

Lea Power Partners, LLC

Hobbs Generating Station

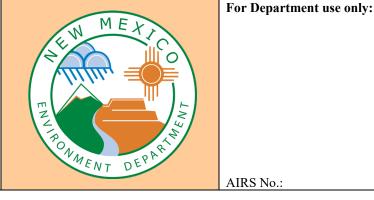
Significant Modification to Title V Permit P-244-R1

July 2020

Prepared for:

Lea Power Partners, LLC 98 N. Twombly Lane Hobbs, NM 88240

Prepared by:


Alliant Environmental, LLC 7804 Pan American Fwy. NE Albuquerque, NM 87109

Mail Application To:

New Mexico Environment Department Air Quality Bureau **Permits Section** 525 Camino de los Marquez, Suite 1 Santa Fe, New Mexico, 87505

Phone: (505) 476-4300 Fax: (505) 476-4375 www.env.nm.gov/aqb

AIRS No.:

Universal Air Quality Permit Application

Use this application for NOI, NSR, or Title V sources.

Use this application for: the initial application, modifications, technical revisions, and renewals. For technical revisions, complete Sections, 1-A, 1-B, 2-E, 3, 9 and any other sections that are relevant to the requested action; coordination with the Air Quality Bureau permit staff prior to submittal is encouraged to clarify submittal requirements and to determine if more or less than these sections of the application are needed. Use this application for streamline permits as well. See Section 1-I for submittal instructions for other permits

This application is submitted as (check all that apply):
□ Request for a No Permit Required Determination (no fee) Updating an application currently under NMED review. Include this page and all pages that are being updated (no fee required). Existing Permitted (or NOI) Facility □ Existing Non-permitted (or NOI) Facility Construction Status: □ Not Constructed Minor Source: □ a NOI 20.2.73 NMAC □ 20.2.72 NMAC application or revision □ 20.2.72.300 NMAC Streamline application Title V Source: □ Title V (new) ⊠ Title V renewal □ TV minor mod. ⊠ TV significant mod. TV Acid Rain: □ New □ Renewal PSD Major Source: PSD major source (new) minor modification to a PSD source □ a PSD major modification

Acknowledgements:

X I acknowledge that a pre-application meeting is available to me upon request. X Title V Operating, Title IV Acid Rain, and NPR applications have no fees. A pre-application meeting was held on April 30, 2018 at 10:00AM at NMED in Santa Fe, NM. □ \$500 NSR application Filing Fee enclosed OR □ The full permit fee associated with 10 fee points (required w/ streamline applications).

□ Check No.: in the amount of

☑ I acknowledge the required submittal format for the hard copy application is printed double sided 'head-to-toe', 2-hole punched (except the Sect. 2 landscape tables is printed 'head-to-head'), numbered tab separators. Incl. a copy of the check on a separate page. □ This facility qualifies to receive assistance from the Small Business Environmental Assistance program (SBEAP) and qualifies for 50% of the normal application and permit fees. Enclosed is a check for 50% of the normal application fee which will be verified with the Small Business Certification Form for your company.

□ This facility qualifies to receive assistance from the Small Business Environmental Assistance Program (SBEAP) but does not qualify for 50% of the normal application and permit fees. To see if you qualify for SBEAP assistance and for the small business certification form go to https://www.env.nm.gov/aqb/sbap/small_business_criteria.html).

Citation: Please provide the low level citation under which this application is being submitted: 20.2.72.200.A.(2) and 20.2.70.404.C. NMAC

(e.g. application for a new minor source would be 20.2.72.200.A NMAC, one example for a Technical Permit Revision is 20.2.72.219.B.1.b NMAC, a Title V acid rain application would be: 20.2.70.200.C NMAC)

Section 1 – Facility Information

		AI # if known (see 1 st	Updating	
C		3 to 5 #s of permit	Permit/NOI #:	
Sect	tion 1-A: Company Information	IDEA ID No.): 25726	P-244-R1	
1	Facility Name: Hobbs Generating Station	Plant primary SIC Cod	e (4 digits): 4911	
1		Plant NAIC code (6 digits): 221112		
a	Facility Street Address (If no facility street address, provide directions from 98 N. Twombly Lane, Hobbs, NM 88240	n a prominent landmark)	:	
2	Plant Operator Company Name: Lea Power Partners, LLC	Phone/Fax: (575) 397-0	5701 / (575) 993-5301	
а	Plant Operator Address: 98 N. Twombly Lane, Hobbs, NM 88240			

b	Plant Operator's New Mexico Corporate ID or Tax ID: 260471741	
3	Plant Owner(s) name(s): Lea Power Partners, LLC, c/o Mr. David Baugh	Phone/Fax: (713) 358-9726 / (713) 358-9730
а	Plant Owner(s) Mailing Address(s): 98 N. Twombly Lane, Hobbs, NM 8	88240
4	Bill To (Company): Mr. John Schretlen	Phone/Fax: (575) 397-6701 / (575) 993-5301
a	Mailing Address: 98 N. Twombly Lane, Hobbs, NM 88240	E-mail: John.Schretlen@naes.com
5	□ Preparer: ☑ Consultant: Alliant Environmental, LLC	Phone/Fax: (505) 205-4819
а	Mailing Address: 7804 Pan American Fwy. NE, Ste 5, Albuquerque, NM 87109	E-mail: mschluep@alliantenv.com
6	Plant Operator Contact: Mr. John Schretlen	Phone/Fax: (575) 397-6701 / (575) 993-5301
a	Address: 98 N. Twombly Lane, Hobbs, NM 88240	E-mail: John.Schretlen@naes.com
7	Air Permit Contact: Mr. John Schretlen	Title: Plant Manager
а	E-mail: John.Schretlen@naes.com	Phone/Fax: (575) 397-6701 / (575) 993-5301
b	Mailing Address: 98 N. Twombly Lane, Hobbs, NM 88240	

Section 1-B: Current Facility Status

1.a	Has this facility already been constructed? ☑ Yes □ No	1.b If yes to question 1.a, is it currently operating in New Mexico?
2	If yes to question 1.a, was the existing facility subject to a Notice of Intent (NOI) (20.2.73 NMAC) before submittal of this application?	If yes to question 1.a, was the existing facility subject to a construction permit (20.2.72 NMAC) before submittal of this application? ☑ Yes □ No
3	Is the facility currently shut down? □ Yes I No	If yes, give month and year of shut down (MM/YY):
4	Was this facility constructed before 8/31/1972 and continuously operated s	since 1972? □ Yes 🖾 No
5	If Yes to question 3, has this facility been modified (see 20.2.72.7.P NMA □Yes □No □N/A	C) or the capacity increased since 8/31/1972?
6	Does this facility have a Title V operating permit (20.2.70 NMAC)? X Yes □ No	If yes, the permit No. is: P-244-R1
7	Has this facility been issued a No Permit Required (NPR)?	If yes, the NPR No. is:
8	Has this facility been issued a Notice of Intent (NOI)?	If yes, the NOI No. is:
9	Does this facility have a construction permit (20.2.72/20.2.74 NMAC)? ⊠ Yes □ No	If yes, the permit No. is: PSD-3449-M5R2
10	Is this facility registered under a General permit (GCP-1, GCP-2, etc.)? □ Yes ⊠ No	If yes, the register No. is:

Section 1-C: Facility Input Capacity & Production Rate

1	What is the facility's maximum input capacity, specify units (reference here and list capacities in Section 20, if more room is required)								
a	Current	Hourly: 4,054 MMBtu/hr (LHV)	Annually: 29,707,364 MMBtu/yr (LHV)						
b	Proposed	Hourly: 4,430.4 MMBtu/hr (LHV)	Daily: 106,330 MMBtu/Day (LHV)	Annually: 38,810,450 MMBtu/yr (LHV)					
2	What is the	facility's maximum production rate, sp	pecify units (reference here and list capacities in	Section 20, if more room is required)					
a	Current	Hourly: 604 MW nominal	Daily: 14,496 MW nominal (Hourly * 24)	Annually: 5,291,040 MW nominal (Daily * 365)					
b	Proposed	Hourly: 634 MW nominal	Daily: 15,216 MW nominal (Hourly * 24)	Annually: 5,553,840 MW nominal (Daily * 365)					

Section 1-D: Facility Location Information

1	Section: 24	Range: 36E	Township: 188	County: L	ea		Elevation (ft): 3,716				
2	UTM Zone:	12 or 🗵 13		Datum: □ NAD 27 □ NAD 83 ⊠ WGS 84							
a	UTM E (in meter	rs, to nearest 10 meter	s): 658,413 mE	UTM N (in meters, to nearest 10 meters): 3,622,425 mE							
b	AND Latitude	(deg., min., sec.):	32° 43' 47.07" N	Longitude	(deg., min., se	ec.): 103º 1	8' 34.6" W				
3	Name and zip c	ode of nearest No	ew Mexico town: Hobbs, N	IM 88240							
4	miles west on t miles passing t	Detailed Driving Instructions from nearest NM town (attach a road map if necessary): From Hobbs, drive approximately 8 miles west on the Carlsbad Highway, and turn north just before mile marker 95. Drive north for approximately 1.7 miles passing the Maddox Station on the left, and turn west for 0.3 miles. After passing through an access gate, drive north approximately 0.5 miles to the LPP site location.									
5	The facility is 8	B miles West of H	lobbs, NM.								
6	Status of land a (specify)	t facility (check o	one): 🗵 Private 🗆 Indian/P	ueblo □Fe	deral BLM □	Federal Fo	orest Service				
7			ribes, and counties within ed to be constructed or op				.B.2 NMAC) of the property nd Gaines County, TX				
8	20.2.72 NMAC applications only : Will the property on which the facility is proposed to be constructed or operated be closer than 50 km (31 miles) to other states, Bernalillo County, or a Class I area (see <u>www.env.nm.gov/aqb/modeling/class1areas.html</u>)? I Yes □ No (20.2.72.206.A.7 NMAC) If yes, list all with corresponding distances in kilometers: Texas (23 km)										
9	Name nearest C	Class I area: Carl	sbad Caverns National Pa	ırk							
10	Shortest distance	ce (in km) from fa	acility boundary to the bour	ndary of the	nearest Class]	area (to the	e nearest 10 meters): 116.2 km				
11			neter of the Area of Operati den removal areas) to neare				nclusive of all disturbed cture: 1,680 m from Maddox				
12	Method(s) used to delineate the Restricted Area: Continuous Fencing . "Restricted Area" is an area to which public entry is effectively precluded. Effective barriers include continuous fencing, continuous walls, or other continuous barriers approved by the Department, such as rugged physical terrain with steep grade that would require special equipment to traverse. If a large property is completely enclosed by fencing, a restricted area within the property may be identified with signage only. Public roads cannot be part of a Restricted Area.										
13	☐ Yes X N A portable stati one location or	o onary source is n that can be re-ins		an automob such as a ho	vile, but a source ot mix asphalt j	ce that can plant that is	n 20.2.72.7.X NMAC? be installed permanently at s moved to different job sites.				
14			nit number (if known) of th		1	operty					

Section 1-E: Proposed Operating Schedule (The 1-E.1 & 1-E.2 operating schedules may become conditions in the permit.)

1	Facility maximum operating $(\frac{\text{hours}}{\text{day}})$: 24	$\left(\frac{\text{days}}{\text{week}}\right)$: 7	$(\frac{\text{weeks}}{\text{year}})$: 52	$(\frac{\text{hours}}{\text{year}})$: 8,760			
2	Facility's maximum daily operating schedule (if less	s than $24 \frac{\text{hours}}{\text{day}}$? Start: N/A	□AM □PM	End: N/A	□AM □PM		
3	Month and year of anticipated start of construction: Start of turbine upgrade project: March 15, 2019						
4	Month and year of anticipated construction completion: July 7, 2019						
5	Month and year of anticipated startup of new or modified facility: July 7, 2019						
6	Will this facility operate at this site for more than on	ne year? ⊠Yes □No					

Section 1-F: Other Facility Information

1	Are there any current Notice of Violations (NOV), compliance orders, or any other compliance or enforcement issues related to this facility? \Box Yes 🗷 No If yes, specify:						
a	If yes, NOV date or description of issue:		NOV Tracking No:				
b	Is this application in response to any issue listed in 1-F, 1 c below:	or 1a above? 🗆 Yes	🗙 No If	Yes, provide the 1c & 1d info			
c	Document Title:	Date:		nent # (or nd paragraph #):			
d	Provide the required text to be inserted in this permit:						
2	Is air quality dispersion modeling or modeling waiver bein	g submitted with this	applicatio	n? 🗆 Yes 🛛 No			
3	Does this facility require an "Air Toxics" permit under 20.	2.72.400 NMAC & 2	0.2.72.502	, Tables A and/or B? □ Yes 🗵 No			
4	Will this facility be a source of federal Hazardous Air Pollutants (HAP)? 🗵 Yes 🗆 No						
a	If Yes, what type of source? \Box Major ($\Box \ge 10$ tpy of anOR \blacksquare Minor ($\Box < 10$ tpy of an			tpy of any combination of HAPS) 5 tpy of any combination of HAPS)			
5	Is any unit exempt under 20.2.72.202.B.3 NMAC? Yes X No						
	If yes, include the name of company providing commercial electric power to the facility:						
а	Commercial power is purchased from a commercial utility site for the sole purpose of the user.	company, which spe	ecifically d	loes not include power generated on			

Section 1-G: Streamline Application (This section applies to 20.2.72.300 NMAC Streamline applications only)

1 \Box I have filled out Section 18, "Addendum for Streamline Applications." \boxtimes N/A (This is not a Streamline application.)
--

Section 1-H: Current Title V Information - Required for all applications from TV Sources

(Title V-source required information for all applications submitted pursuant to 20.2.72 NMAC (Minor Construction Permits), or 20.2.74/20.2.79 NMAC (Major PSD/NNSR applications) and/or 20.2.70 NMAC (Title V))

	4/20.2.79 MMAC (Major FSD/MMSK applications), and/or 20.2.70 MMA	e (1100 +))					
1	Responsible Official (R.O.) (20.2.70.300.D.2 NMAC): Mr. David Baugh		Phone: (713) 358-9726				
a	R.O. Title: Vice President Asset Management	R.O. e-mail: dbau	gh@camstex.com				
b	R. O. Address: 919 Milam St., Suite 2300 Houston, TX 77002						
2	Alternate Responsible Official (20.2.70.300.D.2 NMAC): Mr. Randy York		Phone: (919) 747-5030				
а	A. R.O. Title: Senior Vice President Asset Management	A. R.O. e-mail: ryork@camstex.com					
b	A. R. O. Address: 801 Corporate Center Drive, Suite 116 Raleig	h, NC 27607					
3	Company's Corporate or Partnership Relationship to any other Air Quality Permittee (List the names of any companies that have operating (20.2.70 NMAC) permits and with whom the applicant for this permit has a corporate or partnership relationship): N/A						
4	Name of Parent Company ("Parent Company" means the primary name of the organization that owns the company to be permitted wholly or in part.): Lea Power Partners, LLC						
а							
5	Names of Subsidiary Companies ("Subsidiary Companies" means are owned, wholly or in part, by the company to be permitted.): N		hes, divisions or subsidiaries, which				
6	Telephone numbers & names of the owners' agents and site contac Mr. John Schretlen: (575) 397-6701	ts familiar with plan	it operations:				

	Affected Programs to include Other States, local air pollution control programs (i.e. Bernalillo) and Indian tribes:
	Will the property on which the facility is proposed to be constructed or operated be closer than 80 km (50 miles) from other
_	
1	states, local pollution control programs, and Indian tribes and pueblos (20.2.70.402.A.2 and 20.2.70.7.B)? If yes, state which
	ones and provide the distances in kilometers:
	Texas (23 km)

Section 1-I – Submittal Requirements

Each 20.2.73 NMAC (NOI), a 20.2.70 NMAC (Title V), a 20.2.72 NMAC (NSR minor source), or 20.2.74 NMAC (PSD) application package shall consist of the following:

Hard Copy Submittal Requirements:

- One hard copy original signed and notarized application package printed double sided 'head-to-toe' <u>2-hole punched</u> as we bind the document on top, not on the side; except Section 2 (landscape tables), which should be head-to-head. Please use numbered tab separators in the hard copy submittal(s) as this facilitates the review process. For NOI submittals only, hard copies of UA1, Tables 2A, 2D & 2F, Section 3 and the signed Certification Page are required. Please include a copy of the check on a separate page.
- 2) If the application is for a minor NSR, PSD, NNSR, or Title V application, include one working hard copy for Department use. This copy should be printed in book form, 3-hole punched, and must be double sided. Note that this is in addition to the head-toto 2-hole punched copy required in 1) above. Minor NSR Technical Permit revisions (20.2.72.219.B NMAC) only need to fill out Sections 1-A, 1-B, 3, and should fill out those portions of other Section(s) relevant to the technical permit revision. TV Minor Modifications need only fill out Sections 1-A, 1-B, 1-H, 3, and those portions of other Section(s) relevant to the minor modification. NMED may require additional portions of the application to be submitted, as needed.
- 3) The entire NOI or Permit application package, including the full modeling study, should be submitted electronically. Electronic files for applications for NOIs, any type of General Construction Permit (GCP), or technical revisions to NSRs must be submitted with compact disk (CD) or digital versatile disc (DVD). For these permit application submittals, two CD copies are required (in sleeves, not crystal cases, please), with additional CD copies as specified below. NOI applications require only a single CD submittal. Electronic files for other New Source Review (construction) permits/permit modifications or Title V permits/permit modifications can be submitted on CD/DVD or sent through AQB's secure file transfer service.

Electronic files sent by (check one):

X CD/DVD attached to paper application

□ secure electronic transfer. Air Permit Contact Name_____

г	•1	
Em	a11	
LIII	411	

Phone number

a. If the file transfer service is chosen by the applicant, after receipt of the application, the Bureau will email the applicant with instructions for submitting the electronic files through a secure file transfer service. Submission of the electronic files through the file transfer service needs to be completed within 3 business days after the invitation is received, so the applicant should ensure that the files are ready when sending the hard copy of the application. The applicant will not need a password to complete the transfer. **Do not use the file transfer service for NOIs, any type of GCP, or technical revisions to NSR permits.**

- 4) Optionally, the applicant may submit the files with the application on compact disk (CD) or digital versatile disc (DVD) following the instructions above and the instructions in 5 for applications subject to PSD review.
- 5) If air dispersion modeling is required by the application type, include the NMED Modeling Waiver and/or electronic air dispersion modeling report, input, and output files. The dispersion modeling summary report only should be submitted as hard copy(ies) unless otherwise indicated by the Bureau.
- 6) If the applicant submits the electronic files on CD and the application is subject to PSD review under 20.2.74 NMAC (PSD) or NNSR under 20.2.79 NMC include,
 - a. one additional CD copy for US EPA,
 - b. one additional CD copy for each federal land manager affected (NPS, USFS, FWS, USDI) and,
 - c. one additional CD copy for each affected regulatory agency other than the Air Quality Bureau.

If the application is submitted electronically through the secure file transfer service, these extra CDs do not need to be submitted.

Electronic Submittal Requirements [in addition to the required hard copy(ies)]:

- 1) All required electronic documents shall be submitted as 2 separate CDs or submitted through the AQB secure file transfer service. Submit a single PDF document of the entire application as submitted and the individual documents comprising the application.
- 2) The documents should also be submitted in Microsoft Office compatible file format (Word, Excel, etc.) allowing us to access the text and formulas in the documents (copy & paste). Any documents that cannot be submitted in a Microsoft Office compatible format shall be saved as a PDF file from within the electronic document that created the file. If you are unable to provide Microsoft office compatible electronic files or internally generated PDF files of files (items that were not created electronically: i.e. brochures, maps, graphics, etc.), submit these items in hard copy format. We must be able to review the formulas and inputs that calculated the emissions.
- 3) It is preferred that this application form be submitted as 4 electronic files (3 MSWord docs: Universal Application section 1 [UA1], Universal Application section 3-19 [UA3], and Universal Application 4, the modeling report [UA4]) and 1 Excel file of the tables (Universal Application section 2 [UA2]). Please include as many of the 3-19 Sections as practical in a single MS Word electronic document. Create separate electronic file(s) if a single file becomes too large or if portions must be saved in a file format other than MS Word.
- 4) The electronic file names shall be a maximum of 25 characters long (including spaces, if any). The format of the electronic Universal Application shall be in the format: "A-3423-FacilityName". The "A" distinguishes the file as an application submittal, as opposed to other documents the Department itself puts into the database. Thus, all electronic application submittals should begin with "A-". Modifications to existing facilities should use the core permit number (i.e. '3423') the Department assigned to the facility as the next 4 digits. Use 'XXXX' for new facility applications. The format of any separate electronic submittals (additional submittals such as non-Word attachments, re-submittals, application updates) and Section document shall be in the format: "A-3423-9-description", where "9" stands for the section # (in this case Section 9-Public Notice). Please refrain, as much as possible, from submitting any scanned documents as this file format is extremely large, which uses up too much storage capacity in our database. Please take the time to fill out the header information throughout all submittals as this will identify any loose pages, including the Application Date (date submitted) & Revision number (0 for original, 1, 2, etc.; which will help keep track of subsequent partial update(s) to the original submittal. Do not use special symbols (#, @, etc.) in file names. The footer information should not be modified by the applicant.

Table of Contents

- Section 1: General Facility Information
- Section 2: Tables
- Section 3: Application Summary
- Section 4: Process Flow Sheet
- Section 5: Plot Plan Drawn to Scale
- Section 6: All Calculations
- Section 7: Information Used to Determine Emissions
- Section 8: Map(s)
- Section 9: Proof of Public Notice
- Section 10: Written Description of the Routine Operations of the Facility
- Section 11: Source Determination
- Section 12: PSD Applicability Determination for All Sources & Special Requirements for a PSD Application
- Section 13: Discussion Demonstrating Compliance with Each Applicable State & Federal Regulation
- Section 14: Operational Plan to Mitigate Emissions
- Section 15: Alternative Operating Scenarios
- Section 16: Air Dispersion Modeling
- Section 17: Compliance Test History
- Section 18: Addendum for Streamline Applications (streamline applications only)
- Section 19: Requirements for the Title V (20.2.70 NMAC) Program (Title V applications only)
- Section 20: Other Relevant Information
- Section 21: Addendum for Landfill Applications
- Section 22: Certification Page

Table 2-A: Regulated Emission Sources

Unit and stack numbering must correspond throughout the application package. If applying for a NOI under 20.2.73 NMAC, equipment exemptions under 2.72.202 NMAC do not apply.

Unit Number ¹	Source Description	Manufacturer	Model #	Serial #	Maximum or Rated Capacity ³ (Specify Units)	Requested Permitted Capacity ³ (Specify Units)	Date of Manufacture or Reconstruction ² Date of Installation /Construction ²	Controlled by Unit # Emissions vented to Stack #	Source Classi- fication Code (SCC)	For Each Piece of Equipment, Check One	RICE Ignition Type (CI, SI, 4SLB, 4SRB, 2SLB) ⁴	Replacing Unit No.
HOBB-1	Combustion Turbine	Mitsubishi Heavy Industries	M501F-F4	T-488	189 MW (1,884 MMBtu/hr LHV nominal)	189 MW (1,884 MMBtu/hr LHV nominal)	2001 September 2008	SCR-1 CAT-1	20200201	 Existing (unchanged) To be Removed New/Additional Replacement Unit To be Modified To be Replaced 		N/A
HOBB-2	Combustion Turbine	Mitsubishi Heavy Industries	M501F-F4	T-487	189 MW (1,884 MMBtu/hr LHV	189 MW (1,884 MMBtu/hr LHV	2001	SCR-2 CAT-2	. 20200201	Existing (unchanged) To be Removed New/Additional Replacement Unit To be Modified To be Replaced		N/A
DB-1	Duct Burner	Forney	Standard	913864	nominal) 330 MMBtu/hr (LHV nominal)	nominal) 330 MMBtu/hr (LHV nominal)	September 2008 2007	2 SCR-1 CAT-1	10200601	 Existing (unchanged) To be Removed New/Additional Replacement Unit 		N/A
					(LHV nominal)	· · · · · ·	August 2008 2007	1 SCR-2		□ To Be Modified □ To be Replaced ☑ Existing (unchanged) □ To be Removed		
DB-2	Duct Burner	Forney	Standard	913865	330 MMBtu/hr (LHV nominal)	330 MMBtu/hr (LHV nominal)	August 2008	CAT-2 2	10200601	New/Additional Replacement Unit To Be Modified To be Replaced		N/A
AC-1	Auxiliary Cooling Tower	Baltimore Air Cooler	FXV3-364-100	U014653101	1,780 gpm	1,780 gpm	2002 August 2008	N/A AC-1	38500101	 Existing (unchanged) To be Removed New/Additional Replacement Unit To Be Modified To be Replaced 		N/A
AC-2	Auxiliary Cooling Tower	Baltimore Air Cooler	FXV3-364-100	U014653102	1,780 gpm	1,780 gpm	2002 August 2008	N/A AC-2	38500101	□ To Be Modified □ To be Replaced ☑ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced		N/A
AC-3	Auxiliary Cooling Tower	Baltimore Air Cooler	FXV3-364-100	U014653103	1,780 gpm	1,780 gpm	2002 August 2008	N/A AC-3	38500101	Image: To be Mounted Image: To be Repared Image: To be Removed Image: To be Removed Image: New/Additional Image: Replacement Unit Image: To be Replaced Image: To be Replaced		N/A
IC-1	Inlet Chiller	Baltimore Aircoil	331132A	U014283404	15,448 gpm	15,448 gpm	2002 August 2008	N/A IC-1	38500101	Image: To be Replaced Image: To be Replaced		N/A
IC-2	Inlet Chiller	Baltimore Aircoil	331132A	U014283405	15,448 gpm	15,448 gpm	2002 August 2008	N/A IC-2	38500101	Image: To be Replaced Image: To be Replaced		N/A
IC-3	Inlet Chiller	Baltimore Aircoil	331132A	U014283406	15,448 gpm	15,448 gpm	2002 August 2008	N/A IC-3	38500101	 Existing (unchanged) To be Removed New/Additional Replacement Unit 		N/A
FH-1	Fuel Gas Heater	Rheos	2400	A07193433	2.4 MMBtu/hr	2.4 MMBtu/hr	2008 August 2008	N/A FH-1	· 39990003	□ To Be Modified □ To be Replaced ⊠ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit		N/A
FH-2	Fuel Gas Heater	Rheos	2400	A19294264	2.4 MMBtu/hr	2.4 MMBtu/hr	2019	N/A	39990003	□ To Be Modified □ To be Replaced Existing (unchanged) □ To be Removed □ New/Additional ☑ Replacement Unit		N/A
FH-3	Fuel Gas Heater	Rheos	2400	A20300857	2.4 MMBtu/hr	2.4 MMBtu/hr	May 2019 2020	FH-2 N/A	39990003	□ To Be Modified □ To be Replaced Existing (unchanged) □ To be Removed □ New/Additional ☑ Replacement Unit		N/A
G-1	Standby Generator	Volvo Penta	D1641GEP	D16*021102*	565 kW	565 kW	2020 2008	FH-3 N/A	20100102	□ To Be Modified □ To be Replaced ☑ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit		N/A
				C3*A	(758 hp)	(758 hp)	August 2008 2001	G-1 N/A		□ To Be Modified □ To be Replaced ☑ Existing (unchanged) □ To be Removed		
FP-1	Diesel Fire Pump	Detroit Diesel	DDFP06FA-11V	6VF-300006	443 hp	443 hp	September 2008	FP-1	20100102	New/Additional Replacement Unit To Be Modified To be Replaced		N/A

¹ Unit numbers must correspond to unit numbers in the previous permit unless a complete cross reference table of all units in both permits is provided.

² Specify dates required to determine regulatory applicability.

³ To properly account for power conversion efficiencies, generator set rated capacity shall be reported as the rated capacity of the engine in horsepower, not the kilowatt capacity of the generator set.

⁴ "4SLB" means four stroke lean burn engine, "4SRB" means four stroke rich burn engine, "2SLB" means two stroke lean burn engine, "CI" means compression ignition, and "SI" means spark ignition

Table 2-B: Insignificant Activities1 (20.2.70 NMAC)ORExempted Equipment (20.2.72 NMAC)

All 20.2.70 NMAC (Title V) applications must list all Insignificant Activities in this table. All 20.2.72 NMAC applications must list Exempted Equipment in this table. If equipment listed on this table is exempt under 20.2.72.202.B.5, include emissions calculations and emissions totals for 202.B.5 "similar functions" units, operations, and activities in Section 6, Calculations. Equipment and activities exempted under 20.2.72.202 NMAC may not necessarily be Insignificant under 20.2.70 NMAC (and vice versa). Unit & stack numbering must be consistent throughout the application package. Per Exemptions Policy 02-012.00 (see http://www.env.nm.gov/aqb/permit/aqb_pol.html), 20.2.72.202.B NMAC Exemptions do not apply, but 20.2.72.202.A NMAC exemptions do apply to NOI facilities under 20.2.73 NMAC. List 20.2.72.301.D.4 NMAC Auxiliary Equipment for Streamline applications in Table 2-A. The List of Insignificant Activities (for TV) can be found online at http://www.env.nm.gov/aqb/forms/InsignificantListTitleV.pdf . TV sources may elect to enter both TV Insignificant Activities and Part 72 Exemptions on this form.

Unit Number	Source Description	Manufacturer -	Model No.	Max Capacity	List Specific 20.2.72.202 NMAC Exemption (e.g. 20.2.72.202.B.5)	Date of Manufacture /Reconstruction ²	For Each Piece of Equipment, Check Onc
Unit Number	Source Description	Manufacturer	Serial No.	Capacity Units	Insignificant Activity citation (e.g. IA List Item #1.a)	Date of Installation /Construction ²	For Each Flece of Equipment, Check Onc
T. 1	Diesel Day Tank - Firewater		unknown	500 gal	20.2.72.202.B(2)	unknown	Existing (unchanged) \Box To be Removed
T-1	Pump	unknown	unknown	500 gal	List Item #1.b.	unknown	New/Additional Replacement Unit To Be Modified To be Replaced
T-2	Diesel Day Tank - Standby		unknown	1,250 gal	20.2.72.202.B(2)(a)	unknown	 Existing (unchanged) To be Removed New/Additional Replacement Unit
1-2	Generator	unknown	unknown	1,250 gal	List Item #1.b.	unknown	□ To Be Modified □ To be Replaced
T-3	Ammonia Tank	unknown	unknown	9,000 gal	20.2.72.402.C.9	unknown	 Existing (unchanged) To be Removed New/Additional Replacement Unit
1-5	Annionia Tank	unknown	unknown	9,000 gal	List Item #1.b.	unknown	□ To Be Modified □ To be Replaced
T-4	Caustic Bulk Storage Tank	unknown	unknown	7,000 gal	20.2.72.402.C.9	unknown	 Existing (unchanged) To be Removed New/Additional Replacement Unit
1-4	Caustic Bulk Storage Tallk	unknown	unknown	7,000 gal	List Item #1.b.	unknown	□ To Be Modified □ To be Replaced
T-5	Acid Bulk Storage Tank	unknown	unknown	7,000 gal	20.2.72.402.C.9	unknown	 Existing (unchanged) To be Removed New/Additional Replacement Unit
1-5	Acia Baik Storage Faik	unknown	unknown	7,000 gal	List Item #1.b.	unknown	To Be Modified To be Replaced
T-6	Acid Bulk Storage Tank Neutralization Tank	unknown	unknown	50,000 gal	20.2.72.402.C.9	unknown	 Existing (unchanged) To be Removed New/Additional Replacement Unit
1-0		unknown	unknown	50,000 gal	List Item #1.b.	unknown	To Be Modified To be Replaced
AE-1	Apex evaporation devices	unknown	unknown	unknown	20.2.72.402.C.9	unknown	 Existing (unchanged) To be Removed New/Additional Replacement Unit
AL-I	Apex evaporation devices	unknown	unknown	unknown	List Item #1.a.	unknown	To Be Modified To be Replaced
T-7	Diesel Tank	unknown	unknown	500 gal	20.2.72.202.B(2)	unknown	 Existing (unchanged) To be Removed New/Additional Replacement Unit
1-/	Dieser Fairk	unknown	unknown	500 gal	List Item #1.b.	unknown	To Be Modified To be Replaced
T-8	Diesel Tank	unknown	unknown	100 gal	20.2.72.202.B(2)	unknown	 Existing (unchanged) To be Removed New/Additional Replacement Unit
1-0	Dieser Fairk	unknown	unknown	100 gal	List Item #1.b.	unknown	□ To Be Modified □ To be Replaced
T-9	Gasoline Tank	Patterson Welding	unknown	500 gal	20.2.72.202.B(5)	unknown	 Existing (unchanged) To be Removed New/Additional Replacement Unit
1-7	Gasonine I dilk	Works	1096	500 gal	List Item #8	8/29/2016	To Be Modified To be Replaced
							 Existing (unchanged) To be Removed New/Additional Replacement Unit To Be Modified To be Replaced
							It is between end It is between end Existing (unchanged) To be Removed New/Additional Replacement Unit To Be Modified To be Replaced

¹ Insignificant activities exempted due to size or production rate are defined in 20.2.70.300.D.6, 20.2.70.7.Q NMAC, and the NMED/AQB List of Insignificant Activities, dated September 15, 2008. Emissions from these insignificant activities do not need to be reported, unless specifically requested.

² Specify date(s) required to determine regulatory applicability.

Table 2-C: Emissions Control Equipment

Unit and stack numbering must correspond throughout the application package. Only list control equipment for TAPs if the TAP's maximum uncontrolled emissions rate is over its respective threshold as listed in 20.2.72 NMAC, Subpart V, Tables A and B. In accordance with 20.2.72.203.A(3) and (8) NMAC, 20.2.70.300.D(5)(b) and (e) NMAC, and 20.2.73.200.B(7) NMAC, the permittee shall report all control devices and list each pollutant controlled by the control device regardless if the applicant takes credit for the reduction in emissions.

