

August 24, 2023

Permit Programs Manager NMED Air Quality Bureau 525 Camino de los Marquez Suite 1 Santa Fe, NM 87505-1816

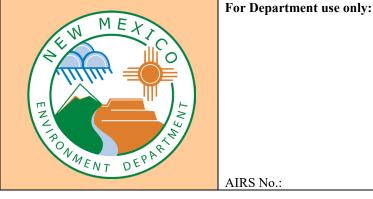
RE: Title V Renewal and Significant Modification of Permit No. P066-R3M1 Freeport-McMoran Chino Mines Company – Chino Mine

Permit Programs Manager:

On behalf of Freeport-McMoRan Chino Mines Company, we are submitting this Title V Operating Permit Renewal and Significant Modification application for the Chino Mine Facility. Pursuant to 20.2.70.300.B.2 NMAC, this application is being submitted at least twelve months prior to the August 10, 2023 expiration of current Title Operating Permit No. P-0660-R3M1. The requested Significant Modification includes the changes to NSR Permit No. 0298-M10R1, 0298-M10R3, 0298-M10R4, 0298-M11R1, No. 0298-M11R2, No. 0298-M11R3, and No. 0298-M11R4. Those requested changes included authorization for blasting and material handling activities necessary for the construction of a borrow pit near the Cobre Haul Road and maintenance of the facility haul roads, retirement of Mase 1 from the facility, construction of baghouse to control SAG mill tunnel, removal of LmSIk and ENG-1 units, replacement of Fire Emergency Pump, and addition of two emergency standby generators.

The format and content of this application are consistent with the Bureau's current policy regarding Title V Operating Permit applications. Enclosed are two hard copies of the application, including an original certification, files for application will be sent via secure website link. Please feel free to contact either myself at (505) 266-6611 or aerenstein@trinityconsultants.com, or Sherry Burt-Kested, Manager of Environmental Services with Freeport McMoRan Chino Mines Company, at (575) 912-5927 or at sburtkested@fmi.com if you have any questions regarding this application. Sincerely,

Adam Erenstein Manager of Consulting Services


Cc: Sherry Burt-Kested – <u>sburtkested@fmi.com</u>

Trinity Project File: 223201.0121

Mail Application To:

New Mexico Environment Department Air Quality Bureau Permits Section 525 Camino de los Marquez, Suite 1 Santa Fe, New Mexico, 87505

Phone: (505) 476-4300 Fax: (505) 476-4375 www.env.nm.gov/aqb

Universal Air Quality Permit Application

Use this application for NOI, NSR, or Title V sources.

Use this application for: the initial application, modifications, technical revisions, and renewals. For technical revisions, complete Sections, 1-A, 1-B, 2-E, 3, 9 and any other sections that are relevant to the requested action; coordination with the Air Quality Bureau permit staff prior to submittal is encouraged to clarify submittal requirements and to determine if more or less than these sections of the application are needed. Use this application for streamline permits as well. See Section 1-I for submittal instructions for other permits.

 This application is submitted as (check all that apply):
 □ Request for a No Permit Required Determination (no fee)

 □ Updating an application currently under NMED review. Include this page and all pages that are being updated (no fee required).

 Construction Status:
 □ Not Constructed
 Image: Existing Permitted (or NOI) Facility
 □ Existing Non-permitted (or NOI) Facility

 Minor Source:
 □ a NOI 20.2.73 NMAC
 □ 20.2.72 NMAC application or revision
 □ 20.2.72.300 NMAC Streamline application

 Title V Source:
 □ Title V (new)
 Image: Title V minor mod.
 Image: TV significant mod.
 TV Acid Rain:
 □ New □ Renewal

 PSD Major Source:
 □ PSD major source (new)
 □ minor modification to a PSD source
 □ a PSD major modification

Acknowledgements:

 \square I acknowledge that a pre-application meeting is available to me upon request. \square Title V Operating, Title IV Acid Rain, and NPR applications have no fees.

 \square \$500 NSR application Filing Fee enclosed OR \square The full permit fee associated with 10 fee points (required w/ streamline applications).

 \square Check No.: N/A in the amount of \$500

 \blacksquare I acknowledge the required submittal format for the hard copy application is printed double sided 'head-to-toe', 2-hole punched (except the Sect. 2 landscape tables is printed 'head-to-head'), numbered tab separators. Incl. a copy of the check on a separate page.

 $\mathbf{\Sigma}$ I acknowledge there is an annual fee for permits in addition to the permit review fee: <u>www.env.nm.gov/air-quality/permit-fees-2/.</u> This facility qualifies for the small business fee reduction per 20.2.75.11.C. NMAC. The full \$500.00 filing fee is included with this application and I understand the fee reduction will be calculated in the balance due invoice. The Small Business Certification Form has been previously submitted or is included with this application. (Small Business Environmental Assistance Program Information: <u>www.env.nm.gov/air-quality/small-biz-eap-2/.</u>)

Citation: Please provide the **low level citation** under which this application is being submitted: **20.2.70.300.B.(2) NMAC** and **20.2.70.404.C.(1)(a) NMAC**

(e.g. application for a new minor source would be 20.2.72.200.A NMAC, one example for a Technical Permit Revision is 20.2.72.219.B.1.b NMAC, a Title V acid rain application would be: 20.2.70.200.C NMAC)

Section 1 – Facility Information

		AI # if known (see 1 st	Updating	
~		3 to 5 #s of permit	Permit/NOI #: P-066-	
Sect	tion 1-A: Company Information	IDEA ID No.):526	R3M1	
1	Facility Name: Chino Mine	Plant primary SIC Code (4 digits): 1021		
1		Plant NAIC code (6 digits): 212234		
9	Facility Street Address (If no facility street address, provide directions from a prominent landmark): 99 Santa Rita Mine Roa			
a	Vanadium, NM 88023			
2	Plant Operator Company Name: Freeport-McMoRan Chino Mines Company	Phone/Fax: (575) 912-5	5000 / (575) 537-8012	

a	Plant Operator Address: 99 Santa Rita Mine Road, Vanadium, NM 88023				
b	Plant Operator's New Mexico Corporate ID or Tax ID: Unknown				
3	Plant Owner(s) name(s): Freeport-McMoRan Chino Mines Company	Phone/Fax: (575) 912-5000 / (575) 537-8012			
a	Plant Owner(s) Mailing Address(s): P.O. Box 10, Bayard, NM 88023				
4	Bill To (Company): Freeport-McMoRan Chino Mines Company	Phone/Fax: (575) 912-5000 / (575) 537-8012			
a	Mailing Address: P.O. Box 10, Bayard, NM 88023	E-mail: <u>sburtkes@fmi.com</u>			
5	☑ Preparer: Adam Erenstein ☑ Consultant: Trinity Consultants	Phone/Fax: (505) 266-6611 / N/A			
a	Mailing Address: 9400 Holly Blvd NE, Building 3, Suite 300 Albuquerque, NM 87122	E-mail: aerenstein@trinityconsultants.com			
6	Plant Operator Contact: Randy Ellison	Phone/Fax: (575) 912-5640/ (575) 912-5035			
a	Address: P.O. Box 10, Bayard, NM 88023	E-mail: rellison@fmi.com			
7	Air Permit Contact: Sherry Burt-Kested	Title: Manager, Environmental Services			
a	E-mail: sburtkes@fmi.com	Phone/Fax: (575) 912-5927 /N/A			
b	Mailing Address: 99 Santa Rita Mine Rd., Vanadium, NM 88023				
c	The designated Air permit Contact will receive all official correspondence (i.e. letters, permits) from the Air Quality Bureau.				

Section 1-B: Current Facility Status

1.a	Has this facility already been constructed? Z Yes D No	1.b If yes to question 1.a, is it currently operating in New Mexico?		
2	If yes to question 1.a, was the existing facility subject to a Notice of Intent (NOI) (20.2.73 NMAC) before submittal of this application? □ Yes ☑ No	If yes to question 1.a, was the existing facility subject to a construction permit (20.2.72 NMAC before submittal of this application? □ Yes □ No ☑N/A		
3	Is the facility currently shut down? □ Yes ☑ No If yes, give month and year of shut down (MM/YY): N/A			
4	Was this facility constructed before 8/31/1972 and continuously operated since 1972? □ Yes ☑ No			
5	If Yes to question 3, has this facility been modified (see 20.2.72.7.P NMA □Yes □No ☑N/A	C) or the capacity increased since 8/31/1972?		
6	Does this facility have a Title V operating permit (20.2.70 NMAC)? ☑ Yes □ No	If yes, the permit No. is: P-066-R3M1		
7	Has this facility been issued a No Permit Required (NPR)? □ Yes ☑ No	If yes, the NPR No. is: N/A		
8	Has this facility been issued a Notice of Intent (NOI)? \Box Yes \square No	If yes, the NOI No. is: N/A		
9	Does this facility have a construction permit (20.2.72/20.2.74 NMAC)? ☑ Yes □ No	If yes, the permit No. is: 0298-M10R1		
10	Is this facility registered under a General permit (GCP-1, GCP-2, etc.)? □ Yes ☑ No	If yes, the register No. is: N/A		

Section 1-C: Facility Input Capacity & Production Rate

1	What is the facility's maximum input capacity, specify units (reference here and list capacities in Section 20, if more room is required)				
a	CurrentHourly: 41,666 tons (Santa Rita Pit) 5,250 (Hanover Mountain)Daily: 1,000,000 tons (Santa Rita Pit) 126,000 tons (Hanover Mountain)Annually: 365,000,000 tons (Santa Rita Pit) 45,990,000 (Hanover Mountain)				
b	ProposedHourly: 41,666 tons (Santa Rita Pit) 5,250 (Hanover Mountain)Daily: 1,000,000 tons (Santa Rita Pit) 126,000 tons (Hanover Mountain)Annually: 365,000,000 tons (Santa R Pit) 45,990,000 (Hanover Mountain)				
2	What is the facility's maximum production rate, specify units (reference here and list capacities in Section 20, if more room is required)				

а	Current	Hourly: 41,666 tons (Santa Rita Pit) 5,250 (Hanover Mountain)	Daily: 1,000,000 tons (Santa Rita Pit) 126,000 tons (Hanover Mountain)	Annually: 365,000,000 tons (Santa Rita Pit) 45,990,000 (Hanover Mountain)
b	Proposed	Hourly: 41,666 tons (Santa Rita Pit) 5,250 (Hanover Mountain)	Daily: 1,000,000 tons (Santa Rita Pit) 126,000 tons (Hanover Mountain)	Annually: 365,000,000 tons (Santa Rita Pit) 45,990,000 (Hanover Mountain)

Section 1-D: Facility Location Information

1	Section: Various	Range: 11W, 12W, 13W	Township: 17S, 18S, 19S	County: G	rant		Elevation (ft): 5,630
2	UTM Zone:	☑ 12 or □13		Datum: □ NAD 27 □ NAD 83 ☑ WGS 84			33 ☑ WGS 84
a	UTM E (in meters, to nearest 10 meters): 774,500 m E UTM N (in meters, to nearest 10 meters): 3,631,100 m N				3,631,100 m N		
b	AND Latitude	(deg., min., sec.):	32°47'0.94"N	Longitude	(deg., min., se	c.): 103°4'9	9.10"W
3	Name and zip code of nearest New Mexico town: Bayard, NM 88023						
4	Detailed Driving Instructions from nearest NM town (attach a road map if necessary): From Bayard, NM head north on NM- 356N/Central Avenue toward Coffey Street. Follow NM-356 N for 1.7 miles and then turn right onto Santa Rita Mine Rd. Continue on Santa Rita Mine Rd for 2.3 miles. Destination will be on the right.						
5	The facility is	3.89 miles northea	ast of Bayard, NM.				
6	Status of land at facility (check one): Private Indian/Pueblo Federal BLM Federal Forest Service Other (specify): The majority of the land is privately owned. Some of the land is owned by BLM, but leased to Freeport-McMoRan.						
7	List all municipalities, Indian tribes, and counties within a ten (10) mile radius (20.2.72.203.B.2 NMAC) of the property on which the facility is proposed to be constructed or operated: Municipalities : Bayard, Santa Clara, Silver City, and Hurley. Indian Tribes: None. Counties: Grant and Luna.						
8	20.2.72 NMAC applications only : Will the property on which the facility is proposed to be constructed or operated be closer than 50 km (31 miles) to other states, Bernalillo County, or a Class I area (see <u>www.env.nm.gov/aqb/modeling/class1areas.html</u>)? ✓ Yes □ No (20.2.72.206.A.7 NMAC) If yes, list all with corresponding distances in kilometers: Gila Wilderness Area (16.7 km north)						
9	Name nearest Class I area: Gila Wilderness Area						
10	Shortest distan	ce (in km) from fa	acility boundary to the bou	ndary of the	nearest Class l	area (to the	nearest 10 meters): 16.7 km
11	Distance (meters) from the perimeter of the Area of Operations (AO is defined as the plant site inclusive of all disturbed lands, including mining overburden removal areas) to nearest residence, school or occupied structure: 60 m						
12	Method(s) used to delineate the Restricted Area: Controlled ownership of area with security gates at access points. "Restricted Area" is an area to which public entry is effectively precluded. Effective barriers include continuous fencing, continuous walls, or other continuous barriers approved by the Department, such as rugged physical terrain with steep grade that would require special equipment to traverse. If a large property is completely enclosed by fencing, a restricted area within the property may be identified with signage only. Public roads cannot be part of a Restricted Area.						
13	Does the owner/operator intend to operate this source as a portable stationary source as defined in 20.2.72.7.X NMAC? □ Yes ☑ No A portable stationary source is not a mobile source, such as an automobile, but a source that can be installed permanently at one location or that can be re-installed at various locations, such as a hot mix asphalt plant that is moved to different job sites.						
14		• • •	unction with other air regul nit number (if known) of t	-	-	operty?	🛛 No 🗌 Yes

Section 1-E: Proposed Operating Schedule (The 1-E.1 & 1-E.2 operating schedules may become conditions in the permit.)

1	Facility maximum operating $(\frac{\text{hours}}{\text{day}})$: 24	$\left(\frac{\text{days}}{\text{week}}\right)$: 7	$\left(\frac{\text{weeks}}{\text{year}}\right): 52$	(<u>hours</u>): 8,760	
2	Facility's maximum daily operating schedule (if less	s than $24 \frac{\text{hours}}{\text{day}}$? Start: N/A	□AM □PM	End: N/A	□AM □PM
3	Month and year of anticipated start of construction: N/A				
4	Month and year of anticipated construction completion: N/A				
5	Month and year of anticipated startup of new or mod	lified facility: N/A			

6 Will this facility operate at this site for more than one year? \square Yes \square No

Section 1-F: Other Facility Information

1	Are there any current Notice of Violations (NOV), compliance orders, or any other compliance or enforcement issues related to this facility? \Box Yes \blacksquare No If yes, specify:			
а	If yes, NOV date or description of issue: N/A			NOV Tracking No: N/A
b	Is this application in response to any issue listed in 1-F, 1 c	or 1a above? □Yes	⊉ No If Y	es, provide the 1c & 1d info below:
c				nent # (or nd paragraph #): N/A
d	Provide the required text to be inserted in this permit: N/A			
2	Is air quality dispersion modeling or modeling waiver being submitted with this application? 🗆 Yes 🗹 No			
3	Does this facility require an "Air Toxics" permit under 20.2.72.400 NMAC & 20.2.72.502, Tables A and/or B? 🗆 Yes 🗹 No			
4	Will this facility be a source of federal Hazardous Air Pollutants (HAP)? ☑ Yes □ No			
a	If Yes, what type of source? \Box Major ($\Box \ge 10$ tpy of any single HAPOR $\Box \ge 25$ tpy of any combination of HAPS)OR \Box Minor ($\Box < 10$ tpy of any single HAPOR $\Box \ge 25$ tpy of any combination of HAPS)			
5	Is any unit exempt under 20.2.72.202.B.3 NMAC? ☑ Ye	s 🗆 No		
	If yes, include the name of company providing commercial	electric power to the	facility: P	NM
a	Commercial power is purchased from a commercial utility site for the sole purpose of the user.	company, which spe	cifically d	loes not include power generated on

Section 1-G: Streamline Application

(This section applies to 20.2.72.300 NMAC Streamline applications only)

Section 1-H: Current Title V Information - Required for all applications from TV Sources

(Title V-source required information for all applications submitted pursuant to 20.2.72 NMAC (Minor Construction Permits), or

20.2.74/20.2.79 NMAC	(Major PSD/NNSR	applications), an	nd/or 20.2.70 NMAC	(Title V))

1	Responsible Official (R.O.) (20.2.70.300.D.2 NMAC): TBD		Phone: TBD	
а	R.O. Title: TBD	R.O. e-mail: TBD		
b	R. O. Address: TBD			
2	Alternate Responsible Official (20.2.70.300.D.2 NMAC): Randy Ellison		Phone: (575) 912-5640	
а	aA. R.O. Title: Plant OperatorA. R.O. e-mail: rellison@fmi.com			
b	A. R. O. Address: P.O. Box 10 Bayard, NM 88023			
3	Company's Corporate or Partnership Relationship to any other Air Quality Permittee (List the names of any companies that have operating (20.2.70 NMAC) permits and with whom the applicant for this permit has a corporate or partnership relationship): Freeport-McMoRan Tyrone Inc.			
4	Name of Parent Company ("Parent Company" means the primary name of the organization that owns the company to be permitted wholly or in part.): Freeport-McMoRan, Inc.			
a	Address of Parent Company: 333 North Central Avenue, Phoenix, Arizona, 85004			
5	Names of Subsidiary Companies ("Subsidiary Companies" means organizations, branches, divisions or subsidiaries, which are owned, wholly or in part, by the company to be permitted.): N/A			
6	Telephone numbers & names of the owners' agents and site contacts familiar with plant operations: N/A			

7	Affected Programs to include Other States, local air pollution control programs (i.e. Bernalillo) and Indian tribes: Will the property on which the facility is proposed to be constructed or operated be closer than 80 km (50 miles) from other states, local pollution control programs, and Indian tribes and pueblos (20.2.70.402.A.2 and 20.2.70.7.B)? If yes, state which ones and provide the distances in kilometers:
---	---

Section 1-I – Submittal Requirements

Each 20.2.73 NMAC (NOI), a 20.2.70 NMAC (Title V), a 20.2.72 NMAC (NSR minor source), or 20.2.74 NMAC (PSD) application package shall consist of the following:

Hard Copy Submittal Requirements:

- One hard copy original signed and notarized application package printed double sided 'head-to-toe' 2-hole punched as we bind the document on top, not on the side; except Section 2 (landscape tables), which should be head-to-head. Please use numbered tab separators in the hard copy submittal(s) as this facilitates the review process. For NOI submittals only, hard copies of UA1, Tables 2A, 2D & 2F, Section 3 and the signed Certification Page are required. Please include a copy of the check on a separate page.
- 2) If the application is for a minor NSR, PSD, NNSR, or Title V application, include one working hard **copy** for Department use. This <u>copy</u> should be printed in book form, 3-hole punched, and <u>must be double sided</u>. Note that this is in addition to the head-toto 2-hole punched copy required in 1) above. Minor NSR Technical Permit revisions (20.2.72.219.B NMAC) only need to fill out Sections 1-A, 1-B, 3, and should fill out those portions of other Section(s) relevant to the technical permit revision. TV Minor Modifications need only fill out Sections 1-A, 1-B, 1-H, 3, and those portions of other Section(s) relevant to the minor modification. NMED may require additional portions of the application to be submitted, as needed.
- 3) The entire NOI or Permit application package, including the full modeling study, should be submitted electronically. Electronic files for applications for NOIs, any type of General Construction Permit (GCP), or technical revisions to NSRs must be submitted with compact disk (CD) or digital versatile disc (DVD). For these permit application submittals, two CD copies are required (in sleeves, not crystal cases, please), with additional CD copies as specified below. NOI applications require only a single CD submittal. Electronic files for other New Source Review (construction) permits/permit modifications or Title V permits/permit modifications can be submitted on CD/DVD or sent through AQB's secure file transfer service.

Electronic files sent by (check one):

CD/DVD attached to paper application

Secure electronic transfer. Air Permit Contact Name Adam Erenstein

Email aerenstein@trinityconsultants.com

Phone number <u>505-266-6611</u>

a. If the file transfer service is chosen by the applicant, after receipt of the application, the Bureau will email the applicant with instructions for submitting the electronic files through a secure file transfer service. Submission of the electronic files through the file transfer service needs to be completed within 3 business days after the invitation is received, so the applicant should ensure that the files are ready when sending the hard copy of the application. The applicant will not need a password to complete the transfer. **Do not use the file transfer service for NOIs, any type of GCP, or technical revisions to NSR permits.**

- 4) Optionally, the applicant may submit the files with the application on compact disk (CD) or digital versatile disc (DVD) following the instructions above and the instructions in 5 for applications subject to PSD review.
- 5) If air dispersion modeling is required by the application type, include the NMED Modeling Waiver and/or electronic air dispersion modeling report, input, and output files. The dispersion modeling <u>summary report only</u> should be submitted as hard copy(ies) unless otherwise indicated by the Bureau.
- 6) If the applicant submits the electronic files on CD and the application is subject to PSD review under 20.2.74 NMAC (PSD) or NNSR under 20.2.79 NMC include,
 - a. one additional CD copy for US EPA,
 - b. one additional CD copy for each federal land manager affected (NPS, USFS, FWS, USDI) and,
 - c. one additional CD copy for each affected regulatory agency other than the Air Quality Bureau.

If the application is submitted electronically through the secure file transfer service, these extra CDs do not need to be submitted.

Electronic Submittal Requirements [in addition to the required hard copy(ies)]:

- 1) All required electronic documents shall be submitted as 2 separate CDs or submitted through the AQB secure file transfer service. Submit a single PDF document of the entire application as submitted and the individual documents comprising the application.
- 2) The documents should also be submitted in Microsoft Office compatible file format (Word, Excel, etc.) allowing us to access the text and formulas in the documents (copy & paste). Any documents that cannot be submitted in a Microsoft Office compatible

format shall be saved as a PDF file from within the electronic document that created the file. If you are unable to provide Microsoft office compatible electronic files or internally generated PDF files of files (items that were not created electronically: i.e. brochures, maps, graphics, etc.), submit these items in hard copy format. We must be able to review the formulas and inputs that calculated the emissions.

- 3) It is preferred that this application form be submitted as 4 electronic files (3 MSWord docs: Universal Application section 1 [UA1], Universal Application section 3-19 [UA3], and Universal Application 4, the modeling report [UA4]) and 1 Excel file of the tables (Universal Application section 2 [UA2]). Please include as many of the 3-19 Sections as practical in a single MS Word electronic document. Create separate electronic file(s) if a single file becomes too large or if portions must be saved in a file format other than MS Word.
- 4) The electronic file names shall be a maximum of 25 characters long (including spaces, if any). The format of the electronic Universal Application shall be in the format: "A-3423-FacilityName". The "A" distinguishes the file as an application submittal, as opposed to other documents the Department itself puts into the database. Thus, all electronic application submittals should begin with "A-". Modifications to existing facilities should use the core permit number (i.e. '3423') the Department assigned to the facility as the next 4 digits. Use 'XXXX' for new facility applications. The format of any separate electronic submittals (additional submittals such as non-Word attachments, re-submittals, application updates) and Section document shall be in the format: "A-3423-9-description", where "9" stands for the section # (in this case Section 9-Public Notice). Please refrain, as much as possible, from submitting any scanned documents as this file format is extremely large, which uses up too much storage capacity in our database. Please take the time to fill out the header information throughout all submittals as this will identify any loose pages, including the Application Date (date submitted) & Revision number (0 for original, 1, 2, etc.; which will help keep track of subsequent partial update(s) to the original submittal. Do not use special symbols (#, @, etc.) in file names. The footer information should not be modified by the applicant.

Table of Contents

- Section 1: General Facility Information
- Section 2: Tables
- Section 3: Application Summary
- Section 4: Process Flow Sheet
- Section 5: Plot Plan Drawn to Scale
- Section 6: All Calculations
- Section 7: Information Used to Determine Emissions
- Section 8: Map(s)
- Section 9: Proof of Public Notice
- Section 10: Written Description of the Routine Operations of the Facility
- Section 11: Source Determination
- Section 12: PSD Applicability Determination for All Sources & Special Requirements for a PSD Application
- Section 13: Determination of State & Federal Air Quality Regulations
- Section 14: Operational Plan to Mitigate Emissions
- Section 15: Alternative Operating Scenarios
- Section 16: Air Dispersion Modeling
- Section 17: Compliance Test History
- Section 19: Requirements for the Title V (20.2.70 NMAC) Program (Title V applications only)
- Section 20: Other Relevant Information
- Section 22: Certification Page

Table 2-A: Regulated Emission Sources

Unit and stack numbering must correspond throughout the application package. If applying for a NOI under 20.2.73 MAC, equipment exemptions under 2.72.202 NMAC do not apply.

	k numbering must correspond throu				Manufact-urer's	Requested	Date of Manufacture ²	Controlled by Unit #	Source Classi-		RICE Ignition	
Unit Number ¹	Source Description	Make	Model #	Serial #	Rated Capacity ³ (Specify Units)	Permitted Capacity ³ (Specify Units)	Date of Construction/ Reconstruction ²	Emissions vented to Stack #	fication Code (SCC)	For Each Piece of Equipment, Check One	Type (CI, SI, 4SLB, 4SRB, 2SLB) ⁴	Replacing Unit No.
CB TLNGS	Cobre Mine Tailings	N/A	N/A	N/A	N/A	N/A	N/A	N/A	30302408	 Existing (unchanged) To be Removed New/Additional Replacement Unit 	N/A	N/A
CB ILINGS	Impoundment	N/A	IN/A	INA	IN/A	11/74	N/A	N/A	50502408	To Be Modified To be Replaced	10/1	IN/A
CBM HR	Cobre Mine Hauling (Magnetite	N/A	N/A	N/A	N/A	N/A	N/A	N/A	30388801	 Existing (unchanged) To be Removed New/Additional Replacement Unit 	N/A	N/A
СЫМ ПК	and Hanover Hauling)	IN/A	IN/A	IN/A	IN/A	IN/A	N/A	N/A	30388801	□ To Be Modified □ To be Replaced	IN/A	N/A
	Cobre Mine Material Handling						N/A	N/A		☑ Existing (unchanged) □ To be Removed		
CBM MH	(Magnetite and Hanover Handling)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	30302404	□ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced	N/A	N/A
							N/A	N/A		Existing (unchanged)		
CBM BLST	Cobre Mine Hanover Blasting	N/A	N/A	N/A	N/A	N/A	N/A	N/A	30388801	□ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced	N/A	N/A
BORR BLS	Cobre Haul Road Borrow Pit	27/4	21/4	21/4	21/4	27/4	N/A	N/A	20200001	□ Existing (unchanged) □ To be Removed	27/4	27/4
T	Blasting	N/A	N/A	N/A	N/A	N/A	N/A	N/A	30388801	 ☑ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced 	N/A	N/A
BORR MH	Cobre Haul Road Borrow Pit	N/A	N/A	N/A	N/A	N/A	N/A	N/A	30302408	 Existing (unchanged) To be Removed New/Additional Replacement Unit 	N/A	N/A
bolut_hill	Material Handling	1011	10/1	10/11	1011	10/1	N/A	N/A	50502100	□ To Be Modified □ To be Replaced	1071	1071
CM BLST	Chino Mine Blasting	N/A	N/A	N/A	N/A	N/A	N/A	N/A	30388801	 Existing (unchanged) To be Removed New/Additional Replacement Unit 	N/A	N/A
							N/A	N/A		□ To Be Modified □ To be Replaced		
CM HR	Chino Mine Hauling	N/A	N/A	N/A	N/A	N/A	N/A	N/A	30388801	 Existing (unchanged) To be Removed New/Additional Replacement Unit 	N/A	N/A
							N/A	N/A		□ To Be Modified □ To be Replaced ☑ Existing (unchanged) □ To be Removed		
CM MH	Chino Mine Material Handling	N/A	N/A	N/A	N/A	N/A	N/A N/A	N/A N/A	30302408	New/Additional Replacement Unit	N/A	N/A
	Chino Mine Tailings						N/A N/A	N/A		□ To Be Modified □ To be Replaced ☑ Existing (unchanged) □ To be Removed		
CM TLNGS	Impoundment	N/A	N/A	N/A	N/A	N/A	N/A	N/A	30302408	□ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced	N/A	N/A
0000.04	Conveyor Transfer (Beneath PC-	27/1	27/1				N/A	N/A		Existing (unchanged)	27/1	
CTS-01	01)	N/A	N/A	N/A	3,360 tons/hr	3,360 tons/hr	N/A	N/A	30510198	□ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced	N/A	N/A
CV-01A	Coarse Ore Conveyor Transfer	N/A	N/A	N/A	2 260 tong/br	3,360 tons/hr	6/13/1981	N/A	30510198	 Existing (unchanged) To be Removed New/Additional Replacement Unit 	N/A	N/A
CV-01A	(Flight #1)	IN/A	IN/A	IN/A	5,500 tons/nr	5,500 tons/nr	N/A	N/A	30310198	□ To Be Modified □ To be Replaced	IN/A	N/A
CV-01B	Coarse Ore Conveyor Transfer	N/A	N/A	N/A	3 360 tons/hr	3,360 tons/hr	N/A	N/A	30510198	 Existing (unchanged) To be Removed New/Additional Replacement Unit 	N/A	N/A
CV 01B	(Flight #1)	1071	10/1	14/11	5,500 юнь/ш	5,500 tons/ii	N/A	N/A	50510170	□ To Be Modified □ To be Replaced	1011	1071
CV-01C	Coarse Ore Conveyor Transfer	N/A	N/A	N/A	3,360 tons/hr	3,360 tons/hr	N/A	N/A	30510198	 Existing (unchanged) To be Removed New/Additional Replacement Unit 	N/A	N/A
	(between CV-01A and CV-01B)				·	·	N/A	N/A		□ To Be Modified □ To be Replaced		
F-2-1-1.4	Turbine	Westing-	W251B12	4658139	455	455	2000	N/A 009-A &	20200201	 Existing (unchanged) To be Removed New/Additional Replacement Unit 	N/A	N/A
		house			MMBtu.hr	MMBtu.hr	2000	009-A & 009-B		□ To Be Modified □ To be Replaced		
F-2-1-1.5	Heat Recovery Steam Generator	HRSG	N/A	N/A	48.8	48.8	2000	N/A	20100201	 Existing (unchanged) To be Removed New/Additional Replacement Unit 	N/A	N/A
	with Duct Burner	incoo	1.071	1 1/2 1	MMBtu.hr	MMBtu.hr	2000	009-A	20100201	□ To Be Modified □ To be Replaced	1971	
FLTR/	Filter/Blending Plant	N/A	N/A	N/A	N/A	N/A	N/A	N/A	30302408	 Existing (unchanged) To be Removed New/Additional Replacement Unit 	N/A	N/A
BLND	8						N/A	N/A		□ To Be Modified □ To be Replaced		

					Manufact-urer's	Requested	Date of Manufacture ²	Controlled by Unit #	Source Classi-		RICE Ignition	
Unit Number ¹	Source Description	Make	Model #	Serial #	Rated Capacity ³ (Specify Units)	Permitted Capacity ³ (Specify Units)	Date of Construction/ Reconstruction ²	Emissions vented to Stack #	fication Code (SCC)	For Each Piece of Equipment, Check One	Type (CI, SI, 4SLB, 4SRB, 2SLB) ⁴	Replacing Unit No.
GDF	Gasoline Dispensing Facilities	N/A	N/A	N/A	Each tank is <10,000	Each tank is <10.000	Unknown	N/A	40301008	 Existing (unchanged) To be Removed New/Additional Replacement Unit 	N/A	N/A
GDF	Gasonne Dispensing Facilities	IN/A	IN/A	IN/A	<10,000 gal/yr	<10,000 gal/yr	Unknown	N/A	40301008	□ To Be Modified □ To be Replaced	IN/A	IN/A
IC-01	Molybdenum Plant	N/A	N/A	N/A	N/A	N/A	Aug-01	MP SCRB	30301199	 Existing (unchanged) To be Removed New/Additional Replacement Unit 	N/A	N/A
10-01	Worybacham Flant	10/11	14/74	10/24	14/24	10/11	Unknown	S3	50501177	□ To Be Modified □ To be Replaced	14/24	10/21
LHS-01	Lime Handling System	Ivanhoe	N/A	N/A	N/A	N/A	6/6/1980	CSLH-01	30501615	 Existing (unchanged) To be Removed New/Additional Replacement Unit 	N/A	N/A
(IC-06)	Enne Handning System	Concentrator	10/11	1971	14/24	1071	Unknown	SCSLH-02	50501015	□ To Be Modified □ To be Replaced	10/21	10/21
LUS-01	Lime Unloading System	Ivanhoe	N/A	N/A	N/A	N/A	6/13/1981	CSLU-01	30501615	 Existing (unchanged) To be Removed New/Additional Replacement Unit 	N/A	N/A
LOD VI	Enne onloading System	Concentrator	1071	1011	10/1	10/1	6/13/1981	SCSLU-02	50501015	□ To Be Modified □ To be Replaced	1071	10/21
PC Dump	Primary Crusher Dump Pocket	N/A	N/A	N/A	3 360 tons/hr	3,360 tons/hr	N/A	N/A	30302404	Existing (unchanged) To be Removed New/Additional Replacement Unit	N/A	N/A
i e Dunip	Timary Crusher Dump Toeket	10/11	14/74	10/24	5,500 tons/iii	5,500 юпа/ш	N/A	N/A	50502404	□ To Be Modified □ To be Replaced	14/24	10/21
PC-01	Primary Crusher	N/A	N/A	N/A	3 360 tons/hr	3,360 tons/hr	6/13/1981	PCBH-01	30501060	 Existing (unchanged) To be Removed New/Additional Replacement Unit 	N/A	N/A
10.01	T Thinki y Crusher	1071	1071	1011	5,500 tons/m	5,500 tons/m	6/13/1981	SPCBH-01	50501000	□ To Be Modified □ To be Replaced	1071	10/21
SAG-F1	SAG Mill Feeders	N/A	N/A	N/A	3,360 tons/hr	3 360 tons/br	6/13/1981	N/A	30302404	 Existing (unchanged) To be Removed New/Additional Replacement Unit 	N/A	N/A
(IC-04)	Site will redeis	10/11	14/74	10/24	5,500 tons/iii	5,500 юпа/ш	6/13/1981	N/A	50502404	□ To Be Modified □ To be Replaced	14/24	10/21
SCDP	Stack Conveyor	N/A	N/A	N/A	3 360 tons/hr	3,360 tons/hr	6/13/1981	N/A	30510198	 Existing (unchanged) To be Removed New/Additional Replacement Unit 	N/A	N/A
SCDI	Stack Conveyor	1071	1071	1011	5,500 1018/11	5,500 tons/m	6/13/1981	N/A	50510170	□ To Be Modified □ To be Replaced	1071	10/21
CH SCRN	Screening Material Handling	PORTEC	Unknown	Unknown	1.000 TPH	1.000 TPH	Mar-12	N/A	30302404	 Existing (unchanged) To be Removed New/Additional Replacement Unit 	N/A	N/A
CHISCRIV	Screening Waterial Handling	Kolberg	Ulikilowii	Ulkilowli	1,000 1111	1,000 1111	Unknown	N/A	50502404	□ To Be Modified □ To be Replaced	IV/A	10/4
CB SCRN	Screening Material Handling	Chieftain	2100X	PID00124TDGC3	450 TPH	450 TPH	Mar-12	N/A	30302404	 Existing (unchanged) To be Removed New/Additional Replacement Unit 	N/A	N/A
CD SCRN	Screening Waterial Handling	Powerscreen	2100A	4711-2012	450 1111	450 1111	Unknown	N/A	30302404	□ To Be Modified □ To be Replaced	IN/A	11/24
CH SCRN	Screening Plant Diesel Engine	Deutz	BF4M2012	010106/04	96.5 HP	96.5 HP	Aug-06	N/A	20200102	 Existing (unchanged) To be Removed New/Additional Replacement Unit 	CI	N/A
ENG	Screening I lant Dieser Englie	Deutz		010100/04	90.5 III	90.5 III	Aug-06	S9	20200102	□ To Be Modified □ To be Replaced	CI	11/74
CB SCRN	Screening Plant Diesel Engine	Caterpillar	C4.4 ATAAC-4	BPKXL04.4NM1	111 HP	111 HP	Feb-12	N/A	20200102	Existing (unchanged) To be Removed New/Additional Replacement Unit	CI	N/A
ENG	Screening Flant Dieser Engine	Caterpinai	cvlinder	DFKAL04.4INWIT			After 6/12/2006	S10	20200102	□ To Be Modified □ To be Replaced	CI	IN/A
SXEW	SX/EW Plant Ten Mixer/ Settler	N/A	N/A	N/A	6-39,000 sqft & 4-39,400 sqft	6-39,000 sqft & 4-39,400	8/15/2000	N/A	30388801	Existing (unchanged) To be Removed New/Additional Replacement Unit	N/A	N/A
10MST	Tanks	IN/A	111/74	IN/A	(±10%)	& 4-39,400 sqft (±10%)	Unknown	N/A	50588801	□ To Be Modified □ To be Replaced	1N/A	11/24

r								1				1
					Manufact-urer's	Requested Permitted	Date of Manufacture ²	Controlled by Unit #	Source Classi-		RICE Ignition Type (CI, SI,	Replacing
Unit Number ¹	Source Description	Make	Model #	Serial #	Rated Capacity ³ (Specify Units)	Capacity ³ (Specify Units)	Date of Construction/ Reconstruction ²	Emissions vented to Stack #	fication Code (SCC)	For Each Piece of Equipment, Check One	4SLB, 4SRB, 2SLB) ⁴	Unit No.
SXEW Boiler	SXEW Plant Water Boiler No. 1	Lochinvar	CBL1257	H12H00242605	1.255	1.255	1996	N/A	10201002	 Existing (unchanged) To be Removed New/Additional Replacement Unit 	N/A	N/A
No. 1					MMBtu/hr	MMBtu/hr	Unknown	S5		To Be Modified To be Replaced		
SXEW Boiler No. 2	SXEW Plant Water Boiler No. 2	Lochinvar	CBL1257	H12H00242604	1.255 MMBtu/hr	1.255 MMBtu/hr	1996 Unknown	N/A S6	10201002	 Existing (unchanged) To be Removed New/Additional Replacement Unit 	N/A	N/A
		XX7.1 X			1011011D turin		Jan-96	N/A		□ To Be Modified □ To be Replaced ☑ Existing (unchanged) □ To be Removed		
SXEW Boiler No. 3	SXEW Plant Water Boiler No. 3	Weben-Jarco, Inc.	AJH140	AJH140.1067	1.4 MMBtu/hr	1.4 MMBtu/hr	Unknown	S7	10201002	□ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced	N/A	N/A
					5,024 sqft	5,024 sqft	8/15/2000	N/A		☑ Existing (unchanged) □ To be Removed		
SXEW RT	SX/EW Plant Raffinate Tank	N/A	N/A	N/A	(±10%)	(±10%)	Unknown	N/A	30388801	□ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced	N/A	N/A
							Unknown	N/A		☑ Existing (unchanged) □ To be Removed		
SXEW SAT	SXEW Plant Acid Tankhouse	N/A	N/A	N/A	N/A	N/A	Unknown	SXEW SAT	30388801	New/Additional Replacement Unit To Be Modified To be Replaced	N/A	N/A
		~	~~~~	-			1999	N/A		Existing (unchanged) I To be Removed		27/1
ENG-1	Diesel Engine for Lime Slaking	Caterpillar	G3056	7MS00581	173 hp	173 hp	TBD	S32	20200102	 New/Additional Replacement Unit To Be Modified To be Replaced 	CI	N/A
I GII		TT 1	TT 1		100 700	100 700	2019	N/A	20200001	□ Existing (unchanged) ☑ To be Removed	27/4	21/4
LmSlk	QuickLime Slaking Mill	Unknown	Unknown	Unknown	100 TPD	100 TPD	1999	N/A	30388801	□ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced	N/A	N/A
WH Crush	White House Cryshing Plant	Unknown	Unknown	Unknown	500 TPH	500 TPH	TBD	N/A	30501060	Existing (unchanged) To be Removed New/Additional Replacement Unit	N/A	N/A
WH Crush	White House Crushing Plant	Unknown	Unknown	Unknown	500 IPH	500 IPH	TBD	N/A	30501060	□ To Be Modified □ To be Replaced	IN/A	N/A
GENERAC1	MIS Building	Generac	QT04524	5578228	60 hp	60 hp	2009	N/A	20200102	Existing (unchanged) To be Removed New/Additional Replacement Unit	SI	N/A
GENERACI	wito Dunding	Generae	Q104524	5576228	00 lip	00 lip	2009	N/A	20200102	□ To Be Modified □ To be Replaced	51	10/21
GENERAC2	SX-EW Tankhouse	Generac	QT03624	6460608	50 hp	50 hp	2011	N/A	20200102	Existing (unchanged) To be Removed New/Additional Replacement Unit	SI	N/A
OL: (Little)		Generat	Q105021	0.00000	50 np	20 mp	2011	N/A	20200102	□ To Be Modified □ To be Replaced	51	
GENERAC4	Mine Pit Slope Monitoring Station	Generac	G0064383	3000668968	15 hp	15 hp	Jul-16	N/A	20200102	 Existing (unchanged) To be Removed New/Additional Replacement Unit 	SI	N/A
	Slope 2				1	1	Jul-16	N/A		□ To Be Modified □ To be Replaced		
GENERAC5	Santa Rita Tower	Generac	G0070330	3001383173	15 hp	15 hp	Jan-14	N/A	20200102	 Existing (unchanged) To be Removed New/Additional Replacement Unit 	SI	N/A
							Jan-14	N/A		□ To Be Modified □ To be Replaced ☑ Existing (unchanged) □ To be Removed		
GENERAC6	Nun Complex Communication Station	Generac	G00703090	3002190256	15 hp	15 hp	TBD	N/A	20200102	New/Additional Replacement Unit	SI	N/A
	Station						TBD TBD	N/A		□ To Be Modified □ To be Replaced ☑ Existing (unchanged) □ To be Removed		
GENERAC7	Mine Warehouse	Generac	G007033	TBD	15 hp	15 hp	TBD	N/A N/A	20200102	New/Additional Replacement Unit To be Rodified To be Replaced	SI	N/A
							TBD	N/A		Existing (unchanged) To be Removed		
GENERAC8	Emergency Generator	Generac	SG035	3009845286	47 hp	47 hp	Aug-22	N/A	20200102	☑ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced	CI	N/A
	F	**	3TNV88-	700	261	261	TBD	N/A	20200102	□ Existing (unchanged) □ To be Removed	CT.	27/4
ATT Gen	Emergency Generator	Yamnar	BNSA	TBD	36 hp	36 hp	TBD	N/A	20200102	 ✓ New/Additional □ To Be Modified □ To be Replaced 	CI	N/A
Elliot	Mine Warehouse	Elliot	MPSG12	00871	16 hn	16 ha	TBD	N/A	20200102	Existing (unchanged) To be Removed New/Additional Replacement Unit	CI.	NI/A
Magnetek	while watchouse	Magnetek	MF 5012	90871	16 hp	16 hp	TBD	N/A	20200102	□ To Be Modified □ To be Replaced	SI	N/A
Sxlpwrprm8	20 Dam Hanover	Caterpillar	CAT/3126B	BEJ38448	275 hp	275 hp	2005	N/A	20200102	Existing (unchanged) To be Removed New/Additional Replacement Unit	CI	N/A
SAPWIPIIIO	20 Dam Hanover	Caterprint	SALL 9120D	DL330770	270 np	2,5 np	2005	N/A	20200102	□ To Be Modified □ To be Replaced		11/17
Sxlpwrprm5	Far East	Caterpillar	CAT/3126B/I	BEJ10891	225 hp	225 hp	2010	N/A	20200102	Existing (unchanged) To be Removed New/Additional Replacement Unit	CI	N/A
		P	ND		np	"P	2010	N/A		□ To Be Modified □ To be Replaced		

					Manufact-urer's	Requested	Date of Manufacture ²	Controlled by Unit #	Source Classi-		RICE Ignition	
Unit Number ¹	Source Description	Make	Model #	Serial #	Rated Capacity ³ (Specify Units)	Permitted Capacity ³ (Specify Units)	Date of Construction/ Reconstruction ²	Emissions vented to Stack #	fication Code (SCC)	For Each Piece of Equipment, Check One	Type (CI, SI, 4SLB, 4SRB, 2SLB) ⁴	Replacing Unit No.
Sxlpwrprm3	11 Dam Hanover	Perkins	APKXL06.6PJ		174 hp	174 hp	TBD	N/A	20200102	 □ Existing (unchanged) □ To be Removed ☑ New/Additional □ Replacement Unit 	CI	
			1	89			TBD	N/A	20200102	□ To Be Modified □ To be Replaced		
Sxlgdwn1	10 Dam Hanover	Caterpillar	CAT/3126	BEJ09668	309 hp	309 hp	2005	N/A	20200102	Existing (unchanged) To be Removed New/Additional Replacement Unit	CI	N/A
							2005	N/A		□ To Be Modified □ To be Replaced		
Sxlpwrprm4	14 Dam Hanover	Caterpillar	CAT/3126B	BEJ10895	225 hp	225 hp	2005	N/A	20200102	 Existing (unchanged) To be Removed New/Additional Replacement Unit 	CI	N/A
1 1		1			1	1	2005	N/A		To Be Modified To be Replaced		
Sxlpwrprm2	Sump #3	Caterpillar	CAT/3126	BEJ09674	309 hp	309 hp	2005	N/A	20200102	 Existing (unchanged) To be Removed New/Additional Replacement Unit 	CI	N/A
1 1	L	1			1	1	2005	N/A		To Be Modified To be Replaced		
Sxlpwrprm7	13 Dam Hanover	Perkins	APKXL06.6J2	PJ38448	175 hp	175 hp	2004	N/A	20200102	 □ Existing (unchanged) □ To be Removed ☑ New/Additional □ Replacement Unit 	CI	N/A
Cummins							TBD	N/A		□ To Be Modified □ To be Replaced ☑ Existing (unchanged) □ To be Removed		
Generator/182	South Side Tailing office	Cummins 4BT- 3.9	Cummins 4BT-	Unknown	32 hp	32 hp	1984	N/A	20200102	 Existing (unchanged) To be Removed New/Additional Replacement Unit 	CI	N/A
3		3.9	3.9		-	-	1984	N/A		□ To Be Modified □ To be Replaced □ Existing (unchanged) ☑ To be Removed		
Mase 1	Slope 1	Mase	PD 50 YS	G101753	4.5 hp	4.5 hp	2010	N/A	20200102	 Existing (unchanged) To be Removed New/Additional Replacement Unit 	CI	N/A
							2010	N/A		□ To Be Modified □ To be Replaced □ Existing (unchanged) ☑ To be Removed		
CB EGEN2	Cobre Mine Generator Set #2 Diesel Engine	Caterpillar	D399 PCTA	36Z01236	1300 hp	1300 hp	1979	N/A	20200102	□ Existing (unchanged) ☑ To be Removed □ New/Additional □ Replacement Unit	CI	N/A
							1979	N/A		□ To Be Modified □ To be Replaced □ Existing (unchanged) ☑ To be Removed		
CB EGEN3	Cobre Mine Generator Set #3 Diesel Engine	Caterpillar	D399 PCTA	36Z01234	1300 hp	1300 hp	1979	N/A	20200102	New/Additional Replacement Unit	CI	N/A
	Dieser Elignie						1979	N/A		□ To Be Modified □ To be Replaced ☑ Existing (unchanged) □ To be Removed		
DEUTZ	Sump Pump	DEUTZ	F6L914	CE84/1	114 hp	114 hp	TBD	N/A	20200102	New/Additional Replacement Unit	CI	N/A
							TBD	N/A		To Be Modified To be Replaced Existing (unchanged) To be Removed		
EE5	SXEW Fire Emergency Pump	Detroit Diesel	Detroit Diesel	08GR109034	195 hp	195 hp	Feb-88	N/A	20200102	New/Additional Replacement Unit	CI	N/A
							Jan-96	N/A		□ To Be Modified ☑ To be Replaced □ Existing (unchanged) □ To be Removed		
EE5	SXEW Fire Emergency Pump	John Deere	6068HF285K	PE6068N025875	197 hp	197 hp	TBD	N/A	20200102	New/Additional Replacement Unit	CI	N/A
							TBD	N/A		□ To Be Modified □ To be Replaced ☑ Existing (unchanged) □ To be Removed		
FWP01	Concentrator Fire Emergency Pump	Detroit Diesel	10447312	4A0252067	185 hp	185 hp	Aug-81	N/A	20200102	New/Additional Replacement Unit	CI	N/A
	1 unip						Aug-81	N/A		□ To Be Modified □ To be Replaced ☑ Existing (unchanged) □ To be Removed		
RT-1	West Stockpile Radio Tower	Caterpillar	DG50-2	Unknown	67 hp	67 hp	N/A	N/A N/A	20200102	New/Additional Replacement Unit	SI	N/A
							N/A			□ To Be Modified □ To be Replaced ☑ Existing (unchanged) □ To be Removed		
RT-2	Cobre Radio Tower	Caterpillar	DG50-2	Unknown	67 hp	67 hp	N/A	N/A N/A	20200102	New/Additional Replacement Unit	SI	N/A
							N/A			To Be Modified To be Replaced Existing (unchanged) To be Removed		
SAG	Underground SAG Mill Tunnel	N/A	N/A	N/A	N/A	N/A	N/A N/A	SAG BH N/A	30399999	New/Additional Replacement Unit	N/A	N/A
							IN/A	IN/A		To Be Modified To be Replaced		

¹ Unit numbers must correspond to unit numbers in the previous permit unless a complete cross reference table of all units in both permits is provided.

² Specify dates required to determine regulatory applicability.

³ To properly account for power conversion efficiencies, generator set rated capacity shall be reported as the rated capacity of the engine in horsepower, not the kilowatt capacity of the generator set.

