October 1, 2019

Ms. Liz Bisbey-Kuehn New Mexico Environment Department Air Quality Bureau 525 Camino de los Marquez, Suite 1 Santa Fe, New Mexico 87505

Re: Title V Operating Permit Application

Harvest Four Corners, LLC - Chaco Compressor Station

Dear Ms. Bisbey-Kuehn,

On behalf of Harvest Four Corners, LLC (HFC), Cirrus Consulting, LLC submits the enclosed application to modify the Title V operating permit (P236-R2) for the Chaco Compressor Station.

Thank you for your help. If you have questions or need any additional information, please contact Monica Smith of HFC at (505) 632-4625.

Sincerely,


CIRRUS CONSULTING, LLC

James w. Newb

Enclosure

Chaco Compressor Station Title V Operating Permit Application

c: Monica Smith, HFC

NEW MEXICO 20.2.70 NMAC APPLICATION TO MODIFY PERMIT NUMBER P236-R2

CHACO COMPRESSOR STATION

Submitted By:

HARVEST FOUR CORNERS, LLC

1755 Arroyo Drive Bloomfield, New Mexico 87413

Prepared By:

CIRRUS CONSULTING, LLC

951 Diestel Road Salt Lake City, Utah 84105 (801) 484-4412

October 2019 / Rev. 1 Apr 2020

Table of Contents

T .	1	. •	
Intro	dir.	0t10	•
111111)(17116) I I

Section 1: General Facility Information

Section 2: Tables

Section 3: Application Summary

Section 4: Process Flow Sheet

Section 5: Plot Plan Drawn to Scale

Section 6: All Calculations

Section 7: Information Used to Determine Emissions

Section 8: Map(s)

Section 9: Proof of Public Notice

Section 10: Written Description of the Routine Operations of the Facility

Section 11: Source Determination

Section 12: PSD Applicability Determination for All Sources & Special

Requirements for a PSD Application

Section 13: Discussion Demonstrating Compliance with Each Applicable State &

Federal Regulation

Section 14: Operational Plan to Mitigate Emissions

Section 15: Alternative Operating Scenarios

Section 16: Air Dispersion Modeling

Section 17: Compliance Test History

Section 18: Addendum for Streamline Applications

Section 19: Requirements for the Title V (20.2.70 NMAC) Program

Section 20: Other Relevant Information

Section 21: Addendum for Landfill Applications

Section 22: Certification Page

Introduction

The Harvest Four Corners, LLC (HFC) Chaco Compressor Station currently operates under a construction permit issued by the New Mexico Air Quality Bureau (NMAQB), 0759-M6, dated October 12, 2018 and a Title V operating permit, P236-R2, dated August 19, 2016.

The facility is currently approved by the Title V operating permit to operate the following equipment/sources:

- Two Solar Saturn 10-1001 natural gas-fired turbines (Units 1 & 2);
- One Solar Saturn 10-1202 natural gas-fired turbine (Unit 3);
- One Solar Centaur 40-4002 natural gas-fired turbine (Unit 4);
- One Detroit Diesel standby generator (Unit 5), an exempt source;
- Truck loading emissions (Unit L1);
- Startup, shutdown and maintenance (SSM) emissions from the turbines, compressors and piping associated with the station (Units 1a-4a);
- Malfunction emissions (Unit M1);
- One 500 barrel (bbl) condensate storage tank (Unit T4);
- One 450 bbl condensate storage tank (Unit T5);
- One 45 bbl produced water storage tank (Unit T6); and
- One 70 bbl produced water storage tank (Unit T12).

The station is also equipped with two heaters (Units 6 & 7) and miscellaneous liquid storage tanks (Units T1-T3, T7, T8, T10 & T11). The heaters and miscellaneous storage tanks are exempt sources. The truck loading of produced water is also an exempt activity.

This application is being submitted to renew the Title V operating permit. The following changes, as approved in the most recent construction permit, are included:

- Increase the permitted annual throughput and emissions limits for the condensate storage tanks (Units T4 & T5);
- Increase the permitted annual throughput and emissions limits for condensate truck loading (Unit L1);
- Add one existing pig receiver (Unit PR), an exempt source;
- Identify SSM emissions as Unit "SSM", rather than Unit "1a-4a"; and
- Increase SSM emissions (Unit SSM) to allow for a richer gas stream.

Note that though the standby generator (Unit 5) is an <u>exempt</u> source for the purpose of the construction permit (it operates less than 500 hours per year and only during the loss of commercial utility power), it is a <u>significant</u> source for the purpose of the Title V permit (there are applicable New Mexico Administrative Code (NMAC) and Subpart ZZZZ requirements). Therefore, in this Title V application, Unit 5 is included in Table 2-A, rather than Table 2-B. As there are no emission limits for the generator in the construction permit, Unit 5 is not included in any of the other tables, except Table 2-I. The generator is included in Table 2-I, because the instructions above that table specifically state all sources listed in Table 2-A must be included.

Mail Application To:

New Mexico Environment Department Air Quality Bureau Permits Section 525 Camino de los Marquez, Suite 1 Santa Fe, New Mexico, 87505

Phone: (505) 476-4300 Fax: (505) 476-4375 www.env.nm.gov/aqb

For Department use only:

AIRS No.:

Universal Air Quality Permit Application

Use this application for NOI, NSR, or Title V sources.

Use this application for: the initial application, modifications, technical revisions, and renewals. For technical revisions, complete Sections, 1-A, 1-B, 2-E, 3, 9 and any other sections that are relevant to the requested action; coordination with the Air Quality Bureau permit staff prior to submittal is encouraged to clarify submittal requirements and to determine if more or less than these sections of the application are needed. Use this application for streamline permits as well.

See Section 1-I for submittal instructions for other permits.

This application is submitted as (check all that apply): ☐ Request for a No Permit Required Determination (no fee)
☑ Updating an application currently under NMED review. Include this page and all pages that are being updated (no fee required)
Construction Status: ☐ Not Constructed ☑ Existing Permitted (or NOI) Facility ☐ Existing Non-permitted (or NOI) Facility
Minor Source: □ a NOI 20.2.73 NMAC □ 20.2.72 NMAC application or revision □ 20.2.72.300 NMAC Streamline application
Title V Source: ☐ Title V (new) ✓ Title V renewal ☐ TV minor mod. ✓ TV significant mod. TV Acid Rain: ☐ New ☐ Renewal
PSD Major Source: ☐ PSD major source (new) ☐ minor modification to a PSD source ☐ a PSD major modification

Acknowledgements:

- ☑ I acknowledge that a pre-application meeting is available to me upon request. ☑ Title V Operating, Title IV Acid Rain, and NPR applications have no fees.
- □ \$500 NSR application Filing Fee enclosed OR □ The full permit fee associated with 10 fee points (required w/ streamline applications).
- ☐ Check No.: XXXX in the amount of XXXX
- ☑ I acknowledge the required submittal format for the hard copy application is printed double sided 'head-to-toe', 2-hole punched (except the Sect. 2 landscape tables is printed 'head-to-head'), numbered tab separators. Incl. a copy of the check on a separate page.

 ☐ This facility qualifies to precipe assistance from the Small Pusiness Environmental Assistance program (SPEAP) and qualifies for
- □ This facility qualifies to receive assistance from the Small Business Environmental Assistance program (SBEAP) and qualifies for 50% of the normal application and permit fees. Enclosed is a check for 50% of the normal application fee which will be verified with the Small Business Certification Form for your company.
- □ This facility qualifies to receive assistance from the Small Business Environmental Assistance Program (SBEAP) but does not qualify for 50% of the normal application and permit fees. To see if you qualify for SBEAP assistance and for the small business certification form go to https://www.env.nm.gov/aqb/sbap/small_business_criteria.html).

Citation: Please provide the **low level citation** under which this application is being submitted: **20.2.70.300.B(2)** NMAC (e.g. application for a new minor source would be 20.2.72.200.A NMAC, one example for a Technical Permit Revision is 20.2.72.219.B.1.b NMAC, a Title V acid rain application would be: 20.2.70.200.C NMAC)

Section 1 – Facility Information

Sec	tion 1-A: Company Information	3 to 5 #s of permit IDEA ID No.): 1189	Permit/NOI #: P236-R2			
1	Facility Names Chase Compuesson Station	Plant primary SIC Code (4 digits): 1389				
1	Facility Name: Chaco Compressor Station	Plant NAIC code (6 digits): 213112				
a	Facility Street Address (If no facility street address, provide directions from See directions in Section 1-D4	n a prominent landmark)):			
2	2 Plant Operator Company Name: Harvest Four Corners, LLC Phone/Fax: (505) 632-4600 / (505) 632-					
a	Plant Operator Address: 1755 Arroyo Drive, Bloomfield, New Mexico 87	7413				

b	Plant Operator's New Mexico Corporate ID or Tax ID: 76-0451075						
3	Plant Owner(s) name(s): Same as #2 above	Phone/Fax: Same as #2 above					
a	Plant Owner(s) Mailing Address(s): Same as #2a above						
4	Bill To (Company): Same as #2 above	Phone/Fax: Same as #2 above					
a	Mailing Address: Same as #2a above	E-mail: N/A					
5	☐ Preparer: ☑ Consultant: James Newby, Cirrus Consulting, LLC	Phone/Fax: (801) 544-5275					
a	Mailing Address: 979 Manchester Road, Kaysville, Utah 84037	E-mail: jnewby@cirrusllc.com					
6	Plant Operator Contact: Monica Smith	Phone/Fax: (505) 632-4625 / (505) 632-4782					
a	Address: Same as #2a above	E-mail: msmith@harvestmidstream.com					
7	Air Permit Contact: Same as #6 above	Title: Environmental Specialist					
a	E-mail: Same as #6a above	Phone/Fax: Same as #6 above					
b	Mailing Address: Same as #2a above						
С	The designated Air permit Contact will receive all official corresponder	nce (i.e. letters, permits) from the Air Quality Bureau.					

Section 1-B: Current Facility Status

Sec	tion 1-b: Current Facility Status						
1.a	Has this facility already been constructed? ☑ Yes ☐ No	1.b If yes to question 1.a, is it currently operating in New Mexico? ☑ Yes ☐ No					
2	If yes to question 1.a, was the existing facility subject to a Notice of Intent (NOI) (20.2.73 NMAC) before submittal of this application? ☐ Yes ☑ No	If yes to question 1.a, was the existing facility subject to a construction permit (20.2.72 NMAC) before submittal of this application? ✓ Yes □ No					
3	Is the facility currently shut down? ☐ Yes ☑ No	If yes, give month and year of shut down (MM/YY): N/A					
4	Was this facility constructed before 8/31/1972 and continuously operated since 1972? ☑ Yes ☐ No						
5	If Yes to question 3, has this facility been modified (see 20.2.72.7.P NMAC) or the capacity increased since 8/31/1972? ✓ Yes □ No □ N/A						
6	Does this facility have a Title V operating permit (20.2.70 NMAC)? ✓ Yes □ No	If yes, the permit No. is: P236-R2					
7	Has this facility been issued a No Permit Required (NPR)? ☐ Yes ☑ No	If yes, the NPR No. is: N/A					
8	Has this facility been issued a Notice of Intent (NOI)? ☐ Yes ☑ No	If yes, the NOI No. is: N/A					
9	Does this facility have a construction permit (20.2.72/20.2.74 NMAC)? ✓ Yes □ No	If yes, the permit No. is: 0759-M6					
10	Is this facility registered under a General permit (GCP-1, GCP-2, etc.)? ☐ Yes ☑ No	If yes, the register No. is: N/A					

Section 1-C: Facility Input Capacity & Production Rate

1	What is the facility's maximum input capacity, specify units (reference here and list capacities in Section 20, if more room is required)								
a	Current	ent Hourly: 5.4 MMCF ^(a) Daily: 130 MMCF ^(a) Annually: 47,450 MMCF ^(a)							
b	Proposed	oposed Hourly: 5.4 MMCF ^(a) Daily: 130 MMCF ^(a) Annually: 47,450 MMCF ^(a)							
2	What is the facility's maximum production rate, specify units (reference here and list capacities in Section 20, if more room is required)								
a	Current Hourly: N/A Daily: N/A Annually: N/A								
b	Proposed Hourly: N/A Daily: N/A Annually: N/A								

(a) The station capacity is a direct function of available horsepower. The throughput is therefore dependent on atmospheric temperature and pressure, gas temperature and pressure, relative humidity and gas quality, was well as other factors. The "throughput" expressed above is a nominal quantity (with a 15 percent safety factor), neither an absolute maximum, nor an average. Actual throughput will vary from the nominal amount.

Section 1-D: Facility Location Information

1	Section: 27	Range: 11W	Township: 29N	County: San Juan	Elevation (ft): 5,575				
2	UTM Zone: □	12 or I 13		Datum: □ NAD 27 □ NAD 83 ☑ WGS 84					
a	UTM E (in meter	rs, to nearest 10 meter	s): 233,880	UTM N (in meters, to nearest 10 meters): 4,064,690					
b	AND Latitude	(deg., min., sec.):	36° 41' 26"	Longitude (deg., min., sec.): -107°	58' 43"				
3	Name and zip o	code of nearest Ne	ew Mexico town: Bloomfie	eld, New Mexico 87413					
4	Detailed Driving Instructions from nearest NM town (attach a road map if necessary): From Bloomfield drive south on Hwy 550, turn left at Industrial Blvd and drive 0.5 miles to the white propane tank (Mid-American Pipeline System), turn left and drive 0.4 miles (0.2 miles past the La Cosa Station).								
5	The facility is a	approximately 1	(distance) mile south (dire	ction) of Bloomfield, New Mexico (r	nearest town).				
6	Status of land a	at facility (check of	one): Private Indian/Pu	ueblo ☑ Federal BLM ☐ Federal For	rest Service Other (specify)				
7				ten (10) mile radius (20.2.72.203.B.2): Bloomfield, Navajo Indian Tribe,					
8	20.2.72 NMAC applications only: Will the property on which the facility is proposed to be constructed or operated be closer than 50 km (31 miles) to other states, Bernalillo County, or a Class I area (see www.env.nm.gov/aqb/modeling/class1areas.html)? ☐ Yes ☐ No (20.2.72.206.A.7 NMAC) If yes, list all with corresponding distances in kilometers: N/A								
9	Name nearest (Class I area: Mesa	Verde National Park						
10	Shortest distance	ce (in km) from fa	acility boundary to the bou	ndary of the nearest Class I area (to the	nearest 10 meters): 66.25 km				
11				ions (AO is defined as the plant site in est residence, school or occupied structure)					
12	Method(s) used to delineate the Restricted Area: Fence "Restricted Area" is an area to which public entry is effectively precluded. Effective barriers include continuous fencing, continuous walls, or other continuous barriers approved by the Department, such as rugged physical terrain with steep grade that would require special equipment to traverse. If a large property is completely enclosed by fencing, a restricted area within the property may be identified with signage only. Public roads cannot be part of a Restricted Area.								
13	☐ Yes ☑ No A portable stati	ionary source is n	ot a mobile source, such as	oortable stationary source as defined i an automobile, but a source that can such as a hot mix asphalt plant that is	be installed permanently at				
14	Will this facilit	y operate in conju		ated parties on the same property?					

Section 1-E: Proposed Operating Schedule (The 1-E.1 & 1-E.2 operating schedules may become conditions in the permit.)

1	Facility maximum operating $(\frac{\text{hours}}{\text{day}})$: 24	$(\frac{\text{days}}{\text{week}}):7$	$(\frac{\text{weeks}}{\text{year}})$: 52	$(\frac{\text{hours}}{\text{year}})$: 8,760			
2	Facility's maximum daily operating schedule (if less	s than $24 \frac{\text{hours}}{\text{day}}$)? Start: N/A	□AM □PM	End: N/A	□AM □PM		
3	Month and year of anticipated start of construction: N/A						
4	Month and year of anticipated construction completion: N/A						
5	Month and year of anticipated startup of new or modified facility: N/A						
6	Will this facility operate at this site for more than or	ne year? ☑ Yes ☐ No					

Section 1-F: Other Facility Information

1	Are there any current Notice of Violations (NOV), compliance orders, or any other compliance or enforcement issues related to this facility? Yes No If yes, specify: N/A							
a	If yes, NOV date or description of issue: N/A			NOV Tracking No: N/A				
b	Is this application in response to any issue listed in 1-F, 1 of	or 1a above? □ Yes	☑ No If Y	es, provide the 1c & 1d info below:				
с	c Document Title: N/A Date: N/A Requirement # (or page # and paragraph #): N/A							
d	Provide the required text to be inserted in this permit: N/A							
2	Is air quality dispersion modeling or modeling waiver being submitted with this application? Yes No							
3	Does this facility require an "Air Toxics" permit under 20.2.72.400 NMAC & 20.2.72.502, Tables A and/or B? ☐ Yes ☑ No							
4	Will this facility be a source of federal Hazardous Air Poll-	utants (HAP)? 🗹 Y	es 🗆 No					
a	If Yes, what type of source? \square Major (\square \geq 10 tpy of any single HAP OR \square \geq 25 tpy of any combination of HAPS) OR \square Minor (\square <10 tpy of any single HAP AND \square <25 tpy of any combination of HAPS)							
5	Is any unit exempt under 20.2.72.202.B.3 NMAC? ☑ Yes ☐ No							
a	If yes, include the name of company providing commercial Commercial power is purchased from a commercial utility site for the sole purpose of the user.		-					

Section 1-G: Streamline Application (This section applies to 20.2.72.300 NMAC Streamline applications only)

☐ I have filled out Section 18, "Addendum for Streamline Applications." ☑ N/A (This is not a Streamline application.)

Section 1-H: Current Title V Information - Required for all applications from TV Sources (Title V-source required information for all applications submitted pursuant to 20.2.72 NMAC (Minor Construction Permits), or 20.2.74/20.2.79 NMAC (Major PSD/NNSR applications), and/or 20.2.70 NMAC (Title V)

1	Responsible Official (R.O.) (20.2.70.300.D.2 NMAC): Travis Jones		Phone: (713) 289-2630					
a	R.O. Title: EH&S Manager	R.O. e-mail: trjones@harvestmidstream.com						
b	R. O. Address: 1111 Travis Street, Houston, Texas 77002							
2	Alternate Responsible Official (20.2.70.300.D.2 NMAC): TBD		Phone: TBD					
a	A. R.O. Title: TBD	A. R.O. e-mail: TI	BD					
b	A. R. O. Address: TBD							
3	Company's Corporate or Partnership Relationship to any other Air Quality Permittee (List the names of any companies that have operating (20.2.70 NMAC) permits and with whom the applicant for this permit has a corporate or partnership relationship): N/A							
4	Name of Parent Company ("Parent Company" means the primary reprinted wholly or in part.): Hilcorp Energy Company	name of the organiza	ation that owns the company to be					
a	Address of Parent Company: 1111 Travis Street, Houston, Texas 77002							
5	Names of Subsidiary Companies ("Subsidiary Companies" means owned, wholly or in part, by the company to be permitted.): N/A	organizations, branc	hes, divisions or subsidiaries, which are					
6	Telephone numbers & names of the owners' agents and site contact	ts familiar with plan	nt operations: N/A					
7	Telephone numbers & names of the owners' agents and site contacts familiar with plant operations: N/A Affected Programs to include Other States, local air pollution control programs (i.e. Bernalillo) and Indian tribes: Will the property on which the facility is proposed to be constructed or operated be closer than 80 km (50 miles) from other states, local pollution control programs, and Indian tribes and pueblos (20.2.70.402.A.2 and 20.2.70.7.B)? If yes, state which ones and provide the distances in kilometers: Yes, Colorado (33.8 km), Navajo Reservation (1.6 km), Southern Ute Reservation (33.8 km), Jicarilla Apache Reservation (57.9 km), Ute Mountain Reservation (19.3 km)							

Section 1-I – Submittal Requirements

Each 20.2.73 NMAC (**NOI**), a 20.2.70 NMAC (**Title V**), a 20.2.72 NMAC (**NSR** minor source), or 20.2.74 NMAC (**PSD**) application package shall consist of the following:

Hard Copy Submittal Requirements:

- 1) One hard copy original signed and notarized application package printed double sided 'head-to-toe' 2-hole punched as we bind the document on top, not on the side; except Section 2 (landscape tables), which should be head-to-head. Please use numbered tab separators in the hard copy submittal(s) as this facilitates the review process. For NOI submittals only, hard copies of UA1, Tables 2A, 2D & 2F, Section 3 and the signed Certification Page are required. Please include a copy of the check on a separate page.
- 2) If the application is for a minor NSR, PSD, NNSR, or Title V application, include one working hard **copy** for Department use. This <u>copy</u> should be printed in book form, 3-hole punched, and <u>must be double sided</u>. Note that this is in addition to the head-to-to 2-hole punched copy required in 1) above. Minor NSR Technical Permit revisions (20.2.72.219.B NMAC) only need to fill out Sections 1-A, 1-B, 3, and should fill out those portions of other Section(s) relevant to the technical permit revision. TV Minor Modifications need only fill out Sections 1-A, 1-B, 1-H, 3, and those portions of other Section(s) relevant to the minor modification. NMED may require additional portions of the application to be submitted, as needed.
- The entire NOI or Permit application package, including the full modeling study, should be submitted electronically. Electronic files for applications for NOIs, any type of General Construction Permit (GCP), or technical revisions to NSRs must be submitted with compact disk (CD) or digital versatile disc (DVD). For these permit application submittals, two CD copies are required (in sleeves, not crystal cases, please), with additional CD copies as specified below. NOI applications require only a single CD submittal. Electronic files for other New Source Review (construction) permits/permit modifications or Title V permits/permit modifications can be submitted on CD/DVD or sent through AQB's secure file transfer service.

Electronic files sent by (check one):

☑ CD/DVD attached to paper application	
☐ secure electronic transfer. Air Permit Contact Name:_	
Email:_	
Phone number:	

- a. If the file transfer service is chosen by the applicant, after receipt of the application, the Bureau will email the applicant with instructions for submitting the electronic files through a secure file transfer service. Submission of the electronic files through the file transfer service needs to be completed within 3 business days after the invitation is received, so the applicant should ensure that the files are ready when sending the hard copy of the application. The applicant will not need a password to complete the transfer. **Do not use the file transfer service for NOIs, any type of GCP, or technical revisions to NSR permits.**
- 4) Optionally, the applicant may submit the files with the application on compact disk (CD) or digital versatile disc (DVD) following the instructions above and the instructions in 5 for applications subject to PSD review.
- 5) If **air dispersion modeling** is required by the application type, include the **NMED Modeling Waiver** and/or electronic air dispersion modeling report, input, and output files. The dispersion modeling **summary report only** should be submitted as hard copy(ies) unless otherwise indicated by the Bureau.
- 6) If the applicant submits the electronic files on CD and the application is subject to PSD review under 20.2.74 NMAC (PSD) or NNSR under 20.2.79 NMC include,
 - a. one additional CD copy for US EPA,
 - b. one additional CD copy for each federal land manager affected (NPS, USFS, FWS, USDI) and,
 - c. one additional CD copy for each affected regulatory agency other than the Air Quality Bureau.

If the application is submitted electronically through the secure file transfer service, these extra CDs do not need to be submitted.

Electronic Submittal Requirements [in addition to the required hard copy(ies)]:

- 1) All required electronic documents shall be submitted as 2 separate CDs or submitted through the AQB secure file transfer service. Submit a single PDF document of the entire application as submitted and the individual documents comprising the application.
- 2) The documents should also be submitted in Microsoft Office compatible file format (Word, Excel, etc.) allowing us to access the text and formulas in the documents (copy & paste). Any documents that cannot be submitted in a Microsoft Office compatible format shall be saved as a PDF file from within the electronic document that created the file. If you are unable to provide Microsoft office compatible electronic files or internally generated PDF files of files (items that were not created electronically:

- i.e. brochures, maps, graphics, etc.), submit these items in hard copy format. We must be able to review the formulas and inputs that calculated the emissions.
- 3) It is preferred that this application form be submitted as 4 electronic files (3 MSWord docs: Universal Application section 1 [UA1], Universal Application section 3-19 [UA3], and Universal Application 4, the modeling report [UA4]) and 1 Excel file of the tables (Universal Application section 2 [UA2]). Please include as many of the 3-19 Sections as practical in a single MS Word electronic document. Create separate electronic file(s) if a single file becomes too large or if portions must be saved in a file format other than MS Word.
- 4) The electronic file names shall be a maximum of 25 characters long (including spaces, if any). The format of the electronic Universal Application shall be in the format: "A-3423-FacilityName". The "A" distinguishes the file as an application submittal, as opposed to other documents the Department itself puts into the database. Thus, all electronic application submittals should begin with "A-". Modifications to existing facilities should use the core permit number (i.e. '3423') the Department assigned to the facility as the next 4 digits. Use 'XXXX' for new facility applications. The format of any separate electronic submittals (additional submittals such as non-Word attachments, re-submittals, application updates) and Section document shall be in the format: "A-3423-9-description", where "9" stands for the section # (in this case Section 9-Public Notice). Please refrain, as much as possible, from submitting any scanned documents as this file format is extremely large, which uses up too much storage capacity in our database. Please take the time to fill out the header information throughout all submittals as this will identify any loose pages, including the Application Date (date submitted) & Revision number (0 for original, 1, 2, etc.; which will help keep track of subsequent partial update(s) to the original submittal. Do not use special symbols (#, @, etc.) in file names. The footer information should not be modified by the applicant.

Table of Contents

Section 1: General Facility Information

Section 2: Tables

Section 3: Application Summary
Section 4: Process Flow Sheet

Section 5: Plot Plan Drawn to Scale

Section 6: All Calculations

Section 7: Information Used to Determine Emissions

Section 8: Map(s)

Section 9: Proof of Public Notice

Section 10: Written Description of the Routine Operations of the Facility

Section 11: Source Determination

Section 12: PSD Applicability Determination for All Sources & Special Requirements for a PSD Application

Section 13: Discussion Demonstrating Compliance with Each Applicable State & Federal Regulation

Section 14: Operational Plan to Mitigate Emissions

Section 15: Alternative Operating Scenarios

Section 16: Air Dispersion Modeling Section 17: Compliance Test History

Section 18: Addendum for Streamline Applications (streamline applications only)

Section 19: Requirements for the Title V (20.2.70 NMAC) Program (Title V applications only)

Section 20: Other Relevant Information

Section 21: Addendum for Landfill Applications

Section 22: Certification Page

Table 2-A: Regulated Emission Sources

Unit and stack numbering must correspond throughout the application package. If applying for a NOI under 20.2.73 NMAC, equipment exemptions under 2.72.202 NMAC do not apply.

Unit					Manufact- urer's Rated	Requested Permitted	Date of Manufacture ²	Controlled by Unit #	Source Classi-		RICE Ignition Type (CI, SI,	Replacing				
Number ¹	Source Description	Make	Model #	Serial #	Capacity ³ (Specify Units)	Capacity ³ (Specify Units)	Date of Construction/ Reconstruction ²	Emissions vented to Stack #	fication Code (SCC)	For Each Piece of Equipment, Check One	4SLB, 4SRB, 2SLB) ⁴	Unit No.				
1	Turbine	Solar	Saturn	OHA08-S0299	1 200 1	976 hp	06/08/1971	N/A	20200201	☑ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit	N/A	N/A				
1	Turbine	Solar	10-1001	(Skid Package # S401983)	1,200 hp	976 np	06/08/1971	1	20200201	□ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced	IN/A	IN/A				
2	Turbine	Solar	Saturn	OHA10-S1717 (Skid Package #	1,200 hp	976 hp	06/08/1971	N/A	20200201	☑ Existing (unchanged) ☐ To be Removed ☐ New/Additional ☐ Replacement Unit	N/A	N/A				
2	Turome	Solai	10-1001	S401984)	1,200 np	970 np	06/08/1971	2	20200201	☐ To Be Modified ☐ To be Replaced	IN/A	IN/A				
3	Turbine	Solar	Saturn	OHA08-S0335 (Skid Package #	1,200 hp	976 hp	07/19/1973	N/A	20200201	☑ Existing (unchanged) ☐ To be Removed ☐ New/Additional ☐ Replacement Unit	N/A	N/A				
3	Turome	Solai	10-1202	S428315)	1,200 lip	970 Hp	07/19/1973	3	20200201	☐ To Be Modified ☐ To be Replaced	IN/A	IN/A				
4	Turbine	Solar	Centaur	OHG17-C7439 (Skid Package #	3,961 hp	3,222 hp	1994	N/A	20200201	☑ Existing (unchanged) ☐ To be Removed ☐ New/Additional ☐ Replacement Unit	N/A	N/A				
4	Turome	Solai	40-4002	S3020212)	3,901 lip	3,222 np	05/10/1974	4	20200201	☐ To Be Modified ☐ To be Replaced	IN/A	IN/A				
5	Generator Engine	Detriot Diesel		4A0210278	200 hp	200 hp	11/1980	N/A	20200102	20200102	20200102	20200102	20200102	☑ Existing (unchanged) ☐ To be Removed ☐ New/Additional ☐ Replacement Unit	CI	N/A
3	Generator Engine	Detriot Diesei		4A0210276	200 np	200 np	11/1980	N/A					☐ To Be Modified ☐ To be Replaced	CI	IN/A	
SSM	SSM Blowdowns						1971	N/A	31000299	☐ Existing (unchanged) ☐ To be Removed ☐ New/Additional ☐ Replacement Unit	N/A	N/A				
SSIVI	SSIVI BIOWDOWIIS						1971	N/A	31000299	31000299	☑ To Be Modified ☐ To be Replaced	IN/A	IN/A			
F1	Equipment Leaks						1971	N/A	31000299	☑ Existing (unchanged) ☐ To be Removed ☐ New/Additional ☐ Replacement Unit	N/A	N/A				
1.1	Equipment Leaks						1971	N/A	31000299	☐ To Be Modified ☐ To be Replaced	IN/A	IN/A				
M1	Malfunctions						1971	N/A	31000299	☑ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit	N/A	N/A				
1711	Waltunctions						1971	N/A	31000299	☐ To Be Modified ☐ To be Replaced	IV/A	IV/A				
L1	Truck Loading						1995	N/A	31000299	☐ Existing (unchanged) ☐ To be Removed ☐ New/Additional ☐ Replacement Unit	N/A	N/A				
Li	(Condensate)						1995	N/A	31000277	☑ To Be Modified □ To be Replaced	IVA	14/74				
T4	Condensate Storage				21,000 gal	21 000 gal	05/19/1995	N/A	31000299	☐ Existing (unchanged) ☐ To be Removed ☐ New/Additional ☐ Replacement Unit	N/A	N/A				
17	Tank				21,000 gai	21,000 gai	05/19/1995	N/A	310002))	✓ To Be Modified □ To be Replaced	IVA	14/74				
T5	Condensate Storage				18,900 gal	18 900 gal	01/08/2001	N/A	31000299	☐ Existing (unchanged) ☐ To be Removed ☐ New/Additional ☐ Replacement Unit	N/A	N/A				
1.5	Tank				10,700 gai	10,700 gai	01/08/2001	N/A	31000279	☑ To Be Modified □ To be Replaced	1 1/12	1 1/ /1				
Т6	Produced Water				1,890 gal	1,890 gal		N/A	31000299	☑ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit	N/A	N/A				
10	Storage Tank				1,000 gui	1,000 gui		N/A	31000277	☐ To Be Modified ☐ To be Replaced	1 1/11	1 1/1 1				
T12	Produced Water				2,940 gal	2,940 gal		N/A	31000299	☑ Existing (unchanged) ☐ To be Removed ☐ New/Additional ☐ Replacement Unit	N/A	N/A				
112	Storage Tank				2,740 gai	2,740 gai		N/A	31000299	☐ To Be Modified ☐ To be Replaced	17/24	1 1/ 21				

¹ Unit numbers must correspond to unit numbers in the previous permit unless a complete cross reference table of all units in both permits is provided.

² Specify dates required to determine regulatory applicability.

³ To properly account for power conversion efficiencies, generator set rated capacity shall be reported as the rated capacity of the engine in horsepower, not the kilowatt capacity of the generator set.

⁴ "4SLB" means four stroke lean burn engine, "4SRB" means four stroke rich burn engine, "2SLB" means two stroke lean burn engine, "Cl" means compression ignition, and "Sl" means spark ignition

Table 2-B: Insignificant Activities (20.2.70 NMAC) **OR** Exempted Equipment (20.2.72 NMAC)

All 20.2.70 NMAC (Title V) applications must list all Insignificant Activities in this table. All 20.2.72 NMAC applications must list Exempted Equipment in this table. If equipment listed on this table is exempt under 20.2.72.202.B.5, include emissions calculations and emissions totals for 202.B.5 "similar functions" units, operations, and activities in Section 6, Calculations. Equipment and activities exempted under 20.2.72.202 NMAC may not necessarily be Insignificant under 20.2.70 NMAC (and vice versa). Unit & stack numbering must be consistent throughout the application package. Per Exemptions Policy 02-012.00 (see http://www.env.nm.gov/aqb/permit/aqb_pol.html), 20.2.72.202.B NMAC Exemptions do not apply, but 20.2.72.202.A NMAC exemptions do apply to NOI facilities under 20.2.73 NMAC. List 20.2.72.301.D.4 NMAC Auxiliary Equipment for Streamline applications in Table 2-A. The List of Insignificant Activities (for TV) can be found online at http://www.env.nm.gov/aqb/forms/InsignificantListTitleV.pdf. TV sources may elect to enter both TV Insignificant Activities and Part 72 Exemptions on this form.

Unit Number	Source Description	Manufacturer	Model No.	Max Capacity	List Specific 20.2.72.202 NMAC Exemption (e.g. 20.2.72.202.B.5)	Date of Manufacture /Reconstruction ²	For Each Piece of Equipment, Check Onc
	•		Serial No.	Capacity Units	Insignificant Activity citation (e.g. IA List Item #1.a)	Date of Installation /Construction ²	2.2
6	EVRU Separator Heater		SB20-14	0.51	20.2.72.202.B.5		
0	EVRO Separator Heater		1110-67 A	MMBtu/hr	#1a & #1b		☐ To Be Modified ☐ To be Replaced
7	Fuel Gas Heater			0.005	20.2.72.202.B.5		☑ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit
,	ruel Gas Heatel			MMBtu/hr	#1a & #1b		☐ To Be Modified ☐ To be Replaced
L2	Truck Loading (Produced				20.2.72.202.B.5		
LZ	Water)				#1a & #1b		☐ To Be Modified ☐ To be Replaced
PR	Pig Receiver				20.2.72.202.B.5		□ Existing (unchanged) □ To be Removed ■ New/Additional □ Replacement Unit
TK	rig Receiver				#1a & #1b		☐ To Be Modified ☐ To be Replaced
T1	Lubrication Oil Storage Tank			1000	20.2.72.202.B.2		☑ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit
11	Lubrication On Storage Talik			gal	#1a, #1b & #5		☐ To Be Modified ☐ To be Replaced
Т2	Used Oil Storage Tank			840	20.2.72.202.B.2		☑ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit
12	Osca On Storage Tank			gal	#1a, #1b & #5		☐ To Be Modified ☐ To be Replaced
Т3	Diesel Storage Tank			160	20.2.72.202.B.2		☑ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit
13	Diesei Storage Tank			gal	#1a, #1b & #5		☐ To Be Modified ☐ To be Replaced
Т7	Methanol Storage Tank			500	20.2.72.202.B.5		☑ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit
1 /	Wicthand Storage Talik			gal	#1a & #1b		☐ To Be Modified ☐ To be Replaced
Т8	Methanol Storage Tank			300	20.2.72.202.B.5		☑ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit
10	Wicthand Storage Talik			gal	#1a, #1b & #5		☐ To Be Modified ☐ To be Replaced
T10	Methanol Storage Tank			125	20.2.72.202.B.5		☑ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit
110	Wiemanor Storage Talik			gal	#1a, #1b & #5		☐ To Be Modified ☐ To be Replaced
T11	Methanol Storage Tank			65	20.2.72.202.B.5		☑ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit
111	wichianoi storage rank			gal	#1a, #1b & #5		☐ To Be Modified ☐ To be Replaced
							□ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit
							☐ To Be Modified ☐ To be Replaced

Insignificant activities exempted due to size or production rate are defined in 20.2.70.300.D.6, 20.2.70.7.Q NMAC, and the NMED/AQB List of Insignificant Activities, dated September 15, 2008. Emissions from these insignificant activities do not need to be reported, unless specifically requested.

Form Revision: 7/8/2011 Table 2-B: Page 1 Printed 9/17/2019 9:17 AM

² Specify date(s) required to determine regulatory applicability.

Table 2-C: Emissions Control Equipment

Unit and stack numbering must correspond throughout the application package. Only list control equipment for TAPs if the TAP's maximum uncontrolled emissions rate is over its respective threshold as listed in 20.2.72 NMAC, Subpart V, Tables A and B. In accordance with 20.2.72.203.A(3) and (8) NMAC, 20.2.70.300.D(5)(b) and (e) NMAC, and 20.2.73.200.B(7) NMAC, the permittee shall report all control devices and list each pollutant controlled by the control device regardless if the applicant takes credit for the reduction in emissions.

Control Equipment Unit No.	Control Equipment Description	Date Installed	Controlled Pollutant(s)	Controlling Emissions for Unit Number(s) ¹	Efficiency (% Control by Weight)	Method used to Estimate Efficiency
EVRU	3-Phase Separator & EVRU w/ 2-Stage Series Ejector System	2014	VOC & HAP	T-4 & T-5	25%	Design
VRU	Vapor Recovery System	TBD	VOC & HAP	T-4 & T-5	75%	Estimate

¹ List each control device on a separate line. For each control device, list all emission units controlled by the control device.

Form Revision: 5/3/2016 Table 2-A: Page 1 Printed 4/13/2020 6:08 PM

Table 2-D: Maximum Emissions (under normal operating conditions)

☐ This Table was intentionally left blank because it would be identical to Table 2-E.

Maximum Emissions are the emissions at maximum capacity and prior to (in the absence of) pollution control, emission-reducing process equipment, or any other emission reduction. Calculate the hourly emissions using the worst case hourly emissions for each pollutant. For each pollutant, calculate the annual emissions as if the facility were operating at maximum plant capacity without pollution controls for 8760 hours per year, unless otherwise approved by the Department. List Hazardous Air Pollutants (HAP) & Toxic Air Pollutants (TAPs) in Table 2-I. Unit & stack numbering must be consistent throughout the application package. Fill all cells in this table with the emission numbers or a "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expected. Numbers shall be expressed to at least 2 decimal points (e.g. 0.41, 1.41, or 1.41E-4).

Unit No.	NO	Ox	C	O	V	OC	SO	Ox	P	M^1	PM	[10 ¹	PM	2.5^{1}	Н	I_2S	Le	ead
Unit No.	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
1	3.30	14.30	3.50	15.10	1.00E-01	4.00E-01	3.67E-02	1.61E-01	7.12E-02	3.12E-01	7.12E-02	3.12E-01	7.12E-02	3.12E-01	-	-	-	-
2	3.30	14.30	3.50	15.10	1.00E-01	4.00E-01	3.67E-02	1.61E-01	7.12E-02	3.12E-01	7.12E-02	3.12E-01	7.12E-02	3.12E-01	-	-	-	-
3	3.30	14.30	3.50	15.10	1.00E-01	4.00E-01	3.67E-02	1.61E-01	7.12E-02	3.12E-01	7.12E-02	3.12E-01	7.12E-02	3.12E-01	-	-	-	-
4	16.70	73.00	4.20	18.60	5.30E-01	2.30	1.75E-01	7.65E-01	3.39E-01	1.49	3.39E-01	1.49	3.39E-01	1.49	-	-	2.28E-05	1.00E-04
SSM	-	-	-	-	unspecified	24.48	-	-	-	-	-	-	-	-	-	-	-	-
F1	-	-	-	-	1.14	5.00	-	-	-	-	-	-	-	-	-	-	-	-
M1	-	-	-	-	unspecified	10.00	-	-	-	-	-	-	-	-	-	-	-	-
L1	-	-	-	-	37.12	3.90	-	-	-	-	-	-	-	-	-	-	-	-
T4	-	-	1	-	unspecified	258.11	-	-	-	-	-	-	-	-	1	-	-	-
T5	-	-	-	-	unspecified	w/T4	-	-	-	-	-	-	-	-	-	-	-	-
T6	-	-	-	-	unspecified	1.97	-	-	-	-	-	-	-	-	-	-	-	-
T12	-	-	ı	-	unspecified	w/T6	-	-	-	-	-	-	-	-	-	-	-	-
L1 (AOS)	-	-	1	-	37.12	5.20	-	-	-	-	-	-	-	-	-	-	-	-
T4 (AOS)	-	-	1	_	unspecified	339.44	-	-	-	-	-	-	-	-	-	-	-	-
T5 (AOS)	-	-	-	-	unspecified	w/T4 (AOS)	-	-	-	-	-	-	-	-	-	-	-	-
T6 (AOS)	-	-	-	-	unspecified	2.62	-	-	-	-	-	-	-	-	-	-	-	-
T12 (AOS)	-	-	1	-	unspecified	w/T6 (AOS)	-	-	-	-	_	-	-	-	1	-	-	_
Totals #1	26.60	115.90	14.70	63.90	39.09	306.96	2.85E-01	1.25	5.53E-01	2.43	5.53E-01	2.43	5.53E-01	2.43	-	-	2.28E-05	1.00E-04
Totals #2	26.60	115.90	14.70	63.90	39.09	390.24	2.85E-01	1.25	5.53E-01	2.43	5.53E-01	2.43	5.53E-01	2.43	-	-	2.28E-05	1.00E-04

¹Condensable Particulate Matter: Include condensable particulate matter emissions for PM10 and PM2.5 if the source is a combustion source. Do not include condensable particulate matter for PM unless PM is set equal to PM10 and PM2.5. Particulate matter (PM) is not subject to an ambient air quality standard, but PM is a regulated air pollutant under PSD (20.2.74 NMAC) and Title V (20.2.70 NMAC).

Total #1 assumes operation with the existing EVRU (25% control efficiency) and a limit of 45,000 bbl of condensate per year.

Total #2 assumes operation with a new VRU (75% control efficiency) and a limit of 60,000 bbl of condensate per year (AOS).

Table 2-E: Requested Allowable Emissions

Unit & stack numbering must be consistent throughout the application package. Fill all cells in this table with the emission numbers or a "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expected. Numbers shall be expressed to at least 2 decimal points (e.g. 0.41, 1.41, or 1.41E⁻⁴).

Unit No.	N(Ox	C	0	VC	OC	SO	Ox	PI	M ¹	PM	110 ¹	PM	2.5 ¹	Н	I_2S	Le	ead
Unit No.	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
1	3.30	14.30	3.50	15.10	1.00E-01	4.00E-01	3.67E-02	1.61E-01	7.12E-02	3.12E-01	7.12E-02	3.12E-01	7.12E-02	3.12E-01	-	-	-	-
2	3.30	14.30	3.50	15.10	1.00E-01	4.00E-01	3.67E-02	1.61E-01	7.12E-02	3.12E-01	7.12E-02	3.12E-01	7.12E-02	3.12E-01	•	-	-	-
3	3.30	14.30	3.50	15.10	1.00E-01	4.00E-01	3.67E-02	1.61E-01	7.12E-02	3.12E-01	7.12E-02	3.12E-01	7.12E-02	3.12E-01	•	-	-	-
4	16.70	73.00	4.20	18.60	5.30E-01	2.30	1.75E-01	7.65E-01	3.39E-01	1.49	3.39E-01	1.49	3.39E-01	1.49	-	-	2.3E-05	1.0E-04
SSM	-	-	-	-	unspecified	24.48	-	-	-	-	-	-	-	-	-	-	-	-
F1	-	-	-	-	1.14	5.00	-	-	-	-	-	-	-	-	-	-	-	-
M1	-	-	-	-	unspecified	10.00	-	-	-	-	-	-	-	-	-	-	-	-
L1	-	-	-	-	37.12	3.90	-	-	-	-	-	-	-	-	-	-	-	-
T4	-	-	-	-	unspecified	193.60	-	-	-	-	-	-	-	-	-	-	-	-
T5	-	-	-	-	unspecified	w/T4	-	-	-	-	-	-	-	-	-	-	-	-
Т6	-	-	-	-	unspecified	1.97	-	-	-	-	-	-	-	-	-	-	-	-
T12	-	-	-	-	unspecified	w/T6	-	-	-	-	-	-	-	-	-	-	-	-
L1 (AOS)	-	-	-	-	37.12	5.20	-	-	-	-	-	-	-	-	-	-	-	-
T4 (AOS)	-	-	-	-	unspecified	84.86	-	-	-	-	-	-	-	-	-	-	-	-
T5 (AOS)	-	-	-	-	unspecified	w/T4 (AOS)	-	-	-	-	-	-	-	-	-	-	-	-
T6 (AOS)	-	-	-	-	unspecified	2.62	-	-	-	-	-	-	-	-	-	-	-	-
T12 (AOS)	-	-	-	-	unspecified	w/T6 (AOS)	-	-	-	-	-	-	-	-	-	-	-	-
Totals #1	26.60	115.90	14.70	63.90	39.09	242.45	2.85E-01	1.25	5.53E-01	2.43	5.53E-01	2.43	5.53E-01	2.43	-	-	2.28E-05	1.00E-04
Totals #2	26.60	115.90	14.70	63.90	39.09	135.66	2.85E-01	1.25	5.53E-01	2.43	5.53E-01	2.43	5.53E-01	2.43	-	-	2.28E-05	1.00E-04

Condensable Particulate Matter: Include condensable particulate matter emissions for PM10 and PM2.5 if the source is a combustion source. Do not include condensable particulate matter for PM unless PM is set equal to PM10 and PM2.5. Particulate matter (PM) is not subject to an ambient air quality standard, but it is a regulated air pollutant under PSD (20.2.74 NMAC) and Title V (20.2.70 NMAC).

Total #1 assumes operation with the existing EVRU (25% control efficiency) and a limit of 45,000 bbl of condensate per year.

Total #2 assumes operation with a new VRU (75% control efficiency) and a limit of 60,000 bbl of condensate per year (AOS).

Table 2-F: Additional Emissions during Startup, Shutdown, and Routine Maintenance (SSM)

□ This table is intentionally left blank since all emissions at this facility due to routine or predictable startup, shutdown, or scenduled maintenance are no higher than those listed in Table 2-E and a malfunction emission limit is not already permitted or requested. If you are required to report GHG emissions as described in Section 6a, include any GHG emissions during Startup, Shutdown, and/or Scheduled Maintenance (SSM) in Table 2-P. Provide an explanations of SSM emissions in Section 6 and 6a.

All applications for facilities that have emissions during routine our predictable startup, shutdown or scheduled maintenance (SSM)¹, including NOI applications, must include in this table the Maximum Emissions during routine or predictable startup, shutdown and scheduled maintenance (20.2.7 NMAC, 20.2.72.203.A.3 NMAC, 20.2.73.200.D.2 NMAC). In Section 6 and 6a, provide emissions calculations for all SSM emissions reported in this table. Refer to "Guidance for Submittal of Startup, Shutdown, Maintenance Emissions in Permit Applications (https://www.env.nm.gov/aqb/permit/aqb_pol.html) for more detailed instructions. Numbers shall be expressed to at least 2 decimal points (e.g. 0.41, 1.41, or 1.41E-4).

Unit No.	N	Ox	C	O	VC	OC	S	Ox	Pl	M^2	PM	110^2	PM	2.5^{2}	Н	2S	Le	ead
Unit No.	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2	-	-	-	-	-	-	-	-	1	-	-	-	-	-	-	-	-	-
3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SSM	-	-	-	-	unspecified	24.48	-	-	-	-	-	-	-	-	-	-	1	-
F1	-	-	-	-	-	-	-	-	1	-	-	-	1	-	-	-	-	-
M1	-	-	-	-	unspecified	10	-	-	-	-	-	-	-	-	-	-	-	-
L1	-	-	1	-	-	-	-	-	1	-	-	-	1	-	1	-	-	-
T4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
T5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Т6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
T12	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
L1 (AOS)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
T4 (AOS)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
T5 (AOS)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
T6 (AOS)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
T12 (AOS)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Totals	-	-	-	-	unspecified	34.48	-	-	-	-	-	-	-	-	-	-	-	-

¹ For instance, if the short term steady-state Table 2-E emissions are 5 lb/hr and the SSM rate is 12 lb/hr, enter 7 lb/hr in this table. If the annual steady-state Table 2-E emissions are 21.9 TPY, and the number of scheduled SSM events result in annual emissions of 31.9 TPY, enter 10.0 TPY in the table below.

Form Revision: 5/3/2016 Table 2-A: Page 1 Printed 4/13/2020 6:08 PM

² Condensable Particulate Matter: Include condensable particulate matter emissions for PM10 and PM2.5 if the source is a combustion source. Do not include condensable particulate matter for PM unless PM is set equal to PM10 and PM2.5. Particulate matter (PM) is not subject to an ambient air quality standard, but it is a regulated air pollutant under PSD (20.2.74 NMAC) and Title V (20.2.70 NMAC).

Table 2-G: Stack Exit and Fugitive Emission Rates for Special Stacks

☑ I have elected to leave this table blank because this facility does not have any stacks/vents that split emissions from a single source or combine emissions from more than one source listed in table 2-A. Additionally, the emission rates of all stacks match the Requested allowable emission rates stated in Table 2-E.

Use this table to list stack emissions (requested allowable) from split and combined stacks. List Toxic Air Pollutants (TAPs) and Hazardous Air Pollutants (HAPs) in Table 2-I. List all fugitives that are associated with the normal, routine, and non-emergency operation of the facility. Unit and stack numbering must correspond throughout the application package. Refer to Table 2-E for instructions on use of the "-" symbol and on significant figures.

	Serving Unit	N	Ox	C	0	V	OC	SO	Ox	P	M	PM	110	PM	12.5	□ H ₂ S or	r 🗆 Lead
Stack No.	Number(s) from Table 2-A	lb/hr	ton/yr	lb/hr	ton/yr												

Form Revision: 5/29/2019 Table 2-G: Page 1 Printed 9/17/2019 9:17 AM

Harvest Four Corners, LLC Chaco Compressor Station October 2019 / Revision 0

Table 2-H: Stack Exit Conditions

Unit and stack numbering must correspond throughout the application package. Include the stack exit conditions for each unit that emits from a stack, including blowdown venting parameters and tank emissions. If the facility has multiple operating scenarios, complete a separate Table 2-H for each scenario and, for each, type scenario name here:

Stack	Serving Unit Number(s)	Orientation (H-Horizontal	Rain Caps	Height Above	Temp.	Flow	Rate	Moisture by	Velocity	Inside
Number	from Table 2-A	V=Vertical)	(Yes or No)	Ground (ft)	(F)	(acfs)	(dscfs)	Volume (%)	(ft/sec)	Diameter (ft)
1	1	V	No	22	819	486			275	1.50
2	2	V	No	22	819	486			275	1.50
3	3	V	No	22	794	474			268	1.50
4	4	V	No	22	824	1379			281	2.50

Table 2-I: Stack Exit and Fugitive Emission Rates for HAPs and TAPs

In the table below, report the Potential to Emit for each HAP from each regulated emission unit listed in Table 2-A, only if the entire facility emits the HAP at a rate greater than or equal to one (1) ton per year For each such emission unit, HAPs shall be reported to the nearest 0.1 tpy. Each facility-wide Individual HAP total and the facility-wide Total HAPs shall be the sum of all HAP sources calculated to the nearest 0.1 ton per year. Per 20.2.72.403.A.1 NMAC, facilities not exempt [see 20.2.72.402.C NMAC] from TAP permitting shall report each TAP that has an uncontrolled emission rate in excess of its pounds per hour screening level specified in 20.2.72.502 NMAC. TAPs shall be reported using one more significant figure than the number of significant figures shown in the pound per hour threshold corresponding to the substance. Use the HAP nomenclature as it appears in Section 112 (b) of the 1990 CAAA and the TAP nomenclature as it listed in 20.2.72.502 NMAC. Include tank-flashing emissions estimates of HAPs in this table. For each HAP or TAP listed, fill all cells in this table with the emission numbers or a "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expected or the pollutant is emitted in a quantity less than the threshold amounts described above.

Stack No.	Unit No.(s)	Total	HAPs	Acetalo		Benz ☑ HAP o			dehyde or 🗆 TAP		exane or 🗆 TAP		uene or 🗆 TAP	Provide l Name		Provide l Name	Here	Name	Pollutant e Here or TAP
		lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
1	1	0.1	0.4	-	0.2	-	-	-	0.2	-	-	-	-						
2	2	0.1	0.4	-	0.2	-	-	-	0.2	-	-	-	-						
3	3	0.1	0.4	-	0.2	-	-	-	0.2	-	-	-	-						
4	4	0.3	1.3	0.1	0.5	-	-	0.1	0.5	-	-	-	-						
SSM	SSM	-	0.6	-	-	-	0.1	-	-	-	0.4	-	0.1						
F1	F1	ı	0.1	-	ı	-	-	1	ı	-	0.1	-	-						
M1	M1	ı	0.2	-	ı	-	-	-	ı	-	0.2	-	-						
L1	L1	3.6	0.4	-	-	0.2	-	-	-	3.1	0.3	0.3	-						
T4	T4	1	8.1	-	1	-	0.6	-	1	-	6.5	-	0.8						
T5	T5	-	7.3	-	-	-	0.6	-	-	-	5.8	-	0.7						
Т6	Т6	-	0.1	-	-	-	-	-	-	-	0.1	-	-						
T12	T12	-	0.2	-	-	-	-	-	-	-	0.1	-	-						
L1 (AOS)	L1 (AOS)	3.6	0.5	-	-	0.2	-	-	-	3.1	0.4	0.3	-						
T4 (AOS)	T4 (AOS)	-	3.5	-	-	-	0.3	-	-	-	2.8	-	0.3						
T5 (AOS)	T5 (AOS)	-	3.2	-	-	-	0.3	-	-	-	2.6	-	0.3						
T6 (AOS)	T6 (AOS)	-	0.2	-	-	-	-	-	-	-	0.1	-	-						
T12 (AOS)	T12 (AOS)	-	0.3	-	-	-	-	-	-	-	0.1	-	0.1						
Tota		4.2	19.5	0.2	1.0	0.2	1.4	0.2	1.0	3.1	13.6	0.3	1.7						
Tota	al #2	4.2	11.1	0.2	1.0	0.2	0.8	0.2	1.0	3.1	6.8	0.3	0.9						

Total #1 assumes operation with the existing EVRU (25% control efficiency) and a limit of 45,000 bbl of condensate per year.

Total #2 assumes operation with a new VRU (75% control efficiency) and a limit of 60,000 bbl of condensate per year (AOS).

Harvest Four Corners, LLC Chaco Compressor Station October 2019 / Revision 0

Table 2-J: Fuel

Specify fuel characteristics and usage. Unit and stack numbering must correspond throughout the application package.

	Fuel Type (low sulfur Diesel,	Fuel Source: purchased commercial,		Specia	fy Units		
Unit No.	ultra low sulfur diesel, Natural Gas, Coal,)	pipeline quality natural gas, residue gas, raw/field natural gas, process gas (e.g. SRU tail gas) or other	Lower Heating Value	Hourly Usage	Annual Usage	% Sulfur	% Ash
1	Natural Gas	Pipeline Quality Natural Gas	900 Btu/cf	11.99 Mscf	105.00 MMscf	Negligible	Negligible
2	Natural Gas	Pipeline Quality Natural Gas	900 Btu/cf	11.99 Mscf	105.00 MMscf	Negligible	Negligible
3	Natural Gas	Pipeline Quality Natural Gas	900 Btu/cf	11.99 Mscf	105.00 MMscf	Negligible	Negligible
4	Natural Gas	Pipeline Quality Natural Gas	900 Btu/cf	57.08 Mscf	500.00 MMscf	Negligible	Negligible
5	Low Sulfur Diesel	Purchased Commercial	137,000 Btu/gal	10.29 gal	5,146 gal	Negligible	Negligible

Table 2-K: Liquid Data for Tanks Listed in Table 2-L

For each tank, list the liquid(s) to be stored in each tank. If it is expected that a tank may store a variety of hydrocarbon liquids, enter "mixed hydrocarbons" in the Composition column for that tank and enter the corresponding data of the most volatile liquid to be stored in the tank. If tank is to be used for storage of different materials, list all the materials in the "All Calculations" attachment, run the newest version of TANKS on each, and use the material with the highest emission rate to determine maximum uncontrolled and requested allowable emissions rate. The permit will specify the most volatile category of liquids that may be stored in each tank. Include appropriate tank-flashing modeling input data. Use additional sheets if necessary. Unit and stack numbering must correspond throughout the application package.

					Vapor	Average Stora	age Conditions	Max Storag	e Conditions
Tank No.	SCC Code	Material Name	Composition	Liquid Density (lb/gal)	Molecular Weight (lb/lb*mol)	Temperature (°F)	True Vapor Pressure (psia)	Temperature (°F)	True Vapor Pressure (psia)
T1	31000299	Lubrication Oil	Lubrication Oil	Exempt Sou	rce				
T2	31000299	Used Lubrication Oil	Used Lubrication Oil	Exempt Sou	rce				
Т3	31000299	Diesel	Diesel	Exempt Sou	rce				
T4	31000299	Condensate	Condensate	5.82	65.64	64.94	4.41	76.64	5.52
T5	31000299	Condensate	Condensate	5.82	65.64	64.94	4.41	76.64	5.52
Т6	31000299	Produced Water	H2O & Trace Hydrocarbons	8.3	18.02	70	0.3619	*	*
T7	31000299	Methanol	Methanol	Exempt Sou	rce				
Т8	31000299	Methanol	Methanol	Exempt Sou	rce				
T10	31000299	Methanol	Methanol	Exempt Sou	rce				
T11	31000299	Methanol	Methanol	Exempt Sou	rce				
T12	31000299	Produced Water	H2O & Trace Hydrocarbons	8.3	18.02	70	0.3619	*	*
T4 (AOS)	31000299	Condensate	Condensate	5.82	66.36	64.94	4.03	76.64	5.08
T5 (AOS)	31000299	Condensate	Condensate	5.82	66.36	64.94	4.03	76.64	5.08
T6 (AOS)	31000299	Produced Water	H2O & Trace Hydrocarbons	8.3	18.02	70	0.3619	*	*
T12 (AOS)	31000299	Produced Water	H2O & Trace Hydrocarbons	8.3	18.02	70	0.3619	*	*
								* Information is	not available.

Form Revision: 5/3/2016 Table 2-A: Page 1 Printed 4/13/2020 6:08 PM

Harvest Four Corners, LLC Chaco Compressor Station October 2019 / Rev. 1 Apr 2020

Table 2-L: Tank Data

Include appropriate tank-flashing modeling input data. Use an addendum to this table for unlisted data categories. Unit and stack numbering must correspond throughout the application package. Use additional sheets if necessary. See reference Table 2-L2. Note: 1.00 bbl = 10.159 M3 = 42.0 gal

Tank No.	Date Installed	Materials Stored	Seal Type (refer to Table 2-	Roof Type (refer to Table 2-LR below)	Cap	acity	Diameter (M)	Vapor Space		blor ble VI-C)	Paint Condition (from Table VI-	Annual Throughput	Turn- overs
			LR below)	LK below)	(bbl)	(M^3)	` ′	(M)	Roof	Shell	C)	(gal/yr)	(per year)
T1		Lubrication Oil		FX	24		Exempt Source	e					
T2		Used Lubrication Oil		FX	20		Exempt Source	e					
Т3		Diesel		FX	4		Exempt Source	e					
T4	05/19/95	Condensate		FX	500		4.57	9.53	LG	LG	Good	994,737	50.17
T5	01/08/01	Condensate		FX	450		4.57	9.53	LG	LG	Good	895,263	48.37
T6		Produced Water		Open top	45		*	*	*	*	*	246,540	130.45
T7		Methanol		FX	12		Exempt Source	e					
Т8		Methanol		FX	7		Exempt Source	e					
T10		Methanol		FX	3		Exempt Source	e					
T11		Methanol		FX	2		Exempt Source	e					
T12		Produced Water		Open top	70		*	*	*	*	*	383,460	130.43
T4 (AOS)	05/19/95	Condensate		FX	500		4.57	9.03	LG	LG	Good	1,326,316	66.89
T5 (AOS)	01/08/01	Condensate		FX	450		4.57	9.03	LG	LG	Good	1,193,684	64.50
T6 (AOS)		Produced Water		Open top	45		*	*	*	*	*	328,734	174.00
T12 (AOS)		Produced Water		Open top	70		*	*	*	*	*	511,266	174.00
							* Information	is not applical	ble or is not	available fro	om the calcula	tions.	

Table 2-L2: Liquid Storage Tank Data Codes Reference Table

	_ *****	e = ==e = = = = = = = = = = = = = = = =				
Roof Type	Seal Type, W	elded Tank Seal Type	Seal Type, Rive	eted Tank Seal Type	Roof, Shell Color	Paint Condition
FX: Fixed Roof	Mechanical Shoe Seal	Liquid-mounted resilient seal	Vapor-mounted resilient seal	Seal Type	WH: White	Good
IF: Internal Floating Roof	A: Primary only	A: Primary only	A: Primary only	A: Mechanical shoe, primary only	AS: Aluminum (specular)	Poor
EF: External Floating Roof	B: Shoe-mounted secondary	B: Weather shield	B: Weather shield	B: Shoe-mounted secondary	AD: Aluminum (diffuse)	
P: Pressure	C: Rim-mounted secondary	C: Rim-mounted secondary	C: Rim-mounted secondary	C: Rim-mounted secondary	LG: Light Gray	
					MG: Medium Gray	
Note: $1.00 \text{ bbl} = 0.159 \text{ N}$	$M^3 = 42.0 \text{ gal}$				BL: Black	
					OT: Other (specify)	

Table 2-M: Materials Processed and Produced (Use additional sheets as necessary.)

		al Processed	Material Produced							
Description	Chemical Composition	Phase (Gas, Liquid, or Solid)	Quantity (specify units)	Description	Chemical Composition	Phase	Quantity (specify units)			
Low pressure natural gas	C1-C6+	Gas	47,450 MMcf/yr	High pressure natural gas	C1-C6+	Gas	47,450 MMcf/yr			
The station capacity is a dire	ect function of available horse	power. The throughput is therefor	ore dependent on atmospheric te	emperature and pressure, gas temp	perature and pressure, re	lative humic	lity			
and gas quality, was well as	other factors. The "throughp	ut" expressed above is a nominal	quantity (with a 15 percent safe	ety factor), neither an absolute ma	aximum, nor an average.	Actual thre	oughput			
will vary from the nominal a	amount.									

Harvest Four Corners, LLC Chaco Compressor Station October 2019 / Revision 0

Table 2-N: CEM Equipment

Enter Continuous Emissions Measurement (CEM) Data in this table. If CEM data will be used as part of a federally enforceable permit condition, or used to satisfy the requirements of a state or federal regulation, include a copy of the CEM's manufacturer specification sheet in the Information Used to Determine Emissions attachment. Unit and stack numbering must correspond throughout the application package. Use additional sheets if necessary.

Stack No.	Pollutant(s)	Manufacturer	Model No.	Serial No.	Sample Frequency	Averaging Time	Range	Sensitivity	Accuracy
N/A									

Form Revision: 7/8/2011 Table 2-N: Page 1 Printed 9/17/2019 9:17 AM

Table 2-O: Parametric Emissions Measurement Equipment

Unit and stack numbering must correspond throughout the application package. Use additional sheets if necessary.

Unit No.	Parameter/Pollutant Measured	Location of Measurement	Unit of Measure	Acceptable Range	Frequency of Maintenance	Nature of Maintenance	Method of Recording	Averaging Time
N/A								

Table 2-P: Greenhouse Gas Emissions

Applications submitted under 20.2.70, 20.2.72, & 20.2.74 NMAC are required to complete this Table. Power plants, Title V major sources, and PSD major sources must report and calculate all GHG emissions for each unit. Applicants must report potential emission rates in short tons per year (see Section 6.a for assistance). Include GHG emissions during Startup, Shutdown, and Scheduled Maintenance in this table. For minor source facilities that are not power plants, are not Title V, or are not PSD, there are three options for reporting GHGs 1) report GHGs for each individual piece of equipment; 2) report all GHGs from a group of unit types, for example report all combustion source GHGs as a single unit and all venting GHG as a second separate unit; OR 3) check the following box \Box By checking this box, the applicant acknowledges the total CO2e emissions are less than 75,000 tons per year.