Control Equipment Unit No.	Control Equipment Description	Date Installed	Controlled Pollutant(s)	Controlling Emissions for Unit Number(s) ¹	Efficiency (% Control by Weight)	Method used to Estimate Efficiency
SCR-1	Selective Catalytic Reduction	2008	NOx	HOBB-1, DB-1	Variable, max 91.9%	Manufacturer Data
SCR-2	Selective Catalytic Reduction	2008	NOx	HOBB-2, DB-2	Variable, max 91.9%	Manufacturer Data
CAT-1	Catalytic Oxidation	2008	CO, VOC, HAP	HOBB-1, DB-1	Variable; max CO 85%, max VOC 80%, max HAP 80%	Manufacturer Data
CAT-2	Catalytic Oxidation	2008	CO, VOC, HAP	HOBB-2, DB-2	Variable; max CO 85%, max VOC 80%, max HAP 80%	Manufacturer Data
N/A	High Efficiency Drift Eliminator	2008	PM_{10}	IC-1 and AC-1	N/A	N/A
N/A	High Efficiency Drift Eliminator	2008	PM ₁₀	IC-2 and AC-2	N/A	N/A
N/A	High Efficiency Drift Eliminator	2008	PM ₁₀	IC-3 and AC-3	N/A	N/A
N/A	Dry Low Burner	2008	NOx	FH-1	0.054 lb/MMbtu	Manufacturer Data
N/A	Dry Low Burner	2008	NOx	FH-2	0.054 lb/MMbtu	Manufacturer Data
N/A	Dry Low Burner	2008	NOx	FH-3	0.054 lb/MMbtu	Manufacturer Data
N/A	Dry Low Burner	2008	NOx	HOBB-1, DB-1	BACT	Manufacturer Data
N/A	Dry Low Burner	2008	NOx	HOBB-2, DB-2	BACT	Manufacturer Data

¹ List each control device on a separate line. For each control device, list all emission units controlled by the control device.

Table 2-D: Maximum Emissions (under normal operating conditions)

□ This Table was intentionally left blank because it would be identical to Table 2-E.

Maximum Emissions are the emissions at maximum capacity and prior to (in the absence of) pollution control, emission-reducing process equipment, or any other emission reduction. Calculate the hourly emissions using the worst case hourly emissions for each pollutant. For each pollutant, calculate the annual emissions as if the facility were operating at maximum plant capacity without pollution controls for 8760 hours per year, unless otherwise approved by the Department. List Hazardous Air Pollutants (HAP) & Toxic Air Pollutants (TAPs) in Table 2-I. Unit & stack numbering must be consistent throughout the application package. Fill all cells in this table with the emission numbers or a "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expected. Numbers shall be expressed to at least 2 decimal points (e.g. 0.41, 1.41, or 1.41E-4).

Unit No.	Ň	Ox	C	0	V	C	S	Ox	PI	\mathbf{M}^{1}	PM	10 ¹	PM	2.5 ¹	Н	I ₂ S	L	ead
Unit No.	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
HOBB-1 + DB-1	178.6	782.3	66.8	292.8	5.2	22.9	10.4	45.5	17.8	77.8	17.8	77.8	17.8	77.8				
HOBB-2 + DB-2	178.6	782.3	66.8	292.8	5.2	22.9	10.4	45.5	17.8	77.8	17.8	77.8	17.8	77.8				
IC-1, IC-2, IC-3	-	-	-	-	-	-	-	-	0.70	3.0	0.35	1.5	0.001	0.01				
FH-1, FH-2, FH-3	0.39	1.7	0.24	1.0	0.04	0.16	0.04	0.18	0.05	0.22	0.05	0.22	0.05	0.22				
FP-1	7.4	32.5	1.4	6.3	0.25	1.1	0.01	0.0	0.18	0.77	0.18	0.77	0.18	0.77				
G-1	6.5	28.3	0.86	3.8	0.20	0.87	0.01	0.0	0.12	0.52	0.12	0.52	0.12	0.52				
AC-1, AC-2, AC-3	-	-	-	-	-	-	-	-	0.08	0.35	0.04	0.18	0.0002	0.001				
Totals	371.5	1,627.1	136.2	596.6	10.9	47.9	20.8	91.2	36.6	160.5	36.3	158.8	35.9	157.1				

¹Condensable Particulate Matter: Include condensable particulate matter emissions for PM10 and PM2.5 if the source is a combustion source. Do not include condensable particulate matter for PM unless PM is set equal to PM10 and PM2.5. Particulate matter (PM) is not subject to an ambient air quality standard, but PM is a regulated air pollutant under PSD (20.2.74 NMAC) and Title V (20.2.70 NMAC).

Table 2-E: Requested Allowable Emissions

Unit & stack numbering must be consistent throughout the application package. Fill all cells in this table with the emission numbers or a "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expected. Numbers shall be expressed to at least 2 decimal points (e.g. 0.41, 1.41, or 1.41E⁻⁴).

Unit No.	Ν	Ox	С	0	V	DC	S	Ox	TS	SP ¹	PM	[10 ¹	PM	2.5 ¹	Н	$_2S$	Le	ead
Unit No.	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr								
HOBB-1*	14.5		8.8		2.5		8.7		12.0		12.0		12.0					
HOBB-2*	14.5	117.0	8.8	71.7	2.5	10.2	8.7	47.0	12.0	04.9	12.0	04.9	12.0	04.9				
HOBB-1* + DB-1	18.1	117.8	11.0	71.7	2.9	12.3	10.7	47.9	17.8	94.8	17.8	94.8	17.8	94.8				
HOBB-2* + DB-2	18.1		11.0		2.9		10.7		17.8		17.8		17.8					
IC-1, IC-2, IC-3									0.70	2.1	0.35	1.1	0.001	0.004				
FH-1, FH-2, FH-3	0.39	1.7	0.24	1.0	0.04	0.16	0.04	0.18	0.05	0.22	0.05	0.22	0.05	0.22				
FP-1	7.4	0.37	1.4	0.1	0.25	0.01	0.01	0.0003	0.18	0.01	0.18	0.01	0.18	0.01				
G-1	6.5	1.6	0.86	0.21	0.20	0.05	0.01	0.002	0.12	0.03	0.12	0.03	0.12	0.03				
AC-1, AC-2, AC-3									0.08	0.35	0.04	0.18	0.0002	0.001				
Totals	50.5	121.5	24.5	73.1	6.3	12.6	21.5	48.1	36.6	97.5	36.3	96.2	35.9	95.0				

¹ Condensable Particulate Matter: Include condensable particulate matter emissions for PM10 and PM2.5 if the source is a combustion source. Do not include condensable particulate matter for PM unless PM is set equal to PM10 and PM2.5. Particulate matter (PM) is not subject to an ambient air quality standard, but it is a regulated air pollutant under PSD (20.2.74 NMAC) and Title V (20.2.70 NMAC).

* HOBB-1 and HOBB-2 will either run with the DB or without DB.

Table 2-F: Additional Emissions during Startup, Shutdown, and Routine Maintenance (SSM)

This table is intentionally left blank since all emissions at this facility due to routine or predictable startup, shutdown, or scenduled maintenance are no higher than those listed in Table 2-E and a malfunction emission limit is not already permitted or requested. If you are required to report GHG emissions as described in Section 6a, include any GHG emissions during Startup, Shutdown, and/or Scheduled Maintenance (SSM) in Table 2-P. Provide an explanations of SSM emissions in Section 6 and 6a.

All applications for facilities that have emissions during routine our predictable startup, shutdown or scheduled maintenance (SSM)¹, including NOI applications, must include in this table the Maximum Emissions during routine or predictable startup, shutdown and scheduled maintenance (20.2.7 NMAC, 20.2.72.203.A.3 NMAC, 20.2.73.200.D.2 NMAC). In Section 6 and 6a, provide emissions calculations for all SSM emissions reported in this table. Refer to "Guidance for Submittal of Startup, Shutdown, Maintenance Emissions in Permit Applications (https://www.env.nm.gov/aqb/permit/aqb_pol.html) for more detailed instructions. Numbers shall be expressed to at least 2 decimal points (e.g. 0.41, 1.41, or 1.41E-4).

Unit No.	N	Ox	CC)	VO	С	SC	Ox	TS	SP^2	PM	$[10^2]$	PM	2.5^2	Н	₂ S	Le	ead
Unit No.	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
HOBB-1 + DB-1	193.2	35.7	2,060.0	106.4	591.0	42.6	-	2.51	-	4.2	-	4.2	-	4.2				
HOBB-2 + DB-2	193.2	35.7	2,060.0	106.4	591.0	42.6	-	2.51	-	4.2	-	4.2	-	4.2				
Totals	386.3	71	4,120.0	212.8	1,182.0	85.2	-	5.0	-	8.3	-	8.3	-	8.3				

¹ For instance, if the short term steady-state Table 2-E emissions are 5 lb/hr and the SSM rate is 12 lb/hr, enter 7 lb/hr in this table. If the annual steady-state Table 2-E emissions are 21.9 TPY, and the number of scheduled SSM events result in annual emissions of 31.9 TPY, enter 10.0 TPY in the table below.

² Condensable Particulate Matter: Include condensable particulate matter emissions for PM10 and PM2.5 if the source is a combustion source. Do not include condensable particulate matter for PM unless PM is set equal to PM10 and PM2.5. Particulate matter (PM) is not subject to an ambient air quality standard, but it is a regulated air pollutant under PSD (20.2.74 NMAC) and Title V (20.2.70 NMAC).

Table 2-G: Stack Exit and Fugitive Emission Rates for Special Stacks

X I have elected to leave this table blank because this facility does not have any stacks/vents that split emissions from a single source or combine emissions from more than one source listed in table 2-A. Additionally, the emission rates of all stacks match the Requested allowable emission rates stated in Table 2-E.

Use this table to list stack emissions (requested allowable) from split and combined stacks. List Toxic Air Pollutants (TAPs) and Hazardous Air Pollutants (HAPs) in Table 2-I. List all fugitives that are associated with the normal, routine, and non-emergency operation of the facility. Unit and stack numbering must correspond throughout the application package. Refer to Table 2-E for instructions on use of the "-" symbol and on significant figures.

	Serving Unit	N	Ox	C	0	V	OC	S	Ox	Т	SP	PN	110	PN	12.5	$\Box H_2 S o$	r 🗆 Lead
Stack No.	Number(s) from Table 2-A	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
						Se	e emissions	provided in	Table 2-E								
																	
																	l
																	-
																	<u> </u>
	Totals:																

Table 2-H: Stack Exit Conditions

Unit and stack numbering must correspond throughout the application package. Include the stack exit conditions for each unit that emits from a stack, including blowdown venting parameters and tank emissions. If the facility has multiple operating scenarios, complete a separate Table 2-H for each scenario and, for each, type scenario name here:

Stack	Serving Unit Number(s)	Orientation (H-Horizontal	Rain Caps	Height Above	Temp.	Flow	Rate	Moisture by	Velocity	Inside Diameter or
Number	from Table 2-A	V=Vertical)	(Yes or No)	Ground (ft)	(F)	(acfs)	(dscfs)	Volume (%)	(ft/sec)	L x W (ft)
1	HOBB-1	V	No	165	179	20,299	12,533	8.1	79.8	18
1	HOBB-1+DB-1	V	No	165	179	20,446	12,435	9.5	80.3	18
2	HOBB-2	V	No	165	179	20,299	12,533	8.1	79.8	18
2	HOBB-2+DB-2	V	No	165	179	20,446	12,435	9.5	80.3	18
3	G-1	V	Yes	10.4	893	65.0	-	-	186.2	0.67
4	FP-1	Н	No	11	820	54.6	-	-	123.6	0.75
5-6-7	FH-1, FH-2, FH-3	V	No	15	600	3,029	1,192	8.2		

Table 2-I: Stack Exit and Fugitive Emission Rates for HAPs and TAPs

In the table below, report the Potential to Emit for each HAP from each regulated emission unit listed in Table 2-A, only if the entire facility emits the HAP at a rate greater than or equal to one (1) ton per year For each such emission unit, HAPs shall be reported to the nearest 0.1 tpy. Each facility-wide Individual HAP total and the facility-wide Total HAPs shall be the sum of all HAP sources calculated to the nearest 0.1 ton per year. Per 20.2.72.403.A.1 NMAC, facilities not exempt [see 20.2.72.402.C NMAC] from TAP permitting shall report each TAP that has an uncontrolled emission rate in excess of its pounds per hour screening level specified in 20.2.72.502 NMAC. TAPs shall be reported using one more significant figure than the number of significant figures shown in the pound per hour threshold corresponding to the substance. Use the HAP nomenclature as it appears in Section 112 (b) of the 1990 CAAA and the TAP nomenclature as it listed in 20.2.72.502 NMAC. Include tank-flashing emissions estimates of HAPs in this table. For each HAP or TAP listed, fill all cells in this table with the emission numbers or a "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expected or the pollutant is emitted in a quantity less than the threshold amounts described above.

Stack No.	Unit No.(s)	Total	HAPs	Amn □ HAP o		Formal E HAP o	ldehyde or □ TAP	Name	Pollutant Here or 🗆 TAP	Name	Pollutant e Here or 🛛 TAP	Name	Pollutant Here or 🗆 TAP	Name	Pollutant e Here or 🗆 TAP	Name	Pollutant e Here or 🗆 TAP	Name Her	Pollutant e D r D TAP
		lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
1	HOBB-1 + DB-1	0.54	3.3	32.1	281.3	0.14	1.1												
2	HOBB-2 + DB-2	0.54	5.5	32.1	201.5	0.14	1.1												
3	FP-1	0.02	0.001			0.004	0.0002												
4	G-1	0.02	0.006			0.0004	0.0001												
5	FH-1 + FH-2 + FH-3	0.01	0.06			0.001	0.002												
6	T-7	0.10	0.002			-	-												
7	T-8	0.1	0.002																
8	T-9	3.4	0.1																
																			\square
Tot	als:	4.7	3.5	64.2	281.3	0.3	1.1												

Table 2-J: Fuel

Specify fuel characteristics and usage. Unit and stack numbering must correspond throughout the application package.

			S	pecify Units		
Unit No.	Fuel Type (No. 2 Diesel, Natural Gas, Coal,)	Lower Heating Value	Hourly Usage	Annual Usage	% Sulfur	% Ash
HOBB-1	Natural Gas	932 Btu/scf	1,884 MMBtu/hr (LHV)	14,290,420 MMBtu/yr (LHV)	1.7 gr-S/100scf	0
HOBB-2	Natural Gas	932 Btu/scf	1,884 MMBtu/hr (LHV)	14,290,420 MMBtu/yr (LHV)	1.7 gr-S/100scf	0
DB-1	Natural Gas	932 Btu/scf	330 MMBtu/hr (LHV)	1,188,096 MMBtu/yr (LHV)	1.7 gr-S/100scf	0
DB-2	Natural Gas	932 Btu/scf	330 MMBtu/hr (LHV)	1,188,096 MMBtu/yr (LHV)	1.7 gr-S/100scf	0
FH-1, FH-2, FH-3	Natural Gas	932 Btu/scf	2.4 MMBtu/hr	21,024 MMBtu/yr	1.7 gr-S/100scf	0
FP-1	Diesel	19,300 Btu/lb	24.9 gph	2,490 gpy	0.0015%	0
G-1	Diesel	19,300 Btu/lb	37.2 gph	18,600 gpy	0.0015%	0

Table 2-K: Liquid Data for Tanks Listed in Table 2-L

For each tank, list the liquid(s) to be stored in each tank. If it is expected that a tank may store a variety of hydrocarbon liquids, enter "mixed hydrocarbons" in the Composition column for that tank and enter the corresponding data of the most volatile liquid to be stored in the tank. If tank is to be used for storage of different materials, list all the materials in the "All Calculations" attachment, run the newest version of TANKS on each, and use the material with the highest emission rate to determine maximum uncontrolled and requested allowable emissions rate. The permit will specify the most volatile category of liquids that may be stored in each tank. Include appropriate tank-flashing modeling input data. Use additional sheets if necessary. Unit and stack numbering must correspond throughout the application package.

					Vapor	Average Stora	age Conditions	Max Storag	ge Conditions
Tank No.	SCC Code	Material Name	Composition	Liquid Density (lb/gal)	Wolecular Weight (lb/lb*mol)	Temperature (°F)	True Vapor Pressure (psia)	Temperature (°F)	True Vapor Pressure (psia)
			All tanks at the facility are exempt	rom permittin	g; See Table 2-E	3.			

Table 2-L: Tank Data

Include appropriate tank-flashing modeling input data. Use an addendum to this table for unlisted data categories. Unit and stack numbering must correspond throughout the application package. Use additional sheets if necessary. See reference Table 2-L2. Note: 1.00 bbl = 10.159 M3 = 42.0 gal

Tank No.	Date Installed	Materials Stored	Seal Type (refer to Table 2- LR below)	Roof Type (refer to Table 2- LR below)	Сар	acity	Diameter (M)	Vapor Space	Color Table	(from VI-C)	Paint Condition (from Table	Annual Throughput (gal/yr)	Turn- overs
					(bbl)	(M ³)		(M)	Roof	Shell	VI-C)	(gal/yr)	(per year)
				All tanks at th	e facility are e	exempt from pe	ermitting; See	Table 2-B.					

Table 2-L2: Liquid Storage Tank Data Codes Reference Table

Roof Type	Seal Type, W	elded Tank Seal Type	Seal Type, Riv	eted Tank Seal Type	Roof, Shell Color	Paint Condition
FX: Fixed Roof	Mechanical Shoe Seal	Liquid-mounted resilient seal	Vapor-mounted resilient seal	Seal Type	WH: White	Good
IF: Internal Floating Roof	A: Primary only	A: Primary only	A: Primary only	A: Mechanical shoe, primary only	AS: Aluminum (specular)	Poor
EF: External Floating Roof	B: Shoe-mounted secondary	B: Weather shield	B: Weather shield	B: Shoe-mounted secondary	AD: Aluminum (diffuse)	
P: Pressure	C: Rim-mounted secondary	C: Rim-mounted secondary	C: Rim-mounted secondary	C: Rim-mounted secondary	LG: Light Gray	1
					MG: Medium Gray	
Note: $1.00 \text{ bbl} = 0.159 \text{ M}$	$a^3 = 42.0 \text{ gal}$				BL : Black	
					OT : Other (specify)	

	Materi	al Processed		Ν	Iaterial Produced		
Description	Chemical Composition	Phase (Gas, Liquid, or Solid)	Quantity (specify units)	Description	Chemical Composition	Phase	Quantity (specify units)
Natural Gas	Mixed Hydrocarbons	Gas	106,330 MMBtu/day	Electricity (Power Generation)	Megawatts	N/A	15,216 MW daily
Diesel	Mixed Hydrocarbons	Liquid	62.1 gph				

Table 2-N: CEM Equipment

Enter Continuous Emissions Measurement (CEM) Data in this table. If CEM data will be used as part of a federally enforceable permit condition, or used to satisfy the requirements of a state or federal regulation, include a copy of the CEM's manufacturer specification sheet in the Information Used to Determine Emissions attachment. Unit and stack numbering must correspond throughout the application package. Use additional sheets if necessary.

Stack No.	Pollutant(s)	Manufacturer	Model No.	Serial No.	Sample Frequency	Averaging Time	Range	Sensitivity	Accuracy
HOBB-1 and HOBB-1 + DB1	NOx/O ₂	Teledyne Monitor Labs	TML41-O2	NO169	15 min	1 hour	NOx: min 0 - 10ppm max 0 - 100ppm	0 @ < 20ppb < 0.2% @ > 20ppm	0.5% of reading
HOBB-1 and HOBB-1 + DB1	CO - high						CO: 0 - 25% 0 - 3,200ppm	0 @ < 20ppb	
HOBB-1 + DB1 HOBB-1 + DB1	CO - low	Thermo	48iQ	1190581626	15 min	1 hour	0 - 10 ppm	< 0.5% @ > 20ppm	0.5% of reading
HOBB-2 and HOBB-2 + DB2	NOx/O2	Teledyne Monitor Labs	TML41-O2	NO268	15 min	1 hour	NOx: min 0 - 10ppm max 0 - 100ppm CO: 0 - 25%	0 @ < 20ppb < 0.2% @ > 20ppm	0.5% of reading
HOBB-2 and	CO - high	Thermon	48:0	1120020111	15 min	1.1	0 - 3,200ppm	0 @ < 20ppb	0.50/
HOBB-2 + DB2	CO - low	Thermo	48iQ	1180930111	15 min	1 hour	0 - 10ppm	< 0.5% @ > 20ppm	0.5% of reading

Table 2-O: Parametric Emissions Measurement Equipment

Unit and stack numbering must correspond throughout the application package. Use additional sheets if necessary.

Unit No.	Parameter/Pollutant Measured	Location of Measurement	Unit of Measure	Acceptable Range	Frequency of Maintenance	Nature of Maintenance	Method of Recording	Averaging Time
HOBB-1	Fuel Flowrate	Feed to Combustor	Hundred SCF/hr	0 - 18,000.0				
HOBB-2	Fuel Flowrate	Feed to Combustor	Hundred SCF/hr	0 - 18,000.0	A	Calibration	Diant DCS	6 sec to
HOBB-1 +DB-1	Fuel Flowrate	Feed to Combustor	Hundred SCF/hr	0 - 4,850.0	Annual	Calibration	Plant DCS	record to 1 min avg.
HOBB-2 +DB-2	Fuel Flowrate	Feed to Combustor	Hundred SCF/hr	0 - 4,850.0				

Table 2-P: Green House Gas Emissions

Applications submitted under 20.2.70, 20.2.72, & 20.2.74 NMAC are required to complete this Table. Power plants, Title V major sources, and PSD major sources must report and calculate all GHG emissions for each unit. Applicants must report potential emission rates in short tons per year (see Section 6.a for assistance). Include GHG emissions during Startup, Shutdown, and Scheduled Maintenance in this table. For minor source facilities that are not power plants, are not Title V, or are not PSD, there are three options for reporting GHGs 1) report GHGs for each individual piece of equipment; 2) report all GHGs from a group of unit types, for example report all combustion source GHGs as a single unit and all venting GHG as a second separate unit; OR 3) check the following box \Box By checking this box, the applicant acknowledges the total CO2e emissions are less than 75,000 tons per year.

		CO ₂ ton/yr	N2O ton/yr	CH ₄ ton/yr	SF ₆ ton/yr	PFC/HFC ton/yr ²					Total GHG Mass Basis ton/yr ⁴	Total CO₂e ton/yr ⁵
Unit No.	GWPs ¹	1	298	25	23,900	footnote 3						
HOBB-1 +	mass GHG	984,787	1.83	18.3							984,807	
DB-1	CO ₂ e	984,787	544	457								985,788
HOBB-2 +	mass GHG	984,787	1.83	18.3							984,807	
DB-2	CO ₂ e	984,787	544	457								985,788
	mass GHG	25.3	2.05E-04	0.001							25.3	
FP-1	CO ₂ e	25.3	0.06	0.03								25.4
0.1	mass GHG	216.2	0.002	0.009							216.2	
G-1	CO ₂ e	216.2	0.52	0.22								216.9
FH-1,	mass GHG	3,686	0.01	0.07							3,686	
FH-2, FH-3	CO ₂ e	3,686	2.07	1.74								3,690
	mass GHG											
	CO ₂ e											
	mass GHG											
	CO ₂ e											
	mass GHG											
	CO ₂ e											
	mass GHG											
	CO ₂ e											
	mass GHG											
	CO ₂ e											
	mass GHG											
	CO2e											
	mass GHG											
	CO ₂ e											
Totals	mass GHG										1,973,541	
1 orally	CO ₂ e											1,975,507

GWP means Global Warming Potential. Applicant's must use the most current GWPs codified in Table A-1 of 40 CFR part 98. GWPs are subject to change, therefore, applicants need to check 40 CFR 98 to confirm GWP values.

² For HFCs or PFCs describe the specific HFC or PFC compound and use a separate column for each individual compound.

³ You must enter the appropriate GWP for each HFC or PFC compound from Table A-1 in 40 CFR 98.

⁴ Green house gas emissions on a **mass basis**, is the ton per year green house gas emission before adjustment with its GWP.

 5 CO₂e means Carbon Dioxide Equivalent and is calculated by multiplying the TPY mass emissions of the green house gas by its GWP.

Application Summary

The <u>Application Summary</u> shall include a brief description of the facility and its process, the type of permit application, the applicable regulation (i.e. 20.2.72.200.A.X, or 20.2.73 NMAC) under which the application is being submitted, and any air quality permit numbers associated with this site. If this facility is to be collocated with another facility, provide details of the other facility including permit number(s). In case of a revision or modification to a facility, provide the lowest level regulatory citation (i.e. 20.2.72.219.B.1.d NMAC) under which the revision or modification is being requested. Also describe the proposed changes from the original permit, how the proposed modification will affect the facility's operations and emissions, de-bottlenecking impacts, and changes to the facility's major/minor status (both PSD & Title V).

The <u>Process</u> <u>Summary</u> shall include a brief description of the facility and its processes.

<u>Startup, Shutdown, and Maintenance (SSM)</u> routine or predictable emissions: Provide an overview of how SSM emissions are accounted for in this application. Refer to "Guidance for Submittal of Startup, Shutdown, Maintenance Emissions in Permit Applications (http://www.env.nm.gov/aqb/permit/app_form.html) for more detailed instructions on SSM emissions.

INTRODUCTION

This application proposes a significant modification to Title V Permit P-244-R1 for Lea Power Partners, LLC (LPP) Hobbs Generating Station (HGS). In addition, this Title V Permit is due for renewal by September 2, 2020. This application shall accommodate both a modification and renewal application of Title V Permit P-244-R1.

HGS is a natural gas fueled, nominal 604 MW net output power plant with two advanced firing temperature, Mitsubishi 501F combustion turbine generators (CTGs), each provided with its own heat recovery steam generator (HRSG) including duct burners, a single condensing, reheat steam turbine generator (STG), and an air cooled condenser serving the STG. The plant generates electricity for sale to Southwestern Public Service Company, its successors or assigns. The facility is located approximately 8 miles West of Hobbs, New Mexico in Lea County.

The site holds both a New Source Review (NSR)/Prevention of Significant Deterioration (PSD) and a Federal Title V Operating permit in the State of New Mexico: PSD-3449-M5 and P-244-R1/P-244-AR2. Emissions for each unit are controlled using carbon monoxide (CO) catalyst and Selective Catalytic Reduction (SCR) with injection of 28% aqueous ammonia.

Mitsubishi Hitachi Power System Americas (MHPSA) proposed to upgrade the two combustion turbines to the F4+ compressor upgrade. The upgrade consists of replacing the Inlet Guide Vanes (IGVs) and first six stages of the compressor, resulting in increased air flow. The expected impact of the upgrade on performance is an increase of 5% in output, no change in heat rate, and a 6.7% increase in turbine exhaust flow.

BACKGROUND

The subject units are three-pressure level reheat HRSG's originally designed for NEPCO in 2000 and then moved to the Hobbs site in 2007. The site consists of two triangular pitch, dual train, outdoor HRSGs. Combustion turbines are Mitsubishi 501F machines fueled by natural gas. The HRSG's supply steam to a single steam turbine and operate in floating pressure mode based on steam turbine conditions.

Each HRSG is triple pressure level with reheat, natural circulation, and equipped with auxiliary heat input via a Forney Corporation duct burner. The duct burner system is located between the secondary and primary stages of superheater and reheater heat transfer sections. The HRSG has been designed for duct firing with gas turbine near full load operation. The heat transfer sections are composed of extended surface, triangular pitched, finned tubes.

PROPOSED PROJECT REVIEW

A PSD permit revision, permit number PSD-3449-M5, was issued to the Hobbs Generating Station for the following project on December 28, 2018. The approved project at LPP allows for an upgrade to both combustion turbine generators (CTGs), which is expected to increase power output by approximately 5% and increase the turbine flow rate by 6.7%. This change is expected to result in an increase in fuel consumption, exhaust flow rate, and temperature. The F4+ upgrade project is a completely stand-alone project, not tied in any way to previous projects that required a permit modification, including the permit modifications dated 9-23-2011 and 9-5-2014. This compressor upgrade package has only been made available for commercial use by MHPSA since 2017.

Due to the increased exhaust flow rate, short term (lb/hr) and/or long term (tpy) emission rates for oxides of nitrogen (NO_x), carbon monoxide (CO), sulfur dioxide (SO₂), volatile organic compounds (VOC), particulate matter (PM₁₀ and PM_{2.5}), sulfuric acid mist (H₂SO₄ mist), and carbon dioxide equivalent (CO₂e) will increase. However, a review of anticipated emission rate changes shows that the currently permitted short term emission rates for NO₂ and CO will not have to be changed or increased. Stack exhaust NO_x emissions will continue to be controlled to 2 parts per million volume dry basis corrected to 15 percent oxygen (ppmvdc) on a 24-hour average basis, using selective catalytic reduction (SCR) with aqueous ammonia (NH₃). Stack exhaust CO and VOC emissions will continue to be controlled to 2 ppmvdc on a 1-hour average basis and to 1 ppmvdc on a 24-hour average basis, respectively, by means of oxidation catalyst. A preliminary evaluation of the existing CO catalyst showed that the condition of the existing CO catalyst is meeting the flow cell velocities and available areas for the existing GT performance, but the new performance following the GT compressor upgrades exceeds the CO catalyst capability to reduce CO to 2 ppmvdc. Therefore, the CO oxidation catalyst will be replaced during the compressor upgrade to assure that the 2 ppmvdc on a 1hour average basis and 1 ppmvdc on a 24-hour average basis are met. SO₂ emissions will continue to be controlled using pipeline quality natural gas.

In addition to the compressor upgrade, LPP increased the annual operating hours from the previously permitted 8,400 hours per year to 8,760 hours per year. Increasing the operating hours to 8,760 hours per year allows for operational flexibility without having to shut down the plant due to operational time restrictions. LPP will continue to operate under the most stringent Best Available Control Technologies (BACT), as discussed above and as currently authorized. Relaxing the federally enforceable operational limits of 8,400 hrs/yr operation to 8,760 hrs/yr operation triggered a retro-active PSD applicability review back to the year 2014, when the operational limits were imposed. Table 2 below shows which pollutants would have triggered a PSD review if no operational limits were imposed. Therefore, in addition to the pollutants already identified in Table 1 due to this project, NO_x and SO₂ are included (retro-actively) in the BACT determination for this permitting action.

Pollutant	Past Actuals (tpy)	Proposed Project Annual (tpy)	Proposed Project Increase (tpy)	PSD SER (tpy)	PSD Review Required?
NO _x	89.9	123.9	34.1	40	No
СО	9.5	75.5	65.9	100	No
VOC	3.9	13.0	9.1	40	No
SO ₂	17.2	50.4	33.2	40	No
H ₂ SO ₄ (mist)	2.6	7.71	5.1	7	No
TSP/PM ₁₀	48.7	90.1	46.1	15	Yes
PM _{2.5}	48.7	90.1	46.1	10	Yes
CO ₂ e	1,604,421	1,971,575	367,154	75,000	Yes

 Table 1: PSD Applicability Analysis Both Units Combined

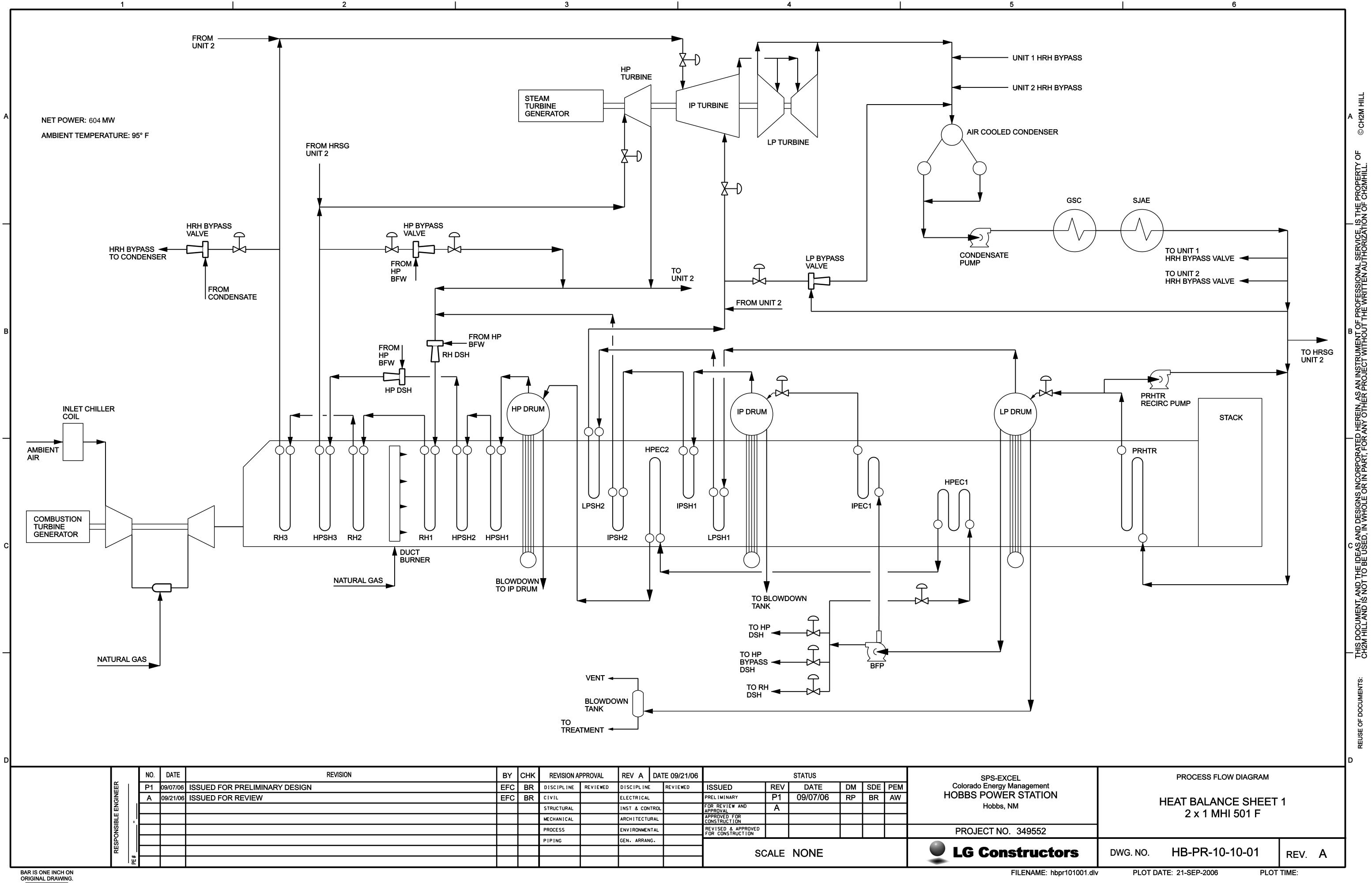
The above PSD applicability does not include Startup, shutdown, and maintenance (SSM) emissions because LPP is not proposing any change (increase or decrease) in permitted NO_x, CO, VOC, or SO₂ SSM emission

rates, or as provided in the last application. These permitted SMM emission rates were estimated in the past including enough buffer for some operational flexibility.