⁴ "4SLB" means four stroke lean burn engine, "4SRB" means four stroke rich burn engine, "2SLB" means two stroke lean burn engine, "CI" means compression ignition, and "SI" means spark ignition

Freeport-McMoRan Chino Mines Company

Table 2-B: Insignificant Activities¹ (20.2.70 NMAC) OR Exempted Equipment (20.2.72 NMAC)

All 20.2.70 NMAC (Title V) applications must list all Insignificant Activities in this table. All 20.2.72 NMAC applications must list Exempted Equipment in this table. If equipment listed on this table is exempt under 20.2.72.202.B.5, include emissions calculations and emissions totals for 202.B.5 "similar functions" units, operations, and activities in Section 6, Calculations. Equipment and activities exempted under 20.2.72.202 NMAC may not necessarily be Insignificant under 20.2.70 NMAC (and vice versa). Unit & stack numbering must be consistent throughout the application package. Per Exemptions Policy 02-012.00 (see http://www.env.nm.gov/aqb/permit/aqb_pol.html), 20.2.72.202.B NMAC Exemptions do not apply, but 20.2.72.202.A NMAC exemptions do apply to NOI facilities under 20.2.73 NMAC. List 20.2.72.301.D.4 NMAC Auxiliary Equipment for Streamline applications in Table 2-A. The List of Insignificant List of TV) can be found online at http://www.env.nm.gov/aqb/forms/lnsignificant ListTitleV ndf__TV sources may elect to enter both TV Insignificant Activities and Part 72 Exemptions on this form

Unit Number Source Descriptio	Source Description	Manufacturer	Model No.	Max Capacity	List Specific 20.2.72.202 NMAC Exemption (e.g. 20.2.72.202.B.5)	Date of	For Each Piece of Equipment, Check Once
Onit Number	Source Description	Manufacturer	Serial No. Capacity Units		Insignificant Activity citation (e.g. IA List Item #1.a)	Date of Installation /Construction ²	For Each Freee of Equipment, Check Once
				LABORATOR	AY EQUIPMENT		
Lab 001	Laboratory Flotation test kits	N/A	N/A	-	20.2.72.202.A2	N/A	 Existing (unchanged) To be Removed New/Additional Replacement Unit
Lab 001	Laboratory Protation test Kits	IN/A	Unknown	-	Insignificant Activity #5	N/A	□ To Be Modified □ To be Replaced
Lab 002	Laboratory Test sample dryer	N/A	N/A	8 samples/hr	20.2.72.202.A2	N/A	 Existing (unchanged) To be Removed New/Additional Replacement Unit
La0 002	Laboratory Test sample dryer	IN/A	Unknown	ppd	Insignificant Activity #5	N/A	□ To Be Modified □ To be Replaced
Lab 003	Laboratory Test sample dryer	N/A	N/A	8 samples/hr	20.2.72.202.A2	N/A	 Existing (unchanged) To be Removed New/Additional Replacement Unit
Lab 003	Laboratory Test sample dryer	N/A	Unknown	ppd	Insignificant Activity #5	N/A	□ To Be Modified □ To be Replaced
Lab 004	Laboratory Test sample dryer	N/A	N/A	8 samples/hr	20.2.72.202.A2	N/A	 Existing (unchanged) To be Removed New/Additional Replacement Unit
La0 004	Laboratory Test sample dryer	1N/A	Unknown	ppd	Insignificant Activity #5	N/A	□ To Be Modified □ To be Replaced

Freeport-McMoRan Chino Mines Company				Chir	no Mine	Application Date: August 2023 Revision 0		
Unit Number	Source Description	Manufacturer	Model No.	Max Capacity	List Specific 20.2.72.202 NMAC Exemption (e.g. 20.2.72.202.B.5)	Date of Manufacture /Reconstruction ²	For Each Piece of Equipment, Check Once	
	Source Description	Wanufacturer	Serial No.	Capacity Units	Insignificant Activity citation (e.g. IA List Item #1.a)	Date of Installation /Construction ²	For Each Face of Equipment, enter One	
Lab 008	Laboratory Dryer concentrate	N/A	N/A	50	20.2.72.202.B5	N/A	 Existing (unchanged) To be Removed New/Additional Replacement Unit 	
La0 008	pulverizer/manual grind	IN/A	Unknown	ppd	Insignificant Activity #1a	N/A	□ To Be Modified □ To be Replaced	
Lab 009	Jaw Crusher/Cone Crusher	N/A	N/A	240	20.2.72.202.B5	N/A	Existing (unchanged) To be Removed New/Additional Replacement Unit	
Lab 009	Jaw Crusher/Cone Crusher	IN/A	Unknown	ppd	Insignificant Activity #1a	N/A	To Be Modified To be Replaced	
Lab 010	Laboratory Dry concentrate	N/A	N/A	120	20.2.72.202.B5	N/A	☑ Existing (unchanged) □ To be Removed	
Lab 010	manual grind (2 hoods)	IN/A	Unknown	ppd	Insignificant Activity #1a	N/A	 New/Additional Replacement Unit To Be Modified To be Replaced 	
Lab 011	Laboratore Male Caind	NT/A	N/A	50	20.2.72.202.B5	N/A	Existing (unchanged) To be Removed New/Additional Replacement Unit	
Lab 011	Laboratory Moly Grind	N/A	Unknown	ppd	Insignificant Activity #1a	N/A	 New/Additional Replacement Unit To Be Modified To be Replaced 	
1 1 012		21/4	N/A	240	20.2.72.202.B5	N/A	Existing (unchanged)	
Lab 012	Laboratory Sample splitter	N/A	Unknown	ppd	Insignificant Activity #1a	N/A	 New/Additional Replacement Unit To Be Modified To be Replaced 	
				MISCELLANE	OUS EQUIPMENT		· · · · · ·	
ADE 001	Clemco Abrasive Industries,	21/4	N/A	270	20.2.72.202.B7	N/A	\square Existing (unchanged) \square To be Removed	
ABE-001	BNP 210-600P&DF 3 PH	N/A	47425	pph	Insignificant Activity #2	N/A	 New/Additional Replacement Unit To Be Modified To be Replaced 	
	E : 11 : EE 0010	21/4	N/A	270	20.2.72.202.B7	N/A	Existing (unchanged) To be Removed	
ABE-002	Empire Abrasive, EF- 2248	N/A	C-24355	pph	Insignificant Activity #2	N/A	 New/Additional Replacement Unit To Be Modified To be Replaced 	
ADE 002	T' 11 1 1010 0D 0	21/4	N/A	270	20.2.72.202.B5	N/A	\square Existing (unchanged) \square To be Removed	
ABE-003	Titan Abrasive, 4040 SDC	N/A	4942 89	pph	Insignificant Activity #1a	N/A	 New/Additional Replacement Unit To Be Modified To be Replaced 	
		21/4	N/A	300,000	20.2.72.202.B5	N/A	Existing (unchanged) To be Removed	
ANP	Ammonium Nitrate Pill Delivery	N/A	Unknown	ppd	Insignificant Activity #1a	N/A	 New/Additional Replacement Unit To Be Modified To be Replaced 	
с: II	Sioux Corporation heater 360-H	21/4	N/A	0.36	20.2.72.202.B5	N/A	Existing (unchanged) To be Removed	
Sioux-H	(Pressure washer)	N/A	29087	MMBtu/hr	Insignificant Activity #1a	N/A	 New/Additional Replacement Unit To Be Modified To be Replaced 	
		21/4	N/A	67	20.2.72.202.B5	N/A	Existing (unchanged) To be Removed	
Raff Pond	SX Raffinate Pond	N/A	N/A	hp	N/A	N/A	New/Additional Replacement Unit To Be Modified To be Replaced	
	Electrolete De D	Catar III	DG50-2	29,098	20.2.72.202.B5	N/A	Existing (unchanged)	
ERP-001	Electrolyte Recovery Pump	Caterpillar	Unknown	ft^2	N/A	N/A	New/Additional Replacement Unit To Be Modified To be Replaced	
				FUEL STO	RAGE TANKS		·	
001	Used Oil	NI/A	N/A	10500	20.2.72.202.B2	N/A	Existing (unchanged)	
001	Used Oil	N/A	N/A	Gallons	Insignificant Activity #5 & #8/ SDS	N/A	 New/Additional Replacement Unit To Be Modified To be Replaced 	

Freeport-McN	IoRan Chino Mines Company			Chin	no Mine	Application Date: August 2023 Revision 0			
Unit Number	Source Description	Manufacturer	Model No.	Max Capacity	List Specific 20.2.72.202 NMAC Exemption (e.g. 20.2.72.202.B.5)	Date of Manufacture /Reconstruction ²	For Each Piece of Equipment, Check Once		
	Source Description	ivianuiactui ci	Serial No.	Capacity Units	Insignificant Activity citation (e.g. IA List Item #1.a)	Date of Installation /Construction ²			
006	Gasoline	N/A	N/A	2000	20.2.72.202.B2	N/A	Existing (unchanged) To be Removed New/Additional Replacement Unit		
000	Gasonne	IN/A	N/A	Gallons	Insignificant Activity #5 & #8/ SDS	N/A	□ To Be Modified □ To be Replaced		
007	Ded dred discal	N/A	N/A	10000	20.2.72.202.B2	N/A	 Existing (unchanged) To be Removed New/Additional Replacement Unit 		
007	Red-dyed diesel	IN/A	N/A	Gallons	Insignificant Activity #5 & #8/ SDS	N/A	□ To Be Modified □ To be Replaced		
009	100 150 NH Com	N1/A	N/A	1300	20.2.72.202.B2	N/A	Existing (unchanged)		
008	ISO- 150 NL Gear	N/A	N/A	Gallons	Insignificant Activity #5 & #8/ SDS	N/A	 New/Additional Replacement Unit To Be Modified To be Replaced 		
000	100 150 NH C		N/A	1300	20.2.72.202.B2	N/A	Existing (unchanged)		
009	ISO- 150 NL Gear	N/A	N/A	Gallons	Insignificant Activity #5 & #8/ SDS	N/A	 New/Additional Replacement Unit To Be Modified To be Replaced 		
		27/1	N/A	1500	20.2.72.202.B2	N/A	\square Existing (unchanged) \square To be Removed		
012	Hydraulic Oil 32	N/A	N/A	Gallons	Insignificant Activity #5 & #8/ SDS	N/A	 New/Additional Replacement Unit To Be Modified To be Replaced 		
			N/A	6250	20.2.72.202.B2	N/A	☑ Existing (unchanged) □ To be Removed		
013	Used Oil	N/A	N/A	Gallons	Insignificant Activity #5 & #8/ SDS	N/A	 New/Additional Replacement Unit To Be Modified To be Replaced 		
	Power-D Engine Oil SAE 15W-		N/A	1000	20.2.72.202.B2	N/A	Existing (unchanged)		
014	40	N/A	N/A	Gallons	Insignificant Activity #5 & #8/ SDS	N/A	 New/Additional Replacement Unit To Be Modified To be Replaced 		
		27/1	N/A	1000	20.2.72.202.B2	N/A	\square Existing (unchanged) \square To be Removed		
015	Powerdrive Fluid SAE 60	N/A	N/A	Gallons	Insignificant Activity #5 & #8/ SDS	N/A	 New/Additional Replacement Unit To Be Modified To be Replaced 		
0.1.6		27/1	N/A	1000	20.2.72.202.B2	N/A	☑ Existing (unchanged) □ To be Removed		
016	Powerdrive Fluid SAE 10W	N/A	N/A	Gallons	Insignificant Activity #5 & #8/ SDS	N/A	 New/Additional Replacement Unit To Be Modified To be Replaced 		
	D	27/1	N/A	1000	20.2.72.202.B2	N/A	Existing (unchanged) To be Removed		
017	Powerdrive 10W	N/A	N/A	Gallons	Insignificant Activity #5 & #8/ SDS	N/A	 New/Additional Replacement Unit To Be Modified To be Replaced 		
010		27/4	N/A	1000	20.2.72.202.B2	N/A	Existing (unchanged)		
018	Powerdrive Fluid SAE 30	N/A	N/A	Gallons	Insignificant Activity #5 & #8/ SDS	N/A	 New/Additional Replacement Unit To Be Modified To be Replaced 		
010	Super All Season Oil SAE SW-		N/A	1000	20.2.72.202.B2	N/A	Existing (unchanged)		
019	30	N/A	N/A	Gallons	Insignificant Activity #5 & #8/ SDS	N/A	 New/Additional Replacement Unit To Be Modified To be Replaced 		
020	1.775	N T/1	N/A	1500	20.2.72.202.B2	N/A	□ Existing (unchanged) ☑ To be Removed		
020	ATF	N/A	N/A	Gallons	Insignificant Activity #5 & #8/ SDS	N/A	 New/Additional Replacement Unit To Be Modified To be Replaced 		
		27/1	N/A	15600	20.2.72.202.B2	N/A	☑ Existing (unchanged) □ To be Removed		
021	Powerdrive Oil	N/A	N/A	Gallons	Insignificant Activity #5 & #8/ SDS	N/A	 New/Additional Replacement Unit To Be Modified To be Replaced 		

Freeport-McN	IoRan Chino Mines Company			Chi	no Mine	Application Date: August 2023 Revision 0			
Unit Number	Source Description	Manufacturer	Model No.	Max Capacity	List Specific 20.2.72.202 NMAC Exemption (e.g. 20.2.72.202.B.5)	Date of Manufacture /Reconstruction ²	For Each Piece of Equipment, Check Once		
omt rumber		manufacturer	Serial No.	Capacity Units	Insignificant Activity citation (e.g. IA List Item #1.a)	Date of Installation /Construction ²	i in the i r i get i the		
022	Powerdrive Oil	N/A	N/A	10000	20.2.72.202.B2	N/A	 Existing (unchanged) To be Removed New/Additional Replacement Unit 		
022	Fowerdrive On	IN/A	N/A	Gallons	Insignificant Activity #5 & #8/ SDS	N/A	□ To Be Modified □ To be Replaced		
023	Used Oil	N/A	N/A	4100	20.2.72.202.B2	N/A	 □ Existing (unchanged) □ To be Removed □ New/Additional ☑ Replacement Unit 		
023	(Ploy Tank)	IN/A	N/A	Gallons	Insignificant Activity #5 & #8/ SDS	N/A	□ To Be Modified □ To be Replaced		
024	Used Oil	N/A	N/A	1550	20.2.72.202.B2	N/A	Existing (unchanged) To be Removed New/Additional Replacement Unit		
024	Used OII	IN/A	N/A	Gallons	Insignificant Activity #5 & #8/ SDS	N/A	Image: New/Additional Image: Replacement Unit Image: To Be Modified Image: To be Replaced		
025	Used Oil for Disating	N/A	N/A	3500	20.2.72.202.B2	N/A	 Existing (unchanged) To be Removed New/Additional Replacement Unit 		
023	Used Oil for Blasting	IN/A	N/A	Gallons	Insignificant Activity #5 & #8/ SDS	N/A	□ To Be Modified □ To be Replaced		
026	Used O'l fee Diseting	N1/A	N/A	3500	20.2.72.202.B2	N/A	Existing (unchanged)		
026	Used Oil for Blasting	N/A	N/A	Gallons	Insignificant Activity #5 & #8/ SDS	N/A	 New/Additional Replacement Unit To Be Modified To be Replaced 		
027	Duran Line Electrone (0	N1/A	N/A	1000	20.2.72.202.B2	N/A	Existing (unchanged) To be Removed New/Additional Replacement Unit		
027	Powerdrive Fluid SAE 60	N/A	N/A	Gallons	Insignificant Activity #5 & #8/ SDS	N/A	Image: New/Additional Image: Replacement Unit Image: To Be Modified Image: To be Replaced		
020			N/A	1000	20.2.72.202.B2	N/A	\square Existing (unchanged) \square To be Removed		
028	Powerdrive Fluid SAE 10W	N/A	N/A	Gallons	Insignificant Activity #5 & #8/ SDS	N/A	 New/Additional Replacement Unit To Be Modified To be Replaced 		
029	Duran Line Elect 1 CAE 20	N1/A	N/A	1000	20.2.72.202.B2	N/A	\square Existing (unchanged) \square To be Removed		
029	Powerdrive Fluid SAE 30	N/A	N/A	Gallons	Insignificant Activity #5 & #8/ SDS	N/A	 New/Additional Replacement Unit To Be Modified To be Replaced 		
030	M5 Grease No. 2	NI/A	N/A	850	20.2.72.202.B2	N/A	 Existing (unchanged) To be Removed New/Additional Replacement Unit 		
030	M5 Grease No. 2	N/A	N/A	Gallons	Insignificant Activity #5 & #8/ SDS	N/A	 New/Additional Replacement Unit To Be Modified To be Replaced 		
031	15W-40 Oil		N/A	1000	20.2.72.202.B2	N/A	 Existing (unchanged) To be Removed New/Additional Replacement Unit 		
031	13 w -40 Oli	N/A	N/A	Gallons	Insignificant Activity #5 & #8/ SDS	N/A	□ To Be Modified □ To be Replaced		
032	15W-40 Oil	N/A	N/A	1000	20.2.72.202.B2	N/A	 Existing (unchanged) To be Removed New/Additional Replacement Unit 		
032	15 w-40 Oli	IN/A	N/A	Gallons	Insignificant Activity #5 & #8/ SDS	N/A	Image: New/Additional Image: Replacement Unit Image: Image: New/Additional Image: Replacement Unit Image:		
022	SAE 20	NT/A	N/A	11650	20.2.72.202.B2	N/A	 Existing (unchanged) To be Removed New/Additional Replacement Unit 		
033	SAE 30	N/A	N/A	Gallons	Insignificant Activity #5 & #8/ SDS	N/A	New/Additional Replacement Unit To Be Modified To be Replaced		
034	SAE 15W-40 Oil	N/A	N/A	10100	20.2.72.202.B2	N/A	 Existing (unchanged) To be Removed New/Additional Replacement Unit 		
034	SAE 15 W-40 OII	IN/A	N/A	Gallons	Insignificant Activity #5 & #8/ SDS	N/A	New/Additional Replacement Unit To Be Modified To be Replaced		
027	Direct	NT/A	N/A	1000	20.2.72.202.B2	N/A	Existing (unchanged)		
037	Diesel	N/A	N/A	Gallons	Insignificant Activity #5 & #8/ SDS	N/A	 New/Additional Replacement Unit To Be Modified To be Replaced 		

Freeport-McMc	oRan Chino Mines Company			Chin	no Mine	Application Date: August 2023 Revision 0			
Unit Number	Source Description	Manufacturer	Model No.	Max Capacity	List Specific 20.2.72.202 NMAC Exemption (e.g. 20.2.72.202.B.5)	Date of Manufacture /Reconstruction ²	For Each Piece of Equipment, Check Once		
	Source Description	Manufacturer	Serial No.	Capacity Units	Insignificant Activity citation (e.g. IA List Item #1.a)	Date of Installation /Construction ²	i in the i r i better		
038	Gear Lube 85W-140	N/A	N/A	650	20.2.72.202.B2	N/A	Existing (unchanged) To be Removed New/Additional Replacement Unit		
038	Gear Lube 85 W-140	IN/A	N/A	Gallons	Insignificant Activity #5 & #8/ SDS	N/A	□ To Be Modified □ To be Replaced		
039-A	Diesel	N/A	N/A	6110	20.2.72.202.B2	N/A	Existing (unchanged) To be Removed New/Additional Replacement Unit		
039-A	Diesei	IN/A	N/A	Gallons	Insignificant Activity #5 & #8/ SDS	N/A	□ To Be Modified □ To be Replaced		
040-A	Discal	N/A	N/A	8209	20.2.72.202.B2	N/A	☑ Existing (unchanged) □ To be Removed		
040-A	Diesel	IN/A	N/A	Gallons	Insignificant Activity #5 & #8/ SDS	N/A	New/Additional Replacement Unit To Be Modified To be Replaced		
042	D. I. Ins. I.D. sol	NT/A	N/A	300788	20.2.72.202.B2	N/A	☑ Existing (unchanged) □ To be Removed		
042	Red-dyed Diesel	N/A	N/A	Gallons	Insignificant Activity #5 & #8/ SDS	N/A	 New/Additional Replacement Unit To Be Modified To be Replaced 		
0.42		27/4	N/A	300788	20.2.72.202.B2	N/A	Existing (unchanged) To be Removed		
043	Red-dyed Diesel	N/A	N/A	Gallons	Insignificant Activity #5 & #8/ SDS	N/A	 New/Additional Replacement Unit To Be Modified To be Replaced 		
046		27/4	N/A	50750	20.2.72.202.B2	N/A	Existing (unchanged) To be Removed		
046	Red-dyed Diesel	N/A	N/A	Gallons	Insignificant Activity #5 & #8/ SDS	N/A	 New/Additional Replacement Unit To Be Modified To be Replaced 		
		27/1	N/A	1000	20.2.72.202.B2	N/A	Existing (unchanged) To be Removed		
047	Used Oil	N/A	N/A	Gallons	Insignificant Activity #5 & #8/ SDS	N/A	 New/Additional Replacement Unit To Be Modified To be Replaced 		
0.40		27/4	N/A	5264	20.2.72.202.B2	N/A	Existing (unchanged) To be Removed		
048-A	Diesel	N/A	N/A	Gallons	Insignificant Activity #5 & #8/ SDS	N/A	 New/Additional To Be Modified To be Replaced 		
0.40		27/4	N/A	10869	20.2.72.202.B2	N/A	Existing (unchanged) To be Removed		
049	Diesel	N/A	N/A	Gallons	Insignificant Activity #5 & #8/ SDS	N/A	 New/Additional Replacement Unit To Be Modified To be Replaced 		
	D 1 1	27/1	N/A	1000	20.2.72.202.B2	N/A	☑ Existing (unchanged) □ To be Removed		
049-A	Diesel	N/A	N/A	Gallons	Insignificant Activity #5 & #8/ SDS	N/A	 New/Additional Replacement Unit To Be Modified To be Replaced 		
0.40 D		27/4	N/A	10000	20.2.72.202.B2	N/A	Existing (unchanged) To be Removed		
049-B	Diesel	N/A	N/A	Gallons	Insignificant Activity #5 & #8/ SDS	N/A	 New/Additional Replacement Unit To Be Modified To be Replaced 		
050 4	D' 1		N/A	6000	20.2.72.202.B2	N/A	\square Existing (unchanged) \square To be Removed		
050-A	Diesel	N/A	N/A	Gallons	Insignificant Activity #5 & #8/ SDS	N/A	New/Additional Replacement Unit To Be Modified To be Replaced		
051 4	On Devel Direct	NT/A	N/A	20000	20.2.72.202.B2	N/A	□ Existing (unchanged) ☑ To be Removed		
051-A	On-Road Diesel	N/A	N/A	Gallons	Insignificant Activity #5 & #8/ SDS	N/A	New/Additional Replacement Unit To Be Modified To be Replaced		
052	U-101	NT/A	N/A	750	20.2.72.202.B2	N/A	□ Existing (unchanged) ☑ To be Removed		
052	Used Oil	N/A	N/A	Gallons	Insignificant Activity #5 & #8/ SDS	N/A	 New/Additional Replacement Unit To Be Modified To be Replaced 		

Freeport-McMc	oRan Chino Mines Company			Chir	no Mine	Application Date: August 2023 Revision 0			
Unit Number	Source Description	Manufacturer	Model No.	Max Capacity	List Specific 20.2.72.202 NMAC Exemption (e.g. 20.2.72.202.B.5)	Date of Manufacture /Reconstruction ²	For Each Piece of Equipment, Check Once		
	Source Description	iviana internetia en	Serial No.	Capacity Units	Insignificant Activity citation (e.g. IA List Item #1.a)	Date of Installation /Construction ²			
053-A	Gasoline	N/A	N/A	4000	20.2.72.202.B2	N/A	Existing (unchanged) To be Removed New/Additional Replacement Unit		
033-A	Gasonne	IN/A	N/A	Gallons	Insignificant Activity #5 & #8/ SDS	N/A	□ To Be Modified □ To be Replaced		
054	Diesel	N/A	N/A	50500	20.2.72.202.B2	N/A	Existing (unchanged) To be Removed New/Additional Replacement Unit		
034	Diesei	IN/A	N/A	Gallons	Insignificant Activity #5 & #8/ SDS	N/A	□ To Be Modified □ To be Replaced		
055		NT/A	N/A	8650	20.2.72.202.B2	N/A	\square Existing (unchanged) \square To be Removed		
055	SAE 10W	N/A	N/A	Gallons	Insignificant Activity #5 & #8/ SDS	N/A	 New/Additional Replacement Unit To Be Modified To be Replaced 		
056	11 101	27/4	N/A	1450	20.2.72.202.B2	N/A	\square Existing (unchanged) \square To be Removed		
056	Used Oil	N/A	N/A	Gallons	Insignificant Activity #5 & #8/ SDS	N/A	 New/Additional Replacement Unit To Be Modified To be Replaced 		
	D ' 1	27/1	N/A	550	20.2.72.202.B2	N/A	☑ Existing (unchanged) □ To be Removed		
057	Diesel	N/A	N/A	Gallons	Insignificant Activity #5 & #8/ SDS	N/A	 New/Additional Replacement Unit To Be Modified To be Replaced 		
			N/A	265	20.2.72.202.B2	N/A	☑ Existing (unchanged) □ To be Removed		
063	Diesel	N/A	N/A	Gallons	Insignificant Activity #5 & #8/ SDS	N/A	 New/Additional Replacement Unit To Be Modified To be Replaced 		
			N/A	1150	20.2.72.202.B2	N/A	☑ Existing (unchanged) □ To be Removed		
065	Used Oil	N/A	N/A	Gallons	Insignificant Activity #5 & #8/ SDS	N/A	 New/Additional Replacement Unit To Be Modified To be Replaced 		
	D ¹ 1	27/1	N/A	3000	20.2.72.202.B2	N/A	☑ Existing (unchanged) □ To be Removed		
067	Diesel	N/A	N/A	Gallons	Insignificant Activity #5 & #8/ SDS	N/A	 New/Additional Replacement Unit To Be Modified To be Replaced 		
		27/1	N/A	1300	20.2.72.202.B2	N/A	☑ Existing (unchanged) □ To be Removed		
069	Used Oil	N/A	N/A	Gallons	Insignificant Activity #5 & #8/ SDS	N/A	 New/Additional Replacement Unit To Be Modified To be Replaced 		
		27/1	N/A	5000	20.2.72.202.B2	N/A	Existing (unchanged) To be Removed		
071	Used Oil	N/A	N/A	Gallons	Insignificant Activity #5 & #8/ SDS	N/A	 New/Additional Replacement Unit To Be Modified To be Replaced 		
0.50	T 1: 0'1	27/4	N/A	800	20.2.72.202.B2	N/A	Existing (unchanged)		
072	Turbine Oil	N/A	N/A	Gallons	Insignificant Activity #5 & #8/ SDS	N/A	 New/Additional Replacement Unit To Be Modified To be Replaced 		
0.55		27/4	N/A	3950	20.2.72.202.B2	N/A	☑ Existing (unchanged) □ To be Removed		
077	Diesel	N/A	N/A	Gallons	Insignificant Activity #5 & #8/ SDS	N/A	 New/Additional Replacement Unit To Be Modified To be Replaced 		
001	Tronoform O'l	27/1	N/A	1300	20.2.72.202.B2	N/A	☑ Existing (unchanged) □ To be Removed		
081	Transformer Oil	N/A	N/A	Gallons	Insignificant Activity #5 & #8/ SDS	N/A	 New/Additional Replacement Unit To Be Modified To be Replaced 		
00.4	C 11	27/4	N/A	500	20.2.72.202.B2	N/A	☑ Existing (unchanged) □ To be Removed		
084	Gear lube	N/A	N/A	Gallons	Insignificant Activity #5 & #8/ SDS	N/A	 New/Additional Replacement Unit To Be Modified To be Replaced 		

Freeport-McM	oRan Chino Mines Company			Chin	no Mine	Application Date: August 2023 Revision 0			
Unit Number	Source Description	Manufacturer	Model No.	Max Capacity	List Specific 20.2.72.202 NMAC Exemption (e.g. 20.2.72.202.B.5)	Date of Manufacture /Reconstruction ²	For Each Piece of Equipment, Check Once		
onit (uniber	Source Description		Serial No.	Capacity Units	Insignificant Activity citation (e.g. IA List Item #1.a)	Date of Installation /Construction ²			
086	Used Oil	N/A	N/A	400	20.2.72.202.B2	N/A	 Existing (unchanged) To be Removed New/Additional Replacement Unit 		
080	Used OII	IN/A	N/A	Gallons	Insignificant Activity #5 & #8/ SDS	N/A	□ To Be Modified □ To be Replaced		
101	Unleaded and Diesel	N/A	N/A	8000	20.2.72.202.B2	N/A	 Existing (unchanged) To be Removed New/Additional Replacement Unit 		
101	Unleaded and Dieser	IN/A	N/A	Gallons	Insignificant Activity #5 & #8/ SDS	N/A	□ To Be Modified □ To be Replaced		
102	Diesel	N/A	N/A	20000	20.2.72.202.B2	N/A	Existing (unchanged) To be Removed New/Additional Replacement Unit		
102	Diesei	IN/A	N/A	Gallons	Insignificant Activity #5 & #8/ SDS	N/A	New/Additional Replacement Unit To Be Modified To be Replaced		
103	Oily Water	N/A	N/A	2200	20.2.72.202.B2	N/A	Existing (unchanged) To be Removed New/Additional Replacement Unit		
105	Ony water	IN/A	N/A	Gallons	Insignificant Activity #5 & #8/ SDS	N/A	□ To Be Modified □ To be Replaced		
104	DEF	NT/A	N/A	300	20.2.72.202.B2	N/A	Existing (unchanged) To be Removed New/Additional Replacement Unit		
104	DEF	N/A	N/A	Gallons	Insignificant Activity #5 & #8/ SDS	N/A	 New/Additional Replacement Unit To Be Modified To be Replaced 		
105	01	NT/A	N/A	500	20.2.72.202.B2	N/A	Existing (unchanged)		
105	Oil	N/A	N/A	Gallons	Insignificant Activity #5 & #8/ SDS	N/A	 New/Additional Replacement Unit To Be Modified To be Replaced 		
106			N/A	300	20.2.72.202.B2	N/A	\square Existing (unchanged) \square To be Removed		
106	Magaplex-Grease	N/A	N/A	Gallons	Insignificant Activity #5 & #8/ SDS	N/A	 New/Additional Replacement Unit To Be Modified To be Replaced 		
100	D'and	NT/A	N/A	150	20.2.72.202.B2	N/A	Existing (unchanged)		
109	Diesel	N/A	N/A	Gallons	Insignificant Activity #5 & #8/ SDS	N/A	 New/Additional Replacement Unit To Be Modified To be Replaced 		
117	D'and	NT/A	N/A	265	20.2.72.202.B2	N/A	□ Existing (unchanged) ☑ To be Removed □ New/Additional □ Replacement Unit		
117	Diesel	N/A	N/A	Gallons	Insignificant Activity #5 & #8/ SDS	N/A	 New/Additional Replacement Unit To Be Modified To be Replaced 		
110			N/A	12000	20.2.72.202.B2	N/A	$\Box \text{ Existing (unchanged)} \qquad \Box \text{ To be Removed}$		
119	Diesel	N/A	N/A	Gallons	Insignificant Activity #5 & #8/ SDS	N/A	 New/Additional Replacement Unit To Be Modified To be Replaced 		
120.4	Used O'l & Islainste		N/A	2300	20.2.72.202.B2	N/A	Existing (unchanged) To be Removed New/Additional Replacement Unit		
120-A	Used Oil & Lubricants	N/A	N/A	Gallons	Insignificant Activity #5 & #8/ SDS	N/A	New/Additional Replacement Unit To Be Modified To be Replaced		
121 4	D :1	NI/A	N/A	300	20.2.72.202.B2	N/A	Existing (unchanged)		
121-A	Diesel	N/A	N/A	Gallons	Insignificant Activity #5 & #8/ SDS	N/A	 New/Additional Replacement Unit To Be Modified To be Replaced 		
122	Diesel	N/A	N/A	300	20.2.72.202.B2	N/A	□ Existing (unchanged) ☑ To be Removed		
122	Diesei	IN/A	N/A	Gallons	Insignificant Activity #5 & #8/ SDS	N/A	 New/Additional Replacement Unit To Be Modified To be Replaced 		
124 Wasser	Direct	NI/A	N/A	1500	20.2.72.202.B2	N/A	Existing (unchanged)		
124-Wagner	Diesel	N/A	N/A	Gallons	Insignificant Activity #5 & #8/ SDS	N/A	 New/Additional Replacement Unit To Be Modified To be Replaced 		

Freeport-McN	IoRan Chino Mines Company			Chi	no Mine	Application Date: August 2023 Revision 0		
Unit Number	Source Description	Manufacturer	Model No.	Max Capacity	List Specific 20.2.72.202 NMAC Exemption (e.g. 20.2.72.202.B.5)	Date of Manufacture /Reconstruction ²	For Each Piece of Equipment, Check Once	
Omt Number	Source Description	Wanufacturei	Serial No.	Capacity Units	Insignificant Activity citation (e.g. IA List Item #1.a)	Date of Installation /Construction ²		
125	Diesel	N/A	N/A	1000	20.2.72.202.B2	N/A	Existing (unchanged) To be Removed New/Additional Replacement Unit	
123	Diesei	IN/A	N/A	Gallons	Insignificant Activity #5 & #8/ SDS	N/A	To Be Modified To be Replaced	
126	Garalina	N 1/A	N/A	1000	20.2.72.202.B2	N/A	 Existing (unchanged) To be Removed New/Additional Replacement Unit 	
120	Gasoline	N/A	N/A	Gallons	Insignificant Activity #5 & #8/ SDS	N/A	 New/Additional Replacement Unit To Be Modified To be Replaced 	
	New end the d O'le D'end	N 1/A	N/A	220	20.2.72.202.B2	N/A	\square Existing (unchanged) \square To be Removed	
AA	New and Used Oils, Diesel	N/A	N/A	Gallons	Insignificant Activity #5 & #8/ SDS	N/A	 New/Additional Replacement Unit To Be Modified To be Replaced 	
1.D	N 10 101 10	27/4	N/A	55	20.2.72.202.B2	N/A	Existing (unchanged) To be Removed	
AB	New and Used Oils and Greases	N/A	N/A	Gallons	Insignificant Activity #5 & #8/ SDS	N/A	 New/Additional Replacement Unit To Be Modified To be Replaced 	
		27/1	N/A	100	20.2.72.202.B2	N/A	Existing (unchanged)	
AC	New and Used Oils and Greases	N/A	N/A	Gallons	Insignificant Activity #5 & #8/ SDS	N/A	 New/Additional Replacement Unit To Be Modified To be Replaced 	
			N/A	220	20.2.72.202.B2	N/A	Existing (unchanged)	
AD	Lubricants	N/A	N/A	Gallons	Insignificant Activity #5 & #8/ SDS	N/A	 New/Additional Replacement Unit To Be Modified To be Replaced 	
. –			N/A	250	20.2.72.202.B2	N/A	☑ Existing (unchanged) □ To be Removed	
AE	Used Oil	N/A	N/A	Gallons	Insignificant Activity #5 & #8/ SDS	N/A	 New/Additional Replacement Unit To Be Modified To be Replaced 	
		27/1	N/A	275	20.2.72.202.B2	N/A	Existing (unchanged)	
AF	New and Used Oils and Greases	N/A	N/A	Gallons	Insignificant Activity #5 & #8/ SDS	N/A	 New/Additional Replacement Unit To Be Modified To be Replaced 	
	T A A''	27/1	N/A	1500	20.2.72.202.B2	N/A	☑ Existing (unchanged) □ To be Removed	
AG	Transformer Oil	N/A	N/A	Gallons	Insignificant Activity #5 & #8/ SDS	N/A	 New/Additional Replacement Unit To Be Modified To be Replaced 	
	T A A''	27/1	N/A	1500	20.2.72.202.B2	N/A	Existing (unchanged) To be Removed	
AH	Transformer Oil	N/A	N/A	Gallons	Insignificant Activity #5 & #8/ SDS	N/A	 New/Additional Replacement Unit To Be Modified To be Replaced 	
	T 6 01	27/4	N/A	1200	20.2.72.202.B2	N/A	Existing (unchanged)	
AI	Transformer Oil	N/A	N/A	Gallons	Insignificant Activity #5 & #8/ SDS	N/A	 New/Additional Replacement Unit To Be Modified To be Replaced 	
		21/4	N/A	55	20.2.72.202.B2	N/A	Existing (unchanged)	
AJ	New and Used oil products	N/A	N/A	Gallons	Insignificant Activity #5 & #8/ SDS	N/A	 New/Additional Replacement Unit To Be Modified To be Replaced 	
13.5	Transformer Oil	21/4	N/A	300	20.2.72.202.B2	N/A	□ Existing (unchanged) □ To be Removed	
AM		N/A	N/A	Gallons	Insignificant Activity #5 & #8/ SDS	N/A	☑ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced	
		21/4	N/A	200	20.2.72.202.B2	N/A	□ Existing (unchanged) □ To be Removed	
А	Used Oils (Oil Pad)	N/A	N/A	Gallons	Insignificant Activity #5 & #8/ SDS	N/A	 ☑ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced 	

Freeport-McN	IoRan Chino Mines Company			Chi	no Mine		Application Date: August 2023 Revision 0
Unit Number	Source Description	Manufacturer	Model No.	Max Capacity	List Specific 20.2.72.202 NMAC Exemption (e.g. 20.2.72.202.B.5)	Date of Manufacture /Reconstruction ²	For Each Piece of Equipment, Check Once
	Source Description	Wanufacturei	Serial No.	Capacity Units	Insignificant Activity citation (e.g. IA List Item #1.a)	Date of Installation /Construction ²	For Each Field of Equipment, Check Once
С	Diesel, Oil	N/A	N/A	200	20.2.72.202.B2	N/A	Existing (unchanged) To be Removed New/Additional Replacement Unit
C	Diesei, Oli	IN/A	N/A	Gallons	Insignificant Activity #5 & #8/ SDS	N/A	□ To Be Modified □ To be Replaced
D	New and Used Oils and Greases	N/A	N/A	500	20.2.72.202.B2	N/A	 ☑ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit
D	New and Used Ons and Oreases	IN/A	N/A	Gallons	Insignificant Activity #5 & #8/ SDS	N/A	□ To Be Modified □ To be Replaced
D2	Lubricants	N/A	N/A	220	20.2.72.202.B2	N/A	☑ Existing (unchanged) □ To be Removed
D2	Luoricants	IN/A	N/A	Gallons	Insignificant Activity #5 & #8/ SDS	N/A	 New/Additional Replacement Unit To Be Modified To be Replaced
Б	Dec herts O'lle en l Courses	NT/A	N/A	55	20.2.72.202.B2	N/A	Existing (unchanged) Do be Removed
E	Product: Oils and Greases	N/A	N/A	Gallons	Insignificant Activity #5 & #8/ SDS	N/A	 New/Additional Replacement Unit To Be Modified To be Replaced
	X7 ' '1 1	27/4	N/A	55	20.2.72.202.B2	N/A	Existing (unchanged)
F	Various oils and greases	N/A	N/A	Gallons	Insignificant Activity #5 & #8/ SDS	N/A	 New/Additional Replacement Unit To Be Modified To be Replaced
G		21/4	N/A	55	20.2.72.202.B2	N/A	\square Existing (unchanged) \square To be Removed
G	Used Oils & Gear Lube	N/A	N/A	Gallons	Insignificant Activity #5 & #8/ SDS	N/A	 New/Additional Replacement Unit To Be Modified To be Replaced
		27/1	N/A	55	20.2.72.202.B2	N/A	Existing (unchanged)
Н	New and Used Oils and Greases	N/A	N/A	Gallons	Insignificant Activity #5 & #8/ SDS	N/A	 New/Additional Replacement Unit To Be Modified To be Replaced
Ŧ	N 10 101 10	21/4	N/A	55	20.2.72.202.B2	N/A	Existing (unchanged)
Ι	New and Used Oils and Greases	N/A	N/A	Gallons	Insignificant Activity #5 & #8/ SDS	N/A	 New/Additional Replacement Unit To Be Modified To be Replaced
	0.1	27/4	N/A	550	20.2.72.202.B2	N/A	Existing (unchanged)
К	Oil	N/A	N/A	Gallons	Insignificant Activity #5 & #8/ SDS	N/A	 New/Additional Replacement Unit To Be Modified To be Replaced
		27/1	N/A	55	20.2.72.202.B2	N/A	Existing (unchanged)
L	New and Used Oils and Greases	N/A	N/A	Gallons	Insignificant Activity #5 & #8/ SDS	N/A	 New/Additional Replacement Unit To Be Modified To be Replaced
	N 10 101 10	27/4	N/A	275	20.2.72.202.B2	N/A	Existing (unchanged)
М	New and Used Oils and Greases	N/A	N/A	Gallons	Insignificant Activity #5 & #8/ SDS	N/A	 New/Additional Replacement Unit To Be Modified To be Replaced
N		27/4	N/A	180	20.2.72.202.B2	N/A	Existing (unchanged)
Ν	New and Used Oils and Greases	N/A	N/A	Gallons	Insignificant Activity #5 & #8/ SDS	N/A	 New/Additional Replacement Unit To Be Modified To be Replaced
0		21/4	N/A	180	20.2.72.202.B2	N/A	☑ Existing (unchanged) □ To be Removed
0	New and Used Oils and Greases	N/A	N/A	Gallons	Insignificant Activity #5 & #8/ SDS	N/A	 New/Additional Replacement Unit To Be Modified To be Replaced
D		27/4	N/A	1000	20.2.72.202.B2	N/A	☑ Existing (unchanged) □ To be Removed
Р	New and Used Oils and Greases	N/A	N/A	Gallons	Insignificant Activity #5 & #8/ SDS	N/A	 New/Additional Replacement Unit To Be Modified To be Replaced

Freeport-McN	IoRan Chino Mines Company			Chi	no Mine		Application Date: August 2023 Revision 0
Unit Number	Source Description	Manufacturer	Model No.	Max Capacity	List Specific 20.2.72.202 NMAC Exemption (e.g. 20.2.72.202.B.5)	Date of Manufacture /Reconstruction ²	For Each Piece of Equipment, Check Once
	Source Description	Manufacturer	Serial No.	Capacity Units	Insignificant Activity citation (e.g. IA List Item #1.a)	Date of Installation /Construction ²	For Each Free of Equipment, Check Once
0	New and Used Oils and Greases	N/A	N/A	110	20.2.72.202.B2	N/A	 Existing (unchanged) To be Removed New/Additional Replacement Unit
Q	New and Used Ons and Oreases	IN/A	N/A	Gallons	Insignificant Activity #5 & #8/ SDS	N/A	□ To Be Modified □ To be Replaced
R	Oils and Greases	N/A	N/A	800	20.2.72.202.B2	N/A	 Existing (unchanged) To be Removed New/Additional Replacement Unit
ĸ	Ons and Greases	IN/A	N/A	Gallons	Insignificant Activity #5 & #8/ SDS	N/A	□ To Be Modified □ To be Replaced
TS	Oil and Diesel	N 1/A	N/A	250	20.2.72.202.B2	N/A	\square Existing (unchanged) \square To be Removed
15	Oil and Diesel	N/A	N/A	Gallons	Insignificant Activity #5 & #8/ SDS	N/A	 New/Additional Replacement Unit To Be Modified To be Replaced
U	New Allerio's ed Course	N 1/A	N/A	55	20.2.72.202.B2	N/A	Existing (unchanged)
U	New and Used Oils and Greases	N/A	N/A	Gallons	Insignificant Activity #5 & #8/ SDS	N/A	 New/Additional Replacement Unit To Be Modified To be Replaced
17	N 10 101 10	21/4	N/A	55	20.2.72.202.B2	N/A	\square Existing (unchanged) \square To be Removed
V	New and Used Oils and Greases	N/A	N/A	Gallons	Insignificant Activity #5 & #8/ SDS	N/A	 New/Additional Replacement Unit To Be Modified To be Replaced
1/2		27/4	N/A	495	20.2.72.202.B2	N/A	Existing (unchanged)
V2	Diesel	N/A	N/A	Gallons	Insignificant Activity #5 & #8/ SDS	N/A	 New/Additional Replacement Unit To Be Modified To be Replaced
	Diesel	27/1	N/A	275	20.2.72.202.B2	N/A	Existing (unchanged)
V3	(SX mobile pumps)	N/A	N/A	Gallons	Insignificant Activity #5 & #8/ SDS	N/A	 New/Additional Replacement Unit To Be Modified To be Replaced
11/1		27/4	N/A	0	20.2.72.202.B2	N/A	Existing (unchanged)
WI	Diesel	N/A	N/A	Gallons	Insignificant Activity #5 & #8/ SDS	N/A	 New/Additional Replacement Unit To Be Modified To be Replaced
37	N 10 101 10	27/4	N/A	55	20.2.72.202.B2	N/A	\square Existing (unchanged) \square To be Removed
Х	New and Used Oils and Greases	N/A	N/A	Gallons	Insignificant Activity #5 & #8/ SDS	N/A	 New/Additional Replacement Unit To Be Modified To be Replaced
	N 10 101 10	27/4	N/A	550	20.2.72.202.B2	N/A	Existing (unchanged)
Y	New and Used Oils and Greases	N/A	N/A	Gallons	Insignificant Activity #5 & #8/ SDS	N/A	 New/Additional Replacement Unit To Be Modified To be Replaced
7.4	D' 1	21/4	N/A	500	20.2.72.202.B2	N/A	Existing (unchanged)
ZA	Diesel	N/A	N/A	Gallons	Insignificant Activity #5 & #8/ SDS	N/A	 New/Additional Replacement Unit To Be Modified To be Replaced
70	Diesel	21/4	N/A	55	20.2.72.202.B2	N/A	Existing (unchanged)
ZB	(Mill mobile pumps)	N/A	N/A	Gallons	Insignificant Activity #5 & #8/ SDS	N/A	 New/Additional Replacement Unit To Be Modified To be Replaced
OF 001	Direct	NI/A	N/A	10500	20.2.72.202.B2	N/A	Existing (unchanged)
OF-001	Diesel	N/A	N/A	Gallons	Insignificant Activity #5 & #8/ SDS	N/A	New/Additional Replacement Unit To Be Modified To be Replaced
OF 002	TT-11-1	21/4	N/A	1000	20.2.72.202.B5	N/A	Existing (unchanged)
OF-002	Unleaded	N/A	N/A	Gallons	Insignificant Activity #5 & #8/ SDS	N/A	 New/Additional Replacement Unit To Be Modified To be Replaced

Freeport-McN	IoRan Chino Mines Company			Chir	no Mine		Application Date: August 2023 Revision 0
Unit Number	Source Description	Manufacturer	Model No.	Max Capacity	List Specific 20.2.72.202 NMAC Exemption (e.g. 20.2.72.202.B.5)	Date of Manufacture /Reconstruction ²	For Each Piece of Equipment, Check Once
Olint Number	Source Description	Manufacturei	Serial No.	Capacity Units	Insignificant Activity citation (e.g. IA List Item #1.a)	Date of Installation /Construction ²	For Each Field of Equipment, Check Once
OF-003	Diesel	N/A	N/A	550	20.2.72.202.B2	N/A	Existing (unchanged) To be Removed New/Additional Replacement Unit
01-005	Diesei	IN/A	N/A	Gallons	Insignificant Activity #5 & #8/ SDS	N/A	□ To Be Modified □ To be Replaced
M2-001	Lube Oil	N/A	N/A	300	20.2.72.202.B2	N/A	Existing (unchanged) To be Removed New/Additional Replacement Unit
IVI2-001	Lube OII	IN/A	N/A	Gallons	Insignificant Activity #5 & #8/ SDS	N/A	To Be Modified To be Replaced
M2-002	Lube Oil	N/A	N/A	300	20.2.72.202.B2	N/A	Existing (unchanged) To be Removed New/Additional Replacement Unit
1412-002	Lube On	IN/A	N/A	Gallons	Insignificant Activity #5 & #8/ SDS	N/A	To Be Modified To be Replaced
M2-003	Lube Oil	N/A	N/A	300	20.2.72.202.B2	N/A	Existing (unchanged) To be Removed New/Additional Replacement Unit
W12-005	Lube OII	IN/A	N/A	Gallons	Insignificant Activity #5 & #8/ SDS	N/A	To Be Modified To be Replaced
M2-004	Lube Oil	N/A	N/A	360	20.2.72.202.B2	N/A	Existing (unchanged) To be Removed New/Additional Replacement Unit
W12-004	Lube OII	IN/A	N/A	Gallons	Insignificant Activity #5 & #8/ SDS	N/A	To Be Modified To be Replaced
M2-005	Diesel	N/A	N/A	10000	20.2.72.202.B2	N/A	Existing (unchanged) To be Removed New/Additional Replacement Unit
1/12-005	Diesei	IN/A	N/A	Gallons	Insignificant Activity #5 & #8/ SDS	N/A	□ To Be Modified □ To be Replaced
M2-006	Used Oil	N/A	N/A	1000	20.2.72.202.B2	N/A	Existing (unchanged) To be Removed New/Additional Replacement Unit
1/12-000	Used OII	IN/A	N/A	Gallons	Insignificant Activity #5 & #8/ SDS	N/A	□ To Be Modified □ To be Replaced
M2-007	Lube Oil	N/A	N/A	605	20.2.72.202.B2	N/A	Existing (unchanged) To be Removed New/Additional Replacement Unit
1412-007	Lube On	IN/A	N/A	Gallons	Insignificant Activity #5 & #8/ SDS	N/A	□ To Be Modified □ To be Replaced
Tank 123	Cobre Diesel Tank	N/A	N/A	2000	20.2.72.202.B2	N/A	Existing (unchanged) To be Removed New/Additional Replacement Unit
Talik 125	Coble Dieser Failk	IN/A	N/A	Gallons	Insignificant Activity #5 & #8/ SDS	N/A	□ To Be Modified □ To be Replaced
				NON ROA	D ENGINES ³		
NR 1	Compressors	N/A	N/A	Variable	40 CFR 89	Variable	Existing (unchanged) To be Removed New/Additional Replacement Unit
INK I	Compressors	IN/A	N/A	hp	Insignificant Activity #1a and #6	Variable	□ To Be Modified □ To be Replaced
NR 2	Pumps	N/A	N/A	Variable	40 CFR 89	Variable	Existing (unchanged) To be Removed New/Additional Replacement Unit
INK Z	r unps	IN/A	N/A	hp	Insignificant Activity #1a and #6	Variable	□ To Be Modified □ To be Replaced
NR 3	Maintenance Equipment (Small	N/A	N/A	Variable	40 CFR 89	Variable	 Existing (unchanged) To be Removed New/Additional Replacement Unit
INK 3	Generators and Engines)	1N/A	N/A	hp	Insignificant Activity #1a and #6	Variable	$\square New Additional \\ \square To Be Modified \\ \square To be Replaced$

¹ Insignificant activities exempted due to size or production rate are defined in 20.2.70.300.D.6, 20.2.70.7.Q NMAC, and the NMED/AQB List of Insignificant Activities, dated September 15, 2008. Emissions from these insignificant activities do not need to be reported, unless specifically requested.

