ZIA HILLS CENTRAL FACILITY LEA COUNTY, NEW MEXICO NEW SOURCE REVIEW PERMIT APPLICATION

ConocoPhillips

PREPARED FOR: VIVIAN BERMUDEZ SENIOR ENVIRONMENTAL COORDINATOR JANUARY 2021

ZIA HILLS CENTRAL FACILITY

NEW SOURCE REVIEW PERMIT APPLICATION

Table of Contents

Section 1	Facility Information
Section 2	Application Tables
Section 3	Application Summary
Section 4	Process Flow Sheet
Section 5	Plot Plan
Section 6	Calculations
Section 7	Information Used to Determine Emissions
Section 8	Map(s)
Section 9	Proof of Public Notice
Section 10	Written Description of Operations
Section 11	Source Determination
Section 12	PSD Determination
Section 13	Determination of State & Federal Regulations
Section 14	Operational Plan to Mitigate Emissions
Section 15	Alternative Operating Scenarios
Section 16	Air Dispersion Modeling
Section 17	Compliance Test History
Section 18	Addendum for Streamline Applications
Section 19	Requirements for Title V Program
Section 20	Other Relevant Information
Section 21	Addendum for Landfill Applications
Section 22	Certification
Section 23	Universal Application 4

Section 1 Facility Information

For Department use only:

Mail Application To:

New Mexico Environment Department Air Quality Bureau Permits Section 525 Camino de los Marquez, Suite 1 Santa Fe, New Mexico, 87505

Phone: (505) 476-4300 Fax: (505) 476-4375 www.env.nm.gov/aqb

AIRS No.:

Universal Air Quality Permit Application

Use this application for NOI, NSR, or Title V sources.

Use this application for: the initial application, modifications, technical revisions, and renewals. For technical revisions, complete Sections, 1-A, 1-B, 2-E, 3, 9 and any other sections that are relevant to the requested action; coordination with the Air Quality Bureau permit staff prior to submittal is encouraged to clarify submittal requirements and to determine if more or less than these sections of the application are needed. Use this application for streamline permits as well. See Section 1-I mittal instructions for other permits.

This application is submitted as (check all that apply): Updating an application currently under NMED review. Include this page and all pages that are being updated (no fee required). Construction Status:
□ Not Constructed Existing Permitted (or NOI) Facility □ Existing Non-permitted (or NOI) Facility Minor Source: □ a NOI 20.2.73 NMAC 20.2.72 NMAC application or revision □ 20.2.72.300 NMAC Streamline application Title V Source:
Title V (new)
Title V renewal
TV minor mod.
TV significant mod.
TV Acid Rain:
New
Renewal PSD Major Source: PSD major source (new) I minor modification to a PSD source □ a PSD major modification

Acknowledgements:

☑ I acknowledge that a pre-application meeting is available to me upon request. □ Title V Operating, Title IV Acid Rain, and NPR applications have no fees.

🗹 \$500 NSR application Filing Fee enclosed OR 🗆 The full permit fee associated with 10 fee points (required w/ streamline applications).

☑ Check No.: 1339 in the amount of \$500

Z I acknowledge the required submittal format for the hard copy application is printed double sided 'head-to-toe', 2-hole punched (except the Sect. 2 landscape tables is printed 'head-to-head'), numbered tab separators. Incl. a copy of the check on a separate page. □ This facility qualifies to receive assistance from the Small Business Environmental Assistance program (SBEAP) and qualifies for 50% of the normal application and permit fees. Enclosed is a check for 50% of the normal application fee which will be verified with the Small Business Certification Form for your company.

□ This facility qualifies to receive assistance from the Small Business Environmental Assistance Program (SBEAP) but does not qualify for 50% of the normal application and permit fees. To see if you qualify for SBEAP assistance and for the small business certification form go to https://www.env.nm.gov/aqb/sbap/small_business_criteria.html).

Citation: Please provide the **low level citation** under which this application is being submitted: **20.2.72.202.D.1 NMAC** (e.g. application for a new minor source would be 20.2.72.200.A NMAC, one example for a Technical Permit Revision is 20.2.72.219.B.1.b NMAC, a Title V acid rain application would be: 20.2.70.200.C NMAC)

Section 1 – Facility Information

Sec	tion 1-A: Company Information	AI # if known (see 1st3 to 5 #s of permitUpdatingIDEA ID No.):Permit/NOI #: 7746		
1	Facility Name: Zia Hills Central Facility	Plant primary SIC Cod	e (4 digits): 1311	
1		Plant NAIC code (6 digits): 211120		
а	Facility Street Address (If no facility street address, provide directions from	m a prominent landmark)	: See 1-D.4	
2	Plant Operator Company Name: ConocoPhillips Company	Phone/Fax: (832) 486-2	2000	
а	Plant Operator Address: 935 N. Eldridge Parkway; Houston, TX 77079			
b	Plant Operator's New Mexico Corporate ID or Tax ID: 73-0400345			

3	Plant Owner(s) name(s): ConocoPhillips Company	Phone/Fax: (832) 486-2000						
а	a Plant Owner(s) Mailing Address(s): 935 N. Eldridge Parkway; Houston, TX 77079							
4	Bill To (Company): ConocoPhillips Company	Phone/Fax: (832) 486-2000						
a	Mailing Address: 935 N. Eldridge Parkway; SP2-12-W304; Houston, TX 77079	E-mail: vivian.c.bermudez@conocophillips.com						
5	□ Preparer: ☑ Consultant: Evan Tullos - PEI	Phone/Fax: (865) 850-2007						
а	Mailing Address: 5 Cardinal Court; Edwardsville, IL 62025	E-mail: etullos@pei-tx.com						
6	Plant Operator Contact: Vivian Bermudez	Phone/Fax: (832) 486-2496						
a	Mailing Address: 935 N. Eldridge Parkway; SP2-12-W304; Houston, TX 77079	E-mail: vivian.c.bermudez@conocophillips.com						
7	Air Permit Contact ¹ : Vivian Bermudez	Title: Sr. Environmental Coordinator						
a	E-mail: vivian.c.bermudez@conocophillips.com	Phone/Fax: (832) 486-2496						
b	Mailing Address: 935 N. Eldridge Parkway; SP2-12-W304; Houston, TX 7	77079						
с	The designated Air permit Contact will receive all official correspondence (i.e. letters, permits) from the Air Quality Bureau.							

Section 1-B: Current Facility Status

1.a	Has this facility already been constructed? 🗹 Yes 🗆 No	1.b If yes to question 1.a, is it currently operating in New Mexico?					
2	If yes to question 1.a, was the existing facility subject to a Notice of Intent (NOI) (20.2.73 NMAC) before submittal of this application? □ Yes ☑ No	If yes to question 1.a, was the existing facility subject to a construction permit (20.2.72 NMAC) before submittal of this application? ✓ Yes □ No					
3	Is the facility currently shut down? □ Yes ☑ No	If yes, give month and year of shut down (MM/YY):					
4	Was this facility constructed before 8/31/1972 and continuously operated since 1972? □ Yes ☑ No						
5	If Yes to question 3, has this facility been modified (see 20.2.72.7.P NMAC) or the capacity increased since 8/31/1972?						
6	Does this facility have a Title V operating permit (20.2.70 NMAC)? □ Yes ☑ No	If yes, the permit No. is: P-					
7	Has this facility been issued a No Permit Required (NPR)? □ Yes ☑ No	If yes, the NPR No. is:					
8	Has this facility been issued a Notice of Intent (NOI)?	If yes, the NOI No. is:					
9	Does this facility have a construction permit (20.2.72/20.2.74 NMAC)? □ Yes ☑ No	If yes, the permit No. is:					
10	Is this facility registered under a General permit (GCP-1, GCP-2, etc.)? ✓ Yes □ No	If yes, the register No. is: GCP-O&G-7746					

Section 1-C: Facility Input Capacity & Production Rate

1	What is the facility's maximum input capacity, specify units (reference here and list capacities in Section 20, if more room is required)						
a	Current	Hourly: 563 BBL/3.3 MMSCF	Annually: 4.93 MMBBL/29.2 BSCF				
b	Proposed	Hourly: 771 BBL/5 MMSCF	Daily: 18503 BBL /120 MMSCF	Annually: 6.57 MMBBL/43.8 BSCF			
2	What is the	facility's maximum production rate, sp	pecify units (reference here and list capacities in	Section 20, if more room is required)			
a	Current Hourly: 563 BBL/3.3 MMSCF Daily: 13500		Daily: 13500 BBL /80 MMSCF	Annually: 4.93 MMBBL/29.2 BSCF			
b	b Proposed Hourly: 771 BBL/5 MMSCF		Daily: 18503 BBL /120 MMSCF	Annually: 6.57 MMBBL/43.8 BSCF			

Section 1-D: Facility Location Information

1	Section: 19	Range: 32E	Township: 26S	County: Lea		Elevation (ft): 3173		
2	UTM Zone: [□12 or ☑ 13		Datum: 🗆 NA	83 🗹 WGS 84			
а	UTM E (in meter	rs, to nearest 10 meter	s): 621600	UTM N (in meters,	to nearest 10 meters):	3543600		
b	AND Latitude	(deg., min., sec.):	32° 01' 19"	Longitude (deg., 1	nin., sec.): -103° 4	42' 45"		
3	Name and zip o	code of nearest Ne	ew Mexico town: Malaga -	88263				
4	Detailed Driving Instructions from nearest NM town (attach a road map if necessary): From Malaga, drive S on Hwy 285 for 30.3 mi. to L on RM 652E (Farm to Mkt.). Drive 17 mi. to continue onto J-1/Orla Rd. Drive 2.0 mi. to L on Battle Axe Rd. Drive 0.8 mi. to L into site area.							
5	The facility is 2	24.9 (distance) mi	les SE (direction) of Malag	a (nearest town).				
6	Status of land a (specify)	at facility (check o	one): 🗆 Private 🗆 Indian/Pu	eblo 🗹 Federal BI	LM 🗆 Federal Fo	rest Service Other		
7		· ·	ribes, and counties within ed to be constructed or op		dius (20.2.72.203	.B.2 NMAC) of the property		
8	20.2.72 NMAC applications only : Will the property on which the facility is proposed to be constructed or operated be closer than 50 km (31 miles) to other states, Bernalillo County, or a Class I area (see www.env.nm.gov/aqb/modeling/class1areas.html)? ✓ Yes □ No (20.2.72.206.A.7 NMAC) If yes, list all with corresponding distances in kilometers: TX - 2.4							
9	Name nearest (Class I area: Carls	bad Caverns					
10	Shortest distant	ce (in km) from fa	cility boundary to the boundary	ndary of the nearest	Class I area (to the	e nearest 10 meters): 64.61		
11			neter of the Area of Operat len removal areas) to neare					
	Method(s) used	l to delineate the l	Restricted Area: Fence					
12	" Restricted Area " is an area to which public entry is effectively precluded. Effective barriers include continuous fencing, continuous walls, or other continuous barriers approved by the Department, such as rugged physical terrain with steep grade that would require special equipment to traverse. If a large property is completely enclosed by fencing, a restricted area within the property may be identified with signage only. Public roads cannot be part of a Restricted Area.							
13	Does the owner/operator intend to operate this source as a portable stationary source as defined in 20.2.72.7.X NMAC? □ Yes ☑ No A portable stationary source is not a mobile source, such as an automobile, but a source that can be installed permanently at one location or that can be re-installed at various locations, such as a hot mix asphalt plant that is moved to different job sites.							
14			nction with other air regul nit number (if known) of th	1	ame property?	No Yes		

Section 1-E: Proposed Operating Schedule (The 1-E.1 & 1-E.2 operating schedules may become conditions in the permit.)

1	Facility maximum operating $\left(\frac{\text{hours}}{\text{day}}\right)$: 24	$(\frac{\text{days}}{\text{week}}): 7$	$(\frac{\text{weeks}}{\text{year}})$: 52	$\left(\frac{\text{hours}}{\text{year}}\right)$: 8760			
2	Facility's maximum daily operating schedule (if less	End:	□AM □PM				
3	Month and year of anticipated start of construction: Upon receipt of permit						
4	Month and year of anticipated construction complet	ion: July 2020					
5	Month and year of anticipated startup of new or modified facility: July 2020						
6	Will this facility operate at this site for more than or	ne year? 🗹 Yes	🗆 No				

Section 1-F: Other Facility Information

1Are there any current Notice of Violations (NOV), compliance orders, or any other compliance or enforcement issues related
to this facility? \Box Yes \blacksquare NoIf yes, specify:

r								
a	a If yes, NOV date or description of issue:		NOV Tracking No:					
b	Is this application in response to any issue listed in 1-F, 1 or 1a above? 🗆 Yes 🗹 No If Yes, provide the 1c & 1d info below:							
c	c Document Title: Date:			nent # (or nd paragraph #):				
d	d Provide the required text to be inserted in this permit:	Provide the required text to be inserted in this permit:						
2	Is air quality dispersion modeling or modeling waiver being submitted with this application? 🗹 Yes 🗆 No							
3	Does this facility require an "Air Toxics" permit under 20.2.72.400 N	Does this facility require an "Air Toxics" permit under 20.2.72.400 NMAC & 20.2.72.502, Tables A and/or B? 🗆 Yes 🗹 No						
4	Will this facility be a source of federal Hazardous Air Pollutants (HA	Will this facility be a source of federal Hazardous Air Pollutants (HAP)? 🗹 Yes 🗆 No						
a	If Yes, what type of source? \Box Major ($\Box \ge 10$ tpy of any single HAPOR $\Box \ge 25$ tpy of any combination of HAPS)OR \Box Minor (\Box ≤ 10 tpy of any single HAPOR $\Box \ge 25$ tpy of any combination of HAPS)							
5	Is any unit exempt under 20.2.72.202.B.3 NMAC? Ves No							
	If yes, include the name of company providing commercial electric p	If yes, include the name of company providing commercial electric power to the facility:						
a	a Commercial power is purchased from a commercial utility company, which specifically does not include power generated site for the sole purpose of the user.							

Sect	ion 1-G: Streamline Application	(This section applies t	o 20.2.72.300 NMAC Streamline applications only)
1	□ I have filled out Section 18, "Addendum for Stre	eamline Applications."	\blacksquare N/A (This is not a Streamline application.)

Section 1-H: Current Title V Information - Required for all applications from TV Sources

	V-source required information for all applications submitted pursuant 4/20.2.79 NMAC (Major PSD/NNSR applications), and/or 20.2.70 NMA		nor Construction Permits), or				
1	Responsible Official (R.O.) (20.2.70.300.D.2 NMAC):	Phone:					
а	R.O. Title:	R.O. e-mail:					
b	R. O. Address:						
2	Alternate Responsible Official (20.2.70.300.D.2 NMAC):		Phone:				
а	A. R.O. Title:	A. R.O. e-mail:					
b	A. R. O. Address:						
3	Company's Corporate or Partnership Relationship to any other Air Quality Permittee (List the names of any companies that have operating (20.2.70 NMAC) permits and with whom the applicant for this permit has a corporate or partnership relationship):						
4	Name of Parent Company ("Parent Company" means the primary r permitted wholly or in part.):	name of the organiza	tion that owns the company to be				
а	Address of Parent Company:						
5	Names of Subsidiary Companies ("Subsidiary Companies" means organizations, branches, divisions or subsidiaries, which are owned, wholly or in part, by the company to be permitted.):						
6	Telephone numbers & names of the owners' agents and site contact	ts familiar with plan	t operations:				
7	Affected Programs to include Other States, local air pollution control programs (i.e. Bernalillo) and Indian tribes: Will the property on which the facility is proposed to be constructed or operated be closer than 80 km (50 miles) from other states, local pollution control programs, and Indian tribes and pueblos (20.2.70.402.A.2 and 20.2.70.7.B)? If yes, state which ones and provide the distances in kilometers:						

Section 1-I – Submittal Requirements

Each 20.2.73 NMAC (NOI), a 20.2.70 NMAC (Title V), a 20.2.72 NMAC (NSR minor source), or 20.2.74 NMAC (PSD) application package shall consist of the following:

Hard Copy Submittal Requirements:

- One hard copy original signed and notarized application package printed double sided 'head-to-toe' <u>2-hole punched</u> as we bind the document on top, not on the side; except Section 2 (landscape tables), which should be head-to-head. Please use numbered tab separators in the hard copy submittal(s) as this facilitates the review process. For NOI submittals only, hard copies of UA1, Tables 2A, 2D & 2F, Section 3 and the signed Certification Page are required. Please include a copy of the check on a separate page.
- 2) If the application is for a minor NSR, PSD, NNSR, or Title V application, include one working hard copy for Department use. This copy should be printed in book form, 3-hole punched, and must be double sided. Note that this is in addition to the head-toto 2-hole punched copy required in 1) above. Minor NSR Technical Permit revisions (20.2.72.219.B NMAC) only need to fill out Sections 1-A, 1-B, 3, and should fill out those portions of other Section(s) relevant to the technical permit revision. TV Minor Modifications need only fill out Sections 1-A, 1-B, 1-H, 3, and those portions of other Section(s) relevant to the minor modification. NMED may require additional portions of the application to be submitted, as needed.
- 3) The entire NOI or Permit application package, including the full modeling study, should be submitted electronically. Electronic files for applications for NOIs, any type of General Construction Permit (GCP), or technical revisions to NSRs must be submitted with compact disk (CD) or digital versatile disc (DVD). For these permit application submittals, two CD copies are required (in sleeves, not crystal cases, please), with additional CD copies as specified below. NOI applications require only a single CD submittal. Electronic files for other New Source Review (construction) permits/permit modifications or Title V permits/permit modifications can be submitted on CD/DVD or sent through AQB's secure file transfer service.

Electronic files sent by (check one):

□ CD/DVD attached to paper application

☑ secure electronic transfer. Air Permit Contact Name Evan Tullos - PEI

Email etullos@pei-tx.com

Phone number (865) 850-2007

a. If the file transfer service is chosen by the applicant, after receipt of the application, the Bureau will email the applicant with instructions for submitting the electronic files through a secure file transfer service. Submission of the electronic files through the file transfer service needs to be completed within 3 business days after the invitation is received, so the applicant should ensure that the files are ready when sending the hard copy of the application. The applicant will not need a password to complete the transfer. **Do not use the file transfer service for NOIs, any type of GCP, or technical revisions to NSR permits.**

- 4) Optionally, the applicant may submit the files with the application on compact disk (CD) or digital versatile disc (DVD) following the instructions above and the instructions in 5 for applications subject to PSD review.
- 5) If air dispersion modeling is required by the application type, include the NMED Modeling Waiver and/or electronic air dispersion modeling report, input, and output files. The dispersion modeling summary report only should be submitted as hard copy(ies) unless otherwise indicated by the Bureau.
- 6) If the applicant submits the electronic files on CD and the application is subject to PSD review under 20.2.74 NMAC (PSD) or NNSR under 20.2.79 NMC include,
 - a. one additional CD copy for US EPA,
 - b. one additional CD copy for each federal land manager affected (NPS, USFS, FWS, USDI) and,
 - c. one additional CD copy for each affected regulatory agency other than the Air Quality Bureau.

If the application is submitted electronically through the secure file transfer service, these extra CDs do not need to be submitted.

Electronic Submittal Requirements [in addition to the required hard copy(ies)]:

- 1) All required electronic documents shall be submitted as 2 separate CDs or submitted through the AQB secure file transfer service. Submit a single PDF document of the entire application as submitted and the individual documents comprising the application.
- 2) The documents should also be submitted in Microsoft Office compatible file format (Word, Excel, etc.) allowing us to access the text and formulas in the documents (copy & paste). Any documents that cannot be submitted in a Microsoft Office compatible format shall be saved as a PDF file from within the electronic document that created the file. If you are unable to provide

Microsoft office compatible electronic files or internally generated PDF files of files (items that were not created electronically: i.e. brochures, maps, graphics, etc.), submit these items in hard copy format. We must be able to review the formulas and inputs that calculated the emissions.

- 3) It is preferred that this application form be submitted as 4 electronic files (3 MSWord docs: Universal Application section 1 [UA1], Universal Application section 3-19 [UA3], and Universal Application 4, the modeling report [UA4]) and 1 Excel file of the tables (Universal Application section 2 [UA2]). Please include as many of the 3-19 Sections as practical in a single MS Word electronic document. Create separate electronic file(s) if a single file becomes too large or if portions must be saved in a file format other than MS Word.
- 4) The electronic file names shall be a maximum of 25 characters long (including spaces, if any). The format of the electronic Universal Application shall be in the format: "A-3423-FacilityName". The "A" distinguishes the file as an application submittal, as opposed to other documents the Department itself puts into the database. Thus, all electronic application submittals should begin with "A-". Modifications to existing facilities should use the core permit number (i.e. '3423') the Department assigned to the facility as the next 4 digits. Use 'XXXX' for new facility applications. The format of any separate electronic submittals (additional submittals such as non-Word attachments, re-submittals, application updates) and Section document shall be in the format: "A-3423-9-description", where "9" stands for the section # (in this case Section 9-Public Notice). Please refrain, as much as possible, from submitting any scanned documents as this file format is extremely large, which uses up too much storage capacity in our database. Please take the time to fill out the header information throughout all submittals as this will identify any loose pages, including the Application Date (date submitted) & Revision number (0 for original, 1, 2, etc.; which will help keep track of subsequent partial update(s) to the original submittal. Do not use special symbols (#, @, etc.) in file names. The footer information should not be modified by the applicant.

Table of Contents

- Section 1: General Facility Information
- Section 2: Tables
- Section 3: Application Summary
- Section 4: Process Flow Sheet
- Section 5: Plot Plan Drawn to Scale
- Section 6: All Calculations
- Section 7: Information Used to Determine Emissions
- Section 8: Map(s)
- Section 9: Proof of Public Notice
- Section 10: Written Description of the Routine Operations of the Facility
- Section 11: Source Determination
- Section 12: PSD Applicability Determination for All Sources & Special Requirements for a PSD Application
- Section 13: Discussion Demonstrating Compliance with Each Applicable State & Federal Regulation
- Section 14: Operational Plan to Mitigate Emissions
- Section 15: Alternative Operating Scenarios
- Section 16: Air Dispersion Modeling
- Section 17: Compliance Test History
- Section 18: Addendum for Streamline Applications (streamline applications only)
- Section 19: Requirements for the Title V (20.2.70 NMAC) Program (Title V applications only)
- Section 20: Other Relevant Information
- Section 21: Addendum for Landfill Applications
- Section 22: Certification Page

Section 2 Application Tables

	Table 2-A: Regulated Emission Sources									
		ist correspond through					or an exemp	tion under		
20.2.72.2	02.B NMAC should	d be included in Table	2-B Note: Equ	upment opti-	ons are not					
Unit		Manager factories (Malaa		Manufact- urer's Rated	Requested Permitted	Date of Manufacture ²	Controlled by Unit #	Source	RICE Ignition	
Number ¹	Source Description	Manufacturer/Make /Model	Serial #	Capacity ³ (Specify Units)	Capacity ³ (Specify Units)	Date of Construction/ Reconstruction ²	Emissions vented to Stack #	Classi- fication Code (SCC)	Type (CI, SI, 4SLB, 2SLB) ⁴	For Each Piece of Equipment, Check Onc
ENG1	4SLB RICE -	Caterpillar 3516J	N6W00861	1380 HP	1380 HP	10/1/2018	CAT1	20200254	4SLB	Image: Constraint of the second distance Image: Constraint of the second distance Image: Constraint of the second distance Image: Constraint of the second distance Image: Constraint of the second distance Image: Constraint of the second distance Image: Constraint of the second distance Image: Constraint of the second distance Image: Constraint of the second distance Image: Constraint of the second distance Image: Constraint of the second distance Image: Constraint of the second distance
ENGI	Sales/Gas Lift	Caterpinar 5516J	NOW00801	1380 HP	1380 HP	2018	ENG1	20200254	45LB	To Be Modified To be Replaced
FNG	4SLB RICE -		15501170	1075 110	1075 110	10/1/2018	CAT2		AGL D	☑ Existing (unchanged) □ To be Removed
ENG2	Sales/Gas Lift	Caterpillar 3606A4	JFE01170	1875 HP	1875 HP	2018	ENG2	20200254	4SLB	New/Additional Replacement Unit To Be Modified To be Replaced
ENG	4SLB RICE –		WEE 0 1 0 0 5	1055 110	1055 110	11/1/2018	CAT3			☑ Existing (unchanged) □ To be Removed
ENG3	Sales/Gas Lift	Caterpillar 3606A4	JFE01205	1875 HP	1875 HP	2019	ENG3	20200254	4SLB	New/Additional Replacement Unit To Be Modified To be Replaced
ENG	4SLB RICE -	C (IFE01100	1075 UD	1075 110	10/1/2018	CAT5	20200254	101.0	☑ Existing (unchanged) □ To be Removed
ENG5	Sales/Gas Lift	Caterpillar 3606A4	JFE01188	1875 HP	1875 HP	2019	ENG5	20200254	4SLB	 New/Additional Replacement Unit To Be Modified To be Replaced
ENG	4SLB RICE -	G (IFE01204	1075 110	1075 UD	11/1/2018	CAT6	20200254	AGL D	\blacksquare Existing (unchanged) \Box To be Removed
ENG6	Sales/Gas Lift	Caterpillar 3606A4	JFE01204	1875 HP	1875 HP	2019	ENG6	20200254	4SLB	New/Additional Replacement Unit To Be Modified To be Replaced
EN C.	4SLB RICE -		HER01545	1075 HD 107	1075 110	3/1/2020	CAT7	20200254	AGL D	\blacksquare Existing (unchanged) \Box To be Removed
ENG7	Sales/Gas Lift	Caterpillar 3606A4	JFE01745	1875 HP	1875 HP	2020	ENG7	20200254	200254 4SLB	New/Additional Replacement Unit To Be Modified To be Replaced
ENICO	4SLB RICE -		HEE01500	1075 110	1075 110	12/1/2019	CAT8	20200254		\blacksquare Existing (unchanged) \Box To be Removed
ENG8	Sales/Gas Lift	Caterpillar 3606A4	JFE01728	1875 HP	1875 HP	2020	ENG8	20200254	4SLB	 New/Additional Replacement Unit To Be Modified To be Replaced
0.771		T T 1 / 1	NT/A	1000 DDI	1000 DDI	Post-2015	FL2/FL3	40400211	21/4	□ Existing (unchanged) □ To be Removed
OT1	Condensate Tank	Long Industries	N/A	1000 BBL	1000 BBL	2018	FL2/FL3	40400311	N/A	□ New/Additional □ Replacement Unit ☑ To Be Modified □ To be Replaced
072		T T 1 / 1	NT/A	1000 DDI	1000 DDI	Post-2015	FL2/FL3	40400211	21/4	□ Existing (unchanged) □ To be Removed
OT2	Condensate Tank	Long Industries	N/A	1000 BBL	BBL 1000 BBL	2018	FL2/FL3	40400311	N/A	□ New/Additional □ Replacement Unit ☑ To Be Modified □ To be Replaced
072	Condensate T 1	I In hereta	NT/A	1000 DDI	1000 DD1	Post-2015	FL2/FL3	40400211		□ Existing (unchanged) □ To be Removed
OT3	Condensate Tank Long	Long Industries	N/A	1000 BBL	1000 BBL	2018	FL2/FL3	40400311	N/A	□ New/Additional □ Replacement Unit ☑ To Be Modified □ To be Replaced
OT4	Condonasta Taula	Long Industries	NI/A	1000 001	1000 001	Post-2015	FL2/FL3	40400211	NI/A	Existing (unchanged) To be Removed New/Additional Replacement Unit
OT4	Condensate Tank	densate Tank Long Industries N/.	N/A	1000 BBL	. 1000 BBL	2018	FL2/FL3	40400311	N/A	□ New/Additional □ Replacement Unit ☑ To Be Modified □ To be Replaced
OT5	Off-Specification Condensate Tank	Long Industries	N/A	1000 BBL	1000 BBL	Post-2015 2018	FL2/FL3 FL2/FL3	40400311	N/A	Existing (unchanged) To be Removed New/Additional Replacement Unit To Be Modified To be Replaced

Unit		Mana fastara (Mala		Manufact- urer's Rated	Requested Permitted	Date of Manufacture ²	Controlled by Unit #	Source	RICE Ignition		
Number ¹	Source Description	Manufacturer/Make /Model	Serial #	Capacity ³ (Specify Units)	Capacity ³ (Specify Units)	Date of Construction/ Reconstruction ²	Emissions vented to Stack #	Classi- fication Code (SCC)	Type (CI, SI, 4SLB, 2SLB) ⁴	For Each Piece of Equipment, Check Onc	
WT1	Produced Water	Long Industries	N/A	1000 BBL	1000 BBL	Post-2015	FL2/FL3	40400315	N/A	Existing (unchanged) To be Removed New/Additional Replacement Unit	
** 11	Tank	Long industries	11/71	1000 BBL	1000 BBE	2018	FL2/FL3	40400515	10/24	☑ To Be Modified □ To be Replaced	
WT2	Produced Water	Long Industries	N/A	1000 BBL	1000 BBL	Post-2015	FL2/FL3	40400315	N/A	 Existing (unchanged) To be Removed New/Additional Replacement Unit 	
	Tank	Long industries	1071	1000 BBE	1000 BBE	2018	FL2/FL3	10 1005 15	1071	☑ To Be Modified □ To be Replaced	
WT3	Produced Water	Long Industries	N/A	1000 BBL	1000 BBL	Post-2015	FL2/FL3	40400315	N/A	 Existing (unchanged) To be Removed New/Additional Replacement Unit 	
W15	Tank	Long industries	IN/A	1000 BBL	1000 BBL	2018	FL2/FL3	40400313	IN/A	$\square To Be Modified \square To be Replaced$	
WT4	Produced Water	Long Industries	N/A	1000 BBL	1000 BBL	Post-2015	FL2/FL3	40400315	N/A	 Existing (unchanged) To be Removed New/Additional Replacement Unit 	
W 14	Tank	Long industries	IN/A	1000 BBL	1000 BBL	2018	FL2/FL3	40400313	IN/A	$\square \text{ New Additional} \qquad \square \text{ Replacement Only} \\ \square \text{ To Be Modified} \qquad \square \text{ To be Replaced} \\ \label{eq:second}$	
WT5	Produced Water	Long Industries	N/A	1000 BBL	1000 BBL	Post-2015	FL2/FL3	40400315	N/A	 Existing (unchanged) To be Removed New/Additional Replacement Unit 	
W13	Tank	Long moustnes	IN/A	1000 BBL	1000 BBL	2018	FL2/FL3	40400313	13 N/A	$\square \text{ New/Additional} \qquad \square \text{ Replacement Onit} \\ \square \text{ To Be Modified} \qquad \square \text{ To be Replaced} \\ \square$	
WT6	Produced Water	Long Industries N/A	N/A	1000 BBL	1000 BBL	Post-2015	FL2/FL3	40400215	40400315 N/A	Existing (unchanged) To be Removed New/Additional Replacement Unit	
w10	Tank	Long industries	IN/A	1000 BBL	1000 BBL	2018	FL2/FL3	40400313		$\square \text{ New/Additional} \qquad \square \text{ Replacement Onit}$ $\square \text{ To Be Modified} \qquad \square \text{ To be Replaced}$	
WT7	Produced Water	Long Industries	N/A	1000 PDI	1000 DDI	Post-2015	FL2/FL3	40400315	N/A	Existing (unchanged) To be Removed New/Additional Replacement Unit	
W 1 /	Tank	Long Industries	IN/A	1000 BBL	1000 BBL	2018	FL2/FL3	40400313	10400315 N/A	□ New/Additional □ Replacement Unit ☑ To Be Modified □ To be Replaced	
WT8	Produced Water	I an a la dustaisa	N/A	1000 BBL	1000 BBL	Post-2015	FL2/FL3	40.400215 NU	0400315 N/A	Existing (unchanged) To be Removed New/Additional Replacement Unit	
W18	Tank	Long Industries	IN/A	1000 BBL	1000 BBL	2018	FL2/FL3	40400315		□ New/Additional □ Replacement Unit ☑ To Be Modified □ To be Replaced	
GB1	Cum Domal	I and Industrian	N/A	1000 DDI	1000 BBL	2020	FL2/FL3	21000107		□ Existing (unchanged) □ To be Removed	
GBI	Gun Barrel	Long Industries	IN/A	1000 BBL	1000 BBL	2020	FL2/FL3	$\frac{1}{3} 31000107 \qquad \text{N/A} \qquad \square \text{ New/Additional} \\ \square \text{ To Be Modified} $	1		
GB2	Cum Damal	I and Industrian	NI/A	1000 DDI	1000 BBL	2020	FL2/FL3	21000107	NI/A	□ Existing (unchanged) □ To be Removed	
GB2	Gun Barrel	Long Industries	N/A	1000 BBL	1000 BBL	2020	FL2/FL3	31000107	N/A	□ New/Additional □ Replacement Unit ☑ To Be Modified □ To be Replaced	
CT1	Slan Tault	I an a la dustaisa	NI/A	1000 DDI	1000 DDI	Post-2015	FL2/FL3	40400211	N/A	□ Existing (unchanged) □ To be Removed	
ST1	Slop Tank	Long Industries	N/A	1000 BBL	1000 BBL	2018	FL2/FL3	40400311	IN/A	□ New/Additional □ Replacement Unit ☑ To Be Modified □ To be Replaced	
ST2	Slan Tault	I an a In dustaire	NI/A	1000 DDI	1000 DDI	Post-2015	FL2/FL3	40400211	NI/A	Existing (unchanged) To be Removed New A difference Producement Units	
ST2	Slop Tank	Long Industries	N/A	1000 BBL	1000 BBL	2018	FL2/FL3	40400311	N/A	□ New/Additional □ Replacement Unit ☑ To Be Modified □ To be Replaced	
EL 1	Elem	7	NT/A	27	27	2020	N/A	21000170	NT/	Existing (unchanged) To be Removed New A difference Producement Units	
FL1	Flare	Zeeco N/A	MMscfd	d MMscfd	2020	FL1	31000160	0160 N/A	□ New/Additional □ Replacement Unit ☑ To Be Modified □ To be Replaced		
OT A D 1	04-1-11	37.1	NT/ 4	3.5	3.5	Post-2015	N/A	21000404	NT/	☑ Existing (unchanged) □ To be Removed	
STAB1	Stabilizer Heater	Valerus	N/A	MMBtu/hr	MMBtu/hr	2018	STAB1	31000404	N/A	New/Additional Replacement Unit To Be Modified To be Replaced	

Unit		Manufacturer/Make	<i></i>	Manufact- urer's Rated	Requested Permitted	Date of Manufacture ²	Controlled by Unit #	Source Classi-	RICE Ignition	
Number ¹	Source Description	/Model	Serial #	Capacity ³ (Specify Units)	Capacity ³ (Specify Units)	Date of Construction/ Reconstruction ²	Emissions vented to Stack #	fication Code (SCC)	Type (CI, SI, 4SLB, 2SLB) ⁴	For Each Piece of Equipment, Check Onc
STAB2	Stabilizer Heater	Valerus	N/A	3.5 MMBtu/hr	3.5 MMBtu/hr	Post-2015 2018	N/A STAB2	31000404	N/A	Image: Existing (unchanged) Image: To be Removed Image: New/Additional Image: Replacement Unit Image: To Be Modified Image: To be Replaced
STAB3	Stabilizer Heater	Valerus	N/A	3.5 MMBtu/hr	3.5 MMBtu/hr	Post-2015 2018	N/A STAB3	31000404	N/A	□ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit ☑ To Be Modified □ To be Replaced
LH1	Line Heater	TBD	N/A	l MMBtu/hr	1 MMBtu/hr	TBD TBD	N/A LH1	31000404	N/A	Existing (unchanged) To be Removed New/Additional Replacement Unit To Be Modified To be Replaced
SSM	SSM Emissions	N/A	N/A	N/A	N/A	Post-2015 2018	N/A N/A	31088811	N/A	□ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit ☑ To Be Modified □ To be Replaced
FUG	Fugitive Emissions	N/A	N/A	N/A	N/A	Post-2015 2018	N/A N/A	31088811	N/A	Image: Existing (unchanged) Image: To be Removed Image: New/Additional Image: Replacement Unit Image: To Be Modified Image: To be Replaced
RB1	Glycol Reboiler	Land & Sea	N/A	0.5 MMBtu/hr	0.5 MMBtu/hr	Post-2015 2018	N/A RB1	31000228	N/A	□ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit ☑ To Be Modified □ To be Replaced
DEHY1	TEG Dehydrator	Land & Sea	N/A	21 MMscfd	21 MMscfd	Post-2015 2018	COND1/RB1 RB1	31000227	N/A	□ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit ☑ To Be Modified □ To be Replaced
RB2	Glycol Reboiler	Land & Sea	N/A	0.5 MMBtu/hr	0.5 MMBtu/hr	Post-2015 2018	N/A RB2	31000228	N/A	□ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit ☑ To Be Modified □ To be Replaced
DEHY2	TEG Dehydrator	Land & Sea	N/A	21 MMscfd	21 MMscfd	Post-2015 2018	COND2/RB2 RB2	31000227	N/A	□ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit ☑ To Be Modified □ To be Replaced
RB3	Glycol Reboiler	Land & Sea	N/A	0.75 MMBtu/hr	0.75 MMBtu/hr	Post-2015 2018	N/A RB3	31000228	N/A	□ Existing (unchanged) □ To be Removed ☑ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced
DEHY3	TEG Dehydrator	Land & Sea	N/A	41 MMscfd	41 MMscfd	Post-2015 2018	COND3/RB3 RB3	31000227	N/A	□ Existing (unchanged) □ To be Removed ☑ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced
RB4	Glycol Reboiler	Land & Sea	N/A	0.75 MMBtu/hr	0.75 MMBtu/hr	Post-2015 2018	N/A RB4	31000228	N/A	Existing (unchanged) To be Removed New/Additional Replacement Unit To Be Modified To be Replaced
DEHY4	TEG Dehydrator	Land & Sea	N/A	41 MMscfd	41 MMscfd	Post-2015 2018	COND4/RB4 RB4	31000227	N/A	□ Existing (unchanged) □ To be Removed ☑ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced

Unit		Manufacturer/Make		Manufact- urer's Rated	Requested Permitted	Date of Manufacture ²	Controlled by Unit #	Source Classi-	RICE Ignition	
Number ¹	Source Description	/Model	Serial #	Capacity ³ (Specify Units)	Capacity ³ (Specify Units)	Date of Construction/ Reconstruction ²	Emissions vented to Stack #	fication Code (SCC)	Type (CI, SI, 4SLB, 2SLB) ⁴	For Each Piece of Equipment, Check Onc
VRT1	Vapor Recovery	TBD	N/A	N/A	N/A	2020	VRU1/VRU2	N/A	N/A	Existing (unchanged) To be Removed New/Additional Replacement Unit
VKII	Tower	IBD	IN/A	IN/A	IN/A	2020	FL2/FL3	IN/A	IN/A	$\square \text{ New/Additional} \square \text{ Replacement Onit}$ $\square \text{ To Be Modified} \square \text{ To be Replaced}$
VRU1	Vapor Recovery	Hybon	N/A	N/A	N/A	2020	FL2/FL3	N/A	N/A	Existing (unchanged) To be Removed New/Additional Replacement Unit
VKUI	Unit (Electric)	Hybon	IN/A	IN/A	IN/A	2020	N/A	IN/A	IN/A	☑ To Be Modified □ To be Replaced
VRU2	Vapor Recovery	Hybon	N/A	N/A	N/A	2020	FL2/FL3	N/A	N/A	 Existing (unchanged) To be Removed New/Additional Replacement Unit
VK02	Unit (Redundant)	Hybon	IN/A	IN/A	IN/A	2020	N/A	IN/A	IN/A	To Be Modified To be Replaced
WDGV1	Water Degas	N/A	N/A	N/A	N/A	2020	VRU1/VRU2	N/A	N/A	Existing (unchanged) To be Removed New/Additional Replacement Unit
WDG VI	Vessel	IN/A	IN/A	IN/A	IN/A	2020	FL2/FL3	IN/A	IN/A	$\square \text{ New/Additional} \qquad \square \text{ Replacement Ont} \\ \square \text{ To Be Modified} \qquad \square \text{ To be Replaced} \\ \label{eq:second}$
OHS1	Overhead Gas	N/A	N/A	N/A	N/A	2020	VRU1/VRU2	N/A	N/A	Existing (unchanged) To be Removed New/Additional Replacement Unit
01131	Scrubber	IN/A	IN/A	IN/A	IN/A	2020	FL2/FL3	IN/A	IN/A	$\square \text{ New/Additional} \qquad \square \text{ Replacement Ont} \\ \square \text{ To Be Modified} \qquad \square \text{ To be Replaced} \\ \label{eq:second}$
FL2	Flare	Zeeco	N/A	3 MMscfd	2 MMsofd	2020	N/A	31000160	N/A	Existing (unchanged) To be Removed New/Additional Replacement Unit
T'LZ	Flate	Zeeco	IN/A	5 WINISCIU	5 WINISCIU	2020	FL2	51000100	IN/A	$\square \text{ New/Additional} \qquad \square \text{ Replacement Ont} \\ \square \text{ To Be Modified} \qquad \square \text{ To be Replaced} \\ \label{eq:second}$
FL3	Flare	Zeeco	N/A	3 MMscfd	2 MMsoft	2020	N/A	31000160	N/A	Existing (unchanged) To be Removed New/Additional Replacement Unit
гLЭ	riare	Zeeco	IN/A	5 IVIIVISCIU	5 IVIIVISCIU	2020	FL3	51000100	1N/A	$\square \text{ New/Additional} \qquad \square \text{ Replacement Onit}$ $\square \text{ To Be Modified} \qquad \square \text{ To be Replaced}$
MF	Malfunction	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Image: Existing (unchanged) Image: To be Removed Image: New/Additional Image: Replacement Unit
IVIF	Emissions	1N/A	IN/A	IN/A	IN/A	N/A	N/A	1N/A	1N/A	To Be Modified To be Replaced

¹ Unit numbers must correspond to unit numbers in the previous permit unless a complete cross reference table of all units in both permits is provided.

² Specify dates required to determine regulatory applicability.

³ To properly account for power conversion efficiencies, generator set rated capacity shall be reported as the rated capacity of the engine in horsepower, not the kilowatt capacity of the generator set.

⁴ "4SLB" means four stroke lean burn engine, "4SRB" means four stroke rich burn engine, "2SLB" means two stroke lean burn engine, "CI" means compression ignition, and "SI" means spark ignition

Table 2-B: Exempted Equipment (20.2.72 NMAC)

All 20.2.72 NMAC applications must list Exempted Equipment in this table. If equipment listed on this table is exempt under 20.2.72.202.B.5, include emissions calculations and emissions totals for 202.B.5 "similar functions" units, operations, and activities in Section 5, Calculations. Unit & stack numbering must be consistent throughout the application package.

Unit Number	Source Description	Manufacturer	Model No.	Max Capacity	List Specific 20.2.72.202 NMAC Exemption (e.g. 20.2.72.202.B.5)	Date of Manufacture /Reconstruction ¹ Date of Installation	For Each Piece of Equipment, Check Onc
			Serial No.	Capacity Units		/Construction ¹	
N/A							 Existing (unchanged) To be Removed New/Additional Replacement Unit To Be Modified To be Replaced
							 Existing (unchanged) To be Removed New/Additional Replacement Unit To Be Modified To be Replaced
							Existing (unchanged) To be Removed New/Additional Replacement Unit To Be Modified To be Replaced
							Existing (unchanged) To be Removed New/Additional Replacement Unit To Be Modified To be Replaced
							 Existing (unchanged) To be Removed New/Additional Replacement Unit To Be Modified To be Replaced
							 Existing (unchanged) To be Removed New/Additional Replacement Unit To Be Modified To be Replaced
							 Existing (unchanged) To be Removed New/Additional Replacement Unit To Be Modified To be Replaced
							 Existing (unchanged) To be Removed New/Additional Replacement Unit To Be Modified To be Replaced
							 Existing (unchanged) To be Removed New/Additional Replacement Unit To Be Modified To be Replaced
							 Existing (unchanged) To be Removed New/Additional Replacement Unit To Be Modified To be Replaced
							 Existing (unchanged) To be Removed New/Additional Replacement Unit To Be Modified To be Replaced
							 Existing (unchanged) To be Removed New/Additional Replacement Unit To Be Modified To be Replaced
							Existing (unchanged) To be Removed New/Additional Replacement Unit To Be Modified To be Replaced

1 Specify date(s) required to determine regulatory applicability.

Table 2-C: Emissions Control Equipment

Unit and stack numbering must correspond throughout the application package. In accordance with 20.2.72.203.A(3) and (8) NMAC, 20.2.70.300.D(5)(b) and (e) NMAC, and 20.2.73.200.B(7) NMAC, the permittee shall report all control devices and list each pollutant controlled by the control device regardless if the applicant takes credit for the reduction in emissions.

Control Equipment Unit No.	Control Equipment Description	Date Installed	Controlled Pollutant(s)	Controlling Emissions for Unit Number(s) ¹	Efficiency (% Control by Weight)	Method used to Estimate Efficiency
FL1	Flare	2018	VOC/HAP	HP Gas	98	Manufacturer
COND1	BTEX Condenser	2018	VOC/HAP	DEHY1	33	Promax
COND2	BTEX Condenser	2018	VOC/HAP	DEHY2	33	Promax
COND3	BTEX Condenser	2018	VOC/HAP	DEHY3	33	Promax
COND4	BTEX Condenser	2018	VOC/HAP	DEHY4	33	Promax
RB1	Glycol Reboiler	2018	VOC/HAP	DEHY1	98	Engineering Design
RB2	Glycol Reboiler	2018	VOC/HAP	DEHY2	98	Engineering Design
RB3	Glycol Reboiler	2018	VOC/HAP	DEHY3	98	Engineering Design
RB4	Glycol Reboiler	2018	VOC/HAP	DEHY4	98	Engineering Design
VRU1	Vapor Recovery Unit	2018	VOC/HAP	OT1-OT5, ST1-ST2, GB1-GB2, WT1-WT8, WDGV1, OHS1	100	Engineering Design
CAT1	Catalyst	2018	CO, VOC, HCOH, HAP	ENG1	80, 50, 80, 50	Manufacturer
CAT2	Catalyst	2018	CO, VOC, HCOH, HAP	ENG2	93.1, 63.2, 90.4, 63.2	Manufacturer
CAT3	Catalyst	2019	CO, VOC, HCOH, HAP	ENG3	93.1, 63.2, 90.4, 63.2	Manufacturer
CAT5	Catalyst	2019	CO, VOC, HCOH, HAP	ENG5	93.1, 63.2, 90.4, 63.2	Manufacturer
CAT6	Catalyst	2019	CO, VOC, HCOH, HAP	ENG6	93.1, 63.2, 90.4, 63.2	Manufacturer
CAT7	Catalyst	2020	CO, VOC, HCOH, HAP	ENG7	93.1, 63.2, 90.4, 63.2	Manufacturer
CAT8	Catalyst	2019	СО, VOC, НСОН, НАР	ENG8	93.1, 63.2, 90.4, 63.2	Manufacturer
FL2	Flare	2020	VOC/HAP	OT1-OT5, ST1-ST2, GB1-GB2, WT1-WT8, WDGV1, OHS1	98	Manufacturer
FL3	Flare	2020	VOC/HAP	OT1-OT5, ST1-ST2, GB1-GB2, WT1-WT8, WDGV1, OHS1	98	Manufacturer
VRU2	Vapor Recovery Unit	2020	VOC/HAP	OT1-OT5, ST1-ST2, GB1-GB2, WT1-WT8, WDGV1, OHS1	100	Engineering Design

¹ List each control device on a separate line. For each control device, list all emission units controlled by the control device.

Table 2-D: Maximum Emissions (Consider federally enforceable controls under normal operating conditions)

This table must be filled out

Maximum Federally Enforceable Emissions are the emissions at maximum capacity with only federally enforceable methods of reducing emissions. Calculate the hourly emissions using the worst case hourly emissions for each pollutant. For each pollutant, calculate the annual emissions as if the facility were operating at maximum facility capacity without pollution controls for 8760 hours per year. Account for federally enforceable controls, such as an NSPS or MACT regulation. Consider federally enforceable controls due to permitting. List Hazardous Air Pollutants (HAP) in Table 2-I. Unit & stack numbering must be consistent throughout the application package. Fill all cells in this table with the emission numbers or a "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expected. Numbers shall be expressed to at least 2 decimal points (e.g. 0.41, 1.41, or 1.41E-4).

U	N	Ox	C	0	V	C	SC	Ox	PN	I 10 ¹	PM	2.5 ¹	Н	I_2S	Le	ead
Unit No.	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
ENG1	1.52	6.66	7.33	32.11	3.86	16.92	0.13	0.58	0.12	0.51	0.12	0.51			0.0	0.0
ENG2	1.24	5.43	11.33	49.61	4.82	21.13	0.17	0.74	0.15	0.65	0.15	0.65			0.0	0.0
ENG3	1.24	5.43	11.33	49.61	4.82	21.13	0.17	0.74	0.15	0.65	0.15	0.65			0.0	0.0
ENG5	1.24	5.43	11.33	49.61	4.82	21.13	0.17	0.74	0.15	0.65	0.15	0.65			0.0	0.0
ENG6	1.24	5.43	11.33	49.61	4.82	21.13	0.17	0.74	0.15	0.65	0.15	0.65			0.0	0.0
ENG7	1.24	5.43	11.33	49.61	4.82	21.13	0.17	0.74	0.15	0.65	0.15	0.65			0.0	0.0
ENG8	1.24	5.43	11.33	49.61	4.82	21.13	0.17	0.74	0.15	0.65	0.15	0.65			0.0	0.0
OT1					40.27	141.11										
OT2					40.27	141.11										
OT3					40.27	141.11										
OT4					40.27	141.11										
OT5					433.53	1519.11										
WT1					0.98	4.29										
WT2					0.98	4.29										
WT3					0.98	4.29										
WT4					0.98	4.29										
WT5					0.98	4.29										
WT6					0.98	4.29										
WT7					0.98	4.29										
WT8					0.98	4.29										
GB1					32.96	144.37										
GB2					32.96	144.37										
ST1					1.91	8.37										
ST2					1.91	8.37										
FL1	0.04	0.18	0.08	0.35	0.06	0.28	0.00	0.01	0.00	0.00	0.00	0.00				
STAB1	0.42	1.86	0.36	1.56	0.02	0.10	0.00	0.01	0.03	0.14	0.03	0.14				
STAB2/STAB3	0.42	1.86	0.36	1.56	0.02	0.10	0.00	0.01	0.03	0.14	0.03	0.14				
SSM	0.29	0.02	0.58	0.04	330.73	10.19	0.00	0.00	0.00	0.00	0.00	0.00				
FUG					3.63	15.89										

			Table	2-D: M	[aximun	n Emissi	i ons (Cons	sider federal	ly enforceal	ole controls	under norma	l operating	conditions)			
This table	must be fill	ed out														
each pollutar as an NSPS o	nt. For each j or MACT reg	pollutant, calc gulation. Cons	culate the ann sider federally	ual emissions / enforceable	as if the faci	bacity with on lity were oper to permitting. abol indicates	ating at maxi List Hazardo	mum facility ous Air Pollut	capacity with ants (HAP) is	hout pollution n Table 2-I. U	controls for Jnit & stack r	8760 hours pe numbering mu	er year. Acco 1st be consist	unt for federa ent throughou	lly enforcable it the applicat	e controls, suc ion package.
Unit No	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $															
Unit No.	Unit No. lb/hr ton/yr lb/hr <tht< th=""></tht<>															
DEHY1					20.77	90.98										
RB1	0.12	0.54	0.10	0.46	0.01	0.03	0.00	0.00	0.01	0.04	0.01	0.04				
DEHY2					20.77	90.98										
RB2	0.12	0.54	0.10	0.46	0.01	0.03	0.00	0.00	0.01	0.04	0.01	0.04				
LH1	0.12	0.53	0.10	0.45	0.01	0.03	0.00	0.00	0.01	0.04	0.01	0.04				
OHS					1915.31	6711.24										
WDGV1					344.06	1205.59										
FL2	0.06	0.27	0.13	0.55	0.10	0.44	0.00	0.02	0.00	0.00	0.00	0.00				
FL3	0.06	0.27	0.13	0.55	0.10	0.44	0.00	0.02	0.00	0.00	0.00	0.00				
RB3	0.19	0.81	0.16	0.68	0.01	0.04	0.00	0.00	0.01	0.06	0.01	0.06				
DEHY3					36.30	158.98										
RB4	0.19	0.81	0.16	0.68	0.01	0.04	0.00	0.00	0.01	0.06	0.01	0.06				
DEHY4					36.30	158.98										
STAB3	0.42	1.86	0.36	1.56	0.02	0.10	0.00	0.01	0.03	0.14	0.03	0.14				
Totals	11.4	48.8	77.9	338.7	3413.3	11011.5	1.2	5.1	1.2	5.1	1.2	5.1				

¹ Condensable Particulate Matter: Include condensable particulate matter emissions for PM10 and PM2.5 if the source is a combustion source.

ConocoPhillips Company

Table 2-E: Requested Allowable Emissions

Enter an allowable emission limit for each piece of equipment with either an uncontrolled emission rate greater than 1 lb/hr or 1 ton per year (tpy) or a controlled emission rate of any amount. For H2S please represent all emissions even if they are less than 1 lb/hr and 1 tpy. If selecting combustion SSM emissions, enter lb/hr and tpy values. If selecting up to 10 tpy of Malfunction VOC emissions, enter tpy values. Combustion emissions from malfunction events are**not authorized** under this permit. Fill all cells in this table with the emissions in lb/hr and tpy, or a "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expected. Total the emissions from all equipment in the Totals row. Add additional rows as necessary. Unit & stack numbering must be consistent throughout the application package. Numbers shall be expressed to at least 2 decimal points (e.g. 0.41, 1.41, or 1.41E⁴).

TT •4 NT	N	Ox	C	0	VC	DC	S	Ox	PM	I 10 ¹	PM	2.5 ¹	Н	$_2S$	L	ead
Unit No.	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
ENG1	1.52	6.66	1.47	6.42	0.97	4.24	0.13	0.58	0.12	0.51	0.12	0.51	0.0	0.0		
ENG2	1.24	5.43	0.79	3.44	1.60	7.00	0.17	0.74	0.15	0.65	0.15	0.65	0.0	0.0		
ENG3	1.24	5.43	0.79	3.44	1.60	7.00	0.17	0.74	0.15	0.65	0.15	0.65	0.0	0.0		
ENG5	1.24	5.43	0.79	3.44	1.60	7.00	0.17	0.74	0.15	0.65	0.15	0.65	0.0	0.0		
ENG6	1.24	5.43	0.79	3.44	1.60	7.00	0.17	0.74	0.15	0.65	0.15	0.65	0.0	0.0		
ENG7	1.24	5.43	0.79	3.44	1.60	7.00	0.17	0.74	0.15	0.65	0.15	0.65	0.0	0.0		
ENG8	1.24	5.43	0.79	3.44	1.60	7.00	0.17	0.74	0.15	0.65	0.15	0.65	0.0	0.0		
OT1						Emis	sions repres	ented at FL2	2/FL3							
OT2						Emis	sions repres	ented at FL2	2/FL3							
OT3						Emis	sions repres	ented at FL2	2/FL3							
OT4						Emis	sions repres	ented at FL2	2/FL3							
OT5		Emissions represented at FL2/FL3														
WT1	Emissions represented at FL2/FL3															
WT2						Emis	sions repres	ented at FL2	2/FL3							
WT3						Emis	sions repres	ented at FL2	2/FL3							
WT4								ented at FL2								
WT5								ented at FL2								
WT6								ented at FL2								
WT7						Emis	sions repres	ented at FL2	2/FL3							
WT8								ented at FL2								
GB1								ented at FL2								
GB2								ented at FL2								
ST1								ented at FL2								
ST2		1	Ī	1		Emis	sions repres	ented at FL2	2/FL3	1	T	Ī	Ī	1		
FL1 (Normal)	0.04	0.18	0.08	0.35	0.06	0.28	0.00	0.01	0.00	0.00	0.00	0.00	0.0	0.0		
FL2 (Normal)	0.06	0.27	0.13	0.55	0.10	0.44	0.00	0.02	0.00	0.00	0.00	0.00	0.00	0.00		
FL3 (Normal)	0.06	0.27	0.13	0.55	0.10	0.44	0.00	0.02	0.00	0.00	0.00	0.00	0.0	0.0		
STAB1	0.42	1.86	0.36	1.56	0.02	0.10	0.00	0.01	0.03	0.14	0.03	0.14	0.0	0.0		

					Ta	ble 2-E:	Requ	ested All	owable	Emissio	ns					
Enter an allo please repres tpy values. C that emissior application p	sent all emis Combustion 1s of this po	sions even i emissions fr llutant are n	f they are le om malfunc ot expected.	ess than 1 lb/ etion events Total the e	hr and 1 tpy are not auth missions fro	 If selectin orized under om all equip 	g combustion of this permi ment in the	on SSM emis t. Fill all ce Totals row.	ssions, ente lls in this ta	r lb/hr and tj ble with the	py values. It emissions i	f selecting up n lb/hr and t	p to 10 tpy o py, or a "-"	of Malfuncti symbol. A '	on VOC em '-" symbol i	issions, ente ndicates
Unit No	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $															
Unit No.	Unit No.															
STAB2	STAB2 0.42 1.86 0.36 1.56 0.02 0.10 0.00 0.01 0.03 0.14 0.03 0.14 0.0 0.0															
FUG					3.63	15.89							0.0	0.0		
DEHY1																
RB1	0.12	0.54	0.10	0.46	0.01	0.03	0.00	0.00	0.01	0.04	0.01	0.04	0.0	0.0		
DEHY2					0.34	1.47							0.0	0.0		
RB2	0.12	0.54	0.10	0.46	0.01	0.03	0.00	0.00	0.01	0.04	0.01	0.04	0.0	0.0		
LH1	0.12	0.53	0.10	0.45	0.01	0.03	0.00	0.00	0.01	0.04	0.01	0.04	0.0	0.0		
Malfunction						10.00										
RB3	0.19	0.81	0.16	0.68	0.01	0.04	0.00	0.00	0.01	0.06	0.01	0.06				
DEHY3					0.59	2.58										
RB4	0.19	0.81	0.16	0.68	0.01	0.04	0.00	0.00	0.01	0.06	0.00	0.01				
DEHY4					0.59	2.58										
STAB3	0.42	1.86	0.36	1.56	0.02	0.10	0.00	0.01	0.03	0.14	0.03	0.14				
Totals	11.14	48.81	8.21	35.94	16.41	81.86	1.17	5.11	1.15	5.06	1.14	5.01	0.00	0.00		

¹ Condensable Particulate Matter: Include condensable particulate matter emissions for PM10 and PM2.5 if the source is a combustion source.

Table 2-F: Additional Emissions during Startup, Shutdown, and Routine Maintenance (SSM)

□ This table is intentionally left blank since all emissions at this facility due to routine or predictable startup, shutdown, or scehduled maintenance are no higher than those listed in Table 2-E and a malfunction emission limit is not already permitted or requested. If you are required to report GHG emissions as described in Section 6a, include any GHG emissions during Startup, Shutdown, and/or Scheduled Maintenance (SSM) in Table 2-P. Provide an explanations of SSM emissions in Section 6 and 6a.

All applications for facilities that have emissions during routine our predictable startup, shutdown or scheduled maintenance (SSM)¹, including NOI applications, must include in this table the Maximum Emissions during routine or predictable startup, shutdown and scheduled maintenance (20.2.7 NMAC, 20.2.72.203.A.3 NMAC, 20.2.73.200.D.2 NMAC). In Section 6 and 6a, provide emissions calculations for all SSM emissions reported in this table. Refer to "Guidance for Submittal of Startup, Shutdown, Maintenance Emissions in Permit Applications (https://www.env.nm.gov/adb/nermit/adb_nol.html) for more detailed instructions. Numbers shall be expressed to at least 2 decimal points (e.g. 0.41, 1.41, or 1.41E-4).

(https://www		Ox		O		DC		Ox		M^2		110 ²		(2.5^2)		$\frac{1}{2}S$	Le	ead
Unit No.	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
SSM	0.29	0.02	0.58	0.04	330.73	10.19	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	-	-	-
FL1	199.18	6.20	397.63	12.37	309.29	9.62	0.00	0.00	8.55	0.27	8.55	0.27	8.55	0.27	-	-	-	-
FL2/FL3	14.13	1.49	28.21	2.97	67.31	7.12	0.00	0.00	0.36	0.04	0.36	0.04	0.36	0.04	-	-	-	-
Totals	213.60	7.70	426.42	15.37	707.34	26.92	0.00	0.00	8.91	0.30	8.91	0.30	8.91	0.30	_		_	-
rotais	213.00	1.70	4 ∠0.4∠	15.57	/0/.34	20.92	0.00	0.00	0.91	0.50	0.91	0.50	0.91	0.50	-	-	-	

¹ For instance, if the short term steady-state Table 2-E emissions are 5 lb/hr and the SSM rate is 12 lb/hr, enter 7 lb/hr in this table. If the annual steady-state Table 2-E emissions are 21.9 TPY, and the number of scheduled SSM events result in annual emissions of 31.9 TPY, enter 10.0 TPY in the table below.

Table 2-G: Stack Exit and Fugitive Emission Rates for Special Stacks

Z I have elected to leave this table blank because this facility does not have any stacks/vents that split emissions from a single source or combine emissions from more than one source listed in table 2-A. Additionally, the emission rates of all stacks match the Requested allowable emission rates stated in Table 2-E.

Use this table to list stack emissions (requested allowable) from split and combined stacks. List Toxic Air Pollutants (TAPs) and Hazardous Air Pollutants (HAPs) in Table 2-I. List all fugitives that are associated with the normal, routine, and non-emergency operation of the facility. Unit and stack numbering must correspond throughout the application package. Refer to Table 2-E for instructions on use of the "-" symbol and on significant figures.

	Serving Unit	N	Ox	C	0	V	DC	S	Ox	Р	М	PN	110	PN	12.5	□ H ₂ S o	r 🗆 Lead
Stack No.	Number(s) from Table 2-A	lb/hr	ton/yr	lb/hr	ton/yr												
																	1

Table 2-H: Stack Exit Conditions

Unit and stack numbering must correspond throughout the application package. Include the stack exit conditions for each unit that emits from a stack, including blowdown venting parameters and tank emissions.

Stack Type						1	
(Engine,			Height Above	Temp.	Flow Rate	Velocity	
Turbine, Flare, ECD, or Thermal Oxidizer Etc.)	Serving Unit Number(s) from Table 2-A	Orientation (H-Horizontal V=Vertical)	Ground (ft)	(F)	(acfs)	(ft/sec)	Inside Diameter (ft)
Engine	ENG1	Vertical	25.0	824	134	95.9	1.3
Engine	ENG2	Vertical	29.6	809	200	91.7	1.7
Engine	ENG3	Vertical	29.6	809	200	91.7	1.7
Engine	ENG5	Vertical	29.6	809	200	91.7	1.7
Engine	ENG6	Vertical	29.6	809	200	91.7	1.7
Engine	ENG7	Vertical	29.6	809	200	91.7	1.7
Engine	ENG8	Vertical	29.6	809	200	91.7	1.7
Flare	FL1 (Normal)	Vertical	70.0	832	0.1	65.6	1.0
Heater	STAB1	Vertical	30.0	700	10.8	8.0	1.9
Heater	STAB2	Vertical	30.0	700	10.8	8.0	1.9
Heater	STAB3	Vertical	30.0	700	10.8	8.0	1.9
Heater	RB1	Vertical	20.0	700	1.4	3.9	1.0
Heater	RB2	Vertical	20.0	700	1.4	3.9	1.0
Heater	LH1	Vertical	15.0	700	3.1	19.3	0.67
Flare	FL2 (Normal)	Vertical	35.0	832	0.1	65.6	1.0
Flare	FL3 (Normal)	Vertical	35.0	832	0.1	65.6	1.0
Heater	RB3	Vertical	20.0	700	2.4	6.8	1.0
Heater	RB4	Vertical	20.0	700	2.4	6.8	1.0

Table 2-I: Emission Rates for HAPs

HAP In the table below, report the potential emission rate for each HAP from each regulated emission unit listed in Table 1, only if the entire facility emits the HAP. For each such emission unit, HAP shall be reported to the nearest 0.1 tpy. Each facility-wide Individual HAP total and the facility-wide Total HAP shall be the sum of all HAP sources calculated to the nearest 0.1 ton per year. Use the HAP nomenclature as it appears in Section 112 (b) of the 1990 CAAA. Include tank-flashing emissions estimates of HAP in this table. For each HAP listed, fill all cells in this table with the emission numbers or a "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expected, or the pollutant is emitted in a quantity less than the threshold amounts described above. Add additional rows as necessary.

Stack No.	Unit No.(s)	Total	HAPs		ldehyde IAP	Acetalo I H	lehyde IAP		olein HAP	Name Here	Pollutant 2	Name Here	Pollutant	Provide Name Here HA		Name Here	Pollutant e 🛛 AP	Name Her	Pollutant e 🛛 AP
		lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
ENG1	ENG1	0.45	1.96	0.24	1.07	0.03	0.14	0.02	0.09										
ENG2	ENG2	0.33	1.46	0.08	0.33	0.06	0.25	0.03	0.15										
ENG3	ENG3	0.33	1.46	0.08	0.33	0.06	0.25	0.03	0.15										
ENG5	ENG5	0.33	1.46	0.08	0.33	0.06	0.25	0.03	0.15										
ENG6	ENG6	0.33	1.46	0.08	0.33	0.06	0.25	0.03	0.15										
ENG7	ENG7	0.33	1.46	0.08	0.33	0.06	0.25	0.03	0.15										
ENG8	ENG8	0.33	1.46	0.08	0.33	0.06	0.25	0.03	0.15										
OT1	FL1								Emissi	ions repres	ented at F	L2/FL3							
OT2	FL1								Emissi	ions repres	ented at F	L2/FL3							
OT3	FL1								Emissi	ions repres	ented at F	L2/FL3							
OT4	FL1		Emissions represented at FL2/FL3																
OT5	FL1								Emissi	ions repres	ented at Fl	L2/FL3							
WT1	FL1									ions repres									
WT2	FL1									ions repres									
WT3	FL1									ions repres									
WT4	FL1									ions repres									
WT5	FL1									ions repres									
WT6	FL1									ions repres									
WT7	FL1									ions repres									
WT8	FL1									ions repres									
GB1	FL1									ions repres									
GB2	FL1									ions repres									
ST1	FL1									ions repres									
ST2	FL1								Emissi	ions repres	ented at F	L2/FL3				1	1		
FL1	FL1	6.48	0.21																
STAB1	STAB1	0.0	0.0																

Stack No.	Unit No.(s)	Total	HAPs		ldehyde IAP	Acetal I F	dehyde IAP		olein HAP	Name Here	Pollutant 	Name Here	Pollutant	Name Here	Pollutant	Name Here	Pollutant 	Name Here	Pollutant e 🗆 AP
		lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
STAB2	STAB2	0.0	0.0																
SSM	SSM	4.5	0.1																
FUG	FUG	0.08	0.34																
DEHY1	DEHY1	0.03	0.15																
RB1	RB1	0.0	0.0																
DEHY2	DEHY2	0.03	0.15																
RB2	RB2	0.0	0.0																
LH1	LH1	0.0	0.0																
FL2/FL3	FL2/FL3	2.2	0.3																
MF	MF	0.00	0.00																
STAB3	STAB3	0.0	0.0																
DEHY3	DEHY3	0.06	0.26																
RB3	RB3	0.0	0.0																
DEHY4	DEHY4	0.06	0.26																
RB4	RB4	0.0	0.0																
Tot	als:	15.9	12.5	0.7	3.1	0.4	1.6	0.2	1.0										

Table 2-J: Allowable Fuels and Fuel Sulfur for Combustion Emission Units:

Specify fuel characteristics and usage. Unit and stack numbering must correspond throughout the application package.

				Specify Units		_	
Unit No.	Fuel Type (Natural Gas, Field Gas, Propane, Diesel,)	Fuel Source (purchased commercial, pipeline quality natural gas, residue gas, raw/field natural gas, process gas, or other	Engines and Turbines: SO2 percentage (%) of the NOx emission rate (except flares)	Diesel Fuel Only: ppm of Sulfur	Lower Heating Value (BTU/SCF)	Annual Fuel Usage (MMSCF/y)	Content meet GCP
ENG1	Field Gas	Field Gas	8.75	N/A	1262	81.6	🗹 Yes 🔲 No
ENG2	Field Gas	Field Gas	13.59	N/A	1262	103.3	🗹 Yes 🔲 No
ENG3	Field Gas	Field Gas	13.59	N/A	1262	103.3	🗹 Yes 🔲 No
ENG5	Field Gas	Field Gas	13.59	N/A	1262	103.3	🗹 Yes 🔲 No
ENG6	Field Gas	Field Gas	13.59	N/A	1262	103.3	🗹 Yes 🔲 No
ENG7	Field Gas	Field Gas	13.59	N/A	1262	103.3	☑ Yes 🔲 No
ENG8	Field Gas	Field Gas	13.59	N/A	1262	103.3	🗹 Yes 🔲 No
FL1	Field Gas	Field Gas	N/A	N/A	1262	2.0	☑ Yes 🔲 No
STAB1	Field Gas	Field Gas	N/A	N/A	1262	24.3	🗹 Yes 🔲 No
STAB2	Field Gas	Field Gas	N/A	N/A	1262	24.3	☑ Yes 🔲 No
RB1	Field Gas	Field Gas	N/A	N/A	2586	3.1	🗹 Yes 🔲 No
RB2	Field Gas	Field Gas	N/A	N/A	2586	3.1	☑ Yes 🔲 No
LH1	Field Gas	Field Gas	N/A	N/A	1262	6.9	🗹 Yes 🔲 No
FL2	Field Gas	Field Gas	N/A	N/A	1262	3.2	☑ Yes 🔲 No
FL3	Field Gas	Field Gas	N/A	N/A	1262	3.2	🗹 Yes 🔲 No

				Specify Units			
Unit No.	Fuel Type (Natural Gas, Field Gas, Propane, Diesel,)	Fuel Source (purchased commercial, pipeline quality natural gas, residue gas, raw/field natural gas, process gas, or other	Engines and Turbines: SO2 percentage (%) of the NOx emission rate (except flares)	Diesel Fuel Only: ppm of Sulfur	Lower Heating Value (BTU/SCF)	Annual Fuel Usage (MMSCF/y)	Content meet GCP
STAB3	Field Gas	Field Gas	N/A	N/A	1262	24.3	🗹 Yes 🔲 No
RB3	Field Gas	Field Gas	N/A	N/A	2580	5.5	🗹 Yes 🔲 No
RB4	Field Gas	Field Gas	N/A	N/A	2580	5.5	🗹 Yes 🔲 No

Table 2-K: Liquid Data for Tanks Listed in Table 2-L

For each tank, list the liquid(s) to be stored in each tank. If it is expected that a tank may store a variety of hydrocarbon liquids, enter "mixed hydrocarbons" in the Composition column for that tank and enter the corresponding data of the most volatile liquid to be stored in the tank. If tank is to be used for storage of different materials, list all the materials in the "All Calculations" attachment, run the newest version of TANKS on each, and use the material with the highest emission rate to determine maximum uncontrolled and requested allowable emissions rate. The permit will specify the most volatile category of liquids that may be stored in each tank. Include appropriate tank-flashing modeling input data. Use additional sheets if necessary. Unit and stack numbering must correspond throughout the application package.

					Vapor	Average Stor	age Conditions	Max Storag	ge Conditions
Tank No.	SCC Code	Material Name	Composition	Liquid Density (lb/gal)	Wolecular Weight (lb/lb*mol)	Temperature (°F)	True Vapor Pressure (psia)	Temperature (°F)	True Vapor Pressure (psia)
		Not applicable							
									L

Table 2-L: Tank Data

Tank No.	Date Installed	Materials Stored	Roof Type	Seal Type	Capacity (bbl)	Diameter (M)	Vapor Space	Co	lor	Separator Pressure	Annual Throughput	Turn- overs
						()	(M)	Space (M) Pressure (psia) Throughput (gal/yr) Roof Shell (psia) (gal/yr)	(per year)			
			Vertical - Fixed Roof (FX)	Select one								
OT1	2018	Condensate	FX	N/A	1,000	4.7	9.1	Green	Green	91.28	68,984,910	1642.5
OT2	2018	Condensate	FX	N/A	1,000	4.7	9.1	Green	Green	91.28	68,984,910	1642.5
OT3	2018	Condensate	FX	N/A	1,000	4.7	9.1	Green	Green	91.28	68,984,910	1642.5
OT4	2018	Condensate	FX	N/A	1,000	4.7	9.1	Green	Green	91.28	68,984,910	1642.5
OT5	2018	Off-Specification Condensate	FX	N/A	1,000	6.6	4.7	Green	Green	60.28	9,095,520	216.6
GB1	2020	Produced Water/Condensate	FX	N/A	1,000	4.7	9.1	Green	Green	14.28	229,950,000	5475.0
GB2	2020	Produced Water/Condensate	FX	N/A	1,000	4.7	9.1	Green	Green	14.28	229,950,000	5475.0
ST1	2018	Slop Oil	FX	N/A	1,000	6.6	4.7	Green	Green	14.28	1,945,193	46.3
ST2	2018	Slop Oil	FX	N/A	1,000	6.6	4.7	Green	Green	14.28	1,945,193	46.3
WT1	2018	Produced Water	FX	N/A	1,000	6.6	4.7	Green	Green	14.28	57,487,500	1368.8
WT2	2018	Produced Water	FX	N/A	1,000	6.6	4.7	Green	Green	14.28	57,487,500	1368.8
WT3	2018	Produced Water	FX	N/A	1,000	6.6	4.7	Green	Green	14.28	57,487,500	1368.8
WT4	2018	Produced Water	FX	N/A	1,000	6.6	4.7	Green	Green	14.28	57,487,500	1368.8
WT5	2018	Produced Water	FX	N/A	1,000	6.6	4.7	Green	Green	14.28	57,487,500	1368.8
WT6	2018	Produced Water	FX	N/A	1,000	6.6	4.7	Green	Green	14.28	57,487,500	1368.8
WT7	2018	Produced Water	FX	N/A	1,000	6.6	4.7	Green	Green	14.28	57,487,500	1368.8
WT8	2018	Produced Water	FX	N/A	1,000	6.6	4.7	Green	Green	14.28	57,487,500	1368.8

Table 2-L2: Liquid Storage Tank Data Codes Reference Table

Roof Type	Seal Type, W	elded Tank Seal Type	Seal Type, Rive	eted Tank Seal Type	Roof, Shell Color	Paint Condition
FX: Fixed Roof	Mechanical Shoe Seal	Liquid-mounted resilient seal	Vapor-mounted resilient seal	Seal Type	WH: White	Good
IF: Internal Floating Roof	A: Primary only	A: Primary only	A: Primary only	A: Mechanical shoe, primary only	AS: Aluminum (specular)	Poor
EF: External Floating Roof	B: Shoe-mounted secondary	B: Weather shield	B: Weather shield	B: Shoe-mounted secondary	AD: Aluminum (diffuse)	
P: Pressure	C: Rim-mounted secondary	C: Rim-mounted secondary	C: Rim-mounted secondary	C: Rim-mounted secondary	LG: Light Gray	
					MG: Medium Gray	
Note: $1.00 \text{ bbl} = 0.159 \text{ M}$	$1^3 = 42.0$ gal				BL: Black	
					OT: Other (specify)	

Table 2-M: Materials Processed and Produced (Use additional sheets as necessary.)

	Materi	al Processed		Ν	Iaterial Produced		
Description	Chemical Composition	Phase (Gas, Liquid, or Solid)	Quantity (specify units)	Description	Chemical Composition	Phase	Quantity (specify units)
Natural Gas	Hydrocarbon Gas	Gas	120 MMSCFD	Natural Gas	Hydrocarbon Gas	Gas	120 MMSCFD
Oil (Oil Inlet)	Hydrocarbon Liquids	Liquid	18503 BOPD	Oil (Oil Inlet)	Hydrocarbon Liquids	Liquid	18503 BOPD
Produced Water (Inlet to GB)	Hydrocarbon Liquids	Liquid	30023 BWPD	Produced Water (Inlet to GB)	Hydrocarbon Liquids	Liquid	30023 BWPD

Table 2-N: CEM Equipment

Enter Continuous Emissions Measurement (CEM) Data in this table. If CEM data will be used as part of a federally enforceable permit condition, or used to satisfy the requirements of a state or federal regulation, include a copy of the CEM's manufacturer specification sheet in the Information Used to Determine Emissions attachment. Unit and stack numbering must correspond throughout the application package. Use additional sheets if necessary.

Stack No.	Pollutant(s)	Manufacturer	Model No.	Serial No.	Sample Frequency	Averaging Time	Range	Sensitivity	Accuracy
	Not applicable								

Table 2-O: Parametric Emissions Measurement Equipment

Unit and stack numbering must correspond throughout the application package. Use additional sheets if necessary.

Unit No.	Parameter/Pollutant Measured	Location of Measurement	Unit of Measure	Acceptable Range	Frequency of Maintenance	Nature of Maintenance	Method of Recording	Averaging Time
	Not applicable							

Table 2-P:Greenhouse Gas Emissions

Applications submitted under 20.2.70, 20.2.72, & 20.2.74 NMAC are required to complete this Table. Power plants, Title V major sources, and PSD major sources must report and calculate all GHG emissions for each unit. Applicants must report potential emission rates in short tons per year (see Section 6.a for assistance). Include GHG emissions during Startup, Shutdown, and Scheduled Maintenance in this table. For minor source facilities that are not power plants, are not Title V, or are not PSD, there are three options for reporting GHGs 1) report GHGs for each individual piece of equipment; 2) report all GHGs from a group of unit types, for example report all combustion source GHGs as a single unit and all venting GHG as a second separate unit; OR 3) check the following box 🗹 By checking this box, the applicant acknowledges the total CO2e emissions are less than 75,000 tons per year.

		CO ₂ ton/yr	N2O ton/yr	CH ₄ ton/yr	SF ₆ ton/yr	PFC/HFC ton/yr ²					Total GHG Mass Basis ton/yr ⁴	Total CO₂e ton/yr ⁵
Unit No.	GWPs ¹	1	298	25	22,800	footnote 3						
ENG1	mass GHG	6422.95	0.01	0.11							6423	
ENGI	CO ₂ e	6422.95	3.38	2.84								6429
ENCO	mass GHG	8237.99	0.01	0.14							8238	
ENG2	CO ₂ e	8237.99	4.28	3.59								8246
ENC	mass GHG	8237.99	0.01	0.14							8238	
ENG3	CO ₂ e	8237.99	4.28	3.59								8246
ENCE	mass GHG	8237.99	4.28	0.14							8242	
ENG5	CO ₂ e	8237.99	4.28	3.59								8246
ENG6	mass GHG	8237.99	4.28	0.14							8242	
ENGO	CO ₂ e	8237.99	4.28	3.59								8246
ENC7	mass GHG	8237.99	4.28	0.14							8242	
ENG7	CO ₂ e	8237.99	4.28	3.59								8246
ENG8	mass GHG	8237.99	4.28	0.14							8242	
ENGð	CO ₂ e	8237.99	4.28	3.59								8246
FL1	mass GHG	148.75	-	0.00							149	
(Pilot)	CO ₂ e	148.75	-	0.06								149
EL 1	mass GHG	4734.12	-	19.75							4754	
FL1	CO ₂ e	4734.12	-	493.68								5228
FL2	mass GHG	232.82	-	0.00							233	
(Pilot)	CO ₂ e	232.82	-	0.10								233
FL3	mass GHG	232.82	-	0.00							233	
(Pilot)	CO ₂ e	232.82	-	0.10								233
FL2/	mass GHG	2025.10	-	1.39							2026	
FL3	CO ₂ e	2025.10	-	34.87								2060
STAB1	mass GHG	1793.57	0.00	0.03							1794	
STABI	CO ₂ e	1793.57	1.01	0.85								1795
STAB2	mass GHG	1793.57	0.00	0.03							1794	
STAB2	CO ₂ e	1793.57	1.01	0.85								1795
STAB3	mass GHG	1793.57	0.00	0.03							1794	
STADS	CO2e	1793.57	1.01	0.85								1795
FUG	mass GHG	-	-	13.68							14	
rug	CO ₂ e	-	-	342.02								342
DD1	mass GHG	256.22	0.00	0.00							256	
RB1	CO2e	256.22	0.14	0.12								256
RB2	mass GHG	256.22	0.00	0.00							256	
KD2	CO ₂ e	256.22	0.14	0.12								256

Table 2-P: Greenhouse Gas Emissions

Applications submitted under 20.2.70, 20.2.72, & 20.2.74 NMAC are required to complete this Table. Power plants, Title V major sources, and PSD major sources must report and calculate all GHG emissions for each unit. Applicants must report potential emission rates in short tons per year (see Section 6.a for assistance). Include GHG emissions during Startup, Shutdown, and Scheduled Maintenance in this table. For minor source facilities that are not power plants, are not Title V, or are not PSD, there are three options for reporting GHGs 1) report GHGs for each individual piece of equipment; 2) report all GHGs from a group of unit types, for example report all combustion source GHGs as a single unit and all venting GHG as a second separate unit; OR 3) check the following box 🗹 By checking this box, the applicant acknowledges the total CO2e emissions are less than 75,000 tons per year.

		CO ₂ ton/yr	N2O ton/yr	CH ₄ ton/yr	SF ₆ ton/yr	PFC/HFC ton/yr ²						Total GHG Mass Basis ton/yr ⁴	Total CO₂e ton/yr ⁵
Unit No.	GWPs ¹	1	298	25	22,800	footnote 3							
RB3	mass GHG	384.34	0.00	0.01								384	
KD3	CO2e	384.34	0.22	0.18									385
RB4	mass GHG	384.34	0.00	0.01								384	
KD4	CO ₂ e	384.34	0.22	0.18									385
DEHY1	mass GHG	0.99	-	0.61								2	
DEIIII	CO2e	0.99	-	15.29									16
DEHY2	mass GHG	0.99	-	0.61								2	
DEHTZ	CO ₂ e	0.99	-	15.29									16
DEHY3	mass GHG	0.03	-	1.08								1	
DLIIIS	CO2e	0.03	-	27.01									27
DEHY4	mass GHG	0.03	-	1.08								1	
DEIII4	CO ₂ e	0.03	-	27.01									27
LH1	mass GHG	512.45	0.00	0.01								512	
1.111	CO2e	512.45	0.29	0.24				-					513
Total	mass GHG											70457	
	CO ₂ e					1	CIUD 1			1 40 CED 00	c cu		71417

+ GWP (Global Warming Potential): Applicants must use the most current GWPs codified in Table A-1 of 40 CFR part 98. GWPs are subject to change, therefore, applicants need to check 40 CFR 98 to confirm GWP values.

² For HFCs or PFCs describe the specific HFC or PFC compound and use a separate column for each individual compound.

³ For each new compound, enter the appropriate GWP for each HFC or PFC compound from Table A-1 in 40 CFR 98.

⁴ Green house gas emissions on a **mass basis** is the ton per year green house gas emission before adjustment with its GWP.

⁵ CO₂e means Carbon Dioxide Equivalent and is calculated by multiplying the TPY mass emissions of the green house gas by its GWP.

Section 3 Application Summary

Section 3

Application Summary

The <u>Application Summary</u> shall include a brief description of the facility and its process, the type of permit application, the applicable regulation (i.e. 20.2.72.200.A.X, or 20.2.73 NMAC) under which the application is being submitted, and any air quality permit numbers associated with this site. If this facility is to be collocated with another facility, provide details of the other facility including permit number(s). In case of a revision or modification to a facility, provide the lowest level regulatory citation (i.e. 20.2.72.219.B.1.d NMAC) under which the revision or modification is being requested. Also describe the proposed changes from the original permit, how the proposed modification will affect the facility's operations and emissions, de-bottlenecking impacts, and changes to the facility's major/minor status (both PSD & Title V).

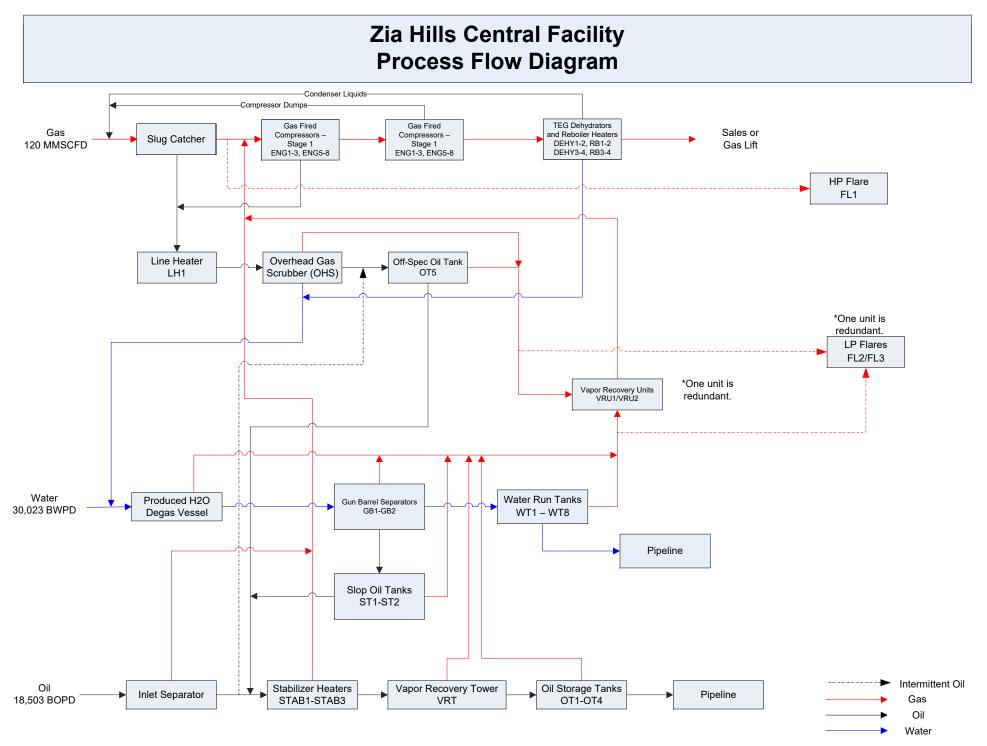
The **Process Summary** shall include a brief description of the facility and its processes.