Pollutant	Past Actuals (tpy)	1		PSD SER (tpy)	PSD Review Required?
NO _x	77.0	120.0	43.0	40	Yes
СО	10.7	73.1	62.4	100	No
VOC	8.8	12.6	3.8	40	No
SO ₂	6.7	48.3	41.6	40	Yes
H ₂ SO ₄ (mist)	1.03	7.4	6.4	7	No
TSP/PM ₁₀	72.2	85.8	13.6	15	No
PM2.5	72.2	85.8	13.6	10	Yes
CO ₂ e	1,385,260	1,891,328	506,068	75,000	Yes

Table 2: PSD Applicability Analysis Both Units Retro-Active for 2014 Project
--

The workbook tab "Table 106A GT Summary" has a SSM summary table at the end of the tab. This table clearly distinguishes between operating and SSM emissions. This turbine upgrade project does not increase the permitted NO_x, CO, VOC, or SO₂ SSM limits and LPP wants to keep the SSM emission rates as permitted and previously presented (the SSM emission calculations are also included in the workbook). Since the units can reasonably accommodate all SSM emissions before and after the modification, the past actuals to future actuals for SSM equates to a zero increase. Given this clarification, a PSD applicability analysis was performed without NO_x, CO, VOC, or SO₂ SSM emissions in the PSD permit modification application submitted to NMED in July, 2018.

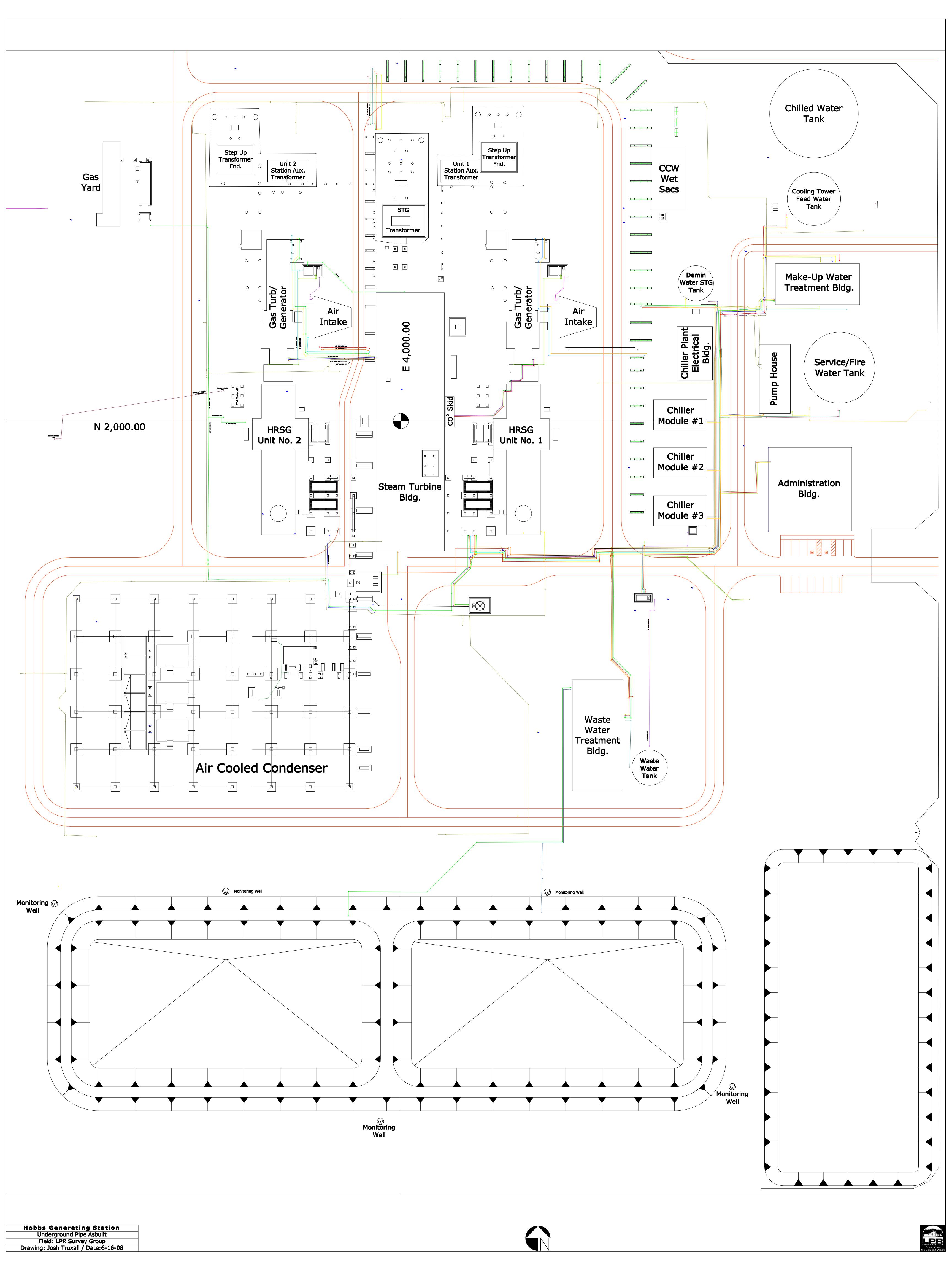

Since no emission rate decreases occurred during the contemporaneous period, the net emission rate increases are based on the proposed project emission rate increases. The PSD Significant Emission Rate (SER) was exceeded for TSP/PM₁₀/PM_{2.5} and CO₂e and retro-actively for NO_x and SO₂. Therefore, this modification constituted a major modification of the existing major source and a PSD review was required for the pollutants with significant emissions per 40 CFR §52.21(b)(23)(i) and New Mexico Administrative Code (NMAC) 20.2.74.302. The main reason why a PSD review for TSP/PM₁₀/PM_{2.5} and CO₂e was being triggered, was because the actual emissions from the past five (5) years are much lower than the permitted emission rates, thus the delta between the post-project allowable and the pre-project actual emission rates were greater than the SER.

In addition, the fuel heaters (FH-1 through FH-3) will be replaced with like-kind fuel heaters. FH-2 was replace in May 2019, FH-3 was replaced in 2020 (the new serial numbers have been entered into form UA2), and FH-1 will be replace in 2021. A Technical Permit revision application was prepared and submitted to NMED Air Quality Bureau to authorized these fuel heater replacements. The revised permit was issued by NMED on May 22, 2019.

Process Flow Sheet

A **process flow sheet** and/or block diagram indicating the individual equipment, all emission points and types of control applied to those points. The unit numbering system should be consistent throughout this application.

A process flow diagram is attached.



							SC	ALE	NONE				LG Const
		PIPING		GEN. ARRAN	IG.					-			
		PROCESS		ENVIRONMEN	ITAL		REVISED & APPROVED FOR CONSTRUCTION						PROJECT NO. 3
		MECHANICAL		ARCHITECTU	JRAL		APPROVED FOR CONSTRUCTION						
		STRUCTURAL		INST & CON	TROL		FOR REVIEW AND APPROVAL	Α					Hobbs, NM
EFC	BR	CIVIL		ELECTRICAL			PRELIMINARY	P1	09/07/06	RP	BR	AW	HOBBS POWER S
EFC	BR	DISCIPLINE	REVIEWED	DISCIPLINE		REVIEWED	ISSUED	REV	DATE	DM	SDE	PEM	Colorado Energy Man
BY	СНК	REVISION A	PPROVAL	REV A	DAT	E 09/21/06			STATUS				SPS-EXCEL

Plot Plan Drawn To Scale

A <u>plot plan drawn to scale</u> showing emissions points, roads, structures, tanks, and fences of property owned, leased, or under direct control of the applicant. This plot plan must clearly designate the restricted area as defined in UA1, Section 1-D.12. The unit numbering system should be consistent throughout this application.

A Plot Plan drawn to scale is attached.

All Calculations

<u>Show all calculations</u> used to determine both the hourly and annual controlled and uncontrolled emission rates. All calculations shall be performed keeping a minimum of three significant figures. Document the source of each emission factor used (if an emission rate is carried forward and not revised, then a statement to that effect is required). If identical units are being permitted and will be subject to the same operating conditions, submit calculations for only one unit and a note specifying what other units to which the calculations apply. All formulas and calculations used to calculate emissions must be submitted. The "Calculations" tab in the UA2 has been provided to allow calculations to be linked to the emissions tables. Add additional "Calc" tabs as needed. If the UA2 or other spread sheets are used, all calculation spread sheet(s) shall be submitted electronically in Microsoft Excel compatible format so that formulas and input values can be checked. Format all spread sheets are not used, provide the original formulas with defined variables. Additionally, provide subsequent formulas showing the input values for each variable in the formula. All calculations, including those calculations are imbedded in the Calc tab of the UA2 portion of the application, the printed Calc tab(s), should be submitted under this section.

Tank Flashing Calculations: The information provided to the AQB shall include a discussion of the method used to estimate tank-flashing emissions, relative thresholds (i.e., NOI, permit, or major source (NSPS, PSD or Title V)), accuracy of the model, the input and output from simulation models and software, all calculations, documentation of any assumptions used, descriptions of sampling methods and conditions, copies of any lab sample analysis. If Hysis is used, all relevant input parameters shall be reported, including separator pressure, gas throughput, and all other relevant parameters necessary for flashing calculation.

SSM Calculations: It is the applicant's responsibility to provide an estimate of SSM emissions or to provide justification for not doing so. In this Section, provide emissions calculations for Startup, Shutdown, and Routine Maintenance (SSM) emissions listed in the Section 2 SSM and/or Section 22 GHG Tables and the rational for why the others are reported as zero (or left blank in the SSM/GHG Tables). Refer to "Guidance for Submittal of Startup, Shutdown, Maintenance Emissions in Permit Applications (http://www.env.nm.gov/aqb/permit/app_form.html) for more detailed instructions on calculating SSM emissions. If SSM emissions are greater than those reported in the Section 2, Requested Allowables Table, modeling may be required to ensure compliance with the standards whether the application is NSR or Title V. Refer to the Modeling Section of this application for more guidance on modeling requirements.

Glycol Dehydrator Calculations: The information provided to the AQB shall include the manufacturer's maximum design recirculation rate for the glycol pump. If GRI-Glycalc is used, the full input summary report shall be included as well as a copy of the gas analysis that was used.

Road Calculations: Calculate fugitive particulate emissions and enter haul road fugitives in Tables 2-A, 2-D and 2-E for:

- 1. If you transport raw material, process material and/or product into or out of or within the facility and have PER emissions greater than 0.5 tpy.
- 2. If you transport raw material, process material and/or product into or out of the facility more frequently than one round trip per day.

Significant Figures:

A. All emissions standards are deemed to have at least two significant figures, but not more than three significant figures.

B. At least 5 significant figures shall be retained in all intermediate calculations.

C. In calculating emissions to determine compliance with an emission standard, the following rounding off procedures shall be used:

- (1) If the first digit to be discarded is less than the number 5, the last digit retained shall not be changed;
- (2) If the first digit discarded is greater than the number 5, or if it is the number 5 followed by at least one digit other than the number zero, the last figure retained shall be increased by one unit; and
- (3) If the first digit discarded is exactly the number 5, followed only by zeros, the last digit retained shall be rounded upward if it is an odd number, but no adjustment shall be made if it is an even number.
- (4) The final result of the calculation shall be expressed in the units of the standard.

Control Devices: In accordance with 20.2.72.203.A(3) and (8) NMAC, 20.2.70.300.D(5)(b) and (e) NMAC, and 20.2.73.200.B(7) NMAC, the permittee shall report all control devices and list each pollutant controlled by the control device

regardless if the applicant takes credit for the reduction in emissions. The applicant can indicate in this section of the application if they chose to not take credit for the reduction in emission rates. For notices of intent submitted under 20.2.73 NMAC, only uncontrolled emission rates can be considered to determine applicability unless the state or federal Acts require the control. This information is necessary to determine if federally enforceable conditions are necessary for the control device, and/or if the control device produces its own regulated pollutants or increases emission rates of other pollutants.

As required by NMED, emission rate calculations are provided in the UA2 spreadsheet workbook. The only changes proposed relate to the emissions of the combustion turbine generators (CTGs) and duct burners (Unit Nos. HOBB-1, HOBB-2, DB-1 and DB-2). All other permitted emission sources remain unchanged.

Combustion emissions associated with the combustion turbines and duct burners include NO_x , CO, VOC, SO₂, $PM_{10}/PM_{2.5}$, Greenhouse Gas (GHG) emissions, and hazardous air pollutants (HAPs). There may also be ammonia slip from the SCR systems. Emission rate estimates for the CTG/HRSG train stacks are based on vendor estimated data, fuel analysis data, and regulatory requirements.

Detailed emission rate calculations are provided on the following pages. For each pollutant, the total emission rate out of the stack considers the combined flow from the CTG exhaust and the duct burner exhaust, controlled by the SCR and the oxidation catalyst. The proposed hourly emission rate limit for each pollutant is based on the ambient conditions which result in the maximum hourly emission rates.

Annual emission rates are estimated assuming continuous annual operation (8,760 hour per year per unit) as well as cases with maximum annual startups and shutdowns. The UA2 workbook includes all permitted sources and associated emissions.

Section 6.a

Green House Gas Emissions

(Submitting under 20.2.70, 20.2.72 20.2.74 NMAC)

Title V (20.2.70 NMAC), Minor NSR (20.2.72 NMAC), and PSD (20.2.74 NMAC) applicants must

estimate and report greenhouse gas (GHG) emissions to verify the emission rates reported in the public notice, determine applicability to 40 CFR 60 Subparts, and to evaluate Prevention of Significant Deterioration (PSD) applicability. GHG emissions that are subject to air permit regulations consist of the sum of an aggregate group of these six greenhouse gases: carbon dioxide (CO_2), nitrous oxide (N_2O), methane (CH_4), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride (SF_6).

Calculating GHG Emissions:

1. Calculate the ton per year (tpy) GHG mass emissions and GHG CO2e emissions from your facility.

2. GHG mass emissions are the sum of the total annual tons of greenhouse gases without adjusting with the global warming potentials (GWPs). GHG CO₂e emissions are the sum of the mass emissions of each individual GHG multiplied by its GWP found in Table A-1 in 40 CFR 98 <u>Mandatory Greenhouse Gas Reporting</u>.

3. Emissions from routine or predictable start up, shut down, and maintenance must be included.

4. Report GHG mass and GHG CO_2e emissions in Table 2-P of this application. Emissions are reported in <u>short</u> tons per year and represent each emission unit's Potential to Emit (PTE).

5. All Title V major sources, PSD major sources, and all power plants, whether major or not, must calculate and report GHG mass and CO2e emissions for each unit in Table 2-P.

6. For minor source facilities that are not power plants, are not Title V, and are not PSD there are three options for reporting GHGs in Table 2-P: 1) report GHGs for each individual piece of equipment; 2) report all GHGs from a group of unit types, for example report all combustion source GHGs as a single unit and all venting GHGs as a second separate unit; 3) or check the following \Box By checking this box, the applicant acknowledges the total CO2e emissions are less than 75,000 tons per year.

Sources for Calculating GHG Emissions:

• Manufacturer's Data

- AP-42 Compilation of Air Pollutant Emission Factors at http://www.epa.gov/ttn/chief/ap42/index.html
- EPA's Internet emission factor database WebFIRE at http://cfpub.epa.gov/webfire/

• 40 CFR 98 <u>Mandatory Green House Gas Reporting</u> except that tons should be reported in short tons rather than in metric tons for the purpose of PSD applicability.

• API Compendium of Greenhouse Gas Emissions Methodologies for the Oil and Natural Gas Industry. August 2009 or most recent version.

• Sources listed on EPA's NSR Resources for Estimating GHG Emissions at http://www.epa.gov/nsr/clean-air-act-permitting-greenhouse-gases:

Global Warming Potentials (GWP):

Applicants must use the Global Warming Potentials codified in Table A-1 of the most recent version of 40 CFR 98 Mandatory Greenhouse Gas Reporting. The GWP for a particular GHG is the ratio of heat trapped by one unit mass of the GHG to that of one unit mass of CO_2 over a specified time period.

"Greenhouse gas" for the purpose of air permit regulations is defined as the aggregate group of the following six gases: carbon dioxide, nitrous oxide, methane, hydrofluorocarbons, perfluorocarbons, and sulfur hexafluoride. (20.2.70.7 NMAC, 20.2.74.7 NMAC). You may also find GHGs defined in 40 CFR 86.1818-12(a).

Metric to Short Ton Conversion:

Short tons for GHGs and other regulated pollutants are the standard unit of measure for PSD and title V permitting programs. 40 CFR 98 <u>Mandatory Greenhouse Reporting</u> requires metric tons. 1 metric ton = 1.10231 short tons (per Table A-2 to Subpart A of Part 98 – Units of Measure Conversions)

All GHG emissions are reported on Table 2-P of the UA2 Form.

HOBBS PSD APPLICABILITY ANALYSIS

PSD Summary Table

	Past Actuals Both Units	Past Actuals Both Units Combined	Proposed Project Annual Both Units	Proposed Project Annual Both Units	PSD Analysi	s Both Units Cor	nbined w/o SSM
Air Pollutant	Combined w/o SSM (tpy)	w/ SSM (tpy)	Combined w/o SSM (tpy)	Combined w/SSM (tpy)	Project Increase (tpy)	PSD Significance Level (tpy)	Is PSD Significance Level Exceeded?
NOx	89.9	90.8	123.9	189.3	34.1	40	No
CO	9.5	11.3	75.5	284.5	65.9	100	No
VOC	3.9	5.4	13.0	97.6	9.1	40	No
SO ₂	17.2	17.3	50.4	52.9	33.2	40	No
H ₂ SO ₄ (mist) ⁽¹⁾	2.6	2.64	7.71	8.10	5.1	7	No
TSP/PM ₁₀	48.6	48.7	90.1	94.8	46.1	15	Yes
PM _{2.5}	48.6	48.7	90.1	94.8	46.1	10	Yes
CO ₂ e	1,604,421	1,604,421	1,971,575	1,909,681	367,153.7	75,000	Yes

Notes: (1) Sulfuric acid mist is calculated assuming a 10% oxidation from SO_2 to SO_3 and 100% oxidation from SO_3 to H_2SO_4

 SO_3 Oxidation = 10%

SO₂ MW = 64 lb/lbmole

 $SO_3MW = 80 lb/lbmole$

SO₃ to H2SO4 = 100%

 H_2SO_4 MW = 98 lb/lbmole

Hobbs Past Actuals both Units Combined w/SSM (tpy)

Air Pollutant	2013-2014	2014-2015	2015-2016	2016-2017	Max. Baseline Actuals	Baseline Year
NOx	73.6	79.6	90.8	84.1	90.8	2015-2016
CO	7.6	11.3	10.9	6.8	11.3	2014-2015
VOC	1.9	2.1	2.4	5.4	5.4	2016-2017
SO ₂	6.6	11.5	17.3	10.4	17.3	2015-2016
TSP/PM ₁₀	37.7	42.0	48.7	46.3	48.7	2015-2016
CO ₂ e	1,308,640	1,445,310	1,604,421	1,509,882	1,604,421	2015-2016

Hobbs Past Actuals both Units Combined w/o SSM (tpy)

Air Pollutant	2013-2014	2014-2015	2015-2016	2016-2017	Max. Baseline Actuals	Baseline Year
NOx	72.4	78.3	89.9	81.4	89.9	2015-2016
CO	4.8	8.8	9.5	2.7	9.5	2015-2016
VOC	1.8	2.0	2.4	3.9	3.9	2016-2017
SO ₂	6.5	11.3	17.2	10.2	17.2	2015-2016
TSP/PM ₁₀	37.7	41.9	48.6	46.3	48.6	2015-2016
CO ₂ e	1,308,640	1,445,310	1,604,421	1,509,882	1,604,421	2015-2016

Hobbs Past Actuals per Unit

Air Pollutant	Both Units Combined w/SSM (tpy)									
	2013	2014	2015	2016	2017	2013-2014	2014-2015	2015-2016	2016-2017	
NOx	79.6	67.6	91.6	90.0	78.2	73.6	79.6	90.8	84.1	
CO	8.8	6.4	16.1	5.7	7.9	7.6	11.3	10.9	6.8	
VOC	2.1	1.7	2.5	2.3	8.5	1.9	2.1	2.4	5.4	
SO ₂	6.9	6.3	16.6	17.9	2.8	6.6	11.5	17.3	10.4	
TSP/PM ₁₀	39.5	35.9	48.0	49.3	43.3	37.7	42.0	48.7	46.3	
CO ₂ e	1,369,681	1,247,598	1,643,022	1,565,821	1,453,943	1,308,640	1,445,310	1,604,421	1,509,882	

Air Pollutant	Both units Combined w/o SSM (tpy)									
	2013	2014	2015	2016	2017	2013-2014	2014-2015	2015-2016	2016-2017	
NOx	78.6	66.1	90.6	89.2	73.6	72.4	78.3	89.9	81.4	
CO	6.1	3.5	14.0	5.0	0.3	4.8	8.8	9.5	2.7	
VOC	2.1	1.5	2.5	2.3	5.4	1.8	2.0	2.4	3.9	
SO ₂	6.9	6.1	16.5	17.8	2.5	6.5	11.3	17.2	10.2	
TSP/PM ₁₀	39.4	35.9	48.0	49.3	43.3	37.7	41.9	48.6	46.3	
CO ₂ e	1,369,681	1,247,598	1,643,022	1,565,821	1,453,943	1,308,640	1,445,310	1,604,421	1,509,882	

Hobbs SSM Emissions per Unit

Air Pollutant	HOBB-1 SSM Emissions (tpy)								
	2013	2014	2015	2016	2017				
NOx	1.0	1.5	1.0	0.8	4.6				
CO	2.7	2.9	2.1	0.7	7.6				
VOC	0.00	0.16	0.00	0.004	3.080				
SO ₂	0.0	0.2	0.1	0.1	0.3				
TSP/PM ₁₀	0.06	0.03	0.02	0.03	0.02				

Air Pollutant	HOBB-2 SSM Emissions (tpy)							
	2013	2014	2015	2016	2017			
NOx	0.9	1.8	0.9	1.1	1.8			
CO	3.4	2.6	3.7	1.3	3.6			
VOC	0.00	0.01	0.00	0.002	2.607			
SO ₂	0.0	0.1	0.1	0.1	0.16			
TSP/PM ₁₀	0.04	0.02	0.02	0.02	0.01			

HOBBS EMISSION RATE SUMMARY

Summary of Emission Rates

Air Pollutant	Averaging Period	Table 106.A PSD 3449-M3 (July 11, 2016)			Combustion Turbines Emission Rates		
Air Foliatant	Averaging Ferrou	CT w/o Duct Burner	CT w/ Duct Burner	CTG Startup & Shutdown	CT w/o Duct Burner	CT w/ Duct Burner	CTG Startup & Shutdown
NO ₂ (lbs/hr), each ⁽¹⁾	Hourly rolling 24-hour average based on CEMS data (SSM limits are based on a 1-hour block average)	14.5	18.1	193.2	14.5	18.1	193.2
NO ₂ (ppmv) dry @ 15% O ₂ , each $^{(2),(3)}$	Hourly rolling 24-hour average based on CEMS data	2.0 BACT		96 BACT	2.0		96
NO ₂ (lb/MWh), each ⁽⁴⁾	Daily rolling 30-day average (NSPS KKKK)	0.43		Per NSPS KKKK	0.43		Per NSPS KKKK
NO ₂ (tons/yr), combined	Daily rolling 365-day total (includes SSM emissions)		181.0			189.3	
CO (lbs/hr), each	1-hour block average (Normal operation and SSM)	8.8	11.0	2,060	8.8	11.0	2,060
CO (ppmv) dry @ 15% O ₂ , each ^{(5),(6)}	1-hour block average (Normal operation and SSM)		2.0 ACT	3,000 BACT	2.0		3,000
CO (tons/yr), combined	Daily rolling 365-day total (includes SSM emissions)		279.5			284.5	
VOC (lbs/hr), each	Hourly rolling 24-hour average, calculation based on emission factor determined from compliance test. (compliance with VOC SSM limit will be demonstrated through compliance with CO SSM limits on a 1-hour block average basis).	2.4	2.8	591.0	2.5	2.9	591.0
VOC (ppmv) dry @ 15% O ₂ , each ^{(7),(8)}	Hourly rolling 24-hour average (data (compliance with VOC SSM limit will be demonstrated through compliance with CO SSM limits on a 1-hour block average basis.)		.0 ACT	900 BACT	1.0		900
VOC (tons/yr), combined	Daily rolling 365-day total (includes SSM emissions)		96.4			97.6	•
SO ₂ (lbs/hr), each ⁽⁹⁾	1-hour block average, calculation based on Sulfur content of fuel	8.4	10.7	N/A	8.7	10.7	N/A
SO ₂ (Ibs/MMBtu), each ⁽¹⁰⁾	Daily rolling 30-day average (NSPS KKKK)	0.06		Per NSPS KKKK	0.06		Per NSPS KKKK
SO ₂ (tons/yr), combined	Daily rolling 365-day total (includes SSM emissions)		48.2			52.9	
TSP/PM ₁₀ /PM _{2.5} (Ibs/hr), each	Hourly rolling 24-hour average, calculation based on emission factor determined from compliance test data	11.3	11.3 17.1 N/		12.0	17.8	N/A
TSP/PM ₁₀ (lbs/MMBtu), each	Hourly rolling 24-hour average	0.0071	0.0089	N/A	0.0071	0.0089	N/A
TSP/PM ₁₀ /PM _{2.5} (tons/yr), combined	Daily rolling 365-day total (includes SSM emissions)		85.8		94.8		-
NH ₃ (lbs/hr), each	Calculation based on compliance test data	32	2.1	N/A	32	2.1	N/A
NH ₃ (tons/yr), combined	Daily rolling 365-day total	28	1.3	N/A	28	1.3	N/A

Notes:

(1) Nitrogen oxide emissions include all oxides of nitrogen expressed as NO_2 .

(2) The NO₂ limit of 2.0 ppmvd @ 15% O₂ is based on the SCR BACT determination.

(3) The NO₂ limit of 96 ppmvd @ 15% O₂ during Startup & Shutdown is based on CTG performance manufacturer's data plus a 20% safety factor.

(4) NO_2 output base limit in accordance with Table 1 to NSPS Subpart KKKK.

(5) The CO limit of 2.0 ppmvd @ 15% O_2 is based on the oxidation catalyist BACT determination.

(6) The CO limit of 3,000 ppmvd @ 15% O₂ during Startup & Shutdown is based on CTG performance manufacturer's data plus a 20% safety factor.

(7) The VOC limit of 1.0 ppmvd @ 15% O_2 is based on the oxidation catalyist BACT determination-

(8) The VOC limit of 900 ppmvd @ 15% O2 during Startup & Shutdown is based on CTG performance manufacturer's data plus a 20% safety factor.

Compliance with VOC limits is to be demonstrated through compliance with CO limits.

(9) The proposed post-project SO_2 allowable emission rate is based in total sulfur content in the fuel (40 CFR Part 75).

(10) SO_2 input base limit in accordance with NSPS Subpart KKKK, §60.4330.

(11) Cold, warm and hot startup hourly mass emission rates (lb/hr) maximum expected emissions during SSM events.

Rollling average period was used to identify worst case scenario and is not intended to be an operational restriction.

(2) Emission factor (lb/event) represents the total mass emission during the event duration based on vendor performance data. Represented number reflects an average annual value.

Air Pollutant	Status	CT w/o Duct Burner	CT w/ Duct Burner	-	uct Burner Unit	CT w/Duct Burner per Unit	
		ppmvd @ 15% O ₂	ppmvd @ 15% O ₂	Min. Hourly (lb/hr)	Max. Hourly (lb/hr)	Min. Hourly (lb/hr)	Max. Hourly (lb/hr)
NOX	pre-control	24.3	21.3	141.0	172.0	147.60	178.6
NOX	post-control	2.0	2.0	11.8	14.2	14.4	16.8
со	pre-control	14.6	13.1	52.0	63.0	55.8	66.8
60	post-control	2.0	2.0	7.2	8.6	8.8	10.2
voc	pre-control	1.9	1.8	3.9	4.8	4.3	5.2
V0C	post-control	1.0	1.0	2.1	2.5	2.5	2.9
SO ₂	-	0.9	0.9	7.3	8.7	9.0	10.4
TSP/PM ₁₀ /PM _{2.5}	-	-	-	10.4	12.0	16.2	17.8
NH ₃	-	10	10	22	26.2	26.7	31.1

Notes:

(1) Estimated post-project hourly mass emission rates. Refer to "100% Load CTG Hourly" for detailed calculations.

HOBBS EMISSION RATE SUMMARY

Estimated Post-Project Annual Emission Rates Summary

Air Pollutant	Status	Annual Emission Rates Per Unit w/o SSM ⁽¹⁾			Annual I	Emission Rates P w/SSM ⁽²⁾	Annual Both Units Combined	Annual Both Units Combined	
	Status	CT w/o Duct Burner (tpy)	CT w/Duct Burner (tpy)	Annual per Unit (tpy)	CT w/o Duct Burner (tpy)	CT w/Duct Burner (tpy)	Annual per Unit (tpy)	w/o SSM (tpy) ⁽³⁾	w/SSM (tpy) ⁽⁴⁾
Nov	pre-control	392.2	310.4	702.7	355.2	310.4	665.6		
NOx p	post-control	32.5	29.5	62.0	29.4	29.5	58.9	123.94	189.3
СО	pre-control	143.7	116.3	259.9	130.1	116.3	246.3		
60	post-control	19.8	17.9	37.7	17.9	17.9	35.9	75.5	284.5
VOC	pre-control	10.9	9.1	20.0	9.9	9.1	18.9		
V00	post-control	3.4	3.1	6.5	3.1	3.1	6.2	13.0	97.6
SO ₂		13.2	12.0	25.2	11.9	12.0	23.9	50.4	52.9
TSP/PM ₁₀ /PM _{2.5}		19.7	25.4	45.1	17.8	25.4	43.2	90.1	94.8
NH ₃		60.2	54.5	114.7	54.5	54.5	109.0	229.4	218.0
CO ₂		514,719	470,068	984,787	466,082	470,068	936,150	1,969,573	1,907,742
N ₂ O		1.0	0.9	1.8	0.9	0.9	1.7	3.7	3.5
CH ₄		9.5	8.7	18.3	8.6	8.7	17.4	36.5	35.4
GHG		514,729	470,078	984,807	466,092	470,078	936,169	1,969,613	1,907,781
CO ₂ e		515,242	470,546	985,788	466,556	470,546	937,102	1,971,575	1,909,681

Notes:

(1) Estimated post-project annual mass emission rates without SSM events per unit.

CTG w/o DB annual operational hours	4,974 hr/yr	(outage = 0 hr/yr)
CTG w/DB annual operational hours	3,786 hr/yr	(outage = 0 hr/yr)
CTG SSM annual operating hours	0 hr/yr	
CTG Annual Outage days	15 days/yr	
CTG Annual Outage hours	0 hr/yr	(No outage hours accounted for GHG calculations)
Total CTG annual operating hours	8,760 hr/yr	

Annual Total (w/o SSM) = CTG w/o DB (tpy) + CTG w/DB (tpy) - [Hourly (lb/hr) * Outage Hours (hr/yr) * 1 ton/2,000lb]_{w/o DB} - [Hourly (lb/hr) * Outage Hours (hr/yr) * 1 ton/2,000lb]_{w/o DB} - [Hourly (lb/hr) * Outage Hours (hr/yr) * 1 ton/2,000lb]_{w/o DB} - [Hourly (lb/hr) * Outage Hours (hr/yr) * 1 ton/2,000lb]_{w/o DB} - [Hourly (lb/hr) * Outage Hours (hr/yr) * 1 ton/2,000lb]_{w/o DB} - [Hourly (lb/hr) * Outage Hours (hr/yr) * 1 ton/2,000lb]_{w/o DB} - [Hourly (lb/hr) * Outage Hours (hr/yr) * 1 ton/2,000lb]_{w/o DB} - [Hourly (lb/hr) * Outage Hours (hr/yr) * 1 ton/2,000lb]_{w/o DB} - [Hourly (lb/hr) * Outage Hours (hr/yr) * 1 ton/2,000lb]_{w/o DB} - [Hourly (lb/hr) * Outage Hours (hr/yr) * 1 ton/2,000lb]_{w/o DB} - [Hourly (lb/hr) * Outage Hours (hr/yr) * 1 ton/2,000lb]_{w/o DB} - [Hourly (lb/hr) * Outage Hours (hr/yr) * 1 ton/2,000lb]_{w/o DB} - [Hourly (lb/hr) * Outage Hours (hr/yr) * 1 ton/2,000lb]_{w/o DB} - [Hourly (lb/hr) * Outage Hours (hr/yr) * 1 ton/2,000lb]_{w/o DB} - [Hourly (lb/hr) * Outage Hours (hr/yr) * 1 ton/2,000lb]_{w/o DB} - [Hourly (lb/hr) * Outage Hours (hr/yr) * 1 ton/2,000lb]_{w/o DB} - [Hourly (lb/hr) * Outage Hours (hr/yr) * 1 ton/2,000lb]_{w/o DB} - [Hourly (lb/hr) * Outage Hours (hr/yr) * 1 ton/2,000lb]_{w/o DB} - [Hourly (lb/hr) * Outage Hours (hr/yr) * 1 ton/2,000lb]_{w/o DB} - [Hourly (lb/hr) * Outage Hours (hr/yr) * 1 ton/2,000lb]_{w/o DB} - [Hourly (lb/hr) * Outage Hours (hr/yr) * 1 ton/2,000lb]_{w/o DB} - [Hourly (lb/hr) * Outage Hours (hr/yr) * 1 ton/2,000lb]_{w/o DB} - [Hourly (lb/hr) * Outage Hours (hr/yr) * 1 ton/2,000lb]_{w/o DB} - [Hourly (lb/hr) * Outage Hours (hr/yr) * 1 ton/2,000lb]_{w/o DB} - [Hourly (lb/hr) * Outage Hours (hr/yr) * 1 ton/2,000lb]_{w/o DB} - [Hourly (lb/hr) * Outage Hours (hr/yr) * 1 ton/2,000lb]_{w/o DB} - [Hourly (lb/hr) * Outage Hours (hr/yr) * 1 ton/2,000lb]_{w/o DB} - [Hourly (lb/hr) * Outage Hours (hr/yr) * 1 ton/2,000lb]_{w/o DB} - [Hourly (lb/hr) * Outage Hours (hr/yr) * 1 ton/2,000lb]_{w/o DB} - [Hourly (lb/hr) * Outage Hours (hr/yr) * 1 ton/2,000lb]_{w/o DB} - [Hou

(2) Estimated post-project annual mass emission rates including SSM events per unit.