		CO ₂ ton/yr	N ₂ O ton/yr	CH ₄ ton/yr	SF ₆ ton/yr	PFC/HFC ton/yr²					Total GHG Mass Basis ton/yr ⁴	Total CO ₂ e ton/yr ⁵
Unit No.	GWPs 1	1	298	25	22,800	footnote 3						
1	mass GHG	7,555.67	1.42E-02	1.42E-01							7,555.83	-
1	CO ₂ e	7,555.67	4.24	3.56							-	7,563.48
2	mass GHG	7,555.67	1.42E-02	1.42E-01							7,555.83	-
2	CO ₂ e	7,555.67	4.24	3.56							-	7,563.48
3	mass GHG	7,555.67	1.42E-02	1.42E-01							7,555.83	-
3	CO ₂ e	7,555.67	4.24	3.56							-	7,563.48
4	mass GHG	20,508.26	3.87E-02	3.87E-01							20,508.68	-
7	CO ₂ e	20,508.26	11.52	9.66							-	20,529.44
5	mass GHG	63.73	5.17E-04	2.59E-03							63.73	-
3	CO ₂ e	63.73	1.54E-01	6.46E-02							-	63.95
6	mass GHG	289.73	5.46E-04	5.46E-03							289.73	-
0	CO ₂ e	289.73	1.63E-01	1.37E-01							-	290.03
7	mass GHG	2.84	5.35E-06	5.35E-05							2.84	-
/	CO ₂ e	2.84	1.60E-03	1.34E-03							-	2.84
SSM	mass GHG	44.27	-	703.55							747.82	-
SSIVI	CO ₂ e	44.27	-	17,588.75							-	17,633.02
PR	mass GHG	1.39E-01	-	2.21							2.35	-
TK	CO ₂ e	1.39E-01	-	55.26							-	55.40
F1	mass GHG	1.38	-	21.84							23.21	-
Г1	CO ₂ e	1.38	-	545.95							-	547.32
M1	mass GHG	3.14	-	49.81							52.95	-
IVI I	CO ₂ e	3.14	-	1,245.29							-	1,248.42
L1	mass GHG	-	-	-							-	-
LI	CO ₂ e	-	-	-							-	-
T4	mass GHG	2.65	-	10.26							12.91	-
14	CO ₂ e	2.65	-	256.52							-	259.16
T5	mass GHG	2.38	-	9.23							11.62	-
13	CO ₂ e	2.38	-	230.87							-	233.25
Т6	mass GHG	-	-	-							-	-
10	CO ₂ e	-	-	-							-	-

Form Revision: 5/3/2016 Table 2-A: Page 1 Printed 4/13/2020 6:08 PM

Table 2-P: Greenhouse Gas Emissions

Applications submitted under 20.2.70, 20.2.72, & 20.2.74 NMAC are required to complete this Table. Power plants, Title V major sources, and PSD major sources must report and calculate all GHG emissions for each unit. Applicants must report potential emission rates in short tons per year (see Section 6.a for assistance). Include GHG emissions during Startup, Shutdown, and Scheduled Maintenance in this table. For minor source facilities that are not power plants, are not Title V, or are not PSD, there are three options for reporting GHGs 1) report GHGs for each individual piece of equipment; 2) report all GHGs from a group of unit types, for example report all combustion source GHGs as a single unit and all venting GHG as a second separate unit; OR 3) check the following box \Box By checking this box, the applicant acknowledges the total CO2e emissions are less than 75,000 tons per year.

		CO ₂ ton/yr	N ₂ O ton/yr	CH ₄ ton/yr	SF ₆ ton/yr	PFC/HFC ton/yr²					Total GHG Mass Basis ton/yr ⁴	Total CO ₂ e ton/yr ⁵
Unit No.	GWPs 1	1	298	25	22,800	footnote 3						
T12	mass GHG	-	-	-							-	-
112	CO ₂ e	-	1	-							-	-
	mass GHG											
	CO ₂ e											
L1	mass GHG	-	-	-							-	-
(AOS)	CO ₂ e	-	-	-							-	-
T4	mass GHG	1.17	-	4.54							5.71	-
(AOS)	CO ₂ e	1.17	-	113.49							-	114.66
T5	mass GHG	1.05	-	4.09							5.14	-
(AOS)	CO ₂ e	1.05	-	102.14							-	103.19
T6	mass GHG	-	-	-							-	-
(AOS)	CO ₂ e	-	-	-							-	-
T12	mass GHG	-	-	-							-	-
(AOS)	CO ₂ e	-	-	-							-	-
	mass GHG											
	CO ₂ e											
Total #1		43,585.52		797.73							44,383.33	-
	CO ₂ e	43,585.52	24.57	19,943.17							-	63,553.26
Total #2		43,582.72	8.24E-02	786.86							44,369.66	-
	CO ₂ e	43,582.72	24.57	19,671.41		d in Table A 1 of 4					-	63,278.70

¹ GWP (Global Warming Potential): Applicants must use the most current GWPs codified in Table A-1 of 40 CFR part 98. GWPs are subject to change, therefore, applicants need to check 40 CFR 98 to confirm GWP values.

² For HFCs or PFCs describe the specific HFC or PFC compound and use a separate column for each individual compound.


³ For each new compound, enter the appropriate GWP for each HFC or PFC compound from Table A-1 in 40 CFR 98.

⁴ Green house gas emissions on a **mass basis** is the ton per year green house gas emission before adjustment with its GWP.

⁵ CO₂e means Carbon Dioxide Equivalent and is calculated by multiplying the TPY mass emissions of the green house gas by its GWP.

Total #1 assumes operation with the existing EVRU (25% control efficiency) and a limit of 45,000 bbl of condensate per year.

Total #2 assumes operation with a new VRU (75% control efficiency) and a limit of 60,000 bbl of condensate per year (AOS).

Section 3

Application Summary

The Application Summary shall include a brief description of the facility and its process, the type of permit application, the

applicable regulation (i.e. 20.2.72.200.A.X, or 20.2.73 NMAC) under which the application is being submitted, and any air quality permit numbers associated with this site. If this facility is to be collocated with another facility, provide details of the other facility including permit number(s). In case of a revision or modification to a facility, provide the lowest level regulatory citation (i.e. 20.2.72.219.B.1.d NMAC) under which the revision or modification is being requested. Also describe the proposed changes from the original permit, how the proposed modification will affect the facility's operations and emissions, de-bottlenecking impacts, and changes to the facility's major/minor status (both PSD & Title V).

The **Process Summary** shall include a brief description of the facility and its processes.

Startup, Shutdown, and Maintenance (SSM) routine or predictable emissions: Provide an overview of how SSM emissions are accounted for in this application. Refer to "Guidance for Submittal of Startup, Shutdown, Maintenance Emissions in Permit Applications (http://www.env.nm.gov/aqb/permit/app form.html) for more detailed instructions on SSM emissions.

The HFC Chaco Compressor Station currently operates under a construction permit issued by the NMAQB, 0759-M6, dated October 12, 2018 and a Title V operating permit, P236-R2, dated August 19, 2016.

The facility is currently approved by the Title V operating permit to operate the following equipment/sources:

- Two Solar Saturn 10-1001 natural gas-fired turbines (Units 1 & 2);
- One Solar Saturn 10-1202 natural gas-fired turbine (Unit 3);
- One Solar Centaur 40-4002 natural gas-fired turbine (Unit 4);
- One Detroit Diesel standby generator (Unit 5), an exempt source;
- Truck loading emissions (Unit L1);
- SSM emissions from the turbines, compressors and piping associated with the station (Units 1a-4a);
- Malfunction emissions (Unit M1);
- One 500 bbl condensate storage tank (Unit T4);
- One 450 bbl condensate storage tank (Unit T5);
- One 45 bbl produced water storage tank (Unit T6); and
- One 70 bbl produced water storage tank (Unit T12).

The station is also equipped with two heaters (Units 6 & 7) and miscellaneous liquid storage tanks (Units T1-T3, T7, T8, T10 & T11). The heaters and miscellaneous storage tanks are exempt sources. The truck loading of produced water is also an exempt activity.

This application is being submitted to renew the Title V operating permit. The following changes, as approved in the most recent construction permit, are included:

- Increase the permitted annual throughput and emissions limits for the condensate storage tanks (Units T4 & T5);
- Increase the permitted annual throughput and emissions limits for condensate truck loading (Unit L1);
- Add one existing pig receiver (Unit PR), an exempt source;
- Identify SSM emissions as Unit "SSM", rather than Unit "1a-4a"; and
- Increase SSM emissions (Unit SSM) to allow for a richer gas stream.

Note that though the standby generator (Unit 5) is an <u>exempt</u> source for the purpose of the construction permit (it operates less than 500 hours per year and only during the loss of commercial utility power), it is a <u>significant</u> source for the purpose of the Title V permit (there are applicable NMAC and Subpart ZZZZ requirements). Therefore, in this Title V application, Unit 5 is included in Table 2-A, rather than Table 2-B. As there are no emission limits for the generator in the construction permit, Unit 5 is not included in any of the other tables, except Table 2-I. The generator is included in Table 2-I, because the instructions above that table specifically state all sources listed in Table 2-A must be included.

This application is being submitted to renew the Title V operating permit. The applicable regulation is 20.2.70 NMAC. The lowest level regulatory citation is 20.2.70.300.B(2) NMAC.

There are no modifications to de-bottleneck impacts or change the facility's major/minor status (both prevention of significant deterioration [PSD] & Title V).

Startup, Shutdown and Maintenance Emissions

For the turbine combustion emissions, equipment leaks (valves, connectors, seals, etc.), truck loading, malfunctions, and storage tanks, it is concluded there are no SSM emissions in excess of those identified for steady-state operation as seen in Section 2, Table 2-E. Discussions justifying this conclusion are provided in Section 6.

Blowdown SSM emissions from turbines, compressors and piping associated with the plant are calculated from the quantity of gas vented during each event, the composition of the gas, and the number of events.

REVISION 1 (April 2020)

HFC is amending this application to add an alternative operating scenario (AOS) included in the most recent NSR permit, but inadvertently left out of this Title V application.

The base scenario in this application includes the request above for an increase in the allowable condensate throughput to Tanks T4 and T5 (to 45,000 bbl per year [bbl/yr]). Under this scenario, the hydrocarbon vapors from the condensate system will continue to be controlled by the existing 3-phase separator and Ejector Vapor Recovery Unit (EVRU).

Because of the regional increase in natural gas development, HFC is also permitting an AOS that would further allow for the throughput of an additional 15,000 barrels of condensate per year (for a total of 60,000 barrels per year). To offset the additional increase in flash and working & breathing emissions, HFC would replace the existing EVRU with a more efficient Vapor Recovery Unit (VRU). Note that the existing EVRU is currently permitted for a vapor recovery efficiency of only 25%. Contemporary VRU systems can typically recover 95% or more of the flash and working & breathing vapors from a condensate system.

If HFC makes the decision to increase condensate throughput to above 45,000 bbl per year, they will replace the EVRU with a more efficient VRU. This application is being prepared using data for a Twin Stars 10 HP 7D/8D VRUE, documentation is attached. It is important to note, however, that the replacement VRU system has not yet been selected. HFC may opt for a different system.

To allow for flexibility in the selection process, at the same time ensuring facility PTE emissions remain below the PSD threshold, emissions in this application are conservatively calculated assuming the new VRU will have a vapor recovery efficiency of 75%. As noted above, this is well below the efficiency available from contemporary units. HFC will ensure the new VRU meets this efficiency. Note that even with a recovery rate as low as 75%, implementation of the AOS will decrease both potential and actual VOC and HAP emissions.

With the increase in condensate throughput, there will be additional produced water. Emissions from the following sources will be impacted by the AOS:

- Truck Loading (Condensate);
- Truck Loading (Produced Water);
- Condensate Storage Tanks (flash and working/breathing losses); and
- Produced Water Storage Tanks (working/breathing losses).

The truck loading of produced water will continue to be an exempt and insignificant source. HFC does not anticipate an increase in the pigging frequency as a result of the increase in condensate throughput. Although the volume of liquids will increase per event, the fixed vapor volume in the receiver trap will remain unchanged, meaning there will be no change in the volume of vapors released per event.

HFC has requested the proposed VRU system be treated as an emission control system rather than a product recovery system. In the future, an economic analysis might be prepared to determine the cost-effectiveness of this alternative operation.

The pages affected by this revision are as follows:

Cover Page – Modified to indicate the application has been revised.

Section1 (page 1) – Modified page to indicate this is an update to an application currently under NMED review;

Table 2-A – Switched the position of the malfunction and truck loading sources so they were consistent with the order used in the emission tables.

Table 2-C – Identified the EVRU and VRU as control equipment.

Table 2-D – Added uncontrolled emissions for the alternative operating scenario. Also identified facility emission totals for each operating scenario.

Table 2-E – Added controlled emissions for the alternative operating scenario. Also identified facility emission totals for each operating scenario.

Table 2-F – Added alternative operating scenario to the table.

Table 2-I – Added HAP emissions for the alternative operating scenario. Also identified facility emission totals for each operating scenario.

Table 2-K – Added tank data for the alternative operating scenario.

Table 2-L – Added tank data for the alternative operating scenario.

Table 2-P – Added GHG emissions for the alternative operating scenario. Also identified facility emission totals for each operating scenario.

Section 3 (pages 2-4) – Added a description of the revision to the application.

Section 6 (pages 3, 4 & 6) – Modified the truck loading and storage tank writeups to include the AOS.

Section 6 – Added a second set of calculation pages for the sources affected by the alternative operating scenario. The sources include condensate truck loading (Unit L1 (AOS)), produced water truck loading (L2 (AOS)), two condensate storage tanks (Units T4 (AOS) & T5 (AOS)), two produced water storage tanks (Units T6 (AOS) & T12 (AOS)). Working/breathing losses from the condensate tanks were calculated using TANKS 4. Flash emissions from the condensate tanks were calculated using ProMax 4.

Section 6 – GHG spreadsheet has been updated to identify AOS emissions.

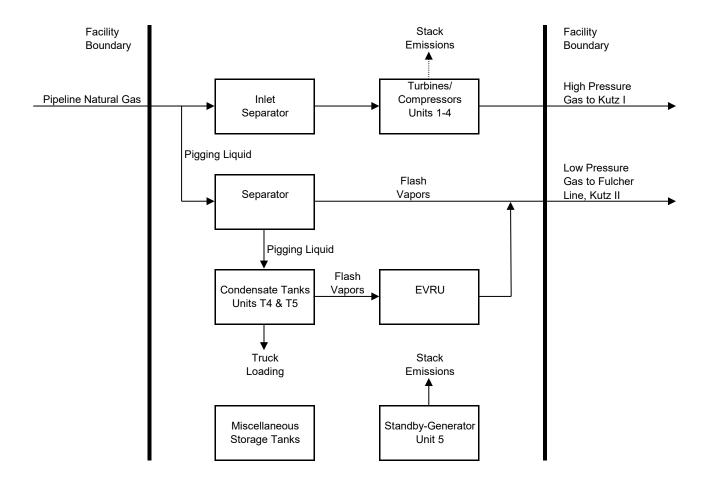
Section 7 – Added documentation for the Twin Stars VRU.

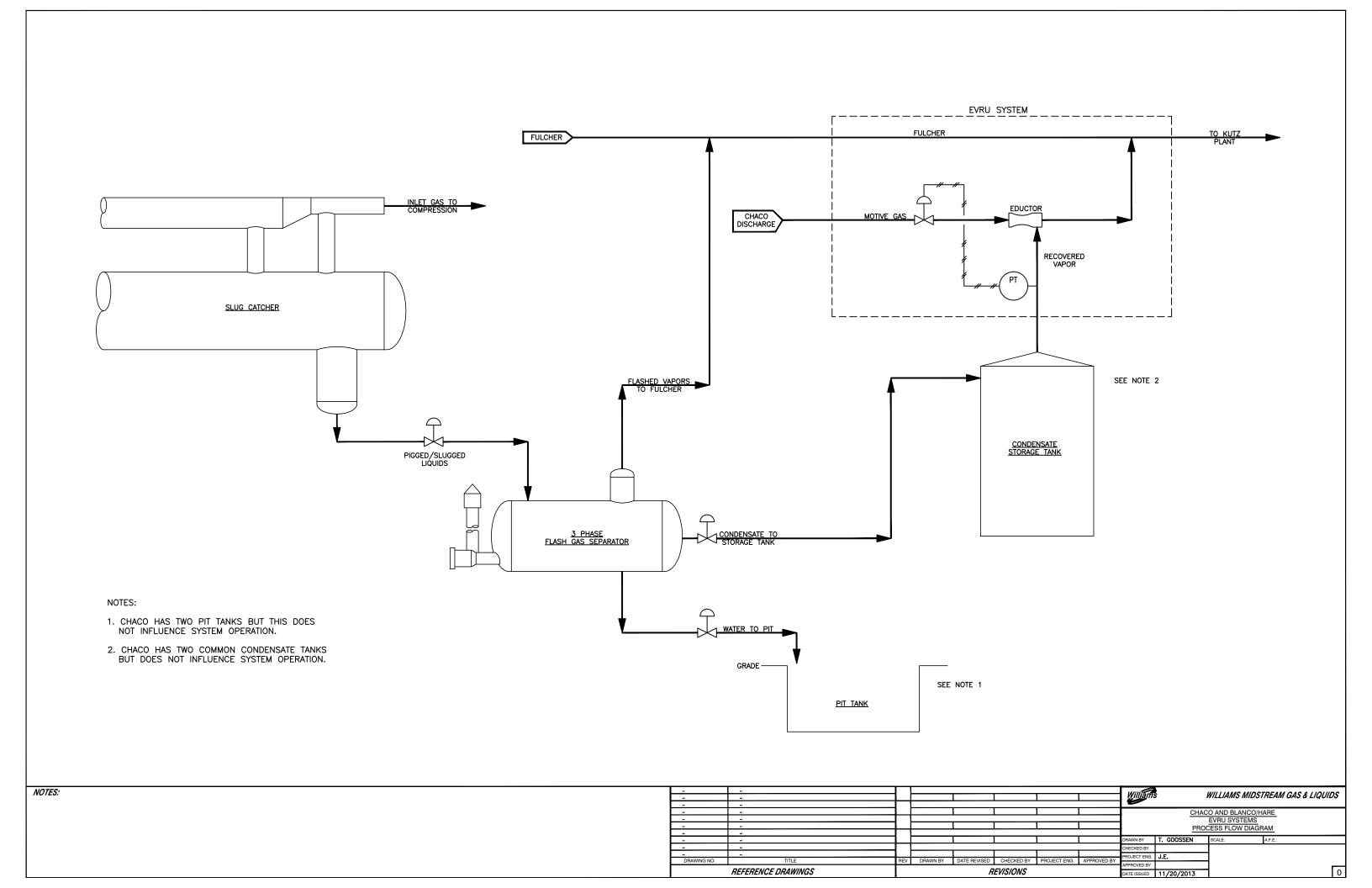
Section 10 – The Written Description of Routine Operations of the Facility has been updated to include the AOS.

Section 15 – Modified the section to include a reference to the AOS.

Change pages are provided.

Section 4

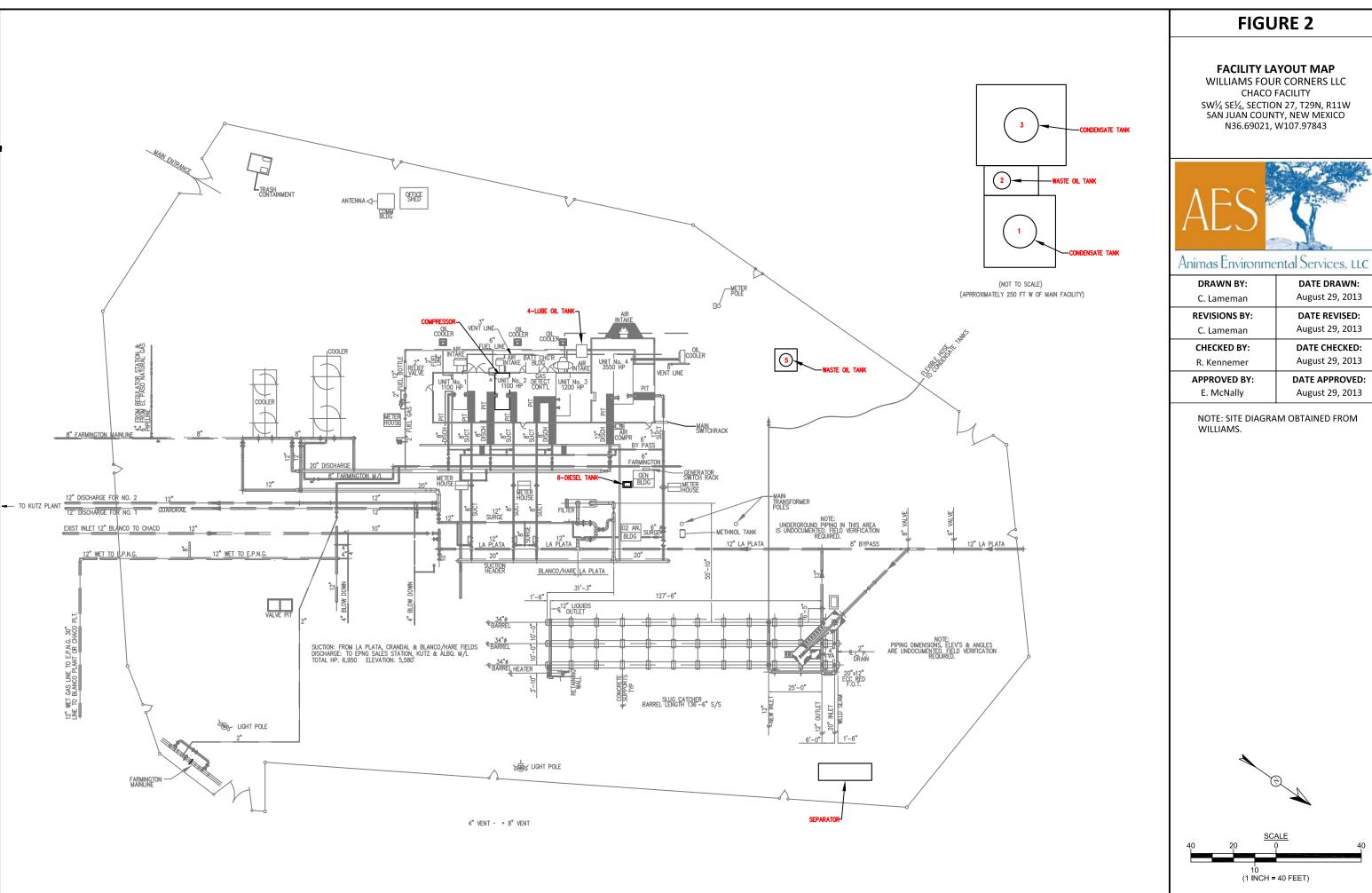

Process Flow Sheet


A **process flow sheet** and/or block diagram indicating the individual equipment, all emission points and types of control applied to those points. The unit numbering system should be consistent throughout this application.



A process flow diagram is provided in this section. A detailed flow diagram showing operation of the EVRU is also included. Please see the following pages.

Flow Diagram

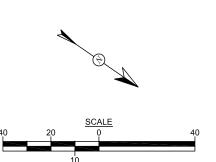

Section 5

Plot Plan Drawn To Scale

A <u>plot plan drawn to scale</u> showing emissions points, roads, structures, tanks, and fences of property owned, leased, or under direct control of the applicant. This plot plan must clearly designate the restricted area as defined in UA1, Section 1-D.12. The unit numbering system should be consistent throughout this application.

A plot plan is provided in this section. Please see the following page.

FIGURE 2


FACILITY LAYOUT MAP

CHACO FACILITY SW¹/₄ SE¹/₄, SECTION 27, T29N, R11W SAN JUAN COUNTY, NEW MEXICO N36.69021, W107.97843

DRAWN BY:	DATE DRAWN:
C. Lameman	August 29, 2013
REVISIONS BY:	DATE REVISED:
C. Lameman	August 29, 2013
CHECKED BY:	DATE CHECKED:
R. Kennemer	August 29, 2013
APPROVED BY:	DATE APPROVED:
E. McNally	August 29, 2013

NOTE: SITE DIAGRAM OBTAINED FROM

Section 6

All Calculations

Show all calculations used to determine both the hourly and annual controlled and uncontrolled emission rates. All calculations shall be performed keeping a minimum of three significant figures. Document the source of each emission factor used (if an emission rate is carried forward and not revised, then a statement to that effect is required). If identical units are being permitted and will be subject to the same operating conditions, submit calculations for only one unit and a note specifying what other units to which the calculations apply. All formulas and calculations used to calculate emissions must be submitted. The "Calculations" tab in the UA2 has been provided to allow calculations to be linked to the emissions tables. Add additional "Calc" tabs as needed. If the UA2 or other spread sheets are used, all calculation spread sheet(s) shall be submitted electronically in Microsoft Excel compatible format so that formulas and input values can be checked. Format all spread sheets and calculations such that the reviewer can follow the logic and verify the input values. Define all variables. If calculation spread sheets are not used, provide the original formulas with defined variables. Additionally, provide subsequent formulas showing the input values for each variable in the formula. All calculations, including those calculations are imbedded in the Calc tab of the UA2 portion of the application, the printed Calc tab(s), should be submitted under this section.

Tank Flashing Calculations: The information provided to the AQB shall include a discussion of the method used to estimate tank-flashing emissions, relative thresholds (i.e., NOI, permit, or major source (NSPS, PSD or Title V)), accuracy of the model, the input and output from simulation models and software, all calculations, documentation of any assumptions used, descriptions of sampling methods and conditions, copies of any lab sample analysis. If Hysis is used, all relevant input parameters shall be reported, including separator pressure, gas throughput, and all other relevant parameters necessary for flashing calculation.

SSM Calculations: It is the applicant's responsibility to provide an estimate of SSM emissions or to provide justification for not doing so. In this Section, provide emissions calculations for Startup, Shutdown, and Routine Maintenance (SSM) emissions listed in the Section 2 SSM and/or Section 22 GHG Tables and the rational for why the others are reported as zero (or left blank in the SSM/GHG Tables). Refer to "Guidance for Submittal of Startup, Shutdown, Maintenance Emissions in Permit Applications (http://www.env.nm.gov/aqb/permit/app_form.html) for more detailed instructions on calculating SSM emissions. If SSM emissions are greater than those reported in the Section 2, Requested Allowables Table, modeling may be required to ensure compliance with the standards whether the application is NSR or Title V. Refer to the Modeling Section of this application for more guidance on modeling requirements.

Glycol Dehydrator Calculations: The information provided to the AQB shall include the manufacturer's maximum design recirculation rate for the glycol pump. If GRI-Glycalc is used, the full input summary report shall be included as well as a copy of the gas analysis that was used.

Road Calculations: Calculate fugitive particulate emissions and enter haul road fugitives in Tables 2-A, 2-D and 2-E for:

- 1. If you transport raw material, process material and/or product into or out of or within the facility and have PER emissions greater than 0.5 tpy.
- 2. If you transport raw material, process material and/or product into or out of the facility more frequently than one round trip per day.

Significant Figures:

A. All emissions standards are deemed to have at least two significant figures, but not more than three significant figures.

- **B.** At least 5 significant figures shall be retained in all intermediate calculations.
- C. In calculating emissions to determine compliance with an emission standard, the following rounding off procedures shall be used:
 - (1) If the first digit to be discarded is less than the number 5, the last digit retained shall not be changed;
 - (2) If the first digit discarded is greater than the number 5, or if it is the number 5 followed by at least one digit other than the number zero, the last figure retained shall be increased by one unit; and
 - (3) If the first digit discarded is exactly the number 5, followed only by zeros, the last digit retained shall be rounded upward if it is an odd number, but no adjustment shall be made if it is an even number.
 - (4) The final result of the calculation shall be expressed in the units of the standard.

Control Devices: In accordance with 20.2.72.203.A(3) and (8) NMAC, 20.2.70.300.D(5)(b) and (e) NMAC, and 20.2.73.200.B(7) NMAC, the permittee shall report all control devices and list each pollutant controlled by the control device

regardless if the applicant takes credit for the reduction in emissions. The applicant can indicate in this section of the application if they chose to not take credit for the reduction in emission rates. For notices of intent submitted under 20.2.73 NMAC, only uncontrolled emission rates can be considered to determine applicability unless the state or federal Acts require the control. This information is necessary to determine if federally enforceable conditions are necessary for the control device, and/or if the control device produces its own regulated pollutants or increases emission rates of other pollutants.

Turbines

The nitrogen oxide (NO_X), carbon monoxide (CO), and volatile organic compound (VOC) combustion emissions from the turbines (Units 1-4) are taken from previous applications and permits. SO₂ and particulate combustion emissions are calculated using the AP-42 emission factors from Table 3.1-2a. Hazardous air pollutant (HAP) combustion emissions are calculated using GRI-HAPCalc 3.0. Emissions are calculated assuming each turbine operates at full site capacity for 8,760 hours per year.

The turbines startup with no load and a rich fuel mixture. As a result, combustion emissions are minimized. Because the turbines take only minutes to reach operating temperature, combustion emissions during startup are not expected to exceed the steady-state allowable limits. Similarly, because fuel and air flow cease within seconds of shutdown, combustion emissions during shutdown do not exceed the steady-state allowable limits. Combustion emissions due to scheduled maintenance are negligible as the turbines are not in operation during maintenance.

The criteria pollutant emissions are carried forward and not revised. No modifications are being made to the turbines or their operation.

Reciprocating Engine

Criteria pollutant and HAP emissions from the Detroit Diesel standby generator engine (Unit 5) are calculated using AP-42 emission factors from Tables 3.3-1 and 3.3-2. Since the unit will operate less than 500 hours per year and only during the loss of commercial utility power, it is an exempt source in accordance with 20.2.72.202.B.3 NMAC.

Heaters

Combustion emissions from the heaters (Units 6 & 7) are calculated using the AP-42 emission factors from Tables 1.4-1 and 1.4-2. It is assumed each heater will operate at full capacity for 8,760 hours per year. As criteria pollutant emissions are all less than 0.5 tpy, the heaters are exempt under 20.2.72.202.B.5 NMAC.

SSM (Turbines, Compressors and Piping)

SSM emissions from the turbines (Unit SSM) result from the blowdown of motive gas used to drive turbine components during startup and shutdown. SSM emissions from the compressors and piping associated with the station occur during startup and shutdown of the compressors. High pressure gas is used to purge air from the compressors and associated piping at startup and this gas is then vented to atmosphere. After shutdown, high pressure gas in the compressors and associated piping is released to atmosphere as a safety precaution.

VOC and HAP emissions from blowdowns of the turbines, compressors and associated piping at the station are calculated from the quantity of gas vented during each event, the composition of the gas, and the number of events. The quantity of gas vented during each event is determined by HFC engineering. The composition of the gas is determined from an extended gas analysis. For each turbine and compressor, the annual number of blowdown events is estimated based on historical operations. A safety factor is added because VOC and HAP emissions from each blowdown event are dependent on the composition of the gas in the pipeline. The use of the safety factor is also designed to ensure an adequate emissions limit, which includes any emissions from other non-blowdown miscellaneous startup, shutdown and maintenance activities.

Consistent with other facilities, it is requested SSM emissions from the turbines, compressors and associated piping continue to be permitted under a single facility-wide emissions limit.

The SSM emissions identified in this application are routine or predictable startup/shutdown and scheduled maintenance and do not include malfunctions or upsets.

The SSM emissions identified in this application are being increased to allow for a richer gas stream.

Equipment Leaks

Equipment leaks (Unit F1) emissions are calculated using emission factors from Table 2.4 of the 1995 Protocol for Equipment Leak Emission Estimates published by the EPA. The component count is determined from the number of compressors and dehydrators permitted to operate at the station, using an equation derived by HFC that is representative of their facilities. Emissions are calculated assuming the equipment operates 8,760 hours per year. To allow for variability in the composition of the inlet gas stream, the emission rates identified on the application forms are higher than the calculated emissions.

Due to the nature of the source, it is estimated that SSM emissions from valves, connectors, seals, etc. are accounted for in the calculations.

The equipment leaks emissions in this application are carried forward and not revised.

Truck Loading

VOC emissions from the truck loading of condensate (Unit L1 & L1 (AOS)) are calculated using the AP-42 emissions factor identified in Section 5.2-1. Data used to calculate the emission factor are obtained from the TANKS 4 (condensate) output file. Condensate throughput is obtained from the ProMax results used to calculate the condensate storage tank flash emissions. HAP emissions are identified as percentages of the VOC emission rate, based on percentages calculated from the TANKS 4 results produced to estimate the condensate storage tank working/breathing losses.

VOC emissions from the truck loading of produced water (Unit L2 & L2 (AOS)) are also calculated using the AP-42 emissions factor identified in Section 5.2-1. Since produced water is water with trace amounts of hydrocarbons, the emission factor was calculated using the true vapor pressure and vapor molecular weight for pure water. The tank water temperature was estimated. The produced water throughput is provided by HFC. The HAP emission rates are percentages of the VOC emission rate, estimated from the ratio of the HAP produced water tank emission factors divided by the VOC produced water tank emission factor.

Due to the nature of the source, it is estimated that SSM emissions from truck loading are accounted for in the calculations.

Unit L1 & L1 (AOS) emissions in this application are being increased to allow more annual throughput. Unit L2 & L2 (AOS) is exempt under 20.2.72.202.B.5 NMAC.

Pig Receiver

VOC and HAP emissions from the pig receiver (Unit PR) are calculated from the quantity of gas vented during each event, the composition of the gas, and the number of events. The quantity of gas vented during each event is determined by HFC engineering. The composition of the gas is determined from an extended gas analysis. The annual number of blowdown events is estimated based on historical operations. A safety factor is added because VOC and HAP emissions from each blowdown event are dependent on the composition of the gas in the pipeline and because the number of blowdowns in a year may vary.

Due to the nature of the source, it is estimated that SSM emissions from pig receiver are accounted for in the calculations.

As VOC emissions are less than 0.5 tpy, Unit PR is exempt under 20.2.72.202.B.5 NMAC.

Malfunctions

Malfunction (Unit M1) emissions are set at 10.0 tons of VOC per year to account for emissions that may occur during upsets and malfunctions (including, but not limited to, unscheduled blowdowns and relief valve release). Based on the gas release rate associated with this set VOC emission rate, HAP emissions are calculated using facility gas composition. Note that these malfunction emissions include the venting of gas only, not combustion emissions.

Criteria pollutant emissions from malfunctions are carried forward and not revised.

Storage Tanks

Emissions from the condensate storage tanks (T4 & T5) are calculated using TANKS 4.0.9d for working/breathing losses and ProMax for flash emissions. Emissions are calculated using the condensate (post-flash) throughput of 45,000 barrels per year. It is estimated the separator and EVRU combined will reduce flash emissions by approximately 48 percent. It is estimated the EVRU will reduce working/breathing losses by approximately 25 percent.

AOS

Again, emissions from the condensate storage tanks (T4 (AOS) & T5 (AOS)) are calculated using TANKS 4.0.9d for working/breathing losses and ProMax for flash emissions. Emissions are calculated using the condensate (post-flash) throughput of 60,000 barrels per year. It is estimated the VRU will reduce flash emissions and working/breathing losses by 75 percent.

VOC and HAP emissions from the produced water storage tanks (Units T6 T6 (AOS), T12 & T12(AOS)) are calculated using produced water tank emission factors prepared by the Colorado Department of Public Health and Environment (CDPHE) and the Texas Commission on Environmental Quality (TCEQ). Emissions from these tanks are carried forward and not revised.

Where required, VOC and HAP emissions (working/breathing losses) from the remaining storage tanks are calculated using TANKS 4.0.9d. The following assumptions are made for the emissions calculations:

- Residual oil #6 is used to estimate lubrication oil and used lubrication oil emissions. As the vapor pressure of residual oil is less than 10 mm Hg, the tanks containing lubrication oil (Unit T1) and used lubrication oil (Unit T2) are exempt in accordance with 20.2.72.202.B.2 NMAC; and
- Distillate fuel oil #2 is used to estimate diesel fuel emissions. As the vapor pressure of distillate fuel oil #2 is less than 10 mm Hg, the tank containing diesel fuel (Unit T3) is exempt in accordance with 20.2.72.202.B.2 NMAC.

Methanol emissions from Unit T7 (the largest of the methanol storage tanks with a capacity of 500 gallons) are calculated at 36.3 pounds per year. Assuming emissions from each of the three remaining methanol tanks are equal to those of Unit T7, combined emissions from the four tanks are less than 0.5 tpy. As such, the methanol storage tanks are exempt sources in accordance with 20.2.72.202.B.5 NMAC.

Due to the nature of operations, startup and shutdown emissions (working/breathing losses) from the storage tanks are assumed to be accounted for in the TANKS 4 and ProMax programs. Emissions due to maintenance are negligible as the units are not in operation.

Turbine Exhaust Emissions Calculations

Unit Number: 1 & 2

Description: Solar Saturn 10-1001

Note: The data on this worksheet applies to each individual emissions unit identified above.

Horsepower Calculations

5,575 ft above MSL Elevation
1,200 hp Nameplate hp Mfg. data

976 hp NMAQB Site-rated hp NMAQB Procedure # 02.002-00

(Nameplate hp x [29.9 - (ft above MSL

/ 1000)] / 29.9)

894 hp Mfg. Site-rated hp Mfg. data

Fuel Consumption

105.00 MMscf/yr Annual fuel consumption 2004 Title V permit application

900.00 Btu/scf Field gas heating value Nominal heat content

94,500.00 MMBtu/yr Annual fuel consumption MMscf/yr x (1,000,000 scf/MMscf) x Btu/scf

/ (1,000,000 Btu/MMBtu)

8,760 hr/yr Annual operating time Harvest Four Corners, LLC

11,986.30 scf/hr Hourly fuel consumption MMscf/yr x (1,000,000 scf/MMscf) / hr/yr

10.79 MMBtu/hr Hourly fuel consumption MMBtu/yr / hr/yr

Steady-State Emission Rates

Pollutants	Uncontrolled Emission Rates,		
	pph	tpy	
NOX	3.30	14.30	
CO	3.50	15.10	
VOC	1.00E-01	4.00E-01	

Emission rates taken from the current construction permit

	Emission		
Pollutants	Factors,	Uncontrolled Emission Rates	
	lb/MMBtu	pph	tpy
SO2	3.40E-03	3.67E-02	1.61E-01
PM	6.60E-03	7.12E-02	3.12E-01
PM10	6.60E-03	7.12E-02	3.12E-01
PM2.5	6.60E-03	7.12E-02	3.12E-01

Emission factors taken from AP-42, Table 3.1-2a

Uncontrolled Emission Rates (pph) = lb/MMBtu x MMBtu/hr

Uncontrolled Emission Rates (tpy) = Uncontrolled Emission Rates (pph) x hr/yr / 2,000 lb/ton

Exhaust Parameters

819 °F	Exhaust temperature	2004 Title V permit application
29,160 cfm	Stack flowrate	2004 Title V permit application
1.50 ft	Stack exit diameter	Harvest Four Corners, LLC
1.77 ft^2	Stack exit area	3.1416 x ((ft / 2) ^2)
275.02 fps	Stack exit velocity	acfm / ft^2 / 60 sec/min
22.00 ft	Stack height	Harvest Four Corners, LLC

Turbine Exhaust Emissions Calculations

Unit Number:

Description: Solar Saturn 10-1202

Horsepower Calculations

5,575 ft above MSL Elevation
1,200 hp Nameplate hp Mfg. data

976 hp NMAQB Site-rated hp NMAQB Procedure # 02.002-00

(Nameplate hp x [29.9 - (ft above MSL

/ 1000)] / 29.9)

976 hp Mfg. Site-rated hp Mfg. data

Fuel Consumption

105.00 MMscf/yr Annual fuel consumption 2004 Title V permit application

900.00 Btu/scf Field gas heating value Nominal heat content

94,500.00 MMBtu/yr Annual fuel consumption MMscf/yr x (1,000,000 scf/MMscf) x Btu/scf

/ (1,000,000 Btu/MMBtu)

8,760 hr/yr Annual operating time Harvest Four Corners, LLC

11,986.30 scf/hr Hourly fuel consumption MMscf/yr x (1,000,000 scf/MMscf) / hr/yr

10.79 MMBtu/hr Hourly fuel consumption MMBtu/yr / hr/yr

Steady-State Emission Rates

Pollutants	Uncontrolled Emission Rates,		
	pph tpy		
NOX	3.30	14.30	
CO	3.50	15.10	
VOC	1.00E-01	4.00E-01	

Emission rates taken from the current construction permit

Pollutants	Emission Factors, Uncontrolled Emission R		mission Rates,
	lb/MMBtu	pph	tpy
SO2	3.40E-03	3.67E-02	1.61E-01
PM	6.60E-03	7.12E-02	3.12E-01
PM10	6.60E-03	7.12E-02	3.12E-01
PM2.5	6.60E-03	7.12E-02	3.12E-01

Emission factors taken from AP-42, Table 3.1-2a

Uncontrolled Emission Rates (pph) = lb/MMBtu x MMBtu/hr

Uncontrolled Emission Rates (tpy) = Uncontrolled Emission Rates (pph) x hr/yr / 2,000 lb/ton

Exhaust Parameters

794 °F Exhaust temperature 2004 Title V permit application 28,416 cfm Stack flowrate 2004 Title V permit application 1.50 ft Stack exit diameter Harvest Four Corners, LLC 1.77 ft^2 Stack exit area 3.1416 x ((ft / 2) ^2) 268.00 fps Stack exit velocity acfm / ft^2 / 60 sec/min 22.00 ft Stack height Harvest Four Corners, LLC

Turbine Exhaust Emissions Calculations

Unit Number:

Solar Centaur 40-4002 Description:

Horsepower Calculations

5,575 ft above MSL Elevation 3,961 hp Nameplate hp Mfg. data

3,222 hp NMAQB Site-rated hp NMAQB Procedure # 02.002-00

(Nameplate hp x [29.9 - (ft above MSL

/ 1000)] / 29.9)

3,115 hp Mfg. Site-rated hp Mfg. data

Fuel Consumption

Annual fuel consumption 2004 Title V permit application 500.00 MMscf/yr

900.00 Btu/scf Field gas heating value Nominal heat content

450,000.00 MMBtu/yr Annual fuel consumption MMscf/yr x (1,000,000 scf/MMscf) x Btu/scf

/ (1,000,000 Btu/MMBtu)

8,760 hr/yr Annual operating time Harvest Four Corners, LLC

MMscf/yr x (1,000,000 scf/MMscf) / hr/yr 57,077.63 scf/hr Hourly fuel consumption 51.37 MMBtu/hr

Hourly fuel consumption MMBtu/yr / hr/yr

Steady-State Emission Rates

Pollutants	Uncontrolled Emission Rates,		
	pph tpy		
NOX	16.70	73.00	
CO	4.20	18.60	
VOC	5.30E-01	2.30	

Emission rates taken from the current construction permit

Pollutants	Emission Factors, Uncontrolled Emission Ra		mission Rates,
	lb/MMBtu	pph	tpy
SO2	3.40E-03	1.75E-01	7.65E-01
PM	6.60E-03	3.39E-01	1.49
PM10	6.60E-03	3.39E-01	1.49
PM2.5	6.60E-03	3.39E-01	1.49

Emission factors taken from AP-42, Table 3.1-2a

Uncontrolled Emission Rates (pph) = lb/MMBtu x MMBtu/hr

Uncontrolled Emission Rates (tpy) = Uncontrolled Emission Rates (pph) x hr/yr / 2,000 lb/ton

Exhaust Parameters

824 °F Exhaust temperature 2004 Title V permit application 82,758 cfm Stack flowrate 2004 Title V permit application 2.50 ft Stack exit diameter Harvest Four Corners, LLC 4.91 ft^2 Stack exit area 3.1416 x ((ft / 2) ^2) 280.99 fps Stack exit velocity acfm / ft^2 / 60 sec/min 22.00 ft Stack height Harvest Four Corners, LLC

GRI-HAPCalc® 3.0 **Turbine Report**

Facility ID: **CHACO** Notes:

Operation Type: COMPRESSOR STATION

Facility Name: CHACO COMPRESSOR STATION

User Name:

Units of Measure: U.S. STANDARD

Note: Emissions less than 5.00E-09 tons (or tonnes) per year are considered insignificant and are treated as zero.

These emissions are indicated on the report with a "0".

Emissions between 5.00E-09 and 5.00E-05 tons (or tonnes) per year are represented on the report with "0.0000".

Turbine Unit

Unit Name: 10-1001

Hours of Operation: 8,760 Yearly Rate Power: 976 hp **NATURAL GAS** Fuel Type:

Emission Factor Set: FIELD > EPA > LITERATURE

-NONE-Additional EF Set:

Calculated Emissions (ton/yr)

			(601.11)	
	Chemical Name	Emissions	Emission Factor	Emission Factor Set
H	IAPs_			
	Formaldehyde	0.1595	0.01693680 g/bhp-hr	GRI Field
	Acetaldehyde	0.1632	0.01733570 g/bhp-hr	GRI Field
	1,3-Butadiene	0.0006	0.00006160 g/bhp-hr	GRI Field
	Acrolein	0.0024	0.00026000 g/bhp-hr	GRI Field
	Propional	0.0081	0.00086500 g/bhp-hr	GRI Field
	Propylene Oxide	0.0012	0.00012480 g/bhp-hr	EPA
	n-Nitrosodimethylamine	0.0000	0.00000100 g/bhp-hr	EPA
	Benzene	0.0051	0.00053840 g/bhp-hr	GRI Field
	Toluene	0.0039	0.00041100 g/bhp-hr	GRI Field
	Ethylbenzene	0.0010	0.00010330 g/bhp-hr	EPA
	Xylenes(m,p,o)	0.0117	0.00124410 g/bhp-hr	GRI Field
	2,2,4-Trimethylpentane	0.0151	0.00160530 g/bhp-hr	GRI Field
	n-Hexane	0.0142	0.00150580 g/bhp-hr	GRI Field
	Phenol	0.0010	0.00011010 g/bhp-hr	GRI Field
	n-Nitrosomorpholine	0.0000	0.00000100 g/bhp-hr	EPA
	Naphthalene	0.0001	0.00000760 g/bhp-hr	GRI Field
	2-Methylnaphthalene	0.0000	0.00000130 g/bhp-hr	GRI Field
	Biphenyl	0.0031	0.00033050 g/bhp-hr	GRI Field
	Phenanthrene	0.0000	0.00000050 g/bhp-hr	GRI Field
	Chrysene	0.0000	0.00000100 g/bhp-hr	GRI Field
	Beryllium	0.0000	0.00000010 g/bhp-hr	GRI Field
	Phosphorous	0.0006	0.00006520 g/bhp-hr	GRI Field
	Chromium	0.0001	0.00000820 g/bhp-hr	GRI Field
	Chromium	0.0001	0.00000560 g/bhp-hr	EPA
	Manganese	0.0002	0.00001750 g/bhp-hr	GRI Field
	Nickel	0.0001	0.00000610 g/bhp-hr	GRI Field
	Cobalt	0.0000	0.00000160 g/bhp-hr	GRI Field
14	10:44:05	GRI-HAPC	Calc 3.0	Page 1 of 5

02/18/2014

Selenium	0.0000	0.00000030 g/bhp-hr	GRI Field
Cadmium	0.0000	0.00000020 g/bhp-hr	GRI Field
Mercury	0.0000	0.00000270 g/bhp-hr	GRI Field
Lead	0.0000	0.00000340 g/bhp-hr	GRI Field
Total	0.3913		
Criteria Pollutants			
PM	0.2999	0.03184680 g/bhp-hr	EPA
СО	19.8517	2.10828420 g/bhp-hr	GRI Field
NMHC	1.8256	0.19387800 g/bhp-hr	GRI Field
NMEHC	0.1135	0.01205010 g/bhp-hr	EPA
NOx	11.7904	1.25216290 g/bhp-hr	GRI Field
SO2	0.0097	0.00102720 g/bhp-hr	GRI Field
Other Pollutants			
Methane	9.2954	0.98719230 g/bhp-hr	GRI Field
Acetylene	0.0675	0.00716540 g/bhp-hr	GRI Field
Ethylene	0.1314	0.01395450 g/bhp-hr	GRI Field
Ethane	1.4132	0.15008370 g/bhp-hr	GRI Field
Propane	0.1507	0.01600000 g/bhp-hr	GRI Field
Isobutane	0.0452	0.00480000 g/bhp-hr	GRI Field
Butane	0.0490	0.00520000 g/bhp-hr	GRI Field
Trimethylamine	0.0000	0.0000070 g/bhp-hr	EPA
Cyclopentane	0.0155	0.00165110 g/bhp-hr	GRI Field
Butyrald/Isobutyraldehyde	0.0126	0.00134000 g/bhp-hr	GRI Field
n-Pentane	0.7641	0.08115000 g/bhp-hr	GRI Field
Cyclohexane	0.0577	0.00612400 g/bhp-hr	GRI Field
Methylcyclohexane	0.0832	0.00883120 g/bhp-hr	GRI Field
n-Octane	0.0300	0.00318890 g/bhp-hr	GRI Field
1,3,5-Trimethylbenzene	0.0282	0.00300000 g/bhp-hr	GRI Field
n-Nonane	0.0050	0.00053260 g/bhp-hr	GRI Field
CO2	4,457.5333	473.39811550 g/bhp-hr	EPA
Vanadium	0.0000	0.00000070 g/bhp-hr	GRI Field
Copper	0.0002	0.00002050 g/bhp-hr	GRI Field
Molybdenum	0.0002	0.00002030 g/bhp-hr	GRI Field
Barium	0.0002	0.00002290 g/bhp-hr	GRI Field

0.0000

0.00000060 g/bhp-hr

GRI Field

Unit Name: 10-1202

Arsenic

Hours of Operation: 8,760 Yearly
Rate Power: 976 hp
Fuel Type: NATURAL GAS

Emission Factor Set: FIELD > EPA > LITERATURE

Additional EF Set: -NONE-

Calculated Emissions (ton/yr)

Chemical Name	Emissions	Emission Factor	Emission Factor Set
<u>HAPs</u>			
Formaldehyde	0.1595	0.01693680 g/bhp-hr	GRI Field
Acetaldehyde	0.1632	0.01733570 g/bhp-hr	GRI Field
1,3-Butadiene	0.0006	0.00006160 g/bhp-hr	GRI Field
Acrolein	0.0024	0.00026000 g/bhp-hr	GRI Field
Propional	0.0081	0.00086500 g/bhp-hr	GRI Field

02/18/2014 10:44:05 GRI-HAPCalc 3.0 Page 2 of 5

	Propylene Oxide	0.0012	0.00012480	g/bhp-hr	EPA
	n-Nitrosodimethylamine	0.0000	0.00000100	g/bhp-hr	EPA
	Benzene	0.0051	0.00053840	g/bhp-hr	GRI Field
	Toluene	0.0039	0.00041100	g/bhp-hr	GRI Field
	Ethylbenzene	0.0010	0.00010330	g/bhp-hr	EPA
	Xylenes(m,p,o)	0.0117	0.00124410	g/bhp-hr	GRI Field
	2,2,4-Trimethylpentane	0.0151	0.00160530	g/bhp-hr	GRI Field
	n-Hexane	0.0142	0.00150580	g/bhp-hr	GRI Field
	Phenol	0.0010	0.00011010	g/bhp-hr	GRI Field
	n-Nitrosomorpholine	0.0000	0.00000100	g/bhp-hr	EPA
	Naphthalene	0.0001	0.00000760	g/bhp-hr	GRI Field
	2-Methylnaphthalene	0.0000	0.00000130	g/bhp-hr	GRI Field
	Biphenyl	0.0031	0.00033050	g/bhp-hr	GRI Field
	Phenanthrene	0.0000	0.00000050	g/bhp-hr	GRI Field
	Chrysene	0.0000	0.00000100	g/bhp-hr	GRI Field
	Beryllium	0.0000	0.0000010	g/bhp-hr	GRI Field
	Phosphorous	0.0006	0.00006520	g/bhp-hr	GRI Field
	Chromium	0.0001	0.00000820	g/bhp-hr	GRI Field
	Chromium	0.0001	0.00000560	g/bhp-hr	EPA
	Manganese	0.0002	0.00001750	g/bhp-hr	GRI Field
	Nickel	0.0001	0.00000610	g/bhp-hr	GRI Field
	Cobalt	0.0000	0.00000160	g/bhp-hr	GRI Field
	Arsenic	0.0000	0.00000060	g/bhp-hr	GRI Field
	Selenium	0.0000	0.00000030	g/bhp-hr	GRI Field
	Cadmium	0.0000	0.00000020	g/bhp-hr	GRI Field
	Mercury	0.0000	0.00000270	g/bhp-hr	GRI Field
	Lead	0.0000	0.00000340	g/bhp-hr	GRI Field
Total		0.3913			
Cri	teria Pollutants				
	PM	0.2999	0.03184680	a/bhp-hr	EPA
	CO	19.8517	2.10828420	•	GRI Field
	NMHC	1.8256	0.19387800		GRI Field
	NMEHC	0.1135	0.01205010	g/bhp-hr	EPA
	NOx	11.7904	1.25216290		GRI Field
	SO2	0.0097	0.00102720	g/bhp-hr	GRI Field
Oth	her Pollutants				
<u> </u>	Methane	9.2954	0.98719230	a/bbp br	GRI Field
	Acetylene	0.0675	0.00716540	• .	GRI Field
	Ethylene	0.1314	0.01395450	•	GRI Field
	Ethane	1.4132	0.15008370		GRI Field
	Propane	0.1507	0.01600000		GRI Field
	Isobutane	0.0452	0.00480000		GRI Field
	Butane	0.0490	0.00520000		GRI Field
	Trimethylamine	0.0000	0.00000070		EPA
	Cyclopentane	0.0155	0.00165110		GRI Field
	Butyrald/Isobutyraldehyde	0.0126	0.00134000	•	GRI Field
	n-Pentane	0.7641	0.08115000		GRI Field
	Cyclohexane	0.0577	0.00612400		GRI Field
	Methylcyclohexane	0.0832	0.00883120		GRI Field
	n-Octane	0.0300	0.00318890		GRI Field
	1,3,5-Trimethylbenzene	0.0282	0.00300000		GRI Field
	•	0.0050	0.00053260		GRI Field
	n-Nonane	0.0030		g/brip-rii	arti i icia
	n-Nonane CO2	4,457.5333	473.39811550		EPA

Vanadium	0.0000	0.00000070 g/bhp-hr	GRI Field
Copper	0.0002	0.00002050 g/bhp-hr	GRI Field
Molybdenum	0.0002	0.00002030 g/bhp-hr	GRI Field
Barium	0.0002	0.00002290 g/bhp-hr	GRI Field

Unit Name: 40-4002

02/18/2014

10:44:05

Hours of Operation: 8,760 Yearly
Rate Power: 3222 hp
Fuel Type: NATURAL GAS

Emission Factor Set: FIELD > EPA > LITERATURE

Additional EF Set: -NONE-

Calculated Emissions (ton/yr)

Chemical Name	Emissions	Emission Factor	Emission Factor Se
APs_			
Formaldehyde	0.5265	0.01693680 g/bhp-hr	GRI Field
Acetaldehyde	0.5389	0.01733570 g/bhp-hr	GRI Field
1,3-Butadiene	0.0019	0.00006160 g/bhp-hr	GRI Field
Acrolein	0.0081	0.00026000 g/bhp-hr	GRI Field
Propional	0.0269	0.00086500 g/bhp-hr	GRI Field
Propylene Oxide	0.0039	0.00012480 g/bhp-hr	EPA
n-Nitrosodimethylamine	0.0000	0.00000100 g/bhp-hr	EPA
Benzene	0.0167	0.00053840 g/bhp-hr	GRI Field
Toluene	0.0128	0.00041100 g/bhp-hr	GRI Field
Ethylbenzene	0.0032	0.00010330 g/bhp-hr	EPA
Xylenes(m,p,o)	0.0387	0.00124410 g/bhp-hr	GRI Field
2,2,4-Trimethylpentane	0.0499	0.00160530 g/bhp-hr	GRI Field
n-Hexane	0.0468	0.00150580 g/bhp-hr	GRI Field
Phenol	0.0034	0.00011010 g/bhp-hr	GRI Field
n-Nitrosomorpholine	0.0000	0.00000100 g/bhp-hr	EPA
Naphthalene	0.0002	0.00000760 g/bhp-hr	GRI Field
2-Methylnaphthalene	0.0000	0.00000130 g/bhp-hr	GRI Field
Biphenyl	0.0103	0.00033050 g/bhp-hr	GRI Field
Phenanthrene	0.0000	0.00000050 g/bhp-hr	GRI Field
Chrysene	0.0000	0.00000100 g/bhp-hr	GRI Field
Beryllium	0.0000	0.00000010 g/bhp-hr	GRI Field
Phosphorous	0.0020	0.00006520 g/bhp-hr	GRI Field
Chromium	0.0003	0.00000820 g/bhp-hr	GRI Field
Chromium	0.0002	0.00000560 g/bhp-hr	EPA
Manganese	0.0005	0.00001750 g/bhp-hr	GRI Field
Nickel	0.0002	0.00000610 g/bhp-hr	GRI Field
Cobalt	0.0000	0.00000160 g/bhp-hr	GRI Field
Arsenic	0.0000	0.00000060 g/bhp-hr	GRI Field
Selenium	0.0000	0.00000030 g/bhp-hr	GRI Field
Cadmium	0.0000	0.00000020 g/bhp-hr	GRI Field
Mercury	0.0001	0.00000270 g/bhp-hr	GRI Field
Lead	0.0001	0.00000340 g/bhp-hr	GRI Field
al	1.2916		
ritoria Pollutante			
<u>riteria Pollutants</u>	0.0000	0.02104600 ~/bba.ba	EDA
	0.9899	0.03184680 g/bhp-hr	EPA
CO	65.5349	2.10828420 g/bhp-hr 0.19387800 g/bhp-hr	GRI Field GRI Field

GRI-HAPCalc 3.0

Page 4 of 5

	NMEHC	0.3746	0.01205010	g/bhp-hr	EPA
	NOx	38.9228	1.25216290	g/bhp-hr	GRI Field
	SO2	0.0319	0.00102720	g/bhp-hr	GRI Field
<u>Oth</u>	ner Pollutants				
	Methane	30.6864	0.98719230	g/bhp-hr	GRI Field
	Acetylene	0.2227	0.00716540	g/bhp-hr	GRI Field
	Ethylene	0.4338	0.01395450	g/bhp-hr	GRI Field
	Ethane	4.6653	0.15008370	g/bhp-hr	GRI Field
	Propane	0.4974	0.01600000	g/bhp-hr	GRI Field
	Isobutane	0.1492	0.00480000	g/bhp-hr	GRI Field
	Butane	0.1616	0.00520000	g/bhp-hr	GRI Field
	Trimethylamine	0.0000	0.00000070	g/bhp-hr	EPA
	Cyclopentane	0.0513	0.00165110	g/bhp-hr	GRI Field
	Butyrald/Isobutyraldehyde	0.0417	0.00134000	g/bhp-hr	GRI Field
	n-Pentane	2.5225	0.08115000	g/bhp-hr	GRI Field
	Cyclohexane	0.1904	0.00612400	g/bhp-hr	GRI Field
	Methylcyclohexane	0.2745	0.00883120	g/bhp-hr	GRI Field
	n-Octane	0.0991	0.00318890	g/bhp-hr	GRI Field
	1,3,5-Trimethylbenzene	0.0933	0.00300000	g/bhp-hr	GRI Field
	n-Nonane	0.0166	0.00053260	g/bhp-hr	GRI Field
	CO2	14,715.3406	473.39811550	g/bhp-hr	EPA
	Vanadium	0.0000	0.00000070	g/bhp-hr	GRI Field
	Copper	0.0006	0.00002050	g/bhp-hr	GRI Field
	Molybdenum	0.0006	0.00002030	g/bhp-hr	GRI Field
	Barium	0.0007	0.00002290	g/bhp-hr	GRI Field

Engine Exhaust Emissions Calculations

Mfg. data

Unit Number: 5

Description: Detroit Diesel Standby Generator (Exempt Source)

Horsepower Calculations

5,575 ft above MSL Elevation
200 hp Nameplate hp

Fuel Consumption

1.41 MMBtu/hr Hourly fuel consumption Mfg. data

137,000 Btu/gal Field gas heating value Nominal heat content

10.29 gal/hr Hourly fuel consumption MMBtu/hr x 1,000,000 / Btu/gal
500 hr/yr Annual operating time Harvest Four Corners, LLC

5,145.99 gal/yr Hourly fuel consumption gal/hr x hr/yr 705.00 MMBtu/yr Annual fuel consumption MMBtu/hr x hr/yr

Steady-State Emission Rates

	Emission		
Pollutants	Factors,	Uncontrolled Emission Rate	
	lb/MMBtu	pph	tpy
NO2	4.41	6.22	1.55
CO	9.50E-01	1.34	3.35E-01
VOC	3.60E-01	5.08E-01	1.27E-01
SO2	2.90E-01	4.09E-01	1.02E-01
PM	3.10E-01	4.37E-01	1.09E-01
PM10	3.10E-01	4.37E-01	1.09E-01
PM2.5	3.10E-01	4.37E-01	1.09E-01
Acetaldehyde	7.67E-04	1.08E-03	2.70E-04
Benzene	9.33E-04	1.32E-03	3.29E-04
Formaldehyde	1.18E-03	1.66E-03	4.16E-04
Naphthalene	8.48E-05	1.20E-04	2.99E-05
Toluene	4.09E-04	5.77E-04	1.44E-04
Xylene	2.85E-04	4.02E-04	1.00E-04

Emission factors taken from AP-42, Tables 3.3-1 & 3.3-2

Uncontrolled Emission Rates (pph) = lb/MMBtu x MMBtu/hr

Uncontrolled Emission Rates (tpy) = Uncontrolled Emission Rates (pph) x hr/yr / 2,000 lb/ton

Heater Exhaust Emissions Calculations

Unit Number: 6

Description: Ejector Vapory Recovery Unit (EVRU) Heater (Exempt Source)

Fuel Consumption

0.51 MMBtu/hr Capacity Mfg. data

900 Btu/scf Field gas heating value Nominal heat content

566.67 scf/hr Hourly fuel consumption MMBtu/hr x 1,000,000 / Btu/scf 8,760 hr/yr Annual operating time Harvest Four Corners, LLC

4,467.60 MMBtu/yrAnnual fuel consumptionMMBtu/hr x hr/yr4.96 MMscf/yrAnnual fuel consumptionscf/hr x hr/yr / 1,000,000

Steady-State Emission Rates

Pollutants	Emission Factors.	Uncontrolled E	mission Rates,
	lb/MMscf	pph	tpy
NOX	100	5.67E-02	2.48E-01
CO	84	4.76E-02	2.08E-01
VOC	5.5	3.12E-03	1.37E-02
SO2	0.6	3.40E-04	1.49E-03
TSP	7.60	4.31E-03	1.89E-02
PM10	7.60	4.31E-03	1.89E-02
PM2.5	7.60	4.31E-03	1.89E-02
Lead	5.00E-04	2.83E-07	1.24E-06

Emission factors taken from AP-42, Tables 1.4-1 & 1.4-2

Uncontrolled Emission Rates (pph) = lb/MMBtu x MMBtu/hr

Uncontrolled Emission Rates (tpy) = Uncontrolled Emission Rates (pph) x hr/yr / 2,000 lb/ton

Heater Exhaust Emissions Calculations

Unit Number:

Description: Heater (Exempt Source)

Fuel Consumption

0.005 MMBtu/hr Capacity Mfg. data

900.00 Btu/scf Field gas heating value Nominal heat content

5.56 scf/hr Hourly fuel consumption MMBtu/hr x 1,000,000 / Btu/scf 8,760 hr/yr Annual operating time Harvest Four Corners, LLC

43.80 MMBtu/yrAnnual fuel consumptionMMBtu/hr x hr/yr0.049 MMscf/yrAnnual fuel consumptionscf/hr x hr/yr / 1,000,000

Steady-State Emission Rates

	Emission		
Pollutants	Factors,	Uncontrolled E	mission Rates,
	lb/MMscf	pph	tpy
NOX	100	5.56E-04	2.43E-03
CO	84	4.67E-04	2.04E-03
VOC	5.5	3.06E-05	1.34E-04
SO2	0.6	3.33E-06	1.46E-05
TSP	7.60	4.22E-05	1.85E-04
PM10	7.60	4.22E-05	1.85E-04
PM2.5	7.60	4.22E-05	1.85E-04
Lead	5.00E-04	2.78E-09	1.22E-08