Startup, Shutdown, and Maintenance (SSM) routine or predictable emissions: Provide an overview of how SSM emissions are accounted for in this application. Refer to "Guidance for Submittal of Startup, Shutdown, Maintenance Emissions in Permit Applications (http://www.env.nm.gov/aqb/permit/app_form.html) for more detailed instructions on SSM emissions.

ConocoPhillips Company (COP) is submitting this New Source Review (NSR) permit application for the Zia Hills Central Facility in accordance with 20.2.72.202.D.1 NMAC. COP plans to increase production to 18,503 barrels of oil per day (BOPD) and 120 million standard cubic feet per day (MMscfd). The production increase will require utilization of the third and fourth triethylene glycol dehydrators (DEHY3-DEHY4) and full time use of the third stabilizer (STAB3).

Oil, gas, and water flow separately into the site. Gas is dehydrated then reinjected for gas lift or compressed to the sales line. Oil is stabilized then temporarily stored in tanks before being sold via pipeline. Water is processed, then temporarily stored before being shipped offsite via pipeline. A detailed process description is provided in Section 10.

SSM emissions associated with compressor or VRU downtime are represented at the flare and included with normal operations. Emissions associated with engine maintenance (blowdown and starter vents) are included with SSM emissions. Tank cleanout emissions are also included. Ten (10) tons of VOC emissions related to malfunctions are also included.


Section 4 Process Flow Sheet

Section 4

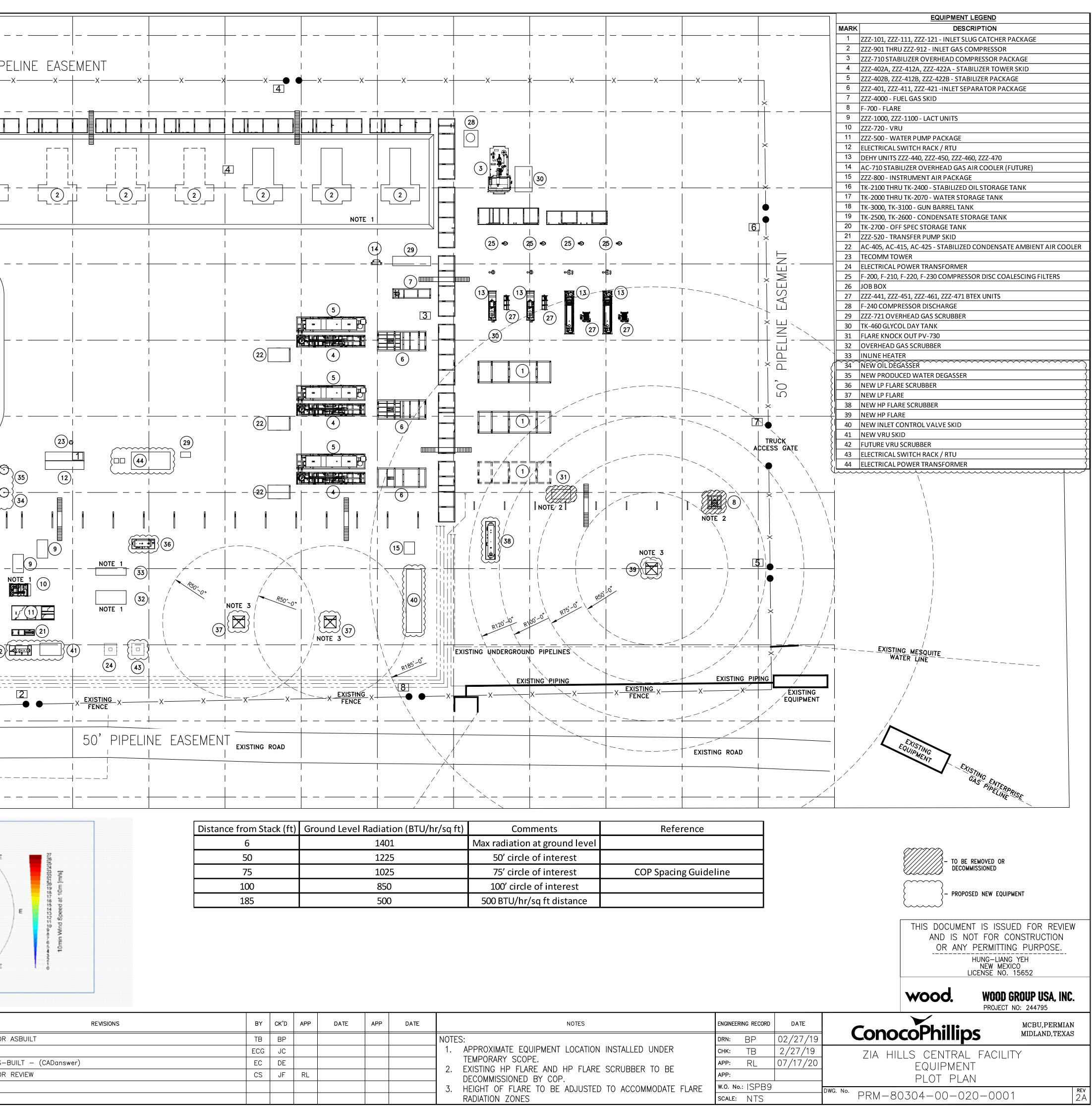
Process Flow Sheet

A **process flow sheet** and/or block diagram indicating the individual equipment, all emission points and types of control applied to those points. The unit numbering system should be consistent throughout this application.

A process flow sheet is provided.

Intermittent Gas

Section 5 Plot Plan


Section 5

Plot Plan Drawn To Scale

A <u>plot plan drawn to scale</u> showing emissions points, roads, structures, tanks, and fences of property owned, leased, or under direct control of the applicant. This plot plan must clearly designate the restricted area as defined in UA1, Section 1-D.12. The unit numbering system should be consistent throughout this application.

A plot plan is provided.

													·
	—xx	 	X	 	 	×	(X	 		50' —×—	¦ PIP ╋
$\left \begin{array}{c} & & \\ & & - \mathbf{N} \\ & & \mathbf{N} \end{array}\right = \left \begin{array}{c} & \\ & \\ & \end{array}\right $				 <u> </u>				 					
NORTH													
]					2	TRUCK LOADIN GROUNDING STA	I NG TION I I (16			(1	6)	
PIPELINE EASEMENT	EXISTING BUILDING (APPROX. LOCATION)											8)	
		 - - 		 									42
	E> X			INES 		X	X	= = x	X		X		×
				EXISTING ROA	AD								
	EXISTING OVERH POWER LINE	EAD		 	 			 		† <u>EXI</u>	STING_0 POWER	<u>VERHEA</u> I LINE	
XXX	ESD-002 AT ESD-003 AT ESD-004 AT ESD-005 AT ESD-006 AT ESD-007 AT ESD-008 AT		ACILITY (DS SORS AF ALE GAS TE N THE F E AREA	REA / FACILITY AREA GATE LARE AREA GATE		Ξ.			NW		N	Year	NE
NOTICE		DWG. NO.			REFEREN	ICE DRAWING	S		N(ате 17/19	ISSUED	
THIS DRAWING IS THE PROPERTY CORPORATION AND IS LENT TO T FOR HIS CONFIDENTIAL USE OF SUBJECT TO RETURN UPON REQUINOT BE REPRODUCED, COPIED, LENT DISPOSED OF DIRECTLY OR INDI USED FOR ANY PURPOSE OTHE FOR WHICH IT IS SPECIFICALLY	HE BORROWER NLY, AND IS EST AND SHALL OR OTHERWISE RECTLY, NOR ER THAN THAT								1 2 24	06/	11/19 11/19 19/20 17/20	ASBUIL ISSUED ISSUED	_T) AS-

		27 26	
\ \		0-Net to see 51707505170528282828282	
		+ 0.9 - 4 - 6 - 1.7 - 1.7 - 1 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5	
E		Speed	
/		Duiw ui	
		101	
	C	0	

Ground Level Radiation (BTU/hr/sq ft)	Comments
1401	Max radiation at ground level
1225	50' circle of interest
1025	75' circle of interest
850	100' circle of interest
500	500 BTU/hr/sq ft distance
	1401 1225 1025 850

REVISIONS	BY	CK'D	APP	DATE	APP	DATE	NOTES
R ASBUILT	TB	BP					NOTES:
	ECG	JC					1. APPROXIMATE EQUIPMENT LOCATION I
-BUILT - (CADanswer)	EC	DE					TEMPORARY SCOPE. 2. EXISTING HP FLARE AND HP FLARE S
R REVIEW	CS	JF	RL				DECOMMISSIONED BY COP.
							3. HEIGHT OF FLARE TO BE ADJUSTED
							RADIATION ZONES

Section 6 Calculations

Section 6

All Calculations

Show all calculations used to determine both the hourly and annual controlled and uncontrolled emission rates. All calculations shall be performed keeping a minimum of three significant figures. Document the source of each emission factor used (if an emission rate is carried forward and not revised, then a statement to that effect is required). If identical units are being permitted and will be subject to the same operating conditions, submit calculations for only one unit and a note specifying what other units to which the calculations apply. All formulas and calculations used to calculate emissions must be submitted. The "Calculations" tab in the UA2 has been provided to allow calculations to be linked to the emissions tables. Add additional "Calc" tabs as needed. If the UA2 or other spread sheets are used, all calculation spread sheet(s) shall be submitted electronically in Microsoft Excel compatible format so that formulas and input values can be checked. Format all spread sheets are not used, provide the original formulas with defined variables. Additionally, provide subsequent formulas showing the input values for each variable in the formula. All calculations, including those calculations are imbedded in the Calc tab of the UA2 portion of the application, the printed Calc tab(s), should be submitted under this section.

Tank Flashing Calculations: The information provided to the AQB shall include a discussion of the method used to estimate tank-flashing emissions, relative thresholds (i.e., NOI, permit, or major source (NSPS, PSD or Title V)), accuracy of the model, the input and output from simulation models and software, all calculations, documentation of any assumptions used, descriptions of sampling methods and conditions, copies of any lab sample analysis. If Hysis is used, all relevant input parameters shall be reported, including separator pressure, gas throughput, and all other relevant parameters necessary for flashing calculation.

SSM Calculations: It is the applicant's responsibility to provide an estimate of SSM emissions or to provide justification for not doing so. In this Section, provide emissions calculations for Startup, Shutdown, and Routine Maintenance (SSM) emissions listed in the Section 2 SSM and/or Section 22 GHG Tables and the rational for why the others are reported as zero (or left blank in the SSM/GHG Tables). Refer to "Guidance for Submittal of Startup, Shutdown, Maintenance Emissions in Permit Applications (http://www.env.nm.gov/aqb/permit/app_form.html) for more detailed instructions on calculating SSM emissions. If SSM emissions are greater than those reported in the Section 2, Requested Allowables Table, modeling may be required to ensure compliance with the standards whether the application is NSR or Title V. Refer to the Modeling Section of this application for more guidance on modeling requirements.

Glycol Dehydrator Calculations: The information provided to the AQB shall include the manufacturer's maximum design recirculation rate for the glycol pump. If GRI-Glycalc is used, the full input summary report shall be included as well as a copy of the gas analysis that was used.

Road Calculations: Calculate fugitive particulate emissions and enter haul road fugitives in Tables 2-A, 2-D and 2-E for:

- 1. If you transport raw material, process material and/or product into or out of or within the facility and have PER emissions greater than 0.5 tpy.
- 2. If you transport raw material, process material and/or product into or out of the facility more frequently than one round trip per day.

Significant Figures:

A. All emissions standards are deemed to have at least two significant figures, but not more than three significant figures.

B. At least 5 significant figures shall be retained in all intermediate calculations.

C. In calculating emissions to determine compliance with an emission standard, the following rounding off procedures shall be used:

- (1) If the first digit to be discarded is less than the number 5, the last digit retained shall not be changed;
- (2) If the first digit discarded is greater than the number 5, or if it is the number 5 followed by at least one digit other than the number zero, the last figure retained shall be increased by one unit; and
- (3) If the first digit discarded is exactly the number 5, followed only by zeros, the last digit retained shall be rounded upward if it is an odd number, but no adjustment shall be made if it is an even number.
- (4) The final result of the calculation shall be expressed in the units of the standard.

Control Devices: In accordance with 20.2.72.203.A(3) and (8) NMAC, 20.2.70.300.D(5)(b) and (e) NMAC, and 20.2.73.200.B(7) NMAC, the permittee shall report all control devices and list each pollutant controlled by the control device

ConocoPhillips Company

Zia Hills Central Facility

regardless if the applicant takes credit for the reduction in emissions. The applicant can indicate in this section of the application if they chose to not take credit for the reduction in emission rates. For notices of intent submitted under 20.2.73 NMAC, only uncontrolled emission rates can be considered to determine applicability unless the state or federal Acts require the control. This information is necessary to determine if federally enforceable conditions are necessary for the control device, and/or if the control device produces its own regulated pollutants or increases emission rates of other pollutants.

Heater (LH1)

Emission rates for NOx, CO, VOC, PM, and HAP were calculated using AP-42 factors for external natural gas combustion sources, Table 1.4-1 and 1.4-2. PM_{10} and $PM_{2.5}$ emissions are set equal to PM emissions as a conservative measure. SO_2 emissions were calculated based on the units' fuel consumption and a maximum sulfur content of 5 gr/100 scf.

Stabilizer Heaters (STAB1-STAB3)

Stabilizer heater combustion emissions for NOx, CO, VOC, PM, and HAP were calculated using AP-42 factors for external natural gas combustion sources, Table 1.4-1 and 1.4-2. PM_{10} and $PM_{2.5}$ emissions are set equal to PM emissions as a conservative measure. SO₂ emissions were calculated based on the units' fuel consumption and a maximum sulfur content of 5 gr/100 scf. Note that only two of the stabilizers will be operated at any given time.

Oil Storage Tanks (OT1-OT4)

Flashing, working and breathing losses were estimated using Promax, assuming a maximum hourly throughput of based on a production rate of 18,503 BOPD. VRU1/VRU2 are used to capture tank vapors. During VRU downtime (263 hours), flares (FL2/FL3) with a control efficiency of 98% are used to reduce tank emissions. Oil is piped offsite.

Slop Oil Storage Tanks (ST1-ST2)

Flashing, working and breathing losses were estimated using Promax, assuming a throughput of 254 BOPD. VRU1/VRU2 are used to capture tank vapors. During VRU downtime (263 hours), flares (FL2/FL3) with a control efficiency of 98% are used to reduce tank emissions. Oil is routed to the inlet of the stabilizers.

Off-Specification Oil Storage Tank (OT5)

Flashing, working, and breathing losses were estimated using Promax. COP assumed a throughput of 593 BOPD per tank. VRU1/VRU2 are used to capture tank vapors. During VRU downtime (263 hours), flares (FL2/FL3) with a control efficiency of 98% are used to reduce tank emissions. Oil is returned to the stabilizers for further treatment.

Gun Barrel Separators (GB1-GB2)

Flashing and working and breathing emissions from the oil storage tanks were estimated using Promax, assuming a throughput of 30,023 BWPD. VRU1/VRU2 are used to capture tank vapors. During VRU downtime (263 hours), flares (FL2/FL3) with a control efficiency of 98% are used to reduce tank emissions. Water then flows to the water tanks, while any residual oil flows to ST1-ST2.

Water Tanks (WT1-WT8)

Working and breathing losses from all tanks were estimated using Promax, assuming a throughput of 30,023 BWPD. Flashing occurs in the gun barrel separators. VRU1/VRU2 are used to capture tank vapors. During VRU downtime (263 hours), flares (FL2/FL3) with a control efficiency of 98% are used to reduce tank emissions. Water is piped offsite.

High Pressure Flare (FL1)

The flare uses a continuously lit pilot. Emission rates for NO_x and CO are calculated using factors from TNRCC. H₂S, SO₂ and VOC emissions were calculated based on the gas analysis. Emission rates for NO_x and CO are calculated using factors from TNRCC. H₂S, SO₂ and VOC emissions were calculated based on the gas analysis. A VOC control efficiency of 98% was used.

Low Pressure Flares (FL2/FL3)

This is a redundant flare system. The flares use a continuously lit pilot. Emission rates for NO_x and CO are calculated using factors from TNRCC. H₂S, SO₂ and VOC emissions were calculated based on the gas analysis. Emission rates for NO_x and CO are calculated using factors from TNRCC. H₂S, SO₂ and VOC emissions were calculated based on the gas analysis. A VOC control efficiency of 98% was used.

Fugitives (FUG)

Fugitives for the facility were calculated in EPA/API average emission factors.

Compressor Engines (ENG1-3, ENG5-ENG8)

Emission factors used for the engines are a combination of manufacturer's data and AP-42 Section 3.2 emission factors. SO_2 emissions were calculated based on the units' fuel consumption and a maximum sulfur content of 5 grains per 100 standard cubic feet (5 gr/100 scf).

Triethylene Glycol Dehydrators (DEHY1-DEHY4, RB1-RB4)

There are two (2) dehydrators processing approximately 21 MMscfd (DEHY1-DEHY2) each and two (2) dehydrators processing approximately 41 MMscfd (DEHY3-DEHY4). The dehydrators utilize flash tanks and condensers to minimize emissions. Flash tank vapors and any vapors remaining after the condenser are used as fuel in the glycol regeneration heaters (RB1-RB4). Emissions were estimated using Promax.

Emission rates for NOx, CO, VOC, PM, and HAP from RB1-RB4 were calculated using AP-42 factors for external natural gas combustion sources, Table 1.4-1 and 1.4-2. PM_{10} and $PM_{2.5}$ emissions are set equal to PM emissions as a conservative measure. SO₂ emissions were calculated based on the units' fuel consumption and a maximum sulfur content of 5 gr/100 scf. Emissions were conservatively based on the assumption the higher Btu gas from the condenser was burned 8,760 hours per year.

Section 6.a

Green House Gas Emissions

(Submitting under 20.2.70, 20.2.72 20.2.74 NMAC)

Title V (20.2.70 NMAC), Minor NSR (20.2.72 NMAC), and PSD (20.2.74 NMAC) applicants must estimate and report greenhouse gas (GHG) emissions to verify the emission rates reported in the public notice, determine applicability to 40 CFR 60 Subparts, and to evaluate Prevention of Significant Deterioration (PSD) applicability. GHG emissions that are subject to air permit regulations consist of the sum of an aggregate group of these six greenhouse gases: carbon dioxide (CO₂), nitrous oxide (N₂O), methane (CH₄), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride (SF₆).

Calculating GHG Emissions:

1. Calculate the ton per year (tpy) GHG mass emissions and GHG CO₂e emissions from your facility.

2. GHG mass emissions are the sum of the total annual tons of greenhouse gases without adjusting with the global warming potentials (GWPs). GHG CO₂e emissions are the sum of the mass emissions of each individual GHG multiplied by its GWP found in Table A-1 in 40 CFR 98 <u>Mandatory Greenhouse Gas Reporting</u>.

3. Emissions from routine or predictable start up, shut down, and maintenance must be included.

4. Report GHG mass and GHG CO₂e emissions in Table 2-P of this application. Emissions are reported in <u>short</u> tons per year and represent each emission unit's Potential to Emit (PTE).

5. All Title V major sources, PSD major sources, and all power plants, whether major or not, must calculate and report GHG mass and CO2e emissions for each unit in Table 2-P.

6. For minor source facilities that are not power plants, are not Title V, and are not PSD there are three options for reporting GHGs in Table 2-P: 1) report GHGs for each individual piece of equipment; 2) report all GHGs from a group of unit types, for example report all combustion source GHGs as a single unit and all venting GHGs as a second separate unit; 3) or check the following \square By checking this box, the applicant acknowledges the total CO2e emissions are less than 75,000 tons per year.

Sources for Calculating GHG Emissions:

- Manufacturer's Data
- AP-42 Compilation of Air Pollutant Emission Factors at http://www.epa.gov/ttn/chief/ap42/index.html
- EPA's Internet emission factor database WebFIRE at http://cfpub.epa.gov/webfire/

• 40 CFR 98 <u>Mandatory Green House Gas Reporting</u> except that tons should be reported in short tons rather than in metric tons for the purpose of PSD applicability.

• API Compendium of Greenhouse Gas Emissions Methodologies for the Oil and Natural Gas Industry. August 2009 or most recent version.

• Sources listed on EPA's NSR Resources for Estimating GHG Emissions at http://www.epa.gov/nsr/clean-air-act-permitting-greenhouse-gases:

Global Warming Potentials (GWP):

Applicants must use the Global Warming Potentials codified in Table A-1 of the most recent version of 40 CFR 98 Mandatory Greenhouse Gas Reporting. The GWP for a particular GHG is the ratio of heat trapped by one unit mass of the GHG to that of one unit mass of CO_2 over a specified time period.

"Greenhouse gas" for the purpose of air permit regulations is defined as the aggregate group of the following six gases: carbon dioxide, nitrous oxide, methane, hydrofluorocarbons, perfluorocarbons, and sulfur hexafluoride. (20.2.70.7 NMAC, 20.2.74.7 NMAC). You may also find GHGs defined in 40 CFR 86.1818-12(a).

Metric to Short Ton Conversion:

Short tons for GHGs and other regulated pollutants are the standard unit of measure for PSD and title V permitting programs. 40 CFR 98 <u>Mandatory Greenhouse Reporting</u> requires metric tons.

1 metric ton = 1.10231 short tons (per Table A-2 to Subpart A of Part 98 – Units of Measure Conversions)

ZIA HILLS CENTRAL FACILITY

Facility Emissions Summary

SOURCE DESCRIPTION	UNIT NUMBER	STACK	N	Ox	с	0	V((INCLUD	OC JES HAPs)	S	D ₂	PM	10 & 2.5	HA	APs	CO2e
	ertir rember	NUMBER	lb/hr	ТРҮ	lb/hr	ТРҮ	lb/hr	ТРҮ	lb/hr	ТРҮ	lb/hr	ТРҮ	lb/hr	ТРҮ	ТРҮ
CATERPILLAR 3516 ULB ENGINE	ENG1	ENG1	1.52	6.66	1.47	6.42	0.97	4.24	0.13	0.58	0.12	0.51	0.45	1.96	6,429
CATERPILLAR 3606A4 ULB ENGINE	ENG2	ENG2	1.24	5.43	0.79	3.44	1.60	7.00	0.17	0.74	0.15	0.65	0.33	1.46	8,246
CATERPILLAR 3606A4 ULB ENGINE	ENG3	ENG3	1.24	5.43	0.79	3.44	1.60	7.00	0.17	0.74	0.15	0.65	0.33	1.46	8,246
CATERPILLAR 3606A4 ULB ENGINE	ENG5	ENG5	1.24	5.43	0.79	3.44	1.60	7.00	0.17	0.74	0.15	0.65	0.33	1.46	8,246
CATERPILLAR 3606A4 ULB ENGINE	ENG6	ENG6	1.24	5.43	0.79	3.44	1.60	7.00	0.17	0.74	0.15	0.65	0.33	1.46	8,246
CATERPILLAR 3606A4 ULB ENGINE	ENG7	ENG7	1.24	5.43	0.79	3.44	1.60	7.00	0.17	0.74	0.15	0.65	0.33	1.46	8,246
CATERPILLAR 3606A4 ULB ENGINE	ENG8	ENG8	1.24	5.43	0.79	3.44	1.60	7.00	0.17	0.74	0.15	0.65	0.33	1.46	8,246
FLARE 1: INLET GAS GAS (INCLUDING PILOT AND INTERMITTENT GAS)	FL1	FL1	199.22	6.37	397.71	12.72	309.36	9.91	0.00	0.01	8.55	0.27	6.48	0.21	5,377
CONDENSATE STORAGE TANKS: 1000 BBL	OT1-OT4	FL2/FL3		Emissions represented at FL2/FL3.											
OFF-SPECIFICATION CONDENSATE TANK	OT5	FL2/FL3		Emissions represented at FL2/FL3.											
GUN BARREL SEPARATORS: 1000 BBL	GB1-GB2	FL2/FL3		Emissions represented at FL2/FL3.											
PRODUCED WATER TANKS: 1000 BBL	WT1-WT8	FL2/FL3		Emissions represented at FL2/FL3.											
SLOP OIL TANKS: 1000 BBL	ST1-ST2	FL2/FL3	Emissions represented at FL2/FL3.												
OVERHEAD GAS SCRUBBER	OSH1	FL2/FL3	Emissions represented at FL2/FL3.												
WATER DEGAS VESSEL	WDGV1	FL2/FL3	Emissions represented at FL2/FL3.												
FLARE 2: LP GAS (INCLUDING PILOT AND INTERMITTENT GAS)	FL2	FL2	14.20	1.76	28.34	3.51	67.41	7.56	0.00	0.02	0.36	0.04	2.21	0.24	2,293
FLARE 3: LP GAS (PILOT ONLY) - REDUNDANT FOR FLARE 2	FL3	FL3	0.06	0.27	0.13	0.55	0.10	0.44	0.00	0.02	0.00	0.00	0.00	0.01	233
STABILIZER HEATER (3.5 MMBTU/HR)	STAB1	STAB1	0.42	1.86	0.36	1.56	0.02	0.10	0.00	0.01	0.03	0.14	0.01	0.03	1,795
STABILIZER HEATER (3.5 MMBTU/HR)	STAB2	STAB2	0.42	1.86	0.36	1.56	0.02	0.10	0.00	0.01	0.03	0.14	0.01	0.03	1,795
STABILIZER HEATER (3.5 MMBTU/HR)	STAB3	STAB3	0.42	1.86	0.36	1.56	0.02	0.10	0.00	0.01	0.03	0.14	0.01	0.03	1,795
TRIETHYLENE GLYCOL DEHYDRATOR ²	DEHY1	RB1					0.34	1.47					0.03	0.15	16
GLYCOL REGENERATOR (0.5 MMBTU/HR)	RB1	RB1	0.12	0.54	0.10	0.46	0.01	0.03	0.00	0.00	0.01	0.04	0.00	0.01	256
TRIETHYLENE GLYCOL DEHYDRATOR ²	DEHY2	RB2					0.34	1.47					0.03	0.15	16
GLYCOL REGENERATOR (0.5 MMBTU/HR)	RB2	RB2	0.12	0.54	0.10	0.46	0.01	0.03	0.00	0.00	0.01	0.04	0.00	0.01	256
TRIETHYLENE GLYCOL DEHYDRATOR ²	DEHY3	RB3					0.59	2.58					0.06	0.26	27
GLYCOL REGENERATOR (0.75 MMBTU/HR)	RB3	RB3	0.19	0.81	0.16	0.68	0.01	0.04	0.00	0.00	0.01	0.06	0.00	0.01	385
TRIETHYLENE GLYCOL DEHYDRATOR ²	DEHY4	RB4					0.59	2.58		-			0.06	0.26	27
GLYCOL REGENERATOR (0.75 MMBTU/HR)	RB4	RB4	0.19	0.81	0.16	0.68	0.01	0.04	0.00	0.00	0.01	0.06	0.00	0.01	385
LINE HEATER (1.0 MMBTU/HR)	LH1	LH1	0.12	0.53	0.10	0.45	0.01	0.03	0.00	0.00	0.01	0.04	0.00	0.01	513
FUGITIVE EMISSIONS: EQUIPMENT LEAKS	FUGITIVES	FUGITIVES					3.63	15.89					0.08	0.34	342
SSM ACTIVITIES	SSM	SSM	0.29	0.02	0.58	0.04	330.73	10.19	0.00	0.00	0.00	0.00	4.49	0.07	
MALFUNCTIONS	MF	MF						10.00							

	NOx		со		VOC (INCLUDES HAPs)		SO ₂		PM _{10 & 2.5}		HAPs		CO ₂ e
FACILITY EMISSIONS	lb/hr	ТРҮ	lb/hr	ТРҮ	lb/hr	ТРҮ	lb/hr	ТРҮ	lb/hr	ТРҮ	lb/hr	ТРҮ	ТРҮ
	224.74	56.51	434.63	51.32	723.74	108.79	1.17	5.11	10.07	5.36	15.91	12.55	71,417

A "---" symbol indicates the pollutant is not accounted for using the AECT or not emitted. 2 Any vapors remaining from dehydration following the condenser are burned in the reboiler. VOC emissions are illustrated at the dehydrator for illustrative purposes.

ZIA HILLS CENTRAL FACILITY

Uncontrolled Facility Emissions Summary

		STACK	N	Ox	с	0		DC	S	O ₂	PM ₁	0 & 2.5	H	APs
SOURCE DESCRIPTION	UNIT NUMBER	NUMBER	lb/hr	ТРҮ	lb/hr	ТРҮ	lb/hr	TPY	lb/hr	ТРҮ	lb/hr	ТРҮ	lb/hr	ТРҮ
CATERPILLAR 3516 ULB ENGINE	ENG1	ENG1	1.52	6.66	7.33	32.11	3.86	16.92	0.13	0.58	0.12	0.51	1.44	6.29
CATERPILLAR 3606A4 ULB ENGINE	ENG2	ENG2	1.24	5.43	11.33	49.61	4.82	21.13	0.17	0.74	0.15	0.65	1.04	4.57
CATERPILLAR 3606A4 ULB ENGINE	ENG3	ENG3	1.24	5.43	11.33	49.61	4.82	21.13	0.17	0.74	0.15	0.65	1.04	4.57
CATERPILLAR 3606A4 ULB ENGINE	ENG5	ENG5	1.24	5.43	11.33	49.61	4.82	21.13	0.17	0.74	0.15	0.65	1.04	4.57
CATERPILLAR 3606A4 ULB ENGINE	ENG6	ENG6	1.24	5.43	11.33	49.61	4.82	21.13	0.17	0.74	0.15	0.65	1.04	4.57
CATERPILLAR 3606A4 ULB ENGINE	ENG7	ENG7	1.24	5.43	11.33	49.61	4.82	21.13	0.17	0.74	0.15	0.65	1.04	4.57
CATERPILLAR 3606A4 ULB ENGINE	ENG8	ENG8	1.24	5.43	11.33	49.61	4.82	21.13	0.17	0.74	0.15	0.65	1.04	4.57
CONDENSATE STORAGE TANK: 1000 BBL	OT1	FL1				-	40.27	141.11					1.39	4.86
CONDENSATE STORAGE TANK: 1000 BBL	OT2	FL1				-	40.27	141.11					1.39	6.07
CONDENSATE STORAGE TANK: 1000 BBL	OT3	FL1			-	I	40.27	141.11	-				1.39	6.07
CONDENSATE STORAGE TANK: 1000 BBL	OT4	FL1			-	I	40.27	141.11	-				1.39	6.07
OFF-SPECIFICATION CONDENSATE TANK: 1000 BBL	OT5	FL1			-	-	433.53	1519.11	-			-	19.19	67.24
GUN BARREL SEPARATORS: 1000 BBL	GB1	FL1				-	32.96	144.37					2.08	9.13
GUN BARREL SEPARATORS: 1000 BBL	GB2	FL1			-		32.96	144.37					2.08	9.13
PRODUCED WATER TANKS: 1000 BBL	WT1	FL1			-	1	0.98	4.29	-			-	0.13	0.58
PRODUCED WATER TANKS: 1000 BBL	WT2	FL1			-	-	0.98	4.29	-			-	0.13	0.58
PRODUCED WATER TANKS: 1000 BBL	WT3	FL1			-	-	0.98	4.29	-				0.13	0.58
PRODUCED WATER TANKS: 1000 BBL	WT4	FL1			-		0.98	4.29	-				0.13	0.58
PRODUCED WATER TANKS: 1000 BBL	WT5	FL1					0.98	4.29					0.13	0.58
PRODUCED WATER TANKS: 1000 BBL	WT6	FL1			-		0.98	4.29					0.13	0.58
PRODUCED WATER TANKS: 1000 BBL	WT7	FL1			-		0.98	4.29					0.13	0.58
PRODUCED WATER TANKS: 1000 BBL	WT8	FL1			-	-	0.98	4.29	-			-	0.13	0.58
SLOP OIL TANKS: 1000 BBL	ST1	FL1			-	-	1.91	8.37	-			-	0.11	0.46
SLOP OIL TANKS: 1000 BBL	ST2	FL1			-	-	1.91	8.37	-				0.11	0.46
FLARE 1: PILOT ONLY	FL1	FL1	0.04	0.18	0.08	0.35	0.06	0.28	0.00	0.01	0.00	0.00	0.00	0.01
FLARE 2: PILOT ONLY	FL2	FL2	0.06	0.27	0.13	0.55	0.10	0.44	0.00	0.02	0.00	0.00	0.00	0.01
FLARE 3: PILOT ONLY	FL3	FL3	0.06	0.27	0.13	0.55	0.10	0.44	0.00	0.02	0.00	0.00	0.00	0.01
STABILIZER - HEATER 1 (3.5 MMBTU/HR)	STAB1	STAB1	0.42	1.86	0.36	1.56	0.02	0.10	0.00	0.01	0.03	0.14	0.01	0.03
STABILIZER - HEATER 1 (3.5 MMBTU/HR)	STAB2	STAB2	0.42	1.86	0.36	1.56	0.02	0.10	0.00	0.01	0.03	0.14	0.01	0.03
STABILIZER - HEATER 1 (3.5 MMBTU/HR)	STAB3	STAB3	0.42	1.86	0.36	1.56	0.02	0.10	0.00	0.01	0.03	0.14	0.01	0.03
TRIETHYLENE GLYCOL DEHYDRATOR	DEHY1	RB1					20.77	90.98					4.34	19.01
GLYCOL REGENERATOR (0.5 MMBTU/HR)	RB1	RB1	0.12	0.54	0.10	0.46	0.01	0.03	0.00	0.00	0.01	0.04	0.00	0.01
TRIETHYLENE GLYCOL DEHYDRATOR	DEHY2	RB2					20.77	90.98					4.34	19.01
GLYCOL REGENERATOR (0.5 MMBTU/HR)	RB2	RB2	0.12	0.54	0.10	0.46	0.01	0.03	0.00	0.00	0.01	0.04	0.00	0.01
TRIETHYLENE GLYCOL DEHYDRATOR	DEHY3	RB3					36.30	158.98					7.58	33.22
GLYCOL REGENERATOR (0.75 MMBTU/HR)	RB3	RB3	0.19	0.81	0.16	0.68	0.01	0.04	0.00	0.00	0.01	0.06	0.00	0.01
TRIETHYLENE GLYCOL DEHYDRATOR	DEHY4	RB4					36.30	158.98					7.58	33.22
GLYCOL REGENERATOR (0.75 MMBTU/HR)	RB4	RB4	0.19	0.81	0.16	0.68	0.01	0.04	0.00	0.00	0.01	0.06	0.00	0.01
LINE HEATER (1.0 MMBTU/HR)	LH1	LH1	0.12	0.53	0.10	0.45	0.01	0.03	0.00	0.00	0.01	0.04	0.00	0.01
OVERHEAD GAS SCRUBBER	OSH1	FL2/FL3					1915.31	6711.24					40.92	143.39
WATER DEGAS VESSEL	WDGV1	FL2/FL3					344.06	1205.59					22.12	77.49
SSM ACTIVITIES	SSM	SSM	0.29	0.02	0.58	0.04	330.73	10.19	0.00	0.00	0.00	0.00	4.49	0.07
FUGITIVE EMISSIONS: EQUIPMENT LEAKS	FUGITIVES	FUGITIVES					3.63	15.89	-				0.08	0.34

	NOx		со		VOC (INCLUDES HAPs)		SO ₂		PM _{10 & 25}		HAPs	
FACILITY EMISSIONS	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	ТРҮ	lb/hr	TPY	lb/hr	ТРҮ
	11.4	48.8	77.9	338.7	3413.3	11011.5	1.2	5.1	1.2	5.1	129.3	473.8
A -"" symbol indicates the pollutant is not accounted for using the AECT or not emitted.												

CONOCOPHILLIPS COMPANY ZIA HILLS CENTRAL FACILITY Inlet Oil Analysis

Component	Mole %	Weight %
H2S	0.0000	0.0000
Nitrogen	0.0300	0.0062
Methane	6.8080	0.8122
Carbon Dioxide	0.0480	0.0157
Ethane	5.0090	1.1201
Propane	6.5520	2.1486
i-Butane	1.8700	0.8083
n-Butane	5.7170	2.4712
i-Pentane	2.7740	1.4884
n-Pentane	3.9660	2.1280
i-Hexane	2.9530	1.8925
n-Hexane	2.9620	1.8983
2,2,4-Trimethylpentane	0.0500	0.0425
Cyclohexane	0.0000	0.0000
Benzene	0.1840	0.1069
i-Heptane	6.4575	4.8121
n-Heptane	2.7675	2.0623
Toluene	0.8700	0.5961
n-Octane	10.8900	9.2511
Ethylbenzene	0.2160	0.1705
meta-Xylene	1.0540	0.8322
n-Nonane	7.2780	6.9419
C10+	31.5440	60.3948
TEG	0.0000	0.0000
Water	0.0000	0.0000
Methanol	0.0000	0.0000
Total	100.00	100.00

Molecular Weight	134.46
Btu Content (Btu/scf)	7162.19
Non-Methane Hydrocarbons (Weight %)	99.17
VOCs (Weight %)	98.05
HAPs (Weight %)	3.65

¹Data obatained from analysis.

CONOCOPHILLIPS COMPANY ZIA HILLS CENTRAL FACILITY Inlet Gas Analysis

Component	Mole %	Weight %
H2S	0.0000	0.0000
Nitrogen	1.1690	1.5057
Methane	76.6590	56.5462
Carbon Dioxide	0.0890	0.1801
Ethane	12.2200	16.8951
Propane	5.6960	11.5487
i-Butane	0.8340	2.2288
n-Butane	1.8350	4.9040
i-Pentane	0.4200	1.3933
n-Pentane	0.4760	1.5791
i-Hexane	0.1190	0.4715
n-Hexane	0.0850	0.3368
2,2,4-Trimethylpentane	0.0000	0.0000
Cyclohexane	0.0390	0.1509
Benzene	0.0050	0.0180
i-Heptane	0.0890	0.4100
n-Heptane	0.0330	0.1520
Toluene	0.0090	0.0381
n-Octane	0.0950	0.4990
Ethylbenzene	0.0010	0.0049
meta-Xylene	0.0150	0.0732
n-Nonane	0.0440	0.2595
C10+	0.0680	0.8050
TEG	0.0000	0.0000
Water	0.0000	0.0000
Methanol	0.0000	0.0000
Total	100.00	100.00
N (- 1		
Molecular Weight		21.75
Btu Content (Btu/scf)	- (147	1294.36
Non-Methane Hydrocarbon	s (vveight %)	41.77
VOCs (Weight %) HAPs (Weight %)		24.87 0.47
	batained from analysis.	0.47

CONOCOPHILLIPS COMPANY ZIA HILLS CENTRAL FACILITY Stabilizer Heater Emissions

Emission unit number(s):

Source description:

STAB1 - STAB3

Stabilizer Heaters

Fuel Consumption and Stack				C			
Input heat rate:	3.50	MMBtu/hr		Capacity			
Fuel heat value:	1262.0	Btu/scf		Field Gas		. 1	
Fuel rate:	2773.4	scf/hr		Input heat 1		neat value	
Annual fuel usage:	24.3	MMscf/yr		8760 hrs/yr	operation		
Stack height:	30	ft					
Stack diameter:	1.94	ft					
Stack diameter:	23.25	in					
Exhaust temp (Tstk):	700	°F					
Air Flow:	36053.9	ft3/hr					
Total Flow:	38827.3	ft3/hr					
Stack Area:	2.95	ft2					
Raw Velocity:	3.66	ft/sec					
Stack Velocity Coefficient:	2.19						
Exhaust velocity:	8.01	ft/sec					
Emission Rates							
Uncontrolled Heater Emissior	าร						
	NOx^1	CO^1	VOC^1	SO_2^1	PM^1		
	100.00	84.00	5.50	0.60	7.60	lb/MMscf	
	0.42	0.36	0.02	0.00	0.03	lb/hr	
	1.86	1.56	0.10	0.01	0.14	tpy (8760 h	rs)
	Hexane ¹						
	2.23	lb/MMscf					
	0.01	lb/hr					
	0.01	,	\ \				
	0.03	tpy (8760 hrs)				
			CH ₄ as		N ₂ O as	Total	
GHG Emissions	CO_2	CH4	CO_2e^2	N ₂ O	CO_2e^2	CO ₂ e2	
	117.00	0.002	0.055	0.0002	0.066	_	lb/MMbtu
	409.49	0.008	0.19	0.001	0.23	409.91	lb/hr
	1793.57	0.03	0.85	0.003	1.01	1795.42	tpy (8760 hrs)

CONOCOPHILLIPS COMPANY ZIA HILLS CENTRAL FACILITY Line Heater Emissions

Capacity

Field Gas

Input heat rate / fuel heat value

8760 hrs/yr operation

Emission unit number(s): LH1 Source description: Line Heater

Fuel Consumption and Stack Parameters							
Input heat rate:	1.00	MMBtu/hr					
Fuel heat value:	1262.0	Btu/scf					
Fuel rate:	792.4	scf/hr					
Annual fuel usage:	6.9	MMscf/yr					
Stack height:	15	ft					
Stack diameter:	0.67	ft					
Stack diameter:	8.00	in					
Exhaust temp (Tstk):	700	°F					
Air Flow:	10301.1	ft3/hr					
Total Flow:	11093.5	ft3/hr					
Stack Area:	0.35	ft2					
Raw Velocity:	8.83	ft/sec					
Stack Velocity Coefficient	2.19						
Exhaust velocity:	19.32	ft/sec					

Emission Rates

allad U Unce

Uncontrolled Heater Emis	ssions						
	NOx^1	CO^1	VOC^1	SO_2^{-1}	PM^1		
	100.00	84.00	5.50	0.60	7.60	lb/MMscf	
	0.12	0.10	0.01	0.00	0.01	lb/hr	
	0.53	0.45	0.03	0.00	0.04	tpy (8760 hrs)	
	Hexane ¹						
	2.23	lb/MMscf					
	0.00	lb/hr					
	0.01	tpy (8760 hrs)				
			011		NLO	T . 1	
			CH ₄ as		N_2O as	Total	
GHG Emissions	CO ₂	CH4	CO_2e^2	N_2O	CO_2e^2	CO ₂ e2	

IG Emissions	CO_2	CH4	CO_2e	N_2O	CO_2e	CO_2eZ		
	117.00	0.002	0.055	0.0002	0.066		lb/MMbtu	
	117.00	0.002	0.06	0.000	0.07	117.12	lb/hr	
	512.45	0.01	0.24	0.001	0.29	512.98	tpy (8760 hrs)	

1 USEPA AP-42, Section 1.4-1 and 2. Factors are converted to lb/MMBtu and adjusted for site Btu content.

CONOCOPHILLIPS COMPANY ZIA HILLS CENTRAL FACILITY Glycol Reboiler (RB1-RB2) Emissions

Emission unit number(s): RB1-RB2 Source description: Glycol Reboiler Heaters - 0.5 MMBtu/hr each

Fuel Consumption and Sta	ck Parame	eters	
Heat Rate:	0.50	MMBtu/hr	
Fuel heat value:	2586	Btu/scf	Promax (Post-condenser gas)
Fuel rate:	356.8	scf/hr	Post-condenser and Flash Drum Gas to Reboiler
Annual fuel usage:	3.1	MMscf/yr	8760 hrs/yr operation
Stack height:	20	ft	
Stack diameter:	1.00	ft	
Stack diameter:	12.00	in	
Exhaust temp (Tstk):	700	°F	
Air Flow:	4638.6	ft3/hr	
Total Flow:	4995.4	ft3/hr	40 CFR 60 Appendix A Method 19 Table 19-2
Stack Area:	0.79	ft2	F Factor (scf/MMBtu) * (MMBtu/hr) / (60 min/hr) / (60 sec/min)
Raw Velocity:	1.77	ft/sec	
Stack Velocity Coefficient	2.19		Calculated - Exhaust flow / cross sectional area of stack
Exhaust velocity:	3.87	ft/sec	

Uncontrolled Heater Emissions

-

	NOx^1	CO^1	VOC^1	SO_2^{1}	PM^1		
-	100.00	84.00	5.50	0.60	7.60	lb/MMscf	
	0.12	0.10	0.01	0.00	0.01	lb/hr	
	0.54	0.46	0.03	0.00	0.04	tpy (8760 hrs)	

Hexane ¹	
4.56	lb/MMscf
0.00	lb/hr
0.01	tpy (8760 hrs)

			CH ₄ as		N ₂ O as	Total	
GHG Emissions	CO ₂	CH4	CO_2e^2	N_2O	CO_2e^2	CO ₂ e2	
	117.00	0.002	0.055	0.0002	0.066		lb/MMbtu
	58.50	0.001	0.03	0.000	0.03	58.56	lb/hr
	256.22	0.00	0.12	0.000	0.14	256.49	tpy (8760 hrs)

1 USEPA AP-42, Section 1.4-1 and 2. Factors are converted to lb/MMBtu and adjusted for site Btu content.

CONOCOPHILLIPS COMPANY ZIA HILLS CENTRAL FACILITY Glycol Reboiler (RB3-RB4) Emissions

Emission unit number(s): RB3-RB4 Source description: Glycol Reboiler Heaters - 0.75 MMBtu/hr each

Fuel Consumption and Sta	ck Parame	eters	
Heat Rate:	0.75	MMBtu/hr	
Fuel heat value:	2580	Btu/scf	Promax (Post-condenser gas)
Fuel rate:	628.1	scf/hr	Post-condenser and Flash Drum Gas to Reboiler
Annual fuel usage:	5.5	MMscf/yr	8760 hrs/yr operation
Stack height:	20	ft	
Stack diameter:	1.00	ft	
Stack diameter:	12.00	in	
Exhaust temp (Tstk):	700	°F	
Air Flow:	8165.9	ft3/hr	
Total Flow:	8794.1	ft3/hr	40 CFR 60 Appendix A Method 19 Table 19-2
Stack Area:	0.79	ft2	F Factor (scf/MMBtu) * (MMBtu/hr) / (60 min/hr) / (60 sec/min)
Raw Velocity:	3.11	ft/sec	
Stack Velocity Coefficient	2.19		Calculated - Exhaust flow / cross sectional area of stack
Exhaust velocity:	6.81	ft/sec	

Uncontrolled Heater Emissions		
	4	

	NOx^1	CO^1	VOC ¹	SO_2^{1}	PM^1	
-	100.00	84.00	5.50	0.60	7.60	lb/MMscf
	0.19	0.16	0.01	0.00	0.01	lb/hr
	0.81	0.68	0.04	0.00	0.06	tpy (8760 hrs)

Hexane ¹	
4.55	lb/MMscf
0.00	lb/hr
0.01	tpy (8760 hrs)

			CH ₄ as		N ₂ O as	Total	
GHG Emissions	CO ₂	CH4	CO_2e^2	N ₂ O	CO_2e^2	CO ₂ e2	
	117.00	0.002	0.055	0.0002	0.066		lb/MMbtu
	87.75	0.002	0.04	0.000	0.05	87.84	lb/hr
	384.34	0.01	0.18	0.001	0.22	384.73	tpy (8760 hrs)

1 USEPA AP-42, Section 1.4-1 and 2. Factors are converted to lb/MMBtu and adjusted for site Btu content.

CONOCOPHILLIPS COMPANY ZIA HILLS CENTRAL FACILITY Engine Emissions

Emission Unit Designation	ENG1	Subject to NSPS Subpart JJJJ				
Source Description	Caterpillar G	3516J				
Туре	Turbocharged	4SLB Engine				
Rated Output	1,380	hp, per manufacturer				
Site Elevation, ft	3,173	ft, per topographic map				
Altitude Deration Factor	1.00	3% per 1000' over 4000' for turbocharged engines				
Altitude Derated Output	1,380	hp				
Maximum Design Heat Input	11.76	MMBtu/hr, site derated				
Fuel Gas Heating Value	1,262.0	Btu/scf, analysis				
Fuel Consumption	8522	Btu/hp-hr, per manufacturer at 75% load				
Hourly Fuel Consumption	9319	scf/hr, site derated				
Annual Fuel Consumption	81.6	MMscf/yr, site derated				
Fuel Sulfur Content	50	gr/Mscf, estimated				
Operating Time	8760	hrs/year				

Stack Height	25.0	ft, CSI measurement
Exhaust Gas Velocity	95.9	ft/sec, calculated
Exhaust Temp	824	°F, manufacturer
Stack Inside Diameter	1.33	ft, CSI measurement
Exhaust Gas Flow	8032	cfm, manufacturer

				Control	Permit		Emissio	on Rate		
	Pollutant	Emissi	ion Factor	Efficiency	Limit	Uncon	trolled	Conti	olled	Notes
				(%)	g/hp-hr	(lb/hr)	(tpy)	(lb/hr)	(tpy)	
~	NO _x	0.50	g/hp-hr		0.50	1.52	6.66	1.52	6.66	1
tant	СО	2.41	g/hp-hr	80%	0.482	7.33	32.11	1.47	6.42	1
ollu	VOC	0.83	g/hp-hr	73.41%	0.2207	2.53	11.06	0.67	2.94	1
ria F	VOC		Includ	ing Aldehydes	0.32	3.86	16.92	0.97	4.24	1
Criteria Pollutants	SO ₂	14.29	lb/MMscf		-	0.13	0.58	0.13	0.58	2
Ŭ	PM ₁₀	9.91E-03	lb/MMBtu		-	0.12	0.51	0.12	0.51	3
	Formaldehyde	0.40	g/hp-hr	80%	0.08	1.22	5.33	0.24	1.07	1
HAP	Acetaldehyde	8.36E-03	lb/MMBtu	73.41%	-	0.12	0.53	0.03	0.14	3
H/	Acrolein	5.14E-03	lb/MMBtu	73.41%	-	0.07	0.33	0.02	0.09	3
		Total (Controlled HAP	(from AECT)	-	1.42	6.22	0.45	1.96	3
	CO2	482	g/hp-hr		-	1466	6423	-	-	1
	CH4	0.0022	lb/MMBtu		-	0.03	0.11	-	-	3
GHG	CH4 as CO2e	25	GWP		-	-	2.84	-	-	3
Ŭ	N2O	0.0002	lb/MMBtu		-	0.003	0.01	-	-	3
	N2O as CO2e	298	GWP		-	-	3.38	-	-	3

Notes:

¹ Manufacturer engine specifications. AP-42 factors were adjusted for heat content. VOC use stack test data with a 25% safety factor.

² Fuel Sulfur Content (50 gr/Mscf) / 7000 (gr/lb) x 1000 (Mscf/MMscf) * 64 lb/lb-mol SO₂/32 lb/lb-mol S

³ USEPA AP-42 Ch. 3.2 Natural Gas-fired Reciprocating Engines

CONOCOPHILLIPS COMPANY ZIA HILLS CENTRAL FACILITY Engine Emissions

Emission Unit Designation Source Description Type	Caterpillar 36	ENG5-ENG8 Subject to NSPS Subpart JJJJ 06A4 4SLB Engine
Rated Output	1,875	hp, per manufacturer
Site Elevation, ft	3,173	ft, per topographic map
Altitude Deration Factor	1.00	3% per 1000' over 4000' for turbocharged engines
Altitude Derated Output	1,875	hp
Maximum Design Heat Input	14.8838	MMBtu/hr, site derated
Fuel Gas Heating Value	1,262.0	Btu/scf, analysis
Fuel Consumption	7938	Btu/hp-hr, per manufacturer at 75% load
Hourly Fuel Consumption	11794	scf/hr, site derated
Annual Fuel Consumption	103.3	MMscf/yr, site derated
Fuel Sulfur Content	50	gr/Mscf, estimated
Operating Time	8760	hrs/year

Stack Height	29.6	ft, CSI measurement
Exhaust Gas Velocity	91.7	ft/sec, calculated
Exhaust Temp	809	°F, manufacturer
Stack Inside Diameter	1.67	ft, CSI measurement
Exhaust Gas Flow	11998	cfm, manufacturer

				Control	Permit		Emissio	on Rate		
	Pollutant	Emissi	ion Factor	Efficiency	Limit	Uncon	trolled	Conti	olled	Notes
			-	(%)	g/hp-hr	(lb/hr)	(tpy)	(lb/hr)	(tpy)	
~	NO _x	0.30	g/hp-hr		0.30	1.24	5.43	1.24	5.43	1
tant	СО	2.74	g/hp-hr	93.06%	0.190	11.33	49.61	0.79	3.44	1
ollu	VOC	0.94	g/hp-hr	63.19%	0.346	3.89	17.02	1.43	6.27	1
ria F	VOC		Includ	ling Aldehydes	0.39	4.82	21.13	1.60	7.00	1
Criteria Pollutants	SO ₂	14.29	lb/MMscf		-	0.17	0.74	0.17	0.74	2
Ŭ	PM ₁₀	9.91E-03	lb/MMBtu		-	0.15	0.65	0.15	0.65	3
	Formaldehyde	0.19	g/hp-hr	90.35%	0.0183	0.79	3.44	0.08	0.33	1
HAP	Acetaldehyde	8.36E-03	lb/MMBtu	63.19%	-	0.15	0.67	0.06	0.25	3
H/	Acrolein	5.14E-03	lb/MMBtu	63.19%	-	0.09	0.41	0.03	0.15	3
		Total (Controlled HAP	(from AECT)	-	1.04	4.57	0.33	1.46	3
	CO2	455	g/hp-hr		-	1881	8238	-	-	1
	CH4	0.0022	lb/MMBtu		-	0.03	0.14	-	-	3
GHG	CH4 as CO2e	25	GWP		-	-	3.59	-	-	3
Ŭ	N2O	0.0002	lb/MMBtu		-	0.003	0.01	-	-	3
	N2O as CO2e	298	GWP		-	-	4.28	-	-	3

Notes:

¹ Manufacturer engine specifications. AP-42 factors were adjusted for heat content. VOC and HCOH use stack test data with a 25% safety factor.

² Fuel Sulfur Content (50 gr/Mscf) / 7000 (gr/lb) x 1000 (Mscf/MMscf) * 64 lb/lb-mol SO₂/32 lb/lb-mol S

³ USEPA AP-42 Ch. 3.2 Natural Gas-fired Reciprocating Engines

CONOCOPHILLIPS COMPANY ZIA HILLS CENTRAL FACILITY Engine Test Data Summary¹

	Caterpillar 3606A4								
Unit	Serial		Run 1	Run 2	Run 3	Test Date			
ENG3	JFE01205	VOC HCOH	0.327 0.016	0.318 0.016	0.334 0.015	1/7/2020			
ENG2	JFE01170	VOC HCOH	0.270 0.014	0.327 0.013	0.311 0.014	1/7/2020			
ENG5	JFE01188	VOC HCOH	0.254 -	0.262 -	0.264 -	3/2/2020			
ENG6	JFE01204	VOC HCOH	0.215 -	0.220 -	0.220 -	3/2/2020			
	VOC Average HCOH Average	0.277 0.015							

Caterpillar 3516								
Unit	Serial		Run 1	Run 2	Run 3			
ENG1	N6W00861	VOC	0.141	0.143	0.136	1/7/2020		
ENGI	1100000001	HCOH	-	-	-	1/1/2020		
N/A	N6W00630	VOC	0.247	0.246	0.249	5/15/2019		
IN/A		HCOH	-	-	-	5/15/2019		
N/A	N6W00631	VOC	0.143	0.143	0.141	6/6/2019		
IN/A	100000031	HCOH	-	-	-	0/0/2019		
	VOC Average	0.177						

¹ COP is requesting the use of stack test data for certain pollutants based on average emission rates from official stack tests. A 25% safety factor is added to the average rates calculated above.

ZIA HILLS CENTRAL FACILITY

HP FLARE (FL1) EMISSIONS SUMMARY

Stream Source	NOx		со		Total VOC (Includes Total HAPs)		SO ₂		PM _{10 & 2.5}		Total HAPs	
Stream Source	lb/hr	ТРҮ	lb/hr	ТРҮ	lb/hr	TPY	lb/hr	ТРҮ	lb/hr	TPY	lb/hr	ТРҮ
Flare Pilot	0.04	0.18	0.08	0.35	0.06	0.28	0.00	0.01	0.00	0.00	0.00	0.01
Inlet Gas Flaring	199.18	6.20	397.63	12.37	309.29	9.62	0.00	0.00	8.55	0.27	6.48	0.20
Total Emissions	199.22	6.37	397.71	12.72	309.36	9.91	0.00	0.01	8.55	0.27	6.48	0.21
Normal Operations (Including Pilot)	0.04	0.18	0.08	0.35	0.06	0.28	0.00	0.01	0.00	0.00	0.00	0.01
Intermittent Gas (Inlet Gas)	199.18	6.20	397.63	12.37	309.29	9.62	0.00	0.00	8.55	0.27	6.48	0.20

CONOCOPHILLIPS COMPANY ZIA HILLS CENTRAL FACILITY HP GAS TO FL1 DURING COMPRESSOR DOWNTIME

Component	Mole %	Weight %
H2S	0.0000	0.0000
Nitrogen	1.1606	1.5030
Methane	76.1429	56.4681
Carbon Dioxide	0.0885	0.1800
Ethane	12.1685	16.9145
Propane	5.7056	11.6306
i-Butane	0.8436	2.2666
n-Butane	1.8689	5.0216
i-Pentane	0.4372	1.4582
n-Pentane	0.5008	1.6703
i-Hexane	0.1319	0.5254
n-Hexane	0.0965	0.3843
2,2,4-Trimethylpentane	0.0000	0.0001
Cyclohexane	0.0443	0.1722
Benzene	0.0056	0.0204
i-Heptane	0.1060	0.4908
n-Heptane	0.0392	0.1814
Toluene	0.0107	0.0454
n-Octane	0.0865	0.4568
Ethylbenzene	0.0009	0.0042
meta-Xylene	0.0120	0.0587
n-Nonane	0.0175	0.1038
C10+	0.0000	0.0000
TEG	0.0000	0.0000
Water	0.5324	0.4434
Methanol	0.0000	0.0000
Total	100.00	100.00
Molecular Weight		21.63
Btu Content (Btu/scf)		1282.93
,		+

Molecular Weight	21.63
Btu Content (Btu/scf)	1282.93
Non-Methane Hydrocarbons (Weight %)	41.41
VOCs (Weight %)	24.49
HAPs (Weight %)	0.51

¹Data obatained from Promax.

CONOCOPHILLIPS COMPANY ZIA HILLS CENTRAL FACILITY HP FLARE (FL1) - PILOT & PURGE GAS EMISSIONS

Pilot Fuel + Purge Gas	5520	SCF/Day	
Duration	8760	Hours/Year	
Flared	Yes	(Yes/No)	
Vented	No	(Yes/No)	
Heating Value	1262.0	Btu/SCF (Fuel Gas Analysis)	

Component	Emission Rate (lb/hr)	Emission Rate (TPY)
CO2	33.96	148.75
CH4	0.00	0.00
CH4 as CO2e	0.01	0.06
CO ¹	0.08	0.35
NOx ¹	0.04	0.18
VOCs ²	0.06	0.28
HAPs ²	0.00	0.01
SO_2^3	0.00	0.01
H2S ³	0.00	0.00

¹ The CO and NOx emission factors of 0.2755 and 0.138 lb/MMBtu are based on TCEQ document RG-360A/11 (February 2012)

 2 VOC example calculation: SCF/day * 14.7 / 10.73 / 528 * VOC Wt % * Gas MW

³ H2S example calculation: SCF/day * 14.7 / 10.73 / 528 * H2S Wt% * Gas MW. SO2 is calculated assuming MW ratio of 64.07:34.08.

CONOCOPHILLIPS COMPANY ZIA HILLS CENTRAL FACILITY INLET GAS FLARING EMISSIONS

Total Gas Production - SCF/Day	27,000,000
Total Gas Production - SCF/Hr	1,125,000
Total Gas Production - SCF/Year	70,000,000
Heating Value - BTU/SCF	1282.93

Component	Hourly Emission Rate (lb/hr)	Annualized Emission Rate (TPY)
CO^1	397.63	12.37
NOx ¹	199.18	6.20
VOCs ²	309.29	9.62
SO_2^3	0.00	0.00
HAP ²	6.48	0.20
PM _{10 & 2.5} ⁴	8.55	0.27

¹ The CO and NOx emission factors of 0.2755 and 0.138 lb/MMBtu are based on TCEQ document RG-360A/11 (February 2012)

 2 VOC example calculation: SCF/day * 14.7 / 10.73 / 528 * VOC weight % * Gas MW

³ H2S/SO2 example calculation: SCF/day * 14.7 / 10.73 / 528 * H2S Wt% * Gas MW. SO2 is calculated assuming MW ratio of 64.07:34.08.

⁴ PM 10 & 2.5 emissions are based on AP-42, Section 1.4.

ZIA HILLS CENTRAL FACILITY

FLARE (FL1) - GHG EMISSIONS SUMMARY

r.

1) $E_{a,CH4} = V_a * X_{CH4}$	$_{14} * [(1 - \eta) * Z_L + Z_L$	U	=	1,066,000.03	SCF/Yr		Source	Annual Volume
Va =	70,000,000.00					_	Inlet	7000000
X _{CH4} =	0.761	HP Gas				_		
N =	0.98					_		
$Z_L =$	1.00							7000000
Z _U =	0.00							
2) E _{a,CO2} (uncombu	$(sted) = V_a * X_{CO2}$	2	=	61,942.00	SCF/Yr			
Va =	70,000,000.00							
X _{CO2} =	0.0009	HP Gas						
3) E _{a,CO2} (combuste	ed) = Σ (η * Va *)	Yj * Rj * Z _L)						
N =	0.98							
V _a =	70,000,000.00		Rj =		$E_{a, CO2} =$			
Y _J =	Methane	0.7614	1	Inlet	52,234,001.49			
	Ethane	0.1217	2	Stabilizer	16,695,192.82			
	Propane	0.0571	3	Stabilizer	11,742,222.93			
	Butane	0.0271	4	Stabilizer	7,443,117.11			
	Pentane +	0.0149	5		5,107,105.70			
Z _L =	1.00				93,221,640	SCF/Yr		
3) E _{s,n} = <u>E_{a,n} * (459.</u>	67 + T _s) * P _a							
(459.	67 + T _a) * P _s							
$E_{a,n}(CH4) =$	1,066,000.03		=	933,041.85	SCF/Yr			
$E_{a,n}(CO2) =$	93,283,582.04		=	81,648,671	SCF/Yr			
Ts =	60.00	°F						
Ta =	76.70	°F (Midland, A	P-42)					
Ps =	14.70							
Pa =	13.28	Midland, AP-4	2					
4) Mass _{s,i} = $E_{s,i} * \rho_i$	* 10 ³							
E _{s,i} (CH4) =	933,041.85							
E _{s,i} (CO2) =	81,648,671.3	1						
p _i (CH4) =	0.0192	kg/ft3	=	17.91	metric tons			
$p_i(CO2) =$	0.0526	kg/ft3	=	4294.72	metric tons			
5) CO ₂ e = CO ₂ + (0	CH4 X GWP)		short tons	CO ₂ e				
CO2 =	4294.72	=	4734.12	4734.12				
02-	17.91	=	19.75	493.68				
CH4 =	17.71							

 * V_{a} is the sum of gas routed to the flare.

CONOCOPHILLIPS COMPANY BATTLESHIP CENTRAL FACILITY 40 CFR 60.18 Verification (Flare 1)

	Tip Velocity Calculations	5	
Flare Tip Diameter	12	Inches	
Flare Tip Diameter	1.00	ft	
Area of Flare Tip	0.785	ft ²	
Gas Flow Rate	27,000,000	SCFD	
Gas Flow Rate	1,125,000	SCF/Hr	
Gas Flow Rate	312.50	SCF/Sec	
Maximum Tip Velocity	397.89	ft/Sec	
Heating Value	> 1000	BTU/SCF	

ZIA HILLS CENTRAL FACILITY

LP FLARE (FL2/FL3) EMISSIONS SUMMARY

Stream Source	N	Ox	C	0	Total (Includes T	VOC Total HAPs)	S	D ₂	PM ₁	0 & 2.5	Total	HAPs
Stream Source	lb/hr	ТРҮ	lb/hr	ТРҮ	lb/hr	ТРҮ	lb/hr	ТРҮ	lb/hr	ТРҮ	lb/hr	ТРҮ
Flare 2 Pilot	0.06	0.27	0.13	0.55	0.10	0.44	0.00	0.02	0.00	0.00	0.00	0.01
Flare 3 Pilot	0.06	0.27	0.13	0.55	0.10	0.44	0.00	0.02	0.00	0.00	0.00	0.01
Overhead Gas Scrubber (VRU Downtime)	9.28	0.98	18.52	1.95	38.31	4.03	0.00	0.00	0.27	0.03	0.82	0.09
Vapor Recovery Tower (VRU Downtime)	1.38	0.14	2.75	0.29	8.68	0.91	0.00	0.00	0.02	0.00	0.34	0.04
Water Degas Vessel - (VRU Downtime)	1.24	0.13	2.47	0.26	6.88	0.72	0.00	0.00	0.03	0.00	0.44	0.05
Oil Tank Vapors - VRU Downtime (To Flare)	0.54	0.06	1.07	0.11	3.22	0.34	0.00	0.00	0.01	0.00	0.11	0.01
Off-Specification Oil Tank Vapors - VRU Downtime (To Flare)	1.38	0.14	2.75	0.29	8.67	0.91	0.00	0.00	0.02	0.00	0.38	0.04
Gun Barrel Vapors - VRU Downtime (To Flare)	0.26	0.03	0.53	0.06	1.32	0.17	0.00	0.00	0.01	0.00	0.08	0.01
Slop Tank Tank Vapors - VRU Downtime (To Flare)	0.02	0.00	0.03	0.00	0.08	0.01	0.00	0.00	0.00	0.00	0.00	0.00
Water Tank Vapors - VRU Downtime (To Flare)	0.04	0.00	0.08	0.01	0.16	0.02	0.00	0.00	0.00	0.00	0.02	0.00
Total Emissions	14.26	2.03	28.47	4.06	67.51	8.00	0.01	0.03	0.36	0.04	2.21	0.25
Normal Operations (Pilots Only)	0.13	0.55	0.25	1.10	0.20	0.89	0.01	0.03	0.00	0.00	0.00	0.02
Intermittent Gas (VRU Downtime)	14.13	1.49	28.21	2.97	67.31	7.12	0.00	0.00	0.36	0.04	2.20	0.23

CONOCOPHILLIPS COMPANY ZIA HILLS CENTRAL FACILITY LP FLARES (FL2/FL3) - PILOT & PURGE GAS EMISSIONS

8640	SCF/Day	
8760	Hours/Year	
Yes	(Yes/No)	
No	(Yes/No)	
1262.0	Btu/SCF (Gas Analysis)	
	8760 Yes No	8760Hours/YearYes(Yes/No)No(Yes/No)

Component	Emission Rate (lb/hr)	Emission Rate (TPY)
CO2	53.16	232.82
CH4	0.00	0.00
CH4 as CO2e	0.02	0.10
CO ¹	0.13	0.55
NOx ¹	0.06	0.27
VOCs ²	0.10	0.44
HAPs ²	0.00	0.01
SO_2^3	0.00	0.02
H2S ³	0.00	0.00

¹ The CO and NOx emission factors of 0.2755 and 0.138 lb/MMBtu are based on TCEQ document RG-360A/11 (February 2012)

 2 VOC example calculation: SCF/day * 14.7 / 10.73 / 528 * VOC Wt % * Gas MW

³ H2S example calculation: SCF/day * 14.7 / 10.73 / 528 * H2S Wt% * Gas MW. SO2 is calculated assuming MW ratio of 64.07:34.08.

ZIA HILLS CENTRAL FACILITY

FLARE (FL2-FL3) - GHG EMISSIONS SUMMARY

1) $E_{a,CH4} = V_a * X_{CF}$	$_{14} * [(1 - \eta) * Z_L + Z_L$	2 _U	=	75,285.12	SCF/Yr		Source	Annual Volume
Va =	9,851,749.79						OHS	7404195
X _{CH4} =	0.382	OHS Scrubber					VRT	684176
N =	0.98						WDG	825996
Z _L =	1.00						OT1-OT4	265500
Z _U =	0.00						OT5	671883
							ST-ST2	8,660
2) E _{a,CO2} (uncombu	$(sted) = V_a * X_{CO2}$	2	=	8,648.16	SCF/Yr		GB1-GB2	151058
Va =	9,851,749.79						WT1-WT8	59326
$X_{CO2} =$	0.0009	OHS Scrubber	:					9851750
3) E _{a,CO2} (combuste	ed) = Σ (η * Va * '	Yj * Rj * Z _L)						
N =	0.98							
V _a =	9,851,749.79		Rj =		$E_{a, CO2} =$			
Y _J =	Methane	0.3821	1	OHS Scrubber	3,688,971.00			
	Ethane	0.2038	2	OHS Scrubber	3,935,704.02			
	Propane	0.3218	3	VRT	9,321,698.18			
	Butane	0.3186	4	VRT	12,302,820.14			
	Pentane +	0.2205	5		10,645,733.30			
Z _L =	1.00				39,894,927	SCF/Yr		
3) E _{s,n} = <u>E_{a,n} * (459.</u>	67 + T _s) * P _a							
	.67 + T _a) * P _s							
$E_{a,n}(CH4) =$	75,285.12		=	65,895.09	SCF/Yr			
$E_{a,n}(CO2) =$	39,903,574.81		=	34,926,552	SCF/Yr			
Ts =	60.00	°F						
Ta =	76.70	°F (Midland, Al	P-42)					
Ps =	14.70							
Pa =	13.28	Midland, AP-42	2					
4) Mass _{s,i} = E _{s,i} * ρ _i	* 10 ³							
$E_{s,i}$ (CH4) =	65,895.09							
$E_{s,i}(CO2) =$	34,926,551.8	34						
p _i (CH4) =	0.0192	kg/ft3	=	1.27	metric tons			
$p_i(CO2) =$	0.0526	kg/ft3	=	1837.14	metric tons			
5) $CO_2e = CO_2 + (0)$	CH4 X GWP)		short tons	CO ₂ e				
CO2 =	1837.14	=	2025.10	2025.10				
CH4 =	1.27	=	1.39	34.87				
CH4 GWP =	25			2059.96				

um of gas routed to the flare.

3.135441491

CONOCOPHILLIPS COMPANY BATTLESHIP CENTRAL FACILITY 40 CFR 60.18 Verification (Flare 2)

	Tip Velocity Calculations	3	
Flare Tip Diameter	12	Inches	
Flare Tip Diameter	1.00	ft	
Area of Flare Tip	0.785	ft^2	
Gas Flow Rate	27,000,000	SCFD	
Gas Flow Rate	1,125,000	SCF/Hr	
Gas Flow Rate	312.50	SCF/Sec	
Maximum Tip Velocity	397.89	ft/Sec	
Heating Value	> 1000	BTU/SCF	

CONOCOPHILLIPS COMPANY BATTLESHIP CENTRAL FACILITY 40 CFR 60.18 Verification (Flare 3)

	Tip Velocity Calculations	5	
Flare Tip Diameter	12	Inches	
Flare Tip Diameter	1.00	ft	
Area of Flare Tip	0.785	ft^2	
Gas Flow Rate	27,000,000	SCFD	
Gas Flow Rate	1,125,000	SCF/Hr	
Gas Flow Rate	312.50	SCF/Sec	
Maximum Tip Velocity	397.89	ft/Sec	
Heating Value	> 1000	BTU/SCF	

CONOCOPHILLIPS COMPANY ZIA HILLS CENTRAL FACILITY OVERHEAD SCRUBBER GAS

Component	Mole %	Weight %	
H2S	0.0000	0.0000	
Nitrogen	0.2615	0.2181	
Methane	38.2090	18.2460	
Carbon Dioxide	0.0878	0.1150	
Ethane	20.3823	18.2433	
Propane	19.6881	25.8421	
i-Butane	3.7143	6.4262	
n-Butane	8.3270	14.4065	
i-Pentane	1.8030	3.8722	
n-Pentane	2.0102	4.3172	
i-Hexane	0.4948	1.2693	
n-Hexane	0.3678	0.9434	
2,2,4-Trimethylpentane	0.0001	0.0003	
Cyclohexane	0.1600	0.4009	
Benzene	0.0207	0.0482	
i-Heptane	0.4142	1.2355	
n-Heptane	0.1620	0.4833	
Toluene	0.0434	0.1191	
n-Octane	0.4290	1.4588	
Ethylbenzene	0.0043	0.0135	
meta-Xylene	0.0595	0.1882	
n-Nonane	0.1069	0.4080	
C10+	0.0000	0.0002	
TEG	0.0000	0.0000	
Water	3.2540	1.7449	
Methanol	0.0000	0.0000	
Total	100.00	100.00	

Molecular Weight	33.59
Btu Content (Btu/scf)	1908.74
Non-Methane Hydrocarbons (Weight %)	79.68
VOCs (Weight %)	61.43
HAPs (Weight %)	1.31

¹Data obatained from Promax.

ZIA HILLS CENTRAL FACILITY

OVERHEAD GAS SCRUBBER (OHS) EMISSIONS

Component	Uncontrolled Stream			Controlled Stream (Normal Operations)		Controlled Stream (VRU Downtime - 100% Flared)	
	Max lb/hr	lb/hr	TPY	lb/hr	ТРҮ	lb/hr	ТРҮ
H2S	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Nitrogen	6.800	5.440	23.826	0.000	0.000	6.800	0.715
Methane	568.860	455.088	1993.287	0.000	0.000	11.377	1.196
Carbon Dioxide	3.585	2.868	12.563	0.000	0.000	3.585	0.377
Ethane	568.776	455.021	1992.992	0.000	0.000	11.376	1.196
Propane	805.689	644.551	2823.133	0.000	0.000	16.114	1.694
i-Butane	200.351	160.281	702.029	0.000	0.000	4.007	0.421
n-Butane	449.157	359.326	1573.847	0.000	0.000	8.983	0.944
i-Pentane	120.724	96.579	423.017	0.000	0.000	2.414	0.254
n-Pentane	134.599	107.680	471.637	0.000	0.000	2.692	0.283
i-Hexane	39.573	31.658	138.662	0.000	0.000	0.791	0.083
n-Hexane	29.413	23.530	103.062	0.000	0.000	0.588	0.062
2,2,4-Trimethylpentane	0.009	0.007	0.031	0.000	0.000	0.000	0.000
Cyclohexane	12.499	9.999	43.796	0.000	0.000	0.250	0.026
Benzene	1.502	1.202	5.263	0.000	0.000	0.030	0.003
i-Heptane	38.518	30.815	134.968	0.000	0.000	0.770	0.081
n-Heptane	15.067	12.054	52.795	0.000	0.000	0.301	0.032
Toluene	3.713	2.971	13.011	0.000	0.000	0.074	0.008
n-Octane	45.482	36.385	159.367	0.000	0.000	0.910	0.096
Ethylbenzene	0.420	0.336	1.470	0.000	0.000	0.008	0.001
meta-Xylene	5.867	4.693	20.557	0.000	0.000	0.117	0.012
n-Nonane	12.721	10.177	44.574	0.000	0.000	0.254	0.027
C10+	0.007	0.006	0.025	0.000	0.000	0.000	0.000
TEG	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Water	54.403	43.522	190.628	0.000	0.000	54.403	5.719
Methanol	0.000	0.000	0.000	0.000	0.000	0.000	0.000

Component	Un	controlled Stre	am	Controlled Stream (Normal Operations)		Controlled Stream (VRU Downtime - 100% Flared)	
	Max lb/hr	lb/hr	ТРҮ	lb/hr	ТРҮ	lb/hr	ТРҮ
VOC TOTAL	1915.31	1532.25	6711.24	0.00	0.00	38.31	4.03
HAP TOTAL	40.92	32.74	143.39	0.00	0.00	0.82	0.09

¹ Uncontrolled emissions estimated using Promax. Tank vapors are controlled using a redundant VRU system and FL2/FL3. Maximum hourly rates include a 25% operational safety factor.

² Controlled Emissions = Uncontrolled Emissions * (1 - VRU Efficiency) * (1 - Flare Destruction Efficiency)

³ Annual controlled rate calculated by multiplying hourly emission rate by 8760 hours minus VRU downtime hours.

VRU Collection Efficiency	100%
VRU Downtime	3.0%
Downtime Hours	263
Flare Destruction Efficiency	98%

ZIA HILLS CENTRAL FACILITY

OVERHEAD GAS SCRUBBER (OHS) TO FLARE DURING VRU1/VRU2 DOWNTIME

Total Gas Production - SCF/Day	676,182
Total Gas Production - SCF/Hr (Includes 25% Safety Factor)	35,218
Total Gas Production - SCF/Year	7,404,195
Duration - Hours/Year (VRU Downtime)	263
Heating Value - BTU/SCF	1908.7

Component	Emission Rate (lb/hr)	Emission Rate (TPY)
CO ¹	18.52	1.95
NOx ¹	9.28	0.98
SO ₂ ²	0.00	0.00
H2S ²	0.00	0.00
$PM_{10\&25}^{3}$	0.27	0.03

¹ The CO and NOx emission factors of 0.2755 and 0.138 lb/MMBtu are based on TCEQ document RG-360A/11 (February 2012)

² H2S/SO2 example calculation: SCF/day * 14.7 / 10.73 / 528 * H2S Wt% * Gas MW. SO2 is calculated assuming MW ratio of 64.07:34.08.

3 PM 10 & 2.5 emissions are based on AP-42, Section 1.4.

CONOCOPHILLIPS COMPANY ZIA HILLS CENTRAL FACILITY VAPOR RECOVERY TOWER GAS

Component	Mole %	Weight %
H2S	0.0000	0.0000
Nitrogen	0.0000	0.0000
Methane	0.4429	0.1299
Carbon Dioxide	0.0237	0.0191
Ethane	13.1225	7.2140
Propane	32.1836	25.9460
i-Butane	8.6427	9.1841
n-Butane	23.2143	24.6683
i-Pentane	6.2015	8.1803
n-Pentane	7.1048	9.3718
i-Hexane	2.5344	3.9931
n-Hexane	1.8830	2.9667
2,2,4-Trimethylpentane	0.0124	0.0258
Cyclohexane	0.0000	0.0000
Benzene	0.1124	0.1606
i-Heptane	2.1358	3.9126
n-Heptane	0.6613	1.2114
Toluene	0.1763	0.2970
n-Octane	0.9242	1.9301
Ethylbenzene	0.0160	0.0311
meta-Xylene	0.0707	0.1373
n-Nonane	0.2200	0.5158
C10+	0.0001	0.0005
TEG	0.0000	0.0000
Water	0.3174	0.1045
Methanol	0.0000	0.0000
Total	100.00	100.00

Molecular Weight	54.70
Btu Content (Btu/scf)	3071.12
Non-Methane Hydrocarbons (Weight %)	99.75
VOCs (Weight %)	92.53
HAPs (Weight %)	3.62

¹Data obatained from Promax.

ZIA HILLS CENTRAL FACILITY

VAPOR RECOVERY TOWER (VRT) EMISSIONS

Component	Uncontrolled Stream			Controlled Stream (Normal Operations)		Controlled Stream (VRU Downtime - 100% Flared)	
	Max lb/hr	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY
H2S	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Nitrogen	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Methane	0.609	0.487	2.135	0.000	0.000	0.012	0.001
Carbon Dioxide	0.089	0.072	0.313	0.000	0.000	0.089	0.009
Ethane	33.837	27.070	118.566	0.000	0.000	0.677	0.071
Propane	121.699	97.360	426.435	0.000	0.000	2.434	0.256
i-Butane	43.078	34.462	150.944	0.000	0.000	0.862	0.091
n-Butane	115.706	92.565	405.434	0.000	0.000	2.314	0.243
i-Pentane	38.369	30.696	134.447	0.000	0.000	0.767	0.081
n-Pentane	43.958	35.167	154.031	0.000	0.000	0.879	0.092
i-Hexane	18.729	14.984	65.628	0.000	0.000	0.375	0.039
n-Hexane	13.915	11.132	48.759	0.000	0.000	0.278	0.029
2,2,4-Trimethylpentane	0.121	0.097	0.425	0.000	0.000	0.002	0.000
Cyclohexane	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Benzene	0.753	0.602	2.639	0.000	0.000	0.015	0.002
i-Heptane	18.352	14.682	64.306	0.000	0.000	0.367	0.039
n-Heptane	5.682	4.546	19.910	0.000	0.000	0.114	0.012
Toluene	1.393	1.114	4.881	0.000	0.000	0.028	0.003
n-Octane	9.053	7.243	31.722	0.000	0.000	0.181	0.019
Ethylbenzene	0.146	0.117	0.511	0.000	0.000	0.003	0.000
meta-Xylene	0.644	0.515	2.257	0.000	0.000	0.013	0.001
n-Nonane	2.419	1.935	8.477	0.000	0.000	0.048	0.005
C10+	0.002	0.002	0.008	0.000	0.000	0.000	0.000
TEG	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Water	0.490	0.392	1.718	0.000	0.000	0.490	0.052
Methanol	0.000	0.000	0.000	0.000	0.000	0.000	0.000

Component	Uncontrolled Stream		Controlled Stream (Normal Operations)		Controlled Stream (VRU Downtime - 100% Flared)		
	Max lb/hr	lb/hr	ТРҮ	lb/hr	ТРҮ	lb/hr	TPY
VOC TOTAL	434.02	347.22	1520.81	0.00	0.00	8.68	0.91
HAP TOTAL	16.97	13.58	59.47	0.00	0.00	0.34	0.04

¹ Uncontrolled emissions estimated using Promax. Tank vapors are controlled using a redundant VRU system and FL2/FL3. Maximum hourly rates include a 25% operational safety factor.

² Controlled Emissions = Uncontrolled Emissions * (1 - VRU Efficiency) * (1 - Flare Destruction Efficiency)

³ Annual controlled rate calculated by multiplying hourly emission rate by 8760 hours minus VRU downtime hours.

VRU Collection Efficiency	100%
VRU Downtime	3.0%
Downtime Hours	263
Flare Destruction Efficiency	98%

ZIA HILLS CENTRAL FACILITY

VAPOR RECOVERY TOWER GAS (VRT) TO FLARE DURING VRU1/VRU2 DOWNTIME

Total Gas Production - SCF/Day (Includes flashing/W&B)	62,482
Total Gas Production - SCF/Hr (Includes 25% Safety Factor)	3,254
Total Gas Production - SCF/Year	684,176
Duration -Hours/Year (VRU Downtime)	263
Heating Value - BTU/SCF (Promax - Highest of Flash/W&B)	3071.1

Component	Emission Rate (lb/hr)	Emission Rate (TPY)
CO ¹	2.75	0.29
NOx ¹	1.38	0.14
SO ₂ ²	0.00	0.00
H2S ²	0.00	0.00
$PM_{10\&25}^{3}$	0.02	0.00

¹ The CO and NOx emission factors of 0.2755 and 0.138 lb/MMBtu are based on TCEQ document RG-360A/11 (February 2012)

² H2S/SO2 example calculation: SCF/day * 14.7 / 10.73 / 528 * H2S Wt% * Gas MW. SO2 is calculated assuming MW ratio of 64.07:34.08.

 3 PM 10 & 2.5 emissions are based on AP-42, Section 1.4.

CONOCOPHILLIPS COMPANY ZIA HILLS CENTRAL FACILITY WATER DEGAS VESSEL GAS

Component	Mole %	Weight %
H2S	0.0000	0.0000
Nitrogen	0.0859	0.0558
Methane	18.8701	7.0203
Carbon Dioxide	0.0768	0.0784
Ethane	13.3100	9.2813
Propane	16.4005	16.7713
i-Butane	4.1890	5.6464
n-Butane	11.6963	15.7654
i-Pentane	4.2536	7.1171
n-Pentane	5.4251	9.0771
i-Hexane	2.5303	5.0567
n-Hexane	2.0511	4.0991
2,2,4-Trimethylpentane	0.0159	0.0422
Cyclohexane	0.0000	0.0001
Benzene	0.0684	0.1239
i-Heptane	2.6480	6.1532
n-Heptane	0.8613	2.0015
Toluene	0.1860	0.3973
n-Octane	1.3295	3.5219
Ethylbenzene	0.0214	0.0527
meta-Xylene	0.0969	0.2385
n-Nonane	0.3373	1.0032
C10+	0.0002	0.0014
TEG	0.0000	0.0000
Water	15.5462	6.4950
Methanol	0.0000	0.0000
Total	100.00	100.00

Molecular Weight	43.12
Btu Content (Btu/scf)	2286.17
Non-Methane Hydrocarbons (Weight %)	86.35
VOCs (Weight %)	77.07
HAPs (Weight %)	4.95

¹Data obatained from Promax.

