy
Toxic Air Pollutant (TAP)	N/A	N/A
Green House Gas Emissions as Total CO2e	N/A	57,720 tpy

The standard and maximum operating schedule of the facility will be continuous: 24 hours a day for everything but blasting and the screening and crushing plant; 7 days a week; and 52 weeks per year.

The owner and/or operator of the Facility is:

If you have any comments about the construction or operation of this facility, and you want your comments to be made as part of the permit review process, you must submit your comments in writing to this address: Permit Programs Manager; New Mexico Environment Department; Air Quality Bureau; 525 Camino de los Marquez, Suite 1; Santa Fe, New Mexico; 87505-1816; (505) 476-4300; 1 800 224-7009; https://www.env.nm.gov/aqb/permit/aqb_draft_permits.html. Other comments and questions may be submitted verbally.

Please refer to the company name and facility name, or send a copy of this notice along with your comments, since the Department may have not yet received the permit application. Please include a legible return mailing address with your comments. Once the Department has performed a preliminary review of the application and its air quality impacts, the Department's notice will be published in the legal section of a newspaper circulated near the facility location.

Attención

Este es un aviso de la oficina de Calidad del Aire del Departamento del Medio Ambiente de Nuevo México, acerca de las emisiones producidas por un establecimiento en esta área. Si usted desea información en español, por favor comuníquese con esa oficina al teléfono 505-476-5557.

Sincerely,

Erich J. Bower President; General Manager Freeport-McMoRan Tyrone Inc.

20201021-100

Notice of Non-Discrimination

October 21, 2020

Certified Mail #70150640000476266576 Return Receipt Requested

Dear Neighbor:

Freeport-McMoRan Tyrone Inc. announces its application to the New Mexico Environment Department for an air quality permit for the **modification** of its **mine** facility. The expected date of application submittal to the Air Quality Bureau is **October 30, 2020.**

The exact location for the facility known as, **Tyrone Mine** is at latitude 32 deg, 40 min, 34.5 sec and longitude -108 deg, 23 min, 35.8 sec. The approximate location of this facility is 4.5 miles southwest of **Tyrone, NM** in **Grant County.**

The proposed **significant revision** consists of updating emissions associated with new mine operating scenarios, updating emissions associated with reclamation activities, updating emissions associated with the crushing and screening plant, adding two new boilers, updating emissions associated with the currently permitted engines, and updating emissions associated with the currently permitted gasoline tanks in accordance with EPA's updated calculation methodologies.

The estimated maximum quantities of the **fugitive** + **stack** regulated air contaminants will be as follows in pound per hour (pph) and tons per year (tpy). These reported emissions could change slightly during the course of the Department's review:

Pollutant:	Pounds per hour	Tons per year
Particulate Matter (PM)	1,660 pph	4,660 tpy
PM 10	640 pph	1,350 tpy
PM _{2.5}	70 pph	140 tpy
Sulfur Dioxide (SO ₂)	30 pph	30 tpy
Nitrogen Oxides (NO _x)	860 pph	360 tpy
Carbon Monoxide (CO)	5,210 pph	3,260 tpy
Volatile Organic Compounds (VOC)	50 pph	70 tpy
Total sum of all Hazardous Air Pollutants (HAPs)	10 pph	20 tpy
Toxic Air Pollutant (TAP)	N/A	N/A
Green House Gas Emissions as Total CO2e	N/A	57,720 tpy

The standard and maximum operating schedule of the facility will be continuous: 24 hours a day for everything but blasting and the screening and crushing plant; 7 days a week; and 52 weeks per year.

The owner and/or operator of the Facility is:

If you have any comments about the construction or operation of this facility, and you want your comments to be made as part of the permit review process, you must submit your comments in writing to this address: Permit Programs Manager; New Mexico Environment Department; Air Quality Bureau; 525 Camino de los Marquez, Suite 1; Santa Fe, New Mexico; 87505-1816; (505) 476-4300; 1 800 224-7009; https://www.env.nm.gov/aqb/permit/aqb_draft_permits.html. Other comments and questions may be submitted verbally.

Please refer to the company name and facility name, or send a copy of this notice along with your comments, since the Department may have not yet received the permit application. Please include a legible return mailing address with your comments. Once the Department has performed a preliminary review of the application and its air quality impacts, the Department's notice will be published in the legal section of a newspaper circulated near the facility location.

Attención

Este es un aviso de la oficina de Calidad del Aire del Departamento del Medio Ambiente de Nuevo México, acerca de las emisiones producidas por un establecimiento en esta área. Si usted desea información en español, por favor comuníquese con esa oficina al teléfono 505-476-5557.

Sincerely,

Erich J. Bower President; General Manager Freeport-McMoRan Tyrone Inc.

20201021-100

Notice of Non-Discrimination

October 21, 2020

Certified Mail #70150640000476266583 Return Receipt Requested

Dear Neighbor:

Freeport-McMoRan Tyrone Inc. announces its application to the New Mexico Environment Department for an air quality permit for the **modification** of its **mine** facility. The expected date of application submittal to the Air Quality Bureau is **October 30, 2020.**

The exact location for the facility known as, **Tyrone Mine** is at latitude 32 deg, 40 min, 34.5 sec and longitude -108 deg, 23 min, 35.8 sec. The approximate location of this facility is 4.5 miles southwest of **Tyrone**, **NM** in **Grant County**.

The proposed **significant revision** consists of updating emissions associated with new mine operating scenarios, updating emissions associated with reclamation activities, updating emissions associated with the crushing and screening plant, adding two new boilers, updating emissions associated with the currently permitted engines, and updating emissions associated with the currently permitted gasoline tanks in accordance with EPA's updated calculation methodologies.

The estimated maximum quantities of the **fugitive** + **stack** regulated air contaminants will be as follows in pound per hour (pph) and tons per year (tpy). These reported emissions could change slightly during the course of the Department's review:

Pollutant:	Pounds per hour	Tons per year
Particulate Matter (PM)	1,660 pph	4,660 tpy
PM 10	640 pph	1,350 tpy
PM 2.5	70 pph	140 tpy
Sulfur Dioxide (SO ₂)	30 pph	30 tpy
Nitrogen Oxides (NO _x)	860 pph	360 tpy
Carbon Monoxide (CO)	5,210 pph	3,260 tpy
Volatile Organic Compounds (VOC)	50 pph	70 tpy
Total sum of all Hazardous Air Pollutants (HAPs)	10 pph	20 tpy
Toxic Air Pollutant (TAP)	N/A	N/A
Green House Gas Emissions as Total CO2e	N/A	57,720 tpy

The standard and maximum operating schedule of the facility will be continuous: 24 hours a day for everything but blasting and the screening and crushing plant; 7 days a week; and 52 weeks per year.

The owner and/or operator of the Facility is:

If you have any comments about the construction or operation of this facility, and you want your comments to be made as part of the permit review process, you must submit your comments in writing to this address: Permit Programs Manager; New Mexico Environment Department; Air Quality Bureau; 525 Camino de los Marquez, Suite 1; Santa Fe, New Mexico; 87505-1816; (505) 476-4300; 1 800 224-7009; https://www.env.nm.gov/aqb/permit/aqb_draft_permits.html. Other comments and questions may be submitted verbally.

Please refer to the company name and facility name, or send a copy of this notice along with your comments, since the Department may have not yet received the permit application. Please include a legible return mailing address with your comments. Once the Department has performed a preliminary review of the application and its air quality impacts, the Department's notice will be published in the legal section of a newspaper circulated near the facility location.

Attención

Este es un aviso de la oficina de Calidad del Aire del Departamento del Medio Ambiente de Nuevo México, acerca de las emisiones producidas por un establecimiento en esta área. Si usted desea información en español, por favor comuníquese con esa oficina al teléfono 505-476-5557.

Sincerely,

Erich J. Bower President; General Manager Freeport-McMoRan Tyrone Inc.

20201021-100

Notice of Non-Discrimination

October 21, 2020

Certified Mail #70150640000476266590 Return Receipt Requested

Dear Neighbor:

Freeport-McMoRan Tyrone Inc. announces its application to the New Mexico Environment Department for an air quality permit for the **modification** of its **mine** facility. The expected date of application submittal to the Air Quality Bureau is **October 30, 2020.**

The exact location for the facility known as, **Tyrone Mine** is at latitude 32 deg, 40 min, 34.5 sec and longitude -108 deg, 23 min, 35.8 sec. The approximate location of this facility is 4.5 miles southwest of **Tyrone**, **NM** in **Grant County**.

The proposed **significant revision** consists of updating emissions associated with new mine operating scenarios, updating emissions associated with reclamation activities, updating emissions associated with the crushing and screening plant, adding two new boilers, updating emissions associated with the currently permitted engines, and updating emissions associated with the currently permitted gasoline tanks in accordance with EPA's updated calculation methodologies.

The estimated maximum quantities of the **fugitive** + **stack** regulated air contaminants will be as follows in pound per hour (pph) and tons per year (tpy). These reported emissions could change slightly during the course of the Department's review:

Pollutant:	Pounds per hour	Tons per year
Particulate Matter (PM)	1,660 pph	4,660 tpy
PM 10	640 pph	1,350 tpy
PM 2.5	70 pph	140 tpy
Sulfur Dioxide (SO ₂)	30 pph	30 tpy
Nitrogen Oxides (NO _x)	860 pph	360 tpy
Carbon Monoxide (CO)	5,210 pph	3,260 tpy
Volatile Organic Compounds (VOC)	50 pph	70 tpy
Total sum of all Hazardous Air Pollutants (HAPs)	10 pph	20 tpy
Toxic Air Pollutant (TAP)	N/A	N/A
Green House Gas Emissions as Total CO2e	N/A	57,720 tpy

The standard and maximum operating schedule of the facility will be continuous: 24 hours a day for everything but blasting and the screening and crushing plant; 7 days a week; and 52 weeks per year.

The owner and/or operator of the Facility is:

If you have any comments about the construction or operation of this facility, and you want your comments to be made as part of the permit review process, you must submit your comments in writing to this address: Permit Programs Manager; New Mexico Environment Department; Air Quality Bureau; 525 Camino de los Marquez, Suite 1; Santa Fe, New Mexico; 87505-1816; (505) 476-4300; 1 800 224-7009; https://www.env.nm.gov/aqb/permit/aqb_draft_permits.html. Other comments and questions may be submitted verbally.

Please refer to the company name and facility name, or send a copy of this notice along with your comments, since the Department may have not yet received the permit application. Please include a legible return mailing address with your comments. Once the Department has performed a preliminary review of the application and its air quality impacts, the Department's notice will be published in the legal section of a newspaper circulated near the facility location.

Attención

Este es un aviso de la oficina de Calidad del Aire del Departamento del Medio Ambiente de Nuevo México, acerca de las emisiones producidas por un establecimiento en esta área. Si usted desea información en español, por favor comuníquese con esa oficina al teléfono 505-476-5557.

Sincerely,

Erich J. Bower President; General Manager Freeport-McMoRan Tyrone Inc.

20201021-100

Notice of Non-Discrimination

October 21, 2020

Certified Mail #70150640000476266606 Return Receipt Requested

Dear Neighbor:

Freeport-McMoRan Tyrone Inc. announces its application to the New Mexico Environment Department for an air quality permit for the **modification** of its **mine** facility. The expected date of application submittal to the Air Quality Bureau is **October 30, 2020.**

The exact location for the facility known as, **Tyrone Mine** is at latitude 32 deg, 40 min, 34.5 sec and longitude -108 deg, 23 min, 35.8 sec. The approximate location of this facility is 4.5 miles southwest of **Tyrone**, **NM** in **Grant County**.

The proposed **significant revision** consists of updating emissions associated with new mine operating scenarios, updating emissions associated with reclamation activities, updating emissions associated with the crushing and screening plant, adding two new boilers, updating emissions associated with the currently permitted engines, and updating emissions associated with the currently permitted gasoline tanks in accordance with EPA's updated calculation methodologies.

The estimated maximum quantities of the **fugitive** + **stack** regulated air contaminants will be as follows in pound per hour (pph) and tons per year (tpy). These reported emissions could change slightly during the course of the Department's review:

Pounds per hour	Tons per year
1,660 pph	4,660 tpy
640 pph	1,350 tpy
70 pph	140 tpy
30 pph	30 tpy
860 pph	360 tpy
5,210 pph	3,260 tpy
50 pph	70 tpy
10 pph	20 tpy
N/A	N/A
N/A	57,720 tpy
	1,660 pph 640 pph 70 pph 30 pph 860 pph 5,210 pph 50 pph 10 pph N/A

The standard and maximum operating schedule of the facility will be continuous: 24 hours a day for everything but blasting and the screening and crushing plant; 7 days a week; and 52 weeks per year.

The owner and/or operator of the Facility is:

If you have any comments about the construction or operation of this facility, and you want your comments to be made as part of the permit review process, you must submit your comments in writing to this address: Permit Programs Manager; New Mexico Environment Department; Air Quality Bureau; 525 Camino de los Marquez, Suite 1; Santa Fe, New Mexico; 87505-1816; (505) 476-4300; 1 800 224-7009; https://www.env.nm.gov/aqb/permit/aqb_draft_permits.html. Other comments and questions may be submitted verbally.

Please refer to the company name and facility name, or send a copy of this notice along with your comments, since the Department may have not yet received the permit application. Please include a legible return mailing address with your comments. Once the Department has performed a preliminary review of the application and its air quality impacts, the Department's notice will be published in the legal section of a newspaper circulated near the facility location.

Attención

Este es un aviso de la oficina de Calidad del Aire del Departamento del Medio Ambiente de Nuevo México, acerca de las emisiones producidas por un establecimiento en esta área. Si usted desea información en español, por favor comuníquese con esa oficina al teléfono 505-476-5557.

Sincerely,

Erich J. Bower President; General Manager Freeport-McMoRan Tyrone Inc.

20201021-100

Notice of Non-Discrimination

October 21, 2020

Certified Mail #70150640000476266613 Return Receipt Requested

Dear Neighbor:

Freeport-McMoRan Tyrone Inc. announces its application to the New Mexico Environment Department for an air quality permit for the **modification** of its **mine** facility. The expected date of application submittal to the Air Quality Bureau is **October 30, 2020.**

The exact location for the facility known as, **Tyrone Mine** is at latitude 32 deg, 40 min, 34.5 sec and longitude -108 deg, 23 min, 35.8 sec. The approximate location of this facility is 4.5 miles southwest of **Tyrone, NM** in **Grant County.**

The proposed **significant revision** consists of updating emissions associated with new mine operating scenarios, updating emissions associated with reclamation activities, updating emissions associated with the crushing and screening plant, adding two new boilers, updating emissions associated with the currently permitted engines, and updating emissions associated with the currently permitted gasoline tanks in accordance with EPA's updated calculation methodologies.

The estimated maximum quantities of the **fugitive** + **stack** regulated air contaminants will be as follows in pound per hour (pph) and tons per year (tpy). These reported emissions could change slightly during the course of the Department's review:

Pollutant:	Pounds per hour	Tons per year
Particulate Matter (PM)	1,660 pph	4,660 tpy
PM 10	640 pph	1,350 tpy
PM 2.5	70 pph	140 tpy
Sulfur Dioxide (SO ₂)	30 pph	30 tpy
Nitrogen Oxides (NO _x)	860 pph	360 tpy
Carbon Monoxide (CO)	5,210 pph	3,260 tpy
Volatile Organic Compounds (VOC)	50 pph	70 tpy
Total sum of all Hazardous Air Pollutants (HAPs)	10 pph	20 tpy
Toxic Air Pollutant (TAP)	N/A	N/A
Green House Gas Emissions as Total CO2e	N/A	57,720 tpy

The standard and maximum operating schedule of the facility will be continuous: 24 hours a day for everything but blasting and the screening and crushing plant; 7 days a week; and 52 weeks per year.

The owner and/or operator of the Facility is:

If you have any comments about the construction or operation of this facility, and you want your comments to be made as part of the permit review process, you must submit your comments in writing to this address: Permit Programs Manager; New Mexico Environment Department; Air Quality Bureau; 525 Camino de los Marquez, Suite 1; Santa Fe, New Mexico; 87505-1816; (505) 476-4300; 1 800 224-7009; https://www.env.nm.gov/aqb/permit/aqb_draft_permits.html. Other comments and questions may be submitted verbally.

Please refer to the company name and facility name, or send a copy of this notice along with your comments, since the Department may have not yet received the permit application. Please include a legible return mailing address with your comments. Once the Department has performed a preliminary review of the application and its air quality impacts, the Department's notice will be published in the legal section of a newspaper circulated near the facility location.

Attención

Este es un aviso de la oficina de Calidad del Aire del Departamento del Medio Ambiente de Nuevo México, acerca de las emisiones producidas por un establecimiento en esta área. Si usted desea información en español, por favor comuníquese con esa oficina al teléfono 505-476-5557.

Sincerely,

Erich J. Bower President; General Manager Freeport-McMoRan Tyrone Inc.

20201021-100

Notice of Non-Discrimination

October 21, 2020

Certified Mail #70150640000476266620 Return Receipt Requested

Dear Neighbor:

Freeport-McMoRan Tyrone Inc. announces its application to the New Mexico Environment Department for an air quality permit for the **modification** of its **mine** facility. The expected date of application submittal to the Air Quality Bureau is **October 30, 2020.**

The exact location for the facility known as, **Tyrone Mine** is at latitude 32 deg, 40 min, 34.5 sec and longitude -108 deg, 23 min, 35.8 sec. The approximate location of this facility is 4.5 miles southwest of **Tyrone, NM** in **Grant County.**

The proposed **significant revision** consists of updating emissions associated with new mine operating scenarios, updating emissions associated with reclamation activities, updating emissions associated with the crushing and screening plant, adding two new boilers, updating emissions associated with the currently permitted engines, and updating emissions associated with the currently permitted gasoline tanks in accordance with EPA's updated calculation methodologies.

The estimated maximum quantities of the **fugitive** + **stack** regulated air contaminants will be as follows in pound per hour (pph) and tons per year (tpy). These reported emissions could change slightly during the course of the Department's review:

Pollutant:	Pounds per hour	Tons per year
Particulate Matter (PM)	1,660 pph	4,660 tpy
PM 10	640 pph	1,350 tpy
PM 2.5	70 pph	140 tpy
Sulfur Dioxide (SO ₂)	30 pph	30 tpy
Nitrogen Oxides (NO _x)	860 pph	360 tpy
Carbon Monoxide (CO)	5,210 pph	3,260 tpy
Volatile Organic Compounds (VOC)	50 pph	70 tpy
Total sum of all Hazardous Air Pollutants (HAPs)	10 pph	20 tpy
Toxic Air Pollutant (TAP)	N/A	N/A
Green House Gas Emissions as Total CO2e	N/A	57,720 tpy

The standard and maximum operating schedule of the facility will be continuous: 24 hours a day for everything but blasting and the screening and crushing plant; 7 days a week; and 52 weeks per year.

The owner and/or operator of the Facility is:

If you have any comments about the construction or operation of this facility, and you want your comments to be made as part of the permit review process, you must submit your comments in writing to this address: Permit Programs Manager; New Mexico Environment Department; Air Quality Bureau; 525 Camino de los Marquez, Suite 1; Santa Fe, New Mexico; 87505-1816; (505) 476-4300; 1 800 224-7009; https://www.env.nm.gov/aqb/permit/aqb_draft_permits.html. Other comments and questions may be submitted verbally.

Please refer to the company name and facility name, or send a copy of this notice along with your comments, since the Department may have not yet received the permit application. Please include a legible return mailing address with your comments. Once the Department has performed a preliminary review of the application and its air quality impacts, the Department's notice will be published in the legal section of a newspaper circulated near the facility location.

Attención

Este es un aviso de la oficina de Calidad del Aire del Departamento del Medio Ambiente de Nuevo México, acerca de las emisiones producidas por un establecimiento en esta área. Si usted desea información en español, por favor comuníquese con esa oficina al teléfono 505-476-5557.

Sincerely,

Erich J. Bower President; General Manager Freeport-McMoRan Tyrone Inc.

20201021-100

Notice of Non-Discrimination

October 21, 2020

Certified Mail #70150640000476266637 Return Receipt Requested

US Forest Service 3005 Camino de Bosque Silver City, NM 88061

To Whom It Concerns:

Freeport-McMoRan Tyrone Inc. announces its application to the New Mexico Environment Department for an air quality permit for the **modification** of its **mine** facility. The expected date of application submittal to the Air Quality Bureau is **October 30, 2020.**

The exact location for the facility known as, **Tyrone Mine** is at latitude 32 deg, 40 min, 34.5 sec and longitude -108 deg, 23 min, 35.8 sec. The approximate location of this facility is 4.5 miles southwest of **Tyrone, NM** in **Grant County.**

The proposed **significant revision** consists of updating emissions associated with new mine operating scenarios, updating emissions associated with reclamation activities, updating emissions associated with the crushing and screening plant, adding two new boilers, updating emissions associated with the currently permitted engines, and updating emissions associated with the currently permitted gasoline tanks in accordance with EPA's updated calculation methodologies.

The estimated maximum quantities of the **fugitive + stack** regulated air contaminants will be as follows in pound per hour (pph) and tons per year (tpy). These reported emissions could change slightly during the course of the Department's review:

Pollutant:	Pounds per hour	Tons per year
Particulate Matter (PM)	1,660 pph	4,660 tpy
PM 10	640 pph	1,350 tpy
PM 2.5	70 pph	140 tpy
Sulfur Dioxide (SO ₂)	30 pph	30 tpy
Nitrogen Oxides (NO _x)	860 pph	360 tpy
Carbon Monoxide (CO)	5,210 pph	3,260 tpy
Volatile Organic Compounds (VOC)	50 pph	70 tpy
Total sum of all Hazardous Air Pollutants (HAPs)	10 pph	20 tpy
Toxic Air Pollutant (TAP)	N/A	N/A
Green House Gas Emissions as Total CO2e	N/A	57,720 tpy

The standard and maximum operating schedule of the facility will be continuous: 24 hours a day for everything but blasting and the screening and crushing plant; 7 days a week; and 52 weeks per year.

The owner and/or operator of the Facility is:

Freeport-McMoRan Tyrone Inc. P.O. Box 571, Tyrone, NM 88065

If you have any comments about the construction or operation of this facility, and you want your comments to be made as part of the permit review process, you must submit your comments in writing to this address: Permit Programs Manager; New Mexico Environment Department; Air Quality Bureau; 525 Camino de los Marquez, Suite 1; Santa Fe, New Mexico; 87505-1816; (505) 476-4300; 1 800 224-7009; https://www.env.nm.gov/aqb/permit/aqb_draft_permits.html. Other comments and questions may be submitted verbally.

Please refer to the company name and facility name, or send a copy of this notice along with your comments, since the Department may have not yet received the permit application. Please include a legible return mailing address with your comments. Once the Department has performed a preliminary review of the application and its air quality impacts, the Department's notice will be published in the legal section of a newspaper circulated near the facility location.

Attención

Este es un aviso de la oficina de Calidad del Aire del Departamento del Medio Ambiente de Nuevo México, acerca de las emisiones producidas por un establecimiento en esta área. Si usted desea información en español, por favor comuníquese con esa oficina al teléfono 505-476-5557.

Sincerely,

Erich J. Bower President; General Manager Freeport-McMoRan Tyrone Inc.

20201021-100

Notice of Non-Discrimination

October 21, 2020

<u>Certified Mail #70150640000476266644</u> <u>Return Receipt Requested</u>

U Bar Ranch HCR 88061-Box 10199 Hwy 180 W. Silver City, NM 88061

To Whom It Concerns:

Freeport-McMoRan Tyrone Inc. announces its application to the New Mexico Environment Department for an air quality permit for the **modification** of its **mine** facility. The expected date of application submittal to the Air Quality Bureau is **October 30, 2020.**

The exact location for the facility known as, **Tyrone Mine** is at latitude 32 deg, 40 min, 34.5 sec and longitude -108 deg, 23 min, 35.8 sec. The approximate location of this facility is 4.5 miles southwest of **Tyrone**, **NM** in **Grant County**.

The proposed **significant revision** consists of updating emissions associated with new mine operating scenarios, updating emissions associated with reclamation activities, updating emissions associated with the crushing and screening plant, adding two new boilers, updating emissions associated with the currently permitted engines, and updating emissions associated with the currently permitted gasoline tanks in accordance with EPA's updated calculation methodologies.

The estimated maximum quantities of the **fugitive** + **stack** regulated air contaminants will be as follows in pound per hour (pph) and tons per year (tpy). These reported emissions could change slightly during the course of the Department's review:

Pollutant:	Pounds per hour	Tons per year
Particulate Matter (PM)	1,660 pph	4,660 tpy
PM 10	640 pph	1,350 tpy
PM 2.5	70 pph	140 tpy
Sulfur Dioxide (SO ₂)	30 pph	30 tpy
Nitrogen Oxides (NO _x)	860 pph	360 tpy
Carbon Monoxide (CO)	5,210 pph	3,260 tpy
Volatile Organic Compounds (VOC)	50 pph	70 tpy
Total sum of all Hazardous Air Pollutants (HAPs)	10 pph	20 tpy
Toxic Air Pollutant (TAP)	N/A	N/A
Green House Gas Emissions as Total CO2e	N/A	57,720 tpy

The standard and maximum operating schedule of the facility will be continuous: 24 hours a day for everything but blasting and the screening and crushing plant; 7 days a week; and 52 weeks per year.

October 21, 2020 Page 2

The owner and/or operator of the Facility is:

Freeport-McMoRan Tyrone Inc. P.O. Box 571, Tyrone, NM 88065

If you have any comments about the construction or operation of this facility, and you want your comments to be made as part of the permit review process, you must submit your comments in writing to this address: Permit Programs Manager; New Mexico Environment Department; Air Quality Bureau; 525 Camino de los Marquez, Suite 1; Santa Fe, New Mexico; 87505-1816; (505) 476-4300; 1 800 224-7009; https://www.env.nm.gov/aqb/permit/aqb_draft_permits.html. Other comments and questions may be submitted verbally.

Please refer to the company name and facility name, or send a copy of this notice along with your comments, since the Department may have not yet received the permit application. Please include a legible return mailing address with your comments. Once the Department has performed a preliminary review of the application and its air quality impacts, the Department's notice will be published in the legal section of a newspaper circulated near the facility location.

Attención

Este es un aviso de la oficina de Calidad del Aire del Departamento del Medio Ambiente de Nuevo México, acerca de las emisiones producidas por un establecimiento en esta área. Si usted desea información en español, por favor comuníquese con esa oficina al teléfono 505-476-5557.

Sincerely,

Erich J. Bower President; General Manager Freeport-McMoRan Tyrone Inc.

20201021-100

Notice of Non-Discrimination

NMED does not discriminate on the basis of race, color, national origin, disability, age or sex in the administration of its programs or activities, as required by applicable laws and regulations. NMED is responsible for coordination of compliance efforts and receipt of inquiries concerning non-discrimination requirements implemented by 40 C.F.R. Part 7, including Title VI of the Civil Rights Act of 1964, as amended; Section 504 of the Rehabilitation Act of 1973; the Age Discrimination Act of 1975, Title IX of the Education Amendments of 1972, and Section 13 of the Federal Water Pollution Control Act Amendments of 1972. If you have any questions about this notice or any of NMED's non-discrimination programs, policies or procedures, or if you believe that you have been discriminated against with respect to a NMED program or activity, you may contact: Kristine Yurdin, Non-Discrimination Coordinator, NMED, 1190 St. Francis Dr., Suite N4050, P.O. Box 5469, Santa Fe, NM 87502, (505) 827-2855, nd.coordinator@state.nm.us. You may also visit our website at https://www.env.nm.gov/non-employee-discrimination-complaint-page/ to learn how and where to file a complaint of discrimination.

Tyrone Operations P.O. Box 571 Tyrone, NM 88065

October 21, 2020

Certified Mail #70150640000476266651 Return Receipt Requested

Las Cruces District Office Bureau of Land Management 1800 Marquess Street Las Cruces, NM 88005

To Whom It Concerns:

Freeport-McMoRan Tyrone Inc. announces its application to the New Mexico Environment Department for an air quality permit for the **modification** of its **mine** facility. The expected date of application submittal to the Air Quality Bureau is **October 30, 2020.**

The exact location for the facility known as, **Tyrone Mine** is at latitude 32 deg, 40 min, 34.5 sec and longitude -108 deg, 23 min, 35.8 sec. The approximate location of this facility is 4.5 miles southwest of **Tyrone**, **NM** in **Grant County**.

The proposed **significant revision** consists of updating emissions associated with new mine operating scenarios, updating emissions associated with reclamation activities, updating emissions associated with the crushing and screening plant, adding two new boilers, updating emissions associated with the currently permitted engines, and updating emissions associated with the currently permitted gasoline tanks in accordance with EPA's updated calculation methodologies.

The estimated maximum quantities of the **fugitive** + **stack** regulated air contaminants will be as follows in pound per hour (pph) and tons per year (tpy). These reported emissions could change slightly during the course of the Department's review:

Pollutant:	Pounds per hour	Tons per year
Particulate Matter (PM)	1,660 pph	4,660 tpy
PM 10	640 pph	1,350 tpy
PM 2.5	70 pph	140 tpy
Sulfur Dioxide (SO ₂)	30 pph	30 tpy
Nitrogen Oxides (NO _x)	860 pph	360 tpy
Carbon Monoxide (CO)	5,210 pph	3,260 tpy
Volatile Organic Compounds (VOC)	50 pph	70 tpy
Total sum of all Hazardous Air Pollutants (HAPs)	10 pph	20 tpy
Toxic Air Pollutant (TAP)	N/A	N/A
Green House Gas Emissions as Total CO2e	N/A	57,720 tpy

The standard and maximum operating schedule of the facility will be continuous: 24 hours a day for everything but blasting and the screening and crushing plant; 7 days a week; and 52 weeks per year.

October 21, 2020 Page 2

The owner and/or operator of the Facility is:

Freeport-McMoRan Tyrone Inc. P.O. Box 571, Tyrone, NM 88065

If you have any comments about the construction or operation of this facility, and you want your comments to be made as part of the permit review process, you must submit your comments in writing to this address: Permit Programs Manager; New Mexico Environment Department; Air Quality Bureau; 525 Camino de los Marquez, Suite 1; Santa Fe, New Mexico; 87505-1816; (505) 476-4300; 1 800 224-7009; https://www.env.nm.gov/aqb/permit/aqb_draft_permits.html. Other comments and questions may be submitted verbally.

Please refer to the company name and facility name, or send a copy of this notice along with your comments, since the Department may have not yet received the permit application. Please include a legible return mailing address with your comments. Once the Department has performed a preliminary review of the application and its air quality impacts, the Department's notice will be published in the legal section of a newspaper circulated near the facility location.

Attención

Este es un aviso de la oficina de Calidad del Aire del Departamento del Medio Ambiente de Nuevo México, acerca de las emisiones producidas por un establecimiento en esta área. Si usted desea información en español, por favor comuníquese con esa oficina al teléfono 505-476-5557.

Sincerely,

Erich J. Bower President; General Manager Freeport-McMoRan Tyrone Inc.

20201021-100

Notice of Non-Discrimination

NMED does not discriminate on the basis of race, color, national origin, disability, age or sex in the administration of its programs or activities, as required by applicable laws and regulations. NMED is responsible for coordination of compliance efforts and receipt of inquiries concerning non-discrimination requirements implemented by 40 C.F.R. Part 7, including Title VI of the Civil Rights Act of 1964, as amended; Section 504 of the Rehabilitation Act of 1973; the Age Discrimination Act of 1975, Title IX of the Education Amendments of 1972, and Section 13 of the Federal Water Pollution Control Act Amendments of 1972. If you have any questions about this notice or any of NMED's non-discrimination programs, policies or procedures, or if you believe that you have been discriminated against with respect to a NMED program or activity, you may contact: Kristine Yurdin, Non-Discrimination Coordinator, NMED, 1190 St. Francis Dr., Suite N4050, P.O. Box 5469, Santa Fe, NM 87502, (505) 827-2855, nd.coordinator@state.nm.us. You may also visit our website at https://www.env.nm.gov/non-employee-discrimination-complaint-page/ to learn how and where to file a complaint of discrimination.

Tyrone Operations P.O. Box 571 Tyrone, NM 88065

October 21, 2020

Certified Mail #7015064000047626668 Return Receipt Requested

Pacific Western Land Company P.O. Box 571 Tyrone, NM 88065

To Whom It Concerns:

Freeport-McMoRan Tyrone Inc. announces its application to the New Mexico Environment Department for an air quality permit for the **modification** of its **mine** facility. The expected date of application submittal to the Air Quality Bureau is **October 30, 2020.**

The exact location for the facility known as, **Tyrone Mine** is at latitude 32 deg, 40 min, 34.5 sec and longitude -108 deg, 23 min, 35.8 sec. The approximate location of this facility is 4.5 miles southwest of **Tyrone, NM** in **Grant County.**

The proposed **significant revision** consists of updating emissions associated with new mine operating scenarios, updating emissions associated with reclamation activities, updating emissions associated with the crushing and screening plant, adding two new boilers, updating emissions associated with the currently permitted engines, and updating emissions associated with the currently permitted gasoline tanks in accordance with EPA's updated calculation methodologies.

The estimated maximum quantities of the **fugitive** + **stack** regulated air contaminants will be as follows in pound per hour (pph) and tons per year (tpy). These reported emissions could change slightly during the course of the Department's review:

Pollutant:	Pounds per hour	Tons per year
Particulate Matter (PM)	1,660 pph	4,660 tpy
PM 10	640 pph	1,350 tpy
PM 2.5	70 pph	140 tpy
Sulfur Dioxide (SO ₂)	30 pph	30 tpy
Nitrogen Oxides (NO _x)	860 pph	360 tpy
Carbon Monoxide (CO)	5,210 pph	3,260 tpy
Volatile Organic Compounds (VOC)	50 pph	70 tpy
Total sum of all Hazardous Air Pollutants (HAPs)	10 pph	20 tpy
Toxic Air Pollutant (TAP)	N/A	N/A
Green House Gas Emissions as Total CO2e	N/A	57,720 tpy

The standard and maximum operating schedule of the facility will be continuous: 24 hours a day for everything but blasting and the screening and crushing plant; 7 days a week; and 52 weeks per year.

October 21, 2020 Page 2

The owner and/or operator of the Facility is:

Freeport-McMoRan Tyrone Inc. P.O. Box 571, Tyrone, NM 88065

If you have any comments about the construction or operation of this facility, and you want your comments to be made as part of the permit review process, you must submit your comments in writing to this address: Permit Programs Manager; New Mexico Environment Department; Air Quality Bureau; 525 Camino de los Marquez, Suite 1; Santa Fe, New Mexico; 87505-1816; (505) 476-4300; 1 800 224-7009; https://www.env.nm.gov/aqb/permit/aqb_draft_permits.html. Other comments and questions may be submitted verbally.

Please refer to the company name and facility name, or send a copy of this notice along with your comments, since the Department may have not yet received the permit application. Please include a legible return mailing address with your comments. Once the Department has performed a preliminary review of the application and its air quality impacts, the Department's notice will be published in the legal section of a newspaper circulated near the facility location.

Attención

Este es un aviso de la oficina de Calidad del Aire del Departamento del Medio Ambiente de Nuevo México, acerca de las emisiones producidas por un establecimiento en esta área. Si usted desea información en español, por favor comuníquese con esa oficina al teléfono 505-476-5557.

Sincerely,

Erich J. Bower President; General Manager Freeport-McMoRan Tyrone Inc.

20201021-100

Notice of Non-Discrimination

NMED does not discriminate on the basis of race, color, national origin, disability, age or sex in the administration of its programs or activities, as required by applicable laws and regulations. NMED is responsible for coordination of compliance efforts and receipt of inquiries concerning non-discrimination requirements implemented by 40 C.F.R. Part 7, including Title VI of the Civil Rights Act of 1964, as amended; Section 504 of the Rehabilitation Act of 1973; the Age Discrimination Act of 1975, Title IX of the Education Amendments of 1972, and Section 13 of the Federal Water Pollution Control Act Amendments of 1972. If you have any questions about this notice or any of NMED's non-discrimination programs, policies or procedures, or if you believe that you have been discriminated against with respect to a NMED program or activity, you may contact: Kristine Yurdin, Non-Discrimination Coordinator, NMED, 1190 St. Francis Dr., Suite N4050, P.O. Box 5469, Santa Fe, NM 87502, (505) 827-2855, nd.coordinator@state.nm.us. You may also visit our website at https://www.env.nm.gov/non-employee-discrimination-complaint-page/ to learn how and where to file a complaint of discrimination.

Tyrone Operations P.O. Box 571 Tyrone, NM 88065

October 21, 2020

<u>Certified Mail #7015064000047626675</u> <u>Return Receipt Requested</u>

The Honorable Ken Ladner Mayor, Town of Silver City P.O. Box 1188 Silver City, NM 88062

Dear Mr. Ladner:

Freeport-McMoRan Tyrone Inc. announces its application to the New Mexico Environment Department for an air quality permit for the **modification** of its **mine** facility. The expected date of application submittal to the Air Quality Bureau is **October 30, 2020.**

The exact location for the facility known as, **Tyrone Mine** is at latitude 32 deg, 40 min, 34.5 sec and longitude -108 deg, 23 min, 35.8 sec. The approximate location of this facility is 4.5 miles southwest of **Tyrone, NM** in **Grant County.**

The proposed **significant revision** consists of updating emissions associated with new mine operating scenarios, updating emissions associated with reclamation activities, updating emissions associated with the crushing and screening plant, adding two new boilers, updating emissions associated with the currently permitted engines, and updating emissions associated with the currently permitted gasoline tanks in accordance with EPA's updated calculation methodologies.

The estimated maximum quantities of the **fugitive + stack** regulated air contaminants will be as follows in pound per hour (pph) and tons per year (tpy). These reported emissions could change slightly during the course of the Department's review:

Pollutant:	Pounds per hour	Tons per year
Particulate Matter (PM)	1,660 pph	4,660 tpy
PM 10	640 pph	1,350 tpy
PM 2.5	70 pph	140 tpy
Sulfur Dioxide (SO ₂)	30 pph	30 tpy
Nitrogen Oxides (NO _x)	860 pph	360 tpy
Carbon Monoxide (CO)	5,210 pph	3,260 tpy
Volatile Organic Compounds (VOC)	50 pph	70 tpy
Total sum of all Hazardous Air Pollutants (HAPs)	10 pph	20 tpy
Toxic Air Pollutant (TAP)	N/A	N/A
Green House Gas Emissions as Total CO2e	N/A	57,720 tpy

The standard and maximum operating schedule of the facility will be continuous: 24 hours a day for everything but blasting and the screening and crushing plant; 7 days a week; and 52 weeks per year.

