

April 5, 2021

Mr. Ted Schooley New Mexico Environment Department Air Quality Bureau 525 Camino de los Marquez, Suite 1 Santa Fe, New Mexico, 87505-1816 APR 0 8 2021

Air Quality Bureau

Re:

Application for a Significant Permit Revision to Construction Permit 0613-M10-R2 Harvest Four Corners, LLC – San Juan Gas Plant Agency Interest No. 1177

Dear Mr. Schooley:

On behalf of Harvest Four Corners, LLC, Clara Vista Environmental is pleased to submit this application for a Significant Permit Revision to **Construction Permit 0613-M10-R2** for the **San Juan Gas Plant**. This request for a Significant Permit Revision is made under section 20.2.72.219.D(1) of the New Mexico Administrative Code (NMAC).

In accordance with the instructions in the NMAQB Universal Air Quality Permit Application, one hard copy original and one hard copy review application is included. Two CDs (one for the application original and one for the review copy) containing the application electronic files are included in the original hard copy. An application filing fee in the amount of \$500.00 is included.

If additional information is needed regarding this submittal, please feel free to please contact Ms. Monica Smith of HFC at (505)-632-4625.

Sincerely,

Carlin Roney, P.E. Sr. Environmental Engineer Clara Vista Environmental, LLC

Enclosures One application original hard copy, with electronic files on two CDs One application hard copy Application filing fee: Check No. 1243 in the amount of \$500.00

New Mexico 20.2.72.219.D NMAC Application to Revise Permit 0613-M10

San Juan Gas Plant

Harvest Four Corners, LLC P.O. Box 217 Bloomfield, New Mexico 87413

March 2021

Prepared By:

San Juan Gas Plant

March 2021 / 0613-M10-R2

Mail Application To:

New Mexico Environment Department Air Quality Bureau Permits Section 525 Camino de los Marquez, Suite 1 Santa Fe, New Mexico, 87505

Phone: (505) 476-4300 Fax: (505) 476-4375 www.env.nm.gov/aqb

RECEIVED APR 08 2021 Air Quality Bureau

AIRS No.:

Universal Air Quality Permit Application

Use this application for NOI, NSR, or Title V sources.

Use this application for: the initial application, modifications, technical revisions, and renewals. For technical revisions, complete Sections, 1-A, 1-B, 2-E, 3, 9 and any other sections that are relevant to the requested action; coordination with the Air Quality Bureau permit staff prior to submittal is encouraged to clarify submittal requirements and to determine if more or less than these sections of the application are needed. Use this application for streamline permits as well. See Section 1-1 for submittal instructions for other permits

This application is submitted as (check all that apply):
Request for a No Permit Required Determination (no fee) Updating an application currently under NMED review. Include this page and all pages that are being updated (no fee required). Existing Permitted (or NOI) Facility □ Existing Non-permitted (or NOI) Facility Construction Status:
□ Not Constructed Minor Source: 🗆 a NOI 20.2.73 NMAC 🗆 20.2.72 NMAC application or revision 🗆 20.2.72.300 NMAC Streamline application Title V Source:
Title V (new)
Title V renewal
TV minor mod.
TV significant mod.
TV Acid Rain:
New
Renewal PSD Major Source:
PSD major source (new) minor modification to a PSD source □ a PSD major modification

Acknowledgements:

🗵 I acknowledge that a pre-application meeting is available to me upon request. 🗆 Title V Operating, Title IV Acid Rain, and NPR applications have no fees.

🗵 \$500 NSR application Filing Fee enclosed UR 🗆 The full permit fee associated with 10 fee points (required w/ streamline applications).

I Check No.: 1243 in the amount of \$500

I acknowledge the required submittal format for the hard copy application is printed double sided 'head-to-toe', 2-hole punched (except the Sect. 2 landscape tables is printed 'head-to-head'), numbered tab separators. Incl. a copy of the check on a separate page. □ This facility qualifies to receive assistance from the Small Business Environmental Assistance program (SBEAP) and qualifies for 50% of the normal application and permit fees. Enclosed is a check for 50% of the normal application fee which will be verified with the Small Business Certification Form for your company.

This facility qualifies to receive assistance from the Small Business Environmental Assistance Program (SBEAP) but does not qualify for 50% of the normal application and permit fees. To see if you qualify for SBEAP assistance and for the small business certification form go to https://www.env.nm.gov/aqb/sbap/small business_criteria.html).

Citation: Please provide the low level citation under which this application is being submitted: 20.2.72.219.D(1) NMAC (e.g. application for a new minor source would be 20.2.72.200.A NMAC, one example for a Technical Permit Revision is 20.2.72.219.B.1.b NMAC, a Title V acid rain application would be: 20.2.70.200.C NMAC)

Section 1 – Facility Information

Sect	tion 1-A: Company Information	AI # if known (see 1 st 3 to 5 #s of permit IDEA ID No.): 1177	Updating Permit/NOI #: 0613-M10-R2				
1	Facility Name:	Plant primary SIC Code (4 digits): 1321					
1	San Juan Gas Plant Plant NAIC code (6 digits): 211112						
a	Facility Street Address (If no facility street address, provide direction 1001 Arizona Drive, Bloomfield, NM 87413	ns from a prominent landmark)):				
2	Plant Operator Company Name: Harvest Four Corners, LLC	Phone/Fax: (505) 632-	4600 / 505-632-4782				
a	Plant Operator Address: P.O. Box 217, Bloom field, NM 87413						
b	Plant Operator's New Mexico Corporate ID or Tax ID:						

3	Plant Owner(s) name(s): Hilcorp Energy Company	Phone/Fax: (713) 289-2630								
a	Plant Owner(s) Mailing Address(s): 1111 Travis Street, Houston, TX 77002									
4	Bill To (Company): Harvest Four Corners, LLC	Phone/Fax: (505) 632-4600 / 505-632-4782								
a	Mailing Address: P.O. Box 217, Bloomfield, NM 87413	E-mail: msmith@harvestmidstream.com								
5	□ Preparer: ☑ Consultant: Carlin Roney, Clara Vista Environmental	Phone/Fax: 281-460-4283								
а	Mailing Address: 3431 Rayford Rd., Suite 200-135, Spring, TX 77386	E-mail: croney@clara-vista.com								
6	Plant Operator Contact: Monica Smith, Environmental Specialist	Phone/Fax: (505) 632-4625 / (505)-632-4782								
a	Address: 1755 Arroyo Drive, Bloomfield, NM 87413	E-mail: <u>msmith@harvestmidstream.com</u>								
7	Air Permit Contact: Monica Smith	Title: Environmental Specialist								
a	E-mail: msmith@harvestmidstream.com	Phone/Fax: (505) 632-4625 / (505)-632-4782								
b	Mailing Address: 1755 Arroyo Drive, Bloomfield, NM 87413									
с	The designated Air permit Contact will receive all official correspondence	(i.e. letters, permits) from the Air Quality Bureau.								

Section 1-B: Current Facility Status

1.a	Has this facility already been constructed? ⊠ Yes □ No	1.b If yes to question 1.a, is it currently operating in New Mexico?
2	If yes to question 1.a, was the existing facility subject to a Notice of Intent (NOI) (20.2.73 NMAC) before submittal of this application? □ Yes ⊠ No	If yes to question 1.a, was the existing facility subject to a construction permit (20.2.72 NMAC) before submittal of this application? ☑ Yes □ No
3	Is the facility currently shut down? □ Yes ⊠ No	If yes, give month and year of shut down (MM/YY): N/A
4	Was this facility constructed before 8/31/1972 and continuously operated s	since 1972? 🗆 Yes 🖾 No
5	If Yes to question 3, has this facility been modified (see 20.2.72.7.P NMA) \Box Yes \Box No \boxtimes N/A	C) or the capacity increased since 8/31/1972?
6	Does this facility have a Title V operating permit (20.2.70 NMAC)? ☑ Yes □ No	If yes, the permit No. is: P-124-R3
7	Has this facility been issued a No Permit Required (NPR)? □ Yes ⊠ No	If yes, the NPR No. is: N/A
8	Has this facility been issued a Notice of Intent (NOI)? Yes X No	If yes, the NOI No. is: N/A
9	Does this facility have a construction permit (20.2.72/20.2.74 NMAC)? ⊠ Yes □ No	If yes, the permit No. is: 0631-M10-R2
10	Is this facility registered under a General permit (GCP-1, GCP-2, etc.)? □ Yes ⊠ No	If yes, the register No. is: N/A

Section 1-C: Facility Input Capacity & Production Rate

1	What is the facility's maximum input capacity, specify units (reference here and list capacities in Section 20, if more room is required)								
a	Current	Annually: 219 bscf							
b	Proposed	Hourly: 25 mmscf	Annually: 219 bscf						
2	What is the facility's maximum production rate, specify units (reference here and list capacities in Section 20, if more room is required)								
		racinty's maximum production rate, sp	been y units (reference here and hist capacities in	Section 20, if more room is required)					
a	Current	Hourly: 25 mmscf	Daily: 600 mmscf	Annually: 219 bscf					

Section 1-D: Facility Location Information

1	Section: 14	Range: 11W	Township: 29N	County: San Juan	Elevation (ft): 5600						
2	UTM Zone:	□ 12 or 🗵 13		Datum: 🖾 NAD 27 🗆 NAD 83 🗆 WGS 84							
а	UTM E (in mete	ers, to nearest 10 meter	s): 235,114 m	UTM N (in meters, to nearest 10 meters): 4,069,292 m							
b	AND Latitude	(deg., min., sec.):	36°43'57"	Longitude (deg., min., sec.): -107°5	7'59"						
3	Name and zip	code of nearest Ne	ew Mexico town: Bloomfi e	eld 87413							
4	Detailed Driving Instructions from nearest NM town (attach a road map if necessary): From E. Broadway Ave (Hwy 64) and N. 1st Street (Hwy 550) in Bloomfield, travel north for approx. 1.4 miles and turn right (east) on Arizona Dr. Travel east for approx. 0.5 miles. Facility is on right.										
5	The facility is	in the city Bloom	field.								
6	Status of land	Status of land at facility (check one): 🖾 Private 🗆 Indian/Pueblo 🗆 Federal BLM 🗇 Federal Forest Service 🗆 Other (specify)									
7	List all municipalities, Indian tribes, and counties within a ten (10) mile radius (20.2.72.203.B.2 NMAC) of the property on which the facility is proposed to be constructed or operated: Municipalities - Bloomfield, NM; Aztec, NM; Farmington, NM: Indian tribe - Navajo Nation; County - San Juan County										
8	closer than 50	0 km (31 miles) to /aqb/modeling/class1ar	o other states, Bernalillo (which the facility is proposed to be County, or a Class I area (see (20.2.72.206.A.7 NMAC) If yes, list	-						
9	Name nearest	Class I area: Mesa	Verde National Park								
10	Shortest distan	nce (in km) from fa	cility boundary to the boundary	ndary of the nearest Class I area (to the	nearest 10 meters): 63.70 km						
11	lands, includin	ng mining overbure	len removal areas) to neare	-	eture: 42.6 m						
12	"Restricted A continuous wa that would req	lands, including mining overburden removal areas) to nearest residence, school or occupied structure: 42.6 m Method(s) used to delineate the Restricted Area: San Juan Gas Plant is enclosed with continuous fencing. "Restricted Area" is an area to which public entry is effectively precluded. Effective barriers include continuous fencing, continuous walls, or other continuous barriers approved by the Department, such as rugged physical terrain with steep grade that would require special equipment to traverse. If a large property is completely enclosed by fencing, a restricted area within the property may be identified with signage only. Public roads cannot be part of a Restricted Area.									
13	Does the owne Yes X M A portable stat	er/operator intend t No tionary source is n	to operate this source as a potential to operate this source, such as	an automobile, but a source that can such as a hot mix asphalt plant that is	n 20.2.72.7.X NMAC? be installed permanently at						
14	Will this facili	ty operate in conju		ated parties on the same property?	🛛 No 🗌 Yes						

Section 1-E: Proposed Operating Schedule (The 1-E.1 & 1-E.2 operating schedules may become conditions in the permit.)

1	Facility maximum operating $(\frac{\text{hours}}{\text{day}})$: 24	$\left(\frac{\text{days}}{\text{week}}\right)$: 7	$(\frac{\text{weeks}}{\text{year}})$: 52	$(\frac{\text{hours}}{\text{year}})$: 8760					
2	Facility's maximum daily operating schedule (if less	s than $24 \frac{\text{hours}}{\text{day}}$? Start: N/A	□AM □PM	End: N/A	□AM □PM				
3	Month and year of anticipated start of construction: Upon receipt of modified permit.								
4	Month and year of anticipated construction completion: Upon receipt of modified permit.								
5	Month and year of anticipated startup of new or modified facility: Upon receipt of modified permit.								
6	Will this facility operate at this site for more than or	ne year? 🛛 Yes 🗆 No							

Section 1-F: Other Facility Information

1	Are there any current Notice of Violations (NOV), compliance orders, or any other compliance or enforcement issues related to this facility? Yes X No If yes, specify:									
a	If yes, NOV date or description of issue:		NOV Tracking No:							
b	Is this application in response to any issue listed in 1-F, 1 or	r 1a above? 🗆 Yes 🗜	No If Y	Yes, provide the 1c & 1d info below:						
c	Document Title:	-	nent # (or nd paragraph #):							
d	Provide the required text to be inserted in this permit:									
2	Is air quality dispersion modeling or modeling waiver being	g submitted with this	applicatio	n? 🖾 Yes 🗆 No						
3	Does this facility require an "Air Toxics" permit under 20.2	2.72.400 NMAC & 20	0.2.72.502	, Tables A and/or B? 🗆 Yes 🗵 No						
4	Will this facility be a source of federal Hazardous Air Pollu	tants (HAP)? 🛛 Ye	s □No							
a	If Yes, what type of source? \Box Major ($\Box \ge 10$ tpy of anyOR \blacksquare Minor ($\Box < 10$ tpy of any			tpy of any combination of HAPS) tpy of any combination of HAPS)						
5	Is any unit exempt under 20.2.72.202.B.3 NMAC? □ Yes	X No								
	If yes, include the name of company providing commercial	electric power to the	facility: _							
a	Commercial power is purchased from a commercial utility site for the sole purpose of the user.	company, which spe	cifically d	loes not include power generated on						

Section 1-G: Streamline Application

(This section applies to 20.2.72.300 NMAC Streamline applications only)

□ I have filled out Section 18, "Addendum for Streamline Applications." 1 \blacksquare N/A (This is not a Streamline application.)

Section 1-H: Current Title V Information - Required for all applications from TV Sources (Title V-source required information for all applications submitted pursuant to 20.2.72 NMAC (Minor Construction Permits), or 20.2.74/20.2.79 NMAC (Major PSD/NNSR applications), and/or 20.2.70 NMAC (Title V))

1	Responsible Official (R.O.) (20.2.70.300.D.2 NMAC): Travis Jones	Phone: 713-289-2630				
а	R.O. Title: EHS Manager, Harvest Midstream	R.O. e-mail: trjones@harvestmidstream.com				
b	R. O. Address: 1111 Travis Street, Houston, TX 77002					
2	Alternate Responsible Official (20.2.70.300.D.2 NMAC): TBD					
а	A. R.O. Title: TBD	A. R.O. e-mail: TBD				
b	A. R. O. Address: TBD					
3	Company's Corporate or Partnership Relationship to any other Air Quality Permittee (List the names of any companies that have operating (20.2.70 NMAC) permits and with whom the applicant for this permit has a corporate or partnership relationship): N/A					
4	Name of Parent Company ("Parent Company" means the primary permitted wholly or in part.): Hilcorp Energy Company	name of the organiza	tion that owns the company to be			
а	Address of Parent Company: 1111 Travis Street, Houston, TX 77	002				
5	Names of Subsidiary Companies ("Subsidiary Companies" means owned, wholly or in part, by the company to be permitted.): N/A	organizations, branc	hes, divisions or subsidiaries, which are			
6	Telephone numbers & names of the owners' agents and site contact	ts familiar with plan	t operations: N/A			

Section 1-I – Submittal Requirements

Each 20.2.73 NMAC (**NOI**), a 20.2.70 NMAC (**Title V**), a 20.2.72 NMAC (**NSR** minor source), or 20.2.74 NMAC (**PSD**) application package shall consist of the following:

Hard Copy Submittal Requirements:

- One hard copy original signed and notarized application package printed double sided 'head-to-toe' 2-hole punched as we bind the document on top, not on the side; except Section 2 (landscape tables), which should be head-to-head. Please use numbered tab separators in the hard copy submittal(s) as this facilitates the review process. For NOI submittals only, hard copies of UA1, Tables 2A, 2D & 2F, Section 3 and the signed Certification Page are required. Please include a copy of the check on a separate page.
- 2) If the application is for a minor NSR, PSD, NNSR, or Title V application, include one working hard **copy** for Department use. This <u>copy</u> should be printed in book form, 3-hole punched, and <u>must be double sided</u>. Note that this is in addition to the head-toto 2-hole punched copy required in 1) above. Minor NSR Technical Permit revisions (20.2.72.219.B NMAC) only need to fill out Sections 1-A, 1-B, 3, and should fill out those portions of other Section(s) relevant to the technical permit revision. TV Minor Modifications need only fill out Sections 1-A, 1-B, 1-H, 3, and those portions of other Section(s) relevant to the minor modification. NMED may require additional portions of the application to be submitted, as needed.
- 3) The entire NOI or Permit application package, including the full modeling study, should be submitted electronically. Electronic files for applications for NOIs, any type of General Construction Permit (GCP), or technical revisions to NSRs must be submitted with compact disk (CD) or digital versatile disc (DVD). For these permit application submittals, two CD copies are required (in sleeves, not crystal cases, please), with additional CD copies as specified below. NOI applications require only a single CD submittal. Electronic files for other New Source Review (construction) permits/permit modifications or Title V permits/permit modifications can be submitted on CD/DVD or sent through AQB's secure file transfer service.

Electronic files sent by (check one):

secure electronic transfer. Air Permit Contact Name______

Email					

Phone number _____

a. If the file transfer service is chosen by the applicant, after receipt of the application, the Bureau will email the applicant with instructions for submitting the electronic files through a secure file transfer service. Submission of the electronic files through the file transfer service needs to be completed within 3 business days after the invitation is received, so the applicant should ensure that the files are ready when sending the hard copy of the application. The applicant will not need a password to complete the transfer. **Do not use the file transfer service for NOIs, any type of GCP, or technical revisions to NSR permits.**

- 4) Optionally, the applicant may submit the files with the application on compact disk (CD) or digital versatile disc (DVD) following the instructions above and the instructions in 5 for applications subject to PSD review.
- 5) If air dispersion modeling is required by the application type, include the NMED Modeling Waiver and/or electronic air dispersion modeling report, input, and output files. The dispersion modeling <u>summary report only</u> should be submitted as hard copy(ies) unless otherwise indicated by the Bureau.
- 6) If the applicant submits the electronic files on CD and the application is subject to PSD review under 20.2.74 NMAC (PSD) or NNSR under 20.2.79 NMC include,
 - a. one additional CD copy for US EPA,
 - b. one additional CD copy for each federal land manager affected (NPS, USFS, FWS, USDI) and,
 - c. one additional CD copy for each affected regulatory agency other than the Air Quality Bureau.

If the application is submitted electronically through the secure file transfer service, these extra CDs do not need to be submitted.

Electronic Submittal Requirements [in addition to the required hard copy(ies)]:

- 1) All required electronic documents shall be submitted as 2 separate CDs or submitted through the AQB secure file transfer service. Submit a single PDF document of the entire application as submitted and the individual documents comprising the application.
- 2) The documents should also be submitted in Microsoft Office compatible file format (Word, Excel, etc.) allowing us to access the text and formulas in the documents (copy & paste). Any documents that cannot be submitted in a Microsoft Office compatible

format shall be saved as a PDF file from within the electronic document that created the file. If you are unable to provide Microsoft office compatible electronic files or internally generated PDF files of files (items that were not created electronically: i.e. brochures, maps, graphics, etc.), submit these items in hard copy format. We must be able to review the formulas and inputs that calculated the emissions.

- 3) It is preferred that this application form be submitted as 4 electronic files (3 MSWord docs: Universal Application section 1 [UA1], Universal Application section 3-19 [UA3], and Universal Application 4, the modeling report [UA4]) and 1 Excel file of the tables (Universal Application section 2 [UA2]). Please include as many of the 3-19 Sections as practical in a single MS Word electronic document. Create separate electronic file(s) if a single file becomes too large or if portions must be saved in a file format other than MS Word.
- 4) The electronic file names shall be a maximum of 25 characters long (including spaces, if any). The format of the electronic Universal Application shall be in the format: "A-3423-FacilityName". The "A" distinguishes the file as an application submittal, as opposed to other documents the Department itself puts into the database. Thus, all electronic application submittals should begin with "A-". Modifications to existing facilities should use the core permit number (i.e. '3423') the Department assigned to the facility as the next 4 digits. Use 'XXXX' for new facility applications. The format of any separate electronic submittals (additional submittals such as non-Word attachments, re-submittals, application updates) and Section document shall be in the format: "A-3423-9-description", where "9" stands for the section # (in this case Section 9-Public Notice). Please refrain, as much as possible, from submitting any scanned documents as this file format is extremely large, which uses up too much storage capacity in our database. Please take the time to fill out the header information throughout all submittals as this will identify any loose pages, including the Application Date (date submitted) & Revision number (0 for original, 1, 2, etc.; which will help keep track of subsequent partial update(s) to the original submittal. Do not use special symbols (#, @, etc.) in file names. The footer information should not be modified by the applicant.

Table of Contents

- Section 1: General Facility Information
- Section 2: Tables
- Section 3: Application Summary
- Section 4: Process Flow Sheet
- Section 5: Plot Plan Drawn to Scale
- Section 6: All Calculations
- Section 7: Information Used to Determine Emissions
- Section 8: Map(s)
- Section 9: Proof of Public Notice
- Section 10: Written Description of the Routine Operations of the Facility
- Section 11: Source Determination
- Section 12: PSD Applicability Determination for All Sources & Special Requirements for a PSD Application
- Section 13: Discussion Demonstrating Compliance with Each Applicable State & Federal Regulation
- Section 14: Operational Plan to Mitigate Emissions
- Section 15: Alternative Operating Scenarios
- Section 16: Air Dispersion Modeling
- Section 17: Compliance Test History
- Section 18: Addendum for Streamline Applications (streamline applications only)
- Section 19: Requirements for the Title V (20.2.70 NMAC) Program (Title V applications only)
- Section 20: Other Relevant Information
- Section 21: Addendum for Landfill Applications
- Section 22: Certification Page

Table 2-A: Regulated Emission Sources

Unit and stack numbering must correspond throughout the application package. If applying for a NOI under 20.2.73 NMAC, equipment exemptions under 2.72.202 NMAC do not apply.

Unit Number ¹	Source Description	Make	Model #	Serial #	Manufact- urer's Rated Capacity ³ (Specify Units)	Requested Permitted Capacity ³ (Specify Units)	Date of Manufacture ² Date of Construction/ Reconstruction ²	Controlled by Unit # Emissions vented to Stack #	Source Classi- fication Code (SCC)	For Each Piece of Equipment, Check One	RICE Ignition Type (CI, SI, 4SLB, 4SRB, 2SLB) ⁴	Replacing Unit No.		
1	Natural Gas Fired	Rolls Royce	Avon	C-101*	23,800 hp	15,000 hp	1986	1	2E+07	 Existing (unchanged) To be Removed New/Additional Replacement Unit 	N/A	N/A		
	Turbine		1535				1986	1		□ To Be Modified □ To be Replaced				
2	Natural Gas Fired Turbine	Rolls Royce	Avon 1535	C-201*	23,800 hp	15,000 hp	1986 1986	2 2	2E+07	☑ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced	N/A	N/A		
	Natural Gas Fired		Avon	G 0011		1.5.0001	1986	3		⊠ Existing (unchanged) □ To be Removed	27/1			
3	Turbine	Rolls Royce	1535	C-301*	23,800 hp	15,000 hp	1986	3	2E+07	 New/Additional Replacement Unit To Be Modified To be Replaced 	N/A	N/A		
4	Natural Gas Fired		TT4501	G 1200 A	4 500 1	2 725 1	1986	N/A	25.07	Existing (unchanged)	NT/ A	NT / A		
4	Turbine	Solar Centaur	T4501	G-1300A	4,500 hp	3,735 hp	1986	4	2E+07	New/Additional Replacement Unit To Be Modified To be Replaced	N/A	N/A		
-	Natural Gas Fired	Calar Canton	T4501	C 1200D	4.500 h	2 725 1	1986	N/A	2E+07	Existing (unchanged)	NT/A	NT/A		
5	Turbine	Solar Centaur	T4501	G-1300B	4,500 hp	3,735 hp	1986	5		2E+07	2E+07	2E+07	 New/Additional To Be Modified To be Replaced 	N/A
6	Natural Gas Fired	Salar Cantour	T4501	C 1200C	4.500 hr	2 725 hr	1986	N/A	25.07	Existing (unchanged)	N/A	NI/A		
6	Turbine	Solar Centaur	T4501	G-1300C	4,500 hp	3,735 hp	1986	6	2E+07	2E+07	New/Additional Replacement Unit To Be Modified To be Replaced	N/A	N/A	
7	Natural Gas Fired	Solar Centaur	T4501	G-1300D	4,500 hp	3,735 hp	1986	N/A	2E+07	 Existing (unchanged) To be Removed New/Additional Replacement Unit 	N/A	N/A		
/	Turbine	Solai Celitaui	14501	G-1300D	4,500 lip	5,755 np	1986	7	2E+07	To Be Modified To be Replaced	IN/A	IN/A		
8	Regeneration	WILLBROS	N/A	621-014	14.55	14.55	2011	N/A	3.1E+07	 Existing (unchanged) To be Removed New/Additional Replacement Unit 	N/A	N/A		
0	Heater	Downstream	N/A	021-014	MMBtu/hr	MMBtu/hr	2012	8	5.1E+07	□ To Be Modified □ To be Replaced	IN/A	IN/A		
9	Safety System	John Zink	N/A	N/A	600	600	1986	N/A	3.1E+07	 Existing (unchanged) To be Removed New/Additional Replacement Unit 	N/A	N/A		
,	Flare	JOHII ZHK	IN/A	N/A	mmscfd	mmscfd	1986	9	5.1L+07	☑ To Be Modified □ To be Replaced	IN/A	IN/A		
10	Diesel Generator	Caterpillar	G3412	9/12/2154	469 hp	469 hp	1986	N/A	2E+07	 Existing (unchanged) To be Removed New/Additional Replacement Unit 	N/A	N/A		
10	Dieser Generator	Caterpina	03412	<i>)/12/213</i> 4	409 np	407 lip	1986	10	21107	□ To Be Modified □ To be Replaced	11/71	11/21		
11	Firewater Pump	Caterpillar	G3406	6TB03248	343 hp	343 hp	1986	N/A	2E+07	 Existing (unchanged) To be Removed New/Additional Replacement Unit 	N/A	N/A		
11	The water Tump	Caterpina	03400	01003240	545 np	545 np	1986	11	21107	□ To Be Modified □ To be Replaced	11/71	11/21		
12	Regeneration	Broach	N/A	H-901	3.4	3.4	1986	N/A	3.1E+07	 Existing (unchanged) To be Removed New/Additional Replacement Unit 	N/A	N/A		
	Heater	Diouen	1011	11 / 01	MMBtu/hr	MMBtu/hr	1986	12	5112107	□ To Be Modified □ To be Replaced	1011	1.011		
13	Regeneration	WILLBROS	N/A	621-011	14.55	14.55	2011	N/A	3.1E+07	 Existing (unchanged) To be Removed New/Additional Replacement Unit 	N/A	N/A		
	Heater	Downstream		521 011	MMBtu/hr	MMBtu/hr	2011	13	2.12.07	□ To Be Modified □ To be Replaced				
14	Fugitive Emissions	N/A	N/A	N/A	N/A	N/A	1986	N/A	3688801	 Existing (unchanged) To be Removed New/Additional Replacement Unit 	N/A	N/A		
			the provide				1986	14		□ To Be Modified □ To be Replaced				

Unit numbers must correspond to unit numbers in the previous permit unless a complete cross reference table of all units in both permits is provided.

² Specify dates required to determine regulatory applicability.

³ To properly account for power conversion efficiencies, generator set rated capacity shall be reported as the rated capacity of the engine in horsepower, not the kilowatt capacity of the generator set.

⁴ "4SLB" means four stroke lean burn engine, "4SRB" means four stroke rich burn engine, "2SLB" means two stroke lean burn engine, "CI" means compression ignition, and "SI" means spark ignition

					Manufact- urer's Rated	Requested Permitted	Date of Manufacture ²	Controlled by Unit #	Source Classi-		RICE Ignition	
Unit Number ¹	Source Description	Make	Model #	Serial #	Capacity ³ (Specify Units)	Capacity ³ (Specify Units)	Date of Construction/ Reconstruction ²	Emissions vented to Stack #	fication Code (SCC)	For Each Piece of Equipment, Check One	Type (CI, SI, 4SLB, 4SRB, 2SLB) ⁴	Replacing Unit No.
15	Thermal Oxidizer	Callidus	N/A	N/A	12	12	1986	N/A	3.1E+07	 Existing (unchanged) To be Removed New/Additional Replacement Unit 	N/A	N/A
15	Thermai Oxidizei	Callidus	IN/A	N/A	MMBtu/hr	MMBtu/hr	1986	15	5.1E+07	$\square To Be Modified \square To be Replaced$	IN/A	N/A
16	Blowdown Flare	John Zink	N/A	N/A	6 mmscfd	6 mmscfd	2002	N/A	3.1E+07	 Existing (unchanged) To be Removed New/Additional Replacement Unit 	N/A	N/A
10	Biowdowii Plate	JOHII ZHIK	IN/A	IN/A	0 miniscru	0 miniscru	2002	16	5.1E+07	$\square \text{ New Additional} \square \text{ Replacement Only} \\ \square \text{ To Be Modified} \square \text{ To be Replaced} \\ \square$	IN/A	IN/A
SSM/	SSM & Malfunction	N/A	N/A	N/A	N/A	N/A	N/A	N/A	3.1E+07	 Existing (unchanged) To be Removed New/Additional Replacement Unit 	N/A	N/A
M1	Emissions	IN/A	IN/A	N/A	N/A	IN/A	N/A	N/A	3.1E+07	New/Additional Replacement Unit To Be Modified To be Replaced	IN/A	IN/A
Amine	Amine Unit Still	N/A	N/A	N/A	N/A	N/A	1986	15	3.1E+07	 Existing (unchanged) To be Removed New/Additional Replacement Unit 	N/A	N/A
Unit	Vent/Flash Tank	IN/A	IN/A	IN/A	N/A	IN/A	1986	15	3.1E+07	□ New/Additional □ Replacement Unit ☑ To Be Modified □ To be Replaced	IN/A	IN/A
СТ	Cooling Tower	N/A	N/A	N/A	N/A	N/A	1986	N/A	3.1E+07	 Existing (unchanged) To be Removed New/Additional Replacement Unit 	NI/A	N/A
CI	Cooling Tower	IN/A	IN/A	IN/A	IN/A	IN/A	1986	СТ	3.1E+07	Image: Second state of the second s	N/A	IN/A

Table 2-B: Insignificant Activities¹ (20.2.70 NMAC) OR Exempted Equipment (20.2.72 NMAC)

All 20.2.70 NMAC (Title V) applications must list all Insignificant Activities in this table. All 20.2.72 NMAC applications must list Exempted Equipment in this table. If equipment listed on this table is exempt under 20.2.72.202.B.5, include emissions calculations and emissions totals for 202.B.5 "similar functions" units, operations, and activities in Section 6, Calculations. Equipment and activities exempted under 20.2.72.202 NMAC may not necessarily be Insignificant under 20.2.70 NMAC (and vice versa). Unit & stack numbering must be consistent throughout the application package. Per Exemptions Policy 02-012.00 (see http://www.env.nm.gov/aqb/permit/aqb_pol.html), 20.2.72.202.B NMAC Exemptions do not apply, but 20.2.72.202.A NMAC exemptions do apply to NOI facilities under 20.2.73 NMAC. List 20.2.72.301.D.4 NMAC Auxiliary Equipment for Streamline applications in Table 2-A. The List of Insignificant Activities (for TV) can be found online at http://www.env.nm.gov/aqb/forms/InsignificantListTitleV.pdf . TV sources may elect to enter both TV Insignificant Activities and Part 72 Exemptions on this form.

Unit Number	Source Description	Manufacturer	Model No.	Max Capacity	List Specific 20.2.72.202 NMAC Exemption (e.g. 20.2.72.202.B.5)	Date of Manufacture /Reconstruction ²	For Each Piece of Equipment, Check Onc
	Source Description	Manufacturei	Serial No.	Capacity Units	Insignificant Activity citation (e.g. IA List Item #1.a)	Date of Installation /Construction ²	For Each Field of Equipment, Click One
C. 141. T. 1.	Diesel Fuel Tank	NI/A	N/A	500	20.2.72.202.B.2	1986	Existing (unchanged)
Saddle Tank	Diesel Fuel Tank	N/A	N/A	gal	IA List Item #5	1986	 New/Additional To Be Modified To be Replaced
TK 1401	Methanol Tank	N/A	N/A	8400	20.2.72.202.B.5	1986	Image: Second state Image: Second state Image: Second state Image: Second state
IK 1401	Methanol Tank	IN/A	N/A	gal	IA List Item #1a	1986	□ New/Additional □ Replacement Unit
TK 1402	Used O'l Truck	NI/A	N/A	21,000	20.2.72.202.B.2	1986	\boxtimes Existing (unchanged) \Box To be Removed
TK 1402	Used Oil Tank	N/A	N/A	gal	IA List Item #5	1986	 New/Additional To Be Modified To be Replaced
	Miss. Goodl Massala	NI/A	N/A		20.2.72.202.B.5		Existing (unchanged)
	Misc. Small Vessels	N/A	N/A		IA List Item #1a		 New/Additional To Be Modified To be Replaced
							 Existing (unchanged) To be Removed New/Additional Replacement Unit
							 New/Additional To Be Modified To be Replaced
							□ Existing (unchanged) □ To be Removed
							 New/Additional To Be Modified To be Replaced
							□ Existing (unchanged) □ To be Removed
							 New/Additional To Be Modified To be Replaced
							□ Existing (unchanged) □ To be Removed
							 New/Additional Replacement Unit To Be Modified To be Replaced
							□ Existing (unchanged) □ To be Removed
							 New/Additional To Be Modified To be Replaced
							□ Existing (unchanged) □ To be Removed
							 New/Additional Replacement Unit To Be Modified To be Replaced
							□ Existing (unchanged) □ To be Removed
							 New/Additional To Be Modified To be Replaced
							Existing (unchanged) To be Removed Num(A different) Product unchanged
							 New/Additional To Be Modified To be Replaced
							□ Existing (unchanged) □ To be Removed
							 New/Additional To Be Modified To be Replaced

¹ Insignificant activities exempted due to size or production rate are defined in 20.2.70.300.D.6, 20.2.70.7.Q NMAC, and the NMED/AQB List of Insignificant Activities, dated September 15, 2008. Emissions from these insignificant activities do not need to be reported, unless specifically requested.

² Specify date(s) required to determine regulatory applicability.

Table 2-C: Emissions Control Equipment

Unit and stack numbering must correspond throughout the application package. Only list control equipment for TAPs if the TAP's maximum uncontrolled emissions rate is over its respective threshold as listed in 20.2.72 NMAC, Subpart V, Tables A and B. In accordance with 20.2.72.203.A(3) and (8) NMAC, 20.2.70.300.D(5)(b) and (e) NMAC, and 20.2.73.200.B(7) NMAC, the permittee shall report all control devices and list each pollutant controlled by the control device regardless if the applicant takes credit for the reduction in emissions.

Control Equipment Unit No.	Control Equipment Description	Date Installed	Controlled Pollutant(s)	Controlling Emissions for Unit Number(s) ¹	Efficiency (% Control by Weight)	Method used to Estimate Efficiency
1	Oxidation Catalyst	1986	CO / VOC	1	95% / 85%	Previous App
2	Oxidation Catalyst	1986	CO / VOC	2	95% / 85%	Previous App
3	Oxidation Catalyst	1986	CO / VOC	3	95% / 85%	Previous App
9	Safety System Flare	1986	VOC / HAP	Facility Wide SSM	98%	Manufacturer
15	Thermal Oxidizer	1986	VOC / HAP / H2S	Amine Unit	98%	Manufacturer
16	Blowdown Flare	2002	VOC / HAP / H2S	Facility Wide SSM, Amine Unit	98%	Manufacturer
List each control de	evice on a separate line. For each control device, list	all emission units co	ontrolled by the control device.			

□ This Table was intentionally left blank because it would be identical to Table 2-E.

Maximum Emissions are the emissions at maximum capacity and prior to (in the absence of) pollution control, emission-reducing process equipment, or any other emission reduction. Calculate the hourly emissions using the worst case hourly emissions for each pollutant. For each pollutant, calculate the annual emissions as if the facility were operating at maximum plant capacity without pollution controls for 8760 hours per year, unless otherwise approved by the Department. List Hazardous Air Pollutants (HAP) & Toxic Air Pollutants (TAPs) in Table 2-I. Unit & stack numbering must be consistent throughout the application package. Fill all cells in this table with the emission numbers or a "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expected. Numbers shall be expressed to at least 2 decimal points (e.g. 0.41, 1.41, or 1.41E-4).

TL.: 4 NL	N	Ox	С	0	V	C	S	Ox	PI	M ¹	PM	[10 ¹	PM	2.5 ¹	Н	$_{2}S$	Le	ead
Unit No.	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
1	56.30	246.40	90.00	394.20	10.00	43.80	0.06	0.26	0.81	3.60	0.81	3.60	0.81	3.60			1.14E-04	5.00E-04
2	56.30	246.40	90.00	394.20	10.00	43.80	0.06	0.26	0.81	3.60	0.81	3.60	0.81	3.60			1.14E-04	5.00E-04
3	56.30	246.40	90.00	394.20	10.00	43.80	0.06	0.26	0.81	3.60	0.81	3.60	0.81	3.60			1.14E-04	5.00E-04
4	15.90	69.80	2.30	10.00	0.05	0.24	0.01	0.05	0.22	0.95	0.22	0.95	0.22	0.95			2.28E-05	1.00E-04
5	15.90	69.80	2.30	10.00	0.05	0.24	0.01	0.05	0.22	0.95	0.22	0.95	0.22	0.95			2.28E-05	1.00E-04
6	15.90	69.80	2.30	10.00	0.05	0.24	0.01	0.05	0.22	0.95	0.22	0.95	0.22	0.95			2.28E-05	1.00E-04
7	15.90	69.80	2.30	10.00	0.05	0.24	0.01	0.05	0.22	0.95	0.22	0.95	0.22	0.95			2.28E-05	1.00E-04
8	0.75	3.30	0.35	1.47	0.03	0.14	0.01	0.04	0.11	0.48	0.11	0.48	0.11	0.48				
9	0.17	0.72	0.44	1.94	0.17	0.73												
12	0.34	1.49	0.10	0.30	0.02	0.08	0.01	0.01	0.03	0.11	0.03	0.11	0.03	0.11				
13	0.75	3.30	0.34	1.47	0.03	0.14	0.01	0.04	0.11	0.48	0.11	0.48	0.11	0.48				
14					8.68	38.01												
15	1.62	7.08	1.36	5.95	0.43	1.86	2.71	11.92	0.11	0.47	0.11	0.47	0.11	0.47	0.03	0.13		
16	1.33	5.84	3.57	15.64	1.6	7.02	1.21	5.33							0.01	0.06		
СТ									0.36	1.58	0.15	0.64	0.02	0.10				
SSM & Malfunction	20.80	10.00	20.80	10.00		10.00			-									
Amine Unit					16.04	70.27									1.32	5.8		
Totals	258.26	1050.13	306.16	1259.37	57.20	260.61	4.17	18.32	4.03	17.72	3.82	16.78	3.69	16.24	1.36	5.99	4.33E-04	1.90E-03

¹Condensable Particulate Matter: Include condensable particulate matter emissions for PM10 and PM2.5 if the source is a combustion source. Do not include condensable particulate matter for PM unless PM is set equal to PM10 and PM2.5. Particulate matter (PM) is not subject to an ambient air quality standard, but PM is a regulated air pollutant under PSD (20.2.74 NMAC) and Title V (20.2.70 NMAC).

Table 2-E: Requested Allowable Emissions

Unit & stack numbering must be consistent throughout the application package. Fill all cells in this table with the emission numbers or a "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expected. Numbers shall be expressed to at least 2 decimal points (e.g. 0.41, 1.41, or 1.41E⁴).

The 4 Nu	N	Ox	С	0	V	DC	S	Ox	PI	M^1	PM	[10 ¹	PM	$[2.5^1]$	Н	$_{2}S$	Le	ead
Unit No.	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
1	56.30	246.40	9.60	42.00	0.30	1.30	0.06	0.26	0.81	3.56	0.81	3.56	0.81	3.56			1.14E-04	5.00E-04
2	56.30	246.40	9.60	42.00	0.30	1.30	0.06	0.26	0.81	3.56	0.81	3.56	0.81	3.56			1.14E-04	5.00E-04
3	56.30	246.40	9.60	42.00	0.30	1.30	0.06	0.26	0.81	3.56	0.81	3.56	0.81	3.56			1.14E-04	5.00E-04
4	15.90	69.80	2.30	10.00	0.05	0.24	0.01	0.05	0.22	0.95	0.22	0.95	0.22	0.95			2.28E-05	1.00E-04
5	15.90	69.80	2.30	10.00	0.05	0.24	0.01	0.05	0.22	0.95	0.22	0.95	0.22	0.95			2.28E-05	1.00E-04
6	15.90	69.80	2.30	10.00	0.05	0.24	0.01	0.05	0.22	0.95	0.22	0.95	0.22	0.95			2.28E-05	1.00E-04
7	15.90	69.80	2.30	10.00	0.05	0.24	0.01	0.05	0.22	0.95	0.22	0.95	0.22	0.95			2.28E-05	1.00E-04
8	0.75	3.30	0.35	1.47	0.03	0.14	0.01	0.04	0.11	0.48	0.11	0.48	0.11	0.48				
9	0.17	0.72	0.44	1.94	0.17	0.73												
12	0.34	1.49	0.10	0.30	0.02	0.08	0.01	0.01	0.03	0.11	0.03	0.11	0.03	0.11				
13	0.75	3.30	0.34	1.47	0.03	0.14	0.01	0.04	0.11	0.48	0.11	0.48	0.11	0.48				
14					8.68	38.01												
15	1.62	7.08	1.36	5.95	0.43	1.86	2.71	11.92	0.11	0.47	0.11	0.47	0.11	0.47	0.03	0.13		
16	1.33	5.84	3.57	15.64	1.6	7.02	1.21	5.33							0.01	0.06		
СТ									0.36	1.58	0.15	0.64	0.02	0.10				
SSM & Malfunction	20.80	10.00	20.80	10.00		10.00												
Amine Unit		Emission	ns from th	e Amine U	Jnit are ro	outed to th	e thermal	oxidizer (unit 15) o	r flare (un	it 16). Co	ntrolled er	nissions a	re represe	nted under	r unit 15 a	nd unit 16.	
Totals	258.26	1050.13	64.96	202.77	12.06	62.84	4.17	18.32	4.03	17.60	3.82	16.66	3.69	16.12	0.04	0.19	4.33E-04	1.90E-03

¹ Condensable Particulate Matter: Include condensable particulate matter emissions for PM10 and PM2.5 if the source is a combustion source. Do not include condensable particulate matter for PM unless PM is set equal to PM10 and PM2.5. Particulate matter (PM) is not subject to an ambient air quality standard, but it is a regulated air pollutant under PSD (20.2.74 NMAC) and Title V (20.2.70 NMAC).

This table is intentionally left blank since all emissions at this facility due to routine or predictable startup, shutdown, or scehduled maintenance are no higher than those listed in Table 2-E and a malfunction emission limit is not already permitted or requested. If you are required to report GHG emissions as described in Section 6a, include any GHG emissions during Startup, Shutdown, and/or Scheduled Maintenance (SSM) in Table 2-P. Provide an explanations of SSM emissions in Section 6 and 6a.

All applications for facilities that have emissions during routine our predictable startup, shutdown or scheduled maintenance (SSM)¹, including NOI applications, must include in this table the Maximum Emissions during routine or predictable startup, shutdown and scheduled maintenance (20.2.7 NMAC, 20.2.72.203.A.3 NMAC, 20.2.73.200.D.2 NMAC). In Section 6 and 6a, provide emissions calculations for all SSM emissions reported in this table. Refer to "Guidance for Submittal of Startup, Shutdown, Maintenance Emissions in Permit Applications (https://www.env.nm.gov/agb/permit/agb_pol.html) for more detailed instructions. Numbers shall be expressed to at least 2 decimal points (e.g. 0.41, 1.41, or 1.41E-4).

Unit No.	N			0		DC		Dx		M^2		[10 ²		2.5^2		$_{2}S$	Le	ead
Onit No.	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr										
SSM & Malfunction	20.80	10.00	20.80	10.00		10.00												
Totals																		

¹ For instance, if the short term steady-state Table 2-E emissions are 5 lb/hr and the SSM rate is 12 lb/hr, enter 7 lb/hr in this table. If the annual steady-state Table 2-E emissions are 21.9 TPY, and the number of scheduled SSM events result in annual emissions of 31.9 TPY, enter 10.0 TPY in the table below.

² Condensable Particulate Matter: Include condensable particulate matter emissions for PM10 and PM2.5 if the source is a combustion source. Do not include condensable particulate matter for PM unless PM is set equal to PM10 and PM2.5. Particulate matter (PM) is not subject to an ambient air quality standard, but it is a regulated air pollutant under PSD (20.2.74 NMAC) and Title V (20.2.70 NMAC).

X I have elected to leave this table blank because this facility does not have any stacks/vents that split emissions from a single source or combine emissions from more than one source listed in table 2-A. Additionally, the emission rates of all stacks match the Requested allowable emission rates stated in Table 2-E.

Use this table to list stack emissions (requested allowable) from split and combined stacks. List Toxic Air Pollutants (TAPs) and Hazardous Air Pollutants (HAPs) in Table 2-I. List all fugitives that are associated with the normal, routine, and non-emergency operation of the facility. Unit and stack numbering must correspond throughout the application package. Refer to Table 2-E for instructions on use of the "-" symbol and on significant figures.

	Serving Unit	N	Ox	C	0	V	C	SO	Ox	P	М	PN	110	PM	12.5	\Box H ₂ S of	r 🗆 Lead
Stack No.	Number(s) from Table 2-A	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr										
,	Totals:																

Unit and stack numbering must correspond throughout the application package. Include the stack exit conditions for each unit that emits from a stack, including blowdown venting parameters and tank emissions. If the facility has multiple operating scenarios, complete a separate Table 2-H for each scenario and, for each, type scenario name here:

Stack	Serving Unit Number(s)	Orientation (H-Horizontal	Rain Caps	Height Above	Temp.	Flow	Rate	Moisture by	Velocity	Inside
Number	from Table 2-A	(H-Horizontal V=Vertical)	(Yes or No)	Ground (ft)	(F)	(acfs)	(dscfs)	Volume (%)	(ft/sec)	Diameter (ft)
1	1	V	No	56	750		13102		46.7	18.9
2	2	V	No	45	370		10218		35.2	10.5
2 Bypass	2	V	No	45	750		348		133.9	6.5
3	3	V	No	45	370		10218		35.2	10.5
3 Bypass	3	V	No	45	750		348		133.9	6.5
4	4	V	No	30.8	827		855.3		100.0	3.3
5	5	V	No	30.8	827		855.3		100.0	3.3
6	6	V	No	30.8	827		855.3		100.0	3.3
7	7	V	No	30.8	827		855.3		100.0	3.3
8	8	V	No	78.3	664		124.7		48.7	3.1
9	9	V	No	200	1832		37.23		65.6	0.9
12	12	V	No	15.3	550		25.3		14.3	1.5
13	13	V	No	78.3	664		124.7		48.7	3.1
14	14	N/A	N/A	Fugitives	N/A		N/A		N/A	N/A
15	15	V	No	40	1200		201.5		28.5	3.0
16	16	V	No	60	1832		34.6		65.6	0.8

Table 2-I: Stack Exit and Fugitive Emission Rates for HAPs and TAPs

In the table below, report the Potential to Emit for each HAP from each regulated emission unit listed in Table 2-A, only if the entire facility emits the HAP at a rate greater than or equal to one (1) ton per year. For each such emission unit, HAPs shall be reported to the nearest 0.1 tpy. Each facility-wide Individual HAP total and the facility-wide Total HAPs shall be the sum of all HAP sources calculated to the nearest 0.1 ton per year. Per 20.2.72.403.A.1 NMAC, facilities not exempt [see 20.2.72.402.C NMAC] from TAP permitting shall report each TAP that has an uncontrolled emission rate in excess of its pounds per hour screening level specified in 20.2.72.502 NMAC. TAPs shall be reported using one more significant figure than the number of significant figures shown in the pound per hour threshold corresponding to the substance. Use the HAP nomenclature as it appears in Section 112 (b) of the 1990 CAAA and the TAP nomenclature as it listed in 20.2.72.502 NMAC. Include tank-flashing emissions estimates of HAPs in this table. For each HAP or TAP listed, fill all cells in this table with the emission numbers or a "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expected or the pollutant is emitted in a quantity less than the threshold amounts described above.

	Unit No.(s)		HAPs	Acetal	dehyde .P or □ AP	Formal	dehyde P or □	n-Hexane		Benzene HAP or	⊠ TAP □		uene or 🗆 TAP		enzene or 🗆 TAP		lene or 🗆 TAP	Name Her	Pollutant e 🛛 r 🗆 TAP
		lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
1	1	0.2	1	0.1	0.4	0.1	0.4												
2	2	0.2	1	0.1	0.4	0.1	0.4												
3	3	0.2	1	0.1	0.4	0.1	0.4												
4	4	0.3	1.5	0.1	0.6	0.1	0.6		0.1										
5	5	0.3	1.5	0.1	0.6	0.1	0.6		0.1										
6	6	0.3	1.5	0.1	0.6	0.1	0.6		0.1										
7	7	0.3	1.5	0.1	0.6	0.1	0.6		0.1										
8	8		0.1																
9	9																		
12	12																		
13	13																		
14	14	0.3	1.2						0.8										
15	15	0.11	0.49							0.07	0.32	0.03	0.15			0.01	0.02		
16	16	0.05	0.21							0.03	0.14	0.01	0.06			0.01	0.01		
СТ	СТ																		
SSM/M	SSM/M		1.35						1.21										
Amine Unit	Amine Unit		Emissio	ns from th	e Amine U	Jnit are ro	uted to the	e thermal o	oxidizer (u	nit 15) or	flare (unit	16). Cont	trolled emi	ssions are	represent	ed under u	mit 15 and	l unit 16.	
TT -		2.26	10.05	0.50	2.60	0.70	0.60	0.00	0.41	0.10	0.46	0.04	0.01	0.00	0.00	0.00	0.02	0.00	
Tot	als:	2.26	12.35	0.70	3.60	0.70	3.60	0.00	2.41	0.10	0.46	0.04	0.21	0.00	0.00	0.02	0.03	0.00	0.00

Table 2-J:Fuel

Specify fuel characteristics and usage. Unit and stack numbering must correspond throughout the application package.

	Fuel Type (low sulfur Diesel,	Fuel Source: purchased commercial, pipeline quality natural gas, residue		Speci	fy Units		
Unit No.	ultra low sulfur diesel, Natural Gas, Coal,)	gas, raw/field natural gas, process gas (e.g. SRU tail gas) or other	Lower Heating Value	Hourly Usage	Annual Usage	% Sulfur	% Ash
1	Pipeline Quality Natural Gas	Pipeline Quality Natural Gas	1000	123.2	1079.2	5 gr/100 scf max	Negligible
2	Pipeline Quality Natural Gas	Pipeline Quality Natural Gas	1000	123.2	1079.2	5 gr/100 scf max	Negligible
3	Pipeline Quality Natural Gas	Pipeline Quality Natural Gas	1000	123.2	1079.2	5 gr/100 scf max	Negligible
4	Pipeline Quality Natural Gas	Pipeline Quality Natural Gas	1000	32.9	288.2	5 gr/100 scf max	Negligible
5	Pipeline Quality Natural Gas	Pipeline Quality Natural Gas	1000	32.9	288.2	5 gr/100 scf max	Negligible
6	Pipeline Quality Natural Gas	Pipeline Quality Natural Gas	1000	32.9	288.2	5 gr/100 scf max	Negligible
7	Pipeline Quality Natural Gas	Pipeline Quality Natural Gas	1000	32.9	288.2	5 gr/100 scf max	Negligible
8	Pipeline Quality Natural Gas	Pipeline Quality Natural Gas	1000	16.2	141.9	5 gr/100 scf max	Negligible
9	Pipeline Quality Natural Gas	Pipeline Quality Natural Gas	1000	1.1	10.0	5 gr/100 scf max	Negligible
12	Pipeline Quality Natural Gas	Pipeline Quality Natural Gas	1000	3.4	29.8	5 gr/100 scf max	Negligible
13	Pipeline Quality Natural Gas	Pipeline Quality Natural Gas	1000	16.2	141.9	5 gr/100 scf max	Negligible
15	Pipeline Quality Natural Gas	Pipeline Quality Natural Gas	1000	12.0	105.1	5 gr/100 scf max	Negligible
16	Pipeline Quality Natural Gas	Pipeline Quality Natural Gas	1000	1.1	288.2	5 gr/100 scf max	Negligible

Table 2-K: Liquid Data for Tanks Listed in Table 2-L

For each tank, list the liquid(s) to be stored in each tank. If it is expected that a tank may store a variety of hydrocarbon liquids, enter "mixed hydrocarbons" in the Composition column for that tank and enter the corresponding data of the most volatile liquid to be stored in the tank. If tank is to be used for storage of different materials, list all the materials in the "All Calculations" attachment, run the newest version of TANKS on each, and use the material with the highest emission rate to determine maximum uncontrolled and requested allowable emissions rate. The permit will specify the most volatile category of liquids that may be stored in each tank. Include appropriate tank-flashing modeling input data. Use additional sheets if necessary. Unit and stack numbering must correspond throughout the application package.

					Vapor	Average Stor	age Conditions	Max Storag	ge Conditions
Tank No.	SCC Code	Material Name	Composition	Liquid Density (lb/gal)	Wapor Molecular Weight (lb/lb*mol)	Temperature (°F)	True Vapor Pressure (psia)	Temperature (°F)	True Vapor Pressure (psia)
Saddle Tank	31088811	Diesel Fuel	Diesel Fuel	Exempt Sour	rce				
TK 1401	31088811	Methanol	Methanol	Exempt Sour	rce				
TK 1402	31088811	Used Oil	Used Oil	Exempt Sour	rce				

Table 2-L: Tank Data

Include appropriate tank-flashing modeling input data. Use an addendum to this table for unlisted data categories. Unit and stack numbering must correspond throughout the application package. Use additional sheets if necessary. See reference Table 2-L2. Note: 1.00 bbl = 10.159 M3 = 42.0 gal

Tank No.	Date Installed	Materials Stored	Seal Type (refer to Table 2-	Roof Type (refer to Table 2-	Сар	acity	Diameter (M)	Vapor Space	Co (from Ta	lor ble VI-C)	Paint Condition (from Table	Annual Throughput (gal/yr)	Turn- overs
			LR below)	LR below)	(bbl)	(M ³)		(M)	Roof	Shell	VI-C)	(gal/yr)	(per year)
Saddle Tank		Diesel Fuel		FX	12		Exempt Source						
TK 1401		Methanol		FX	200		Exempt Source						
TK 1402		Used Oil		FX	500		Exempt Source						
			_										
									-				
									-				

Roof Type	Seal Type, W	elded Tank Seal Type	Seal Type, Rive	Seal Type, Riveted Tank Seal Type					
FX: Fixed Roof	Mechanical Shoe Seal	Liquid-mounted resilient seal	Vapor-mounted resilient seal	Seal Type	WH: White	Good			
IF: Internal Floating Roof	A: Primary only	A: Primary only	A: Primary only	A: Mechanical shoe, primary only	AS: Aluminum (specular)	Poor			
EF : External Floating Roof B : Shoe-mounted secondary		B: Weather shield	B: Weather shield	B: Shoe-mounted secondary	AD: Aluminum (diffuse)				
P: Pressure C: Rim-mounted secondary C: Rim-mounted secondary		C: Rim-mounted secondary	C: Rim-mounted secondary	C: Rim-mounted secondary	LG: Light Gray				
					MG: Medium Gray				
Note: $1.00 \text{ bbl} = 0.159 \text{ M}$	$1^3 = 42.0 \text{ gal}$				BL : Black				
					OT: Other (specify)				

 Table 2-M:
 Materials Processed and Produced (Use additional sheets as necessary.)

	Materi	al Processed		Ν	Iaterial Produced		
Description	Chemical Composition	Phase (Gas, Liquid, or Solid)	Quantity (specify units)	Description	Chemical Composition	Phase	Quantity (specify units)
Natural Gas	Varies	Gas	600 mmscfd	Residue Gas	Methane	Gas	600 mmscfd
				Natural Gas Liquids	Mixed Hydrocarbons	Liquids	55,000 bbl/d

Enter Continuous Emissions Measurement (CEM) Data in this table. If CEM data will be used as part of a federally enforceable permit condition, or used to satisfy the requirements of a state or federal regulation, include a copy of the CEM's manufacturer specification sheet in the Information Used to Determine Emissions attachment. Unit and stack numbering must correspond throughout the application package. Use additional sheets if necessary.

Stack No.	Pollutant(s)	Manufacturer	Model No.	Serial No.	Sample Frequency	Averaging Time	Range	Sensitivity	Accuracy

Table 2-O: Parametric Emissions Measurement Equipment

Unit and stack numbering must correspond throughout the application package. Use additional sheets if necessary.

Unit No.	Parameter/Pollutant Measured	Location of Measurement	Unit of Measure	Acceptable Range	Frequency of Maintenance	Nature of Maintenance	Method of Recording	Averaging Time

Table 2-P:Greenhouse Gas Emissions

Applications submitted under 20.2.70, 20.2.72, & 20.2.74 NMAC are required to complete this Table. Power plants, Title V major sources, and PSD major sources must report and calculate all GHG emissions for each unit. Applicants must report potential emission rates in short tons per year (see Section 6.a for assistance). Include GHG emissions during Startup, Shutdown, and Scheduled Maintenance in this table. For minor source facilities that are not power plants, are not Title V, or are not PSD, there are three options for reporting GHGs 1) report GHGs for each individual piece of equipment; 2) report all GHGs from a group of unit types, for example report all combustion source GHGs as a single unit and all venting GHG as a second separate unit; OR 3) check the following box \Box By checking this box, the applicant acknowledges the total CO2e emissions are less than 75,000 tons per year.