CTG w/o DB annual operational hours	4,504 hr/yr	(outage = 0 hr/yr)
CTG w/DB annual operational hours	3,786 hr/yr	(outage = 0 hr/yr)
CTG SSM annual operating hours	470 hr/yr	
CTG Outage days	0 days/yr	
CTG Outage hours	0 hr/yr	(No outage hours accounted for GHG calculations)
Total CTG annual operating hours	7,820 hr/yr	

Annual Total (w/SSM) = CTG w/o DB (tpy) + CTG w/DB (tpy) - [Hourly (lb/hr) * Outage Hours (hr/yr) * 1 ton/2,000lb]_{w/o DB} - [Hourly (lb/hr) * Outage Hours (hr/yr) * 1 ton/2,000lb]_{w/DB} - [Hourly (lb/hr) * Outage Hours (hr/yr) * 1 ton/2,000lb]_{w/DB} - [Hourly (lb/hr) * Outage Hours (hr/yr) * 1 ton/2,000lb]_{w/DB} - [Hourly (lb/hr) * Outage Hours (hr/yr) * 1 ton/2,000lb]_{w/DB} - [Hourly (lb/hr) * Outage Hours (hr/yr) * 1 ton/2,000lb]_{w/DB} - [Hourly (lb/hr) * Outage Hours (hr/yr) * 1 ton/2,000lb]_{w/DB} - [Hourly (lb/hr) * Outage Hours (hr/yr) * 1 ton/2,000lb]_{w/DB} - [Hourly (lb/hr) * Outage Hours (hr/yr) * 1 ton/2,000lb]_{w/DB} - [Hourly (lb/hr) * Outage Hours (hr/yr) * 1 ton/2,000lb]_{w/DB} - [Hourly (lb/hr) * Outage Hours (hr/yr) * 1 ton/2,000lb]_{w/DB} - [Hourly (lb/hr) * Outage Hours (hr/yr) * 1 ton/2,000lb]_{w/DB} - [Hourly (lb/hr) * Outage Hours (hr/yr) * 1 ton/2,000lb]_{w/DB} - [Hourly (lb/hr) * Outage Hours (hr/yr) * 1 ton/2,000lb]_{w/DB} - [Hourly (lb/hr) * Outage Hours (hr/yr) * 1 ton/2,000lb]_{w/DB} - [Hourly (lb/hr) * Outage Hours (hr/yr) * 1 ton/2,000lb]_{w/DB} - [Hourly (lb/hr) * Outage Hours (hr/yr) * 1 ton/2,000lb]_{w/DB} - [Hourly (lb/hr) * Outage Hours (hr/yr) * 1 ton/2,000lb]_{w/DB} - [Hourly (lb/hr) * Outage Hours (hr/yr) * 1 ton/2,000lb]_{w/DB} - [Hourly (lb/hr) * Outage Hours (hr/yr) * 1 ton/2,000lb]_{w/DB} - [Hourly (lb/hr) * Outage Hours (hr/yr) * 1 ton/2,000lb]_{w/DB} - [Hourly (lb/hr) * Outage Hours (hr/yr) * 1 ton/2,000lb]_{w/DB} - [Hourly (lb/hr) * Outage Hours (hr/yr) * 1 ton/2,000lb]_{w/DB} - [Hourly (lb/hr) * Outage Hours (hr/yr) * 1 ton/2,000lb]_{w/DB} - [Hourly (lb/hr) * Outage Hours (hr/yr) * 1 ton/2,000lb]_{w/DB} - [Hourly (lb/hr) * Outage Hours (hr/yr) * 1 ton/2,000lb]_{w/DB} - [Hourly (lb/hr) * Outage Hours (hr/yr) * 1 ton/2,000lb]_{w/DB} - [Hourly (lb/hr) * Outage Hours (hr/yr) * 1 ton/2,000lb]_{w/DB} - [Hourly (lb/hr) * Outage Hours (hr/yr) * 1 ton/2,000lb]_{w/DB} - [Hourly (lb/hr) * Outage Hours (hr/yr) * 1 ton/2,000lb]_{w/DB} - [Hourly (lb/hr) * Outage Hours (hr/yr) * 1 ton/2,000lb]_{w/DB} -

(3) Estimated post-project annual mass emission rates without SSM events. Represents an operation at 100% load for 8,760 hr/yr (0 hr of outage per year). NOx Post-Control Annual Total w/o SSM = 62.0 tpy/unit * 2 units = 123.9 tpy both units combined

(4) Estimated post-project annual mass emission rates with SSM events. Represents an operation at 100% load for 7,820 hr/yr (470 hr/yr SSM and 0 hr of outage per year). NOx Post-Control Annual Total (w/SSM) = (58.9 tpy/unit + 35.7 tpy/unit SSM) * 2 units = 189.3 tpy both units combined

Estimated Post-Project SSM Emission Rates Summary ⁽¹⁾

Air Pollutant	CTG Star	tup & Shutdown (pe	r unit)	(no change	nits SSM e to current d values)	Both	Units	Both	Units
	ppmvd @ 15% O ₂	lb/hr	tpy	lb/hr	tpy	tpy (from normal)	tpy TOTAL	tpy "SSM" (Total - normal)	Increase permitted SSM limit?
NOx	96	193.2	35.7	386.3	71.5	123.9	189.3	65.3	No
CO	3,000	2,060.0	106.4	4,120.0	212.8	75.5	284.5	209.0	No
VOC	900	591.0	42.6	1,182.0	85.2	13.0	97.6	84.6	No
SO ₂	-	10.7	2.5	21.4	5.0	50.4	52.9	2.5	No
TSP/PM ₁₀ /PM _{2.5}	-	17.8	4.2					• •	• •
CO ₂	-	-	17,720.8						
N ₂ O	-	-	0.033						
CH ₄	-	-	0.33						
GHG	-	-	17,721.2						
CO ₂ e	-	-	17,738.8						

Notes:

(1) Estimated post-project hourly and annual SSM mass emission rates. Refer to "CTG SSM Events" for detailed calculations.

HOBBS 501F4+ Hourly Emission Rate Calculation (100% Load)

HOBBS 501F4+ Hourly Emission Rate C		Case 4 Unfired Winter Chillers Off	Case 4 Fired Winter Chillers Off	Case 5 Unfired Summer Chillers On	Case 5 Fired Summer Chillers On	Case 6 Unfired Summer Chillers Off	Case 6 Fired Summer Chillers Off
SITE CONDITIONS							
Ambient Temperature	°F	30	30	95	95	95	95
Ambient Relative Humidity	%	60	60	20	20	20	20
Barometric Pressure	psia	12.83	12.83	12.83	12.83	12.83	12.83
Compressor Inlet Temperature	°F	30	30	46	46	95	95
FACILITY CONDITIONS							
GT Power Output	MW	189.0	189.0	180.1	180.1	151.1	151.1
GT Model		Hobbs 501F4+	Hobbs 501F4+	Hobbs 501F4+	Hobbs 501F4+	Hobbs 501F4+	Hobbs 501F4+
GT Load		Base	Base	Base	Base	Base	Base
Chillers ON/OFF		Off	Off	On	On	Off	Off
GT Fuel Flow Rate	lb/hr	86,940	86,940	83,592	83,592	72,720	72,720
GT Heat Input (LHV)	MMBtu/hr	1,765	1,765	1,697	1,697	1,477	1,477
GT Heat Input (HHV)	MMBtu/hr	1,884	1,884	1,812	1,812	1,576	1,576
GT Fuel Flow Rate	MMscf/hr	1.82	1.82	1.75	1.75	1.53	1.53
DB Model		Forney	Forney	Forney	Forney	Forney	Forney
DB Status		Off	On	Off	On	Off	On
DB Heat Input (LHV)	MMBtu/hr	-	330	-	330	-	330
DB Heat Input (HHV)	MMBtu/hr	-	366	-	366	-	366
DB Fuel Flow Rate	MMscf/hr	-	0.35	-	0.35	-	0.35
FUEL ANALYSIS							
Fuel Type		PNG	PNG	PNG	PNG	PNG	PNG
Fuel Molecular Weight	lb/lbmole	17.3	17.3	17.3	17.3	17.3	17.3
Sulfur Content	grains/100scf	1.7	1.7	1.7	1.7	1.7	1.7
Fuel Heat Content (LHV)	Btu/scf	932	932	932	932	932	932
Fuel Heat Content (HHV)	Btu/scf	1,033	1,033	1,033	1,033	1,033	1,033
HHV/LHV Ratio	Blaison	1.1	1.1	1.1	1.1	1.1	1.1
GT EXHAUST GAS ANALYSIS							
Oxygen, O2	%vol	12.5	12.5	12.5	12.5	12.7	12.7
Carbon Dioxide, CO2	%vol	3.9	3.9	3.9	3.9	3.7	3.7
Water, H2O	%vol	7.7	7.7	8.4	8.4	8.3	8.3
Nitrogen, N2	%vol	74.9	74.9	74.3	74.3	74.4	74.4
Argon, Ar	%vol	0.9	0.9	0.9	0.9	0.9	0.9
Total	%vol	100.00	100.00	100.00	100.00	100.00	100.00
Molecular Weight (GT Exhaust Gases)	lb/lbmole	28.5	28.5	28.4	28.4	28.4	28.4
GT Exhaust Temperature	°F	1,121	1,121	1,130	1,130	1,155	1,155
GT Exhaust Flow Rate	lb/hr	3,834,000	3,834,000	3,704,400	3,704,400	3,330,000	3,330,000
GT Exhaust Flow Rate	lbmole/hr	134,651	134,651	130,437	130,437	117,304	117,304
GT Exhaust Flow Rate	MMscf/hr	51.9	51.9	50.3	50.3	45.2	45.2
GT Exhaust Flow Rate	Nm3/hr	1,469,123	1,469,123	1,423,144	1,423,144	1,279,858	1,279,858
GT Exhaust Oxygen, O2	lbmole/hr	16,895	16,895	16,247	16,247	14,902	14,902
GT Exhaust Carbon Dioxide, CO2	lbmole/hr	5,255	5,255	5,090	5,090	4,345	4,345
GT Exhaust Water, H2O	lbmole/hr	10,374	10,374	10,962	10,962	9,747	9,747
GT Exhaust Nitrogen, N2	lbmole/hr	100,914	100,914	96,963	96,963	87,253	87,253
GT Exhaust Argon, Ar	lbmole/hr	1,213	1,213	1,175	1,175	1,057	1,057

Section 6 Calcs: Page 3

HOBBS 501F4+ Hourly Emission Rate Calculation (100% Load)

	alculation (100% Load)	Case 4 Unfired Winter	Case 4 Fired Winter	Case 5 Unfired Summer	Case 5 Fired Summer	Case 6 Unfired Summer	Case 6 Fired Summer
GT EMISSION RATES		Chillers Off	Chillers Off	Chillers On	Chillers On	Chillers Off	Chillers Off
NOx	ppmvd @ 15% O2	25	25	25	25	25	25
NOx	ppmvd	31	31	31	31	30	30
NOx (as NO2)	lb/hr	172	172	165	165	141	141
		15	15	15	15	15	15
CO CO	ppmvd @ 15% O2	15 19	15 19	<mark>15</mark> 19	<mark>15</mark> 19	15 18	15 18
со	ppmvd lb/hr	63	63	60	60	52	52
	10/11	00	00	00	00	52	02
VOC	ppmvd @ 15% O2	2.0	2.0	2.0	2.0	2.0	2.0
VOC	ppmvd	2.5	2.5	2.5	2.5	2.4	2.4
VOC (as CH4)	lb/hr	4.8	4.8	4.6	4.6	3.9	3.9
Sulfur Content	grains/100scf	1.7	1.7	1.7	1.7	1.7	1.7
SO2	lb/hr	8.7	8.7	8.4	8.4	7.3	7.3
DMAO		0.7	0.7	0.7	0.7	0.7	0.7
PM10 PM10	mg/Nm3 lb/hr	3.7 12.0	3.7 12.0	3.7 11.6	3.7 11.6	3.7 10.4	3.7 10.4
		12.0	12.0	11.0	11.0	10.4	10.4
Formaldehyde, HCHO	ppbvd @ 15% O2	91	91	91	91	91	91
Formaldehyde, HCHO	ppmvd	0.1	0.1	0.1	0.1	0.1	0.1
Formaldehyde, HCHO	lb/hr	0.4	0.4	0.4	0.4	0.4	0.4
DB EMISSION RATES NOx	lb/MMBtu (LHV)	_	0.02		0.02	_	0.02
NOX	lb/hr	-	6.6	-	6.6	-	6.6
	10/11		0.0		0.0		0.0
CO	lb/MMBtu (LHV)	-	0.012	-	0.012	-	0.012
CO	lb/hr	-	3.8	-	3.8	-	3.8
VOC	lb/MMBtu (LHV)	_	0.0013	_	0.0013	_	0.0013
VOC (as CH4)	lb/hr	-	0.4	-	0.4	-	0.4
Sulfur Content	grains/100scf	-	1.67	-	1.67	-	1.67
SO2	lb/hr	-	1.7	-	1.7	-	1.7
PM10	lb/MMBtu (LHV)	-	0.0175	-	0.0175	_	0.0175
PM10	lb/hr	-	5.8	-	5.8	-	5.8
			7 505 00		7 505 00		7 505 00
Formaldehyde, HCHO Formaldehyde, HCHO	lb/MMscf (HHV) lb/MMBtu (HHV)	-	7.50E-02 7.35E-05	-	7.50E-02 7.35E-05	-	7.50E-02 7.35E-05
Formaldehyde, HCHO	lb/hr	-	7.33E-05 0.03	-	0.03		7.35⊑-03 0.03
i emalacityae, nene	10,111		0.00		0.00		0.00
STACK EXHAUST GAS							
Fuel x, in CxHy		1.04	1.04	1.04	1.04	1.04	1.04
Fuel y, in Cx,Hy		4.02	4.02	4.02	4.02	4.02	4.02
DB Fuel Flow Rate	lbmole/hr		919		919		919
Oxygen Consumed at DB, O2	lbmole/hr	-	919 1,875	-	919 1,875	-	919 1,875
Carbon Dioxide Produced at DB, CO2	lbmole/hr	-	951	-	951	-	951
Water Produced at DB, H2O	lbmole/hr	-	1,847	-	1,847	-	1,847
Stack Exhaust Oxygen, O2	lbmole/hr	16,895	15,021	16,247	14,373	14,902	13,027
Stack Exhaust Carbon Dioxide, CO2	lbmole/hr	5,255	6,206	5,090	6,041	4,345	5,296
Stack Exhaust Water, H2O	lbmole/hr Ibmole/hr	10,374	12,221	10,962	12,809	9,747	11,594
Stack Exhaust Nitrogen, N2	lbmole/hr	100,914 1,213	100,914 1,213	96,963 1,175	96,963 1,175	87,253	87,253 1,057
Stack Exhaust Argon, Ar Stack Exhaust Flow Rate	lbmole/hr	134,651	135,574	130,437	1,175	1,057 117,304	118,227
Stack Exhaust Oxygen, O2	%vol	12.5	11.1	12.5	10.9	12.7	11.0
Stack Exhaust Carbon Dioxide, CO2	%vol	3.9	4.6	3.9	4.6	3.7	4.5
Stack Exhaust Water, H2O	%vol	7.7	9.0	8.4	9.8	8.3	9.8
Stack Exhaust Nitrogen, N2	%vol	74.9	74.4	74.3	73.8	74.4	73.8
Stack Exhaust Argon, Ar Stack Exhaust Flow Rate	%vol %vol	0.9 100.0	0.9 100.0	0.9 100.0	0.9 100.0	0.9 100.0	0.9 100.0
Molecular Weight (Stack Exhaust Gases)	lb/lbmole	28.5	28.4	28.4	28.3	28.4	28.3
Stack Exhaust Flow Rate	scfm	864,693	870,623	837,631	843,560	753,296	759,226
Stack Exhaust Flow Rate	dscfm ∘⊏	798,072	792,142	767,235	761,305	690,704	684,774
Stack Exit Temperature	°F	179	179	179	179	179	179
Stack Exit Pressure Stack Exhaust Flow Rate	psia acfm	12.83 1,286,582	12.83 1,295,404	12.83 1,246,315	12.83 1,255,138	12.83 1,120,833	12.83 1,129,656
Stack Exhaust Flow Rate	ft	1,200,562	1,295,404	1,240,315	1,255,156	1,120,833	1,129,050
Stack Velocity	fps	84.3	84.8	81.6	82.2	73.4	74.0

HOBBS 501F4+ Hourly Emission Rate Calculation (100% Load)

		Case 4	Case 4	Case 5	Case 5	Case 6	Case 6
		Unfired	Fired	Unfired	Fired	Unfired	Fired
		Winter	Winter	Summer	Summer	Summer	Summer
		Chillers Off	Chillers Off	Chillers On	Chillers On	Chillers Off	Chillers Off
STACK EMISSION RATES							
NOx (pre-SCR)	ppmvd @ 15% O2	24.3	21.3	24.3	21.2	23.9	20.4
NOx (pre-SCR)	ppmvd	30.1	31.5	30.0	31.5	28.5	30.1
NOx (pre-SCR as NO2)	lb/hr	172.0	178.6	165.0	171.6	141.0	147.6
NOx (post-SCR)	ppmvd @ 15% O2	2.0	2.0	2.0	2.0	2.0	2.0
NOx (post-SCR)	ppmvd	2.5	3.0	2.5	3.0	2.4	2.9
NOx (post-SCR as NO2)	lb/hr	14.2	16.8	13.6	16.2	11.8	14.4
CO (pre-Catalytic Oxidation)	ppmvd @ 15% O2	14.6	13.1	14.5	12.9	14.5	12.7
CO (pre-Catalytic Oxidation)	ppmvd	18.1	19.3	17.9	19.2	17.3	18.7
CO (pre-Catalytic Oxidation)	lb/hr	63.0	66.8	60.0	63.8	52.0	55.8
CO (post-Catalytic Oxidation)	ppmvd @ 15% O2	2.0	2.0	2.0	2.0	2.0	2.0
CO (post-Catalytic Oxidation)	ppmvd	2.5	3.0	2.5	3.0	2.4	2.9
CO (post-Catalytic Oxidation)	lb/hr	8.6	10.2	8.3	9.9	7.2	8.8
VOC (pre-Catalytic Oxidation)	ppmvd @ 15% O2	1.9	1.8	1.9	1.8	1.9	1.7
VOC (pre-Catalytic Oxidation)	ppmvd	2.4	2.6	2.4	2.6	2.3	2.5
VOC (pre-Catalytic Oxidation as CH4)	lb/hr	4.8	5.2	4.6	5.0	3.9	4.3
VOC (post-Catalytic Oxidation)	ppmvd @ 15% O2	1.0	1.0	1.0	1.0	1.0	1.0
VOC (post-Catalytic Oxidation)	ppmvd	1.2	1.5	1.2	1.5	1.2	1.5
VOC (post-Catalytic Oxidation as CH4)	lb/hr	2.5	2.9	2.4	2.8	2.1	2.5
SO2	ppmvd @ 15% O2	0.9	0.9	0.9	0.9	0.9	0.9
SO2	ppmvd	1.1	1.3	1.1	1.3	1.1	1.3
SO2	lb/hr	8.7	10.4	8.4	10.0	7.3	9.0
PM10	lb/hr	11.98	17.76	11.61	17.38	10.44	16.2 ²
PM10	lb/MMBtu (LHV)	0.0068	0.0085	0.0068	0.0086	0.0071	0.0090
PM10	lb/MMBtu (HHV)	0.0064	0.0079	0.0064	0.0080	0.0066	0.0084
НСНО	lb/hr	0.4	0.4	0.4	0.4	0.4	0.4
NH3	ppmvd @ 15% O2	10.0	10.0	10.0	10.0	10.0	10.0
NH3	ppmvd	12.4	14.8	12.4	14.9	11.9	14.7
NH3	lb/hr	26.2	31.1	25.2	30.0	21.9	26.7

Process Input Data

Section 6 Calcs: Page 5

(Example calculations for Case 4 Fired unless otherwise noted)

FACILITY CONDITIONS

GT Fuel Flow Rate (MMscf/hr) = GT Heat Input (MMBtu/hr) / Fuel Heat Content (Btu/scf) GT Fuel Flow Rate = 1,884 MMBtu/hr / 1,033 Btu/scf = 1.82 MMscf/hr

DB Heat Input (HHV) (MMBtu/hr) = DB Heat Input (LHV) (MMBtu/hr) * HHV/LHV Ratio DB Heat Input (HHV) = 330 MMBtu/hr * 1.1 = 366 MMBtu/hr

DB Fuel Flow Rate (MMscf/hr) = DB Heat Input (MMBtu/hr) / Fuel Heat Content (Btu/scf) DB Fuel Flow Rate = 366 MMBtu/hr / 1,033 Btu/scf = 0.35 MMscf/hr

FUEL ANALYSIS

HHV/LHV Ratio = Fuel Heat Content (HHV) (Btu/scf) / Fuel Heat Content (LHV) (Btu/scf) HHV/LHV Ratio = 1,033 Btu/scf / 932 Btu/scf = 1.1

GT EXHAUST GAS ANALYSIS

Molecular Weight (GT Exhaust Gases) = Sum (%vol * MW) Molecular Weight (GT Exhaust Gases) = 12.5 %vol * 32.0 lb/lbmole + 3.9 % vol * 44.0 lb/lbmole + 7.7 %vol * 18.0 lb/lbmole + 74.9 %vol * 28.0 lb/lbmole + 0.9 %vol * 39.9 lb/lbmole = 28.5 lb/lbmole

GT Exhaust Flow Rate (lbmole/hr) = GT Exhaust Flow Rate (lb/hr) / MW GT Exhaust Gases (lb/lbmole) GT Exhaust Flow Rate = 3,834,000 lb/hr / 28.5 lb/lbmole = 134,651 lbmole/hr

GT Exhaust Flow Rate (MMscf/hr) = GT Exhaust Flow Rate (lbmole/hr) * Standard Molar Volume (scf/lbmole) * 1 MMscf/1,000,000 scf GT Exhaust Flow Rate = 134,651 lbmole/hr * 385.3 scf/lbmole * 1MMscf / 1,000,000scf = 51.9 MMscf/hr

GT Exhaust Flow Rate (Nm³/hr) = GT Exhaust Flow Rate (MMscf/hr) * 1,000,000 scf/MMscf / 35.3 scf/Nm³ GT Exhaust Flow Rate = 51.9 MMscf/hr * 1,000,000 scf/MMscf / 35.3 scf/Nm3 = 1,469,123 Nm3/hr

GT Exhaust O₂ (lbmole/hr) = GT Exhaust (lbmole/hr) * O₂% GT Exhaust O2 = 134,651 lbmole/hr * 12.5% = 16,895 lbmole/hr

GT Exhaust CO₂ (lbmole/hr) = GT Exhaust (lbmole/hr) * CO₂% GT Exhaust CO₂ = 134,651 lbmole/hr * 3.9% = 5,255 lbmole/hr

GT Exhaust H₂O (lbmole/hr) = GT Exhaust (lbmole/hr) * H₂O% GT Exhaust H₂O = 134,651 lbmole/hr * 7.7% = 10,374 lbmole/hr

GT Exhaust N₂ (lbmole/hr) = GT Exhaust (lbmole/hr) * N₂% GT Exhaust N2 = 134,651 lbmole/hr * 74.9% = 100,914 lbmole/hr

GT Exhaust Ar (lbmole/hr) = GT Exhaust (lbmole/hr) * Ar% GT Exhaust Ar = 134,651 lbmole/hr * 0.9% = 1,213 lbmole/hr

(Example calculations for Case 4 Fired unless otherwise noted)

GT EMISSION RATES

NOx (ppmvd) = NOx (ppmvd @ 15% O2) * (20.9-O2 vol%/(1-H2O vol%/100))/(20.9-15) NOx = 25 ppmvd @ 15% O2 * (20.9 - 12.5 / (1 - 7.7/100)) / (20.9-15) = 31 ppmvd

CO (ppmvd) = CO (ppmvd @ 15% O2) * (20.9-O2 vol%/(1-H2O vol%/100))/(20.9-15) CO = 15 ppmvd @ 15% O2 * (20.9 - 12.5 / (1 - 7.7/100)) / (20.9-15) = 19 ppmvd

VOC (ppmvd) = VOC (ppmvd @ 15% O2) * (20.9-O2 vol%/(1-H2O vol%/100))/(20.9-15) VOC = 2.0 ppmvd @ 15% O2 * (20.9 - 12.5 / (1 - 7.7/100)) / (20.9-15) = 2.5 ppmvd

 SO_2 (lb/hr) = Sulfur Content (grains/Hscf) * 1 Hscf/100scf * 1 lb_s/7,000 grains / MW_s (lb_s/lbmole_s) * 1lbmole_{SO2}/lbmole_s * MW_{SO2} (lb_{sO2}/lbmole_{SO2}) * GT Fuel Flow Rate (MMScf/hr) * 1,000,000 scf/MMscf SO2 = 1.7 grains/Hscf * 1 Hscf/100scf * 1 lbS/7,000 grains / 32.1 lbS/lbmoleS * 1lbmoleSO2/lbmoleS * 64.1 lbSO2/lbmoleSO2 * 1.8 MMscf/hr * 1,000,000 scf/MMscf = 8.7 lb/hr

 PM_{10} (lb/hr) = PM_{10} (mg/Nm³) * GT Exhaust Flow Rate (Nm³/hr) * 1g/1,000 mg * 1 lb/453,59g PM10 = 3.7 mg/Nm3 * 1,469,123 Nm3/hr * 1g/1,000 mg * 1 lb/453.59g = 12.0 lb/hr

HCHO (ppmvd) = HCHO (ppbvd @ 15% O2) * (20.9-O2 vol%/(1-H2O vol%/100))/(20.9-15) * 1 ppmvd/1,000 ppbvd HCHO = 91 ppbvd @ 15% O2 * (20.9 - 12.5 / (1 - 7.7/100)) / (20.9-15) * 1 ppmvd/1,000 ppbvd = 0.1 ppmvd

HCHO (lb/hr) = GT Exhaust Flow Rate (lbmole/hr) * $(1 - H_2O \text{ vol}\%/100)$ * HCHO (ppmvd) / 1,000,000 * MW_{HCHO} (lb/lbmole) HCHO = 134,651 lbmole/hr * (1 - 7.7/100) * 0.1 ppmvd/1,000,000 * 30.0 lb/lbmole = 0.4 lb/hr

DB EMISSION RATES

NOx (lb/hr) = NOx (lb/MMBtu) (LHV) * DB Heat Input (LHV) (MMBtu/hr) NOx = 0.02 lb/MMBtu (LHV) * 330 MMBtu/hr (LHV) = 6.6 lb/hr

CO (lb/hr) = CO (lb/MMBtu) (LHV) * DB Heat Input (LHV) (MMBtu/hr) CO= 0.012 lb/MMBtu (LHV) * 330 MMBtu/hr (LHV) = 3.8 lb/hr

VOC (lb/hr) = VOC (lb/MMBtu) (LHV) * DB Heat Input (LHV) (MMBtu/hr) VOC= 0.0013 lb/MMBtu (LHV) * 330 MMBtu/hr (LHV) = 0.4 lb/hr

 SO_2 (lb/hr) = Sulfur Content (grains/Hscf) * 1 Hscf/100scf * 1 lb_S/7,000 grains / MW_S (lb_S/lbmole_S) * 1lbmole_{SO2}/lbmole_S * MW_{SO2} (lb_{SO2}/lbmole_{SO2}) * DB Fuel Flow Rate (MMScf/hr) * 1,000,000 scf/MMscf SO2 = 1.7 grains/Hscf * 1 Hscf/100scf * 1 lbS/7,000 grains / 32.1 lbS/lbmoleS * 1lbmoleSO2/lbmoleS * 64.1 lbSO2/lbmoleSO2 * 0.35 MMscf/hr * 1,000,000 scf/MMscf = 1.7 lb/hr

$$\label{eq:PM10} \begin{split} \mathsf{PM}_{10} \ (\mathsf{lb/hr}) &= \mathsf{PM}_{10} \ (\mathsf{lb/MMBtu}) \ (\mathsf{LHV}) \ ^* \ \mathsf{DB} \ \mathsf{Heat} \ \mathsf{Input} \ (\mathsf{LHV}) \ (\mathsf{MMBtu/hr}) \\ \mathsf{PM10} &= 0.0175 \ \mathsf{lb/MMBtu} \ (\mathsf{LHV}) \ ^* \ 330 \ \mathsf{MMBtu/hr} \ (\mathsf{LHV}) \\ &= 5.8 \ \mathsf{lb/hr} \end{split}$$

HCHO Emission Factor (lb/MMBtu) (HHV) = HCHO Emission Factor (lb/MMscf) (HHV) / 1,020 Btu/scf HCHO Emission Factor = 7.50 E-02 lb/MMscf (HHV) / 1,020 Btu/scf = 7.35E-05 lb/MMBtu (HHV)

HCHO (lb/hr) = HCHO (lb/MMBtu) (HHV) * DB Heat Input (HHV) (MMBtu/hr) HCHO= 7.35E-05 lb/MMBtu (HHV) * 366 MMBtu/hr (HHV) = 0.03 lb/hr

(Example calculations for Case 4 Fired unless otherwise noted)

STACK EXHAUST GAS

Fuel x, in CxHy = stoichiometric lbmoles of carbon in fuel Fuel y, in Cx,Hy = stoichiometric lbmoles of hydrogen in fuel

DB Fuel Flow Rate (lbmole/hr) =DB Heat Input (HHV) (MMBtu/hr) * 1,000,000 Btu/MMBtu / Fuel Heat Content (HHV) (Btu/scf) / Standard Molar Volume (scf/lbmole) DB Fuel Flow Rate = 366 MMBtu/hr * 1,000,000 Btu/MMBtu / 1,033 Btu/scf / 385.3 scf/lbmole = 919 lbmole/hr

 O_2 Consumed at DB (lbmole/hr) = (Fuel x + Fuel y/4) * DB Fuel Flow Rate (lbmole/hr) O2 Consumed at DB) = (1.04 + 4.02 / 4) * 919 lbmole/hr = 1,875 lbmole/hr

 CO_2 Produced at DB (Ibmole/hr) = Fuel x * DB Fuel Flow Rate (Ibmole/hr) CO2 Produced at DB = 1.04 * 919 Ibmole/hr = 951 Ibmole/hr

 H_2O Produced at DB (lbmole/hr) = Fuel y / 2 * DB Fuel Flow Rate (lbmole/hr) H2O Produced at DB = 4.02 / 2 * 919 lbmole/hr = 1,847 lbmole/hr

Stack Exhaust O_2 (lbmole/hr) = GT Exhaust O_2 (lbmole/hr) - DB Consumed O_2 (lbmole/hr) Stack Exhust O_2 = 16,895 lbmole/hr - 1,875 lbmole/hr = 15,021 lbmole/hr

Stack Exhaust CO_2 (lbmole/hr) = GT Exhaust CO_2 (lbmole/hr) + DB Produced CO_2 (lbmole/hr) Stack Exhaust CO_2 = 5,255 lbmole/hr + 951 lbmole/hr = 6,206 lbmole/hr

Stack Exhaust H_2O (lbmole/hr) = GT Exhaust H_2O (lbmole/hr) + DB Produced H_2O (lbmole/hr) Stack Exhust $H_2O = 10,374$ lbmole/hr + 1,847 lbmole/hr = 12,221 lbmole/hr

Stack Exhaust N₂ (lbmole/hr) = GT Exhaust N₂ (lbmole/hr) Stack Exhaust N2 = 100,914 lbmole/hr

Stack Exhaust Ar (lbmole/hr) = GT Exhaust Ar (lbmole/hr) Stack Exhaust Ar = 1,213 lbmole/hr

Stack Exhaust Flow Rate (Ibmole/hr) = Sum Stack Exhaust Pollutants Flow Rates (Ibmole/hr) Stack Exhaust Flow Rate = 15,021 Ibmole/hr + 6,206 Ibmole/hr + 12,221 Ibmole/hr + 100,914 Ibmole/hr + 1,213 Ibmole/hr = 135,574 Ibmole/hr

Stack Exhaust i %vol = Stack Exhaust i (lbmole/hr) * 100 / Stack Exhaust Flow Rate (lbmole/hr) Stack Exhaust O2 = 15,021 lbmole/hr * 100 /135,574 lbmole/hr = 11.1 %vol Stack Exhaust CO2 = 6,206 lbmole/hr * 100 /135,574 lbmole/hr = 4.6 %vol Stack Exhaust H2O = 12,221 lbmole/hr * 100 /135,574 lbmole/hr = 9.0 %vol Stack Exhaust N2 = 100,914 lbmole/hr * 100 /135,574 lbmole/hr = 74.4 %vol Stack Exhaust Ar = 1,213 lbmole/hr * 100 /135,574 lbmole/hr = 0.9 %vol

Molecular Weight (Stack Exhaust Gases) = Sum (%vol * MW)

Molecular Weight (GT Exhaust Gases) = 11.1 %vol * 32.0 lb/lbmole + 4.6 % vol * 44.0 lb/lbmole + 9.0 %vol * 18.0 lb/lbmole + 74.4 %vol * 28.0 lb/lbmole + 0.9 %vol * 39.9 lb/lbmole = 28.4 lb/lbmole

Stack Exhaust Flow Rate (scfm) = Stack Exhaust Flow Rate (lbmole/hr) * Standard Molar Volume (scf/lbmole) * 1hr/60min Stack Exhaust Flow Rate = 135,574 lbmole/hr * 385.3 scf/lbmole * 1hr/60min = 870,623 scfm

