Cimarex Energy Co. 202 S. Cheyenne Ave, Suite 1000 Tulsa, Oklahoma 74103-4346 PHONE 918.560.7257 FAX 539.777.0501 Stuart Wittenbach Director – Environmental Safety & Health

FedEx

December 28, 2020

New Mexico Environment Department Air Quality Bureau 525 Camino de los Marquez, Suite 1 Santa Fe, New Mexico 87505-1816

Re: Application for GCP-Oil and Gas Registration Cimarex Energy Co. Tres Equis State Facility Lea County, New Mexico NOI #5660R3

Dear Sir/Madam:

Cimarex Energy Co. (Cimarex) owns and operates oil and natural gas production facilities in the State of New Mexico. With this submittal, Cimarex proposes to modify an oil and gas production facility known as Tres Equis State Facility that is located in Lea County, New Mexico. The Facility is currently authorized by NOI #5660R3. Please find enclosed one (1) copy of the GCP-Oil and Gas Registration forms, associated backup documents, and a check payable to NMED in the amount of \$4,260 to cover the permit application fee.

Should you have any questions or need additional information, please contact me at (918) 560-7257 or via e-mail at SWittenbach@cimarex.com.

Sincerely, Cimarex Energy Co.

The

Mr. Stuart Wittenbach Director, Environmental Safety & Health

Enclosures (2): GCP-Oil and Gas Application Permit Application Fee Check

Cc: Air Quality Library File: AQ-05-01 (PBNM Tres Equis State Facility GCP-Oil and Gas Registration)

CIMAREX ENERGY CO.

TRES EQUIS STATE FACILITY LEA COUNTY, NEW MEXICO NOI #5660R3

GENERAL CONSTRUCTION PERMIT FOR OIL AND GAS FACILITIES (GCP-OIL AND GAS)

DECEMBER 2020

Developed for:

202 S. Cheyenne Ave, Suite 1000 Tulsa, Oklahoma 74103 (918) 560-7257

TABLE OF CONTENTS

- 1.0 Introduction
- 2.0 Process Description
- 3.0 Emissions Calculation Methodology

Attachments

A GCP-Oil and Gas Registration Form

1.0 INTRODUCTION

Cimarex Energy Co. (Cimarex) owns and operates an oil and gas production facility known as Tres Equis State Facility. The site is located in Lea County, New Mexico. A facility location map is included in Section 7 of Attachment A.

The facility is currently operating under NOI #5660R3. Due to the following updates, the facility-wide emissions have been revised and a General Construction Permit for Oil and Gas Facilities is being claimed:

- Removal of five (5) separators/scrubbers (SEP8-12),
- Removal of one (1) vapor recovery unit (VRU),
- Removal of six (6) condensate storage tanks (OILTK3-8),
- Removal of two (2) produced water storage tanks (SWTK3-4),
- Addition of one (1) enclosed combustor (ECD1),
- Updated horsepower of one (1) compressor engine (ENG3),
- Updated maximum burner rating of three (3) heater treaters (H1-3),
- Updated production, and
- Reconciliation of all impacted emission units based on the aforementioned changes.

This submittal contains the required forms, figures, and supporting documentation to claim a General Construction Permit for Oil and Gas Facilities (GCP-Oil and Gas).

2.0 PROCESS DESCRIPTION

The Tres Equis State Facility is an oil and gas production facility that flows natural hydrocarbons through five (5) three-phase separators (SEP1-5) to three (3) heater treaters (H1-3). From SEP1-5, the natural gas is processed by a low-pressure gas scrubber (SEP6) prior to either being compressed by a natural gas-fired compressor engine (ENG3) and utilized for gas lift operations or transmitted offsite. Oil/condensate from H1-3 is routed to a vapor recovery tower (VRT), where the oil/condensate is flashed. VRT flashing gas and heater treater flash gas is controlled by the flare (FL1). This is considered routine flaring. Oil remaining at the VRT is routed to two (2) oil/condensate storage tanks (OILTK1-2) prior to either being transmitted offsite via pipeline and a Lease Automatic Custody Transfer (LACT) Unit or loaded by tank truck (OILLOAD) and transported offsite. Produced water from SEP1-5 and H1-3 is routed to two (2) produced water storage tanks (SWTK1-2) from which it is either loaded by tank truck (SWLOAD) and transported offsite or transmitted offsite for saltwater disposal via pipeline with the aid of an electric water transfer pump (SWDPUMP). The storage tanks' air emissions are controlled by the enclosed combustor (ECD1). The flare (FL1) also controls the sales gas stream during instances of sales gas pipeline downtime. This is represented as FL1-STRAND in Sections 2 and 5 of the application and the AECT. This is considered intermittent flaring. Please note that FL1 is a dual-pressure flare however both tips have identical parameters. A flare scrubber (SEP7), four (4) electric pumping units (PU1-4), and an electric recirculation pump (PUMP) are also present at the facility. A glycol dehydrator is present at the facility but is disconnected and no longer in service.

A process flow diagram is included in Section 4 of Attachment A.

Summary of Emission Sources

Emission sources at the facility are listed and described in the following table.

Source ID	Point Source Description	Type of Emissions
ENG3	Compressor Engine, Caterpillar G3306 TA, 203 Hp (S/N: G6X08030)	Combustion emissions
SEP1-7	Separator(s)/Scrubber(s)	Fugitive emissions
H1	Heater Treater, 2.0 MMBtu/hr or less	Combustion emissions
H2	Heater Treater, 2.0 MMBtu/hr or less	Combustion emissions
Н3	Heater Treater, 2.0 MMBtu/hr or less	Combustion emissions
FL1	Flare	Combustion emissions
ECD1	Enclosed Combustor	Combustion emissions
FUGAREA	Facility Fugitives	Fugitive emissions
OILTK1-2	Storage Tank(s), Condensate, 500 bbl	VOC - working, standing, and flashing (440 BPD @ 220 BPD/tank)
SWTK1-2	Storage Tank(s), Produced Water, 500 bbl	VOC - working, standing, and flashing (500 BPD @ 250 BPD/tank)
HR	Haul Road	PM emissions
VRT	Vapor Recovery Tower	VOC -flashing emissions
LACT	LACT Unit(s)	Fugitive emissions
SWDPUMP	Saltwater disposal pump(s), Electric	Fugitive emissions
PUMP	Recirculation Pump, Electric	Fugitive emissions
PU1-4	Pumping Unit, Electric	Fugitive emissions
OILLOAD	Truck loading from oil tank(s)	VOC - truck loading losses
SWLOAD	Truck loading from saltwater tank(s)	VOC - truck loading losses

Source ID	Point Source Description	Type of Emissions
SSM	Startup, Shutdown, Maint.	VOC, HAPs emissions
MALFUNCTIONS	Equipment Malfunctions	VOC, HAPs emissions

3.0 EMISSIONS CALCULATION METHODOLOGY

Engine emissions were estimated using manufacturer data for NOx, CO, VOC, and formaldehyde and AP-42 for all remaining pollutants. AP-42 factors were used to estimate emissions for criteria pollutants for heaters, haul road fugitives, and loading. Flare and enclosed combustor NOx, CO, and pilot emissions were estimated using AP-42 factors. Flare stream VOC emissions were estimated using mass balance. Storage tank working and breathing emissions are based on AP-42 Section 7.1.3.1 equations (June 2020). Promax was used to estimate the flashing emissions for the storage tanks and VRT. Please see Section 5 of Attachment A for detailed calculations.

ATTACHMENT A

GCP-OIL AND GAS REGISTRATION FORM

Mail Registration To:

New Mexico Environment Department Air Quality Bureau 525 Camino de los Marquez, Suite 1 Santa Fe, New Mexico, 87505

Phone (505) 476-4300 Fax (505) 476-4375 www.env.nm.gov/aqb

AI #:

General Construction Permit (GCP-Oil and Gas) Registration Form Section 1

(Locating outside of Bernalillo County, Tribal Lands, and Nonattainment Areas)

This Registration is being submitted as (check all that apply):

An initial GCP-Oil and Gas Registration Form for a new facility (**Registration fee required**).

An updated GCP-Oil and Gas Registration Form for a modification to an existing facility (**Registration fee required**).

A GCP-Oil and Gas Registration Form for an existing facility previously operating under GCP-1 or GCP-4 (No fee required)

The Permitting Administrative Multi-Form may be used for administrative changes identified in the GCP O&G Permit Condition C101.A. No public notification is required, and no filing fees or permit fees apply.

Construction Status: D Not Constructed Existing Permitted (or NOI) Facility Existing Non-permitted (or NOI) Facility

Acknowledgements:

 \boxtimes I acknowledge that a pre-application meeting is available to me upon request.

An original signed and notarized Certification for Submittal for this GCP-Oil and Gas Registration is included.

 \boxtimes Proof of public notice is included, if required.

 \square The Air Emission Calculation Tool (AECT) is included.

The emissions specified in this Registration Form will establish the emission limits in the GCP-Oil and Gas.

For new registrations or modifications, a check for the full registration fee is included: \$4260 prior to 1/1/2021 or \$4320 beginning 1/1/2021. There is an annual fee in addition to the registration fee: www.env.nm.gov/air-quality/permit-fees-2/. Facilities qualifying as a "small business" under 20.2.75.7.F NMAC qualify for reduced fees, provided that NMED has a Small Business Certification Form from your company on file. This form can be found at: www.env.nm.gov/agb/sbap/Small Business Forms.html Provide your Check Number: _______ and Amount: _______\$4,260

I understand that if a fee is required and is not included, the project will not be assigned for review until the full fee is received.

1)	Company Information	AI # (if known):	If updating, provide Permit/NOI #: 5660R1				
		Plant primary SIC Coo	de (4 digits): 1311				
1	Facility Name: Tres Equis State Facility	Plant NAIC code (6 digits): 211120					
а	Facility Street Address (If no facility street address, check here 🖾 and provide	ovide directions in Section 4):					
2	Plant Operator Company Name: Cimarex Energy Co.	Phone/Fax: (918) 585-1100					
а	Plant Operator Address: 202 S. Cheyenne Ave, Suite 1000, Tulsa, OK 74103	3					
3	Plant Owner(s) name(s): Mr. Stuart Wittenbach	Phone/Fax: (918) 560-	-7257/(539) 777-0501				
а	Plant Owner(s) Mailing Address(s): 202 S. Cheyenne Ave, Suite 1000, Tulsa	, OK 74103					
4	Bill To (Company): Cimarex Energy Co.	Phone/Fax: (918) 560-7257/(539) 777-0501					

Cimarex Energy Co.

a	Mailing Address: 202 S. Cheyenne	e Ave, Suite 1000, Tulsa, OK 7	4103	E-mail: SWittenl	oach@cima	rex.com							
5	Preparer: Mrs. Brittany Sewell Will Consultant:	kinson		Phone/Fax: (918) 560-7052								
a	Mailing Address: 202 S. Cheyenne	e Ave, Suite 1000, Tulsa, OK 7	4103	E-mail: BSewell	@cimarex.c	com							
6	Plant Operator Contact: Mr. Stuar	t Wittenbach		Phone/Fax: (918) 560-7257/	(539) 777-0501							
a	Mailing Address: 202 S. Cheyenn	e Ave, Suite 1000, Tulsa, OK 7	4103	E-mail: SWittenl	oach@cima	rex.com							
7	Air Permit Contact ¹ : Brittany Sew	ell Wilkinson		Title: Air Quality	y Specialist								
a	E-mail: BSewell@cimarex.com			Phone/Fax: (918) 560-7052								
b	Mailing Address: 202 S. Cheyenne Ave, Suite 1000, Tulsa, OK 74103												
	¹ The Air Permit Contact will receive official correspondence from the Department.												
Q	Will this facility operate in conjunction with other air regulated parties on the same property? No Yes												
0	If yes, what is the name and NOI	or permit number (if known) of	the other fac	ility?									
2)	Applicability												
1	Is the facility located in Bernalillo	County, on tribal lands, or in a	nonattainme	ent area?		No Yes							
If you	i answered <i>Yes</i> to the question above, your facility <u>does not</u> qualify for this general construction permit.												
2	Is the facility's SIC code 1311, 1321, 4619, 4612 or 4922? (Other SIC codes may be approved provided that all the equipment at the facility is allowed in the GCP-Oil & Gas Permit.)												
3	air the equipment at the facility is allowed in the GCP-Oil & Gas Permit.) Does the regulated equipment under this GCP-Oil and Gas Registration include any combination of Allowable Equipment listed in Table 104 of the GCP Oil & Gas Permit, and no others?												
4	Will the regulated equipment as specified in this GCP-Oil and Gas Registration emit less than the total Image: Second												
5	Does all equipment comply with the stack parameter requirements as established in the GCP-Oil and Gas												
6	Equipment shall be at least 100 m	eters (m) from any stack to terr	ain that is fiv	e(5) or more met	ters above tl	he No Yes							
7	Is the facility at least 150 m from	any source that emits over 25 to	ons/year of N	O_x ? This is the d	istance	No Yes							
	between the two nearest stacks that center to center distances.	at emit NOx at each of the facil	ities. Not the	facility boundari	es or the								
8	Is the facility at least 3 miles from	any Class I area? This is the d	istance from	the nearest facilit	y boundary	to No Yes							
If you	answered <i>NO</i> to any of questions 2-	1 area. -8, your facility <u>does not</u> qualif	y for this gen	eral construction	permit.								
3)	Current Facility Statu	S											
1	Has this facility already been const	ructed? ■ Yes □ No If y	es, is it curre	ently operating in	New Mexic	co? ∎ Yes □ No							
2	Does this facility currently have a	construction permit or Notice	of Intent If	yes, the permit	No. or NOI	No., and whether it will							
3	Is this Registration in response to a	NMAC)? Yes INO Notice of Violation (NOV)?	If yes NOV	date:	NOV Trac	- Stay Active							
5	Yes No If so, provide curre	nt permit #:	n yes, 100	v date.									
4	Minor Source: Synthetic Mir	nor Source: \boxtimes (SM80 = Cont	rolled Emiss	ions > 80 TPY of	any regulat	ted air pollutant):							
4)	Facility Location Info	rmation											
1	a) Latitude (decimal degrees): 32.25301	b) Longitude (decimal degree -103.61342	s):	c) County: Lea		d) Elevation (ft): 3,651							
2	a) UTM Zone: □ 12 or ■ 13	b) UTME (to nearest 10 meters):	630614	c) UTMN (to n	earest 10 me	ters): 3569324							
3	e) Specify which datum is used: See this link for more info. http://d	NAD 27	NAD 8	33 🖂	WGS 84								
4	Name and zip code of nearest New	v Mexico town and tribal comn	nunity: Jal, 88	8252									
5	Detailed Driving Instructions inclu- necessary). If there is no street ad 128 W for 25.3 mi, R for 3.4 mi, F	uding direction and distance fro dress, provide public road mile R for 0.6 mi to facility on the R.	om nearest NI age marker:	M town and triba From Jal, head N	l community on S 3rd S	y (attach a road map if t for 0.5 mi, L on NM-							

GCP-Oil and Gas Form: November 17, 2020

Cimarex Energy Co.

т

ſ

Tres Equis State Facility

6	The facility is 26.4 (distance) miles NW (direction) of Jal (nearest town).											
7	Land Status of facility (check one): □ Private □ Indian/Pue	eblo ■ Government □ BLM	Forest Service Military										
5)	Other Facility Information												
1	Enter the maximum daily and annual throughput of oil, gas, and natural gas liquids (NGL).	Oil (bbl/day): 440.0 Gas (MMscf/day): 1.4 NGL (bbl/day): 0	(bbl/yr): 160,600.0 (MMscf/yr): 511.0 (bbl/yr): 0										
2	The facility, as described in this Registration, constitutes the entire source for 20.2.70, 20.2.72, 20.2.73, or 20.2.74 NMAC applicability purposes.												
6)	Submittal Requirements												
1	Include one hard copy original signed and notarized Registration package printed double sided 'head-to-toe' <u>2-hole punched</u> as we bind the document on top, not on the side; except landscape tables, which should be head-to-head. If 'head-to-toe printing' is not possible, print single sided. Please use numbered tab separators in the hard copy submittal(s) as this facilitates the review process.												
2	Include one double sided hard copy, flip on long edge for Department use. This <u>copy</u> does not need to be 2-hole punched.												
3	The entire Registration package should be submitted electron the entire Registration as submitted and the individual docu submitted in Microsoft Office compatible file format (Word paste). Any documents that cannot be submitted in a Micro the electronic document that created the file. If you are una generated PDFs of files (items that were not created electron copy format. Spreadsheets must be unlocked since we must	onically on one compact disk (C uments comprising the Registrati d, Excel, etc.) allowing us to acc osoft Office compatible format s able to provide Microsoft office onically: i.e. brochures, maps, gr t be able to review the formulas	CD). Include a single PDF document of ion. The documents should also be cess the text in the documents (copy & shall be saved as a PDF file from within compatible electronic files or internally aphics, etc.), submit these items in hard and inputs.										
	Ensure all of these are included in both the electronic and	nd hard copies.											
	Ensure all of these are included in both the electronic and hard copies.												
	To avoid errors, it is best to start with both a blank vers	sion of this form and the AEC	T for each application.										

Section 2 Tables

Insert Excel spreadsheet with applicable tables filled out. If applicable to the facility all tables must be filled out completely. The unit numbering system must be consistent throughout this Registration

	Table 2-A: Regulated Emission Sources													
Unit and stack	numbering must co	rrespond throughout th	e application p	ackage. Equipm	ent that qualifi	ies for an exempti	on under 20.2.72	.202.B NM	AC should					
be included in	Table 2-B Note: Eq	uipment options are n	ot authorized.											
		Manufacturer/Make		Manufact-urer's	Requested Permitted	Date of Manufacture ²	Controlled by Unit #	Source Classi-	RICE Ignition Type					
Unit Number ¹	Source Description	/Model	Serial #	Rated Capacity ³ (Specify Units)	Capacity ³ (Specify Units)	Date of Construction/ Reconstruction ²	Emissions vented to Stack #	fication Code (SCC)	(CI, SI, 4SLB, 2SLB) ⁴	For Each Piece of Equipment, Check Onc				
SEP1-SEP7	Separator(s)/ Scrubber(s)	N/A	N/A	N/A	N/A	-	N/A FUGAREA	31000299	N/A	 Existing (unchanged) To be Removed New/Additional Replacement Unit To be Roplaced 				
ENCO	Compressor	Caterpillar G3306	C(V09020	202.11	202.11	1/4/2012	CAT1	20200252	4000	■ Existing (unchanged) □ To be Removed				
ENG3	Engine	ТА	G6X08030	203-нр	203-нр	-	ENG3	20200253	45KB	New/Additional Replacement Unit To Be Modified To be Replaced				
TT1	Haster Treater	NI/A	NI/A	Existing (unchanged) To be Removed Num(Additional Parlogement Unit										
HI	Heater Treater	N/A	IN/A	■ To Be Modified □ To be Replaced										
Н2	Haster Treater	N/A 2000/04/20 - N/A 21000/04 N							N/A	Existing (unchanged) To be Removed New/Additional Peplacement Unit				
H2	Heater Heater	IN/A	IN/A	2.0 MIMBtu/III	MMBtu/hr	-	H2	31000404	IN/A	■ To Be Modified □ To be Replaced				
Ш3	Haster Treater	N/A	N/A	2.0 MMBtu/br	2.0	-	N/A	31000404	N/A	Existing (unchanged) To be Removed New/Additional Replacement Unit				
115	ficater ficater	INA	IN/A	2.0 WIWIDtu/III	MMBtu/hr	-	Н3	51000404	IN/A	■ To Be Modified □ To be Replaced				
<u>म</u> ा 1	Flore	Vaprov	N/A	20 MMscf/day	20	-	N/A	31000215	N/A	Existing (unchanged) To be Removed New/Additional Paplocement Unit				
I LI	Thate	v aprox	IVA	20 Wilvisel/day	MMscf/day	-	FL1	51000215	IVA	□ To Be Modified □ To be Replaced				
FCD1	Enclosed	Vaprov	N/A	0.33 Mscf/br	0.33 Mscf/hr	-	N/A	31000215	N/A	Existing (unchanged) To be Removed New/Additional Replacement Unit				
LCDI	Combustor	vapiox	INA	0.55 Wisei/III	0.55 101501/111	-	ECD1	51000215	IN/A	To Be Modified To be Replaced				
FUGADEA	Eacility Eugitives	N/A	N/A	N/A	N/A	-	N/A	31088811	N/A	Existing (unchanged) To be Removed New/Additional Paplocement Unit				
TUUAKLA	Facility Fugitives	INA	INA	11/74	INA	-	FUGAREA	51088811	IN/A	To Be Modified To be Replaced				
Цр	Haul Roads	N/A	N/A	N/A	N/A	-	N/A	31088811	N/A	Existing (unchanged) To be Removed New/Additional Paplocement Unit				
ШК	Haul Koads	IVA	IVA	10/74	IVA	-	HR	51000011	IVA	To Be Modified To be Replaced				
OII TK1	Oil/Condensate	N/A	N/A	500-bbl	500-bbl	-	ECD1	40400311	N/A	Existing (unchanged) To be Removed New/Additional Replacement Unit				
OILTKI	Storage Tank	IVA	IVA	500-001	500-001	Post-9/18/2015	OILTK1	40400311	IVA	□ To Be Modified □ To be Replaced				
	Oil/Condensate	N/A	N/A	500-bbl	500-bbl	-	ECD1	40400311	N/A	Existing (unchanged) To be Removed New/Additional Replacement Unit				
OILTR2	Storage Tank	IVA	IVA	500-001	500-001	Post-9/18/2015	OILTK2	40400311	IVA	To Be Modified To be Replaced				
OILTK3	Oil/Condensate	N/A	N/A	500-bbl	500-bbl	-	N/A	40400311	N/A	□ Existing (unchanged) ■ To be Removed □ New/Additional □ Replacement Unit				
OILTING	Storage Tank	1.1/1 1	1 1/1 1	500 001	500 001	-	N/A	10400311	1971	□ To Be Modified □ To be Replaced				

		Manufacturer/Make		Manufact-urer's	Requested Permitted	Date of Manufacture ²	Controlled by Unit #	Source Classi-	RICE Ignition Type	
Unit Number ¹	Source Description	/Model	Serial #	Rated Capacity ³ (Specify Units)	Capacity ³ (Specify Units)	Date of Construction/ Reconstruction ²	Emissions vented to Stack #	fication Code (SCC)	(CI, SI, 4SLB, 2SLB) ⁴	For Each Piece of Equipment, Check Onc
OILTK4	Oil/Condensate Storage Tank	N/A	N/A	500-bbl	500-bbl	-	N/A N/A	40400311	N/A	 Existing (unchanged) To be Removed New/Additional Replacement Unit To Be Modified To be Replaced
OILTK5	Oil/Condensate Storage Tank	N/A	N/A	500-bbl	500-bbl	-	N/A N/A	40400311	N/A	 Existing (unchanged) To be Removed New/Additional Replacement Unit To Be Modified To be Replaced
OILTK6	Oil/Condensate Storage Tank	N/A	N/A	500-bbl	500-bbl	-	N/A N/A	40400311	N/A	 Existing (unchanged) New/Additional Replacement Unit To Be Modified To be Replaced
OILTK7	Oil/Condensate Storage Tank	N/A	N/A	500-bbl	500-bbl	-	N/A N/A	40400311	N/A	Existing (unchanged) To be Removed New/Additional Replacement Unit To Be Modified To be Replaced
OILTK8	Oil/Condensate Storage Tank	N/A	N/A	500-bbl	500-bbl	-	N/A N/A	40400311	N/A	Existing (unchanged) To be Removed New/Additional Replacement Unit To Be Modified To be Replaced
SWTK1	Produced Water Storage Tank	N/A	N/A	500-bbl	500-bbl	- Post-9/18/2015	ECD1 SWTK1	40400315	N/A	Existing (unchanged) To be Removed New/Additional To Be Modified To be Replaced
SWTK2	Produced Water Storage Tank	N/A	N/A	500-bbl	500-bbl	- Post-9/18/2015	ECD1 SWTK2	40400315	N/A	Existing (unchanged) To be Removed New/Additional To Be Modified To be Replaced
SWTK3	Produced Water Storage Tank	N/A	N/A	500-bbl	500-bbl	-	N/A N/A	40400315	N/A	Existing (unchanged) To be Removed New/Additional Replacement Unit To Be Modified To be Replaced
SWTK4	Produced Water Storage Tank	N/A	N/A	500-bbl	500-bbl	-	N/A N/A	40400315	N/A	 Existing (unchanged) To be Removed New/Additional Replacement Unit To Be Modified To be Replaced
OILLOAD	Oil/Condensate Truck Loading	N/A	N/A	6,745,200- gal/yr	6,745,200- gal/yr	-	N/A OILLOAD	40400250	N/A	Existing (unchanged) To be Removed New/Additional To Be Modified To be Replaced
SWLOAD	Produced Water Truck Loading	N/A	N/A	7,665,000- gal/yr	7,665,000- gal/yr	-	N/A SWLOAD	40400250	N/A	Existing (unchanged) To be Removed New/Additional To Be Modified To be Replaced
LACT	LACT Unit	N/A	N/A	N/A	N/A	-	N/A FUGAREA	31000299	N/A	Existing (unchanged) To be Removed New/Additional To Be Modified To be Replaced
VRT	Vapor Recovery Tower	N/A	N/A	N/A	N/A	-	FL1 VRT	31000299	N/A	Existing (unchanged) To be Removed New/Additional To Be Modified To be Replaced
VRU	Vapor Recovery Unit, Electric	N/A	N/A	N/A	N/A	-	N/A N/A	31000299	N/A	Existing (unchanged) To be Removed New/Additional Replacement Unit To Be Modified To be Replaced

		Manufacturer/Make		Manufact-urer's	Requested Permitted	Date of Manufacture ²	Controlled by Unit #	Source Classi-	RICE Ignition Type																					
Unit Number ¹	Source Description	/Model	Serial #	Rated Capacity ³ (Specify Units)	Capacity ³ (Specify Units)	Date of Construction/ Reconstruction ²	Emissions vented to Stack #	fication Code (SCC)	(CI, SI, 4SLB, 2SLB) ⁴	For Each Piece of Equipment, Check Onc																				
CWDDUMD	Saltwater	NI/A	NT/A	NT/A	NT/A	-	N/A	21000200	N1/A	Existing (unchanged) To be Removed																				
SWDPUMP	Electric	IN/A	IN/A	N/A	IN/A	-	FUGAREA	31000299	N/A	To Be Modified To be Replaced																				
DUMD	Recirculation	N/A	N/A	N/A	N/A	-	N/A	21000200	31000200	21000200	N/A	Existing (unchanged) To be Removed Nam/Additional Replacement Unit																		
r Ulvir	Pump, Electric	IN/A	IN/A	IN/A	IN/A	-	FUGAREA	31000299	IN/A	To Be Modified To be Replaced																				
PI11	Pumping Unit,	N/A	N/A	N/A	N/A	-	N/A	31000299	N/A	Existing (unchanged) To be Removed New/Additional Replacement Unit																				
101	Electric	IVA	IVA	11/71	IVA	-	FUGAREA	51000277	10/1	To Be Modified To be Replaced																				
PU2	Pumping Unit,	N/A	N/A	N/A	N/A	-	N/A	31000299	N/A	 Existing (unchanged) To be Removed New/Additional Replacement Unit 																				
102	Electric	10/11	10/14	10/21	10/11	-	FUGAREA	51000277	1011	□ To Be Modified □ To be Replaced																				
PI 13	Pumping Unit,	N/A	N/A	N/A	N/A	-	N/A	31000299	N/A	Existing (unchanged) To be Removed New/Additional Beplacement Unit																				
105	Electric	IVA	IVA	11/71	IVA	-	FUGAREA	A 31000299 N/A	ZA 31000299 N/A	31000299 N/A		31000299	31000299	31000299	31000299 N/A		31000299 N/A		A 51000233 1011		To Be Modified To be Replaced									
DIM	Pumping Unit,	N/A	N/A	N/A	N/A	-	N/A 21000200		000299 N/A	Existing (unchanged) To be Removed New/Additional Replacement Unit																				
104	Electric	INA	IN/A	IN/A	IN/A	-	FUGAREA	A 31000299	19/4	To Be Modified To be Replaced																				
MALFUNCTI	Malfunctions	NI/A	N/A	N/A	NI/A	-	N/A	21000200	21000200	21000200		21000200		21000200	21000200	21000200	21000200	21000200	21000200		4 21000200 N/4	A 21000200 N/A	1 21000200 N/	'A 21000200 N/A	21000200 N/A	'A 21000200 N/A	21000200	21000200	1000200	 Existing (unchanged) To be Removed New(Additional Replacement Unit
ONS	Wantunctions	IN/A	IN/A	IN/A	IN/A	-	MALFUNCTI	31000299	11/74	□ To Be Modified □ To be Replaced																				
CCM	Startup,	NI/A	NI/A	NI/A	NI/A	-	N/A	21000200	NI/A	 Existing (unchanged) To be Removed Naw/Additional Replacement Unit 																				
221/1	Maintenance	IN/A	IN/A	IN/A	IN/A	-	SSM	51000299	IN/A	To Be Modified To be Replaced																				

Unit numbers must correspond to unit numbers in the previous permit unless a complete cross reference table of all units in both permits is provided.

² Specify dates required to determine regulatory applicability.

³ To properly account for power conversion efficiencies, generator set rated capacity shall be reported as the rated capacity of the engine in horsepower, not the kilowatt capacity of the generator set.

⁴"4SLB" means four stroke lean burn engine, "4SRB" means four stroke rich burn engine, "2SLB" means two stroke lean burn engine, "CI" means compression ignition, and "SI" means spark ignition

Table 2-B: Exempted Equipment (20.2.72 NMAC)

All 20.2.72 NMAC applications must list Exempted Equipment in this table. If equipment listed on this table is exempt under 20.2.72.202.B.5, include emissions calculations and emissions totals for 202.B.5 "similar functions" units, operations, and activities in Section 5, Calculations. Unit & stack numbering must be consistent throughout the application package.

Unit Number	Source Description	Manufacturer	Model No. Serial No.	Max Capacity Capacity Units	List Specific 20.2.72.202 NMAC Exemption (e.g. 20.2.72.202.B.5)	Date of Manufacture /Reconstruction ¹ Date of Installation /Construction ¹	For Each Piece of Equipment, Check Onc
N/A - No eq	uipment exemptions under 2.72.20	2 NMAC apply.					Existing (unchanged) To be Removed New/Additional Replacement Unit To Be Modified To be Replaced
							Existing (unchanged) To be Removed New/Additional Replacement Unit To Be Modified To be Replaced
							Existing (unchanged) To be Removed New/Additional Replacement Unit To Be Modified To be Replaced
							Existing (unchanged) To be Removed New/Additional Replacement Unit To Be Modified To be Replaced
							Existing (unchanged) To be Removed New/Additional Replacement Unit To Be Modified To be Replaced
							Existing (unchanged) To be Removed New/Additional Replacement Unit To Be Modified To be Replaced
							Existing (unchanged) To be Removed New/Additional Replacement Unit To Be Modified To be Replaced
							Existing (unchanged) To be Removed New/Additional Replacement Unit To Be Modified To be Replaced
							Existing (unchanged) To be Removed New/Additional Replacement Unit To Be Modified To be Replaced
							Existing (unchanged) To be Removed New/Additional Replacement Unit To Be Modified To be Replaced
							Existing (unchanged) To be Removed New/Additional Replacement Unit To Be Modified To be Replaced
							□ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced
							 Existing (unchanged) To be Removed New/Additional Replacement Unit To be Modified To be Replaced

1 Specify date(s) required to determine regulatory applicability.

Table 2-C: Emissions Control Equipment

Unit and stack numbering must correspond throughout the application package. In accordance with 20.2.72.203.A(3) and (8) NMAC, 20.2.70.300.D(5)(b) and (e) NMAC, and 20.2.73.200.B(7) NMAC, the permittee shall report all control devices and list each pollutant controlled by the control device regardless if the applicant takes credit for the reduction in emissions.

Control Equipment Unit No.	Control Equipment Description	Date Installed	Controlled Pollutant(s)	Controlling Emissions for Unit Number(s) ¹	Efficiency (% Control by Weight)	Method used to Estimate Efficiency
FL1	Flare		VOC, HAPs	VRT, heater treater flash, sales gas stream during pipeline downtime.	98%	Manuf. Guarantee
ECD1	Enclosed Combustor		VOC, HAPs	OILTK1-2, SWTK1-2	98%	Manuf. Guarantee
CAT1	Engine Catalyst Control		NOX, CO, VOC	ENG3	NOX: 94% CO: 92% VOC: 80%	Manuf. Spec Sheet
1						
¹ List each co	ntrol device on a separate line. For each control device, list all emi	ission units co	ntrolled by the control device.			

Table 2-D: Maximum Emissions (Consider federally enforceable controls under normal operating conditions)

This table must be filled out

Maximum Federally Enforceable Emissions are the emissions at maximum capacity with only federally enforceable methods of reducing emissions. Calculate the hourly emissions using the worst case hourly emissions for each pollutant. For each pollutant, calculate the annual emissions as if the facility were operating at maximum facility capacity without pollution controls for 8760 hours per year. Account for federally enforceable controls, such as an NSPS or MACT regulation. Consider federally enforceable controls due to permitting. List Hazardous Air Pollutants (HAP) in Table 2-I. Unit & stack numbering must be consistent throughout the application package. Fill all cells in this table with the emission numbers or a "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expected. Numbers shall be expressed to at least 2 decimal points (e.g. 0.41, 1.41, or 1.41E-4).

Unit No	N	NOx		СО)C	S	Ox	PM	[10 ¹	PM	[2.5 ¹	H_2S		Lead	
Unit No.	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
ENG3	5.37	23.52	5.37	23.52	0.97	4.24	0.00	0.00	0.03	0.15	0.03	0.15				
H1	0.20	0.86	0.16	0.72	11.79	0.39	0.00	0.01	0.01	0.07	0.01	0.07				
H2	0.20	0.86	0.16	0.72	11.79	0.39	0.00	0.01	0.01	0.07	0.01	0.07				
Н3	0.20	0.86	0.16	0.72	11.79	0.39	0.00	0.01	0.01	0.07	0.01	0.07				
FL1	-	-	-	-	23.67	51.95	-	-	-	-	-	-				
FL1-STRAND	-	-	-	-	10159.27	1828.67	-	-	-	-	-	-				
ECD1	-	-	-	-	0.05	0.20	-	-	-	-	-	-				
FUGAREA	-	-	-	-	1.99	8.71	-	-	-	-	-	-				
HR	-	-	-	-	-	-	-	-	0.92	0.32	0.09	0.03				
VRT	-	-	-	-	14.07	61.61	-	-	-	-	-	-				
OILTK1	-	-	-	-	4.04	17.69	-	-	-	-	-	-				
OILTK2	-	-	-	-	4.04	17.69	-	-	-	-	-	-				
SWTK1	-	-	-	-	0.16	0.69	-	-	-	-	-	-				
SWTK2	-	-	-	-	0.16	0.69	-	-	-	-	-	-				
OILLOAD	-	-	-	-	36.07	13.59	-	-	-	-	-	-				
SWLOAD	-	-	-	-	0.36	0.15	-	-	-	-	-	-				
SSM	-	-	-	-	-	10.00	-	-	-	-	-	-				
MALFUNCTIONS	-	-	-	-	-	10.00	-	-	-	-	-	-				
Totals	5.96	26.10	5.86	25.69	10280.20	2027.04	0.00	0.02	1.00	0.67	0.17	0.38				

¹Condensable Particulate Matter: Include condensable particulate matter emissions for PM10 and PM2.5 if the source is a combustion source.