² Specify date(s) required to determine regulatory applicability.

³ For information purposes only. These engines satisfy the federal definition of "nonroad engine" under 40 CFR §§ 89.2 and 90.3 (for compression and spark-ignition engines, respectively) and are therefore regulated by EPA as mobile sources and not subject to state NSR and Title V permitting for stationary sources.

Table 2-C: Emissions Control Equipment

Unit and stack numbering must correspond throughout the application package. Only list control equipment for TAPs if the TAP's maximum uncontrolled emissions rate is over its respective threshold as listed in 20.2.72 NMAC, Subpart V, Tables A and B. In accordance with 20.2.72.203.A(3) and (8) NMAC, 20.2.70.300.D(5)(b) and (e) NMAC, and 20.2.73.200.B(7) NMAC, the permittee shall report all control devices and list each pollutant controlled by the control device regardless if the applicant takes credit for the reduction in emissions.

Control Equipment Unit No.	Control Equipment Description	Date Installed	Controlled Pollutant(s)	Controlling Emissions for Unit Number(s) ¹	Efficiency (% Control by Weight)	Method used to Estimate Efficiency
MP SCRB	Molybdenum Plant Wet Scrubber	Pre-2008	TSP/PM/PM10/PM2.5	IC-01	98.0%	Manufacturer Specifications
PCB H-01	Primary Crusher Baghouse	Pre-1983	TSP/PM/PM10/PM2.5	PC-01	99.7%	Bechtel Specifications
CSLU-01	Lime Unloading System Wet Scrubber	Pre-1983	TSP/PM/PM10/PM2.5	LUH-01	99.8%	Manufacturer Specifications
CSLH-01	Lime Handling System Wet Scrubber	Pre-1983	TSP/PM/PM10/PM2.5	LHS-01	99.8%	Manufacturer Specifications
RCB-01	Recycle Crusher Baghouse (no emissions to atmosphere; vents back into building)	Unknown	TSP/PM/PM10/PM2.5	Recycle Crusher	99.0%	Manufacturer Specifications
SAG-BH	SAG Tunnel Baghouse	TBD	TSP/PM/PM10/PM2.5	SAG Tunnel	99.99%	Manufacturer Specifications
	ntrol device on a separate line. For each control device, list all er					

Table 2-D: Maximum Emissions (under normal operating conditions)

□ This Table was intentionally left blank because it would be identical to Table 2-E.

Maximum Emissions are the emissions at maximum capacity and prior to (in the absence of) pollution control, emission-reducing process equipment, or any other emission reduction. Calculate the hourly emissions using the worst case hourly emissions for each pollutant. For each pollutant, ealculate the annual emissions as if the facility were operating at maximum plant capacity without pollution controls for 8760 hours per year, unless otherwise approved by the Department. List Hazardous Air Pollutants (HAP) & Toxic Air Pollutants (TAPs) in Table 2-1. Unit & stack numbering must be consistent throughout the application package. Fill all cells in this table with the emission numbers or a "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expected. Numbers shall be expressed to at least 2 decimal points (e.g. 0.41, 1.41, or 1.41E-4).

Unit No.	N	Ox	(CO	VC	DC	SC)x	Р	M1	PN	[10 ¹	PM	2.5 ¹	Н	$_2S$	Le	ad
Unit No.	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
CB TLNGS									0.27	1.17	0.13	0.00	0.020	0.088				
CBM HR									3385.64	16087.84	862.87	4100.20	86.29	410.02				
CBM MH	-						-	-	0.63	2.27	0.24	0.87	0.036	0.13	-		9.05E-06	3.44E-05
CBM BLST	*	12.87	*	290.58			*	0.026	*	33.20	*	17.26	*	1.00				
CM BLST	*	46.80	*	1056.64			*	0.094	*	134.83	*	70.11	*	4.04			-	
BORR_BLST	*	0.054	*	1.22			*	1.08E-04	*	0.058	*	0.058	*	0.0033				
BORR_MH	-							-	2.67E-02	5.60E-03	2.67E-02	5.60E-03	4.00E-03	8.40E-04			-	
CM HR									9906.36	143239.65	2524.77	36506.52	252.48	3650.65				
CM MH	-							-	2.30	10.07	0.88	3.85	0.13	0.58			8.09E-06	3.02E-05
CM TLNGS									31.37	340.30	38.85	170.15	5.83	25.52				
CTS-01	-						-	-				-					-	
CV-01A																		
CV-01B	-						-	-				-					-	
CV-01C									1.49	6.58	0.54	2.41	0.082	0.36			4.01E-05	1.78E-04
F-2-1-1.4	39.90	174.76	20.00	87.60	2.80	12.26	0.40	1.75	2.30	10.07	2.30	10.07	2.30	10.07				
F-2-1-1.5	2.40	10.51	1.30	5.69	0.60	2.63	0.030	0.13	0.30	1.31	0.30	1.31	0.30	1.31			2.39E-05	1.05E-04
FLTR/BLND									5.91	5.29	2.34	2.06	2.34	2.06				
GDF					0.62	2.72												
IC-01									0.31	1.36	0.31	1.36	0.31	1.36			1.55E-05	6.79E-05
LHS-01 (IC-06)									0.044	0.10	0.044	0.10	6.6E-03	0.015				
LUS-01							-	-	0.24	0.10	0.24	0.10	0.036	0.015			-	
PC Dump									0.14	0.62	0.054	0.24	8.1E-03	0.035			3.79E-06	1.66E-05
PC-01									2.16	9.46	2.16	9.46	2.16	9.46			5.83E-05	2.55E-04
SAG-F1 (IC-04)									0.74	3.29	0.54	2.41	0.082	0.36			4.01E-05	1.78E-04
SCDP							-	-	0.74	3.29	0.15	0.67	0.043	0.19			1.25E-05	5.52E-05
CH SCRN									82.53	180.75	30.87	67.61	4.64	10.16			2.23E-03	4.88E-03
CB SCRN									13.73	30.06	5.09	11.14	0.76	1.67			3.71E-04	8.12E-04
CH SCRN ENG	0.81	3.56	0.10	0.45	0.018	0.077	0.19	0.82	0.20	0.88	0.20	0.88	0.20	0.88				
CB SCRN ENG	1.16	2.53	1.02	2.22	0.50	1.10	0.42	0.91	0.45	0.98	0.45	0.98	0.45	0.98				
SXEW 10MST					0.29	1.26												

Unit No.	N	Ox		CO	V	C	SC)x	P	M ¹	PM	(10 ¹	PM	2.5 ¹	Н	₂ S	Le	ad
Unit No.	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
SXEW Boiler No. 1	0.18	0.78	0.10	0.45	0.014	0.060	7.27E-03	0.032	0.010	0.042	0.010	0.042	0.010	0.042				
SXEW Boiler No. 2	0.18	0.78	0.10	0.45	0.014	0.060	7.27E-03	0.032	0.010	0.042	0.010	0.042	0.010	0.042				
SXEW Boiler No. 3	0.20	0.87	0.11	0.50	0.015	0.067	8.11E-03	0.036	0.011	0.047	0.011	0.047	0.011	0.047				
SXEW RT					0.019	0.083												
SXEW SAT											2.28	10.00						
WH Crush									78.53	171.99	34.48	75.51	6.20	13.57			2.11E-03	4.64E-03
GENERAC1	3.04	0.76	0.24	0.059	0.088	0.022	4.38E-04	1.09E-04	0.0074	0.0018	5.74E-05	1.44E-05	5.74E-05	1.44E-05				
GENERAC2	2.05	0.51	0.16	0.040	0.059	0.015	2.96E-04	7.39E-05	0.0050	0.0012	3.88E-05	9.69E-06	3.88E-05	9.69E-06				
GENERAC4	0.44	0.11	0.034	0.0085	0.013	0.0032	6.33E-05	1.58E-05	0.0011	2.67E-04	8.30E-06	2.07E-06	8.30E-06	2.07E-06				
GENERAC5	0.73	0.18	0.057	0.014	0.021	0.0053	1.06E-04	2.65E-05	0.0018	4.46E-04	1.39E-05	3.47E-06	1.39E-05	3.47E-06				
GENERAC6	0.73	0.18	0.057	0.014	0.021	0.0053	1.06E-04	2.65E-05	0.0018	4.46E-04	1.39E-05	3.47E-06	1.39E-05	3.47E-06				
GENERAC7	0.73	0.18	0.057	0.014	0.021	0.0053	1.06E-04	2.65E-05	0.0018	4.46E-04	1.39E-05	3.47E-06	1.39E-05	3.47E-06				
GENERAC8	1.75	0.44	0.14	0.034	0.051	0.013	2.53E-04	6.32E-05	0.0043	1.07E-03	3.32E-05	8.29E-06	3.32E-05	8.29E-06				
ATT Gen	1.55	0.39	0.33	0.083	0.12	0.031	5.31E-04	1.33E-04	0.11	2.72E-02	1.09E-01	2.72E-02	1.09E-01	2.72E-02				
Sxlpwrprm8	8.91	2.23	1.92	0.48	0.71	0.177	0.0031	7.65E-04	0.63	0.16	0.63	0.16	0.63	0.16				
Sxlpwrprm5	7.37	1.84	1.59	0.40	0.58	0.15	0.0025	6.33E-04	0.52	0.13	0.52	0.13	0.52	0.13				
Sxlpwrprm3	5.80	1.45	1.25	0.31	0.46	0.115	0.0020	4.98E-04	0.41	0.102	0.41	0.102	0.41	0.10				
Sxlgdwn1	9.96	2.49	2.15	0.54	0.79	0.20	0.0034	8.55E-04	0.70	0.18	0.70	0.18	0.70	0.18				
Sxlpwrprm4	7.37	1.84	1.59	0.40	0.58	0.146	0.0025	6.33E-04	0.52	0.130	0.52	0.130	0.52	0.13				
Sxlpwrprm2	9.96	2.49	2.15	0.54	0.79	0.20	0.0034	8.55E-04	0.70	0.18	0.70	0.18	0.70	0.18				
Sxlpwrprm7	5.83	1.46	1.26	0.31	0.46	0.116	0.0020	5.01E-04	0.41	0.102	0.41	0.102	0.41	0.10				
Cummins Generator/1823	1.42	0.36	0.31	0.077	0.11	0.028	0.00049	1.22E-04	0.10	0.025	0.10	0.025	0.10	0.025				
DEUTZ	3.95	0.99	0.85	0.21	0.313	0.078	0.0014	0.00034	0.28	0.069	0.28	0.069	0.28	0.069				
EE5	6.51	1.63	1.40	0.35	0.52	0.13	0.0022	0.00056	0.46	0.11	0.46	0.11	0.46	0.11				
FWP01	6.14	1.53	1.32	0.33	0.49	0.12	0.0021	0.00053	0.43	1.08E-01	4.31E-01	1.08E-01	4.31E-01	1.08E-01				
RT-1	0.15	0.037	0.30	0.074	0.10	0.026	0.00043	0.00011	0.0072	1.79E-03	5.58E-05	1.40E-05	5.58E-05	1.40E-05				
RT-2	0.15	0.037	0.30	0.074	0.10	0.026	0.00043	0.00011	0.0072	1.79E-03	5.58E-05	1.40E-05	5.58E-05	1.40E-05				
SAG ³																		
Totals	129.37	274.66	40.17	1,450.17	11.31	21.93	1.08	3.84	13,521.73	160,276.97	3,515.41	41,066.80	369.98	4,145.99	-		0.0049	0.011

¹ Significant Figures Examples: One significant figure - 0.03, 3, 0.3. Two significant figures - 0.34, 34, 3400, 3.4 ²Condensables: Include condensable particulate matter emissions in particulate matter calculations.

³ The SAG Tunnel is not a source of emissions in an uncontrolled scenario because it is an enclosed process. The pollution control device is present for industrial hygiene purposes.

"*" Indicates that an hourly limit is not appropriate for this operating situation and is not being requested

"-" Indicates emissions of this pollutant are not expected

Table 2-E: Requested Allowable Emissions

Unit & stack numbering must be consistent throughout the application package. Fill all cells in this table with the emission numbers or a "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expected. Numbers shall be expressed to at least 2 decimal points (e.g. 0.41, 1.41, or 1.41E⁴).

Unit No.	N	Ox	(C O	V	C	SC)x	P	M1	PN	/110 ¹	PM2	2.5 ¹	Н	₂ S	Le	ad
Unit No.	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
CB TLNGS									0.27	1.2	0.13	0.00	0.020	0.088				
CBM HR									173.36	814.31	44.18	207.54	4.42	20.75				
CBM MH					-		-		0.63	2.27	0.24	0.87	0.036	0.13	-		9.05E-06	3.44E-05
CBM BLST	*	12.87	*	290.58			*	0.026	*	33.20	*	17.26	*	1.00				
CM BLST	*	46.80	*	1056.64			*	0.094	*	134.83	*	70.11	*	4.04				
BORR_BLST	*	0.054	*	1.22			*	1.08E-04	*	0.058	*	0.058	*	0.0033				
BORR_MH									2.67E-02	5.60E-03	2.67E-02	5.60E-03	4.00E-03	8.40E-04				
CM HR									1109.51	16042.84	282.77	4088.73	28.28	408.87				
CM MH									2.30	10.07	0.88	3.85	0.13	0.58			8.09E-06	3.02E-05
CM TLNGS									31.37	340.30	38.85	170.15	5.83	25.52				
CTS-01																		
CV-01A																		
CV-01B																		
CV-01C									1.49	6.58	0.54	2.41	0.082	0.36			4.01E-05	1.79E-04
F-2-1-1.4	39.90	174.76	20.00	87.60	2.80	12.26	0.40	1.75	2.30	10.07	2.30	10.07	2.30	10.07				
F-2-1-1.5	2.40	10.51	1.30	5.69	0.60	2.63	0.030	0.13	0.30	1.31	0.30	1.31	0.30	1.31			2.39E-05	1.05E-04
FLTR/ BLND									0.89	0.79	0.35	0.31	0.35	0.31				
GDF					0.62	2.7												
IC-01									0.31	1.36	0.31	1.36	0.31	1.36			3.10E-06	1.36E-05
LHS-01 (IC-06)									0.044	0.10	0.24	0.10	0.036	0.015				
LUS-01									0.24	0.10	0.044	0.10	6.60E-03	0.015				
PC Dump									0.14	0.62	0.016	0.071	2.4E-03	0.011			1.14E-06	4.98E-06
PC-01									2.16	9.46	2.16	9.46	2.16	9.46			5.83E-05	2.55E-04
SAG-F1 (IC-04)									0.74	3.29	0.54	2.41	0.082	0.36			4.01E-05	1.78E-04
SCDP									0.74	3.29	0.15	0.67	0.043	0.19			1.25E-05	5.52E-05
CH SCRN									19.77	43.30	8.63	18.90	1.22	2.67			5.34E-04	1.17E-03
CB SCRN									3.47	7.60	1.51	3.30	0.20	0.44			9.36E-05	2.05E-04
CH SCRN ENG	0.81	3.6	0.10	0.45	0.018	0.077	0.19	0.82	0.20	0.88	0.20	0.88	0.20	0.88				
CB SCRN ENG	1.16	2.53	1.02	2.22	0.50	1.10	0.42	0.91	0.45	0.98	0.45	0.98	0.45	0.98				
SXEW 10MST					0.29	1.26												

Unit No.	N	Ox	(CO	V	DC DC	SC)x	Р	M ¹	PN	/110 ¹	PM2	2.5 ¹	Н	₂ S	Le	ad
Unit No.	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
SXEW Boiler No. 1	0.18	0.78	0.10	0.45	0.014	0.060	7.27E-03	0.032	0.010	0.042	0.010	0.042	0.010	0.042				
SXEW Boiler No. 2	0.18	0.78	0.10	0.45	0.014	0.060	7.27E-03	0.032	0.010	0.042	0.010	0.042	0.010	0.042				
SXEW Boiler No. 3	0.20	0.87	0.11	0.50	0.015	0.067	8.11E-03	0.036	0.011	0.047	0.011	0.047	0.011	0.047				
SXEW RT					0.019	0.083												
SXEW SAT											2.28	10.00						
WH Crush									78.53	171.99	34.48	75.51	6.20	13.569			0.0021	0.0046
GENERAC1	3.04	0.76	0.24	0.059	0.088	0.022	4.38E-04	1.09E-04	0.0074	0.0018	5.74E-05	1.44E-05	5.74E-05	1.44E-05				
GENERAC2	2.1	0.51	0.16	0.040	0.059	0.015	2.96E-04	7.39E-05	0.0050	0.0012	3.88E-05	9.69E-06	3.88E-05	9.69E-06				
GENERAC4	0.44	0.11	0.034	0.0085	0.013	0.0032	6.33E-05	1.58E-05	0.0011	2.67E-04	8.30E-06	2.07E-06	8.30E-06	2.07E-06				
GENERAC5	0.73	0.18	0.057	0.014	0.021	0.0053	1.06E-04	2.65E-05	0.0018	4.46E-04	1.39E-05	3.47E-06	1.39E-05	3.47E-06	-			
GENERAC6	0.73	0.18	0.057	0.014	0.021	0.0053	1.06E-04	2.65E-05	0.0018	4.46E-04	1.39E-05	3.47E-06	1.39E-05	3.47E-06				
GENERAC7	0.73	0.18	0.057	0.014	0.021	0.0053	1.06E-04	2.65E-05	0.0018	4.46E-04	1.39E-05	3.47E-06	1.39E-05	3.47E-06	-			
GENERAC8	1.75	0.44	0.14	0.034	0.051	0.013	2.53E-04	6.32E-05	0.0043	1.07E-03	3.32E-05	8.29E-06	3.32E-05	8.29E-06				
ATT Gen	1.55	0.39	0.33	0.083	0.12	0.031	5.31E-04	1.33E-04	0.11	2.72E-02	1.09E-01	2.72E-02	1.09E-01	2.72E-02				
Sxlpwrprm8	8.91	2.23	1.92	0.48	0.71	0.177	0.0031	7.65E-04	0.63	0.16	0.63	0.16	0.63	0.16				
Sxlpwrprm5	7.37	1.84	1.59	0.40	0.58	0.15	2.53E-03	6.33E-04	0.52	0.13	0.52	0.13	0.52	0.13	-			
Sxlpwrprm3	5.80	1.45	1.25	0.31	0.46	0.115	0.0020	4.98E-04	0.41	0.10	0.41	0.10	0.41	0.10				
Sxlgdwn1	9.96	2.49	2.15	0.54	0.79	0.198	0.0034	8.55E-04	0.70	0.18	0.70	0.18	0.70	0.18	1			
Sxlpwrprm4	7.37	1.84	1.59	0.40	0.58	0.146	0.0025	6.33E-04	0.52	0.13	0.52	0.13	0.52	0.13				
Sxlpwrprm2	9.96	2.49	2.15	0.54	0.79	0.198	0.0034	8.55E-04	0.70	0.18	0.70	0.18	0.70	0.18				
Sxlpwrprm7	5.83	1.46	1.26	0.31	0.46	0.116	0.0020	5.01E-04	0.41	0.10	0.41	0.10	0.41	0.10				
Cummins Generator/1823	1.42	0.36	0.31	0.08	0.11	0.0282	4.89E-04	1.22E-04	0.10	0.025	0.10	0.025	0.10	0.025				
DEUTZ	3.95	0.99	0.85	0.21	0.31	0.078	0.0014	3.39E-04	0.28	0.069	0.28	0.069	0.28	0.069				
EE5	6.51	1.63	1.40	0.35	0.52	0.13	0.0022	5.59E-04	0.46	0.11	0.46	0.11	0.46	0.11				
FWP01	6.14	1.53	1.32	0.33	0.49	0.12	0.0021	5.27E-04	0.43	0.11	0.43	0.11	0.43	0.11				
RT-1	0.15	0.037	0.30	0.074	0.10	0.026	4.26E-04	1.06E-04	0.0072	1.79E-03	5.58E-05	1.40E-05	5.58E-05	1.40E-05				
RT-2	0.15	0.037	0.30	0.074	0.10	0.026	4.26E-04	1.06E-04	0.0072	1.79E-03	5.58E-05	1.40E-05	5.58E-05	1.40E-05				
SAG									1.03	4.51	0.97	4.25	0.46	2.03				
Totals	129.37	274.66	40.17	1,450.17	11.31	21.93	1.08	3.84	1,435.59	17,646.73	427.85	4,702.12	58.40	506.46			2.94E-03	6.87E-03

¹ Significant Figures Examples: One significant figure - 0.03, 3, 0.3. Two significant figures - 0.34, 34, 3400, 3.4

 2 Condensables: Include condensable particulate matter emissions in particulate matter calculations.

"*" Indicates that an hourly limit is not appropriate for this operating situation and is not being requested

"-" Indicates emissions of this pollutant are not expected

Table 2-F: Additional Emissions during Startup, Shutdown, and Routine Maintenance (SSM)

If This table is intentionally left blank since all emissions at this facility due to routine or predictable startup, shutdown, or scehduled maintenance are no higher than those listed in Table 2-E and a malfunction emission limit is not already permitted or requested. If you are required to report GHG emissions as described in Section 6a, include any GHG emissions during Startup, Shutdown, and/or Scheduled Maintenance (SSM) in Table 2-P. Provide an explanations of SSM emissions in Section 6 and 6a.

All applications for facilities that have emissions during routine our predictable startup, shutdown or scheduled maintenance $(SSM)^1$, including NOI applications, must include in this table the Maximum Emissions during routine or predictable startup, shutdown and scheduled maintenance (20.2.7 NMAC, 20.2.72.203.A.3 NMAC, 20.2.73.200.D.2 NMAC). In Section 6 and 6a, provide emissions calculations for all SSM emissions reported in this table. Refer to "Guidance for Submittal of Startup, Shutdown, Maintenance Emissions in Permit Applications (https://www.env.pm.gov/aph/permit/aph.pel.htm) for more detailed instructions. Numbers shall be expressed to at least 2 decimal points (a.g. 0.41, 1.41, or 1.41E.4)

ttps://www Unit No.	N	Ox	C	0	V	DC	S	Ox	P	M ²	PM	I 10 ²	PM	2.5^{2}	Н	I ₂ S	Le	ead
Unit No.	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/y								
																		-
																		-
																		-
																		-
																		-
										1								
Totals																		

¹ For instance, if the short term steady-state Table 2-E emissions are 5 lb/hr and the SSM rate is 12 lb/hr, enter 7 lb/hr in this table. If the annual steady-state Table 2-E emissions are 21.9 TPY, and the number of scheduled SSM events result in annual emissions of 31.9 TPY, enter 10.0 TPY in the table below.

² Condensable Particulate Matter: Include condensable particulate matter emissions for PM10 and PM2.5 if the source is a combustion source. Do not include condensable particulate matter for PM unless PM is set equal to PM10 and PM2.5. Particulate matter (PM) is not subject to an ambient air quality standard, but it is a regulated air pollutant under PSD (20.2.74 NMAC) and Title V (20.2.70 NMAC).

Table 2-G: Stack Exit and Fugitive Emission Rates for Special Stacks

Z I have elected to leave this table blank because this facility does not have any stacks/vents that split emissions from a single source or combine emissions from more than one source listed in table 2-A. Additionally, the emission rates of all stacks match the Requested allowable emission rates stated in Table 2-E.

Use this table to list stack emissions (requested allowable) from split and combined stacks. List Toxic Air Pollutants (TAPs) and Hazardous Air Pollutants (HAPs) in Table 2-I. List all fugitives that are associated with the normal, routine, and non-emergency operation of the facility. Unit and stack numbering must correspond throughout the application package. Refer to Table 2-E for instructions on use of the "-" symbol and on significant figures.

G(1 N	Serving Unit	N	Ox	C	0	V	OC	S	Ox	Р	М	PN	110	PM	12.5	\Box H ₂ S of	r 🗆 Lead
Stack No.	Number(s) from Table 2-A	lb/hr	ton/yr	lb/hr	ton/yr												
	Totals:																

Table 2-H: Stack Exit Conditions

Unit and stack numbering must correspond throughout the application package. Include the stack exit conditions for each unit that emits from a stack, including blowdown venting parameters and tank emissions. If the facility has multiple operating scenarios, complete a separate Table 2-H for each scenario and, for each, type scenario name here:

Stack	Serving Unit Number(s)	Orientation (H-Horizontal	Rain Caps	Height Above	Temp.	Flow	Rate	Moisture by	Velocity	Inside
Number	from Table 2-A	V=Vertical)	(Yes or No)	Ground (ft)	(F)	(acfs)	(dscfs)	Volume (%)	(ft/sec)	Diameter (ft)
009-В	F-2-1-1.4	Vertical	No	80	965.0	11,161.9	-	16%	128.9	10.5
009-A	F-2-1-1.4 and F-2-1-1.5	Vertical	No	130.9	377.3	8,804.5	-	16%	101.7	10.5
S3	IC-01	Vertical	No	80	92.9	229.2	-	-	33.5	3.0
SCSLH-02	LHS-01	Vertical	No	60	Ambient	82.5	-	-	39.0	1.6
SCSLU-02	LUS-01	Vertical	No	60	Ambient	20.0	-	-	59.1	0.66
SPCBH-01	PC-01	Vertical	No	27.9	Ambient	225.7	-	-	74.2	2.0
<u>\$9</u>	CH SCRN ENG	Vertical	No	6	Unknown	Unknown	-	-	Unknown	0.25
S10	CB SCRN ENG	Vertical	No	6.6	1,130	20.6	-	-	53.5	0.7
<u>S5</u>	SXEW Boiler No. 1	Vertical	Yes	30.8	479.9	0.73	-	-	2.2	0.66
<u>S6</u>	SXEW Boiler No. 2	Vertical	Yes	30.8	479.9	0.73	-	-	2.2	0.66
<u>\$7</u>	SXEW Boiler No. 3	Vertical	Yes	30.8	479.9	0.73	-	-	2.2	0.66
SXEW SAT	SXEW SAT	Horizontal	No	35.1	Ambient $+ 4^{\circ}$	6,556.5	-	-	3.7	47.2
EE5	SXEW Fire Emergency Pump	Vertical	No	14.8 ¹	800 1	20.0	-	-	45.9 ¹	0.66 1
S13	Sxlpwrprm8	Vertical	No	14.8 ¹	800 1	20.0	-	-	45.9 ¹	0.66 1
S14	Sxlpwrprm3	Vertical	No	14.8 ¹	800 1	20.0	-	-	45.9 ¹	0.66 1
S15	Sxlgdwn1	Vertical	No	14.8 ¹	800 ¹	20.0	-	-	45.9 ¹	0.66 1
S16	Sxlpwrprm4	Vertical	No	14.8 1	800 ⁻¹	20.0	-	-	45.9 ¹	0.66 1
S17	Sxlpwrprm2	Vertical	No	14.8 1	800 1	20.0	-	-	45.9 ¹	0.66 1
S18	Cummins Generator/1823	Vertical	No	14.8 1	800 1	20.0	-	-	45.9 ¹	0.66 1
S23	DEUTZ	Vertical	No	14.8 1	800 1	20.0	-	-	45.9 ¹	0.66 1
S24	FWP01	Vertical	No	14.8 1	800 1	20.0	-	-	45.9 ¹	0.66 1
S25	GENERAC1	Vertical	No	14.8 ¹	800 ¹	20.0	-	-	45.9 ¹	0.66 1
S26	GENERAC2	Vertical	No	14.8 ¹	800 ¹	20.0	-	-	45.9 ¹	0.66 1
S28	GENERAC4	Vertical	No	14.8 ¹	800 ⁻¹	20.0	-	-	45.9 ¹	0.66 1
S29	GENERAC5	Vertical	No	14.8 ¹	800 ¹	20.0	-	-	45.9 ¹	0.66 1
S30	GENERAC6	Vertical	No	14.8 ¹	800 1	20.0	-	-	45.9 ¹	0.66 1
S31	GENERAC7	Vertical	No	14.8 ¹	800 1	20.0	-	-	45.9 ¹	0.66 1
GENERAC8	GENERAC8	Vertical	No	4.8	1330.0	3.4	-	-	45.9 ¹	0.66 1
ATT Gen	ATT Gen	Vertical	No	4.9	900.0	1.5	-	-	45.9 ¹	0.66 1
S34	RT-1	Vertical	No	14.8 ¹	1369.0	9.2	-	-	187.8	0.25
\$33	RT-2	Vertical	No	14.8 ¹	1369.0	9.2	-	-	187.8	0.25

¹ Stack parameters are estimated based on unit Sxlgdwn1 because it has the highest emission rate of engines with unknown stack parameters. Table 26: Missing Stack Parameter Substitutions for Other Point Sources from NM AQB Air Dispersion Modeling Guidelines was used to supply the estimates for this missing data. The data supplied here does not represent actual stack parameters as they vary based on the size of the unit and are unknown at this time.

Table 2-I: Stack Exit and Fugitive Emission Rates for HAPs and TAPs

In the table below, report the Potential to Emit for each HAP from each regulated emission unit listed in Table 2-A, only if the entire facility emits the HAP at a rate greater than or equal to one (1) ton per year For each such emission unit, HAPs shall be reported to the nearest 0.1 top. Each facility-wide Individual HAP total and the facility-wide Total HAPs shall be the sum of all HAP sources calculated to the nearest 0.1 ton per year. Per 20.2.72.403.A.1 NMAC, facilities not exempt [see 20.2.72.402.C NMAC] from TAP permitting shall report each TAP that has an uncontrolled emission rate in excess of its pounds per hour screening level specified in 20.2.72.502 NMAC. TAPs shall be reported using one more significant figures than the number of significant figures shown in the pound per hour threshold corresponding to the substance. Use the HAP onenclature as it appears in Section 112 (b) of the 1990 CAAA and the TAP nomenclature as it listed in a quantity less than the threshold amounts described above.

Stack No.	Unit No.(s)	.(s) Total HAPs		Ben Ø HAP (Acetal	dehyde or 🛛 TAP	Acr HAP (ldehyde or 🛛 TAP		thalene or 🛛 TAP		^{Toluene} ☑ HAP or □ TAP		lenes or 🗆 TAP		ric Acid or 🗹 TAP
		lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr lb/	lb/hr	ton/yr	lb/hr	ton/yr
N/A	CB TLNGS																		
N/A	CBM HR																		
N/A	CBM MH	6.01E-04	1.69E-03																
N/A	CBM BLST																		
N/A	CM BLST																		
N/A	BORR_BLST																		
N/A	BORR_MH			-			-			-				-					
N/A	CM HR			-															
N/A	CM MH	5.95E-04	2.43E-03	-			-			-				-					
N/A	CM TLNGS			-			-		-	-									
N/A	CTS-01																		
N/A	CV-01A																		
N/A	CV-01B																		
N/A	CV-01C	1.13E-03	1.67E-03																
009-B	F-2-1-1.4	0.47	2.05	5.46E-03	2.39E-02	0.018	0.080	2.91E-03	0.013	0.32	1.41	5.92E-04	2.59E-03	0.059	0.26	0.029	0.13	0.020	0.088
009-A	F-2-1-1.5	0.090	0.39	1.00E-04	4.40E-04					3.59E-03	1.57E-02	2.92E-05	1.28E-04	1.63E-04	7.12E-04				
N/A	FLTR/ BLND																		
N/A	GDF	0.32	1.41	0.030	0.13									0.16	0.68	0.093	0.41		
S-3	IC-01	1.32E-04	5.77E-04																
SCSLH-02	LHS-01 (IC-06)																		
SCSLU-02	LUS-01																		
N/A	PC Dump	3.20E-05	1.40E-04																
SPCBH-01	PC-01	1.64E-03	7.18E-03																
N/A	SAG-F1 (IC-04)	1.11E-03	4.99E-03																
N/A	SCDP	3.51E-04	1.55E-03																
N/A	CH SCRN	0.015	0.033																
N/A	CB SCRN	2.63E-03	5.76E-03																

Freeport-McMoRan Chino Mines Company

Stack No.	Unit No.(s)	Total	HAPs	Ben Ø HAP (Acetal I HAP (olein Dr 🛛 TAP		ldehyde or 🛛 TAP		thalene or 🛛 TAP		^{Toluene} ☑ HAP or □ TAP		lenes or 🗆 TAP		ric Acid or 🗹 TAP
		lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
N/A	CH SCRN ENG	2.42E-03	0.011	6.02E-04	2.64E-03	4.95E-04	2.17E-03	5.97E-05	2.61E-04	7.62E-04	3.34E-03	5.47E-05	2.40E-04	2.64E-04	1.16E-03	1.84E-04	8.06E-04		
N/A	CB SCRN ENG	5.40E-03	0.012	1.34E-03	2.94E-03	1.10E-03	2.42E-03	1.33E-04	2.91E-04	1.70E-03	3.72E-03	1.22E-04	2.67E-04	5.88E-04	1.29E-03	4.10E-04	8.98E-04		
N/A	SXEW 10MST	0.29	1.26	0.064	0.28									0.070	0.31	0.078	0.34		
S5	SXEW Boiler No.																		
S6	SXEW Boiler No. 2																		
S7	SXEW Boiler No. 3																		
N/A	SXEW RT	0.019	0.083	4.24E-03	0.019									4.63E-03	0.020	5.13E-03	0.022		
SXEW SAT	SXEW SAT																	2.28	10.00
N/A	WH Crush	0.060	0.13																
S12	EE5	5.54E-03	1.38E-03	1.38E-03	3.44E-04	1.13E-03	2.83E-04	1.36E-04	3.41E-05	1.74E-03	4.35E-04	1.25E-04	3.13E-05	6.04E-04	1.51E-04	4.21E-04	1.05E-04		
S13	Sxlpwrprm8	7.58E-03	1.89E-03	1.89E-03	4.71E-04	1.55E-03	3.87E-04	1.87E-04	4.67E-05	2.38E-03	5.96E-04	1.71E-04	4.28E-05	8.26E-04	2.07E-04	5.76E-04	1.44E-04		
S35	Sxlpwrprm5	6.27E-03	1.57E-03	1.56E-03	3.90E-04	1.28E-03	3.20E-04	1.55E-04	3.86E-05	1.97E-03	4.93E-04	1.42E-04	3.54E-05	6.84E-04	1.71E-04	4.76E-04	1.19E-04		
S14	Sxlpwrprm3	4.93E-03	1.23E-03	1.23E-03	3.07E-04	1.01E-03	2.52E-04	1.22E-04	3.04E-05	1.55E-03	3.88E-04	1.12E-04	2.79E-05	5.38E-04	1.34E-04	3.75E-04	9.37E-05		
S15	Sxlgdwn1	8.47E-03	2.12E-03	2.11E-03	5.27E-04	1.73E-03	4.33E-04	2.09E-04	5.22E-05	2.66E-03	6.66E-04	1.91E-04	4.79E-05	9.24E-04	2.31E-04	6.44E-04	1.61E-04		
S16	Sxlpwrprm4	6.27E-03	1.57E-03	1.56E-03	3.90E-04	1.28E-03	3.20E-04	1.55E-04	3.86E-05	1.97E-03	4.93E-04	1.42E-04	3.54E-05	6.84E-04	1.71E-04	4.76E-04	1.19E-04		
S17	Sxlpwrprm2	8.47E-03	2.12E-03	2.11E-03	5.27E-04	1.73E-03	4.33E-04	2.09E-04	5.22E-05	2.66E-03	6.66E-04	1.91E-04	4.79E-05	9.24E-04	2.31E-04	6.44E-04	1.61E-04		
S36	Sxlpwrprm7	4.96E-03	1.24E-03	1.23E-03	3.08E-04	1.01E-03	2.53E-04	1.22E-04	3.06E-05	1.56E-03	3.90E-04	1.12E-04	2.80E-05	5.41E-04	1.35E-04	3.77E-04	9.42E-05		
S18	Cummins Generator/1823	1.21E-03	3.03E-04	3.01E-04	7.53E-05	2.48E-04	6.19E-05	2.99E-05	7.46E-06	3.81E-04	9.52E-05	2.74E-05	6.84E-06	1.32E-04	3.30E-05	9.20E-05	2.30E-05		
S23	DEUTZ	3.36E-03	8.40E-04	8.36E-04	2.09E-04	6.87E-04	1.72E-04	8.28E-05	2.07E-05	1.06E-03	2.64E-04	7.60E-05	1.90E-05	3.66E-04	9.16E-05	2.55E-04	6.38E-05		
S24	FWP01	5.22E-03	1.31E-03	1.30E-03	3.25E-04	1.07E-03	2.67E-04	1.29E-04	3.22E-05	1.64E-03	4.11E-04	1.18E-04	2.95E-05	5.69E-04	1.42E-04	3.97E-04	9.92E-05		
S25	GENERAC1	5.02E-02	1.25E-02	3.28E-04	8.19E-05	6.22E-03	1.56E-03	3.83E-03	9.57E-04	3.93E-02	9.83E-03	5.54E-05	1.38E-05	3.04E-04	7.59E-05	1.37E-04	3.43E-05		
S26	GENERAC2	3.39E-02	8.47E-03	2.21E-04	5.53E-05	4.20E-03	1.05E-03	2.58E-03	6.46E-04	2.65E-02	2.12E-03	3.74E-05	9.35E-06	2.05E-04	5.13E-05	9.25E-05	2.31E-05		
S28	GENERAC4	7.25E-03	1.81E-03	4.73E-05	1.18E-05	9.00E-04	2.25E-04	5.53E-04	1.38E-04	5.68E-03	4.53E-04	8.01E-06	2.00E-06	4.39E-05	1.10E-05	1.98E-05	4.95E-06		
S29	GENERAC5	1.21E-02	3.03E-03	7.92E-05	1.98E-05	1.50E-03	3.76E-04	9.25E-04	2.31E-04	9.50E-03	7.58E-04	1.34E-05	3.35E-06	7.34E-05	1.84E-05	3.31E-05	8.28E-06		
S30	GENERAC6	1.21E-02	3.03E-03	7.92E-05	1.98E-05	1.50E-03	3.76E-04	9.25E-04	2.31E-04	9.50E-03	7.58E-04	1.34E-05	3.35E-06	7.34E-05	1.84E-05	3.31E-05	8.28E-06	-	
S31	GENERAC7	1.21E-02	3.03E-03	7.92E-05	1.98E-05	1.50E-03	3.76E-04	9.25E-04	2.31E-04	9.50E-03	7.58E-04	1.34E-05	3.35E-06	7.34E-05	1.84E-05	3.31E-05	8.28E-06		
GENERAC8	GENERAC8	2.90E-02	7.25E-03	1.89E-04	4.73E-05	3.59E-03	8.99E-04	2.21E-03	5.53E-04	2.27E-02	1.81E-03	3.20E-05	8.00E-06	1.75E-04	4.39E-05	7.91E-05	1.98E-05		
ATT Gen	ATT Gen	1.32E-03	3.29E-04	3.27E-04	8.18E-05	2.69E-04	6.72E-05	3.24E-05	8.11E-06	4.14E-04	1.03E-04	2.97E-05	7.43E-06	1.43E-04	3.59E-05	9.99E-05	2.50E-05		
S34	RT-1	4.88E-02	1.22E-02	3.19E-04	7.96E-05	6.05E-03	1.51E-03	3.72E-03	9.30E-04	3.82E-02	3.05E-03	5.39E-05	1.35E-05	2.95E-04	7.39E-05	1.33E-04	3.33E-05		
S33	RT-2	4.88E-02	1.22E-02	3.19E-04	7.96E-05	6.05E-03	1.51E-03	3.72E-03	9.30E-04	3.82E-02	3.05E-03	5.39E-05	1.35E-05	2.95E-04	7.39E-05	1.33E-04	3.33E-05		
	Totals:	1.59	5.49	0.12	0.47	0.064	0.095	0.024	0.019	0.55	1.47	2.52E-03	3.66E-03	0.30	1.27	0.21	0.90	2.30	10.08

Table 2-J: Fuel

Specify fuel characteristics and usage. Unit and stack numbering must correspond throughout the application package.

	Fuel Type (low sulfur Diesel,	Fuel Source: purchased commercial, pipeline quality natural gas, residue	Specify Units							
Unit No.	ultra low sulfur diesel, Natural Gas, Coal,)	gas, raw/field natural gas, residue gas, raw/field natural gas, process gas (e.g. SRU tail gas) or other	Lower Heating Value	Hourly Usage	Annual Usage	% Sulfur <0.01 <0.05% <0.05% 5.3 lb/10 ³ gal 5.3 lb/10 ³ gal 5.3 lb/10 ³ gal 6 0 <th>% Ash</th>	% Ash			
F-2-1-1.4	Natural Gas	Pipeline quality natural gas	1,020 Btu/scf	493,921.6 scf	4326.8 MMscf	< 0.01	-			
F-2-1-1.5	Natural Gas	Pipeline quality natural gas	1,020 Btu/scf	47,843.1 scf	419.1 MMscf	<0.01	-			
CB SCRN ENG	Diesel Fuel	Purchased commercial	137,000 Btu/gal	10.5 gal	92.0 Mgal	<0.05%	-			
CH SCRN ENG	Diesel Fuel	Purchased commercial	137,000 Btu/gal	4.7 gal	4.7 Mgal	<0.05%	-			
SXEW Boiler No. 1	Liquid petroleum gas (LPG)	Purchased commercial	91,500 Btu/gal	13.7 gal	0.12 MMgal	5.3 lb/10 ³ gal	-			
SXEW Boiler No. 2	Liquid petroleum gas (LPG)	Purchased commercial	91,500 Btu/gal	13.7 gal	0.12 MMgal	5.3 lb/10 ³ gal	-			
SXEW Boiler No. 3	Liquid petroleum gas (LPG)	Purchased commercial	91,500 Btu/gal	15.3 gal	0.13 MMgal	5.3 lb/10 ³ gal	-			
EE5	Diesel Fuel		Var	ries			-			
Sxlpwrprm8	Diesel Fuel		Var	ies			-			
Sxlpwrprm5	Diesel Fuel		Var	ries			-			
Sxlpwrprm3	Diesel Fuel		Var	ries			-			
Sxlgdwn1	Diesel Fuel	Varies								
Sxlpwrprm4	Diesel Fuel	Varies								
Sxlpwrprm2	Diesel Fuel		Var	ies			-			
Sxlpwrprm7	Diesel Fuel		Var	ries			-			

	Fuel Type (low sulfur Diesel,	Fuel Source: purchased commercial,		Speci	fy Units		
Unit No.	ultra low sulfur diesel, Natural Gas, Coal,)	pipeline quality natural gas, residue gas, raw/field natural gas, process gas (e.g. SRU tail gas) or other	Lower Heating Value	ng Value Hourly Usage Annual Usage % Su	% Sulfur	% Ash	
Cummins Generator/1823	Diesel Fuel		Var	ies		·	-
CB EGEN2	Diesel Fuel		Var	ies			-
CB EGEN3	Diesel Fuel		Var	ies			-
DEUTZ	Diesel Fuel		Var	ies			-
FWP01	Natural Gas		Var	ies			-
GENERAC1	Liquid petroleum gas (LPG)		Var	ies			-
GENERAC2	Liquid petroleum gas (LPG)		Var	ies			-
GENERAC4	Liquid petroleum gas (LPG)		Var	ies			-
GENERAC5	Liquid petroleum gas (LPG)		Var	ies			-
GENERAC6	Liquid petroleum gas (LPG)		Var	ies			-
GENERAC7	Liquid petroleum gas (LPG)		Var	ies			-
GENERAC8	Liquid petroleum gas (LPG)		Var	ies			-
ATT Gen	Diesel Fuel		Var	ies			-
RT-1	Liquid petroleum gas (LPG)		Var	ies			-
RT-2	Liquid petroleum gas (LPG)		Var	ies			-

Table 2-K: Liquid Data for Tanks Listed in Table 2-L

For each tank, list the liquid(s) to be stored in each tank. If it is expected that a tank may store a variety of hydrocarbon liquids, enter "mixed hydrocarbons" in the Composition column for that tank and enter the corresponding data of the most volatile liquid to be stored in the tank. If tank is to be used for storage of different materials, list all the materials in the "All Calculations" attachment, run the newest version of TANKS on each, and use the material with the highest emission rate to determine maximum uncontrolled and requested allowable emissions rate. The permit will specify the most volatile category of liquids that may be stored in each tank. Include appropriate tank-flashing modeling input data. Use additional sheets if necessary. Unit and stack numbering must correspond throughout the application package.

	SCC Code				Vapor	Average Stor	age Conditions	Max Storage Conditions		
Tank No.		Material Name	Composition	Liquid Density (lb/gal)	Molecular Weight (lb/lb*mol)	Temperature (°F)	True Vapor Pressure (psia)	Temperature (°F)	True Vapor Pressure (psia)	
]	N/A- All tanks are considered insignificant	activities and	are listed on Ta	ble 2-B.				

Table 2-L: Tank Data

Include appropriate tank-flashing modeling input data. Use an addendum to this table for unlisted data categories. Unit and stack numbering must correspond throughout the application package. Use additional sheets if necessary. See reference Table 2-L2. Note: 1.00 bbl = 10.159 M3 = 42.0 gal

Tank No.	Date Installed	Materials Stored	Seal Type (refer to Table 2 LR below)	Roof Type (refer to Table 2- LR below)		acity	Diameter (M)	Vapor Space	(from Ta	blor ble VI-C)	Paint Condition (from Table	Annual Throughput (gal/yr)	Turn- overs
					(bbl)	(M ³)		(M)	Roof	Shell	VI-C)	(gal/yr)	(per year)
			N/A- /	All tanks are co	onsidered insig	nificant activi	ties and are lis	ted on Table 2	2-В.				
	l l												
			1										
						L							
			1										

Table 2-L2: Liquid Storage Tank Data Codes Reference Table

Roof Type	Seal Type, We	ded Tank Seal Type	Seal Type, Rive	eted Tank Seal Type	Roof, Shell Color	Paint Condition
FX: Fixed Roof	Mechanical Shoe Seal	Liquid-mounted resilient seal	Vapor-mounted resilient seal	Seal Type	WH: White	Good
IF: Internal Floating Roof	A: Primary only	A: Primary only	A: Primary only	A: Mechanical shoe, primary only	AS: Aluminum (specular)	Poor
EF: External Floating Roof	B: Shoe-mounted secondary	B: Weather shield	B: Weather shield	B: Shoe-mounted secondary	AD: Aluminum (diffuse)	
P: Pressure	C: Rim-mounted secondary	C: Rim-mounted secondary	C: Rim-mounted secondary	C: Rim-mounted secondary	LG: Light Gray	
					MG: Medium Gray	
Note: $1.00 \text{ bbl} = 0.159 \text{ l}$	$M^3 = 42.0 \text{ gal}$				BL : Black	
					OT: Other (specify)	

	Materia	l Processed		Ν	Iaterial Produced		
Description	Chemical Composition	Phase (Gas, Liquid, or Solid)	Quantity (specify units)	Description	Chemical Composition	Phase	Quantity (specify units)
Chino Mined Material	Copper, minerals, and trace metals	Solid	1,000,000 tons/day	Chino & Cobre Copper Cathode	High Purity Copper	Solid	215 tons/day
Cobre Mined Material	Copper, minerals, and trace metals	Solid	126,000 tons/day	Chino & Cobre Copper Cathode	High Purity Copper	Solid	215 tons/day
Magnetite	Iron, Copper, Manganese, and trace metals	Solid	4,500 tons/day	Magnetite	Magnetite	Solid	4,500 tons/day
Copper Ore for Concentrator (mined)	Copper, minerals, and trace metals	Solid	80,640 tons/day	Concentrate	30% Copper Concentrate Cake	Solid	360,800 tons/yr

Table 2-M: Materials Processed and Produced (Use additional sheets as necessary.)

Table 2-N: CEM Equipment

Enter Continuous Emissions Measurement (CEM) Data in this table. If CEM data will be used as part of a federally enforceable permit condition, or used to satisfy the requirements of a state or federal regulation, include a copy of the CEM's manufacturer specification sheet in the Information Used to Determine Emissions attachment. Unit and stack numbering must correspond throughout the application package. Use additional sheets if necessary.

Stack No.	Pollutant(s)	Manufacturer	Model No.	Serial No.	Sample Frequency	Averaging Time	Range	Sensitivity	Accuracy
		N/A -	This facility does not	t have any CEM equi	oment present.				

Table 2-O: Parametric Emissions Measurement Equipment

Unit and stack numbering must correspond throughout the application package. Use additional sheets if necessary.

Unit No.	Parameter/Pollutant Measured	Location of Measurement	Unit of Measure	Acceptable Range	Frequency of Maintenance	Nature of Maintenance	Method of Recording	Averaging Time
		N/A - This facil	ity does not have any	PEM equipment press	ent.			

Table 2-P: Greenhouse Gas Emissions

Applications submitted under 20.2.70, 20.2.72, & 20.2.74 NMAC are required to complete this Table. Power plants, Title V major sources, and PSD major sources must report and calculate all GHG emissions for each unit. Applicants must report potential emission rates in short tons per year (see Section 6.a for assistance). Include GHG emissions during Startup, Shutdown, and Scheduled Maintenance in this table. For minor source facilities that are not power plants, are not Title V, or are not PSD, there are three options for reporting GHGs 1) report GHGs for each individual piece of equipment; 2) report all GHGs from a group of unit types, for example report all combustion source GHGs as a single unit and all venting GHG as a second separate unit; OR 3) check the following box By checking this box, the applicant acknowledges the total CO2e emissions are less than 75,000 tons per year.