Stack Exhaust Dry Flow Rate (dscfm) = Stack Exhaust Flow Rate (scfm) * (1 - H₂O/100) Stack Exhaust Dry Flow Rate = 870,623 scfm * (1 - 9.0 %vol / 100) = 792,142 dscfm

Stack Exhaust Flow Rate (acfm) = Stack Exhaust Flow Rate (scfm) *((5/9*(Stack Exit Temp (F)-32)+273.15)/273.15)*(14.696/Stack Exit Pressure (psia)) Stack Exhaust Flow Rate = 870,623 * ((5/9*(179-32)+273.15) K / 273.15 K) *(14.696 psia / 12.83 psia) = 1,295,404 acfm

Stack Exit Velocity (fps) =Stack Exhaust Flow Rate (acfm) / (PI()/4 * Stack Diameter^2) (ft)^2 * 1min/60sec Stack Exit Velocity = 1,295,404 / (PI()/4 * 18.0^2) ft^2 * 1min/60sec = 84.8 fps

(Example calculations for Case 4 Fired unless otherwise noted)

STACK EMISSION RATES

NOx (pre-SCR as NO₂) (lb/hr) = GT NOx Exhaust (lb/hr) + DB NOx Exhaust (lb/hr) NOx (pre-SCR as NO2) = 172.0 lb/hr + 6.6 lb/hr = 178.6 lb/hr

NOx (pre-SCR) (ppmvd) = NOx (pre-SCR as NO₂) (lb/hr) / (Stack Exhaust Flow Rate (lbmole/hr) * (1 - Stack Exhaust H₂O vol%/100) * 1/1,000,000 * MW_{NO2} (lb/lbmole)) NOx (pre-SCR) = 178.6 lb/hr /(135,574 lbmole/hr * (1 - 9.0 /100) * 1 / 1,000,000 * 46.0 lb/lbmole) = 31.5 ppmvd

NOx (pre-SCR) (ppmvd @ 15% O₂) = NOx (pre-SCR) (ppmvd) * (20.9 - 15) / (20.9 - Stack Exhaust O₂%/(1 - H₂O%/100)) NOx (pre-SCR) = 31.5 ppmvd * (20.9 - 15) / (20.9 - 11.1 / (1 - 9.0/100)) = 21.3 ppmvd @ 15% O2

NOx (post-SCR) (ppmvd) = NOx (post-SCR) (ppmvd @ $15\% O_2$) * (20.9- O_2 vol%/(1-H₂O vol%/100))/(20.9-15) NOx (post-SCR) = 2.0 ppmvd @ $15\% O_2$ * (20.9 - 11.1 / (1 - 9.0/100)) / (20.9 - 15) = 3.0 ppmvd

NOx (post-SCR as NO₂) (lb/hr) = NOx (post-SCR) (ppmvd) * (1 - H_2O %vol/100) * Stack Exhaust Flow Rate (lbmole/hr) /1,000,000 * MW_{NO2} (lb/lbmole) NOx (post-SCR as NO2) = 3.0 ppmvd * (1 - 9.0/100) * 135,574 lbmole/hr / 1,000,000 * 46.0 lb/lbmole = 16.8 lb/hr

CO (pre-Catalytic Oxidation) (lb/hr) = GT CO Exhaust (lb/hr) + DB CO Exhaust (lb/hr) CO (pre-Catalytic Oxydation) = 63.0 lb/hr + 3.8 lb/hr = 66.8 lb/hr

CO (pre-Catalytic Oxidation) (ppmvd) = CO (pre-Catalytic Oxidation) (lb/hr) / (Stack Exhaust Flow Rate (lbmole/hr) * (1 - Stack Exhaust H₂O vol%/100) * 1/1,000,000 * MW_{CO} (lb/lbmole)) CO (pre-Catalytic Oxidation) = 66.8 lb/hr /(135,574 lbmole/hr * (1 - 9.0 /100) * 1 / 1,000,000 * 28.0 lb/lbmole) = 19.3 ppmvd

CO (pre-Catalytic Oxidation) (ppmvd @ 15% O₂) = CO (pre-Catalytic Oxidation) (ppmvd) * (20.9 - 15) / (20.9 - 51) / (20.9 - 12%/(1 - $H_2O\%$ /(100)) CO (pre-Catalytic Oxidation) = 19.3 ppmvd * (20.9 - 15) / (20.9 - 11.1 / (1 - 9.0/100)) = 13.1 ppmvd @ 15% O2

CO (post-Catalytic Oxidation) (ppmvd) = CO (post-Catalytic Oxidation) (ppmvd @ $15\% O_2$) * (20.9- $O_2 vol\%/(1-H_2O vol\%/100))/(20.9-15)$ CO (post-Catalytic Oxidation) = 2.0 ppmvd @ $15\% O_2$ * (20.9 - 11.1 / (1 - 9.0/100)) / (20.9 - 15) = 3.0 ppmvd

CO (post-Catalytic Oxidation) (lb/hr) = CO (post-Catalytic Oxidation) (ppmvd) * $(1 - H_2O \text{ %vol}/100)$ * Stack Exhaust Flow Rate (lbmole/hr) /1,000,000 * MW_{CO} (lb/lbmole) CO (post-Catalytic Oxidation) = 3.0 ppmvd * (1 - 9.0/100) * 135,574 lbmole/hr / 1,000,000 * 28.0 lb/lbmole = 10.2 lb/hr

VOC (pre-Catalytic Oxidation) (lb/hr) = GT VOC Exhaust (lb/hr) + DB VOC Exhaust (lb/hr) VOC (pre-Catalytic Oxydation) = 4.8 lb/hr + 0.4 lb/hr = 5.2 lb/hr

VOC (pre-Catalytic Oxidation) (ppmvd) = VOC (pre-Catalytic Oxidation) (lb/hr) / (Stack Exhaust Flow Rate (lbmole/hr) * (1 - Stack Exhaust H₂O vol%/100) * 1/1,000,000 * MW_{VOC} (lb/lbmole)) VOC (pre-Catalytic Oxidation) = 5.2 lb/hr /(135,574 lbmole/hr * (1 - 9.0 / 100) * 1 / 1,000,000 * 16.0 lb/lbmole) = 2.6 ppmvd

VOC (pre-Catalytic Oxidation) (ppmvd @ $15\% O_2$) = VOC (pre-Catalytic Oxidation) (ppmvd) * (20.9 - 15) / (20.9 - Stack Exhaust $O_2\%/(1 - H_2O\%/100)$) VOC (pre-Catalytic Oxidation) = 2.6 ppmvd * (20.9 - 15) / (20.9 - 11.1 / (1 - 9.0/100)) = 1.8 ppmvd @ $15\% O_2$

VOC (post-Catalytic Oxidation) (ppmvd) = VOC (post-Catalytic Oxidation) (ppmvd @ $15\% O_2$) * (20.9-O₂ vol%/(1-H₂O vol%/100))/(20.9-15) VOC (post-Catalytic Oxidation) = 1.0 ppmvd @ $15\% O_2$ * (20.9 - 11.1 / (1 - 9.0/100)) / (20.9 - 15) = 1.5 ppmvd

VOC (post-Catalytic Oxidation) (lb/hr) = VOC (post-Catalytic Oxidation (ppmvd) * $(1 - H_2O \% vol/100)$ * Stack Exhaust Flow Rate (lbmole/hr) /1,000,000 * MW_{VOC} (lb/lbmole) VOC (post-Catalytic Oxidation) = 1.5 ppmvd * (1 - 9.0/100) * 135,574 lbmole/hr / 1,000,000 * 16.0 lb/lbmole = 2.9 lb/hr

(Example calculations for Case 4 Fired unless otherwise noted)

 SO_2 (lb/hr) = GT SO_2 Exhaust (lb/hr) + DB SO_2 Exhaust (lb/hr) SO2 - 8.7 lb/hr + 1.7 lb/hr = 10.4 lb/hr

 $SO_2(ppmvd) = SO_2(lb/hr) / (Stack Exhaust Flow Rate (lbmole/hr) * (1 - Stack Exhaust H_2O vol%/100) * 1/1,000,000 * MW_{VOC} (lb/lbmole))$ $SO_2 = 10.4 lb/hr / (135,574 lbmole/hr * (1 - 9.0 / 100) * 1 / 1,000,000 * 64.1 lb/lbmole) = 1.3 ppmvd$

SO₂ (ppmvd @ 15% O₂) = SO₂ (pre-Catalytic Oxidation) (ppmvd) * (20.9 - 15) / (20.9 - Stack Exhaust O₂%/(1 - H₂O%/100)) SO₂ = 1.3 ppmvd * (20.9 - 15) / (20.9 - 11.1 / (1 - 9.0/100)) = 0.9 ppmvd @ 15% O₂

$$\label{eq:PM10} \begin{split} \mathsf{PM}_{10} \ (\mathsf{lb/hr}) &= \mathsf{GT} \ \mathsf{PM}_{10} \ \mathsf{Exhaust} \ (\mathsf{lb/hr}) + \mathsf{DB} \ \mathsf{PM}_{10} \ \mathsf{Exhaust} \ (\mathsf{lb/hr}) \\ \mathsf{PM10} &- 12.0 \ \mathsf{lb/hr} + 5.8 \ \mathsf{lb/hr} = 17.8 \ \mathsf{lb/hr} \end{split}$$

PM₁₀ (lb/MBtu) = PM₁₀ (lb/hr) / (GT Heat Input (MMBtu/hr) + DB Heat Input (MMBtu/hr)) PM10 = 17.8 lb/hr / (1,765 MMBtu/hr (LHV) + 330 MMBtu/hr (LHV)) = 0.0085 lb/MMBtu (LHV) PM10 = 17.8 lb/hr / (1,884 MMBtu/hr (LHV) + 366 MMBtu/hr (LHV)) = 0.0079 lb/MMBtu (HHV)

HCHO (lb/hr) = GT HCHO Exhaust (lb/hr) + DB HCHO Exhaust (lb/hr) HCHO = 0.4 lb/hr + 0.03 lb/hr = 0.4 lb/hr

NH₃ (ppmvd) = NH₃ (ppmvd @ 15% O₂) * (20.9-O₂ vol%/(1-H₂O vol%/100))/(20.9-15) NH3 = 10.0 ppmvd @ 15% O₂ * (20.9 - 11.1 / (1 - 9.0/100)) / (20.9 - 15) = 14.8 ppmvd

 NH_3 (lb/hr) = NH_3 (ppmvd) * (1 - H_2O %vol/100) * Stack Exhaust Flow Rate (lbmole/hr) /1,000,000 * MW_{NH3} (lb/lbmole) NH3) = 14.8 ppmvd * (1 - 9.0/100) * 135,574 lbmole/hr / 1,000,000 * 17.0 lb/lbmole = 31.1 lb/hr

HOBBS 501F4+ Annual Emission Rate Calculation (100% Load) (8,760 hr/yr)

HOBBS 501F4+ Annual Emission Rate C	Salculation (100% Loa	a) (8,760 nr/yr)					
		Case 4	Case 4	Case 5	Case 5	Case 6	Case 6
		Unfired	Fired	Unfired	Fired	Unfired	Fired
		Winter	Winter	Summer	Summer	Summer	Summer
		Chillers Off	Chillers Off	Chillers On	Chillers On	Chillers Off	Chillers Off
SITE CONDITIONS	05	00		05	05	05	05
Ambient Temperature	°F	30	30	95	95	95	95
Ambient Relative Humidity	%	60	60	20	20	20	20
Barometric Pressure	psia	12.83	12.83	12.83	12.83	12.83	12.83
Compressor Inlet Temperature	°F	30	30	46	46	95	95
FACILITY CONDITIONS							
Annual Hours of Operation	hr/yr	1,419	1,080	1,632	1,242	1,923	1,464
GT Power Output	MW	189	189	180	180	151	151
GT Model		Hobbs 501F4+	Hobbs 501F4+	Hobbs 501F4+	Hobbs 501F4+	Hobbs 501F4+	Hobbs 501F4+
GT Load		Base	Base	Base	Base	Base	Base
Chillers	On/Off	Off	Off	On	On	Off	Off
GT Fuel Flow Rate	lb/hr	86,940	86,940	83,592	83,592	72,720	72,720
GT Heat Input (LHV)	MMBtu/hr	1,765	1,765	1,697	1,697	1,477	1,477
GT Heat Input (HHV)	MMBtu/hr	1,884	1,884	1,812	1,812	1,576	1,576
,							
GT Heat Input (LHV)	MMBtu/yr	2,504,342	1,906,200	2,769,036	2,107,674	2,840,840	2,162,328
GT Heat Input (HHV)	MMBtu/yr	2,673,190	2,034,720	2,956,684	2,250,504	3,031,255	2,307,264
GT Fuel Flow Rate	MMscf/yr	2,588	1,970	2,862	2,179	2,934	2,234
DB Model		Forney	Forney	Forney	Forney	Forney	Forney
DB Status		Off	On	Off	On	Off	On
DB Heat Input (LHV)	MMBtu/yr	-	345,600	-	397,440	-	445,056
DB Heat Input (HHV)	MMBtu/yr		383,187	-	440,665	-	493,459
DB Fuel Flow Rate	•		371		427		478
DB Fuel Flow Rate	MMscf/yr	-	571	-	427	-	470
GT+DB Heat Input (LHV)	MMBtu/yr	2,504,342	2,251,800	2,769,036	2,505,114	2,840,840	2,607,384
GT+DB Heat Input (HHV)	•			2,956,684		3,031,255	
GT+DB Heat lliput (HHV)	MMBtu/yr	2,673,190	2,417,907	2,950,004	2,691,169	3,031,235	2,800,723
		5110	DNG	DNG	DUC	DUO	5110
Fuel Type		PNG	PNG	PNG	PNG	PNG	PNG
Fuel Molecular Weight	lb/lbmole	17.29	17.29	17.29	17.29	17.29	17.29
Sulfur Content	grains/100scf	1.1	1.1	1.1	1.1	1.1	1.1
		000		000			
Fuel Heat Content (LHV)	Btu/scf	932	932	932	932	932	932
Fuel Heat Content (HHV)	Btu/scf	1,033	1,033	1,033	1,033	1,033	1,033
HHV/LHV Ratio		1.1	1.1	1.1	1.1	1.1	1.1
GT EXHAUST GAS ANALYSIS							
Oxygen, O2	%vol	12.5	12.5	12.5	12.5	12.7	12.7
Carbon Dioxide, CO2	%vol	3.9	3.9	3.9	3.9	3.7	3.7
Water, H2O	%vol	7.7	7.7	8.4	8.4	8.3	8.3
Nitrogen, N2	%vol	74.9	74.9	74.3	74.3	74.4	74.4
Argon, Ar	%vol	0.9	0.9	0.9	0.9	0.9	0.9
Total	%vol	100.0	100.0	100.0	100.0	100.0	100.0
i otal	70001	100.0	100.0	100.0	100.0	100.0	100.0
Molecular Weight (GT Exhaust Gases)	lb/lbmole	28.5	28.5	28.4	28.4	28.4	28.4
σ, ,							
GT Exhaust Temperature	°F	1,121	1,121	1,130	1,130	1,155	1,155
GT Exhaust Flow Rate	lb/hr	3,834,000	3,834,000	3,704,400	3,704,400	3,330,000	3,330,000
GT Exhaust Flow Rate	lbmole/yr	191,054,814	145,422,904	212,836,646	162,002,320	225,620,739	171,733,035
GT Exhaust Flow Rate	MMscf/yr	73,614	56,032	82,007	62,420	86,933	66,170
GT Exhaust Flow Rate	Nm3/yr	2,084,524,985	1,586,652,914	2,322,178,110	1,767,544,496	2,461,660,392	1,873,712,554
		_,,	.,,,	_,,,,,	.,,	_, ,	.,,,,
GT Exhaust Oxygen, O2	lbmole/yr	23,972,657	18,246,980	26,511,418	20,179,379	28,662,801	21,816,921
GT Exhaust Carbon Dioxide, CO2	lbmole/yr	7,455,611	5,674,898	8,304,782	6,321,251	8,357,160	6,361,120
GT Exhaust Water, H2O	lbmole/yr	14,720,053	11,204,286	17,887,222	13,615,002	18,747,143	14,269,538
GT Exhaust Nitrogen, N2	lbmole/yr	143,185,967	108,987,147	158,216,736	120,427,938	167,820,812	127,738,157
GT Exhaust Nitrogen, N2	Ibmole/yr	143,185,967	108,987,147	158,216,736	120,427,938	167,820,812	127,738,157

GT Exhaust Argon, Ar	lbmole/yr	1,720,526	1,309,592	1,916,488	1,458,750	2,032,823	1,547,299
----------------------	-----------	-----------	-----------	-----------	-----------	-----------	-----------

HOBBS 501F4+ Annual Emission Rate Calculation (100% Load) (8,760 hr/yr)

		(0,100					
		Case 4	Case 4	Case 5	Case 5	Case 6	Case 6
		Unfired	Fired	Unfired	Fired	Unfired	Fired
		Winter	Winter	Summer	Summer	Summer	Summer
		Chillers Off	Chillers Off	Chillers On	Chillers On	Chillers Off	Chillers Off
T EMISSION RATES							
NOx	ppmvd @ 15% O2	25	25	25	25	25	25
NOx	ppmvd	31	31	31	31	30	30
NOx (as NO2)	lb/hr	172	172	165	165	141	141
NOx (as NO2)	lb/yr	244,049	185,760	269,235	204,930	271,197	206,424
CO	ppmvd @ 15% O2	15	15	15	15	15	15
CO	ppmvd	19	19	19	19	18	18
CO	lb/hr	63	63	60	60	52	52
CO	lb/yr	89,390	68,040	97,903	74,520	100,016	76,128
60	ib/yi	09,390	00,040	97,903	74,520	100,010	70,120
VOC	ppmvd @ 15% O2	2.0	2.0	2.0	2.0	2.0	2.0
VOC	· · · · · · · · · · · · · · · · · · ·	2.5	2.5	2.5	2.5	2.4	
	ppmvd						2.4
VOC (as CH4)	lb/hr	4.8	4.8	4.6	4.6	3.9	3.9
VOC (as CH4)	lb/yr	6,811	5,184	7,506	5,713	7,501	5,710
Sulfur Content	grains/100scf	1.1	1.1	1.1	1.1	1.1	1.1
SO2	lb/yr	8,125	6,184	8,986	6,840	9,213	7,012
	-						
PM10	mg/Nm3	2.6	2.6	2.6	2.6	2.6	2.6
PM10	lb/yr	11,949	9,095	13,311	10,132	14,110	10,740
-	····· y ·	,	2,000	,	,	,	,
Formaldehyde, HCHO	ppbvd @ 15% O2	91	91	91	91	91	9′
-							
Formaldehyde, HCHO	ppmvd	0.1	0.1	0.1	0.1	0.1	0.
Formaldehyde, HCHO	lb/yr	597	454	659	502	675	514
B EMISSION RATES							
NOx	lb/MMBtu (LHV)	0.02	0.02	0.02	0.02	0.02	0.02
	· · · ·	0.02		0.02		0.02	
NOx	lb/yr	-	6,912	-	7,949	-	8,901
		_					
0	lb/MMBtu (LHV)	0.012	0.012	0.012	0.012	0.012	0.012
0	lb/yr	-	4,020	-	4,624	-	5,177
	-				-		
/OC	lb/MMBtu (LHV)	0.0013	0.0013	0.0013	0.0013	0.0013	0.0013
	, ,						
/OC (as CH4)	lb/yr	-	438	-	503	-	564
Sulfur Contont	aroina/100-of				4.4	4.4	A .
Sulfur Content	grains/100scf	1.1	1.1	1.1	1.1	1.1	1.1
502	lb/yr	-	1,165	-	1,339	-	1,500
2014.0		0.0475	0.0475	0.0475	0.0475	0.0475	0.047
PM10	lb/MMBtu (LHV)	0.0175	0.0175	0.0175	0.0175	0.0175	0.017
PM10	lb/yr	-	6,048	-	6,955	-	7,78
⁻ ormaldehyde, HCHO	lb/MMscf (HHV)	7.50E-02	7.50E-02	7.50E-02	7.50E-02	7.50E-02	7.50E-0
Formaldehyde, HCHO	lb/MMBtu (HHV)	7.35E-05	7.35E-05	7.35E-05	7.35E-05	7.35E-05	7.35E-0
Formaldehyde, HCHO	lb/yr	-	28.2	-	32.4	_	36.
	·~· , ·	_	20.2		02.4	-	00.
ACK EXHAUST GAS							
Fuel x, in CxHy		1.04	1.04	1.04	1.04	1.04	1.0
⁻ uel y, in Cx,Hy		4.02	4.02	4.02	4.02	4.02	4.0
DB Fuel Flow Rate	lbmole/yr	-	962,713	-	1,107,120	-	1,239,76
Dxygen Consumed at DB, O2	lbmole/yr	_	1,963,401	-	2,257,911	-	2,528,42
Carbon Dioxide Produced at DB, CO2	lbmole/yr		996,423				1,283,17
	•	-		-	1,145,886	-	
Vater Produced at DB, H2O	lbmole/yr	-	1,933,956	-	2,224,050	-	2,490,50
		00.076.5	10 000			00 000	
Stack Exhaust Oxygen, O2	lbmole/yr	23,972,657	16,283,580	26,511,418	17,921,468	28,662,801	19,288,49
Stack Exhaust Carbon Dioxide, CO2	lbmole/yr	7,455,611	6,671,321	8,304,782	7,467,137	8,357,160	7,644,29
Stack Exhaust Water, H2O	lbmole/yr	14,720,053	13,138,242	17,887,222	15,839,052	18,747,143	16,760,04
	-						
Stack Exhaust Nitrogen, N2	lbmole/yr	143,185,967	108,987,147	158,216,736	120,427,938	167,820,812	127,738,15
Stack Exhaust Argon, Ar	lbmole/yr	1,720,526	1,309,592	1,916,488	1,458,750	2,032,823	1,547,29
Stack Exhaust Flow Rate	lbmole/yr	191,054,814	146,389,882	212,836,646	163,114,345	225,620,739	172,978,28
	-					· •	•
Stack Exhaust Oxygen, O2	%vol	12.5	11.1	12.5	11.0	12.7	11.:

Stack Exhaust Oxygen, O2	%vol	12.5	11.1	12.5	11.0	12.7	11.2
Stack Exhaust Carbon Dioxide, CO2	%vol	3.9	4.6	3.9	4.6	3.7	4.4
Stack Exhaust Water, H2O	%vol	7.7	9.0	8.4	9.7	8.3	9.7
Stack Exhaust Nitrogen, N2	%vol	74.9	74.4	74.3	73.8	74.4	73.8
Stack Exhaust Argon, Ar	%vol	0.9	0.9	0.9	0.9	0.9	0.9
Stack Exhaust Flow Rate	%vol	100.0	100.0	100.0	100.0	100.0	100.0
Molecular Weight (Stack Exhaust Gases)	lb/lbmole	28.5	28.4	28.4	28.3	28.4	28.3

HOBBS 501F4+ Annual Emission Rate Calculation (100% Load) (8,760 hr/yr)

	(Case 4	Case 4	Case 5	Case 5	Case 6	Case 6
		Unfired	Fired	Unfired	Fired	Unfired	Fired
		Winter	Winter	Summer	Summer	Summer	Summer
		Chillers Off	Chillers Off	Chillers On	Chillers On	Chillers Off	Chillers Off
STACK EMISSION RATES							
NOx (pre-SCR)	ppmvd @ 15% O2	24.3	21.4	24.3	21.2	23.9	20.7
		30.1	31.4	30.0	31.4	28.5	30.0
NOx (pre-SCR)	ppmvd						
NOx (pre-SCR as NO2)	lb/yr	244,049	192,672	269,235	212,879	271,197	215,325
NOx (pre-SCR as NO2)	tpy	122.0	96.3	134.6	106.4	135.6	107.7
NOx (post-SCR)	ppmvd @ 15% O2	2	2	2	2	2	2
NOx (post-SCR)	ppmvd	2.5	2.9	2.5	3.0	2.4	2.9
. ,							
NOx (post-SCR as NO2)	lb/yr	20,089	18,037	22,197	20,054	22,728	20,837
NOx (post-SCR as NO2)	tpy	10.0	9.0	11.1	10.0	11.4	10.4
CO (pre-Catalytic Oxidation)	ppmvd @ 15% O2	14.6	13.1	14.5	13.0	14.5	12.8
CO (pre-Catalytic Oxidation)	ppmvd	18.1	19.3		19.2	17.3	18.6
CO (pre-Catalytic Oxidation)	lb/yr	89,390	72,060		79,144	100,016	81,305
CO (pre-Catalytic Oxidation)	tpy	44.7	36.0	49.0	39.6	50.0	40.7
CO (post-Catalytic Oxidation)	ppmvd @ 15% O2	2	2	2	2	2	2
CO (post-Catalytic Oxidation)	ppmvd	2.5	2.9	2.5	3.0	2.4	2.9
CO (post-Catalytic Oxidation)	lb/yr	12,231	10,982	13,514	12,210	13,838	12,687
CO (post-Catalytic Oxidation)		6.1	5.5	6.8	6.1	6.9	
CO (post-Catalytic Oxidation)	tpy	0.1	5.5	0.0	0.1	0.9	6.3
VOC (pre-Catalytic Oxidation)	ppmvd @ 15% O2	1.9	1.8	1.9	1.8	1.9	1.7
VOC (pre-Catalytic Oxidation)	ppmvd	2.4	2.6	2.4	2.6	2.3	2.5
VOC (pre-Catalytic Oxidation as CH4)	lb/yr	6,811	5,622	7,506	6,217	7,501	6,273
	-						
VOC (pre-Catalytic Oxidation as CH4)	tpy	3.4	2.8	3.8	3.1	3.8	3.1
VOC (post-Catalytic Oxidation)	ppmvd @ 15% O2	0.6	0.6	0.6	0.6	0.6	0.6
VOC (post-Catalytic Oxidation)	ppmvd	0.7	0.9	0.7	0.9	0.7	0.9
VOC (post-Catalytic Oxidation as CH4)	lb/yr	2,102	1,887	2,322	2,098	2,378	2,180
VOC (post-Catalytic Oxidation as CH4)	tpy	1.1	0.9	1.2	1.0	1.2	1.1
SO2	ppmvd @ 15% O2	0.6	0.6	0.6	0.6	0.6	0.6
SO2	ppmvd	0.7	0.9	0.7	0.9	0.7	0.9
SO2	lb/yr	8,125	7,349	8,986	8,179	9,213	8,512
SO2	tpy	4.1	3.7	4.5	4.1	4.6	4.3
PM10	lb/yr	11,949	15,143	13,311	17,087	14,110	18,529
PM10	tpy	6.0	7.6	6.7	8.5	7.1	9.3
НСНО	lb/yr	597	482	659	534	675	550
НСНО	tpy	0.3	0.2	0.3	0.3	0.3	0.3
NH3	ppmvd @ 15% O2	10	10	10	10	10	10
NH3	ppmvd	12.4	14.7	12.4	14.8	11.9	14.5
NH3	lb/yr	37,180	33,384	41,082	37,116	42,066	38,565
NH3	tpy	18.6	16.7	20.5	18.6	21.0	19.3
CO2	lb/MMBtu (HHV)	118.9	118.9	118.9	118.9	118.9	118.9
N2O	lb/MMBtu (HHV)	2.2E-04	2.2E-04	2.2E-04	2.2E-04	2.2E-04	2.2E-04
CH4	lb/MMBtu (HHV)	2.2E-03	2.2E-03	2.2E-03	2.2E-03	2.2E-03	2.2E-03
664	וטאוויוסנע (ההע)	2.2E-03	2.2E-03	2.2E-03	2.2E-03	2.22-03	2.2E-03
CO2	tpy	158,864	143,693	175,712	159,932	180,143	166,443
N2O	tpy	0.29	0.27	0.33	0.30	0.33	0.31
CH4	tpy	2.95	2.67	3.26	2.97	3.34	3.09
CO2 Global Warming Potential	-	1	1	1	1	1	1
N2O Global Warming Potential		298	298	298	298	298	298
C C	-						
CH4 Global Warming Potential	-	25	25	25	25	25	25
Total GHG	tpy	158,867	143,696	175,715	159,936	180,147	166,446
Total CO2e	tpy	159,025	143,839	175,890	160,095	180,326	166,612
Vendor Data		- /	- ,	-,	- /	-,	,

Process Input Data

(Example calculations for Case 4 Fired unless otherwise noted)

FACILITY CONDITIONS

Annual Hours of Operation with Duct Firing: 12 hr/day December, January, February, June, July, August and September 9 hr/day March, April, May, November 12 days annual outage (9 hr/day)

Case 4 Fired - Winter - Chillers Off = 12 hr/day * (31 days + 31days + 28 days) = 1,080 hr/yr Case 4 Unfired - Winter - Chillers Off = 1,080 hr fired/yr * 4,974 total hr unfired/yr / 3,786 total hrfired/yr = 1,419 hr/yr

Case 5 Fired - Summer- Chillers On = 9 hr/day * (31 days + 30 days + 31 days + 31 days + 30 days - 12 days) = 1,269 hr/yr Case 5 Unfired - Summer - Chillers On = 1,242 hr fired/yr * 4,974 total hr unfired/yr / 3,786 total hrfired/yr = 1,632 hr/yr

Case 6 Fired - Summer- Chillers Off = 12 hr/day * (30 days + 31 days + 31 days + 30 days) = 1,464 hr/yr Case 6 Unfired - Summer - Chillers On = 1,464 hr fired/yr * 4,974 total hr unfired/yr / 3,786 total hrfired/yr = 1,923 hr/yr

GT Heat Input (MMBtu/yr) = GT Heat Input (MMBtu/hr) * Annual Hours of Operation (hr/yr) GT Heat Input (LHV) = 1,765 MMBtu/hr * 1,080 hr/yr = 1,906,200 MMBtu/yr GT Heat Input (LHV) = 1,884 MMBtu/hr * 1,080 hr/yr = 2,034,720 MMBtu/yr

GT Fuel Flow Rate (MMscf/yr) = GT Heat Input (MMBtu/yr) (HHV) / Fuel Heat Content (HHV) (Btu/scf) GT Fuel Flow Rate = 2,034,720 MMBtu/yr / 1,033 Btu/scf = 1,970 MMscf/yr

DB Heat Input (MMBtu/yr) = DB Heat Input (MMBtu/hr) * Annual Hours of Operation (hr/yr) Case 4 DB Heat Input = 320 MMBtu/hr * 1,080 hr/yr = 345,600 MMBtu/yr Case 5 DB Heat Input = 320 MMBtu/hr * 1,242 hr/yr = 397,440 MMBtu/yr Case 6 DB Heat Input = 304 MMBtu/hr * 1,464 hr/yr = 445,056 MMBtu/yr

DB Heat Input (MMBtu/yr) (HHV) = DB Heat Input (MMBtu/yr) (LHV) * HHV/LHV Ratio DB Heat Input (HHV) = 345,600 MMBtu/yr * 1.1 = 383,187 MMBtu/yr

DB Fuel Flow Rate (MMscf/yr) = DB Heat Input (MMBtu/yr) (HHV) / Fuel Heat Content (HHV) (Btu/scf) DB Fuel Flow Rate = 383,187 MMBtu/yr / 1,033 Btu/scf = 371 MMscf/yr

GT+DB Heat Input (MMBtu/yr) = GT Heat Input (MMBtu/yr) + DB Heat Input (MMBtu/yr) GT+DB Heat Input (LHV) = 1,906,200 MMBtu/yr + 345,600 MMBtu/yr = 2,251,800 MMBtu/yr GT+DB Heat Input (HHV) = 2,034,720 MMBtu/yr + 383,187 MMBtu/yr = 2,417,907 MMBtu/yr

HHV/LHV Ratio = Fuel Heat Content (HHV) (Btu/scf) / Fuel Heat Content (LHV) (Btu/scf) HHV/LHV Ratio = 1,033 Btu/scf / 932 Btu/scf = 1.1

GT EXHAUST GAS ANALYSIS

Molecular Weight (GT Exhaust Gases) = Sum (%vol * MW) Molecular Weight (GT Exhaust Gases) = 12.5% vol * 32.0 lb/lbmole + 3.9% vol * 44.0 lb/lbmole + 7.7% vol * 18.0 lb/lbmole + 74.9% vol * 28.0 lb/lbmole + 0.9% vol * 39.9 lb/lbmole = 28.5 lb/lbmole

GT Exhaust Flow Rate (lbmole/yr) = GT Exhaust Flow Rate (lb/hr) / MW (GT Exhaust Gases) * Annual Hours of Operation (hr/yr) GT Exhaust Flow Rate = 3,834,000 lb/hr / 28.5 lb/lbmole * 1,080 hr/yr = 145,422,904 lbmole/yr

GT Exhaust Flow Rate (MMscf/yr) = GT Exhaust Flow Rate (lbmole/yr) * Standard Molar Volume (scf/lbmole) * 1MMscf/1,000,000scf GT Exhaust Flow Rate = 145,422,904 lbmole/yr * 385.3 scf/lbmole * 1 MMscf/1,000,000 scf = 56,032 MMscf/yr

GT Exhaust Flow Rate (Nm³/yr) = GT Exhaust Flow Rate (MMscf/yr) * 1,000,000 scf/MMscf / 35.3 scf/Nm³ GT Exhaust Flow Rate = 56,032 MMscf/yr * 1,000,000 scf/MMscf / 35.3 scf/Nm3 = 1,586,652,914 Nm3/yr

(Example calculations for Case 4 Fired unless otherwise noted)

GT Exhaust O₂ (lbmole/hr) = GT Exhaust (lbmole/hr) * O₂% GT Exhaust O2 = 145,422,904 lbmole/yr * 12.5% = 18,246,980 lbmole/yr

GT Exhaust CO₂ (lbmole/hr) = GT Exhaust (lbmole/hr) * CO₂% GT Exhaust CO₂ = 145,422,904 lbmole/yr * 3.9% = 5,674,898 lbmole/yr

GT Exhaust H₂O (lbmole/hr) = GT Exhaust (lbmole/hr) * H₂O% GT Exhaust H₂O = 145,422,904 lbmole/yr * 7.7% = 11,204,286 lbmole/yr

GT Exhaust N₂ (lbmole/hr) = GT Exhaust (lbmole/hr) * N₂% GT Exhaust N2 = 145,422,904 lbmole/yr * 74.9% = 108,987,147 lbmole/yr