Table 2-E: Requested Allowable Emissions

Enter an allowable emission limit for each piece of equipment with either an uncontrolled emission rate greater than 1 lb/hr or 1 ton per year (tpy) or a controlled emission rate of any amount. For H2S please represent all emissions even if they are less than 1 lb/hr and 1 tpy. If selecting combustion SSM emissions, enter lb/hr and tpy values. If selecting up to 10 tpy of Malfunction VOC emissions, enter tpy values. Combustion emissions from malfunction events are **not authorized** under this permit. Fill all cells in this table with the emissions in lb/hr and tpy, or a "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expected. Total the emissions from all equipment in the Totals row. Add additional rows as necessary. Unit & stack numbering must be consistent throughout the application package. Numbers shall be expressed to at least 2 decimal points (e.g. 0.41, 1.41, or 1.41E⁻⁴).

Unit No	N	Ox	C	0	V	OC	S	Ox	PM	110¹	PM	[2.5 ¹	Н	$_2S$	Le	ad
Unit No.	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
ENG3	0.40	1.76	0.54	2.35	0.31	1.37	0.00	0.00	0.03	0.15	0.03	0.15				
H1	0.20	0.86	0.16	0.72	11.79	0.39	0.00	0.01	0.01	0.07	0.01	0.07				
H2	0.20	0.86	0.16	0.72	11.79	0.39	0.00	0.01	0.01	0.07	0.01	0.07				
H3	0.20	0.86	0.16	0.72	11.79	0.39	0.00	0.01	0.01	0.07	0.01	0.07				
FL1	0.15	0.42	0.67	1.91	0.52	1.24	0.00	0.00	-	-	-	-				
FL1-STRAND	71.63	12.89	326.53	58.78	203.19	36.57	0.00	0.00	-	-	-	-				
ECD1	0.04	0.19	0.19	0.84	0.05	0.20	0.00	0.00	-	-	-	-				
FUGAREA	-	-	-	-	1.99	8.71	-	-	-	-	-	-				
HR	-	-	-	-	-	-	-	-	0.92	0.32	0.09	0.03				
VRT	-	-	-	-	0.56	2.44	-	-	-	-	-	-				
OILTK1	-	-	-	-	0.16	0.70	-	-	-	-	-	-				
OILTK2	-	-	-	-	0.16	0.70	-	-	-	-	-	-				
SWTK1	-	-	-	-	0.01	0.03	-	-	-	-	-	-				
SWTK2	-	-	-	-	0.01	0.03	-	-	-	-	-	-				
OILLOAD	-	-	-	-	36.07	13.59	-	-	-	-	-	-				
SWLOAD	-	-	-	-	0.36	0.15	-	-	-	-	-	-				
SSM	-	-	-	-	-	10.00	-	-	-	-	-	-				
MALFUNCTIONS	-	-	-	-	-	10.00	-	-	-	-	-	-				
Totals	72.81	17.84	328.43	66.05	278.73	86.91	0.00	0.02	1.00	0.67	0.17	0.38				

¹Condensable Particulate Matter: Include condensable particulate matter emissions for PM10 and PM2.5 if the source is a combustion source.

Note: Emissions may not be split equally between the three Heater Treaters; therefore, Cimarex requests one emissions limit for the heater treater emissions

Table 2-H: Stack Exit Conditions

Unit and stack numbering must correspond throughout the application package. Include the stack exit conditions for each unit that emits from a stack, including blowdown venting parameters and tank emissions.

Stack Type (Engine,			Height Above	Temp.	Flow Rate	Velocity	
Turbine, Flare, ECD, or Thermal Oxidizer Etc.)	Serving Unit Number(s) from Table 2-A	Orientation (H-Horizontal V=Vertical)	Ground (ft)	(F)	(acfs)	(ft/sec)	Inside Diameter (ft)
ENG3	ENG1	V	12	1055	16.62	121.9	0.42
H1	ENG2	V	15	400	2.61	13.3	0.50
H2	ENG3	V	15	400	2.61	13.3	0.50
Н3	GEN1	V	15	400	2.61	13.3	0.50
FL1	GEN2	V	27	1400	231.86	2656.93	0.33
ECD1	H1	V	20	1400	0.09	0.10	1.09

Table 2-I: Emission Rates for HAPs

HAP In the table below, report the potential emission rate for each HAP from each regulated emission unit listed in Table 1, only if the entire facility emits the HAP. For each such emission unit, HAP shall be reported to the nearest 0.1 tpy. Each facility-wide Individual HAP total and the facility-wide Total HAP shall be the sum of all HAP sources calculated to the nearest 0.1 ton per year. Use the HAP nomenclature as it appears in Section 112 (b) of the 1990 CAAA. Include tank-flashing emissions estimates of HAP in this table. For each HAP listed, fill all cells in this table with the emission numbers or a "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expected, or the pollutant is emitted in a quantity less than the threshold amounts described above. Add additional rows as necessary.

Stack No.	Unit No.(s)	Total	HAPs	n-He ∎ F	exane IAP	Provide Name H	Pollutant Here IAP	Provide Name D H	Pollutant Here IAP	Provide Name □ F	Pollutant e Here IAP	Provide Name □ F	Pollutant e Here IAP	Provide Name □ F	Pollutant Here IAP
		lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
ENG3	ENG3	0.08	0.35	0.00	0.00										
H1	H1	0.32	0.01	0.19	0.01										
H2	H2	0.32	0.01	0.19	0.01										
Н3	Н3	0.32	0.01	0.19	0.01										
FL1	FL1	3.39	0.07	0.01	0.02										
FL1-STRAND	FL1-STRAND	8.94	1.61	3.25	0.59										
ECD1	ECD1	0.00	0.01	0.00	0.00										
FUGAREA	FUGAREA	0.08	0.34	0.03	0.13										
HR	HR	-	-	I	-										
VRT	VRT	0.01	0.06	0.01	0.03										
OILTK1	OILTK1	0.01	0.03	0.00	0.01										
OILTK2	OILTK2	0.01	0.03	0.00	0.01										
SWTK1	SWTK1	0.00	0.00	0.00	0.00										
SWTK2	SWTK2	0.00	0.00	0.00	0.00										
OILLOAD	OILLOAD	1.90	0.72	0.48	0.18										
SWLOAD	SWLOAD	0.02	0.01	0.00	0.00										
SSM	SSM	-	-	-	-										
MALFUNCTIONS	MALFUNCTIONS	-	-	-	-										
Totals:		15.41	3.25	4.36	1.00										

Table 2-J: Allowable Fuels and Fuel Sulfur for Combustion Emission Units: Specify fuel characteristics and usage. Unit and stack numbering must correspond throughout the application package. **Specify Units** Fuel Source **Does the Allowable** Fuel Type (purchased commercial, pipeline **Engines and Turbines:** Lower Annual Fuel **Fuel and Fuel Sulfur** Unit No. (Natural Gas, Field Gas, quality natural gas, residue gas, **Diesel Fuel Only: ppm** SO2 percentage (%) of Heating Content meet GCP Usage Propane, Diesel, ...) raw/field natural gas, process gas, or the NOx emission rate of Sulfur Value (MMSCF/y) **O&G** Condition other (except flares) (BTU/SCF) A110.A? Pipeline Quality Natural Gas, Field Ves No ENG3 Natural Gas 0.26% N/A 1.020 15.23 Natural Gas Pipeline Quality Natural Gas, Field H1 Natural Gas 0.60% N/A 1,020 17.18 🗸 Yes 🗌 No Natural Gas Pipeline Quality Natural Gas, Field H2 Natural Gas 0.60% N/A 1,020 17.18 Ves No Natural Gas Pipeline Quality Natural Gas, Field Ves No H3 Natural Gas 0.60% 1,020 17.18 N/A Natural Gas 🗸 Yes 🗌 No Process Gas FL1 Natural Gas N/A N/A Varies 307.47 🗸 Yes 🗌 No ECD1 Natural Gas Process Gas N/A 2051 2.84 N/A Yes No Yes No

Form Revision: 7/18/2019

Table 2-L: Tank Data

Include approp	priate tank-flashing 1	modeling input data. Unit and sta	ck numbering must	correspond thro	ughout the appli	ication package.						
Tank No.	Date Installed	Materials Stored	Roof Type	Seal Type	Capacity (bbl)	Diameter (M)	Vapor Space (M)	Co	lor	Separator Pressure	Annual Throughput	Turn- overs
							(111)	Roof	Shell	(psia)	(gal/yr)	(per year)
			Select one	Select one								
OILTK1	Post-9/18/2015	Oil/Condensate	Fixed	N/A	500	4.7244	1.95072	OT (green)	OT (green)	32	3,372,600	202.47
OILTK2	Post-9/18/2015	Oil/Condensate	Fixed	N/A	500	4.7244	1.95072	OT (green)	OT (green)	32	3,372,600	202.47
SWTK1	Post-9/18/2015	Produced Water	Fixed	N/A	500	4.7244	1.95072	OT (green)	OT (green)	32	3,832,500	230.08
SWTK2	Post-9/18/2015	Produced Water	Fixed	N/A	500	4.7244	1.95072	OT (green)	OT (green)	32	3,832,500	230.08

Section 3 Registration Summary

The Registration Summary: Provide information about the registration submittal. The Registration Summary shall include a brief description of the facility and its process. In case of a modification to a facility, please describe the proposed changes.

Specify Facility Type: Check the appropriate box below:

- Production Site
- Tank Battery

Compressor Station

Natural Gas Plant

Other, please specify:_____

Registration Summary:

This document was prepared as a General Construction Permit Oil and Gas Registration (GCP-O&G) by Cimarex Energy Co. for the Tres Equis State Facility.

Cimarex Energy Co. (Cimarex) owns and operates an oil and natural gas production facility known as Tres Equis State Facility. The facility is currently operating under Notice of Intent (NOI) #5660R1. Due to the following changes, the facility-wide emissions have been revised and Cimarex is claiming a GCP-O&G:

- Removal of five (5) separators/scrubbers (SEP8-12).
- Removal of one (1) vapor recovery unit (VRU),
- Removal of six (6) condensate storage tanks (OILTK3-8),
- Removal of two (2) produced water storage tanks (SWTK3-4),
- Addition of one (1) enclosed combustor (ECD1),
- Updated horsepower of one (1) compressor engine (ENG3),
- Updated maximum burner rating of three (3) heater treaters (H1-3),
- Updated production, and
- Reconciliation of all impacted emission units based on the aforementioned changes.

The equipment list is as follows:

- Two (2) oil/condensate tanks, 500 bbls
- Two (2) produced water tanks, 500 bbls
- Three (3) heater treaters, 2.0 MMBtu/hr or less
- One (1) compressor engine, 203-Hp
- One (1) flare
- One (1) enclosed combustor
- One (1) vapor recovery tower
- One (1) LACT unit
- One (1) saltwater disposal pump, electric
- Four (4) pumping units, electric
- One (1) recirculation pump, electric
- Other separation equipment

Written description of the routine operations of the facility:

The Tres Equis State Facility is an oil and gas production facility that flows natural hydrocarbons through five (5) three-phase separators (SEP1-5) to three (3) heater treaters (H1-3). From SEP1-5, the natural gas is processed by a low-pressure gas scrubber (SEP6) prior to either being compressed by a natural gas-fired compressor engine (ENG3) and utilized for gas lift operations or transmitted offsite. Oil/condensate from H1-3 is routed to a vapor recovery tower (VRT), where the oil/condensate is flashed. VRT flashing gas and heater treater flash gas is controlled by the flare (FL1). This is considered routine flaring. Oil remaining at the VRT is routed to two (2) oil/condensate storage tanks (OILTK1-2) prior to either being Form Revision: 22 October 2020 Printed: 12/23/2020

Cimarex Energy Co.

transmitted offsite via pipeline and a Lease Automatic Custody Transfer (LACT) Unit or loaded by tank truck (OILLOAD) and transported offsite. Produced water from SEP1-5 and H1-3 is routed to two (2) produced water storage tanks (SWTK1-2) from which it is either loaded by tank truck (SWLOAD) and transported offsite or transmitted offsite for saltwater disposal via pipeline with the aid of an electric water transfer pump (SWDPUMP). The storage tanks' air emissions are controlled by the enclosed combustor (ECD1). The flare (FL1) also controls the sales gas stream during instances of sales gas pipeline downtime. This is represented as FL1-STRAND in Sections 2 and 5 of the application and the AECT. This is considered intermittent flaring. Please note that FL1 is a dual-pressure flare however both tips have identical parameters. A flare scrubber (SEP7), four (4) electric pumping units (PU1-4), and an electric recirculation pump (PUMP) are also present at the facility. A glycol dehydrator is present at the facility but is disconnected and no longer in service.

Routine or predictable emissions during Startup, Shutdown and Maintenance (SSM):

Uncontrolled SSM emissions from various activities including compressor engine blowdowns, engine startups, and equipment degassing due to routine maintenance are included in this application.

Malfunction Emissions (M):

Malfunction emissions are accounted for as VOC emissions up to 10 tons per year of VOC in this Registration. The permit does not authorize combustion emissions for malfunctions.

The permit does not authorize emissions from SSM and Malfunction to be combined as 10 TPY VOC. However, they may be permitted separately. In the allowable emissions table in Section 2, these two events are separate line items and must be kept separate.

Allowable Operations: Check the appropriate box below:

Facility operates continuously (8760 hours per year)

The following regulated equipment will operate less than 8760 hours per year. Add additional rows as necessary. These units are subject to Condition A108.C of the Permit.

Table A - Equipment Operating Less Than 8760 hours per year

Unit #	Requested Annual Operating Hours

Verification of Compliance with Stack Parameter Requirements:

Please use the Stack Calculator and Stack Requirements Explained Guidance on our website: All of the verification information below is required to be filled out.

www.env.nm.gov/air-quality/air-quality-oil-and-gas-gcp-application-forms/

Check the box for each type of equipment at this facility:

- Engine(s)
- Turbine(s)
- \square Flares(s)
- \boxtimes Enclosed Combustion Device (s)
- \square Heater(s)
- Reboiler(s)

For each type of equipment checked above, complete the applicable section below.

Engines

- 1. Calculate the pound per hour (lb/hr) NO_x emission rate according to GCP O&G Condition A202.I Step 1 on page 15 of the GCP O&G. Enter this value in the top row of the table below.
- 2. Based on the calculated facility total NO_x emission rate, determine the minimum stack parameter requirements for engines and heaters from Table 1: Engines (page 17) of the GCP O&G and enter the minimum parameters from Table 1 (page 17) of the GCP O&G in the bottom row of the table below.
- 3. Enter the stack parameters from each engine and heater in the blank rows of the table below. Add rows as necessary.

Calculated Facility Total NOx Emis				
Engine/Generator/Heater/Reboiler	Height (ft)	Temperature (°F)	Velocity (ft/s)	Diameter (ft)
Unit Number				
ENG3	12.00	1055	121.9	0.42
H1	15	400	13.3	0.5
H2	15	400	13.3	0.5
H3	15	400	13.3	0.5
Table 1 Minimum Parameters: For verification, list the minimumparameters based on the NOx lb/hremission rate from the GCP O>able 1.	5.9	571	49.2	0.3

Table B: Engine/Generator/Heater/Reboiler Stack Parameter Verification:

4. Do all engines and heaters comply with the minimum stack parameters from Table 1 (page 17) of the GCP O&G?

Yes. Skip step 5 below.

 \boxtimes No. Go to step 5 below.

5. For engines and heaters that do not comply with the minimum stack parameters in Table 1 of the GCP O&G, explain and demonstrate in detail how the engines and heaters will be authorized according to the steps on page 16 of the GCP O&G or Condition A203.C of the GCP O&G. Show all calculations. ENG3 meets the minimum stack parameters. The combined heater emissions are less than 1.23 lb/hr

which meets the exemption requirement in A203.C.

Turbines

- 1. Calculate the pound per hour (lb/hr) NO_x emission rate according to GCP O&G Condition A202.I Step 1 on page 17 of the GCP O&G. Enter this value in the top row of the table below.
- 2. Based on the calculated facility total NO_x emission rate, determine the minimum stack parameter requirements for turbines and heaters from Table 2: Turbines (page 18) of the GCP O&G. Enter the minimum parameters from Table 2 (page 18) of the GCP O&G in the bottom row of the table below.
- 3. Enter the stack parameters from each turbine and heater in the blank rows of the table below. Add rows as necessary.

Tuble of Luibille, Header, Hebbiller Studies Luidenter (et inteactor)	Table C:	Turbine/Heater	r/Reboiler S	tack Parameter	Verification:
--	----------	----------------	--------------	----------------	---------------

Calculated Facility Total N	NOx Emission Rate:	lb/hr		
Turbine/Heater/Reboiler	Height (ft)	Temperature (°F)	Velocity (ft/s)	Diameter (ft)
Unit Number				
N/A				
Table 2 Minimum				
Parameters: For				
verification, list the				
minimum parameters				
based on the NOx lb/hr				
emission rate from the				
GCP O&G Table 2.				

- 4. Do all turbines and heaters comply with the minimum stack parameters from Table 2 (page 18) of the GCP O&G?
- Yes. Skip step 5 below.

No. Go to step 5 below.

5. For turbines and heaters that do not comply with the minimum stack parameters in Table 2 of the GCP O&G, explain and demonstrate in detail how the turbines and heaters will be authorized according to the steps on page 18 of the GCP O&G or Condition A203.C of the GCP O&G. Show all calculations.

Flares

- 1. Enter SO₂ emission rates (lb/hr) for each flare in the second column of the table below.
- 2. Based on the SO₂ emission rates, determine the minimum stack height requirements for flares from Table 3 (page 26) of the GCP O&G and enter the minimum stack height requirements for flares from Table 3 (page 26) of the GCP O&G in the last column of the table below.
- 3. Enter the stack height of each flare in the third column of the table below. Add rows as necessary.

Flare Unit Number	SO ₂ Emission Rate	Height (ft)	Table 3 Minimum
	(lb/hr)		Stack Height: For
			verification, list the
			minimum height
			parameters based on
			the SO2 emission rate
			from the GCP O&G
			Table 3.
FL1	<0.01	27	6.6 ft

Table D: Flare Stack Height Parameter Verification:

- 4. Do all flares comply with minimum stack height requirements?
 - Yes Yes
 - D No
- 5. Does the flare gas contain 6% H₂S or less by volume (pre-combustion)?
 - Yes. Skip step 6 below.
 - No. Go to step 6 below.
- 6. Explain in detail how assist gas will be added to reduce the gas composition to 6% H₂S or less by volume.

Enclosed Combustion Device(s) (ECD):

According to GCP O&G Condition A208.A, the facility must meet one of the following options if an ECD is installed at the facility:

Option 1:

- 1. Will the ECD(s) meet the SO2 emission limit of 0.7 lb/hr and operate with a velocity of at least one (1) foot per second?
 - Yes. Skip Option 2 below.
 - No. Go to Option 2 below.

Option 2:

- 1. Will the ECD(s) meet the SO₂ emission limit of 0.9 lb/hr and operate with a velocity of at least two (2) feet per second?
 - Yes
 - No

Section 4

Process Flow Sheet

Attach a **process flow sheet** indicating all individual equipment, all emission points, and types of control applied to those points. All units must be labeled, and the unit numbering system must be consistent throughout this Registration. Identify all sources of emissions with a vertical arrow. Label each of the different material streams (e.g. crude oil, gas, water). The process flow sheet must be a legible size.

The Tres Equis State Facility is an oil and gas production facility that flows natural hydrocarbons through five (5) three-phase separators (SEP1-5) to three (3) heater treaters (H1-3). From SEP1-5, the natural gas is processed by a low-pressure gas scrubber (SEP6) prior to either being compressed by a natural gas-fired compressor engine (ENG3) and utilized for gas lift operations or transmitted offsite. Oil/condensate from H1-3 is routed to a vapor recovery tower (VRT), where the oil/condensate is flashed. VRT flashing gas and heater treater flash gas is controlled by the flare (FL1). This is considered routine flaring. Oil remaining at the VRT is routed to two (2) oil/condensate storage tanks (OILTK1-2) prior to either being transmitted offsite via pipeline and a Lease Automatic Custody Transfer (LACT) Unit or loaded by tank truck (OILLOAD) and transported offsite. Produced water from SEP1-5 and H1-3 is routed to two (2) produced water storage tanks (SWTK1-2) from which it is either loaded by tank truck (SWLOAD) and transported offsite or transmitted offsite for saltwater disposal via pipeline with the aid of an electric water transfer pump (SWDPUMP). The storage tanks' air emissions are controlled by the enclosed combustor (ECD1). The flare (FL1) also controls the sales gas stream during instances of sales gas pipeline downtime. This is represented as FL1-STRAND in Sections 2 and 5 of the application and the AECT. This is considered intermittent flaring. Please note that FL1 is a dual-pressure flare however both tips have identical parameters. A flare scrubber (SEP7), four (4) electric pumping units (PU1-4), and an electric recirculation pump (PUMP) are also present at the facility. A glycol dehydrator is present at the facility but is disconnected and no longer in service.

A process flow sheet is attached.

PROCESS FLOW DIAGRAM

Lea County, New Mexico

Section 5

Emissions Calculation Forms

The Department has developed the Air Emissions Calculation Tool (AECT), which is required to be used in the GCP-Oil and Gas Registration. If the AECT, for a piece of equipment is under development, provide alternate calculations. **Do not include alternative calculations unless there is an issue being resolved with the AECT. This will delay review of the application.** The AECT and this Registration Form may be updated as needed.

Tank Emissions Calculations: Provide the method used to estimate tank-flashing emissions, the input and output summary from simulation models and software, all calculations, documentation of any assumptions used, descriptions of sampling methods and conditions, copies of any lab sample analysis. If Pro-Max or Hysis is used, all relevant input parameters shall be reported, including separator pressure, gas throughput, and all other relevant parameters necessary for flashing calculation. The inputs must match the gas analyses information submitted. Inputs that don't match may be grounds for denial of the application submittal.

<u>SSM Calculations</u>: In this Section, provide emissions calculations for Startup, Shutdown, and Routine Maintenance (SSM) emissions listed in the Table 2, and the rational for why the others are reported as zero (or left blank).

<u>Control Devices</u>: Report all control devices and list each pollutant controlled by the control device. Indicate in this section if you chose to not take credit for the reduction in emission rates. Only uncontrolled emission rates can be considered to determine applicability unless the state or federal acts require the control. This information is necessary to determine if federally enforceable conditions are necessary for the control device, and if the control device produces its own regulated pollutants or increases emission rates of other pollutants.

<u>Calculation Details</u>: The AECT is required for all emission calculations. If the AECT is not functioning, alternative calculations may be submitted only for the portions of the AECT with issues being resolved. Utilize this section to explain in detail, on an equipment-by-equipment basis, why alternative calculations are necessary.

Explain here: The AECT does not auto-populate the AP-42 PM factors for engines when the manufacturer data option is selected. Please refer to the attached calculations.

The AECT does not have the ability to calculate uncaptured heater treater flash emissions. Please refer to the attached calculations. The volume of heater treater flash gas was calculated using the total facility production and a gas to oil ratio (GOR) derived from Promax.

The AECT does not have the ability to calculate VRT emissions. Please refer to the attached calculations and the explanation in Section 6 for how VRT emissions were calculated using Promax. Please note that there are two (2) Promax runs in Section 6. One for tanks associated with the VRT (used by the VRT and OILTK1-2) and one for tanks not associated with a VRT (SWTK1-2).

In order to generate the correct number of flare pages in the AECT a "3" had to be entered for the number of flares. Please note that there is only one (1) flare and one (1) enclosed combustor at the facility. Please see the following list of streams in the AECT, what they correspond to, and where the uncaptured and uncombusted VOC is represented.

-ECD1: Storage tanks emissions. All VOC represented at the storage tanks

-FL1-VRT: VRT emissions (includes pilot). All VOC allocated to the VRT (except for pilot VOC which is represented at the flare.

-FL1-HT: Heater treater flash gas emissions. Uncaptured VOC represented at the heater treaters. Uncombusted VOC represented at the flare.

-FL1-STRAND: Sales gas stream during sales gas pipeline downtime. All VOC represented at the flare (FL1).

The VOC weight % used to estimate fugitive emissions is the VOC weight % of the hydrocarbon fraction of the analysis only. Fugitive emission factors are in lb-TOC/hr/component. Therefore, it would be inappropriate to use a weight % the incorporates non-organics.

Equipment Forms Submitted in this Section (add additional rows as necessary):

Equipment Type	Quantity	Check Box to Indicate Units that are Controlled	Enter Control Device Type and Pollutant Controlled
Engine	1	\square	Catalytic Converter (NOx, CO, VOC)
Turbine			
Tanks	4	\square	Flare (VOC, HAPs)
Generator			
VRU			
VRT	1	\square	Flare (VOC, HAPs)
ULPS			
Glycol Dehydrator			
Flare	1		FL1: VRT, heater treater flash, pilot FL1-STRAND: Sales gas stream during sales gas pipeline downtime.
Amine Unit			
Cryogenic Unit			
Fugitive Emissions	X		
Heater	3		
Truck Loading	X		
Enclosed Combustion Device (ECD)	1		OILTK1-2, SWTK1-2
Thermal Oxidizer (TO)			
Other			
Other			

For each scenario below, if there are more than one emissions unit, control device, or gas combustion scenario. Please copy and paste each applicable section and label the unit number(s) if the scenarios vary.

Vapor Recovery Tower, Ultra Low-Pressure Separator, or Flash Tower Located Upstream of Storage Vessels: If the

facility contains one of the following units located upstream of the storage vessels and is used to flash and capture flashing emissions, check the appropriate box.

Unit number: <u>VRT</u>

Vapor Recovery Tower and VRU Compressor

ULPS and VRU Compressor

Flash Tower and VRU Compressor

Vapor Recovery Unit (VRU) located upstream of Storage Vessels: Check the box below if the facility is using a VRU to capture flashing emissions prior to any storage vessels to limit the PTE of the storage vessels to below applicability thresholds of NSPS OOOO and/or NSPS OOOOa. A process vs control determination should be prepared for this type of VRU application.

Unit number:

VRU capturing emissions prior to any storage vessel and routing directly to the sales pipeline

<u>Vapor Recovery Unit (VRU) attached to Storage Vessels:</u> Check the box below if this facility is using a VRU to reduce storage vessel emissions to limit the PTE to below NSPS OOOO or NSPS OOOOa applicability thresholds: Unit number:

VRU controlling Storage Vessel emissions and the facility is subject to the requirements under NSPS OOOO, 40 CFR 60.5411

VRU controlling Storage Vessel emissions and the facility is subject to the requirements under NSPS OOOOa, 40 CFR 60.5411a

<u>Gas Combustion Scenarios:</u> Read through the scenarios below and check the boxes next to any appropriate facility operating scenarios. Flares shall assume a destruction efficiency of 95%, unless the facility is subject to requirements for flares under 40

A flare, vapor combustion unit (VCU), enclosed combustion device (ECD), thermal oxidizer (TO): Unit number: FL1	
 Controls storage vessels in accordance with 40 CFR 60, Subpart OOOO or OOOOa. Provides a federally enforceable control for the storage vessels to limit the PTE to below applicability thresholds of 40 CFR 60, Subpart OOOO or OOOOa. Controls the glycol dehydrator Controls the amine unit Controls truck loading Operates only during maintenance events, such as VRU downtime, check one below: The emissions during VRU downtime are represented as uncontrolled VOC emissions from the compressor The combustion emissions during VRU downtime are represented as controlled emissions from the combustio device 	n
 Controls the facility during plant turnaround Controls the sales gas stream during sales gas pipeline downtime Controls the VRT and heater treater flash 	
 A flare, vapor combustion unit (VCU), enclosed combustion device (ECD), thermal oxidizer (TO): Unit number: ECD1 Controls storage vessels in accordance with 40 CFR 60, Subpart OOOO or OOOOa. Provides a federally enforceable control for the storage vessels to limit the PTE to below applicability thresholds of 40 CFR 60, Subpart OOOO or OOOOa. Controls the glycol dehydrator Controls the amine unit Controls truck loading Operates only during maintenance events, such as VRU downtime, check one below: The emissions during VRU downtime are represented as uncontrolled VOC emissions from the compressor device 	n
Controls the facility during plant turnaround	

Amine Unit: Provide the following information for each amine unit.

Design Capacity in MMscf/day	
Rich Amine Flowrate in gal/min	
Lean Amine Flowrate in gal/min	
Mole Loading H ₂ S	
Sour Gas Input in MMscf/day	

<u>Glycol Dehydration Unit(s):</u> Provide the following information for each glycol dehydration unit: Please include an extended gas analysis in Section 6 of this application.

<u>Unit #</u>	Glycol Pump Circulation Rate

<u>Voluntary Monitoring in Accordance with §40 CFR 60.5416(a)</u>: Check the box(s) to implement a program that meets the requirements of 40 CFR 60.5416(a). This monitoring program will be conducted in lieu of the monitoring requirements established in the GCP-Oil and Gas for individual equipment. Ceasing to implement this alternative monitoring must be reported in an updated Registration Form to the Department.

Condition A205.B Control Device Options, Requirements, and Inspections for Tanks

Condition A206.B Truck Loading Control Device Inspection

Condition A206.C Vapor Balancing During Truck Loading

Condition A209.A Vapor Recovery Unit or Department-approved Equivalent

Condition A210.B Amine Unit Control Device Inspection

Form Revision: 22 October 2020

Fugitive H₂S Screening Threshold and Monitoring in accordance with Condition A212: Check the box that applies.

 \boxtimes Condition A212.A does not apply because the facility is below the fugitive H₂S screening threshold in Condition A212, or

Condition A212.A applies. Because the facility is above the fugitive H₂S screening threshold in Condition A212, or the facility is voluntarily complying with Condition A212.A, and Condition A212.A applies

AIR EMISSIONS CALCULATION TOOL

Instructions for Completing the Equipment Calculation Forms

- 1. Click the **Start Button** below to reset the form to begin data entry.
- 2. The *Air Emissions Calculation Tool* initially loads with the **Core Data Information Form.** Once all information is entered on this form, the necessary equipment calculation pages will be created based on the information entered on the Core Data Information Form. The customized *Air Emissions Calculation Tool* should now be saved to your computer before entering any other information on the equipment calculation pages. Warning, every time you click on the **Start Button b**elow, the *Air Emissions Calculation Tool* will reset and all data entered will be lost.
- 3. Green/Blue colored information boxes require users to enter the required information for the subject facility. Default values may be changed if not appropriate for the facility.
- 4. Yellow colored boxes represent calculated values based on user information entered and may not be changed.
- 5. Yellow boxes with green/blue cross-hatching represent calculated values based on user information entered, however users may input data in these boxes, if necessary.

Core Data Information				
Mandatory - All appropriate Data Must Be Entered For All Boxes Below. This Data Will Automatically Create All Required Equipment Forms And Populate This Data In All Emissions Calculation Forms.				
Date Field Dec 23, 2020	Permit/NOI/NPR Number 5660R3			
Company Name: Cimarex Energy Co.	Select Application Type GCP-O&G			
Facility Name: Tres Equis State Facility	Al# if Known			
Max. Facility Gas Production 1,400 (Mscf/d) 58.33 (Mscf/h)	Elevation (ft.) 3,651			
Max. Facility On Produced Water500(BWPD)20.83(BWPH)	Sour Gas Streams at This Site? NO			
Enter The Quantity Of All Air Emissions Sources Located At The Facility (Leave Blank For Each Equipment Type That Is Not Present)				

·		,,	· · · · · · · · · · · · · · · · · · ·
Equipment	Quantity	Equipment	Quantity
Amine Unit(s)		Compressor Engine (s)	1
Dehydrator(s)		Enclosed Combustion Device(s) (ECD)	1
Equipment Fugitives	\checkmark	Flare(s)	3
Flash Tower/Ultra-Low Pressure Separator(s) ^A	1	Generator Engine (s)	
Gunbarrel Separator(s)/Tank(s)		Heater(s), Heater Treaters	3
Number of Paved Haul Roads Segments		Number of Unpaved Haul Road Segments	1
Low Pressure Compressor(s)* & Compressor(s)*		Oil/Condensate Storage Tank(s)	2
Oil/Condensate Truck Loading	\checkmark	Produced Water Storage Tank(s)	2
Produced Water Truck Loading	\checkmark	Pumpjack Engine(s)	
Reboilers(s) (Amine Units)		Placeholder for Future Use	
Reboilers(s) (Glycol, others)		Startup, Shutdown & Maintenance and Malfunction	\checkmark
Skim Oil or Slop Oil Tank(s)		Thermal Oxidizer(s) (TO)	
Vapor Combustion Device(s) (VCU)		Vapor Recovery Unit(s) (VRU) $^{\wedge}$	

Click Here to Generate Required Forms & Save to Your Computer

Complete all required forms that follow, for the equipment at the subject facility, based on the selections made above. Items with an * indicate an air emissions calculation form currently not required at this time and those with ^ indicate forms under construction at this time.