		CO ₂ ton/yr	N2O ton/yr	CH ₄ ton/yr	SF ₆ ton/yr	PFC/HFC ton/yr ²					Total GHG Ma Basis ton/y	
Unit No.	GWPs ¹	1	298	25	22,800	footnote 3						
1		62,990.45	0.12	1.19							62,991.7	
1		62,990.45	35.46	29.75								63,055.66
2	mass GHG	62,990.45	0.12	1.19							62,991.7	
2	CO ₂ e	62,990.45	35.46	29.75								63,055.66
3		62,990.45	0.12	1.19							62,991.7	
3		62,990.45	35.46	29.75								63,055.66
4	mass GHG	16,821.31	0.03	0.32							16,821.6	
-	CO ₂ e	16,821.31	9.45	7.93								16,838.69
5		16,821.31	0.03	0.32							16,821.6	
	CO ₂ e	16,821.31	9.45	7.93					_			16,838.69
6		16,821.31	0.03	0.32							16,821.6	
	CO ₂ e	16,821.31	9.45	7.93								16,838.69
7		16,821.31	0.03	0.32							16,821.6	
	CO ₂ e	16,821.31	9.45	7.93			-		-			16,838.69
8	mass GHG	7,439.21	0.01	0.14							7,439.36	
	CO ₂ e	7,439.21	4.17	3.50								7,446.88
9	mass GHG	692.43	0.00115	3.59							696.02	
-	CO ₂ e	692.43	0.34	89.75								782.52
12	mass GHG	1,738.37	3.28E-03	0.03							1,738.40	
	CO ₂ e	1,738.37	0.98	0.82								1,740.17
13	mass GHG	7,439.21	0.01	0.14							7,439.36	
	CO ₂ e	7,439.21	4.17	3.50								7,446.88
14	mass GHG	8.87		166.37							175.24	
	CO ₂ e	8.87		4,159.25								4,168.12
15	mass GHG	6,135.43	0.01	0.12				 		 ļ	6,135.56	
	CO ₂ e	6,135.43	3.46	2.90	-							6,141.79
16	mass GHG	5,686.55	8.17E-03	29.46						<u> </u>	5,716.02	
	CO ₂ e	5,686.55	2.43	736.5							45.10	6,425.48
SSM/M	mass GHG	2.33		43.77							46.10	1.006.50
	CO2e	2.33		1,094.25							295 (17)	1,096.58
Total	mass GHG		0.52	248.47							285,647.9	
	CO ₂ e	285,398.99	159.73	6,211.44								291,770.16

¹ GWP (Global Warming Potential): Applicants must use the most current GWPs codified in Table A-1 of 40 CFR part 98. GWPs are subject to change, therefore, applicants need to check 40 CFR 98 to confirm GWP values.

² For **HFCs** or **PFCs** describe the specific HFC or PFC compound and use a separate column for each individual compound.

³ For each new compound, enter the appropriate GWP for each HFC or PFC compound from Table A-1 in 40 CFR 98.

⁴ Green house gas emissions on a **mass basis** is the ton per year green house gas emission before adjustment with its GWP.

⁵ CO₂e means Carbon Dioxide Equivalent and is calculated by multiplying the TPY mass emissions of the green house gas by its GWP.

Section 3

Application Summary

The <u>Application Summary</u> shall include a brief description of the facility and its process, the type of permit application, the applicable regulation (i.e. 20.2.72.200.A.X, or 20.2.73 NMAC) under which the application is being submitted, and any air quality permit numbers associated with this site. If this facility is to be collocated with another facility, provide details of the other facility including permit number(s). In case of a revision or modification to a facility, provide the lowest level regulatory citation (i.e. 20.2.72.219.B.1.d NMAC) under which the revision or modification is being requested. Also describe the proposed changes from the original permit, how the proposed modification will affect the facility's operations and emissions, de-bottlenecking impacts, and changes to the facility's major/minor status (both PSD & Title V).

The **<u>Process</u>** <u>Summary</u> shall include a brief description of the facility and its processes.

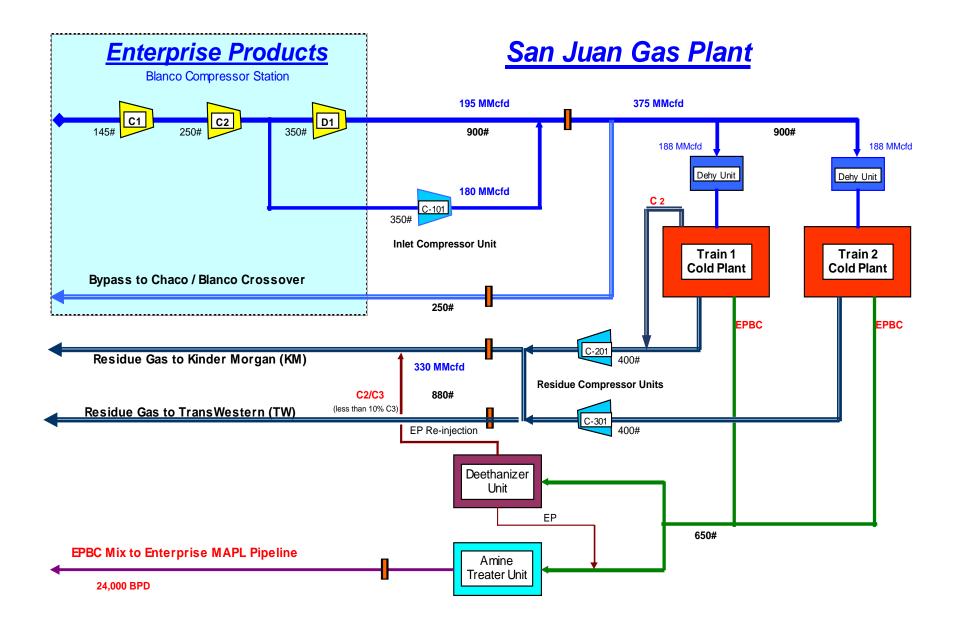
<u>Startup, Shutdown, and Maintenance (SSM)</u> routine or predictable emissions: Provide an overview of how SSM emissions are accounted for in this application. Refer to "Guidance for Submittal of Startup, Shutdown, Maintenance Emissions in Permit Applications (http://www.env.nm.gov/aqb/permit/app_form.html) for more detailed instructions on SSM emissions.

Harvest Four Corners, LLC proposes to update NSR Permit 613-M10 San Juan Gas Plant (SJGP). The facility is a natural gas processing plant located north of Bloomfield, New Mexico. Two field natural gas streams (high and low pressure) are delivered to the plant where hydrocarbon liquids are extracted via a cryogenic process. The resulting residue gas and hydrocarbon liquids are delivered, primarily via pipelines, to customers.

This application seeks a significant revision to the NSR permit pursuant to NMAC 20.2.72.219D.1. The amine unit is currently represented in NSR Permit 0613-M10-R2 as controlled by the thermal oxidizer (Unit 15) and a backup chemical absorption bed during both ethane recovery or ethane rejection modes. The SJGP is seeking to change the control of emissions from the amine unit so it can now vent to either the thermal oxidizer in ethane recovery mode or the 8" maintenance flare (Unit 16) while in the ethane rejection mode. The emission calculations provided in this application are based on continuous operation in both modes, and thus conservative. Therefore, NSR Permit No. 0613-M10-R2 needs to be revised to reflect the change in control to the flare for the amine unit during the ethane rejection mode.

This application also seeks to make the following changes:

- In the process of preparing this application, Harvest determined that the cooling tower had previously been omitted from authorization in previous applications. Therefore, Harvest requests to authorize particulate emissions from the existing 3 cell cooling tower (Unit CT).
- Update for erroneous emission factors from the thermal oxidizer (Unit 15) that were submitted over 20 years ago by the previous owner, ConocoPhillips. The factors were updated to AP-42 factors as the original basis from the previous owner was not able to be located.
- Change the reporting requirements for A222 (Fugitives) from "The permittee shall comply with all applicable reporting requirements in NSPS Subpart KKK, 40 CFR 60.636 and 60.487, for the cryogenic NGL extraction unit and other affected equipment." to "The permittee shall report in accordance with Section B110." Harvest Four Corners, LLC requests to submit NSPS KKK semi-annual LDAR reports during the Title V semi-annual report and not as a separate report.

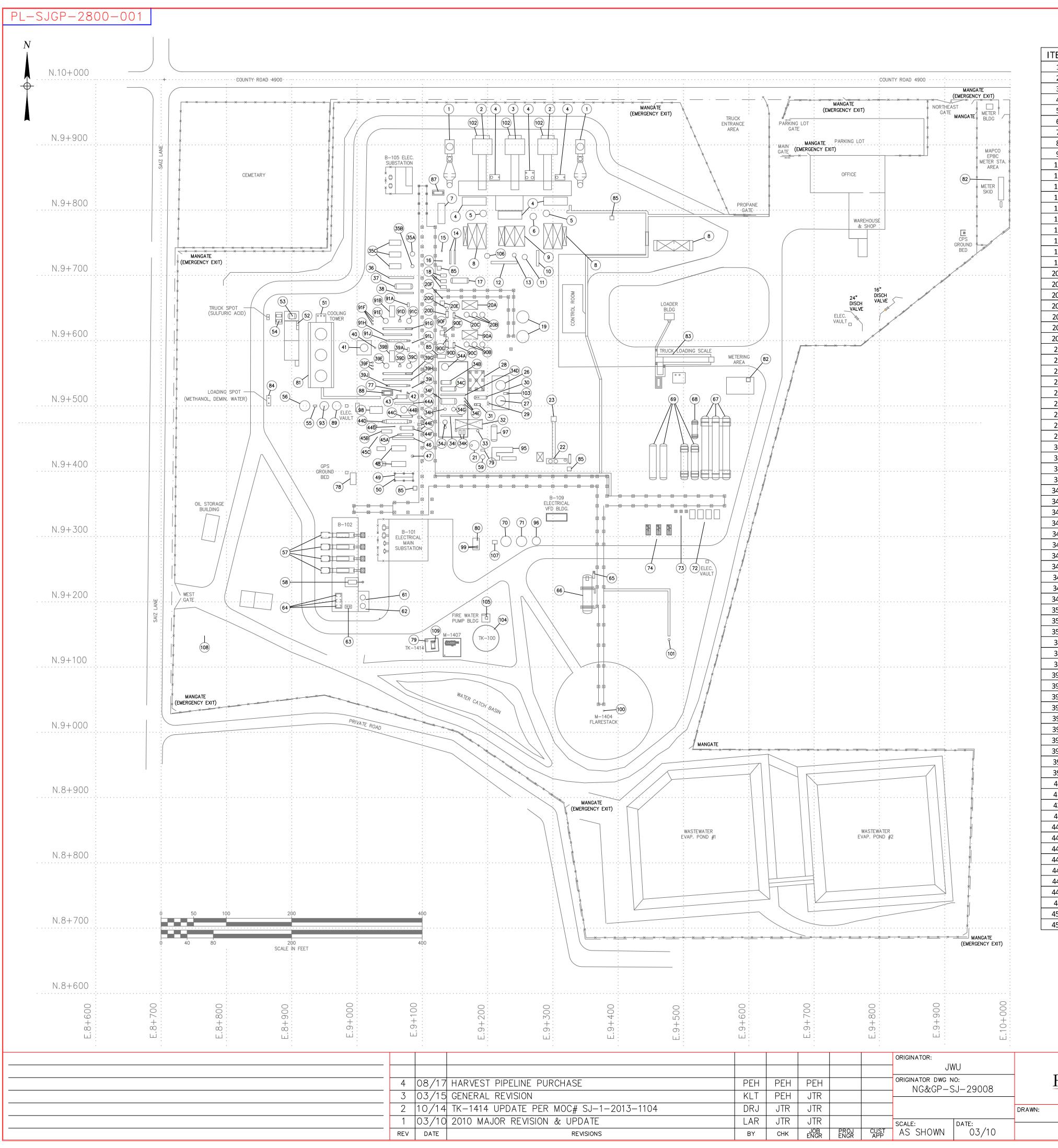

With this revision, there will be no changes to Title V or PSD as this facility will remain a major source for both.

Section 4

Process Flow Sheet

A **process flow sheet** and/or block diagram indicating the individual equipment, all emission points and types of control applied to those points. The unit numbering system should be consistent throughout this application.

A process flow sheet is attached. There are no changes to the process flow sheets from previously submitted applications. Therefore, the same process flow sheet is attached.

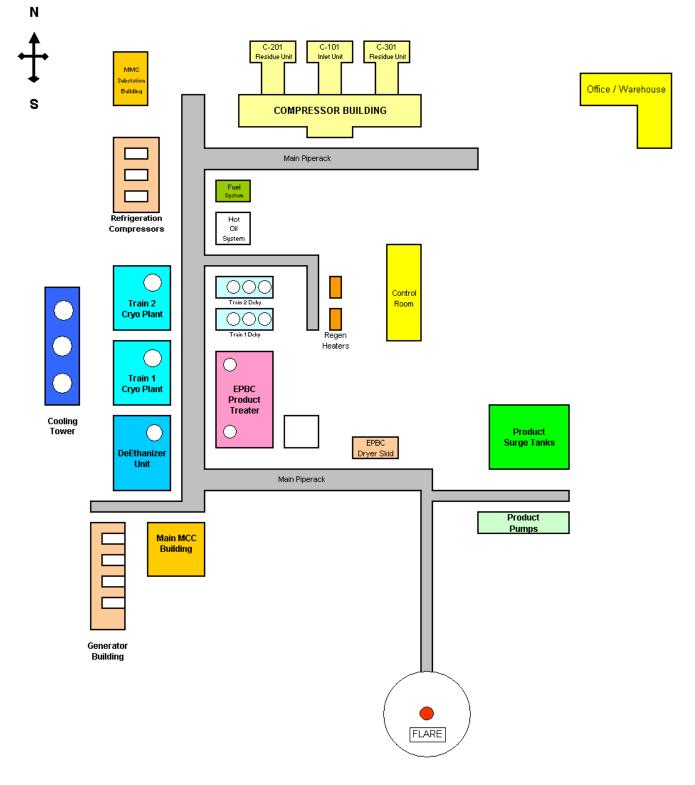

Gas & Liquid Flow Diagram

Section 5

Plot Plan Drawn To Scale

A <u>plot plan drawn to scale</u> showing emissions points, roads, structures, tanks, and fences of property owned, leased, or under direct control of the applicant. This plot plan must clearly designate the restricted area as defined in UA1, Section 1-D.12. The unit numbering system should be consistent throughout this application.

A plot plan is attached. There are no changes to the plot plan from previously submitted applications. Therefore, the same plot plan is attached.


TEM	EQUIPMENT DESCRIPTION	EQUIPMENT #	ITEM	EQUIPMENT DESCRIPTION	EQUIPMENT #
1	HOT OIL HEATERS (2)	WH-1101 A, B	46	EP PRODUCT TRIM COOLER	E-902
2	RESIDUE COMPRESSORS (2)	C-201/301	47	EP COMPRESSOR SUCTION SCRUBBER	V-904
3	INLET COMPRESSOR	C-101	48	EP PRODUCT COMPRESSORS (2)	С-901 А,В
4	LUBRICATING OIL SKIDS (6)		49	PBC COOLER	AC-901
5	RESIDUE COMPRESSOR SUCTION SCRUBBERS (2)	V-201/301	50	EP COMPRESSOR AFTERCOOLER	AC-902
6	LOW PRESSURE INLET GAS SEPARATOR	V-102	51	COOLING WATER CIRCULATING PUMPS (3)	P-1201 A,B,C
7	HOT OIL TRIM COOLER (OOS)	AC-1101	52	WATER TREATING OX 1201 SODIUM HYPERCHLORIDE	P-1208 A,B
8	RESIDUE COMPRESSOR AFTERCOOLERS (3)	AC-100-201-301	53	ACID STORAGE TANK	V-1201
9	INLET COMPRESSOR AFTERCOOLER	AC-101	54	WATER TREATMENT CHEMICAL TANKS (2)	M-1201
10	HIGH PRESSURE INLET COOLER	E-101	55	DEMINERALIZED WATER PUMP	P-1407
11	HIGH PRESSURE INLET GAS SEPARATOR	V-101	56	DEMINERALIZED WATER STORAGE TANK (3)	TK-802
12	INLET COMPRESSOR TRIM COOLER	E-102	57	POWER GENERATORS (4)	G-1300 A,B,C,D
13	INLET COMPRESSOR DISCHARGE SCRUBBER	V-103	58	BACK UP GENERATOR	G-1301
14	RECYCLE COOLERS (2)	E-201/301	59	HSW-700 STORAGE TANK	TK-804A
15	HIGH PRESSURE FUEL GAS SCRUBBER	V-1404	60	WASTE LUBE OIL PUMP	P-1414
16	LOW PRESSURE FUEL GAS SCRUBBER	V-1405	61	INSTRUMENT AIR RECEIVER	V-1408
17	HOT OIL EXPANSION VESSEL	V-1101	62	UTILITY AIR RECEIVER	V-1407
18	HOT OIL PUMPS (3)	P-1101 ABC	63	INSTRUMENT AIR DRIER	M-1409
19	REGEN GAS HEATERS (2)	H-401/501	64	INSTRUMENT/UTILITY AIR COMPRESSOR (3)	M-1401 A,B,C
20A	INLET GAS DEHYDCOOLERS	AC-401 (TRAIN #2 OF 2)	65	FLARE KNOCKOUT DRUM PUMP	P-1406
20B	INLET GAS DEHYD DEHYDRATORS (3)	V-401 (TRAIN #2 OF 2)	66	FLARE KNOCKOUT DRUM	V-1406
20C	INLET GAS DEHYD DUST FILTER	F-402 (TRAIN #2 OF 2)	67	EPBC PRODUCT SURGE TANKS (3)	V-902 A,B,C
20D	INLET GAS DEHYD FILTER SEPARATOR	F-401A (TRAIN #2 OF 2)	68	PROPANE STORAGE TANK	V-1007
20E	INLET GAS DEHYD REGEN COMPR. & OIL COOLER	C-401 (TRAIN #2 OF 2)	69	PBC PRODUCT SURGE TANKS (4)	V-903 A,B,C,D
20F	INLET GAS DEHYD REGEN SCRUBBER	V-402 (TRAIN #2 OF 2)	70	WASTEWATER STORAGE TANK	TK-1403
20G	INLET GAS COALESCER	F-401B (TRAIN #2 OF 2)	71	SLOP OIL STORAGE TANK	TK-1402
21	SULFA CHECK SYSTEM	ТК-804		EPBC PRODUCT PIPELINE PUMPS (4) (DECOMMISSIONED)	
22	EPBC PRODUCT DEHY, SKID	F-903/V-906 A,B/V-607	73	EPBC PRODUCT BOOSTER PUMPS (3)	P-902 A,B,C
23	EPBC PRODUCT DEHY REGEN HEATER	H-901	74	EPBC PRODUCT PIPELINE PUMPS (3)	P-903 A,B,C
24			75		
25			76		
26	WASTEWATER & AMINE STORAGE TANK	ТК-802	77	CLOSED DRAIN PUMP	P-906
27	AMINE STORAGE TANK	ТК-801	78	GENERATOR LUBE OIL TANK	TK-1300
28	AMINE COOLER	AC-801	79	HSW-700 PUMP	P-808
29	AMINE MAKEUP PUMP	P-803	80	SKIM PIT SLOP OIL PUMP	P-1404
30	AMINE SUMP PUMPS (2)	P-805 A,B	81	COOLING TOWER	CT-1201
31	AMINE DRAIN TANK PUMP	P-804	82	PRODUCT METERING AREA & MAPCO MTR. AREA	
32	AMINE STILL REFLUX FANS	AC-802	83	TRUCK LOADING CONNECTIONS (HVL)	
33			84	TRUCK LOADING CONNECTIONS (FLAMMABLE LIQ.)	
34A	AMINE TREATING- CONTACTOR	T-801	85	GAS ANALYZER BUILDING (5)	
34B	AMINE TREATING- AMINE COALESCER	V-803	86		
34C	AMINE TREATING- FLASH VESSEL	V-802	87	TURBINE MAKE-UP LUBE OIL TANK	TK-101
34D	AMINE TREATING- COOL AMINE EXCHANGER	E-801	88	COLD DRAIN VESSEL	V-1403
34E	AMINE TREATING- CIRCULATION PUMPS (3)	P-801 A,B,C	89	PROCESS WATER TANK	TK-1203
34F	AMINE TREATING- SURGE VESSEL	V-804	90A	INLET GAS DEHYD COOLERS	AC-501 (TRAIN #1 OF 2)
34G	AMINE TREATING- CHARCOAL FILTER	F-802	90B	INLET GAS DEHYD DEHYDRATORS (3)	V-501 A, B, C (TRAIN #1 OF
34H	AMINE TREATING- SOCK FILTER	F-801	90C	INLET GAS DEHYD DUST FILTER	F-502 (TRAIN #1 OF 2)
341	AMINE TREATING- HOT AMINE EXCHANGER	E-802	90D	INLET GAS DEHYD FILTER SEPARATOR	F-501A (TRAIN #1 OF 2)
34J	AMINE TREATING- STILL PLUS REBOILER	T-802 & E-803	90E	INLET GAS DEHYD REGEN COMPR. & OIL COOLER	C-501 (TRAIN #1 OF 2)
84K	AMINE TREATING- STILL REFLUX PUMPS (2)	P-802 A,B	90F	INLET GAS DEHYD REGEN SCRUBBER	V-502 (TRAIN #1 OF 2)
35A	REFRIGERANT COMPR LOW STAGE SUCT. SCRUB	V-1002	90G	INLET GAS COALESCER	F-501B (TRAIN #1 OF 2)
35B	REFRIGERANT COMPR ECONOMIZER	V-1004	91A	CRYO. TRAIN-GAS/GAS & COLD GAS/GAS EXCH.	E-701, E-702 (TRAIN #2 OF
85C	REFRIGERANT COMPR COMPRESSORS (3)	C-1001 A,B,C	91B	CRYO. TRAIN-EXPANDER/COMPRESSOR	X-701 (TRAIN #2 OF 2)
36	REFRIGERANT CONDENSER	E-1001	91C	CRYO. TRAIN- DEMETHANIZER + COLD VENT	T-701 (TRAIN #2 OF 2)
<u>37</u>	REFRIGERANT ACCUMULATOR	V-1001	91D	CRYO. TRAIN- DEMETH. UPPER SIDE REBOILER	E-705 (TRAIN #2 OF 2)
38	REFRIGERANT SUBCOOLER	E-1002	91E	CRYO. TRAIN- COLD SEPARATOR	V-701 (TRAIN #2 OF 2)
39A	CRYO. TRAIN 1- GAS/GAS & COLD/ GAS EXCH.	E-601, E-602 (TRAIN 1 OF 2)	91F	CRYO. TRAIN- DEMETH. BOTTOMS PUMPS (3)	P-701 A,B,C (TRAIN #2 OF
89B	CRYO. TRAIN 1- EXPANDER/COMPRESSOR	X-601 (TRAIN 1 OF 2)	91G	CRYO. TRAIN- DEMETH. & TRIM REBOILERS	E-703, E-706 (TRAIN #2 OF
39C	CRYO. TRAIN 1- DEMETHANIZER + COLD VENT	T-601 (TRAIN 1 OF 2)	91H	CRYO. TRAIN- LOWER SIDE REBOILER	E-707 (TRAIN #2 OF 2)
. <u>90</u> 89D	CRYO. TRAIN 1- DEMETH. UPPER SIDE REBOILER	E-605 (TRAIN 1 OF 2)	911	CRYO. TRAIN- LOW STAGE REFRIG. RECLAIMER	V-1009 (TRAIN #2 OF 2)
39E	CRYO TRAIN 1- COLD SEPARATOR	V-601 (TRAIN 1 OF 2)	91J	CRYO. TRAIN-GAS CHILLER	E-704 (TRAIN #2 OF 2)
39F	CRYO TRAIN 1- DEMETH. BOTTOMS PUMPS (3)	P-601 A, B, C (TRAIN 1 OF 2)	92	BACK UP GENERATOR DIESEL TANK	TK-1301
39G	CRYO TRAIN 1- DEMETH. & TRIM REBOILERS	E-603, E-606 (TRAIN 1 OF 2)	93	WATER TANK (UNUSED)	TK-1202
89H	CRYO TRAIN 1- LOWER SIDE REBOILER	E-607 (TRAIN 1 OF 2)	94	FIRE WATER PUMP DIESEL TANK	TK-01
39I	CRYO TRAIN 1- LOW STAGE REFRIG. RECLAIMER	V-1008 (TRAIN 1 OF 2)	95	THERMAL OXIDIZER	TO-860
39J	CRYO TRAIN 1 GAS CHILLER	E-604 (TRAIN 1 OF 2)	96	WASTE LUBE OIL TANK	TK-1402A
40	METHANOL INJECTION PUMP	P-1401	97	AMINE STILL REFLUX ACCUMULATOR	V-805
40 41	METHANOL STORAGE TANK	TK-1401	98	VAPOR RECOVERY COMPRESSOR	C-1411/C-1412
41 42	CLOSED DRAIN PUMP	P-1403	99	SKIMMER PIT- PROCESS WASTE PUMPS	P-1405 A,B
+ <u>2</u> 43	CLOSED DRAIN VESSEL	V-1402	100	36 INCH FLARE	M-1404
43 4A	DEETHANIZER- REBOILER	E-904	100	8 INCH FLARE	M-1412
		T-901			
14B			102		M-101/M-201/M-301
	DEETHANIZER- SIDE REBOILER	E-905	103	DIESEL TANK	EQUIPMENT FUEL
14D	DEETHANIZER- REFLUX CONDENSER	E-901	104		TK-100
14E	DEETHANIZER- REFLUX PUMPS (3)	P-901 A,B,C	105		P-100
I4F	DEETHANIZER- REFLUX ACCUMULATOR	V-901	106	INLET GAS FILTER	F-101
14G	DEETHANIZER- HIGH STAGE REFRIG. RECLAIMER	V-1006	107		P-H2O
45	EP PRODUCT CHILLER	E-903	108	SPECIAL WASTE CONTAINMENT PAD	
15A	EP METER SKID		109	WASTE LUBE TANK	TK-1414
5B	EP REINJECTION PUMP	P-970	110	1	1

· ·						
	HARVE PIPELIN		Sas Plant		SAN JUAN BASIN GAS EQUIPMENT DESCRI — PLOT PLAN	
	DRAWN: LAR	DESIGN:	CHECKED: TAK			
			APPROVAL: JTR	DRAWING NO.	PL-SJGP-2800	SHEET REV: 001 _{OF} 001 4

	Issue Date: January 13, 2015	Revision No.:	Procedure Number:
ConocoPhillips	Document Owner:	Review Frequency: 5 Years	Page Number: B-2
Document Title:	Spill Preve	ntion, Control, and C	ountermeasure Plan San Juan Gas Plant

San Juan Gas Plant

Major Equipment Layout

Section 6

All Calculations

Show all calculations used to determine both the hourly and annual controlled and uncontrolled emission rates. All calculations shall be performed keeping a minimum of three significant figures. Document the source of each emission factor used (if an emission rate is carried forward and not revised, then a statement to that effect is required). If identical units are being permitted and will be subject to the same operating conditions, submit calculations for only one unit and a note specifying what other units to which the calculations apply. All formulas and calculations used to calculate emissions must be submitted. The "Calculations" tab in the UA2 has been provided to allow calculations to be linked to the emissions tables. Add additional "Calc" tabs as needed. If the UA2 or other spread sheets are used, all calculation spread sheet(s) shall be submitted electronically in Microsoft Excel compatible format so that formulas and input values can be checked. Format all spread sheets are not used, provide the original formulas with defined variables. Additionally, provide subsequent formulas showing the input values for each variable in the formula. All calculations, including those calculations are imbedded in the Calc tab of the UA2 portion of the application, the printed Calc tab(s), should be submitted under this section.

Tank Flashing Calculations: The information provided to the AQB shall include a discussion of the method used to estimate tank-flashing emissions, relative thresholds (i.e., NOI, permit, or major source (NSPS, PSD or Title V)), accuracy of the model, the input and output from simulation models and software, all calculations, documentation of any assumptions used, descriptions of sampling methods and conditions, copies of any lab sample analysis. If Hysis is used, all relevant input parameters shall be reported, including separator pressure, gas throughput, and all other relevant parameters necessary for flashing calculation.

SSM Calculations: It is the applicant's responsibility to provide an estimate of SSM emissions or to provide justification for not doing so. In this Section, provide emissions calculations for Startup, Shutdown, and Routine Maintenance (SSM) emissions listed in the Section 2 SSM and/or Section 22 GHG Tables and the rational for why the others are reported as zero (or left blank in the SSM/GHG Tables). Refer to "Guidance for Submittal of Startup, Shutdown, Maintenance Emissions in Permit Applications (http://www.env.nm.gov/aqb/permit/app_form.html) for more detailed instructions on calculating SSM emissions. If SSM emissions are greater than those reported in the Section 2, Requested Allowables Table, modeling may be required to ensure compliance with the standards whether the application is NSR or Title V. Refer to the Modeling Section of this application for more guidance on modeling requirements.

Glycol Dehydrator Calculations: The information provided to the AQB shall include the manufacturer's maximum design recirculation rate for the glycol pump. If GRI-Glycalc is used, the full input summary report shall be included as well as a copy of the gas analysis that was used.

Road Calculations: Calculate fugitive particulate emissions and enter haul road fugitives in Tables 2-A, 2-D and 2-E for:

- 1. If you transport raw material, process material and/or product into or out of or within the facility and have PER emissions greater than 0.5 tpy.
- 2. If you transport raw material, process material and/or product into or out of the facility more frequently than one round trip per day.

Significant Figures:

A. All emissions standards are deemed to have at least two significant figures, but not more than three significant figures.

B. At least 5 significant figures shall be retained in all intermediate calculations.

C. In calculating emissions to determine compliance with an emission standard, the following rounding off procedures shall be used:

- (1) If the first digit to be discarded is less than the number 5, the last digit retained shall not be changed;
- (2) If the first digit discarded is greater than the number 5, or if it is the number 5 followed by at least one digit other than the number zero, the last figure retained shall be increased by one unit; **and**
- (3) If the first digit discarded is exactly the number 5, followed only by zeros, the last digit retained shall be rounded upward if it is an odd number, but no adjustment shall be made if it is an even number.
- (4) The final result of the calculation shall be expressed in the units of the standard.

Control Devices: In accordance with 20.2.72.203.A(3) and (8) NMAC, 20.2.70.300.D(5)(b) and (e) NMAC, and 20.2.73.200.B(7) NMAC, the permittee shall report all control devices and list each pollutant controlled by the control device

regardless if the applicant takes credit for the reduction in emissions. The applicant can indicate in this section of the application if they chose to not take credit for the reduction in emission rates. For notices of intent submitted under 20.2.73 NMAC, only uncontrolled emission rates can be considered to determine applicability unless the state or federal Acts require the control. This information is necessary to determine if federally enforceable conditions are necessary for the control device, and/or if the control device produces its own regulated pollutants or increases emission rates of other pollutants.

Amine Vent (Unit: Amine Unit)

All emissions from this unit are calculated using ProMax.

Emissions from the Amine Unit are controlled by the Thermal Oxidizer in ethane recovery mode and by the Flare in ethane rejection mode. Controlled emissions are represented under Unit 15 (Thermal Oxidizer) and Unit 16 (Flare).

Thermal Oxidizer (Unit: 15)

When the facility is in ethane recovery mode, the amine unit vents to the thermal oxidizer (Unit: 15). NO_x, CO, VOC, PM, and SO₂ emissions are calculated using AP-42 factors for external natural gas combustion sources in Tables 1.4-1 and 1.4-2. As a conservative measure, it is assumed that TSP = $PM_{10} = PM_{2.5}$. HAPs, VOC, and H₂S emissions are calculated using streams from ProMax. The ProMax gas analysis for the facility is attached in Section 7. Greenhouse gas emissions are estimated using 40 CFR Part 98 and emission factors from Tables C-1 and C-2 of Part 98.

Flare (Unit: 9 and 16)

Flare Pilot, Purge and Process Gas Streams

Emissions from the plant safety system flare (Unit 9) and from the blowdown flare (Unit 16) are calculated based on estimated design throughput rates. Pilot, purge and process gas emission rates for NOx are based on emission factor taken from Texas Commission on Environmental Quality (TCEQ) January 2010 document "Technical Supplement 4: Flares" for air assisted or unassisted units combusting high-Btu waste streams (>1000 Btu/scf). CO & VOC emission factors are taken from AP-42, Table 13.5-1, 09-91.

There are no excess SSM emissions associated with operation of the flares. The flares do not require warm-up periods. Equipment is not turned on unless the flares are in operation and the flares are not shut down while equipment is in operation. No maintenance is conducted on the flare while they are in operation.

Flare Waste Gas

When the facility is in ethane rejection mode, the amine unit vents to the flare (Unit: 16). NO_x and CO emissions are calculated using AP-42 Table 13.5-1 emission factors. HAPs, VOC, and H₂S emissions are calculated using streams from ProMax. The ProMax gas analysis for the facility is attached in Section 7. The SO₂ composition is based on a 99% molar conversion of H₂S to SO₂. Emissions of greenhouse gases are calculated using methodology from 40 CFR Subpart 98.233(n).

Cooling Tower (Unit: CT)

The cooling tower water flow rate and drift loss data are provided by the manufacturer. The calculations were performed using a total dissolved solids (TDS) concentration of 1,995 ppm. Particle size distribution (PM, PM10, PM2.5) of the drift mass is based on information from the "Frisbie" paper equation.

Due to the nature of the source, it is estimated there are no startup or shutdown emissions associated with the cooling towers. No maintenance is conducted while the cooling towers are in operation.

NOTE: All the remaining calculations described below are unchanged from the previous application. Also, for simplicity of review, the Amine Unit, 9, 15, and CT emissions calculations worksheet in Section 6 and the supporting documentation in Section 7 have been moved to the front of these respective sections.

Turbines (Units: 1-7)

Emissions from the turbines are carried forward from the last construction permit application. No modifications are being made to the turbines or their operation.

The NOX, CO. VOC and SO2 emissions from the turbines are based on manufacturer's data as identified in the previous NSR application. Particulate emissions are calculated using the AP-42 emission factor from Table 3.1-2a. HAP emissions are calculated using GRI-HAPCalc 3.0. Emissions are calculated assuming each turbine operates at full site capacity for 8,760 hours per year.

The turbines at the plant start up with no load and a rich fuel mixture. As a result, emissions are minimized. Because the turbines take only minutes to reach operating temperature, emissions during startup are not expected to exceed the steady-state allowable limits. Similarly, emissions during shutdown do not exceed the steady-state allowable limits, because fuel and air flow cease within seconds of shutdown. Emissions due to scheduled maintenance are negligible as the turbines are not in operation during maintenance.

Regeneration Heaters (Units: 8, 12, and 13)

Emissions from the regeneration heaters are carried forward from the last construction permit application. No modifications are being made to the regeneration heaters or their operation.

The NOX, CO. VOC and SO2 emissions from the large regeneration heaters (Units 8 and 13) are based on manufacturer's data as identified in the previous NSR application and include a safety factor. Emissions of these same pollutants from the small heater (Unit 12), as well as particulate emissions from all three heaters, are calculated using AP-42 emission factors from Tables 1.4-1 and 1.4-2. HAP emissions are calculated using GRI-HAPCalc 3.0. Emissions are calculated assuming each turbine operates at full site capacity for 8,760 hours per year.

The heaters (uncontrolled) startup with less fuel input than during steady-state operation, so emissions are lower than during steady-state operation. During shutdown, the fuel supply stops quickly, but air flow may not, causing the continued formation of NOX. Even so, with no fuel, NOX formation should be less than during steady-state operation. Emissions due to scheduled maintenance are negligible as the units are not in operation.

Harvest Four Corners, LLC - San Juan Gas Plant Amine Unit Emissions Calculations

Unit Number: Amine Unit Description: Amine Unit Still Vent / Flash Tank

Ethane Recovery Mode (High Flow)

	VOC		VOC Total HAP		Benzene Toluer		iene	ne Ethylbenzene		Hexane		Xylene		H ₂ S		CO ₂	CH ₄	
Emissions	pph	tpy	pph	tpy	pph	tpy	pph	tpy	pph	tpy	pph	tpy	pph	tpy	pph	tpy	tpy	tpy
Uncontrolled	16.04	70.27	5.10	22.33	3.30	14.46	1.56	6.84	0.02	0.08	0.02	0.10	0.19	0.84	1.32	5.80	70,070.70	4.78

Ethane Rejection Mode (Low Flow)

ſ		VC	00	Total	HAP	Benz	zene	Toluene		Ethylbenzene		Hexane		Xylene		H ₂ S		CO ₂	CH ₄
	Emissions	pph	tpy	pph	tpy	pph	tpy	pph	tpy	pph	tpy	pph	tpy	pph	tpy	pph	tpy	tpy	tpy
I	Uncontrolled	14.83	64.94	2.42	10.58	1.59	6.98	0.73	3.21	0.01	0.02	0.02	0.10	0.06	0.27	0.65	2.86	727.18	0.02

Notes:

1. All emissions calculated using ProMax

2. Emissions from the Amine Unit are controlled by the Thermal Oxidizer (Unit 15) in ethane recovery mode and by the Flare (Unit 9) in ethane rejection mode.

data

Harvest Four Corners, LLC - San Juan Gas Plant **Thermal Oxidizer Emissions Calculations**

Unit Number: 15 Description: Thermal oxidizer

Fuel Consumption

12.0	MMBtu/hr	Capacity	2011 NSR application (manufacturer's data plus 10% safety factor)
1,000	Btu/scf	Field gas heating value	Nominal heat content
12,000	scf/hr	Hourly fuel consumption	MMBtu/hr x 1,000,000 / Btu/scf
3,125	scfm	Maximum waste gas fuel flow capacity	2011 NSR application (design maximum)
0.5	Mole %	Methane/Ethane waste gas concentration	ProMax
938	scf/hr	Hourly waste gas consumption	scfm x (mole % / 100) x 60 min/hr
8,760	hr/yr	Annual operating time	Harvest Four Corners

Fuel Gas Emission Rates

Pollutants ^{2,3}	Emission Factors ^{1,4}	Controlled E	mission Rates
	lb/MMscf	pph⁵	tpy ⁶
NO _X	100	1.50	6.57
CO	84	1.26	5.52
VOC	5.5	0.07	0.32
SO ₂	0.6	0.01	0.03
PM	7.6	0.10	0.44
PM ₁₀	7.6	0.10	0.44
PM _{2.5}	7.6	0.10	0.44

Notes:

 1 NO_X, CO, VOC, SO₂ and PM emission factors taken from AP-42, Tables 1.4-1, 1.4-2.

² A safety factor of 25% is added to the NOx & CO emission rates.

 3 A safety factor of 10% is added to the VOC, PM, and SO_2 emission rates.

⁴ The sulfur content of the natural gas is 5 S gr/100 dscf.

⁵ Hourly Emission Rates (pph) = lb/MMscf x (scf/hr / 1,000,000) x 1.25.

⁶ Annual Emission Rates (tpy) = Hourly Emission Rates (pph) x hr/yr x (1 ton / 2,000 lb).

Amine Unit Waste Gas Stream (Ethane Recovery Mode)

	Emission		ed Emission	Control	Controlled	d Emission
Pollutants ^{1,3}	Factors ¹	Rates from Amine Unit ²		Efficiencies ⁶	Rates	
	lb/MMscf	pph	tpy	%	pph ^{7,9,11}	tpy ^{8,10,12}
NO _X	100				0.12	0.51
CO	84				0.10	0.43
PM	7.6				0.01	0.03
PM ₁₀	7.6				0.01	0.03
PM _{2.5}	7.6				0.01	0.03
SO2 ^{4,5}					2.71	11.89
H_2S^4		1.32	5.80	98	0.03	0.13
VOC ⁴		16.04	70.27	98	0.35	1.55
Benzene ⁴		3.30	14.46	98	0.07	0.32
Toluene ⁴		1.56	6.84	98	0.03	0.15
Ethylbenzene ⁴		0.02	0.08	98	4.40E-04	1.76E-03
Hexane ⁴		0.02	0.10	98	4.40E-04	2.20E-03
Xylene ⁴		0.19	0.84	98	4.18E-03	0.02
Total HAPs ⁴		5.10	22.33	98	0.11	0.49

Notes:

¹ NO_x, CO and PM emission factors taken from AP-42, Tables 1.4-1, 1.4-2.

² VOC, HAPs, and H₂S uncontrolled emissions from the amine unit (in Ethane Recovery Mode) calculated using ProMax.

³ A safety factor of 25% is added to the NOx & CO emission rates.

 4 A safety factor of 10% is added to the VOC, PM, SO_2, and H_2S emission rates.

⁵ It is assumed 99% of the H₂S is converted to SO₂.

⁶ The thermal oxidizer has a 98% control efficiency.

⁷ Hourly NO_X & CO Emission Rates (pph) = lb/MMscf x (scf/hr / 1,000,000) x 1.25.

⁸ Annual NO_x & CO Emission Rates (tpy) = Hourly Emission Rates (pph) x hr/yr x (1 ton / 2,000 lb).

⁹ Controlled VOC & H₂S Emission Rate (pph) = Uncontrolled Emission Rate (pph) x (1 - (% / 100)).

¹⁰ Controlled VOC & H_2S Emission Rate (tpy) = Uncontrolled Emission Rate (tpy) x (1 - (% / 100)).

¹¹ Controlled SO₂ Emission Rate (pph) = Uncontrolled H₂S Emission Rate (pph) x (% / 100) x (32 lb S / 34 lb H₂S) x (64 lb SO₂ / ;

¹² Controlled SO₂ Emission Rate (tpy) = Controlled SO₂ Emission Rate (pph) x hr/yr x (1 ton / 2,000 lb).

Harvest Four Corners, LLC - San Juan Gas Plant Thermal Oxidizer Emissions Calculations

Combined Emission Rates

Pollutants	Controlled Emission Rates			
	pph	tpy		
NO _X	1.62	7.08		
CO	1.36	5.95		
PM	0.11	0.47		
PM ₁₀	0.11	0.47		
PM _{2.5}	0.11	0.47		
SO ₂	2.71	11.92		
H ₂ S	0.03	0.13		
VOC	0.43	1.86		
Benzene	0.07	0.32		
Toluene	0.03	0.15		
Ethylbenzene	4.40E-04	1.76E-03		
Hexane	4.40E-04	2.20E-03		
Xylene	4.18E-03	0.02		
Total HAPs	0.11	0.49		

Exhaust Parameters

1,200 °F 28.50 fps 3.0 ft 12,087 acfm 40.0 ft Exhaust temperature Stack exit velocity Stack exit diameter Stack flowrate Stack height 2011 NSR application 2011 NSR application 2011 NSR application fps x 3.1416 x ((ft / 2) ^2) * 60 sec/min 2011 NSR application

Emission Unit:	16		
Description:	Low Pressure Flare		
D ¹¹ (O (O (O			
Pilot Gas Stream) scf/hr	Pilot gas hour flowrate	Harvest Four Corners
) Btu/scf	Heat content	Nominal heat content
1,00		Treat content	Nominal field content
Process Gas Stream			
797) scf/hr	Purge gas hour flowrate	Harvest Four Corners
1,05) Btu/scf	Heat content	Nominal heat content
Relief Valve Gas Stream	I		
10) #	Valve count	Harvest Four Corners
0.008	3 kg/hr/source	EPA emission factor (gas service)	1995 Protocol for Equipment Leak Emission Estimates, Table 2-4
1.9	1 pph	Uncontrolled mass hourly emission rate	kg/hr/source x 2.2 lb/kg x valve count
8.6) cf/lb	Volume	Nominal (propane)
16.6	5 cf/hr	Purge gas hourly flow rate	pph x cf/lb
2,51	7 Btu/scf	Heat content	Nominal heat content
Seal Leakage Gas Strea	m		
95) scf/hr	Purge gas hour flowrate	Harvest Four Corners
1,050) Btu/scf	Heat content	Nominal heat content
23.0	6 cf/lb	Volume	Nominal (methane)
10) %	VOC content of gas stream	Harvest Four Corners
4.03	3 pph	Uncontrolled mass hourly emission rate	scf/hr x (% 100) / cf/lb
Combined Gas Stream (Pilot & Process)		
8,07) scf/hr	Hourly flowrate	Sum of individual streams
) Btu/scf	Heat content	Flow weighted average
8.4	7 MMBtu/hr	Hourly heat rate	scf/hr x Btu/scf x (1 MMBtu / 1,000,000 Btu)
8,76) hr/yr	Annual operating time	Harvest Four Corners
	9 MMscf/yr	Annual flowrate	scf/hr x hr/yr x (1 MMscf / 1,000,000 scf)
74,22	3 MMBtu/yr	Annual heat rate	MMBtu/hr x hr/yr
Combined Gas Stream (pilot, process, relief val	ves & seal leaks)	
9,03	7 scf/hr	Hourly flowrate	Sum of individual streams
,	3 Btu/scf	Heat content	Flow weighted average
	1 MMBtu/hr	Hourly heat rate	scf/hr x Btu/scf x (1 MMBtu / 1,000,000 Btu)
,) hr/yr	Annual operating time	Harvest Four Corners
	6 MMscf/yr	Annual flowrate	scf/hr x hr/yr x (1 MMscf / 1,000,000 scf)
83,33	3 MMBtu/yr	Annual heat rate	MMBtu/hr x hr/yr

Steady-State Emission Rates

Pollutants	Emission Factors ^{2,3} Uncontrolled Emissio		Emission Rates ¹
	lb/MMBtu	pph⁴	tpy⁵
NO _X	0.138	1.31	5.75
CO	0.370	3.52	15.42

Notes:

¹ NO_x and CO emissions are calculated using data from the combined gas stream (pilot, process, relief valves & seal leaks).

² NO_X emission factor taken from Texas Commission on Environmental Quality (TCEQ) February 2012 document "Technical Supplement 4: Flares" for air assisted or unassisted units combusting high-Btu waste streams (>1000 Btu/scf).

 3 CO emission factors taken from AP-42, Table 13.5-1, 09-91

⁴ Uncontrolled Emission Rates (pph) = lb/MMBtu x MMBtu/hr

⁵ Uncontrolled Emission Rates (tpy) = lb/MMBtu x MMBtu/yr x (1 ton/2,000 lb)

Steady-State Emission Rates (Continued)

Pollutants	Emission Factors ²	Uncontrolled Emission Rates ^{1,5}		Control Efficiencies ⁷	Controlled Rates	
	lb/MMBtu	pph	tpy ⁶	%	pph ^{3,8}	tpy ^{4,9}
VOC (pilot & process)	0.140				1.19	5.20
VOC (relief valves)		1.94	8.48	98	0.04	0.17
VOC (seal leaks)		4.03	17.63	98	0.08	0.35
Total		5.96	26.11		1.31	5.72

Notes

¹ VOC (pilot & process) emission rates are calculated using the heat rates from only the pilot and process gas streams.

² VOC (pilot & process) emission factor taken from AP-42, Table 13.5-1, 09-91.

³ Controlled VOC (pilot & process) Emission Rates (pph) = lb/MMBtu x MMBtu/hr

⁴ Controlled VOC (pilot & process) Emission Rates (tpy) = lb/MMBtu x MMBtu/yr x (1 ton/2,000 lb)

⁵ VOC (relief valves & seal leaks) emission rates are calculated using the pph emission rates (calculated above) from the relief valve and seal leaks gas streams, respectively.

⁶ Uncontrolled VOC (relief valves & seal leaks) Emission Rates (tpy) = pph x hr/yr x (1 ton/2,000 lb)

⁷ Control efficiencies taken from Texas Commission on Environmental Quality (TCEQ) February 2012 document "Technical Supplement 4: Flares."

⁸ Controlled VOC (relief valves & seal leaks) Emission Rates (pph) = Uncontrolled Emission Rates (pph) x (1-(% /100)

⁹ Controlled VOC (relief valves & seal leaks) Emission Rates (tpy) = Uncontrolled Emission Rates (tpy) x (1-(% /100)

Amine Unit Waste Gas Stream (Ethane Rejection Mode)

35 scfm	Maximum waste gas fuel flow capacity	ProMax
15.5 Mole %	Methane/Ethane waste gas concentration	ProMax
326 scf/hr	Waste gas flowrate	scfm x (mole % / 100) x 60 min/hr
433 Btu/scf	Waste gas heat content	ProMax
0.14 MMBtu/hr	Hourly heat rate	scf/hr x Btu/scf x (1 MMBtu / 1,000,000 Btu)
8,760 hr/yr	Annual operating time	Harvest Four Corners
2.85 MMscf/yr	Annual flowrate	scf/hr x hr/yr x (1 MMscf / 1,000,000 scf)
2.85 MMscf/yr	Annual flowrate	scf/hr x hr/yr x (1 MMscf / 1,000,000 scf)
1,235 MMBtu/yr	Annual heat rate	MMBtu/hr x hr/yr

Waste Gas Stream Emission Rates

Pollutants	Emission Factors ¹ Uncontrolled Emission Rates Amine Unit ²			Control Efficiencies ⁴	Controlled Emission Rates	
	lb/MMBtu	pph	tpy	%	pph ^{5,7,9}	tpy ^{6,8,10}
NO _X	0.138	0.02	0.09		0.02	0.09
CO	0.370	0.05	0.23		0.05	0.23
SO23					1.21	5.33
H ₂ S		0.65	2.86	98	0.01	0.06
VOC		14.83	64.94	98	0.30	1.30
Benzene		1.59	6.98	98	0.03	0.14
Toluene		0.73	3.21	98	0.01	0.06
Ethylbenzene		0.01	0.02	98	2.00E-04	4.00E-04
Hexane		0.02	0.10	98	4.00E-04	2.00E-03
Xylene		0.06	0.27	98	1.20E-03	0.01
Total HAPs		2.42	10.58	98	0.05	0.21

Notes:

¹ NO_X & CO emission factor taken from Texas Commission on Environmental Quality (TCEQ) February 2012 document "Technical Supplement 4: Flares" for air assisted or unassisted units combusting high-Btu waste streams (>1000 Btu/scf).

² VOC, HAPs, and H₂S uncontrolled emissions from the amine unit (in Ethane Rejection Mode) calculated using ProMax.

 3 It is assumed 99% of the $\rm H_2S$ is converted to $\rm SO_2.$

⁴ The flare has a 98% control efficiency.

⁵ Hourly NO_X & CO Emission Rates (pph) = lb/MMBtu x (MMBtu/hr / 1,000,000).

⁶ Annual NO_X & CO Emission Rates (tpy) = Hourly Emission Rates (pph) x hr/yr x (1 ton / 2,000 lb).

 7 Controlled VOC & H₂S Emission Rate (pph) = Uncontrolled Emission Rate (pph) x (1 - (% / 100)).

⁸ Controlled VOC & H_2^{-S} Emission Rate (tpy) = Uncontrolled Emission Rate (tpy) x (1 - (% / 100)).

⁹ Controlled SO₂ Emission Rate (pph) = Uncontrolled H₂S Emission Rate (pph) x (% / 100) x (32 lb S / 34 lb H₂S) x (64 lb SO₂ / 32 lb S).

¹⁰ Controlled SO₂ Emission Rate (tpy) = Controlled SO₂ Emission Rate (pph) x hr/yr x (1 ton / 2,000 lb).

Combined Emission Rates

Pollutants	Controlled Emission Rates			
Foliutants	pph	tpy		
NO _X	1.33	5.84		
CO	3.57	15.64		
SO ₂	1.21	5.33		
H ₂ S	0.01	0.06		
VOC	1.60	7.02		
Benzene	0.03	0.14		
Toluene	0.01	0.06		
Ethylbenzene	2.00E-04	4.00E-04		
Hexane	4.00E-04	2.00E-03		
Xylene	1.20E-03	5.40E-03		
Total HAPs	0.05	0.21		

Exhaust Parameters

1,832	°F
2.40	ft
65.62	fps
60	ft

Flare Effective Diameter

16.04 lb/lb-mol 154.70 scfm 683,981 cal/sec 552,493 cal/sec 0.743 meters Exhaust temperature Effective stack diameter Stack velocity Stack height

Molecular weight Flowrate Gross heat release Effective heat release (qn) Effective stack diameter NMAQB Calculated per NMAQB guidelines NMAQB Harvest Four Corners

Molecular weight of CH4 scf/hr / 60 min/hr scfm x Btu/scf x 252 cal/Btu / 60 sec/min cal/sec x (1-(0.048 x (MW^0.5))) (0.000001 x cal/sec[qn])^0.5

Emission Unit: CT Description: Cooling Tower

COOLING TOWER SPECIFICATIONS:

Enter specifications into blue co	ells	
Drift loss	0.0100%	Low Efficiency
Circulating water flow rate	11,520 gpm	
Total dissolved solids	1,995 ppm	
Density of TDS constituents	2.5 g/cc	Average density of common salts (CaCO3, CaSO4, CaCl2, NaCl, Na2SO4, Na2CO3)
Volume of a sphere	$V = 4/3*\pi*r^3$	
Annual drift	576 lb H2O/h	r
PARTICULATE EMISSIONS:		
FARTICULATE EMISSIONS:		
Total Particulate Emissions	0.360 lbs/hr	1.575 ton/yr
PM ₁₀ Emissions	0.145 lbs/hr	0.635 ton/yr

PM_{2.5} Emissions 0.022 lbs/hr 0.097 ton/yr

Water Drop Size Distribution for Low Efficiency Drift Eliminators*

Based on a drift rate of 0.001%

Droplet	<u> </u>		H ₂ O Drople	So	lids		Emissions	
Dia.		% mass	Mass	Vol.	Dia.	PM	PM_{10}	PM _{2.5}
(micron)	% mass	smaller	(g)	(cc)	(micron)	(lb/hr)	(lb/hr)	(lb/hr)
22	0.43	0.43	5.6E-09	4.4E-12	2.0			
29	1.49	1.92	1.3E-08	1.0E-11	2.7			1.9%
44	3.76	5.68	4.5E-08	3.6E-11	4.1			
58	2.09	7.77	1.0E-07	8.2E-11	5.4			
65	1.86	9.63	1.4E-07	1.1E-10	6.0			
87	1.56	11.19	3.4E-07	2.8E-10	8.1			
108	1.43	12.62	6.6E-07	5.3E-10	10.0		12.6%	
120	1.26	13.88	9.0E-07	7.2E-10	11.1			
132	1.09	14.97	1.2E-06	9.6E-10	12.2			
144	1.32	16.29	1.6E-06	1.2E-09	13.4			
174	5.81	22.1	2.8E-06	2.2E-09	16.1			
300	5.04	27.14	1.4E-05	1.1E-08	27.8			
450**	4.17	31.31	4.8E-05	3.8E-08	41.7	31.3%		
600	4.01	35.32	1.1E-04	9.0E-08	55.7			
750	4.00	39.32	2.2E-04	1.8E-07	69.6			
900	4.03	43.35	3.8E-04	3.0E-07	83.5			
1,050	4.57	47.92	6.1E-04	4.8E-07	97.4			
1,200	5.46	53.38	9.0E-04	7.2E-07	111.3			
1,350	6.80	60.18	1.3E-03	1.0E-06	125.2			
2,250	17.99	78.17	6.0E-03	4.8E-06	208.7			
2,400	21.83	100	7.2E-03	5.8E-06	222.6			

* EPA. 1979. Effects of Pathogenic and Toxic Material Transport Via Cooling Device Drift - Vol. 1 Technical Report. EPA-600/7-79-251a. November 1979.

** Maximum droplet size governed by atmospheric dispersion. Larger droplets fall to the ground before evaporating into a particle (EPA 1979).

Emission Unit: CT Description: Cooling Tower

Water Drop Size Distribution for High Efficiency Drift Eliminators*

Based on a drift rate of 0.0003%

Droplet		H ₂ O Drople	So	lids		Emissions	
Dia.	% mass	Mass	Vol.	Dia.	PM	PM_{10}	PM _{2.5}
(micron)	smaller	(g)	(cc)	(micron)	(lb/hr)	(lb/hr)	(lb/hr)
10	0	5.2E-10	4.2E-13	0.9			
20	0.196	4.2E-09	3.3E-12	1.9			
30	0.226	1.4E-08	1.1E-11	2.8			0.2%
40	0.514	3.4E-08	2.7E-11	3.7			
50	1.816	6.5E-08	5.2E-11	4.6			
60	5.702	1.1E-07	9.0E-11	5.6			
70	21.348	1.8E-07	1.4E-10	6.5			
90	49.812	3.8E-07	3.0E-10	8.3			
110	70.509	7.0E-07	5.6E-10	10.2		70.5%	
130	82.023	1.2E-06	9.2E-10	12.1			
150	88.012	1.8E-06	1.4E-09	13.9			
180	91.032	3.1E-06	2.4E-09	16.7			
210	92.468	4.8E-06	3.9E-09	19.5			
240	94.091	7.2E-06	5.8E-09	22.3			
270	94.689	1.0E-05	8.2E-09	25.0			
300	96.288	1.4E-05	1.1E-08	27.8			
350	97.011	2.2E-05	1.8E-08	32.5			
400	98.34	3.4E-05	2.7E-08	37.1			
450**	99.071	4.8E-05	3.8E-08	41.7	99.1%		
500	99.071	6.5E-05	5.2E-08	46.4		-	
600	100	1.1E-04	9.0E-08	55.7			

* Reisman, J. and G. Frisbie. 2002. "Calculating Realistic PM10 Emissions from Cooling Towers."

Environmental Progress & Sustainable Energy. American Institute of Chemical Engineers. Volume 21, Issue 2, pp. 127-130. July 2002.

** Maximum droplet size governed by atmospheric dispersion. Larger droplets fall to the ground before evaporating into a particle (EPA 1979).

EXAMPLE CALCULATIONS: Low Efficiency

Annual drift:

11,520 gal water	8.33 lb	60 min	0.010%	(drift) =	576	lb water drift
1 min	1 gal water	1 hr				hr
Total Particulate Emis	ssions					
576 lb water	1,995 lb PM	31.3% PM	=	0.360 lb PM	=	1.575 ton PM
hr	1E+6 lb water			hr	-	yr
PM₁₀ Emissions 576 lb water	1,995 lb PM	12.6% PM ₁₀	=	0.145 lb PM10	=	0.635 ton PM10
hr	1E+6 lb water			hr		yr
PM _{2.5} Emissions						
576 lb water	1,995 lb PM	1.9% PM _{2.5}	=	0.022 lb PM2.5	=	0.097 ton PM2.5
hr	1E+6 lb water			hr	-	yr
	•					

All the remaining calculations described below are unchanged from the previous application

Harvest Four Corners, LLC - San Juan Gas Plant Turbine Exhaust Emissions Calculations

Unit Number: 1-3 Description: Roll

otion: Rolls Royce Avon 1535 Gas Turbines

Note: The data on this worksheet applies to each individual emissions unit identified above.

Horsepower

5,600 ft above MSL	Elevation	
23,800 hp	Nameplate hp	Mfg. data
15,000 hp	Site-rated hp	2011 NSR application

Fuel Consumption

123.2	MMBtu/hr	Hourly fuel consumption	2011 NSR application
1,000	Btu/scf	Field gas heating value	Nominal heat content
123,200	scf/hr	Hourly fuel consumption	MMBtu/hr x 1,000,000 / Btu/scf
8,760	hr/yr	Annual operating time	Harvest Four Corners
1,079,232	MMBtu/yr	Annual fuel consumption	MMBtu/hr x hr/yr
1,079.23	MMscf/yr	Annual fuel consumption	scf/hr x hr/yr / 1,000,000

Steady-State Emission Rates

Pollutants ^{1,2}	Uncontrolled Emission Rates		Control Efficiencies ⁴	Controlled Er	mission Rates
	pph ³	tpy ³	%	pph⁵	tpy ⁵
NO _X	56.30	246.59			
CO	90.00	394.20	95	9.60	42.00
VOC	10.00	43.80	85	3.00E-01	1.30
SO ₂	6.00E-02	2.60E-01			

Notes:

 1 Uncontrolled NO_X & SO₂ emission rates (pph & tpy) are taken from the 2011 NSR application, as permitted.

² Uncontrolled CO & VOC emission rates (pph & tpy) are taken from the manufacturer's data as identified in the 2011 NSR application.