ZIA HILLS CENTRAL FACILITY

WATER DEGAS VESSEL (WDGV1) EMISSIONS

Component	Uncontrolled Stream				Controlled Stream (Normal Operations)		Controlled Stream (VRU Downtime - 100% Flared)	
	Max lb/hr	lb/hr	ТРҮ	lb/hr	ТРҮ	lb/hr	ТРҮ	
H2S	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
Nitrogen	0.249	0.199	0.873	0.000	0.000	0.249	0.026	
Methane	31.341	25.073	109.819	0.000	0.000	0.627	0.066	
Carbon Dioxide	0.350	0.280	1.226	0.000	0.000	0.350	0.037	
Ethane	41.435	33.148	145.188	0.000	0.000	0.829	0.087	
Propane	74.873	59.898	262.353	0.000	0.000	1.497	0.157	
i-Butane	25.207	20.166	88.326	0.000	0.000	0.504	0.053	
n-Butane	70.382	56.305	246.618	0.000	0.000	1.408	0.148	
i-Pentane	31.773	25.418	111.332	0.000	0.000	0.635	0.067	
n-Pentane	40.523	32.419	141.994	0.000	0.000	0.810	0.085	
i-Hexane	22.575	18.060	79.101	0.000	0.000	0.451	0.047	
n-Hexane	18.300	14.640	64.123	0.000	0.000	0.366	0.038	
2,2,4-Trimethylpentane	0.189	0.151	0.661	0.000	0.000	0.004	0.000	
Cyclohexane	0.000	0.000	0.001	0.000	0.000	0.000	0.000	
Benzene	0.553	0.442	1.938	0.000	0.000	0.011	0.001	
i-Heptane	27.470	21.976	96.255	0.000	0.000	0.549	0.058	
n-Heptane	8.936	7.148	31.310	0.000	0.000	0.179	0.019	
Toluene	1.774	1.419	6.216	0.000	0.000	0.035	0.004	
n-Octane	15.723	12.578	55.093	0.000	0.000	0.314	0.033	
Ethylbenzene	0.235	0.188	0.825	0.000	0.000	0.005	0.000	
meta-Xylene	1.065	0.852	3.731	0.000	0.000	0.021	0.002	
n-Nonane	4.479	3.583	15.693	0.000	0.000	0.090	0.009	
C10+	0.006	0.005	0.021	0.000	0.000	0.000	0.000	
TEG	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
Water	28.996	23.197	101.601	0.000	0.000	28.996	3.048	
Methanol	0.000	0.000	0.000	0.000	0.000	0.000	0.000	

Component	Uncontrolled Stream		Controlled Stream (Normal Operations)		Controlled Stream (VRU Downtime - 100% Flared)		
	Max lb/hr	lb/hr	ТРҮ	lb/hr	ТРҮ	lb/hr	ТРҮ
VOC TOTAL	344.06	275.25	1205.59	0.00	0.00	6.88	0.72
HAP TOTAL	22.12	17.69	77.49	0.00	0.00	0.44	0.05

¹ Uncontrolled emissions estimated using Promax. Tank vapors are controlled using a redundant VRU system and FL2/FL3. Maximum hourly rates include a 25% operational safety factor.

² Controlled Emissions = Uncontrolled Emissions * (1 - VRU Efficiency) * (1 - Flare Destruction Efficiency)

³ Annual controlled rate calculated by multiplying hourly emission rate by 8760 hours minus VRU downtime hours.

VRU Collection Efficiency	100%
VRU Downtime	3.0%
Downtime Hours	263
Flare Destruction Efficiency	98%

ZIA HILLS CENTRAL FACILITY

WATER DEGAS VESSEL (WDGV1) TO FLARE DURING VRU1/VRU2 DOWNTIME

Total Gas Production - SCF/Day (Includes flashing/W&B)	75,433
Total Gas Production - SCF/Hr (Includes 25% Safety Factor)	3,929
Total Gas Production - SCF/Year	825,996
Duration -Hours/Year (VRU Downtime)	263
Heating Value - BTU/SCF (Promax - Highest of Flash/W&B)	2286.2

Component	Emission Rate (lb/hr)	Emission Rate (TPY)
CO ¹	2.47	0.26
NOx ¹	1.24	0.13
SO ₂ ²	0.00	0.00
H2S ²	0.00	0.00
$PM_{10\&25}^{3}$	0.03	0.00

¹ The CO and NOx emission factors of 0.2755 and 0.138 lb/MMBtu are based on TCEQ document RG-360A/11 (February 2012)

² H2S/SO2 example calculation: SCF/day * 14.7 / 10.73 / 528 * H2S Wt% * Gas MW. SO2 is calculated assuming MW ratio of 64.07:34.08.

 3 PM 10 & 2.5 emissions are based on AP-42, Section 1.4.

CONOCOPHILLIPS COMPANY ZIA HILLS CENTRAL FACILITY STORAGE TANK EMISSIONS SUMMARY

Emission Unit	Unit Description	Tank Controlled (Yes/No)	Control Type	Material Throughput (bbls/day)	Material Type (Oil/Produced Water)	VOC (lb/hr)	VOC (TPY)
OT1	Condensate Storage Tank	Yes	Flare	4500	OIL	0.81	0.08
OT2	Condensate Storage Tank	Yes	Flare	4500	OIL	0.81	0.08
OT3	Condensate Storage Tank	Yes	Flare	4500	OIL	0.81	0.08
OT4	Condensate Storage Tank	Yes	Flare	4500	OIL	0.81	0.08
OT5	Off-Spec Condensate Storage Tank	Yes	Flare	593	OIL	8.67	0.91
GB1	Water Gun Barrel	Yes	Flare	15000	WATER	0.66	0.09
GB2	Water Gun Barrel	Yes	Flare	15000	WATER	0.66	0.09
ST1	Slop Tank	Yes	Flare	127	OIL	0.04	0.01
ST2	Slop Tank	Yes	Flare	127	OIL	0.04	0.01
WT1	Water Storage Tank	Yes	Flare	3750	WATER	0.02	0.00
WT2	Water Storage Tank	Yes	Flare	3750	WATER	0.02	0.00
WT3	Water Storage Tank	Yes	Flare	3750	WATER	0.02	0.00
WT4	Water Storage Tank	Yes	Flare	3750	WATER	0.02	0.00
WT5	Water Storage Tank	Yes	Flare	3750	WATER	0.02	0.00
WT6	Water Storage Tank	Yes	Flare	3750	WATER	0.02	0.00
WT7	Water Storage Tank	Yes	Flare	3750	WATER	0.02	0.00
WT8	Water Storage Tank	Yes	Flare	3750	WATER	0.02	0.00
	13.44	1.45					

¹ Since the vapor recovery unit captures 100% of the gas, normal operations are not represented here. During VRU downtime, tank vapors are routed to the flare.

ZIA HILLS CENTRAL FACILITY

CONDENSATE STORAGE TANKS (OT1-OT4) - EMISSIONS SUMMARY

Emission Component	Uncontrolled W&B Stream			Uncont	Uncontrolled Flash Stream			Stream Controlled By Redundant VRU - Normal Operations		Stream Controlled By Flare - VRU Downtime	
	Max lb/hr	lb/hr	TPY	Max lb/hr	lb/hr	TPY	lb/hr	ТРҮ	lb/hr	TPY	
H2S	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
Nitrogen	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
Methane	0.037	0.030	0.130	0.075	0.060	0.263	0.000	0.000	0.002	0.000	
Carbon Dioxide	0.018	0.015	0.065	0.012	0.010	0.042	0.000	0.000	0.030	0.003	
Ethane	10.778	8.622	37.764	4.741	3.793	16.614	0.000	0.000	0.310	0.033	
Propane	32.992	26.394	115.604	17.464	13.971	61.195	0.000	0.000	1.009	0.106	
i-Butane	10.017	8.014	35.100	6.220	4.976	21.793	0.000	0.000	0.325	0.034	
n-Butane	25.883	20.706	90.693	16.728	13.382	58.614	0.000	0.000	0.852	0.090	
i-Pentane	8.073	6.458	28.288	5.557	4.446	19.471	0.000	0.000	0.273	0.029	
n-Pentane	9.018	7.215	31.601	6.368	5.094	22.313	0.000	0.000	0.308	0.032	
i-Hexane	3.633	2.907	12.731	2.714	2.172	9.511	0.000	0.000	0.127	0.013	
n-Hexane	2.690	2.152	9.427	2.017	1.613	7.067	0.000	0.000	0.094	0.010	
2,2,4-Trimethylpentane	0.021	0.017	0.073	0.018	0.014	0.062	0.000	0.000	0.001	0.000	
Cyclohexane	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
Benzene	0.098	0.079	0.345	0.109	0.087	0.382	0.000	0.000	0.004	0.000	
i-Heptane	3.149	2.519	11.033	2.660	2.128	9.320	0.000	0.000	0.116	0.012	
n-Heptane	0.963	0.770	3.374	0.823	0.659	2.885	0.000	0.000	0.036	0.004	
Toluene	0.177	0.142	0.622	0.202	0.162	0.707	0.000	0.000	0.008	0.001	
n-Octane	1.348	1.079	4.725	1.312	1.049	4.596	0.000	0.000	0.053	0.006	
Ethylbenzene	0.018	0.015	0.064	0.021	0.017	0.074	0.000	0.000	0.001	0.000	
meta-Xylene	0.078	0.063	0.274	0.093	0.075	0.327	0.000	0.000	0.003	0.000	
n-Nonane	0.272	0.218	0.954	0.350	0.280	1.228	0.000	0.000	0.012	0.001	
C10+	0.000	0.000	0.001	0.000	0.000	0.001	0.000	0.000	0.000	0.000	
TEG	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
Water	0.000	0.000	0.001	0.068	0.054	0.238	0.000	0.000	0.068	0.007	
Methanol	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	

Component	Uncontrolled W&B Stream U:			Uncont	Uncontrolled Flash Stream			Stream Controlled By Redundant VRU - Normal Operations		Stream Controlled By Flare - VRU Downtime	
	Max lb/hr	lb/hr	TPY	Max lb/hr	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	
VOC TOTAL	98.43	78.75	344.91	62.66	50.12	219.55	0.00	0.00	3.22	0.34	
HAP TOTAL	3.08	2.47	10.81	2.46	1.97	8.62	0.00	0.00	0.11	0.01	

¹ Uncontrolled emissions estimated using Promax. Tank vapors are controlled using a redundant VRU system and FL2/FL3. Maximum hourly rates include a 25% operational safety factor.

2 Controlled Emissions = Uncontrolled Emissions * (1 - VRU Efficiency) * (1 - Flare Destruction Efficiency)

 3 Annual controlled rate calculated by multiplying hourly emission rate by 8760 hours minus VRU downtime hours.

VRU Collection Efficiency	100%
VRU Downtime	3.0%
VRU Downtime (Hours)	263
Flare Destruction Efficiency	98%

ZIA HILLS CENTRAL FACILITY

CONDENSATE STORAGE TANK (OT1-OT4) VAPORS TO FLARE DURING VRU DOWNTIME

Total Gas Production - SCF/Day (Includes flashing/W&B)	24,247
Total Gas Production - SCF/Hr (Includes 25% Safety Factor)	1,263
Total Gas Production - SCF/Year	265,500
Duration -Hours/Year (VRU Downtime)	263
Heating Value - BTU/SCF (Promax - Highest of Flash/W&B)	3080.2

Component	Emission Rate (lb/hr)	Emission Rate (TPY)
CO ¹	1.07	0.11
NOx ¹	0.54	0.06
SO ₂ ²	0.00	0.00
H2S ²	0.00	0.00
PM _{10 & 2.5} ³	0.01	0.00

¹ The CO and NOx emission factors of 0.2755 and 0.138 lb/MMBtu are based on TCEQ document RG-360A/11 (February 2012)

² H2S/SO2 example calculation: SCF/day * 14.7 / 10.73 / 528 * H2S Wt% * Gas MW. SO2 is calculated assuming MW ratio of 64.07:34.08.

 3 PM 10 & 2.5 emissions are based on AP-42, Section 1.4.

ZIA HILLS CENTRAL FACILITY

OFF-SPEC OIL STORAGE TANK (OT5) - EMISSIONS SUMMARY

Component	Uncontrolled W&B Stream			Uncont	Uncontrolled Flash Stream			Stream Controlled By Redundant VRU - Normal Operations		Stream Controlled By Flare - VRU Downtime	
	Max lb/hr	lb/hr	TPY	Max lb/hr	lb/hr	TPY	lb/hr	ТРҮ	lb/hr	TPY	
H2S	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
Nitrogen	0.000	0.000	0.000	0.022	0.018	0.078	0.000	0.000	0.022	0.002	
Methane	0.098	0.079	0.344	5.578	4.463	19.546	0.000	0.000	0.114	0.012	
Carbon Dioxide	0.005	0.004	0.018	0.082	0.065	0.286	0.000	0.000	0.087	0.009	
Ethane	2.317	1.853	8.118	25.666	20.533	89.934	0.000	0.000	0.560	0.059	
Propane	6.243	4.995	21.877	92.965	74.372	325.749	0.000	0.000	1.984	0.209	
i-Butane	1.922	1.538	6.734	38.842	31.073	136.102	0.000	0.000	0.815	0.086	
n-Butane	4.662	3.729	16.335	104.563	83.650	366.388	0.000	0.000	2.184	0.230	
i-Pentane	1.424	1.139	4.989	39.401	31.521	138.060	0.000	0.000	0.816	0.086	
n-Pentane	1.596	1.277	5.593	47.259	37.807	165.596	0.000	0.000	0.977	0.103	
i-Hexane	0.503	0.402	1.762	17.436	13.949	61.097	0.000	0.000	0.359	0.038	
n-Hexane	0.375	0.300	1.312	13.552	10.841	47.485	0.000	0.000	0.279	0.029	
2,2,4-Trimethylpentane	0.001	0.001	0.003	0.035	0.028	0.122	0.000	0.000	0.001	0.000	
Cyclohexane	0.095	0.076	0.333	4.426	3.540	15.507	0.000	0.000	0.090	0.010	
Benzene	0.013	0.011	0.046	0.700	0.560	2.451	0.000	0.000	0.014	0.001	
i-Heptane	0.437	0.350	1.533	18.839	15.071	66.010	0.000	0.000	0.386	0.041	
n-Heptane	0.159	0.127	0.558	7.141	5.713	25.023	0.000	0.000	0.146	0.015	
Toluene	0.030	0.024	0.104	1.772	1.417	6.208	0.000	0.000	0.036	0.004	
n-Octane	0.371	0.297	1.301	20.184	16.147	70.724	0.000	0.000	0.411	0.043	
Ethylbenzene	0.003	0.003	0.011	0.204	0.164	0.716	0.000	0.000	0.004	0.000	
meta-Xylene	0.037	0.030	0.130	2.468	1.974	8.647	0.000	0.000	0.050	0.005	
n-Nonane	0.076	0.061	0.267	5.798	4.638	20.315	0.000	0.000	0.117	0.012	
C10+	0.000	0.000	0.000	0.004	0.003	0.014	0.000	0.000	0.000	0.000	
TEG	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
Water	0.000	0.000	0.000	1.653	1.322	5.792	0.000	0.000	1.653	0.174	
Methanol	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	

Component	Uncont	Uncontrolled W&B Stream Un			Uncontrolled Flash Stream			Stream Controlled By Redundant VRU - Normal Operations		Stream Controlled By Flare - VRU Downtime	
	Max lb/hr	lb/hr	TPY	Max lb/hr	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	
VOC TOTAL	17.95	14.36	62.89	415.59	332.47	1456.22	0.00	0.00	8.67	0.91	
HAP TOTAL	0.46	0.37	1.61	18.73	14.98	65.63	0.00	0.00	0.38	0.04	

¹ Uncontrolled emissions estimated using Promax. Tank vapors are controlled using a redundant VRU system and FL2/FL3. Maximum hourly rates include a 25% operational safety factor.

² Controlled Emissions = Uncontrolled Emissions * (1 - VRU Efficiency) * (1 - Flare Destruction Efficiency)

³ Annual controlled rate calculated by multiplying hourly emission rate by 8760 hours minus VRU downtime hours.

VRU Collection Efficiency	100%
VRU Downtime	3%
VRU Downtime (Hours)	263
Flare Destruction Efficiency	98%

ZIA HILLS CENTRAL FACILITY

OFF-SPEC STORAGE TANK (OT5) VAPORS TO FLARE DURING VRU DOWNTIME

Total Gas Production - SCF/Day (Includes flashing/W&B)	61,359
Total Gas Production - SCF/Hr (Includes 25% Safety Factor)	3,196
Total Gas Production - SCF/Year	671,883
Duration -Hours/Year (VRU Downtime)	263
Heating Value - BTU/SCF (Promax - Highest of Flash/W&B)	3124.5

Component	Emission Rate (lb/hr)	Emission Rate (TPY)
CO ¹	2.75	0.29
NOx ¹	1.38	0.14
SO_2^2	0.00	0.00
H2S ²	0.00	0.00
$PM_{10\&25}^{3}$	0.02	0.00

¹ The CO and NOx emission factors of 0.2755 and 0.138 lb/MMBtu are based on TCEQ document RG-360A/11 (February 2012)

² H2S/SO2 example calculation: SCF/day * 14.7 / 10.73 / 528 * H2S Wt% * Gas MW. SO2 is calculated assuming MW ratio of 64.07:34.08.

 3 PM 10 & 2.5 emissions are based on AP-42, Section 1.4.

ZIA HILLS CENTRAL FACILITY

SLOP OIL TANKS (ST1-T2) - EMISSIONS SUMMARY

Component	Uncontrolled W&B Stream		Uncontrolled Flash Stream		Stream Controlled By Redundant VRU - Normal Operations		Stream Controlled By Flare - VRU Downtime	
	lb/hr	ТРҮ	lb/hr	ТРҮ	lb/hr	ТРҮ	lb/hr	TPY
H2S	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Nitrogen	0.000	0.001	0.000	0.000	0.000	0.000	0.000	0.000
Methane	0.082	0.359	0.000	0.000	0.000	0.000	0.002	0.000
Carbon Dioxide	0.003	0.015	0.000	0.000	0.000	0.000	0.003	0.000
Ethane	0.573	2.508	0.000	0.000	0.000	0.000	0.011	0.002
Propane	1.017	4.452	0.000	0.000	0.000	0.000	0.020	0.003
i-Butane	0.300	1.313	0.000	0.000	0.000	0.000	0.006	0.001
n-Butane	0.807	3.536	0.000	0.000	0.000	0.000	0.016	0.002
i-Pentane	0.348	1.523	0.000	0.000	0.000	0.000	0.007	0.001
n-Pentane	0.434	1.900	0.000	0.000	0.000	0.000	0.009	0.001
i-Hexane	0.229	1.005	0.000	0.000	0.000	0.000	0.005	0.001
n-Hexane	0.185	0.809	0.000	0.000	0.000	0.000	0.004	0.000
2,2,4-Trimethylpentane	0.002	0.007	0.000	0.000	0.000	0.000	0.000	0.000
Cyclohexane	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Benzene	0.004	0.017	0.000	0.000	0.000	0.000	0.000	0.000
i-Heptane	0.247	1.083	0.000	0.000	0.000	0.000	0.005	0.001
n-Heptane	0.079	0.348	0.000	0.000	0.000	0.000	0.002	0.000
Toluene	0.012	0.053	0.000	0.000	0.000	0.000	0.000	0.000
n-Octane	0.125	0.545	0.000	0.000	0.000	0.000	0.002	0.000
Ethylbenzene	0.002	0.007	0.000	0.000	0.000	0.000	0.000	0.000
meta-Xylene	0.007	0.030	0.000	0.000	0.000	0.000	0.000	0.000
n-Nonane	0.026	0.113	0.000	0.000	0.000	0.000	0.001	0.000
C10+	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
TEG	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Water	0.001	0.003	0.000	0.000	0.000	0.000	0.001	0.000
Methanol	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000

Component	Uncontrolled W&B Stream		Uncontrolled Flash Stream		Stream Controlled By Redundant VRU - Normal Operations		Stream Controlled By Flare - VRU Downtime	
	lb/hr	TPY	lb/hr	TPY	lb/hr	ТРҮ	lb/hr	ТРҮ
VOC TOTAL	3.82	16.74	0.00	0.00	0.00	0.00	0.08	0.01
HAP TOTAL	0.21	0.92	0.00	0.00	0.00	0.00	0.00	0.00

¹ Uncontrolled emissions estimated using Promax. Tank vapors are controlled using a redundant VRU system and FL2/FL3. Maximum hourly rates include a 25% operational safety factor.

² Controlled Emissions = Uncontrolled Emissions * (1 - VRU Efficiency) * (1 - Flare Destruction Efficiency)

³ Annual controlled rate calculated by multiplying hourly emission rate by 8760 hours minus VRU downtime hours.

VRU Collection Efficiency	100%
VRU Downtime	3%
VRU Downtime (Hours)	263
Flare Destruction Efficiency	98%

ZIA HILLS CENTRAL FACILITY

SLOP TANK GAS TO FLARE DURING NORMAL OPERATION

Total Gas Production - SCF/Day (Includes W&B from water tanks)	791
Total Gas Production - SCF/Hr (Includes 25% Safety Factor)	41
Total Gas Production - SCF/Year	8,660
Duration -Hours/Year (VRU Downtime)	263
Heating Value - BTU/SCF (Promax)	2907.5

Component	Emission Rate (lb/hr)	Emission Rate (TPY)
CO ¹	0.03	0.00
NOx ¹	0.02	0.00
SO_2^2	0.00	0.00
H2S ²	0.00	0.00
$PM_{10\&2.5}^{3}$	0.00	0.00

¹ The CO and NOx emission factors of 0.2755 and 0.138 lb/MMBtu are based on TCEQ document RG-360A/11 (February 2012)

² H2S/SO2 example calculation: SCF/day * 14.7 / 10.73 / 528 * H2S Wt% * Gas MW. SO2 is calculated assuming MW ratio of 64.07:34.08.

³ PM 10 & 2.5 emissions are based on AP-42, Section 1.4.

ZIA HILLS CENTRAL FACILITY

GUN BARREL SEPARATORS (GB1-GB2) - EMISSIONS SUMMARY

Component	Uncontrolled W&B Stream		Uncontrolled Flash Stream		Stream Controlled By Redundant VRU - Normal Operations		Stream Controlled By Flare - VRU Downtime	
	lb/hr	ТРҮ	lb/hr	TPY	lb/hr	ТРҮ	lb/hr	ТРҮ
H2S	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Nitrogen	0.006	0.026	0.002	0.007	0.000	0.000	0.007	0.001
Methane	1.545	6.767	0.219	0.961	0.000	0.000	0.035	0.005
Carbon Dioxide	0.085	0.374	0.003	0.012	0.000	0.000	0.088	0.012
Ethane	3.497	15.316	0.308	1.351	0.000	0.000	0.076	0.010
Propane	10.346	45.315	0.578	2.530	0.000	0.000	0.218	0.029
i-Butane	5.508	24.127	0.199	0.874	0.000	0.000	0.114	0.015
n-Butane	15.216	66.647	0.562	2.461	0.000	0.000	0.316	0.041
i-Pentane	6.419	28.115	0.257	1.125	0.000	0.000	0.134	0.018
n-Pentane	8.014	35.100	0.328	1.437	0.000	0.000	0.167	0.022
i-Hexane	4.241	18.577	0.184	0.804	0.000	0.000	0.088	0.012
n-Hexane	3.327	14.573	0.149	0.653	0.000	0.000	0.070	0.009
2,2,4-Trimethylpentane	0.033	0.142	0.002	0.007	0.000	0.000	0.001	0.000
Cyclohexane	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Benzene	0.106	0.466	0.005	0.020	0.000	0.000	0.002	0.000
i-Heptane	4.798	21.017	0.224	0.981	0.000	0.000	0.100	0.013
n-Heptane	1.516	6.638	0.073	0.319	0.000	0.000	0.032	0.004
Toluene	0.314	1.373	0.014	0.063	0.000	0.000	0.007	0.001
n-Octane	2.474	10.838	0.128	0.562	0.000	0.000	0.052	0.007
Ethylbenzene	0.038	0.165	0.002	0.008	0.000	0.000	0.001	0.000
meta-Xylene	0.170	0.745	0.009	0.038	0.000	0.000	0.004	0.000
n-Nonane	0.652	2.855	0.037	0.160	0.000	0.000	0.014	0.002
C10+	0.000	0.002	0.000	0.000	0.000	0.000	0.000	0.000
TEG	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Water	4.397	19.258	0.237	1.036	0.000	0.000	4.633	0.609
Methanol	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000

Component				controlled W&B Uncontrolled Flash Stream Stream		Stream Controlled By Redundant VRU - Normal Operations		Stream Controlled By Flare - VRU Downtime	
	lb/hr	TPY	lb/hr	TPY	lb/hr	ТРҮ	lb/hr	TPY	
VOC TOTAL	63.17	276.70	2.75	12.04	0.00	0.00	1.32	0.17	
HAP TOTAL	3.99	17.47	0.18	0.79	0.00	0.00	0.08	0.01	

¹ Uncontrolled emissions estimated using Promax. Tank vapors are controlled using a redundant VRU system and FL2/FL3.

² Controlled Emissions = Uncontrolled Emissions * (1 - VRU Efficiency) * (1 - Flare Destruction Efficiency)

³ Annual controlled rate calculated by multiplying hourly emission rate by 8760 hours minus VRU downtime hours.

VRU Collection Efficiency	100%
VRU Downtime	3%
VRU Downtime (Hours)	263
Flare Destruction Efficiency	98%

ZIA HILLS CENTRAL FACILITY

GUN BARREL VAPORS TO FLARE DURING VRU DOWNTIME

Total Gas Production - SCF/Day (Includes gun barrel flashing/W&B)	13,795
Total Gas Production - SCF/Hr (Includes 25% Safety Factor)	719
Total Gas Production - SCF/Year	151,058
Duration -Hours/Year (VRU Downtime)	263
Heating Value - BTU/SCF (Promax - Highest of Flash/W&B)	2672.4

Component	Emission Rate (lb/hr)	Emission Rate (TPY)
CO ¹	0.53	0.06
NOx ¹	0.26	0.03
SO ₂ ²	0.00	0.00
H2S ²	0.00	0.00
$PM_{10\&2.5}^{3}$	0.01	0.00

¹ The CO and NOx emission factors of 0.2755 and 0.138 lb/MMBtu are based on TCEQ document RG-360A/11 (February 2012)

² H2S/SO2 example calculation: SCF/day * 14.7 / 10.73 / 528 * H2S Wt% * Gas MW. SO2 is calculated assuming MW ratio of 64.07:34.08.

³ PM 10 & 2.5 emissions are based on AP-42, Section 1.4.

ZIA HILLS CENTRAL FACILITY

PRODUCED WATER TANKS (WT1-WT8) - EMISSIONS SUMMARY

Component	Uncontrolled W&B Stream		Uncontrolled Flash Stream		Stream Controlled By Redundant VRU - Normal Operations		Stream Controlled By Flare - VRU Downtime	
	lb/hr	ТРҮ	lb/hr	ТРҮ	lb/hr	ТРҮ	lb/hr	ТРҮ
H2S	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Nitrogen	0.004	0.017	0.000	0.000	0.000	0.000	0.004	0.001
Methane	1.133	4.963	0.000	0.000	0.000	0.000	0.023	0.003
Carbon Dioxide	0.103	0.452	0.000	0.000	0.000	0.000	0.103	0.014
Ethane	1.920	8.409	0.000	0.000	0.000	0.000	0.038	0.005
Propane	2.479	10.859	0.000	0.000	0.000	0.000	0.050	0.007
i-Butane	0.456	1.996	0.000	0.000	0.000	0.000	0.009	0.001
n-Butane	2.248	9.847	0.000	0.000	0.000	0.000	0.045	0.006
i-Pentane	0.597	2.614	0.000	0.000	0.000	0.000	0.012	0.002
n-Pentane	0.464	2.032	0.000	0.000	0.000	0.000	0.009	0.001
i-Hexane	0.285	1.249	0.000	0.000	0.000	0.000	0.006	0.001
n-Hexane	0.129	0.564	0.000	0.000	0.000	0.000	0.003	0.000
2,2,4-Trimethylpentane	0.001	0.003	0.000	0.000	0.000	0.000	0.000	0.000
Cyclohexane	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Benzene	0.141	0.617	0.000	0.000	0.000	0.000	0.003	0.000
i-Heptane	0.152	0.666	0.000	0.000	0.000	0.000	0.003	0.000
n-Heptane	0.039	0.170	0.000	0.000	0.000	0.000	0.001	0.000
Toluene	0.459	2.009	0.000	0.000	0.000	0.000	0.009	0.001
n-Octane	0.035	0.154	0.000	0.000	0.000	0.000	0.001	0.000
Ethylbenzene	0.058	0.252	0.000	0.000	0.000	0.000	0.001	0.000
meta-Xylene	0.280	1.226	0.000	0.000	0.000	0.000	0.006	0.001
n-Nonane	0.005	0.024	0.000	0.000	0.000	0.000	0.000	0.000
C10+	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
TEG	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Water	5.827	25.521	0.000	0.000	0.000	0.000	5.827	0.766
Methanol	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000

Component	Uncontrolled	W&B Stream	Uncontrolled	Flash Stream	Stream Controlled By Redundant VRU - Normal Operations		Stream Controlled By Flare - VRU Downtime	
	lb/hr	TPY	lb/hr	ТРҮ	lb/hr	ТРҮ	lb/hr	ТРҮ
VOC TOTAL	7.83	34.28	0.00	0.00	0.00	0.00	0.16	0.02
HAP TOTAL	1.07	4.67	0.00	0.00	0.00	0.00	0.02	0.00

¹ Uncontrolled emissions estimated using Promax. Tank vapors are controlled using a redundant VRU system and FL2/FL3.

² Controlled Emissions = Uncontrolled Emissions * (1 - VRU Efficiency) * (1 - Flare Destruction Efficiency)

³ Annual controlled rate calculated by multiplying hourly emission rate by 8760 hours minus VRU downtime hours.

VRU Collection Efficiency	100%
VRU Downtime	3%
VRU Downtime (Hours)	263
Flare Destruction Efficiency	98%

ZIA HILLS CENTRAL FACILITY

WATER TANK VAPORS (WT1-WT8) TO FLARE - COMBUSTION EMISSIONS

Total Gas Production - SCF/Day (Includes W&B from water tanks)	5418
Total Gas Production - SCF/Hr (Includes 25% Safety Factor)	282
Total Gas Production - SCF/Year	59,326
Duration -Hours/Year (VRU Downtime)	263
Heating Value - BTU/SCF (Promax)	1065.03

Component	Emission Rate (lb/hr)	Emission Rate (TPY)
CO ¹	0.08	0.01
NOx ¹	0.04	0.00
SO ₂ ²	0.00	0.00
H2S ²	0.00	0.00
PM _{10 & 2.5} ³	0.00	0.00

¹ The CO and NOx emission factors of 0.2755 and 0.138 lb/MMBtu are based on TCEQ document RG-360A/11 (February 2012)

² H2S/SO2 example calculation: SCF/day * 14.7 / 10.73 / 528 * H2S Wt% * Gas MW. SO2 is calculated assuming MW ratio of 64.07:34.08.

³ PM 10 & 2.5 emissions are based on AP-42, Section 1.4.

ZIA HILLS CENTRAL FACILITY

TEG DEHYDRATOR: TOTAL EMISSIONS - PER DEHYDRATOR (DEHY1-DEHY2)

Component	Emis	Still Column sions Stream 12)	Emis (Promax Strea	er Still Column ssions m VOC to Fuel s-2)		nser Vapors Glycol Reboiler		c Emissions m 509)	Controlled	c Emissions l by Glycol Stream 509)	Total Combined Uncontrolled Dehydrator Emissions	
	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY
H2S	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Nitrogen	0.0007	0.0032	0.0007	0.0032	0.0007	0.0032	0.0514	0.2251	0.0514	0.2251	0.0521	0.2283
Methane	0.3402	1.4902	0.3399	1.4886	0.0068	0.0298	6.6423	29.0934	0.1328	0.5819	6.9825	30.5836
Carbon Dioxide	0.0797	0.3492	0.0792	0.3469	0.0792	0.3469	0.1458	0.6387	0.1458	0.6387	0.2255	0.9879
Ethane	0.8707	3.8137	0.8670	3.7974	0.0173	0.0759	4.6381	20.3149	0.0928	0.4063	5.5088	24.1286
Propane	1.5541	6.8069	1.5350	6.7232	0.0307	0.1345	4.1699	18.2640	0.0834	0.3653	5.7240	25.0710
i-Butane	0.4043	1.7709	0.3934	1.7232	0.0079	0.0345	0.7904	3.4619	0.0158	0.0692	1.1947	5.2328
n-Butane	1.6268	7.1254	1.5630	6.8461	0.0313	0.1369	2.0873	9.1426	0.0417	0.1829	3.7141	16.2680
i-Pentane	0.7303	3.1985	0.6679	2.9252	0.0134	0.0585	0.5668	2.4826	0.0113	0.0497	1.2971	5.6811
n-Pentane	1.0129	4.4365	0.9036	3.9577	0.0181	0.0792	0.6518	2.8549	0.0130	0.0571	1.6647	7.2913
i-Hexane	0.4502	1.9717	0.3560	1.5592	0.0071	0.0312	0.1735	0.7601	0.0035	0.0152	0.6237	2.7317
n-Hexane	0.4105	1.7980	0.3015	1.3207	0.0060	0.0264	0.1225	0.5366	0.0025	0.0107	0.5330	2.3346
2,2,4-Trimethylpentane	0.0003	0.0015	0.0002	0.0007	0.0000	0.0000	0.0001	0.0003	0.0000	0.0000	0.0004	0.0017
Cyclohexane	0.6486	2.8410	0.4227	1.8513	0.0085	0.0370	0.0665	0.2913	0.0013	0.0058	0.7151	3.1323
Benzene	0.6579	2.8816	0.4147	1.8164	0.0083	0.0363	0.0116	0.0506	0.0002	0.0010	0.6695	2.9323
i-Heptane	0.4945	2.1658	0.2941	1.2883	0.0059	0.0258	0.1146	0.5021	0.0023	0.0100	0.6091	2.6679
n-Heptane	0.2213	0.9692	0.1127	0.4937	0.0023	0.0099	0.0377	0.1653	0.0008	0.0033	0.2590	1.1345
Toluene	1.5845	6.9402	0.5931	2.5980	0.0119	0.0520	0.0143	0.0627	0.0003	0.0013	1.5988	7.0029
n-Octane	0.5010	2.1943	0.1265	0.5542	0.0025	0.0111	0.0484	0.2118	0.0010	0.0042	0.5493	2.4061
Ethylbenzene	0.1094	0.4790	0.0196	0.0859	0.0004	0.0017	0.0006	0.0026	0.0000	0.0001	0.1100	0.4816
meta-Xylene	1.4202	6.2206	0.2337	1.0237	0.0047	0.0205	0.0074	0.0324	0.0001	0.0006	1.4276	6.2530
n-Nonane	0.0768	0.3366	0.0087	0.0380	0.0002	0.0008	0.0040	0.0175	0.0001	0.0003	0.0808	0.3541
C10+	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
TEG	0.2486	1.0889	0.0000	0.0000	0.0000	0.0000	0.0001	0.0006	0.0000	0.0000	0.2487	1.0895
Water	54.4380	238.4385	0.3987	1.7463	0.3987	1.7463	0.0546	0.2391	0.0546	0.2391	54.4926	238.6776
Methanol	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

Component	Emis	Still Column sions Stream 12)	Emis (Promax Streat	er Still Column sions m VOC to Fuel s-2)	Post-Conde	nser Vapors Glycol Reboiler		c Emissions um 509)		c Emissions by Glycol Stream 509)	Total Combined Uncontrolled Dehydrator Emissions	
	lb/hr	TPY	lb/hr	TPY	lb/hr	ТРҮ	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY
VOC Total	11.90	52.14	7.95	34.81	0.16	0.70	8.87	38.84	0.18	0.78	20.77	90.98
HAP Total	4.18	18.32	1.56	6.85	0.03	0.14	0.16	0.69	0.00	0.01	4.34	19.01

UNCONTROLLED EMISSIONS SUMMARY	1b/hr	TPY
NMNEVOC (Includes TOTAL HAPs)	20.77	90.98
TOTAL HAPs	4.34	19.01

BURNER CONTROLLED EMISSIONS SUMMARY	lb/hr	ТРҮ
NMNEVOC (Includes TOTAL HAPs)	0.34	1.47
TOTAL HAPs	0.03	0.15
BENZENE	0.01	0.04
N-HEXANE	0.01	0.05

* Dehydrator vapors are routed to the glycol reboiler, which controls VOC/HAP emissions by 98%.

ZIA HILLS CENTRAL FACILITY

TEG DEHYDRATOR: TOTAL EMISSIONS - PER DEHYDRATOR (DEHY3-DEHY4)

Component	Emis	l Still Column ssions Stream 12)	Emis (Promax Strea	er Still Column sions m VOC to Fuel s-1)		nser Vapors Glycol Reboiler		c Emissions im 403)	Controlled	c Emissions l by Glycol Stream 403)	Uncontrolle	ombined d Dehydrator ssions
	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	ТРҮ
H2S	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Nitrogen	0.0013	0.0057	0.0013	0.0057	0.0013	0.0057	0.0911	0.3991	0.0911	0.3991	0.0924	0.4047
Methane	0.6018	2.6358	0.6011	2.6329	0.0120	0.0527	11.7319	51.3858	0.2346	1.0277	12.3337	54.0216
Carbon Dioxide	0.1409	0.6172	0.1399	0.6127	0.0028	0.0123	0.2577	1.1287	0.0052	0.0226	0.3986	1.7459
Ethane	1.5281	6.6932	1.5215	6.6643	0.0304	0.1333	8.1666	35.7696	0.1633	0.7154	9.6947	42.4628
Propane	2.7120	11.8787	2.6789	11.7334	0.0536	0.2347	7.3278	32.0956	0.1466	0.6419	10.0398	43.9744
i-Butane	0.7035	3.0814	0.6847	2.9991	0.0137	0.0600	1.3881	6.0799	0.0278	0.1216	2.0916	9.1613
n-Butane	2.8338	12.4118	2.7235	11.9290	0.0545	0.2386	3.6695	16.0724	0.0734	0.3214	6.5032	28.4842
i-Pentane	1.2678	5.5528	1.1603	5.0822	0.0232	0.1016	0.9965	4.3647	0.0199	0.0873	2.2643	9.9175
n-Pentane	1.7514	7.6712	1.5639	6.8498	0.0313	0.1370	1.1449	5.0149	0.0229	0.1003	2.8964	12.6861
i-Hexane	0.7792	3.4127	0.6173	2.7038	0.0123	0.0541	0.3052	1.3370	0.0061	0.0267	1.0844	4.7497
n-Hexane	0.7092	3.1061	0.5221	2.2870	0.0104	0.0457	0.2156	0.9445	0.0043	0.0189	0.9248	4.0506
2,2,4-Trimethylpentane	0.0006	0.0025	0.0003	0.0013	0.0000	0.0000	0.0001	0.0005	0.0000	0.0000	0.0007	0.0030
Cyclohexane	1.1271	4.9369	0.7363	3.2250	0.0147	0.0645	0.1175	0.5148	0.0024	0.0103	1.2447	5.4517
Benzene	1.1513	5.0428	0.7257	3.1787	0.0145	0.0636	0.0205	0.0898	0.0004	0.0018	1.1718	5.1326
i-Heptane	0.8542	3.7414	0.5100	2.2340	0.0102	0.0447	0.2021	0.8851	0.0040	0.0177	1.0563	4.6265
n-Heptane	0.3816	1.6714	0.1953	0.8553	0.0039	0.0171	0.0666	0.2915	0.0013	0.0058	0.4482	1.9630
Toluene	2.7707	12.1357	1.0401	4.5555	0.0208	0.0911	0.0254	0.1112	0.0005	0.0022	2.7961	12.2469
n-Octane	0.8609	3.7706	0.2189	0.9586	0.0044	0.0192	0.0854	0.3740	0.0017	0.0075	0.9463	4.1446
Ethylbenzene	0.1914	0.8383	0.0345	0.1510	0.0007	0.0030	0.0010	0.0046	0.0000	0.0001	0.1924	0.8429
meta-Xylene	2.4844	10.8816	0.4108	1.7993	0.0082	0.0360	0.0131	0.0576	0.0003	0.0012	2.4975	10.9391
n-Nonane	0.1319	0.5776	0.0150	0.0657	0.0003	0.0013	0.0071	0.0309	0.0001	0.0006	0.1389	0.6084
C10+	0.0001	0.0004	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0001	0.0004
TEG	0.4555	1.9952	0.0000	0.0000	0.0000	0.0000	0.0002	0.0010	0.0000	0.0000	0.4557	1.9962
Water	108.7842	476.4746	0.6967	3.0518	0.6967	3.0518	0.1054	0.4616	0.1054	0.4616	108.8895	476.9362
Methanol	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

Component	-	Still Column sions Stream 12)	Emis (Promax Stream	er Still Column sions m VOC to Fuel s-1)	Post-Conde	enser Vapors Glycol Reboiler	Flash Tank Emissions (Stream 403)		Flash Tank Emissions Controlled by Glycol Reboiler (Stream 403)		Total Combined Uncontrolled Dehydrator Emissions	
	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY
VOC Total	20.71	90.71	13.84	60.61	0.28	1.21	15.59	68.27	0.31	1.37	36.30	158.98
HAP Total	7.31	32.01	2.73	11.97	0.05	0.24	0.28	1.21	0.01	0.02	7.58	33.22

UNCONTROLLED EMISSIONS	lb/hr	ТРҮ
Total VOCs	36.30	158.98
Total HAPs	7.58	33.22

BURNER CONTROLLED EMISSIONS	lb/hr	ТРҮ
NMNEVOC (Includes TOTAL HAPs)	0.59	2.58
TOTAL HAPs	0.06	0.26
BENZENE	0.01	0.07
N-HEXANE	0.02	0.08

* Dehydrator vapors are routed to the glycol reboiler, which controls VOC/HAP emissions by 98%.

CONOCOPHILLIPS COMPANY ZIA HILLS CENTRAL FACILITY FUGITIVE EMISSIONS

		Estimated		Emission		Total		VOC Er	nissions	HAPs E	missions	CH4 En	nissions
Component Type	Service	Components Count	Hours Operation	Factors (lb/hr)	Total VOC Weight %	HAPs Weight %	Total CH4 Weight %	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
	Gas/Vapor	380	8760	0.0099207	41.41%	0.51%	56.55%	1.56	6.84	0.02	0.08	2.13	9.34
Valves	Light Oil	141	8760	0.0055115	98.05%	3.65%	0.81%	0.76	3.34	0.03	0.12	0.01	0.03
valves	Heavy Oil		8760	0.0000185	98.05%	3.65%	0.81%	0.00	0.00	0.00	0.00	0.00	0.00
	Water/Light Oil	118	8760	0.0002161	0.98%	0.04%	0.01%	0.00	0.00	0.00	0.00	0.00	0.00
	Gas/Vapor		8760	0.0052910	41.41%	0.51%	56.55%	0.00	0.00	0.00	0.00	0.00	0.00
D C 1	Light Oil	4	8760	0.0286598	98.05%	3.65%	0.81%	0.11	0.49	0.00	0.02	0.00	0.00
Pump Seals	Heavy Oil		8760	0.0286598	98.05%	3.65%	0.81%	0.00	0.00	0.00	0.00	0.00	0.00
	Water/Light Oil	4	8760	0.0000529	0.98%	0.04%	0.01%	0.00	0.00	0.00	0.00	0.00	0.00
<i>c</i>	Gas/Vapor	1140	8760	0.0004409	41.41%	0.51%	56.55%	0.21	0.91	0.00	0.01	0.28	1.24
	Light Oil	423	8760	0.0004630	98.05%	3.65%	0.81%	0.19	0.84	0.01	0.03	0.00	0.01
Connectors	Heavy Oil		8760	0.0000165	98.05%	3.65%	0.81%	0.00	0.00	0.00	0.00	0.00	0.00
	Water/Light Oil	354	8760	0.0002425	0.98%	0.04%	0.01%	0.00	0.00	0.00	0.00	0.00	0.00
	Gas/Vapor	38	8760	0.0044092	41.41%	0.51%	56.55%	0.07	0.30	0.00	0.00	0.09	0.41
Open-ended	Light Oil		8760	0.0030864	98.05%	3.65%	0.81%	0.00	0.00	0.00	0.00	0.00	0.00
Lines	Heavy Oil		8760	0.0003086	98.05%	3.65%	0.81%	0.00	0.00	0.00	0.00	0.00	0.00
	Water/Light Oil		8760	0.0005512	0.98%	0.04%	0.01%	0.00	0.00	0.00	0.00	0.00	0.00
	Gas/Vapor	380	8760	0.0008598	41.41%	0.51%	56.55%	0.14	0.59	0.00	0.01	0.18	0.81
Flanges	Light Oil	141	8760	0.0002425	98.05%	3.65%	0.81%	0.03	0.15	0.00	0.01	0.00	0.00
1 lunges	Heavy Oil		8760	0.0000009	98.05%	3.65%	0.81%	0.00	0.00	0.00	0.00	0.00	0.00
	Water/Light Oil	118	8760	0.0000064	0.98%	0.04%	0.01%	0.00	0.00	0.00	0.00	0.00	0.00
	Gas/Vapor	38	8760	0.0194005	41.41%	0.51%	56.55%	0.31	1.34	0.00	0.02	0.42	1.83
Other:	Light Oil	15	8760	0.0165345	98.05%	3.65%	0.81%	0.24	1.07	0.01	0.04	0.00	0.01
	Heavy Oil	10	8760	0.0000071	98.05%	3.65%	0.81%	0.00	0.00	0.00	0.00	0.00	0.00
	Water/Light Oil	12	8760	0.0308644	0.98%	0.04%	0.01%	0.00	0.02	0.00	0.00	0.00	0.00

	GAS		LIQU	ID
Pollutant	lb/hr	tpy	lb/hr	tpy
VOC	2.28	9.98	1.35	5.90
HAPs	0.03	0.12	0.05	0.22
CH4	3.11	13.63	0.01	0.05

EMISSIONS SUMMARY							
Pollutant	lb/hr	tpy					
VOC	3.63	15.89					
HAPs	0.08	0.34					
CH4	3.12	13.68					

CONOCOPHILLIPS COMPANY ZIA HILLS CENTRAL FACILITY SSM EMISSIONS SUMMARY

Unit Identification		NOx		со		Total VOC (Includes Total HAPs)		SO ₂		PM _{10 & 2.5}		Total HAPs	
Unit identification	SSM Activity Description	lb/hr	ТРҮ	lb/hr	TPY	lb/hr	ТРҮ	lb/hr	ТРҮ	lb/hr	ТРҮ	1b/hr	
SSM	Compressor Blowdowns (To Flare)	0.14	0.01	0.28	0.01	1.97	0.08	0.00	0.00	0.00	0.00	0.05	
SSM	Engine Starter Venting (To Flare)	0.15	0.01	0.30	0.03	2.13	0.18	0.00	0.00	0.00	0.00	0.05	
SSM	Tank Cleanouts					125.62	1.85					4.40	
SSM	12 Hours of Flare Maintenance (Only Tank W&B to flare)					191.20	1.01						
SSM	Facility Shutdown (1440 Hours) (Only Tank B to flare)				-	9.81	7.06						
Total Emissions	Total Emissions	0.29	0.02	0.58	0.04	330.73	10.19	0.00	0.00	0.00	0.00	4.49	

CONOCOPHILLIPS COMPANY ZIA HILLS CENTRAL FACILITY SSM - ENGINE BLOWDOWN EMISSIONS

Description	Facility Identification Number SSM
Number of Blowdowns per Year (1 per engine per month)	84
Number of Blowdowns per Hour	1
Blowdown Volume per Event, scf	830
Gas Stream Specific Gravity	N/A
Gas Stream Density, lb/scf (Promax)	0.5942
Max VOC Percentage in Gas Stream, wt% (Promax)	19.96%
Max HAP Percentage in Gas Stream, wt% (Promax)	0.46%
Max H ₂ S Percentage in Gas Stream, wt% (Promax)	0.000%
VOC Hourly Emission Rates (lb/hr): ^a	98.45
VOC Annual Emission Rates (T/yr): ^b	4.13
HAP Hourly Emission Rates (lb/hr): ^a	2.27
HAP Annual Emission Rates (T/yr): ^b	0.095
H ₂ S Hourly Emission Rates (lb/hr): ^a	0.00000
H ₂ S Annual Emission Rates (T/yr): ^b	0.000000
Controlled VOC Hourly Emission Rates (lb/hr):°	1.97
Controlled VOC Annual Emission Rates (T/yr): ^d	0.08
Controlled HAP Hourly Emission Rates (lb/hr): ^c	0.0453
Controlled HAP Annual Emission Rates (T/yr): ^d	0.00190
Controlled H ₂ S Hourly Emission Rates (lb/hr): ^c	0.000000
Controlled H ₂ S Annual Emission Rates (T/yr): ^d	0.0000000

^a Hourly blowdown VOC, H₂S, and benzene emission rates are caclulated as follows:

VOC lb/hr = (1 blowdown/hr) * (830 scf/blowdown) * (0.5942 lb/scf) * (19.96% VOC in Stream) = 98.45 lb/hr

^b Annual blowdown VOC, H₂S, and benzene emission rates are calculated as follows:

VOC T/yr = (84 blowdowns/yr) * (830 scf/blowdown) * (0.5942 lb/scf) * (19.96% VOC in Stream) / (2,000 lb/T) = 4.13 T/yr

Hourly controlled blowdown VOC, H₂S, and benzene emissions are calculated based upon a conservative estimate of the portion of each consituent in the volume known to blowdown from the compressor. An example calculation for VOC for COMP-BD follows:

VOC lb/hr = (1 blowdown/hr) * (830 scf/blowdown) * (0.5942 lb/scf) * (19.96% VOC in Stream) * (100% - 98% Controlled at Flare) = 1.97 lb/hr

^d Annual controlled blowdown VOC, H₂S, and benzene emission rates are calculated as follows:

 $VOC \ lb/hr = (84 \ blowdowns/yr) * (830 \ scf/blowdown) * (0.5942 \ lb/scf) * (19.96\% \ VOC \ in \ Stream) / (2,000 \ lb/T) * (100\% - 98\% \ Controlled \ at \ Flare) = 0.08 \ T/yr$

CONOCOPHILLIPS COMPANY ZIA HILLS CENTRAL FACILITY SSM - ENGINE STARTER VENT EMISSIONS

Description	Facility Identification Number ENG-SV
Number of Events per Year (2 per month per engine)	168
Number of Events per Hour	1
Volume per Event, scf	900
Gas Stream Specific Gravity	N/A
Gas Stream Density, lb/scf ^a	0.5942
Max VOC Percentage in Gas Stream, wt% (Promax)	19.96%
Max HAP Percentage in Gas Stream, wt% (Promax)	0.46%
Max H ₂ S Percentage in Gas Stream, wt% (Promax)	0.0000%
VOC Hourly Emission Rates (lb/hr): a	106.75
VOC Annual Emission Rates (T/yr): ^b	8.97
HAP Hourly Emission Rates (lb/hr): ^a	2.46
HAP Annual Emission Rates (T/yr): ^b	0.206
H ₂ S Hourly Emission Rates (lb/hr): ^a	0.000
H ₂ S Annual Emission Rates (T/yr): ^b	0.000
Controlled VOC Hourly Emission Rates (lb/hr):°	2.13
Controlled VOC Annual Emission Rates (T/yr): ^d	0.18
Controlled HAP Hourly Emission Rates (lb/hr):°	0.0491
Controlled HAP Annual Emission Rates (T/yr): ^d	0.00413
Controlled H ₂ S Hourly Emission Rates (lb/hr): ^c	0.000000
Controlled H ₂ S Annual Emission Rates (T/yr): ^d	0.0000000

^a Hourly VOC, H₂S, and benzene emission rates are callulated as follows:

VOC lb/hr = (1 event/hr) * (900 scf/event) * (0.5942 lb/scf) * (19.96% VOC in Stream) = 106.75 lb/hr

^b Annual VOC, H₂S, and benzene emission rates are calculated as follows:

VOC T/yr = (168 events/yr) * (900 scf/events) * (0.5942 lb/scf) * (19.96% VOC in Stream) / (2,000 lb/T) = 8.97 T/yr

^c Hourly controlled VOC, H₂S, and benzene emissions are calculated as follows:

VOC lb/hr = (1 event/hr) * (900 scf/event) * (0.5942 lb/scf) * (19.96% VOC in Stream) * (100% - 98% Controlled at Flare) = 2.13 lb/hr

^d Annual controlled VOC, H₂S, and benzene emission rates are calculated as follows:

VOC lb/hr = (168 events/yr) * (900 scf/events) * (0.5942 lb/scf) * (19.96% VOC in Stream) / (2,000 lb/T) * (100% - 98% Controlled)at Flare) = 0.18 T/yr

CONOCOPHILLIPS COMPANY ZIA HILLS CENTRAL FACILITY ENGINE BLOWDOWN AND STARTER VENT COMBUSTION EMISSIONS

				Waste Ga	s Flow Rate				Potentia	al to Emit
EPN	FIN	Description	LHV ^a (Btu/scf)	Hourly (MMBtu/hr)	Annual (MMBtu/yr)	Pollutant	Emission Factors	Units	Hourly ^b (lb/hr)	Annual ^c (T/yr)
FL1	FL1	Process Flare	1,209.90	1.09	182.94	NO _X	0.1380	lb/MMBtu	0.15	0.01
		Engine Starter Vents				СО	0.2755	lb/MMBtu	0.30	0.03
						PM/PM ₁₀ /PM _{2.5}	d			
						SO ₂	0.000	lb/hr H ₂ S	0.00	0.00
FL1	FL1	Process Flare	1,209.90	1.00	84.35	NO _X	0.1380	lb/MMBtu	0.14	0.01
		Compressor Blowdown				СО	0.2755	lb/MMBtu	0.28	0.01
		Events				PM/PM ₁₀ /PM _{2.5}	d			
						SO ₂	0.000	lb/hr H ₂ S	0.00	0.00

^a Waste gas stream lower heating values were taken from HP gas analysIs.

^b Emission Factors for CO and NO_x are based upon the Draft TNRCC Guidance Document for Flares and Vapor Oxidizers (dated 10/00) for other high-Btu flares. An example calculation for hourly CO emissions for FL1 follows:

CO (lb/hr) = (Hourly Waste Gas Flow Rate, MMBtu/hr) * (Emission Factor, lb/MMBtu)

CO (lb/hr) = (1.09 MMBtu/hr) * (0.2755 lb/MMBtu)

CO(lb/hr) = 0.30

^c An example calculation for annual CO emissions for FL1 follows:

 $\begin{array}{l} \text{CO} (\text{T/yr}) = & (\text{Annual Waste Gas Flow Rate, MMBtu/yr}) * (\text{Emission Factor, lb/MMBtu}) * (1 \text{T/2,000 lb}) \\ \text{CO} (\text{T/yr}) = & (182.94 \text{ MMBtu/yr}) * (0.2755 \text{ lb/MMBtu}) * (1 \text{T/2,000 lb}) \\ \end{array}$

CO(T/yr) = 0.03

^d The process flare is smokeless per 40 CFR §60.18 requirements; therefore, PM emissions are negligible.

ZIA HILLS CENTRAL FACILITY

TANK CLEANOUTS

Emissions Summary for SSM: Tank Cleanouts

Pollutant	Hourly Max (lb/hr)	Annual Total (T/yr)
VOC	125.62	1.85
H ₂ S	0.00	0.00
Benzene	0.00	0.000

Activity	Description / Comments	Default Parameters		Equation Used		Input Parame	eters	Pollutant	Hourly Emissions (lb/hr)	Annual Emissions (T/yr)
	For WT1-WT8	P, vapor pressure of material (psia)	0.09	Vv, volume of vessel (ft3)	5,614.97	Number of Non-	8	VOC	0.62	0.01
roduced Water Tank	-For non-condensate tanks and storage vessels	Vessel Height (ft)	21.5			Condensate Tanks		HAP	0.03	0.00
leaning Activities	-Assumed volume drained was equal to 1% of the vessel	Vessel Diameter (ft)	16	-						
0	volume	Vessel Volume (bbl)	1000	-						
	-Assumed drained material is immediately placed in a	Average Daily Temperature (F)	72	Lo, opening loss (lb/activity)	2.49					
	closed vessel. To be conservative, this time is represented as	Ideal gas constant (psia-ft3/lb-mol-°R)	10.73	. 1 0 () , , , , , , , , , , , , , , , , , ,						
	15 minutes	MWv, vapor molecular weight (lb/lb-	28.12	Loading loss factor (lb/1000	0.04					
	-Assumed an average daily temperature of 72F, per TCEQ	Saturation Factor	0.60	VI, volume of liquid drained	420.00					
	guidance.	U wind speed (mph)	3.52	Loading loss per activity (due						
	-Assume all emissions from opening, loading, and	Surface Area Ap (m2)	1	Vapor Pressure P _V (Pa)	620.53					
	evaporation occur in three separate hours.	t, time material sits uncovered (hr)	0.25	Evaporation Loss	0.16	-				
			0.00	(lb/activity)						
		Type of Control Equipment	None							
			0.00%	-						
		Events per Hour per tank	0.25	Total (lb/yr/tank)	2.66	-				
		Events per Year per tank	1	roun (io/ yr/ unit)	2.00					
		Ereno per reur per unix								
	For OT1-OT5, ST1-ST2	P, vapor pressure of material (psia)	9.00	Vv, volume of vessel (ft3)	5,614.97	Number of	7	VOC	124.37	1.84
l Tank Cleaning Activities	-For condensate tanks and storage vessels	Vessel Height (ft)	15.5	(iii) (of the set (iii))	0,011.57	Condensate Tanks		HAP	4.33	0.06
on rank creaning retivites	-Assumed volume drained was equal to 1% of the vessel	Vessel Diameter (ft)	30	-		condensate runds		11.11	4.00	0.00
	volume	Vessel Volume (bbl)	1,000	-						
	-Assumed drained material is immediately placed in a	Average Daily Temperature (F)	72	Lo, opening loss (lb/activity)	497 49	-				
	closed vessel. To be conservative, this time is represented as	Ideal gas constant (psia-ft3/lb-mol-°R)	10.73	Lo, opening loss (10/ activity)	497.49					
	15 minutes	MWv, vapor molecular weight (lb/lb-	56.20	Loading loss factor (lb/1000	7.11	-				
	-Assumed an average daily temperature of 72F, per TCEQ	Saturation Factor	0.60	Vl, volume of liquid drained		-				
	guidance.	U wind speed (mph)	3.52	Loading loss per activity (due		-				
	-Assume all emissions from opening, loading, and	Surface Area Ap (m2)	3.32	Vapor Pressure P _V (Pa)	62,052.84	-				
	evaporation occur in three separate hours.	t, time material sits uncovered (hr)	0.25	Evaporation Loss	25.49	-				
		Condensate stream H ₂ S content (%)	0.25	(lb/activity)	25.49					
			None	(ib/ activity)						
		Type of Control Equipment Control Efficiency (%) (for opening losses		_						
						-				
		Events per Hour per tank	0.25	Total (lb/yr/tank)	525.96					
		Events per Year per tank	1							
	E CP1 CP2	D	0.00	Verseland (march (60)	E (14.07	Number of NI-	2	NOC	0.(2	0.00
Provide Classical Classical State	For GB1-GB2	P, vapor pressure of material (psia)	0.09 21.5	Vv, volume of vessel (ft3)	5,614.97	Number of Non- Condensate Tanks	2	VOC HAP	0.62	0.00
	-For non-condensate tanks and storage vessels	Vessel Height (ft)				Condensate Tanks		HAP	0.03	0.00
tivities	-Assumed volume drained was equal to 1% of the vessel volume	Vessel Diameter (ft)	16							
	-Assumed drained material is immediately placed in a	Vessel Volume (bbl)	1000			_				
	closed vessel. To be conservative, this time is represented as	Average Daily Temperature (F)	72	Lo, opening loss (lb/activity)	2.49					
	15 minutes	Ideal gas constant (psia-ft3/lb-mol-°R)	10.73			_				
	-Assumed an average daily temperature of 72F, per TCEQ	MWv, vapor molecular weight (lb/lb-	28.12		0.04	_				
	guidance.	Saturation Factor	0.60	Vl, volume of liquid drained		_				
	-Assume all emissions from opening, loading, and	U wind speed (mph)	3.52	Loading loss per activity (due		4				
	evaporation occur in three separate hours.	Surface Area Ap (m2)	1	Vapor Pressure P _V (Pa)	620.53	4				
	r	t, time material sits uncovered (hr)	0.25	Evaporation Loss	0.16					
		Produced Water stream H ₂ S content (%)	0.00	(lb/activity)						
		Type of Control Equipment	None	_						
		Control Efficiency (%) (for opening losses								
		Events per Hour per tank	0.25	Total (lb/yr/tank)	2.66					
	1	Events per Year per tank	1	1	1	1	1			1

Section 7 Information Used to Determine Emissions

Section 7

Information Used To Determine Emissions

Information Used to Determine Emissions shall include the following:

- □ If manufacturer data are used, include specifications for emissions units <u>and</u> control equipment, including control efficiencies specifications and sufficient engineering data for verification of control equipment operation, including design drawings, test reports, and design parameters that affect normal operation.
- □ If test data are used, include a copy of the complete test report. If the test data are for an emissions unit other than the one being permitted, the emission units must be identical. Test data may not be used if any difference in operating conditions of the unit being permitted and the unit represented in the test report significantly effect emission rates.
- ☑ If the most current copy of AP-42 is used, reference the section and date located at the bottom of the page. Include a copy of the page containing the emissions factors, and clearly mark the factors used in the calculations.
- \Box If an older version of AP-42 is used, include a complete copy of the section.
- □ If an EPA document or other material is referenced, include a complete copy.
- □ Fuel specifications sheet.
- ☑ If computer models are used to estimate emissions, include an input summary (if available) and a detailed report, and a disk containing the input file(s) used to run the model. For tank-flashing emissions, include a discussion of the method used to estimate tank-flashing emissions, relative thresholds (i.e., permit or major source (NSPS, PSD or Title V)), accuracy of the model, the input and output from simulation models and software, all calculations, documentation of any assumptions used, descriptions of sampling methods and conditions, copies of any lab sample analysis.

Supporting documentation is provided.

Certificate of Analysis

Number: 6030-20030119-006A

Mar. 24, 2020

Chris Chapman Conoco Phillips 15 W London Rd. Loving, NM 88256

Field:Station Name:ZHCF (Fuel Gas Main)Station Number:11907001Station Location:ConocoSample Point:Fuel GasMeter Number:CC#A054207SMFormation:SpotCounty:LeaAnalyzed:03/24/2020 09:08:17 by User1

M. Charley Sampled By: Sample Of: Gas Spot Sample Date: 03/11/2020 09:47 Sample Conditions: 141 psia, @ 79 °F Ambient: 50 °F 03/11/2020 09:47 Effective Date: GPA-2261M Method: Cylinder No: 5030-02011 Instrument: 6030_GC2 (Agilent 7890B) Last Inst. Cal.: 03/02/2020 9:09 AM

Analytical Data

Components	Un-normalized Mol %	Mol. %	Wt. %	GPM at 14.65 psia		
Hydrogen Sulfide	0.000	0.00001	0.000		GPM TOTAL C2+	6.405
Nitrogen	1.253	1.25037	1.596		GPM TOTAL C3+	3.107
Methane	75.349	75.19110	54.975		GPM TOTAL iC5+	0.534
Carbon Dioxide	0.914	0.91208	1.829			
Ethane	12.382	12.35605	16.933	3.298		
Propane	6.221	6.20796	12.476	1.707	* VOC Wt% =	: 24.667
Iso-butane	0.838	0.83624	2.215	0.273		
n-Butane	1.887	1.88305	4.988	0.593		
Iso-pentane	0.403	0.40216	1.322	0.147		
n-Pentane	0.434	0.43309	1.424	0.157		
Hexanes Plus	0.529	0.52789	2.242	0.230		
	100.210	100.00000	100.000	6.405		
Calculated Physical F	Properties	Tota		C6+		
Relative Density Real	Gas	0.7603	3	3.2176		
Calculated Molecular V	Weight	21.94	ŀ	93.19		
Compressibility Factor	•	0.9961				
GPA 2172 Calculation	n:					
Calculated Gross BT	U per ft ³ @ 14.65 ps	sia & 60°F				
Real Gas Dry BTU		1284	Ļ	5113		
Water Sat. Gas Base E	BTU	1262	2	5024		
Ideal, Gross HV - Dry a	at 14.65 psia	1279.4	ŀ	5113.2		
Ideal, Gross HV - Wet		1257.0)	5023.7		
Comments: H2S Fiel Mcf/day						

Hydrocarbon Laboratory Manager

Quality Assurance:

The above analyses are performed in accordance with ASTM, UOP, GPA guidelines for quality assurance, unless otherwise stated.

Chris Chapman Conoco Phillips 15 W London Rd. Loving, NM 88256

Field:

Station Name:Zia Hills 19 BTF 2AStation Number:11933090Station Location:ConocoSample Point:Bulk SeperatorMeter Number:CC#A754382SMFormation:County:Lea

Certificate of Analysis

Number: 6030-20030067-001A

Mar. 10, 2020

Sampled By:Chris ChapmanSample Of:GasSpotSample Date:03/06/202003:43Sample Conditions:166psig, @ 120 °FMethod:GPA 2286Cylinder No:5030-00454Analyzed:03/10/202015:51:48 by User1

Analytical Data

Components	Mol. %	W t. %	GPM at 14.65 psia
Hydrogen Sulfide	NIL	NIL	
Nitrogen	1.169	1.512	
Methane	76.659	56.770	
Carbon Dioxide	0.089	0.181	
Ethane	12.220	16.962	3.262
Propane	5.696	11.594	1.566
lso-Butane	0.834	2.238	0.272
n-Butane	1.835	4.923	0.577
Iso-Pentane	0.420	1.399	0.154
n-Pentane	0.476	1.585	0.172
i-Hexanes	0.119	0.464	0.048
n-Hexane	0.085	0.343	0.035
Benzene	0.005	0.017	0.001
Cyclohexane	0.039	0.149	0.013
i-Heptanes	0.089	0.384	0.037
n-Heptane	0.033	0.151	0.015
Toluene	0.009	0.040	0.003
i-Octanes	0.083	0.407	0.038
n-Octane	0.012	0.064	0.006
Ethylbenzene	0.001	0.003	NIL
Xylenes	0.015	0.073	0.006
i-Nonanes	0.032	0.170	0.016
n-Nonane	0.012	0.069	0.007
Decanes Plus	0.068	0.502	0.045
	100.000	100.000	6.273

Certificate of Analysis

Number: 6030-20030067-001A

Mar. 10, 2020

Chris Chapman Conoco Phillips 15 W London Rd. Loving, NM 88256

Field: Station Name: Zia Hills 19 BTF 2A Station Number: 11933090 Station Location: Conoco Sample Point: Bulk Seperator Meter Number: CC#A754382SM Formation: County: Lea

Chris Chapman
Gas Spot
03/06/2020 03:43
:166 psig, @ 120 °F
GPA 2286
5030-00454
03/10/2020 15:51:48 by User1

Calculated Physical Properties	Total	C10+
Calculated Molecular Weight	21.66	158.45
GPA 2172 Calculation:		
Calculated Gross BTU per ft ³ @ 14.65 psi	a & 60°F	
Real Gas Dry BTU	1290.8	8522.0
Water Sat. Gas Base BTU	1268.2	8341.1
Relative Density Real Gas	0.7506	5.4710
Compressibility Factor	0.9962	
Ideal, Gross HV - Wet	1263.4	NIL
ldeal, Gross HV - Dry at 14.65 psia	1285.9	NIL
Net BTU Dry Gas - real gas	1172	
Net BTU Wet Gas - real gas	1151	
Comments: H2S Field Content 0 ppm WO #23055147		

aly Att.

Hydrocarbon Laboratory Manager

Quality Assurance:

The above analyses are performed in accordance with ASTM, UOP, GPA guidelines for quality assurance, unless otherwise stated.

Certificate of Analysis

Number: 5030-20030490-001A

Mar. 19, 2020

Andy Hartman SPL-Artesia 200 E Main St Artesia, NM 88210

Station Name	ZIA HILLS 19 BTF 2A
Method:	GPA 2103M
Cylinder No:	5030-35098
Analyzed:	03/18/2020 07:52:12 by User1

Sampled By:	CHRI	S CHAPMAN
Sample Of:	Oil	Spot
Sample Date:	03/10	/2020 13:00
Sample Conditio	ns:311 p	sig, @ 136 °F

Analytical Data

Components	Mol. %	Wt. %	L.V. %
Hydrogen Sulfide	NIL	NIL	NIL
Nitrogen	0.030	0.006	0.006
Methane	6.808	0.781	1.950
Carbon Dioxide	0.048	0.015	0.014
Ethane	5.009	1.077	2.265
Propane	6.552	2.066	3.052
Iso-Butane	1.870	0.777	1.034
n-Butane	5.717	2.376	3.047
Iso-Pentane	2.774	1.431	1.715
n-Pentane	3.966	2.046	2.430
i-Hexanes			
	2.953	1.806	2.034
n-Hexane	2.962	1.825	2.059
2,2,4-Trimethylpentane	0.050	0.041	0.044
Benzene	0.184	0.103	0.087
Heptanes	9.225	6.610	7.196
Toluene	0.870	0.573	0.492
Octanes	10.890	8.895	9.432
Ethylbenzene	0.216	0.164	0.141
Xylenes	1.054	0.800	0.684
Nonanes	7.278	6.675	6.924
C10	5.304	6.454	6.076
C11	3.646	4.873	4.526
C12	3.087	4.497	4.127
C13	2.715	4.281	3.892
C14	2.285	3.876	3.492
C15	2.020	3.669	3.285
C16	1.613	3.123	2.806
C17	1.405	2.888	2.584
C18	1.310	2.851	2.538
C19	0.992	2.277	2.004
C20	0.884	2.136	1.873
C21	0.805	2.042	1.783
C22	0.655	1.740	1.515
C22 C23	0.566	1.571	1.395
C23	0.526	1.524	1.319
C24 C25	0.427	1.289	1.112
C25	0.417	1.308	1.162
C27	0.370	1.204	1.069
C28	0.304	1.025	
C28 C29	0.304	0.960	0.879 0.821
C30 Plus	1.938	8.345	7.136
		100.000	100.000

Andy Hartman SPL-Artesia

Certificate of Analysis

Number: 5030-20030490-001A

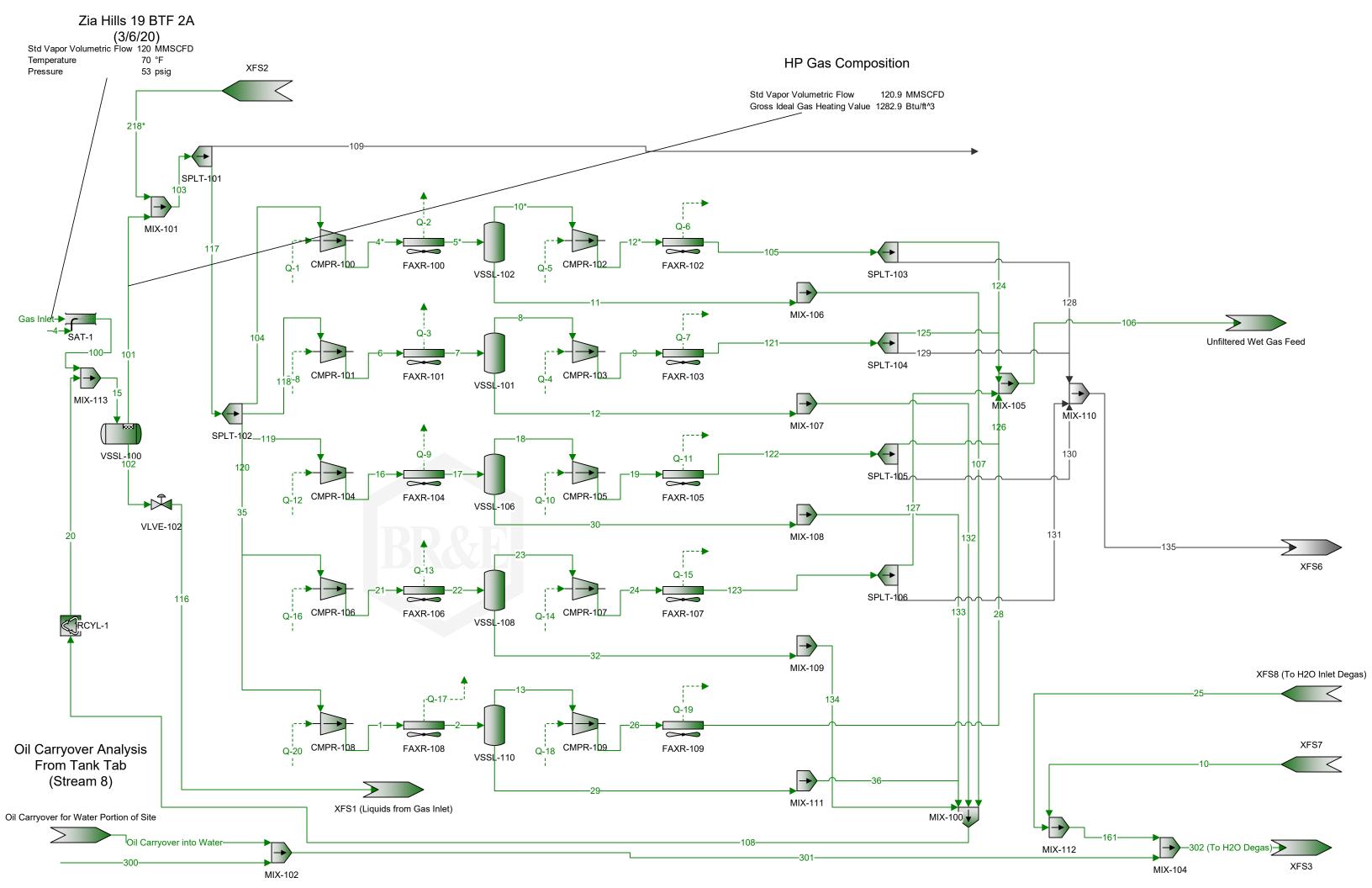
Mar. 19, 2020

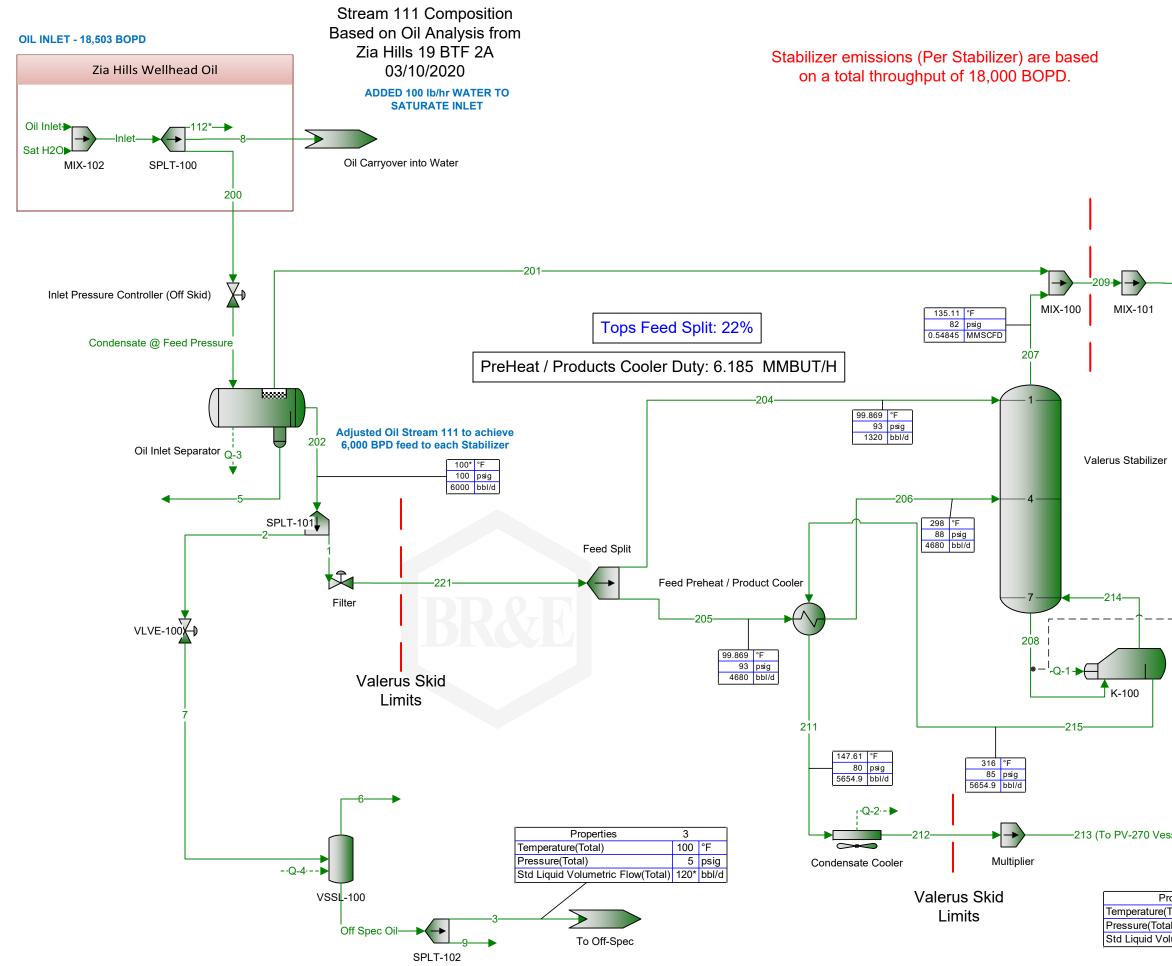
200 E Ma	1756 Thèsan			
	NM 88210			
Station Name	ZIA HILLS 19 BTF 2A	Sampled By:	CHRIS	S CHAPMAN
Method:	GPA 2103M	Sample Of:	Oil	Spot
Cylinder No:	5030-35098	Sample Date:	03/10/2020 13:00	
Analyzed:	03/18/2020 07:52:12 by User1	by User1 Sample Conditions: 311 psig, @ 136 °F		

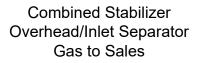
Calculated Physical Properties	Total	C30+
Specific Gravity at 60°F	0.7492	0.8912
API Gravity at 60°F	57.368	27.279
Molecular Weight	139.849	503.498
Pounds per Gallon (in Vacuum)	6.246	7.430
Pounds per Gallon (in Air)	6.239	7.422
Cu. Ft. Vapor per Gallon @ 14.696 psia	16.950	5.600

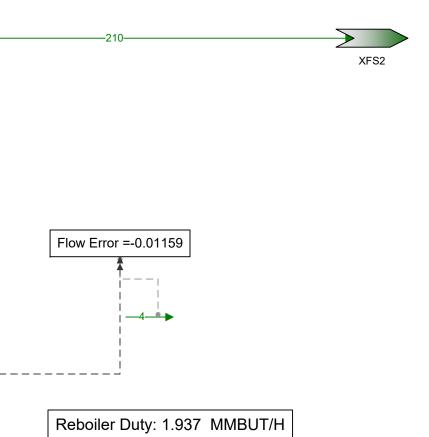
Comments: Field/System: Delaware Basin

Sample Point: Oil dump upstream of meter (low point bleed upstream of Coriolis)

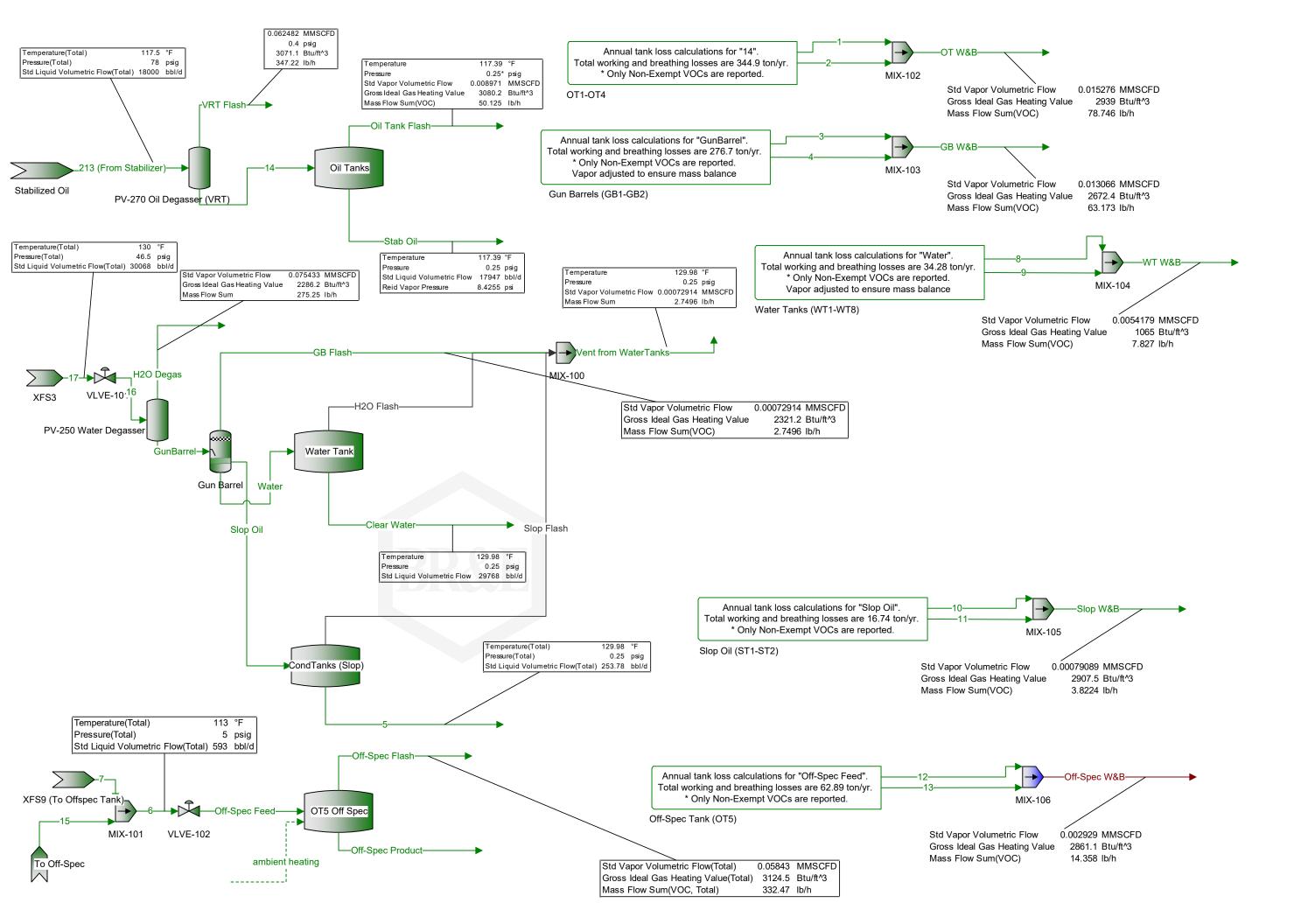

1

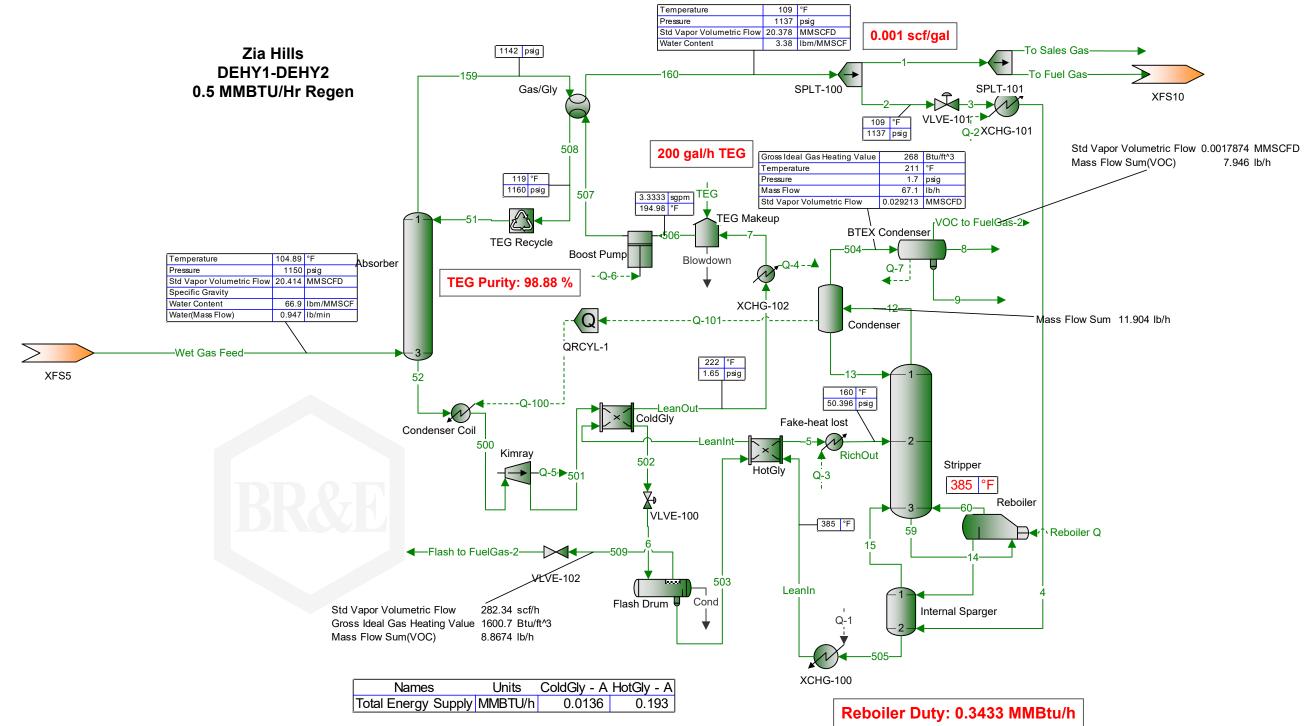

Hydrocarbon Laboratory Manager

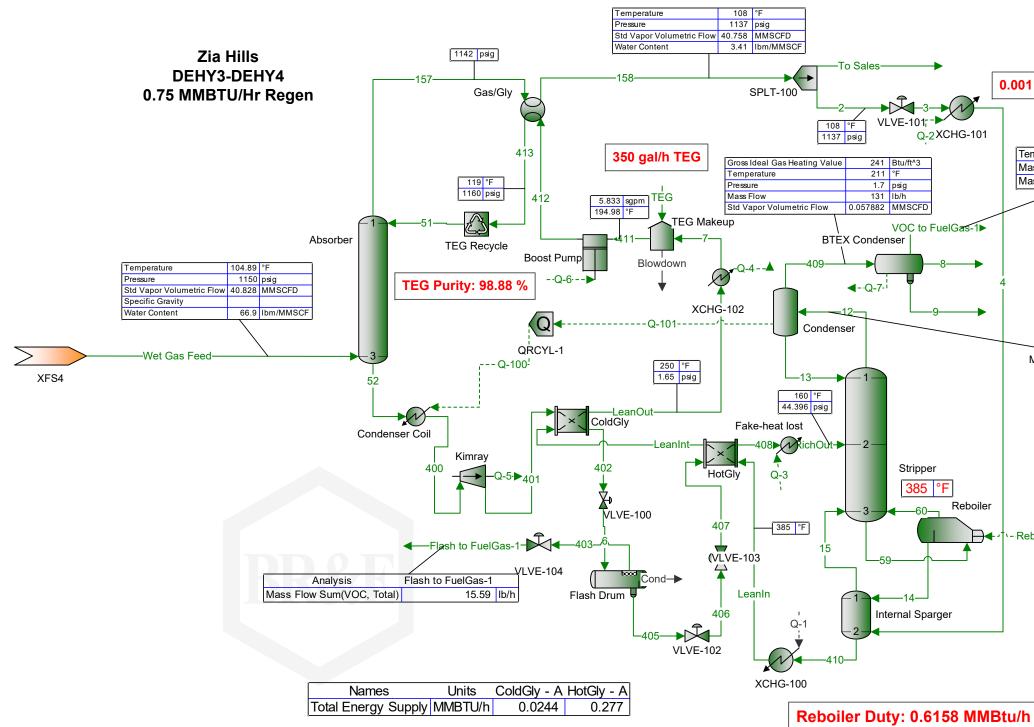

Quality Assurance:

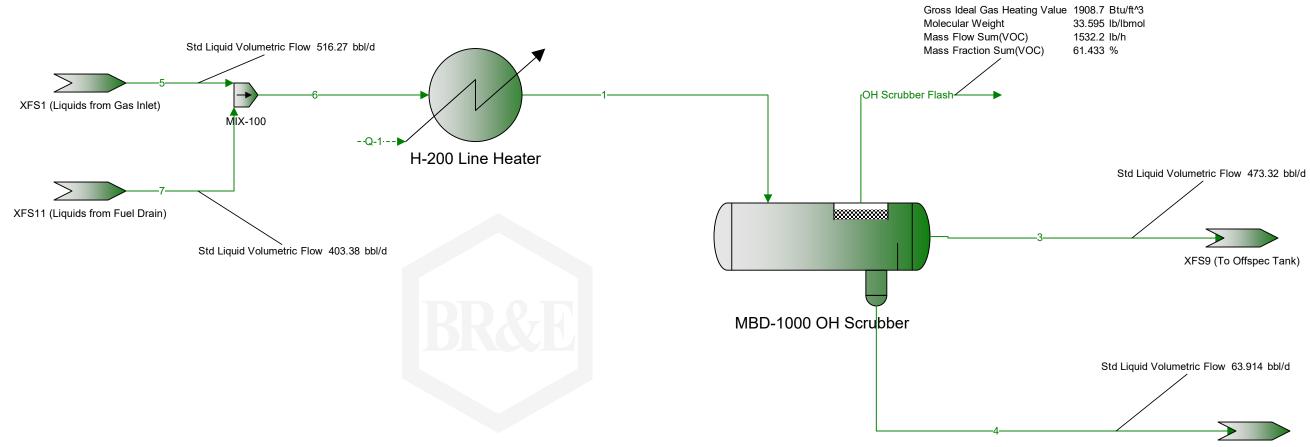

The above analyses are performed in accordance with ASTM, UOP, GPA guidelines for quality assurance, unless otherwise stated.