Emission factors taken from AP-42, Tables 1.4-1 & 1.4-2

Uncontrolled Emission Rates (pph) = lb/MMBtu x MMBtu/hr

Uncontrolled Emission Rates (tpy) = Uncontrolled Emission Rates (pph) x hr/yr / 2,000 lb/ton

Turbine & Compressor Blowdown Emissions Calculations

Unit Number: SSM

Description: Turbine, Compressor & Piping Associated With Station

Throughput

4 # of units
Number of units
Harvest Four Corners, LLC
105 events/yr/unit
Blowdowns per year per unit
Harvest Four Corners, LLC
3,602 scf/event
Gas loss per blowdown (compressor)
Harvest Four Corners, LLC
12,400 scf/event
Gas loss per blowdown (turbine)
Harvest Four Corners, LLC
Gas loss per blowdown (turbine)
Harvest Four Corners, LLC
4,720,840 scf/yr
Annual gas loss
of units x events/yr/unit

x [scf/event (compressor) + scf/event (turbine)]

Emission Rates

		Uncontrolled,
	Emission	Emission
Pollutants	Factors,	Rates,
	lb/scf	tpy
VOC	7.085E-03	23.81
Benzene	1.853E-05	6.23E-02
Ethylbenzene	2.798E-07	9.40E-04
n-Hexane	1.279E-04	4.30E-01
Isooctane	2.641E-06	8.88E-03
Toluene	1.846E-05	6.20E-02
Xylene	2.798E-06	9.40E-03

Emission factors calculated from gas composition (see table below) Uncontrolled Emission Rates (tpy) = scf/yr x lb/scf / 2,000 lb/ton

Gas Composition

	Mole	Molecular	Emission
Components	Percents,	Weights,	Factors,
, in the second	%	lb/lb-mole	lb/scf
Carbon dioxide	1.9364	44.01	2.246E-03
Hydrogen sulfide	0.0000	34.07	0.000E+00
Nitrogen	0.3306	28.01	2.441E-04
Methane	85.6254	16.04	3.620E-02
Ethane	7.0286	30.07	5.571E-03
Propane	2.9810	44.09	3.464E-03
Isobutane	0.5417	58.12	8.298E-04
n-Butane	0.7958	58.12	1.219E-03
Isopentane	0.2733	72.15	5.197E-04
n-Pentane	0.1943	72.15	3.695E-04
Cyclopentane	0.0080	70.14	1.479E-05
n-Hexane	0.0563	86.17	1.279E-04
Cyclohexane	0.0193	84.16	4.281E-05
Other hexanes	0.1341	86.18	3.046E-04
Heptanes	0.0275	100.20	7.263E-05
Methylcyclohexane	0.0228	98.19	5.901E-05
2,2,4-Trimethylpentane	0.0010	100.21	2.641E-06
Benzene	0.0090	78.11	1.853E-05
Toluene	0.0076	92.14	1.846E-05
Ethylbenzene	0.0001	106.17	2.798E-07
Xylenes	0.0010	106.17	2.798E-06
C8+ Heavies	0.0064	110.00	1.856E-05
Total	100.0002		
Total VOC			7.085E-03

Gas stream composition obtained from Chaco Compressor Station extended gas analysis dated 11/29/2018 Emission Factors (lb/scf) = (% / 100) x lb/lb-mole / 379.4 scf/lb-mole

Equipment Leaks Emissions Calculations

Unit Number: F1

Description: Valves, Connectors, Seals & Open-Ended Lines

Steady-State Emission Rates

	Number of	Emission	Emission	Uncontro	olled TOC
Equipment	Components,	Factors,	Factors,	Emissio	n Rates,
	# of sources	kg/hr/source	lb/hr/source	pph	tpy
Valves	441	0.0045	0.0099	4.37	19.12
Connectors	415	0.0002	0.0004	0.18	0.80
Pump Seals	0	0.0024	0.0053	0.00	0.00
Compressor Seals	40	0.0088	0.0194	0.77	3.39
Pressure Relief Valves	31	0.0088	0.0194	0.60	2.63
Open-Ended Lines	118	0.0020	0.0044	0.52	2.27
Tota	I			6.44	28.22

Number of components based on the numbers of compressors and dehydrators at the station (see next page)

Emission factors taken from the EPA "1995 Protocol for Equipment Leak Emission Estimates"

Emission factors (lb/hr/source) = Emission factors (kg/hr/source) x 2.2 lb/kg

Uncontrolled TOC Emission Rates (pph) = lb/hr/source x # of sources

Uncontrolled TOC Emission Rates (tpy) = Uncontrolled TOC Emission Rates (pph) x 8,760 hr/yr / 2,000 lb/ton

				Weight		
	Mole	Molecular	Component	Percent		
Components	Percents,	Weights,	Weights,	of TOC,	Uncontrolled E	mission Rates,
	%	lb/lb-mole	lb/lb-mole	%	pph	tpy
Carbon dioxide	1.9364	44.010				
Hydrogen sulfide	0.0000	34.070				
Nitrogen	0.3306	28.013				
Methane	85.6254	16.043	1373.688	74.096		
Ethane	7.0286	30.070	211.350	11.400		
Propane	2.9810	44.097	131.453	7.091	4.57E-01	2.00E+00
Isobutane	0.5417	58.123	31.485	1.698	1.09E-01	4.79E-01
n-Butane	0.7958	58.123	46.254	2.495	1.61E-01	7.04E-01
Isopentane	0.2733	72.150	19.719	1.064	6.85E-02	3.00E-01
n-Pentane	0.1943	72.150	14.019	0.756	4.87E-02	2.13E-01
Cyclopentane	0.0080	70.134	0.561	0.030	1.95E-03	8.54E-03
n-Hexane	0.0563	86.177	4.852	0.262	1.69E-02	7.38E-02
Cyclohexane	0.0193	84.161	1.624	0.088	5.64E-03	2.47E-02
Other hexanes	0.1341	86.177	11.556	0.623	4.02E-02	1.76E-01
Heptanes	0.0275	100.204	2.756	0.149	9.58E-03	4.19E-02
Methylcyclohexane	0.0228	98.188	2.239	0.121	7.78E-03	3.41E-02
Isooctane	0.0010	114.231	0.114	0.006	3.97E-04	1.74E-03
Benzene	0.0090	78.114	0.703	0.038	2.44E-03	1.07E-02
Toluene	0.0076	92.141	0.700	0.038	2.43E-03	1.07E-02
Ethylbenzene	0.0001	106.167	0.011	0.001	3.69E-05	1.62E-04
Xylenes	0.0010	106.167	0.106	0.006	3.69E-04	1.62E-03
C8+ Heavies	0.0064	114.231	0.731	0.039	2.54E-03	1.11E-02
Total	100.0002		1853.921			
Total VOC				14.503	9.34E-01	4.09

Gas stream composition obtained from Chaco Compressor Station extended gas analysis dated 11/29/2018

Component Weights (lb/lb-mole) = (% / 100) * Molecular Weights (lb/lb-mole)

Weight Percent of TOC (%) = 100 x Component Weights (lb/lb-mole) / Total Component Weight (lb/lb-mole)

Uncontrolled Emission Rates (pph) = Total Uncontrolled TOC Emission Rate (pph) x (% / 100)

Uncontrolled Emission Rates (tpy) = Total Uncontrolled TOC Emission Rate (tpy) x (% / 100)

Equipment Leaks Emissions Calculations

Unit Number: F1

Description: Valves, Connectors, Seals & Lines

Number of Compression Units at the Facility: 4
Number of Dehydrators at the Facility: 0

	Equipment Count				Instrument Count				
					Pressure				
Process Equipment Description			Pump	Compressor	Relief				
	Valves	Connectors	Seals	Seals	Valves	Open-end	Flow	Level	Pressure
Station inlet, meter run to pulsation dampener	17	14	0	0	1	13	3	0	3
Pulsation dampener	12	8	0	0	0	2	0	4	1
Compressor suction header	7	4	0	0	0	3	0	0	1
Suction header feed to instrument gas header	3	1	0	0	0	1	0	0	0
Compressor discharge header and bypass to station discharge	6	5	0	0	0	3	0	1	1
Compressor discharge header and suction header bypass lines	4	2	0	0	0	2	0	0	1
Fuel gas header	2	2	0	0	1	2	0	0	1
Instrument gas header	2	2	0	0	1	2	0	0	0
Station discharge header	9	5	0	0	1	6	0	0	2
Fuel gas recovery header	2	2	0	0	1	2	0	0	0
Fuel gas feed and filter loop	15	9	0	0	0	1	0	4	1
Instrument gas feed and filter loop	9	11	0	0	0	3	0	0	0
Produced water storage tank	1	0	0	0	0	1	0	1	0
ESD panel	12	0	0	0	0	0	0	0	0
Starting gas header	6	2	0	0	1	3	0	0	0
Hot gas header	2	2	0	0	0	2	0	0	0
Volume bottle lop	12	4	0	24	1	2	0	0	1
Components from Compressors	176	236	0	16	24	44	0	16	36
Components from dehydrators	0	0	0	0	0	0	0	0	0
Total	297	309	0	40	31	92	3	26	48
Adjusted Total	441	415	0	40	31	118			

The following additions are included in the Adjusted Total:

- 1 valve is added for each open end line
- 2 connectors are added for each flow meter
- 2 valves, 2 connectors and 1 open end line are added for each level gauge
- 1 connector is added for each pressure gauge

The component count is based on an evaluation of the Sim Mesa Compressor Station (two stage compression)

Truck Loading (Condensate) Emissions Calculations

Unit Number: L1

Description: Truck Loading

Emission Factor

0.6 Saturation factor, S AP-42, Table 5.2-1 (submerged loading

4.409 psia True vapor pressure of liquid, P TANKS 4.0 output file
65.6443 lb/lb-mole Molecular weight of vapors, M TANKS 4.0 output file
64.94 °F Temperature of liquid TANKS 4.0 output file

524.61 °R Temperature of liquid, T °F + 459.67

4.12 lb/10³ gal Emission factor, L AP-42, Section 5.2, Equation 1

 $L = 12.46 \frac{SPM}{T}$

Production Rate

9.00 10^3 gal/hr Maximum hourly production rate Harvest Four Corners, LLC 1,890.00 10^3 gal/yr Maximum annual production rate Harvest Four Corners, LLC

Steady-State Emission Rates

Pollutant	Uncontrolled E	mission Rates,
	pph	tpy
VOC	37.12	3.90

Uncontrolled Emission Rate (pph) = lb/10^3 gal x 10^3 gal/hr Uncontrolled Emission Rate (tpy) = lb/10^3 gal x 10^3 gal/yr / 2,000 lb/ton

	Percent		
Pollutants	of VOC,	Uncontrolled E	mission Rates,
	%	pph	tpy
Benzene	0.5560	2.06E-01	2.17E-02
Ethylbenzene	0.0172	6.38E-03	6.70E-04
n-Hexane	8.2937	3.08	3.23E-01
Isooctane	0.0302	1.12E-02	1.18E-03
Toluene	0.6893	2.56E-01	2.69E-02
m-Xylene	0.1283	4.76E-02	5.00E-03

Percent of VOC calculated from the TANKS 4.0 results

Percent of VOC (%) = 100 x Pollutant Emission Rate (lb/yr) / Total VOC Emission Rate (lb/yr)

Uncontrolled Emission Rates (pph) = VOC Uncontrolled Emission Rate (pph) x (% / 100)

Uncontrolled Emission Rates (tpy) = VOC Uncontrolled Emission Rate (tpy) x (% / 100)

Truck Loading (Condensate) Emissions Calculations AOS

Unit Number: L1 (AOS)
Description: Truck Loading

Emission Factor

0.6 Saturation factor, S AP-42, Table 5.2-1 (submerged loading

& dedicated service)
4.409 psia True vapor pressure of liquid, P TANKS 4.0 output file
65.6443 lb/lb-mole Molecular weight of vapors, M TANKS 4.0 output file
64.94 °F Temperature of liquid TANKS 4.0 output file
524.61 °R Temperature of liquid, T °F + 459.67

24.61 °R Temperature of liquid, T °F + 459.67 4.12 lb/10³ gal Emission factor, L AP-42, Section 5.2, Equation 1

 $L = 12.46 \frac{SPM}{T}$

Production Rate

9.00 10^3 gal/hr Maximum hourly production rate Harvest Four Corners, LLC 2,520.00 10^3 gal/yr Maximum annual production rate Harvest Four Corners, LLC

Steady-State Emission Rates

Pollutant	Uncontrolled Emission Rates	
	pph	tpy
VOC	37.12	5.20

Uncontrolled Emission Rate (pph) = lb/10^3 gal x 10^3 gal/hr Uncontrolled Emission Rate (tpy) = lb/10^3 gal x 10^3 gal/yr / 2,000 lb/ton

	Percent		
Pollutants	of VOC,	Uncontrolled E	mission Rates,
	%	pph	tpy
Benzene	0.5560	2.06E-01	2.89E-02
Ethylbenzene	0.0172	6.38E-03	8.93E-04
n-Hexane	8.2937	3.08	4.31E-01
Isooctane	0.0302	1.12E-02	1.57E-03
Toluene	0.6893	2.56E-01	3.58E-02
m-Xylene	0.1283	4.76E-02	6.67E-03

Percent of VOC calculated from the TANKS 4.0 results

Percent of VOC (%) = $100 \times Pollutant Emission Rate (lb/yr) / Total VOC Emission Rate (lb/yr) Uncontrolled Emission Rates (pph) = VOC Uncontrolled Emission Rate (pph) x (% / <math>100$)

Uncontrolled Emission Rates (tpy) = VOC Uncontrolled Emission Rate (tpy) x (% / 100)

Truck Loading (Produced Water) Emissions Calculations

Unit Number: L2

Description: Truck Loading (Exempt Source)

Emission Factor

0.6 Saturation factor, S AP-42, Table 5.2-1 (submerged loading

& dedicated service)

0.3619 psia True vapor pressure of liquid, P Estimated using Antoine's Equation

18.02 lb/lb-mole Molecular weight of vapors, M TANKS 4.0 Database

70 °FTemperature of liquidEstimated529.67 °RTemperature of liquid, T°F + 459.67

0.09 lb/10³ gal Emission factor, L AP-42, Section 5.2, Equation 1

 $L = 12.46 \frac{SPM}{T}$

Production Rate

9.00 10³ gal/hr Maximum hourly production rate Harvest Four Corners, LLC 630.00 10³ gal/yr Maximum annual production rate Harvest Four Corners, LLC

Steady-State Emission Rates

Pollutant	Uncontrolled Emission Rates	
	pph	tpy
VOC	8.28E-01	2.90E-02

Uncontrolled Emission Rate (pph) = lb/10³ gal x 10³ gal/hr Uncontrolled Emission Rate (tpy) = lb/10³ gal x 10³ gal/yr / 2,000 lb/ton

Pollutants	Mass Fraction	Uncontrolled E	mission Rates,
		pph	tpy
Benzene	0.0267	2.21E-04	7.75E-06
Ethylbenzene	0.0027	2.21E-05	7.75E-07
n-Hexane	0.0840	6.96E-04	2.43E-05
Toluene	0.0344	2.85E-04	9.96E-06
m-Xylene	0.0229	1.90E-04	6.64E-06

HAP mass fractions are estimated from the produced water tank emission factors

HAP Mass Fraction = HAP Emission Factor (lb/bbl) / VOC Emission Factor (lb/bbl)

Emission Rates (pph) = VOC Emission Rate (pph) x HAP Mass Fraction

Emission Rates (tpy) = VOC Emission Rate (tpy) x HAP Mass Fraction

Truck Loading (Produced Water) Emissions Calculations AOS

Unit Number: L2 (AOS)

Description: Truck Loading (Exempt Source)

Emission Factor

0.6 Saturation factor, S AP-42, Table 5.2-1 (submerged loading

& dedicated service)

0.3619 psia True vapor pressure of liquid, P Estimated using Antoine's Equation

18.02 lb/lb-moleMolecular weight of vapors, MTANKS 4.0 Database70 °FTemperature of liquidEstimated529.67 °RTemperature of liquid, T°F + 459.67

0.09 lb/10³ gal Emission factor, L AP-42, Section 5.2, Equation 1

 $L = 12.46 \frac{SPM}{T}$

Production Rate

9.00 10³ gal/hr Maximum hourly production rate Harvest Four Corners, LLC 840.00 10³ gal/yr Maximum annual production rate Harvest Four Corners, LLC

Steady-State Emission Rates

Pollutant	Uncontrolled Emission Rates	
	pph	tpy
VOC	8.28E-01	3.87E-02

Uncontrolled Emission Rate (pph) = lb/10^3 gal x 10^3 gal/hr Uncontrolled Emission Rate (tpy) = lb/10^3 gal x 10^3 gal/yr / 2,000 lb/ton

Pollutants	Mass Fraction	Uncontrolled E	mission Rates,
		pph	tpy
Benzene	0.0267	2.21E-04	1.03E-05
Ethylbenzene	0.0027	2.21E-05	1.03E-06
n-Hexane	0.0840	6.96E-04	3.25E-05
Toluene	0.0344	2.85E-04	1.33E-05
m-Xylene	0.0229	1.90E-04	8.85E-06

HAP mass fractions are estimated from the produced water tank emission factors

HAP Mass Fraction = HAP Emission Factor (lb/bbl) / VOC Emission Factor (lb/bbl)

Emission Rates (pph) = VOC Emission Rate (pph) x HAP Mass Fraction

Emission Rates (tpy) = VOC Emission Rate (tpy) x HAP Mass Fraction

Pig Receiver Emissions Calculations

Unit Number: PR

Description: Pig Receiver (Exempt Source)

Throughput

130 events/yrBlowdowns per yearHarvest Four Corners, LLC937 scf/eventGas loss per blowdownHarvest Four Corners, LLC121,810 scf/yrAnnual gas lossevents/yr x scf/event

Emission Rates

		Uncontrolled,
	Emission	Emission
Pollutants	Factors,	Rates,
	lb/scf	tpy
VOC	7.085E-03	4.32E-01
Benzene	1.853E-05	1.13E-03
Ethylbenzene	2.798E-07	1.70E-05
n-Hexane	1.279E-04	7.79E-03
Isooctane	2.641E-06	1.61E-04
Toluene	1.846E-05	1.12E-03
Xylene	2.798E-06	1.70E-04

Emission factors calculated from gas composition (see table below) Uncontrolled Emission Rates (tpy) = scf/yr x lb/scf / 2,000 lb/ton

Gas Composition

	Mole	Molecular	Emission
Components	Percents,	Weights,	Factors,
	%	lb/lb-mole	lb/scf
Carbon dioxide	1.9364	44.01	2.246E-03
Hydrogen sulfide	0.0000	34.07	0.000E+00
Nitrogen	0.3306	28.01	2.441E-04
Methane	85.6254	16.04	3.620E-02
Ethane	7.0286	30.07	5.571E-03
Propane	2.9810	44.09	3.464E-03
Isobutane	0.5417	58.12	8.298E-04
n-Butane	0.7958	58.12	1.219E-03
Isopentane	0.2733	72.15	5.197E-04
n-Pentane	0.1943	72.15	3.695E-04
Cyclopentane	0.0080	70.14	1.479E-05
n-Hexane	0.0563	86.17	1.279E-04
Cyclohexane	0.0193	84.16	4.281E-05
Other hexanes	0.1341	86.18	3.046E-04
Heptanes	0.0275	100.20	7.263E-05
Methylcyclohexane	0.0228	98.19	5.901E-05
Isooctane	0.0010	100.21	2.641E-06
Benzene	0.0090	78.11	1.853E-05
Toluene	0.0076	92.14	1.846E-05
Ethylbenzene	0.0001	106.17	2.798E-07
Xylenes	0.0010	106.17	2.798E-06
C8+ Heavies	0.0064	110.00	1.856E-05
Total	100.0002		
Total VOC			7.085E-03

Gas stream composition obtained from Chaco Compressor Station extended gas analysis dated 11/29/2018 Emission Factors (lb/scf) = (% / 100) x lb/lb-mole / 379.4 scf/lb-mole

Malfunction Emissions Data and Calculations

Unit Number: M1

Description: Malfunctions

Emission Rates

Pollutants	Weight Percents, %	Uncontrolled Emission Rates, tpy
VOC		10.00
Benzene	2.615E-01	2.62E-02
Ethylbenzene	3.950E-03	3.95E-04
n-Hexane	1.805E+00	1.80E-01
Isooctane	3.728E-02	3.73E-03
Toluene	2.605E-01	2.60E-02
Xylene	3.950E-02	3.95E-03

Weight percents calculated from gas composition (see table below)
Uncontrolled Emission Rates (tpy) = VOC Emission Rate (tpy) x (% / 100)

Gas Composition

Components	Mole Percents, %	Molecular Weights, lb/lb-mole	Component Weights, lb/lb-mole	Weight Percent, %
Carbon dioxide	1.9364	44.01		
Hydrogen sulfide	0.0000	34.07		
Nitrogen	0.3306	28.01		
Methane	85.6254	16.04		
Ethane	7.0286	30.07		
Propane	2.9810	44.09	1.3143	4.889E+01
Isobutane	0.5417	58.12	0.3148	1.171E+01
n-Butane	0.7958	58.12	0.4625	1.721E+01
Isopentane	0.2733	72.15	0.1972	7.335E+00
n-Pentane	0.1943	72.15	0.1402	5.215E+00
Cyclopentane	0.0080	70.14	0.0056	2.087E-01
n-Hexane	0.0563	86.17	0.0485	1.805E+00
Cyclohexane	0.0193	84.16	0.0162	6.042E-01
Other hexanes	0.1341	86.18	0.1156	4.299E+00
Heptanes	0.0275	100.20	0.0276	1.025E+00
Methylcyclohexane	0.0228	98.19	0.0224	8.328E-01
Isooctane	0.0010	100.21	0.0010	3.728E-02
Benzene	0.0090	78.11	0.0070	2.615E-01
Toluene	0.0076	92.14	0.0070	2.605E-01
Ethylbenzene	0.0001	106.17	0.0001	3.950E-03
Xylenes	0.0010	106.17	0.0011	3.950E-02
C8+ Heavies	0.0064	110.00	0.0070	2.619E-01
Total	100.0002			
Total VOC			2.6882	

Gas stream composition obtained from Chaco Compressor Station extended gas analysis dated 11/29/2018 Component Weights (lb/lb-mole) = (% / 100) x Molecular Weights (lb/lb-mole)
Weight Percents (%) = 100 x Component Weights (lb/lb-mole) / Total VOC Weight (lb/lb-mole)

Controlled Condensate Storage Tank Emissions Data and Calculations

Unit Number: T4 & T5

Description: Condensate Storage Tanks (with flash emissions)

Emission Rates

Source/Pollutants	Working/Brea	athing Losses, tpy	Flash Losses, tpy	Uncontrolled Emission Rates, tpy
T4				
VOC	6,470.86	3.24	98.58	101.81
Benzene	35.98	1.80E-02	6.32E-01	6.50E-01
Ethylbenzene	1.11	5.55E-04	1.76E-02	1.81E-02
n-Hexane	536.67	2.68E-01	6.20	6.47
Isooctane	1.96	9.79E-04	2.30E-02	2.40E-02
Toluene	44.60	2.23E-02	7.48E-01	7.70E-01
Xylene	8.30	4.15E-03	1.50E-01	1.54E-01
TE				
T5	0.407.00	0.07	00.70	04.70
VOC	6,137.86	3.07	88.72	91.79
Benzene	34.13	1.71E-02	5.69E-01	5.86E-01
Ethylbenzene	1.06	5.29E-04	1.58E-02	1.64E-02
n-Hexane	509.06	2.55E-01	5.58	5.84
Isooctane	1.85	9.26E-04	2.07E-02	2.16E-02
Toluene	42.31	2.12E-02	6.73E-01	6.94E-01
Xylene	7.88	3.94E-03	1.35E-01	1.39E-01
Combined Total				
VOC	12,608.72	6.30	187.30	193.60
Benzene	70.10	3.51E-02	1.20	1.24
Ethylbenzene	2.17	1.08E-03	3.34E-02	3.45E-02
n-Hexane	1,045.73	5.23E-01	11.78	12.31
Isooctane	3.81	1.91E-03	4.37E-02	4.56E-02
Toluene	86.91	4.35E-02	1.42	1.46
Xylene	16.18	8.09E-03	2.84E-01	2.92E-01

Working/breathing losses are taken from TANKS 4.0 results

Flash emissions are taken from ProMax 4 results

It is assumed the condensate throughput to each tank will be proportional to its capacity. Unit T4 will receive 52.6% of the condensate and Unit T5 will receive the remainder. This distribution is used for the TANKS 4 input. The flash emissions (from ProMax 4) are assigned to the tanks using the same percentages It is assumed the EVRU captures 25% of the working/breathing losses as well as 25% of the flash emissions

Controlled Condensate Storage Tank Emissions Data and Calculations

Unit Number: T4 & T5

Description: Condensate Tanks (flash emissions)

Calculation of Emission Rates from ProMax Results

Pollutant	Emission Rate,		
	pph tpy		
VOC		187.30	
Benzene	2.74E-01	1.20	
Ethylbenzene	7.63E-03	3.34E-02	
n-Hexane	2.69	11.78	
Isooctane	9.99E-03	4.37E-02	
Toluene	3.25E-01	1.42	
Xylenes	6.49E-02	2.84E-01	

VOC tpy and HAP pph emission rates are obtained from the ProMax output HAP Emission Rate (tpy) = HAP Emission Rate (pph) x 8,760 hr/yr / 2,000 lb/ton

Composition of Post Flash Condensate (for use in TANKS 4)

	Speciated	Mass
	Mass	Percent,
Component	Fraction	Of VOC,
		%
Carbon dioxide	1.127E-04	
Nitrogen	1.690E-07	
Methane	1.462E-04	
Ethane	1.834E-03	
Propane	1.202E-02	
Isobutane	1.165E-02	1.7699
n-Butane	2.822E-02	3.4305
Isopentane	3.824E-02	3.8319
n-Pentane	3.954E-02	3.9625
n-Hexane	1.136E-01	11.3795
Cyclohexane	0.000E+00	0.0000
n-Heptane	2.594E-01	25.9911
Octane	2.877E-01	28.8337
Nonane	6.620E-02	6.6341
Decane	3.479E-02	3.4862
Isooctane	1.310E-03	0.1313
Benzene	1.237E-02	1.2395
Ethylbenzene	3.971E-03	0.3979
Toluene	5.335E-02	5.3460
Xylenes	3.558E-02	3.5659
Total	1.000E+00	
VOC Total	9.979E-01	100.0000

Speciated Mass Fractions are obtained from the ProMax output

VOC Total = Sum (Propane - C8+ Heavies Mass Fractions)

Mass Percent of VOC (%) = 100 x Component Mass Fraction / VOC Total Mass Fraction

Propane Mass Percent of VOC is included with the n-butane and isobutane percentages (even distribution)

Uncontrolled Condensate Storage Tank Emissions Data and Calculations

Unit Number: T4 & T5

Description: Condensate Storage Tanks (with flash emissions)

Emission Rates

Source/Pollutants	Working/Brea	athing Losses, tpy	Flash Losses, tpy	Uncontrolled Emission Rates, tpy
T4				
VOC	8,627.81	4.31	131.42	135.73
Benzene	47.97	2.40E-02	8.42E-01	8.66E-01
Ethylbenzene	1.48	7.40E-04	2.35E-02	2.42E-02
n-Hexane	715.56	3.58E-01	8.27	8.63
Isooctane	2.61	1.31E-03	3.07E-02	3.20E-02
Toluene	59.47	2.97E-02	9.97E-01	1.03E+00
Xylene	11.07	5.54E-03	2.00E-01	2.05E-01
T5				
VOC	8,183.81	4.09	118.28	122.37
Benzene	45.50	2.28E-02	7.58E-01	7.81E-01
Ethylbenzene	1.41	7.05E-04	2.11E-02	2.18E-02
n-Hexane	678.74	3.39E-01	7.44	7.78
Isooctane	2.47	1.24E-03	2.76E-02	2.89E-02
Toluene	56.41	2.82E-02	8.98E-01	9.26E-01
Xylene	10.50	5.25E-03	1.80E-01	1.85E-01
Combined Total				
VOC	16,811.62	8.41	249.70	258.11
Benzene	93.47	4.67E-02	1.60	1.65
Ethylbenzene	2.89	1.45E-03	4.46E-02	4.60E-02
n-Hexane	1,394.30	6.97E-01	15.71	16.41
Isooctane	5.08	2.54E-03	5.83E-02	6.09E-02
Toluene	115.88	5.79E-02	1.90	1.95
Xylene	21.57	1.08E-02	3.79E-01	3.90E-01

Working/breathing losses are taken from TANKS 4.0 results

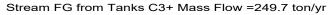
Flash emissions are taken from ProMax 4 results

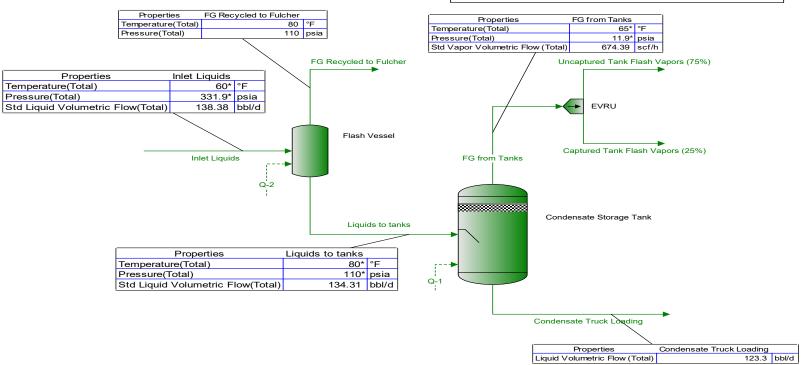
It is assumed the condensate throughput to each tank will be proportional to its capacity. Unit T4 will receive 52.6% of the condensate and Unit T5 will receive the remainder. This distribution is used for the TANKS 4 input. The flash emissions (from ProMax 4) are assigned to the tanks using the same percentages

Uncontrolled Condensate Storage Tank Emissions Data and Calculations

Unit Number: T4 & T5

Description: Condensate Tanks (flash emissions)


Calculation of Emission Rates from ProMax Results


Pollutant	Emission Rate,		
	pph	tpy	
VOC		249.70	
Benzene	3.65E-01	1.60	
Ethylbenzene	1.02E-02	4.46E-02	
n-Hexane	3.59	15.71	
Isooctane	1.33E-02	5.83E-02	
Toluene	4.33E-01	1.90	
Xylenes	8.65E-02	3.79E-01	

VOC tpy and HAP pph emission rates are obtained from the ProMax output HAP Emission Rate (tpy) = HAP Emission Rate (pph) x 8,760 hr/yr / 2,000 lb/ton

Actual Chaco Condensate Flash Emissions Updated 6.20.2018

Stream Uncaptured Tank Flash Vapors (75%) C3+ Mass Flow =187.3 ton/yr

12 Month Rolling Sum = 45,000 bbls

Process Streams		Captured Tank Flash Vapors (25%)	Condensate Truck Loading	FG from Tanks
Composition	Status:	Solved	Solved	Solved
Phase: Total	From Block To Block:	EVRU 	Condensate Storage Tank	Condensate Storage Tanl EVRU
Mole Fraction				
Nitrogen		0.000496614	5.79014E-07	0.00049661
Carbon Dioxide		0.0195727	0.000245753	0.019572
Methane		0.208166	0.000874726	0.20816
Ethane		0.206726	0.00585617	0.20672
Propane		0.253693	0.0261633	0.25369
sobutane		0.0692628	0.0192473	0.069262
n-Butane		0.112481	0.0466189	0.11248
sopentane		0.0469359	0.0508805	0.046935
n-Pentane		0.0354017	0.0526141	0.035401
Hexane		0.0234232	0.126504	0.023423
Benzene		0.00263250	0.0152018	0.0026325
Cyclohexane		0	0	
Heptane		0.0138252	0.248493	0.013825
Γoluene		0.00264260	0.0555843	0.0026426
Octane		0.00389027	0.241819	0.0038902
n-Xylene		0.000458718	0.0321776	0.00045871
Nonane		0.000236961	0.0495536	0.00023696
2,2,4-Trimethylpentane		6.55946E-05	0.00110134	6.55946E-0
210		3.55535E-05	0.0234729	3.55535E-0
Ethylbenzene		5.39256E-05	0.00359094	5.39256E-0
Molar Flow		lbmol/h	lbmol/h	lbmol/h
Nitrogen		0.000220635	7.57350E-06	0.00088254
Carbon Dioxide		0.00869574	0.00321445	0.034782
Methane 		0.0924841	0.0114414	0.36993
Ethane		0.0918440	0.0765987	0.36737
Propane		0.112711	0.342216	0.45084
sobutane		0.0307720	0.251754	0.12308
n-Butane		0.0499728	0.609775	0.19989
sopentane		0.0208527	0.665516	0.083410
n-Pentane		0.0157282	0.688193	0.062912
Hexane		0.0104065	1.65467	0.041625
Benzene Svalahavana		0.00116957 0	0.198839	0.0046782
Cyclohexane		-	3 35030	0.004500
Heptane Felicina		0.00614223	3.25029	0.024568
Toluene Potono		0.00117405	0.727043	0.0046962
Octane n-Xylene		0.00172837 0.000203799	3.16299 0.420883	0.0069134 0.00081519
n-xylene Nonane		0.000203799	0.420883	0.00081519
vonane 2,2,4-Trimethylpentane		2.91423E-05	0.044055	0.00042110
۲.۲.۲-۱۱۱۱۱۱۲۱۱۷۱۱۲۲۱۱۱۵۱۱۲		2.91423E-U3	0.0144033	0.00011000
C10		1.57957E-05	0.307026	6.31827E-0

D Ot		FO December 1 to Fulction		L'accide to tende	Harris Harle Harle Verrage (350)
Process Streams		FG Recycled to Fulcher	iniet Liquids	Liquids to tanks	Uncaptured Tank Flash Vapors (75%)
Composition	Status:	Solved			Solved
Phase: Total	From Block	Flash Vessel		Flash Vessel	EVRU
	To Block:		Flash Vessel	Condensate Storage Tank	
Mole Fraction					
Nitrogen		0.00543886	0.00038*	5.99117E-05	0.000496614
Carbon Dioxide		0.0254534	0.00392*	0.00255752	0.0195727
Methane		0.700715	0.06584*	0.0256697	0.208166
Ethane		0.137383	0.03628*	0.0298830	0.206726
Propane		0.0738966	0.0546*	0.0533790	0.253693
Isobutane		0.0139736	0.02456*	0.0252298	0.0692628
n-Butane		0.0207721	0.05249*	0.0544969	0.112481
Isopentane		0.00791586	0.04788*	0.0504086	0.0469359
n-Pentane		0.00593451	0.0479*	0.0505553	0.0354017
Hexane		0.00403655	0.10762*	0.114174	0.0234232
Benzene		0.000451105	0.01291*	0.0136983	0.00263250
Cyclohexane		0	0*	0	0
Heptane		0.00257418	0.20746*	0.220424	0.0138252
Toluene		0.000489120	0.04635*	0.0492517	0.00264260
Octane		0.000790585	0.20071*	0.213359	0.00389027
m-Xylene		9.21087E-05	0.0267*	0.0283836	0.000458718
Nonane		5.21947E-05	0.04106*	0.0436547	0.000236961
2,2,4-Trimethylpentane		1.20274E-05	0.00092*	0.000977450	6.55946E-05
C10		8.60600E-06	0.01944*	0.0206695	3.55535E-05
Ethylbenzene		1.08341E-05	0.00298*	0.00316787	5.39256E-05
Molar Flow		lbmol/h	lbmol/h	lbmol/h	lbmol/h
Nitrogen		0.00511281	0.00600292*	0.000890115	0.000661906
Carbon Dioxide		0.0239275	0.0619249*	0.0379974	0.0260872
Methane		0.658708	1.04009*	0.381378	0.277452
Ethane		0.129147	0.573121*	0.443975	0.275532
Propane		0.0694666	0.862525*	0.793059	0.338132
Isobutane		0.0131358	0.387978*	0.374843	0.0923161
n-Butane		0.0195268	0.829193*	0.809666	0.149918
Isopentane		0.00744131	0.756368*	0.748927	0.0625580
n-Pentane		0.00557874	0.756684*	0.751106	0.0471847
Hexane		0.00379456	1.70009*	1.69630	0.0312194
Benzene		0.000424061 0	0.203941*	0.203517 0	0.00350870
Cyclohexane		0.00241986	0* 3.27728*	3.27486	0.0184267
Heptane					
Toluene		0.000459798	0.732199* 3.17065*	0.731739 3.16991	0.00352216 0.00518510
Octane m-Xylene		0.000743190 8.65869E-05	0.421784*	0.421698	0.00518510
Nonane		4.90657E-05	0.648632*	0.421696	0.000811396
2,2,4-Trimethylpentane		4.90657E-05 1.13063E-05	0.0145334*	0.046503	8.74270E-05
2,2,4-1 nmethylpentane C10		8.09008E-06	0.307097*	0.307089	4.73870E-05
Ethylbenzene		8.09008E-06 1.01846E-05	0.307097**	0.307089	4.73870E-05 7.18740E-05
Lutyidelizelle		1.01040L-03	0.0470730	0.0470034	7.10740L-03

Process Streams		Captured Tank Flash Vapors (25%)	Condensate Truck Loading	FG from Tanks
Composition	Status:	Solved	Solved	Solved
Phase: Total	From Block: To Block:	EVRU 	Condensate Storage Tank	Condensate Storage Tar EVRU
Mass Fraction				
Nitrogen		0.000327213	1.68958E-07	0.0003272
Carbon Dioxide		0.0202602	0.000112660	0.020260
Methane		0.0785467	0.000146173	0.078546
Ethane		0.146204	0.00183425	0.1462
Propane		0.263118	0.0120175	0.2631
sobutane		0.0946866	0.0116530	0.09468
-Butane		0.153768	0.0282247	0.1537
sopentane		0.0796490	0.0382388	0.07964
-Pentane		0.0600757	0.0395418	0.06007
lexane		0.0474762	0.113556	0.04747
Benzene		0.00483651	0.0123690	0.004836
Cyclohexane		0	0	
leptane		0.0325831	0.259367	0.03258
oluene		0.00572689	0.0533479	0.005726
Octane		0.0104520	0.287733	0.01045
n-Xylene		0.00114544	0.0355844	0.001145
lonane		0.000714820	0.0662026	0.0007148
2,2,4-Trimethylpentane		0.000176234	0.00131045	0.0001762
C10		0.000118981	0.0347889	0.0001189
Ethylbenzene		0.000134655	0.00397113	0.0001346
Mass Flow		lb/h	lb/h	lb/h
Nitrogen		0.00618075	0.000212159	0.02472
Carbon Dioxide		0.382695	0.141467	1.530
Methane		1.48367	0.183548	5.934
thane		2.76166	2.30325	11.04
Propane		4.97004	15.0902	19.88
sobutane		1.78854	14.6325	7.154
-Butane		2.90453	35.4415	11.61
sopentane		1.50449	48.0162	6.017
n-Pentane		1.13477	49.6523	4.539
Hexane		0.896781 0.0913570	142.592 15.5317	3.587
Benzene Cyclohexane		0.0913570	15.5317	0.3654
Jycionexane Heptane		0.615464	325.685	2.461
neptane Foluene		0.013464	66.9886	0.4327
roluene Octane		0.108176	361.304	0.4327 0.7897
n-Xylene		0.197429	44.6830	0.7697
n-⊼ylene √onane		0.0216363	83.1300	0.0654
2,2,4-Trimethylpentane		0.0133023	1.64552	0.03400
C10		0.00332888	43.6841	0.008989
J 10		0.00224743	43.0641	0.000909

Process Streams		FG Recycled to Fulcher	Inlet Liquids	Liquids to tanks	Uncaptured Tank Flash Vapors (75%)
Composition	Status:	Solved	Solved	Solved	Solved
Phase: Total	From Block	Flash Vessel	_	Flash Vessel	EVRU
	To Block:	_	Flash Vessel	Condensate Storage Tank	_
Mass Fraction					
Nitrogen		0.00642369	0.000124238*	1.87306E-05	0.00032721
Carbon Dioxide		0.0472283	0.00201344*	0.00125615	0.020260
Methane		0.473939	0.0123273*	0.00459586	0.078546
Ethane		0.174165	0.0127319*	0.0100281	0.14620
Propane		0.137382	0.0280992*	0.0262689	0.2631
lsobutane		0.0342420	0.0166601*	0.0163656	0.094686
n-Butane		0.0509017	0.0356062*	0.0353500	0.15376
Isopentane		0.0240789	0.0403171*	0.0405891	0.079649
n-Pentane		0.0180520	0.0403340*	0.0407072	0.06007
Hexane		0.0146657	0.108239*	0.109806	0.04747
Benzene		0.00148561	0.0117693*	0.0119415	0.004836
Cyclohexane		0	0*	0	
Heptane		0.0108749	0.242615*	0.246496	0.03258
Toluene		0.00190006	0.0498422*	0.0506452	0.005726
Octane		0.00380744	0.267578*	0.271996	0.01045
m-Xylene		0.000412280	0.0330826*	0.0336298	0.001145
Nonane		0.000282235	0.0614611*	0.0624857	0.0007148
2,2,4-Trimethylpentane		5.79235E-05	0.00122650*	0.00124608	0.0001762
C10		5.16251E-05	0.0322814*	0.0328212	0.00011898
Ethylbenzene		4.84936E-05	0.00369236*	0.00375339	0.0001346
Mass Flow		lb/h	lb/h	lb/h	lb/h
Nitrogen		0.143227	0.168162*	0.0249351	0.01854
Carbon Dioxide		1.05304	2.72528*	1.67225	1.148
Methane		10.5673	16.6855*	6.11824	4.451
Ethane		3.88332	17.2332*	13.3499	8.284
Propane		3.06317	38.0336*	34.9704	14.91
Isobutane		0.763484	22.5502*	21.7867	5.365
n-Butane		1.13494	48.1945*	47.0596	8.713
Isopentane		0.536881	54.5711*	54.0342	4.513
n-Pentane		0.402499	54.5938*	54.1913	3.404
Hexane		0.326997	146.506*	146.179	2.690
Benzene		0.0331242	15.9302*	15.8971	0.2740
Cyclohexane		0	0*	0	
Heptane		0.242475	328.390*	328.147	1.846
Toluene		0.0423650	67.4636*	67.4213	0.3245
Octane		0.0848935	362.179*	362.094	0.5922
m-Xylene		0.00919250	44.7787*	44.7695	0.06490
Nonane		0.00629292	83.1903*	83.1840	0.04050
2,2,4-Trimethylpentane		0.00129150	1.66013*	1.65884	0.009986
C10		0.00115107	43.6943*	43.6931	0.006742
Ethylbenzene		0.00108125	4.99778*	4.99670	0.007630

Process Streams		Captured Tank Flash Vapors (25%)	Condensate Truck Loading	FG from Tanks
Properties	Status:	Solved	Solved	Solved
Phase: Total	From Block	EVRU	Condensate Storage Tank	Condensate Storage Tank
	To Block:	-	_	EVRU
Property	Units			
Temperature	°F	65	65	65*
Pressure	psia	11.9	11.9	11.9*
Mole Fraction Vapor		1	0	1
Mole Fraction Light Liquid		0	1	0
Mole Fraction Heavy Liquid		0	0	0
Molecular Weight	lb/lbmol	42.5162	96.0009	42.5162
Mass Density	lb/ft^3	0.0910137	43.5334	0.0910137
Molar Flow	lbmol/h	0.444279	13.0800	1.77712
Mass Flow	lb/h	18.8890	1255.69	75.5562
Vapor Volumetric Flow	ft^3/h	207.541	28.8444	830.163
Liquid Volumetric Flow	gpm	25.8752		103.501
Std Vapor Volumetric Flow	MMSCFD	0.00404633	0.119128	0.0161853
Std Liquid Volumetric Flow	sgpm	0.0762358	3.61229*	0.304943
Compressibility		0.987290		0.987290
Specific Gravity		1.46797	0.697997	1.46797
API Gravity			70.5105	
Enthalpy	Btu/h	-21136.4	-1.09709E+06	-84545.5
Mass Enthalpy	Btu/lb	-1118.98	-873.691	-1118.98
Mass Cp	Btu/(lb*°F)	0.401948	0.504728	0.401948
Ideal Gas CpCv Ratio		1.13240	1.05850	1.13240
Dynamic Viscosity	cP	0.00844620	0.410362	0.00844620
Kinematic Viscosity	cSt	5.79340		5.79340
Thermal Conductivity	Btu/(h*ft*°F)	0.0110781	0.0723474	0.0110781
Surface Tension	lbf/ft		0.00141778?	
Net Ideal Gas Heating Value	Btu/ft^3	2184.29		2184.29
Net Liquid Heating Value	Btu/lb	19352.1	18989.2	19352.1
Gross Ideal Gas Heating Value		2374.76		2374.76
Gross Liquid Heating Value	Btu/lb	21052.2	20447.9	21052.2

2		500			
Process Streams		FG Recycled to Fulcher	Inlet Liquids	Liquids to tanks	Uncaptured Tank Flash Vapors (75%)
Properties	Status:	Solved			Solved
Phase: Total	From Block	Flash Vessel		Flash Vessel	EVRU
	To Block:	-	Flash Vessel	Condensate Storage Tank	
Property	Units				
Temperature	°F	80	60*	80*	65
Pressure	psia	110	331.9*	110*	11.9
Mole Fraction Vapor		1	0	0	1
Mole Fraction Light Liquid		0	1	1	0
Mole Fraction Heavy Liquid		0	0	0	0
Molecular Weight	lb/lbmol	23.7186	85.6828	89.6034	42.5162
Mass Density	lb/ft^3	0.466021	42.7432	42.4268	0.0910137
Molar Flow	lbmol/h	0.940051	15.7972	14.8571	1.33284
Mass Flow	lb/h	22.2967	1353.54	1331.25	56.6671
Vapor Volumetric Flow	ft^3/h	47.8449	31.6669	31.3775	622.622
Liquid Volumetric Flow	gpm	5.96508	3.94808	3.91200	77.6256
Std Vapor Volumetric Flow	MMSCFD	0.00856162	0.143875	0.135313	0.0121390
Std Liquid Volumetric Flow	sgpm	0.118979	4.03621	3.91724	0.228708
Compressibility		0.966686	0.119301	0.0401130	0.987290
Specific Gravity		0.818940	0.685327	0.680255	1.46797
API Gravity			74.9708	73.4031	
Enthalpy	Btu/h	-36218.2	-1.23508E+06	-1.18278E+06	-63409.2
Mass Enthalpy	Btu/lb	-1624.37	-912.477	-888.474	-1118.98
Mass Cp	Btu/(lb*°F)	0.469460	0.510195	0.519980	0.401948
Ideal Gas CpCv Ratio		1.22547	1.06605	1.06119	1.13240
Dynamic Viscosity	cP	0.0106496	0.349775	0.332812	0.00844620
Kinematic Viscosity	cSt	1.42661	0.510860	0.489708	5.79340
Thermal Conductivity	Btu/(h*ft*°F)	0.0168813	0.0712908	0.0697053	0.0110781
Surface Tension	lbf/ft		0.00116573	0.00123630	
Net Ideal Gas Heating Value	Btu/ft^3	1226.65	4330.01	4526.37	2184.29
Net Liquid Heating Value	Btu/lb	19548.3	19018.6	19009.8	19352.1
Gross Ideal Gas Heating Value		1348.67	4664.26	4874.05	2374.76
Gross Liquid Heating Value	Btu/lb	21500.5	20499.0	20482.2	21052.2

Process Streams		Captured Tank Flash Vapors (25%)	Condensate Truck Loading	FG from Tanks
Composition	Status:	Solved	Solved	Solved
Phase: Vapor	From Block: To Block:	EVRU 	Condensate Storage Tank	Condensate Storage Tan EVRU
Mole Fraction				
Nitrogen		0.000496614		0.00049661
Carbon Dioxide		0.0195727		0.019572
Methane		0.208166		0.20816
Ethane		0.206726		0.20672
Propane		0.253693		0.25369
sobutane		0.0692628		0.069262
n-Butane		0.112481		0.11248
sopentane		0.0469359		0.046935
n-Pentane		0.0354017		0.03540
Hexane		0.0234232		0.023423
Benzene		0.00263250		0.0026325
Cyclohexane		0		
Heptane		0.0138252		0.01382
Toluene		0.00264260		0.0026426
Octane		0.00389027		0.0038902
n-Xylene		0.000458718		0.0004587
Nonane		0.000236961		0.00023696
2,2,4-Trimethylpentane		6.55946E-05		6.55946E-0
C10		3.55535E-05		3.55535E-0
Ethylbenzene		5.39256E-05	Henry 1/16	5.39256E-0
Molar Flow		lbmol/h	lbmol/h	lbmol/h
Nitrogen		0.000220635		0.00088254
Carbon Dioxide		0.00869574		0.03478
Methane		0.0924841		0.36999
Ethane		0.0918440		0.3673
Propane		0.112711		0.4508
sobutane		0.0307720		0.1230
n-Butane		0.0499728		0.1998
sopentane n-Pentane		0.0208527 0.0157282		0.08341
i-Peniane Hexane		0.0157282		0.06291; 0.04162;
nexane Benzene		0.0114065		0.04162
Senzene Cyclohexane		0.00110957		0.0040762
Jycionexane Heptane		0.00614223		0.024568
Teptane Foluene		0.00014223		0.024300
roluerie Octane		0.00117405		0.0046962
n-Xylene		0.00172837		0.0009134
Nonane		0.000203799		0.00042110
2,2,4-Trimethylpentane		2.91423E-05		0.00042110
C10		1.57957E-05		6.31827E-0
		1.5795712-05		0.0 1021 L=0

Process Streams		FG Recycled to Fulcher	Inlet Liquids	Liquids to tanks	Uncaptured Tank Flash Vapors (75%)
Composition	Status:	Solved			
Phase: Vapor	From Block	Flash Vessel		Flash Vessel	EVRU
	To Block:		Flash Vessel	Condensate Storage Tank	
Mole Fraction					
Nitrogen		0.00543886			0.0004966
Carbon Dioxide		0.0254534			0.01957
Methane		0.700715			0.2081
Ethane		0.137383			0.2067
Propane		0.0738966			0.2536
Isobutane		0.0139736			0.06926
n-Butane		0.0207721			0.1124
Isopentane		0.00791586			0.04693
n-Pentane		0.00593451			0.03540
Hexane		0.00403655			0.02342
Benzene		0.000451105			0.002632
Cyclohexane		0			
Heptane		0.00257418			0.01382
Toluene		0.000489120			0.002642
Octane		0.000790585			0.003890
m-Xylene		9.21087E-05			0.0004587
Nonane		5.21947E-05			0.0002369
2,2,4-Trimethylpentane		1.20274E-05			6.55946E-
C10		8.60600E-06			3.55535E-
Ethylbenzene		1.08341E-05			5.39256E-
Molar Flow		lbmol/h	lbmol/h	lbmol/h	lbmol/h
Nitrogen		0.00511281			0.0006619
Carbon Dioxide		0.0239275			0.02608
Methane		0.658708			0.2774
Ethane		0.129147			0.2755
Propane		0.0694666			0.3381
Isobutane		0.0131358			0.09231
n-Butane		0.0195268			0.1499
Isopentane		0.00744131			0.06255
n-Pentane		0.00557874			0.04718
Hexane		0.00379456			0.03121
Benzene		0.000424061			0.003508
Cyclohexane		0			
Heptane 		0.00241986			0.01842
Toluene		0.000459798			0.003522
Octane		0.000743190			0.005185
m-Xylene		8.65869E-05			0.0006113
Nonane		4.90657E-05			0.0003158
2,2,4-Trimethylpentane		1.13063E-05			8.74270E-
C10		8.09008E-06			4.73870E-
Ethylbenzene		1.01846E-05			7.18740E-

Process Streams		Captured Tank Flash Vapors (25%)	Condensate Truck Loading	FG from Tanks
Composition	Status:	Solved	Solved	Solved
Phase: Vapor	From Block: To Block:	EVRU 	Condensate Storage Tank	Condensate Storage Tan EVRU
Mass Fraction				
Vitrogen		0.000327213		0.0003272
Carbon Dioxide		0.0202602		0.020260
/lethane		0.0785467		0.078546
Ethane		0.146204		0.14620
ropane		0.263118		0.2631
sobutane		0.0946866		0.09468
-Butane		0.153768		0.1537
sopentane		0.0796490		0.079649
-Pentane		0.0600757		0.06007
lexane		0.0474762		0.04747
Benzene		0.00483651		0.004836
Cyclohexane		0		
leptane		0.0325831		0.03258
oluene		0.00572689		0.005726
Octane		0.0104520		0.01045
n-Xylene		0.00114544		0.001145
lonane		0.000714820		0.0007148
,2,4-Trimethylpentane		0.000176234		0.0001762
C10		0.000118981		0.0001189
Ethylbenzene		0.000134655		0.0001346
lass Flow		lb/h	lb/h	lb/h
litrogen		0.00618075		0.02472
Carbon Dioxide		0.382695		1.530
lethane		1.48367		5.934
thane		2.76166		11.04
ropane		4.97004		19.88
sobutane		1.78854		7.154
-Butane		2.90453		11.61
sopentane		1.50449		6.017
-Pentane		1.13477		4.539
lexane Benzene		0.896781 0.0913570		3.587
senzene Cyclohexane		0.0913570		0.3654
ycionexane leptane		0.615464		2.461
Toluene		0.108176		0.4327
oluene Octane		0.108176		0.43270
n-Xylene		0.197429		0.7697
n-⊼ylene Ionane		0.0216363		0.06634
2,2,4-Trimethylpentane		0.0133023		0.01331
C10		0.0032866		0.008989

Process Streams		FG Recycled to Fulcher	Inlet Liquids	Liquids to tanks	Uncaptured Tank Flash Vapors (75%
Composition	Status:	Solved	Solved	Solved	Solved
Phase: Vapor	From Block			Flash Vessel	EVRU
r nace. Tapor	To Block:		Flash Vessel	Condensate Storage Tank	
Mass Fraction				- Condendate Clorage Family	
Nitrogen		0.00642369			0.0003272
Carbon Dioxide		0.0472283			0.02026
Methane		0.473939			0.07854
Ethane		0.174165			0.14620
Propane		0.137382			0.2631
Isobutane		0.0342420			0.09468
n-Butane		0.0509017			0.15376
Isopentane		0.0240789			0.079649
n-Pentane		0.0180520			0.06007
Hexane		0.0146657			0.047476
Benzene		0.00148561			0.0048369
Cyclohexane		0.00110001			0.0010000
Heptane		0.0108749			0.032583
Toluene		0.00190006			0.0057268
Octane		0.00380744			0.010452
m-Xylene		0.000412280			0.0011454
Nonane		0.000282235			0.00071482
2,2,4-Trimethylpentane		5.79235E-05			0.0001762
C10		5.16251E-05			0.00011898
Ethylbenzene		4.84936E-05			0.0001346
Mass Flow		lb/h	lb/h	lb/h	lb/h
Nitrogen		0.143227			0.018542
Carbon Dioxide		1.05304			1.1480
Methane		10.5673			4.4510
Ethane		3.88332			8.2849
Propane		3.06317			14.910
Isobutane		0.763484			5.3650
n-Butane		1.13494			8.713
Isopentane		0.536881			4.5134
n-Pentane		0.402499			3.4043
Hexane		0.326997			2.6903
Benzene		0.0331242			0.2740
Cyclohexane		0			
Heptane		0.242475			1.8463
Toluene		0.0423650			0.32452
Octane		0.0848935			0.59228
m-Xylene		0.00919250			0.064908
Nonane		0.00629292			0.040500
2,2,4-Trimethylpentane		0.00129150			0.009986
C10		0.00115107			0.006742; 0.007630;
Ethylbenzene		0.00108125			

Process Streams		Captured Tank Flash Vapors (25%)	Condensate Truck Loading	FG from Tanks
Properties	Status:	Solved	Solved	Solved
Phase: Vapor	From Block	EVRU	Condensate Storage Tank	Condensate Storage Tar
	To Block:	<u>-</u>	<u>-</u>	EVRU
Property	Units			
Temperature	°F	65		(
Pressure	psia	11.9		11
Mole Fraction Vapor		1		
Nole Fraction Light Liquid		0		
Nole Fraction Heavy Liquid		0		
/lolecular Weight	lb/lbmol	42.5162		42.51
lass Density -	lb/ft^3	0.0910137		0.09101
lolar Flow	lbmol/h	0.444279		1.777
lass Flow	lb/h	18.8890		75.55
apor Volumetric Flow	ft^3/h	207.541		830.1
iquid Volumetric Flow	gpm	25.8752		103.5
td Vapor Volumetric Flow	MMSCFD	0.00404633		0.01618
td Liquid Volumetric Flow	sgpm	0.0762358		0.3049
Compressibility		0.987290		0.9872
Specific Gravity		1.46797		1.467
API Gravity				
inthalpy	Btu/h	-21136.4		-84545
lass Enthalpy	Btu/lb	-1118.98		-1118.
lass Cp	Btu/(lb*°F)	0.401948		0.4019
deal Gas CpCv Ratio		1.13240		1.132
ynamic Viscosity	cР	0.00844620		0.008446
(inematic Viscosity	cSt	5.79340		5.793
hermal Conductivity	Btu/(h*ft*°F)	0.0110781		0.01107
Surface Tension	lbf/ft			
let Ideal Gas Heating Value	Btu/ft^3	2184.29		2184.
let Liquid Heating Value	Btu/lb	19352.1		19352
Gross Ideal Gas Heating Value	Btu/ft^3	2374.76		2374.
Gross Liquid Heating Value	Btu/lb	21052.2		21052

	FG Recycled to Fulcher	Inlet Liquids	Liquids to tanks	Uncaptured Tank Flash Vapors (75%)
Status:	Solved	Solved	Solved	Solved
From Block	Flash Vessel		Flash Vessel	EVRU
To Block:	_	Flash Vessel	Condensate Storage Tank	
Units				
°F	80			65
psia	110			11.9
	1			1
	0			0
	0			0
lb/lbmol	23.7186			42.5162
lb/ft^3	0.466021			0.0910137
lbmol/h	0.940051			1.33284
lb/h	22.2967			56.6671
ft^3/h	47.8449			622.622
gpm	5.96508			77.6256
MMSCFD	0.00856162			0.0121390
sgpm	0.118979			0.228708
	0.966686			0.987290
	0.818940			1.46797
Btu/h	-36218.2			-63409.2
Btu/lb	-1624.37			-1118.98
Btu/(lb*°F)	0.469460			0.401948
	1.22547			1.13240
cР	0.0106496			0.00844620
cSt	1.42661			5.79340
Btu/(h*ft*°F)	0.0168813			0.0110781
lbf/ft ′				
Btu/ft^3	1226.65			2184.29
Btu/lb	19548.3			19352.1
Btu/ft^3	1348.67			2374.76
Btu/lb	21500.5			21052.2
	To Block: To Block: Units F psia Ib/Ibmol Ib/ft^3 Ibmol/h Ib/h ft^3/h gpm MMSCFD sgpm Btu/h Btu/lb Btu/(lb*°F) cP cSt Btu/(h*ft*°F) Ibf/ft Btu/ft^3 Btu/lb Btu/lb Btu/lb Btu/lb Btu/lb Btu/ft^3 Btu/lb Btu/lb Btu/lb Btu/lb	Status: Solved From Block: Flash Vessel To Block: White %F 80 psia 110 0 0 lb/lb/m 23.7186 lb/ft/3 0.466021 lbmol/h 0.940051 lb/h 22.2967 ft^3/h 47.8449 gpm 5.96508 MMSCFD 0.00856162 sgpm 0.118979 0.966686 0.818940 Btu/lb -1624.37 Btu/lb -1624.37 Btu/lb -1624.37 cP 0.0106496 cSt 1.42661 Btu/(h*ft**) 0.0168813 lb/ft Btu/ft*3 1226.65 Btu/lb 19548.3 Btu/ft*3 1348.67	From Block: To Block:	Status: Solved Solved Solved Solved Flash Vessel Flash Vessel Flash Vessel Condensate Storage Tank

Process Streams		Captured Tank Flash Vapors (25%)	Condensate Truck Loading	FG from Tanks
Composition	Status:	Solved	Solved	Solved
Phase: Light Liquid	From Block:	EVRU	Condensate Storage Tank	Condensate Storage Tan
	To Block:	-		EVRU
Mole Fraction				
Nitrogen			5.79014E-07	
Carbon Dioxide			0.000245753	
Methane			0.000874726	
Ethane			0.00585617	
Propane			0.0261633	
Isobutane			0.0192473	
n-Butane			0.0466189	
Isopentane			0.0508805	
n-Pentane			0.0526141	
Hexane			0.126504	
Benzene			0.0152018	
Cyclohexane			0	
Heptane			0.248493	
Toluene			0.0555843	
Octane			0.241819	
m-Xylene			0.0321776	
Nonane			0.0495536	
2,2,4-Trimethylpentane			0.00110134	
C10			0.0234729	
Ethylbenzene			0.00359094	
Molar Flow		lbmol/h	lbmol/h	lbmol/h
Nitrogen			7.57350E-06	
Carbon Dioxide			0.00321445	
Methane			0.0114414	
Ethane			0.0765987	
Propane			0.342216	
Isobutane			0.251754	
n-Butane			0.609775	
Isopentane			0.665516	
n-Pentane			0.688193	
Hexane			1.65467	
Benzene			0.198839	
Cyclohexane			0	
Heptane			3.25029	
Toluene			0.727043	
Octane			3.16299	
m-Xylene			0.420883	
Nonane			0.648161	
2,2,4-Trimethylpentane			0.0144055	
C10			0.307026	
Ethylbenzene			0.0469695	

Dungana Ctungung		IFC Decycled to Fulche		Liquido to toplo	Uncentured Tenk Fleeh Venera (759/)
Process Streams		FG Recycled to Fulche	r inlet Liquids	Liquids to tanks	Uncaptured Tank Flash Vapors (75%)
Composition	Status:	Solved			
Phase: Light Liquid	From Block	Flash Vessel	-	Flash Vessel	EVRU
	To Block:		Flash Vessel	Condensate Storage Tank	
Mole Fraction					
Nitrogen			0.00038	5.99117E-05	
Carbon Dioxide			0.00392	0.00255752	
Methane			0.06584	0.0256697	
Ethane			0.03628	0.0298830	
Propane			0.0546	0.0533790	
Isobutane			0.02456	0.0252298	
n-Butane			0.05249	0.0544969	
Isopentane			0.04788	0.0504086	
n-Pentane			0.0479	0.0505553	
Hexane			0.10762	0.114174	
Benzene			0.01291	0.0136983	
Cyclohexane			0	0	
Heptane			0.20746	0.220424	
Toluene			0.04635	0.0492517	
Octane			0.20071	0.213359	
m-Xylene			0.0267	0.0283836	
Nonane			0.04106	0.0436547	
2,2,4-Trimethylpentane			0.00092	0.000977450	
C10			0.01944	0.0206695	
Ethylbenzene			0.00298	0.00316787	
Molar Flow		lbmol/h	lbmol/h	lbmol/h	lbmol/h
Nitrogen			0.00600292	0.000890115	
Carbon Dioxide			0.0619249	0.0379974	
Methane			1.04009	0.381378	
Ethane			0.573121	0.443975	
Propane			0.862525	0.793059	
Isobutane			0.387978	0.374843	
n-Butane			0.829193	0.809666	
Isopentane			0.756368	0.748927	
n-Pentane			0.756684	0.751106	
Hexane			1.70009	1.69630	
Benzene			0.203941	0.203517	
Cyclohexane			0	0	
Heptane			3.27728	3.27486	
Toluene			0.732199	0.731739	
Octane			3.17065	3.16991	
			0.421784	0.421698	
m-Xylene		1	0.648632	0.648583	
m-Xylene Nonane					
Nonane					
•			0.0145334 0.307097	0.0145221 0.307089	