October 21, 2020 Page 2

The owner and/or operator of the Facility is:

Freeport-McMoRan Tyrone Inc. P.O. Box 571, Tyrone, NM 88065

If you have any comments about the construction or operation of this facility, and you want your comments to be made as part of the permit review process, you must submit your comments in writing to this address: Permit Programs Manager; New Mexico Environment Department; Air Quality Bureau; 525 Camino de los Marquez, Suite 1; Santa Fe, New Mexico; 87505-1816; (505) 476-4300; 1 800 224-7009; https://www.env.nm.gov/aqb/permit/aqb_draft_permits.html. Other comments and questions may be submitted verbally.

Please refer to the company name and facility name, or send a copy of this notice along with your comments, since the Department may have not yet received the permit application. Please include a legible return mailing address with your comments. Once the Department has performed a preliminary review of the application and its air quality impacts, the Department's notice will be published in the legal section of a newspaper circulated near the facility location.

Attención

Este es un aviso de la oficina de Calidad del Aire del Departamento del Medio Ambiente de Nuevo México, acerca de las emisiones producidas por un establecimiento en esta área. Si usted desea información en español, por favor comuníquese con esa oficina al teléfono 505-476-5557.

Sincerely,

Erich J. Bower President; General Manager Freeport-McMoRan Tyrone Inc.

20201021-100

Notice of Non-Discrimination

NMED does not discriminate on the basis of race, color, national origin, disability, age or sex in the administration of its programs or activities, as required by applicable laws and regulations. NMED is responsible for coordination of compliance efforts and receipt of inquiries concerning non-discrimination requirements implemented by 40 C.F.R. Part 7, including Title VI of the Civil Rights Act of 1964, as amended; Section 504 of the Rehabilitation Act of 1973; the Age Discrimination Act of 1975, Title IX of the Education Amendments of 1972, and Section 13 of the Federal Water Pollution Control Act Amendments of 1972. If you have any questions about this notice or any of NMED's non-discrimination programs, policies or procedures, or if you believe that you have been discriminated against with respect to a NMED program or activity, you may contact: Kristine Yurdin, Non-Discrimination Coordinator, NMED, 1190 St. Francis Dr., Suite N4050, P.O. Box 5469, Santa Fe, NM 87502, (505) 827-2855, nd.coordinator@state.nm.us. You may also visit our website at https://www.env.nm.gov/non-employee-discrimination-complaint-page/ to learn how and where to file a complaint of discrimination.

Tyrone Operations P.O. Box 571 Tyrone, NM 88065

October 21, 2020

Certified Mail #7015064000047626682 Return Receipt Requested

Mr. Alex Brown Manager, Town of Silver City P.O. Box 1188 Silver City, NM 88062

Dear Mr. Brown:

Freeport-McMoRan Tyrone Inc. announces its application to the New Mexico Environment Department for an air quality permit for the **modification** of its **mine** facility. The expected date of application submittal to the Air Quality Bureau is **October 30, 2020.**

The exact location for the facility known as, **Tyrone Mine** is at latitude 32 deg, 40 min, 34.5 sec and longitude -108 deg, 23 min, 35.8 sec. The approximate location of this facility is 4.5 miles southwest of **Tyrone, NM** in **Grant County.**

The proposed **significant revision** consists of updating emissions associated with new mine operating scenarios, updating emissions associated with reclamation activities, updating emissions associated with the crushing and screening plant, adding two new boilers, updating emissions associated with the currently permitted engines, and updating emissions associated with the currently permitted gasoline tanks in accordance with EPA's updated calculation methodologies.

The estimated maximum quantities of the **fugitive** + **stack** regulated air contaminants will be as follows in pound per hour (pph) and tons per year (tpy). These reported emissions could change slightly during the course of the Department's review:

Pollutant:	Pounds per hour	Tons per year
Particulate Matter (PM)	1,660 pph	4,660 tpy
PM 10	640 pph	1,350 tpy
PM 2.5	70 pph	140 tpy
Sulfur Dioxide (SO ₂)	30 pph	30 tpy
Nitrogen Oxides (NO _x)	860 pph	360 tpy
Carbon Monoxide (CO)	5,210 pph	3,260 tpy
Volatile Organic Compounds (VOC)	50 pph	70 tpy
Total sum of all Hazardous Air Pollutants (HAPs)	10 pph	20 tpy
Toxic Air Pollutant (TAP)	N/A	N/A
Green House Gas Emissions as Total CO2e	N/A	57,720 tpy

The standard and maximum operating schedule of the facility will be continuous: 24 hours a day for everything but blasting and the screening and crushing plant; 7 days a week; and 52 weeks per year.

October 21, 2020 Page 2

The owner and/or operator of the Facility is:

Freeport-McMoRan Tyrone Inc. P.O. Box 571, Tyrone, NM 88065

If you have any comments about the construction or operation of this facility, and you want your comments to be made as part of the permit review process, you must submit your comments in writing to this address: Permit Programs Manager; New Mexico Environment Department; Air Quality Bureau; 525 Camino de los Marquez, Suite 1; Santa Fe, New Mexico; 87505-1816; (505) 476-4300; 1 800 224-7009; https://www.env.nm.gov/aqb/permit/aqb_draft_permits.html. Other comments and questions may be submitted verbally.

Please refer to the company name and facility name, or send a copy of this notice along with your comments, since the Department may have not yet received the permit application. Please include a legible return mailing address with your comments. Once the Department has performed a preliminary review of the application and its air quality impacts, the Department's notice will be published in the legal section of a newspaper circulated near the facility location.

Attención

Este es un aviso de la oficina de Calidad del Aire del Departamento del Medio Ambiente de Nuevo México, acerca de las emisiones producidas por un establecimiento en esta área. Si usted desea información en español, por favor comuníquese con esa oficina al teléfono 505-476-5557.

Sincerely,

Erich J. Bower President; General Manager Freeport-McMoRan Tyrone Inc.

20201021-100

Notice of Non-Discrimination

NMED does not discriminate on the basis of race, color, national origin, disability, age or sex in the administration of its programs or activities, as required by applicable laws and regulations. NMED is responsible for coordination of compliance efforts and receipt of inquiries concerning non-discrimination requirements implemented by 40 C.F.R. Part 7, including Title VI of the Civil Rights Act of 1964, as amended; Section 504 of the Rehabilitation Act of 1973; the Age Discrimination Act of 1975, Title IX of the Education Amendments of 1972, and Section 13 of the Federal Water Pollution Control Act Amendments of 1972. If you have any questions about this notice or any of NMED's non-discrimination programs, policies or procedures, or if you believe that you have been discriminated against with respect to a NMED program or activity, you may contact: Kristine Yurdin, Non-Discrimination Coordinator, NMED, 1190 St. Francis Dr., Suite N4050, P.O. Box 5469, Santa Fe, NM 87502, (505) 827-2855, nd.coordinator@state.nm.us. You may also visit our website at https://www.env.nm.gov/non-employee-discrimination-complaint-page/ to learn how and where to file a complaint of discrimination.

Tyrone Operations P.O. Box 571 Tyrone, NM 88065

October 21, 2020

Certified Mail #7015064000047626699 Return Receipt Requested

Ms. Charlene Webb Manager, County of Grant P.O. Box 898 Silver City, NM 88062

Dear Ms. Webb:

Freeport-McMoRan Tyrone Inc. announces its application to the New Mexico Environment Department for an air quality permit for the **modification** of its **mine** facility. The expected date of application submittal to the Air Quality Bureau is **October 30, 2020.**

The exact location for the facility known as, **Tyrone Mine** is at latitude 32 deg, 40 min, 34.5 sec and longitude -108 deg, 23 min, 35.8 sec. The approximate location of this facility is 4.5 miles southwest of **Tyrone, NM** in **Grant County.**

The proposed **significant revision** consists of updating emissions associated with new mine operating scenarios, updating emissions associated with reclamation activities, updating emissions associated with the crushing and screening plant, adding two new boilers, updating emissions associated with the currently permitted engines, and updating emissions associated with the currently permitted gasoline tanks in accordance with EPA's updated calculation methodologies.

The estimated maximum quantities of the **fugitive** + **stack** regulated air contaminants will be as follows in pound per hour (pph) and tons per year (tpy). These reported emissions could change slightly during the course of the Department's review:

Pollutant:	Pounds per hour	Tons per year
Particulate Matter (PM)	1,660 pph	4,660 tpy
PM 10	640 pph	1,350 tpy
PM 2.5	70 pph	140 tpy
Sulfur Dioxide (SO ₂)	30 pph	30 tpy
Nitrogen Oxides (NO _x)	860 pph	360 tpy
Carbon Monoxide (CO)	5,210 pph	3,260 tpy
Volatile Organic Compounds (VOC)	50 pph	70 tpy
Total sum of all Hazardous Air Pollutants (HAPs)	10 pph	20 tpy
Toxic Air Pollutant (TAP)	N/A	N/A
Green House Gas Emissions as Total CO2e	N/A	57,720 tpy

The standard and maximum operating schedule of the facility will be continuous: 24 hours a day for everything but blasting and the screening and crushing plant; 7 days a week; and 52 weeks per year.

October 21, 2020 Page 2

The owner and/or operator of the Facility is:

Freeport-McMoRan Tyrone Inc. P.O. Box 571, Tyrone, NM 88065

If you have any comments about the construction or operation of this facility, and you want your comments to be made as part of the permit review process, you must submit your comments in writing to this address: Permit Programs Manager; New Mexico Environment Department; Air Quality Bureau; 525 Camino de los Marquez, Suite 1; Santa Fe, New Mexico; 87505-1816; (505) 476-4300; 1 800 224-7009; https://www.env.nm.gov/aqb/permit/aqb_draft_permits.html. Other comments and questions may be submitted verbally.

Please refer to the company name and facility name, or send a copy of this notice along with your comments, since the Department may have not yet received the permit application. Please include a legible return mailing address with your comments. Once the Department has performed a preliminary review of the application and its air quality impacts, the Department's notice will be published in the legal section of a newspaper circulated near the facility location.

Attención

Este es un aviso de la oficina de Calidad del Aire del Departamento del Medio Ambiente de Nuevo México, acerca de las emisiones producidas por un establecimiento en esta área. Si usted desea información en español, por favor comuníquese con esa oficina al teléfono 505-476-5557.

Sincerely,

Erich J. Bower President; General Manager Freeport-McMoRan Tyrone Inc.

20201021-100

Notice of Non-Discrimination

NMED does not discriminate on the basis of race, color, national origin, disability, age or sex in the administration of its programs or activities, as required by applicable laws and regulations. NMED is responsible for coordination of compliance efforts and receipt of inquiries concerning non-discrimination requirements implemented by 40 C.F.R. Part 7, including Title VI of the Civil Rights Act of 1964, as amended; Section 504 of the Rehabilitation Act of 1973; the Age Discrimination Act of 1975, Title IX of the Education Amendments of 1972, and Section 13 of the Federal Water Pollution Control Act Amendments of 1972. If you have any questions about this notice or any of NMED's non-discrimination programs, policies or procedures, or if you believe that you have been discriminated against with respect to a NMED program or activity, you may contact: Kristine Yurdin, Non-Discrimination Coordinator, NMED, 1190 St. Francis Dr., Suite N4050, P.O. Box 5469, Santa Fe, NM 87502, (505) 827-2855, nd.coordinator@state.nm.us. You may also visit our website at https://www.env.nm.gov/non-employee-discrimination-complaint-page/ to learn how and where to file a complaint of discrimination.

General Posting of Notices – Certification

I, <u>Erich J. Bower</u>, the undersigned, certify that on October 21, 2020, posted a true and correct copy of the attached Public Notice in the following publicly accessible and conspicuous places in the towns of Tyrone and Silver City in Grant County, State of New Mexico on the following dates:

- 1. Tyrone Property Boundary; October 21, 2020
- 2. Tyrone Security Gate; October 21, 2020
- 3. Tyrone Post Office/Community Center; October 21, 2020
- 4. Silver City Public Library; October 21, 2020
- 5. Grant County Administration Building; October 21, 2020

Signed this <u>21</u> day of <u>October 2020</u>

Signature

10/21/2020

Date

Erich J. Bower Printed Name

President; General Manager, Freeport-McMoRan Tyrone Inc. Title {APPLICANT OR RELATIONSHIP TO APPLICANT}

NOTICE

Freeport-McMoRan Tyrone Inc. announces its application to the New Mexico Environment Department for an air quality permit for the modification of its mine facility. The expected date of application submittal to the Air Quality Bureau is October 30, 2020.

The exact location for the facility known as, Tyrone Mine is at latitude 32 deg, 40 min, 34.5 sec and longitude -108 deg, 23 min, 35.8 sec. The approximate location of this facility is 4.5 miles southwest of Tyrone, NM in Grant County.

The proposed significant revision consists of updating emissions associated with new mine operating scenarios, updating emissions associated with reclamation activities, updating emissions associated with the crushing and screening plant, adding two new boilers, updating emissions associated with the currently permitted engines, and updating emissions associated with the currently permitted gasoline tanks in accordance with EPA's updated calculation methodologies.

The estimated maximum quantities of the fugitive + stack regulated air contaminants will be as follows in pound per hour (pph) and tons per year (tpy). These reported emissions could change slightly during the course of the Department's review.

Pollutant:	Pounds per hour	Tons per year
Particulate Matter (PM)	1,660 pph	4,660 tpy
PM 10	640 pph	1,350 tpy
PM 2.5	70 pph	140 tpy
Sulfur Dioxide (SO2)	30 pph	30 tpy
Nitrogen Oxides (NOx)	860 pph	360 tpy
Carbon Monoxide (CO)	5,210 pph	3,260 tpy
Volatile Organic Compounds (VOC)	50 pph	70 tpy
Total sum of all Hazardous Air Pollutants (HAPs)	10 pph	20 tpy
Toxic Air Pollutant (TAP)	N/A	N/A
Green House Gas Emissions as Total CO2e	N/A	57,720 tpy

The standard and maximum operating schedule of the facility will be continuous: 24 hours a day for everything but blasting and the screening and crushing plant; 7 days a week; and 52 weeks per year.

The owner and/or operator of the Facility is:

Freeport-McMoRan Tyrone Inc. P.O. Box 571, Tyrone, NM 88065

If you have any comments about the construction or operation of this facility, and you want your comments to be made as part of the permit If you have any comments about the construction or operation of unit activity, and you many four construction of operation of unit activity, and you many four construction of the process, you must submit your comments in writing to this address: Permit Programs Manager, New Mexico Environment Department; Air Quality Bureau; 525 Camino de los Marquez, Suite 1; Santa Fe, New Mexico; 87505-1816; (505) 476-4300; 1 800 224-7009; ww.env.nm.gov/aqb/permit/aqb_draft_permits.html. Other comments and questions may be submitted verbally.

With your comments, please refer to the company name and facility name, or send a copy of this notice along with your comments. This with your commens, prease retrie to be company time and neurly name, or such a boot a too include a legible return mailing information is necessary since the Department may have not yet received the permit application. Please include a legible return mailing address. Once the Department has completed its preliminary review of the application and its air quality impacts, the Department's notice will be published in the legal section of a newspaper circulated near the facility location.

Attención

ano en esta área. Si usted desea información en español, por favor comuniquese con esa oficina al teléfono 505-476-5557. ste es un aviso de la oficina de Calidad del Aire del Departamento del Medio Ambiente de Nuevo México, acerca de las emision un estable

Notice of Non-Discrimination NMED does not discriminate on the basis of race, color, national origin, disability, age or sex in the administration of its programs or activities as required to be a set of the set of the

Public Notice Posted at the Tyrone Property Boundary

NOTICE

Freeport-McMoRan Tyrane Inc. announces its application to the New Mexico Environment Department for an air quality permit for the modification of its mine facility. The expected date of application submittal to the Air Quality Bureau is October 30, 2020.

The exact location for the facility known as, Tyrone Mine is at latitude 32 deg, 40 min, 34.5 sec and longitude -108 deg, 23 min, 35.8 sec. The approximate location of this facility is 4.5 miles southwest of Tyrone, NM in Grant County.

The proposed significant revision consists of updating emissions associated with new mine operating scenarios, updating emissions associated with reclamation activities, updating emissions associated with the curshing and screening plant, adding two new boilers, updating emissions associated with the currently permitted engines, and updating emissions associated with the currently permitted gasoline tanks in accordance with EPA's updated calculation methodologies.

The estimated maximum quantities of the fugitive + stack regulated air contaminants will be as follows in pound per hour (pph) and tons per year (tpy). These reported emissions could change slightly during the course of the Department's review:

Pollutant:	Pounds per hour	Tons per year
Particulate Matter (PM)	1,660 pph	4,660 tpy
PM 10	640 pph	1,350 tpy
PM 23	70 pph	140 tpy
Sulfur Dioxide (SO2)	30 pph	30 tpy
Nitrogen Oxides (NO ₄)	860 pph	360 tpy
Carbon Monoxide (CO)	5,210 pph	3,260 tpy
Volatile Organic Compounds (VOC)	50 pph	70 tpy
Total sum of all Hazardous Air Pollutants (HAPs)	10 pph	20 tpy
Toxic Air Pollutant (TAP)	N/A	N/A
Green House Gas Emissions as Total CO2e	N/A	57,720 tpy

The standard and maximum operating schedule of the facility will be continuous: 24 hours a day for everything but blasting and the screening and crushing plant; 7 days a week; and 52 weeks per year.

The owner and/or operator of the Facility is:

Freeport-McMoRan Tyrone Inc. P.O. Box 571, Tyrone, NM 88065

If you have any comments about the construction or operation of this facility, and you want your comments to be made as part of the permit review process, you must submit your comments in writing to this address: Permit Programs Manager, New Mexico Environment Department; Air Quality Bureau, 525 Camino de los Marquez, Suite 1; Santa Fe, New Mexico; 87505-1816; (505) 476-4300; 1 800 224-7009; https://www.env.um.gov.adb/permit/adb_draft_permits.html. Other comments and questions may be submitted verbally.

With your comments, please refer to the company name and facility name, or send a copy of this notice along with your comments. This information is necessary since the Department may have not yet received the permit application. Please include a legible return mailing address. Once the Department has completed its preliminary review of the application and its air quality impacts, the Department's notice will be published in the legal section of a newspaper circulated near the facility location.

Attención

Este es un aviso de la oficina de Calidad del Aire del Departamento del Medio Ambiente de Nuevo México, acerca de las emisiones producidas por un establecimiento en esta área. Si usted desea información en español, por favor comuniquese con esa oficina al teléfono 505-476-5557.

Notice of Non-Discrimination

NMED does not discriminate on the basis of race, color, national origin, disability, age or sex in the administration of its programs or activities, as required by applicable laws and regulations. NMED is responsible for coordination of compliance efforts and receipt of inquiries concerning non-discrimination requirements implemented by 40 C.F.R. Part 7, including Title VI of the Civil Rights Act of 1964, as amended, Section 504 of the Rehabilitation Act of 1973, the Age Discrimination Act of 1975, Title IX of the Education Amendments of 1972, and Section 13 of the Federal Water Pollution Control Act Amendments of 1972. If you have any questions about this notice or any of NMED's non-discrimination programs, pollicies or procedures, or if you believe that you have been discriminated against with respect to a NMED program or activity, you may contact: Knstime Yurdin, Non-Discrimination Coordinator, NMED, 1190 St. Francis Dr., Suite N4050, P.O. Box 5469, Santa Fe, NM 87502, (505) 827-2855, nd.coordinator@state.nm.us. You may also visit our website at https://www.env.nm.gov/non-employee-discrimination inti-page' to learn how and where to file a complaint of discrimination.

Public Notice Posted at the Tyrone Security Gate

NOTICE

Freeport-McMoRan Tyrone Inc. announces its application to the New Mexico Environment Department for an air quality permit for the modification of its mine facility. The expected date of application submittal to the Air Quality Bureau is October 30, 2020.

The exact location for the facility known as, Tyrone Mine is at latitude 32 deg, 40 min, 34.5 sec and longitude -108 deg, 23 min, 35.8 sec. The approximate location of this facility is 4.5 miles southwest of Tyrone, NM in Grant County.

The proposed significant revision consists of updating emissions associated with new mine operating scenarios, updating emissions associated with reclamation activities, updating emissions associated with the crushing and screening plant, adding two new boilers, updating emissions associated with the currently permitted engines, and updating emissions associated with the currently permitted gasoline tanks in accordance with EPA's updated calculation methodologies.

The estimated maximum quantities of the fugitive + stack regulated air contaminants will be as follows in pound per hour (pph) and tons per year (tpy). These reported emissions could change slightly during the course of the Department's review:

Pollutant:	Pounds per hour	Tons per year	
Particulate Matter (PM)	1,660 pph	4,660 tpy	
PM 10	640 pph	1,350 tpy	
PM 2.5	70 pph	140 tpy	
Sulfur Dioxide (SO ₂)	30 pph	30 tpy	
Nitrogen Oxides (NO _x)	860 pph	360 tpy	
Carbon Monoxide (CO)	5,210 pph	3,260 tpy	
Volatile Organic Compounds (VOC)	50 pph	70 tpy	
Total sum of all Hazardous Air Pollutants (HAPs)	10 pph	20 tpy	
Toxic Air Pollutant (TAP)	N/A	N/A	
Green House Gas Emissions as Total CO2e	N/A	57,720 tpy	

The standard and maximum operating schedule of the facility will be continuous: 24 hours a day for everything but blasting and the screening and crushing plant; 7 days a week; and 52 weeks per year.

The owner and/or operator of the Facility is:

Freeport-McMoRan Tyrone Inc. P.O. Box 571, Tyrone, NM 88065

If you have any comments about the construction or operation of this facility, and you want your comments to be made as part of the permit review process, you must submit your comments in writing to this address: Permit Programs Manager; New Mexico Environment Department; Air Quality Bureau; 525 Camino de los Marquez, Suite 1; Santa Fe, New Mexico; 87505-1816; (505) 476-4300; 1 800 224-7009; https://www.env.nm.gov/agb/permit/agb_drafi_permits.html. Other comments and questions may be submitted verbally.

With your comments, please refer to the company name and facility name, or send a copy of this notice along with your comments. This information is necessary since the Department may have not yet received the permit application. Please include a legible return mailing address. Once the Department has completed its preliminary review of the application and its air quality impacts, the Department's notice will be published in the legal section of a newspaper circulated near the facility location.

Attención

Este es un aviso de la oficina de Calidad del Aire del Departamento del Medio Ambiente de Nuevo México, acerca de las emisiones producidas por un establecimiento en esta área. Si usted desca información en español, por favor comuníquese con esa oficina al teléfono 505-476-5557.

Notice of Non-Discrimination

NMED does not discriminate on the basis of race, color, national origin, disability, age or sex in the administration of its programs or activities, as required by applicable laws and regulations. NMED is responsible for coordination of compliance efforts and receipt of inquiries concerning non-discrimination requirements implemented by 40 C.F.R. Part 7, including Title VI of the Civil Rights Act of 1964, as amended; Section 504 of the Rehabilitation Act of 1973; the Age Discrimination Act of 1975, Title IX of the Education Amendments of 1972, and Section 13 of the Federal Water Pollution Control Act Amendments of 1972. If you have any questions about this notice or any of NMED's non-discrimination programs, policies or procedures, or if you believe that you have been discriminated against with respect to a NMED program or activity, you may contact: Kristine Yurdin, Non-Discrimination Coordinator, NMED, 1190 St. Francis Dr., Suite N4050, P.O. Box 5469, Santa Fe, NM 87502, (505) 827-2855, nd coordinator@state.nm.us. You may also visit our website at https://www.env.m.gov/non-employee-discrimination-complaint-page/ to learn how and where to file a complaint of discrimination.

Public Notice Posted at the Tyrone Post Office/Community Center

and the second second

OTICE

Freeport-McMoRan Tyrone Inc. announces its application to the New Mexico Environment Department for an air quality permit for the modification of its mine facility. The expected date of application submittal to the Air Quality Bureau is October 30, 2020.

The exact location for the facility known as, Tyrone Mine is at latitude 32 deg, 40 min, 34.5 sec and longitude -108 deg, 23 min, 35.8 sec. The approximate location of this facility is 4.5 miles southwest of Tyrone, NM in Grant County.

The proposed significant revision consists of updating emissions associated with new mine operating scenarios, updating emissions associated with reclamation activities, updating emissions associated with the crushing and screening plant, adding two new boilers, updating emissions associated with the currently permitted engines, and updating emissions associated with the currently permitted gasoline tanks in accordance with EPA's updated calculation methodologies.

The estimated maximum quantities of the fugitive + stack regulated air contaminants will be as follows in pound per hour (pph) and tons per year (tpy). These reported emissions could change slightly during the course of the Department's review:

Pollutant:	Pounds per hour	Tons per year
Particulate Matter (PM)	1,660 pph	4,660 tpy
PM 10	640 pph	1,350 tpy
PM 2.5	70 pph	140 tpy
Sulfur Dioxide (SO ₂)	30 pph	30 tpy
Nitrogen Oxides (NOx)	860 pph	360 tpy
Carbon Monoxide (CO)	5,210 pph	3,260 tpy
Volatile Organic Compounds (VOC)	50 pph	70 tpy
Total sum of all Hazardous Air Pollutants (HAPs)	10 pph	20 tpy
Toxic Air Pollutant (TAP)	N/A	N/A
Green House Gas Emissions as Total CO ₂ e	N/A	57,720 tpy

The standard and maximum operating schedule of the facility will be continuous: 24 hours a day for everything but blasting and the screening and crushing plant; 7 days a week; and 52 weeks per year.

The owner and/or operator of the Facility is:

Freeport-McMoRan Tyrone Inc. P.O. Box 571, Tyrone, NM 88065

nent Department; https://www.env.nm.gov/aqb/permit/aqb_draft_permits.html. Other comments and questions may be submitted verbally.

With your comments, please refer to the company name and facility name, or send a copy of this notice along with your comments. This information is necessary since the Department may have not yet received the permit application. Please include a legible return mailing address. Once the Department has completed its preliminary review of the application and its air quality impacts, the Department's notice will be published in the legal section of a newspaper circulated near the facility location.

Este es un aviso de la oficina de Calidad del Aire del Departamento del Medio Ambiente de Nuevo México, acerca de las emisiones producid por un establecimiento en esta área. Si usted desea información en español, por favor comuníquese con esa oficina al teléfono 505-476-5557.

Notice of Non-Discrimination NMED does not discriminate on the basis of race, color, national origin, disability, age or sex in the administration of its programs or activities, as required by applicable laws and regulations. NMED is responsible for coordination of compliance efforts and receipt of inquiries concerning on-discrimination requirements implemented by 40 C.F.R. Part 7, including Title VI of the Civil Rights Act of 1964, as amended; Section 504 of the Rehabilitation Act of 1973; the Age Discrimination Act of 1975, Title IX of the Education Amendments of 1972, and Section 13 of the Federal Water Pollution Control Act Amendments of 1972. If you have any questions about this notice or any of NMED's non-discrimination programs, policies or procedures, or if you believe that you have been discriminated against with respect to a NMED program or activity, you may contact: Kristine Yurdin, Non-Discrimination Coordinator, NMED, 1190 St. Francis Dr., Suite N4050, P.O. Box 5469, Santa Fe, NM 87502, (505) 827-2855, nd.coordinator@state.numus. You may also visit our website at https://www.env.nm.gov/non-employee-discrimination complaint-page/ to learn how and where to file a complaint of discrimination.

Public Notice Posted at the Silver City Public Library

10/21/2020

producidas

OTICF

sort-McMoRan Tyrone Inc. announces its application to the New Mexico Environment Department for an air quality permit for the Ication of its mine facility. The expected date of application submittal to the Air Quality Bureau is October 30, 2020.

et location for the facility known as. Tyrone Mine is at latitude 32 deg, 40 min, 34.5 sec and longitude -108 deg, 23 min, 35.8 sec. reximate location of this facility is 4.5 miles southwest of Tyrone, NM in Grant County.

ed significant revision consists of updating emissions associated with new mine operating scenarios, updating emissions as ation activities, updating emissions associated with the crushing and screening plant, adding two new boilers, updating emis-tic the currently permitted engines, and updating emissions associated with the currently permitted gasoline tanks in accom-

The estimated maximum quantities of the fugitive + stack regulated air contaminants will be as follows in pound per hour (pph) and tons per year (tpy). These reported emissions could change slightly during the course of the Department's review:

Pollutant:	Pounds per hour	Tons per year
Particulate Matter (PM)	1,660 ppb	4,660 tpy
Philip	640 pph	1.350 tpy
PMps	70 pph	140 tpv
Sulfur Dioxide (802)	30 ppb	30 tpy
Nitrogen Oxides (NOx)	860 pph	360 ms
Carbon Monoxide (CO)	5,210 pph	
Velatile Organic Compounds (VOC)	50 ppb	70 tpv
Total sum of all Hazardous Air Pollutants (HAPs)		20 tov
Toxic Air Pollutant (TAP)	N/A	N/A
Green House Gas Emissions as Total CO2e	N/A	57,720 tpy

creeping and crushing plant; 7 days a week; and 52 weeks per year.

output and/or operator of the Faultury of

Please include a legible return mailing

n or un avisa de la ofician de Calidad del Ante del Departamento del Mestia. Ambiente de Nuevo México, acerca de las emisiones produc Europsi descimento e o usta área. Si usted deses información en español, por tava, comuniquese con esa oficina al taléfono 505-476-5557

ACC leve not discriminate on the basis of rece, color, national origin, disability, age or sex in the administration of its programs or activities where the applicable laws and regulations, NMED is responsible for coordination of compliance efforts and not negligible for eventiation of the Civil Right Act of 1964, as mended; Section 51 of the list of the factor requirements implemented by 40 C.F.R. Part 7, including Title VI of the Civil Right Act of 1964, as mended; Section 53 of the list of the factor of 4973; the Age Discrimination Act of 1975, Title TX of the Education Actendations of 1972, and Section 13 of the list of the Pollution Control Act Amendments of 1972. If you have any questions about this notice or any of NED 1 non-discrimination control to policies or procedures, or if you believe that you have been discriminated against with respect to a NED program or activity you contact. Kristing Yordin, You-Discrimination Coordinator, NMED, 1190 St. Francis Dr., State N4050, P.O. Britt 5469, Sama Fe, NM 02, (305) S27-2855. In a cordinator@state.ma.us. You may also visit our website at https://www.exyam.govinen-employee-discrimination primati-page/ to learn hew and where to file a complaint of discrimination. as amended; Section Stid 37502, (305) 827-2855 Advourd

Public Notice Posted at the Grant County Administration Building

PFLAG awards two scholarships

PFLAG Silver City has announced two recipients of the Nancy Kailing Memorial Scholarship at Western New Mexico University – Lisa Origlio and Hannah Cothran.

Origlio, a graduate student seeking a master's in social work, is from Brighton, Colo. Upon accepting the scholarship, Origlio said, "As a school social worker, I will work with family members and teachers to show them that bringing the LGBTQ+ community to children's attention is not harmful, and can create welcoming environments and self-acceptance."

Cothran, a graduate student working on a master's in special education, plus an endorsement in TESOL, lives in Albuquerque. "A quote I love is, 'To plant a garden is to believe in tomorrow. 'I'm a special education teacher, and I believe so strongly in growth! I always feel that I am helping a beautiful garden of learners

LISA ORIGLIO grow," Cothran said when she

learned she was selected. The Nancy Kailing Me-

to WNMU students who have demonstrated work toward securing equality for lesbian, gay, bisexual, and transgender people, according to a news release. Kailing was the founder of PFLAG Fairbanks, Alaska, and a former president

HANNAH COTHRAN

of PFLAG Silver City. She was a public school teacher and a fierce advocate for LGBTQ+ people. Founded in 1973 after the

Founded in 1973 after the simple act of a mother publicly supporting her gay son, PFLAG is the nation's largest family and ally organization, the release stated.

For more information, call PFLAG Silver City at 590-8797 or go to pflagsilver.org.

Tyrone Inc. announces its application to the New Mexico En

Freeport-McMoRan Tyrone Inc. announces its application to the New Mexico Environment Department for an air quality permit for the modification of its mine facility. The expected date of application submittal to the Air Quality Bureau is October 30, 2020.

The exact location for the facility known as, **Tyrone Mine** is at latitude **32** deg, **40** min, **34.5** sec and longitude **-108** deg, **23** min, **35.8** sec. The approximate location of this facility is **4.5** miles **southwest** of **Tyrone**, **NM** in **Grant County**.

The proposed **significant revision** consists of updating emissions associated with new mine operating scenarios, updating emissions associated with reclamation activities, updating emissions associated with the crushing and screening plant, adding two new boilers, updating emissions associated with the currently permitted engines, and updating emissions associated with the currently permitted gasoline tanks in accordance with EPA's updated calculation methodologies.

The estimated maximum quantities of the **fugitive + stack** regulated air contaminants will be as follows in pound per hour (pph) and tons per year (tpy). These reported emissions could change slightly during the course of the Department's review:

Pollutant:	Pounds per hour	Tons per year
Particulate Matter (PM)	1,660 pph	4,660 tpy
PM 10	640 pph	1,350 tpy
PM 25	70 pph	140 tpy
Sulfur Dioxide (SO,)	30 pph	30 tpy
Nitrogen Oxides (NO.)	860 pph	360 tpy
Carbon Monoxide (CO)	5,210 pph	3,260 tpy
Volatile Organic Compounds (VOC)	50 pph	70 tpy
Total sum of all Hazardous Air Pollutants (HAPs)	10 pph	20 tpy
Toxic Air Pollutant (TAP)	N/A	N/A
Green House Gas Emissions as Total CO.e	N/A	57,720 tpy

The standard and maximum operating schedule of the facility will be continuous: 24 hours a day for everything but blasting and the screening and crushing plant; 7 days a week; and 52 weeks per year.

The owner and/or operator of the Facility is: Freeport-McMoRan Tyrone Inc. P.O. Box 571, Tyrone, NM 88065

If you have any comments about the construction or operation of this facility, and you want your comments to be made as part of the permit review process, you must submit your comments in writing to this address: Permit Programs Manager; New Mexico Environment Department; Air Quality Bureau; 525 Camino de los Marquez, Suite 1; Santa Fe, New Mexico; 87505-1816; (505) 476-4300; 1 800 224-7009; <u>https://www.env.mm.gov/aqb/permit/aqb_draft_permits.html</u>. Other comments and questions may be submitted verbally.

With your comments, please refer to the company name and facility name, or send a copy of this notice along with your comments. This information is necessary since the Department may have not yet received the permit application. Please include a legible return mailing address. Once the Department has completed its preliminary review of the application and its air quality impacts, the Department's notice will be published in the legal section of a newspaper circulated near the facility location.

Attención

Este es un aviso de la oficina de Calidad del Aire del Departamento del Medio Ambiente de Nuevo México, acerca de las emisiones producidas por un establecimiento en esta área. Si usted desea información en español, por favor comuniquese con esa oficina al teléfono 505-476-5557.

Notice of Non-Discrimination

NMED does not discriminate on the basis of race, color, national origin, disability, age or sex in the administration of its programs or activities, as required by applicable laws and regulations. NMED is responsible for coordination of compliance efforts and receipt of inquiries concerning non-discrimination requirements implemented by 40 C.F.R. Part 7, including Title VI of the Civil Rights Act of 1964, as amended; Section 504 of the Rehabilitation Act of 1973; the Age Discrimination Act of 1975, Title IX of the Education Amendments of 1972, and Section 13 of the Federal Water Pollution Control Act Amendments of 1972. If you have any questions about this notice or any of NMED's non-discrimination programs, policies or activity, you may contact: Kristine Yurdin, Non-Discrimination Coordinator, NMED, 1190 St. Francis Dr., Suite N4050, P.O. Box 5469, Santa Fe, NM 87502, (505) 827-2855, nd.coordinator@state.nm.us. You may also visit our website at https://www.nm.gov/non-employee-discrimination-complaint-page/ to learn how and where to file a complaint of discrimination.

(Photo Courtesy of Cary Hamilton) Proper application of pesticides training is required by law. New Mexico State University has moved its pesticide safety education online with two ways for people with applicator licenses to earn continuing education units.

New Mexico State University Extension to provide pesticide applicator training online

The pesticide safety education program at New Mexico State University is offering workshops two ways online.

Pesticide applicators may earn continuing education units by attending a webinar series or prerecorded presentations, according to a news release.

"Because of the COVID-19 social distancing requirements, we have developed two ways for public and private pesticide applicators to earn their CEU requirements," said Phillip Lujan, NMSU Extension pesticide safety education program manager. "They may attend weekly live two-hour webinars or view prerecorded one-hour workshop sessions at their convenience."

The five-part webinar series will be from 6:30-8:30 p.m. every Wednesday, beginning Oct. 28. The session will be hosted by the NMSU Cooperative Extension Service and presented by Extension specialists and New Mexico Department of Agriculture specialists.

To register, visit pesticide.nmsu.edu. Two CEUs per week are available for participation.

Session topics will be:

 Oct. 28: "Rangeland IPM and Rodent Control Part 1," presented by Casey Sparkman, NMSU Extension range specialist, and Sam Smallidge, NMSU Extension wildlife specialist.

• Nov. 4: "Yard and Garden," presented by Marisa Thompson, NMSU Extension urban horticulture specialist, and Carol Sutherland, NMSU Extension entomologist.

• Nov. 11: "Irrigated Pasture," presented by Mark Marsalis, NMSU Extension forage specialist, and Jane Breen Pierce, NMSU Extension entomologist.

 Nov. 18: "IPM for Urban and Small Farms and Rodent Control, Part 2," presented by Smallidge and Amanda Skidmore, NMSU Extension integrated pest management specialist.

• Dec. 2: "Pesticide Management," presented by Steve Baca, NMDA pesticide compliance program manager, and Cary Hamilton, NMSU Extension IR-4 Program. Eight prerecorded presentations for one CEU credit each are available on the pesticide safety education website.

"A person can pick the sessions that are appropriate for their needs," Lujan said. "They can access the training at their convenience up until November 15."

To access the sessions, visit pesticide. nmsu.edu, click on upcoming workshops and follow the directions.

CEU credit courses for individuals already licensed include:

• "Weed Control in Alfalfa and Other Forage Crops," presented by Marsalis.

 "Pesticides in Aquatic Systems: Best Management Practices for Protecting Water Quality," presented by Rossana Sallenave, NMSU Extension aquatic ecology specialist.