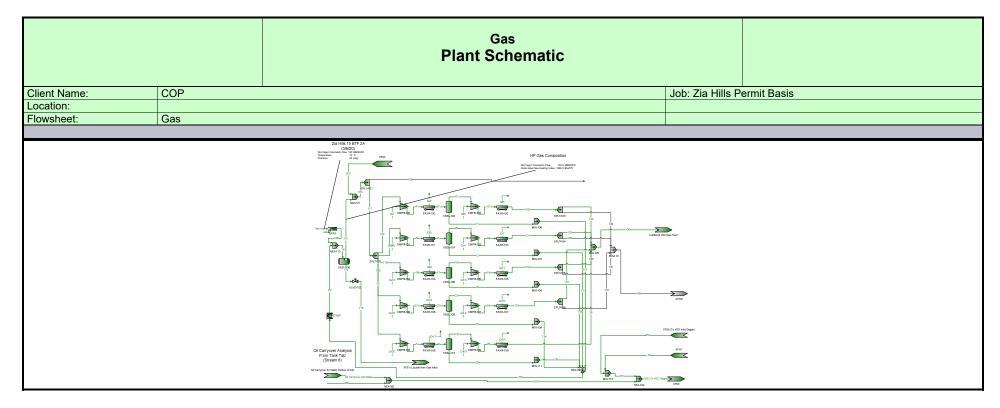
Powered By SURECHEM








sel)	\rightarrow	
	Stabilized	l Oil
operties	213 (To PV-270 Vessel)	
Total)	117.5	°F
l)	91.3	psia
lumetric Flow(Total)	18000	bbl/d



	().001 scf/gal		
1				
		Temperature(Total)	120*	°F
		Mass Flow Sum(BTEX, Total)	9.68	ton/yr
		Mass Flow Sum(VOC, Total)	13.838	lb/h
_	/			
•				
	2	+		
•				
_				
		Mass Flow Sum(VOC) 20.7	'11 lb/h	
er				
31				
_		∖- Reboiler Q		
	- '			

XFS8 (To H2O Inlet Degas)

Simulation Initiated on 12/14/2020 8:00:31 AM		Zia_Hills_120MM_GAS_18M	/_OIL_30M_WAT_12.11.2	Page 1 of 3		
		All S	reams Report treams oy Total Phase			
Client Name:	COP			Joh: Zia Hi	ills Permit Basis	
Location:				305. Zia Ti		
Flowsheet:	Gas					
Flowsneet.	Gas					
		Conn	ections			
		Gas Inlet	Oil Carrvover	101	218*	
			into Water			
From Block			Oil Carryover	VSSL-100	XFS2	
			for Water			
			Portion of Site			
To Block		SAT-1	MIX-102	MIX-101	MIX-101	
		Ctream C				
			omposition			
		Gas Inlet	Oil Carryover	101	218*	
			into Water			
Mole Fraction		%	%	%	%	
H2S		0 *	0	0	0	
Nitrogen		1.169 *	0.0298893	1.1606	0.153889	
Methane		76.659 *	6.78289	76.1429	34.9049	
Carbon Dioxide		0.089 *	0.047823	0.0884886	0.244792	
Ethane		12.22 *	4.99052	12.1685	24.2384	
Propane		5.696 *	6.52783	5.70565	23.8282	
i-Butane		0.834 *	1.8631	0.84357	3.84229	
n-Butane		1.835 *	5.69591	1.86894	8.02812	
i-Pentane		0.42 *		0.437218	1.23868	
n-Pentane		0.476 *	3.95137	0.500804	1.29479	
i-Hexane		0.119 *	2.94211	0.131898	0.391083	
n-Hexane		0.085 *	2.95107	0.0964683	0.286745	
2,2,4-Trimethylpe	entane	0 *		1.67683E-05	0.0018947	
Cyclohexane		0.039 *	0	0.0442664	0	
Benzene		0.005 *	0.183321	0.00564755	0.0170893	
i-Heptane		0.089 *	6.43368	0.105963	0.324792	
n-Heptane		0.033 *	2.75729	0.0391656	0.102146	
Toluene		0.009 *	0.866791	0.0106505	0.0268622	
n-Octane		0.095 *	10.8498	0.0865156	0.150248	
Ethylbenzene		0.001 *		0.000865146	0.00257783	
meta-Xylene		0.015 *	1.05011	0.0119624	0.0114369	
n-Nonane		0.044 *	7.25116	0.0175104	0.0373379	
C10+		0.068 *	31.4277	9.10574E-07	3.65315E-05	
TEG		0 *	0	0	0.000102.00	
Water		0 *		0.532437	0.873662	
Methanol		0 *	0	0.002101	0	
Wethanol		0	Ŭ,	•	Ū	
		Cas Inlat		404	04.0*	
		Gas Inlet	Oil Carryover	101	218*	
Malan F lam		U	into Water	H	U	
Molar Flow		lbmol/h	lbmol/h	lbmol/h	Ibmol/h	
H2S		0 *	0	0	0	
Nitrogen		154.025 *	0.00729054	154.062	0.449812	
Methane		10100.4 *	1.65447	10107.5	102.026	
Carbon Dioxide		11.7264 *		11.7463	0.715521	
Ethane		1610.08 *	1.21728	1615.29	70.8482	
Propane		750.493 *	1.59225	757.387	69.6492	
i-Butane		109.886 *	0.454444	111.978	11.2309	
n-Butane		241.776 *	1.38933	248.089	23.4659	
i-Pentane		55.3383 *	0.674132	58.0378	3.62062	
n-Pentane		62.7167 *	0.96381	66.4784	3.78463	
i-Hexane		15.6792 *		17.5086	1.14312	
n-Hexane		11.1994 *		12.8055	0.838147	
2,2,4-Trimethylpe	entane	0 *	0.0121509	0.00222588	0.00553814	
Cyclohexane		5.13856 *	0	5.87608	0	
Benzene		0.658789 *	0.0447153	0 749676	0 0499514	

* User Specified Values

Benzene

i-Heptane

n-Heptane

Toluene

n-Octane

Ethylbenzene

? Extrapolated or Approximate Values

*

*

*

0.0447153

1.56929

0.672553

0.211426

2.64647

0.0524919

0.749676

14.066

5.19897

1.41379

11.4844

0.114842

0.658789

11.7264

4.34801

1.18582

0.131758

12.517

Licensed to Portnoy Environmental, Inc. and Affiliates

0.0499514

0.949358

0.298569

0.43917

0.0785173

0.00753493

		All St	reams Report treams by Total Phase			
Client Name:	COP			Job: Zia Hil	lls Permit Basis	
Location: Flowsheet:	Gas					
Tiowsheet.	Oas					
Molar Flow		Gas Inlet Ibmol/h	Oil Carryover into Water Ibmol/h	101 Ibmol/h	218* Ibmol/h	
meta-Xylene		1.97637 *	0.256141	1.58793	0.0334297	
n-Nonane		5.79734 *	1.76869	2.32439	0.109138	
C10+		8.95953 *	7.66576	0.000120873	0.00010678	
TEG		0 *	0	0	0	
Water Methanol		0 *	0.0899672	70.6775 0	2.55369 0	
Wethanor		0	0	0	0	
		Gas Inlet	Oil Carryover	101	218*	· · ·
			into Water	-		
Mass Fraction		%	%	%	%	
H2S Nitrogen		0 *	0	0	0 107856	
Nitrogen Methane		<u> </u>	0.00624688 0.811833	1.50297 56.4681	0.127856 16.6076	
Carbon Dioxide		0.180097 *	0.0157023	0.180026	0.319516	
Ethane		16.8951 *	1.11956	16.9145	21.6159	
Propane		11.5487 *	2.14756	11.6306	31.1628	
i-Butane		2.22883 *	0.807904	2.26655	6.6234	
n-Butane		4.90397 *	2.46994	5.02157	13.839	
i-Pentane n-Pentane		<u> </u>	1.48769 2.12695	1.45824 1.67032	2.65055 2.77062	
i-Hexane		0.471519 *	1.89157	0.52544	0.999541	
n-Hexane		0.3368 *	1.89734	0.3843	0.732871	
2,2,4-Trimethylpe	ntane	0 *	0.0424542	8.85453E-05	0.00641894	
Cyclohexane		0.150917 *	0	0.172219	0	
Benzene		0.0179579 * 0.410049 *	0.106834 4.80968	0.0203929 0.490834	0.0395903 0.965229	
i-Heptane n-Heptane		0.152041 *	2.06129	0.181419	0.303561	
Toluene		0.0381288 *	0.595849	0.0453644	0.0734059	
n-Octane		0.498962 *	9.24652	0.456848	0.509016	
Ethylbenzene		0.00488147 *	0.170456	0.00424593	0.0081168	
meta-Xylene		0.0732221 *	0.83176	0.0587088	0.0360113	
n-Nonane C10+		0.259476 * 0.804951 *	6.93845 60.3648	0.103818 1.0837E-05	0.142028 0.000278938	
TEG		0.804951	00.3048	0	0.000278938	
Water		0 *	0.049575	0.443417	0.466802	
Methanol		0 *	0	0	0	
				1		
		Gas Inlet	Oil Carryover	101	218*	
Mass Flow		lb/h	into Water Ib/h	lb/h	lb/h	
H2S		0 *	0	0	0	· · · ·
Nitrogen		4314.76 *	0.204233	4315.81	12.6008	
Methane		162036 *	26.5417	162149	1636.75	
Carbon Dioxide		516.075 *	0.513365	516.948	31.4897	
Ethane Propane		<u>48413.6</u> * 33093.4 *	36.6024 70.2115	48570.2 33397.5	2130.34 3071.22	
i-Butane		6386.82 *	26.4133	6508.43	652.764	
n-Butane		14052.5 *	80.7512	14419.5	1363.89	
i-Pentane		3992.59 *	48.6378	4187.35	261.223	
n-Pentane		4524.94 *	69.5377	4796.33	273.056	
i-Hexane n-Hexane		<u>1351.16</u> * 965.114 *	61.8422 62.0307	1508.81 1103.52	98.509 72.2276	
2,2,4-Trimethylpe	ntane	965.114	1.38798	0.254259	0.632613	
Cyclohexane		432.458 *	0	494.528	0.002010	
Benzene		51.4592 *	3.4928	58.5585	3.9018	
i-Heptane		1175.01 *	157.246	1409.44	95.1275	
n-Heptane		435.679 *	67.3911	520.947	29.9172	
Toluene n-Octane		109.26 * 1429.8 *	19.4804 302.302	130.264 1311.84	7.23446 50.1657	
Ethylbenzene		13.9881 *	5.5728	12.1922	0.799946	
* User Specified Values	S Svimate Values		5.0.20259.0		ensed to Portnoy Environr	mental, Inc. and Affiliates

* User Specified Values ? Extrapolated or Approximate Values

Copyright © 2002-2020 BRE Group, Ltd.

E

		All S	reams Report treams by Total Phase			
Client Name: COP	Į			Job: Zia H	ills Permit Basis	
Location:						
Flowsheet: Gas						
				•		
		Gas Inlet	Oil Carryover into Water	101	218*	
Mass Flow		lb/h	lb/h	lb/h	lb/h	
meta-Xylene		209.821 *	27.1932	168.583	3.54907	
n-Nonane		743.539 *	226.843	298.114	13.9975	
C10+		2306.62 *	1973.54	0.0311186	0.0274905	
TEG		0 *	0	0	0.0211000	
Water		0 *	1.62078	1273.27	46.0054	
Methanol		0 *	0	0	40.0004	
			<u>_</u>	<u> </u>		
			Properties			
Property	Units	Gas Inlet	Oil Carryover into Water	101	218*	
Temperature	°F	70 *	131.274	67.3211	123.843	
Pressure	psig	53 *	100	50	82	
Mole Fraction Vapor	%	99.8169	9.61004	100	100	
Mole Fraction Light Liquid	%	0.183077	90.39	0	0	
Mole Fraction Heavy Liquid	%	0	0	0	0	
Molecular Weight	lb/lbmol	21.7486	134.035	21.632	33.7172	
Mass Density	lb/ft^3	0.258788	16.6976	0.246487	0.539971	
Molar Flow	lbmol/h	13175.8	24.3918	13274.3	292.297	
Mass Flow	lb/h	286554	3269.36	287151	9855.43	
Vapor Volumetric Flow	ft^3/h	1.1073E+06	195.798	1.16497E+06	18251.8	
Liquid Volumetric Flow	gpm	138052	24.4112	145243	2275.54	
Std Vapor Volumetric Flow	MMSCFD	120 *	0.222151	120.898	2.66213	
Std Liquid Volumetric Flow	sgpm	1617.44	8.75	1620.89	44.9566	
Compressibility		0.980238	0.143412	0.982289	0.950298	
Specific Gravity				0.746898	1.16417	
API Gravity						
Enthalpy	Btu/h	-4.53974E+08	-2.78357E+06	-4.61294E+08	-1.18957E+07	
Mass Enthalpy	Btu/lb	-1584.25	-851.411	-1606.45	-1207.02	
Mass Cp	Btu/(lb*°F)	0.480234	0.517517	0.477931	0.464138	
Ideal Gas CpCv Ratio	× /	1.24075	1.03727	1.24284	1.15071	
Dynamic Viscosity	cP			0.010447	0.0101298	
Kinematic Viscosity	cSt			2.64592	1.17114	
Thermal Conductivity	Btu/(h*ft*°F)			0.0168885	0.0152588	
Surface Tension	lbf/ft					
Net Ideal Gas Heating Value	Btu/ft^3	1175.35	6661.67	1164.54	1777.4	
Net Liquid Heating Value	Btu/lb	20443.3	18713.2	20360	19870.2	
Gross Ideal Gas Heating Value	Btu/ft^3	1294.36	7135.96	1282.93	1940	
Gross Liquid Heating Value	Btu/lb	22520.3	20056	22437.4	21700.7	

Simulation Initiated on 12/14/2020 8:00:31 AM		Zia_Hills_120MM_GAS_18M_OIL_30M_WAT_12.11.20.pmx	Page 1 of 1
		OH/LH Plant Schematic	
Client Name:	COP	Job: Zia Hills	Permit Basis
Location:			
Flowsheet:	OH/LH		
		Bit Liget Volumenter River 42.33 Mark Strate River 42.33 Mark MED-1000 OH Scrubber Bit Liget Volumenter River 43.34 Mark Bit Liget Volumenter River 43.34 Mark	
		XSG (To HZC) Intel Cogas)	

		All St	reams Report reams y Total Phase			
Client Name:	COP			Job: Zia Hil	ls Permit Basis	
Location: Flowsheet:	OH/LH					
Flowsheet.						
		Conn	ections			
		OH Scrubber				
		Flash				
From Block		MBD-1000 OH				
To Block		Scrubber				
TO BIOCK						
		Stream C	omposition			
Mole Fraction		OH Scrubber Flash %				
H2S		0				
Nitrogen		0.26155				
Methane		38.209				
Carbon Dioxide Ethane		0.0877829 20.3823				
Propane		19.6881				
i-Butane		3.71432				
n-Butane		8.32698				
i-Pentane		1.803				
n-Pentane		2.01023				
i-Hexane n-Hexane		0.494814 0.367775				
2,2,4-Trimethylpen	tane	8.21503E-05				
Cyclohexane		0.160028				
Benzene		0.0207181				
i-Heptane		0.41421				
n-Heptane Toluene		0.162025				
n-Octane		0.429034				
Ethylbenzene		0.00425814				
meta-Xylene		0.0595443				
n-Nonane		0.106875				
C10+ TEG		2.96273E-05 2.47407E-09				
Water		3.25396				
Methanol		0				
		OH Scrubber				
Molar Flow		Flash Ibmol/h				
H2S		0				
Nitrogen		0.194184				
Methane		28.3677				
Carbon Dioxide Ethane		0.0651732 15.1325				
Propane		15.1325				
i-Butane		2.75765				
n-Butane		6.18225				
i-Pentane		1.33861				
n-Pentane		1.49247				
i-Hexane n-Hexane		0.367367 0.273049				
2,2,4-Trimethylpen	tane	6.09913E-05				
Cyclohexane		0.118811				
Benzene		0.0153819				
i-Heptane		0.307524				
n-Heptane Toluene		0.120293				
n-Octane		0.0322409				
Ethylbenzene		0.0031614				
meta-Xylene		0.0442078				

Client Name: Location:		Tabulated by	Total Phase			
ocation.	COP			Job: Zia I	Hills Permit Basis	
Flowsheet:	OH/LH					
-lowsneet:	UH/LH					
		OH Scrubber				
Molar Flow		Flash Ibmol/h				
n-Nonane		0.0793477				
C10+		2.19964E-05				
TEG		1.83684E-09				
Water Methanol		<u>2.41585</u> 0				
Vietnanoi		0				
Mass Fraction		OH Scrubber Flash %				
H2S		<u>%</u>				
Nitrogen		0.218097				
Methane		18.246				
Carbon Dioxide		0.114997				
Ethane		18.2433				
Propane		25.8421				_
i-Butane n-Butane		6.42616 14.4065				
i-Pentane		3.87217				
n-Pentane		4.31722				
i-Hexane		1.26927				
n-Hexane		0.943397				
2,2,4-Trimethylpent	ane	0.000279327				
Cyclohexane Benzene		0.400894 0.0481723				
i-Heptane		1.23545				
n-Heptane		0.483269				
Toluene		0.119102				
n-Octane		1.4588				
Ethylbenzene		0.0134565				
meta-Xylene n-Nonane		0.188171 0.408019				
C10+		0.000227046				
TEG		1.10595E-08				
Water		1.74495				
Methanol		0				
		OH Scrubber				
		Flash				
Mass Flow		lb/h				
H2S		0				
Nitrogen		5.43975				
Methane		455.088				
Carbon Dioxide Ethane		2.86824 455.021				
Propane		644.551				
i-Butane		160.281				
n-Butane		359.326				
i-Pentane		96.5792				
n-Pentane i-Hexane		107.68				
-нехапе n-Hexane		31.658 23.5301				-
2,2,4-Trimethylpent	ane	0.00696694				-
Cyclohexane		9.99904				
Benzene		1.20151				
i-Heptane		30.8145				_
n-Heptane Toluene		12.0536				
n-Octane		2.97063 36.3852				+
Ethylbenzene		0.33563				-
meta-Xylene		4.69333				

Copyright © 2002-2020 BRE Group, Ltd.

		All S	reams Report treams by Total Phase			
Client Name: COP				Job: Zia Hi	lls Permit Basis	
Location:						
Flowsheet: OH/LH	4					
				•		
		OH Scrubber Flash				
Mass Flow		lb/h				
n-Nonane		10.1767	· · · · ·			
C10+		0.00566295				
TEG		2.75844E-07				
Water		43.5223				
Methanol		0				
			<u> </u>			
		Stream	Properties			
Property	Units	OH Scrubber Flash	•			
Temperature	°F	124.829				
Pressure	psig	46.5				
Mole Fraction Vapor	<u>%</u>	100				
Mole Fraction Light Liquid	%	0				
Mole Fraction Heavy Liquid		0				
Molecular Weight	lb/lbmol	33.5946				
Mass Density	lb/ft^3	0.330287				
Molar Flow	lbmol/h	74.2436				
Mass Flow	lb/h	2494.19				
Vapor Volumetric Flow	ft^3/h	7551.58				
Liquid Volumetric Flow	gpm	941.496				
Std Vapor Volumetric Flow	MMSCF					
Std Liquid Volumetric Flow	sgpm	11.1539				
Compressibility		0.96969				
Specific Gravity		1.15994				
API Gravity						
Enthalpy	Btu/h	-3.13251E+06				
Mass Enthalpy	Btu/lb	-1255.93				
Mass Cp	Btu/(lb*°	F) 0.459978				
ldeal Gas CpCv Ratio		1.15066				
Dynamic Viscosity	cP	0.0101396				
Kinematic Viscosity	cSt	1.91651				
Thermal Conductivity	Btu/(h*ft	*°F) 0.0153116				
Surface Tension	lbf/ft					
Net Ideal Gas Heating Valu		1747.96				
Net Liquid Heating Value Btu/lb		19601.9				
Gross Ideal Gas Heating Va		1908.74				
Gross Liquid Heating Value	Btu/lb	21418.5				
Remarks						

Simulation Initiated on 12/14/2020 8:00:31 AM		Zia_Hills_120MM_GAS_18M_OIL_30M_WAT_12.11.20.pmx	Page 1 of 1
		Stabilizer Plant Schematic	
Client Name:	COP	Job: Zia Hills Permit Basis	
Location:			
Flowsheet:	Stabilizer		
		Image: Statistic Statis Statis Statistic Statistic Statistic Statistic Stat	

		Process Streams Report All Streams Tabulated by Total Phase		
Client Name:	COP		Job: Zia Hil	ls Permit Basis
Location: Flowsheet:	Stabilizer			
		• "		
		Connections		
From Block		Oil Inlet		
To Block		MIX-102		
		Stream Composition	· · ·	
Mole Fraction		Oil Inlet %		
H2S		0 *	-	· · · · ·
Nitrogen		0.03 *		
Methane Carbon Dioxide		6.808 * 0.048 *		
Ethane		5.009 *		
Propane		6.552 *		
i-Butane		1.87 *		
n-Butane		5.717 *		
i-Pentane		2.774 *		
n-Pentane		3.966 *		
i-Hexane n-Hexane		2.953 * 2.962 *		
2,2,4-Trimethylpe	entane	0.05 *		
Cyclohexane		0.00		
Benzene		0.184 *		
i-Heptane		6.4575 *		
n-Heptane		2.7675 *		
Toluene		0.87 *		
n-Octane		10.89 *		
Ethylbenzene meta-Xylene		0.216 * 1.054 *		
n-Nonane		7.278 *		
C10+		31.544 *		
TEG		0 *		
Water		0 *		
Methanol		0 *		
		0111111	· · · ·	
Molar Flow		Oil Inlet Ibmol/h		
H2S		0 *		
Nitrogen		0.449816 *		
Methane Carbon Dioxide		102.078 *		
Ethane		0.719705 * 75.1043 *		
Propane		98.2398 *		
i-Butane		28.0385 *		
n-Butane		85.7199 *		
i-Pentane		41.593 *		
n-Pentane		59.4657 *		
i-Hexane		44.2769 *		
n-Hexane 2,2,4-Trimethylpentane		<u>44.4118</u> * 0.749693 *		
Cyclohexane		0.749693		
Benzene		2.75887 *		
i-Heptane		96.8229 *		
n-Heptane		41.4955 *		
Toluene		13.0447 *		
n-Octane		163.283 *		
Ethylbenzene		3.23867 * 15.8035 *		
meta-Xulono			1	
meta-Xylene		109 125 *		
n-Nonane		109.125 *		
		109.125 * 472.966 * 0 *		

		Process Streams All Stream Tabulated by Total P	S	
Client Name:	COP		Job: Zia Hil	ls Permit Basis
Location:				
Flowsheet:	Stabilizer			
		Oil Inlet		
Molar Flow		Ibmol/h		
Methanol		0 *		
			II	
		Oil Inlet		
Mass Fraction		%		
H2S		0 *		
Nitrogen		0.00624998 *		
Methane Carbon Dioxide		0.812235 * 0.0157101 *		
Ethane		1.12011 *		
Propane		2.14863 *		
i-Butane		0.808305 *		
n-Butane		2.47116 *		
i-Pentane		1.48842 *		
n-Pentane		<u>2.12801</u> * 1.89251 *		
i-Hexane n-Hexane		1.89251 *		
2,2,4-Trimethylper	ntane	0.0424752 *		
Cyclohexane		0 *		
Benzene		0.106887 *		
i-Heptane		4.81207 *		
n-Heptane		2.06232 *		
Toluene n-Octane		0.596144 * 9.25111 *		
Ethylbenzene		0.17054 *		
meta-Xylene		0.832172 *		
n-Nonane		6.9419 *		
C10+		60.3948 *		
TEG		0 *		
Water Methanol		0 *		
Wethanoi		0		
		Oil Inlet		
Mass Flow		lb/h		
H2S		0 *		
Nitrogen		12.6009 *		
Methane		1637.59 *		
Carbon Dioxide Ethane		31.6739 *		
Propane		2258.31 * 4331.94 *		
i-Butane		1629.66 *		
n-Butane		4982.23 *		
i-Pentane		3000.88 *		
n-Pentane		4290.37 *		
i-Hexane		3815.58 *		
n-Hexane 2,2,4-Trimethylper	ntano	3827.2 * 85.6363 *		
Cyclohexane		0 *		
Benzene		215.5 *		
i-Heptane		9701.84 *		
n-Heptane		4157.93 *		
Toluene		1201.91 *		
n-Octane Ethylbenzene		18651.6 * 343.834 *		
meta-Xylene				
n-Nonane		13995.9 *		
C10+		121765 *		
TEG		0 *		
Water		0 *		
Methanol		0 *		

			Process Stre All Sti Tabulated by	reams			
Client Name:	COP	ų.			Job: Zia Hil	ls Permit Basis	
Location:							
Flowsheet:	Stabilizer						
			Stream P	roperties			
Property		Units	Oil Inlet				
Temperature		°F	136 *				
Pressure		psig	311 *				
Mole Fraction Vapor		%	0				
Mole Fraction Light Li		%	100				
Mole Fraction Heavy	Liquid	%	0				
Molecular Weight		lb/lbmol	134.465				
Mass Density		lb/ft^3	45.3738				
Molar Flow		lbmol/h	1499.39				
Mass Flow		lb/h	201615				
Vapor Volumetric Flow	N	ft^3/h	4443.41				
Liquid Volumetric Flov	N	gpm	553.984				
Std Vapor Volumetric		MMSCFD	13.6558				
Std Liquid Volumetric	Flow	sgpm	539.662 *				
Compressibility		•	0.150342				
Specific Gravity			0.727509				
API Gravity			53.668				
Enthalpy		Btu/h	-1.71062E+08				
Mass Enthalpy		Btu/lb	-848.461				
Mass Cp		Btu/(lb*°F)	0.524535				
Ideal Gas CpCv Ratio)	· · ·	1.03688				
Dynamic Viscosity		cP	0.533165				
Kinematic Viscosity		cSt	0.73356				
Thermal Conductivity		Btu/(h*ft*°F)	0.0658427				
Surface Tension		lbf/ft	0.00131309 ?				
Net Ideal Gas Heating	y Value	Btu/ft^3	6686.33				
Net Liquid Heating Va		Btu/lb	18723				
Gross Ideal Gas Heat		Btu/ft^3	7162.19				
Gross Liquid Heating		Btu/lb	20066				
<u> </u>							
Remarks							

	Tanks Plant Schematic	
Client Name: COP		Job: Zia Hills Permit Basis
Location:		
Flowsheet: Tanks		
		■ Region d 18.000 ■ Region d 18.000 •

Client Name: COP Location: I Flowsheet: Tanks From Block To Block To Block To Block To Block To Block I H2S Nitrogen H2S Nitrogen Methane Carbon Dioxide Ethane Propane i-Butane n-Butane i-Pentane n-Pentane i-Hexane 2,2,4-Trimethylpentane Cyclohexane Benzene i-Heptane n-Heptane n-Heptane Cotane Ethylbenzene meta-Xylene n-Nonane C10+ TEG Water Methanol Molar Flow H2S Nitrogen Methane Carbon Dioxide Ethane Propane i-Butane I Propane Carbon Dioxide Ethane Propane I-Butane I Propane I I Diuene I I I I I I I I I I I I I I I I I I	GB Flash Gun Barrel MIX-100	ections GB W&B MIX-103	Job: Zia H GunBarrel PV-250 Water Degasser	H2O Degas	
Flowsheet: Tanks From Block Image: Second Seco	GB Flash Gun Barrel MIX-100	GB W&B MIX-103	PV-250 Water		
From Block To Block To Block Mole Fraction H2S Nitrogen Methane Carbon Dioxide Ethane Carbon Dioxide Ethane Propane i-Butane n-Betane n-Pentane i-Hexane 2,2,4-Trimethylpentane Cyclohexane Benzene i-Heptane n-Nonane C10+ TEG Water Methanol Molar Flow H2S Nitrogen Methane Carbon Dioxide Ethane i-Pentane i-P	GB Flash Gun Barrel MIX-100	GB W&B MIX-103	PV-250 Water		
To Block Mole Fraction H2S Nitrogen Methane Carbon Dioxide Ethane Propane i-Butane n-Butane n-Pentane i-Pentane i-Hexane 2,2,4-Trimethylpentane Cotane Ethylbenzene meta-Xylene n-Nonane C10+ TEG Water Methanol Molar Flow H2S Nitrogen Methane Carbon Dioxide Ethane Propane i-Butane i-Pentane i-Hexane 2,2,4-Trimethylpentane Cyclohexane	GB Flash Gun Barrel MIX-100	GB W&B MIX-103	PV-250 Water		
To Block Mole Fraction H2S Nitrogen Methane Carbon Dioxide Ethane Propane i-Butane n-Butane n-Pentane i-Pentane i-Hexane 2,2,4-Trimethylpentane Cotane Ethylbenzene meta-Xylene n-Nonane C10+ TEG Water Methanol Molar Flow H2S Nitrogen Methane Carbon Dioxide Ethane Propane i-Butane i-Pentane i-Hexane 2,2,4-Trimethylpentane Cyclohexane	GB Flash Gun Barrel MIX-100	GB W&B MIX-103	PV-250 Water		
To Block Mole Fraction H2S Nitrogen Methane Carbon Dioxide Ethane Propane i-Butane n-Butane n-Pentane i-Pentane i-Hexane 2,2,4-Trimethylpentane Cotane Ethylbenzene meta-Xylene n-Nonane C10+ TEG Water Methanol Molar Flow H2S Nitrogen Methane Carbon Dioxide Ethane Propane i-Butane i-Pentane i-Hexane 2,2,4-Trimethylpentane Cyclohexane	Gun Barrel MIX-100	MIX-103	PV-250 Water		
Mole Fraction H2S Nitrogen Methane Carbon Dioxide Ethane Propane i-Butane n-Butane i-Pentane n-Pentane i-Hexane 2,2,4-Trimethylpentane Cyclohexane Benzene i-Heptane n-Hexane 2,2,4-Trimethylpentane Cyclohexane Benzene i-Heptane n-Hotane n-Nonane C10+ TEG Water Methanol Methane Carbon Dioxide Ethane Propane i-Butane n-Butane n-Butane i-Pentane n-Pentane n-Pentane i-Pentane n-Pentane i-Pentane n-Pentane i-Hexane n-Hexane 2,2,4-Trimethylpentane Cyclohexane		-		Degasser	H2O Flash Water Tank
H2S Nitrogen Methane Carbon Dioxide Ethane Propane i-Butane n-Butane i-Pentane i-Hexane 2,2,4-Trimethylpentane Cyclohexane Benzene i-Heptane n-Nonane C10+ TEG Water Methanol Molar Flow H2S Nitrogen Methane Carbon Dioxide Ethane Propane i-Butane i-Pentane i	Stream Co		Gun Barrel		MIX-100
H2S Nitrogen Methane Carbon Dioxide Ethane Propane i-Butane n-Butane i-Pentane i-Hexane 2,2,4-Trimethylpentane Cyclohexane Benzene i-Heptane n-Nonane C10+ TEG Water Methanol Molar Flow H2S Nitrogen Methane Carbon Dioxide Ethane Propane i-Butane i-Pentane i		omposition			
H2S Nitrogen Methane Carbon Dioxide Ethane Propane i-Butane n-Butane i-Pentane i-Hexane 2,2,4-Trimethylpentane Cyclohexane Benzene i-Heptane n-Nonane C10+ TEG Water Methanol Molar Flow H2S Nitrogen Methane Carbon Dioxide Ethane Propane i-Butane i-Pentane i	GB Flash	GB W&B	GunBarrel	H2O Degas	H2O Flash
Nitrogen Methane Carbon Dioxide Ethane Propane i-Butane n-Butane i-Pentane i-Pentane i-Hexane 2,2,4-Trimethylpentane Cyclohexane Benzene i-Heptane n-Heptane n-Heptane n-Heptane n-Heptane n-Octane Ethylbenzene meta-Xylene n-Nonane C10+ TEG Water Methanol Molar Flow H2S Nitrogen Methane Carbon Dioxide Ethane Propane i-Butane n-Butane n-Pentane i-Pentane i-Pentane i-Pentane i-Pentane i-Pentane n-Pentane i-Hexane n-Hexane 2,2,4-Trimethylpentane Cyclohexane	%	%	%	%	%
Methane Carbon Dioxide Ethane Propane i-Butane n-Butane i-Pentane i-Pentane i-Hexane 2,2,4-Trimethylpentane Cyclohexane Benzene i-Heptane n-Heptane n-Nonane C10+ TEG Water Methanol Molar Flow H2S Nitrogen Methane Carbon Dioxide Ethane Propane i-Butane i-Pentane i-Hexane 2,2,4-Trimethylpentane Cyclohexane	0 067256	0 0145048	0	0	<u> </u>
Carbon Dioxide Ethane Propane i-Butane n-Butane n-Pentane n-Pentane n-Pentane i-Hexane 2,2,4-Trimethylpentane Cyclohexane Benzene i-Heptane n-Heptane n-Heptane n-Heptane n-Octane Ethylbenzene meta-Xylene n-Nonane C10+ TEG Water Methanol Molar Flow H2S Nitrogen Methane Carbon Dioxide Ethane Propane i-Butane n-Butane n-Pentane i-Pentane n-Pentane i-Hexane 2,2,4-Trimethylpentane Cyclohexane	0.067256	0.0145048 6.71301	8.62577E-07 0.000399213	0.0859483 18.8701	L
Ethane Ethane Propane i-Butane n-Butane i-Pentane i-Pentane i-Hexane 2,2,4-Trimethylpentane Cyclohexane Benzene i-Heptane n-Heptane n-Heptane Toluene n-Nonane C10+ TEG Water Methanol Molar Flow H2S Nitrogen Methane Carbon Dioxide Ethane Propane i-Butane i-Pentane i-Pentane i-Pentane i-Pentane i-Pentane i-Pentane i-Pentane i-Pentane i-Hexane 2,2,4-Trimethylpentane Cyclohexane	0.0800697	0.135414	2.24546E-05	0.076795	
Propane i-Butane i-Butane i-Butane n-Butane i-Pentane i-Pentane i-Hexane 2,2,4-Trimethylpentane Cyclohexane Benzene i-Heptane n-Heptane Toluene n-Octane Ethylbenzene meta-Xylene n-Nonane C10+ TEG Water Methanol Molar Flow H2S Nitrogen Methane Carbon Dioxide Ethane Propane i-Butane i-Pentane i-Pentane i-Pentane i-Pentane i-Pentane i-Hexane n-Hexane 2,2,4-Trimethylpentane Cyclohexane	12.8152	8.10625	0.000482067	13.31	
i-Butane i-Butane i-Pentane i-Pentane i-Hexane n-Hexane 2,2,4-Trimethylpentane Cyclohexane Benzene i-Heptane n-Heptane n-Heptane modare Ethylbenzene meta-Xylene n-Nonane C10+ TEG Water Methanol Molar Flow H2S Nitrogen Methane Carbon Dioxide Ethane Propane i-Butane n-Butane i-Pentane i-Pentane i-Pentane i-Pentane i-Pentane i-Hexane n-Hexane 2,2,4-Trimethylpentane Cyclohexane	16.3622	16.3544	0.000972572	16.4005	
n-Butane i-Pentane i-Pentane i-Pentane i-Hexane n-Hexane 2,2,4-Trimethylpentane 2,2,4-Trimethylpentane 2,2,4-Trimethylpentane Cyclohexane Benzene i-Heptane n-Heptane n-Heptane C10+ TEG Water Methanol Molar Flow H2S Nitrogen Methane Carbon Dioxide Ethane Propane I-Butane I-Pentane I-Pentane I-Pentane I-Pentane I-Hexane I-I-Hexane I-I-Hexane I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-	4.28612	6.60609	0.000445857	4.18903	
n-Pentane i-Hexane i-Hexane 2,2,4-Trimethylpentane 2,2,4-Trimethylpentane 2,2,4-Trimethylpentane Cyclohexane Benzene i-Heptane n-Heptane n-Heptane m-Octane Ethylbenzene meta-Xylene n-Nonane C10+ TEG Water Methanol Molar Flow H2S Nitrogen Methane Carbon Dioxide Ethane Propane i-Butane n-Pentane n-Pentane n-Pentane n-Pentane n-Hexane 2,2,4-Trimethylpentane Cyclohexane	12.0769	18.2484	0.00174454	11.6963	
i-Hexane i-Hexane i-Hexane 2,2,4-Trimethylpentane 2,2,4-Trimethylpentane Cyclohexane Benzene i-Heptane n-Heptane n-Heptane in-Octane Ethylbenzene meta-Xylene n-Nonane C10+ TEG Water Methanol Molar Flow H2S Nitrogen Methane Carbon Dioxide Ethane Propane i-Butane n-Butane i-Pentane n-Pentane n-Hexane i-Hexane 2,2,4-Trimethylpentane Cyclohexane	 4.44505	6.20147	0.00133418	4.25363	
n-Hexane 2,2,4-Trimethylpentane 2,2,4-Trimethylpentane Cyclohexane Benzene -Heptane n-Heptane Toluene n-Octane Ethylbenzene meta-Xylene n-Nonane C10+ TEG Water Methanol Molar Flow H2S Nitrogen Methane Carbon Dioxide Ethane Propane -Butane n-Butane -Pentane n-Pentane n-Hexane 2,2,4-Trimethylpentane Cyclohexane	5.68184	7.74226	0.00213271	5.42509	
2,2,4-Trimethylpentane Cyclohexane Benzene i-Heptane n-Heptane n-Octane Ethylbenzene meta-Xylene n-Nonane C10+ TEG Water Methanol Molar Flow H2S Nitrogen Methane Carbon Dioxide Ethane Propane i-Butane n-Bentane n-Pentane n-Pentane n-Hexane 2,2,4-Trimethylpentane Cyclohexane	2.66203	3.43057	0.00210605	2.53027	
Cyclohexane Benzene -Heptane -Heptane Toluene -n-Octane Ethylbenzene meta-Xylene n-Nonane C10+ TEG Water Methanol Molar Flow H2S Nitrogen Methane Carbon Dioxide Ethane Propane -Butane n-Butane -Pentane n-Pentane -Hexane 2,2,4-Trimethylpentane Cyclohexane	2.16009	2.69131	0.00227959	2.05115	
Benzene -Heptane -Heptane Toluene -Octane Ethylbenzene meta-Xylene -Nonane C10+ TEG Water Wethanol Molar Flow -12S Nitrogen Methane Carbon Dioxide Ethane Propane -Butane -Pentane -Pentane -Pentane -Hexane -Hexane -Hexane 2,2,4-Trimethylpentane Cyclohexane	0.0168183	0.019837	4.48939E-05	0.0159442	
-Heptane h-Heptane Toluene h-Octane Ethylbenzene meta-Xylene h-Nonane C10+ TEG Water Methanol Molar Flow H2S Nitrogen Methane Carbon Dioxide Ethane Propane -Butane h-Butane -Pentane h-Pentane -Hexane h-Hexane h-Hexane 2,2,4-Trimethylpentane Cyclohexane	3.40358E-05	4.28778E-05	4.44499E-08	3.23008E-05	<u> </u>
n-Heptane Toluene Toluene Toluene Toluene Toluene Toluene Toluene Tetylbenzene Teta-Xylene TEG Water Methanol Molar Flow H2S Nitrogen Methane Carbon Dioxide Ethane Propane I-Butane I-Pentane I-Pentane I-Pentane I-Hexane I-Hexane 2,2,4-Trimethylpentane Cyclohexane	0.0720498	0.0949127 3.33795	0.000162114 0.00559591	0.0683821 2.64797	<u> </u>
Toluene Toluene Toluene Toluene Toluene Toluene Tetylbenzene Tetylbenzene Teta-Xylene TEG Water Water Methanol TEG Water Methanol Molar Flow H2S Nitrogen Methane Carbon Dioxide Ethane Propane I-Butane I-Pentane I-Pentane I-Pentane I-Pentane I-Hexane I-Hexane 2,2,4-Trimethylpentane Cyclohexane	0.908591	1.05424	0.00249215	0.861342	
n-Octane Ethylbenzene meta-Xylene n-Nonane C10+ TEG Water Methanol Molar Flow H2S Nitrogen Methane Carbon Dioxide Ethane Propane i-Butane n-Butane n-Pentane n-Pentane i-Pentane i-Pentane n-Hexane n-Hexane n-Hexane 2,2,4-Trimethylpentane Cyclohexane	0.196153	0.237174	0.000812923	0.185959	<u> </u>
Ethylbenzene meta-Xylene n-Nonane C10+ TEG Water Methanol Molar Flow H2S Nitrogen Methane Carbon Dioxide Ethane Propane i-Butane n-Butane i-Pentane n-Pentane n-Pentane i-Hexane n-Hexane 2,2,4-Trimethylpentane Cyclohexane	1.4031	1.50989	0.0105137	1.32951	
meta-Xylene n-Nonane C10+ TEG Water Methanol Molar Flow H2S Nitrogen Methane Carbon Dioxide Ethane Propane i-Butane n-Butane i-Pentane n-Pentane n-Pentane n-Pentane n-Pentane n-Pentane n-Pentane n-Pentane n-Hexane 2,2,4-Trimethylpentane Cyclohexane	0.0225967	0.0247782	0.000210264	0.0214121	
C10+ TEG Water Methanol Molar Flow H2S Nitrogen Methane Carbon Dioxide Ethane Propane i-Butane n-Butane i-Pentane n-Pentane n-Pentane n-Pentane n-Hexane n-Hexane 2,2,4-Trimethylpentane Cyclohexane	0.102249	0.111717	0.00102878	0.0968838	
TEG Water Methanol Molar Flow H2S Nitrogen Methane Carbon Dioxide Ethane Propane i-Butane n-Butane i-Pentane n-Pentane n-Pentane n-Pentane n-Hexane n-Hexane 2,2,4-Trimethylpentane Cyclohexane	0.355988	0.354242	0.00721575	0.337291	
Water Methanol Molar Flow H2S Nitrogen Methane Carbon Dioxide Ethane Propane i-Butane i-Butane i-Pentane n-Pentane i-Pentane n-Pentane i-Hexane n-Hexane 2,2,4-Trimethylpentane Cyclohexane	0.000238183	0.000124083	0.031776	0.000226239	
Methanol Molar Flow H2S Nitrogen Methane Carbon Dioxide Ethane Propane i-Butane n-Butane i-Pentane n-Pentane i-Pentane n-Hexane n-Hexane 2,2,4-Trimethylpentane Cyclohexane	2.87599E-11	9.52633E-12	2.00021E-06	2.73177E-11	
Molar Flow H2S Nitrogen Methane Carbon Dioxide Ethane Propane i-Butane n-Butane i-Pentane i-Pentane i-Hexane n-Hexane 2,2,4-Trimethylpentane Cyclohexane	16.4037	17.0115	99.9282	15.5462	<u> </u>
H2S Nitrogen Methane Carbon Dioxide Ethane Propane i-Butane n-Butane i-Pentane i-Pentane i-Hexane n-Hexane 2,2,4-Trimethylpentane Cyclohexane	0	0	0	0	L
H2S Nitrogen Methane Carbon Dioxide Ethane Propane i-Butane n-Butane n-Pentane i-Pentane i-Hexane n-Hexane 2,2,4-Trimethylpentane Cyclohexane	GB Flash	GB W&B	GunBarrel	H2O Degas	H2O Flash
Nitrogen Methane Carbon Dioxide Ethane Propane i-Butane n-Butane i-Pentane n-Pentane i-Hexane n-Hexane 2,2,4-Trimethylpentane Cyclohexane	lbmol/h	lbmol/h	lbmol/h	lbmol/h	lbmol/h
Methane Carbon Dioxide Ethane Propane I-Butane I-Butane I-Pentane I-Pentane I-Hexane I-Hexane I-Hexane 2,2,4-Trimethylpentane Cyclohexane	0	0	0	0	0
Carbon Dioxide Ethane Propane -Butane -Pentane -Pentane -Hexane n-Hexane 2,2,4-Trimethylpentane Cyclohexane	 5.38441E-05	0.000208091	0.000208091	0.00711862	0
Ethane Propane -Butane n-Butane -Pentane n-Pentane -Hexane n-Hexane 2,2,4-Trimethylpentane Cyclohexane	0.0136816	0.0963074	0.0963074	1.5629	0
Propane -Butane n-Butane -Pentane n-Pentane -Hexane n-Hexane 2,2,4-Trimethylpentane Cyclohexane	6.41025E-05	0.0019427	0.00541702	0.00636051	0
-Butane n-Butane n-Pentane n-Pentane n-Hexane n-Hexane 2,2,4-Trimethylpentane Cyclohexane	0.0102596	0.116295 0.234626	0.116295 0.234626	1.10239 1.35837	0
n-Butane i-Pentane n-Pentane i-Hexane n-Hexane 2,2,4-Trimethylpentane Cyclohexane	0.0034314	0.234020	0.234020	0.346954	0
-Pentane n-Pentane i-Hexane n-Hexane 2,2,4-Trimethylpentane Cyclohexane	0.00966855	0.261798	0.420859	0.968742	0
n-Pentane i-Hexane n-Hexane 2,2,4-Trimethylpentane Cyclohexane	0.00355864	0.0889686	0.321861	0.352304	0
i-Hexane n-Hexane 2,2,4-Trimethylpentane Cyclohexane	0.00454879	0.111073	0.514501	0.44933	0
2,2,4-Trimethylpentane Cyclohexane	 0.00213118	0.0492163	0.50807	0.209568	0
Cyclohexane	 0.00172934	0.0386105	0.549937	0.169885	0
	1.34644E-05	0.000284589	0.0108303	0.00132057	0
Benzene	2.72485E-08	6.15141E-07	1.07232E-05	2.6753E-06	0
	5.76819E-05	0.00136165	0.0391088	0.00566371	0
i-Heptane	0.00223544	0.0478875 0.0151245	1.34998	0.219316	0
n-Heptane Toluene	0.000727404 0.000157037	0.00340259	0.601213 0.196112	0.0713402 0.015402	0
n-Octane	0.000157037	0.00340259	2.53635	0.015402	0
Ethylbenzene	1.80906E-05	0.000355478	0.0507248	0.00177345	0
meta-Xylene	8.18589E-05	0.00160273	0.248186	0.00802435	0
n-Nonane	0.000284998	0.0050821	1.74075	0.0279359	0
C10+		1.78014E-06	7.66575	1.87381E-05	0

Г

		All St	reams Report treams by Total Phase			
Client Name:	COP			Job: Zia Hi	lls Permit Basis	
Location:						
Flowsheet:	Tanks					
		GB Flash	GB W&B	GunBarrel	H2O Degas	H2O Flash
Molar Flow		Ibmol/h	lbmol/h	Ibmol/h	Ibmol/h	lbmol/h
Water		0.0131326	0.244053	24107	1.28761	0
Methanol		0	0	0	0	0
					t · · · ·	t · · · · · · · · · · · · · · · · · · ·
Mass Frestian		GB Flash %	GB W&B %	GunBarrel %	H2O Degas %	H2O Flash
Mass Fraction H2S			70	70	7 0	%
Nitrogen		0.0428697	0.00801803	1.33325E-06	0.0558363	
Methane		6.23814	2.1251	0.000353364	7.02034	
Carbon Dioxide		0.0801804	0.117599	5.45254E-05	0.0783778	
Ethane		8.76795	4.80984	0.000799786	9.28133	
Propane		16.4169	14.2305	0.00236627	16.7713	
i-Butane n-Butane		<u>5.6684</u> 15.9717	7.57666 20.9294	0.00142983 0.00559462	5.64637 15.7654	
i-Pentane		7.29725	8.82907	0.00539462	7.11708	
n-Pentane		9.32764	11.0227	0.00848998	9.07714	
i-Hexane		5.21975	5.83366	0.0100138	5.05666	
n-Hexane		4.23555	4.57655	0.010839	4.09915	
2,2,4-Trimethylpe	ntane	0.0437129	0.0447137	0.000282949	0.0422367	
Cyclohexane		6.51767E-05	7.12076E-05	2.06405E-07	6.3042E-05	
Benzene i-Heptane		0.128057 6.36628	0.146296 6.60005	0.000698687 0.0309381	0.123872 6.15321	
n-Heptane		2.07156	2.08452	0.0137783	2.00154	
Toluene		0.411234	0.43122	0.00413273	0.397348	
n-Octane		3.64683	3.40338	0.0662637	3.52193	
Ethylbenzene		0.0545859	0.051909	0.00123167	0.0527174	
meta-Xylene		0.246998	0.234041	0.0060263	0.238532	
n-Nonane		<u> </u>	0.896533	0.0510626 0.451375	1.00321	
C10+ TEG		9.82726E-11	2.82299E-11	1.65735E-05	0.00135074 9.5137E-11	
Water		6.72414	6.04748	99.3289	6.495	
Methanol		0	0	0	0	
		GB Flash	GB W&B	GunBarrel	H2O Degas	H2O Flash
Mass Flow						
		lb/h	lb/h	lb/h	lb/h	lb/h
H2S Nitrogon		Ib/h	0	0	0	0
Nitrogen		Ib/h 0 0.00150836	0 0.00582933	0 0.00582933	0 0.199417	0
N PARA ANA ANA		Ib/h 0 0.00150836 0.219487	0	0 0.00582933 1.54501	0 0.199417 25.0728	0
Nitrogen Methane		Ib/h 0 0.00150836	0 0.00582933 1.54501	0 0.00582933	0 0.199417	0 0 0
Nitrogen Methane Carbon Dioxide Ethane Propane		Ib/h 0 0.00150836 0.219487 0.00282112 0.308497 0.577622	0 0.00582933 1.54501 0.0854974 3.49689 10.346	0 0.00582933 1.54501 0.2384 3.49689 10.346	0 0.199417 25.0728 0.279923 33.1479 59.898	0 0 0 0 0 0
Nitrogen Methane Carbon Dioxide Ethane Propane i-Butane		Ib/h 0 0.00150836 0.219487 0.00282112 0.308497 0.577622 0.199441	0 0.00582933 1.54501 0.0854974 3.49689 10.346 5.50844	0 0.00582933 1.54501 0.2384 3.49689 10.346 6.25162	0 0.199417 25.0728 0.279923 33.1479 59.898 20.1658	0 0 0 0 0 0 0 0
Nitrogen Methane Carbon Dioxide Ethane Propane i-Butane n-Butane		Ib/h 0 0.00150836 0.219487 0.00282112 0.308497 0.577622 0.199441 0.561958	0 0.00582933 1.54501 0.0854974 3.49689 10.346 5.50844 15.2163	0 0.00582933 1.54501 0.2384 3.49689 10.346 6.25162 24.4613	0 0.199417 25.0728 0.279923 33.1479 59.898 20.1658 56.3054	0 0 0 0 0 0 0 0 0
Nitrogen Methane Carbon Dioxide Ethane Propane i-Butane n-Butane i-Pentane		Ib/h 0 0.00150836 0.219487 0.00282112 0.308497 0.577622 0.199441 0.561958 0.256751	0 0.00582933 1.54501 0.0854974 3.49689 10.346 5.50844 15.2163 6.41898	0 0.00582933 1.54501 0.2384 3.49689 10.346 6.25162 24.4613 23.2219	0 0.199417 25.0728 0.279923 33.1479 59.898 20.1658 56.3054 25.4183	0 0 0 0 0 0 0 0 0 0 0
Nitrogen Methane Carbon Dioxide Ethane Propane i-Butane n-Butane i-Pentane n-Pentane		Ib/h 0 0.00150836 0.219487 0.00282112 0.308497 0.577622 0.199441 0.561958 0.256751 0.32819	0 0.00582933 1.54501 0.0854974 3.49689 10.346 5.50844 15.2163 6.41898 8.01381	0 0.00582933 1.54501 0.2384 3.49689 10.346 6.25162 24.4613 23.2219 37.1206	0 0.199417 25.0728 0.279923 33.1479 59.898 20.1658 56.3054 25.4183 32.4186	0 0 0 0 0 0 0 0 0 0 0 0 0
Nitrogen Methane Carbon Dioxide Ethane Propane i-Butane n-Butane i-Pentane		Ib/h 0 0.00150836 0.219487 0.00282112 0.308497 0.577622 0.199441 0.561958 0.256751	0 0.00582933 1.54501 0.0854974 3.49689 10.346 5.50844 15.2163 6.41898	0 0.00582933 1.54501 0.2384 3.49689 10.346 6.25162 24.4613 23.2219	0 0.199417 25.0728 0.279923 33.1479 59.898 20.1658 56.3054 25.4183	0 0 0 0 0 0 0 0 0 0 0
Nitrogen Methane Carbon Dioxide Ethane Propane i-Butane n-Butane i-Pentane n-Pentane i-Hexane	ntane	Ib/h 0 0.00150836 0.219487 0.00282112 0.308497 0.577622 0.199441 0.561958 0.256751 0.32819 0.183655	0 0.00582933 1.54501 0.0854974 3.49689 10.346 5.50844 15.2163 6.41898 8.01381 4.24123	0 0.00582933 1.54501 0.2384 3.49689 10.346 6.25162 24.4613 23.2219 37.1206 43.7831	0 0.199417 25.0728 0.279923 33.1479 59.898 20.1658 56.3054 25.4183 32.4186 18.0596	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Nitrogen Methane Carbon Dioxide Ethane Propane i-Butane n-Butane i-Pentane n-Pentane i-Hexane n-Hexane 2,2,4-Trimethylpe Cyclohexane	ntane	Ib/h 0 0.00150836 0.219487 0.00282112 0.308497 0.577622 0.199441 0.561958 0.256751 0.32819 0.183655 0.149026 0.00153802 2.29322E-06	0 0.00582933 1.54501 0.0854974 3.49689 10.346 5.50844 15.2163 6.41898 8.01381 4.24123 3.32728 0.0325081 5.17699E-05	0 0.00582933 1.54501 0.2384 3.49689 10.346 6.25162 24.4613 23.2219 37.1206 43.7831 47.391 1.23713 0.000902462	0 0.199417 25.0728 0.279923 33.1479 59.898 20.1658 56.3054 25.4183 32.4186 18.0596 14.6399 0.150847 0.000225152	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Nitrogen Methane Carbon Dioxide Ethane Propane i-Butane n-Butane i-Pentane i-Pentane i-Hexane n-Hexane 2,2,4-Trimethylpe Cyclohexane Benzene	ntane	Ib/h 0 0.00150836 0.219487 0.00282112 0.308497 0.577622 0.199441 0.561958 0.256751 0.32819 0.183655 0.149026 0.00153802 2.29322E-06 0.00450564	0 0.00582933 1.54501 0.0854974 3.49689 10.346 5.50844 15.2163 6.41898 8.01381 4.24123 3.32728 0.0325081 5.17699E-05 0.106361	0 0.00582933 1.54501 0.2384 3.49689 10.346 6.25162 24.4613 23.2219 37.1206 43.7831 47.391 1.23713 0.000902462 3.05486	0 0.199417 25.0728 0.279923 33.1479 59.898 20.1658 56.3054 25.4183 32.4186 18.0596 14.6399 0.150847 0.000225152 0.442403	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Nitrogen Methane Carbon Dioxide Ethane Propane i-Butane i-Pentane i-Pentane i-Hexane 2,2,4-Trimethylpe Cyclohexane Benzene i-Heptane	ntane	Ib/h 0 0.00150836 0.219487 0.00282112 0.308497 0.577622 0.199441 0.561958 0.256751 0.32819 0.183655 0.149026 0.00153802 2.29322E-06 0.00450564 0.223995	0 0.00582933 1.54501 0.0854974 3.49689 10.346 5.50844 15.2163 6.41898 8.01381 4.24123 3.32728 0.0325081 5.17699E-05 0.106361 4.79842	0 0.00582933 1.54501 0.2384 3.49689 10.346 6.25162 24.4613 23.2219 37.1206 43.7831 47.391 1.23713 0.000902462 3.05486 135.27	0 0.199417 25.0728 0.279923 33.1479 59.898 20.1658 56.3054 25.4183 32.4186 18.0596 14.6399 0.150847 0.000225152 0.442403 21.9759	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Nitrogen Methane Carbon Dioxide Ethane Propane i-Butane n-Butane i-Pentane i-Pentane i-Hexane 2,2,4-Trimethylpe Cyclohexane Benzene i-Heptane n-Heptane	ntane	Ib/h 0 0.00150836 0.219487 0.00282112 0.308497 0.577622 0.199441 0.561958 0.256751 0.32819 0.183655 0.149026 0.00153802 2.29322E-06 0.023995 0.0728873	0 0.00582933 1.54501 0.0854974 3.49689 10.346 5.50844 15.2163 6.41898 8.01381 4.24123 3.32728 0.0325081 5.17699E-05 0.106361 4.79842 1.5155	0 0.00582933 1.54501 0.2384 3.49689 10.346 6.25162 24.4613 23.2219 37.1206 43.7831 47.391 1.23713 0.000902462 3.05486 135.27 60.2427	0 0.199417 25.0728 0.279923 33.1479 59.898 20.1658 56.3054 25.4183 32.4186 18.0596 14.6399 0.150847 0.000225152 0.442403 21.9759 7.14843	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Nitrogen Methane Carbon Dioxide Ethane Propane i-Butane i-Pentane i-Pentane i-Hexane 2,2,4-Trimethylpe Cyclohexane Benzene i-Heptane n-Heptane Toluene	ntane	Ib/h 0 0.00150836 0.219487 0.00282112 0.308497 0.577622 0.199441 0.561958 0.256751 0.32819 0.183655 0.149026 0.00153802 2.29322E-06 0.023995 0.0728873 0.0144691	0 0.00582933 1.54501 0.0854974 3.49689 10.346 5.50844 15.2163 6.41898 8.01381 4.24123 3.32728 0.0325081 5.17699E-05 0.106361 4.79842 1.5155 0.313509	0 0.00582933 1.54501 0.2384 3.49689 10.346 6.25162 24.4613 23.2219 37.1206 43.7831 47.391 1.23713 0.000902462 3.05486 135.27 60.2427 18.0695	0 0.199417 25.0728 0.279923 33.1479 59.898 20.1658 56.3054 25.4183 32.4186 18.0596 14.6399 0.150847 0.000225152 0.442403 21.9759 7.14843 1.41911	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Nitrogen Methane Carbon Dioxide Ethane Propane i-Butane n-Butane i-Pentane i-Pentane i-Hexane 2,2,4-Trimethylpe Cyclohexane Benzene i-Heptane n-Heptane	ntane	Ib/h 0 0.00150836 0.219487 0.00282112 0.308497 0.577622 0.199441 0.561958 0.256751 0.32819 0.183655 0.149026 0.00153802 2.29322E-06 0.023995 0.0728873	0 0.00582933 1.54501 0.0854974 3.49689 10.346 5.50844 15.2163 6.41898 8.01381 4.24123 3.32728 0.0325081 5.17699E-05 0.106361 4.79842 1.5155	0 0.00582933 1.54501 0.2384 3.49689 10.346 6.25162 24.4613 23.2219 37.1206 43.7831 47.391 1.23713 0.000902462 3.05486 135.27 60.2427	0 0.199417 25.0728 0.279923 33.1479 59.898 20.1658 56.3054 25.4183 32.4186 18.0596 14.6399 0.150847 0.000225152 0.442403 21.9759 7.14843	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Nitrogen Methane Carbon Dioxide Ethane Propane i-Butane n-Butane i-Pentane i-Pentane i-Hexane 2,2,4-Trimethylpe Cyclohexane Benzene i-Heptane n-Heptane n-Heptane n-Heptane n-Octane	ntane	Ib/h 0 0.00150836 0.219487 0.00282112 0.308497 0.577622 0.199441 0.561958 0.256751 0.32819 0.183655 0.149026 0.00153802 2.29322E-06 0.223995 0.0728873 0.0144691 0.128313	0 0.00582933 1.54501 0.0854974 3.49689 10.346 5.50844 15.2163 6.41898 8.01381 4.24123 3.32728 0.0325081 5.17699E-05 0.106361 4.79842 1.5155 0.313509 2.47435 0.0377393 0.170154	0 0.00582933 1.54501 0.2384 3.49689 10.346 6.25162 24.4613 23.2219 37.1206 43.7831 47.391 1.23713 0.000902462 3.05486 135.27 60.2427 18.0695 289.724 5.3852 26.3487	0 0.199417 25.0728 0.279923 33.1479 59.898 20.1658 56.3054 25.4183 32.4186 18.0596 14.6399 0.150847 0.000225152 0.442403 21.9759 7.14843 1.41911 12.5784	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Nitrogen Methane Carbon Dioxide Ethane Propane i-Butane n-Butane i-Pentane n-Pentane i-Hexane 2,2,4-Trimethylpe Cyclohexane Benzene i-Heptane n-Heptane n-Heptane n-Heptane n-Gctane Ethylbenzene meta-Xylene n-Nonane	ntane	Ib/h 0 0.00150836 0.219487 0.00282112 0.308497 0.577622 0.199441 0.561958 0.256751 0.32819 0.183655 0.149026 0.00153802 2.29322E-06 0.00450564 0.223995 0.0728873 0.0144691 0.128313 0.00192059 0.00869055	0 0.00582933 1.54501 0.0854974 3.49689 10.346 5.50844 15.2163 6.41898 8.01381 4.24123 3.32728 0.0325081 5.17699E-05 0.106518 0.313509 2.47435 0.0377393 0.170154 0.651805	0 0.00582933 1.54501 0.2384 3.49689 10.346 6.25162 24.4613 23.2219 37.1206 43.7831 47.391 1.23713 0.000902462 3.05486 135.27 60.2427 18.0695 289.724 5.3852 26.3487 223.26	0 0.199417 25.0728 0.279923 33.1479 59.898 20.1658 56.3054 25.4183 32.4186 18.0596 14.6399 0.150847 0.000225152 0.442403 21.9759 7.14843 1.41911 12.5784 0.188278 0.851905 3.58292	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Nitrogen Methane Carbon Dioxide Ethane Propane i-Butane n-Butane i-Pentane i-Pentane i-Hexane 2,2,4-Trimethylpe Cyclohexane Benzene i-Heptane n-Heptane n-Heptane n-Heptane toluene n-Octane Ethylbenzene meta-Xylene n-Nonane C10+	ntane	Ib/h 0 0.00150836 0.219487 0.00282112 0.308497 0.577622 0.199441 0.561958 0.256751 0.32819 0.183655 0.149026 0.00153802 2.29322E-06 0.00450564 0.223995 0.0728873 0.0144691 0.128313 0.00192059 0.00869055 0.0365525	0 0.00582933 1.54501 0.0854974 3.49689 10.346 5.50844 15.2163 6.41898 8.01381 4.24123 3.32728 0.0325081 5.17699E-05 0.106361 4.79842 1.5155 0.313509 2.47435 0.0377393 0.170154 0.651805 0.000458296	0 0.00582933 1.54501 0.2384 3.49689 10.346 6.25162 24.4613 23.2219 37.1206 43.7831 47.391 1.23713 0.000902462 3.05486 135.27 60.2427 18.0695 289.724 5.3852 26.3487 223.26 1973.54	0 0.199417 25.0728 0.279923 33.1479 59.898 20.1658 56.3054 25.4183 32.4186 18.0596 14.6399 0.150847 0.000225152 0.442403 21.9759 7.14843 1.41911 12.5784 0.188278 0.851905 3.58292 0.00482411	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Nitrogen Methane Carbon Dioxide Ethane Propane i-Butane n-Butane i-Pentane n-Pentane i-Hexane 2,2,4-Trimethylpe Cyclohexane Benzene i-Heptane n-Heptane n-Heptane n-Heptane n-Gctane Ethylbenzene meta-Xylene n-Nonane	ntane	Ib/h 0 0.00150836 0.219487 0.00282112 0.308497 0.577622 0.199441 0.561958 0.256751 0.32819 0.183655 0.149026 0.00153802 2.29322E-06 0.00450564 0.223995 0.0728873 0.0144691 0.128313 0.00192059 0.00869055	0 0.00582933 1.54501 0.0854974 3.49689 10.346 5.50844 15.2163 6.41898 8.01381 4.24123 3.32728 0.0325081 5.17699E-05 0.106518 0.313509 2.47435 0.0377393 0.170154 0.651805	0 0.00582933 1.54501 0.2384 3.49689 10.346 6.25162 24.4613 23.2219 37.1206 43.7831 47.391 1.23713 0.000902462 3.05486 135.27 60.2427 18.0695 289.724 5.3852 26.3487 223.26	0 0.199417 25.0728 0.279923 33.1479 59.898 20.1658 56.3054 25.4183 32.4186 18.0596 14.6399 0.150847 0.000225152 0.442403 21.9759 7.14843 1.41911 12.5784 0.188278 0.851905 3.58292	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ſ

			All St	eams Report reams 7 Total Phase			
Client Name: C	OP				Job: Zia Hi	ills Permit Basis	
Location:							
Flowsheet: T	anks						
					·		
			Stream P	roperties			
Property		Units	GB Flash	GB W&B	GunBarrel	H2O Degas	H2O Flash
Temperature		°F	129.98	115.838	129.979	129.979	
Pressure		psig	0.25 *	-4.45234	1	1 *	0.25
Mole Fraction Vapor		%	100	100	0	100	
Mole Fraction Light Liq	uid	%	0	0	0.0704329	0	
Mole Fraction Heavy Li	quid	%	0	0	99.9296	0	
Molecular Weight		lb/lbmol	43.9487	50.6767	18.124	43.1208	
Mass Density		lb/ft^3	0.0951934	0.073365	61.3961	0.0985872	
Molar Flow		lbmol/h	0.0800585	1.43464	24124.3	8.28245	0
Mass Flow		lb/h	3.51847	72.7028	437228	357.146	0
Vapor Volumetric Flow		ft^3/h	36.9612	990.974	7121.44	3622.64	0
Liquid Volumetric Flow		gpm	4.60816	123.55	887.868	451.653	0
Std Vapor Volumetric F	low	MMSCFD	0.000729142	0.0130661	219.715	0.0754334	0
Std Liquid Volumetric F	low	sgpm	0.0128573	0.248954	875.658	1.32172	0
Compressibility			0.988601	0.989541	0.000667101	0.988427	
Specific Gravity			1.51744	1.74974	0.984404	1.48885	
API Gravity					10.2584		
Enthalpy		Btu/h	-4596.83	-88997.9	-2.94225E+09	-466612	0
Mass Enthalpy		Btu/lb	-1306.49	-1224.13	-6729.33	-1306.5	
Mass Cp		Btu/(lb*°F)	0.440934	0.426904	0.978945	0.442039	
Ideal Gas CpCv Ratio			1.11482	1.10152	1.32073	1.11698	
Dynamic Viscosity		cP	0.00942896	0.00871405	0.522559	0.00948946	
Kinematic Viscosity		cSt	6.18352	7.41498	0.531342	6.00897	
Thermal Conductivity		Btu/(h*ft*°F)	0.0127395	0.0110089	0.368365	0.0129481	
Surface Tension		lbf/ft			0.00456398		
Net Ideal Gas Heating	Value	Btu/ft^3	2130.93	2458.45	6.01563	2098.35	
Net Liquid Heating Valu		Btu/lb	18199.7	18209.1	-927.684	18269.3	
Gross Ideal Gas Heatir		Btu/ft^3	2321.21	2672.36	56.7071	2286.17	
Gross Liquid Heating V	alue	Btu/lb	19843.1	19811.2	133.706	19922.6	

Client Name: COP Location: Flowsheet: Tanks	Col Off-Spec Feed	nnections	Job: Zia H	Hills Permit Basis	
Location: Flowsheet: Tanks From Block To Block To Block		nnections			
From Block To Block		nections			
To Block		nnections			
To Block		nnections			
To Block	Off-Spec Feed				
To Block		Off-Spec Flash	Off-Spec W&B	Oil Tank Flash	OT W&B
To Block	VLVE-102	OT5 Off Spec	MIX-106	Oil Tanks	MIX-102
Mole Fraction	OT5 Off Spec				
Mole Fraction					
Mole Fraction	Stream	Composition			
Mole Fraction	Off-Spec Feed		Off-Spec W&B	Oil Tank Flash	OT W&B
Nole Fraction	0 (Flash	0/	0/	0/
H2S	<u>%</u>	%	0	<u>%</u>	%
Nitrogen	0.00133646		0.000823055	2.19112E-05	2.03884E-06
Methane	0.596766		1.52162	0.380314	0.110668
Carbon Dioxide	0.00327569	0.0231535	0.0283802	0.0220826	0.0199533
Ethane	1.60299		19.166	12.8067	17.0961
Propane	4.8347		35.2209	32.1668	35.6869
i-Butane n-Butane	2.02569 6.35935		8.2257 19.9515	8.69102 23.3747	8.22053 21.2405
i-Pentane	3.20463		4.90895	6.25543	5.33707
n-Pentane	4.57375		5.50368	7.16839	5.9621
i-Hexane	2.6084		1.45132	2.55826	2.01099
n-Hexane	2.61557		1.08122	1.90073	1.48917
2,2,4-Trimethylpentane	0.0120447		0.0017522	0.0124845	0.00875628
Cyclohexane	<u> </u>		0.280982	0.113486	0.0601427
Benzene i-Heptane	5.64643		1.08595	2.1559	1.49888
n-Heptane	2.87694		0.395545	0.667444	0.458394
Toluene	0.918598	0.239792	0.0804716	0.177953	0.0918291
n-Octane	18.8498		0.80871	0.93264	0.563015
Ethylbenzene	0.236682		0.00744192	0.016161	0.008179
meta-Xylene n-Nonane	<u>3.14522</u> 12.7993		0.087107	0.0713942 0.221923	0.0351589 0.101266
C10+	25.7362		2.08395E-05	0.000108533	3.19234E-05
TEG	2.92523E-06		9.95326E-12	0.000100000	0.102042.00
Water	0.167271		0.00186588	0.306067	0.000399623
Methanol	0	0	0	0	0
	Off-Spec Feed	Off-Spec Flash	Off-Spec W&B	Oil Tank Flash	OT W&B
Molar Flow	lbmol/h	lbmol/h	lbmol/h	lbmol/h	lbmol/h
H2S	0		0	0	0
Nitrogen	 0.00063938		2.64694E-06	2.15825E-07	3.41961E-08
Methane	0.2855		0.00489353	0.00374609	0.00185615
Carbon Dioxide Ethane	0.00156713		9.12706E-05 0.0616377	0.000217513 0.126146	0.000334664 0.286741
Propane	2.31297		0.0616377	0.126146	0.286741
i-Butane	0.969112		0.0264538	0.0856066	0.137878
n-Butane	 3.04239		0.0641639	0.230241	0.356253
i-Pentane	1.53313		0.0157871	0.061616	0.0895151
n-Pentane	2.18813		0.0176998	0.0706087	0.0999984
i-Hexane	<u> </u>		0.00466744 0.0034772	0.0251989 0.0187222	0.0337291 0.0249769
n-Hexane 2,2,4-Trimethylpentane	0.00576231		5.63505E-06	0.000122973	0.000146863
Cyclohexane	0.491904		0.000903635	0.000122070	0.000140003
Benzene	 0.075011		0.000135393	0.00111784	0.00100873
i-Heptane	 2.70132		0.00349239	0.0212356	0.0251398
n-Heptane	1.37636		0.00127207	0.00657433	0.00768833
Toluene n-Octane	0.439468		0.000258796	0.00175284 0.00918651	0.00154019 0.00944308
Ethylbenzene	0.113231		2.39332E-05	0.00015918651	0.00944308
meta-Xylene	1.50471		0.000280136	0.000703233	0.000589697
n-Nonane	 6.12334		0.000475966	0.00218594	0.00169847
* User Specified Values ? Extrapolated or Approximate Values		Max 5.0.20259.0	L	icensed to Portnoy Environ	mental, Inc. and Affiliates

* User Specified Values ? Extrapolated or Approximate Values

Copyright © 2002-2020 BRE Group, Ltd.

Г

	All St	eams Report reams y Total Phase			
Client Name: COP			Job: Zia H	ills Permit Basis	
Location: Flowsheet: Tanks					
Flowsheet: Tanks					
	Off-Spec Feed	Off-Spec	Off-Spec W&B	Oil Tank Flash	OT W&B
Molar Flow	lbmol/h	Flash Ibmol/h	lbmol/h	lbmol/h	lbmol/h
C10+	12.3125	1.27307E-05	6.70198E-08	1.06905E-06	5.3543E-07
TEG	1.39947E-06	6.58127E-10	3.20096E-14	0	0
Water Methanol	0.0800244	0.0734022	6.00065E-06	0.00301476	6.70261E-06 0
	0	0	0	0	0
	Off-Spec Feed	Off-Spec Flash	Off-Spec W&B	Oil Tank Flash	OT W&B
Mass Fraction	%	%	%	%	%
H2S	0 000275462	0.00494693	0.000455058	0 1.11876E-05	0
Nitrogen Methane	0.000275462 0.070439	1.24352	0.000455058	0.111203	1.09589E-06 0.034065
Carbon Dioxide	0.00106069	0.0182162	0.024651	0.0177133	0.0168492
Ethane	0.35464	5.72155	11.3743	7.01878	9.86354
Propane	1.56857	20.7239	30.6526	25.8528	30.1941
i-Butane	0.866269	8.65869	9.43598	9.207	9.16768
n-Butane i-Pentane	2.71953 1.70116	23.3093 8.78326	22.8871 6.9902	24.7624 8.22604	23.6878 7.38838
n-Pentane	2.42795	10.5351	7.83708	9.42661	8.25364
i-Hexane	1.65385	3.88693	2.46842	4.01822	3.32515
n-Hexane	1.6584	3.02097	1.83895	2.98543	2.46232
2,2,4-Trimethylpentane	0.010123	0.00777206	0.00395029	0.0259927	0.0191916
Cyclohexane	0.636679	0.986562	0.466717	0	0
Benzene i-Heptane	0.0901111 4.16283	0.155949 4.19953	0.0649037 2.14762	0.161572 3.9374	0.0901398 2.88178
n-Heptane	2.12102	1.59193	0.782247	1.21898	0.881317
Toluene	0.622737	0.394976	0.146338	0.298849	0.162345
n-Octane	15.8424	4.49937	1.82322	1.94175	1.23399
Ethylbenzene	0.184878	0.0455748	0.0155933	0.031272	0.0166609
meta-Xylene	2.45681	0.550137	0.182519	0.138149	0.0716199
n-Nonane C10+	12.0781 48.75	1.29245 0.000913284	0.374635	0.518778	0.249205
TEG	3.23214E-06	2.754E-08	2.95005E-11	0.000303201	0.000137035
Water	0.0221718	0.368478	0.000663432	0.100499	0.000138137
Methanol	0	0	0	0	0
	Off-Spec Feed	Off-Spec	Off-Spec W&B	Oil Tank Flash	OT W&B
		Flash			0
Mass Flow	lb/h	lb/h	lb/h	lb/h	lb/h
H2S	0 0.0179112	0.0177531	0 7.41498E-05	0 6.04599E-06	0 9.5795E-07
Nitrogen Methane	4.58012	4.46264	0.0785043	0.0600966	0.0297773
Carbon Dioxide	0.0689684	0.0653725	0.00401677	0.00957265	0.0147284
Ethane	23.0596	20.533	1.85339	3.79309	8.62202
Propane	101.992	74.3718	4.99471	13.9714	26.3935
i-Butane	56.3269	31.0735	1.53755	4.97565	8.01375
n-Butane i-Pentane	<u>176.83</u> 110.614	83.6502 31.5205	3.72935 1.13902	13.3821 4.44552	20.7062 6.45841
n-Pentane	110.814	37.8074	1.13902	5.09433	7.21476
i-Hexane	107.537	13.9491	0.402218	2.17152	2.90661
n-Hexane	107.833	10.8414	0.299649	1.61339	2.15239
2,2,4-Trimethylpentane	0.65822	0.0278916	0.000643684	0.014047	0.016776
Cyclohexane	41.3984	3.54048 0.559656	0.0760495	0 0873165	0 078704
Benzene i-Heptane	5.85925 270.677	15.0709	0.0105758	0.0873165 2.12785	0.078794 2.51905
n-Heptane	137.914	5.71298	0.127464	0.65876	0.770386
Toluene	40.4919	1.41745	0.0238451	0.161504	0.14191
n-Octane	1030.11	16.1469	0.297086	1.04936	1.07867
			0 000 000		
Ethylbenzene	12.0212	0.163555	0.00254087	0.0169	0.0145638
	12.0212 159.748 785.349	0.163555 1.97428 4.63821	0.00254087 0.0297406 0.0610451	0.0169 0.0746588 0.280358	0.0145638 0.0626051 0.217838

? Extrapolated or Approximate Values

Copyright © 2002-2020 BRE Group, Ltd.