³ Uncontrolled CO & VOC Emission Rates (tpy) = Uncontrolled CO & VOC Emission Rates (pph) x hr/yr (1 ton / 2,000 lb)

 $^{\rm 4}$ CO & VOC catalyst control efficiencies are taken from the 2011 NSR application.

⁵ Controlled CO & VOC emission rates (pph & tpy) are taken from the 2011 NSR application, as permitted.

Pollutants	Emission Factors ¹	Uncontrolled I	Emission Rates
	lb/MMBtu	pph ²	tpy ³
TSP	6.60E-03	0.81	3.56
PM ₁₀	6.60E-03	0.81	3.56
PM _{2.5}	6.60E-03	0.81	3.56

Notes:

¹ Emission factors taken from AP-42, Table 3.1-2a.

² Uncontrolled Emission Rates (pph) = lb/MMBtu x MMBtu/hr

³ Uncontrolled Emission Rates (tpy) = Uncontrolled Emission Rates (pph) x hr/yr x (1 ton / 2,000 lb)

Exhaust Parameters

aust Falameters		
370 °F	Exhaust temperature (Unit 2 & 3)	2011 NSR application
750 °F	Exhaust temperature (Units 1, 2 Bypass & 3 Bypass)	2011 NSR application
46.70 fps	Stack exit velocity (Unit 1)	2011 NSR application
35.20 fps	Stack exit velocity (Unit 2 & 3)	2011 NSR application
133.90 fps	Stack exit velocity (Unit 2 Bypass & 3 Bypass)	2011 NSR application
18.90 ft	Stack exit diameter (Unit 1)	2011 NSR application
10.50 ft	Stack exit diameter (Unit 2 & 3)	2011 NSR application
6.50 ft	Stack exit diameter (Unit 2 Bypass & 3 Bypass)	2011 NSR application
786,109 cfm	Stack flowrate (Unit 1)	fps x 3.1416 x ((ft / 2) ^2) * 60 sec/min
182,879 cfm	Stack flowrate (Unit 2 & 3)	fps x 3.1416 x ((ft / 2) ^2) * 60 sec/min
266,593 cfm	Stack flowrate (Unit 2 Bypass & 3 Bypass)	fps x 3.1416 x ((ft / 2) ^2) * 60 sec/min
56 ft	Stack height (Unit 1)	2011 NSR application
45 ft	Stack height (Unit 2 & 3)	2011 NSR application

Harvest Four Corners, LLC - San Juan Gas Plant Turbine Exhaust Emissions Calculations

Unit Number:	4-7
Description:	Solar Centaur T-4501 Gas Turbines

Note: The data on this worksheet applies to each individual emissions unit identified above.

Horsepower

5,600 ft above MSL	Elevation	
4,500 hp	Nameplate hp	Mfg. data
3,735 hp	Site-rated hp	2011 NSR application

Fuel Consumption

32.9 MMBtu/hr	Hourly fuel consumption
1,000 Btu/scf	Field gas heating value
32,900 scf/hr	Hourly fuel consumption
8,760 hr/yr	Annual operating time
288,204 MMBtu/yr	Annual fuel consumption
288.20 MMscf/yr	Annual fuel consumption

2011 NSR application Nominal heat content MMBtu/hr x 1,000,000 / Btu/scf Harvest Four Corners MMBtu/hr x hr/yr scf/hr x hr/yr / 1,000,000

Steady-State Emission Rates

Pollutants	Uncontrolled Emission Rates		
	pph ¹	tpy ¹	
NO _X	15.90	69.80	
CO	2.30	10.00	
VOC	0.05	0.24	
SO ₂	0.01	0.05	

Notes:

¹ Uncontrolled emission rates (pph & tpy) are taken from the 2011 NSR application, as permitted.

Pollutants	Emission Factors ¹	Uncontrolled Emission Rates	
	lb/MMBtu	pph ²	tpy ³
TSP	6.60E-03	0.22	0.95
PM ₁₀	6.60E-03	0.22	0.95
PM _{2.5}	6.60E-03	0.22	0.95

Notes:

¹ Emission factors taken from AP-42, Table 3.1-2a.

² Uncontrolled Emission Rates (pph) = lb/MMBtu x MMBtu/hr

³ Uncontrolled Emission Rates (tpy) = Uncontrolled Emission Rates (pph) x hr/yr x (1 ton / 2,000 lb)

Exhaust Parameters

827 °F	Exhaust temperature	2011 NSR application
100.00 fps	Stack exit velocity	2011 NSR application
3.30 ft	Stack exit diameter	2011 NSR application
51,318 cfm	Stack flowrate	fps x 3.1416 x ((ft / 2) ^2) * 60 sec/min
30.8 ft	Stack height	2011 NSR application

Harvest Four Corners, LLC - San Juan Gas Plant Heater Exhaust Emissions Calculations

Unit Number: 8 & 13 Description: WILLBROS/INSERV Mole Seive Regeneration Heaters

Note: The data on this worksheet applies to each individual emissions unit identified above.

Fuel Consumption

14.55 MMBtu/hr	Capacity
1,000 Btu/scf	Field gas heating value
14,550 scf/hr	Hourly fuel consumption
,	, ,
8,760 hr/yr	Annual operating time
127,458 MMBtu/yr	Annual fuel consumption
127.46 MMscf/yr	Annual fuel consumption

2011 NSR application Nominal heat content MMBtu/hr x 1,000,000 / Btu/scf Harvest Four Corners MMBtu/hr x hr/yr scf/hr x hr/yr / 1,000,000

Steady-State Emission Rates

Pollutants	Emission Factors ¹	Uncontrolled Emission Rates ²	
	lb/MMBtu	pph ³	tpy ⁴
NO _X	0.045	0.75	3.30
CO	0.020	0.33	1.47

Notes:

¹ Emission factors taken from the 2011 NSR application

² A safety factor of 15% is added to the emission rates

³ Uncontrolled Emission Rates (pph) = lb/MMBtu x MMBtu/hr x 1.15

⁴ Uncontrolled Emission Rates (tpy) = Uncontrolled Emission Rates (pph) x hr/yr x (1 ton / 2,000 lb)

Pollutants	Uncontrolled Emission Rates ²		
Pollutants	pph ¹	tpy ²	
VOC	0.03	0.14	
SO ₂	0.01	0.04	

Notes:

¹ VOC & SO₂ emission rates (pph) are taken from the 2011 NSR application, as permitted.

² Uncontrolled Emission Rates (tpy) = Uncontrolled Emission Rates (pph) x hr/yr x (1 ton / 2,000 lb)

Pollutants	Emission Factors ¹	Uncontrolled Emission Rate	
	lb/MMscf	pph ²	tpy ³
TSP	7.6	0.11	0.48
PM ₁₀	7.6	0.11	0.48
PM _{2.5}	7.6	0.11	0.48

Notes:

¹ Emission factors taken from AP-42, Table 1.4-2, 07/98.

² Uncontrolled Emission Rates (pph) = lb/MMscf x (scf/hr / 1,000,000)

³ Uncontrolled Emission Rates (tpy) = Uncontrolled Emission Rates (pph) x hr/yr x (1 ton / 2,000 lb)

Exhaust Parameters

664 °F 48.70 fps 3.08 ft 21,771 acfm 78.3 ft Exhaust temperature Stack exit velocity Stack exit diameter Stack flowrate Stack height 2011 NSR application 2011 NSR application 2011 NSR application fps x 3.1416 x ((ft / 2) ^2) * 60 sec/min 2011 NSR application

Emission Unit: Description:	9 H) High Pressure Flare		
Pilot Gas Stream	150 so 1,050 B		Pilot gas hour flowrate Heat content	Harvest Four Corners Nominal heat content
Purge Gas Stream	990 so 1,050 B		Purge gas hour flowrate Heat content	Harvest Four Corners Nominal heat content
Combined Gas Str	1,140 so 1,050 B 1.20 M 8,760 hi 9.99 M	8tu/scf /MBtu/hr	Hourly flowrate Heat content Hourly heat rate Annual operating time Annual flowrate Annual heat rate	Sum of pilot gas & purge gas streams Flow weighted average scf/hr x Btu/scf x (1 MMBtu / 1,000,000 Btu) Harvest Four Corners scf/hr x hr/yr x (1 MMscf / 1,000,000 scf) MMBtu/hr x hr/yr

Steady-State Emission Rates

Pollutants	Emission Factors ^{1,2}	Controlled Emission Rates	
Foliutants	lb/MMBtu	pph ³	tpy⁴
NO _X	0.138	0.17	0.72
CO	0.370	0.44	1.94
VOC	0.140	0.17	0.73

Notes:

¹ NO_X emission factor taken from Texas Commission on Environmental Quality (TCEQ) February 2012 document "Technical Supplement 4: Flares" for air assisted or unassisted units combusting high-Btu waste streams (>1000 Btu/scf).

² CO & VOC emission factors taken from AP-42, Table 13.5-1, 09-91

³ Hourly Emission Rates (pph) = lb/MMBtu x MMBtu/hr

⁴ Annual Emission Rates (tpy) = lb/MMBtu x MMBtu/yr x (1 ton/2,000 lb)

Exhaust Parameters

1,832 °F	Exhaust temperature
0.85 ft	Effective stack diameter
65.62 fps	Stack velocity
200 ft	Stack height

Flare Effective Diameter

16.04 lb/lb-mol 19.00 scfm 83,790 cal/sec 67,682 cal/sec 0.26 meters Molecular weight Flowrate Gross heat release Effective heat release (qn) Effective stack diameter NMAQB Calculated per NMAQB guidelines NMAQB Harvest Four Corners

Molecular weight of CH4 scf/hr / 60 min/hr scfm x Btu/scf x 252 cal/Btu / 60 sec/min cal/sec x (1-(0.048 x (MW^0.5))) (0.000001 x cal/sec[qn])^0.5

Harvest Four Corners, LLC - San Juan Gas Plant Heater Exhaust Emissions Calculations

Unit Number:	12
Description:	Broach Mole Seive Regeneration Heater

Note: The data on this worksheet applies to each individual emissions unit identified above.

Fuel Consumption

3.40 MMBtu/hr	Capacity
1,000 Btu/scf	Field gas heating value
3,400 scf/hr	Hourly fuel consumption
8,760 hr/yr	Annual operating time
29,784 MMBtu/yr	Annual fuel consumption
29.78 MMscf/yr	Annual fuel consumption

2011 NSR application Nominal heat content MMBtu/hr x 1,000,000 / Btu/scf Harvest Four Corners MMBtu/hr x hr/yr scf/hr x hr/yr / 1,000,000

Steady-State Emission Rates

Pollutants	Emission Factors ¹	Uncontrolled Emission Rates	
	lb/MMscf	pph ²	tpy ³
NO _X	100	0.34	1.49
VOC	5.5	0.02	0.08
TSP	7.6	0.03	0.11
PM ₁₀	7.6	0.03	0.11
PM _{2.5}	7.6	0.03	0.11

Notes:

¹ Emission factors taken from AP-42, Tables 1.4-1 & 1.4-2, 07/98.

² Uncontrolled Emission Rates (pph) = lb/MMscf x (scf/hr / 1,000,000)

³ Uncontrolled Emission Rates (tpy) = Uncontrolled Emission Rates (pph) x hr/yr x (1 ton / 2,000 lb)

Pollutants	Uncontrolled Emission Rates ¹				
Foliulants	pph	tpy			
CO	0.10	0.30			
SO ₂	0.01	0.01			

Notes:

¹ Emission rates (pph & tpy) are taken from the 2011 NSR application, as permitted.

Exhaust Parameters

550	°F
14.30	fps
1.50	ft
1,516	acfm
15.3	ft

Exhaust temperature Stack exit velocity Stack exit diameter Stack flowrate Stack height 2011 NSR application 2011 NSR application 2011 NSR application fps x 3.1416 x ((ft / 2) ^2) * 60 sec/min 2011 NSR application

Harvest Four Corners, LLC - San Juan Gas Plant Equipment Leaks Emissions Calculations

Unit Number: 14 Description: Equipment Leaks

Steady-State Emission Rates

Equipment ^{3,4}	Number of Components ¹	Emission Factors ⁵	VOC Content ⁶	Uncontro Emissio		Control Efficiency ⁹		led VOC on Rates
	# of sources	kg/hr/source	%	pph ⁷	tpy ⁸	%	pph ¹⁰	tpy ¹¹
Valves (inlet gas)	2135	4.50E-03	5	1.06	4.63	67	0.35	1.53
Valves (natural gas liquids)	2135	2.50E-03	100	11.74	51.43	61	4.58	20.06
Valves (residue gas)	0	4.50E-03	1	0.00	0.00	67	0.00	0.00
Connectors (inlet gas)	0	2.00E-04	5	0.00	0.00	0	0.00	0.00
Connectors (natural gas liquids)	0	2.10E-04	100	0.00	0.00	0	0.00	0.00
Connectors (residue gas)	0	2.00E-04	1	0.00	0.00	0	0.00	0.00
Pump Seals (inlet gas)	22	2.40E-03	5	0.01	0.03	0	0.01	0.03
Pump Seals (natural gas liquids)	22	1.30E-02	100	0.63	2.76	45	0.35	1.52
Pump Seals (residue gas)	0	2.40E-03	1	0.00	0.00	0	0.00	0.00
Flanges (inlet gas) ²	2135	3.90E-04	5	0.09	0.40	0	0.09	0.40
Flanges (natural gas liquids) ²	4269	1.10E-04	100	1.03	4.52	0	1.03	4.52
Flanges (residue gas) ²	2135	3.90E-04	1	0.02	0.08	0	0.02	0.08
Open Lines (inlet gas)	0	2.00E-03	5	0.00	0.00	0	0.00	0.00
Open Lines (natural gas liquids)	0	1.40E-03	100	0.00	0.00	0	0.00	0.00
Open Lines (residue gas)	0	2.00E-03	1	0.00	0.00	0	0.00	0.00
Other (inlet gas)	66	8.80E-03	5	0.06	0.28	0	0.06	0.28
Other (natural gas liquids)	132	7.50E-03	100	2.18	9.54	0	2.18	9.54
Other (residue gas)	66	8.80E-03	1	0.01	0.06	0	0.01	0.06
Total				16.83	73.72		8.68	38.01

Notes:

¹ Number of fittings provided by Harvest Four Corners.

² Number of flanges assumed to be two times the valve count.

³ Fittings assumed to be 50% gas and 50% light liquids.

 $^{\rm 4}\,{\rm Gas}$ fittings assumed to be 50% inlet gas and 50% residue gas.

⁵ Emission factors taken from the EPA "1995 Protocol for Equipment Leak Emission Estimates", Table 2-4, Oil and Gas Production Operations Average Emission Factors (kg/hr/source).

⁶ The VOC content is estimated.

⁷ Uncontrolled VOC Emission Rates (pph) = Uncontrolled Emission Rates (tpy) x 2,000 lb/ton / 8,760 hr/yr

⁸ Uncontrolled VOC Emission Rates (tpy) = kg/hr/source x 2.2 lb/kg x # of sources x (% / 100) x 8,760 hr/yr x (1 ton / 2,000 lb).

⁹ Control efficiencies taken from the EPA "1995 Protocol for Equipment Leak Emission Estimates", Table 5-2, Control Effectiveness For An LDAR Program At A SOCMI Process Unit. Quarterly monitoring 10,000 ppmv leak definition is assumed.

¹⁰ Controlled VOC Emission Rates (pph) = Uncontrolled Emission Rates (pph) x (1-(% / 100)).

¹¹ Controlled VOC Emission Rates (tpy) = Uncontrolled Emission Rates (tpy) x (1-(% / 100)).

Pollutants	Weight Percent ¹	Controlled HAP Emission Rates		
	%	pph ²	tpy ³	
Benzene	0.0756	6.56E-03	0.03	
Ethylbenzene	0.0000	0.00	0.00	
n-Hexane	0.4143	0.04	0.16	
Toluene	0.1196	0.01	0.05	
Xylenes	0.0306	2.66E-03	0.01	

Notes:

¹ Weight percents calculated from San Juan Gas Plant gas analysis sampled 09/01/2016.

² Controlled HAP Emission Rates (pph) = Controlled VOC Emission Rate (pph) x (% / 100).

³ Controlled HAP Emission Rates (tpy) = Controlled VOC Emission Rate (tpy) x (% / 100).

Section 6.a

Green House Gas Emissions

(Submitting under 20.2.70, 20.2.72 20.2.74 NMAC)

Title V (20.2.70 NMAC), Minor NSR (20.2.72 NMAC), and PSD (20.2.74 NMAC) applicants must estimate and report greenhouse gas (GHG) emissions to verify the emission rates reported in the public notice, determine applicability to 40 CFR 60 Subparts, and to evaluate Prevention of Significant Deterioration (PSD) applicability. GHG emissions that are subject to air permit regulations consist of the sum of an aggregate group of these six greenhouse gases: carbon dioxide (CO₂), nitrous oxide (N₂O), methane (CH₄), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride (SF₆).

Calculating GHG Emissions:

1. Calculate the ton per year (tpy) GHG mass emissions and GHG CO₂e emissions from your facility.

2. GHG mass emissions are the sum of the total annual tons of greenhouse gases without adjusting with the global warming potentials (GWPs). GHG CO₂e emissions are the sum of the mass emissions of each individual GHG multiplied by its GWP found in Table A-1 in 40 CFR 98 <u>Mandatory Greenhouse Gas Reporting</u>.

3. Emissions from routine or predictable start up, shut down, and maintenance must be included.

4. Report GHG mass and GHG CO_2e emissions in Table 2-P of this application. Emissions are reported in <u>short</u> tons per year and represent each emission unit's Potential to Emit (PTE).

5. All Title V major sources, PSD major sources, and all power plants, whether major or not, must calculate and report GHG mass and CO2e emissions for each unit in Table 2-P.

6. For minor source facilities that are not power plants, are not Title V, and are not PSD there are three options for reporting GHGs in Table 2-P: 1) report GHGs for each individual piece of equipment; 2) report all GHGs from a group of unit types, for example report all combustion source GHGs as a single unit and all venting GHGs as a second separate unit; 3) or check the following \Box By checking this box, the applicant acknowledges the total CO2e emissions are less than 75,000 tons per year.

Sources for Calculating GHG Emissions:

- Manufacturer's Data
- AP-42 Compilation of Air Pollutant Emission Factors at http://www.epa.gov/ttn/chief/ap42/index.html
- EPA's Internet emission factor database WebFIRE at http://cfpub.epa.gov/webfire/

• 40 CFR 98 <u>Mandatory Green House Gas Reporting</u> except that tons should be reported in short tons rather than in metric tons for the purpose of PSD applicability.

• API Compendium of Greenhouse Gas Emissions Methodologies for the Oil and Natural Gas Industry. August 2009 or most recent version.

• Sources listed on EPA's NSR Resources for Estimating GHG Emissions at http://www.epa.gov/nsr/clean-air-act-permitting-greenhouse-gases:

Global Warming Potentials (GWP):

Applicants must use the Global Warming Potentials codified in Table A-1 of the most recent version of 40 CFR 98 Mandatory Greenhouse Gas Reporting. The GWP for a particular GHG is the ratio of heat trapped by one unit mass of the GHG to that of one unit mass of CO_2 over a specified time period.

San Juan Gas Plant

"Greenhouse gas" for the purpose of air permit regulations is defined as the aggregate group of the following six gases: carbon dioxide, nitrous oxide, methane, hydrofluorocarbons, perfluorocarbons, and sulfur hexafluoride. (20.2.70.7 NMAC, 20.2.74.7 NMAC). You may also find GHGs defined in 40 CFR 86.1818-12(a).

Metric to Short Ton Conversion:

Short tons for GHGs and other regulated pollutants are the standard unit of measure for PSD and title V permitting programs. 40 CFR 98 Mandatory Greenhouse Reporting requires metric tons.

1 metric ton = 1.10231 short tons (per Table A-2 to Subpart A of Part 98 – Units of Measure Conversions)

		Facility Total Emissions						
Sources	CO2	CH4	N2O	GHG	CO2e			
	tpy	tpy	tpy	tpy	tpy			
Turbine Exhaust	256,256.62	4.83	4.83E-01	256,261.94	256,521.28			
Centrifugal Compressor Venting	1.96	36.71		38.67	919.76			
Heater & Oxidizer Exhaust	22,752.23	4.29E-01	4.29E-02	22,752.71	22,775.73			
Flares	5,594.23	28.98	9.32E-03	5,623.22	6,321.54			
Equipment Leaks	8.87	166.37		175.24	4,168.03			
SSM and Malfunctions	2.33	43.77						
То	al 284,613.92	237.32	5.35E-01	284,851.77	290,706.35			

Turbine Exhaust Emissions

		E	Emission Factors ¹		Emission Rates ²			
Unit Numbers	Description	CO2	CH4	N2O	CO2	CH4	N2O	
		kg/MMBtu	kg/MMBtu	kg/MMBtu	tpy	tpy	tpy	
1	1535 Turbine	53.06	1.00E-03	1.00E-04	62,990.45	1.19	1.19E-01	
2	1535 Turbine	53.06	1.00E-03	1.00E-04	62,990.45	1.19	1.19E-01	
3	1535 Turbine	53.06	1.00E-03	1.00E-04	62,990.45	1.19	1.19E-01	
4	Centaur T-4501 Turbine	53.06	1.00E-03	1.00E-04	16,821.31	3.17E-01	3.17E-02	
5	Centaur T-4501 Turbine	53.06	1.00E-03	1.00E-04	16,821.31	3.17E-01	3.17E-02	
6	Centaur T-4501 Turbine	53.06	1.00E-03	1.00E-04	16,821.31	3.17E-01	3.17E-02	
7	Centaur T-4501 Turbine	53.06	1.00E-03	1.00E-04	16,821.31	3.17E-01	3.17E-02	
	Total				256,256.62	4.83	4.83E-01	

Notes:

 $^{\rm 1}$ The emissions factors are taken from 40 CFR 98, Subpart C, Tables C-1 & C-2.

² Emission Rates (tpy) = kg/MMBtu x 2.2 lb/kg x MMBtu/yr / 2,000 lb/ton.

Unit Numbers	Description	Fuel Types ¹	Operating Times ¹	Design Heat Rates ²	Fuel Usages ³
			hr/yr	MMBtu/hr	MMBtu/yr
1	1535 Turbine	Nat. Gas	8,760	123.20	1,079,232
2	1535 Turbine	Nat. Gas	8,760	123.20	1,079,232
3	1535 Turbine	Nat. Gas	8,760	123.20	1,079,232
4	Centaur T-4501 Turbine	Nat. Gas	8,760	32.90	288,204
5	Centaur T-4501 Turbine	Nat. Gas	8,760	32.90	288,204
6	Centaur T-4501 Turbine	Nat. Gas	8,760	32.90	288,204
7	Centaur T-4501 Turbine	Nat. Gas	8,760	32.90	288,204

Notes:

¹ The fuel types and operating times are provided by Harvest Four Corners

² The design heat rates are taken from 2011 NSR application.

³ Fuel Usages (MMBtu/yr) = Design Heat Rates (MMBtu/hr) x hr/yr.

		Emissior	n Rates ^{1,2}
Unit Numbers	Description	CO2	CH4
		tpy ³	tpy⁴
1	Wet Seal	5.95E-01	11.16
1	Blowdown Valve		
1	Isolation Valve		
2	Wet Seal	5.95E-01	11.16
2	Blowdown Valve		
2	Isolation Valve		
3	Wet Seal	5.95E-01	11.16
3	Blowdown Valve		
3	Isolation Valve		
4	Wet Seal		
4	Blowdown Valve	0.00E+00	0.00
4	Isolation Valve	8.57E-02	1.61
5	Wet Seal		
5	Blowdown Valve	0.00E+00	0.00
5	Isolation Valve	8.57E-02	1.61
	Total	1.96	36.71

Centrifugal Compressor Venting Emissions

Notes:

¹ A combination of equations W-22 & W-36 (Subpart W) is used to calculate cintrifugal compressor emissions.

² As the NMED requires CO2 & CH4 emissions rather than CO2e emissions, it is not necessary to include the global warming potential from equation W-36.

³ CO2 Emission Rates (tpy) = scf/hr x hr/yr x (CO2 Mole Percent (%) / 100) x CO2 Density (kg/scf) x (2,204.6 lb/tonne / 2,000 lb/ton) / 1,000 kg/tonne

⁴ CH4 Emission Rates (tpy) = scf/hr x hr/yr x (CH4 Mole Percent (%) / 100) x CH4 Density (kg/scf) x (2,204.6 lb/tonne / 2,000 lb/ton) / 1,000 kg/tonne

		Gas	Operating	CO2 Mole	CH4 Mole	CO2	CH4
Unit Numbers ^{4,5}	Description ^{1,2}	Emissions ³	Times ⁶	Percents ⁷	Percents ⁷	Density ⁸	Density ⁸
		scf/hr	hr/yr	%	%	kg/scf	kg/scf
1	Wet Seal	70.81	8760	1.65	85.04	0.0526	0.0192
1	Blowdown Valve	0.64	0	1.65	85.04	0.0526	0.0192
1	Isolation Valve	10.21	0	1.65	85.04	0.0526	0.0192
2	Wet Seal	70.81	8760	1.65	85.04	0.0526	0.0192
2	Blowdown Valve	0.64	0	1.65	85.04	0.0526	0.0192
2	Isolation Valve	10.21	0	1.65	85.04	0.0526	0.0192
3	Wet Seal	70.81	8760	1.65	85.04	0.0526	0.0192
3	Blowdown Valve	0.64	0	1.65	85.04	0.0526	0.0192
3	Isolation Valve	10.21	0	1.65	85.04	0.0526	0.0192
4	Wet Seal	70.81	0	1.65	85.04	0.0526	0.0192
4	Blowdown Valve	0.64	0	1.65	85.04	0.0526	0.0192
4	Isolation Valve	10.21	8760	1.65	85.04	0.0526	0.0192
5	Wet Seal	70.81	0	1.65	85.04	0.0526	0.0192
5	Blowdown Valve	0.64	0	1.65	85.04	0.0526	0.0192
5	Isolation Valve	10.21	8760	1.65	85.04	0.0526	0.0192

Notes:

¹ Operating mode - includes blowdown valve leakage (wet and dry seal) and the oil degassing vents (wet seal).

² Non-operating depressurized mode - includes isolation valve leakage (wet & dry seal) through open blowdown vents (without blind flanges).

³ Emission factors are the three year rolling average of measurements taken by Harvest Four Corners.

⁴ Units 1-3 blowdown valve and isolation valve leakage are sent to the flare.

⁵ Units 4 & 5 do not have wet seals.

⁶ The operating times are estimated so as to identify the highest GHG emission rates.

⁷ The facility CO2 and CH4 contents are taken from the facility inlet gas composition.

⁸ The CO2 & CH4 densities (kg/scf) are taken from Subpart W, Paragraph 98.233(v).

Heater & Oxidizer Exhaust Emissions

		E	mission Factor	′s¹	Emission Rates ²		
Unit Numbers	Description	CO2	CH4	N2O	CO2	CH4	N2O
		kg/MMBtu	kg/MMBtu	kg/MMBtu	tpy	tpy	tpy
8	Regeneration Heater	53.06	1.00E-03	1.00E-04	7,439.21	1.40E-01	1.40E-02
12	Regeneration Heater	53.06	1.00E-03	1.00E-04	1,738.37	3.28E-02	3.28E-03
13	Regeneration Heater	53.06	1.00E-03	1.00E-04	7,439.21	1.40E-01	1.40E-02
15	Thermal Oxidizer	53.06	1.00E-03	1.00E-04	6,135.43	1.16E-01	1.16E-02
	Total				22,752.23	4.29E-01	4.29E-02

Notes:

¹ The emissions factors are taken from 40 CFR 98, Subpart C, Tables C-1 & C-2.

² Emission Rates (tpy) = kg/MMBtu x 2.2 lb/kg x MMBtu/yr / 2,000 lb/ton.

Unit Numbers	Description	Fuel Types ¹	Operating Times ¹ hr/yr	Design Heat Rates ² MMBtu/hr	Fuel Usages ³ MMBtu/yr
8	Regeneration Heater	Nat. Gas	8,760	123.20	127,458
12	Regeneration Heater	Nat. Gas	8,760	123.20	29,784
13	Regeneration Heater	Nat. Gas	8,760	32.90	127,458
15	Thermal Oxidizer	Nat. Gas	8,760	32.90	105,120

Notes:

¹ The fuel types and operating times are provided by Harvest Four Corners

 $^{\rm 2}$ The design heat rates are taken from 2011 NSR application.

³ Fuel Usages (MMBtu/yr) = Design Heat Rates (MMBtu/hr) x hr/yr.

Facility Flare Emissions

		N2O Emission	Emission Rates ²			
Unit Numbers	Description	Factor	CO2	CH4	N2O	
		kg/MMBtu	tpy	tpy	tpy	
9	High Pressure Flare	1.00E-04	692.43	3.59	1.15E-03	
16	Low Pressure Flare	1.00E-04	5,686.55	29.46	8.17E-03	
	Total		6,378.99	33.05	9.32E-03	

Notes:

¹ The N2O emission factor is obtained from Subpart W (Paragraph 98.233(z)(2)(vi)).

² CO2 Emission Rates (tpy) = (Noncombustion CO2 Emissions (MMscf/yr) + Combustion CO2 Emissions (MMscf/yr)) x 1,000,000 scf/MMscf x 0.0526 kg/cu ft x 2.2 lb/kg / 2,000 lb/ton.

³ CH4 Emission Rates (tpy) = Noncombustion CH4 Emissions (MMscf/yr) x 1,000,000 scf/MMscf x 0.0192 kg/cu ft x 2.2 lb/kg / 2,000 lb/ton.

⁴ N2O Emission Rates (tpy) = kg/MMBtu x 2.2 lb/kg x MMBtu/yr / 2,000 lb/ton.

Unit Numbers	Description	Facility Flare Through- put ¹ MMscf/yr	HHV Heat Content Btu/scf	Flare Through put ² MMBtu/hr	Control Efficiency ³ %	Non- combustion CO2 Emissions ⁴ MMscf/yr	Combustion CO2 Emissions ^{5,6} MMscf/yr	Non- combustion CH4 Emissions ⁷ MMscf/yr
9	High Pressure Flare	9.99	1050	10,486	98	0.16	11.80	0.17
16	Low Pressure Flare	82.01	1050	74,228	98	1.35	96.93	1.39

Notes:

¹ The facility flare throughput and heat content is calculated (see individual flare calculation sheets).

² Flare Throughput (MMBtu/yr) = MMscf/yr x 1,000,000 scf/MMscf x Btu/scf / 1,000,000 Btu/MMBtu

 3 The control efficiency is the default value identified by Subpart W (Paragraph 98.233(n)(4)).

⁴ Noncombustion CO2 Emissions (MMscf/yr) = MMscf/yr x (CO2 Content (mole %) / 100).

⁵ Combustion CO2 Emissions (MMscf/yr) = [(Control Efficiency (%) / 100) x MMscf/yr x (CH4 Content (mole %) / 100) x 1]

+ [(Control Efficiency (%) / 100) x MMscf/yr x (Ethane Content (mole %) / 100) x 2]

+ [(Control Efficiency (%) / 100) x MMscf/yr x (Propane Content (mole %) / 100) x 3]

+ [(Control Efficiency (%) / 100) x MMscf/yr x (Butane Content (mole %) / 100) x 4]

+ [(Control Efficiency (%) / 100) x MMscf/yr x (Pentane+ Content (mole %) / 100) x 5]

⁶ The numbers 1-5 in the above equation represent the number of carbon atoms found in methane through pentane, respectively.

⁷ Noncombustion CH4 Emissions (MMscf/yr) = MMscf/yr x (1 - (Control Efficiency (%) / 100)) x (CH4 Content (mole %) / 100)

Unit Numbers	Description	CO2 Content ¹ mole %	CH4 Content ¹ mole %	Ethane Content ¹ mole %	Propane Content ¹ mole %	Butane Content ¹ mole %	Pentane+ Content ¹ mole %
9	High Pressure Flare	1.65	85.04	7.37	3.16	1.44	1.11
16	Low Pressure Flare	1.65	85.04	7.37	3.16	1.44	1.11

Notes:

¹ The facility flare mole % is obtained from the facility inlet gas analysis.

Equipment Leaks Emissions

	Emission Rates ⁴				
Description	VOC ¹	CO2 ²	CH4 ³		
	tpy	tpy	tpy		
Valves, connectors, seals, flanges, etc.	38.01	8.87	166.37		

Notes:

¹ The VOC emission rate is taken from the equipment leaks emissions calculations worksheet.

² CO2 Emission Rates (tpy) = VOC Emission Rate (tpy) x CO2 Weight Percent of Total (%) / VOC Weight Percent of Total (%).

³ CH4 Emission Rates (tpy) = VOC Emission Rate (tpy) x CH4 Weight Percent of Total (%) / VOC Weight Percent of Total (%).

⁴ CO2, CH4 & VOC weight percent of totals obtained from gas stream composition calculations.

SSM and Malfunction Emissions

		Emission Rates ⁴					
Description	VOC ¹	CO2 ²	CH4 ³				
	tpy	tpy	tpy				
Valves, connectors, seals, flanges, etc.	10.00	2.33	43.77				

Notes:

¹ The VOC emission rate is taken from the current Title V permit.

² CO2 Emission Rates (tpy) = VOC Emission Rate (tpy) x CO2 Weight Percent of Total (%) / VOC Weight Percent of Total (%).

³ CH4 Emission Rates (tpy) = VOC Emission Rate (tpy) x CH4 Weight Percent of Total (%) / VOC Weight Percent of Total (%).

⁴ CO2, CH4 & VOC weight percent of totals obtained from gas stream composition calculations.

Gas Stream Composition

Components	Mole Percents ¹ %	Molecular Weights Ib/Ib-mole	Component Weights ² Ib/Ib-mole	Weight Percent of Total ³ %	Emission Factors ⁴ Ib/scf
Carbon Dioxide	1.6534	44.01	0.73	3.6819	0.0019
Nitrogen	0.2179	28.01	0.06	0.3088	0.0002
Methane	85.0411	16.04	13.64	69.0202	0.0360
Ethane	7.3744	30.07	2.22	11.2203	0.0058
Propane	3.1599	44.09	1.39	7.0495	0.0037
IsoButane	0.5963	58.12	0.35	1.7536	0.0009
Normal Butane	0.8422	58.12	0.49	2.4768	0.0013
IsoPentane	0.3098	72.15	0.22	1.1310	0.0006
Normal Pentane	0.2226	72.15	0.16	0.8127	0.0004
C6+	0.4369	86.18	0.38	1.9052	0.0010
Benzene	0.0191	78.11	0.01	0.0755	0.0000
Ethylbenzene	0.0000	106.17	0.00	0.0000	0.0000
n-Hexane	0.0950	86.17	0.08	0.4142	0.0002
Toluene	0.0257	92.14	0.02	0.1198	0.0001
Xylenes	0.0057	106.17	0.01	0.0306	0.0000
Total	100.0000		19.76	100.0000	0.0521
VOC			3.12	15.7688	0.0082

Notes:

¹ Gas stream composition obtained from San Juan Gas Plant gas analysis dated 08/01/2016.

² Component Weights (lb/lb-mole) = [Mole Percents (%) / 100] x Molecular Weights (lb/lb-mole)

³ Weight Percent of Total (%) = 100 x Component Weights (lb/lb-mole) / Total Component Weight (lb/lb-mole)

⁴ Emission Factors (lb/scf) = [Mole Percents (%) / 100] x Molecular Weights (lb/lb-mole) / 379.4 scf/lb-mole

Section 7

Information Used To Determine Emissions

Information Used to Determine Emissions shall include the following:

- If manufacturer data are used, include specifications for emissions units <u>and</u> control equipment, including control efficiencies specifications and sufficient engineering data for verification of control equipment operation, including design drawings, test reports, and design parameters that affect normal operation.
- □ If test data are used, include a copy of the complete test report. If the test data are for an emissions unit other than the one being permitted, the emission units must be identical. Test data may not be used if any difference in operating conditions of the unit being permitted and the unit represented in the test report significantly effect emission rates.
- If the most current copy of AP-42 is used, reference the section and date located at the bottom of the page. Include a copy of the page containing the emissions factors, and clearly mark the factors used in the calculations.
- □ If an older version of AP-42 is used, include a complete copy of the section.
- If an EPA document or other material is referenced, include a complete copy.
- **X** Fuel specifications sheet.
- ☑ If computer models are used to estimate emissions, include an input summary (if available) and a detailed report, and a disk containing the input file(s) used to run the model. For tank-flashing emissions, include a discussion of the method used to estimate tank-flashing emissions, relative thresholds (i.e., permit or major source (NSPS, PSD or Title V)), accuracy of the model, the input and output from simulation models and software, all calculations, documentation of any assumptions used, descriptions of sampling methods and conditions, copies of any lab sample analysis.

Amine Vent (Unit: Amine Unit)

• Promax

Thermal Oxidizer (Unit: 15)

- AP-42 Tables 1.4-1 and 1.4-2
- ProMax streams for HAP, VOC, and H2S
- 40 CFR Part 98 methodology

Flares (Units: 9 & 16)

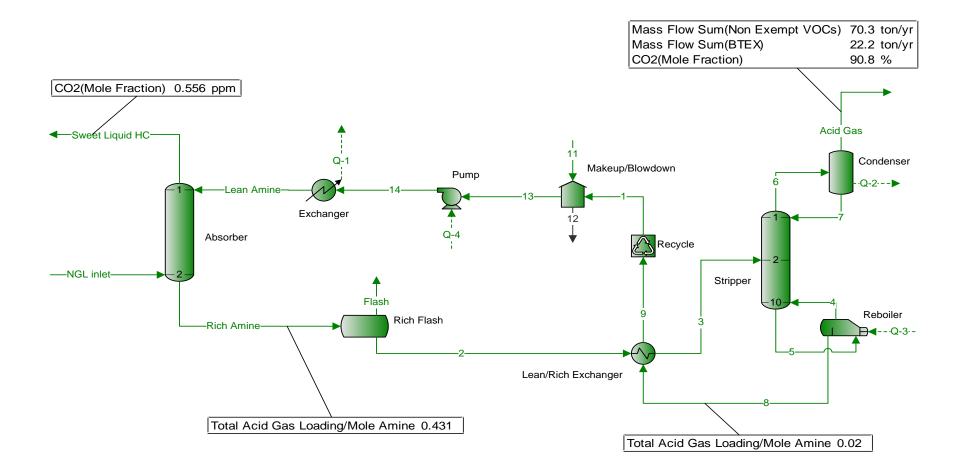
- Emission factors from TCEQ document "Technical Supplement 4: Flares" for air assisted or unassisted units combusting high-Btu waste streams (>1000 Btu/scf), February 2012.
- ProMax streams for HAP, VOC, and H2S
- 40 CFR Part 98 methodology

Cooling Tower (Unit: CT)

• Manufacturer data

Turbines (Units: 1-7)

- AP-42 Tables 3.1-2a
- GRI-HAPCalc 3.01
- 40 CFR Part 98 methodology

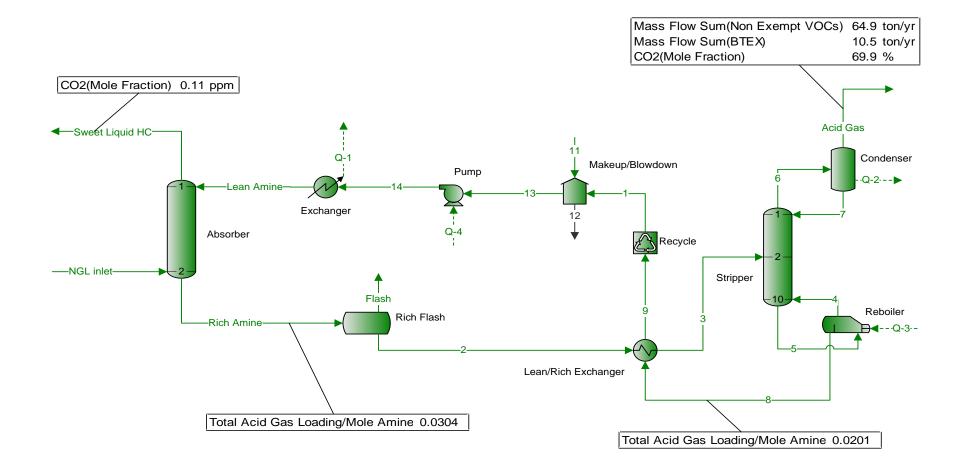

Heaters (Units: 8, 12, & 13)

- AP-42 Tables 1.4-1 and 1.4-2
- GRI-HAPCalc 3.01
- 40 CFR Part 98 methodology

Fugitives (Unit: 14)

- Tables 2-4 and 5-2 of the EPA Protocol for Equipment Leak Emission Estimates, November 1995
- Inlet gas and liquid analysis for San Juan Gas Plant dated 09/01/2016

San Juan – Product Treater - Recovery



Q2 0 0 0 C1 0.0169863 4.26775 CQ2 0.412436 7199139 C3 0.0513965 119.292 C4 0.00189932 2.77810 C5 0.002022121 0.121588 nC4 0.00129763 1.20580 C5 0.000222121 0.121588 nC5 0.00022225 0.0194101 C6 6.47438-C5 0.0275003 Benzane 0.0105979 0.00244395 Cyclohexane 0.000228225 0.0194101 C7 0 0 0 C63 1.16583F-06 0.0039490 0 C44 0.00424803 0.00131900 0 C42 0 0 0 C43 1.4503F-17 43547-E66 0 C44 0.0028417 0 0 C42 0 0 0 C44 0.0029701 0 0 C42 0 0 <th>Process Streams</th> <th></th> <th>Acid Gas</th> <th>Flash</th> <th>Lean Amine</th> <th>NGL inlet</th> <th>Rich Amine</th> <th>Sweet Liquid HC</th>	Process Streams		Acid Gas	Flash	Lean Amine	NGL inlet	Rich Amine	Sweet Liquid HC
Phase Vapor From Block: Condenser Rich Flash Exchanger Absorber Absorber <th< th=""><th>Composition</th><th>Status:</th><th>Solved</th><th>Solved</th><th>Solved</th><th>Solved</th><th>Solved</th><th>Solved</th></th<>	Composition	Status:	Solved	Solved	Solved	Solved	Solved	Solved
Order To Block Absorber Rich Flash Nole Fraction 0 0 % <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
Mole Fraction % <					•	Absorber		
C1 0.0169863 4.26775 C2 0.0172865 11.9292 C3 0.0572365 11.9292 C4 0.00198322 0.708914 C4 0.000262721 1.02580 C5 0.000262721 0.121588 C5 0.000262721 0.121588 C6 0 0 C6 0.000262721 0.0293047 C6 0.000262725 0.0275003 Banzane 0.000262225 0.00194101 C7 5.39547E-06 0.00390490 C7 5.39547E-06 0.000241236 C8 0 0 C8 0.00024225 0.01013100 C8 0 0 C9 0 0 C8 0.000241236 1.65332476 Ehybenzone 4.533242-05 0.00011100 C4Methylonane 0 0 Vedraydonane 0.00074141 0.00084147 C4Methylonane 0 0 Vedraydonane 0.00074141 Vedraydonane 0.00074141 Vedraydonane 0 C10 + 0 C2 0.021765 C3 0.00074411 C4 0.00764	Mole Fraction		%	%				%
CO2 90.7896 2.27810 C2 0.412435 76.9138 C3 0.00198932 0.708914 nC4 0.000282121 0.121588 nC5 0.000282121 0.033047 C6 0 0 nC6 0.000282121 0.0412435 nC5 0.000282121 0.024395 C6 0 0 nC6 0.00028225 0.0194101 C7 0 0 nC7 0.00423837 0.00380490 C7 0 0 nC6 1.165832-06 0.00340491 C7 0 0 nC7 0.00423637 0.000381417 C8 0 0 C8 0 0 c8 0.00042413 0 Ehybenzene 0.3049416 0.00041238 Ehybenzene 0.30044916 0.0005917 C10 0.00042415 0.000891417 2.404thyonane 0 0 Verbin bmol/h bmol/h bmol/h bmol/h bmol/h bmol/h 0.000891417 2.404thyonane 0.037264 C10 0.0680062 C22 <t< td=""><td>N2</td><td></td><td>0</td><td>0</td><td></td><td></td><td></td><td></td></t<>	N2		0	0				
CO2 90.7896 2.27810 C2 0.412435 76.9138 C3 0.00198932 0.708914 nC4 0.000282121 0.121588 nC5 0.000282121 0.033047 C6 0 0 nC6 0.000282121 0.0412435 nC5 0.000282121 0.024395 C6 0 0 nC6 0.00028225 0.0194101 C7 0 0 nC7 0.00423837 0.00380490 C7 0 0 nC6 1.165832-06 0.00340491 C7 0 0 nC7 0.00423637 0.000381417 C8 0 0 C8 0 0 c8 0.00042413 0 Ehybenzene 0.3049416 0.00041238 Ehybenzene 0.30044916 0.0005917 C10 0.00042415 0.000891417 2.404thyonane 0 0 Verbin bmol/h bmol/h bmol/h bmol/h bmol/h bmol/h 0.000891417 2.404thyonane 0.037264 C10 0.0680062 C22 <t< td=""><td>C1</td><td></td><td>0.0169863</td><td>4.26775</td><td></td><td></td><td></td><td></td></t<>	C1		0.0169863	4.26775				
C3 0.0612865 11.9292 C4 0.00919832 0.708914 nC4 0.000228213 1.20580 C5 0.000282121 0.1215188 nC5 0.000282222 0.0193101 C6 0 0 nC6 0.000282223 0.0195597 C240387 0.0105597 0.0264385 Cyclohexane 0.000282222 0.0194101 C7 5.38547E-06 0.00394490 C63 0 0 C64 0.000282225 0.0191300 C7 5.38547E-06 0.00394490 C63 0.00028223 0.0191300 C64 0.00028273 0.0103280 C64 0.000249113 0.000131900 c34 1.16583E-06 0.0034147 C4Methylonane 0 0 Valderina 0 0 Valderina 0 0 Valderina 0.00037111 0.0005971 Valderina 0.00037114 0.0005971 Valderina 0.00037114 0.0005971 Valderina 0.00037141 0.0005971 Valderina 0.00037141 0.0005971 Valderina 0.00037141 0.00037141 <	CO2		90.7959	2.27810				
C4 0.00198922 0.706914 nC4 0.00507263 1.20580 C5 0.000228767 0.933047 C6 6 0 0 nC6 6.74335-05 0.0275003 Benzene 0.01052877 0.0284395 C7 0 0 C7 0.000282225 0.0194101 C7 0.000242253 0.0103260 C7 0.000428678 0.00330490 Toluene 0.00428673 0.0103260 C63 1.165835-06 0.003841236 C64 0.000428673 0.000884147 C63 1.165835-06 0.000894147 C44 0.00049416 0.000894147 C45 0.00049416 0.000894147 C45 0.00049416 0.000894147 C45 0.00049416 0.000894147 C46 0.0012950 0.000891147 C41 1.45057E-17 4.35547E-06 C10+ 0 0 Vater 6.69046 2.39149 DEA 1.6507E-17 4.35547E-06 C10+ 0.00690647 0.00690647 C2 0.0057501 1.00176 D6 0 0 C1	C2		0.412436	76.9138				
nC4 0.00027263 1.2050 C5 0.0002877 0.033047 C6 0 0 nC6 6 0.0002877 0.033047 C6 0 0 nC6 6 0.00028225 0.0275003 Benzene 0.000282225 0.0194101 C7 5.33547E-06 0.00390490 C7 5.33547E-06 0.00390490 C7 5.33547E-06 0.00390490 C7 6 0.00423637 0.0103260 C8 0 0.00423637 0.0103260 AC3 1.05332E-05 0.000131900 o-Xylene 0.00049416 0.00094147 C4 4.53322E-05 0.000131900 o-Xylene 0.00049416 0.00094147 C4 4.5332E-05 0.000131900 o-Xylene 0.00049416 0.00094147 C4 4.5332E-05 0.000131900 O-Xylene 0.00049416 0.00095697 Molar Flow 0 0 Mater 8.66046 2.39149 DEA 1.4507E-17 4.95547E-06 Holdar Flow 10 0 C1 0.0680062 0.372694 C2 363510 0.198424 C2 363510 0.0007603 0.001411 C6 00 0 nC6 00007603 0.0014191 C6 000007603 0.0014191 C6 0000 0 nC6 000007603 0.001411 C6 0000 0 nC6 000007603 0.001411 C6 000 0 nC6 0000 0 nC6 000007603 0.001411 C6 0000 0 nC7 0000017603 0.001411 C6 000000000000000000000000000000000000			0.0512365	11.9292				
CS 0.00028871 0.131588 nCG 0.00028877 0.0933047 C6 0.00028877 0.024395 Benzene 0.0105597 0.024395 Cyclohexane 0.00282225 0.0194101 C7 0.00282225 0.0194101 C7 5.39547E-06 0.0030490 nC7 5.39547E-06 0.000841236 C8 0 0 C8 0 0 C8 0 0 C8 0.0042867 0.000841236 Ehylbonzene 4.5332E-05 0.000131900 C9 0 0 Oxonore 0 0 Nonane 0 0 O 0 0 Vater 8.69046 2.39149 DEA 1.45057E-17 4.95547E-06 C10 0 0 Vater 8.69046 2.39149 DEA 1.45057E-17 4.95547E-06 C1 0.0680022 0.372894 C2 1.65122 6.716472 C3 </td <td>iC4</td> <td></td> <td>0.00198932</td> <td>0.708914</td> <td></td> <td></td> <td></td> <td></td>	iC4		0.00198932	0.708914				
nCS 0.00028767 0.033047 CG 0 0 nCG 6.47433E-05 0.0275003 Benzene 0.0105597 0.0264395 Cyclohexane 0.000282225 0.0194101 C7 5.39547E-06 0.00390490 C7 5.39547E-06 0.000891136 Bruzene 0.0042837 0.0103260 C8 0 0 nC3 1.16538I-06 0.00089147 C8 0.000449416 0.00089147 Sylpene 0.000449416 0.00089147 Sylpene 0.00049416 0.00089147 Sylpene 0.00049416 0.00089147 Sylpene 0.00049416 0.00089147 Sylpene 0.00049416 0.000701 Name 0 0 0.0007011 Water 8.69046 2.39149 0.0017010 DEA 1.45057E-17 4.95547E-06 0.0017010 C10+ 0.00070011 0.00068007 Modur Modur N2 0.00168002 0.372894 1.99994 1.99994 1.99994 </td <td>nC4</td> <td></td> <td>0.00507263</td> <td></td> <td></td> <td></td> <td></td> <td></td>	nC4		0.00507263					
C6 0 0 0 nC6 6.47433C 0.0275003 0.0284395 0.00028225 0.0194101 C7 0 0.00028225 0.0194101 0.00028225 0.0194101 C7 5.39847E-06 0.00390490 0 0 0 nC7 5.39847E-06 0.00981236 0 0 0 C8 0 0 0 0 0 0 nC8 1.16533E-06 0.0098147 0 0 0 0 c8 0.00049416 0 0 0 0 0 0 c9 0								
nC6 6.47433E-05 0.0275003 Benzene 0.010528225 0.0194101 C7 0 0 C7 5.39547E-06 0.0039490 Toluene 0.00423637 0.1013260 C8 0 0 nC3 1.16583E-06 0.00944236 Ethylbenzene 4.5332E-05 0.000131900 o-Xylen 0.000449416 0.000984147 S2Methyloctane 0 0 Norane 0 7.48949E-06 2/Methyloctane 0 0 Vater 8.69046 2.33149 DEA 1.45057E-17 4.95647E-06 C10+ 0.00997011 0.000656970 Metar Elow Ibmol/h Ibmol/h Ibmol/h N2 1.65122 6.71672 C2 1.65122 6.71672 C3 0.0205300 1.04175 C4 0.00795441 0.0619080 C5 0.00175030 1.04175 C4 0.00275200								
Benzene 0,0105597 0,0224395 Cyclohexane 0,00028225 0,0194101 C7								
Cyclohexane 0.00282225 0.0194101 C7 0 0 nC7 5.39547E-06 0.00390490 Toluene 0.0042833 0.1103260 C8 0.1082862-06 0.00841236 nC8 1.16583E-06 0.00841236 Ethylbenzene 4.5332E-05 0.0011900 oxylene 0.000449416 0.000894147 2.Methyloctane 0 0 Nonane 0 7.48949E-06 2.Methyloctane 0 0 Vater 8.69046 2.39149 DEA 1.4057E-17 4.95547E-06 C10+ 0 0 Vator 0.00970111 0.000556970 C1 0.0680062 0.372694 C2 1.65122 6.71672 C3 0.205130 1.14175 C4 0.00796441 0.6119080 nC4 0.0205897 0.1051900 nC5 0.00112950 0.016180 nC5 0.00107603 0.00814811								
C7 0 0 nG7 5.33547E 0.00042037 Toluene 0.00423637 0.0103260 C3 0 0 C4 1.165332E 0.000131900 C53 0.00042126 Ethylbenzene 4.53322E-06 0.000131900 C3 0 0 C4 0.000449116 0.00094147 2-Methylhonane 0 0 DEA 1.45057E-17 4.95647E-06 C10+ 0 0 Vdarer 4.869046 2.39149 DEA 1.45057E-17 4.95647E-06 C10+ 0 0 0 Vgdrogen Sulfide 0.00079111 0.00680057 C2 363.510 0.198942 C2 363.510 0.198942 C2 1.65122 6.71672 C3 0.205130 1.04175 C4 0.0203087 0.105300 C5 0.00112950 0.0106180 nC5 0.00112950 0.0004141 C6 0 0 C7 0 0 C5 0.00112950 0.0004154 Benzene 0.0422760 0.0203081 C5 0.00								
nC7 5.39547E-06 0.00390490 Toluene 0.00423637 0.0103260 C8 0 0 nC8 1.16583E-06 0.000841236 Ethylbenzene 4.53322E-05 0.000131900 o-Xylene 0 0 2Methyloctane 0 0 Nonane 0 7.48949E-06 2Methyloctane 0 0 Vater 8.69046 2.39149 DEA 1.45057E-17 4.95547E-06 C10+ 0 0 Vater 8.69046 2.39149 DEA 1.45057E-17 4.95547E-06 C10+ 0 0 0 Molar Flow Ibmol/h Ibmol/h Ibmol/h Ibmol/h N2 0 0 0 0 0 C2 1.65122 6.71672 5 5 5 C3 0.20530 1.04175 5 5 5 C4 0.00759260 0.0016180 5 5 5 nC5 0.0017603 0.00240154 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
Toluene 0.00423637 0.0103260 C8 0 0 0 C6B 1.16583E-06 0.000841236 0 Ethylbenzene 4.53322E-05 0.000131900 0 CMB 0.000449146 0.000894147 0 0 2-Methylhoctane 0 0 0 0 Nonane 0 7.48949E-06 2.39149 0 0 ZMethylhoctane 0 0 0 0 0 Water 8.69046 2.39149 0 0 0 Varogen Sulfide 0.00970111 0.000656970 0 0 0 N2 0 0 0 0 0 0 0 N2 0			-					
C8 0 0 nC8 1.16583E-06 0.000841236 Ethylbenzene 4.53322E-05 0.000131900 o-Xylene 0.000439416 0.000894147 2-Methyloctane 0 0 Nonane 0 7.48949E-06 2-Methyloctane 0 0 Water 8.69046 2.39149 DEA 1.45057E-17 4.95547E-06 C10+ 0 0 Water 0.00070111 0.00056970 Molar Flow Ibmol/h Ibmol/h Ibmol/h N2 0 0 0 C2 3.65120 0.19842 0 C3 0.205130 1.04175 0 C4 0.00796441 0.0619080 0 nC4 0.0203087 0.106180 0 nC5 0.0011290 0.0106180 0 nC6 0 0 0 nC5 0.001291 0.00168505 0 C7 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>								
nC3 1.16838-06 0.000841236 Ethylbenzene 4.53322E-05 0.000131900 o-Xylere 0 0 2-Methyloctane 0 0 Nonane 0 7.48949E-06 2-Methylnonane 0 0 Water 8.69046 2.39149 DEA 1.45067E-17 4.95547E-06 C10+ 0 0 Molar Flow 10m0l/h 1bmol/h 1bmol/h N2 0 0 C2 363.510 0.10856970 Molar Flow 1bmol/h 1bmol/h 1bmol/h 1bmol/h N2 0 0 0 C2 363.510 0.198942 - C3 0.205130 1.04175 - C4 0.00796441 0.06300 - - C5 0.00112600 0.0024164 - - Benzene 0.0422766 0.00230891 - - C/C4 0.0012760 0.0004164 - - Benzene 0.042766 0.00230								
Ethybenzene 4.53322E-05 0.000131900 o-Xylene 0.00044916 0.00089147 -XMethyloctane 0 7.48949E-06 -Methylonane 0 7.48949E-06 -Methylonane 0 0 Water 8.69046 2.39149 DEA 1.45037E-17 4.95547E-06 C10+ 0 0 0 Hydrogen Sulfide 0.00970111 0.00056937 								
o-Xylene 0.000449416 0.000894147 2-Methyloctane 0 0 0 2-Methylocnane 0,7.48949E-06 2-Methylonane 0,7.48949E-06 2-Methylonane 0,0.005570-0 Molar Flow 1,45057E-17 4.95547E-06 0,00056870- Molar Flow 1,00056870- Molar Flow 0,00056870- Molar Flow 0,00056870- C2 1,6012260 0,0004115 C4 0,00056900- Mola 0,0005690- Mola 0,00056900- Mola 0,00056900- Mola 0,0005690- Mola 0,00056900- Mola 0,00056900- Mola 0,0005690- Mola 0,00056900- Mola 0,0005690- Mola 0,0005690								
2-Methyloctane 0 0 Nonare 0 7.48949E-06 2-Methylonane 0 0 Water 8.69046 2.39149 DEA 1.45057E-17 4.95547E-06 C10+ 0 0 Molar Flow Ibmol/h Ibmol/h Ibmol/h N2 0 0 C1 0.0680062 0.372694 C2 363.510 0.198942 C2 1.65122 6.71672 C3 0.2075130 1.04175 C4 0.00796441 0.0619080 nC4 0.0017603 0.0016180 nC5 0.00112950 0.0106180 nC5 0.00112950 0.0016180 nC6 0 0 nC7 0 0 nC7 2.160122-05 0.00340154 Benzene 0.0422766 0.00230891 Cyclohexane 0 0 C7 0 0 nC6 0.00179928<	-							
Nonané 0 7.48949E-06 2.Methylnonane 0 0 Water 8.69046 2.39149 DEA 1.45057E-17 4.95547E-06 C10+ 0 0 Molar Flow Ibmol/h Ibmol/h Ibmol/h N2 0 0 C1 0.0680652 0.372694 C22 363.510 0.198942 C2 1.65122 6.71672 C3 0.205130 1.04175 C4 0.007396441 0.019800 nC4 0.0023987 0.105300 C5 0.00112950 0.0106180 nC5 0.00129206 0.00240154 Benzene 0.0422766 0.0030891 Cyclohexane 0.00112991 0.00169505 C7 0 0 nC7 2.16012E-05 0.000301747 C8 0 0 nC7 2.16012E-05 0.000301747 C8 0 0 nC7 <td>3</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	3							
2-Methylnonane 0 0 Water 8.69046 2.39149 DEA 1.45057E:17 4.95547E:06 C10+ 0 0 Molar Flow 1000/h 1bmol/h 1bmol/h 1bmol/h N2 0 0 0 C1 0.0680062 0.372694 0 C2 363.510 0.198942 0 C2 363.510 0.198942 0 C2 1.65122 6.71672 0 C3 0.205130 1.04175 0 C4 0.00796441 0.0619060 0 nC4 0.0023087 0.105300 0 C5 0.00112950 0.0106180 0 nC5 0.00107603 0.00814811 0 C6 0 0 0 nC6 0.001259206 0.00230891 0 Cyclohexane 0.00169505 0 0 C7 0 0 0 0	-							
Water 8.69046 2.39149 DEA 1.45057E-17 4.95547E-06 C10+ 0 0 Hydrogen Sulfide 0.00970111 0.000656970 Molar Flow Ibmol/h Ibmol/h Ibmol/h Ibmol/h Ibmol/h Ibmol/h Molar Slow 0 0 0 0 0 C1 0.0680062 0.372694								
DEA 1.45057E-17 4.95547E-06 C10+ 0 0 Hydrogen Sulfide 0.000970111 0.000656970 Molar Flow Ibmol/h Ibmol/h Ibmol/h Ibmol/h Ibmol/h Ibmol/h N2 0 0 0 0 0 0 C1 0.0680062 0.372694 0.205130 1.04175 0 0 C2 363.510 0.198942 -								
C10+ 0 0 Hydrogen Sulfide 0.00970111 0.000656970 Molar Flow Ibmol/h Ibmol/h Ibmol/h Ibmol/h Ibmol/h Ibmol/h N2 0 0 0 0 0 C1 0.0680062 0.372694 0 0 0 C2 363.510 0.198942 0 0 0 C2 363.510 0.198942 0 0 0 C3 0.205130 1.04175 0 0 0 0 C4 0.00796441 0.0619080 0 0 0 0 0 C5 0.00112950 0.0106180 0 0 0 0 0 C6 0.000259206 0.00241154 0 0 0 0 0 C7 0 0 0 0 0 0 0 C64 0.00259206 0.00341006 0 0 0 0								
Hydrogen Sulfide 0.00970111 0.000656970 Molar Flow Ibmol/h Ibmol/h <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
Molar Flow Ibmol/h			-					
C1 0.0680062 0.372694 CO2 363.510 0.198942 C2 1.65122 6.71672 C3 0.205130 1.04175 IC4 0.00796441 0.0619080 nC4 0.0203087 0.105300 IC5 0.00112950 0.0106180 nC5 0.00107603 0.00814811 IC6 0 0 nC6 0.000259206 0.00240154 Benzene 0.0012991 0.00169505 IC7 0 0 nC7 2.16012E-05 0.00341006 Toluene 0.0169607 0.000901747 IC8 0 0 cV4 0.00179928 7.36844E-05 Ethylbenzene 0.00179928 7.36844E-05 O-Monane 0 0 Nonane 0 0 Nonane 0 0 O-Monane 0 0 O-Morane 0 0 O-Morane 0 0 O-Morane 0 0 O-Morane <th>Molar Flow</th> <th></th> <th></th> <th></th> <th>lbmol/h</th> <th>lbmol/h</th> <th>lbmol/h</th> <th>lbmol/h</th>	Molar Flow				lbmol/h	lbmol/h	lbmol/h	lbmol/h
CO2 363.510 0.198942 C2 1.65122 6.71672 C3 0.205130 1.04175 IC4 0.0079641 0.0619080 nC4 0.0203087 0.105300 iC5 0.00112950 0.0106180 nC5 0.00112950 0.00814811 IC6 0 0 nC6 0.00259206 0.00240154 Benzene 0.0422766 0.00230891 Cyclohexane 0.00112991 0.00169505 IC7 0 0 nC7 2.16012E-05 0.00341006 Toluene 0.0169607 0.000901747 IC8 0 0 nC8 4.66750E-06 7.34634E-05 Ethylbenzene 0.000181492 1.15185E-05 o-Xylene 0.00017928 7.80840E-05 2-Methyloctane 0 0 Nonane 0 0 Vater 34.7930 0.208844 DEA 5.80748E-17 4.32751E-07	N2		0	0				
C2 1.65122 6.71672 C3 0.205130 1.04175 iC4 0.00796441 0.0619080 nC4 0.023087 0.105300 iC5 0.00112950 0.0106180 nC5 0.00107603 0.00814811 iC6 0 0 nC6 0.000259206 0.0230891 cyclohexane 0.0422766 0.0230891 cyclohexane 0.00112991 0.00169505 iC7 0 0 nC7 2.16012E-05 0.00341006 roluene 0.0169607 0.000901747 iC8 0 0 nC8 4.66750E-06 7.34634E-05 Ethylbenzene 0.00181492 1.15185E-05 o-Xylene 0 0 o-Xylene 0 0 Nonane 0 0 2-Methylnonane 0 0 Vater 34.7930 0.208844 DEA 5.80748E-17 4.32751E-07	C1		0.0680062	0.372694				
C3 0.205130 1.04175 IC4 0.00796441 0.0619080 nC4 0.0203087 0.105300 IC5 0.00112950 0.0106180 nC5 0.00107603 0.00814811 IC6 0 0 nC6 0.000259206 0.00240154 Benzene 0.0422766 0.00230891 Cyclohexane 0.00112991 0.00169505 IC7 0 0 nC7 2.16012E-05 0.000341006 Toluene 0.0169607 0.000901747 IC8 4.66750E-06 7.34634E-05 Ethylbenzene 0.001719928 7.80840E-05 o 0 0 Nonane 0 0 Vethylioctane 0 0 Vater 34.7930 0.208844 DEA 5.80748E-17 4.32751E-07				0.198942				
C4 0.00796441 0.0619080 nC4 0.0203087 0.105300 iC5 0.00112950 0.0016180 nC5 0.00107603 0.0818811 iC6 0 0 nC6 0.00259206 0.00240154 Benzene 0.0422766 0.00230891 Cyclohexane 0.00112991 0.00169505 iC7 0 0 nC7 2.16012E-05 0.000341006 Toluene 0.0169507 0.000901747 iC8 0 0 nC8 4.66750E-06 7.34634E-05 Ethylbenzene 0.00179928 7.80840E-05 o-Xylene 0.00179928 7.80840E-05 2-Methyloctane 0 0 Nonane 0 0 2-Methylnonane 0 0 Water 34.7930 0.208844 DEA 5.80748E-17 4.32751E-07	C2		1.65122	6.71672				
nC40.02030870.105300iC50.001129500.0106180nC50.001076030.00814811iC600nC60.0002592060.00240154Benzene0.04227660.00230891Cyclohexane0.001129910.00169505iC700nC72.16012E-050.000341006Toluene0.01696070.00091747iC800nC84.66750E-067.34634E-05Ethylbenzene0.0011799287.80840E-05o-Xylene0.001799287.80840E-052-Methyloctane00Nonane00Water34.79300.208844DEA5.80748E-174.32751E-07								
IC50.001129500.0106180nC50.001076030.00814811iC600nC60.0002592060.00240154Benzene0.04227660.00230891Cyclohexane0.01129910.00169505iC700nC72.16012E-050.000341006Toluene0.01696070.000901747iC800nC84.66750E-067.34634E-05Ethylbenzene0.001799287.88640E-05o-Xylene0.001799280.00179282-Methyloctane00Nonane002-Methylnonane00Water34.79300.208844DEA5.80748E-174.32751E-07								
nC50.001076030.00814811iC600nC60.0002592060.00240154Benzene0.04227660.00230891Cyclohexane0.001129910.00169505iC700nC72.16012E-050.000341006Toluene0.01696070.000901747iC800nC84.66750E-067.34634E-05Ethylbenzene0.001814921.15185E-05o-Xylene0.00179287.80840E-052-Methyloctane00Nonane002-Methylnonane00Water34.79300.208844DEA5.80748E-174.32751E-07								
iC600nC60.0002592060.00240154Benzene0.04227660.00230891Cyclohexane0.001129910.00169505iC700nC72.16012E-050.000341006Toluene0.01696070.000901747iC800nC84.66750E-067.34634E-05Ethylbenzene0.001814921.15185E-05o-Xylene0.001799287.80840E-052-Methyloctane00Nonane00Water34.79300.208844DEA5.80748E-174.32751E-07								
nC60.0002592060.00240154Benzene0.04227660.00230891Cyclohexane0.001129910.00169505iC700nC72.16012E-050.000341006Toluene0.01696070.000901747iC800nC84.66750E-067.34634E-05Ethylbenzene0.001814921.15185E-05o-Xylene002-Methyloctane00Nonane002-Methylnonane00Water34.79300.208844DEA5.80748E-174.32751E-07								
Benzene 0.0422766 0.00230891 Cyclohexane 0.00112991 0.00169505 iC7 0 0 nC7 2.16012E-05 0.000341006 Toluene 0.0169607 0.000901747 iC8 0 0 nC8 4.66750E-06 7.34634E-05 Ethylbenzene 0.000181492 1.15185E-05 o-Xylene 0.00179928 7.80840E-05 2-Methyloctane 0 0 Nonane 0 0 2-Methylnonane 0 0 Water 34.7930 0.208844 DEA 5.80748E-17 4.32751E-07								
Cyclohexane 0.00112991 0.00169505 iC7 0 0 nC7 2.16012E-05 0.000341006 Toluene 0.0169607 0.000901747 iC8 0 0 nC8 4.66750E-06 7.34634E-05 Ethylbenzene 0.000181492 1.15185E-05 o-Xylene 0.00179928 7.80840E-05 2-Methyloctane 0 0 Nonane 0 0 Vater 34.7930 0.208844 DEA 5.80748E-17 4.32751E-07								
iC700nC72.16012E-050.000341006Toluene0.01696070.000901747iC800nC84.66750E-067.34634E-05Ethylbenzene0.0001814921.15185E-05o-Xylene0.001799287.80840E-052-Methyloctane00Nonane06.54042E-072-Methylnonane00Water34.79300.208844DEA5.80748E-174.32751E-07								
nC72.16012E-050.000341006Toluene0.01696070.000901747iC800nC84.66750E-067.34634E-05Ethylbenzene0.0001814921.15185E-05o-Xylene0.001799287.80840E-052-Methyloctane00Nonane002-Methylnonane00Water34.79300.208844DEA5.80748E-174.32751E-07								
Toluene 0.0169607 0.000901747 iC8 0 0 nC8 4.66750E-06 7.34634E-05 Ethylbenzene 0.000181492 1.15185E-05 o-Xylene 0.00179928 7.80840E-05 2-Methyloctane 0 0 Nonane 0 6.54042E-07 2-Methylnonane 0 0 Water 34.7930 0.208844 DEA 5.80748E-17 4.32751E-07			-	-				
iC800nC84.66750E-067.34634E-05Ethylbenzene0.0001814921.15185E-05o-Xylene0.001799287.80840E-052-Methyloctane00Nonane06.54042E-072-Methylnonane00Water34.79300.208844DEA5.80748E-174.32751E-07								
nC84.66750E-067.34634E-05Ethylbenzene0.0001814921.15185E-05o-Xylene0.001799287.80840E-052-Methyloctane00Nonane06.54042E-072-Methylnonane00Water34.79300.208844DEA5.80748E-174.32751E-07								
Ethylbenzene 0.000181492 1.15185E-05 o-Xylene 0.00179928 7.80840E-05 2-Methyloctane 0 0 Nonane 0 6.54042E-07 2-Methylnonane 0 0 Water 34.7930 0.208844 DEA 5.80748E-17 4.32751E-07			-					
o-Xylene 0.00179928 7.80840E-05 2-Methyloctane 0 0 Nonane 0 6.54042E-07 2-Methylnonane 0 0 Water 34.7930 0.208844 DEA 5.80748E-17 4.32751E-07								
2-Methyloctane 0 0 Nonane 0 6.54042E-07 2-Methylnonane 0 0 Water 34.7930 0.208844 DEA 5.80748E-17 4.32751E-07	-							
Nonané 0 6.54042E-07 2-Methylnonane 0 0 Water 34.7930 0.208844 DEA 5.80748E-17 4.32751E-07	5							
2-Methylnonane 0 0 Water 34.7930 0.208844 DEA 5.80748E-17 4.32751E-07	5		-					
Water 34.7930 0.208844 DEA 5.80748E-17 4.32751E-07								
DEA 5.80748E-17 4.32751E-07	-							
	DEA							
	C10+							
Hydrogen Sulfide 0.0388392 5.73718E-05	Hydrogen Sulfide		-					