Process Streams		Captured Tank Flash Vapors (25%)	Condensate Truck Loading	FG from Tanks
Composition	Status:	Solved	Solved	Solved
Phase: Light Liquid	From Block	EVRU	Condensate Storage Tank	Condensate Storage Tan
	To Block:	-	<u>-</u>	EVRU
Mass Fraction				
Nitrogen			1.68958E-07	
Carbon Dioxide			0.000112660	
Methane			0.000146173	
Ethane			0.00183425	
Propane			0.0120175	
Isobutane			0.0116530	
n-Butane			0.0282247	
Isopentane			0.0382388	
n-Pentane			0.0395418	
Hexane			0.113556	
Benzene			0.0123690	
Cyclohexane			0	
Heptane			0.259367	
Toluene			0.0533479	
Octane			0.287733	
m-Xylene			0.0355844	
Nonane			0.0662026	
2,2,4-Trimethylpentane			0.00131045	
C10			0.0347889	
Ethylbenzene			0.00397113	
Mass Flow		lb/h	lb/h	lb/h
Nitrogen			0.000212159	
Carbon Dioxide			0.141467	
Methane			0.183548	
Ethane			2.30325	
Propane			15.0902	
Isobutane			14.6325	
n-Butane			35.4415	
Isopentane			48.0162	
n-Pentane			49.6523	
Hexane			142.592	
Benzene			15.5317	
Cyclohexane			0	
Heptane -			325.685	
Toluene			66.9886	
Octane			361.304	
m-Xylene			44.6830	
Nonane			83.1300	
2,2,4-Trimethylpentane			1.64552	
C10			43.6841	
Ethylbenzene			4.98652	

Process Streams	FG Recycled to Fulcher Inlet Liquids	Liquids to tanks	Uncaptured Tank Flash Vapors (75%)
Composition Status:	Solved Solved	Solved	Solved
Phase: Light Liquid From Bloc	Flash Vessel	Flash Vessel	EVRU
To Block:	Flash Vessel	Condensate Storage Tank	
Mass Fraction	114011 100001	Condonicate Ctorage rain.	
Nitrogen	0.000124238	1.87306E-05	
Carbon Dioxide	0.00201344	0.00125615	
Methane	0.0123273	0.00459586	
Ethane	0.0127319	0.0100281	
Propane	0.0280992	0.0262689	
Isobutane	0.0166601	0.0163656	
n-Butane	0.0356062	0.0353500	
Isopentane	0.0403171	0.0405891	
n-Pentane	0.0403340	0.0407072	
Hexane	0.108239	0.109806	
Benzene	0.0117693	0.0119415	
Cyclohexane	0	0	
Heptane	0.242615	0.246496	
Toluene	0.0498422	0.0506452	
Octane	0.267578	0.271996	
m-Xylene	0.0330826	0.0336298	
Nonane	0.0614611	0.0624857	
2,2,4-Trimethylpentane	0.00122650	0.00124608	
C10	0.0322814	0.0328212	
Ethylbenzene	0.00369236	0.00375339	
Mass Flow	lb/h lb/h	lb/h	lb/h
Nitrogen	0.168162	0.0249351	
Carbon Dioxide	2.72528	1.67225	
Methane	16.6855	6.11824	
Ethane	17.2332 38.0336	13.3499 34.9704	
Propane Isobutane	22.5502	21.7867	
n-Butane	48.1945	47.0596	
Isopentane	54.5711	54.0342	
n-Pentane	54.5938	54.1913	
Hexane	146.506	146.179	
Benzene	15.9302	15.8971	I
Cyclohexane	0	0.0071	ı
Heptane	328.390	328.147	ı
Toluene	67.4636	67.4213	
Octane	362.179	362.094	
m-Xylene	44.7787	44.7695	
Nonane	83.1903	83.1840	
2,2,4-Trimethylpentane	1.66013	1.65884	
C10	43.6943	43.6931	
Ethylbenzene	4.99778	4.99670	

Process Streams		Captured Tank Flash Vapors (25%)	Condensate Truck Loading	FG from Tanks	
Properties	Status:	Solved	Solved	Solved	
Phase: Light Liquid	From Block	EVRU	Condensate Storage Tank	Condensate Storage Tank	
	To Block:	-	<u>.</u>	EVRU	
Property	Units				
Temperature	°F		65		
Pressure	psia		11.9		
Mole Fraction Vapor			0		
Mole Fraction Light Liquid			1		
Mole Fraction Heavy Liquid			0		
Molecular Weight	lb/lbmol		96.0009		
Mass Density	lb/ft^3		43.5334		
Molar Flow	lbmol/h		13.0800		
∕lass Flow	lb/h		1255.69		
/apor Volumetric Flow	ft^3/h		28.8444		
iquid Volumetric Flow	gpm		3.59618		
Std Vapor Volumetric Flow	MMSCFD		0.119128		
Std Liquid Volumetric Flow	sgpm		3.61229		
Compressibility	0.		0.00466069		
Specific Gravity			0.697997		
API Gravity			70.5105		
Enthalpy	Btu/h		-1.09709E+06		
Mass Enthalpy	Btu/lb		-873.691		
Mass Cp	Btu/(lb*°F)		0.504728		
deal Gas CpCv Ratio	, ,		1.05850		
Dynamic Viscosity	cР		0.410362		
Kinematic Viscosity	cSt		0.588470		
hermal Conductivity	Btu/(h*ft*°F)		0.0723474		
Surface Tension	lbf/ft /		0.00141778?		
Net Ideal Gas Heating Value	Btu/ft^3		4844.58		
Net Liquid Heating Value	Btu/lb		18989.2		
Gross Ideal Gas Heating Value	Btu/ft^3		5213.61		
Gross Liquid Heating Value	Btu/lb		20447.9		

Process Streams		FG Recycled to Fulcher	r Inlet Liquids	Liquids to tanks	Uncaptured Tank Flash Vapors (75%)
Properties	Status:	Solved	Solved	Solved	Solved
Phase: Light Liquid					
Phase. Light Liquid	From Block	Flash Vessel		Flash Vessel	EVRU
	To Block:		Flash Vessel	Condensate Storage Tank	-
Property	Units				
Temperature	°F		60	80	
Pressure	psia		331.9	110	
Mole Fraction Vapor			0	0	
Mole Fraction Light Liquid			1	1	
Mole Fraction Heavy Liquid			0	0	
Molecular Weight	lb/lbmol		85.6828	89.6034	
Mass Density	lb/ft^3		42.7432	42.4268	
Molar Flow	lbmol/h		15.7972	14.8571	
Mass Flow	lb/h		1353.54	1331.25	
Vapor Volumetric Flow	ft^3/h		31.6669	31.3775	
Liquid Volumetric Flow	gpm		3.94808	3.91200	
Std Vapor Volumetric Flow	MMSCFD		0.143875	0.135313	
Std Liquid Volumetric Flow	sgpm		4.03621	3.91724	
Compressibility			0.119301	0.0401130	
Specific Gravity			0.685327	0.680255	
API Gravity			74.9708	73.4031	
Enthalpy	Btu/h		-1.23508E+06	-1.18278E+06	
Mass Enthalpy	Btu/lb		-912.477	-888.474	
Mass Cp	Btu/(lb*°F)		0.510195	0.519980	
Ideal Gas CpCv Ratio			1.06605	1.06119	
Dynamic Viscosity	cР		0.349775	0.332812	
Kinematic Viscosity	cSt		0.510860	0.489708	
Thermal Conductivity	Btu/(h*ft*°F)		0.0712908	0.0697053	
Surface Tension	lbf/ft		0.00116573	0.00123630	
Net Ideal Gas Heating Value	Btu/ft^3		4330.01	4526.37	
Net Liquid Heating Value	Btu/lb		19018.6	19009.8	
Gross Ideal Gas Heating Value			4664.26	4874.05	
Gross Liquid Heating Value	Btu/lb		20499.0	20482.2	

Uncontrolled Condensate Storage Tank Emissions Data and Calculations AOS

Unit Number: T4 (AOS) & T5 (AOS)

Description: Condensate Storage Tanks (with flash emissions)

Emission Rates

Source/Pollutants	Working/Brea	athing Losses, tpy	Flash Losses, tpy	Uncontrolled Emission Rates, tpy
T4 (AOS)				
VOC	8,251.17	4.13	174.46	178.59
Benzene	49.70	2.49E-02	1.12	1.14
Ethylbenzene	1.53	7.65E-04	3.11E-02	3.19E-02
n-Hexane	741.29	3.71E-01	10.98	11.35
Isooctane	2.70	1.35E-03	4.07E-02	4.21E-02
Toluene	61.61	3.08E-02	1.32	1.35
Xylene	11.47	5.74E-03	2.65E-01	2.71E-01
T5 (AOS)				
VOC	7,676.90	3.84	157.01	160.85
Benzene	46.24	2.31E-02	1.01	1.03
Ethylbenzene	1.43	7.15E-04	2.80E-02	2.87E-02
n-Hexane	689.70	3.45E-01	9.88	10.22
Isooctane	2.51	1.26E-03	3.67E-02	3.79E-02
Toluene	57.32	2.87E-02	1.19	1.22
Xylene	10.67	5.34E-03	2.38E-01	2.44E-01
Combined Total				
VOC	15,928.07	7.96	331.47	339.44
Benzene	95.94	4.80E-02	2.12	2.17
Ethylbenzene	2.96	1.48E-03	5.91E-02	6.06E-02
n-Hexane	1,430.99	7.15E-01	20.85	21.57
Isooctane	5.21	2.61E-03	7.74E-02	8.00E-02
Toluene	118.93	5.95E-02	2.52	2.57
Xylene	22.14	1.11E-02	5.03E-01	5.14E-01

Working/breathing losses are taken from TANKS 4.0 results

Flash emissions are taken from ProMax 4 results (FG from Tanks)

It is assumed the condensate throughput to each tank will be proportional to its capacity. Unit T4 will receive 52.6% of the condensate and Unit T5 will receive the remainder. This distribution is used for the TANKS 4 input. The flash emissions (from ProMax 4) are assigned to the tanks using the same percentages

Controlled Condensate Storage Tank Emissions Data and Calculations AOS

Unit Number: T4 (AOS) & T5 (AOS)

Description: Condensate Storage Tanks (with flash emissions)

Emission Rates

Source/Pollutants	ŭ	athing Losses,	Flash Losses,	Uncontrolled Emission Rates,
T4 (AOS)	рру	tpy	tpy	tpy
T4 (AOS)	0.000.70	4.00	40.04	44.05
VOC	2,062.79	1.03	43.61	44.65
Benzene	12.43	6.21E-03	2.80E-01	2.86E-01
Ethylbenzene	0.38	1.91E-04	7.78E-03	7.97E-03
n-Hexane	185.32	9.27E-02	2.74	2.84
Isooctane	0.68	3.38E-04	1.02E-02	1.05E-02
Toluene	15.40	7.70E-03	3.31E-01	3.39E-01
Xylene	2.87	1.43E-03	6.62E-02	6.76E-02
T5 (AOS)				
VOC	1,919.23	0.96	39.25	40.21
Benzene	11.56	5.78E-03	2.52E-01	2.57E-01
Ethylbenzene	0.36	1.79E-04	7.00E-03	7.18E-03
n-Hexane	172.43	8.62E-02	2.47	2.56
Isooctane	0.63	3.14E-04	9.17E-03	9.48E-03
Toluene	14.33	7.17E-03	2.98E-01	3.05E-01
Xylene	2.67	1.33E-03	5.96E-02	6.09E-02
Combined Total				
VOC	3,982.02	1.99	82.87	84.86
Benzene	23.99	1.20E-02	5.31E-01	5.43E-01
Ethylbenzene	0.74	3.70E-04	1.48E-02	1.52E-02
n-Hexane	357.75	1.79E-01	5.21	5.39
Isooctane	1.30	6.51E-04	1.94E-02	2.00E-02
Toluene	29.73	1.49E-02	6.29E-01	6.44E-01
Xylene	5.54	2.77E-03	1.26E-01	1.29E-01

Working/breathing losses are taken from TANKS 4.0 results

Flash emissions are taken from ProMax 4

It is assumed the condensate throughput to each tank will be proportional to its capacity. Unit T4 will receive 52.6% of the condensate and Unit T5 will receive the remainder. This distribution is used for the TANKS 4 input. The flash emissions (from ProMax 4) are assigned to the tanks using the same percentages

It is assumed the replacement VRU captures 75% of the working/breathing losses as well as 75% of the flash emissions

Uncontrolled Condensate Storage Tank Emissions Data and Calculations

Unit Number: T4 (AOS) & T5 (AOS)

Description: Condensate Tanks (flash emissions)

Calculation of Emission Rates from ProMax Results

Pollutant	Emission Rate,		
	pph	tpy	
VOC	75.68	331.47	
Benzene	4.85E-01	2.12	
Ethylbenzene	1.35E-02	5.91E-02	
n-Hexane	4.76	20.85	
Isooctane	1.77E-02	7.74E-02	
Toluene	5.74E-01	2.52	
Xylenes	1.15E-01	5.03E-01	

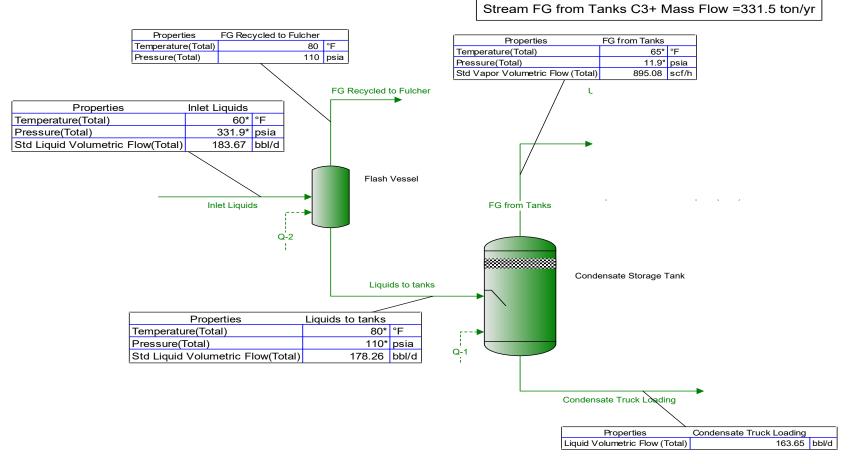
VOC tpy and HAP pph emission rates are obtained from the ProMax output:

Mass Flow of Flash Gas from Tanks (FG from Tanks)

HAP Emission Rate (tpy) = HAP Emission Rate (pph) x 8,760 hr/yr / 2,000 lb/ton

Composition of Post Flash Condensate for use in TANKS 4

Component	Speciated Mass Fraction	Mass Percent, Of VOC, %
Carbon dioxide	1.127E-04	
Nitrogen	1.690E-07	
Methane	1.462E-04	
Ethane	1.834E-03	
Propane	1.202E-02	
Isobutane	1.165E-02	1.7699
n-Butane	2.822E-02	3.4305
Isopentane	3.824E-02	3.8319
n-Pentane	3.954E-02	3.9625
n-Hexane	1.136E-01	11.3795
Cyclohexane	0.000E+00	0.0000
n-Heptane	2.594E-01	25.9911
Octane	2.877E-01	28.8337
Nonane	6.620E-02	6.6341
Decane	3.479E-02	3.4862
Benzene	1.237E-02	1.2395
Ethylbenzene	3.971E-03	0.3979
Isooctane	1.310E-03	0.1313
Toluene	5.335E-02	5.3460
Xylenes	3.558E-02	3.5659
Total	1.0000	
VOC Total	0.9979	100.0000


Speciated Mass Fractions are obtained from the ProMax output - Condensate Truck Loading

VOC Total = Sum (Propane - C8+ Heavies Mass Fractions)

Mass Percent of VOC (%) = 100 x Component Mass Fraction / VOC Total Mass Fraction

Propane Mass Percent of VOC is included with the n-butane and isobutane percentages (even distribution)

Proposed Chaco Condensate Flash Emissions 60k bbls per year - Updated 9.21.2018

12 Month Rolling Sum = 60,000 bbls

Process Streams		Captured Tank Flash Vapors (25%)	Condensate Truck Loading	FG from Tanks	FG Recycled to Fulcher
Composition	Status:	Solved	Solved	Solved	Solved
Phase: Total	From Block:	EVRU	Condensate Storage Tank	Condensate Storage Tank	Flash Vessel
	To Block:	<u></u>		EVRU	
Mole Fraction					
Nitrogen		0.000496614	5.79014E-07	0.000496614	0.00543886
Carbon Dioxide		0.0195727	0.000245753		0.0254534
Methane		0.208166	0.000874726		0.700715
Ethane		0.206726	0.00585617	0.206726	0.137383
Propane		0.253693	0.0261633	0.253693	0.0738966
Isobutane		0.0692628	0.0192473	0.0692628	0.0139736
n-Butane		0.112481	0.0466189	0.112481	0.0207721
Isopentane		0.0469359	0.0508805	0.0469359	0.00791586
n-Pentane		0.0354017	0.0526141	0.0354017	0.00593451
Hexane		0.0234232	0.126504		0.00403655
Benzene		0.00263250	0.0152018	0.00263250	0.000451105
Cyclohexane		0	0	0	0
Heptane		0.0138252	0.248493	0.0138252	0.00257418
Toluene		0.00264260	0.0555843	0.00264260	0.000489120
Octane		0.00389027	0.241819	0.00389027	0.000790585
m-Xylene		0.000458718	0.0321776	0.000458718	9.21087E-05
Nonane		0.000236961	0.0495536	0.000236961	5.21947E-05
2,2,4-Trimethylpentane		6.55946E-05	0.00110134	6.55946E-05	1.20274E-05
C10		3.55535E-05	0.0234729	3.55535E-05	8.60600E-06
Ethylbenzene		5.39256E-05	0.00359094	5.39256E-05	1.08341E-05
Molar Flow		lbmol/h	lbmol/h	lbmol/h	lbmol/h
Nitrogen		0.000292838	1.00519E-05	0.00117135	0.00678598
Carbon Dioxide		0.0115414	0.00426639	0.0461657	0.0317578
Methane		0.122750	0.0151856	0.490998	0.874270
Ethane		0.121900	0.101666	0.487600	0.171410
Propane		0.149595	0.454207	0.598381	0.0921996
Isobutane		0.0408422	0.334141	0.163369	0.0174346
n-Butane		0.0663264	0.809325	0.265306	0.0259170
Isopentane		0.0276767	0.883307	0.110707	0.00987648
n-Pentane		0.0208753	0.913404	0.0835012	0.00740439
Hexane		0.0138120	2.19616	0.0552480	0.00503633
Benzene		0.00155231	0.263909	0.00620923	0.000562836
Cyclohexane		0	0	0	0
Heptane		0.00815228	4.31395	0.0326091	0.00321176
Toluene		0.00155826	0.964968	0.00623306	0.000610267
Octane		0.00229397	4.19808	0.00917590	0.000986399
m-Xylene		0.000270492	0.558617	0.00108197	0.000114922
Nonane		0.000139729	0.860273	0.000558914	6.51224E-05
2,2,4-Trimethylpentane		3.86792E-05	0.0191197		1.50063E-05
C10		2.09648E-05	0.407500	8.38593E-05	1.07376E-05
Ethylbenzene		3.17983E-05	0.0623404	0.000127193	1.35175E-05

Process Streams		Inlet Liquids	Liquids to tanks	Uncaptured Tank Flash Vapors (75%
Composition	Status:	Solved	Solved	Solved
Phase: Total	From Block:		Flash Vessel	EVRU
	To Block:	Flash Vessel	Condensate Storage Tank	
Mole Fraction		1 100011		
Nitrogen		0.00038*	5.99117E-05	0.0004966
Carbon Dioxide		0.00392*	0.00255752	0.019572
Methane		0.06584*	0.0256697	0.20816
Ethane		0.03628*	0.0298830	0.20672
Propane		0.0546*	0.0533790	0.25369
sobutane		0.02456*	0.0252298	0.069262
n-Butane		0.05249*	0.0544969	0.11248
sopentane		0.04788*	0.0504086	0.046935
n-Pentane		0.0479*	0.0505553	0.03540
lexane		0.10762*	0.114174	0.023423
Benzene		0.01291*	0.0136983	0.0026325
Cyclohexane		0.01291	0.0130983	0.0020323
Heptane		0.20746*	0.220424	0.01382
Foluene		0.04635*	0.0492517	0.0026426
Octane		0.20071*	0.0492317	0.0020420
n-Xylene		0.20071	0.213339	0.0036902
-		0.0267		
Nonane			0.0436547	0.00023696
2,2,4-Trimethylpentane		0.00092*	0.000977450	6.55946E-0
C10		0.01944*	0.0206695	3.55535E-(
Ethylbenzene Molar Flow		0.00298* lbmol/h	0.00316787 lbmol/h	5.39256E-0
Nitrogen		0.00796738*	0.00118141	0.0008785 ⁻
Carbon Dioxide		0.00790738	0.0504321	0.0006783
Methane		1.38045*	0.506184	0.034024
Ethane		0.760676*	0.589266	0.36570
Propane		1.14479*	1.05259	0.30370
sobutane		0.514945*	0.497510	0.44676
sobularie n-Butane				
		1.10055*	1.07463	0.1989
sopentane		1.00389*	0.994014	0.083030
n-Pentane		1.00431*	0.996905	0.062629
Hexane		2.25645*	2.25141	0.041436
Benzene		0.270681*	0.270119	0.0046569
Cyclohexane		0* 4.34977*	4 24656	0.024456
Heptane Faluana			4.34656	
Toluene		0.971811*	0.971201	0.0046747
Octane		4.20825*	4.20726	0.0068819
n-Xylene		0.559814*	0.559699	0.00081147
Nonane		0.860897*	0.860832	0.00041918
2,2,4-Trimethylpentane		0.0192895*	0.0192744	0.00011603
C10		0.407595*	0.407584	6.28945E-(
Ethylbenzene		0.0624811*	0.0624675	9.53949E-0

Mass Fraction				
Nitrogen	0.000327213	1.68958E-07	0.000327213	0.00642369
Carbon Dioxide	0.0202602	0.000112660	0.0202602	0.0472283
Methane	0.0785467	0.000146173	0.0785467	0.473939
Ethane	0.146204	0.00183425	0.146204	0.174165
Propane	0.263118	0.0120175	0.263118	0.137382
Isobutane	0.0946866	0.0116530	0.0946866	0.0342420
n-Butane	0.153768	0.0282247	0.153768	0.0509017
Isopentane	0.0796490	0.0382388	0.0796490	0.0240789
n-Pentane	0.0600757	0.0395418	0.0600757	0.0180520
Hexane	0.0474762	0.113556	0.0474762	0.0146657
Benzene	0.00483651	0.0123690	0.00483651	0.00148561
Cyclohexane	0	0	0	0
Heptane	0.0325831	0.259367	0.0325831	0.0108749
Toluene	0.00572689	0.0533479	0.00572689	0.00190006
Octane	0.0104520	0.287733	0.0104520	0.00380744
m-Xylene	0.00114544	0.0355844	0.00114544	0.000412280
Nonane	0.000714820	0.0662026	0.000714820	0.000282235
2,2,4-Trimethylpentane	0.000176234	0.00131045	0.000176234	5.79235E-05
C10	0.000118981	0.0347889	0.000118981	5.16251E-05
Ethylbenzene	0.000134655	0.00397113	0.000134655	4.84936E-05
Mass Flow	lb/h	lb/h	lb/h	lb/h
Nitrogen	0.00820340	0.000281589	0.0328136	0.190098
Carbon Dioxide	0.507932	0.187762	2.03173	1.39764
Methane	1.96920	0.243615	7.87682	14.0254
Ethane	3.66542	3.05699	14.6617	5.15413
Propane	6.59649	20.0285	26.3860	4.06560
Isobutane	2.37384	19.4210	9.49536	1.01334
n-Butane	3.85504	47.0397	15.4202	1.50635
Isopentane	1.99684	63.7295	7.98736	0.712576
n-Pentane	1.50613	65.9010	6.02451	0.534218
Hexane	1.19025	189.255	4.76101	0.434008
Benzene	0.121254	20.6144	0.485015	0.0439641
Cyclohexane	0	0	0	0
Heptane	0.816875	432.266	3.26750	0.321825
Toluene	0.143576	88.9106	0.574304	0.0562290
Octane	0.262037	479.541	1.04815	0.112675
m-Xylene	0.0287168	59.3055	0.114867	0.0122007
Nonane	0.0179209	110.334	0.0716836	0.00835229
2,2,4-Trimethylpentane	0.00441826	2.18402	0.0176731	0.00171415
C10 Ethylbenzene	0.00298291 0.00337587	57.9798 6.61836	0.0119316 0.0135035	0.00152776 0.00143509

Mass Fraction			
Nitrogen	0.000124238*	1.87306E-05	0.000327213
Carbon Dioxide	0.00201344*	0.00125615	0.0202602
Methane	0.0123273*	0.00459586	0.0785467
Ethane	0.0127319*	0.0100281	0.146204
Propane	0.0280992*	0.0262689	0.263118
sobutane	0.0166601*	0.0163656	0.094686
n-Butane	0.0356062*	0.0353500	0.153768
sopentane	0.0403171*	0.0405891	0.079649
n-Pentane	0.0403340*	0.0407072	0.060075
Hexane	0.108239*	0.109806	0.047476
Benzene	0.0117693*	0.0119415	0.0048365
Cyclohexane	0*	0	
Heptane	0.242615*	0.246496	0.032583
Toluene	0.0498422*	0.0506452	0.0057268
Octane	0.267578*	0.271996	0.010452
m-Xylene	0.0330826*	0.0336298	0.0011454
Nonane	0.0614611*	0.0624857	0.00071482
2,2,4-Trimethylpentane	0.00122650*	0.00124608	0.00017623
C10	0.0322814*	0.0328212	0.00011898
Ethylbenzene	0.00369236*	0.00375339	0.00013465
Mass Flow	lb/h	lb/h	lb/h
Nitrogen	0.223194*	0.0330952	0.024610
Carbon Dioxide	3.61713*	2.21949	1.5238
Methane	22.1459*	8.12043	5.9076
Ethane	22.8728*	17.7186	10.996
Propane	50.4801*	46.4145	19.789
sobutane	29.9297*	28.9164	7.1215
n-Butane	63.9662*	62.4599	11.565
sopentane	72.4295*	71.7169	5.9905
n-Pentane	72.4597*	71.9255	4.5183
Hexane	194.450*	194.016	3.5707
Benzene	21.1434*	21.0995	0.36376
Cyclohexane	0*	0	
Heptane	435.856*	435.534	2.4506
Toluene	89.5411*	89.4849	0.43072
Octane	480.702*	480.589	0.78611
	59.4326*	59.4204	0.086150
	39.4320		
m-Xylene		110.406	0.053762
m-Xylene Nonane	110.414* 2.20341*	110.406 2.20169	0.053762 0.013254
m-Xylene	110.414*		0.053762 0.013254 0.0089487

Process Streams		Captured Tank Flash Vapors (25%)	Condensate Truck Loading	FG from Tanks	FG Recycled to Fulcher
Properties	Status:	Solved	Solved	Solved	Solved
Phase: Total	From Block:	EVRU	Condensate Storage Tank	Condensate Storage Tank	Flash Vessel
	To Block:	-	<u></u>	EVRU	
Property	Units				
Temperature	°F	65	65	65*	3
Pressure	psia	11.9	11.9	11.9*	11
Mole Fraction Vapor		1	0	1	
Mole Fraction Light Liquid		0	1	0	
Mole Fraction Heavy Liquid		0	0	0	
Molecular Weight	lb/lbmol	42.5162	96.0009	42.5162	23.718
Mass Density	lb/ft^3	0.0910137	43.5334	0.0910137	0.46602
Molar Flow	lbmol/h	0.589670	17.3604	2.35868	1.2476
Mass Flow	lb/h	25.0705	1666.62	100.282	29.593
Vapor Volumetric Flow	ft^3/h	275.459	38.2837	1101.83	63.502
Liquid Volumetric Flow	gpm	34.3429	4.77303	137.372	7.917
Std Vapor Volumetric Flow	MMSCFD	0.00537049	0.158112	0.0214820	0.01136
Std Liquid Volumetric Flow	sgpm	0.101184	4.79442*	0.404736	0.1579
Compressibility		0.987290	0.00466069	0.987290	0.9666
Specific Gravity		1.46797	0.697997	1.46797	0.8189
API Gravity			70.5105		
Enthalpy	Btu/h	-28053.3	-1.45611E+06	-112213	-48070
Mass Enthalpy	Btu/lb	-1118.98	-873.691	-1118.98	-1624.
Mass Cp	Btu/(lb*°F)	0.401948	0.504728	0.401948	0.4694
deal Gas CpCv Ratio		1.13240	1.05850	1.13240	1.225
Dynamic Viscosity	cР	0.00844620	0.410362	0.00844620	0.01064
Kinematic Viscosity	cSt	5.79340	0.588470	5.79340	1.426
Thermal Conductivity	Btu/(h*ft*°F)	0.0110781	0.0723474	0.0110781	0.01688
Surface Tension	lbf/ft		0.00141778?		
Net Ideal Gas Heating Value	Btu/ft^3	2184.29	4844.58	2184.29	1226.0
Net Liquid Heating Value	Btu/lb	19352.1	18989.2	19352.1	19548
Gross Ideal Gas Heating Value	e Btu/ft^3	2374.76	5213.61		1348.0
Gross Liquid Heating Value	Btu/lb	21052.2	20447.9	21052.2	21500

Process Streams		Inlet Liquids	Liquids to tanks	Uncaptured Tank Flash Vapors (75%)
Properties	Status:	Solved	Solved	Solved
Phase: Total	From Block:		Flash Vessel	EVRU
	To Block:	Flash Vessel	Condensate Storage Tank	
Property	Units			
Temperature	°F	60*	80*	65
Pressure	psia	331.9*	110*	11.9
Mole Fraction Vapor		0	0	1
Mole Fraction Light Liquid		1	1	C
Mole Fraction Heavy Liquid		0	0	(
Molecular Weight	lb/lbmol	85.6828	89.6034	42.5162
Mass Density	lb/ft^3	42.7432	42.4268	0.0910137
Molar Flow	lbmol/h	20.9668	19.7191	1.7690
Mass Flow	lb/h	1796.49	1766.90	75.2115
Vapor Volumetric Flow	ft^3/h	42.0300	41.6458	826.376
Liquid Volumetric Flow	gpm	5.24010	5.19221	103.029
Std Vapor Volumetric Flow	MMSCFD	0.190958	0.179594	0.0161118
Std Liquid Volumetric Flow	sgpm	5.35707	5.19915	0.303552
Compressibility		0.119301	0.0401130	0.98729
Specific Gravity		0.685327	0.680255	1.4679
API Gravity		74.9708	73.4031	
Enthalpy	Btu/h	-1.63926E+06	-1.56984E+06	-84159.
Mass Enthalpy	Btu/lb	-912.477	-888.474	-1118.9
Mass Cp	Btu/(lb*°F)	0.510195	0.519980	0.40194
deal Gas CpCv Ratio		1.06605	1.06119	1.1324
Dynamic Viscosity	cР	0.349775	0.332812	0.0084462
Kinematic Viscosity	cSt	0.510860	0.489708	5.7934
Thermal Conductivity	Btu/(h*ft*°F)	0.0712908	0.0697053	0.011078
Surface Tension	lbf/ft	0.00116573	0.00123630	
Net Ideal Gas Heating Value	Btu/ft^3	4330.01	4526.37	2184.29
Net Liquid Heating Value	Btu/lb	19018.6	19009.8	19352.
Gross Ideal Gas Heating Valu		4664.26	4874.05	2374.70
Gross Liquid Heating Value	Btu/lb	20499.0	20482.2	21052.2

Process Streams		Captured Tank Flash Vapors (25%)	Condensate Truck Loading	FG from Tanks	FG Recycled to Fulcher
Composition	Status:	Solved	Solved	Solved	Solved
Phase: Vapor	From Block: To Block:	EVRU 	Condensate Storage Tank	Condensate Storage Tank EVRU	Flash Vessel
Mole Fraction					
Nitrogen		0.000496614		0.000496614	0.00543886
Carbon Dioxide		0.0195727		0.0195727	0.0254534
Methane		0.208166		0.208166	0.700715
Ethane		0.206726		0.206726	0.137383
Propane		0.253693		0.253693	0.0738966
isobutane		0.0692628		0.0692628	0.0139736
n-Butane		0.112481		0.112481	0.0207721
Isopentane		0.0469359		0.0469359	0.00791586
n-Pentane		0.0354017		0.0354017	0.00593451
Hexane		0.0234232		0.0234232	0.00403655
Benzene		0.00263250		0.00263250	0.000451105
Cyclohexane		0		0	0
Heptane		0.0138252		0.0138252	0.00257418
Toluene		0.00264260		0.00264260	0.000489120
Octane		0.00389027		0.00389027	0.000790585
m-Xylene		0.000458718		0.000458718	9.21087E-05
Nonane		0.000236961		0.000236961	5.21947E-05
2,2,4-Trimethylpentane		6.55946E-05		6.55946E-05	1.20274E-05
C10		3.55535E-05		3.55535E-05	8.60600E-06
Ethylbenzene		5.39256E-05		5.39256E-05	1.08341E-05
Molar Flow		Ibmol/h	lbmol/h	lbmol/h	lbmol/h
Nitrogen		0.000292838		0.00117135	0.00678598
Carbon Dioxide		0.0115414		0.0461657	0.0317578
Methane		0.122750		0.490998	0.874270
Ethane		0.121900		0.487600	0.171410
Propane		0.149595		0.598381	0.0921996
Isobutane		0.0408422		0.163369	0.0174346
n-Butane		0.0663264		0.265306	0.0259170
Isopentane		0.0276767		0.110707	0.00987648
n-Pentane		0.0208753		0.0835012	0.00740439
Hexane		0.0138120		0.0552480	0.00503633
Benzene		0.00155231		0.00620923	0.000562836
Cyclohexane		0.00100201		0.00020020	0.000002000
Heptane		0.00815228		0.0326091	0.00321176
Toluene		0.00155826		0.00623306	0.000610267
Octane		0.00229397		0.00917590	0.000986399
m-Xylene		0.00223337		0.0017838	0.00030033
				0.00100197	6.51224E-05
,		[] [] [] [] [] [] [] [] [] [] [] [] [] [
Nonane		0.000139729 3.86792F-05			
,		3.86792E-05 2.09648E-05		0.000154717 8.38593E-05	1.50063E-05 1.07376E-05

Process Streams		Inlet Liquids	Liquids to tanks	Uncaptured Tank Flash	Vapors (75%)
Composition	Status:	Solved	Solved	Solved	
Phase: Vapor	From Block:		Flash Vessel	EVRU	
•	To Block:	Flash Vessel	Condensate Storage Tank		
Mole Fraction					
Nitrogen					0.00049661
Carbon Dioxide					0.019572
Methane					0.20816
Ethane					0.20672
Propane					0.25369
Isobutane					0.069262
n-Butane					0.11248
Isopentane					0.046935
n-Pentane					0.035401
Hexane					0.023423
Benzene					0.0026325
Cyclohexane					0.0020323
Heptane					0.013825
Toluene					0.013623
Octane					0.0020420
-					0.0036902
m-Xylene Nonane					0.00043671
2,2,4-Trimethylpentane					6.55946E-0
C10					3.55535E-0
Ethylbenzene Molar Flow		lbmol/h	lbmol/h	lbmol/h	5.39256E-0
Nitrogen		1511101/11	1511101111	ipinoi/ii	0.00087851
Carbon Dioxide					0.00007031
Methane					0.034024
Rithane					0.36570
					0.30370
Propane Isobutane					0.44676
n-Butane					0.19897
sopentane					0.083030
n-Pentane					0.062625
Hexane					0.041436
Benzene					0.0046569
Cyclohexane					0.004450
Heptane					0.024456
Toluene					0.0046747
Octane					0.0068819
m-Xylene					0.00081147
Nonane					0.00041918
2,2,4-Trimethylpentane					0.00011603
C10					6.28945E-0
Ethylbenzene		I			9.53949E-0

1			
Mass Fraction			
Nitrogen	0.000327213	0.000327213	0.00642369
Carbon Dioxide	0.0202602	0.0202602	0.0472283
Methane	0.0785467	0.0785467	0.473939
Ethane	0.146204	0.146204	0.174165
Propane	0.263118	0.263118	0.137382
Isobutane	0.0946866	0.0946866	0.0342420
n-Butane	0.153768	0.153768	0.0509017
Isopentane	0.0796490	0.0796490	0.0240789
n-Pentane	0.0600757	0.0600757	0.0180520
Hexane	0.0474762	0.0474762	0.0146657
Benzene	0.00483651	0.00483651	0.00148561
Cyclohexane	0	0	0
Heptane	0.0325831	0.0325831	0.0108749
Toluene	0.00572689	0.00572689	0.00190006
Octane	0.0104520	0.0104520	0.00380744
m-Xylene	0.00114544	0.00114544	0.000412280
Nonane	0.000714820	0.000714820	0.000282235
2,2,4-Trimethylpentane	0.000176234	0.000176234	5.79235E-05
C10	0.000118981	0.000118981	5.16251E-05
Ethylbenzene	0.000134655	0.000134655	4.84936E-05
Mass Flow	lb/h lb/h	lb/h	lb/h
Nitrogen	0.00820340	0.0328136	0.190098
Carbon Dioxide	0.507932	2.03173	1.39764
Methane	1.96920	7.87682	14.0254
Ethane	3.66542	14.6617	5.15413
Propane	6.59649	26.3860	4.06560
Isobutane	2.37384	9.49536	1.01334
n-Butane			
	3 85504	15 4202	1.50635
	3.85504 1.99684	15.4202 7 98736	1.50635 0.712576
Isopentane	1.99684	7.98736	0.712576
Isopentane n-Pentane	1.99684 1.50613	7.98736 6.02451	0.712576 0.534218
Isopentane n-Pentane Hexane	1.99684 1.50613 1.19025	7.98736 6.02451 4.76101	0.712576 0.534218 0.434008
Isopentane n-Pentane Hexane Benzene	1.99684 1.50613 1.19025 0.121254	7.98736 6.02451 4.76101 0.485015	0.712576 0.534218
Isopentane n-Pentane Hexane Benzene Cyclohexane	1.99684 1.50613 1.19025 0.121254 0	7.98736 6.02451 4.76101 0.485015 0	0.712576 0.534218 0.434008 0.0439641 0
Isopentane n-Pentane Hexane Benzene Cyclohexane Heptane	1.99684 1.50613 1.19025 0.121254 0 0.816875	7.98736 6.02451 4.76101 0.485015 0 3.26750	0.712576 0.534218 0.434008 0.0439641 0 0.321825
Isopentane n-Pentane Hexane Benzene Cyclohexane Heptane Toluene	1.99684 1.50613 1.19025 0.121254 0 0.816875 0.143576	7.98736 6.02451 4.76101 0.485015 0 3.26750 0.574304	0.712576 0.534218 0.434008 0.0439641 0 0.321825 0.0562290
Isopentane n-Pentane Hexane Benzene Cyclohexane Heptane Toluene Octane	1.99684 1.50613 1.19025 0.121254 0 0.816875 0.143576 0.262037	7.98736 6.02451 4.76101 0.485015 0 3.26750 0.574304 1.04815	0.712576 0.534218 0.434008 0.0439641 0 0.321825 0.0562290 0.112675
Isopentane n-Pentane Hexane Benzene Cyclohexane Heptane Toluene Octane m-Xylene	1.99684 1.50613 1.19025 0.121254 0 0.816875 0.143576 0.262037 0.0287168	7.98736 6.02451 4.76101 0.485015 0 3.26750 0.574304 1.04815 0.114867	0.712576 0.534218 0.434008 0.0439641 0 0.321825 0.0562290 0.112675 0.0122007
Isopentane n-Pentane Hexane Benzene Cyclohexane Heptane Toluene Octane m-Xylene Nonane	1.99684 1.50613 1.19025 0.121254 0 0.816875 0.143576 0.262037 0.0287168 0.0179209	7.98736 6.02451 4.76101 0.485015 0 3.26750 0.574304 1.04815 0.114867 0.0716836	0.712576 0.534218 0.434008 0.0439641 0 0.321825 0.0562290 0.112675 0.0122007 0.00835229
Isopentane n-Pentane Hexane Benzene Cyclohexane Heptane Toluene Octane m-Xylene Nonane 2,2,4-Trimethylpentane	1.99684 1.50613 1.19025 0.121254 0 0.816875 0.143576 0.262037 0.0287168 0.0179209 0.00441826	7.98736 6.02451 4.76101 0.485015 0 3.26750 0.574304 1.04815 0.114867 0.0716836 0.0176731	0.712576 0.534218 0.434008 0.0439641 0 0.321825 0.0562290 0.112675 0.0122007 0.00835229 0.00171415
Isopentane n-Pentane Hexane Benzene Cyclohexane Heptane Toluene Octane m-Xylene Nonane	1.99684 1.50613 1.19025 0.121254 0 0.816875 0.143576 0.262037 0.0287168 0.0179209	7.98736 6.02451 4.76101 0.485015 0 3.26750 0.574304 1.04815 0.114867 0.0716836	0.712576 0.534218 0.434008 0.0439641 0 0.321825 0.0562290 0.112675 0.0122007 0.00835229

Mass Fraction		
Nitrogen		0.000327213
Carbon Dioxide		0.0202602
Methane		0.0785467
Ethane		0.146204
Propane		0.263118
Isobutane		0.0946866
n-Butane		0.153768
Isopentane		0.0796490
n-Pentane		0.0600757
Hexane		0.0474762
Benzene		0.00483651
Cyclohexane		C
Heptane		0.0325831
Toluene		0.00572689
Octane		0.0104520
m-Xylene		0.00114544
Nonane		0.000714820
2,2,4-Trimethylpentane		0.000176234
C10		0.000118981
Ethylbenzene		0.000134655
Mass Flow	lb/h lb/h	lb/h
Nitrogen		0.0246102
Carbon Dioxide		1.52380
Methane		5.90761
Ethane		10.9962
Propane		19.7895
Isobutane		7.12152
n-Butane		11.5651
Isopentane		
		5.99052
n-Pentane		
n-Pentane Hexane		4.51838
		4.51838 3.57076
Hexane		4.51838 3.57076 0.363761
Hexane Benzene Cyclohexane		4.51838 3.57076 0.363761
Hexane Benzene		4.51838 3.57076 0.363761 0 2.45062
Hexane Benzene Cyclohexane Heptane		4.51838 3.57076 0.363761 0 2.45062 0.430728
Hexane Benzene Cyclohexane Heptane Toluene Octane		4.51838 3.57076 0.363761 0 2.45062 0.430728 0.786112
Hexane Benzene Cyclohexane Heptane Toluene		4.51838 3.57076 0.363761 0 2.45062 0.430728 0.786112 0.0861504
Hexane Benzene Cyclohexane Heptane Toluene Octane m-Xylene Nonane		5.99052 4.51838 3.57076 0.363761 0 2.45062 0.430728 0.786112 0.0861504 0.0537627 0.0132548
Hexane Benzene Cyclohexane Heptane Toluene Octane m-Xylene		4.51838 3.57076 0.363761 0 2.45062 0.430728 0.786112 0.0861504 0.0537627

Process Streams		Captured Tank Flash Vapors (25%)	Condensate Truck Loading	FG from Tanks	FG Recycled to Fulcher
Properties	Status:	Solved	Solved	Solved	Solved
Phase: Vapor	From Block:	EVRU	Condensate Storage Tank	Condensate Storage Tank	Flash Vessel
	To Block:			EVRU	
Property	Units				
Temperature	°F	65		65	80
Pressure	psia	11.9		11.9	110
Mole Fraction Vapor		1		1	1
Mole Fraction Light Liquid		0		0	0
Mole Fraction Heavy Liquid		0		0	0
Molecular Weight	lb/lbmol	42.5162		42.5162	23.7186
Mass Density	lb/ft^3	0.0910137		0.0910137	0.466021
Molar Flow	lbmol/h	0.589670		2.35868	1.24768
Mass Flow	lb/h	25.0705		100.282	29.5933
Vapor Volumetric Flow	ft^3/h	275.459		1101.83	63.5022
Liquid Volumetric Flow	gpm	34.3429		137.372	7.91716
Std Vapor Volumetric Flow	MMSCFD	0.00537049		0.0214820	0.0113634
Std Liquid Volumetric Flow	sgpm	0.101184		0.404736	0.157915
Compressibility		0.987290		0.987290	0.966686
Specific Gravity		1.46797		1.46797	0.818940
API Gravity					
Enthalpy	Btu/h	-28053.3		-112213	-48070.7
Mass Enthalpy	Btu/lb	-1118.98		-1118.98	-1624.37
Mass Cp	Btu/(lb*°F)	0.401948		0.401948	0.469460
Ideal Gas CpCv Ratio	,	1.13240		1.13240	1.22547
Dynamic Viscosity	cР	0.00844620		0.00844620	0.0106496
Kinematic Viscosity	cSt	5.79340		5.79340	1.42661
Thermal Conductivity	Btu/(h*ft*°F)	0.0110781		0.0110781	0.0168813
Surface Tension	lbf/ft				
Net Ideal Gas Heating Value	Btu/ft^3	2184.29		2184.29	1226.65
Net Liquid Heating Value	Btu/lb	19352.1		19352.1	19548.3
Gross Ideal Gas Heating Value		2374.76		2374.76	1348.67
Gross Liquid Heating Value	Btu/lb	21052.2		21052.2	21500.5

Process Streams		Inlet Liquids	Liquids to tanks	Uncaptured Tank Flash Vapors (75%)
Properties	Status:	Solved	Solved	Solved
Phase: Vapor	From Block:		Flash Vessel	EVRU
	To Block:	Flash Vessel	Condensate Storage Tank	
Property	Units			
Temperature	°F			6
Pressure	psia			11.
Mole Fraction Vapor				
Mole Fraction Light Liquid				
Mole Fraction Heavy Liquid				
Molecular Weight	lb/lbmol			42.516
Mass Density	lb/ft^3			0.091013
Molar Flow	lbmol/h			1.7690
Mass Flow	lb/h			75.211
√apor Volumetric Flow	ft^3/h			826.37
iquid Volumetric Flow	gpm			103.02
Std Vapor Volumetric Flow	MMSCFD			0.016111
Std Liquid Volumetric Flow	sgpm			0.30355
Compressibility				0.98729
Specific Gravity				1.4679
API Gravity				
Enthalpy	Btu/h			-84159
Mass Enthalpy	Btu/lb			-1118.9
Mass Cp	Btu/(lb*°F)			0.40194
deal Gas CpCv Ratio				1.1324
Dynamic Viscosity	cР			0.0084462
Kinematic Viscosity	cSt			5.7934
Thermal Conductivity	Btu/(h*ft*°F)			0.011078
Surface Tension	lbf/ft			
Net Ideal Gas Heating Value	Btu/ft^3			2184.2
Net Liquid Heating Value	Btu/lb			19352
Gross Ideal Gas Heating Value				2374.7
Gross Liquid Heating Value	Btu/lb			21052.

Process Streams		Captured Tank Flash Vapors (25%)	Condensate Truck Loading	FG from Tanks	FG Recycled to Fulcher
Composition	Status:	Solved	Solved	Solved	Solved
Phase: Light Liquid	From Block:	EVRU	Condensate Storage Tank	Condensate Storage Tank	Flash Vessel
	To Block:			EVRU	
Mole Fraction					
Nitrogen			5.79014E-07		
Carbon Dioxide			0.000245753		
Methane			0.000874726		
Ethane			0.00585617		
Propane			0.0261633		
Isobutane			0.0192473		
n-Butane			0.0466189		
Isopentane			0.0508805		
n-Pentane			0.0526141		
Hexane			0.126504		
Benzene			0.0152018		
Cyclohexane			0		
Heptane			0.248493		
Toluene			0.0555843		
Octane			0.241819		
m-Xylene			0.0321776		
Nonane			0.0495536		
2,2,4-Trimethylpentane			0.00110134		
C10			0.0234729		
Ethylbenzene Molar Flow		lbmol/h	0.00359094 lbmol/h	lbmol/h	lbmol/h
		IBIIIOI/II	1.00519E-05		IDIIIOI/II
Nitrogen Carbon Dioxide			0.00426639		
Methane			0.00420039		
Ethane			0.101666		
Propane			0.454207		
Isobutane			0.434207		
n-Butane			0.809325		
Isopentane			0.883307		
n-Pentane			0.913404		
Hexane			2.19616		
Benzene			0.263909		
Cyclohexane			0.20000		
Heptane			4.31395		
Toluene			0.964968		
Octane			4.19808		
m-Xylene			0.558617		
Nonane			0.860273		
2,2,4-Trimethylpentane			0.0191197		
C10			0.407500		
			0.0623404		

Process Streams		Inlet Liquids	Liquids to tanks	Uncaptured Tank Flash Vapors (75%)
Composition	Status:	Solved	Solved	Solved
•	From Block:	Joived	Flash Vessel	EVRU
Filase. Light Liquid	To Block:	 Flash Vessel		
Mala Frantian	TO BIOCK:	Flash Vessel	Condensate Storage Tank	
Mole Fraction				
Nitrogen		0.00038	5.99117E-05	
Carbon Dioxide		0.00392	0.00255752	
Methane		0.06584	0.0256697	
Ethane		0.03628	0.0298830	
Propane		0.0546	0.0533790	
Isobutane		0.02456	0.0252298	
n-Butane		0.05249	0.0544969	
Isopentane		0.04788	0.0504086	
n-Pentane		0.0479	0.0505553	
Hexane		0.10762	0.114174	
Benzene		0.01291	0.0136983	
Cyclohexane		0	0	
Heptane		0.20746	0.220424	
Toluene		0.04635	0.0492517	
Octane		0.20071	0.213359	
m-Xylene		0.0267	0.0283836	
Nonane		0.04106	0.0436547	
2,2,4-Trimethylpentane		0.00092	0.000977450	
C10		0.01944	0.0206695	
Ethylbenzene		0.00298	0.00316787	
Molar Flow		lbmol/h	lbmol/h	lbmol/h
Nitrogen		0.00796738	0.00118141	
Carbon Dioxide		0.0821899	0.0504321	
Methane		1.38045	0.506184	
Ethane		0.760676	0.589266	
Propane		1.14479	1.05259	
Isobutane		0.514945	0.497510	
n-Butane		1.10055	1.07463	
Isopentane		1.00389	0.994014	
n-Pentane		1.00431	0.996905	
Hexane		2.25645	2.25141	
Benzene		0.270681	0.270119	
Cyclohexane		0	0	
Heptane		4.34977	4.34656	
Toluene		0.971811	0.971201	
Octane		4.20825	4.20726	
m-Xylene		0.559814	0.559699	
Nonane		0.860897	0.860832	
2,2,4-Trimethylpentane		0.0192895	0.0192744	
C10		0.407595	0.407584	
Ethylbenzene		0.0624811	0.0624675	

Wass Francisco		
Mass Fraction		
Nitrogen	1.68958E-07	
Carbon Dioxide	0.000112660	
Methane	0.000146173	
Ethane	0.00183425	
Propane	0.0120175	
Isobutane	0.0116530	
n-Butane	0.0282247	
Isopentane	0.0382388	
n-Pentane	0.0395418	
Hexane	0.113556	
Benzene	0.0123690	
Cyclohexane	0	
Heptane	0.259367	
Toluene	0.0533479	
Octane	0.287733	
m-Xylene	0.0355844	
Nonane	0.0662026	
2,2,4-Trimethylpentane	0.00131045	
C10	0.0347889	
Ethylbenzene	0.00397113	
Mass Flow	lb/h lb/h	lb/h lb/h
Nitrogen	0.000281589	
Carbon Dioxide	0.187762	
Methane	0.243615	
Ethane	3.05699	
Propane	20.0285	
Isobutane	19.4210	
n-Butane	47.0397	
Isopentane	63.7295	
n-Pentane	65.9010	
Hexane	189.255	
Benzene	20.6144	
Cyclohexane	0	
Heptane	432.266	
Toluene	88.9106	
Octane	479.541	
m-Xylene	59.3055	
	1	
Nonane	110.334	
	2.18402	
Nonane		

Mass Fraction			
Nitrogen	0.000124238	1.87306E-05	
Carbon Dioxide	0.00201344	0.00125615	
Methane	0.0123273	0.00459586	
Ethane	0.0127319	0.0100281	
Propane	0.0280992	0.0262689	
Isobutane	0.0166601	0.0163656	
n-Butane	0.0356062	0.0353500	
Isopentane	0.0403171	0.0405891	
n-Pentane	0.0403340	0.0407072	
Hexane	0.108239	0.109806	
Benzene	0.0117693	0.0119415	
Cyclohexane	0	0	
Heptane	0.242615	0.246496	
Toluene	0.0498422	0.0506452	
Octane	0.267578	0.271996	
m-Xylene	0.0330826	0.0336298	
Nonane	0.0614611	0.0624857	
2,2,4-Trimethylpentane	0.00122650	0.00124608	
C10	0.0322814	0.0328212	
Ethylbenzene	0.00369236	0.00375339	
Mass Flow	lb/h	lb/h	lb/h
Nitrogen	0.223194	0.0330952	
Carbon Dioxide	3.61713	2.21949	
Methane	22.1459	8.12043	
Ethane	22.8728	17.7186	
Propane	50.4801	46.4145	
lsobutane	29.9297	28.9164	
n-Butane	63.9662	62.4599	
Isopentane	72.4295	71.7169	
n-Pentane	72.4597	71.9255	
Hexane	194.450	194.016	
	21.1434	21.0995	
Benzene	21.1404		
	0	0	
Benzene Cyclohexane Heptane			
Cyclohexane Heptane	0	0	
Cyclohexane Heptane Toluene	0 435.856 89.5411	0 435.534 89.4849	
Cyclohexane Heptane Toluene Octane	0 435.856	0 435.534	
Cyclohexane Heptane Toluene Octane m-Xylene	0 435.856 89.5411 480.702 59.4326	0 435.534 89.4849 480.589 59.4204	
Cyclohexane Heptane Toluene Octane m-Xylene Nonane	0 435.856 89.5411 480.702 59.4326 110.414	0 435.534 89.4849 480.589 59.4204 110.406	
Cyclohexane Heptane Toluene Octane m-Xylene	0 435.856 89.5411 480.702 59.4326	0 435.534 89.4849 480.589 59.4204	

Process Streams		Captured Tank Flash Vapors (25%)	Condensate Truck Loading	FG from Tanks	FG Recycled to Fulcher
Properties	Status:	Solved	Solved	Solved	Solved
Phase: Light Liquid	From Block:	EVRU	Condensate Storage Tank	Condensate Storage Tank	Flash Vessel
	To Block:			EVRU	
Property	Units				
Temperature	°F		65		
Pressure	psia		11.9)	
Mole Fraction Vapor			C)	
Mole Fraction Light Liquid			1		
Mole Fraction Heavy Liquid			C)	
Molecular Weight	lb/lbmol		96.0009)	
Mass Density	lb/ft^3		43.5334		
Molar Flow	lbmol/h		17.3604		
Mass Flow	lb/h		1666.62		
Vapor Volumetric Flow	ft^3/h		38.2837		
Liquid Volumetric Flow	gpm		4.77303	3	
Std Vapor Volumetric Flow	MMSCFD		0.158112	2	
Std Liquid Volumetric Flow	sgpm		4.79442		
Compressibility			0.00466069)	
Specific Gravity			0.697997		
API Gravity			70.5105		
Enthalpy	Btu/h		-1.45611E+06		
Mass Enthalpy	Btu/lb		-873.691		
Mass Cp	Btu/(lb*°F)		0.504728	3	
Ideal Gas CpCv Ratio			1.05850)	
Dynamic Viscosity	cP		0.410362	2	
Kinematic Viscosity	cSt		0.588470)	
Thermal Conductivity	Btu/(h*ft*°F)		0.0723474		
Surface Tension	lbf/ft		0.00141778?		
Net Ideal Gas Heating Value	Btu/ft^3		4844.58		
Net Liquid Heating Value	Btu/lb		18989.2		
Gross Ideal Gas Heating Value			5213.61		
Gross Liquid Heating Value	Btu/lb		20447.9)	

Process Streams		Inlet Liquids	Liquids to tanks	Uncaptured Tank Flash Vapors (75%)
Properties	Status:	Solved	Solved	Solved
Phase: Light Liquid	From Block:		Flash Vessel	EVRU
	To Block:	Flash Vessel	Condensate Storage Tank	
Property	Units	1 14011 1 00001	Condendate Clorage Tank	
Temperature	°F	60	80	
Pressure	psia	331.9	110	
Mole Fraction Vapor	•	0	0	
Mole Fraction Light Liquid		1	1	
Mole Fraction Heavy Liquid		0	0	
Molecular Weight	lb/lbmol	85.6828	89.6034	
Mass Density	lb/ft^3	42.7432	42.4268	
Molar Flow	lbmol/h	20.9668	19.7191	
Mass Flow	lb/h	1796.49	1766.90	
Vapor Volumetric Flow	ft^3/h	42.0300	41.6458	
Liguid Volumetric Flow	gpm	5.24010	5.19221	
Std Vapor Volumetric Flow	MMSCFD	0.190958	0.179594	
Std Liquid Volumetric Flow	sgpm	5.35707	5.19915	
Compressibility	•	0.119301	0.0401130	
Specific Gravity		0.685327	0.680255	
API Gravity		74.9708	73.4031	
Enthalpy	Btu/h	-1.63926E+06	-1.56984E+06	
Mass Enthalpy	Btu/lb	-912.477	-888.474	
Mass Cp	Btu/(lb*°F)	0.510195	0.519980	
Ideal Gas CpCv Ratio	, ,	1.06605	1.06119	
Dynamic Viscosity	cР	0.349775	0.332812	
Kinematic Viscosity	cSt	0.510860	0.489708	
Thermal Conductivity	Btu/(h*ft*°F)	0.0712908	0.0697053	
Surface Tension	lbf/ft /	0.00116573	0.00123630	
Net Ideal Gas Heating Value	Btu/ft^3	4330.01	4526.37	
Net Liquid Heating Value	Btu/lb	19018.6	19009.8	
Gross Ideal Gas Heating Value	e Btu/ft^3	4664.26	4874.05	
Gross Liquid Heating Value	Btu/lb	20499.0	20482.2	

Storage Tank Emissions Calculations

Unit Number: T6

Description: Produced Water Tank

Throughput

45 bbl/turnoverTank capacityHarvest Four Corners, LLC130 turnover/yrTurnovers per yearHarvest Four Corners, LLC5,870 bbl/yrAnnual liquid throughputbbl/turnover x turnover/yr

Emission Rates

		Uncontrolled,
	Emission	Emission
Pollutant	Factor,	Rate,
	lb/bbl	tpy
VOC	0.262	7.69E-01
Benzene	0.007	2.05E-02
Ethylbenzene	0.0007	2.05E-03
n-Hexane	0.022	6.46E-02
Toluene	0.009	2.64E-02
Xylene	0.006	1.76E-02

VOC, Benzene, and n-Hexane emission factors are taken from the CDPHE PS Memo 09-02 (Oil & Gas Produced Water Tank Batteries - Regulatory Definitions & Permitting Guidance) Ethylbenzene, toluene, and xylene emissions factors (Non-Texas) are taken from the TCEQ Project 2010-29 (Emission Factor Determination for Produced Water Storage Tanks) report Uncontrolled Emission Rates (tpy) = lb/bbl x bbl/yr / 2,000 lb/ton

Produced Water Storage Tank Emissions Calculations AOS

Unit Number: T6 (AOS)

Description: Produced Water Tank

Throughput

45 bbl/turnoverTank capacityHarvest Four Corners, LLC174 turnover/yrTurnovers per yearHarvest Four Corners, LLC7,827 bbl/yrAnnual liquid throughputbbl/turnover x turnover/yr

Emission Rates

		Uncontrolled,
	Emission	Emission
Pollutant	Factor,	Rate,
	lb/bbl	tpy
VOC	0.262	1.03
Benzene	0.007	2.74E-02
Ethylbenzene	0.0007	2.74E-03
n-Hexane	0.022	8.61E-02
Toluene	0.009	3.52E-02
Xylene	0.006	2.35E-02

VOC, Benzene, and n-Hexane emission factors are taken from the CDPHE PS Memo 09-02 (Oil & Gas Produced Water Tank Batteries - Regulatory Definitions & Permitting Guidance) Ethylbenzene, toluene, and xylene emissions factors (Non-Texas) are taken from the TCEQ Project 2010-29 (Emission Factor Determination for Produced Water Storage Tanks) report Uncontrolled Emission Rates (tpy) = lb/bbl x bbl/yr / 2,000 lb/ton

Storage Tank Emissions Calculations

Unit Number: T12

Description: Produced Water Tank

Throughput

70 bbl/turnoverTank capacityHarvest Four Corners, LLC130 turnover/yrTurnovers per yearHarvest Four Corners, LLC9,130 bbl/yrAnnual liquid throughputbbl/turnover x turnover/yr

Emission Rates

		Uncontrolled,
	Emission	Emission
Pollutant	Factor,	Rate,
	lb/bbl	tpy
VOC	0.262	1.20
Benzene	0.007	3.20E-02
Ethylbenzene	0.0007	3.20E-03
n-Hexane	0.022	1.00E-01
Toluene	0.009	4.11E-02
Xylene	0.006	2.74E-02

VOC, Benzene, and n-Hexane emission factors are taken from the CDPHE PS Memo 09-02 (Oil & Gas Produced Water Tank Batteries - Regulatory Definitions & Permitting Guidance) Ethylbenzene, toluene, and xylene emissions factors (Non-Texas) are taken from the TCEQ Project 2010-29 (Emission Factor Determination for Produced Water Storage Tanks) report Uncontrolled Emission Rates (tpy) = lb/bbl x bbl/yr / 2,000 lb/ton

Produced Water Storage Tank Emissions Calculations AOS

Unit Number: T12 (AOS)

Description: Produced Water Tank

Throughput

70 bbl/turnover Tank capacity Williams Four Corners LLC
174 turnover/yr Turnovers per year Williams Four Corners LLC
12,173 bbl/yr Annual liquid throughput bbl/turnover x turnover/yr

Emission Rates

		Uncontrolled,
	Emission	Emission
Pollutant	Factor,	Rate,
	lb/bbl	tpy
VOC	0.262	1.59
Benzene	0.007	4.26E-02
Ethylbenzene	0.0007	4.26E-03
n-Hexane	0.022	1.34E-01
Toluene	0.009	5.48E-02
Xylene	0.006	3.65E-02

VOC, Benzene, and n-Hexane emission factors are taken from the CDPHE PS Memo 09-02 (Oil & Gas Produced Water Tank Batteries - Regulatory Definitions & Permitting Guidance) Ethylbenzene, toluene, and xylene emissions factors (Non-Texas) are taken from the TCEQ Project 2010-29 (Emission Factor Determination for Produced Water Storage Tanks) report Uncontrolled Emission Rates (tpy) = lb/bbl x bbl/yr / 2,000 lb/ton

October 2019 / Rev. 1 Apr 2020

TANKS 4.0.9d

Emissions Report - Detail Format Tank Indentification and Physical Characteristics

Identification

User Identification: Chaco T4 (Condensate)
City: Bloomfield

City: Bloomfield State: New Mexico

Company: Williams Four Corners LLC
Type of Tank: Vertical Fixed Roof Tank

Description: 21,000 Gallon Condensate Storage Tank

Tank Dimensions

 Shell Height (ft):
 16.00

 Diameter (ft):
 15.00

 Liquid Height (ft):
 15.00

 Avg. Liquid Height (ft):
 7.50

 Volume (gallons):
 19,828.82

 Turnovers:
 50.17

 Net Throughput(gal/yr):
 994,737.00

Is Tank Heated (y/n): N

Paint Characteristics

Shell Color/Shade: Gray/Light
Shell Condition Good
Roof Color/Shade: Gray/Light
Roof Condition: Good

Roof Characteristics

Type: Dome

Height (ft) 0.00 Radius (ft) (Dome Roof) 15.00

Breather Vent Settings

Vacuum Settings (psig): -0.03 Pressure Settings (psig) 0.03

Meterological Data used in Emissions Calculations: Albuquerque, New Mexico (Avg Atmospheric Pressure = 12.15 psia)