			All St	reams Report reams y Total Phase			
Client Name:	COP	_			Job: Zia H	lills Permit Basis	
Location:	001						
Flowsheet:	Tanks						
					¥		
			Off-Spec Feed	Off-Spec Flash	Off-Spec W&B	Oil Tank Flash	OT W&B
Mass Flow			lb/h	lb/h	lb/h	lb/h	lb/h
C10+			3169.84	0.00327751	1.72542E-05	0.000275226	0.000137846
TEG			0.000210162	9.88329E-08	4.80698E-12	0	0
Water			1.44166	1.32236	0.000108103	0.0543118	0.000120749
Methanol			0	0	0	0	0
				Properties			
Property		Units	Off-Spec Feed	Off-Spec Flash	Off-Spec W&B	Oil Tank Flash	OT W&B
Temperature		°F	109.773	133.834	107.642	117.392	108.771
Pressure		psig	0.25 *	0.25	6.92431	0.25 *	6.9024
Mole Fraction Vapor		%	9.15079	100	100	100	100
Mole Fraction Light L		%	90.8492	0	0	0	0
Mole Fraction Heavy	Liquid	%	0	0	0	0	0
Molecular Weight		lb/lbmol	135.913	55.9378	50.6673	54.865	52.1174
Mass Density		lb/ft^3	3.13063	0.121155	0.172674	0.122324	0.177296
Molar Flow		lbmol/h	47.8412	6.41552	0.321599	0.985	1.67723
Mass Flow		lb/h	6502.24	358.871	16.2946	54.042	87.413
Vapor Volumetric Flo		ft^3/h	2076.98	2962.07	94.366	441.794	493.035
Liquid Volumetric Flo	w	gpm	258.948	369.297	11.7651	55.0808	61.4693
Std Vapor Volumetrie		MMSCFD	0.435719	0.0584302	0.002929	0.00897101	0.0152756
Std Liquid Volumetrie	CFIOW	sgpm	17.305	1.27097	0.0614084	0.194869	0.324784
Compressibility			0.0962622	0.982235	0.97474	0.981378	0.973504
Specific Gravity				1.93139	1.74941	1.89434	1.79948
API Gravity Enthalpy		Btu/h	-5.49403E+06	-336177	-15793.1	-50899.9	-83903
Mass Enthalpy		Btu/Ib	-5.49403E+00	-936.765	-13793.1	-941.857	-959.845
Mass Enthalpy Mass Cp		Btu/(lb*°F)	0.502737	0.435315	0.423146	0.426377	-959.845 0.423599
Ideal Gas CpCv Rati	0		1.03809	1.0894	1.10321	1.09345	1.09996
Dynamic Viscosity	0	cP	1.03009	0.00850935	0.00842384	0.00831063	0.00835329
Kinematic Viscosity		cSt		4.38463	3.04552	4.24132	2.94129
Thermal Conductivity	1	Btu/(h*ft*°F)		0.0115743	0.0110096	0.0109302	0.010869
	1	lbf/ft		0.0110740	0.0110030	0.0100002	0.010009
Surface Tension	ng Value	Btu/ft^3	6765.41	2883.07	2636.94	2841.34	2709.49
Surface Tension Net Ideal Gas Heatin			18739.3	19404.1	19594.6	19498.2	19573.7
Net Ideal Gas Heatir	alue	Btu/lb	18/39.3				
	alue	Btu/lb Btu/ft^3	7250.77	3124.54	2861.08	3080.22	2939.01

		All St	reams Report reams ny Total Phase			
Client Name:	COP			Job: Zia Hi	lls Permit Basis	
Location: Flowsheet:	Tanks					
Flowsheet.	Tanks	 				
		Conn	ections			
		Slop Flash	Slop Oil	Slop W&B	VRT Flash	WT W&B
From Block		CondTanks (Slop)	Gun Barrel	MIX-105	PV-270 Oil Degasser (VRT)	MIX-104
To Block		MIX-100	CondTanks (Slop)			
			omposition	. <u></u>		
Mole Fraction		Slop Flash %	Slop Oil %	Slop W&B %	VRT Flash %	WT W&B %
H2S			0	0	0	0
Nitrogen Methane			9.4997E-05 0.0707509	0.00584083 5.88411	3.32787E-05 0.442856	0.0232231 11.8741
Carbon Dioxide			0.000674947	0.0900435	0.0236817	0.393854
Ethane			0.248941	21.9326	13.1225	10.7332
Propane			0.975436	26.5467	32.1836	9.45139
i-Butane n-Butane			0.568184 2.19814	5.94045 15.9949	8.64273 23.2143	1.31803 6.50235
i-Pentane			1.82945	5.55168	6.20151	1.3905
n-Pentane			2.97122	6.92417	7.10485	1.08109
i-Hexane			2.96596	3.06477	2.53445	0.556234
n-Hexane			3.22609	2.46874	1.88298	0.251195
2,2,4-Trimethylpenta Cyclohexane	ane		0.0637917 6.1361E-05	0.0172019 3.11632E-05	0.0123681	0.00106692 4.99906E-05
Benzene			0.113537	0.0572865	0.112423	0.303072
i-Heptane			7.94391	2.84073	2.13575	0.255014
n-Heptane			3.54111	0.912202	0.661253	0.0650759
Toluene n-Octane			0.908508 14.9583	0.150564 1.25522	0.176294 0.924201	0.836797 0.0515824
Ethylbenzene			0.277721	0.0169848	0.0160142	0.0912432
meta-Xylene			1.38644	0.0749222	0.0707467	0.443393
n-Nonane			10.27	0.231493	0.21997	0.00709997
C10+			45.2347	0.000104262	0.000107881	2.88564E-05
TEG Water			1.53347E-08 0.246989	1.4397E-13 0.0392862	0.31736	3.73597E-11 54.3704
Methanol			0.240989	0.0392002	0.31730	0
Molar Flow		Slop Flash Ibmol/h	Slop Oil Ibmol/h	Slop W&B Ibmol/h	VRT Flash Ibmol/h	WT W&B Ibmol/h
H2S Nitrogen		0	0 1.60988E-05	0 5.07207E-06	0 2.28305E-06	0 0.000138148
Methane		0	0.0119899	0.00510966	0.0303816	0.0706359
Carbon Dioxide		0	0.000114381	7.81922E-05	0.00162466	0.00234292
Ethane Propane		0	0.0421871 0.165303	0.0190458 0.0230527	0.900258 2.20792	0.0638486 0.0562236
i-Butane		0	0.096288	0.00515858	0.592925	0.00784059
n-Butane		0	0.37251	0.0138897	1.59259	0.0386807
i-Pentane		0	0.31003	0.00482098	0.425448	0.0082717
n-Pentane		0	0.503521	0.00601283	0.48742	0.0064311
i-Hexane n-Hexane		0	0.50263 0.546713	0.00266139 0.00214381	0.173873 0.12918	0.00330888 0.00149429
2,2,4-Trimethylpenta	ane	0	0.0108105	1.49378E-05	0.000848499	6.34678E-06
Cyclohexane		0	1.03986E-05	2.70616E-08	0	2.9738E-07
Benzene		0	0.0192407	4.97466E-05	0.00771264	0.00180289
i-Heptane n-Heptane		0	1.34622 0.600099	0.00246684 0.00079214	0.146521 0.0453646	0.001517 0.000387118
Toluene		0	0.153961	0.00079214	0.0453646	0.000387118
n-Octane		0	2.53492	0.00109001	0.0634038	0.000306849
Ethylbenzene		0	0.0470643	1.47493E-05	0.00109864	0.00054278
meta-Xylene		0	0.234954	6.50611E-05	0.0048535	0.00263762
n-Nonane * User Specified Values		0	1.74042 5.0.20259.0	0.000201024	0.0150908 ensed to Portnoy Environ	4.22357E-05

* User Specified Values ? Extrapolated or Approximate Values ProMax 5.0.20259.0 Copyright © 2002-2020 BRE Group, Ltd.

			All St	reams Report reams y Total Phase			
Client Name:	COP	•			Job: Zia H	ills Permit Basis	
Location:							
Flowsheet:	Tanks						
Molar Flow			Slop Flash Ibmol/h	Slop Oil Ibmol/h	Slop W&B Ibmol/h	VRT Flash Ibmol/h	WT W&B Ibmol/h
C10+			0	7.66575	9.05394E-08	7.40103E-06	1.71659E-07
TEG			0	2.5987E-09	1.25021E-16	0	2.22242E-13
Water			0	0.0418563	3.41155E-05	0.0217722	0.323434
Methanol			0	0	0	0	0
			Olan Flash	01	01		
Maga Exaction			Slop Flash	Slop Oil %	Slop W&B	VRT Flash %	WT W&B %
Mass Fraction H2S			%	<u> </u>	<mark>%</mark>	%	<u>∽</u> 0
Nitrogen				1.54759E-05	0.00317069	1.70441E-05	0.0230168
Methane				0.00660059	1.82922	0.12989	6.73954
Carbon Dioxide				0.000172741	0.0767914	0.0190546	0.613252
Ethane				0.0435308	12.7797	7.21405	11.4184
Propane				0.250135	22.684	25.946	14.7451
i-Butane				0.192049	6.69075	9.18405	2.71035
n-Butane				0.74298	18.0151	24.6683	13.3712
i-Pentane				0.767592	7.76188	8.18028	3.54943
n-Pentane				1.24665	9.68078	9.37185	2.75962
i-Hexane				1.48638	5.11793	3.99307	1.69589
n-Hexane				1.61674	4.1226	2.96668	0.765864
2,2,4-Trimethylpen	tane			0.0423759	0.0380771	0.0258297	0.00431183
Cyclohexane				3.00314E-05	5.08228E-05	0	0.00014885
Benzene				0.0515745	0.0867127	0.160551	0.837567
i-Heptane				4.62903	5.51593	3.91263	0.90406
n-Heptane				2.06346	1.77125	1.21139	0.230703
Toluene				0.486799	0.268828	0.296975	2.72784
n-Octane				9.93657	2.77849	1.93011	0.208465
Ethylbenzene				0.171463	0.0349427	0.0310833	0.34272
meta-Xylene				0.855976	0.154136	0.137318	1.66543
n-Nonane				7.65996	0.575342	0.515798	0.0322173
C10+				67.724	0.000520153	0.00050778	0.00026284
TEG				1.3392E-08	4.18966E-13	0	1.98496E-10
Water				0.0258761	0.013715	0.104529	34.6546
Methanol				0	0	0	0
Mass Flow			Slop Flash Ib/h	Slop Oil Ib/h	Slop W&B lb/h	VRT Flash Ib/h	WT W&B lb/h
H2S			0	0	0	0	0
Nitrogen			0	0.000450981	0.000142086	6.3956E-05	0.00386999
Methane			0	0.192347	0.0819715	0.487396	1.13317
Carbon Dioxide			0	0.00503383	0.0034412	0.0715004	0.103111
Ethane			0	1.26852	0.57269	27.0699	1.91987
Propane			0	7.28916	1.01652	97.3596	2.47922
i-Butane n-Butane			0	5.59647 21.6511	0.299828 0.8073	34.4621 92.5649	0.455713 2.2482
			U				
i-Pontana				JJ JE02	N 21 70 10		
i-Pentane			0	22.3683	0.347828	30.6956 35.1668	0.596793
n-Pentane			0	36.3284	0.433818	35.1668	0.463996
n-Pentane i-Hexane			0 0 0	36.3284 43.3143	0.433818 0.229347	35.1668 14.9836	0.463996 0.285144
n-Pentane i-Hexane n-Hexane	tane		0 0 0 0	36.3284 43.3143 47.1132	0.433818 0.229347 0.184743	35.1668 14.9836 11.1321	0.463996 0.285144 0.128771
n-Pentane i-Hexane n-Hexane 2,2,4-Trimethylpen	tane		0 0 0 0 0	36.3284 43.3143 47.1132 1.23487	0.433818 0.229347 0.184743 0.00170632	35.1668 14.9836 11.1321 0.0969228	0.463996 0.285144 0.128771 0.000724983
n-Pentane i-Hexane n-Hexane	tane		0 0 0 0	36.3284 43.3143 47.1132	0.433818 0.229347 0.184743	35.1668 14.9836 11.1321 0.0969228 0	0.463996 0.285144 0.128771
n-Pentane i-Hexane n-Hexane 2,2,4-Trimethylpen Cyclohexane Benzene	tane		0 0 0 0 0 0	36.3284 43.3143 47.1132 1.23487 0.000875141 1.50293	0.433818 0.229347 0.184743 0.00170632 2.27749E-06 0.0038858	35.1668 14.9836 11.1321 0.0969228 0 0.602449	0.463996 0.285144 0.128771 0.000724983 2.50273E-05 0.140827
n-Pentane i-Hexane n-Hexane 2,2,4-Trimethylpen Cyclohexane	tane		0 0 0 0 0 0 0	36.3284 43.3143 47.1132 1.23487 0.000875141 1.50293 134.894	0.433818 0.229347 0.184743 0.00170632 2.27749E-06 0.0038858 0.247182	35.1668 14.9836 11.1321 0.0969228 0 0.602449 14.6817	0.463996 0.285144 0.128771 0.000724983 2.50273E-05
n-Pentane i-Hexane n-Hexane 2,2,4-Trimethylpen Cyclohexane Benzene i-Heptane	tane		0 0 0 0 0 0 0 0	36.3284 43.3143 47.1132 1.23487 0.000875141 1.50293 134.894 60.131	0.433818 0.229347 0.184743 0.00170632 2.27749E-06 0.0038858 0.247182 0.079374	35.1668 14.9836 11.1321 0.0969228 0 0.602449	0.463996 0.285144 0.128771 0.000724983 2.50273E-05 0.140827 0.152007 0.03879
n-Pentane i-Hexane n-Hexane 2,2,4-Trimethylpen Cyclohexane Benzene i-Heptane n-Heptane	tane		0 0 0 0 0 0 0 0 0 0	36.3284 43.3143 47.1132 1.23487 0.000875141 1.50293 134.894 60.131 14.1857	0.433818 0.229347 0.184743 0.00170632 2.27749E-06 0.0038858 0.247182 0.079374 0.0120468	35.1668 14.9836 11.1321 0.0969228 0 0.602449 14.6817 4.54562 1.11437	0.463996 0.285144 0.128771 0.000724983 2.50273E-05 0.140827 0.152007 0.03879 0.458653
n-Pentane i-Hexane n-Hexane 2,2,4-Trimethylpen Cyclohexane Benzene i-Heptane n-Heptane Toluene n-Octane	tane		0 0 0 0 0 0 0 0 0 0 0	36.3284 43.3143 47.1132 1.23487 0.000875141 1.50293 134.894 60.131 14.1857 289.56	0.433818 0.229347 0.184743 0.00170632 2.27749E-06 0.0038858 0.247182 0.079374 0.0120468 0.124511	35.1668 14.9836 11.1321 0.0969228 0 0.602449 14.6817 4.54562 1.11437 7.24252	0.463996 0.285144 0.128771 0.000724983 2.50273E-05 0.140827 0.152007 0.03879 0.458653 0.035051
n-Pentane i-Hexane n-Hexane 2,2,4-Trimethylpen Cyclohexane Benzene i-Heptane n-Heptane Toluene	tane		0 0 0 0 0 0 0 0 0 0 0 0 0 0	36.3284 43.3143 47.1132 1.23487 0.000875141 1.50293 134.894 60.131 14.1857	0.433818 0.229347 0.184743 0.00170632 2.27749E-06 0.0038858 0.247182 0.079374 0.0120468	35.1668 14.9836 11.1321 0.0969228 0 0.602449 14.6817 4.54562 1.11437	0.463996 0.285144 0.128771 0.000724983 2.50273E-05 0.140827 0.152007 0.03879 0.458653
n-Pentane i-Hexane n-Hexane 2,2,4-Trimethylpen Cyclohexane Benzene i-Heptane n-Heptane Toluene n-Octane Ethylbenzene	tane		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	36.3284 43.3143 47.1132 1.23487 0.000875141 1.50293 134.894 60.131 14.1857 289.56 4.99658	0.433818 0.229347 0.184743 0.00170632 2.27749E-06 0.003858 0.247182 0.079374 0.0120468 0.124511 0.00156586	35.1668 14.9836 11.1321 0.0969228 0 0.602449 14.6817 4.54562 1.11437 7.24252 0.116637	0.463996 0.285144 0.128771 0.000724983 2.50273E-05 0.140827 0.152007 0.03879 0.458653 0.035051 0.0576242
n-Pentane i-Hexane 2,2,4-Trimethylpen Cyclohexane Benzene i-Heptane n-Heptane Toluene n-Octane Ethylbenzene meta-Xylene	tane		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	36.3284 43.3143 47.1132 1.23487 0.000875141 1.50293 134.894 60.131 14.1857 289.56 4.99658 24.9439	0.433818 0.229347 0.184743 0.00170632 2.27749E-06 0.003858 0.247182 0.079374 0.0120468 0.124511 0.00156586 0.00690721	35.1668 14.9836 11.1321 0.0969228 0 0.602449 14.6817 4.54562 1.11437 7.24252 0.116637 0.515272	0.463996 0.285144 0.128771 0.000724983 2.50273E-05 0.140827 0.152007 0.03879 0.458653 0.035051 0.0576242 0.280023

r

			All S	reams Report treams by Total Phase			
Client Name: C	OP	<u> </u>			Job: Zia Hi	Ils Permit Basis	
Location:							
Flowsheet: T	anks						
Mass Flow			Slop Flash Ib/h	Slop Oil lb/h	Slop W&B lb/h	VRT Flash lb/h	WT W&B lb/h
Water			0	0.754052	0.0006146	0.392232	5.82676
Methanol			0	0	0	0	0
			Stream	Properties			
Property		Units	Slop Flash	Slop Oil	Slop W&B	VRT Flash	WT W&B
Temperature		°F	-	129.98	120.098	117.471	119.957
Pressure		psig	0.25	0.25	0.627361	0.4 *	-10.1858
Mole Fraction Vapor		%		0	100	100	100
Mole Fraction Light Lic		%		100	0	0	0
Mole Fraction Heavy L	iquid	%		0	0	0	0
Molecular Weight		lb/lbmol		171.957	51.6044	54.6964	28.2646
Mass Density		lb/ft^3		47.3456	0.117482	0.123293	0.0141758
Molar Flow		lbmol/h	0	16.9466	0.0868383	6.86039	0.594872
Mass Flow		lb/h	0	2914.09	4.48123	375.239	16.8138
Vapor Volumetric Flow Liquid Volumetric Flow		ft^3/h	0	61.5492	<u>38.1439</u> 4.7556	3043.47	<u>1186.09</u> 147.876
Std Vapor Volumetric Flow		gpm MMSCFD	0	7.67367 0.154343	0.00079089	379.446 0.0624818	0.00541787
Std Liquid Volumetric I			0	7.4018	0.0167824	1.35531	0.0567735
Compressibility	1010	sgpm	0	0.00777717	0.983252	0.981286	0.998211
Specific Gravity				0.759125	1.78177	1.88852	0.975903
API Gravity				47.7497	1.10111	1.00002	0.070000
Enthalpy		Btu/h	0	-2.39215E+06	-4316.65	-353862	-44667.4
Mass Enthalpy		Btu/lb	-	-820.891	-963.273	-943.033	-2656.59
Mass Cp		Btu/(lb*°F)		0.509887	0.430278	0.426509	0.435943
Ideal Gas CpCv Ratio		, <i>(</i>		1.02908	1.09891	1.09374	1.19239
Dynamic Viscosity		cP		0.931193	0.00857016	0.00832192	0.0107647
Kinematic Viscosity		cSt		1.22783	4.55403	4.21371	47.4061
Thermal Conductivity		Btu/(h*ft*°F)		0.0685956	0.0116044	0.0109504	0.0130651
Surface Tension		lbf/ft		0.0016009			-
Net Ideal Gas Heating		Btu/ft^3		8502.72	2680.17	2832.85	955.535
Net Liquid Heating Val		Btu/lb		18615.9	19561.3	19499.9	12369.6
Gross Ideal Gas Heati	ng Value	Btu/ft^3		9092.77	2907.5	3071.12	1065.03
Gross Liquid Heating \	/alue	Btu/lb		19918.1	21233.5	21153.4	13840.1

		All St	reams Report reams y Total Phase			
Client Name:	COP			Job: Zia Hil	ls Permit Basis	
Location:						
Flowsheet:	Tanks					
		Conn	ections			
		2	4	9	11	13
From Block						
To Block		MIX-102	MIX-103	MIX-104	MIX-105	MIX-106
TO BIOOK		1117(102	11177 100			1117(100
		Stroom C	omposition			
		2	4	9	11	13
Mole Frection		× ×	4 %		%	%
Mole Fraction H2S		%	<u>%</u>	<mark>%</mark> 0 *	∽ 0 *	<u>%</u> 0 *
Nitrogen		2.03884E-06 *	0.0145048 *	0.0232231 *	0.00584083 *	0.000823055 *
Methane		0.110668 *	6.71301 *	11.8741 *	5.88411 *	1.52162 *
Methane Carbon Dioxide		0.110668 *	0.135414 *	0.393854 *	5.88411 * 0.0900435 *	0.0283802 *
Ethane		17.0961 *	0.135414 * 8.10625 *	0.393854 *	21.9326 *	<u>0.0283802</u> * 19.166 *
		35.6869 *	16.3544 *	9.45139 *	26.5467 *	35.2209 *
Propane		8.22053 *	6.60609 *	1.31803 *	20.3407 5.94045 *	<u> </u>
i-Butane						
n-Butane		21.2405 *	18.2484 *	6.50235 *	15.9949 *	19.9515 *
i-Pentane		5.33707 *	6.20147 *	1.3905 *	5.55168 *	4.90895 *
n-Pentane		5.9621 *	7.74226 *	1.08109 *	6.92417 *	5.50368 *
i-Hexane		2.01099 *	3.43057 *	0.556234 *	3.06477 *	1.45132 *
n-Hexane		1.48917 *	2.69131 *	0.251195 *	2.46874 *	1.08122 *
2,2,4-Trimethylper	ntane	0.00875628 *	0.019837 *	0.00106692 *	0.0172019 *	0.0017522 *
Cyclohexane		0 *	4.28778E-05 *	4.99906E-05 *	3.11632E-05 *	0.280982 *
Benzene		0.0601427 *	0.0949127 *	0.303072 *	0.0572865 *	0.0420998 *
i-Heptane		1.49888 *	3.33795 *	0.255014 *	2.84073 *	1.08595 *
n-Heptane		0.458394 *	1.05424 *	0.0650759 *	0.912202 *	0.395545 *
Toluene		0.0918291 *	0.237174 *	0.836797 *	0.150564 *	0.0804716 *
n-Octane		0.563015 *	1.50989 *	0.0515824 *	1.25522 *	0.80871 *
Ethylbenzene		0.008179 *	0.0247782 *	0.0912432 *	0.0169848 *	0.00744192 *
meta-Xylene		0.0351589 *	0.111717 *	0.443393 *	0.0749222 *	0.087107 *
n-Nonane		0.101266 *	0.354242 *	0.00709997 *	0.231493 *	0.148 *
C10+		3.19234E-05 *	0.000124083 *	2.88564E-05 *	0.000104262 *	2.08395E-05 *
TEG Water		0.000399623 *	9.52633E-12 * 17.0115 *	3.73597E-11 * 54.3704 *	1.4397E-13 * 0.0392862 *	9.95326E-12 * 0.00186588 *
Methanol		0.000399623	0 *	<u> </u>	0.0392662	0.00100000
Methanol		0	0	0	0	0
		2	4	9	11	13
Molar Flow		lbmol/h	lbmol/h	lbmol/h	lbmol/h	lbmol/h
H2S		0 *	0 *	0 *	0 *	0 *
Nitrogen		1.91096E-09 *	4.26252E-06 *	1.59858E-05 *	1.81055E-06 *	3.39744E-07 *
Methane		0.000103726 *	0.00197275 *	0.00817366 *	0.00182396 *	0.000628103 *
Carbon Dioxide		1.87018E-05 *	3.97942E-05 *	0.000271112 *	2.79118E-05 *	1.17149E-05 *
Ethane		0.0160238 *	0.00238218 *	0.00738827 *	0.00679868 *	0.00791143 *
Propane		0.0334486 *	0.00480607 *	0.00650594 *	0.00822898 *	0.0145386 *
i-Butane		0.00770493 *	0.00194133 *	0.000907277 *	0.00184143 *	0.00339544 *
n-Butane		0.0199083 *	0.00536265 *	0.00447595 *	0.00495812 *	0.00823568 *
i-Pentane		0.00500232 *	0.00182243 *	0.000957163 *	0.00172092 *	0.00202634 *
n-Pentane		0.00558815 *	0.00227522 *	0.000744177 *	0.00214636 *	0.00227183 *
i-Hexane		0.00188486 *	0.00100814 *	0.000382888 *	0.000950021 *	0.000599083 *
n-Hexane		0.00139577 *	0.000790895 *	0.000172912 *	0.000765262 *	0.000446312 *
2,2,4-Trimethylper	ntane	8.20708E-06 *	5.82949E-06 *	7.3442E-07 *	5.33225E-06 *	7.2328E-07 *
Cyclohexane		0 *	1.26005E-08 *	3.44114E-08 *	9.66001E-09 *	0.000115985 *
Benzene		5 63704E-05 *	2 7892E-05 *		1 77577E-05 *	1 73782E-05 *

Benzene

i-Heptane

Toluene

n-Octane Ethylbenzene

C10+

TEG

Water

meta-Xylene n-Nonane

n-Heptane

ProMax 5.0.20259.0 Copyright © 2002-2020 BRE Group, Ltd.

*

0 *

*

2.7892E-05

0.000980924

0.000309809

6.96984E-05

0.000443711

7.28157E-06

3.28303E-05

0.000104101

3.64643E-08

2.7995E-15

0.00499917

0.000208622

0.000175541

4.47955E-05

0.000576016

3.55072E-05

0.000305213

4.88732E-06

1.98635E-08

2.57168E-14

0.0374263

6.2808E-05

*

*

*

1.77577E-05

0.000880572

0.000282765

4.66719E-05

0.000389095

5.26498E-06

2.32245E-05

7.17584E-05

3.23193E-08

4.46281E-17

1.2178E-05 *

5.63704E-05

0.00140487

0.000429643

8.60695E-05

0.000527702

3.29537E-05

9.49148E-05

2.99212E-08

3.74558E-07

7.666E-06

Licensed to Portnoy Environmental, Inc. and Affiliates

*

*

*

*

1.73782E-05

0.000448262

0.000163275

3.32175E-05

0.000333823

3.07191E-06

3.59565E-05

6.10921E-05

8.60225E-09

4.10855E-15

7.70206E-07

		All S	reams Report treams by Total Phase					
Client Name: Location:	COP			Job: Zia Hills Permit Basis				
Flowsheet:	Tanks							
				ł				
		2	4	9	11	13		
Molar Flow		lbmol/h	lbmol/h	lbmol/h	lbmol/h	lbmol/h		
Methanol		0 '	* 0 *	0 *	0 *	0		
			Т	1				
		2	4	9	11	13		
Mass Fraction H2S		%	%	<mark>%</mark> 0	<u>%</u> 0	%		
Nitrogen		1.09589E-06	0.00801803	0.0230168	0.00317069	0.000455058		
Methane		0.034065	2.1251	6.73954	1.82922	0.481782		
Carbon Dioxide		0.0168492	0.117599	0.613252	0.0767914	0.024651		
Ethane		9.86354	4.80984	11.4184	12.7797	11.3743		
Propane		30.1941	14.2305	14.7451	22.684	30.6526		
i-Butane		9.16768	7.57666	2.71035	6.69075	9.43598		
n-Butane		23.6878	20.9294	13.3712	18.0151	22.8871		
-Pentane		7.38838	8.82907	3.54943	7.76188	6.9902		
n-Pentane		8.25364	11.0227	2.75962	9.68078	7.83708		
-Hexane		3.32515	5.83366	1.69589	5.11793	2.46842		
n-Hexane 2,2,4-Trimethylpe	antono	<u>2.46232</u> 0.0191916	4.57655 0.0447137	0.765864 0.00431183	4.1226	1.83895		
2,2,4-1 rimetnyipe Cyclohexane	entane	0.0191916	7.12076E-05	0.00431183	5.08228E-05	0.00395029		
Benzene		0.0901398	0.146296	0.837567	0.0867127	0.0649037		
-Heptane		2.88178	6.60005	0.90406	5.51593	2.14762		
n-Heptane		0.881317	2.08452	0.230703	1.77125	0.782247		
Foluene		0.162345	0.43122	2.72784	0.268828	0.146338		
n-Octane		1.23399	3.40338	0.208465	2.77849	1.82322		
Ethylbenzene		0.0166609	0.051909	0.34272	0.0349427	0.0155933		
meta-Xylene		0.0716199	0.234041	1.66543	0.154136	0.182519		
n-Nonane		0.249205	0.896533	0.0322173	0.575342	0.374635		
C10+		0.000157695	0.000630369	0.00026284	0.000520153	0.000105889		
TEG		0	2.82299E-11	1.98496E-10	4.18966E-13	2.95005E-11		
Water Methanol		0.000138137	6.04748 0	34.6546 0	0.013715	0.000663432		
Wethanoi		0	0	0	0	0		
		2	4	9	11	13		
Mass Flow		lb/h	lb/h	lb/h	lb/h	lb/h		
H2S		0 '	" 0 *	0 *	0 *	C		
Nitrogen		5.35326E-08 *	* 0.000119408 *	0.000447818 *	5.07196E-05 *	9.5174E-06		
Vethane		0.00166403 *	0.0316478 *	0.131126 *	0.0292608 *	0.0100763		
Carbon Dioxide		0.000823058	0.00175132 *	0.0119315 *	0.00122838 *	0.000515568		
Ethane			0.07163 *	0.222158 *	0.20443 *	0.237889		
		0.48182 *			0 000000 +	0.64109		
Propane		1.47494 *	0.211927 *	0.286883 *	0.362862 *			
Propane -Butane		1.47494 * 0.447828 *	0.211927 * 0.112834 *	0.286883 * 0.0527329 *	0.107028 *	0.197351		
Propane -Butane n-Butane		1.47494 * 0.447828 * 1.15711 *	0.211927 * 0.112834 * 0.311689 *	0.286883 * 0.0527329 * 0.260152 *	0.107028 * 0.288177 *	0.197351 0.478676		
Propane -Butane 1-Butane -Pentane		1.47494 * 0.447828 * 1.15711 * 0.360911 *	0.211927 * 0.112834 * 0.311689 * 0.131486 *	0.286883 * 0.0527329 * 0.260152 * 0.0690581 *	0.107028 * 0.288177 * 0.124162 *	0.197351 0.478676 0.146198		
Propane -Butane -Peutane -Pentane n-Pentane		1.47494 * 0.447828 * 1.15711 *	0.211927 * 0.112834 * 0.311689 * 0.131486 * 0.164154 *	0.286883 * 0.0527329 * 0.260152 *	0.107028 * 0.288177 *	0.197351 0.478676 0.146198 0.16391		
Propane -Butane -Peutane -Pentane -Pentane -Hexane n-Hexane		1.47494 * 0.447828 * 1.15711 * 0.360911 * 0.403178 * 0.162429 * 0.120281 *	0.211927 * 0.112834 * 0.311689 * 0.131486 * 0.164154 * 0.0868771 * 0.0681557 *	0.286883 * 0.0527329 * 0.260152 * 0.0690581 * 0.0536915 * 0.0329955 * 0.0149008 *	0.107028 * 0.288177 * 0.124162 * 0.154857 * 0.0818684 * 0.0659467 *	0.197351 0.478676 0.146198 0.16391 0.0516262 0.0384611		
Propane -Butane -Pentane -Pentane -Pentane -Hexane 1-Hexane 2,2,4-Trimethylpe	entane	1.47494 * 0.447828 * 1.15711 * 0.360911 * 0.403178 * 0.162429 * 0.120281 * 0.000937483 *	0.211927 * 0.112834 * 0.311689 * 0.131486 * 0.164154 * 0.0868771 * 0.0681557 * 0.000665894 *	0.286883 * 0.0527329 * 0.260152 * 0.0690581 * 0.0536915 * 0.0329955 * 0.0149008 * 8.38917E-05 *	0.107028 * 0.288177 * 0.124162 * 0.154857 * 0.0818684 * 0.0659467 * 0.000609095 *	0.197351 0.478676 0.146198 0.16391 0.0516262 0.0384611 8.26192E-05		
Propane -Butane -Pentane -Pentane -Hexane -Hexane 2,2,4-Trimethylpe Cyclohexane	entane	1.47494 0.447828 1.15711 0.360911 0.403178 0.162429 0.120281 0.000937483 0	0.211927 * 0.112834 * 0.311689 * 0.131486 * 0.164154 * 0.0868771 * 0.0681557 * 0.000665894 * 1.06045E-06 *	0.286883 * 0.0527329 * 0.260152 * 0.0690581 * 0.0329955 * 0.0149008 * 8.38917E-05 * 2.89604E-06 *	0.107028 * 0.288177 * 0.124162 * 0.154857 * 0.0818684 * 0.0659467 * 0.000609095 * 8.12982E-07 *	0.197351 0.478676 0.146198 0.16391 0.0516262 0.0384611 8.26192E-05 0.00976123		
Propane -Butane -Pentane -Pentane -Hexane -Hexane 2,2,4-Trimethylpe Cyclohexane Benzene	entane	1.47494 * 0.447828 * 1.15711 * 0.360911 * 0.403178 * 0.162429 * 0.120281 * 0.000937483 * 0.000937483 *	0.211927 * 0.112834 * 0.311689 * 0.131486 * 0.164154 * 0.0868771 * 0.0081557 * 0.00065894 * 1.06045E-06 * 0.0021787 *	0.286883 * 0.0527329 * 0.260152 * 0.0690581 * 0.0329955 * 0.0149008 * 8.38917E-05 * 2.89604E-06 * 0.0162958 *	0.107028 * 0.288177 * 0.124162 * 0.154857 * 0.0818684 * 0.0659467 * 0.000609095 * 8.12982E-07 * 0.00138709 *	0.197351 0.478676 0.146198 0.16391 0.0516262 0.0384611 8.26192E-05 0.00976123 0.00135744		
Propane -Butane -Pentane -Pentane -Hexane 2,2,4-Trimethylpe Cyclohexane Benzene -Heptane	entane	1.47494 0.447828 1.15711 0.360911 0.403178 0.162429 0.120281 0.000937483 0.0004032 0.140771	0.211927 * 0.112834 * 0.311689 * 0.131486 * 0.164154 * 0.0681557 * 0.00065894 * 1.06045E-06 * 0.0021787 * 0.0982905 *	0.286883 * 0.0527329 * 0.260152 * 0.0690581 * 0.0329955 * 0.0149008 * 8.38917E-05 * 2.89604E-06 * 0.0162958 * 0.0175895 *	0.107028 * 0.288177 * 0.124162 * 0.154857 * 0.0818684 * 0.0659467 * 0.000609095 * 8.12982E-07 * 0.00138709 * 0.088235 *	0.197351 0.478676 0.146198 0.16391 0.0516262 0.0384611 8.26192E-05 0.00976123 0.00135744 0.0449167		
Propane -Butane -Pentane -Pentane -Hexane -Hexane 2,2,4-Trimethylpe Cyclohexane Benzene -Heptane -Heptane	entane	1.47494 * 0.447828 * 1.15711 * 0.360911 * 0.403178 * 0.403178 * 0.162429 * 0.120281 * 0.000937483 * 0.000937483 * 0.000937483 * 0.000937483 * 0.120281 * 0.120281 *	0.211927 * 0.112834 * 0.311689 * 0.131486 * 0.164154 * 0.0681557 * 0.00655894 * 1.06045E-06 * 0.0021787 * 0.0082905 * 0.0310434 *	0.286883 * 0.0527329 * 0.260152 * 0.0690581 * 0.0329955 * 0.0149008 * 2.89604E-06 * 0.0162958 * 0.0175895 * 0.0044886 *	0.107028 * 0.288177 * 0.124162 * 0.154857 * 0.0818684 * 0.0659467 * 0.000609095 * 8.12982E-07 * 0.00138709 * 0.088235 * 0.0283336 *	0.197351 0.478676 0.146198 0.16391 0.0516262 0.0384611 8.26192E-05 0.00976123 0.00135744 0.0449167 0.0163605		
Propane -Butane -Pentane -Pentane -Hexane -Hexane 2,2,4-Trimethylpe Cyclohexane Benzene -Heptane -Heptane Toluene	entane	1.47494 0.447828 1.15711 0.360911 0.403178 0.403178 0.162429 0.162429 0.100937483 0.000937483 0.0004032 0.140771 0.043051	0.211927 * 0.112834 * 0.311689 * 0.131486 * 0.164154 * 0.0868771 * 0.00865894 * 0.00065894 * 1.06045E-06 * 0.0021787 * 0.0082905 * 0.0310434 * 0.0064219 *	0.286883 * 0.0527329 * 0.260152 * 0.0690581 * 0.0329955 * 0.0149008 * 2.89604E-06 * 0.0162958 * 0.0162958 * 0.0175895 * 0.0044886 * 0.0530732 *	0.107028 * 0.288177 * 0.124162 * 0.054857 * 0.0818684 * 0.00659467 * 0.000609095 * 8.12982E-07 * 0.00138709 * 0.088235 * 0.0283336 * 0.00430027 *	0.197351 0.478676 0.146198 0.16391 0.0516262 0.0384611 8.26192E-05 0.00976123 0.00135744 0.0449167 0.0163605 0.0030606		
Propane -Butane -Pentane -Pentane -Hexane -Hexane 2,2,4-Trimethylpe Cyclohexane Benzene -Heptane -Heptane Toluene Doctane	entane	1.47494 0.447828 1.15711 0.360911 0.403178 0.403178 0.162429 0.100937483 0.000937483 0.0004032 0.140771 0.043051 0.0079303 0.00602786	0.211927 * 0.112834 * 0.311689 * 0.131486 * 0.164154 * 0.0868771 * 0.00865894 * 1.06045E-06 * 0.0021787 * 0.0082905 * 0.0310434 * 0.0064219 * 0.0506845 *	0.286883 * 0.0527329 * 0.260152 * 0.0690581 * 0.0329955 * 0.0149008 * 2.89604E-06 * 0.0162958 * 0.0175895 * 0.0044886 * 0.0530732 * 0.00405593 *	0.107028 * 0.288177 * 0.124162 * 0.054857 * 0.0818684 * 0.00659467 * 0.00069095 * 8.12982E-07 * 0.00138709 * 0.088235 * 0.0283336 * 0.0283336 * 0.00430027 *	0.197351 0.478676 0.146198 0.16391 0.0516262 0.0384611 8.26192E-05 0.00976123 0.00135744 0.0449167 0.0163605 0.0030606 0.0381321		
Propane -Butane -Pentane -Pentane -Hexane 2,2,4-Trimethylpe Cyclohexane Benzene -Heptane -Heptane n-Heptane n-Jotane Ethylbenzene	entane	1.47494 0.447828 1.15711 0.360911 0.403178 0.162429 0.162429 0.100937483 0 0.000937483 0.0004032 0.140771 0.0043032 0.0043033 0.0043031 0.0043031 0.0043031 0.0043031 0.0043031 0.0043031 0.0043031 0.0043031 0.0043031 0.0043031 0.0043031 0.0043031	0.211927 * 0.112834 * 0.311689 * 0.131486 * 0.164154 * 0.0868771 * 0.00865894 * 0.00065894 * 0.0021787 * 0.0982905 * 0.0310434 * 0.0064219 * 0.0506845 * 0.000773048 *	0.286883 * 0.0527329 * 0.260152 * 0.0690581 * 0.0329955 * 0.0149008 * 8.38917E-05 * 2.89604E-06 * 0.0162958 * 0.0175895 * 0.0044886 * 0.0530732 * 0.00405593 * 0.00666801 *	0.107028 * 0.288177 * 0.124162 * 0.059467 * 0.00659467 * 0.000609095 * 8.12982E-07 * 0.00138709 * 0.088235 * 0.0283336 * 0.0283336 * 0.02430027 * 0.0444458 *	0.197351 0.478676 0.146198 0.16391 0.0516262 0.0384611 8.26192E-05 0.00976123 0.00135744 0.0449167 0.0163605 0.0030606 0.0381321 0.000326129		
Propane -Butane -Pentane -Pentane -Hexane 2,2,4-Trimethylpe Cyclohexane Benzene -Heptane -Heptane Toluene 1-Octane Ethylbenzene meta-Xylene	entane	1.47494 0.447828 1.15711 0.360911 0.403178 0.403178 0.162429 0.120281 0.100937483 0.000937483 0.0044032 0.140771 0.0044032 0.0043051 0.0079303 0.0079303 0.000813861 0.000813861	0.211927 * 0.112834 * 0.311689 * 0.131486 * 0.164154 * 0.0681557 * 0.000665894 * 0.00021787 * 0.0021787 * 0.0021787 * 0.0021025 * 0.0310434 * 0.0064219 * 0.0506845 * 0.000773048 *	0.286883 * 0.0527329 * 0.260152 * 0.0690581 * 0.0329955 * 0.0149008 * 2.89604E-06 * 0.0162958 * 0.0175895 * 0.0044886 * 0.0530732 * 0.00405593 *	0.107028 * 0.288177 * 0.124162 * 0.054857 * 0.0818684 * 0.00659467 * 0.00069095 * 8.12982E-07 * 0.00138709 * 0.088235 * 0.0283336 * 0.0283336 * 0.00430027 *	0.197351 0.478676 0.146198 0.16391 0.0516262 0.0384611 8.26192E-05 0.00976123 0.00135744 0.0449167 0.0163605 0.0030606 0.0381321		
Propane -Butane -Butane -Pentane -Pentane -Pentane -Hexane 2,2,4-Trimethylpe Cyclohexane Benzene -Heptane -Heptane -Heptane -Doluene n-Octane Ethylbenzene meta-Xylene n-Nonane C10+	entane	1.47494 0.447828 1.15711 0.360911 0.403178 0.162429 0.162429 0.100937483 0 0.000937483 0.0004032 0.140771 0.0043032 0.0043033 0.0043031 0.0043031 0.0043031 0.0043031 0.0043031 0.0043031 0.0043031 0.0043031 0.0043031 0.0043031 0.0043031 0.0043031	0.211927 * 0.112834 * 0.311689 * 0.131486 * 0.164154 * 0.0868771 * 0.00865894 * 0.00065894 * 0.0021787 * 0.0982905 * 0.0310434 * 0.0064219 * 0.0506845 * 0.000773048 *	0.286883 * 0.0527329 * 0.260152 * 0.0690581 * 0.0329955 * 0.0149008 * 8.38917E-05 * 2.89604E-06 * 0.0162958 * 0.0175895 * 0.0044886 * 0.0530732 * 0.00405593 * 0.00666801 * 0.0324029 *	0.107028 * 0.288177 * 0.124162 * 0.154857 * 0.0818684 * 0.00659467 * 0.000609095 * 8.12982E-07 * 0.00138709 * 0.088235 * 0.0283336 * 0.0283336 * 0.00430027 * 0.0444458 * 0.000558957 *	0.197351 0.478676 0.146198 0.16391 0.0516262 0.0384611 8.26192E-05 0.00976123 0.00135744 0.0449167 0.0136066 0.0030606 0.00381321 0.000326129 0.00381732		
Propane -Butane -Butane -Pentane -Pentane -Hexane 2,2,4-Trimethylpe Cyclohexane Benzene -Heptane n-Heptane n-Heptane n-Heptane n-Gotane Ethylbenzene meta-Xylene n-Nonane C10+ TEG	entane	1.47494 0.447828 1.15711 0.360911 0.403178 0.403178 0.162429 0.120281 0.120281 0.120281 0.100937483 0.000937483 0.0004032 0.140771 0.140771 0.043051 0.0079303 0.000813861 0.000813861 0.00349853 0.0121733 7.70317E-06 0	0.211927 * 0.112834 * 0.311689 * 0.131486 * 0.164154 * 0.0681557 * 0.00065894 * 1.06045E-06 * 0.0021787 * 0.0982905 * 0.0310434 * 0.00064219 * 0.00064219 * 0.00064219 * 0.0006425 * 0.000773048 * 0.000773048 * 0.00348543 * 0.00348543 * 0.00348543 * 0.00348543 * 0.00348543 * 0.00348543 * 0.0033515 * 9.38769E-06 *	0.286883 * 0.0527329 * 0.260152 * 0.0690581 * 0.0329955 * 0.0149008 * 8.38917E-05 * 2.89604E-06 * 0.0162958 * 0.0162958 * 0.00162958 * 0.0044886 * 0.00530732 * 0.00405593 * 0.00405593 * 0.00466801 * 0.0324029 * 0.000626824 * 5.11385E-06 * 3.86197E-12 *	0.107028 * 0.288177 * 0.124162 * 0.154857 * 0.0818684 * 0.0659467 * 0.000609095 * 8.12982E-07 * 0.00138709 * 0.088235 * 0.0283336 * 0.0243336 * 0.00430027 * 0.0444458 * 0.00258957 * 0.00246562 * 0.00920339 * 8.32057E-06 * 6.70193E-15 *	0.197351 0.478676 0.146198 0.16391 0.0516262 0.0384611 8.26192E-05 0.00976123 0.00135744 0.0449167 0.0163605 0.0030606 0.0381321 0.0038132 0.00381732 0.00783537 2.21464E-06		
Propane -Butane -Pentane -Pentane -Pentane -Hexane 2,2,4-Trimethylpe Cyclohexane Benzene -Heptane -Heptane Toluene n-Heptane Ethylbenzene meta-Xylene n-Nonane C10+	entane	1.47494 0.447828 1.15711 0.360911 0.403178 0.403178 0.162429 0.120281 0.100937483 0.000937483 0.0044032 0.140771 0.00440323 0.140771 0.0043051 0.0079303 0.000813861 0.000813861 0.00349853 0.0121733 7.70317E-06	0.211927 * 0.112834 * 0.311689 * 0.131486 * 0.164154 * 0.0681557 * 0.000665894 * 1.06045E-06 * 0.0021787 * 0.0982905 * 0.0310434 * 0.0064219 * 0.0506845 * 0.000773048 * 0.000773048 * 0.00348543 * 0.0133515 *	0.286883 * 0.0527329 * 0.260152 * 0.0690581 * 0.0329955 * 0.0149008 * 8.38917E-05 * 2.89604E-06 * 0.0162958 * 0.0175895 * 0.0044886 * 0.0530732 * 0.00405593 * 0.00405593 * 0.00666801 * 0.0324029 * 0.000626824 * 5.11385E-06 *	0.107028 * 0.288177 * 0.124162 * 0.154857 * 0.0818684 * 0.0659467 * 0.000609095 * 8.12982E-07 * 0.00138709 * 0.088235 * 0.0283336 * 0.0243336 * 0.00430027 * 0.00430027 * 0.0044458 * 0.000558957 * 0.00246562 * 0.00920339 * 8.32057E-06 *	0.197351 0.478676 0.146198 0.16391 0.0516262 0.0384611 8.26192E-05 0.00976123 0.00135744 0.0449167 0.0163605 0.0030606 0.0381321 0.000326125 0.00381732 0.00783537		

			Process Str All St Tabulated b				
Client Name: C	COP				Job: Zia Hil	ls Permit Basis	
Location:							
Flowsheet: T	anks						
• • •							
			Stream F	Properties			
Property		Units	2	4	9	11	13
Temperature		°F	108.771	115.838	119.957	120.098	107.642
Pressure		psig	6.9024	-4.45234	-10.1858	0.627361	6.92431
Mole Fraction Vapor		%	100	100	100	100	100
Mole Fraction Light Lic	quid	%	0	0	0	0	0
Mole Fraction Heavy L	iquid	%	0	0	0	0	0
Molecular Weight		lb/lbmol	52.1174	50.6767	28.2646	51.6044	50.6673
Mass Density		lb/ft^3	0.177296	0.073365	0.0141758	0.117482	0.172674
Molar Flow		lbmol/h	0.0937279	0.029387	0.0688358	0.0309981	0.0412785
Mass Flow		lb/h	4.88485	1.48924	1.94561	1.59964	2.09147
Vapor Volumetric Flow	1	ft^3/h	27.552	20.299	137.249	13.616	12.1122
Liquid Volumetric Flow	1	gpm	3.43505	2.53079	17.1115	1.69758	1.5101
Std Vapor Volumetric I	Flow	MMSCFD	0.000853638	0.000267646	0.00062693	0.000282319	0.000375949
Std Liquid Volumetric I	Flow	sgpm	0.0181497	0.00509955	0.00656957	0.00599071	0.007882
Compressibility			0.973504	0.989541	0.998211	0.983252	0.97474
Specific Gravity			1.79948	1.74974	0.975903	1.78177	1.74941
API Gravity							
Enthalpy		Btu/h	-4688.7	-1823.03	-5168.7	-1540.89	-2027.1
Mass Enthalpy		Btu/lb	-959.845	-1224.13	-2656.59	-963.273	-969.225
Mass Cp		Btu/(lb*°F)	0.423599	0.426904	0.435943	0.430278	0.423146
Ideal Gas CpCv Ratio			1.09996	1.10152	1.19239	1.09891	1.10321
Dynamic Viscosity		cP	0.00835329	0.00871405	0.0107647	0.00857016	0.00842384
Kinematic Viscosity		cSt	2.94129	7.41498	47.4061	4.55403	3.04552
Thermal Conductivity		Btu/(h*ft*°F)	0.010869	0.0110089	0.0130651	0.0116044	0.0110096
Surface Tension		lbf/ft					
Net Ideal Gas Heating		Btu/ft^3	2709.49	2458.45	955.535	2680.17	2636.94
Net Liquid Heating Val		Btu/lb	19573.7	18209.1	12369.6	19561.3	19594.6
Gross Ideal Gas Heating		Btu/ft^3	2939.01	2672.36	1065.03	2907.5	2861.08
Gross Liquid Heating \	/alue	Btu/lb	21245.2	19811.2	13840.1	21233.5	21273.7
Remarks							

Simulation Initiated on 12/1	4/2020 8:00:31 AM	Zia_Hills_120MM_GAS_18M_OIL_30M_WAT_12.11.20.pmx	Page 1 of 1
		20MM Plant Schematic	
Client Name:	COP	Job: Zia Hills Permit Basis	
Location:			
Flowsheet:	20MM		
		Za hilk O S MMBTUHR Regen W Close Advectors W Cl	

		All St	reams Report reams y Total Phase		
Client Name:	COP			Job: Zia Hills Permit B	asis
Location:					
Flowsheet:	20MM				
		0			
			ections		
From Block		12 Stripper	509 Flash Drum		
To Block		Condenser	VLVE-102		
TO BIOOK		Condenser			
		Stream C	omposition		
		12	509		· [· · ·
Mole Fraction		%	%		
H2S		0	0		
Nitrogen		0.000803374	0.246557		
Methane		0.654634	55.6499		
Carbon Dioxide		0.055924	0.445319		
Ethane		0.893845	20.7317		
Propane i-Butane		1.08789 0.21472	12.7099 1.82775		
n-Butane		0.21472	4.82689		
i-Pentane		0.312427	1.0559		
n-Pentane		0.433351	1.21422		
i-Hexane		0.161242	0.270655		
n-Hexane		0.147039	0.191092		
2,2,4-Trimethylpe	entane	9.00798E-05	7.02772E-05		
Cyclohexane		0.237901	0.106225		
Benzene		0.259989	0.0198927		
i-Heptane		0.152329 0.068164	0.153755 0.0506156		
n-Heptane Toluene		0.068164	0.0208747		
n-Octane		0.135379	0.0568974		
Ethylbenzene		0.0317974	0.000747026		
meta-Xylene		0.412932	0.00936857		
n-Nonane		0.0184956	0.00417628		
C10+		1.46258E-07	5.4529E-10		
TEG		0.0511016	0.00011579		
Water		93.2751	0.407346		
Methanol		0	0		
		40	500	· · · · · · · · · · · · · · · · · · ·	· · · ·
Molar Flow		12 Ibmol/h	509 Ibmol/h		
H2S		0	0	· · · · · · · · · · · · · · · · · · ·	
Nitrogen		2.60263E-05	0.00183444		
Methane		0.0212077	0.414047		
Carbon Dioxide		0.00181173	0.00331327		
Ethane		0.0289573	0.154248		
Propane		0.0352437	0.0945643		
i-Butane		0.00695612	0.0135989		
n-Butane		0.0279894	0.035913		
i-Pentane n-Pentane		0.0101215	0.00785613 0.00903408		
i-Hexane			0.00903408		
				+ +	
n-Hexane		0.00522366	0.00142176		
n-Hexane 2,2,4-Trimethylpe	entane	0.00476353	0.00142176 5.22877E-07		
n-Hexane 2,2,4-Trimethylpe Cyclohexane	entane		0.00142176 5.22877E-07 0.000790332		
2,2,4-Trimethylpe Cyclohexane Benzene	entane	0.00476353 2.91825E-06 0.00770713 0.00842267	5.22877E-07 0.000790332 0.000148006		
2,2,4-Trimethylpe Cyclohexane Benzene i-Heptane	entane	0.00476353 2.91825E-06 0.00770713 0.00842267 0.00493489	5.22877E-07 0.000790332 0.000148006 0.00114397		
2,2,4-Trimethylpe Cyclohexane Benzene i-Heptane n-Heptane	entane	0.00476353 2.91825E-06 0.00770713 0.00842267 0.00493489 0.00220826	5.22877E-07 0.000790332 0.000148006 0.00114397 0.00037659		
2,2,4-Trimethylpe Cyclohexane Benzene i-Heptane n-Heptane Toluene	entane	0.00476353 2.91825E-06 0.00770713 0.00842267 0.00493489 0.00220826 0.0171971	5.22877E-07 0.000790332 0.000148006 0.00114397 0.00037659 0.000155312		
2,2,4-Trimethylpe Cyclohexane Benzene i-Heptane n-Heptane Toluene n-Octane	entane	0.00476353 2.91825E-06 0.00770713 0.00842267 0.00493489 0.00220826 0.0171971 0.00438578	5.22877E-07 0.000790332 0.000148006 0.00114397 0.00037659 0.000155312 0.000423328		
2,2,4-Trimethylpe Cyclohexane Benzene i-Heptane n-Heptane Toluene n-Octane Ethylbenzene	entane	0.00476353 2.91825E-06 0.00770713 0.00842267 0.00493489 0.00220826 0.0171971 0.00438578 0.00103012	5.22877E-07 0.000790332 0.000148006 0.00114397 0.00037659 0.000155312 0.000423328 5.55803E-06		
2,2,4-Trimethylpe Cyclohexane Benzene i-Heptane n-Heptane Toluene n-Octane Ethylbenzene meta-Xylene	entane	0.00476353 2.91825E-06 0.00770713 0.00842267 0.00493489 0.00220826 0.0171971 0.00438578 0.00103012 0.0133775	5.22877E-07 0.000790332 0.000148006 0.00114397 0.00037659 0.000155312 0.000423328 5.55803E-06 6.97041E-05		
2,2,4-Trimethylpe Cyclohexane Benzene i-Heptane n-Heptane Toluene n-Octane Ethylbenzene meta-Xylene n-Nonane	entane	0.00476353 2.91825E-06 0.00770713 0.00842267 0.00493489 0.00220826 0.0171971 0.00438578 0.00103012 0.0133775 0.00059919	5.22877E-07 0.000790332 0.000148006 0.00114397 0.00037659 0.000155312 0.000423328 5.55803E-06 6.97041E-05 3.10724E-05		
2,2,4-Trimethylpe Cyclohexane Benzene i-Heptane n-Heptane Toluene n-Octane Ethylbenzene meta-Xylene	entane	0.00476353 2.91825E-06 0.00770713 0.00842267 0.00493489 0.00220826 0.0171971 0.00438578 0.00103012 0.0133775	5.22877E-07 0.000790332 0.000148006 0.00114397 0.00037659 0.000155312 0.000423328 5.55803E-06 6.97041E-05		

		All St	eams Report reams _{y Total Phase}		
Client Name:	COP	•		Job: Zia Hills Permit B	asis
Location: Flowsheet:	20MM				
FIOWSHEEL.	20101101				
		12	509		
Molar Flow		lbmol/h	lbmol/h		
Methanol		0	0		
Mass Freshier		12	509		
Mass Fraction H2S		<mark>%</mark>	0		
Nitrogen		0.00107406	0.251909		
Methane		0.501202	32.5608		
Carbon Dioxide		0.117459	0.714788		
Ethane		1.2827	22.736		
Propane i-Butane		2.28942 0.595603	20.4408 3.87453		
n-Butane		2.39653	<u>3.87453</u> 10.2322		
i-Pentane		1.07577	2.77851		
n-Pentane		1.49215	3.19512		
i-Hexane		0.663141	0.850665		
n-Hexane	-	0.604728	0.600599		
2,2,4-Trimethylpen	ntane	0.000491072	0.000292785		
Cyclohexane Benzene		0.955528 0.969202	0.326052 0.0566722		
i-Heptane		0.969202	0.561907		
n-Heptane		0.325968	0.184978		
Toluene		2.33423	0.0701488		
n-Octane		0.738021	0.237043		
Ethylbenzene		0.161108	0.00289252		
meta-Xylene		2.0922	0.0362756		
n-Nonane C10+		0.113211 1.79703E-06	0.0195355 5.1201E-09		
TEG		0.366244	0.000634196		
Water		80.1956	0.267648		
Methanol		0	0		
		12	509		
Mass Flow		lb/h	lb/h		
H2S Nitrogen		0 0.000729086	0 0.0513888		
Methane		0.340224	6.64233		
Carbon Dioxide		0.0797333	0.145815		
Ethane		0.870717	4.6381		
Propane		1.55409	4.16987		
i-Butane		0.404305	0.790396		
n-Butane i-Pentane		1.6268 0.730252	2.08734 0.56681		
n-Pentane		1.01289	0.651798		
i-Hexane		0.450151	0.173534		
n-Hexane		0.410499	0.122521		
2,2,4-Trimethylpen	ntane	0.000333347	5.97274E-05		
Cyclohexane Benzene		0.648628	0.066514 0.011561		
i-Heptane		0.65791	0.011561		
n-Heptane		0.221272	0.0377351		
Toluene		1.58451	0.0143102		
n-Octane		0.500981	0.0483562		
		0.109363	0.000590068		
Ethylbenzene		1.42022	0.00740013		
meta-Xylene			0 00000540	1	
meta-Xylene n-Nonane		0.0768491	0.00398519		
meta-Xylene n-Nonane C10+		0.0768491 1.21985E-06	1.04449E-09		
meta-Xylene n-Nonane		0.0768491			

		All Sti Tabulated by	eams Report reams rotal Phase			
Client Name: COF	2			Job: Zia Hi	lls Permit Basis	
Location:						
Flowsheet: 20M	M					
		Stream P	roperties			
Property	Units	12	509			
Temperature	°F	241.127	117.653			
Pressure	psig	1.69595	56.3959			
Mole Fraction Vapor	%	100	100			
Mole Fraction Light Liquid	1 %	0	0			
Mole Fraction Heavy Liqu		0	0			
Molecular Weight	lb/lbmol	20.9535	27.4183			
Mass Density	lb/ft^3	0.042086	0.315219			
Molar Flow	lbmol/h	3.23963	0.744021			
Mass Flow	lb/h	67.8816	20.3998			
Vapor Volumetric Flow	ft^3/h	1612.93	64.7163			
Liquid Volumetric Flow	gpm	201.092	8.06852			
Std Vapor Volumetric Flov		0.0295053	0.00677626			
Std Liquid Volumetric Flov	w sgpm	0.151907	0.1029			
Compressibility		0.992744	0.978484			
Specific Gravity		0.72347	0.946683			
API Gravity						
Enthalpy	Btu/h	-318318	-27938.3			
Mass Enthalpy	Btu/lb	-4689.32	-1369.54			
Mass Cp	Btu/(lb*°F)	0.459002	0.473309			
Ideal Gas CpCv Ratio		1.26217	1.18481			
Dynamic Viscosity	cP	0.013162	0.0106168			
Kinematic Viscosity	cSt	19.5237	2.10263			
Thermal Conductivity	Btu/(h*ft*°F)	0.0159473	0.0168891			
Surface Tension	lbf/ft					
Net Ideal Gas Heating Va		205.196	1460.98			
Net Liquid Heating Value	Btu/lb	2835.25	20113.8			
Gross Ideal Gas Heating		267.439	1600.7			
Gross Liquid Heating Valu	ue Btu/lb	3962.54	22048.2			

Simulation Initiated on 12/14/2020 8:00:31 AM	Zia_Hills_120MM_GAS_18M_OIL_30M_WAT_12.11.20.pmx	Page 1 of 1
	40MM Plant Schematic	
Client Name: COP	Job: Zia Hills Permit Basis	
Location:		
Flowsheet: 40MM		
	Zia Hillis DEHY 0.75 MMBTU/Hr Regen UBU DEHY 0.75 MMBTU/Hr Regen UBU DEHY	

Process Streams Report All Streams Tabulated by Total Phase							
Client Name:	COP				Job: Zia Hi	Ils Permit Basis	
Location:	ation:						
Flowsheet:	40MM						
				ections			
			Flash to FuelGas-1	VOC to FuelGas-1	Wet Gas Feed	12	403
From Block			VLVE-104	BTEX Condenser	XFS4	Stripper	Flash Drum
To Block					Absorber	Condenser	VLVE-104
				omposition			
			Flash to FuelGas-1	VOC to FuelGas-1	Wet Gas Feed	12	403
Mole Fraction			%	%	%	%	%
H2S Nitrogen			0.247825	0.0134976	0	0.000721405	0 0.247825
Methane			0.247825	10.9264	75.8576	0.584396	<u>0.247825</u> 55.7256
Carbon Dioxide			0.446186	0.926817	0.0924998	0.0498828	0.446186
Ethane			20.6956	14.7552	12.4942	0.791736	20.6956
Propane			12.6629	17.7148	6.09011	0.958174	12.6629
i-Butane			1.81986	3.43521	0.897487	0.188571	1.81986
n-Butane			4.81083	13.6637	1.96223	0.759562	4.81083
i-Pentane			1.05245	4.6895	0.43224	0.27375	1.05245
n-Pentane			1.20924	6.32055	0.484971	0.378186	1.20924
i-Hexane n-Hexane			0.269913 0.190677	2.08883 1.76679	0.119039 0.083046	0.14086	0.269913 0.190677
2,2,4-Trimethylpe	ntane		7.0297E-05	0.000750636	3.79441E-05	7.84493E-05	7.0297E-05
Cyclohexane	Intario		0.10642	2.55115	0.0347627	0.20865	0.10642
Benzene			0.0199963	2.70919	0.00487954	0.229626	0.0199963
i-Heptane			0.153671	1.48429	0.0793935	0.132808	0.153671
n-Heptane			0.0506167	0.568267	0.0264143	0.0593314	0.0506167
Toluene			0.0210025	3.2916	0.00676282	0.468481	0.0210025
n-Octane Ethylbenzene			0.0569598 0.000752193	0.558699 0.0946966	0.0366352 0.000349828	0.11741 0.0280868	0.0569598 0.000752193
meta-Xylene			0.00943264	1.12831	0.000349828	0.364569	0.00943264
n-Nonane			0.00418925	0.0341243	0.00365128	0.0160172	0.00418925
C10+			2.0627E-08	1.3769E-09	1.12035E-10	5.29776E-06	2.0627E-08
TEG			0.000114276	1.47061E-08	0	0.0472563	0.000114276
Water			0.445753	11.2776	0.140692	94.0736	0.445753
Methanol			0	0	0	0	0
			Flash to FuelGas-1	VOC to FuelGas-1	Wet Gas Feed	12	403
Molar Flow			lbmol/h	lbmol/h	lbmol/h	lbmol/h	lbmol/h
H2S			0	0	0	0	0
Nitrogen			0.00325229	4.62886E-05	51.4906	4.63058E-05	0.00325229
Methane Carbon Dioxide			0.731304	0.037471	3400.6	0.0375114	0.731304
Carbon Dioxide Ethane			0.00585543 0.271595	0.00317843 0.0506014	4.14664 560.098	0.0032019 0.0508203	0.00585543 0.271595
Propane			0.271595	0.0506014	273.011	0.0508203	0.271595
i-Butane			0.0238826	0.0117807	40.2332	0.012104	0.0238826
n-Butane			0.0631341	0.0468583	87.9643	0.0487551	0.0631341
i-Pentane			0.0138117	0.0160822	19.3768	0.0175716	0.0138117
n-Pentane		0.0158692	0.0216757	21.7406	0.0242752	0.0158692	
i-Hexane			0.00354215	0.00716342	5.33635	0.00904156	0.00354215
n-Hexane	ntono		0.00250232	0.00605904	3.72284	0.00822919	0.00250232
2,2,4-Trimethylpe Cyclohexane	mane		9.2253E-07 0.00139659	2.57423E-06 0.00874893	0.00170098	5.03554E-06 0.0133929	9.2253E-07 0.00139659
Benzene			0.000139659	0.00874893	0.218743	0.0133929	0.000262418
i-Heptane			0.00202418	0.00509021	3.55911	0.00852477	0.00202418
n-Heptane			0.000664259	0.00194881	1.18412	0.00380839	0.000664259
Toluene			0.000275622	0.0112882	0.303168	0.030071	0.000275622
n-Octane			0.000747501	0.001916	1.64231	0.00753636	0.000747501
Ethylbenzene			9.87127E-06	0.000324752	0.0156823	0.00180285	9.87127E-06
meta-Xylene			0.000123787	0.00386942	0.196146	0.0234011	0.000123787

		All St	reams Report reams y Total Phase			
Client Name:	COP			Job: Zia Hi	lls Permit Basis	
Location:	401414					
Flowsheet:	40MM					
		Flash to FuelGas-1	VOC to FuelGas-1	Wet Gas Feed	12	403
Molar Flow		lbmol/h	lbmol/h	lbmol/h	lbmol/h	lbmol/h
n-Nonane		5.49768E-05	0.000117026	0.163682	0.00102812	5.49768E-05
C10+		2.70695E-10	4.72193E-12	5.0224E-09	3.40055E-07	2.70695E-10
TEG Water		1.49968E-06 0.00584976	5.0433E-11 0.0386755	0 6.30705	0.00303331 6.03844	1.49968E-06 0.00584976
Methanol		0.00384978	0.0360755	0.30703	0.03644	0.00564970
Mothanol				Ŭ	Ŭ	
		Flash to FuelGas-1	VOC to FuelGas-1	Wet Gas Feed	12	403
Mass Fraction		%	%	%	%	%
H2S		0	0	0	0	0
Nitrogen		0.253504	0.0077193	1.48316	0.00098106	0.253504
Methane Carbon Diavida		32.6436	3.57852	56.0944	0.455123	32.6436
Carbon Dioxide Ethane		0.717026 22.7232	0.832715 9.05774	0.187645 17.3172	0.106573 1.15571	0.717026 22.7232
Propane		22.7232 20.3892	9.05774	12.3785	2.05112	22.7232
i-Butane		3.86236	4.07616	2.40447	0.532067	3.86236
n-Butane		10.2102	16.2131	5.25705	2.14317	10.2102
i-Pentane		2.77271	6.90735	1.43749	0.958811	2.77271
n-Pentane		3.18577	9.30978	1.61285	1.3246	3.18577
i-Hexane		0.849336	3.67486	0.472848	0.589278	0.849336
n-Hexane		0.600005	3.10831	0.329876	0.536332	0.600005
2,2,4-Trimethylpe	ntane	0.000293214	0.00175049	0.000199787	0.000435025	0.000293214
Cyclohexane		0.32704	4.38324	0.134855	0.852457	0.32704
Benzene i-Heptane		0.0570347 0.562263	4.32029 3.03633	0.0175689 0.3667	0.870742 0.64603	0.0570347 0.562263
n-Heptane		0.185201	1.16248	0.122001	0.28861	0.185201
Toluene		0.0706617	6.19161	0.0287222	2.09548	0.0706617
n-Octane		0.237583	1.30289	0.192896	0.651074	0.237583
Ethylbenzene		0.00291597	0.205244	0.00171193	0.144755	0.00291597
meta-Xylene		0.0365668	2.44549	0.0214119	1.87893	0.0365668
n-Nonane		0.0196193	0.08935	0.0215858	0.0997271	0.0196193
C10+		1.9391E-07	7.23682E-09	1.32952E-09	6.62116E-05	1.9391E-07
TEG Water		0.000626642	4.50863E-08 4.14777	0.116832	0.34451 82.2734	0.000626642 0.29323
Methanol		0.29323	4.14777	0.110032	02.2734	0.29323
Mothanol			`	U	Ŭ	
		Flash to FuelGas-1	VOC to FuelGas-1	Wet Gas Feed	12	403
Mass Flow H2S		lb/h	lb/h	lb/h	lb/h	lb/h
Nitrogen		0.0911077	0.0012967	1442.43	0.00129718	0.0911077
Methane		11.7319	0.601126	54554	0.601776	11.7319
Carbon Dioxide		0.257695	0.139881	182.492	0.140914	0.257695
Ethane		8.16659	1.52154	16841.6	1.52812	8.16659
Propane		7.32777	2.67886	12038.6	2.71204	7.32777
i-Butane		1.38811	0.68472	2338.44	0.703514	1.38811
n-Butane		3.66949	2.72351	5112.68	2.83375	3.66949
i-Pentane		0.996496	1.16031 1.56387	1398.01 1568.56	1.26777 1.75142	0.996496
n-Pentane i-Hexane		0.305246	0.61731	459.862	0.779159	0.305246
n-Hexane		0.215638	0.52214	320.817	0.709153	0.215638
2,2,4-Trimethylpe	ntane	0.000105379	0.000294051	0.194301	0.000575202	0.000105379
Cyclohexane		0.117536	0.736305	131.151	1.12714	0.117536
Benzene		0.0204979	0.72573	17.0865	1.15132	0.0204979
i-Heptane		0.202074	0.510049	356.629	0.854198	0.202074
n-Heptane		0.06656	0.195275	118.651	0.381608	0.06656
Toluene		0.0253954	1.04008	27.9334	2.7707	0.0253954
n-Octane		0.0853859	0.218862	187.598	0.860867	0.0853859
Ethylbenzene meta-Xylene		0.00104798 0.0131419	0.0344773 0.410797	1.66491 20.8239	0.191399 2.48438	0.00104798
* User Specified Values	3		0.410797		2.48438 ensed to Portnoy Environr	
? Extrapolated or Appro			2020 BRE Group, Ltd.	ElC		

Process Streams Report All Streams Tabulated by Total Phase							
Client Name:	COP	Į			loh: Zia Hi	Ils Permit Basis	
Location:					JOD. Zia Tii		
	40MM						
r lowoncet.							
			Flash to	VOC to	Wet Gas Feed	12	403
			FuelGas-1	FuelGas-1	Wel Gas Teeu	12	405
Mass Flow			Ib/h	lb/h	lb/h	lb/h	lb/h
n-Nonane			0.00705106	0.0150092	20.9931	0.131862	0.00705106
C10+			6.969E-08	1.21566E-09	1.29301E-06	8.75468E-05	6.969E-08
TEG			0.000225211	7.57368E-09	1.29301E-00	0.455521	0.000225211
Water					-		
			0.105385	0.69675	113.623	108.784	0.105385
Methanol			0	0	0	0	0
			Stream F	Properties			
Property		Units	Flash to FuelGas-1	VOC to FuelGas-1	Wet Gas Feed	12	403
Temperature		°F	116.916	120 *	104.894	239.989	117.943
Pressure		psig	45 *	1.69595	1150	1.69595	56.3959
Mole Fraction Vapor		%	100	100	99.9807	100	100
Mole Fraction Light Li	quid	%	0	0	0.019314	0	0
Mole Fraction Heavy Liquid		%	0	0	0	0	0
Molecular Weight	•	lb/lbmol	27.3859	48.9829	21.6945	20.5992	27.3859
Mass Density		lb/ft^3	0.262759	0.119886	5.27625	0.0414445	0.314659
Molar Flow		lbmol/h	1.31233	0.34294	4482.87	6.41884	1.31233
Mass Flow		lb/h	35.9394	16.7982	97253.8	132.223	35.9394
Vapor Volumetric Flow	N	ft^3/h	136.777	140.119	18432.4	3190.36	114.217
Liquid Volumetric Flov	N	gpm	17.0527	17.4693	2298.06	397.759	14.24
Std Vapor Volumetric	Flow	MMSCFD	0.0119522	0.00312337	40.8283	0.0584604	0.0119522
Std Liquid Volumetric	Flow	sgpm	0.181346	0.0583568	549.96	0.292596	0.181346
Compressibility			0.981998	0.984934	0.789478	0.992674	0.978576
Specific Gravity			0.945565	1.69125		0.711235	0.945565
API Gravity							
Enthalpy		Btu/h	-49289.8	-17298.9	-1.57033E+08	-634125	-49289.8
Mass Enthalpy		Btu/lb	-1371.47	-1029.81	-1614.67	-4795.89	-1371.47
Mass Cp		Btu/(lb*°F)	0.47151	0.41031	0.699038	0.45894	0.47353
Ideal Gas CpCv Ratio)		1.1852	1.11047	1.23235	1.26798	1.18495
Dynamic Viscosity		cP	0.0105907	0.00902183		0.0131465	0.0106259
Kinematic Viscosity		cSt	2.51621	4.69794		19.8027	2.10816
Thermal Conductivity			0.0168284	0.0115704		0.0159715	0.0169098
Surface Tension Ibf/f		lbf/ft					
		Btu/ft^3	1458.93	2383.39	1171.85	180.454	1458.93
Net Liquid Heating Va	alue	Btu/lb	20109.2	18275.7	20431.2		
Gross Ideal Gas Heat	ing Value	Btu/ft^3	1598.51	2580.18	1290.73		
Gross Liquid Heating	Value	Btu/lb	22043.9	19800.6	22511	3544.65	22043.9
Remarks							

G3516J

ENGINE SPEED (rpm):

COMPRESSION RATÍO:

AFTERCOOLER TYPE:

COMBUSTION:

SET POINT TIMING:

GAS COMPRESSION APPLICATION

AF TERCOOLER TYPE: AFTERCOOLER - STAGE 2 INLET (°F): AFTERCOOLER - STAGE 1 INLET (°F): JACKET WATER OUTLET (°F): ASPIRATION: COOLING SYSTEM: CONTROL SYSTEM: EXHAUST MANIFOLD:

NOx EMISSION LEVEL (g/bhp-hr NOx):

GAS ENGINE SITE SPECIFIC TECHNICAL DATA G3516J-COP

STANDARD CONTINUOUS CAT WIDE RANGE WITH AIR FUEL RATIO CONTROL

FUEL SYSTEM: SITE CONDITIONS:
RATING STRATEGY: RATING LEVEL:

1400

SCAC

130 201

210

TA

0.5

28

ADEM3

ASWC

JW+OC+1AC, 2AC

LOW EMISSION

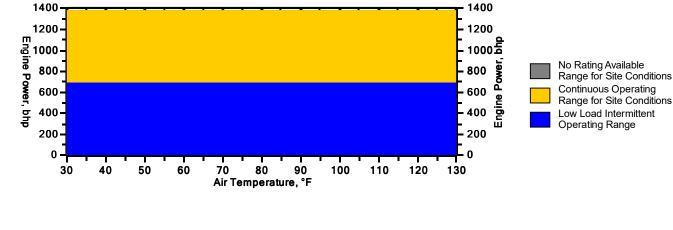
8

IONS: FUEL: FUEL: FUEL PRESSURE RANGE(psig): (See note 1) FUEL METHANE NUMBER: FUEL LHV (Btu/scf): ALTITUDE(ft): INLET AIR TEMPERATURE(°F): STANDARD RATED POWER:

Gas Analysis 7.0-40.0 59.2 1115 3000 105 1380 bhp@1400rpm

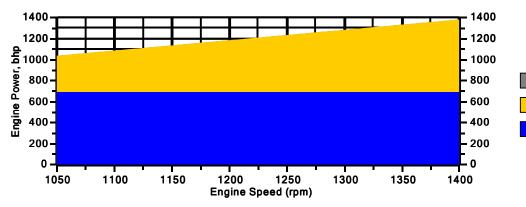
			MAXIMUM RATING	-	TING AT M IR TEMPE	
RATING	NOTES	LOAD	100%	100%	75%	50%
ENGINE POWER (WITHOUT FAN)	(2)	bhp	1380	1380	1035	690
INLET AIR TEMPERATURE		°F	105	105	105	105
ENGINE DATA						
FUEL CONSUMPTION (LHV)	(3)	Btu/bhp-hr	7359	7359	7725	8304
FUEL CONSUMPTION (HHV)	(3)	Btu/bhp-hr	8118	8118	8522	9160
AIR FLOW (@inlet air temp, 14.7 psia) (WET)	(4)(5)	ft3/min	3296	3296	2519	1730
AIR FLOW (WET)	(4)(5)	lb/hr	13891	13891	10615	7289
FUEL FLOW (60°F, 14.7 psia)		scfm	152	152	120	86
INLET MANIFOLD PRESSURE	(6)	in Hg(abs)	88.6	88.6	70.5	48.5
EXHAUST TEMPERATURE - ENGINE OUTLET	(7)	°F	824	824	822	878
EXHAUST GAS FLOW (@engine outlet temp, 14.5 psia) (WET)	(8)(5)	ft3/min	8032	8032	6139	4411
EXHAUST GAS MASS FLOW (WET)	(8)(5)	lb/hr	14378	14378	10998	7564
EMISSIONS DATA - ENGINE OUT						
NOx (as NO2)	(9)(10)	g/bhp-hr	0.50	0.50	0.50	0.50
co	(9)(10)	g/bhp-hr	2.41	2.41	2.42	2.33
THC (mol. wt. of 15.84)	(9)(10)	g/bhp-hr	4.12	4.12	4.03	3.80
NMHC (mol. wt. of 15.84)	(9)(10)	g/bhp-hr	1.55	1.55	1.51	1.43
NMNEHC (VOCs) (mol. wt. of 15.84)	(9)(10)(11)	g/bhp-hr	0.83	0.83	0.81	0.77
HCHO (Formaldehyde)	(9)(10)	g/bhp-hr	0.40	0.40	0.38	0.37
CO2	(9)(10)	g/bhp-hr	482	482	503	544
EXHAUST OXYGEN	(9)(12)	% DRY	9.1	9.1	8.8	8.4
HEAT REJECTION						
HEAT REJ. TO JACKET WATER (JW)	(13)	Btu/min	36754	36754	31581	26311
HEAT REJ. TO ATMOSPHERE	(13)	Btu/min	5313	5313	4428	3543
HEAT REJ. TO LUBE OIL (OC)	(13)	Btu/min	4443	4443	3818	3181
HEAT REJ. TO A/C - STAGE 1 (1AC)	(13)(14)	Btu/min	11506	11506	8733	2353
HEAT REJ. TO A/C - STAGE 2 (2AC)	(13)(14)	Btu/min	5471	5471	4718	2893
COOLING SYSTEM SIZING CRITERIA						
TOTAL JACKET WATER CIRCUIT (JW+OC+1AC)	(14)(15)	Btu/min	57842			
TOTAL AFTERCOOLER CIRCUIT (2AC)	(14)(15)	Btu/min	5745			
A cooling system safety factor of 0% has been added to the cooling system sizing criteria.		•	•			
CONDITIONS AND DEFINITIONS						

CONDITIONS AND DEFINITIONS Engine rating obtained and presented in accordance with ISO 3046/1, adjusted for fuel, site altitude and site inlet air temperature. 100% rating at maximum inlet air temperature is the maximum engine capability for the specified fuel at site altitude and maximum site inlet air temperature. Maximum rating is the maximum capability at the specified aftercooler inlet temperature for the specified fuel at site altitude and reduced inlet air temperature. Lowest load point is the lowest continuous duty operating load allowed. No overload permitted at rating shown.


For notes information consult page three

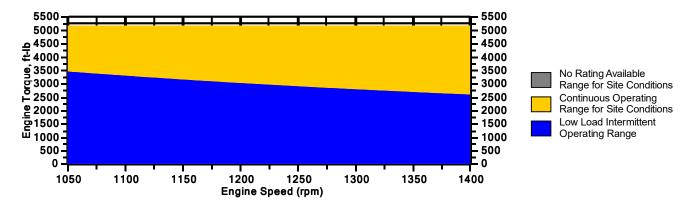
G3516J GAS COMPRESSION APPLICATION

GAS ENGINE SITE SPECIFIC TECHNICAL DATA G3516J-COP


Engine Power vs. Inlet Air Temperature

Data represents temperature sweep at 3000 ft and 1400 rpm

Engine Power vs. Engine Speed



Engine Torque vs. Engine Speed

Data represents speed sweep at 3000 ft and 105 °F

Note: At site conditions of 3000 ft and 105°F inlet air temp., constant torque can be maintained down to 1050 rpm. The minimum speed for loading at these conditions is 1050 rpm.

PREPARED BY: BRAD JOHNSON, CSI/COMPRESSCO LP Data generated by Gas Engine Rating Pro Version 6.09.04 Ref. Data Set EM1495-05-001, Printed 31May2019

G3516J

GAS COMPRESSION APPLICATION

GAS ENGINE SITE SPECIFIC TECHNICAL DATA G3516J-COP

NOTES

1. Fuel pressure range specified is to the engine fuel pressure regulator. Additional fuel train components should be considered in pressure and flow calculations.

2. Engine rating is with two engine driven water pumps. Tolerance is ± 3% of full load.

3. Fuel consumption tolerance is ± 3.0% of full load data.

4. Air flow value is on a 'wet' basis. Flow is a nominal value with a tolerance of \pm 5 %.

- 5. Inlet and Exhaust Restrictions must not exceed A&I limits based on full load flow rates from the standard technical data sheet.
- 6. Inlet manifold pressure is a nominal value with a tolerance of \pm 5 %.

7. Exhaust temperature is a nominal value with a tolerance of (+)63°F, (-)54°F.

8. Exhaust flow value is on a "wet" basis. Flow is a nominal value with a tolerance of ± 6 %.

9. Emissions data is at engine exhaust flange prior to any after treatment.

10. Values listed are higher than nominal levels to allow for instrumentation, measurement, and engine-to-engine variations. They indicate the maximum values expected under steady state conditions. Fuel methane number cannot vary more than ± 3. THC, NMHC, and NMNEHC do not include aldehydes. An oxidation catalyst may be required to meet Federal, State or local CO or HC requirements.

11. VOCs - Volatile organic compounds as defined in US EPA 40 CFR 60, subpart JJJJ

12. Exhaust Oxygen level is the result of adjusting the engine to operate at the specified NOx level. Tolerance is ± 0.5.

13. Heat rejection values are nominal. Tolerances, based on treated water, are ± 10% for jacket water circuit, ± 50% for radiation, ± 20% for lube oil circuit, and ± 5% for aftercooler circuit.

14. Aftercooler heat rejection includes an aftercooler heat rejection factor for the site elevation and inlet air temperature specified. Aftercooler heat rejection values at part load are for reference only. Do not use part load data for heat exchanger sizing.

15. Cooling system sizing criteria are maximum circuit heat rejection for the site, with applied tolerances.

Constituent	Abbrev	Mole %	Norm		
Water Vapor	H2O	0.2100	0.2101		
Methane	CH4	80.5700	80.5942	Fuel Makeup:	Gas Analysis
Ethane	C2H6	11.1400	11.1433	Unit of Measure:	English
Propane	C3H8	4.4300	4.4313		C C
Isobutane	iso-C4H1O	1.8100	1.8105	Calculated Fuel Properties	
Norbutane	nor-C4H1O	0.0000	0.0000	•	59.2
Isopentane	iso-C5H12	0.6000	0.6002	Caterpillar Methane Number:	59.2
Norpentane	nor-C5H12	0.0000	0.0000		
Hexane	C6H14	0.2200	0.2201	Lower Heating Value (Btu/scf):	1115
Heptane	C7H16	0.0900	0.0900	Higher Heating Value (Btu/scf):	1230
Nitrogen	N2	0.6700	0.6702	WOBBE Index (Btu/scf):	1329
Carbon Dioxide	CO2	0.1600	0.1600		
Hydrogen Sulfide	H2S	0.0000	0.0000	THC: Free Inert Ratio:	119.2
Carbon Monoxide	CO	0.0000	0.0000		0.83%
Hydrogen	H2	0.0000	0.0000	Total % Inerts (% N2, CO2, He):	
Oxygen	O2	0.0000	0.0000	RPC (%) (To 905 Btu/scf Fuel):	100%
Helium	HE	0.0000	0.0000		
Neopentane	neo-C5H12	0.0000	0.0000	Compressibility Factor:	0.997
Octane	C8H18	0.0500	0.0500	Stoich A/F Ratio (Vol/Vol):	11.57
Nonane	C9H20	0.0200	0.0200	Stoich A/F Ratio (Mass/Mass):	16.45
Ethylene	C2H4	0.0000	0.0000	Specific Gravity (Relative to Air):	0.704
Propylene	C3H6	0.0000	0.0000		1.286
TOTAL (Volume %)		99.9700	99.9999	Fuel Specific Heat Ratio (K):	1.280

CONDITIONS AND DEFINITIONS

Caterpillar Nethane Number represents the knock resistance of a gaseous fuel. It should be used with the Caterpillar Fuel Usage Guide for the engine and rating to determine the rating for the fuel specified. A Fuel Usage Guide for each rating is included on page 2 of its standard technical data sheet.

RPC always applies to naturally aspirated (NA) engines, and turbocharged (TA or LE) engines only when they are derated for altitude and ambient site conditions.

Project specific technical data sheets generated by the Caterpillar Gas Engine Rating Pro program take the Caterpillar Methane Number and RPC into account when generating a site rating.

Fuel properties for Btu/scf calculations are at 60F and 14.696 psia.

Caterpillar shall have no liability in law or equity, for damages, consequently or otherwise, arising from use of program and related material or any part thereof.

FUEL LIQUIDS Field gases, well head gases, and associated gases typically contain liquid water and heavy hydrocarbons entrained in the gas. To prevent detonation and severe damage to the engine, hydrocarbon liquids must not be allowed to enter the engine fuel system. To remove liquids, a liquid separator and coalescing filter are recommended, with an automatic drain and collection tank to prevent contamination of the ground in accordance with local codes and standards.

To avoid water condensation in the engine or fuel lines, limit the relative humidity of water in the fuel to 80% at the minimum fuel operating temperature.

Emission Control Application Data Sheet

 Maxim Silencers

 10635 Brighton Lane

 Stafford, Texas 77477

 Phone:
 832 554-0980

 Fax:
 832 554-0990

Date: 7/12/2019

Customer: CSI COMPRESSCO

Customer Contact					

Project: 3516J Standard
Powertherm Contact:

Engine Data:

(
	Engine Model:	CAT 3516J			Speed:	1400	RPM	
	Fuel & Operating Type:	Natural Gas	Lean Burn	propane = 4.66%	Engine Power:	1380 1000	Hp KW	
	Exhaust Flow Rate:	8082 13731 14817	acfm m ³ /hr Ibs/hr		Exhaust Temperature:	836 447	°F °C	

Catalyst Data:

(Number of Core layers:	1							
	Model:	MCCOG2-4-16	C3			Inlet Size:	16	in	
	Grade:	RESIDENTIAL				Outlet Size:	16	in	
	Body Diameter:	36	in			Body Length:	112	in	
	Estimated weight:	# 1280 581	lbs Kg			Estimated Back Pressure of the unit:	6.26 15.6	in of WC mbar	
	Core Part Number:	ERH-1524-2		Qty	2	Speed through inlet:	6011	ft/min	
	Cell Density	300	cpsi			Back Pressure across Element(s) only	2.57 6.4	in of WC mbar	/

Emission:

$\left(\right)$	Min. Temp. at Core Face:			400	°C				Catalyst Type:	Oxidation	
	Max. Temp. at Core Face:	944	°F	507	°C				O ₂ in Exhaust	t vol %	
						Pollutant			H ₂ O in Exhaust	t vol %	
			NOx		CO	NMNEHC/VOC	CH ₂ O/CHCO	ORGANIC PM10			
	Engine Out / Pre Emission:		0.5		2.41	0.83	0.40	0	g/bhp-hr		
									mg/Nm3		
	Post Emission:		0.500		0.482	0.415	0.08	0.000	g/bhp-hr		
									mg/Nm3		
			0.0		80.0	50.0	80.0	50.0	% Reduction		
									lb/hr		
									tons/year operation	8760 hr/year	
									ppmv		
$\langle \rangle$									ppmvd @ 15% O2		

Acoustics:

	Frequency Band (Hz):	31.5	63	125	250	500	1000	2000	4000	8000		
	Raw Noise SPL (dB) at 3.28 ft.:	0	0	0	0	0	0	0	0	0		
	Estimated Attenuation (dB):	11	21	28	29	22	18	17	18	19	No Element	
	Plus:	11	22	30	31	26	23	23	24	24	One Element Layer	
	Silenced SPL (dB) at 3.28 ft.:											
< l												

Warranty & Notes:

	If Pre-Emission levels are not as noted above, contact Maxim Silencers for a re-quote.
/	 To achieve Post Emissions levels detailed above, exhaust temperature and Pre-Emission data must be as specified.
1	Maximum allowable exhaust temperature at core face is 1350°F.
	 If applicable, the engine will require an air/fuel ratio controller to meet above emission levels. For Rich Burn engines λ must be 0.96 - 0.99.
	 Catalyst cleaning/regeneration required, if initial backpressure increases by 2" of WC.
	Engine operation to be stable and reproducible.
	 QAC is not designed to withstand a backfire, therefore measures should be taken prior to QAC unit to alleviate backfire pressure.
	 Maximum lubrication oil consumption rate to be less than 0.0015 lb/bhp/hr.
	Lube oil sulfate ash contents should not exceed 0.5%.
	 Phosphorus and/or Zinc should not exceed 5 ppmv in the exhaust stream.
	 A high temperature alarm/shutdown to be maintained at downstream of catalyst at 1300°F.
	 Fuel not to contain heavy or transition metals such as Pb, Ar, Zn, Cu, Sn, Fe, Ba, Ni, Cr etc.
	 Chlorinated or Silicone containing compounds in the exhaust not to exceed 1 ppmv.
	 Sulfur compounds in the exhaust gas stream not to exceed 25 ppmv.
	 Performance guarantee is voided should the catalyst become masked or de-activated by any contaminant in the exhaust stream.
	Engine to be maintained and operated in accordance within manufacturer's recommended practice.
	Under no condition will Maxim Silencers assume any contingent liabilities.
	 Operating manual is available online at www.maximsilencers.com or contact a Maxim sales representative.
	 Nomenclature: QAC4-292-8, 4 is grade (Super Critical), 29 is catalyst block size, 2 is no. of catalyst(s) and 8 is flange diameter.
\	Organic PM10 are estimate only and not a guarantee because of the variability in fuels and additives which change PM10.
\backslash	Maxim Silencers standard one year warranty applies.