Mass Fraction	%	%	%	%	%	%
N2	0	0				
C1	0.00653567	2.14962				
CO2	95.8370	3.14784				
C2	0.297438	72.6133				
C3	0.0541870	16.5157				
iC4						
	0.00277311	1.29368				
nC4	0.00707124	2.20044				
iC5	0.000488186	0.275430				
nC5	0.000465077	0.211361				
iC6	0	0				
nC6	0.000133813	0.0744068				
Benzene	0.0197828	0.0648430				
Cyclohexane	0.000569664	0.0512890				
iC7	0	0				
nC7	1.29666E-05	0.0122851				
Toluene	0.00936172	0.0298720				
iC8	0	0				
nC8		0.00301707				
Ethylbenzene	0.000115427					
o-Xylene		0.00298046				
2-Methyloctane	0.00114433	0.00290040				
Nonane		3.01592E-05				
2-Methylnonane	0	0				
Water	3.75495	1.35270				
DEA		1.63579E-05				
C10+	0	0				
Hydrogen Sulfide		0.000702989				
Mass Flow	lb/h	lb/h	lb/h	lb/h	lb/h	lb/h
N2	0	0				
C1	1.09099	5.97892				
CO2	15997.9					
C2		8.75534				
	49.6507	201.965				
C3	9.04533	201.965 45.9365				
C3 iC4	9.04533 0.462909	201.965 45.9365 3.59823				
C3 iC4 nC4	9.04533 0.462909 1.18039	201.965 45.9365 3.59823 6.12026				
C3 iC4 nC4 iC5	9.04533 0.462909 1.18039 0.0814918	201.965 45.9365 3.59823 6.12026 0.766075				
C3 iC4 nC4 iC5 nC5	9.04533 0.462909 1.18039	201.965 45.9365 3.59823 6.12026				
C3 iC4 nC4 iC5	9.04533 0.462909 1.18039 0.0814918	201.965 45.9365 3.59823 6.12026 0.766075				
C3 iC4 nC4 iC5 nC5	9.04533 0.462909 1.18039 0.0814918 0.0776344	201.965 45.9365 3.59823 6.12026 0.766075 0.587876				
C3 iC4 nC4 iC5 nC5 iC6	9.04533 0.462909 1.18039 0.0814918 0.0776344 0	201.965 45.9365 3.59823 6.12026 0.766075 0.587876 0				
C3 iC4 nC4 iC5 nC5 iC6 nC6	9.04533 0.462909 1.18039 0.0814918 0.0776344 0 0.0223371	201.965 45.9365 3.59823 6.12026 0.766075 0.587876 0 0.206954				
C3 iC4 nC4 iC5 nC5 iC6 nC6 Benzene	9.04533 0.462909 1.18039 0.0814918 0.0776344 0 0.0223371 3.30231	201.965 45.9365 3.59823 6.12026 0.766075 0.587876 0 0.206954 0.180353				
C3 iC4 nC4 iC5 nC5 iC6 nC6 Benzene Cyclohexane iC7	9.04533 0.462909 1.18039 0.0814918 0.0776344 0 0.0223371 3.30231 0.0950929	201.965 45.9365 3.59823 6.12026 0.766075 0.587876 0 0.206954 0.180353 0.142654 0				
C3 iC4 nC4 iC5 nC5 iC6 nC6 Benzene Cyclohexane iC7 nC7	9.04533 0.462909 1.18039 0.0814918 0.0776344 0 0.0223371 3.30231 0.0950929 0 0.00216448	201.965 45.9365 3.59823 6.12026 0.766075 0.587876 0 0.206954 0.180353 0.142654 0 0.0341695				
C3 iC4 nC4 iC5 nC5 iC6 nC6 Benzene Cyclohexane iC7 nC7 Toluene	9.04533 0.462909 1.18039 0.0814918 0.0776344 0 0.0223371 3.30231 0.0950929 0	201.965 45.9365 3.59823 6.12026 0.766075 0.587876 0 0.206954 0.180353 0.142654 0				
C3 iC4 nC4 iC5 nC5 iC6 nC6 Benzene Cyclohexane iC7 nC7 Toluene iC8	9.04533 0.462909 1.18039 0.0814918 0.0776344 0 0.0223371 3.30231 0.0950929 0 0.00216448 1.56273 0	201.965 45.9365 3.59823 6.12026 0.766075 0.587876 0 0.206954 0.180353 0.142654 0 0.0341695 0.0830856 0				
C3 iC4 nC4 iC5 nC5 iC6 nC6 Benzene Cyclohexane iC7 nC7 Toluene iC8 nC8	9.04533 0.462909 1.18039 0.0814918 0.0776344 0 0.0223371 3.30231 0.0950929 0 0.00216448 1.56273 0 0.000533161	201.965 45.9365 3.59823 6.12026 0.766075 0.587876 0 0.206954 0.180353 0.142654 0 0.0341695 0.0830856 0 0.00839161				
C3 iC4 nC4 iC5 nC5 iC6 nC6 Benzene Cyclohexane iC7 nC7 Toluene iC8 nC8 Ethylbenzene	9.04533 0.462909 1.18039 0.0814918 0.0776344 0 0.0223371 3.30231 0.0950929 0 0.00216448 1.56273 0 0.000533161 0.0192681	201.965 45.9365 3.59823 6.12026 0.766075 0.587876 0 0.206954 0.180353 0.142654 0 0.0341695 0.0830856 0 0.00839161 0.00122287				
C3 iC4 nC4 iC5 nC5 iC6 nC6 Benzene Cyclohexane iC7 nC7 Toluene iC8 nC8 Ethylbenzene o-Xylene	9.04533 0.462909 1.18039 0.0814918 0.0776344 0 0.0223371 3.30231 0.0950929 0 0.00216448 1.56273 0 0.000533161 0.0192681 0.191020	201.965 45.9365 3.59823 6.12026 0.766075 0.587876 0 0.206954 0.180353 0.142654 0 0.0341695 0.0830856 0 0.00839161 0.00122287 0.00828979				
C3 iC4 nC4 iC5 nC5 iC6 nC6 Benzene Cyclohexane iC7 nC7 Toluene iC8 nC8 Ethylbenzene o-Xylene 2-Methyloctane	9.04533 0.462909 1.18039 0.0814918 0.0776344 0 0.0223371 3.30231 0.0950929 0 0.00216448 1.56273 0 0.000533161 0.0192681 0.191020 0	201.965 45.9365 3.59823 6.12026 0.766075 0.587876 0 0.206954 0.180353 0.142654 0 0.0341695 0.0830856 0 0.00839161 0.00122287 0.00828979 0				
C3 iC4 nC4 iC5 nC5 iC6 nC6 Benzene Cyclohexane iC7 nC7 Toluene iC8 nC8 Ethylbenzene o-Xylene 2-Methyloctane Nonane	9.04533 0.462909 1.18039 0.0814918 0.0776344 0 0.0223371 3.30231 0.0950929 0 0.00216448 1.56273 0 0.000533161 0.0192681 0.191020 0 0	201.965 45.9365 3.59823 6.12026 0.766075 0.587876 0 0.206954 0.180353 0.142654 0 0.0341695 0.0830856 0 0.00839161 0.00122287 0.00828979 0 8.38842E-05				
C3 iC4 nC4 iC5 nC5 iC6 nC6 Benzene Cyclohexane iC7 nC7 Toluene iC8 nC8 Ethylbenzene o-Xylene 2-Methyloctane Nonane 2-Methylonane	9.04533 0.462909 1.18039 0.0814918 0.0776344 0 0.0223371 3.30231 0.0950929 0 0.00216448 1.56273 0 0.000533161 0.0192681 0.191020 0 0 0	201.965 45.9365 3.59823 6.12026 0.766075 0.587876 0 0.206954 0.180353 0.142654 0 0.0341695 0.0830856 0 0.00839161 0.00122287 0.00828979 0 8.38842E-05 0				
C3 iC4 nC4 iC5 nC5 iC6 nC6 Benzene Cyclohexane iC7 nC7 Toluene iC8 nC8 Ethylbenzene o-Xylene 2-Methyloctane Nonane 2-Methylnonane Water	9.04533 0.462909 1.18039 0.0814918 0.0776344 0 0.0223371 3.30231 0.0950929 0 0.00216448 1.56273 0 0.000533161 0.0192681 0.191020 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	201.965 45.9365 3.59823 6.12026 0.766075 0.587876 0 0.206954 0.180353 0.142654 0 0.0341695 0.0830856 0 0.00839161 0.00122287 0.00828979 0 8.38842E-05 0 0 3.76239				
C3 iC4 nC4 iC5 nC5 iC6 nC6 Benzene Cyclohexane iC7 nC7 Toluene iC8 nC8 Ethylbenzene o-Xylene 2-Methyloctane Nonane 2-Methylnonane Water DEA	9.04533 0.462909 1.18039 0.0814918 0.0776344 0 0.0223371 3.30231 0.0950929 0 0.00216448 1.56273 0 0.000533161 0.0192681 0.191020 0 0 0 626.806 6.10574E-15	201.965 45.9365 3.59823 6.12026 0.766075 0.587876 0 0.206954 0.180353 0.142654 0 0.0341695 0.0830856 0 0.00839161 0.00122287 0.00828979 0 0.00828979 0 0 8.38842E-05 0 3.76239 4.54976E-05				
C3 iC4 nC4 iC5 nC5 iC6 nC6 Benzene Cyclohexane iC7 nC7 Toluene iC8 nC8 Ethylbenzene o-Xylene 2-Methyloctane Nonane 2-Methylnonane Water	9.04533 0.462909 1.18039 0.0814918 0.0776344 0 0.0223371 3.30231 0.0950929 0 0.00216448 1.56273 0 0.000533161 0.0192681 0.191020 0 0 0 0 626.806 6.10574E-15 0	201.965 45.9365 3.59823 6.12026 0.766075 0.587876 0 0.206954 0.180353 0.142654 0 0.0341695 0.0830856 0 0.00839161 0.00122287 0.00828979 0 8.38842E-05 0 0 3.76239				

Process Streams		Acid Gas	Flash	Lean Amine	NGL inlet	Rich Amine	Sweet Liquid HC
Properties	Status:	Solved	Solved	Solved	Solved	Solved	Solved
Phase: Vapor	From Block:	Condenser	Rich Flash	Exchanger		Absorber	Absorber
	To Block:			Absorber	Absorber	Rich Flash	
Property	Units						
Temperature	°F	120	127.398				
Pressure	psia	19.6959	81				
Mole Fraction Vapor	%	100	100				
Mole Fraction Light Liquid	%	0	0				
Mole Fraction Heavy Liquid	%	0	0				
Molecular Weight	lb/lbmol	41.6946	31.8499				
Mass Density	lb/ft^3	0.132760	0.424107				
Molar Flow	lbmol/h	400.359	8.73279				
Mass Flow	lb/h	16692.8	278.138				
Vapor Volumetric Flow	ft^3/h	125736	655.821				
Liquid Volumetric Flow	gpm	15676.2	81.7647				
Std Vapor Volumetric Flow	MMSCFD	3.64632	0.0795349				
Std Liquid Volumetric Flow	sgpm	40.7321	1.42284				
Compressibility		0.994360	0.965530				
Specific Gravity		1.43961	1.09969				
API Gravity							
Enthalpy	Btu/h	-6.50413E+07	-362645				
Mass Enthalpy	Btu/lb	-3896.37	-1303.83				
Mass Cp	Btu/(lb*°F)	0.219099	0.448880				
Ideal Gas CpCv Ratio		1.28059	1.16669				
Dynamic Viscosity	cP	0.0160712	0.0104067				
Kinematic Viscosity	cSt	7.55717	1.53185				
Thermal Conductivity	Btu/(h*ft*°F)	0.0106933	0.0143119				
Surface Tension	lbf/ft						
Net Ideal Gas Heating Value	Btu/ft^3	8.90742	1629.45				
Net Liquid Heating Value	Btu/lb	-31.0410	19254.3				
Gross Ideal Gas Heating Value	Btu/ft^3	14.0724	1780.55				
Gross Liquid Heating Value	Btu/lb	15.9743	21056.2				

San Juan - Product Treater - Rejection

Process Streams	Acid Gas	Flash	Lean Amine	NGL inlet	Rich Amine	Sweet Liquid HC
Composition Status	Solved	Solved	Solved	Solved	Solved	Solved
	ck: Condenser		Exchanger		Absorber	Absorber
To Bloc			Absorber	Absorber	Rich Flash	
Mole Fraction	%	%	%	%	%	%
N2	0.0119168	0.212709				
C1	0.00492252	0.0339410				
CO2	69.9459	0.000517861				
C2	15.4727	69.7107				
C3	4.34068	24.4938				
iC4	0.186026	1.55683				
nC4	0.394613	2.22824				
iC5	0.0295579	0.266725				
nC5	0.0236755	0.176782				
iC6	0	0				
nC6	0.00477207	0.0417144				
Benzene	0.378208	0.0185278				
Cyclohexane	0.0127578	0.0191615				
iC7	0	0				
nC7	0.000450812					
Toluene	0.147390	0.00621890				
iC8	0	0				
nC8		0.000975743				
Ethylbenzene	0.000986344					
o-Xylene		0.000346393				
2-Methyloctane Nonane	1 992725 07	0 6.73223E-06				
2-Methylnonane	1.86372E-07	0.73223E-00				
Water	8.67871	1.22672				
DEA		6.32503E-06				
C10+	4.33030E-10	0.02003E-00				
Hydrogen Sulfide	-	3.56046E-05				
Molar Flow	lbmol/h	lbmol/h	lbmol/h	lbmol/h	lbmol/h	lbmol/h
N2	0.000642718	0.00515813				
C1	0.000265490	0.000823056				
CO2	3.77245	1.25579E-05				
C2	0.834501	1.69046				
C3	0.234109	0.593965				
iC4	0.0100331	0.0377526				
nC4	0.0212830	0.0540339				
iC5	0.00159417					
nC5	0.00127691	0.00428690				
iC6	0	0				
nC6	0.000257376	0.00101156				
Benzene		0.000449292				
Cyclohexane		0.000464659				
iC7 nC7	0					
Toluene	2.43140E-05					
Toluene iC8	0.00794929	0.000150806				
iC8	0.00794929 0	0.000150806 0				
iC8 nC8	0.00794929 0 3.56707E-06	0.000150806 0 2.36614E-05				
iC8 nC8 Ethylbenzene	0.00794929 0 3.56707E-06 5.31973E-05	0.000150806 0 2.36614E-05 1.20109E-06				
iC8 nC8 Ethylbenzene o-Xylene	0.00794929 0 3.56707E-06 5.31973E-05 0.000584612	0.000150806 0 2.36614E-05 1.20109E-06 8.39990E-06				
iC8 nC8 Ethylbenzene o-Xylene 2-Methyloctane	0.00794929 0 3.56707E-06 5.31973E-05 0.000584612 0	0.000150806 0 2.36614E-05 1.20109E-06 8.39990E-06				
iC8 nC8 Ethylbenzene o-Xylene 2-Methyloctane Nonane	0.00794929 0 3.56707E-06 5.31973E-05 0.000584612 0	0.000150806 0 2.36614E-05 1.20109E-06 8.39990E-06 0 1.63254E-07				
iC8 nC8 Ethylbenzene o-Xylene 2-Methyloctane	0.00794929 0 3.56707E-06 5.31973E-05 0.000584612 0 1.01596E-08 0	0.000150806 0 2.36614E-05 1.20109E-06 8.39990E-06 0 1.63254E-07				
iC8 nC8 Ethylbenzene o-Xylene 2-Methyloctane Nonane 2-Methylnonane	0.00794929 0 3.56707E-06 5.31973E-05 0.000584612 0 1.01596E-08 0 0.468076	0.000150806 0 2.36614E-05 1.20109E-06 8.39990E-06 0 1.63254E-07 0				
iC8 nC8 Ethylbenzene o-Xylene 2-Methyloctane Nonane 2-Methylnonane Water	0.00794929 0 3.56707E-06 5.31973E-05 0.000584612 0 1.01596E-08 0 0.468076	0.000150806 0 2.36614E-05 1.20109E-06 8.39990E-06 0 1.63254E-07 0 0.0297476 1.53380E-07				

Mass Fraction	%	%	%	%	%	%
N2	0.00837226	0.171978				
C1	0.00198051	0.0157150				
CO2		0.000657779				
C2	11.6682		11.6701489857469			
C3	4.80033	31.1725				
iC4	0.271164	2.61158				
nC4	0.575217	3.73786				
iC5	0.0534835	0.555409				
nC5	0.0428397	0.368118				
iC6	0.0120001	0.000110				
nC6	0.0103135	0.103750				
Benzene	0.740910	0.0417696				
Cyclohexane	0.0269276	0.0465428				
iC7	0.0209270	0.0403428				
nC7						
	0.00113289	0.0174616				
Toluene	0.340585	0.0165377				
iC8	0	0				
nC8	0.000189471					
Ethylbenzene		0.000151766				
o-Xylene		0.00106138				
2-Methyloctane	0	0				
Nonane		2.49203E-05				
2-Methylnonane	0	0				
Water	3.92115	0.637835				
DEA		1.91926E-05				
C10+	0	0				
Hydrogen Sulfide		3.50217E-05				
Mass Flow	lb/h	lb/h	lb/h	lb/h	lb/h	lb/h
N2	0.0180047	0.144497	lb/h	lb/h	lb/h	lb/h
N2 C1	0.0180047 0.00425912	0.144497 0.0132038	lb/h	lb/h	lb/h	lb/h
N2 C1 CO2	0.0180047 0.00425912 166.024	0.144497 0.0132038 0.000552669	lb/h	lb/h	lb/h	lb/h
N2 C1 CO2 C2	0.0180047 0.00425912 166.024 25.0926	0.144497 0.0132038 0.000552669 50.8305	lb/h	lb/h	lb/h	lb/h
N2 C1 CO2 C2 C3	0.0180047 0.00425912 166.024 25.0926 10.3232	0.144497 0.0132038 0.000552669 50.8305 26.1913	lb/h	lb/h	lb/h	lb/h
N2 C1 CO2 C2 C3 iC4	0.0180047 0.00425912 166.024 25.0926	0.144497 0.0132038 0.000552669 50.8305	lb/h	lb/h	lb/h	lb/h
N2 C1 CO2 C2 C3 iC4 nC4	0.0180047 0.00425912 166.024 25.0926 10.3232	0.144497 0.0132038 0.000552669 50.8305 26.1913	lb/h	lb/h	<u>lb/h</u>	lb/h
N2 C1 CO2 C2 C3 iC4 nC4 iC5	0.0180047 0.00425912 166.024 25.0926 10.3232 0.583144 1.23702 0.115017	0.144497 0.0132038 0.000552669 50.8305 26.1913 2.19426 3.14057 0.466657	<u>Ib/h</u>	lb/h	<u>lb/h</u>	lb/h
N2 C1 CO2 C2 C3 iC4 nC4 iC5 nC5	0.0180047 0.00425912 166.024 25.0926 10.3232 0.583144 1.23702	0.144497 0.0132038 0.000552669 50.8305 26.1913 2.19426 3.14057	<u>Ib/h</u>	lb/h	<u>Ib/h</u>	<u>lb/h</u>
N2 C1 CO2 C2 C3 iC4 nC4 iC5 nC5 iC6	0.0180047 0.00425912 166.024 25.0926 10.3232 0.583144 1.23702 0.115017	0.144497 0.0132038 0.000552669 50.8305 26.1913 2.19426 3.14057 0.466657	<u>Ib/h</u>	<u>lb/h</u>	<u>Ib/h</u>	<u>lb/h</u>
N2 C1 CO2 C2 C3 iC4 nC4 iC5 nC5	0.0180047 0.00425912 166.024 25.0926 10.3232 0.583144 1.23702 0.115017 0.0921277	0.144497 0.0132038 0.000552669 50.8305 26.1913 2.19426 3.14057 0.466657 0.309294	<u>lb/h</u>	<u>lb/h</u>	<u>Ib/h</u>	<u>lb/h</u>
N2 C1 CO2 C2 C3 iC4 nC4 iC5 nC5 iC6	0.0180047 0.00425912 166.024 25.0926 10.3232 0.583144 1.23702 0.115017 0.0921277 0	0.144497 0.0132038 0.000552669 50.8305 26.1913 2.19426 3.14057 0.466657 0.309294 0	<u>lb/h</u>	lb/h	<u>Ib/h</u>	<u>lb/h</u>
N2 C1 CO2 C2 C3 iC4 nC4 iC5 nC5 iC6 nC6	0.0180047 0.00425912 166.024 25.0926 10.3232 0.583144 1.23702 0.115017 0.0921277 0 0.0221795	0.144497 0.0132038 0.000552669 50.8305 26.1913 2.19426 3.14057 0.466657 0.309294 0 0.0871715	<u>lb/h</u>	lb/h	<u>Ib/h</u>	<u>lb/h</u>
N2 C1 CO2 C2 C3 iC4 nC4 iC5 nC5 iC6 nC6 Benzene Cyclohexane iC7	0.0180047 0.00425912 166.024 25.0926 10.3232 0.583144 1.23702 0.115017 0.0921277 0 0.0221795 1.59334	0.144497 0.0132038 0.000552669 50.8305 26.1913 2.19426 3.14057 0.466657 0.309294 0 0.0871715 0.0350950	<u>Ib/h</u>	lb/h	<u>Ib/h</u>	<u>lb/h</u>
N2 C1 CO2 C2 C3 iC4 nC4 iC5 nC5 iC6 nC6 Benzene Cyclohexane	0.0180047 0.00425912 166.024 25.0926 10.3232 0.583144 1.23702 0.115017 0.0921277 0 0.0221795 1.59334 0.0579083	0.144497 0.0132038 0.000552669 50.8305 26.1913 2.19426 3.14057 0.466657 0.309294 0 0.0871715 0.0350950 0.0391054	<u>Ib/h</u>	lb/h	<u>Ib/h</u>	<u>lb/h</u>
N2 C1 CO2 C2 C3 iC4 nC4 iC5 nC5 iC6 nC6 Benzene Cyclohexane iC7	0.0180047 0.00425912 166.024 25.0926 10.3232 0.583144 1.23702 0.115017 0.0921277 0 0.0221795 1.59334 0.0579083 0	0.144497 0.0132038 0.000552669 50.8305 26.1913 2.19426 3.14057 0.466657 0.309294 0 0.0871715 0.0350950 0.0391054 0	<u>Ib/h</u>	lb/h	<u>Ib/h</u>	<u>lb/h</u>
N2 C1 CO2 C2 C3 iC4 nC4 iC5 nC5 iC6 nC6 Benzene Cyclohexane iC7 nC7	0.0180047 0.00425912 166.024 25.0926 10.3232 0.583144 1.23702 0.115017 0.0921277 0 0.0221795 1.59334 0.0579083 0 0.00243631	0.144497 0.0132038 0.000552669 50.8305 26.1913 2.19426 3.14057 0.466657 0.309294 0 0.0871715 0.0350950 0.0391054 0 0.0146713	<u>Ib/h</u>	<u>lb/h</u>	<u>Ib/h</u>	<u>lb/h</u>
N2 C1 CO2 C2 C3 iC4 nC4 iC5 nC5 iC6 Benzene Cyclohexane iC7 nC7 Toluene	0.0180047 0.00425912 166.024 25.0926 10.3232 0.583144 1.23702 0.115017 0.0921277 0 0.0221795 1.59334 0.0579083 0 0.00243631 0.732435	0.144497 0.0132038 0.000552669 50.8305 26.1913 2.19426 3.14057 0.466657 0.309294 0 0.0871715 0.0350950 0.0391054 0 0.0146713 0.0138950 0	<u>Ib/h</u>	<u>Ib/h</u>	<u>Ib/h</u>	<u>lb/h</u>
N2 C1 CO2 C2 C3 iC4 nC4 iC5 nC5 iC6 nC6 Benzene Cyclohexane iC7 nC7 Toluene iC8	0.0180047 0.00425912 166.024 25.0926 10.3232 0.583144 1.23702 0.115017 0.0921277 0 0.0221795 1.59334 0.0579083 0 0.00243631 0.732435 0 0.000407462	0.144497 0.0132038 0.000552669 50.8305 26.1913 2.19426 3.14057 0.466657 0.309294 0 0.0871715 0.0350950 0.0391054 0 0.0146713 0.0138950 0	<u>Ib/h</u>	<u>Ib/h</u>	<u>Ib/h</u>	<u>lb/h</u>
N2 C1 CO2 C2 C3 iC4 nC4 iC5 nC5 iC6 nC6 Benzene Cyclohexane iC7 nC7 Toluene iC8 nC8	0.0180047 0.00425912 166.024 25.0926 10.3232 0.583144 1.23702 0.115017 0.0921277 0 0.0221795 1.59334 0.0579083 0 0.00243631 0.732435 0 0.000407462 0.00564769	0.144497 0.0132038 0.000552669 50.8305 26.1913 2.19426 3.14057 0.466657 0.309294 0 0.0871715 0.0350950 0.0391054 0 0.0146713 0.0138950 0 0.00270281	<u>Ib/h</u>	<u>Ib/h</u>	<u>Ib/h</u>	<u>lb/h</u>
N2 C1 CO2 C2 C3 iC4 nC4 iC5 nC5 iC6 nC6 Benzene Cyclohexane iC7 nC7 Toluene iC8 nC8 Ethylbenzene o-Xylene	0.0180047 0.00425912 166.024 25.0926 10.3232 0.583144 1.23702 0.115017 0.0921277 0 0.0221795 1.59334 0.0579083 0 0.00243631 0.732435 0 0.000407462 0.00564769	0.144497 0.0132038 0.000552669 50.8305 26.1913 2.19426 3.14057 0.466657 0.309294 0 0.0871715 0.0350950 0.0391054 0 0.0146713 0.0138950 0 0.00270281 0.000127514 0.000891775	<u>Ib/h</u>	<u>Ib/h</u>	<u>Ib/h</u>	<u>lb/h</u>
N2 C1 CO2 C2 C3 iC4 nC4 iC5 nC5 iC6 nC6 Benzene Cyclohexane iC7 nC7 Toluene iC7 Toluene iC8 nC8 Ethylbenzene	0.0180047 0.00425912 166.024 25.0926 10.3232 0.583144 1.23702 0.115017 0.0921277 0 0.0221795 1.59334 0.0579083 0 0.00243631 0.732435 0 0.000407462 0.00564769 0.00564769 0.0620653 0	0.144497 0.0132038 0.000552669 50.8305 26.1913 2.19426 3.14057 0.466657 0.309294 0 0.0871715 0.0350950 0.0391054 0 0.0146713 0.0138950 0 0.00270281 0.000127514 0.000891775	<u>Ib/h</u>	<u>Ib/h</u>	<u>Ib/h</u>	<u>lb/h</u>
N2 C1 CO2 C2 C3 iC4 nC4 iC5 nC5 iC6 nC6 Benzene Cyclohexane iC7 nC7 Toluene iC7 nC7 Toluene iC8 nC8 Ethylbenzene o-Xylene 2-Methyloctane Nonane	0.0180047 0.00425912 166.024 25.0926 10.3232 0.583144 1.23702 0.115017 0.0921277 0 0.0221795 1.59334 0.0579083 0 0.00243631 0.732435 0 0.000407462 0.00564769 0.00564769 0.0620653 0	0.144497 0.0132038 0.000552669 50.8305 26.1913 2.19426 3.14057 0.466657 0.309294 0 0.0871715 0.0350950 0.0391054 0 0.0146713 0.0138950 0 0.00270281 0.000127514 0.000891775 0 2.09382E-05	<u>Ib/h</u>	<u>Ib/h</u>	<u>Ib/h</u>	<u>lb/h</u>
N2 C1 CO2 C2 C3 iC4 nC4 iC5 nC5 iC6 nC6 Benzene Cyclohexane iC7 nC7 Toluene iC7 nC7 Toluene iC8 nC8 Ethylbenzene o-Xylene 2-Methyloctane Nonane 2-Methylnonane	0.0180047 0.00425912 166.024 25.0926 10.3232 0.583144 1.23702 0.115017 0.0921277 0 0.0221795 1.59334 0.0579083 0 0.00243631 0.732435 0 0.00243631 0.732435 0 0.000407462 0.00564769 0.0620653 0 1.30303E-06 0	0.144497 0.0132038 0.000552669 50.8305 26.1913 2.19426 3.14057 0.466657 0.309294 0 0.0871715 0.0350950 0.0391054 0 0.0146713 0.0138950 0 0.00127514 0.000270281 0.000127514 0.000891775 0 2.09382E-05 0	<u>Ib/h</u>	<u>Ib/h</u>	<u>lb/h</u>	<u>lb/h</u>
N2 C1 CO2 C2 C3 iC4 nC4 iC5 nC5 iC6 nC6 Benzene Cyclohexane iC7 nC7 Toluene iC7 nC7 Toluene iC8 nC8 Ethylbenzene o-Xylene 2-Methyloctane Nonane 2-Methylnonane Water	0.0180047 0.00425912 166.024 25.0926 10.3232 0.583144 1.23702 0.115017 0.0921277 0 0.0221795 1.59334 0.0579083 0 0.00243631 0.732435 0 0.000407462 0.00564769 0.00564759 0.00564759 0.00564759 0.00564759 0.00564759 0.00564759 0.00564759 0.00564759 0.00564759 0.00564759000000000000000000000000000000000000	0.144497 0.0132038 0.000552669 50.8305 26.1913 2.19426 3.14057 0.466657 0.309294 0 0.0871715 0.0350950 0.0391054 0 0.0146713 0.0138950 0 0.00127514 0.000270281 0.000127514 0.000891775 0 2.09382E-05 0 0.535912	<u>Ib/h</u>	<u>Ib/h</u>	<u>Ib/h</u>	<u>lb/h</u>
N2 C1 CO2 C2 C3 iC4 nC4 iC5 nC5 iC6 nC6 Benzene Cyclohexane iC7 nC7 Toluene iC7 nC7 Toluene iC8 nC8 Ethylbenzene o-Xylene 2-Methyloctane Nonane 2-Methylnonane Water DEA	0.0180047 0.00425912 166.024 25.0926 10.3232 0.583144 1.23702 0.115017 0.0921277 0 0.0221795 1.59334 0.0579083 0 0.00243631 0.732435 0 0.000407462 0.00564769 0.002653 0 1.30303E-06 0 8.43252 2.83320E-15	0.144497 0.0132038 0.000552669 50.8305 26.1913 2.19426 3.14057 0.466657 0.309294 0 0.0871715 0.0350950 0.0391054 0 0.0146713 0.0138950 0 0.00127514 0.000270281 0.000127514 0.000891775 0 2.09382E-05 0 0.535912 1.61257E-05	<u>Ib/h</u>	<u>Ib/h</u>	<u>Ib/h</u>	<u>lb/h</u>
N2 C1 CO2 C2 C3 iC4 nC4 iC5 nC5 iC6 nC6 Benzene Cyclohexane iC7 nC7 Toluene iC7 nC7 Toluene iC8 nC8 Ethylbenzene o-Xylene 2-Methylnotane Nonane 2-Methylnonane Water DEA C10+	0.0180047 0.00425912 166.024 25.0926 10.3232 0.583144 1.23702 0.115017 0.0921277 0 0.0221795 1.59334 0.0579083 0 0.00243631 0.732435 0 0.000407462 0.00564769 0.0026653 0 1.30303E-06 0 1.30303E-06 0 8.43252 2.83320E-15 0	0.144497 0.0132038 0.000552669 50.8305 26.1913 2.19426 3.14057 0.466657 0.309294 0 0.0871715 0.0350950 0.0391054 0 0.0146713 0.0138950 0 0.00127514 0.000270281 0.000127514 0.000891775 0 2.09382E-05 0 0.535912 1.61257E-05 0	<u>Ib/h</u>	<u>Ib/h</u>	<u>Ib/h</u>	<u>lb/h</u>
N2 C1 CO2 C2 C3 iC4 nC4 iC5 nC5 iC6 nC6 Benzene Cyclohexane iC7 nC7 Toluene iC8 Ethylbenzene o-Xylene 2-Methyloctane Nonane 2-Methylnonane Water DEA	0.0180047 0.00425912 166.024 25.0926 10.3232 0.583144 1.23702 0.115017 0.0921277 0 0.0221795 1.59334 0.0579083 0 0.00243631 0.732435 0 0.000407462 0.00564769 0.0026653 0 1.30303E-06 0 1.30303E-06 0 8.43252 2.83320E-15 0	0.144497 0.0132038 0.000552669 50.8305 26.1913 2.19426 3.14057 0.466657 0.309294 0 0.0871715 0.0350950 0.0391054 0 0.0146713 0.0138950 0 0.00127514 0.000270281 0.000127514 0.000891775 0 2.09382E-05 0 0.535912 1.61257E-05	<u>Ib/h</u>	<u>Ib/h</u>	<u>Ib/h</u>	<u>Ib/h</u>

Process Streams		Acid Gas	Flash	Lean Amine	NGL inlet	Rich Amine	Sweet Liquid HC
Properties	Status:	Solved	Solved	Solved	Solved	Solved	Solved
Phase: Vapor	From Block:	Condenser	Rich Flash	Exchanger		Absorber	Absorber
	To Block:			Absorber	Absorber	Rich Flash	
Property	Units						
Temperature	°F	120	103.932				
Pressure	psia	19.6959	81				
Mole Fraction Vapor	%	100	100				
Mole Fraction Light Liquid	%	0	0				
Mole Fraction Heavy Liquid	%	0	0				
Molecular Weight	lb/lbmol	39.8733	34.6481				
Mass Density	lb/ft^3	0.127017	0.487479				
Molar Flow	lbmol/h	5.39338	2.42496				
Mass Flow	lb/h	215.052	84.0204				
Vapor Volumetric Flow	ft^3/h	1693.09	172.357				
Liquid Volumetric Flow	gpm	211.087	21.4887				
Std Vapor Volumetric Flow	MMSCFD	0.0491208	0.0220856				
Std Liquid Volumetric Flow	sgpm	0.618819	0.411496				
Compressibility		0.993921	0.951859				
Specific Gravity		1.37672	1.19631				
API Gravity							
Enthalpy	Btu/h	-726590	-96257.2				
Mass Enthalpy	Btu/lb	-3378.67	-1145.64				
Mass Cp	Btu/(lb*°F)	0.259506	0.440323				
Ideal Gas CpCv Ratio		1.23963	1.15583				
Dynamic Viscosity	cP	0.0145233	0.00962679				
Kinematic Viscosity	cSt	7.13807	1.23283				
Thermal Conductivity	Btu/(h*ft*°F)	0.0112737	0.0128000				
Surface Tension	lbf/ft						
Net Ideal Gas Heating Value	Btu/ft^3	393.792	1830.13				
Net Liquid Heating Value	Btu/lb	3618.78	19883.5				
Gross Ideal Gas Heating Value	Btu/ft^3	432.964	1996.22				
Gross Liquid Heating Value	Btu/lb	3991.85	21704.1				

Combustor Type	Ν	JO _x ^b	СО	
(MMBtu/hr Heat Input) [SCC]	Emission Factor (lb/10 ⁶ scf)	Emission Factor Rating	Emission Factor (lb/10 ⁶ scf)	Emission Factor Rating
Large Wall-Fired Boilers (>100) [1-01-006-01, 1-02-006-01, 1-03-006-01]				
Uncontrolled (Pre-NSPS) ^c	280	А	84	В
Uncontrolled (Post-NSPS)°	190	А	84	В
Controlled - Low NO _x burners	140	А	84	В
Controlled - Flue gas recirculation	100	D	84	В
Small Boilers (<100) [1-01-006-02, 1-02-006-02, 1-03-006-02, 1-03-006-03]				
Uncontrolled	100	В	84	В
Controlled - Low NO _x burners	50	D	84	В
Controlled - Low NO _x burners/Flue gas recirculation	32	С	84	В
Tangential-Fired Boilers (All Sizes) [1-01-006-04]				
Uncontrolled	170	А	24	С
Controlled - Flue gas recirculation	76	D	98	D
Residential Furnaces (<0.3) [No SCC]				
Uncontrolled	94	В	40	В

Table 1.4-1. EMISSION FACTORS FOR NITROGEN OXIDES (NOx) AND CARBON MONOXIDE (CO)FROM NATURAL GAS COMBUSTIONa

^a Reference 11. Units are in pounds of pollutant per million standard cubic feet of natural gas fired. To convert from lb/10 ⁶ scf to kg/10⁶ m³, multiply by 16. Emission factors are based on an average natural gas higher heating value of 1,020 Btu/scf. To convert from 1b/10 ⁶ scf to lb/MMBtu, divide by 1,020. The emission factors in this table may be converted to other natural gas heating values by multiplying the given emission factor by the ratio of the specified heating value to this average heating value. SCC = Source Classification Code. ND = no data. NA = not applicable.
 ^b Expressed as NO₂. For large and small wall fired boilers with SNCR control, apply a 24 percent reduction to the appropriate NO x emission factor. For

^b Expressed as NO₂. For large and small wall fired boilers with SNCR control, apply a 24 percent reduction to the appropriate NO x emission factor. For tangential-fired boilers with SNCR control, apply a 13 percent reduction to the appropriate NO x emission factor.
 ^c NSPS=New Source Performance Standard as defined in 40 CFR 60 Subparts D and Db. Post-NSPS units are boilers with greater than 250 MMBtu/hr of heat

^c NSPS=New Source Performance Standard as defined in 40 CFR 60 Subparts D and Db. Post-NSPS units are boilers with greater than 250 MMBtu/hr of heat input that commenced construction modification, or reconstruction after August 17, 1971, and units with heat input capacities between 100 and 250 MMBtu/hr that commenced construction modification, or reconstruction after June 19, 1984.

Pollutant	Emission Factor (lb/10 ⁶ scf)	Emission Factor Rating
CO ₂ ^b	120,000	А
Lead	0.0005	D
N ₂ O (Uncontrolled)	2.2	Е
N ₂ O (Controlled-low-NO _X burner)	0.64	Е
PM (Total) ^c	7.6	D
PM (Condensable) ^c	5.7	D
PM (Filterable) ^c	1.9	В
$\mathrm{SO}_2^{\mathrm{d}}$	0.6	А
ТОС	11	В
Methane	2.3	В
VOC	5.5	С

TABLE 1.4-2.EMISSION FACTORS FOR CRITERIA POLLUTANTS AND GREENHOUSE
GASES FROM NATURAL GAS COMBUSTION^a

^a Reference 11. Units are in pounds of pollutant per million standard cubic feet of natural gas fired. Data are for all natural gas combustion sources. To convert from $lb/10^6$ scf to $kg/10^6$ m³, multiply by 16. To convert from $lb/10^6$ scf to 1b/MMBtu, divide by 1,020. The emission factors in this table may be converted to other natural gas heating values by multiplying the given emission factor by the ratio of the specified heating value to this average heating value. TOC = Total Organic Compounds. VOC = Volatile Organic Compounds.

^b Based on approximately 100% conversion of fuel carbon to CO₂. $CO_2[lb/10^6 \text{ scf}] = (3.67)$ (CON) (C)(D), where CON = fractional conversion of fuel carbon to CO₂, C = carbon content of fuel by weight (0.76), and D = density of fuel, $4.2 \times 10^4 \text{ lb}/10^6 \text{ scf}$.

^c All PM (total, condensible, and filterable) is assumed to be less than 1.0 micrometer in diameter. Therefore, the PM emission factors presented here may be used to estimate PM₁₀, PM_{2.5} or PM₁ emissions. Total PM is the sum of the filterable PM and condensible PM. Condensible PM is the particulate matter collected using EPA Method 202 (or equivalent). Filterable PM is the particulate matter collected on, or prior to, the filter of an EPA Method 5 (or equivalent) sampling train.

^d Based on 100% conversion of fuel sulfur to SO₂. Assumes sulfur content is natural gas of 2,000 grains/10⁶ scf. The SO₂ emission factor in this table can be converted to other natural gas sulfur contents by multiplying the SO₂ emission factor by the ratio of the site-specific sulfur content (grains/10⁶ scf) to 2,000 grains/10⁶ scf.

		CONOCO	San Juan Basin G Engineering Speci	as Plant fications	SPECIFIC PROJECT	CT-1201 CATION SHEET T NO. <u>R510</u>
] PA	N WEST CONSTRUCTORS	Fermington, Now Mexico Cooling Towers NC.		DATE 2	<u>BS10-3240-02</u> <u>10185</u> APPOBY <u>BC</u> <u>NSF / JDH</u>
P	ANT		PROJECT			24/85 ASF
ERAL	2	TOWER MODEL SITM - 32	loffman			
- A	3	TYPE Countert				
0	4					
		CIRCULATING WATER FLOW, U.S. GPM		DESIGN	11,520	Hat .
		COLD (OUTLET) WATER TEMP F	<u> </u>	DESIGN	·,	
0	8	WET BULB TEMP F. INLET AMBIENT	64 5 W.B. 917			GPER.
Ň		TOWER PUMP HEAD, FT.	20.5	DESIGN		676R
NS		TOTAL FAN SHP (DRIVER OUTPUT) DRIFT LOSS, % OF CIRCULATING FLOW	168	DESIGN	294	972A
62	• • • • • • • • • •	EVAPORATION LOSS (AT DESIGN)	1.85%	DESIGN	·	OPER.
AN	13	DESIGN WIND LOAD, ENGLAND				
DESIGN AND OPERATING CONDITIONS		DESIGN SEISMIC CODE. % G TOWER SITE (GROUND LEVEL, ROOF, F			0	
DESI	-+	ELEVATION ABOVE SEA LEVEL FT.	ETC.) <u>Groun</u> 5,600		······································	
		TOWER ORIENTATION	Straigh			
	·	PREVAILING WIND DIRECTION	See Gener	1.	et con	ditions
	19 · 20	AVERAGE WIND VELOCITY	- A -	10	-	
		NUMBER OF CELLS	.3	·····	· · · · · · · · · · · · · · · · · · ·	nes a
		FANS PER CELL	1	· · · · · · · · · · · · · · · · · · ·		
		TOTAL NUMBER OF FANS	3		··	
	+	OVERALL TOWER DIMENSION, LXW, F	<u>32 × 3 Z</u> <u>96 × 3 Z</u>			
		HEIGHT BASIN CURB TO FAN DECK.				<u> </u>
S		FAN STACK HEIGHT, FT.	14	· · · · · · · · · · · · · · · · · · ·		
Fø		OVERALL TOWER HEIGHT, FT:	<u> </u>	771 04	· · · · · · · · · · · · · · · · · · ·	
Pao T		COLUMN EXTENSIONS, PERIMETER, BE	LOW	<u> </u>		
A B	31 32	BASIN CURB. FI				
- I G. P	33	INTERNAL BELC				
TR	34	ANCHORAGE	Galveries	1 Balt	s Lu P	hic
		HOT WATER INLET NUMBER	3		<u> </u>	
	36 37	NOMINAL OWMET DESCRIPTION	150 = F.F. PVC	-		
	م ت المتن ار	HEIGHT INLET ABOVE BASIN CURB, FT.		<u> </u>		
		ACCESS TO TOP OF TOWER	stair an	1 Lada	'e-	
	40 (41	OPERATING WEIGHT, LBS	230,000			· · · · · · · · · · · · · · · · · · ·
	42					
- 1 - F	43			······································		
	44 45	·····				· · · · · · · · · · · · · · · · · · ·
100 1-	46	······		· · · · · · · · · · · · · · · · · · ·		
	47					
	18 19	<u></u>				
. I - F	50					
	51		· · · · · · · · · · · · · · · · · · ·			
		ORMATION TO BE FILLED IN BY CONO				SPEC NO. 67-1201 REV.
	ion will	L NOT BE CONSIDERED IF MANUFACTUR	ER DOES NOT COMPLETE FORM BY FURNIS	HING INFORMATION	FOR BLANK SPACES	SHEETOF
4-81			· · · · · · · · · · · · · · · · · · ·			

For flares subject to Chapter 115, Subchapter H, relating to highly reactive volatile organic compounds, flow rate and composition data required by 30 TAC 115.725–26 should be used to determine emissions for any portions of 2009 that HRVOC monitors were installed and operational.

In the absence of monitoring data, selection of the most accurate method may sometimes require exercising scientific judgment. For example, when using the results of a one-time performance test, the test conditions should be compared to the flare's actual operating conditions during the inventory year to determine whether the test accurately represents the flare's performance. If test conditions do not accurately model flare operation, then engineering determinations based on detailed process evaluation may provide the best data.

NO_x and CO Emissions

To calculate NO_x and CO emissions, the net heating value of the flared gas must be known. Using the actual short-term flared gas composition and flow rate data for the inventory year, calculate the net heating value of the flared gas and the total heat release for each short time period. Use these total heat release data, in conjunction with the appropriate emission factors from TCEQ Air Permits guidance, to determine NO_x and CO emissions for each time segment. Since the calculated net heating value of the gas and the assist gas type will determine the appropriate emission factors, carefully select the correct factors for each flare from Table A-6.

Calculate emissions using the most accurate data for the gas flow rate and composition available. (See "Flared Gas Flow Rate and Composition" earlier in this supplement for more information on preferred data.)

Contaminant	Assist Type	Waste Gas Stream Net Heating Value ^{<i>a,b</i>}	Emission Factor
NO _x	Steam	High Btu	0.0485 lb/MMBtu
		Low Btu	0.068 lb/MMBtu
	Air or Unassisted	High Btu	0.138 lb/MMBtu
		Low Btu	0.0641 lb/MMBtu
СО	Steam	High Btu	0.3503 lb/MMBtu
		Low Btu	0.3465 lb/MMBtu
	Air or Unassisted	High Btu	0.2755 lb/MMBtu
		Low Btu	0.5496 lb/MMBtu

Table A-6. TCEQ Air Permits Flare Emission Factors

^{*a*} High Btu: > 1000 Btu/scf

^b Low Btu: 192–1000 Btu/scf

Since flares do not lend themselves to conventional emission testing techniques, only a few attempts have been made to characterize flare emissions. Recent EPA tests using propylene as flare gas indicated that efficiencies of 98 percent can be achieved when burning an offgas with at least $11,200 \text{ kJ/m}^3$ (300 Btu/ft³). The tests conducted on steam-assisted flares at velocities as low as 39.6 meters per minute (m/min) (130 ft/min) to 1140 m/min (3750 ft/min), and on air-assisted flares at velocities of 180 m/min (617 ft/min) to 3960 m/min (13,087 ft/min) indicated that variations in incoming gas flow rates have no effect on the combustion efficiency. Flare gases with less than 16,770 kJ/m³ (450 Btu/ft³) do not smoke.

Table 13.5-1 presents flare emission factors, and Table 13.5-2 presents emission composition data obtained from the EPA tests.¹ Crude propylene was used as flare gas during the tests. Methane was a major fraction of hydrocarbons in the flare emissions, and acetylene was the dominant intermediate hydrocarbon species. Many other reports on flares indicate that acetylene is always formed as a stable intermediate product. The acetylene formed in the combustion reactions may react further with hydrocarbon radicals to form polyacetylenes followed by polycyclic hydrocarbons.²

In flaring waste gases containing no nitrogen compounds, NO is formed either by the fixation of atmospheric nitrogen (N) with oxygen (O) or by the reaction between the hydrocarbon radicals present in the combustion products and atmospheric nitrogen, by way of the intermediate stages, HCN, CN, and OCN.² Sulfur compounds contained in a flare gas stream are converted to SO₂ when burned. The amount of SO₂ emitted depends directly on the quantity of sulfur in the flared gases.