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

Chaco T4 (Condensate) - Vertical Fixed Roof Tank Bloomfield, New Mexico

			ily Liquid S perature (de		Liquid Bulk Temp	Vapo	r Pressure	(psia)	Vapor Mol.	Liquid Mass	Vapor Mass	Mol.	Basis for Vapor Pressure
Mixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations
Condensate	All	64.94	53.24	76.64	58.39	4.4090	3.4776	5.5241	65.6443			97.09	
2,2,4-Trimethylpentane (isooctane)						0.6857	0.4887	0.9450	114.2300	0.0013	0.0003	114.23	Option 2: A=6.8118, B=1257.84, C=220.74
Benzene						1.3372	0.9653	1.8208	78.1100	0.0124	0.0056	78.11	Option 2: A=6.905, B=1211.033, C=220.79
Butane (-n)						28.6734	23.0445	35.2667	58.1230	0.0343	0.3300	58.12	Option 1: VP60 = 26.1 VP70 = 31.31
Decane (-n)						0.0374	0.0286	0.0489	142.2900	0.0349	0.0004	142.29	Option 1: VP60 = .033211 VP70 = .041762
Ethylbenzene						0.1286	0.0854	0.1894	106.1700	0.0040	0.0002	106.17	Option 2: A=6.975, B=1424.255, C=213.21
Heptane (-n)						0.7080	0.4981	0.9910	100.2000	0.2599	0.0617	100.20	Option 3: A=37358, B=8.2585
Hexane (-n)						2.1727	1.6003	2.9030	86.1700	0.1138	0.0829	86.17	Option 2: A=6.876, B=1171.17, C=224.41
Isobutane						41.6075	33.9758	50.4378	58.1230	0.0177	0.2470	58.12	Option 1: VP60 = 38.14 VP70 = 45.16
Isopentane						11.2522	8.5746	14.3915	72.1500	0.0383	0.1446	72.15	Option 1: VP60 = 10.005 VP70 = 12.53
Nonane (-n)						0.0741	0.0558	0.0981	128.2600	0.0663	0.0016	128.26	Option 1: VP60 = .065278 VP70 = .08309
Octane (-n)						0.1666	0.1231	0.2250	114.2300	0.2883	0.0161	114.23	Option 1: VP60 = .145444 VP70 = .188224
Pentane (-n)						7.6199	5.8716	9.7769	72.1500	0.0396	0.1013	72.15	Option 3: A=27691, B=7.558
Toluene						0.3844	0.2666	0.5435	92.1300	0.0535	0.0069	92.13	Option 2: A=6.954, B=1344.8, C=219.48
Xylenes (mixed isomers)						0.1073	0.0710	0.1586	106.1700	0.0357	0.0013	106.17	Option 2: A=7.009, B=1462.266, C=215.11

TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

Chaco T4 (Condensate) - Vertical Fixed Roof Tank Bloomfield, New Mexico

Annual Emission Calcaulations	
Standing Losses (lb):	3,386.3521
Vapor Space Volume (cu ft):	1,683.8880
Vapor Density (lb/cu ft):	0.0514
Vapor Space Expansion Factor:	0.3458
Vented Vapor Saturation Factor:	0.3099
Tank Vapor Space Volume:	
Vapor Space Volume (cu ft):	1,683.8880
Tank Diameter (ft):	15.0000
Vapor Space Outage (ft):	9.5289
Tank Shell Height (ft):	16.0000
Average Liquid Height (ft): Roof Outage (ft):	7.5000 1.0289
Hoor Outage (II).	1.0209
Roof Outage (Dome Roof) Roof Outage (ft):	1.0289
Dome Radius (ft):	15.0000
Shell Radius (ft):	7.5000
Vapor Density	
Vapor Density (lb/cu ft):	0.0514
Vapor Molecular Weight (lb/lb-mole): Vapor Pressure at Daily Average Liquid	65.6443
Surface Temperature (psia):	4.4090
Daily Avg. Liquid Surface Temp. (deg. R):	524.6094
Dailý Average Ambient Temp. (deg. F): Ideal Gas Constant R	56.1542
(psia cuft / (lb-mol-deg R)):	10.731
Liquid Bulk Temperature (deg. R):	518.0642
Tank Paint Solar Absorptance (Shell):	0.5400
Tank Paint Solar Absorptance (Roof): Daily Total Solar Insulation	0.5400
Factor (Btu/sqft day):	1,765.3167
Vapor Space Expansion Factor	
Vapor Space Expansion Factor:	0.3458
Daily Vapor Temperature Range (deg. R):	46.7976
Daily Vapor Pressure Range (psia):	2.0465
Breather Vent Press. Setting Range(psia): Vapor Pressure at Daily Average Liquid	0.0600
Surface Temperature (psia):	4.4090
Vapor Pressure at Daily Minimum Liquid	
Surface Temperature (psia):	3.4776
Vapor Pressure at Daily Maximum Liquid	
Surface Temperature (psia):	5.5241
Daily Avg. Liquid Surface Temp. (deg R):	524.6094
Daily Min. Liquid Surface Temp. (deg R):	512.9100
Daily Max. Liquid Surface Temp. (deg R):	536.3088
Daily Ambient Temp. Range (deg. R):	27.9250
Vented Vapor Saturation Factor	0.0000
Vented Vapor Saturation Factor: Vapor Pressure at Daily Average Liquid:	0.3099
Surface Temperature (psia):	4.4090
Vapor Space Outage (ft):	9.5289
	0.3200

Working Losses (lb):	5,241.4594
Vapor Molecular Weight (lb/lb-mole):	65.6443
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	4.4090
Annual Net Throughput (gal/yr.):	994,737.0000
Annual Turnovers:	50.1700
Turnover Factor:	0.7646
Maximum Liquid Volume (gal):	19,828.8200
Maximum Liquid Height (ft):	15.0000
Tank Diameter (ft):	15.0000
Working Loss Product Factor:	1.0000

Total Losses (lb): 8,627.8115

TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: Annual

Chaco T4 (Condensate) - Vertical Fixed Roof Tank Bloomfield, New Mexico

		Losses(lbs)	
Components	Working Loss	Breathing Loss	Total Emissions
Condensate	5,241.46	3,386.35	8,627.81
Isobutane	1,294.81	836.54	2,131.35
Butane (-n)	1,729.51	1,117.38	2,846.89
Isopentane	758.12	489.80	1,247.92
Pentane (-n)	530.89	342.99	873.88
Hexane (-n)	434.71	280.85	715.56
Heptane (-n)	323.56	209.04	532.61
Octane (-n)	84.45	54.56	139.01
Nonane (-n)	8.64	5.58	14.22
Decane (-n)	2.29	1.48	3.78
2,2,4-Trimethylpentane (isooctane)	1.58	1.02	2.61
Benzene	29.14	18.83	47.97
Ethylbenzene	0.90	0.58	1.48
Toluene	36.13	23.34	59.47
Xylenes (mixed isomers)	6.73	4.35	11.07

TANKS 4.0.9d

Emissions Report - Detail Format Tank Indentification and Physical Characteristics

Identification

User Identification: Chaco Tank T4

City:

State: New Mexico

Company:

Type of Tank: Vertical Fixed Roof Tank

Description: Chaco condensate tank T4 500 bbl capacity 31,580 bbl/yr proportional throughput of 60,000 bpy

Tank Dimensions

 Shell Height (ft):
 16.00

 Diameter (ft):
 15.00

 Liquid Height (ft):
 15.00

 Avg. Liquid Height (ft):
 7.50

 Volume (gallons):
 19,828.82

 Turnovers:
 66.89

 Net Throughput(gal/yr):
 1,326,360.00

Is Tank Heated (y/n): N

Paint Characteristics

Shell Color/Shade: Gray/Light
Shell Condition Good
Roof Color/Shade: Gray/Light
Roof Condition: Good

Roof Characteristics

Type: Dome

Height (ft) 0.00 Radius (ft) (Dome Roof) 15.00

Breather Vent Settings

Vacuum Settings (psig): -0.03 Pressure Settings (psig) 0.03

Meterological Data used in Emissions Calculations: Albuquerque, New Mexico (Avg Atmospheric Pressure = 12.15 psia)

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

Chaco Tank T4 - Vertical Fixed Roof Tank

			aily Liquid S perature (d		Bulk Temp	Vapo	r Pressure	(psia)	Vapor Mol.	Liquid Mass	Vapor Mass	Mol.	Basis for Vapor Pressure
/lixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations
Chaco condensate 2018	All	64.94	53.24	76.64	58.39	4.0261	3.1543	5.0753	66.3641			97.09	
2,2,4-Trimethylpentane (isooctane)						0.6857	0.4887	0.9450	114.2300	0.0013	0.0003	114.23	Option 2: A=6.8118, B=1257.84, C=220.74
Benzene						1.3372	0.9653	1.8208	78.1100	0.0124	0.0060	78.11	Option 2: A=6.905, B=1211.033, C=220.79
Decane (-n)						0.0374	0.0286	0.0489	142.2900	0.0349	0.0005	142.29	Option 1: VP60 = .033211 VP70 = .041762
Ethylbenzene						0.1286	0.0854	0.1894	106.1700	0.0040	0.0002	106.17	Option 2: A=6.975, B=1424.255, C=213.21
Heptane (-n)						0.7080	0.4981	0.9910	100.2000	0.2599	0.0669	100.20	Option 3: A=37358, B=8.2585
Hexane (-n)						2.1727	1.6003	2.9030	86.1700	0.1138	0.0898	86.17	Option 2: A=6.876, B=1171.17, C=224.41
i-butane						28.6704	23.0459	35.2667	58.1300	0.0177	0.1844	58.13	Option 1: VP60 = 26.098 VP70 = 31.306
Isopentane						11.2522	8.5746	14.3915	72.1500	0.0383	0.1567	72.15	Option 1: VP60 = 10.005 VP70 = 12.53
n-butane						28.6704	23.0459	35.2667	58.1300	0.0343	0.3574	58.13	Option 1: VP60 = 26.098 VP70 = 31.306
Nonane (-n)						0.0741	0.0558	0.0981	128.2600	0.0663	0.0018	128.26	Option 1: VP60 = .065278 VP70 = .08309
Octane (-n)						0.1666	0.1231	0.2250	114.2300	0.2883	0.0175	114.23	Option 1: VP60 = .145444 VP70 = .188224
Pentane (-n)						7.6199	5.8716	9.7769	72.1500	0.0396	0.1097	72.15	Option 3: A=27691, B=7.558
Toluene						0.3844	0.2666	0.5435	92.1300	0.0535	0.0075	92.13	Option 2: A=6.954, B=1344.8, C=219.48
Xylenes (mixed isomers)						0.1073	0.0710	0.1586	106.1700	0.0357	0.0014	106.17	Option 2: A=7.009, B=1462.266, C=215.11

TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

Chaco Tank T4 - Vertical Fixed Roof Tank

Annual Emission Calcaulations	
Standing Losses (lb):	3,060.5348
Vapor Space Volume (cu ft):	1,683.8880
Vapor Density (lb/cu ft):	0.0475
Vapor Space Expansion Factor:	0.3182
Vented Vapor Saturation Factor:	0.3297
Tank Vapor Space Volume:	
Vapor Space Volume (cu ft):	1,683.8880
Tank Diameter (ft):	15.0000
Vapor Space Outage (ft):	9.5289
Tank Shell Height (ft):	16.0000
Average Liquid Height (ft):	7.5000
Roof Outage (ft):	1.0289
Roof Outage (Dome Roof)	
Roof Outage (ft):	1.0289
Dome Radius (ft):	15.0000
Shell Radius (ft):	7.5000
Vapor Density	
Vapor Density (lb/cu ft):	0.0475
Vapor Molecular Weight (lb/lb-mole):	66.3641
Vapor Pressure at Daily Average Liquid	4.0004
Surface Temperature (psia):	4.0261
Daily Avg. Liquid Surface Temp. (deg. R):	524.6094
Daily Average Ambient Temp. (deg. F):	56.1542
Ideal Gas Constant R	10.731
(psia cuft / (lb-mol-deg R)):	518.0642
Liquid Bulk Temperature (deg. R): Tank Paint Solar Absorptance (Shell):	0.5400
Tank Paint Solar Absorptance (Snell). Tank Paint Solar Absorptance (Roof):	0.5400
Daily Total Solar Insulation	0.5400
Factor (Btu/sqft day):	1,765.3167
Vapor Space Expansion Factor	
Vapor Space Expansion Factor:	0.3182
Daily Vapor Temperature Range (deg. R):	46.7976
Daily Vapor Pressure Range (psia):	1.9209
Breather Vent Press. Setting Range(psia):	0.0600
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	4.0261
Vapor Pressure at Daily Minimum Liquid	
Surface Temperature (psia):	3.1543
Vapor Pressure at Daily Maximum Liquid	
Surface Temperature (psia):	5.0753
Daily Avg. Liquid Surface Temp. (deg R):	524.6094
Daily Min. Liquid Surface Temp. (deg R):	512.9100
Daily Max. Liquid Surface Temp. (deg R):	536.3088
Daily Ambient Temp. Range (deg. R):	27.9250
Vented Vapor Saturation Factor	
Vented Vapor Saturation Factor:	0.3297
Vapor Pressure at Daily Average Liquid:	4.0001
Surface Temperature (psia):	4.0261
Vapor Space Outage (ft):	9.5289
Working Losses (lb):	5,190.6314
Vapor Molecular Weight (lb/lb-mole):	66.3641

Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	4.0261
Annual Net Throughput (gal/yr.):	1,326,360.0000
Annual Turnovers:	66.8905
Turnover Factor:	0.6152
Maximum Liquid Volume (gal):	19,828.8193
Maximum Liquid Height (ft):	15.0000
Tank Diameter (ft):	15.0000
Working Loss Product Factor:	1.0000
-	

Total Losses (lb): 8,251.1662

TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: Annual

Chaco Tank T4 - Vertical Fixed Roof Tank

Components	Working Loss	Breathing Loss	Total Emissions
Chaco condensate 2018	5,190.63	3,060.53	8,251.17
i-butane	957.11	564.34	1,521.45
n-butane	1,855.11	1,093.82	2,948.94
Isopentane	813.26	479.52	1,292.78
Pentane (-n)	569.50	335.79	905.30
Hexane (-n)	466.33	274.96	741.29
Heptane (-n)	347.10	204.66	551.75
Octane (-n)	90.59	53.42	144.01
Nonane (-n)	9.27	5.47	14.73
Decane (-n)	2.46	1.45	3.91
2,2,4-Trimethylpentane (isooctane)	1.70	1.00	2.70
Benzene	31.26	18.43	49.70
Ethylbenzene	0.97	0.57	1.53
Toluene	38.76	22.85	61.61
Xylenes (mixed isomers)	7.22	4.26	11.47

TANKS 4.0.9d

Emissions Report - Detail Format Tank Indentification and Physical Characteristics

Identification

User Identification: Chaco T5 (Condensate)
City: Bloomfield

City: Bloomfield State: New Mexico

Company: Williams Four Corners LLC Type of Tank: Vertical Fixed Roof Tank

Description: 18,900 Gallon Condensate Storage Tank

Tank Dimensions

 Shell Height (ft):
 15.00

 Diameter (ft):
 15.00

 Liquid Height (ft):
 14.00

 Avg. Liquid Height (ft):
 7.00

 Volume (gallons):
 18,506.90

 Turnovers:
 48.37

 Net Throughput(gal/yr):
 895,263.00

Is Tank Heated (y/n): N

Paint Characteristics

Shell Color/Shade: Gray/Light
Shell Condition Good
Roof Color/Shade: Gray/Light
Roof Condition: Good

Roof Characteristics

Type: Dome

Height (ft) 0.00 Radius (ft) (Dome Roof) 15.00

Breather Vent Settings

Vacuum Settings (psig): -0.03 Pressure Settings (psig) 0.03

Meterological Data used in Emissions Calculations: Albuquerque, New Mexico (Avg Atmospheric Pressure = 12.15 psia)

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

Chaco T5 (Condensate) - Vertical Fixed Roof Tank Bloomfield, New Mexico

			ily Liquid S perature (de		Liquid Bulk Temp	Vapo	r Pressure	(psia)	Vapor Mol.	Liquid Mass	Vapor Mass	Mol.	Basis for Vapor Pressure
Mixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations
Condensate	All	64.94	53.24	76.64	58.39	4.4090	3.4776	5.5241	65.6443			97.09	
2,2,4-Trimethylpentane (isooctane)						0.6857	0.4887	0.9450	114.2300	0.0013	0.0003	114.23	Option 2: A=6.8118, B=1257.84, C=220.74
Benzene						1.3372	0.9653	1.8208	78.1100	0.0124	0.0056	78.11	Option 2: A=6.905, B=1211.033, C=220.79
Butane (-n)						28.6734	23.0445	35.2667	58.1230	0.0343	0.3300	58.12	Option 1: VP60 = 26.1 VP70 = 31.31
Decane (-n)						0.0374	0.0286	0.0489	142.2900	0.0349	0.0004	142.29	Option 1: VP60 = .033211 VP70 = .041762
Ethylbenzene						0.1286	0.0854	0.1894	106.1700	0.0040	0.0002	106.17	Option 2: A=6.975, B=1424.255, C=213.21
Heptane (-n)						0.7080	0.4981	0.9910	100.2000	0.2599	0.0617	100.20	Option 3: A=37358, B=8.2585
Hexane (-n)						2.1727	1.6003	2.9030	86.1700	0.1138	0.0829	86.17	Option 2: A=6.876, B=1171.17, C=224.41
Isobutane						41.6075	33.9758	50.4378	58.1230	0.0177	0.2470	58.12	Option 1: VP60 = 38.14 VP70 = 45.16
Isopentane						11.2522	8.5746	14.3915	72.1500	0.0383	0.1446	72.15	Option 1: VP60 = 10.005 VP70 = 12.53
Nonane (-n)						0.0741	0.0558	0.0981	128.2600	0.0663	0.0016	128.26	Option 1: VP60 = .065278 VP70 = .08309
Octane (-n)						0.1666	0.1231	0.2250	114.2300	0.2883	0.0161	114.23	Option 1: VP60 = .145444 VP70 = .188224
Pentane (-n)						7.6199	5.8716	9.7769	72.1500	0.0396	0.1013	72.15	Option 3: A=27691, B=7.558
Toluene						0.3844	0.2666	0.5435	92.1300	0.0535	0.0069	92.13	Option 2: A=6.954, B=1344.8, C=219.48
Xylenes (mixed isomers)						0.1073	0.0710	0.1586	106.1700	0.0357	0.0013	106.17	Option 2: A=7.009, B=1462.266, C=215.11

TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

Chaco T5 (Condensate) - Vertical Fixed Roof Tank Bloomfield, New Mexico

Annual Emission Calcaulations	
Standing Losses (lb): Vapor Space Volume (cu ft): Vapor Density (lb/cu ft): Vapor Space Expansion Factor: Vented Vapor Saturation Factor:	3,329.2145 1,595.5307 0.0514 0.3458 0.3216
Tank Vapor Space Volume: Vapor Space Volume (cu ft): Tank Diameter (ft): Vapor Space Outage (ft): Tank Shell Height (ft): Average Liquid Height (ft): Roof Outage (ft):	1,595.5307 15.0000 9.0289 15.0000 7.0000 1.0289
Roof Outage (Dome Roof) Roof Outage (ft): Dome Radius (ft): Shell Radius (ft):	1.0289 15.0000 7.5000
Vapor Density Vapor Density (lb/cu ft): Vapor Molecular Weight (lb/lb-mole): Vapor Pressure at Daily Average Liquid Surface Temperature (psia): Daily Avg. Liquid Surface Temp. (deg. R): Daily Average Ambient Temp. (deg. F):	0.0514 65.6443 4.4090 524.6094 56.1542
Ideal Gas Constant R (psia cuft / (lb-mol-deg R)): Liquid Bulk Temperature (deg. R): Tank Paint Solar Absorptance (Shell): Tank Paint Solar Absorptance (Roof): Daily Total Solar Insulation Factor (Btu/sqft day):	10.731 518.0642 0.5400 0.5400
Vapor Space Expansion Factor Vapor Space Expansion Factor: Daily Vapor Temperature Range (deg. R): Daily Vapor Pressure Range (psia): Breather Vent Press. Setting Range(psia): Vapor Pressure at Daily Average Liquid Surface Temperature (psia): Vapor Pressure at Daily Minimum Liquid Surface Temperature (psia): Vapor Pressure at Daily Maximum Liquid Surface Temperature (psia): Daily Avg. Liquid Surface Temp. (deg R): Daily Min. Liquid Surface Temp. (deg R):	0.3458 46.7976 2.0465 0.0600 4.4090 3.4776 5.5241 524.6094 512.9100
Daily Max. Liquid Surface Temp. (deg R): Daily Ambient Temp. Range (deg. R): Vented Vapor Saturation Factor	536.3088 27.9250
Vented Vapor Saturation Factor: Vapor Pressure at Daily Average Liquid: Surface Temperature (psia): Vapor Space Outage (ft):	0.3216 4.4090 9.0289

Working Losses (lb): Vapor Molecular Weight (lb/lb-mole): Vapor Pressure at Daily Average Liquid	4,854.5942 65.6443
Surface Temperature (psia):	4.4090
Annual Net Throughput (gal/yr.):	895,263.0000
Annual Turnovers:	48.3700
Turnover Factor:	0.7869
Maximum Liquid Volume (gal):	18,506.9000
Maximum Liquid Height (ft):	14.0000
Tank Diameter (ft):	15.0000
Working Loss Product Factor:	1.0000

Total Losses (lb): 8,183.8087

TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: Annual

Chaco T5 (Condensate) - Vertical Fixed Roof Tank Bloomfield, New Mexico

	Losses(lbs)							
Components	Working Loss	Breathing Loss	Total Emissions					
Condensate	4,854.59	3,329.21	8,183.81					
Isobutane	1,199.24	822.42	2,021.66					
Butane (-n)	1,601.86	1,098.53	2,700.39					
Isopentane	702.16	481.53	1,183.70					
Pentane (-n)	491.70	337.20	828.91					
Hexane (-n)	402.62	276.11	678.74					
Heptane (-n)	299.68	205.52	505.20					
Octane (-n)	78.22	53.64	131.86					
Nonane (-n)	8.00	5.49	13.49					
Decane (-n)	2.13	1.46	3.58					
2,2,4-Trimethylpentane (isooctane)	1.47	1.01	2.47					
Benzene	26.99	18.51	45.50					
Ethylbenzene	0.83	0.57	1.41					
Toluene	33.46	22.95	56.41					
Xylenes (mixed isomers)	6.23	4.27	10.50					

TANKS 4.0.9d

Emissions Report - Detail Format Tank Indentification and Physical Characteristics

Identification

User Identification: Chaco Tank T5

City:

State: New Mexico

Company:

Type of Tank: Vertical Fixed Roof Tank

Description: Chaco condensate tank T5 450 bbl capacity 28,420 bbl/yr proportional throughput of 60,000 bpy

Tank Dimensions

 Shell Height (ft):
 15.00

 Diameter (ft):
 15.00

 Liquid Height (ft):
 14.00

 Avg. Liquid Height (ft):
 7.00

 Volume (gallons):
 18,506.90

 Turnovers:
 66.89

 Net Throughput(gal/yr):
 1,193,640.00

Is Tank Heated (y/n): N

Paint Characteristics

Shell Color/Shade: Gray/Light
Shell Condition Good
Roof Color/Shade: Gray/Light
Roof Condition: Good

Roof Characteristics

Type: Dome

Height (ft) 0.00 Radius (ft) (Dome Roof) 15.00

Breather Vent Settings

Vacuum Settings (psig): -0.03 Pressure Settings (psig) 0.03

Meterological Data used in Emissions Calculations: Albuquerque, New Mexico (Avg Atmospheric Pressure = 12.15 psia)

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

Chaco Tank T5 - Vertical Fixed Roof Tank

			aily Liquid S perature (d		Bulk Temp	Vapo	r Pressure	(psia)	Vapor Mol.	Liquid Mass	Vapor Mass	Mol.	Basis for Vapor Pressure
/lixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations
Chaco condensate 2018	All	64.94	53.24	76.64	58.39	4.0261	3.1543	5.0753	66.3641			97.09	
2,2,4-Trimethylpentane (isooctane)						0.6857	0.4887	0.9450	114.2300	0.0013	0.0003	114.23	Option 2: A=6.8118, B=1257.84, C=220.74
Benzene						1.3372	0.9653	1.8208	78.1100	0.0124	0.0060	78.11	Option 2: A=6.905, B=1211.033, C=220.79
Decane (-n)						0.0374	0.0286	0.0489	142.2900	0.0349	0.0005	142.29	Option 1: VP60 = .033211 VP70 = .041762
Ethylbenzene						0.1286	0.0854	0.1894	106.1700	0.0040	0.0002	106.17	Option 2: A=6.975, B=1424.255, C=213.21
Heptane (-n)						0.7080	0.4981	0.9910	100.2000	0.2599	0.0669	100.20	Option 3: A=37358, B=8.2585
Hexane (-n)						2.1727	1.6003	2.9030	86.1700	0.1138	0.0898	86.17	Option 2: A=6.876, B=1171.17, C=224.41
i-butane						28.6704	23.0459	35.2667	58.1300	0.0177	0.1844	58.13	Option 1: VP60 = 26.098 VP70 = 31.306
Isopentane						11.2522	8.5746	14.3915	72.1500	0.0383	0.1567	72.15	Option 1: VP60 = 10.005 VP70 = 12.53
n-butane						28.6704	23.0459	35.2667	58.1300	0.0343	0.3574	58.13	Option 1: VP60 = 26.098 VP70 = 31.306
Nonane (-n)						0.0741	0.0558	0.0981	128.2600	0.0663	0.0018	128.26	Option 1: VP60 = .065278 VP70 = .08309
Octane (-n)						0.1666	0.1231	0.2250	114.2300	0.2883	0.0175	114.23	Option 1: VP60 = .145444 VP70 = .188224
Pentane (-n)						7.6199	5.8716	9.7769	72.1500	0.0396	0.1097	72.15	Option 3: A=27691, B=7.558
Toluene						0.3844	0.2666	0.5435	92.1300	0.0535	0.0075	92.13	Option 2: A=6.954, B=1344.8, C=219.48
Xylenes (mixed isomers)						0.1073	0.0710	0.1586	106.1700	0.0357	0.0014	106.17	Option 2: A=7.009, B=1462.266, C=215.11

TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

Chaco Tank T5 - Vertical Fixed Roof Tank

Annual Emission Calcaulations	
Standing Losses (lb):	3,005.6616
Vapor Space Volume (cu ft):	1,595.5307
Vapor Density (lb/cu ft):	0.0475
Vapor Space Expansion Factor:	0.3182
Vented Vapor Saturation Factor:	0.3417
Tank Vapor Space Volume:	
Vapor Space Volume (cu ft):	1,595.5307
Tank Diameter (ft):	15.0000
Vapor Space Outage (ft):	9.0289
Tank Shell Height (ft):	15.0000
Average Liquid Height (ft):	7.0000
Roof Outage (ft):	1.0289
Roof Outage (Dome Roof)	
Roof Outage (ft):	1.0289
Dome Radius (ft):	15.0000
Shell Radius (ft):	7.5000
Vapor Density	
Vapor Density (lb/cu ft):	0.0475
Vapor Molecular Weight (lb/lb-mole):	66.3641
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	4.0261
Daily Avg. Liquid Surface Temp. (deg. R):	524.6094
Daily Average Ambient Temp. (deg. F):	56.1542
Ideal Gas Constant R	
(psia cuft / (lb-mol-deg R)):	10.731
Liquid Bulk Temperature (deg. R):	518.0642
Tank Paint Solar Absorptance (Shell):	0.5400
Tank Paint Solar Absorptance (Roof):	0.5400
Daily Total Solar Insulation	4 705 0467
Factor (Btu/sqft day):	1,765.3167
Vapor Space Expansion Factor	0.0400
Vapor Space Expansion Factor:	0.3182
Daily Vapor Temperature Range (deg. R):	46.7976
Daily Vapor Pressure Range (psia):	1.9209 0.0600
Breather Vent Press. Setting Range(psia):	0.0000
Vapor Pressure at Daily Average Liquid	4.0261
Surface Temperature (psia): Vapor Pressure at Daily Minimum Liquid	4.0201
Surface Temperature (psia):	3.1543
Vapor Pressure at Daily Maximum Liquid	5.1545
Surface Temperature (psia):	5.0753
Daily Avg. Liquid Surface Temp. (deg R):	524.6094
Daily Min. Liquid Surface Temp. (deg R):	512.9100
Daily Max. Liquid Surface Temp. (deg R):	536.3088
Daily Ambient Temp. Range (deg. R):	27.9250
Vented Vapor Saturation Factor	
Vented Vapor Saturation Factor:	0.3417
Vapor Pressure at Daily Average Liquid:	2.2
Surface Temperature (psia):	4.0261
Vapor Space Outage (ft):	9.0289
Madin al annual (III)	4 074 0005
Working Losses (lb):	4,671.2395 66.3641
Vapor Molecular Weight (lb/lb-mole):	00.3041

Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	4.0261
Annual Net Throughput (gal/yr.):	1,193,640.0000
Annual Turnovers:	66.8905
Turnover Factor:	0.6152
Maximum Liquid Volume (gal):	18,506.9000
Maximum Liquid Height (ft):	14.0000
Tank Diameter (ft):	15.0000
Working Loss Product Factor:	1.0000
-	

Total Losses (lb): 7,676.9011

TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: Annual

Chaco Tank T5 - Vertical Fixed Roof Tank

	Losses(lbs)							
Components	Working Loss	Breathing Loss	Total Emissions					
Chaco condensate 2018	4,671.24	3,005.66	7,676.90					
i-butane	861.34	554.22	1,415.56					
n-butane	1,669.48	1,074.21	2,743.70					
Isopentane	731.88	470.92	1,202.81					
Pentane (-n)	512.52	329.77	842.29					
Hexane (-n)	419.67	270.03	689.70					
Heptane (-n)	312.37	200.99	513.35					
Octane (-n)	81.53	52.46	133.98					
Nonane (-n)	8.34	5.37	13.71					
Decane (-n)	2.22	1.43	3.64					
2,2,4-Trimethylpentane (isooctane)	1.53	0.98	2.51					
Benzene	28.13	18.10	46.24					
Ethylbenzene	0.87	0.56	1.43					
Toluene	34.88	22.44	57.32					
Xylenes (mixed isomers)	6.49	4.18	10.67					

TANKS 4.0 Report Page 1 of 6

TANKS 4.0.9d

Emissions Report - Detail Format Tank Indentification and Physical Characteristics

Identification

Chaco T7 (Methanol) Bloomfield User Identification:

City: State: New Mexico

Company: Type of Tank: Williams Four Corners LLC

Horizontal Tank

Description: 500 Gallon Methanol Tank

Tank Dimensions

Shell Length (ft): 6.00 Diameter (ft): 4.00 Volume (gallons): 500.00 Turnovers: 12.00 Net Throughput(gal/yr): 6,000.00

Is Tank Heated (y/n): Ν Is Tank Underground (y/n): Ν

Paint Characteristics

Shell Color/Shade: Gray/Light **Shell Condition** Good

Breather Vent Settings

Vacuum Settings (psig): -0.03 Pressure Settings (psig) 0.03

Meterological Data used in Emissions Calculations: Albuquerque, New Mexico (Avg Atmospheric Pressure = 12.15 psia)

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

Chaco T7 (Methanol) - Horizontal Tank Bloomfield, New Mexico

		Liquid Daily Liquid Surf. Bulk Temperature (deg F) Temp			Vapor Pressure (psia)			Vapor Liquid Mol. Mass			Mol.	Basis for Vapor Pressure	
Mixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations
Methyl alcohol	All	64.94	53.24	76.64	58.39	1.6820	1.1617	2.3895	32.0400			32.04	Option 2: A=7.897, B=1474.08, C=229.13

TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

Chaco T7 (Methanol) - Horizontal Tank Bloomfield, New Mexico

Annual Emission Calcaulations	
Standing Losses (lb): Vapor Space Volume (cu ft): Vapor Density (lb/cu ft): Vapor Space Expansion Factor:	28.5886 48.0243 0.0096 0.2008
Vented Vapor Saturation Factor:	0.8487
Tank Vapor Space Volume: Vapor Space Volume (cu ft): Tank Diameter (ft): Effective Diameter (ft): Vapor Space Outage (ft): Tank Shell Length (ft):	48.0243 4.0000 5.5293 2.0000 6.0000
Vapor Density Vapor Density (lb/cu ft): Vapor Molecular Weight (lb/lb-mole): Vapor Pressure at Daily Average Liquid	0.0096 32.0400
Surface Temperature (psia): Daily Avg. Liquid Surface Temp. (deg. R): Daily Average Ambient Temp. (deg. F): Ideal Gas Constant R	1.6820 524.6094 56.1542
(psia cutf / (lb-mol-deg R)): Liquid Bulk Temperature (deg. R): Tank Paint Solar Absorptance (Shell): Daily Total Solar Insulation	10.731 518.0642 0.5400
Factor (Btu/sqft day):	1,765.3167
Vapor Space Expansion Factor Vapor Space Expansion Factor: Daily Vapor Temperature Range (deg. R): Daily Vapor Pressure Range (psia): Breather Vent Press. Setting Range(psia): Vapor Pressure at Daily Average Liquid Surface Temperature (psia): Vapor Pressure at Daily Minimum Liquid Surface Temperature (psia): Vapor Pressure at Daily Maximum Liquid Surface Temperature (psia): Daily Avg. Liquid Surface Temp. (deg R): Daily Min. Liquid Surface Temp. (deg R): Daily Max. Liquid Surface Temp. (deg R): Daily Ams. Liquid Surface Temp. (deg R): Daily Ambient Temp. Range (deg. R):	0.2008 46.7976 1.2278 0.0600 1.6820 1.1617 2.3895 524.6094 512.9100 536.3088 27.9250
Vented Vapor Saturation Factor Vented Vapor Saturation Factor: Vapor Pressure at Daily Average Liquid:	0.8487
Surface Temperature (psia): Vapor Space Outage (ft):	1.6820 2.0000
Working Losses (lb): Vapor Molecular Weight (lb/lb-mole): Vapor Resource t Polity Avenue Limit	7.6985 32.0400
Vapor Pressure at Daily Average Liquid Surface Temperature (psia): Annual Net Throughput (gal/yr.):	1.6820 6,000.0000

Annual Turnovers:	12.0000
Turnover Factor:	1.0000
Tank Diameter (ft):	4.0000
Working Loss Product Factor:	1.0000

Total Losses (lb): 36.2872

TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: Annual

Chaco T7 (Methanol) - Horizontal Tank Bloomfield, New Mexico

	Losses(lbs)					
Components	Working Loss Breathing Loss Total Emission					
Methyl alcohol	7.70	28.59	36.29			

Section 6.a

Green House Gas Emissions

(Submitting under 20.2.70, 20.2.72 20.2.74 NMAC)

Title V (20.2.70 NMAC), Minor NSR (20.2.72 NMAC), and PSD (20.2.74 NMAC) applicants must estimate and report greenhouse gas (GHG) emissions to verify the emission rates reported in the public notice, determine applicability to 40 CFR 60 Subparts, and to evaluate Prevention of Significant Deterioration (PSD) applicability. GHG emissions that are subject to air permit regulations consist of the sum of an aggregate group of these six greenhouse gases: carbon dioxide (CO₂), nitrous oxide (N₂O), methane (CH₄), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride (SF₆).

Calculating GHG Emissions:

- 1. Calculate the ton per year (tpy) GHG mass emissions and GHG CO₂e emissions from your facility.
- 2. GHG mass emissions are the sum of the total annual tons of greenhouse gases without adjusting with the global warming potentials (GWPs). GHG CO₂e emissions are the sum of the mass emissions of each individual GHG multiplied by its GWP found in Table A-1 in 40 CFR 98 Mandatory Greenhouse Gas Reporting.
- 3. Emissions from routine or predictable start up, shut down, and maintenance must be included.
- **4.** Report GHG mass and GHG CO₂e emissions in Table 2-P of this application. Emissions are reported in **short** tons per year and represent each emission unit's Potential to Emit (PTE).
- **5.** All Title V major sources, PSD major sources, and all power plants, whether major or not, must calculate and report GHG mass and CO2e emissions for each unit in Table 2-P.
- **6.** For minor source facilities that are not power plants, are not Title V, and are not PSD there are three options for reporting GHGs in Table 2-P: 1) report GHGs for each individual piece of equipment; 2) report all GHGs from a group of unit types, for example report all combustion source GHGs as a single unit and all venting GHGs as a second separate unit; 3) or check the following \Box By checking this box, the applicant acknowledges the total CO2e emissions are less than 75,000 tons per year.

Sources for Calculating GHG Emissions:

- Manufacturer's Data
- AP-42 Compilation of Air Pollutant Emission Factors at http://www.epa.gov/ttn/chief/ap42/index.html
- EPA's Internet emission factor database WebFIRE at http://cfpub.epa.gov/webfire/
- 40 CFR 98 <u>Mandatory Green House Gas Reporting</u> except that tons should be reported in short tons rather than in metric tons for the purpose of PSD applicability.
- API Compendium of Greenhouse Gas Emissions Methodologies for the Oil and Natural Gas Industry. August 2009 or most recent version.
- Sources listed on EPA's NSR Resources for Estimating GHG Emissions at http://www.epa.gov/nsr/clean-air-act-permitting-greenhouse-gases:

Global Warming Potentials (GWP):

Applicants must use the Global Warming Potentials codified in Table A-1 of the most recent version of 40 CFR 98 Mandatory Greenhouse Gas Reporting. The GWP for a particular GHG is the ratio of heat trapped by one unit mass of the GHG to that of one unit mass of CO₂ over a specified time period.

"Greenhouse gas" for the purpose of air permit regulations is defined as the aggregate group of the following six gases: carbon dioxide, nitrous oxide, methane, hydrofluorocarbons, perfluorocarbons, and sulfur hexafluoride. (20.2.70.7 NMAC, 20.2.74.7 NMAC). You may also find GHGs defined in 40 CFR 86.1818-12(a).

Metric to Short Ton Conversion:

Short tons for GHGs and other regulated pollutants are the standard unit of measure for PSD and title V permitting programs. 40 CFR 98 Mandatory Greenhouse Reporting requires metric tons.

1 metric ton = 1.10231 short tons (per Table A-2 to Subpart A of Part 98 – Units of Measure Conversions)

Greenhouse Gas Emissions

Carbon dioxide (CO₂), methane (CH₄), and nitrous oxide (N₂O) combustion emissions (Units 1-7) are calculated using emission factors from the 40 Code of Federal Regulations (CFR), Part C, Tables C-1 & C-2 and the turbine, reciprocating engine and heater higher heating value (HHV) design heat rates.

The GHG emissions from SSM blowdowns of the turbines, compressors and piping (Unit SSM) and blowdowns from the pig receiver (Unit PR) are calculated from the quantity of gas vented during each event, the composition of the gas, and the number of events. The quantity of gas vented during each event is determined by HFC engineering. The composition of the gas is determined from an extended gas analysis. For each unit, the annual number of blowdown events is estimated based on historical operations. A safety factor is added because emissions from each blowdown event are dependent on the composition of the gas in the pipeline and because the number of blowdowns in a year may vary.

GHG emissions from centrifugal compressor venting (blowdown valve leakage, oil degassing vents, and isolation valve leakage) are calculated in accordance with the applicable Subpart W methodology using Best Available Monitoring Method (BAMM) emission factors prepared by Williams Four Corners LLC (during the time they owned the facility). The facility CO₂ and CH₄ contents are taken from an extended gas analysis. Since the combined blowdown valve leakage and oil degassing vent emissions (when the compressors <u>are</u> in operation) are greater than the isolation valve leakage (when the compressors are <u>not</u> in operation), potential emissions are calculated assuming the compressors operate 8,760 hours per year (in other words, isolation valve leakage occurs 0 hours per year).

GHG emissions from valves, connectors, open-ended lines and pressure relief valves (Unit F1) are calculated using the Subpart W methodology applicable to these source types. The component count is determined from the number of compressors and dehydrators permitted to operate at the station using an equation derived by HFC that is representative of their facilities. Emission factors are obtained from Table W-1A of Subpart W (Western U.S. – Gas Service). The facility CO₂ and CH₄ contents are taken from an extended gas analysis. Emissions are calculated assuming the equipment operates 8,760 hours per year.

GHG emissions from natural gas pneumatic device and pump venting are calculated using the Subpart W methodologies applicable to these source types. The component count is identified by HFC. Emission factors are obtained from Table W-1A of Subpart W (Western U.S. – Gas Service). The facility CO₂ and CH₄ contents are taken from an extended gas analysis. Emissions are calculated assuming the equipment operates 8,760 hours per year.

There are no GHG emissions associated with the truck loading operations (Units L1, L1 (AOS), L2 & L2 (AOS)).

Malfunction (Unit M1) emissions are set at 10.0 tons of VOC per year to account for emissions that may occur during upsets and malfunctions (including, but not limited to, unscheduled blowdowns and relief valve release). Based on the gas release rate associated with the set annual VOC emission rate, GHG emissions are calculated using the extended gas analysis.

GHG emissions from the condensate storage tanks (Unit T4, T4 (AOS), T5 & T5 (AOS)) are taken from the ProMax modeling results. There are no GHG emissions associated with the produced water tanks (Units T6 & T12).

		Fac	ility Total Emiss	sions	
Sources	CO2,	CH4,	N2O,	GHG,	CO2e,
	tpy	tpy	tpy	tpy	tpy
Engine & Turbine Exhaust Emissions	43,239.00	8.16E-01	8.19E-02	43,239.90	43283.81
SSM Emissions	7.68	121.96		129.64	3056.56
Centrifugal Compressor Venting Emissions	36.58	581.59		618.18	14576.46
Heater & Boiler Exhaust Emissions	292.57	5.51E-03	5.51E-04	292.58	292.87
Pig Launcher & Receiver Emissions	1.39E-01	2.21		2.35	55.40
Equipment Leak Emissions	7.01E-01	11.15		11.85	279.44
Natural Gas Pneumatic Device Venting Emissions	5.41E-01	8.58		9.12	214.94
Natural Gas Driven Pneumatic Pump Venting Emissions	1.33E-01	2.11		2.25	52.94
Malfunction Emissions	3.14	49.81		52.95	1248.42
Storage Tank Emissions	5.03	19.50		24.52	492.41
Storage Tank Emissions AOS	2.22	8.63		10.85	217.85
Total #1	43,585.52	797.73	8.24E-02	44,383.33	63,553.26
Total #2	43,582.72	786.86	8.24E-02	44,369.66	63,278.70

Total #1 assumes operation with the existing EVRU (25% control efficiency) and a limit of 45,000 bbl of condensate per year. Total #2 assumes operation with a new VRU (75% control efficiency) and a limit of 60,000 bbl of condensate per year (AOS).

Engine & Turbine Exhaust Emissions

Unit		E	mission Factor	rs .	Emission Rates			
Numbers	Description	CO2,	CH4,	N2O,	CO2,	CH4,	N2O,	
		kg/MMBtu	kg/MMBtu	kg/MMBtu	tpy	tpy	tpy	
1	Solar Saturn 10-1001	53.06	1.00E-03	1.00E-04	7,555.67	1.42E-01	1.42E-02	
2	Solar Saturn 10-1001	53.06	1.00E-03	1.00E-04	7,555.67	1.42E-01	1.42E-02	
3	Solar Saturn 10-1202	53.06	1.00E-03	1.00E-04	7,555.67	1.42E-01	1.42E-02	
4	Solar Centaur 10-4002	53.06	1.00E-03	1.00E-04	20,508.26	3.87E-01	3.87E-02	
5	Detroit Diesel Engine	73.96	3.00E-03	6.00E-04	63.73	2.59E-03	5.17E-04	
	Total				43,239.00	8.16E-01	8.19E-02	

The emissions factors are taken from 40 CFR 98, Subpart C, Tables C-1 & C-2 Emission Rates (tpy) = kg/MMBtu x 2.2 lb/kg x MMBtu/yr / 2,000 lb/ton

				LHV	HHV	
Unit			Operating	Design	Design	Fuel
Numbers	Description	Fuel Types	Times,	Heat Rates,	Heat Rates,	Usages,
			hr/yr	MMBtu/hr	MMBtu/hr	MMBtu/yr
1	Solar Saturn 10-1001	Nat. Gas	8,760	13.30	14.78	129,453
2	Solar Saturn 10-1001	Nat. Gas	8,760	13.30	14.78	129,453
3	Solar Saturn 10-1202	Nat. Gas	8,760	13.30	14.78	129,453
4	Solar Centaur 10-4002	Nat. Gas	8,760	36.10	40.11	351,373
5	Detroit Diesel Engine	Diesel	500	1.41	1.57	783

The fuel types and operating times are provided by Harvest

The LHV design heat rates are taken from manufacturers data

HHV Design Heat Rates (MMBtu/hr) = LHV Design Heat Rates (MMBtu/hr) / 0.9 LHV/HHV

HHV Fuel Usages (MMBtu/yr) = HHV Design Heat Rates (MMBtu/hr) x hr/yr

SSM Emissions

			CO2	CH4	Emission Rates	
Unit		Total	Emission	Emission		
Numbers	Description	Gas Losses,	Factors,	Factors,	CO2,	CH4,
		scf/yr	lb/scf	lb/scf	tpy	tpy
SSM	SSM Blowdowns	6,720,840	0.0023	0.0363	7.68	121.96

The annual blowdown volumes are calculated from data provided by Harvest

The CO2 and CH4 emission factors are calculated from the facility extended gas analysis

Emission Rates (tpy) = scf/yr x lb/scf / 2,000 lb/ton

Centrifugal Compressor Venting Emissions

Unit		Emissio	n Rates
Numbers	Description	CO2,	CH4,
		tpy	tpy
NA	Blowdown Valve Leakage	6.70	106.57
NA	Oil Degassing Vents	29.88	475.03
NA	Isolation Valve Leakage	0.00E+00	0.00E+00
	Total	36.58	581.59

Operating mode - includes blowdown valve leakage (wet and dry seal) and the oil degassing vents (wet seal)

Non-operating depressurized mode - includes isolation valve leakage (wet & dry seal) through open blowdown vents (without blind flanges)

A combination of equations W-22 & W-36 (Subpart W) is used to calculate centrifugal compressor emissions

As the NMED requires CO2 & CH4 emissions rather than CO2e emissions, it is not necessary to include the global warming potential from equation W-36

CO2 Emission Rates (tpy) = # x scf/hr x hr/yr x (CO2 Mole Percent (%) / 100) x CO2 Density (kg/scf)

x (2,204.6 lb/tonne / 2,000 lb/ton) / 1,000 kg/tonne

CH4 Emission Rates (tpy) = # x scf/hr x hr/yr x (CH4 Mole Percent (%) / 100) x CH4 Density (kg/scf)

x (2,204.6 lb/tonne / 2,000 lb/ton) / 1,000 kg/tonne

Unit		Number of	Gas	Operating	CO2 Mole	CH4 Mole	CO2	CH4
Numbers	Description	Compressors	Emissions,	Times,	Percents,	Percents,	Density,	Density,
		#	scf/hr	hr/yr	%	%	kg/scf	kg/scf
NA	Blowdown Valve Leakage	4	167.4	8,760	1.97	85.84	0.0526	0.0192
NA	Oil Degassing Vents	4	746.2	8,760	1.97	85.84	0.0526	0.0192
NA	Isolation Valve Leakage	4	10.8	0	1.97	85.84	0.0526	0.0192

The number of compressors are provided by Harvest

Emission factors are the three year rolling average (2012-2014) of all measurements in the Williams Field Services, LLC compressor fleet located at natural gas processing plants

The operating times (the average operating times for all station compressors combined) is provided by Harvest

The facility CO2 and CH4 contents are taken from the facility extended gas analysis

The CO2 & CH4 densities (kg/scf) are taken from Subpart W, Paragraph 98.233(v)

Heater & Boiler Exhaust Emissions

Unit		E	Emission Factor	S	Emission Rates			
Numbers	Description	CO2,	CH4,	N2O,	CO2,	CH4,	N2O,	
		kg/MMBtu	kg/MMBtu	kg/MMBtu	tpy	tpy	tpy	
6	EVRU Separator Heater	53.06	1.00E-03	1.00E-04	289.73	5.46E-03	5.46E-04	
7	Heater	53.06	1.00E-03	1.00E-04	2.84	5.35E-05	5.35E-06	
	Total				292.57	5.51E-03	5.51E-04	

The emissions factors are taken from 40 CFR 98, Subpart C, Tables C-1 & C-2

Emission Rates (tpy) = kg/MMBtu x 2.2 lb/kg x MMBtu/yr / 2,000 lb/ton

				LHV	HHV	
Unit			Operating	Design	Design	Fuel
Numbers	Description	Fuel Types	Times,	Heat Rates,	Heat Rates,	Usages,
			hr/yr	MMBtu/hr	MMBtu/hr	MMBtu/yr
6	EVRU Separator Heater	Nat. Gas	8,760	0.510	0.567	4,964
7	Heater	Nat. Gas	8,760	0.005	0.006	49

The fuel type and operating time are provided by Harvest

The LHV design heat rates are taken from manufacturers data

HHV Design Heat Rates (MMBtu/hr) = LHV Design Heat Rate (MMBtu/hr) / 0.9 LHV/HHV

HHV Fuel Usages (MMBtu/yr) = HHV Design Heat Rate (MMBtu/hr) x hr/yr

Pig Launcher & Receiver Emissions

			CO2	CH4	Emission Rates	
Unit		Total	Emission	Emission		
Numbers	Description	Gas Losses,	Factors,	Factors,	CO2,	CH4,
		scf/yr	lb/scf	lb/scf	tpy	tpy
PR	Pig Receiver	121,810	0.0023	0.0363	1.39E-01	2.21

The annual blowdown volumes are calculated from data provided by Harvest

The CO2 and CH4 emission factors are calculated from the facility extended gas analysis

Emission Rates (tpy) = scf/yr x lb/scf / 2,000 lb/ton

Equipment Leaks Emissions

Unit		Emissic	n Rates
Numbers	Description	CO2,	CH4,
		tpy	tpy
NA	Valves	5.34E-01	8.49
NA	Connectors	7.06E-02	1.12
NA	Open-Ended Lines	3.66E-02	5.82E-01
NA	Pressure Relief Valves	5.99E-02	9.52E-01
	Total	7.01E-01	11.15

A combination of equations W-31 & W-36 (Subpart W) is used to calculate uncombusted CO2 & CH4 emissions

As the NMED requires CO2 & CH4 emissions rather than CO2e emissions, it is not necessary to include the global warming potential from equation W-36

CO2 Emission Rate (tpy) = # x scf/hr/component x (CO2 Content (mole %) / 100) x hr/yr x CO2 Density (kg/scf)

x (2,204.6 lb/tonne / 2,000 lb/ton) / 1,000 kg/tonne

CH4 Emission Rate (tpy) = # x scf/hr/component x (CH4 Content (mole %) / 100) x hr/yr x CH4 Density (kg/scf) x (2,204.6 lb/tonne / 2,000 lb/ton) / 1,000 kg/tonne

			Emission					
Unit		Number of	Factors,	CO2	CH4	Operating	CO2	CH4
Numbers	Description	Components,	scf/hr	Contents,	Contents,	Times,	Density,	Density,
		#	/component	mole %	mole %	hr/yr	kg/scf	kg/scf
NA	Valves	441	0.121	1.97	85.84	8,760	0.0526	0.0192
NA	Connectors	415	0.017	1.97	85.84	8,760	0.0526	0.0192
NA	Open-Ended Lines	118	0.031	1.97	85.84	8,760	0.0526	0.0192
NA	Pressure Relief Valves	31	0.193	1.97	85.84	8,760	0.0526	0.0192

The number of sources are calculated based on the number of compressors and dehydrators at the station (see criteria pollutant and HAP equipment leaks calculations)

The emission factors are taken from Subpart W, Table W-1A (Western U.S. - Gas Service)

The facility CO2 and CH4 contents are taken from the facility extended gas analysis

The operating times are provided by Harvest (default is the entire year)

The CO2 & CH4 densities are taken from Subpart W, Paragraph 98.233(v)

Natural Gas Pneumatic Device Venting Emissions

Unit		Number	Emission	Operating	Emission Rates	
Numbers	Description	of Devices,	Factors,	Times,	CO2,	CH4,
		#	scf/hr/device	hr/yr	tpy	tpy
NA	Continuous High Bleed Pneumatic Devices	0	37.3	8,760	0.00E+00	0.00E+00
NA	Intermittent Bleed Pneumatic Devices	4	13.5	8,760	5.41E-01	8.58
NA	Continuous Low Bleed Pneumatic Devices	0	1.39	8,760	0.00E+00	0.00E+00
	Total				5.41E-01	8.58

The number of devices are provided by Harvest

The emission factors are taken from Subpart W, Table W-1A (Western U.S. - Gas Service)

The operating times are provided by Harvest

Equation W-1 (Subpart W) is used to calculate CO2 & CH4 emissions

As the NMED requires CO2 & CH4 emissions in addition to CO2e emissions, it is necessary to divide by the global warming potentials CO2 Emission Rates (tpy) = # x scf/hr/device x (CO2 Content (mole %) / 100) x CO2 Conversion Factors (tonne CO2e/scf) x hr/yr

x (2,204.6 lb/tonne / 2,000 lb/ton) / CO2 Global Warming Potentials (tonne CO2e/tonne CO2)

CH4 Emission Rates (tpy) = # x scf/hr/device x (CH4 Contents (mole %) / 100) x CH4 Conversion Factors (tonne CO2e/scf) x hr/yr x (2,204.6 lb/tonne / 2,000 lb/ton) / CH4 Global Warming Potentials (tonne CO2e/tonne CH4)

				CO2	CH4	CO2 Global	CH4 Global
				Conversion	Conversion	Warming	Warming
Unit		CO2	CH4	Factors,	Factors,	Potentials,	Potentials,
Numbers	Description	Contents,	Contents,	tonne CO2e	tonne CO2e	tonne CO2e	tonne CO2e
		mole %	mole %	/scf	/scf	/tonne CO2	/tonne CH4
NA	Continuous High Bleed Pneumatic Devices	1.97	85.84	5.262E-05	4.790E-04	1	25
NA	Continuous Low Bleed Pneumatic Devices	1.97	85.84	5.262E-05	4.790E-04	1	25
NA	Intermittent Bleed Pneumatic Devices	1.97	85.84	5.262E-05	4.790E-04	1	25

The facility CO2 and CH4 contents are taken from the facility extended gas analysis

The conversion factors are taken from Subpart W, Paragraph 98.233(a)

The global warming potentials are taken from 40 CFR Part 98, Table A-1

Natural Gas Driven Pneumatic Pump Venting Emissions

Emission Rates

	Unit		Number	Emission	Operating	Emission Rates	
Νι	umber	Description	of Pumps,	Factor,	Time,	CO2,	CH4,
			#	scf/hr/pump	hr/yr	tpy	tpy
	NA	Pneumatic Pump Venting	1	13.3	8,760	1.33E-01	2.11

The number of pumps are provided by Harvest

The emission factor is taken from Subpart W, Table W-1A (Western U.S. - Gas Service)

The operating time is provided by Harvest (default is the entire year)

Equation W-2 (Subpart W) is used to calculate CO2 & CH4 emissions

As the NMED requires CO2 & CH4 emissions in addition to CO2e emissions, it is necessary to divide by the global warming potentials

CO2 Emission Rate (tpy) = # x scf/hr/pump x (CO2 Content (mole %) / 100) x CO2 Conversion Factor (tonne CO2e/scf) x hr/yr

x (2,204.6 lb/tonne / 2,000 lb/ton) / CO2 Global Warming Potentials (tonne CO2e/tonne CO2)

CH4 Emission Rate (tpy) = # x scf/hr/pump x (CH4 Content (mole %) / 100) x CH4 Conversion Factor (tonne CO2e/scf) x hr/yr x (2,204.6 lb/tonne / 2,000 lb/ton) / CH4 Global Warming Potentials (tonne CO2e/tonne CH4)

				CO2	CH4	CO2 Global	CH4 Global
				Conversion	Conversion	Warming	Warming
Unit		CO2	CH4	Factor,	Factor,	Potential,	Potential,
Number	Description	Content,	Content,	tonne CO2e	tonne CO2e	tonne CO2e	tonne CO2e
		mole %	mole %	/scf	/scf	/tonne CO2	/tonne CH4
NA	Pneumatic Pump Venting	1.97	85.84	5.262E-05	4.790E-04	1	25

The facility CO2 and CH4 contents are taken from the facility extended gas analysis

The conversion factors are taken from Subpart W, Paragraph 98.233(a)

The global warming potentials are taken from 40 CFR Part 98, Table A-1

Green House Gas Emissions Data and Calculations

Malfunction Emissions

		Total	VOC	CO2	CH4	Emission Rates		
Unit		Component	Component	Weight %	Weight %			
Number	Description	Weight,	Weight,	of Total,	of Total,	VOC,	CO2,	CH4,
		lb/lb-mole	lb/lb-mole	%	%	tpy	tpy	tpy
M1	Malfunctions	19.51	2.76	4.45	70.57	10.00	3.14	49.81

The VOC emission rate is estimated (see calculations workbook)

CO2 Emission Rate (tpy) = VOC Emission Rate (tpy) x (Total Component Weight (lb/lb-mole) / VOC Component Weight (lb-lb-mole)) x (CO2 Weight % of Total (%) / 100)

CH4 Emission Rate (tpy) = VOC Emission Rate (tpy) x (Total Component Weight (lb/lb-mole) / VOC Component Weight (lb-lb-mole)) x (CH4 Weight % of Total (%) / 100)

The total & VOC component weights and CO2 & CH4 weight % of totals are calculated from the facility extended gas analysis

Storage Tank Emissions

Unit		Emissio	n Rates	Operating	Emission Rates	
Number	Description	CO2,	CH4,	Time,	CO2,	CH4,
		pph	pph	hr/yr	tpy	tpy
T4	Condensate Tank	6.04E-01	2.34	8,760	2.65	10.26
T5	Condensate Tank	5.44E-01	2.11	8,760	2.38	9.23
T4 (AOS)	Condensate Tank (AOS)	2.67E-01	1.04	8,760	1.17	4.54
T5 (AOS)	Condensate Tank (AOS)	2.41E-01	9.33E-01	8,760	1.05	4.09
	Total #1				5.03	19.50
	Total #2				2.22	8.63

Short-term emission rates (pph) are taken from the ProMax output

The operating times are provided by Harvest

Emission Rate (tpy) = Emission Rate (pph) x Operating Time (hr/yr) / 2,000 lb/ton

Total #1 assumes operation with the existing EVRU (25% control efficiency) and a limit of 45,000 bbl of condensate per year Total #2 assumes operation with a new VRU (75% control efficiency) and a limit of 60,000 bbl of condensate per year (AOS)