Rev level: 86

RE: NSPS Subpart JJJJ Applicability Summary

Date:

Service Order Number:	
Service Site Name:	
CSI/Compressco Unit Number:	811309
Engine Make & Model:	Caterpillar G3516J
Engine Serial Number:	N6W00861
Engine Type:	4SLB
Engine Category:	New
OEM Rated Engine Horsepower:	1380 HP
Engine Manufacture Date:	10/01/2018
"New" Engine Subject to NSPS JJJJ?	Yes – 1.0 g/NOx, 2.0 g/CO, 0.7 g/VOC
Engine Displacement:	69.0 Liters
Engine RPM:	1,400
Fuel Type:	Natural Gas
Control Equipment:	ADEM III / Catalytic Converter
Compressor Make & Model:	Ariel JGT/4
Number of Stages:	3
Compressor OEM Rated HP:	2600 HP
Compressor Rated Speed:	1,500
Compressor Serial Number:	F-57947
Compressor Type:	Reciprocating
Compressor Manufacture Date:	10/01/2018
Compressor NSPS Quad O Status:	
Engine Certification:	None

Reconstruction Status: Since the date of manufacture noted above, this engine has not been modified per 40 CFR 60.14, or reconstructed per 40 CFR 60.15.

Please contact Brad Johnson with any questions regarding this information at 432-495-3242 or brad.johnson@compressor-systems.com.

G3606

ENGINE SPEED (rpm): COMPRESSION RATÍO:

AFTERCOOLER TYPE:

ASPIRATION: COOLING SYSTEM: CONTROL SYSTEM: EXHAUST MANIFOLD:

SET POINT TIMING:

COMBUSTION:

GAS COMPRESSION APPLICATION

AFTERCOOLER - STAGE 2 INLET (°F): AFTERCOOLER - STAGE 1 INLET (°F): JACKET WATER OUTLET (°F):

NOx EMISSION LEVEL (g/bhp-hr NOx):

GAS ENGINE SITE SPECIFIC TECHNICAL DATA G3606A4-COP

FUEL:

RATING STRATEGY:

1000

SCAC

7.6

130 174

190

TA

ADEM4

DRY

0.3

17

JW+1AC, OC+2AC

LOW EMISSION

STANDARD CONTINUOUS GAV WITH AIR FUEL RATIO CONTROL

RATING LEVEL: FUEL SYSTEM:

INLET AIR TEMPERATURE(°F):

STANDARD RATED POWER:

SITE CONDITIONS: FUEL: FUEL PRESSURE RANGE(psig): (See note 1) FUEL METHANE NUMBER: FUEL LHV (Btu/scf): ALTITUDE(ft):

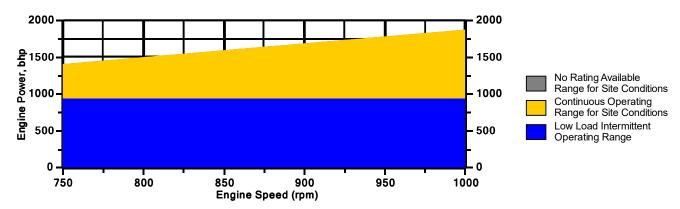
Gas Analysis 58.0-70.3 59.2 1115 3000 105 1875 bhp@1000rpm

			MAXIMUM RATING	-	TING AT N IR TEMPE	
RATING	NOTES	LOAD	100%	100%	75%	50%
ENGINE POWER (WITHOUT FAN)	(2)	bhp	1875	1875	1406	938
INLET AIR TEMPERATURE		°F	105	105	105	105
ENGINE DATA						
FUEL CONSUMPTION (LHV)	(3)	Btu/bhp-hr	6916	6916	7196	7773
FUEL CONSUMPTION (HHV)	(3)	Btu/bhp-hr	7629	7629	7938	8575
AIR FLOW (@inlet air temp, 14.7 psia) (WET)	(4)(5)	ft3/min	5020	5020	3813	2618
AIR FLOW (WET)	(4)(5)	lb/hr	21153	21153	16071	11034
FUEL FLOW (60°F, 14.7 psia)		scfm	194	194	151	109
INLET MANIFOLD PRESSURE	(6)	in Hg(abs)	103.1	103.1	79.5	56.6
EXHAUST TEMPERATURE - ENGINE OUTLET	(7)	°F	809	809	879	956
EXHAUST GAS FLOW (@engine outlet temp, 14.5 psia) (WET)	(8)(5)	ft3/min	11988	11988	9621	7001
EXHAUST GAS MASS FLOW (WET)	(8)(5)	lb/hr	21775	21775	16556	11383
EMISSIONS DATA - ENGINE OUT						
NOx (as NO2)	(9)(10)	g/bhp-hr	0.30	0.30	0.30	0.30
со	(9)(10)	g/bhp-hr	2.74	2.74	2.74	2.74
THC (mol. wt. of 15.84)	(9)(10)	g/bhp-hr	4.66	4.66	4.81	5.11
NMHC (mol. wt. of 15.84)	(9)(10)	g/bhp-hr	1.75	1.75	1.80	1.91
NMNEHC (VOCs) (mol. wt. of 15.84)	(9)(10)(11)	g/bhp-hr	0.94	0.94	0.97	1.03
HCHO (Formaldehyde)	(9)(10)	g/bhp-hr	0.19	0.19	0.20	0.22
CO2	(9)(10)	g/bhp-hr	455	455	471	511
EXHAUST OXYGEN	(9)(12)	% DRY	11.3	11.3	11.1	10.7
HEAT REJECTION						
HEAT REJ. TO JACKET WATER (JW)	(13)	Btu/min	23557	23557	18900	15630
HEAT REJ. TO ATMOSPHERE	(13)	Btu/min	5781	5781	5677	5483
HEAT REJ. TO LUBE OIL (OC)	(13)	Btu/min	11673	11673	10795	9354
HEAT REJ. TO A/C - STAGE 1 (1AC)	(13)(14)	Btu/min	19020	19020	9866	3118
HEAT REJ. TO A/C - STAGE 2 (2AC)	(13)(14)	Btu/min	8202	8202	5034	2461
COOLING SYSTEM SIZING CRITERIA						
TOTAL JACKET WATER CIRCUIT (JW+1AC)	(14)(15)	Btu/min	45884			
TOTAL STAGE 2 AFTERCOOLER CIRCUIT (OC+2AC)	(14)(15)	Btu/min	22620			
A cooling system safety factor of 0% has been added to the cooling system sizing criteria.						
CONDITIONS AND DEFINITIONS						

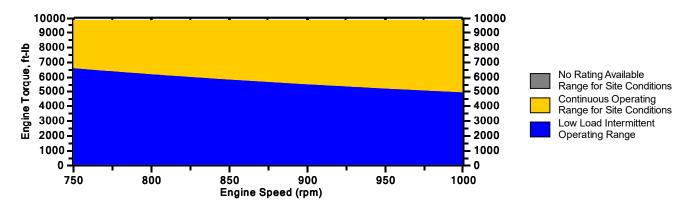
CONDITIONS AND DEFINITIONS Engine rating obtained and presented in accordance with ISO 3046/1, adjusted for fuel, site altitude and site inlet air temperature. 100% rating at maximum inlet air temperature is the maximum engine capability for the specified fuel at site altitude and maximum site inlet air temperature. Maximum rating is the maximum capability at the specified aftercooler inlet temperature for the specified fuel at site altitude and reduced inlet air temperature. Lowest load point is the lowest continuous duty operating load allowed. No overload permitted at rating shown.

For notes information consult page three

GAS ENGINE SITE SPECIFIC TECHNICAL DATA G3606A4-COP


Engine Power vs. Inlet Air Temperature

Data represents temperature sweep at 3000 ft and 1000 rpm


Engine Power vs. Engine Speed

Data represents speed sweep at 3000 ft and 105 °F

Engine Torque vs. Engine Speed

Data represents speed sweep at 3000 ft and 105 °F

Note: At site conditions of 3000 ft and 105°F inlet air temp., constant torque can be maintained down to 750 rpm. The minimum speed for loading at these conditions is 750 rpm.

PREPARED BY: BRAD JOHNSON, CSI/COMPRESSCO LP Data generated by Gas Engine Rating Pro Version 6.09.04 Ref. Data Set EM1402-04-001, Printed 31May2019

G3606

GAS COMPRESSION APPLICATION

GAS ENGINE SITE SPECIFIC TECHNICAL DATA G3606A4-COP

NOTES

1. Fuel pressure range specified is to the engine gas shutoff valve (GSOV). Additional fuel train components should be considered in pressure and flow calculations.

2. Engine rating is with two engine driven water pumps. Tolerance is ± 3% of full load.

3. Fuel consumption tolerance is ± 2.5% of full load data.

4. Air flow value is on a 'wet' basis. Flow is a nominal value with a tolerance of \pm 5 %.

- 5. Inlet and Exhaust Restrictions must not exceed A&I limits based on full load flow rates from the standard technical data sheet.
- 6. Inlet manifold pressure is a nominal value with a tolerance of \pm 5 %.

7. Exhaust temperature is a nominal value with a tolerance of (+)63°F, (-)54°F.

8. Exhaust flow value is on a "wet" basis. Flow is a nominal value with a tolerance of ± 6 %.

9. Emissions data is at engine exhaust flange prior to any after treatment.

10. Values listed are higher than nominal levels to allow for instrumentation, measurement, and engine-to-engine variations. They indicate the maximum values expected under steady state conditions. Fuel methane number cannot vary more than ± 3. THC, NMHC, and NMNEHC do not include aldehydes. An oxidation catalyst may be required to meet Federal, State or local CO or HC requirements.

11. VOCs - Volatile organic compounds as defined in US EPA 40 CFR 60, subpart JJJJ

12. Exhaust Oxygen level is the result of adjusting the engine to operate at the specified NOx level. Tolerance is ± 0.5.

13. Heat rejection values are nominal. Tolerances, based on treated water, are ± 10% for jacket water circuit, ± 50% for radiation, ± 20% for lube oil circuit, and ± 5% for aftercooler circuit.

14. Aftercooler heat rejection includes an aftercooler heat rejection factor for the site elevation and inlet air temperature specified. Aftercooler heat rejection values at part load are for reference only. Do not use part load data for heat exchanger sizing.

15. Cooling system sizing criteria are maximum circuit heat rejection for the site, with applied tolerances.

Constituent	Abbrev	Mole %	Norm		
Water Vapor	H2O	0.2100	0.2101		
Methane	CH4	80.5700	80.5942	Fuel Makeup:	Gas Analysis
Ethane	C2H6	11.1400	11.1433	Unit of Measure:	English
Propane	C3H8	4.4300	4.4313		0
Isobutane	iso-C4H1O	1.8100	1.8105	Calculated Fuel Properties	
Norbutane	nor-C4H1O	0.0000	0.0000	•	59.2
Isopentane	iso-C5H12	0.6000	0.6002	Caterpillar Methane Number:	59.2
Norpentane	nor-C5H12	0.0000	0.0000		
Hexane	C6H14	0.2200	0.2201	Lower Heating Value (Btu/scf):	1115
Heptane	C7H16	0.0900	0.0900	Higher Heating Value (Btu/scf):	1230
Nitrogen	N2	0.6700	0.6702	WOBBE Index (Btu/scf):	1329
Carbon Dioxide	CO2	0.1600	0.1600		
Hydrogen Sulfide	H2S	0.0000	0.0000	THC: Free Inert Ratio:	119.2
Carbon Monoxide	CO	0.0000	0.0000		0.83%
Hydrogen	H2	0.0000	0.0000	Total % Inerts (% N2, CO2, He):	
Oxygen	O2	0.0000	0.0000	RPC (%) (To 905 Btu/scf Fuel):	100%
Helium	HE	0.0000	0.0000		
Neopentane	neo-C5H12	0.0000	0.0000	Compressibility Factor:	0.997
Octane	C8H18	0.0500	0.0500	Stoich A/F Ratio (Vol/Vol):	11.57
Nonane	C9H20	0.0200	0.0200	Stoich A/F Ratio (Mass/Mass):	16.45
Ethylene	C2H4	0.0000	0.0000	Specific Gravity (Relative to Air):	0.704
Propylene	C3H6	0.0000	0.0000		1.286
TOTAL (Volume %)		99.9700	99.9999	Fuel Specific Heat Ratio (K):	1.280

CONDITIONS AND DEFINITIONS

Caterpillar Nethane Number represents the knock resistance of a gaseous fuel. It should be used with the Caterpillar Fuel Usage Guide for the engine and rating to determine the rating for the fuel specified. A Fuel Usage Guide for each rating is included on page 2 of its standard technical data sheet.

RPC always applies to naturally aspirated (NA) engines, and turbocharged (TA or LE) engines only when they are derated for altitude and ambient site conditions.

Project specific technical data sheets generated by the Caterpillar Gas Engine Rating Pro program take the Caterpillar Methane Number and RPC into account when generating a site rating.

Fuel properties for Btu/scf calculations are at 60F and 14.696 psia.

Caterpillar shall have no liability in law or equity, for damages, consequently or otherwise, arising from use of program and related material or any part thereof.

FUEL LIQUIDS Field gases, well head gases, and associated gases typically contain liquid water and heavy hydrocarbons entrained in the gas. To prevent detonation and severe damage to the engine, hydrocarbon liquids must not be allowed to enter the engine fuel system. To remove liquids, a liquid separator and coalescing filter are recommended, with an automatic drain and collection tank to prevent contamination of the ground in accordance with local codes and standards.

To avoid water condensation in the engine or fuel lines, limit the relative humidity of water in the fuel to 80% at the minimum fuel operating temperature.

RE: NSPS Subpart JJJJ Applicability Summary

Date:

Service Order Number:	
Service Site Name:	
CSI/Compressco Unit Number:	811355
Engine Make & Model:	Caterpillar G3606A4
Engine Serial Number:	JFE01170
Engine Type:	4SLB
Engine Category:	New
OEM Rated Engine Horsepower:	1875 HP
Engine Manufacture Date:	10/01/2018
"New" Engine Subject to NSPS JJJJ?	Yes – 1.0 g/NOx, 2.0 g/CO, 0.7 g/VOC
Engine Displacement:	127.21 Liters
Engine RPM:	1,000
Fuel Type:	Natural Gas
Control Equipment:	ADEM IV / Catalytic Converter
Compressor Make & Model:	Ariel KBK/4
Number of Stages:	3
Compressor OEM Rated HP:	3680 HP
Compressor Rated Speed:	1,2000
Compressor Serial Number:	F-58275
Compressor Type:	Reciprocating
Compressor Manufacture Date:	11/01/2018
Compressor NSPS Quad O Status:	
Engine Certification:	None

Reconstruction Status: Since the date of manufacture noted above, this engine has not been modified per 40 CFR 60.14, or reconstructed per 40 CFR 60.15.

Please contact Brad Johnson with any questions regarding this information at 432-495-3242 or brad.johnson@compressor-systems.com.

RE: NSPS Subpart JJJJ Applicability Summary

Date:

Service Order Number:	
Service Site Name:	Zia Hills
CSI/Compressco Unit Number:	412951
Engine Make & Model:	Caterpillar G3606A4
Engine Serial Number:	JFE01205
Engine Type:	4SLB
Engine Category:	New
OEM Rated Engine Horsepower:	1875 HP
Engine Manufacture Date:	11/01/2018
"New" Engine Subject to NSPS JJJJ?	Yes – 1.0 g/NOx, 2.0 g/CO, 0.7 g/VOC
Engine Displacement:	127.2 Liters
Engine RPM:	1,000
Fuel Type:	Natural Gas
Control Equipment:	ADEM IV / Catalytic Converter
Compressor Make & Model:	KBK/4
Number of Stages:	3
Compressor OEM Rated HP:	3680 HP
Compressor Rated Speed:	1,200
Compressor Serial Number:	F-58107
Compressor Type:	Reciprocating
Compressor Manufacture Date:	11/01/2018
Compressor NSPS Quad O Status:	
Engine Certification:	None

Reconstruction Status: Since the date of manufacture noted above, this engine has not been modified per 40 CFR 60.14, or reconstructed per 40 CFR 60.15.

Please contact Brad Johnson with any questions regarding this information at 432-495-3242 or brad.johnson@compressor-systems.com.

RE: NSPS Subpart JJJJ Applicability Summary

Date:

Service Order Number:	
Service Site Name:	Zia Hills Central
CSI/Compressco Unit Number:	811356
Engine Make & Model:	Caterpillar G3606A4
Engine Serial Number:	JFE01188
Engine Type:	4SLB
Engine Category:	New
OEM Rated Engine Horsepower:	1875 HP
Engine Manufacture Date:	11/01/2018
"New" Engine Subject to NSPS JJJJ?	Yes – 1.0 g/NOx, 2.0 g/CO, 0.7 g/VOC
Engine Displacement:	127.2 Liters
Engine RPM:	1,000
Fuel Type:	Natural Gas
Control Equipment:	ADEM IV / Catalytic Converter
Compressor Make & Model:	Ariel KBK/4
Number of Stages:	3
Compressor OEM Rated HP:	3680 HP
Compressor Rated Speed:	1,200
Compressor Serial Number:	F-58379
Compressor Type:	Reciprocating
Compressor Manufacture Date:	12/01/2018
Compressor NSPS Quad O Status:	
Engine Certification:	None

Reconstruction Status: Since the date of manufacture noted above, this engine has not been modified per 40 CFR 60.14, or reconstructed per 40 CFR 60.15.

Please contact Brad Johnson with any questions regarding this information at 432-495-3242 or brad.johnson@compressor-systems.com.

RE: NSPS Subpart JJJJ Applicability Summary

Date:

Service Order Number:	
Service Site Name:	Zia Hills Central
CSI/Compressco Unit Number:	811357
Engine Make & Model:	Caterpillar G3606A4
Engine Serial Number:	JFE01204
Engine Type:	4SLB
Engine Category:	New
OEM Rated Engine Horsepower:	1875 HP
Engine Manufacture Date:	12/01/2018
"New" Engine Subject to NSPS JJJJ?	Yes – 1.0 g/NOx, 2.0 g/CO, 0.7 g/VOC
Engine Displacement:	127.2 Liters
Engine RPM:	1,000
Fuel Type:	Natural Gas
Control Equipment:	ADEM IV / Catalytic Converter
Compressor Make & Model:	Ariel KBK/4
Number of Stages:	3
Compressor OEM Rated HP:	3680 HP
Compressor Rated Speed:	1,200
Compressor Serial Number:	F-58535
Compressor Type:	Reciprocating
Compressor Manufacture Date:	01/02/2019
Compressor NSPS Quad O Status:	
Engine Certification:	None

Reconstruction Status: Since the date of manufacture noted above, this engine has not been modified per 40 CFR 60.14, or reconstructed per 40 CFR 60.15.

Please contact Brad Johnson with any questions regarding this information at 432-495-3242 or brad.johnson@compressor-systems.com.

RE: NSPS Subpart JJJJ Applicability Summary

Date:

Service Order Number:	
Service Site Name:	Zia Hills Central
CSI/Compressco Unit Number:	413029
Engine Make & Model:	Caterpillar G3606A4
Engine Serial Number:	TBD
Engine Type:	4SLB
Engine Category:	New
OEM Rated Engine Horsepower:	1875 HP
Engine Manufacture Date:	TBD
"New" Engine Subject to NSPS JJJJ?	Yes – 1.0 g/NOx, 2.0 g/CO, 0.7 g/VOC
Engine Displacement:	127.2 liters
Engine RPM:	1,000
Fuel Type:	Natural Gas
Control Equipment:	ADEM IV / Catalytic Converter
Compressor Make & Model:	Ariel KBK/4
Number of Stages:	3
Compressor OEM Rated HP:	3680 HP
Compressor Rated Speed:	1,200
Compressor Serial Number:	TBD
Compressor Type:	Reciprocating
Compressor Manufacture Date:	TBD
Compressor NSPS Quad O Status:	
Engine Certification:	None

Reconstruction Status: Since the date of manufacture noted above, this engine has not been modified per 40 CFR 60.14, or reconstructed per 40 CFR 60.15.

Please contact Brad Johnson with any questions regarding this information at 432-495-3242 or brad.johnson@compressor-systems.com.

Prepared For: Brad Johnson

CSI Compressco

APPLICATION INFORMATION DRIVER

Make:	Caterpillar
Model:	G3606A4
Horsepower:	1875
RPM:	1000
Compression Ratio:	7.6
Exhaust Flow Rate:	11988
Exhaust Temperature:	809
Reference:	EM1402-04-001
Fuel:	Custom
Annual Operating Hours:	8760

UNCONTROLLED EMISSIONS DATA

		-	
	<u>g/bhp-hr</u>	<u>lb/hr</u>	<u>Tons/Year</u>
NO _x :	0.30	1.24	5.43
CO:	2.74	11.33	49.61
THC:	4.66	19.26	84.37
NMHC:	1.75	7.23	31.68
NMNEHC:	0.94	3.89	17.02
HCHO:	0.19	0.79	3.44
Oxygen:	11.30%		

CATALYST ELEMENT

Model:	RT-3615-Z
Catalyst Type:	Oxidation, Standard Precious Metals Group
Substrate Type:	Brazed
Element Size:	Rectangle, 36" x 15" x 3.5"
Element Quantity:	4

POST CATALYST EMISSIONS DATA

	<u>g/bhp-hr</u>	<u>lb/hr</u>	<u>Tons/Year</u>	% Reduction
NO _x :		Unaffected by	Oxidation C	atalyst
CO	< 0.19	0.79	3.44	>93%
VOC	< 0.45	1.86	8.15	>52%
HCHO	< 0.03	0.12	0.54	>80%

*Catalyst temperature: 760 °F

**POST CATALYST EMISSIONS ARE ONLY GUARANTEED FOR CATALYST ELEMENTS SUPPLIED BY EMIT

WARRANTY

EMIT Technologies, Inc. warrants that the goods supplied will be free from defects in workmanship by EMIT Technologies, Inc. for a period of one (1) year from date of shipment. EMIT Technologies, Inc. will not be responsible for any defects which result from improper use, neglect, failure to properly maintain or which are attributable to defects, errors or omissions in any drawings, specifications, plans or descriptions, whether written or oral, supplied to EMIT Technologies, Inc. by Buyer.

Catalyst performance using an EMIT Air/Fuel ratio controller is dependent upon properly defined set-points, variable with engine and fuel gas composition. Air/fuel ratio controller performance is guaranteed, but not limited, to fuel gas with an HHV content of 1400 BTU/SCF.

Catalyst performance will be guaranteed for a period of 1 year from installation, or 8760 operating hours, whichever comes first. The catalyst shall be operated with an automatic air/fuel ratio controller. The performance guarantee shall not cover the effects of excessive ash masking due to operation at low load, improper engine maintenance, or inappropriate lubrication oil. The performance guarantee shall not cover the effects of continuous engine misfires (cylinder or ignition) exposing the catalyst to excessive exothermic reaction temperatures.

Unless otherwise stated the exhaust temperature operating range at the converter inlet is 600°F minimum for oxidation catalyst and 750°F for NSCR catalyst and 1250°F maximum.

If a high temperature shut down switch is not installed, thermal deactivation of catalyst at temperatures above 1300 °F is not covered. The catalyst conversion efficiencies (% reduction) will be guaranteed for engine loads of 50 to 100 percent. Engine lubrication oil shall contain less than 0.6% ash (by weight) with a maximum allowable specific oil consumption of 0.01 gal/bhp-hr. The maximum ash loading on the catalyst shall be limited to 350 g/m3. Phosphorous and zinc additives are limited to 0.03% (by weight).

The catalyst must not be exposed to the following known poisoning agents, including: iron, nickel, sodium, chromium, arsenic, zinc, lead, phosphorous, silicon, potassium, magnesium, copper, tin, and mercury. Total poison concentrations in the gas are limited to 0.3 ppm.

Shipment - Promised shipping dates are approximate and are not guaranteed and are from the point of manufacture. EMIT Technologies, Inc. will not be liable for any loss, damage or delay in manufacture or delivery resulting from any cause beyond its control including, but not limited to a period equal to the time lost by reason of that delay. All products will be crated as per best practice to prevent any damage during shipment. Unless otherwise specified, Buyer will pay for any special packing and shipping requirements. Acceptance of goods by common carrier constitutes delivery to Buyer. EMIT Technologies, Inc. shall not be responsible for goods damaged or lost in transit.

PAYMENT TERMS AND ADVANCE PAYMENT REQUIREMENT

Terms: Credit is extended to purchaser for net 30 time period. If payment is not received in the net 30 timeframe, interest on the unpaid balance will accrue at a rate of 1.5% per month from the invoice date.

Advance Payment Requirement: Proposals with a project value of \$100,000 or greater, and 60 days or greater time to completion, will require an advance payment of 30% of the total value. The advance payment will be invoiced to the customer upon receipt of the customer's purchase order. Advance payment is due 30 days after the date of the invoice. If payment is not received in the net 30 timeframe, interest on the unpaid balance will accrue at the rate of 1.5% per month from the invoice date. Failure to pay this invoice may delay completion of the project outlined in this proposal.

Order Cancellation Terms: Upon cancellation of an order once submittal of a Purchase Order has occurred, the customer will pay a 25% restocking fee for Catalyst Housings, Catalyst Elements, and Air/Fuel Ratio Controllers; 50% restocking fee for Cooler Top Solutions, Exhaust System Accessories, and other Custom Built Products; 100% of all associated shipping costs incurred by EMIT; 100% of all project expenses incurred by EMIT for Field Services.

Test Date: 01-07-2020 DOM: 11-01-18 Source:

Caterpillar 3606U A4 Lean Burn 4 Cycle Engine

Unit Number: 412951 Serial Number: JFE01205 Tier II JJJJ Standards

Permit #: GCP-O&G-7746

Location: Zia Hill Central Facility Lea County, New Mexico

Prepared on Behalf of: Conoco Phillips

	<u> </u>	CO			NOx		N	MNEHC (V	OC)		CH2O	
	Federal	State		Federal	State		Federal	State	111114		State	
Results ppmvd		3.855			32.974			50.637			3.568	
<u></u>	<u> </u>	<u></u>	<u>1111111</u>		<u></u>		<u> </u>	<u> 111111</u>	<i></i>	<u> ///////</u>	<u> (())))</u>	
		111111	111114		111111	111111/1		111111	111111	4//////		
	1111111	1111111	<u>1111111</u>		<i>1111111</i>		1111111	<u> </u>	1111111		<u> </u>	
<i></i>		(11111)	<i>111111</i>			1111111	<i></i>	111111	<u> ///////</u>		<i></i>	<i>XIIIIX</i>
Results g/hp-hr		0.016			0.222			0.327			0.016	
Permit g/hp-h	r 2.000	0.548		1.000	0.300		0.700	0.550		<u> </u>	0.040	
		<u></u>	<u> </u>				<i>1111111</i>	<u> </u>	<i></i>		<u></u>	
		111112			111111	1111113		111112	111111			10000
PASS ALL	Pass	Pass		Pass	Pass		Pass	Pass			Pass	SIIIII
					mpleted	: 20:33						
				Ç	2	A	S)				

3

Engine/Compressor Specs					
Location Zia Hill Ce	ntral Facility		Unit ID	412951	Т
Make Caterpilla	r		Site Elevation ft.	2920	е
Model 3606U A4		Atmos	heric Pressure psi.	13.17	-
Serial number JFE01205		<u> </u>	, Stack Diameter in.	20.00	S
mfg. rated hp 1875			Catalyst	Yes	t
mfg. rated rpm 1000		Do	ate of Manufacture	11/1/18	Ľ
Engine/Compressor Operation	Run 1	Run 2	Run 3	3 Run Average	
Test Horsepowe	er 1717	1723	1725	1722	
Test RPI	A 955	958	957	957	S
Percent Load	% 91.59%	91.88%	91.99%	91.82%	Ŭ
Intake Manifold Pressure (h	<i>ı</i>) 72.14	72.14	72.34	72.21	u
Intake Manifold Temperature (I) 124.00	124.00	126.00	124.67	
Ambient Conditions					m
Ambient Temperature Dry (54.00	44.00	42.00	46.67	
Barometric Pressure (he	<i>a)</i> 27.03	27.04	27.01	27.03	m
Exhaust Flow Data					~
Q Stack (dscfi	a) 209022.77	213892.15	218705.43	213905.03	a
Q Stack (dscm/h	r) 5918.81	6056.69	6192.99	6056.16	r
Moisture Fraction By	vs 0.09	0.09	0.09	0.09	
		Res	ults		V
Method 3A Corrected O2% D	ry 11.71%	11.74%	11.71%	11.72%	y
Moisture	% 8.88%	8.90%	8.79%	8.86%	

	Permitted Standards						Results				
	Run Sta	rt/Comple	ted Times:	4:59:00 PM	6:10:00 PM	7:21:00 PM	8:33:00 PM	1/7/20			
	1111	State		Run 1	Run 2	Run 3	3 Run Average	Pass Permits			
CO (g/hp-hr)	2.000	0.548		0.016	0.016	0.015	0.016	Pass			
CO (manual) @4.5% O2				2.646	2.500	2.224	2 477				
CO (ppmvd) @15% O2	mm			2.616	2.580	2.234	2.477				
CO (ppbvd) @15% O2	<i>//////</i>	mm	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2616.440	2579.572	2233.859	2476.624	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
CO (ppmvw)		//////		3.715	3.650	3.175	3.513				
CO (ppmvd)			<u>(((())))</u>	4.077	4.006	3.481	3.855				
	4 000		CO (mol wt)	0.232	0.223	0.210	0.222	Data			
NOx (g/hp-hr)	1.000	0.300		0.232	0.223	0.210	0.222	Pass			
NOx (ppmvd) @15% O2				22.569	21.361	19.623	21.184				
NOx (ppbvd) @15% 02				22568.997	21.361 21360.976	19.623	21.184				
		mm	mm	32.045	30.225						
NOx (ppmvw)	//////	<i> </i>				27.890	30.053				
NOx (ppmvd)	<u> ////////////////////////////////////</u>	<u>uuuu</u>	lOx (mol wt)	35.168	33.176	30.578	32.974	<u></u>			
NMNEHC (g/hp-hr)	0.700			0.327	0.318	0.334	0.327	Pass			
NIVINEHC (g/np-nr)	0.700	0.550		0.327	0.318	0.334	0.327	Pass			
Ŷ											
NMNEHC (ppmvd) @15% O2				33.225	31.796	32.572	32.531				
NMNEHC (pphvd) @15% 02				33224.916	31795.874	32572.133	32530.974				
NMNEHC (ppbvd) @13% 02		mm	mm	47.175	44.990	46.295	46.153				
NMNEHC (ppmvd)				51.772	49.383	50.756	50.637				
NIVINEHC (ppriva)	<u></u>	<u>/////////////////////////////////////</u>	OC (mol wt)		49.383	50.756	50.637				
CH2O (g/hp-hr)		0.040	UC (moi wi)	0.016	0.016	0.015	0.016	Pass			
CH2O (grip-hr)		0.040		0.016	0.016	0.015	0.016	Pass			
				2.345	2.392	2.139	2.292				
CH2O (ppnivd) @15% O2 CH2O (ppbvd) @15% O2	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			2345.288	2392.288	2.139	2292.151				
		mm	mm	3.330	3.385	3.040	3.252				
CH2O (ppmvw) CH2O (ppmvd)				3.655	3.385	3.333	3.252				
	<u>unna</u>		20 (mol wt)		3./15	3.333	3.508				

Formaldehyde

Test Date: 01-07-2020 DOM: 10-01-18 Source: Caterpillar 3606U A4 Lean Burn 4 Cycle Engine

Unit Number: 811355 Serial Number: JFE01170 Tier II JJJJ Standards

Permit #: GCP-O&G-7746

Location: Zia Hill Central Facility Lea County, New Mexico

Prepared on Behalf of: Conoco Phillips

<u></u>	<u> </u>	CO			NOx		N	MNEHC (V	OC)		CH2O	
	Federal	State		Federal	State		Federal	State		111111	State	
Results ppmvd		3.338			33.266			45.869			3.131	
				1111111			1111112	<i>111111</i>	1111111			
						1111111		UUU	111111	4/////		111111
	1111114	111111	1111111	111111	111111	1111111	1111111	111111	1111111	111111	11111	1111111
									111114			
Results g/hp-hr		0.014			0.229			0.303			0.014	
Permit g/hp-hı	r 2.000	0.548		1.000	0.300		0.700	0.550			0.040	
	111111			111111				i i i i i i i i i i i i i i i i i i i		111111		
							1111112	111111	/////k			
PASS ALL	Pass	Pass	<i>1111111</i>	Pass	Pass		Pass	Pass	111111		Pass	
	Tes	st Started	: 12:50	Test Co	ompleted	16:24						
	Tes	st Started	: 12:50	Test Co	2	A	S)				

3

Engine/Compressor Specs						ĺ	
Locat	Location Zia Hill Centr		Location Zia Hill Central Facility Unit IL		Unit ID	811355	τ
Ма	<i>ke</i> Caterpillar			Site Elevation ft.	2920	е	
Ма	del 3606U A4		Atmo	spheric Pressure psi.	13.21		
Serial num	ber JFE01170		i l	Stack Diameter in.	20.00	S	
mfg. ratea	hp 1875			Catalyst	Yes	t	
mfg. rated r	om 1000			Date of Manufacture	10/1/18	Ľ	
Engine/Compressor Operation		Run 1	Run 2	Run 3	3 Run Average		
Т	est Horsepower	1696	1711	1706	1704		
	Test RPM	954	958	955	956	S	
	Percent Load %	90.46%	91.25%	90.97%	90.89%		
Intake Manifo	ld Pressure (hg)	71.05	71.45	71.45	71.32	U	
Intake Manifold 1	emperature (F)	123.00	124.00	124.00	123.67		
Ambient Conditions						m	
Ambient Tem	perature Dry (F)	62.00	59.00	58.00	59.67		
Baromet	ic Pressure (hg)	27.08	27.08	27.02	27.06	m	
Exhaust Flow Data							
	Q Stack (dscfh)	213658.22	216815.11	219456.64	216661.71	а	
Q	Stack (dscm/hr)	6050.07	6139.46	6214.26	6134.60	r	
Moist	re Fraction Bws	0.09	0.09	0.09	0.09		
			Re	esults		v	
Method 3A Corre	cted O2% Dry	11.41%	11.51%	11.48%	11.47%	y	
	Moisture %	9.20%	9.09%	9.10%	9.13%		

		itted Stand				Results		
		rt/Comple	ted Times:	12:50:00 PM	2:01:00 PM	3:12:00 PM	4:24:00 PM	1/7/20
	1111	State		Run 1	Run 2	Run 3	3 Run Average	Pass Permits
CO (g/hp-hr)	2.000	0.548		0.014	0.015	0.013	0.014	Pass
CO (ppmvd) @15% O2				2.123	2.263	1.878	2.088	
CO (ppbvd) @15% O2	V//////			2122.777	2263.489	1878.357	2088.208	
CO (ppmvw)				3.100	3.275	2.725	3.033	
CO (ppmvd)	<i></i>			3.414	3.602	2.998	3.338	X/////////////////////////////////////
			CO (mol wt)	28.01		•		
NOx (g/hp-hr)	1.000	0.300		0.278	0.203	0.205	0.229	Pass
NOx (ppmvd) @15% O2				25.326	18.630	18.432	20.796	
NOx (pph/vd) @15% 02 NOx (ppbvd) @15% 02	mmm			25326.097	18629.723	18432.024	20795.948	
NOx (ppbvd) @13% O2 NOx (ppmvw)	₩₩₩₩	mm	mm	36.985	26.955	26.740	30.227	mmmm
NOx (ppmvd)		\///////	\//////	40.732	29.649	29.417	33.266	********
NOX (ppinva)	<u> «////////////////////////////////////</u>	<u>v///////</u>	IOx (mol wt)		29.049	29.417	33.200	<u> </u>
NMNEHC (g/hp-hr)	0.700	0.550		0.270	0.327	0.311	0.303	Pass
۸ (۱۳)								
NMNEHC (ppmvd) @15% O2				25.665	31.257	29.189	28.704	
NMNEHQ (ppbvd) @15% O2				25665.057	31256.882	29188.634	28703.524	
NMNEHC (ppmvw)	*****	mm		37.480	45.225	42.345	41.683	
NMNEHC (ppmvd)				41.278	49.744	46.584	45.869	
1.250		V	OC (mol wt)	44.10		*	•	
CH2O (g/hp-hr)		0.040		0.014	0.013	0.014	0.014	Pass
CH2O (ppmvd) @15% O2				2.013	1.890	1.971	1.958	
CH2O (ppbvd) @15% O2				2013.214	1890.272	1971.413	1958.300	
CH2O (ppmvw)	*******	<i>\//////</i>		2.940	2.735	2.860	2.845	Y/////////////////////////////////////
CH2O (ppmvd)	<u> </u>			3.238	3.008	3.146	3.131	<u> </u>
		CH	20 (mol wt)	30.03				

VOC

at Plains Analytical Services, Inc.

Formaldehyde

Test Date: 05-15-2019

Source: Caterpillar 3516J Lean Burn 4 Cycle Engine

Unit Number: 811251 Serial Number: N6W00630 Tier II JJJJ Standards

Location: Zia Hills Central Tank Battery Lea County, New Mexico

	СО	NOx	NMNEHC (VOC)	
	Federal	Federal	Federal	XIIIIXIIIIXIIIIX
Results ppmvd	11.157	68.863	35.047	
	X/////////////////////////////////////			X/////////////////////////////////////
	XIIIIXIIIIXIIIII			XIIIIXIIIIX
	XIIIIXIIIIXIIIII			X////X////X////X/////
Results g/hp-hr	0.050	0.507	0.248	
Permit g/hp-hr	2.000	1.000	0.700	XIIIIXIIIIX
	VIIIIIIIIIIIIIIIIIIIII			
	X			X////X////X////X/////
PASS ALL	Pass ///////////////////////////////////	Pass //////	Pass ///////////////////////////////////	XIIIIXIIIIX
		ĠΑ	S	

4.0 Test Summary								
Engine/Compressor Specs								
	Location	Zia Hills Cen	tral Tank Battery	,		Unit ID	811251	
	Make	Caterpillar				Site Elevation ft.	3160	
	Model				Atmosp	heric Pressure psi.	13.11	
S	erial number			T		Stack Diameter in.	16.00	
	nfg. rated hp			T		Catalyst	Yes	
mj	fg. rated rpm	1400			Da	te of Manufacture	8/1/2018	
Engine/Compressor Operation			Run 1		Run 2	Run 3	3 Run Average	
	Test H	lorsepower	1296		1293	1290	1293	
		Test RPM	1199		1203	1201	1201	
	Perc	ent Load %	93.89%		93.69%	93.47%	93.69%	
Intak	ke Manifold Pr	ressure (hg)	61.26		61.05	61.26	61.19	
Intake N	Manifold Temp	perature (F)	139.10		139.80	139.50	139.47	
Ambient Conditions								
Amb	oient Tempera	ture Dry (F)	65.00		68.00	72.00	68.33	
	Barometric Pr	ressure (hg)	26.85		26.83	26.82	26.83	
Exhaust Flow Data								
	Q Si	tack (dscfh)	177385.12		175912.20	174525.22	175939.39	
	Q Stac	k (dscm/hr)	5022.94		4981.23	4941.96	4982.04	
	Moisture F	raction Bws	0.13		0.13	0.13	0.13	
					Res	ults		
Method	3A Correcte	d O2% Dry	8.83%		8.85%	8.83%	8.83%	
	Ν	Moisture %	13.38%		13.31%	13.22%	13.30%	

		nitted Stando				Results		- 4 - 4 - 4
	1	rt/Complete	ed Times:	9:30:00 AM	10:41:00 AM	11:52:00 AM	1:04:00 PM	5/15/19
	1111			Run 1	Run 2	Run 3	3 Run Average	Pass Permits
CO (g/hp-hr)	2.000			0.052	0.051	0.048	0.050	Pass
CO (ppmvd) @15% O2				5.612	5.527	5.228	5.456	
CO (ppbvd) @15% O2				5612.251	5527.402	5227.970	5455.875	
CO (ppmvw)	11111111			9.945	9.790	9.285	9.673	
CO (ppmvd)	00000			11.481	11.292	10.699	11.157	
		C	O (mol wt)	28.01		•		
NOx (g/hp-hr)	1.000			0.514	0.512	0.496	0.507	Pass
NOx (ppmvd) @15% O2				33.916	34.034	33.071	33.674	
NOx (ppbvd) @15% O2	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			33916.169	34033.893	33071.065	33673.709	
NOx (ppmvw)		20000		60.100	60.280	58.735	59.705	innnnn in the second
NOx (ppmvd)	21111112			69.380	69.531	67.679	68.863	
		NC	0x (mol wt)	46.01				
NMNEHC (g/hp-hr)	0.700			0.247	0.246	0.249	0.248	Pass
N N								
NMNEHC (ppmvd) @15% O2				17.006	17.051	17.356	17.138	
NMNEHC (ppbvd) @15% O2				17006.053	17050.822	17356.186	17137.687	
NMNEHQ (ppmvw)				30.135	30.200	30.825	30.387	
NMNEHC (ppmvd)				34.788	34.835	35.519	35.047	
0.700		VO	C (mol wt)	44.10				
\backslash								
Υ.								
}								

Test Type: Initial Test Date: 03-02-2020 DOM: 11-01-18 Source: Caterpillar 3606U A4 Lean Burn 4 Cycle Engine

Unit Number: 811356 Serial Number: JFE01188 Tier II JJJJ Standards

Permit #: GCP-O&G-7746

Location: Zia Hill Central Facility Lea County, New Mexico

TTTTTTTTTTTTTTTTT		CO			NOx		N	MNEHC (V	OC)			<u>IIIII</u>	<u> </u>
<u></u>	Federal	State		Federal	State		Federal	State	111111		<u>1111</u>		<u>11111</u>
Results ppmvd		1.176			39.769			51.360		11111	11111 <u>1</u>	<i>11111.</i>	<u> 11111</u>
<u></u>		<u></u>		<i>1111111</i>	<u></u>	<i></i>	<i>1111111</i>	<u> </u>	<i></i>	11111	<u></u>	<u> </u>	<u></u>
					111114	XIIIIX			111111				
	1111111	111111		1111112	111111		1111111.	1111111	1111111	111111	11111 <u>1</u>	11111	111111
<u></u>		<u>())))))</u>	1111114	(()))))	111114	1111111	<u> </u>	<i>111111</i>		1111/1	<u>1111</u>	<u></u>	<u> </u>
Results g/hp-hr		0.004			0.210			0.260		111112	<u>11111</u>	<i>11111</i>	<u>11111</u>
Permit g/hp-hr	2.000	0.190		1.000	0.300		0.700	0.450	<u>IIIIIA</u>				
					uuu								
		111111	777777	1111112	11111		1111111		//////				11111
PASS ALL	Pass	Pass	<u>UUUUU</u>	Pass	Pass		Pass	Pass	111111	111112	11114	1111	HHH
	Tes	st Started:	14:20	Test Co	ompleted	: 17:54							
	Tes	st Started:	: 14:20	4		: 17:54 A	S						

Engine/Compressor Specs							
	Location	Zia Hill Centr	al Facility		Unit ID	811356	T e
	Make	Caterpillar			Site Elevation ft.	3144	C
	Model	3606U A4		Atmosp	heric Pressure psi.	13.12	S
	Serial number	JFE01188			Stack Diameter in.	20.00	
	mfg. rated hp	1875			Catalyst	Yes	t
	mfg. rated rpm	1000		Do	ate of Manufacture	11/1/18	
Engine/Compressor Operation			Run 1	Run 2	Run 3	3 Run Average	
	Test H	lorsepower	1695	1693	1692	1693	S
		Test RPM	994	991	997	994	3
	Perc	cent Load %	90.38%	90.32%	90.22%	90.31%	u
	Intake Manifold Pr	ressure (hg)	67.55	67.75	67.14	67.48	u
	Intake Manifold Tem	perature (F)	124.00	124.00	124.00	124.00	m
Ambient Conditions							
	Ambient Tempera	ture Dry (F)	71.00	68.00	67.00	68.67	m
Exhaust Flow Data							
	Q Si	tack (dscfh)	166271.02	165244.80	164145.42	165220.48	а
	Q Stac	k (dscm/hr)	4708.23	4679.17	4648.04	4678.48	
	Moisture F	raction Bws	0.09	0.09	0.09	0.09	r
				Res	ults		
	Method 3A Correcte	d O2% Dry	11.35%	11.39%	11.43%	11.39%	У
	Ν	/loisture %	9.33%	9.26%	9.26%	9.28%	

Run Sta	rmitted Standards			Results		
	Start/Completed Times:	2:20:00 PM	3:31:00 PM	4:42:00 PM	5:54:00 PM	3/2/20
1111	State	Run 1	Run 2	Run 3	3 Run Average	Pass Permits
) (g/hp-hr) 2.000	0.190	0.005	0.003	0.003	0.004	Pass
@15% 02		1.022	0.537	0.628	0.729	
@15% 02	<u> </u>	1022.477	536.700	628.082	729.086	
(ppmvw)		1.500	0.785	0.915	1.067	
D (ppmvd)		1.654	0.865	1.008	1.176	
	CO (mol wt)	28.01				
(g/hp-hr) 1.000	0.300	0.198	0.224	0.209	0.210	Pass
@15% 02		23.033	26.257	24.739	24.676	
@15% 02	Ø	23032.994	26257.263	24738.897	24676.385	
: (ppmvw)		33.790	38.405	36.040	36.078	
k (ppmvd)		37.267	42.324	39.716	39.769	
	NOx (mol wt)	46.01	-			
(g/hp-hr) 0.700	0.450	0.254	0.262	0.264	0.260	Pass
@15% O2		30.800	32.117	32.688	31.868	
@15% 02		30800.409	32116.520	32687.743	31868.224	
مومومومومومومومي		45.185	46.975	47.620	46.593	
(ppmvw)	*****************	49.835	51.769	52.477	51.360	
@15% O2 @15% O2		0.254 30.800 30800.409 45.185	32.117 32116.520 46.975	32.688 32687.743 47.620	31.868 31868.224 46.593	

Test Date: 06-06-2019

Source: Caterpillar 3516J Lean Burn 4 Cycle Engine

Unit Number: 811252 Serial Number: N6W00631 Tier II JJJJ Standards

Location: Zia Hills Central Tank Battery Lea County, New Mexico

	СО	NOx	NMNEHC (VOC)	
	Federal	Federal	Federal	XIIIIXIIIIXIIII
Results ppmvd	8.081	96.398	21.275	
	X	X/////////////////////////////////////	XIIIIIIIIIIIIIIIIIIIIII	X/////////////////////////////////////
	XIIIIXIIIIXIIII	XIIIIXIIIIXIIII	XIIIIXIIIIX	XIIIIXIIIIXIIIIX
	X/////////////////////////////////////			
	XIIIXIIIX		XIIIXIIIXIIII	XIIIIXIIIIX
Results g/hp-hr	0.034	0.668	0.141	V//////////////////////////////////////
Permit g/hp-hı	2.000	1.000	0.700	XIIIXIIIX
	XIIIIIIIIIII	X/////////////////////////////////////	X/////////////////////////////////////	
	X////X///X///X////		XIIIXIIIXIIII	X////X////X////
PASS ALL	Pass ///////////////////////////////////	Pass ///////////////////////////////////	Pass ///////////////////////////////////	XIIIXIIIIX
	3 1 2	GA	S	

4.0 Test Summary						
Engine/Compressor Specs						
Lo	ocation Zia Hills Ce	entral Tank Battery		Unit ID	811252	7
	Make Caterpilla	-		Site Elevation ft.	3147.46	e
	Model 3516J		Atn	nospheric Pressure psi.	13.15	
	number N6W0063	1		Stack Diameter in.	16.00	S
	ated hp 1380			Catalyst	Yes	
mfg. rat	ed rpm 1400			Date of Manufacture	8/1/2018	t
Engine/Compressor Operation		Run 1	Run 2	Run 3	3 Run Average	
	Test Horsepower	970	971	972	971	
	Test RPM	1225	1225	1225	1225	S
	Percent Load %	70.27%	70.36%	70.44%	70.36%	
Intake Mar	nifold Pressure (hg)	41.22	41.22	41.43	41.29	L
Intake Manifo	old Temperature (F,	136.90	138.00	138.00	137.63	
Ambient Conditions						n
Ambient T	emperature Dry (F)	77.00	80.00	84.00	80.33	
Baron	netric Pressure (hg,	26.72	26.70	26.70	26.71	n
Exhaust Flow Data						C
	Q Stack (dscfh,	124449.34	124264.48	124071.58	124261.55	
	Q Stack (dscm/hr,	3523.98	3518.75	3513.28	3518.67	ľ
Mc	oisture Fraction Bw	s 0.13	0.13	0.13	0.13	
				Results		У
Method 3A Co	orrected O2% Dry	/ 8.13%	8.18%	8.29%	8.20%	l í
	Moisture %	6 13.01%	12.82%	12.67%	12.83%	

	Perm	nitted Stand	dards			Results		
	Run Sta	rt/Comple	ted Times:	11:31:00 AM	12:42:00 PM	1:53:00 PM	3:04:00 PM	6/6/19
	1111			Run 1	Run 2	Run 3	3 Run Average	Pass Permits
CO (g/hp-hr)	2.000			0.036	0.033	0.032	0.034	Pass
CO (ppmvd) @15% O2				3.972	3.681	3.605	3.753	
CO (ppbvd) @15% O2	1111111			3972.187	3680.974	3605.098	3752.753	
CO (ppmvw)			1111111	7.480	6.920	6.730	7.043	
CO (ppmvd)		1111111	11111111	8.599	7.937	7.706	8.081	
			CO (mol wt)	28.01				
NOx (g/hp-hr)	1.000			0.675	0.663	0.666	0.668	Pass
NOx (ppmvd) @15% O2				44.884	44.390	45.061	44.778	
NOx (ppbvd) @15% O2				44883.594	44389.777	45061.047	44778.140	
NOx (ppmvw)		1111111		84.520	83.450	84.120	84.030	innnnnn i star star star star star star star star
NOx (ppmvd)		1111112	///////	97.161	95.716	96.319	96.398	
		N	Ox (mol wt)	46.01				
NMNEHC (g/hp-hr)	0.700			0.143	0.140	0.141	0.141	Pass
•								
<u> </u>								
NMNEHC (ppmvd) @15% O2				9.909	9.788	9.950	9.882	
NMNEHC (ppbvd) @15% O2	1111111			9909.227	9787.560	9950.178	9882.322	
NMNEHC (ppmvw)		1111111	1111111	18.660	18.400	18.575	18.545	
NMNEHC (ppmvd)				21.451	21.105	21.269	21.275	
		V	OC (mol wt)					<u></u>

Test Type: Initial Test Date: 03-03-2020 DOM: 12-01-18 Source: Caterpillar 3606U A4 Lean Burn 4 Cycle Engine

Unit Number: 811357 Serial Number: JFE01204 Tier II JJJJ Standards

Permit #: GCP-O&G-7746

Location: Zia Hill Central Facility Lea County, New Mexico

		CO			NOx			∕INEHC (V	/OC)		<u>illilli</u>		<u> </u>
<u></u>	Federal	State	NIIII	Federal	State		Federal	State		\overline{m}	\overline{U}	<u> 11111</u>	(0)
Results ppmvd		13.924			40.613			44.415			<u></u>	<u></u>	(11)
								<u></u>					(0)
	(11111)	<u></u>	111111	<i>111111</i>		1111111	<u> </u>	<i>111111</i>	1111111	111114		11/1//	(0)
	<u>1111111</u>	<u>111111</u>		<i>1111111</i> .	<u>1111111</u>		<u>1111111</u>	<u> ///////</u>	<u></u>		<u>111111</u>	<i>111111</i>	
<u></u>	<i></i>	<u> </u>	<i>XIIIII</i>	1111111	annn	X ((((((((((((((((((((((((((((((((((((<u> (((((())</u>		$\underline{000}$	<u> </u>	\overline{m}
Results g/hp-hr		0.044			0.208			0.219				<u></u>	$\overline{\eta}$
Permit g/hp-hr	2.000	0.190		1.000	0.300		0.700	0.450		111114			(0)
		<u></u>	<i></i>				<u> </u>	<u> </u>				<i>111111</i>	(0)
	111111			1111112	111112	1111111		111111	1111111	111112	2224	11/2/1/	(0)
PASS ALL	Pass	Pass		Pass	Pass		Pass	Pass					MM
	Tes	t Started	12:40	lest Co	ompleted	: 16:14							
	Tes	t Started	: 12:40	Test Co		A	S						

Engine/Compressor Specs					
Location Zia Hill C	entral Facility		Unit ID	811357	T e
Make Caterpill	ar		Site Elevation ft.	3144	C
Model 3606U A		Atmos	heric Pressure psi.	13.07	S
Serial number JFE0120	4		Stack Diameter in.	20.00	
mfg. rated hp 1875			Catalyst	Yes	<u>t</u>
mfg. rated rpm 1000		De	ate of Manufacture	12/1/18	
Engine/Compressor Operation	Run 1	Run 2	Run 3	3 Run Average	
Test Horsepow	ver 1701	1704	1703	1703	S
Test RF	M 998	997	999	998	3
Percent Load	% 90.74%	90.87%	90.83%	90.81%	u
Intake Manifold Pressure (h	g) 67.65	67.85	67.65	67.72	u
Intake Manifold Temperature	(F) 124.00	124.00	124.00	124.00	m
Ambient Conditions					
Ambient Temperature Dry	(F) 53.00	52.00	50.00	51.67	m
Exhaust Flow Data					
Q Stack (dscj	fh) 156093.07	161508.21	166584.88	161449.69	a
Q Stack (dscm/	hr) 4420.02	4573.36	4717.11	4570.17	
Moisture Fraction B	ws 0.10	0.10	0.10	0.10	r
		Res			
Method 3A Corrected O2% E	· ·	11.42%	11.38%	11.40%	У
Moisture	9.85%	9.84%	9.98%	9.89%	

	Perm	itted Stana	lards			Results			
	Run Sta	rt/Comple	ted Times:	12:40:00 PM	1:51:00 PM	3:02:00 PM	4:14:00 PM	3/3/20	
	1111	State		Run 1	Run 2	Run 3	3 Run Average	Pass Permi	its
CO (g/hp-hr)	2.000	0.190		0.050	0.041	0.039	0.044	Pass	
CO (ppmvd) @15% O2				10.327	8.104	7.521	8.651		
CO (ppbvd) @15% O2	///////			10326.993	8104.475	7520.709	8650.726		
CO (ppmvw)				14.980	11.745	10.920	12.548		\overline{m}
CO (ppmvd)				16.616	13.026	12.130	13.924		\overline{m}
			CO (mol wt)	28.01		•			
NOx (g/hp-hr)	1.000	0.300		0.194	0.214	0.218	0.208	Pass	
NOx (ppmvd) @15% O2				24.228	25.990	25.472	25.230		
NOx (ppbvd) @15% O2	mm			24228.449	25990.214	25471.925	25230.196		
NOx (ppmvw)		///////		35.145	37.665	36.985	36.598	****	\overline{T}
NOx (ppmvd)				38.983	41.773	41.083	40.613		
		N	IOx (mol wt)	46.01					<u>ratat</u>
NMNEHC (g/hp-hr)	0.700	0.450		0.215	0.220	0.220	0.219	Pass	
N									
NMNEHC (ppmvd) @15% O2				28.048	27.853	26.877	27.593		
NMNEHC (ppbvd) @15% O2	//////			28047.644	27853.312	26876.893	27592.616		
NMNEHC (ppmvw)				40.685	40.365	39.025	40.025	000000000000000000000000000000000000000	\overline{m}
NMNEHC (ppmvd)		//////		45.128	44.768	43.349	44.415	mmm	\overline{m}
1 150		V	OC (mol wt)	44.10					

VOC

Test Date: 01-07-2020 DOM: 10-01-18 Source: Caterpillar G3516J Lean Burn 4 Cycle Engine

Unit Number: 811309 Serial Number: N6W00861 Tier II JJJJ Standards

Permit #: GCP-O&G-7746

Location: Zia Hill Central Facility Lea County, New Mexico

<u></u>	3	CO			NOx		NN	MNEHC (V	/OC)		<i></i>	111111	
	Federal	State		Federal	State		Federal	State					11111
Results ppmvd		3.482			50.938			27.191			<i>11111.</i>	UUU	
	111111	<i></i>	<u></u>	111111	<i>111111</i>		1111112	<u> ///////</u>	<i></i>		<i>11111.</i>		
											<u> </u>		
	1111111	1111111	11111111	1111111	111111 <u>1</u> .		1111111	1111111	1111111		11111	111111	11111 <u>1</u>
Results g/hp-hr		0.011			0.274			0.140		(111)	11111.	<i>11111</i>	
Permit g/hp-h	r 2.000	0.480		1.000	0.500		0.700	0.410		MM	11111		
	111111						1111112			////	illii		
		111111	111111		111112		111111		1111111				
PASS ALL	Pass	Pass	1111111	Pass	Pass	1111111	Pass	Pass		$(1)/\lambda$	NN)		
	les	st Started	: 8:23	Test Co	ompleted	: 11:57							
	Tes	st Started	: 8:23	Test Co	Z.	A	S						

Engine/Compressor Specs	-			T			
Lo	ocation 7	Zia Hill Cent	ral Facility		Unit ID	811309	
	Make (Caterpillar			Site Elevation ft.	2920	
	Model (G3516J		Atmos	pheric Pressure psi.		
Serial n	umber [N6W00861			Stack Diameter in.	16.00	
mfg. ra	ted hp	1380			Catalyst	Yes	
mfg. rate	ed rpm 1	1400		L	Date of Manufacture	10/1/18	
Engine/Compressor Operation			Run 1	Run 2	Run 3	3 Run Average	
	Test Ho	orsepower	1244	1244	1238	1242	
		Test RPM	1389	1385	1383	1386	
	Perce	ent Load %	90.11%	90.14%	89.72%	89.99%	
Intake Mar	nifold Pre	essure (hg)	60.33	60.53	60.33	60.39	
Intake Manifo	ld Tempe	erature (F)	141.40	141.60	141.80	141.60	
Ambient Conditions							l
Ambient T	emperati	ture Dry (F)	37.00	51.00	54.00	47.33	
Baron	netric Pre	essure (hg)	27.20	27.20	27.14	27.18	1
Exhaust Flow Data							
	Q Sta	ack (dscfh)	126802.02	123399.28	119636.23	123301.15	(
	Q Stack	(dscm/hr)	3590.60	3494.25	3387.69	3490.84	
Mc	oisture Fr	raction Bws	0.11	0.11	0.11	0.11	
				Re	sults		
Method 3A Co	prrected	02% Dry	9.28%	9.40%	9.32%	9.33%	·
	M	loisture %	11.32%	11.18%	11.17%	11.22%	

JJJJ State Run 1 Run 2 Run 3 3 Run Average Pass Period CO (g/hp-hr) 2.000 0.480 0.008 0.015 0.011 0.011 Pass Period CO (g/hp-hr) 2.000 0.480 0.008 0.015 0.011 0.011 Pass Period CO (g/hp-hr) 1 0 0 0.008 0.015 0.011 0.011 Pass Period CO (ppmvd)@15% 02 1 1 1.283 2.289 1.761 1.778 1.778 CO (ppbvd)@15% 02 1282.653 2289.352 1761.379 1777.794 1.000 0.000 2.526 4.464 3.456 3.482 1.111 1.000 0.200 0.274 Pass Period 1.000 2.500 0.249 0.260 0.274 Pass Period 1.000 1.000 0.500 0.313 0.249 0.260 0.274 Pass Period 1.000 1.000 0.500 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01	1/7/20	Л	11:57:00 AM	Results 10:45:00 AM	9:34:00 AM	8:23:00 AM		tted Stand t/Comple		
CO (ppmvd) @15% 02 1.283 2.289 1.761 1.778 CO (ppbvd) @15% 02 1282.653 2289.352 1761.379 1777.794 CO (ppmvd) 2.240 3.965 3.070 3.092 CO (ppmvd) 2.526 4.464 3.456 3.482 CO (ppmvd) 2.526 4.464 3.456 3.482 CO (ppmvd) 2.526 4.464 3.456 3.482 CO (ppmvd) 2.50 0.313 0.249 0.260 0.274 Pas CO (mol wt) 28.01 28.774 23.820 25.333 25.976 NOx (ppmvd) @15% 02 28.774 23.820 25.333 25.976 NOx (ppbvd) @15% 02 28.774 23.820 25.333.448 25975.824 NOx (ppmvd) 56.661 46.448 49.705 50.938 NOx (ppmvd) 0.410 0.141 0.136 0.140 Pas NOX (ppmvd) 0.410 0.141 0.136 0.140 Pas NMNEHC (p/hp-hr) 0	Pass Permits									
CO (ppbvd) @15% O2 1282.653 2289.352 1761.379 1777.794 CO (ppmvw) 2.240 3.965 3.070 3.092 CO (ppmvd) 2.526 4.464 3.456 3.482 CO (ppmvd) 2.526 4.464 3.456 3.482 CO (ppmvd) 2.526 4.464 3.456 3.482 CO (ppmvd) 1.000 0.500 0.313 0.249 0.260 0.274 Pas NOx (g/hp-hr) 1.000 0.500 0.313 0.249 0.260 0.274 Pas NOx (ppmvd) @15% O2 28.774 23.820 25.333 25.976 NOx (ppbvd) @15% O2 28773.794 23820.230 25333.448 25975.824 NOx (ppmvd) 250.250 41.255 44.155 45.220 NOx (ppmvd) 56.661 46.448 49.705 50.938 NOX (ppmvd) 0.700 0.410 0.141 0.143 0.136 0.140 Pas NOX (mol wt) 46.01 46.01 46.01 46.01 46.01 46.01 46.01 46.01 46.01	Pass	5	0.011	0.011	0.015	0.008		0.480	2.000	CO (g/hp-hr)
CO (ppbvd) @15% O2 1282.653 2289.352 1761.379 1777.794 CO (ppmvw) 2.240 3.965 3.070 3.092 CO (ppmvd) 2.526 4.464 3.456 3.482 CO (ppmvd) 2.526 4.464 3.456 3.482 CO (ppmvd) 2.526 4.464 3.456 3.482 CO (ppmvd) 1.000 0.500 0.313 0.249 0.260 0.274 Pas NOx (g/hp-hr) 1.000 0.500 0.313 0.249 0.260 0.274 Pas NOx (ppmvd) @15% O2 28.774 23.820 25.333 25.976 NOx (ppbvd) @15% O2 28773.794 23820.230 25333.448 25975.824 NOx (ppmvd) 250.250 41.255 44.155 45.220 NOx (ppmvd) 56.661 46.448 49.705 50.938 NOX (ppmvd) 0.700 0.410 0.141 0.143 0.136 0.140 Pas NOX (mol wt) 46.01 46.01 46.01 46.01 46.01 46.01 46.01 46.01 46.01										
CO (ppbvd) @15% O2 1282.653 2289.352 1761.379 1777.794 CO (ppmvw) 2.240 3.965 3.070 3.092 CO (ppmvd) 2.526 4.464 3.456 3.482 CO (ppmvd) 2.526 4.464 3.456 3.482 CO (ppmvd) 2.526 4.464 3.456 3.482 CO (mol wt) 28.01 28.01										
CO (ppmvw) 2.240 3.965 3.070 3.092 CO (ppmvd) 2.526 4.464 3.456 3.482 CO (mol wt) 28.01 28.01 28.01 28.01 NOx (g/hp-hr) 1.000 0.500 0.313 0.249 0.260 0.274 Pas NOx (ppmvd) @15% 02 28.774 23.820 25.333 25.976 25.975.824 NOx (ppbvd) @15% 02 28773.794 23820.230 25333.448 25975.824 NOx (ppmvw) 56.661 46.448 49.705 50.938 NOx (ppmvd) 0.700 0.410 0.141 0.143 0.136 0.140 Pas NOX (mol wt) 46.01 13.499 14.279 13.836 13.871 NMNEHC (ppbvd) @15% 02 13.499 14.279 13.836 13.871 13871.308			-	-						, _
CO (ppmvd) 2.526 4.464 3.456 3.482 CO (mol wt) 28.01 NOx (g/hp-hr) 1.000 0.500 0.313 0.249 0.260 0.274 Pas NOx (ppmvd)@15% 02 Image: constraint of the second				1761.379	2289.352			******	******	ui <i>)</i> =
CO (mol wt) 28.01 NOx (g/hp-hr) 1.000 0.500 0.313 0.249 0.260 0.274 Pas NOx (g/hp-hr) 1.000 0.500 0.313 0.249 0.260 0.274 Pas NOx (g/hp-hr) 1.000 2.500 1.000 1.000 1.000 1.000 1.000 NOx (ppmvd) @15% 02 28.774 23.820 25.333 25.976 1.000 1.000 1.000 28.773.794 23820.230 25333.448 25975.824 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.013 0.136 0.140 Pas NOX (ppmvd) 0.700 0.410 0.141 0.143 0.136 0.140 Pas NMNEHC (g/hp-hr) 0.700 0.410 0.141 0.143 0.136 0.140 Pas NMNEHC (ppmvd) @15% 02 13.499 14.279 13.836 13.871 13.			3.092	3.070	3.965	2.240				CO (ppmvw)
NOx (g/hp-hr) 1.000 0.500 0.313 0.249 0.260 0.274 Pas NOx (ppmvd) @15% 02 28.774 23.820 25.333 25.976 25.976 NOx (ppbvd) @15% 02 28.774 23.820 25.333 25.976 25.975.824 NOx (ppbvd) @15% 02 28.774 23.820 25.333.448 25975.824 NOx (ppmvd) 50.250 41.255 44.155 45.220 NOx (ppmvd) 56.661 46.448 49.705 50.938 NOx (ppmvd) 0.700 0.410 0.141 0.143 0.136 0.140 NMNEHC (g/hp-hr) 0.700 0.410 13.499 14.279 13.836 13.871 NMNEHC (ppbvd) @15% 02 13499.347 14278.858 13835.717 13871.308			3.482	3.456	4.464					CO (ppmvd)
NOx (ppmvd) @15% 02 28.774 23.820 25.333 25.976 NOx (ppbvd) @15% 02 28773.794 23820.230 25333.448 25975.824 NOx (ppmvw) 50.250 41.255 44.155 45.220 NOx (ppmvd) 56.661 46.448 49.705 50.938 NOx (ppmvd) 0.700 0.410 0.141 0.143 0.136 0.140 Pas NMNEHC (g/hp-hr) 0.700 0.410 0.141 0.143 0.136 0.140 Pas NMNEHC (ppmvd) @15% 02 13.499 14.279 13.836 13.871 NMNEHC (ppbvd) @15% 02 13499.347 14278.858 13835.717 13871.308						28.01	CO (mol wt)			
NOx (ppbvd) @15% 02 28773.794 23820.230 25333.448 25975.824 NOx (ppmvw) 50.250 41.255 44.155 45.220 NOx (ppmvd) 56.661 46.448 49.705 50.938 NOx (ppmvd) 56.661 46.448 49.705 50.938 NOx (ppmvd) 0.700 0.410 0.141 0.143 0.136 0.140 Pas NMNEHC (g/hp-hr) 0.700 0.410 0.141 0.143 0.136 0.140 Pas NMNEHC (ppmvd) @15% 02 13.499 14.279 13.836 13.871 NMNEHC (ppbvd) @15% 02 13499.347 14278.858 13835.717 13871.308	Pass		0.274	0.260	0.249	0.313		0.500	1.000	NOx (g/hp-hr)
NOx (ppbvd) @15% 02 28773.794 23820.230 25333.448 25975.824 NOx (ppmvw) 50.250 41.255 44.155 45.220 NOx (ppmvd) 56.661 46.448 49.705 50.938 NOx (ppmvd) 56.661 46.448 49.705 50.938 NOx (ppmvd) 0.700 0.410 0.141 0.143 0.136 0.140 Pas NMNEHC (g/hp-hr) 0.700 0.410 0.141 0.143 0.136 0.140 Pas NMNEHC (ppmvd) @15% 02 13.499 14.279 13.836 13.871 NMNEHC (ppbvd) @15% 02 13499.347 14278.858 13835.717 13871.308										
NOx (ppbvd) @15% 02 28773.794 23820.230 25333.448 25975.824 NOx (ppmvw) 50.250 41.255 44.155 45.220 NOx (ppmvd) 56.661 46.448 49.705 50.938 NOx (ppmvd) 56.661 46.448 49.705 50.938 NOx (ppmvd) 0.700 0.410 0.141 0.143 0.136 0.140 Pas NMNEHC (g/hp-hr) 0.700 0.410 0.141 0.143 0.136 0.140 Pas NMNEHC (ppmvd) @15% 02 13.499 14.279 13.836 13.871 NMNEHC (ppbvd) @15% 02 13499.347 14278.858 13835.717 13871.308										
NOx (ppmvw) 50.250 41.255 44.155 45.220 NOx (ppmvd) 56.661 46.448 49.705 50.938 NOx (ppmvd) 65.01 46.448 49.705 50.938 NOx (mol wt) 45.01 0.143 0.136 0.140 Pas NMNEHC (g/hp-hr) 0.700 0.410 0.141 0.143 0.136 0.140 Pas NMNEHC (ppmvd)@156.02 13.499 14.279 13.836 13.871 0.1308 NMNEHC (ppbvd)@15% 02 13499.347 14278.858 13835.717 13871.308			25.976	25.333	23.820	28.774				NOx (ppmvd) @15% O2
NOx (ppmvd) 56.661 46.448 49.705 50.938 NOx (mol wt) 46.01		Ļ	25975.824	25333.448	23820.230	28773.794			//////	NOx (ppbvd) @15% O2
NOx (ppmvd) 56.661 46.448 49.705 50.938 NOx (mol wt) 46.01	777777777	177	45.220	44.155	41.255	50.250	7777777	//////		NOx (ppmvw)
NMNEHC (g/hp-hr) 0.700 0.410 0.141 0.143 0.136 0.140 Pas NMNEHC (ppmvd) @15% 02 13.499 14.279 13.836 13.871 13871.308			50.938	49.705	46.448	56.661				NOx (ppmvd)
NMNEHC (ppmvd) @15% 02 13.499 14.279 13.836 13.871 NMNEHC (ppbvd) @15% 02 13499.347 14278.858 13835.717 13871.308			•			46.01	Ox (mol wt)	N		
NMNEHC (ppbvd) @15% 02 ////// 13499.347 14278.858 13835.717 13871.308	Pass		0.140	0.136	0.143	0.141		0.410	0.700	NMNEHC (g/hp-hr)
NMNEHC (ppbvd) @15% 02 ////// 13499.347 14278.858 13835.717 13871.308										- N
NMNEHC (ppbvd) @15% O2 ////// 13499.347 14278.858 13835.717 13871.308										
			13.871	13.836	14.279	13.499				NMNEHC (ppmvd) @15% O2
		;	13871.308	13835.717	14278.858	13499.347				NMNEHC (ppbvd) @15% O2
	mmmm		24.140	24.115	24.730	23.575	mm	mm		
NMNEHC (ppmvo) 26.583 27.843 27.146 27.191	<i></i>		27.191	27.146	27.843	26.583	*****			
VOC(mol wt) 44.10	***********	****					OC (mol wt)	V	<u>********</u>	
							, · · · · /			

Caleb Hurd caleb_hurd@zeeco.com 918.893.8266 Applications Engineering Manager

REFERENCE:	ConocoPhillips HP & LP Elevated Flares	QUOTE #:	2020-04173RA-01 - Rev 1
DELIVER TO:	Jad Azzam 832.486.2421 Jad.A.Azzam@conocophillips.com		

Combustion Rentals & Rapid Response Group

HP Flare

Design Information (Estimated):

Source	<u>HP #1</u>	<u>HP #2</u>	<u>HP #3</u>
Gas MW	20.5	20.5	27.0
Gas LHV (Btu/Scf)	1121	1121	1436
Max Flow Rate (MMScfd)	30	15	24
Available Pressure (psig)	35	35	35
Temperature (°F)	7	7	40

Scope of Supply:

Qty Equipment

- 1 Skid Mounted, Guy-Supported Flare Stack
 - Corrosion Allowance = 1/16"
- 1 Multi-Jet Flare Tip (MJ)
 - Maximum Exit Velocity = Mach 1.0
- 1 Assist Injection Ring
- 2 HSLF Pilot w/ Type K Thermocouple
 - Duplex Thermocouple
 - Individual Fuel Gas Supply Lines
 - 100' High Temperature HEI/TC Whip
- 2 Retractable Pilot Components
- 1 Automatic Ignition/Monitoring Panel (Z-Purge)
 - Junction Box and LCP to be 316SS MOC, Nema 4X

Required Utilities:

<u>Consumer</u>	<u>Utility Type</u>	Consumption	<u>Supply</u>
Pilot Gas	Fuel Gas	130 Scfh	15 psig
Purge Gas*	Fuel Gas	100 Scfh	15 psig
Assist Gas	Fuel Gas	160 Scfm (Max)	15 psig
Control Panel	Electricity	10 A	120 VAC / 1 Ph / 60 Hz
*Duras ass to be surv	and free and not as to	down a pint of an anoting to man anothing	

*Purge gas to be oxygen free and not go to dew point at operating temperatures.

Customer Connections (Estimated, TBC by customer):

Service	Size	Type	Rating
Flare Gas	10"	RF	150#
Pilot Gas	1/2"	NPT	3000#
Assist Gas	1"	NPT	3000#

	The stack is mounted onto a carbon steel skid that eliminates the need for a concrete foundation. The skid only needs to be set on firm, flat soil and then connected to the provided guy wires, screw anchors and tackle. The skid mounting will help minimize field installation and foundation costs.
Multi-Jet Flare Tip (MJ)	The flare tip uses multi-jet technology to break up the exiting gas to allow for more fuel and air interaction to increase smokeless flaring. Components located in the high heat zone will be made of 310SS or equivalent casting material. The tip will provide a VOC destruction efficiency of at least 98 wt%.
Assist Injection Ring	For low pressure applications and/or heavy gas compositions, an assist ring is provided for smokeless operation. The assist gas injection system utilizes compressed air or natural gas (@ 15 psig) to increase air and gas mixing in the combustion zone, which eliminates any smoke that may form in the flames. Simply opening a manual valve located at the base of the flare to the point where the smoke goes away is the only requirement.
HSLF Pilot w/ Type K Thermocouple	The premix pilot is proven to stay lit in hurricane force weather conditions. Testing has shown that a stable flame is present even in wind speeds greater than 150 mph in addition to rainfall of over 10 inches per hour. The pilot will be equipped with a Type K thermocouple for continuous monitoring of the pilot status. The pilot also meets or exceeds API 537 design requirements.
Retractable Pilot Components	For ease of service, instead of retracting the entire pilot, only the components that may need service are made retractable. This ensures that the location of the pilot with relation to the flare tip is maintained, ensuring proper ignition every time. The ignition probe and thermocouple are the only components that potentially require regular maintenance. Both components will be retractable so that maintenance can be performed without needing a shutdown of the flare or any special equipment.
Automatic Ignition/Monitoring Panel	The automatic pilot ignition and monitoring panel will continuously

(Z-Purge) (Z-Purge) The automatic pilot ignition and monitoring panel will continuously monitor the pilot and attempt to relight if a pilot failure signal is received. The control panel will require customer supplied electricity and also be skid mounted. A Z-Purge is included for installation in a Cl 1 Div 2 area.

LP Flare

Design Information (Estimated):

Source	<u>LP #1</u>	<u>LP #2</u>
Gas MW	48.5	48.5
Gas LHV (Btu/Scf)	2413	2413
Max Flow Rate (MMScfd)	3	1
Available Pressure (psig)	0.2	0.2
Temperature (°F)	120	120

Scope of Supply:

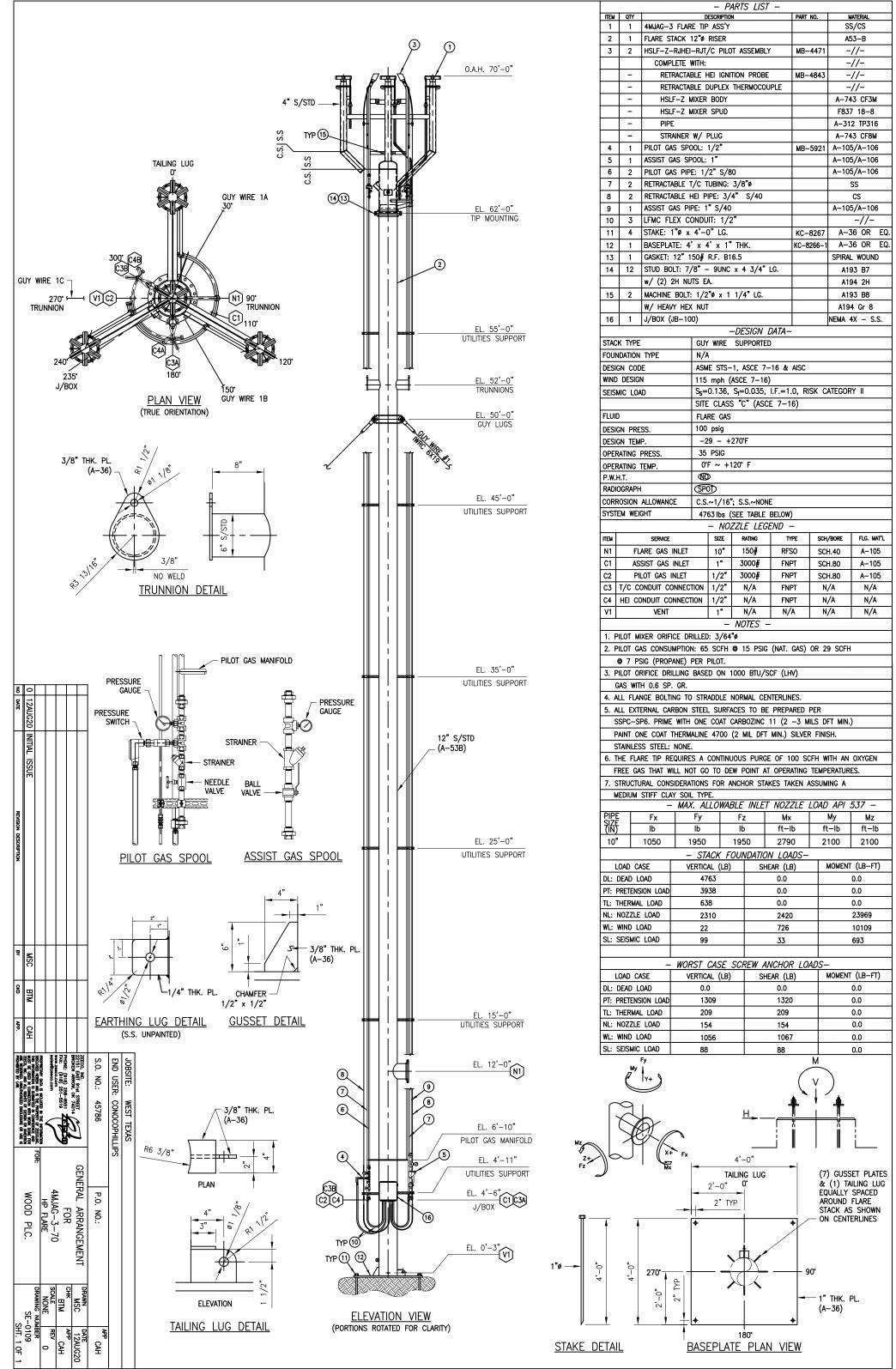
Qty Equipment

- 1 Self-Supported Flare Stack
 - Corrosion Allowance = 1/16"
- 1 Air Assisted Flare Tip (AF)
- 1 Velocity Seal
- 1 Air Assist Blower (VFD Compatible)
- 2 HSLF Pilot w/ Type K Thermocouple
 - Duplex Thermocouple
 - Individual Fuel Gas Supply Lines
 - 100' High Temperature HEI/TC Whip
- 2 Retractable Pilot Components
- 1 Automatic Ignition/Monitoring Panel (Z-Purge)
 - Junction Box and LCP to be 316SS MOC, Nema 4X
- 1 Group D Deflagration Arrester 12" Dia.

Required Utilities:

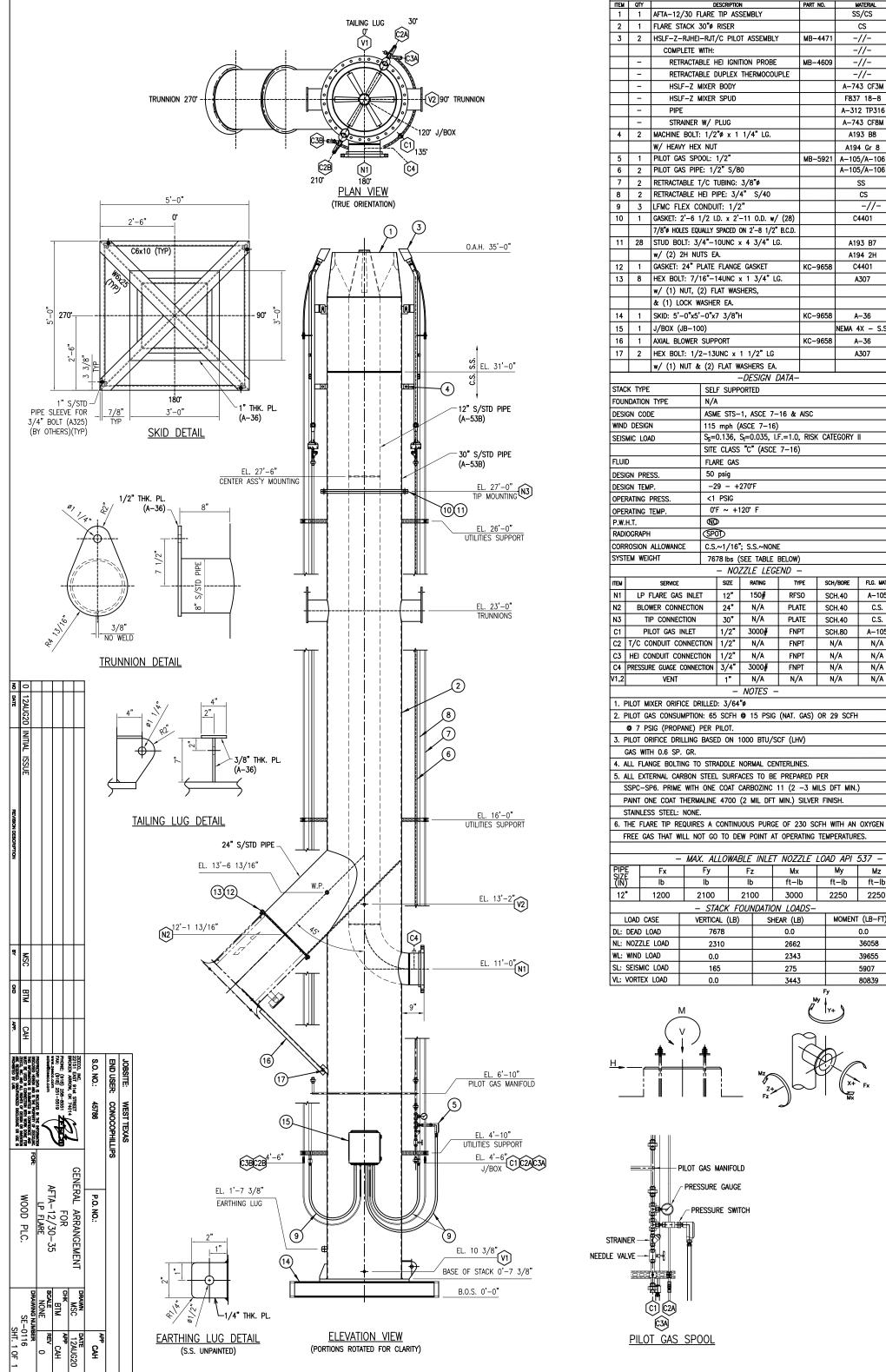
Consumer	<u>Utility Type</u>	Consumption	<u>Supply</u>
Pilot Gas	Fuel Gas	130 Scfh	15 psig
Purge Gas*	Fuel Gas	230 Scfh	15 psig
Blower	Electricity	20 hp (27 A)	480 VAC / 3 Ph / 60 Hz
Control Panel	Electricity	10 A	120 VAC / 1 Ph / 60 Hz
*D (1	C 1 4 4 1	• • • • • • •	

*Purge gas to be oxygen free and not go to dew point at operating temperatures.