ENG 3

Date:	Dec 23, 2020	Permit Number:	GCP-O&G-5660R3
Company Name	: Cimarex Energy Co.	AI# if Known:	
Facility Name:	Tres Equis State Facility	Elevation (ft.):	3,651

Non-Emergency SI Rich Burn, Lean Burn & Clean Burn Natural Gas Fired Compressor Engines (100% Load) & Stationary & Non-Road Diesel (<600hp & >600hp) & Gasoline Compressor Engines (<600hp)

Enter data in green-shaded areas only! One engine per form unless like-kind engines

Emission Unit ID:	ENG 3		·			•	0	:		-	1
Engine Manufacture	er: Caterpilla	r					Quant	ity of Like-kir	na Engines:		
Engine Model:	G3306 TA						Engin	e Description	Compressor	Engine	
Engine Serial #:	G6X08030)		Engine	Deration		Hours	/year	8,760		
Engine Manuf. Date	e: 1/4/2012			No Deration			Fuel T	ype:	Field Gas		
Engine Type: 4SRB				Stationary - N	laturally Aspi	irated No	Deration.				
Factory HP Rating			203	Stationary - T	urbo Aspirat	ed					
Allowable HP Rating	g 🔽		203	Portab l e - Na	turally Aspira	ited Not	es:				
Engine BSFC (Btu/(H	- Hp*Hr))	8	,736	Portab l e - Tu	rbo Aspirateo	k					
Fuel LHV, (BTU/SCF)		8884	,020	Se	lect Source	of					
Fuel Sulfur (grains/c	lscf) 🔯	0	.002		-42 Emission	Eactors					
-							A			D'	2.2.4
Hourly Fuel Flow Ba		hr) 🔽	0.001		anufacturer S	pecs (Enter	Appropriate E	mission Facto	ors Below) or	Diesel Her I,	2, 3 or 4
Appual Euel Flow R		(vr)	15.001	739 NS	PS JJJJ; Engir	ne Manuf. B	etween July 1,	2007-June 3	0, 2010 & Eng	jine HP≥500ŀ	1P
Maximum Engine Pl		y'' 📉	1	200	PS JJJJ; Engir	ne Manuf. O	n or after July	1, 2010 & Eng	gine HP≥500l	ΗP	
Maximum Engine Ki	- 101		1	, <u>800</u> 🔿 NS	PS JJJJ; Engir	ne Manuf. B	etween Ju l y 1,	2008-Dec. 31	l, 2010 & Eng	ine HP 100≤ŀ	HP<500
Exhaust Temperatu	re (°F)		1,055	O NS	PS JJJJ; Engir	ne Manuf. ic	on or after Jan.	1, 2011 & Eng	jine HP 100≤	HP<500	
Exhaust Velocity (ft/	'sec)		121.9	O NS	PS JJJJ; Eng. l	Manuf. Betv	v. Jan. 1, 2008-	June 30, 201	0 & LB Engine	e HP 500≤HP	<1350
Exhaust Flow (ACFM	1)		997	O NS	PS JJJJ; Engir	ne Manuf. ic	n or after July	1, 2010 & LB	Engine HP 50)0≤HP<1350	
Stack Diameter (ft)			0.42	O NS	PS JJJJ; Engir	nes < 100HF	e (Enter Appro	priate Emissi	on Factors Be	elow)	
Stack Height (ft)			12	O NS	PS IIII; Statior	hary Diesel	Engines				
					F .	Unco	ntrolled	Manufact	urer Spec.	Controlled	Emissions
			Efficien	cy & Safety	Factor	Emi	ssions	Emis	sions	(inc l ud	es SF)1
Pollutant	Uncontrld. EF g/hp-hr	% Control Efficiency	% Safety Factor	Contrld EF g/(hp - hr)	Manuf. Specs g/hp-hr	lb/hr	Tons/yr	lb/hr	Tons/yr	lb/hr	Tons/yr
NOx^{\wedge}	12	94	25	0.72	0.72	5.3704	23.5224	0.3222	1.4112	0.4028	1.7643
со	12	92	25	0.96	0.96	5.3704	23.5224	0.4296	1.8816	0.537	2.3521
VOC*	2	80	25	0.4	0.4	0.8951	3.9205	0.179	0.784	0.3139	1.3749
Formaldehyde	0.15	0	0	0.15		0.0671	0.2939	0	0	0.0671	0.2939
TSP/PM10/PM2.5	\times		0	\times	\times	0	0	0	0	0	0
² SO ₂	0.002	0	0	0.002	0.002	0.000994	0.004354	0.000994	0.004354	0.000994	0.004354
AP-42 HAPs	lb/MMBtu										
Formaldehyde	0.0205	NA	NA	NA	NA	0.03635	0.15921	NA	NA	NA	NA
Acetaldehyde	0.00279	NA	NA	NA	NA	0.00495	0.02168	NA	NA	NA	NA
Acrolein	0.00263					0.00466	0.02041	NA	NA	NA	NA
Ethylbenzene	0.00158				NA NA	0.0028	0.01226	NA NA			
n-Hexane	0.0000248	NA	NA	NA	NA	0.00004	0.00018	NA	NA	NA	NA
Toluene	0.000558	NA	NA	NA	NA	0.00099	0.00434	NA	NA	NA	NA
Xylene	0.000195	NA	NA	NA	NA	0.00035	0.00153	NA	NA	NA	NA
Total HAPs	NA	NA	NA	NA	NA	0.08089	0.3543	NA	NA	0.08	0.35

* Uncontrolled & Controlled VOC emissions include aldehyde emissions. VOC Emissions for JJJJ do not include aldehyde emissions. or ppm) except for AP-42 EF in g/hp-hr for SO2 & EF Values for NOx, CO, VOC, TSP/PM10/PM2.s in lb/hp-hr for large gasoline & diesel engines. ¹ For NOI's & NPR, controlled emissions cannot be less than JJJJ emissions. ² SO2 EF (grains/scf ngines. [^]NOx+NMHC Emission Factors for diesel engines assume 75% NOx and 25% VOC

0.08089

0.3543

Calculation Tool for Non-Emergency SI Rich Burn, Lean Burn & Clean Burn Natural Gas Fired Compressor Engines (100% Load) & Large Stationary Diesel (≤600hp & >600hp) & Gasoline Compressor Engines (≤600hp) Emissions

AP-42 Gas-Fired Engine Emission factors based on AP-42, Tables 3.2-1, 3.2-2 & 3.2-3 (July 2000)

https://www3.epa.gov/ttn/chief/ap42/ch03/final/c03s02.pdf

40 CFR Part 60 Subpart JJJJ Emission Factors based on §60.4233 & Table 1

http://www.ecfr.gov/cgi-bin/text-idx?node=sp40.7.60.jjjj

AP-42 Diesel & Gasoline Fired Engine Emission factors based on AP-42, Tables 3.3-1, 3.2-2, 3.4-1, 3.4-2, 3.4-3 & 3.4-4

https://www3.epa.gov/ttn/chief/ap42/ch03/final/c03s03.pdf

40 CFR Part 60 Subpart IIII Emission Factors based on 60.4233 & Table 1

http://www.ecfr.gov/cgi-bin/text-idx?node=sp40.7.60.iiii

EPA Tier 1-4 Nonroad Compression Ignition Emission Standards (EPA-42--B-16-022)

https://nepis.epa.gov/Exe/ZyNET.exe/P100OA05.txt?ZyActionD=ZyDocument&Client=EPA&Index=2011%20Thru%

202015&Docs=&Query=&Time=&EndTime=&SearchMethod=1&TocRestrict=n&Toc=&TocEntry=&QField=&QFieldPar=&QFieldMonth=&QFieldDay=&UseQField=&IntQFieldDay=&UseQField=&IntQFieldDay=&UseQField=&IntQFieldDay=&UseQField=&IntQFieldDay=&UseQField=&IntQFieldDay=&UseQField=&IntQFieldDay=&UseQField=&IntQFieldDay=&UseQField=&IntQFieldDay=&UseQField=&IntQFieldDay=&UseQField=&IntQFieldDay=&UseQFieldDay=&UseQField=&IntQFieldDay=&UseQField=&IntQFieldDay=&UseQField=&IntQFieldDay=&UseQField=&IntQFieldDay=&UseQField=&IntQFieldDay=&UseQField=&IntQFieldDay=&UseQField=&IntQFieldDay=&UseQFieldDay=&IntQFieldDay=&I

<u>i425&Display=hpfr&DefSeekPage=x&SearchBack=ZyActionL&Back=ZyActionS&BackDesc=Results%20page&MaximumPages=1&ZyEntry=1</u> Emission factors for natural gas and field gas internal combustion engines may be based on AP-42, Tables 3.2-1, 3.2-2 or 3.2-3 or NSPS JJJJ emission standards or manufacturer specifications based on engine applicability.

NOx Sample Calculation Using AP-42 Emission Factors for a 500-HP 4-Stroke Rich Burn Engine

pph = NOx Emission Factor (EF) lb/MMBtu * Heat Value Btu/scf/1020 Btu/scf * Maximum Heat Input (MMBtu/hr) * Allowable HP * 1/1000000 MMBtu/Btu

= 2.21 lb/MMBtu * 1020 Btu/scf/1020Btu/scf * 7500 MMBtu/hr *500 hp * 1/1000000 MMBtu/Btu =8.29 lb/hr

tpy =NOx Emission Factor (EF) lb/MMBtu * Heat Value Btu/scf/1020 Btu/scf * Maximum Heat Input (MMBtu/hr) * Allowable HP * 1/1000000 MMBtu/Btu * 8760 hrs/yr * 1/2000 tons/lbs

= 2.21 lb/MMBtu * 1020 Btu/scf/1020 Btu/scf * 0.5 MMBtu/hr * 1/1020 Btu/scf * 1000000/1 Btu/MMBtu * 8760 hrs/yr *

- 1ton/2000lbs
- = 36.31 tpy

AP-42 SO₂ emissions based on 100% conversion of fuel sulfur to SO₂ and assumes sulfur content in natural gas of 2,000 grains/10⁶ scf. The SO₂ emission factor is converted to other natural gas sulfur contents by multiplying the SO₂ emission factor by the ratio of the site-specific sulfur content.

 $(\text{grains}/10^6 \text{ scf})$ to 2,000 $\text{grains}/10^6 \text{ scf}$. For all other engines not using AP-42, The SO₂ emissions are based on grains S/scf. Fuel Heat values for Diesel = 0.137 MMBtu/gal; LPG = 0.0905 MMBtu/gal and Gasoline = 0.13 MMBtu/gal per AP-42 Appendix A, pg 5 & 6. SO2 emissions for all diesel engines not using AP-42, equals Gal Diesel/hr * diesel wt (lb)/gal * 15 ppm S * 64 lb SO2/32 lb S, where diesel weighs 7.1089 lb/gal.

NOx Sample Calculation Using NSPS JJJJ Emission Factors for a July 1, 2010 500-HP 4-Stroke Rich Burn Engine

pph = NOx Emission Factor (EF) g/hp-hr * 1/453.6 lbs/grams * Allowable HP = 1 g/hp-hr * 1/453.6 lbs/grams * 500 hp

= 1.1 [b/hr]

tpy =NOx Emission Factor (EF) g/hp-hr * 1/453.6 lbs/grams * Allowable HP * 8760 hrs/yr * 1/2000 tons/lbs = 1 g/hp-hr * 1/453.6 lbs/grams * 500 hp * 8760 hrs/yr * 1ton/2000lbs

= 4.82 tpy

Technical Disclaimer

This document is intended to help you accurately determine stationary compressor engine emissions. It does not supersede or replace any state or federal law, rule, or regulation. This guidance reflects the current understanding of how these units work and how they generate emissions, how they are monitored or tested, and what data are available for emissions determination, may change over time as the AQB continue scientific studies and as new information becomes available. The AQB welcome any data, information, or feedback that may improve our understanding of stationary compressor engine emissions and thereby further improve determinations within the emissions inventory. The calculation methods represented are intended as an emissions calculation aid; alternate calculation methods may be equally acceptable if they are based upon, and adequately demonstrate, sound engineering assumptions or data. If you have a question regarding the acceptability of a given emissions determination method, contact the Permitting Section at 505-476-4300.

Ne

w Mexico Environment Department Air Quality Bureau Emissions Calculation Forms

	C																	
Company Facility N	Name:	Cimarex E Tres Equis	c Energy Cc State Fa). cility									Al# if Kn Elevatio	own: n (ft.): 3,	ооикэ 651			
					Tota	Request	ed Emissi	ons For Al	ll Regulat	ed Engine	s (GCP-O	\&G Requ∈	est)					
UnitID	ž	°,	0	0	2V	Х	SC	×c	T 1	jp	PM	110	Μd	2.5	Ŧ	2S	Tota	HAP
	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
ENG 3	0.4	1.76	0.54	2.35	0.31	1.37	0	0	0	0	0	0	0	0			0.08	0.35
ENG 2	0	0	0	0	0	0	0	0	0	0	0	0	0	0			0	0
ENG 3	0	0	0	0	0	0	0	0	0	0	0	0	0	0			0	0
ENG 4	0	0	0	0	0	0	0	0	0	0	0	0	0	0			0	0
ENG 5	0	0	0	0	0	0	0	0	0	0	0	0	0	0			0	0
ENG 6	0	0	0	0	0	0	0	0	0	0	0	0	0	0			0	0
ENG 7	0	0	0	0	0	0	0	0	0	0	0	0	0	0			0	0
ENG 8	0	0	0	0	0	0	0	0	0	0	0	0	0	0			0	0
GEN 1	0	0	0	0	0	0	0	0	0	0	0	0	0	0			0	0
GEN 2	0	0	0	0	0	0	0	0	0	0	0	0	0	0			0	0
GEN 3	0	0	0	0	0	0	0	0	0	0	0	0	0	0			0	0
GEN 4	0	0	0	0	0	0	0	0	0	0	0	0	0	0			0	0
GEN 5	0	0	0	0	0	0	0	0	0	0	0	0	0	0			0	0
GEN 6	0	0	0	0	0	0	0	0	0	0	0	0	0	0			0	0
GEN 7	0	0	0	0	0	0	0	0	0	0	0	0	0	0			0	0
GEN 8	0	0	0	0	0	0	0	0	0	0	0	0	0	0			0	0
PJENG 1	0	0	0	0	0	0	0	0	0	0	0	0	0	0			0	0
PJENG 2	0	0	0	0	0	0	0	0	0	0	0	0	0	0			0	0
PJENG 3	0	0	0	0	0	0	0	0	0	0	0	0	0	0			0	0
PJENG 4	0	0	0	0	0	0	0	0	0	0	0	0	0	0			0	0
PJENG 5	0	0	0	0	0	0	0	0	0	0	0	0	0	0			0	0
PJENG 6	0	0	0	0	0	0	0	0	0	0	0	0	0	0			0	0
PJENG 7	0	0	0	0	0	0	0	0	0	0	0	0	0	0			0	0
PJENG 8	0	0	0	0	0	0	0	0	0	0	0	0	0	0			0	0
Page Totals	0.4	1.76	0.54	2.35	0.31	1.37	0	0	0	0	0	0	0	0			0.08	0.35

Ver.-Draft 8/10/18

Page 5 of 30

Number:560R3 nown: n (ft.): 3,651	(MBTU/Hr)	al rows for each heater unit.	ite Fuel Heat Value of Gas ault value (Btu/scf).	ters	SO2 PI	pph tpy pI	0 0.0	0 0.0	0 0.0	0 0.0	
Permit Al# if Kı Elevatio	rated <100 M	d adding addition	fuel Enter the S on or use defa	Heater Trea		tpy	0.048	0.048	0.048	0.144	
	ly for units	ppropriate an	3% conversion of I gas of 2,000 as needed based	arators &	ON	ydd	0.011	0.011	0.011	0.033	
	eaters (On	ult values as a	and assumes 100 content in natura ult value of 2000. cation.	ated Sepu	0	tpy	0.723	0.723	0.723	2.169	
	k Heater Tr	changing defo	ased on AP-42 EF l assumes sulfur . .cf. Change defa nitted with appli	eaters, He		Чdd	0.165	0.165	0.165	0.495	
	eparators 8	boxes below c	5O ₂ emissions ba sulfur to 5O2 and grains/100000 s gas analysis subn	om All H€	×o	tpy	0.858	0.858	0.858	2.574	
	Heated Se	ation in green	2,000	issions Fr	Ž	ydd	0.196	0.196	0.196	0.588	
rrgy Co. ate Facility	Heaters,	opriate inform	or 	Em	Heat Input	MMBtu/hr	2	2	2		
Dec 23, 2020 : Cimarex Ene Tres Equis St		Enter appr	ontent of Gas ((grains/10 ⁶ scf.		Unit ID		Ŧ	H2	H3	Totals	
Date: Company Name: Facility Name:			Enter the Sulfur Co use default value (Add/Remove Rows		+	+	+		

Calculation Tool for Heaters, Heated Separators & Heater Treater Emissions (Uncontrolled) for Oil & Gas Production Sites (Only for units rated <100 MMBTU/Hr) All emission factors based on AP-42, Table 1.4-1, Table 1.4-2 and Table 1.4-3 (July 1998) <u>https://www3.epa.gov/ttn/chief/ap42/ch01/final/c01s04.pdf</u>

Emission factors for natural gas combustion in boilers and furnaces are presented in AP42, Tables 1.4-1, 1.4-2, 1.4-3, and 1.4-4. The Tables present emission factors on a volume basis (lb/10⁶ scf). To convert to an energy basis (lb/MMBtu), divide by a heating value of 1,020 MMBtu/10⁶ scf. The emission factors may be converted to other natural gas heating values by multiplying the given emission factor by the ratio of the specified heating value to this average heating value.

NOx Sample Calculation

- pph = AP 42 NOx Emission Factor (EF) * site fuel heat value Btu/scf/1020 Btu/scf * Maximum Heat Input (MMBtu/hr) * 1/site fuel heat Value Btu/scf * 1000000/1Btu/MMBtu = 100 lb/1000000 scf * 2000 Btu/scf/1020 Btu/scf * 0.5 MMBtu/hr * 1/2000 Btu/scf * 1000000/1Btu/MMBtu =0.096 lb/hr
- tpy = AP 42 NOx Emission Factor (EF) * site fuel heat value Btu/scf/1020 Btu/scf * Maximum Heat Input (MMBtu/hr) * 1/site fuel heat value Btu/scf * 1000000/1 Btu/MMBtu * 8760 hrs/yr * 1ton/2000 lbs = 100 lb/1000000 scf * 2000 Btu/scf/1020 Btu/scf * 0.5 MMBtu/hr * 1/2000 Btu/scf * 1000000/1 Btu/MMBtu * 8760 hrs/yr * 1ton/2000lbs = 0.42 tpy

SO₂ emissions based on 100% conversion of fuel sulfur to SO₂ and assumes sulfur content in natural gas of 2,000 grains/10⁶ scf. The SO₂ emission factor is converted to other natural gas sulfur contents by multiplying the SO₂ emission factor by the ratio of the site-specific sulfur content (grains/10⁶ scf) to 2,000 grains/10⁶ scf.

Technical Disclaimer

This document is intended to help you accurately determine heaters, heated separators & heater treaters emissions. It does not supersede or replace any state or federal law, rule, or regulation. This guidance reflects the current understanding of how these combustion units work and how they generate emissions, how they are monitored or tested, and what data are available for emissions determination, may change over time as the AQB continue scientific studies and as new information becomes available. The AQB welcome any data, information, or feedback that may improve our understanding of heaters, heated separators & heater treaters emissions and thereby further improve determinations within the emissions inventory. The calculation methods represented are intended as an emissions calculation aid; alternate calculation methods may be equally acceptable if they are based upon, and adequately demonstrate, sound engineering assumptions or data. If you have a question regarding the acceptability of a given emissions determination method, contact the Permitting Section at 505-476-4300.

Date:	Dec 23, 2020
Company Name:	Cimarex Energy Co.
Facility Name:	Tres Equis State Facility

Permit Number: GCP-O&G-5660R3 Al# if Known: Elevation (ft.): 3,651

Flash Tower/Ultra-low Pressure Separators Air Emissions Calculations Form Under Development

Please submit all required calculations and supporting documentation for all Flash Tower/Ultra-low Pressure Separators emissions in the application.

New Mexico Environment Department Air Quality Bureau Equipment Emissions Calculation Form

Da	te:	Dec 23, 2020
Со	mpany Name:	Cimarex Energy Co.
Fa	cility Name:	Tres Equis State Facility

 Permit Number:
 GCP-O&G-5660R3

 Al# if Known:
 Elevation (ft.):
 3,651

Vertical Fixed Roof (VFR) Oil/Condensate VOC Flash Emissions Calculations Form

Select I	anks	Flash Enlission Calcu	ומנוט	nmethoa
GOR		E & P Tanks		ProMax
Vasquez-Beggs		HYSYS		VMGSim

ProMax Oil Tanks Emission Calculations

Please attach the ProMAX printout with all input data provided along with the calculated emissions. Enter the uncontrolled VOC emissions below. If the tank vapors are routed to a flare, enclosed combustion device, vapor combustion unit, vapor recovery unit or thermal oxidizer select the appropriate VOC destruction method below along with selected VOC destruction efficiency supported by manufacturer specifications submitted with the application.

Tanks VOC Control Method

Capture Efficiency	98	Represent Uncaptured/Uncollected VOC's at Tanks	YES
VOC Control Method ¹	Enclosed Combustion Device (ECD)	Represent VRU/ULPC Downtime Emissions at Tanks	NA
VOC Destruction Efficiency ²	98	Represent VOC Controlled Emissions at Tanks*	YES

Notes Please refer to the explanation in Section 6 for how Promax was used to estimate emissions.

Total VOC Flash Emissions From Oil/Condensate Storage Tanks Calculated with ProMax

Add/Remove Rows	Tank ID	VOC Uncontro	olled Emissions	VOC Emission	s after Control	VOC Emissior	ns at the Tanks
Up To 10 Units		pph	tpy	pph*	tpy*	pph	tpy
+	OILTK1	1.69	7.41	0.03	0.15	0.07	0.29
+	OILTK2	1.69	7.41	0.03	0.15	0.07	0.29
	Totals	3.38	14.82	0.06	0.3	0.14	0.58

Calculation Tool for Tanks Flashing & Working & Standing Emissions for Oil & Gas Production Sites All flash emissions based on flash calculation methodology selected;

1) The appropriate ECD, flare, TO, VCU or VRU form must also be completed.

2) Manufacturer documentation required to support % control selected. If using a VRU/LPC, calculations assume VRU/ULPC with a 100% control efficiency, but with 5% downtime;

3) Information included in calculation tool must be based on representative oil and gas analysis which must be submitted with application;

4) GOR and Vasquez-Beggs sample calculations outlined below; E & P Tanks, ProMax, HYSYS & VMG Sim flash emissions require submittal of computer simulation model emissions calculations print-outs;

5) Working & Standing emissions based on AP-42 Chpt. 7, tanks 4.09d computer simulation or ProMax, or VMG computer simulation models.

Sample Calculations

GOR Methodology

VOC pph = GOR (scf/bbl) * Facility Oil Throughput (BOPD) * 1/24 (Hours/Day * 1/Universal Gas Constant 385 scf/lb-

mole @ 70^oF, 1 atm) * Molecular Weight of Tank Vapors (lb/lb-mol) = 40 (scf/bbl) * 1000 (BOPD)*1/24 (hrs/day) *1/385 scf/lb-mol * 50 lb/lb-mol = 216.45 lbs/hr

VOC tpy = GOR (scf/bbl) * Facility Oil Throughput (BOPD) * 1/24 (Hours/Day * 1/Universal Gas Constant 385 scf/lb-mole @ 70^OF, 1 atm) * Molecular Weight of Tank Vapors (lb/lb-mol) * 8760 hr/yr * 1/2000 lbs/ton = 40 (scf/bbl) * 1000 (BOPD)*1/24 (hrs/day) *1/385 scf/lb-mol * 50 lb/lb-mol * 8760 hr/yr * 1/2000 lbs/ton = 948.05 tpy

INPUTS				Const	traints			Constant	s	
API Gravity		API	16	<api></api>	58	⁰ API			⁰ API Gra	avity
Separator Pressure (psig)		Р	50	<p+patm></p+patm>	5250	psia	⁰ APTI	<30	≥30	Given ⁰ API
Separator Temp. (⁰ F)		Ti	70	<ti></ti>	295	⁰ F	C1	0.0362	0.0178	
Separator Gas Gravity at Initial Condition		SGi	0.56	<sgi></sgi>	1.18	MW/28.97	C2	1.0937	1.187	
Barrels of Oil/Day (BOPD)	220	Q	None	<q></q>	None	BOPD	C3	25.724	23.931	
Tank Gas MW		MW	18	<mw></mw>	125	lb/lb-mole				
VOC Fraction of Tank Gas		VOC	0.5	<voc></voc>	1.00	Fraction				
Atmospheric Pressure (psia)		Patm	20	<rs></rs>	2070	scf/bbl				

Vasquez-Beggs Methodology

SGx = Dissolved gas gravity at Separator pressure = SGi [1.0+0.00005912*API*Ti*Log(Pi/114.7)]

$$Rs = (C1 * SGx * Pi^{C2}) exp ((C3 * API) / (Ti + 460)) for P + Patm$$

THC = Rs * Q * MW * 1/385 scf/lb-mole * 365 D/Yr * 1 ton/2000 lbs

VOC =THC * Frac. of C3+ in the Stock Tank Vapor

Technical Disclaimer

This document is intended to help you accurately determine oil/condensate storage tank flash, working and standing emissions. It does not supersede or replace any state or federal law, rule, or regulation. This guidance reflects the current understanding of how these units work and how they generate emissions, how they are monitored or tested, and what data are available for emissions determination, may change over time as the AQB continue scientific studies and as new information becomes available. The AQB welcome any data, information, or feedback that may improve our understanding of oil/condensate storage tank flash, working and standing emissions and thereby further improve determinations within the emissions inventory. The calculation methods represented are intended as an emissions calculation aid; alternate calculation methods may be equally acceptable if they are based upon, and adequately demonstrate, sound engineering assumptions or data. If you have a question regarding the acceptability of a given emissions determination method, contact the Permitting Section at 505-476-4300.

New Mexico Environment Department Air Quality Bureau Equipment Emissions Calculation Form

Date:	Dec 23, 2020	Permit Number:	GCP-O&G-5660R3
Company Name:	Cimarex Energy Co.	Al# if Known:	
Facility Name:	Tres Equis State Facility	Elevation (ft.):	3,651

Vertical Fixed Roof (VFR) Oil/Condensate VOC Working & Standing Emissions Calculations Form

	5	Select Tanks W & S E	miss	ion Calculation Met	thod	
AP-42 Chpt. 7	,	EPA Tanks 4.09d		ProMax		E & P Tanks

Tanks 4.09d Working & Standing VOC Emissions for (VFR) Oil/Condensate Storage Tank(s)

Please attach the Tanks 4.09d printout with all input data provided along with the calculated emissions. Enter the uncontrolled VOC emissions below. If the tank vapors are routed to a flare, enclosed combustion device, vapor combustion unit, vapor recovery unit or thermal oxidizer select the appropriate VOC destruction method below along with selected VOC destruction efficiency supported by manufacturer specifications submitted with the application.

Tanks VOC Control Method							
Capture Efficiency 98			Represent U VOC's at Tan	ncaptured and ks	l/or Controlled	YES	
VOC Control Meth	od	Flare (FL)	Represent VF at Tanks	RU/ULPC Dowr	ntime Emission	^s NA
VOC Destruction E	fficiency	98		Represent VO Tanks*	DC Controlled	Emissions at	YES
Notes AP-42 Chapte incorporate t entered. Plea	Notes AP-42 Chapter 7 (revised June 2020) was used to estimate emissions. The AECT has not been updated to incorporate these revisions. Therefore, the Tanks 4.09d option was selected so that emissions could be hard entered. Please refer to the included calculations.						
Total VOC W	& S Emiss	ions From Oi	il/Condensa	te Storage 1	Tanks Calcu	lated with To	anks 4.09d
Add/Remove Rows	Tank ID	VOC Uncontro	lled Emissions	VOC Emission	s after Control	VOC Emissions	s at the Tanks
Up To 10 Units		pph	tpy	pph*	tpy*	pph	tpy
+	OILTK1	2.35	10.28	0.05	0.21	0.09	0.41
+	OILTK2	2.35	10.28	0.05	0.21	0.09	0.41
	Totals	4.7	20.56	0.1	0.42	0.18	0.82

Notes

Total VOC Emissions From Loading Petroleum Liquids						
Pollutant	VOC Uncontrolled Emissions		VOC Emissions after Control		VOC Emissions at the Loading Rack	
	pph*	tpy*	pph*	tpy*	pph*	tpy*
VOC	36.06	13.59	36.06	13.59	36.06	13.59

Footnote: * All emission factors based on AP-42, 5.2-4 Equation 1 or AP-42 Table 5.2-5 (July 2008); See next page for calculation notes. You may elect to represent the controlled emissions at the loading rack or at the control device or tanks by selecting the appropriate drop-down options under *Truck Loading VOC Control Method*.

Calculation Tool for Emissions From Loading Petroleum Liquid Emissions based on AP-42, 5.2-4 Equation 1 (July 2008) or AP-42, Table 5.2-5 https://www3.epa.gov/ttn/chief/ap42/ch05/final/c05s02.pdf

AP-42 5.2-4 Equation 1

Emissions from loading petroleum liquid can be estimated (with a probable error of ± 30 percent)⁴ using the following expression: **Equation 1** L_I =12.46 * SPM/T

where:

 $L_L =$ loading loss, pounds per 1000 gallons (lb/10³ gal) of liquid loaded;

- S = a saturation factor (see Table 5.2-1 reproduced below))
- P = true vapor pressure of liquid loaded, pounds per square inch absolute (psia) (see Section 7.1, "Organic Liquid Storage Tanks")
- M = molecular weight of vapors, pounds per pound-mole (lb/lb-mole) (see Section 7.1, "Organic Liquid Storage Tanks")
- T = temperature of bulk liquid loaded, °R (°F + 460)
- VOC pph = (12.46*0.6*7.0 (psia)*50 (lb/lb-mole)/550°R)/1000 (gal) * 8400 (gal/hr)

= (12.46*0.6*4.5 (psia)*50 (lb/lb-mole)/525°R)/1000 * 1533000 (gal/yr) * 1/2000 (ton/lbs) VOC tpy = 2

2.46	tpy
------	-----

= 39.96 lb/hr

Table 5.2-1. SATURATION (S) FACTORS FOR CALCULATING PETROLEUM LIQUID LOADING LOSSES			
Cargo Carrier	Mode of Operation	S Factor	
Tank trucks and rail tank cars	Submerged loading of a clean cargo tank	0.5	
	Submerged loading: dedicated normal service	0.6	
	Submerged loading: dedicated vapor balance service	1.0	
	Splash loading of a clean cargo tank	1.45	
	Splash loading: dedicated normal service	1.45	
	Splash loading: dedicated vapor balance service	1.0	
Marine vessels ^a	Submerged loading: ships	0.2	
	Submerged loading: barges	0.5	

^a For products other than gasoline and crude oil. For marine loading of gasoline, use factors from Table 5.2-2. For marine Loading of crude oil, use Equations 2 and 3 and Table 5.2-3

AP-42 Table 5.2-5

VOC pph

= (2lb/1000 (gal) * ((100-15)/100) * 8400 (gal/hr) = 16.8 pph

VOC tpy = (2lb/1000 (gal) * ((100-15)/100) * 100 (BOPD) * 42 (gal/bbl) * 365 (days/yr) * 1/2000 (ton/lb) = 1.53 tpy

Table 5.2-5 TOTAL UNCONTROLLED ORGANIC EMISSION FACTORS FOR PETROLEUM LIQUID RAIL TANK CARS AND TANK TRUCKS

Emission Source	Mode of Operation	Crude Oil (lb/1000 gal transferred) ^b
Loading Operations ^c		
	Submerged loading: dedicated normal service	2
	Submerged loading: dedicated vapor balance service	3
	Splash loading: dedicated normal service	5
	Splash loading: dedicated vapor balance service	3
a Reference 2 VOC factors for crude oil can be assumed to be 15% low	er than the total organic factors to account for the methane and ethane cont	ent of crude oil evaporative emissions. All other products should be

assumed to have VOC factors equal to total organics; b The example crude oil has an RVP of 34 kPa (5 psia); c Loading emission factors are calculated using Equation 1 for a dispensed product temperature of 16°C (60°F). In the absence of specific inputs for Equations 1, the typical evaporative emission factors presented in Tables 5.2-5 should be used. It should be noted that, although the crude oil used to calculate the emission values presented in this tables has an RVP of 5, the RVP of crude oils can range from less than 1 up to 10. In areas where loading and transportation sources are major factors affecting air quality, it is advisable to obtain the necessary parameters and to calculate emission estimates using Equations 1

1) The appropriate ECD, flare, TO, VCU or VRU form must also be completed.

2) Manufacturer documentation required to support % control selected. If using a VRU/LPC, calculations assume VRU/ULPC with a 100% control efficiency, but with 5% downtime;

3) Information included in calculation tool must be based on representative oil and gas analysis which must be submitted with application;

^) Vapor balancing emissions to tanks must be represented at the tanks;

Technical Disclaimer

This document is intended to help you accurately determine truck loading petroleum emissions. It does not supersede or replace any state or federal law, rule, or regulation. This guidance reflects the current understanding of how truck loading operations work and how it generates emissions, how it is monitored or tested, and what data are available for emissions determination, may change over time as the AQB continue scientific studies and as new information becomes available. The AQB welcome any data, information, or feedback that may improve our understanding of truck loading petroleum emissions and thereby further improve determinations within the emissions inventory. The calculation methods represented are intended as an emissions calculation aid; alternate calculation methods may be equally acceptable if they are based upon, and adequately demonstrate, sound engineering assumptions or data. If you have a question regarding the acceptability of a given emissions determination method, contact the Permitting Section at 505-476-4300.

Date:	Dec 23, 2020	Per
Company Name:	Cimarex Energy Co.	AI#
Facility Name:	Tres Equis State Facility	Elev

Permit Number: GCP-O&G-5660R3 N# if Known: Elevation (ft.): 3,651

Startup, Shutdown & Maintenance and Malfunction

- No SSM emissions are expected from routine operations.
- Request up to 10 tpy of VOC SSM emissions.
- Request site specific VOC & H2S SSM and enter information below.
- Request site specific VOC & H2S SSM plus 10 tpy VOC and enter information below.
- Request site specific combustion SSM and those emissions are included in Section 4 (attach calculations.)
- Request 10 tpy VOC Malfunction emissions for GCP-O&G, GCP-6 or NSR permitting actions only.

		Blowdown	S	Er	ngine Startu	ps
Unit Numbers						
Quantity of Like-kind Blowdown Units or Engines	1					
Total Volume of Each Blowdown or Engine Startup Vent (acf)						
Duration of Event (Minutes)						
Maximum Blowdowns or Startups/hr	1					
Frequency of Blowdowns or Engine Startups (Events/yr)						
Total Actual Volume of Gas Vented (acf/yr)	0	\times		\times	$\times\!\!\times\!\!\times\!\!\times$	\times
Pressure of Gas Inside Unit Before Venting (psig)						
Final Pressure (psia)	14.7					
Gas Temperature Prior to Venting (°F)						
Vented Gas Molecular Weight (lb/lb-mol						
Vented Gas VOC wt %						
Vented Total HAP wt %						
Vented Gas Benzene wt %						
Vented Gas H ₂ S wt %						

Startup, Shutdown and Maintenance Emissions (SSM) and Malfunction Emissions

SSM	VC	C	Tota	НАР	Ben	zene	н	₂ S
	PPH	TPY	PPH	ТРҮ	PPH	TPY	PPH	TPY
SSM Blowdowns								
SSM Startups								
SSM Other (Attach Calculations)								
SSM Totals		10						
Malfunction Total		10						

Notes

Planned SSM Emissions

The venting emissions calculations herein should only be used when only gas (no liquids) is present in the unit. The calculation of the vented gas is based on the volume of the unit and assumes the unit is saturated with vapor at the pressure and temperature of the unit before venting occurs. If liquids are also present in the gas, please enter the calculated amounts in the SSM Other row only and submit separate calculations, since the calculations on this form do not account for the evaporation of liquids that may be present in the unit.

Calculations are based on the Ideal gas law: P(V) = n(R)(T)

VOC result = (((Pressure of Gas Inside the Unit Before Venting) * (Actual Volume of the Vented Unit)) / (Frequency of events) * (Molecular Weight) * VOC wt%)/(Ideal Gas Constant) * (Temperature of Gas Inside the Unit Before Venting)

Where the Ideal Gas Constant = 10.73159 (ft^{3*}psia)/R*lb-mol

For SSM combustion emissions, attach separate calculations.

New Mexico Environment Department Air Quality Bureau Equipment Emissions Calculation Form

Date:	Dec 23, 2020	Permit Number:	GCP-O&G-5660R3
Company Name:	Cimarex Energy Co.	Al# if Known:	
Facility Name:	Tres Equis State Facility	Elevation (ft.):	3,651

Vertical Fixed Roof (VFR) Produced Water VOC Flash Emissions Calculations Form

GWR	E & P Tanks	ProMax				
Vasquez-Beggs	HYSIS	VMGSim				

ProMax Produced Water Tanks Emission Calculations

Please attach the ProMAX printout with all input data provided along with the calculated emissions. Enter the uncontrolled VOC emissions below. If the tank vapors are routed to a flare, enclosed combustion device, vapor combustion unit, vapor recovery unit or thermal oxidizer select the appropriate VOC destruction method below along with selected VOC destruction efficiency supported by manufacturer specifications submitted with the application.

Tanks VOC Control Method						
Select % Oil in Water	1	1 VOC Uncontrolled emissions entered includes this percentage.				
Capture Efficiency	98	Represent Uncaptured and/or Controlled VOC's at Tanks	YES			
VOC Control Method	Enclosed Combustion Device (E	Represent VRU/ULPC Downtime Emissions at Tanks	NA			
VOC Destruction Efficiency	98	Represent VOC Controlled Emissions at Tanks*	YES			

Notes Please refer to the explanation in Section 6 for how Promax was used to estimate emissions.

Total VOC Emissions From Produced Water Storage Tanks Calculated with ProMax

Add/Remove Rows	Tank ID	VOC Uncontrolled Emissions		VOC Emissions after Control		VOC Emissions at the Tanks	
Up To 10 Units		pph	tpy	pph*	tpy*	pph	tpy
+	SWTK 1	0.13	0.57	0	0.01	0.01	0.02
+	SWTK 2	0.13	0.57	0	0.01	0.01	0.02
	Totals	0.26	1.14	0	0.02	0.02	0.04

Calculation Tool for Tanks Flashing & Working & Standing Emissions for Oil & Gas Production Sites All flash emissions based on flash calculation methodology selected ;

1) The appropriate ECD, flare, TO, VCU or VRU form must also be completed.