Table 13.5-1 (English Units). EMISSION FACTORS FOR FLARE OPERATIONS^a

Component	Emission Factor (lb/10 ⁶ Btu)
Total hydrocarbons ^b	0.14
Carbon monoxide	0.37
Nitrogen oxides	0.068
Soot ^c	0 - 274

EMISSION FACTOR RATING: B

^a Reference 1. Based on tests using crude propylene containing 80% propylene and 20% propane.
 ^b Measured as methane equivalent.

^c Soot in concentration values: nonsmoking flares, 0 micrograms per liter (μ g/L); lightly smoking flares, 40 μ g/L; average smoking flares, 177 μ g/L; and heavily smoking flares, 274 μ g/L.

Equipment Type	Servicea	Emission Factor (kg/hr/source) ^b
Valves	Gas Heavy Oil Light Oil Water/Oil	4.5E-03 8.4E-06 2.5E-03 9.8E-05
Pump seals	Gas Heavy Oil Light Oil Water/Oil	2.4E-03 NA 1.3E-02 2.4E-05
Others ^C	Gas Heavy Oil Light Oil Water/Oil	8.8E-03 3.2E-05 7.5E-03 1.4E-02
Connectors	Gas Heavy Oil Light Oil Water/Oil	2.0E-04 7.5E-06 2.1E-04 1.1E-04
Flanges	Gas Heavy Oil Light Oil Water/Oil	3.9E-04 3.9E-07 1.1E-04 2.9E-06
Open-ended lines	Gas Heavy Oil Light Oil Water/Oil	2.0E-03 1.4E-04 1.4E-03 2.5E-04

TABLE 2-4. OIL AND GAS PRODUCTION OPERATIONS AVERAGE EMISSION FACTORS (kg/hr/source)

^aWater/Oil emission factors apply to water streams in oil service with a water content greater than 50%, from the point of origin to the point where the water content reaches 99%. For water streams with a water content greater than 99%, the emission rate is considered negligible.

^bThese factors are for total organic compound emission rates (including non-VOC's such as methane and ethane) and apply to light crude, heavy crude, gas plant, gas production, and off shore facilities. "NA" indicates that not enough data were available to develop the indicated emission factor.

^CThe "other" equipment type was derived from compressors, diaphrams, drains, dump arms, hatches, instruments, meters, pressure relief valves, polished rods, relief valves, and vents. This "other" equipment type should be applied for any equipment type other than connectors, flanges, open-ended lines, pumps, or valves.

	Control effectiveness (%)						
Equipment type and service	Monthly monitoring 10,000 ppmv leak definition	Quarterly monitoring 10,000 ppmv leak definition	HON reg neg ^a				
Valves - gas	87	67	92				
Valves - light liquid	84	61	88				
Pumps - light liquid	69	45	75				
Connectors - all	b	b	93				

TABLE 5-2. CONTROL EFFECTIVENESS FOR AN LDAR PROGRAM AT A SOCMI PROCESS UNIT

^a Control effectiveness attributable to the requirements of the proposed hazardous organic NESHAP equipment leak negotiated regulation are estimated based on equipment-specific leak definitions and performance levels.

5-9

^b Data are not available to estimate control effectiveness.

San Juan Gas Plant

Gas Stream Compositions

Components	Gas Analysis Mole Percents, %	C6+ Extended Gas Analysis Mole Percents, %	Combined Analysis Mole Percents, %	Molecular Weights, Ib/lb-mole	Component Weights, Ib/lb-mole	Weight Percent of Total, %
Carbon Dioxide	1.6534		1.6534	44.01	0.73	3.6819
Nitrogen	0.2179		0.2179	28.01	0.06	0.3088
Methane	85.0411		85.0411	16.04	13.64	69.0199
Ethane	7.3744		7.3744	30.07	2.22	11.2203
Propane	3.1599		3.1599	44.09	1.39	7.0495
IsoButane	0.5963		0.5963	58.12	0.35	1.7537
Normal Butane	0.8422		0.8422	58.12	0.49	2.4768
IsoPentane	0.3098		0.3098	72.15	0.22	1.1310
Normal Pentane	0.2226		0.2226	72.15	0.16	0.8128
C6+	0.5824	75.0210	0.4369	86.18	0.38	1.9053
Benzene		3.2830	0.0191	78.11	0.01	0.0756
Ethylbenzene		0.0000	0.0000	106.17	0.00	0.0000
n-Hexane		16.3140	0.0950	86.17	0.08	0.4143
Toluene		4.4050	0.0257	92.14	0.02	0.1196
Xylenes		0.9770	0.0057	106.17	0.01	0.0306
Total	100.0002	100.0000	100.0002		19.76	100.0000

Gas stream composition obtained from San Juan Gas Plant high-pressure gas analysis dated 09/01/2016

C6+ gas stream composition obtained from San Juan Gas Plant high-pressure C6+ extended gas analysis dated 09/01/2016

Combined carbon dioxide - normal pentane compositions obtained from the high pressure gas analysis

Combined C6+ - xylenes compositions calculated as fractions of the C6+ composition from the gas analysis (using the C6+ -xylene compositions from the C6+ extended gas analysis)

Component Weights (lb/lb-mole) = [Mole Percents (%) / 100] x Molecular Weights (lb/lb-mole)

Weight Percent of Total (%) = 100 x Component Weights (lb/lb-mole) / Total Component Weight (lb/lb-mole)

high pressure inlet

ş

hp inlet.txt Monthly Averages from 9/1/2016 9:06:18 AM Analyzer: AT-101 Company: Daniel Industries

15 Heating Value Gross BTU Dry Start: 9/1/2016 6:00:00 AM 1 9/1/2016 6:00:00 AM 2 8/1/2016 6:00:00 AM 3 7/1/2016 6:00:00 AM 16 Mole Percent Start: 9/1/2016 6:00:00 AM 1 9/1/2016 6:00:00 AM 2 8/1/2016 6:00:00 AM 3 7/1/2016 6:00:00 AM 17 Mole Percent Start: 9/1/2016 6:00:00 AM 1 9/1/2016 6:00:00 AM 2 8/1/2016 6:00:00 AM 3 7/1/2016 6:00:00 AM 18 Mole Percent Start: 9/1/2016 6:00:00 AM 1 9/1/2016 6:00:00 AM 2 8/1/2016 6:00:00 AM 3 7/1/2016 6:00:00 AM 19 Mole Percent Start: 9/1/2016 6:00:00 AM 1 9/1/2016 6:00:00 AM 2 8/1/2016 6:00:00 AM 3 7/1/2016 6:00:00 AM 20 Mole Percent Start: 9/1/2016 6:00:00 AM 1 9/1/2016 6:00:00 AM 2 8/1/2016 6:00:00 AM 7/1/2016 6:00:00 AM 3 21 Mole Percent Start: 9/1/2016 6:00:00 AM 1 9/1/2016 6:00:00 AM 2 8/1/2016 6:00:00 AM 3 7/1/2016 6:00:00 AM 22 Mole Percent Start: 9/1/2016 6:00:00 AM 1 9/1/2016 6:00:00 AM 2 8/1/2016 6:00:00 AM 3 7/1/2016 6:00:00 AM 23 Mole Percent Start: 9/1/2016 6:00:00 AM 1 9/1/2016 6:00:00 AM 2 8/1/2016 6:00:00 AM 3 7/1/2016 6:00:00 AM 24 Mole Percent Start: 9/1/2016 6:00:00 AM 1 9/1/2016 6:00:00 AM 2 8/1/2016 6:00:00 AM

S: 2 St2 HP INLET Stop: 10/1/2016 6:00:00 AM Average 1174.07568 Minimum Maximum Samples 1194.51965 5573 1153.75647 1164.83789 1201.63367 5575 1181,46008 1159,90295 1176.96997 1195.20178 5398 S: 2 St2 HP INLET C6+ 47/35/17 Stop: 10/1/2016 6:00:00 AM Average Minimum Samples Maximum 0.58243 0.36005 0.41300 0.99600 5573 5575 0.69868 0.69868 0.41300 0.66511 0.34724 1.04966 1.06955 5398 S: 2 St2 HP INLET PROPANE Stop: 10/1/2016 6:00:00 AM Maximum Average Minimum Samples 3.15993 2.95493 3.43628 5573 2.85943 3.18414 3.44514 5575 3.33777 3.13857 2.92294 5398 S: 2 St2 HP INLET i-BUTANE Stop: 10/1/2016 6:00:00 AM Minimum Average Maximum Samples 0.59634 $0.53343 \\ 0.55194$ 0.65316 5573 0.60181 0.66427 5575 0.59344 0,55728 0.66494 5398 S: 2 St2 HP INLET N-BUTANE Stop: 10/1/2016 6:00:00 AM Minimum Average Maximum Samples 0.84222 0.72417 0.79281 5573 5575 0.95068 0.96238 0.77067 0.83973 0.97607 5398 S: 2 St2 HP INLET NEOPENTANE Stop: 10/1/2016 6:00:00 AM Average Minimum Maximum Samples 0.00000 0.00000 0.00000 5573 0.00000 0.00000 0.00000 5575 0.00000 0.00000 S: 2 St2 HP INLET i-PENTANE Stop: 10/1/2016 6:00:00 AM 0.00000 5398 Average Minimum Maximum Samples 0.24259 0.37047 5573 5575 0.30980 0.27884 0.38134 0.32486 0.31030 0.27443 0.38084 5398 S: 2 St2 HP INLET n-PENTANE Stop: 10/1/2016 6:00:00 AM Average 0.22263 0.22773 Minimum Maximum Samples 0.26560 0.16947 5573 0.19113 5575 0.22504 0.18953 0.28085 5398 S: 2 St2 HP INLET NITROGEN Stop: 10/1/2016 6:00:00 AM Average 0.21786 Minimum Maximum Samples 0.32201 5573 5575 0.18450 0.20657 0.17288 0.43284 0.21669 0.17485 0.31465 5398 S: 2 St2 HP INLET METHANE Stop: 10/1/2016 6:00:00 AM Samples Average Minimum Maximum 84.35092 85.04111 85.67935 5573 84.06134 84.86682 85.66080 5575 Page 1

3 7/1/2016 6:00:00 AM 25 Mole Percent Start: 9/1/2016 6:00:00 AM 1 9/1/2016 6:00:00 AM 2 8/1/2016 6:00:00 AM 3 7/1/2016 6:00:00 AM 26 Mole Percent Start: 9/1/2016 6:00:00 AM 1 9/1/2016 6:00:00 AM 2 8/1/2016 6:00:00 AM 3 7/1/2016 6:00:00 AM 27 User Calc Result Start: 9/1/2016 6:00:00 AM 1 9/1/2016 6:00:00 AM 2 8/1/2016 6:00:00 AM 3 7/1/2016 6:00:00 AM 28 Gallons/1000 SCF C2+ Start: 9/1/2016 6:00:00 AM 1 9/1/2016 6:00:00 AM 2 8/1/2016 6:00:00 AM 3 7/1/2016 6:00:00 AM

õ

7

hp inlet.txt 84,41418 85.03612 85.61156 5398 S: 2 St2 HP INLET CARBON DIOXIDE Stop: 10/1/2016 6:00:00 AM Average Minimum Maximum Samples 1.95213 1.75570 5573 5575 1.65342 1.39277 1.60686 1.33212 1.84828 1.64908 1.46705 5398 S: 2 St2 HP INLET ETHANE Stop: 10/1/2016 6:00:00 AM Average 7.37443 Minimum Maximum Samples 7.91849 6.98323 5573 7.42925 5575 6.87349 7.97532 7.32588 7.59158 6.99001 5398 S: 2 HP Inlet NC4+NP Stop: 10/1/2016 6:00:00 AM Average Minimum Maximum Samples 0.84222 0.72417 0.95068 5573 0.85331 0.79281 0,96238 5575 0.83973 0.77067 0.97607 5398 S: 2 St2 HP INLET Stop: 10/1/2016 6:00:00 AM Average Minimum Maximum Samples 3.75641 3.50112 3.99213 5573 5575 3.84226 3.60902 4.13917 3.77377 3.58595 3.98715 5398

ConocoPhillips San Juan Plant P.O. Box 217 Bloomfield, NM 87413

San Juan Plant Gas Analysis

Sample ID:	EXGAS_9_1_2016 9_	Location:
Injection Date:	9/1/2016	Sample Type:
Method file::	EXGAS	Pressure Base: 14.73
Data File	EXGAS_9_1_2016 9_0	# / MMCF H20
Notes:	CONOCOPHILLIPS HP INLET EXTENDED ANALYSIS FOR AU	IG. 2016

Peak Name	Normal Mole Percent	Normal Weight Percent	
Methane	0.000	0.000	
Ethane	0.000	0.000	
Propane	0.000	0.000	
i-Butane	0.000	0.000	
n-butane	0.000	0.000	
benzene	3.283	2.871	
i-Pentane	0.000	0.000	
n-Pentane	0.000	0.000	
toluene	4.405	4.543	
cyclohexane	8.726	8.220	
methylcyclopentane	9.111	8.583	
2,2-dimethylbutane	1.939	1.870	
2,3-dimethylbutane	6.713	6.475	
2-methylpentane	16.235	15.659	
3-methylpentane	8.885	8.570	
n-hexane	16.314	15.736	
p&m-xylene	0.977	1.161	
c-1,3-dimethylcycl	0.761	0.837	
t-1,3-dimethylcycl	0.193	0.212	
o-xylene	0.000	0.000	
methylcyclohexane	8.549	9.396	
ethylbenzene	0.000	0.000	
2,3-dimethylpentan	0.875	0.981	
2-methylhexane	3.265	3.662	
3-methylhexane	2.987	3.350	
n-heptane	5.074	5,691	
1,2,4-trimethylben	0.000	0.000	
i-propylbenzene	0.000	0.000	
n-propylbenzene	0.000	0.000	
2,5-dimethylhexane	0.264	0.337	
2,4-dimethylhexane	0.187	0.239	
n-octane	1.257	1.607	
n-butylbenzene	0.000	0.000	

Sample ID:	EXGAS_9_1_2016 9_	Location:	
Injection Date:	9/1/2016	Sample Type:	
Method file::	EXGAS	Pressure Base:	14.73
Data File	EXGAS_9_1_2016 9_0	# / MMCF H20	
Notes:	CONOCOPHILLIPS HP INLET EXTENDED A	NALYSIS FOR AUG. 2016	
Peak Name	Normal Mole Percent	Normal Weight Percent	
n-nonane	0.000	0.000	
n-decane	0.000	0.000	
Totals	100.000	100.000	······································
	Molecular Weight	89.3409	
	Molar Density	3.0847	
	Relative Density	3.10741	
	GPM	39.7442	

25.10

0.022873

0.99229

4831

4869

Cubic Ft. / Gallon

Fuel as Real Gas.

Uncorrected BTU / Cubic Ft.

Z Corrected BTU / Cubic Ft.

bi ^{0.5}

Z Factor

	Service:	Regen C	Gas Heater	Item No .:	H-501	Rev
			n Gas Plant	Location:	Bloomfield, NM	
	INTEGENTED BERKYCE DOMEANY LLD THE		Cylindrical	Qty Required:		
	A WILLBROS DOMPANY		oPhillips	Mfgr's Ref.:		-
	Purchaser:		oPhillips Serv	Rev:	0 R3-6 Dec 2010	-
	Manufacturer: Date:		er 8, 2010	Purch. Ref.: Page:	1 of 5	
1.	PROCESS DE		the second s	1 ago.	1010	1
2.	* Total Heater Absorbed Duty, MM Btu/Hr		0.00			
3.	* Operating Case		sign		-	
4.	Heater Section	Radiant	Convection			1
5.	* Service		n Gas			
6.	Heat Absorption, MM Btu/hr	6.79	3.21			
7.	* Fluid name		lue Gas			
8.	* Flow Rate, Lb/hr	33	,500			
9. 10.	* Flow Rate, BPD		<u> </u> 10			1
11.	 Pressure Drop (allowable, clean), psi Pressure Drop (calculated, clean), psi 		10			{
12.	* Average Heat Flux (allowable), Btu/hr*ft2	9,167	1			[A]
13.	Average Heat Flux (calculated), Btu/hr*ft2	9,170				[A]
14.	* Maximum Heat Flux (allowable), Btu/hr*ft2	19,800			5	[A]
15.	Maximum Heat Flux (calculated), Btu/hr*ft2	19,810	19,009			[A]
16.	Velocity Limitation, feet/sec					
17.	Process Fluid Mass Velocity, Lb/sec*ft2	51	51			{
18. 19.	* Maximum Film Temperature (allowable), °F Maximum Film Temperature (acloudated), °F	800 697	800 453			1
19. 20.	Maximum Film Temperature (calculated), °F * Fouling Factor, hr*ft2*°F/BTU	0.002	0.002			
20.	* Corrosion or Erosion Characteristics	0.002	0.002			
22.	INLET CONDITIONS:	L				
23.	* Temperature, °F	301	160			
24.	* Pressure, psia	877	879			
25.	* Liquid Flow, Lb/hr		0			
26.	* Vapor Flow, Lb/hr		33,500			
27. 28.	* Weight Percent Vapor, wt%		100%			
20. 29.	* Density, Liquid, Lb/ft3 * Molecular Weight, Vapor		16.38			
30.	* Viscosity, Liquid, cp		10.50			
31.	* Viscosity, Vapor, cp		0.014			1
32.	* Specific Heat, Liquid, Btu/Lb*°F					
33.	* Specific Heat, Vapor, Btu/Lb*°F		0.622			
34.	* Thermal Conductivity, Liquid, Btu/hr*ft*°F					
35.	* Thermal Conductivity, Vapor, Btu/hr*fi*°F		0.026			
36.	OUTLET CONDITIONS	000	004			
37. 38.	* Temperature, °F * Pressure, psia	600 869	301 877			
30. 39.	* Liquid Flow, Lb/hr	0	0//			
40.	* Vapor Flow, Lb/hr	33,500				
41.	* Weight Percent Vapor, wt%	100.0%				
42.	* Density, Liquid, Lb/ft3					
43.	* Molecular Weight, Vapor	16.38				
44.	* Viscosity, Liquid, cp					
45.	* Viscosity, Vapor, cp	0.019				
46.	* Specific Heat, Liquid, Btu/Lb*°F					
47.	* Specific Heat, Vapor, Btu/Lb*°F	0.768				
48. 49.	 Thermal Conductivity, Liquid, Btu/hr*fit*°F Thermal Conductivity, Vapor, Btu/hr*fit*°F 	0.048				
49. 50.	REMARKS AND SPECIAL REQUIREMENTS:	0.040				{
50. 51.	* Distillation Data or Feed Composition					{
52.	* Short Term Operating Conditions					1
53.	NOTES: [A] Peak flux rate = Average flux rate x 1.8 (CFF) x 1.2	(LFF), Convection	peak flux rate not to	exceed radiant pea	k flux rate based	1
54.	on bare tube basis (Per REP 8-2-1 Sect 7.1.3)	(,	`` `		
55.						
56.	[B] Residue Gas Composition					
57.	Component Mol%					
58.	C1 98.453					
59.	C2 0.325					
60.	C3 0.007					
61. 62.	CO2 0.922 N2 0.293					
63.	Total 100.0					
64.	100.0					
65.						
	INSERV Fire	ed Heater Data Sh	eet	•		
	API S	tandard 560				

ţ

•(

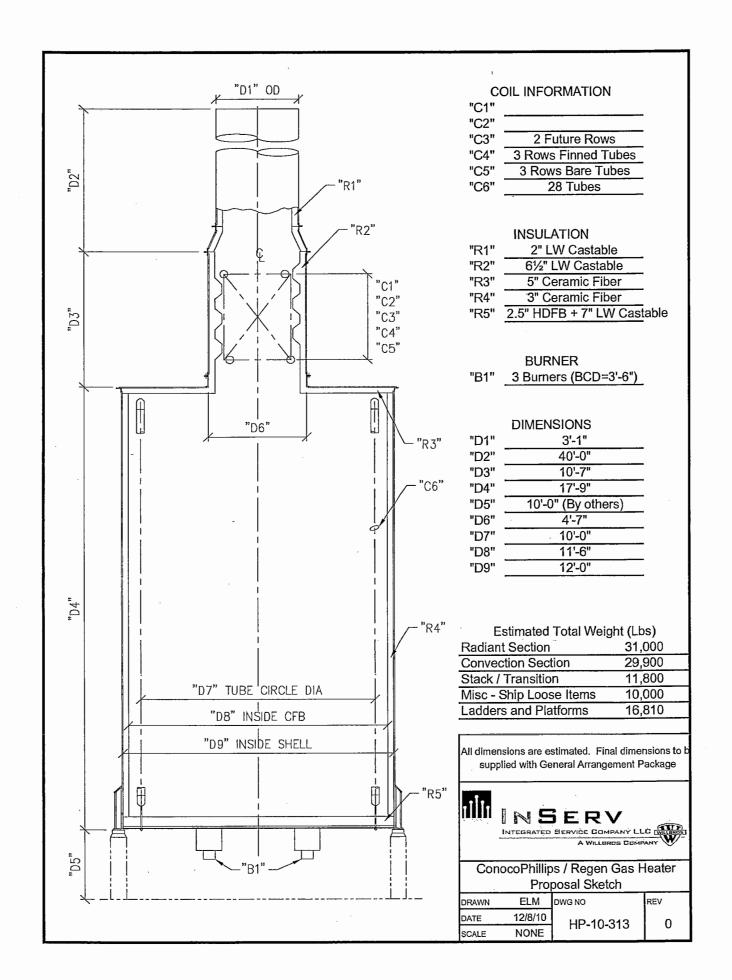
	 Second second	n an shirt a		Service:	Regen G	as Heater	Item No.:	H-501	Rev
	NININSE	D 37		Unit No:		Gas Plant		Bloomfield, NM	
		RV	TTR	Heater Type:		Cylindrical	Qty Required:		-
	INTEGATED SERVIC	WILLBROB DO	LLC THURNOS	Owner:	Production of the second se	Phillips	Mfgr's Ref.:		-
	م .	WILLBROP CO	MPANY	Purchaser:		Phillips	Rev	0	-
			1	Manufacturer:		Serv	- Purch. Ref.:	R3-6 Dec 2010	-
				Date:	Decembe	er 8, 2010	Page:	2 of 5	_
1.[COME	JUSTION E	DESIGN CONDI	TIONS			1
2.	Overall Performance:				Radiant	Convection		, ·	1
3.	Operating Case					sign			1
4.	Type of Fuel				Fuel Gas				1
5.	Service				Reger	n Gas			1
6.	Excess Air, Percent				15.0%				1
7.	Calculated Heat Release, I	MMBtu/hr (LH	IV)		12.13				1
8.	Guaranteed Efficiency, Per	rcent (LHV)			81	.5%]
9.	Calculated Efficiency, Perc	cent (LHV)			82	.5%			
10.	Radiation Loss, % of Heat	•	•		2.0%				4
11.	Flue Gas Temperature Lea		°F		1,503	664			-
12.	Flue Gas Mass Velocity, Ll					0.244			-
13.	Draft at Arch / Bridgewall, i				0.10			ļ	4
14.	Ambient Temperature, Effi				60			<u> </u>	-
15. 16.	Ambient Temperature, Sta Altitude Above Sea Level, f				110 5600				-
10.	Attmospheric Pressure, psi				11.96			·	-
18.	Volumetric Heat Release, I	a MM Btu/hr*ft?			10,100				1
19.	FUEL CHARACTERISTIC				10,100	l	L	L	1
20.	FUEL GAS	Fuel Gas	<u> </u>		Fuel Oil		#1 FO	#2 FO	1
21.	LHV, Btu/scf	898			LHV, Btu/Lb				1
22.	HHV, Btu/scf				HHV, Btu/Lb				1
23.	Press @ Burner, psig	25 .			Press @ Burner, p	sig			1
24.	Temp @ Burner, °F	40 min			Temp @ Burner, *				1
25.	Molecular Weight	16.41			Viscosity @ ??? *F]
26.	Component	Mole %	Mole %	Mole %	@ ??? °F]
27.	<u>H2</u>				Atomizing Media				
28.	02				Atomizing Media P	the second se			1
29.	N2	0.363				Component	Wt %	Wt %	4
30.	CO							<u> </u>	-
31.	<u>CO2</u>	0.951							-
32.	H2O	00.050				·			-
33. 34.	C1 C2	98.258							-
34.	C2=	0.413							-
36.	<u>C2-</u> C3	0.015							-
37.	<u>C3</u> =	0.013							-
38.	iC4								1
39.	nC4								1
40.	C4=					Sulphur (wt%)			1
41.	iC5					Nitrogen (wt%)			1
42.	nC5					Nickel (ppm)			1
43.	C6+	· ·				Vanadium (ppm)]
44.	H2S					Sodium (ppm)]
45.	S					Ash (wt%)			-
46.	BURNER DATA:								-
47.	-	C/Zeeco	Qty of Burne		3	Pilot Model No.		Self Inspirating	-
48.		/ Nox	Draft, inH2O		0.25	Pilot Ht. Rel., Btu/h		95,000	-
49. 50		BD	Reed Wall		None	Pilot Ignition Metod		MANUAL	-
50.		Upfiring	Burner Test		Optional	Flame Rod Locatio		Pilot	-
51. 52.	Heat Release per Burner, I	wiwibio/hr			Maximum 4.85	Normal 4.04	Minimum 1.62	Turndown 3.0	-
52.	Burner Clearances (Gas	Firing):			4.00	4.04	1.02	L	1
54.	Durier Glearances (Gas	, ing).			Vertical to	Vertical to	Horiz to	Horizontal to	1
55.	Burner Centerline Clearan	ce. Ft			Tube Centerline	Refractory	Tube C/L + 6"	Refractory	
56.	API Std 560 Required Clea				14.66	14.66	3.21	n/a	
57.	Calculated Clearances, ft				17.50	16.35	3.25	n/a	1
58.	Emissions				· · · · · · · · · · · · · · · · · · ·	•			1
59.	Required Emissions, Lb/M	MBTU @ 3%	02 (HHV)		NOx: 0.045]
60.	Guaranteed Emissions, Lb	/MMBTU @ 3	3%02 (HHV)		NOx: 0.045	CO: 0.02			1
61.	NOTES:								
62.									1
63.									
64. 65.									
05.					dllaster Data Ol	t			
			IN		ed Heater Data Sho	eet			

		Service:		Bas Heater	Item No.:	
ļ	III INSERV	Unit No:		Gas Plant	Location:	
	INTEGRATED SERVICE DOMPANY	Heater Type:		Cylindrical	Qty Required: Mfgr's Ref.:	
	A Willeros D	Owner: Purchaser:		oPhillips oPhillips	Rev:	
		Manufacturer:		Serv		R3-6 Dec 2010
		Date:		er 8, 2010	Page:	3 of 5
		MECHANICAL D	ESIGN COND	TIONS		
	Plot Limitations		None	Stack Limitations		None
	Tube Limitations		None	Noise Limitations, dB/	4	85.0
	Structural Design Data	Wind Velocity, MPH	90	Wind Specification		ASCE 7-05
		Snowload	30 psf	Seismic Specification		ASCE 7-05
		Importance Factor	1	Seismic Zone		ASCE 7-05
	Min / Max Ambient Air Temperature F	Wind Exposure	C -20 / 60 / 105	Firebox Pressure Relative Humidity		Negative 20%
	COIL DESIGN		207007100	Totalito Humany	<u> </u>	
-	Heater Section		Radiant	Convection		
	Service		Rege	n Gas		
	Design Basis for Tube Wall Thickness		API Std 530	API Std 530		
	Design Pressure (elastic or rupture), p	sig .	1,010	1,010		
	Design Life, hours		100,000	100,000		
	Design Fluid Temperature, °F		750	750		
	Temperature Allowance, °F Corrosion Allowance, Tubes & Fittings	in	90 0.125	90		
	Supplementary Mfg Requirements	5 11	None	None U.125		
	Stress Relieve (yes or no)		No	No		
	Weld Inspection, (RT or other)		100 of 100%	100 of 100%		
	Hydrostatic Test Pressure, psig		3,322	3,322		
	Max Tube Wall Temperature (clean), 9		722	487		
	Max Tube Wall Temperature (fouled),		750	531		
	Max Tube Wall Temperature (design),			40		
-	Inside Film Coefficient, BTU / hr * ft2 * COIL ARRANGEMENT	*F	196	144		
	Tube Orientation: Vertical / Horizontal		Vertical	Horizontal		
	Pipe/Tube Material (ASTM Spec and C	Gr)	A106 GrB	A106 GrB		
	Pipe/Tube Outside Diameter, in	,	6.625	6.625		
	Tube Wall Thickness, (average), in		0.432	0.432		
	Number of Flow Passes		1	1	, .	
	Number of Tubes per Row (convection	1)		3		
	Overall Tube Length, ft Effective Tube Length, ft		13.25 15.25	12.25		
	No of intermediate welds per tube	,	None	None		
	Bare Tubes: Number		28 (6 / 22)	9		
	Bare Tubes Total Exposed Surface, ft2	2	741	164		
	Extended Surface Tubes: Number		0	9		
	Extended Tubes Total Exposed Surface	ce, ft2	0	1,115		
	Tube Spacing, Center to Center, in		18/12	12		
_	Tube Center to Furnace Wall, in		9	6		
-	DESCRIPTION OF EXTENDED SUR Service	FAGE:		Regen G	as	
	Fin or Stud Row Number (starting @ b	pottom)		Rows 1-3	Rows 4-6	
	Type (segmented fins, solid fins, stude			Bare	HF Solid	
	Fin/Stud Material	-			11CR	
	5	ickness / dia)			0.75 x 0.05	
		ns / in, studs / plane)		ļ	3.5 fpi	
	Maximum Fin/Stud Temperature, °F RETURN BENDS &/OR PLUG TYPE	FITTINCS		l	695	
_	Heater Section	FITTINGS:	Radiant	Convection		
	Fitting Type		LR & SR U Bends			
	Material (ASTM Spec and Gr)		A234 WPB	A234 WPB	· · · ·	
	Nominal Rating or Schedule		6" sch80	6" sch80		
	Location (internal, external, one or both	h ends)	Internal	External		
	Welded or Rolled		welded	welded		
	CROSSOVERS:		E.t.	/ Wolded		
	Location/Welded or Flanged			/ Welded 6 GrB		
	Pipe Material (ASTM Spec and Gr) Pipe Size & Schedule or Thickness			sch80		
	Flange Material		0.8			
	Flange Size & Rating					
	NOTE: Millestein (0) tobas of	adiant continu and an 40% cont	ers (I R) all others	are on 12" centers (SR)	
	NOTES: [A] Last six (6) tubes of r	adiant section are on 18 cent			· ·	
	NOTES: [A] Last six (6) tubes of r	adiant section are on 18 cent			r.	

.

(

	INSERV	Service:		as Heater	Item No.:	H-501
I	INDERV	Unit No: Heater Type:		Gas Plant Cylindrical	Location: Qty Required:	Bloomfield, NM 1
	INTEGRATED SERVICE DEMINANT LEG [WUGBOS]	Owner:		Phillips	Mfgr's Ref.:	HP-10-313
	A WILLEROS EDMPANY	Purchaser:		Phillips	Rev:	0
L	٨	Aanufacturer:		ierv		R3-6 Dec 2010
	II.	Date:		er 8, 2010	Page:	4 of 5
-	MECHANIC		ONDITIONS			
	Heater Section		Radiant	Convection		
	Service		Regen Gas	Regen Gas		
	TERMINALS &/OR MANIFOLDS:		Regen das	Regen das	I	
*	Type (Bev=Beveled, Man=Maifold, Flg=Flanged)		Flanged	Flanged		
	Terminal / Manifold Location		Rad. Roof	Terminal End		
	Terminals		11001	Tomina End		
*	Flange Material (ASTM Spec and Gr)		A105	A105		
	Tube Flange Size and Rating			6" / 900# RTJWN	· · · · · · · · · · · · · · · · · · ·	
	Number of Terminals					
	Manifolds					· · · · · · · · · · · · · · · · · · ·
	Manifold Material (ASTM Spec and Gr)		None	None		
	Manifold Size & Thickness					
	Manifold Flange Size and Rating					
	Manifold to Tube Conn (Welded, Extruded, Etc.)					
	TUBE SUPPORTS &/OR TUBESHEETS:					
	Location (Top, Bottom, Ends)		Top	Ends		
	Material (ASTM Spec and Gr)	A351 HK	40-min 0.35 wt% C	A-36 C.S.		
	Design Metal Temperature, F		1,800	800		
	Support Thickness, in			0.50"		
	Refractory Type			4 / LW Castable		
	Refractory Thickness, in			4		
	Anchor Material and Type			304 S.S.		
	INTERMEDIATE TUBE SUPPORTS					
	Quantity per Length					
	Material (ASTM Spec and Gr)					
	Spacing, ft					
	Design Metal Temperature, F					
	TUBE GUIDES					
	Location		Bottom			
	Material (ASTM Spec and Gr)		304SS			
	Spacing, in		18/12			
	REFRACTORY DESIGN					
	Refractory Design Basis:		180°F Casing Tem		t Conditions of 0 M	
	Radiant Casing/Refractory Design:			Floor	Shielded	Arch
	Refractory Thickness, in			9.5	3.0	5.0
	Refractory Hot Face Temp (design), °F			2,500°	2,300°	2,300°
	Refractory Hot Face Temp (calculated), °F			1,303	1,209	1,503
	Hot Face Layer Thickness, in / Material			2.5/HD FBrick	1/8 pcf CFB	1/8 pcf CFB
	Back-Up Layer No1 Thickness, in / Material			7 / LW Castable	2/8 pcf CFB	4/8 pcf CFB
	Back-Up Layer No2 Thickness, in / Material			None None	<u>None</u>	None None
	Foil Vapor Barrier Thickness, mil / Material Castable Reinforcement (SS Needles)			None	None	None
	Anchors / Tie Backs:			None	Pins & Clips	Pins & Clips
	Anchor/Tie Back Material			None	304 S.S.	310 S.S.
	Casing Thickness, in / Material			1/4 - A36	1/4 - A36	1/4 - A36
	Casing External Temperature, °F			195	180	180
	Comments / Clarifications			10' min.elev.	(w/o wraps)	(w/ wraps)
	Convection Casing/Refractory Design:		Sidewalls	Hdr Boxes	Breeching	(,
	Refractory Thickness, in		6.5	2.0	3.0	
	Refractory Hot Face Temp (design), °F		2,200°	2,300°	2,200°	
	Refractory Hot Face Temp (design), "F		1,084	902	664	
	Hot Face Layer Thickness, in / Material		61/2 / LW Castable	2 / 8 pcf CFB	3 / LW Castable	
	Back-Up Layer No1 Thickness, in / Material		None	None	None	
	Back-Up Layer No2 Thickness, in / Material		None	None	None	
	Foil Vapor Barrier Thickness, mil / Material		None	None	None	
	Castable Reinforcement (SS Needles)		304SS - 3 wt%	None	304SS - 3 wt%	
	Anchors / Tie Backs:		Longhorns	Pins & Clips	Longhoms	
	Anchor/Tie Back Material		304 S.S.	304 S.S.	304 S.S.	
	Anchor/Tie Back Attachment		Welded	Welded	Welded	
	Casing Thickness, in / Material		3/16 - A36	3/16 - A36	3/16 - A36	
	Casing External Temperature, °F		180	180	180	
	Comments / Clarifications		100	100	100	
	o on anothe / Orannoallone					
	NOTES: [A] Floor refrection, and firshrisk will be fe	Id inctalled -	nd therefore as as -	nore are required -	ar ADI 560	
	NOTES: [A] Floor refractory and firebrick will be fie	ld installed a	nd therefore no and	nors are required pe	er API 560.	


ļ

•

		ant en trit	Service:	Regen	Gas Heater	Item No.:	H-501	Rev
· ·	NIN INSERV		Unit No:		n Gas Plant		Bloomfield, NM	- 1100
		in the	Heater Type:		Cylindrical	Qty Required:		_
	INTEGRATED SERVICE DOMPANT	MPANY W	Owner:		coPhillips	Mfgr's Ref.		-
			Purchaser: Manufacturer:		coPhillips Serv	Rev: Purch Ref:	0 R3-6 Dec 2010	-
			Date:		ber 8, 2010	Page		-
1.		MECHANIC	CAL DESIG	N CONDITION	S (continued)			
2.	STACK OR STUB STACK:							
3. 4.	Quantity One Casing Material A-36 C.S.	-	Type Corrosion All	owance in	· · · · · · · · · · · · · · · · · · ·	Location Min Thickness, in	on Heater 0.25	
5.	Metal OD, ft 3.08		Height Above			Stack Length, ft	40	
6.	Lining Material 2/LW Cast	able	Anchor (Mate	erial & Type)	304SSS Bent Wire		Top 3' - 316L SS]
7. 8.	Extent of Lining Full DAMPERS:		Lining Reinfo	prcement	304SS - 3 wt%		Rain hat req'd	4
0. 9.	Location			Stack	1		1	
10.	Type (Control, Balance, Tight Shut-off,	Etc.)		Control				
11.	Material Blade			316L SS]
12.	Shaft Multiple / Single Leef			316L SS			· · · · · · · · · · · · · · · · · · ·	{
13. 14.	Multiple / Single Leaf Provision for Operation (Manual / Autor	natic)		Single Manual				1
15.	Type of Operator (Cable / Pneumatic)	,		Cable				1
16.	Operator Location			Grade				1
17. 18.	LADDERS AND PLATFORMS (GALV * Location	ANIZED CS)	Width	Length/Arc	Stairs/Ladder	Access From	Estim'd Weight	
10.	Hearth Platform		3.00	360	0 / 2	Grade	5,770	
20.	Conv. End Platforms	2	4.00	5.61	0/1	Hearth	6,720	
21.	Conv. Side Platform	2	3.00	21.75				
22. 23.	Damper Platform EPA Platform	1	3.00	270	0/1	Convection Damper	2,230	
23.	Type of Handrails	Angle Fram		210	0/1	Damper	2,090	1
25.	Type of Flooring	Serrated Gr						1
26.	DOORS:			Number			Delived II Versed	
27. 28.	Type Access Doors			Number 1	Location Floor	Size 18 x 18	Bolted/Hinged Bolted	-
29.				1	Arch	24 x 24	Bolted	1
30.				1	Transition	24 x 24	Bolted	1
31.	Observation			3	Hearth	9x9	Hinged	4
32. 33.	Tube Removal			1	Conv Sidewall Arch	- 6 x 18 24 x 24	Hinged Bolted	
34.					1001	ETAL	Pontou	1
35.	MISCELLANEOUS CONNECTIONS:				, ,			
36. 37.	Instrument Connections Combustion Air Temperatur	<u>م</u>			Number	Size	Туре	
38.	Pressure	0						1
39.	Flue Gas Temperatur	e			4	1½"	150# RFWN	
40.	Pressure				4	11/2"	150# RFWN	
41. 42.	Flue Gas Sample				4	<u>1½"</u> 2"	150# RFWN 150# RFWN	
43.	O2/Combustible Analyzer				4	3"	150# RFWN	1
44.	EPA Testing Connections				4	4"	150# RFWN	
45. 46.	Vents / Drains Process Fluid Temperature				1	1½"	900# RTJWN	
40.	Tubeskin Thermocouples				2	172	Pipe Sleeve	1
48.								1
49.								
50. 51.	COATING REQUIREMENTS External Coatings & Preparatory Blast (SSPC)		SSPC-SP10 + 21	2-31/2 mils dft of IOZ F	rimer + 4-5 mils di	t Enory Mastic +2-	-
52.	External obalings & reparatory blast				rethane per Coating §		L PONY MESSIC · 2-	
53.	Internal Coatings & Preparatory Blast (S	SSPC)			0 mils Coal Tar Epox		nder refractory	1
54. 55.	Galvanizing Requirements			except floor and to All ladders and pl				1
55. 56.	SPECIAL EQUIPMENT			randouers and pl				1
57.	Sootblowers							1
58.	Air Preheater							-
59. 60.	Fan(s) Other							
61.								1
62.	NOTES:							1
63.								
64. 65.				•				
		1		d Heater Data Sh	neet		•	
			API S	tandard 560				

~

ĺ

		Service:	Regen Gas Heater	Item No.:	H-501
1	M INSERV	Unit No:	San Juan Gas Plant		Bloomfield, NM
	INDERV	leater Type:	Vertical Cylindrical	Qty Required:	1
	MILLINGIES DERVICE BEIGHART LES MILLINS	Owner:	ConocoPhillips	Mfgr's Ref.:	HP-10-313
	A WILLERDS COMPANY	Purchaser:	ConocoPhillips	Rev:	0
	M	anufacturer:	InServ	Purch. Ref.:	
		Date:	Dec 13, 2010	Page:	1 of 3
1	GENERAL DATA :]
2	TYPE OF HEATER		Vertical	Cylindrical	
3	ALTITUDE ABOVE SEA LEVEL, FT.			5600	
4	AIR SUPPLY				
5	AMBIENT / PREHEATED AIR			nbient	
6	TEMPERATURE, F (MIN./MAX./DESIGN)			60 / 105	
7	RELATIVE HUMIDITY, %			20%	
8	DRAFT TYPE			ral Draft	
9	TOTAL DRAFT AVAILABLE, : ACROSS BURNER, IN	H2O).25	
10	INCLUDING DRAFT ACROSS PLENUM, IN H20			0.05	
11 12				3:1 ble + 2.5" Firebrick)	
13	HEATER FLOOR LINING THICKNESS, IN. HEATER CASING THICKNESS, IN.		````_```````````````````````	0.25	
14	FIREBOX HEIGHT, FT				
15	TUBE CIRCLE DIAMETER, FT.			0.0'	
16	BURNER DATA :				
16					
17 18	MANUFACTURER TYPE OF BURNER			TBD -NOx	
19	MODEL / SIZE			IBD	
20	DIRECTION OF FIRING			itcal Up	
20	LOCATION (ROOF / FLOOR / SIDEWALL)	\vdash		loor	
22	NUMBER REQUIRED		1	-100r 3	
23	MINIMUM DISTANCE BURNER CENTERLINE: FT:			5	
24	TO TUBE CENTERLINE (HORIZ / VERT)		3 25' (Horizont:	al) / 17.5' (Vertical)	
25	TO ADJACENT BURNER CENTERLINE (HORIZ /			5' Hroiz	
26	TO UNSHIELDED REFRACTORY (HORIZ / VERT			Vertically	
27	BURNER CIRCLE DIAMETER, FT.	′ ⊢		3.50'	
28	PILOTS :				
29	NUMBER REQUIRED		17	Burner	
30	TYPE		Self Ir	nspirating	
31	IGNITION METHOD		M	anual	
32	FUEL		Na	it Gas	
33	FUEL PRESSURE, PSIG			7-10	
34	CAPACITY,MMBTU / HR	-	.09	5 MIN	
35	OPERATING DATA :				
36		<u> </u>	Fu	el Gas	
37	HEAT RELEASE PER BURNER, MMBTU / HR. (LHV	″			
38 39	DESIGN			4.85	
40	NORMAL			1.04 1.62	
41	MINIMUM EXCESS AIR @ DESIGN HEAT RELEASE, (%)			1.62	
42	AIR TEMPERATURE,F			60	
43	DRAFT (AIR PRESSURE) LOSS, IN H20				
44	DESIGN	⊢	().25	
45	NORMAL),25	
46	MINIMUM).25	
47	FUEL PRESSURE AVAILABLE, PSIG			25	
48	FLAME LENGTH @ DESIGN HEAT RELEASE, FT.			num 10.5'	
49	FLAME SHAPE (ROUND, FLAT, ETC.)			DUND	
50	ATOMIZING MEDIUM / OIL RATIO,LB/LB			N/A	
51	NOTES :				
52					
53					1
54					
55					
56					
57 58					1
58 59					
59 60					
61					
62					
∪∠ I					
					1
63					t i i
63 64					
63		Serv Burner Da	ata Sheet		

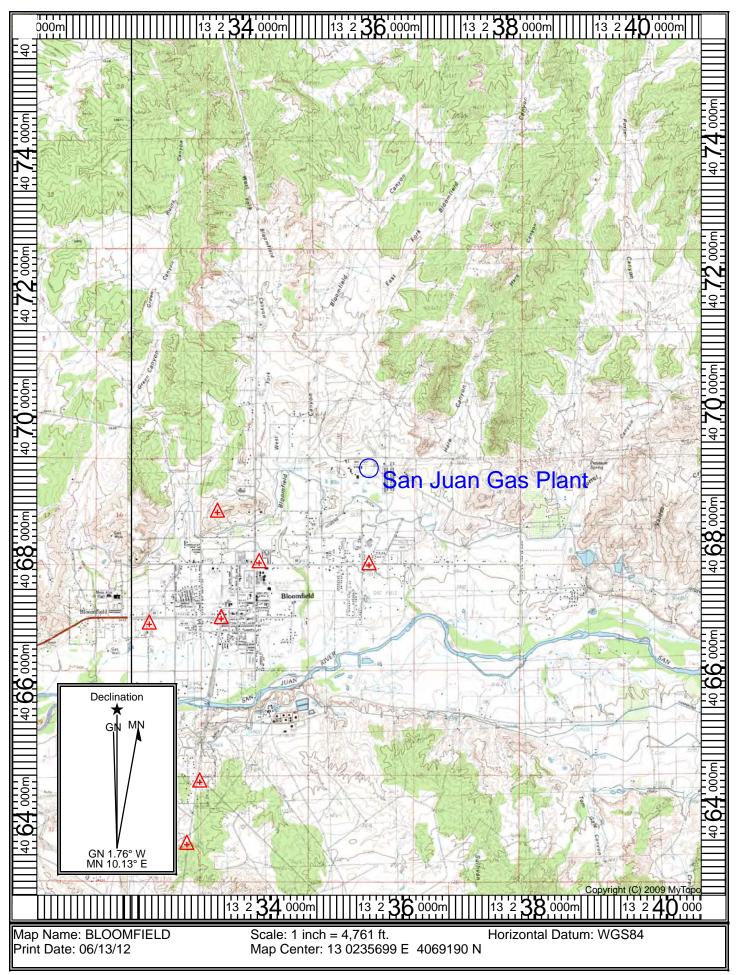
(

	<u> </u>						
Interview Heat Type: Vertical Quindeal Opp Requires Heat Type: ArcLarge Equivary Weiter Type: ConcoPhilips Purchast: 0 Purchase: ConcoPhilips Purchast: 0 Date: Date: 0 Purchast: 0 Date: Date: Date: 0 Purchast: 0 Purchast: ConcoPhilips Purchast: 0			Service:	Regen G	as Heater	Item No.:	H-501
Interview Heat Type: Vertical Quindeal Opp Requires Heat Type: ArcLarge Equivary Weiter Type: ConcoPhilips Purchast: 0 Purchase: ConcoPhilips Purchast: 0 Date: Date: 0 Purchast: 0 Date: Date: Date: 0 Purchast: 0 Purchast: ConcoPhilips Purchast: 0	Í	IIIII INSEDV		San Juan Gas Plant			
A Willings Elseviery Purchase: Manufacture: Date: Dec 13, 2010 Purch Ref: 0 0 CAS FUEL CHARACTERISTICS Fuel Case Fuel Case Fuel Case Fuel Case FUEL TYPE Fuel Case Fuel Case Fuel Case Fuel Case FUEL TYPE Fuel Case Fuel Case Fuel Case Fuel Case FUEL TYPE Fuel Case Fuel Case Fuel Case Fuel Case FUEL TYPE Fuel Case Fuel Case Fuel Case Fuel Case FUEL TAMERATINE (@ BURNER, "F Amberi Fuel Case Fuel Case Fuel Case FUEL TAMERATINE (@ BURNER, "F Amberi Fuel Case Fuel Case Fuel Case FUEL TAMERATINE (@ BURNER, "F Amberi Fuel Case Fuel Case Fuel Case GAS FUEL CAS COMPOSITION, VOLUME (% (DRY) DST Fuel Case Fuel Case Fuel Case GAS FUEL CAS COMPOSITION OXYGEN O.0165 DST Fuel Case GAS FUEL CAS COMPOSITION OXYGEN O.0165 Fuel TASE FEUTANE O.0165 Fuel Case	I 1		Heater Type:				
Parchaser, Concordentings New. 0 Date: Det 13, 2010 Parch Ref. 0 Date: Det 13, 2010 Parch Ref. 0 Puel: Fuel: Fuel: Fuel: Fuel: Puel: Fuel: Fuel: Fuel: Fuel: Fuel: Puel: Fuel: Fuel: Fuel: Fuel: Fuel: Fuel: Puel: Fuel: Fuel: <t< td=""><td></td><td>INTEGRATED SERVICE DOMPANY LLC MILLING</td><td>Owner:</td><td></td><td></td><td>Mfgr's Ref.:</td><td>HP-10-313</td></t<>		INTEGRATED SERVICE DOMPANY LLC MILLING	Owner:			Mfgr's Ref.:	HP-10-313
Date Dec 13, 2010 Page 2 2 4 3 GAS FUEL CHARACTERISTICS	I 1	in interview constant. Co	Purchaser:			-	
GAS FUEL CHARACTERISTICS Fuel Cas FUEL TYPE Fuel Cas HATING VALVE (HV), Bluked) 998 HEATING VALVE (HV), Bluked) 998 SPECIFIC GRAVITY @ 60° F (AF 1.0) 16.41 MOLECULAR WEIGHT 10.363 MOLECULAR WEIGHT 0.363 GARBON MONXDE 0.363 CARBON MONXDE 0.891 WATER 0.4230 WEITARE 0.015 FROPARE 0.016 FROPARE 0.015 FROPARE 0.016 METARE 0.16 METARE 0.16 MOR		· ·					
FUEL TYPE Fuel Gas HEATING VALVE (LMV), Bluked) 886 HEATING VALVE (LMV), Bluked) 806 BYECE/TE (CAWITY & GOY FAIR = 1.0) 16.41 MOLECULAR WEIGHT JINTRER * F Ambient			Date:	Dec 1	3, 2010	Page;	2 of 3
FUEL TYPE Fuel Gas Image: Constraint of the c		GAS FUEL CHARACTERISTICS					
FUEL TYPE Fuel Gas Image: Control of the control of th							
5 HEATING VALVE (HM), Buken) 898 1 7 SPECIFIC GRANT/Y @ 60 °F (AR = 1.0) 16.41 1 7 SPECIFIC GRANT/Y @ 60 °F (AR = 1.0) 16.41 1 8 FUEL TEMPERATURE @ BURNER, PSIG 16.41 1 9 FUEL TEMPERATURE @ BURNER, PSIG 16.41 1 11 FUEL GAS COMPOSITION, VICLIME % (DRY) 0.363 1 12 OXTGEN 0.351 1 13 OXTGEN 0.351 1 14 METHANE 96.258. 1 15 OXTGEN 0.051 1 16 THANE 96.258. 1 17 FROPTLENE 0.015 1 18 METHANE 0.015 1 19 THANE 0.015 1 10 THANE 0.015 1 11 FROPTLENE 1 1 12 PROPALE 0.015 1 14 NBUTANE 1 1 15 THANE 1 1 16 THANE 1 1 17 THRENAL 1 1 18 THANE 1 1 19 THANE<			Ļ				
6 HEATING VALVE (HHV), Bluke) 7 SPECIFIC GRAVITY (BO (F AIR = 10)) 10 FUEL TRUPERATURE (B BURNER, FI 11 FUEL TRUPERATURE (B BURNER, FIG) 25 12 HTDROGEN			Ļ				
7 SPECIFIC GRAVITY @ 50° F (Air = 1.0) 6.4			F	898			
6 MOLECULAR WEIGHT 16.41 9 FUEL TREPEATURE & BURNER, FSIG 25			ŀ				
9 PUEL TEMPERATURE @ BURNER, FSIG Ambert 11 PUEL GAS COMPOSITION, VOLUME % (DRY) 25		, i i i i i i i i i i i i i i i i i i i	ŀ	16.41			
0 PUEL PRESSUER, AVAILABLE @ BURNER, PSIG 25			ŀ				
PUEL GAS COMPOSITION, VOLUME % (DRY)		÷ .	3 F				
12 HYDROGEN 0.363 14 OXYGEN 0.363 14 OXYGEN 0.363 16 OXREON MONXIDE 0.051 17 WATER 0.051 18 METHANE 96.258 19 ETHANE 0.413 10 FROPARE 0.015 11 PROPARE 0.015 12 FROPARE 0.015 14 METHANE 0.015 15 BUTALENE 0.015 16 HUTALENE 0.015 17 NEUTANE 0.015 18 HUTALENE 0.015 19 HYDROGEN SULFIDE 0.016 10 0.017 0.016 10 0.016 0.016 10 0.016 0.016 10 0.016 0.016 100 0.016 0.016 100 0.016 0.016 101 0.016 0.016 101 0.016 0.016 101 0.016 0.016 101 0.016 0.016 101 0.016 0.016 101 0.016 0.016 101 0.016 0.016	11						
14 NITROGEN 0.383	12		r				
15 CARBON MONOXIDE 0.051 17 CARBON MONOXIDE 0.051 17 WATER 0.051 18 METHANE 0.0528 19 ETHALENE 0.413 10 ETHALENE 0.15 11 FROPANE 0.015 12 PROPANE 0.016 13 HETHANE 0.016 14 NBUTANE 0.016 15 HETALENE 0.016 16 TAREN 0.016 17 HENTANE 0.016 18 METHANE 0.016 19 HENTANE 0.016 19 HENTANE 0.016 19 HENTANE 0.016 10 MEDIANE 0.016 100 1.01 1.01 11 TOTAL 100 12 TOTAL 100 13 SPECIFIC GRAVITY / DEG, API 1.01 14 YISCOSITY, GF, (SU) 1.01 15 I.01 I.01 16 I.01 I.01 17 I.01 I.01 16 I.01 I.01 17 I.01 I.01 17 I.01	13	OXYGEN					
16 CARBON DIOXIDE 0.051	· ·			0.363			
17 WATER 98.258							
10 METTANNE 98.258 1 11 ETHANE 0.413 1 121 PROPARE 0.015 1 121 PROPARE 0.015 1 122 FBOPARE 0.015 1 123 FBOPARE 0.015 1 124 NBUTANE 1 1 125 BUTALENE 1 1 126 IFENTANE 1 1 127 NPEDRTANE 1 1 128 NHEXANE 1 1 129 HYDROGEN SULFIDE 1 1 131 TOTAL 100 1 132 TOTAL 100 1 133 TOTAL 100 1 140010 FUEL CHARACTERISTICS HEATING VALUE (LHV), BTU/LB. 1 15 LIQUID FUEL CHARACTERISTICS 1 16 HJ C RATIO (BV WEIGHT) 1 1 17 VISCOSITY, QF, (SU) 1 1 18 SPECIFIC GANTY/DEG, API 1 1 19 M C RATIO (BV WEIGHT) 1 1 10 VISCOSITY, QF, (SU) 1 1 19 SOLUM.PPM 1 1				0.951			
19 ETHANE 0.413				00.050			
01 ETHYLENE 0.015 0.016 PROPANE 0.016 0.016 PROPANE 0.016 0.016 PROPANE 0.016 0.016 PROPANE 0.016 0.016 NEUTANE 0.016 0.016 BUTALENE 0.016 0.016 PROPANE 0.016 0.016 BUTANE 0.016 0.016 BUTALENE 0.016 0.016 PROPANE 0.016 0.016 BUTANE 0.016 0.016 HATANE 0.016 0.016 SULFUR 0.016 0.016 ILQUID FUEL CHARACTERNETCS 100 FUEL TYPE 0.016 HATING VALUE (LHV), BTU / LB. 0.016 SPEOFIC GRAVITY / DEG. API 0.016 H / C RATIO (42 WEIGHT) 0.016 VISCOSITY, @ F. (SSU) 0.016 Ø YANADUM, PPM SODIMA, PPM 0.016 SODIMA, PPM 0.016 SULPUR,% WT. 0.016 ASH, % WT. 0.016 YATANE, AND ANDIN, AIR / STEAN / MECHANICAL 0.016 STILLATION ASTINITIAL BOLING POINT, F. 0.016 ASH, % WT. 0.016 YATANE, ANDIN, AIR / STEAN / ME							
11 PROPAUE 0.015 1 22 PROPYLENE 1 1 23 N-BUTANE 1 1 24 N-BUTANE 1 1 25 BUTALENE 1 1 26 I-PENTANE 1 1 27 N-PENTANE 1 1 28 N-HEXTANE 1 1 29 TOTAL 100 1 30 TOTAL 100 1 31 TOTAL 100 1 32 TOTAL 100 1 33 TOTAL 100 1 34 HARTING VALUE (LHV), BTU/LB. 1 1 35 ELQUID FUEL CHARACTERISTICS 1 1 36 HEATING VALUE (LHV), BTU/LB. 1 1 37 HARTING VALUE (LHV), BTU/LB. 1 1 38 SPECIFIC GRAVITY /DEG. API 1 1 40 VISCOSITY, G.F. (SSU) 1 1 41 POTASSIUM.PPM 1 1 42 VANADUM.PPM 1 1 43 SOLUM.PPM 1 1 44 POTASSIUM.PPM 1 1				0.413			
22 FROPYLENE				0.015		· ····	
1 BUTANE				0.015			
1 N=BUTANE 1 BUTALENE 1 BUTALENE 1 BUTALENE 1 I-PENTANE 1 IN-PENTANE 1							
BUTALENE Image: Constraint of the second secon							
26 IPENTANE Image: Constraint of the second	25						
NHEXANE Hitokane Bill Hitokane SULFUR Image: Sulfur	26						
Hydrocen SulFide Horocen SulFide SulFur	27	N-PENTANE					
SULFUR Image: Sulfur state in the state in	28	N-HEXANE					
31							
33 TOTAL 100 34 TOTAL 100 35 FUEL TYPE		SULFUR					
33 TOTAL 100 34 TOTAL 100 35 LIQUID FUEL CHARACTERISTICS							
34 TOTAL 100 35 LIQUID FUEL CHARACTERISTICS							
35 LIQUID FUEL CHARACTERISTICS 36 FUEL TYPE 37 HEATING VALUE (LHV), BTU / LB. 38 SPECIFIC GRAVITY / DEG. API 39 H/C RATIO (BY WEIGHT) 40 VISCOSITY, @F. (SSU) 41 @F. (SSU) 42 VANADIUM,PPM 43 SODIUM,PPM 44 POTASSIUM,PPM 45 NICKEL,PPM 46 FIXED NITROGEN,PPM 47 SULFUR,% WT. 48 ASH,% WT. 49 WATER,% WT. 40 WATER,% WT. 51 ASTM MID-POINT,F. 52 ASTM MID-POINT,F. 53 FUEL TEMPERATURE @ BURNER,F. 54 FUEL TRESPER AVAILABLE @ BURNER,FSIG. 55 ATOMIZING MEDIUM : AIR / STEAM / MECHANICAL 56 ATOMIZING MEDIUM : AIR / STEAM / MECHANICAL 57 PRESSIRE, PSIG. 58 MOTES :		TOTAL		100			
36 FUEL TYPE				100			
37 HEATING VALUE (LHV), BTU / LB. 38 SPECIFIC GRAVITY / DEG. API 40 VISCOSITY, @ F. (SSU) 41 @ F. (SSU) 42 VANADIUM,PPM 43 SODIUM,PPM 44 POTASSIUM,PPM 45 NICKEL,PPM 46 FIXED NITROGEN,PPM 47 SULFUR,% WT. 48 ASH,% WT. 49 WATER,% WT. 40 DISTILLATION : ASTM INITIAL BOILING POINT,F. 51 ASTM MID-POINT,F. 52 ASTM MID-POINT,F. 53 FUEL TEMPERATURE @ BURNER,F. 54 FUEL TEMPERATURE @ BURNER,FSIG. 55 ATOMIZING MEDIUM: AIR / STEAM / MECHANICAL 56 NOTES :			·	11 d m			
38 SPECIFIC GRAVITY / DEG. API 39 H/ C RATIO (BY WEIGHT) 40 VISCOSITY, @ F. (SSU) 41 @ F. (SSU) 42 VANADIUM,PPM 43 SODIUM,PPM 44 POTASSIUM,PPM 45 NICKEL,PPM 46 FIXED NITROGEN,PPM 47 SULFUR,% WT. 48 ASH,% WT. 49 WATER,% WT. 40 DISTILLATION :ASTM INITIAL BOILING POINT,F. 51 ASTM MID-POINT,F. 52 ASTM MID-POINT,F. 53 FUEL TEMPERATURE @ BURNER,F. 54 FUEL TEMPERATURE @ BURNER,F. 55 ATOMIZING MEDIUM : AIR / STEAM / MECHANICAL 56 TOMIZING MEDIUM : AIR / STEAM / MECHANICAL 57 PRESSIRE. PSIG. 58 NOTES : 59 NOTES :			-				
39 H / C RATIO (BY WEIGHT) 40 VISCOSITY, @ F. (SSU) 41 @ F. (SSU) 42 VANADIUM,PPM 43 SODIUM,PPM 44 POTASSIUM,PPM 45 NICKEL,PPM 46 FIXED NITROGEN,PPM 47 SULFUR% WT. 48 ASH,% WT. 49 WATER,% WT. 49 WATER,% WT. 40 DISTILLATION :ASTM INITIAL BOILING POINT,F. 41 ASTM MID-POINT,F. 42 ASTM MID-POINT,F. 43 ASTM MID-POINT,F. 44 POTAZSURE AVAILABLE @ BURNER,PSIG. 45 FUEL TEMPERATURE @ BURNER,PSIG. 46 FIZED NIT, AIR / STEAM //MECHANICAL 47 PRESSIRE. PSIG. 48 NOTES :			H				
40 VISCOSITY, @.F. (SSU)			ŀ				
41 @ F. (SSU)			F				
43 SODIUM,PPM	41		F				
44 POTASSIUM,PPM	42	,	ľ				
45 NICKEL,PPM							
46 FIXED NITROGEN,PPM							
47 SULFUR,% WT.							
48 ASH,% WT.		-	L L				
49 WATER,% WT.		· ·	ŀ				
50 DISTILLATION :ASTM INITIAL BOILING POINT,F. 51 ASTM MID-POINT,F. 52 ASTM END-POINT,F. 53 FUEL TEMPERATURE @ BURNER,F. 54 FUEL PRESSURE AVAILABLE @ BURNER,PSIG. 55 ATOMIZING MEDIUM: AIR / STEAM / MECHANICAL 56 TEMPERATURE,F. 57 PRESSIRE. PSIG. 58 NOTES :			H				
51 ASTM MID-POINT,F. 52 ASTM END-POINT,F. 53 FUEL TEMPERATURE @ BURNER,F. 54 FUEL PRESSURE AVAILABLE @ BURNER,PSIG. 55 ATOMIZING MEDIUM: AIR / STEAM / MECHANICAL 56 TEMPERATURE,F. 57 PRESSIRE. PSIG. 58 NOTES :			H				
52 ASTM END-POINT,F. 53 FUEL TEMPERATURE @ BURNER,F. 54 FUEL PRESSURE AVAILABLE @ BURNER,PSIG. 55 ATOMIZING MEDIUM: AIR / STEAM / MECHANICAL 56 TEMPERATURE,F. 57 PRESSIRE. PSIG. 58 NOTES : 59			ŀ				
53 FUEL TEMPERATURE @ BURNER,F. 54 FUEL PRESSURE AVAILABLE @ BURNER,PSIG. 55 ATOMIZING MEDIUM: AIR / STEAM / MECHANICAL 56 TEMPERATURE,F. 57 PRESSIRE. PSIG. 58 NOTES : 59		-	ŀ		<u> </u>		
54 FUEL PRESSURE AVAILABLE @ BURNER,PSIG. 55 ATOMIZING MEDIUM: AIR / STEAM / MECHANICAL 56 TEMPERATURE,F. 57 PRESSIRE. PSIG. 58 NOTES : 59 0 60			ŀ				
55 ATOMIZING MEDIUM: AIR / STEAM / MECHANICAL			. F				
57 PRESSIRE. PSIG. 58 NOTES : 59		e ,					
58 NOTES : 59 60 61 61 62 63 63 64 65 InServ Burner Data Sheet			F				
59 60 61 62 63 64 65							
60 61 62 63 64 65 InServ Burner Data Sheet		NOTES :					
61 62 63 64 65 InServ Burner Data Sheet							
62 63 64 65 InServ Burner Data Sheet					1		
63 64 65 InServ Burner Data Sheet							
64 65 InServ Burner Data Sheet							
65 InServ Burner Data Sheet	•						
InServ Burner Data Sheet							
	ا		InServ Burner	Data Sheet		· · · · · · · · · · · · · · · · · · ·	
							