Customer Connections (Estimated, TBC by customer):

Service	Size	Type	Rating
Flare Gas	12"	RF	150#
Pilot Gas	1/2"	NPT	3000#

Equipment Description:


Self-Supported Flare Stack	The stack is mounted onto a customer supplied concrete foundation to secure the system and prevent it from blowing over in high winds.
Air Assisted Flare Tip (AF)	The flare tips use multi-jet technology to break up the exiting gas to allow for more fuel and air interaction to increase smokeless flaring. An air plenum is utilized to direct low pressure air into the combustion zone for turbulent mixing. Components located in the high heat zone will be made of 310SS or equivalent casting material. The tip will provide a VOC destruction efficiency of at least 98 wt%.
Velocity Seal	An integral purge reducing velocity seal is included to reduce the quantity of purge gas to prevent oxygen ingress through the flare tip at low rates.
Air Assist Blower (VFD Compatible)	For low pressure applications and/or heavy gas compositions, an air assist blower is required for smokeless operation. The blower utilizes ambient air to increase air and gas mixing in the combustion zone, which eliminates any smoke that may form in the flames. A VFD is recommended for fine tuning of the performance of the flare. VFD and flow or pressure transmitter for automated VFD control are by others.
HSLF Pilot w/ Type K Thermocouple	The premix pilot is proven to stay lit in hurricane force weather conditions. Testing has shown that a stable flame is present even in wind speeds greater than 150 mph in addition to rainfall of over 10 inches per hour. The pilot will be equipped with a Type K thermocouple for continuous monitoring of the pilot status. The pilot also meets or exceeds API 537 design requirements.
Retractable Pilot Components	For ease of service, instead of retracting the entire pilot, only the components that may need service are made retractable. This ensures that the location of the pilot with relation to the flare tip is maintained, ensuring proper ignition every time. The ignition probe and thermocouple are the only components that potentially require regular maintenance. Both components will be retractable so that maintenance can be performed without needing a shutdown of the flare or any special equipment.
Automatic Ignition/Monitoring Panel (Z-Purge)	The automatic pilot ignition and monitoring panel will continuously monitor the pilot and attempt to relight if a pilot failure signal is received. The control panel will require customer supplied electricity and also be skid mounted. A Z-Purge is included for installation in a Cl 1 Div 2 area.
Group D Deflagration Arrester	Due to potential for having combustible levels of oxygen in the flare gases, an arrester is recommended to ensure that any flashback from the flare tip is stopped before it can enter into the upstream piping system.

Mark_Clar@/25/2020 7:29:01 AM

				-	PART	'S LIS	Τ –				
ITEM	QTY			DESCR				PART N	0.		MATERIAL
1	1	4MJAG-3									s/cs
2	1	FLARE ST									53-B
3	2	HSLF-Z-			PILOT A	SSEMB	Y	MB-4	471		·//-
			LETE WI								·//-
	-		RACTABL					MB-4	843		-//-
	-		RACTABL			RMOCO	UPLE				·//-
	-			KER BODY					A-74	43 CF3M	
	-	HSL	F-Z MIX	(ER SP	UD					F83	7 18–8
	-	PIPE									2 TP316
	-	STR/	AINER W	/ PLU	G						43 CF8M
4	1	PILOT GA						MB-5	921		5/A-106
5	1	ASSIST G								A-10	5/A-106
6	2	PILOT GA								A-10	5/A-106
7	2	RETRACTA									SS
8	2	RETRACTA	ABLE HE	i PIPE:	3/4"	S/40					CS
9	1	ASSIST G	as pipe	: 1" S	/40					A-10	5/A-106
10	3	LFMC FL									-//-
11	4	STAKE: 1						KC-8	267	A	36 OR E0
12	1	BASEPLA	TE: 4' :	x 4'x	: 1" TH	К.		KC-82	66–1	A-3	36 OR E0
13	1	GASKET:						Ĺ		SPIRA	L WOUND
14	12	STUD BO				4 3/4"	LG.			A1	93 B7
		w/ (2) 2	2H NUTS	S EA.						A1	94 2H
15	2	MACHINE	BOLT:	1/2 " ø :	x 1 1/	4" LG.					93 B8
	-	W/ HEAV									4 Gr 8
16	1	J/BOX (_		4X – S.S.
	·	<u></u> ((00)		_D4	SIGN	DATA-				
STACK	TYPF			GUY WI	RE SU						
FOUND				N/A	0						
DESIGN				,	TS-1		′–16 &	AISC			
WIND D					oh (ASC			100			
SEISMI							. I.F.=1	.0. RIS	ко	ATEGOR	RY II
JLIJMI	U LUA						CE 7-1		0		
FLUID				FLARE		. (73	JL /-1	~/			
		~~		100 psi							
DESIGN					-						
DESIGN				-29 - 35 PS	- +270 IC	r					
OPERA						-					
OPERAT		ILMP.			+120	r					
P.W.H.1											
RADIOG				SPOD	/4.0# -	<u> </u>					
			<u>, </u>		/16"; S			<u> </u>			
SYSTEM	n weic	эНI					BELOW				
							GEND -		-	In c -	
ITEM		SERVICE				RATING	_			CH/BORE FLG. N	
N1		ARE GAS				150#	RFS			1.40	A-105
C1		SIST GAS				000#	FN			1.80	A-105
C2		OT GAS I			2" 3		FN			1.80	A-105
	-	ONDUIT CO				-	-		_	i/a n/a	
	iei co	NDUIT CO	NNECTIO			N/A	FN			/A	N/A
V1		VENT		1		N/A	N/	A	Ν,	/A	N/A
						DTES	_				
		XER ORIFI									
		S CONSU				15 PSI	g (nat.	GAS) C	R 29	9 SCFH	
		SIG (PROP.									
3. PIL	OT OF	RIFICE DRI	LLING B	ASED C	ON 1000) btu/	SCF (LH	IV)			
		H 0.6 SP.									
4. ALL	. FLAN	NGE BOLTI	NG TO S	STRADD	LE NOR	MAL CI	INTERLIN	IES.			
		ERNAL CAF									
		P6. PRIME								T MIN.)
		NE COAT 1									
		S STEEL:			•		,				
		re tip re		A CON	TINUOU	S PUR	E OF 1	00 SCF	нw	ITH AN	OXYGEN
		s that w									
		RAL CONS									
		STIFF CLA							M		
MEL	UN				WARI F	NI F	T NOZ	ZLE I	OAD	API	537 –
PIPE		Fx		y J		z	Mx			My	Mz
SIZE (IN)	\vdash	lb		y b		2	ft-I			⊸lb	ft-lb
10"	+	1050	-		195					100	2100
10		1030							2	100	2100
10	AD 01	er T					<u>DN LOA</u>		. .	IONEN	ر (۱ <u>۵</u> ۲۰۰
	AD CA			TICAL ((LD)		HEAR (LE)	+ '	NUMEN	(LB-FT)
DL: DE				4763		0.0		+	0.0		
		ION LOAD		3938			0.0		+		0.0
		LOAD		638			0.0		\perp		0.0
NL: NC				2310			2420)	1		23969
WL: WI				22			726		\perp		10109
SL: SE	ISMIC	LOAD		99			33				693
		_	WORS	T CAS	SE SCI	REW /	ANCHOP	r <i>loa</i>	<u>DS</u> –	•	
L0/	AD CA			RTICAL (HEAR (LE				r (lb-ft)
DL: DE				0.0	•		0.0				0.0
		ION LOAD		1309			1320		+		0.0
							209		+		0.0
		(ובאנייי		21.14			/04				

Mark_Clark 8/25/2020 6:49:57 AM

ITEN .	_ ∩ ™					RTS LIST	-	DADT NO	. .	IATERIAL
ITEM 1	<u>q</u> ty 1	AFTA-12	/30 FLA		RIPTION ASS			PART NO.		<u>iaterial</u> S/CS
2	1	FLARE S							-	CS
-	2			-RJT/C PILOT ASSEMBLY				MB-4471		//-
Ť	<u> </u>		LETE WI							//-
	-				IGNITI	ION PROBE		MB-4609		//-
	-			BLE DUPLEX THERMOCOUPLE						//-
	_			IIXER BODY					+	13 CF3M
	-		.F-Z MIX							7 18-8
	_	PIPI								2 TP316
	_		AINER W		6					13 CF8M
4	2			1/2"ø x 1 1/4" LG.						93 B8
	-	W/ HEAN			~ ·	.,				4 Gr 8
5	1	/ -	_	OL: 1/2"				MB-5921	-	5/A-106
6	2				'2" S/80			MD 0021		5/A-106
7	2			/C TUBING: 3/8"ø					-	SS
8	2			/C TUBING: 3/8"ø HEI PIPE: 3/4" S/40						CS
9	3			IEI PIPE: 3/4 5/40 DNDUIT: 1/2"						-//-
10				2 I.D. x 2'-11 O.D. w/ (28)						4401
	<u> </u>			ALLY SPACED ON 2'-8 1/2" B.C.D.					Ť	
11	28								A 14	93 B7
		w/ (2)		4"-10UNC x 4 3/4" LG.						93 B7 94 2H
12	1	GASKET:				GASKET		KC-9658	-	4401
12	8					1 3/4" L	G	10-9008	_	4401 \307
J	°	w/ (1)					.		+ ^	
		₩/ (1) & (1) L				,			+	
1.4	1	∝ (1) Ľ SKID: 5'						KC_0650	+ .	_36
14	1				70 H			KC-9658		-36
15		J/BOX (.			K0 000-	+	4X – S.S.
16	1	AXIAL BL				A /= # · -		KC-9658	-	-36
17	2					1/2" LG			▲	307
		w/ (1)	NUT & ((2) FL		SHERS EA.			1	
07 · · ·						DESIGN L	UATA-			
	K TYPE			SELF S	SUPPO	ORTED				
	IDATION			N/A		:				
	SN COD					I, ASCE 7-		AISC		
	DESIG					SCE 7-16)				
SEISM	AIC LOA	D		-		h=0.035, I.			LGORY	11
						"C" (ASCE	7–16)			
Fluid)			FLARE						
DESIG	GN PRE	SS.		50 psi	-					
DESIG	gn tem	Р		-29		70°F				
OPER	ATING	PRESS.		<1 PS						
	ATING .			0°F ^	. 1.10					
UPER					· +12	20" F				
	I.T.			ND	· +12	20° F				
P.W.H	H.T. Dgraph					20° F				
P.W.H Radic	OGRAPH			SPOD		S.S.~NON	E			
P.W.H Radio Corr	OGRAPH	ALLOWANC	C CE	ND SPOD C.S.~1	/16";					
P.W.H Radio Corr	OGRAPH	ALLOWANC	C CE	SPOT C.S.~1 76781	/16"; bs (S	S.S.~NON	BELOW)			
P.W.H RADIC CORR SYSTE	OGRAPH	ALLOWANC	CE (SPOT C.S.~1 76781	/16"; bs (S	S.S.~NON See table	BELOW)	-	+/BORE	FLG. MAT'I
P.W.H RADIC CORR SYSTE	ograph Osion Em Weig	allowanc Ght	CE (SPOT C.S.~1 76781 - s	/16"; bs (S <i>NOZ</i>	s.s.~non Gee table VZLE LEGE	Below) END -	- Pe sci	+/BORE 2H.40	Flg. mat ⁴ A-105
P.W.H RADIC CORR SYSTE	DGRAPH OSION EM WEIG	ALLOWANG GHT Service	CE (SPOD C.S.~1 76781 - s 1	/16"; bs (S <i>NOZ</i> ZE 2"	S.S.~NON GEE TABLE ZLE LEGL RATING 150#	BELOW) END - TM RFS	- PE SCI GO SC		
P.W.H RADIC CORR SYSTE ITEM N1 N2	DGRAPH COSION EM WEIC LP F BLOV	ALLOWANG GHT SERVICE FLARE GAS WER CONN	CE (CE (S INLET NECTION	SPOT C.S.~1 76781 - 1 2	/16"; bs (S NOZ. ZE 2" 4"	S.S.~NONI SEE TABLE ZLE LEGL RATING 150# N/A	BELOW) END - TM RFS PLA	- PE SCI 50 SC TE SC	:H.40 :H.40	A-105 C.S.
P.W.H RADIC CORR SYSTE N1 N2 N3	DGRAPH COSION EM WEIG LP F BLOV TI	ALLOWANG GHT SERVICE FLARE GAS WER CONN P CONNEG	CE (CE (S INLET NECTION CTION	SPOT C.S.~11 76781 - S 1 2 3	/16"; bs (S NOZ ze 2" 4" 0"	S.S.~NON SEE TABLE ZLE LEGL RATING 150# N/A N/A	BELOW) END - M RFS PLA PLA	- Pe sci io sc Te sc Te sc	XH.40 XH.40 XH.40	A-105 C.S. C.S.
P.W.H RADIC CORR SYSTE N1 N1 N2 N3 C1	Dgraph Dsion Em Weig Lp F Bloi Ti Pii	ALLOWANG GHT FLARE GAS WER CONN P CONNEG LOT GAS	CE (CE (S INLET VECTION CTION	SPOT C.S.~1 76781 - 1 2 3 1/	/16"; bs (S NOZ. ZE 2" 4" 0" /2"	S.S.~NON SEE TABLE ZLE LEGL RATING 150# N/A N/A 3000#	BELOW) END - RFS PLA PLA FNF	- PE SCI SO SC TE SC PT SC	XH.40 XH.40 XH.40 XH.40 XH.80	A-105 C.S. C.S. A-105
P.W.H RADIC CORR SYSTE N1 N2 N3 C1 C2	DGRAPH COSION EM WEIC LP F BLOV TI PII T/C CC	Allowang Cht Service Flare Gas Wer Conne P Conneg Lot Gas D'NDUIT Co	CE (CE (S INLET VECTION CTION INLET DONNECTIO	SPOD C.S.~1 7678 - S 1 2 3 1/ DN 1/	/16"; bs (S NOZ 2" 4" 0" /2"	S.S.~NON SEE TABLE ZLE LEGU RATING 150# N/A N/A 3000# N/A	BELOW) END - RFS PLA PLA FNF	- PE SCI SO SC TE SC PT SC PT N	xH.40 xH.40 xH.40 xH.80 xH.80	A-105 C.S. C.S. A-105 N/A
P.W.H RADIC CORR SYSTE N1 N2 N3 C1 C2 C3	DGRAPH OSION EM WEIG LP F BLOV TI PII T/C CC HEI CC	Allowang Cht Service Flare Gas Wer Conne Donne Lot Gas Donduit Co Dinduit Co	S INLET S INLET VECTION CTION INLET DONNECTIO	SPOD C.S.~1 76781 - S 1 2 3 1/ DN 1/ N 1/	/16"; bs (S NOZ. 2" 4" 0" /2" /2" /2"	S.SNONI EE TABLE ZLE LEGI RATING 150# N/A N/A 3000# N/A N/A	BELOW) END - RFS PLA PLA FNF FNF	- PE SCI SO SC TE SC PT SC PT N PT N	xH.40 xH.40 xH.40 xH.80 xH.80 xH.80 xH/A	A-105 C.S. C.S. A-105 N/A N/A
P.W.H RADIC CORR SYSTE N1 N2 N3 C1 C2 C3 C3 C4 F	DGRAPH OSION EM WEIG LP F BLOV TI PII T/C CC HEI CC	ALLOWANG CHT SERVICE FLARE GAS WER CONNEG OT GAS DNDUIT CO NDUIT CO RE GUAGE	S INLET S INLET NECTION CTION INLET DNNECTIO CONNECTIO	SPOD C.S.~11 7678 I - 2 3 1/ DN 1/ N 1/ ON 3/ ON 3/	/16"; bs (S NOZ 2E 2" 4" 0" /2" /2" /2" /2" /2"	S.SNONI EE TABLE ZLE LEGI N/A N/A N/A 3000# N/A N/A 3000#	BELOW) END - RFS PLA PLA FNF FNF FNF	- PE SCI 50 SC TE SC PT SC PT N PT N PT N	xH.40 xH.40 xH.40 xH.80 xH.80 x/A x/A	A-105 C.S. C.S. A-105 N/A N/A N/A
P.W.H RADIC CORR SYSTE N1 N2 N3 C1 C2 C3 C3 C4 F	DGRAPH OSION EM WEIG LP F BLOV TI PII T/C CC HEI CC	Allowang Cht Service Flare Gas Wer Conne Donne Lot Gas Donduit Co Dinduit Co	S INLET S INLET NECTION CTION INLET DNNECTIO CONNECTIO	SPOD C.S.~11 7678 I - 2 3 1/ DN 1/ N 1/ ON 3/ ON 3/	/16"; bs (S NOZ 2" 4" 0" /2" /2" /2" /2" /2" /2"	S.S.~NONI EE TABLE ZLE LEGI N/A N/A N/A 3000# N/A 3000# N/A	BELOW) END - RFS PLA PLA FNF FNF FNF FNF FNF	- PE SCI 50 SC TE SC PT SC PT N PT N PT N	xH.40 xH.40 xH.40 xH.80 xH.80 xH.80 xH/A	A-105 C.S. C.S. A-105 N/A N/A
P.W.H RADIC CORR SYSTE N1 N2 N3 C1 C2 C3 C3 C4 F V1,2	DGRAPH COSION EM WEIG LP F BLOV TI PII T/C CC HEI CC PRESSUF	ALLOWANG SHT SERVICE FLARE GAS WER CONN P CONNEC LOT GAS IONDUIT CC INDUIT CC RE GUAGE VENT	S INLET VECTION CTION INLET DNNECTIO CONNECTIO	SPOD C.S.~1 76781 - S 1 2 3 1 70N 1 1 0 3 -	/16"; bs (S NOZ ZE 2" 4" 0" /2" /2" /2" /2" /2" /2" /2"	S.S.~NONI EE TABLE ZLE LEGI N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	BELOW) END - RFS PLA PLA FNF FNF FNF FNF FNF	- PE SCI 50 SC TE SC PT SC PT N PT N PT N	xH.40 xH.40 xH.40 xH.80 xH.80 x/A x/A	A-105 C.S. C.S. A-105 N/A N/A N/A
P.W.H RADIC CORR SYSTE N1 N2 C1 C2 C3 C4 F V1,2 1. P	DGRAPH COSION EM WEIC EM WEIC BLOV TI PII T/C CC HEI CC PRESSUF	ALLOWANG SHT SERVICE FLARE GAS WER CONN P CONNEC LOT GAS IONDUIT CC INDUIT CC RE GUAGE VENT XER ORIF	S INLET VECTION CTION INLET DONNECTIO CONNECTIO	SP0 SP0 C.S.~1 76781 - s 1 2 3 1/ DN 1/	/16"; bs (S NOZ ZE 2" 4" 0" (2" (2" (2" (2" (2" (4") (4") (4") (4") (5) (64) (5)	S.S.~NONI EE TABLE ZLE LEGI N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	BELOW) END - RFS PLA PLA FNF FNF FNF FNF FNF FNF FNF	- PFE SCIO SCIO SCITE SCITE SCITE SCITE PT N PT N A N	xH.40 xH.40 xH.40 xH.80 y/A y/A y/A y/A	A-105 C.S. C.S. A-105 N/A N/A N/A N/A
P.W.H RADIC CORR SYSTE N1 N2 N3 C1 C2 C3 C3 C4 F (1,2 C4 F (1,2) C2 P	DGRAPH COSION EM WEIG LP F BLOV TII PIII T/C CC HEI CC PRESSUF	ALLOWANG SHT SERVICE FLARE GAS WER CONN P CONNEC LOT GAS IONDUIT CC NDUIT CC RE GUAGE VENT XER ORIF S CONSU	S INLET VECTION CTION INLET DNNECTIO CONNECTIO CONNECTIO CONNECTIO	SPOD SPOT C.S.~1 76781 - S 1 2 3 1/ 2N 1/ NN 1/ 1/ 1/ 1/ 1/ 1/ 1/ 1/ 1/ 1/ 1/ 1/ 1/ 1/ 1/	/16"; bs (S NOZ 2" 4" 0" /2" /2" /2" /2" /2" /2" /2" /2" /2" /2	S.S.~NONI EE TABLE ZLE LEGI N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	BELOW) END - RFS PLA PLA FNF FNF FNF FNF FNF FNF FNF	- PFE SCIO SCIO SCITE SCITE SCITE SCITE PT N PT N A N	xH.40 xH.40 xH.40 xH.80 y/A y/A y/A y/A	A-105 C.S. C.S. A-105 N/A N/A N/A N/A
P.W.H RADIC CORR SYSTE TIEM N1 N2 N3 C1 C2 C3 C4 F (1,2 C2 C3 C4 F (1,2 C2 C3 C4 C2 C3 C4 C2 C3 C4 C2 C2 C3 C2 C2 C2 C2 C2 C2 C0 R R SYSTE C0 R R R SYSTE C0 R R SYSTE C0 R R SYSTE C0 R R SYSTE C0 R R SYSTE C0 R R SYSTE C0 R R SYSTE C0 R R SYSTE C0 R R SYSTE C0 R SYSTE	DGRAPH OSION EM WEIG BLOV TI PII PII T/C CC HEI CCC ILOT MIN ILOT GG 0 7 PS	ALLOWANG SHT SERVICE FLARE GAS WER CONN P CONNEC LOT GAS IONDUIT CC IONDUIT CC RE GUAGE VENT XER ORIF IS CONSU GIG (PROF	S INLET VECTION CTION INLET DNNECTIO CONNECTIO CONNECTIO CONNECTIO ICE DRILL IMPTION: 'ANE) PE	SPOD - 76781 - 8 - 1 2 3 1/ 2 3 1/ 2 3 1/ NN 1/ NN 1/ NN 1/ 10N 3/ 65 SC R PILC	/16"; bs (S NOZ 2" 4" 0" /2" /2" /2" /2" /2" /4" " 	S.S.~NONI EE TABLE ZLE LEGI RATING 150# N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	BELOW) END - RFS PLA PLA FNF FNF FNF FNF (NAT.	- PE SCC SC SC SC TE SC PT SC PT N PT N A N GAS) OR 2	xH.40 xH.40 xH.40 xH.80 y/A y/A y/A y/A	A-105 C.S. C.S. A-105 N/A N/A N/A N/A
P.W.H RADIC CORR SYSTE TEM N1 N2 N3 C1 C2 C3 C4 F (1,2 C3 C4 F (1,2 C3 C4 F (1,2 C3 C4 F (1,2) C3 C3 C4 F (1,2) C3 C3 C4 F C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3	DGRAPH OSION IM WEIC ILP F BLOV TI PII PIC CC HEI CCCC ILOT MI ILOT MI ILOT G O 7 PS O 7	ALLOWANG CHT SERVICE FLARE GAS WER CONN P CONNEC LOT GAS DONULT CC E GUAGE VENT XER ORIF XER ORIF XER ORIF SCONSU GIG (PROP RIFICE DR	S INLET VECTION CTION INLET DNNECTIO CONNECTIO CONNECTIO CONNECTIO ICE DRILL IMPTION: ANE) PE ILLING B	SPOD - 76781 - 8 - 1 2 3 1/ 2 3 1/ 2 3 1/ NN 1/ NN 1/ NN 1/ 10N 3/ 65 SC R PILC	/16"; bs (S NOZ 2" 4" 0" /2" /2" /2" /2" /2" /4" " 	S.S.~NONI EE TABLE ZLE LEGI N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	BELOW) END - RFS PLA PLA FNF FNF FNF FNF (NAT.	- PE SCC SC SC SC TE SC PT SC PT N PT N A N GAS) OR 2	xH.40 xH.40 xH.40 xH.80 y/A y/A y/A y/A	A-105 C.S. C.S. A-105 N/A N/A N/A N/A
P.W.H RADIC CORR SYSTE TIEM N1 N2 C1 C2 C3 C4 F (1,2 C2 C3 C4 F (1,2 C3 C4 F (1,2 C3 C4 C3 C4 C4 F C2 C3 C4 C2 C3 C4 C2 C C3 C C C2 C C0 R C0 R C0 R C0 R C0 R C0 R	DGRAPH OSION IM WEIC ILP F BLOV TI PII PII PRESSUF ILOT MI ILOT G 0 7 PS ILOT OF ILOT OF	ALLOWANG CHT SERVICE FLARE GAS WER CONN P CONNEC LOT GAS DONDUIT CC ONDUIT CC RE GUAGE VENT XER ORIF XER ORIF XER ORIF SCONSU GIG (PROP RIFICE DRI H 0.6 SP	S INLET VECTION CTION INLET ONNECTIO CONNECTIO CONNECTIO CONNECTIO CONNECTIO ICE DRILL IMPTION: ANE) PE ILLING B. . GR.	400 \$ \$\$P01 C.S.~11 76781 - \$\$\$S 1 1 2 3 1/ 1 2 33 1/ 0N 1/ NN 1/ 0N 3/ 65 SC R PILCO ASED 0	/16"; bs (S NOZ 2" 4" 0" (2" (2" (2" (2" (2" (2") (4") (2") (4") (2") (4") (2") (4") (2") (2") (2") (2") (2") (2") (2") (2	S.S.~NONI EE TABLE ZLE LEGI RATING 150# N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	BELOW) TM RFSS PLA PLA FNF FNF FNF FNF FNF FNF FNF CF (LH	- PE SCC SC SC SC TE SC TT SC PT N PT N T N GAS) OR 2 V)	xH.40 xH.40 xH.40 xH.80 y/A y/A y/A y/A	A-105 C.S. C.S. A-105 N/A N/A N/A N/A
P.W.H RADIC CORR SYSTE TIEM N1 N2 C1 C2 C3 C4 F (1,2 C2 C3 C4 F (1,2 C3 C4 F (1,2 C3 C4 C3 C4 C4 F C2 C3 C4 C2 C3 C4 C2 C C3 C C C2 C C0 R C0 R C0 R C0 R C0 R C0 R	DGRAPH OSION IM WEIC ILP F BLOV TI PII PII PRESSUF ILOT MI ILOT G 0 7 PS ILOT OF ILOT OF	ALLOWANG CHT SERVICE FLARE GAS WER CONN P CONNEC LOT GAS DONDUIT CC ONDUIT CC RE GUAGE VENT XER ORIF XER ORIF XER ORIF SCONSU GIG (PROP RIFICE DRI H 0.6 SP	S INLET VECTION CTION INLET ONNECTIO CONNECTIO CONNECTIO CONNECTIO CONNECTIO ICE DRILL IMPTION: ANE) PE ILLING B. . GR.	400 \$ \$\$P01 C.S.~11 76781 - \$\$\$S 1 1 2 3 1/ 1 2 33 1/ 0N 1/ NN 1/ 0N 3/ 65 SC R PILCO ASED 0	/16"; bs (S NOZ 2" 4" 0" (2" (2" (2" (2" (2" (2") (4") (2") (4") (2") (4") (2") (4") (2") (2") (2") (2") (2") (2") (2") (2	S.S.~NONI EE TABLE ZLE LEGI RATING 150# N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	BELOW) TM RFSS PLA PLA FNF FNF FNF FNF FNF FNF FNF CF (LH	- PE SCC SC SC SC TE SC TT SC PT N PT N T N GAS) OR 2 V)	xH.40 xH.40 xH.40 xH.80 y/A y/A y/A y/A	A-105 C.S. C.S. A-105 N/A N/A N/A N/A
P.W.H RADIC CORR SYSTE SYSTE N1 N2 N3 C1 C2 C3 C4 F (1,2) C3 P (1,2) C3 P (1,2) C3 P (1,2) C3 C4 F (1,2) C3 C4 C C0 C0 C0 C0 C0 C0 C0 C0 C0	DGRAPH OSION M WEIC LP F BLOV TI PII PII PRESSUF ILOT MI ILOT MI ILOT OF PRESSUF ILOT OF ILOT OF ILOTOTOTOTOTOTOTOTOTOTOTOTOTOTOTOTOTOTOT	ALLOWANG SHT SERVICE FLARE GAS WER CONN P CONNEC LOT GAS IONDUIT CC NDUIT CC RE GUAGE VENT XER ORIF XER ORIF XER ORIF SCONSU GIG (PROP RIFICE DRI H 0.6 SP NGE BOLT ERNAL CA	S INLET VECTION CTION INLET ONNECTIO CONNECTIO	MD SPOD SPOD C.S.~11 76781 - S 11 2 33 1/ 1/ NN 1/ NN 1/ LED: 3 65 SC R PILCO STRADED STRADED	/16"; bs (S NOZ: ze 2" 4" 0" /2" /2" /2" /2" /2" /2" /2" /2" /2" /2	S.S.~NONI EE TABLE ZLE LEGI RATING 150# N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	BELOW) END - RFS PLA PLA FNF FNF FNF FNF FNF CF (LH TTERLIN PREPA	- PE SCC FE SC TE SC TT SC PT N PT N TT N GAS) OR 2 V) ES. RED PER	29 SCFH	A-105 C.S. C.S. A-105 N/A N/A N/A N/A
P.W.H RADIC CORR SYSTE SYSTE N1 N2 N3 C1 C2 C3 C4 F (1,2) C3 P (1,2) C3 P (1,2) C3 P (1,2) C3 C4 F (1,2) C3 C4 C C0 C0 C0 C0 C0 C0 C0 C0 C0	DGRAPH OSION M WEIC LP F BLOV TI PII PII PRESSUF ILOT MI ILOT MI ILOT OF PRESSUF ILOT OF ILOT OF ILOTOTOTOTOTOTOTOTOTOTOTOTOTOTOTOTOTOTOT	ALLOWANG SHT SERVICE FLARE GAS WER CONN P CONNEC LOT GAS IONDUIT CC NDUIT CC RE GUAGE VENT XER ORIF XER ORIF XER ORIF SCONSU GIG (PROP RIFICE DRI H 0.6 SP NGE BOLT ERNAL CA	S INLET VECTION CTION INLET ONNECTIO CONNECTIO	MD SPOD SPOD C.S.~11 76781 - S 11 2 33 1/ 1/ NN 1/ NN 1/ LED: 3 65 SC R PILCO STRADED STRADED	/16"; bs (S NOZ: ze 2" 4" 0" /2" /2" /2" /2" /2" /2" /2" /2" /2" /2	S.S.~NONI SEE TABLE ZLE LEGI RATING 150# N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	BELOW) END - RFS PLA PLA FNF FNF FNF FNF FNF CF (LH TTERLIN PREPA	- PE SCC FE SC TE SC TT SC PT N PT N TT N GAS) OR 2 V) ES. RED PER	29 SCFH	A-105 C.S. C.S. A-105 N/A N/A N/A N/A
P.W.H RADIC CORR SYSTE ITEM N1 N2 C1 C2 C3 C4 F V1,2 C3 C4 F V1,2 C3 C4 F V1,2 C3 C4 F V1 C2 C3 C4 F V1 C2 C3 C3 C4 F C3 C4 F C4 C4 C4 C4 C4 C4 C4 C4 C4 C4	DGRAPH OSION IM WEIC ILP F BLOV TI PII PII PIC CC HEI CC PRESSUF ILOT MI ILOT MI ILOT OF SPC-SI	ALLOWANG CHT SERVICE FLARE GAS WER CONNE OT GAS ONDUIT CO ONDUIT CO RE GUAGE VENT XER ORIF XER ORIF XER ORIF AS CONSU GIG (PROP RIFICE DRI H 0.6 SP IGE BOLTI ERNAL CA P6. PRIME	S INLET VECTION CTION CTION INLET DNNECTIO CON	MD SPD C.S.~11 - S 1 2 3 1/ 2 3 1/ N 1/ 0N 1/ <	/16"; bs (S NOZ. ze 2" 4" 0" /2" /2" /2" /2" /2" /2" /2" /2" /2" /2	S.S.~NONI EE TABLE ZLE LEGI RATING 150# N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	BELOW) FND - RFS PLA FNF FNF FNF FNF FNF FNF FNF FN	- PE SCC SC TE SC TT SC TT N TT N TT N GAS) OR 2 V) ES. RED PER -3 MILS [29 SCFH	A-105 C.S. C.S. A-105 N/A N/A N/A N/A
P.W.H RADIC CORR SYSTE TEM N1 N2 C1 C2 C3 C4 F (C2 C3 C4 F (C2 C3 C4 F (C2 C3 C4 F (C2 C3 C4 F (C2 C3 C4 F C2 C3 C4 F C2 C3 C4 F C2 C3 C4 F C2 C3 C4 F C2 C3 C4 F C2 C3 C4 F C2 C3 C4 F C2 C3 C4 F C2 C3 C4 F C2 C3 C4 F C2 C3 C4 F C2 C3 C4 F C2 C3 C4 F C2 C3 C4 F C2 C3 C4 F C4 F C2 C3 C4 F C4 F C4 C4 F C4 C4 C4 C4 C4 C4 C4 C4 C4 C4	DGRAPH OSION IM WEIG ILP F BLOV TI PII PII PII PIC CC HEI CC PRESSUF ILOT MI ILOT MI ILOT MI ILOT OF SPC-SI AINT OF	ALLOWANG CHT SERVICE FLARE GAS WER CONNE OT GAS ONDUIT CO ONDUIT CO RE GUAGE VENT XER ORIF XER ORIF XER ORIF AS CONSU GIG (PROP RIFICE DRI H 0.6 SP IGE BOLTI ERNAL CA P6. PRIME	S INLET VECTION CTION CTION INLET DNNECTIO CON	MD SPD C.S.~11 - S 1 2 3 1/ 2 3 1/ N 1/ 0N 1/ <	/16"; bs (S NOZ. ze 2" 4" 0" /2" /2" /2" /2" /2" /2" /2" /2" /2" /2	S.S.~NONI EE TABLE ZLE LEGI RATING 150# N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	BELOW) FND - RFS PLA FNF FNF FNF FNF FNF FNF FNF FN	- PE SCC SC TE SC TT SC TT N TT N TT N GAS) OR 2 V) ES. RED PER -3 MILS [29 SCFH	A-105 C.S. C.S. A-105 N/A N/A N/A N/A
P.W.H RADIC CORR SYSTE TEM N1 N2 C1 C2 C3 C4 F (1, 2) C3 P (1, 2) C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C	DGRAPH OSION IM WEIG ILP F BLOW TI PII PII PII PIC CC HEI CC PRESSUF ILOT MI ILOT MI ILOT OF SPC-SI AINT OF TAINLESS	ALLOWANG CHT SERVICE FLARE GAS WER CONN P CONNEG LOT GAS DNDUIT CC ONDUIT CC RE GUAGE VENT XER ORIF XER ORIF XER ORIF AS CONSU GIG (PROP RIFICE DRI H 0.6 SP GE BOLT CRNAL CA P6. PRIME NE COAT S STEEL:	S INLET VECTION CTION INLET DNNECTIO CONNECTIO	MD SPDD C.S.~11 76781 1 2 3 1/ 2 3 1/ N 1/ 0N	/16"; bs (S NOZ. 2" 4" 4" (2" (2" (2" (2" (2" (2") (2") (2") (2"	S.S.~NONI EE TABLE ZLE LEGI RATING 150# N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	BELOW) FND - RFS PLA PLA FNFF FNFF FNFF FNFF (NAT. CF (LH TERLIN PREPA 11 (2 MIN.) :	- PE SCC SC TE SC TT SC TT N TT N TT N GAS) OR 2 SC SC SC SC SC SC SC SC SC SC	29 SCFH	A-105 C.S. C.S. A-105 N/A N/A N/A N/A
P.W.H RADIC CORR SYSTE TEM N1 N2 C1 C2 C3 C4 F (1, P) C2 C3 C4 F (1, P) C2 C3 P) C3 P C3 P C3 C4 F C3 C4 F C2 C3 C4 F C4 C4 F C3 C4 C4 C4 C4 C4 C4 C4 C4 C4 C4	DGRAPH OSION IM WEIG ILP F BLOV TI PII PII PII PIC CC HEI CC PRESSUF ILOT MI ILOT MI ILOT OF SPC-SI AINT OF TAINLESS	ALLOWANG CHT SERVICE FLARE GAS WER CONN P CONNEG LOT GAS ONDUIT CO RE GUAGE VENT XER ORIF XER ORIF XER ORIF XER ORIF NGE BOLT CROSU CONSU GIG (PROP RIFICE DRI H 0.6 SP GE BOLT CROSU CONS	S INLET VECTION CTION INLET DNNECTIO CONNECTIO	MD SPD SPD C.S.~11 - - S 1 - - S 1 2 3 1 1 2 3 1 1 0 3 1 1 0 3 65 SI STRADD STRADD STRADE SINE CCO A	/16"; bs (S NOZ. 2" 4" 4" (2" (2" (2" (2" (2" (2" (2") (2") (2")	S.S.~NONI EE TABLE ZLE LEGI RATING 150# N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	BELOW) FND - RFS PLA PLA FNFF FNFF FNFF FNFF (NAT. CF (LH TERLIN PREPA 11 (2 MIN.) 5 CF 2.	- SCI PE SCI TE SC TE SC TT SC TT N T N T N GAS) OR 2 SCASS V) ES. RED PER -3 MILS I SILVER FIN 30 SCFH V	29 SCFH	A-105 C.S. C.S. A-105 N/A N/A N/A N/A))
P.W.H RADIC CORR SYSTE TEM N1 N2 C1 C2 C3 C4 F (1, P) C2 C3 C4 F (1, P) C2 C3 P) C3 P C3 P C3 C4 F C3 C4 F C2 C3 C4 F C4 C4 F C3 C4 C4 C4 C4 C4 C4 C4 C4 C4 C4	DGRAPH OSION IM WEIG ILP F BLOV TI PII PII PII PIC CC HEI CC PRESSUF ILOT MI ILOT MI ILOT OF SPC-SI AINT OF TAINLESS	ALLOWANG CHT SERVICE FLARE GAS WER CONN P CONNEG LOT GAS ONDUIT CO RE GUAGE VENT XER ORIF XER ORIF XER ORIF XER ORIF NGE BOLT CROSU CONSU GIG (PROP RIFICE DRI H 0.6 SP GE BOLT CROSU CONS	S INLET VECTION CTION INLET DNNECTIO CONNECTIO	MD SPD SPD C.S.~11 - - S 1 - - S 1 2 3 1 1 2 3 1 1 0 3 1 1 0 3 65 SI STRADD STRADD STRADE SINE CCO A	/16"; bs (S NOZ. 2" 4" 4" (2" (2" (2" (2" (2" (2" (2") (2") (2")	S.S.~NONI EE TABLE ZLE LEGI RATING 150# N/A N/A N/A N/A N/A N/A N/A N/A N/A 000# N/A 000# N/A 000# N/A N/A N/A N/A 000# N/A N/A 000# N/A 0000# N/A 000# N/A 000# N/A 000# N/A 000# N/A 000# N/A 000# N/A 000# N/A 000# N/A 000# N/A 000# N/A 000# 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	BELOW) FND - RFS PLA PLA FNFF FNFF FNFF FNFF (NAT. CF (LH TERLIN PREPA 11 (2 MIN.) 5 CF 2.	- SCI PE SCI TE SC TE SC TT SC TT N T N T N GAS) OR 2 SCASS V) ES. RED PER -3 MILS I SILVER FIN 30 SCFH V	29 SCFH	A-105 C.S. C.S. A-105 N/A N/A N/A N/A))
P.W.H RADIC CORR SYSTE TEM N1 N2 C1 C2 C3 C4 F (1, P) C2 C3 C4 F (1, P) C2 C3 P) C3 P C3 P C3 C4 F C3 C4 F C2 C3 C4 F C4 C4 F C3 C4 C4 C4 C4 C4 C4 C4 C4 C4 C4	DGRAPH OSION IM WEIG ILP F BLOV TI PII PII PII PIC CC HEI CC PRESSUF ILOT MI ILOT MI ILOT OF SPC-SI AINT OF TAINLESS	ALLOWANC GHT SERVICE GAS WER CONNEC OT GAS DNDUIT CC NDUIT CC NDUIT CC RE GUAGE VENT XER ORIF AS CONSU SIG (PROP RIFICE DRI H 0.6 SP NGE BOLTI ERNAL CA P6. PRIME RE TIP RE S THAT W	S INLET VECTION CTION INLET ONNECTIO CONNECTIO	SPOD C.S.~11	/16"; bs (S NOZ 2" 4" 0" /2" /2" /2" /2" /2" /2" /2" /2" /2" /2	S.S.~NONI EE TABLE ZLE LEGI RATING 150# N/A N/A N/A N/A N/A N/A N/A N/A N/A 000# N/A 000# N/A 000# N/A N/A N/A N/A 000# N/A N/A 000# N/A 0000# N/A 000# N/A 000# N/A 000# N/A 000# N/A 000# N/A 000# N/A 000# N/A 000# N/A 000# N/A 000# N/A 000# 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	BELOW) FND - RFS PLA PLA FNF FNF FNF FNF FNF FNF FNF FN	PE SCI SO SC TE SC TE SC TT N T N T N GAS) OR 2 C SILVER FIN SILVER FIN 30 SCFH N ATING TEMF	29 SCFH	A-105 C.S. C.S. A-105 N/A N/A N/A N/A N/A OXYGEN ES.
P.W.H RADIC CORR SYSTE MI N1 N2 N3 C1 C2 C4 F (1,2 C3 C4 F (1,2 C3 C4 F (1,2 C3 C4 F (1,2 C3 C4 F (1,2 C3 C4 C3 C4 C3 C4 F (1,2 C C3 C3 C4 C C C C C C C C C C C C C C	DGRAPH OSION M WEIC LP I BLOU T/C CC CC PRESSUF ILOT MI ILOT MI ILOT MI ILOT MI ILL FLI SPC-SI AINT OI TAINLES HE FLA AINT OI TAINLES HE FLA	ALLOWANC GHT SERVICE GAS WER CONNEC OT GAS DNDUIT CC NDUIT CC NDUIT CC RE GUAGE VENT XER ORIF AS CONSU SIG (PROP RIFICE DRI H 0.6 SP NGE BOLTI ERNAL CA P6. PRIME RE TIP RE S THAT W	S INLET VECTION TION TION TION CONNECTIO CONNE	SPOD C.S.~11	/16"; bs (S NOZ 2" 4" 0" /2" /2" /2" /2" /2" /2" /2" /2" /2" /2	S.S.~NON SEE TABLE ZLE LEGU RATING 150# N/A N/A 3000# N/A N/A 3000# N/A N/A 000 BTU/S 000 BTU/S	BELOW) FND - RFS PLA PLA FNF FNF FNF FNF FNF FNF FNF FN	- PE SCI PE SCI TE SC TE SC TT N T N T N T N GAS) OR 2 SC SC SC SC SC SC SC SC SC SC	29 SCFH	A-105 C.S. C.S. A-105 N/A N/A N/A N/A N/A OXYGEN ES.
P.W.H RADIC CORR SYSTE ITEM N1 N2 N3 C1 C2 C3 C4 F V1,2 I. PI G G G A. AL S S P/ S S C F F F F	DGRAPH OSION M WEIC LP I BLOU T/C CC CC PRESSUF ILOT MI ILOT MI ILOT MI ILOT MI ILL FLI SPC-SI AINT OI TAINLES HE FLA AINT OI TAINLES HE FLA	ALLOWANC GHT SERVICE GAS WER CONNEC OT GAS DONDUIT CC ONDUIT CC NDUIT CC RE GUAGE VENT XER ORIF AS CONSU GIG (PROP RIFICE DRI H 0.6 SP NGE BOLTI ERNAL CA P6. PRIME RE TIP RE S THAT W	S INLET VECTION CTION INLET ONNECTIO CONNECTIO	MD SPDD C.S.~11 76781 1 2 3 1/ 2 3 1// N 1// NN 1// 0N 1// 1// 1// 1// 1// 1// 1// 1// 1// 1// </td <td>/16"; bs (S NOZ 2" 4" 0" /2" /2" /2" /2" /2" /2" /2" /2" /2" /2</td> <td>S.S.~NONI EE TABLE ZLE LEGI RATING 150# N/A N/A N/A N/A N/A N/A N/A N/A N/A 000# N/A 000# N/A N/A 000# N/A N/A 000# N/A 0000# N/A 0 0 N/A 0 0 N/A 0 0 N/A 0 0 N/A 0 0 N/A 0 0 N/A 0 0 N/A 0 0 N/A 0 0 N/A N/A 0 N/A N/A 0 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A</td> <td>BELOW) FND - RFS PLA PLA FNF FNF FNF FNF FNF FNF FNF FN</td> <td>PE SCI SO SC TE SC TE SC TT N T N T N GAS) OR 2 GAS) OR 2 V) ES. RED PER -3 MILS I SILVER FIN 30 SCFH N ATING TEMF</td> <td>29 SCFH</td> <td>A-105 C.S. C.S. A-105 N/A N/A N/A N/A N/A OXYGEN ES. 5.37 -</td>	/16"; bs (S NOZ 2" 4" 0" /2" /2" /2" /2" /2" /2" /2" /2" /2" /2	S.S.~NONI EE TABLE ZLE LEGI RATING 150# N/A N/A N/A N/A N/A N/A N/A N/A N/A 000# N/A 000# N/A N/A 000# N/A N/A 000# N/A 0000# N/A 0 0 N/A 0 0 N/A 0 0 N/A 0 0 N/A 0 0 N/A 0 0 N/A 0 0 N/A 0 0 N/A 0 0 N/A N/A 0 N/A N/A 0 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	BELOW) FND - RFS PLA PLA FNF FNF FNF FNF FNF FNF FNF FN	PE SCI SO SC TE SC TE SC TT N T N T N GAS) OR 2 GAS) OR 2 V) ES. RED PER -3 MILS I SILVER FIN 30 SCFH N ATING TEMF	29 SCFH	A-105 C.S. C.S. A-105 N/A N/A N/A N/A N/A OXYGEN ES. 5.37 -
P.W.H RADIC CORR SYSTE M1 N2 N3 C1 C2 C2 C3 C4 F V1,2 C3 C4 F V1,2 C3 C4 F C5 AI C3 C4 F F F F F P P P P P P P P P P P P P	DGRAPH OSION EM WEIG ED 6 BLOU TI PII T/C CC HEI CC PRESSUF ILCT MI ILCT MI ILCT G/ O 7 PS ILCT OF CASS WITT ILL FLA' LL EXTI SPC-SI AINT OF TAINLESS HE FLA REE GA	ALLOWANC GHT SERVICE GAS WER CONNEC OT GAS I DNDUIT CC INDUIT CC INDUIT CC RE GUAGE VENT XER ORIF AS CONSU GIG (PROP RIFICE DRI H 0.6 SP NGE BOLTI ERNAL CA P6. PRIME RE TIP RE S THAT W FX Ib	S INLET VECTION CTION INLET DNNECTIO CONNECTIO	QD SPOD C.S.~11 - S - S 1 QD 1	/16"; bs (S NOZ. 2" 4" 4" 72" 72" 72" 72" 72" 72" 72" 72" 72" 72	S.S.~NON SEE TABLE ZLE LEGL RATING 150# N/A N/A N/A 3000# N/A N/A N/A 3000# N/A N/A 000 BTU/S 000 BTU/S	BELOW) FND - TY RFS PLA FNF FNF FNF FNF FNF FNF FNF FN	PE SCI SO SC TE SC TE SC TT N T N T N T N GAS) OR 2 SILVER FIN SILVER FIN 30 SCFH N ATING TEMF 22LE LOAL	H.40 H.40 H.40 H.40 H.80 J/A J/A J/A J/A J/A J/A J/A J/A J/A J/A	A-105 C.S. C.S. A-105 N/A N/A N/A N/A N/A OXYGEN ES. 537 - Mz ft-lb
P.W.H RADIC CORR SYSTE SYSTE N1 N2 N3 C1 C2 C3 C4 F (1,2 C3 C4 F (1,2 C3 C4 F (1,2 C3 C4 C3 C4 C3 C4 F (1,2 C3 C4 C3 C4 C3 C4 C C C C C C C C C C C	DGRAPH OSION EM WEIG ELP 6 BLOU TI PII T/C CC HEI CC PRESSUF ILOT MI ILOT G/ O 7 PS ILOT OF GO 7 PS ILOT OF CASS WITT ILL FLA' LL EXTI SPC-SI AINT OF TAINLESS HE FLA REE GA	ALLOWANC GHT SERVICE GAS WER CONNEC OT GAS DNDUIT CC NDUIT CC NDUIT CC RE GUAGE VENT XER ORIF AS CONSU GIG (PROP RIFICE DRI H 0.6 SP NGE BOLTI ERNAL CA P6. PRIME RE TIP RE S THAT W FX	S INLET VECTION CTION INLET DONNECTIO CONNECTI	QD SPOD SPOD C.S.~11 76781 - S 1 2 3 1 2 3 1// N 1// NN 1// LED: 3 65 SIC R PILC STRADD SIRADD GO TO A COP GO TO ALLCC Y b 00	/16"; bs (S NOZ. 2" 4" 4" 72" 72" 72" 72" 72" 72" 72" 72" 72" 72	S.S.~NONI EE TABLE ZLE LEGI RATING 150# N/A N/A N/A N/A N/A N/A N/A N/A	BELOW) END - RFS PLA PLA FNF FNF FNF FNF FNF FNF FNF FN	- PE SCI PE SCI TE SC TE SC TT N T N T N T N GAS) OR 2 V) ES. RED PER -3 MILS I SILVER FIN 30 SCFH N TING TEMF ZLE LOAL b f D 2 22	H.40 H.40 H.40 H.80 J/A J/A J/A J/A 29 SCFH DFT MIN. ISH. DFT MIN. ISH. DFT ANN DERATUR D API My	A-105 C.S. C.S. A-105 N/A N/A N/A N/A N/A OXYGEN ES. 537 - Mz
P.W.H RADIC CORR SYSTE TIEM N1 N2 N3 C1 C2 C3 C4 F V1,2 C3 C4 F V1,2 C3 C4 F V1,2 C3 C4 F C2 C3 C4 F V1,2 C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4 C C C2 C3 C4 C C C2 C3 C4 C C2 C C3 C4 C C2 C C3 C4 C C C2 C3 C4 C C C2 C3 C4 C C C C2 C3 C4 C C C2 C C3 C4 C C C2 C C3 C4 C C C C C C C C C C C C C C C C	DGRAPH OSION M WEIC M WEIC PI BLOW TI PI PI PI PI PI PI PI PI PI P	ALLOWANC GHT SERVICE GAS WER CONNEC OT GAS I DNDUIT CC INDUIT CC INDUIT CC RE GUAGE VENT XER ORIF AS CONSU GIG (PROP RIFICE DRI H 0.6 SP NGE BOLTI ERNAL CA P6. PRIME RE TIP RE S THAT W FX Ib 1200	S INLET VECTION CTION CTION INLET DONNECTIO CO	QD SPOD SPOD C.S.~11 76781 - S 1 2 3 1 1/ 2 3 1 1/ N 1/ NN 1/ NN 1/ LED: 3 65 SG R PILC STRADD STRADD STRADD GO MACON GO GO STAC/	/16"; bs (S NOZ. 2" 4" 4" 0" /2" /2" /2" /2" /2" /2" /2" /2" /2" /2	S.S.~NONI EE TABLE ZLE LEGI RATING 150# N/A N/A N/A N/A N/A N/A N/A N/A	BELOW) END - RFS PLA PLA FNF FNF FNF FNF FNF FNF FNF FN	PE SCI SO SC TE SC TE SC TT N T N T N T N T N GAS) OR 2 SILVER FIN SILVER FIN	29 SCFH	A-105 C.S. C.S. A-105 N/A N/A N/A N/A N/A S S S S S S S S S S S S S S S S S S S
P.W.H RADIC CORR SYSTE TIEM N1 N2 C1 C2 C3 C4 F V1,2 C1 C2 C3 C4 F V1,2 C1 C2 C3 C4 F V1,2 C1 C2 C3 C4 F V1,2 C1 C2 C3 C4 F V1,2 C1 C2 C3 C4 F C1 C2 C3 C4 F C1 C2 C3 C4 F C1 C2 C3 C4 F C1 C2 C3 C4 F C1 C2 C3 C4 F C1 C2 C3 C4 F C1 C2 C3 C4 F C1 C2 C3 C4 F C1 C2 C3 C4 F C1 C2 C3 C4 F C1 C2 C3 C4 F C1 C2 C3 C4 F C1 C2 C3 C4 F C1 C2 C3 C4 F C1 C2 C3 C4 F C1 C3 C4 F C1 C2 C3 C4 F C1 C3 C4 C4 F C1 C3 C4 C4 C4 C3 C4 C4 C4 C1 C3 C4 C4 C4 C4 C4 C4 C4 C4 C4 C4	DGRAPH OSION M WEIG LP F BLOW TI PII T/C CC HEI CCC PRESSUF ILOT MI ILOT MI ILOT G/ Ø 7 PS ILOT OF AS WITT ILL FLAN LL EXTI SPC-SI AINT OF TAINLES SPC-SI AINT OF TAINLES	ALLOWANC GHT SERVICE GAS WER CONNEC OT GAS I DNDUIT CC INDUIT CC INDUIT CC RE GUAGE VENT XER ORIF AS CONSU GIG (PROP RIFICE DRI H 0.6 SP NGE BOLTI ERNAL CA P6. PRIME S THAT W FX Ib 1200	S INLET VECTION CTION CTION INLET DONNECTIO CO	QD SPOD SPOD C.S.~11 76781 - S 1 2 3 1 12 3 1 N 1 NN 1 NN 1 LED: 3 65 SIG R PILC STRADD SINE GO TI A COI GO TO STAC/ DO OO STAC/	/16"; bs (S NOZ. 2" 4" 4" 0" /2" /2" /2" /2" /2" /2" /2" /2" /2" /2	S.S.~NONI EE TABLE ZLE LEGI RATING 150# N/A N/A N/A N/A N/A N/A N/A N/A	BELOW) FND - RFS PLA PLA FNF FNF FNF FNF FNF FNF FNF FNF FNF F	PE SCI SO SC TE SC TE SC TT N T N T N T N T N GAS) OR 2 SILVER FIN SILVER FIN	29 SCFH	A-105 C.S. C.S. A-105 N/A N/A N/A N/A N/A OXYGEN ES. 537 - Mz ft-lb 2250 - (LB-FT)
P.W.H RADIC CORR SYSTE SYSTE N1 N2 N3 C1 C2 C3 C4 F (1,2 C3 C4 F (1,2 C3 C4 F (1,2 C3 C4 F (1,2 C3 C4 F (1,2 C3 C4 C3 C4 C3 C4 C1 C2 C3 C4 C3 C4 C C C3 C4 C C C C3 C4 C C C C	DGRAPH OSION ILP 6 BLOU TI PIII T/C CC HEI CC PRESSUF ILOT MI ILOT G/ OF 7 PS ILOT OF SPC-SI AINT OF TAINLES HE FLA REEE GA HE FLA COAD CA DEAD LI	ALLOWANC GHT SERVICE GAS WER CONNEC OT GAS DNDUIT CC NDUIT CC NDUIT CC RE GUAGE VENT XER ORIF AS CONSU GIG (PROP RIFICE DRI H 0.6 SP NGE BOLTI ERNAL CA P6. PRIME S THAT W FX Ib 1200	S INLET VECTION CTION CTION INLET DONNECTIO CO	MD SPDD C.S.~11 76781 1 2 3 1 2 3 1 2 3 1 2 3 1 1 2 3 1 1 2 3 1 1 2 3 1 1 2 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 3 2 3 3 1	/16"; bs (S NOZ. 2" 4" 4" 0" /2" /2" /2" /2" /2" /2" /2" /2" /2" /2	S.S.~NONI EE TABLE ZLE LEGI RATING 150# N/A N/A N/A N/A N/A N/A N/A N/A	BELOW) FND RFS PLA PLA FNF TCF (LH MIN.) SOF 2: MX	- PE SCI PE SCI TE SC TE SC TT N T N T N T N T N T N T N T	29 SCFH	A-105 C.S. C.S. A-105 N/A N/A N/A N/A N/A OXYGEN ES. 537 - Mz ft-lb 2250 C(LB-FT) 0.0
P.W.H RADIC CORR SYSTE SYSTE N1 N2 N3 C1 C2 C3 C4 F (1,2 C3 C4 F (1,2 C3 C4 F (1,2 C3 C4 F (1,2 C3 C4 C3 C4 C3 C4 C3 C1 C2 C3 C4 C3 C1 C2 C3 C4 C3 C1 C2 C3 C4 C3 C1 C2 C3 C4 C3 C1 C2 C3 C4 C1 C2 C3 C4 C4 C C3 C4 C2 C3 C4 C4 C4 C7 C4 C4 C7 C4 C2 C3 C4 C4 C4 C4 C7 C4 C2 C3 C4 C4 C4 C4 C7 C4 C4 C7 C2 C3 C4 C4 C4 C7 C4 C4 C4 C4 C4 C4 C4 C4 C4 C4 C4 C4 C4	DGRAPH OSION ILP 6 BLOU TI PIII T/C CC HEI CC PRESSUF ILOT MI ILOT G/ OT 7 PS ILOT OF CONT G/ OT 7 PS ILOT OF CONT G/ OT 7 PS ILOT OF CONT G/ OT 7 PS ILOT OF CONT G/ CONT G/ CONT	ALLOWANC GHT SERVICE GAS WER CONNEC OT GAS DNDUIT CC NDUIT CC NDUIT CC RE GUAGE VENT XER ORIF AS CONSU GIG (PROP RIFICE DRI H 0.6 SP NGE BOLTI ERNAL CA P6. PRIME S THAT W FX Ib 1200 SE DAD	S INLET VECTION CTION CTION INLET DONNECTIO CO	QD SPOD SPOD C.S.~11 7678 I 1 2 3 I 1 2 3 I N 1 I 2 3 I N 1 IN 1 IN 1 IDN 1 IN 1 IDN 3 GE SER FIELE S STRADE GO INE CC GO TO A COI GO STAC/ y b 00 STAC/ 7678 2310	/16"; bs (S NOZ. 2" 4" 4" 0" /2" /2" /2" /2" /2" /2" /2" /2" /2" /2	S.S.~NONI EE TABLE ZLE LEGI RATING 150# N/A N/A N/A N/A N/A N/A N/A N/A	BELOW) FND RFS PLA PLA FNF TCF (LH MIN.) SOF 2: MX	- PE SCI PE SCI TE SC TE SC TT N T N T N T N T N A N GAS) OR 2 V) ES. RED PER -3 MILS E SILVER FIN -3 MILS E -3 MILS E -	29 SCFH	A-105 C.S. A-105 N/A N/A N/A N/A N/A N/A S S S S S S S S S S S S S S S S S S S
P.W.H RADIC CORR SYSTE ITEM N1 N2 C1 C2 C3 C4 F V1,2 C3 P V1,2 C1 C3 P V1,2 C1 C3 P V1,2 C1 C3 C4 F V1,2 C1 C3 C4 F V1,2 C1 C3 C4 F V1,2 C1 C2 C3 C4 F V1,2 C1 C2 C3 C4 F C1 C2 C3 C4 F C2 C3 C4 F C1 C2 C3 C4 F C1 C2 C3 C4 F C1 C2 C3 C4 F C1 C2 C3 C4 F C1 C2 C3 C4 F C1 C2 C3 C4 F C1 C2 C3 C4 F C1 C2 C3 C4 F C1 C2 C3 C4 F C1 C2 C3 C4 F C1 C3 C4 F C1 C2 C3 C4 F C1 C2 C4 F C1 C2 C3 C4 C4 F C1 C2 C4 F C1 C3 C4 C4 C4 C1 C3 C4 C4 C4 C4 C4 C4 C4 C4 C4 C4	Deraph Deraph	ALLOWANC GHT SERVICE GAS WER CONNEC OT GAS DNDUIT CC NDUIT CC NDUIT CC RE GUAGE VENT XER ORIF AS CONSU GIG (PROP RIFICE DRI H 0.6 SP NGE BOLTI ERNAL CA P6. PRIME S THAT W FX Ib 1200 SE DAD	S INLET VECTION CTION CTION INLET DONNECTIO CO	MD SPDD C.S.~11 76781 1 2 3 1 2 3 1 2 3 1 2 3 1 1 2 3 1 1 2 3 1 1 2 3 1 1 2 3 1 1 2 3 2 3 3 4 60 00 00 00 00 00 00	/16"; bs (S NOZ. 2" 4" 4" 0" /2" /2" /2" /2" /2" /2" /2" /2" /2" /2	S.S.~NONI EE TABLE ZLE LEGI RATING 150# N/A N/A N/A N/A N/A N/A N/A N/A	BELOW) FND RFS PLA PLA FNF TERLIN PREPA MIN.) 1 COF 2. MX MX MX MX TOZZ MX COF 2.2 MX Q00 V LOA CAR QUA QUA QUA	- PE SCI PE SCI TE SC TE SC TT N T N T N T N T N T N T N T	29 SCFH	A-105 C.S. A-105 N/A N/A N/A N/A N/A N/A S S S S S S S S S S S S S S S S S C LB-FT) 0.0 36058 39655
P.W.H RADIC CORR SYSTE ITEM N1 N2 C1 C2 C3 C4 F V1,2 C3 P V1,2 C1 C2 C3 C4 F V1,2 C1 C2 C3 C4 F V1,2 C1 C2 C3 C4 F V1,2 C1 C2 C3 C4 F V1,2 C1 C2 C3 C4 F V1,2 C1 C2 C3 C4 F V1,2 C1 C2 C3 C4 F C1 C2 C3 C4 F C1 C2 C3 C4 F C1 C2 C3 C4 F C2 C3 C4 F C1 C2 C3 C4 F C1 C2 C3 C4 F C1 C2 C3 C4 F C1 C2 C3 C4 F C1 C2 C3 C4 F C1 C2 C3 C4 F C1 C2 C3 C4 F C1 C2 C3 C4 F C1 C2 C3 C4 F C1 C2 C4 F C1 C3 C4 F C1 C2 C3 C4 F C1 C3 C4 C4 C4 C1 C3 C4 C4 C4 C4 C4 C4 C4 C4 C4 C4	DGRAPH OSION ILP 6 BLOU TI PIII T/C CC HEI CC PRESSUF ILOT MI ILOT G/ OT 7 PS ILOT OF CONT G/ OT 7 PS ILOT OF CONT G/ OT 7 PS ILOT OF CONT G/ OT 7 PS ILOT OF CONT G/ CONT G/ CONT	ALLOWANC GHT SERVICE GAS WER CONNEC OT GAS DNDUIT CC NDUIT CC NDUIT CC RE GUAGE VENT XER ORIF AS CONSU GIG (PROP RIFICE DRI H 0.6 SP NGE BOLTI ERNAL CA P6. PRIME S THAT W FX Ib 1200 SE DAD LOAD LOAD	S INLET VECTION CTION CTION INLET DONNECTIO CO	QD SPOD SPOD C.S.~11 7678 I 1 2 3 I 1 2 3 I N 1 I 2 3 I N 1 IN 1 IN 1 IDN 1 IN 1 IDN 3 GE SER FIELE S STRADE GO INE CC GO TO A COI GO STAC/ y b 00 STAC/ 7678 2310	/16"; bs (S NOZ. 2" 4" 4" 0" /2" /2" /2" /2" /2" /2" /2" /2" /2" /2	S.S.~NONI EE TABLE ZLE LEGI RATING 150# N/A N/A N/A N/A N/A N/A N/A N/A	BELOW) FND RFS PLA PLA FNF TCF (LH MIN.) SOF 2: MX		29 SCFH	A-105 C.S. A-105 N/A N/A N/A N/A N/A N/A S S S S S S S S S S S S S S S S S S S

Section 8 Map(s)


Section 8

Map(s)

<u>A map</u> such as a 7.5 minute topographic quadrangle showing the exact location of the source. The map shall also include the following:

The UTM or Longitudinal coordinate system on both axes	An indicator showing which direction is north
A minimum radius around the plant of 0.8km (0.5 miles)	Access and haul roads
Topographic features of the area	Facility property boundaries
The name of the map	The area which will be restricted to public access
A graphical scale	

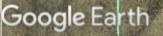
A site location map and an aerial image with a 0.5 mile boundary and access roads are provided.

Zia Hills Central Facility

Aerial Image with 0.5 Mile Boundary and Access Roads

317

Zia HIII CTB


Legend Zia Hill CTB

12

N

2000 ft

1111

@ 2020 Google

Section 9 Proof of Public Notice

Section 9

Proof of Public Notice

(for NSR applications submitting under 20.2.72 or 20.2.74 NMAC) (This proof is required by: 20.2.72.203.A.14 NMAC "Documentary Proof of applicant's public notice")

☑ I have read the AQB "Guidelines for Public Notification for Air Quality Permit Applications" This document provides detailed instructions about public notice requirements for various permitting actions. It also provides public notice examples and certification forms. Material mistakes in the public notice will require a re-notice before issuance of the permit.

Unless otherwise allowed elsewhere in this document, the following items document proof of the applicant's Public Notification. Please include this page in your proof of public notice submittal with checkmarks indicating which documents are being submitted with the application.

New Permit and Significant Permit Revision public notices must include all items in this list.

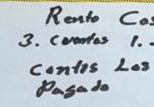
Technical Revision public notices require only items 1, 5, 9, and 10.

Per the Guidelines for Public Notification document mentioned above, include:

- 1. A copy of the certified letter receipts with post marks (20.2.72.203.B NMAC)
- 2. ☑ A list of the places where the public notice has been posted in at least four publicly accessible and conspicuous places, including the proposed or existing facility entrance. (e.g: post office, library, grocery, etc.)
- 3. \square A copy of the property tax record (20.2.72.203.B NMAC).
- 4. \square A sample of the letters sent to the owners of record.
- 5. \square A sample of the letters sent to counties, municipalities, and Indian tribes.
- 6. \square A sample of the public notice posted and a verification of the local postings.
- 7. Z A table of the noticed citizens, counties, municipalities and tribes and to whom the notices were sent in each group.
- 8. Z A copy of the public service announcement (PSA) sent to a local radio station and documentary proof of submittal.
- 9. ☑ A copy of the <u>classified or legal</u> ad including the page header (date and newspaper title) or its affidavit of publication stating the ad date, and a copy of the ad. When appropriate, this ad shall be printed in both English and Spanish.
- 10. A copy of the <u>display</u> ad including the page header (date and newspaper title) or its affidavit of publication stating the ad date, and a copy of the ad. When appropriate, this ad shall be printed in both English and Spanish.
- 11. ☑ A map with a graphic scale showing the facility boundary and the surrounding area in which owners of record were notified by mail. This is necessary for verification that the correct facility boundary was used in determining distance for notifying land owners of record. SEE NOTE BELOW

Proof of posting in the newspaper is included.

Certified Mail Receipts with Postmarks



ESPACIOS PARA RVS Todos los servicios incluidos

Cope Rv Park, LLC 533 W Cope Pl Hobbs NM

For more information call or text 575-408-0137 575-318-3736

> New construction and great location

L0556 32

NOTICE

tel 575 942 913

Seguro lo rec Ventanilla. Siempre hay

Samh

017 and February 2019 dates

on sold between May 2018 and

amp immediately and contact Star

M (Eastern Standard Time) systems.com/en-na

in cooperation with the U.S. Safety Commission.

rmation:

fay 31, 2020

5044

Hazard: Pumps manufactured between October 2017 and February 2019 dates may overheat and create the risk of fire.

Thillitech pedestal sump pumps sold between May 2018 and

Conscolfhillings Company announces its application to the New Mexico Environment Department for an air quality permit for the modification of the Zia Hills Central Facility. The expected date of application submittal to the Air Quality Barran is December 30, 2020. The proposed modification consists of increasing production and the use of additional delydration equipment.

The exact location for the Zia Hills Central Facility, will be at latitude 32 deg, 01 min, 19 sec and longitude -103 deg, 42 min, 45 sec. The approximate location of this facility in 24.9 miles southeast of Malaga in Lee County.

Pollutant. PM =	Pounds per hour	Tons per year	
PM 15	ii.	6	
Sulfur Dioxide (SO1)	1	6	
Nitrogen Oxides (NO ₄)	238	6	
Carbon Monoxide (CO)	440	50	
Volatile Organic Compounds (VOC) Total sum of all Hastedous Air Pollutants (HAPs)	750	35	
Tuxic Air Pollatant (TAP)	17	118	
Green House Gas Emissions as Total COst	83	14	
A second s		64	

Green Hinder Unit source 10,000 BL000 Comparison operating achievables of the facility will be 24 tours per day, 7 days a weak and a machine operation of the Facility is: The owners and/or operation of the Facility is: Channes facility is: Califolds Parking: However, the second sheet the commercian or operation of the facility, and the second sheet and the second sheet are second so that the second so the second so that the second so the second so that the second so that the second so the sec

ager, her Manual ager, from Manual ager Eryst, (Elle, (Sel) 476

With your community, please rather to the company manua and famility. This information is assessance stores of the Department may have not you mailing address. Once the Department has sompleted in going the Department's makes with he published in the legal mation of a sys-

Attacarities Unes en un avrian de la offician de Calidad del Azer del Departama Unes en un avrian de antiditacionismo en unio nece. Ni autori demas in Adai por at estat. No. 505-476-5587.

MICD does not description microsomer and description of the second microsomer and the second second second spatients concentrating more discrimand it

Wiring connectors

Unplug the fireplace and con

Call 1-888-251-1 10 a.

The estimated miximum quantities of any regulated air contaminants will be as follows in pound per hoar (pph) and tons per year (ppy). These reported emissions could charge slightly during the course of the Department's review:

TROPP

Comez

NO CALIFORNIA

502 N Cec#5F Hobbs NM 180240

Windows & Doon Stucko

J MAY CUSTOM CARPENTRY

Jeromy May]

Energy Services

Quarte

Main: (432) 219.6172 Cell: (817) 505.9459

acban Amador

1780

Consecutivity of the Zan Hills Consense is an exploration to the Xare Median Environment Department for an air quality pormit for the 2020. The proposed modification constants of increasing production scheming in during which are proposed modification constants of increasing production and the use of additional distribution equipment.

rt stain

The exact location for the Zin Hills Central Facility, will be at latitude 22 dag 01 min, 19 are and longitude -103 dag, 42 min, 45 sec. The approximate location of this facility is 24.9 miles routheast of Malaga in Les Coursy.

The estimated maximum quantities of any regulated all commission will be as follows in possid per hoar (tyds) and ions per year (typ). These reported emissions could change slightly during the source of the Deperturnal's review.

Pollutare:		
PM	Pennds per hour	Tota per year
PM LI	11	
Sulfur Disside (SO ₁)	11	1.1
Nitragen Oxides (NO ₄)	2	
Carbon Monoside (CO)	216	6
Volatile Organic Compounds (VOC)	640	60
Total sum of all Hazardous Air Pollutams (HAPu)	270	35
Toxic Air Pollutant (TAP)	17	738
Green House Gas Emissions as Total COpe	19	14
	Na	

#1,890 The standard and maximum operating subships of the facility will be 24 hours per day, 7 days a week and a maximum of 52 weeks per year. The owner address operating of the facility is The mean make operating the facility is ConsumPatients of 52 weeks Eldedge Parkway; Houston, TX 7007 Editidge Parkway (Hannes, TA 1997) If you have any commute about power commutes or operation of this factor, whi you many row commutes the company, 325 N, approximation rows processing of the commutes and power commutes in which addings. These partices Manager New Market of the particular stars and power and the stars and power commutes in which and the stars for the mark on power of the particular stars and power and the stars and power adding the star addings. Genes partices Manager New Market 2000; 11:00 (2000) (Stars Stars and the stars and power adding the stars adding to the stars operation of the stars adding to the stars addi

With your convenies, please node to the energy sense and facility same, as much stopy of This information is nonzenously since the Department rank here not per anomality of sense, and ranking address. Once the Departments in a complete its provincies proves and populations? - unlike with he published is the legal sense of a strengther care. In Reflect in and its ar quality it de a legible return Dypart

Americalist Ease on answer de la infection de Califadad del Aire del Departamente del Martin productione per un constitucionemo en este anno 51 unated done inferenceiro na productione 305-679-5557 Annes Maran, anne de la marie de la company

Notice of Non-Discretances Notice of Non-Discretances Notice of Non-Discretances (Notice), and the second (Notice), second (Notice), second se

NOTICE

ConocoPhillips Company announces its application to the New Mexico Environment Department for an air quality permit for the modification of the Zia Hills Central Facility. The expected date of application submittal to the Air Quality Bureau is December 30, 2020. The proposed modification consists of increasing production and the use of additional dehydration equipment.

The exact location for the Zia Hills Central Facility, will be at latitude 32 deg, 01 min, 19 sec and longitude -103 deg, 42 min, 45 sec. The approximate location of this facility is 24.9 miles southeast of Malaga in Lea County.

The estimated maximum quantities of any regulated air contaminants will be as follows in pound per hour (pph) and tons per year (tpy). These reported emissions could change slightly during the course of the Department's review:

Pollutant:	Pounds per hour	Tons per year
PM II	11	6
PM 23	11	6
Sulfur Dioxide (SO2)	2	6
Nitrogen Oxides (NO ₄)	230	60
Carbon Monoxide (CO)	440	55
Volatile Organic Compounds (VOC)	750	110
Total sum of all Hazardous Air Pollutants (HAPs)	17	14
Toxic Air Pollutant (TAP)	n/a	n/a
Green House Gas Emissions as Total CO2e	n/a	80,000

The standard and maximum operating schedules of the facility will be 24 hours per day, 7 days a week and a maximum of 52 weeks per year. The owner and/or operator of the Facility is: The owner and/or operator of the Facility is: ConocoPhillips Company; 935 N. Eldridge Parkway; Houston, TX 77079.

If you have any comments about the construction or operation of this facility, and you want your comments to be made as part of the permit review process, you must submit your comments in writing to this address: Permit Programs Manager; New Mexico Environment Department; Air Quality Bureau; 525 Camino de los Marquez, Suite 1; Santa Fe, New Mexico; 87505-1816; (505) 476-4300; 1 800 224-7009; https://www.env.nm.gov/agb/permit/agb_draft_permits.html. Other comments and questions may be submitted verbally.

With your comments, please refer to the company name and facility name, or send a copy of this notice along with your comments. This information is necessary since the Department may have not yet received the permit application. Please include a legible return mailing address. Once the Department has completed its preliminary review of the application and its air quality impacts, the Department's notice will be published in the legal section of a newspaper circulated near the facility location.

Attención

Este es un aviso de la oficina de Calidad del Aire del Departamento del Medio Ambiente de Nuevo México, acerca de las emisiones producidas por un establecimiento en esta área. Si usted desea información en español, por favor comuniquese con esa oficina al teléfono 505-476-5557.

Notice of Non-Discrimination

NMED does not discriminate on the basis of race, color, national origin, disability, age or sex in the administration of its programs or activities, as required by applicable laws and regulations. NMED is responsible for coordination of compliance efforts and receipt of inquiries concerning non-discrimination requirements implemented by 40 C.F.R. Part 7, including Title VI of the Civil Rights Act of 1964, as amended; Section 504 of the Rehabilitation Act of 1973; the Age Discrimination Act of 1975, Title IX of the Education Amendments of 1972, and Section 13 of the Federal Water Pollution Control Act Amendments of 1972. If you have any questions about this notice or any of NMED's non-discrimination programs, policies or procedures, or if you believe that you have been discriminated against with respect to a NMED program or activity, you may contact: Kathryn Becker, Non-Discrimination Coordinator, NMED, 1190 St. Francis Dr., Suite N4050, P.O. Box 5469, Santa Fe, NM 87502, (505) 827-2855, nd coordinator@state.nm.us. You may also visit our website at https://www.env.nm.gov/non-employee-discrimination-complaintpage/ to learn how and where to file a complaint of discrimination.

List of Places Posted

Site Location

La Esperanza Store - Hobbs

McCoys - Hobbs

Lowe's - Hobbs

General Posting of Notices – Certification

Zia Hills Central Facility

I, <u>SEAN</u> (COBINSON), the undersigned, certify that on <u>1-5-21</u>, a true and correct copy of the attached Public Notice was posted in the following publicly accessible and conspicuous places in Lea County, State of New Mexico on the following dates:

- 1. Facility entrance ZIA CENTRAL
- 2. LOWE'S HOBBS, NM 3. McCoy's HOBBS, NM 4. LA ESPELANZA HOBBS, NM

Signed this <u>5</u>TH day of <u>JANUARY</u>, <u>2021</u>,

Har I da

1-5-2021 Date

SEAN ROBINSON Printed Name

PRODUCTION SUPT DELAWARE

Title {APPLICANT OR RELATIONSHIP TO APPLICANT}

Property Tax Records

All of the surrounding land is owned by the Bureau of Land Management; therefore, there is no applicable property tax records via the Lea County Assessor's website. Letters to Owners of Record and Applicable Counties, Municipalities, and Tribes

Certified Mail 7014 3040 0000 9587 9862

Tye Bryson – Field Manager Bureau of Land Management 620 E. Greene St. Carlsbad, New Mexico, 88220-6292

RE: NSR Permit Application Zia Hills Central Facility ConocoPhillips Company

Dear Federal Official,

In accordance with the application requirements of 20.2.72 NMAC, ConocoPhillips Company is providing notification of the planned modification of the Zia Hills Central Facility on your property in Eddy County, NM. A public notice will be published in the Hobbs News Sun newspaper, at the proposed site location, and three other locations in the surrounding area. A copy of the notice is attached. Please contact Vivian Bermudez at (832) 486-2496 or vivian.c.bermudez@conocophillips.com should you have any questions.

Sincerely,

Evanfullos

Evan Tullos Vice President

Attachment: Public Notice

Certified Mail 7014 3040 0000 9587 9855

Allen Davis Eddy County Manager 101 W. Greene St. Suite 110 Carlsbad, New Mexico, 88220

RE: NSR Permit Application Zia Hills Central Facility ConocoPhillips Company

Dear Mr. Davis,

In accordance with the application requirements of 20.2.72 NMAC, ConocoPhillips Company is providing notification of the planned modification of the Zia Hills Central Facility in Eddy County, NM. A public notice will be published in the Hobbs News Sun newspaper, at the proposed site location, and three other locations in the surrounding area. A copy of the notice is attached. Please contact Vivian Bermudez at (832) 486-2496 or by email at vivian.c.bermudez@conocophillips.com should you have any questions.

Sincerely,

Evan Jullon

Evan Tullos Vice President

Attachment: Public Notice

Certified Mail 7014 3040 0000 9587 9848

Mike Gallagher Lea County Manager 100 N. Main Avenue Suite 4 Lovington, New Mexico, 88260

RE: NSR Permit Application Zia Hills Central Facility ConocoPhillips Company

Dear Mr. Gallagher,

In accordance with the application requirements of 20.2.72 NMAC, ConocoPhillips Company is providing notification of the planned modification of the Zia Hills Central Facility in Eddy County, NM. The site is within 10 miles of Lea County. A public notice will be published in the Hobbs News Sun newspaper, at the proposed site location, and three other locations in the surrounding area. A copy of the notice is attached. Please contact Vivian Bermudez at (832) 486-2496 or vivian.c.bermudez@conocophillips.com should you have any questions.

Sincerely,

Evanfullos

Evan Tullos Vice President

Attachment: Public Notice

Sample of Notice posted and

Verification of Postings

NOTICE

ConocoPhillips Company announces its application to the New Mexico Environment Department for an air quality permit for the modification of the Zia Hills Central Facility. The expected date of application submittal to the Air Quality Bureau is December 30, 2020. The proposed modification consists of increasing production and the use of additional dehydration equipment.

The exact location for the Zia Hills Central Facility, will be at latitude 32 deg, 01 min, 19 sec and longitude -103 deg, 42 min, 45 sec. The approximate location of this facility is 24.9 miles southeast of Malaga in Lea County.

The estimated maximum quantities of any regulated air contaminants will be as follows in pound per hour (pph) and tons per year (tpy). These reported emissions could change slightly during the course of the Department's review:

Pollutant:	Pounds per hour	Tons per year
PM 10	11	6
PM _{2.5}	11	6
Sulfur Dioxide (SO ₂)	2	6
Nitrogen Oxides (NO _x)	230	60
Carbon Monoxide (CO)	440	55
Volatile Organic Compounds (VOC)	750	110
Total sum of all Hazardous Air Pollutants (HAPs)	17	14
Toxic Air Pollutant (TAP)	n/a	n/a
Green House Gas Emissions as Total CO2e	n/a	80,000

The standard and maximum operating schedules of the facility will be 24 hours per day, 7 days a week and a maximum of 52 weeks per year. The owner and/or operator of the Facility is: The owner and/or operator of the Facility is: ConocoPhillips Company; 935 N. Eldridge Parkway; Houston, TX 77079.

If you have any comments about the construction or operation of this facility, and you want your comments to be made as part of the permit review process, you must submit your comments in writing to this address: Permit Programs Manager; New Mexico Environment Department; Air Quality Bureau; 525 Camino de los Marquez, Suite 1; Santa Fe, New Mexico; 87505-1816; (505) 476-4300; 1 800 224-7009; <u>https://www.env.nm.gov/aqb/permit/aqb_draft_permits.html</u>. Other comments and questions may be submitted verbally.

With your comments, please refer to the company name and facility name, or send a copy of this notice along with your comments. This information is necessary since the Department may have not yet received the permit application. Please include a legible return mailing address. Once the Department has completed its preliminary review of the application and its air quality impacts, the Department's notice will be published in the legal section of a newspaper circulated near the facility location.

Attención

Este es un aviso de la oficina de Calidad del Aire del Departamento del Medio Ambiente de Nuevo México, acerca de las emisiones producidas por un establecimiento en esta área. Si usted desea información en español, por favor comuníquese con esa oficina al teléfono 505-476-5557.

Notice of Non-Discrimination

NMED does not discriminate on the basis of race, color, national origin, disability, age or sex in the administration of its programs or activities, as required by applicable laws and regulations. NMED is responsible for coordination of compliance efforts and receipt of inquiries concerning non-discrimination requirements implemented by 40 C.F.R. Part 7, including Title VI of the Civil Rights Act of 1964, as amended; Section 504 of the Rehabilitation Act of 1973; the Age Discrimination Act of 1975, Title IX of the Education Amendments of 1972, and Section 13 of the Federal Water Pollution Control Act Amendments of 1972. If you have any questions about this notice or any of NMED's non-discrimination programs, policies or procedures, or if you believe that you have been discriminated against with respect to a NMED program or activity, you may contact: Kathryn Becker, Non-Discrimination Coordinator, NMED, 1190 St. Francis Dr., Suite N4050, P.O. Box 5469, Santa Fe, NM 87502, (505) 827-2855, nd.coordinator@state.nm.us. You may also visit our website at https://www.env.nm.gov/non-employee-discrimination-complaint-page/ to learn how and where to file a complaint of discrimination.

Noticed Citizens, Counties, Municipalities, and Tribes

Eddy County: Eddy County Manager (Allen Davis) Lea County: Lea County Manager (Mike Gallagher) Bureau Of Land Management:Carlsbad Field Office (Tye Bryson) **Public Service Announcement Documentation**

Submittal of Public Service Announcement – Certification

I, <u>Evan Tullos</u>, the undersigned, certify that on 12/22/2020, submitted a public service announcement to KATK/KCDY that serves the City\Town\Village of Carlsbad and Hobbs, Eddy and Lea Counties, New Mexico, in which the source is or is proposed to be located and that the Station did not respond that it would air the announcement.

Signed this 23rd day of December, 2020.

Signature

Evan Tullos Printed Name

12/23/20 Date

Vice President - Consultant for COP Title {APPLICANT OR RELATIONSHIP TO APPLICANT}

Transmission Status

Your transmission has completed.

DOC Identifier : 31574052 Fax Number : 5758877000 Recipient : KATK FM Status Classification : "Success" Status Outcome : "Success" Last Attempt Date : 12/22/2020 Last Attempt Time : 11:47:22 Pages Scheduled : 3 Pages Sent : 3 Baud Rate : 14400 Duration (in seconds) : 42 Number of Retries : 1 Remote CSID : "VFD213M6N23"

Cover page

Public Service Announcement.pdf

KATK 92.1 FM (575) 887-7000

Re: Public Service Announcement

As part of the air quality permitting process in New Mexico, applicants for certain air permits must attempt to provide notice to the public of the proposed permit action via public service announcement (PSA). The announcement is attached. Will you air the PSA? Thank you.

Evan Tullos PEI (865) 850-2007

NOTICE OF AIR QUALITY PERMIT APPLICATION

ConocoPhillips Company announces its application to the New Mexico Environment Department for an air quality permit for the modification of the Zia Hills Central Facility. The expected date of application submittal to the Air Quality Bureau is December 30, 2020. The proposed modification consists of increasing production and the use of additional dehydration equipment.