GT Exhaust Ar (lbmole/hr) = GT Exhaust (lbmole/hr) * Ar% GT Exhaust Ar = 145,422,904 lbmole/yr * 0.9% = 1,309,592 lbmole/yr

GT EMISSION RATES

NOx (ppmvd) = NOx (ppmvd @ 15% O2) * (20.9-O2 vol%/(1-H2O vol%/100))/(20.9-15) NOx = 25 ppmvd @ 15%O2 * (20.9 - 12.5 / (1 - 7.7 / 100)) / (20.9 - 15) = 31 ppmvd

NOx (lb/yr) = NOx (lb/hr) * Annual Hours of Operation (hr/yr) NOx (lb/yr) = 172 lb/hr * 1,080 hr/yr = 185,760 lb/yr

CO (ppmvd) = CO (ppmvd @ 15% O2) * (20.9-O2 vol%/(1-H2O vol%/100))/(20.9-15) CO = 15 ppmvd @ 15%O2 * (20.9 - 12.5 / (1 - 7.7 / 100)) / (20.9 - 15) = 19 ppmvd

CO (lb/yr) = CO (lb/hr) * Annual Hours of Operation (hr/yr) CO (lb/yr) = 63 lb/hr * 1,080 hr/yr = 68,040 lb/yr

VOC (ppmvd) = VOC (ppmvd @ 15% O2) * (20.9-O2 vol%/(1-H2O vol%/100))/(20.9-15) VOC = 2 ppmvd @ 15%O2 * (20.9 - 12.5 / (1 - 7.7 / 100)) / (20.9 - 15) = 2.5 ppmvd

VOC (lb/yr) = VOC (lb/hr) * Annual Hours of Operation (hr/yr) VOC (lb/yr) = 5 lb/hr * 1,080 hr/yr = 5,184 lb/yr

 SO_2 (lb/yr) = Sulfur Content (grains/Hscf) * 1 Hscf/100scf * 1 lb_s/7,000 grains / MW_s (lb_s/lbmole_s) * 1lbmole_{SO2}/lbmole_s * MW_{SO2} (lb_{sO2}/lbmole_{SO2}) * GT Fuel Flow Rate (MMScf/yr) * 1,000,000 scf/MMscf SO2 = 1.1 grains/Hscf * 1Hscf/100scf * 1lb/7,000 grains / 32.1 lb/lbmole * 1lbmoleSO2/lbmoleS * 64.1 lb/lbmole * 1,970 MMscf/yr * 1,000,000 scf/MMscf = 6,184 lb/yr

 PM_{10} (lb/yr) = PM_{10} (mg/Nm³) * GT Exhaust Flow Rate (Nm³/yr) * 1g/1,000 mg * 1 lb/453,59g PM10 = 2.6 mg/Nm3 * 1,586,652,914 Nm3/yr * 1g/1,000 mg * 1 lb/453.59g = 9,095 lb/yr

HCHO (ppmvd) = HCHO (ppbvd @ 15% O2) * (20.9-O2 vol%/(1-H2O vol%/100))/(20.9-15) * 1 ppmvd/1,000 ppbvd HCHO = 91 ppbvd @ 15%O2 * (20.9 - 12.5 / (1 - 7.7 / 100)) / (20.9 - 15) * 1 ppmvd/1,000 ppbvd = 0.1 ppmvd

HCHO (lb/yr) = GT Exhaust Flow Rate (lbmole/yr) * $(1 - H_2O \text{ vol}\%/100)$ * HCHO (ppmvd) / 1,000,000 * MW_{HCHO} (lb/lbmole) HCHO = 145,422,904 lbmole/yr * (1 - 7.7/100) * 0.1 ppmvd/1,000,000 * 30.0 lb/lbmole = 454 lb/yr

DB EMISSION RATES

NOx (lb/yr) = NOx (lb/MMBtu) (LHV) * DB Heat Input (LHV) (MMBtu/yr) NOx = 0.02 lb/MMBtu (LHV) * 345,600 MMBtu/yr (LHV) = 6,912 lb/yr

CO (lb/yr) = CO (lb/MMBtu) (LHV) * DB Heat Input (LHV) (MMBtu/yr) CO = 0.012 lb/MMBtu (LHV) * 345,600 MMBtu/yr (LHV) = 4,020 lb/yr

(Example calculations for Case 4 Fired unless otherwise noted)

VOC (lb/yr) = VOC (lb/MMBtu) (LHV) * DB Heat Input (LHV) (MMBtu/yr) VOC = 0.0013 lb/MMBtu (LHV) * 345,600 MMBtu/yr (LHV) = 438 lb/yr

 SO_2 (lb/yr) = Sulfur Content (grains/Hscf) * 1 Hscf/100scf * 1 lb_s/7,000 grains / MW_s (lb_s/lbmole_s) * 1lbmole_{SO2}/lbmole_s * MW_{SO2} (lb_{sO2}/lbmole_{SO2}) * GT Fuel Flow Rate (MMScf/yr) * 1,000,000 scf/MMscf SO2 = 1.1 grains/Hscf * 1Hscf/100scf * 1lb/7,000 grains / 32.1 lb/lbmole * 1lbmoleSO2/lbmoleS * 64.1 lb/lbmole * 371 MMscf/yr * 1,000,000 scf/MMscf = 1,165 lb/yr

PM₁₀ (lb/yr) = PM₁₀ (lb/MMBtu) (LHV) * DB Heat Input (LHV) (MMBtu/yr) PM10 = 0.0175 lb/MMBtu (LHV) * 345,600 MMBtu/yr (LHV) = 6,048 lb/yr

HCHO Emission Factor (lb/MMBtu) (HHV) = HCHO Emission Factor (lb/MMscf) (HHV) / 1,020 Btu/scf HCHO Emission Factor = 7.50E-02 lb/MMscf (HHV) / 1,020 Btu/scf = 7.35E-05 lb/MMBtu (HHV)

HCHO (lb/yr) = HCHO (lb/MMBtu) (HHV) * DB Heat Input (HHV) (MMBtu/yr) HCHO = 7.353E-05 lb/MMBtu (HHV) * 383,187 MMBtu/yr (HHV) = 28.2 lb/yr

STACK EXHAUST GAS

Fuel x, in CxHy = stoichiometric lbmoles of carbon in fuel Fuel y, in Cx,Hy = stoichiometric lbmoles of hydrogen in fuel

DB Fuel Flow Rate (lbmole/yr) =DB Heat Input (HHV) (MMBtu/yr) * 1,000,000 Btu/MMBtu / Fuel Heat Content (HHV) (Btu/scf) / Standard Molar Volume (scf/lbmole) DB Fuel Flow Rate = 383,187 MMBtu/hr * 1,000,000 Btu/MMBtu / 1,033 Btu/scf / 385.3 scf/lbmole = 962,712.8 lbmole/yr

 O_2 Consumed at DB (lbmole/yr) = (Fuel x + Fuel y/4) * DB Fuel Flow Rate (lbmole/yr) O2 Consumed at DB = (1.04 + 4.02 / 4) * 962,713 lbmole/yr = 1,963,401 lbmole/yr

CO₂ Produced at DB (lbmole/yr) = Fuel x * DB Fuel Flow Rate (lbmole/yr) CO2 Produced at DB = 1.04 * 962,713 lbmole/hr = 996,423 lbmole/hr

 H_2O Produced at DB (lbmole/yr) = Fuel y / 2 * DB Fuel Flow Rate (lbmole/yr) H2O Produced at DB = 4.02 / 2 * 962,713 lbmole/hr = 1,933,956 lbmole/hr

Stack Exhaust O₂ (Ibmole/yr) = GT Exhaust O₂ (Ibmole/yr) - DB Consumed O₂ (Ibmole/yr) Stack Exhust O₂ = 18,246,980 Ibmole/yr - 1,963,401 Ibmole/yr = 16,283,580 Ibmole/yr

Stack Exhaust CO₂ (lbmole/yr) = GT Exhaust CO₂ (lbmole/yr) + DB Produced CO₂ (lbmole/yr) Stack Exhaust CO₂ = 5,674,898 lbmole/yr + 996,423 lbmole/yr = 6,671,321 lbmole/yr

Stack Exhaust H_2O (lbmole/yr) = GT Exhaust H_2O (lbmole/yr) + DB Produced H_2O (lbmole/yr) Stack Exahust H_2O = 11,204,286 lbmole/yr + 1,933,956 lbmole/yr = 13,138,242 lbmole/yr

Stack Exhaust N₂ (lbmole/yr) = GT Exhaust N₂ (lbmole/yr) Stack Exhaust N2 = 108,987,147 lbmole/yr

Stack Exhaust Ar (lbmole/yr) = GT Exhaust Ar (lbmole/yr) Stack Exhaust Ar = 1,309,592 lbmole/yr

Stack Exhaust Flow Rate (lbmole/yr) = Sum Stack Exhaust Pollutants Flow Rates (lbmole/yr) Stack Exhaust Flow Rate = 16,283,580 lbmole/yr + 6,671,321 lbmole/yr + 13,138,242 lbmole/yr + 108,987,147 lbmole/yr + 1,309,592 lbmole/yr = 146,389,882 lbmole/yr

(Example calculations for Case 4 Fired unless otherwise noted)

Stack Exhaust i %vol = Stack Exhaust i (lbmole/yr) * 100 / Stack Exhaust Flow Rate (lbmole/yr) Stack Exhaust O2 = 16,283,580 lbmole/yr * 100 /146,389,882 lbmole/yr = 11.1 %vol Stack Exhaust CO2 = 6,671,321 lbmole/yr * 100 /146,389,882 lbmole/yr = 4.6 %vol Stack Exhaust H2O = 13,138,242 lbmole/yr * 100 /146,389,882 lbmole/yr = 9.0 %vol Stack Exhaust N2 = 108,987,147 lbmole/yr * 100 /146,389,882 lbmole/yr = 74.4 %vol Stack Exhaust Ar = 1,309,592 lbmole/yr * 100 /146,389,882 lbmole/yr = 0.9 %vol

Molecular Weight (Stack Exhaust Gases) = Sum (%vol * MW) Molecular Weight (GT Exhaust Gases) = 11.1% vol * 32.0 lb/lbmole + 4.6% vol * 44.0 lb/lbmole + 9.0% vol * 18.0 lb/lbmole + 74.4% vol * 28.0 lb/lbmole + 0.9% vol * 39.9 lb/lbmole = 28.4 lb/lbmole

NOx (pre-SCR as NO₂) (lb/yr) = GT NOx Exhaust (lb/yr) + DB NOx Exhaust (lb/yr) NOx (pre-SCR as NO2) = 185,760.0 lb/yr + 6,912.0 lb/yr = 192,672 lb/yr

NOx (pre-SCR) (ppmvd) = NOx (pre-SCR as NO₂) (lb/yr) / (Stack Exhaust Flow Rate (lbmole/yr) * (1 - Stack Exhaust H₂O vol%/100) * 1/1,000,000 * MW_{NO2} (lb/lbmole)) NOx (pre-SCR) = 192,672 lb/yr /(146,389,882 lbmole/yr * (1 - 9.0 /100) * 1 / 1,000,000 * 46.0 lb/lbmole) = 31.4 ppmvd

NOx (pre-SCR) (ppmvd @ 15% O_2) = NOx (pre-SCR) (ppmvd) * (20.9 - 15) / (20.9 - Stack Exhaust O_2 %/(1 - H₂O%/100)) NOx (pre-SCR) = 31.4 ppmvd * (20.9 - 15) / (20.9 - 11.1 / (1 - 9.0/100)) = 21.4 ppmvd @ 15% O2

NOx (pre-SCR as NO₂) (tpy) = NOx (pre-SCR as NO₂) (lb/yr) * 1 ton / 2,000 lb NOx (pre-SCR as NO2) = 192,672 lb/yr * 1ton / 2,000 lb = 96.3 tpy

NOx (post-SCR) (ppmvd) = NOx (post-SCR) (ppmvd @ $15\% O_2$) * (20.9- $O_2 vol\%/(1-H_2O vol\%/100)$)/(20.9-15) NOx (post-SCR) = 2.0 ppmvd @ 15% O2 * (20.9 - 11.1 / (1 - 9.0/100)) / (20.9 - 15) = 2.9 ppmvd

NOx (post-SCR as NO₂) (lb/yr) = NOx (post-SCR) (ppmvd) * (1 - H_2O %vol/100) * Stack Exhaust Flow Rate (lbmole/yr) /1,000,000 * MW_{NO2} (lb/lbmole) NOx (post-SCR as NO₂) = 2.9 ppmvd * (1 - 9.0/100) * 146,389,882 lbmole/yr / 1,000,000 * 46.0 lb/lbmole = 18,037 lb/yr

NOx (post-SCR as NO₂) (tpy) = NOx (post-SCR as NO₂) (lb/yr) * 1 ton / 2,000 lb NOx (post-SCR as NO2) = 18,037 lb/yr * 1ton / 2,000 lb = 9.0 tpy

CO (pre-Catalytic Oxidation) (lb/yr) = GT CO Exhaust (lb/yr) + DB CO Exhaust (lb/yr) CO (pre-Catalytic Oxidation) = 68,040.0 lb/yr + 4,020.5 lb/yr = 72,060 lb/yr

CO (pre-Catalytic Oxidation) (ppmvd) = CO (pre-Catalytic Oxidation) (lb/yr) / (Stack Exhaust Flow Rate (lbmole/yr) * (1 - Stack Exhaust H₂O vol%/100) * 1/1,000,000 * MW_{CO} (lb/lbmole)) CO (pre-Catalytic Oxidation) = 72,060 lb/yr / (146,389,882 lbmole/yr * (1 - 9.0 /100) * 1 / 1,000,000 * 28.0 lb/lbmole) = 19.3 ppmvd

CO (pre-Catalytic Oxidation) (ppmvd @ 15% O₂) = CO (pre-Catalytic Oxidation) (ppmvd) * (20.9 - 15) / (20.9 - Stack Exhaust O₂%/(1 - H₂O%/100)) CO (pre-Catalytic Oxidation) = 19.3 ppmvd * (20.9 - 15) / (20.9 - 11.1 / (1 - 9.0/100)) = 13.1 ppmvd @ 15% O2

CO (pre-Catalytic Oxidation) (tpy) = CO (pre-Catalytic Oxidation) (lb/yr) * 1 ton / 2,000 lb CO (pre-Catalytic Oxidation) = 72,060 lb/yr * 1ton / 2,000 lb = 36.0 tpy

CO (post-Catalytic Oxidation) (ppmvd) = CO (post-Catalytic Oxidation) (ppmvd @ $15\% O_2$) * (20.9-O₂ vol%/(1-H₂O vol%/100))/(20.9-15) CO (post-Catalytic Oxidation) = 2.0 ppmvd @ $15\% O_2$ * (20.9 - 11.1 / (1 - 9.0/100)) / (20.9 - 15) = 2.9 ppmvd

CO (post-Catalytic Oxidation) (lb/yr) = CO (post-Catalytic Oxidation) (ppmvd) * $(1 - H_2O \% vol/100)$ * Stack Exhaust Flow Rate (lbmole/yr) /1,000,000 * MW_{CO} (lb/lbmole) CO (post-Catalytic Oxidation) = 2.9 ppmvd * (1 - 9.0/100) * 146,389,882 lbmole/yr / 1,000,000 * 28.0 lb/lbmole = 10,982 lb/yr

CO (post-Catalytic Oxidation) (tpy) = CO (post-Catalytic Oxidation) * 1 ton / 2,000 lb CO (post-Catalytic Oxidation)= 10,982 lb/yr * 1ton / 2,000 lb = 5.5 tpy

(Example calculations for Case 4 Fired unless otherwise noted)

VOC (pre-Catalytic Oxidation) (lb/yr) = GT VOC Exhaust (lb/yr) + DB VOC Exhaust (lb/yr) VOC (pre-Catalytic Oxidation) = 5,184.0 lb/yr + 437.8 lb/yr = 5,622 lb/yr

VOC (pre-Catalytic Oxidation) (ppmvd) = VOC (pre-Catalytic Oxidation) (lb/yr) / (Stack Exhaust Flow Rate (lbmole/yr) * (1 - Stack Exhaust H2O vol%/100) * 1/1,000,000 * MW_{VOC} (lb/lbmole)) VOC (pre-Catalytic Oxidation) = 5,622 lb/yr /(146,389,882 lbmole/yr * (1 - 9.0/100) * 1 / 1,000,000 * 16.0 lb/lbmole) = 2.6 ppmvd

VOC (pre-Catalytic Oxidation) (ppmvd @ 15% O2) = VOC (pre-Catalytic Oxidation) (ppmvd) * (20.9 - 15) / (20.9 - Stack Exhaust O2%/(1 - H2O%/100)) VOC (pre-Catalytic Oxidation) = 2.6 ppmvd * (20.9 - 15) / (20.9 - 11.1 / (1 - 9.0/100)) = 1.8 ppmvd @ 15% O2

VOC (pre-Catalytic Oxidation) (tpy) = VOC (pre-Catalytic Oxidation) (lb/yr) * 1 ton / 2,000 lb VOC (pre-Catalytic Oxidation) = 5,622 lb/yr * 1ton / 2,000 lb = 2.8 tpy

VOC (post-Catalytic Oxidation) (ppmvd) = VOC (post-Catalytic Oxidation) (ppmvd @ 15% O2) * (20.9-O2 vol%/(1-H2O vol%/100))/(20.9-15) VOC (post-Catalytic Oxidation) = 0.6 ppmvd @ 15% O2 * (20.9 - 11.1 / (1 - 9.0/100)) / (20.9 - 15) = 0.9 ppmvd

VOC (post-Catalytic Oxidation) (lb/yr) = VOC (post-Catalytic Oxidation) (ppmvd) * (1 - H2O %vol/100) * Stack Exhaust Flow Rate (lbmole/yr) /1,000,000 * MWVOC (lb/lbmole) VOC (post-Catalytic Oxidation) = 0.9 ppmvd * (1 - 9.0/100) * 146,389,882 lbmole/yr / 1,000,000 * 16.0 lb/lbmole = 1,887 lb/yr

VOC (post-Catalytic Oxidation) (tpy) = VOC (post-Catalytic Oxidation) * 1 ton / 2,000 lb VOC (post-Catalytic Oxidation)= 1,887 lb/yr * 1ton / 2,000 lb = 0.9 tpy

 SO_2 (lb/yr) = GT SO_2 Exhaust (lb/yr) + DB SO_2 Exhaust (lb/yr) SO2 = 6,184.0 lb/yr + 1,164.6 lb/yr = 7,349 lb/yr

 SO_2 (ppmvd) = SO_2 (lb/yr) / (Stack Exhaust Flow Rate (lbmole/yr) * (1 - Stack Exhaust H₂O vol%/100) * 1/1,000,000 * MW_{SO2} (lb/lbmole)) SO2 = 7,349 lb/yr / (146,389,882 lbmole/yr * (1 - 9.0 /100) * 1 / 1,000,000 * 64.1 lb/lbmole) = 0.9 ppmvd

SO₂ (ppmvd @ 15% O₂) = SO₂ (ppmvd) * (20.9 - 15) / (20.9 - Stack Exhaust O₂%/(1 - H₂O%/100)) SO₂ = 0.9 ppmvd * (20.9 - 15) / (20.9 - 11.1 / (1 - 9.0/100)) = 0.6 ppmvd @ 15% O₂

SO₂ (tpy) = SO₂ (lb/yr) * 1 ton / 2,000 lb SO2= 7,349 lb/yr * 1ton / 2,000 lb = 3.7 tpy

 PM_{10} (lb/yr) = GT PM_{10} Exhaust (lb/yr) + DB PM_{10} Exhaust (lb/yr) PM10 = 9,094.7 lb/yr + 6,048.0 lb/yr = 15,143 lb/yr

 PM_{10} (tpy) = PM_{10} (lb/yr) * 1 ton / 2,000 lb PM10 = 15,143 lb/yr * 1ton / 2,000 lb = 7.6 tpy

NH₃ (ppmvd) = NH₃ (ppmvd @ 15% O2) * (20.9-O2 vol%/(1-H2O vol%/100))/(20.9-15) NH3 = 10.0 ppmvd @ 15% O2 * (20.9 - 11.1 / (1 - 9.0/100)) / (20.9 - 15) = 14.7 ppmvd

 NH_3 (lb/yr) = NH_3 (ppmvd) * (1 - H2O %vol/100) * Stack Exhaust Flow Rate (lbmole/yr) /1,000,000 * MW_{NH3} (lb/lbmole) NH3 = 14.7 ppmvd * (1 - 9.0/100) * 146,389,882 lbmole/yr / 1,000,000 * 17.0 lb/lbmole = 33,384 lb/yr

NH₃ (tpy) = NH₃ (lb/yr) * 1 ton / 2,000 lb NH3 = 33,384 lb/yr * 1ton / 2,000 lb = 16.7 tpy

(Example calculations for Case 4 Fired unless otherwise noted)

CO₂ (lb/MMBtu) = Fc (scf/MMBtu) * Uf (lbmole/scf) * MW_{CO2} (lb/lbmole) CO2 Emission Factor = 1,040 scf/MMBtu * 1 lbmole/385 scf * 44 lb/lbmole = 118.9 lb/MMBtu

 N_2O (lb/MMBtu) = N_2O (kg/MMBtu) * 1 metric ton / 1,000 kg * 1.1023 short tons / metric ton * 2,000 lb / short ton N2O Emission Factor = 1.00E-04 kg/MMBtu * 1 metric ton / 1,000 kg * 1.1023 short tons / metric tons * 2,000 lb / short tons = 2.2E-04 lb/MMBtu

 CH_4 (lb/MMBtu) = CH_4 (kg/MMBtu) * 1 metric ton / 1,000 kg * 1.1023 short tons / metric ton * 2,000 lb / short ton CH4 Emission Factor = 1.00E-04 kg/MMBtu * 1 metric ton / 1,000 kg * 1.1023 short tons / metric tons * 2,000 lb / short tons = 2.2E-03 lb/MMBtu

CO₂ (tpy) = CO₂ (lb/MMBtu) (HHV) * GT+DB Heat Input (MMBtu/yr) (HHV) * 1 ton / 2,000 lb CO2 = 118.9 lb/MMBtu (HHV) * 2,417,907 MMBtu/yr (HHV) * 1 ton / 2,000 lb = 143,693 tpy

 N_2O (tpy) = N_2O (lb/MMBtu) (HHV) * GT+DB Heat Input (MMBtu/yr) (HHV) * 1 ton / 2,000 lb N2O = 2.2E-04 lb/MMBtu (HHV) * 2,417,907 MMBtu/yr (HHV) * 1 ton / 2,000 lb = 0.27 tpy

CH₄ (tpy) = CH₄ (lb/MMBtu) (HHV) * GT+DB Heat Input (MMBtu/yr) (HHV) * 1 ton / 2,000 lb CH4 = 22.0E-04 lb/MMBtu (HHV) * 2,417,907 MMBtu/yr (HHV) * 1 ton / 2,000 lb = 2.67 tpy

Total GHG (tpy) = CO_2 (tpy) + N_2O (tpy) + CH_4 (tpy) Total GHG = 143,693 tpy + 0.27 tpy + 2.67 tpy = 143,696 tpy

Total CO₂e (tpy) = CO₂ (tpy) * GWP_{CO2} + N₂O (tpy) * GWP_{N2O} + CH₄ (tpy) * GWP_{CH4} Total GHG = 143,693 tpy * 1 + 0.27 tpy * 298 + 2.67 tpy * 25 = 143,839 tpy

HOBBS 501F4+ Annual Emission Rate Calculation (100% Load) (8,290 hr/yr)

HUBBS 501F4+ Annual Emission Rate C	Jaiculation (100% Loa	a) (0,290 mr/yr)					
		Case 4	Case 4	Case 5	Case 5	Case 6	Case 6
		Unfired	Fired	Unfired	Fired	Unfired	Fired
		Winter	Winter	Summer	Summer	Summer	Summer
		Chillers Off	Chillers Off	Chillers On	Chillers On	Chillers Off	Chillers Off
		Crimers On	Chillers On	Chillers On	Chillers On	Chillers On	Chillers Off
SITE CONDITIONS							
Ambient Temperature	°F	30	30	95	95	95	95
Ambient Relative Humidity	%	60	60	20	20	20	20
Barometric Pressure	psia	12.83	12.83	12.83	12.83	12.83	12.83
Compressor Inlet Temperature	°F	30	30	46	46	95	95
Compressor inier remperature	Ē	50		40	40	90	90
FACILITY CONDITIONS							
Annual Hours of Operation	br/vr	1,285	1,080	1,478	1,242	1,742	1,464
•	hr/yr						
GT Power Output	MW	189	189	180	180	151	151
GT Model		Hobbs 501F4+	Hobbs 501F4+	Hobbs 501F4+	Hobbs 501F4+	Hobbs 501F4+	Hobbs 501F4+
GT Load		Base	Base	Base	Base	Base	Base
Chillers	On/Off	Off	Off	On	On	Off	Off
GT Fuel Flow Rate	lb/hr	86,940	86,940	83,592	83,592	72,720	72,720
GT Heat Input (LHV)	MMBtu/hr	1,765	1,765	1,697	1,697	1,477	1,477
GT Heat Input (HHV)	MMBtu/hr	1,884	1,884	1,812	1,812	1,576	1,576
,		2,267,703		2,507,386			2,162,328
GT Heat Input (LHV)	MMBtu/yr		1,906,200		2,107,674	2,572,405	
GT Heat Input (HHV)	MMBtu/yr	2,420,597	2,034,720	2,677,303	2,250,504	2,744,828	2,307,264
GT Fuel Flow Rate	MMscf/yr	2,343	1,970	2,592	2,179	2,657	2,234
DB Model		Forney	Forney	Forney	Forney	Forney	Forney
DB Status		Off	On	Off	On	Off	On
DB Heat Input (LHV)	MMBtu/yr	_	345,600	-	397,440	-	445,056
,	•						
DB Heat Input (HHV)	MMBtu/yr	-	383,187	-	440,665	-	493,459
DB Fuel Flow Rate	MMscf/yr	-	371	-	427	-	478
		2 267 702	2 251 800	2 507 296	2 505 114	2 572 405	2 607 294
GT+DB Heat Input (LHV)	MMBtu/yr	2,267,703	2,251,800	2,507,386	2,505,114	2,572,405	2,607,384
GT+DB Heat Input (HHV)	MMBtu/yr	2,420,597	2,417,907	2,677,303	2,691,169	2,744,828	2,800,723
FUEL ANALYSIS							
Fuel Type		PNG	PNG	PNG	PNG	PNG	PNG
Fuel Molecular Weight	lb/lbmole	17.29	17.29	17.29	17.29	17.29	17.29
Sulfur Content	grains/100scf	1.1	1.1	1.1	1.1	1.1	1.1
	grains, roosor						
Fuel Heat Content (LHV)	Btu/scf	932	932	932	932	932	932
Fuel Heat Content (HHV)	Btu/scf	1,033	1,033	1,033	1,033	1,033	1,033
, , , , , , , , , , , , , , , , , , ,	Blu/SCI						
HHV/LHV Ratio		1.1	1.1	1.1	1.1	1.1	1.1
GT EXHAUST GAS ANALYSIS							
Oxygen, O2	%vol	12.55	12.55	12.46	12.46	12.70	12.70
Carbon Dioxide, CO2	%vol	3.90	3.90	3.90	3.90	3.70	3.70
Water, H2O	%vol	7.70	7.70	8.40	8.40	8.31	8.31
Nitrogen, N2	%vol	74.94	74.94	74.34	74.34	74.38	74.38
Argon, Ar	%vol	0.90	0.90	0.90	0.90	0.90	0.90
Total	%vol	100.00	100.00	100.00	100.00	100.00	100.00
Iotai	76001	100.00	100.00	100.00	100.00	100.00	100.00
Molecular Weight (GT Exhaust Gases)	lb/lbmole	28.5	28.5	28.4	28.4	28.4	28.4
σ, ,							
GT Exhaust Temperature	°F	1,121	1,121	1,130	1,130	1,155	1,155
GT Exhaust Flow Rate	lb/hr	3,834,000	3,834,000	3,704,400	3,704,400	3,330,000	3,330,000
GT Exhaust Flow Rate	lbmole/yr	173,001,786	145,422,904	192,725,423	162,002,320	204,301,530	171,733,035
GT Exhaust Flow Rate	MMscf/yr	66,658	56,032	74,258	62,420	78,718	66,170
GT Exhaust Flow Rate	•						
	Nm3/yr	1,887,555,395	1,586,652,914	2,102,752,354	1,767,544,496	2,229,054,766	1,873,712,554
GT Exhaust Oxygen, O2	lbmole/yr	21,707,448	18,246,980	24,006,318	20,179,379	25,954,414	21,816,921
	•						6,361,120
GT Exhaust Carbon Dioxide, CO2	lbmole/yr	6,751,120	5,674,898	7,520,052	6,321,251	7,567,481	
GT Exhaust Water, H2O	lbmole/yr	13,329,135	11,204,286	16,197,034	13,615,002	16,975,700	14,269,538
GT Exhaust Nitrogen, N2	lbmole/yr	129,656,131	108,987,147	143,266,623	120,427,938	151,963,196	127,738,157
CT Exhaust Argon Ar	lbmala/ur	1 557 051	1 200 502	1 725 207	1 450 750	1 940 720	1 5 4 7 200

GT Exhaust Argon, Ar Ibr	mole/yr 1,557,951	1,309,592 1,735,397),739 1,547,299
--------------------------	-------------------	---------------------	--	-----------------

HOBBS 501F4+ Annual Emission Rate Calculation (100% Load) (8,290 hr/yr)

		Case 4 Unfired	Case 4 Fired	Case 5 Unfired	Case 5 Fired	Case 6 Unfired	Case 6 Fired
		Winter	Winter	Summer	Summer	Summer	Summer
		Chillers Off	Chillers Off	Chillers On	Chillers On	Chillers Off	Chillers Off
GT EMISSION RATES							
NOx	ppmvd @ 15% O2	25	25	25	25	25	25
NOx	ppmvd	31	31	31	31	30	30
NOx (as NO2)	lb/hr	172	172	165	165	141	141
NOx (as NO2)	lb/yr	220,989	185,760	243,794	204,930	245,571	206,424
СО	ppmvd @ 15% O2	15	15	15	15	15	15
CO	ppmvd	19	19	19	19	18	18
CO	lb/hr	63	63	60	60	52	52
со	lb/yr	80,944	68,040	88,652	74,520	90,565	76,128
VOC	ppmvd @ 15% O2	2.0	2.0	2.0	2.0	2.0	2.0
VOC	ppmvd	2.5	2.5	2.5	2.5	2.4	2.4
VOC (as CH4)	lb/hr	4.8	4.8	4.6	4.6	3.9	3.9
VOC (as CH4)	lb/yr	6,167	5,184	6,797	5,713	6,792	5,710
Sulfur Content	grains/100scf	1.1	1.1	1.1	1.1	1.1	1.1
SO2	lb/yr	7,357	6,184	8,137	6,840	8,342	7,012
PM10	mg/Nm3	2.6	2.6	2.6	2.6	2.6	2.6
PM10	lb/yr	10,820	9,095	12,053	10,132	12,777	10,740
Formaldehyde, HCHO	ppbvd @ 15% O2	91	91	91	91	91	91
• •							
Formaldehyde, HCHO	ppmvd	0.1	0.1	0.1	0.1	0.1	0.1
Formaldehyde, HCHO	lb/yr	540	454	597	502	611	514
DB EMISSION RATES							
NOx	lb/MMBtu (LHV)	0.02	0.02	0.02	0.02	0.02	0.02
NOx	lb/yr	-	6,912	-	7,949	-	8,901
со	lb/MMBtu (LHV)	0.012	0.012	0.012	0.012	0.012	0.012
со	lb/yr	-	4,020	-	4,624	-	5,177
VOC	lb/MMBtu (LHV)	0.0013	0.0013	0.0013	0.0013	0.0013	0.0013
VOC (as CH4)	lb/yr	0.0013	438	0.0013	503	0.0013	564
Sulfur Content	grains/100scf	1.10	1.10	1.10	1.10	1.10	1.10
SO2	lb/yr	-	1,165	-	1,339	-	1,500
PM10	lb/MMBtu (LHV)	0.0175	0.0175	0.0175	0.0175	0.0175	0.0175
PM10	lb/yr	-	6,048	-	6,955	-	7,788
Formaldehyde, HCHO	lb/MMscf (HHV)	7.50E-02	7.50E-02	7.50E-02	7.50E-02	7.50E-02	7.50E-02
Formaldehyde, HCHO	lb/MMBtu (HHV)	7.35E-05	7.35E-05	7.35E-05	7.35E-05	7.35E-05	7.35E-0
Formaldehyde, HCHO	lb/yr	-	28.18	-	32.40	-	36.28
STACK EXHAUST GAS							
Fuel x, in CxHy		1.04	1.04	1.04	1.04	1.04	1.04
Fuel y, in CxHy		4.02	4.02	4.02	4.02	4.02	4.02
		7.02		7.02		4.02	
DB Fuel Flow Rate	lbmole/yr	-	962,713	-	1,107,120	-	1,239,760
Oxygen Consumed at DB, O2	lbmole/yr	-	1,963,401	-	2,257,911	-	2,528,424
Carbon Dioxide Produced at DB, CO2	lbmole/yr	-	996,423	-	1,145,886	-	1,283,171
Water Produced at DB, H2O	lbmole/yr	-	1,933,956	-	2,224,050	-	2,490,506
Stack Exhaust Oxygen, O2	lbmole/yr	21,707,448	16,283,580	24,006,318	17,921,468	25,954,414	19,288,497
Stack Exhaust Carbon Dioxide, CO2	lbmole/yr	6,751,120	6,671,321	7,520,052	7,467,137	7,567,481	7,644,290
Stack Exhaust Water, H2O	lbmole/yr	13,329,135	13,138,242	16,197,034	15,839,052	16,975,700	16,760,044
Stack Exhaust Nitrogen, N2	lbmole/yr	129,656,131	108,987,147	143,266,623	120,427,938	151,963,196	127,738,157
Stack Exhaust Argon, Ar	lbmole/yr	1,557,951	1,309,592	1,735,397	1,458,750	1,840,739	1,547,299
Stack Exhaust Flow Rate	lbmole/yr	173,001,786	146,389,882	192,725,423	163,114,345	204,301,530	172,978,288
Stack Exhaust Oxygon, O2	%vol	12.5	11 1	12 5	11.0	107	11 3