Green House Gas Emissions Data and Calculations

Gas Stream Composition

Mole Molecular Component Percent Percents Weights Weights Ib/lb-mole Molecular Weights Factors Ib/scf Emission Factors Ib/scf Ib/scf Ib/scf Ia/scf Ia/sc					Majabt	
Components Percents, % Weights, Ib/Ib-mole Weights, Ib/Ib-mole of Total, % Factors, Ib/scf Carbon Dioxide 1.9710 44.01 0.87 4.4460 0.0023 Hydrogen Sulfide 0.0000 34.07 0.00 0.0000 0.0000 Nitrogen 0.2867 28.01 0.08 0.4116 0.0002 Methane 85.8419 16.04 13.77 70.5717 0.0363 Ethane 6.7499 30.07 2.03 10.4030 0.0053 Propane 2.9232 44.09 1.29 6.6058 0.0034 IsoButane 0.5439 58.12 0.32 1.6202 0.0008 Normal Butane 0.8195 58.12 0.48 2.4412 0.0013 IsoPentane 0.2949 72.15 0.21 1.0905 0.0006 Normal Pentane 0.2178 72.15 0.16 0.8054 0.0004 Cyclopentane 0.0632 86.17 0.05 0.2791 0.0001 <		Mole	Molecular	Component	-	Emission
Carbon Dioxide 1.9710 44.01 0.87 4.4460 0.0023 Hydrogen Sulfide 0.0000 34.07 0.00 0.0000 0.0000 Nitrogen 0.2867 28.01 0.08 0.4116 0.0002 Methane 85.8419 16.04 13.77 70.5717 0.0363 Ethane 6.7499 30.07 2.03 10.4030 0.0053 Propane 2.9232 44.09 1.29 6.6058 0.0034 IsoButane 0.5439 58.12 0.32 1.6202 0.0008 Normal Butane 0.8195 58.12 0.32 1.6202 0.0008 Normal Pentane 0.2949 72.15 0.21 1.0905 0.0006 Normal Pentane 0.2178 72.15 0.16 0.8054 0.0004 Cyclopentane 0.0066 70.14 0.01 0.0309 0.0000 n-Hexane 0.0632 86.17 0.05 0.2791 0.0001 Cyclohexane 0.0496	Components			-		
Carbon Dioxide 1.9710 44.01 0.87 4.4460 0.0023 Hydrogen Sulfide 0.0000 34.07 0.00 0.0000 0.0000 Nitrogen 0.2867 28.01 0.08 0.4116 0.0002 Methane 85.8419 16.04 13.77 70.5717 0.0363 Ethane 6.7499 30.07 2.03 10.4030 0.0053 Propane 2.9232 44.09 1.29 6.6058 0.0034 IsoButane 0.5439 58.12 0.32 1.6202 0.0008 Normal Butane 0.8195 58.12 0.32 1.6202 0.0008 Normal Pentane 0.2949 72.15 0.21 1.0905 0.0006 Normal Pentane 0.2178 72.15 0.16 0.8054 0.0004 Cyclopentane 0.0086 70.14 0.01 0.0309 0.0000 n-Hexane 0.0632 86.17 0.05 0.2791 0.0001 Cyclopentane 0.0496	Components	· ·	•	•	,	· · · · · · · · · · · · · · · · · · ·
Hydrogen Sulfide 0.0000 34.07 0.00 0.0000 0.0000 Nitrogen 0.2867 28.01 0.08 0.4116 0.0002 Methane 85.8419 16.04 13.77 70.5717 0.0363 Ethane 6.7499 30.07 2.03 10.4030 0.0053 Propane 2.9232 44.09 1.29 6.6058 0.0034 IsoButane 0.5439 58.12 0.32 1.6202 0.0008 Normal Butane 0.8195 58.12 0.48 2.4412 0.0013 IsoPentane 0.2949 72.15 0.21 1.0905 0.0006 Normal Pentane 0.2178 72.15 0.21 1.0905 0.0006 Normal Pentane 0.0086 70.14 0.01 0.0309 0.0004 Cyclopentane 0.0086 70.14 0.01 0.0309 0.0001 Cyclopentane 0.0632 86.17 0.05 0.2791 0.0001 Cyclopearae 0.0236	Carbon Diavida		-			
Nitrogen 0.2867 28.01 0.08 0.4116 0.0002 Methane 85.8419 16.04 13.77 70.5717 0.0363 Ethane 6.7499 30.07 2.03 10.4030 0.0053 Propane 2.9232 44.09 1.29 6.6058 0.0034 IsoButane 0.5439 58.12 0.32 1.6202 0.0008 Normal Butane 0.8195 58.12 0.48 2.4412 0.0013 IsoPentane 0.2949 72.15 0.21 1.0905 0.0006 Normal Pentane 0.2178 72.15 0.16 0.8054 0.0004 Cyclopentane 0.0086 70.14 0.01 0.0309 0.0000 n-Hexane 0.0632 86.17 0.05 0.2791 0.0001 Cyclohexane 0.0236 84.16 0.02 0.1018 0.0001 Other Hexanes 0.1496 86.18 0.13 0.6608 0.0003 Heptanes 0.0389 100						
Methane 85.8419 16.04 13.77 70.5717 0.0363 Ethane 6.7499 30.07 2.03 10.4030 0.0053 Propane 2.9232 44.09 1.29 6.6058 0.0034 IsoButane 0.5439 58.12 0.32 1.6202 0.0008 Normal Butane 0.8195 58.12 0.48 2.4412 0.0013 IsoPentane 0.2949 72.15 0.21 1.0905 0.0006 Normal Pentane 0.2178 72.15 0.16 0.8054 0.0004 Cyclopentane 0.0086 70.14 0.01 0.0309 0.0000 n-Hexane 0.0632 86.17 0.05 0.2791 0.0001 Cyclohexane 0.0236 84.16 0.02 0.1018 0.0001 Other Hexanes 0.1496 86.18 0.13 0.6608 0.0003 Heptanes 0.0389 100.20 0.04 0.1998 0.0001 Isooctane 0.0018 1	, ,					
Ethane 6.7499 30.07 2.03 10.4030 0.0053 Propane 2.9232 44.09 1.29 6.6058 0.0034 IsoButane 0.5439 58.12 0.32 1.6202 0.0008 Normal Butane 0.8195 58.12 0.48 2.4412 0.0013 IsoPentane 0.2949 72.15 0.21 1.0905 0.0006 Normal Pentane 0.2178 72.15 0.16 0.8054 0.0004 Cyclopentane 0.0086 70.14 0.01 0.0309 0.0000 n-Hexane 0.0632 86.17 0.05 0.2791 0.0001 Cyclohexane 0.0236 84.16 0.02 0.1018 0.0001 Other Hexanes 0.1496 86.18 0.13 0.6608 0.0003 Heptanes 0.0389 100.20 0.04 0.1998 0.0001 Methylcyclohexane 0.0329 98.19 0.03 0.1656 0.0001 Isooctane 0.0101	•					
Propane 2.9232 44.09 1.29 6.6058 0.0034 IsoButane 0.5439 58.12 0.32 1.6202 0.0008 Normal Butane 0.8195 58.12 0.48 2.4412 0.0013 IsoPentane 0.2949 72.15 0.21 1.0905 0.0006 Normal Pentane 0.2178 72.15 0.16 0.8054 0.0004 Cyclopentane 0.0086 70.14 0.01 0.0309 0.0000 n-Hexane 0.0632 86.17 0.05 0.2791 0.0001 Cyclohexane 0.0632 84.16 0.02 0.1018 0.0001 Other Hexanes 0.1496 86.18 0.13 0.6608 0.0003 Heptanes 0.0389 100.20 0.04 0.1998 0.0001 Methylcyclohexane 0.0329 98.19 0.03 0.1656 0.0001 Isooctane 0.0018 100.21 0.00 0.0092 0.0000 Benzene 0.0105						
IsoButane						
Normal Butane 0.8195 58.12 0.48 2.4412 0.0013 IsoPentane 0.2949 72.15 0.21 1.0905 0.0006 Normal Pentane 0.2178 72.15 0.16 0.8054 0.0004 Cyclopentane 0.0086 70.14 0.01 0.0309 0.0000 n-Hexane 0.0632 86.17 0.05 0.2791 0.0001 Cyclohexane 0.0236 84.16 0.02 0.1018 0.0001 Other Hexanes 0.1496 86.18 0.13 0.6608 0.0003 Heptanes 0.0389 100.20 0.04 0.1998 0.0001 Methylcyclohexane 0.0329 98.19 0.03 0.1656 0.0001 Isooctane 0.0018 100.21 0.00 0.0092 0.0000 Benzene 0.0101 78.11 0.01 0.0404 0.0000 Toluene 0.0012 106.17 0.00 0.0065 0.0000 Xylenes 0.0002	•			_		
IsoPentane 0.2949 72.15 0.21 1.0905 0.0006 Normal Pentane 0.2178 72.15 0.16 0.8054 0.0004 Cyclopentane 0.0086 70.14 0.01 0.0309 0.0000 n-Hexane 0.0632 86.17 0.05 0.2791 0.0001 Cyclohexane 0.0236 84.16 0.02 0.1018 0.0001 Other Hexanes 0.1496 86.18 0.13 0.6608 0.0003 Heptanes 0.0389 100.20 0.04 0.1998 0.0001 Methylcyclohexane 0.0329 98.19 0.03 0.1656 0.0001 Isooctane 0.0018 100.21 0.00 0.0092 0.0000 Benzene 0.0101 78.11 0.01 0.0404 0.0000 Toluene 0.0012 106.17 0.00 0.0065 0.0000 Xylenes 0.0002 106.17 0.00 0.0011 0.0598 0.0000 Total 1				****		
Normal Pentane 0.2178 72.15 0.16 0.8054 0.0004 Cyclopentane 0.0086 70.14 0.01 0.0309 0.0000 n-Hexane 0.0632 86.17 0.05 0.2791 0.0001 Cyclohexane 0.0236 84.16 0.02 0.1018 0.0001 Other Hexanes 0.1496 86.18 0.13 0.6608 0.0003 Heptanes 0.0389 100.20 0.04 0.1998 0.0001 Methylcyclohexane 0.0329 98.19 0.03 0.1656 0.0001 Isooctane 0.0018 100.21 0.00 0.0092 0.0000 Benzene 0.0101 78.11 0.01 0.0404 0.0000 Toluene 0.0015 92.14 0.01 0.0496 0.0000 Ethylbenzene 0.0012 106.17 0.00 0.0065 0.0000 Xylenes 0.0106 110.00 0.01 0.0598 0.0000 Total 100.0000 <						
Cyclopentane 0.0086 70.14 0.01 0.0309 0.0000 n-Hexane 0.0632 86.17 0.05 0.2791 0.0001 Cyclohexane 0.0236 84.16 0.02 0.1018 0.0001 Other Hexanes 0.1496 86.18 0.13 0.6608 0.0003 Heptanes 0.0389 100.20 0.04 0.1998 0.0001 Methylcyclohexane 0.0329 98.19 0.03 0.1656 0.0001 Isooctane 0.0018 100.21 0.00 0.0092 0.0000 Benzene 0.0101 78.11 0.01 0.0404 0.0000 Toluene 0.0012 106.17 0.00 0.0065 0.0000 Ethylbenzene 0.0012 106.17 0.00 0.0011 0.0000 Xylenes 0.0106 110.00 0.01 0.0598 0.0000 Total 100.0000 19.51 100.0000 0.0514	IsoPentane	0.2949	72.15	0.21	1.0905	0.0006
n-Hexane 0.0632 86.17 0.05 0.2791 0.0001 Cyclohexane 0.0236 84.16 0.02 0.1018 0.0001 Other Hexanes 0.1496 86.18 0.13 0.6608 0.0003 Heptanes 0.0389 100.20 0.04 0.1998 0.0001 Methylcyclohexane 0.0329 98.19 0.03 0.1656 0.0001 Isooctane 0.0018 100.21 0.00 0.0092 0.0000 Benzene 0.0101 78.11 0.01 0.0404 0.0000 Toluene 0.0105 92.14 0.01 0.0496 0.0000 Ethylbenzene 0.0012 106.17 0.00 0.0065 0.0000 Xylenes 0.0002 106.17 0.00 0.0598 0.0000 C8+ heavies 0.0106 110.00 0.01 0.0598 0.0000 Total 100.0000 19.51 100.0000 0.0514	Normal Pentane	0.2178	72.15	0.16	0.8054	0.0004
Cyclohexane 0.0236 84.16 0.02 0.1018 0.0001 Other Hexanes 0.1496 86.18 0.13 0.6608 0.0003 Heptanes 0.0389 100.20 0.04 0.1998 0.0001 Methylcyclohexane 0.0329 98.19 0.03 0.1656 0.0001 Isooctane 0.0018 100.21 0.00 0.0092 0.0000 Benzene 0.0101 78.11 0.01 0.0404 0.0000 Toluene 0.0105 92.14 0.01 0.0496 0.0000 Ethylbenzene 0.0012 106.17 0.00 0.0065 0.0000 Xylenes 0.0002 106.17 0.00 0.0598 0.0000 C8+ heavies Total 100.0000 19.51 100.0000 0.0514	Cyclopentane	0.0086	70.14	0.01	0.0309	0.0000
Other Hexanes 0.1496 86.18 0.13 0.6608 0.0003 Heptanes 0.0389 100.20 0.04 0.1998 0.0001 Methylcyclohexane 0.0329 98.19 0.03 0.1656 0.0001 Isooctane 0.0018 100.21 0.00 0.0092 0.0000 Benzene 0.0101 78.11 0.01 0.0404 0.0000 Toluene 0.0105 92.14 0.01 0.0496 0.0000 Ethylbenzene 0.0012 106.17 0.00 0.0065 0.0000 Xylenes 0.0002 106.17 0.00 0.0011 0.0000 C8+ heavies 0.0106 110.00 0.01 0.0598 0.0000 Total 100.0000 19.51 100.0000 0.0514	n-Hexane	0.0632	86.17	0.05	0.2791	0.0001
Heptanes 0.0389 100.20 0.04 0.1998 0.0001 Methylcyclohexane 0.0329 98.19 0.03 0.1656 0.0001 Isooctane 0.0018 100.21 0.00 0.0092 0.0000 Benzene 0.0101 78.11 0.01 0.0404 0.0000 Toluene 0.0105 92.14 0.01 0.0496 0.0000 Ethylbenzene 0.0012 106.17 0.00 0.0065 0.0000 Xylenes 0.0002 106.17 0.00 0.0011 0.0000 C8+ heavies 0.0106 110.00 0.01 0.0598 0.0000 Total 100.0000 19.51 100.0000 0.0514	Cyclohexane	0.0236	84.16	0.02	0.1018	0.0001
Methylcyclohexane 0.0329 98.19 0.03 0.1656 0.0001 Isooctane 0.0018 100.21 0.00 0.0092 0.0000 Benzene 0.0101 78.11 0.01 0.0404 0.0000 Toluene 0.0105 92.14 0.01 0.0496 0.0000 Ethylbenzene 0.0012 106.17 0.00 0.0065 0.0000 Xylenes 0.0002 106.17 0.00 0.011 0.0000 C8+ heavies 0.0106 110.00 0.01 0.0598 0.0000 Total 100.0000 19.51 100.0000 0.0514	Other Hexanes	0.1496	86.18	0.13	0.6608	0.0003
Isooctane 0.0018 100.21 0.00 0.0092 0.0000 Benzene 0.0101 78.11 0.01 0.0404 0.0000 Toluene 0.0105 92.14 0.01 0.0496 0.0000 Ethylbenzene 0.0012 106.17 0.00 0.0065 0.0000 Xylenes 0.0002 106.17 0.00 0.0011 0.0000 C8+ heavies 0.0106 110.00 0.01 0.0598 0.0000 Total 100.0000 19.51 100.0000 0.0514	Heptanes	0.0389	100.20	0.04	0.1998	0.0001
Benzene 0.0101 78.11 0.01 0.0404 0.0000 Toluene 0.0105 92.14 0.01 0.0496 0.0000 Ethylbenzene 0.0012 106.17 0.00 0.0065 0.0000 Xylenes 0.0002 106.17 0.00 0.0011 0.0000 C8+ heavies 0.0106 110.00 0.01 0.0598 0.0000 Total 100.0000 19.51 100.0000 0.0514	Methylcyclohexane	0.0329	98.19	0.03	0.1656	0.0001
Toluene 0.0105 92.14 0.01 0.0496 0.0000 Ethylbenzene 0.0012 106.17 0.00 0.0065 0.0000 Xylenes 0.0002 106.17 0.00 0.0011 0.0000 C8+ heavies 0.0106 110.00 0.01 0.0598 0.0000 Total 100.0000 19.51 100.0000 0.0514	Isooctane	0.0018	100.21	0.00	0.0092	0.0000
Ethylbenzene 0.0012 106.17 0.00 0.0065 0.0000 Xylenes 0.0002 106.17 0.00 0.0011 0.0000 C8+ heavies 0.0106 110.00 0.01 0.0598 0.0000 Total 100.0000 19.51 100.0000 0.0514	Benzene	0.0101	78.11	0.01	0.0404	0.0000
Xylenes 0.0002 106.17 0.00 0.0011 0.0000 C8+ heavies 0.0106 110.00 0.01 0.0598 0.0000 Total 100.0000 19.51 100.0000 0.0514	Toluene	0.0105	92.14	0.01	0.0496	0.0000
C8+ heavies 0.0106 110.00 0.01 0.0598 0.0000 Total 100.0000 19.51 100.0000 0.0514	Ethylbenzene	0.0012	106.17	0.00	0.0065	0.0000
C8+ heavies 0.0106 110.00 0.01 0.0598 0.0000 Total 100.0000 19.51 100.0000 0.0514	Xylenes	0.0002	106.17	0.00	0.0011	0.0000
10.01	-	0.0106	110.00	0.01	0.0598	0.0000
	Total					
	VOC			2.76		0.0073

Gas stream composition obtained from Chaco extended gas analysis dated 11/29/2018

Component Weights (lb/lb-mole) = [Mole Percents (%) / 100] x Molecular Weights (lb/lb-mole)

Weight Percent of Total (%) = 100 x Component Weights (lb/lb-mole) / Total Component Weight (lb/lb-mole)

Emission Factors (lb/scf) = [Mole Percents (%) / 100] x Molecular Weights (lb/lb-mole) / 379.4 scf/lb-mole

Information Used To Determine Emissions

Information Used to Determine Emissions shall include the following:

- ☐ If manufacturer data are used, include specifications for emissions units <u>and</u> control equipment, including control efficiencies specifications and sufficient engineering data for verification of control equipment operation, including design drawings, test reports, and design parameters that affect normal operation.
- ☐ If test data are used, include a copy of the complete test report. If the test data are for an emissions unit other than the one being permitted, the emission units must be identical. Test data may not be used if any difference in operating conditions of the unit being permitted and the unit represented in the test report significantly effect emission rates.
- ☑ If the most current copy of AP-42 is used, reference the section and date located at the bottom of the page. Include a copy of the page containing the emissions factors, and clearly mark the factors used in the calculations.
- ☐ If an older version of AP-42 is used, include a complete copy of the section.
- ☑ If an EPA document or other material is referenced, include a complete copy.
- ☐ Fuel specifications sheet.
- ☑ If computer models are used to estimate emissions, include an input summary (if available) and a detailed report, and a disk containing the input file(s) used to run the model. For tank-flashing emissions, include a discussion of the method used to estimate tank-flashing emissions, relative thresholds (i.e., permit or major source (NSPS, PSD or Title V)), accuracy of the model, the input and output from simulation models and software, all calculations, documentation of any assumptions used, descriptions of sampling methods and conditions, copies of any lab sample analysis.

Table 1.4-1. EMISSION FACTORS FOR NITROGEN OXIDES (NO_x) AND CARBON MONOXIDE (CO) FROM NATURAL GAS COMBUSTION^a

	NO _x ^b			СО
Combustor Type (MMBtu/hr Heat Input) [SCC]	Emission Factor (lb/10 ⁶ scf)	Emission Factor Rating	Emission Factor (lb/10 ⁶ scf)	Emission Factor Rating
Large Wall-Fired Boilers (>100) [1-01-006-01, 1-02-006-01, 1-03-006-01]				
Uncontrolled (Pre-NSPS) ^c	280	A	84	В
Uncontrolled (Post-NSPS) ^c	190	A	84	В
Controlled - Low NO _x burners	140	A	84	В
Controlled - Flue gas recirculation	100	D	84	В
Small Boilers (<100) [1-01-006-02, 1-02-006-02, 1-03-006-02, 1-03-006-03]				
Uncontrolled	100	В	84	В
Controlled - Low NO _x burners	50	D	84	В
Controlled - Low NO _x burners/Flue gas recirculation	32	C	84	В
Tangential-Fired Boilers (All Sizes) [1-01-006-04]				
Uncontrolled	170	A	24	C
Controlled - Flue gas recirculation	76	D	98	D
Residential Furnaces (<0.3) [No SCC]				
Uncontrolled	94	В	40	В

^a Reference 11. Units are in pounds of pollutant per million standard cubic feet of natural gas fired. To convert from lb/10 ⁶ scf to kg/10⁶ m³, multiply by 16. Emission factors are based on an average natural gas higher heating value of 1,020 Btu/scf. To convert from 1b/10 ⁶ scf to lb/MMBtu, divide by 1,020. The emission factors in this table may be converted to other natural gas heating values by multiplying the given emission factor by the ratio of the specified heating value to this average heating value. SCC = Source Classification Code. ND = no data. NA = not applicable.

b Expressed as NO₂. For large and small wall fired boilers with SNCR control, apply a 24 percent reduction to the appropriate NO_X emission factor. For tangential fired boilers with SNCR control, apply a 12 percent reduction to the appropriate NO_X emission factor.

tangential-fired boilers with SNCR control, apply a 13 percent reduction to the appropriate NO x emission factor.

NSPS=New Source Performance Standard as defined in 40 CFR 60 Subparts D and Db. Post-NSPS units are boilers with greater than 250 MMBtu/hr of heat input that commenced construction modification, or reconstruction after August 17, 1971, and units with heat input capacities between 100 and 250 MMBtu/hr that commenced construction modification, or reconstruction after June 19, 1984.

TABLE 1.4-2. EMISSION FACTORS FOR CRITERIA POLLUTANTS AND GREENHOUSE GASES FROM NATURAL GAS COMBUSTION^a

Pollutant	Emission Factor (lb/10 ⁶ scf)	Emission Factor Rating
CO ₂ ^b	120,000	A
Lead	0.0005	D
N ₂ O (Uncontrolled)	2.2	E
N ₂ O (Controlled-low-NO _X burner)	0.64	Е
PM (Total) ^c	7.6	D
PM (Condensable) ^c	5.7	D
PM (Filterable) ^c	1.9	В
SO_2^{-d}	0.6	A
TOC	11	В
Methane	2.3	В
VOC	5.5	С

are for all natural gas combustion sources. To convert from lb/10⁶ scf to kg/10⁶ m³, multiply by 16. To convert from lb/10⁶ scf to 1b/MMBtu, divide by 1,020. The emission factors in this table may be converted to other natural gas heating values by multiplying the given emission factor by the ratio of the specified heating value to this average heating value. TOC = Total Organic Compounds. VOC = Volatile Organic Compounds.

^b Based on approximately 100% conversion of fuel carbon to CO_2 . $CO_2[lb/10^6 \text{ scf}] = (3.67)$ (CON) (C)(D), where CON = fractional conversion of fuel carbon to CO_2 , C = carbon content of fuel by weight (0.76), and D = density of fuel, $4.2 \times 10^4 \text{ lb}/10^6 \text{ scf}$.

^c All PM (total, condensible, and filterable) is assumed to be less than 1.0 micrometer in diameter. Therefore, the PM emission factors presented here may be used to estimate PM₁₀, PM_{2.5} or PM₁ emissions. Total PM is the sum of the filterable PM and condensible PM. Condensible PM is the particulate matter collected using EPA Method 202 (or equivalent). Filterable PM is the particulate matter collected on, or prior to, the filter of an EPA Method 5 (or equivalent) sampling train.

d Based on 100% conversion of fuel sulfur to SO₂.

Assumes sulfur content is natural gas of 2,000 grains/10⁶ scf. The SO₂ emission factor in this table can be converted to other natural gas sulfur contents by multiplying the SO₂ emission factor by the ratio of the site-specific sulfur content (grains/10⁶ scf) to 2,000 grains/10⁶ scf.

Table 3.1-2a. EMISSION FACTORS FOR CRITERIA POLLUTANTS AND GREENHOUSE GASES FROM STATIONARY GAS TURBINES

Emission Factors ^a - Uncontrolled							
	Natural Gas-l	Fired Turbines ^b	Distillate Oil-Fired Turbines ^d				
Pollutant	(lb/MMBtu) ^c (Fuel Input)	Emission Factor Rating	(lb/MMBtu) ^e (Fuel Input)	Emission Factor Rating			
CO ₂ ^f	110	A	157	A			
N ₂ O	0.003^{g}	E	ND	NA			
Lead	ND	NA	1.4 E-05	С			
SO_2	0.94S ^h	В	1.01S ^h	В			
Methane	8.6 E-03	С	ND	NA			
VOC	2.1 E-03	D	4.1 E-04 ^j	E			
TOC^k	1.1 E-02	В	4.0 E-03 ¹	С			
PM (condensible)	4.7 E-03 ¹	С	7.2 E-03 ¹	С			
PM (filterable)	1.9 E-03 ¹	С	4.3 E-03 ¹	С			
PM (total)	6.6 E-03 ^l	С	1.2 E-02 ¹	С			

^a Factors are derived from units operating at high loads (≥80 percent load) only. For information on units operating at other loads, consult the background report for this chapter (Reference 16), available at "www.epa.gov/ttn/chief". ND = No Data, NA = Not Applicable.

^b SCCs for natural gas-fired turbines include 2-01-002-01, 2-02-002-01 & 03, and 2-03-002-02 & 03.

^c Emission factors based on an average natural gas heating value (HHV) of 1020 Btu/scf at 60°F. To convert from (lb/MMBtu) to (lb/10⁶ scf), multiply by 1020. Similarly, these emission factors can be converted to other natural gas heating values.

^d SCCs for distillate oil-fired turbines are 2-01-001-01, 2-02-001-01, 2-02-001-03, and 2-03-001-02.

^e Emission factors based on an average distillate oil heating value of 139 MMBtu/10³ gallons. To convert from (lb/MMBtu) to (lb/10³ gallons), multiply by 139.

Based on 99.5% conversion of fuel carbon to CO_2 for natural gas and 99% conversion of fuel carbon to CO_2 for distillate oil. CO_2 (Natural Gas) [lb/MMBtu] = (0.0036 scf/Btu)(%CON)(C)(D), where %CON = weight percent conversion of fuel carbon to CO_2 , C = carbon content of fuel by weight, and D = density of fuel. For natural gas, C is assumed at 75%, and D is assumed at 4.1 E+04 lb/10⁶scf. For distillate oil, CO_2 (Distillate Oil) [lb/MMBtu] = (26.4 gal/MMBtu) (%CON)(C)(D), where C is assumed at 87%, and the D is assumed at 6.9 lb/gallon.

g Emission factor is carried over from the previous revision to AP-42 (Supplement B, October 1996) and is based on limited source tests on a single turbine with water-steam injection (Reference 5).

^h All sulfur in the fuel is assumed to be converted to SO_2 . S = percent sulfur in fuel. Example, if sulfur content in the fuel is 3.4 percent, then S = 3.4. If S is not available, use 3.4 E-03 lb/MMBtu for natural gas turbines, and 3.3 E-02 lb/MMBtu for distillate oil turbines (the equations are more accurate).

^j VOC emissions are assumed equal to the sum of organic emissions.

^k Pollutant referenced as THC in the gathered emission tests. It is assumed as TOC, because it is based on EPA Test Method 25A.

¹ Emission factors are based on combustion turbines using water-steam injection.

loading operation, resulting in high levels of vapor generation and loss. If the turbulence is great enough, liquid droplets will be entrained in the vented vapors.

A second method of loading is submerged loading. Two types are the submerged fill pipe method and the bottom loading method. In the submerged fill pipe method, the fill pipe extends almost to the bottom of the cargo tank. In the bottom loading method, a permanent fill pipe is attached to the cargo tank bottom. During most of submerged loading by both methods, the fill pipe opening is below the liquid surface level. Liquid turbulence is controlled significantly during submerged loading, resulting in much lower vapor generation than encountered during splash loading.

The recent loading history of a cargo carrier is just as important a factor in loading losses as the method of loading. If the carrier has carried a nonvolatile liquid such as fuel oil, or has just been cleaned, it will contain vapor-free air. If it has just carried gasoline and has not been vented, the air in the carrier tank will contain volatile organic vapors, which will be expelled during the loading operation along with newly generated vapors.

Cargo carriers are sometimes designated to transport only one product, and in such cases are practicing "dedicated service". Dedicated gasoline cargo tanks return to a loading terminal containing air fully or partially saturated with vapor from the previous load. Cargo tanks may also be "switch loaded" with various products, so that a nonvolatile product being loaded may expel the vapors remaining from a previous load of a volatile product such as gasoline. These circumstances vary with the type of cargo tank and with the ownership of the carrier, the petroleum liquids being transported, geographic location, and season of the year.

One control measure for vapors displaced during liquid loading is called "vapor balance service", in which the cargo tank retrieves the vapors displaced during product unloading at bulk plants or service stations and transports the vapors back to the loading terminal. Figure 5.2-5 shows a tank truck in vapor balance service filling a service station underground tank and taking on displaced gasoline vapors for return to the terminal. A cargo tank returning to a bulk terminal in vapor balance service normally is saturated with organic vapors, and the presence of these vapors at the start of submerged loading of the tanker truck results in greater loading losses than encountered during nonvapor balance, or "normal", service. Vapor balance service is usually not practiced with marine vessels, although some vessels practice emission control by means of vapor transfer within their own cargo tanks during ballasting operations, discussed below.

Emissions from loading petroleum liquid can be estimated (with a probable error of ± 30 percent)⁴ using the following expression:

$$L_{L} = 12.46 \frac{SPM}{T} \tag{1}$$

where:

 L_T = loading loss, pounds per 1000 gallons (lb/10³ gal) of liquid loaded

S = a saturation factor (see Table 5.2-1)

P = true vapor pressure of liquid loaded, pounds per square inch absolute (psia) (see Figure 7.1-5, Figure 7.1-6, and Table 7.1-2)

M = molecular weight of vapors, pounds per pound-mole (lb/lb-mole) (see Table 7.1-2)

T = temperature of bulk liquid loaded, ${}^{\circ}R$ (${}^{\circ}F$ + 460)

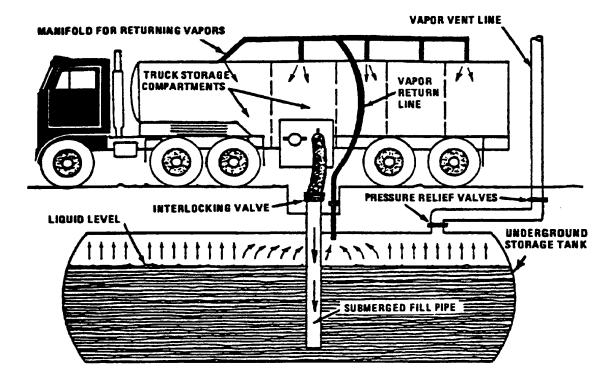


Figure 5.2-5. Tank truck unloading into a service station underground storage tank and practicing "vapor balance" form of emission control.

Table 5.2-1. SATURATION (S) FACTORS FOR CALCULATING PETROLEUM LIQUID LOADING LOSSES

Cargo Carrier	Mode Of Operation	S Factor
Tank trucks and rail tank cars	Submerged loading of a clean cargo tank	0.50
	Submerged loading: dedicated normal service	0.60
	Submerged loading: dedicated vapor balance service	1.00
	Splash loading of a clean cargo tank	1.45
	Splash loading: dedicated normal service	1.45
	Splash loading: dedicated vapor balance service	1.00
Marine vessels ^a	Submerged loading: ships	0.2
	Submerged loading: barges	0.5

^a For products other than gasoline and crude oil. For marine loading of gasoline, use factors from Table 5.2-2. For marine loading of crude oil, use Equations 2 and 3 and Table 5.2-3.

TABLE 2-4. OIL AND GAS PRODUCTION OPERATIONS AVERAGE EMISSION FACTORS (kg/hr/source)

Equipment Type	Service ^a	Emission Factor (kg/hr/source)b
Valves	Gas Heavy Oil Light Oil Water/Oil	4.5E-03 8.4E-06 2.5E-03 9.8E-05
Pump seals	Gas Heavy Oil Light Oil Water/Oil	2.4E-03 NA 1.3E-02 2.4E-05
Others ^C	Gas Heavy Oil Light Oil Water/Oil	8.8E-03 3.2E-05 7.5E-03 1.4E-02
Connectors	Gas Heavy Oil Light Oil Water/Oil	2.0E-04 7.5E-06 2.1E-04 1.1E-04
Flanges	Gas Heavy Oil Light Oil Water/Oil	3.9E-04 3.9E-07 1.1E-04 2.9E-06
Open-ended lines	Gas Heavy Oil Light Oil Water/Oil	2.0E-03 1.4E-04 1.4E-03 2.5E-04

aWater/Oil emission factors apply to water streams in oil service with a water content greater than 50%, from the point of origin to the point where the water content reaches 99%. For water streams with a water content greater than 99%, the emission rate is considered negligible.

bThese factors are for total organic compound emission rates (including non-VOC's such as methane and ethane) and apply to light crude, heavy crude, gas plant, gas production, and off shore facilities. "NA" indicates that not enough data were available to develop the indicated emission factor.

CThe "other" equipment type was derived from compressors, diaphrams, drains, dump arms, hatches, instruments, meters, pressure relief valves, polished rods, relief valves, and vents. This "other" equipment type should be applied for any equipment type other than connectors, flanges, open-ended lines, pumps, or valves.

2030 Afton Place Farmington, NM 87401 (505) 325-6622

Analysis No: HM180006 Cust No: 33700-10025

Well/Lease Information

Customer Name: HARVEST MIDSTREAM Well Name: CHACO COMP INLET

County/State: Location: Field:

Formation:

Cust. Stn. No.: 0247730

Heat Trace: Remarks:

Heat Trace:

CALCULATED MOLECULAR WEIGHT = 19.5051

Source: SPOT

Well Flowing:

Pressure: 253 PSIG
Flow Temp: 52 DEG. F
Ambient Temp: DEG. F
Flow Rate: MCF/D

Sample Method:

Sample Date: 11/27/2018
Sample Time: 11.34 AM
Sampled By: MARVIN WOOD

Sampled by (CO): HARVEST

Analysis

Component:	Mole%:	Unormalized %:	**GPM:	*BTU:	*SP Gravity:
Nitrogen	0.3306	0.3218	0.0360	0.00	0.0032
CO2	1.9364	1.8846	0.3310	0.00	0.0294
Methane	85.6254	83.3344	14.5560	864.82	0.4743
Ethane	7.0286	6.8405	1.8850	124.38	0.0730
Propane	2.9810	2.9012	0.8240	75.00	0.0454
Iso-Butane	0.5417	0.5272	0.1780	17.62	0.0109
N-Butane	0.7937	0.7725	0.2510	25.89	0.0159
Neopentane 2,2 dmc3	0.0021	0.0020	0.0010	0.08	0.0001
I-Pentane	0.2733	0.2660	0.1000	10.93	0.0068
N-Pentane	0.1943	0.1891	0.0710	7.79	0.0048
Neohexane	0.0111	N/R	0.0050	0.53	0.0003
2-3-Dimethylbutane	0.0077	N/R	0.0030	0.37	0.0002
Cyclopentane	0.0080	N/R	0.0020	0.30	0.0002
2-Methylpentane	0.0518	N/R	0.0220	2.46	0.0015
3-Methylpentane	0.0246	N/R	0.0100	1.17	0.0007
C6	0.0563	0.2851	0.0230	2.68	0.0017
Methylcyclopentane	0.0389	N/R	0.0140	1.75	0.0011
Benzene	0.0090	N/R	0.0030	0.34	0.0002
Cyclohexane	0.0193	N/R	0.0070	0.86	0.0006
2-Methylhexane	0.0057	N/R	0.0030	0.31	0.0002
3-Methylhexane	0.0063	N/R	0.0030	0.34	0.0002
2-2-4-Trimethylpentane	0.0010	N/R	0.0010	0.06	0.0000
i-heptanes	0.0035	N/R	0.0020	0.19	0.0001
Heptane	0.0120	N/R	0.0060	0.66	0.0004

Total	100.00	97.324	18.351	1140.53	0.6727
C12P	0.0000	N/R	0.0000	0.00	0.0000
C11	0.0001	N/R	0.0000	0.01	0.0000
i-C11	0.0000	N/R	0.0000	0.00	0.0000
C10	0.0003	N/R	0.0000	0.02	0.0000
i-C10	0.0003	N/R	0.0000	0.02	0.0000
C9	0.0003	N/R	0.0000	0.02	0.0000
i-C9	0.0005	N/R	0.0000	0.03	0.0000
o Xylene (& 2,2,4 tmc7)	0.0002	N/R	0.0000	0.01	0.0000
m, p Xylene	0.0008	N/R	0.0000	0.04	0.0000
Ethylbenzene	0.0001	N/R	0.0000	0.01	0.0000
Octane	0.0016	N/R	0.0010	0.10	0.0001
i-Octanes	0.0005	N/R	0.0000	0.03	0.0000
4-Methylheptane	0.0009	N/R	0.0000	0.06	0.0000
2-Methylheptane	0.0019	N/R	0.0010	0.12	0.0001
Toluene	0.0076	N/R	0.0030	0.34	0.0002
Methylcyclohexane	0.0228	N/R	0.0090	1.19	0.0008

^{* @ 14.730} PSIA DRY & UNCORRECTED FOR COMPRESSIBILITY

^{**@ 14.730} PSIA & 60 DEG. F.

COMPRESSIBLITY FACTOR	(1/Z):	1.003	CYLINDER #:	0623
BTU/CU.FT IDEAL:		1143.2	CYLINDER PRESSURE:	268 PSIG
BTU/CU.FT (DRY) CORRECTED FO	R (1/Z):	1146.5	ANALYSIS DATE:	11/29/2018
BTU/CU.FT (WET) CORRECTED FO	R (1/Z):	1126.6	ANALYIS TIME:	11:31:53 AM
DRY BTU @ 15.025:		1169.5	ANALYSIS RUN BY:	PATRICIA KING
REAL SPECIFIC GRAVITY:		0.6744		

GPM, BTU, and SPG calculations as shown above are based on current GPA constants.

GPA Standard: GPA 2286-14

GC: SRI Instruments 8610 Last Cal/Verify: 11/29/2018

GC Method: C12+BTEX Gas

HARVEST MIDSTREAM WELL ANALYSIS COMPARISON

 Lease:
 CHACO COMP INLET
 SPOT
 11/29/2018

 Stn. No.:
 0247730
 33700-10025

Mtr. No.:

 Smpl Date:
 11/27/2018

 Test Date:
 11/29/2018

 Run No:
 HM180006

Run No: 0.3306 Nitrogen: 1.9364 CO2: 85.6254 Methane: 7.0286 Ethane: 2.9810 Propane: 0.5417 I-Butane: 0.7937 N-Butane: 0.0021 2,2 dmc3: 0.2733 I-Pentane: 0.1943 N-Pentane: 0.0111 Neohexane: 0.0077 2-3-Cyclopentane: 0.0080 2-Methylpentane: 0.0518 3-Methylpentane: 0.0246 C6: 0.0563 Methylcyclopentane: 0.0389 Benzene: 0.0090 Cyclohexane: 0.0193 2-Methylhexane: 0.0057 3-Methylhexane: 0.0000 2-2-4-0.0010 i-heptanes: 0.0035 Heptane: 0.0120 Methylcyclohexane: 0.0228 Toluene: 0.0076 2-Methylheptane: 0.0019 4-Methylheptane: 0.0009 i-Octanes: 0.0005 Octane: 0.0016 Ethylbenzene: 0.0001 m, p Xylene: 0.0008 o Xylene (& 2,2,4 0.0002 i-C9: 0.0005 C9: 0.0003 i-C10: 0.0003

0.0003

0.0000

0.0001

0.0000

1146.5

18.3630

0.6744

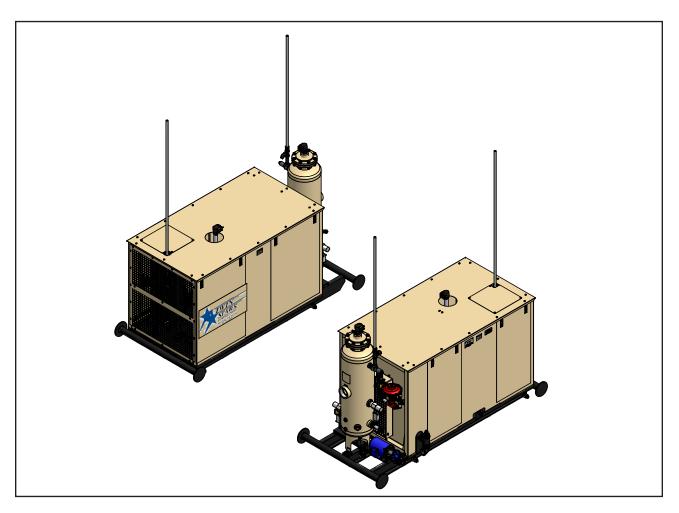
C10:

i-C11:

C11:

C12P:

BTU:


GPM:

SPG:

Service and Maintenance Manual

10 HP 7D/8D VRUE Skid Auto Bypass Gas Compressor

This manual must be read carefully before using your Twin Stars, Ltd. Gas Compressor. Store in a safe and convenient location for future reference.

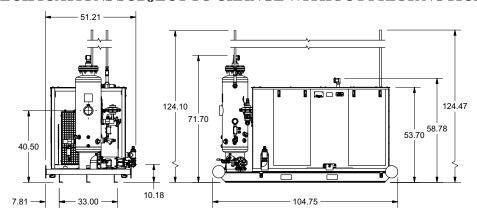
For technical support:

Phone: (505) 632-9202 (Outside USA)

Fax: (505) 632-2723 (USA)

Website: http://www.twinstars.com

Specifications


4.1 Specification Sheet 7D

Gas Delivery @ 130 PSI with SG 1.20 & 0 PSI Inlet Pressure	MSCFD	17.5	18	20	21	22	
Motor Speed	RPM	2900	3000	3200	3400	3600	
	Rating			10 HP			
	Volt			460			
Variable Frequency Drive	Phase			3			
(VFD) Electric Motor	Frequency		60 I	Iz maxii	num		
	Frame	TEFC					
	Electrical Classification	Class 1, Division 2, Group D					
Compressor Gasend		-	SCA7D				
Compressor Oil Capacity		10	1/2 Gall	ons			
Machine Weight		246	7 lbs (V	Vet)			
Overall Dimensions	104 3/	3/4" L x 71 3/4" H x 51 1/4" W					
Duty Cycle	Continuous Duty						
Machine Operating Angle	15° maximum						
Ambient Conditions	-40°F to 125°F						

Running the electric motor less then 2900 rpm will produce insufficient oil flow for the compressor.

SPECIFICATIONS SUBJECT TO CHANGE WITHOUT PRIOR NOTICE

14 309696

Description of Components

5.14 Low Suction Bypass

The unit is equipped with a low suction bypass that allows a controlled amount of gas from the higher pressure discharge side to recirculate to the inlet scrubber vessel, this is to prevent a vacuum from being pulled on the tank(s). The bypass consists of a normally closed pneumatic motor valve and two normally open solenoid valves. One solenoid valve allows gas to vent from the pneumatic valve into the suction scrubber if the pressure in the tank(s) rises above the "**HiBypassSP**", causing the motor valve to close. The other solenoid valve allows regulated gas pressure (40 psig) to open the motor valve if the pressure in the tank(s) falls below the "**LoBypassSP**".

19 309696

Table A-1 to Subpart A of Part 98—Global Warming Potentials

GLOBAL WARMING POTENTIALS

[100-Year Time Horizon]

Name	CAS No.	Chemical formula	Global warming potential (100 yr.)
Carbon dioxide	124-38-9	CO_2	1
Methane	74-82-8	CH ₄	^a 25
Nitrous oxide	10024-97-2	N_2O	^a 298
HFC-23	75-46-7	CHF ₃	^a 14,800
HFC-32	75-10-5	CH ₂ F ₂	^a 675
HFC-41	593-53-3	CH₃F	a92
HFC-125	354-33-6	C ₂ HF ₅	^a 3,500
HFC-134	359-35-3	C ₂ H ₂ F ₄	^a 1,100
HFC-134a	811-97-2	CH ₂ FCF ₃	a1,430
HFC-143	430-66-0	$C_2H_3F_3$	^a 353
HFC-143a	420-46-2	$C_2H_3F_3$	^a 4,470
HFC-152	624-72-6	CH ₂ FCH ₂ F	53
HFC-152a	75-37-6	CH₃CHF₂	^a 124
HFC-161	353-36-6	CH₃CH₂F	12
HFC-227ea	431-89-0	C ₃ HF ₇	a3,220
HFC-236cb	677-56-5	CH ₂ FCF ₂ CF ₃	1,340
HFC-236ea	431-63-0	CHF ₂ CHFCF ₃	1,370
HFC-236fa	690-39-1	C ₃ H ₂ F ₆	a9,810
HFC-245ca	679-86-7	$C_3H_3F_5$	a693
HFC-245fa	460-73-1	CHF ₂ CH ₂ CF ₃	1,030
HFC-365mfc	406-58-6	CH ₃ CF ₂ CH ₂ CF ₃	794
HFC-43-10mee	138495-42-8	CF ₃ CFHCFHCF ₂ CF ₃	^a 1,640
Sulfur hexafluoride	2551-62-4	SF ₆	^a 22,800
Trifluoromethyl sulphur pentafluoride	373-80-8	SF ₅ CF ₃	17,700
Nitrogen trifluoride	7783-54-2	NF ₃	17,200
PFC-14 (Perfluoromethane)	75-73-0	CF ₄	a7,390
PFC-116 (Perfluoroethane)	76-16-4	C ₂ F ₆	^a 12,200
PFC-218 (Perfluoropropane)	76-19-7	C_3F_8	a8,830
Perfluorocyclopropane	931-91-9	C-C ₃ F ₆	17,340
PFC-3-1-10 (Perfluorobutane)	355-25-9	C_4F_{10}	^a 8,860
PFC-318 (Perfluorocyclobutane)	115-25-3	C-C ₄ F ₈	^a 10,300
PFC-4-1-12 (Perfluoropentane)	678-26-2	C ₅ F ₁₂	a9,160
PFC-5-1-14 (Perfluorohexane, FC-72)	355-42-0	C ₆ F ₁₄	a9,300
PFC-9-1-18	306-94-5	$C_{10}F_{18}$	7,500
HCFE-235da2 (Isoflurane)	26675-46-7	CHF ₂ OCHClCF ₃	350
HFE-43-10pccc (H-Galden 1040x, HG-11)	E1730133	CHF ₂ OCF ₂ OC ₂ F ₄ OCHF ₂	1,870

	•	•	
HFE-125	3822-68-2	CHF ₂ OCF ₃	14,900
HFE-134 (HG-00)	1691-17-4	CHF ₂ OCHF ₂	6,320
HFE-143a	421-14-7	CH ₃ OCF ₃	756
HFE-227ea	2356-62-9	CF ₃ CHFOCF ₃	1,540
HFE-236ca12 (HG-10)	78522-47-1	CHF ₂ OCF ₂ OCHF ₂	2,800
HFE-236ea2 (Desflurane)	57041-67-5	CHF ₂ OCHFCF ₃	989
HFE-236fa	20193-67-3	CF ₃ CH ₂ OCF ₃	487
HFE-245cb2	22410-44-2	CH ₃ OCF ₂ CF ₃	708
HFE-245fa1	84011-15-4	CHF ₂ CH ₂ OCF ₃	286
HFE-245fa2	1885-48-9	CHF ₂ OCH ₂ CF ₃	659
HFE-254cb2	425-88-7	CH ₃ OCF ₂ CHF ₂	359
HFE-263fb2	460-43-5	CF ₃ CH ₂ OCH ₃	11
HFE-329mcc2	134769-21-4	CF ₃ CF ₂ OCF ₂ CHF ₂	919
HFE-338mcf2	156053-88-2	CF ₃ CF ₂ OCH ₂ CF ₃	552
HFE-338pcc13 (HG-01)	188690-78-0	CHF ₂ OCF ₂ CF ₂ OCHF ₂	1,500
HFE-347mcc3 (HFE-7000)	375-03-1	CH ₃ OCF ₂ CF ₂ CF ₃	575
HFE-347mcf2	171182-95-9	CF ₃ CF ₂ OCH ₂ CHF ₂	374
HFE-347pcf2	406-78-0	CHF ₂ CF ₂ OCH ₂ CF ₃	580
HFE-356mec3	382-34-3	CH ₃ OCF ₂ CHFCF ₃	101
HFE-356pcc3	160620-20-2	CH ₃ OCF ₂ CF ₂ CHF ₂	110
HFE-356pcf2	50807-77-7	CHF ₂ CH ₂ OCF ₂ CHF ₂	265
HFE-356pcf3	35042-99-0	CHF ₂ OCH ₂ CF ₂ CHF ₂	502
HFE-365mcf3	378-16-5	CF ₃ CF ₂ CH ₂ OCH ₃	11
HFE-374pc2	512-51-6	CH ₃ CH ₂ OCF ₂ CHF ₂	557
HFE-449s1 (HFE-7100)	163702-07-6	C ₄ F ₉ OCH ₃	297
Chemical blend	163702-08-7	(CF ₃) ₂ CFCF ₂ OCH ₃	
HFE-569sf2 (HFE-7200)	163702-05-4	$C_4F_9OC_2H_5$	59
Chemical blend	163702-06-5	(CF ₃) ₂ CFCF ₂ OC ₂ H ₅	
Sevoflurane (HFE-347mmz1)	28523-86-6	CH ₂ FOCH(CF ₃) ₂	345
HFE-356mm1	13171-18-1	(CF ₃) ₂ CHOCH ₃	27
HFE-338mmz1	26103-08-2	CHF ₂ OCH(CF ₃) ₂	380
(Octafluorotetramethy-lene) hydroxymethyl group	NA	X-(CF ₂) ₄ CH(OH)-X	73
HFE-347mmy1	22052-84-2	CH ₃ OCF(CF ₃) ₂	343
Bis(trifluoromethyl)-methanol	920-66-1	(CF ₃) ₂ CHOH	195
2,2,3,3,3-pentafluoropropanol	422-05-9	CF ₃ CF ₂ CH ₂ OH	42
PFPMIE (HT-70)	NA	CF ₃ OCF(CF ₃)CF ₂ OCF ₂ OCF ₃	10,300

 $^{^{\}mathrm{a}}$ The GWP for this compound is different than the GWP in the version of Table A-1 to subpart A of part 98 published on October 30, 2009.

Table C-1 to Subpart C of Part 98—Default CO₂ Emission Factors and High Heat Values for Various Types of Fuel

Default CO₂ Emission Factors and High Heat Values for Various Types of Fuel

Fuel type	Default high heat value	Default CO ₂ emission factor
Coal and coke	mmBtu/short ton	kg CO₂/mmBtu
Anthracite	25.09	103.69
Bituminous	24.93	93.28
Subbituminous	17.25	97.17
Lignite	14.21	97.72
Coal Coke	24.80	113.67
Mixed (Commercial sector)	21.39	94.27
Mixed (Industrial coking)	26.28	93.90
Mixed (Industrial sector)	22.35	94.67
Mixed (Electric Power sector)	19.73	95.52
Natural gas	mmBtu/scf	kg CO₂/mmBtu
(Weighted U.S. Average)	1.026×10^{-3}	53.06
Petroleum products	mmBtu/gallon	kg CO₂/mmBtu
Distillate Fuel Oil No. 1	0.139	73.25
Distillate Fuel Oil No. 2	0.138	73.96
Distillate Fuel Oil No. 4	0.146	75.04
Residual Fuel Oil No. 5	0.140	72.93
Residual Fuel Oil No. 6	0.150	75.10
Used Oil	0.138	74.00
Kerosene	0.135	75.20
Liquefied petroleum gases (LPG) ¹	0.092	61.71
Propane ¹	0.091	62.87
Propylene ²	0.091	67.77
Ethane ¹	0.068	59.60
Ethanol	0.084	68.44
Ethylene ²	0.058	65.96
Isobutane ¹	0.099	64.94
Isobutylene ¹	0.103	68.86
Butane ¹	0.103	64.77
Butylene ¹	0.105	68.72
Naphtha (<401 deg F)	0.125	68.02
Natural Gasoline	0.110	66.88
Other Oil (>401 deg F)	0.139	76.22
Pentanes Plus	0.110	70.02

Petrochemical Feedstocks	0.125	71.02
Petroleum Coke	0.143	102.41
Special Naphtha	0.125	72.34
Unfinished Oils	0.139	74.54
Heavy Gas Oils	0.148	74.92
Lubricants	0.144	74.27
Motor Gasoline	0.125	70.22
Aviation Gasoline	0.120	69.25
Kerosene-Type Jet Fuel	0.135	72.22
Asphalt and Road Oil	0.158	75.36
Crude Oil	0.138	74.54
Other fuels—solid	mmBtu/short ton	kg CO ₂ /mmBtu
Municipal Solid Waste	9.95 ³	90.7
Tires	28.00	85.97
Plastics	38.00	75.00
Petroleum Coke	30.00	102.41
Other fuels—gaseous	mmBtu/scf	kg CO ₂ /mmBtu
Blast Furnace Gas	0.092×10^{-3}	274.32
Coke Oven Gas	0.599×10^{-3}	46.85
Propane Gas	2.516×10^{-3}	61.46
Fuel Gas ⁴	1.388×10^{-3}	59.00
Biomass fuels—solid	mmBtu/short ton	kg CO₂/mmBtu
Wood and Wood Residuals (dry basis) ⁵	17.48	93.80
Agricultural Byproducts	8.25	118.17
Peat	8.00	111.84
Solid Byproducts	10.39	105.51
Biomass fuels—gaseous	mmBtu/scf	kg CO₂/mmBtu
Landfill Gas	0.485×10^{-3}	52.07
Other Biomass Gases	0.655×10^{-3}	52.07
Biomass Fuels—Liquid	mmBtu/gallon	kg CO ₂ /mmBtu
Ethanol	0.084	68.44
Biodiesel (100%)	0.128	73.84
Rendered Animal Fat	0.125	71.06
Vegetable Oil	0.120	81.55

¹The HHV for components of LPG determined at 60 °F and saturation pressure with the exception of ethylene.

 $^{^2}Ethylene\ HHV$ determined at 41 °F (5 °C) and saturation pressure.

³Use of this default HHV is allowed only for: (a) Units that combust MSW, do not generate steam, and are allowed to use Tier 1; (b) units that derive no more than 10 percent of their annual heat input from MSW and/or tires; and (c) small batch incinerators that combust no more than 1,000 tons of MSW per year.

⁴Reporters subject to subpart X of this part that are complying with §98.243(d) or subpart Y of this part may only use the default HHV and the default CO₂ emission factor for fuel gas combustion under the conditions prescribed in \$98.243(d)(2)(i) and (d)(2)(ii) and \$98.252(a)(1) and (a)(2), respectively. Otherwise, reporters subject to subpart X or subpart Y shall use either Tier 3 (Equation C-5) or Tier 4.

⁵Use the following formula to calculate a wet basis HHV for use in Equation C-1: $HHV_w = ((100 - M)/100)*HHV_d$ where $HHV_w = wet$ basis HHV, M = moisture content (percent) and $HHV_d = dry$ basis HHV from Table C-1.

[78 FR 71950, Nov. 29, 2013]

Back to Top

Table C-2 to Subpart C of Part 98—Default CH₄ and N₂O Emission Factors for Various Types of Fuel

Fuel type	Default CH₄ emission factor (kg CH₄/mmBtu)	$\begin{array}{c} \textbf{Default N}_2O \ emission \ factor \ (kg \\ \textbf{N}_2O/mmBtu) \end{array}$
Coal and Coke (All fuel types in Table C-1)	1.1×10^{-02}	1.6×10^{-03}
Natural Gas	1.0×10^{-03}	1.0×10^{-04}
Petroleum (All fuel types in Table C-1)	3.0×10^{-03}	6.0×10^{-04}
Fuel Gas	3.0×10^{-03}	6.0×10^{-04}
Municipal Solid Waste	3.2×10^{-02}	4.2×10^{-03}
Tires	3.2×10^{-02}	4.2×10^{-03}
Blast Furnace Gas	2.2×10^{-05}	1.0×10^{-04}
Coke Oven Gas	4.8×10^{-04}	1.0×10^{-04}
Biomass Fuels—Solid (All fuel types in Table C-1, except wood and wood residuals)	3.2×10^{-02}	4.2×10^{-03}
Wood and wood residuals	7.2×10^{-03}	3.6×10^{-03}
Biomass Fuels—Gaseous (All fuel types in Table C-1)	3.2×10^{-03}	6.3×10^{-04}
Biomass Fuels—Liquid (All fuel types in Table C-1)	1.1×10^{-03}	1.1×10^{-04}

Note: Those employing this table are assumed to fall under the IPCC definitions of the "Energy Industry" or "Manufacturing Industries and Construction". In all fuels except for coal the values for these two categories are identical. For coal combustion, those who fall within the IPCC "Energy Industry" category may employ a value of 1g of CH₄/mmBtu.

Table W-1A of Subpart W of Part 98—Default Whole Gas Emission Factors for Onshore Petroleum and Natural Gas Production

Onshore petroleum and natural gas production	Emission factor (scf/hour/ component)	
Eastern U.S.		
Population Emission Factors—All Con	nponents, Gas Service	
Valve	0.027	
Connector	0.003	
Open-ended Line	0.061	
Pressure Relief Valve	0.040	
Low Continuous Bleed Pneumatic Device Vents ²	1.39	
High Continuous Bleed Pneumatic Device Vents ²	37.3	
Intermittent Bleed Pneumatic Device Vents ²	13.5	
Pneumatic Pumps ³	13.3	
Population Emission Factors—All Compon	ents, Light Crude Service ⁴	
Valve	0.05	
Flange	0.003	
Connector	0.007	
Open-ended Line	0.05	
Pump	0.01	
Other ⁵	0.30	
Population Emission Factors—All Compon	ents, Heavy Crude Service ⁶	
Valve	0.0005	
Flange	0.0009	
Connector (other)		
Open-ended Line	0.006	
Other ⁵	0.003	
Western U.S.		
Population Emission Factors—All Con	nponents, Gas Service ¹	
Valve	0.121	
Connector	0.017	
Open-ended Line	0.031	
Pressure Relief Valve	0.193	
Low Continuous Bleed Pneumatic Device Vents ²	1.39	
High Continuous Bleed Pneumatic Device Vents ²		
Intermittent Bleed Pneumatic Device Vents ²		
Pneumatic Pumps ³	13.3	
Population Emission Factors—All Compon	nents, Light Crude Service ⁴	
Valve	0.05	
Flange	0.003	

	-
Connector (other)	0.007
Open-ended Line	0.05
Pump	0.01
Other ⁵	0.30
Population Emission Factors—All Components, Heav	y Crude Service ⁶
Valve	0.0005
Flange	0.0009
Connector (other)	0.0003
Open-ended Line	0.006
Other ⁵	0.003

¹For multi-phase flow that includes gas, use the gas service emissions factors.

²Emission Factor is in units of "scf/hour/device."

³Emission Factor is in units of "scf/hour/pump."

 $^{^4}$ Hydrocarbon liquids greater than or equal to $20^\circ API$ are considered "light crude."

⁵⁴Others" category includes instruments, loading arms, pressure relief valves, stuffing boxes, compressor seals, dump lever arms, and vents.

 $^{^6} Hydrocarbon$ liquids less than $20^{\circ} API$ are considered "heavy crude."

Map(s)

<u>A map</u> such as a 7.5 minute topographic quadrangle showing the exact location of the source. The map shall also include the following:

The UTM or Longitudinal coordinate system on both axes	An indicator showing which direction is north
A minimum radius around the plant of 0.8km (0.5 miles)	Access and haul roads
Topographic features of the area	Facility property boundaries
The name of the map	The area which will be restricted to public access
A graphical scale	

A map is provided in this section. Please see the following page.

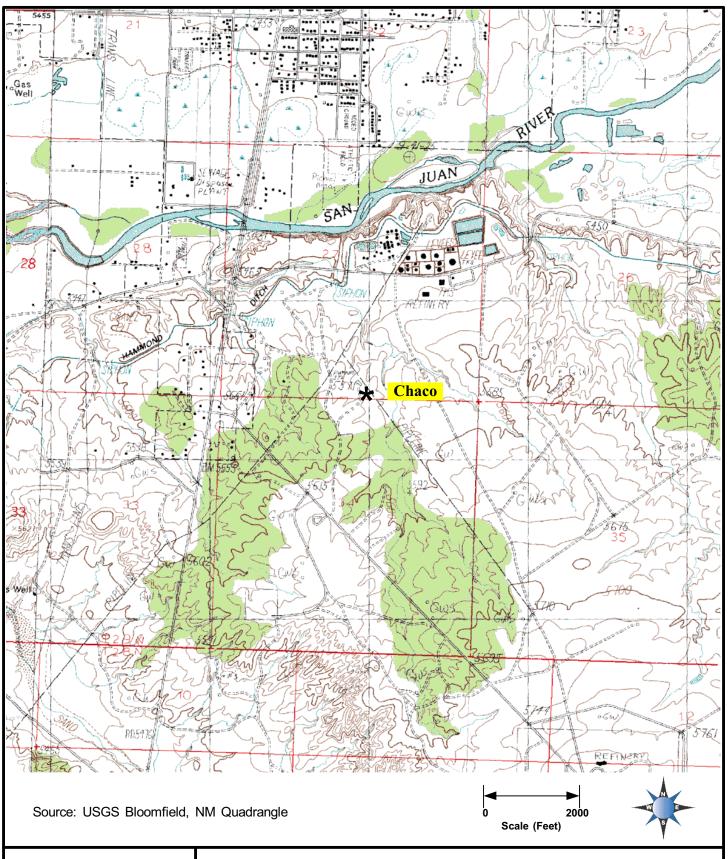


Figure 1 Site Vicinity / Topographic Map Chaco Compressor Station


Section 27, Township 29N Range 11W San Juan County, New Mexico

Proof of Public Notice

(for NSR applications submitting under 20.2.72 or 20.2.74 NMAC) (This proof is required by: 20.2.72.203.A.14 NMAC "Documentary Proof of applicant's public notice")

		I have read the AQB "Guidelines for Public Notification for Air Quality Permit Applications" This document provides detailed instructions about public notice requirements for various permitting actions. It also provides public notice examples and certification forms. Material mistakes in the public notice will require a re-notice before issuance of the permit.				
	Unless otherwise allowed elsewhere in this document, the following items document proof of the applicant's Public Notification. Please include this page in your proof of public notice submittal with checkmarks indicating which documents are being submitted with the application.					
	Ne	w Permit and Significant Permit Revision public notices must include all items in this list.				
	Te	chnical Revision public notices require only items 1, 5, 9, and 10.				
	Per	the Guidelines for Public Notification document mentioned above, include:				
1.		A copy of the certified letter receipts with post marks (20.2.72.203.B NMAC).				
2.		A list of the places where the public notice has been posted in at least four publicly accessible and conspicuous places, including the proposed or existing facility entrance. (e.g. post office, library, grocery, etc.).				
3.		A copy of the property tax record (20.2.72.203.B NMAC).				
4.		A sample of the letters sent to the owners of record.				
5.		A sample of the letters sent to counties, municipalities, and Indian tribes.				
6.		A sample of the public notice posted and a verification of the local postings.				
7.		A table of the noticed citizens, counties, municipalities and tribes and to whom the notices were sent in each group.				
8.		A copy of the public service announcement (PSA) sent to a local radio station and documentary proof of submittal.				
9.		A copy of the <u>classified or legal</u> ad including the page header (date and newspaper title) or its affidavit of publication stating the ad date, and a copy of the ad. When appropriate, this ad shall be printed in both English and Spanish.				
10.		A copy of the <u>display</u> ad including the page header (date and newspaper title) or its affidavit of publication stating the ad date, and a copy of the ad. When appropriate, this ad shall be printed in both English and Spanish.				
11.		A map with a graphic scale showing the facility boundary and the surrounding area in which owners of record were notified by mail. This is necessary for verification that the correct facility boundary was used in determining distance for notifying land owners of record.				

Not applicable, as this is a Title V application.

Written Description of the Routine Operations of the Facility

A written description of the routine operations of the facility. Include a description of how each piece of equipment will be operated, how controls will be used, and the fate of both the products and waste generated. For modifications and/or revisions, explain how the changes will affect the existing process. In a separate paragraph describe the major process bottlenecks that limit production. The purpose of this description is to provide sufficient information about plant operations for the permit writer to determine appropriate emission sources.

The Chaco Compressor Station compresses pipeline natural gas for transmission. The facility will be permitted for the operation of four natural gas-fired turbines (all driving compressors), one standby generator, one pig receiver, truck loading, equipment leaks, two condensate storage tanks, and two produced water storage tanks. Other sources at the facility include heaters and miscellaneous storage tanks. The storage tanks are used to store oil, used oil, condensate, produced water, and methanol.

The facility typically operates 24 hours per day, 7 days per week, 52 weeks per year, 8,760 hours per year.

A separator and EVRU reduce emissions from the condensate storage tanks at the station. A flow diagram is provided in Section 4 and a description of the EVRU is provided below.


An EVRU system operates on the Venturi Principle to recover atmospheric vapors flashed off of volatile liquids that would otherwise be emitted to the atmosphere. The EVRU causes high pressure gas to flow across a nozzle and draw vapors from the atmospheric tanks. The high-pressure, high-velocity gas is referred to as the motive gas. The low-pressure gas on which a vacuum is imposed is referred to as the recovered vapor. The motive gas and recovered vapors combine and flow into a contained, low pressure process stream.

Pressure in the atmospheric tanks produces a signal that opens the control valve that allows motive gas across the nozzle (motive gas is taken from the discharge of Chaco Compressor Station). The combined vapors discharge into the Fulcher line which flows to the Kutz Plant for processing. As vapors are recovered from the tanks, pressure is reduced. Once pressure is near-atmospheric, the motive gas control valve closes.

In order to reduce the volume of vapor the EVRU must recover from the atmospheric tanks, the system includes a gas-fired three-phase separator. The separator warms the hydrocarbon liquids while simultaneously lowering their pressure. The flashed vapors are also vented into the Fulcher line.

The system utilizes very few moving parts so that very little maintenance is required and downtime is minimized (when compared to systems utilizing mechanical compression).


Harvest is permitting the option to replace the EVRU with a VRU.

Source Determination

(Source submitting under 20.2.70, 20.2.72, 20.2.73, and 20.2.74 NMAC)

Sources applying for a construction permit, PSD permit, or operating permit shall evaluate surrounding and/or associated sources (including those sources directly connected to this source for business reasons) and complete this section. Responses to the following questions shall be consistent with the Air Quality Bureau's permitting guidance, Single Source Determination Guidance, which may be found on the Applications Page in the Permitting Section of the Air Quality Bureau website. Typically, buildings, structures, installations, or facilities that have the same SIC code, that are under common ownership or control, and that are contiguous or adjacent constitute a single stationary source for 20.2.70, 20.2.72, 20.2.73, and 20.2.74 NMAC applicability purposes. Submission of your analysis of these factors in support of the responses below is optional, unless requested by NMED. A. Identify the emission sources evaluated in this section (list and describe): Chaco Compressor Station – natural gas compressor station B. Apply the 3 criteria for determining a single source: SIC Code: Surrounding or associated sources belong to the same 2-digit industrial grouping (2-digit SIC code) as this facility, OR surrounding or associated sources that belong to different 2-digit SIC codes are support facilities for this source. **☑** Yes □ No Common Ownership or Control: Surrounding or associated sources are under common ownership or control as this source. ✓ Yes □ No Contiguous or Adjacent: Surrounding or associated sources are contiguous or adjacent with this source. **☑** Yes □ No C. Make a determination: The source, as described in this application, constitutes the entire source for 20.2.70, 20.2.72, 20.2.73, or 20.2.74 NMAC applicability purposes. If in "A" above you evaluated only the source that is the subject of this application, all "YES" boxes should be checked. If in "A" above you evaluated other sources as well, you must check AT LEAST ONE of the boxes "NO" to conclude that the source, as described in the application, is the entire source for 20.2.70, 20.2.72, 20.2.73, and 20.2.74 NMAC applicability purposes. The source, as described in this application, does not constitute the entire source for 20.2.70, 20.2.72, 20.2.73, or 20.2.74 NMAC applicability purposes (A permit may be issued for a portion of a source). The entire source consists of the following facilities or emissions sources (list and describe):

Section 12.A

Chaco Compressor Station

PSD Applicability Determination for All Sources

(Submitting under 20.2.72, 20.2.74 NMAC)

A PSD applicability determination for all sources. For sources applying for a significant permit revision, apply the applicable requirements of 20.2.74.AG and 20.2.74.200 NMAC and to determine whether this facility is a major or minor PSD source, and whether this modification is a major or a minor PSD modification. It may be helpful to refer to the procedures for Determining the Net Emissions Change at a Source as specified by Table A-5 (Page A.45) of the EPA New Source Review Workshop Manual to determine if the revision is subject to PSD review.

A. This facility is:

a minor PSD source before and after this modification (if so, delete C and D below).
a major PSD source before this modification. This modification will make this a PSD minor
source.
an existing PSD Major Source that has never had a major modification requiring a BACT analysis.
an existing PSD Major Source that has had a major modification requiring a BACT analysis
a new PSD Major Source after this modification.