2) Manufacturer documentation required to support % control selected. Assumes VRU/ULPC with a 100% control efficieny, but with 5% downtime;

3) Information included in calculation tool must be based on representative oil and gas analysis which must be submitted with application;

4) GOR and Vasquez-Beggs sample calculations outlined below; E & P Tanks, ProMax, HYSYS & VMG Sim flash emissions require submittal of computer simulation model emissions calculations print-outs;

5) Working & Standing emissions based on AP-42 Chpt. 7, tanks 4.09d computer simulation or ProMax, or VMG computer simulation models.

Sample Calculations

GWR Methodology

VOC pph = GWR (scf/bbl) * Facility Water Throughput (BOPD) * 1/24 (Hours/Day * 1/Universal Gas Constant 385 scf/lb-

mole @ 70^oF, 1 atm) * Molecular Weight of Tank Vapors (lb/lb-mol) * Percent Oil in Water

= 40 (scf/bbl) * 1000 (BOPD)*1/24 (hrs/day) *1/385 scf/lb-mol * 50 lb/lb-mol * 1/100

= 2.16 lbs/hr

VOC tpy = GWR (scf/bbl) * Facility Water Throughput (BOPD) * 1/24 (Hours/Day * 1/Universal Gas Constant 385 scf/lbmole @ 70^OF, 1 atm) * Molecular Weight of Tank Vapors (lb/lb-mol) * 8760 hr/yr * 1/2000 lbs/ton * Percent Oil in Water

^{= 40 (}scf/bbl) * 1000 (BOPD)*1/24 (hrs/day) *1/385 scf/lb-mol * 50 lb/lb-mol * 8760 hr/yr * 1/2000 lbs/ton * 1/100 = 9.48 tpy

INPUTS			Constraints				Constants			
API Gravity		API	16	<api></api>	58	⁰ API		⁰ API Gravity		
Separator Pressure (psig)		Р	50	<p+patm></p+patm>	5250	psia	⁰ APTI	<30	≥30	Given ⁰ API
Separator Temp. (⁰ F)		Ti	70	<ti></ti>	295	⁰ F	C1	0.0362	0.0178	
Separator Gas Gravity at Initial Condition		SGi	0.56	<sgi></sgi>	1.18	MW/28.97	C2	1.0937	1.187	
Barrels of Water/Day (BOPD)	250	Q	None	<q></q>	None	BOPD	C3	25.724	23.931	
Tank Gas MW		MW	18	<mw></mw>	125	lb/lb-mole				
VOC Fraction of Tank Gas		VOC	0.5	<voc></voc>	1.00	Fraction				
Atmospheric Pressure (psia)		Patm	20	<rs></rs>	2070	scf/bbl				

Vasquez-Beggs Methodology

SGx = Dissolved gas gravity at Separator pressure = SGi [1.0+0.00005912*API*Ti*Log(Pi/114.7)]

$$Rs = (C1 * SGx * Pi^{C2}) exp ((C3 * API) / (Ti + 460)) for P + Patm$$

THC = Rs * Q * MW * 1/385 scf/lb-mole * 365 D/Yr * 1 ton/2000 lbs

VOC = THC * Frac. of C3+ in the Stock Tank Vapor

Technical Disclaimer

This document is intended to help you accurately determine produced water storage tank flash, working and standing emissions. It does not supersede or replace any state or federal law, rule, or regulation. This guidance reflects the current understanding of how these units work and how they generate emissions, how they are monitored or tested, and what data are available for emissions determination, may change over time as the AQB continue scientific studies and as new information becomes available. The AQB welcome any data, information, or feedback that may improve our understanding of produced water storage tank flash, working and standing emissions and thereby further improve determinations within the emissions inventory. The calculation methods represented are intended as an emissions calculation aid; alternate calculation methods may be equally acceptable if they are based upon, and adequately demonstrate, sound engineering assumptions or data. If you have a question regarding the acceptability of a given emissions determination method, contact the Permitting Section at 505-476-4300.

New Mexico Environment Department Air Quality Bureau Equipment Emissions Calculation Form

Date:	Dec 23, 2020	Permit Number:	GCP-O&G-5660R3
Company Name:	Cimarex Energy Co.	Al# if Known:	
Facility Name:	Tres Equis State Facility	Elevation (ft.):	3,651

Vertical Fixed Roof (VFR) Water Tanks VOC Working & Standing Emissions Calculations Form

Select Tanks W & S Emission Calculation Method

AP-42 Chpt. 7

EPA Tanks 4.09d

ProMax

E & P Tanks

Tanks 4.09d Working & Standing VOC Emissions for (VFR) Produced Water Storage Tank(s) (Assumes W & S emissions are 1% of the emissions calculated based on oil properties and entered as uncontrolled emissions)

Please attach the Tanks 4.09d printout with all input data provided along with the calculated emissions. Enter the uncontrolled VOC emissions below. If the tank vapors are routed to a flare, enclosed combustion device, vapor combustion unit, vapor recovery unit or thermal oxidizer select the appropriate VOC destruction method below along with selected VOC destruction efficiency supported by manufacturer specifications submitted with the application.

Tanks VOC Control Method				
Capture Efficiency	98	Represent Uncaptured and/or Controlled VOC's at Tanks	YES	
VOC Control Method	Enclosed Combustion Device (E	Represent VRU/ULPC Downtime Emissions at Tanks	NA	
VOC Destruction Efficiency	98	Represent VOC Controlled Emissions at Tanks*	YES	
Notes AP-42 Chapter 7 (revised June 2020) was used to estimate emissions. The AECT has not been updated to incorporate these revisions. Therefore, the Tanks 4.09d option was selected so that emissions could be hard				

Add/Remove Rows	Tank ID	VOC Uncontro	VOC Uncontrolled Emissions		VOC Emissions after Control		VOC Emissions at the Tanks	
Up To 10 Units		pph	tpy	pph*	tpy*	pph	tpy	
+	SWTK1	0.03	0.11	0	0	0	0	
+	SWTK2	0.03	0.11	0	0	0	0	
	Totals	0.06	0.22	0	0	0	0	

Total VOC Emissions From Loading Produced Water Liquids					
Based On % Oil in Water Selected Above					
Pollutant	Uncontrolled Emissions (pph)	Uncontrolled Emissions (tpy)			
VOC	0.36	0.15			

Calculation Tool for Emissions From Loading Produced Water Liquids Emissions based on AP-42, 5.2-4 Equation 1 (July 2008) or AP-42, Table 5.2-5 <u>https://www3.epa.gov/ttn/chief/ap42/ch05/final/c05s02.pdf</u>

AP-42 5.2-4 Equation 1

Emissions from loading produced water liquids can be estimated (with a probable error of ±30 percent)⁴ using the following expression: Equation 1 L_L =12.46 * SPM/T

where:

- L_{I} = loading loss, pounds per 1000 gallons (lb/10³ gal) of liquid loaded (assumes 1% oil in water)
- S = a saturation factor (see Table 5.2-1 reproduced below))
- P = true vapor pressure of liquid loaded, pounds per square inch absolute (psia) (see Section 7.1, "Organic Liquid Storage Tanks")
- M = molecular weight of vapors, pounds per pound-mole (lb/lb-mole) (see Section 7.1, "Organic Liquid Storage Tanks")
- T = temperature of bulk liquid loaded, °R (°F + 460)

VOC pph = $(12.46*0.6*7.0 \text{ (psia)}*50 \text{ (lb/lb-mole)}/550^{\circ}\text{R})/1000 \text{ (gal)}*8400 \text{ (gal/hr)}*0.01 (1\% \text{ oil in water})$ = 39.96 lb/hr

VOC tpy = $(12.46*0.6*4.5 \text{ (psia)}*50 \text{ (lb/lb-mole)}/525^{\circ}\text{R})/1000 * 1533000 \text{ (gal/hr)} * 1/2000 \text{ (ton/lbs)} * 0.01 (1% oil in water)$ = 2.46 tpy

Table 5.2-1. SATURATION (S) FACTORS FOR CALCULATING PETROLEUM LIQUID LOADING LOSSES				
Cargo Carrier	Mode of Operation	S Factor		
Tank trucks and rail tank cars	Submerged loading of a clean cargo tank	0.5		
	Submerged loading: dedicated normal service	0.6		
	Submerged loading: dedicated vapor balance service	1.0		
	Splash loading of a clean cargo tank	1.45		
	Splash loading: dedicated normal service	1.45		
	Splash loading: dedicated vapor balance service	1.0		
Marine vessels ^a	Submerged loading: ships	0.2		
	Submerged loading: barges	0.5		

a For products other than gasoline and crude oil. For marine loading of gasoline, use factors from Table 5.2-2. For marine Loading of crude oil, use Equations 2 and 3 and Table 5.2-3

AP-42 Table 5.2-5 (assumes 1% oil in water)

VOC pph= (2lb/1000 (gal) * ((100-15)/100) * 8400 (gal/hr) * 0.01 (1% oil in water) = 0.168 pph

VOC tpy = (2lb/1000 (gal) * ((100-15)/100) * 100 (BOPD) * 42 (gal/bbl) * 365 (days/yr) * 1/2000 (ton/lb) * 0.01 (1% oil in water) = 0.0153 tpy

Table 5.2-5 TOTAL UNCONTROLLED ORGANIC EMISSION FACTORS FOR PETROLEUM LIQUID RAIL TANK CARS AND TANK TRUCKS				
Emission Source	Mode of Operation	Crude Oil (lb/1000 gal transferred) ^b		
Loading Operations ^c				
	Submerged loading: dedicated normal service	2		
	Submerged loading: dedicated vapor balance service	3		
	Splash loading: dedicated normal service	5		
	Splash loading: dedicated vapor balance service	3		

a Reference 2.VOC factors for crude oil can be assumed to be 15% lower than the total organic factors, to account for the methane and ethane content of crude oil evaporative emissions. All other products should be assumed to have VOC factors equal to total organics, b The example crude oil has an RVP of 34 kPa (5 psia); c Loading emission factors are calculated using Equation 1 for a dispensed product temperature of 16°C (60°F). In the absence of specific inputs for Equations 1, the typical evaporative emission factors presented in Tables 5.2-5 should be used. It should be noted that, although the crude oil used to calculate the emission values presented in this tables has an RVP of 5, the RVP of rude oils can range from less than 1 up to 10. In areas where loading and transportation sources are major factors affecting air quality, it is advisable to obtain the necessary parameters and to calculate emission estimates using Equations 1.

Technical Disclaimer

This document is intended to help you accurately determine truck loading produced water emissions. It does not supersede or replace any state or federal law, rule, or regulation. This guidance reflects the current understanding of how truck loading operations work and how it generates emissions, how it is monitored or tested, and what data are available for emissions determination, may change over time as the AQB continue scientific studies and as new information becomes available. The AQB welcome any data, information, or feedback that may improve our understanding of truck loading produced water emissions and thereby further improve determinations within the emissions inventory. The calculation methods represented are intended as an emissions calculation aid; alternate calculation methods may be equally acceptable if they are based upon, and adequately demonstrate, sound engineering assumptions or data. If you have a question regarding the acceptability of a given emissions determination method, contact the Permitting Section at 505-476-4300.

Date:Dec 23, 2020Company Name:Cimarex Energy Co.Facility Name:Tres Equis State Facility

 Permit Number:
 GCP-O&G-5660R3

 Al# if Known:
 Elevation (ft.):
 3,651

Enclosed Combustion Device (ECD)

Enter information in green boxes below changing default values as appropriate.

Emission Unit ID:	ECD1	Hourly Gas Routed to ECD (MMBtu/hr)	0.552334
Hourly Gas Stream to ECD (Mscf/hr):	0.2693	Annual Gas Routed to ECD (MMBtu/yr)	4,837.6937
Annual Gas Stream to ECD (MMscf/yr):	2.3587	Pilot Gas Routed to ECD (MMBtu/hr)	0.06952
Max. Heat Value of Field Gas (Btu/scf)	2,051	Gas MW (lb/lbmol)	
Field Gas Mol Fraction: (Ibmol H2S/Ib-mol)		Gas Pressure (psia)	14.7
Field Gas Sulfur Content (S grains/100scf)	5	Gas Temperature (⁰ F)	70
Pilot Gas to ECD (Mscf/h):	0.055	Field Gas H2S Wt.% to ECD (%)	
Max. Heat Value of Pilot Gas (Btu/scf)	1,264	Flare Control Efficiency:	98
Pilot Gas Sulfur Content (S grains/100scf)	0.25	Total VOC wt% to ECD (%) ¹ :	100
Source of ECD Emission Factors	AP-42 Table 13.5-1	Safety Factor (%) Applied to Total Emissions:	
Use Highest Emission Factors From AP-42 or TC	EO EF For NOx & CO	NO	

Indicate in Box Below What Emission Units the Enclosed Combustion Device is Controlling

All VOC emissions aside from pilot emissions are allocated to the storage tanks that are controlled by the ECD. Please refer to the attached calculations

		Total Ei	missions Fr	om Enclose	ed Combust	ion Device		
Polluta	nt Uncontrolled Emissions (pph)	Uncontrolled Emissions (tpy)	Field Gas To ECD Emissions (pph)	Field Gas To ECD Emissions (tpy)	Pilot Gas ECD Emissions ² (pph)	Pilot Gas ECD Emissions ² (tpy)	Total ECD Emissions (pph)	Total ECD Emissions (tpy)
NOx*	0	0	0.0376	0.1645	0.0047	0.0207	0.0423	0.1852
CO*	0	0	0.1712	0.7498	0.0216	0.0944	0.1928	0.8442
VOC*	0	0	0.3645	1.5964	0	0	0.3645	1.5964
SO2 [#]	0	0	0	0	0	0.0002	0	0.0002
H ₂ S ⁺	0	0	0	0	0	0	0	0

See reverse side for calculation notes.

1) Based on representative gas analysis which must be submitted with application;

2) Assumes pilot gas has a negligible amount of VOC & 0.25 grains H2S/100scf;

*) Emission factors for NOx, CO & VOC based on AP-42, Table 13.5-1, (Dec. 2015) or TCEQ RG-360A/11 (February 2012)

#) Assumes H₂S is converted to SO₂ at selected control efficiency; SO2 emissions based on mass balance;

+) Assumes H₂S Destruction Efficiency equals flare destruction efficiency;

Calculation Tool for Enclosed Combustion Device Emissions for Oil & Gas Production Sites All emission factors based on AP-42, Table 1.4-1, Table 1.4-2 and Table 1.4-3 (July 1998) <u>https://www3.epa.gov/ttn/chief/ap42/ch01/final/c01s04.pdf</u>

- 1) Information included in calculation tool must be based on representative gas analysis which must be submitted with application;
- 2) Assumes pilot gas has a negligible amount of VOC's and 0.25 grains H2S/100 scf;
- 3) SO₂ calculations assumes H₂S is converted to SO₂ at selected control efficiency; SO₂ emissions based on mass balance;
 4) H₂S calculations assume H₂S Destruction Efficiency equals thermal oxidizer destruction efficiency;

Sample Calculations

NOx pph	= hourly gas routed to TO (MMScf/hr) * NOx Emission factor (lbs/MMScf) * Field Gas Heat Rate/1020 Btu/scf) = 1(MMScf/hr) * 100 (lbs/MMScf) * 1200 (Btu/scf)/1020 (Btu/scf) = 117.65 lbs/hr
NOx tpy	 = annual gas routed to TO (MMScf/yr) * NOx Emission factor (lbs/MMScf) * Field Gas Heat Rate/1020 (Btu/scf) * 1 (ton)/2000 (lbs) = 1 (MMBtu/yr) * 100 (lb/MMScf) * 1200 (Btu/scf)/1020 (Btu/scf) * 1/2000 (lbs/ton) = 0.059 tpy
SO ₂ pph	 Hourly Gas Stream to TO (MMScf/hr) * 1000000/1 (scf/MMScf) * Field Gas mol Fraction of H₂S (mol H₂S/lb -mol)/100 * 1/Universal Gas Constant 385 scf/lb-mole @ 60^oF, 1 atm * Conversion Rate of H₂S to SO₂ lb-mol SO₂/lb-mol H₂S * Molecular Weight of Sulfur Dioxide (64 lb SO₂/lb-mol SO₂) 1 MMScf/hr * 1000000/1 (Scf/MMScf) * 0.1 mol H₂S* 1/385 scf/lb-mole * 0.98 lb-mol SO₂/lb-mol H₂S * 64 lb/lb-mol
Residual HoS pph	= Hourly Gas Stream to TO (MMScf/br) * 1000000/1 (scf/MMScf) * Field Gas mol Fraction of HoS (mol HoS/
	Ib-mol)/100 * 1/Universal Gas Constant 385 scf/lb-mole @ 60 ⁰ F, 1 atm * (100-(Flare Control Efficiency))/100) * Molecular Weight of Hydrogen Sulfide (34 lb H ₂ S/lb-mol H ₂ S)

= 1 MMScf/hr * 1000000/1 (Scf/MMScf) * 0.1 mol H₂S* 1/385 scf/lb-mole * (100-98%/100) * 34 lb/lb-mol

Technical Disclaimer

This document is intended to help you accurately determine enclosed combustion device emissions. It does not supersede or replace any state or federal law, rule, or regulation. This guidance reflects the current understanding of how these combustion units work and how they generate emissions, how they are monitored or tested, and what data are available for emissions determination, may change over time as the AQB continue scientific studies and as new information becomes available. The AQB welcome any data, information, or feedback that may improve our understanding of enclosed combustion device emissions and thereby further improve determinations within the emissions inventory. The calculation methods represented are intended as an emissions calculation aid; alternate calculation methods may be equally acceptable if they are based upon, and adequately demonstrate, sound engineering assumptions or data. If you have a question regarding the acceptability of a given emissions determination method, contact the Permitting Section at 505-476-4300.

Date: **Facility Name:**

Dec 23, 2020 Company Name: Cimarex Energy Co. **Tres Equis State Facility** Permit Number: GCP-O&G-5660R3 Al# if Known: Elevation (ft.): 3,651

				<u>Fla</u>	are			
	Enter in	formation	in green bo	oxes below	changing default values as a	ppropriate	2.	
		Gas Stream	Gas Stream	Gas Stream		Gas Stream	Gas Stream	Gas Stream
		1	2	3		1	2	3
Emission	Unit ID	FL1-VRT	FL1-HT		Hourly Gas Routed to Flare (MMBtu/hr)	0.582894	1.509249	0
Hourly Gas Stre (Mscf/	eam to Flare /hr)	0.2842	1.0267		Annual Gas Routed to Flare (MMBtu/yr)	5,105.5543	6,610.149	
Annual Gas Str (MMsc	eam to Flare f/yr)	2.4893	4.4967		Pilot Gas Routed to Flare (MMBtu/hr)	0.06952	0	0
Max. Heat Value o	of Gas (Btu/scf)	2,051	1,470		Gas MW (lb/lbmol)			
Field Gas Mol Fr H2S/lb-	action (lbmol ·mol)				Gas Pressure (psia)	14.7	14.7	14.7
Field Gas Sulf (S grains/	ur Content 100 scf)	5	5		Gas Temperature (°F)	70	70	70
Pilot Gas to Fla	are (Mscf/hr)	0.055			Field Gas H2S Wt.% to Flare (%)			
Max. Heat Value scf	Pilot Gas (Btu/)	1,264			Flare Control Efficiency	98	98	98
Pilot Gas Sulf (S grains/	ur Content 100 scf)	0.25			Total VOC wt.% to Flare $(\%)^1$	100	100	100
Source of Flare Er	nission Factors	AP-42 Table	AP-42 Table	AP-42 Table	Safety Factor Applied to Total Emissions (%)			
Use Highest NOx Factors From A	& CO Emission P-42 or TCEQ	NO	NO	NO				

					Tot	tal Emis	sions to	Flare							
Pollutant		NOx			CO			VOC			SO2			H2S	
Gas Streams to Flare	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3
Uncontrolled (pph)	0	0	0	0	0	0	0.05	23.63		0	0	0	0	0	0
Uncontrolled (tpy)	0	0	0	0	0	0	0.2	51.74	\times	0	0	0	0	0	0
Field Gas (pph)	0.0396	0.1026		0.1807	0.4679		0.05	0.47	\otimes	0	0		0	0	
Field Gas (tpy)	0.1736	0.2247	0	0.7914	1.0246	0	0.2	1.03	\times	0	0	0	0	0	0
Pilot Gas (pph)	0.0047			0.0216			0	0	0	0	0	0	0	0	0
Pilot Gas (tpy)	0.0207			0.0944			0	0	0	0.0002	0	0	0	0	0
Subtotal Flare (pph)	0.0443	0.1026	0	0.2023	0.4679	0	0.05	0.47	0	0	0	0	0	0	0
Subtotal Flare (tpy)	0.1943	0.2247	0	0.8858	1.0246	0	0.2	1.03	0	0.0002	0	0	0	0	0
Total Flare (pph)		0.15			0.67			0.52			0			0	
Total Flare (tpy)		0.42			1.91			1.23			0.0002			0	

See reverse side for calculation notes.

1) Based on representative gas analysis which must be submitted with application; 2) Assumes pilot gas has a negligible amount of VOC & 0.25 grains H2S/100scf; *) Emission factors for NOx, CO & VOC based on AP-42, Table 13.5-1, (Dec. 2015) or TCEQ RG-360A/11 (February 2012); #) Assumes H₂S is converted to SO₂ at selected control efficiency; SO2 emissions based on mass balance; +) Assumes H₂S Destruction Efficiency equals flare destruction efficiency;

Calculation Tool for Flare Emissions for Oil & Gas Production Sites All emission factors based on AP-42, Emission factors for NOx, CO & VOC, Table 13.5-1, (December 2016); https://www3.epa.gov/ttn/chief/ap42/ch13/final/C13S05_12-13-16.pdf or https://www.tceq.texas.gov/assets/ public/comm_exec/pubs/rg/rg360/rg36011/rg-360a.pdf 1) Information included in calculation tool must be based on representative gas analysis which must be submitted with application; 2) Assumes pilot gas used has a negligible amount of VOC's and 0.25 grains H2S/100 scf; 3) SO₂ calculations assumes H₂S is converted to SO₂ at selected control efficiency; SO₂ emissions based on mass balance; 4) H₂S calculations assume H₂S Destruction Efficiency equals flare destruction efficiency;

Sample Calculations

NOx pph = hourly gas routed to flare (MMBtu/hr) * NOx Emission factor (lbs/MMBtu)

- = 1(MMBtu/hr) * 0.068 (lbs/MMBtu)
- = 0.068 lbs/hr

NOx tpy = annual gas routed to flare (MMBtu/yr) * NOx Emission factor (lbs/MMBtu) * 1/lbs/ton)

- = 1000 (MMBtu/yr) * 0.068 (lb/MMBtu) * 1/2000 (lbs/ton)
- = 0.034 tpy

SO₂ pph= Hourly Gas Stream to flare (MMScf/hr) * 1000000/1 (scf/MMScf) * Field Gas mol Fraction of H₂S (mol H₂S/lb

- -mol)/100 * 1/Universal Gas Constant 385 scf/lb-mole @ 60⁰F, 1 atm * Conversion Rate of H₂S to SO₂ lb-mol SO₂/lb-mol H₂S * Molecular Weight of Sulfur Dioxide (64 lb SO₂/lb-mol SO₂)
- = 1 MMScf/hr * 1000000/1 (Scf/MMScf) * 0.1 mol H₂S* 1/385 scf/lb-mole * 0.95 lb-mol SO₂/lb-mol H₂S * 64 lb/lb-mol

Residual

H₂S pph= Hourly Gas Stream to flare (MMScf/hr) * 1000000/1 (scf/MMScf) * Field Gas mol Fraction of H₂S (mol H₂S/

lb-mol)/100 * 1/Universal Gas Constant 385 scf/lb-mole @ 60⁰F, 1 atm * (100-(Flare Control Efficiency))/100) * Molecular Weight of Hydrogen Sulfide (34 lb H₂S/lb-mol H₂S)

= 1 MMScf/hr * 1000000/1 (Scf/MMScf) * 0.1 mol H₂S* 1/385 scf/lb-mole * (100-95%/100) * 34 lb/lb-mol

Flare	, Vapor Combustion D	evices & Enclosed Comb	oustion Devices Emission	Factors
Contaminant	Assist Type	Waste Gas Stream Heat Value (Btu/scf)	AP-42 Emission Factor (Ib/MMBtu)	TCEQ Emission Factor (lb/MMBtu)
NOx	Steam	≥1000	0.068	0.0485
	Steam	<1000	0.068	0.068
	Air or Unassisted	≥1000	0.068	0.138
	Air or Unassisted	<1000	0.068	0.0641
CO	Steam	≥1000	0.31	0.3503
	Steam	<1000	0.31	0.3465
	Air or Unassisted	≥1000	0.31	0.2755
	Air or Unassisted	<1000	0.31	0.5496
VOC	Air & Steam Assist	≥300	0.66	

Technical Disclaimer

This document is intended to help you accurately determine flares, enclosed combustion devices and vapor combustion units emissions. It does not supersede or replace any state or federal law, rule, or regulation. This guidance reflects the current understanding of how these combustion units work and how they generate emissions, how they are monitored or tested, and what data are available for emissions determination, may change over time as the AQB continue scientific studies and as new information becomes available. The AQB welcome any data, information, or feedback that may improve our understanding of flares, enclosed combustion devices and vapor combustion units emissions and thereby further improve determinations within the emissions inventory. The calculation methods represented are intended as an emissions calculation aid; alternate calculation methods may be equally acceptable if they are based upon, and adequately demonstrate, sound engineering assumptions or data. If you have a question regarding the acceptability of a given emissions determination method, contact the Permitting Section at 505-476-4300.

New Mexico Environment Department Air Quality Bureau Equipment Emissions Calculation Form

Date: Company Name: Cimarex Energy Co. **Facility Name:**

Dec 23, 2020 **Tres Equis State Facility** Permit Number: GCP-O&G-5660R3 Al# if Known: Elevation (ft.): 3,651

				<u>Fla</u>	are			
	Enter in	formation i	in green bo	oxes below	changing default values as a	ppropriate	•	
		Gas Stream	Gas Stream	Gas Stream		Gas Stream	Gas Stream	Gas Stream
		1	2	3		1	2	3
Emission	Unit I D	FL1-STRANI			Hourly Gas Routed to Flare (MMBtu/hr)	1,053.33329	0	0
Hourly Gas Stre (Mscf/	eam to Flare 'hr)	833.3333			Annual Gas Routed to Flare (MMBtu/yr)	379,200		
Annual Gas Stre (MMsci	eam to Flare f/yr)	300			Pilot Gas Routed to Flare (MMBtu/hr)	0	0	0
Max. Heat Value o	of Gas (Btu/scf)	1,264			Gas MW (lb/lbmol)			
Field Gas Mol Fra H2S/lb-	action (lbmol mol)				Gas Pressure (psia)	14.7	14.7	14.7
Field Gas Sulf (S grains/	ur Content 100 scf)	5			Gas Temperature (°F)	70	70	70
Pilot Gas to Fla	re (Mscf/hr)				Field Gas H2S Wt.% to Flare (%)			
Max. Heat Value scf)	Pilot Gas (Btu/				Flare Control Efficiency	98	95	95
Pilot Gas Sulfi (S grains/	ur Content 100 scf)				Total VOC wt.% to Flare $(\%)^1$	100	100	100
Source of Flare En	nission Factors	AP-42 Table			Safety Factor Applied to Total Emissions (%)			
Use Highest NOx Factors From Al	& CO Emission P-42 or TCEQ	NO						

					Tot	al Emis	sions to l	Flare							
Pollutant		NOx			СО			VOC			SO2			H2S	
Gas Streams to Flare	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3
Uncontrolled (pph)	0	0	0	0	0	0	10,159.27 +	\otimes	\otimes	0	0	0	0	0	0
Uncontrolled (tpy)	0	0	0	0	0	0	1,828.67	\otimes	\sim	0	0	0	0	0	0
Field Gas (pph)	71.6267	0		<mark>326.5333</mark>			203.19	\otimes	\otimes	0			0		
Field Gas (tpy)	12.8928	0	0	58.776	0	0	36.57	\otimes	\times	0	0	0	0	0	0
Pilot Gas (pph)							0	0	0	0	0	0	0	0	0
Pilot Gas (tpy)							0	0	0	0	0	0	0	0	0
Subtotal Flare (pph)	71.6267	0	0	<mark>326.5333</mark>	0	0	203.19	0	0	0	0	0	0	0	0
Subtotal Flare (tpy)	12.8928	0	0	58.776	0	0	36.57	0	0	0	0	0	0	0	0
Total Flare (pph)		71.63			326.53			203.19			0			0	
Total Flare (tpy)		12.89			58.78			36.57			0			0	

See reverse side for calculation notes.

1) Based on representative gas analysis which must be submitted with application; 2) Assumes pilot gas has a negligible amount of VOC & 0.25 grains H2S/100scf; *) Emission factors for NOx, CO & VOC based on AP-42, Table 13.5-1, (Dec. 2015) or TCEQ RG-360A/11 (February 2012); #) Assumes H₂S is converted to SO₂ at selected control efficiency; SO2 emissions based on mass balance; +) Assumes H₂S Destruction Efficiency equals flare destruction efficiency;

New Mexico Environment Department Air Quality Bureau Equipment Emissions Calculation Form

Date:Dec 23, 2020Company Name:Cimarex Energy Co.Facility Name:Tres Equis State Facility

Permit Number: GCP-O&G-5660R3 Al# if Known: Elevation (ft.): 3,651

Emissior	n Unit	ID: F	UGA	Fill	all gre	en/b	lue b	οχε	es cl	hangi	ng	def	iault v	values	as a	ррі	rop	ria	te.			
Fugitiv	e Vola	tile (Organio	Con	npound	ds (VC) (), T	ota	HA	Ps (H <i>l</i>	۱ Р),	Bei	nzene	(CH6)	& Hy	dro	gei	ו Su	ulfide	e (H ₂ S)	Emiss	sions
							Un	con	trolle	ed Tota	I						Сс	ontr	olled	Total		
					VC	DC	Tota	ΙHΑ	P	CH ₆			H ₂ S	V	DC	Т	otal	HA	P	CH ₆	ŀ	H ₂ S
Service	%VOC	%HA	P %CH ₆	%H ₂	S PPH	TPY	PPH	TP	Y F	PH T	ΡY	PPł	Η ΤΡ\	Y PPH	TPY	PF	эΗ	TP	Y PP	'H TP\	/ PPH	TPY
Gas	22.74%				0.79	<mark>3.48</mark>	0	0	0	0		0	0	0	0	0		0	0	0	0	0
Heavy Oil	100%				0	0	0	0	0	0		0	0	0	0	0		0	0	0	0	0
Light Oil	99.5%				1.2	5.24	0	0	0	0		0	0	0	0	0		0	0	0	0	0
Water/Oil	1% 				0	0	0	0	0	0		0	0	0	0	0	_	0	0	0	0	0
		otals			1.99	8.72	0	0	0	0		0	0	0	0	0		0	0	0	0	0
	_					Unco	ntrolle	ed V	OC, ł	HAP & (CH_6	Emis	ssions			Cont	rolle	ed V	'ОС, Н	AP & CI	H ₆ Emis	ssions
Equipmen	t Serv	vice ^a	EFt)	No. of				HAP	HAP		H ₆	CH ₆	Contro		C	VC)C	HAP	HAP	CH ₆	CH ₆
Type			PPH/So	urce	Sources	РРН		ŀ	РН		P	Ч	ΙΡΥ	Efficien	CY P	РН		Ϋ́	РРН		РРН	
Valves	G.	as	0.00992	0/	258	0.582	2.549	20		0	0	1	0	0%		0	C)	0	0	0	0
	Heav	y Oil	0.00001	852	0	0	0	0		0	0		0	0%		0	C)	0	0	0	0
	Ligh	t Oil	0.00551	15	138	0.7568	3 3.314	80		0	0		0	0%		0	C)	0	0	0	0
	Wate	er/Oil	0.00021	605	0	0	0	0		0	0		0	0%		0	C)	0	0	0	0
Subtotals						1.3388	3 5.86	4 0		0	0		0			0	C)	0	0	0	0
Pump Seal	ls G	as	0.00529	104	0	0	0	0		0	0		0	0%		0	C)	0	0		0
	Heav	′y Oil	0.02865	98	0	0	0	0		0	0		0	0%		0	C)	0	0	0	0
	Ligh	t Oil	0.02865	98	2	0.057	0.249	<mark>7</mark> 0		0	0		0	0%		0	C)	0	0	0	0
	Wate	er/Oil	0.00005	291	0	0	0	0		0	0		0	0%		0	C)	0	0	0	0
Subtotals	_					0.057	0.249	0		0	0	1	0			0	C)	0	0	0	0
Connector	rs G	as	0.00044	092	774	0.0776	5 0.339	<mark>9</mark> 0		0	0		0	0%		0	C)	0	0	0	0
	Heav	′y Oi l	0.00001	653	0	0	0	0		0	0		0	0%		0	C)	0	0	0	0
	Ligh	t Oil	0.00046	297	414	0.1907	7 0.835	30		0	0		0	0%		0	C)	0	0	0	0
	Wate	er/Oil	0.00024	251	0	0	0	0		0	0		0	0%		0	C)	0	0	0	0
Subtotals						<mark>0.268</mark> 3	3 <mark>1.17</mark> 5	20		0	0		0			0	C)	0	0	0	0
Flanges	G	as	0.00085	979	258	0.0504	1 0.220	0 <mark>8</mark> 0		0	0		0	0%		0	C)	0	0	0	0
	Heav	′y Oi l	0.00000	086	0	0	0	0		0	0		0	0%		0	C)	0	0	0	0
	Ligh	t Oil	0.00024	251	138	0.0333	3 0.145	<mark>9</mark> 0		0	0		0	0%		0	C)	0	0	0	0
	Wate	er/Oi l	0.00000	639	0	0	0	0		0	0		0	0%		0	C)	0	0	0	0
Subtotals						0.083	7 0.366	70		0	0		0			0	C)	0	0	0	0
Open End	s G	as	0.00440	92	26	0.026	0.114	<mark>.3</mark> 0		0	0		0	0%		0	C)	0	0	0	0
	Heav	′y Oi l	0.00030	864	0	0	0	0		0	0	-	0	0%		0	C)	0	0	0	0
	Ligh	t Oil	0.00308	644	14	0.043	0.188	<mark>3</mark> 0		0	0		0	0%		0	C)	0	0	0	0
	Wate	er/Oi l	0.00055	115	0	0	0	0		0	0		0	0%		0	C)	0	0	0	0
Subtotals						0.069	0.302	<mark>6</mark> 0		0	0		0			0	C)	0	0	0	0
Other ^c	G	as	0.01940	048	13	0.0574	1 <mark>0.25</mark> 1	<mark>4</mark> 0		0	0	-	0	0%		0	C)	0	0	0	0
	Heav	′y Oi l	0.00007	055	0	0	0	0		0	0		0	0%		0	C)	0	0	0	0
	Ligh	t Oi l	0.01653	45	7	0.1152	2 0.504	60		0	0	(0	0%		0	C)	0	0	0	0
	Wate	er/Oil	0.03086	44	0	0	0	0		0	0		0	0%		0	C)	0	0	0	0
Subtotals						0.1726	0.75	6 0		0	0		0			0			0	0	0	0

Based on: 1995 Protocol for Equipment Leak Emission Estimates, Table 2.4 Version Date: 6/23/16; See next page for calculation notes.

Calculation Tool for Fugitive Emissions Oil & Gas Production Protocol for Equipment Leak Emission Estimates (EPA-453/R-95-017), Table 2-4; available at the EPA Web site at <u>https://www3.epa.gov/ttn/chief/efdocs/equiplks.pdf</u>

a) Service categories are defined as follows:

1) Gas/vapor - material in a gaseous state at operating conditions;

2) Light liquid - material in a liquid state in which the sum of the concentration of individual constituents with a vapor pressure over 0.3 kilopascals (kPa) at 200C is greater than or equal to 20 weight percent;

3) Heavy liquid - not in gas/vapor service or light liquid service.