Stack Exhaust Oxygen, O2	%vol	12.5	11.1	12.5	11.0	12.7	11.2
Stack Exhaust Carbon Dioxide, CO2	%vol	3.9	4.6	3.9	4.6	3.7	4.4
Stack Exhaust Water, H2O	%vol	7.7	9.0	8.4	9.7	8.3	9.7
Stack Exhaust Nitrogen, N2	%vol	74.9	74.4	74.3	73.8	74.4	73.8
Stack Exhaust Argon, Ar	%vol	0.9	0.9	0.9	0.9	0.9	0.9
Stack Exhaust Flow Rate	%vol	100.0	100.0	100.0	100.0	100.0	100.0
Molecular Weight (Stack Exhaust Gases)	lb/lbmole	28.5	28.4	28.4	28.3	28.4	28.3

HOBBS 501F4+ Annual Emission Rate Calculation (100% Load) (8,290 hr/yr)

		Case 4	Case 4	Case 5	Case 5	Case 6	Case 6
		Unfired	Fired	Unfired	Fired	Unfired	Fired
		Winter	Winter	Summer	Summer	Summer	Summer
		Chillers Off	Chillers Off	Chillers On	Chillers On	Chillers Off	Chillers Off
			Official Off				
STACK EMISSION RATES							
NOx (pre-SCR)	ppmvd @ 15% O2	24.3	21.4	24.3	21.2	23.9	20.7
NOx (pre-SCR)	ppmvd	30.1	31.4	30.0	31.4	28.5	30.0
NOx (pre-SCR as NO2)	lb/yr	220,989	192,672	243,794	212,879	245,571	215,325
NOx (pre-SCR as NO2)	tpy	110.5	96.3	121.9	106.4	122.8	107.7
NOx (post-SCR)	ppmvd @ 15% O2	2	2	2	2	2	2
. ,		2.5	2.9	2.5			2
NOx (post-SCR)	ppmvd				3.0	2.4	2.9
NOx (post-SCR as NO2)	lb/yr	18,190	18,037	20,099	20,054	20,580	20,837
NOx (post-SCR as NO2)	tpy	9.1	9.0	10.0	10.0	10.3	10.4
CO (pre-Catalytic Oxidation)	ppmvd @ 15% O2	14.6	13.1	14.5	13.0	14.5	12.8
CO (pre-Catalytic Oxidation)	ppmvd	18.1	19.3		19.2	17.3	18.6
CO (pre-Catalytic Oxidation)	lb/yr	80,944	72,060		79,144	90,565	81,305
			36.0	44.3	39.6		40.7
CO (pre-Catalytic Oxidation)	tpy	40.5	30.0	44.3	39.0	45.3	40.7
CO (post-Catalytic Oxidation)	ppmvd @ 15% O2	2	2	2	2	2	2
CO (post-Catalytic Oxidation)	ppmvd	2.5	2.9	2.5	3.0	2.4	2.9
CO (post-Catalytic Oxidation)	lb/yr	11,075	10,982	12,237	12,210	12,530	12,687
CO (post-Catalytic Oxidation)	tpy	5.5	5.5	6.1	6.1	6.3	6.3
		1.0					
VOC (pre-Catalytic Oxidation)	ppmvd @ 15% O2	1.9	1.8	1.9	1.8	1.9	1.7
VOC (pre-Catalytic Oxidation)	ppmvd	2.41	2.63	2.4	2.6	2.3	2.5
VOC (pre-Catalytic Oxidation as CH4)	lb/yr	6,167	5,622	6,797	6,217	6,792	6,273
VOC (pre-Catalytic Oxidation as CH4)	tpy	3.1	2.8	3.4	3.1	3.4	3.1
			0.0			0.0	0.0
VOC (post-Catalytic Oxidation)	ppmvd @ 15% O2	0.6	0.6	0.6	0.6	0.6	0.6
VOC (post-Catalytic Oxidation)	ppmvd	0.7	0.9	0.7	0.9	0.7	0.9
VOC (post-Catalytic Oxidation as CH4)	lb/yr	1,903	1,887	2,103	2,098	2,153	2,180
VOC (post-Catalytic Oxidation as CH4)	tpy	1.0	0.9	1.1	1.0	1.1	1.1
SO2	ppmvd @ 15% O2	0.58	0.59	0.58	0.59	0.58	0.59
SO2	ppmvd	0.72	0.86	0.72	0.87	0.70	0.85
SO2	lb/yr	7,357	7,349	8,137	8,179	8,342	8,512
	-						
SO2	tpy	3.7	3.7	4.1	4.1	4.2	4.3
PM10	lb/yr	10,820	15,143	12,053	17,087	12,777	18,529
PM10	tpy	5.4	7.6	6.0	8.5	6.4	9.3
НСНО	lb/yr	540	482	597	534	611	550
нсно	tpy	0.3	0.2	0.3	0.3	0.3	0.3
	·P3	0.0	0.2	0.0	0.0	0.0	0.0
NH3	ppmvd @ 15% O2	10	10	10	10	10	10
NH3	ppmvd	12.38	14.71	12.37	14.80	11.94	14.50
NH3	lb/yr	33,667	33,384	37,200	37,116	38,091	38,565
NH3	tpy	16.8	16.7	18.6	18.6	19.0	19.3
CO3		110.0	140.0	110.0	140.0	440.0	440.0
CO2	Ib/MMBtu (HHV)	118.9	118.9	118.9	118.9	118.9	118.9
N2O	lb/MMBtu (HHV)	2.2E-04	2.2E-04	2.2E-04	2.2E-04	2.2E-04	2.2E-04
CH4	lb/MMBtu (HHV)	2.2E-03	2.2E-03	2.2E-03	2.2E-03	2.2E-03	2.2E-03
CO2	tpy	143,853	143,693	159,108	159,932	163,121	166,443
N2O	tpy	0.27	0.27	0.30	0.30	0.30	0.31
CH4	tpy	2.67	2.67	2.95	2.97	3.03	3.09
CO2 Global Warming Potential	-	1	1	1	1	1	1
N2O Global Warming Potential	_	298	298	298	298	298	298
-	-						
CH4 Global Warming Potential	-	25	25	25	25	25	25
Total GHG	tpy	143,856	143,696	159,112	159,936	163,125	166,446
Total CO2e	tpy	143,999	143,839	159,270	160,095	163,287	166,612
Vendor Data							

Process Input Data

HOBBS 501F4+ Hazardous Air Pollutants

HAPs Emission Rates Summary Table per Unit

Hazardous Air Pollutants (HAPs)	Max. Hourly Emission Rate (Ib/hr) ⁽¹⁾	Annual Emission Rate (tpy) ⁽²⁾
Formaldehyde	0.14	0.56
Hexane	0.21	0.36
Total HAPs	0.54	1.67

Notes:

(1) Max. Hourly Emission Rate (lb/hr) = CTG + HRSG DB Max. Hourly Emisison Rate (lb/hr) * (1 - Control Efficiency)

Oxidation Catalyst Reduction Control = 68% Sims Roy, Emission Standards Division (Docket A-95-51, December 30, 1990)

Formaldehyde Max. Hourly Emission Rate= 0.45 lb/hr * (1 - 0.68) = 0.14 lb/hr

(2) Annual Emission Rate (tpy) = CTG + HRSG DB Annual Emission Rate (tpy) * (1 - Control Efficiency)

Formaldehyde Annual Emission Rate = 1.75 tpy * (1 - 0.68) = 0.56 tpy

CTG + HRSG DB Speciated HAP Emission Rates per Unit

Hazardous Air Pollutants (HAPs)	Max. Hourly Emission Rate (Ib/hr) ⁽¹⁾	Annual Emission Rate (tpy) ⁽²⁾
1,3-Butadiene	< 8.20E-04	< 0.003
Acetaldehyde	0.08	0.30
Acrolein	0.01	0.05
Benzene	0.02	0.09
Dichlorobenzene	4.30E-04	7.43E-04
Ethylbenzene	0.06	0.24
Formaldehyde	0.45	1.75
Hexane	0.65	1.11
Naphthalene	0.003	0.01
PAHs	4.23E-03	0.02
Propylene Oxide	< 0.06	< 0.21
Toluene	0.25	0.96
Xylenes	0.12	0.47
Arsenic	7.17E-05	1.24E-04
Beryllium	< 4.30E-06	< 7.43E-06
Cadmium	3.95E-04	6.81E-04
Chromium	5.02E-04	8.67E-04
Cobalt	3.01E-05	5.20E-05
Manganese	1.36E-04	2.35E-04
Nickel	7.53E-04	0.001
Selenium	< 8.61E-06	< 1.49E-05

Notes:

(1) Max. Hourly Emssion Rate (lb/hr) = CTG Hourly Emission Rate (lb/hr) + DB Hourly Emission Rate (lb/hr) Benzene Max. Hourly Emission Rate = 0.02 lb/hr + 7.53E-04 lb/hr = 0.02 lb/hr

(2) Annual Emission Rate (tpy) = CTG Annual Emission Rate (tpy) + DB Annual Emission Rate (tpy) Benzene Annual Emission Rate = 0.09 tpy + 1.30E-03 tpy = 0.09 tpy

CTG HAPs Emission Rates per Unit

Hazardous Air Pollutants (HAPs)	Emission Factor (Ib/MMBtu) ⁽²⁾	Emission Factor (Ib/MMBtu) ⁽³⁾	Max. Hourly Emission Rate (lb/hr) ⁽⁴⁾	Annual Emission Rate (tpy) ⁽⁵⁾
1,3-Butadiene	< 4.30E-07	< 4.35E-07	< 0.001	< 0.003
Acetaldehyde	4.00E-05	4.05E-05	0.08	0.30
Acrolein	6.40E-06	6.48E-06	0.01	0.05
Benzene	1.20E-05	1.22E-05	0.02	0.09
Ethylbenzene	3.20E-05	3.24E-05	0.06	0.24
Formaldehyde ⁽¹⁾	-	-	-	-
Naphthalene	1.30E-06	1.32E-06	0.002	0.01
PAHs	2.20E-06	2.23E-06	0.00	0.02
Propylene Oxide	< 2.90E-05	< 2.94E-05	< 0.06	< 0.21
Toluene	1.30E-04	1.32E-04	0.25	0.96
Xylenes	6.40E-05	6.48E-05	0.12	0.47

CTG Characteristics

		Mitsubishi 501F4+
Fuel Heating Content (HHV)	Btu/scf	1,033
Max. CTG Heat Rate (HHV) (6)	MMBtu/hr	1,884

Annual CTG Heat Rate (HHV)⁽⁷⁾ MMBtu/yr 14,626,756

Notes:

(1) Formaldehyde: refer to combined cycle hourly and annual calculations.

(2) Emission factors as published by US EPA AP42, Chapter 3.1, Table 3.1-3 (April, 2000)

(3) Per AP 42 Chapter 3.1, Table 3.1-3 note c. Emission factors can be converted to actual natural gas heating

values by multiplying the given emission factor by the ratio of the specified heating value to 1,020 Btu/scf.

(4) Max. Hourly Emission Rate (lb/hr) = Emission Factor (lb/MMBtu) * Max. GT Heat Rate (MMBtu/hr)

Max. Benzene Emission Rate = 1.22E-05 lb/MMBtu * 1,884 MMBtu/hr = 0.02 lb/hr

(5) Annual Emission Rate (tpy) = Emission Factor (lb/MMBtu) * Annual GT Heat Rate (MMBtu/hr) * GT Annual Hours of Operation (hr/yr) * 1ton/2,000lb Annual. Benzene Emission Rate = 1.22E-05 lb/MMBtu * 14,626,756 MMBtu/yr * 1ton/2,000lb = 0.09 tpy

(6) Maximum Heat Rate for evaluated scenarios.

(7) Annual Heat Rate for evaluated scenarios.

HOBBS 501F4+ Hazardous Air Pollutants

DB HAPs Emission Rates per Unit

Hazardous Air Pollutants (HAPs)	Emission Factor (Ib/MMscf) ⁽³⁾	Emission Factor (Ib/MMscf) ⁽⁴⁾	Max. Hourly Emission Rate (lb/hr) ⁽⁵⁾	Annual Emission Rate (tpy) ⁽⁶⁾
2-Methylnaphthalene (1)	2.40E-05	2.43E-05	8.61E-06	1.49E-05
3-Methylchloranthrene (1)	< 1.80E-06	< 1.82E-06	< 6.46E-07	1.11E-06
7,12-Dimethylbenz(a)anthracene ⁽¹⁾	1.60E-05	1.62E-05	5.74E-06	9.91E-06
Acenaphthene ⁽¹⁾	< 1.80E-06	< 1.82E-06	< 6.46E-07	1.11E-06
Acenaphthylene ⁽¹⁾	< 1.80E-06	< 1.82E-06	< 6.46E-07	1.11E-06
Anthracene ⁽¹⁾	< 2.40E-06	< 2.43E-06	< 8.61E-07	1.49E-06
Benz(a)anthracene ⁽¹⁾	< 1.80E-06	< 1.82E-06	< 6.46E-07	1.11E-06
Benzene	2.10E-03	2.13E-03	7.53E-04	1.30E-03
Benzo(a)pyrene ⁽¹⁾	< 1.20E-06	< 1.22E-06	< 4.30E-07	7.43E-07
Benzo(b)fluoranthene ⁽¹⁾	< 1.80E-06	< 1.82E-06	< 6.46E-07	1.11E-06
Benzo(g,h,i)perylene ⁽¹⁾	< 1.20E-06	< 1.22E-06	< 4.30E-07	7.43E-07
Benzo(k)fluoranthene ⁽¹⁾	< 1.80E-06	< 1.82E-06	< 6.46E-07	1.11E-06
Chrysene ⁽¹⁾	< 1.80E-06	< 1.82E-06	< 6.46E-07	1.11E-06
Dibenzo(a,h)anthracene ⁽¹⁾	< 1.20E-06	< 1.22E-06	< 4.30E-07	7.43E-07
Dichlorobenzene	1.20E-03	1.22E-03	4.30E-04	7.43E-04
Fluoranthene ⁽¹⁾	3.00E-06	3.04E-06	1.08E-06	1.86E-06
Fluorene ⁽¹⁾	2.80E-06	2.84E-06	1.00E-06	1.73E-06
Formaldehyde ⁽²⁾	-	-	-	-
Hexane	1.80	1.82	0.65	1.11
Indeno(1,2,3-cd)pyrene ⁽¹⁾	< 1.80E-06	< 1.82E-06	< 6.46E-07	1.11E-06
Naphthalene	6.10E-04	6.18E-04	2.19E-04	3.78E-04
Phenanathrene ⁽¹⁾	1.70E-05	1.72E-05	6.10E-06	1.05E-05
Pyrene ⁽¹⁾	5.00E-06	5.06E-06	1.79E-06	3.10E-06
Toluene	3.40E-03	3.44E-03	1.22E-03	2.11E-03
Arsenic	2.00E-04	2.03E-04	7.17E-05	1.24E-04
Beryllium	< 1.20E-05	< 1.22E-05	< 4.30E-06	7.43E-06
Cadmium	1.10E-03	1.11E-03	3.95E-04	6.81E-04
Chromium	1.40E-03	1.42E-03	5.02E-04	8.67E-04
Cobalt	8.40E-05	8.51E-05	3.01E-05	5.20E-05
Manganese	3.80E-04	3.85E-04	1.36E-04	2.35E-04
Nickel	2.10E-03	2.13E-03	7.53E-04	1.30E-03
Selenium	< 2.40E-05	< 2.43E-05	< 8.61E-06	1.49E-05

DB Characteristics

		Forney
Fuel Heating Content (HHV)	Btu/scf	1,033
Max. DB Heat Rate (HHV) ⁽⁷⁾	MMBtu/hr	366
Annual DB Heat Rate (HHV) ⁽⁸⁾	MMBtu/yr	1,263,174

Notes:

(1) HAP because it is Polycyclic Aromatic Hydrocarbon (PAH).

(2) Formaldehyde: refer to combined cycle hourly and annual calculations.

(3) Emission factors as published by US EPA AP42, Chapter 1.4, Tables 1.4-3 and 1.4-4 (July 1998)

- (4) Per AP 42 Chapter 1.4 Tables 1.4-3 and 1.4-4 emission factors are based on 1,020 Btu/scf heating value. Emissions factor have been adjusted to actual heat content by multiplying the given emission factor by the ratio of the specified heating value to 1,020 Btu/scf.
- (5) Max. Hourly Emission Rate (lb/hr) = Emission Factor (lb/MMscf) * Max. DB Heat Rate (MMBtu/hr) / Fuel Heating Content (Btu/scf) Max. DB Benzene Emission Rate = 2.13E-03 lb/MMscf * 366 MMBtu/hr / 1,033 Btu/scf = 7.53E-04 lb/hr
- (6) Annual Em. Rate (tpy) = Em. Factor (lb/MMscf) * Annual DB Heat Rate (MMBtu/yr) / Fuel Heating Cont. (Btu/scf) * 1ton/2,000lb Annual DB Benzene Emission Rate = 2.13E-03 lb/MMscf * 1,263,174 MMBtu/yr / 1,033 Btu/scf * 1ton/2,000lb = 1.30E-03 tpy
- (7) Maximum Heat Rate for evaluated scenarios.

(8) Annual Heat Rate for evaluated scenarios.

Section 6 Calcs: Page 24

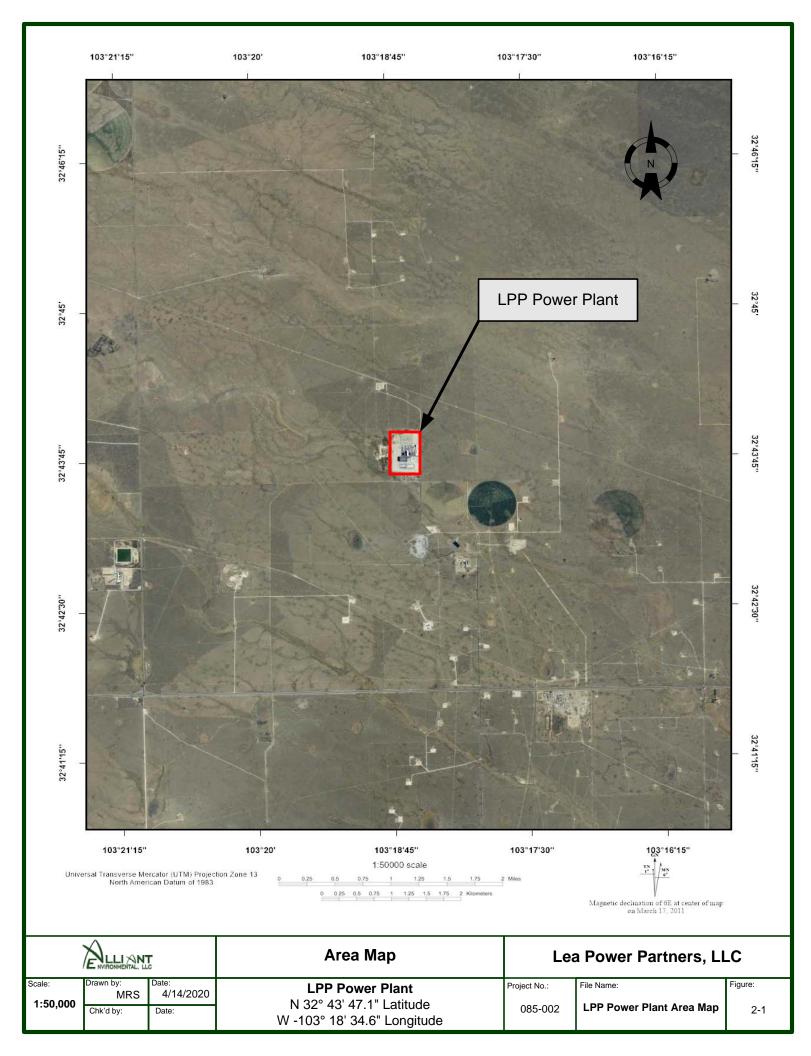
Printed 6/29/2020 6:28 PM

Information Used To Determine Emissions

Information Used to Determine Emissions shall include the following:

- If manufacturer data are used, include specifications for emissions units <u>and</u> control equipment, including control efficiencies specifications and sufficient engineering data for verification of control equipment operation, including design drawings, test reports, and design parameters that affect normal operation.
- □ If test data are used, include a copy of the complete test report. If the test data are for an emissions unit other than the one being permitted, the emission units must be identical. Test data may not be used if any difference in operating conditions of the unit being permitted and the unit represented in the test report significantly effect emission rates.
- If the most current copy of AP-42 is used, reference the section and date located at the bottom of the page. Include a copy of the page containing the emissions factors, and clearly mark the factors used in the calculations.
- \Box If an older version of AP-42 is used, include a complete copy of the section.
- If an EPA document or other material is referenced, include a complete copy.
- □ Fuel specifications sheet.
- ☑ If computer models are used to estimate emissions, include an input summary (if available) and a detailed report, and a disk containing the input file(s) used to run the model. For tank-flashing emissions, include a discussion of the method used to estimate tank-flashing emissions, relative thresholds (i.e., permit or major source (NSPS, PSD or Title V)), accuracy of the model, the input and output from simulation models and software, all calculations, documentation of any assumptions used, descriptions of sampling methods and conditions, copies of any lab sample analysis.

The following information was used to determine the CTG/HRSG emission rates post-upgrade. All relevant documentation is included. The detailed emission rate calculations are provided in Section 6 and the UA2 Form. The information is as follows:


- Mitsubishi Hitachi Power System Americas (MHPSA) CTG performance data, Effective date 10/11/2017.
- Formaldehyde emission factor as published by 40 CFR 63, Subpart YYYY Table 1 (§63.6100).
- HAPs turbine emission factors as published by U.S. EPA AP-42 Chapter 3.1, Table 3.1-3 (April, 2000).
- HAPs emission control percentage as published in the December 30, 1990 Memorandum "Hazardous Air Pollutant (HAP) Emission Control Technology for New Stationary Combustion Turbines", Sims Roy, Emission Standards Division, Combustion Group (Docket A-95-51).
- HAPs duct burner emission factors as published by U.S. EPA AP-42 Chapter 1.4, Tables 1.4-3 and 1.4-4 (July 1998).
- 40 CFR Part 75, Appendix G, Equation G-4 (§98.43(a)), CO2 emission factor. 40 CFR 98, Subpart C, Table C-2, CH4 and N2O emission factors.
- 40 CFR 98, Subpart A, Table A-1, Global Warming Potential.

Map(s)

<u>A map</u> such as a 7.5 minute topographic quadrangle showing the exact location of the source. The map shall also include the following:

The UTM or Longitudinal coordinate system on both axes	An indicator showing which direction is north
A minimum radius around the plant of 0.8km (0.5 miles)	Access and haul roads
Topographic features of the area	Facility property boundaries
The name of the map	The area which will be restricted to public access
A graphical scale	

An area map of the facility is attached.

Proof of Public Notice

(for NSR applications submitting under 20.2.72 or 20.2.74 NMAC) (This proof is required by: 20.2.72.203.A.14 NMAC "Documentary Proof of applicant's public notice")

☑ I have read the AQB "Guidelines for Public Notification for Air Quality Permit Applications" This document provides detailed instructions about public notice requirements for various permitting actions. It also provides public notice examples and certification forms. Material mistakes in the public notice will require a re-notice before issuance of the permit.

As this is a Title V permit application, public notice is not required. Public notice was completed for this project with the revision to PSD permit number PSD-3449-M5, issued December 28, 2018.

Written Description of the Routine Operations of the Facility

<u>A written description of the routine operations of the facility</u>. Include a description of how each piece of equipment will be operated, how controls will be used, and the fate of both the products and waste generated. For modifications and/or revisions, explain how the changes will affect the existing process. In a separate paragraph describe the major process bottlenecks that limit production. The purpose of this description is to provide sufficient information about plant operations for the permit writer to determine appropriate emission sources.

HGS is a natural gas fueled, nominal 604 MW net output power plant with two advanced firing temperature, Mitsubishi 501F CTGs, each provided with its own HRSG including duct burners, a single condensing, reheat STG, and an air cooled condenser serving the STG. The plant generates electricity for sale to Southwestern Public Service Company, its successors or assigns. The facility is located approximately 9 miles West of Hobbs, New Mexico in Lea County.

The exhaust from each CTG is delivered to a HRSG that produces the steam to drive the STG. Supplemental firing, using duct burners, is employed during periods of peak demand to increase HRSG steam production.

A surface condenser (heat exchanger) is used to condense the steam exhaust from the STG. Condensing the steam produces a slight vacuum, thus increasing the pressure differential that drives the steam turbine and increasing the overall efficiency of the power plant. Dry cooling is utilized to condense the steam exhaust from the steam turbine.

Several small emission sources are used at HGS, including 3 inlet chillers, 3 auxiliary cooling towers, 3 natural gas fuel heaters, a firewater pump, a standby generator and a number of storage tanks. The inlet air chilling system consists of three crossflow cooling towers that serve to enhance the overall output of the plant by lowering the temperature of the air entering the CTGs during periods of high ambient temperature (November through May). The auxiliary cooling towers consist of three crossflow closed-circuit wet cooling towers. The natural gas fuel heaters are used to pretreat the natural gas before it is fed to the CTGs. The firewater pump diesel engine is used to provide fire protection water for the plant and operates under 100 hours per year. The standby diesel generator operates under 500 hours per year and is used to provide the plant electrical requirements during complete black-out situations. Both engines fire low sulfur diesel fuel only.

Storage tanks at the site include two diesel tanks for the firewater pump diesel engine and the standby generator diesel engine, two additional diesel storage tanks, one gasoline storage tank, an aqueous ammonia storage tank for the SCR NO_x emissions control unit, a caustic storage tank and an aqueous sulfuric acid storage tank for the cooling towers pH control, a neutralization tank that serves the wastewater facility, and several water storage tanks.

Source Determination

Source submitting under 20.2.70, 20.2.72, 20.2.73, and 20.2.74 NMAC

Sources applying for a construction permit, PSD permit, or operating permit shall evaluate surrounding and/or associated sources (including those sources directly connected to this source for business reasons) and complete this section. Responses to the following questions shall be consistent with the Air Quality Bureau's permitting guidance, <u>Single Source Determination Guidance</u>, which may be found on the Applications Page in the Permitting Section of the Air Quality Bureau website.

Typically, buildings, structures, installations, or facilities that have the same SIC code, that are under common ownership or control, and that are contiguous or adjacent constitute a single stationary source for 20.2.70, 20.2.72, 20.2.73, and 20.2.74 NMAC applicability purposes. Submission of your analysis of these factors in support of the responses below is optional, unless requested by NMED.

A. Identify the emission sources evaluated in this section (list and describe):

B. Apply the 3 criteria for determining a single source:

<u>SIC</u> <u>Code</u>: Surrounding or associated sources belong to the same 2-digit industrial grouping (2-digit SIC code) as this facility, <u>OR</u> surrounding or associated sources that belong to different 2-digit SIC codes are support facilities for this source.

🛛 Yes 🗆 🗆 No

<u>Common</u> <u>Ownership</u> <u>or</u> <u>Control</u>: Surrounding or associated sources are under common ownership or control as this source.

🛛 Yes 🗆 🗆 No

<u>Contiguous</u> or <u>Adjacent</u>: Surrounding or associated sources are contiguous or adjacent with this source.

⊠ Yes □ No

C. Make a determination:

- ☑ The source, as described in this application, constitutes the entire source for 20.2.70, 20.2.72, 20.2.73, or 20.2.74 NMAC applicability purposes. If in "A" above you evaluated only the source that is the subject of this application, all "YES" boxes should be checked. If in "A" above you evaluated other sources as well, you must check AT LEAST ONE of the boxes "NO" to conclude that the source, as described in the application, is the entire source for 20.2.70, 20.2.72, 20.2.73, and 20.2.74 NMAC applicability purposes.
- □ The source, as described in this application, <u>does not</u> constitute the entire source for 20.2.70, 20.2.72, 20.2.73, or 20.2.74 NMAC applicability purposes (A permit may be issued for a portion of a source). The entire source consists of the following facilities or emissions sources (list and describe):

Section 12.A PSD Applicability Determination for All Sources

(Submitting under 20.2.72, 20.2.74 NMAC)

As this is a Title V permit application, a PSD applicability analysis is not required. A PSD applicability analysis was completed for this project with the revision to PSD permit number PSD-3449-M5, issued December 28, 2018.

Determination of State & Federal Air Quality Regulations

This section lists each state and federal air quality regulation that may apply to your facility and/or equipment that are stationary sources of regulated air pollutants.

Not all state and federal air quality regulations are included in this list. Go to the Code of Federal Regulations (CFR) or to the Air Quality Bureau's regulation page to see the full set of air quality regulations.

Required Information for Specific Equipment:

For regulations that apply to specific source types, in the 'Justification' column **provide any information needed to determine if the regulation does or does not apply**. For example, to determine if emissions standards at 40 CFR 60, Subpart IIII apply to your three identical stationary engines, we need to know the construction date as defined in that regulation; the manufacturer date; the date of reconstruction or modification, if any; if they are or are not fire pump engines; if they are or are not emergency engines as defined in that regulation; their site ratings; and the cylinder displacement.

Required Information for Regulations that Apply to the Entire Facility:

See instructions in the 'Justification' column for the information that is needed to determine if an 'Entire Facility' type of regulation applies (e.g. 20.2.70 or 20.2.73 NMAC).

Regulatory Citations for Regulations That Do Not, but Could Apply:

If there is a state or federal air quality regulation that does not apply, but you have a piece of equipment in a source category for which a regulation has been promulgated, you must **provide the low level regulatory citation showing why your piece of equipment is not subject to or exempt from the regulation. For example** if you have a stationary internal combustion engine that is not subject to 40 CFR 63, Subpart ZZZZ because it is an existing 2 stroke lean burn stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions, your citation would be 40 CFR 63.6590(b)(3)(i). We don't want a discussion of every non-applicable regulation, but if it is possible a regulation could apply, explain why it does not. For example, if your facility is a power plant, you do not need to include a citation to show that 40 CFR 60, Subpart OOO does not apply to your non-existent rock crusher.

Regulatory Citations for Emission Standards:

For each unit that is subject to an emission standard in a source specific regulation, such as 40 CFR 60, Subpart OOO or 40 CFR 63, Subpart HH, include the low level regulatory citation of that emission standard. Emission standards can be numerical emission limits, work practice standards, or other requirements such as maintenance. Here are examples: a glycol dehydrator is subject to the general standards at 63.764C(1)(i) through (iii); an engine is subject to 63.6601, Tables 2a and 2b; a crusher is subject to 60.672(b), Table 3 and all transfer points are subject to 60.672(e)(1)

Federally Enforceable Conditions:

All federal regulations are federally enforceable. All Air Quality Bureau State regulations are federally enforceable except for the following: affirmative defense portions at 20.2.7.6.B, 20.2.7.110(B)(15), 20.2.7.11 through 20.2.7.113, 20.2.7.115, and 20.2.7.116; 20.2.37; 20.2.42; 20.2.43; 20.2.62; 20.2.63; 20.2.86; 20.2.89; and 20.2.90 NMAC. Federally enforceable means that EPA can enforce the regulation as well as the Air Quality Bureau and federally enforceable regulations can count toward determining a facility's potential to emit (PTE) for the Title V, PSD, and nonattainment permit regulations.

INCLUDE ANY OTHER INFORMATION NEEDED TO COMPLETE AN APPLICABILITY DETERMINATION OR THAT IS RELEVENT TO YOUR FACILITY'S NOTICE OF INTENT OR PERMIT.

EPA Applicability Determination Index for 40 CFR 60, 61, 63, etc: http://cfpub.epa.gov/adi/

There are no changes to prior representations.

STATE REGU- LATIONS CITATION	Title	Applies? Enter Yes or No	Unit(s) or Facility	JUSTIFICATION: (You may delete instructions or statements that do not apply in the justification column to shorten the document.)
20.2.1 NMAC	General Provisions	Yes	Facility	General Provisions apply to Notice of Intent, Construction, and Title V permit applications.
20.2.3 NMAC	Ambient Air Quality Standards NMAAQS	Yes	Facility	If subject, this would normally apply to the entire facility. 20.2.3 NMAC is a State Implementation Plan (SIP) approved regulation that limits the maximum allowable concentration of, Sulfur Compounds, Carbon Monoxide and Nitrogen Dioxide. Title V applications, see exemption at 20.2.3.9 NMAC The TSP NM ambient air quality standard was repealed by the EIB effective November 30, 2018.
20.2.7 NMAC	Excess Emissions	Yes	Facility	All Title V major sources are subject to Air Quality Control Regulations, as defined in 20.2.7 NMAC, and are thus subject to the requirements of this regulation. Also listed as applicable in NSR Permit PSD-3449-M5R2.
20.2.23 NMAC	Fugitive Dust Control	Yes	Facility	 This regulation may apply if, this is an application for a notice of intent (NOI) per 20.2.73 NMAC, if the activity or facility is a fugitive dust source listed at 20.2.23.108.A NMAC, and if the activity or facility is located in an area subject to a mitigation plan pursuant to 40 CFR 51.930. http://164.64.110.134/parts/title20/20.002.0023.html As of January 2019, the only areas of the State subject to a mitigation plan per 40 CFR 51.930 are in Doña Ana and Luna Counties. Sources exempt from 20.2.23 NMAC are activities and facilities subject to a permit issued pursuant to the NM Air Quality Control Act, the Mining Act, or the Surface Mining Act (20.2.23.108.B NMAC. 20.2.23.108 APPLICABILITY: A. This part shall apply to persons owning or operating the following fugitive dust sources in areas requiring a mitigation plan in accordance with 40 CFR Part 51.930: (1) disturbed surface areas or inactive disturbed surface areas, or a combination thereof, encompassing an area equal to or greater than one acre; (2) any commercial or industrial bulk material processing, handling, transport or storage operations. B. The following fugitive dust sources are exempt from this part: (1) agricultural facilities, as defined in this part; (2) roadways, as defined in this part; (3) operations issued permits pursuant to the state of New Mexico Air Quality Control Act, Mining Act or Surface Mining Act; and (4) lands used for state or federal military activities. [20.2.23.108 NMAC - N, 01/01/2019]
20.2.33 NMAC	Gas Burning Equipment - Nitrogen Dioxide	Yes	DB-1, DB-2	Hobbs duct burners are new gas burning equipment with a heat input greater than 1,000,000 MMBtu/yr per unit. Hobbs fuel gas heaters are new gas burning equipment with a heat input less than 1,000,000 MMBtu/yr, therefore this part does not apply to these equipment. Note: "New gas burning equipment" means gas burning equipment, the construction or modification of which is commenced after February 17, 1972.
20.2.34 NMAC	Oil Burning Equipment: NO ₂	No	N/A	Not applicable. This facility has no oil burning equipment having a heat input of greater than 1,000,000 MMBtu/yr per unit.
20.2.35 NMAC	Natural Gas Processing Plant – Sulfur	No	N/A	Not applicable. Hobbs is not a Natural Gas Processing Plant; therefore, it is not subject to the requirements of 20.2.35 NMAC.
20.2.37 and 20.2.36 NMAC	Petroleum Processing Facilities and Petroleum	No	N/A	Not applicable. Hobbs is not a Petroleum Processing Facility; therefore, it is not subject to the requirements of 20.2.37 NMAC.