• "Weed Updates for 2020 and Beyond," presented by Leslie Beck, NMSU Extension weed specialist.

 "Disease and Disorder Management in Chile Pepper," presented by Stephanie Walker, NMSU Extension vegetable specialist.

• "Tree Selection and Care: Avoiding Probable Pests and Disasters," presented by Thompson.

• "2020 Insect Update from NMSU," presented by Sutherland.

• "Introduction to Integrated Pest Management," presented by Skidmore.

 "Assessment-Based Prevention, Control and Management of Vertebrate Pests in New Mexico," presented by Smallidge.

Four sessions for pre-license training are also available through the pesticide education website. Topics of the sessions are:

• "Principles of Herbicides," presented by Beck.

• "Basic Entomology, Ornamentals, and Turf, Category 3A, Part 1 and 2," presented by Sutherland.

• "New Mexico Pesticide Laws and Regulations," presented by Matteo Serena, NMSU Extension plant sciences.

• "Pesticide Safety and Labeling, Part 1, and Personal Protective Equipment, Part 2," presented by Serena.

From Page 16

From Page 16 community college in Las Vegas in San Miguel county; (I) seven hundred thousand dollars (\$700,000) to plan, design, construct, renovate, equip and for other infrastructure upgrades at the institute of American Indian arts in Santa Fe county; and (m) two million dollars (\$2,000,000) to plan, design, construct, renovate and equip infrastructure improvements, including lencing and stucco, at Santa Fe community college in Santa Fe county; (3) to the Indian affairs department, seven hundred thousand dollars (\$700,000) to plan, design, construct and upgrade infrastructure, including entry boundary fencing and storm water drainage and mitigation, at Santa Fe Indian school in Santa Fe in Santa Fe county; (4) to the board of regents of the New Mexico school for the blind and visually impaired, nine hundred thru-signt thousand nine hundred sixty-seven dollars (\$938,967) to plan, design, construct, renovate, furnish and equip the Tapia building at the New Mexico school for the blind and visually impaired in Alamogordo in Otero county; (5) to the board of regents of New Mexico highlands university seven million dollars (\$7,000,000) to plan, design, construct, renovate, furnish and equip Sininger hall at New Mexico highlands university in Las Vegas in San Miguel county; (6) to the board of regents of the New Mexico institute of mining and technology, ten million dollars (\$10,000,000) to plan, design, construct, furnish and equip Kelly hall at the New Mexico institute of mining and technology in Socorro in Socorro county; (7) to the board of regents of the New Mexico military institute, inter and Toles learning center and for barracks bathrooms at the New Mexico comilitary institute in Roswell in Chaves county; (B) to the board of regents of the New Mexico scilation for the deaf, five million three hundred thousand dollars (\$5,300,000) to plan, design, construct, renovate, furnish and equip the dining hall at the New Mexico solo for the deaf in Santa Fe county; (B) to the board of regents of New Mexico state u Chaves county: (6) to the board of regents of the New Mexico school formation frame million three hundred thousand dollars (55,300,000) to plan, design, construct, renovate, furnish and equip the dining hall at the New Mexico state university: (a) one million three hundred thousand dollars (51,300,000) to plan, design, construct, furnish and equip upgrades, including gexterior stucco and sile improvements, to Martinez hall at the Grants branch campus of New Mexico state university in Cibola county; (b) eighteen million dilfs; (51,800,000) to plan, design, construct, renovate, furnish and equip improvements to the science and engineering facilities for agricultural research, including abatement and demolifion, at New Mexico state university in Las Cruces in Dona Ana county; (c) three million dollars (\$3,000,000) to plan, design, construct, ternovate, furnish and equip information technology building at New Mexico state university in Las Cruces in Dona Ana county; (d) one million eight hundred sixty thousand dollars (\$1,860,000) to plan, design, construct, furnish and equip a creative campus media building and to plan, design, construct, furnish and equip a creative campus media building and to plan, design, comstruct, turnish and equip a creative campus media building and to plan, design, construct, furnish and equip a creative campus media building and to plan, design, construct, furnish and equip a creative campus media building and the Darab branch community college of New Mexico state university in Dona Ana county; (e) one million five hundred thousand dollars (\$1,500,000) to plan, design, construct, renovate, furnish and equip the physical plant building at the Alamogordo branch campus of New Mexico state university in Clero county; (a) nine hundred thousand dollars (\$1,500,000) to plan, design, construct, renovate, furnish and equip improvements, including abatement and demolition, to New Mexico state university in Otero county; (a) nine hundred thousand dollars (\$3,000,000) to plan, design, construct, ren

SECTION 11. ELECTION .-

A. Bonds issued pursuant to the 2020 Capital Projects General Obligation Bond Act shall be submitted to the registered voters of the state at the general election to be held in November 2020, and, if they receive a majority of all the votes cast thereon at such election, shall take effect upon certification of the state canvassing board announcing the results of the election. No bonds shall be issued or sold under that act until the registered voters of this state have voted upon and approved the bonds and property tax as provided in this section. Any bonds issued under that act shall be issued within thirty months from the other of upon electronic state. the date of such election.

B. The ballots used at the 2020 general election shall contain substantially the following language: (1) "The 2020 Capital Projects General Obligation Bond Act authorizes the issuance and sale of senior citizen facility improvement, construction and equipment acquisition bonds. Shall the state be authorized to issue general obligation bonds in an amount not to exceed thirty-three million two hundred ninety-two thousand one hundred forty-one dollars (\$33,292,141) to make capital expenditures for certain

Against

C. Each question set forth in this section includes a specific work or object to be financed by the bonds. If any such question is not approved by a majority vote of the electorate at the state's 2020 general election, the issuance of bonds for the work or object specified by the question shall be excluded from and shall not be part of the 2020 Capital Projects General Obligation Bond Act. The failure of a question to be approved by the electorate at the 2020 general election shall not affect those questions that are approved at the election.

D. The secretary of state shall include the submission of the capital projects general obligation bonds to the people at the 2020 general election, and it shall be included in the general election proclamation. The secretary of state shall cause the 2020 Capital Projects General Obligation Bond Act to be published in full in at least one newspaper in each county of the state if one be published therein, once each week,

for four successive weeks next preceding the general election as required by the constitution of New

SECTION 12. ART IN PUBLIC PLACES.-Pursuant to Section 13-4A-4 NMSA 1978 and where applicable, the appropriations authorized in the 2020 Capital Projects General Obligation Bond Act include money for the art in public places fund.

SECTION 13. PROJECT SCOPE -- EXPENDITURES -- REVERSION. -

If an appropriation for a project authorized in the 2020 Capital Projects General Obligation Bond Act is not sufficient to complete all the purposes specified, the appropriation may be expended for any portion of the purposes specified in the appropriation. Expenditures shall not be made for purposes other than those specified in the appropriation.

B. The state agencies and state institutions to which money has been appropriated in the 2020 Capital Projects General Obligation Bond Act shall be responsible for monitoring the projects funded in that act to ensure compliance with the constitution and laws of New Mexico and shall cause to be reverted any Interest of unexpended or unexcument and taws of new mexico and shall cause to be reverted any unexpended or unexcumbered balance remaining at the earlier of the third full fiscal year after issuance of the bonds or the termination or completion of the specific project. Reverted funds shall be deposited in the debt service fund established by the state treasurer for the purpose of paying the principal of and interest on the state's general obligation bonds.

SECTION 14. SEVERABILITY .- If any part or application of the 2020 Capital Projects General Obligation Bond Act is held invalid, the remainder or its application to other situations or persons shall not be affected

SECTION 15. EMERGENCY .-- It is necessary for the public peace, health and safety that this act take effect immediately

07.14.21.28

Legal

NOTICE

Freeport-McMoRan Tyrone Inc. announces its application to the New Mexico Environment Depart-ment for an air quality permit for the modification of its mine facility. The expected date of application submittal to the Air Quality Bureau is October 30, 2020.

The exact location for the facility known as, Tyrone Mine is at latitude 32 deg, 40 min, 34.5 sec and longitude -108 deg, 23 min, 35.8 sec. The approximate location of this facility is 4.5 miles southwest of Tyrone, NM in Grant County.

The approximate location of this facility is 4.5 miles southwest of Tyrone, NM in Grant County. The proposed significant revision consists of updating emissions associated with new mine operating scenarios, updating emissions associated with reclamation activities, updating emissions associated with the crushing and screening plant, adding two new boilers, updating emissions associated with the currently permitted engines, and updating emissions associated with the currently permitted gasoline tanks in accordance with EPA's updated calculation methodologies. The estimated maximum quantities of the **tigitive + stack** regulated air contaminants will be as follows in pound per hour (pph) and tons per year (tpy). These reported emissions could change slightly during the course of the Department's review:

Pollutant:	Pounds per hour	Tons per year
Particulate Matter (PM)	1,660 pph	4,660 tpy
PM 10	640 pph	1,350 tpy
PM 2.5	70 pph	140 tpy
Sulfur Dioxide (SO ₂)	30 pph	30 tpy
Nitrogen Oxides (NO _x)	860 pph	360 tpv
Carbon Monoxide (CO)	5,210 pph	3,260 tpy
Volatile Organic Compounds (VOC)	50 pph	70 tpy
Total sum of all Hazardous Air Pollutants (HAPs)	10 pph	20 tpy
Toxic Air Pollutant (TAP)	N/A	N/A
Green House Gas Emissions as Total COve	N/A	57 720 tov

The standard and maximum operating schedule of the facility will be continuous: 24 hours a day for everything but blasting and the screening and crushing plant; 7 days a week; and 52 weeks per

year.
The owner and/or operator of the Facility is:
Freeport-McMoRan Tyrone Inc.
P.O. Box 571, Tyrone, NM 88065
If you have any comments about the construction or operation of this facility, and you want your comments to be made as part of the permit review process, you must submit your comments in writing to
this address: Permit Programs Manager; New Mexico Environment Department; Air Quality Bureau;
525 Camino de los Marquez, Suite 1; Santa Fe, New Mexico: 87505-1816; (505) 476-4300; 1 800 224709; https://doi.org/10.1016/j.com/10.1016/j 7009; https://www.env.nm.gov/aqb/permit/aqb_draft_permits.html. Other comments and questions may

Yous', https://www.env.nm.gov/ado/permiv/ado_drait_permits.ntml. Other comments and questions may be submitted verbally. With your comments, please refer to the company name and facility name, or send a copy of this notice along with your comments. This information is necessary since the Department may have not yet re-ceived the permit application. Please include a legible return mailing address. Once the Department has completed its preliminary review of the application and its air quality impacts, the Department's notice will be published in the legal section of a newspaper circulated near the facility location. Attención

Este es un aviso de la oficina de Calidad del Aire del Departamento del Medio Ambiente de Nuevo México, acerca de las emisiones producidas por un establecimiento en esta área. Si usted desea infor-mación en español, por favor comuníquese con esa oficina al teléfono 505-476-5557. Notice of Non-Discrimination

Notice of Non-Discrimination NMED does not discriminate on the basis of race, color, national origin, disability, age or sex in the administration of its programs or activities, as required by applicable laws and regulations. NMED is responsible for coordination of compliance efforts and receipt of inquiries concerning non-discrimination requirements implemented by 40 C.F.R. Part 7, including Title VI of the Civil Rights Act of 1964, as amended; Section 504 of the Rehabilitation Act of 1973; the Age Discrimination Act of 1975, Title IX of the Education Amendments of 1972, and Section 13 of the Federal Water Pollution Control Act Amend-ments of 1972. If you have any questions should this notice ray of MMED conculscipations for ments of 1972. If you have any questions about this notice or any of NMED's non-discrimination pro-grams, policies or procedures, or if you believe that you have been discriminated against with respect to a NMED program or activity, you may contact: Kristine Yurdin, Non-Discrimination Coordinator, NMED, 199 SL. Francis Dr., Suite N4050, P.O. Box 5469, Santa Fe, NM 87502, (505) 827-2855, nd.coordina tor@state.nm.us. You may also visit our website at https://www.env.nm.gov/non-employee-discrimina tion-complaint-page/ to learn how and where to file a complaint of discrimination.

Legal

STATE OF NEW MEXICO IN THE PROBATE COURT GRANT COUNTY

No. 4610

IN THE MATTER OF THE ESTATE OF JOHN MOORE, DECEASED.

NOTICE TO CREDITORS NOTICE IS HEREBY GIVEN that John D. Moore has been ap-pointed Personal Representative of the Estate of the Decedent. All per-

sons having claims against the Es-tate of the Decodent are required to present their claims within four (4) months after the date of the first publication of any published Notice to Creditors or sixty (60) days after the date of mailing or other delivery of this notice, whichever is later, or the claims will be forever barred. Claims must be presented either to the undersigned Personal Repre-sentative at the address listed be-low, or filed with the Probate Court of Grant County, New Mexico, lo

of Grant County, New Mexico, lo cated at the following address: P.O

Box 898, Silver City, New Mexico Dated: October 19, 2020.

Prepared and Submitted by:

Lopez, Dietzel, Perkins & Wallace, P.C.

/s/ William Perkins William J. Perkins P.O. Box 1289 Silver City, NM 88062 (575) 538-2925 (575) 538-2925 Attorney for John D. Moore O21,28,N4

Submittal of Public Service Announcement – Certification

I, <u>Claire Booth</u>, the undersigned, certify that on October 22, 2020, submitted a public service announcement to Silver City Radio (SkyWest Media, LLC) for KNFT-AM that serves Silver City, Grant County, New Mexico, in which the source is or is proposed to be located and that Silver City Radio responded that it would air the announcement.

Signed this 22 day of October, 2020.

Vair Brok

Signature

<u>10/22/2020</u> Date

Claire Broth

Printed Name

Principle, Array Environmental (consultant) Title {APPLICANT OR RELATIONSHIP TO APPLICANT}

claire@arrayenvironmental.com

From:Sabrina Pack <sabrina@silvercityradio.com>Sent:Thursday, October 22, 2020 11:26 AMTo:claire@arrayenvironmental.comSubject:Re: FW: PSA Request for Air Quality Permit - Tyrone Mine

Thank you.

We will get produced.

Sabrina

On Thu, Oct 22, 2020 at 11:24 AM <<u>claire@arrayenvironmental.com</u>> wrote:

Hi Sabrina,

Here is the script for the Tyrone Mine's Silver City Radio PSA:

Freeport McMoRan Tyrone, Inc. principal owner and operator of the Tyrone Mine is submitting an air permit application to the New Mexico Environment Department Air Quality Bureau. Tyrone Mine is a copper mine located 4.5 miles southwest of Tyrone, New Mexico in Grant County. The air permit application is being submitted to update emissions associated with new mine operating scenarios, update emissions associated with reclamation activities, update emissions associated with a crushing and screening plant, incorporate two new boilers, update emissions associated with the currently permitted engines, and update emissions associated with the currently permitted gasoline tanks in accordance with EPA's updated calculation methodologies. Notices have been posted at the Tyrone Mine Property Boundary, Tyrone Mine Security Gate, Tyrone Post Office/Community Center, Silver City Public Library, and the Grant County Administration Building. Comments may be directed to the New Mexico Environment Department, Air Quality Bureau, Permitting Section via mail at 525 Camino de los Marquez, Suite 1, Santa Fe, New Mexico, 87505-1816 or via phone at (505) 476-4300.

Thank you!

Claire

Claire Booth, PE // Array Environmental, LLC

720.316.9935 (o) // 352.328.5764 (m) // claire@arrayenvironmental.com

From: claire@arrayenvironmental.com>
Sent: Tuesday, October 20, 2020 1:19 PM
To: events@silvercityradio.com
Subject: PSA Request for Air Quality Permit - Tyrone Mine

Dear Silver City Radio,

Per New Mexico Administrative Code 20.2.72.203.B NMAC and according to the Guidance for Public Notice for Air Quality Permit Applications - (5) Notifications: Submittal of Public Service Announcement (PSA): A public service announcement required for permits or significant permit revisions must be submitted to at least one radio or television station, which services the municipality, or county which the facility is or will be located. <u>Therefore, based</u> on the above, werespectfullyask you to air the information shown below as a Public Service Announcement.

The public service announcement request must contain the following information about the facility or proposed facility

(20.2.72.203.D NMAC).

(a) The name: <u>Tyrone Mine</u>, location: <u>4.5 miles southwest of Tyrone, NM; P.O. Box 571, Tyrone, NM</u> <u>88065</u> and type of business: <u>Mine.</u>

(b) The name of the principal owner or operator: Freeport-McMoRan Tyrone Inc.. – owner & operator.

(c) The type of process or change for which the permit is sought: <u>NSR Significant Revision – updating</u> <u>emissions associated with new mine operating scenarios, updating emissions associated with</u> <u>reclamation activities, updating emissions associated with the crushing and screening plant, adding</u> <u>two new boilers, updating emissions associated with the currently permitted engines, and updating</u> <u>emissions associated with the currently permitted engines, and updating</u> <u>emissions associated with the currently permitted engines, and updating</u> <u>emissions associated with the currently permitted engines</u>.

(d) Locations where the notices have been posted: (1) Tyrone Mine Property Boundary; (2) Tyrone Mine Security Gate; (3) Tyrone Post Office/Community Center; (4) Silver City Public Library; (5) Grant County Administration Building

(e) The Department's address or telephone number to which comments may be directed: <u>Permit</u> <u>Programs Manager; New Mexico Environment Department; Air Quality Bureau; 525 Camino de los</u> <u>Marquez, Suite 1, Santa Fe, New Mexico; 87505-1816; (505) 476-4300</u> Please let me know if you need anything else to process this request. For documentation purposes, can you send me an email acknowledging receipt of the request to read the PSA?

Thank you!

Claire

Claire Booth, PE // Array Environmental, LLC

720.316.9935 (o) // 352.328.5764 (m) // claire@arrayenvironmental.com

Steamboat Springs, Colorado // www.arrayenvironmental.com

Sabrina Pack--PCM Principal and COO SkyWest Media p 575.342.1000 | m 575.956.5428 www.skywestmedia.com

New Mexico Broadcast Operations: KNFT-FM, KNFT-AM, KSCQ-FM, KPSA-FM p 575.538.3396 | f 575.388.1759 www.silvercityradio.com NMBA Executive Board Member

SkyWest Media, LLC P.O. Box 2577 Silver City, NM 88062 (575) 538-3396

KNFT-AM Order Confirmation OrderID: 1038-001

Sponsor: Product: Estimate/PO: AccountRep: BillingCycle: InvoiceType: Run Dates: Items Ordered: Ordered Amount: +State, County, City Tax as of 7-1-15 Total Amount: Array Environmental, LLC Array Environmental, LLC PSA Air Permit Application Tyrone Mine House Accounts Calendar Month Detail 10/23/2020 - 10/23/2020 01 \$250.00 \$20.00 \$270.00

ARRAY ENVIRONMENTAL, LLC 1496 CONESTOGA CIRCLE STEAMBOAT SPRINGS, CO 80487

Scheduled Station(s): KNFT-AM Array Environmental, LLC

Prin	ted 10/22/2020 11:16:51 AM																	Page 1
	Run Dates	Run Weeks	Run Times	Mon	Tue	Wed	Thu	Fri	Sat	Sun	Week Total	Length	Description	Avail Type	Copy ID	Qty	Item Cost	Total Cost
01	10/23/2020 - 10/23/2020	All Weeks	06:00 AM - 07:00 PM					1			1	2:00	Public Affairs		6633	1	250.00	250.00
Calendar Month Projected Billing:																		
	Oct-20	250.00	Nov-20				0.00			Dec	-20		0.00		Q4-2	020		250.00

Net due 30 after receipt of invoice

Accepted for KNFT-AM

Confirmed Correct; Payment Guaranteed

Section 10

Written Description of the Routine Operations of the Facility

<u>A written description of the routine operations of the facility</u>. Include a description of how each piece of equipment will be operated, how controls will be used, and the fate of both the products and waste generated. For modifications and/or revisions, explain how the changes will affect the existing process. In a separate paragraph describe the major process bottlenecks that limit production. The purpose of this description is to provide sufficient information about plant operations for the permit writer to determine appropriate emission sources.

Mining Activities

Mine operations begin with drilling, blasting, and loading copper bearing ore or waste rock within the active areas of the open pit mine. Drilling is performed with electric mobile drills. Blast holes are drilled to depth and are partially filled with blasting agents. The remaining top portion of each blast hole is filled with stemming material, which is a sand and gravel mixture. Blast holes are drilled on a variable spacing but most often are drilled on a spacing of approximately 24 to 30 feet. Once the rock is blasted, electric shovels and/or loaders load haul trucks that deliver rock to stockpiles for leaching or waste.

The following operational scenarios are included in this permit application and are based on pit-specific throughputs. Note that the scenario numbering begins with "2" because these scenarios are intended to be added to the Gettysburg + Mohawk operating scenario approved in NSR Permit No. PSD2448-M5.

Operating Scenario	Pit Name	Maximum Blasting Agent Usage per Blast (lbs/blast)	Maximum No. of Blasts per Day	Maximum Daily Blasting Agent Usage (lbs/day)	Maximum Blast Area per Blast (ft²/blast)	Maximum Mining Rates (tons/day)
Scenario 2	Mohawk	150,000	2	300,000	125,000	200,000
Scenario 2	Copper Mountain	100,000	1	100,000	125,000	200,000
Samaria 2	Mohawk	150,000	2	300,000	125,000	200,000
Scenario 3	Little Rock 6	100,000	1	100,000	125,000	90,000
Scenario 4	Mohawk	150,000	2	300,000	125,000	200,000
Scenario 4	Copper Leach	50,000	1	50,000	125,000	90,000
Scenario 5	Burro Chief	200,000	2	400,000	125,000	200,000
Scenario 5	Little Rock 6	100,000	1	100,000	125,000	90,000
Samaria (Burro Chief	200,000	2	400,000	125,000	200,000
Scenario 6	Copper Leach	50,000	1	50,000	125,000	90,000
Scenario 7	Mohawk	150,000	2	300,000	125,000	200,000
Scenario /	Burro Chief	200,000	2	400,000	125,000	200,000

The main assumptions that go into the operational scenario emission calculations are that two pits can be blasted in a day but only one pit can be blasted in an hour. Therefore, it is assumed that the emissions from one blast are equivalent to the maximum hourly emissions. In addition, the operations associated with the two pits in a given scenario can occur at the same time, but no more than one scenario can operate in a day.

Maximum emissions associated with each pit's worst-case stockpiles (leach and/or waste) and worst-case haul roads operating simultaneously within each scenario were assessed in the model.

Reclamation Activities

Reclamation is done under the multi-year reclamation plan approved by the New Mexico Environment Department and the New Mexico Energy, Minerals and Natural Resources Department – Mining and Minerals Division. Reclamation activities may entail the crushing and screening of material, loading, hauling, and unloading of material for various reclamation purposes. The following reclamation projects are included in this permit application:

Form-Section 10 last revised: 8/15/2011 Section 10, Page 1

Reclamation Area	Maximum Reclamation Rates (tons/day)
Launder Line	5,000
Thickener	15,000
P-Plant	15,000
1A/1B Stockpile	20,000
2A/2B Stockpile	20,000
CLW Stockpile	15,000

Maximum emissions associated with the worst-case small and large truck projects operating simultaneously within each mining scenario were assessed in the model.

Leaching

Collected ore is delivered to stockpiles where a slightly acidic solution called raffinate is sprinkled on its surface. The solution percolates through the copper bearing ore, dissolving copper minerals contained in it. The resulting copper-laden solution, referred to in the mining industry as pregnant leach solution (PLS), exits the bottom of the stockpile where it is collected and pumped to storage ponds. The PLS is gravity fed to the solution extraction/electrowinning (SX/EW) plant for further processing.

SX/EW Plant

The SX/EW Plant consists of a series of ten mixer-settler tanks followed by a series of two EW tankhouses. The SX/EW Plant has two circuits of mixer-settler tanks with a flow capacity of approximately 32,000 gallons per minute (gpm). In the SX tanks, PLS is mixed vigorously with an equal volume of an organic solution that consists of approximately 90 percent diluent, which is a highly refined petroleum-based solvent. It is also mixed with 10 percent extraction reagent, which is a specialty chemical that selectively extracts copper from aqueous solutions under specific conditions.

Once the PLS and organic solution are sufficiently mixed, settling occurs. During this process, the less-dense organic solution extracts copper ions while the now barren leach solution settles to the bottom of the tank. The organic solution, now called "loaded" since it contains copper ions, floats to the top of the tank and is pumped to the next component of the plant. The settled solution is called "raffinate", and since it is barren of copper, is sent to an organic recovery tank to recycle any carryover organic solution back to the extraction tanks. The raffinate is sent back to the leach stockpiles for another leach cycle.

The loaded organic solution is mixed with a strong aqueous solution of sulfuric acid, called "electrolyte", which strips copper ions from the organic solution. The mixed solutions are sent to a settling tank where the copper-rich electrolyte solution settles to the bottom and the organic solution floats to the top. The organic solution is recycled back to the extraction process. The copper-rich electrolyte solution is pumped to the EW tankhouse where it is routed through a series of tanks, or cells. Insoluble lead plates are hung in the cells and serve as an anode. Copper "starter sheets" are placed in the cells as cathodes. An electric current in the solution causes the copper ions from the electrolyte solution to plate onto the cathodes. Once the sheets contain enough copper, they are removed from the EW cells and shipped to off-site facilities for further processing into copper products. The remaining "lean" electrolyte solution is pumped back to the SX/EW Plant and the entire process is repeated.

Crushing & Screening Plant

Routine operations for the Tyrone Mine include the periodic use of a portable crushing and/or screening plant for reclamation purposes or to support mining activities, such as road base. Crushing and/or screening activities are operated by a contractor under GCP-2. The crushing and/or screening plant will be powered by facility electric power.

Insignificant Sources

Insignificant sources at the Tyrone Mine include natural gas or propane-fired water heaters, space heaters, small engines for welders, portable pumps, and mixing tanks. A comprehensive list of sources is provided in Table 2-B of this application.

Power Plant

The Tyrone Mine and related facilities rely on power purchased from PNM Electric. During unavoidable loss of commercial power, a power plant is available to provide backup power. The power plant consists of ten (10) Nordberg compressionignition internal combustion engines, combusting dual-fuel – a mixture of mostly natural gas and diesel – to initiate ignition.

Form-Section 10 last revised: 8/15/2011

Section 10, Page 2

Saved Date: 11/8/2020

The only exception is the Engine 15 (PPG-15), which runs on diesel only. Each engine drives a 2 MW (approximate) generator that provides power to the mine and related facilities. The Nordberg engines each operate less than 500 hours per year.

Alternate Operating Scenario

The alternate operating scenarios (AOS) proposed in this permit application will be utilized with the AOS authorized under NSR Permit No. PSD2448-M5. However, no scenario, either existing or proposed, will occur simultaneously with another scenario. With this permit application, Freeport is requesting to list all scenarios from NSR Permit No. PSD2448-M5 and this permit application as AOS's in NSR Permit No. PSD2448-M6.

The active mining scenarios authorized in NSR Permit Nos. PSD2448-M2 and -M3 are no longer needed.

Section 11 Source Determination

Source submitting under 20.2.70, 20.2.72, 20.2.73, and 20.2.74 NMAC

Sources applying for a construction permit, PSD permit, or operating permit shall evaluate surrounding and/or associated sources (including those sources directly connected to this source for business reasons) and complete this section. Responses to the following questions shall be consistent with the Air Quality Bureau's permitting guidance, <u>Single Source Determination Guidance</u>, which may be found on the Applications Page in the Permitting Section of the Air Quality Bureau website.

Typically, buildings, structures, installations, or facilities that have the same SIC code, that are under common ownership or control, and that are contiguous or adjacent constitute a single stationary source for 20.2.70, 20.2.72, 20.2.73, and 20.2.74 NMAC applicability purposes. Submission of your analysis of these factors in support of the responses below is optional, unless requested by NMED.

A. Identify the emission sources evaluated in this section (list and describe):

See Table 2-A in Section 2 of this application.

B. Apply the 3 criteria for determining a single source:

<u>SIC</u> <u>Code</u>: Surrounding or associated sources belong to the same 2-digit industrial grouping (2-digit SIC code) as this facility, <u>OR</u> surrounding or associated sources that belong to different 2-digit SIC codes are support facilities for this source.

☑ Yes No

<u>Common</u> <u>Ownership</u> or <u>Control</u>: Surrounding or associated sources are under common ownership or control as this source.

☑ Yes No

<u>Contiguous or Adjacent</u>: Surrounding or associated sources are contiguous or adjacent with this source.

☑ Yes No

C. Make a determination:

☑ The source, as described in this application, constitutes the entire source for 20.2.70, 20.2.72, 20.2.73, or 20.2.74 NMAC applicability purposes. If in "A" above you evaluated only the source that is the subject of this application, all "YES" boxes should be checked. If in "A" above you evaluated other sources as well, you must check AT LEAST ONE of the boxes "NO" to conclude that the source, as described in the application, is the entire source for 20.2.70, 20.2.72, 20.2.73, and 20.2.74 NMAC applicability purposes.

The source, as described in this application, <u>does not</u> constitute the entire source for 20.2.70, 20.2.72, 20.2.73, or 20.2.74 NMAC applicability purposes (A permit may be issued for a portion of a source). The entire source consists of the following facilities or emissions sources (list and describe):

There are no other industrial facilities outside the Tyrone Mine property boundary that could be considered part of the Tyrone Mine stationary source for air quality permitting purposes.

Section 12

Section 12.A PSD Applicability Determination for All Sources

(Submitting under 20.2.72, 20.2.74 NMAC)

<u>A PSD applicability determination for all sources</u>. For sources applying for a significant permit revision, apply the applicable requirements of 20.2.74.AG and 20.2.74.200 NMAC and to determine whether this facility is a major or minor PSD source, and whether this modification is a major or a minor PSD modification. It may be helpful to refer to the procedures for Determining the Net Emissions Change at a Source as specified by Table A-5 (Page A.45) of the <u>EPA New Source Review</u> <u>Workshop Manual</u> to determine if the revision is subject to PSD review.

- A. This facility is:
 - **a** minor PSD source before and after this modification (if so, delete C and D below).

a major PSD source before this modification. This modification will make this a PSD minor source.

an existing PSD Major Source that has never had a major modification requiring a BACT analysis.

an existing PSD Major Source that has had a major modification requiring a BACT analysis

a new PSD Major Source after this modification.

- B. This facility is <u>not</u> one of the listed 20.2.74.501 Table I PSD Source Categories. The "project" emissions for this modification are not significant. The "project" emissions listed below only result from changes described in this permit application and represent potential emissions for the new sources only since the new sources are the only sources undergoing a "physical change" with this project. The project emissions (before netting) for this project are as follows [see Table 2 in 20.2.74.502 NMAC for a complete list of significance levels]:
 - NOx: 4.5 TPY a. b. CO: 2.6 TPY **VOC: 0.3 TPY** C. d. SOx: 0.6 TPY e. PM: 0.2 TPY f. PM10: 0.2 TPY PM2.5: 0.2 TPY g. h. Fluorides: N/A Lead: N/A i. Sulfur compounds (listed in Table 2): 0 TPY j. k. GHG: 4,379.5 TPY

The Tyrone Mine is currently a PSD minor source and will remain a PSD minor source after this application since potential emissions from the two (2) new non-fugitive sources (Water Boilers B-3891 and B-1454) are less than 250 tons per year. All other changes mentioned in this permit application for non-fugitive sources are not physical modifications or changes in the method of operation and do not constitute a "modification" under PSD.

Section 13

Determination of State & Federal Air Quality Regulations

This section lists each state and federal air quality regulation that may apply to your facility and/or equipment that are stationary sources of regulated air pollutants.

Not all state and federal air quality regulations are included in this list. Go to the Code of Federal Regulations (CFR) or to the Air Quality Bureau's regulation page to see the full set of air quality regulations.

Required Information for Specific Equipment:

For regulations that apply to specific source types, in the 'Justification' column **provide any information needed to determine if the regulation does or does not apply**. **For example**, to determine if emissions standards at 40 CFR 60, Subpart IIII apply to your three identical stationary engines, we need to know the construction date as defined in that regulation; the manufacturer date; the date of reconstruction or modification, if any; if they are or are not fire pump engines; if they are or are not emergency engines as defined in that regulation; their site ratings; and the cylinder displacement.

Required Information for Regulations that Apply to the Entire Facility:

See instructions in the 'Justification' column for the information that is needed to determine if an 'Entire Facility' type of regulation applies (e.g. 20.2.70 or 20.2.73 NMAC).

Regulatory Citations for Regulations That Do Not, but Could Apply:

If there is a state or federal air quality regulation that does not apply, but you have a piece of equipment in a source category for which a regulation has been promulgated, you must **provide the low level regulatory citation showing why your piece of equipment is not subject to or exempt from the regulation. For example** if you have a stationary internal combustion engine that is not subject to 40 CFR 63, Subpart ZZZZ because it is an existing 2 stroke lean burn stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions, your citation would be 40 CFR 63.6590(b)(3)(i). We don't want a discussion of every non-applicable regulation, but if it is possible a regulation could apply, explain why it does not. For example, if your facility is a power plant, you do not need to include a citation to show that 40 CFR 60, Subpart OOO does not apply to your non-existent rock crusher.

Regulatory Citations for Emission Standards:

For each unit that is subject to an emission standard in a source specific regulation, such as 40 CFR 60, Subpart OOO or 40 CFR 63, Subpart HH, include the low level regulatory citation of that emission standard. Emission standards can be numerical emission limits, work practice standards, or other requirements such as maintenance. Here are examples: a glycol dehydrator is subject to the general standards at 63.764C(1)(i) through (iii); an engine is subject to 63.6601, Tables 2a and 2b; a crusher is subject to 60.672(b), Table 3 and all transfer points are subject to 60.672(e)(1)

Federally Enforceable Conditions:

All federal regulations are federally enforceable. All Air Quality Bureau State regulations are federally enforceable except for the following: affirmative defense portions at 20.2.7.6.B, 20.2.7.110(B)(15), 20.2.7.11 through 20.2.7.113, 20.2.7.115, and 20.2.7.116; 20.2.37; 20.2.42; 20.2.43; 20.2.62; 20.2.63; 20.2.86; 20.2.89; and 20.2.90 NMAC. Federally enforceable means that EPA can enforce the regulation as well as the Air Quality Bureau and federally enforceable regulations can count toward determining a facility's potential to emit (PTE) for the Title V, PSD, and nonattainment permit regulations.

INCLUDE ANY OTHER INFORMATION NEEDED TO COMPLETE AN APPLICABILITY DETERMINATION OR THAT IS RELEVENT TO YOUR FACILITY'S NOTICE OF INTENT OR PERMIT.

EPA Applicability Determination Index for 40 CFR 60, 61, 63, etc: http://cfpub.epa.gov/adi/

Table for STATE REGULATIONS:

STATE REGU- LATIONS CITATION	Title	Applies? Enter Yes or No	Unit(s) or Facility	JUSTIFICATION: (You may delete instructions or statements that do not apply in the justification column to shorten the document.)
20.2.1 NMAC	General Provisions	Yes	Facility	General Provisions apply to Notice of Intent, Construction, and Title V permit applications.
20.2.3 NMAC	Ambient Air Quality Standards NMAAQS	Yes	Facility	20.2.3 NMAC is a State Implementation Plan (SIP) approved regulation that limits the maximum allowable concentration of Total Suspended Particulates, Sulfur Compounds, Carbon Monoxide and Nitrogen Dioxide.
20.2.7 NMAC	Excess Emissions	Yes	Facility	The facility is subject to this regulation. If your entire facility or individual pieces of equipment are subject to emissions limits in a permit or numerical emissions standards in a federal or state regulation, this applies.
20.2.33 NMAC	Gas Burning Equipment -	No	N/A	This facility does not have new gas burning equipment having a heat input of greater than 1,000,000 million British Thermal Units per year per unit. This regulation does not apply.
NMAC	Nitrogen Dioxide			Note: "New gas burning equipment" means gas burning equipment, the construction or modification of which is commenced after February 17, 1972.
20.2.34 NMAC	Oil Burning Equipment: NO ₂	No	N/A	This facility does not have oil burning equipment having a heat input of greater than 1,000,000 million British Thermal Units per year per unit, therefore this regulation does not apply.
20.2.35 NMAC	Natural Gas Processing Plant –	No	N/A	This regulation could apply to existing (prior to July 1, 1974) or new (on or after July 1, 1974) natural gas processing plants that use a Sulfur Recovery Unit to reduce sulfur emissions.
	Sulfur			This facility does not operate a sulfur recovery unit. This regulation does not apply.
20.2.37 and 20.2.36 NMAC	Petroleum Processing Facilities and Petroleum Refineries	N/A	N/A	These regulations were repealed by the Environmental Improvement Board. If you had equipment subject to 20.2.37 NMAC before the repeal, your combustion emission sources are now subject to 20.2.61 NMAC.
20.2.38 NMAC	Hydrocarbon Storage Facility	No	N/A	This regulation could apply to storage tanks at petroleum production facilities, processing facilities, tanks batteries, or hydrocarbon storage facilities. This facility is not covered under this regulation. This regulation does not apply.
20.2.39 NMAC	Sulfur Recovery Plant - Sulfur	No	N/A	This regulation could apply to sulfur recovery plants that are not part of petroleum or natural gas processing facilities. This facility does not contain a sulfur recovery plant. This regulation does not apply.
20.2.61.109 NMAC	Smoke & Visible Emissions	Yes	Station ary Combu stion Equip ment	This regulation applies to Stationary Combustion Equipment, such as engines, boilers, heaters, and flares unless your equipment is subject to another state regulation that limits particulate matter such as 20.2.19 NMAC (see 20.2.61.109 NMAC). Facility stationary combustion equipment are subject to this regulation.
20.2.70 NMAC	Operating Permits	Yes	Facility	This regulation applies as the facility's potential to emit (PTE) is 100 tpy or more of any regulated air pollutant other than HAPs; and/or a HAPs PTE of 10 tpy or more for a single HAP or 25 or more tpy for combined HAPs. This facility is permitted under Title V Permit No. P147-R2M1.
20.2.71 NMAC	Operating Permit Fees	Yes	Facility	If subject to 20.2.70 NMAC and your permit includes numerical ton per year emission limits, you are subject to 20.2.71 NMAC and normally applies to the entire facility.
20.2.72 NMAC	Construction Permits	Yes	Facility	This applies as the facility's potential emission rate (PER) is greater than 10 pph and greater than 25 tpy for any pollutant subject to a state or federal ambient air quality standard. This facility is currently permitted under NSR Permit No. PSD2448-M5.