4) Water/Oil emission factors apply to water streams in oil service with a water content greater than 50%, from the point of origin to the point where the water content reaches 99%. For water streams with a water content greater than 99%, the emission rate is considered negligible.

b) These factors are for total organic compound emission rates (including non-VOC's such as methane and ethane) and apply to light crude, heavy crude, gas plant, gas production, and off shore facilities. "NA" indicates that not enough data were available to develop the indicated emission factor.

c) The "other" equipment type was derived from compressors, diaphragms, drains, dump arms, hatches, instruments, meters, pressure relief valves, polished rods, relief valves, and vents. This "other" equipment type should be applied for any equipment type other than connectors, flanges, open-ended lines, pumps, or valves.

d) Note that the average factors generally determine total hydrocarbon emissions. Therefore, you may need to multiply the calculated emission rates by the stream's weight percentage of VOC compounds to determine total VOC emissions. Please attach a copy of the appropriate gas and oil analysis with the stream's weight percentage of VOC compounds identified.

VOC Sample Calculation

For 10 Valves in Gas Service with a gas stream weight percentage of 25% VOC

Emission Factor (EF) lb/hr=0.0045 kg/hr * 2.2046 lbs/kg

Gas Valves Uncontrolled Emissions

- pph EF (Valves in Gas Service) * Number of Valves in Gas Service & VOC wt% 0.0099207 lb/hr * 10 valves = 0.099207 lb/hr * 25%/100
- tpy EF (Valves in Gas Service) * Number of Valves in Gas Service * 8760 hrs/yr * 1ton/2000 lbs 0.0099207 lb/hr * 10 valves * 8760 hrs/yr * 1/2000 ton/lbs = 0.4345 tons/yr * 25%/100

Total Uncontrolled Fugitive Emissions for all Service types in Gas Service

- pph (Uncontrolled pph Emissions for Valves + Pump Seals + Connectors + Flanges + Open Ends + Other) * VOC wt%/100
- tpy (Uncontrolled tpy Emissions for Valves + Pump Seals + Connectors + Flanges + Open Ends + Other) * VOC wt%/100

Technical Disclaimer

This document is intended to help you accurately determine equipment leak fugitive emissions. It does not supersede or replace any state or federal law, rule, or regulation. This guidance reflects the current understanding of how piping components work and how they generate emissions, how they are monitored or tested, and what data are available for emissions determination, may change over time as we continue our scientific studies and as new information becomes available. We welcome any data, information, or feedback that may improve our understanding of equipment leak fugitive emissions and thereby further improve determinations within the emissions inventory. The calculation methods represented are intended as an emissions calculation aid; alternate calculation methods may be equally acceptable if they are based upon, and adequately demonstrate, sound engineering assumptions or data. If you have a question regarding the acceptability of a given emissions determination method, contact the Permitting Section at 505-476-4300.

Date:	Dec 23, 2020	Permit Number:	GCP-O&G-5660R3
Company Name:	Cimarex Energy Co.	AI# if Known:	
Facility Name:	Tres Equis State Facility	Elevation (ft.):	3,651

Unpaved Haul Roads

	Hourly lbs/VMT			Annually lbs/VMT	
TSP	PM10	PM2.5	TSP	PM10	PM2.5
6.06	1.54	0.15	4.9	1.24	0.12

		TSP/PM1	0/PM2.5 Emissi	on Rates		
Control	TS	5P	PN	110	PM	2.5
	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
Continuous	3.64	12.88	0.92	3.26	0.09	0.32
0% Control	3.64	1.26	0.92	0.32	0.09	0.03
User % Control	3.64	1.26	0.92	0.32	0.09	0.03

NMED-AQB Unpaved Haul Road Calculation Tool

All emission factors based on AP-42, <u>AP-42 13.2.2-4; November 2006</u> <u>https://www3.epa.gov/ttn/chief/ap42/ch13/final/c13s0202.pdf</u>

Emissions from vehicles traveling on unpaved surfaces at industrial sites (based on 8760 Hours/year) can be estimated using the following expression:

AP-42 13.2.2-4;_Equation 1a:

 $E = k (s/12)^{a} (W/3)^{b}$

where k, a, b, c and d are empirical constants (Reference 6) given below and

E = size-specific emission factor (lb/VMT)

s = surface material silt content (%)

W = mean vehicle weight (tons)

M = surface material moisture content (%)

Table 13.2.2-2	2. CONSTANT	FS FOR EQUA	TION 1a
Constant	Industr	ial Roads (Equa	ation 1a)
	PM-2.5	PM-10	PM-30*
k (lb/VMT)	0.15	1.5	4.9
a	0.9	0.9	0.7
b	0.45	0.45	0.45
Quality Rating	В	В	В
*Assumed equivalent	t to total suspe	nded particulate	e matter (TSP)

Technical Disclaimer

This document is intended to help you accurately determine unpaved haul road emissions. It does not supersede or replace any state or federal law, rule, or regulation. This guidance reflects the current understanding of how unpaved haul roads work and how they generate emissions, how they are monitored or tested, and what data are available for emissions determination, may change over time as we continue our scientific studies and as new information becomes available. We welcome any data, information, or feedback that may improve our understanding of unpaved haul road emissions and thereby further improve determinations within the emissions inventory. The calculation methods represented are intended as an emissions calculation aid; alternate calculation methods may be equally acceptable if they are based upon, and adequately demonstrate, sound engineering assumptions or data. If you have a question regarding the acceptability of a given emissions determination method, contact the Permitting Section at 505-476-4300.

Date: Company Facility N	De Name: ame:	ec 23, 202 Cimarex E Tres Equi	0 Energy Co s State Fa	r. cility									Permit N Al# if Kno Elevatior	umber:56 own: 1 (ft.): 3,6	60R3 551			
					otal Requ	lested Em	issions F(or All Reg	ulated Fa	cility Equi	pment (G	CP-O&G F	(squest)					
Emission	ž	×	Ū	0		v v	SC	×	TS	4	ΡM	10	PM	2.5	H ₂	S	Total	НАР
Unit	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
Engines	0.4	1.76	0.54	2.35	0.31	1.37	0	0	0	0	0	0	0	0	,	,	0.08	0.35
Heaters	0.59	2.57	0.5	2.17	0.03	0.14	0	0	0.05	0.2	0.05	0.2	0.05	0.2	1	1		
Oil Tanks Flash	ı	I	I	I	0.14	0.58	ı	I	I	ı	ı	ı	ı	1				
Oil Tanks W & S	1	ı	•	ı	0.18	0.82		ı		•		•						
Water Tks Flash	I	ı	ı	T	0.02	0.04	T	I	I	ı	1	ı	1	1				
Water Tks W & S	I	I	I	I	0	0	I	I	I	ı	ı	ı	ı	ı				
Skim or Slop Tank	I	I	ı	I			I	I	I	ı	ı	ı	ı	ı				
GBS	ı	ı	ı	ı			I	ı	1				,	,				
ECD	0.04	0.19	0.19	0.84	0.36	1.6	0	0										
VCU	0	0	0	0	0	0	0	0										
TO	0	0	0	0	0	0	0	0										
Flares	71.78	13.31	327.2	60.69	203.71	37.8	0	0										
Fugitives	I	I	ı	I	1.99	8.72									0	0	0	0
SSM						10												
Malf.	I	I	I	I	I	10	I	ļ	I	ı	I	I	I	I	ı	1	1	-
Unpaved Haul Rds.	I	I	1	I	-	I	ı	I	3.64	1.26	0.92	0.32	0.09	0.03	I	1	-	I
Paved Haul Rds.	-	I	1	-	-	I	I	I	0	0	0	0	0	0	-	1	0	0
Oil Load	I	I	I	I	36.06	13.59	I	ļ	I	ı	-	I	I	I				
Water Loading	ı	I	I	I	0.36	0.15	1	I	ı	ı	I	ı	ı	1				
Amine Unt	I	I	ı	ı	0	0	I	ı	ı	•	ı	1	ı	ı	0	0	0	0
Amine Reb	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1		
Dehy Unit	I	ļ	ı	I			I	I	1	1	ı	1	ı	ı				
Dehy Reb.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1		
Totals	72.81	17.83	328.43	66.05	243.16	84.81	0	0	3.69	1.46	0.97	0.52	0.14	0.23	0	0	0.08	0.35
	A red-out	tlined cell ir	ndicates tha	t the facility	exceeds the	e allowable	emission lir	nits for that	pollutant fc	or the reques	sted permit	ing action a	nd the app	lication canr	not be appr	oved as prol	oosed.	

Page 30 of 30

Ver.-Draft 8/10/18

Emission Summary Controlled Criteria Pollutants & HAPs

Source ID:	Source Description	Nitroger	n Oxides	Carbon Monoxide		Volatile Organic Compounds		Sulfur Oxides		Particulate Matter	
		lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
ENG3	Compressor Engine	0.40	1.76	0.54	2.35	0.31	1.37	0.00	0.00	0.03	0.15
H1	Heater Treater	0.20	0.86	0.16	0.72	11.79	0.39	0.00	0.01	0.01	0.07
H2	Heater Treater	0.20	0.86	0.16	0.72	11.79	0.39	0.00	0.01	0.01	0.07
H3	Heater Treater	0.20	0.86	0.16	0.72	11.79	0.39	0.00	0.01	0.01	0.07
FL1	Flare	0.15	0.42	0.67	1.91	0.52	1.24	0.00	0.00	-	-
FL1-STRAND	Flare - High Pressure	71.63	12.89	326.53	58.78	203.19	36.57	0.00	0.00	-	-
ECD1	Flare	0.04	0.19	0.19	0.84	0.05	0.20	0.00	0.00	-	-
FUGAREA	Fugitives	-	-	-	-	1.99	8.71	-	-	-	-
HR	Haul Road	-	-	-	-	-	-	-	-	3.64	1.26
VRT	VRT	-	-	-	-	0.56	2.44	-	-	-	-
OILTK1	Oil/Condensate Tank	-	-	-	-	0.16	0.70	-	-	-	-
OILTK2	Oil/Condensate Tank	-	-	-	-	0.16	0.70	-	-	-	-
SWTK1	Saltwater Tank	-	-	-	-	0.01	0.03	-	-	-	-
SWTK2	Saltwater Tank	-	-	-	-	0.01	0.03	-	-	-	-
OILLOAD	Oil/Condensate Loading	-	-	-	-	36.07	13.59	-	-	-	-
SWLOAD	Saltwater Loading	-	-	-	-	0.36	0.15	-	-	-	-
SSM	Startup, Shutdown, Maint.	-	-	-	-	-	10.00	-	-	-	-
MALFUNCTIONS	Malfunctions	-	-	-	-	-	10.00	-	-	-	-
Total Facility Annu	ual Emissions	72.81	17.84	328.43	66.05	278.73	86.91	0.00	0.02	3.72	1.61

Emission Summary Controlled Criteria Pollutants & HAPs

Source ID:	Source Description	Formaldehyde		Benzene		Toluene		E-benzene		Xylenes		n-Hexane		TOTAL HAPs/TAPs	
		lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
ENG3	Compressor Engine	0.07	0.29	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.08	0.35
H1	Heater Treater	-	-	0.05	0.00	0.06	0.00	0.00	0.00	0.02	0.00	0.19	0.01	0.32	0.01
H2	Heater Treater	-	-	0.05	0.00	0.06	0.00	0.00	0.00	0.02	0.00	0.19	0.01	0.32	0.01
H3	Heater Treater	-	-	0.05	0.00	0.06	0.00	0.00	0.00	0.02	0.00	0.19	0.01	0.32	0.01
FL1	Flare	-	-	0.96	0.02	1.56	0.03	0.16	0.00	0.71	0.01	0.01	0.02	3.39	0.07
FL1-STRAND	Flare - High Pressure	-	-	1.83	0.33	2.64	0.48	0.20	0.04	1.02	0.18	3.25	0.59	8.94	1.61
ECD1	Flare	-	-	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01
FUGAREA	Fugitives	-	-	0.01	0.03	0.02	0.08	0.00	0.02	0.02	0.09	0.03	0.13	0.08	0.34
HR	Haul Road	-	-	-	-	-	-	-	-	-	-	-	-	-	-
VRT	VRT	-	-	0.00	0.01	0.00	0.01	0.00	0.00	0.00	0.00	0.01	0.03	0.01	0.06
OILTK1	Oil/Condensate Tank	-	-	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.01	0.00	0.01	0.01	0.03
OILTK2	Oil/Condensate Tank	-	-	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.01	0.00	0.01	0.01	0.03
SWTK1	Saltwater Tank	-	-	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
SWTK2	Saltwater Tank	-	-	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
OILLOAD	Oil/Condensate Loading	-	-	0.18	0.07	0.53	0.20	0.11	0.04	0.59	0.22	0.48	0.18	1.90	0.72
SWLOAD	Saltwater Loading	-	-	0.00	0.00	0.01	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.02	0.01
SSM	Startup, Shutdown, Maint.	-	-	-	-	-	-	-	-	-	-	-	-	-	-
MALFUNCTIONS	Malfunctions	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Total Facility Annu	al Emissions	0.07	0.29	3.13	0.48	4.95	0.82	0.49	0.10	2.40	0.52	4.36	1.00	15.41	3.25

Emission Summary Uncontrolled Criteria Pollutants & HAPs

Source ID:	Source Description	Nitroge	n Oxides	Carbon Monoxide		Volatile Organic Compounds		Sulfur Oxides		Particulate Matter	
		lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
ENG3	Compressor Engine	5.37	23.52	5.37	23.52	0.97	4.24	0.00	0.00	0.03	0.15
H1	Heater Treater	0.20	0.86	0.16	0.72	11.79	0.39	0.00	0.01	0.01	0.07
H2	Heater Treater	0.20	0.86	0.16	0.72	11.79	0.39	0.00	0.01	0.01	0.07
H3	Heater Treater	0.20	0.86	0.16	0.72	11.79	0.39	0.00	0.01	0.01	0.07
FL1	Flare	-	-	-	-	23.67	51.95	-	-	-	-
FL1-STRAND	Flare - High Pressure	-	-	-	-	10159.27	1828.67	-	-	-	-
ECD1	Flare	-	-	-	-	0.05	0.20	-	-	-	-
FUGAREA	Fugitives	-	-	-	-	1.99	8.71	-	-	-	-
HR	Haulr Road	-	-	-	-	-	-	-	-	3.64	1.26
VRT	VRT	-	-	-	-	14.07	61.61	-	-	-	-
OILTK1	Oil/Condensate Tank	-	-	-	-	4.04	17.69	-	-	-	-
OILTK2	Oil/Condensate Tank	-	-	-	-	4.04	17.69	-	-	-	-
SWTK1	Saltwater Tank	-	-	-	-	0.16	0.69	-	-	-	-
SWTK2	Saltwater Tank	-	-	-	-	0.16	0.69	-	-	-	-
OILLOAD	Oil/Condensate Loading	-	-	-	-	36.07	13.59	-	-	-	-
SWLOAD	Saltwater Loading	-	-	-	-	0.36	0.15	-	-	-	-
SSM	Startup, Shutdown, Maint.	-	-	-	-	-	10.00	-	-	-	-
MALFUNCTIONS	Malfunctions	-	-	-	-	-	10.00	-	-	-	-
Total Facility Annu	ual Emissions	5.96	26.10	5.86	25.69	10280.20	2027.04	0.00	0.02	3.72	1.61

Emission Summary Uncontrolled Criteria Pollutants & HAPs

Source ID:	Source Description	Formaldehyde		Benzene		Toluene		E-benzene		Xylenes		n-Hexane		TOTAL HAPs/TAPs	
		lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
ENG3	Compressor Engine	0.07	0.29	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.08	0.35
H1	Heater Treater	-	-	0.05	0.00	0.06	0.00	0.00	0.00	0.02	0.00	0.19	0.01	0.32	0.01
H2	Heater Treater	-	-	0.05	0.00	0.06	0.00	0.00	0.00	0.02	0.00	0.19	0.01	0.32	0.01
H3	Heater Treater	-	-	0.05	0.00	0.06	0.00	0.00	0.00	0.02	0.00	0.19	0.01	0.32	0.01
FL1	Flare	-	-	47.80	0.80	77.94	1.21	7.83	0.11	35.71	0.51	0.38	0.84	169.66	3.47
FL1-STRAND	Flare - High Pressure	-	-	91.43	16.46	132.07	23.77	10.16	1.83	50.80	9.14	162.55	29.26	447.01	80.46
ECD1	Flare	-	-	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01
FUGAREA	Fugitives	-	-	0.01	0.03	0.02	0.08	0.00	0.02	0.02	0.09	0.03	0.13	0.08	0.34
HR	Haulr Road	-	-	-	-	-	-	-	-	-	-	-	-	-	-
VRT	VRT	-	-	0.06	0.28	0.05	0.23	0.00	0.02	0.02	0.07	0.20	0.86	0.33	1.46
OILTK1	Oil/Condensate Tank	-	-	0.02	0.08	0.04	0.18	0.01	0.03	0.04	0.18	0.05	0.24	0.16	0.71
OILTK2	Oil/Condensate Tank	-	-	0.02	0.08	0.04	0.18	0.01	0.03	0.04	0.18	0.05	0.24	0.16	0.71
SWTK1	Saltwater Tank	-	-	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.02
SWTK2	Saltwater Tank	-	-	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.02
OILLOAD	Oil/Condensate Loading	-	-	0.18	0.07	0.53	0.20	0.11	0.04	0.59	0.22	0.48	0.18	1.90	0.72
SWLOAD	Saltwater Loading	-	-	0.00	0.00	0.01	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.02	0.01
SSM	Startup, Shutdown, Maint.	-	-	-	-	-	-	-	-	-	-	-	-	-	-
MALFUNCTIONS	Malfunctions	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Total Facility Annu	al Emissions	0.07	0.29	139.67	17.82	210.90	25.88	18.13	2.08	87.28	10.39	164.33	31.80	620.39	88.31

Engine Emission Calculations

Source ID:	ENG3
Service Type:	Compressor Engine

Engine Emission Summary

Component	Pre-C	Control	Post-C	Control
Component	lb/hr	tpy	lb/hr	tpy
NOx	5.37	23.52	0.40	1.76
CO	5.37	23.52	0.54	2.35
VOC	0.97	4.24	0.31	1.37
Formaldehyde	0.07	0.29	0.07	0.29
Acetaldehyde	0.00	0.02	0.00	0.02
PM10/PM2.5	0.03	0.15	0.03	0.15
SO2	0.00	0.00	0.00	0.00
Benzene	0.00	0.01	0.00	0.01
Toluene	0.00	0.00	0.00	0.00
E-benzene	0.00	0.00	0.00	0.00
Xylenes	0.00	0.00	0.00	0.00
n-Hexane	0.00	0.00	0.00	0.00
Acrolein	0.00	0.02	0.00	0.02

Supplemental Information

Component	ENG3
Make	Caterpillar
Model	G3306 TA
HP	203
Serial Number	G6X08030
Туре	4SRB
Fuel Type	Natural Gas
Mfg or Mod. Date	1/4/2012
Modified?	No

Engine Calculation Summary Safety Factor 25%

Co	monont	EN	IG3				
0	inponent	Pre-Control	Post-Control				
	JJJJ Limit	1					
	Catalyst Efficiency	94	1%				
NOv	g/hp*hr	12.00	0.72				
	lb/mmbtu	-	-				
	lb/hr	5.37	0.40				
	tpy	23.52	1.76				
	JJJJ Limit		2				
	Catalyst Efficiency	92	2%				
<u> </u>	g/hp*hr	12.00	0.96				
00	lb/mmbtu	-	-				
	lb/hr	5.37	0.54				
	tpy	23.52	2.35				
	JJJJ Limit	0	.7				
VOC	Catalyst Efficiency	80)%				
(including	g/hp*hr	2.00	0.40				
(including Formaldebyde)	lb/mmbtu	-	-				
i omaidenyde)	lb/hr	0.97	0.31				
	tpy	4.24	1.37				

Engine Operation Information

Cor	nponent	ENG3				
Hours/Year		8,760				
Fuel Heat Value	Btu/scf	1,020				
	Btu/hp-hr	8,736				
Fuel	mmbtuh	1.77				
Concumption	mmbtuy	15,535				
scf/hr		1,738.64				
	mmscf/yr	15.23				

Co	moonont	EN	IG3
00	Inponent	Pre-Control	Post-Control
	Catalyst Efficiency		-
	g/hp*hr	0.15	0.15
Formaldehyde	lb/mmbtu	-	-
	lb/hr	0.07	0.07
	tpy	0.29	0.29
	lb/mmbtu	0.0	1941
PM10/PM2.5	-	-	-
	lb/hr	0.03	0.03
	tpy	0.15	0.15
	lb/mmbtu	0.00	0588
SO2	lb/hr	0.00	0.00
	tpy	0.00	0.00
	lb/mmbtu	0.00	0158
Benzene	lb/hr	0.00	0.00
	tpy	0.01	0.01
	lb/mmbtu	0.00	0558
Toluene	lb/hr	0.00	0.00
	tpy	0.00	0.00

Notes:

(1) Emission factors for NOx, CO, and VOC are from manufacturer's data with a 25% safety factor.

(2) Emission factors for PM (Condensable & Filterable), SO2, benzene, and toluene were determined using AP-42 Table 3.2-3 (for 4-stroke, rich-burn engines).

(3) Formaldehyde is included in the VOC emission calculations; however, the g/hp*hr value reflects VOC without formaldehyde.

(4) Formaldehyde emissions are based on manufacturer's data.

Engine Example Calculations

Emission factors for NOx in the form of g/hp*hr:

NOx (lb/hr) =	0.72 grams NOx	lb	203 hp	=	0.40 lb		
	hp*hour	453.6 grams			hour		
NOx (tpy) =	0.40 lb hour	8760 hours year	ton 2000 lbs	=	1.76 tpy of NOx		
Emission factors f	or CO in the form of	g/hp*hr:					
CO (lb/hr) =	0.96 grams CO hp*hour	lb 453.6 grams	203 hp	=	0.54 lb hour		
<i>CO</i> (<i>tpy</i>) =	0.54 lb hour	8760 hours year	ton 2000 lbs	=	2.35 tpy of CO		
Emission factors f	or VOC in the form	of g/hp*hr:					
VOC (lb/hr) =	0.4 grams VOC hp*hour	lb 453.6 grams	203 hp	+	0.07 lbs of aldehyde: hour	=	0.31 lb hour
VOC (tpy) =	0.31 lb hour	8760 hours year	ton 2000 lbs			=	1.37 tpy of VOC
Emission factors i	n the form of lb/mm	btu:					
PM 2.5 (lb/hr) =	8736 Btu hp*hour	203 hp	1 MMBtu 1000000 Btu	1.94E-02 lb PM 2.5 MMBtu	4	=	<u>0.03 lb</u> hour
PM 2.5 (tpy) =	0.03 lb hour	8760 hours year	ton 2000 lbs			=	0.15 tpy PM 2.5

Other Combustion Emission Calculations

Source ID	Туре	Max Heat Input Rating (MMBtu/hr)	Natural Gas Heating Value (dry HHV) (Btu/scf) ⁽³⁾	Fuel Gas Usage (MMscf/hr)	Hours (hr/yr)	lb/MMscf	NOx lb/hr	tpy	lb/MMscf	CO lb/hr	tpy
H1	Heater Treater	2	1,020	0.002	8,760	100	0.20	0.86	84	0.16	0.72
H2	Heater Treater	2	1,020	0.002	8,760	100	0.20	0.86	84	0.16	0.72
H3	Heater Treater	2	1,020	0.002	8,760	100	0.20	0.86	84	0.16	0.72

Source ID	VOC			PM			SO2		
Source ID	lb/MMscf	lb/hr	tpy	lb/MMscf	lb/hr	tpy	lb/MMscf	lb/hr	tpy
H1	5.5	11.79	0.39	7.6	0.01	0.07	0.6	0.00	0.01
H2	5.5	11.79	0.39	7.6	0.01	0.07	0.6	0.00	0.01
H3	5.5	11.79	0.39	7.6	0.01	0.07	0.6	0.00	0.01

Notes:

(1) Emission factors are based on AP-42 Tables 1.4-1 and 1.4-2 (dated 7/98) for small boilers.
(2) Maximum hourly emissions are assumed to be the same as average hourly emissions.
(3) The average heating value is from AP-42 Tables 1.4-1 and 1.4-2 (dated 7/98).
(4) Field gas is not anticipated to contain significant sulfur content.
(5) VOC emissions due to venting of heater treater flash gas to atmosphere are based on the representative heater treater flash gas analysis.

Example Calculations

Example calculatio	ns for CO:							
CO (MMscf/hr) =	2 MMBtu hr	scf 1020 Btu	-	=	0.002 MMscf hr			
CO (lb/hr) =	84 lb MMscf	0.002 MMscf hr	-	=	0.16 lb hr			
CO tpy) =	0.16 lb hr	8760 hr year	ton 2000 lb	=	0.72 tons year			
<u>Example calculatio</u> NOx (MMscf/hr) =	n <u>s for NOx:</u> 2 MMBtu hr	scf 1020 Btu	-	=	0.002 MMscf hr			
NOx (lb/hr) =	100 lb MMscf	0.002 MMscf hr	-	=	0.20 lb hr	<u>.</u>		
NOx (tpy) =	0.20 lb hr	8760 hr year	ton 2000 lb	=	0.86 tons year			
Example calculatio VOC (MMscf/hr) =	<u>ns for VOC:</u> 2 MMBtu hr	scf 1020 Btu	4	=	0.002 MMscf			
VOC (lb/hr) =	5.5 lb MMscf	0.002 MMscf hr	-	=	0.01 lb hr	-		
VOC (lb/hr) = (Vent Gas)	10.48 scf hr	lb-mole @ stp 385.48 scf	25.25 lb lb-mol vent gas	34.33 lb VOC 100 lb vent gas	1 1- 0.98 Flare F	luntime	=	11.78 lb hr
VOC (tpy) =	0.01 lb hr	8760 hr year	ton 2000 lb	=	0.05 tons year			
VOC (tpy) = (Vent Gas)	3.49 scf hr	lb-mole @ stp 385.48 scf	25.25 lb Ib-mol vent gas	34.33 lb VOC 100 lb vent gas	8760 hr year	ton 2000 lb	=	0.34 tons year

Flash Gas Vented to Atmosphere
 Hash Gas Vented to Atmosphere

 1.05E-05 MMsc/hr (average)

 25.25 MW (lb/lb-mole)

 34.33% VOC Weight %

 385.482512 V/n (scf/lb-mole @ stp)

	1	٥٥ [°] مە	со		
Combustor Type (MMBtu/hr Heat Input) [SCC]	Emission Factor (lb/10 ⁶ scf)	Emission Factor Rating	Emission Factor (lb/10 ⁶ scf)	Emission Factor Rating	
Large Wall-Fired Boilers (>100)					
[1-01-006-01, 1-02-006-01, 1-03-006-01]					
Uncontrolled (Pre-NSPS) ^c	280	А	84	В	
Uncontrolled (Post-NSPS) ^c	190	Α	84	В	
Controlled - Low NO _x burners	140	Α	84	В	
Controlled - Flue gas recirculation	100	D	84	В	
Small Boilers (<100) [1-01-006-02, 1-02-006-02, 1-03-006-02, 1-03-006-03]					
Uncontrolled	100	В	84	В	
Controlled - Low NO _x burners	50	D	84	В	
Controlled - Low NOx burners/Flue gas recirculation	32	С	84	В	
Tangential-Fired Boilers (All Sizes) [1-01-006-04]					
Uncontrolled	170	Α	24	С	
Controlled - Flue gas recirculation	76	D	98	D	
Residential Fumaces (<0.3) [No SCC]					
Uncontrolled	94	в	40	в	

Table 1.4-1. EMISSION FACTORS FOR NITROGEN OXIDES (NO,) AND CARBON MONOXIDE (CO) FROM NATURAL GAS COMBUSTION^a

^a Reference 11. Units are in pounds of pollutant per million standard cubic feet of natural gas fired. To convert from 1b/10 ⁶ scf to kg/10⁶ m³, multiply by 16. Emission factors are based on an average natural gas higher heating value of 1,020 Btu/scf. To convert from 1b/10 ⁶ scf to kg/10⁶ m³, multiply by 16. Emission factors in this table may be converted to other natural gas heating values by multiplying the given emission factor by the ratio of the specified heating value to this average heating value. SCC = Source Classification Code. ND = no data. NA = not applicable.
 ^b Expressed as NO₂. For large and small wall fired boilers with SNCR control, apply a 24 percent reduction to the appropriate NO x emission factor. For tangential-fired boilers with SNCR control, apply a 13 percent reduction to the appropriate NO x emission factor.
 ^c NSPS=New Source Performance Standard as defined in 40 CFR 60 Subparts D and Db. Post-NSPS units are boilers with greater than 250 MMBtu/hr of heat input that commenced construction modification, or reconstruction after June 19, 1984.

7/98

EMISSION COMBUSTION SOURCES
Pollutant	Emission Factor (1b/10' scf)	Emission Factor Rating
CO2 ^b	120,000	А
Lead	0.0005	D
N ₂ O (Uncontrolled)	2.2	E
N ₂ O (Controlled-low-NO _X burner)	0.64	E
PM (Total) ⁴	7.6	D
PM (Condensable) ^e	5.7	D
PM (Filterable)"	1.9	В
SO24	0.6	А
тос	11	В
Methane	2.3	в
voc	5.5	c

TABLE 1.4-2. EMISSION FACTORS FOR CRITERIA POLLUTANTS AND GREENHOUSE GASES FROM NATURAL GAS COMBUSTION*

* Reference 11. Units are in pounds of pollutant per million standard cubic feet of natural gas fired. Data are for all natural gas combustion sources. To convert from 1b/10⁶ soft to kg/10⁶ m³, multiply by 16. To convert from 1b/10⁶ soft to 1b/MMBtu, divide by 1,020. The emission factors in this table may be converted to other natural gas heating values by multiplying the given emission factor by the ratio of the specified heating value to this average heating value. TOC = Total Organic Compounds.

VOC = v olatile Organic Compounds. ^b Based on approximately 100% conversion of fuel carbon to CO₂. CO₂[1b/10⁴ scf] = (3.67) (CON) (C)(D), where CON = fractional conversion of fuel carbon to CO₂, C = carbon content of fuel by weight (0.76), and D = density of fuel, 4.2x10⁴ 1b/10⁴ scf.

(0,76), where CON = that utility is conversion in the readon to COS₂, 0 = conconcentration that by we (0,76), and D = density of fuel, 4.2x10⁴ lb/10⁴ sof.
⁶ All PM (total, condensible, and filterable) is assumed to be less than 1.0 micrometer in diameter. Therefore, the PM emission factors presented here may be used to estimate PM₁₀, PM₂₃ or PM₁ emissions. Total PM is the sum of the filterable PM and condensible PM. Condensible PM is the particulate matter collected using EPA Method 202 (or equivalent). Filterable PM is the particulate matter collected on, or prior to, the filter of an EPA Method 5 (or equivalent) sampling train.
⁴ Based on 100% conversion of fuel sulfur to SO₂.

Assumes suffur content is natural gas of 2,000 grains/10⁴ scf. The SO₂ emission factor in this table can be converted to other natural gas suffur contents by multiplying the SO₂ emission factor by the ratio of the site-specific sulfur content (grains/10⁴ scf) to 2,000 grains/10⁴ scf.

1.4-6

EMISSION FACTORS

7/98

Flare Emission Calculations

Source: Flare Source ID: FL1

The flare is assumed to provide a destruction efficiency equal to 98% for VOC.

Flare Emissions Summary

			Pilot Gas Routed to Flare Stack			Total Emissions (Pre-Control)		Total Emissions (Post-Control)					
	Maximum Gas Routed to Flare	Average Gas Routed	Emission	Maximum Hourly	Average Annual	Pilot Gas Routed to	Emission	Hourly	Annual	Maximum Hourly	Average Annual	Maximum Hourly	Average Annual
	Stack	to Flare Stack	Factor	Emissions	Emissions ⁽²⁾	Flare Stack	Factor	Emissions	Emissions	Emissions	Emissions	Emissions	Emissions
Component	(MMBtu/hr)	(MMBtu/hr)	(lb/MMBtu)	(lb/hr)	(tons/yr)	(MMBtu/hr)	(lb/MMBtu)	(lb/hr)	(tons/yr)	(lb/hr)	(tons/yr)	(lb/hr)	(tons/yr)
NOx	0.58	0.58	0.068	0.04	0.17	0.07	0.068	0.00	0.02	0.15	0.42	0.15	0.42
CO	0.58	0.58	0.31	0.18	0.79	0.07	0.31	0.02	0.09	0.67	1.91	0.67	1.91
VOC	0.58	0.58	Mass Balance	-	-	0.07	0.66	0.05	0.20	23.67	51.95	0.52	1.24
SO ₂	-	-	Mass Balance	0.00	0.00	-	-	-	-	0.00	0.00	0.00	0.00
H2S	-	-	Mass Balance	0.00	0.00	-	-	-	-	0.00	0.00	0.00	0.00

Operating Parameters - VRT Vent Gas Routed to Flare

- 6.82E-03 MMscf/day routed to flare (Average)
- 2.84E-04 MMscf/hr routed to flare (Maximum)
- 2.49E+00 MMscf/yr routed to flare (Average)
- 8760 hours per year
- 2051 Btu/scf gross heat value for gas⁽³⁾
- 15.5 scf/bbl Gas to Oil Ratio (GOR) for VRT Flashing⁽⁴⁾
- 440 BOPD for VRT Flashing during VRU Downtime
- 0.20 H2S Concentration (ppm)⁽⁵⁾
- 100% VOC adjustment percentage⁽⁶⁾

Notes:

(1) Flare emission factors for NOx and CO are from AP-42 Tables 13.5-1 and 13.5-2 (2/18). The pilot gas VOC emission factor is from AP-42 Table 13.5-2 (2/18).

(2) All uncaptured and uncombusted VOC emissions have been allocated to the storage tank emissions.

(3) Gas heat value based on the average heat value for off gases.

(4) GOR value based on representative analysis.

(5) H2S concentration is based on the representative gas analysis.

(6) VOC adjustment percentage assumed to be a conservative 100%

(7) The pilot gas flow rate is estimated based on manufacturer's data.

(8) The pilot gas heating value is based on gas analysis.

Operating Parameters (Pilot Gas)(7)

5.50E+01 scf/hr pilot gas to flare 4.82E-01 MMscf/yr 8760 hours per year 1264 Btu/scf heat value for gas pilot⁽⁸⁾

Flare Tip Exit Velocity Demonstration

Annual Operatior Gas Flow Rate:	8760 842.38	hr/yr Mcfd (Average)
	834.70	Mcfh (Maximum)
	231.86	cfs (Maximum)
	307.47	MMcfy (Average)
Flare Parameters	4	flare tip diameter (in)
	0.33	flare tip diameter (ft)
	0.09	area (ft ²)
	90	feed temp (°F)
	2656.93	tip velocity (ft/s)

Tip Velocity Example Calculations:

Flare tip area =	Π	0.33^2 (ft)	=	0.09 (ft^2)
		4		
Flare tip velocity	231.86 ft^3		=	2656.93 ft
	sec	0.09 (ft^2)		sec

Flare Emission Calculations - Produced Gas

Source: Flare Source ID: FL1

The flare is assumed to provide a destruction efficiency equal to 98% for VOC.