		CO ₂ ton/yr	N2O ton/yr	CH ₄ ton/yr	SF ₆ ton/yr	PFC/HFC ton/yr ²						Total GHG Mass Basis ton/yr ⁴	Total CO ₂ e
Unit No.	GWPs ¹	1	298	25	22,800	footnote 3							
CB TLNGS	mass GHG												
CB ILNGS	CO ₂ e												
CBM HR	mass GHG												
CBM IIK	CO ₂ e												
СВМ МН	mass GHG												
	CO ₂ e								1				
CBM BLST	mass GHG	2,610.54	0.021	0.11								2,610.66	0 (10 40
	CO ₂ e mass GHG	2,610.54 9,492.86	6.31 0.077	2.65 0.39								0.402.22	2,619.49
CM BLST	CO ₂ e	9,492.86	22.95	9.63								9,493.32	9,525.43
	_		8.86E-05	9.65 4.43E-04								10.02	9,323.43
BORR_BLST	mass GHG CO ₂ e	10.93 10.93	8.86E-05 2.64E-02	4.43E-04 1.11E-02								10.93	10.96
	mass GHG		2.04E-02										10.70
BORR_MH	CO ₂ e												
	mass GHG												
CM HR	CO ₂ e												
	mass GHG												
CM MH	CO ₂ e												
	mass GHG												
CM TLNGS	CO ₂ e												
0700.04	mass GHG												
CTS-01	CO ₂ e												
CV-01A	mass GHG												
CV-01A	CO ₂ e												
CV-01B	mass GHG												
CV-01B	CO ₂ e												
CV-01C	mass GHG												
01.010	CO ₂ e												
F-2-1-1.4	mass GHG	314,047.46	0.44	4.39								314,052.29	
	CO ₂ e	314,047.46	130.93	109.84								24.004.02	314,288.23
F-2-1-1.5	mass GHG	24,984.31	0.047	0.47								24,984.83	25.010.14
	CO ₂ e mass GHG	24,984.31	14.04	11.78									25,010.14
FLTR/ BLND	CO2e												-
	mass GHG												<u> </u>
GDF	CO2e												<u> </u>
	mass GHG												
IC-01	CO2e												
LHS-01	mass GHG												
(IC-06)	CO ₂ e						1	1	İ		1		
	mass GHG												
LUS-01	CO ₂ e												
DC DUMP	mass GHG												
PC DUMP	CO ₂ e												
PC-01	mass GHG												
PC-01	CO ₂ e												

SAG-F1	mass GHG				 						
(IC-04)	CO ₂ e				 						
CODD	mass GHG				 						
SCDP	CO ₂ e				 						
	mass GHG				 						
CH SCRN	CO ₂ e				 						
	mass GHG				 						
CB SCRN	CO ₂ e					1		1			
	_				 					464.22	
CH SCRN ENG	mass GHG	464.31	0.00	0.02	 					464.33	
	CO ₂ e	464.31	1.12	0.47	 						465.90
CB SCRN ENG	mass GHG	517.42	0.00	0.02	 					517.45	
ob bone i lind	CO ₂ e	517.42	1.25	0.52	 						519.20
SXEW 10MST	mass GHG				 						
SAL W TUNIST	CO ₂ e				 						
CNEWD 1 N 1	mass GHG	763.23	0.01	0.04	 					763.27	
SXEW Boiler No. 1	CO ₂ e	763.23	2.17	0.91	 						766.30
	mass GHG	763.23	0.01	0.04	 					763.27	
SXEW Boiler No. 2	CO ₂ e	763.23	2.17	0.91	 					,,	766.30
	mass GHG	851.41	0.01	0.04	 					851.46	700.50
SXEW Boiler No. 3	CO ₂ e	851.41	2.42	1.01						051.40	951 91
	mass GHG				 						854.84
SXEW RT					 	 	 	 			
	CO ₂ e				 						
SXEW SAT	mass GHG				 						
	CO ₂ e				 						
WH Crush	mass GHG				 						
WH Crush	CO ₂ e				 						
EE5	mass GHG	54.75	4.43E-04	0.0022						54.76	
EE5	CO ₂ e	54.57	0.13	0.055							54.75
	mass GHG	74.72	6.06E-04	0.0030	 					74.72	
Sxlpwrprm8	CO ₂ e	74.72	0.18	0.076	 						74.98
	mass GHG	48.62	3.94E-04	0.0020	 						
Sxlpwrprm3	CO ₂ e	48.62	0.12	0.049	 						
	mass GHG	83.51	6.77E-04	0.0034	 					83.51	
Sxlgdwn1	CO ₂ e	83.51	0.20	0.085	 					05.51	83.79
	mass GHG	61.80	5.01E-04	0.0025	 					61.80	05.77
Sxlpwrprm4										61.80	(2.01
	CO ₂ e	61.80	0.15	0.063	 						62.01
Sxlpwrprm2	mass GHG	83.51	6.77E-04	0.0034	 					83.51	
	CO ₂ e	83.51	0.20	0.085	 						83.79
Cummins	mass GHG	11.93	9.68E-05	0.0005	 					11.93	
Generator/1823	CO ₂ e	11.93	0.029	0.012	 						11.98
DEUTZ	mass GHG	33.12	2.69E-04	0.0013	 					33.12	
DEUIZ	CO ₂ e	33.12	0.080	0.034	 						33.23
EW/DA1	mass GHG	51.47	4.20E-04	0.0021	 					51.47	
FWP01	CO ₂ e	51.47	0.13	0.053	 						51.64
	mass GHG	19.75	3.72E-05	3.72E-04	 					19.75	
GENERAC1	CO ₂ e	19.75	0.011	0.0093	 						19.77
	mass GHG	15.51	1.51E-04	7.54E-04	 					15.51	
GENERAC2	CO ₂ e	15.51	0.045	0.019	 	1		1		10.01	15.58
	mass GHG	3.32	3.23E-05	1.61E-04	 					3.32	15.50
GENERAC4		3.32	0.010	0.0040						5.52	3.33
	CO ₂ e				 					5.5.5	3.33
GENERAC5	mass GHG	5.55	5.40E-05	2.70E-04	 	 ļ	 	 ļ	 L	5.55	
	CO ₂ e	5.55	0.016	0.0068	 						5.58
GENERAC6	mass GHG	5.55	5.40E-05	2.70E-04	 					5.55	
of the states	CO ₂ e	5.55	0.016	0.0068	 						5.58
GENERAC7	mass GHG	5.55	5.40E-05	2.70E-04	 					5.55	
OLIVERAC/	CO ₂ e	5.55	0.016	0.0068	 						5.58

mass GHG

--

--

SAG-F1

Freeport-McMoRan C	hino Mines Compan	у				Chino M	line			Application D	ate: August 2023 R	evision 0
GENERAC8	mass GHG	13.32	1.29E-04	6.45E-04							13.32	
GENERACO	CO ₂ e	13.32	0.038	0.016								13.38
ATT Gen	mass GHG	13.01	1.05E-04	5.26E-04							13.01	
ATT Gell	CO ₂ e	13.01	0.031	0.013								13.06
RT-1	mass GHG	22.34	2.17E-04	0.0011	 						22.34	
K1-1	CO ₂ e	22.34	0.065	0.027	 							22.43
RT-2	mass GHG	22.34	2.17E-04	0.0011	 						22.34	
K1-2	CO ₂ e	22.34	0.065	0.027	 							22.43
Total	mass GHG	355,135.38	0.62	5.54	 						355,141.54	
TOTAL	CO ₂ e	355,135.19	184.91	138.38	 							355,458.48

¹ GWP (Global Warming Potential): Applicants must use the most current GWPs codified in Table A-1 of 40 CFR part 98. GWPs are subject to change, therefore, applicants need to check 40 CFR 98 to confirm GWP values.

² For HFCs or PFCs describe the specific HFC or PFC compound and use a separate column for each individual compound.

³ For each new compound, enter the appropriate GWP for each HFC or PFC compound from Table A-1 in 40 CFR 98.

⁴ Green house gas emissions on a **mass basis** is the ton per year green house gas emission before adjustment with its GWP.

⁵ CO₂e means Carbon Dioxide Equivalent and is calculated by multiplying the TPY mass emissions of the green house gas by its GWP.

Section 3

Application Summary

The <u>Application Summary</u> shall include a brief description of the facility and its process, the type of permit application, the applicable regulation (i.e. 20.2.72.200.A.X, or 20.2.73 NMAC) under which the application is being submitted, and any air quality permit numbers associated with this site. If this facility is to be collocated with another facility, provide details of the other facility including permit number(s). In case of a revision or modification to a facility, provide the lowest level regulatory citation (i.e. 20.2.72.219.B.1.d NMAC) under which the revision or modification is being requested. Also describe the proposed changes from the original permit, how the proposed modification will affect the facility's operations and emissions, de-bottlenecking impacts, and changes to the facility's major/minor status (both PSD & Title V).

The **<u>Process</u>** <u>Summary</u> shall include a brief description of the facility and its processes.

<u>Startup, Shutdown, and Maintenance (SSM)</u> routine or predictable emissions: Provide an overview of how SSM emissions are accounted for in this application. Refer to "Guidance for Submittal of Startup, Shutdown, Maintenance Emissions in Permit Applications (http://www.env.nm.gov/aqb/permit/app_form.html) for more detailed instructions on SSM emissions.

Freeport-McMoRan Chino Mines Company is submitting this application for a renewal and Significant Modification of Title V Operating Permit No. P-066-R3M1 for the Chino Mine. The Significant Modification will reflect recent changes to NSR 0298M10R1, 0298M10R3, 0298M10R4, 0298M11R1, 0298M11R2, 0298M11R3, and 0298M11R4 requested in the NSR Revision applications that were submitted to the NMED. Those changes include requested (1) authorization for the construction of a material borrow pit near the Cobre Haul road to provide material for maintenance of the facility haul roads; (2) authorization of 119,700 lb/day for borrow pit blasting; (3) retirement of Mase 1 from the facility; (4) construction of baghouse to control SAG mill tunnel; (5) removal of LmSIk and ENG-1 units; (6) replacement of Fire Emergency Pump; and (7) addition of two emergency standby generators.

Freeport-McMoRan Chino Mines Company (Freeport) owns and operates the Chino Mine (Chino). The Chino mine is an openpit copper mining operation located approximately 15 miles east of Silver City in Grant County, New Mexico (UTM Zone 12 and Air Quality Control Region 12). The primary purpose of the facility is to produce copper cathode using the Solvent Extraction/Electrowinning (SXEW) process and copper concentrate using a wet flotation process. Chino is a minor source under the Prevention of Significant Deterioration (PSD) rules as currently permitted and will remain a minor source after the proposed significant revision. Chino will also remain a major source for Title V Operating Permit purposes under 20.2.70 NMAC.

Chino includes two open pits, the Santa Rita open pit and the Continental open pit (formally known as the Cobre Mine or herein as "Cobre") located approximately 3 miles north of the Santa Rita open pit. Chino consists of unpaved haul roads and storage stockpiles. Ore mined from Cobre is transported via the Cobre Haul Road for future processing. Additional operations include a mill, which includes a primary crusher, conveyor belts and concentrator, two screening plants, loading of magnetite into over-the road trucks, a power plant, and a solution extraction and electrowinning plant.

Significant Modification of Title V Operating Permit No. P-066-R3M1:

1. Freeport-McMoRan requests four blasts that are to occur separately (only for this single construction event) and not during any other blasting events at the facility. With this application, emissions from blasting and material handling at this borrow pit are included in facility-wide emissions.

The following changes are included below:

- New Unit BORR_BLST for the Cobre Haul Road Borrow Pit Blasting
- New Unit BORR_MH for Cobre Haul Road Borrow Pit Material Handling
- 2. Freeport-McMoRan is requesting an update to the language associated with permit condition A605.B, which states that 40 CFR 60, Subpart LL applies to units LUS-041 and LHS-01, however as documented in Table 103.A, Subpart LL does not apply to these units. These units are associated with the lime unloading and handling systems and are not

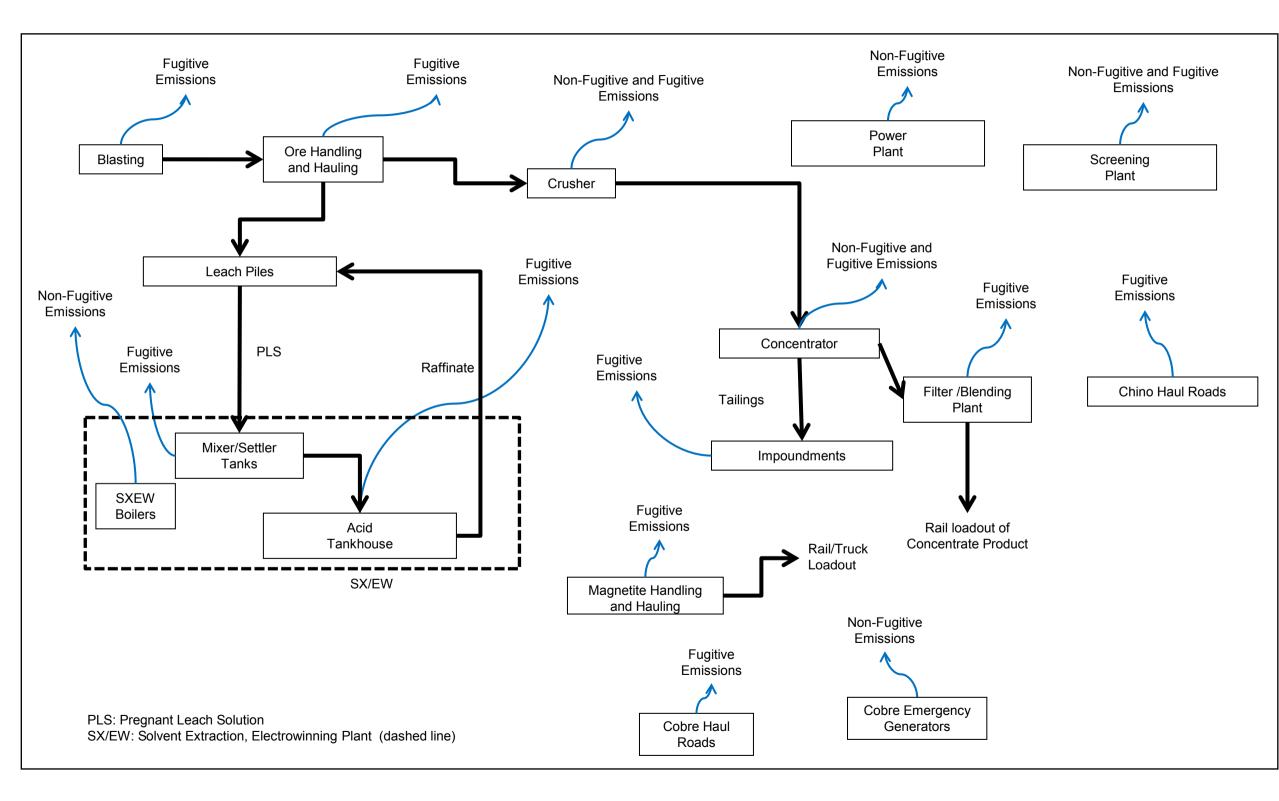
affected facilities as defined by Subpart LL. The units that are subject to this subpart are PC-01, PC DUMP, CV-01A, CTS-01, CV-01B, CV-01C, SAG-F1, IC-01, and SCDP which does not include LUH-041 and LSH-01.

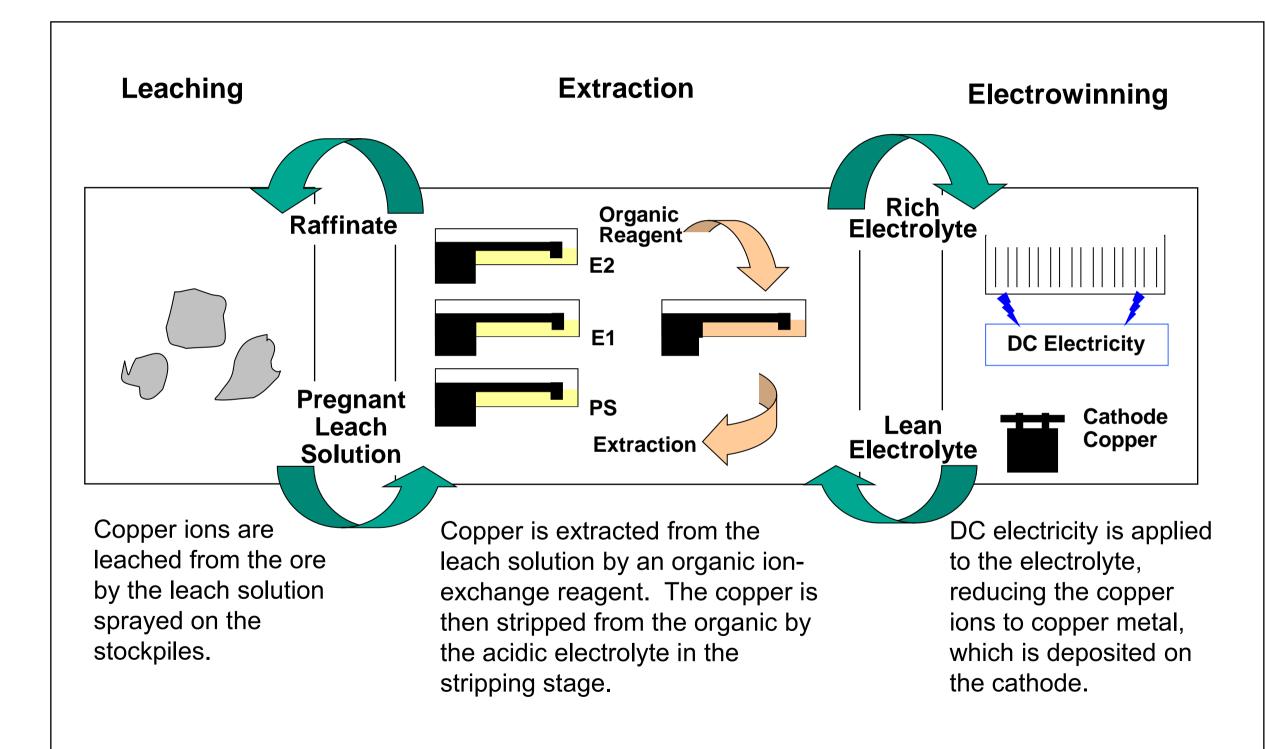
B. 40 CFR 60, Subpart LL Compliance (Units PC-01, PC DUMP, CV-01A, CTS-01, CV-01B, CV-01C, SAG-F1, IC-01, and SCDP) (NSR Permit 0298M10, Condition A605.A and revised by this permit)

Requirement: Compliance with the allowable emissions limits in Table 106.A shall be demonstrated by complying with the requirements of 40 CFR 60, Subpart LL. 40 CFR 60, Subpart LL applies only to the specified Ivanhoe Concentrator affected facilities listed above. For an affected facility using a wet scrubber (Units IC-01, LUH-01, and LHS-01), the scrubber shall be equipped with pressure gauges to measure pressure drop across the control device. Wet scrubbing systems shall be equipped with a continuous monitoring device to measure the scrubbing liquid flow rate. Pressure gauges and monitoring devices shall be installed, calibrated, maintained, and operated in accordance with the manufacturer specifications. Compliance with this will be based on Department inspections of the facility to verify that instruments have been installed and of the records as set forth in 40CFR60, Subpart LL.

- 3. Additionally, Freeport-McMoRan is requesting the removal of the requirement under permit condition A602.B of the current Title V Operating Permit No. P-066-R3M1. A602.B is specific to periodic emissions testing for units CH SCRN ENG and CB SCRN ENG. Based on historical testing, Freeport-McMoRan believes that these units have been shown meet the required permitted emission rates within this permit, and therefore additional testing should not be required for these units.
- 4. 0298M11R1: Freeport-McMoRan is requesting a maximum amount of blasting agent per day of 119,700 lb/day for Borrow Pit blasting. Freeport-McMoRan is also seeking to increase the Borrow pit material handling limit to 20,000 tons/day while retaining the annual material handling (unit BORR_MH) at 350,000 tons/year.
- 5. 0298M11R2: Freeport-McMoRan is requesting to retire Mase 1 from the facility.
- 6. 0298M11R3: Freeport-McMoRan is requesting the construction of a baghouse to control the SAG mill tunnel. Freeport-McMoRan is requesting the baghouse flow capacity of 24,000 acfm for the underground SAG mill tunnel (Unit SAG).
- 7. 0298M11R4: Freeport-McMoRan seeks the removal of two units (QuickLime Slaking Mill, unit LmSlk, and Diesel Engine for Lime Slaking, unit ENG-1).
- 8. Freeport-McMoRan seeks to replace Unit EE5, SXEW Fire Emergency Pump from Detroit Diesel pump (195 hp) to John Deere pump (197 hp).
- 9. 0298M10R3 & 0298M10R4: Freeport-McMoRan seeks to add two emergency standby generators, GENERAC8 and ATT Gen.

These modifications do not modify any other preexisting sources or scenarios.

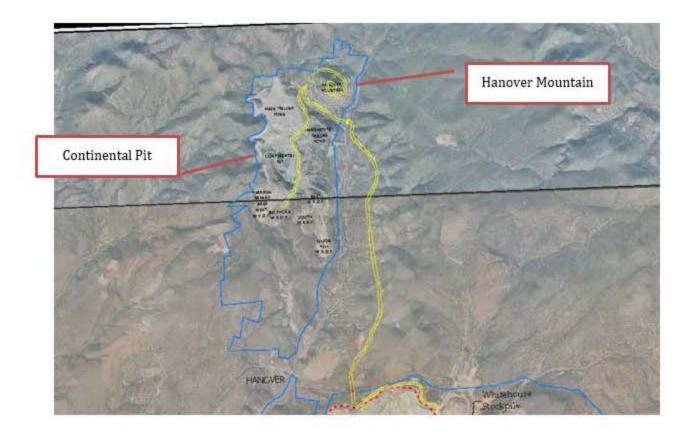

Section 4


Process Flow Sheet

A **process flow sheet** and/or block diagram indicating the individual equipment, all emission points and types of control applied to those points. The unit numbering system should be consistent throughout this application.

A process flow diagram for the facility is attached.

Freeport McMoRan Chino Mines Company Process Flow Diagram



Section 5

Plot Plan Drawn To Scale

A <u>plot plan drawn to scale</u> showing emissions points, roads, structures, tanks, and fences of property owned, leased, or under direct control of the applicant. This plot plan must clearly designate the restricted area as defined in UA1, Section 1-D.12. The unit numbering system should be consistent throughout this application.

A plot plan of the facility is attached on the following pages.

Haul Roads for NSR Sig Rev and Borrow Pit proposed location

356

Hanover

Chino Mine

152

Legend

Borrow Pit Location

152

Borrow Pit Location

152

Santa Rita

Google Earth

356

Section 6

All Calculations

<u>Show all calculations</u> used to determine both the hourly and annual controlled and uncontrolled emission rates. All calculations shall be performed keeping a minimum of three significant figures. Document the source of each emission factor used (if an emission rate is carried forward and not revised, then a statement to that effect is required). If identical units are being permitted and will be subject to the same operating conditions, submit calculations for only one unit and a note specifying what other units to which the calculations apply. All formulas and calculations used to calculate emissions must be submitted. The "Calculations" tab in the UA2 has been provided to allow calculations to be linked to the emissions tables. Add additional "Calc" tabs as needed. If the UA2 or other spread sheets are used, all calculation spread sheet(s) shall be submitted electronically in Microsoft Excel compatible format so that formulas and input values can be checked. Format all spread sheets are not used, provide the original formulas with defined variables. Additionally, provide subsequent formulas showing the input values for each variable in the formula. All calculations, including those calculations are imbedded in the Calc tab of the UA2 portion of the application, the printed Calc tab(s), should be submitted under this section.

Tank Flashing Calculations: The information provided to the AQB shall include a discussion of the method used to estimate tank-flashing emissions, relative thresholds (i.e., NOI, permit, or major source (NSPS, PSD or Title V)), accuracy of the model, the input and output from simulation models and software, all calculations, documentation of any assumptions used, descriptions of sampling methods and conditions, copies of any lab sample analysis. If Hysis is used, all relevant input parameters shall be reported, including separator pressure, gas throughput, and all other relevant parameters necessary for flashing calculation.

SSM Calculations: It is the applicant's responsibility to provide an estimate of SSM emissions or to provide justification for not doing so. In this Section, provide emissions calculations for Startup, Shutdown, and Routine Maintenance (SSM) emissions listed in the Section 2 SSM and/or Section 22 GHG Tables and the rational for why the others are reported as zero (or left blank in the SSM/GHG Tables). Refer to "Guidance for Submittal of Startup, Shutdown, Maintenance Emissions in Permit Applications (http://www.env.nm.gov/aqb/permit/app_form.html) for more detailed instructions on calculating SSM emissions. If SSM emissions are greater than those reported in the Section 2, Requested Allowables Table, modeling may be required to ensure compliance with the standards whether the application is NSR or Title V. Refer to the Modeling Section of this application for more guidance on modeling requirements.

Glycol Dehydrator Calculations: The information provided to the AQB shall include the manufacturer's maximum design recirculation rate for the glycol pump. If GRI-Glycalc is used, the full input summary report shall be included as well as a copy of the gas analysis that was used.

Road Calculations: Calculate fugitive particulate emissions and enter haul road fugitives in Tables 2-A, 2-D and 2-E for:

- 1. If you transport raw material, process material and/or product into or out of or within the facility and have PER emissions greater than 0.5 tpy.
- 2. If you transport raw material, process material and/or product into or out of the facility more frequently than one round trip per day.

Significant Figures:

A. All emissions standards are deemed to have at least two significant figures, but not more than three significant figures.

B. At least 5 significant figures shall be retained in all intermediate calculations.

C. In calculating emissions to determine compliance with an emission standard, the following rounding off procedures shall be used:

- (1) If the first digit to be discarded is less than the number 5, the last digit retained shall not be changed;
- (2) If the first digit discarded is greater than the number 5, or if it is the number 5 followed by at least one digit other than the number zero, the last figure retained shall be increased by one unit; and
- (3) If the first digit discarded is exactly the number 5, followed only by zeros, the last digit retained shall be rounded upward if it is an odd number, but no adjustment shall be made if it is an even number.
- (4) The final result of the calculation shall be expressed in the units of the standard.

Control Devices: In accordance with 20.2.72.203.A(3) and (8) NMAC, 20.2.70.300.D(5)(b) and (e) NMAC, and 20.2.73.200.B(7) NMAC, the permittee shall report all control devices and list each pollutant controlled by the control device

regardless if the applicant takes credit for the reduction in emissions. The applicant can indicate in this section of the application if they chose to not take credit for the reduction in emission rates. For notices of intent submitted under 20.2.73 NMAC, only uncontrolled emission rates can be considered to determine applicability unless the state or federal Acts require the control. This information is necessary to determine if federally enforceable conditions are necessary for the control device, and/or if the control device produces its own regulated pollutants or increases emission rates of other pollutants.

Tailings Impoundment (Not changing as a result of this application)

Tailings Impoundment (Units CB TLNGS & CM TLNGS)

Wind erosion emissions for the tailings impoundment are based on AP-42, Section 13.2.5, Industrial Wind Erosion (11/06). These emissions on based on the availability of erodible material, the wind speed threshold required to cause the material to become airborne, and how often new material is deposited on the area. Calculated emissions represent intermittent events that only occur when wind speeds are great enough to transport available materials. The emission rate is not a steady state event and decays rapidly to zero when erodible material is no longer available or when wind speeds are no longer great enough to transport material. Freeport is requesting to increase the tailing pond impoundment to incorporate an area that was previously used for reclamation borrow material with this permit application. By extending the tailings into the 7 West area, it will extend the life of tailings dam 7 by several years.

Haul Roads (Not changing as a result of this application)

Haul Roads (Units CBM HR & CM HR)

Haul road emissions were calculated using Equations 1a and 2 of AP-42 Section 13.2.2. The haul road inputs were based on projected production rates and estimated vehicle miles traveled required to move the ore and magnetite material. The haul road distances were estimated from google earth satellite images. Additionally, the calculations were based on the assumption that the haul roads will be operating at 24 hours a day, 7 days a week, and 365 days a year. The controlled emissions include emission reductions of 80%, 88.8%, and 96.8% based on the control factor used on each segment of the road. The emission reduction methods include blading, watering, speed limit reduction, and application of dust suppressants/dust binders. These control efficiencies are based on factors from the Western Regional Air Partnership (WRAP) Fugitive Dust Handbook, published September 7, 2006. The modeling report in Section 16 contains detailed information on which portions of the roads are control efficiency. The haul roads were redrawn to account for the mine proposed operations. Additionally, the haul roads throughputs were increased to account for the increase in ore production and operations.

Material Handling: To be modified

Material Handling (Unit CBM MH)

Particulate emissions from magnetite handling, material handling, and unloading are all based on emission factors in AP-42, Chapter 11.19.2, Table 11.19.2-2 Crushed Stone Processing and Pulverized Mineral Processing (August 2004) for Truck Unloading - Fragmented Stone. The basis for these emission factors is the PM_{10} emission factor for truck unloading of fragmented stone in Table 11.19.2-2. This table provides a PM_{10} emission factor but does not provide $PM_{2.5}$ or TSP emission factors. A $PM_{2.5}$ emission factor was calculated from the available PM_{10} emission factor using the ratio of 0.15 $PM_{2.5}$ / PM_{10} as recommended in the Background Document for AP-42, Chapter 13.2.4, Revisions to Fine Fraction Ratios Used for AP-42 Fugitive Dust Emission factor using the TSP/ PM_{10} ratio calculated from the following uncontrolled TSP and PM_{10} emission factors in Table 11.19.2-2: Tertiary Crushing (0.0054/0.0024 = 2.25); Fines Crushing (0.0390/0.0150 = 2.60); Screening (0.025/0.0087 = 2.87; and Conveyor Transfer Point 0.0030/0.00110 = 2.73).

TAP emissions from material handling and loading operations of waste rock and leach rock were calculated by multiplying the TSP emissions by the TAP content (%) in waste rock or leach rock. For conservative TAPs emission estimations for material handling are based on the higher TAP % available for waste rock or leach rock. For example, antimony emissions from material handling are based on antimony % in leach rock and barium emissions from material handling in the pit are based on barium % in waste rock.

Cobre Haul Road Borrow Pit Material Handling (Unit BORR_MH)

This application seeks to increase the borrow pit material handling limit to 20,000 tons/day while retaining the annual material handling at 350,000 tons/year.

Particulate emissions from material handling and unloading are all based on emission factors in AP-42, Chapter 11.19.2, Table 11.19.2-2 Crushed Stone Processing and Pulverized Mineral Processing (August 2004) for Truck Unloading - Fragmented Stone. The basis for these emission factors is the PM_{10} emission factor for truck unloading of fragmented stone in Table 11.19.2-2. This table provides a PM_{10} emission factor but does not provide $PM_{2.5}$ or TSP emission factors. A $PM_{2.5}$ emission factors was calculated from the available PM_{10} emission factor using the ratio of 0.15 $PM_{2.5}/PM_{10}$ as recommended in the Background Document for AP-42, Chapter 13.2.4, Revisions to Fine Fraction Ratios Used for AP-42 Fugitive Dust Emission factor using the TSP/ PM_{10} ratio calculated from the following uncontrolled TSP and PM_{10} emission factors in Table 11.19.2-2: Tertiary Crushing (0.0054/0.0024 = 2.25); Fines Crushing (0.0390/0.0150 = 2.60); Screening (0.025/0.0087 = 2.87; and Conveyor Transfer Point 0.0030/0.00110 = 2.73).

TAP emissions from material handling and loading operations of waste rock and leach rock were calculated by multiplying the TSP emissions by the TAP content (%) in waste rock or leach rock. For conservative TAPs emission estimations for material handling are based on the higher TAP % available for waste rock or leach rock. For example, antimony emissions from material handling are based on antimony % in leach rock and barium emissions from material handling in the pit are based on barium % in waste rock.

Blasting: To be modified

Hanover Mountain Blasting (Unit CBM BLST)

Particulate emissions resulting from blasting at Hanover Mountain were calculated using emissions factors from AP-42 Section 11, Table 11.9-1. NO_X emission factors is the average measurements from a "*NO_X Emissions from Blasting Operations in Open-Cut Coal Mining*" by Moetaz I. Attalla, Stuart J. Day, Tony Lange, William Lilley, and Scott Morgan (2008). CO emission factors is the average measurements from "*Factors Affecting Anfo Fumes Production*" by James H. Rowland III and Richard Mainiero (2001). SO₂ emissions are based on a diesel sulfur content of 15 ppm, assuming a complete conversion of SO₂.

The calculation methodology used: The emission factor (lb/blast) is multiplied by the amount of blasting agent per day. This provides the total lb/day emission rate which is divided by the number of blasts per day. The lb/event emission rate is equal to the lb/hr emission rate since it is assumed only one blast would occur per hour. The maximum amount of blasting agent used at Cobre Mine is 110,000 pounds per day. The blasting emissions will not change from the previous application.

Chino Mine Blasting (Unit CM BLST)

Particulate emissions resulting from blasting at Santa Rita Pit were calculated using emissions factors from AP-42 Section 11, Table 11.9-1. NO_X emission factors is the average measurements from a "*NO_X Emissions from Blasting Operations in Open-Cut Coal Mining*" by Moetaz I. Attalla, Stuart J. Day, Tony Lange, William Lilley, and Scott Morgan (2008). CO emission factors is the average measurements from "*Factors Affecting Anfo Fumes Production*" by James H. Rowland III and Richard Mainiero (2001). SO₂ emissions are based on a diesel sulfur content of 15 ppm, assuming a complete conversion of SO₂.

The calculation methodology used: The emission factor (lb/blast) is multiplied by the amount of blasting agent per day. This provides the total lb/day emission rate which is divided by the number of blasts per day. The lb/event emission rate is equal to the lb/hr emission rate since it is assumed only one blast would occur per hour. The maximum amount of blasting agent used at Chino Mine is 400,000 pounds per day. The blasting emissions will not change from the last permitted application.

Cobre Haul Road Borrow Pit Blasting (Unit BORR_BLST)

Particulate emissions resulting from blasting at Cobre Haul Road Borrow Pit were calculated using emissions factors from AP-42 Section 11, Table 11.9-1. NO_X emission factors is the average measurements from a "*NO_X Emissions from Blasting Operations in Open-Cut Coal Mining*" by Moetaz I. Attalla, Stuart J. Day, Tony Lange, William Lilley, and Scott Morgan (2008). CO emission factors is the average measurements from "*Factors Affecting Anfo Fumes Production*" by James H. *Rowland III and Richard Mainiero (2001)*. SO₂ emissions are based on a diesel sulfur content of 15 ppm, assuming a complete conversion of SO₂.

The calculation methodology used: The emission factor (lb/blast) is multiplied by the amount of blasting agent per day. This provides the total lb/day emission rate which is divided by the number of blasts per day. The lb/event emission rate is equal to the lb/hr emission rate since it is assumed only one blast would occur per hour. The maximum amount of blasting agent used at the proposed Borrow Pit is 119,700 pounds per this construction event. The total amount of blasting agent is to be distributed

Form-Section 6 last revised: 5/3/16

Section 6, Page 3

Saved Date: 8/17/2023

into four smaller blasts consisting of 29,925 pounds of blasting agent per blast. The division of blasting agent is to be applied to the particulate emissions as well, which will result in four 25,000 ft² blasting areas.

Hurly Power Plant (Not changing as a result of this application)

Gas Turbine (Unit F-2-1-1.4)

HAP emissions were calculated using AP-42 Chapter 3.1 Table 3.1-3 emission factors. The maximum hourly emissions rates for NO_x, CO, SO₂, VOC and PM were based on the allowed rates in air permits 376-M4 and P066-R3M1. The annual emissions rates are based on 8,760 annual operating hours. Greenhouse gas emissions are based on 40CFR 98 Table C-1, C-2, and Subpart A, Table A-1. The gas turbine emissions will not change from the last permitted application.

Steam Generator (Unit F-2-1-1.5)

HAP emissions were calculated using AP-42 Chapter 1.4 Tables 1.4-2 and 1.4-3 emission factors. The maximum hourly emissions rates for NO_x , CO, SO₂, VOC and PM were based on the allowed rates in air permits 376-M4 and P066-R3M1. The annual emissions rates are based on 8,760 annual operating hours. Greenhouse gas emissions are based on 40CFR 98 Table C-1, C-2, and Subpart A, Table A-1. The steam generator emissions will not change from the last permitted application.

Filter/Blending Plant (Not changing as a result of this application)

Filter/Blending Plant (Unit FLTR/BLND)

Emissions from the filter/blending plant were calculated using Conveyor Drop Point Emission Factors from AP-42 Table 11.19.2-2 in "Crushed Stone Processing and Pulverized Mineral Processing" for uncontrolled Conveyor Transfer Point (08/2004). Emissions for front-end loaders were calculated using Front End Loader Emission Factors from AP-42 Table 11.24-2 in "Metallic Minerals Processing" for Material handling and transfer--all minerals except bauxite (01/1995). The throughput data used in the calculations was provided by Carlos Silva and Gary Brown of the Ivanhoe Concentrator and covered conveyor to Filter/Blending Plant. Filter/blending plant operations consist of 6 conveyor drops (CV-01 through CV-06) plus one material handling step using a Cat 966 to load material from the Concentrate Storage pile into a rail car for shipping offsite. The Filter/Blending Plant will not change from the last permitted application.

Gasoline Dispensing Facility (Not changing as a result of this application)

Gasoline Dispensing Facility (Unit GDF)

Emission estimates for VOC losses from gasoline dispensing are based on petroleum loading loss equation in USEPA publication AP-42, Table 5.2-7, Evaporative Emissions from Gasoline Service Station Operations (7/08). HAP emissions were estimated based on typical gasoline percent HAP constituents per MSDS. The Gasoline Dispensing Facility will not change from the last permitted application.

Ivanhoe Concentrator (Not changing as a result of this application)

Enclosed Ore Transfer Point (Unit CV-01C)

Emission factors for Enclosed Ore Transfer Point were obtained from Table 11.19.2-2 of USEPA AP-42, conveyor transfer point emission factors for Crushed Stone Processing and Pulverized Mineral Processing (8/04). A $PM_{2.5}$ emission factor was calculated from the available PM_{10} emission factor using the ratio of 0.15 $PM_{2.5}/PM_{10}$ as recommended in the Background Document for AP-42, Chapter 13.2.4: Revisions to Fine Fraction Ratios Used for AP-42 Fugitive Dust Emission Factors - November 2006. The percent content of HAP and TAP in molybdenum concentrate from Chino TRI data was used to calculate HAP and TAP emissions. The enclosed Ore Transfer Point emissions will not change from the last permitted application.

SAG Mill Conveyor No.1 & SAG Mill Conveyor No.2 (Units SAF F1 & SAG F2)

Emission factors for the SAG Mill Conveyors were obtained from Table 11.19.2-2 of USEPA AP-42, conveyor transfer point emission factors for Crushed Stone Processing and Pulverized Mineral Processing (8/04). A PM_{2.5} emission factor was calculated from the available PM₁₀ emission factor using the ratio of 0.15 PM_{2.5}/PM₁₀ as recommended in the Background Document for AP-42, Chapter 13.2.4, Revisions to Fine Fraction Ratios Used for AP-42 Fugitive Dust Emission Factors - November 2006. The percent content of HAP and TAP in molybdenum concentrate from Chino TRI data was used to calculate HAP and TAP emissions. The SAG Mill Conveyor emissions will not change from the last permitted application.

Stacker Conveyor Drop Point (Unit SCDP)

Emission factors for the Stacker Conveyor Drop Point were obtained from Table 11.19.2-2 of USEPA AP-42, conveyor transfer point emission factors for Crushed Stone Processing and Pulverized Mineral Processing (8/04). A PM_{2.5} emission

Form-Section 6 last revised: 5/3/16

factor was calculated from the available PM_{10} emission factor using the ratio of 0.15 $PM_{2.5}/PM_{10}$ as recommended in the Background Document for AP-42, Chapter 13.2.4: Revisions to Fine Fraction Ratios Used for AP-42 Fugitive Dust Emission Factors - November 2006. The percent content of HAP and TAP in molybdenum concentrate from Chino TRI data was used to calculate HAP and TAP emissions. The Stacker Conveyor Drop Point emissions will not change from the last permitted application.

Molybdenum Plant Wet Scrubber (Unit IC-01)

Scrubber particulate emissions are form stack test data conducted in October 2008. The molybdenum plant wet scrubber remain unchanged from the last permit application. The percent content of HAP and TAP in molybdenum concentrate from Chino TRI data was used to calculate HAP and TAP emissions. The Molybdenum Plant Wet Scrubber will not change from the last permitted application.

Ivanhoe Concentrators (Units LHS-01 and LUS-01)

Emissions were calculated using emission factors from Table 11.17-4 of AP-42 Section 11.17, emission factors for lime handling raw material and product processing and handling, product transfer and conveying (2/98). Assumes all PM_{10} is equivalent to PM. A $PM_{2.5}$ emission factor was calculated from the available PM_{10} emission factor using the ratio of 0.15 $PM_{2.5}/PM_{10}$ as recommended in the Background Document for AP-42: Chapter 13.2.4, Revisions to Fine Fraction Ratios Used for AP-42 Fugitive Dust Emission Factors - November 2006. The Ivanhoe Concentrators will not change from the last permitted application.

Ivanhoe Concentrator Crusher Dump (Unit PC DUMP)

PM emissions were calculated using emission factors obtained from AP-42 Chapter 11, Table 11.19-2.2. The emission factor used for $PM_{2.5}$ emissions was established using the ratio of $PM_{2.5}$ to PM_{10} as recommended in the Background Document for AP-42 Chapter 13.2.4, Revisions to Fine Fraction Ratios used for AP-42 Fugitive Dust Emission Factors – November 2006. The percent content of HAP and TAP in molybdenum concentrate from Chino TRI data was used to calculate HAP and TAP emissions. The Ivanhoe Concentration Crusher Dump will not change from the last permitted application.

Ivanhoe Concentrator Primary Crusher Baghouse Emissions (Unit PC-01)

PM emissions were taken from Chino TRI data. The percent content of HAP and TAP in molybdenum concentrate from Chino TRI data was used to calculate HAP and TAP emissions. Emissions from the primary crusher are controlled by a dust collector with a 99.7% vendor guarantee and a 6.0 gr/cf inlet loading. The Ivanhoe Concentrator Primary Crusher Baghouse will not change from the last permitted application

Screening Plant (Not changing as a result of this application)

Screen Plants (Units CH SCRN & CB SCRN)

Aggregate handling emission factors based on USEPA AP-42 USEPA's Drop Equation in AP-42, Section 13.2.4. TSP, PM_{10} , and controlled $PM_{2.5}$ emission factors are taken from AP-42, Chapter 11.19: Crushed Stone Processing and Pulverized Mineral Processing, Table 11.19.2-2: Screening. Uncontrolled $PM_{2.5}$ emission factor was calculated from uncontrolled PM_{10} emission factor using the ratio of 0.15 $PM_{2.5}/PM_{10}$ as recommended in Background Document for AP-42, Chapter 13.2.4: Revisions to Fine Fraction Ratios Used for AP-42 Fugitive Dust Emission Factors - November 2006. The TAP emissions for screening operations were calculated by multiplying the TSP emissions by the Ore TAP content (%). The Screen Plant emissions will not change from the last permitted application.

Screening Engine (Unit CH SCRN ENG)

PM and SO₂ emission factors obtained from uncontrolled diesel industrial engines present in Table 3.3-1, USEPA AP-42 Section 3.3 "Gasoline and Diesel Industrial Engines" (10/96). CO, VOC, NOx, emission factors are based on manufacturer information. HAP/Air Toxics emission factors obtained from Table 3.3-2 in USEPA AP-42 Section 3.3 "Gasoline and Diesel Industrial Engines" (10/96). The engine emissions will remain unchanged with this permit application.

Screening Engine (Unit CB SCRN ENG)

CO and NO_x emission factors were obtained from NSPS, Tier 3 emission standards for stationary compression ignition (CI) internal combustion engines (ICE) (40 CFR 60.4202-ref. 89.112, Table 1). VOC, TSP/PM₁₀/PM_{2.5}, and SO₂ emission factors were obtained from uncontrolled diesel industrial engines present in Table 3.3-1, USEPA AP-42 Section 3.3 "Gasoline and Diesel Industrial Engines" (10/96). The engine emissions will remain unchanged with this permit application.

SXEW Plant (Not changing as a result of this application)

SXEW Plant Ten Mixer/Settler Tanks (Unit SXEW 10MST)

The calculations were based on the BHP Copper VOC study which was conducted in 1997. The total HAPs molecular weight was obtained by determining the average of total HAP constituents within the product. The constituent diffusivity comes from EPA reference link for Estimated Diffusion Coefficients in Air and Water. The constituent concentration at liquid surface comes from the manufacturer data. The constituent concentration at 0.61 meter, ppm is assumed to be the same as BHP's measured concentrations. Based on the number of tanks and the area of each tank the emissions were calculated for each chemical product. The Ten Mixer/Settler Tank emissions will remain unchanged with this permit application.

SXEW Boilers (Units SXEW Boiler No. 1, SXEW Boiler No. 2, & SXEW Boiler No. 3)

Emissions were calculated based on the emission factors for commercial boilers presented in AP-42 Section 1.5, Table 1.5-1. There is no guidance in AP-42 Section 1.5 for HAP/TAP emissions from liquefied petroleum gas combustion. Filterable PM is the PM collected on or prior to the filter of an EPA Method 5 sampling train. For liquefied petroleum gas combustion, all PM is less than 10 micrograms. The emissions from the SXEW Boilers will remain unchanged with this permit application.

SXEW Plant Raffinate Tank (Units SXEW RT)

The calculations were based on the BHP Copper VOC study which was conducted in 1997. The total HAPs molecular weight was obtained by determining the average of total HAP constituents within the product. The constituent diffusivity comes from EPA reference link for Estimated Diffusion Coefficients in Air and Water. The constituent concentration at liquid surface comes from the manufacturer data. The constituent concentration at 0.61-meter, ppm is assumed to be the same as BHP's measured concentrations. Based on the number of tanks and the area of each tank the emissions were calculated for each chemical product. The Plant Raffinate Tank will not change with this permit application.

SXEW Plant Acid Tank House (Units SXEW SAT)

The calculation methodology for emissions from the Solvent extraction and electrowinning (SXEW) Plant Acid Tank House is as previously permitted. Emissions are estimated based on methodology in the American Society of Heating, Refrigeration and Air Conditioning Engineers (ASHRAE) 2001 Fundamentals Handbook. The wind speed is parameter is estimated at 10 mph based on recent on-site meteorological data gathered by Chino Mine. The Plant Acid Tank House will not change with this permit application.

White House Crusher and Screening Plant (Not changing as a result of this application)

White House Crushing and Screening Plant (Unit WH Crush)

The White House Crusher Plant will be added to facilitate the production of aggregate and road based material. The White House Crusher Plant consists of two (2) stone crushers, nine (9) conveyor systems, and two (2) screens.

The screening emission factors for TSP and PM_{10} are based on USEPA AP-42 11.19-2.2 Emission factors for Crushed Stone Processing. The $PM_{2.5}$ emission factor was calculated from the PM_{10} emission factor using the ratio of 0.15 $PM_{2.5}/PM_{10}$ as recommended in Background Document for AP-42, Chapter 13.2.4 Revisions to Fine Fraction Ratios Used for AP-42 Fugitive Dust Emission Factors - November 2006. The TAP emissions for screening operations were calculated by multiplying the TSP emissions by the Ore TAP content (%).

Emission factors for the nine (9) conveyor systems are based from Table 11.19.2-2 of USEPA AP-42, conveyor transfer point emission factors for Crushed Stone Processing and Pulverized Mineral Processing (8/04). A PM_{2.5} emission factor was calculated from the available PM_{10} emission factor using the ratio of 0.15 $PM_{2.5}/PM_{10}$ as recommended in the Background Document for AP-42, Chapter 13.2.4, Revisions to Fine Fraction Ratios Used for AP-42 Fugitive Dust Emission Factors - November 2006. The TAP emissions for screening operations were calculated by multiplying the TSP emissions by the Ore TAP content (%).

Emission factors for the Conveyor Drop Point were obtained from Table 11.19.2-2 of USEPA AP-42, conveyor transfer point emission factors for Crushed Stone Processing and Pulverized Mineral Processing (8/04). A PM_{2.5} emission factor was calculated from the available PM₁₀ emission factor using the ratio of 0.15 PM_{2.5}/PM₁₀ as recommended in the Background Document for AP-42, Chapter 13.2.4: Revisions to Fine Fraction Ratios Used for AP-42 Fugitive Dust Emission Factors - November 2006. The TAP emissions for screening operations were calculated by multiplying the TSP emissions by the Ore TAP content (%).

Emission factors for the two stone crushers are based from AP-42 Table 11.19-2.2. of USEPA AP-42 Emission factors for Crushed Stone Processing and Pulverized Mineral Processing (8/04). According to AP-42 Table 11.19.2-2 sub note "n" Emission factors for PM₁₀ for tertiary crushers equals $PM_{2.5}$ for tertiary crushers, according to AP-42 Table 11.19.2-2 sub note "n". The TAP emissions for screening operations were calculated by multiplying the TSP emissions by the Ore TAP content (%).

Emergency Generators: To be modified

Diesel Emergency Generators

To calculate the emissions from the diesel emergency generators AP-42 Section 3.4 factors were used for calculating the emissions of CO, NO_X , SO_2 , VOC, and PM. The HAP emissions were calculated using the diesel fuel usage. Since the units are considered emergency, the emissions are based on 500 hours per year. Greenhouse gas emissions were calculated using emission factors from Table C-1 and Table C-2 from Subpart C of 40 CFR 98. The global warming potentials used in the calculations came from 40 CFR Part 98, Subpart A, Table A-1.

Natural Gas Emergency Generator

To calculate the emissions from the natural gas emergency generator AP-42 Section 3.2 factors for 4-stroke lean burn engines were used for calculating the emissions of CO, NO_X , SO_2 , VOC, and PM. The HAP emissions were calculated using the natural gas fuel usage. Since the units are considered emergency, the emissions are based on 500 hours per year. Greenhouse gas emissions were calculated using emission factors from Table C-1 and Table C-2 from Subpart C of 40 CFR 98. The global warming potentials used in the calculations came from 40 CFR Part 98, Subpart A, Table A-1.

LPG Emergency Generators

To calculate the emissions from the LPG emergency generators AP-42 Section 3.2 factors for 4-stroke lean burn engines were used for calculating the emissions of CO, NO_X , SO_2 , VOC, and PM. For units WestTower and CobreTower, NO_X , CO, and VOC emission factors were taken from an EPA certificate of conformity. The HAP emissions were calculated using the natural gas fuel usage. Since the units are considered emergency, the emissions are based on 500 hours per year. Greenhouse gas emissions were calculated using emission factors from Table C-1 and Table C-2 from Subpart C of 40 CFR 98. The global warming potentials used in the calculations came from 40 CFR Part 98, Subpart A, Table A-1.