STATE REGU- LATIONS CITATION	Title	Applies? Enter Yes or No	Unit(s) or Facility	JUSTIFICATION: (You may delete instructions or statements that do not apply in the justification column to shorten the document.)
20.2.73 NMAC	NOI & Emissions Inventory Requirements	Yes	Facility	All facilities that are a Title V Major Source as defined at 20.2.70.7.R NMAC, are subject to Emissions Inventory Reporting. This facility is a Title V major source. This regulation applies.
20.2.74 NMAC	Permits – Prevention of Significant Deterioration (PSD)	No	N/A	This facility is a stationary source not listed in Table 1 of this Part (20.2.74.501 NMAC) and which emits or has the potential to emit stack emissions of less than two hundred fifty (250) tons per year of any regulated pollutant. This regulation therefore does not apply.
20.2.74.302 NMAC	Prevention of Significant Deterioration (PSD) CONTROL TECHNOLOGY REQUIREMENT S	Yes	PPG-1, 3, 4, 7, 8, 11-15	Only this portion of 20.2.74 NMAC applies to the Nordberg engines at the facility (units PPG-1, 3, 4, 7, 8, 11-15) as historical BACT requirements apply to these engines.
20.2.75 NMAC	Construction Permit Fees	Yes	Facility	This regulation applies if you are submitting an application pursuant to 20.2.72, 20.2.73, 20.2.74, and/or 20.2.79 NMAC. If this is a 20.2.72, 20.2.74, and/or 20.2.79 NMAC application it is subject to 20.2.75.10, 11 permit fee, and 11.E annual fees. This regulation applies.
20.2.77 NMAC	New Source Performance	Yes	Units subject to 40 CFR 60	This is a stationary source which is subject to the requirements of 40 CFR Part 60. This regulation applies as 40 CFR 60 Subparts IIII and JJJJ apply.
20.2.78 NMAC	Emission Standards for HAPS	No	Units Subject to 40 CFR 61	This facility does not emit hazardous air pollutants which are subject to the requirements of 40 CFR Part 61. This regulation does not apply.
20.2.79 NMAC	Permits – Nonattainment Areas	No	Facility	This facility is not located within a non-attainment area. This regulation does not apply.
20.2.80 NMAC	Stack Heights	No	N/A	Stacks at this facility follow good engineering practice.
20.2.82 NMAC	MACT Standards for source categories of HAPS	Yes	Units Subject to 40 CFR 63	This regulation applies to all sources emitting hazardous air pollutants, which are subject to the requirements of 40 CFR Part 63. This regulation applies as 40 CFR 63 Subparts A, ZZZZ, and CCCCCC apply.

Table for Applicable FEDERAL REGULATIONS:

FEDERAL REGU- LATIONS CITATION	Title	Applies? Enter Yes or No	Unit(s) or Facility	JUSTIFICATION:
40 CFR 50	NAAQS	Yes	Facility	This applies if you are subject to 20.2.70, 20.2.72, 20.2.74, and/or 20.2.79 NMAC.
NSPS 40 CFR 60, Subpart A	General Provisions	Yes	Units subject to 40 CFR 60	Applies if any other Subpart in 40 CFR 60 applies. This regulation applies as 40 CFR 60 Subparts IIII and JJJJ apply.

FEDERAL REGU- LATIONS CITATION	Title	Applies? Enter Yes or No	Unit(s) or Facility	JUSTIFICATION:
NSPS 40 CFR60.40a, Subpart Da	Subpart Da, Performance Standards for Electric Utility Steam Generating Units	No	N/A	Establishes PM, SO ₂ and NOx emission limits/standards of performance for electric utility steam generating units. This facility does not contain the affected source. This regulation does not apply.
NSPS 40 CFR60.40b Subpart Db	Performance Standards for Industrial- Commercial- Institutional Steam Generating Units	No	N/A	 (a) The affected facility to which this subpart applies is each steam generating unit that commences construction, modification, or reconstruction after June 19, 1984, and that has a heat input capacity from fuels combusted in the steam generating unit of greater than 29 MW (100 million Btu/hour). This facility does not contain the affected source. This regulation does not apply.
40 CFR 60.40c, Subpart Dc	Standards of Performance for Small Industrial- Commercial- Institutional Steam Generating Units	No	N/A	Applicability: facility has steam generating units for which construction, modification or reconstruction is commenced after June 9, 1989 and that have a maximum design heat input capacity of 29 MW (100 MMBtu/hr) or less, but greater than or equal to 2.9 MW (10 MMBtu/hr). This facility does not contain the affected source. This regulation does not apply.
NSPS 40 CFR 60, Subpart Ka	Standards of Performance for Storage Vessels for Petroleum Liquids for which Construction, Reconstruction, or Modification Commenced After May 18, 1978, and Prior to July 23, 1984	No	N/A	Except as provided in paragraph (b) of this section, the affected facility to which this subpart applies is each storage vessel with a storage capacity greater than 151,416 liters (40,000 gallons) that is used to store petroleum liquids for which construction is commenced after May 18, 1978. This facility does not contain the affected source. This regulation does not apply.
NSPS 40 CFR 60, Subpart Kb	Standards of Performance for Volatile Organic Liquid Storage Vessels (Including Petroleum Liquid Storage Vessels) for Which Construction, Reconstruction, or Modification Commenced After July 23, 1984	No	N/A	Except as provided in paragraph (b) of this section, the affected facility to which this subpart applies is each storage vessel with a capacity greater than or equal to 75 cubic meters (m3) that is used to store volatile organic liquids (VOL) for which construction, reconstruction, or modification is commenced after July 23, 1984. This facility does not contain the affected source. This regulation does not apply.
NSPS 40 CFR 60.330 Subpart GG	Stationary Gas Turbines	No	N/A	The provisions of this subpart are applicable to the following affected facilities: All stationary gas turbines with a heat input at peak load equal to or greater than 10.7 gigajoules (10 million Btu) per hour, based on the lower heating value of the fuel fired.This facility does not contain the affected source. This regulation does not apply.

FEDERAL REGU- LATIONS CITATION	Title	Applies? Enter Yes or No	Unit(s) or Facility	JUSTIFICATION:
NSPS 40 CFR 60, Subpart KKK	Leaks of VOC from Onshore Gas Plants	No	N/A	Affected Facility with Leaks of VOC from Onshore Gas Plants. Any affected facility under paragraph (a) of this section that commences construction, reconstruction, or modification after January 20, 1984, is subject to the requirements of this subpart. The group of all equipment (each pump, pressure relief device, open-ended valve or line, valve, compressor, and flange or other connector that is in VOC service or in wet gas service, and any device or system required by this subpart) except compressors (defined in § 60.631) within a process unit is an affected facility. A compressor station, dehydration unit, sweetening unit, underground storage tank, field gas gathering system, or liquefied natural gas unit is covered by this subpart if it is located at an onshore natural gas processing plant. This facility does not contain the affected source. This regulation does not apply.
NSPS 40 CFR Part 60 Subpart LL	Standards of performance for Metallic Mineral Processing Plants	No	N/A	The provisions of this subpart are applicable to the following affected facilities in metallic mineral processing plants: Each crusher and screen in open-pit mines; each crusher, screen, bucket elevator, conveyor belt transfer point, thermal dryer, product packaging station, storage bin, enclosed storage area, truck loading station, truck unloading station, railcar loading station, and railcar unloading station at the mill or concentrator with the following exceptions. This facility does not operate an affected facility under this subpart. This facility does not have a crusher or screen in the open-pit mine area and does not have a concentrator, mill, or conveyor belts in its process. The portable crusher and screener (GCP-2) will only be used to process aggregate and not copper-containing ores. This regulation does not apply.
NSPS 40 Part 60 Subpart OOO	Standards of Performance for Nonmetallic Mineral Processing Plants	No	N/A	 This regulation establishes standards for the following affected facilities in fixed or portable nonmetallic mineral processing plants: each crusher, grinding mill, screening operation, bucket elevator, belt conveyor, bagging operation, storage bin, enclosed truck or railcar loading station is an applicable unit. Tyrone has no operations subject to Subpart OOO. Portable contractor crushing and screening plants that may be on-site may be subject to Subpart OOO, but that applicability is to the Contractor's plant.
NSPS 40 CFR Part 60 Subpart LLL	Standards of Performance for Onshore Natural Gas Processing : SO ₂ Emissions	No	N/A	The facility is not a natural gas processing plant, including a sweetening unit followed by a sulfur recovery unit. This regulation does not apply.
NSPS 40 CFR Part 60 Subpart 0000	Standards of Performance for Crude Oil and Natural Gas Production, Transmission, and Distribution for which construction, modification or reconstruction commenced after August 23, 2011 and before September 18, 2015	No	N/A	The rule applies to "affected" facilities that are constructed, modified, or reconstructed after Aug 23, 2011 (40 CFR 60.5365): gas wells, including fractured and hydraulically refractured wells, centrifugal compressors, reciprocating compressors, pneumatic controllers, certain equipment at natural gas processing plants, sweetening units at natural gas processing plants, and storage vessels. This facility does not contain the affected source. This regulation does not apply.

FEDERAL REGU- LATIONS CITATION	Title	Applies? Enter Yes or No	Unit(s) or Facility	JUSTIFICATION:
NSPS 40 CFR Part 60 Subpart OOOOa	Standards of Performance for Crude Oil and Natural Gas Facilities for which Construction, Modification or Reconstruction Commenced After September 18, 2015	No	N/A	This facility does not contain the affected source. This regulation does not apply.
NSPS 40 CFR 60 Subpart IIII	Standards of performance for Stationary Compression Ignition Internal Combustion Engines	Yes	OP-4, OP-7, OP-8, SD-1, SD-2, ENV-120	The provisions of this subpart are applicable to manufacturers, owners, and operators of stationary compression ignition (CI) internal combustion engines (ICE) and other persons as specified in paragraphs (a)(1) through (4) of this section. This facility contains several CI ICE which commenced construction after July 11, 2005 and were manufactured after April 1, 2006.
NSPS 40 CFR Part 60 Subpart JJJJ	Standards of Performance for Stationary Spark Ignition Internal Combustion Engines	Yes	Generac Emergency Generators 1-4, IPG, SX Tankhouse Emergency Generator	The provisions of this subpart are applicable to manufacturers, owners, and operators of stationary spark ignition (SI) internal combustion engines (ICE) as specified in paragraphs (a)(1) through (6) of this section. The Generac Emergency Generators (units Generac Emergency Generator 1 through 4), unit IPG, and the SX Tankhouse Emergency Generator are subject to NSPS JJJJ.
NSPS 40 CFR 60 Subpart TTTT	Standards of Performance for Greenhouse Gas Emissions for Electric Generating Units	No	N/A	This subpart establishes emission standards and compliance schedules for the control of greenhouse gas (GHG) emissions from a steam generating unit, IGCC, or a stationary combustion turbine that commences construction after January 8, 2014 or commences modification or reconstruction after June 18, 2014. This facility does not contain the affected source. This regulation does not
NSPS 40 CFR 60 Subpart UUUU	Emissions Guidelines for Greenhouse Gas Emissions and Compliance Times for Electric Utility Generating Units	No	N/A	apply. This subpart establishes emission guidelines and approval criteria for State or multi-State plans that establish emission standards limiting greenhouse gas (GHG) emissions from an affected steam generating unit, integrated gasification combined cycle (IGCC), or stationary combustion turbine. This facility does not contain the affected source. This regulation does not apply.
NSPS 40 CFR 60, Subparts WWW, XXX, Cc, and Cf	Standards of performance for Municipal Solid Waste (MSW) Landfills	No	N/A	This facility is not a municipal solid waste landfill. This regulation does not apply
NESHAP 40 CFR 61 Subpart A	General Provisions	No	Units Subject to 40 CFR 61	Applies if any other Subpart in 40 CFR 61 applies. As no subparts apply, this regulation does not apply.
NESHAP 40 CFR 61 Subpart E	National Emission Standards for Mercury	No	N/A	The provisions of this subpart are applicable to those stationary sources which process mercury ore to recover mercury, use mercury chlor-alkali cells to produce chlorine gas and alkali metal hydroxide, and incinerate or dry wastewater treatment plant sludge. This facility does not contain the affected activity. This regulation does not

FEDERAL REGU- LATIONS CITATION	Title	Applies? Enter Yes or No	Unit(s) or Facility	JUSTIFICATION:
				apply.
NESHAP 40 CFR 61 Subpart V	National Emission Standards for Equipment Leaks (Fugitive Emission Sources)	No	N/A	The provisions of this subpart apply to each of the following sources that are intended to operate in volatile hazardous air pollutant (VHAP) service: pumps, compressors, pressure relief devices, sampling connection systems, open-ended valves or lines, valves, connectors, surge control vessels, bottoms receivers, and control devices or systems required by this subpart. VHAP service means a piece of equipment either contains or contacts a fluid (liquid or gas) that is at least 10 percent by weight of VHAP. VHAP means a substance regulated under this subpart for which a standard for equipment leaks of the substance has been promulgated. Benzene is a VHAP (See 40 CFR 61 Subpart J). Link to 40 CFR 61 Subpart V This facility does not contain the affected source. This regulation does not apply.
MACT 40 CFR 63, Subpart A	General Provisions	Yes	Units Subject to 40 CFR 63	This regulation applies as 40 CFR 63 Subparts A, ZZZZ, and CCCCCC apply.
MACT 40 CFR 63.760 Subpart HH	Oil and Natural Gas Production Facilities	No	N/A	This subpart applies to the owners and operators of the emission points, specified in paragraph (b) of this section that are located at oil and natural gas production facilities that meet the specified criteria in paragraphs (a)(1) and either (a)(2) or (a)(3) of this section. This facility is not an oil or natural gas production facility. This regulation does not apply.
MACT 40 CFR 63 Subpart HHH	National Emission Standards for Hazardous Air Pollutants From Natural Gas Transmission and Storage Facilities	No	N/A	This subpart applies to owners and operators of natural gas transmission and storage facilities that transport or store natural gas prior to entering the pipeline to a local distribution company or to a final end user (if there is no local distribution company), and that are major sources of hazardous air pollutants (HAP) emissions as defined in §63.1271. This facility does not contain the affected source. This regulation does not apply.
MACT 40 CFR 63 Subpart DDDDD	National Emission Standards for Hazardous Air Pollutants for Major Industrial, Commercial, and Institutional Boilers & Process Heaters	No	N/A	This subpart establishes national emission limitations and work practice standards for hazardous air pollutants (HAP) emitted from industrial, commercial, and institutional boilers and process heaters located at major sources of HAP. This facility does not contain the affected source. This regulation does not apply.
MACT 40 CFR 63 Subpart UUUUU	National Emission Standards for Hazardous Air Pollutants Coal & Oil Fire Electric Utility Steam Generating Unit	No	N/A	This subpart establishes national emission limitations and work practice standards for hazardous air pollutants (HAP) emitted from coal- and oil- fired electric utility steam generating units (EGUs) as defined in \$63.10042 of this subpart. This facility does not contain the affected source. This regulation does not apply.

FEDERAL REGU- LATIONS CITATION	Title	Applies? Enter Yes or No	Unit(s) or Facility	JUSTIFICATION:
MACT 40 CFR 63 Subpart ZZZZ	National Emissions Standards for Hazardous Air Pollutants for Stationary Reciprocating Internal Combustion Engines (RICE MACT)	Yes	PPG-1, 3, 4, 7, 8, 11, 12, 13, 14, 15 ENV-101, ENV-101, ENV-111, ENV-117, ENV-122, ENV-123, Generac Emergency Generators 1-4, GO Generator Backup E1- 128, SX/EW Fire Water Pump, OP-2, OP-4, OP-7, OP-8, EMP-1, EMP-2, ENV-120, SD- 1, SD-2, IPG, CE-1 SX Tankhouse Emergency Generator	You are subject to this subpart if you own or operate a stationary RICE at a major or area source of HAP emissions. This facility contains the affected RICE sources listed here.
MACT 40 CFR 63 Subpart CCCCCC	National Emission Standards for Hazardous Air Pollutants for Source Category: Gasoline Dispensing Facilities	Yes	SPCC-TYR- 061 (GDF1) SPCC-TYR- 119 (GDF2)	This subpart establishes national emission limitations and management practices for hazardous air pollutants (HAP) emitted from the loading of gasoline storage tanks at gasoline dispensing facilities (GDF). This subpart also establishes requirements to demonstrate compliance with the emission limitations and management practices. The affected source to which this subpart applies is each GDF that is located at an area source. The affected source includes each gasoline cargo tank during the delivery of product to a GDF and also includes each storage tank. The gasoline dispensing units at this facility are subject. Per the regulation, because each GDF has a monthly throughput of less than
40 CFR 64	Compliance Assurance Monitoring	No	N/A	10,000 gallons of gasoline, the requirements in §63.11116 apply. The facility does not operate any pollutant-specific emissions unit that uses a control device to achieve compliance with a standard and the unit has potential pre-control device emissions of the applicable regulated air pollutant that are equal to or greater than 100 percent of the amount required for the source to be classified as a major source. As such, a CAM plan is not required.
40 CFR 68	Chemical Accident Prevention	No	N/A	This regulation applies to an owner or operator of a stationary source that has more than a threshold quantity of a regulated substance in a process, as determined under §68.115. This facility is not subject.
Title IV – Acid Rain 40 CFR 72	Acid Rain	No	N/A	See 40 CFR 72.6. This may apply if your facility generates commercial electric power or electric power for sale. The facility does not engage in the regulated activities. This regulation does not apply.
Title IV – Acid Rain 40 CFR 73	Sulfur Dioxide Allowance Emissions	No	N/A	See 40 CFR 73.2. This may apply if your facility generates commercial electric power or electric power for sale. The facility does not engage in the regulated activities. This regulation does not apply.
Title IV-Acid Rain 40 CFR 75	Continuous Emissions Monitoring	No	N/A	See 40 CFR 75.2. This may apply if your facility generates commercial electric power or electric power for sale. The facility does not engage in the regulated activities. This regulation does not apply.
Title IV –	Acid Rain	No	N/A	See 40 CFR 76.1. This may apply if your facility generates commercial

FEDERAL REGU- LATIONS CITATION	Title	Applies? Enter Yes or No	Unit(s) or Facility	JUSTIFICATION:
Acid Rain 40 CFR 76	Nitrogen Oxides Emission Reduction Program			electric power or electric power for sale. The facility does not engage in the regulated activities. This regulation does not apply.
Title VI – 40 CFR 82	Protection of Stratospheric Ozone	Yes	N/A	This regulation applies under the following citation: (82.150) if you service, maintain, or repair appliances, dispose of appliances, refrigerant reclaimers, if you are an owner or operator of an appliance , if you are a manufacturer of appliances or of recycling and recovery equipment, if you are an approved recycling and recovery equipment testing organization, and/or if you sell or offer for sell or purchase class I or class I refrigerants.

Section 14

Operational Plan to Mitigate Emissions

(Submitting under 20.2.70, 20.2.72, 20.2.74 NMAC)

☑ Title V Sources (20.2.70 NMAC): By checking this box and certifying this application the permittee certifies that it has developed an <u>Operational Plan to Mitigate Emissions During Startups</u>, <u>Shutdowns</u>, <u>and Emergencies</u> defining the measures to be taken to mitigate source emissions during startups, shutdowns, and emergencies as required by 20.2.70.300.D.5(f) and (g) NMAC. This plan shall be kept on site to be made available to the Department upon request. This plan should not be submitted with this application.

- ✓ NSR (20.2.72 NMAC), PSD (20.2.74 NMAC) & Nonattainment (20.2.79 NMAC) Sources: By checking this box and certifying this application the permittee certifies that it has developed an <u>Operational Plan to Mitigate Source Emissions</u> <u>During Malfunction, Startup, or Shutdown</u> defining the measures to be taken to mitigate source emissions during malfunction, startup, or shutdown as required by 20.2.72.203.A.5 NMAC. This plan shall be kept on site to be made available to the Department upon request. This plan should not be submitted with this application.
- ☑ **Title V** (20.2.70 NMAC), **NSR** (20.2.72 NMAC), **PSD** (20.2.74 NMAC) & **Nonattainment** (20.2.79 NMAC) Sources: By checking this box and certifying this application the permittee certifies that it has established and implemented a Plan to Minimize Emissions During Routine or Predictable Startup, Shutdown, and Scheduled Maintenance through work practice standards and good air pollution control practices as required by 20.2.7.14.A and B NMAC. This plan shall be kept on site or at the nearest field office to be made available to the Department upon request. This plan should not be submitted with this application.

Freeport-McMoRan Tyrone Inc. maintains the required operational plans to mitigate emissions.

Section 15

Alternative Operating Scenarios

(Submitting under 20.2.70, 20.2.72, 20.2.74 NMAC)

Alternative Operating Scenarios: Provide all information required by the department to define alternative operating scenarios. This includes process, material and product changes; facility emissions information; air pollution control equipment requirements; any applicable requirements; monitoring, recordkeeping, and reporting requirements; and compliance certification requirements. Please ensure applicable Tables in this application are clearly marked to show alternative operating scenario.

Construction Scenarios: When a permit is modified authorizing new construction to an existing facility, NMED includes a condition to clearly address which permit condition(s) (from the previous permit and the new permit) govern during the interval between the date of issuance of the modification permit and the completion of construction of the modification(s). There are many possible variables that need to be addressed such as: Is simultaneous operation of the old and new units permitted and, if so for example, for how long and under what restraints? In general, these types of requirements will be addressed in Section A100 of the permit, but additional requirements may be added elsewhere. Look in A100 of our NSR and/or TV permit template for sample language dealing with these requirements. Find these permit templates at: https://www.env.nm.gov/aqb/permit/aqb_pol.html. Compliance with standards must be maintained during construction, which should not usually be a problem unless simultaneous operation of old and new equipment is requested.

In this section, under the bolded title "Construction Scenarios", specify any information necessary to write these conditions, such as: conservative-realistic estimated time for completion of construction of the various units, whether simultaneous operation of old and new units is being requested (and, if so, modeled), whether the old units will be removed or decommissioned, any PSD ramifications, any temporary limits requested during phased construction, whether any increase in emissions is being requested as SSM emissions or will instead be handled as a separate Construction Scenario (with corresponding emission limits and conditions, etc.

Tyrone Mine currently operates under the alternate operating scenario (AOS) approved in NSR Permit No. PSD2448-M5 and is requesting to have the mining scenario associated with NSR Permit No. PSD2448-M5 and in this permit application listed as AOS's in NSR Permit No. PSD2448-M6. The AOS's associated with NSR Permit Nos. PSD2448-M3 and -M2 can be removed from the permit. Please see below for simplified operating and throughput limit tables that are being proposed to replace Tables 108.A.1 and 108.A.2 in the permit.

Mining Operating Scenario ¹	Pit Name ²	Maximum Blasting Agent Usage per Blast (lbs/blast)	Maximum No. of Blasts per Day ³	Maximum Daily Blasting Agent Usage (lbs/day)	Maximum Blast Area per Blast (ft²/blast)	Maximum Mining Rates ⁴ (tons/day)
Scenario 1	Gettysburg	160,000	2	200,000	85,000	200,000
Scenario 1	Mohawk	160,000	2	200,000	125,000	200,000
S	Mohawk	150,000	2	300,000	125,000	200,000
Scenario 2	Copper Mountain	100,000	1	100,000	125,000	200,000
Scenario 3	Mohawk	150,000	2	300,000	125,000	200,000
Scenario 5	Little Rock 6	100,000	1	100,000	125,000	90,000
Scenario 4	Mohawk	150,000	2	300,000	125,000	200,000
Scenario 4	Copper Leach	50,000	1	50,000	125,000	90,000
Scenario 5	Burro Chief	200,000	2	400,000	125,000	200,000
Scenario 5	Little Rock 6	100,000	1	100,000	125,000	90,000
Comparing (Burro Chief	200,000	2	400,000	125,000	200,000
Scenario 6	Copper Leach	50,000	1	50,000	125,000	90,000
Scenario 7	Mohawk	150,000	2	300,000	125,000	200,000
Scenario /	Burro Chief	200,000	2	400,000	125,000	200,000

Table 108.A.1: Allowable Mining Operating and Throughput Limits (Fugitives)

Footnotes:

¹ Only one scenario can be operated during a given day.

² Both pits within a scenario can be operated simultaneously.

³ Blasting can only occur during daylight hours.

⁴ The movement of material (waste rock, overburden, and ore) from the pits to the waste or leach piles (handling and hauling) can occur 24 hours/day.

Table 108.A.2: Allowable Reclamation O	perating and Throughput Limits (Fugitives)
Table 100.A.2. Anowable Reclamation O	perading and rinoughput Linnes (rugitives)

Reclamation Area	Maximum Reclamation Rates ¹ (tons/day)
Launder Line	5,000
Thickener	15,000
P-Plant	15,000
1A/1B Stockpile	20,000
2A/2B Stockpile	20,000
CLW Stockpile	15,000

Footnotes:

¹ The movement of reclamation material (handling and hauling) can occur 24 hours/day.

Table 108.A.3: Allowable Crushing & Screening Plant Operating and Throughput Limits (Fugitives)

Emission Unit	Operating Schedule	Maximum Throughput ¹ (tons/hour)	
Crushing & Screening Plant	12 hrs/day	600	

Footnotes:

¹ Material includes ore and waste rock. Waste rock includes overburden. Activities include handling and hauling.

Section 16 Air Dispersion Modeling

- Minor Source Construction (20.2.72 NMAC) and Prevention of Significant Deterioration (PSD) (20.2.74 NMAC) ambient impact analysis (modeling): Provide an ambient impact analysis as required at 20.2.72.203.A(4) and/or 20.2.74.303 NMAC and as outlined in the Air Quality Bureau's Dispersion Modeling Guidelines found on the Planning Section's modeling website. If air dispersion modeling has been waived for one or more pollutants, attach the AQB Modeling Section modeling waiver approval documentation.
- 2) SSM Modeling: Applicants must conduct dispersion modeling for the total short term emissions during routine or predictable startup, shutdown, or maintenance (SSM) using realistic worst case scenarios following guidance from the Air Quality Bureau's dispersion modeling section. Refer to "Guidance for Submittal of Startup, Shutdown, Maintenance Emissions in Permit Applications (<u>http://www.env.nm.gov/aqb/permit/app_form.html</u>) for more detailed instructions on SSM emissions modeling requirements.
- 3) Title V (20.2.70 NMAC) ambient impact analysis: Title V applications must specify the construction permit and/or Title V Permit number(s) for which air quality dispersion modeling was last approved. Facilities that have only a Title V permit, such as landfills and air curtain incinerators, are subject to the same modeling required for preconstruction permits required by 20.2.72 and 20.2.74 NMAC.

What is the purpose of this application?	Enter an X for each purpose that applies
New PSD major source or PSD major modification (20.2.74 NMAC). See #1 above.	
New Minor Source or significant permit revision under 20.2.72 NMAC (20.2.72.219.D NMAC). See #1 above. Note: Neither modeling nor a modeling waiver is required for VOC emissions.	Х
Reporting existing pollutants that were not previously reported.	
Reporting existing pollutants where the ambient impact is being addressed for the first time.	
Title V application (new, renewal, significant, or minor modification. 20.2.70 NMAC). See #3 above.	
Relocation (20.2.72.202.B.4 or 72.202.D.3.c NMAC)	
Minor Source Technical Permit Revision 20.2.72.219.B.1.d.vi NMAC for like-kind unit replacements.	
Other: i.e. SSM modeling. See #2 above.	
This application does not require modeling since this is a No Permit Required (NPR) application.	
This application does not require modeling since this is a Notice of Intent (NOI) application (20.2.73 NMAC).	
This application does not require modeling according to 20.2.70.7.E(11), 20.2.72.203.A(4), 20.2.74.303, 20.2.79.109.D NMAC and in accordance with the Air Quality Bureau's Modeling Guidelines.	

Check each box that applies:

- □ See attached, approved modeling **waiver for all** pollutants from the facility.
- □ See attached, approved modeling **waiver for some** pollutants from the facility.
- Attached in Universal Application Form 4 (UA4) is a modeling report for all pollutants from the facility.
- □ Attached in UA4 is a **modeling report for some** pollutants from the facility.
- \Box No modeling is required.

Universal Application 4

Air Dispersion Modeling Report

Refer to and complete Section 16 of the Universal Application form (UA3) to assist your determination as to whether modeling is required. If, after filling out Section 16, you are still unsure if modeling is required, e-mail the completed Section 16 to the AQB Modeling Manager for assistance in making this determination. If modeling is required, a modeling protocol would be submitted and approved prior to an application submittal. The protocol should be emailed to the modeling manager. A protocol is recommended but optional for minor sources and is required for new PSD sources or PSD major modifications. Fill out and submit this portion of the Universal Application form (UA4), the "Air Dispersion Modeling Report", only if air dispersion modeling is required for this application submittal. This serves as your modeling report submittal and should contain all the information needed to describe the modeling. No other modeling report or modeling protocol should be submitted with this permit application.

16	16-A: Identification				
1	Name of facility:	Tyrone Mine			
2	Name of company:	Freeport-McMoRan Tyrone Inc.			
3	Current Permit number:	PSD2448-M5; P147-R2M1			
4	Name of applicant's modeler:	Miriam Hacker, Aspen Outlook LLC			
5	Phone number of modeler:	720-839-5461			
6	E-mail of modeler:	miriamhacker@aspenoutlook.com			

16-B: Brief

TO							
1	Was a modeling protocol submitted and approved?	Yes⊠	No				
2	Why is the modeling being done? To show compliance with the NAAQS, NMAAQS, and PSD Increment associated with new alternate operating scenarios.Other (describe below)						
	Describe the permit changes relevant to the modeling.						
3	The proposed action in this permit application will allow for mining and hauling activities in six (6) new operating scenarios that encompass the following pits in various combinations: Mohawk, Copper Mountain, Copper Leach, Burro Chief, and Little Rock 6. Each scenario contains two pits in operation at a time.						
The existing operating scenario in the Gettysburg and Mohawk pits, as approved in NSR Permit No. PSD2448-I will continue to be utilized, so the new scenarios in this permit application will be in addition to the existing scenarios are currently needed by the Tyrone Mine, including the previously permitted scen NSR Permit Nos. PSD2448-M2 and -M3.							

	New reclamation hauling and material handling activities			, which will			
	supersede the reclamation activities allowed by NSR Perm	iit Nos. PSD2448-M5, -M3, and -N	M2.				
	Other changes requested in this permit application include	e:					
	 f The addition of two new boilers that will serve as the SX heat exchanger hot water heaters. Updates to the Crushing & Screening Plant (C&S Plant; formerly "SP-7A") emissions due to the planned activities. The C&S Plant will be owned and operated by a contractor that has an approved registration to operate under a General Construction Permit-2 (GCP-2), Revision 3, dated 9/12/2006, an approved Relocation Notice, and an approved equipment list. The C&S Plant will be powered by facility-provided electric power. Updates to the existing Gasoline Dispensing Facilities (GDF1, GDF2) VOC emission calculations based on the June 2020 updated AP-42 Chapter 7 (Liquid Storage Tanks). The HAP emission calculations were also updated to reflect accurate gasoline HAP constituents. The throughput of each GDF was increased to a maximum of 9,900 gal/month. Updates to the SO₂ and VOC emission factors for the two existing cathode washing hot water heaters. The SO₂ emission factor was updated to reflect the correct sulfur content of propane and the VOC emission factor was updated to reflect only the non-methane portion of the TOC emission factor. Various updates to the diesel engine/pump emissions, which include some engine horsepower changes, emission factor changes, fuel usage rate changes, and greenhouse gas calculation changes. 						
	The facility will remain a Title V major and PSD minor so	ource with the proposed changes.					
4	What geodetic datum was used in the modeling? WGS84						
5	How long will the facility be at this location?Greater than one year						
6	Is the facility a major source with respect to Prevention of Significant Deterioration (PSD)? Yes \Box						
7	Identify the Air Quality Control Region (AQCR) in which the	facility is located	012				
	List the PSD baseline dates for this region (minor or major, as	s appropriate).					
	NO ₂	Minor - 8/10/1995					
8	SO ₂	Minor - 8/10/1995					
	PM10	Minor - 8/10/1995					
	PM2.5	Minor - Not Applicable					
	Provide the name and distance to Class I areas within 50 km of	of the facility (300 km for PSD pern	nits).				
9	Gila Wilderness; 37 km						
10	Is the facility located in a non-attainment area? If so describe	below	Yes□	No⊠			
	Not Applicable						
11	Describe any special modeling requirements, such as streamline permit requirements.						
	Not Applicable – no special modeling requirements have been applied.						

16-C: Modeling History of Facility

Describe the modeling history of the facility, including the air permit numbers, the pollutants modeled, the National Ambient Air Quality Standards (NAAQS), New Mexico AAQS (NMAAQS), and PSD increments modeled. (Do not include modeling waivers).

Pollutant	Latest permit and modification number that modeled the pollutant facility-wide.	Date of Permit	Comments		
СО	NSR 2448-M5	July 2020	NAAQS/NMAAQS		
NO ₂	NSR 2448-M5	July 2020	NAAQS/NMAAQS/PSD Class I and II Increment		
SO_2	NSR 2448-M5	July 2020	SIL		
H_2S	Not applicable				
PM2.5	NSR 2448-M5	July 2020	NAAQS		
PM10	NSR 2448-M5	July 2020	NAAQS /PSD Class I and II Increment		
Lead	Not applicable				
Ozone (PSD only)	Not applicable				
NM Toxic Air Pollutants (20.2.72.402 NMAC)	Not applicable				

16-D: Modeling performed for this application

For each pollutant, indicate the modeling performed and submitted with this application. Choose the most complicated modeling applicable for that pollutant, i.e., culpability analysis assumes ROI and cumulative analysis were also performed.

	Pollutant	ROI	Cumulative analysis	Culpability analysis	Waiver approved	Pollutant not emitted or not changed.
	СО		\boxtimes			
	NO ₂		\boxtimes			
1	SO ₂	\boxtimes				
	H_2S					\boxtimes
	PM2.5		\boxtimes			
	PM10		\boxtimes			
	Lead					\boxtimes
	Ozone					\boxtimes
	State air toxic(s) (20.2.72.402 NMAC)					

16-	16-E: New Mexico toxic air pollutants modeling												
	•		r pollutants (NMTAPs) from	Tables A and B i	in 20.2.72.502 NMAC that	t are modeled for this							
1		application.											
	Not Applic	cable											
	List any NMTAPs that are emitted but not modeled because stack height correction factor. Add additional rows to the table												
2	below, if re	below, if required. Not Applicable											
	Dollutont	Emission Rate	Emission Rate Screening	Stack Height	Correction Factor	Emission Rate/							
	Pollutant	(pounds/hour)	Level (pounds/hour)	(meters)	Correction Factor	Correction Factor							

16-F: Modeling options										
1	Was the latest version of AERMOD used with regulatory default options? If not explain below.	Yes⊠	No□							
	AERMOD Version 19191, with dry deposition									

16-G: Surrounding source modeling 1 Date of surrounding source retrieval January 8, 2020 – confirmed by Eric Peters August 25, 2020 If the surrounding source inventory provided by the Air Quality Bureau was believed to be inaccurate, describe how the sources modeled differ from the inventory provided. If changes to the surrounding source inventory were made, use the table below to describe them. Add rows as needed. 2 AQB Source ID Description of Corrections N/A N/A

16-	16-H: Building and structure downwash											
1	How many buildings are present at the facility?	There are several buildings located at the facility.										
2	How many above ground storage tanks are present at the facility? There are several above ground storage tanks located at the facility.											
3	Was building downwash modeled for all buildings and	tanks? If not explain why below.	Yes□	No⊠								
	Due to the expansive size of the facility and the location of the point sources relative to boundary receptors, any building downwash that may occur would have sufficient space to disperse prior to reaching the boundary.											
4	Building comments	No comments										

16-I: Receptors and modeled property boundary									
1	"Restricted Area" is an area to which public entry is effectively precluded. Effective barriers incl continuous walls, or other continuous barriers approved by the Department, such as rugged phys grade that would require special equipment to traverse. If a large property is completely enclosed within the property may be identified with signage only. Public roads cannot be part of a Restrict is required in order to exclude receptors from the facility property. If the facility does not have a receptors shall be placed within the property boundaries of the facility. Describe the fence or other physical barrier at the facility that defines the restricted area.	ical terrain with l by fencing, a r ted Area. A Res	a steep estricted area tricted Area						
	The restricted area is defined by fencing, gates, signs, and rugged terrain.								
2	Receptors must be placed along publicly accessible roads in the restricted area. Are there public roads passing through the restricted area?	Yes⊠	No□						

3	Are restricted area boundary coordinates included in the modeling files?							No□	
	Describe the rec	eptor grids an	d their spaci	ng. The table below ma	y be used, adding row	s as need	ed.		
	Grid Type	ShapeSpacingStart distance from restricted area or center of facilityEnd distance from restricted area or center of facility		Comments					
4	Boundary	Boundary	100 m			Around fenceline			
	Tight	Boundary	100 m		500 m	From f	enceline bou	indary	
	Fine	Square	500 m	500 m	5,000 m				
	Course	Square	1,000 m	5,000 m	25,000 m				
	Sensitive/road	sitive/road Road 100 m A				Along all on-site roads			
	Describe receptor spacing along the fence line.								
5 100-meter spacing									
	Describe the PSI		1					4 69	
6	PSD class I area Wilderness, as 1			d from the 2018 Merg l assessment.	eMaster database pr	ovided b	y NMED for	• the Gila	

16	16-J: Sensitive areas										
1	Are there schools or hospitals or other sensitive areas near the facility? If so describe below. This information is optional (and purposely undefined) but may help determine issues related to public notice.	Yes□	No⊠								
3	The modeling review process may need to be accelerated if there is a public hearing. Are there likely to be public comments opposing the permit application?	Yes□	No⊠								

16-K: Modeling Scenarios

Identify, define, and describe all modeling scenarios. Examples of modeling scenarios include using different production rates, times of day, times of year, simultaneous or alternate operation of old and new equipment during transition periods, etc. Alternative operating scenarios should correspond to all parts of the Universal Application and should be fully described in Section 15 of the Universal Application (UA3).