Produced Gas Flaring Emissions Summary

	Produce	d Gas Routed to F	lare Inlet	Pre-0	Control	Post-	Control
	Emission Factor ⁽¹⁾	Maximum Gas Routed to Flare Stack	Average Gas Routed to Flare Stack	Maximum Hourly Emissions	Average Annual Emissions ⁽²⁾	Maximum Hourly Emissions	Average Annual Emissions ⁽³⁾
Component	(lb/MMBtu)	(MMBtu/hr)	(MMBtu/hr)	(lb/hr)	(tons/yr)	(lb/hr)	(tons/yr)
NOx	0.07	1.51	0.75	0.10	0.22	0.10	0.22
CO	0.31	1.51	0.75	0.47	1.02	0.47	1.02
VOC	Mass Balance	1.51	0.75	23.63	51.74	0.47	1.03
SO2	Mass Balance	-	-	0.00	0.00	0.00	0.00
H2S	Mass Balance	-	-	0.00	0.00	0.00	0.00

Average Operating Parameters - Produced Gas Routed to Flare

 1.23E-02
 MMscf/day routed to flare

 5.13E-04
 MMscf/hr routed to flare

 4.4967E+00
 MMscf/yr routed to flare

 8760
 hours per year

 1470
 Btu/scf - gross heat value for gas vented to flare⁽⁴⁾

 0.20
 H2S Concentration (ppm)⁽⁵⁾

 34
 MW H2S (lb/lb-mole)

 64
 MW SO2 (lb/lb-mole)

 98%
 H2S Destruction Efficiency (%)

 385.48
 H2S V/n (scf/lb-mole @ stp)

Notes:

(1) Flare emission factors for NOx and CO are from AP-42 Tables 13.5-1 and 13.5-2 (2/18).

(2) Pre-flare VOC emissions are estimated based on the representative gas analysis and a maximum flowrate.

(3) Potential VOC emissions are based on a 98% capture efficiency to the flare for produced gas flaring, and a 98% destruction efficiency from the flare.

(4) Gas heat value based on average heat value for off gases.

(5) H2S concentration is based on the representative gas analysis.

Maximum Operating Parameters - Produced Gas Routed to Flare

2.46E-02 MMscf/day routed to flare 1.03E-03 MMscf/hr routed to flare 24 hours per day

Flare Emission Calculations - Produced Gas

Source: Flare Source ID: FL1

Produced Gas Flare Stream Evaluation

	Molecular Weight	cular Cu Ft/lb ight	Produced Gas Composition			Avg. Flow Rate	Avg. Flow Rate (Flare Inlet)		e (Flare Inlet)	Flare	Max.	Avg.
Component			Total Stream Mol. %	Total Stream Wt. %	Wt. % of VOC ⁽¹⁾	Volumetric Flow (Mscf/hr)	Mass Flow (lb/hr)	Volumetric Flow (Mscf/hr)	Mass Flow (lb/hr)	Destruction Eff. (%)	Uncombusted Emissions (lb/hr)	Uncombusted Emissions (lb/hr)
H2S	34.08	11.31	0.00%	0.00%		0.00	0.00	0.00	0.00	98%	0.00	0.00
N2	28.01	13.76	1.03%	1.15%		0.01	0.39	0.01	0.77			
CO2	44.01	8.76	0.64%	1.12%		0.00	0.38	0.01	0.75			
Methane	16.04	24.03	61.33%	38.97%		0.31	13.10	0.63	26.20	99%	0.26	0.13
Ethane	30.07	12.82	20.51%	24.43%		0.11	8.21	0.21	16.43	99%	0.16	0.08
Propane	44.10	8.74	10.16%	17.75%		0.05	5.97	0.10	11.94	98%	0.24	0.12
Butanes (C4)	58.12	6.63	3.95%	9.09%		0.02	3.05	0.04	6.11	98%	0.12	0.06
Pentanes (C5)	72.15	5.34	1.42%	4.06%		0.01	1.36	0.01	2.73	98%	0.05	0.03
Other Hexanes (C6)	86.18	4.47	0.91%	3.28%		0.00	1.04	0.01	2.08	98%	0.04	0.02
Other Heptanes (C7)	100.20	3.85	0.27%	1.06%		0.00	0.35	0.00	0.71	98%	0.01	0.01
Other Octanes (C8)	114.23	3.37	0.02%	0.10%		0.00	0.03	0.00	0.07	98%	0.00	0.00
Nonanes (C9)	128.26	3.01	0.00%	0.00%		0.00	0.00	0.00	0.00	98%	0.00	0.00
Decanes Plus (C10+)	142.29	2.71	0.00%	0.00%		0.00	0.00	0.00	0.00	98%	0.00	0.00
Benzene	78.11	4.94	0.05%	0.15%	0.43%		0.05	0.00	0.10	98%	0.00	0.00
Toluene	92.14	4.18	0.05%	0.19%	0.53%		0.06	0.00	0.13	98%	0.00	0.00
E-benzene	106.17	3.63	0.00%	0.01%	0.02%		0.00	0.00	0.01	98%	0.00	0.00
Xylenes	106.17	3.63	0.01%	0.05%	0.15%		0.02	0.00	0.04	98%	0.00	0.00
n-Hexane	86.18	4.47		0.57%	1.60%		0.19	0.00	0.38	98%	0.01	0.00
Total			100.24%	101.00%		0.51	33.89	1.03	67.78			
Total VOC				35.34%		0.09	11.81	0.17	23.63		0.47	0.24

<u>Notes:</u> (1) HAP speciation is estimated based on the representative gas analysis.

Flare Emission Calculations - High Pressure Gas

Source: Flare Source ID: FL1-STRAND

The flare is assumed to provide a destruction efficiency equal to 98% for VOC.

High Pressure (HP) Gas Flaring Emissions Summary

	High Press	ure Gas Routed t	o Flare Inlet	Pre-Control/	Post-Process	Post-	Control
	Emission	Maximum HP Gas Routed to	Average Gas Routed to	Maximum Hourly	Average Annual	Maximum Hourly	Average Annual
	Factor ⁽¹⁾	Flare Stack	Flare Stack	Emissions	Emissions ⁽²⁾	Emissions	Emissions ⁽³⁾
Component	(lb/MMBtu)	(MMBtu/hr)	(MMBtu/hr)	(lb/hr)	(tons/yr)	(lb/hr)	(tons/yr)
NOx	0.07	1053.33	43.29	71.63	12.89	71.63	12.89
CO	0.31	1053.33	43.29	326.53	58.78	326.53	58.78
VOC	Mass Balance	1053.33	43.29	10159.27	1828.67	203.19	36.57
SO2	-	-	-	-	-	-	-
H2S	-	-	-	-	-	-	-

Average Operating Parameters - HP Gas Routed to Flare

Maximum Operating Parameters - HP Gas Routed to Flare

2.00E+01 MMscf/day routed to flare

8.33E-01 MMscf/hr routed to flare

24 hours per day

8.22E-01 MMscf/day routed to flare
3.42E-02 MMscf/hr routed to flare
3.00E+02 MMscf/yr routed to flare
8760 hours per year
1264 Btu/scf - gross heat value for gas vented to flare⁽⁴⁾
0.00 H2S Concentration (ppm)⁽⁶⁾
34 MW H2S (lb/lb-mole)
64 MW SO2 (lb/lb-mole)
98% H2S Destruction Efficiency (%)
385.48 H2S V/n (scf/lb-mole @ stp)

Notes:

(1) Flare emission factors for NOx and CO are from AP-42 Tables 13.5-1 and 13.5-2 (2/18).

(2) Pre-flare VOC emissions are estimated based on the representative gas analysis and a maximum flowrate.

(3) Potential VOC emissions are based on a 100% capture efficiency to the flare for produced gas flaring, and a 98% destruction efficiency from the flare.

(4) Gas heat value based on average heat value for off gases.

(5) H2S concentration is based on the representative gas analysis.

Flare Emission Calculations - High Pressure Gas

Source:	Flare
Source ID:	FL1-STRAND

High Pressure Gas Flare Stream Evaluation

	Molecular Weight	Molecular Cu Ft/lb Weight	High Pressure Gas Composition		Avg. Flow Rat	e (Flare Inlet)	Max. Flow Rate	e (Flare Inlet)	Flare	Flare	Max.	Avg.	
Component			Total Stream Mol. %	Total Stream Wt. %	Wt. % of VOC ⁽¹⁾	Volumetric Flow (Mscf/hr)	Mass Flow (lb/hr)	Volumetric Flow (Mscf/hr)	Mass Flow (lb/hr)	Capture Eff. (%)	Destruction Eff. (%)	Emissions (lb/hr)	Uncombusted Emissions (lb/hr)
H2S	34.08	11.31	0.00%	0.00%		0.00	0.00	0.00	0.00	100%	98%	0.00	0.00
N2	28.01	13.76	2.16%	2.84%		0.74	53.78	18.01	1308.68				
CO2	44.01	8.76	0.18%	0.36%		0.06	6.88	1.47	167.45				
Methane	16.04	24.03	75.95%	57.08%		26.01	1082.47	632.93	26340.17	100%	99%	263.40	10.82
Ethane	30.07	12.82	12.57%	17.71%		4.30	335.79	104.75	8170.88	100%	99%	81.71	3.36
Propane	44.10	8.74	5.85%	12.08%		2.00	229.13	48.74	5575.59	100%	98%	111.51	4.58
Butanes (C4)	58.12	6.63	2.24%	6.10%		0.77	115.72	18.68	2815.78	100%	98%	56.32	2.31
Pentanes (C5)	72.15	5.34	0.63%	2.14%		0.22	40.57	5.28	987.29	100%	98%	19.75	0.81
Other Hexanes (C6)	86.18	4.47	0.42%	1.69%		0.14	32.08	3.49	780.61	100%	98%	15.61	0.64
Other Heptanes (C7)	100.20	3.85	0.00%	0.00%		0.00	0.00	0.00	0.00	100%	98%	0.00	0.00
Other Octanes (C8)	114.23	3.37	0.00%	0.00%		0.00	0.00	0.00	0.00	100%	98%	0.00	0.00
Nonanes (C9)	128.26	3.01	0.00%	0.00%		0.00	0.00	0.00	0.00	100%	98%	0.00	0.00
Decanes Plus (C10+)	142.29	2.71	0.00%	0.00%		0.00	0.00	0.00	0.00	100%	98%	0.00	0.00
Benzene	78.11	4.94		0.20%	0.90%		3.76	0.45	91.43	100%	98%	1.83	0.08
Toluene	92.14	4.18		0.29%	1.30%		5.43	0.55	132.07	100%	98%	2.64	0.11
E-benzene	106.17	3.63		0.02%	0.10%		0.42	0.04	10.16	100%	98%	0.20	0.01
Xylenes	106.17	3.63		0.11%	0.50%		2.09	0.18	50.80	100%	98%	1.02	0.04
n-Hexane	86.18	4.47		0.35%	1.60%		6.68	0.73	162.55	100%	98%	3.25	0.13
Total			100.00%	100.00%		34.25	1896.43	833.33	46146.45				
Total VOC				22.02%		3.13	417.50	76.18	10159.27			203.19	8.35

<u>Notes:</u> (1) HAP speciation is estimated based on Table 11.3-2, 'HAP Percent of VOC Emissions', from Gasoline Marketing (StRe I and StRe II), EPA Document Revised Final January 2001.

Combustor Emission Calculations

Source: Combustor Source ID: ECD1

The combustor is assumed to provide a destruction efficiency equal to 98% for VOC.

Combustor Emissions Summary

	Flash	hing, Working, and Brea	athing Gas Vente	d to Combustor		Pilot Gas Routed to Combustor				Total Emissions	
	Maximum Gas	Average Gas Routed	Emission	Maximum Hourly	Average Annual	Pilot Gas Routed to	Emission	Hourly	Annual	Maximum Hourly	Average Annual
	Routed to Combustor	to Combustor	Factor ⁽¹⁾	Emissions	Emissions ⁽²⁾	Combustor	Factor ⁽¹⁾	Emissions	Emissions	Emissions	Emissions
Component	(MMBtu/hr)	(MMBtu/hr)	(lb/MMBtu)	(lb/hr)	(tons/yr)	(MMBtu/hr)	(lb/MMBtu)	(lb/hr)	(tons/yr)	(lb/hr)	(tons/yr)
NOx	0.55	0.55	0.068	0.04	0.16	0.07	0.068	0.00	0.02	0.04	0.19
CO	0.55	0.55	0.31	0.17	0.75	0.07	0.31	0.02	0.09	0.19	0.84
VOC	0.55	0.55	Mass Balance	-	-	0.07	0.66	0.05	0.20	0.05	0.20
SO ₂	-	-	Mass Balance	0.00	0.00	-	-	-	-	0.00	0.00
H2S	-	-	Mass Balance	0.00	0.00	-	-	-	-	0.00	0.00

Operating Parameters - Tank Vent Gas Routed to Combustor

- 6.46E-03 MMscf/day routed to combustor (Average) 2.69E-04 MMscf/hr routed to combustor (Maximum)
- 2.36E+00 MMscf/yr routed to combustor (Average)
 - 8760 hours per year
 - 2051 Btu/scf gross heat value for gas⁽³⁾
 - 3.1 scf/bbl Gas to Oil Ratio (GOR) for Oil Tank Flashing⁽⁴⁾
 - 21.4 scf/bbl Gas to Oil Ratio (GOR) for Water Tank Flashing⁽⁴⁾
 - 440 BOPD for Oil Tank Flashing
 - 5 BOPD for Water Tank Flashing (1% of produced water)
 - 0.20 H2S Concentration (ppm)⁽⁵⁾
 - 100% VOC adjustment percentage⁽⁶⁾

Notes:

(1) Combustor emission factors for NOx and CO are from AP-42 Tables 13.5-1 and 13.5-2 (2/18). The pilot gas VOC emission factor is from AP-42 Table 13.5-2 (2/18).

(2) All uncaptured and uncombusted VOC emissions have been allocated to the storage tank emissions.

(3) Gas heat value based on the average heat value for off gases.

(4) GOR value based on representative analysis.

(5) H2S concentration is based on the representative gas analysis.

(6) VOC adjustment percentage assumed to be a conservative 100%

(7) The pilot gas flow rate is estimated based on manufacturer's data.

(8) The pilot gas heating value is based on gas analysis.

Operating Parameters (Pilot Gas)⁽⁷⁾

5.50E+01 scf/hr pilot gas to combustor 4.82E-01 MMscf/yr 8760 hours per year 1264 Btu/scf heat value for gas pilot⁽⁸⁾

Flare Tip Exit Velocity Demonstration

Annual Operation	8760	hr/yr
Gas Flow Rate:	7.78	Mcfd (Average)
	0.32	Mcfh (Maximum)
	0.09	cfs (Maximum)
	2.84	MMcfy (Average)
Flare Parameters	13.13	flare tip diameter (in)
	1.09	flare tip diameter (ft)
	0.94	area (ft²)
	90	feed temp (°F)
	0.10	tip velocity (ft/s)

Tip Velocity Example Calculations:

Flare Example Calculations

Example Calculations for NOx

NOx (lb/hr) =	1.407 MMBtu hr	0.068 lb MMBtu		=	0.1 lb hr						
NOx (tpy) =	0.1 lb hr	8760 hr yr	1 ton 2000 lb	=	0.42 tons yr						
Example Calcul	Example Calculations for CO										
CO (lb/hr) =	1.407 MMBtu hr	0.31 lb MMBtu		=	0.44 lb hr						
<i>CO (tpy) =</i>	0.44 lb hr	8760 hrs yr	ton 2000 lbs	=	1.91 tons yr						

Table 13.5-1 (English Units). THC AND SOOT EMISSIONS FACTORS FOR FLARE OPERATIONS^a

Pollutant	SCC	Emissions Factor Value	Emissions Factor Units
Total hydrocarbons ^b	30190099	0.14	lb/106 Btu
Nitrogen oxides ^e	30190099	0.068	lb/106 Btu
Soot ^e	30190099	0 - 274	μg/L

EMISSIONS FACTOR RATING: B

^a Reference 1. Based on tests using crude propylene containing 80% propylene and 20% propane.

^b Measured as methane equivalent.

^c Soot in concentration values: nonsmoking flares, 0 micrograms per liter (μ g/L); lightly smoking flares, 40 μ g/L; average smoking flares, 177 μ g/L; and heavily smoking flares, 274 μ g/L.

Table 13.5-2 (English Units). VOC and CO EMISSIONS FACTORS FOR FLARE OPERATIONS^a

Pollutant	SCC	Emissions Factor (lb/106 Btu)	Representativeness
Volatile organic compounds ^b	30190099; 30600904	0.57	Poorly
Carbon monoxide ^c	30190099; 30600904	0.31	Poorly

^a These factors apply to well operated flares achieving at least 98% destruction efficiency and operating in compliance with the current General Provisions requirements of 40 CFR Part 60, i.e. >300 btu/scf net heating value in the vent gas and less than the specified maximum flare tip velocity. These factors are based on steam-assisted and air-assisted flares burning a variety of vent gases.

^b References 4-9 and 11.

e References 1, 4-8 and 11.

Fugitive Emission Calculations

Fugitive Emission Summary

Gas Service	Number of	Factor	Total Err	nissions
Fugitive Component Type	Components ⁽¹⁾	(lb/hr/source) ⁽²⁾	(lb/hr)	(tons/yr)
Valves	258	0.0099	0.58	2.55
Pump Seals	0	0.0053	0.00	0.00
Connectors	774	0.0004	0.08	0.34
Flanges	258	0.0009	0.05	0.22
Open-Ended Lines	26	0.0044	0.03	0.11
Other	13	0.0194	0.06	0.25
Total C3+ Hydrocarbon Emissions		Total	0.79	3.48
Light Oil Service	Number of	Factor	Total Err	nissions
Fugitive Component Type	Components ⁽¹⁾	(lb/hr/source) ⁽²⁾	(lb/hr)	(tons/yr)
Valves	138	0.0055	0.76	3.31
Pump Seals	2	0.0287	0.06	0.25
Connectors	414	0.0005	0.19	0.84
Flanges	138	0.0002	0.03	0.15
Open-Ended Lines	14	0.0031	0.04	0.19
Other	7	0.0165	0.11	0.50
Total C3+ Hydrocarbon Emissions		Total	1.19	5.23

Gas Service Speciation Component	Stream Weight % $^{\rm (3)}$	Emissions (lb/hr)	Emissions (tons/yr)
Benzene	0.00%	0.00	0.00
Toluene	0.00%	0.00	0.00
E-Benzene	0.00%	0.00	0.00
Xylenes	0.00%	0.00	0.00
n-Hexane	1.75%	0.01	0.06
Total VOC	22.74%	0.79	3.48

Light Liq. Service Speciation Component	Stream Weight % $^{\rm (4)}$	Emissions (lb/hr)	Emissions (tons/yr)
Benzene	0.49%	0.01	0.03
Toluene	1.48%	0.02	0.08
E-Benzene	0.32%	0.00	0.02
Xylenes	1.64%	0.02	0.09
n-Hexane	1.34%	0.02	0.07
Total VOC	99.50%	1.19	5.23

Total Fugitive Component Emissions	Emissions (lb/hr)	Emissions (tons/yr)
Benzene	0.01	0.03
Toluene	0.02	0.08
E-Benzene	0.00	0.02
Xylenes	0.02	0.09
n-Hexane	0.03	0.13
Total VOC	1.99	8.71

Notes:

(1) Component counts are estimates based on similar facilities.

(2) Emission factors are EPA/API average emission factors, for oil and gas production operations,

issued August 1995, for fugitive components.

(3) Natural gas speciation is based on facility natural gas analysis.

(4) Light liquid speciation is based on the representative analysis.

Example Calculations

=

Gas Sorvico Emissions for Valvos (Ib/br):	258 Components	0.00992 lb			0.59 lb
Cas Service Lifissions for Valves (ib/fil).	200 Components	hr	22.74% VOC	=	hr
	Component				
	l	I	l	1	
Gas Service Emissions for Valves (tpy):	0.59 lb	8760 hr	ton	=	2.55 tons
	hr	yr	2000 lb		yr

TABLE 2-4. OIL AND GAS PRODUCTION OPERATIONS AVERAGE EMISSION FACTORS (kg/hr/source)

Equipment Type	Service ^a	Emission Factor (kg/hr/source) ^b
Valves	Gas Heavy Oil Light Oil Water/Oil	4.5E-03 8.4E-06 2.5E-03 9.8E-05
Pump seals	Gas Heavy Oil Light Oil Water/Oil	2.4E-03 NA 1.3E-02 2.4E-05
Others ^C	Gas Heavy Oil Light Oil Water/Oil	8.8E-03 3.2E-05 7.5E-03 1.4E-02
Connectors	Gas Heavy Oil Light Oil Water/Oil	2.0E-04 7.5E-06 2.1E-04 1.1E-04
Flanges	Gas Heavy Oil Light Oil Water/Oil	3.9E-04 3.9E-07 1.1E-04 2.9E-06
Open-ended lines	Gas Heavy Oil Light Oil Water/Oil	2.0E-03 1.4E-04 1.4E-03 2.5E-04

Fugitive Emission Calculations - Haul Roads

Fugitive Emission Summary

	Maximum	Annual
Component	Emissions	Emissions
	(lb/hr)	(tons/yr)
PM 2.5	0.09	0.03
PM 10	0.92	0.32
PM Total (TSP)	3.64	1.26

Supplemental Information:

Mean Vehicle Weight ⁽¹⁾	20	tons
Silt Content ⁽²⁾	4.8	%
Rain Days ⁽³⁾	70	days/yr
Miles Per Hauling ⁽⁴⁾	0.30	miles
Average Volume per Hauling ⁽⁵⁾	200	bbls
Oil Haulings	803	haulings/yr
Water Haulings	913	haulings/yr
Vehicle Miles Traveled (VMT)	514.800	miles/yr
	0.059	miles/hr

	PM 2.5	PM 10	TSP
k	0.15	1.5	4.9
a	0.9	0.9	0.7
b	0.45	0.45	0.45
E (Ib/VMT) = Hourly Emission Factors ^(6,7)	0.15	1.54	6.06
E_{ext} (lb/VMT) = Annual Emission Factors ⁽⁸⁾	0.12	1.24	4.90

Haul Road Fugitive Determination

 $E = k (s/12)^{a} (W/3)^{b}$

where:

k, a, and b are empirical constants from Table 13.2.2-2

- s = surface material silt content (%)
- W = mean vehicle weight (tons)

E_{ext} = E [(365 - P)/365]

where:

E_{ext} = annual size-specific emission factor extrapolated for natural mitigation, Ib/VMT

E = emission factor from Equation 1a

P = number of days in a year with at least 0.254 mm (0.01 in) of precipitation (a.k.a. Rain Days)

Notes:

(1) Mean vehicle weight is based on maximum possible vehicle weight.

(2) Silt content based on NMED guidance and AP-42 Table 13.2.2-1 (Nov. 2006)

(3) Rain days value is the default allowed by NMED without additional justification.

(4) Miles per hauling is based on mileage of truck(s) to and from primary lease road.

(5) Oil and water haulings based on average loading of 200 bbls/hauling

(6) Hourly emission factors are calculated using AP-42 Section 13.2.2 Equation 1a (Nov. 2006).

(7) Maximum hourly emission calculations incorporate one water and one oil loading during an hour.

(8) Annual emission factors are extrapolated from hourly factors per AP-42 Section 13.2.2 Equation 2 (Nov. 2006).

Example Calculations

Example Calculations for PM 2.5:

$$\begin{split} E &= (0.15) * (4.8/12)^{0.9} * (20/3)^{0.45} = 0.15 \ (lb/VMT) \\ E_{ext} &= (0.15) * [(365 - 70)/365] = 0.12 \ (lb/VMT) \end{split}$$

Maximum Hourly Emissions (lb/hr) =	0.15 lb VMT	0.3 VMT hour	2 haulings	=	<u>0.09 lb</u> hour
Total Annual Emissions (tpy) =	0.12 lb VMT	514.8 VMT year	1 ton 2000 lb	=	<u>0.031 tons</u> year

For vehicles traveling on unpaved surfaces at industrial sites, emissions are estimated from the following equation:

$$E = k (s/12)^{a} (W/3)^{b}$$
 (1a)

$$E_{ext} = E [(365 - P)/365]$$
 (2)

	Industria	al Roads (Equa	ation 1a)	Public Roads (Equation 1b)			
Constant	PM-2.5	PM-10	PM-30*	PM-2.5	PM-10	PM-30*	
k (lb/VMT)	0.15	1.5	4.9	0.18	1.8	6.0	
а	0.9	0.9	0.7	1	1	1	
b	0.45	0.45	0.45	-	-	-	
с	-	-	-	0.2	0.2	0.3	
d	-	-	-	0.5	0.5	0.3	
Quality Rating	В	В	В	В	В	В	

Table 13.2.2-2. CONSTANTS FOR EQUATIONS 1a AND 1b

*Assumed equivalent to total suspended particulate matter (TSP)

"-" = not used in the emission factor equation

	Pood Lize Or	Diant	No. Of	Silt Content (%)		
Industry	Surface Material	Sites	Samples	Range	Mean	
Copper smelting	Plant road	1	3	16 - 19	17	
Iron and steel production	Plant road	19	135	0.2 - 19	6.0	
Sand and gravel processing	Plant road	1	3	4.1 - 6.0	4.8	
	Material storage area	1	1	-	7.1	
Stone quarrying and processing	Plant road	2	10	2.4 - 16	10	
	Haul road to/from pit	4	20	5.0-15	8.3	
Taconite mining and processing	Service road	1	8	2.4 - 7.1	4.3	
	Haul road to/from pit	1	12	3.9 - 9.7	5.8	
Western surface coal mining	Haul road to/from pit	3	21	2.8 - 18	8.4	
	Plant road	2	2	4.9 - 5.3	5.1	
	Scraper route	3	10	7.2 - 25	17	
	Haul road (freshly graded)	2	5	18 - 29	24	
Construction sites	Scraper routes	7	20	0.56-23	8.5	
Lumber sawmills	Log yards	2	2	4.8-12	8.4	
Municipal solid waste landfills	Disposal routes	4	20	2.2 - 21	6.4	

Table 13.2.2-1. TYPICAL SILT CONTENT VALUES OF SURFACE MATERIAL ON INDUSTRIAL UNPAVED ROADS^a

References 1,5-15.

Condensate Tank Emissions - Promax and Tanks 4.0.9d

Tank Emission Summary

			Pre-Control					Post-Control					
Component	Weight Percent of VOC	W&B (lb/hr)	W&B (tons/yr)	Flashing (lb/hr)	Flashing (tons/yr)	Total Hourly Emissions (lb/hr)	Total Annual Emissions (tons/yr)	W&B (lb/hr)	W&B (tons/yr)	Flashing (lb/hr)	Flashing (tons/yr)	Total Hourly Emissions (lb/hr)	Total Annual Emissions (tons/yr)
Benzene	0.49%	0.01	0.05	0.01	0.03	0.02	0.08	0.00	0.00	0.00	0.00	0.00	0.00
Toluene	1.48%	0.03	0.15	0.01	0.03	0.04	0.18	0.00	0.01	0.00	0.00	0.00	0.01
E-benzene	0.32%	0.01	0.03	0.00	0.00	0.01	0.03	0.00	0.00	0.00	0.00	0.00	0.00
Xylenes	1.64%	0.04	0.17	0.00	0.01	0.04	0.18	0.00	0.01	0.00	0.00	0.00	0.01
n-Hexane	1.34%	0.03	0.14	0.02	0.10	0.05	0.24	0.00	0.01	0.00	0.00	0.00	0.01
Total VOC	100.00%	2.35	10.28	1.69	7.41	4.04	17.69	0.09	0.41	0.07	0.29	0.16	0.70

Supplemental Information

Tank Data			TANKS 4.0.9d / W&B Data				Promax / Flashing Data		
Source:	Storage Tank, C	ondensate	Throughput:	3,372,600	gallons/yr-tank		Ambient Temperature: 65	F	
Source ID:	OILTK1-2		Size:	500	bbls				
# of tanks:	2		Height:	16	ft				
Facility Throughput:	440.00	BPD	Diameter:	15.5	ft				
Tank Throughput:	220.00	BPD/tank	Max Height:	12.8	ft				
			Avg. Height:	9.6	ft				
			Color:	Gray/Medium (Av	verage)				
			Equipment Redu	icing W&B Emissic	ns:		Equipment Reducing Flashing Emissions:		
				Control Equipme	nt:	Flare	Process Equipment: ⁽³⁾	None	
				Captu	are Efficiency:	98%	Capture Efficiency:	0%	
				Destr	uction Efficiency:	98%	Runtime Percentage:	0%	
							Control Equipment: ⁽⁴⁾	Flare	
			Working (lb/yr):		16,874.45		Capture Efficiency:	98%	
			Breathing (lb/yr):		3,678.55		Destruction Efficiency	98%	
			W&B (tons/yr):		10.28		-		

Notes:

(1) Emission calculations are based on the representative liquid analysis (Hornsby 35 Federal No. 10H LP).
 (2) APIG, separator pressure, separator temperature, and facility oil throughput based on facility estimate.

(3) No process equipment is claimed at this time.

(4) Post-control emissions are calculated using the 98% flare capture efficiency and the 98% flare destruction efficiency(i.e. 17.69 tons/yr * (1 - 98%) = 0.7 tons/yr of VOC emissions).

Produced Water Tank Emissions - Promax and Tanks 4.0.9d

Tank Emission Summary

			Pre-Control					Post-Control					
Component	Weight Percent of VOC	W&B (lb/hr)	W&B (tons/yr)	Flashing (lb/hr)	Flashing (tons/yr)	Total Hourly Emissions (lb/hr)	Total Annual Emissions (tons/yr)	W&B (lb/hr)	W&B (tons/yr)	Flashing (lb/hr)	Flashing (tons/yr)	Total Hourly Emissions (lb/hr)	Total Annual Emissions (tons/yr)
Benzene	0.49%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Toluene	1.48%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
E-benzene	0.32%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Xylenes	1.64%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
n-Hexane	1.34%	0.00	0.00	0.00	0.01	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00
Total VOC	100.00%	0.03	0.11	0.13	0.57	0.16	0.69	0.00	0.00	0.01	0.02	0.01	0.03

Supplemental Information

Tank Data				TANKS 4.0.9	9d / W&B Data		Promax / Flashing Data		
Source:	Storage Tank, P	roduced Water	Throughput:	Throughput: 3,832,500 gallons/yr-tank			Ambient Temperature: 65	F	
Source ID:	SWTK1-2		Size:	500	bbls				
# of tanks:	2		Height:	16	ft				
Facility Throughput:	500.00	BPD	Diameter:	15.5	ft				
Tank Throughput:	250.00	BPD/tank	Max Height:	12.8	ft				
	2.50	BOPD/tank (assumes that only 1%	Avg. Height:	9.6	ft				
		of water is oil)	Color:	Gray/Medium (Av	verage)				
			Equipment Redu	icing W&B Emissio	ons:		Equipment Reducing Flashing Emissions:		
				Control Equipme	nt:	Flare	Process Equipment: ⁽³⁾	None	
				Capti	ure Efficiency:	98%	Capture Efficiency:	0%	
				Destr	ruction Efficiency:	98%	Runtime Percentage:	0%	
							Control Equipment: ⁽⁴⁾	Flare	
			Working (lb/yr):		191.76		Capture Efficiency:	98%	
			Breathing (lb/yr):		36.79		Destruction Efficiency	98%	
			W&B (tons/yr):		0.11				

Notes:

(1) Emission calculations are based on the representative liquid analysis (Hornsby 35 Federal No. 10H LP).
 (2) APIG, separator pressure, separator temperature, and facility oil throughput based on facility estimate.

(3) No process equipment is claimed at this time.

(4) Post-control emissions are calculated using the 98% flare capture efficiency and the 98% flare destruction efficiency(i.e. 0.69 tons/yr * (1 - 98%) = 0.03 tons/yr of VOC emissions).

Promax Tank Flashing - Example Calculations (VOC)

Scenario 1: Tank Flashing at Facilities without Vapor Recovery Systems:

In this scenario, flashing occurs when liquid from the last process vessel prior to the tank(s) (e.g. heater treater, separator, etc.) enters the atmospheric storage tank(s). This scenario may or may not include a control device.

Values Obtained from Promax:

VOC_FF VOC Flash Factor (lb VOC/bbl oil)

Tank Flashing (Pre-Control):

 $VOC(lb/hr) = \left[VOC_FF\left(\frac{lbs VOC}{bbl oil}\right)\right] * \left[Daily Tank Oil Throughput\left(\frac{bbl oil}{day-tank}\right)\right] * \left[\frac{1 \, day}{24 \, hrs}\right]$ $VOC(tons/yr) = \left[VOC\left(\frac{lb}{hr}\right)\right] * \left[\frac{8,760 \, hr}{yr}\right] * \left[\frac{1 \, ton}{2000 \, lbs}\right]$

Tank Flashing (Post-Control):

$$VOC(lb/hr) = \left[Pre-Control VOC\left(\frac{lb}{hr}\right) \right] * \left[100\% - Flare Capture Efficiency (\%) \right] + \left[Pre-Control VOC\left(\frac{lb}{hr}\right) \right] * \left[Flare Capture Efficiency (\%) \right] * \left[100\% - Flare Control Efficiency (\%) \right] \\ VOC(tons/yr) = \left[Pre-Control VOC\left(\frac{tons}{yr}\right) \right] * \left[100\% - Flare Capture Efficiency (\%) \right] + \left[Pre-Control VOC\left(\frac{tons}{yr}\right) \right] * \left[Flare Capture Efficiency (\%) \right] * \left[100\% - Flare Control Efficiency (\%) \right]$$

Promax Tank Flashing - Example Calculations (VOC)

Scenario 2: Tank Flashing at Facilities with Vapor Recovery Systems:

In this scenario, Promax is used to model oil/condensate flashing at both the facility vapor recovery tower (VRT) and the atmospheric storage tank(s). VRT flashing gas is captured by a vapor recovery unit (VRU) or flash gas compressor and returned to the process. During VRU downtime, VRT flashing can either be vented to atmosphere or routed to a control device (e.g. flare). All post-process flashing emissions are allocated to the storage tank(s) for conservative purposes.