The exact location for the Zia Hills Central Facility, will be at latitude 32 deg, 01 min, 19 sec and longitude -103 deg, 42 min, 45 sec. The approximate location of this facility is 24.9 miles southeast of Malaga in Lea County.

The notice was posted at the facility and three other public locations near the facility such as the library, post office, and grocery store. If you have any comments about the construction or operation of the above facility, and you want your comments to be made as part of the permit review process, you must submit your comments in writing to the address below:

Permit Programs Manager New Mexico Environment Department Air Quality Bureau 525 Camino de los Marquez, Suite 1 Santa Fe, New Mexico 87505-1816 (505) 476-4300 Legal Ad

FIFA provides breakdown of 2023 expanded Women's World Cup field

ZURICH (AP) — CONCA-CAF will have four direct berths for the expanded Women's World Cup in 2023, and two more teams from the region will have a chance to join them via a 10-team playoff tournament.

The United States, Canada, and Jamaica represented the confederation covering North and Central America and the Caribbean at the 24-team World Cup in France last year. A fourth CONCA-CAF country, Panama, had a chance to qualify, but lost 5-1 to Argentina on aggregate in a home-and-away CONCA-CAF-CONMEBOL playoff.

Jr. scored 22 points

apiece as Boise State

routed New Mexico

89-52 on Wednesday

The 22 points were

a career high for

Rice, who added

Alston Jr. also had

rebounds.

Marcus Shaver Jr. had 13

points for Boise State (6-1,

night.

seven

six assists

Boise St. upends

New Mexico 89-52

BOISE, Idaho (AP) — Max 2-0 Mountain West Con-

Rice and Derrick Alston ference), which earned its

FIFA released the breakdown for the 32-team women's tournament on Thursday. Europe (UEFA) will get 11 direct slots, while Asia (AFC) gets six and Africa (CAF), like CONCACAF, gets four. South America (CON-MEBOL) gets three and Oceania (OFC) one.

Host Australia and New Zealand automatically qualify, with their slots taken directly from the quotas allocated to their confederations. The 2019 World Cup field featured nine teams from Europe, including host France, five from Asia, three from Africa and CONCACAF,

sixth straight victo-

ry. Emmanuel Akot

Saquan Singleton

Broncos

had eight points for

improve to 2-0

against the Lobos

this season. Boise State

defeated New Mexico 77-53

the Lobos (3-2, 0-2).

The

last Monday.

added six assists.

two from South America, one from Oceania and the winner of the CONCACAF-CONME-BOL playoff.

The first Women's World Cup, held in 1991 in China, had 12 participants.

Four teams will be seeded in the 2023 playoff tournament, based on the latest FIFA world rankings prior to the draw, with a maximum of one seeded team per confederation. The teams will be divided into three pools — two of three countries and one of four with sides from the same confederation kept apart.

The playoff tournament will serve as a test event in Australia and New Zealand, with both hosts taking part in friendly matches against the teams in Group 1 and Group 2, ensuring all teams play two matches during the competition.

In other tournament news, FIFA has canceled the Under-17 and Under-20 World Cups scheduled for next year due to the pandemic. The next editions are now due to be staged in 2023, with Indonesia still hosting the U20s and Peru the U17s.

FIFA says "the COVID-19 pandemic continues to present challenges for the hosting of international sporting events and to have a restrictive effect on international travel.'

Moses Swaibu poses for a photograph during an interview with the Associated Press in London, Dec. 7. A former professional soccer play who was jailed in 2015 for match fixing allegations fears the financial crisis in the game caused by the coronavirus could make players more vulnerable to taking bribes.

Player jailed in match-fixing plot warns PL stars of dangers

LONDON (AP) — When Moses Swaibu stands in front of future Premier League players, warning of the dangers of becoming embroiled in match-fixing. he is speaking from experience.

"You do not want to end up in my position, going to prison," Swaibu recalls telling some of the game's most famous players in talks at training grounds, "sitting in the cell with someone you once looked up to that played in the Premier League, eating tinned food and a packet of crisps and someone opening your door, telling you what you should and shouldn't do for 24 hours.

"And that's when I would say the penny drops. But then I'll turn around and say that's the worst-case scenario. Best-case scenario is you're going to go play in the Premier League and everyone's happy."

Swaibu's educational talks at academies with future stars are about ensuring the current generation of players do not make the same mistakes as him. They are lessons in how a series of fateful mistakes ended up five years ago with him being convicted of conspiracy to bribe lower-league players in England and jailed, along with Delroy

LEGAL

Facey, who played as a striker in the Premier League for Bolton.

While the 31-year-old Swaibu began his career at Crystal Palace, he never got to play in the top division, drifting down the leagues before ending up in the fourth professional tier at Lincoln where he met Facey.

"Delroy had asked us to come down to his hotel room and he introduced us to these match-fixers that wanted us to throw a game,' Swaibu said in an interview with The Associated Press. "They produced around 60,000 euros but at that time, everyone turned around and said, 'No, we're not going to do it.' But it was never reported (to the authorities)."

Swaibu regrets that.

It set Swaibu on a path that led to spending four months in jail after a judge denounced his and Facey's behavior as "like a cancer' that could have undermined the fairness of football. Investigators said they were part of a concerted attempt to build a network of corrupt players in Britain.

"They deliberately targeted lower leagues believing that because players earn less, they could be more susceptible to taking a bribe,"

National Crime Agency officer Adrian Hansford said.

SPORTS

Swaibu insists no games were ever manipulated but even just offering money to come to meetings with potential fixers is wrong and he wants players to be aware of that.

"A lot of people probably couldn't understand what I was going through," Swaibu said, "that I was faced with a lack of payment, bad relationships with managers, traveling up and down the country, not knowing when I'm getting paid, not knowing how I'm going to pay my bills. There's so many variables that go into when you actually make any type of decision."

Fixers will target vulnerable players, not necessarily to manipulate the result but moments within matches.

"They may know you have a gambling problem or you like to put on bets, they may take your number, they may add you on Instagram, they may add you on social media," Swaibu said. "Then before you know it, you think you've made a friend, but that friend almost grooms you in a way where he may ask you potentially one day, 'Have you ever thought about getting a yellow or red card?"

LEGAL

Harden must quarantine until Friday; could play in opener

NEW YORK (AP) — James Harden will be in quarantine until Friday, meaning the Houston Rockets star could be eligible to play Saturday when his team is to finally open its season in Portland.

The Rockets were scheduled to play Wednesday against Oklahoma City, a game postponed for a variety of coronavirus issues. Among them was Harden declared unavailable to play after the NBA determined he violated the league's health and safety protocols.

Under NBA rules, a team needs eight healthy players to play, and the Rockets were one short. They have 16 players on the roster, and nine were out: One was injured; three returned tests that

LEGAL

were either positive or inconclusive for coronavirus; four other players are quarantined as part of the virus protocols; and Harden was ineligible.

The NBA's medical staff determined Harden needed to quarantine for four days, which started Tuesday, before he can return to practice, games or team activities. The league was still reviewing to see if any other quarantine decisions were needed for other Rockets players.

Harden was fined \$50,000 on Wednesday by the NBA, which said he violated protocols. The league prohibits attending indoor social gatherings of 15 or more people or entering bars, lounges,

LEGAL

clubs or similar establishments.

Video of the disgruntled star surfaced on social media, where he was shown without a mask at a crowded party in a private event space Monday night. Harden, in a since-deleted Instagram post, explained why he was at the event.

He wrote: "One thing after another. I went to show love to my homegirl at her event (not a strip club) because she is becoming a boss and putting her people in a position of success and now it's a problem. Everyday it's something different. No matter how many times people try to drag my name under you can't. The real people always end up on top.

LEGAL NOTICE December 25, 2020, January 1 and 8, 2021

LEGAL

FIFTH JUDICIAL DISTRICT COURT COUNTY OF LEA STATE OF NEW MEXICO

IN THE MATTER OF THE ESTATE OF GAYRON R. BROWN, DECEASED, and

No.D-506-PB-2020-00090 PHYLLIS J. DAVIS. Intervener.

NOTICE TO HEIRS AND DEVISEES OF APPOINTMENT OF PERSONAL REPRESENTATIVE

To: The Heirs and Devisees of GAYRON R.

BROWN You are hereby notified that: 1. This notice is being sent to those heirs and devisees who have or may have some interest in the estate of the decedent.

2. The decedent, GAYRON R. BROWN, died on or about September 9.2020

3. PHYLLIS J. DAVIS filed a Petition for Formal Probate of Will and Appointment of Personal Representative in the above named Court requesting that the Court enter an order formally probating the will of decedent and requesting that she be appointed as the Personal Representative of the estate of the decedent.

4. On December 8, 2020, the Court entered an Order of Probate of Will and Appointment of Personal Representative wherein **PHYLLIS J**. DAVIS was appointed as Personal Representative of the estate without bond in an unsupervised administration of said estate.

5. Papers relating to the estate of the decedent is on file with the Court and are available for your inspection.

Dated this 15th day of December, 2020.

/s/ Phyllis J. Davis PHYLLIS J. DAVIS

Respectfully Submitted By: /s/Tommy D. Parker Tommy D. Parker 812 W desert Sage Hobbs, New Mexico 88242 (575) 397-2400 (Attorney for Personal Representative) #36092

There's an easier way than shopping till you drop. Try shopping through the Classifieds **BUY · SELL · TRADE**

LEGAL NOTICE December 25, 2020

LEGAL

NOTICE OF AIR QUALITY PERMIT APPLICATION

ConocoPhillips Company announces its application to the New Mexico Environment Department for an air quality permit for the modification of the Zia Hills Central Facility. The expected date of application submittal to the Air Quality Bureau is December 30, 2020. The proposed modification consists of increasing production and the use of additional dehydration equipment.

The exact location for the Zia Hills Central Facility, will be at latitude 32 deg, 01 min, 19 sec and longitude -103 deg, 42 min, 45 sec. The approximate location of this facility is 24.9 miles southeast of Malaga in Lea County.

The estimated maximum quantities of any regulated air contaminants will be as follows in pound per hour (pph) and tons per year (tpy). These reported emissions could change slightly during the course of the Department's review:

Pollutant:	Pounds per hour	Tons per year
PM 10	11	6
PM 2.5	11	6
Sulfur Dioxide (SO2)	2	6
Nitrogen Oxides (NÓx)	230	60
Carbon Monoxide (CO)	440	55
Volatile Organic Compounds (VOC)	750	110
Total sum of all Hazardous Air Pollutants (H.	APs) 17	14
Toxic Air Pollutant (TAP)	́n/a	n/a
Green House Gas Èmissions as Total CO2e	n/a	80,000

The standard and maximum operating schedules of the facility will be 24 hours per day, 7 days a week and a maximum of 52 weeks per year. The owner and/or operator of the Facility is: The owner and/or operator of the Facility is ConocoPhillips Company; 935 N. Eldridge Parkway; Houston, TX 77079.

If you have any comments about the construction or operation of this facility, and you want your comments to be made as part of the permit review process, you must submit your comments in writing to this address: Permit Programs Manager; New Mexico Environment Department; Air Quality Bureau; 525 Camino de los Marquez, Suite 1; Santa Fe, New Mexico; 87505-1816; (505) 476-4300

I (800) 224-7009; https://www.env.nm.gov/aqb/permit/aqb_draft_permits.html. Other comments and questions may be submitted verbally.

Please refer to the company name and site name, or send a copy of this notice along with your comments, since the Department may have not yet received the permit application. Please include a legible return mailing address with your comments. Once the Department has performed a preliminary review of the application and its air quality impacts, the Department's notice will be published in the legal section of a newspaper circulated near the facility location.

General information about air quality and the permitting process can be found at the Air Quality Bureau's web site. The regulation dealing with public participation in the permit review process is 20.2.72.206 NMAC. This regulation can be found in the "Permits" section of this web site.

Attención

Este es un aviso de la oficina de Calidad del Aire del Departamento del Medio Ambiente de Nuevo México, acerca de las emisiones producidas por un establecimiento en esta área. Si usted desea información en español, por favor comuníquese con esa oficina al teléfono 505-476-5557

Notice of Non-Discrimination

NMED does not discriminate on the basis of race, color, national origin, disability age or sex in the administration of its programs or activities, as required by applicable laws and regulations. NMED is responsible for coordination of compliance efforts and receipt of inquiries concerning non-discrimination requirements implemented by 40 C.F.R. Part 7, including Title VI of the Civil Rights Act of 1964, as amended; Section 504 of the Rehabilitation Act of 1973; the Age Discrimination Act of 1975, Title IX of the Education Amendments of 1972, and Section 13 of the Federal Water Pollution Control Act Amendments of 1972. 1972. If you have any questions about this notice or any of NMED's nondiscrimination programs, policies or procedures, or if you believe that you have been discriminated against with respect to a NMED program or activity, you may contact: Kathryn Becker, Non-Discrimination Coordinator, NMED, 1190 St. Francis Dr., Suite N4050, P.O. Box 5469, Santa Fe, NM 87502, (505) 827-2855, nd.coordinator@state.nm.us. You may also visit our website at https://www.onw.ong.gov.com/state.nm.us. https://www.env.nm.gov/non-employee-discrimination-complaint-page/ to learn how and where to file a complaint of discrimination. #36094

LEGAL NOTICE December 11, 18, 25, 2020 and January 1, 2021

LEGAL

STATE OF NEW MEXICO COUNTY OF LEA FIFTH JUDICIAL DISTRICT COURT

LEGAL

No. D-506-CV-2019-01895

NEWREZ LLC D/B/A SHELLPOINT MORTGAGE SERVICING.

Plaintiff.

LACY FRAZIER AND SANDRA FRAZIER

Defendants.

SECOND NOTICE OF SALE

NOTICE IS HEREBY GIVEN that on January 15, 2021, at the hour of 10:00 AM, the undersigned Special Master, or his/her designee, will, at the front entrance of the Lea County Courthouse, at 100 North Main, Lovington, NM 88260 sell all of the rights title and interests of the above-named Defendant(s) in and to the hereinafter described real property to the highest bidder for cash The property to be sold is located at 5012 West Big Red Road, Hobbs, New Mexico 88240, and is more particularly described as follows:

Lot Four (4), Third Unit of the Zia Crossing Subdivision to the City of Hobbs, Lea County, New Mexico as shown on that certain plat filed 6-3-15 in Book 1962, Page 166, Lea County Records, Lea County, New Mexico,

including any improvements, fixtures, and attachments, such as, but not limited to, mobile homes. , (hereinafter the "Property"). If there is a conflict between the legal description and the street address, the legal description shall control.

The foregoing sale will be made to satisfy a foreclosure judgment rendered by this Court in the above-entitled and numbered cause on October 2, 2020 being an action to foreclose a mortgage on the Property. Plaintiff's judgment is in the amount of \$294,762.24, and the same bears interest at the rate of 4.25% per annum, accruing at the rate of \$34.32 per diem. The Court reserves entry of final judgment against Defendant(s), Lacy Frazier, for the amount due after foreclosure sale, including interest, costs, and fees as may be assessed by the Court. Plaintiff has the right to bid at the foregoing sale in an amount equal to its judgment, and to submit its bid either verbally or in writing. Plaintiff may apply all or one price in indement to the purphase price in liquid cost or any part of its judgment to the purchase price in lieu of cash. In accordance with the Court's decree, the proceeds of sale are to be applied

first to the costs of sale, including the Special Master's fees, and then to satisfy the above-described judgment, including interest, with any remaining balance to be paid unto the registry of the Court in order to satisfy any future adjudication of priority lienholders

NOTICE IS FURTHER GIVEN that in the event that the Property is not sooner redeemed, the undersigned Special Master will, as set forth above, offer for sale and sell the Property to the highest bidder for cash or equivalent, for the purpose of satisfying, in the adjudged order of priorities, the judgment and decree of foreclosure described herein, together with any additional costs and attorney's fees, including the costs of advertisement and publication for the foregoing sale, and, reasonable receiver and Special Master's fees in an amount to be fixed by the Court. The amount of the judgment due is \$294,762.24, plus interest to and including date of sale in the amount of \$4,084.08, for a total judgment of \$298,846.32. The foregoing sale may be postponed and rescheduled at the discretion of

the Special Master, and is subject to all taxes, utility liens and other restrictions and easements of record, and subject to a one (1) month right of redemption held by the Defendant(s) upon entry of an order

approving sale, and subject to the entry of an order of the Court approving the terms and conditions of sale.

Witness my hand this 8th day of December , 2020.

<u>/s/ David Washburn</u> DAVID WASHBURN, Special Master 8100 Wyoming Blvd NE Suite M-4. Box 272 Albuquerque, NM 87113 Telephone: (505) 318-0300 E-mail: sales@nsi.legal

Display Ad

Birmingham

from PAGE 9

am. I am humbled by it. "I hope it inspires other people to have a great life, because I know if you have a great life, you have a servants heart.'

Birmingham comes from a family who believes in helping others. Birmingham's father helped to build the first baseball park in town for local Little League teams.

"My parents taught me at a young age," he said. "(My dad) was president of the Kiwanis. He showed me community service. My mom did the same thing. My mom was

big on the prenatal care board and taking care of children who were being born into tough situations. I have to give all the credit to my mom and dad."

Having been raised to around supporting one's community, Birmingham himself is big on community service and **Birmingham**

support. "I did it at New Mexico Junior College and I did it when I was the coach at (Las Cruces)

Mayfield High School," Birmingham said. "Up here (in Albuquerque), I do it with children's cancer and elementary schools. I play Santa, I go to the hospital and see children throughout the year."

One of the children Birmingham helped, Lio Ortega, hit close to home. Ortega's father Fred is one of Birmingham's former players. Fred played for Birmingham when he was the Thunderbirds' head coach and was on NMJC's 1995 team that produced the program's first Western Junior College Athletic Conference championship.

In 2017, Lio Ortega began battling a brain tumor. He was just three years old. He is just one of the children who has been helped by Birmingham.

"By the time he was four, we let him bat in his first NCAA Division I game," Birmingham said of a Mountain West Conference game in 2018. "We called the NCAA and they said you can do it, and this is how you do it. We were playing Air Force and Lio lived in Colorado Springs and Air Force participated. We started the game with Lio batting as the first batter. He hit the ball back to the pitcher and he ran to first and the pitcher threw the ball down the corner and (Lio) got an inside the park home run.

"It was on national TV," Birmingham continued. "It was on Good Morning America. It was on ESPN. It blew up and that was what we wanted. People began giving donations to help the family."

Birmingham believes health care is so expensive that when someone gets sick or a disease, like Lio, it destroys a family, not only mentally, but also financially.

"Not only do they have a child dying, but they are about to go broke," Birmingham said. "Those two things should not go together. That is one of the reasons I am involved with what I am involved with."

Today Lio is not only still alive, but he is thriving.

"He is totally recovered and a healthy boy," Birmingham said. "He went 3-for-4 in his last game. His hair is all grown out. He is healthy as heck and cancer research saved him."

Birmingham has been doing this kind of work long before getting involved with Keeper of the Game. Back when he was in Hobbs, Birmingham was there to help Josh Puckett.

"Josh Puckett was in a wheel chair and was not mobile at all," Birmingham said. "He was going to Highland Junior High and he wanted to interview me on his sports show that a teacher let him have. He did it on the intercom at like 9 o'clock in the morning in between classes. He called me and asked me if I would be on with him. So I drove over and we did it. I didn't know he was in the situation he was in.

"So, we made him the broadcaster for T-Bird baseball," Birmingham continued. "He taped it and we played it later on the radio station. He became part of the team."

Birmingham believes one should use his or her platform to help people.

"You can help people who feel like they are on an island and they have very difficult circumstances," he said. "I believe if the village gets around them, then they can overcome incredible odds and he did. Josh walks now. He got married and has a child. He is in great shape. I hope we had a little part of that.'

Being involved the way he normally is has not been easy this year, thanks to the COVID-19 pandemic. One of Birmingham's events involves the Lobos coach playing Santa Claus for children of cancer at a big Christmas dinner every year. Unfortunately that dinner did not take place. However, he still found a way to get baseball gloves into the hands of young children, albeit through the hands of others in a more protective and safer way.

The award is supposed to be presented to Birmingham during a 2021 Lobos game. Birmingham believes there will be a season, just a condensed one. UNM is slated to play 47 games, all on the weekends, when the upcoming baseball season starts this spring.

"We will go play, come home and get off the plane or bus, take a (COVID-19) test until we get the results, and make adjustments from there," Birmingham said. "Whoever is left will be able to play the next one."

NFL honors Mississippi man freed after 22 years in prison

issues, including pushing

for better living conditions

for inmates in Mississippi

"I am a life-long lover

of the NFL and the work

this organization does in

our society," Flowers said.

"Thanks to my Lord, Jesus

Christ, my family, friends,

supporters, my dream legal

team for this opportunity. I

continually think about all

of the men and women who

are still unjustly incarcer-

Mississippi Attorney Gen-

eral Lvnn Fitch said in Sep-

tember that she would not

try Flowers a seventh time

in the 1996 slayings and a

robbery that took place at a

furniture store in Winona,

Mississippi. He had been in

Flowers was convicted

four times: twice for individ-

ual slayings and twice for all

four killings. Two other tri-

als involving all four deaths

ended in mistrials. Each of

Flowers' convictions was

In June 2019, the U.S.

Supreme Court tossed out

the conviction and death

custody since 1997.

overturned.

prisons.

ated."

JACKSON, Miss. (AP) -The NFL says it is honoring Curtis Flowers, a Black man from Mississippi who was imprisoned more than 22 years and was freed in late 2019, months after the U.S. Supreme Court threw out the last of his several convictions in a quadruple murder case.

The NFL says players are wearing helmet decals this season "to honor victims of systemic racism, victims of police misconduct and social justice heroes."

The league said Wednesday on Twitter that Flowers is among those being recognized.

"I am so blessed, humbled, and thankful that the NFL and Roc Nation chose to include me to be honored in today's movement for social change and justice," Flowers, who has maintained that he was wrongly convicted, said in a statement in the NFL tweet.

Roc Nation is an an entertainment company founded by Jay-Z. Its philanthropic arm, Team Roc, has been working on social justice

Bears-Jags

from PAGE 9

and Keenan McCardell, and that's without a consistently solid quarterback situation.

He caught passes from Chad Henne and Blake Bortles in Jacksonville before relocating to an equally unstable QB situation involving Mitchell Trubisky, Chase Daniel and Nick Foles.

"It helped me grow as a player a lot," Robinson said of his early years. "I think I went through just some adversity. I wouldn't say a lot of adversity, but going through some adversity as a young player in the league I think helped mold who I am today and how I approach things."

Fishing report

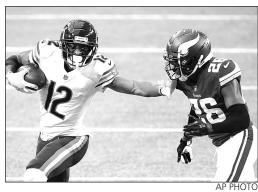
from PAGE 9

Brantley Lake: In accordance with the Public Health Order, effective Dec. 3, NM State Parks reopened to New Mexico residents for day-use only. Please check the State Parks' website for more information.

Carlsbad Municipal Lake: Fishing for trout was good using white PowerBait. Chaparral Park Lake: We had no reports

from anglers this week.

Corona Pond: Fishing for trout was good using earthworms.

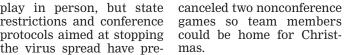

Eunice Lake: We had no reports from inglers is week

sentence from Flowers sixth trial, which took place in 2010. Justices said prosecutors showed an unconstitutional pattern of excluding Black jurors from Flowers' trials.

The Supreme Court ruling came after American Public Media's "In the Dark" investigated the case. The podcast recorded jailhouse informant Odell Hallmon in 2017 and 2018 recanting his testimony that Flowers had confessed to him.

The first six trials were prosecuted by the local district attorney. Flowers was still facing the 1997 indictments in December 2019 when a judge agreed to release him on bond. The district attorney handed the case to the attorney general, and her staff spent months reviewing it before deciding not to go forward because of a lack of credible witnesses.

The four people shot to death on July 16, 1996, in Tardy Furniture were store owner Bertha Tardy, 59, and three employees: 45-year-old Carmen Rigby, 42-year-old Robert Golden and 16-yearold Derrick "Bobo" Stewart.


Chicago Bears wide receiver Allen Robinson II (12) runs from Minnesota Vikings cornerback Chris Jones (26) during an NFL game, Sunday, in Minneapolis.

Lake Van: Fishing for trout was good using spoons and dough bait.

Oasis Park Lake: In accordance with the Public Health Order, effective Dec. 3, NM State Parks reopened to New Mexico residents for day-use only. Please check the State Parks' website for more information. Fishing for trout was good using Kastmaster spoons.

Pecos River: Stream flow below Sumner Lake Monday morning was 21.0 cfs.

Perch Lake: Fishing for trout was good using salmon peach PowerBait.

"As you get older, you realize how to get release from stress in life, whether it's go for a walk, work out and "They want to go to a foot- exercise, a glass of wine at ball game, and they want to night, read a book, whatever

Minnesota. Curry's mother sister and grandmother will watch from their home in Little Rock, Arkansas.

vented so many of these vis-

its. Instead of traveling to

College

from PAGE 9

"He knows I'm always watching, but it's different when you're there in per-son," Phipps said. "They may be adult-like and have grown-men bodies and all that, but they're still kids, honestly. Eric, today, if something goes wrong, he's still going to call me because I need to fix it for him."

Programs across the country have attempted to ramp up mental health support at a time when the potential for anxiety or loneliness has spiked for players along with everyone else. There is extra stress, too, each time they arrive for a COVID-19 test, realizing a positive result will force them out of action and away from their surrogate family.

"The emotional and mental fatigue and exhaustion and trauma, even though that may not be the appropriate word, it's much more real than you imagine," Texas A&M coach Buzz Williams said.

Duke coach Mike Krzyzewski was so concerned earlier this month that he

hang out with the regular students. They have none of that," Rutgers coach Steve Pikiell said. "So their normal has completely changed, except for when they get in the gym."

Michigan State players, who ate their Thanksgiving meal while on a Zoom call with their families to keep spirits up on the holiday, had a recruiting room at the Breslin Center temporarily transformed into an arcade and lounge so they could hang out somewhere beside their apartments.

"Forty years ago, I don't know if I could have done what they're doing," coach Tom Izzo said.

Minnesota coach Richard Pitino recently described the vibe akin to the team being on a 15-hour bus trip, only able to see each other.

"We at least get to go home to our families, but these guys are very, very isolated, and it is a huge challenge from a mental health standpoint," Pitino said. "You can't take them bowling. You can't take them to a movie theater. So you've got to be as empathetic as possible."

Resourceful, too.

it is," Pitino said. "I don't know if young people quite know that, so we're trying to educate them as much as we can.'

The bouncing balls and squeaking sneakers are as good of an antidote as there is. Wisconsin coach Greg Gard called playing games "a big mental health bonus" and facing a tough opponent helps bring focus.

The freshmen, like Gophers guard Jamal Mashburn Jr., have had the biggest adjustments.

"It's definitely a struggle. I'm used to seeing my dad who's my best friend, my hero. It's hard being away from him," he said of the elder Mashburn, the former Kentucky and NBA standout. "He's also my trainer. He's my everything. So it's hard, but I know he's always going to be there. He calls me every day."

Kids being kids, though, they're doing their best to live in the moment.

"I just know I've got to take care of business here. Home is always going to be there," Mashburn said. "That's never going to go anywhere."

NFL

from PAGE 9

between the league and the club on that. I am disappointed.

"I know if the game was on Sunday I would be there because the timeframe would be up. And really, all these coaches would be able to be there. So, I think that's the most disappointing part. But we've got to go with what they're telling us."

The Browns may have to try and secure a playoff spot — their first since 2002 — on Sunday in New York without starting rookie left tackle Jedrick Wills, who was placed on the COVID-19 list Thursday.

It's the latest issue on Cleveland's line, which is already missing starting right guard Wyatt Teller (ankle) and lost the versatile Chris Hubbard after he suffered a season-ending knee injury against the New York Giants. Rookie Nick Harris is filling in for Teller.

Browns first-year coach Kevin Stefanski said "there's a possibility" when asked if Wills will play this week against the Jets. A first-round pick from Alabama, Wills had close contact with an infected person outside Cleveland's facility. But as long as he continues to test negative, he'll be able to be activated and play.

The Browns (10-4) can clinch a postseason berth with a win and losses by either Baltimore, Indianapolis or Miami.

Green Meadow Lake: Fishing for trout was good using homemade dough bait and cheese PowerBait.

Greene Acres Lake: We had no reports from anglers this week.

Grindstone Reservoir: Fishing for trout was good using salmon peach PowerBait and marshmallows. Anglers reported the lake was limited to residence and to check openings before you go.

Jal Lake: We had no reports from anglers this week.

Ruidoso River: Stream flow Monday morning at Hollywood was 4.31 cfs.

Santa Rosa Lake: In accordance with the Public Health Order, effective Dec. 3, NM State Parks reopened to New Mexico residents for day-use only. Please check the State Parks' website for more information.

Sumner Lake: In accordance with the Public Health Order, effective Dec. 3, NM State Parks reopened to New Mexico residents for day-use only. Please check the State Parks' website for more information.

NOTICE OF AIR QUALITY PERMIT APPLICATION

ConocoPhillips Company announces its application to the New Mexico Environment Department for an air quality permit for the modification of the Zia Hills Central Facility. The expected date of application submittal to the Air Quality Bureau is December 30, 2020. The proposed modification consists of increasing production and the use of additional dehydration equipment.

The exact location for the Zia Hills Central Facility, will be at latitude 32 deg, 01 min, 19 sec and longitude -103 deg, 42 min, 45 sec. The approximate location of this facility is 24.9 miles southeast of Malaga in Lea County.

The estimated maximum quantities of any regulated air contaminants will be as follows in pound per hour (pph) and tons per year (tpy). These reported emissions could change slightly during the course of the Department's review:

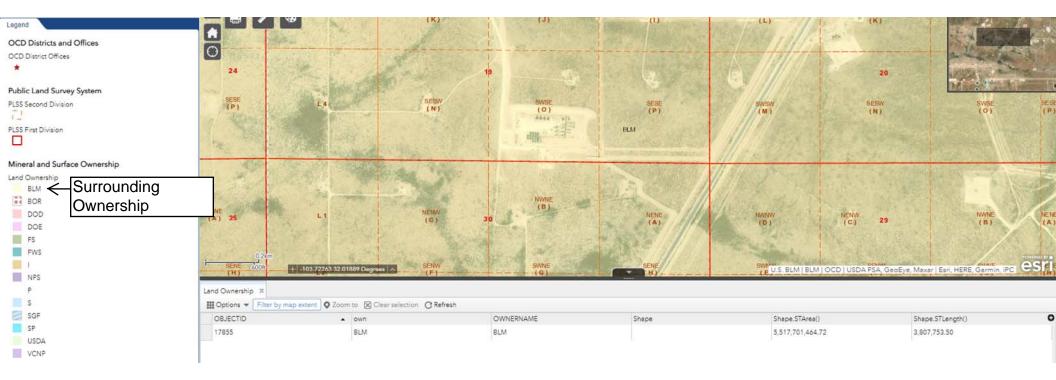
Pollutant:	Pounds per hour	Tons per year
PM 10	11	6
PM 2.5	11	6
Sulfur Dioxide (SO ₂)	2	6
Nitrogen Oxides (NO _x)	230	60
Carbon Monoxide (CO)	440	55
Volatile Organic Compounds (VOC)	750	110
Total sum of all Hazardous Air Pollutants (HAPs)	17	14
Toxic Air Pollutant (TAP)	n/a	n/a
Green House Gas Emissions as Total CO2e	n/a	80,000

The standard and maximum operating schedules of the facility will be 24 hours per day, 7 days a week and a maximum of 52 weeks per year. The owner and/or operator of the Facility is: The owner and/or operator of the Facility is: ConocoPhillips Company; 935 N. Eldridge Parkway; Houston, TX 77079.

If you have any comments about the construction or operation of this facility, and you want your comments to be made as part of the permit review process, you must submit your comments in writing to this address. Permit Programs Manager, New Mexico Environment Department; Air Quality Bureau; 525 Camino de los Marquez, Suite 1; Santa Fe, New Mexico; 87505-1816; (505) 476-4300; 1 800 224-7009; https://www.env.nm.gov/aqb/permit/aqb_draft_permits.html. Other comments and questions may be submitted verbally.

Please refer to the company name and site name, or send a copy of this notice along with your comments, since the Department may have not yet received the permit application. Please include a legible return mailing address with your comments. Once the Department has performed a preliminary review of the application and its air quality impacts, the Department's notice will be published in the legal section of a newspaper circulated near the facility location.

General information about air quality and the permitting process can be found at the Air Quality Bureau's web site. The regulation dealing with public participation in the permit review process is 20.2.72.206 NMAC. This regulation can be found in the "Permits' section of this web site.


Attención

Este es un aviso de la oficina de Calidad del Aire del Departamento del Medio Ambiente de Nuevo México, acerca de las emisiones producidas por un establecimiento en esta área. Si usted desea información en español, por favor comuníquese con esa oficina al teléfono 505-476-5557.

Notice of Non-Discrimination

NMED does not discriminate on the basis of race, color, national origin, disability, age or sex in the administration of its programs or activities, as required by applicable laws and regulations. NMED is responsible for coordination of compliance efforts and receipt of inquiries concerning non-discrimination requirements implemented by 40 C.F.R. Part 7, including Title VI of the Civil Rights Act of 1964, as amended: Section 504 of the Rehabilitation Act of 1973; the Age Discrimination Act of 1975, Title IX of the Education Amendments of 1972, and Section 13 of the Federal Water Pollution Control Act Amendments of 1972. If you have any questions about this notice or any of NMED's non-discrimination programs, policies or procedures, or if you believe that you have been discriminated against with respect to a NMED program or activity, you may contact: Kathryn Becker, Non-Discrimination Coordinator, NMED, 1190 St. Francis Dr., Suite N4050, P.O. Box 5469, Santa Fe, NM 87502, (505) 827-2855, nd.coordinator@state.nm.us. You may also visit our website at https://www.env.nm.gov/non-employee-discrimination-complaintpage/ to learn how and where to file a complaint of discrimination.

Lea County Property Tax Map

Section 10 Wirtten Description of Operations

Section 10

Written Description of the Routine Operations of the Facility

<u>A written description of the routine operations of the facility</u>. Include a description of how each piece of equipment will be operated, how controls will be used, and the fate of both the products and waste generated. For modifications and/or revisions, explain how the changes will affect the existing process. In a separate paragraph describe the major process bottlenecks that limit production. The purpose of this description is to provide sufficient information about plant operations for the permit writer to determine appropriate emission sources.

Gas from well sites enter the facility through a slug catcher. The site uses natural gas engines to compress the gas for sales and gas lift, including one Caterpillar 3516J and six (6) Caterpillar 3606A4 engines (ENG1-ENG3, ENG5-ENG8). The Caterpillar engines are equipped with oxidation catalysts to reduce CO, VOC, and formaldehyde emissions. During compressor downtime or during an emergency, a flare (FL1) is used to flare high pressure gas. If two of the compressors go down, the facility is automatically shut in, limiting the volume of gas flared. Gas is dehydrated using triethylene glycol dehydration units (DEHY1-DEHY4). The glycol still vent vapors are routed to condensers. Flash tank and uncondensed vapors are burned in the glycol regenerator burners (RB1-RB4). Dehydrated gas is used for gas lift or transferred to a gas sales line.

Liquids generated from the slug catcher and compressor dumps are routed to a line heater (LH1), then to an overhead gas scrubber (OHS1). These units are used to flash the liquids and route gas to sales via by a redundant vapor recovery system (VRU1-VRU2). Water is routed to a water degassing vessel (WDGV1) and oil is routed to an oil tank (OT5) prior to being piped to the stabilizers. Vapors from both are carried to sales via VRU1-VRU2.

Oil from well sites enters the facility through inlet separators and into three (3) stabilizers (STAB1-STAB3). Gas from the stabilizer vessels is mixed with the gas from the inlet separator and routed to the inlet of the compressors. The facility is designed such that the stabilizer and inlet separator gas always flows to sales. Oil then flows to four (4) sales tanks (OT1-OT4) controlled by a VRU1-VRU2. During VRU downtime, these streams are routed a redundant flare system (FL2-FL3). Oil is shipped offsite via pipeline LACT.

Water from well sites is routed to WDGV1 then to two (2) gun barrel separators (GB1- GB2), which skim any remaining oil from the incoming water. The water then flows to produced water tanks (WT1-WT8) for temporary storage prior to being piped offsite. Any skimmed oil is routed to two slop oil tanks (ST1-ST2). Slop oil is routed back to the stabilizer vessels. Water degas vessel, gun barrel, and slop tank vapors are controlled using VRU1-VRU2, with vapors routed to FL2-FL3 during VRU downtime. Water is piped offsite.

Section 11 Source Determination Zia Hills Central Facility

Section 11 Source Determination

Source submitting under 20.2.70, 20.2.72, 20.2.73, and 20.2.74 NMAC

Sources applying for a construction permit, PSD permit, or operating permit shall evaluate surrounding and/or associated sources (including those sources directly connected to this source for business reasons) and complete this section. Responses to the following questions shall be consistent with the Air Quality Bureau's permitting guidance, <u>Single Source Determination Guidance</u>, which may be found on the Applications Page in the Permitting Section of the Air Quality Bureau website.

Typically, buildings, structures, installations, or facilities that have the same SIC code, that are under common ownership or control, and that are contiguous or adjacent constitute a single stationary source for 20.2.70, 20.2.72, 20.2.73, and 20.2.74 NMAC applicability purposes. Submission of your analysis of these factors in support of the responses below is optional, unless requested by NMED.

A. Identify the emission sources evaluated in this section (list and describe): See Table 2A.

B. Apply the 3 criteria for determining a single source:

<u>SIC</u> <u>Code</u>: Surrounding or associated sources belong to the same 2-digit industrial grouping (2-digit SIC code) as this facility, <u>OR</u> surrounding or associated sources that belong to different 2-digit SIC codes are support facilities for this source.

☑ Yes □ No

<u>Common</u> <u>Ownership</u> <u>or</u> <u>Control</u>: Surrounding or associated sources are under common ownership or control as this source.

🗹 Yes 🗆 🗆 No

<u>Contiguous or Adjacent</u>: Surrounding or associated sources are contiguous or adjacent with this source.

☑ Yes □ No

C. Make a determination:

- ☑ The source, as described in this application, constitutes the entire source for 20.2.70, 20.2.72, 20.2.73, or 20.2.74 NMAC applicability purposes. If in "A" above you evaluated only the source that is the subject of this application, all "YES" boxes should be checked. If in "A" above you evaluated other sources as well, you must check AT LEAST ONE of the boxes "NO" to conclude that the source, as described in the application, is the entire source for 20.2.70, 20.2.72, 20.2.73, and 20.2.74 NMAC applicability purposes.
- □ The source, as described in this application, <u>does not</u> constitute the entire source for 20.2.70, 20.2.72, 20.2.73, or 20.2.74 NMAC applicability purposes (A permit may be issued for a portion of a source). The entire source consists of the following facilities or emissions sources (list and describe):

Section 12 PSD Determination

Section 12.A PSD Applicability Determination for All Sources

(Submitting under 20.2.72, 20.2.74 NMAC)

<u>A PSD applicability determination for all sources</u>. For sources applying for a significant permit revision, apply the applicable requirements of 20.2.74.AG and 20.2.74.200 NMAC and to determine whether this facility is a major or minor PSD source, and whether this modification is a major or a minor PSD modification. It may be helpful to refer to the procedures for Determining the Net Emissions Change at a Source as specified by Table A-5 (Page A.45) of the <u>EPA New Source Review</u> <u>Workshop Manual</u> to determine if the revision is subject to PSD review.

- A. This facility is:
 - **a** minor PSD source before and after this modification (if so, delete C and D below).
 - □ a major PSD source before this modification. This modification will make this a PSD minor source.
 - □ an existing PSD Major Source that has never had a major modification requiring a BACT analysis.
 - □ an existing PSD Major Source that has had a major modification requiring a BACT analysis
 - □ a new PSD Major Source after this modification.

Determination of State & Federal Regulations

Determination of State & Federal Air Quality Regulations

This section lists each state and federal air quality regulation that may apply to your facility and/or equipment that are stationary sources of regulated air pollutants.

Not all state and federal air quality regulations are included in this list. Go to the Code of Federal Regulations (CFR) or to the Air Quality Bureau's regulation page to see the full set of air quality regulations.

Required Information for Specific Equipment:

For regulations that apply to specific source types, in the 'Justification' column **provide any information needed to determine if the regulation does or does not apply**. For example, to determine if emissions standards at 40 CFR 60, Subpart IIII apply to your three identical stationary engines, we need to know the construction date as defined in that regulation; the manufacturer date; the date of reconstruction or modification, if any; if they are or are not fire pump engines; if they are or are not emergency engines as defined in that regulation; their site ratings; and the cylinder displacement.

Required Information for Regulations that Apply to the Entire Facility:

See instructions in the 'Justification' column for the information that is needed to determine if an 'Entire Facility' type of regulation applies (e.g. 20.2.70 or 20.2.73 NMAC).

Regulatory Citations for Regulations That Do Not, but Could Apply:

If there is a state or federal air quality regulation that does not apply, but you have a piece of equipment in a source category for which a regulation has been promulgated, you must **provide the low level regulatory citation showing why your piece of equipment is not subject to or exempt from the regulation. For example** if you have a stationary internal combustion engine that is not subject to 40 CFR 63, Subpart ZZZZ because it is an existing 2 stroke lean burn stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions, your citation would be 40 CFR 63.6590(b)(3)(i). We don't want a discussion of every non-applicable regulation, but if it is possible a regulation could apply, explain why it does not. For example, if your facility is a power plant, you do not need to include a citation to show that 40 CFR 60, Subpart OOO does not apply to your non-existent rock crusher.

Regulatory Citations for Emission Standards:

For each unit that is subject to an emission standard in a source specific regulation, such as 40 CFR 60, Subpart OOO or 40 CFR 63, Subpart HH, include the low level regulatory citation of that emission standard. Emission standards can be numerical emission limits, work practice standards, or other requirements such as maintenance. Here are examples: a glycol dehydrator is subject to the general standards at 63.764C(1)(i) through (iii); an engine is subject to 63.6601, Tables 2a and 2b; a crusher is subject to 60.672(b), Table 3 and all transfer points are subject to 60.672(e)(1)

Federally Enforceable Conditions:

All federal regulations are federally enforceable. All Air Quality Bureau State regulations are federally enforceable except for the following: affirmative defense portions at 20.2.7.6.B, 20.2.7.110(B)(15), 20.2.7.11 through 20.2.7.113, 20.2.7.115, and 20.2.7.116; 20.2.37; 20.2.42; 20.2.43; 20.2.62; 20.2.63; 20.2.86; 20.2.89; and 20.2.90 NMAC. Federally enforceable means that EPA can enforce the regulation as well as the Air Quality Bureau and federally enforceable regulations can count toward determining a facility's potential to emit (PTE) for the Title V, PSD, and nonattainment permit regulations.

INCLUDE ANY OTHER INFORMATION NEEDED TO COMPLETE AN APPLICABILITY DETERMINATION OR THAT IS RELEVENT TO YOUR FACILITY'S NOTICE OF INTENT OR PERMIT.

EPA Applicability Determination Index for 40 CFR 60, 61, 63, etc: http://cfpub.epa.gov/adi/

STATE REGU- LATIONS CITATION	Title	Applies? Enter Yes or No	Unit(s) or Facility	JUSTIFICATION: (You may delete instructions or statements that do not apply in the justification column to shorten the document.)
20.2.1 NMAC	General Provisions	Yes	Facility	General Provisions apply to Notice of Intent, Construction, and Title V permit applications.
20.2.3 NMAC	Ambient Air Quality Standards NMAAQS	Yes	Facility	If subject, this would normally apply to the entire facility. 20.2.3 NMAC is a State Implementation Plan (SIP) approved regulation that limits the maximum allowable concentration of, Sulfur Compounds, Carbon Monoxide and Nitrogen Dioxide. Title V applications, see exemption at 20.2.3.9 NMAC The TSP NM ambient air quality standard was repealed by the EIB effective November 30, 2018.
20.2.7 NMAC	Excess Emissions	Yes	Facility	If subject, this would normally apply to the entire facility. If your entire facility or individual pieces of equipment are subject to emissions limits in a permit or numerical emissions standards in a federal or state regulation, this applies. This would not apply to Notices of Intent since these are not permits.
20.2.23 NMAC	Fugitive Dust Control	No	N/A	This is not a mining facility.
20.2.33 NMAC	Gas Burning Equipment - Nitrogen Dioxide	No	N/A	None of the equipment has a rating greater than 100 MMBtu/hr.
20.2.34 NMAC	Oil Burning Equipment: NO ₂	No	N/A	This facility has no oil burning equipment.
20.2.35 NMAC	Natural Gas Processing Plant – Sulfur	No	N/A	The facility is not a gas processing plant.
20.2.37 and 20.2.36 NMAC	Petroleum Processing Facilities and Petroleum Refineries	N/A	N/A	These regulations were repealed by the Environmental Improvement Board. If you had equipment subject to 20.2.37 NMAC before the repeal, your combustion emission sources are now subject to 20.2.61 NMAC.
<u>20.2.38</u> NMAC	Hydrocarbon Storage Facility	Yes	OT1- OT4	The site is subject to 20.2.38.109 and 112. The site uses a VRU/Flare vent system to control emissions.
<u>20.2.39</u> NMAC	Sulfur Recovery Plant - Sulfur	No	N/A	The facility does not operate a sulfur recovery plant.
20.2.61.109 NMAC	Smoke & Visible Emissions	Yes	FL1- FL3, STAB1 -3, ENG1- 3, ENG5- 8, RB1- 4, LH1	This regulation that limits opacity to 20% applies to Stationary Combustion Equipment, such as engines, boilers, heaters, and flares.
20.2.70 NMAC	Operating Permits	No	N/A	The facility is a not a major source of criteria pollutants.
20.2.71 NMAC	Operating Permit Fees	No	N/A	The facility is a not a major source of criteria pollutants. Fugitive VOC emissions are not included in the source determination.
20.2.72 NMAC	Construction Permits	Yes	Facility	This application is submitted in accordance with 20.2.72.
20.2.73 NMAC	NOI & Emissions Inventory Requirements	Yes	Facility	The site is subject to the emissions inventory requirements of 20.2.73 NMAC.

STATE REGU- LATIONS CITATION	Title	Applies? Enter Yes or No	Unit(s) or Facility	JUSTIFICATION: (You may delete instructions or statements that do not apply in the justification column to shorten the document.)
20.2.74 NMAC	Permits – Prevention of Significant Deterioration (PSD)	No	N/A	The facility is not a major PSD site.
20.2.75 NMAC	Construction Permit Fees	Yes	Facility	A permit fee is included with this application.
20.2.77 NMAC	New Source Performance	No	ENG1- 3, ENG5- 8	See regulatory discussion in Federal Regulations Citation section.
20.2.78 NMAC	Emission Standards for HAPS	No	N/A	The facility does not fit into any of the source categories.
20.2.79 NMAC	Permits – Nonattainment Areas	No	N/A	The facility is not located in a nonattainment area.
20.2.80 NMAC	Stack Heights	No	N/A	There are no stacks to which this regulation would apply.
20.2.82 NMAC	MACT Standards for source categories of HAPS	Yes	ENG1- 3, ENG5- 8,, DEHY1 - DEHY4	See regulatory discussion in Federal Regulations Citation section.

<u>FEDERAL</u> <u>REGU-</u> <u>LATIONS</u> CITATION	Title	Applies? Enter Yes or No	Unit(s) or Facility	JUSTIFICATION:
40 CFR 50	NAAQS	Yes	Facility	
NSPS 40 CFR 60, Subpart A	General Provisions	Yes	Units subject to 40 CFR 60	Applies if any other Subpart in 40 CFR 60 applies.
NSPS 40 CFR60.40a, Subpart Da	Subpart Da, Performance Standards for Electric Utility Steam Generating Units	No	N/A	The facility does not operate any electric utility steam generating units.
NSPS 40 CFR60.40b Subpart Db	Electric Utility Steam Generating Units	No	N/A	The facility does not operate any electric utility steam generating units.

FEDERAL REGU- LATIONS CITATION	Title	Applies? Enter Yes or No	Unit(s) or Facility	JUSTIFICATION:	
40 CFR 60.40c, Subpart Dc	Small Industrial- Commercial- Institutional Steam Generating Units	No	N/A	The facility does not operate any affected sources.	
NSPS 40 CFR 60, Subpart Ka	Tanks After May 18, 1978, and Prior to July 23, 1984	No	N/A	The facility does not operate any affected sources.	
NSPS 40 CFR 60, Subpart Kb	Tanks Commenced After July 23, 1984	No	N/A	The hydrocarbons are stored prior to custody transfer.	
NSPS 40 CFR 60.330 Subpart GG	Stationary Gas Turbines	No	N/A	The facility does not operate any affected sources.	
NSPS 40 CFR 60, Subpart KKK	Leaks of VOC from Onshore Gas Plants	No	N/A	The facility does not operate any affected sources.	
NSPS 40 CFR Part 60 Subpart LLL	Onshore Natural Gas Processing : SO ₂ Emissions	No	N/A	The facility does not operate a sweetening unit.	
NSPS 40 CFR Part 60 Subpart 0000	O&G sites after August 23, 2011 and before September 18, 2015	No	N/A	The site post-dates Subpart OOOO.	
NSPS 40 CFR Part 60 Subpart OOOOa	O&G Sites After September 18, 2015	Yes	FUG, ENG1- ENG3, ENG5- ENG8	The oil and water storage tanks were constructed after the applicability date of the rule; however emissions are limited by permit to less than 6 tpy. The site uses low-bleed pneumatic controllers. The compressors comply with the requirements of §60.5385a. The site is subject to leak monitoring requirements for fugitive components specified in §60.5397a.	
NSPS 40 CFR 60 Subpart IIII	Stationary Compression Ignition Internal Combustion Engines	No	N/A	The facility does not operate any affected sources.	
NSPS 40 CFR Part 60 Subpart JJJJ	Stationary Spark Ignition Internal Combustion Engines	Yes	ENG1- ENG3, ENG5- ENG8	The site is subject to the emissions limitations in Table 1.	
NSPS 40 CFR 60 Subpart TTTT	Greenhouse Gas Emissions for Electric Generating Units	No	N/A	The facility does not operate any affected sources.	
NSPS 40 CFR 60 Subpart UUUU	Greenhouse Gas Emissions and Compliance Times for Electric Utility Generating Units	No	N/A	The facility does not operate any affected sources.	

FEDERAL REGU- LATIONS CITATION	Title	Applies? Enter Yes or No	Unit(s) or Facility	JUSTIFICATION:
NSPS 40 CFR 60, Subparts WWW, XXX, Cc, and Cf	Municipal Solid Waste (MSW) Landfills	No	N/A	The facility does not operate any affected sources.
NESHAP 40 CFR 61 Subpart A	General Provisions	See Below	See Below	See regulatory discussion below.
NESHAP 40 CFR 61 Subpart E	National Emission Standards for Mercury	No	N/A	The facility does not operate any affected sources.
NESHAP 40 CFR 61 Subpart V	Equipment Leaks (Fugitive Emission Sources)	No	N/A	The facility does not operate any affected sources.
MACT 40 CFR 63, Subpart A	General Provisions	Yes	Units Subject to 40 CFR 63	Applies if any other Subpart in 40 CFR 63 applies.
MACT 40 CFR 63.760 Subpart HH	Oil and Natural Gas Production Facilities	Yes	DEHY1- DEHY4	The site is an area sources of HAP and the dehydrators are subject to Subpart HH. Since benzene emissions are restricted to less than 1 tpy per a federally- enforceable permit; therefore, the unit is exempt from any requirements per §63.764(e)(1)(ii).
MACT 40 CFR 63 Subpart HHH		No	N/A	The facility does not operate any affected sources.
MACT 40 CFR 63 Subpart DDDDD	Major Industrial, Commercial, and Institutional Boilers & Process Heaters	No	N/A	The facility does not operate any affected sources.
MACT 40 CFR 63 Subpart UUUUU	Coal & Oil Fire Electric Utility Steam Generating Unit	No	N/A	The facility does not operate any affected sources.
MACT 40 CFR 63 Subpart ZZZZ	RICE MACT	Yes	ENG1-3, ENG5-8,	ENG1-3 and ENG5-8 comply with NSPS JJJJ to comply with NESHAP ZZZZ.
40 CFR 64	Compliance Assurance Monitoring	No	N/A	The facility is not a major source.
40 CFR 68	Chemical Accident Prevention	No	N/A	The facility does not store any chemicals above threshold quantities.
Title IV – Acid Rain 40 CFR 72	Acid Rain	No	N/A	The facility does not have any units subject to the Acid Rain regulations.

FEDERAL REGU- LATIONS CITATION	Title	Applies? Enter Yes or No	Unit(s) or Facility	JUSTIFICATION:
Title IV – Acid Rain 40 CFR 73	Sulfur Dioxide Allowance Emissions	No	N/A	The facility does not have any units subject to the Acid Rain regulations.
Title IV-Acid Rain 40 CFR 75	Continuous Emissions Monitoring	No	N/A	The facility does not have any units subject to the Acid Rain regulations.
Title IV – Acid Rain 40 CFR 76	Acid Rain Nitrogen Oxides Emission Reduction Program	No	N/A	The facility does not have any units subject to the Acid Rain regulations.
Title VI – 40 CFR 82	Protection of Stratospheric Ozone	No	N/A	The facility does not service, maintain, or repair equipment containing refrigerants.

Operational Plan to Mitigate Emissions

Operational Plan to Mitigate Emissions

(Submitting under 20.2.70, 20.2.72, 20.2.74 NMAC)

- □ **Title V Sources** (20.2.70 NMAC): By checking this box and certifying this application the permittee certifies that it has developed an <u>Operational Plan to Mitigate Emissions During Startups</u>, <u>Shutdowns</u>, <u>and Emergencies</u> defining the measures to be taken to mitigate source emissions during startups, shutdowns, and emergencies as required by 20.2.70.300.D.5(f) and (g) NMAC. This plan shall be kept on site to be made available to the Department upon request. This plan should not be submitted with this application.
- ✓ NSR (20.2.72 NMAC), PSD (20.2.74 NMAC) & Nonattainment (20.2.79 NMAC) Sources: By checking this box and certifying this application the permittee certifies that it has developed an <u>Operational Plan to Mitigate Source Emissions</u> <u>During Malfunction, Startup, or Shutdown</u> defining the measures to be taken to mitigate source emissions during malfunction, startup, or shutdown as required by 20.2.72.203.A.5 NMAC. This plan shall be kept on site to be made available to the Department upon request. This plan should not be submitted with this application.
- ☑ Title V (20.2.70 NMAC), NSR (20.2.72 NMAC), PSD (20.2.74 NMAC) & Nonattainment (20.2.79 NMAC) Sources: By checking this box and certifying this application the permittee certifies that it has established and implemented a Plan to Minimize Emissions During Routine or Predictable Startup, Shutdown, and Scheduled Maintenance through work practice standards and good air pollution control practices as required by 20.2.7.14.A and B NMAC. This plan shall be kept on site or at the nearest field office to be made available to the Department upon request. This plan should not be submitted with this application.

ConocoPhillips maintains written plans to ensure procedures are following during periods of startup, shutdown, and malfunction.

Section 15 Alternative Operating Scenarios

Alternative Operating Scenarios

(Submitting under 20.2.70, 20.2.72, 20.2.74 NMAC)

Alternative Operating Scenarios: Provide all information required by the department to define alternative operating scenarios. This includes process, material and product changes; facility emissions information; air pollution control equipment requirements; any applicable requirements; monitoring, recordkeeping, and reporting requirements; and compliance certification requirements. Please ensure applicable Tables in this application are clearly marked to show alternative operating scenario.

Construction Scenarios: When a permit is modified authorizing new construction to an existing facility, NMED includes a condition to clearly address which permit condition(s) (from the previous permit and the new permit) govern during the interval between the date of issuance of the modification permit and the completion of construction of the modification(s). There are many possible variables that need to be addressed such as: Is simultaneous operation of the old and new units permitted and, if so for example, for how long and under what restraints? In general, these types of requirements will be addressed in Section A100 of the permit, but additional requirements may be added elsewhere. Look in A100 of our NSR and/or TV permit template for sample language dealing with these requirements. Find these permit templates at: https://www.env.nm.gov/aqb/permit/aqb_pol.html. Compliance with standards must be maintained during construction, which should not usually be a problem unless simultaneous operation of old and new equipment is requested.

In this section, under the bolded title "Construction Scenarios", specify any information necessary to write these conditions, such as: conservative-realistic estimated time for completion of construction of the various units, whether simultaneous operation of old and new units is being requested (and, if so, modeled), whether the old units will be removed or decommissioned, any PSD ramifications, any temporary limits requested during phased construction, whether any increase in emissions is being requested as SSM emissions or will instead be handled as a separate Construction Scenario (with corresponding emission limits and conditions, etc.

There are no alternate operating scenarios.

Section 16 Air Dispersion Modeling

Section 16 Air Dispersion Modeling

- Minor Source Construction (20.2.72 NMAC) and Prevention of Significant Deterioration (PSD) (20.2.74 NMAC) ambient impact analysis (modeling): Provide an ambient impact analysis as required at 20.2.72.203.A(4) and/or 20.2.74.303 NMAC and as outlined in the Air Quality Bureau's Dispersion Modeling Guidelines found on the Planning Section's modeling website. If air dispersion modeling has been waived for one or more pollutants, attach the AQB Modeling Section modeling waiver approval documentation.
- 2) SSM Modeling: Applicants must conduct dispersion modeling for the total short term emissions during routine or predictable startup, shutdown, or maintenance (SSM) using realistic worst case scenarios following guidance from the Air Quality Bureau's dispersion modeling section. Refer to "Guidance for Submittal of Startup, Shutdown, Maintenance Emissions in Permit Applications (<u>http://www.env.nm.gov/aqb/permit/app_form.html</u>) for more detailed instructions on SSM emissions modeling requirements.
- 3) Title V (20.2.70 NMAC) ambient impact analysis: Title V applications must specify the construction permit and/or Title V Permit number(s) for which air quality dispersion modeling was last approved. Facilities that have only a Title V permit, such as landfills and air curtain incinerators, are subject to the same modeling required for preconstruction permits required by 20.2.72 and 20.2.74 NMAC.

What is the purpose of this application?	Enter an X for each purpose that applies
New PSD major source or PSD major modification (20.2.74 NMAC). See #1 above.	
New Minor Source or significant permit revision under 20.2.72 NMAC (20.2.72.219.D NMAC).	Х
See #1 above. Note: Neither modeling nor a modeling waiver is required for VOC emissions.	
Reporting existing pollutants that were not previously reported.	
Reporting existing pollutants where the ambient impact is being addressed for the first time.	
Title V application (new, renewal, significant, or minor modification. 20.2.70 NMAC). See #3	
above.	
Relocation (20.2.72.202.B.4 or 72.202.D.3.c NMAC)	
Minor Source Technical Permit Revision 20.2.72.219.B.1.d.vi NMAC for like-kind unit	
replacements.	
Other: i.e. SSM modeling. See #2 above.	
This application does not require modeling since this is a No Permit Required (NPR) application.	
This application does not require modeling since this is a Notice of Intent (NOI) application	
(20.2.73 NMAC).	
This application does not require modeling according to 20.2.70.7.E(11), 20.2.72.203.A(4),	
20.2.74.303, 20.2.79.109.D NMAC and in accordance with the Air Quality Bureau's Modeling	
Guidelines.	

Check each box that applies:

- $\hfill\square$ See attached, approved modeling waiver for all pollutants from the facility.
- □ See attached, approved modeling **waiver for some** pollutants from the facility.
- □ Attached in Universal Application Form 4 (UA4) is a **modeling report for all** pollutants from the facility.
- \blacksquare Attached in UA4 is a **modeling report for some** pollutants from the facility.
- \Box No modeling is required.

Section 17 Compliance Test History

Compliance Test History

(Submitting under 20.2.70, 20.2.72, 20.2.74 NMAC)

To show compliance with existing NSR permits conditions, you must submit a compliance test history. The table below provides an example.

Compliance Test History Table

Unit No.	Test Description	Test Date
412951	NSPS JJJJ Test	12/03/2019
811355	NSPS JJJJ Test	12/03/2019
811251	NSPS JJJJ Test	05/15/2019
811252	NSPS JJJJ Test	06/06/2019
811309	NSPS JJJJ Test	01/07/2020
811355	NSPS JJJJ Test	01/07/2020
811356	NSPS JJJJ Test	03/03/2020
811357	NSPS JJJJ Test	03/03/2020

* Tests indicated compliance with NSPS JJJJ limitations.

Addendum for Streamline Applications

Addendum for Streamline Applications

Do not print this section unless this is a streamline application.

Streamline Applications do not require a complete application. Submit Sections 1-A, 1-B, 1-D, 1-F, 1-G, 2-A, 2-C thru L, Sections 3 thru 8, Section 13, Section 18, Section 22, and Section 23 (Certification). Other sections may be required at the discretion of the Department. 20.2.72.202 NMAC Exemptions do not apply to Streamline sources. 20.2.72.219 NMAC revisions and modifications do not apply to Streamline sources, thus 20.2.72.219 type actions require a complete new application submittal. Please do not print sections of a streamline application that are not required.

This is not a Streamline application.

Section 19 Requirements for Title V Program

Requirements for Title V Program

Do not print this section unless this is a Title V application.

Who Must Use this Attachment:

* Any major source as defined in 20.2.70 NMAC.

- ^{*} Any source, including an area source, subject to a standard or other requirement promulgated under Section 111 Standards of Performance for New Stationary Sources, or Section 112 Hazardous Air Pollutants, of the 1990 federal Clean Air Act ("federal Act"). Non-major sources subject to Sections 111 or 112 of the federal Act are exempt from the obligation to obtain an 20.2.70 NMAC operating permit until such time that the EPA Administrator completes rulemakings that require such sources to obtain operating permits. In addition, sources that would be required to obtain an operating permit solely because they are subject to regulations or requirements under Section 112(r) of the federal Act are exempt from the requirement to obtain an Operating Permit.
- * Any Acid Rain source as defined under title IV of the federal Act. The Acid Rain program has additional forms. See <u>http://www.env.nm.gov/aqb/index.html</u>. Sources that are subject to both the Title V and Acid Rain regulations are encouraged to submit both applications simultaneously.
- * Any source in a source category designated by the EPA Administrator ("Administrator"), in whole or in part, by regulation, after notice and comment.

This is not a Title V application.

Section 20 Other Relevant Information

Other Relevant Information

<u>Other relevant information</u>. Use this attachment to clarify any part in the application that you think needs explaining. Reference the section, table, column, and/or field. Include any additional text, tables, calculations or clarifying information.

Additionally, the applicant may propose specific permit language for AQB consideration. In the case of a revision to an existing permit, the applicant should provide the old language and the new language in track changes format to highlight the proposed changes. If proposing language for a new facility or language for a new unit, submit the proposed operating condition(s), along with the associated monitoring, recordkeeping, and reporting conditions. In either case, please limit the proposed language to the affected portion of the permit.

No other relevant information is provided.

Section 21 Addendum for Landfill Applications

Addendum for Landfill Applications

Do not print this section unless this is a landfill application.

Landfill Applications are not required to complete Sections 1-C Input Capacity and Production Rate, 1-E Operating Schedule, 17 Compliance Test History, and 18 Streamline Applications. Section 12 – PSD Applicability is required only for Landfills with Gas Collection and Control Systems and/or landfills with other non-fugitive stationary sources of air emissions such as engines, turbines, boilers, heaters. All other Sections of the Universal Application Form are required.

EPA Background Information for MSW Landfill Air Quality Regulations: https://www3.epa.gov/airtoxics/landfill/landflpg.html

NM Solid Waste Bureau Website: <u>https://www.env.nm.gov/swb/</u>

This is not a landfill.

Section 22 Certification ConocoPhillips Company

Zia Hills Central Facility

January 2020

Section 22: Certification

Company Name: PEI on behalf of ConocoPhillips

I, Evan Tullos, hereby certify that the information and data submitted in this application are true and as accurate as possible, to the best of my knowledge and professional expertise and experience.

Signed this 9th

2021 January, -2020, upon my oath or affirmation, before a notary of the State of Illinois.

*Signature

Evan Tullos Printed Name

94 day of JANUARY Scribed and sworn before me on this

2021

Title

1/9/21

Vice President

My authorization as a notary of the State of <u>Illinois</u> expires on the <u>State</u> of <u>Mugusr</u>


Notary's Signature

1/9/2024 Date

, 2024 .

Mark Reed Notary's Printed Name

*For Title V applications, the signature must be of the Responsible Official as defined in 20.2.70.7.AE NMAC.

Form-Section 22 last revised: 3/7/2016

Saved Date: 12/22/2020

Section 23 Universal Application 4

Universal Application 4

Air Dispersion Modeling Report

Refer to and complete Section 16 of the Universal Application form (UA3) to assist your determination as to whether modeling is required. If, after filling out Section 16, you are still unsure if modeling is required, e-mail the completed Section 16 to the AQB Modeling Manager for assistance in making this determination. If modeling is required, a modeling protocol would be submitted and approved prior to an application submittal. The protocol should be emailed to the modeling manager. A protocol is recommended but optional for minor sources and is required for new PSD sources or PSD major modifications. Fill out and submit this portion of the Universal Application form (UA4), the "Air Dispersion Modeling Report", only if air dispersion modeling is required for this application submittal. This serves as your modeling report submittal and should contain all the information needed to describe the modeling. No other modeling report or modeling protocol should be submitted with this permit application.

16-	16-A: Identification					
1	Name of facility:	Zia Hills Central Facility				
2	Name of company:	ConocoPhillips				
3	Current Permit number:	7746				
4	Name of applicant's modeler:	Bruce Ferguson				
5	Phone number of modeler:	(601) 826-6376				
6	E-mail of modeler:	bferguson@fce-engineering.com				

16	16-B: Brief							
1	Was a modeling protocol submitted and approved?	Yes□	No⊠					
2	2 Why is the modeling being done? Other (describe below)							
3	Describe the permit changes relevant to the modeling.							
	The site is increasing production and will now require a NSR permit instead of GCP-Oil & Gas.							
4	What geodetic datum was used in the modeling? NAD83							
5	5 How long will the facility be at this location? indefinite							
6	Is the facility a major source with respect to Prevention of Significant Deterioration (PSD)?	Yes□	No⊠					
7	Identify the Air Quality Control Region (AQCR) in which the facility is located	155						

8	List the PSD baseline dates for this region (minor or major, as appropriate).									
	NO2	3/16/1988	3/16/1988							
	SO2	7/28/1978								
	PM10	2/20/1979								
	PM2.5	11/13/2013								
	Provide the name and distance to Cla	ass I areas within 50 km of the facility (300 km for	r PSD pern	nits).						
9	None									
1.0	Is the facility located in a non-attainment area? If so describe below $Yes \Box$ $No \boxtimes$				No⊠					
10										

16-C: Modeling History of Facility Describe the modeling history of the facility, including the air permit numbers, the pollutants modeled, the National Ambient Air Quality Standards (NAAQS), New Mexico AAQS (NMAAQS), and PSD increments modeled. (Do not include modeling waivers). Latest permit and modification Pollutant number that modeled the Date of Permit Comments pollutant facility-wide. CO NO_2 1 SO₂ H_2S PM2.5

PM10		
Lead		
Ozone (PSD only)		
NM Toxic Air		
Pollutants		
(20.2.72.402 NMAC)		

16	-D: Modeling	g performed t	for this appli	cation		
		mplicated modeling a	performed and submi pplicable for that poll			I and cumulative
1	Pollutant	ROI	Cumulative analysis	Culpability analysis	Waiver approved	Pollutant not emitted or not changed.
	СО	\boxtimes	\boxtimes			
	NO ₂	\boxtimes	\boxtimes			
	SO ₂	\boxtimes				

H_2S				\boxtimes
PM2.5	\boxtimes	\boxtimes		
PM10	\boxtimes			
Lead				\boxtimes
Ozone				\boxtimes
State air toxic(s) (20.2.72.402 NMAC)				\boxtimes

16-	-E: New	Mexico to	xic air pollutants	modeling					
1	List any New Mexico toxic air pollutants (NMTAPs) from Tables A and B in 20.2.72.502 NMAC that are modeled for this application. NON3								
	List any NI below, if re	equired.	itted but not modeled becaus	se stack height co	rrection factor. Add add				
2	Pollutant	Emission Rate (pounds/hour)	Emission Rate Screening Level (pounds/hour)	Stack Height (meters)	Correction Factor	Emission Rate/ Correction Factor			

16	-F: Modeling options		
1	Was the latest version of AERMOD used with regulatory default options? If not explain below.	Yes⊠	No□

10	6-G: Surrou	nding source modeling			
1	Date of surround	ing source retrieval	MergeMaster March 11, 2020		
	sources modeled		r Quality Bureau was believed to be inaccurate, describe how the changes to the surrounding source inventory were made, use the table		
2	AQB Source ID	Description of Corrections			

16-	16-H: Building and structure downwash					
1	How many buildings are present at the facility?	None				
2	How many above ground storage tanks are present at the facility?	17				
	Was building downwash modeled for all buildings and	tanks? If not explain why below.	Yes⊠	No□		

3		
4	Building comments	

16-	I: Recept	ors and	modeled	property bou	ndary			
1	continuous wa grade that wou within the proj is required in o receptors shall	Ils, or other of Ild require sp perty may be order to exclu- be placed with	continuous barri ecial equipmen identified with ide receptors fro ithin the proper	ic entry is effectively prives approved by the Dett to traverse. If a large prive signage only. Public room the facility property ty boundaries of the facility that defined and the facility that the facility the facility the facility that the facility the facili	partment, such as rug property is completely ads cannot be part of . If the facility does no ility.	ged phys enclosed a Restric ot have a	ical terrain w d by fencing, a ted Area. A R	ith a steep a restricted area estricted Area
	Fence surroun	•						
2				ccessible roads in the re restricted area?	stricted area.		Yes□	No□
3	³ Are restricted area boundary coordinates included in the modeling files?						Yes□	No□
	Describe the re	eceptor grids	and their spacin	ng. The table below ma	y be used, adding row	's as need	led.	
	Grid Type	Shape	Spacing	Start distance from restricted area or center of facility	End distance from restricted area or center of facility	Commo	ents	
4	Cartesian	Circle	50 m	0	1 km			
	Cartesian	Circle	100 m	1 km	3 km			
	Cartesian	Circle	250 m	3 km	6 km			
	Cartesian	Circle	500 m	6 km	10 km			
	Cartesian	Circle	1000 m	10 km	50 km			
			long the fence					
5	50 meters space	cing was inclu	ided on the fen	ce line				
	Describe the P	SD Class I a	rea receptors.					
6	N/A							

16-	J: Sensitive areas		
1	Are there schools or hospitals or other sensitive areas near the facility? If so describe below. This information is optional (and purposely undefined) but may help determine issues related to public notice.	Yes□	No⊠

3	The modeling review process may need to be accelerated if there is a public hearing. Are there likely to be public comments opposing the permit application?	Yes□	No⊠

16	-K: Mo	deling	g Scena	rios								
1	rates, time	s of day, ti ative opera	mes of yea ating scena	r, simultai rios shoule	neous or al	ternate op	eration of c	old and nev	ios include us w equipment Application a	during tra	ansitio	
	one with h split the V were mode	igh pressu RU downt eled to ens	re gas flari ime gas be ure all imp	ng at FL1 tween FL2 acts were p	and all int and FL3. reviewed.	ermittent l Even thou	ow pressur	e VRU do	pilots. Two S wntime gas a backups to or	t FL2. Th	le seco	
	Which sce	nario prod	uces the hi	ghest conc	entrations	? Why?						
2	controlling	g source fo	r the maxir	num impa	cts. For Co	O, the seco	nd SSM so	enario pro	npacts becau duced the hig	ghest imp	acts be	ecause the
3	Were emis	sion factor tion pertai	r sets used ns to the "S	to limit en SEASON"	nission rate , "MONTI	es or hours H", "HROI	of operation DY" and r	on?	or sets, not	Yes□		No⊠
4									ore the factor if it makes fo			
	Hour of Day	Factor	Hour of Day	Factor								
	1		13									
	2		14									
	3		15									
	4		16									
	5		17									
-	6		18									
5	7		19									
	8		20									
	9		21									
	10		22									
	11		23									
	12		24									
	If hourly,	variable en	nission rate	es were use	ed that we	re not desc	ribed abov	e, describe	them below.			
6	Were diffe	erent emiss	ion rates u	sed for sho	ort-term an	id annual r	nodeling? I	f so descri	be below.	Yes□		No⊠
										1		

		pes of NO ₂ modeling were used? I that apply.								
		ARM2								
1	\boxtimes	100% NO _X to NO ₂ conversion								
	D PVMRM									
	□ OLM									
		Other:								
2	Describe	Describe the NO ₂ modeling.								
2	The facility NOx emissions were modeled, assuming total conversion and monitored background was added to the facility impacts to account for surrounding source.									
3	Were default NO2/NOX ratios (0.5 minimum, 0.9 maximum or equilibrium) used? If not describe and justify the ratios used below.YesNo									
	N/A									
4	Describe	the design value used for each averaging period modeled.								
т	1-hour: High first high Annual: One Year Annual Average									

16-	M: Parti	culate Ma	tter Modelir	ıg									
	Select the pol	Select the pollutants for which plume depletion modeling was used.											
1		PM2.5											
		PM10											
	\boxtimes	None											
•	Describe the	particle size distr	ibutions used. Includ	e the source	e of i	nformation.							
2	None												
3	Does the facility emit at least 40 tons per year of NOx or at least 40 tons per year of SO2? Sources that emit at least 40 tons per year of NOx or at least 40 tons per year of SO2 are considered to emit significant amounts of precursors and must account for secondaryYes \boxtimes No \square									No□			
4	Was secondar	ry PM modeled fo	or PM2.5?						Yes□]	No⊠		
	If MERPs we below.	re used to accour	t for secondary PM2	2.5 fill out th	ne inf	formation belo	w. If anot	ther	method	l was use	d describe		
	NO _X (ton/yr)		SO ₂ (ton/yr)		[PM2.5] _{annual}				[PM2.5] _{24-hour}				
5	56.51 (includ	ing SSM)	5.11 (including SS	M)	0.0	0.002 ug/m ³			0.019	ug/m ³			
	Southwest Cl	t Climate Zone Lowest MERPs											
	State	County	Metric	Precurso	r	Emissions	Stack	Μ	ERP				
	Colorado	Weld Co	Annual PM _{2.5}	NOx		1000	10	1	.0530				
	Colorado	Weld Co	Annual PM _{2.5}	SO ₂		1000	10		7359				

Colorado	Weld Co	Daily PM _{2.5}	NO _x	1000	10	5215
Colorado	Weld Co	Daily PM _{2.5}	SO ₂	1000	10	814

 $[PM2.5]_{annual} = SIL x [NO_x Annual Emissions/10530 + SO_2 Annual Emissions/7359]$ =(0.2 ug/m³)[(56.51/10530) + (5.11/7359)]=0.002 ug/m³

$$\begin{split} \label{eq:pm2.5} [PM2.5]_{24\text{-hour}} &= \mathrm{SIL} \; x \; [\mathrm{NO}_x \; \mathrm{Annual} \; \mathrm{Emissions}/5215 + \mathrm{SO2} \; \mathrm{Annual} \; \mathrm{Emissions}/814] \\ &= (1.2 \; \mathrm{ug}/\mathrm{m}^3) [(\; 56.51/5215) + (\; 5.11/814)] \\ &= 0.019 \; \mathrm{ug}/\mathrm{m}^3 \end{split}$$

16	-N: Setback Distances
1	Portable sources or sources that need flexibility in their site configuration requires that setback distances be determined between the emission sources and the restricted area boundary (e.g. fence line) for both the initial location and future locations. Describe the setback distances for the initial location. None
2	Describe the requested, modeled, setback distances for future locations, if this permit is for a portable stationary source. Include a haul road in the relocation modeling.

16-	O: PSD Incre	ement and S	ource IDs					
1	The unit numbers in t modeling files. Do th if they do not match b		\boxtimes	No□				
	Unit Number in UA-2	2		Unit Number in Modeling F	iles			
							1	
2	The emission rates in these match? If not, e		2-F should match the c	ones in the modeling files. Do	Yes	\boxtimes	No□	
	SSM emissions are id	lentified by suffix S	SM on the flare					
3	Have the minor NSR been modeled?	Yes		No□				
	Which units consume	e increment for whic	h pollutants?					
4	Unit ID	NO ₂	SO_2	PM10		PM2.5		
	All Units	X	х	Х		х		
5	PSD increment descr. (for unusual cases, i.e. after baseline date).		anded emissions	I		<u> </u>		
6	Are all the actual inst This is necessary to v how increment consu	? Yes		No□				

16	16-P: Flare Modeling										
1	For each flare or flaring scenario, complete the following										
	Flare ID (and scenario)	Average Molecular Weight	Gross Heat Release (cal/s)	Effective Flare Diameter (m)							
	Normal Operation										
	FL1	21.63	20,318	0.126							
	FL2	21.63	31,802	0.157							
	FL3	21.63	31,802	0.157							
	SSM1										
	FL1_SSM	21.63	101,051,412	8.860							
	FL2_SSM	38.02	7,189,258	2.250							
	FL3_SSM	21.63	20,318	0.126							
	SSM2										
	FL1_SSM2	21.63	101,051,412	8.860							
	FL2_SSM2	37.94	3,604,788	1.593							
	FL3_SSM2	37.94	3,604,788	1.593							

16-	-Q: Volume and Related Sources									
1	Were the dimensions of volume sources different from standard dimensions in the Air Quality Bureau (AQB) Modeling Guidelines? If not please explain how increment consumption status is determined for the missing installation dates below.	Yes□	No□							
	N/A									
2	Describe the determination of sigma-Y and sigma-Z for fugitive sources.									
3	Describe how the volume sources are related to unit numbers. Or say they are the same.									
4	Describe any open pits.									
5	Describe emission units included in each open pit.									

16-	16-R: Background Concentrations									
	Were NMED provided background concentrations used? Identify the background station usedbelow. If non-NMED provided background concentrations were used describe the data thatYes⊠									
	was used.									
	CO: Del Norte	CO: Del Norte High School (350010023)								
	NO ₂ : Hobbs-J	efferson (350250008)								
1	PM2.5: Hobbs	s-Jefferson (350450019)								
	PM10: Hobbs-Jefferson (350250008)									
	SO ₂ : Amarillo (483751025)									
	Other:									
	Comments:									
$\frac{1}{2}$ Were background concentrations refined to monthly or hourly values? If so describe below. Yes										

16-	16-S: Meteorological Data								
	Was NMED provided meteorological data used? If so select the station used.								
1	Artesia 2015	Yes⊠	No□						
2	If NMED provided meteorological data was not used describe the data set(s) used below. Discu handled, how stability class was determined, and how the data were processed.	ss how missing	data were						
	N/A								

16-	16-T: Terrain								
1	Was complex terrain used in the modeling? If not, describe why below.	Yes⊠	No□						
2	What was the source of the terrain data?								
2	NED data through http://www.webgis.com/, downloaded through the Lakes Environmental GUI								

1 Describe the modeling files: Significance analysis in included in the folder SIA. Significance analysis was used with monitored data as the cumulative analysis to demonstrate compliance with the SO2 1-hr and NOx standards. Surrounding sources were explicitly modeled for PM2.5 and the cumulative analysis is in the folder SIA. The significant impact area for PM2.5 was within the 100-meter spacing and only significant receptors from the preliminary analysis were used in the cumulative analysis.

File name (or folder and file name)	Pollutant(s)	Purpose (ROI/SIA, cumulative, culpability analysis, other)				
SIA\NOx.zip	NO2	ROI, Cumulative				
SIA\CO.zip	СО	ROI				
SIA\SO2.zip	SO2	ROI & Cumulative				
SIA\PM25.zip	PM2.5, PM10	ROI				
CIA\PM25.zip	PM2.5	Cumulative				
Generic zip file contents are summarize	d below					
Artesia-Midland_2015.PFL & .SFC	Met Data as downloaded from NMED					
Surrounding Sources\	Surrounding source files generated by MergeMaster					
zia.jgw, .jpg, .wdt	Georeferenced facility layout					
MERPs table_export.xlsx	MERPs downloaded from EPA for Southwest Climate Zone					
[Pollutant].ADI	AERMOD input file					
[Pollutant].ADO	AERMOD output file					
[Pollutant].sum	AERMOD output summary file					
[Pollutant].bpi	BPIP input file					
[Pollutant].pro	BPIP output file					
\[Pollutant].AD\	Plot File Directory					
[Avg Period][Rank]G[xxx].PLT	Plot file naming convention. Where facility source groups were used G001 denotes normal operation, G002 denotes SSM operations and G003 denotes flaring evenly distributed between flares. For PM2.5 cumulative G001 denotes NAAQS modeling and G002 denotes PSD increment modeling.					

16	16-V: PSD New or Major Modification Applications (N/A)									
1	A new PSD major source or a major modification to an existing PSD major source requires additional analysis. Was preconstruction monitoring done (see 20.2.74.306 NMAC and PSD Preapplication Guidance on the AQB website)?	Yes□	No□							
2	If not, did AQB approve an exemption from preconstruction monitoring?	Yes□	No□							
3	Describe how preconstruction monitoring has been addressed or attach the approved preconstruction monitoring or monitoring exemption.									
4	Describe the additional impacts analysis required at 20.2.74.304 NMAC.									
5	If required, have ozone and secondary PM2.5 ambient impacts analyses been completed? If so describe below.	Yes□	No□							

16-W: Mode	elin	g Result	S									
1	If ar requi signi	nbient standar	ds are exceed urce to show t	hat the con	tribution f	iding sources, a rom this source ability analysi	e is less that	n the	Yes□	Yes□ No⊠		
		tify the maxim	ium concentra	tions from	the model	ing analysis. R	ows may b	e modified, a	idded and rem	loved from the t	able below	
		llity 1g/m3)	ntration ling n3)	ug/m3)	d ug/m3)	e ug/m3)	dard	ıdard		Location		
Pollutant, Time Perio and Standard	od	Modeled Facility Concentration (μg/m3)	Modeled Concentration with Surrounding Sources (µg/m3)	Secondary PM (μg/m3)	Background Concentration (μg/m3)	Cumulative Concentration (μg/m3)	Value of Standard (µg/m3)	Percent of Standard	UTM E (m)	UTM N (m)	Elevation (ft)	
CO 1hr SIA		87.40978	N/A	N/A	N/A	87.40978	2,000	4.4%	621650.00	3543400.00	960.33	
CO 8hr SIA		51.14755	N/A	N/A	N/A	51.14755	500	10.2%	621750.00	3543350.00	959.15	
SO ₂ 1hr NAAQS		8.06216	N/A	N/A	47.0	55.06216	188.03	29.3%	621800.00	3543650.00	964.65	
SO ₂ Annual SIA		0.40485	N/A	N/A	N/A	0.40485	1	40.5%	621550.00	3543800.00	970.39	
SO2 3-hr SIA		6.62356	N/A	N/A	N/A	6.62356	25	26.5%	621800.00	3543700.00	965.44	
SO2 24-hr SIA		3.18479	N/A	N/A	N/A	3.18479	5	63.7%	621700.00	543500.00	962.20	
PM ₁₀ 24hr SIA		3.64273	N/A	N/A	N/A	3.64273	5	72.9%	621700.00	3543500.00	962.20	
PM ₁₀ Annual SIA		0.58854	N/A	N/A	N/A	0.58854	1	58.9%	621600.00	3543750.00	967.98	
PM _{2.5} 24hr NAAQS		3.64271	3.72834	0.019	13.4	17.14734	35	49.0%	621700.00	3543500.00	962.20	
PM _{2.5} Annual NAAQ	S	0.56061	1.13072	0.002	5.9	7.03272	12	58.6%	621600.00	3543750.00	967.98	
PM _{2.5} 24hr PSD		3.64271	3.72586	0.019	N/A	3.74486	9	41.6%	621700.00	3543500.00	962.20	
PM _{2.5} Annual PSD		0.56061	1.12738	0.002	N/A	1.12938	4	28.2%	621600.00	3543750.00	967.98	
NO ₂ 1hr NAAQS		85.32034	N/A	N/A	64.2	149.52034	188.03	79.5%	621800.00	3543600.00	964.04	
NO ₂ Annual NMAAO	QS	7.42111	N/A	N/A	8.1	15.52111	94.02	16.5%	621600.00	3543750.00	967.98	
NO ₂ Annual PSD		7.42111	N/A	N/A	8.1	15.52111	25	62.1%	621600.00	3543750.00	967.98	

1

16-X: Summary/conclusions

A statement that modeling requirements have been satisfied and that the permit can be issued.

The facility was modeled at the emission rates detailed on 2-E and 2-F of the application. The modeled impacts were below the modeling significance levels for CO, PM10, and the SO2 3-hr, 24-hr and annual averaging periods. Monitored background values from the NMED guidelines were used to account for surrounding sources for the NO2 annual, NO2 1-hr, and SO2 1-hr standards. Surrounding source impacts of PM2.5 were accounted for by explicitly modeling the surrounding sources and adding monitored background. The modeling results indicate that the impacts surrounding the facility are in compliance with the ambient air quality standards and the facility will not cause or contribute to an exceedance of the standards.

The modeling requirements have been satisfied and the permit can be issued.