Blasting scenarios:

1

Scenario 2: Mohawk (150,000 lbs/blast & 2 blasts/day) + Copper Mountain (100,000 lbs/blast & 1 blast/day) Scenario 3: Mohawk (150,000 lbs/blast & 2 blasts/day) + Little Rock 6 (100,000 lbs/blast & 1 blast/day) Scenario 4: Mohawk (150,000 lbs/blast & 2 blasts/day) + Copper Leach (50,000 lbs/blast & 1 blast/day) Scenario 5: Burro Chief (200,000 lbs/blast & 2 blasts/day) + Little Rock 6 (100,000 lbs/blast & 1 blast/day) Scenario 6: Burro Chief (200,000 lbs/blast & 2 blasts/day) + Copper Leach (50,000 lbs/blast & 1 blast/day) Scenario 7: Mohawk (150,000 lbs/blast & 2 blasts/day) + Burro Chief (200,000 lbs/blast & 2 blasts/day)

Hours of blasting are limited to start up and shut down times. Blasting will start no earlier than 10am in December, 9am in the other winter months (November, January, and February), and 8am in the remaining months. Blasting will only occur during daylight hours, according to NOAA sunset time.

	Material handling throughputs associated with the blasting operations are included in the model at the following rates: Mohawk - 200,000 tons/day Copper Mountain - 200,00 tons/day Little Rock 6 - 90,000 tons/day Copper Leach - 90,000 tons/day Burro Chief - 200,00 tons/day Reclamation scenarios associated with the worst-case small and large truck projects operating simultaneously within each mining scenario were assessed at the following rates: Launder Line - 5,000 tons/day P-Plant - 15,000 tons/day LATB Stockpile - 20,000 tons/day LATB Stockpile - 20,000 tons/day Cuw Stockpile - 15,000 tons/day Crushing and Screening operations are limited to 600 tph and may only occur between the hours of 8am to 8pm.											
2	Which scenario produces the highest concentrations? Why? A summary of worst case scenario determinations is provided in Attachment A. Active Mining (Gaseous Pollutants): Scenario 5 (Burro Chief + Little Rock 6) – proximity of operations to boundary (Particulate Pollutants) Scenario 3: Mohawk + Little Rock 6 – proximity of operations to boundary Reclamation: Launder Line or Thickener – proximity of operations to boundary											
3	Were emis	sion factor tion pertain	sets used ns to the "S	to limit en SEASON",	nission rate "MONTH	es or hours I", "HROF	of operat DY" and	ion?	tor sets, not	Yes□		No⊠
4									ore the factor if it makes fo			
	Hour of Day	Factor	Hour of Day	Factor								
	1		13									
	2		14									
	3		15									
	4		16									
	5		17									
	6		18									
5	7		19									
	8		20									
	9		20									
	9 10		21									
			22									
	11 12		23									
		variable en		es were use	d that wer	e not desc	ribed abo	ve, describe	e them below			
	Not Appli	cable										
6	Were diffe	rent emissi	ion rates u	sed for sho	ort-term an	d annual n	nodeling?	If so descr	ibe below.	Yes⊠		No□
	Annual N	O2 complia	ance was	demonstra	ted using	annual ei	nission ra	ates in sepa	arate model	file runs.		

16	-L: NO	O2 Modeling								
		ypes of NO ₂ modeling were used? Il that apply.								
		ARM2								
1		100% NO _X to NO ₂ conversion								
		D PVMRM								
		Other:								
2	Describ	Describe the NO ₂ modeling.								
-	NO ₂ was modeled using default ARM2 parameters.									
3		Were default NO ₂ /NO _x ratios (0.5 minimum, 0.9 maximum or equilibrium) used? If not describe and justify the ratios used below. No \Box								
	Not app	Not applicable								
4	Describ	e the design value used for each averaging period modeled.								
		1-hour: High eighth high Annual: One Year Annual Average								

16-	M: Part	iculate Ma	tter Modeling									
	Select the pollutants for which plume depletion modeling was used.											
1		PM2.5										
	\boxtimes	PM10										
		None										
	Describe the	particle size distr	ibutions used. Include the	e source	of information.							
2	The particle	e size informatior	used in the M5 model	assessn	nent was maintained in this as	sessment.						
3	Does the fac Sources that considered to formation of	Yes⊠	No□									
4	Was seconda	ary PM modeled f	or PM2.5?			Yes□	No⊠					
	If MERPs w below.	ere used to account	nt for secondary PM2.5 f	ïll out th	e information below. If anothe	r method was u	used describe					
	NO _X (ton/yr)	SO ₂ (ton/yr) [PM2.5] _{annual}			[PM2.5] _{24-hour}						
5												
	than 40 tpy	A secondary PM _{2.5} analysis is only required for modifications that increase emissions of NOx and/or SO ₂ by more than 40 tpy. This proposed modification does not increase emissions of NOx or SO ₂ by more than 40 tpy, therefore a secondary PM _{2.5} analysis is not required.										

16-N: Setback Distances

1	Portable sources or sources that need flexibility in their site configuration requires that setback distances be determined between the emission sources and the restricted area boundary (e.g. fence line) for both the initial location and future locations. Describe the setback distances for the initial location.
	Not Applicable – No setback distance was applied.
2	Describe the requested, modeled, setback distances for future locations, if this permit is for a portable stationary source. Include a haul road in the relocation modeling.
	Not Applicable

16-	O: PSD Increm	nent and Source	e IDs					
	The unit numbers in the modeling files. Do these if they do not match be				Yes		No⊠	
	Unit Number in UA-2			Unit Numb	er in Modeling Files	5		
1	Mine Fugitives (Blasti	ng)		MHBL, LF	R6BL, CLBL, CMI	BL, BO	CBL	
-	Mine Fugitives (Hand	ling)		Mohawk, I	LR6MH, CLMH, C	CMMI	H, BCMH	[
	Mine Fugitives (Hauli	ng, includes Stockpile ha	ndling)	See Attach	ed Table O-1 and T	Fable	0-2	
	Reclamation Fugitives	s (Handling)		See Attach	ed Table O-2			
	Reclamation Fugitives	s (Hauling)		See Attach	ed Table O-1			
	C&S Plant Fugitives (C&S Plant - Handling)				CREEN, CONTRN	N, Agg	gHand	
	C&S Plant Fugitives (0.			S, CSROADN			
2	The emission rates in the these match? If not, exp	ne Tables 2-E and 2-F shou blain why below.	ild match the	ones in the n	nodeling files. Do	Yes[No⊠
	Fugitive sources are se	eparated depending on so	ource, as ind	icated above	•			
3	Have the minor NSR exbeen modeled?	kempt sources or Title V In	nsignificant A	Activities" (Ta	able 2-B) sources	Yes□		No⊠
4	All current and propo	ncrement for which polluta sed engines will consume sust 1995. Long term (mo						
-	Unit ID	NO ₂	SO ₂		PM10		PM2.5	
	See above	Blasting; engines	Blasting; e	ngines	All sources descri above	ibed	Not App	olicable
5 PSD increment description for sources. (for unusual cases, i.e., baseline unit expanded emissions after baseline date). The baseline PM ₁₀ emissions used in this analysis submained analysis submai					submitted in nit No. in proposed ust 1995, the emission rate their			
	Are all the actual installation dates included in Table 2A of the application form, as required? Yes \boxtimes No \square							

6	This is necessary to verify the accuracy of PSD increment modeling. If not please explain how increment consumption status is determined for the missing installation dates below.	

1	16-P: Flare Modeling							
1	For each flare or flaring scenario, complete the following – Not Applicable – there are no flares at this facility							
		Flare ID (and scenario)	Average Molecular Weight	Gross Heat Release (cal/s)	Effective Flare Diameter (m)			

16-	16-Q: Volume and Related Sources						
	Were the dimensions of volume sources different from standard dimensions in the Air Quality Bureau (AQB) Modeling Guidelines?	Yes□	No⊠				
1	If not please explain how increment consumption status is determined for the missing installation dates below.						
	Dimensions of volume sources were determined according to the truck sizes at the facility 5.3.3 of the modeling guidelines.	and guidance i	n Section				
	Describe the determination of sigma-Y and sigma-Z for fugitive sources.						
2	Fugitive volume source parameters were determined according to guidance in Sections 5.2 guidelines.	3.1 and 5.3.2 of	the modeling				
3	Describe how the volume sources are related to unit numbers. Or say they are the same.						
	Screening plant sources were modeled as volume sources per Section 5.3.1. Haul roads were modeled as line volume sources, with release parameters determined per Section 5.3.3. Haul road unit numbers are described in Table O-1.						
	Describe any open pits.						
4	Five proposed pits at the facility were modeled. Blasting operations were modeled with a modeled with past permit applications, while material handling operations in the pit were height.						
5	Describe emission units included in each open pit.						
5	All pits were represented as blasting and material handling sources in the model.						

A summary of model input parameters is provided in Attachment B.

16-	R: Background Concentrations							
	Were NMED provided background concentrations used? Identify the background station used							
	below. If non-NMED provided background concentrations were used describe the data that was used.	Yes⊠	No					
	CO: N/A		1					
	NO ₂ : N/A							
1	PM2.5: Las Cruces Distric Office (350130025)							
	PM10: Deming (350029001)							
	SO ₂ : N/A							
	Other:							
	Comments:							
2	Were background concentrations refined to monthly or hourly values? If so describe below.	Yes□	No⊠					

16	16-S: Meteorological Data						
	Was NMED provided meteorological data used? If so select the station used.						
1	Deming Processed Doming 2010, provided by Angele Bege, June 11, 2020		No□				
2	Processed Deming 2019, provided by Angela Raso, June 11, 2020 If NMED provided meteorological data was not used describe the data set(s) used below. Discuss how missing data was handled, how stability class was determined, and how the data were processed.						
	Not Applicable						

16-T: Terrain							
1 Was complex terrain used in the modeling? If not, describe why below.Yes \square Not							
	Was complex terrain used in the modeling? If not, describe why below. What was the source of the terrain data?	Was complex terrain used in the modeling? If not, describe why below. Yes					

1	l 6 -	U: Modeling Files		
1		Describe the modeling files: See below		
		File name (or folder and file name)	Pollutant(s)	Purpose (ROI/SIA, cumulative, culpability analysis, other)

Tyrone Mine CO SIL M6	СО	ROI/SIA
Tyrone Mine CO AAQS M6	СО	Cumulative/AAQS
Tyrone Mine NO2 SIL M6	NO ₂	ROI/SIA
Tyrone Mine NO2 AAQS M6	NO ₂	Short Term - Cumulative/AAQS
Tyrone Mine Annual NO2 AAQS M6	NO ₂	Annual- Cumulative/AAQS/Class II PSD
Tyrone Mine Annual NO2 PSD Class I M6	NO ₂	Annual- Cumulative/Class I PSD
Tyrone Mine PM2.5 SIL M6	PM2.5	ROI/SIA – worst case scenario determination
Tyrone Mine PM2.5 AAQS M6	PM _{2.5}	Cumulative/AAQS
Tyrone Mine PM10 SIL M6	PM10	ROI/SIA – worst case scenario determination
Tyrone Mine PM10 AAQS M6	PM10	Cumulative/AAQS/Class II PSD
Tyrone Mine PM10 M6 Scenarios PSD Class I	PM10	Cumulative/Class I PSD
Tyrone Mine SO2 SIL M6	SO ₂	ROI/SIA

-V: PSD New or Major Modification Applications – Not	Applicab	le			
A new PSD major source or a major modification to an existing PSD major source requires additional analysis. Was preconstruction monitoring done (see 20.2.74.306 NMAC and PSD Preapplication Guidance on the AQB website)?	Yes□	No□			
If not, did AQB approve an exemption from preconstruction monitoring?	Yes□	No□			
3 Describe how preconstruction monitoring has been addressed or attach the approved preconstruction monitoring or monitoring exemption.					
Describe the additional impacts analysis required at 20.2.74.304 NMAC.					
If required, have ozone and secondary PM2.5 ambient impacts analyses been completed? If so describe below.	Yes□	No□			
	A new PSD major source or a major modification to an existing PSD major source requires additional analysis. Was preconstruction monitoring done (see 20.2.74.306 NMAC and PSD Preapplication Guidance on the AQB website)? If not, did AQB approve an exemption from preconstruction monitoring? Describe how preconstruction monitoring has been addressed or attach the approved preconst monitoring exemption. Describe the additional impacts analysis required at 20.2.74.304 NMAC.	additional analysis. Yes□ Was preconstruction monitoring done (see 20.2.74.306 NMAC and PSD Preapplication Guidance on the AQB website)? Yes□ If not, did AQB approve an exemption from preconstruction monitoring? Yes□ Describe how preconstruction monitoring has been addressed or attach the approved preconstruction monitor monitoring exemption. Yes□ Describe the additional impacts analysis required at 20.2.74.304 NMAC. Yes□ If required, have ozone and secondary PM2.5 ambient impacts analyses been completed? If Yes□			

1	requ sign	mbient standards an ired for the source ificance levels for t cribe below.	to show that t	he contribution f	rom this source is	s less than th	e	Yes□	No⊠	
2	as n	tify the maximum ecessary. Immary of maxim				-		ed and removed	d from the table	below
Pollutant, Time Period	Modeled Facility	Modeled Concentration with	Secondary PM	Background Concentration	Cumulative Concentration	Value of	Percent		Location	
nd Standard	Concentration (µg/m3)	n Surrounding Sources (µg/m3)	(μg/m3)	(µg/m3)	(µg/m3)	Standard (µg/m3)	of Standard	UTM E (m)	UTM N (m)	Elevation (ft)
O, 8-hr, AAQS	1,874.2	1,874.2	NA	NA	1,874.2	10303.60	18.19%	748362.17	3616563.59	1830.2
O, 8-hr, MAAQS	1,874.2	1,874.2	NA	NA	1,874.2	9960.10	18.82%	748362.17	3616563.59	1830.2
O, 1-hr, AAQS	14,880.4	14,880.5	NA	NA	14,880.5	40069.6	37.14%	749935.66	3615741.9	1900.75
O, 1-hr, MAAQS	14,880.4	14,880.5	NA	NA	14,880.5	14997.5	99.22%	749935.66	3615741.9	1900.75
O ₂ , Annual, AAQS	1.26	3.86	NA	NA	3.86	99.66	3.88%	767112	3622605.97	1756.99
O ₂ , Annual, MAAQS	1.26	3.86	NA	NA	3.86	94	4.11%	767112	3622605.97	1756.99
O ₂ , Annual, SD Class I	0.020	0.040	NA	NA	0.04	2.5	1.62%	767221	3658526	1889
O ₂ , Annual, SD Class II	1.26	3.86	NA	NA	3.86	25	15.45%	767112.00	3622605.97	1756.99
O ₂ , 24-hr, MAAQS	30.7	41.9	NA	NA	41.9	188	22.27%	748556.11	3616191.85	1825.41
O ₂ , 1-hr, AAQS	124.6	124.7	NA	NA	124.7	188.03	66.32%	748168.21	3616757.54	1817.41

Freeport-McMoRan Tyrone Inc.

Pollutant, Time Period	Modeled Facility	Modeled Concentration with	Secondary PM	Background Concentration	Cumulative Concentration	Value of	Percent		Location	
and Standard	Concentration (µg/m3)	Surrounding Sources (µg/m3)	(µg/m3)	(µg/m3)	(µg/m3)	Standard (µg/m3)	of Standard	UTM E (m)	UTM N (m)	Elevation (ft)
PM _{2.5} , Annual, NAAQS	1.92	1.92	NA	5.1	7.02	12	58.51%	748685.42	3615868.60	1831.34
PM _{2.5} , 24-hr, NAAQS	5.92	5.92	NA	14.9	20.82	35	59.50%	749319.10	3614989.27	1819.85
PM ₁₀ , Annual, PSD Class I	0.0837	0.00	NA	NA	0.00	4	0.00%	NA	NA	NA
PM ₁₀ , Annual, PSD Class II	19.1	0.00	NA	NA	0.00	17	0.00%	NA	NA	NA
PM ₁₀ , 24-hr, NAAQS	66.0	66.0	NA	56.5	122.52	150	81.68%	749319.1	3614989.3	1819.9
PM ₁₀ , 24-hr, PSD Class I	1.3	0.1	NA	NA	0.10	8	1.19%	772973.0	3657516.0	2021.5
PM ₁₀ , 24-hr, PSD Class II	45.6	29.7	NA	NA	29.7	30	99.08%	741913.3	3615205.9	1894.5
SO ₂ , Annual, Significance	0.41	0.41	NA	NA	-	1	41.07%	745371.94	3612052.03	1968.05
SO ₂ , 24-hr, Significance	4.49	4.49	NA	NA	-	5	89.73%	745472.24	3612053.76	1957.59
SO ₂ , 3-hr, Significance	14.25	14.25	NA	NA	-	25	56.99%	745371.94	3612052.03	1968.05
SO ₂ , 1-hr, NAAQS	17.24	17.24	NA	1.75	18.99	196.4	9.67%	745672.52	3612062.47	1954.40

16-X: Summary/conclusions					
	A statement that modeling requirements have been satisfied and that the permit can be issued.				
1	This modeling analysis has shown that the facility meets all applicable modeling standards. The permit can be issued.				