(

	Service:		
		San Juan Gas Plant Location: Bloomfield,	NM
	INTEGRATED SERVICE COMPANY LLC INTEGRATED SERVICE COMPANY	Vertical Cylindrical Qty Required: 1	
	A WILLBROS COMPANY	ConocoPhillips Mfgr's Ref.: HP-10-31	3
۰.	Purchaser:		
	Manufacturer:	InServ Purch. Ref.: 0	
	Date:	Dec 13, 2010 Page: 3 of 3	
1	MISCELLANEOUS		REV
2	BURNER PLENUM : COMMON / INTEGRAL	INTEGRAL	¹
3	MATERIAL	CARBON STEEL	
4	PLATE THICKNESS, IN.		
5	INTERNAL INSULATION	D LUDED	
6	INLET AIR CONTROL : DAMPER OR REGISTERS	DAMPER MANUAL	
7		5% OF AIR FLOW AT NORMAL HEAT RELEASE	
9	LEAKAGE, % BURNER TILE : COMPOSITION	By Burner Vendor	
10	MAXIMUM SERVICE TEMPERATURE, F	By Burner Vendor	
11	NOISE SPECIFICATION	85 dba @ 3FT	
12	ATTENUATION METHOD		
13	BURNER / PILOT FUEL CONNECTION	Flanged / Flanged	
14	PAINTING REQUIREMENTS	Per manufacturers standards	
15	IGNITION PORT : SIZE / NO.	2" / 1 per burner	
16	SIGHT PORT : SIZE / NO.	2" / 1 per burner	
17	FLAME DETECTION :		
18	NUMBER		
19	SCANNER CONNECTION SIZE / NO.	2" / 1 per burner	
20	SAFETY INTERLOCK SYSTEM FOR ATOMIZING MEDIUM & OI	N/A	
21	PERFORMANCE TEST REQUIRED (YES OR NO)	Optional	[A]
22	EMISSION REQUIREMENTS :		
23	FIREBOX BRIDGEWALL TEMPERATURE, F.	1503 AT BRIDGEWALL	
24	NOx * LB/MMBTU (HHV)	0.045	
25	CO * LB/MMBTU (HHV)	0.02	
26 27	VOC * LB/MMBTU (HHV) PM * LB/MMBTU (HHV)		
28	PM * LB/MMBTU (HHV) PM10 * LB/MMBTU (HHV)		
29	SOx		
30	* CORRECTED TO 3 % O2 (DRY BASIS @ DESIGN HEAT RELE	EASE)	
31	NOTES : [A] Burner Vendor shall provide a separate price for the		
32	vendor facility based on the attached fuel and operating		
33	[B] Burner Vendor to supply pricing for spare parts.		
34	[C] Burner Vendor to submit bi-weekly production shee	dules throughout the engineering and production of the burners.	
35			
36	[D] The following requirements shall apply		
37	Submittal for customer review of weld procedures		
38	Submittal for customer review of PMI of all materia	als	
39 40	[E] Applicable Customer Specifications include;		
40	REP 5-2-2 Flanges, Gaskets, and Bolting	3	
41	REP 5-6-3 Piping for Fired Heaters REP 8-2-1 Fired Heaters		
43	REP 10-2-2 Supplemental Material Regul	irements for Metallic Materials	
44	REP 10-2-3 Material Hardness Requiren		
45	REP 15-1-4 Positive Materails Identificat		
46			
47			
48			
49			
50		,	
51			1
52			
53			
54			
55			
56			
56 57			
56 57 58			
56 57 58 59			
56 57 58 59 60			
56 57 58 59			
56 57 58 59 60 61			
56 57 58 59 60 61 62			
56 57 58 59 60 61 62 63			
56 57 58 59 60 61 62 63 63	InServ Burner API Stand		

•


Section 8

Map(s)

<u>A map</u> such as a 7.5 minute topographic quadrangle showing the exact location of the source. The map shall also include the following:

The UTM or Longitudinal coordinate system on both axes	An indicator showing which direction is north
A minimum radius around the plant of 0.8km (0.5 miles)	Access and haul roads
Topographic features of the area	Facility property boundaries
The name of the map	The area which will be restricted to public access
A graphical scale	

A map can be found on the next page.

map brought forward from previous application

Section 9

Proof of Public Notice

(for NSR applications submitting under 20.2.72 or 20.2.74 NMAC) (This proof is required by: 20.2.72.203.A.14 NMAC "Documentary Proof of applicant's public notice")

I have read the AQB "Guidelines for Public Notification for Air Quality Permit Applications" This document provides detailed instructions about public notice requirements for various permitting actions. It also provides public notice examples and certification forms. Material mistakes in the public notice will require a re-notice before issuance of the permit.

Unless otherwise allowed elsewhere in this document, the following items document proof of the applicant's Public Notification. Please include this page in your proof of public notice submittal with checkmarks indicating which documents are being submitted with the application.

New Permit and Significant Permit Revision public notices must include all items in this list.

Technical Revision public notices require only items 1, 5, 9, and 10.

Per the Guidelines for Public Notification document mentioned above, include:

- 1. A copy of the certified letter receipts with post marks (20.2.72.203.B NMAC)
- 2. A list of the places where the public notice has been posted in at least four publicly accessible and conspicuous places, including the proposed or existing facility entrance. (e.g: post office, library, grocery, etc.)
- 3. \boxtimes A copy of the property tax record (20.2.72.203.B NMAC).
- 4. \square A sample of the letters sent to the owners of record.
- 5. X A sample of the letters sent to counties, municipalities, and Indian tribes.
- 6. X A sample of the public notice posted and a verification of the local postings.
- 7. 🛛 A table of the noticed citizens, counties, municipalities and tribes and to whom the notices were sent in each group.
- 8. 🛛 A copy of the public service announcement (PSA) sent to a local radio station and documentary proof of submittal.
- 9. X A copy of the <u>classified or legal</u> ad including the page header (date and newspaper title) or its affidavit of publication stating the ad date, and a copy of the ad. When appropriate, this ad shall be printed in both English and Spanish.
- 10. A copy of the <u>display</u> ad including the page header (date and newspaper title) or its affidavit of publication stating the ad date, and a copy of the ad. When appropriate, this ad shall be printed in both English and Spanish.
- 11. A map with a graphic scale showing the facility boundary and the surrounding area in which owners of record were notified by mail. This is necessary for verification that the correct facility boundary was used in determining distance for notifying land owners of record.

San Juan County is classified as an "A" county, according to the New Mexico Department of Finance and Administration (<u>http://www.nmdfa.state.nm.us/County_Classifications.aspx</u>). As such, according to 20.2.72.203.B(1)(a) NMAC, public notice must be provided by certified mail to the owners of record within one hundred (100) feet of the property on which the facility is located.

Table 1 identifies the land owners within 100 feet of the SJGP that received public notice letters of the proposed permit modification. Land owner information was obtained from the San Juan County Assessor's Office online parcel mapping viewer at

https://webmaps.sjcounty.net/portal/apps/webappviewer/index.html?id=e970ec2c29e74b37b8440dfe364c 3dbf .

Table 1

Land Owners Receiving Public Notice Letters Within 100 Feet of the Property on Which the SJGP is Located						
Catholic Church Bloomfield	Federal Bureau of Land Management (BLM)					
El Paso Natural Gas Co.	Native Vision for Christ Navajo Ministries					
Casaus, Myron G.	Van Camp, Nicholas et al / Marilou Cerny					

20.2.72.203.B(2) NMAC requires public notice be provided by certified mail to all municipalities, counties in which the facility is located, and to municipalities, counties and Indian Tribes within a 10 mile radius of the property on which the facility is located.

Table 2 identifies the counties, municipalities and tribes located within ten miles of the SJGP that received public notice letters.

Municipalitie	Municipalities, Counties and Tribes Within 10 Miles of the SJGP Receiving Public Notice Letters							
Municipalities	Addressed to							
Aztec City Hall	City Clerk							
City of Bloomfield	City Clerk							
City of Farmington	City Clerk							
Counties	Addressed to							
San Juan County	County Clerk							
Tribes	Addressed to							
Navajo Nation EPA	Air Quality Control Program							

Table 2

The San Juan Gas Plant facility boundary is shown in turquoise:

https://webmaps.sjcounty.net/portal/apps/webappviewer/index.html?id=e970ec2c29e74b37b8440dfe364c3dbf

100 feet neighboring parcels ownership, 1 of 2. (San Juan Gas Plant = Parcel R4007792, owned by Hilcorp San Juan LP)

100 feet neighboring parcels ownership, 2 of 2. (San Juan Gas Plant = Parcel R4007792, owned by Hilcorp San Juan LP)

Account: R0070342

Location	Owner Information	Assessment History					
Parcel Number 2062171516516	Owner Name CATHOLIC CHURCH BLOOMFIELD	Actual Value (2020) \$52,546					
Situs Address SAIZ LN	Owner Address 307 N CHURCH	Assessed \$17,515					
Tax Area 6INNR - District 6IN Non-Residential	BLOOMFIELD, NM 87413-5604	Exempt (\$17,515)					
Legal Summary BEG AT NW COR OF NWNW 142911 E 234 FT, S 234 FT, W 234 FT, N 234 FT TO BEG.		Adjusted Taxable Total \$0 Tax Area: 6INNR Mill Levy: 34.206000					
BK.128 PG.229		Type Actual Assessed Acres SQFT Units					
Serial Number		Exempt\$52,546 \$17,515 1.260 54886.600 1.000					

	Transfers								
	No Transfer Documents								
Tax History	Images								
Tax Year Taxes	Photo Sketch								
2020 \$0.00 2019 \$0.00									

Account: R4004754

Location	Owner Information	Assessment History
Parcel Number 2099199900900	Owner Name FEDERAL	Actual Value (2007) \$0
Situs Address 70 ROAD 3536	Owner Address	No taxable value types
1891 NAVAJO DAM RD		
98 ROAD 5710		
3306 N 1ST ST		
1210 ROAD 7007		
1207 ROAD 7007		
6251 COLLEGE BLVD		
1088 SAGUARO TRL		
40 ROAD 4225		
6 ROAD 4225		
8 ROAD 4225		
10 ROAD 4225		
12 ROAD 4225		
14 ROAD 4225		
16 ROAD 4225		
18 ROAD 4225		
20 ROAD 4225		
26 ROAD 4225		
36 ROAD 4225		
7 ROAD 4225		
9 ROAD 4225		
Tax Area 50UTNR - District 50UT Non-Re	esidential	
Legal Summary		
Serial Number		

Account: R4005892

Location	Assessment History						
Parcel Number 2062171327430	Owner Name EL PASO NATURAL GAS CO	Actual \	alue (20	16)		\$2	30,236
Situs Address 1301 ARIZONA AVE 2281 PLANT LN	Owner Address PO BOX 1087 COLORADO SPRINGS, CO 80944	Assess		: 6INNR	Aill Levy:	\$	76,745
Tax Area 6INNR - District 6IN Non-Residential		Туре		Assessed		SQFT	Units
Legal Summary THAT PORTION OF THE N1/2 14 29 11 BK.381 PG.53 AND BK.1235 PG.423 LESS 28.13 AC BK.1488 PG.436		Taxable	\$230,236	\$76,745	32.891	1432729.000	0.000

Transfers

Serial Number

	No Transfer Documents					
Tax Histor	Y		Images			
Tax Year	Taxes	Photo				
*2020 2019 * Estimated	\$0.00 No Tax Values					

Account: R0070333

Location	Owner Information	Assessment History					
Parcel Number 2062171462330 Situs Address 66 N SAIZ LN	Owner Name NATIVE VISION FOR CHRIST NAVAJO MINISTRIES	Actual Value (2020 - Residential Cap applied)	\$335,209				
68 N SAIZ LN	Owner Address 2004 SAIZ LN	Assessed	\$111,736				
70 N SAIZ LN	BLOOMFIELD, NM 87413	Exempt	(\$109,939)				
72 N SAIZ LN		Adjusted Taxable Total	\$1,797				
2004 N SAIZ LN		Tax Area: 6INRS M	lill Levy: 29.549000				
Tax Area 6INRS - District 6IN Residential		Type Actual Assess	ed Acres SQFT				
Legal Summary SWNW OF SEC 14 29 11 17 ACRES WATER IN BK.691 PG.68 LESS 10.61 AC IN BK.1251 PG.315 BK.1655 PG.434			939 22.929 1012802.240 797 6.390 279728.400				
Serial Number							
	Transfers						
	No Transfer Documents						
Tax History	Imag	jes					
Tax Year Taxes	Photo Sketch						
2020 \$563.0							

\$582.56

2019

Account: R0070053

Location	Owner Information	Assessment History					
Parcel Number 2062171500411	Owner Name CASAUS MYRON G	Actual V	alue (202	20)		\$138,684	
Situs Address 2000 N SAIZ LN	Owner Address 2000 SAIZ LANE	Assess	ed			\$46,228	
Tax Area 6INRS - District 6IN Residential	BLOOMFIELD, NM 87413	Тах	Area: 61	NRS Mill L	evy: 29.5	49000	
Legal Summary BEG SW COR NWNW SEC 14 29 11.		Type	Actual	Assessed	Acres	SQFT	
THENCE N89-46E 557.6 FT, N12-28E 67.1 FT, N21-43W 74.3 FT, N45-42W 101.2 FT, N70-33W 270.1 FT, S75-49W 222.9 FT, S0-11W 243.6 FT TO BEG, BK.1585		Taxable	\$138,684	Ball - See - Charles - See	Allow and the second	38329.080	

PG.955 BK.1620 PG.767

Serial Number 13517051AB

Transfers			
No Transfer Documents			
Tax History	Images		
Tax Year Taxes	Photo Sketch		
2020 \$1,512.00 2019 \$1,550.80			

Account: R0070840

Location	Owner Information	Assessment History
Parcel Number 2063171066396 Situs Address 2001 SAIZ LN	Owner Name VAN CAMP NICHOLAS ET AL In Care Of Name CERNY MARILOU	Actual Value (2020 - Residential Cap applied) \$52,723
Tax Area 6INNR - District 6IN Non-Residential Legal Summary NE 152911 BK.102 PG.392, 393, 394	Owner Address VIA SOMAINI NO 9 6900 LUGANO	Assessed \$17,574 Tax Area: 6INRS Mill Levy: 29.549000
1/3 INT BK.843 PG.394 DC 78 104 LESS 2.23 AC BK.1033 PG.585 LESS 77.77 AC TO 6IN 1/3 INT TO	SWITZERLAND	Type Actual Assessed Acres SQFT
UNION BANK AND TRUST COMPANY BK.1307 PG.917 BK.1437 PG.758 BK.1478 PG.682 BK.1513 PG.502		Taxable \$52,723 \$17,574 80.000 3484800.000

BK.1513 PG.743 Serial Number

 Transfers

 No Transfer Documents

 Images

 Tax Year
 Taxes

 2020
 \$2,793.28
 Photo

 2019
 \$2,799.44
 Images

Harvest Four Corners, LLC P.O. Box 217 Bloomfield, NM 87413 Phone: 505/632-4600 Fax: 505/209632-4782 harvestmidstream.com

CERTIFIED MAIL 7011 3500 0001 5644 4964

March 5, 2021

Myron G Casaus 2000 Saiz Lane Bloomfield, NM 87413

Dear Madam or Sir,

Harvest Four Corners, LLC (Harvest) announces its application submittal to the New Mexico Environment Department for an air quality permit for the modification of its natural gas plant facility known as the **San Juan Gas Plant (SJGP)**. The expected date of application submittal to the Air Quality Bureau is on or near March 9, 2021.

The facility is located at 1001 Arizona Drive in Bloomfield, NM, approximately 0.5 miles east of the intersection of U.S. Hwy 550 and Arizona Drive, in San Juan County.

The proposed permit modifications include:

- Modification of the gas sweetening unit (amine unit) emission control plumbing, from the thermal oxidizer and back up chemical absorbtion bed in both ethane recovery and rejection modes, to venting to the thermal oxidizer when in ethane recovery mode or to the blowdown/maintenance flare when in ethane rejection mode;

- Modify the basis of the calculated emission limits of the thermal oxidizer using U.S. EPA emission factors (AP-42);

- Add particulate emissions from an existing 3-cell cooling tower to the permit;

- Change fugitive volatile organic compound (VOC) emissions reporting requirements for the cryogenic natural gas liquids (NGL) extraction unit and other affected equipment, from citing specific conditions under New Source Performance Standards (NSPS) subparts VV and KKK, to NMED General Reporting Requirements under permit condition B.110; and

- Change permit language in order to allow Harvest to submit its required semi-annual leak detection and repair (LDAR) reporting under NSPS subpart KKK at the same time as its Title V Operating permit required semi-annual reports.

The worst-case estimated maximum quantities of any regulated air contaminant are presented below in pound per hour (pph) and tons per year (tpy), and may change slightly during the course of the Department's review:

Pollutant:	Pounds per hour	Tons per year
Nitrogen Oxides (NO _X)	259	1,051
Carbon Monoxide (CO)	65	203
Volatile Organic Compounds (VOC) *	12.1	63

Myron G Casaus March 5, 2021 Page 2

Pollutant:	Pounds per hour	Tons per year
Sulfur Dioxide (SO ₂)	4.2	18.4
Particulate Matter (PM)	4.1	17.6
Particulate Matter less than 10 um diameter (PM ₁₀)	3.9	16.7
Particulate Matter less than 2.5 um diameter (PM2.5)	3.7	16.2
Total sum of all Hazardous Air Pollutants (HAPs)	2.3	12.4
Green House Gas Emissions as Total CO2e	n/a	291,771

The standard and maximum operating schedule of the facility will continue to be from midnight to midnight (24 hours a day), seven days a week, 52 weeks a year.

The owner/operator of the facility is Harvest Four Corners, LLC, P.O. Box 217, Bloomfield, NM 87413.

If you have any comments about the construction or operation of this facility, and you want your comments to be made as part of the permit review process, you must submit your comments in writing to this address: Permit Programs Manager; New Mexico Environment Department; Air Quality Bureau; 525 Camino de los Marquez, Suite 1; Santa Fe, New Mexico; 87505-1816; (505) 476-4300; 1 800 224-7009;

https://www.env.nm.gov/aqb/permit/aqb_draft_permits.html. Other comments and questions may be submitted verbally.

Please refer to the company name and facility name, or send a copy of this notice along with your comments, since the Department may have not yet received the permit application. Please include a legible return mailing address with your comments. Once the Department has performed a preliminary review of the application and its air quality impacts, the Department's notice will be published in the legal section of a newspaper circulated near the facility location.

Attención

Este es un aviso de la oficina de Calidad del Aire del Departamento del Medio Ambiente de Nuevo México, acerca de las emisiones producidas por un establecimiento en esta área. Si usted desea información en español, por favor comuníquese con esa oficina al teléfono 505-476-5557.

Sincerely,

Lisa Killion for

Monica Smith Environmental Specialist

Harvest Four Corners LLC P.O. Box 217 Bloomfield, NM 87413

Notice of Non-Discrimination

NMED does not discriminate on the basis of race, color, national origin, disability, age or sex in the administration of its programs or activities, as required by applicable laws and regulations. NMED is responsible for coordination of compliance efforts and receipt of inquiries concerning non-discrimination

Myron G Casaus March 5, 2021 Page 3

requirements implemented by 40 C.F.R. Part 7, including Title VI of the Civil Rights Act of 1964, as amended; Section 504 of the Rehabilitation Act of 1973; the Age Discrimination Act of 1975, Title IX of the Education Amendments of 1972, and Section 13 of the Federal Water Pollution Control Act Amendments of 1972. If you have any questions about this notice or any of NMED's non-discrimination programs, policies or procedures, or if you believe that you have been discriminated against with respect to a NMED program or activity, you may contact: Kathryn Becker, Non-Discrimination Coordinator, NMED, 1190 St. Francis Dr., Suite N4050, P.O. Box 5469, Santa Fe, NM 87502, (505) 827-2855, nd.coordinator@state.nm.us. You may also visit our website at https://www.env.nm.gov/non-employee-discrimination-complaint-page/ to learn how and where to file a complaint of discrimination.

Harvest Four Corners, LLC P.O. Box 217 Bloomfield, NM 87413 Phone: 505/632-4600 Fax: 505/209632-4782 harvestmidstream.com

CERTIFICATE OF MAILING, USPS form 3718

March 5, 2021

Van Camp Nicholas et al Marilou Cerny Via Somaini No. 9 6900 Lugaro Switzerland

Dear Madam or Sir,

Harvest Four Corners, LLC (Harvest) announces its application submittal to the New Mexico Environment Department for an air quality permit for the modification of its natural gas plant facility known as the **San Juan Gas Plant (SJGP)**. The expected date of application submittal to the Air Quality Bureau is on or near March 9, 2021.

The facility is located at 1001 Arizona Drive in Bloomfield, NM, approximately 0.5 miles east of the intersection of U.S. Hwy 550 and Arizona Drive, in San Juan County.

The proposed permit modifications include:

- Modification of the gas sweetening unit (amine unit) emission control plumbing, from the thermal oxidizer and back up chemical absorbtion bed in both ethane recovery and rejection modes, to venting to the thermal oxidizer when in ethane recovery mode or to the blowdown/maintenance flare when in ethane rejection mode;

- Modify the basis of the calculated emission limits of the thermal oxidizer using U.S. EPA emission factors (AP-42);

- Add particulate emissions from an existing 3-cell cooling tower to the permit;

- Change fugitive volatile organic compound (VOC) emissions reporting requirements for the cryogenic natural gas liquids (NGL) extraction unit and other affected equipment, from citing specific conditions under New Source Performance Standards (NSPS) subparts VV and KKK, to NMED General Reporting Requirements under permit condition B.110; and

- Change permit language in order to allow Harvest to submit its required semi-annual leak detection and repair (LDAR) reporting under NSPS subpart KKK at the same time as its Title V Operating permit required semi-annual reports.

The worst-case estimated maximum quantities of any regulated air contaminant are presented below in pound per hour (pph) and tons per year (tpy), and may change slightly during the course of the Department's review:

Van Camp Nicholas et al March 5, 2021 Page 2

Pollutant:	Pounds per hour	Tons per year
Nitrogen Oxides (NO _X)	259	1,051
Carbon Monoxide (CO)	65	203
Volatile Organic Compounds (VOC) *	12.1	63
Sulfur Dioxide (SO ₂)	4.2	18.4
Particulate Matter (PM)	4.1	17.6
Particulate Matter less than 10 um diameter (PM ₁₀)	3.9	16.7
Particulate Matter less than 2.5 um diameter (PM _{2.5})	3.7	16.2
Total sum of all Hazardous Air Pollutants (HAPs)	2.3	12.4
Green House Gas Emissions as Total CO2e	n/a	291,771

The standard and maximum operating schedule of the facility will continue to be from midnight to midnight (24 hours a day), seven days a week, 52 weeks a year.

The owner/operator of the facility is Harvest Four Corners, LLC, P.O. Box 217, Bloomfield, NM 87413.

If you have any comments about the construction or operation of this facility, and you want your comments to be made as part of the permit review process, you must submit your comments in writing to this address: Permit Programs Manager; New Mexico Environment Department; Air Quality Bureau; 525 Camino de los Marquez, Suite 1; Santa Fe, New Mexico; 87505-1816; (505) 476-4300; 1 800 224-7009;

https://www.env.nm.gov/aqb/permit/aqb_draft_permits.html. Other comments and questions may be submitted verbally.

Please refer to the company name and facility name, or send a copy of this notice along with your comments, since the Department may have not yet received the permit application. Please include a legible return mailing address with your comments. Once the Department has performed a preliminary review of the application and its air quality impacts, the Department's notice will be published in the legal section of a newspaper circulated near the facility location.

Attención

Este es un aviso de la oficina de Calidad del Aire del Departamento del Medio Ambiente de Nuevo México, acerca de las emisiones producidas por un establecimiento en esta área. Si usted desea información en español, por favor comuníquese con esa oficina al teléfono 505-476-5557.

Sincerely,

Lisa Killion for

Monica Smith Environmental Specialist

Harvest Four Corners LLC P.O. Box 217 Bloomfield, NM 87413 Van Camp Nicholas et al March 5, 2021 Page 3

Notice of Non-Discrimination

NMED does not discriminate on the basis of race, color, national origin, disability, age or sex in the administration of its programs or activities, as required by applicable laws and regulations. NMED is responsible for coordination of compliance efforts and receipt of inquiries concerning non-discrimination requirements implemented by 40 C.F.R. Part 7, including Title VI of the Civil Rights Act of 1964, as amended; Section 504 of the Rehabilitation Act of 1973; the Age Discrimination Act of 1975, Title IX of the Education Amendments of 1972, and Section 13 of the Federal Water Pollution Control Act Amendments of 1972. If you have any questions about this notice or any of NMED's non-discrimination programs, policies or procedures, or if you believe that you have been discriminated against with respect to a NMED program or activity, you may contact: Kathryn Becker, Non-Discrimination Coordinator, NMED, 1190 St. Francis Dr., Suite N4050, P.O. Box 5469, Santa Fe, NM 87502, (505) 827-2855, nd.coordinator@state.nm.us. You may also visit our website at https://www.env.nm.gov/non-employee-discrimination-complaint-page/ to learn how and where to file a complaint of discrimination.

Harvest Four Corners, LLC P.O. Box 217 Bloomfield, NM 87413 Phone: 505/632-4600 Fax: 505/209632-4782 harvestmidstream.com

CERTIFIED MAIL 7011 3500 0001 5644 4988

March 5, 2021

City Clerk City of Bloomfield 915 N. First Street Bloomfield, NM 87413

Dear Madam or Sir,

Harvest Four Corners, LLC (Harvest) announces its application submittal to the New Mexico Environment Department for an air quality permit for the modification of its natural gas plant facility known as the **San Juan Gas Plant (SJGP)**. The expected date of application submittal to the Air Quality Bureau is on or near March 9, 2021.

The facility is located at 1001 Arizona Drive in Bloomfield, NM, approximately 0.5 miles east of the intersection of U.S. Hwy 550 and Arizona Drive, in San Juan County.

The proposed permit modifications include:

- Modification of the gas sweetening unit (amine unit) emission control plumbing, from the thermal oxidizer and back up chemical absorbtion bed in both ethane recovery and rejection modes, to venting to the thermal oxidizer when in ethane recovery mode or to the blowdown/maintenance flare when in ethane rejection mode;

- Modify the basis of the calculated emission limits of the thermal oxidizer using U.S. EPA emission factors (AP-42);

- Add particulate emissions from an existing 3-cell cooling tower to the permit;

- Change fugitive volatile organic compound (VOC) emissions reporting requirements for the cryogenic natural gas liquids (NGL) extraction unit and other affected equipment, from citing specific conditions under New Source Performance Standards (NSPS) subparts VV and KKK, to NMED General Reporting Requirements under permit condition B.110; and

- Change permit language in order to allow Harvest to submit its required semi-annual leak detection and repair (LDAR) reporting under NSPS subpart KKK at the same time as its Title V Operating permit required semi-annual reports.

The worst-case estimated maximum quantities of any regulated air contaminant are presented below in pound per hour (pph) and tons per year (tpy), and may change slightly during the course of the Department's review:

Pollutant:	Pounds per hour	Tons per year
Nitrogen Oxides (NO_X)	259	1,051
Carbon Monoxide (CO)	65	203

City Clerk, City of Bloomfield March 5, 2021 Page 2

Pollutant:	Pounds per hour	Tons per year
Volatile Organic Compounds (VOC) *	12.1	63
Sulfur Dioxide (SO ₂)	4.2	18.4
Particulate Matter (PM)	4.1	17.6
Particulate Matter less than 10 um diameter (PM ₁₀)	3.9	16.7
Particulate Matter less than 2.5 um diameter (PM2.5)	3.7	16.2
Total sum of all Hazardous Air Pollutants (HAPs)	2.3	12.4
Green House Gas Emissions as Total CO2e	n/a	291,771

The standard and maximum operating schedule of the facility will continue to be from midnight to midnight (24 hours a day), seven days a week, 52 weeks a year.

The owner/operator of the facility is Harvest Four Corners, LLC, P.O. Box 217, Bloomfield, NM 87413.

If you have any comments about the construction or operation of this facility, and you want your comments to be made as part of the permit review process, you must submit your comments in writing to this address: Permit Programs Manager; New Mexico Environment Department; Air Quality Bureau; 525 Camino de los Marquez, Suite 1; Santa Fe, New Mexico; 87505-1816; (505) 476-4300; 1 800 224-7009;

https://www.env.nm.gov/aqb/permit/aqb_draft_permits.html. Other comments and questions may be submitted verbally.

Please refer to the company name and facility name, or send a copy of this notice along with your comments, since the Department may have not yet received the permit application. Please include a legible return mailing address with your comments. Once the Department has performed a preliminary review of the application and its air quality impacts, the Department's notice will be published in the legal section of a newspaper circulated near the facility location.

Attención

Este es un aviso de la oficina de Calidad del Aire del Departamento del Medio Ambiente de Nuevo México, acerca de las emisiones producidas por un establecimiento en esta área. Si usted desea información en español, por favor comuníquese con esa oficina al teléfono 505-476-5557.

Sincerely,

Lisa Killion for

Monica Smith Environmental Specialist

Harvest Four Corners LLC P.O. Box 217 Bloomfield, NM 87413

Notice of Non-Discrimination

NMED does not discriminate on the basis of race, color, national origin, disability, age or sex in the administration of its programs or activities, as required by applicable laws and regulations. NMED is

City Clerk, City of Bloomfield March 5, 2021 Page 3

responsible for coordination of compliance efforts and receipt of inquiries concerning non-discrimination requirements implemented by 40 C.F.R. Part 7, including Title VI of the Civil Rights Act of 1964, as amended; Section 504 of the Rehabilitation Act of 1973; the Age Discrimination Act of 1975, Title IX of the Education Amendments of 1972, and Section 13 of the Federal Water Pollution Control Act Amendments of 1972. If you have any questions about this notice or any of NMED's non-discrimination programs, policies or procedures, or if you believe that you have been discriminated against with respect to a NMED program or activity, you may contact: Kathryn Becker, Non-Discrimination Coordinator, NMED, 1190 St. Francis Dr., Suite N4050, P.O. Box 5469, Santa Fe, NM 87502, (505) 827-2855, nd.coordinator@state.nm.us. You may also visit our website at https://www.env.nm.gov/non-employee-discrimination-complaint-page/ to learn how and where to file a complaint of discrimination.

Return Receipt Fee (Endorsement Required)

Restricted Delivery Fee

Total Postage & Fees

PS Form 3800, August 2006

\$0.

\$

(Endorsement Required)

500

m

LLD7

Sent To

Street, Apt. No.;

City, State, ZIP+4

or PO Box No.

Here

5

03/05/202

SJGP Mar 202

See Reverse for Instruction

AR

202

.00

S'

Native Vision for Christ Navaro Munistries

0.00

Restricted Delivery Fee (Endorsement Required)

Total Postage & Fees

\$0.

\$4

\$

2004 Saiz Ln

Bloomfield, NM 8741

500

m

F

11

n-

Sent To

Street, Apt. No.;

City, State, ZIP+4

or PO Box No.

202Here

JGP Mar 2021

See Reverse for Instructions

5

Colorado Springs, CO 80944

\$0 00

\$0.00

ANTA

P.O. Box 1087

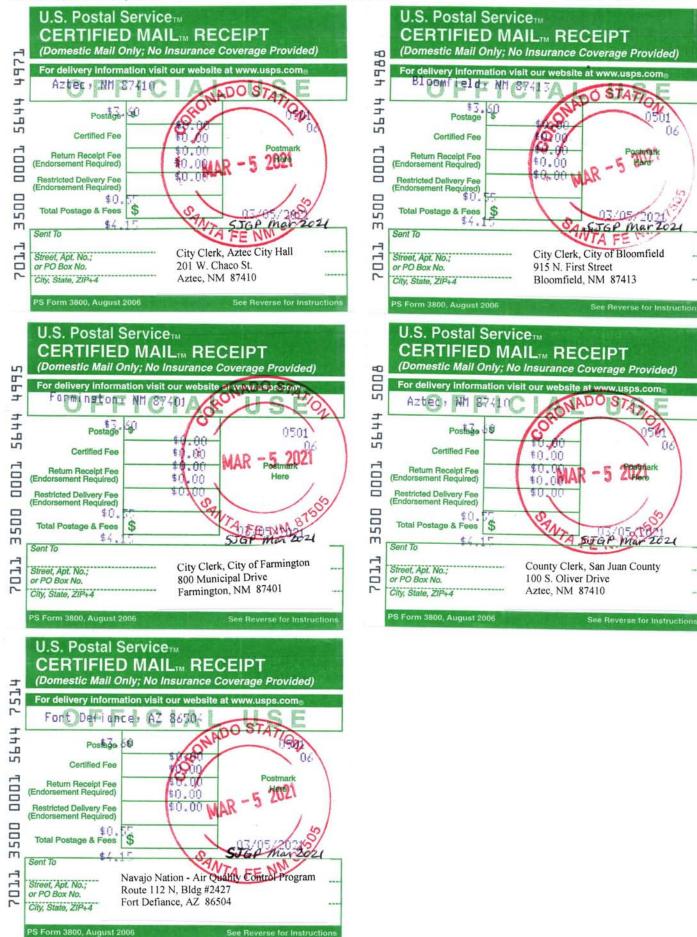
El Paso N

Saved Date: 3/17/2021

Harvest Four Corners, LLC

San Juan Gas Plant

March 2021; Rev.0


01

100

fte

2461

06

Form-Section 9 last revised: 8/15/2011

Saved Date: 3/17/2021

Section 9, Page 5

NOTICE OF AIR QUALITY PERMIT APPLICATION

Harvest Four Corners, LLC (Harvest) announces its application submittal to the New Mexico Environment Department for an air quality permit for the modification of its natural gas plant facility known as the **San Juan Gas Plant (SJGP)**. The expected date of application submittal to the Air Quality Bureau is on or near March 9, 2021.

The facility is located at 1001 Arizona Drive in Bloomfield, NM, approximately 0.5 miles east of the intersection of U.S. Hwy 550 and Arizona Drive, in San Juan County.

The proposed permit modifications include:

Modification of the gas sweetening unit (amine unit) emission control plumbing, from the thermal oxidizer and back up chemical absorbtion bed in both ethane recovery and rejection modes, to venting to the thermal oxidizer when in ethane recovery mode or to the blowdown/maintenance flare when in ethane rejection mode;
 Modification the calculated emission limits of the thermal oxidizer using U.S. EPA emission factors (AP-42);

Add particulate emissions from an existing 3-cell cooling tower to the permit;
Change fugitive volatile organic compound (VOC) emissions reporting requirements for the cryogenic natural gas liquids (NGL)

Change ruguive volatile organic compound (VOC) emissions reporting requirements for the dyogenic natural gas indude (VOC) emissions reporting requirements in the dyogenic natural gas indude (VOC) subparts VV and KKK, to NMED General Reporting Requirements under permit condition B.110; and
 Change permit language in order to allow Harvest to submit its required semi-annual leak detection and repair (LDAR) reporting under NSPS subpart KKK at the same time as its Title V Operating permit required semi-annual reports.

The estimated maximum quantities of any regulated air contaminant will be as follows in pound per hour (pph) and tons per year (tpy) and could change slightly during the course of the Department's review

Pollutant:	Pounds per hour	Tons per year
Nitrogen Oxides (NOx)	259	1,051
Carbon Monoxide (CO)	65	203
Volatile Organic Compounds (VOC)	12.1	63
Sulfur Dioxide (SO2)	4.2	18.4
Particulate Matter (PM)	4.1	17.6
PM 10	3.9	16.7
PM 2.5	3.7	16.2
Total sum of all Hazardous Air Pollutants (HAPs)	2.3	12.4
Green House Gas Emissions as Total CO2e	n/a	291,771

The standard and maximum operating schedules of the facility will be from midnight to midnight, 7 days a week, 52 weeks per year

The owner and/or operator of the Facility is: Harvest Four Corners, LLC, P.O. Box 217, Bloomfield, NM 87413

If you have any comments about the construction or operation of this facility, and you want your comments to be made as part of the permit review process, you must submit your comments in writing to this address: Permit Programs Manager; New Mexico Environment Department; Air Quality Bureau; 525 Camino de los Marquez, Suite 1; Santa Fe, New Mexico; 87505-1816; (505) 476-4300; 1 800 224-7009; https://www.env.nm.gov/aqb/permit/aqb_draft_permits.html. Other comments and questions may be submitted verbally.

Please refer to the company name and site name, or send a copy of this notice along with your comments, since the Department may have not yet received the permit application. Please include a legible return mailing address with your comments. Once the Department has performed a preliminary review of the application and its air quality impacts, the Department's notice will be published in the legal section of a newspaper circulated near the facility location.

General information about air quality and the permitting process can be found at the Air Quality Bureau's web site. The regulation dealing with public participation in the permit review process is 20.2.72.206 NMAC. This regulation can be found in the "Permits" section of this web site.

Attención

Este es un aviso de la oficina de Calidad del Aire del Departamento del Medio Ambiente de Nuevo México, acerca de las emisiones producidas por un establecimiento en esta área. Si usted desea información en español, por favor comuníquese con esa oficina al teléfono 505-476-5557.

Notice of Non-Discrimination

NMED does not discriminate on the basis of race, color, national origin, disability, age or sex in the administration of its programs or activities, as required by applicable laws and regulations. NMED is responsible for coordination of compliance efforts and receipt of inquires concerning non-discrimination requirements implemented by 40 C.F.R. Part 7, including Title VI of the Civil Rights Act of 1964, as amended; Section 504 of the Rehabilitation Act of 1973; the Age Discrimination Act of 1975, Title IX of the Education Amendments of 1972, and Section 13 of the Federal Water Pollution Control Act Amendments of 1972. If you have any questions about this notice or any of NMED's non-discrimination programs, policies or procedures, or if you believe that you have been discriminated against with respect to a NMED program or activity, you may contact: Kathryn Becker, Non-Discrimination Coordinator, NMED, 1190 St. Francis Dr., Suite N4050, P.O. Box 5469, Santa Fe, NM 87502, (505) 827-2855, nd.coordinator@state. nm.us. You may also visit our website at https://www.env.nm.gov/non-employee-discrimination-complaint-page/ to learn how and where to file a complaint of discrimination

DeChambeau putts to victory at Bay Hill

ASSOCIATED PRESS

ORLANDO, Fla. - The long ball helped Bryson DeChambeau outlast Lee Westwood on Sunday to win the Arnold Palmer Invitational, only the key shots were as much with his putter as his driver.

DeChambeau holed a 40-foot birdie putt on the front nine and a 50-foot par putt early on the back nine. He closed it out with a nervy 5-foot par putt for a 1under 71 and a one-shot victory over the 47-year-old Westwood.

It matched the low score of the day. one of only three rounds under par in the toughest final round at Bay Hill in 41 vears.

DeChambeau and Westwood were never separated by more than one shot over the final 15 holes, a fascinating duel

of generations that came down to the last shot.

For the second straight day, DeChambeau revved up thousands of fans on the par-5 sixth hole by smashing driver over the lake and leaving himself 88 yards away on the 565-yard sixth hole. Westwood was 168 vards behind him, and raised both arms to jokingly mimic De-Chambeau's reaction from the day before. They both made birdie.

DeChambeau appeared to be in trouble on the 11th when he narrowly missed going in the water off the tee, caught a plugged lie in the front bunker and gouged it out to 50 feet. He made that for par to stay ahead by one.

Westwood tied him with a 30-foot birdie putt on the par-512th, only to give it back with a three-putt on the 14th. The

tournament turned on the par-5 16th, where it was Westwood who had the advantage.

DeChambeau's drive went up against the lip of a bunker and he had to lay up short of the water. Westwood had 158 yards and hit a poor short iron that came up short of the green. He chipped nicely, except that it rolled out 6 feet by the hole on the lightning-quick greens and he missed the birdie for a chance to tie.

They were tied going to the 18th when DeChambeau hit his most important drive of the day - in the fairway. Westwood's tee shot settled in a divot, and he did well to get it on the green and twoputt from 65 feet. DeChambeau's birdie putt slid by some 5 feet and he shook his arms in celebration when the par putt dropped.

Westwood closed with a 73, not a bad score considering the average of 75.49 was the highest for a final round since 1980.

LPGA Tour

OCALA, Fla. - Austin Ernst won the Drive On Championship on Sunday for her third LPGA Tour title, pulling away to beat fellow former NCAA champion Jennifer Kupcho by five strokes at Golden Ocala.

Tied for the lead with Kupcho after each of the first two rounds and a stroke ahead entering the day, Ernst closed with a 2-under 70 to finish at 15-under 273.

Kupcho, coming off a closing eagle Saturday, had a double bogey and three bogeys in a 74.

SCODEDOADD

SCOREBOARD						
All times Eastern	North Division	3:05 p.m.	Bo Hoag, \$69,285	74-70-71-73-288	Jaclyn Lee 74-71-72-	
	GP W L OT Pts GF GA Toronto 26 18 6 2 38 90 63	Arizona vs. San Francisco at Scottsdale, Ariz., 3:05 p.m.	D. McCarthy, \$69,285 Ian Poulter, \$69,285	72-73-67-76-288 70-73-70-75-288	B. M. Henderson 74-69-74- Lexi Thompson 74-69-74-	217 +1 BOSTON RED SOX - Activated C Kevin
NBA	Winnipeg 24 15 8 1 31 79 69 Edmonton 26 15 11 0 30 83 80	Chicago White Sox vs. L.A. Dodgers at Glendale, Ariz., 3:05 p.m.	Jason Day, \$55,614 P. Harringtn, \$55,614	70-72-68-79-289 70-74-69-76-289	Mariah Stackhouse 69-74-74- Xiyu Lin 72-70-75-	217 +1 Plawecki from the reserve/COVID-19 list.
EASTERN CONFERENCE	Montreal 23 11 6 6 28 78 66 Calgary 25 11 12 2 24 68 76	L.A. Angels vs. Milwaukee at Phoenix, 3:10 p.m.	C. Tringale, \$55,614 B. Wiesbrger, \$55,614		Yu Liu 70-70-77- Georgia Hall 74-72-72-	217 +1 218 +2 Santana on a minor league contract.
Atlantic Division W L Pct GB Philadelphia 24 12 .667 —	Vancouver 28 11 15 2 24 81 93 Ottawa 26 8 17 1 17 70 102	Cincinnati vs. Colorado at Scottsdale, Ariz., 3:10 p.m.	D. Willett, \$55,614 J. Dufner, \$42,381	73-71-68-77-289 74-70-71-75-290	Jane Park 70-76-72- Sarah Kemp 72-72-74-	218 +2 Gatto and Tyler Phillips to Round Rock
Brooklyn 24 12 .667 – Boston 19 17 .528 5	NOTE: Two points for a win, one point for overtime loss. The top four teams in each	Anz., 5.10 p.m.	C. Howell III, \$42,381 K. Kisner, \$42,381	74-72-70-74-290 73-72-67-78-290	Haley Moore 75-71-73- Jenny Shin 74-72-73-	219 +3 National League
New York 19 18 .514 51⁄2	division will qualify for playoffs under this season's temporary realignment.	COLLEGE BASKETBALL	R. MacIntyre, \$42,381 Pat Perez, \$42,381	71-71-76-72-290 75-71-70-74-290	Lindsey Weaver 72-74-73- Sarah Schmelzel 71-74-74-	219 +3 PITTSBURGH PIRATES – Acquired RHP 219 +3 Duane Underwood Jr. from Chicago Cubs
Southeast Division	Saturday's Games	Sunday's Men's Scores	K. Ventura, \$42,381 Doug Ghim, \$42,381	75-70-67-78-290 71-73-65-81-290	Anna Nordqvist 74-70-75- Tiffany Joh 73-71-75-	219 +3 in exchange for INF Shendrik Apostel. 219 +3 Designated PHP Carson Fulmer for
W L Pct GB Miami 18 18 .500 –	N.Y. Islanders 5, Buffalo 2 N.Y. Rangers 6, New Jersey 3	EAST Hofstra 83, Delaware 75	B. Hun An, \$30,287 Talor Gooch, \$30,287	68-74-75-74-291 73-73-71-74-291	Stacy Lewis 71-73-75- Annie Park 71-72-76-	219 +3 219 +3 assignment.
Charlotte 17 18 .486 ½ Atlanta 16 20 .444 2	Pittsburgh 4, Philadelphia 3 Florida 6, Nashville 2	SOUTH	M. Hubbard, \$30,287 M. Laird, \$30,287	71-74-72-74-291 69-67-76-79-291	Cydney Clanton 74-72-74- Wichanee Meechai 73-73-74-	220 +4 RHP Jeremy Jeffress.
Washington 14 20 .412 3 Orlando 13 23 .361 5	Montreal 7, Winnipeg 1 Arizona 5, Minnesota 2	Cincinnati 82, East Carolina 69 Elon 72, James Madison 71	K. Mitchell, \$30,287 Kevin Na, \$30,287	73-71-69-78-291 71-71-76-73-291	Daniela Darquea 72-74-74- Dana Finkelstein 75-70-75-	220 +4 National Hockey League
Central Division W L Pct GB	Vancouver 4, Toronto 2 Anaheim 5, Colorado 4, OT	Liberty 79, North Alabama 75 Tennessee 65, Florida 54	Will Gordon, \$22,832 V. Hovland, \$22,832	72-72-72-76-292 69-68-77-78-292	Laura Davies 75-69-76- Dani Holmqvist 70-76-75-	220 +4 BUFFALO SABRES – Designated D Henri 221 +5 Iokibariu for assignment on the taxi
Milwaukee 22 14 .611 – Chicago 16 18 .471 5	Los Angeles 4, St. Louis 3, OT Edmonton 3, Calgary 2	Winthrop 80, Campbell 53 MIDWEST	Z. Johnson, \$22,832 Danny Lee, \$22,832	74-70-72-76-292 73-71-71-77-292	Eun-Hee Ji 75-70-76- Mi Jung Hur 69-72-80-	221 +5 squad. Recalled C Casey Mittelstady and
Indiana 16 19 .457 5½ Cleveland 14 22 .389 8	Vegas 4, San Jose 0 Dallas 5, Columbus 0	Chicago 75, Drake 65 Iowa 77, Wisconsin 73	M. McNealy, \$22,832 S. Munoz, \$22,832	71-72-72-77-292 68-76-72-76-292	Yealimi Noh 74-72-76- Mina Harigae 74-71-77-	ZZZ TO DOCTON DDUINES Decelled D like
Detroit 10 26 .278 12 WESTERN CONFERENCE	Sunday's Games	Northwestern 79, Nebraska 78	Alex Noren, \$22,832 Chez Reavie, \$22,832	72-71-70-79-292 74-70-73-75-292	AUTO RACING	the taxi squad.
Southwest Division	N.Y. Islanders 5, Buffalo 2 Tampa Bay 6, Chicago 3	SOUTHWEST Baylor 88, Texas Tech 73	T. Duncan, \$21,018 J. Jnwattnnnd, \$21,018		NASCAR Cup Series Pennzoil 4	CHICAGO BLACKHAWKS – Recalled Ds Wyatt Kalynuk and Lucas Carlsson from
W L Pct GB San Antonio 18 14 .563 –	Florida at Carolina, 5 p.m. New Jersey at Boston, 5 p.m.	Houston 67, Memphis 64 FAR WEST	P. Kizzire, \$21,018 P. Rodgers, \$21,018	76-69-73-75-293 73-72-69-79-293	presented by Jiffy Lube	DETROIT RED WINGS – Recalled C Casey
Dallas 18 16 .529 1 Memphis 16 16 .500 2	Washington at Philadelphia, 7 p.m. N.Y. Rangers at Pittsburgh, 7:30 p.m.	Pepperdine 78, Santa Clara 70	B. Todd, \$21,018 E. van Rooyn, \$21,018	74-70-71-78-293 72-74-72-75-293	Sunday At Las Vegas Motor Speedwa	Mittelstady and D Brandon Davidson from the taxi squad.
New Orleans 15 21 .417 5 Houston 11 23 .324 8	Nashville at Dallas, 8 p.m. Ottawa at Calgary, 9:30 p.m.	Sunday's Women's Scores EAST	John Huh, \$20,181 Luke List, \$20,181	74-71-72-77-294 71-72-75-76-294	Las Vegas.	OTTAWA SENATORS – Recalled D Erik Brannstrom from the taxi squad.
Northwest Division W L Pct GB	Florida at Carolina, late New Jersey at Boston, late	American U. 76, Army 56 Boston U. 74, Lafayette 68	S. Stricker, \$20,181 L. Glover, \$19,716	72-71-74-77-294 72-74-72-77-295	Lap length: 1.50 miles (Start position in parentheses)	Designated D Braydon Coburn for assignment on the taxi squad.
Utah 27 9 .750 – Portland 21 14 .600 5½	Washington at Philadelphia, late N.Y. Rangers at Pittsburgh, late	Bucknell 65, Loyola (Md.) 50 Lehigh 75, Holy Cross 57	Doc Redman, \$19,716 Victor Perez, \$19,344	73-73-76-73-295 69-74-78-75-296	1. (3) Kyle Larson, Chevrolet, 267 l points.	BETTING LINE
Denver 21 15 .583 6 Oklahoma City 15 21 .417 12	Nashville at Dallas, late Ottawa at Calgary, late	Maine 67, Albany (NY) 47 Stony Brook 75, MassLowell 55	B. Snedeker, \$19,344 R. Knox, \$19,065	75-71-75-75-296 74-71-73-79-297	2. (10) Brad Keselowski, Ford, 267 3. (14) Kyle Busch, Toyota, 267, 36	, 54.
Minnesota 7 29 .194 20 Pacific Division	Monday's Games	UConn 84, Villanova 39 SOUTH	H. Norlander, \$18,879 R. Fowler, \$18,693	71-75-74-78-298 76-70-76-77-299	4. (6) Denny Hamlin, Toyota, 267, 5. (26) Ryan Blaney, Ford, 267, 46.	
W L Pct GB Phoenix 24 11 .686 –	Vegas at Minnesota, 8 p.m. Arizona at Colorado, 9 p.m.	Louisiana-Lafayette 58, UALR 48 Mercer 60, Wofford 38	LPGA Drive On Champ Sature		6. (4) Martin Truex Jr, Toyota, 267 7. (16) Christopher Bell, Toyota, 26	35. Favorite Line Underdog
L.A. Lakers 24 13 .649 1 L.A. Clippers 24 14 .632 1½	Ottawa at Edmonton, 9 p.m. St. Louis at San Jose, 9 p.m.	NC State 58, Louisville 56	At Golden Ocala Golf a	and Equestrian Club	8. (2) William Byron, Chevrolet, 26 9. (15) Joey Logano, Ford, 267, 30	57, 40. N. Kentucky 1 Oakland
Golden State 19 18 .514 6 Sacramento 14 22 .389 10½	Los Angeles at Anaheim, 10 p.m. Montreal at Vancouver, 10 p.m.	South Carolina 67, Georgia 62 Troy 66, Appalachian St. 63	Orlando Purse: \$1.5		10. (29) Erik Jones, Chevrolet, 267 11. (17) Ricky Stenhouse Jr, Chevro	7, 27. Gonzaga 17½ St. Mary's Ca
Sunday's Games		MIDWEST N. Dakota St. 79, Denver 67	Yardage: 6,52	26; Par: 72	26. 12. (12) Austin Dillon, Chevrolet, 2	National Hockey League
2021 All-Star Game Team Durant vs Team LeBron, late	MLB	W. Illinois 60, UMKC 59 SOUTHWEST	a-amat Third R		13. (8) Chase Elliott, Chevrolet, 26 14. (18) Chris Buescher, Ford, 267,	7, 34. Monday
Monday's Games No games scheduled.	Spring Training Schedule Saturday's Games	Oklahoma 90, Kansas St. 81 Texas 69, TCU 60	Austin Ernst Jennifer Kupcho	67-67-69- 203 -13 67-67-70- 204 -12	15. (19) Ryan Preece, Chevrolet, 2 16. (30) Matt DiBenedetto, Ford, 2	66, 22. Vegas -115 MINNESOTA +105 EDMONTON -245 Ottawa +225
Tuesday's Games No games scheduled.	Minnesota at Boston, ppd. Atlanta at Tampa Bay, ppd.		Albane Valenzuela Patty Tavatanakit	70-73-66-209 -7 70-70-69-209 -7	17. (5) Michael McDowell, Ford, 26	6, 20. Montreal -148 VANCOUVER +138
Wednesday's Games	Pittsburgh 3, N.Y. Yankees 2 N.Y. Mets 6, Houston 1	GOLF	Jenny Coleman Danielle Kang	70-69-70-209 -7 72-70-69-211 -5	18. (13) Ryan Newman, Ford, 266, 19. (7) Kurt Busch, Chevrolet, 266	, 18. St. Louis -147 SAN JOSE +137
Washington at Memphis, 8 p.m. San Antonio at Dallas, 8:30 p.m.	Washington 5, Miami 3 Toronto 7, Philadelphia 1	PGA Tour Arnold Palmer Invitational	Carlota Ciganda In Gee Chun	71-65-75- 211 -5 70-73-69- 212 -4	20. (1) Kevin Harvick, Ford, 266, 1 21. (24) Chase Briscoe, Ford, 266,	16.
NHL	Chicago White Sox 7, Cleveland 0	Scores Sunday	Brittany Altomare Ashleigh Buhai	70-73-69- 212 -4 70-70-72- 212 -4	22. (11) Tyler Reddick, Chevrolet, 23. (21) Ross Chastain, Chevrolet,	266, 14.
East Division	San Diego 2, L.A. Dodgers 1 Kansas City 8, San Francisco 6	At Bay Hill Club and Lodge	Hee Young Park Jennifer Chang	73-72-68- 213 -3 73-71-69- 213 -3	24. (27) Anthony Alfredo, Ford, 26 25. (20) Cole Custer, Ford, 266, 12	. 1954 – The Milwaukee Hawks beat the
GP W L OT Pts GF GA NY Islanders 25 15 6 4 34 73 56	Oakland 1, Seattle 1 Chicago Cubs 3, Milwaukee 1	Orlando, Fla. Purse: \$9.3 million	Jessica Korda Cheyenne Knight	69-75-69- 213 -3 71-70-72- 213 -3	26. (22) Daniel Suarez, Chevrolet, 27. (9) Alex Bowman, Chevrolet, 2	265, 11.Baltimore Bullets twice 64-54 and 65-54,65, 21.in the only doubleheader in NBA history
Washington 23 13 6 4 30 76 75 Boston 21 13 5 3 29 65 53	Colorado 8, L.A. Angels 2 Texas 7, Arizona 6	Yardage: 7,409; Par: 72	Lydia Ko Leona Maguire	69-72-72- 213 -3 69-71-73- 213 -3	28. (23) Bubba Wallace, Toyota, 2 29. (25) Justin Haley, Chevrolet, 2	
Philadelphia 21 12 6 3 27 70 66 Pittsburgh 23 13 9 1 27 72 74	Detroit 6, Baltimore 5 Sunday's Games	Final Round B. DeChmbeau, \$1.674M 67-71-68-71-277	Nelly Korda Jeongeun Lee6	67-70-76- 213 -3 69-77-68- 214 -2	30. (34) BJ McLeod, Ford, 260, 0. 31. (31) Garrett Smithley, Ford, 25	Shoemaker, wins the Santa Anita Derby
NY Rangers 22 10 9 3 23 65 58 New Jersey 20 7 11 2 16 50 66	Pittsburgh 13, Baltimore 1 St. Louis 8, Houston 5	L. Westwood, \$1,013,700 69-71-65-73-278 C. Conners, \$641,700 66-69-71-74-280	Charley Hull Mel Reid	74-70-70- 214 -2 70-74-70- 214 -2	32. (32) Cody Ware, Chevrolet, 25 33. (36) Quin Houff, Chevrolet, 25	9, 0. in the race and by 20 entering the final
Buffalo 23 6 14 3 15 52 75	Detroit 5, Toronto 1 Minnesota 8, Tampa Bay 4	A. Putnam, \$391,375 70-72-69-71-282 Jordan Spieth, \$391,375 70-69-68-75-282	Katherine Kirk Megan Khang	69-72-73- 214 -2 69-72-73- 214 -2	34. (37) Joey Gase, Chevrolet, 25 35. (35) Josh Bilicki, Ford, 252, 2.	
Central Division GP W L OT Pts GF GA Tampa Bay 23 17 4 2 36 83 48	Atlanta 5, Boston 4 N.Y. Yankees 4, Philadelphia 0	R. Werenski, \$391,375 71-69-69-73-282 C. Bezuidenht, \$313,875 70-70-70-73-283	Jaye Marie Green Haeji Kang	68-72-74- 214 -2 73-72-70- 215 -1	36. (38) Timmy Hill, Ford, 246, 0. 37. (33) Corey Lajoie, Chevrolet,	15-round decision over Muhammad Ali at
Florida 23 15 4 4 34 78 66 Carolina 23 16 6 1 33 81 62	Miami 4, N.Y. Mets 4 San Francisco 9, Cincinnati 4	Chris Kirk, \$281,325 71-70-69-74-284 J. Kokrak, \$281,325 68-73-69-74-284	Aditi Ashok Elizabeth Szokol	72-73-70- 215 -1 72-73-70- 215 -1	188, 1. 38. (28) Aric Almirola, Ford, accide	1990 – Kurt Browning becomes the first
Chicago 26 13 8 5 31 82 80 Columbus 26 10 11 5 25 69 85	Colorado 1, Chicago White Sox 0	K. Bradley, \$195,300 69-74-64-78-285 Paul Casey, \$195,300 70-69-72-74-285	Perrine Delacour Caroline Masson	71-74-70- 215 -1 70-75-70- 215 -1	1.	Figure Skating Championships, beating
Nashville 24 10 14 0 20 57 79 Dallas 19 7 8 4 18 53 50	Oakland 9, Cleveland 4 Texas 4, L.A. Dodgers 3	Paul Casey, \$195,300 Fitzptrick, \$195,300 To-69-72-74-285 M. Fitzptrick, \$195,300 Fitzptrick, \$195,300 Fi	Sophia Popov N. K. Madsen Soi Young Kim	70-75-70- 215 -1 74-70-71- 215 -1 73-71-71- 215 -1	NASCAR Driver Rating Formu A maximum of 150 points can be a	ttained 1992 – Ray Floyd, 49, holds off Fred
Detroit 26 7 16 3 17 54 87	Kansas City 4, San Diego 3 Arizona 5, Chicago Cubs 4	C. Hoffman, \$195,300 71-72-67-75-285 Max Homa, \$195,300 70-70-72-73-285 R. McIlroy, \$195,300 66-71-72-76-285	Sei Young Kim Jennifer Song Lindy Duncan	72-70-73- 215 -1 70-72-73- 215 -1 69-73-73- 215 -1	in a race. The formula combines the fo	
West Division GP W L OT Pts GF GA Vegas 21 16 4 1 33 70 45	L.A. Angels 6, Seattle 2 Monday's Games	W. Zalatoris, \$195,300 66-71-72-76-285 H. Matsyma, \$195,300 73-68-72-72-285 H. Matsyma, \$132,525 75-70-69-72-286	Gaby Lopez N. Broch Larsen	69-72-74- 215 -1 72-74-70- 216 E	categories: Wins, Finishes, Finishes, Average Running Positio	n While decades.
St. Louis 25 14 8 3 31 81 79		1. Macoyina, #132,323 13-10-03-12-280	Kristen Gillman	75-70-71- 216 E	on Lead Lap, Average Speed	Under 2015 – Leonardo Mayer beats Joao Souza
	N.Y. Mets vs. Washington at West Palm Beach, Fla., 1:05 p.m.	B. Steele, \$132,525 71-72-71-72-286		71-74-71- 216 F	Green, Fastest Lap, Led Most	Laps, in the longest Davis Cup match ever,
Colorado 22 13 7 2 28 68 55 Minnesota 22 13 8 1 27 69 60		B. Steele, \$132,525 71-72-71-72-286 M. Wallace, \$132,525 70-73-72-71-286 L. Griffin, \$97,557 69-68-73-77-287	Angel Yin Ally Ewing	71-74-71- 216 E 71-73-72- 216 E	Green, Fastest Lap, Led Most Lead-Lap Finish.	winning 7-6 (4), 7-6 (5), 5-7, 5-7, 15-13 to keep Argentina alive against Brazil in their
Colorado 22 13 7 2 28 68 55 Minnesota 22 13 8 1 27 69 60 Los 23 10 8 5 25 68 65 Angeles 3 10 8 5 25 68 65	Beach, Fla., 1:05 p.m. Miami vs. St. Louis at Jupiter, Fla., 1:05 p.m. Oakland vs. Kansas City at Surprise, Ariz.,	B. Steele, \$132,525 71-72-71-72-286 M. Wallace, \$132,525 70-73-72-71-286 L. Griffin, \$97,557 69-68-73-77-287 E. Grillo, \$97,557 71-74-68-74-287 T. Hatton, \$97,557 77-67-66-77-287	Angel Yin Ally Ewing Cristie Kerr Bronte Law	71-74-71- 216 E 71-73-72- 216 E 74-69-73- 216 E 70-73-73- 216 E		 winning 7-6 (4), 7-6 (5), 5-7, 5-7, 15-13 to keep Argentina alive against Brazil in their first round series. Mayer needed 6 hours, 42 minutes to beat Souza, which is also
Colorado221372286855Minnesota221381276960Los231085256865	Beach, Fla., 1:05 p.m. Miami vs. St. Louis at Jupiter, Fla., 1:05 p.m.	B. Steele, \$132,525 71-72-71-72-286 M. Wallace, \$132,525 70-73-72-71-286 L. Griffin, \$97,557 69-68-73-77-287 E. Grillo, \$97,557 71-74-68-74-287	Angel Yin Ally Ewing Cristie Kerr	71-74-71- 216 E 71-73-72- 216 E 74-69-73- 216 E	Lead-Lap Finish.	winning 7-6 (4), 7-6 (5), 5-7, 5-7, 15-13 to keep Argentina alive against Brazil in their first round series. Mayer needed 6 hours.