SAG Tunnel: To be modified

Underground SAG Tunnel Baghouse (Unit SAG)

Controlled particulate matter (PM) emissions at the outlet of the baghouse are calculated using the manufacturer guaranteed exit grain loading (gr/dscf) and minimum design exit flow rate. Filtered PM_{10} to filtered PM and filtered $PM_{2.5}$ to filtered PM rations were obtained using AP-42 Appendix B.2 Generalized Particle Size Distributions Table B.2.2. Category 3. The SAG Tunnel has no emissions in an uncontrolled scenario due to it being a enclosed process. The pollution control device is present for industrial hygiene purposes.

Section 6.a

Green House Gas Emissions

(Submitting under 20.2.70, 20.2.72 20.2.74 NMAC)

Title V (20.2.70 NMAC), Minor NSR (20.2.72 NMAC), and PSD (20.2.74 NMAC) applicants must estimate and report greenhouse gas (GHG) emissions to verify the emission rates reported in the public notice, determine applicability to 40 CFR 60 Subparts, and to evaluate Prevention of Significant Deterioration (PSD) applicability. GHG emissions that are subject to air permit regulations consist of the sum of an aggregate group of these six greenhouse gases: carbon dioxide (CO₂), nitrous oxide (N₂O), methane (CH₄), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride (SF₆).

Calculating GHG Emissions:

1. Calculate the ton per year (tpy) GHG mass emissions and GHG CO₂e emissions from your facility.

2. GHG mass emissions are the sum of the total annual tons of greenhouse gases without adjusting with the global warming potentials (GWPs). GHG CO₂e emissions are the sum of the mass emissions of each individual GHG multiplied by its GWP found in Table A-1 in 40 CFR 98 <u>Mandatory Greenhouse Gas Reporting</u>.

3. Emissions from routine or predictable start up, shut down, and maintenance must be included.

4. Report GHG mass and GHG CO₂e emissions in Table 2-P of this application. Emissions are reported in <u>short</u> tons per year and represent each emission unit's Potential to Emit (PTE).

5. All Title V major sources, PSD major sources, and all power plants, whether major or not, must calculate and report GHG mass and CO2e emissions for each unit in Table 2-P.

6. For minor source facilities that are not power plants, are not Title V, and are not PSD there are three options for reporting GHGs in Table 2-P: 1) report GHGs for each individual piece of equipment; 2) report all GHGs from a group of unit types, for example report all combustion source GHGs as a single unit and all venting GHGs as a second separate unit; 3) or check the following \Box By checking this box, the applicant acknowledges the total CO2e emissions are less than 75,000 tons per year.

Sources for Calculating GHG Emissions:

- Manufacturer's Data
- AP-42 Compilation of Air Pollutant Emission Factors at http://www.epa.gov/ttn/chief/ap42/index.html
- EPA's Internet emission factor database WebFIRE at http://cfpub.epa.gov/webfire/

• 40 CFR 98 <u>Mandatory Green House Gas Reporting</u> except that tons should be reported in short tons rather than in metric tons for the purpose of PSD applicability.

• API Compendium of Greenhouse Gas Emissions Methodologies for the Oil and Natural Gas Industry. August 2009 or most recent version.

• Sources listed on EPA's NSR Resources for Estimating GHG Emissions at http://www.epa.gov/nsr/clean-air-act-permitting-greenhouse-gases:

Global Warming Potentials (GWP):

Applicants must use the Global Warming Potentials codified in Table A-1 of the most recent version of 40 CFR 98 Mandatory Greenhouse Gas Reporting. The GWP for a particular GHG is the ratio of heat trapped by one unit mass of the GHG to that of one unit mass of CO_2 over a specified time period.

"Greenhouse gas" for the purpose of air permit regulations is defined as the aggregate group of the following six gases: carbon dioxide, nitrous oxide, methane, hydrofluorocarbons, perfluorocarbons, and sulfur hexafluoride. (20.2.70.7 NMAC, 20.2.74.7 NMAC). You may also find GHGs defined in 40 CFR 86.1818-12(a).

Metric to Short Ton Conversion:

Short tons for GHGs and other regulated pollutants are the standard unit of measure for PSD and title V permitting programs. 40 CFR 98 <u>Mandatory Greenhouse Reporting</u> requires metric tons.

1 metric ton = 1.10231 short tons (per Table A-2 to Subpart A of Part 98 – Units of Measure Conversions)

Freeport-McMoRan Chino Mines Company

SAG Tunnel Dust Collector

Item	Value	Unit	Notes
Outlet Grain Loading:	0.005	gr/dscf	Golder Conceptual Design , pg.11
Inlet Grain Loading:	10	gr/dscf	Golder Conceptual Design, pg.11
Baghouse Flow Capacity:	24000	acfm	Golder Conceptual Design, pg.13
Baghouse Flow Capacity:	24000.00	dscfm	Assumed to operate at STP
Baghouse Control Efficiency:	99.99%	-	Golder Conceptual Design, pg.11
Filt. PM_{10} to Filt. PM Ratio	0.51	-	AP-42 Appendix B.2 Generalized Particle Size Distributions Table B.2.2 Category 3 AP-42 Appendix B.2 Generalized Particle
Filt. PM _{2.5} to Filt. PM Ratio	0.15	-	Size Distributions Table B.2.2 Category 3

PM₁₀ Safety Factor: PM_{2.5} Safety Factor:

85% 200%

		C	Controlled	Emissio	ns per Baghouse
	PM	PM ₁₀	PM _{2.5}	Units	Notes
Emission Factors	1.03			lb/hr	Grain loading (gr/dscf) * baghouse flow rate (dscfm) * 60 min/hr * 1lb / 7000 gr
Emission ractors		0.97	0.46	lb/hr	Filt. PM Ratio * Filterable PM Emission Factor
Total Emissions	1.03	0.97	0.46	lb/hr	
TOLAI ETHISSIONS	4.51	4.25	2.03	tpy	lb/ hr * annual operating hours (8760 hrs/yr) / 2000 lbs / ton

Freeport-McMoRan Chino Mines Company Revised: May 2023

Aggregate and Material Handling - Cobre Haul Road Borrow Pit

Unit: Cobre Haul Road Borrow Pit

			Basis			
	Maxir	num daily amount handled:	20,000	tons Based on fore	casted maximum production ra	ates
	Maximu	m annual amount handled:	350,000	tons		
Maximu	um daily amount unl	oaded to repair Haul roads:	20,000	tons		
Maximum	annual amount un	baded to repair Haul roads:	350,000	tons		
		Annual operating days:	365	(7 days/week x 52 weeks/ye	ar)	
		Daily operating hours:	24			
Criteria Pollutant		Emission Factors (lb/ton				
Citteria Polititalit	PM	PM10	PM2.5			
Truck Unloading - Fragmented Stone ⁽¹⁾	4.18E-05	1.60E-05	2.40E-06			

Emissions Activity	Maxim	um Mine Material Throu	TSP Em	issions	PM ₁₀ En	nissions	PM _{2.5} Emissions		
	tons/hr	tons/day	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
Loading - Cobre Haul Road Borrow Pit	833	20,000	350,000	3.48E-02	7.32E-03	1.33E-02	2.80E-03	2.00E-03	4.20E-04
Unloading - Haul Road Repairs	833	20,000	350,000	3.48E-02	7.32E-03	1.33E-02	2.80E-03	2.00E-03	4.20E-04
	TOTAL			6.97E-02	1.46E-02	2.67E-02	5.60E-03	4.00E-03	8.40E-04

(1) The emission factors for material handling are based on AP-42, Chapter 11.19.2, Table 11.19.2-2 Crushed Stone Processing and Pulverized Mineral Processing (August 2004) for Truck Unloading -Fragmented Stone. The basis for these emission factors is the PM_{10} emission factor for truck unloading of fragmented stone in Table 11.19.2-2. This table provides a PM_{10} emission factor, but does not provide $PM_{2.5}$ or TSP emission factors. A $PM_{2.5}$ emission factor was calculated from the available PM_{10} emission factor using the ratio of 0.15 $PM_{2.5}/PM_{10}$ as recommended in the Background Document for AP-42, Chapter 13.2.4, *Revisions to Fine Fraction Ratios Used for AP-42 Fugitive Dust Emission Factors* - November 2006. An uncontrolled TSP emission factor was calculated from the available PM_{10} emission factors in Table 11.19.2-2: Tertiary Crushing (0.0054/0.0024 = 2.25); Fines Crushing (0.0390/0.0150 = 2.60); Screening (0.025/0.0087 = 2.87; and Conveyor Transfer Point (0.0030/0.00110 = 2.73). See sample calculation below.

(2) Maximum Material Throughput is based on maximum annual throughput provided by Freeport's estimated material production

Freeport-McMoRan Chino Mines Company Revised: June 2022

Blasting Emissions - Cobre Haul Road Borrow Pit Unit: Cobre Haul Road Borrow Pit BLST

	Basis	
Pounds of ANFO per hole:	570	lbs
Number of Holes:	210	
Burden Area per Hole:	528	ft^2
Maximum amount of blasting agent/day:	119,700	lbs
Maximum number of blasts/day:	4	blasts/day
Maximum amount of blasting agent/event:	29,925	lbs
Maximum amount of blasting agent/year:	60	tons
X Dimension:	500	ft
Y Dimension:	200	lft
Maximum horizontal area per blast:	25,000	ft ²
Diesel fuel usage:	47	gal/day
Diesel fuel usage:	973	gal/yr
Diesel fuel oil to ammonium nitrate blasting products ratio:	6%	
Diesel Fuel Density:	7.38	lb/gal
Event Duration:	2	seconds

Criteria Pollutant	Emission Factor (lb/ton blasting	Emission Date 4						
	agent) ¹	(lb/event)	(lb/day)	(lb/hr) ³	(ton/yr)			
Nitrogen Oxides (NO _x)	1.80	26.93	107.73	26.93	0.054			
Carbon Monoxide (CO)	40.64	608.08	2,432.30	608.08	1.22			
Sulfur Dioxide (SO ₂)	3.60E-03	0.05	0.22	0.054	1.08E-04			

Criteria Pollutant	Emission Rate ⁴							
	(lb/event)	(lb/day)	(lb/hr) ³	(ton/yr)				
TSP	55.34	221.36	55.34	0.11				
PM ₁₀	28.78	115.11	28.78	0.06				
PM _{2.5}	1.66	6.64	1.66	0.003				

Dellutent	Emission Factor	Emission Rate ⁶			
Pollutant	(lb/MMBtu) ⁵	(lb/day)	(ton/yr)		
CO ₂	162.71	1055.35	10.93		
N ₂ O	1.32E-03	0.01	8.86E-05		
CH ₄	6.60E-03	0.04	4.43E-04		
CO ₂ e			10.96		

Notes:

¹NOx emission factor is the average of measurements from "NOx Emissions from Blasting Operations in Open-Cut Coal Mining" by Moetaz I. Attalla, Stuart J. Day, Tony Lange, William Lilley, and Scott Morgan (2008).

¹CO emission factor is the average of the measurements in "Factors Affecting Anfo Fumes Production" by James H. Rowland III and Richard Mainiero (2001).

 $^{1}SO_{2}$ emissions are based on a diesel sulfur content of 15 ppm assuming complete conversion to SO₂.

²Pound per event emission rates are based on a maximum use of 29,295 lbs of blasting agent per event. Annual emission rates are based on a maximum annual use of 60 tons of blasting agent.

$E\left(\frac{lb}{l}\right) = EF$	(b)	v	blasting agent <u>ton</u>	
vear - Er	tonof blasting agent	٨	year)	

³Pound per hour modeling rate is based the daily emission rates (lb/day) which is converted to a pound per hour rate.

⁴Particulate blasting emissions are based on emission factors from AP-42 Table 11.9-1.

 $^5\text{CO}_2,\,\text{N}_2\text{O},\,\text{and CH}_4$ emission factor per 40 CFR 98 Subpart C, Table C–1, and Table C–2.

⁶CO₂, N₂O, and CH₄ emissions calculated based on emission factors, diesel fuel usage, and diesel fuel HHV of

0.138 MMBtu/gal per 40 CFR 98 Subpart C Table C-1

FEDERAL HAP/NM TOXIC AIR POLLUTANT EMISSIONS ESTIMATION

		TAP Emissions ⁽⁴⁾												
Emissions Activity	Antimony		Arsenic		Barium		Cadmium		Chromium		Cobalt		Copper	
	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
Loading - Cobre Haul Road Borrow Pit	8.02E-09	3.51E-08	6.68E-09	2.93E-08	1.85E-07	8.12E-07	2.17E-09	9.51E-09	1.52E-07	6.66E-07	6.51E-08	2.85E-07	4.87E-06	2.13E-05
Unloading - Haul Road Repairs	8.02E-09	3.51E-08	6.68E-09	2.93E-08	1.85E-07	8.12E-07	2.17E-09	9.51E-09	1.52E-07	6.66E-07	6.51E-08	2.85E-07	4.87E-06	2.13E-05
TOTAL	1.60E-08	7.02E-08	6.68E-09	2.93E-08	1.85E-07	8.12E-07	2.17E-09	9.51E-09	1.52E-07	6.66E-07	6.51E-08	2.85E-07	4.87E-06	2.13E-05

	TAP Emissions ⁽⁴⁾											
Emissions Activity	Lead		Manganese		Nickel		Silver		Vanadium		Zinc	
	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
Loading - Cobre Haul Road Borrow Pit	2.62E-08	1.15E-07	8.23E-07	3.61E-06	3.51E-08	1.54E-07	6.68E-09	2.93E-08	6.18E-08	2.71E-07	1.57E-07	6.88E-07
Unloading - Haul Road Repairs	2.62E-08	1.15E-07	8.23E-07	3.61E-06	3.51E-08	1.54E-07	6.68E-09	2.93E-08	6.18E-08	2.71E-07	1.57E-07	6.88E-07
TOTAL	5.24E-08	2.30E-07	1.65E-06	7.21E-06	7.01E-08	3.07E-07	1.34E-08	5.85E-08	1.24E-07	5.41E-07	3.14E-07	1.38E-06

Notes:

(1) Process parameters provided by Tyler Solem Cobre Haul Road Blasting emails, 11/15/2021. Metal content data from Chino TRI Assay data provided by Clyde Durham 1/28/11 email to R. Felty (ARCADIS-US). The mine plan is constantly in flux, and the forecast tonnages can change month to month. Daily overall tonnage and daily Lampbright tonnages fluctuate the most. Therefore, daily tonnages are slightly increased to allow for a buffer and are not directly calculated from annual tonnages and operating schedule.

(2) The emission factors for material handling are based on AP-42, Chapter 11.19.2, Table 11.19.2-2 Crushed Stone Processing and Pulverized Mineral Processing (August 2004) for Truck Unloading - Fragmented Stone. The basis for these emission factors is the PM₁₀ emission factor for truck unloading of fragmented stone in Table 11.19.2-2. This table provides a PM₁₀ emission factor, but does not provide PM_{2.5} or TSP emission factors. A PM_{2.5} emission factor was calculated from the available PM₁₀ emission factor using the ratio of 0.15 PM_{2.5}/PM₁₀ as recommended in the Background Document for AP-42, Chapter 13.2.4, *Revisions to Fine Fraction Ratios Used for AP-42 Fugitive Dust Emission Factors* - November 2006. An uncontrolled TSP emission factor was calculated from the available uncontrolled PM₁₀ emission factor using the TSP/PM₁₀ to calculated from the following uncontrolled TSP and PM₁₀ emission factors in Table 11.19.2-2: Tertiary Crushing (0.054/0.0024 = 2.25); Fines Crushing (0.0539/0.0150 = 2.60); Screening (0.025/0.0087 = 2.87; and Conveyor Transfer Point (0.0030/0.00110 = 2.73). See sample calculation below.

(3)Maximum Material Throughput is based on maximum annual throughput provided by Freeport's estimated material production

(4) TAP emissions for waste rock and leach rock calculated by multiplying the TSP/PM Emissions by the TAP content (%) in waste rock or in leach rock, respectively. Material handling at Hanover will occur with waste rock and leach rock, so conservative TAPs emissions for material handling are based on the higher TAP % available for waste rock or leach rock. For example, antimony emissions from material handling are based on antimony % in leach rock and barium emissions from material handling in the pit are based on barium % in waste rock.

Sample Calculations:

Unloading - Haul Road Repairs:

PM Emission Factor (lb/ton) = [2.25 tertiary crushing + 2.60 fines crushing + 2.87 screening + 2.73 conveyor transfer point]/4 x 0.000016 lb/ton PM-10 emission factor = 0.000042 lb/ton

Freeport-McMoRan Chino Mines Company

8/23/2023 Revised

ID	Description	Hn	Max fuel use,	Diesel heat value,	Max heat input,	Annual operating hours ⁽²⁾	N	Ox		со	VO	с	S	0 ₂	P	М	PN	Л ₁₀	PI	VI _{2.5}
10	Description	ΠP	gal/hr	Btu/gal ⁽¹⁾	MMBtu/hr	Annual operating nours	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
ATT Gen	Emergency Generator	36	2.56	137,000	0.35	500	1.55	0.39	0.33	0.083	0.12	0.031	5.31E-04	1.33E-04	0.11	0.027	0.11	0.027	0.11	0.027
ID	Description	11	Max fuel use,	LPG heat value,	Max heat input,	Annual operating	N	Ox		со	VO	с	S	0 ₂	TSP	/PM	PN	/I ₁₀	PI	M _{2.5}
10	Description	пр	cu.ft/hr ⁽³⁾	Btu/scf ⁽⁴⁾	MMBtu/hr	hours ⁽²⁾	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr

Units		AP-42 Emission Factors for Diesel Fuel Combustion ⁽⁵⁾									
Units	со	NO _x	VOC	TSP/PM	PM ₁₀	PM _{2.5}	SO ₂				
lb/MMBtu	0.95	4.41	0.350	0.310	0.310	0.310	0.0015				

Units		AP-42 Emission Factors Natural Gas Combustion ⁽⁶⁾									
Units	со	NOx	VOC	TSP/PM	PM ₁₀	PM _{2.5}	SO ₂				
lb/MMBtu	0.32	4.1	0.12	0.0099	0.000077	0.000077	0.00059				

FEDERAL HAP/NM TOXIC AIR POLLUTANT EMISSIONS ESTIMATION for Emergency Generators

	Compound	Diesel Emission Factor	EPG/NG Emission Factor	
Pollutant	Species	(lb/MMBtu) ⁽⁷⁾	(lb/MMBtu) ⁽⁸⁾	
	Benzene	9.33E-04	4.40E-04	
	Acetaldehyde	7.67E-04	8.36E-03	
Hazardous Air	Acrolein	9.25E-05	5.14E-03	
Pollutants	Formaldehyde	1.18E-03	5.28E-02	
Pollutants	Naphthalene	8.48E-05	7.44E-05	
	Toluene	4.09E-04	4.08E-04	
	Xylenes	2.85E-04	1.84E-04	

	Certificate of Conformity ⁽⁹⁾											
	CO NO _x VOC Unit											
CAT DG50-2	CAT DG50-2 2 1 0.7 g/hp-hr											

Notes:

¹Diesel fuel usage was based on estimated diesel usage via trending analysis. Annual usage is based on a limit of 500 hour/year for emergency equipment. Heat input value in MMBtu is based on 137,000 Btu/gallon conversion.

²Operating hours are limited to less than 500 hours/year per rolling 12-month period and operated only during the unavoidable loss of commercial utility power.

³The maximum fuel usage for unit "GENERAC4" and "Elliot Magnetek" were based on the manufacture fuel usage for "GENERAC3" which is a unit of similar capacity.

⁴LPG heat value is based on heating value for Propane. LPG fuel is primarily composed of Propane.

⁵Based on emission factors for uncontrolled diesel industrial engines present in USEPA AP-42 Section 3.3 "Gasoline and Diesel Industrial Engines" (10/96). NOx emission factor is uncontrolled. TSP=PM10=PM2.5. PM-10 = particulate matter less than or equal to 10 μm aerodynamic diameter. All particulate is assumed to be ≤ 1 μm in size. Criteria pollutant emission factors were obtained from Table 3.3-1. SO₂ emission factor = 1.01S, where S = % sulfur.

⁶Based on emission factors for uncontrolled 4-stroke lean-burn engines present in USEPA AP-42 Section 3.2 "Natural Gas-Fired Reciprocal Engines" (7/00). NOx and CO emission factor is uncontrolled with 90-105 % load. Criteria pollutant emission factors were obtained from Table 3.2-1 and 3.2-2. SO2 emission factor = 1.015, where S = % sulfur.

⁷HAP emissions are based on USEPA AP-42 Section 3.3 "Gasoline and Diesel Industrial Engines" (10/96) Table 3.3-2.

⁷HAP emissions are based on USEPA AP-42 Section 3.2 "Natural Gas-fired Reciprocating Industrial Engines" (10/96) Table 3.2-2.

⁹Emission factors for NOX, CO, and VOC from CAT DG50-2 engines are based on EPA Certificate of Conformity NSPS JJJJ limits.

Freeport-McMoRan Chino Mines Company

8/23/2023 Revised

ID	Description	Цn	Max fuel use,	Diesel heat value,	Max heat input,	Annual operating hours ⁽²⁾	HA	Ps ^(2,7)	Ben	zene	Aceta	ldehyde	Acrolein	Forma	Idehyde	Napht	halene	Tol	uene	Xy	lene	CO ₂ e	CO ₂	N ₂ O	CH ₄
10	Description	пр	gal/hr	Btu/gal ⁽¹⁾	MMBtu/hr	Annual operating nours	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	tons/yr	tons/yr	tons/yr	tons/yr
ATT G	Emergency Generator	36	2.56	137,000	0.35	500	1.32E-03	3.29E-04	3.27E-04	8.18E-05	2.69E-04	6.72E-05	3.24E-05 8.11E-06	4.14E-04	1.03E-04	2.97E-05	7.43E-06	1.43E-04	3.59E-05	9.99E-05	2.50E-05	13.01	12.97	1.05E-04	5.26E-04
ID	Description	Lin.	Max fuel use,	LPG heat value,	Max heat input,	Annual operating	H/	APs ⁽⁸⁾	Ben	zene	Aceta	ldehyde	Acrolein	Forma	Idehyde	Napht	halene	Tol	uene	Xy	lene	CO ₂ e	CO ₂	N ₂ O	CH4
ID	Description	Нр	Max fuel use, cu.ft/hr ⁽³⁾	LPG heat value, Btu/scf ⁽⁴⁾	Max heat input, MMBtu/hr	Annual operating hours ⁽²⁾	H/ lb/hr	APs ⁽⁸⁾ tons/yr	Ben Ib/hr	zene tons/yr	Acetal lb/hr	ldehyde tons/yr	Acrolein lb/hr tons/yr	Forma lb/hr	ldehyde tons/yr	Napht lb/hr	halene tons/yr	Tol lb/hr	uene tons/yr	,		2 -	2	N ₂ O tons/yr	CH ₄ tons/yr

Units		AP-42 En	nission Factors for Di	iesel Fuel Combustic	on ⁽⁵⁾	Certific	ate of Confo	rmity ⁽⁹⁾
Units	со	NOx	VOC	TSP/PM	PM10	NOx	VOC	Unit
lb/MMBtu	0.95	4.41	0.350	0.310	0.310	1	0.7	g/hp-hr

FEDERAL HAP/NM TOXIC AIR POLLUTANT EMISSIONS ESTIMATION for Emergency Generators

	Compound	Diesel Emission	LPG/NG Emission
Pollutant	Species	Factor (lb/MMBtu) ⁽⁷⁾	Factor (lb/MMBtu) ⁽⁸⁾
	Benzene	9.33E-04	4.40E-04
	Acetaldehyde	7.67E-04	8.36E-03
Hazardous Air	Acrolein	9.25E-05	5.14E-03
Pollutants	Formaldehyde	1.18E-03	5.28E-02
Pollutants	Naphthalene	8.48E-05	7.44E-05
	Toluene	4.09E-04	4.08E-04
	Xylenes	2.85E-04	1.84E-04

Notes:

¹Diesel fuel usage was based on estimated diesel usage via trending analysis. Annual usage is based on a limit of 500 hour/year for emergency equipment. Heat input value in MMBtu is based on 137,000 Btu/gallon conversion.

²Operating hours are limited to less than 500 hours/year per rolling 12-month period and operated only during the unavoidable loss of commercial utility power.

³The maximum fuel usage for unit "GENERAC4" and "Elliot Magnetek" were based on the manufacture fuel usage for "GENERAC3" which is a unit of similar capacity. ⁴LPG heat value is based on heating value for Propane. LPG fuel is primarily composed of Propane.

⁵Based on emission factors for uncontrolled diesel industrial engines present in USEPA AP-42 Section 3.3 "Gasoline and Diesel Industrial Engines" (10/96). NOx emission factor is uncontrolled. TSP=PMID=PM2.5. PM-10 = particulate matter less than or equal to 10 µm aerodynamic diameter. All particulate is assumed to be ≤ 1 µm in size. Criteria pollutant emission factors were obtained from Table 3.3.1. So, emission factor = 1.015, where S = % sulfur.

⁶Based on emission factors for uncontrolled 4-stroke lean-burn engines present in USEPA AP-42 Section 3.2 "Natural Gas-Fired Reciprocal Engines" (7/00). NOx and CO emission factor is uncontrolled with 90-105 % load. Criteria pollutant emission factors were obtained from Table 3.2-1 and 3.2-2. SO2 emission factor = 1.015, where S = % suffur.

⁷HAP emissions are based on USEPA AP-42 Section 3.3 "Gasoline and Diesel Industrial Engines" (10/96) Table 3.3-2.

⁷HAP emissions are based on USEPA AP-42 Section 3.2 "Natural Gas-fired Reciprocating Industrial Engines" (10/96) Table 3.2-2.

⁹Emission factors for NOX, CO, and VOC from CAT DG50-2 engines are based on EPA Certificate of Conformity NSPS JJJJ limits.

Freeport-McMoRan Chino Mines Company Revised: 08/10/2023

Chino Mine - Emergency Generator Engine Emissions

			Max fuel use.	Diesel heat value.	Heat input.	Annual operating	N	Ox		CO	v	00	S	0.	P	M	PI	A.,	PI	M, .	CO2e	CO ₂	N ₂ O	CH₄
ID	Description	Нр	gal/hr	Btu/gal ⁽¹⁾	MMBtu/hr	hours ⁽²⁾	lb/hr	tons/vr	lb/hr	tons/vr	lb/hr	tons/vr	lb/hr	tons/vr	lb/hr	tons/vr	lb/hr	tons/vr	lb/hr	tons/vr	tons/vr	tons/vr	tons/vr	
Emergency Fire Pump	SXEW Fire Emergency Pump	197	10.77	137,000	1.48	500	6.51	1.63	1.40	0.35	0.52	0.13	,	5.59E-04			4.57E-01		4.57E-01		54.75	54.57	4.4E-04	2.2E-03
Sxlpwrprm8	20 Dam Hanover	275	14.75	137,000	2.02	500	8.91	2.23	1.92	0.48	0.71	0.18	3.06E-03	7.65E-04	6.26E-01	1.57E-01	6.26E-01	1.57E-01	6.26E-01	1.57E-01	74.98	74.72	6.1E-04	3.0E-03
Sxlpwrprm5	Far East Containment	225	12.20	137,000	1.67	500	7.37	1.84	1.59	0.40	0.58	0.15	2.53E-03	6.33E-04	5.18E-01	1.30E-01	5.18E-01	1.30E-01	5.18E-01	1.30E-01	62.01	61.80	5.0E-04	2.5E-03
Sxlpwrprm3	11 Dam Hanover	174	9.60	137,000	1.31	500	5.80	1.45	1.25	0.31	0.46	0.12	1.99E-03	4.98E-04	4.08E-01	1.02E-01	4.08E-01	1.02E-01	4.08E-01	1.02E-01	48.79	48.62	3.9E-04	2.0E-03
Sxlgdwn1	10 Dam Hanover	309	16.48	137,000	2.26	500	9.96	2.49	2.15	0.54	0.79	0.20	3.42E-03	8.55E-04	7.00E-01	1.75E-01	7.00E-01	1.75E-01	7.00E-01	1.75E-01	83.79	83.51	6.8E-04	3.4E-03
Sxlpwrprm4	14 Dam Hanover	225	12.20	137,000	1.67	500	7.37	1.84	1.59	0.40	0.58	0.15	2.53E-03	6.33E-04	5.18E-01	1.30E-01	5.18E-01	1.30E-01	5.18E-01	1.30E-01	62.01	61.80	5.0E-04	2.5E-03
Sxlpwrprm2	Sump #3	309	16.48	137,000	2.26	500	9.96	2.49	2.15	0.54	0.79	0.20	3.42E-03	8.55E-04	7.00E-01	1.75E-01	7.00E-01	1.75E-01	7.00E-01	1.75E-01	83.79	83.51	6.8E-04	3.4E-03
Sxlpwrprm7	13 Dam Hanover	175	9.65	137,000	1.32	500	5.83	1.46	1.26	0.31	0.46	0.12	2.00E-03	5.01E-04	4.10E-01	1.02E-01	4.10E-01	1.02E-01	4.10E-01	1.02E-01	49.05	48.88	4.0E-04	2.0E-03
Cummins 1823	South Side Tailing office	32	2.36	137,000	0.32	500	1.42	0.36	0.31	0.08	0.11	0.03	4.89E-04	1.22E-04	1.00E-01	2.50E-02	1.00E-01	2.50E-02	1.00E-01	2.50E-02	11.98	11.93	9.7E-05	4.8E-04
DEUTZ	Sump Pump	114	6.54	137,000	0.90	500	3.95	0.99	0.85	0.21	0.31	0.08	1.36E-03	3.39E-04	2.78E-01	6.94E-02	2.78E-01	6.94E-02	2.78E-01	6.94E-02	33.23	33.12	2.7E-04	1.3E-03
FWP01	Concentrator Fire Emergency Pump	185	10.16	137,000	1.39	500	6.14	1.53	1.32	0.33	0.49	0.12	2.11E-03	5.27E-04	4.31E-01	1.08E-01	4.31E-01	1.08E-01	4.31E-01	1.08E-01	51.64	51.47	4.2E-04	2.1E-03
			Max fuel use,	Natural Gas heat	Heat input,	Annual operating	N	Ox		со	v	oc	S	0,	P	м	PI	N ₁₀	PI	И _{2 5}	CO2e	CO2	N ₂ O	CH4
ID	Description	Нр	cu.ft/hr	value. Btu/scf	MMBtu/hr	hours ⁽²⁾	lb/hr	tons/vr	lb/hr	tons/vr	lb/hr	tons/vr	lb/hr	tons/vr	lb/hr	tons/vr	lb/hr	tons/vr	lb/hr	tons/vr	tons/vr	tons/vr	tons/vr	tons/vr
GENERAC1	MIS Building	60	730.00	1.020	0.74	500	3.0	0.76	0.24	0.059	0.088	0.022	0.00044	0.00011	0.0074	0.0018		1.44F-05	5.74F-05		19.8	19.8	3.7E-05	3.7F-04
			Max fuel use.	LPG heat value.	Heat input.	Annual operating		0x		CO		00.022		0,00011		M		A10		M2.5	CO ₂ e	CO2	N ₂ O	CHA
ID	Description	Hp	cu.ft/hr ⁽³⁾	Btu/scf ⁽⁴⁾	MMBtu/hr	hours ⁽²⁾	lb/hr	tons/vr	lb/hr	tons/vr	lb/hr	tons/vr	lb/hr	tons/vr	lb/hr	tons/vr	lb/hr	tons/vr	lb/hr	tons/vr	tons/vr	tons/vr	tons/vr	tons/vr
GENERAC2	SX-EW Tank house	50	200.00	2.514	0.50	500	2.1	0.51	0.16	0.040	0.059	0.015	,	7.39E-05	4.98E-03	1.25E-03		9.69E-06	3.88E-05		15.6	15.5	1.51E-04	7.54E-04
GEINERACZ	Mine Pit Slope Monitoring	50	200.00	2,514	0.50	500	Z.1	0.51	0.10	0.040	0.059	0.015	2.902-04	7.39E-05	4.96E-03	1.25E-03	3.66E-U3	9.09E-00	3.66E-U3	9.09E-00	15.0	15.5	1.516-04	7.54E-04
GENERAC4	Station - Slope 2	15	42.80	2,514	0.11	500	0.44	0.11	0.034	0.0085	0.013	0.0032	6.33E-05	1.58E-05		2.67E-04	8.30E-06	2.07E-06	8.30E-06	2.07E-06	3.3	3.3	3.23E-05	1.61E-04
GENERAC5	Santa Rita Tower	15	71.60	2,514	0.18	500	0.73	0.18	0.057	0.0143	0.021	0.0053	1.06E-04	2.65E-05	1.78E-03	4.46E-04	1.39E-05	3.47E-06	1.39E-05	3.47E-06	5.6	5.6	5.40E-05	2.70E-04
GENERAC6	Nun Complex Communication Station	15	71.60	2,514	0.18	500	0.73	0.18	0.057	0.0143	0.021	0.0053	1.06E-04	2.65E-05	1.78E-03	4.46E-04	1.39E-05	3.47E-06	1.39E-05	3.47E-06	5.6	5.6	5.40E-05	2.70E-04
GENERAC7	Mine Warehouse	15	71.60	2,514	0.18	500	0.73	0.18	0.057	0.0143	0.021	0.0053	1.06E-04	2.65E-05	1.78E-03	4.46E-04	1.39E-05	3.47E-06	1.39E-05	3.47E-06	5.6	5.6	5.40E-05	2.70E-04
West Tower	Radio Tower Emergency Engine CAT DG50-2 ⁽⁹⁾	67.1	288.00	2,514	0.72	500	0.15	0.037	0.30	0.074	0.10	0.026	4.26E-04	1.06E-04	0.0072	0.0018	5.58E-05	1.40E-05	5.58E-05	1.40E-05	22.4	22.3	2.17E-04	1.09E-03
Cobre Tower	Radio Tower Emergency Engine CAT DG50-2 ⁽⁹⁾	67.1	288.00	2,514	0.72	500	0.15	0.037	0.30	0.074	0.10	0.026	4.26E-04	1.06E-04	0.0072	0.0018	5.58E-05	1.40E-05	5.58E-05	1.40E-05	22.4	22.3	2.17E-04	1.09E-03
			TOTAL				81.2	20.3	17.0	4.2	6.2	1.56	0.027	0.007	5.2	1.29	5.1	1.29	5.1	1.29	716.3	713.9	0.006	0.029

Units		AP	-42 Emission Factors	for Diesel Fuel	Combustion ⁽⁵⁾			Units		AP-42 E	mission Fa	tors Natur	al Gas Com	ubustion ⁽⁶⁾	
Units	со	NO _x	VOC	PM	PM ₁₀	PM _{2.5}	SO ₂	Units	со	NOx	VOC	PM	PM10	PM _{2.5}	SO ₂
lb/MMBtu	0.95	4.41	0.350	0.310	0.310	0.310	0.0015	lb/MMBtu	0.32	4.1	0.12	0.0099	7.71E-05	7.71E-05	0.00059
	50-2 Certifica	te of Conformity ⁽⁹⁾													
Units	co	NOx	VOC												
g/hp-hr	2	1	0.7	1											

CAT DG	0-2 Certifica	te of Conformity ⁽⁹⁾	
Units	со	NOx	VOC
g/hp-hr	2	1	0.7

Freeport-McMoRan Chino Mines Company Revised: 08/10/2023

Chino Mine - Emergency Generator Engine Emissions

ID	Description		Max fuel use,	Diesel heat value,	Max heat input,	Annual operating	HAF	Ps ^(2,7)	Bena	zene	Acetal	dehyde	Acro	lein	Formal	dehyde	Naptht	halene	Toul	ene	Xyl	ene
U	Description	Нр	gal/hr	Btu/gal ⁽¹⁾	MMBtu/hr	hours ⁽²⁾	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
Emergency Fire Pump	SXEW Fire Emergency Pump	197	10.77	137,000	1.48	500	5.54E-03	1.38E-03	1.38E-03	3.44E-04	1.13E-03	2.83E-04	1.36E-04	3.41E-05	1.74E-03	4.35E-04	1.25E-04	3.13E-05	6.04E-04	1.51E-04	4.21E-04	1.05E-04
Sxlpwrprm8	20 Dam Hanover	275	14.75	137,000	2.02	500	7.58E-03	1.89E-03	1.89E-03	4.71E-04	1.55E-03	3.87E-04	1.87E-04	4.67E-05	2.38E-03	5.96E-04	1.71E-04	4.28E-05	8.26E-04	2.07E-04	5.76E-04	1.44E-04
Sxlpwrprm5	Far East Containment	225	12.20	137,000	1.67	500	6.27E-03	1.57E-03	1.56E-03	3.90E-04	1.28E-03	3.20E-04	1.55E-04	3.86E-05	1.97E-03	4.93E-04	1.42E-04	3.54E-05	6.84E-04	1.71E-04	4.76E-04	1.19E-04
Sxlpwrprm3	11 Dam Hanover	174	9.60	137,000	1.31	500	4.93E-03	1.23E-03	1.23E-03	3.07E-04	1.01E-03	2.52E-04	1.22E-04	3.04E-05	1.55E-03	3.88E-04	1.12E-04	2.79E-05	5.38E-04	1.34E-04	3.75E-04	9.37E-05
Sxlgdwn1	10 Dam Hanover	309	16.48	137,000	2.26	500	8.47E-03	2.12E-03	2.11E-03	5.27E-04	1.73E-03	4.33E-04	2.09E-04	5.22E-05	2.66E-03	6.66E-04	1.91E-04	4.79E-05	9.24E-04	2.31E-04	6.44E-04	1.61E-04
Sxlpwrprm4	14 Dam Hanover	225	12.20	137,000	1.67	500		1.57E-03	1.56E-03	3.90E-04	1.28E-03				1.97E-03		1.42E-04	3.54E-05	6.84E-04	1.71E-04		1.19E-04
Sxlpwrprm2	Sump #3	309	16.48	137,000	2.26	500	8.47E-03	2.12E-03	2.11E-03		1.73E-03	4.33E-04		5.22E-05	2.66E-03		1.91E-04					1.61E-04
Sxlpwrprm7	13 Dam Hanover	175	9.65	137,000	1.32	500		1.24E-03				2.53E-04			1.56E-03			2.80E-05		1.35E-04		
Cummins 1823	South Side Tailing office	32	2.36	137,000	0.32	500	1.21E-03	3.03E-04	3.01E-04	7.53E-05	2.48E-04	6.19E-05	2.99E-05	7.46E-06	3.81E-04	9.52E-05	2.74E-05	6.84E-06	1.32E-04	3.30E-05	9.20E-05	2.30E-05
DEUTZ	Sump Pump	114	6.54	137,000	0.90	500	3.36E-03	8.40E-04	8.36E-04	2.09E-04	6.87E-04	1.72E-04	8.28E-05	2.07E-05	1.06E-03	2.64E-04	7.60E-05	1.90E-05	3.66E-04	9.16E-05	2.55E-04	6.38E-05
FWP01	Concentrator Fire Emergency Pump	185	10.16	137,000	1.39	500	5.22E-03	1.31E-03	1.30E-03	3.25E-04	1.07E-03	2.67E-04	1.29E-04	3.22E-05	1.64E-03	4.11E-04	1.18E-04	2.95E-05	5.69E-04	1.42E-04	3.97E-04	9.92E-05
			Max fuel use,	Natural Gas heat	Heat input,	Annual operating	HA	Ps ⁽⁸⁾	Benz	zene	Acetal	dehyde	Acro	lein	Formal	dehyde	Naptht	halene	Toul	ene	Xyl	ene
ID	Description	Нр	cu.ft/hr	value, Btu/scf	MMBtu/hr	hours ⁽²⁾	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
GENERAC1	MIS Building	60	730.00	1.020	0.74	500	5.02E-02	1.25E-02	3.28E-04	8.19E-05	6.22E-03	1.56E-03	3.83E-03	9.57E-04	3.93E-02	9.83E-03	5.54E-05	1.38E-05	3.04E-04	7.59E-05	1.37E-04	3.43E-05
ID			Max fuel use,	LPG heat value,	Heat input,	Annual operating	HA	Ps ⁽⁸⁾	Bena	zene	Acetal	dehvde	Acro	lein	Formal	dehvde	Naptht	halene	Toul	ene	Xvl	ene
U	Description	Нр	cu.ft/hr ⁽³⁾	Btu/scf ⁽⁴⁾	MMBtu/hr	hours ⁽²⁾	lb/hr	tons/vr	lb/hr	tons/vr	lb/hr	tons/vr	lb/hr	tons/vr	lb/hr	tons/vr	lb/hr	tons/vr	lb/hr	tons/vr	lb/hr	tons/vr
GENERAC2	SX-EW Tank house	50	200.00	2,514	0.50	500	3.39E-02	8.47E-03	2.21E-04	5.53E-05	4.20E-03	1.05E-03	2.58E-03	6.46E-04	2.65E-02	2.12E-03	3.74E-05	9.35E-06	2.05E-04	5.13E-05	9.25E-05	2.31E-05
GENERAC4	Mine Pit Slope Monitoring Station - Slope 2	15	42.80	2,514	0.11	500	7.25E-03	1.81E-03	4.73E-05	1.18E-05	9.00E-04	2.25E-04	5.53E-04	1.38E-04	5.68E-03	4.53E-04	8.01E-06	2.00E-06	4.39E-05	1.10E-05	1.98E-05	4.95E-06
GENERAC5	Santa Rita Tower	15	71.60	2,514	0.18	500	1.21E-02	3.03E-03	7.92E-05	1.98E-05	1.50E-03	3.76E-04	9.25E-04	2.31E-04	9.50E-03	7.58E-04	1.34E-05	3.35E-06	7.34E-05	1.84E-05	3.31E-05	8.28E-06
GENERAC6	Nun Complex Communication Station	15	71.60	2,514	0.18	500	1.21E-02	3.03E-03	7.92E-05	1.98E-05	1.50E-03	3.76E-04	9.25E-04	2.31E-04	9.50E-03	7.58E-04	1.34E-05	3.35E-06	7.34E-05	1.84E-05	3.31E-05	8.28E-06
GENERAC7	Mine Warehouse	15	71.60	2,514	0.18	500	1.21E-02	3.03E-03	7.92E-05	1.98E-05	1.50E-03	3.76E-04	9.25E-04	2.31E-04	9.50E-03	7.58E-04	1.34E-05	3.35E-06	7.34E-05	1.84E-05	3.31E-05	8.28E-06
West Tower	Radio Tower Emergency Engine CAT DG50-2 ⁽⁹⁾	67.1	288.00	2,514	0.72	500	4.88E-02	1.22E-02	3.19E-04	7.96E-05	6.05E-03	1.51E-03	3.72E-03	9.30E-04	3.82E-02	3.05E-03	5.39E-05	1.35E-05	2.95E-04	7.39E-05	1.33E-04	3.33E-05
Cobre Tower	Radio Tower Emergency Engine CAT DG50-2 ⁽⁹⁾	67.1	288.00	2,514	0.72	500	4.88E-02	1.22E-02	3.19E-04	7.96E-05	6.05E-03	1.51E-03	3.72E-03	9.30E-04	3.82E-02	3.05E-03	5.39E-05	1.35E-05	2.95E-04	7.39E-05	1.33E-04	3.33E-05

FEDERAL HAP/NM TOXIC AIR POLLUTANT EMISSIONS ESTIMATION for Emergency Generators

	Compound	Diesel Emission	LPG/NG Emission
Pollutant	Species	Factor	Factor
Pollutant	species	(lb/MMBtu) ⁽⁷⁾	(lb/MMBtu) ⁽⁸⁾
	Benzene	9.33E-04	4.40E-04
	Acetaldehyde	7.67E-04	8.36E-03
	Acrolein	9.25E-05	5.14E-03
Hazardous Air Pollutants	Formaldehyde	1.18E-03	5.28E-02
	Naphthalene	8.48E-05	7.44E-05
	Toluene	4.09E-04	4.08E-04
	Xylenes	2.85E-04	1.84E-04

Notes:

¹Diesel fuel usage was based on estimated diesel usage via trending analysis. Annual usage is based on a limit of 500 hour/year for emergency equipment. Heat input value in MMBtu is based on 137,000 Btu/gallon conversion.

²Operating hours are limited to less than 500 hours/year per rolling 12-month period and operated only during the unavoidable loss of commercial utility power.
³The maximum fuel usage for unit "GENERAC4" and "Elliot Magnetek" were based on the manufacture fuel usage for "GENERAC3" which is a unit of similar capacity.
⁴UPG heat value is based on heating value for Propane. LPG fuel is primarily composed of Propane.
⁵Based on emission factors for uncontrolled diesel industrial engines present in USEPA AP-42 Section 3.3 "Gasoline and Diesel Industrial Engines" (10/96). NOx

*Based on emission factors for uncontrolled diesel industrial engines present in USEPA AP-42 Section 3.2 "Gasoline and Diesel Industrial Engines" (10/96). NOx *Based on emission factors for uncontrolled 4-stroke lean-burn engines present in USEPA AP-42 Section 3.2 "Natural Gas-Fired Reciprocal Engines" (7/00). NOx and 'HAP emissions are based on USEPA AP-42 Section 3.3 "Gasoline and Diesel Industrial Engines" (10/96) Table 3.3-2

⁷HAP emissions are based on USEPA AP-42 Section 3.2 "Natural Gas-fired Reciprocating Industrial Engines" (10/96) Table 3.2-2

⁹Emission factors for NOX, CO, and VOC from CAT DG50-2 engines are based on EPA Certificate of Conformity NSPS JJJJ limits.

Revised: August 2023 HAP & TAP Emissions Summary				HAP Tap & HAP																											
Controlled HAP & TAP Emissions S	ummarv			TAP Neither HAP or	TAP																										
Grouping		SOURCE	lb Øbr	HAP's ton/vr	lb/hr	TAP's	Cop lb/hr	pper tee for	Mang Ib/hr	anese	Vana	dium too fur	2 Ib/br	nc ton/or	Ben	tene	Ethylb	enzene teo lur	Hexane lb/hr ton/vr	Tol	uene tea lur	Xyler Ib/br	ten fur	Sulfur Ib/hr	ric acid	Acetalo	lehyde too fur	Acr	olein	Formal	idehyde toolur
	CB TLNGS	Cobre Mine Tailings	ib/hr	ton/w	lb/hr	ten/w	lb/hr	ten/vr	lb/hr	ten/vr	lb/hr	ten/vr	ib/hr	ton/vr	ib/hr	-	lb/hr	ten/w	ib/hr ton/vr	lb/hr	-	lb/hr	- ton/w	lb/hr	-	lb/hr	ton/vr	B/hr	ton/vr	lb/hr	ton/vr
Tailing Summary	CM TLNGS	Chino Mine Tailings	-			-	-							-	-	-						-		-			-			.	
	CBM HR	Cobre Mine Haul Roads (Hanover Hauling & Magnetite Hauling)	-				-	-							-							-			-		-				-
HR Summary	CM HR	Chino Mine Haul Roads	-												-		-	-				-		-	-						
SAG Mill Tunnel Summary	SAG	Underground SAG Mill Tunnel	-		-										-			-							-						
	BORR_MH	Borrow Pit Material Handling	-			-	-	-	-	-				-	-	-						-	-	-	-	-	-	-		· ·	-
Material Handling Summary	CBM MH	Cobre Mine Material Handling (Hanover Mining & Magnetite Handling)	6.01E-04	1.6925E-03	1.51E-03	5.13E-03	7.02E-04	2.90E-03	5.365-04	1.46E-03	2.13E-05	8.10E-05	5.42E-05	2.06E-04	-	-		-				-	-		-			-	.		-
	CM MH	Chino Mine Material Handling	6.27E-04	2.57E-03	7.65E-03	0.033	6.71E-03	0.029	2.84E-04	1.08E-03	2.13E-05	8.10E-05	5.42E-05	2.06E-04	-	-	÷	-		-	-	-	-	-	-	-	-	-	-		-
	BORR_BLST	Borrow Pit Blasting	-	-	-	-		-				-	-		-	-	-	-			-	-	-	-	-	-	-	-	.	<u> </u>	-
Blasting Summary	CBM BLST	Cobre Mine Hanover Blasting	-	÷	-	-	-	-	-	-	-		-	-		-	-	-		-	-	-	-	-	-	-	÷	-			-
	CM BLST	Chino Mine Blasting	-		-	-	-	-	-	-			-	-	-	-	-	-		-	-	-	-	-	-	-	-	-			-
Ivanhoe Summary	CV-01C		1.13E-03	1.67E-03	0.010	0.014	8.76E-03	0.012	9.835-04	1.35E-03	6.39E-05	8.80E-05	1.63E-04	2.25E-04	<u> </u>	-	-	-		-	-	-	-		-	-	-	-	.	<u> </u>	-
	F-2-1-1.4	Westinghouse Gas Turbine - Hurley Power Plant	0.47	2.05	0.020	0.088	-	-	-	-	-		-	-	5.468-03	0.024	0.015	0.064		0.059	0.26	0.029	0.13	0.020	0.088	0.018	0.080	2.91E-03	0.013	0.32	1.41
Hurley Summary	F-2-1-1.5	Heat Recovery Steam Generator - Hurley Power Plant	0.090	0.39	5.74E-05	2.51E-04	-	-		-	-		-	-	1.00E-04	4.40E-04	-	-	0.086 0.377	1.63E-04	7.12E-04	-	-	-	-	-	-	-	.	3.596-03	0.016
	FLTR/BLND ¹	Filter/Blending Plant	-	-	-	-		-				-	-		· ·		-	-		-	-	-	-	-	-	-	-	-	-	<u> </u>	-
GDF Summary	GDF	Gasoline Dispensing Facilities	0.32	1.41	-	-		-				-	-		0.030	0.13	0.019	0.082	0.025 0.11	0.16	0.68	0.093	0.408	-	-	-	-	-	·	·	-
	IC-01	Molybdenum Plant Wet Scrubber	1.32E-04	5.77E-04	1.71E-04	7.47E-04	1.55E-05	6.79E-05	3.10E-05	1.36E-04	1.55E-06	6.79E-06	2.48E-05	1.09E-04			-	-		-	-	-	-	-	-	-	-	-	•	·	-
	LHS-01	Ivanhoe Concentrator Lime Handling System	-	-	-	-	-	-	-	-	-	•	-	-	-	-	-	-	• •	-	-	-	-	-	-	•	-	-	·	<u> </u>	-
A.euu	LUS-01	Ivanhoe Concentrator Lime Unloading System	-		-	-	-	-		-			-			-	-	-			-	-	-	-	-	-	-	-		<u> </u>	-
liva rihoe S	PC DUMP	Primary Crusher Dump Pocket Primary Crusher	3.20E-05		2.87E-04	1.26E-03	2.49E-04	1.09E-03	2.79E-05	1.22E-04	1.81E-06	7.94E-06	4.63E-06	2.03E-05			-	-		-		-	-	-	· ·	-	-		·	<u> </u>	-
	PC-01 SAG-F1	SAG Mill Feeders No. 1 and No.	1.64E-03	7.18E-03 4.99E-03	0.015	0.064	1.27E-02 8.76E-03	0.056	1.43E-03 9.83E-04	6.26E-03 4.35E-03	9.29E-05	4.07E-04 2.83E-04	2.38E-04 1.63E-04	1.04E-03 7.23E-04	-	-		-		-	-	-	-	-		-	-	-	-	<u> </u>	-
	SAG-P1	2 Stacker Conveyor	3.51E-04	4.99E-03	3.14E-03	0.045	2.736-03	0.039	3.06E-04	4.358-03	1.99E-05	8.805-05	5.08E-05	2.25E-04	-	-		-		-	-	-	-	-			-	-	-	<u> </u>	-
	CH SCRN	Chino Screening Plant Material	0.015	0.033	0.134	0.014	0.12	0.26	0.013	0.029	8.505-04	1.865-03	2.18E-03	4.76E-03								-			<u> </u>						-
۸. Ne	CB SCRN	Handling Cobre Screening Plant Material Handling	2.63E-03	5.76E-03	0.024	0.052	0.020	0.045	2.30E-03	5.03E-03	1.49E-04	3.275-04	3.81E-04	8.35E-04	-			-				-		-	-			_		<u> </u>	
SCRN Summ	CH SCRN ENG	Chino Screening Plant Engine	2.42E-03	0.011		-									6.02E-04	2.64E-03	-	-		2.64E-04	1.165-03	1.84E-04	8.05E-04	-	-	4.95E-04	2.17E-03	5.97E-05	2.61E-04	7.62E-04	3.34E-03
	CB SCRN ENG	Cobre Screening Plant Engine	5.40E-03	0.012		-	-	-		-				-	1.34E-03	2.94E-03		-		5.88E-04	1.296-03	4.10E-04	8.98E-04		-	1.105-03	2.42E-03	1.33E-04	2.91E-04	1.705-03	3.72E-03
	SXEW 10MST	SXEW Plant Ten Mixer/Settler Tanks	0.29	1.26	2.18E-03	0.010	-	-	-	-	-	-	-	-	0.054	0.28	0.075	0.33		0.070	0.31	0.078	0.34		-	-	-	-			-
	SXEW Boiler No. 1	SXEW Plant Boiler No. 1	-			-	-	-	-	-				-	-	-	-	-				-	-	-	-	-	-	-	-		-
	SXEW Boiler No. 2	SXEW Plant Boiler No. 2	-			-		-								-		-					-		-	-	-	-		•	-
SXEW Summary	SXEW Boiler No. 3	SXEW Plant Boiler No. 3	-			-	-	-	-	-				-	-	-	-	-		-		-	-	-	-		-	-		-	-
	SKEW RT	SXEW Plant Raffinate Tank	0.019	0.083	1.54E-04	6.74E-04	-	-	-	-				-	4.24E-03	0.019	4.968-03	0.022		4.635-03	0.020	5.13E-03	0.022	-	-		-	-			-
	SXEW SAT	SXEW Plant Acid Tankhouse	-	-	2.28	10.00		-							-	-		-				-	-	2.28	10.00	-	-	-		-	-
WH Crusher Summary	WH Crush	White House Crushing Plant	0.060	0.13	0.53	1.17	0.46	1.01	0.052	0.11	3.38E-03	7.40E-03	8.64E-03	0.019				-	· · ·	-		-		-	-	-	÷	-			-
	Totals		1.28	5.41	3.04	11.79	0.64	1.47	0.072	0.16	4.66E-03	0.011	0.012	0.027	0.11	0.46	0.11	0.50	0.11 0.49	0.29	1.27	0.21	0.90	2.30	10.08	0.020	0.084	3.10E-03	0.013	0.33	1.44
-	*Polycyclic Organic Matter (co	moounds with more than one benzer	e ring, and w	hich have a boili	a point greater th	an or equal to 100 C																									

*Pedvoxdic Orsanic Matter (comoounds with more than one benzeme rinz, and which have a boline coint areaster than or eoual to 100 C ¹ Emergency Engines are not included in the Emissions Total since they are exempt under 20.2.72.202.BI31.