Table O-1

Wagner Sur A60.004460.0047Wagner Sur A60.005460.0054Mohawk5060.0054Mohawk5060.0054Mohawk5060.0054Mohawk5060.0054Mohawk5060.0054Schoolpie760.005A50.005160.0054A50.005160.0054A50.005160.0054A50.005160.0054A50.005160.0054A50.005160.0054A50.005160.0054A50.005160.0054A50.005160.0054A50.005160.0054A80.001160.0011Synorf of 118 1047110A80.001260.0011A80.001260.0014A80.001260.0014A80.001260.0014A80.001260.0014A80.001260.0014A80.001460.0014A80.001460.0014A80.001460.0014A80.001460.0014A80.001460.0014A80.001460.0014A80.001460.0014A80.001460.0014A80.001460.0014A80.001460.0014A80.001460.0014A80.001460.0014A80.001460.0014A80.0014 <th>Road Name</th> <th>Road No.</th> <th>ID</th> <th>Desc</th>	Road Name	Road No.	ID	Desc
MonawkSAR0A056MohawkMonawkSGR0A056MohawkMonawkSGR0A056MohawkMonawkSGR0A056MohawkSS Stockglie7R0A07R0A070R6 Stockglie8R0A08R0A070R0 Stockglie9R0A08R0A070R0 Stockglie18R0A010R0A070R0 Stockglie9R0A010R0A070R0 Stockglie18R0A011MohawkSpur off of 11 to RW118R0A0112Spur of of 11 to RWSpur off of 11 to RW118R0A0112Spur of of 11 to RWSpur off of 11 to RW118R0A0112Spur of of 11 to RWSpur of of 11 to RW118R0A0110Spur of of 11 to RWMain Pit118R0A0110R0A0110Main Pit118R0A0110Main PitMain Pit118R0A0110Main PitMain Pit118R0A0110Main PitMain Pit118R0A0110Main PitMain Pit118R0A0110Main PitMain Rid118R0A0110Main PitMain Rid118R0A0110Main PitMain Rid118R0A0110Main PitMain Rid118R0A0110Main PitMain Rid118R0A0110Weit Main Road arrisMain Rid118R0A0110Weit Main Road arrisMit Rid118R0A0110Weit Main Road arrisMeit Rid11	Wagner	4	ROAD4	Wagner
Mohawk9580,0550MohawkMohawk50R0A950MohawkShi Suckije6R0A950R0A9706.5 Suckije7R0A970R0Stockije6.5 Suckije8R0A99R0A996.6 Suckije9R0A99R0A9106.7 Suckije10R0A910Copper Mountain Wate6.8 Suckije11R0A911Copper Mountain Wate7.8 Suckije11R0A911Suckije5.9 uri off 11 to SCW11R0A9111Syur off of 11 to SCW5.9 uri off 11 to SCW112R0A9112Syur off of 11 to SCW9.9 uri off 11 to SCW112R0A9112Syur off of 11 to SCW9.9 uri off 11 to SCW112R0A9112Syur off of 11 to SCWMain PK116R0A9112Main PKMain PK116R0A9112Valencia B4.9 Suckije154R0A913Adv Suckije4.9 Suckije154R0A913Adv Suckije4.9 Suckije156R0A913Adv Suckije4.9 Suckije158R0A913Adv Suckije4.9 Suckije158R0A913Weit Main R0A erics4.9 Suckije158R0A913Weit Main R0A erics4.9 Suckije158R0A918Weit Main R0A erics4.9 Suckije158R0A918Weit Main R0A erics4.9 Suckije158R0A918Weit Main R0A erics4.9 Suckije158R0A918Weit Main R0A erics4.9 Suckije158R0A918				
Monisol SC R0A060 Mohizol 55 Stockpile 6 R0A06 A 55 Stockpile 86 Stockpile 9 R0A07 R05 Stockpile 06 Stockpile 9 R0A08 R0A080 R05 Stockpile 06 Stockpile 9 R0A010 Copper Mount Maste R0A011 Muin Pt/Mohawk 2 55 and off J1 to RW 118 R0A0113 Spur off of 11 to RW R0A0114 Spur off J1 to RW 118 R0A0112 Spur off of 11 to RW R0A0112 Spur off J1 to RW 118 R0A0112 Spur off of 11 to RW R0A0112 Main Rt 116 R0A0112 Main Pt Spur off J1 to RW R0A0112 Main Rt 116 R0A012 Main Pt R0A0114 Main Pt Main Rt 116 R0A0126 A05 Stockpile R0A0126 A05 Stockpile 40 Stockpile 160 R0A0126 West Main R0A deries R0A016 A05 Stockpile 40 Stockpile 161 R0A0168 West Main R0A deries R0A0168 <td< td=""><td></td><td></td><td></td><td></td></td<>				
55 Stochpie 6 ROAD Stochpie 66 Stochpie 8 ROAD8				
85 Stochpile 7 80.007 98 Casciplie 65 Stochpile 9 80.009 60 Stochpile 60 Stochpile 9 80.009 60 Stochpile 60 Stochpile 9 80.001 Concert Opper Mountain Work 500r off of 11 to 80W 11.4 80.0011 Main PL/Mohawk 2 500r off of 11 to 80W 11.4 80.00110 Spour off of 11 to 80W 500r off of 11 to 80W 11.6 80.00110 Spour off of 11 to 80W 500r off of 11 to 80W 11.6 80.00110 Spour off of 11 to 80W 500r off of 11 to 80W 11.6 80.00110 Spour off of 11 to 80W 500r off of 11 to 80W 11.8 80.00120 Main PE Main PE 116 80.00120 Main PE Main PE 116 80.00120 Main PE Main PE 118 80.00120 Main PE				
60 Stochaile 9 80.009 0.0000 Object Maximi West 10 80.0011 Main Pt/Mohawk 2 Sour off of 11 to 80W 11.4 80.00114 Sour off of 11 to 80W Sour off of 11 to 80W 11.4 80.00114 Sour off of 11 to 80W Sour off of 11 to 80W 11.0 80.00110 Sour off of 11 to 80W Sour off of 11 to 80W 11.0 80.00110 Sour off of 11 to 80W Sour off of 11 to 80W 11.0 80.00110 Sour off of 11 to 80W Main Pit 11.0 80.00110 Sour off of 11 to 80W Main Pit 11.0 80.00110 Main Pit Main Pit 11.6 80.00126 AW Vest Main Road strites 12.8 80.00126 AW 40 Stochaile 17 80.0012 West Main Road strites 12.8 80.00126 West Main Road strites 12.8 West Main Road strites 12.8 80.00126 West Main Road strites 13.8 80.00126 West Main Road strites 12.8 West Main Road str				
Coger Mountian Wate 10 ROAD10 Coper Mountian Wate Sum off of 11 to 8CW 13A ROAD11 Sum off of 11 to 8CW Spur off of 11 to 8CW 13A ROAD11 Spur off of 11 to 8CW Spur off of 11 to 8CW 11C ROAD112 Spur off of 11 to 8CW Spur off of 11 to 8CW 11C ROAD112 Spur off of 11 to 8CW Spur off of 11 to 8CW 11C ROAD112 Main PR Main PR 11E ROAD112 Main PR Main PR 11E ROAD115 Main PR Velocica B 10A ROAD126 40A Stockple 40 Stockple 15A ROAD15 40A Stockple 41 Stockple 16A ROAD16A 40 Stockple 42 Stockple 17 ROAD17 2.4 Stockple 43 Stockple 18A ROAD18B West Main Road stress 18B ROAD18D West Main Road stress 18B 44A Stockple 18B ROAD18D West Main Road stress 18B ROAD18D West Main Road stress		8		
Main Pit/Mohawk 2 11 ROAD11 Main Pit/Mohawk 2 Spur off of 11 to 8CW 11 ROAD112 Spur off of 11 to NRW Spur off of 11 to NCW 110 ROAD112 Spur off of 11 to NRW Spur off of 11 to NCW 110 ROAD112 Spur off of 111 to NRW Spur off of 111 to NCW 110 ROAD112 Main PI Main PI 111 ROAD114 Main PI Main PI 116 ROAD116 Main PI Main PI 116 ROAD116 Main PI AWX Stockpile 176 ROAD126 Valencia B 4VX Stockpile 176 ROAD126 Main PI 4VX Stockpile 176 ROAD126 Wext Main Road Vext Main Road series 188 ROAD126 Wext Main Road series Wext Main Road series 188 ROAD126 Wext Main Road series Wext Main Road series 188 ROAD126 Wext Main Road series Wext Main Road series 188 ROAD126 Wext Main Road series Wext Main Road series 18	6D Stockpile	9	ROAD9	6D Stockpile
Spur off 11 to SCW 11A ROAD11A Spur off of 11 to SCW Spur off of 11 to NW 11C ROAD11C Spur off of 11 to SCW Spur off of 11 to NW 11C ROAD11C Spur off of 11 to SCW Spur off of 11 to NW 11E ROAD11C Spur off of 11 to SCW Spur off of 11 to NW 11E ROAD11C Main Pit Main Pit 11F ROAD11F Main Pit Main Pit 11G ROAD11F Main Pit Valencia B ROAD12B To SCW Scocpile 4AW Stocpile 15A ROAD17B AVS Stocpile Scocpile 4D Stocpile 15A ROAD16B CHONT AVS Stocpile 4D Stocpile 15C ROAD13C West Main Road series West Main Road series West Main Road series 18B ROAD13E West Main Road series West Main Road series West Main Road series 18B ROAD13E West Main Road series West Main Road series West Main Road series 18B ROAD13E West Main Road series West Main Road	Copper Mountain Waste	10	ROAD10	Copper Mountain Waste
Seur off of 11 to NWW 1102 R0AD1122 Spur off of 111 to NWW Spur off of 118 to XW 110 R0AD110 Spur off of 118 to XW Spur off of 118 to XW 110 R0AD110 Spur off of 118 to XW Main PH 111F R0AD115 Main PH Main PH 111F R0AD116 Main PH Main PH 1116 R0AD116 Main PH Valencia B 110 R0AD116 Main PH Valencia B 110 R0AD116 AW Stockpile 403 Stockpile 156 R0AD118 AW Stockpile 403 Stockpile 176 R0AD17 2.4 Stockpile Vest Main Road 18 R0AD18 West Main Road series West Main Road series 186 R0AD18 West Main Road series West Main Road series 187 R0AD18 West Main Road series West Main Road series 188 R0AD18 West Main Road series West Main Road series 188 R0AD18 West Main Road series West Main Road series 188	· · · · ·			
Spar Off 11B to SCW 11C ROAD11C Spar Spar Off 11B to SCW Spar Main Pt 11E ROAD11E Main Pt Main Pt Main Pt 11F ROAD11E Main Pt Main Pt Main Pt 11F ROAD11E Main Pt Main Pt 11G ROAD12F Main Pt Valencia B ROAD12B Valencia B 4AW Stockpile 165 ROAD17 Astockpile 4AS Stockpile 166 ROAD16B Main Road Series 4D Stockpile 186 ROAD18C West Main Road Series 186 West Main Road Series 186 ROAD18C West Main Road Series 186 West Main Road Series 186 ROAD18F West Main Road Series 186 West Main Road Series 188 ROAD18F West Main Road Series 186 West Main Road Series 188 ROAD18F West Main Road Series 188 West Main Road Series 188 ROAD18F West Main Road Series 188				
Spur off of 118 to valbump 11D ROAD11D Spur off of 118 to valbump Main PR 11F ROAD11F Main PR Main PR 11F ROAD11F Main PR Main PR 11B ROAD11F Main PR Main PR 11B ROAD12F Main PR Main PR 11B ROAD12F Main PR Main PR 11B ROAD12F Main PR 44W Stockpile 156 ROAD12F Main PR 40 Stockpile 166 ROAD12F Packack Vest Main Road 18 ROAD12F West Main Road series West Main Road series 18F ROAD12F West Main Road series West Main Road series 18F ROAD12F West Main Road series West Main Road series 18F ROAD13F West Main Road series West Main Road series 18F ROAD13F West Main Road series West Main Road series 18F ROAD13F West Main Road series West Main Road series 18F ROAD13F West				
Main Pit 11E 80.0011E Main Pit Main Pit 11G 80.0011G Main Pit Valencia B 1128 80.0011G Main Pit Valencia B 128 80.0011G Main Pit 44W Stockpile 154 80.0015 44.W Stockpile 4D Stockpile 166 A0.0016A 4D Stockpile 4D Stockpile 168 ROAD18 44.W Stockpile 4D Stockpile 17 ROAD17 2A.Stockpile Vest Main Road series 186 ROAD18 West Main Road series West Main Road series 186 ROAD18 West Main Road series West Main Road series 188 ROAD18 West Main Road series West Main Road series 188 ROAD18 West Main Road series West Main Road series 188 ROAD18 West Main Road series West Main Road series 188 ROAD19 28 Stockpile 208 ROAD19 28 Stockpile 198 204 ROAD20 Copper Mountain Copper				
Main Pit 11.F BOAD115 Main Pit Main Pit 10.6 ROAD120 Valencia B Valencia B 12.8 ROAD120 Valencia B 44W Stockpile 15. ROAD120 Valencia B 43 Stockpile 16.8 ROAD160 40 Stockpile 43 Stockpile 17.8 ROAD17 DAStockpile 24 Stockpile 17.8 ROAD180 West Main Road series West Main Road series 180.7 ROAD180 West Main Road series West Main Road series 180.7 ROAD180 West Main Road series West Main Road series 180.7 ROAD180 West Main Road series West Main Road series 184 ROAD180 West Main Road series West Main Road series 184 ROAD181 West Main Road series West Main Road series 184 ROAD190 28 Stockpile 28 Stockpile 198 ROAD200 Copper Mountain 20 ROAD20 Copper Mountain 20 ROAD20 Copper Mountain 30 ROAD300 Main				
Main Pit 116 R0.0016 Main Pit Valencia 128 R0.0015 4AW Stockpile 15 R0.0016 4D Stockpile 4D Stockpile 164 R0.0016 4D Stockpile 168 R0.0016 4D Stockpile 4D Stockpile 168 R0.0016 4D Stockpile 13 R0.0017 2A Stockpile Vest Main Road series 186 R0.0018 West Main Road series 186 R0.0018 West Main Road series West Main Road series 188 R0.0018 West Main Road series 188 R0.0018 West Main Road series West Main Road series 188 R0.018 West Main Road series 188 R0.018 West Main Road series West Main Road series 188 R0.018 West Main Road series 188 R0.019 28 Stockpile 28 Stockpile 198 R0.021 D.90 28 Stockpile 28 Stockpile 28 Stockpile 28 Stockpile 20 R0.020 Copper Mountain Coper Mountain New 20A R0.020A Main Pit series <t< td=""><td></td><td></td><td></td><td></td></t<>				
4AW Stockpile 15 80A015 4AW Stockpile 4D Stockpile 154 80A0156 4D Stockpile 4D Stockpile 158 R0A017 2A Stockpile 2A Stockpile 17 R0A017 2A Stockpile 2A Stockpile 17 R0A017 2A Stockpile West Main Road series 186 R0AD180 West Main Road series West Main Road series 186 R0AD180 West Main Road series West Main Road series 186 R0AD181 West Main Road series West Main Road series 188 R0AD181 West Main Road series West Main Road series 188 R0AD181 West Main Road series West Main Road series 188 R0AD191 28 Stockpile 28 Stockpile 198 R0AD204 Copper Mountain 200 R0AD204 Copper Mountain 201 R0AD204 A0AStockpile 303 R0AD204 Main Pit series Main Pit series 304 R0AD204 Main Pit series Main		11G		
40 Stockpile 16A ROAD16A 40 Stockpile 4D Stockpile 16B ROAD16B 40 Stockpile 2A Stockpile 17 ROAD17 2A Stockpile West Main Road series 18C ROAD18 West Main Road series West Main Road series 18D ROAD18C West Main Road series West Main Road series 18F ROAD18E West Main Road series West Main Road series 18F ROAD18E West Main Road series West Main Road series 18F ROAD18E West Main Road series West Main Road series 18H ROAD18E West Main Road series West Main Road series 18H ROAD18 West Main Road series West Main Road series 18H ROAD18 West Main Road series 28 Stockpile 19 ROAD20 Copper Mountain Copper Mountain 20 ROAD20 Copper Mountain Copper Mountain 20 ROAD20 Copper Mountain AND 20 ROAD20 Copper Mountain Sockcipile <	Valencia B	12B	ROAD12B	Valencia B
40 Stockpile 168 ROAD168 40 Stockpile 2A Stockpile 17 ROAD17 2A Stockpile West Main Road 18 ROAD18 West Main Road West Main Road series 18C ROAD18C West Main Road series West Main Road series 18E ROAD18E West Main Road series West Main Road series 18E ROAD18E West Main Road series West Main Road series 18E ROAD18E West Main Road series West Main Road series 18H ROAD18E West Main Road series West Main Road series 18H ROAD18E West Main Road series 28 Stockpile 19 ROAD18 West Main Road series 28 Stockpile 19 ROAD28 Copper Mountain Copper Mountain 20A ROAD20 Copper Mountain Copper Mountain 20A ROAD20 Copper Mountain S3 Stockpile 21 ROAD22 QAX Stockpile Main Pit series 30 ROAD30 Main Pit series Main Pit series <td>4AW Stockpile</td> <td>15</td> <td>ROAD15</td> <td>4AW Stockpile</td>	4AW Stockpile	15	ROAD15	4AW Stockpile
2A Stockpile 17 ROAD17 2A Stockpile West Main Road series 18 ROAD18 West Main Road series West Main Road series 180 ROAD180 West Main Road series West Main Road series 180 ROAD180 West Main Road series West Main Road series 186 ROAD186 West Main Road series West Main Road series 184 ROAD186 West Main Road series West Main Road series 184 ROAD181 West Main Road series West Main Road series 184 ROAD181 West Main Road series West Main Road series 184 ROAD181 West Main Road series West Main Road series 184 ROAD181 West Main Road series 28 Stockpile 198 ROAD190 28 Stockpile 28 Stockpile 198 ROAD20 Copper Mountain 20 ROAD20 Copper Mountain 20 AND202 9A Stockpile 9A Stockpile Main Pit series 30A ROAD20A Main Pit series Main Pit seri	•			
West Main Road series 18 ROAD136 West Main Road series West Main Road series 180 ROAD13C West Main Road series West Main Road series 180 ROAD13C West Main Road series West Main Road series 180 ROAD13C West Main Road series West Main Road series 180 ROAD13C West Main Road series West Main Road series 180 ROAD13C West Main Road series West Main Road series 181 ROAD13C West Main Road series West Main Road series 181 ROAD13E West Main Road series 28 Stockpile 19 ROAD13E West Main Road series 28 Stockpile 19 ROAD13E 28 Stockpile 29 ROAD20 Copper Mountain 20 Copper Mountain 20 ROAD20 Copper Mountain 20 ROAD20 Main Pt series 300 Main Pt series 300 ROAD30A Main Pt series Main Pt series 300 ROAD30A Main Pt series Main				
West Main Road series 18C ROAD18C West Main Road series West Main Road series 18E ROAD18E West Main Road series West Main Road series 18E ROAD18E West Main Road series West Main Road series 18E ROAD18E West Main Road series West Main Road series 18E ROAD18E West Main Road series West Main Road series 18H ROAD18E West Main Road series West Main Road series 18H ROAD18I West Main Road series West Main Road series 18H ROAD19 28 Stockpile 28 Stockpile 19 ROAD19 28 Stockpile 29 Stockpile 19 ROAD20 Copper Mountain Copper Mountain New 20 ROAD21 9A Stockpile 9A Stockpile 21 ROAD22 9AX Stockpile 9A Stockpile 30 ROAD30 Main Pit series Main Pit series 30A ROAD30B Main Pit series Main Pit series 30A ROAD30C Main Pit series <t< td=""><td></td><td></td><td></td><td></td></t<>				
West Main Road series 18D ROAD18D West Main Road series West Main Road series 18E ROAD18F West Main Road series West Main Road series 186 ROAD18F West Main Road series West Main Road series 188 ROAD186 West Main Road series West Main Road series 188 ROAD181 West Main Road series West Main Road series 188 ROAD181 West Main Road series 28 Stockpile 198 ROAD19 28 Stockpile 28 Stockpile 198 ROAD19 28 Stockpile 20 ROAD20 Copper Mountain Copper Mountain 20 ROAD20 Qeaper Mountain 9A Stockpile 21 ROAD20 Qeaper Mountain 9A Stockpile 21 ROAD30 Main Pit series Main Pit series 300 ROAD30 Main Pit series Main Pit series 30C ROAD30B Main Pit series Main Pit series 30C ROAD30C Main Pit series Main Pit series 30C				
West Main Road series 18E ROAD18E West Main Road series West Main Road series 1186 ROAD186 West Main Road series West Main Road series 1186 ROAD181 West Main Road series West Main Road series 118 ROAD181 West Main Road series West Main Road series 118 ROAD181 West Main Road series West Main Road series 118 ROAD180 West Main Road series 28 Stockpile 198 ROAD196 28 Stockpile 28 Stockpile 198 ROAD196 28 Stockpile Copper Mountain 20 ROAD20 Copper Mountain Copper Mountain New 20 ROAD20 Copper Mountain SA Stockpile 21 ROAD20 Main Pit series Main Pit series 30 ROAD30 Main Pit series Main Pit series 30A ROAD30 Main Pit series Main Pit series 30C ROAD30C Main Pit series Main Pit series 30C ROAD30C Main Pit series Main				
West Main Road series 18F ROAD18F West Main Road series West Main Road series 186 ROAD18H West Main Road series West Main Road series 188 ROAD18H West Main Road series West Main Road series 188 ROAD19 West Main Road series 28 Stockpile 19 ROAD19 28 Stockpile 28 Stockpile 198 ROAD20 Copper Mountain Copper Mountain 20 ROAD22 9A Stockpile 20 ROAD22 9A Stockpile 20 9A Stockpile 21 ROAD23 9A Stockpile 9A Stockpile 21 ROAD30A Main Pit series Main Pit series 30 ROAD30A Main Pit series Main Pit series 30B ROAD30A Main Pit series Main Pit series 30C ROAD30A Main Pit series Main Pit series 30B ROAD30A Main Pit series Main Pit series 30C ROAD30A Main Pit series Main Pit series 30B ROAD3				
West Main Road series 186 ROAD186 West Main Road series West Main Road series 184 ROAD184 West Main Road series West Main Road series 188 ROAD181 West Main Road series 28 Stockpile 19 ROAD19 28 Stockpile 28 Stockpile 19 ROAD20 Copper Mountain Copper Mountain New 20 ROAD20A Copper Mountain Qoper Mountain New 20 ROAD20A Copper Mountain Sockpile 21 ROAD21 9A Stockpile 9A Stockpile 21 ROAD20A Copper Mountain Main Pit series 30 ROAD30 Main Pit series Main Pit series 30A ROAD30A Main Pit series Main Pit series 30A				
West Main Road series 181 ROAD181 West Main Road series West Main Road series 181 ROAD180 West Main Road series 28 Stockpile 198 ROAD190 28 Stockpile 28 Stockpile 198 ROAD190 28 Stockpile Copper Mountain New 200 ROAD200 Copper Mountain Ocoper Mountain New 200 ROAD204 Copper Mountain 9A Stockpile 21 ROAD20 9A Stockpile 9A Stockpile 21 ROAD20 9A Stockpile 9A Stockpile 300 ROAD20 9A Stockpile Main Pit series 300 ROAD30 Main Pit series Main Pit series 300 ROAD300 Main Pit series Main Pit series 300 ROAD300<		18G		
West Main Road series 18J ROAD18J West Main Road series 28 Stockpile 198 ROAD19 28 Stockpile 198 ROAD19B 28 Stockpile 28 Stockpile 198 ROAD19D 28 Stockpile 200 Copper Mountain 200 ROAD20 Copper Mountain 200 ROAD20 Copper Mountain 9A Stockpile 21 ROAD21 9A Stockpile 21 ROAD22 9AX Stockpile 22 ROAD22 9AX Stockpile 22 ROAD22 Main Pt series 30 ROAD30A Main Pt series 30 ROAD30A Main Pt series 30C ROAD30C Main Pt series 30C ROAD30C Main Pt series 30C ROAD30C Main Pt series 30C ROAD30C Main Pt series 30C ROAD30C Main Pt series 30C ROAD30C Launder Line RECLIR3 RECLIR3 Reclamation Launder Line Route 1 2 Launder Line RECLIR3 RECLIR3 RECHR3 2 2	West Main Road series	18H	ROAD18H	West Main Road series
28 Stockpile 19 ROAD19 28 Stockpile 28 Stockpile 198 ROAD29 28 Stockpile Copper Mountain 20 ROAD20 Copper Mountain 9A Stockpile 21 ROAD20 20 per Mountain 9A Stockpile 21 ROAD21 9A Stockpile 9A Stockpile 21 ROAD22 9A Stockpile 9A Stockpile 30 ROAD20 9A Stockpile Main PIt series 30 ROAD30 Main PIt series Main PIt series 308 ROAD300 Main PIt series Main PIt series 300 ROAD300 Main PIt series Recluras RECLUR3 Reclamation Launder Line Route 1 Reclu	West Main Road series	181	ROAD18I	West Main Road series
28 Stockpile 198 ROAD198 28 Stockpile Copper Mountain 20 ROAD20 Copper Mountain Gopper Mountain New 20A ROAD20A Copper Mountain 9A Stockpile 21 ROAD21 9A Stockpile 9A Stockpile 22 ROAD22 9AX Stockpile 9A Stockpile 22 ROAD20 9A Stockpile 9A Stockpile 30 ROAD30 Main Pit series Main Pit series 30A ROAD30B Main Pit series Main Pit series 30C ROAD30C Main Pit se				
Copper Mountain 20 ROAD20 Copper Mountain Copper Mountain New 20A ROAD20A Copper Mountain 9A Stockpile 21 ROAD21 9A Stockpile 9A Stockpile 22 ROAD22 9AX Stockpile 9A Stockpile 22 ROAD30 Main PIt series 30A ROAD30A Main PIt series 30A Main PIt series 30A ROAD30C Main PIt series Main PIt series 30C ROAD30C Main PIt series Main PIt series 30C ROAD30C Main PIt series ABCLIR1 RECLIR1 Reclamation Launder Line Route 1 RECLIR2 Reclamation Launder Line Route 2 RECLIR3 RECLIR1 Reclamation Thickener Route1 - note 4.3 RECHR1 RECHR1 Reclamation Thickener Route2 - route 1.4 emissions RECHR3 RECHR3 Reclamation Plant Route2 - route 1.4.2 emissions RECHR4 RECHR4 Reclamation Plant Route2 - route 1.4.2 emissions RECHR4 RECHR4 Reclamation Plant Route1 - route 1.5.6 emissions R	•			
Copper Mountain New 20A ROAD20A Copper Mountain 9A Stockpile 21 ROAD21 9A Stockpile 9AX Stockpile 22 ROAD22 9AX Stockpile Main Pit series 30 ROAD30 Main Pit series Main Pit series 30A ROAD30A Main Pit series Main Pit series 30B ROAD30C Main Pit series Main Pit series 30C ROAD30C				
9A Stockpile 21 ROAD21 9A Stockpile 9AX Stockpile 22 ROAD30 Main Pit series Main Pit series 30 ROAD30A Main Pit series Main Pit series 30A ROAD30B Main Pit series Main Pit series 30B ROAD30B Main Pit series Main Pit series 30C ROAD30C Main Pit series Main Pit series 30C RECLIR3 RECLIR3 Recluration Pitseries RecLing RecLing RecLing RecLing Recluration Pitickner Route1 - note 1, a standalone noute Recluratin Pitickner Route3 - noute 1, a emissions				
9AX Stockpile 22 ROAD22 9AX Stockpile Main Pit series 30 ROAD30 Main Pit series Main Pit series 30B ROAD30A Main Pit series Main Pit series 30B ROAD30C Main Pit series Main Pit series 30C ROAD30C Main Pit series Main Pit series 30C ROAD30C Main Pit series Launder Line RECLIR1 RECLIR2 Reclamation Launder Line Route 1 RECHR3 RECLIR2 Reclamation Launder Line Route 2 Reclamation Route1 - not a standalone route RECHR1 RECHR1 Reclamation Thickener Route3 - route 1,2 emissions RECHR3 RECHR1 RECHR1 Reclamation Thickener Route3 - route 1,3 emissions RECHR3 RECHR4 RECHR4 Reclamation Plant Route1 - route 1,4 emissions RECPR5 RECPPR1 RECPR1 Reclamation Plant Route3 - route 1,6,4,3 emissions RECPR2 Reclamation Plant Route4 - rout 1,6,4,3 emissions RECPR3 RECPR5 Reclamation Plant Route4 - rout 1,6,4,3 emissions RECPR4 RECPR5 Reclamation Plan				
Main Pit series 30 ROAD30 Main Pit series Main Pit series 30A ROAD30A Main Pit series Main Pit series 30B ROAD30B Main Pit series Main Pit series 30C ROAD30C Main Pit series Main Pit series 30C ROAD30C Main Pit series Main Pit series 30C ROAD30C Main Pit series RECLIR3 RECLIR3 Reclamation Launder Line Route 1 RECLIR3 RECLIR3 Reclamation Thickener Route 2 RECTHR1 RECTHR3 Reclamation Thickener Route 1. rout a standalone route RECTHR3 RECTHR3 Reclamation Thickener Route 2 - rout 1. 2. emissions RECTHR4 RECTHR3 Reclamation Thickener Route 2 - rout 1. 2. emissions RECPR1 RECTHR4 Reclamation P Plant Route 1 - route 1. 4. emissions RECPR2 RECPPR3 REcoPR3 RECPPR3 RECPPR3 Reclamation P Plant Route 2 - route 1. 2. emissions RECPR4 RECPR5 Reclamation P Plant Route 4 - route 1. 5. 6 emissions RECPR3 RECPPR3 RECPR3 REcoPR				
Main Pit series308ROAD308Main Pit seriesMain Pit series30CROAD30CMain Pit seriesLaunder LineRECLLR1RECLLR1Reclamation Launder Line Route 1RECLLR2RECLLR3RECLLR3Reclamation Launder Line Route 2RECLR3RECLLR3RECLR4Reclamation Launder Line Route 3ThickenerRECTHR1RECTHR1Reclamation Thickener Route1 - not a standalone routeRECTHR3RECTHR3Reclamation Thickener Route2 - route 1, 2 emissionsRECTHR4RECTHR3Reclamation Thickener Route3 - route 1, 3 emissionsRECTHR4RECTHR3Reclamation Thickener Route3 - route 1, 4 emissionsRECPPR1RECPPR1Reclamation Plant Route1 - route 1, 5 e emissionsRECPPR2RECPPR3Reclamation P Plant Route3 - route 1, 6, 4, 3 emissionsRECPPR3RECPPR3Reclamation P Plant Route3 - route 1, 6, 4, 3 emissionsRECPPR4RECPPR5Reclamation P Plant Route3 - route 1, 5, 6 emissionsRECPPR5RECPPR5Reclamation P Plant Route3 - route 1, 5, 6 emissionsRECPR6RECPPR6Reclamation P Plant Route3 - route 1, 5, 6 emissionsRECPR6RECPR6Reclamation P Plant Route3 - route 1, 2, 1, 6 emissionsREC2LR3REC2LR11A/1B Stockpile - large trucks only - Route1RAREC1AR11A/1B Stockpile - large trucks only - Route1 - route 1, 2 emissioREC2LR3REC2LR32A/2B Stockpile - large trucks only - Route1 - route 1, 2 emissioREC2LR3REC2LR32A/2B Stockpile - large trucks only - Route2 - route 1, 2 emissio<		30		
Main Pit series 30C ROAD30C Main Pit series Launder Line RECLLR1 RECLLR1 Reclamation Launder Line Route 1 RECLLR2 RECLLR3 Reclamation Launder Line Route 2 RECLR3 RECLR3 Reclamation Launder Line Route 3 RECTHR1 RECTHR2 Reclamation Thickener Route1 - not a standalone route RECTHR3 RECTHR3 Reclamation Thickener Route2 - route 1,2 emissions RECTHR4 RECTHR3 Reclamation Thickener Route3 - route 1,4 emissions RECTHR4 RECTHR4 Reclamation Thickener Route4 - route 1,4 emissions RECPPR1 RECPPR1 Reclamation Plant Route2 - route 1,2,3 emissions RECPPR3 RECPPR3 Reclamation Plant Route3 - route 1,6,4,3 emissions RECPPR4 RECPPR3 Reclamation Plant Route4 - route 1,6,4,3 emissions RECPPR5 RECPPR5 Reclamation Plant Route4 - route 1,5,6,4 emissions RECPPR6 Reclamation Plant Route4 - route 1,5,6 emissions RECPR6 Reclamation Plant Route4 - route 1,2,6 emissions RECALR1 1A/1B Stockpile - large trucks only - Route1 RECALR1 RECALR1 1A/1B Stockpile - large trucks only	Main Pit series	30A	ROAD30A	Main Pit series
Launder Line RECLIR1 RECLIR2 Reclamation Launder Line Route 1 RECLIR2 RECLIR3 RECLIR3 Reclamation Launder Line Route 2 RECLIR3 RECLIR3 Reclamation Launder Line Route 3 RECTHR1 RECTHR1 Relamation Thickener Route1 - not a standalone route RECTHR2 RECTHR2 Reclamation Thickener Route3 - route 1, 2 emissions RECTHR3 RECTHR4 Reclamation Thickener Route4 - route 1, 4 emissions RECTHR4 RECTHR4 Reclamation Thickener Route4 - route 1, 5, 6 emissions RECPPR1 RECPPR1 Reclamation P Plant Route1 - route 1, 2, 3 emissions RECPPR2 RECPPR2 Reclamation P Plant Route2 - route 1, 2, 3 emissions RECPPR3 RECPPR4 Reclamation P Plant Route3 - route 1, 5, 4 a emissions RECPPR4 RECPPR4 Reclamation P Plant Route5 - route 1, 5, 5 emissions RECPPR6 RECPPR6 Reclamation P Plant Route5 - route 1, 5, 6 emissions RECPPR6 RECPPR6 Reclamation P Plant Route5 - route 1, 5, 6 emissions RECALSR1 1A/1B Stockpile - large trucks only - Route1 Reclamation RECALSR1 RECALSR1 1A/1B Stockpile - smalt route6	Main Pit series	30B	ROAD30B	Main Pit series
Launder LineRECLIR2RECLIR2Reclamation Launder Line Route 2RECLR3RECLR3RECLR4Reclamation Thickener Route 1 - not a standalone routeRECHR1RECTHR1RECTHR2Reclamation Thickener Route 1 - not a standalone routeRECHR2RECTHR3RECTHR3RECHR3RECHR4RECHR4Reclamation Thickener Route 2 - route 1,2 emissionsRECHR4RECHR4Reclamation Thickener Route 2 - route 1,3 emissionsRECHR4RECPR1ReclPPR1RECPP2RECPPR1Reclamation P Plant Route 1 - route 1, 5, 6 emissionsRECPP3RECPP73RECPP74RECPP4Reclamation P Plant Route 2 - route 1, 2, 3 emissionsRECPP4RECPP74Reclamation P Plant Route 3 - route 1, 6, 4, 3 emissionsRECPP75RECPP76Reclamation P Plant Route 4 - route 1, 5, 6 a emissionsRECPP75RECPP76Reclamation P Plant Route 4 - route 1, 5, 6 emissionsRECP76RECPP76Reclamation P Plant Route 4 - route 1, 5, 6 emissionsRECP76RECPP76Reclamation P Plant Route 4 - route 1, 2, 6 anissionsRECP76RECP781REC1AR1REC1AR1REC1AR11A/18 Stockpile - large trucks only - Route11A/18 StockpileREC1AR1REC1AR2REC1AR1REC2AR22A/2B Stockpile - large trucks only - Route 1, 2 emissioREC2AR2REC2AR22A/2B Stockpile - large trucks only - Route 1, 2 emissioREC2AR3REC2AR32A/2B Stockpile - small trucks only - Route 1, 3 emissioREC2AR3REC2AR32A/2B Stockpile - small trucks only - Ro	Main Pit series	30C	ROAD30C	Main Pit series
RECLR3RECLR3Reclamation taunder time Route 3RECHR1RECTHR1RECTHR1Reclamation Thickener Route1 - not a standalone routeRECTHR2RECTHR2RECTHR2Reclamation Thickener Route2 - route 1,2 emissionsRECTHR4RECTHR3Reclamation Thickener Route3 - route 1,3 emissionsRECTHR4RECTHR4Reclamation Thickener Route4 - route 1,4 emissionsRECTHR4RECTHR4Reclamation Thickener Route3 - route 1,4 emissionsRECTHR4RECTPR1Reclamation P Plant Route3 - route 1,5,6 emissionsRECPP3RECPP81RecPP81RECPP84RECPP83Reclamation P Plant Route3 - route 1,6,4,3 emissionsRECPP85RECPP86Reclamation P Plant Route3 - route 1,5,6 emissionsRECPP86RECPP86Reclamation P Plant Route3 - route 1,5,6 emissionsRECP876RECPP86Reclamation P Plant Route5 - route 1,5,6 emissionsRECP878RECP878Reclamation P Plant Route5 - route 1,5,6 emissionsRECP878REC1ALR11A/1B Stockpile - large trucks only - Route1A/1B StockpileREC1ALR1REC1ALR1REC1ALR1REC1ALR12A/2B Stockpile - large trucks only - Route1, 2 emissioREC2ALR2REC2ALR22A/2B Stockpile - large trucks only - Route1, 2 emissioREC2ALR3REC2ALR32A/2B Stockpile - small trucks only - Route1, 2 emissioREC2ALR4REC2ALR32A/2B Stockpile - small trucks only - Route1, 3 emissioREC2ALR3REC2ALR32A/2B Stockpile - small trucks only - Route1, 3 emissioREC2ALR3REC2ALR32A/2B Stockpile - small truc				
RECTHR1 RECTHR1 Reclamation Thickener Route1 - not a standalone route Thickener RECTHR2 RECTHR3 RECTHR3 Reclamation Thickener Route2 - route 1,2 emissions RECTHR3 RECTHR3 Reclamation Thickener Route3 - route 1,3 emissions Reclamation Thickener Route4 - route 1,3 emissions RECTR4 RECTR4 Reclamation Thickener Route4 - route 1,3 emissions Reclamation P Plant Route4 - route 1,5 6 emissions RECPR1 RECPPR2 Reclamation P Plant Route2 - route 1, 2, 3 emissions Reclamation P Plant Route3 - route 1, 6, 4, 3 emissions RECPPR3 RECPPR4 Reclamation P Plant Route4 - route 1, 6, 4, 3 emissions RECPPR4 RECPPR5 Reclamation P Plant Route4 - route 1, 5, 6 emissions RECPR5 RECPPR6 Reclamation P Plant Route4 - route 1, 5, 6 emissions RECPR5 RECPR6 Reclamation P Plant Route4 - route 1, 5, 6 emissions REC1ALR1 REC1ALR1 1A/18 Stockpile - large trucks only - Route1 1A/18 Stockpile REC1ALR1 REC1ALR1 1A/18 Stockpile - small trucks only - Route1 2A/2B Stockpile REC2ALR2 2A/2B Stockpile - large trucks only - Route1 2 emissio REC2ALR3 REC2ALR3 2	Launder Line			
RECTHR2RECTHR2Reclamation Thickener Route2 - route 1,2 emissionsRECTHR3RECTHR3Reclamation Thickener Route3 - route 1,3 emissionsRECTHR4RECTHR4Reclamation Thickener Route4 - route 1,4 emissionsRECTHR4RECPPR1Reclamation P Plant Route1 - route 1,5,6 emissionsRECPPR3RECPPR2ReclPPR2RECPPR4Reclamation P Plant Route2 - route 1, 2, 3 emissionsRECPPR4RECPPR3Reclamation P Plant Route3 - route 1, 6, 4, 3 emissionsRECPPR5RECPPR4Reclamation P Plant Route3 - route 1, 5, 6 emissionsRECPPR6RECPPR6Reclamation P Plant Route4 - route 1, 5, 6 emissionsRECPPR6RECPPR6Reclamation P Plant Route5 - route 1, 5, 6 emissionsRECPPR6RECPPR6Reclamation P Plant Route5 - route 1, 5, 6 emissionsRECPR6REC1AR11A/18 Stockpile - large trucks only - Route11A/1B StockpileREC1ASR1REC1ASR11A/18 Stockpile - small trucks only - Route1REC2AR2REC2AR22A/2B Stockpile - large trucks only - Route1 - route 1, 2 emissioREC2AR3REC2AR3REC2AR32A/2B Stockpile - large trucks only - Route1 - route 1, 3 emissioREC2AR4REC2AR522A/2B Stockpile - small trucks only - Route1 - route 1, 3 emissioREC2AR52REC2AR522A/2B Stockpile - small trucks only - Route1 - route 1, 3 emissioREC2AR52REC2ASR3REC2ASR3REC2ASR3REC2ASR32A/2B Stockpile - small trucks only - Route2 - route 1, 3 emissioREC2ASR3REC2ASR32A/2B Stockpile - small trucks only - Route3 - route 3, 6 emissions <td></td> <td></td> <td></td> <td></td>				
InckenerRECTHR3RECTHR3Reclamation Thickener Route3 - route 1,3 emissionsRECTHR4RECTHR4Reclamation Thickener Route4 - route 1,4 emissionsRECTHR4RECPPR1Reclamation P Plant Route1 - route 1,5,6 emissionsRECPPR1RECPPR2Reclamation P Plant Route2 - route 1, 2, 3 emissionsRECPPR3RECPPR3Reclamation P Plant Route3 - route 1, 6, 4, 3 emissionsRECPPR4RECPPR3Reclamation P Plant Route3 - route 1, 5, 6 emissionsRECPPR5RECPPR5Reclamation P Plant Route4 - route 1, 5, 6 emissionsRECPPR6RECPPR6Reclamation P Plant Route5 - route 1, 5, 6 emissionsRECPPR6RECPPR6Reclamation P Plant Route5 - route 1, 5, 6 emissionsRECPR6RECPPR6Reclamation P Plant Route6 - route 1, 5, 6 emissionsRECPR6RECPR6Reclamation P Plant Route6 - route 1, 5, 6 emissionsREC1ALR1REC1ALR11A/1B Stockpile - large trucks only - Route1REC1ALR1REC1ALR11A/1B Stockpile - small trucks only - Route1REC2ALR3REC2ALR32A/2B Stockpile - large trucks only - Route1 - route 1, 2 emissioREC2ALR3REC2ALR32A/2B Stockpile - large trucks only - Route1 - route 1, 3 emissioREC2ALR3REC2ALR32A/2B Stockpile - large trucks only - Route1 - route 1, 3 emissioREC2ALR3REC2ALR32A/2B Stockpile - small trucks only - Route2 - route 1, 3 emissioREC2ALR3REC2ALR32A/2B Stockpile - small trucks only - Route2 - route 1, 3 emissioREC2ALR3REC2ALR32A/2B Stockpile - small trucks only - Route2 - route 1, 3 emissioREC		-		
RECTHR4RECTHR4Reclamation Thickener Route4 - route 1,4 emissionsP PlantRECPPR1RECPPR1Reclamation P Plant Route1 - route 1,5,6 emissionsRECPPR2RECPPR3Reclamation P Plant Route3 - route 1, 2, 3 emissionsRECPPR4RECPPR3Reclamation P Plant Route3 - route 1, 6, 4, 3 emissionsRECPPR5RECPPR4Reclamation P Plant Route4 - route 1, 6, 4, 3 emissionsRECPPR6Reclamation P Plant Route5 - route 1, 6, 4, 3 emissionsRECPPR6Reclamation P Plant Route5 - route 1, 5, 6 emissionsRECPPR6Reclamation P Plant Route5 - route 1, 5, 6 emissionsRECPR7RECPPR6RECPR7RECPPR6RECPR7RECPPR6RECPR7RECPPR6RECPR7RECPPR6RECPR7RECPPR6RECPR7RECPPR6RECPR7RECPPR6REC1ASR1REC1ASR1REC1ASR1REC1ASR1REC1ASR1REC1ASR1REC1ASR1REC1ASR1REC1ASR1REC2ALR2REC2ALR2REC2ALR2REC2ALR3REC2ALR3REC2ALR3REC2ALR3REC2ALR3REC2ALR3REC2ASR1REC2ASR3REC2ASR2REC2ASR3REC2ASR3REC2ASR3REC2ASR3REC2ASR3REC2ASR3REC2ASR3REC2LWR4CLW Stockpile - small trucks only - Route3 - route 1, 8 emissionREC2LWR5CLW Stockpile - small trucks only - Route3 - route 3, 6 emissionsREC2LWR6REC2LWR3REC2LWR78REC2LWR6REC2LWR6CLW Stockpile -	Thickener			
P Plant RECPPR1 RECPPR1 RecPPR2 Reclamation P Plant Route1 - route 1, 5, 6 emissions RECPPR3 RECPPR3 RecPPR3 Reclamation P Plant Route2 - route 1, 2, 3 emissions RECPPR4 RECPPR3 Reclamation P Plant Route3 - route 1, 6, 4, 3 emissions RECPPR4 RECPPR4 Reclamation P Plant Route4 - route 1, 6, 4, 3 emissions RECPPR5 RECPPR5 Reclamation P Plant Route5 - route 1, 5, 6 emissions RECPPR6 RECPPR6 Reclamation P Plant Route6 - route 1, 5, 6 emissions RECPR6 RECPPR6 Reclamation P Plant Route6 - route 1, 5, 6 emissions REC1ALR1 REC1ALR1 1A/1B Stockpile - large trucks only - Route1 REC1AR1 REC1ASR1 REC1ASR1 REC2ALR1 REC2ALR1 2A/2B Stockpile - large trucks only - Route1 - route 1, 2 emissio REC2ALR2 REC2ALR3 2A/2B Stockpile - large trucks only - Route1 - route 1, 2 emissio REC2ALR3 REC2ALR3 2A/2B Stockpile - large trucks only - Route1 - route 1, 3 emissio REC2ALR3 REC2ALR3 2A/2B Stockpile - small trucks only - Route1 - route 1, 3 emissio REC2ASR3 REC2ALR3 2A/2B Stockpile - small trucks only - Route2 - route 1, 3 emissio				
P Plant RECPPR3 RECPPR3 RecPPR4 RecPPR4 RecPPR4 Reclamation P Plant Route3 - route 1, 6, 4, 3 emissions RECPPR4 RECPPR4 Reclamation P Plant Route4 - route 1, 6, 4, 3 emissions Reclamation P Plant Route5 - route 1, 5, 6 emissions RECPPR6 RECPPR6 Reclamation P Plant Route5 - route 1, 5, 6 emissions RECPPR6 RECPPR6 Reclamation P Plant Route6 - route 1, 5, 6 emissions 1A/1B Stockpile REC1ALR1 REC1ALR1 A/1B Stockpile - large trucks only - Route1 REC2ALR1 REC1ALR1 A/1B Stockpile - large trucks only - Route1 Recidentian Recidentis Recidentian Recidentian Recidentian Recidentian Recide				
P Plant RECPPR4 RECPPR4 RecPPR4 Reclamation P Plant Route4 - route 1, 6, 4, 3 emissions RECPPR5 RECPPR5 RecPPR5 Reclamation P Plant Route5 - route 1, 5, 6 emissions RECPPR6 RECPPR6 Reclamation P Plant Route6 - route 1, 5, 6 emissions REC1ALR1 REC1ALR1 REC1ALR1 REC1ASR1 REC1ASR1 REC1ASR1 REC1ALR1 REC1ALR1 REC1ASR1 REC1ALR1 REC1ALR1 REC1ALR1 REC1ASR1 REC1ALR1 A/1B Stockpile - large trucks only - Route1 REC2ALR2 REC2ALR1 2A/2B Stockpile - large trucks only - Route1 - route 1, 2 emissio REC2ALR3 REC2ALR3 2A/2B Stockpile - large trucks only - Route3 - route 1, 2 emissio REC2ALR3 REC2ALR3 2A/2B Stockpile - large trucks only - Route1 - route 1, 2 emissio REC2ASR1 REC2ASR2 2A/2B Stockpile - large trucks only - Route1 - route 1, 3 emissio REC2ASR3 REC2ASR3 2A/2B Stockpile - small trucks only - Route1 - route 1, 3 emissio REC2ASR3 REC2ASR3 2A/2B Stockpile - small trucks only - Route2 - route 1, 3 emissio REC2ASR3 REC2ASR3 2A/2B Stockpile - small trucks o			RECPPR2	
RECPPR4 RECPPR4 RecPPR4 Reclamation P Plant Route4 - route 1, 6, 4, 3 emissions RECPPR5 RECPPR5 Reclamation P Plant Route5 - route 1, 5, 6 emissions RECPPR6 RecPPR6 Reclamation P Plant Route6 - route 1, 5, 6 emissions 1A/1B Stockpile REC1ALR1 REC1ALR1 1A/1B Stockpile - large trucks only - Route1 REC1ASR1 REC1ASR1 REC1ASR1 REC1ASR1 REC2ALR2 REC2ALR1 2A/2B Stockpile - large trucks only - Route1 - route 1, 2 emissio REC2ALR3 REC2ALR3 2A/2B Stockpile - large trucks only - Route1 - route 1, 2 emissio REC2ALR3 REC2ALR3 2A/2B Stockpile - large trucks only - Route1 - route 1, 2 emissio REC2ASR1 REC2ASR1 2A/2B Stockpile - large trucks only - Route1 - route 1, 3 emissio REC2ASR3 REC2ASR3 2A/2B Stockpile - small trucks only - Route1 - route 1, 3 emissio REC2ASR3 REC2ASR3 2A/2B Stockpile - small trucks only - Route1 - route 1, 3 emissio REC2ASR3 REC2ASR3 2A/2B Stockpile - small trucks only - Route2 - route 1, 3 emissio REC2ASR3 REC2ASR3 2A/2B Stockpile - small trucks only - Route3 - route 1, 3 emissio REC2ASR3 REC2ASR3 2A/2B	P Plant			
RECPPR6 RECPPR6 Reclamation P Plant Route6 - route 1, 5, 6 emissions 1A/1B Stockpile REC1ALR1 REC1ALR1 1A/1B Stockpile - large trucks only - Route1 1A/1B Stockpile REC1ALR1 REC1ALR1 1A/1B Stockpile - large trucks only - Route1 REC1ASR1 REC1ASR1 REC1ASR1 1A/1B Stockpile - large trucks only - Route1 REC1ASR1 REC1ASR1 2A/2B Stockpile - large trucks only - Route1 - route 1, 2 emissio REC2ALR2 REC2ALR2 2A/2B Stockpile - large trucks only - Route2 - route 1, 2 emissio REC2ALR3 REC2ALR3 2A/2B Stockpile - large trucks only - Route3 - route 1, 3 emissio REC2ASR1 REC2ALR3 2A/2B Stockpile - large trucks only - Route1 - route 1, 3 emissio REC2ASR1 REC2ASR1 2A/2B Stockpile - small trucks only - Route1 - route 1, 3 emissio REC2ASR2 REC2ASR2 2A/2B Stockpile - small trucks only - Route2 - route 1, 3 emissio REC2ASR3 REC2ASR3 2A/2B Stockpile - small trucks only - Route2 - route 1, 3 emissio REC2ASR3 REC2ASR3 2A/2B Stockpile - small trucks only - Route2 - route 1, 3 emissio REC2ASR3 REC2ASR3 2A/2B Stockpile - small trucks only - Route2 - route 1, 3 emissio RECCLWR		-		
IA/1B Stockpile REC1ALR1 REC1ALR1 REC1ALR1 IA/1B Stockpile - large trucks only - Route1 IA/1B Stockpile REC1ASR1 REC1ASR1 IA/1B Stockpile - small trucks only - Route1 REC1ASR1 REC1ASR1 REC1ASR1 IA/1B Stockpile - small trucks only - Route1 REC2ALR2 REC2ALR1 ZA/2B Stockpile - large trucks only - Route1 - route 1, 2 emissio REC2ALR3 REC2ALR3 ZA/2B Stockpile - large trucks only - Route2 - route 1, 2 emissio REC2ASR1 REC2ALR3 ZA/2B Stockpile - large trucks only - Route3 - route 1, 3 emissio REC2ASR2 REC2ASR1 ZA/2B Stockpile - small trucks only - Route1 - route 1, 3 emissio REC2ASR3 REC2ASR2 ZA/2B Stockpile - small trucks only - Route1 - route 1, 3 emissio REC2ASR3 REC2ASR3 ZA/2B Stockpile - small trucks only - Route1 - route 1, 3 emissio REC2ASR3 REC2ASR3 ZA/2B Stockpile - small trucks only - Route2 - route 1, 3 emissio RECCLWR1 RECCLWR1 CLW Stockpile - small trucks only - Route2 - route 1, 3 emissions RECCLWR2 RECCLWR3 RECCLWR3 RECCLWR3 RECCLWR3 RECCLWR4 CLW Stockpile - small trucks only - Route2 - route 2, 6 emissions <				
IA/1B Stockpile REC1ASR1 REC1ASR1 REC1ASR1 IA/1B Stockpile - small trucks only - Route1 2A/2B Stockpile REC2ALR1 REC2ALR2 REC2ALR2 REC2ALR2 REC2ALR3 REC2				
REC2ALR1 REC2ALR1 REC2ALR1 REC2ALR2 REC2ALR2 REC2ALR2 REC2ALR2 REC2ALR3 REC2AR3 REACL REC2AR3 REACLAR3 REC2ALR3 REC2ALR3 REC2ALR3 REC2ALR3 REC3ALR3	1A/1B Stockpile			
REC2ALR2 REC2ALR2 REC2ALR2 REC2ALR3 REC2ASR1 REC2ASR1 REC2ASR1 REC2ASR2 REC2ASR2 REC2ASR2 REC2ASR3				
2A/2B Stockpile REC2ALR3 REC2ALR3 2A/2B Stockpile - large trucks only - Route3 - route 1, 3 emissio REC2ASR1 REC2ASR1 2A/2B Stockpile - small trucks only - Route1 - route 1, 3 emissio REC2ASR2 REC2ASR2 2A/2B Stockpile - small trucks only - Route1 - route 1, 3 emissio REC2ASR3 REC2ASR3 2A/2B Stockpile - small trucks only - Route2 - route 1, 2 emissio; also used as C&S route REC2ASR3 REC2ASR3 2A/2B Stockpile - small trucks only - Route2 - route 1, 3 emissio REC2ASR3 REC2LWR1 CLW Stockpile - small trucks only - Route2 - route 1, 3 emissio RECCLWR1 RECCLWR1 CLW Stockpile - small trucks only - Route2 - route 2, 6 emissions RECCLWR2 RECCLWR2 CLW Stockpile - small trucks only - Route3 - route 3, 6 emissions RECCLWR3 RECCLWR4 CLW Stockpile - small trucks only - Route3 - route 2, 4 emissions RECCLWR4 RECCLWR5 CLW Stockpile - small trucks only - Route3 - route 2, 4 emissions RECCLWR5 RECCLWR5 CLW Stockpile - small trucks only - Route3 - route 2, 5 emissions RECCLWR6 RECCLWR6 CLW Stockpile - small trucks only - Route3 - route 2, 5 emissions RECCLWR6 RECCLWR6 CLW Stockpile - small trucks only - Route3 - route 2, 5 emissions <td></td> <td>-</td> <td></td> <td></td>		-		
REC2ASR1 REC2ASR1 2A/2B Stockpile - small trucks only - Route1 - route 1, 3 emissio REC2ASR2 REC2ASR2 2A/2B Stockpile - small trucks only - Route2 - route 1, 2 emissio, also used as C&S route REC2ASR3 REC2ASR3 2A/2B Stockpile - small trucks only - Route2 - route 1, 2 emissio, also used as C&S route REC2ASR3 REC2ASR3 2A/2B Stockpile - small trucks only - Route2 - route 1, 3 emissio RECCLWR1 RECCLWR1 RECCLWR1 RECCLWR2 RECCLWR2 CLW Stockpile - small trucks only - Route2 - route 2, 6 emissions RECCLWR3 RECCLWR3 RECCLWR4 RECCLWR4 RECCLWR4 CLW Stockpile - small trucks only - Route4 - route 2, 4 emissions RECCLWR4 RECCLWR5 CLW Stockpile - small trucks only - Route5 - route 2, 5 emissions RECCLWR5 RECCLWR6 CLW Stockpile - small trucks only - Route5 - route 2, 5 emissions RECCLWR6 RECCLWR6 CLW Stockpile - small trucks only - Route5 - route 2, 6 emissions	2A/2P Stockaila	REC2ALR3	REC2ALR3	2A/2B Stockpile - large trucks only - Route3 - route 1, 3 emissio
REC2ASR3 REC2ASR3 2A/2B Stockpile - small trucks only - Route2 - route 1, 3 emissio REC2ASR3 RECCLWR1 RECCLWR1 CLW Stockpile - small trucks only - Route2 - route 1, 3 emissio RECCLWR1 RECCLWR1 RECCLWR2 CLW Stockpile - small trucks only - Route2 - route 2, 6 emissions RECCLWR3 RECCLWR3 RECCLWR3 CLW Stockpile - small trucks only - Route3 - route 3, 6 emissions RECCLWR4 RECCLWR4 CLW Stockpile - small trucks only - Route4 - route 2, 4 emissions RECCLWR4 RECCLWR5 CLW Stockpile - small trucks only - Route5 - route 2, 5 emissions RECCLWR6 RECCLWR6 CLW Stockpile - small trucks only - Route5 - route 2, 5 emissions	ZAJ ZO SLOCKPILE	REC2ASR1	REC2ASR1	2A/2B Stockpile - small trucks only - Route1 - route 1, 3 emissio
RECCLWR1 RECCLWR1 CLW Stockpile - small trucks only - Route1 RECCLWR2 RECCLWR2 CLW Stockpile - small trucks only - Route2 - route 2, 6 emissions CLW Stockpile RECCLWR3 RECCLWR3 RECCLWR3 RECCLWR3 CLW Stockpile - small trucks only - Route3 - route 3, 6 emissions RECCLWR4 RECCLWR4 CLW Stockpile - small trucks only - Route3 - route 2, 4 emissions RECCLWR4 RECCLWR5 CLW Stockpile - small trucks only - Route4 - route 2, 4 emissions RECCLWR5 RECCLWR5 CLW Stockpile - small trucks only - Route5 - route 2, 5 emissions RECCLWR6 RECCLWR6 CLW Stockpile - small trucks only - Route5 - route 2, 6 emissions		REC2ASR2	REC2ASR2	2A/2B Stockpile - small trucks only - Route2 - route 1, 2 emissio; also used as C&S route
RECCLWR2 RECCLWR2 CLW Stockpile - small trucks only - Route2 - route 2, 6 emissions CLW Stockpile RECCLWR3 RECCLWR3 CLW Stockpile - small trucks only - Route3 - route 3, 6 emissions RECCLWR4 RECCLWR4 CLW Stockpile - small trucks only - Route3 - route 2, 4 emissions RECCLWR5 RECCLWR4 CLW Stockpile - small trucks only - Route4 - route 2, 4 emissions RECCLWR5 RECCLWR5 CLW Stockpile - small trucks only - Route5 - route 2, 5 emissions RECCLWR6 RECCLWR6 CLW Stockpile - small trucks only - Route6 - route 2, 6 emissions				
RECCLWR3 RECCLWR3 CLW Stockpile - small trucks only - Route3 - route 3, 6 emissions RECCLWR4 RECCLWR4 CLW Stockpile - small trucks only - Route4 - route 2, 4 emissions RECCLWR5 RECCLWR5 CLW Stockpile - small trucks only - Route5 - route 2, 5 emissions RECCLWR6 RECCLWR6 CLW Stockpile - small trucks only - Route5 - route 2, 5 emissions RECCLWR6 RECCLWR6 CLW Stockpile - small trucks only - Route6 - route 2, 6 emissions				
RECCLWR4 RECCLWR4 CLW Stockpile - small trucks only - Route4 - route 2, 4 emissions RECCLWR5 RECCLWR5 CLW Stockpile - small trucks only - Route5 - route 2, 5 emissions RECCLWR6 RECCLWR6 CLW Stockpile - small trucks only - Route5 - route 2, 6 emissions				
RECCLWR5 RECCLWR5 CLW Stockpile - small trucks only - Route5 - route 2, 5 emissions RECCLWR6 RECCLWR6 CLW Stockpile - small trucks only - Route6 - route 2, 6 emissions	CLW Stockpile			
RECCLWR6 RECCLWR6 CLW Stockpile - small trucks only - Route6 - route 2, 6 emissions				
Los right worth I CSKUADIN I CSKU	C&S Plant North	CSROADN	CSROADN	CLW Stockpile - small trucks only - Routes - route 2, 6 emissions C&S route to northern area

Table O-2

M6 Operational Stockpiles	Descrpition
9AX	Waste
9AW	Waste
5AW	Waste and Reclamation 5A Stockpile
6DO	Leach
4AW	Leach
4AE	Leach
4DO	Leach
4CO	Leach
2A0	Leach
6AO	Leach
6HW	Waste
EMW	Waste
СМО	Leach
L6R	Waste
VAO	Leach
VAW	Waste
VBO	Leach
BCPILE	Burrow Chief Stockpile - MBR, MB1, MB2
8CW	Waste
MR4	MR Ramp
MRR	MR1, MR2 & MR3
8CR	8CR Ramp
NRW	NR Waste Pile
2BW	2B Waste Pile
WMR	Waste Ramp
CLW	Copper Leach Push Back
CLW	Reclamation CLW Stockpile
LAUNDER2	Reclamation Launder2 Stockpile
9A9AX	Reclamation 9A/9AX Stockpile
THICKENER	Reclamation Thickener Stockpile
RIPRAP	Reclamation Rip Rap Production Area
9AREC	Reclamation Area East of Thickener
PPLANT	Reclamation P-Plant Stockpile
1A1B	Reclamation 1A/1B Stockpile
2A2B	Reclamation 2A/2B Stockpile

Attachment A

Operating Scenario	Pit Name	Maximum Blasting Agent Usage per Blast	Maximum No. of Blasts per Day	Maximum Daily Blasting Agent Usage	Maximum Blast Area per Blast	Maximum Mining Rates
		(lbs/blast)		(lbs/day)	(ft2/blast)	(tons/day)
Scenario 2	Mohawk	150,000	2	300,000	125,000	200,000
	Copper Mountain	100,000) 1	100,000	125,000	200,000
Scenario 3	Mohawk	150,000	2	2 300,000	125,000	200,000
	Little Rock 6	100,000) 1	100,000	125,000	90,000
Scenario 4	Mohawk	150,000	2	2 300,000	125,000	200,000
	Copper Leach	50,000) 1	L 50,000	125,000	90,000
Scenario 5	Burro Chief	200,000	2	2 400,000	125,000	200,000
	Little Rock 6	100,000) 1	100,000	125,000	90,000
Scenario 6	Burro Chief	200,000	2	2 400,000	125,000	200,000
	Copper Leach	50,000	1	L 50,000	125,000	90,000
Scenario 7	Mohawk	150,000	2	2 300,000	125,000	200,000
	Burro Chief	200,000	2	400,000	125,000	200,000

SIL results were based on each scenario sources, and all other on-site operational sources (C&S operation, engines, boilers).