SPORTS ON TV

Monday, March 8

COLLEGE BASKETBALL (MEN'S) 4 p.m.

CBSSN - Colonial Tournament: TBD, Semifinal, Harrisonburg, Va.

4:30 p.m.

ESPNU - Horizon Tournament: Milwaukee vs. Cleveland St., Semifinal, Indianapolis

5 p.m.

ESPN — Southern Tournament: TBD, Championship, Asheville, N.C. ESPN2 - Sun Belt Tournament: TBD, Championship, Pensacola, Fla.

7 p.m.

ESPN — West Coast Tournament: St. Mary's (Cal) vs. Gonzaga, Semifinal, Las Vegas

7:30 p.m.

CBSSN - Colonial Tournament: TBD, Semifinal, Harrisonburg, Va. ESPN2 - Horizon Tournament: N. Kentucky vs. Oakland, Semifinal, Indianapolis

10 p.m.

ESPN2 - West Coast Tournament: Pepperdine vs. BYU, Semifinal, Las Vegas COLLEGE BASKETBALL WOMEN'S) Noon

ESPNU — Sun Belt Tournament: TBD, Championship, Pensacola, Fla.

6 p.m.

FS1 — Big East Tournament: TBD, Championship, Uncasville, Conn. **MLB BASEBALL**

1 p.m.

MLBN — Spring Training: Chicago White Sox vs. LA Dodgers, Glendale, Ariz.

NHL HOCKEY 6 p.m. NHLN — Vegas at Minnesota **NBAGL BASKETBALL** 11:30 a.m. ESPN2 — Playoffs: Rio Grande Valley Vipers vs. Santa Cruz Warriors, Quarterfinal, Orlando, Fla. 1:45 p.m. ESPN2 — Playoffs: G League Ignite vs. Raptors 905, Quarterfinal, Orlando, Fla. 4 p.m. ESPNEWS — Playoffs: Lakeland Magic vs. Erie Bayhawks, Quarterfinal, Orlando, Fla. 6:15 p.m. ESPNEWS — Playoffs: Austin Spurs vs. Delaware Blue Coats, Quarterfinal, Orlando, Fla. NBCSN — Premier League: Everton at TENNIS

SOCCER (MEN'S) 10:55 a.m.

Chelsea

1 p.m.

TENNIS - Marseille-ATP, Doha-ATP, Santiago-ATP, Dubai-WTA & Guadalajara-WTA Early Rounds **VOLLEYBALL (WOMEN'S)**

5:30 p.m.

FS2 — Athletes Unlimited: Team Edmond vs. Team Lowe, Dallas

8 p.m.

FS1 — Athletes Unlimited: Team Larson vs. Team De La Cruz, Dallas

NOTICE OF AIR QUALITY PERMIT APPLICATION

Harvest Four Corners, LLC (Harvest) announces its application submittal to the New Mexico Environment Department for an air quality permit for the modification of its natural gas plant facility known as the San Juan Gas Plant (SJGP). The expected date of application submittal to the Air Quality Bureau is on or near March 9, 2021.

The facility is located at 1001 Arizona Drive in Bloomfield, NM, approximately 0.5 miles east of the intersection of U.S. Hwy 550 and Arizona Drive, in San Juan County

The proposed permit modifications include:

Modification of the gas sweetening unit (amine unit) emission control plumbing, from the thermal oxidizer and back up chemical absorbtion bed in both ethane recovery and rejection modes, to venting to the thermal oxidizer when in ethane recovery mode or to the blowdown/maintenance flare when in ethane rejection mode;
 Modify the basis of the calculated emission limits of the thermal oxidizer using U.S. EPA emission factors (AP-42);

Add particulate emissions from an existing 3-cell cooling tower to the permit;

Add particulate emissions from an existing 3-cell cooling lower to the permit;
 Change fugitive volatile organic compound (VOC) emissions reporting requirements for the cryogenic natural gas liquids (NGL) extraction unit and other affected equipment, from citing specific conditions under New Source Performance Standards (NSPS) subparts VV and KKK, to NMED General Reporting Requirements under permit condition B.110; and
 Change permit language in order to allow Harvest to submit its required semi-annual leak detection and repair (LDAR) reporting under NSPS subpart KKK at the same time as its Title V Operating permit required semi-annual reports.

The estimated maximum quantities of any regulated air contaminant will be as follows in pound per hour (pph) and tons per year (tpy) and could change slightly during the course of the Department's review

Pollutant:	Pounds per hour	Tons per
Nitrogen Oxides (NOx)	259	1,051
Carbon Monoxide (CO)	65	203
Volatile Organic Compounds (VOC)	12.1	63
Sulfur Dioxide (SO2)	4.2	18.4
Particulate Matter (PM)	4.1	17.6
PM 10	3.9	16.7
PM 25	3.7	16.2
Total sum of all Hazardous Air Pollutants (HAPs)	2.3	12.4
Green House Gas Emissions as Total CO ₂ e	n/a	291,771

The standard and maximum operating schedules of the facility will be from midnight to midnight, 7 days a week, 52 weeks per year The owner and/or operator of the Facility is

Harvest Four Corners, LLC, P.O. Box 217, Bloomfield, NM 87413

If you have any comments about the construction or operation of this facility, and you want your comments to be made as part of the permit review process, you must submit your comments in writing to this address: Permit Programs Manager; New Mexico Environment Department; Air Quality Bureau; 525 Camino de los Marquez, Suite 1; Santa Fe, New Mexico; 87505-1816; (505) 476-4300; 1 800 224-7009; https://www.env.nm.gov/aqb/permit/aqb_draft_permits.html. Other comments and questions may be submitted

Please refer to the company name and site name, or send a copy of this notice along with your comments, since the Department may have not yet received the permit application. Please include a legible return mailing address with your comments. Once the Department has performed a preliminary review of the application and its air quality impacts, the Department's notice will be published in the legal section of a newspaper circulated near the facility location.

General information about air quality and the permitting process can be found at the Air Quality Bureau's web site. The regulation dealing with public participation in the permit review process is 20.2.72.206 NMAC. This regulation can be found in the "Permits" section of this web site.

Attención

Este es un aviso de la oficina de Calidad del Aire del Departamento del Medio Ambiente de Nuevo México, acerca de las emisiones producidas por un establecimiento en esta área. Si usted desea información en español, por favor comuníquese con esa oficina al teléfono 505-476-5557.

Notice of Non-Discrimination

NotED does not discrimination NMED does not discriminate on the basis of race, color, national origin, disability, age or sex in the administration of its programs or activities, as required by applicable laws and regulations. NMED is responsible for coordination of compliance efforts and receipt of inquiries concerning non-discrimination requirements implemented by 40 C.F.R. Part 7, including Title VI of the Civil Rights Act of 1964, as amended; Section 50 of the Rehabilitation Act of 1973; the Age Discrimination Act of 1975, Title LX of the Education Amendments of 1972, and Section 13 of the Federal Water Pollution Control Act Amendments of 1972. If you have any questions about this notice or any of NMED's non-discrimination programs, policies or procedures, or if you believe that you have been discriminated against with respect to a NMED program or activity, you may contact: Kathryn Becker, Non-Discrimination Coordinator, NMED, 1190 St. Francis Dr., Suite N4050, PO. Box 5469, Santa Fe, NM 87502, (505) 827-2855, nd.coordinator@state. mus You may also visit our website at https://www.eny.nm.gov/non-employee-discrimination-complaint-rase/to learn how and nm.us. You may also visit our website at https://www.env.nm.gov/non-employee-discrimination-complaint-page/ to learn how and where to file a complaint of discrimination

NOTICE OF AIR OUALITY PERMIT APPLICATION

Harvest Four Corners, LLC (Harvest) announces its application submit-tal to the New Mexico Environment Department for an air quality permit for the modification of its natural gas plant facility known as the San Juan Gas Plant (SJGP). The expected date of application sub-mittal to the Air Quality Bureau is on or near March 9, 2021.

The facility is located at 1001 Arizona Drive in Bloomfield, NM, approximately 0.5 miles east of the intersection of U.S. Hwy 550 and Arizona Drive, in San Juan County.

The proposed permit modifications include: • Modification of the gas sweetening unit (amine unit) emission con-trol plumbing, from the thermal oxidizer and back up chemical absorbtion bed in both ethane recovery and rejection modes, to venting to the thermal oxidizer when in ethane recovery mode or to

the blowdown/maintenance flare when in ethane rejection mode;
Modify the basis of the calculated emission limits of the thermal oxidizer using U.S. EPA emission factors (AP-42);

Add particulate emissions from an existing 3-cell cooling tower to the permit; • Change fugitive volatile organic compound (VOC) emissions report-

ing requirements for the cryogenic natural gas liquids (NGL) extrac-tion unit and other affected equipment, from citing specific condi-tions under New Source Performance Standards (NSPS) subparts VV

tions under New Source Performance Standards (NSPS) subparts VV and KKK, to NMED General Reporting Requirements under permit condition 8.110; and
Change permit language in order to allow Harvest to submit its required semi-annual leak detection and repair (LDAR) reporting under NSPS subpart KKK at the same time as its Title V Operating permit required semi-annual reports.

The estimated maximum quantities of any regulated air contaminant will be as follows in pound per hour (pph) and tons per year (tpy) and could change slightly during the course of the Department's review:

Pollutant: Nitrogen Oxides (NOx) Carbon Monoxide (CO) Volatile Organic Compounds	Pounds per hour 259 65	Tons per year 1,051 203
(VOC)	12.1	63
Sulfur Dioxide (SO2)	4.2	18.4
Particulate Matter (PM)	4.1	17.6
PM 10	3.9	16.7
PM 2.5	3.7	16.2
Total sum of all Hazardous Air Pollutants (HAPs) Green House Gas Emissions	2.3	12.4
as Total CO2e	n/a	291,771

The standard and maximum operating schedules of the facility will be from midnight to midnight, 7 days a week, 52 weeks per year The owner and/or operator of the Facility is: Harvest Four Corners, LLC, P.O. Box 217, Bloomfield, NM 87413

If you have any comments about the construction or operation of this facility, and you want your comments to be made as part of the permit review process, you must submit your comments in writing to this address: Permit Programs Manager; New Mexico Environment Department; Air Quality Bureau; 525 Camino de los Marquez, Suite 1; Santa Fe, New Mexico; 87505-1816; (505) 476-4300; 1 800 224-2009: http://www.onv.on.gou/add/permit/addrest/btml

7) Santa Fe, New Mexico, 87505-1816; (505) 476-4300; 1 800 224-7009; https://www.env.nm.gov/aqb/permit/aqb_draft_permits.html. Other comments and questions may be submitted verbally. Please refer to the company name and site name, or send a copy of this notice along with your comments, since the Department may have not yet received the permit application. Please include a legi-ble return mailing address with your comments. Once the Depart-ment has performed a preliminary review of the application and its ment has performed a preliminary review of the application and its air quality impacts, the Department's notice will be published in the legal section of a newspaper circulated near the facility location.

General information about air quality and the permitting process can be found at the Air Quality Bureau's web site. The regulation dealing with public participation in the permit review process is 20.2.72.206 NMAC. This regulation can be found in the "Permits" section of this web site. Attención

Este es un aviso de la oficina de Calidad del Aire del Departamento del Medio Ambiente de Nuevo México, acerca de las emisiones pro-ducidas por un establecimiento en esta área. Si usted desea teléfono 505-476-5557. Notice of Non-Discrimination

NMED does not discriminate on the basis of race, color, national origin, disability, age or sex in the administration of its programs or ac-tivities, as required by applicable laws and regulations. NMED is re-sponsible for coordination of compliance efforts and receipt of inquisponsible for coordination of compliance efforts and receipt of inqui-ries concerning non-discrimination requirements implemented by 40 C.F.R. Part 7, including Title VI of the Civil Rights Act of 1964, as amended; Section 504 of the Rehabilitation Act of 1973; the Age Dis-crimination Act of 1975, Title IX of the Education Amendments of 1972, and Section 13 of the Federal Water Pollution Control Act Amendments of 1972. If you have any questions about this notice or any of NMED's non-discrimination programs, policies or procedures, er, Non-Discrimination Coordinator, NMED, 1190 St. Francis Dr., Suite N4050, P.O. Box 5469, Santa Fe, NM 87502, (505) 827-2855, nd.coordi nator@state.nm.us. You may also visit our website at https://www.en v.nm.gov/non-employee-discrimination-complaint-page/ to learn how and where to file a complaint of discrimination. #4629812 Daily Times 3/8/2021

STATE OF NEW MEXICO COUNTY OF SAN JUAN ELEVENTH JUDICIAL DISTRICT COURT

NO. D-1116-CV-2019-01563

IDAHO HOUSING AND FINANCE ASSOCIATION, Plaintiff,

ENOCH Z. GABHART, ALEXANDRIA M. GABHART, NEW MEXICO MORTGAGE FINANCE AUTHORITY Defendants.

NOTICE OF SALE

NOTICE IS HEREBY GIVEN that the undersigned Special Master will on April 15, 2021 at 2:00PM, outside the front entrance of the Eleventh Judicial District Court, City of Aztec, County of San Juan, State of New Mexico, sell and convey to the highest bidder for cash all the right, title, and interest of the above-named defendants in and to the following described real estate located in said County and State: Lot 6A, of the RIO VISTA P.U.D. SUBDIVISION NO. 4, in the City of Earmington San Juan County Mayico as chours

Lot 6A, of the RIO VISTA P.U.D. SUBDIVISION NO. 4, in the City of Farmington, San Juan County, New Mexico, as shown on the replat of said subdivision filed for record March 11, 1986.

The address of the real property is 2809 Eastridge Court, Farmington, NM 87401. Plaintiff does not represent or warrant that the stated street address is the street address of the described property; if the street address does not match the legal description, then the property being sold herein is the property more particularly described above, not the property located at the street address; any prospective purchaser at the sale is given notice that it should verify the location and address of the property being sold. Said sale will be made pursuant to the judgment entered on January 26, 2021 in the above entitled and numbered cause, which was a suit to foreclose a mortgage held by the above Plaintiff and wherein Plaintiff was adjudged to have a lien against the above-described real estate in the sum of \$184,697.43 plus interest from October 1, 2020 to the date of sale at the rate of 4.750% per annum, the costs of sale, including the Special Master's fee, publication costs, and Plaintiff's costs expended for taxes, insurance, and keeping the property in good repair. Plaintiff has the right to bid at such sale and submit its bid verbally or in writing. The Plaintiff may apply all or any part of its judgment to the purchase price in lieu of cash.

At the date and time stated above, the Special Master may postpone the sale to such later date and time as the Special Master may specify. NOTICE IS FURTHER GIVEN that this sale may be subject to a

NOTICE IS FURTHER GIVEN that this sale may be subject to a bankruptcy filing, a pay off, a reinstatement or any other condition that would cause the cancellation of this sale. Further, if any of these conditions exist, at the time of sale, this sale will be null and void, the successful bidder's funds shall be returned, and the Special Master and the mortgagee giving this notice shall not be liable to the successful bidder for any damages.

NOTICE IS FURTHER GIVEN that the real property and improvements concerned with herein will be sold subject to any and all patent reservations, easements, all recorded and unrecorded liens not foreclosed herein, and all recorded and unrecorded special assessments and taxes that may be due. Plaintiff and its attorneys disclaim all responsibility for, and the purchaser at the sale takes the property subject to, the valuation of the property by the County Assessor as real or personal property, affixture of any mobile or manufactured home to the land, deactivation of title to a mobile or manufactured home on the property, if any, environmental contamination on the property, if any, and zoning violations concerning the property, if any. NOTICE IS FURTHER GIVEN that the purchaser at such sale

NOTICE IS FURTHER GIVEN that the purchaser at such sale shall take title to the above-described real property subject to rights of redemption.

Dated: February 10, 2021.

Marnarot I ako

Classifieds

To advertise, visit: classifieds.dailv-times.com

- Classifieds Phone: 505.564.4566
- Classifieds Email: classifieds@daily-times.com Public Notices/Legals Email: legals@daily-times.com
 - VISA MARKAN DISC VER

All classified ads are subject to the applicable rate card, copies of which are available from our Advertising Dept. All ads are subject to approval before publication. The Farmington Daily Times reserves the right to edit, refuse, reject, classify or cancel any ad at any time. Errors must be reported in the first day of publication. The Farmington Daily Times shall not be liable for any loss or expense that results from an error in or omission of an advertisement. No refunds for early cancellation of order.

Stuff all kinds of things. **Miscellaneous** Memory Garden section A lot 196, spaces 5 & 6, lot 210, space 12 \$1,700 ea. 719-597-4067 Wanted to Buy Mr. Baseball Coming to New Mexico Buying Sports Cards & Memorabilia 203-767-2407 **Real Estate** omes starting fresh.

Assorted

SCAFFOLD CARPENTER ERECTORS Seeking qualified scaffold erectors at APS 4 Corners Power plant in Farmington, NM. Work ongoing through April, schedules will be 10 hours or more and OT is to be expected. Experience is preferred but training opportunities are Mobile Home lot for sale or rent available in Farmington; also 7 acres in Bloomfield, sale/rent. Owner will finance, 505-793-0313

Workers interested sho

Carpenters Local 1319 at 505-268-4389

Careers

obs

new beginnings.

Genera

TO BOOK YOUR REAL ESTATE **CLASSIFIED AD**

Contact your local real estate sales representative today

public notices/legals email: legals@daily-times.com or call: 505.564.4566

Legal Notices

Acreage

LEGAL NOTICE FR: Farmington Mini Storage 501 E. Ánimas Farmington, NM 87401 505-327-5946

Public Notices

Geneva Martinez 83 CR 2595 Aztec, NM 87410 (2 Units)

Aaron M. Crandall 818 N. Watson Ave Farmington, NM 87401

Wilford Descheenie 301 S. Wagoner Farmington, NM 87401

Noreen G. Kazhe 510 N. Wall Ave. Apt. 12 Farmington, NM 87401

Jarrod D. Friedenberg 288 Animas View Dr. #59 Durango CO 81301

Jimmy Juarez 904 Hollywood St. Apt. B Farmington, NM 87401

Fayth L. Cage 15 Rd 1634 Farmington, NM 87401

Adrianna J. Johnson

Legal Notices 1175 Hines Rd. #6

Farmington, NM 87401 Nehemiah B. Yazzie PO Box 178

Red Valley, AZ 86544 Anthony R. Montoya 1507 N. Chaco Ave. Farmington, NM 87401

Kendrea L. Werito PO Box 1642 Fruitland, NM 87416

Patience A. Williams PO Box 325 La Plata, NM 87418

Dolan M. Aakre PO Box 103 Flora Vista, NM 87415

Sandie A. Badonie PO Box 649 Farmington, NM 87499

Marcello Roanhorse Gayla Sam PO Box 7843 Newcomb, NM 87455

Marion S. Ahmed PO Box 5311 Farmington, NM 87499 (2 units)

Legal Notices

Careers

obs

new beginnings.

2 General

Terry M. Toledo PO Box 2494 Kirtland NM 87417

Sylvia Vandever 2809 Parque Del Norte Apt.

Farmington, NM 87401

Adriena Natani PO Box 2698 Farmington, NM 87499

Christine B. Mercado 1416 S. Butler Farmington, NM 87401

Notice is hereby given that those listed will have personal property sold or otherwise disposed of to satisfy a lien of past due rent and other related charges. The sale will be held at 9:00 a.m. on Thursday, April 22, 2021. The location of the sale will be 501 E. Animas with units also at 400 N. Vine & 1090 W. Murray in Farmington, NM. The sale of the property is subject to the Occupant redeeming the lien prior to the sale. #4629989, Dail March 8, 15, 2021 Daily Times,

Legal Notices

PLANNING & ZONING COMMISSION NOTICE OF PUBLIC HEARING

Notice is hereby given that the following agenda item will be presented to the Planning & Zoning Commis-sion of the City of Farmington, New Mexico. of

Petition No. PP 20-59 - a re-quest from Mike Smith, property owner, represent-ed by Johnson Mapping and Survéying, for a preliminary plan review of a six-lot subdivision in Tier 2 of the Planning & Platting Jurisdiction of the City of Farmington. Property is located in Flora Vista, and unincorporated city within San Juan County.

Project Updates - discussion regarding updates to the Planning and Zoning Com-mission regarding current and upcoming development within the City within the City.

Pursuant to the provisions of Section 3-21-6, New Mexico Statutes Annotated, 1978 Compilation, notice is hereby given that items listLegal Notices

ed above will be considered at the regularly scheduled Public Hearing of the Plan-ning and Zoning Commis-sion of the City of Farmington on <u>Thursday</u>, <u>March 25, 2021 at 3:00 p.m.</u> in the City Council Chambers at City Hall, 800 Municipal Drive, Farmington, New Mexico through Zoom, a virtual platform. All persons of interest are invited to at-tend via Zoom and shall have an opportunity to be heard. Please call (505) 599-1282 to obtain the Zoom meeting ID and password.

Elizabeth Sandoval Administrative Assistant #4632684, Daily Times, Mar 8, 2021

REQUEST FOR PROPOSAL FOR: Roof replacement for all Shiprock Associated

Schools Inc. Buildings Shiprock Associated Schools, Inc. (SASI) P.O. Box 1809 Shiprock, New Mexico 87420

SASI is requesting proposals from qualified vendors to provide the best quality

Legal Notices

products and customer servce for roof replacement for all Shiprock Associated Schools Inc. campus buildings and maintenance/repair for Shiprock Associated schools Inc. campus build-ings on a three year contract. Navajo preference will be applied in accordance to Navajo Business Regulatory Act. Additional information related to this RFP is availa-ble at SASI website: www.sa sischools.net.

For more information, Con-tact Shaka Rucker, Opera-tions Manager at (505) 635-0350 or Richard Edwards, Executive Director at (505) 716-3831 or Sophina A. Tyler, Business Manager at (505) 860-4734.

Deadline for this proposal is March 12, 2021 5:00 p.m. #4610366, Daily Times, Feb 22 - March 11, 2021

Harvest Four Corners, LLC (Harvest) announces its application submittal to the New Mexico Environment Department for an air quality permit for the modification of its natural gas plant facility known as the San Juan Gas Plant (SJGP). The expected date of application submittal to the Air Quality Bureau is on or near March 9, 2021.

The facility is located at 1001 Arizona Drive in Bloomfield, NM, approximately 0.5 miles east of the intersection of U.S. Hwy 550 and Arizona Drive, in San Juan County.

The proposed permit modifications include: • Modification of the gas sweetening unit (amine unit) emission con-trol plumbing, from the thermal oxidizer and back up chemical absorbtion bed in both ethane recovery and rejection modes, to venting to the thermal oxidizer when in ethane recovery mode or to the blowdown/maintenance flare when in ethane rejection mode;
Modify the basis of the calculated emission limits of the thermal

oxidizer using U.S. FPA emission factors (AP-42) Add particulate emissions from an existing 3-cell cooling tower to

the permit;

 Change fugitive volatile organic compound (VOC) emissions reporting requirements for the cryogenic natural gas liquids (NGL) extrac-tion unit and other affected equipment, from citing specific condi-tions under New Source Performance Standards (NSPS) subparts VV and KKK, to NMED General Reporting Requirements under permit condition B 110: and

 Change permit language in order to allow Harvest to submit its re-quired semi-annual leak detection and repair (LDAR) reporting under NSPS subpart KKK at the same time as its Title V Operating permit re-The estimated maximum quantities of any regulated air contaminant

will be as follows in pound per hour (pph) and tons per year (tpy) and could change slightly during the course of the Department's re-

Pollutant: Nitrogen Oxides (NOx) Carbon Monoxide (CO) Volatile Organic Compounds	Pounds per hour 259 65	Tons per year 1,051 203
(VOC)	12.1	63
Sulfur Dioxide (SO2) Particulate Matter (PM)	4.2 4.1	18.4 17.6
PM 10 PM 2.5	3.9 3.7	16.7 16.2
Total sum of all Hazardous Air Pollutants (HAPs) Green House Gas Emissions	2.3	12.4
as Total CO2e	n/a	291,771

The standard and maximum operating schedules of the facility will be from midnight to midnight, 7 days a week, 52 weeks per year The owner and/or operator of the Facility is: Harvest Four Corners, LLC, P.O. Box 217, Bloomfield, NM 87413

Harvest Four Corners, LLC, P.O. Box 217, Bloomfield, NM 87413 If you have any comments about the construction or operation of this facility, and you want your comments to be made as part of the permit review process, you must submit your comments in writing to this address: Permit Programs Manager; New Mexico Environment Department; Air Quality Bureau; 525 Camino de los Marquez, Suite 1; Santa Fe, New Mexico; 87505-1816; (505) 476-4300; 1 800 224-7009; https://www.env.nm.gov/aqb/permit/aqb_draft_permits.html. Other comments and questions may be submitted verbally. Please refer to the company name and site name, or send a copy of this notice along with your comments. since the Department may

this notice along with your comments, since the Department may have not yet received the permit application. Please include a legi-ble return mailing address with your comments. Once the Depart-ment has performed a preliminary review of the application and its air quality impacts, the Department's notice will be published in the legal section of a newspaper circulated near the facility location.

General information about air quality and the permitting focation. General information about air quality and the permitting process can be found at the Air Quality Bureau's web site. The regulation dealing with public participation in the permit review process is 20.2.72.206 NMAC. This regulation can be found in the "Permits" section of this web site. web site.

Attención

Attención Este es un aviso de la oficina de Calidad del Aire del Departamento del Medio Ambiente de Nuevo México, acerca de las emisiones pro-ducidas por un establecimiento en esta área. Si usted desea información en español, por favor comuníquese con esa oficina al teléfono 505-476-5557.

Notice of Non-Discrimination NMED does not discriminate on the basis of race, color, national ori-gin, disability, age or sex in the administration of its programs or ac-tivities, as required by applicable laws and regulations. NMED is re-sponsible for coordination of compliance efforts and receipt of inquisponsible for coordination of compliance efforts and receipt of inqui-ries concerning non-discrimination requirements implemented by 40 C.F.R. Part 7, including Title VI of the Civil Rights Act of 1964, as amended; Section 504 of the Rehabilitation Act of 1973; the Age Dis-crimination Act of 1975, Title IX of the Education Amendments of 1972, and Section 13 of the Federal Water Pollution Control Act Amendments of 1972. If you have any questions about this notice or any of NMED's non-discrimination programs, policies or procedures, or if you believe that you have been discriminated against with re-spect to a NMED program or activity, you may contact: Kathryn Beck-

er, Non-Discrimination Coordinator, NMED, 1190 St. Francis Dr., Suite N4050, P.O. Box 5469, Santa Fe, NM 87502, (505) 827-2855, nd.coordi nator@state.nm.us. You may also visit our website at https://www.en v.nm.gov/non-employee-discrimination-complaint-page/ how and where to file a complaint of discrimination. learn #4629812 Daily Times 3/8/2021

> STATE OF NEW MEXICO COUNTY OF SAN JUAN ELEVENTH JUDICIAL DISTRICT COURT

> > NO. D-1116-CV-2019-01563

IDAHO HOUSING AND FINANCE ASSOCIATION, Plaintiff

NOCH Z. GABHART, ALEXANDRIA M. GABHART, NEW MEXICO MORTGAGE FINANCE AUTHORITY Defendants.

NOTICE OF SALE

NOTICE IS HEREBY GIVEN that the undersigned Special Mas-ter will on April 15, 2021 at 2:00PM, outside the front entrance of the Eleventh Judicial District Court, City of Aztec, County of San Juan, State of New Mexico, sell and convey to the highest bidder for cash all the right, title, and interest of the above-named defendants in and to the following described real estate located in said County and State:

Lot 6A, of the RIO VISTA P.U.D. SUBDIVISION NO. 4, in the City of Farmington, San Juan County, New Mexico, as shown on the replat of said subdivision filed for record March 11, 1986.

The address of the real property is 2809 Eastridge Court, Farmington, NM 87401. Plaintiff does not represent or warrant that the stated street address is the street address of the described property; if the street address does not match the legal description, then the property being sold herein is the property more particularly described above, not the property located at the street address; any prospective pur-chaser at the sale is given notice that it should verify the location and address of the property being sold. Said sale will be made pursuant to the judgment entered on January 26, 2021 in the above entitled and numbered cause, which was a suit to foreclose a mortgage held by the above Plaintiff and wherein Plaintiff was adjudged to have a lien against the above-described real estate in the sum of \$184,697.43 plus interest from October 1, 2020 to the date of sale at the rate of 4.750% per annum, the costs of sale, including the Special Master's fee, publication costs, and Plaintiff's costs expended for taxes, insurance, and keeping the property in good repair. Plaintiff has the right to bid at such sale and submit its bid verbally or in writing. The Plaintiff may apply all or any part of its judgment to the purchase price in lieu of cash.

At the date and time stated above, the Special Master may postpone the sale to such later date and time as the Special Master may specify.

NOTICE IS FURTHER GIVEN that this sale may be subject to a bankruptcy filing, a pay off, a reinstatement or any other condition that would cause the cancellation of this sale. Further, if any of these conditions exist, at the time of sale, this sale will be null and void, the successful bidder's funds shall be returned, and the Special Master and the mortgagee giving this notice shall not be liable to the successful bidder for any damages. NOTICE IS FURTHER GIVEN that the real property and im-

provements concerned with herein will be sold subject to any and all patent reservations, easements, all recorded and unrecorded liens not foreclosed herein, and all recorded and unrecorded special assessments and taxes that may be due. Plaintiff and its attorneys disclaim all responsibility for, and the purchaser at the sale takes the property subject to the valuation of the property by the County Assessor as real or personal property, affixture of any mobile or manufactured home to the land, deactivation of title to a mobile or manufactured home on the property, if any, environmental contamination on the property, if any, and zoning viola-NOTICE IS FURTHER GIVEN that the purchaser at such sale

shall take title to the above-described real property subject to rights of redemption.

Dated: February 10, 2021. Margaret Lake Special Master

Legal Notices Legal Notices

STATE OF NEW MEXICO COUNTY OF SAN JUAN ELEVENTH JUDICIAL DISTRICT COURT No. D-1116-CV-2020-00923 LAKEVIEW LOAN SERVICING, LLC., Plaintiff,

UNKNOWN HEIRS, DEVISEES OR LEGATEES OF RANDY BARON ELLIOTT, DECEASED, Defendant.

NOTICE OF SALE

NOTICE IS HEREBY GIVEN that on March 31, 2021, at the hour of 12:30 PM, the undersigned Special Master, or his designee, will, at the front entrance of the San Juan County Courthouse, at 851 Andrea Dr., Farmington, NM 87401, sell all of the rights, title, and interests of the above-named Defendant(s), in and to the hereinafter described real property to the highest bidder for cash. The property to be sold is located at 8 and 8A Rd. 4380, Blanco, New Mexico 87412,

and is more particularly described as follows: Lot 25 And 26, of the LAS VEGAS De SAN JUAN SUBDIVI-SION, San Juan County, New Mexico, as shown on the Plat of said Subdivision filed for record July 10, 1969,

including a 2006 Solitaire, Vehicle Identification No. DMH2190NFB, (hereinafter the "Property"). If there is a conflict between the legal description and the street address, the legal description shall control.

The foregoing sale will be made to satisfy a foreclosure judgment rendered by this Court in the above-entitled and numbered cause on January 15, 2021, being an action to foreclose a mortgage on the Property. Plaintiff's judgment is in the amount of \$147,990.12, and the same bears interest at the rate of 3.625% per annum, accruing at the rate of \$14.70 per diem. The Court reserves entry of final judgment against Defendant(s), Unknown Heirs, Devisees or Legatees of Randy Baron Elliott, Deceased, for the amount due after foreclosure sale, including interest, costs, and fees as may be assessed by the Court. Plaintiff has the right to bid at the foregoing sale in an amount equal to its judgment, and to submit its bid either verbally or in writing. Plaintiff may apply all or any part of its judgment to the purchase price in lieu of cash.

In accordance with the Court's decree, the proceeds of sale are to be applied first to the costs of sale, including the Special Master's fees, and then to satisfy the above-described judgment, including interest, with any remaining balance to be paid unto the registry of the Court in order to satisfy any future adjudication of priority lienholders.

NOTICE IS FURTHER GIVEN that in the event that the Property is not sooner redeemed, the undersigned Special Master will, as set forth above, offer for sale and sell the Property to the highest bidder for cash or equivalent, for the purpose of satisfying, in the adjudged order of priorities, the judgment and decree of foreclosure described herein, together with any additional costs and attorney's fees, including the advertisement and publication for the foregoing sale, and, reasonable receiver and Special Master's fees in an amount to be fixed by the Court. The amount of the judgof sale in the amount of \$2,366.70, for a total judgment of \$150.356.82.

The foregoing sale may be postponed and rescheduled at the discretion of the Special Master, and is subject to all taxes, utility liens and other restrictions and easements of record, and subject to a one (1) month right of redemption held by the Defendant(s) upon entry of an order approving sale, an order of the Court approving the terms and conditions of sale.

Witness my hand this 11th day of February, 2020. /s/ David Washburn DAVID WASHBURN, Special Master 8100 Wyoming Blvd NE Suite M-4, Box 272 Albuquerque, NM 87113 Telephone: (505) 318-0300 E-mail: sales@nsi.legal #4600870, Daily Times, Feb. 15, 22; Mar. 1, 8, 2021

NOTICE

Harvest Corners LLC announces its intent to apply to the New Mexico Environment Department (NMED) an air quality permit modification for its natural gas plant facility known as the **San Juan Gas Plant**. The expected date of application submittal to the Air Quality Bureau is on or near March 9, 2021.

The facility is located at 1001 Arizona Drive in Bloomfield, NM, approximately 0.5 miles east of the intersection of U.S. Hwy 550 and Arizona Drive, in San Juan County. The following permit modifications are proposed:

- Modification of the gas sweetening unit (amine unit) emission control plumbing, from the thermal oxidizer and back up chemical absorbtion bed in both ethane recovery and rejection modes, to venting to the thermal oxidizer when in ethane recovery mode or to the blowdown/maintenance flare when in ethane rejection mode;
- Modify the basis of the calculated emission limits of the thermal oxidizer using U.S. EPA emission factors (AP-42);
- Add particulate emissions from an existing 3-cell cooling tower to the permit;
- Change fugitive volatile organic compound (VOC) emissions reporting requirements for the cryogenic natural gas liquids (NGL) extraction unit and other affected equipment, from citing specific conditions under New Source Performance Standards (NSPS) subparts VV and KKK, to NMED General Reporting Requirements under permit condition B.110; and
- Change permit language in order to allow Harvest to submit its required semi-annual leak detection and repair (LDAR) reporting under NSPS subpart KKK at the same time as its Title V Operating permit required semi-annual reports.

The estimated maximum quantities of any regulated air contaminant are presented below in pound per hour (pph) and tons per year (tpy), and may change slightly during the course of the Department's review:

Pollutant:	Pounds per hour	Tons per year
Nitrogen Oxides (NO _X)	259	1,051
Carbon Monoxide (CO)	65	203
Volatile Organic Compounds (VOC)	12.1	63
Sulfur Dioxide (SO ₂)	4.2	18.4
Particulate Matter (PM)	4.1	17.6
Particulate Matter less than 10 um diameter (PM_{10})	3.9	16.7
Particulate Matter less than 10 um diameter (PM _{2.5})	3.7	16.2
Total sum of all Hazardous Air Pollutants (HAPs)	2.3	12.4
Green House Gas Emissions as Total CO ₂ e	n/a	291,771

The standard and maximum operating schedule of the facility will continue to be midnight to midnight (24 hours a day), seven days a week, 52 weeks a year.

The owner and/or operator of the facility is: Harvest Four Corners, LLC, P.O. Box 217, Bloomfield, NM 87413

If you have any comments about the construction or operation of this facility, and you want your comments to be made as part of the permit review process, you must submit your comments in writing to this address: Permit Programs Manager; New Mexico Environment Department; Air Quality Bureau; 525 Camino de los Marquez, Suite 1; Santa Fe, New Mexico; 87505-1816; (505) 476-4300; 1 800 224-7009; https://www.env.nm.gov/aqb/permit/aqb_draft_permits.html. Other comments and questions may be submitted verbally.

Please refer to the company name and site name, or send a copy of this notice along with your comments, since the Department may have not yet received the permit application. Please include a legible return mailing address with your comments. Once the Department has performed a preliminary review of the application and its air quality impacts, the Department's notice will be published in the legal section of a newspaper circulated near the facility location.

General information about air quality and the permitting process can be found at the Air Quality Bureau's web site. The regulation dealing with public participation in the permit review process is 20.2.72.206 NMAC. This regulation can be found in the "Permits" section of this web site.

Attención

Este es un aviso de la oficina de Calidad del Aire del Departamento del Medio Ambiente de Nuevo México, acerca de las emisiones producidas por un establecimiento en esta área. Si usted desea información en español, por favor comuníquese con esa oficina al teléfono 505-476-5557.

Notice of Non-Discrimination

NMED does not discriminate on the basis of race, color, national origin, disability, age or sex in the administration of its programs or activities, as required by applicable laws and regulations. NMED is responsible for coordination of compliance efforts and receipt of inquiries concerning non-discrimination requirements implemented by 40 C.F.R. Part 7, including Title VI of the Civil Rights Act of 1964, as amended; Section 504 of the Rehabilitation Act of 1973; the Age Discrimination Act of 1975, Title IX of the Education Amendments of 1972, and Section 13 of the Federal Water Pollution Control Act Amendments of 1972. If you have any questions about this notice or any of NMED's non-discrimination programs, policies or procedures, or if you believe that you have been discriminated against with respect to a NMED program or activity, you may contact: Kathryn Becker, Non-Discrimination Coordinator, NMED, 1190 St. Francis Dr., Suite N4050, P.O. Box 5469, Santa Fe, NM 87502, (505) 827-2855, nd.coordinator@state.nm.us. You may also visit our website at https://www.env.nm.gov/non-employee-discrimination-complaint-page/ to learn how and where to file a complaint of discrimination.

2021

Date

General Posting of Notices – Certification

I, <u>Monica Smith</u>, the undersigned, certify that on **3/11/2021**, I posted a true and correct copy of the attached Public Notice in the following publicly accessible and conspicuous places in the **Bloomfield** of **San Juan** County, State of New Mexico on the following dates:

1.	Facility entrance	03/11/2021
2.	Bloomfield Post Office	03/11/2021
3.	Blanco Post Office	03/11/2021
4.	Aztec Post Office	03/11/2021

Signed this <u>11</u> day of <u>March</u>, <u>2021</u>.

Signature

Printed Name

<u>Environmental Specialist - Harvest Four Corners, LLC</u> Title PSA submitted in online form March 17, 2021 to https://radiodurango.com/public-service-announcements/

FOUR CORNERS BROADCASTING

KIQX+KIOP+KKDC+KRSJ

101.3FM

930AM 93.3 FM 100.5FM

Send a Public Service Announcement

Name	submitted by L Killion, Cirrus Consulting, 505-466-1790
Organization	on behalf of Harvest Four Corners
Date and day (Example: Tuesday, April 25th, 2018)	Application to NMED on/near Mar. 25
Time	Business hours M-F, 8 AM - 5 PM
Location	See PSA below
Event contact person	See PSA below
Phone number	See PSA below

Untitled Notice of Air Quality Permit Application. Harvest Four Corners, LLC, located at 1755 Arroyo Drive in Bloomfield, New Mexico (87413), announces its intent to apply to the New Mexico Environment Department for a modification to its air quality permit for its natural gas processing facility known as the San Juan Gas Plant, located at 1001 Arizona Drive in Bloomfield, San Juan County, about 1/2 mile east of the intersection of Arizona Drive with U.S. Highway 550.

The proposed permit modifications include:

- Modification of the gas sweetening unit (amine unit) emission control plumbing, from the thermal oxidizer and back up chemical absorbtion bed in both ethane recovery and rejection modes, to venting to the thermal oxidizer when in ethane recovery mode or to the blowdown/maintenance flare when in ethane rejection mode;

- Modify the basis of the calculated emission limits of the thermal oxidizer using U.S. EPA emission factors;
- Add particulate emissions from an existing 3-cell cooling tower to the permit;

- Change fugitive volatile organic compound emissions reporting requirements for the cryogenic natural gas liquids extraction unit and other affected equipment, from citing specific conditions under New Source Performance Standards subparts VV and KKK, to NMED General Reporting Requirements under permit condition B.110; and

- Change permit language in order to allow Harvest to submit its required semi-annual leak detection and repair reporting under NSPS subpart KKK at the same time as its Title V Operating permit required semi-annual reports.

On March 11, 2021, public notices were posted at the following locations:

* San Juan Gas Plant Entrance

- * Aztec Post Office, Aztec, NM 87410
- * Blanco Post Office, Blanco, NM 87412
- * Bloomfield Post Office, Bloomfield, NM 87413

Questions and comments regarding this notice may be directed to the

Program Manager, New Source Review section of the New Mexico Environment Department Air Quality Bureau,

525 Camino de los Marquez, Suite 1

Santa Fe, New Mexico, 87505-1816

Phone: (505) 476-4300 /

Fax: (505) 476-4375

Submittal of Public Service Announcement - Certification

I, Lisa Killion , the undersigned, certify that on March 17, 2021, I submitted a public service announcement to Four Corners Broadcasting (KIQX 101.3 FM, KIUP 930 AM, KKDC 93.3 FM, KRSJ 100.5 FM) that serves San Juan and Rio Arriba Counties in the State of New Mexico, in which the source is or is proposed to be located; and that Four Corners **Broadcasting DID NOT RESPOND.**

Signed this <u>18th</u> day of <u>March</u>, <u>2021</u>.

_____ sa Killion

Signature

<u>3/18/2021</u> Date

Lisa Killion Printed Name

Cirrus Consulting, LLC (Consultant) Title {APPLICANT OR RELATIONSHIP TO APPLICANT}

Section 10

Written Description of the Routine Operations of the Facility

<u>A written description of the routine operations of the facility</u>. Include a description of how each piece of equipment will be operated, how controls will be used, and the fate of both the products and waste generated. For modifications and/or revisions, explain how the changes will affect the existing process. In a separate paragraph describe the major process bottlenecks that limit production. The purpose of this description is to provide sufficient information about plant operations for the permit writer to determine appropriate emission sources.

In operation, a 15,000 horsepower (hp) inlet compression turbine (Unit 1) boosts the low-pressure inlet gas stream pressure. This compressed gas combines with the high-pressure inlet gas stream and is routed to an inlet separator for removal of free liquids. Gas from the inlet separator is split into two streams (for processing in two parallel trains) and is dehydrated by molecular sieve dehydration beds (two beds per train) to remove water prior to cryogenic processing. In each train, one dehydration bed is in service while the other is being regenerated. For regeneration, a slipstream of gas is taken from the inlet separator, compressed by a regeneration compressor, and then heated by regeneration heaters (Units 8 and 13). The heated gas passes through the wet dehydration bed to remove the water. The gas stream is then re-injected into the inlet stream.

The dehydrated gas is then refrigerated in the cryogenic plants to approximately -100 °F by a series of heat exchangers using a propane refrigeration system. Free liquids are then removed in the high-pressure cold separator. Condensed liquids are fed to the demethanizer; pressurized vapors are fed to the turboexpander where a near isentropic expansion reduces pressure and temperature and delivers shaft work to the recompressor for partial recompression of residue gas, recovering some of the energy expended in compressing the gas.

In the demethanizer in each train, ethane, propane, butane, and condensate (EPBC) are liquefied. EPBC is transferred to either the deethanizer or to a pipeline for delivery to customers for further processing and fractionation. The cold methane residue stream off the demethanizer is warmed through a series of heat exchangers (which cool gas streams for processing) prior to recompression by one of two 15,000 hp residue compressors (Units 2 & 3) and delivery to customers by pipeline. Note that the inlet and residue compressors, Units 1, 2, & 3, have Engelhard oxidation catalytic converters which reduce CO emissions. In the deethanizer process, the ethane/propane (EP) stream recovered from the deethanizer tower may be condensed and combined with the EPBC product stream from the cryogenic plants or compressed and injected into the residue gas stream. The deethanizer bottoms, a propane-butane-condensate (PBC) blend, are routed via pipeline to customers or sent to temporary pressurized storage.

Before shipping, the EPBC is routed to an amine contactor for CO2 removal. Vent gas from amine system regeneration (CO2 and H2S) is routed to a sulfur removal system (Thermal Oxidizer, Unit 15) in ethane recovery mode or to the flare system in ethane rejection mode. CO2 and the remaining H2S (approximately <10 ppm or less) removed from the EPBC via the amine contactor are released to the atmosphere after being controlled by either the thermal oxidizer or the backup flare system. After CO2 removal, the EPBC is routed through a desiccant system to remove any remaining entrained water. A natural gas fired heater (Unit 12) is used to regenerate the desiccant.

All liquid hydrocarbon product storage is pressurized. Several atmospheric tanks containing liquids with a vapor pressure less than ten millimeters of mercury (mmHg) are insignificant, as are the few atmospheric storage tanks which emit less than one ton per year (tpy).

Electricity used at the San Juan Gas Plant is generated by four natural gas fired (using only pipeline quality sweet natural gas), 3735 hp Solar Centaur turbines (Units 4, 5, 6, and 7).

In the event of an emergency or for maintenance, some or all of the facility piping may be blown down for safety reasons. In addition, the shutdown of turbines involves the purging of gas contained within the equipment. With the exception of the six PSVs, all blowdown and emergency shutdown emissions are routed to a staged flare system, consisting of two flares (Units 9 and 16). Non-routine emissions from the Demethanizers are vented to the atmosphere.

Section 11

Source Determination

Source submitting under 20.2.70, 20.2.72, 20.2.73, and 20.2.74 NMAC

Sources applying for a construction permit, PSD permit, or operating permit shall evaluate surrounding and/or associated sources (including those sources directly connected to this source for business reasons) and complete this section. Responses to the following questions shall be consistent with the Air Quality Bureau's permitting guidance, <u>Single Source Determination Guidance</u>, which may be found on the Applications Page in the Permitting Section of the Air Quality Bureau website.

Typically, buildings, structures, installations, or facilities that have the same SIC code, that are under common ownership or control, and that are contiguous or adjacent constitute a single stationary source for 20.2.70, 20.2.72, 20.2.73, and 20.2.74 NMAC applicability purposes. Submission of your analysis of these factors in support of the responses below is optional, unless requested by NMED.

A. Identify the emission sources evaluated in this section (list and describe):

B. Apply the 3 criteria for determining a single source:

<u>SIC</u> <u>Code</u>: Surrounding or associated sources belong to the same 2-digit industrial grouping (2-digit SIC code) as this facility, <u>OR</u> surrounding or associated sources that belong to different 2-digit SIC codes are support facilities for this source.

□ Yes ⊠ No

<u>Common</u> <u>Ownership</u> or <u>Control</u>: Surrounding or associated sources are under common ownership or control as this source.

🖾 Yes 🗆 🗆 No

<u>Contiguous or Adjacent</u>: Surrounding or associated sources are contiguous or adjacent with this source.

⊠ Yes □ No

C. Make a determination:

- □ The source, as described in this application, constitutes the entire source for 20.2.70, 20.2.72, 20.2.73, or 20.2.74 NMAC applicability purposes. If in "A" above you evaluated only the source that is the subject of this application, all "**YES**" boxes should be checked. If in "A" above you evaluated other sources as well, you must check **AT LEAST ONE** of the boxes "**NO**" to conclude that the source, as described in the application, is the entire source for 20.2.70, 20.2.72, 20.2.73, and 20.2.74 NMAC applicability purposes.
- ☑ The source, as described in this application, <u>does not</u> constitute the entire source for 20.2.70, 20.2.72, 20.2.73, or 20.2.74 NMAC applicability purposes (A permit may be issued for a portion of a source). The entire source consists of the following facilities or emissions sources (list and describe):

San Juan Gas Plant, Blanco A Compressor Station, and Blanco C&D Compressor Station are located on contiguous and/or adjacent properties. San Juan Gas Plant is owned and operated by Harvest Four Corners, LLC and belongs to the Standard Industrial Classification (SIC) Major Group 13 (Oil & Gas Extraction)). Blanco A Compressor Station is owned and operated by El Paso Natural Gas Company and belongs to SIC Major Group 49. The Blanco C&D

Compressor Station is owned by Enterprise Field Services, LLC and operated by Enterprise Products Operating, LLC and belongs to SIC Major Group 13 (Oil & Gas Extraction).

The plants are separate facilities for Title V permitting purposes. Common control of the three plants was established in 1984 through the issuance of a common NSR permit.

Section 12

Section 12.A PSD Applicability Determination for All Sources

(Submitting under 20.2.72, 20.2.74 NMAC)

<u>A PSD applicability determination for all sources</u>. For sources applying for a significant permit revision, apply the applicable requirements of 20.2.74.AG and 20.2.74.200 NMAC and to determine whether this facility is a major or minor PSD source, and whether this modification is a major or a minor PSD modification. It may be helpful to refer to the procedures for Determining the Net Emissions Change at a Source as specified by Table A-5 (Page A.45) of the <u>EPA New Source Review</u> <u>Workshop Manual</u> to determine if the revision is subject to PSD review.

- A. This facility is:
 - **a minor PSD source before and after this modification (if so, delete C and D below).**
 - □ a major PSD source before this modification. This modification will make this a PSD minor source.
 - ⊠ an existing PSD Major Source that has never had a major modification requiring a BACT analysis.
 - □ an existing PSD Major Source that has had a major modification requiring a BACT analysis
 - $\hfill\square$ a new PSD Major Source after this modification.
- B. This facility [is not] one of the listed 20.2.74.501 Table I PSD Source Categories. The "project" emissions for this modification are [not significant]. The "project" emissions listed below [do] only result from changes described in this permit application, thus no emissions from other [revisions or modifications, past or future] to this facility. Also, specifically discuss whether this project results in "de-bottlenecking", or other associated emissions resulting in higher emissions. The project emissions (before netting) for this project are as follows [see Table 2 in 20.2.74.502 NMAC for a complete list of significance levels]:
 - a. NOx: -2.58 TPY
 - b. CO: 4.12 TPY
 - c. VOC: 2.71 TPY
 - d. SOx: -7.15 TPY
 - e. PM: 1.02 TPY
 - f. PM10: 0.08 TPY
 - g. PM2.5: -0.46 TPY
 - h. Fluorides: 0.00 TPY
 - i. Lead: 0.00 TPY
 - j. Sulfur compounds (listed in Table 2): 0.05 TPY
 - k. GHG: 1,098 TPY
- C. Netting [is not required (project is not significant)]
- D. BACT is [not required for this modification, as this application is a minor modification.]
- E. If this is an existing PSD major source, or any facility with emissions greater than 250 TPY (or 100 TPY for 20.2.74.501 Table 1 PSD Source Categories), determine whether any permit modifications are related, or could be considered a single project with this action, and provide an explanation for your determination whether a PSD modification is triggered.

Section 13

Determination of State & Federal Air Quality Regulations

This section lists each state and federal air quality regulation that may apply to your facility and/or equipment that are stationary sources of regulated air pollutants.

Not all state and federal air quality regulations are included in this list. Go to the Code of Federal Regulations (CFR) or to the Air Quality Bureau's regulation page to see the full set of air quality regulations.

Required Information for Specific Equipment:

For regulations that apply to specific source types, in the 'Justification' column **provide any information needed to determine if the regulation does or does not apply**. **For example**, to determine if emissions standards at 40 CFR 60, Subpart IIII apply to your three identical stationary engines, we need to know the construction date as defined in that regulation; the manufacturer date; the date of reconstruction or modification, if any; if they are or are not fire pump engines; if they are or are not emergency engines as defined in that regulation; their site ratings; and the cylinder displacement.

Required Information for Regulations that Apply to the Entire Facility:

See instructions in the 'Justification' column for the information that is needed to determine if an 'Entire Facility' type of regulation applies (e.g. 20.2.70 or 20.2.73 NMAC).

Regulatory Citations for Regulations That Do Not, but Could Apply:

If there is a state or federal air quality regulation that does not apply, but you have a piece of equipment in a source category for which a regulation has been promulgated, you must **provide the low level regulatory citation showing why your piece of equipment is not subject to or exempt from the regulation. For example** if you have a stationary internal combustion engine that is not subject to 40 CFR 63, Subpart ZZZZ because it is an existing 2 stroke lean burn stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions, your citation would be 40 CFR 63.6590(b)(3)(i). We don't want a discussion of every non-applicable regulation, but if it is possible a regulation could apply, explain why it does not. For example, if your facility is a power plant, you do not need to include a citation to show that 40 CFR 60, Subpart OOO does not apply to your non-existent rock crusher.