- B. This facility [is or is not] one of the listed 20.2.74.501 Table I PSD Source Categories. The "project" emissions for this modification are [significant or not significant]. [Discuss why.] The "project" emissions listed below [do or do not] only result from changes described in this permit application, thus no emissions from other [revisions or modifications, past or future] to this facility. Also, specifically discuss whether this project results in "de-bottlenecking", or other associated emissions resulting in higher emissions. The project emissions (before netting) for this project are as follows [see Table 2 in 20.2.74.502 NMAC for a complete list of significance levels]:
 - a. NOx: XX.X TPY
 b. CO: XX.X TPY
 c. VOC: XX.X TPY
 d. SOx: XX.X TPY
 e. PM: XX.X TPY
 f. PM10: XX.X TPY
 g. PM2.5: XX.X TPY
 h. Fluorides: XX.X TPY
 i. Lead: XX.X TPY
 - j. Sulfur compounds (listed in Table 2): XX.X TPY
 - k. GHG: XX.X TPY
- C. Netting [is required, and analysis is attached to this document.] OR [is not required (project is not significant)] OR [Applicant is submitting a PSD Major Modification and chooses not to net.]
- D. BACT is [not required for this modification, as this application is a minor modification.] OR [required, as this application is a major modification. List pollutants subject to BACT review and provide a full top down BACT determination.]
- E. If this is an existing PSD major source, or any facility with emissions greater than 250 TPY (or 100 TPY for 20.2.74.501 Table 1 PSD Source Categories), determine whether any permit modifications are related, or could be considered a single project with this action, and provide an explanation for your determination whether a PSD modification is triggered.

Not applicable, as this is a Title V application.

Saved Date: 9/26/2019

Section 12.B

Special Requirements for a PSD Application

(Submitting under 20.2.74 NMAC)

<u>Prio</u>	Prior to Submitting a PSD application, the permittee shall:				
	Submit the BACT analysis for review prior to submittal of the application. No application will be ruled complete until the final determination regarding BACT is made, as this determination can ultimately affect information to be provided in the application. A pre-application meeting is recommended to discuss the requirements of the BACT analysis.				
	Submit a modeling protocol prior to submitting the permit application. [Except for GHG]				
	Submit the monitoring exemption analysis protocol prior to submitting the application. [Except for GHG]				
For P	SD applications, the permittee shall also include the following: Documentation containing an analysis on the impact on visibility. [Except for GHG]				
П	Documentation containing an analysis on the impact on soil. [Except for GHG]				
	Documentation containing an analysis on the impact on vegetation, including state and federal threatened and endangered species. [Except for GHG]				
	Documentation containing an analysis on the impact on water consumption and quality. [Except for GHG]				
	Documentation that the federal land manager of a Class I area within 100 km of the site has been notified and provided a copy of the application, including the BACT and modeling results. The name of any Class I Federal area located within one hundred (100) kilometers of the facility.				

Not applicable, as this is a Title V application.

Determination of State & Federal Air Quality Regulations

This section lists each state and federal air quality regulation that may apply to your facility and/or equipment that are stationary sources of regulated air pollutants. Not all state and federal air quality regulations are included in this list. Go to the Code of Federal Regulations (CFR) or to the Air Quality Bureau's regulation page to see the full set of air quality regulations.

Required Information for Specific Equipment:

For regulations that apply to specific source types, in the 'Justification' column **provide any information needed to determine if the regulation does or does not apply**. **For example**, to determine if emissions standards at 40 CFR 60, Subpart IIII apply to your three identical stationary engines, we need to know the construction date as defined in that regulation; the manufacturer date; the date of reconstruction or modification, if any; if they are or are not fire pump engines; if they are or are not emergency engines as defined in that regulation; their site ratings; and the cylinder displacement.

Required Information for Regulations that Apply to the Entire Facility:

See instructions in the 'Justification' column for the information that is needed to determine if an 'Entire Facility' type of regulation applies (e.g. 20.2.70 or 20.2.73 NMAC).

Regulatory Citations for Regulations That Do Not, but Could Apply:

If there is a state or federal air quality regulation that does not apply, but you have a piece of equipment in a source category for which a regulation has been promulgated, you must provide the low level regulatory citation showing why your piece of equipment is not subject to or exempt from the regulation. For example if you have a stationary internal combustion engine that is not subject to 40 CFR 63, Subpart ZZZZ because it is an existing 2 stroke lean burn stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions, your citation would be 40 CFR 63.6590(b)(3)(i). We don't want a discussion of every non-applicable regulation, but if it is possible a regulation could apply, explain why it does not. For example, if your facility is a power plant, you do not need to include a citation to show that 40 CFR 60, Subpart OOO does not apply to your non-existent rock crusher.

Regulatory Citations for Emission Standards:

For each unit that is subject to an emission standard in a source specific regulation, such as 40 CFR 60, Subpart OOO or 40 CFR 63, Subpart HH, include the low level regulatory citation of that emission standard. Emission standards can be numerical emission limits, work practice standards, or other requirements such as maintenance. Here are examples: a glycol dehydrator is subject to the general standards at 63.764C(1)(i) through (iii); an engine is subject to 63.6601, Tables 2a and 2b; a crusher is subject to 60.672(b), Table 3 and all transfer points are subject to 60.672(e)(1)

Federally Enforceable Conditions:

All federal regulations are federally enforceable. All Air Quality Bureau State regulations are federally enforceable except for the following: affirmative defense portions at 20.2.7.6.B, 20.2.7.110(B)(15), 20.2.7.11 through 20.2.7.113, 20.2.7.115, and 20.2.7.116; 20.2.37; 20.2.42; 20.2.43; 20.2.62; 20.2.63; 20.2.86; 20.2.89; and 20.2.90 NMAC. Federally enforceable means that EPA can enforce the regulation as well as the Air Quality Bureau and federally enforceable regulations can count toward determining a facility's potential to emit (PTE) for the Title V, PSD, and nonattainment permit regulations.

INCLUDE ANY OTHER INFORMATION NEEDED TO COMPLETE AN APPLICABILITY DETERMINATION OR THAT IS RELEVENT TO YOUR FACILITY'S NOTICE OF INTENT OR PERMIT.

EPA Applicability Determination Index for 40 CFR 60, 61, 63, etc: http://cfpub.epa.gov/adi/

Form-Section 13 last revised: 5/29/2019 Section 13, Page 1 Saved Date: 9/26/2019

State Regulations

Applicable state requirements are embodied in the New Mexico SIP, the New Mexico Administrative Code (NMAC), and the terms and conditions of any preconstruction permits issued pursuant to regulations promulgated through rulemaking under Title I of the CAA.

STATE REGULATIONS APPLICABILITY CHECKLIST

STATE REGU- LATIONS CITATION	Title	Applies? Enter Yes or No	Unit(s) or Facility	JUSTIFICATION:
20.2.1 NMAC	General Provisions	Yes	Facility	This regulation is applicable because it establishes procedures for protecting confidential information, procedures for seeking a variance, NMAQB's authority to require sampling equipment, severability, and the effective date for conformance with the NMACs, and prohibits the violation of other requirements in attempting to comply with the NMACs.
20.2.3 NMAC	Ambient Air Quality Standards NMAAQS	Yes	Facility	This is a State Implementation Plan (SIP) approved regulation that limits the maximum allowable concentrations of Total Suspended Particulates, Sulfur Compounds, Carbon Monoxide and Nitrogen Dioxide.
20.2.7 NMAC	Excess Emissions	Yes	Facility	This regulation is applicable because it prohibits excess emissions unless proper notification procedures are followed.
20.2.8 NMAC	Emissions Leaving New Mexico	Yes	Facility	This regulation is applicable because it establishes prohibitions on the release of pollutants that cross New Mexico State boundaries.
20.2.14 NMAC	Particulate Emissions from Coal Burning Equipment	No		This regulation is not applicable because the facility does not burn coal.
20.2.18 NMAC	Oil Burning Equipment - Particulate Matter	No		This regulation is not applicable because the facility does not burn oil.
20.2.31 NMAC	Coal Burning Equipment – Sulfur Dioxide	No		This regulation is not applicable because the facility does not burn coal.
20.2.32 NMAC	Coal Burning Equipment – Nitrogen Dioxide,	No		This regulation is not applicable because the facility does not burn coal.
20.2.33 NMAC	Gas Burning Equipment - Nitrogen Dioxide	No		This regulation is not applicable because the facility is not equipped with external gas burning equipment which have heat input rates exceeding the trigger level (one million MMBtu/year) established by the regulation.
20.2.34 NMAC	Oil Burning Equipment: NO ₂	No		This regulation is not applicable because the facility does not burn oil.
20.2.35 NMAC	Natural Gas Processing Plant – Sulfur	No		This regulation is not applicable because the facility is not a natural gas processing plant.
20.2.38 NMAC	Hydrocarbon Storage Facility	No		This regulation is not applicable because the station will not be equipped with a tank battery storing hydrocarbon liquids (condensate) that will have a capacity greater than or equal to 65,000 gallons.
20.2.39 NMAC	Sulfur Recovery Plant - Sulfur	No		This regulation is not applicable because the facility is not equipped with a sulfur recovery plant.
20.2.61.109 NMAC	Smoke & Visible Emissions	Yes	1-5	This regulation is applicable because the facility is equipped with stationary combustion sources. Emissions from these combustion sources are limited to less than 20% opacity (see 20.2.61.109 NMAC). The regulation is not applicable to the Title V insignificant heaters (see 20.2.61.111.D).
20.2.70 NMAC	Operating Permits	Yes	Facility	This regulation is applicable because the facility is a major source of NO ₂ ,VOC & HAP emissions.
20.2.71 NMAC	Operating Permit Fees	Yes	Facility	This regulation is applicable because the facility is subject to 20.2.70 NMAC.
20.2.72 NMAC	Construction Permits	Yes	Facility	This regulation is applicable because the facility has potential emission rates (PER) greater than 10 pph or 25 tpy for pollutants subject to a state or federal ambient air quality standards (does not include VOCs or HAPs).

STATE REGU- LATIONS CITATION	Title	Applies? Enter Yes or No	Unit(s) or Facility	JUSTIFICATION:
20.2.73 NMAC	NOI & Emissions Inventory Requirements	Yes	Facility	The Notice of Intent portion of this regulation does not apply because the facility is subject to 20.2.72 NMAC. The emissions inventory portion of this regulation is applicable since the facility is a Title V major source (see 20.2.73.300.B(1) & (2)).
20.2.74 NMAC	Permits – Prevention of Significant Deterioration (PSD)	No		This regulation is not applicable because the facility is not currently a PSD major source and the emissions increase associated with this modification is not significant.
20.2.75 NMAC	Construction Permit Fees	Yes	Facility	This regulation is applicable because the plant is subject to 20.2.72 NMAC and it establishes the fee schedule associated with the filing of construction permits.
20.2.77 NMAC	New Source Performance	Yes	4	This regulation is applicable because it adopts by reference the federal NSPS codified in 40 CFR 60. The facility is subject to 40 CFR 60, Subparts A & GG.
20.2.78 NMAC	Emission Standards for HAPS	No		This regulation is not applicable because it incorporates by reference the NESHAPs codified under 40 CFR 61. The facility is not subject to 40 CFR 61.
20.2.79 NMAC	Permits – Nonattainment Areas	No		This regulation is not applicable because the facility is neither located in nor has a significant impact on a non-attainment area.
20.2.80 NMAC	Stack Heights	Yes	1-4	This regulation is applicable because it establishes guidelines for the selection of an appropriate stack height for the purposes of atmospheric dispersion modeling.
20.2.82 NMAC	MACT Standards for Source Categories of HAPS	Yes	5	This regulation is applicable because it adopts by reference the federal MACT Standards for source categories codified in 40 CFR 63. The affected units at the facility are subject to 40 CFR 63, Subparts A & ZZZZ.

Federal Regulations

Federal standards and requirements are embodied in Title 40 (Protection of the Environment), Subchapter C (Air Programs) of the CFR, Parts 50 through 99.

FEDERAL REGULATIONS APPLICABILITY CHECKLIST

FEDERAL REGU- LATIONS CITATION	Title	Applies? Enter Yes or No	Unit(s) or Facility	JUSTIFICATION:
40 CFR 50	NAAQS	Yes	Facility	This regulation applies because the facility is subject to 20.2.70, 20.2.72 and 20.2.74 NMAC.
40 CFR 52	Approval and Promulgation of Implementation Plans	No		40 CFR 52.21 Prevention of Significant Deterioration of Air Quality is not applicable because the station is not currently a major Prevention of Significant Deterioration source and the emissions increase associated with this modification is not significant. The remainder of 40 CFR 52 is not applicable because it addresses approval and promulgation of implementation plans.
NSPS 40 CFR 60, Subpart A	General Provisions	Yes	4	This regulation applies because 40 CFR 60, Subpart GG applies (see §60.1(a)).

FEDERAL REGU- LATIONS CITATION	Title	Applies? Enter Yes or No	Unit(s) or Facility	JUSTIFICATION:
NSPS 40 CFR 60, Subpart K	Standards of Performance for Storage Vessels for Petroleum Liquids for which Construction, Reconstruction, or Modification Commenced After June 11, 1973, and Prior to May 19, 1978	No		This regulation is not applicable because the petroleum liquids storage tanks at the facility have capacities less than the minimum applicability threshold capacity of 40,000 gallons (see §60.110(a)).
NSPS 40 CFR 60, Subpart Ka	Standards of Performance for Storage Vessels for Petroleum Liquids for which Construction, Reconstruction, or Modification Commenced After May 18, 1978, and Prior to July 23, 1984	No		This regulation is not applicable because the storage tanks at the facility have capacities less than the minimum applicability threshold capacity of 40,000 gallons (see §60.110a(a)).
NSPS 40 CFR 60, Subpart Kb	Standards of Performance for Volatile Organic Liquid Storage Vessels (Including Petroleum Liquid Storage Vessels) for Which Construction, Reconstruction, or Modification Commenced After July 23, 1984			This regulation is not applicable because all storage tanks at the plant have capacities less than the minimum applicability threshold capacity of 75 cubic meters (19,812 gallons), and/or were installed prior to the applicability date, and/or contain condensate prior to custody transfer (40 CFR 60.110b(a) & 60.110b(d)(4)).
NSPS 40 CFR 60 Subpart GG	Standards of Performance for Stationary Gas Turbines	Yes	4	This regulation is applicable because one the turbines at the facility, Unit 4, has a heat input at peak load equal to or greater than 10.7 gigajoules (10 MMBtu) per hour and commenced construction after October 3, 1977. This regulation is not applicable to Units 1-3, as they were constructed prior to the applicability date (they have not been modified or reconstructed). Unit 4 must comply with the NO _X emission limitation of 150 ppmv at 15% O2 on a dry basis (§60.332(c)). The units must comply with the SO ₂ emissions limitation of 0.015% by volume at 15% O2 on a dry basis or use a fuel that does not contain sulfur in excess of 0.8 percent by weight (8,000 ppmw) (40 CFR 60.333).
NSPS 40 CFR 60, Subpart KKK	Standards of Performance for Equipment Leaks of VOC from Onshore Gas Plants	No		This regulation is not applicable because the facility is not a natural gas processing plant as defined by the subpart.
NSPS 40 CFR 60, Subpart LLL	Standards of Performance for Onshore Natural Gas Processing: SO ₂ Emissions	No		This regulation is not applicable because the facility is not a natural gas processing plant as defined by the subpart.

Saved Date: 12/6/2019

FEDERAL REGU- LATIONS CITATION	Title	Applies? Enter Yes or No	Unit(s) or Facility	JUSTIFICATION:		
NSPS 40 CFR 60, Subpart IIII	Standards of Performance for Stationary Compression Ignition Internal Combustion Engines	No		This regulation does not apply because the stationary CI ICE at the facility, Unit 5, commenced construction prior to July 12, 2005 and it was manufactured prior to April 2, 2006.		
NSPS 40 CFR 60, Subpart JJJJ	Standards of Performance for Stationary Spark Ignition Internal Combustion Engines	No		This regulation does not apply because there are no stationary SI ICE at the station.		
NSPS 40 CFR 60, Subpart KKKK	Standards of Performance for Stationary Combustion Turbines	No		This regulation is not applicable because none of the turbines at the plant were constructed after the applicability date of February 18, 2005.		
NSPS 40 CFR 60, Subpart OOOO	Standards of Performance for Crude Oil and Natural Gas Production, Transmission, and Distribution for which Construction, Modification or Reconstruction Commenced After August 23, 2011 and On or Before September 18, 2015	No		This regulation does not apply because the facility will not be equipped with "affected" sources that are constructed, modified, or reconstructed after Aug 23, 2011 and on or before September 18, 2015: gas wells, centrifugal or reciprocating compressors, pneumatic controllers, and storage vessels (see §60.5365). Note that the facility is not a natural gas processing plant as defined by the subpart (see §60.5430). Note that the condensate storage tanks (Units T4 & T5) have not been modified or reconstructed.		
NSPS 40 CFR 60, Subpart OOOOa	Standards of Performance for Crude Oil and Natural Gas Facilities for which Construction, Modification or Reconstruction Commenced After September 18, 2015	No		This regulation does not apply because the facility will not be equipped with "affected" sources that are constructed, modified, or reconstructed after September 18, 2015: gas wells, centrifugal or reciprocating compressors, pneumatic controllers, storage vessels, pneumatic pumps, and equipment leaks (see §60.5365a). Note that the facility is not a natural gas processing plant as defined by the subpart (see §60.5430). Note that the condensate storage tanks (Units T4 & T5) have not been modified or reconstructed.		
NESHAP 40 CFR 61, Subpart A	General Provisions	No		This regulation does not apply, because none of the other 40 CFR Part 61 subparts apply (see §61.1(c)).		
NESHAP 40 CFR 61, Subpart V	National Emission Standards for Equipment Leaks (Fugitive Emission Sources)	No		The provisions of this subpart apply to each of the following sources that are intended to operate in volatile hazardous air pollutant (VHAP) service: pumps, compressors, pressure relief devices, sampling connection systems, open-ended valves or lines, valves, connectors, surge control vessels, bottoms receivers, and control devices or systems required by this subpart (see §61.240(a)). VHAP service means a piece of equipment either contains or contacts a fluid (liquid or gas) that is at least 10 percent by weight of VHAP. VHAP means a substance regulated under this subpart for which a standard for equipment leaks of the substance has been promulgated (see §61.241). This subpart does not apply because none of the above listed equipment at the facility is in VHAP service.		

FEDERAL REGU- LATIONS CITATION	Title	Applies? Enter Yes or No	Unit(s) or Facility	JUSTIFICATION:	
MACT 40 CFR 63, Subpart A	General Provisions	Yes	5	This regulation applies because 40 CFR 63, Subpart ZZZZ applies (see §63.1(b)).	
MACT 40 CFR 63, Subpart M	National Emission Standard for Asbestos	No		The subpart includes standards for minimizing asbestos emissions from several operations, including demolition and renovation activities. This regulation is not applicable because there are no existing or planned activities at this facility that trigger applicability.	
				This regulation is not applicable because the facility is not equipped with dehydrators, storage vessels with the potential for flashing losses or compressors or ancillary equipment in volatile HAP service as defined by the subpart (see §63.761).	
			This subpart defines a production field facility as a facility "located prior to the point of custody transfer". The Chaco facility is a production field facility. Note: This subpart defines a natural gas processing plant as "any processing site engaged in the extraction of natural gas liquids from field gas, or the fractionation of mixed NGL to natural gas products, or a combination of both". The Chaco facility does not engage in either of these activities; therefore, it is not a processing plant as defined by the subpart.		
MACT 40 CFR 63, Subpart HH	40 CFR 63, Pollutants For Oil			The subpart states, "For facilities that are production field facilities, only HAP emissions from glycol dehydration units and storage vessels shall be aggregated for a major source determination". By this definition the Chaco facility is a major HAP source.	
				Storage vessel with the potential for flash emissions means any storage vessel that contains a hydrocarbon liquid with a stock tank gas-to-oil ratio equal to or greater than 0.31 cubic meters per liter and an American Petroleum Institute gravity equal to or greater than 40 degrees and an actual annual average hydrocarbon liquid throughput equal to or greater than 79,500 liters per day (500 barrels per day). Flash emissions occur when dissolved hydrocarbons in the fluid evolve from solution when the fluid pressure is reduced.	
				At HFC facilities, condensate storage tanks are the only tanks in which the liquid has the properties identified by the definition and for which the fluid pressure is reduced so as to produce flash emissions.	
				Since this facility is not equipped with dehydrators, condensate tanks with an actual annual average condensate throughput of 500 bbl/day, or compressors or ancillary equipment in VHAP service, Subpart HH does not apply.	
MACT 40 CFR 63, Subpart HHH	National Emission Standards for Hazardous Air Pollutants From Natural Gas Transmission and Storage Facilities	No		This regulation is not applicable because the facility is not a natural gas transmission and storage facility as defined by the subpart.	
MACT 40 CFR 63, Subpart YYYY	National Emission Standards for Hazardous Air Pollutants From Stationary Combustion Turbines	No		This regulation is not applicable because none of the turbines at the plant were constructed after the applicability date of January 14, 2003.	

Saved Date: 12/6/2019

FEDERAL REGU- LATIONS CITATION	Title	Applies? Enter Yes or No	Unit(s) or Facility	JUSTIFICATION:
MACT 40 CFR 63, Subpart ZZZZ	National Emissions Standards for Hazardous Air Pollutants for Stationary Reciprocating Internal Combustion Engines (RICE MACT)	Yes	5	This regulation applies because the station is an area HAP source equipped with a stationary RICE (Unit 5). This facility is a production field facility; therefore, only HAP emissions from glycol dehydration units, storage vessels with the potential for flash emissions, combustion turbines and reciprocating internal combustion engines are aggregated for a major source determination (§63.6675). Storage vessel with the potential for flash emissions means any storage vessel that contains a hydrocarbon liquid with a stock tank gas-to-oil ratio equal to or greater than 0.31 cubic meters per liter and an American Petroleum Institute gravity equal to or greater than 40 degrees and an actual annual average hydrocarbon liquid throughput equal to or greater than 79,500 liters per day (500 barrels per day). Flash emissions occur when dissolved hydrocarbons in the fluid evolve from solution when the fluid pressure is reduced (see § 63.6675). At HFC facilities, condensate storage tanks are the only tanks in which the liquid has the properties identified by the definition and for which the fluid pressure is reduced so as to produce flash emissions. This facility is not equipped with dehydrators and the actual annual average condensate throughput will be much less than 500 bbl/day; therefore, it is an area HAP source. The engine is an existing (constructed or reconstructed before June 12, 2006) emergency stationary RICE as defined by the subpart. It must meet the following requirements (§63.6603 & Table 2d(5)): a. Change oil and filter every 500 hours of operation or annually, whichever comes first; b. Inspect air cleaner every 1,000 hours of operation or annually, whichever comes first, and replace as necessary; and
MACT 40 CFR 63, Subpart DDDDD	National Emission Standards for Hazardous Air Pollutants for Major Industrial, Commercial, and Institutional Boilers & Process Heaters	No		This regulation is not applicable because the facility is an area HAP source as defined by the subpart. Since the facility is a natural gas production field facility, only HAP emissions from glycol dehydration units and storage vessels with the potential for flash emissions are aggregated for a major source determination (see § 63.7575). Since Subpart DDDDD does not define "storage vessels with the potential for flash emissions", this evaluation uses the definitions from Subpart HH (see § 63.761), Subpart YYYY (see § 63.6175) and Subpart ZZZZ (see § 63.6675). Storage vessel with the potential for flash emissions means any storage vessel that contains a hydrocarbon liquid with a stock tank gas-to-oil ratio equal to or greater than 0.31 cubic meters per liter and an American Petroleum Institute gravity equal to or greater than 40 degrees and an actual annual average hydrocarbon liquid throughput equal to or greater than 79,500 liters per day (500 barrels per day). Flash emissions occur when dissolved hydrocarbons in the fluid evolve from solution when the fluid pressure is reduced. At HFC facilities, condensate storage tanks are the only tanks in which the liquid has the properties identified by the definition and for which the fluid pressure is reduced so as to produce flash emissions. This facility is not equipped with dehydrators and the actual annual average condensate throughput will be much less than 500 bbl/day; therefore, it is an area HAP source.

FEDERAL REGU- LATIONS CITATION	Title	Applies? Enter Yes or No	Unit(s) or Facility	JUSTIFICATION:			
MACT 40 CFR 63, Subpart JJJJJJ	National Emission Standards for Hazardous Air Pollutants for Industrial, Commercial, and Institutional Boilers Area Sources	No		This regulation does not apply because the station is not equipped with boilers as defined by the subpart.			
40 CFR 64	Compliance Assurance Monitoring	No		This regulation is not applicable because there are no sources at the station usicontrol devices to achieve compliance with emission limits where precont emissions equal or exceed the major source threshold (100 tons per year). Note the EVRU is not control devices as defined by the part. Justification for the determination is provided at the end of this section.			
40 CFR 68	Chemical Accident Prevention	No		This regulation is not applicable because the facility does not store any of the identified toxic and flammable substances in quantities exceeding the applicability thresholds.			
40 CFR 70	State Operating Permit Programs	No		This regulation is not applicable, as the requirements associated with Title V are delegated to the State of New Mexico and implemented under 20 NMAC 2.70.			
Title VI – 40 CFR 82	Protection of Stratospheric Ozone	No		This regulation is not applicable because the facility does not produce, manufacture, transform, destroy, import, or export ozone-depleting substances; does not maintain or service motor vehicle air conditioning units or refrigeration equipment; and does not sell, distribute, or offer for sale or distribution any product that contains ozone-depleting substances.			

The Applicability of 40 CFR Part 64 to the Condensate Storage Tanks (Units T4 & T5)

40 CFR Part 64 defines control devices and inherent process equipment as follows (see § 64.1 Definitions):


Control device means equipment, other than inherent process equipment, that is used to destroy or remove air pollutant(s) prior to discharge to the atmosphere. The types of equipment that may commonly be used as control devices include, but are not limited to, fabric filters, mechanical collectors, electrostatic precipitators, inertial separators, afterburners, thermal or catalytic incinerators, adsorption devices (such as carbon beds), condensers, scrubbers (such as wet collection and gas absorption devices), selective catalytic or non-catalytic reduction systems, flue gas recirculation systems, spray dryers, spray towers, mist eliminators, acid plants, sulfur recovery plants, injection systems (such as water, steam, ammonia, sorbent or limestone injection), and combustion devices independent of the particular process being conducted at an emissions unit (e.g., the destruction of emissions achieved by venting process emission streams to flares, boilers or process heaters). For purposes of this part, a control device does not include passive control measures that act to prevent pollutants from forming, such as the use of seals, lids, or roofs to prevent the release of pollutants, use of low-polluting fuel or feedstocks, or the use of combustion or other process design features or characteristics. If an applicable requirement establishes that particular equipment which otherwise meets this definition of a control device does not constitute a control device as applied to a particular pollutant-specific emissions unit, then that definition shall be binding for purposes of this part.

Inherent process equipment means equipment that is necessary for the proper or safe functioning of the process, or material recovery equipment that the owner or operator documents is installed and operated primarily for purposes other than compliance with air pollution regulations. Equipment that must be operated at an efficiency higher than that achieved during normal process operations in order to comply with the applicable emission limitation or standard is not inherent process equipment. For the purposes of this part, inherent process equipment is not considered a control device.

The Chaco Compressor Station EVRU system is classified as inherent process equipment, since it is material recovery equipment operated to recover vapors from the condensate storage tanks (Units T4 & T5) and inject them back into pipeline ("operated primarily for purposes other than compliance with air pollution regulations"). As such, it does not meet the definition of a control device "used to destroy or remove air pollutant(s) prior to discharge to the atmosphere."

Williams Four Corners LLC (during the time they owned the facility) agreed to install the EVRU system as part of a settlement agreement; however, the violations associated with the settlement agreement were unrelated to the condensate tanks and their emissions. The reduction of VOC from the condensate tanks was chosen as a Supplemental Environmental Project for the settlement agreement, and Williams recognized the value of recovering product and injecting it back into the pipeline. The system was not installed to achieve compliance with air pollution regulations. The condensate storage tanks have been in operation for many years. Also, the condensate tanks are not subject to 40 CFR Part 60, Subparts Kb and OOOO or 40 CFR Part 63, Subpart HH. Since the emission rates identified in this application are based on normal operation, the equipment will not need to be "operated at an efficiency higher than that achieved during normal process operations in order to comply with the applicable emission limitation or standard."

As the condensate tanks do not use control devices to achieve compliance with emission limits, where pre control emissions equal or exceed the major source threshold (100 tons per year), compliance assurance monitoring is not required.


Operational Plan to Mitigate Emissions

(Submitting under 20.2.70, 20.2.72, 20.2.74 NMAC)

- ▼ Title V Sources (20.2.70 NMAC): By checking this box and certifying this application the permittee certifies that it has developed an Operational Plan to Mitigate Emissions During Startups, Shutdowns, and Emergencies defining the measures to be taken to mitigate source emissions during startups, shutdowns, and emergencies as required by 20.2.70.300.D.5(f) and (g) NMAC. This plan shall be kept on site to be made available to the Department upon request. This plan should not be submitted with this application.
- NSR (20.2.72 NMAC), PSD (20.2.74 NMAC) & Nonattainment (20.2.79 NMAC) Sources: By checking this box and certifying this application the permittee certifies that it has developed an <u>Operational Plan to Mitigate Source Emissions</u>

 <u>During Malfunction, Startup, or Shutdown</u> defining the measures to be taken to mitigate source emissions during malfunction, startup, or shutdown as required by 20.2.72.203.A.5 NMAC. This plan shall be kept on site to be made available to the Department upon request. This plan should not be submitted with this application.
- ☑ Title V (20.2.70 NMAC), NSR (20.2.72 NMAC), PSD (20.2.74 NMAC) & Nonattainment (20.2.79 NMAC) Sources: By checking this box and certifying this application the permittee certifies that it has established and implemented a Plan to Minimize Emissions During Routine or Predictable Startup, Shutdown, and Scheduled Maintenance through work practice standards and good air pollution control practices as required by 20.2.7.14.A and B NMAC. This plan shall be kept on site or at the nearest field office to be made available to the Department upon request. This plan should not be submitted with this application.

Form-Section 14 last revised: 8/15/2011 Section 14, Page 1 Saved Date: 9/26/2019

Saved Date: 4/13/2020

Section 15

Alternative Operating Scenarios

(Submitting under 20.2.70, 20.2.72, 20.2.74 NMAC)


Alternative Operating Scenarios: Provide all information required by the department to define alternative operating scenarios. This includes process, material and product changes; facility emissions information; air pollution control equipment requirements; any applicable requirements; monitoring, recordkeeping, and reporting requirements; and compliance certification requirements. Please ensure applicable Tables in this application are clearly marked to show alternative operating scenario.

Construction Scenarios: When a permit is modified authorizing new construction to an existing facility, NMED includes a condition to clearly address which permit condition(s) (from the previous permit and the new permit) govern during the interval between the date of issuance of the modification permit and the completion of construction of the modification(s). There are many possible variables that need to be addressed such as: Is simultaneous operation of the old and new units permitted and, if so for example, for how long and under what restraints? In general, these types of requirements will be addressed in Section A100 of the permit, but additional requirements may be added elsewhere. Look in A100 of our NSR and/or TV permit template for sample language dealing with these requirements. Find these permit templates at: https://www.env.nm.gov/aqb/permit/aqb_pol.html. Compliance with standards must be maintained during construction, which should not usually be a problem unless simultaneous operation of old and new equipment is requested.

In this section, under the bolded title "Construction Scenarios", specify any information necessary to write these conditions, such as: conservative-realistic estimated time for completion of construction of the various units, whether simultaneous operation of old and new units is being requested (and, if so, modeled), whether the old units will be removed or decommissioned, any PSD ramifications, any temporary limits requested during phased construction, whether any increase in emissions is being requested as SSM emissions or will instead be handled as a separate Construction Scenario (with corresponding emission limits and conditions, etc.

Harvest is permitting the option to replace the EVRU with a VRU. For details see Section 3.

Air Dispersion Modeling


- 1) Minor Source Construction (20.2.72 NMAC) and Prevention of Significant Deterioration (PSD) (20.2.74 NMAC) ambient impact analysis (modeling): Provide an ambient impact analysis as required at 20.2.72.203.A(4) and/or 20.2.74.303 NMAC and as outlined in the Air Quality Bureau's Dispersion Modeling Guidelines found on the Planning Section's modeling website. If air dispersion modeling has been waived for one or more pollutants, attach the AQB Modeling Section modeling waiver approval documentation.
- 2) SSM Modeling: Applicants must conduct dispersion modeling for the total short term emissions during routine or predictable startup, shutdown, or maintenance (SSM) using realistic worst case scenarios following guidance from the Air Quality Bureau's dispersion modeling section. Refer to "Guidance for Submittal of Startup, Shutdown, Maintenance Emissions in Permit Applications (http://www.env.nm.gov/aqb/permit/app_form.html) for more detailed instructions on SSM emissions modeling requirements.
- 3) Title V (20.2.70 NMAC) ambient impact analysis: Title V applications must specify the construction permit and/or Title V Permit number(s) for which air quality dispersion modeling was last approved. Facilities that have only a Title V permit, such as landfills and air curtain incinerators, are subject to the same modeling required for preconstruction permits required by 20.2.72 and 20.2.74 NMAC.

What is the purpose of this application?	Enter an X for each purpose that applies
New PSD major source or PSD major modification (20.2.74 NMAC). See #1 above.	
New Minor Source or significant permit revision under 20.2.72 NMAC (20.2.72.219.D NMAC).	
See #1 above. Note: Neither modeling nor a modeling waiver is required for VOC emissions.	
Reporting existing pollutants that were not previously reported.	
Reporting existing pollutants where the ambient impact is being addressed for the first time.	
Title V application (new, renewal, significant, or minor modification. 20.2.70 NMAC). See #3	X
above.	Λ
Relocation (20.2.72.202.B.4 or 72.202.D.3.c NMAC)	
Minor Source Technical Permit Revision 20.2.72.219.B.1.d.vi NMAC for like-kind unit	
replacements.	
Other: i.e. SSM modeling. See #2 above.	
This application does not require modeling since this is a No Permit Required (NPR) application.	
This application does not require modeling since this is a Notice of Intent (NOI) application	
(20.2.73 NMAC).	
This application does not require modeling according to 20.2.70.7.E(11), 20.2.72.203.A(4),	_
20.2.74.303, 20.2.79.109.D NMAC and in accordance with the Air Quality Bureau's Modeling	
Guidelines.	

Check each box that applies:

Ш	See attached, approved modeling waiver for all pollutants from the facility.
	See attached, approved modeling waiver for some pollutants from the facility.
	Attached in Universal Application Form 4 (UA4) is a modeling report for all pollutants from the facility.
	Attached in UA4 is a modeling report for some pollutants from the facility.
$\overline{\mathbf{A}}$	No modeling is required.

Modeling was last submitted for NSR permit number 0759-M3.

Compliance Test History


(Submitting under 20.2.70, 20.2.72, 20.2.74 NMAC)

To show compliance with existing NSR permits conditions, you must submit a compliance test history. The table below provides an example.

Compliance Test History Table

Unit No.	Test Description	Test Date
1	NOX and CO testing with a portable analyzer.	6/26/2018
2	NOX and CO testing with a portable analyzer.	6/26/2018
3	NOX and CO testing with a portable analyzer.	6/4/2015
4	NOX and CO testing with a portable analyzer.	6/26/2018

Form-Section 17 last revised: 8/15/2011 Section 17, Page 1 Saved Date: 9/26/2019


Addendum for Streamline Applications

Streamline Applications do not require a complete application. Submit Sections 1-A, 1-B, 1-D, 1-F, 1-G, 2-A, 2-C thru L, Sections 3 thru 8, Section 13, Section 18, Section 22, and Section 23 (Certification). Other sections may be required at the discretion of the Department. 20.2.72.202 NMAC Exemptions do not apply to Streamline sources. 20.2.72.219 NMAC revisions and modifications do not apply to Streamline sources, thus 20.2.72.219 type actions require a complete new application submittal. Please do not print sections of a streamline application that are not required.

Not applicable, as this is not a streamline application.

Form-Section 18 last revised: 3/9/2012 (2nd sentence) Section 18, Page 1

Saved Date: 9/26/2019

Requirements for Title V Program

Who Must Use this Attachment:

- * Any major source as defined in 20.2.70 NMAC.
- * Any source, including an area source, subject to a standard or other requirement promulgated under Section 111 Standards of Performance for New Stationary Sources, or Section 112 Hazardous Air Pollutants, of the 1990 federal Clean Air Act ("federal Act"). Non-major sources subject to Sections 111 or 112 of the federal Act are exempt from the obligation to obtain an 20.2.70 NMAC operating permit until such time that the EPA Administrator completes rulemakings that require such sources to obtain operating permits. In addition, sources that would be required to obtain an operating permit solely because they are subject to regulations or requirements under Section 112(r) of the federal Act are exempt from the requirement to obtain an Operating Permit.
- * Any Acid Rain source as defined under title IV of the federal Act. The Acid Rain program has additional forms. See http://www.env.nm.gov/aqb/index.html. Sources that are subject to both the Title V and Acid Rain regulations are encouraged to submit both applications simultaneously.
- * Any source in a source category designated by the EPA Administrator ("Administrator"), in whole or in part, by regulation, after notice and comment.

19.1 - 40 CFR 64, Compliance Assurance Monitoring (CAM) (20.2.70.300.D.10.e NMAC)

Any source subject to 40CFR, Part 64 (Compliance Assurance Monitoring) must submit all the information required by section 64.7 with the operating permit application. The applicant must prepare a separate section of the application package for this purpose; if the information is already listed elsewhere in the application package, make reference to that location. Facilities not subject to Part 64 are invited to submit periodic monitoring protocols with the application to help the AQB to comply with 20.2.70 NMAC. Sources subject to 40 CFR Part 64, must submit a statement indicating your source's compliance status with any enhanced monitoring and compliance certification requirements of the federal Act.

There are no sources at the station subject to 40 CFR, Part 64, Compliance Assurance Monitoring (CAM);

consequently, a monitoring protocol is not required.

19.2 - Compliance Status (20.2.70.300.D.10.a & 10.b NMAC)

Describe the facility's compliance status with each applicable requirement at the time this permit application is submitted. This statement should include descriptions of or references to all methods used for determining compliance. This statement should include descriptions of monitoring, recordkeeping and reporting requirements and test methods used to determine compliance with all applicable requirements. Refer to Section 2, Tables 2-N and 2-O of the Application Form as necessary. (20.2.70.300.D.11 NMAC) For facilities with existing Title V permits, refer to most recent Compliance Certification for existing requirements. Address new requirements such as CAM, here, including steps being taken to achieve compliance.

The station is in compliance with all applicable requirements affecting the facility. A copy of Part 1 (Permit Requirements Certification Table) of the 2019 annual compliance certification is provided in Section 20, Other Relevant Information. It identifies all the requirements of the current Title V operating permit and the methods and data used to determine compliance. It is assumed that compliance with the Title V operating permit ensures compliance with the construction permit and New Mexico regulations.

19.3 - Continued Compliance (20.2.70.300.D.10.c NMAC)

Provide a statement that your facility will continue to be in compliance with requirements for which it is in compliance at the time of permit application. This statement must also include a commitment to comply with other

of this	ation will continue to be in compliance with applicable rec is permit application. In addition, the station will, in a saly required by the applicable requirement, comply with during the permit term.	timely manner o	r consistent with such sche	dule
- 19.4 -	Schedule for Submission of Compliance (20.2.70.300.D.10.d	NMAC)		
	You must provide a proposed schedule for submission to t permit term. This certification must be submitted annually specifies a more frequent period. A sample form for these cert	unless the applica	able requirement or the departs	
The su	abmittal of compliance certifications during the five-year te	erm of the operating	ng permit will occur annually.	
- 19.5 -	Stratospheric Ozone and Climate Protection			
	In addition to completing the four (4) questions below, y compliance status with requirements of Title VI, Section 608 and Section 609 (Servicing of Motor Vehicle Air Conditioners	(National Recycling		
1.	Does your facility have any air conditioners or refrigeratio depleting substances?	n equipment that u	uses CFCs, HCFCs or other oz	one-
2.	Does any air conditioner(s) or any piece(s) of refrigeration edlbs?	quipment contain a	refrigeration charge greater tha ☑ No	n 50
	(If the answer is yes, describe the type of equipment and how i	nany units are at the	e facility.)	
3.	Do your facility personnel maintain, service, repair, or disposappliances ("appliance" and "MVAC" as defined at 82. 152)?	ose of any motor v	ehicle air conditioners (MVAC	s) or
4.	Cite and describe which Title VI requirements are applicable G).	to your facility (i.e. None	40 CFR Part 82, Subpart A three	ough
substa	ation does not produce, manufacture, transform, destroy, i nces (CFCs, HCFCs); does not maintain or service moment; and does not sell, distribute, or offer for sale any produce.	mport, or export a	onditioning units or refrigera	ıtioi

HFC shall continue to maintain compliance with the conditions stipulated in 40 CFR 82, Subparts A-G of the Stratospheric Ozone Protection Program (Title VI of the Clean Air Act Amendments).

19.6 - Compliance Plan and Schedule

Applications for sources, which are not in compliance with all applicable requirements at the time the permit application is submitted to the department, must include a proposed compliance plan as part of the permit application package. This plan shall include the information requested below:

A. Description of Compliance Status: (20.2.70.300.D.11.a NMAC)

A narrative description of your facility's compliance status with respect to all applicable requirements (as defined in 20.2.70 NMAC) at the time this permit application is submitted to the department.

B. Compliance plan: (20.2.70.300.D.11.B NMAC)

A narrative description of the means by which your facility will achieve compliance with applicable requirements with which it is not in compliance at the time you submit your permit application package.

C. Compliance schedule: (20.2.70.300D.11.c NMAC)

A schedule of remedial measures that you plan to take, including an enforceable sequence of actions with milestones, which will lead to compliance with all applicable requirements for your source. This schedule of compliance must be at least as stringent as that contained in any consent decree or administrative order to which your source is subject. The obligations of any consent decree or administrative order are not in any way diminished by the schedule of compliance.

D. Schedule of Certified Progress Reports: (20.2.70.300.D.11.d NMAC)

A proposed schedule for submission to the department of certified progress reports must also be included in the compliance schedule. The proposed schedule must call for these reports to be submitted at least every six (6) months.

E. Acid Rain Sources: (20.2.70.300.D.11.e NMAC)

If your source is an acid rain source as defined by EPA, the following applies to you. For the portion of your acid rain source subject to the acid rain provisions of title IV of the federal Act, the compliance plan must also include any additional requirements under the acid rain provisions of title IV of the federal Act. Some requirements of title IV regarding the schedule and methods the source will use to achieve compliance with the acid rain emissions limitations may supersede the requirements of title V and 20.2.70 NMAC. You will need to consult with the Air Quality Bureau permitting staff concerning how to properly meet this requirement.

NOTE: The Acid Rain program has additional forms. See http://www.env.nm.gov/aqb/index.html. Sources that are subject to both the Title V and Acid Rain regulations are **encouraged** to submit both applications **simultaneously**.

The station is in compliance with all applicable requirements; consequently, a compliance plan, a compliance schedule, and a schedule of certified progress reports is not required.

The station is not equipped with any acid rain sources; consequently, compliance with the acid rain provisions is not required as a part of this permit application.

19.7 - 112(r) Risk Management Plan (RMP)

Any major sources subject to section 112(r) of the Clean Air Act must list all substances that cause the source to be subject to section 112(r) in the application. The permittee must state when the RMP was submitted to and approved by EPA.

The station is not all state 40 CED 60 Classical Assistant December 2 Decembe

The station is not subject to 40 CFR 68, Chemical Accident Prevention Provisions; consequently, a Risk Management Plan is not required.

19.8 - Distance to Other States, Bernalillo, Indian Tribes and Pueblos

Will the property on which the facility is proposed to be constructed or operated be closer than 80 km (50 miles) from other states, local pollution control programs, and Indian tribes and pueblos (20.2.70.402.A.2 and 20.2.70.7.B NMAC)?

(If the answer is yes, state which apply and provide the distances.)

The station is located within 80 kilometers (km) of the following states, local pollution control programs, Indian tribes and pueblos:

Colorado (33.8 km)

Navajo Indian Reservation (1.6 km) Southern Ute Indian Reservation (33.8 km) Jicarilla Apache Indian Reservation (57.9 km) Ute Mountain Indian Reservation (19.3 km)

19.9 - Responsible Official

Provide the Responsible Official as defined in 20.2.70.7.AD NMAC:

The responsible official for the Chaco Compressor Station is Travis Jones.

Other Relevant Information

<u>Other relevant information</u>. Use this attachment to clarify any part in the application that you think needs explaining. Reference the section, table, column, and/or field. Include any additional text, tables, calculations or clarifying information.

Additionally, the applicant may propose specific permit language for AQB consideration. In the case of a revision to an existing permit, the applicant should provide the old language and the new language in track changes format to highlight the proposed changes. If proposing language for a new facility or language for a new unit, submit the proposed operating condition(s), along with the associated monitoring, recordkeeping, and reporting conditions. In either case, please limit the proposed language to the affected portion of the permit.

A copy of Part 1 (Permit Requirements Certification Table) of the 2019 annual compliance certification is provided in this section. Please see the following pages

Form-Section 20 last revised: 8/15/2011 Section 20, Page 1 Saved Date: 9/26/2019

Part 1 - Permit Requirements Certification Table

Annual Compliance Certification	Data for Title V Permit No. P236-R2 & F	P236-R2M1		
1. Permit Condition # and Permit Condition:	2. Method(s) or other information or other facts used to determine the compliance status:	3. What is the frequency of data collection used to determine compliance?	4. Was this facility in compliance with this requirement during the reporting period?	5. Were there any deviations associated with this requirement during the reporting period?
FACILITY SPECIFIC REQUIREMENTS		☐ Continuous	⊠ Yes	☐ Yes
A101 Permit Duration (expiration)	Submittal of a renewal application at least 12		_	_
A. The term of this permit is five (5) years. It will expire five years from the date of issuance. Application for renewal of this permit is due twelve (12) months prior to the date of expiration. (20.2.70.300.B.2 and 302.B NMAC)	months prior to this permit's August 19, 2021 expiration date will demonstrate compliance with this requirement.			
A101 Permit Duration (expiration)		☐ Continuous	⊠ Yes	☐ Yes
B. If a timely and complete application for a permit renewal is submitted, consistent with 20.2.70.300 NMAC, but the Department has failed to issue or disapprove the renewal permit before the end of the term of the previous permit, then the permit shall not expire and all the terms and conditions of the permit shall remain in effect until the renewal permit has been issued or disapproved. (20.2.70.400.D NMAC)	Submittal of a renewal application at least 12 months prior to this permit's August 19, 2021 expiration date will demonstrate compliance with this requirement.	⊠ Intermittent	□ No	⊠ No
A102 Facility: Description		☐ Continuous	⊠ Yes	☐ Yes
B. This facility is located approximately one mile south of Bloomfield in San Juan County, New Mexico. (20.2.70.302.A(7) NMAC)	Semi-annual reports and this ACC are used to determine that the source continues to comply with this condition.	☑ Intermittent	□ No	⊠ No
A103 Facility: Applicable Regulations	Semi-annual reports and the annual emissions	☐ Continuous	⊠ Yes	☐ Yes
A. The permittee shall comply with all applicable sections of the requirements listed in Table 103.A	inventory are used to demonstrate compliance with the identified applicable requirements of Table 103-A.	☑ Intermittent	□ No	⊠ No

1. Permit Condition # and Permit Condition:	2. Method(s) or other information or oth determine the compliance status:	er facts used to		ey of data on used to ne	4. Was this facility in compliance with this requirement during the reporting period?	5. Were there any deviations associated with this requirement during the reporting period?
Table 103.A: Applicable Requirements	S					
Applicable Requirements		Federally		Unit		
11		Enforceable		No.		
NSR Permit No: 0759-M5R1 (Per 20.2.72	NMAC)	X		Entire Fac	•	
20.2.1 NMAC General Provisions		X		Entire Fac		
20.2.7 NMAC Excess Emissions		X		Entire Fac	•	
20.2.61 NMAC Smoke and Visible Emission	1S	X			3, 4, and 5	
20.2.70 NMAC Operating Permits		X		Entire Fac		
20.2.71 NMAC Operating Permit Emission l	Fees	X		Entire Fac	•	
20.2.72 NMAC Construction Permit		X		Entire Fac	•	
20.2.73 NMAC Notice of Intent and Emission	ons Inventory Requirements	X		Entire Fac	ility	
	G	X		Unit 4		
	<u> </u>	X		Unit 5	*4*.	
	andards	X		Entire Fac	ılıty	
. 1		X		Unit 4		
. 1		X		Unit 4		
		X X		Unit 5		
		X		Unit 5		
00(CO) dated 5/18/2010	ement Agreement AQCA-09-	X		EVRU		
A103 Facility: Applicable Regulations			Co	ntinuous	⊠ Yes	☐ Yes
C. Compliance with the terms and conditions of this permit regarding source emissions and operation demonstrate compliance with national ambient air quality standards specified at 40 CFR 50, which were applicable at the time air dispersion modeling was performed for the facility's NSR Permit 0759-M3.	Semi-annual reports and the annu inventory are used to demonstrate the identified applicable requirem permit.	compliance with ents of this		ermittent	□ No	⊠ No
A104 Facility: Regulated Sources	Semi-annual reports and the annu		Co	ntinuous	⊠ Yes	☐ Yes
C. Compliance with the terms and conditions of this permit regarding source emissions and operation demonstrate compliance with national ambient air quality standards specified at 40 CFR 50, which were applicable at the time air dispersion modeling was performed for the facility's NSR Permit 0759-M3.		used to	⊠Int	ermittent	□ No	⊠ No

Version 02.25.15

1. Permit Condition # and Permit Condition:	2. Method(s) or other information or other facts used to determine the compliance status:	3. What is the frequency of data collection used to determine compliance?	4. Was this facility in compliance with this requirement during the reporting period?	5. Were there any deviations associated with this requirement during the reporting period?
identified as insignificant or trivial activities (as defined in 20.2.70.7 NMAC) and/or equipment not regulated pursuant to the Act are not included.				

Table 104.A: Regulated Sources List

Unit No.	Source Description	Make/ Model	Serial No.	Maximum Capacity/ Permitted Capacity	Manufacture Date	Other
1	Turbine	Solar Saturn/ 10-1001	S401983/	1,200 hp / 976 hp	08-JUN-71	Heat Input:
			OHA08-S0299			10.79 MMBtu/hr
			S401984/			Heat Input:
2	Turbine	Solar Saturn/ 10-1001	OHA10-S1717	1,200 hp / 976 hp	08-JUN-71	10.79 MMBtu/hr
			S428315/			Heat Input:
3	3 Turbine	Solar Saturn/ 10-1202	OHA08-S0335	1,200 hp / 976 hp	19-JUL-73	10.79 MMBtu/hr
			S3020212/			Heat Input:
4	Turbine	Solar Centaur/ 40-4002	ОНЈ12-С8442	3,961 hp / 3,222 hp	01-JAN-94	51.37 MMBtu/hr
5	Standby Generator	Detroit Diesel	4A0219278	200 hp / 200 hp	01-OCT-80	
L1	Transfer - Truck loading	NA	NA	NA	NA	
Т4	Fixed Roof Condensate Tank	Giant	UNKNOWN	500 bbl / 21,000 gal	19-MAY-95	
T5	Fixed Roof Condensate Tank	Giant	UNKNOWN	450 bbl / 18,900 gal	08-JAN-01	
Т6	Produced Water Storage Tank	UNKNOWN	UNKNOWN	45 bbl / 1,890 gal	UNKNOWN	

1. Per	rmit Condi	ition#a	nd Permit Condition	:			information or other fac ance status:	s used to	3. What is the frequency of collection us determine compliance?	data ed to	4. Was this facility in compliance with this requirement during the reporting period?	5. Were there a deviations asso with this requir during the repo period?	ciated ement
7	1 1 /	Produce Tank	ed Water Storage	UNK	NOWN		UNKNOWN	70 bbl/ 2,940 gal		UNKN	IOWN	Overflow for T-6	
N	M	Facility Malfun VOCs	Wide ctions for venting	NA			NA	NA NA		NA			
			essor & Associated Blowdowns	NA			NA	NA		NA			
				-kind e	ngine repla	cements n	nust be evaluated for a	oplicability to I					
A105	Facility:	: Contr	ol Equipment						Contin	luous	⊠ Yes	☐ Yes	
A. Table 105.A lists all the pollution control equipment required for this facility. Each emission point is identified by the same number that was assigned to it in the permit application.		annual ento determ	missions nine that	rts, periodic monitor inventory and this A the source continues oment requirements.	CC are used	⊠ Intern	nittent	□ No	⊠ No				
			Control Equip	ment	List:	ı				7			
	Contro Equipa Unit N	ment	Control Descri	ption		Polluta contro	ant being lled	Control Unit No.					
	EVRU	-	A 3-phase sepa EVRU ² . The E' two stage series	VRU v	vill be a	\	OC and HAP		ate Tanks nd T-5				
1 2			t number refers to a					·m					
2 EVRU means Ejector Vapor Recovery Unit A106 Facility: Allowable Emissions		it and will t	oc a two si	tage series ejector syst	·111.	Contin	nuous	⊠ Yes	☐ Yes				
A. The following Section lists the emission units, and their allowable emission limits. (40 CFR 50; 40 CFR 60, Subparts A and GG; 40 CFR 63, Subparts A and ZZZZ; Paragraphs 1, 7, and 8 of 20.2.70.302.A NMAC; and NSR Permit 0759-M5R1)		annual ei	missions nine that	rts, periodic monitor inventory and this A the source continues nissions.	CC are used	⊠ Intern	nittent	□ No	⊠ No				

Version 02.25.15			
1. Permit Condition # and Permit Condition:	Method(s) or other information or other facts used to determine the compliance status:	frequency of data collection used to	4. Was this facility in compliance with this requirement during the reporting period? 5. Were there any deviations associated with this requirement during the reporting period?
Table 106.A: Allowable Emissions			
Unit No. 1NO _x NO _x CO		PM ₁₀ ,	

Unit No.	¹ NO _x pph	NO _x tpy	CO pph	CO tpy	VOC pph	VOC tpy	TSP, PM ₁₀ , PM _{2.5} pph	TSP, PM ₁₀ , PM _{2.5} tpy
1	3.3	14.3	3.5	15.1	<	<	<	<
2	3.3	14.3	3.5	15.1	<	<	<	<
3	3.3	14.3	3.5	15.1	<	<	<	<
4	16.7	73.0	4.2	18.6	<	2.3	<	1.5
L-1	-	-	-	-	23.7	1.8	-	-
T-4/T-5	-	-	-	-	*	136.9	-	-
T-6/T-12	-	-	-	-	*	2.0	-	-

¹ Nitrogen dioxide emissions include all oxides of nitrogen expressed as NO₂.

A106 Facility: Allowable Emissions		Continuous	⊠ Yes	☐ Yes
B. Unit 4, nitrogen dioxide emissions shall not exceed 150 ppmv at 15 percent oxygen and on a dry basis, and the fuel burned shall not contain total sulfur in excess 0.8 percent by weight (8000 ppmw). (40 CFR 60, Subpart GG)	period. CFMS monitoring in condition A205.B demonstrates compliance with GG fuel sulfur	☑ Intermittent	□ No	⊠ No
A107 Facility: Allowable Startup, Shutdown, & Maintenance (SSM) and Malfunction Emissions	Records of SSM emissions are maintained to ensure compliance.	☐ Continuous ☑ Intermittent	⊠ Yes □ No	☐ Yes ⊠ No

² Title V annual fee assessments are based on the sum of allowable tons per year emission limits in Sections A106 and A107.

[&]quot;-" indicates the application represented emissions as not expected for this pollutant.

[&]quot;<" indicates the application represented uncontrolled emissions less than 1.0 pph or 1.0 tpy for this pollutant. Allowable limits are not imposed on this level of emissions, except for flares and pollutants with controls.

"*" indicates hourly emission limits are not appropriate for this operating situation.

1. Permit Condition #		2. Method(s) or other information or other facts used to determine the compliance status:	3. What is the frequency of dat collection used to determine compliance?		this deviations associated
Malfunction emission are listed in Table	allowable SSM and ns limits for this facility 107.A and were relied partment to determine licable regulations.				
Table 107.A: Allow	vable SSM and Malfunc	tion Units, Activities, and Emission Limits	·	·	
Unit No.		Description	VOC (tpy)	H ₂ S (pph)	H ₂ S (tpy)
SSM from [Units 01a - 04a]	¹ Compressor & Associand Predictable Startu	eiated Piping Blowdowns during Routine p, Shutdown, and/or Maintenance (SSM)	21.4	<	<
M	¹ Venting of Gas Due t	to Malfunction	10.0	<	<
"<" indicates the		ombustion emissions. It uncontrolled venting, blowdown, or pigging emiced on this level of H2S venting, blowdown, or pigging.		s than 0.1 pph or 0.44	tpy. Allowable limits,
A107 Facility:	Allowable Startup,	<i>S</i> 1 50	Continuo	ous Xes	☐ Yes
Shutdown, & Mai Malfunction Emissi	intenance (SSM) and ons		☐ Intermit	tent No	⊠ No
B. The authorization startup, shutdown, malfunction does requirements to according to Con B107.A.	not supersede the minimize emissions	Records of SSM emissions are maintained to ensure compliance.			
	Allowable Startup, intenance (SSM) and		Continuo		Yes
Malfunction Emissi C. SSM VOC Emissi	ons for venting of gas	Records of SSM emissions, including an annugas analysis, are maintained to ensure compli		tent No	⊠ No
facility inlet gas an	permittee shall perform a alysis once every year lowing recordkeeping to				

1. Permit Condition # and Permit Condition:	2. Method(s) or other information or other facts used to	3. What is the	4. Was this facility in	5. Were there any
1. Termit Condition # and Fermit Condition.	determine the compliance status:	frequency of data	compliance with this	deviations associated
	determine the compitative status.	collection used to	requirement during the	with this requirement
		determine	reporting period?	during the reporting
1 1 1 1 1 1		compliance?		period?
demonstrate compliance with routine and				
predictable startup, shutdown, and				
maintenance (SSM) emission limits in Table				
107.A. (NSR 0759-M5R1 Condition				
A107.C)				
Monitoring : The permittee shall monitor the	Records of SSM events and associated volumes,	Continuous	⊠ Yes	☐ Yes
permitted routine and predictable startups	along with extended gas analyses, are maintained			
and shutdowns and scheduled maintenance	to ensure compliance.	☐ Intermittent	□ No	⊠ No
events.	to ensure compitance.	Z Intermittent		
		Continuous	⊠ Yes	Yes
1 0		Continuous	△ res	Lites
compliance, each month records shall be		N		□ > 7
kept of the cumulative total of VOC		☐ Intermittent	□ No	⊠ No
emissions due to SSM events during the first				
12 months due to SSM events and, thereafter				
of the monthly rolling 12 month total of				
VOC emissions due to SSM events.				
Records shall also be kept of the inlet gas				
analysis, the percent VOC of the gas based	Records of SSM emissions, including the inlet gas			
on the most recent gas analysis, and of the	analysis, are maintained as required and reported in			
volume of total gas vented in MMscf used to	the applicable semi-annual report.			
calculate the VOC emissions due to SSM	the approache senii annuar report.			
events.				
The permittee shall record the calculated				
calculations in accordance with Condition				
B109, except the requirement in B109.E to				
record the start and end times of SSM events				
shall not apply to the venting of known				
quantities of VOC.				
Reporting: The permittee shall report in	Records of SSM emissions are reported in the	☐ Continuous	⊠ Yes	☐ Yes
accordance with Section B110.	applicable semi-annual report.			
accordance with Section B110.			□ No	⊠ No
A107 Facility: Allowable Startup,	Malfunctions that occurred during the applicable	Continuous	⊠ Yes	☐ Yes
Shutdown, & Maintenance (SSM) and	monitoring peirods were recorded and used toward			
Malfunction Emissions	the permitted allowable. The gas analysis is		□ No	⊠ No

Permit Condition # and Permit Condition:	2. Method(s) or other information or other facts used to determine the compliance status:	3. What is the frequency of data collection used to determine compliance?	4. Was this facility in compliance with this requirement during the reporting period?	5. Were there any deviations associated with this requirement during the reporting period?
D. Malfunction Emissions	obtained as required.			
Requirement: The permittee shall perform a facility inlet gas analysis once every year and complete the following recordkeeping to demonstrate compliance with malfunction (M) emission limits in Table 107.A. (NSR 0759-M5R1 Condition A107.D)				
Monitoring: The permittee shall monitor all malfunction events that result in VOC emissions including identification of the equipment or activity that is the source of emissions.	Malfunctions that occurred during the applicable monitoring periods were recorded and used toward the permitted allowable.	☐ Continuous ☑ Intermittent	⊠ Yes □ No	☐ Yes ☑ No
Recordkeeping: To demonstrate compliance, each month records shall be kept of the cumulative total of VOC emissions due to malfunction events during the first 12 months and, thereafter of the monthly rolling 12 month total of VOC emissions due to malfunction events. Records shall also be kept of the inlet gas analysis, the percent VOC of the gas based on the most recent gas analysis, of the volume of total gas vented in MMscf used to calculate the VOC emissions, a description of the event, and whether the emissions resulting from the event will be used toward the permitted malfunction emission limit or whether the event is reported under 20.2.7 NMAC. The permittee shall record the calculated emissions and parameters used in calculations in accordance with Condition B109, except the requirement in B109.E to record the start and end times of malfunction	Malfunctions that occurred during the applicable monitoring periods were recorded and used toward the permitted allowable.	☐ Continuous ☑ Intermittent	⊠ Yes □ No	☐ Yes ☑ No

Permit Condition # and Permit Condition:	Method(s) or other information or other facts used to determine the compliance status:	3. What is the frequency of data collection used to determine compliance?	4. Was this facility in compliance with this requirement during the reporting period?	5. Were there any deviations associated with this requirement during the reporting period?
events shall not apply to the venting of known quantities of VOC.				
Reporting : The permittee shall report in accordance with Section B110.	Malfunctions that occurred during the applicable monitoring periods were recorded and used toward the permitted allowable.	☐ Continuous ☐ Intermittent	⊠ Yes □ No	☐ Yes ⊠ No
A108 Facility: Hours of Operation		<u> </u>	<u> </u>	
A. This facility is authorized for continuous op continuous hours of operation.	peration. Monitoring, recordkeeping, and reporting are	not required to den	nonstrate complianc	e with
A109 Facility: Reporting Schedules		☐ Continuous	⊠ Yes	☐ Yes
(20.2.70.302.E NMAC) A. A Semi-Annual Report of monitoring activities is due within 45 days following the end of every 6-month reporting period. The six month reporting periods start on April 1 st	The first semi-annual report associated with this ACC was submitted November 2, 2018. Submittal of the second semi-annual report associated with this ACC by May 15 will demonstrate compliance with this requirement.	⊠ Intermittent	□ No	⊠ No
and October 1 st of each year.		☐ Continuous	⊠ Yes	Yes
A109 Facility: Reporting Schedules (20.2.70.302.E NMAC) B. The Annual Compliance Certification Report is due within 30 days of the end of every 12-month reporting period. The 12-month reporting period starts on April 1st of each year.	This ACC will be submitted by April 30.	☐ Continuous	□ No	⊠ No
A110 Facility: Fuel and Fuel Sulfur		☐ Continuous	⊠ Yes	☐ Yes
Requirements A. Fuel and Fuel Sulfur Requirements (Units 1, 2, 3, and 4)	Only natural gas is used for fuel. Fuel sulfur records are included in the applicable semi-annual report.	☑ Intermittent	□ No	⊠ No
Requirement: All combustion emission units shall combust only natural gas containing no more than 0.2 grains of total				

Permit Condition # and Permit Condition:	2. Method(s) or other information or other facts used to determine the compliance status:	3. What is the frequency of data collection used to determine compliance?	4. Was this facility in compliance with this requirement during the reporting period?	5. Were there any deviations associated with this requirement during the reporting period?
sulfur per 100 dry standard cubic feet. (NSR 0759-M5R1 Condition A110.A)				
Monitoring: None		☐ Continuous	⊠ Yes	Yes
Recordkeeping: The permittee shall demonstrate compliance with the natural gas limit on total sulfur content by maintaining records of a current, valid purchase contract, tariff sheet or transportation contract for the gaseous fuel, OR fuel gas analysis, specifying the allowable limit or less. Alternatively, compliance may be demonstrated by keeping a receipt or invoice from a commercial fuel supplier, with each fuel delivery, which shall include the delivery date, the fuel type delivered, the amount of fuel delivered, and the maximum sulfur content of the fuel. If fuel gas analysis is used, the analysis shall not be older than one year.	Only natural gas is used for fuel. Fuel sulfur records are maintained as required and are included in the applicable semi-annual report.	☑ Intermittent	□ No	⊠ No
Reporting: The permittee shall report in accordance with Section B110.	Only natural gas is used for fuel. Fuel sulfur records are included in the applicable semi-annual report.	☐ Continuous ☑ Intermittent	⊠ Yes □ No	☐ Yes ☑ No
A111 Facility: 20.2.61 NMAC Opacity		☐ Continuous	⊠ Yes	☐ Yes
A. 20.2.61 NMAC Opacity Limit (Units 1, 2, 3, and 4) Requirement: Visible emissions from all stationary combustion emission stacks shall	Only natural gas is used for fuel. No visible emissions were observed during the monitoring period.	☑ Intermittent	□ No	⊠ No
not equal or exceed an opacity of 20 percent in accordance with the requirements at 20.2.61.109 NMAC.				