AAQS results were based on each scenario sources, all other on-site operational sources (C&S operation, engines, boilers, reclamation), and any nearby sources provided by NMED.

PSD Incrment results were based on each scenario sources, all other on-site operational sources (C&S operation, engines, boilers), only long-term reclamation, any nearby sources provided by NMED, and any baseline sources provided by NMED.

worst case

next worst case

A worst case impact analysis was run and it was determined that the LR1 scenario created worst case impacts over all other Little Rock or Copper Leach operations impacts. Therefore a Copper Leach scenario is not represented.

Results of runs prior to limitations imposed to reduce impacts.

Scenario 2 - MKCM9 in worst-case tab (VAO, CMO/4CO/4DO 33%)

Option No.	Mohawk	Copper Mountain	Mohawk	Coppe	r Mountain
1	VAO (100%)	CMO (100%)		1	1
2	VAO (100%)	2BW (100%)		1	8
3	6DO (100%)	4CO (100%)		3	3
4	VAO (100%)	4CO (100%)		1	3
5	6DO (100%)	2BW (100%)		3	8
6	6DO (100%)	4AE (100%)		3	4
7	6DO (100%)	CMO (100%)		3	1
8	6AO (100%)	4CO (100%)		4	3
9	VAO (100%)	CMO/4CO/4DO (all 33%)		1	6

Scenario 3 - MKLR1 in worst-case tab (VAO, CLW)

Option No.	Mohawk	Little Rock 6	Mohawk	Little Rock 6
1	VAO (100%)	CLW (100%)	1	3
2	VAO (100%)	NRW (100%)	1	2
3	6DO (100%)	4CO (100%)	3	4
4	VAO (100%)	4CO (100%)	1	4
5	VAO (100%)	4CO/4DO (all 50%)	1	5
6	VAO (100%)	4AW/4CO/4DO (all 33%)	1	6
7	6AO (100%)	CLW (100%)	4	3

Scenario 5 - BCLR1 in worst-case tab (2AO 50%, 2BW 50%, CLW)

Option No.	Burro Chief	Little Rock 6	Burro Chief	Little Rock 6
1	2AO (100%)	CLW (100%)	7	3
2	4CO (100%)	CLW (100%)	6	3
3	4AE (100%)	CLW (100%)	4	3
4	5AW (100%)	CLW (100%)	3	3
5	6HW (100%)	4CO (100%)	2	4
6	2BW (100%)	CLW (100%)	1	3
7	4CO/4DO (all 50%)	CLW (100%)	5	3
8	5AW (100%)	4CO/4DO (all 50%)	3	5
9	5AW (100%)	4AW/4CO/4DO (all 33%)	3	6

Scenario 7 - BCMK4 in the worst-case tab (5AW, 6DO)

Option No.	Burro Chief	Mohawk	Burro Chief	Mohawk
1	2AO (100%)	VAO (100%)	7	1
2	4CO (100%)	VAO (100%)	6	1
3	4AE (100%)	6DO (100%)	4	3
4	5AW (100%)	6DO (100%)	3	3
5	6HW (100%)	6DO (100%)	2	3
6	2BW (100%)	VAO (100%)	1	1
7	4CO/4DO (all 50%)	VAO (100%)	5	1
8	5AW (100%)	6AO (100%)	3	4

The below concentration comparisons are based on preliminary runs, before modifications were imposed.

Scenario 2 had comparative lower overall concentrations than other scenarios

Scenario 3 had comparative higher overall concentrations than other scenarios

Options 1 and 7 had similar maximums.

Scenario 5 had comparative highest overall concentrations than other scenarios

Options 1 and 6 had similar maximums.

Scenario 7 had comparative moderate overall concentrations than other scenarios

Options 4 and 8 had similar maximums, with 4 being slightly higher.

worst case next worst case

Reclamation Area	Road Number	Total Length of Road (ft, one-way)	Vehicle Type on Reclamation Route	Scenario Representation		
	RECLLR1	15,967		ALWAYS		
Launder Line	RECLLR2,1	7,294	Small	WORST-CASE		
	RECLLR3,1	36,101		WORST-CASE		
	RECTHR1,2	14,271				
Thickener	RECTHR1,4	18,150	Small	WORST-CASE		
	RECTHR1,3	3,691				
	RECPPR1,2,3	3,947				
P Plant	RECPPR1,6,4,3	5,350	Small	WORST-CASE		
	RECPPR1,6,5	11,185				
1A/1B Stockpile	REC1ALR1	12,877	Large	ALWAYS		
IA/IB Stockpile	REC1ASR1	7,849	Small (in-pit)	ALWAYS		
	REC2ALR1,3	8,099	Large	WORST-CASE		
2A/2B Stockpile	REC2ALR1,2	18,191	Large	WORST-CASE		
ZAJ ZB Stockpile	REC2ASR1,2	8,779	Small	WORST-CASE		
	REC2ASR1,3	22,299	Sman	WONST-CASE		
	RECCLWR1	1,583				
	RECCLWR2,4	22,310				
	RECCLWR3,4	12,839				
CLW Stockpile	RECCLWR2,5	21,613	Small	WORST-CASE		
	RECCLWR3,5	12,142				
	RECCLWR2,6	35,830				
	RECCLWR3,6	26,359				

Resulting worst case scenarios run to show compliance

SIL results were based on each scenario sources, and all other on-site operational sources (C&S operation, engines, boilers).

AAQS results were based on each scenario sources, all other on-site operational sources (C&S operation, engines, boilers, reclamation), and any nearby sources provided by NMED. PSD Incrment results were based on each scenario sources, all other on-site operational sources (C&S operation, engines, boilers), only long-term reclamation, any nearby sources provided by NMED, and any baseline sources provided by NMED.

	Scenario 5 - WIKLKI - Kuli With	Scenario 5 - DCLRI - Run With	Scenario / - DCIVIN4 - Kuli With
RER2AL2 and RECPP1	REC1AL1 and RECTHR3	RER2AL2 and RECLL1	RER2AL2 and RECCLW6
Sources included:	Sources included:	Sources included:	Sources included:
MHBL	MHBL	BCBL	BCBL
Mohawk	Mohawk	ВСМН	ВСМН
VAO	VAO	2AO50	5AW
RD11G	RD11G	2BW50	RD6
RD30	RD30	CLW	RD7
CMBL	LR6BL	LR6BL	RD11E
СММН	LR6MH	LR6MH	RD12B
CMO33%	CLW	RD17	RD30A
4CO33%	RD18E	RD18	RD30B
4DO33%	RD18D	RD18D	MHBL
RD16A	RD18G	RD18E	Mohawk
RD16B	RD18H	RD18G	6DO
RD18J	REC1ALR1	RD18H	RD9
RD20A	1A/1B	RD21	RD11C
REC2ALR1	5AW	RECLLR1	RD11F
REC2ALR2	RECTHR1	RECLLR2	REC2ALR1
2A/2B	RECTHR3	Launder2	REC2ALR2
5AW	THICKENER	REC2ALR1	2A/2B
RECPPR1	9AREC	REC2ALR2	RECCLWR2
RECPPR2		2A/2B	RECCLWR6
RECPPR3		5AW	CLW
PPLANT			RIPRAP

Scenario 2¹ - MKCM9 - Run with Scenario 3^{1,2} - MKLR1 - Run with Scenario 5^{1,2} - BCLR1 - Run with Scenario 7^{1,2} - BCMK4 - Run with

1- Small truck reclemation activities (RECPP1, RECTHR3, RECLL1, and RECCLW6) were not included in PSD Increment runs because they are temporary (less than one year) operations.

2 - A worst case impact analysis was run and it was determined that the LR1 scenario created worst case impacts over all other Little Rock or Copper Leach operations impacts. Therefore a Copper Leach scenario is not represented.

Attachment B

Operating Scenario	Pit Name	Maximum Blasting Agent Usage per Blast (Ibs/blast)	sting Agent No. of Maximum Maximum age per Blasts per Daily Blasting Blast Area st Day Agent Usage Blast		Blast Area per Blast	Maximum Mining Rates (tons/day)	
Scenario 2	Mohawk	150,000		2	300,000	125,000	200,000
	Copper Mountain	100,000		1	100,000	125,000	200,000
Scenario 3	Mohawk	150,000		2	300,000	125,000	200,000
	Little Rock 6	100,000		1	100,000	125,000	90,000
Scenario 4	Mohawk	150,000		2	300,000	125,000	200,000
	Copper Leach	50,000		1	50,000	125,000	90,000
Scenario 5	Burro Chief	200,000		2	400,000	125,000	200,000
	Little Rock 6	100,000		1	100,000	125,000	90,000
Scenario 6	Burro Chief	200,000		2	400,000	125,000	200,000
	Copper Leach	50,000		1	50,000	125,000	90,000
Scenario 7	Mohawk	150,000		2	300,000	125,000	200,000
	Burro Chief	200,000		2	400,000	125,000	200,000

SIL results were based on each scenario sources, and all other on-site operational sources (C&S operation, engines, boilers).

AAQS results were based on each scenario sources, all other on-site operational sources (C&S operation, engines, boilers, reclamation), and any nearby sources provided by NMED. PSD Incrment results were based on each scenario sources, all other on-site operational sources (C&S operation, engines, boilers), only long-term reclamation, any nearby sources provided by NMED, and any baseline sources provided by NMED.

For PM runs

Resulting worst case scenarios run to show compliance

A worst case impact analysis was run and it was determined that the LR1 scenario created worst case impacts over all other Little Rock or Copper Leach operations impacts. Therefore, the Copper Leach scenarios (Scenarios 4 and 6) are not represented separately.

Scenario 2 - MKCM9 - Run with RER2AL2 and RECPP1	Scenario 3 - MKLR1 - Run with REC1AL1 and RECTHR3	Scenario 5 - BCLR1 - Run with RER2AL2 and RECLL1	Scenario 7 - BCMK4 - Run with RER2AL2 and RECCLW6
Sources included:	Sources included:	Sources included:	Sources included:
MHBL	MHBL	BCBL	BCBL
Mohawk	Mohawk	BCMH	BCMH
VAO	VAO	2AO50	5AW
RD11G	RD11G	2BW50	RD6
RD30	RD30	CLW	RD7
CMBL	LR6BL	LR6BL	RD11E
СММН	LR6MH	LR6MH	RD12B
CMO33%	CLW	RD17	RD30A
4CO33%	RD18E	RD18	RD30B
4DO33%	RD18D	RD18D	MHBL
RD16A	RD18G	RD18E	Mohawk
RD16B	RD18H	RD18G	6DO
RD18J	REC1ALR1	RD18H	RD9
RD20A	1A/1B	RD21	RD11C
REC2ALR1	5AW	RECLLR1	RD11F
REC2ALR2	RECTHR1	RECLLR2	REC2ALR1
2A/2B	RECTHR3	Launder2	REC2ALR2
5AW	THICKENER	REC2ALR1	2A/2B
RECPPR1	9AREC	REC2ALR2	RECCLWR2
RECPPR2		2A/2B	RECCLWR6
RECPPR3		5AW	CLW
PPLANT			RIPRAP

C & S Plant¹ (formerly SP-7A)

										Maximum H	lourly Emissi (lb/hr)	on Rates	Maximur	n Daily Emis (Ib/day)	sion Rates	Maximum	Annual Emis (ton/yr)	ssion Rates	
Activity	Source	Release Height (m)	Sigma-y (m)	Sigma-z (m)	UTM X (m)	UTM Y (m)	Elevation (m)	Height of Volume Source (m)	Width of Volume Source (m)	TSP	PM ₁₀	PM _{2.5}	TSP	PM ₁₀	PM _{2.5}	TSP	PM ₁₀	PM _{2.5}	Scenarios
Crushing ²	CRUSH	6	1.16	2.33	744422	3616117	1902	5	5	1.44	0.648	0.120	17.28	7.78	1.44	3.15	1.42	0.26	all
Screening ³	SCREEN	4	1.16	2.33	744424	3616119	1902	5	5	1.32	0.444	0.030	15.84	5.33	0.36	2.89	0.97	0.07	all
Conveyor Transfers	CONTRN	2	0.47	0.93	744426	3616121	1902	2	2	0.672	0.221	0.062	8.06	2.65	0.75	1.47	0.48	0.14	all
Aggregate Handling	AggHand	2	0.47	0.93	744428	3616123	1902	2	2	5.01	2.37	0.359	60.17	28.46	4.31	10.98	5.19	0.79	all

1 - Operations for this source occur during the daylight hours for 12 hr/day and 4,380 hr/yr.

2 - Tertiary crushing since there are is "ND" listed in the AP-42 table for Primary Crushing and Secondary Crushing.

3 - Not Fines Screening.

Stockpiles

M6 Operational Stockpiles	Descrpition	Throughput Assumption (tpd)	Initial Verti	ice Location	Release Height	Vertical Dimension	Sigma-z	Area (m²)	Ρ	M10 Emission Rate		Ρ	M2.5 Emission Rate	
Stockplies		Assumption (tpu)	UTM x	UTM y	m	m	m		lb/hr	lb/day	ton/yr	lb/hr	lb/day	ton/yr
9AX	Waste	200,000	744601.67	3616502.22	1.524	3.048	1.4177	130925.2	0.133	3.200	0.584	0.020	0.48	0.0876
9AW	Waste	200,000	744054.33	3616356.92	1.524	3.048	1.4177	438990.4	0.133	3.200	0.584	0.020	0.48	0.0876
5AW	Waste and Reclamation 5A Stockpile	200,000	747716.69	3616206.36	1.524	3.048	1.4177	680481.3	0.133	3.200	0.584	0.020	0.48	0.0876
6DO	Leach	200,000	746548.09	3613732.64	1.524	3.048	1.4177	484672.9	0.133	3.200	0.584	0.020	0.48	0.0876
4FO	Leach	200,000	745063.26	3612507.59	1.524	3.048	1.4177	801998.5	0.133	3.200	0.584	0.020	0.48	0.0876
4AW	Leach	200,000	745596.02	3613926.60	1.524	3.048	1.4177	440726.5	0.133	3.200	0.584	0.020	0.48	0.0876
4AE	Leach	200,000	746144.79	3613647.79	1.524	3.048	1.4177	569503.2	0.133	3.200	0.584	0.020	0.48	0.0876
4DO	Leach	200,000	744916.33	3613131.77	1.524	3.048	1.4177	319593.1	0.133	3.200	0.584	0.020	0.48	0.0876
4C0	Leach	200,000	744645.81	3612930.33	1.524	3.048	1.4177	209082	0.133	3.200	0.584	0.020	0.48	0.0876
2A0	Leach	200,000	744611.55	3615838.07	1.524	3.048	1.4177	695617.1	0.133	3.200	0.584	0.020	0.48	0.0876
6AO	Leach	200,000	747163.78	3614567.00	1.524	3.048	1.4177	197352.5	0.133	3.200	0.584	0.020	0.48	0.0876
6HW	Waste	200,000	746907.15	3612939.09	1.524	3.048	1.4177	220254.4	0.133	3.200	0.584	0.020	0.48	0.0876
СМО	Leach	200,000	744496.59	3613824.38	1.524	3.048	1.4177	293259.7	0.133	3.200	0.584	0.020	0.48	0.0876
L6R	Waste	90,000	743576.12	3616172.93	1.524	3.048	1.4177	28923.1	0.0600	1.440	0.263	0.00900	0.216	0.0394
VAO	Leach	200,000	745934.8	3614802.86	1.524	3.048	1.4177	397371.9	0.133	3.200	0.584	0.020	0.48	0.0876
VAW	Waste	200,000	746450.91	3614798.67	1.524	3.048	1.4177	79487.8	0.133	3.200	0.584	0.020	0.48	0.0876
VBO	Leach	200,000	746324.73	3613989.41	1.524	3.048	1.4177	549802.6	0.133	3.200	0.584	0.020	0.48	0.0876
BCPILE	Burrow Chief Stockpile - MBR, MB1, MB2	200,000	746018.52	3615066.25	1.524	3.048	1.4177	218080.9	0.133	3.200	0.584	0.020	0.48	0.0876
8CW	Waste	200,000	746554.61	3614932.1	1.524	3.048	1.4177	416004.4	0.133	3.200	0.584	0.020	0.48	0.0876
MR4	MR Ramp	200,000	746606.65	3615661.79	1.524	3.048	1.4177	21903.2	0.133	3.200	0.584	0.020	0.48	0.0876
MRR	MR1, MR2 & MR3	200,000	745948.29	3615058.62	1.524	3.048	1.4177	62353.8	0.133	3.200	0.584	0.020	0.48	0.0876
8CR	8CR Ramp	200,000	746530.76	3614942.52	1.524	3.048	1.4177	62817.9	0.133	3.200	0.584	0.020	0.48	0.0876
NRW	NR Waste Pile	200,000	742439.85	3616248.97	1.524	3.048	1.4177	561754.2	0.133	3.200	0.584	0.020	0.48	0.0876
2BW	2B Waste Pile	200,000	744641.24	3615127.38	1.524	3.048	1.4177	412034.3	0.133	3.200	0.584	0.020	0.48	0.0876
WMR	Waste Ramp	200,000	745646.3	3615042.58	1.524	3.048	1.4177	76099	0.133	3.200	0.584	0.020	0.48	0.0876
CLW	Copper Leach Push Back	80,000	742381.39	3615203.11	1.524	3.048	1.4177	153237.9	0.0533	1.280	0.234	0.00800	0.192	0.0350
CLW	Reclamation CLW Stockpile	15,000	742381.39	3615203.11	1.524	3.048	1.4177	153237.9	0.0100	0.2400	0.0438	0.0015	0.036	0.0066
LAUNDER2	Reclamation Launder2 Stockpile	5,000	743483.52	3620091.23	1.524	3.048	1.4177	56568.5	0.0033	0.0800	0.0146	0.00050	0.012	0.00219
9A9AX	Reclamation 9A/9AX Stockpile	20,000	743909.41	3616377.03	1.524	3.048	1.4177	745387.2	0.0133	0.3200	0.0584	0.002	0.048	0.00876
THICKENER	Reclamation Thickener Stockpile	15,000	746853.89	3617755.78	1.524	3.048	1.4177	194934	0.0100	0.2400	0.0438	0.0015	0.036	0.0066
RIPRAP	Reclamation Rip Rap Production Area	20,000	743843.71	3617117.57	1.524	3.048	1.4177	390509.3	0.0133	0.3200	0.0584	0.002	0.048	0.00876
9AREC	Reclamation Area East of Thickener	15,000	744036.69	3616364.67	1.524	3.048	1.4177	277696.5	0.0100	0.2400	0.0438	0.0015	0.036	0.0066
PPLANT	Reclamation P-Plant Stockpile	15,000	748991.28	3615077.2	1.524	3.048	1.4177	6308.8	0.0100	0.2400	0.0438	0.0015	0.036	0.0066
1A1B	Reclamation 1A/1B Stockpile	20,000	748377.62	3615025.94	1.524	3.048	1.4177	1178884.1	0.0133	0.3200	0.0584	0.002	0.048	0.00876
2A2B	Reclamation 2A/2B Stockpile	20,000	744295.43	3614909.2	1.524	3.048	1.4177	524490.4	0.0133	0.3200	0.0584	0.002	0.048	0.00876

Note that Tyrone will not be moving the max of 200,000 tpd to all of these stockpiles at the same time.

Haul Roads							PM10 Emission			PM2.5 Emission	s	т					
Road Name	Road No.	ID	Desc	Calculated in AERMOD (m)	Road Length (ft)	Short Term lb/hr	lb/day	ton/yr	Short Term lb/hr	lb/day	ton/yr	Line Volume (Plume) Height (m)	Plume Width (m)	Number of Coords	Release Height (m)	Vehicle Height (m)	Vehicle Width (m)
Wagner	4	ROAD4	Wagner	856.2	2809	17.96	430.95	63.57	1.80	43.10	6.36	11.22	14.3	60	5.61	6.6	8.3
Wagner Spur A Mohawk	4A 5A	ROAD4A ROAD5A	Wagner Spur A Mohawk	269.6	885 6321	5.65	135.70 969.77	20.02	0.565	13.57 96.98	2.00	11.22	14.3 14.3	19 135	5.61 5.61	6.6 6.6	8.3 8.3
Mohawk	5B	ROAD5B	Mohawk	1067	3501	22.38	537.06	79.22	2.24	53.71	7.92	11.22	14.3	75	5.61	6.6	8.3
Mohawk	5C	ROAD5C	Mohawk	1011.9	3320	21.22	509.32	75.13	2.12	50.93	7.51	11.22	14.3	71	5.61	6.6	8.3
5A Stockpile	6	ROAD6	5A Stockpile	892.1	2927	18.71	449.02	66.23	1.87	44.90	6.62	11.22	14.3	62	5.61	6.6	8.3
8C Stockpile	7	ROAD7 ROAD8	8C Stockpile 6A Stockpile	1136.7 382.5	3729	23.84 8.02	572.14 192.52	84.39 28.40	2.38 0.802	57.21 19.25	8.44 2.84	11.22 11.22	14.3 14.3	79 27	5.61 5.61	6.6 6.6	8.3 8.3
6A Stockpile 6D Stockpile	8	ROAD8	6D Stockpile	382.5	4112	26.29	630.88	28.40	2.63	63.09	2.84	11.22	14.3	88	5.61	6.6	8.3
Copper Mountain Waste	10	ROAD10	Copper Mountain Waste	2104.6	6905	44.14	1059.32	156.25	4.41	105.93	15.62	11.22	14.3	147	5.61	6.6	8.3
Main Pit/Mohawk 2	11	ROAD11	Main Pit/Mohawk 2	1104.9	3625	23.17	556.13	82.03	2.32	55.61	8.20	11.22	14.3	77	5.61	6.6	8.3
Spur off of 11 to 8CW	11A	ROAD11A	Spur off of 11 to 8CW	217.5	714	4.56	109.47	16.15	0.456	10.95	1.61	11.22	14.3	15	5.61	6.6	8.3
Spur off of 11 to NRW	1182	ROAD11B2 ROAD11C	Spur off of 11 to NRW	398.2	1306 3010	8.35	200.43	29.56	0.84	20.04	2.96	11.22	14.3	28	5.61	6.6	8.3
Spur off of 11B to 8CW Spur off of 11B to ValDump	11C 11D	ROAD11C ROAD11D	Spur off of 11B to 8CW Spur off of 11B to ValDump	917.6 513.1	3010	19.24 10.76	461.86	68.12 38.09	1.92	46.19 25.83	6.81 3.81	11.22 11.22	14.3 14.3	64 36	5.61	6.6 6.6	8.3 8.3
Main Pit	115	ROAD11D	Main Pit	363	1191	7.61	182.71	26.95	0.761	18.27	2.69	11.22	14.5	25	5.61	6.6	8.3
Main Pit	11F	ROAD11E	Main Pit	352.9	1158	7.40	177.63	26.20	0.740	17.76	2.62	11.22	14.3	25	5.61	6.6	8.3
Main Pit	11G	ROAD11G	Main Pit	563	1847	11.81	283.38	41.80	1.18	28.34	4.18	11.22	14.3	39	5.61	6.6	8.3
Valencia B	12B	ROAD12B	Valencia B	751.5	2466	15.76	378.25	55.79	1.58	37.83	5.58	11.22	14.3	53	5.61	6.6	8.3
4AE and 4FO	13	ROAD13	4AE and 4FO	885.5	2905	18.57	445.70	65.74	1.86	44.57	6.57	11.22	14.3	62	5.61	6.6	8.3
4 series 4 series	13A 13B	ROAD13A ROAD13B	4 series 4 series	1313.9 467.2	4311	27.56 9.80	661.33 235.16	97.55 34.69	2.76	66.13 23.52	9.75	11.22	14.3 14.3	92 33	5.61	6.6 6.6	8.3
4 series 4AW Stockpile	138	ROAD13B ROAD15	4 series 4AW Stockpile	467.2	2689	9.80	412.58	60.86	1.72	41.26	6.09	11.22	14.3	57	5.61	6.6	8.3
4D Stockpile	15 16A	ROAD15	4AW Stockpile	1949.7	6397	40.89	981.35	144.75	4.09	98.13	14.47	11.22	14.3	136	5.61	6.6	8.3
4D Stockpile	16B	ROAD16B	4D Stockpile	483.6	1587	10.14	243.41	35.90	1.01	24.34	3.59	11.22	14.3	34	5.61	6.6	8.3
2A Stockpile	17	ROAD17	2A Stockpile	1066.3	3498	22.36	536.70	79.16	2.24	53.67	7.92	11.22	14.3	126	5.61	6.6	8.3
West Main Road	18	ROAD18	West Main Road	2497.3	8193	52.37	1256.97	185.40	5.24	125.70	18.54	11.22	14.3	296	5.61	6.6	8.3
West Main Road series	18C	ROAD18C	West Main Road series	330.1	1083	6.92	166.15	24.51	0.692	16.62	2.45	11.22	14.3	39	5.61	6.6	8.3
West Main Road series	18D	ROAD18D	West Main Road series	1002.8	3290	9.46	227.13	33.50	0.946	22.713	3.350	11.22	14.3	119	5.61	6.6	8.3
West Main Road series West Main Road series	18E	ROAD18E ROAD18F	West Main Road series West Main Road series	1571.6 279.6	5156 917	14.83 5.86	355.97 140.73	52.51 20.76	1.48 0.586	35.597 14.07	5.251 2.08	11.22	14.3 14.3	186 33	5.61 5.61	6.6 6.6	8.3 8.3
West Main Road series	18F 18G	ROAD18F ROAD18G	West Main Road series	2/9.6	1030	2.96	71.12	20.76	0.586	7.112	2.08	11.22	14.3	33	5.61	6.6	8.3
West Main Road series	180	ROAD18H	West Main Road series	1235	4052	10.36	248.65	36.68	1.04	24.865	3.668	11.22	14.3	146	5.61	6.6	8.3
West Main Road series	181	ROAD18I	West Main Road series	156.1	512	3.27	78.57	11.59	0.327	7.86	1.16	11.22	14.3	18	5.61	6.6	8.3
West Main Road series	18J	ROAD18J	West Main Road series	456.3	1497	9.57	229.67	33.88	0.957	22.97	3.39	11.22	14.3	54	5.61	6.6	8.3
2B Stockpile	19	ROAD19	2B Stockpile	1907.3	6258	40.00	960.01	141.60	4.00	96.00	14.16	11.22	14.3	226	5.61	6.6	8.3
2B Stockpile	19B	ROAD19B	2B Stockpile	1744.7	5724	36.59	878.17	129.53	3.66	87.82	12.95	11.22	14.3	207	5.61	6.6	8.3
Copper Mountain Copper Mountain New	20 20A	ROAD20 ROAD20A	Copper Mountain Copper Mountain	1748.5 337.4	5737 1107	36.67 7.08	880.08 169.82	129.81 25.05	3.67 0.708	88.01 16.98	12.98 2.50	11.22	14.3 14.3	207 40	5.61 5.61	6.6 6.6	8.3 8.3
9A Stockpile	204	ROAD20A	9A Stockpile	1865.8	6121	39.13	939.12	138.52	3.91	93.91	13.85	11.22	14.3	221	5.61	6.6	8.3
9AX Stockpile	22	ROAD22	9AX Stockpile	914.7	3001	19.18	460.40	67.91	1.92	46.04	6.79	11.22	14.3	108	5.61	6.6	8.3
Main Pit series	30	ROAD30	Main Pit series	1674.3	5493	35.11	842.73	124.30	3.51	84.27	12.43	11.22	14.3	117	5.61	6.6	8.3
Main Pit series	30A	ROAD30A	Main Pit series	577.5	1895	12.11	290.67	42.87	1.21	29.07	4.29	11.22	14.3	40	5.61	6.6	8.3
Main Pit series	30B	ROAD30B	Main Pit series	821.3	2695	17.22	413.39	60.97	1.72	41.34	6.10	11.22	14.3	57	5.61	6.6	8.3
Main Pit series	30C	ROAD30C	Main Pit series	158	518	3.31	79.53	11.73	0.331	7.95	1.17	11.22	14.3	11	5.61	6.6	8.3
Launder Line	RECLLR1 RECLLR2	RECLLR1 RECLLR2	Reclamation Launder Line Route 1 Reclamation Launder Line Route 2	4866.7 1349.8	15967 4428	8.81	211.48 58.65	31.19 8.65	0.881 0.244	21.15 5.87	3.12	5.865 5.865	9.7 9.7	502 139	2.93 2.93	3.45 3.45	3.70
Launder Line	RECLER2	RECLER2	Reclamation Launder Line Route 2 Reclamation Launder Line Route 3	1349.8	35980	2.44	476.54	70.29	1.986	5.87	7.03	5.865	9.7	139	2.93	3.45	3.70
	RECTHR1	RECTHR1	Reclamation Thickener Route1 - not a standalone route	503.6	1652	2.74	65.65	9.68	0.274	6.56	0.97	5.865	9.7	52	2.93	3.45	3.70
71.1.1	RECTHR2	RECTHR2	Reclamation Thickener Route2 - route 1,2 emissions	3846.3	12619	20.89	501.41	73.96	2.089	50.14	7.40	5.865	9.7	397	2.93	3.45	3.70
Thickener	RECTHR3	RECTHR3	Reclamation Thickener Route3 - route 1,3 emissions	337.4	1107	1.83	43.98	6.49	0.183	4.40	0.65	5.865	9.7	35	2.93	3.45	3.70
	RECTHR4	RECTHR4	Reclamation Thickener Route4 - route 1,4 emissions	5028.6	16498	27.31	655.53	96.69	2.731	65.55	9.67	5.865	9.7	518	2.93	3.45	3.70
	RECPPR1	RECPPR1	Reclamation P Plant Route1 - route 1, 5, 6 emissions	236.9	777	1.29	30.88	4.56	0.129	3.09	0.46	5.865	9.7	24	2.93	3.45	3.70
	RECPPR2	RECPPR2	Reclamation P Plant Route2 - route 1, 2, 3 emissions	674	2211	3.66	87.86	12.96	0.366	8.79	1.30	5.865	9.7	69	2.93	3.45	3.70
P Plant	RECPPR3	RECPPR3	Reclamation P Plant Route3 - route 1, 6, 4, 3 emissions	292.2	959	1.59	38.09 58.23	5.62	0.159	3.81	0.56	5.865	9.7 9.7	30 46	2.93	3.45	3.70
	RECPPR4 RECPPR5	RECPPR4 RECPPR5	Reclamation P Plant Route4 - route 1, 6, 4, 3 emissions Reclamation P Plant Route5 - route 1, 5, 6 emissions	2517.2	1466 8259	2.43 13.67	328.14	8.59 48.40	0.243	5.82 32.81	0.86	5.865 5.865	9.7	260	2.93 2.93	3.45 3.45	3.70
	RECPPR6	RECPPR6	Reclamation P Plant RouteS - route 1, 5, 6 emissions	655	2149	3.56	85.39	12.59	0.356	8.54	1.26	5.865	9.7	68	2.93	3.45	3.70
44/40 01 - 1 - 11-	REC1ALR1	REC1ALR1	1A/1B Stockpile - large trucks only - Route1	3924.9	12877	8.23	197.55	29.14	0.823	19.76	2.91	11.22	14.3	274	5.61	6.6	8.3
1A/1B Stockpile	REC1ASR1	REC1ASR1	1A/1B Stockpile - small trucks only - Route1	2392.5	7849	13.00	311.89	46.00	1.300	31.19	4.60	5.865	9.7	247	2.93	3.45	3.70
	REC2ALR1	REC2ALR1	2A/2B Stockpile - large trucks only - Route1 - route 1, 2 emissions	112.3	368	0.236	5.65	0.83	0.024	0.57	0.08	11.22	14.3	8	5.61	6.6	8.3
	REC2ALR2	REC2ALR2	2A/2B Stockpile - large trucks only - Route1 - route 1, 2 emissions	5432.3	17823	11.39	273.43	40.33	1.139	27.34	4.03	11.22	14.3	380	5.61	6.6	8.3
2A/2B Stockpile	REC2ALR3	REC2ALR3	2A/2B Stockpile - large trucks only - Route3 - route 1, 3 emissions	2356.4	7731	4.94	118.61	17.49	0.494	11.86	1.75	11.22	14.3	165	5.61	6.6	8.3
	REC2ASR1	REC2ASR1	2A/2B Stockpile - small trucks only - Route1 - route 1, 3 emissions	1862	6109	10.11	242.73	35.80	1.011	24.27	3.58	5.865	9.7	192	2.93	3.45	3.70
1	REC2ASR2 REC2ASR3	REC2ASR2 REC2ASR3	2A/2B Stockpile - small trucks only - Route2 - route 1, 2 emissio; also used as C&S route 2A/2B Stockpile - small trucks only - Route2 - route 1, 3 emissions	813.7 4934.7	2670 16190	4.42 26.80	106.07 643.29	15.65 94.89	0.442	10.61 64.33	9.49	5.865 5.865	9.7	84 509	2.93	3.45 3.45	3.70
	RECZASR3	RECZASR3	CLW Stockpile - small trucks only - Route2 - route 1, 3 emissions CLW Stockpile - small trucks only - Route1	4934.7	15190	26.80	62.91	94.89	0.262	6.29	0.93	5.865	9.7	509	2.93	3.45	3.70
1	RECCLWR2	RECCLWR2	CLW Stockpile - small trucks only - Route2 - route 2, 6 emissions	5986.3	19640	32.52	780.38	115.11	3.252	78.04	11.51	5.865	9.7	617	2.93	3.45	3.70
CIW Stocknilo	RECCLWR3	RECCLWR3	CLW Stockpile - small trucks only - Route3 - route 3, 6 emissions	3099.5	10169	16.84	404.05	59.60	1.684	40.41	5.96	5.865	9.7	320	2.93	3.45	3.70
CLW Stockpile	RECCLWR4	RECCLWR4	CLW Stockpile - small trucks only - Route4 - route 2, 4 emissions	813.7	2670	4.42	106.07	15.65	0.442	10.61	1.56	5.865	9.7	84	2.93	3.45	3.70
	RECCLWR5	RECCLWR5	CLW Stockpile - small trucks only - Route5 - route 2, 5 emissions	601.4	1973	3.27	78.40	11.56	0.327	7.84	1.16	5.865	9.7	62	2.93	3.45	3.70
	RECCLWR6	RECCLWR6	CLW Stockpile - small trucks only - Route6 - route 2, 6 emissions	4934.7	16190	26.80	643.29	94.89	2.680	64.33	9.49	5.865	9.7	509	2.93	3.45	3.70
C&S Plant South ¹	CSROADS	CSROADS	C&S route to southern area	813.7	2670	1.73	20.7	3.789	0.173	2.07	0.379	5.865	9.7	84	2.93	3.45	3.70
C&S Plant North ¹	CSROADN	CSROADN	C&S route to northern area	1124.8	3690	2.37	28.5	4.201	0.237	2.85	0.420	5.865	9.7	116	2.93	3.45	3.70

1124 1 - Only C&S Plant North route was included in the model to represent worst case operations. Operations for this source occur during the daylight hours for 12 hr/day and 4,380 hr/y

		Large Trucks	Small Trucks	Small Trucks
		793	730	769
Vehicle Height	ft	21.65	11.33	13.22
	m	6.6	3.45	4.03
Vehicle Width	ft	27.23	12.15	16.63
	m	8.3	3.70	5.07
Plume Height	m	11.22	5.87	6.85
Release Height	m	5.61	2.94	3.43
Initial sigma z	m	5.22	2.73	3.19
Plume Width	m	14.3	9.7	11.1
Initial sigma y	m	6.65	4.51	5.15