<u>STATE</u> <u>REGU-</u> LATIONS	Title	Applies? Enter Yes or	Unit(s) or Facility	JUSTIFICATION:
CITATION		No		(You may delete instructions or statements that do not apply in the justification column to shorten the document.)
	Refineries			
<u>20.2.38</u> NMAC	Hydrocarbon Storage Facility	N/A	N/A	Not applicable. Hobbs does not have hydrocarbon storage tanks with a capacity of 20,000 gallons or greater, nor does it contain a "tank battery" or "Storage facility".
20.2.39 NMAC	Sulfur Recovery Plant - Sulfur	N/A	N/A	Not applicable. Hobbs is not a Sulfur Recovery Plant.
20.2.61.109 NMAC	Smoke & Visible Emissions	Yes	HOBB-1, HOBB-2, DB-1, DB-2, FH-1, FH-2, FH-3, G- 1 and FP-1	Hobbs CTGs, HRSG duct burners, fuel gas heaters, standby generator and diesel fire pump will not cause visible emissions to equal or exceed an opacity of 20%.
20.2.70 NMAC	Operating Permits	Yes	Facility	Hobbs operates under Operating Permit No. P244-R1. The facility is a major source for NOx, CO, PM ₁₀ /PM _{2.5} and CO ₂ e.
20.2.71 NMAC	Operating Permit Fees	Yes	Facility	Hobbs is subject to 20.2.70 NMAC and is therefore subject to 20.2.71 NMAC.
20.2.72 NMAC	Construction Permits	Yes	Facility	Hobbs is subject to 20.2.72 NMAC and NSR Permit number: PSD-3449-M5.
20.2.73 NMAC	NOI & Emissions Inventory Requirements	Yes	Facility	Emissions Inventory Reporting: 20.2.73.300 NMAC applies. All Title V major sources meet the applicability requirements of 20.2.73.300 NMAC.
20.2.74 NMAC	Permits – Prevention of Significant Deterioration (PSD)	Yes	Facility	Hobbs is a PSD major source as defined by: (1) Any stationary source listed in 20.2.74.501 NMAC Table 1 (i.e., fossil fuel- fired steam electric facilities greater than 250 MMBtu) which emits, or has the potential to emit, emissions equal to or greater than 100 tons per year of any regulated pollutant.
20.2.75 NMAC	Construction Permit Fees	Yes	Facility	This facility is subject to 20.2.72 NMAC and is in turn subject to 20.2.75 NMAC. N/A if subject to 20.2.71 NMAC.
20.2.77 NMAC	New Source Performance	Yes	HOBB-1, HOBB-2, G-1	Hobbs is a stationary source subject to the requirements of 40 CFR Part 60, as amended through September 23, 2013.
20.2.78 NMAC	Emission Standards for HAPS	N/A	Units Subject to 40 CFR 61	Under normal operating conditions the site is not subject to 40 CFR Part 61. Refer to Table 13-2 40 CFR Part 61 Subpart M for further discussion.

STATE REGU- LATIONS CITATION	Title	Applies? Enter Yes or No	Unit(s) or Facility	JUSTIFICATION: (You may delete instructions or statements that do not apply in the justification column to shorten the document.)
20.2.79 NMAC	Permits – Nonattainment Areas	No	Facility	Not applicable. Hobbs is located in Lea County, an attainment area for all regulated pollutants.
20.2.80 NMAC	Stack Heights	No		Not cited as applicable in NSR Permit PSD-3449-M5R2.
20.2.82 NMAC	MACT Standards for source categories of HAPS	Yes	G-1, FP-1	Hobbs is a minor source of hazardous air pollutants. The standby generator and fire water pump are subject to 40 CFR 63 Subpart ZZZZ.

Example of a Table for Applicable FEDERAL REGULATIONS (Note: This is not an exhaustive list):

FEDERAL REGU- LATIONS CITATION	Title	Applies? Enter Yes or No	Unit(s) or Facility	JUSTIFICATION:
40 CFR 50	NAAQS	Yes	Facility	Defined as applicable at 20.2.70.7.E.11. Any national ambient air quality standard. Not directly applicable to individual emission sources.
NSPS 40 CFR 60, Subpart A	General Provisions	Yes	HOBB- 1, HOBB- 2, DB-1, DB-2, G-1	Hobbs CTGs and HRSG duct burners are subject to 40 CFR 60 Subpart KKKK. Hobbs standby generator is subject to 40 CFR 60 Subpart IIII; therefore, these units are also subject to 40 CFR 60 Subpart A - General Provisions.
NSPS 40 CFR60.40a, Subpart Da	Subpart Da, Performance Standards for Electric Utility Steam Generating Units	No	N/A	Not applicable. Emissions from the HRSG duct burners are subject to 40 CFR 60 Subpart KKKK and therefore are exempt from the requirements of Subpart Da.
NSPS 40 CFR60.40b Subpart Db	Electric Utility Steam Generating Units			Not applicable. Emissions from the HRSG duct burners are subject to 40 CFR 60 Subpart KKKK and therefore are exempt from the requirements of Subpart Db.

FEDERAL REGU- LATIONS CITATION	Title	Applies? Enter Yes or No	Unit(s) or Facility	JUSTIFICATION:
40 CFR 60.40c, Subpart Dc	Standards of Performance for Small Industrial- Commercial- Institutional Steam Generating Units	No	N/A	Not applicable. Hobbs has no petroleum liquid storage vessels subject to this regulation.
NSPS 40 CFR 60, Subpart Ka	Standards of Performance for Storage Vessels for Petroleum Liquids for which Construction, Reconstruction, or Modification Commenced After May 18, 1978, and Prior to July 23, 1984	No	N/A	Not applicable. Hobbs does not have storage vessels with a capacity greater than or equal to 75 cubic meters that is used to store volatile organic liquids (VOL) for which construction, reconstruction, or modification is commenced after July 23, 1984.
NSPS 40 CFR 60, Subpart Kb	Standards of Performance for Volatile Organic Liquid Storage Vessels (Including Petroleum Liquid Storage Vessels) for Which Construction, Reconstruction, or Modification Commenced After July 23, 1984	No	N/A	Not applicable. Emissions from the HRSG duct burners are subject to 40 CFR 60 Subpart KKKK and therefore are exempt from the requirements of Subpart Db.
NSPS 40 CFR 60.330 Subpart GG	Stationary Gas Turbines	No	N/A	Units HOBB-1 and HOBB-2 have a heat input equal to 1,697 MMBtu/hour (nominal), which is greater than the 10 MMBtu/hour threshold. These units were manufactured on 2007 which is after the October 3, 1977 applicability date.
NSPS 40 CFR 60, Subpart KKK	Leaks of VOC from Onshore Gas Plants	No	N/A	Not applicable. Hobbs is not an Onshore Gas Plant.
NSPS 40 CFR Part 60 Subpart LLL	Standards of Performance for Onshore Natural Gas Processing : SO ₂ Emissions	No	N/A	Not applicable. Hobbs is not an Onshore Natural Gas Processing plant.
NSPS 40 CFR Part 60 Subpart 0000	Standards of Performance for Crude Oil and Natural Gas Production, Transmission, and Distribution for which construction, modification or reconstruction	No	N/A	Not applicable. Hobbs is not an Oil and Gas facility.

FEDERAL REGU- LATIONS CITATION	Title	Applies? Enter Yes or No	Unit(s) or Facility	JUSTIFICATION:
	commenced after August 23, 2011 and before September 18, 2015			
NSPS 40 CFR Part 60 Subpart OOOOa	Standards of Performance for Crude Oil and Natural Gas Facilities for which Construction, Modification or Reconstruction Commenced After September 18, 2015	No	N/A	Not applicable. Hobbs is not an Oil and Gas facility.
NSPS 40 CFR 60 Subpart IIII	Standards of performance for Stationary Compression Ignition Internal Combustion Engines	Yes	G-1	Hobbs Diesel Standby Generator was manufactured after July 1, 2006 and is not a fire pump engine. Therefore, this unit is subject to the provisions of NSPS IIII, (§60.4200(a)(2)(i)). Hobbs Diesel Fire Water Pump, was manufactured and constructed in 2011, before all applicable trigger dates in the rule; therefore, it is not subject to NSPS IIII.
NSPS 40 CFR Part 60 Subpart JJJJ	Standards of Performance for Stationary Spark Ignition Internal Combustion Engines	No	N/A	Not applicable. Hobbs is not equipped with any stationary spark ignition internal combustion engine.
NSPS 40 CFR 60 Subpart TTTT	Standards of Performance for Greenhouse Gas Emissions for Electric Generating Units	No	N/A	Not applicable. Modification date predates NSPS applicability date.
NSPS 40 CFR 60 Subpart UUUU	Emissions Guidelines for Greenhouse Gas Emissions and Compliance Times for Electric Utility Generating Units	No	N/A	Not applicable. Hobbs is not an Electric Utility Generating Unit.
NSPS 40 CFR 60, Subparts WWW, XXX, Cc, and Cf	Standards of performance for Municipal Solid Waste (MSW) Landfills	No	N/A	Not applicable. Hobbs is not a Municipal Solid Waste (MSW) Landfill.
NESHAP 40 CFR 61 Subpart A	General Provisions	Yes (Potentially)	Facility	Potentially Hobbs could be subject to 40 CFR 61 Subpart M. Refer to discussion below.
NESHAP 40 CFR 61 Subpart E	National Emission Standards for Mercury	No	N/A	Not applicable. This facility does not process mercury.
NESHAP 40 CFR 61 Subpart V	National Emission Standards for Equipment Leaks (Fugitive Sources)	No	N/A	Not applicable. Hobbs does not operate any sources in volatile hazardous air pollutant (VHAP) service.

FEDERAL REGU- LATIONS CITATION	Title	Applies? Enter Yes or No	Unit(s) or Facility	JUSTIFICATION:
MACT 40 CFR 63, Subpart A	General Provisions	Yes	G-1 FP-1 T-9	The Hobbs Diesel Standby Generator and Diesel Fire Water Pump are subject to MACT Subpart ZZZZ, and the gasoline storage tank is subject to MACT Subpart CCCCCC, therefore these sources must comply with the requirements of MACT Subpart A.
MACT 40 CFR 63.760 Subpart HH	Oil and Natural Gas Production Facilities	No	N/A	Not applicable. Hobbs is not an Oil and Natural Gas Production facility.
MACT 40 CFR 63 Subpart HHH		No	N/A	Not applicable. Hobbs is not a natural gas transmission and storage facility.
MACT 40 CFR 63 Subpart DDDDD	National Emission Standards for Hazardous Air Pollutants for Major Industrial, Commercial, and Institutional Boilers & Process Heaters	No	N/A	Not applicable. No major boilers and/or process heaters are located at Hobbs.
MACT 40 CFR 63 Subpart UUUUU	National Emission Standards for Hazardous Air Pollutants Coal & Oil Fire Electric Utility Steam Generating Unit	No	N/A	Not applicable. Hobbs is not a coal and oil fire electric utility steam generating unit.
MACT 40 CFR 63 Subpart ZZZZ	National Emissions Standards for Hazardous Air Pollutants for Stationary Reciprocating Internal Combustion Engines (RICE MACT)	Yes	G-1 FP-1	Hobbs Diesel Standby Generator (G-1) is a new (emergency) stationary RICE at an area source of HAPs. Per §63.6590(c)(1), G-1 meets the requirements of MACT ZZZZ by meeting the requirements of NSPS IIII. Hobbs Diesel Fire Water Pump (FP-1) is an existing emergency RICE at an area source of HAPs and must comply with the requirements of MACT ZZZZ as of May 3, 2013.
MACT 40 CFR 63 Subpart CCCCCC	Gasoline Dispensing Facilities	Yes	T-9	The affected source is located at an area source of HAPs. The proposed gasoline storage tank (T-9) will have a monthly throughput of less than 10,000 gallons of gasoline, and therefore, T-9 must comply with the requirements in §63.11116, which include: (1) minimize gasoline spills; (2) clean up spills as expeditiously as practicable; (3) cover all open gasoline containers and all gasoline storage tank fill-pipes with a gasketed seal when not in use; and (4) minimize gasoline sent to open waste collection systems.
40 CFR 64	Compliance Assurance Monitoring	Yes	Facility	Hobbs CTGs/HRSG exhaust stacks are equipped with a CEMS that satisfy the CAM exemption requirements (§64.2(b)(1)(vi)).

FEDERAL REGU- LATIONS CITATION	Title	Applies? Enter Yes or No	Unit(s) or Facility	JUSTIFICATION:
40 CFR 68	Chemical Accident Prevention	No	N/A	Not applicable. Hobbs does not manufacture, process, use, store, or otherwise handle regulated substances in excess of the quantities specified in 10 CFR 68.
Title IV – Acid Rain 40 CFR 72	Acid Rain	Yes	HOBB- 1, HOBB-2	Hobbs CTGs are subject to the requirements of the Acid Rain Program.
Title IV – Acid Rain 40 CFR 73	Sulfur Dioxide Allowance Emissions	Yes	HOBB- 1, HOBB-2	Hobbs must obtain SO ₂ calendar year allowances.
Title IV-Acid Rain 40 CFR 75	Continuous Emissions Monitoring	Yes	HOBB- 1, HOBB-2	Hobbs CTG/HRSG exhaust stack is equipped with a CEMS for NOx, CO and O ₂ .
Title IV – Acid Rain 40 CFR 76	Acid Rain Nitrogen Oxides Emission Reduction Program	No	N/A	Hobbs is not subject to the acid rain nitrogen oxides emission reduction program.
Title VI – 40 CFR 82	Protection of Stratospheric Ozone	Yes	Facility	Hobbs equipment includes appliances containing CFCs and is therefore subject to the requirements of 40 CFR 82. Hobbs uses only certified technicians for the maintenance, service, repair and disposal of these appliances and maintains the appropriate records.

Operational Plan to Mitigate Emissions

(Submitting under 20.2.70, 20.2.72, 20.2.74 NMAC)

Title V Sources (20.2.70 NMAC): By checking this box and certifying this application the permittee certifies that it has developed an <u>Operational Plan to Mitigate Emissions During Startups</u>, <u>Shutdowns</u>, <u>and Emergencies</u> defining the measures to be taken to mitigate source emissions during startups, shutdowns, and emergencies as required by 20.2.70.300.D.5(f) and (g) NMAC. This plan shall be kept on site to be made available to the Department upon request. This plan should not be submitted with this application.

- □ NSR (20.2.72 NMAC), PSD (20.2.74 NMAC) & Nonattainment (20.2.79 NMAC) Sources: By checking this box and certifying this application the permittee certifies that it has developed an <u>Operational Plan to Mitigate Source Emissions</u> <u>During Malfunction, Startup, or Shutdown</u> defining the measures to be taken to mitigate source emissions during malfunction, startup, or shutdown as required by 20.2.72.203.A.5 NMAC. This plan shall be kept on site to be made available to the Department upon request. This plan should not be submitted with this application.
- □ **Title V** (20.2.70 NMAC), **NSR** (20.2.72 NMAC), **PSD** (20.2.74 NMAC) & **Nonattainment** (20.2.79 NMAC) Sources: By checking this box and certifying this application the permittee certifies that it has established and implemented a Plan to Minimize Emissions During Routine or Predictable Startup, Shutdown, and Scheduled Maintenance through work practice standards and good air pollution control practices as required by 20.2.7.14.A and B NMAC. This plan shall be kept on site or at the nearest field office to be made available to the Department upon request. This plan should not be submitted with this application.

Startup and shutdown procedures are either based on manufacturer's recommendations and/or based on HGS' operating experience. These procedures are designed to proactively address the potential for malfunction to the greatest extent possible. These procedures dictate a sequence of operations that are designed to minimize emissions from the facility during events that result in shutdown and subsequent startup.

HGS equipment incorporates various safety devices and features that aid in the prevention of excess emissions in the event of an operational emergency. If an operational emergency does occur and excess emissions occur, Hobbs will submit the required Excess Emissions Report as per 20.2.7 NMAC. Corrective action to eliminate the excess emissions and prevent recurrence in the future will be undertaken as quickly as safety allows.

Alternative Operating Scenarios

(Submitting under 20.2.70, 20.2.72, 20.2.74 NMAC)

Alternative Operating Scenarios: Provide all information required by the department to define alternative operating scenarios. This includes process, material and product changes; facility emissions information; air pollution control equipment requirements; any applicable requirements; monitoring, recordkeeping, and reporting requirements; and compliance certification requirements. Please ensure applicable Tables in this application are clearly marked to show alternative operating scenario.

Construction Scenarios: When a permit is modified authorizing new construction to an existing facility, NMED includes a condition to clearly address which permit condition(s) (from the previous permit and the new permit) govern during the interval between the date of issuance of the modification permit and the completion of construction of the modification(s). There are many possible variables that need to be addressed such as: Is simultaneous operation of the old and new units permitted and, if so for example, for how long and under what restraints? In general, these types of requirements will be addressed in Section A100 of the permit, but additional requirements may be added elsewhere. Look in A100 of our NSR and/or TV permit template for sample language dealing with these requirements. Find these permit templates at: https://www.env.nm.gov/aqb/permit/aqb_pol.html. Compliance with standards must be maintained during construction, which should not usually be a problem unless simultaneous operation of old and new equipment is requested.

In this section, under the bolded title "Construction Scenarios", specify any information necessary to write these conditions, such as: conservative-realistic estimated time for completion of construction of the various units, whether simultaneous operation of old and new units is being requested (and, if so, modeled), whether the old units will be removed or decommissioned, any PSD ramifications, any temporary limits requested during phased construction, whether any increase in emissions is being requested as SSM emissions or will instead be handled as a separate Construction Scenario (with corresponding emission limits and conditions, etc.

Not applicable, HGS does not have an alternative operating scenario.

Section 16 Air Dispersion Modeling

- Minor Source Construction (20.2.72 NMAC) and Prevention of Significant Deterioration (PSD) (20.2.74 NMAC) ambient impact analysis (modeling): Provide an ambient impact analysis as required at 20.2.72.203.A(4) and/or 20.2.74.303 NMAC and as outlined in the Air Quality Bureau's Dispersion Modeling Guidelines found on the Planning Section's modeling website. If air dispersion modeling has been waived for one or more pollutants, attach the AQB Modeling Section modeling waiver approval documentation.
- 2) SSM Modeling: Applicants must conduct dispersion modeling for the total short term emissions during routine or predictable startup, shutdown, or maintenance (SSM) using realistic worst case scenarios following guidance from the Air Quality Bureau's dispersion modeling section. Refer to "Guidance for Submittal of Startup, Shutdown, Maintenance Emissions in Permit Applications (<u>http://www.env.nm.gov/aqb/permit/app_form.html</u>) for more detailed instructions on SSM emissions modeling requirements.
- 3) Title V (20.2.70 NMAC) ambient impact analysis: Title V applications must specify the construction permit and/or Title V Permit number(s) for which air quality dispersion modeling was last approved. Facilities that have only a Title V permit, such as landfills and air curtain incinerators, are subject to the same modeling required for preconstruction permits required by 20.2.72 and 20.2.74 NMAC.

What is the purpose of this application?	Enter an X for each purpose that applies
New PSD major source or PSD major modification (20.2.74 NMAC). See #1 above.	
New Minor Source or significant permit revision under 20.2.72 NMAC (20.2.72.219.D NMAC).	
See #1 above. Note: Neither modeling nor a modeling waiver is required for VOC emissions.	
Reporting existing pollutants that were not previously reported.	
Reporting existing pollutants where the ambient impact is being addressed for the first time.	
Title V application (new, renewal, significant, or minor modification. 20.2.70 NMAC). See #3	Х
above.	
Relocation (20.2.72.202.B.4 or 72.202.D.3.c NMAC)	
Minor Source Technical Permit Revision 20.2.72.219.B.1.d.vi NMAC for like-kind unit	
replacements.	
Other: i.e. SSM modeling. See #2 above.	
This application does not require modeling since this is a No Permit Required (NPR) application.	
This application does not require modeling since this is a Notice of Intent (NOI) application	
(20.2.73 NMAC).	
This application does not require modeling according to 20.2.70.7.E(11), 20.2.72.203.A(4),	
20.2.74.303, 20.2.79.109.D NMAC and in accordance with the Air Quality Bureau's Modeling	
Guidelines.	

Check each box that applies:

- □ See attached, approved modeling **waiver for all** pollutants from the facility.
- □ See attached, approved modeling **waiver for some** pollutants from the facility.
- □ Attached in Universal Application Form 4 (UA4) is a **modeling report for all** pollutants from the facility.
- \Box Attached in UA4 is a **modeling report for some** pollutants from the facility.
- ☑ No modeling is required.

Compliance Test History

(Submitting under 20.2.70, 20.2.72, 20.2.74 NMAC)

To show compliance with existing NSR permits conditions, you must submit a compliance test history. The table below provides an example.

Table 17–1 Compliance Test History Table						
Unit No.	Permit No.	Permit Cond.	Test Description	Test Date		
	PSD 3449	A401A	Initial Compliance for PM/PM10/PM2.5	3/5/2015 -		
				3/6/2015		
			RATA testing in accordance with EPA test methods for NOx and CO.	6/4/2020		
		A401C		7/30/2019		
				6/6/2018		
				9/21/2017		
				923/2016		
				9/23/2015		
				9/17/2014		
		A401E	Annual ammonia compliance testing.	9/23/2015-		
				9/24/2015		
				9/17/2014		
HOBB-1/DB-1			RATA testing in accordance with EPA test methods for NOx and CO.	6/4/2020		
nudd-1/dd-1				7/30/2019		
		A401C		6/6/2018		
	PSD 3449			9/21/2017		
				923/2016		
				11/13/2013		
				11/7/2012		
				11/30/2011		
		A401A	Annual stack testing for NOx and CO.	11/13/2013		
				11/7/2012		
				11/30/2011		
		A401E	Annual ammonia compliance testing.	11/13/2013		
				11/7/2012		
				11/30/2011		
	PSD 3449	A401A	Initial Compliance for PM/PM10/PM2.5	3/11/2015 -		
		AHUIA		3/12/2015		
		A401C	RATA testing in accordance with EPA test methods for NOx and CO.	6/3/2020		
				7/26/2019		
HOBB-2/DB-2				6/6/2018		
HOBB-2/DB-2				9/21/2017		
				923/2016		
				9/23/2015-		
				9/24/2015		
				9/16/2014		

Table 17–1 Compliance Test History Table

Form-Section 17 last revised: 8/15/2011

		A401E	Annual ammonia compliance testing.	9/25/2015-
				9/27/2015
				9/16/2014
				6/3/2020
		A401C	RATA testing in accordance with EPA test methods for NOx and CO.	7/26/2019
				6/6/2018
				9/21/2017
		more		9/23/2016
				11/14/2013
	PSD 3449			11/8/2012
				12/1/2011
				11/14/2013
		A401A	Annual stack testing for NOx and CO.	11/8/2012
				12/1/2011
				11/14/2013
		A401E	Annual ammonia compliance testing.	11/8/2012
				12/1/2011
		A401A		9/29/2015-
HOBB1	PSD 3449		Initial Compliance for PM/PM10/PM2.5	10/1/2015
HOBB2	PSD 3449	A401A	Initial Compliance for PM/PM10/PM2.5	9/29/2015-
			1	10/1/2015
		SD 3449 A111 B Opacity test. 7/2 9/2 9/1	Opacity test.	6/4/2020
	PSD 3449			7/26/2019
				6/6/2018
G-1				9/24/2015
			9/17/2014	
		A111 B	Opacity test.	11/12/2013
PSI	PSD 3449			11/6/2012
				11/29/2011
	PSD 3449	A111 B	Opacity test.	6/4/2020
				7/30/2019
				6/6/2018
FP-1				9/24/2015
	PSD 3449	A111 B	Opacity test.	9/17/2014
				11/12/2013
				11/6/2012
				11/29/2011

Addendum for Streamline Applications Do not print this section unless this is a streamline application.

Not Applicable

Requirements for Title V Program

Do not print this section unless this is a Title V application.

Who Must Use this Attachment:

* Any major source as defined in 20.2.70 NMAC.

- * Any source, including an area source, subject to a standard or other requirement promulgated under Section 111 Standards of Performance for New Stationary Sources, or Section 112 Hazardous Air Pollutants, of the 1990 federal Clean Air Act ("federal Act"). Non-major sources subject to Sections 111 or 112 of the federal Act are exempt from the obligation to obtain an 20.2.70 NMAC operating permit until such time that the EPA Administrator completes rulemakings that require such sources to obtain operating permits. In addition, sources that would be required to obtain an operating permit solely because they are subject to regulations or requirements under Section 112(r) of the federal Act are exempt from the requirement to obtain an Operating Permit.
- * Any Acid Rain source as defined under title IV of the federal Act. The Acid Rain program has additional forms. See <u>http://www.env.nm.gov/aqb/index.html</u>. Sources that are subject to both the Title V and Acid Rain regulations are encouraged to submit both applications simultaneously.
- * Any source in a source category designated by the EPA Administrator ("Administrator"), in whole or in part, by regulation, after notice and comment.

To save paper and to standardize the application format, delete this sentence, and begin your submittal for this item here.

19.1 - 40 CFR 64, Compliance Assurance Monitoring (CAM) (20.2.70.300.D.10.e NMAC)

Any source subject to 40CFR, Part 64 (Compliance Assurance Monitoring) must submit all the information required by section 64.7 with the operating permit application. The applicant must prepare a separate section of the application package for this purpose; if the information is already listed elsewhere in the application package, make reference to that location. Facilities not subject to Part 64 are invited to submit periodic monitoring protocols with the application to help the AQB to comply with 20.2.70 NMAC. Sources subject to 40 CFR Part 64, must submit a statement indicating your source's compliance status with any enhanced monitoring and compliance certification requirements of the federal Act.

Hobbs CTGs/HRSG exhaust stacks are equipped with a CEMS that satisfy the CAM exemption requirements (§64.2(b)(1)(vi)); therefore, Part 64 is not applicable.

19.2 - Compliance Status (20.2.70.300.D.10.a & 10.b NMAC)

Describe the facility's compliance status with each applicable requirement at the time this permit application is submitted. This statement should include descriptions of or references to all methods used for determining compliance. This statement should include descriptions of monitoring, recordkeeping and reporting requirements and test methods used to determine compliance with all applicable requirements. Refer to Section 2, Tables 2-N and 2-O of the Application Form as necessary. (20.2.70.300.D.11 NMAC) For facilities with existing Title V permits, refer to most recent Compliance Certification for existing requirements. Address new requirements such as CAM, here, including steps being taken to achieve compliance.

Methods for determining compliance, and requirements for monitoring, recordkeeping, reporting, and testing included in the Title V permit will continue to be met by LPP.

19.3 - Continued Compliance (20.2.70.300.D.10.c NMAC)

Provide a statement that your facility will continue to be in compliance with requirements for which it is in compliance at the time of permit application. This statement must also include a commitment to comply with other applicable requirements as they come into effect during the permit term. This compliance must occur in a timely manner or be consistent with such schedule expressly required by the applicable requirement.

LPP is in compliance and will continue to be in compliance with the requirements of the Title V permit. Furthermore, LPP has made a commitment to comply with other applicable requirements as they come into effect during the permit term. This compliance will occur in a timely manner and/or be consistent with such schedule expressly required by the applicable requirement.

19.4 - Schedule for Submission of Compliance (20.2.70.300.D.10.d NMAC)

You must provide a proposed schedule for submission to the department of compliance certifications during the permit term. This certification must be submitted annually unless the applicable requirement or the department specifies a more frequent period. A sample form for these certifications will be attached to the permit.

Compliance certifications for the HGS will be submitted annually, as required by the Tile V permit and 20.2.70.300.D.10.

19.5 - Stratospheric Ozone and Climate Protection

In addition to completing the four (4) questions below, you must submit a statement indicating your source's compliance status with requirements of Title VI, Section 608 (National Recycling and Emissions Reduction Program) and Section 609 (Servicing of Motor Vehicle Air Conditioners).

- 2. Does any air conditioner(s) or any piece(s) of refrigeration equipment contain a refrigeration charge greater than 50 lbs?

 I Yes
 X No

(If the answer is yes, describe the type of equipment and how many units are at the facility.)

- 3. Do your facility personnel maintain, service, repair, or dispose of any motor vehicle air conditioners (MVACs) or appliances ("appliance" and "MVAC" as defined at 82. 152)? □ Yes ⊠ No
- 4. Cite and describe which Title VI requirements are applicable to your facility (i.e. 40 CFR Part 82, Subpart A through G.)

LPP does not produce, manufacture, transform, destroy, import, or export any stratospheric ozone-depleting substances (CFCs, HCFCs); does not maintain or service motor vehicle air conditioning units or refrigeration equipment; and does not sell, distribute, or offer for sale any product that may contain stratospheric ozone-depleting substances. LPP shall continue to comply with the conditions stipulated in 40 CFR 82, Subparts A-G of the Stratospheric Ozone Protection Program (Title VI of the Clean Air Act Amendments), as applicable.

19.6 - Compliance Plan and Schedule

Applications for sources, which are not in compliance with all applicable requirements at the time the permit application is submitted to the department, must include a proposed compliance plan as part of the permit application package. This plan shall include the information requested below:

A. Description of Compliance Status: (20.2.70.300.D.11.a NMAC)

A narrative description of your facility's compliance status with respect to all applicable requirements (as defined in 20.2.70 NMAC) at the time this permit application is submitted to the department.

B. Compliance plan: (20.2.70.300.D.11.B NMAC)

A narrative description of the means by which your facility will achieve compliance with applicable requirements with which it is not in compliance at the time you submit your permit application package.

C. Compliance schedule: (20.2.70.300D.11.c NMAC)

A schedule of remedial measures that you plan to take, including an enforceable sequence of actions with milestones, which will lead to compliance with all applicable requirements for your source. This schedule of compliance must be at least as stringent as that contained in any consent decree or administrative order to which your source is subject. The obligations of any consent decree or administrative order are not in any way diminished by the schedule of compliance.

D. Schedule of Certified Progress Reports: (20.2.70.300.D.11.d NMAC)

A proposed schedule for submission to the department of certified progress reports must also be included in the compliance schedule. The proposed schedule must call for these reports to be submitted at least every six (6) months.

E. Acid Rain Sources: (20.2.70.300.D.11.e NMAC)

If your source is an acid rain source as defined by EPA, the following applies to you. For the portion of your acid rain source subject to the acid rain provisions of title IV of the federal Act, the compliance plan must also include any additional requirements under the acid rain provisions of title IV of the federal Act. Some requirements of title IV regarding the schedule and methods the source will use to achieve compliance with the acid rain emissions limitations may supersede the requirements of title V and 20.2.70 NMAC. You will need to consult with the Air Quality Bureau permitting staff concerning how to properly meet this requirement.

NOTE: The Acid Rain program has additional forms. See http://www.env.nm.gov/aqb/index.html. Sources that are subject to both the Title V and Acid Rain regulations are encouraged to submit both applications simultaneously.

LPP is in compliance with all applicable requirements at the time this application is submitted; therefore, a new compliance plan is not being proposed.

19.7 - **112(r)** Risk Management Plan (RMP)

Any major sources subject to section 112(r) of the Clean Air Act must list all substances that cause the source to be subject to section 112(r) in the application. The permittee must state when the RMP was submitted to and approved by EPA.

Not applicable, as the HGS does not manufacture, process, use, store, or otherwise handle regulated substances in excess of the quantities specified in 40 CFR 68.

19.8 - Distance to Other States, Bernalillo, Indian Tribes and Pueblos

Will the property on which the facility is proposed to be constructed or operated be closer than 80 km (50 miles) from other states, local pollution control programs, and Indian tribes and pueblos (20.2.70.402.A.2 and 20.2.70.7.B NMAC)?

(If the answer is yes, state which apply and provide the distances.)

Texas (23 km).

19.9 - Responsible Official

Mr. David Baugh, Vice President Asset Management Phone: (713) 358-9726 Email: dbaugh@camstex.com

Form-Section 20 last revised: 8/15/2011

Other Relevant Information

<u>Other relevant information</u>. Use this attachment to clarify any part in the application that you think needs explaining. Reference the section, table, column, and/or field. Include any additional text, tables, calculations or clarifying information.

Additionally, the applicant may propose specific permit language for AQB consideration. In the case of a revision to an existing permit, the applicant should provide the old language and the new language in track changes format to highlight the proposed changes. If proposing language for a new facility or language for a new unit, submit the proposed operating condition(s), along with the associated monitoring, recordkeeping, and reporting conditions. In either case, please limit the proposed language to the affected portion of the permit.

All relevant information has been incorporated in the appropriate application pages.

Addendum for Landfill Applications

Do not print this section unless this is a landfill application.

Not Applicable

July 2020 Revision #2

Section 22: Certification

Company Name: Consolidated Asset Management Services (New Mexico), LLC

I, **David Baugh**, hereby certify that the information and data submitted in this application are true and as accurate as possible, to the best of my knowledge and professional expertise and experience.

Signed this 15^{\pm} day of 5^{\pm} July 2020, upon my oath or affirmation, before a notary of the State of lexas <u>7/1/2020</u> Date <u>VP-Asset Managenet</u> Title *Signature DAVID BAUGH Printed Name 2020 Scribed and sworn before me on this _____ day of _____ JUIU My authorization as a notary of the State of TCXUS expires on the AUGUST 2021 _____ day of __ Date ESTEPHANY VILLARREAL arreal My Netary ID # 131256200 Expires August 22, 2021

*For Title V applications, the signature must be of the Responsible Official as defined in 20.2.70.7.AE NMAC.