Permit Condition # and Permit Condition:	Method(s) or other information or other facts used to determine the compliance status:	3. What is the frequency of data collection used to determine compliance?	4. Was this facility in compliance with this requirement during the reporting period?	5. Were there any deviations associated with this requirement during the reporting period?
Monitoring: Use of natural gas fuel constitutes compliance with 20.2.61 NMAC unless opacity equals or exceeds 20% averaged over a 10-minute period. When any visible emissions are observed during operation other than during startup mode, opacity shall be measured over a 10-minute period, in accordance with the procedures at 40 CFR 60, Appendix A, Reference Method 9 (EPA Method 9) as required by 20.2.61.114 NMAC, or the operator will be allowed to shut down the equipment to perform maintenance/repair to eliminate the visible emissions. Following completion of equipment maintenance/repair, the operator shall conduct visible emission observations following startup in accordance with the following procedures: Visible emissions observations shall be conducted over a 10-minute period during operation after completion of startup mode in accordance with the procedures at 40 CFR 60, Appendix A, Reference Method 22 (EPA Method 22). If no visible emissions are observed, no further action is required. If any visible emissions are observed during completion of the EPA Method 22 observation, subsequent opacity observations shall be conducted over a 10-minute period, in accordance with the procedures at EPA Method 9 as required by 20.2.61.114 NMAC. For the purposes of this condition, Startup mode is defined as the startup period that is described in the facility's startup plan.	Only natural gas is used for fuel. No visible emissions were observed during the monitoring period.	☐ Continuous ☐ Intermittent		☐ Yes ☑ No

1. Permit Condition # and Permit Condition:	2. Method(s) or other information or other facts used to determine the compliance status:	3. What is the frequency of data	4. Was this facility in compliance with this	5. Were there any deviations associated
	Summer summer summer	collection used to determine compliance?	requirement during the reporting period?	with this requirement during the reporting period?
Recordkeeping: If no visible emissions		Continuous	⊠ Yes	Yes
were observed, none.				
If any visible emissions observations were		☑ Intermittent	□ No	⊠ No
conducted, the permittee shall keep records				
in accordance with the requirements of Section B109 and as follows:				
• For any visible emissions				
observations conducted in accordance with	Only natural gas is used for fuel. No visible			
EPA Method 22, record the information on	emissions were observed during the monitoring period.			
the form referenced in EPA Method 22,	period.			
Section 11.2.				
• For any opacity observations conducted in accordance with the				
requirements of EPA Method 9, record the				
information on the form referenced in EPA				
Method 9, Sections 2.2 and 2.4.				
			N 1 1 7	□ • 7
Reporting : The permittee shall report in	Only natural gas is used for fuel. No visible emissions were observed during the monitoring	☐ Continuous	⊠ Yes	☐ Yes
accordance with Section B110.	period.		□ No	⊠ No
A111 Facility: 20.2.61 NMAC Opacity		☐ Continuous	⊠ Yes	☐ Yes
B. 20.2.61 NMAC Opacity Limit (Unit 5)		Intermittent	□ No	⊠ No
	Annual opacity measurement records are maintained to demonstrate compliance with this			
Requirement: Visible emissions from all	requirement.			
stationary combustion emission stacks shall	104 monon			
not equal or exceed an opacity of 20 percent.				
Monitoring: Once every calendar year, an		Continuous	⊠ Yes	☐ Yes
opacity measurement shall be performed on	Annual opacity measurement records are			
each Unit for a minimum of 10 minutes in	maintained to demonstrate compliance with this	⊠ Intermittent	□ No	⊠ No
accordance with the procedures of 40 CFR	requirement.			
60, Appendix A, Method 9.				
Recordkeeping: The permittee shall record	Annual opacity measurement records are	☐ Continuous	⊠ Yes	☐ Yes
the opacity measures with the corresponding	maintained to demonstrate compliance with this			

Permit Condition # and Permit Condition:	2. Method(s) or other information or other facts used to determine the compliance status:	3. What is the frequency of data collection used to determine compliance?	4. Was this facility in compliance with this requirement during the reporting period?	5. Were there any deviations associated with this requirement during the reporting period?
opacity readings in accordance with Method 9 in 40 CFR 60, Appendix A.	requirement.	Intermittent	□ No	⊠ No
Reporting: The permittee shall report in accordance with Section B110.	Annual opacity measurement records are are included in the applicable semi-annual reports.	☐ Continuous ☑ Intermittent	⊠ Yes □ No	☐ Yes ⊠ No
EQUIPMENT SPECIFIC		☐ Continuous	⊠ Yes	☐ Yes
REQUIREMENTS				
A201 Engines		Intermittent ■	□ No	⊠ No
A. 40 CFR 63, Subpart ZZZZ (Unit 5)	Records of maintenance and hours of operation are maintained to demonstrate compliance with this requirement.			
Requirement: The unit is subject to 40 CFR 63, Subpart ZZZZ and the permittee shall comply with all applicable requirements of Subpart A and Subpart ZZZZ.				
Monitoring : The permittee shall comply with all applicable monitoring requirements of 40 CFR 63, Subpart A and Subpart ZZZZ.	Records of maintenance and hours of operation are maintained to demonstrate compliance with this requirement.	☐ Continuous ☐ Intermittent	⊠ Yes □ No	☐ Yes ⊠ No
Recordkeeping : The permittee shall comply with all applicable recordkeeping requirements of 40 CFR 63, Subpart A and Subpart ZZZZ, including but not limited to 63.6655 and 63.10.	Records of maintenance and hours of operation are maintained to demonstrate compliance with this requirement.	☐ Continuous ☐ Intermittent	⊠ Yes □ No	☐ Yes ⊠ No
Reporting : The permittee shall comply with all applicable reporting requirements of 40 CFR 63, Subpart A and ZZZZ, including but not limited to 63.6645, 63.6650, 63.9, and 63.10.	Records of maintenance and hours of operation are included in the applicable semi-annual reports.	☐ Continuous ☐ Intermittent	⊠ Yes □ No	☐ Yes ⊠ No
A201 Engines B. Hours of Operation (Unit 5) Requirement: To ensure compliance with	Records of hours of operation are maintained to demonstrate compliance with this requirement.	☐ Continuous ☐ Intermittent	⊠ Yes □ No	☐ Yes ⊠ No
Kequirement: 10 ensure compliance with				1

Permit Condition # and Permit Condition:	Method(s) or other information or other facts used to determine the compliance status:	3. What is the frequency of data collection used to determine compliance?	4. Was this facility in compliance with this requirement during the reporting period?	5. Were there any deviations associated with this requirement during the reporting period?
NSR Exemption 20.2.72.202(B)(3) NMAC,				
the monthly rolling 12-month total hours of				
operation for Standby Generator Unit 5 is				
limited to 500 hours.			N	
Monitoring: The permittee shall monitor the	Records of hours of operation are maintained to	☐ Continuous	⊠ Yes	☐ Yes
dates and hours of operation for the unit.	demonstrate compliance with this requirement.			
D 11 1 11 1		☐ Intermittent	□ No	⊠ No
Recordkeeping: The permittee shall record		☐ Continuous	⊠ Yes	☐ Yes
the daily hours of operation, calculate and record the monthly rolling 12-month total hours of operation, and shall meet the	Records of hours of operation are maintained to demonstrate compliance with this requirement.	Intermittent	□ No	⊠ No
recordkeeping requirements in Section B109.			N. W.	1 1 1 1 1 1 1 1 1 1
Reporting : The permittee shall report in	Records of hours of operation are are included in	☐ Continuous	⊠ Yes	☐ Yes
accordance with Section B110.	the applicable semi-annual reports.	Intermittent	□ No	⊠ No
A203 Tanks		Continuous	⊠ Yes	Yes
A205 Talks		Continuous		
A. Tank Operations (Units T4 & T5) [with flash emissions]		☑ Intermittent	□ No	⊠ No
Requirement: 1) Compliance with the allowable emission limits in Table 106.A shall be demonstrated by monthly monitoring of the actual total condensate throughput and separator pressure and by calculating emission rates as required. 2) The permittee shall calculate the monthly rolling 12-month total, tpy VOC emission rates using actual measured condensate throughput, actual measured average separator pressure, and the most recent condensate VOC analysis. (NSR Permit 0759-M5R1 Condition A203.A)	Monthly condensate throughput and pressure records are maintained to demonstrate compliance with this requirement.			

Permit Condition # and Permit Condition:	2. Method(s) or other information or other facts used to determine the compliance status:	3. What is the frequency of data collection used to determine compliance?	4. Was this facility in compliance with this requirement during the reporting period?	5. Were there any deviations associated with this requirement during the reporting period?
Monitoring: 1) The permittee shall monitor the monthly total condensate throughput, and at least once per month, the upstream separator pressure. 2) Annually the permittee shall complete a liquids analysis of the tank condensate to determine the VOC content.	Monthly condensate throughput and pressure records are maintained to demonstrate compliance with this requirement.	☐ Continuous	⊠ Yes □ No	☐ Yes ⊠ No
Recordkeeping: 1) The permittee shall record the monthly total condensate throughput of liquids and the monthly average separator pressure. Each month the permittee shall use these values to calculate and record a monthly rolling 12-month total condensate throughput and a monthly rolling 12-month average separator pressure. 2) The permittee shall calculate the monthly rolling 12-month total VOC tpy emission rates using HYSYS or other previously approved thermodynamic model, such as VMGSim, etc. and Tanks 4.09d; the number of hours that the EVRU control system is non-operational as defined in Condition A203.B; the actual measured condensate throughput; the actual measured average separator pressure; and the most recent condensate VOC analysis. 3) The permittee shall keep records of the parameters, calculations, and VOC emission rates summarized in a table or spreadsheet and shall meet the recordkeeping requirements in Section B109.	Monthly condensate throughput and pressure records are maintained to demonstrate compliance with this requirement.	☐ Continuous ☐ Intermittent	✓ Yes □ No	☐ Yes ☑ No
Reporting: 1) The permittee shall report in accordance with Section B110.	Monthly condensate throughput and pressure records are included in the applicable semi-annual reports.	☐ Continuous ☑ Intermittent	⊠ Yes □ No	☐ Yes ⊠ No

Permit Condition # and Permit Condition:	2. Method(s) or other information or other facts used to determine the compliance status:	3. What is the frequency of data collection used to determine compliance?	4. Was this facility in compliance with this requirement during the reporting period?	5. Were there any deviations associated with this requirement during the reporting period?
2) All excess emissions and Title V deviations of allowable emission limits shall be reported according to 20.2.7 NMAC and 20.2.70.302.E(2) NMAC.				
A203 Tanks		☐ Continuous	⊠ Yes	☐ Yes
B. Tank EVRU Operations (Units T4 & T5)		☑ Intermittent	□ No	⊠ No
Requirement: To demonstrate compliance with allowable emission limits in Table 106.A, emissions from T4 & T5 shall be routed to and controlled by an Ejector Vapor Recovery Unit (EVRU), as required in Table 105.A (Control Equipment List). (SFO and Settlement Agreement # AQCA 09-00(CO) dated May 18, 2010). (NSR Permit 0759-M5R1 Condition A203.B) 1) The permittee shall operate and maintain the EVRU according to manufacturer's or supplier's recommendations. 2) The permittee shall install a system to continuously monitor the tank pressure. The tank Pressure Relief Valves (PRVs) shall open only to prevent damage to the system and shall be set to open at no less than 14.4 ounces per square inch of gauge pressure. Other than venting from PRVs to avoid system damage, T4 & T5 tank emissions shall at all times be routed to and controlled by the EVRU as a closed loop system that captures and routes tank emissions back to the process.	Records of EVRU inspection, tank pressure monitoring and monthly emissions calculations are maintained to demonstrate compliance with this requirement.	Continuous	Yes	⊠ Yes
Monitoring: At least weekly, the permittee shall inspect the EVRU control system and tank PRVs for defects that could result in air emissions. Defects include, but are not limited to, visible cracks, holes, or gaps;	Records of EVRU inspection, tank pressure monitoring and monthly emissions calculations are maintained to demonstrate compliance with this requirement.	☐ Continuous ☐ Intermittent	∐ Yes ⊠ No	⊠ Yes □ No

1. Permit Condition # and Permit Condition:	2. Method(s) or other information or other facts used to determine the compliance status:	3. What is the frequency of data collection used to determine compliance?	4. Was this facility in compliance with this requirement during the reporting period?	5. Were there any deviations associated with this requirement during the reporting period?
broken, cracked, or otherwise damaged seals or gaskets on closure devices; and broken or missing hatches, access covers, caps, or other closure devices. In the event that a leak or defect is detected, the permittee shall repair the leak or defect as soon as practicable and in a manner that minimizes VOC emissions to the atmosphere. In addition, the permittee shall continuously monitor the following parameters: 1) Hours of non-operation of the EVRU; and 2) Tank pressure.	As noted in Part 2 of the semiannual report submitted concurrently with this ACC, there were two instances where the weekly inspections were not performed.			
Recordkeeping: 1) For the purposes of calculating VOC emission rates, at any time a 100% capture efficiency is not achieved the EVRU control system shall be considered non-operational with a 0% control efficiency. EVRU control system non-operation includes any time PRVs open, any time leaks or defects are found during weekly EVRU control system inspections, and any other time when 100% of tank emissions are not captured. 2) The permittee shall record all dates and times that the EVRU control system was non-operational and the reason(s) that the EVRU control system is non-operational (e.g. PRVs open). 3) The permittee shall continuously record the tank pressure. 4) Each month, the permittee shall calculate and record the monthly rolling 12-month total number of hours that the EVRU is not meeting the 100% capture efficiency and is non-operational. 5) Each month, the permittee shall calculate	Records of EVRU inspection, tank pressure monitoring and monthly emissions calculations are maintained to demonstrate compliance with this requirement.	☐ Continuous ☐ Intermittent	⊠ Yes □ No	☐ Yes ☑ No

1. Permit Condition # and Permit Condition:	2. Method(s) or other information or other facts used to determine the compliance status:	3. What is the frequency of data collection used to determine compliance?	4. Was this facility in compliance with this requirement during the reporting period?	5. Were there any deviations associated with this requirement during the reporting period?
VOC emission rates from the tank as required by Condition A203.A assuming 0% control when the EVRU control system is non-operational as defined in this condition. 6) The permittee shall record the results of the EVRU inspections noting any defects, the date a defect is found, and the dates and description of any repairs and/or maintenance performed. 7) The permittee shall meet the recordkeeping requirements in Section B109.				
Reporting: 1) The permittee shall report in accordance with Section B110. 2) Any emissions exceedance of the allowable emission limit in Table 106.A, shall be reported as excess emissions and Title V deviations according to 20.2.7 NMAC, 20.2.70.302.E(2) NMAC, and Condition B110.B and C.	Records of EVRU inspection, tank pressure monitoring and monthly emissions calculations are included in the applicable semi-annual reports.	☐ Continuous ☑ Intermittent	⊠ Yes □ No	☐ Yes ⊠ No
A203 Tanks C. Tank Throughput (Units T-6 and T-12)		☐ Continuous ☐ Intermittent	⊠ Yes □ No	☐ Yes ☑ No
[without flash emissions] Requirement: Compliance with the allowable emission limits in Table 106.A shall be demonstrated by the total produced water throughput to the unit(s) not exceeding 630,000 gallons per year (15,000 barrels/year) of combined throughput. (NSR Permit 0759-M5R1 Condition A203.C)	Records of monthly liquids thoughput are maintained to demonstrate compliance with this requirement.			
Monitoring: The permittee shall monitor the monthly total throughput once per month.	Records of monthly liquids thoughput are maintained to demonstrate compliance with this requirement.	☐ Continuous ☐ Intermittent	⊠ Yes □ No	☐ Yes ⊠ No

1. Permit Condition # and Permit Condition:	2. Method(s) or other information or other facts used to determine the compliance status:	3. What is the frequency of data collection used to determine compliance?	4. Was this facility in compliance with this requirement during the reporting period?	5. Were there any deviations associated with this requirement during the reporting period?
Recordkeeping: The permittee shall record the monthly total throughput of liquids for both tanks and each month the permittee shall use this value to calculate and record a monthly rolling, 12-month total throughput. As represented in the application, annually the permittee shall calculate tank breathing and working losses using the USEPA Tanks program Version 4.0.9d or equivalent Department approved method. Emission rates computed using the same parameters, but with a different Department approved algorithm that exceed these values will not be deemed non-compliance with this permit. Records shall also be maintained in accordance with Section B109.	Records of monthly liquids thoughput are maintained to demonstrate compliance with this requirement.	☐ Continuous ☑ Intermittent	⊠ Yes □ No	☐ Yes ⊠ No
Reporting : The permittee shall report in accordance with Section B110.	Records of monthly liquids thoughput are included in the applicable semi-annual reports.	☐ Continuous	⊠ Yes □ No	☐ Yes ☑ No
A203 Tanks		Continuous	⊠ Yes	Yes
D. Truck Loading - Condensate Loadout (Unit L1) Requirement: Compliance with the allowable emission limits in Table 106.A shall be demonstrated by monitoring the total annual condensate loadout volume to ensure that it does not exceed 1,335,000 gallons per year. (NSR Permit 0759-M5R1 Condition A203.D)	Monthly condensate throughput (truck loading) records are maintained to demonstrate compliance with this requirement.	⊠ Intermittent	□ No	⊠ No
Monitoring : The permittee shall monitor the condensate truck loadout volume on a monthly basis.	Monthly condensate throughput (truck loading) records are maintained to demonstrate compliance with this requirement.	☐ Continuous ☑ Intermittent	⊠ Yes □ No	☐ Yes ⊠ No

Permit Condition # and Permit Condition:	2. Method(s) or other information or other facts used to determine the compliance status:	3. What is the frequency of data collection used to determine compliance?	4. Was this facility in compliance with this requirement during the reporting period?	5. Were there any deviations associated with this requirement during the reporting period?
Recordkeeping: The permittee shall record the monthly condensate truck loadout volume. Each month during the first 12 months of monitoring the permittee shall record the cumulative condensate loadout volume and after the first 12 months of monitoring, the permittee shall calculate and record the monthly rolling 12-month total loadout volume. Records shall also be maintained in accordance with Section B109.	Monthly condensate throughput (truck loading) records are maintained to demonstrate compliance with this requirement.	☐ Continuous ☑ Intermittent	⊠ Yes □ No	☐ Yes ☑ No
Reporting: The permittee shall report in accordance with Section B110.	Monthly condensate throughput (truck loading) records are included in the applicable semi-annual reports.	☐ Continuous ☐ Intermittent	⊠ Yes □ No	☐ Yes ⊠ No
A205 Turbines		☐ Continuous	<u></u> ✓ Yes	Yes
A. Periodic Emissions Tests (Units 1, 2, 3, and 4) Requirement: Compliance with the allowable emission limits in Table 106.A shall be demonstrated by conducting periodic emission tests during the monitoring period. (NSR Permit 0759-M5R1 Condition A205.A, revised)	Periodic test reports included in the applicable semi-annual reports demonstrate compliance with emissions limits.	☑ Intermittent	□ No	⊠ No
Monitoring: The permittee shall test using a portable analyzer or EPA Reference Methods subject to the requirements and limitations of Section B108, General Monitoring Requirements. Emissions testing is required for NOx and CO and shall be carried out as described below. Test results that demonstrate compliance with the CO emission limits shall also be considered to demonstrate compliance with	Periodic test reports included in the applicable semi-annual reports demonstrate compliance with emissions limits.	☐ Continuous	⊠ Yes □ No	☐ Yes ☑ No

Permit Condition # and Permit Condition:	2. Method(s) or other information or other facts used to determine the compliance status:	3. What is the frequency of data collection used to determine compliance?	4. Was this facility in compliance with this requirement during the reporting period?	5. Were there any deviations associated with this requirement during the reporting period?
the VOC emission limits. (1) The testing shall be conducted as follows: a. Testing frequency shall be once per year. b. The monitoring period is a calendar year (January 1 to December 31). (2) The tests shall continue based on the existing testing schedule. (3) All subsequent testing shall occur in each succeeding monitoring period. No two monitoring events shall occur closer together in time than 25% of a monitoring period. (4) The permittee shall follow the General Testing Procedures of Section B111. (5) Performance testing required by 40 CFR 60, Subpart GG may be used to satisfy these periodic testing requirements if they meet the requirements of this condition and are completed during the specified monitoring period.		compliance:		period:
Recordkeeping: The permittee shall		☐ Continuous	⊠ Yes	Yes
maintain records in accordance with Section B109, B110, and B111. The permittee shall also record the results of the periodic emissions tests, including the turbine's fuel flow rate and horsepower at the time of the test, and the type of fuel fired (natural gas, field gas, etc.). The permittee shall also keep records of all raw data used to determine exhaust gas flow and of all calculations used to determine flow rates and mass emissions rates.	Periodic test reports are maintained to demonstrate compliance with this requirement.	☑ Intermittent	□ No	⊠ No
Reporting : The permittee shall report in accordance with Section B109, B110, and B111.	Periodic test reports included in the applicable semi-annual reports demonstrate compliance with emissions limits.	☐ Continuous ☐ Intermittent	⊠ Yes □ No	☐ Yes ☑ No

Version 02.25.15

1. Permit Condition # and Permit Condition:	2. Method(s) or other information or other facts used to determine the compliance status:	3. What is the frequency of data collection used to determine compliance?	4. Was this facility in compliance with this requirement during the reporting period?	5. Were there any deviations associated with this requirement during the reporting period?
A205 Turbines		☐ Continuous	⊠ Yes	☐ Yes
B. 40 CFR 60, Subpart GG (Unit 4) Requirement: The unit is subject to 40 CFR 60, Subpart GG and the permittee shall comply with the applicable requirements of 40 CFR 60, Subpart A and Subpart GG.	Fuel sulfur monitoring records demonstratec compliance with GG sulfur standards. Initial compliance testing was completed in a previous monitoring period.	⊠ Intermittent	□ No	⊠ No
Monitoring : The permittee shall comply with the monitoring and testing requirements of 40 CFR 60.334 and 60.335.	Records of fuel sulfur monitoring are included in the applicable semi-annual reports.	☐ Continuous ☐ Intermittent	⊠ Yes □ No	☐ Yes ⊠ No
Recordkeeping : The permittee shall comply with the recordkeeping requirements of 40 CFR 60.334 and 40 CFR 60.7.	Records of fuel sulfur monitoring are included in the applicable semi-annual reports.	☐ Continuous ☑ Intermittent	⊠ Yes □ No	☐ Yes ⊠ No
Reporting : The permittee shall comply with the reporting requirements of 40 CFR 60.7.	Records of fuel sulfur monitoring are included in the applicable semi-annual reports.	☐ Continuous ☑ Intermittent	⊠ Yes □ No	☐ Yes ⊠ No

			2. Was thi		3. Does not	
Check	If the section Heading is marked as N/A no remarks are required. Check only one box per subject heading. Explain answers in remarks row under subject heading.					apply
B100 A.		duction		Yes Explain Below	No Explain Below	N/A Explain Below
REM	ARKS:					
B101	Legal A.	-	Terms and Conditions (20.2.70 sections 7, 201.B, 300, 301.B, 302, 405 NMAC)	✓ Yes Explain Below	No Explain Below	N/A Explain Below
	(1)	502(enfo Add	permittee shall abide by all terms and conditions of this permit, except as allowed under Section b)(10) of the Federal Act, and 20.2.70.302.H.1 NMAC. Any permit noncompliance is grounds for recement action, and significant or repetitious noncompliance may result in termination of this permit. itionally, noncompliance with federally enforceable conditions of this permit constitutes a violation of Federal Act. (20.2.70.302.A.2.a NMAC)			
	(2)	Emis	ssions trading within a facility (20.2.70.302.H.2 NMAC)			
		(a)	The Department shall, if an applicant requests it, issue permits that contain terms and conditions allowing for the trading of emissions increases and decreases in the permitted facility solely for the purpose of complying with a federally enforceable emissions cap that is established in the permit in addition to any applicable requirements. Such terms and conditions shall include all terms and conditions required under 20.2.70.302 NMAC to determine compliance. If applicable requirements apply to the requested emissions trading, permit conditions shall be issued only to the extent that the applicable requirements provide for trading such increases and decreases without a case-by-case approval.			
		(b)	The applicant shall include in the application proposed replicable procedures and permit terms that ensure the emissions trades are quantifiable and enforceable. The Department shall not include in the emissions trading provisions any emissions units for which emissions are not quantifiable or for which there are no replicable procedures to enforce the emissions trades. The permit shall require compliance with all applicable requirements.			
	(3)	nece	hall not be a defense for the permittee in an enforcement action to claim that it would have been ssary to halt or reduce the permitted activity in order to maintain compliance with the conditions of this nit. (20.2.70.302.A.2.b NMAC)			

- (4) If the Department determines that cause exists to modify, reopen and revise, revoke and reissue, or terminate this permit, this shall be done in accordance with 20.2.70.405 NMAC. (20.2.70.302.A.2.c NMAC)
- (5) The permittee shall furnish any information the Department requests in writing to determine if cause exists for reopening and revising, revoking and reissuing, or terminating the permit, or to determine compliance with the permit. This information shall be furnished within the time period specified by the Department. Additionally, the permittee shall furnish, upon request by the Department, copies of records required by the permit to be maintained by the permittee. (20.2.70.302.A.2.f NMAC)
- (6) A request by the permittee that this permit be modified, revoked and reissued, or terminated, or a notification by the permittee of planned changes or anticipated noncompliance, shall not stay any conditions of this permit. (20.2.70.302.A.2.d NMAC)
- (7) This permit does not convey property rights of any sort, or any exclusive privilege. (20.2.70.302.A.2.e NMAC)
- (8) In the case where an applicant or permittee has submitted information to the Department under a claim of confidentiality, the Department may also require the applicant or permittee to submit a copy of such information directly to the Administrator of the EPA. (20.2.70.301.B NMAC)
- (9) The issuance of this permit, or the filing or approval of a compliance plan, does not relieve the permittee from civil or criminal liability for failure to comply with the state or Federal Acts, or any applicable state or federal regulation or law. (20.2.70.302.A.6 NMAC and the New Mexico Air Quality Control Act NMSA 1978, Chapter 74, Article 2)
- (10) If any part of this permit is challenged or held invalid, the remainder of the permit terms and conditions are not affected and the permittee shall continue to abide by them. (20.2.70.302.A.1.d NMAC)
- (11) A responsible official (as defined in 20.2.70.7.AE NMAC) shall certify the accuracy, truth and completeness of every report and compliance certification submitted to the Department as required by this permit. These certifications shall be part of each document. (20.2.70.300.E NMAC)
- (12) Revocation or termination of this permit by the Department terminates the permittee's right to operate this facility. (20.2.70.201.B NMAC)
- (13) The permittee shall continue to comply with all applicable requirements. For applicable requirements that will become effective during the term of the permit, the permittee shall meet such requirements on a timely basis. (Sections 300.D.10.c and 302.G.3 of 20.2.70 NMAC)
- B. Permit Shield (20.2.70.302.J NMAC)
 - (1) Compliance with the conditions of this permit shall be deemed to be compliance with any applicable

		requirements existing as of the date of permit issuance and identified in Table 103.A. The requirements in Table 103.A are applicable to this facility with specific requirements identified for individual emission units.			
	(2)	The Department has determined that the requirements in Table 103.B as identified in the permit application are not applicable to this source, or they do not impose any conditions in this permit.			
	(3)	This permit shield does not extend to administrative amendments (Subsection A of 20.2.70.404 NMAC), to minor permit modifications (Subsection B of 20.2.70.404 NMAC), to changes made under Section 502(b)(10), changes under Paragraph 1 of subsection H of 20.2.70.302 of the Federal Act, or to permit terms for which notice has been given to reopen or revoke all or part under 20.2.70.405 and 20.2.70.302J(6).			
	(4)	This permit shall, for purposes of the permit shield, identify any requirement specifically identified in the permit application or significant permit modification that the department has determined is not applicable to the source, and state the basis for any such determination. (20.2.70.302.A.1.f NMAC)			
C		The owner or operator of a source having an excess emission shall, to the extent practicable, operate the source, including associated air pollution control equipment, in a manner consistent with good air pollutant control practices for minimizing emissions. (20.2.7.109 NMAC). The establishment of allowable malfunction emission limits does not supersede this requirement.			
REMARI Facility w		compliance with applicable requirements during the applicable period			
B102 A	Auth	<u>ority</u>	∑ Yes Explain	No Explain	N/A Explain
A		This permit is issued pursuant to the federal Clean Air Act ("Federal Act"), the New Mexico Air Quality Control Act ("State Act") and regulations adopted pursuant to the State and Federal Acts, including Title 20, New Mexico Administrative Code, Chapter 2, Part 70 (20.2.70 NMAC) - Operating Permits.	Below	Below	Below
В		This permit authorizes the operation of this facility. This permit is valid only for the named permittee, owner, and operator. A permit modification is required to change any of those entities.			
С		The Department specifies with this permit, terms and conditions upon the operation of this facility to assure compliance with all applicable requirements, as defined in 20.2.70 NMAC at the time this permit is issued. (20.2.70.302.A.1 NMAC)			

	D. E.	Pursuant to the New Mexico Air Quality Control Act NMSA 1978, Chapter 74, Article 2, all terms and conditions in this permit, including any provisions designed to limit this facility's potential to emit, are enforceable by the Department. All terms and conditions are enforceable by the Administrator of the United States Environmental Protection Agency ("EPA") and citizens under the Federal Act, unless the term or condition is specifically designated in this permit as not being enforceable under the Federal Act. (20.2.70.302.A.5 NMAC) The Department is the Administrator for 40 CFR Parts 60, 61, and 63 pursuant to the Modification and Exceptions of Section 10 of 20.2.77 NMAC (NSPS), 20.2.78 NMAC (NESHAP), and 20.2.82 NMAC			
		(MACT).			
REMA Only to		S: rmitted owner operated the facility during the applicable period.			
B103 A.	The	e permittee shall pay Title V fees to the Department consistent with the fee schedule in 20.2.71 NMAC - erating Permit Emission Fees. The fees will be assessed and invoiced separately from this permit. 2.70.302.A.1.e NMAC)	Yes Explain Below	No Explain Below	N/A Explain Below
REM <i>2</i> 2017 c		S: ing permit emission fees were submitted on May 7, 2018. The 2018 invoice had not been paid as of the end of this	s complian	ce period.	<u> </u>
B104 (20.2.7)		Any person who participated in a permitting action before the Department and who is adversely affected by such permitting action, may file a petition for a hearing before the Environmental Improvement Board ("board"). The petition shall be made in writing to the board within thirty (30) days from the date notice is given of the Department's action and shall specify the portions of the permitting action to which the petitioner objects, certify that a copy of the petition has been mailed or hand-delivered, and attach a copy of the permitting action for which review is sought. Unless a timely request for a hearing is made, the decision of the Department shall be final. The petition shall be copied simultaneously to the Department upon receipt of the appeal notice. If the petitioner is not the applicant or permittee, the petitioner shall mail or hand-deliver a copy of the petition to the applicant or permittee. The Department shall certify the administrative record to the board. Petitions for a hearing shall be	Yes Explain Below	No Explain Below	N/A Explain Below

		sent to:			
		Secretary, New Mexico Environmental Improvement Board 1190 St. Francis Drive, Runnels Bldg. Rm N2153 Santa Fe, New Mexico 87502			
REM Depar		S: action			
B105	Subr	Stack Test Protocols and Stack Test Reports shall be submitted electronically to Stacktest.AQB@state.nm.us or as directed by the Department.	X Yes Explain Below	No Explain Below	N/A Explain Below
	B.	Excess Emission Reports shall be submitted as directed by the Department. (20.2.7.110 NMAC)			
	C.	Compliance Certification Reports, Semi-Annual monitoring reports, compliance schedule progress reports, and any other compliance status information required by this permit shall be certified by the responsible official and submitted to the mailing address below, or as directed by the Department:			
		Manager, Compliance and Enforcement Section New Mexico Environment Department Air Quality Bureau 525 Camino de los Marquez, Suite 1 Santa Fe, NM 87505-1816			
	D.	Compliance Certification Reports shall also be submitted to the Administrator at the address below (20.2.70.302.E.3 NMAC):			
		Chief, Air Enforcement Section US EPA Region-6, 6EN-AA 1445 Ross Avenue, Suite 1200 Dallas, TX 75202-2733			

n	- N	/	A 1	n 1	7	a
К	$\mathbf{E}\mathbf{N}$	ИΙ.	A I	КΙ	ĸ	> :

Stack test reports, semi-annual reports and ACCs are submitted to the appropriate regulatory personnel

B106	NSI	PS and/or MACT Startup, Shutdown, and Malfunction Operations	Yes	No	N/A
Divo	1101	S and/of Mixe I Startup, Shutuown, and Manunction Operations	Explain	Explain	Explain
	A.	If a facility is subject to a NSPS standard in 40 CFR 60, each owner or operator that installs and operates a continuous monitoring device required by a NSPS regulation shall comply with the excess emissions reporting requirements in accordance with 40 CFR 60.7(c).	Below	Below	Below
	В.	If a facility is subject to a NSPS standard in 40 CFR 60, then in accordance with 40 CFR 60.8(c), operations during periods of startup, shutdown, and malfunction shall not constitute representative conditions for the purpose of a performance test nor shall emissions in excess of the level of the applicable emission limit during periods of startup, shutdown, and malfunction be considered a violation of the applicable emission limit unless otherwise specified in the applicable standard.			
	C.	If a facility is subject to a MACT standard in 40 CFR 63, then the facility is subject to the requirement for a Startup, Shutdown and Malfunction Plan (SSM) under 40 CFR 63.6(e)(3), unless specifically exempted in the applicable subpart. (20.2.70.302.A.1 and A.4 NMAC)			
REMA NSPS source	requii	S: rements for affected sources (turbines) do not require a continuous monitoring device. No excess emissions occurr	red from af	fected NSP	S
B107	Star	rtup, Shutdown, and Maintenance Operations	Yes	□ No	□ N/A
	A.	The establishment of permitted startup, shutdown, and maintenance (SSM) emission limits does not supersede the requirements of 20.2.7.14.A NMAC. Except for operations or equipment subject to Condition B106, the permittee shall establish and implement a plan to minimize emissions during routine or predictable start up, shut down, and scheduled maintenance (SSM work practice plan) and shall operate in accordance with the procedures set forth in the plan. (20.2.7.14.A NMAC)	Explain Below	Explain Below	Explain Below
REM	ADK	Z•			
		is operated in accordance with the permittee's SSM work practice plan			

B108		ral Monitoring Requirements .70. 302.A and C NMAC)	✓ YesExplainBelow	No Explain Below	N/A Explain Below
	A.	These requirements do not supersede or relax requirements of federal regulations.			
	В.	The following monitoring and/or testing requirements shall be used to determine compliance with applicable requirements and emission limits. Any sampling, whether by portable analyzer or EPA reference method, that measures an emission rate over the applicable averaging period greater than an emission limit in this permit constitutes noncompliance with this permit. The Department may require, at its discretion, additional tests pursuant to EPA Reference Methods at any time, including when sampling by portable analyzer measures an emission rate greater than an emission limit in this permit; but such requirement shall not be construed as a determination that the sampling by portable analyzer does not establish noncompliance with this permit and shall not stay enforcement of such noncompliance based on the sampling by portable analyzer.			
	C.	If the emission unit is shutdown at the time when periodic monitoring is due to be accomplished, the permittee is not required to restart the unit for the sole purpose of performing the monitoring. Using electronic or written mail, the permittee shall notify the Department's Enforcement Section of a delay in emission tests prior to the deadline for accomplishing the tests. Upon recommencing operation, the permittee shall submit any pertinent pre-test notification requirements set forth in the current version of the Department's Standard Operating Procedures For Use Of Portable Analyzers in Performance Test, and shall accomplish the monitoring.			
	D.	The requirement for monitoring during any monitoring period is based on the percentage of time that the unit has operated. However, to invoke monitoring period exemptions at B108.D(2), hours of operation shall be monitored and recorded.			
	(1)	If the emission unit has operated for more than 25% of a monitoring period, then the permittee shall conduct monitoring during that period.			
	(2)	If the emission unit has operated for 25% or less of a monitoring period then the monitoring is not required. After two successive periods without monitoring, the permittee shall conduct monitoring during the next period regardless of the time operated during that period, except that for any monitoring period in which a unit has operated for less than 10% of the monitoring period, the period will not be considered as one of the two successive periods.			
	(3)	If invoking the monitoring period exemption in B108.D(2), the actual operating time of a unit shall not exceed the monitoring period required by this permit before the required monitoring is performed. For example, if the monitoring period is annual, the operating hours of the unit shall not exceed 8760 hours before monitoring is conducted. Regardless of the time that a unit actually operates, a minimum of one of			

each type of monitoring activity shall be conducted during the five year term of this permit.

- E. The permittee is not required to report a deviation for any monitoring or testing in a Specific Condition if the deviation was authorized in this General Condition B108.
- F. For all periodic monitoring events, except when a federal or state regulation is more stringent, three test runs shall be conducted at 90% or greater of the unit's capacity as stated in this permit, or in the permit application if not in the permit, and at additional loads when requested by the Department. If the 90% capacity cannot be achieved, the monitoring will be conducted at the maximum achievable load under prevailing operating conditions except when a federal or state regulation requires more restrictive test conditions. The load and the parameters used to calculate it shall be recorded to document operating conditions and shall be included with the monitoring report.
- G. When requested by the Department, the permittee shall provide schedules of testing and monitoring activities. Compliance tests from previous NSR and Title V permits may be re-imposed if it is deemed necessary by the Department to determine whether the source is in compliance with applicable regulations or permit conditions.
- H. If monitoring is new or is in addition to monitoring imposed by an existing applicable requirement, it shall become effective 120 days after the date of permit issuance. For emission units that have not commenced operation, the associated new or additional monitoring shall not apply until 120 days after the units commence operation. All pre-existing monitoring requirements incorporated in this permit shall continue to apply from the date of permit issuance. All monitoring periods, unless stated otherwise in the specific permit condition or federal requirement, shall commence at the beginning of the 12 month reporting period as defined at condition A109.B.

REMARKS:

Periodic monitoring reports will included in the applicable semi-annual reports

B109	B109 General Recordkeeping Requirements (20.2.70.302.D.1 NMAC)				N/A Explain Below
	permit a	nittee shall maintain records to assure and verify compliance with the terms and conditions of this and any applicable requirements that become effective during the term of this permit. The minimum ion to be included in these records is (20.2.70.302.D.1 NMAC):			Below
	(1) Record	s required for testing and sampling:			
	(a) emissi	equipment identification (include make, model and serial number for all tested equipment and on controls);			
	(b)	date(s) and time(s) of sampling or measurements;			
	(c)	date(s) analyses were performed;			
	(d)	the company or entity that performed the analyses;			
	(e)	analytical or test methods used;			
	(f)	results of analyses or tests; and			
	(g)	operating conditions existing at the time of sampling or measurement.			
	(2) Record	s required for equipment inspections and/or maintenance required by this permit:			
	(a)	equipment identification number (including make, model and serial number)			
	(b)	date(s) and time(s) of inspection, maintenance, and/or repair			
	(c)	date(s) any subsequent analyses were performed (if applicable)			
	(d)	name of the person or qualified entity conducting the inspection, maintenance, and/or repair			
	(e)	copy of the equipment manufacturer's or the owner or operator's maintenance or repair recommendations (if required to demonstrate compliance with a permit condition)			
	(f)	description of maintenance or repair activities conducted			
	(g)	all results of any required parameter readings			
	(h)	a description of the physical condition of the equipment as found during any required inspection			
	(i)	results of required equipment inspections including a description of any condition which required adjustment to bring the equipment back into compliance and a description of the required adjustments			

- B. The permittee shall keep records of all monitoring data, equipment calibration, maintenance, and inspections, Data Acquisition and Handling System (DAHS) if used, reports, and other supporting information required by this permit for at least five (5) years from the time the data was gathered or the reports written. Each record shall clearly identify the emissions unit and/or monitoring equipment, and the date the data was gathered. (20.2.70.302.D.2 NMAC)
- C. If the permittee has applied and received approval for an alternative operating scenario, then the permittee shall maintain a log at the facility, which documents, contemporaneously with any change from one operating scenario to another, the scenario under which the facility is operating. (20.2.70.302.A.3 NMAC)
- D. The permittee shall keep a record describing off permit changes made at this source that result in emissions of a regulated air pollutant subject to an applicable requirement, but not otherwise regulated under this permit, and the emissions resulting from those changes. (20.2.70.302.I.2 NMAC)
- E. Unless otherwise indicated by Specific Conditions, the permittee shall keep the following records for malfunction emissions and routine and predictable emissions during startup, shutdown, and scheduled maintenance (SSM):
 - (1) The owner or operator of a source subject to a permit, shall establish and implement a plan to minimize emissions during routine or predictable startup, shutdown, and scheduled maintenance through work practice standards and good air pollution control practices. This requirement shall not apply to any affected facility defined in and subject to an emissions standard and an equivalent plan under 40 CFR Part 60 (NSPS), 40 CFR Part 63 (MACT), or an equivalent plan under 20.2.72 NMAC Construction Permits, 20.2.70 NMAC Operating Permits, 20.2.74 NMAC Permits Prevention of Significant Deterioration (PSD), or 20.2.79 NMAC Permits Nonattainment Areas. (20.2.7.14.A NMAC) The permittee shall keep records of all sources subject to the plan to minimize emissions during routine or predictable SSM and shall record if the source is subject to an alternative plan and therefore, not subject to the plan requirements under 20.2.7.14.A NMAC.
 - (2) If the facility has allowable SSM emission limits in this permit, the permittee shall record all SSM events, including the date, the start time, the end time, a description of the event, and a description of the cause of the event. This record also shall include a copy of the manufacturer's, or equivalent, documentation showing that any maintenance qualified as scheduled. Scheduled maintenance is an activity that occurs at an established frequency pursuant to a written protocol published by the manufacturer or other reliable source. The authorization of allowable SSM emissions does not supersede any applicable federal or state standard. The most stringent requirement applies.

	(3)	If the facility has allowable malfunction emission limits in this permit, the permittee shall record all malfunction events to be applied against these limits. The permittee shall also include the date, the start time, the end time, and a description of the event. Malfunction means any sudden and unavoidable failure of air pollution control equipment or process equipment beyond the control of the owner or operator, including malfunction during startup or shutdown. A failure that is caused entirely or in part by poor maintenance, careless operation, or any other preventable equipment breakdown shall not be considered a malfunction. (20.2.7.7.E NMAC) The authorization of allowable malfunction emissions does not supersede any applicable federal or state standard. The most stringent requirement applies. This authorization only allows the permittee to avoid submitting reports under 20.2.7 NMAC for total annual emissions that are below the authorized malfunction emission limit.			
	(4)	The owner or operator of a source shall meet the operational plan defining the measures to be taken to mitigate source emissions during malfunction, startup or shutdown. (20.2.72.203.A(5) NMAC)			
REMA Record		nintained in accordance with recordkeeping requirements.			
B110	<u>Gener</u> (20.2	al Reporting Requirements 70.302.E NMAC)	Yes Explain Below	No Explain Below	N/A Explain Below
	i b a	Reports of required monitoring activities for this facility shall be submitted to the Department on the schedule in section A109. Monitoring and recordkeeping requirements that are not required by a NSPS or MACT shall be maintained on-site or (for unmanned sites) at the nearest company office, and summarized in the semi-nnual reports, unless alternative reporting requirements are specified in the equipment specific requirements ection of this permit.			
	o d	Reports shall clearly identify the subject equipment showing the emission unit ID number according to this perating permit. In addition, all instances of deviations from permit requirements, including those that occur uring emergencies, shall be clearly identified in the reports required by section A109. (20.2.70.302.E.1 MMAC)			
	u	ne permittee shall submit reports of all deviations from permit requirements, including those attributable to pset conditions as defined in the permit, the probable cause of such deviations, and any corrective actions or reventive measures taken. These reports shall be submitted as follows:			
	(1)	Deviations resulting in excess emissions as defined in 20.2.7.7 NMAC (including those classified as emergencies as defined in section B114.A) shall be reported in accordance with the timelines specified by			

- 20.2.7.110 NMAC and in the semi-annual reports required in section A109. (20.2.70.302.E.2 NMAC)
- (2) All other deviations shall be reported in the semi-annual reports required in section A109. (20.2.70.302.E.2 NMAC).
- D. The permittee shall submit reports of excess emissions in accordance with 20.2.7.110.A NMAC.
- E. Results of emission tests and monitoring for each pollutant (except opacity) shall be reported in pounds per hour (unless otherwise specified) and tons per year. Opacity shall be reported in percent. The number of significant figures corresponding to the full accuracy inherent in the testing instrument or Method test used to obtain the data shall be used to calculate and report test results in accordance with 20.2.1.116.B and C NMAC. Upon request by the Department, CEMS and other tabular data shall be submitted in editable, MS Excel format.
- F. At such time as new units are installed as authorized by the applicable NSR Permit, the permittee shall fulfill the notification requirements in the NSR permit.
- G. Periodic Emissions Test Reporting: The permittee shall report semi-annually a summary of the test results.
- H. The permittee shall submit an emissions inventory for this facility annually. The emissions inventory shall be submitted by the later of April 1 or within 90 days after the Department makes such request. (20.2.73 NMAC and 20.2.70.302.A.1 NMAC)
 - (1) The facility emits, or has the potential to emit, 5 tons per year or more of lead or lead compounds, or 100 tons per year or more of PM10, PM2.5, sulfur oxides, nitrogen oxides, carbon monoxide, or volatile organic compounds.
 - (2) The facility is defined as a major source of hazardous air pollutants under 20.2.70 NMAC (Operating Permits).
 - (3) The facility is located in an ozone nonattainment area and which emits, or has the potential to emit, 25 tons per year or more of nitrogen oxides or volatile organic compounds.
 - (4) Upon request by the department.
 - (5) The permittee shall submit the emissions inventory report by April 1 of each year, unless a different deadline is specified by the current operating permit.
- I. Emissions trading within a facility (20.2.70.302.H.2 NMAC)
- (1) For each such change, the permittee shall provide written notification to the department and the administrator at least seven (7) days in advance of the proposed changes. Such notification shall state when the change will occur

and shall describe the changes in emissions that will result and how these increases and decreases in emissions will comply with the terms and conditions of the permit. (2) The permittee and department shall attach each such notice to their copy of the relevant permit.				
--	--	--	--	--

REMARKS:							
Reports	are sub	pmitted in accordance with reporting requirements.					
B111	Gener	al Testing Requirements	Xes Explain	No Explain	N/A Explain		
A. (Complia	ance Tests	Below	Below	Below		
	(1)	Compliance test requirements from previous permits (if any) are still in effect, unless the tests have been satisfactorily completed. Compliance tests may be re-imposed if it is deemed necessary by the Department to determine whether the source is in compliance with applicable regulations or permit conditions. (20.2.72 NMAC Sections 210.C and 213)					
	(2)	Compliance tests shall be conducted within sixty (60) days after the unit(s) achieve the maximum normal production rate. If the maximum normal production rate does not occur within one hundred twenty (120) days of source startup, then the tests must be conducted no later than one hundred eighty (180) days after initial startup of the source.					
	(3)	Unless otherwise indicated by Specific Conditions or regulatory requirements, the default time period for each test run shall be at least 60 minutes and each performance test shall consist of three separate runs using the applicable test method. For the purpose of determining compliance with an applicable emission limit, the arithmetic mean of results of the three runs shall apply. In the event that a sample is accidentally lost or conditions occur in which one of the three runs must be discontinued because of forced shutdown, failure of an irreplaceable portion of the sample train, extreme meteorological conditions, or other circumstances, beyond the owner or operator's control, compliance may, upon the Department approval, be determined using the arithmetic mean of the results of the two other runs.					
	(4)	Testing of emissions shall be conducted with the emissions unit operating at 90 to 100 percent of the maximum operating rate allowed by the permit. If it is not possible to test at that rate, the source may test at a lower operating rate, subject to the approval of the Department.					
	(5)	Testing performed at less than 90 percent of permitted capacity will limit emission unit operation to 110 percent of the tested capacity until a new test is conducted.					
	(6)	If conditions change such that unit operation above 110 percent of tested capacity is possible, the source must submit a protocol to the Department within 30 days of such change to conduct a new emissions test.					
B.	EPA R	eference Method Tests					
	(1)	All compliance tests required by this permit, unless otherwise specified by Specific Conditions of this					

permit, shall be conducted in accordance with the requirements of 40 CFR 60, Subpart A, General Provisions, and the following EPA Reference Methods as specified by 40 CFR 60, Appendix A:

- (a) Methods 1 through 4 for stack gas flowrate
- (b) Method 5 for TSP
- (c) Method 6C and 19 for SO₂
- (d) Method 7E for NO_X (test results shall be expressed as nitrogen dioxide (NO₂) using a molecular weight of 46 lb/lb-mol in all calculations (each ppm of NO/NO₂ is equivalent to 1.194 x 10-7 lb/SCF)
- (e) Method 9 for opacity
- (f) Method 10 for CO
- (g) Method 19 may be used in lieu of Methods 1-4 for stack gas flowrate upon approval of the Department. A justification for this proposal must be provided along with a contemporaneous fuel gas analysis (preferably on the day of the test) and a recent fuel flow meter calibration certificate (within the most recent quarter).
- (h) Method 7E or 20 for Turbines per 60.335 or 60.4400
- (i) Method 29 for Metals
- (j) Method 201A for filterable PM_{10} and $PM_{2.5}$
- (k) Method 202 for condensable PM
- (l) Method 320 for organic Hazardous Air Pollutants (HAPs)
- (m) Method 25A for VOC reduction efficiency
- (n) Method 30B for Mercury
- (2) Alternative test method(s) may be used if the Department approves the change.
- C. Periodic Monitoring and Portable Analyzer Requirements
 - (1) Periodic emissions tests (periodic monitoring) may be conducted in accordance with EPA Reference Methods or by utilizing a portable analyzer. Periodic monitoring utilizing a portable analyzer shall be conducted in accordance with the requirements of the current version of ASTM D 6522. However, if a facility has met a previously approved Department criterion for portable analyzers, the analyzer may be operated in accordance with that criterion until it is replaced.
 - (2) Unless otherwise indicated by Specific Conditions or regulatory requirements, the default time period for

each test run shall be at least 20 minutes.

Each performance test shall consist of three separate runs. The arithmetic mean of results of the three runs shall be used to determine compliance with the applicable emission limit.

- (3) Testing of emissions shall be conducted in accordance with the requirements at Section B108.F.
- (4) During emissions tests, pollutant and diluent concentration shall be monitored and recorded. Fuel flow rate shall be monitored and recorded if stack gas flow rate is determined utilizing Method 19. This information shall be included with the test report furnished to the Department.
- (5) Stack gas flow rate shall be calculated in accordance with 40 CFR 60, Appendix A, Method 19 utilizing fuel flow rate (scf) determined by a dedicated fuel flow meter and fuel heating value (Btu/scf) determined from a fuel sample obtained preferably during the day of the test, but no earlier than three months prior to the test date. Alternatively, stack gas flow rate may be determined by using EPA Methods 1-4.

D. Test Procedures:

- (1) The permittee shall notify the Department's Program Manager, Compliance and Enforcement Section at least thirty (30) days before the test to afford a representative of the Department an opportunity to be present at the test. (40CFR 60.8(d))
- (2) Equipment shall be tested in the "as found" condition. Equipment may not be adjusted or tuned prior to any test for the purpose of lowering emissions, and then returned to previous settings or operating conditions after the test is complete.
- (3) Contents of test notifications, protocols and test reports shall conform to the format specified by the Department's Universal Test Notification, Protocol and Report Form and Instructions. Current forms and instructions are posted to NMED's Air Quality web site under Compliance and Enforcement Testing.
- (4) The permittee shall provide (a) sampling ports adequate for the test methods applicable to the facility, (b) safe sampling platforms, (c) safe access to sampling platforms and (d) utilities for sampling and testing equipment.
- (5) The stack shall be of sufficient height and diameter and the sample ports shall be located so that a representative test of the emissions can be performed in accordance with the requirements of EPA Method 1 or ASTM D 6522-00 as applicable.
- (6) Where necessary to prevent cyclonic flow in the stack, flow straighteners shall be installed
- (7) Unless otherwise indicated by Specific Conditions or regulatory requirements, test reports shall be submitted to the Department no later than 30 days after completion of the test.

REMARKS:

Testing that occurred during the applicable period was completed in accordance with the appropriate procedures.

B112	Con	<u>npliance</u>	Xes Explain Below	No Explain Below	N/A Explain Below
	A.	The Department shall be given the right to enter the facility at all reasonable times to verify the terms and conditions of this permit. Required records shall be organized by date and subject matter and shall at all times be readily available for inspection. The permittee, upon verbal or written request from an authorized representative of the Department who appears at the facility, shall immediately produce for inspection or copying any records required to be maintained at the facility. Upon written request at other times, the permittee shall deliver to the Department paper or electronic copies of any and all required records maintained on site or at an off-site location. Requested records shall be copied and delivered at the permittee's expense within three business days from receipt of request unless the Department allows additional time. Required records may include records required by permit and other information necessary to demonstrate compliance with terms and conditions of this permit. (NMSA 1978, Section 74-2-13)			
	B.	A copy of the most recent permit(s) issued by the Department shall be kept at the permitted facility or (for unmanned sites) at the nearest company office and shall be made available to Department personnel for inspection upon request. (20.2.70.302.G.3 NMAC)			
	C.	Emissions limits associated with the energy input of a Unit, i.e. lb/MMBtu, shall apply at all times unless stated otherwise in a Specific Condition of this permit. The averaging time for each emissions limit, including those based on energy input of a Unit (i.e. lb/MMBtu) is one (1) hour unless stated otherwise in a Specific Condition of this permit or in the applicable requirement that establishes the limit. (20.2.70.302.A.1 and G.3 NMAC)			
	D.	The permittee shall submit compliance certification reports certifying the compliance status of this facility with respect to all permit terms and conditions, including applicable requirements. These reports shall be made on the pre-populated Compliance Certification Report Form that is provided to the permittee by the Department, and shall be submitted to the Department and to EPA at least every 12 months. For the most current form, please contact the Compliance Reports Group at submittals.aqb@state.nm.us. For additional reporting guidance see http://www.nmenv.state.nm.us/aqb/enforce_compliance/TitleVReporting.htm . (20.2.70.302.E.3 NMAC)			
	Е.	The permittee shall allow representatives of the Department, upon presentation of credentials and other documents as may be required by law, to do the following (20.2.70.302.G.1 NMAC):			

	(1)	enter the permittee's premises where a source or emission unit is located, or where records that are required by this permit to be maintained are kept;			
	(2)	have access to and copy, at reasonable times, any records that are required by this permit to be maintained;			
	(3)	inspect any facilities, equipment (including monitoring and air pollution control equipment), work practices or operations regulated or required under this permit; and			
	(4)	sample or monitor any substances or parameters for the purpose of assuring compliance with this permit or applicable requirements or as otherwise authorized by the Federal Act.			
REMA Record		es during th	he applicabl	e period.	
B113	Perm	t Reopening and Revocation	⊠ Yes	□ No	
		This permit will be reopened and revised when any one of the following conditions occurs, and may be revoked and reissued when A(3) or A(4) occurs. (20.2.70.405.A.1 NMAC)	Explain Below	Explain Below	N/A Explain Below
	(1)	Additional applicable requirements under the Federal Act become applicable to a major source three (3) or more years before the expiration date of this permit. If the effective date of the requirement is later than the expiration date of this permit, then the permit is not required to be reopened unless the original permit or any of its terms and conditions has been extended due to the Department's failure to take timely action on a request by the permittee to renew this permit.			
	(2)	Additional requirements, including excess emissions requirements, become applicable to this source under Title IV of the Federal Act (the acid rain program). Upon approval by the Administrator, excess emissions offset plans will be incorporated into this permit.			
	(3)	The Department or the Administrator determines that the permit contains a material mistake or that inaccurate statements were made in establishing the terms and conditions of the permit.			
	(4)	The Department or the Administrator determines that the permit must be revised or revoked and reissued to assure compliance with an applicable requirement.			
		Proceedings to reopen or revoke this permit shall affect only those parts of this permit for which cause to eopen or revoke exists. Emissions units for which permit conditions have been revoked shall not be operated			

		until new permit conditions have been issued for them. (20.2.70.405.A.2 NMAC)			
REMA No con		: cation has been received from the regulating agency to indicate that the permit has been reopened, revoked or revi	ised.		
B114		orgencies 0.2.70.304 NMAC)	Yes Explain Below	No Explain Below	N/A Explain Below
	A.	An "emergency" means any situation arising from sudden and reasonably unforeseeable events beyond the control of the permittee, including acts of God, which situation requires immediate corrective action to restore normal operation, and that causes the source to exceed a technology-based emission limitation under the permit due to unavoidable increases in emissions attributable to the emergency. An emergency shall not include noncompliance to the extent caused by improperly designed equipment, lack of preventive maintenance, or careless or improper operation.			Belew
	В.	An emergency constitutes an affirmative defense to an action brought for noncompliance with technology-based emission limitations contained in this permit if the permittee has demonstrated through properly signed, contemporaneous operating logs, or other relevant evidence that:			
	(1)	An emergency occurred and that the permittee can identify the cause(s) of the emergency;			
	(2)	This facility was at the time being properly operated;			
	(3)	During the period of the emergency the permittee took all reasonable steps to minimize levels of emissions that exceeded the emission standards or other requirements in this permit; and			
	(4)	The permittee submitted notice of the emergency to the Department within 2 working days of the time when emission limitations were exceeded due to the emergency. This notice fulfills the requirement of 20.2.70.302.E.2 NMAC. This notice must contain a description of the emergency, any steps taken to mitigate emissions, and corrective actions taken.			
	C.	In any enforcement proceeding, the permittee seeking to establish the occurrence of an emergency has the burden of proof.			
	D.	This provision is in addition to any emergency or upset provision contained in any applicable requirement.			
REMA	ARKS	•			


No em	ergen	cies occurred during this period.			
B115	Stratospheric Ozone (20.2.70.302.A.1 NMAC)			No Explain	N/A
	A.	If this facility is subject to 40 CFR 82, Subpart F, the permittee shall comply with the following standards for recycling and emissions reductions:	Below	Below	Explain Below
	(1)	Persons opening appliances for maintenance, service, repair, or disposal must comply with the required practices, except for motor vehicle air conditioners (MVAC) and MVAC-like appliances. (40 CFR 82.156)			
	(2)	Equipment used during the maintenance, service, repair, or disposal of appliances must comply with the standards for recycling and recovery equipment. (40 CFR 82.158)			
	(3)	Persons performing maintenance, service, repair, or disposal of appliances must be certified by an approved technician certification program. (40 CFR 82.161)			
REMA The fa		: is not subject to 40CFR 82 subpart F.			
B116		1 Rain Sources .2.70.302.A.9 NMAC)	Yes Explain Below	No Explain Below	N/A Explain Below
	A.	If this facility is subject to the federal acid rain program under 40 CFR 72, this section applies.			Delow
	В.	Where an applicable requirement of the Federal Act is more stringent than an applicable requirement of regulations promulgated under Title IV of the Federal Act, both provisions are incorporated into this permit and are federally enforceable.			
	C.	Emissions exceeding any allowances held by the permittee under Title IV of the Federal Act or the regulations promulgated thereunder are prohibited.			
	D.	No modification of this permit is required for increases in emissions that are authorized by allowances acquired pursuant to the acid rain program, provided that such increases do not require a permit modification under any other applicable requirement.			

	E. F.	The permittee may not use allowances as a defense to noncompliance with any other applicable requirement. No limit is placed on the number of allowances held by the acid rain source. Any such allowance shall be accounted for according to the procedures established in regulations promulgated under Title IV of the Federal Act.			
	G.	The acid rain permit is an enclosure of this operating permit.			
REM. The fa		is not subject to 40CFR 72.			
B117		x Management Plan 0.2.70.302.A.1 NMAC)	Yes Explain Below	No Explain Below	N/A Explain Below
	A.	If this facility is subject to the federal risk management program under 40 CFR 68, this section applies.			
	B.	The owner or operator shall certify annually that they have developed and implemented a RMP and are in compliance with 40 CFR 68.			
	C.	If the owner or operator of the facility has not developed and submitted a risk management plan according to 40 CFR 68.150, the owner or operator shall provide a compliance schedule for the development and implementation of the plan. The plan shall describe, in detail, procedures for assessing the accidental release hazard, preventing accidental releases, and developing an emergency response plan to an accidental release. The plan shall be submitted in a method and format to a central point as specified by EPA prior to the date specified in 40 CFR 68.150.b.			
REM. The fa		is not subject to 40CFR 68.			

ACC Deviation Summary Report for Permit P236-R2 & P236-R2M1

1. Ar form.	⊠ Yes	□ No						
2. Ha Semi- form. devia	⊠ Yes	□ No						
3. Di reporthis re	☐ Yes	□ No						
Dev								
No.	Applicable Requirement (Include Rule Citation)	Emission Unit ID(s)	Cause of Deviation	Corrective Action Tak	Action Taken			
1								
2								
3								
4								
5								

Deviation Summary Table (cont.)											
	Deviation Started		Deviation Ended					Did you attach an excess emission form?			
No.	Date	Time	Date	Time	Pollutant	Monitoring Method	Amount of Emissions				
1								☐ Yes	□ No		
2								☐ Yes	□ No		
3								☐ Yes	□ No		
4								☐ Yes	□ No		
5								☐ Yes	□ No		

Section 21

Addendum for Landfill Applications


Landfill Applications are not required to complete Sections 1-C Input Capacity and Production Rate, 1-E Operating Schedule, 17 Compliance Test History, and 18 Streamline Applications. Section 12 – PSD Applicability is required only for Landfills with Gas Collection and Control Systems and/or landfills with other non-fugitive stationary sources of air emissions such as engines, turbines, boilers, heaters. All other Sections of the Universal Application Form are required.

EPA Background Information for MSW Landfill Air Quality Regulations: https://www3.epa.gov/airtoxics/landfill/landflpg.html

NM Solid Waste Bureau Website: https://www.env.nm.gov/swb/

Not applicable, as this facility is not a landfill.

Form-Section 21 last revised: 10/04/2016 Section 21, Page 1 Saved Date: 9/26/2019

Section 22

Certification

Company Name: Harvest Four Corners, LLC		
I, JAUIS JOHN, hereby certify	that the information and data submitted in this application	are true
and as accurate as possible, to the best of my knowledge and	professional expertise and experience. Signed this 12 d	lay of
SEPPEMBER, 7819, upon my oath or affirm		
*Signature	9/18/2019 Date	
Printed Name	EHS MANAGER Title	
Scribed and sworn before me on this 18 day of Soph		ıa
Monce Scale of New Mexico expi	9/19/2019	
Monico Sa roloua	Date	
Notary's Printed Name		

*For Title V applications, the signature must be of the Responsible Official as defined in 20.2.70.7.AD NMAC.