Freeport-McMoRan Chino Mines Company Revised: August 2023 HAP & TAP Emissions Summary

Legend HAP Tap & HAP TAP

Uncontrolled HAP & TAP Emission																															
Grouping	SOL	IRCE	lb/hr	ton/yr	lb/hr	ton/yr	Cop Ib/hr	ton/yr	Mang Ib/hr	ton/yr	Vana Ib/hr	dium ton/yr	2 Ib/hr	ton/yr	Benze Ib/hr	ton/yr	Ethylb Ib/hr	enzene ton/yr	He: Ib/hr	ton/yr	Tolu Ib/hr	ton/yr	Xylen Ib/hr	ton/yr	Sulfu Ib/hr	ric acid ton/yr	Acetalo Ib/hr	ton/yr	Acro lb/hr	ton/yr	Formaldehyde Ib/hr ton/yr
Tailing Summary	CB TLNGS	Cobre Mine Tailings	-	-	-	-	-	-	-	-		-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
	CM TLNGS	Chino Mine Tailings Cobre Mine Haul Roads	-	-	-	-		-	-	-	-		-	-	-	-	-	-	-	-			-	-		-		-	-	-	
HR Summary	CBM HR	(Hanover Hauling & Magnetite Hauling)	-	-	-	-	-	-	-				-		-		-	-	-	-			-	-		•	•	-	-		
	CM HR	Chino Mine Haul Roads	-	-	-		-	-	-	-		-			-		-	-	-	-	-	-	-	-	-	-	-	-	-		
SAG Mill Tunnel Summary	SAG	Underground SAG Mill Tunnel Borrow Pit Material Handling	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-			-	-		-	-		-		
	BORR_MH		-	-	-	-						-	-		-		-	-	-	-			-	-		-	-		-		
Material Handling Summary	CBM MH	Cobre Mine Material Handling (Hanover Mining & Magnetite Handling) Chino Mine Material Handling		1.69E-03	1.51E-03	5.135-03	7.02E-04	2.90E-03	5.36E-04	1.46E-03	2.13E-05	8.10E-05	5.42E-05	2.06E-04	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
	CM MH BORR_BLST	Borrow Pit Blasting	6.27E-04	2.57E-03	7.65E-03	0.033	6.71E-03	0.029	2.84E-04	1.08E-03	2.13E-05	8.10E-05	5.42E-05	2.06E-04	-		-	-	-				-			-			-	-	
Blasting Summary	CBM BIST	Cobre Mine Hanover Blasting		-	-	-		-			-	-			-	-		-		-		-	-			-			-		
,	CM BLST	Chino Mine Blasting																													
Ivanhoe Summary	CV-01C	Coarse Ore Conveyor Transfer	1.13E-03	1.67E-03	0.010	0.014	8.76E-03	0.012	9.83E-04	1.355-03	6.39E-05	8.805-05	1.63E-04	2.25E-04	-					-			-								
	F-2-1-1.4	Westinghouse Gas Turbine - Hurley Power Plant	0.47	2.05	0.020	0.088									5.46E-03	0.024	0.015	0.064			0.059	0.26	0.029	0.13	0.020	0.088	0.018	0.080	0.003	0.013	0.32 1.41
Hurley Summary	F-2-1-1.5	Heat Recovery Steam Generator - Hurley Power Plant	0.090	0.39	5.74E-05	2.51E-04									1.00E-04	4.40E-04		-	0.086	0.38	1.638-04	7.12E-04				-					3.59E-03 0.016
	FLTR/BLND ¹	Filter/Blending Plant			-			-	-			-						-					-						-	-	
GDF Summary	GDF	Gasoline Dispensing Facilities	0.32	1.41	-										0.030	0.13	0.019	0.082	0.025	0.11	0.16	0.68	0.093	0.41							
	IC-01	Molybdenum Plant Wet Scrubber	31.00	135.80	15.51	67.92	7.75E-04	3.396-03	7.75E-04	3.39E-03	7.75E-04	3.39E-03	1.55E-04	6.79E-04	-	-			-	-			-						-		
	LHS-01	Ivanhoe Concentrator Lime Handling System	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-			-	-		-			-		
è	LUS-01	Ivanhoe Concentrator Lime Unloading System	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-			-	-		-			-		
whoe Summ	PC DUMP	Primary Crusher Dump Pocket	1.07E-04	4.67E-04	9.55E-04	4.185-03	8.29E-04	3.63E-03	9.30E-05	4.07E-04	6.04E-06	2.65E-05	1.54E-05	6.77E-05	-	-	-	-	-	-			-	-		-		-	-	-	
1A2	PC-01	Primary Crusher	1.64E-03	7.185-03	0.015	0.054	0.013	0.056	1.43E-03	6.265-03	9.296-05	4.07E-04	2.38E-04	1.04E-03	-	÷	-	-	-	-		-	-	-				-	-		
	SAG-F1	SAG Mill Feeders No. 1 and No. 2	1.11E-03	4.99E-03	0.010	0.045	8.76E-03	3.88E-02	9.83E-04	4.35E-03	6.39E-05	2.83E-04	1.63E-04	7.23E-04	-		-	-	+				-			-			-		
	SCDP	Stacker Conveyor	3.51E-04	1.558-03	3.14E-03	0.014	2.73E-03	0.012	3.06E-04	1.355-03	1.99E-05	8.80E-05	5.08E-05	2.25E-04		-	-	-	-	-	-	-	-	-	-	-	-	-	-		
	CH SCRN	Chino Screening Plant Material Handling	0.063	0.137	0.56	1.23	0.49	1.07	0.055	0.12	3.55E-03	7.77E-03	9.08E-03	0.020	-		-	-	-				-			-			-		
N Summary	CB SCRN	Cobre Screening Plant Material Handling	0.010	0.023	0.093	0.20	0.081	0.18	9.09E-03	0.020	5.90E-04	1.29E-03	1.51E-03	3.31E-03	-	-	-	-	-	-	-		-	-		-		-	-		
SCR	CH SCRN ENG	Chino Screening Plant Engine	2.42E-03	0.011	-	-	-	-	-	-		-	-	-	6.02E-04	2.64E-03	-	-	-	-	2.64E-04	1.16E-03	1.84E-04	8.06E-04		-	4.95E-04	2.17E-03	5.97E-05	2.61E-04	7.62E-04 3.34E-03
	CB SCRN ENG	Cobre Screening Plant Engine	5.40E-03	0.012		-	-	-	-		-	-	-	-	1.34E-03	2.94E-03	-	-	-	-	5.88E-04	1.29E-03	4.10E-04	8.985-04		-	1.10E-03	2.42E-03	1.33E-04	2.91E-04	1.70E-03 3.72E-03
	SXEW 10MST	SXEW Plant Ten Mixer/Settler Tanks SXEW Plant Boiler No. 1	1.26	0.29	9.53E-03	2.18E-03	-	-	-	-	-	-	-	-	0.28	0.064	0.33	0.075	•	-	0.31	0.070	0.34	0.078		•	-	-	-		
	SXEW Boiler No. 1 SXEW Boiler No. 2	SXEW Plant Boiler No. 1 SXEW Plant Boiler No. 2	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
SXEW Summary	SXEW Boiler No. 2 SXEW Boiler No. 3	SXEW Plant Boiler No. 2 SXEW Plant Boiler No. 3						-															-						-		
	SXEW Boner No. 3	SXEW Plant Raffinate Tank	0.083	0.019	6.74E-04	1.54E-04		-							0.019	4.24E-03	0.022	4.968-03			0.020	4.63E-03	0.022	5.13E-03					-		
	SKEW SAT	SXEW Plant Acid Tankhouse			2.28	10.00																			2.28	10.00					
WH Crusher Summary	WH Crush	White House Crushing Plant	0.060	0.13	0.53	1.17	0.46	1.01	0.052	0.11	3.38E-03	7.405-03	8.64E-03	0.019	-									-			-	-	-		
	Totals	1	33.37	140.29	19.06	80.79	1.07	2.42	0.12	0.27	8.58E-03	0.021	0.020	0.045	0.34	0.23	0.38	0.23	0.11	0.49	0.54	1.02	0.49	0.62	2.30	10.08	0.020	0.084	3.10E-03	0.013	0.33 1.44
¹ Emergency Engines are not inclu	ded in the Emissions Total since the	у	1	I	1	I	I		l			I	1	I			I	I	I	I	l	I	1	I	l	I	I				

Freeport-McMoRan Chino Mines Company Revised: December 2019

GDF - Calculations

Units: GDF

GASOLINE DISPENSING FACILITY (Unit GDF) VOC EMISSIONS

					١	OC Emissio	ons
	А	ctual Usage Rat	te	Emission			
	gals/day			Factor			
Emission Unit	(average)	gals/month	gals/yr ¹	(lbs/10 ⁽³⁾ gal)	lb/hr	lb/day	tons/yr
GDF Chino (facility)	100	3,042	36,500	11.3	0.047	1.13	0.21
GDF Chino (contractor)	1144	34,797	417,560	11.3	0.54	12.89	2.35
GDF Cobre	80	2,433	29,200	11.3	0.038	0.90	0.16
	T	Total			0.62	14.92	2.72

Notes:

¹Based on weekly Gasoline Usage, provided by James Ford from Jacobs (8/16/2013 email).

²Emission factor for gasoline is based on petroleum loading loss equation in USEPA publication AP-42, Table 5.2-7,

 $\label{eq:constraint} Evaporative \ Emissions \ from \ Gasoline \ Service \ Station \ Operations \ (7/08). \ The \ loading \ loss \ equation \ is :$

Loading Loss (lb/1000 gal) = 12.46 x SPM/T

where,

S= saturation factor (assume 1.00 for submerged loading),

P = true vapor pressure of liquid loaded, pounds per square inch absolute (assume 7.4 psia for Gasoline RVP 10 @ 80°F),

M = molecular weight of vapors, pounds per pound-mole (assume 66 lb/lb-mole),

T = temperature of bulk liquid loaded, °R (80°F + 460 = 540°R),

(Note that average annual liquid surface temperature for El Paso, TX as estimated by the USEPA TANKS software is 74°F, therefore the emission factor is conservatively determined based on 80°F).

Sample Calculations

GDF Cobre

VOC emissions (lb/hr) = 80 gal/day x 11.3 lb/1,000 gal x 1.0 day/24 hours = 0.04 lb/hr

VOC emissions (ton/yr) = 29200 gal/yr x 11.3 lb/1,000 gal x 1.0 ton/2,000 lbs = 0.16 ton/yr

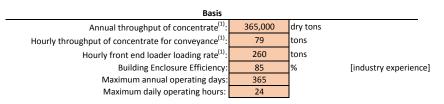
GASOLINE DISPENSING FACILITY (GDF) HAP EMISSIONS

							HAP	Emission	s				
	Source	VOC Em	nissions ¹	Benze	ene	He	xane	Tolu	iene	Xyle	ene	Ethylbe	enzene
Unit	Description	lbs/hr	ton/yr	lbs/hr	TPY	lbs/hr	TPY	Ibs/hr	TPY	lbs/hr	TPY	lbs/hr	TPY
GDF	GDF	0.62	2.72	0.030	0.13	0.02	0.11	0.16	0.68	0.093	0.41	0.019	0.08
		То	tal HAPs (TPY)					1.41					

[Storage Tank	HAP Mass fraction ²				
	Content	Benzene	Hexane	Toluene	Xylene	Ethylbenzene
	Gasoline	0.049	0.040	0.25	0.15	0.030

Notes:

¹Based on emission calculations in Table "GASOLINE DISPENSING FACILITY (GDF) POTENTIAL VOC EMISSIONS"


²Mass fraction is based on the average percent content of the HAP constituent in gasoline. Data obtained from typical material MSDS for gasoline

Hurley Power Plant - Filter/Blending Plant Emissions

Unit: FLTR/BLND

Hurley Power Plant - Filter/Blending Plant Emissions (Fugitive) - Scenario #1

Unit FLTR/BLND

Filter/Blending Plant

		700 (014	PM ₁₀ /PM _{2.5}		Uncont	rolled			Co	ontrolled	
Source	Unit Number	TSP/PM Emissions (lb/ton processed)	Emissions (Ib/ton processed) ⁽²⁾	PM ₁₀ /PM _{2.5} Emissions (lb/hr)	PM ₁₀ /PM _{2.5} Emissions (tons/yr)	TSP Emissions (Ib/hr)	TSP Emissions (tons/yr)	PM ₁₀ /PM _{2.5} Emissions (lb/hr)	PM ₁₀ /PM _{2.5} Emissions (tons/yr)	TSP Emissions (Ib/hr)	TSP Emissions (tons/yr)
Conveyor Belt Drop Point #1 (Filter Plant)	53-CV-01	0.0030	0.0011	0.087	0.20	0.24	0.55	0.013	0.030	0.036	0.082
Conveyor Belt Drop Point #2 (Filter Plant)	53-CV-02	0.0030	0.0011	0.087	0.20	0.24	0.55	0.013	0.030	0.036	0.082
Conveyor Belt Drop Point #3 (Filter Plant)	CV-03	0.0030	0.0011	0.087	0.20	0.24	0.55	0.013	0.030	0.036	0.082
Conveyor Belt Drop Point #4 (Blending Plant)	CV-04	0.0030	0.0011	0.087	0.20	0.24	0.55	0.013	0.030	0.036	0.082
Conveyor Belt Drop Point #5 (Blending Plant)	CV-05	0.0030	0.0011	0.087	0.20	0.24	0.55	0.013	0.030	0.036	0.082
Conveyor Belt Drop Point #6 (Blending Plant)	CV-06	0.0030	0.0011	0.087	0.20	0.24	0.55	0.013	0.030	0.036	0.082
CAT966 Front End Loader (Concentrate Storage pile into a rail car for shipping offsite) ⁽³⁾	F-1-3-2	0.010	0.0040	1.04	0.73	2.60	1.83	0.16	0.11	0.39	0.27
TOTAL				1.56	1.93	4.02	5.11	0.23	0.29	0.60	0.77

Notes:

¹Throughput data provided by Carlos Silva and Gary Brown of the Ivanhoe Concentrator and covered conveyor to Filter/Blending Plant. Concentrate produced = Filter Plant throughput. (Reference email to Roger Felty 03/25/2011). Operations consist of 6 conveyor drops (CV-01 through CV-06) plus one material handling step using a Cat 966 to load material from the Concentrate Storage pile into a rail car for shipping offsite. (6 conveyor drops + one handling step).

²Conveyor Drop Point Emission Factors from AP-42 Table 11.19.2-2 in "Crushed Stone Processing and Pulverized Mineral Processing" for uncontrolled Conveyor Transfer Point (08/2004)

²Front End Loader Emission Factors from AP-42 Table 11.24-2 in "Metallic Minerals Processing" for Material handling and transfer--all minerals except bauxite (01/1995).

Freeport-McMoRan Chino Mines Company

Revised: December 2019

Hurley Power Plant - Stationary Gas Turbine Emissions

Unit: F-2-1-1.4

Basis				
Fuel parameters		_	-	
Natural Gas Heat Content	1,020	Btu/scf		
		-		
Fuel Usage		_		
Firing Rate:	455	MMBtu/hr		
Maximum daily operating hours:	24	hr/day		
Potential Annual Operation:	365	days/yr		
Maximum hourly operating hours:	8760	hr/yr		
	Emission	UNCONTRO	OLLED PTE	
Pollutant	Emission Factor ⁽¹⁾	UNCONTRO		
Pollutant				
Pollutant	Factor ⁽¹⁾	EMISS	IONS	
	Factor ⁽¹⁾	EMISS (lb/hr) ⁽²⁾	ONS (ton/yr) ⁽³⁾	
NOx	Factor ⁽¹⁾	EMISS (lb/hr) ⁽²⁾ 39.90	IONS (ton/yr) ⁽³⁾ 174.76	
NOx CO	Factor ⁽¹⁾	EMISS (lb/hr) ⁽²⁾ 39.90 20.00	(ton/yr) ⁽³⁾ 174.76 87.60	
NOx CO SO ₂	Factor ⁽¹⁾	EMISS (lb/hr) ⁽²⁾ 39.90 20.00 0.40	(ton/yr) ⁽³⁾ 174.76 87.60 1.75	
NOx CO SO ₂ VOC	Factor ⁽¹⁾	EMISS (lb/hr) ^[2] 39.90 20.00 0.40 2.80	(ton/yr) ⁽³⁾ 174.76 87.60 1.75 12.26	

CO		-	20.00	87.60
9	SO ₂		0.40	1.75
١	VOC		2.80	12.26
1	rsp	-	2.30	10.07
Р	M ₁₀	-	2.30	10.07
Р	PM _{2.5}		2.30	10.07
	Lead	No Data	-	-
	1-3 Butadiene	4.30E-07	1.96E-04	0.00086
	Acetaldehyde	4.00E-05	1.82E-02	0.080
	Acrolein	6.40E-06	2.91E-03	0.013
Federal Hazardous	Benzene	1.20E-05	5.46E-03	0.024
	Ethylbenzene	3.20E-05	1.46E-02	0.064
Air Pollutants	Formaldehyde	7.10E-04	3.23E-01	1.41
(HAPs) & NM Toxic	Naphthalene	1.30E-06	5.92E-04	0.0026
Air Pollutants	PAH	2.20E-06	1.00E-03	0.0044
	Propylene Oxide	2.90E-05	1.32E-02	0.058
	Toluene	1.30E-04	5.92E-02	0.26
	Xylenes	6.40E-05	2.91E-02	0.13
	Sulfuric Acid ⁽⁴⁾	-	2.00E-02	0.09
	TOTAL HAPs		0.49	2.13

Notes:

¹HAP emission factors provided from Table 3.1-3 provided in AP-42 Chapter 3.1 Stationary Gas Turbine (4/00). ²Maximum hourly emission rates allowed by air permits 376-M4 and P066R1.

³Based on 8,760 annual operating hours.

 4 A nominal estimate of the sulfur oxides emissions is calculated by assuming that all fuel sulfur is converted to SO₂. However, sulfur oxide emissions are in the form of both SO₂ and SO₃. Measurements show that the ratio of SO₃ to SO₂ varies. For emissions reporting, a 95% of the sulfur into the turbine is converted to SQ in the exhaust. The remaining sulfur (5%) is converted into SO₃. SO₃ combines with water vapor in the exhaust to form sulfuric acid.

> SO₂ emissions (lb/hr) = 0.40 SO₂ emissions (tpy) = 1.75

> SO₃ emissions (lb/hr) = 0.02 SO₃ emissions (tpy) = 0.09

H₂SO₄ emissions are calculated based on 100% stoichiometric conversion of sulfur as SO₃ to H₂SO₄, i.e.,

 $SO_3 + H_2O \implies H_2SO_4$ 1 mole of SO₃ => 1 mole of H₂SO₄ 1 lb/hr SO₃ => 1 lb/hr H₂SO₄

Therefore, 0.02 lb/hr of $SO_3 \Rightarrow 0.02$ lb/hr of H_2SO_4 Therefore, 0.09 tpy of SO3 => 0.09 tpy of H₂SO₄

Hurley Power Plant - Natural Gas-Fired Heat Recovery Steam Generator (HRSG) Duct Burner Emissions Unit: F-2-1-1.5

Basis			
Fuel parameters		_	_
Natural Gas Heat Content	1,020	Btu/scf	
		-	
Fuel Usage		_	
Firing Rate:	48.8	MMBtu/hr	
Maximum daily operating hours:	24.0	hr/day	
Potential Annual Operation:	365.0	days/yr	
Maximum hourly operating hours:	8760.0	hr/yr	
		-	
	AP-42	UNCONTR	
	Emission	UNCONTR	
Pollutant	Factor ⁽¹⁾	EMISS	DIONS
	lb/MMscf	(lb/hr) ⁽²⁾	(ton/yr) ⁽³

		Tactor		
		lb/MMscf	(lb/hr) ⁽²⁾	(ton/yr) ⁽³⁾
	NOx		2.40	10.51
	CO		1.30	5.69
	SO ₂		0.03	0.13
	VOC		0.60	2.63
	TSP		0.30	1.31
	PM ₁₀		0.30	1.31
	PM _{2.5}		0.30	1.31
	Lead	0.0005	2.39E-05	1.05E-04
	2-Methylnapthalene	2.40E-05	1.15E-06	5.03E-06
	Benzene	2.10E-03	1.00E-04	4.40E-04
	Dichlorobenzene	1.20E-03	5.74E-05	2.51E-04
Federal Hazardous Air	Fluoranthene	3.00E-06	1.44E-07	6.29E-07
Pollutants (HAPs) &	Fluorene	2.80E-06	1.34E-07	5.87E-07
NM Toxic Air	Formaldehyde	7.50E-02	3.59E-03	1.57E-02
Pollutants	Hexane	1.80E+00	8.61E-02	3.77E-01
	Naphthalene	6.10E-04	2.92E-05	1.28E-04
	Phenanthrene	1.70E-05	8.13E-07	3.56E-06
	Pyrene	5.00E-06	2.39E-07	1.05E-06
	Toluene	3.40E-03	1.63E-04	7.12E-04
	TOTAL HAPs		0.090	0.395

Notes:

¹Emissions for the Hurley HRSG duct burner are estimated from emission factors for boilers combusting natural gas. The rationale for this is that the duct burner combustion process is better represented by boilers firing natural gas than by combustion turbines firing natural gas. Lead and HAP emissions are based on emission factors from Tables 1.4-2 and 1.4-3 provided in AP-42, Chapter 1.4, Natural Gas Combustion (7/98).

²Maximum hourly emission rates allowed by air permits 376-M4 and P066R1.

³Based on 8,760 annual operating hours

Blasting Emissions - Hanover

Unit: CBM BLST

	Basis	
Maximum amount of blasting agent/day:	110,000	lbs
Maximum number of blasts/day:	4	blasts/day
Maximum amount of blasting agent/event:	27,500	lbs
Maximum amount of blasting agent/year:	14,300	tons
Maximum horizontal area per blast:	27,500	ft ²
Diesel fuel usage:	894	gal/day
Diesel fuel usage:	232,520	gal/yr
Diesel fuel oil to ammonium nitrate blasting products ratio:	6%	
Diesel Fuel Density:	7.38	lb/gal
Event Duration:	2	seconds

Criteria Pollutant	Emission Factor (lb/ton blasting		Emission R	Emission Rate ²		
	agent) ¹	(lb/event)	(lb/day)	(ton/yr)	(lb/hr) ³	
Nitrogen Oxides (NO _x)	1.80	24.75	99.00	12.87	24.75	
Carbon Monoxide (CO)	40.64	558.80	2,235.20	290.58	558.80	
Sulfur Dioxide (SO ₂)	3.60E-03	0.05	0.20	0.026	0.050	

Criteria Pollutant	Emission Rate ⁴				
	(lb/event)	(lb/day)	(ton/yr)	(lb/hr) ³	
TSP	63.85	255.38	33.20	63.85	
PM ₁₀	33.20	132.80	17.26	33.20	
PM _{2.5}	1.92	7.66	1.00	1.92	

Dollutert	Emission Factor	Emission Rate ⁶		
Pollutant	(lb/MMBtu)⁵	(lb/day)	(ton/yr)	
CO ₂	162.71	20081.04	2610.54	
N ₂ O	1.32E-03	0.16	0.021	
CH ₄	6.60E-03	0.81	0.11	
CO ₂ e			2619.49	

Notes:

¹NOx emission factor is the average of measurements from "NOx Emissions from Blasting Operations in Open-Cut Coal Mining" by Moetaz I. Attalla, Stuart J. Day, Tony Lange, William Lilley, and Scott Morgan (2008).

¹CO emission factor is the average of the measurements in "Factors Affecting Anfo Fumes Production" by James H. Rowland III and Richard Mainiero (2001).

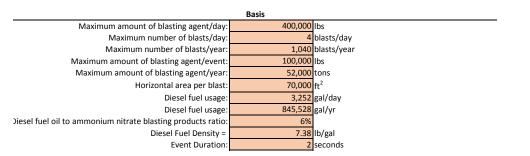
¹SO₂ emissions are based on a diesel sulfur content of 15 ppm assuming complete conversion to SO₂.

²Pound per event emission rates are based on a maximum use of 55,000 lbs of blasting agent per event. Annual emission rates are based on a maximum annual use of 14,300 tons of blasting agent.

$$E\left(\frac{lb}{year}\right) = EF\left(\frac{lb}{ton of \ blasting \ agent}\right) \times \left(blasting \ agent \ \frac{ton}{year}\right)$$

³Pound per hour modeling rate is based the daily emission rates (lb/day) which is converted to a pound per hour rate.

⁴Particulate blasting emissions are based on emission factors from AP-42 Table 11.9-1.


⁵CO₂, N₂O, and CH₄ emission factor per 40 CFR 98 Subpart C, Table C–1, and Table C–2.

⁶CO₂, N₂O, and CH₄ emissions calculated based on emission factors, diesel fuel usage, and diesel fuel HHV of

0.138 MMBtu/gal per 40 CFR 98 Subpart C Table C-1

Blasting Emissions - Chino Mine

Unit: CM BLST

Criteria Pollutant	Emission Factor (Ib/ton blasting		Emi	ssion Rate ²	
	agent) ⁽¹⁾	(lb/event)	(lb/day)	(ton/yr)	(lb/hr) ³
Nitrogen Oxides (NO _x)	1.80	90.00	360.00	46.80	90.00
Carbon Monoxide (CO)	40.64	2,032.00	8,128.00	1,056.64	2,032.00
Sulfur Dioxide (SO ₂)	3.60E-03	0.18	0.72	0.094	0.18

Criteria Pollutant	Emission Rate 4				
chicharonatant	(lb/event)	lb/day	(ton/yr)	(lb/hr) ³	
TSP	259.28	1037.13	134.83	259.28	
PM ₁₀	134.83	539.31	70.11	134.83	
PM _{2.5}	7.78	31.11	4.04	7.78	

	Emission Factor	Emission Rate ⁶		
Pollutant	(lb/MMBtu) ⁵	(lb/day)	(ton/yr)	
CO ₂	162.71	73021.97	9492.86	
N ₂ O	0.0013	0.59	0.077	
CH ₄	0.0066	2.96	0.39	
CO ₂ e			9525.43	

Notes:

 1 NO_x emission factor is the average of measurements from "NO_x Emissions from Blasting Operations in Open-Cut Coal Mining" by Moetaz I. Attalla, 1 CO emission factor is the average of the measurements in "Factors Affecting Anfo Fumes Production" by James H. Rowland III and Richard Mainiero 1 SO₂ emissions are based on a diesel sulfur content of 15 ppm assuming complete conversion to SO₂.

²Pound per event emission rates are based on a maximum use of 200,000 lbs of blasting agent per event. Annual emission rates are based on a maximum annual use of 52.000 tons of blasting agent.

 $E\left(\frac{lb}{year}\right) = EF\left(\frac{lb}{tonof \ blasting \ agent}\right) \times \left(blasting \ agent \ \frac{ton}{year}\right)$

³Pound per hour modeling rate is based the daily emission rates (lb/day) which is converted to a pound per hour rate. ⁴Particulate blasting emissions are based on emission factors from AP-42 Table 11.9-1.

⁵CO₂, N₂O, and CH₄ emission factor per 40 CFR 98 Subpart C, Table C–1, and Table C–2.

⁶CO₂, N₂O, and CH₄ emissions calculated based on emission factors, diesel fuel usage, and diesel fuel HHV of

0.138 MMBtu/gal per 40 CFR 98 Subpart C Table C-1

1

Freeport-McMoRan Chino Mines Company

Revised: December 2019

Ivanhoe Concentrator - SAG Mill Feeder Emissions
Units CV-01 C. SCDP. SAG-F1

Units CV-01 C, SCDP, SA

Basis		-
Annual Throughput of Ore to Mill:	29,223,360	tons
Daily Throughput of Ore to Mill:	80,064	tons
Hourly Throughput of Ore to Mill:	3,300	tons
Building Enclosure Efficiency:	85	%
Annual operating days:*	365	
Daily operating hours:*	24	

Annual average basis per Condition A601 A. of NSR Permit 0298M5

Maximum single hourly rate per Condition A601 A. of NSR Permit 0298M5

Industry experience; used in controlled emission calculations for Ore Transfer Point and SAG Mill Conveyors only.

Federal Hazardous Air Pollutants and New Mexico Toxic Air Pollutants Content of Ore for Mill (%)

Antimony	Arsenic	Barium	Cadmium	Chromium	Cobalt	Copper	Lead	Manganese	Nickel	Silver	Vanadium	Zinc
7.00E-04	4.00E-04	1.90E-03	2.00E-04	2.50E-03	2.00E-03	5.90E-01	2.70E-03	6.62E-02	1.20E-03	1.00E-04	4.30E-03	1.10E-02

Criteria Pollutant	TSP	PM ₁₀	PM _{2.5}	
Uncontrolled Emission Factors, lb/ton ²	3.00E-03	1.10E-03		
Criteria Pollutant	TSP	PM10	PM _{2.5}	

		-	
Controlled Emission Factors, lb/ton ³	1.40E-04	4.60E-05	1.30E-05

Emission Unit Name	Controlled Pollutant Emissions, lb/hr															
Emission Unit Name	TSP	PM ₁₀	PM _{2.5}	Antimony	Arsenic	Barium	Cadmium	Chromium	Cobalt	Copper	Lead	Manganese	Nickel	Silver	Vanadium	Zinc
CV-01C- Ore Transfer Point (enclosed)	1.49	0.54	0.082	1.04E-05	5.94E-06	2.82E-05	2.97E-06	3.71E-05	2.97E-05	8.76E-03	4.01E-05	9.83E-04	1.78E-05	1.49E-06	6.39E-05	1.63E-04
SCDP - Stacker Conveyor Drop Point	0.46	0.15	0.043	3.23E-06	1.85E-06	8.78E-06	9.24E-07	1.16E-05	9.24E-06	2.73E-03	1.25E-05	3.06E-04	5.54E-06	4.62E-07	1.99E-05	5.08E-05
SAG-F1 - SAG Mill Conveyor No.1	0.74	0.27	0.041	5.20E-06	2.97E-06	1.41E-05	1.49E-06	1.86E-05	1.49E-05	4.38E-03	2.00E-05	4.92E-04	8.91E-06	7.43E-07	3.19E-05	8.17E-05
SAG-F1 - SAG Mill Conveyor No.2	0.74	0.27	0.041	5.20E-06	2.97E-06	1.41E-05	1.49E-06	1.86E-05	1.49E-05	4.38E-03	2.00E-05	4.92E-04	8.91E-06	7.43E-07	3.19E-05	8.17E-05
TOTALS	3.43	1.24	0.21	2.40E-05	1.37E-05	6.52E-05	6.86E-06	8.58E-05	6.86E-05	2.02E-02	9.27E-05	2.27E-03	4.12E-05	3.43E-06	1.48E-04	3.78E-04

Emission Unit Name		Controlled Pollutant Emissions, tpy														
Emission onit Name	TSP	PM ₁₀	PM _{2.5}	Antimony	Arsenic	Barium	Cadmium	Chromium	Cobalt	Copper	Lead	Manganese	Nickel	Silver		Zinc
CV-01C- Ore Transfer Point (enclosed)	6.58	2.41	0.36	1.43E-05	8.18E-06	3.89E-05	4.09E-06	5.11E-05	4.09E-05	1.21E-02	1.78E-04	1.35E-03	2.45E-05	2.05E-06	8.80E-05	2.25E-04
SCDP - Stacker Conveyor Drop Point	2.05	0.67	0.19	1.43E-05	8.18E-06	3.89E-05	4.09E-06	5.11E-05	4.09E-05	1.21E-02	5.52E-05	1.35E-03	2.45E-05	2.05E-06	8.80E-05	2.25E-04
SAG-F1 - SAG Mill Conveyor No.1	3.29	1.21	0.18	2.30E-05	1.32E-05	6.25E-05	6.58E-06	8.22E-05	6.58E-05	1.94E-02	8.88E-05	2.18E-03	3.95E-05	3.29E-06	1.41E-04	3.62E-04
SAG-F1 - SAG Mill Conveyor No.2	3.29	1.21	0.18	2.30E-05	1.32E-05	6.25E-05	6.58E-06	8.22E-05	6.58E-05	1.94E-02	8.88E-05	2.18E-03	3.95E-05	3.29E-06	1.41E-04	3.62E-04
TOTALS	15.20	5.49	0.91	7.47E-05	4.27E-05	2.03E-04	2.13E-05	2.67E-04	2.13E-04	6.29E-02	4.10E-04	7.06E-03	1.28E-04	1.07E-05	4.59E-04	1.17E-03

Notes:

¹Data taken from Chino TRI data received from Clyde Durham 1/28/11 email.

²Emission factors for the SAG Mill Conveyors and Ore Transfer Point were obtained from Table 11.19.2-2 of USEPA AP-42, conveyor transfer point emission factors for Crushed Stone Processing and Pulverized Mineral Processing (8/04). A PM ₂₋₅ emission factor was calculated from the available PM₁₀ emission factor using the ratio of 0.15 PM2.5/PM10 as recommended in the Background Document for AP-42, Chapter 13.2.4, Revisions to Fine Fraction Ratios Used for AP-42 Fugitive Dust Emission Factors - November 2006.

³Controlled emission factors for the Stacker Conveyor Drop Point were obtained from Table 11.19.2-2 of USEPA AP-42, conveyor transfer point (wet suppression controls) emission factors for Crushed Stone Processing and Pulverized Mineral Processing (8/04). *Daily and annual operating schedule provided by E P Bock, Chino Mines Company, Mine Engineering.

Ivanhoe Concentrator - Lime System Wet Scrubber Emissions

Units LHS-01 and LUS-01

Basis		_	
Annual Throughput of lime unloading system:	46,428	tons	
Daily Throughput of lime unloading system:	127	tons	
Hourly Throughput of lime unloading system:	55	tons	
Annual Throughput of lime handling system:	46,428	tons	
Daily Throughput of lime handling system:	127	tons	
Hourly Throughput of lime handling system:	10	tons	
Control Efficiency of Wet Scrubber for Lime Handling:	100	%	[Manufacturer specs]
Control Efficiency of Wet Scrubber for Lime Unloading:	100	%	[Manufacturer specs]
Lime unloading annual operating days:	365		
Lime unloading daily operating hours:	2		
Lime handling annual operating days:	365		
Lime handling daily operating hours:	13		
		-	

Criteria Pollutant	TSP	PM ₁₀	PM _{2.5}
Uncontrolled Emission Factors, lb/ton ¹	2.20	2.20	0.33

Emission Unit Name	Contro	lled Pollutant E	missions, lb/hr ²	Controlled Pollutant Emissions, tpy ²			
Emission Unit Name	TSP	PM ₁₀	PM _{2.5}	TSP	PM ₁₀	PM _{2.5}	
LUS-01 - Lime Unloading System	0.24	0.24	0.036	0.102	0.102	0.015	
LHS-01 - Lime Handling System	0.044	0.044	0.0066	0.102	0.102	0.015	
TOTALS	0.28	0.28	0.043	0.204	0.204	0.031	

Notes:

¹Emission factors obtained from Table 11.17-4 of AP-42 Section 11.17, emission factors for lime handling raw material and product processing and handling, product transfer and conveying (2/98). Assumes all PM₁₀ is equivalent to PM. A PM_{2.5} emission factor was calculated from the available PM₁₀ emission factor using the ratio of 0.15 PM_{2.5}/PM₁₀ as recommended in the Background Document for AP-42, Chapter 13.2.4, Revisions to Fine Fraction Ratios Used for AP-42 Fugitive Dust Emission Factors - November 2006.

²Process operations and daily and annual operating schedule provided by Roger Magnuson, Chino Mines Company in 3/18/2011 email.

Ivanhoe Concentrator - Molybdenum Plant Wet Scrubber Emissions Unit IC-01

.

 Basis

 Annual operating days:
 365

 Daily operating hours:
 24

Federal Hazardous Air Pollutants and New Mexico Toxic Air Pollutants Content of Moly Concentrate (%) ¹

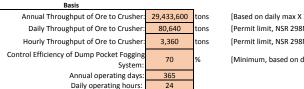
Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Copper	Lead
5.00E-03	4.00E-03	8.00E-03	1.00E-03	2.00E-03	5.00E-03	5.00E-03	5.00E-03	1.00E-03

Mercury	Manganese	Nickel	Selenium	Silver	Thallium	Vanadium	Zinc
5.00E-04	1.00E-02	5.00E-03	4.00E-03	1.00E-03	5.00E-04	5.00E-04	8.00E-03

Emission Unit Name					Controlled Po	llutant Emiss	ions, lb/hr			
Emission Onit Name	TSP	PM ₁₀	PM _{2.5}	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt
	0.31	0.31	0.31	1.55E-05	1.24E-05	2.48E-05	3.10E-06	6.20E-06	1.55E-05	1.55E-05
Moly Plant Scrubber ²	Copper	Lead	Mercury	Manganese	Nickel	Selenium	Silver	Thallium	Vanadium	Zinc
	1.55E-05	3.10E-06	1.55E-06	3.10E-05	1.55E-05	1.24E-05	3.10E-06	1.55E-06	1.55E-06	2.48E-05

Fraincis a Unit Norma					Controlled P	ollutant Emis	sions, tpy			
Emission Unit Name	TSP	PM ₁₀	PM _{2.5}	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt
	1.36	1.36	1.36	6.79E-05	5.43E-05	1.09E-04	1.36E-05	2.72E-05	6.79E-05	6.79E-05
Moly Plant Scrubber ³	Copper	Lead	Mercury	Manganese	Nickel	Selenium	Silver	Thallium	Vanadium	Zinc
	6.79E-05	1.36E-05	6.79E-06	1.36E-04	6.79E-05	5.43E-05	1.36E-05	6.79E-06	6.79E-06	1.09E-04

Notes:


¹Data taken from Chino TRI data received from Clyde Durham 1/28/11 email.

²Scrubber PM emissions from moly scrubber stack test data conducted in October 2008. Assume that PM₁₀ and PM_{2.5} same as PM.

³Annual emissions based on conservative assumption that process operates 8,760 hr/yr.

Ivanhoe Concentrator - Crusher Dump Emissions

Unit PC DUMP

[Based on daily max X 365 day/yr] [Permit limit, NSR 298M5] [Permit limit, NSR 298M5]

[Minimum, based on design of typical system]

Federal Hazardous Air Pollutants and New Mexico Toxic Air Pollutants Content of Ore for Mill (%)¹

Antimony	Arsenic	Barium	Cadmium	Chromium	Cobalt	Copper	Lead	Manganese	Nickel	Silver	Vanadium	Zinc
7.00E-04	4.00E-04	1.90E-03	2.00E-04	2.50E-03	2.00E-03	5.90E-01	2.70E-03	6.62E-02	1.20E-03	1.00E-04	4.30E-03	1.10E-02

Criteria Pollutant	PM	PM ₁₀	PM _{2.5}
Uncontrolled Emission Factors, lb/ton ²	4.18E-05	1.60E-05	2.40E-06

Emission Unit Name							Cont	rolled Pollutant	Emissions, lb/	hr³						
	TSP	PM ₁₀	PM _{2.5}	Antimony	Arsenic	Barium	Cadmium	Chromium	Cobalt	Copper	Lead	Manganese	Nickel	Silver	Vanadium	Zinc
Primary Crusher Dump Pocket (Controlled	0.042	0.016	0.0024	2.95E-07	1.69E-07	8.01E-07	8.43E-08	1.05E-06	8.43E-07	2.49E-04	1.14E-06	2.79E-05	5.06E-07	4.21E-08	1.81E-06	4.63E-06
(Uncontrolled)	0.140	0.054	0.0081	9.83E-07	5.62E-07	2.67E-06	2.81E-07	3.51E-06	2.81E-06	8.29E-04	3.79E-06	9.30E-05	1.69E-06	1.40E-07	6.04E-06	1.54E-05
Emission Unit Name																
Emission Onit Name	PM	PM ₁₀	PM _{2.5}	Antimony	Arsenic	Barium	Cadmium	Chromium	Cobalt	Copper	Lead	Manganese	Nickel	Silver	Vanadium	Zinc
Primary Crusher Dump Pocket (Controlled)	0.18	0.071	0.011	1.29E-06	7.38E-07	3.51E-06	3.69E-07	4.61E-06	3.69E-06	1.09E-03	4.98E-06	1.22E-04	2.21E-06	1.85E-07	7.94E-06	2.03E-05
(Uncontrolled)	0.62	0.24	0.035	4.31E-06	2.46E-06	1.17E-05	1.23E-06	1.54E-05	1.23E-05	3.63E-03	1.66E-05	4.07E-04	7.38E-06	6.15E-07	2.65E-05	6.77E-05
Notes:																

Notes:

¹Data taken from Chino TRI data received from Clyde Durham 1/28/11 email.

²Emission factors obtained from Table 11.19-2.2, the AP-42, truck unloading emission factors for Crushed Stone Processing and Pulverized Mineral Processing (8/04). A PM₅ emission factor was calculated from the available PM₁₀ emission factor using the ratio of 0.15 PM₂₃/PM₁₀ as recommended in the Background Document for AP-42, Chapter 13.2.4, Revisions to Fine Fraction Ratios Used for AP-42 Fugitive Dust Emission Factors - November 2006.

³Daily and annual operating schedule and process parameters provided by E P Bock, Chino Mines Company, Mine Engineering

Ivanhoe Concentrator - Primary Crusher Baghouse Emissions Unit PC-01 Basis Design/Nominal Baghouse Capacity: 14,000 CFM [Bechtel Specifications] Control Efficiency of Dust Collector 100 % [Bechtel Specifications] Grain Inlet Loading: 6 gr/scf [Bechtel Specifications] Annual operating days: 365 Daily operating hours: 24

Federal Hazardous Air Pollutants and New Mexico Toxic Air Pollutants Content of Ore for Mill (%)

reu		JOUS AIL FUILU	Lants and New WICK	ICO TOXIC AII FOI	iutants conte		111 (70)						
A	Antimony	Arsenic	Barium	Cadmium	Chromium	Cobalt	Copper	Lead	Manganese	Nickel	Silver	Vanadium	Zinc
	7.00E-04	4.00E-04	1.90E-03	2.00E-04	2.50E-03	2.00E-03	5.90E-01	2.70E-03	6.62E-02	1.20E-03	1.00E-04	4.30E-03	1.10E-02

Emission Unit Name							Contr	olled Pollutant Em	issions, lb/hr ⁽³)						
Emission Onic Name	TSP	PM ₁₀	PM _{2.5}	Antimony	Arsenic	Barium	Cadmium	Chromium	Cobalt	Copper	Lead	Manganese	Nickel	Silver	Vanadium	Zinc
Primary Crusher Baghouse	2.16	2.16	2.16	1.51E-05	8.64E-06	4.10E-05	4.32E-06	5.40E-05	4.32E-05	1.27E-02	5.83E-05	1.43E-03	2.59E-05	2.16E-06	9.29E-05	2.38E-04

							Cont	rolled Pollutant En	nissions, tpy ⁽³⁾							
Emission Unit Name	TSP	PM ₁₀	PM _{2.5}	Antimony	Arsenic	Barium	Cadmium	Chromium	Cobalt	Copper	Lead	Manganese	Nickel	Silver	Vanadium	Zinc
Primary Crusher Baghouse	9.46	9.46	9.46	6.62E-05	3.78E-05	1.80E-04	1.89E-05	2.37E-04	1.89E-04	5.58E-02	2.55E-04	6.26E-03	1.14E-04	9.46E-06	4.07E-04	1.04E-03

Notes:

¹Data taken from Chino TRI data received from Clyde Durham 1/28/11 email.

²Emissions from Primary Crusher and Crusher drop Point are controlled by a dust collector with a 99.7% vendor guarantee and a 6.0 gr/cf inlet loading

Wind Erosion Emissions for Cobre Tailings Impoundment Unit CB TLNGS

Wind erosion emissions for the tailings impoundment are based on AP-42, Section 13.2.5, Industrial Wind Erosion (11/06).

Emissions are based on the availability of erodible material, the wind speed threshold required to cause the material to become airborne, and how often new material is deposited on the area. Calculated emissions represent intermittent events that only occur when wind speeds are great enough to transport available materials. The emission rate is not a steady state event and decays rapidly to zero when erodible material is no longer available or when wind speeds are no longer great enough to transport material.

The entire Cobre Tailings Impoundment covers approximately 142 acres including the 25-acre Reclaim Pond. Of the 117 acres of the impoundment not covered by the Reclaim Pond, approximately 108 acres have been covered with a six-inch thick rock cover to alleviate wind-blown tailings. No new tailings have been placed in the tailings impoundment since 1999.

Cobre Tailings Impoundment (Inactive)	Acres
Total Impoundment Area	142
area covered by pond water	25
area with rock cover	108
Total Remaining Area of Erodible Material	9

Summary of Total Erodible Area Emissions - Cobre Tailings Pollutant Inactive Area TOTALS											
Inactive Area	TOTALS										
0.27	0.27										
1.17	1.17										
0.13	0.13										
0.00	0.00										
0.02	0.02										
0.09	0.09										
	0.27 1.17 0.13 0.00 0.02										

See detailed calculations below

All acreages are approximate.

Annual Emissions from Inactive Areas Erodible Area: 9 acres

Erodible Area: 9 acro

Emissions from inactive areas are based on one disturbance or one event that placed erodible material on the area.