Regulatory Citations for Emission Standards:

For each unit that is subject to an emission standard in a source specific regulation, such as 40 CFR 60, Subpart OOO or 40 CFR 63, Subpart HH, include the low level regulatory citation of that emission standard. Emission standards can be numerical emission limits, work practice standards, or other requirements such as maintenance. Here are examples: a glycol dehydrator is subject to the general standards at 63.764C(1)(i) through (iii); an engine is subject to 63.6601, Tables 2a and 2b; a crusher is subject to 60.672(b), Table 3 and all transfer points are subject to 60.672(e)(1)

Federally Enforceable Conditions:

All federal regulations are federally enforceable. All Air Quality Bureau State regulations are federally enforceable except for the following: affirmative defense portions at 20.2.7.6.B, 20.2.7.110(B)(15), 20.2.7.11 through 20.2.7.113, 20.2.7.115, and 20.2.7.116; 20.2.37; 20.2.42; 20.2.43; 20.2.62; 20.2.63; 20.2.86; 20.2.89; and 20.2.90 NMAC. Federally enforceable means that EPA can enforce the regulation as well as the Air Quality Bureau and federally enforceable regulations can count toward determining a facility's potential to emit (PTE) for the Title V, PSD, and nonattainment permit regulations.

INCLUDE ANY OTHER INFORMATION NEEDED TO COMPLETE AN APPLICABILITY DETERMINATION OR THAT IS RELEVENT TO YOUR FACILITY'S NOTICE OF INTENT OR PERMIT.

EPA Applicability Determination Index for 40 CFR 60, 61, 63, etc: http://cfpub.epa.gov/adi/

To save paper and to standardize the application format, delete this sentence, and begin your submittal for this attachment on this page.

Example of a Table for STATE REGULATIONS:

STATE REGU- LATIONS CITATION	Title	Applies? Enter Yes or No	Unit(s) or Facility	JUSTIFICATION: (You may delete instructions or statements that do not apply in the justification column to shorten the document.)
20.2.1 NMAC	General Provisions	Yes	Facility	General Provisions apply to Notice of Intent, Construction, and Title V permit applications.
20.2.3 NMAC	Ambient Air Quality Standards NMAAQS	Yes	Facility	20.2.3 NMAC is a State Implementation Plan (SIP) approved regulation that limits the maximum allowable concentration of, Sulfur Compounds, Carbon Monoxide and Nitrogen Dioxide.
20.2.7 NMAC	Excess Emissions	Yes	Facility	If your entire facility or individual pieces of equipment are subject to emissions limits in a permit or numerical emissions standards in a federal or state regulation, this applies. This would not apply to Notices of Intent since these are not permits.
20.2.23 NMAC	Fugitive Dust Control	No for permitted facilities, possible for NOIs	Facility	This regulation is not applicable because the facility is not a fugitive dust source.
20.2.33 NMAC	Gas Burning Equipment - Nitrogen Dioxide	No		This regulation is not applicable because the heat input to external gas burning equipment at the plant does not exceed the trigger level (one million MMBtu/year) established by this regulation.
20.2.34 NMAC	Oil Burning Equipment: NO ₂	No		This regulation is not applicable because the plant does not burn oil.
20.2.35 NMAC	Natural Gas Processing Plant – Sulfur	No		This regulation is not applicable because sulfur emissions from the plant are below the applicability thresholds established in the regulation.
20.2.37 and 20.2.36 NMAC	Petroleum Processing Facilities and Petroleum Refineries	N/A	N/A	These regulations were repealed by the Environmental Improvement Board. If you had equipment subject to 20.2.37 NMAC before the repeal, your combustion emission sources are now subject to 20.2.61 NMAC.
20.2.38 NMAC	Hydrocarbon Storage Facility	No		This regulation is not applicable because the plant does not store hydrocarbons containing hydrogen sulfide, nor is there a tank battery storing hydrocarbon liquids with a capacity greater than or equal to 65,000 gallons.
<u>20.2.39</u> NMAC	Sulfur Recovery Plant - Sulfur	No		This regulation is not applicable because the plant is not equipped with a sulfur recovery plant.
20.2.61.109 NMAC	Smoke & Visible Emissions	Yes	1-13, 15, 16	This regulation is applicable. The turbines, heaters, flares and thermal oxidizer, as well as emergency RICES, are subject to the regulation as they are stationary combustion sources and thus limited to less than 20% opacity (see 20.2.61.109 NMAC).
20.2.70 NMAC	Operating Permits	Yes	Facility	This regulation is applicable because the plant is a major source of NO2 and CO emissions.
20.2.71 NMAC	Operating Permit Fees	Yes	Facility	Yes, this facility is subject to 20.2.70 NMAC and is in turn subject to 20.2.71 NMAC
20.2.72 NMAC	Construction Permits	Yes	Facility	This facility is subject to 20.2.72 NMAC and NSR Permit number: 0613-M10
20.2.73 NMAC	NOI & Emissions Inventory Requirements	Yes	Facility	Emissions Inventory Reporting per 20.2.73.300 NMAC applies. All Title V major sources meet the applicability requirements of 20.2.73.300 NMAC.

STATE REGU- LATIONS CITATION	Title	Applies? Enter Yes or No	Unit(s) or Facility	JUSTIFICATION: (You may delete instructions or statements that do not apply in the justification column to shorten the document.)
20.2.74 NMAC	Permits – Prevention of Significant Deterioration (PSD)	Yes	Facility	This regulation is applicable because the facility is PSD major as defined by: (2) Any stationary source not listed in Table 1 of this Part (20.2.74.501 NMAC) and which emits or has the potential to emit two hundred fifty (250) tons per year or more of any regulated pollutant.
20.2.75 NMAC	Construction Permit Fees	Yes	Facility	This regulation is applicable because the plant is subject to 20.2.72 NMAC and it establishes the fee schedule associated with the filing of construction permits.
20.2.77 NMAC	New Source Performance	Yes	1-9, 13, 14 & 16	This is a stationary source which is subject to the requirements of 40 CFR Part 60.
20.2.78 NMAC	Emission Standards for HAPS	No		This facility emits hazardous air pollutants which are subject to the requirements of 40 CFR Part 61. However, it is a minor source, and as such, there are no affected facilities.
20.2.79 NMAC	Permits – Nonattainment Areas	No		This regulation is not applicable because the plant is neither located in nor has a significant impact on a non attainment area.
20.2.80 NMAC	Stack Heights	Yes	Facility	 20.2.80 NMAC, Stack Heights, establishes guidelines for the selection of an appropriate stack height for the purposes of atmospheric dispersion modeling. Atmospheric dispersion modeling was previously provided in support of the facility's construction permit. An air dispersion modeling is being submitted for this NSR Permit revision application under 20.2.72 NMAC.
20.2.82 NMAC	MACT Standards for source categories of HAPS	Yes	10 & 11	This regulation is applicable because is adopts by reference the federal MACT standards for source categories codified in 40 CFR 63. The plant is subject to 40 CFR 63 Subparts A, ZZZZ as applicable.

Example of a Table for Applicable FEDERAL REGULATIONS (Note: This is not an exhaustive list):

FEDERAL REGU- LATIONS CITATION	Title	Applies? Enter Yes or No	Unit(s) or Facility	JUSTIFICATION:
40 CFR 50	NAAQS	Yes	Facility	Defined as applicable at 20.2.70.7.E.11, Any national ambient air quality standard.
NSPS 40 CFR 60, Subpart A	General Provisions	Yes	1-9, 13, 14 & 16	This regulation applies because 40 CFR 60, Subparts Dc, GG, & KKK apply.

FEDERAL REGU- LATIONS CITATION	Title	Applies? Enter Yes or No	Unit(s) or Facility	JUSTIFICATION:	
NSPS 40 CFR60.40a, Subpart Da	Subpart Da, Performance Standards for Electric Utility Steam Generating Units	No		Not applicable as there are no electric utility steam generating units at this facility (§60.40a(a)).	
NSPS 40 CFR60.40b Subpart Db	Electric Utility Steam Generating Units	No		Not applicable as there are no steam generating units at this facility with a heat input capacity greater than 100 MMBtu/hr (§60.40b(a)).	
40 CFR 60.40c, Subpart Dc	Standards of Performance for Small Industrial- Commercial- Institutional Steam Generating Units	Yes	8, 13	Units 8 and 13 have a heat input greater than the 10 MMBtu/hr threshold and were constructed in 2011, after the June 9, 1989 applicability data (§60.40c(a)). Since these units combust only natural gas, there are no applicable standards, monitoring or reporting requirements. Records of fuel use are maintained in accordance with §60.48c(g)(1) and (2).	
NSPS 40 CFR 60, Subpart Ka	Standards of Performance for Storage Vessels for Petroleum Liquids for which Construction, or Modification Commenced After May 18, 1978, and Prior to July 23, 1984	No		Not applicable as the capacity of the tanks used for petroleum liquids at the facility are less than 151,412 liters (40,000 gallons) (§60.110a(a)).	
NSPS 40 CFR 60, Subpart Kb	Standards of Performance for Volatile Organic Liquid Storage Vessels (Including Petroleum Liquid Storage Vessels) for Which Construction, Reconstruction, or Modification Commenced After July 23, 1984	No		Not applicable as the only tank with a capacity greater than or equal to 75 cubic meters (19,813 gallons), Unit 29, stores used oil which has a true vapor pressure of less than 15 kPa (§60.110b(b)).	
NSPS 40 CFR 60.330 Subpart GG	Stationary Gas Turbines	Yes	1-7	Units 1-7 have a heat input greater than the 10 MMBtu/hr threshold and were installed in 1986, after the October 3, 1977 applicability date (§60.330(a)).	

FEDERAL REGU- LATIONS CITATION	Title	Applies? Enter Yes or No	Unit(s) or Facility	JUSTIFICATION:	
NSPS 40 CFR 60, Subpart KKK	Leaks of VOC from Onshore Gas Plants	Yes	9, 14 & 16	This regulation is applicable because portions of the gas plant are in wet gas or VOC service and were constructed after January 20, 1984 and before August 23 2011 (§60.630(a)).	
NSPS 40 CFR Part 60 Subpart LLL	Standards of Performance for Onshore Natural Gas Processing : SO ₂ Emissions	No		This regulation is not applicable because although the plant is a natural gas processing plant as defined by the subpart, the facility has a design capacity less than 2 long tons per day of H2S (§60.640(b)).	
NSPS 40 CFR Part 60 Subpart OOOO	Standards of Performance for Crude Oil and Natural Gas Production, Transmission, and Distribution for which construction, modification or reconstruction commenced after August 23, 2011 and before September 18, 2015	No		This regulation is not applicable because the plant does not have equipment covered under the regulation that was constructed, modified or reconstructed after August 23, 2011 and before September 18, 2015 (§60.5365).	
NSPS 40 CFR Part 60 Subpart OOOOa	Standards of Performance for Crude Oil and Natural Gas Facilities for which Construction, Modification or Reconstruction Commenced After September 18, 2015	No		This regulation is not applicable because the plant does not have equipment covered under the regulation that was constructed, modified or reconstructed after September 18, 2015 (§60.5365(a)).	
NSPS 40 CFR 60 Subpart IIII	Standards of performance for Stationary Compression Ignition Internal Combustion Engines	No		This regulation is not applicable because the diesel-fired emergency generator engine (Unit 10) and firewater pump (Unit 11) commenced construction prior to July 11, 2005 (§60.4200(a)(2)).	
NSPS 40 CFR Part 60 Subpart JJJJ	Standards of Performance for Stationary Spark Ignition Internal Combustion Engines	No		This regulation is not applicable because the facility does not utilize spark ignition internal combustion engines (§60.4230(a)).	
NSPS 40 CFR 60 Subpart TTTT	Standards of Performance for Greenhouse Gas Emissions for Electric Generating Units	No		This regulation is not applicable because the plant does not have electric generating units (§60.5509(a)).	

FEDERAL REGU- LATIONS CITATION	Title	Applies? Enter Yes or No	Unit(s) or Facility	JUSTIFICATION:	
NSPS 40 CFR 60 Subpart UUUU	Emissions Guidelines for Greenhouse Gas Emissions and Compliance Times for Electric Utility Generating Units	No		This regulation is not applicable because the plant does not have electric generating units (§60.5710a).	
NSPS 40 CFR 60, Subparts WWW, XXX, Cc, and Cf	Standards of performance for Municipal Solid Waste (MSW) Landfills	No		These regulations are not applicable because the plant is not a municipal solid waste (MSW) landfill.	
NESHAP 40 CFR 61 Subpart A	General Provisions	No		These regulations do not apply because the plant is not a stationary source type under 40 CFR 61.	
NESHAP 40 CFR 61 Subpart E	National Emission Standards for Mercury	No		This regulation does not apply because the plant does not process mercury ore to recover mercury, use mercury chlor-alkali cells to produce chlorine gas and alkali metal hydroxide, and incinerate or dry wastewater treatment plant sludge	
NESHAP 40 CFR 61 Subpart V	National Emission Standards for Equipment Leaks (Fugitive Emission Sources)	No		This regulation does not as the potentially applicable sources are not intended to operate in volatile hazardous air pollutant (VHAP) service as defined by the Part (§61.01(a)).	
MACT 40 CFR 63, Subpart A	General Provisions	Yes	10 & 11	This regulation applies because 40 CFR 63, Subpart ZZZZ applies.	
MACT 40 CFR 63.760 Subpart HH	Oil and Natural Gas Production Facilities	No		This regulation is not applicable because the facility is an area source of HAP and has no affected sources (triethylene glycol dehydrators) (§63.760(b)(2)).	
MACT 40 CFR 63 Subpart HHH		No		This regulation does not apply as the plant is not a natural gas transmission and storage facility as defined by the subpart (§63.1270(a)).	
MACT 40 CFR 63 Subpart DDDDD	National Emission Standards for Hazardous Air Pollutants for Major Industrial, Commercial, and Institutional Boilers & Process Heaters	No		This regulation does not apply as the plant is not a major source of HAP (§63.7480).	
MACT 40 CFR 63 Subpart UUUUU	National Emission Standards for Hazardous Air Pollutants Coal & Oil Fire Electric Utility Steam Generating Unit	No		This regulation does not apply as the plant does not have electric generating unit (§63.9980).	

FEDERAL REGU- LATIONS CITATION	Title	Applies? Enter Yes or No	Unit(s) or Facility	JUSTIFICATION:	
MACT 40 CFR 63 Subpart ZZZZ	National Emissions Standards for Hazardous Air Pollutants for Stationary Reciprocating Internal Combustion Engines (RICE MACT)	Yes	10 & 11	This regulation applies because the plant is an area HAP source equipped with existing stationary RICE (§63.6590(a)(iii)). These units are subject to the emergency stationary RICE provisions of ZZZZ ((§63.6603(a) and Table 2d, paragraphs 4 and 5).	
40 CFR 64	Compliance Assurance Monitoring	Yes	1-3	This regulation applies because the facility operates affected sources. Uncontrolled CO emissions from each of Units 1-3 are major in and of themselves.	
40 CFR 68	Chemical Accident Prevention	Yes	Facility	The facility is an affected facility. An RMP is maintained as required.	
Title IV – Acid Rain 40 CFR 72	Acid Rain	No		This regulation does not apply as the facility is not an acid rain source	
Title IV – Acid Rain 40 CFR 73	Sulfur Dioxide Allowance Emissions	No		This regulation does not apply as the facility is not an acid rain source.	
Title IV-Acid Rain 40 CFR 75	Continuous Emissions Monitoring	No		This regulation does not apply as the facility is not an acid rain source.	
Title IV – Acid Rain 40 CFR 76	Acid Rain Nitrogen Oxides Emission Reduction Program	No		This regulation does not apply as the facility is not an acid rain source.	
Title VI – 40 CFR 82	Protection of Stratospheric Ozone	No	N/A	This regulation is not applicable because the plant does not produce, manufacture, transform, destroy, import, or export ozone-depleting substances; does not maintain or service motor vehicle air conditioning units or refrigeration equipment; and does not sell, distribute, or offer for sale or distribution any product that contains ozone-depleting substances.	

Section 14

Operational Plan to Mitigate Emissions

(Submitting under 20.2.70, 20.2.72, 20.2.74 NMAC)

Title V Sources (20.2.70 NMAC): By checking this box and certifying this application the permittee certifies that it has developed an <u>Operational Plan to Mitigate Emissions During Startups</u>, <u>Shutdowns</u>, <u>and Emergencies</u> defining the measures to be taken to mitigate source emissions during startups, shutdowns, and emergencies as required by 20.2.70.300.D.5(f) and (g) NMAC. This plan shall be kept on site to be made available to the Department upon request. This plan should not be submitted with this application.

- NSR (20.2.72 NMAC), PSD (20.2.74 NMAC) & Nonattainment (20.2.79 NMAC) Sources: By checking this box and certifying this application the permittee certifies that it has developed an <u>Operational Plan to Mitigate Source</u> Emissions During Malfunction, Startup, or Shutdown defining the measures to be taken to mitigate source emissions during malfunction, startup, or shutdown as required by 20.2.72.203.A.5 NMAC. This plan shall be kept on site to be made available to the Department upon request. This plan should not be submitted with this application.
- X Title V (20.2.70 NMAC), NSR (20.2.72 NMAC), PSD (20.2.74 NMAC) & Nonattainment (20.2.79 NMAC) Sources: By checking this box and certifying this application the permittee certifies that it has established and implemented a Plan to Minimize Emissions During Routine or Predictable Startup, Shutdown, and Scheduled Maintenance through work practice standards and good air pollution control practices as required by 20.2.7.14.A and B NMAC. This plan shall be kept on site or at the nearest field office to be made available to the Department upon request. This plan should not be submitted with this application.

Startup and shutdown procedures are performed according to guidelines, which dictate proper procedural sequence to minimize emissions from the facility during such activities.

Equipment located at the plant is equipped with various safety devices that aid in preventing excess emissions to the atmosphere in the event of an operational emergency. In the event of a malfunction, startup, shutdown, or scheduled maintenance in which emission rates from the facility exceed permitted allowables, Harvest will notify the AQB in accordance with 20.2.7 NMAC and the equipment responsible for the exceedance will be repaired as soon as possible.

Section 15

Alternative Operating Scenarios

(Submitting under 20.2.70, 20.2.72, 20.2.74 NMAC)

Alternative Operating Scenarios: Provide all information required by the department to define alternative operating scenarios. This includes process, material and product changes; facility emissions information; air pollution control equipment requirements; any applicable requirements; monitoring, recordkeeping, and reporting requirements; and compliance certification requirements. Please ensure applicable Tables in this application are clearly marked to show alternative operating scenario.

Construction Scenarios: When a permit is modified authorizing new construction to an existing facility, NMED includes a condition to clearly address which permit condition(s) (from the previous permit and the new permit) govern during the interval between the date of issuance of the modification permit and the completion of construction of the modification(s). There are many possible variables that need to be addressed such as: Is simultaneous operation of the old and new units permitted and, if so for example, for how long and under what restraints? In general, these types of requirements will be addressed in Section A100 of the permit, but additional requirements may be added elsewhere. Look in A100 of our NSR and/or TV permit template for sample language dealing with these requirements. Find these permit templates at: https://www.env.nm.gov/aqb/permit/aqb_pol.html. Compliance with standards must be maintained during construction, which should not usually be a problem unless simultaneous operation of old and new equipment is requested.

In this section, under the bolded title "Construction Scenarios", specify any information necessary to write these conditions, such as: conservative-realistic estimated time for completion of construction of the various units, whether simultaneous operation of old and new units is being requested (and, if so, modeled), whether the old units will be removed or decommissioned, any PSD ramifications, any temporary limits requested during phased construction, whether any increase in emissions is being requested as SSM emissions or will instead be handled as a separate Construction Scenario (with corresponding emission limits and conditions, etc.

There are no alternative operating scenarios at the San Juan Gas Plant, as Harvest understands the term.

Section 16 Air Dispersion Modeling

- Minor Source Construction (20.2.72 NMAC) and Prevention of Significant Deterioration (PSD) (20.2.74 NMAC) ambient impact analysis (modeling): Provide an ambient impact analysis as required at 20.2.72.203.A(4) and/or 20.2.74.303 NMAC and as outlined in the Air Quality Bureau's Dispersion Modeling Guidelines found on the Planning Section's modeling website. If air dispersion modeling has been waived for one or more pollutants, attach the AQB Modeling Section modeling waiver approval documentation.
- 2) SSM Modeling: Applicants must conduct dispersion modeling for the total short term emissions during routine or predictable startup, shutdown, or maintenance (SSM) using realistic worst case scenarios following guidance from the Air Quality Bureau's dispersion modeling section. Refer to "Guidance for Submittal of Startup, Shutdown, Maintenance Emissions in Permit Applications (<u>http://www.env.nm.gov/aqb/permit/app_form.html</u>) for more detailed instructions on SSM emissions modeling requirements.
- 3) Title V (20.2.70 NMAC) ambient impact analysis: Title V applications must specify the construction permit and/or Title V Permit number(s) for which air quality dispersion modeling was last approved. Facilities that have only a Title V permit, such as landfills and air curtain incinerators, are subject to the same modeling required for preconstruction permits required by 20.2.72 and 20.2.74 NMAC.

What is the purpose of this application?	Enter an X for each purpose that applies
New PSD major source or PSD major modification (20.2.74 NMAC). See #1 above.	
New Minor Source or significant permit revision under 20.2.72 NMAC (20.2.72.219.D NMAC).	Х
See #1 above. Note: Neither modeling nor a modeling waiver is required for VOC emissions.	
Reporting existing pollutants that were not previously reported.	
Reporting existing pollutants where the ambient impact is being addressed for the first time.	
Title V application (new, renewal, significant, or minor modification. 20.2.70 NMAC). See #3	
above.	
Relocation (20.2.72.202.B.4 or 72.202.D.3.c NMAC)	
Minor Source Technical Permit Revision 20.2.72.219.B.1.d.vi NMAC for like-kind unit	
replacements.	
Other: i.e. SSM modeling. See #2 above.	
This application does not require modeling since this is a No Permit Required (NPR) application.	
This application does not require modeling since this is a Notice of Intent (NOI) application	
(20.2.73 NMAC).	
This application does not require modeling according to 20.2.70.7.E(11), 20.2.72.203.A(4),	
20.2.74.303, 20.2.79.109.D NMAC and in accordance with the Air Quality Bureau's Modeling	
Guidelines.	

Check each box that applies:

- $\hfill\square$ See attached, approved modeling waiver for all pollutants from the facility.
- □ See attached, approved modeling **waiver for some** pollutants from the facility.
- □ Attached in Universal Application Form 4 (UA4) is a **modeling report for all** pollutants from the facility.
- ☑ Attached in UA4 is a **modeling report for some** pollutants from the facility.
- \Box No modeling is required.

A modeling protocol and report are attached.

Air Quality Analysis

Prepared for San Juan Gas Plant

In support of NSR Permit No. 0613-M10-R2

Submitted March 2021

AIR QUALITY ANALYSIS

Contents

EXECUTIVE SUMMARY
Project Identification
Project Description
Air Contaminants Evaluated3
MODEL RESULTS
Preliminary Impacts Analysis
MODELING ANALYSIS APPROACH
Overview
Operating Schedules4
Modeling Scenarios
SITE DESCRIPTION
MODELING PROGRAMS AND DATA SOURCES
Modeling Programs Used
Data Sources Relied Upon6
PROJECT-LEVEL INFORMATION
Control Pathway Options
Project Receptor Grid
SOURCE INFORMATION
Appendix A – Listing of Supporting Electronic Files

EXECUTIVE SUMMARY

Project Identification

Applicant	Harvest Four Corners, LLC Org ID = 13652
Site	San Juan Gas Plant Al ID = 1177
Permit Number	0613-M10-R2
County of Site	San Juan
Air Quality Analysis Contact	Robert Opiela, PE Opiela Consulting Services Email: <u>ceo@opielaconsulting.com</u> Phone: (320) 500-1247
Technical Point of Contact	Carlin Roney, P.E. Clara Vista Environmental, LLC Email: CRoney@clara-vista.com Phone: (281) 460-4283

Project Description

The Harvest Four Corners, LLC San Juan Gas Plant (SJGP) seeks a significant revision to the NSR permit pursuant to NMAC 20.2.72.219D.1. The amine unit at the site is currently represented in NSR Permit 0613-M10-R2 as controlled by the thermal oxidizer (Unit 15) and a backup chemical absorption bed during both ethane recovery or ethane rejection modes. The SJGP is seeking to change the control of emissions from the amine unit so it can now vent to either the thermal oxidizer in ethane recovery mode or the 8" maintenance flare (Unit 16) while in the ethane rejection mode. Therefore, NSR Permit No. 0613-M10-R2 needs to be revised to reflect the change in control to the flare for the amine unit during the ethane rejection mode.

This application also seeks to update and correct for erroneous emission factors from the thermal oxidizer (Unit 15) that were submitted over 20 years ago by the previous owner, ConocoPhillips. The factors were updated to AP-42 factors as the original basis from the previous owner was not able to be located.

The proposed project will result in a net emissions increase of carbon monoxide and hydrogen sulfide and a net emissions decrease in nitrogen dioxide and sulfur dioxide. Though there would be a net decrease in nitrogen dioxide and sulfur dioxide emissions, the project proposes a decrease at Unit 15 and increase at Unit 16.

This AQA includes the list of air contaminants evaluated (see Table 1), the analysis methodology, the programs used, and input data used to perform the analysis.

Air Contaminants Evaluated

Table 1. Air Quality Standards/Guidelines Evaluated – SILs

Air Contaminant	Standard Name	Standard Value µg/m3
Carbon Monoxide	CO 1-HR SIL	2,000
Carbon Monoxide	CO 8-HR SIL	500
hydrogen sulfide	H2S 1-HR NMSIL	1
Nitrogen Dioxide	NO2 1-HR SIL	7.5
Nitrogen Dioxide	NO2 ANNUAL SIL	1
Sulfur Dioxide	SO2 1-HR SIL	7.8
Sulfur Dioxide	SO2 24-HR SIL	5
Sulfur Dioxide	SO2 3-HR SIL	25
Sulfur Dioxide	SO2 ANNUAL SIL	1

MODEL RESULTS

The model results presented below demonstrate that the operations at the SJGP site will be in compliance with all applicable federal NAAQS and state of New Mexico ambient air quality standards.

Air Contaminant	Avg Time	Scenario	GLCmax µg/m3	SIL Value µg/m3	Compliance
Carbon Monoxide	1-HR	1-HR	6.43992	2,000	YES
Carbon Monoxide	8-HR	8-HR	3.07475	500	YES
hydrogen sulfide	1-HR	1-HR	0.0535	1	YES
Nitrogen Dioxide	1-HR	1-HR	0.0186	7.5	YES
Nitrogen Dioxide	ANNUAL	ANNUAL	-0.00006	1	YES
Sulfur Dioxide	1-HR	1-HR	2.10684	7.8	YES
Sulfur Dioxide	24-HR	24-HR	0.35212	5	YES
Sulfur Dioxide	3-HR	3-HR	1.57359	25	YES
Sulfur Dioxide	ANNUAL	ANNUAL	-0.00017	1	YES

Preliminary Impacts Analysis

Table 2. Modeling Results Summary for Criteria Pollutants Preliminary Impacts Analysis

The preliminary impacts analysis shows that the project impact is less than all applicable significant impacts levels (SILs). Therefore, the demonstration of compliance with the NAAQS and NMAAQS is complete.

MODELING ANALYSIS APPROACH

<u>Overview</u>

This project included two emission sources, both represented as POINT sources. The thermal oxidizer (Unit 15) was modeled using its normal operating parameters. The maintenance flare (Unit 16) was

AIR QUALITY ANALYSIS

modeled using default parameters for exit temperature and exit velocity. The effective diameter modeled was calculated using normal operating values for flare gas molecular weight, volumetric flow rate, and lower heating value.

Emission increases at the sources were modeled as positive rates and emission decreases modeled as negative to represent the net change in air quality due to the project.

Building downwash will be considered. The only model option settings (MODELOPT) to be used for this analysis are DFAULT and CONC.

Operating Schedules

The equipment at the site can operate 24-hours per day all days of the year.

Modeling Scenarios

The scenarios to be used for this analysis are listed in Table 3.

Table 3. Modeling Scenarios

Scenario	Scenario Description
1-HR	1-HR average emission rate
8-HR	8-HR averge emission rates
3-HR	3-HR average emission rate
24-HR	24-HR average emission rate
ANNUAL	ANNUAL average emission rate

SITE DESCRIPTION

The Harvest Four Corners, LLC San Juan Gas Plant is located near Bloomfield, San Juan County, New Mexico. Figure 1 depicts the site property line, emission source locations, and building locations for the project and EPA Class I areas. The nearest EPA Class I area to the site is Mesa Verde National Park, located 63 km from the site.

To view an interactive version of the Area Map, navigate to the following URL in your web browser: <u>https://www.google.com/maps/d/edit?mid=1U6bmmyutNjgTP7E2AImhxU0k-DAIH7X4&usp=sharing</u> click on the image below. The data are also contained in the file Harvest Four Corners, LLC San Juan Gas Plant.kml

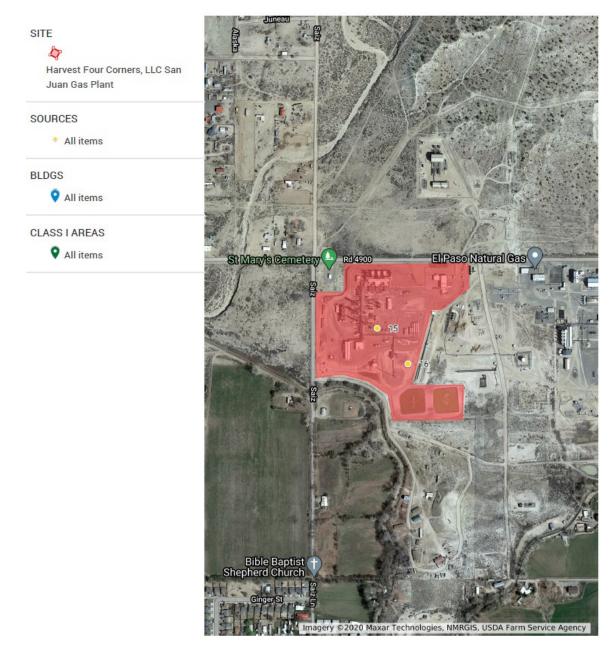


Figure 1. Area Map for Harvest Four Corners, LLC San Juan Gas Plant Site

MODELING PROGRAMS AND DATA SOURCES

Modeling Programs Used

This AQA relied upon the following EPA approved programs:

- AERMOD VERSION 19191
- AERMAP VERSION 18081; for source, receptor, building elevations
- BPIPPRM VERSION 04274; for building downwash parameter calculation
- AERSURFACE VERSION 20060; for surface roughness length calculation

Data Sources Relied Upon

The following data sources were used:

Table 4. Data Sources

Data	Data Source	Data Source Location
Monitors	EPA	https://aqs.epa.gov/aqsweb/airdata/download_files.html#Annual
Design Values	EPA	https://www.epa.gov/air-trends/air-quality-design-values#report
NEI Sites	EPA	https://www.epa.gov/air-emissions-inventories/2014-national- emissions-inventory-nei-data
Class I Areas	EPA	https://www.epa.gov/green-book/green-book-gis-download
Elevations	USGS	https://www.mrlc.gov/viewerjs/
Meteorology	NMAQB	Requested from NMAQB staff
Land Cover	USGS	https://www.mrlc.gov/viewerjs/

The meteorological input files used for this AQA were obtained from the NMAQB and listed in Table 5. The model was executed using concatenated meteorological input files (BLOOMFIELD2015_2019.SFC and BLOOMFIELD2015_2019.PFL) of the five files listed below.

Table 5. Meteorological Input Files

Surface File	Upper Air File	Surface WBAN	Upper Air WBAN	Elev (m)	Year
BLOOMFIELD2015.SFC	BLOOMFIELD2015.PFL	23090	23050	1,618.5	2015
BLOOMFIELD2016.SFC	BLOOMFIELD2016.PFL	23090	23050	1,618.5	2016
BLOOMFIELD2017.SFC	BLOOMFIELD2017.PFL	23090	23050	1,618.5	2017
BLOOMFIELD2018.SFC	BLOOMFIELD2018.PFL	23090	23050	1,618.5	2018
BLOOMFIELD2019.SFC	BLOOMFIELD2019.PFL	23090	23050	1,618.5	2019

Elevation terrain data used for this analysis were obtained from the files listed in Table 6. These data files were used with AERMAP to determine source, building, and receptor elevations and Zhill values for receptors. The raw data for the elevation files were obtained from the USGS. The raw data was then processed using GDAL utilities to convert the data file to GeoTiff format. The GeoTiff files used for this analysis can be obtained from <u>https://nk20.naviknow.com/</u>.

Table 6. Elevation Data Files

File Name	Format	Coordinate System
n37w108.tif	NED	NAD83
n38w108.tif	NED	NAD83
n37w109.tif	NED	NAD83
n38w109.tif	NED	NAD83

PROJECT-LEVEL INFORMATION

Control Pathway Options

Model options were set to DEFAULT and CONC for all model runs.

Project Receptor Grid

The receptor grid, locations where the model calculates estimated concentrations, will be developed using the following criteria:

- Property line; 25-meter maximum spacing along the site property line;
- Tight resolution; 25-meter spacing out to a minimum of 300 meters from the property line;
- Fine resolution: 100-meter spacing for an additional kilometer from the property line;
- Medium resolution: 500-meter spacing for an additional 5 kilometers from the property line;
- Course resolution: 1000-meter spacing for an additional 10 kilometers from the property line.

SOURCE INFORMATION

All on-site sources modeled are listed in Table 7. There are two emission sources included in this analysis.

All source locations coordinates are given in the WGS84/UTM13 coordinate system (EPSG Code 32613 see <u>http://spatialreference.org/ref/epsg/</u>).

Table 7. On-Site Source Locations

Unit	Source ID	Source Type	UTM E (m)	UTM N (m)	Elev (m)	Coordinate System
15	0001	POINT	234944.36	4069184.50	1702.29	WGS84/UTM13N
16	0002	POINT	235018.77	4069093.00	1699.53	WGS84/UTM13N

The emission rates modeled are listed in Table 8. The emission rates are the project increases and decreases in emissions due to the modifications and updated emission rate calculation methodology.

AIR QUALITY ANALYSIS

Unit	Source ID	Air Contaminant	Scenario	Rate	Rate Units	Value Modeled	Value Units
15	0001	Carbon Monoxide	1-HR	8.9000E-01	LB/HR	1.1214E-01	G/SEC
15	0001	Carbon Monoxide	8-HR	8.9000E-01	LB/HR	1.1214E-01	G/SEC
15	0001	Nitrogen Dioxide	1-HR	-6.1000E-01	LB/HR	-7.6860E-02	G/SEC
15	0001	Nitrogen Dioxide	ANNUAL	-2.6700E+00	TPY	-7.6808E-02	G/SEC
15	0001	Sulfur Dioxide	1-HR	-2.7800E+00	LB/HR	-3.5028E-01	G/SEC
15	0001	Sulfur Dioxide	24-HR	-2.7800E+00	LB/HR	-3.5028E-01	G/SEC
15	0001	Sulfur Dioxide	3-HR	-2.7800E+00	LB/HR	-3.5028E-01	G/SEC
15	0001	Sulfur Dioxide	ANNUAL	-1.2480E+01	TPY	-3.5901E-01	G/SEC
16	0002	Carbon Monoxide	1-HR	5.0000E-02	LB/HR	6.3000E-03	G/SEC
16	0002	Carbon Monoxide	8-HR	5.0000E-02	LB/HR	6.3000E-03	G/SEC
16	0002	hydrogen sulfide	1-HR	1.0000E-02	LB/HR	1.2600E-03	G/SEC
16	0002	Nitrogen Dioxide	1-HR	2.0000E-02	LB/HR	2.5200E-03	G/SEC
16	0002	Nitrogen Dioxide	ANNUAL	9.0000E-02	TPY	2.5890E-03	G/SEC
16	0002	Sulfur Dioxide	1-HR	1.2100E+00	LB/HR	1.5246E-01	G/SEC
16	0002	Sulfur Dioxide	24-HR	1.2100E+00	LB/HR	1.5246E-01	G/SEC
16	0002	Sulfur Dioxide	3-HR	1.2100E+00	LB/HR	1.5246E-01	G/SEC
16	0002	Sulfur Dioxide	ANNUAL	5.3300E+00	TPY	1.5333E-01	G/SEC

|--|

Both emission sources were represented as POINT sources. The thermal oxidizer (Unit 15) was modeled using its normal operating parameters. The maintenance flare (Unit 16) was modeled using default parameters for exit temperature and exit velocity. The effective diameter modeled was calculated using normal operating values for flare gas molecular weight, volumetric flow rate, and lower heating value.

Table 9. On-Site Point Source parameters in SI and English Units

Unit	Source ID	H (ft)	H (m)	T (°F)	Т (°К)	V (ft/sec)	V (m/sec)	D (ft)	D (m)
15	0001	40	12.2	1,200	922	28.501	8.687	2.999	0.914
16	0002	60	18.3	1,832	1,273.2	65.617	20	2.438	0.743

The effective diameters of flares were calculated based on the following equation:

Deff = SQRT[{4200*(Flow Rate)/(Heat Value)*[1 - (0.0048)*SQRT(Mol. Weight)]}/1000000]

The calculated values and input values to the calculation are listed in Table 10.

Table 10. On-Site Flare Effective Diameter Calculation

EPN	Source ID	Flow Rate MSCFM	Heat Value BTU/SCF	Mol. Weight	Deff (m)
16	0002	0.1547	1052.7	16.04	0.743

AIR QUALITY ANALYSIS

To account for wake effects from buildings and solid structures at the site, building downwash was considered for this analysis. The list of buildings and their properties are listed in Table 11.

Table 11. Building Properties for Downwash

Bldg ID	Tier ID	Elev. (m)	Height (ft)	Height (m)
Tank	1	1702.58	25	7.62

Appendix A – Listing of Supporting Electronic Files

Below is an inventory of electronic files in used in this analysis.

Table A-1. Listing of Model Input Files

File Name	Air Standard	Scenario	Met Year
1050_RUN_001.INP	CO 1-HR SIL	1-HR	2015-2019
1050_RUN_002.INP	CO 8-HR SIL	8-HR	2015-2019
1050_RUN_003.INP	NO2 1-HR SIL	1-HR	2015-2019
1050_RUN_004.INP	NO2 ANNUAL SIL	ANNUAL	2015-2019
1050_RUN_005.INP	SO2 1-HR SIL	1-HR	2015-2019
1050_RUN_006.INP	SO2 3-HR SIL	3-HR	2015-2019
1050_RUN_007.INP	SO2 24-HR SIL	24-HR	2015-2019
1050_RUN_008.INP	SO2 ANNUAL SIL	ANNUAL	2015-2019
1050_RUN_009.INP	H2S 1-HR NMSIL	1-HR	2015-2019

Table A-2. Listing of Model Output (Result) Files

File Name	Parent File	Air Standard	Scenario	Met Year
1050_RUN_001.MAX	1050_RUN_001.INP	CO 1-HR SIL	1-HR	2015-2019
1050_RUN_001.PLT	1050_RUN_001.INP	CO 1-HR SIL	1-HR	2015-2019
1050_RUN_002.MAX	1050_RUN_002.INP	CO 8-HR SIL	8-HR	2015-2019
1050_RUN_002.PLT	1050_RUN_002.INP	CO 8-HR SIL	8-HR	2015-2019
1050_RUN_003.MAX	1050_RUN_003.INP	NO2 1-HR SIL	1-HR	2015-2019
1050_RUN_003.PLT	1050_RUN_003.INP	NO2 1-HR SIL	1-HR	2015-2019
1050_RUN_004.PLT	1050_RUN_004.INP	NO2 ANNUAL SIL	ANNUAL	2015-2019
1050_RUN_005.MAX	1050_RUN_005.INP	SO2 1-HR SIL	1-HR	2015-2019
1050_RUN_005.PLT	1050_RUN_005.INP	SO2 1-HR SIL	1-HR	2015-2019
1050_RUN_006.MAX	1050_RUN_006.INP	SO2 3-HR SIL	3-HR	2015-2019
1050_RUN_006.PLT	1050_RUN_006.INP	SO2 3-HR SIL	3-HR	2015-2019
1050_RUN_007.MAX	1050_RUN_007.INP	SO2 24-HR SIL	24-HR	2015-2019
1050_RUN_007.PLT	1050_RUN_007.INP	SO2 24-HR SIL	24-HR	2015-2019
1050_RUN_008.PLT	1050_RUN_008.INP	SO2 ANNUAL SIL	ANNUAL	2015-2019
1050_RUN_009.PLT	1050_RUN_009.INP	H2S 1-HR NMSIL	1-HR	2015-2019

Table A-3. Listing of Miscellaneous Supporting Files

File Name	File Description
SanJuan Gas Plant_UA4.docx	Universal Application 4
Harvest Four Corners, LLC San Juan Gas Plant.kml	KML file depicting model input data

Section 17

Compliance Test History

(Submitting under 20.2.70, 20.2.72, 20.2.74 NMAC)

To show compliance with existing NSR permits conditions, you must submit a compliance test history. The table below provides an example.

To save paper and to standardize the application format, delete this sentence and the samples in the Compliance Test History Table, and begin your submittal for this attachment on this page.

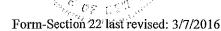
Compliance Test History Table (Modify this sample table to suit your facility)

Unit No.	Test Description	Test Date
1-7	Tested in accordance with EPA test methods for NOx and CO as required by Title V permit P124-R2.	June 8 & 9, 2020

Section 20

Other Relevant Information

<u>Other relevant information</u>. Use this attachment to clarify any part in the application that you think needs explaining. Reference the section, table, column, and/or field. Include any additional text, tables, calculations or clarifying information.


Additionally, the applicant may propose specific permit language for AQB consideration. In the case of a revision to an existing permit, the applicant should provide the old language and the new language in track changes format to highlight the proposed changes. If proposing language for a new facility or language for a new unit, submit the proposed operating condition(s), along with the associated monitoring, recordkeeping, and reporting conditions. In either case, please limit the proposed language to the affected portion of the permit.

N/A

San Juan Gas Processing Plant

Section 22: Certification

Company Name: HEALPEST FELLS CORPERS, LIC. ____, hereby certify that the information and data submitted in this application are true I MONCO, SM and as accurate as possible, to the best of my knowledge and professional expertise and experience. Signed this 24 day of Mayon, 2021, upon my oath or affirmation, before a notary of the State of 3/24(202) Date En uronmentel specialist Scribed and sworn before me on this 21^{+12} day of <u>March</u>. <u>2011</u>. My authorization as a notary of the State of M_{2k} expires on the 1th day of April , 2012. John Burd 3/24/21 ebecon L. Beard Notary's Printed Name a ann tha to l *For Title V applications, the signature must be of the Responsible Official as defined in 20.2.70.7.AE NMAC.

Saved Date: 3/24/2021

Universal Application 4

Air Dispersion Modeling Report

Refer to and complete Section 16 of the Universal Application form (UA3) to assist your determination as to whether modeling is required. If, after filling out Section 16, you are still unsure if modeling is required, e-mail the completed Section 16 to the AQB Modeling Manager for assistance in making this determination. If modeling is required, a modeling protocol would be submitted and approved prior to an application submittal. The protocol should be emailed to the modeling manager. A protocol is recommended but optional for minor sources and is required for new PSD sources or PSD major modifications. Fill out and submit this portion of the Universal Application form (UA4), the "Air Dispersion Modeling Report", only if air dispersion modeling is required for this application submittal. This serves as your modeling report submittal and should contain all the information needed to describe the modeling. No other modeling report or modeling protocol should be submitted with this permit application.

16-	A: Identification	
1	Name of facility:	San Juan Gas Plant
2	Name of company:	Harvest Four Corners, LLC
3	Current Permit number:	0613-M10-R2
4	Name of applicant's modeler:	Robert Opiela, PE (Texas)
5	Phone number of modeler:	(320) 500-1247
6	E-mail of modeler:	ceo@opielaconsulting.com

16-B: Brief									
1	Was a modeling protocol submitted and approved?	Yes□	No⊠						
2	Why is the modeling being done?	Other (describ	e below)						
	Describe the permit changes relevant to the modeling.	Describe the permit changes relevant to the modeling.							
3	This application seeks a significant revision to the NSR permit pursuant to NMAC 20.2.72.2 currently represented in NSR Permit 0613-M10-R2 as controlled by the thermal oxidizer (U chemical absorption bed during both ethane recovery or ethane rejection modes. The SJGP control of emissions from the amine unit so it can now vent to either the thermal oxidizer in the 8" maintenance flare (Unit 16) while in the ethane rejection mode. The emission calculat application are based on continuous operation in both modes, and thus conservative. Theref M10-R2 needs to be revised to reflect the change in control to the flare for the amine unit du mode.	Unit 15) and a b is seeking to cl ethane recover tions provided if fore, NSR Pern	ackup hange the ry mode or in this nit No. 0613-						
	This application also seeks to make the following changes:								

- In the process of preparing this application, Harvest determined that the cooling tower had previously been omitted from authorization in previous applications. Therefore, Harvest requests to authorize particulate emissions from the existing 3 cell cooling tower (Unit CT).
- Update for erroneous emission factors from the thermal oxidizer (Unit 15) that were submitted over 20 years ago by the previous owner, ConocoPhillips. The factors were updated to AP-42 factors as the original basis from the previous owner was not able to be located.
- Change the reporting requirements for A222 (Fugitives) from "The permittee shall comply with all applicable reporting requirements in NSPS Subpart KKK, 40 CFR 60.636 and 60.487, for the cryogenic NGL extraction unit and other affected equipment." to "The permittee shall report in accordance with Section B110." Harvest Four Corners, LLC requests to submit NSPS KKK semi-annual LDAR reports during the Title V semi-annual report and not as a separate report.

4	What geodetic datum was used in the modeling?	WGS84			
5	How long will the facility be at this location?	Permanent			
6	Is the facility a major source with respect to Prevention of Significant Deterioration (PSD)?	Yes⊠	No□		
7	Identify the Air Quality Control Region (AQCR) in which the facility is located	014			
	List the PSD baseline dates for this region (minor or major, as appropriate).				
0	NO2				
8	SO2				
	PM10				
	PM2.5				
	Provide the name and distance to Class I areas within 50 km of the facility (300 km for PSD pern				
9	The nearest EPA Class I area to the site is Mesa Verde National Park, located 63 km from the site.				
10	Is the facility located in a non-attainment area? If so describe below		No⊠		
11	Describe any special modeling requirements, such as streamline permit requirements.				
	NA				

16-C: Modeling History of Facility

-				
				rs, the pollutants modeled, the National Ambient D increments modeled. (Do not include modeling
1	Pollutant	Latest permit and modification number that modeled the pollutant facility-wide.	Date of Permit	Comments
	СО			
	NO ₂			
	SO_2			
	H_2S			
	PM2.5			

1

PM10		
Lead		
Ozone (PSD only)		
NM Toxic Air		
Pollutants		
(20.2.72.402 NMAC)		

16-D: Modeling performed for this application

For each pollutant, indicate the modeling performed and submitted with this application. Choose the most complicated modeling applicable for that pollutant, i.e., culpability analysis assumes ROI and cumulative analysis were also performed.

	Pollutant	ROI	Cumulative analysis	Culpability analysis	Waiver approved	Pollutant not emitted or not changed.
	СО	\boxtimes				
	NO ₂	\boxtimes				
1	SO ₂	\boxtimes				
	H_2S	\boxtimes				
	PM2.5					\boxtimes
	PM10					\boxtimes
	Lead					\boxtimes
	Ozone					\boxtimes
	State air toxic(s) (20.2.72.402 NMAC)					

16	16-E: New Mexico toxic air pollutants modeling										
1	List any New Mexico toxic air pollutants (NMTAPs) from Tables A and B in 20.2.72.502 NMAC that are modeled for this application.										
	-	List any NMTAPs that are emitted but not modeled because stack height correction factor. Add additional rows to the table below, if required.									
2	Pollutant	Emission Rate (pounds/hour)	Emission Rate Screening Level (pounds/hour)	Stack Height (meters)	Correction Factor	Emission Rate/ Correction Factor					
	N/A										

16-	·F: Modeling options		
1	Was the latest version of AERMOD used with regulatory default options? If not explain below.	Yes⊠	No

16-G: Surrounding source modeling

1	Date of surroundi	ng source retrieval	N/A					
	sources modeled		r Quality Bureau was believed to be inaccurate, describe how the changes to the surrounding source inventory were made, use the table					
2	AQB Source ID	QB Source ID Description of Corrections						
N/A								

1-01	16-H: Building and structure downwash							
1	How many buildings are present at the facility?	One (tank) relevant to this project						
	How many above ground storage tanks are present at the facility?	One relevant to this project						
3	Was building downwash modeled for all buildings and	tanks? If not explain why below.	Yes⊠	No□				
4	Building comments							

16-	I: Recept	ors and	modeled	property bou	ndary			
1	 "Restricted Area" is an area to which public entry is effectively precluded. Effective barriers include continuous fencing, continuous walls, or other continuous barriers approved by the Department, such as rugged physical terrain with a steep grade that would require special equipment to traverse. If a large property is completely enclosed by fencing, a restricted area within the property may be identified with signage only. Public roads cannot be part of a Restricted Area. A Restricted Area is required in order to exclude receptors from the facility property. If the facility does not have a Restricted Area, then receptors shall be placed within the property boundaries of the facility. Describe the fence or other physical barrier at the facility that defines the restricted area. 							n a steep restricted area stricted Area
	The site prop	erty is fenced	d.					
2				ccessible roads in the re restricted area?	stricted area.		Yes⊠	No□
3	Are restricted	area boundar	y coordinates ir	cluded in the modeling	files?		Yes⊠	No□
	Describe the re	eceptor grids	and their spacin	ng. The table below may	y be used, adding row	s as need	led.	
4	4 Grid Type Shape Spacing Start distance from restricted area or center of facility center of facility Comments							
	Describe recep	otor spacing a	long the fence	line.				

5	25-meter maximum spacing along the site property line
6	Describe the PSD Class I area receptors. N/A

16	J: Sensitive areas		
1	Are there schools or hospitals or other sensitive areas near the facility? If so describe below. This information is optional (and purposely undefined) but may help determine issues related to public notice.	Yes⊠	No□
	Nearest school, Bloomfield High< is approx 1.25 miles from site		
3	The modeling review process may need to be accelerated if there is a public hearing. Are there likely to be public comments opposing the permit application?	Yes□	No⊠

16-K: Modeling Scenarios

1

Identify, define, and describe all modeling scenarios. Examples of modeling scenarios include using different production rates, times of day, times of year, simultaneous or alternate operation of old and new equipment during transition periods, etc. Alternative operating scenarios should correspond to all parts of the Universal Application and should be fully described in Section 15 of the Universal Application (UA3).

Two scenarios were used, 1-HR, 3-HR, 8-HR, 24-HR and ANNUAL. All input data identical. Used to manage files

9 W/h...9 1 . 1

2	Which sce	nario prod	uces the hi	ghest conc	entrations	? Why?				
	N/A									
3		tion pertain		EASON",	"MONTH	I", "HROI	FDY" and	or sets, not	Yes□	No⊠
4								re the factor f it makes fo		
	Hour of Day	Factor	Hour of Day	Factor						
	1		13							
	2		14							
5	3		15							
	4		16							
	5		17							
	6		18							
	7		19							
	8		20							

	9	21							
	10	22							
	11	23							
	12	24							
	If hourly, varia	ble emission rates w	ere used that wer	e not descril	bed above	, describe	them below	/.	
6	Were different	emission rates used	for short-term an	d annual mo	odeling? If	so descrit	be below.	Yes□	No⊠

16-	L: NO ₂	Modeling		
	Which types Check all th	s of NO ₂ modeling were used? at apply.		
		ARM2		
1	\boxtimes	100% NO _X to NO ₂ conversion		
		PVMRM		
		OLM		
		Other:		
2	Describe the	e NO ₂ modeling.		
-	Modeled de	ccreases at Unit 15 as negative and increases at Unit 16 as positive rates.		
3		t NO ₂ /NO _X ratios (0.5 minimum, 0.9 maximum or equilibrium) used? If not I justify the ratios used below.	Yes□	No□
4	Describe the	e design value used for each averaging period modeled.		
. 		ose an item.		
	Annual: Ch	pose an item.		

16-	M: Part	iculate Matter Modeling		
	Select the po	llutants for which plume depletion modeling was used.		
1		PM2.5		
_	□ PM10			
	\boxtimes	None		
2	Describe the particle size distributions used. Include the source of information.			
2	N/A			
3	Sources that	ility emit at least 40 tons per year of NO _X or at least 40 tons per year of SO ₂ ? emit at least 40 tons per year of NO _X or at least 40 tons per year of SO ₂ are o emit significant amounts of precursors and must account for secondary PM2.5.	Yes□	No□

4	Was secondary PM modeled	for PM2.5?		Yes□	No⊠
	If MERPs were used to accobelow.	unt for secondary PM2.5 fill out t	he information below. If another	method was use	d describe
5	NO _X (ton/yr)	SO ₂ (ton/yr)	[PM2.5] _{annual}	[PM2.5] _{24-hour}	

16	-N: Setback Distances
1	Portable sources or sources that need flexibility in their site configuration requires that setback distances be determined between the emission sources and the restricted area boundary (e.g. fence line) for both the initial location and future locations. Describe the setback distances for the initial location.
	N/A
2	Describe the requested, modeled, setback distances for future locations, if this permit is for a portable stationary source. Include a haul road in the relocation modeling.
	N/A

16-	O: PSD In	crement and S	Source IDs					
1		s in the Tables 2-A, 2-B Do these match? If not, p atch below.				Yes	\boxtimes	No□
	Unit Number in	UA-2		Unit Numb	er in Modeling Files	S		
2		es in the Tables 2-E and not, explain why below.	2-F should match the	ones in the 1	modeling files. Do	Yes	\boxtimes	No□
3	Have the minor been modeled?	NSR exempt sources or	Title V Insignificant A	Activities" (T	able 2-B) sources	Yes		No⊠
	Which units con	sume increment for which	ch pollutants?					
4	Unit ID	NO ₂	SO_2		PM10		PM2.5	
5		lescription for sources. es, i.e., baseline unit exp te).	anded emissions	N/A	<u> </u>		<u> </u>	
6	This is necessary	l installation dates inclu- to verify the accuracy of onsumption status is det	of PSD increment mod	leling. If not	please explain	Yes		No⊠
	N/A							

16-	P: Flare Modeling			
1	For each flare or flaring scenar	rio, complete the following		
	Flare ID (and scenario)	Average Molecular Weight	Gross Heat Release (cal/s)	Effective Flare Diameter (m)
	16	16.04	683,981	0.743

16-	Q: Volume and Related Sources		
1	Were the dimensions of volume sources different from standard dimensions in the Air Quality Bureau (AQB) Modeling Guidelines? If not please explain how increment consumption status is determined for the missing	Yes□	No□
	installation dates below.		
	N/A. No volume sources were used in the modeling.		
2	Describe the determination of sigma-Y and sigma-Z for fugitive sources.		
2	N/A		
3	Describe how the volume sources are related to unit numbers. Or say they are the same.		
	N/A		
4	Describe any open pits.		
4	N/A		
5	Describe emission units included in each open pit.		
	N/A		

16-	R: Background Concentrations		
	Were NMED provided background concentrations used? Identify the background station used below. If non-NMED provided background concentrations were used describe the data that was used.	Yes□	No⊠
	CO: Choose an item.		
1	NO ₂ : Choose an item.		
	PM2.5: Choose an item.		
	PM10: Choose an item.		
	SO ₂ : Choose an item.		
	Other:		

	Comments:			
2	Were backgro	ound concentrations refined to monthly or hourly values? If so describe below.	Yes□	No□

16-	S: Meteorological Data		
1	Was NMED provided meteorological data used? If so select the station used. Four Corners (Bloomfield)	Yes⊠	No□
2	If NMED provided meteorological data was not used describe the data set(s) used below. Discu handled, how stability class was determined, and how the data were processed.	ss how missing	data were

16-	T: Terrain		
1	Was complex terrain used in the modeling? If not, describe why below.	Yes⊠	No□
2	What was the source of the terrain data?		
2	USGS- https://www.mrlc.gov/viewerjs/		

Describe the modeling files:		
File name (or folder and file name)	Pollutant(s)	Purpose (ROI/SIA, cumulative, culpability analysis, other)
1050_RUN_001.INP	CO 1-HR SIL	
1050_RUN_002.INP	CO 8-HR SIL	
1050_RUN_003.INP	NO2 1-HR SIL	
1050_RUN_004.INP	NO2 ANNUAL SIL	
1050_RUN_005.INP	SO2 1-HR SIL	
1050_RUN_006.INP	SO2 3-HR SIL	
1050_RUN_007.INP	SO2 24-HR SIL	
1050_RUN_008.INP	SO2 ANNUAL SIL	
1050_RUN_009.INP	H2S 1-HR NMSIL	

16-	16-V: PSD New or Major Modification Applications							
1	A new PSD major source or a major modification to an existing PSD major source requires additional analysis. Was preconstruction monitoring done (see 20.2.74.306 NMAC and PSD Preapplication Guidance on the AQB website)?	Yes□	No⊠					
2	If not, did AQB approve an exemption from preconstruction monitoring?	Yes□	No⊠					
3	Describe how preconstruction monitoring has been addressed or attach the approved preconstruction monitoring exemption.	be how preconstruction monitoring has been addressed or attach the approved preconstruction monitoring or ring exemption.						
	N/A							
4	Describe the additional impacts analysis required at 20.2.74.304 NMAC.							
	N/A							
5	If required, have ozone and secondary PM2.5 ambient impacts analyses been completed? If so describe below.	Yes□	No□					
	N/A							

16-W: N	Mod	eling l	Results								
1		If ambie required signification	bient standards are exceeded because of surrounding sources, a culpability analysis is ed for the source to show that the contribution from this source is less than the cance levels for the specific pollutant. Was culpability analysis performed? If so be below. Yes□						No□		
2		Identify as necess	the maximum con	ncentrations f	rom the modeling	g analysis. Rows	may be mod	lified, addec	l and remove	d from the t	able below
Pollutant, Time Period and	Modeled Facility Concentration (µg/m3)		Modeled Concentration with Surrounding	Secondary PM	Background Concentration (µg/m3)	Cumulative Concentration (µg/m3)	Value of Standard (µg/m3)	Percent of Standard	Location		
Standard				(µg/m3)					UTM E (m)	UTM N (m)	Elevation (ft)
CO 1-HR SIL	6.43	992					2,000	<1	236400	407010 0	1754.01 m
CO 8-HR SIL	3.07	475					500	<1	235125	406917 5	1702.21 m
H2S 1-HR NMSIL	0.05	35					1	5	236600	407010 0	1771.28 m
NO2 1-HR SIL	0.01	86					7.5	<1	235180	406932 5	1707.34 m
NO2 ANNUAL SIL	-0.00	0006					1	<1	NA	NA	NA
SO2 1-HR SIL	2.10	684					7.8	27	236600	407010 0	1809.84
SO2 3-HR SIL	1.573	359					25	6	234850	406902 5	1695.61
SO2 24- HR SIL	0.352	212					5	7	235200	406932 5	1707.96
SO2 ANNUAL SIL	-0.00	017					1	<1	NA	NA	NA

	16-X: Summary/conclusions						
ſ		A statement that modeling requirements have been satisfied and that the permit can be issued.					
	1	The preliminary impacts analysis shows that the project impact is less than all applicable significant impacts levels (SILs). Therefore, the demonstration of compliance with the NAAQS and NMAAQS is complete.					