Plume Height = truck height * 1.7 Release Height = Plume Height * 0.5 Initial Sigma z = Plume Height/2.15 Haul road width = actual vehicle width + 6m Initial Sigma y = (road width/2.15)

Point sources (stack emission points - engines/pumps)

ID	Description	M6 Modeled General Location	Stack Height	Stack Temp.	Stack Velocity	Stack Diameter	Lo	cation	Rain Cap?	-	1aximum Em	issions	CO Ma Emis	ximum sions	SO ₂ N	laximum Em	issions	10	Aaximum En	nissions		Maximum En same as PM ₃		Scenarios
		Location	ft	F	ft/s	ft	UTM x	UTM y		lb/hr	lb/day	tpy	lb/hr	tpy	lb/hr	lb/day	tpy	lb/hr	lb/day	tpy	lb/hr	lb/day	tpy	
SXWBOIL	Cathode Washing Hot Water Boilers (B-951 and B-748; common stack)	SX/EW Area	35.1	400.7	31.17	0.328	745560	3616120	Y	0.357	8.57	1.56	0.206	0.90	0.044	1.05	0.19	0.0192	0.461	0.0842	0.0192	0.461	0.0842	all
B-3891	Heat Exchanger Hot Water Boiler (T3600; SO# 963891)	SX/EW Area	15	450.0	0.45	1.67	745562	3616122	Y	0.511	12.28	2.24	0.295	1.29	0.063	1.50	0.27	0.0275	0.661	0.121	0.0275	0.661	0.1206	all
B-1454	Heat Exchanger Hot Water Boiler (T3600; SO# 961454)	SX/EW Area	15	450.0	0.45	1.50	745564	3616124	Y	0.511	12.28	2.24	0.295	1.29	0.063	1.50	0.27	0.0275	0.661	0.121	0.0275	0.661	0.1206	all
SD1	Cat C9 300 hp	San Salvador	8	900	138.6	0.344	745622	3612371	Y	1.77	42.55	7.77	1.633	7.15	0.58	13.96	2.55	0.0933	2.24	0.41	0.0933	2.239	0.4087	all
SD2	Cat C9 300 hp	San Salvador	8	900	138.6	0.344	745620	3612369	Y	1.77	42.55	7.77	1.633	7.15	0.58	13.96	2.55	0.0933	2.24	0.41	0.0933	2.239	0.4087	all
ENV-101	John Deere 125 hp	5E/Dead Man's Pond	9.84	923	136.4	0.338	744041	3614823	Y	3.88	93.00	16.97	0.838	3.67	0.26	6.15	1.12	0.2750	6.60	1.20	0.2750	6.600	1.2045	all
ENV-111	John Deere 125 hp	5E/Dead Man's Pond	9.84	923	136.4	0.338	744039	3614821	Y	3.88	93.00	16.97	0.838	3.67	0.26	6.15	1.12	0.2750	6.60	1.20	0.2750	6.600	1.2045	all
ENV-117	John Deere115 hp	South Rim Pit	8	900	129.4	0.351	746616	3612585	Y	0.95	22.90	4.18	0.215	0.94	0.22	5.37	0.98	0.0520	1.25	0.23	0.0520	1.248	0.2278	all
ENV-122	Cat 3054C 125 hp	South Rim Pit	9.84	900	128.9	0.341	746618	3612587	Y	1.29	30.95	5.65	1.028	4.50	0.26	6.15	1.12	0.0617	1.48	0.27	0.0617	1.481	0.2702	all
ENV-123	Cat 3126B 225 hp	South Rim Pit	8	833	87.5	0.495	746620	3612589	Y	2.19	52.65	9.61	1.225	5.36	0.44	10.47	1.91	0.0700	1.68	0.31	0.0700	1.680	0.3065	all
OP-2	Perkins 403C-15 32.5 hp	Little Rock Pit	8	833	114.6	0.372	742963	3615654	Y	0.360	8.64	1.58	0.278	1.22	0.063	1.51	0.28	0.0305	0.73	0.13	0.0305	0.732	0.1336	all
OP-4	Cat 6.6 225 hp	Little Rock Pit	8	833	162.4	0.347	742967	3615657	Y	1.33	31.91	5.82	1.225	5.36	0.44	10.47	1.91	0.0700	1.68	0.31	0.0700	1.680	0.3065	all
OP-7	Cat C7 225 hp	Mohawk	8	833	87.5	0.495	746506	3615394	Y	1.330	31.91	5.82	1.225	5.36	0.44	10.47	1.91	0.0700	1.68	0.31	0.0700	1.680	0.3065	all
OP-8	Cat C7 225 hp	Mohawk	8	833	87.5	0.495	746558	3615373	Y	1.33	31.91	5.82	1.225	5.36	0.44	10.47	1.91	0.0700	1.68	0.31	0.0700	1.680	0.3065	all
ENV-120	Cat C6.6 225 hp	Little Rock Pit	8	833	162.4	0.347	742968	3615651	Y	1.33	31.91	5.82	1.225	5.36	0.44	10.47	1.91	0.0700	1.68	0.31	0.0700	1.680	0.3065	all
EMP-1	Cat 3126 190 hp	Little Rock Pit	8	833	87.5	0.495	742972	3615654	Y	2.72	65.24	11.91	3.368	14.75	0.37	8.84	1.61	0.1596	3.83	0.70	0.1596	3.829	0.6989	all
EMP-2	Cat 3126B 200 hp	Little Rock Pit	8	833	87.5	0.495	742966	3615649	Y	1.95	46.80	8.54	1.089	4.77	0.39	9.31	1.70	0.0622	1.49	0.27	0.0622	1.493	0.2725	all

Open Pit sources

ID	Description	Release Height	Xlength	Y Length	Pit Volume	Angle	Area	Area	Pit Depth	Elevation	Actual Pit Depth	Actual Pit Denth	SW Corner L	ocation	Р	M10 Emissions			PM2.5 Emissions		Applicable Scenario	Notes
		m	m	m	m3	%	m2	ft2	ft	ft	ft	m	UTM x	UTM y	lb/hr	lb/day	ton/yr	lb/hr	lb/day	ton/yr		
MOHBL	Mohawk Blasting	6	1200	750	216,000,000	25	900000.0	9687519.375	5118	5905.512	787.402	240	746320.39	3615628.85	321.734	643.467	117.433	18.562	37.123	6.775	2, 3, 4, 7	Blasting at 2 blasts/day and 125,000 ff ² /blast
MOHAWK	Mohawk Material Handling	0	1200	750	252,000,000	25	900000.0	9687519.375	4331	5249.344	918.635	280	746320.39	3615628.85	0.133	3.2	0.584	0.020	0.48	0.0876	2, 3, 4, 7	Material Handling (i.e., truck loading) inside the pit at 200,000 tons/day
CMBL	Copper Mountain Blasting	6	1121	566	95,172,900	-40	634486.0	6829550.465	5853	6345.571	492.126	150	744296.55	3613000.42	321.734	321.734	58.716	18.562	18.562	3.387	2	Blasting at 1 blast/day and 125,000 ff/blast
CMMH	Copper Mountain Material Handling	0	1121	566	95,172,900	-40	634486.0	6829550.465	5853	6345.571	492.126	150	744296.55	3613000.42	0.133	3.2	0.584	0.020	0.48	0.0876	2	Material Handling (i.e., truck loading) inside the pit at 200,000 tons/day.
LR6BL	Little Rock6 Blasting	6	875	604	75,047,000	-30	528500.0	5688726.655	5594	6059.711	465.879	142	743293.96	3615235.98	321.734	321.734	58.716	18.562	18.562	3.387	3, 5	Blasting at 1 blast/day and 125,000 ff/blast
LR6MH	Little Rock6 Material Handling	0	875	604	75,047,000	-30	528500.0	5688726.655	5594	6059.711	465.879	142	743293.96	3615235.98	0.0600	1.440	0.263	0.00900	0.216	0.0394	3, 5	Material Handling (i.e., truck loading) inside the pit at 90,000 tons/day
BCBL	Burrow Chief Blasting	6	1114	1256	426,751,120	-40	1399184.0	15060691.23	5223	6223.753	1000.656	305	745739.45	3614493.17	321.734	643.467	117.433	18.562	37.123	6.775	5, 6, 7	Blasting at 2 blasts/day and 125,000 ff ² /blast
BCMH	Burrow Chief Material Handling	0	1114	1256	426,751,120	-40	1399184.0	15060691.23	5223	6223.753	1000.656	305	745739.45	3614493.17	0.133	3.2	0.584	0.020	0.48	0.0876	5, 6, 7	Material Handling (i.e., truck loading) inside the pit at 200,000 tons/day
CLBL	Copper Leach Blasting	6	740	310	32,574,800	-25	229400.0	2469241.05	5594	6059.711	465.879	142	742217.16	3614850.75	321.734	321.734	58.716	18.562	18.562	3.387	4,6	Blasting at 1 blast/day and 125,000 ff/blast
CLMH	Copper Leach Material Handling	0	740	310	32,574,800	-25	229400.0	2469241.05	5594	6059.711	465.879	142	742217.16	3614850.75	0.0600	1.440	0.263	0.00900	0.216	0.0394	4,6	Material Handling (i.e., truck loading) inside the pit at 90,000 tons/day

	Blasting Agent Usage (Ibs/blast) & Blast			NOx			(:0			SO ₂			PM ₁₀			PM _{2.5}	
Pit Blasting	Area (ft ² /blast) & No. Blasts/Day	lb/hr	tpy	lb/day	Daily ¹ (lb/hr)	Annual ² (lb/hr)	lb/hr	tpy	lb/hr	lb/day	Daily ¹ (lb/hr)	tpy	lb/hr	lb/day	Daily ¹ (lb/hr)	lb/hr	lb/day	Daily ¹ (lb/hr)
Mohawk	150,000 lbs & 125,000 ft ² & 2	135.0	49.3	270.0	27.00	11.25	3,048	1,112.5	0.27	0.54	0.05	0.10	321.73	643.47	64.35	18.56	37.12	3.71
Copper Mountain	100,000 lbs & 125,000 ft ² & 1	90.0	16.4	90.0	9.00	3.75	2,032	370.8	0.18	0.18	0.02	0.03	321.73	321.73	32.17	18.56	18.56	1.86
Little Rock 6	100,000 lbs & 125,000 ft ² & 1	90.0	16.4	90.0	9.00	3.75	2,032	370.8	0.18	0.18	0.02	0.03	321.73	321.73	32.17	18.56	18.56	1.86
Copper Leach	50,000 lbs & 125,000 ft ² & 1	45.0	8.2	45.0	4.50	1.87	1,016	185.4	0.090	0.090	0.01	0.016	321.73	321.73	32.17	18.56	18.56	1.86
Burro Chief	200,000 lbs & 125,000 ft ² & 2	180.0	65.7	360.0	36.00	15.00	4,064	1,483.4	0.36	0.72	0.07	0.13	321.73	643.47	64.35	18.56	37.12	3.71

1 - Daily short term calculations based on 10 hour/day operation.
 2 - Calculated based on annual tons per year emission rate.

Area source

ID	Description	Release Height	X Length	Y Length	Angle	Initial Vertical Dim.	Locat	tion		TSP	PM10	PM10	Scenarios
		m	m	m	degree	m	UTM x	UTM y	Applicable Scenario	(lb/hr-ft2)	(lb/hr)	(lb/hr-ft2)	
SXEW2	Acid Tank House	6	34	34	0	0	745498	3615908	all	1.47E-04	1.82	1.47E-04	all

Attachment C

Pollutant, Time	Modeled Facility	Cumulative Concentration ^{1, 2}	Background Concentration	Cumulative Concentration				Location	
Period and Standard	Concentration (µg/m3)	(µg/m3)	(µg/m3)	(µg/m3)	Value of Standard (µg/m3)	Percent of Standard	UTM E (m)	UTM N (m)	Elevation (ft)
CO, 8-hr, NAAQS CO, 8-hr, NMAAQS	1,874.2	1,874.2	-	1,874.2	10,303.60 9,960.10	18.19% 18.82%	748362.17	3616563.59	1830.2
CO, 1-hr, NAAQS CO, 1-hr, NMAAQS	14,880.4	14,880.5	-	14,880.5	40,069.60 14,997.50	37.14% 99.22%	749935.66	3615741.9	1900.75
NO ₂ , Annual, NAAQS NO ₂ , Annual,	1.26	3.86	-	3.86	99.66 94	3.88% 4.11%	767112	3622605.97	1756.99
NMAAQS NO ₂ , Annual, PSD Class I	0.020	0.040	-	0.04	2.5	1.62%	767221	3658526	1889
NO ₂ , Annual, PSD Class II	1.26	3.86	-	3.86	25	15.45%	767112.00	3622605.97	1756.99
NO ₂ , 24-hr, NMAAQS	30.7	41.9	-	41.9	188	22.27%	748556.11	3616191.85	1825.41
NO2, 1-hr, NAAQS	124.6	124.7	-	124.7	188.03	66.32%	748168.21	3616757.54	1817.41
PM _{2.5} , Annual, NAAQS	1.92	1.92	5.1	7.02	12	58.51%	748685.42	3615868.60	1831.32
PM _{2.5} , 24-hr, NAAQS	5.92	5.92	14.9	20.82	35	59.50%	749319.10	3614989.27	1819.85
PM ₁₀ , Annual, PSD Class I	0.0837	0.00	-	0.00	4	0.00%	NA	NA	NA
PM ₁₀ , Annual, PSD Class II	19.1	0.00	-	0.00	17	0.00%	NA	NA	NA
PM ₁₀ , 24-hr, NAAQS	66.0	66.0	56.5	122.52	150	81.68%	749319.1	3614989.3	1819.9
PM ₁₀ , 24-hr, PSD Class I	1.3	0.1	-	0.10	8	1.19%	772973.0	3657516.0	2021.5
PM ₁₀ , 24-hr, PSD Class II	45.6	29.7	-	29.7	30	99.08%	741913.3	3615205.9	1894.5
SO ₂ , Annual, Significance	0.41	0.41	-	-	1	41.07%	745371.94	3612052.03	1968.05
SO ₂ , 24-hr, Significance	4.49	4.49	-	-	5	89.73%	745472.24	3612053.76	1957.59
SO ₂ , 3-hr, Significance	14.25	14.25	-	-	25	56.99%	745371.94	3612052.03	1968.05
SO ₂ , 1-hr, NAAQS	17.24	17.24	1.75	18.99	196.4	9.67%	745672.52	3612062.47	1954.40

	Cumulative H1H	Modeled Facility				Location	
Pollutant, Time Period and Standard	Concentration ^{1, 2} (μ g/m3)	Concentration (µg/m3)	Value of Standard ³ $(\mu g/m3)$	Percent of Standard	UTM E (m)	UTM N (m)	Elevation (ft)
	S	cenario 2 Mohawk (150	0K)/Copper Mountain	n (100K) => Copper !	Mountain prime		
CO, 8-hr, NAAQS	1,279.30	1,279.27	10,303.60	12.42%	743359.83	3612328.98	1956.81
CO, 8-hr, NMAAQS	1,2/9.30	1,2/9.2/	9,960.10	12.84%	/43539.83	3012328.98	1950.81
CO, 1-hr, NAAQS	10,234.24	10,234.04	40,069.60	25.54%	743359.83	3612328.98	1956.81
CO, 1-hr, NMAAQS	10,234.24	10,254.04	14,997.50	68.24%	/43539.83	3012328.98	1950.81
		Scenario 3 Mol	nawk (150K)/Little R	ock 6 (100K)=> LR6	prime		
CO, 8-hr, NAAQS	1,363.53	1,363.50	10,303.60	13.23%	745951.64	3619804.8	1869.94
CO, 8-hr, NMAAQS	1,505.55	1,505.50	9,960.10	13.69%	743931.04	5019804.8	1809.94
CO, 1-hr, NAAQS	10,901.68	10,901.52	40,069.60	27.21%	745951.64	3619804.8	1869.94
CO, 1-hr, NMAAQS	10,901.08	10,901.32	14,997.50	72.69%	/43951.04	3019804.8	1809.94
-		Scenario 4 Mohawk	(150K)/Copper Leac	h (50K) => Copper L	each prime	-	
CO, 8-hr, NAAQS	1,521,53	1.521.49	10,303.60	14.77%	742268.86	3614761.46	1901.29
CO, 8-hr, NMAAQS	1,521.55	1,521.49	9,960.10	15.28%	742208.80	3014/01.40	1901.29
CO, 1-hr, NAAQS	12,171.96	12.171.70	40,069.60	30.38%	742268.86	3614761.46	1901.29
CO, 1-hr, NMAAQS	12,171.90	12,171.70	14,997.50	81.16%	742208.80	3014701.40	1901.29
		Scenario 5 Burro	Chief (200K)/Little	Rock 6 (100K) \Longrightarrow LF	16 prime		
CO, 8-hr, NAAQS	1,363.53	1,363.50	10,303.60	13.23%	745951.64	3619804.8	1869.94
CO, 8-hr, NMAAQS	1,505.55	1,505.50	9,960.10	13.69%	743931.04	5019804.8	1809.94
CO, 1-hr, NAAQS	10,901.68	10,901.52	40,069.60	27.21%	745951.64	3619804.8	1869.94
CO, 1-hr, NMAAQS	10,901.08	10,901.32	14,997.50	72.69%	/43951.04	3019804.8	1809.94
		Scenario 6 Burro Ch	ief (200K)/Copper L	each (50K)=> Burro	Chief prime		
CO, 8-hr, NAAQS	1,861.79	1,861.79	10,303.60	18.07%	749935.66	3615741.9	1900.75
CO, 8-hr, NMAAQS	1,001.79	1,001.79	9,960.10	18.69%	749955.00	5015741.9	1900.75
CO, 1-hr, NAAQS	14.880.48	14,880.43	40,069.60	37.14%	749935.66	3615741.9	1900.75
CO, 1-hr, NMAAQS	14,000.40	14,000.45	14,997.50	99.22%	749955.00	5015741.9	1900.75
		Scenario 7 Mohaw	vk (150K)/Burrow Ch	nief (200K) => Moha	wk prime		
CO, 8-hr, NAAQS	1,874.24	1,874.18	10,303.60	18.19%	748362 17	3616563.59	1830.2
CO, 8-hr, NMAAQS	1,074.24	1,074.18	9,960.10	18.82%	748362.17	5010505.59	1630.2
CO, 1-hr, NAAQS	14,846.55	14,846.17	40,069.60	37.05%	748362.17	3616563.59	1830.2
CO, 1-hr, NMAAQS	14,040.33	14,040.17	14,997.50	98.99%	/40302.1/	3010303.39	1630.2

1 - Blasting Hours restricted to the following: December - 10 - sunset; other Winter (J, F, N) 9 - sunset; and all other months 8 - sunset

2 - Optionally, all nearby sources may be modeled instead of adding a background concentration, if the facility is over 10 km from the center of Albuquerque and El Paso.

3 - CO NAAQS are not to be exceeded more than once per year. NMAAQS are not to be exceeded.

Pollutant, Time Period and	Cumulative Modeled	Modeled Facility				Location	
Standard	Concentration ^{1, 2, 3} (µg/m3)	Concentration (µg/m3)	Value of Standard (µg/m3)	Percent of Standard	UTM E (m)	UTM N (m)	Elevation (ft)
	Scena	ario 2 Mohawk/Copper M	lountain => Copper N	Mountain prime	-	-	-
NO2, Annual, NAAQS	3.9	1.3	99.66	3.87%	767112	3622605.97	1756.99
NO2, Annual, NMAAQS	5.5	1.5	94	4.11%	707112	5022005.57	1750.55
NO2, Annual, PSD Class I	0.038	0.017	2.5	1.53%	767519	3658510	1889
NO2, Annual, PSD Class II	3.9	1.3	25	15.44%	767112	3622605.97	1756.99
NO2, 24-hr, NMAAQS	22.4	22.4	188	9.30%	748507.63	3616240.34	1825.51
NO ₂ , 1-hr, NAAQS (H8H)	71.6	71.6	188.03	38.06%	743235.21	3614063.49	1862.09
	S	Scenario 3 Mohawk/Little	Rock 6 => Little Ro	ock 6 prime			
NO2, Annual, NAAQS	3.9	1.3	99.66	3.87%	767112	3622605.97	1756.99
NO2, Annual, NMAAQS	5.9	1.5	94	4.11%	/0/112	3022003.97	1730.99
NO2, Annual, PSD Class I	0.038	0.018	2.5	1.53%	767553	3658505	1889
NO2, Annual, PSD Class II	3.9	1.3	25	15.44%	767112	3622605.97	1756.99
NO2, 24-hr, NMAAQS	23.1	23.1	188	9.30%	748507.63	3616240.34	1825.51
NO2, 1-hr, NAAQS (H8H)	68.8	63.2	188.03	36.57%	769112	3624605.97	1720.51
	S	cenario 4 Mohawk/Coppe	er Leach => Copper I	Leach prime			•
NO2, Annual, NAAQS	2.0	1.0	99.66	3.87%	5(5110	2/22/05/05	1756.00
NO2, Annual, NMAAQS	3.9	1.3	94	4.11%	767112	3622605.97	1756.99
NO2, Annual, PSD Class I	0.038	0.017	2.5	1.52%	767553	3658505	1889
NO2, Annual, PSD Class II	3.9	1.3	25	15.44%	767112	3622605.97	1756.99
NO ₂ , 24-hr, NMAAQS	22.9	22.9	188	9.30%	748507.63	3616240.34	1825.51
NO ₂ , 1-hr, NAAQS (H8H)	119.0	119.0	188.03	63.31%	742850.71	3614923.08	1887.22
		Scenario 5 Burro Chief	/Little Rock 6 => LR	6 prime		8	
NO2, Annual, NAAQS			99.66	3.87%			I
NO2, Annual, NMAAQS	3.9	1.3	94	4.11%	767112	3622605.97	1756.99
NO2, Annual, PSD Class I	0.039	0.018	2.5	1.56%	767221	3658526	1889
NO2, Annual, PSD Class II	3.9	1.3	25	15.44%	767112	3622605.97	1756.99
NO ₂ , 24-hr, NMAAQS	17.1	15.6	188	9.30%	767112	3622605.97	1756.99
NO ₂ , 1-hr, NAAQS (H8H)	68.8	63.2	188.03	36.57%	769112	3624605.97	1720.51
		enario 6 Burro Chief/Co			707112	5021000177	1720101
NO2, Annual, NAAQS			99.66	3.87%			
NO ₂ , Annual, NMAAQS	3.9	1.3	94	4.11%	767112	3622605.97	1756.99
NO ₂ , Annual, PSD Class I	0.039	0.018	2.5	1.55%	767030	3658516	1889
NO ₂ , Annual, PSD Class II	3.9	1.3	2.5	15.44%	767030	3622605.97	1756.99
NO ₂ , 24-hr, NMAAQS	19.3	19.3	188	9.30%	742786.06	3614979.65	1882.36
NO ₂ , 1-hr, NAAQS (H8H)	101.7	101.6	188.03	54.09%	747414.12	3618062.52	1866.53
1002, 1-111, 10/21QO (11011)	101.7	Scenario 7 Mohawk/Bu			/4/414.12	5018002.52	1800.55
NO2, Annual, NAAQS		Scenario / Wonawk/Bu	99.66	3.88%			1
NO ₂ , Annual, NMAAQS	3.9	1.3	99.88 94	4.11%	767112	3622605.97	1756.99
NO ₂ , Annual, NMAAQS	0.040	0.020	2.5	4.11%	767221	3658526	1889
2.							
NO ₂ , Annual, PSD Class II NO ₂ , 24-hr, NMAAQS	3.9	1.3 30.7	25	15.45%	767112	3622605.97	1756.99
2	41.9		188	9.30%	748556.11	3616191.85	1825.41
NO2, 1-hr, NAAQS (H8H)	124.7	124.6	188.03	66.32%	748168.21	3616757.54	1817.41

1 - Cumulative concentrations are H1H except for NO2 1-hour NAAQS compliace where 98th percentile (H8H) concentrations are shown.

2 - Blasting Hours restricted to the following: December - 10 - sunset; other Winter (J, F, N) 9 - sunset; and all other months 8 - sunset

3 - The 98th-percentile value associated with the 1-year period of meteorological data modeled is the design value. Each day of modeling, the maximum 1-hour concentration is determined for each receptor. The high-eighth-high value at each receptor is calculated, and the maximum of these is compared with the standard.

Pollutant, Time Period and Standard	Modeled Facility Concentration ¹ (µg/m3)	Background Concentration ² (µg/m3)	Cumulative Concentration ^{3,4} (µg/m3)	Value of Standard (µg/m3)	Percent of Standard		Location	
	(µg/iii))					UTM E (m)	UTM N (m)	Elevation (m)
ao 1 1 2: 10			1	per Mountain => Coj				
SO ₂ , Annual, Significance	0.41			1	41.07%	745371.94	3612052.03	1968.05
SO ₂ , 24-hr, Significance	4.49			5	89.73%	745472.24	3612053.76	1957.59
SO ₂ , 3-hr, Significance	14.2			25	56.99%	745371.94	3612052.03	1968.05
SO ₂ , 1-hr, Significance	17.2			7.8	221.09%	745672.52	3612062.47	1954.4
SO ₂ , 1-hr, NAAQS	17.2	1.8	19.0	196.4	9.67%	745672.52	3612062.47	1954.4
		S	cenario 3 Mohawk	/Little Rock 6 => Litt	le Rock 6 prime			
SO ₂ , Annual, Significance	0.41			1	41.07%	745371.94	3612052.03	1968.05
SO ₂ , 24-hr, Significance	4.49			5	89.73%	745472.24	3612053.76	1957.59
SO2, 3-hr, Significance	14.2			25	56.99%	745371.94	3612052.03	1968.05
SO2, 1-hr, Significance	17.2			7.8	221.09%	745672.52	3612062.47	1954.4
SO2, 1-hr, NAAQS	17.2	1.8	19.0	196.4	9.67%	745672.52	3612062.47	1954.4
		Se	enario 4 Mohawk/	Copper Leach => Cop	oper Leach prime			
SO2, Annual, Significance	0.41			1	41.07%	745371.94	3612052.03	1968.05
SO ₂ , 24-hr, Significance	4.49			5	89.73%	745472.24	3612053.76	1957.59
SO2, 3-hr, Significance	14.2			25	56.99%	745371.94	3612052.03	1968.05
SO ₂ , 1-hr, Significance	17.2			7.8	221.09%	745672.52	3612062.47	1954.4
SO2, 1-hr, NAAQS	17.2	1.8	19.0	196.4	9.67%	745672.52	3612062.47	1954.4
			Scenario 5 Burro	Chief/Little Rock 6 =	>LR6 prime			
SO2, Annual, Significance	0.41			1	41.07%	745371.94	3612052.03	1968.05
SO ₂ , 24-hr, Significance	4.49			5	89.73%	745472.24	3612053.76	1957.59
SO ₂ , 3-hr, Significance	14.2			25	56.99%	745371.94	3612052.03	1968.05
SO ₂ , 1-hr, Significance	17.2			7.8	221.09%	745672.52	3612062.47	1954.4
SO ₂ , 1-hr, NAAQS	17.2	1.8	19.0	196.4	9.67%	745672.52	3612062.47	1954.4
2 / 2		Sc	enario 6 Burro Chie	ef/Copper Leach => H	Burro Chief prime			
SO ₂ , Annual, Significance	0.41			1	41.07%	745371.94	3612052.03	1968.05
SO ₂ , 24-hr, Significance	4.49			5	89.73%	745472.24	3612053.76	1957.59
SO ₂ , 3-hr, Significance	14.2			25	56.99%	745371.94	3612052.03	1968.05
SO ₂ , 1-hr, Significance	17.2			7.8	221.09%	745672.52	3612062.47	1954.4
SO ₂ , 1-hr, NAAQS	17.2	1.8	19.0	196.4	9.67%	745672.52	3612062.47	1954.4
2/ / 2-				k/Burrow Chief => N				
SO2, Annual, Significance	0.41			1	41.07%	745371.94	3612052.03	1968.05
SO ₂ , 24-hr, Significance	4.49			5	89.73%	745472.24	3612053.76	1957.59
SO ₂ , 3-hr, Significance	14.2			25	56.99%	745371.94	3612052.03	1968.05
SO ₂ , 5 hr, Significance	17.2			7.8	221.09%	745672.52	3612062.47	1954.4
SO ₂ , 1-hr, NAAQS	17.2	1.8	19.0	196.4	9.67%	745672.52	3612062.47	1954.4

1 - Blasting Hours restricted to the following: December - 10 - sunset; other Winter (J, F, N) 9 - sunset; and all other months 8 - sunset

2 - NMED background for 99th percentil 1-hour Background at the Hurley Smelter (2013 - 2015 monitoring years)

3 - Tier 1: Add the 99th percentile 1-hour background concentration to 99th percentile modeling for the entire facility and compare with the 1-hour NAAQS.

4 - Over prediction because the Facility H1H is being evaluated in the maximum, as opposed to the 99th percentile.

	Cumulative Modeled	Scenario		Cumulative				Location	
Pollutant, Time Period and Standard		Contribution (µg/m3)	Background Concentration ³ (µg/m3)	Concentration ^{4, 5} (µg/m3)	Value of Standard (µg/m3)	Percent of Standard	UTM E (m)	UTM N (m)	Elevation (ft)
			Scenario 2 - MKCM9 -	Run with RER2AL2 a	nd RECPP1				
PM10, Annual, PSD Class I	0.00	0.07	-	0.00	4	0.00%	NA	NA	NA
PM ₁₀ , Annual, PSD Class II	0.00	17.5	-	0.00	17	0.00%	NA	NA	NA
PM ₁₀ , 24-hr, NAAQS (H2H)	66.0	66.0	56.5	122.5	150	81.68%	749319.1	3614989.27	1819.85
PM10, 24-hr, PSD Class I (H2H)	0.0003	1.0	-	0.00	8	0.00%	760550	3664038	2068.23
PM10, 24-hr, PSD Class II (H2H)	0.64	66.0	-	0.64	30	2.14%	743306.67	3613390.61	1926.42
			Scenario 3 ⁶ - MKLR1 -	Run with RER1AL1 a	nd RECTH3				
PM ₁₀ , Annual, PSD Class I	0.00	0.05	-	0.00	4	0.00%	NA	NA	NA
PM ₁₀ , Annual, PSD Class II	0.00	13.1	-	0.00	17	0.00%	NA	NA	NA
PM ₁₀ , 24-hr, NAAQS (H2H)	43.0	43.0	56.5	99.5	150	66.35%	747176.9	3617538.73	1774.91
PM ₁₀ , 24-hr, PSD Class I (H2H)	0.05374	0.9	-	0.05	8	0.67%	752828	3656115	2024.21
PM ₁₀ , 24-hr, PSD Class II (H2H)	22.5	43.0	-	22.51	30	75.02%	741913.28	3615205.93	1894.49
			Scenario 5 ⁶ - BCLR1 - I	Run with RER2AL2 ar	nd RECLL1				
PM ₁₀ , Annual, PSD Class I	0.00	0.08	-	0.00	4	0.00%	NA	NA	NA
PM ₁₀ , Annual, PSD Class II	0.00	13.0	-	0.00	17	0.00%	NA	NA	NA
PM ₁₀ , 24-hr, NAAQS (H2H)	45.6	45.6	56.5	102.1	150	68.07%	741910.05	3615118.65	1877.57
PM10, 24-hr, PSD Class I (H2H)	0.0954	1.0	-	0.10	8	1.19%	772973	3657516	2021.45
PM ₁₀ , 24-hr, PSD Class II (H2H)	29.7	45.6	-	29.72	30	99.08%	741913.28	3615205.93	1894.49
			Scenario 7 - BCMK4 - R	un with RER2AL2 and	IRECCLW6				
PM ₁₀ , Annual, PSD Class I	0.00	0.08	-	0.00	4	0.00%	NA	NA	NA
PM ₁₀ , Annual, PSD Class II	0.00	19.1	-	0.00	17	0.00%	NA	NA	NA
PM ₁₀ , 24-hr, NAAQS (H2H)	66.2	66.2	56.5	122.7	150	81.79%	742786.06	3614979.65	1882.36
PM ₁₀ , 24-hr, PSD Class I (H2H)	0.00046	1.3	-	0.00	8	0.01%	740239.2	3657043	2074.71
PM ₁₀ , 24-hr, PSD Class II (H2H)	0.97	66.2	-	0.97	30	3.23%	749204.93	3614441.67	1829.81

1 - Cumulative concentrations are based on H1H for annual compliance and H2H for short-term/ 24-hour compliace.

2 - Blasting Hours restricted to the following: December - 10 - sunset; other Winter (J, F, N) 9 - sunset; and all other months 8 - sunset

3 - NMED background for Maximum 24-hour Background at the Post Office in Deming (2013 - 2015 monitoring years)

4 - For 24-hour NAAQS compliance, use Tier 1, option 2: Use high second high predicted concentration and a single year of representative meteorological data. To the modeled concentration, add the highest 24-hour monitored background concentration.

5 - For PSD Increment compliance, model all increment-consuming sources at the facility and at nearby sources. Compare the high-second-high predicted concentration with the allowable increment.

6 - A worst case impact analysis was run and it was determined that the LR1 scenario created worst case impacts over all other Little Rock or Copper Leach operations impacts. Therefore a Copper Leach scenario is not represented.

	Cumulative Modeled	Scenario		Cumulative				Location	
Pollutant, Time Period and Standard	Concentration ^{1, 2} (µg/m3)	Contribution (µg/m3)	Background Concentration ³ (µg/m3)	Concentration ⁴ (µg/m3)	Value of Standard $(\mu g/m3)$	Percent of Standard	UTM E (m)	UTM N (m)	Elevation (ft)
		5	Scenario 2 - MKCM9 - Ru	in with RER2AL2 and	I RECPP1				
PM _{2.5} , Annual, NAAQS	1.79	1.79	5.1	6.9	12	57.4%	749332.1	3615090.11	1827.1
PM _{2.5} , 24-hr, NAAQS (H8H)	5.92	5.92	14.9	20.8	35	59.5%	749319.1	3614989.27	1819.85
		5	Scenario 3 ⁶ - MKLR1 - Ru	in with RER1AL1 and	RECTH3				
PM _{2.5} , Annual, NAAQS	1.31	1.31	5.1	6.4	12	53.4%	747176.9	3617538.73	1775.44
PM _{2.5} , 24-hr, NAAQS (H8H)	3.58	3.58	14.9	18.5	35	52.8%	747236.17	3617463.31	1782.43
	-	1	Scenario 5 ⁵ - BCLR1 - Ru	in with RER2AL2 and	RECLL1		-	-	
PM _{2.5} , Annual, NAAQS	1.31	1.31	5.1	6.4	12	53.4%	746830.75	3618159.65	1751.72
PM _{2.5} , 24-hr, NAAQS (H8H)	3.41	3.41	14.9	18.3	35	52.3%	741910.05	3615118.65	1877.57
		S	cenario 7 - BCMK4 - Run	with RER2AL2 and F	RECCLW6				
PM _{2.5} , Annual, NAAQS	1.92	1.92	5.1	7.0	12	58.5%	748685.42	3615868.6	1831.32
PM2.5, 24-hr, NAAQS (H8H)	5.22	5.22	14.9	20.1	35	57.5%	748685.42	3615868.6	1831.32

1 - Cumulative concentrations are H1H except as noted in the table.

2 - Blasting Hours restricted to the following: December - 10 - sunset; other Winter (J, F, N) 9 - sunset; and all other months 8 - sunset

3 - NMED background for 98th Percentile 24-hour and Maximum Annual Background at the Las Cruces District Office (2013 - 2015 monitoring years)

4 - For 24-hour NAAQS compliance, use Tier 1: To the modeled concentration, add the secondary $PM_{2.5}$ and the 98th percentile 24-hour monitored background concentration. Note that the proposed modeification does not increase emissions of NO_X or SO_2 by more than 40 tpy therefore secondary $PM_{2.5}$ analysis is not required and has not been conducted.

5 - A worst case impact analysis was run and it was determined that the LR1 scenario created worst case impacts over all other Little Rock or Copper Leach operations impacts. Therefore a Copper Leach scenario is not represented.

Section 17

Compliance Test History

(Submitting under 20.2.70, 20.2.72, 20.2.74 NMAC)

Compliance Test History Table

Unit No.	Test Description	Test Date
ENV-123	Tested in accordance with EPA test methods for NOx and CO as required by NSR Permit No. PSD2448-M1R6.	9/16/2013
PPG-1, 3, 7, 8, 11, 12, 13, 15	Tested in accordance with EPA test methods for NOx and CO as required by Title V Permit No. P147-R1M3.	3/10/2014

Section 20

Other Relevant Information

<u>Other relevant information</u>. Use this attachment to clarify any part in the application that you think needs explaining. Reference the section, table, column, and/or field. Include any additional text, tables, calculations or clarifying information.

Additionally, the applicant may propose specific permit language for AQB consideration. In the case of a revision to an existing permit, the applicant should provide the old language and the new language in track changes format to highlight the proposed changes. If proposing language for a new facility or language for a new unit, submit the proposed operating condition(s), along with the associated monitoring, recordkeeping, and reporting conditions. In either case, please limit the proposed language to the affected portion of the permit.

Freeport-McMoRan Tyrone Inc. requests confidentiality on behalf of our diluent suppliers for the materials used in the SX/EW process. Specifically, Freeport-McMoRan Tyrone Inc. wishes to maintain confidentiality regarding the constituency of the diluents and reactants. Section 6 is the only location in this application that contains this information.

Tyrone Mine

Section 22: Certification

Company Name: Freeport-McMoRan Tyrone Inc.

I, Erich J. Bower _____, hereby certify that the information and data submitted in this application are true

and as accurate as possible, to the best of my knowledge and professional expertise and experience.

Signed this <u>6</u> day of <u>November</u>, 2020, upon my oath or affirmation, before a notary of the State of

New Mexico

Thyon

*Signature

Erich J. Bower Printed Name Date

11/6/2020

President; General Manager Title

Scribed and sworn before me on this <u>6</u> day of <u>November</u>, <u>2020</u>.

My authorization as a notary of the State of <u>New Mexico</u> expires on the

<u>12</u> day of <u>December</u> , <u>2021</u>.

Notary's Signature

Jeanie B. Gutierrez Notary's Printed Name

	11/6/2020	
	Date	le le
A THE STATE	Official Seal JEANIE B GUTIERREZ Notary Public	
1. 10. 10 TH	State of New Mexico My Comm. Expires	

*For Title V applications, the signature must be of the Responsible Official as defined in 20.2.70.7.AE NMAC.