						Source:	AP-42, 1	3.2.5 (11/06)						Erod	ible Area Emiss	ions
Area	Pollutant	# of Times/Yr for New Erodible Material, N ¹	Particle Size Multiplier, k ²	Threshold friction velocity, Ut ³	Particle Roughness height ⁴	Fastest Mile	Fastest Mile	Height wind Measurement was taken ⁶	U ₁₀ +7	Friction velocity, U ⁸	Erosion Potential, P _i ⁹	Emission Factor ¹⁰	Erodible Surface Area	Annual Em	issions	Hourly Emissions, based on 8,760 hr/yr
				(m/s)	(m)	(mph)	(m/s)	(m)	(m/s)	(m/s)	(g/m²)	(g/m²/yr)	(m²)	(lb/yr)	(tons/yr)	(lb/hr)
Cobre (Inactive)	TSP	1	1	0.54	0.002	45	20.12	10.00	20.12	1.07	29.21	29.21	36,422	2,346	1.17	0.27
	PM10	1	0.5	0.54	0.002	45	20.12	10.00	20.12	1.07	29.21	14.61	36,422	1,173		0.13
	PM2.5	1	0.075	0.54	0.002	45	20.12	10.00	20.12	1.07	29.21	2.19	36,422	176	0.09	0.02

Notes:

¹For inactive areas, no new erodible material is placed. For purposes of providing a conservative estimate of emissions, N is set equal to 1. ²k is a particle size multiplier: TSP (30 um), k=1.0; PM10 (<10 um), k=0.5; PM2.5 (<2.5 um), k = 0.075. [AP-42, page 13.2.5-3]

³Threshold friction velocity is based on fine coal dust on a concrete pad. [Ap-42, Table 13.2.5-2]

⁴Particle Roughness height is abased on the fine coal dust on a concreate pad. [AP-42 Table 13.2.5-5]

⁵The fastest mile (maximum 2-minute wind data from the 2007-2010) obtained from the Silver City station.

⁶Height of the wind measurement was taken.

⁷Standardization of wind measurement based on height: U₁₀⁺ = wind measurement * (ln(10/particle height))/(ln(height wind measurement was taken/ particle height)).

⁸Friction Velocity equals the U₁₀⁺ * 0.053

⁹Friction Potential function for a dry, exposed surface is:

 $P = 58^{*}(U - U_{t})^{2} + 25^{*}(U - U_{t})$

P = 0 for U<U.

where U = friction velocity

Ut = threshold friction velocity (m/s)

10 Emission Factor = Erosion Potential * Particle Size Multiplier

Wind Erosion Emissions for Chino Tailings Impoundment Unit CM TLNGS

Wind erosion emissions for the tailings impoundment are based on AP-42, Section 13.2.5, Industrial Wind Erosion (11/06).

Emissions are based on the availability of erodible material, the wind speed threshold required to cause the material to become airborne, and how often new material is deposited on the area. Calculated emissions represent intermittent events that only occur when wind speeds are great enough to transport available materials. The emission rate is not a steady state event and decays rapidly to zero when erodible material is no longer available or when wind speeds are no longer great enough to transport material.

The entire Chino Tailings Impoundment covers approximately 3,750 acres of which approximately 2,400 acres have been reclaimed, revegetated, crimped with straw, covered by water, or regularly wetted from the application of tailings slurry from the Ivanhoe Concentrator. Of the remaining approximately 1,350 acres available for erodible material, approximately 930 acres are not actively used. Only Tailings Pord 7 is actively used for the deposition of tailings slurry.

Annual Emissions from A	ctive Areas*
Area	Acres
Pond 7 Area	1557.00
Pond 7 Expansion	484.00
Total Area	2041.00
Area covered by pond water	548.70
Area wetted by slurry	437.97
Total Active Area	1054.33
*Total Inactive area includes Pond	7 and Pond 7 Expans

Annual Emissions from Ina	ctive Areas**
Area	Acres
Total Inactive Area	1.557

**Total Inactive area includes the following areas: Pond 6 West, Pond 6 East, Pond 4, Pond C, and Pond B

Summary of	Total Erodible Area Emis	sions - Chino Tailings	
Pollutant	Inactive Areas	Active Area	TOTALS
TSP (lb/hr)	0.00	31.37	31.37
TSP (tons/yr)	202.90	137.40	340.3
PM10 (lb/hr)	23.16	15.68	38.85
PM10 (tons/yr)	101.45	68.70	170.15
PM2.5 (lb/hr)	3.47	2.35	5.83
PM2.5 (tons/yr)	15.22	10.30	25.52

See detailed calculations below.

					Sour	ce: AP-42, 13.2.5	(11/06)						E	rodible Area Emis	sions
Area	Pollutant	Fastest Mile ¹	Fastest Mile	# of Times/Yr for New Erodible Material, N ²	Particle Size Multiplier, k ³	Roughness height	u10+	Friction velocity, u* ⁴	Threshold friction velocity, u _t ⁵	Erosion Potential, P _i	Emission Factor	Erodible Surface Area	Annual Er	nissions	Hourly Emissions, based on 8,760 hr/yr
		(mph)	(m/s)			(m)	(m/s)	(m/s)	(m/s)	(g/m ²)	(g/m²/yr)	(m ²)	(lb/yr)	(tons/yr)	(lb/hr)
Chino Inactive	TSP	45	20.12	1	1	0.0001	20.12	1.07	0.54	29.21	29.21			202.90	
	PM10	45	20.12	1	0.5	0.0001	20.12	1.07	0.54	29.21	29.21 14.61 6,300,955 202,904		202,904	101.45	23.16
	PM2.5	45	20.12	1	0.075	0.0001	20.12	1.07	0.54	29.21	2.19	6,300,955	30,436	15.22	3.47

Annual Emissions from Active Area - Pond 7

Erodible Area: 1.054 acres

Emissions for the active area of Pond 7 are conservatively based on placement of new erodible material over the entire available area once every year.

See note 2 below for additional information.

					Sour	rce: AP-42, 13.2.5	(11/06)						E	rodible Area Emiss	ions
Area	Pollutant	Fastest Mile ¹	Fastest Mile	# of Times/Yr for New Erodible Material, N ²	Particle Size Multiplier, k ³	Roughness height	u10+	Friction velocity, u*4	Threshold friction velocity, u, ⁵	Erosion Potential, Pi		Erodible Surface Area	Annual Er		Hourly Emissions, based on 8,760 hr/yr
		(mph)	(m/s)			(m)	(m/s)	(m/s)	(m/s)	(g/m ²)	(g/m²/yr)	(m ²)	(Ib/yr) (tons/yr)		(lb/hr)
Pond 7	PM	45	20.12	1	1	0.0001	20.12	1.07	0.54	29.21	29.21	4,266,730	274,796 137.40		31.37
	PM10	45	20.12	1	0.5	0.0001	20.12	1.07	0.54	29.21	14.61	4,266,730	137,398	68.70	15.68
	PM2.5	45	20.12	1	0.075	0.0001	20.12	1.07	0.54	29.21	2.19	4,266,730			2.35

Notes:

¹The fastest mile (maximum 2-minute wind data from the 2007-2010) obtained from the Silver City station.

²For inactive areas, no new erodible material is placed. For purposes of providing a conservative estimate of emissions, N is set equal to 1. For the active area, new material is placed over the entire surface every two years (G. Andazola, 5/6/11 phone call w/ R. Felty) and N is set equal to 1 to represent the new erodible material.

³k is a particle size multiplier: TSP (30 um), k=1.0; PM10 (<10 um), k=0.5; PM2.5 (<2.5 um), k = 0.075. [AP-42, page 13.2.5-3]

⁴Friction velocity assumes a typical roughness height of 0.5cm for open terrain. [AP-42, page 13.2.5-5]

⁵Due to a lack of site-specific data, the threshold friction velocity is based on fine coal dust on a concrete pad. [AP-42, Table 13.2.5-2]

Cobre Mine Screening Plant Material Handling Emissions - Magnetite

	Opera	ating Parameters ⁽	1)	Uncontrolled Emission Factors ^(2,3)	
Annual Operating Days	365	days	For reference	only, not used in calculations.	
Annual Operating Hours		hrs		ng plant will only operate during dayligh	t hours.
Maximum Hourly Throughput of Material		tons			
Maximum Annual Throughput of Material Handling	1,971,000	tons			
Maximum Annual Throughput of Screened Material	1,971,000	tons	[Annual throu	ghput based on projected Cobre Mine m	aterial shipments.]
	Basis				
CB SCRN					

Antimony Arsenic Barlum Candium Choalt Cooper Lead Manganese Nickel Silver Vanadium 2006-04 4.006-04 1.006-04 1.006-04 1.006-04 1.006-04 1.006-04 1.006-04 4.306-03 5.004-04 4.306-03 5.004-04 4.306-03 5.006-04 1.006-04 4.306-03 5.006-04 1.006-04 4.306-03 5.006-04 1.006-04 4.306-03 5.006-04 1.006-04 4.306-03 5.006-04 1.006-04 4.306-03 5.006-04 1.006-04 4.306-03 5.006-04 1.006-04 4.306-03 5.006-04 1.006-04 4.306-03 5.006-04 1.006-04 4.306-03 5.006-04 5.006-04 1.006-04 4.306-03 5.006-04 1.006-04 4.306-03 5.006-04 5.006-04 1.006-04 4.306-03 5.006-04 5.006-04 5.006-04 5.006-04 5.006-04 5.006-04 5.006-04 5.006-04 5.006-04 5.006-04 5.006-04 5.006-04 5.006-04 5.006-04 5.006-04 5.006-04 Zinc 1.10E-02

	Opera	ting Parameters ⁽¹⁾		Uncontrol	led Emission	Factors ^(2,3)										Unc	ontrolled Emis	sions ⁽⁴⁾								
Magnetite Ann	Annual Throughput	Hourly Throughput	Number of	PM2.5	PM		PN	1 _{2.5}	PN	A ₁₀	T	SP	Anti	mony	Ars	enic	Bar	ium	Cadr	nium	Chro	mium	Co	balt	Сор	oper
	tons	tons	Transfer Points		(lb/ton)	TSP (lb/ton)	lb/hr	ТРҮ	lb/hr	ТРҮ	lb/hr	ТРҮ	lb/hr	ТРҮ	lb/hr	ТРҮ	lb/hr	TPY	lb/hr	ТРҮ	lb/hr	ТРҮ	lb/hr	ТРҮ	lb/hr	ТРУ
Screening	1,971,000	450	1	1.31E-03	8.70E-03	2.50E-02	0.59	1.29	3.92	8.57	11.25	24.64	7.88E-05	1.72E-04	4.50E-05	9.86E-05	2.14E-04	4.68E-04	2.25E-05	4.93E-05	2.81E-04	6.16E-04	2.25E-04	4.93E-04	6.64E-02	1.45E-01
Material Handling	1,971,000	450	4	9.86E-05	6.51E-04	1.38E-03	0.18	0.39	1.17	2.57	2.48	5.43	1.73E-05	3.80E-05	9.91E-06	2.17E-05	4.71E-05	1.03E-04	4.96E-06	1.09E-05	6.20E-05	1.36E-04	4.96E-05	1.09E-04	1.46E-02	3.20E-02
	TOTAL											30.06	9.61E-05	2.10E-04	5.49E-05	1.20E-04	2.61E-04	5.71E-04	2.75E-05	6.01E-05	3.43E-04	7.52E-04	2.75E-04	6.01E-04	8.10E-02	1.77E-01

	Opera	ting Parameters ⁽¹⁾		Controll	ed Emission	actors ^(2,3)										Cor	ntrolled Emissi	ions ⁽⁴⁾								
Magnetite Anni	Annual Throughput	Hourly Throughput	Number of Transfer	PM2.5	PM10	TSP (lb/ton)	PN	l _{2.5}	PN	A ₁₀	т	SP	Antii	nony	Ars	enic	Bari	ium	Cadr	nium	Chro	nium	Col	palt	Сор	per
	tons	tons	Points	(lb/ton)	(lb/ton)	15P (10/10H)	lb/hr	ТРҮ	lb/hr	ТРҮ	lb/hr	ТРҮ	lb/hr	ТРҮ	lb/hr	ТРҮ	lb/hr	ТРҮ	lb/hr	ТРУ	lb/hr	ТРҮ	lb/hr	TPY	lb/hr	ТРҮ
Screening	1,971,000	450	1	5.00E-05	7.40E-04	2.20E-03	0.02	0.05	0.33	0.73	0.99	2.17	6.93E-06	1.52E-05	3.96E-06	8.67E-06	1.88E-05	4.12E-05	1.98E-06	4.34E-06	2.48E-05	5.42E-05	1.98E-05	4.34E-05	5.84E-03	1.28E-02
Material Handling	erial Handling 1,971,000 450 4				6.51E-04	1.38E-03	0.18	0.39	1.17	2.57	2.48	5.43	1.73E-05	3.80E-05	9.91E-06	2.17E-05	4.71E-05	1.03E-04	4.96E-06	1.09E-05	6.20E-05	1.36E-04	4.96E-05	1.09E-04	1.46E-02	3.20E-02
	dling 1,971,000 450 4 9.86E-05 6.51E-04 1.3 TOTAL								1.51	3.30	3.47	7.60	2.43E-05	5.32E-05	1.39E-05	3.04E-05	6.59E-05	1.44E-04	6.94E-06	1.52E-05	8.67E-05	1.90E-04	6.94E-05	1.52E-04	2.05E-02	4.48E-02

Notes:

¹Throughputs and equipment specifications taken from Southern Materials Group (SMG), Cobre Magnetite Dam Mine Plan, Magnetite Screening Operation and Dust Management Plan (May 2011).

² Material handling uncontrolled emission factors based on USEPA AP-42 USEPA's Drop Equation in AP-42, Section 13.2.4. Drop equation is as follows:

 $E\left(\frac{lb}{ton}\right) = k \cdot 0.0032 - \cdot \frac{\left(\frac{U}{5}\right)^{1.3}}{\left(\frac{M}{2}\right)^{1.4}}$

E = Emission Factor (lbs/ton) k = Particle Size Multiplier, dimensionless (PM_{2.5}= 0.053, PM₁₀= 0.35, PM=0.74)

U = Mean Wind Speed = 6.95 mph (Bayard, NM) M = Moisture Content = 4% (Based on actual magnetite data from average moisture content)

³ TSP, PM₁₀₀ and controlled PM₂₅ emission factors from AP-42, Chapter 11.19.2, Crushed Stone Processing and Pulverized Mineral Processing, Table 11.19.2-2, Screening; uncontrolled PM₂₅ emission factor calculated from uncontrolled PM₁₀ emission factor using the ratio of 0.15 PM₁₀/PM₁₀ as recommended in Background Document for AP-42, Chapter 13.2.4, Revisions to Fine Fraction Ratios Used for AP-42 Fugitive Dust Emission Factors - November 2006. Total Controlled Emissions include emissions from uncontrolled aggregate handling.

⁴ Hourly emissions are based on maximum hourly rate in calculation tables. Annual emissions are based on maximum annual rate in calculation tables.

Chino Mine Screen Plant Material Handling Emissions Unit: CH SCRN

Cobre Mine material shipments.]
during daylight hours.
ons.
Uncontrolled Emission Factors ^(2,3)

Fed	eral Hazard	dous Air Pollutar	nts and New Me	xico Toxic Air Po	llutants Con	tent of Ore for	Mill (%)						
A	ntimony	Arsenic	Barium	Cadmium	Chromium	Cobalt	Copper	Lead	Manganese	Nickel	Silver	Vanadium	Zinc

Antimony	Arsenic	Barium	Cadmium	Chromium	Cobalt	Copper	Lead	Manganese	Nickel	Silver	Vanadium	Zinc
7.00E-04	4.00E-04	1.90E-03	2.00E-04	2.50E-03	2.00E-03	5.90E-01	2.70E-03	6.62E-02	1.20E-03	1.00E-04	4.30E-03	1.10E-02

		Parameter	rs ⁽¹⁾	Uncontro	lled Emission Fa	ictors ^(2,3)										U	ncontrolled E	missions								
	Annual Throughput	Hourly Throughput	Number of Transfer Points	PM2.5 Loading	PM ₁₀ Loading	TSP Loading	PM	2.5	Pħ	A10	т	SP	Ant	imony	Ars	enic	Ba	iríum	Cad	imium	Chron	nium		Cobalt	Cop	per
	tons	tons	Number of Transfer Points	(lb/ton)	(Ib/ton)	(lb/ton)	lb/hr	ТРҮ	lb/hr	ТРҮ	lb/hr	ТРҮ	lb/hr	ТРҮ	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY
Screening	4,380,000	1,000	2	1.31E-03	8.70E-03	2.50E-02	2.61	5.72	17.40	38.11	50.00	109.50	3.50E-04	7.67E-04	2.00E-04	4.38E-04	9.50E-04	2.08E-03	1.00E-04	2.19E-04	1.25E-03	2.74E-03	1.00E-03	2.19E-03	2.95E-01	6.46E-01
Conveyor Transfer Point	4,380,000	1,000	6	1.65E-04	1.10E-03	3.00E-03	0.99	2.17	6.60	14.45	18.00	39.42	1.26E-04	2.76E-04	7.20E-05	1.58E-04	3.42E-04	7.49E-04	3.60E-05	7.88E-05	4.50E-04	9.86E-04	3.60E-04	7.88E-04	1.06E-01	2.33E-01
Aggregate Handling	4,380,000	1,000	4	4 2.60E-04 1.72E-03	1.72E-03	3.63E-03	1.04	2.28	6.87	15.05	14.53	31.83	1.02E-04	2.23E-04	5.81E-05	1.27E-04	2.76E-04	6.05E-04	2.91E-05	6.37E-05	3.63E-04	7.96E-04	2.91E-04	6.37E-04	8.57E-02	1.88E-01
			4.64	10.16	30.87	67.61	82.53	180.75	5.78E-04	1.27E-03	3.30E-04	7.23E-04	1.57E-03	3.43E-03	1.65E-04	3.61E-04	2.06E-03	4.52E-03	1.65E-03	3.61E-03	4.87E-01	1.07E+00				

		Paramet	ers ⁽¹⁾	Control	led Emission Fac	tors ^(2,3)											Controlled En	issions								
Storage Pile Material	Annual Throughput	Hourly Throughput	Number of Transfer Points	PM2.5 Loading	PM ₁₀ Loading	TSP Loading	PM	12.5	Pħ	W10	т	SP	Anti	imony	Arse	enic	Ba	rium	Cad	mium	Chron	nium		Cobalt	Copp	per
	tons	tons	Number of Transfer Points	(Ib/ton)	(Ib/ton)	(lb/ton)	lb/hr	ТРҮ	lb/hr	TPY	lb/hr	TPY	lb/hr	ТРҮ	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	ТРҮ	lb/hr	TPY
Screening	4,380,000	1,000	2	5.00E-05	7.40E-04	2.20E-03	0.10	0.22	1.48	3.24	4.40	9.64	3.08E-05	6.75E-05	1.76E-05	3.85E-05	8.36E-05	1.83E-04	8.80E-06	1.93E-05	1.10E-04	2.41E-04	8.80E-05	1.93E-04	2.60E-02	5.69E-02
Conveyor Transfer Point	4,380,000	1,000	6	1.30E-05	4.60E-05	1.40E-04	0.08	0.17	0.28	0.60	0.84	1.84	5.88E-06	1.29E-05	3.36E-06	7.36E-06	1.60E-05	3.50E-05	1.68E-06	3.68E-06	2.10E-05	4.60E-05	1.68E-05	3.68E-05	4.96E-03	1.09E-02
Aggregate Handling	4,380,000	1,000	4	2.60E-04	1.72E-03	3.63E-03	1.04	2.28	6.87	15.05	14.53	31.83	1.02E-04	2.23E-04	5.81E-05	1.27E-04	2.76E-04	6.05E-04	2.91E-05	6.37E-05	3.63E-04	7.96E-04	2.91E-04	6.37E-04	8.57E-02	1.88E-01
		. T	OTAL				1.22	2.67	8.63	18.90	19.77	43.30	1.38E-04	3.03E-04	7.91E-05	1.73E-04	3.76E-04	8.23E-04	3.95E-05	8.66E-05	4.94E-04	1.08E-03	3.95E-04	8.66E-04	1.17E-01	2.55E-01

Notes:

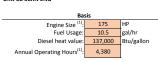
¹Throughputs provided by Sherry Burt-Kested email on 5/17/2012. Hourly emissions are based on maximum hourly rating of 1,000 tons/hour. Annual emissions are based on annual throughput of 1,404,000 tons.

²Aggregate handling emission factors based on USEPA AP-42 USEPA's Drop Equation in AP-42, Section 13.2.4. Drop equation is as follows: where,

 $E\left(\frac{lb}{ton}\right) = k \cdot 0.0032 - \frac{\left(\frac{U}{5}\right)^{1.3}}{\left(\frac{M}{2}\right)^{1.4}}$

 TSP
 PM10
 PM25

 3.63E-03
 1.72E-03
 2.60E-04
 lbs/ton


 0.74
 0.35
 0.053
 unitess

 6.95
 6.95
 6.95
 mph

 2
 2
 %
 E

E = Emission Factor (By/ton) k = PartelS size Multipler, dimensionless (PM₂=0.05, PM₂=0.35, PM=0.74) U = Meas Wind Speed = 6.56 moh (Bayer), (NN) N = Molshur Content = 25 (MRD) default value for curving plants per feb 2006 spreadoleet by Sam Speaker of NMED) TSP, PM₂₀₀ and controlled PM₄ emission factor calculated from uncontrolled PM₁₀ emission factor calculated from uncontrolled PM₁₀ emission factor using the ratio of 0.15 PM, ₂PM₄₀₀ as recommended in Badground Document for AP-42, Chapter 11.132, Chapter 11.132, A Revisions To Factor Factor NA-42 Fuglible Dust Emission Factor - November 2006. Controlled emissions factor using the ratio of 0.15 PM, ₂PM₄₀₀ as recommended in Badground Document for AP-42, Chapter 11.132, A Revisions To Factor Factor Nation Used for AP-42 Fuglible Dust Emission Factors - November 2006. Controlled emissions are controlled by water spray bass. Todd Controlled Emission form common degregate handing doce on it Lincide water spray bass.

Cobre Mine Screening Plant Engine Emissions Unit CB SCRN ENG

ID	Description	Max fuel use, gal/hr	Diesel heat value, Btu/gal	Max heat input, MMBtu/hr	Annual operating hours	CO lb/hr	tons/yr	N lb/hr	IOx tons/yr	۱ lb/hr	/OC tons/yr	lb/hr	PM tons/yr	PM ₁₀ lb/hr	tons/yr		PM _{2.5} tons/yr	lb/hr	SO ₂ tons/yr
					nours	15/11	tons/ yi	10/11	tonis/ yi	10/11	tons/ yr	10/111	tonis/ yi	10/11	tons/ yi	10/11	tons/ yi	15/11	tonis/ yi
Screening Plant - CAT C6.6	Diesel	10.5	137,000	1.44	4.380	1.02	2.22	1.16	3.53	0.50	1.10	0.45	0.98	0.45	0.98	0.45	0.98	0.42	0.91
ACERT Tier 3 Diesel Engine	Engine	10.5	137,000	1.44	4,580	1.02	2.22	1.10	2.55	0.50	1.10	0.45	0.98	0.45	0.98	0.45	0.98	0.42	0.91

Units			Emission Factors for	or Diesel Fuel Comb	oustion ^(3,4)		
Units	со	NOx	VOC	TSP/PM	PM ₁₀	PM _{2.5}	SO ₂
lb/hp-hr	0.0058	0.0066	-	-	-	-	-
lb/MMBtu	-	-	0.35	0.31	0.31	0.31	0.29

FEDERAL HAP/NM TOXIC AIR POLLUTANT EMISSIONS ESTIMATION

Co	mpound	Emission Factor	Air Emi	ssions
Pollutant	Species	(lb/MMBtu) ⁽⁵⁾	(lb/hr)	(tpy)
	Benzene	9.33E-04	1.34E-03	2.94E-03
	Acetaldehyde	7.67E-04	1.10E-03	2.42E-03
	Acrolein	9.25E-05	1.33E-04	2.91E-04
Hazardous Air Pollutants	Formaldehyde	1.18E-03	1.70E-03	3.72E-03
	Naphthalene	8.48E-05	1.22E-04	2.67E-04
	Toluene	4.09E-04	5.88E-04	1.29E-03
	Xylenes	2.85E-04	4.10E-04	8.98E-04
	TOTAL		5.40E-03	1.18E-02

Notes:

1 Engine horsepower and fuel usage based on CAT specification sheet for C6.6 ACERT industrial open power unit. Annual operating hours based on anticipated operation of screening plant.

² Fuel usage based on standard conversion factors, engine size, and diesel fuel density of 0.845-0.850 kg/L at 15°C and fuel inlet temperature of 40°C.

³CO and NOx emission factors were obtained from NSPS, Tier 3 emission standards for stationary compression ignition (CI) internal combustion engines (ICE) (40 CFR 60.4202- ref. 89.112, Table 1)

⁴ VOC, TSP/PM/PM₁₀/PM₂₅, and SO₂ emission factors were obtained from uncontrolled diesel industrial engines present in Table 3.3-1, USEPA AP-42 Section 3.3 "Gasoline And Diesel Industrial Engines" (10/96).

⁵HAP/Air Toxics emission factors were obtained from Table 3.3-2 in USEPA AP-42 Section 3.3 "Gasoline And Diesel Industrial Engines" (10/96).

Chino Mine, Screening Plant - Internal Combustion Engine Emissions

CH SCRN ENG

Ва	asis	
Engine Size (1):	96	hp
Specific fuel consumption ⁽¹⁾ :	208	grams/kWh
Diesel heat value:	137000	Btu/gallon
Annual Operating Hours ⁽¹⁾ :	8760	

ID	Description	Max fuel	Diesel heat value,	Max heat input,	Annual operating	c)	N	Ox	v	юс	Р	м	PI	M ₁₀	PI	M _{2.5}	9	50 ₂
10	Description	use ⁽²⁾ , gal/hr	Btu/gal	MMBtu/hr	hours	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr								
Screening Plant - 2007 Deutz Diesel Engine (BF4M2012)	Diesel Engine	4.71	137,000	0.65	8,760	0.10	0.45	0.813	3.56	0.018	0.077	0.200	0.876	0.200	0.876	0.200	0.88	0.19	0.82

Units		Emission F	actors for Diese	I Fuel Combus	stion ^(3,4)		
Units	со	NOx	voc	TSP/PM	PM ₁₀	PM _{2.5}	SO ₂
lb/MMBtu				0.31	0.31	0.31	0.29
grams/hr	47.1	369	8			-	

FEDERAL HAP/NM TOXIC AIR POLLUTANT EMISSIONS ESTIMATION

Co	ompound	Emission Factor	Air Emiss	ions
Pollutant	Species	(lb/MMBtu) ⁽⁵⁾	(lb/hr)	(tpy)
	Benzene	9.33E-04	6.02E-04	2.64E-03
	Acetaldehyde	7.67E-04	4.95E-04	2.17E-03
	Acrolein	9.25E-05	5.97E-05	2.61E-04
Hazardous Air Pollutants	Formaldehyde	1.18E-03	7.62E-04	3.34E-03
	Naphthalene	8.48E-05	5.47E-05	2.40E-04
	Toluene	4.09E-04	2.64E-04	1.16E-03
	Xylenes	2.85E-04	1.84E-04	8.06E-04
	TOTAL		2.42E-03	1.06E-02

Notes:

¹Engine horsepower from 1/30/2009 GCP-2 screening plant relocation application. Engine fuel usage rate from Deutz Model BF4M2012 data sheet. Maximum annual operating hours for engine used for modeling purposes.

²Fuel usage converted from grams/kilowatt-hour to gallons/hour based on standard conversion factors, engine size, and diesel fuel specific gravity of 0.835 kg/dm³ at 15°C or density of 6.968 lb/gal. See calculation below.

³PM and SO₂ emission factors obtained from uncontrolled diesel industrial engines present in Table 3.3-1, USEPA AP-42 Section 3.3 "Gasoline And Diesel Industrial Engines" (10/96).

⁴ CO, VOC, NOx, emission factors are based on manufacturer information (CO = 47.1 g/hr, VOC = 8 g/hr, and NOx = 369 g/hr) submitted with 1/30/2009 GCP-2 relocation application.

⁵HAP/Air Toxics emission factors obtained from Table 3.3-2 in USEPA AP-42 Section 3.3 "Gasoline And Diesel Industrial Engines" (10/96).

SXEW - Sulfuric Acid Emission Estimates for the Chino SX/EW Tank House

Units: SXEW SAT

Parameter ⁽¹⁾	Value	Units	Notes
A1 (Inlet Area)	6,515	sqft	Based on measurements taken at Chino facility
A2 (Outlet Area)	1,760	sqft	Based on measurements taken at Chino facility
H (Height separating inlet from outlet)	30	ft	Based on measurements taken at Chino facility
Ti (Inside Temperature)	523	deg R (63°F)	Based on measurements taken at Chino facility
To (Outside Temperature)	515	deg R (55.2°F)	Based on measurements taken at Chino facility
h (Natural plane calculation)	2.01	ft	Equation 8
Cv (effectiveness of openings)	0.55	-	Page 26.11 of ASHRAE HVAC Handbook 2001
Aw (Area of openings)	1,260	sqft	Based on measurements taken at Chino facility
V (Wind speed) ⁽³⁾	10.00	MPH	Based on meteorological data at Chino facility
Qw (Wind effect calc.)	609,840	cfm	Equation 1
A (Area)	1,760	sqft	Based on measurements taken at Chino facility
Cs (Stack effect coefficient)	0.0449	-	26.22 Table 7 of of ASHRAE HVAC Handbook 2001
h (Natural plane calculation)	2.01	ft	Equation 8
Ti (Inside Temperature)	523	deg R	Based on measurements taken at Chino facility
dT (Temperature difference)	7.47	deg R	Ti - To
Fc (Correction Factor)	1.37	-	Figure 7 on Page 26.11 of ASHRAE HVAC Handbook 2001
Qs (Thermal effect calc.)	8,837	cfm	Equation 9
Q _{Total} (combined wind & thermal)	609,904	cfm	Equation 10
H ₂ SO ₄ Concentration	1.00	mg/m ³	Maximum OEL for an 8 hour work shift
H ₂ SO ₄ Concentration	6.24E-08	lb/cf	Unit conversion
ACID MIST EMISSIONS	2.282	lb/hr	(lb/year) / (8,760 hours/year)
(classified as PM ₁₀)	19,994	lb/yr	Equation 12
(classified as PWI ₁₀)	10.00	ТРҮ	(lb/year) / (2,000 lbs/ton)

Notes:

¹ Equipment information and specs provided by Clyde Durham, Sr. Environmental Engineer Chino, ELWD, Air Compliance Programs. Data taken from 1997 Notice of Intent submitted to NMED.

² Calculation method based on American Society of Heating, Refrigeration and Air Conditioning Engineers (ASHRAE) 2001 Fundamentals Handbook.

³Average wind speed obtained from on-site MET station data.

⁴ H₂SO₄ concentration is the OEL for an 8 hour work shift

Conversions:

1 lb = 454 grams

1 ft = 0.3048 m

cf = cubic foot

cm = cubic meter

cfm = cubic feet per minute

SXEW - Sulfuric Acid Emission Estimates for the Chino SX/EW Tank House

Units: SXEW SAT

EMISSIONS BASED ON THE FOLLOWING ASHRAE EQUATIONS:

See Section 7 for additional details.

Flow due to wind effect: $Q_w = (88)C_wA_wV$ (Eqn. 1)

where,

$$\begin{split} &Q_w = \text{wind effect air flow (ft^3/min)} \\ &C_v = \text{effectiveness of openings (orifice coefficient)} \\ &A_w = \text{area of windward inlet openings (ft^2)} \\ &V = \text{wind velocity (MPH)} \\ &88 = \text{conversion factor (MPH to ft/min)} \end{split}$$

Flow due to stack effect: $h_{th} = h(1 - S_h)$ (Eqn. 2)

where,

 h_{Th} = thermostatic head (ft of air) h = height of feet of hot air in an enclosure s_h = specific gravity of hot air relative to cold air

Since the specific gravity of the cooler air is equal to unity (as point of reference), becomes: $s_h = \frac{s_c T_o}{T_i} = \frac{T_o}{T_i}$ (Eqn. 3)

where,

s_c = specific gravity of cool air in an enclosure

T_i = absolute temperature of the hot interior air

T_o = absolute temperature of the cooler air

Combining Eqns. 2 & 3:
$$h_{th} = h(1 - \frac{T_o}{T_i}) = h \frac{(T_i - T_o)}{T_i} = h \frac{\Delta T}{T_i}$$
 (Eqn. 4)

Since the value of h_{Th} is in feet of air, it can be used directly in the following equation to ascertain velocity through an orifice: $v = C_s \sqrt{2gh}$ th

(Eqn. 5)

where,

v = orifice velocity (ft/s) Cs = effectiveness of openings (orifice coefficient) g = gravitational constant (32.2 ft/s^2) h_{Th} = thermostatic head (ft)

Combining Eqns. 4 & 5:
$$v = C_s \sqrt{(2)(32.2)h \frac{\Delta T}{T_i}} = 8.02C_s \sqrt{h \frac{\Delta T}{T_i}}$$
 (Eqn. 6)

Orifice flowrates can be calculated by multiplying the orifice velocity by the orifice cross sectional area: $Q_s = (8.02)(60)C_sA_{\sqrt{h}}h\frac{\Delta T}{T}$

(Eqn. 7)

where,
$$\label{eq:Q_s} \begin{split} Q_s &= stack \; effect \; air \; flow \; (ft_3/min) \\ A &= flow \; area \; (ft^2) \end{split}$$

60 = conversion factor (ft/s to ft/min)

SXEW - Sulfuric Acid Emission Estimates for the Chino SX/EW Tank House Units: SXEW SAT

According to the ASHRAE Fundamentals Handbook, the thermal effect flowrate is greatest when the inlet and outlet openings are equal. In the case of unequal openings, the smaller area should be used in the equation and the flowrate corrected using a correction factor, F_c, that accounts for the increase in flow (percent). This correction is determined from the ratio of inlet to outlet areas and Figure 7 located on page 26.11 of the 2001 Fundamentals Handbook.

To calculate h, the following equation can be used:
$$h = \frac{H}{1 + \frac{A_{1}^{2}T_{i}}{A_{2}^{2}T_{o}}}$$
(Eqn. 8)
where,
A₁ = area of lower openings (ft²)
A₂ = area of upper openings (ft²)
H = distance from lower to upper openings (ft)
Combining Eqns. 7 & 8, taking into account F_c, correction factor:
$$Q_{s} = (481.2)F_{c}C_{s}A \sqrt{\frac{\frac{H\Delta T}{T_{i}}}{1 + \frac{A_{1}^{2}T_{i}}{A_{2}^{2}T_{o}}}}$$
Combining wind effect and stack effect flowrates:
$$Q_{Total} = \sqrt{Q_{w}^{2} + Q_{s}^{2}}$$
(Eqn. 10)

(Eqn. 9)

Substituting equations (1) and (9) into (10) yields the final equation:

$$Q = \sqrt{(7,744)C_{w}^{2}A_{w}^{2}V^{2} + (231,533.44)F_{e}^{2}C_{s}^{2}A^{2}\frac{\underline{H\Delta T}}{T_{i}}}{1 + \frac{A_{i}^{2}T_{i}}{A_{2}^{2}T_{o}}}}$$
(11)

Calculation of acid mist emission

When the ventilation rate and acid mist concentration are known, the acid mist emissions can be determined from the following equation:

$$E_A = kQZ$$
 (12)

where E_{A} = Acid mist emission rate (ton/yr)

k = Conversion factor

Z = Acid mist concentration (mg/m³)

SX/EW - Propane-fired Boiler Emissions

Units SXEW Boiler No. 1, SXEW Boiler No. 2, SXEW Boiler No. 3

Basi	s	
Boiler No.1 Max Rating	1.255	MMBtu/hr
Boiler No.2 Max Rating	1.255	MMBtu/hr
Boiler No.3 Max Rating	1.4	MMBtu/hr
LPG Heating Value		Btu/gallon
Fuel Sulfur content, S	5.3	gr/100 ft ³
Annual Operating Hours	8,760	

ID	Description	Max fuel use,	Max heat	Annual	N	Ox	(0	VO	С	SC	D ₂	TS	P	PI	M ₁₀	PIV	l _{2.5}
ID	Description	gal/hr ⁽¹⁾	input,	operating	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
SXEW Boiler No.1	SX/EW Water	13.72	1.255	8,760	0.18	0.78	0.10	0.45	0.014	0.060	7.27E-03	3.18E-02	0.010	0.042	0.010	0.042	0.010	0.042
SXEW BOIIEF NO.1	Heater East	15.72	1.255	8,760	0.18	0.78	0.10	0.45	0.014	0.060	7.27E-05	3.16E-02	0.010	0.042	0.010	0.042	0.010	0.042
SXEW Boiler No.2	SX/EW Water	13.72	1.255	8,760	0.18	0.78	0.10	0.45	0.014	0.060	7.27E-03	3.18E-02	0.010	0.042	0.010	0.042	0.010	0.042
SXEW BOIIEF NO.2	Heater	15.72	1.255	8,760	0.18	0.78	0.10	0.45	0.014	0.060	7.27E-05	3.16E-02	0.010	0.042	0.010	0.042	0.010	0.042
SXEW Boiler No.3	SX/EW Water	15.30	1.40	8,760	0.20	0.87	0.11	0.50	0.015	0.067	8.11E-03	3.55E-02	0.011	0.047	0.011	0.047	0.011	0.047
SXEW BOIIEF NO.5	Heater West	15.50	1.40	8,760	0.20	0.87	0.11	0.50	0.015	0.067	0.11E-05	3.33E-02	0.011	0.047	0.011	0.047	0.011	0.047
	TOTAL				0.56	2.43	0.320	1.40	0.043	0.187	0.0226	0.0992	0.0299	0.131	0.0299	0.131	0.0299	0.131

Units		AP-42	Emission Fact	ors for LPG C	ombustion ⁽²⁾		
Units	со	NOx	VOC	TSP/PM	PM ₁₀	PM _{2.5}	SO ₂
lb/10 ³ gal	7.5	13	1.0	0.7	0.7	0.7	0.530

FEDERAL HAP/NM TOXIC AIR POLLUTANT EMISSIONS ESTIMATION⁽³⁾

Notes:

¹ Propane fuel usage, gal/hr, is calculated from heat input (MMBtu/hr) given a natural gas heating value, 91.5 MMBtu/10 ³gal.

² Based on emission factors for commercial boilers presented in USEPA AP-42 Section 1.5 "Liquefied Petroleum Gas Combustion" (7/08), Table 1.5-1. SO 2 emission factor = 0.10S where S = grains Sulfur/100 ft³ gas vapor.

²Filterable particulate matter (PM) is that PM collected on or prior to the filter of an EPA Method 5 (or equivalent) sampling train. For natural gas, a fuel with similar combustion characteristics, all PM is less than 10 μm in aerodynamic equivalent diameter (PM-³ No HAP/TAP emission factors available in USEPA AP-42 Section 1.5 "Liquefied Petroleum Gas Combustion" (7/08).

⁴ 2.6 grams SO₂/GJ LPG x 32.064 grams S/64.06 grams SO₂ x 15.43 grains/gram x 1.055 GJ/MMBtu x 0.002516 MMBtu/ft ³ x 100 = 5.3 grains/100ft³

⁴ average national sulfur content of LPG is 0.012% by mass (approximately 2.6 g of SO ,/GJ of heat input) per Appendix K-2 of undated document at US Department of Energy website:

http://www1.eere.energy.gov/buildings/appliance_standards/residential/pdfs/k-2.pdf

SX/EW -Chemical Summary

Please note that the information provided in the table below is considered CONFIDENTIAL BUSINESS INFORMATION by the chemical suppliers that provided the information.

	Chemical Concentration [ppm]												
Reagent Name	Benzene	Toluene	Ethylbenzene	Total Xylene	1,2,4 - TMB	1,3,5 - TMB	Total HAPs	Other VOCs					
Extractants													
ACORGA M5910	3.35	7.25	3.40	8.60	6.35	3.35							
ACORGA M5640	5.00	17.90	23.30	34.80									
ACORGA OR25	3.35	7.25	3.40	8.60	6.35	3.35							
COGNIS LIX 684N-LV							43.5	60.0					
Diluents													
Penreco 170ES	25.0	25.0	25.0	25.0									
Escaid 110							10.0						
Escaid 115							10.0						
ORFOM SX-80	5.00	5.0	5.0	5.0	0.0	0.0	0.0	0.00					

Data for ACORGA extractants provided by Cytec.

Data for Penreco 170ES provided by Calumet Specialty Products.

Data for SX-80 provided by Chevron Phillips.

Data for Escaid provided by ExonnMobil.

Data for LIX provided by Cognis.

Blank cells indicate that data for this chemical was not available from the chemical supplier.

1,2,4 - TMB = 1,2,4-trimethylbenzene

1,3,5 - TMB = 1,3,5-trimethylbenzene

Other VOCs represented by octane, heptane, hexane, and pentane.

SX/EW - Plant Mixer/ Settler Tank Emissions Unit: SXEW 10MST

Note: The highest emissions from any combination of tank contents is used in the facility-wide emissions summary table. MAXIMUM SX/EW Plant Mixer/Settler Tank Emissions - Penreco 170ES and ACORGA M5640

The following calculations are based on the BHP Copper VOC study conducted in 1997. A summary and copy of the report is included in Section 7.

number of tanks	6	area of each tank	6,150	ft ²	total area	36,900	ft ²
number of tanks	4	area of each tank	9,776	ft ²	total area	39,104	ft ²

Chemical Product	Percent
Penreco 170ES	92%
ACORGA M5640	8%

Component	D cm ² /sec	MW g/gmole	Ci ppm	Ci g/m³	Ch ppm	Ch g/m ³	Diff F g/m ² -s	Emission Rate ton/yr-ft ²	Emission Rate tons/year	Emission Rate Ib/hr
Benzene	0.0933	78.11	23.5	7.48E-02	0.0018	5.73E-06	1.14E-06	3.69E-06	0.281	0.064
Toluene	0.0833	92.13	24.5	9.19E-02	0.067	2.51E-04	1.25E-06	4.04E-06	0.307	0.070
Ethylbenzene	0.0760	106.16	24.9	1.08E-01	0.057	2.46E-04	1.34E-06	4.32E-06	0.328	0.075
Total Xylene	0.0760	106.16	25.7	1.11E-01	0.037	1.61E-04	1.39E-06	4.48E-06	0.340	0.078
1,2,4 - trimethylbenzene	0.066	120.2	0.00	0.000	0.00	0.00E+00	0.00E+00	0.00E+00	0.000	0.000
1,3,5 - trimethylbenzene	0.066	120.2	0.00	0.000	0.000	0.00E+00	0.00E+00	0.00E+00	0.000	0.000
Other VOCs (non-HAPs)	0.066	112.1	0.00	0.000	0.000	0.00E+00	0.00E+00	0.00E+00	0.000	0.000
			Total	HAPs					1.26	0.29
			Total	VOCs					1.26	0.29

Where: D = constituent diffusivity (from EPA Reference Link for Estimated Diffusion Coefficients in Air and Water; Assumed Pressure of 1 atm, and D = considuent dimostration for the PA Reference tink for estimated binds of coefficients of the part
Ci, g/m³, calculated from ideal gas law. Conservative temperature of 25.84 deg. C used based on 1995 meteorological data (Average plus Standard Deviation).

Ch = constituent concentration at 0.61 meter, ppm. Assumed same as BHP's measured concentrations at H=1 m H = distance above liquid surface = 0.61 m

			Co	ncentration in pp	m			
Chemical	Benzene	Toluene	Ethyl- benzene	Xylene	1,2,4 - tmb	1,3,5 - tmb	Other	Notes
Penreco 170ES	25.00	25.00	25.00	25.00	0.00	0.00		confidential information supplied by Calumet Specialty Products
ACORGA M5640	5.00	17.90	23.30	34.80	0.00	0.00	0.00	confidential information supplied by Cytec
Organic in ppm	23.48	24.46	24.87	25.74	0.00	0.00	0.00	composite concentration, Ci

SX/EW - Plant Mixer/ Settler Tank Emissions

SX/EW Plant Mixer/Settler Tank Emissions - Penreco 170ES and ACORGA M5910 The following calculations are based on the BHP Copper VOC study conducted in 1997. A summary and copy of the report is included in Section 5 missions from the use of ACORGA M5910 also represent emissions from the use of ACORGA OR25 since the chemical constituents are the same
 area of each tank
 6,150
 ft²
 total area
 36,900

 area of each tank
 9,776
 ft²
 total area
 39,104
 number of tanks 6 number of tanks 4 ft²
 Chemical Product
 Percent

 Penreco 170ES
 92%

 ACORGA M5910
 8%
 Ch g/m³ MW Diff F Emission Rate Emission Rate Emission Rate Component D cm²/sec Ci Ci g/m³ Ch ppm ppm g/m²-s ton/vr-ft² tons/year g/gmole lb/hr 7.44E-02 5.73E-06 1.14E-06 3.67E-06 Benzene Toluene 0.0933 78.11 23.4 23.7 0.0018 0.28 0.06 0.0833 92.13 8.88E-02 0.067 2.51E-04 1.21E-06 3.91E-06 0.30 0.07 Ethylbenzene 0.0760 106.16 23.4 1.01E-01 0.057 2.46E-04 1.26E-06 4.06E-06 0.31 0.07 0.0760 106.16 0.0760 106.16 0.066 120.2 0.066 120.2 0.066 112.1 1.01E-01 0.057 1.03E-01 0.037 0.002 0.00 0.001 0.000 0.000 0.000 Total Xylene 1,2,4 - trimethylbenzene 23.8 0.48 0.25 0.00 1.61E-04 1.28E-06 0.00E+00 2.54E-08 4.13E-06 8.21E-08 0.31 6.24E-03 0.07 1.42E-03

0.000 0.00E+00 1.34E-08 4.33E-08 0.000 0.00E+00 0.00E+00 0.00E+00 7.52E-04 0.00E+00 1,3,5 - trimethylbenzene Other VOCs (non-HAPs) 3.29E-03 0.00E+00 Total HAPs 1.20 1.21 0.27 0.28 Total VOCs

Where: D = constituent diffusivity (from EPA Reference Link for Estimated Diffusion Coefficients in Air and Water; Assumed Pressure of 1 atm, and

Temperature of 25.84 deg. C per 1995 met. data)

MW = constituent molecular weight Ci = constituent concentration at liquid surface, ppm. (from manufacturer data)

Ci, g/m³, calculated from ideal gas law. Conservative temperature of 25.84 deg. C used based on 1995 meteorological data (Average plus Standard

Ch go in a second secon

H = distance above liquid surface = 0.61 m

			Co	ncentration in pp	m			
Chemical	Benzene	Toluene	Ethyl- benzene	Xylene	1,2,4 - tmb	1,3,5 - tmb	Other	Notes
Penreco 170ES	25.00	25.00	25.00	25.00	0.00	0.00	0.00	confidential information supplied by Calumet Specialty Products
ACORGA M5910	3.35	7.25	3.40	8.60	6.35	3.35	0.00	confidential information supplied by Cytec
Organic in ppm	23.35	23.65	23.36	23.75	0.48	0.25	0.00	composite concentration, Ci

SX/EW - Plant Mixer/ Settler Tank Emissions SX/EW Plant Mixer/Settler Tank Emissions - Penreco 170ES and COGNIS LIX 684N-LV

The following calculations are based on the BHP Copper VOC study conducted in 1997. A summary and copy of the report is included in Section 7.

number of tanks 6	area of each tank	6,150	ft ²	total area	36,900	ft ²
number of tanks 4	area of each tank	9,776	ft ²	total area	39,104	ft ²

 Chemical Product
 Percent

 Penreco 170ES
 92%

 COGNIS LIX 684N-LV
 8%

Component	D cm²/sec	MW g/gmole	Ci ppm	Ci g/m³	Ch ppm	Ch g/m ³	Diff F g/m ² -s	Emission Rate ton/yr-ft ²	Emission Rate tons/year	Emission Rate Ib/hr	
Benzene	0.0933	78.11	23.1	7.35E-02	0.0018	5.73E-06	1.12E-06	3.63E-06	0.276	0.063	
Toluene	0.0833	92.13	23.1	8.67E-02	0.067	2.51E-04	1.18E-06	3.81E-06	0.290	0.066	
Ethylbenzene	0.0760	106.16	23.1	1.00E-01	0.057	2.46E-04	1.24E-06	4.01E-06	0.305	0.070	
Total Xylene	0.0760	106.16	23.1	1.00E-01	0.037	1.61E-04	1.24E-06	4.02E-06	0.305	0.070	
Total HAPs ⁽¹⁾	0.082	103.94	3.31	0.014	0.60	2.54E-03	1.54E-07	4.99E-07	0.019	0.004	
1,2,4 - trimethylbenzene	0.066	120.2	0.00	0.000	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
1,3,5 - trimethylbenzene	0.066	120.2	0.00	0.000	0.000	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
Other VOCs (non-HAPs)	0.066	112.1	4.56	0.021	0.000	0.00E+00	2.24E-07	7.23E-07	5.50E-02	1.26E-02	
			Total	HAPs					1.20	0.27	
	Total VOCs										

Total HAPs Molecular weight and Ch, ppm is obtained by determining the average of total HAP constituents within the product.