Values Obtained from Promax:

VRT_VOC_FF	VOC Flash Factor for VRT Flashing (Ib VOC/bbl oil)
Tank_VOC_FF	VOC Flash Factor for Storage Tank Flashing (Ib VOC/bbl oil)

VRT Flashing during VRU Downtime

Pre-Control VOC (tons/yr)	=	$\left[VRT_VOC_FF\left(\frac{lbs\ VOC}{bbl\ oil}\right)\right] * \left[\frac{1\ ton}{2000\ lbs}\right] * \left[Annual\ Tank\ Oil\ Throughput\left(\frac{bbl\ oil}{yr-tank}\right)\right] * \left[100\% - VRU\ Runtime\ (\%)\right]$
Post-Control VOC(tons/yr)	=	$\left[Pre-Control VOC\left(\frac{tons}{yr}\right)\right] * \left[100\% - Flare Capture Efficiency (\%)\right] +$
		$\left[Pre-Control VOC\left(\frac{tons}{yr}\right)\right] * \left[Flare Capture Efficiency (\%)\right] * \left[100\% - Flare Control Efficiency (\%)\right]$
<u>Tank Flashing:</u>		
Pre-Control VOC (tons/yr)	=	$\left[Tank_VOC_FF\left(\frac{lbsVOC}{bbloil}\right) \right] * \left[\frac{1ton}{2000lbs} \right] * \left[AnnualTankOilThroughput\left(\frac{bbloil}{yr-tank}\right) \right]$
<i>Post-Control VOC</i> (tons/yr)	=	$\left[Pre-Control VOC\left(\frac{tons}{yr}\right)\right] * \left[100\% - Flare Capture Efficiency (\%)\right] +$
		$\left[Pre-Control VOC\left(\frac{tons}{yr}\right)\right] * \left[Flare Capture Efficiency (\%)\right] * \left[100\% - Flare Control Efficiency (\%)\right]$

VRT Flashing during VRU Runtime (if VRU Capture Efficiency is < 100%):

$$VOC(tons/yr) = \left[VRT_VOC_FF\left(\frac{lbs VOC}{bbl oil}\right) \right] * \left[\frac{1 ton}{2000 lbs}\right] * \left[Annual Tank Oil Throughput \left(\frac{bbl oil}{yr-tank}\right) \right] * \left[VRU Runtime (\%) \right] * \left[100\% - VRU Capture (\%) \right]$$

Total Flashing:

Total VOC(tons/yr) = [VRT Flashing during VRU Downtime] + [Tank Flashing] + [Uncaptured VRT Flashing during VRU Runtime]

AP-42 CHAPTER 7

FIXED-ROOF TANK WORKING & BREATHING EMISSIONS

Tank Identification	OILTK1-2	SWTK1-2
Location for Calculation Purposes	Roswell, New Mexico	Roswell, New Mexico
Contents of Tank	Hornsby 35 Federal No. 10H LP (RVP 9.28)	Hornsby 35 Federal No. 10H LP (RVP 9.28)
Tank/Roof Type	Cone	Cone
Underground?	Aboveground	Abovearound
Diameter, ft	15.5	15.5
Shell Height or Length. ft	16.0	16.0
Nominal Capacity, gal	21.000	21.000
Throughput, gallons/vr	3.372.600	3.832.500
Tank Paint Color	Grav/Medium	Grav/Medium
Tank Paint Condition	Average	Average
Effective Diameter, ft	15.5	15.5
Geometric Capacity, gal	18.067	18.067
Maximum Liquid Height, ft	12.8	12.8
Average Liquid Height, ft	9.6	9.6
Minimum Liquid Height, ft	1.0	1.0
Cone Tank Boof Slope, ft/ft	0.0625	0.0625
Dome Tank Boof Badius, ft	N/A	N/A
Dome Tank Roof Height, ft	N/A	N/A
Boof Outage ft	0 161	0 161
Vapor Space Outage, ft	6.56	6.56
Vapor Space Volume, ft^3	1238	1238
Average Daily Minimum Ambient Temperature F	47.60	47.60
Average Daily Maximum Ambient Temperature, F	75.80	75.80
Daily Total Solar Insolation Factor Btu/fth2/day	1722	1722
Daily Average Ambient Temperature F	61 7	61 7
Tank Paint Solar Absorbance, dimensionless	0.710	0 710
Daily Vapor Temperature Bange B	43.0	43.0
Daily Average Liquid Surf Temperature F	68.9	68.9
Daily Minimum Liquid Surf. Temperature. F	58.2	58.2
Daily Maximum Liquid Surf Temperature F	79.7	79.7
Liquid Bulk Temperature	65.37	65.37
Vapor Molecular Weight Ib/Ibmol	36.40	36.40
Antoine's Coefficient A	N/A	N/A
Antoine's Coefficient B	N/A	N/A
Antoine's Coefficient C	N/A	N/A
Type of Substance (for use in calculations)	Crude	Crude
Vapor Pressure at Daily Av Liquid Surf Temp, psia	7 78	7 78
Vapor Pressure at Daily Min Liquid Surf Temp, poid	6.50	6.50
Vapor Pressure at Daily Max. Liquid Surf. Temp., psia	9.23	9.23
Vapor Pressure Calculation Method	AP-42 Figure 7.1-13b: RVP=9.28	AP-42 Figure 7.1-13b: RVP=9.28
Vapor Density Ib/ft^3	0 049909	0 049909
Daily Vapor Pressure range, psi	2 728	2 728
Breather Vent Pressure Setting, psig	0.0300	0.0300
Breather Vent Vicuum Setting, psig	-0.0300	-0.0300
Breather Vent Pressure Setting Bange Insi	0.0000	0.0000
Ambient Pressure, psia	12.9	12.9
Vanor Space Expansion Factor	0.6042	0.6042
Vented Vapor Saturation Factor	0.270	0.0012
Annual Turnovers	202.47	230.08
Turnover Factor	1 00	1 00
Working Loss Product Factor	0.75	0.75
Standing Storage Loss Ib/ur	3 679 55	36.70
Working Loss, Ib/yr	16 874 45	101 76
Total Lassa Ib/yr	10,0/4.40	191./0
I Utal LUSSES, ID/yI	20,000	220.04
Standing Storage Loss, IPY	1.84	0.02
	8.44	0.10
Total Losses, TPY	10.28	0.11

Based on AP-42, June 2020, Section 7.1.3.1.

Note: Produced water tank emissions are conservatively calculated using condensate assuming 1% is emitted. The lb/yr and TPY emission estimates represent the 1% emitted.

Oil Loading Emissions Calculations

Loading Emission Summary

		Pre-Co	ntrol	Post-Co	ontrol
Component	Weight Percent of VOC ⁽¹⁾	Maximum	Annual Emissions	Maximum	Annual Emissions
		Emissions (lb/hr)	(tons/yr)	Emissions (lb/hr)	(tons/yr)
Benzene	0.49%	0.18	0.07	0.18	0.07
Toluene	1.48%	0.53	0.20	0.53	0.20
E-benzene	0.32%	0.11	0.04	0.11	0.04
Xylenes	1.64%	0.59	0.22	0.59	0.22
n-Hexane	1.34%	0.48	0.18	0.48	0.18
VOC Content	100.00%	36.07	13.59	36.07	13.59

Supplemental Information:

Oil Throughput	440 BOPD/entire facility
Max. Oil Loading Throughput:	6,745,200 gals per yr (assuming 100 % oil)
Vapor MW:	36.40 (Based on similar, nearby facility Gas/Liquids Analysis
Paint Factor (α):	0.71 Gray/Medium
Daily Avg Ambient Temperature:	61.70 F (Based on AP-42 Chapter 7 Table 7.1-7)
Daily Max Ambient Temperature:	93.90 F (Based on AP-42 Chapter 7 Table 7.1-7)
Avg Bulk Liquid Temperature:	65.37 F (Based on AP-42 Chapter 7 Table 7.1-7)
	525.37 R
Max Bulk Liquid Temperature:	97.16 F (Based on AP-42 Chapter 7 Table 7.1-7)
	557.16 R
Avg TVP at Bulk Temperature:	7.78 psia (Based on AP-42 Chapter 7 calculations)
Max TVP at Bulk Temperature:	9.23 psia (Based on AP-42 Chapter 7 calculations)
Saturation Factor:	0.60
Control:	None
Capture Efficiency:	0%
Control Efficiency:	0%
•	

Loading Loss Determination:

AP-42 Loading Loss Equation⁽²⁾:

- L = 12.46 SPM/T
- where:

L = Loading Losses (lb/1000 gal)

- S = Saturation Factor (based on tank and loading type)⁽³⁾
- P = True Vapor Pressure (psia)
- M = Molecular Weight of Vapor
- T = Temperature of Bulk Liquid $(R)^{(4)}$

Loading (L) =	Average Annual Emissions:	Maximum Hourly Emissions ⁽⁵⁾ :
lb/10 ³ gallons	4.03	4.51
lb/yr	27,185.22	30,411.55
tons/yr	13.59	-
hrs/yr	843.15	843.15
lb/hr	32.24	36.07

Notes:

(1) Light liquid speciation is based on the representative analysis.

(2) AP-42 Section 5.2, Equation 1 (January 1995)

(3) AP-42 Section 5.2. Table 5.2-1, Saturation Factors for Calculating Petroleum Liquid Loading Losses

(4) AP-42 Section 7.1, Equation 1-28 ($T_B = T_{AA} + 6\alpha - 1$)

(5) Assuming loading of 1 truck @ 8000 gallons per hour. Max. hourly based on condensate loading rate and avg. hourly emissions based on total condensate production.

Example Calculations

$L_L =$	12.46	0.60	7.8 psia	36.4 lb	=	4.03 lb
			525.4 R	lb-mol		1000 gal
1 -	110 hbla	40 mal	265 day	4.00 lb	1	27195 22 lba
$L_L =$	440 DDIS	42 gai	365 Uay	4.03 ID	=	27165.23 IDS
	day	bbl	year	1000 gal		year
,	07405 00 11	I 400	Í			
$L_L =$	2/185.23 Ibs	1 ton			=	13.59 tons
	year	2000 lbs				year
$L_L =$	440 bbls	42 gal	365 day	1 hr	=	843.15 hrs
	day	bbl	year	8000 gal	-	year
$L_{I} =$	27185.23 lbs	vear	1		-	36.07 lb
	year	843.15 hrs				hr
	L_{L}	= 12.46 <u>SPM</u>			(1)	

where:

 $L_{\rm L}$ = loading loss, pounds per 1000 gallons (lb/10^3 gal) of liquid loaded

S = a saturation factor (see Table 5.2-1)
 P = true vapor pressure of liquid loaded, pounds per square inch absolute (psia) (see Section 7.1, "Organic Liquid Storage Tanks")
 M = molecular weight of vapors, pounds per pound-mole (lb/lb-mole) (see Section 7.1, "Organic Liquid Storage Tanks")
 T = temperature of bulk liquid loaded, °R (°F + 460)

5.2-4

EMISSION FACTORS

6/08

Table 5.2-1. SATURATION (S) FACTORS FOR CALCULATING PETROLEUM LIQUID LOADING LOSSES

Cargo Carrier	Mode Of Operation	S Factor
Tank trucks and rail tank cars	Submerged loading of a clean cargo tank	0.50
	Submerged loading: dedicated normal service	0.60
	Submerged loading: dedicated vapor balance service	1.00
	Splash loading of a clean cargo tank	1.45
	Splash loading: dedicated normal service	1.45
	Splash loading: dedicated vapor balance service	1.00
Marine vessels ^a	Submerged loading: ships	0.2
	Submerged loading: barges	0.5

For products other than gasoline and crude oil. For marine loading of gasoline, use factors from Table 5.2-2. For marine loading of crude oil, use Equations 2 and 3 and Table 5.2-3.

6/08

Petroleum Industry

5.2-5

	Vapor	Liquid	True Vapor Pressure, PVA (psi)							
Petroleum Liquid	Molecular Weight at 60°F, M _V (lb/lb-mole)	Density At 60°F, W _L (1b/gal)	40°F	50°F	60°F	70 ° F	80°F	90°F	100°F	
Crude oil RVP 5	50	7.1	1.8	2.3	2.8	3.4	4.0	4.8	5.7	
Distillate fuel oil No. 2	130	7.1	0.0031	0.0045	0.0065	0.0090	0.012	0.016	0.022	
Gasoline RVP 7	68	5.6	2.3	2.9	3.5	4.3	5.2	6.2	7.4	
Gasoline RVP 7.8	68	5.6	2.5929	3.2079	3.9363	4.793	5.7937	6.9552	8.2952	
Gasoline RVP 8.3	68	5.6	2.7888	3.444	4.2188	5.1284	6.1891	7.4184	8.8344	
Gasoline RVP 10	66	5.6	3.4	4.2	5.2	6.2	7.4	8.8	10.5	
Gasoline RVP 11.5	65	5.6	4.087	4.9997	6.069	7.3132	8.7519	10.4053	12.2949	
Gasoline RVP 13	62	5.6	4.7	5.7	6.9	8.3	9.9	11.7	13.8	
Gasoline RVP 13.5	62	5.6	4.932	6.0054	7.2573	8.7076	10.3774	12.2888	14.4646	
Gasoline R.VP 15.0	60	5.6	5.5802	6.774	8.1621	9.7656	11.6067	13.7085	16.0948	
Jet kerosene	130	7.0	0.0041	0.0060	0.0085	0.011	0.015	0.021	0.029	
Jet naphtha (JP-4)	80	6.4	0.8	1.0	1.3	1.6	1.9	2.4	2.7	
Residual oil No. 6	190	7.9	0.00002	0.00003	0.00004	0.00006	0.00009	0.00013	0.00019	

Table 7.1-2. PROPERTIES (My, $\text{P}_{\texttt{VA}},\,\text{W}_{\texttt{L}})$ of selected petroleum liquids a

^a References 10 and 11

Water Loading Emission Calculations

Loading Emission Summary

		Pre-Co	ontrol	Post-Control		
Component	Weight Percent		Annual		Annual	
Component	of VOC ⁽¹⁾	Maximum	Emissions	Maximum	Emissions	
		Emissions (lb/hr)	(ton/yr)	Emissions (lb/hr)	(ton/yr)	
Benzene	0.49%	0.00	0.00	0.00	0.00	
Toluene	1.48%	0.01	0.00	0.01	0.00	
E-benzene	0.32%	0.00	0.00	0.00	0.00	
Xylenes	1.64%	0.01	0.00	0.01	0.00	
n-Hexane	1.34%	0.00	0.00	0.00	0.00	
VOC Content	100.00%	0.36	0.15	0.36	0.15	

Supplemental Information:

Water Throughput:	500	BWPD/entire facility
Max. Water Loading Throughput:	7,665,000	gallons per yr of produced water
Vapor MW:	36.40	(Based on similar, nearby facility Gas/Liquids Analysis)
Paint Factor (α):	0.71	Gray/Medium
Daily Avg Ambient Temperature:	61.70	F (Based on AP-42 Chapter 7 Table 7.1-7)
Daily Max Ambient Temperature:	93.90	F (Based on AP-42 Chapter 7 Table 7.1-7)
Avg Bulk Liquid Temperature:	65.37	F (Based on AP-42 Chapter 7 Table 7.1-7)
	525.37	R
Max Bulk Liquid Temperature:	97.16	F (Based on AP-42 Chapter 7 Table 7.1-7)
	557.16	R
Avg TVP at Bulk Temperature:	7.78	psia (Based on AP-42 Chapter 7 calculations)
Max TVP at Bulk Temperature:	9.23	psia (Based on AP-42 Chapter 7 calculations)
Saturation Factor:	0.60	
Control:	None	
Capture Efficiency:	0%	
Control Efficiency:	0%	
,		

Loading Loss Determination:

AP-42 Loading Loss Equation⁽²⁾:

L = 12.46 SPM/T

where:

L = Loading Losses (lb/1000 gal)

- S = Saturation Factor (based on tank and loading type)⁽³⁾
- P = True Vapor Pressure (psia)
- M = Molecular Weight of Vapor
- T = Temperature of Bulk Liquid $(R)^{(4)}$

Loading (L) =	Average Annual Emissions:	Maximum Hourly Emissions ⁽⁵⁾ :
lb/10 ³ gallons	4.03	4.51
lb/yr	308.92	345.59
tons/yr	0.15	-
hrs/yr	958.13	958.13
lb/hr	0.32	0.36

Notes:

(1) Light liquid speciation is based on the representative analysis. Water loading emissions estimates use oil/condensate, assuming 1% is emitted. (2) AP-42 Section 5.2, Equation 1 (January 1995)

(3) AP-42 Section 5.2. Table 5.2-1, Saturation Factors for Calculating Petroleum Liquid Loading Losses

(4) AP-42 Section 7.1, Equation 1-28 ($T_B = T_{AA} + 6\alpha - 1$)

(5) Assuming loading of 1 truck @ 8000 gallons per hour. Max. hourly based on condensate loading rate and avg. hourly emissions based on total condensate and water production.

Example Calculations:

 $L_{L} = 12.46 \frac{SPM}{T}$ (1)

where:

 $\rm L_{\rm L}$ = loading loss, pounds per 1000 gallons (lb/103 gal) of liquid loaded

 S = a saturation factor (see Table 5.2-1)
 P = true vapor pressure of liquid loaded, pounds per square inch absolute (psia) (see Section 7.1, "Organic Liquid Storage Tanks")
 M = molecular weight of vapors, pounds per pound-mole (lb/lb-mole) (see Section 7.1, "Organic Liquid Storage Tanks")
 T = temperature of bulk liquid loaded, "R ("F + 460) М

5.2-4

EMISSION FACTORS

Table 5.2-1. SATURATION (S) FACTORS FOR CALCULATING PETROLEUM LIQUID LOADING LOSSES

Cargo Carrier	Mode Of Operation	S Factor
Tank trucks and rail tank cars	Submerged loading of a clean cargo tank	0.50
	Submerged loading: dedicated normal service	0.60
	Submerged loading: dedicated vapor balance service	1.00
	Splash loading of a clean cargo tank	1.45
	Splash loading: dedicated normal service	1.45
	Splash loading: dedicated vapor balance service	1.00
Marine vessels ^a	Submerged loading: ships	0.2
	Submerged loading: barges	0.5

For products other than gasoline and crude oil. For marine loading of gasoline, use factors from Table 5.2-2. For marine loading of crude oil, use Equations 2 and 3 and Table 5.2-3.

6/08

Petroleum Industry

5.2-5

6/08

	Vapor	Liquid	True Vapor Pressure, PVA (psi)							
Petroleum Liquid	Molecular Weight at 60°F, M _V (lb/lb-mole)	Density At 60°F, W _L (1b/gal)	40°F	50°F	60°F	70 ° F	80°F	90°F	100°F	
Crude oil RVP 5	50	7.1	1.8	2.3	2.8	3.4	4.0	4.8	5.7	
Distillate fuel oil No. 2	130	7.1	0.0031	0.0045	0.0065	0.0090	0.012	0.016	0.022	
Gasoline RVP 7	68	5.6	2.3	2.9	3.5	4.3	5.2	6.2	7.4	
Gasoline RVP 7.8	68	5.6	2.5929	3.2079	3.9363	4.793	5.7937	6.9552	8.2952	
Gasoline RVP 8.3	68	5.6	2.7888	3.444	4.2188	5.1284	6.1891	7.4184	8.8344	
Gasoline RVP 10	66	5.6	3.4	4.2	5.2	6.2	7.4	8.8	10.5	
Gasoline RVP 11.5	65	5.6	4.087	4.9997	6.069	7.3132	8.7519	10.4053	12.2949	
Gasoline RVP 13	62	5.6	4.7	5.7	6.9	8.3	9.9	11.7	13.8	
Gasoline RVP 13.5	62	5.6	4.932	6.0054	7.2573	8.7076	10.3774	12.2888	14.4646	
Gasoline R.VP 15.0	60	5.6	5.5802	6.774	8.1621	9.7656	11.6067	13.7085	16.0948	
Jet kerosene	130	7.0	0.0041	0.0060	0.0085	0.011	0.015	0.021	0.029	
Jet naphtha (JP-4)	80	6.4	0.8	1.0	1.3	1.6	1.9	2.4	2.7	
Residual oil No. 6	190	7.9	0.00002	0.00003	0.00004	0.00006	0.00009	0.00013	0.00019	

Table 7.1-2. PROPERTIES (My, $\text{P}_{\texttt{VA}},\,\text{W}_{\texttt{L}})$ of selected petroleum liquids a

^a References 10 and 11

Cimarex Energy Co. Tres Equis State Facility Composition Analysis

Representative Liquid Analysis (File Name: Hornsby 35 Federal No. 10H LP)*

				· · · · ·		
		Molecular				Weight Fraction
		Weight	grams per		Weight	of C3+
		(grams/mole,	100 moles		Fraction of	Hydrocarbons
Component	mole %	lb/lb-mol)	of gas	weight %	Total Sample	Only
hydrogen	0.0000	2.01588	0	0.0000	0.0000	
helium	0.0000	4.0026	0	0.0000	0.0000	
nitrogen	0.0696	28.01340	2	0.0133	0.0001	
CO2	0.0207	44.00950	1	0.0062	0.0001	
H2S	0.0000	34.08188	0	0.0000	0.0000	
methane (C1)	0.8166	16.04246	13	0.0892	0.0009	
ethane (C2)	2.0014	30.06904	60	0.4095	0.0041	
propane (C3)	3.8386	44.09562	169	1.1519	0.0115	0.0116
butanes (C4)	5.3207	58.12220	309	2.1046	0.0210	0.0212
pentanes (C5)	6.2285	72.14878	449	3.0582	0.0306	0.0307
benzene	0.9260	78.110000	72	0.4923	0.0049	0.0049
other hexanes (C6)	9.5222	86.18000	821	5.5133	0.0551	0.0554
toluene	2.3497	92.140000	217	1.4735	0.0147	0.0148
other heptanes (C7)	11.5381	100.20000	1156	7.7830	0.0778	0.0782
ethylbenzene	0.4364	106.170000	46	0.3153	0.0032	0.0032
xylenes (o, m, p)	2.2570	106.170000	240	1.6308	0.0163	0.0164
other octanes (C8)	9.5729	114.23000	1094	7.2621	0.0726	0.0730
nonanes (C9)	7.1789	128.26000	921	6.1896	0.0619	0.0622
decanes plus (C10+)	37.9227	242.2000	9185	62.5072	0.6251	0.6283
Totals:	100.0000	147.55	14754.74	100.00	1.0000	1.0000
VOC (Non-methane, Non-	-ethane hydr	ocarbons)				
VOC content of total samp	le					
VOC weight% =	99.48					
VOC weight fraction =	0.99					
-						
VOC content of hydrocarbo	on fraction or	lly				
VOC weight% =	99.50					
VOC weight fraction =	1.00					
Ū.						
Hvdrogen Sulfide						
H2S weight% =	0 0000					
H2S weight fraction =	0.0000					
H2S $ppm_v =$	0.20					
H2S ppmwr=	0.05					
	0.00					
N Havana						
N-Hexane	a a man la					
IN-Hexarie content of total	sample	I				
N-Hexane weight% =	1.34					
IN-Hexane weight fraction	0.01					
-	0.01					
N-Hexane content of hydro	ocarbon fracti	on only				
N-Hexane weight% =	1.34					
N-Hexane weight fraction						
=	0.01					

*Note: The Hornsby 35 Federal No. 10H LP oil analysis is a representative analysis with similar pressure and API gravity in the same reservoir.

 ** The extended liquid and gas analyses provided with the application are representative because they originated from the same producing reservoir/formation.

Cimarex Energy Co. Tres Equis State Facility Composition Analysis

Representative Heater Treater Flash Gas Analysis (File Name: Hornsby 35 Federal No. 10H LP)

		, , , -		,	,		
		Molecular Weight	grams per		Weight	Weight Fraction of C3+	
		(grams/mol	100 moles		Fraction of	Hydrocarbons	
Component	mole %	e, lb/lb-mol)	of gas	weight %	Total Sample	Only	
hydrogen	0.0000	2.01588	0	0.0000	0.0000		
helium	0.0000	4.0026	0	0.0000	0.0000		
nitrogen	1.0349	28.01340	29	1.1484	0.0115		
CO2	0.6403	44.00950	28	1.1162	0.0112		
H2S	0.0000	34.08188	0	0.0000	0.0000		
methane (C1)	61.3284	16.04246	984	38.9721	0.3897		
ethane (C2)	20.5122	30.06904	617	24.4317	0.2443		
propane (C3)	10.1647	44.09562	448	17.7546	0.1775	0.5172	
butanes (C4)	3.9465	58.12220	229	9.0861	0.0909	0.2647	
pentanes (C5)	1.4200	72.14878	102	4.0582	0.0406	0.1182	
benzene	0.0478	78.110000	4	0.1478	0.0015	0.0043	
other hexanes (C6)	0.5536	86.18000	48	1.8900	0.0189	0.0551	
toluene	0.0502	92.140000	5	0.1833	0.0018	0.0053	
other heptanes (C7)	0.2658	100.20000	27	1.0551	0.0106	0.0307	
ethylbenzene	0.0019	106.170000	0	0.0079	0.0001	0.0002	
xylenes (o, m, p)	0.0121	106.170000	1	0.0511	0.0005	0.0015	
other octanes (C8)	0.0215	114.23000	2	0.0974	0.0010	0.0028	
nonanes (C9)	0.0000	128.26000	0	0.0000	0.0000	0.0000	
decanes plus (C10+)	0.0000	142.29000	0	0.0000	0.0000	0.0000	
Totals:	100.0000	25.25	2525	100.00	1.0000		
VOC (Non-methane, Non-eth	nane hydroca	arbons)					
VOC weight fraction =	34.33 0.34						
VOC content of hydrocarbon f	raction only						
VOC weight% =	35.13						
VOC weight fraction =	0.35						
Hydrogen Sulfide		1	Constants:				
H2S weight% =	0.0000		453.5924	mol/lb-mol			
H2S weight fraction =	0.0000		0.064799	grams/grain			
H2S ppm _v =	0.00		385.48	scf/lb-mol			
H2S ppm _{WT} =	0.0000						
H_2S grains/100 SCF =	0.0000						
	SWEET GAS	5				** The extended liquid	
						gas analyses provide	
N-Hexane		the application are					
N-Hexane content of total sam		originated from the se					
N-Hexane weight% = 1.89 producing							
N-Hexane weight fraction = 0.02 reservoir/formation.							
N-Hexane content of hydrocar	bon fraction	only					
N-Hexane weight% = N-Hexane weight fraction =	1.93 0.02						
	1.02	1					

Cimarex Energy Co. Tres Equis State Facility Composition Analysis

Facility Gas Analysis (File Name: Tres Equis 3H Alloc)

, , ,		-,				
						Maight Fre 1
		Molecular			Mainht	weight Fraction
		Weight	grams per		weight Fraction of	of C3+
Component	molo %	(grams/mol	100 moles	woight %	Fraction of	Hydrocarbons
hvdrogen	0,0000	2,01588	oi yas	0.0000		Only
helium	0.0000	4.0026	0	0.0000	0.0000	
nitrogen	2,1610	28.01340	61	2.8359	0.0284	
CO2	0.1760	44.00950	8	0.3629	0.0036	
H2S	0.0000	34.08188	0	0.0000	0.0000	
methane (C1)	75.9510	16.04246	1218	57.0795	0.5708	
ethane (C2)	12.5700	30.06904	378	17.7064	0.1771	
propane (C3)	5.8490	44.09562	258	12.0824	0.1208	0.5488
butanes (C4)	2.2410	58.12220	130	6.1018	0.0610	0.2772
pentanes (C5)	0.6330	72.14878	46	2.1395	0.0214	0.0972
benzene	0.0000	78.110000	0	0.0000	0.0000	0.0000
other hexanes (C6)	0.4190	86.18000	36	1.6916	0.0169	0.0768
toluene	0.0000	92.140000	0	0.0000	0.0000	0.0000
other heptanes (C7)	0.0000	100.20000	0	0.0000	0.0000	0.0000
ethylbenzene	0.0000	106.170000	0	0.0000	0.0000	0.0000
xylenes (o, m, p)	0.0000	106.170000	0	0.0000	0.0000	0.0000
other octanes (C8)	0.0000	114.23000	0	0.0000	0.0000	0.0000
nonanes (C9)	0.0000	128.26000	0	0.0000	0.0000	0.0000
decanes plus (CTU+)	100.0000	142.29000	2125	100.00	0.0000	0.0000
VOC (Non-mothano, Non-oth	ano hydrood	21.00	2130	100.00	1.0000	
VOC content of total sample	iane nyuroca	irbons)				
VOC content of total sample	22.02	1				
VOC weight fraction =	0.22					
		_				
VOC content of hydrocarbon f	raction only	1				
VOC weight% =	22.74					
VOC weight fraction =	0.23					
Hydrogen Sulfide			Constants:			
H2S weight% =	0.0000	1	453 5924	mol/lb-mol		
H2S weight fraction =	0.0000		0.064799	grams/grain		
H2S ppm _V =	0.00		385.48	scf/lb-mol		
H2S ppm _{wT} =	0.0000		32.064	Mol. Wt. S		
H ₂ S grains/100 SCF =	0.0000					
Sulfur grains/10 ⁶ SCF =	0.00					
Sulfur weight% =	0.00000					
ő	SWEET GAS	S				
N-Hexane						
IN-Hexane content of total sam	<u>ipie</u>	1				
N-Hexane weight% –	1.69					
N-Hexane weight fraction =	0.02					
	0.02	I				
	han fua t'					
N-Hexane content of hydrocar	bon traction of	<u>oniy</u> I				
N-Hexane weight% =	1.75					
N-Hexane weight fraction =	0.02					
		1	Constants:			
Gas Molecular Weight =	21.35]	28.97	air mw		
Gas Specific Gravity =	0.74	1	385.48	scf/lb-mol		
Gas Throughput						
(MMscf/day)=	-	l				
Lona Tons Sulfur		1				
Compounds per Day =	-					
		1				

Section 6

Information Used to Determine Emissions

Check the box for each type of information submitted. This documentation is required. If applicable to the facility.

Failure to include applicable supporting documentation may result in application denial.

Specifications for control equipment, including control efficiency specifications and sufficient engineering data for verification of control equipment operation, including design drawings, test reports, and design parameters that affect normal operation.

Engine or Generator Manufacturer specifications

 \boxtimes Catalyst Manufacturer specifications (If a catalyst is being utilized to reduce emissions, the catalyst manufacturer emission factors must be used in all emission calculations. A 25% safety factor may be applied to each pollutant.

 \boxtimes NSPS JJJJ emission factors **may not** be utilized in lieu of catalyst manufacture specifications when a catalyst is installed, and the catalysts manufacturer achieves higher control efficiency.

Flare Manufacturer specifications

Oil/Liquid Analysis: This data is required to match the inputs in all applicable emission calculations. For facilities that have not been constructed and a representative analysis is used it cannot be older than 1 year. For existing facilities, the gas analyses required by Condition A201.A (must be 1 year old or less).

 \boxtimes Gas Analysis (must be 1 year old or less) This data is required to match the inputs in all applicable emission calculations.

Extended Gas Analysis (must be 1 year old or less) This data is required to match the inputs in all applicable emission calculations.

 \square If requesting to use a representative gas sample, include a discussion of why the sample is representative for this facility and an explanation of how it is representative (e.g., same reservoir, same similar API gravity, similar composition).

☐ If test data are used, to support emissions calculations or to establish allowable emission limits, include a copy of the complete test report. If the test data are for an emissions unit other than the one being permitted, the emission units must be identical. Test data may not be used if any difference in operating conditions of the unit being permitted and the unit represented in the test report significantly effect emission rates.

Fuel specifications sheet.

If computer models are used to estimate emissions, include an input summary and a detailed report, and a disk containing the input file used to run the model.

For tank-flashing emissions, include a discussion of the method used to estimate tank-flashing emissions, accuracy of the model, the **input and output** summary from simulation models and software, all calculations, documentation of any assumptions used, descriptions of sampling methods and conditions, copies of any lab sample analysis.

Representative Liquid and Heater Treater Flash Gas Analysis Justification: Same reservoir, similar conditions

Tank Flashing Emissions Method: Promax was utilized to estimate tank and VRT flashing emissions using a representative liquid analysis from the same reservoir.

Attached Documentation:

- Engine Manufacturer Specifications
- Site-Specific Gas Analysis (a.k.a. fuel specifications sheet)
- Representative Extended Liquid Analysis (same reservoir)
- Representative Heater Treater Flash Gas Analysis (same reservoir)
- Promax Simulation Screenshot(s)
- VRT and Storage Tank Flashing Calculation Methodology
- Flare and Combustor Manufacturer Guarantee
- AP-42 factors are included in Section 5 with corresponding calculations

EMISSION GUARANTEE

ENGINE DATA

Engine Model	CAT G3306TA
Power	203 bhp
Fuel	PQNG
Exhaust Flow Rate	925 acfm
Exhaust Temperature	1044° F

CATALYST DATA

Catalyst Model	DC47-5 CC
Туре	NSCR
# of Elements	1
Cell Density	300 cpsi
Approx. Dimensions	10" × 3.75"

EMISSION REQUIREMENTS

<i>a</i> to	Exhaust Component	Engine Output (g/bhp-hr)	Warranted Converter Output (g/bhp-hr)	Actual Converter Efficiency (% Reduction)
	NOx	12.0	0.7	94
	CO	12.0	2.0	92
	voc	2.0	0.7	80

The catalyst model selection is based upon the reduction requirements above. Any variance in these requirements may affect the price and model required.

G3306 NON-CURRENT

GAS COMPRESSION APPLICATION

GAS ENGINE SITE SPECIFIC TECHNICAL DATA

CATERPILLAR®

Tres Equis State 6H grams

ENGINE SPEED (rpm):	1800	RATING STRATEGY:	STANDARD
COMPRESSION RATIO:	8	RATING LEVEL:	CONTINUOUS
AFTERCOOLER TYPE:	SCAC	FUEL SYSTEM:	HPG IMPCO
AFTERCOOLER WATER INLET (°F):	130	SITE CONDITIONS:	
JACKET WATER OUTLET (°F):	210	FUEL:	Cimarex - Tres Equis State 6H
ASPIRATION:	TA	FUEL PRESSURE RANGE(psig): (See note 1)	12.0-24.9
COOLING SYSTEM:	JW+OC, AC	FUEL METHANE NUMBER:	45.5
CONTROL SYSTEM:	MAG	FUEL LHV (Blu/scf):	1238
EXHAUST MANIFOLD:	WC	ALTITUDE(ft):	3000
COMBUSTION:	STANDARD SETTING	MAXIMUM INLET AIR TEMPERATURE(°F):	105
EXHAUST OXYGEN (% O2):	2.0	STANDARD RATED POWER:	203 bhp@1800rpm
SET POINT TIMING:	25		

					TING AT N	
RATING	NOTES	LOAD	100%	100%	75%	56%
ENGINE POWER (WITHOUT FAN)	(2)	bho	203	182	136	102
INLET AIR TEMPERATURE	/	۴F	47	105	105	105
		D (() ()				
	(3)	Blu/bhp-hr	7945	8179	8763	9304
FUEL CONSUMPTION (HHV)	(3)	Btu/bhp-hr	8736	8993	9636	10231
AIR FLOW (@iniet air temp, 14.7 psia) (WET)	(4)(5)	ft3/min	303	312	252	203
AIR FLOW (WEI)	(4)(5)	lb/hr	1421	1315	1063	857
FUEL FLOW (60°F, 14./ psia)		scfm	22	20	16	13
INLET MANIFOLD PRESSURE	(6)	in Hg(abs)	38.1	35.5	29.0	23.2
EXHAUST TEMPERATURE - ENGINE OUTLET	(7)	°F	1055	1038	1005	977
EXHAUST GAS FLOW (@engine outlet temp, 14.5 psia) (WET)	(8)(5)	ft3/min	997	912	721	570
LEXHAUST GAS MASS FLOW (WET)	(8)(5)	lb/hr	1500	1388	1121	903
EMISSIONS DATA - ENGINE OUT	1					
NOx (as NO2)	(9)(10)	g/bhp-hr	27.45	26.03	22.61	20.78
со	(9)(10)	g/bhp-hr	2.44	2.50	2.55	2.45
THC (mol. wt. of 15.84)	(9)(10)	g/bhp-hr	0.86	0.85	0.92	1.09
NMHC (mol. wt. of 15.84)	(9)(10)	g/bhp-hr	0.45	0.45	0.48	0.57
NMNEHC (VOCs) (mol. wt. of 15.84)	(9)(10)(11)	g/bhp-hr	0.27	0.27	0.29	0.35
HCHO (Formaldehyde)	(9)(10)	g/bhp-hr	0.15	0.15	0.16	0.19
CO2	(9)(10)	g/bhp-hr	536	549	586	628
EXHAUST OXYGEN	(9)(12)	% DRY	2.0	2.0	2.1	2.6
HEAT REJECTION						
HEAT REJ. TO JACKET WATER (JW)	(13)	Btu/min	8492	8198	7219	6062
HEAT REJ. TO ATMOSPHERE	(13)	Btu/min	1075	992	797	630
HEAT REJ. TO LUBE OIL (OC)	(13)	Btu/min	1343	1296	1141	959
HEAT REJ. TO AFTERCOOLER (AC)	(13)(14)	Btu/min	838	838	236	13
						I,0
COOLING SYSTEM SIZING CRITERIA						
TOTAL JACKET WATER CIRCUIT (JW+OC)	(14)	Btu/min	10953			
TOTAL AFTERCOOLER CIRCUIT (AC)	(14)(15)	Btu/min	879	ļ		
A cooling system safety factor of 0% has been added to the cooling system sizing criteria.						

CONDITIONS AND DEFINITIONS Engine rating obtained and presented in accordance with ISO 3046/1, adjusted for fuel, site allitude and site inlet air temperature. 100% rating at maximum inlet air temperature is the maximum engine capability for the specified fuel at site altitude and maximum site inlet air temperature. Maximum rating is the maximum capability at the specified aftercooler inlet temperature for the specified fuel at site altitude and reduced inlet air temperature. Lowest load point is the lowest continuous duty operating load allowed. No overload permitted at rating shown.

For notes information consult page three. ***WARNINGS ISSUED FOR THIS RATING CONSULT PAGE 3***

Tres Equis State 6H grams

Engine Power vs. Inlet Air Temperature

Data represents temperature sweep at 3000 ft and 1800 rpm

Note: At site conditions of 3000 ft and 105°F inlet air temp., constant torque can be maintained down to 1400 rpm. The minimum speed for loading at these conditions is 1200 rpm.

G3306

NON-CURRENT

GAS COMPRESSION APPLICATION

G3306

NON-CURRENT

GAS COMPRESSION APPLICATION

GAS ENGINE SITE SPECIFIC TECHNICAL DATA

CATERPILLAR®

Tres Equis State 6H grams

NOTES

1. Fuel pressure range specified is to the engine fuel pressure regulator. Additional fuel train components should be considered in pressure and flow calculations.

2. Engine rating is with two engine driven water pumps. Tolerance is \pm 3% of full load.

3. Fuel consumption tolerance is ± 5.0% of full load data.

4. Air flow value is on a 'wet' basis. Flow is a nominal value with a tolerance of ± 5 %.

5. Inlet and Exhaust Restrictions must not exceed A&I limits based on full load flow rates from the standard technical data sheet.

6. Inlet manifold pressure is a nominal value with a tolerance of ± 5 %.

7. Exhaust temperature is a nominal value with a tolerance of (+)63°F, (-)54°F.

8. Exhaust flow value is on a "wet" basis. Flow is a nominal value with a tolerance of \pm 6 %.

9. Emissions data is at engine exhaust flange prior to any after treatment.

10. Emission values are based on engine operating at steady state conditions. Fuel methane number cannot vary more than ± 3. Values listed are higher than nominal levels to allow for instrumentation, measurement, and engine-to-engine variations. They indicate "Not to Exceed" values. THC, NMHC, and NMNEHC do not include aldehydes. Part load data may require engine adjustment.

11. VOCs - Volatile organic compounds as defined in US EPA 40 CFR 60, subpart JJJJ

12. Exhaust Oxygen tolerance is ± 0.5.

13. Heat rejection values are nominal. Tolerances, based on treated water, are ± 10% for jacket water circuit, ± 50% for radiation, ± 20% for lube oil circuit, and ± 5% for aftercooler circuit.

14. Aftercooler heat rejection includes an aftercooler heat rejection factor for the site elevation and inlet air temperature specified. Aftercooler heat rejection values at part load are for reference only. Do not use part load data for heat exchanger sizing.

15. Cooling system sizing criteria are maximum circuit heat rejection for the site, with applied tolerances.

WARNING(S): 1. The lower heating value of the fuel is higher than or equal to 1050 Btu/scf and lower than 1400 Btu/scf. May require on-site adjustment or tuning of the fuel system hardware.

RECOMMENDED ACTION For additional information please contact your Caterpillar engine dealer.

FESCO, Ltd. 1100 FESCO Avenue - Alice, Texas 78332

For: Cimarex Energy Co. 202 S. Cheyenne Avenue, Suite 1000 Tulsa, Oklahoma 74105

Sample: Hornsby 35 Federal No. 10H Last Stage Separator Hydrocarbon Liquid Sampled @ 32 psig & 70 °F

Date Sampled: 09/12/2020

Job Number: 202481.012

CHROMATOGRAPH EXTENDED ANALYSIS - GPA 2186-M

COMPONENT	MOL %	LIQ VOL %	WT %
Nitrogen	0.070	0.013	0.013
Carbon Dioxide	0.021	0.006	0.006
Methane	0.817	0.235	0.089
Ethane	2.001	0.909	0.410
Propane	3.839	1.796	1.152
Isobutane	1.143	0.635	0.452
n-Butane	4.178	2.237	1.653
2,2 Dimethylpropane	0.038	0.025	0.019
Isopentane	2.425	1.506	1.191
n-Pentane	3.765	2.318	1.849
2,2 Dimethylbutane	0.023	0.016	0.013
Cyclopentane	0.000	0.000	0.000
2,3 Dimethylbutane	0.216	0.150	0.127
2 Methylpentane	1.107	0.780	0.649
3 Methylpentane	0.695	0.482	0.408
n-Hexane	2.290	1.599	1.343
Heptanes Plus	77.374	87.293	<u>90.628</u>
Totals:	100.000	100.000	100.000

Characteristics of Heptanes Plus:		
Specific Gravity	0.8210	(Water=1)
°API Gravity	40.86	@ 60°F
Molecular Weight	172.1	
Vapor Volume	14.76	CF/Gal
Weight	6.84	Lbs/Gal

Characteristics of Total Sample:

•		
Specific Gravity	0.7907	(Water=1)
°API Gravity	47.44	@ 60°F
Molecular Weight	146.9	
Vapor Volume	16.65	CF/Gal
Weight	6.59	Lbs/Gal

Base Conditions: 15.025 PSI & 60 °F

Certified: FESCO, Ltd. - Alice, Texas

Sampled By: (24) D. Field Analyst: ANB Processor: ANBdjv Cylinder ID: W-2692

David Dannhaus 361-661-7015

FESCO, Ltd.

TANKS DATA INPUT REPORT - GPA 2186-M

COMPONENT	Mol %	LiqVol %	Wt %
Carbon Dioxide	0.021	0.006	0.006
Nitrogen	0.070	0.013	0.013
Methane	0.817	0.235	0.089
Ethane	2.001	0.909	0.410
Propane	3.839	1.796	1.152
Isobutane	1.143	0.635	0.452
n-Butane	4.216	2.262	1.671
Isopentane	2.425	1.506	1.191
n-Pentane	3.765	2.318	1.849
Other C-6's	2.040	1.428	1.197
Heptanes	11.146	7.648	7.025
Octanes	14.530	11.103	10.506
Nonanes	7.179	6.485	6.190
Decanes Plus	37.923	57.960	62.507
Benzene	0.926	0.440	0.492
Toluene	2.350	1.336	1.473
E-Benzene	0.436	0.286	0.315
Xylenes	2.257	1.480	1.631
n-Hexane	2.290	1.599	1.343
2,2,4 Trimethylpentane	0.628	<u>0.554</u>	<u>0.488</u>
Totals:	100.000	100.000	100.000
Characteristics of Total Sample:			
Specific Gravity		0.7907	(Water=1)
°API Gravity	°API Gravity		@ 60°F

		\ /
°API Gravity	47.44	@ 60°F
Molecular Weight	146.9	-
Vapor Volume	16.65	CF/Gal
Weight	6.59	Lbs/Gal
Characteristics of Decanes (C10) Plus: Specific Gravity Molecular Weight	0.8528 242.2	(Water=1)

Characteristics of Atmospheric Sample:

°API Gravity	46.41	@ 60°F
Reid Vapor Pressure Equivalent (D-6377)	8.41	psi

QUALITY CONTROL CHECK					
Sampling					
Conditions Test Samples					
Cylinder Number		W-2692*	W-2585		
Pressure, PSIG	32	33	33		
Temperature, °F	70	70	70		

* Sample used for analysis
FESCO, Ltd.

TOTAL EXTENDED REPORT - GPA 2186-M

Job Number: 202481.012

COMPONENT	Mol %	LiqVol %	Wt %
Nitrogen	0.070	0.013	0.013
Carbon Dioxide	0.021	0.006	0.006
Methane	0.817	0.235	0.089
Ethane	2 001	0 909	0 4 1 0
Propane	3 839	1 796	1 152
Isobutane	1 143	0.635	0 452
n-Butane	4 178	2 237	1 653
2 2 Dimethylpropane	0.038	0.025	0.019
Isopentane	2 4 2 5	1 506	1 101
n-Pentane	3 765	2 318	1 849
2.2 Dimethylbutane	0.023	0.016	0.013
Cyclopentane	0.020	0.010	0.010
2.3 Dimethylbutane	0.000	0.000	0.000
2 Mothylpoptopo	1 107	0.130	0.127
2 Methylpentane	0.605	0.780	0.049
	0.095	1 500	0.400
Nethylovolopontono	2.290	1.599	1.343
Bonzono	0.026	0.959	0.914
Cueleboyene	0.920	0.440	0.492
	3.390	2.079	2.060
2-Methylhexane	1.019	0.804	0.695
	0.963	0.750	0.050
	0.628	0.554	0.488
Other C-7's	1.275	0.942	0.861
n-Heptane	2.697	2.113	1.839
	5.584	3.812	3.732
l oluene	2.350	1.336	1.473
Other C-8's	6.583	5.236	4.938
	2.362	2.055	1.836
	0.436	0.286	0.315
	1.716	1.131	1.240
O-Xylene	0.541	0.349	0.391
Other C-9's	5.583	4.959	4.796
	1.590	1.525	1.393
	5.377	5.249	5.170
Indecence (11)	1.200	1.311	1.210
Undecanes(11)	4.840	4.646	4.842
Dodecanes(12)	3.420	3.707	3.734
Tate da as e a (14)	3.298	3.820	3.928
Dentedeenee(14)	2.000	3.330	3.403
Heredoseneo(16)	2.225	2.901	J.119 2.546
Hentadocanos(17)	1 200	2.390	2.540
Ostadocanos(12)	1.399	2.104	2.200
Nexada serves (10)	1.307	2.070	2.232
Nonadecanes(19)	1.108	1.828	1.983
Elcosanes(20)	0.875	1.501	1.038
Heneicosanes(21)	0.766	1.383	1.518
Docosanes(22)	0.050	1.234	1.303
Tricosanes(23)	0.571	1.114	1.236
Tetracosanes(24)	0.493	0.995	1.109
renacosanes(25)	0.438	0.917	1.028
Hexacosanes(26)	0.390	0.848	0.954
$\square = \mu(a \cos a \cos (2r))$	0.357	0.803	0.908
OutaoUSalles(20)	0.314	0.731	0.029
$\frac{1}{2}$	0.200	0.000	0.701
Hentriacontanes Dluc(21±)	0.240	13 506	0.090
Total	100 000	100 000	100 000

Page 3 of 3

Hornsby 35 Federal No. 10H – Modeled HT Flash Composition

Properties	Flash Sep Gas	
Temperature(Total)	70*	°F
Pressure(Total)	32*	psig
Std Vapor Volumetric Flow(Total)	22.6	MSCFD
Molecular Weight(Total)	25.248	lb/lbmol
Gross Ideal Gas Heating Value(Total)	1470.4	Btu/ft^3

Composition Inlet Liquid Nitrogen(Mole Fraction, Total) 0.03697* % Carbon Dioxide(Mole Fraction, Total) 0.04426* % Methane(Mole Fraction, Total) 2.757* % Ethane(Mole Fraction, Total) 2.639* % Propane(Mole Fraction, Total) 4.053* % Isobutane(Mole Fraction, Total) 1.115* % n-Butane(Mole Fraction, Total) 4.047* % 2,2-Dimethylpropane(Mole Fraction, Total) 0.05156* % Isopentane(Mole Fraction, Total) 2.389* % n-Pentane(Mole Fraction, Total) 3.702* % 0.0222* % 2,2-Dimethylbutane(Mole Fraction, Total) 0* % Cyclopentane(Mole Fraction, Total) 0.2083* % 2,3-Dimethylbutane(Mole Fraction, Total) 1.068* % 2-Methylpentane(Mole Fraction, Total) 3-Methylpentane(Mole Fraction, Total) 0.6708* % 2.211* % Hexane(Mole Fraction, Total) Methylcyclopentane(Mole Fraction, Total) 1.541* % 0.894* % Benzene(Mole Fraction, Total) Cyclohexane(Mole Fraction, Total) 3.472* % 2-Methylhexane(Mole Fraction, Total) 0.9836* % 3-Methylhexane(Mole Fraction, Total) 0.9293* % 2,2,4-Trimethylpentane(Mole Fraction, Total) 0.6058* % Heptane(Mole Fraction, Total) 3.835* % 5.391* % Methylcyclohexane(Mole Fraction, Total) Toluene(Mole Fraction, Total) 2.268* % Octane(Mole Fraction, Total) 8.636* % Ethylbenzene(Mole Fraction, Total) 0.4213* % m-Xylene(Mole Fraction, Total) 1.657* % o-Xylene(Mole Fraction, Total) 0.5221* % Nonane(Mole Fraction, Total) 6.931* %

36.9* %

Decanes Plus(Mole Fraction, Total)

Hornsby 35 Federal No. 10H HP 2020 Analysis

Composition	Flash Sep Gas	
Nitrogen(Mole Fraction, Total)	1.035	%
Carbon Dioxide(Mole Fraction, Total)	0.6403	%
Methane(Mole Fraction, Total)	61.33	%
Ethane(Mole Fraction, Total)	20.51	%
Propane(Mole Fraction, Total)	10.16	%
Isobutane(Mole Fraction, Total)	1.131	%
n-Butane(Mole Fraction, Total)	2.815	%
2,2-Dimethylpropane(Mole Fraction, Total)	0.02709	%
Isopentane(Mole Fraction, Total)	0.6481	%
n-Pentane(Mole Fraction, Total)	0.7448	%
2,2-Dimethylbutane(Mole Fraction, Total)	0.00285	%
Cyclopentane(Mole Fraction, Total)	0	%
2,3-Dimethylbutane(Mole Fraction, Total)	0.01968	%
2-Methylpentane(Mole Fraction, Total)	0.09346	%
3-Methylpentane(Mole Fraction, Total)	0.05181	%
Hexane(Mole Fraction, Total)	0.1325	%
Methylcyclopentane(Mole Fraction, Total)	0.0926	%
Benzene(Mole Fraction, Total)	0.04777	%
Cyclohexane(Mole Fraction, Total)	0.1607	%
2-Methylhexane(Mole Fraction, Total)	0.02772	%
3-Methylhexane(Mole Fraction, Total)	0.02342	%
2,2,4-Trimethylpentane(Mole Fraction, Total)	0.01265	%
Heptane(Mole Fraction, Total)	0.07274	%
Methylcyclohexane(Mole Fraction, Total)	0.1079	%
Toluene(Mole Fraction, Total)	0.0341	%
Octane(Mole Fraction, Total)	0.05023	%
Ethylbenzene(Mole Fraction, Total)	0.001956	%
m-Xylene(Mole Fraction, Total)	0.006928	%
o-Xylene(Mole Fraction, Total)	0.00188	%
Nonane(Mole Fraction, Total)	0.01214	%
Decanes Plus(Mole Fraction, Total)	5.692e-06	%

Note: Vapor & Liquid throughputs are only used for reference

	NSERMOES Natural Gas Analysis	www.permianls.com 575.397.3713 2609 W Marland Hobbs NM 88240				C6+ Gas	Analysis Repor
9804G		NCW1471075 Tres Ed			Tres Equi	s 3H Alloc	
Sample Point Code		Sample Point Name				Sample Poi	nt Location
Laboratory Se	ervices	2020030	120	1906		J Regino - Sp	oot
Source Labor	atory	Lab File	No	Container Identity		Sampler	
USA		USA		USA		New Mexico)
District		Area Name		Field Name		Facility Name	
Feb 25, 2020 1	1:49	Feb 25,	2020 11:49	Ma	ar 5, 2020 09:31	Ма	r 5, 2020
Date Sampled		Date	e Effective		Date Received	Dat	e Reported
44.00		Torran	ce	118 @ 59			
Ambient Temp (°F)	Flow Rate (Mcf)	Analys	t	Press PSI @ Temp Source Condition	°F ns		
Cimarex Ene	rgy					NG	
Operator						Lab Source Descrip	tion
Component	Normalized Mol %	Un-Normalized Mol %	GPM	14.696	Gross Heating Valu	ues (Real, BTU/1 14.73 PSI	ft ³) : @ 60.00 °F
H2S (H2S)	0.0000	0		Dry	Saturated	Dry	Saturated
Nitrogen (N2)	2.1610	2.16062		1,261.0000	1,240.4	1,263.9	1,243.3
CO2 (CO2)	0.1760	0.17562			GPA2145-16 *Calculate	d at Contract Condition	ns
Methane (C1)	75.9510	75.95245		Relativ	e Density Real	Relative I	Density Ideal
Ethano (C2)	12 5700	12 56968	3 3610	().7406 cular Weight	0.	7382
	E 8400	E 04052	1 6110	2	1.3758		
	0.6620	0.66007	0.2170	-	C6+ Group	Properties	
	1.5700	1.57005	0.2170	-	Assumed C	Composition	
N-Butane (NC4)	1.5790	1.57895	0.4980	C6 - 60.00	00% C7 - 30	.000% C	8 - 10.000%
I-Pentane (IC5)	0.3170	0.3166	0.1160		Field O P	1 H2S PM	
N-Pentane (NC5)	0.3160	0.31622	0.1150	_			
Hexanes Plus (C6+)	0.4190	0.41908	0.1820	PROTREND STAT	US:	DATA SC	URCE:
TOTAL	100.0000	100.0000	6.1000	Passed By Valid	lator on Mar 5, 20	20 Importe	ed
hod(s): Gas C6+ - GPA 2261, Extend	ed Gas - GPA 2286, Calcula	tions - GPA 2172		First sample tal	DATOR REASON: (en @ this point, co	omposition look	s reasonable
evice Type: Gas Chroma evice Model: GC-2014	Analyzer Informa tograph Device Last C	tion Make: Shimadz al Date: Feb 27,	u 2020	VALIDATOR: Dustin Armstro VALIDATOR COM	ng I MENTS:		

Hornsby 35 Federal No. 10H LP

Flash

Properties

Hornsby 35 Federal No. 10H LP 2020

Note: Vapor & Liquid throughputs are only used for reference

Composition

Flash

VRT & OILTK1-2 Uncontrolled Flashing Emissions Calculation Methodology:

Production: <u>440 BOPD</u> VRT Flash Factor: <u>0.7673 lb VOC/bbl</u> (From Promax) Oil Tank Flash Factor: <u>0.1846 lb VOC/bbl</u> (From Promax) Number of Oil Tanks: 2

VRT Flash (lb/hr) = 440 BOPD / 24 hr/day * 0.7673 lb VOC/bbl

VRT Flash (lb/hr) = **14.07 lb/hr**

VRT Flash (TPY) = 440 BOPD * 365 day/yr * 0.7673 lb VOC/bbl / 2,000 lb/Ton

VRT Flash (TPY) = 61.61 TPY

Oil Tank Flash (lb/hr) = 440 BOPD / 24 hr/day * 0.1846 lb VOC/bbl / 2 Tanks

Oil Tank Flash (lb/hr) = 1.69 lb/hr

Oil Tank Flash (TPY) = 440 BOPD * 365 day/yr * 0.1846 lb VOC/bbl / 2,000 lb/Ton / 2 Tanks

Oil Tank Flash (TPY) = 7.41 TPY

SWTK1-2 Uncontrolled Flashing Emissions Calculation Methodology:

Production: **500 BWPD** Flash Factor: **1.252 lb/bbl** Percent Condensate: 1% Number of Water Tanks: 2

Water Tank Flash (lb/hr): 500 BWPD / 24 hr/day * 1.252 lb VOC/bbl * 1% / 2 tanks

Water Tank Flash (lb/hr): 0.13 lb/hr

Water Flash (TPY) = 500 BWPD * 365 day/yr * 1.252 lb VOC/bbl / 2,000 lb/Ton * 1% / 2 tanks

Water Flash (TPY) = 0.57 TPY

Vaprox Efficiency Guarantee

When operating our flare in accordance to NSPS 60.18 flare tip velocity rules, Vaprox guarantees that our flare is engineered to meet the most stringent emissions requirements while achieving up to 98% or greater VOC destruction.

Note: NSPS 60.18

60.18(c)(1) - Flare shall be operated with no visible emissions except for periods not to exceed a total of 5 minutes during any 2 consecutive hours.

60.18(f)(2) - Presence of a flare pilot flame shall be monitored by a thermocouple or equivalent device to detect the presence of a flame. Auto-ignition systems may be considered equivalent devices under state rules.

60.18(c)(3)(ii) - Flare is non-assist, has no make-up gas with waste gas net heating value > 200 Btu/scf (7.45 MJ/scm).

Section 7 Map(s)

<u>A map</u> such as a 7.5 minute topographic quadrangle showing the exact location of the source. The map shall also include the following:

The UTM or Longitudinal coordinate system on both axes	An indicator showing which direction is north
A minimum radius around the plant of 0.8km (0.5 miles)	Access and haul roads
Topographic features of the area	Facility property boundaries
The name of the map	A graphical scale

Section 8A

Applicable State & Federal Regulations

Provide a discussion demonstrating compliance with each applicable state & federal regulation. All input cells should be

filled in, even if the response is 'No' or 'N/A'.

In the "Justification" column, identify the criteria that are critical to the applicability determination, numbering each. For each unit listed in the "Applies to Unit No(s)" column, after each listed unit, include the lowest level citation of the applicable regulation. For each unit, list the information necessary to verify the applicability of the regulation, including date of manufacture, date of construction, size (hp), and combustion type. Doing so will provide the applicability criteria for each unit.

* *						
STATE REGU- LATIONS CITATION	Title	Federally Enforceable	Overview of Regulation	Unit(s) or Facility	Applies? (Yes or No)	JUSTIFICATION: Identify the applicability criteria, numbering each (i.e. 1. Post 7/23/84, 2. 75 m ³ , 3. VOL)
20.2.1 NMAC	General Provisions	Yes	General Provisions apply to Notice of Intent, Construction, and Title V permit applications.	Facility	Yes	General Provisions apply to Notice of Intent, Construction, and Title V permit applications.
20.2.3 NMAC	Ambient Air Quality Standards NMAAQS	Yes	20.2.3 NMAC is a State Implementation Plan (SIP) approved regulation that limits the maximum allowable concentration of Sulfur Compounds, Carbon Monoxide, and Nitrogen Dioxide.	Facility	Yes	The air pollutants subject to 20.2.3 NMAC are present at the facility and are thus subject to these requirements.
20.2.7 NMAC	Excess Emissions	Yes	If your entire facility or individual pieces of equipment are subject to emissions limits in a permit or numerical emissions standards in a federal or state regulation, this applies.	Facility	Yes	Per 20.2.7.108(A)(2), this ruling is applicable. The facility will comply with excess emission notifications and corrective action implementations as required.
<u>20.2.38</u> NMAC	Hydrocarbon Storage Facility	No	Use the regulation link (left) then cut & paste applicable sections.	OILTK1 -2	Yes	More than 20,000 gallons of hydrocarbons are stored in individual tank(s); and the throughput will exceed 30,000 gallons per week per tank. Therefore, 20.2.38.109 NMAC is applicable. The total facility hydrocarbon storage tank capacity is less than 65,000 gallons. Therefore, the facility is not subject to 20.2.38.112 NMAC.

Applicable STATE REGULATIONS:

STATE REGU- LATIONS CITATION	Title	Federally Enforceable	Overview of Regulation	Unit(s) or Facility	Applies? (Yes or No)	JUSTIFICATION: Identify the applicability criteria, numbering each (i.e. 1. Post 7/23/84, 2. 75 m ³ , 3. VOL)
20.2.61.109 NMAC	Smoke & Visible Emissions	No	Engines and heaters are Stationary Combustion Equipment. Specify units subject to this regulation.	ENG3 H1-3 FL1 ECD1	Yes	The engine, heaters, flare, and combustor are Stationary Combustion Equipment. Cimarex will maintain compliance with the regulation by operating the combustion units according to manufacturer's recommendations to ensure complete combustion.
20.2.73 NMAC	NOI & Emissions Inventory Requirements	Yes	 NOI: 20.2.73.200 NMAC applies to all facilities emitting over 10 TPY of any regulated air contaminate. Thus, permitted facilities are also subject to this rule. This GCP-O&G registration also serves the purpose of meeting 20.2.73 the NMAC notification requirements.) Emissions Inventory: 20.2.73.300.A(1) NMAC applies to facilities registering under the GCP. Emission Inventory reporting is required upon request by the department per 20.2.73.300.B(4) NMAC. 	Facility	Yes	Under 20.2.73.300.B(4) NMAC, the NMED is requesting emissions inventory reporting from minor sources for calendar year 2020 .
20.2.77 NMAC	New Source Performance	Yes	This is a stationary source which is subject to the requirements of 40 CFR Part 60, as amended on the date of certification.	ENG3 FUGAR EA	Yes	The facility wells were completed after September 18, 2015. Therefore, the facility is subject to fugitive monitoring under NSPS OOOOa. The listed engine is subject to NSPS JJJJ.
20.2.78 NMAC	Emission Standards for HAPS	Yes	This facility emits hazardous air pollutants which are subject to the requirements of 40 CFR Part 61, as amended on the date of certification.	N/A	No	There are no applicable units located at this facility.
20.2.82 NMAC	MACT Standards for source categories of HAPS	Yes	This regulation applies to all sources emitting hazardous air pollutants, which are subject to the requirements of 40 CFR Part 63, as amended on the date of certification.	ENG3	Yes	The listed engine is subject to MACT ZZZZ.

Applicable **FEDERAL** REGULATIONS:

Cimarex Energy Co.

FEDERAL REGU- LATIONS CITATION	Title	Overview of Regulation	Units(s) or Facility	Applies? (Yes or No)	JUSTIFICATION: Identify the applicability criteria, numbering each (i.e. 1. Post 7/23/84, 2. 75 m3, 3. VOL)
40 CFR 50	NAAQS	Defined as applicable at 20.2.70.7.E.11, Any national ambient air quality standard	Facility	Yes	The engine(s) and/or heater(s) are small combustion sources. The emission levels are such that no exceedances of the NAAQS are expected.
40 CFR 60, Subpart A	General Provisions	Applies if any other NSPS subpart applies.	ENG3 FUGARE A	Yes	The facility wells were completed after September 18, 2015. Therefore, the facility is subject to fugitive monitoring under NSPS OOOOa. The listed engine is subject
40 CFR 60, Subpart OOOO	Standards of Performance for Crude Oil and Natural Gas Production, Transmission and Distribution for which Construction, Modification or Reconstruction Commenced After August 23, 2011, and on or before September 18, 2015	If there is a standard or other requirement, then the facility is an "affected facility." Currently there are standards for: gas wells (60.5375); centrifugal compressors (60.5380); reciprocating compressors (60.5385): controllers (60.5390); storage vessels (60.5395); equipment leaks (60.5400); sweetening units (60.5405). If standards apply, list the unit number(s) and regulatory citation of the standard that applies to that unit (e.g. Centrifugal Compressors 1a- 3a are subject to the standards at 60.5380(a)(1) and (2) since we use a control device to reduce emissions)	N/A	No	to NSPS JJJJ. The storage tanks at the facility were constructed and/or modified after September 18, 2015. Therefore, NSPS OOOO requirements are not applicable. Pneumatic devices are intermittent, no-bleed, or low bleed devices, and, therefore, are not subject to NSPS OOOO requirements.

Cimarex Energy Co.

FEDERAL REGU- LATIONS CITATION	Title	Overview of Regulation	Units(s) or Facility	Applies? (Yes or No)	JUSTIFICATION: Identify the applicability criteria, numbering each (i.e. 1. Post 7/23/84, 2. 75 m3, 3. VOL)
40 CFR 60, Subpart OOOOa	Standards of Performance for Crude Oil and Natural Gas Facilities for which Construction, Modification or Reconstruction Commenced After September 18, 2015	If there is a standard or other requirement, then the facility is an "affected facility." Currently there are standards for: gas wells (60.5375a); centrifugal compressors (60.5380a); reciprocating compressors (60.5395a): controllers (60.5395a); fugitive emissions at well sites and compressor stations (60.5397a); equipment leaks at gas plants (60.5400a); sweetening units (60.5405a).	FUGAREA	Yes	The facility wells were completed after September 18, 2015. Therefore, the facility is subject to fugitive monitoring under NSPS OOOOa. The storage tanks at the facility were constructed and/or modified after the NSPS OOOOa applicability date of September 18, 2015. However, the storage tanks' VOC emissions are less than 6 tons per year per tank, which meets the exemption requirements of the subpart. The compressor is not subject to NSPS OOOOa as they are located at a well site §60.5395a(c). Pneumatic controllers are intermittent, no-bleed, or low bleed devices, and therefore are not subject to NSPS OOOOa requirements. The facility does not have any affected natural gas- driven diaphragm pumps that were constructed or modified after September 18, 2015; therefore, no equipment is applicable.
40 CFR 60, Subpart IIII	Standards of performance for Stationary Compression Ignition Internal Combustion Engines	See 40 CFR 60.4200(a) 1 through 4 to determine applicable category and state engine size, fuel type, and date of manufacture.	N/A	No	There are no applicable units located at this facility.
40 CFR 60, Subpart JJJJ	Standards of Performance for Stationary Spark Ignition Internal Combustion Engines	See 40 CFR 60.4230(a), 1 through 5 to determine applicable category and state engine size, fuel type, and date of manufacture.	ENG3	Yes	ENG3 was manufactured after January 1, 2011 and is thus subject to NSPS JJJJ requirements according to §60.4230(a)(4)(iii). It is subject to the standards in Table 1 of the subpart as established in §60.4233(e). The corresponding limits for the engine are as follows: 1.0 g/hp-hr NOx 2.0 g/hp-hr CO 0.7 g/hp-hr VOC
40 CFR 63, Subpart A	General Provisions	Applies if any other subpart applies.	ENG3	Yes	The listed engine(s) are subject to MACT ZZZZ.

FEDERAL REGU- LATIONS CITATION	Title	Overview of Regulation	Units(s) or Facility	Applies? (Yes or No)	JUSTIFICATION: Identify the applicability criteria, numbering each (i.e. 1. Post 7/23/84, 2. 75 m3, 3. VOL)
40 CFR 63, Subpart HH	NESHAP for Glycol Dehydrators	See 40 CFR 63, Subpart HH	N/A	Yes	There are no applicable units located at this facility.
40 CFR 63, Subpart ZZZZ	NESHAP for Stationary Reciprocating Internal Combustion Engines (RICE MACT)	Facilities are subject to this subpart if they own or operate a stationary RICE, except if the stationary RICE is being tested at a stationary RICE test cell/stand.	ENG3	Yes	ENG3 was constructed after June 12, 2006. The engine meets the definition of a new stationary RICE at an area source in §63.6590(a)(2)(iii). The engine must comply with MACT ZZZZ by complying with NSPS JJJJ per §63.6590(c)(1).

Section 8B Compliance Test History

To evaluate the requirement for compliance tests, you must submit a compliance test history.

Compliance Test History Table

Unit No.	Test Description	Test Date
ENG3	NSPS JJJJ Initial Test for NOx, CO, and VOC	11/21/2017

Section 9 Proof of Public Notice

Proof of public notice is attached.

AFFIDAVIT OF PUBLICATION

STATE OF NEW MEXICO

County of Bernalillo SS

Elise Rodriguez, the undersigned, on oath states that she is an authorized Representative of The Albuquerque Journal, and that this newspaper is duly gualified to publish legal notices or advertisements within the meaning of Section 3, Chapter 167, Session Laws of 1937, and that payment therefore has been made of assessed as court cost; that the notice, copy of which hereto attached, was published in said paper in the regular daily edition, for 1 time(s) on the following date(s):

01/03/2021

OFFICIAL SEAL Susan Ramirez NOTARY PUBLIC - STATE OF NEW MEXICO My Commission Expires:

Sworn and subscribed before me, a Notary Public, in and for the County of Bernalillo and State of New Mexico this day of January of 2021

\$523.41

PRICE

Statement to come at the end of month.

1091987 ACCOUNT NUMBER

GCP-Oil and Gas PUBLIC NOTICE EXAMPLE 20.2.72 NMAC - General Permits, Section 220.A(2)(b)ii

NOTICE

Cimarex Energy Co. announces its intent to apply to the New Mexico Environment Department for an air quality General Construction Permit, (GCP-Oil and Gas). The name of this facility is Tres Equis State Facility. The expected date of the submittal of our Registration for an air qual-ity permit to the Air Quality Bureau is December 30, 2020. This notice is a requirement according to New Mexico air quality regulations.

The exact initial location of the facility is UTM Zone 13, UTM Easting 630614, UTM Northing 3569324. The approximate location of this site is 26.4 miles NW of Jal in Lea county. The standard operating schedule of this facility will be continuous.

Air emissions of any regulated air contaminant will be less than or equal to:

Tons per year (TPY)

95

25 <10 < 25

1. Nitrogen Oxides (NOx Carbon Monoxide (CO) Volatile Organic Compounds (VOC) (stack) Particulate Matter (PM10) Particulate Matter (PM2.5) 3. Sulfur Dioxide (SO2) Hydrogen Sulfide (H2S)
 Any one (1) Hazardous Air Pollutant (HAP)
 Sum of all Hazardous Air Pollutants (HAPs)

The owner and/or operator of the Plant is: Cimarex Energy Co. 202 S. Cheyenne Ave, Suite 1000 Tulsa, OK 74103

If you have any questions or comments about construction or operation of above facility, and want your comments to be made as a part of the permit review process, you must submit your comments in writing to the address below:

New Mexico Environment Department Air Quality Bureau Permit Section 525 Camino de los Marquez, Suite 1 Santa Fe, New Mexico, 87505 Phone (505) 476-4300 Fax (505) 476-4375

Other comments and questions may be submitted verbally.

Please refer to the company name and site name, as used in this notice or send a copy of this notice along with your comments, since the Department may not have received the permit Registration at the time of this notice.

Attención

Este es un aviso de la oficina de Calidad del Aire del Departamento del Medio Ambiente de Nuevo México, acerca de las emisiones producidas por un establecimiento en esta área. Si usted desa información en español, por favor comuniquese con esa oficina al teléfono 505-476-5557.

Notice of Non-Discrimination

NMED does not discriminate on the basis of race, color, national origin, disability, age or sex in the administration of its programs or activities, as required by applicable laws and regulations. NMED is responsible for coordination of compliance efforts and receipt of inquiries concerning n-on-discrimination requirements implemented by 40 C.F.R. Part 7, including Title VI of the Civil Rights Act of 1964, as amended; Section 504 of the Rehabilitation Act of 1973; the Age Discrimiation act of 1975, Title IX of the Education Amendments of 1972, and Section 13 of the Federal Water Pollution Control Act Amendments of 1972. If you have any questions about this notice or any of NMED's non-discrimination programs, policies or procedures, or if you believe that you have been discriminated against with respect to a NMED program or activity, you may contact: Kristine Yurdin, Non-Discrimination Coordinator, NMED, 1190 St. Francis Dr., Suite N4050, P.O. Box 5469, Santa Fe, NM 87502, (505) 827-2855, nd.coordinator@state.nm.us. You may also visit our website at https://www.env.nm.gov/non-employee-discrimination-complaint-page/ to learn how and where to file a complaint of discrimination.

Journal: January 3, 2021

ICNOTICEEXAMPLE20 272NMACGENERALPE RMITSSECTION220A2 BIINOTICECIMAREXE NERGYCOANNOUNCE SITSINTENTTOAPPLY TOTHENEW

GCPOILANDGASPUBL

Section 10 Certification

Company Name: Cimarex Energy Co.

I, <u>Mr. Stuart Wittenbach</u>, hereby certify that the information and data submitted in this Registration are true and as

accurate as possible, to the best of my knowledge and professional expertise and experience.

Signed this <u>30</u>day of <u>Dec.</u>, <u>2020</u>, upon my oath or affirmation, before a notary of the State of

<u>Oklahoma</u>

*Signature

2/30/2020

Mr. Stuart Wittenbach Printed Name

Director, Environmental Safety & Health Title

Scribed and swom before me on this 3 day of December . 2020.

My authorization as a notary of the State of <u>Oklahoma</u>	expires on the FANI DAV
29th March 2021 day of,	Commmision # 13003027
Notary's Signature	B 30 2020 Protection
Brittany S Wilkinson TIffani L DAMS Notary's Printed Name	