	Where: D = constituent diffusivity (from EPA Reference Link for Estimated Diffusion Coefficients in Air and Water; Assumed Pressure of 1 atm, anc Temperature of 2.58 Adg. Cpc P1955 met. data) MW = constituent molecular weight Cl = constituent concentration at liquid yatrace, ppm. (from manufacturer data) Ct, g/m ¹ , calculated from ideal gas law. Conservative temperature of 25.84 deg. C used based on 1995 meteorological data (Average plus Standard Deviation). Ch = constituent concentration at 0.61 meter, ppm. Assumed same as BHP's measured concentrations at H=1 m H = distance above liquid surface = 0.61 m											
				Concentrat	ion in ppm							
Chemical	Benzene	Toluene	Ethylbenzene	Total Xylene	Total HAPs	1,2,4 - TMB	1,3,5 - TMB	Other VOCs	Notes			
Penreco 170ES	25.00	25.00	25.00	25.00	0.00	0.00	0.00	0.00	confidential information supplied by Calumet Specialty Products			
COGNIS LIX 684N-LV	0.00	0.00	0.00	0.00	43.50	0.00	0.00	60.00	confidential information supplied by Cytec			
Organic in ppm	23.10	23.10	23.10	23.10	3.31	0.00	0.00	4.56	composite concentration, Ci			

SX/EW - Plant Mixer/ Settler Tank Emissions SX/EW Plant Mixer/Settler Tank Emissions - Escaid 110 and ACORGA M5910

The following calculations are based on the BHP Copper VOC study conducted in 1997. A summary and copy of the report is included in Section 7.

missions from the use of Escaid 110 also represent emissions from the use of Escaid 115 since the chemical constituents are the same Emissions from the use of ACORGA M5910 also represent emissions from the use of ACORGA OR25 since the chemical constituents are the same

number of tanks	6	area of each tank	6,150	ft ²	total area	36,900	ft ²
number of tanks	4	area of each tank	9,776	ft ²	total area	39,104	ft ²

Chemical Product	Percent
Escaid 110	92%
ACORGA M5910	8%

Component	D cm ² /sec	MW g/gmole	Ci ppm	Ci g/m³	Ch ppm	Ch g/m ³	Diff F g/m ² -s	Emission Rate ton/yr-ft ²	Emission Rate tons/year	Emission Rate Ib/hr	
Benzene	0.0933	78.11	0.25	8.11E-04	0.0018	5.73E-06	1.23E-08	3.98E-08	3.02E-03	6.90E-04	
Toluene	0.0833	92.13	0.55	2.07E-03	0.067	2.51E-04	2.48E-08	8.02E-08	6.09E-03	1.39E-03	
Ethylbenzene	0.0760	106.16	0.26	1.12E-03	0.057	2.46E-04	1.09E-08	3.51E-08	2.67E-03	6.09E-04	
Total Xylene	0.0760	106.16	0.65	2.83E-03	0.037	1.61E-04	3.32E-08	1.07E-07	8.16E-03	1.86E-03	
Total HAPs ⁽¹⁾	0.082	103.94	9.24	0.039	0.60	2.54E-03	4.93E-07	1.59E-06	1.21E-01	2.76E-02	
1,2,4 - trimethylbenzene	0.066	120.19	0.48	0.002	0.00	0.00E+00	2.54E-08	8.21E-08	6.24E-03	1.42E-03	
1,3,5 - trimethylbenzene	0.066	120.19	0.25	0.001	0.000	0.00E+00	1.34E-08	4.33E-08	3.29E-03	7.52E-04	
Other VOCs (non-HAPs)	0.066	112.06	0.00	0.000	0.000	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
			Total	HAPs					0.141	0.032	
	Total VOCs										

(1) Total HAPs Molecular weight and Ch. ppm is obtained by determining the average of total HAP constituents within the product.

Where: D = constituent diffusivity (from EPA Reference Link for Estimated Diffusion Coefficients in Air and Water; Assumed Pressure of 1 atm, and Temperature of 2.5.8 deg. C per 1995 met. data) MW = constituent molecular weight C1 = constituent concentration at liquid surface, ppm. (from manufacturer data)

Ci, g/m³, calculated from ideal gas law. Conservative temperature of 25.84 deg. C used based on 1995 meteorological data (Average plus Standard

Deviation). Ch = constituent concentration at 0.61 meter, ppm. Assumed same as BHP's measured concentrations at H=1 r H = distance above liquid surface = 0.61 m

				Concentrati	on in ppm					
Chemical	Benzene	Toluene	Ethylbenzene	Total Xylene	Total HAPs	1,2,4 - TMB	1,3,5 - TMB	Other VOCs	Notes	
Escaid 110	0.00	0.00	0.00	0.00	10.00	0.00	0.00	0.00	confidential information supplied by ExxonMobil	
ACORGA M5910	3.35	7.25	3.40	8.60	0.00	6.35	3.35	0.00	confidential information supplied by Cytec	
Organic in ppm	0.25	0.55	0.26	0.65	9.24	0.48	0.25	0.00	composite concentration, Ci	

SX/EW - Plant Mixer/ Settler Tank Emissions SX/EW Plant Mixer/Settler Tank Emissions - Escaid 110 and Cognis LIX 684N-LV

The following calculations are based on the BHP Copper VOC study conducted in 1997. A summary and copy of the report is included in Section 7.

ions from the use of Escaid 110 also represent emissions from the use of Escaid 115 since the chemical constituents are the same.

al		1					
number of tanks	4	area of each tank	9,776	ft ²	total area	39,104	ft ²
number of tanks	6	area of each tank	6,150	ft ²	total area	36,900	ft ²

92% Escaid 110 COGNIS LIX 684N-LV 8%

Component	D cm²/sec	MW g/gmole	Ci ppm	Ci g/m³	Ch ppm	Ch g/m ³	Diff F g/m ² -s	Emission Rate ton/yr-ft ²	Emission Rate tons/year	Emission Rate Ib/hr	
Benzene	0.0933	78.11	0.00	0.00E+00	0.0018	5.73E-06	-8.77E-11	-2.83E-10	-2.15E-05	-4.91E-06	
Toluene	0.0833	92.13	0.00	0.00E+00	0.067	2.51E-04	-3.43E-09	-1.11E-08	-8.41E-04	-1.92E-04	
Ethylbenzene	0.0760	106.16	0.00	0.00E+00	0.057	2.46E-04	-3.06E-09	-9.89E-09	-7.52E-04	-1.72E-04	
Total Xylene	0.0760	106.16	0.00	0.00E+00	0.037	1.61E-04	-2.00E-09	-6.46E-09	-4.91E-04	-1.12E-04	
Total HAPs ⁽¹⁾	0.082	103.9	9.24	0.039	0.60	2.54E-03	4.93E-07	1.59E-06	1.21E-01	2.76E-02	
1,2,4 - trimethylbenzene	0.066	120.2	0.00	0.000	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
1,3,5 - trimethylbenzene	0.066	120.2	3.31	0.016	0.000	0.00E+00	1.74E-07	5.63E-07	4.28E-02	9.76E-03	
Other VOCs (non-HAPs)	0.066	112.1	4.56	0.021	0.000	0.00E+00	2.24E-07	7.23E-07	5.50E-02	1.26E-02	
	Total HAPs										
			Total	VOC					0.217	0.049	

1) Total HAPs Molecular weight and Ch, ppm is obtained by determining the average of total HAP constituents within the product.

Where: D = constituent diffusivity (from EPA Reference Link for Estimated Diffusion Coefficients in Air and Water; Assumed Pressure of 1 atm, and

Temperature of 25.84 deg. C per 1995 met. data)

MW = constituent molecular weight Ci = constituent concentration at liquid surface, ppm. (from manufacturer data)

Ci, g/m3, calculated from ideal gas law. Conservative temperature of 25.84 deg. C used based on 1995 meteorological data (Average plus Standard

Ch growth and the second secon

H = distance above liquid surface = 0.61 m

Chemical	Benzene	Toluene	Ethylbenzene	Total Xylene	Total HAPs	1,2,4 - TMB	1,3,5 - TMB	Other VOCs	Notes	
Escaid 110	0.00	0.00	0.00	0.00	10.00	0.00	0.00	0.00	confidential information supplied by ExxonMobil	
COGNIS LIX 684N-LV	0.00	0.00	0.00	0.00	0.00	0.00	43.50	60.00	confidential information supplied by Cytec	
Organic in ppm	0.00	0.00	0.00	0.00	9.24	0.00	3.31	4.56	composite concentration, Ci	

SX/EW Plant Mixer/Settler Tank Emissions - Escaid 110 and ACORGA M5640

The following calculations are based on the BHP Copper VOC study conducted in 1997. A summary and copy of the report is included in Section 7.

issions from the use of Escaid 110 also represent emissions from the use of Escaid 115 since the chemical constituents are the same.

number of tanks	6	area of each tank	6,150	ft ²	total area	36,900	ft ²
number of tanks	4	area of each tank	9,776	ft ²	total area	39,104	ft ²

Chemical Product	Percent
Escaid 110	92%
ACORGA M5640	8%

мw Diff F Emission Rate Emission Rate Emission Rate Component D cm²/sec Ci Ci g/m³ Ch ppm Ch g/m³ ppm g/gmole g/m²-s ton/yr-ft² tons/vear lb/hr 0.0933 78.11 0.38 1.21E-03 0.0018 5.73E-06 1.84E-08 5.95E-08 4.52E-03 1.03E-03 Benzene Toluene 0.0833 92.13 1.36 5.11E-03 0.067 2.51E-04 6.63E-08 2.14E-07 1.63E-02 3.72E-03 0.0760 106.16 1.77 7.66E-03 0.057 2.46E-04 9.24E-08 2.98E-07 2.27E-02 5.18E-03 Ethylbenzene Total Xylene 0.0760 106.16 2.64 1.14E-02 0.037 1.61E-04 1.41E-07 4.54E-07 3.45E-02 7.88E-03 0.082 103.9 9.24 0.039 0.600 2.54E-03 4.93E-07 1.59E-06 1.21E-01 2.76E-02 Total HAPs⁽¹ 1,2,4 - trimethylbenzer 0.066 120.2 0.00 0.000 0.00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1,3,5 - trimethylbenzene 0.066 120.2 0.00 0.000 0.000 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 Other VOCs (non-HAPs) 0.066 112.1 0.00 0.000 0.000 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 Total HAPs

Total VOCs Total HAPs Molecular weight and Ch, ppm is obtained by determining the average of total HAP of

Where: D = constituent diffusivity (from EPA Reference Link for Estimated Diffusion Coefficients in Air and Water; Assumed Pressure of 1 atm, and Temperature of 25.84 deg. C per 1995 met. data) MW = constituent molecular weight Ci = constituent concentration at liquid surface, ppm. (from manufacturer data) Ci, g/m³, calculated from ideal gas law. Conservative temperature of 25.84 deg. C used based on 1995 meteorological data (Average plus Standard Ch = constituent concentration at 0.61 meter, ppm. Assumed same as BHP's measured concentrations at H=1 r H = distance above liquid surface = 0.61 m Concentration in ppm Chemical Notes Benzene Toluene Ethylbenzene Total Xylene Total HAPs 1,2,4 - TMB 1,3,5 - TMB Other VOCs 0.00 Escaid 110 0.00 0.00 0.00 0.00 10.00 0.00 0.00 confidential information supplied by ExxonMobil ACORGA M5640 5.00 17.90 23.30 34.80 0.00 0.00 0.00 0.00 confidential information supplied by Cyter Organic in ppm 0.38 1.36 1.77 2.64 9.24 0.00 0.00 0.00 composite concentration, Ci

0.199

0.199

0.045

0.045

SX/EW - Plant Mixer/ Settler Tank Emissions SX/EW Plant Mixer/Settler Tank Emissions - ORFOM SX-80 and ACORGA M5910

The following calculations are based on the BHP Copper VOC study conducted in 1997. A summary and copy of the report is included in Section 7.

Emissions from the use of ACORGA M5910 also represent emissions from the use of ACORGA OR25 since the chemical constituents are the same

number of tanks	6	area of each tank	6,150	ft ²	total area	36,900	ft ²
number of tanks	4	area of each tank	9,776	ft ²	total area	39,104	ft ²
Chemical Product	Percent						

chemical Floudet	Fercent
ORFOM SX-80	92%
ACORGA M5910	8%

Component	D cm²/sec	MW g/gmole	Ci ppm	Ci g/m³	Ch ppm	Ch g/m ³	Diff F g/m ² -s	Emission Rate ton/yr-ft ²	Emission Rate tons/year	Emission Rate Ib/hr
Benzene	0.0933	78.11	4.87	1.55E-02	0.0018	5.73E-06	2.37E-07	7.66E-07	0.06	0.01
Toluene	0.0833	92.13	5.17	1.94E-02	0.067	2.51E-04	2.62E-07	8.45E-07	0.06	0.01
Ethylbenzene	0.0760	106.16	4.88	2.11E-02	0.057	2.46E-04	2.60E-07	8.40E-07	0.06	0.01
Total Xylene	0.0760	106.16	5.27	2.28E-02	0.037	1.61E-04	2.82E-07	9.12E-07	0.07	0.02
Total HAPs ⁽¹⁾	0.082	103.94	0.00	0.000	0.60	0.00E+00	0.00E+00	0.00E+00	0.00	0.00
1,2,4 - trimethylbenzene	0.066	120.19	0.48	0.002	0.00	0.00E+00	2.54E-08	8.21E-08	0.01	0.00
1,3,5 - trimethylbenzene	0.066	120.19	0.25	0.001	0.000	0.00E+00	1.34E-08	4.33E-08	0.00	0.00
Other VOCs (non-HAPs)	0.066	112.06	0.00	0.000	0.000	0.00E+00	0.00E+00	0.00E+00	0.00	0.00
	0.256	0.058								
			Total	VOCs					0.265	0.061

Total VOCs (1) Total HAPs Molecular weight and Ch, ppm is obtained by determining the average of total HAP constituents within the product.

Where: D = constituent diffusivity (from EPA Reference Link for Estimated Diffusion Coefficients in Air and Water; Assumed Pressure of 1 atm, and

1	lemperature of	25.84	deg.	C per	1995	met.	data)	

MW = constituent molecular weight Ci = constituent concentration at liquid surface, ppm. (from manufacturer data) Ci, g/m³, calculated from ideal gas law. Conservative temperature of 25.84 deg. C used based on 1995 meteorological data (Average plus Standard

Cr, gm, , catulated infinitear gas law. Conservative temperature or 25.64 usg. Closed used on 1995 meteorolog Deviationi. Ch = constituent concentration at 0.61 meter, ppm. Assumed same as BHP's measured concentrations at H=1 r H = distance above liquid surface = 0.61 m

				Concentration in ppm									
Chemical	Benzene	Toluene	Ethylbenzene	Total Xylene	Total HAPs	1,2,4 - TMB	1,3,5 - TMB	Other VOCs	Notes				
ORFOM SX-80	5.00	5.00	5.00	5.00	0.00	0.00	0.00		confidential information supplied by Chevron Phillips				
ACORGA M5910	3.35	7.25	3.40	8.60	0.00	6.35	3.35	0.00	confidential information supplied by Cytec				
Organic in ppm	4.87	5.17	4.88	5.27	0.00	0.48	0.25	0.00	composite concentration, Ci				

SX/EW - Plant Mixer/ Settler Tank Emissions

Emissions - C	RFOM SX-80 a	nd Cognis LIX 6	584N-LV						
d on the BHP (Copper VOC stud	ly conducted in	1997. A summar	y and copy of th	e report is inclu	ded in Section	7.		
6	ar	ea of each tank	6,150	ft ²	total area	36,900	ft ²		
4	ar	ea of each tank	9,776	ft ²	total area	39,104	ft ²		
								•	
Percent									
92%									
8%									
	MW				Ch	Diff F	Emission Rate	Emission Rate	Emission R
D cm [*] /sec	g/gmole	Ci ppm	Ci g/m²	Ch ppm	g/m ³	g/m²-s	ton/yr-ft ²	tons/year	lb/hr
0.0022	70.11	4.60	1 475 00	0.0010	E 72E 0C	2.25E-07	7.26E-07	0.06	0.01
0.0955		4.02		0.0018	5./SE-UD				
	6 6 4 Percent 92% 8% D cm ² /sec	d on the BHP Copper VOC stuc 6 ar 4 ar Percent 92% 8% D cm²/sec MW g/gmole	d on the BHP Copper VOC study conducted in 6 area of each tank 4 area of each tank Percent 92% 8% D cm²/sec MW CI ppm	6 area of each tank 6,150 4 area of each tank 9,776 Percent 9,776 9,776 92% 8% Ci D cm²/sec g/gmole Ci ppm Ci g/m³	d on the BHP Copper VOC study conducted in 1997. A summary and copy of th 6 area of each tank 6,150 ft ² 4 area of each tank 9,776 ft ² Percent 92% 8% 9,776 ft ² D cm²/sec MW Ci ppm Ci g/m³ Ch ppm	d on the BHP Copper VOC study conducted in 1997. A summary and copy of the report is inclu 6 area of each tank 6,150 ft² total area 4 area of each tank 9,776 ft² total area Percent 92% 8% D cm²/cm MW Ci non Ci n/m² Ch non Ch	d on the BHP Copper VOC study conducted in 1997. A summary and copy of the report is included in Section 6 area of each tank 6,150 ft ² total area 36,000 4 area of each tank 9,776 ft ² total area 39,104 Percent 92%	d on the BHP Copper VOC study conducted in 1997. A summary and copy of the report is included in Section 7. 6 area of each tank 6,150 ft ² total area 36,900 ft ² 4 area of each tank 6,150 ft ² total area 36,900 ft ² 9 ft ² total area 39,104 ft ² total area 92%	d on the BHP Copper VOC study conducted in 1997. A summary and copy of the report is included in Section 7. 6 area of each tank 6,150 ft ² total area 36,900 ft ² 4 area of each tank 9,776 ft ² total area 39,104 ft ² Percent 92% 38 39,104 ft ² total area 9 G g/m ² Ch ppm Ch ppfm ² g/m ² tons/year

Benzene	0.0933	78.11	4.62	1.47E-02	0.0018	5.73E-06	2.25E-07	7.26E-07	0.06	0.01
Toluene	0.0833	92.13	4.62	1.73E-02	0.067	2.51E-04	2.33E-07	7.54E-07	0.06	0.01
Ethylbenzene	0.0760	106.16	4.62	2.00E-02	0.057	2.46E-04	2.46E-07	7.95E-07	0.06	0.01
Total Xylene	0.0760	106.16	4.62	2.00E-02	0.037	1.61E-04	2.47E-07	7.98E-07	0.06	0.01
Total HAPs ⁽¹⁾	0.082	103.9	3.31	0.014	0.60	2.54E-03	1.54E-07	4.99E-07	0.04	0.01
1,2,4 - trimethylbenzene	0.066	120.2	0.00	0.000	0.00	0.00E+00	0.00E+00	0.00E+00	0.00	0.00
1,3,5 - trimethylbenzene	0.066	120.2	0.00	0.000	0.000	0.00E+00	0.00E+00	0.00E+00	0.00	0.00
Other VOCs (non-HAPs)	0.066	112.1	4.56	0.021	0.000	0.00E+00	2.24E-07	7.23E-07	0.05	0.01
			Total	HAPs					0.27	0.06
			Total	VOCs					0.33	0.07
(1) Total HAPs Molecular weight and										

Total HAPs Total VOCs [1] Total HAPs Molecular weight and Ch, ppm is obtained by determining the average of total HAP con ents within the product

Where: D = constituent diffusivity (from EPA Reference Link for Estimated Diffusion Coefficients in Air and Water; Assumed Pressure of 1 atm, and Temperature of 2.5.8 deg. C per 1995 met. data) MW = constituent molecular weight C1 = constituent concentration at liquid surface, ppm. (from manufacturer data)

Ci, g/m³, calculated from ideal gas law. Conservative temperature of 25.84 deg. C used based on 1995 meteorological data (Average plus Standard

Cr. grin , catculated information and gas law. Conservative temperature or 25.5 w dags. Closed dased on 1995 meteorolog Deviation). Ch = constituent concentration at 0.61 meter, ppm. Assumed same as BHP's measured concentrations at H=1 r H = distance above liquid surface = 0.61 m

Chemical	Benzene	Toluene	Ethylbenzene	Total Xylene	Total HAPs	1,2,4 - TMB	1,3,5 - TMB	Other VOCs	Notes	
ORFOM SX-80	5.00	5.00	5.00	5.00	0.00	0.00	0.00	0.00	confidential information supplied by Chevron Phillips	
COGNIS LIX 684N-LV	0.00	0.00	0.00	0.00	43.50	0.00	0.00	60.00	confidential information supplied by Cytec	
Organic in ppm	4.62	4.62	4.62	4.62	3.31	0.00	0.00	4.56	composite concentration, Ci	

SX/EW - Plant Mixer/ Settler Tank Emissions SX/EW Plant Mixer/Settler Tank Emissions - ORFOM SX-80 and ACORGA M5640

The following calculations are base	d on the BHP (copper VOC study conducted in	1997. A summary	and copy of th	e report is incluc	led in Section	7.
number of tanks	6	area of each tank	6,150	ft ²	total area	36,900	ft ²
number of tanks	4	area of each tank	9,776	ft ²	total area	39,104	ft ²

Chemical Product	Percent	
ORFOM SX-80	92%	
ACORGA M5640	8%	

Component	D cm²/sec	MW g/gmole	Ci ppm	Ci g/m³	Ch ppm	Ch g/m ³	Diff F g/m ² -s	Emission Rate ton/yr-ft ²	Emission Rate tons/year	Emission Rate Ib/hr			
Benzene	0.0933	78.11	5.00	1.59E-02	0.0018	5.73E-06	2.43E-07	7.86E-07	0.06	0.01			
Toluene	0.0833	92.13	5.98	2.25E-02	0.067	2.51E-04	3.03E-07	9.79E-07	0.07	0.02			
Ethylbenzene	0.0760	106.16	6.39	2.77E-02	0.057	2.46E-04	3.41E-07	1.10E-06	0.08	0.02			
Total Xylene	0.0760	106.16	7.26	3.14E-02	0.037	1.61E-04	3.90E-07	1.26E-06	0.10	0.02			
Total HAPs ⁽¹⁾	0.082	103.9	0.00	0.000	0.600	0.00E+00	0.00E+00	0.00E+00	0.00	0.00			
1,2,4 - trimethylbenzene	0.066	120.2	0.00	0.000	0.00	0.00E+00	0.00E+00	0.00E+00	0.00	0.00			
1,3,5 - trimethylbenzene	0.066	120.2	0.00	0.000	0.000	0.00E+00	0.00E+00	0.00E+00	0.00	0.00			
Other VOCs (non-HAPs)	0.066	112.1	0.00	0.000	0.000	0.00E+00	0.00E+00	0.00E+00	0.00	0.00			
			Total	HAPs					0.314	0.072			
	Total VOCs												

Total HAPs Molecular weight and Ch, ppm is obtained by determining the average of total HAP constituents within the product.

Where: D = constituent diffusivity (from EPA Reference Link for Estimated Diffusion Coefficients in Air and Water; Assumed Pressure of 1 atm, and Temperature of 2.5.8 deg. C per 1995 met. data) MW = constituent molecular weight C1 = constituent concentration at liquid surface, ppm. (from manufacturer data)

Ci, g/m³, calculated from ideal gas law. Conservative temperature of 25.84 deg. C used based on 1995 meteorological data (Average plus Standard Cr, grin, Gardialed iron indea gas law. Conservative temperature or 2544 tog, - Losed daed on 1595 meteorologi Deviation). Ch = constituent concentration at 0.65 meter, ppm. Assumed same as BHP's measured concentrations at H=1 r H = distance above liquid surface = 0.61 m

Chemical	Benzene	Toluene	Ethylbenzene	Total Xylene	Total HAPs	1,2,4 - TMB	1,3,5 - TMB	Other VOCs	Notes		
ORFOM SX-80	5.00	5.00	5.00	5.00	0.00	0.00	0.00	0.00	confidential information supplied by Chevron Phillips		
ACORGA M5640	5.00	17.90	23.30	34.80	0.00	0.00	0.00	0.00	confidential information supplied by Cytec		
Organic in ppm	5.00	5.98	6.39	7.26	0.00	0.00	0.00	0.00	composite concentration, Ci		

SXEW - Raffinate Tank Emissions

Units: SXEW RT

	e based on the BHP C	Copper VOC stu	idy conduc	ted in 1997. A	summary and	l copy of the re	eport is include	d in Appendix F, Refer	ences.	
number of ta	anks 1	area o	f each tank	5,024	ft ²	total area	5,024	ft ²]	
									-	
Chemical Product	Percent									
enreco 170ES	92%									
CORGA M5640	8%									
6	D cm ² /sec	MW	Ci	a: (3	ch.	a) (3)	Diff F	Emission Rate	Emission Rate	Fundantan Bata II. (hu
Component	D cm ² /sec	g/gmole	ppm	Ci g/m ³	Ch ppm	Ch g/m ³	g/m²-s	ton/yr-ft ²	tons/year	Emission Rate lb/hr
Benzene	0.0933	78.11	23.48	0.0748	0.0018	5.73E-06	1.14E-06	3.69E-06	1.86E-02	4.24E-03
oluene	0.0833	92.14	24.46	0.092	0.067	2.51E-04	1.25E-06	4.04E-06	2.03E-02	4.63E-03
thylbenzene	0.0760	106.17	24.87	0.108	0.057	2.46E-04	1.34E-06	4.32E-06	2.17E-02	4.96E-03
otal Xylene	0.0760	106.16	25.74	0.111	0.037	1.61E-04	1.39E-06	4.48E-06	2.25E-02	5.13E-03
.,2,4 - trimethylbenzene	0.070	120.2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
.,3,5 - trimethylbenzene	0.070	120.2	0.00	0.0000	0.00	0.00	0.00	0.00	0.00	0.00
Other VOCs (non-HAPs)	0.066	112.1	0.00	0.0000	0.00	0.00	0.00	0.00	0.00	0.00
								Total HAPs	0.083	0.019
	Where	D - constituon	+ diffucivity	(from EDA Bo		or Estimated (Diffusion Cooffi	Total VOCs	0.083	0.019
		25.84 deg. C p MW = constituer Ci = constituer Ci, g/m ³ , calcu Deviation).	er 1995 me uent molec nt concentr lated from nt concent	et. data) ular weight ration at liquid ideal gas law. ration at 0.61 surface = 0.62	surface, ppm. Conservative meter, ppm. 1 m	(from manufa temperature c Assumed same	acturer data) if 25.84 deg. C i	Total VOCs	0.083 r; Assumed Pressure of eteorological data (Ave	0.019 1 atm, and Temperature of
Chemical		25.84 deg. C p MW = constitu Ci = constituer Ci, g/m ³ , calcu Deviation). Ch = constitue H = distance al	er 1995 me uent molec nt concentr lated from nt concent	et. data) ular weight ration at liquid ideal gas law. ration at 0.61 surface = 0.62	surface, ppm. Conservative meter, ppm. 1 m entration in pp	(from manufa temperature c Assumed same n	acturer data) of 25.84 deg. C i e as BHP's meas	Total VOCs cients in Air and Wate used based on 1995 m sured concentrations a	0.083 r; Assumed Pressure of eteorological data (Ave	0.019 1 atm, and Temperature of
Chemical		25.84 deg. C p MW = constituer Ci = constituer Ci, g/m ³ , calcu Deviation). Ch = constitue	er 1995 me uent molec nt concentr lated from nt concent bove liquid	et. data) ular weight ation at liquid ideal gas law. ration at 0.61 surface = 0.62	surface, ppm. Conservative meter, ppm. 1 m entration in pp	(from manufa temperature c Assumed same	acturer data) if 25.84 deg. C i	Total VOCs cients in Air and Wate used based on 1995 m	0.083 r; Assumed Pressure of eteorological data (Ave at H=1 m	0.019 1 atm, and Temperature of grage plus Standard Notes
		25.84 deg. C p MW = constitu Ci = constituer Ci, g/m ³ , calcu Deviation). Ch = constitue H = distance al	er 1995 me uent molec nt concentr lated from nt concent bove liquid Ethylbenz	et. data) ular weight ration at liquid ideal gas law. ration at 0.61 surface = 0.62	surface, ppm. Conservative meter, ppm. 1 m entration in pp	(from manufa temperature c Assumed same n	acturer data) of 25.84 deg. C i e as BHP's meas	Total VOCs cients in Air and Wate used based on 1995 m sured concentrations a	0.083 r; Assumed Pressure of eteorological data (Ave at H=1 m	0.019 1 atm, and Temperature of grage plus Standard
Chemical Penreco 170ES ACORGA M5640	Benzene	25.84 deg. C p MW = constituer Ci, g/m ³ , calcu Deviation). Ch = constituer H = distance al	er 1995 me Jent molec Int concentr lated from nt concent bove liquid Ethylbenz ene	tt. data) ular weight ation at liquid ideal gas law. ration at 0.61 surface = 0.6: Conce Total Xylene	surface, ppm. Conservative meter, ppm. 4 1 m entration in ppi 1,2,4 - TMB	(from manufa temperature c Assumed same n 1,3,5 - TMB	acturer data) f 25.84 deg. C t e as BHP's meas Total HAPs	Total VOCs cients in Air and Wate used based on 1995 m sured concentrations a Other VOCs	0.083 r; Assumed Pressure of eteorological data (Ave at H=1 m confidential informatic	0.019 1 atm, and Temperature of arage plus Standard Notes Don supplied by Calumet Specialt

SXEW - Raffinate Tank Emissions

Units: SXEW RT

Note: The highest emissions from any combination of tank contents is used in the facility-wide emissions summary table.

SX/EW Plant 900,000 Gallon Raffinate Tank Emissions - Penreco 170ES and ACORGA M5910

The following calculations are based on the BHP Copper VOC study conducted in 1997. A summary and copy of the report is included in Appendix F, References.

Emissions from the use of ACORGA M5910 also represent emissions from the use of ACORGA OR25 since the chemical constituents are the same.

number of tanks 1 area of each ta	nk 5,024 ft ² total area	5,024 ft ²
-----------------------------------	-------------------------------------	-----------------------

Chemical Product	Percent									
Penreco 170ES	92%									
ACORGA M5910	8%									
6	21	MW	Ci	a ; (3)	ch.	a (3	Diff F	Emission Rate	Emission Rate	Factorian Bata III /ha
Component	D cm ² /sec	g/gmole	ppm	Ci g/m³	Ch ppm	Ch g/m³	g/m ² -s	ton/yr-ft ²	tons/year	Emission Rate lb/hr
Benzene	0.0933	78.11	23.35	0.0744	0.0018	5.73E-06	1.14E-06	3.67E-06	1.85E-02	4.21E-03
Toluene	0.0833	92.14	23.65	0.089	0.067	2.51E-04	1.21E-06	3.91E-06	1.96E-02	4.48E-03
Ethylbenzene	0.0760	106.17	23.36	0.101	0.057	2.46E-04	1.26E-06	4.06E-06	2.04E-02	4.65E-03
Total Xylene	0.0760	106.16	23.75	0.103	0.037	1.61E-04	1.28E-06	4.13E-06	2.07E-02	4.74E-03
1,2,4 - trimethylbenzene	0.070	120.2	0.48	0.00	0.0000	0.00E+00	2.72E-08	8.77E-08	4.41E-04	1.01E-04
1,3,5 - trimethylbenzene	0.070	120.2	0.25	0.0012	0.0000	0.00E+00	1.44E-08	4.64E-08	2.33E-04	5.32E-05
Other VOCs (non-HAPs)	0.066	112.1	0.00	0.0000	0.0000	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
								Total HAPs	0.079	0.018
								Total VOCs	0.080	0.018

Where: D = constituent diffusivity (from EPA Reference Link for Estimated Diffusion Coefficients in Air and Water; Assumed Pressure of 1 atm, and Temperature of 25.84 deg. C per 1995 met. data)

MW = constituent molecular weight

Ci = constituent concentration at liquid surface, ppm. (from manufacturer data)

Ci, g/m³, calculated from ideal gas law. Conservative temperature of 25.84 deg. C used based on 1995 meteorological data (Average plus Standard Deviation).

Ch = constituent concentration at 0.61 meter, ppm. Assumed same as BHP's measured concentrations at H=1 m

H = distance above liquid surface = 0.61 m

			Con	centration in				
Chemical	Benzene	Toluene	Ethyl- benzene	Xylene	1,2,4 - tmb	1,3,5 - tmb	Other	Notes
Penreco 170ES	25.00	25.00	25.00	25.00	0.00	0.00	0.00	confidential information supplied by Calumet Specialty Products
ACORGA M5910	3.35	7.25	3.40	8.60	6.35	3.35	0.00	confidential information supplied by Cytec
Organic in ppm	23.35	23.65	23.36	23.75	0.48	0.25	0.00	composite concentration, Ci

SXEW - Raffinate Tank Emissions

Units: SXEW RT

COGNIS LIX 684N-LV

Organic in ppm

0.00

23.10

0.00

23.10

Note: The highest emissions from any combination of tank contents is used in the facility-wide emissions summary table.	
SX/EW Plant 900,000 Gallon Raffinate Tank Emissions - Penreco 170ES and COGNIS LIX 684N-LV	

The following calculations are based on the BHP Copper VOC study conducted in 1997. A summary and copy of the report is included in Appendix F, References.

0.00

23.10

0.00

0.00

0.00

0.00

0.00

23.10

number of tar	nks 1	area o	f each tank	5,024	ft²	total area	5,024	ft ²		
Chemical Product	Percent									
Penreco 170ES	92%									
COGNIS LIX 684N-LV	8%									
Component	D cm²/sec	MW g/gmole	Ci ppm	Ci g/m ³	Ch ppm	Ch g/m ³	Diff F g/m ² -s	Emission Rate ton/yr-ft ²	Emission Rate tons/year	Emission Rate lb/hr
Benzene	0.0933	78.11	23.10	0.0735	0.0018	5.73E-06	1.12E-06	3.63E-06	1.83E-02	4.17E-03
oluene	0.0833	92.14	23.10	0.087	0.067	2.51E-04	1.18E-06	3.82E-06	1.92E-02	4.38E-03
thylbenzene	0.0760	106.17	23.10	0.100	0.057	2.46E-04	1.24E-06	4.01E-06	2.02E-02	4.60E-03
otal Xylene	0.0760	106.16	23.10	0.100	0.037	1.61E-04	1.24E-06	4.02E-06	2.02E-02	4.61E-03
otal HAPs ⁽¹⁾	0.082	103.94	3.31	0.014	0.60	2.54E-03	1.54E-07	4.99E-07	2.51E-03	5.72E-04
.,2,4 - trimethylbenzene	0.070	120.2	0.00	0.00	0.0000	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
.,3,5 - trimethylbenzene	0.070	120.2	0.00	0.0000	0.0000	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
)ther VOCs (non-HAPs)	0.066	112.1	4.56	0.0208	0.0000	0.00E+00	2.24E-07	7.23E-07	3.63E-03	8.30E-04
								Total HAPs	0.078	0.018
								Total VOCs	0.081	0.019
	Where:	25.84 deg. C p MW = constituer Ci = constituer Ci, g/m ³ , calcu Deviation).	er 1995 me uent molect nt concentr lated from nt concent	et. data) ular weight ation at liquid ideal gas law. ration at 0.61	surface, ppm. Conservative meter, ppm.	(from manufa temperature o	cturer data) f 25.84 deg. C		eteorological data (Ave	1 atm, and Temperature o rage plus Standard
			-		entration in pp	n				
Chemical	Benzene	Toluene	Ethylbenz ene	Total Xylene	1,2,4 - TMB	1,3,5 - TMB	Total HAPs	Other VOCs		Notes
Penreco 170ES	25.00	25.00	25.00	25.00	0.00	0.00	0.00	0.00	confidential informatio Products	n supplied by Calumet Spe

43.50

3.31

60.00

4.56

confidential information supplied by Cytec

composite concentration, Ci

SXEW - Raffinate Tank Emissions

Units: SXEW RT

Note: The highest emissions from any combination of tank contents is used in the facility-wide emissions summary table.

SX/EW Plant 900,000 Gallon Raffinate Tank Emissions - Escaid 110 and ACORGA M5910

The following calculations are based on the BHP Copper VOC study conducted in 1997. A summary and copy of the report is included in Section 7. Emissions from the use of Escaid 110 also represent emissions from the use of Escaid 115 since the chemical constituents are the same. Emissions from the use of ACORGA M5910 also represent emissions from the use of ACORGA OR25 since the chemical constituents are the same.

number of tanks	1	area of each tank	5,024 ft ²	total area	5,024 ft ²

Chemical Product	Percent									
Escaid 110	92%									
ACORGA M5910	8%									
Component	D cm ² /sec	MW g/gmole	Ci ppm	Ci g/m ³	Ch ppm	Ch g/m ³	Diff F g/m ² -s	Emission Rate ton/yr-ft ²	Emission Rate tons/year	Emission Rate lb/hr
Benzene	0.0933	78.11	0.25	8.11E-04	0.0018	5.73E-06	1.23E-08	3.98E-08	2.00E-04	4.56E-05
Toluene	0.0833	92.13	0.55	2.07E-03	0.067	2.51E-04	2.48E-08	8.02E-08	4.03E-04	9.20E-05
Ethylbenzene	0.0760	106.16	0.26	1.12E-03	0.057	2.46E-04	1.09E-08	3.51E-08	1.76E-04	4.03E-05
Total Xylene	0.0760	106.16	0.65	2.83E-03	0.037	1.61E-04	3.32E-08	1.07E-07	5.39E-04	1.23E-04
Total HAPs ⁽¹⁾	0.082	103.94	9.24	0.039	0.60	2.54E-03	4.93E-07	1.59E-06	8.00E-03	1.83E-03
1,2,4 - trimethylbenzene	0.066	120.19	0.48	0.002	0.00	0.00E+00	2.54E-08	8.21E-08	4.13E-04	9.42E-05
1,3,5 - trimethylbenzene	0.066	120.19	0.25	0.001	0.000	0.00E+00	1.34E-08	4.33E-08	2.18E-04	4.97E-05
Other VOCs (non-HAPs)	0.066	112.06	0.00	0.000	0.000	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
								Total HAPs	0.009	0.002
								Total VOCs	0.010	0.002

(1) Total HAPs Molecular weight and Ch, ppm is obtained by determining the average of total HAP constituents within the product.

Where: D = constituent diffusivity (from EPA Reference Link for Estimated Diffusion Coefficients in Air and Water; Assumed Pressure of 1 atm, and Temperature of 25.84 deg. C per 1995 met. data)

MW = constituent molecular weight

Ci = constituent concentration at liquid surface, ppm. (from manufacturer data)

Ci, g/m³, calculated from ideal gas law. Conservative temperature of 25.84 deg. C used based on 1995 meteorological data (Average plus Standard

Deviation).

Ch = constituent concentration at 0.61 meter, ppm. Assumed same as BHP's measured concentrations at H=1 m

H = distance above liquid surface = 0.61 m

					ntration in pp				
Chemical	Benzene	Toluene	Ethylbenz ene	Total Xylene	Total HAPs	1,2,4 - TMB	1,3,5 - TMB	Other VOCs	Notes
Escaid 110	0.00	0.00	0.00	0.00	10.00	0.00	0.00	0.00	confidential information supplied by ExxonMobil
ACORGA M5910	3.35	7.25	3.40	8.60	0.00	6.35	3.35	0.00	confidential information supplied by Cytec
Organic in ppm	0.25	0.55	0.26	0.65	9.24	0.48	0.25	0.00	composite concentration, Ci

SXEW - Raffinate Tank Emissions

Units: SXEW RT

Note: The highest emissions from any combination of tank contents is used in the facility-wide emissions summary table.

SX/EW Plant 900,000 Gallon Raffinate Tank Emissions - Escaid 110 and COGNIS LIX 684N-LV

The following calculations are based on the BHP Copper VOC study conducted in 1997. A summary and copy of the report is included in Section 7. Emissions from the use of Escaid 110 also represent emissions from the use of Escaid 115 since the chemical constituents are the same.

number of tanks	1	area o	f each tank	5,024	ft ²	total area	5,024	ft ²		
Chemical Product	Percent									
scaid 110	92%									
COGNIS LIX 684N-LV	8%									
Component	D cm ² /sec	MW g/gmole	Ci ppm	Ci g/m ³	Ch ppm	Ch g/m ³	Diff F g/m ² -s	Emission Rate ton/yr-ft ²	Emission Rate tons/year	Emission Rate lb/hr
Benzene	0.0933	78.11	0.00	0.00	0.0018	5.73E-06	-8.77E-11	-2.83E-10	-1.42E-06	-3.25E-07
oluene	0.0833	92.13	0.00	0.00	0.067	2.51E-04	-3.43E-09	-1.11E-08	-5.56E-05	-1.27E-05
thylbenzene	0.0760	106.16	0.00	0.00	0.057	2.46E-04	-3.06E-09	-9.89E-09	-4.97E-05	-1.13E-05
otal Xylene	0.0760	106.16	0.00	0.00	0.037	1.61E-04	-2.00E-09	-6.46E-09	-3.25E-05	-7.41E-06
Total HAPs ⁽¹⁾	0.082	103.9	9.24	0.039	0.600	2.54E-03	4.93E-07	1.59E-06	8.00E-03	1.83E-03
L,2,4 - trimethylbenzene	0.066	120.2	0.00	0.000	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
,3,5 - trimethylbenzene	0.066	120.2	3.31	0.016	0.000	0.00E+00	1.74E-07	5.63E-07	2.83E-03	6.45E-04
Other VOCs (non-HAPs)	0.066	112.1	4.56	0.021	0.000	0.00E+00	2.24E-07	7.23E-07	3.63E-03	8.30E-04
					•			Total HAPs	0.008	0.002
										0.002
1) Total HAPs Molecular weight and Ch	Where:	D = constituen	t diffusivity	(from EPA Re			Diffusion Coeffi	Total VOCs cients in Air and Water	0.014	0.002 0.003
1) Total HAPs Molecular weight and Ch	Where:	D = constituen 25.84 deg. C p MW = constitu Ci = constituer Ci, g/m ³ , calcu Deviation).	t diffusivity er 1995 me ent molect it concentr lated from nt concent	r (from EPA Re et. data) ular weight ation at liquid ideal gas law. ration at 0.61	eference Link f surface, ppm. Conservative meter, ppm. 7	or Estimated E (from manufa temperature o	ncturer data) f 25.84 deg. C i	cients in Air and Water	0.014 ; Assumed Pressure of eteorological data (Ave	0.003 1 atm, and Temperature o
	Where:	D = constituen 25.84 deg. C p MW = constitu Ci = constituen Ci, g/m ³ , calcu Deviation). Ch = constitue	t diffusivity er 1995 me ent molecu it concentr lated from nt concentu pove liquid	r (from EPA Re tt. data) ular weight ation at liquid ideal gas law. ration at 0.61 surface = 0.62	eference Link f surface, ppm. Conservative meter, ppm. 7	or Estimated D (from manufa temperature o Assumed same	ncturer data) f 25.84 deg. C i	cients in Air and Water used based on 1995 m	0.014 ; Assumed Pressure of eteorological data (Ave	0.003 1 atm, and Temperature o rage plus Standard
1) Total HAPs Molecular weight and Ch Chemical	Where:	D = constituen 25.84 deg. C p MW = constitu Ci = constituen Ci, g/m ³ , calcu Deviation). Ch = constitue	t diffusivity er 1995 me ent molect it concentr lated from nt concent	r (from EPA Re tt. data) ular weight ation at liquid ideal gas law. ration at 0.61 surface = 0.62	eference Link f surface, ppm. Conservative meter, ppm. 7 1 m	or Estimated D (from manufa temperature o Assumed same	ncturer data) f 25.84 deg. C i	cients in Air and Water used based on 1995 m	0.014 ; Assumed Pressure of eteorological data (Ave	0.003 1 atm, and Temperature o
Chemical	Where:	D = constituen 25.84 deg. C p MW = constitu Ci = constituer Ci, g/m ³ , calcu Deviation). Ch = constitue H = distance al	t diffusivity er 1995 me ent molecu it concentr lated from nt concentu pove liquid Ethylbenz	r (from EPA Re it. data) ular weight ation at liquid ideal gas law. ration at 0.61 surface = 0.6:	eference Link f surface, ppm. Conservative meter, ppm. 7 1 m	or Estimated D (from manufa temperature o Assumed same	acturer data) If 25.84 deg. C I e as BHP's meas	cients in Air and Water used based on 1995 m sured concentrations a	0.014 ; Assumed Pressure of eteorological data (Ave t H=1 m	0.003 1 atm, and Temperature o rage plus Standard
	Where: Benzene	D = constituen 25.84 deg. C p MW = constituer Ci = constituer Ci = g/m ³ , calcu Deviation). Ch = constitue H = distance al Toluene	t diffusivity er 1995 me ent molecu it concentri- lated from nt concentri pove liquid Ethylbenz ene	r (from EPA Re it. data) Jlar weight ation at liquid ideal gas law. ration at 0.61 surface = 0.62 Conce Total Xylene	eference Link f surface, ppm. Conservative meter, ppm. 1 m entration in ppi Total HAPs	n (from manufa temperature o Assumed same n 1,2,4 - TMB	icturer data) f 25.84 deg. C i e as BHP's meas 1,3,5 - TMB	cients in Air and Water used based on 1995 m sured concentrations a Other VOCs	0.014 ; Assumed Pressure of eteorological data (Ave t H=1 m	0.003 1 atm, and Temperature o rage plus Standard Notes n supplied by ExxonMobil

SXEW - Raffinate Tank Emissions

Units: SXEW RT

Note: The highest emissions from any combination of tank contents is used in the facility-wide emissions summary table.

SX/EW Plant 900,000 Gallon Raffinate Tank Emissions - Escaid 110 and ACORGA M5640

The following calculations are based on the BHP Copper VOC study conducted in 1997. A summary and copy of the report is included in Section 7. Emissions from the use of Escaid 110 also represent emissions from the use of Escaid 115 since the chemical constituents are the same.

number of tank	ks 1	area o	f each tank	5,024	ft ²	total area	5,024	ft ²		
Chemical Product	Percent									
Escaid 110	92%									
ACORGA M5640	8%									-
Component	D cm ² /sec	MW g/gmole	Ci ppm	Ci g/m³	Ch ppm	Ch g/m ³	Diff F g/m ² -s	Emission Rate ton/yr-ft ²	Emission Rate tons/year	Emission Rate lb/h
Benzene	0.0933	78.11	0.38	1.21E-03	0.0018	5.73E-06	1.84E-08	5.95E-08	2.99E-04	6.82E-05
oluene	0.0833	92.13	1.36	5.11E-03	0.067	2.51E-04	6.63E-08	2.14E-07	1.08E-03	2.46E-04
thylbenzene	0.0760	106.16	1.77	7.66E-03	0.057	2.46E-04	9.24E-08	2.98E-07	1.50E-03	3.42E-04
otal Xylene	0.0760	106.16	2.64	1.14E-02	0.037	1.61E-04	1.41E-07	4.54E-07	2.28E-03	5.21E-04
otal HAPs ⁽¹⁾	0.082	103.9	9.24	0.039	0.600	2.54E-03	4.93E-07	1.59E-06	8.00E-03	1.83E-03
1,2,4 - trimethylbenzene	0.066	120.2	0.00	0.000	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
1,3,5 - trimethylbenzene	0.066	120.2	0.00	0.000	0.000	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Other VOCs (non-HAPs)	0.066	112.1	0.00	0.000	0.000	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
	0.000									
1) Total HAPs Molecular weight and	Ch, ppm is obtained	by determining th					Niffucion Cooffi	Total HAPs Total VOCs	0.013 0.013	0.003 0.003
	Ch, ppm is obtained Where:	by determining th D = constituen 25.84 deg. C p MW = constitu Ci = constituer Ci, g/m ³ , calcu Deviation).	t diffusivity er 1995 me lent molect at concentr lated from nt concenti	r (from EPA Re it. data) ular weight ation at liquid ideal gas law. ration at 0.61	eference Link f surface, ppm. Conservative meter, ppm. 7	or Estimated E (from manufa temperature o	ncturer data) f 25.84 deg. C i	Total VOCs	0.013 ; Assumed Pressure of eteorological data (Ave	0.003
1) Total HAPs Molecular weight and	Ch, ppm is obtained Where:	by determining th D = constituen 25.84 deg. C p MW = constitu Ci = constituer Ci, g/m ³ , calcu Deviation). Ch = constitue	t diffusivity er 1995 me eent molecu at concentr lated from nt concentu bove liquid	r (from EPA Re tt. data) ular weight ation at liquid ideal gas law. ration at 0.61 surface = 0.62	eference Link f surface, ppm. Conservative meter, ppm. 7	or Estimated E (from manufa temperature o Assumed same	ncturer data) f 25.84 deg. C i	Total VOCs cients in Air and Water used based on 1995 m	0.013 ; Assumed Pressure of eteorological data (Ave	0.003 1 atm, and Temperature rage plus Standard
	Ch, ppm is obtained Where:	by determining th D = constituen 25.84 deg. C p MW = constitu Ci = constituer Ci, g/m ³ , calcu Deviation). Ch = constitue	t diffusivity er 1995 me lent molect at concentr lated from nt concenti	r (from EPA Re tt. data) ular weight ation at liquid ideal gas law. ration at 0.61 surface = 0.62	eference Link f surface, ppm. Conservative meter, ppm. 1 m	or Estimated E (from manufa temperature o Assumed same	ncturer data) f 25.84 deg. C i	Total VOCs cients in Air and Water used based on 1995 m	0.013 ; Assumed Pressure of eteorological data (Ave	0.003 1 atm, and Temperature
1) Total HAPs Molecular weight and Chemical	Ch, ppm is obtained Where:	by determining th D = constituen 25.84 deg. C p MW = constitu Ci = constituer Ci = constituer Ci, g/m ³ , calcu Deviation). Ch = constitue H = distance al	t diffusivity er 1995 me eent molecu at concentr lated from nt concentu bove liquid Ethylbenz	r (from EPA Re t. data) Jlar weight ation at liquid ideal gas law. ration at 0.61 surface = 0.62 Conce	eference Link f surface, ppm. Conservative meter, ppm. 1 m	n Estimated D (from manufa temperature o Assumed same	acturer data) If 25.84 deg. C I e as BHP's meas	Total VOCs cients in Air and Water used based on 1995 m sured concentrations a Other VOCs	0.013 ; Assumed Pressure of eteorological data (Ave t H=1 m	0.003 1 atm, and Temperature rage plus Standard
1) Total HAPs Molecular weight and	Ch, ppm is obtained Where: Benzene	by determining th D = constituen 25.84 deg. C p MW = constituer Ci = constituer Ci, g/m ³ , calcu Deviation). Ch = constitue H = distance al Toluene	t diffusivity er 1995 me eent molecu it concentri lated from nt concentri bove liquid Ethylbenz ene	r (from EPA Re t. data) Jlar weight ation at liquid ideal gas law. ration at 0.61 surface = 0.62 Conce Total Xylene	eference Link f surface, ppm. Conservative meter, ppm. 1 m entration in ppr Total HAPs	r Estimated E (from manufa temperature o Assumed same n 1,2,4 - TMB	icturer data) f 25.84 deg. C i e as BHP's meas 1,3,5 - TMB	Total VOCs cients in Air and Water used based on 1995 m sured concentrations a Other VOCs 0.00	0.013 ; Assumed Pressure of eteorological data (Ave t H=1 m	0.003 1 atm, and Temperature rage plus Standard Notes n supplied by ExxonMobil

SXEW - Raffinate Tank Emissions

Units: SXEW RT

Note: The highest emissions from any combination of tank contents is used in the facility-wide emissions summary table.

SX/EW Plant 900,000 Gallon Raffinate Tank Emissions - ORFOM SX-80 and ACORGA M5910

The following calculations are based on the BHP Copper VOC study conducted in 1997. A summary and copy of the report is included in Section 7. Emissions from the use of ACORGA M5910 also represent emissions from the use of ACORGA OR25 since the chemical constituents are the same.

number of tanks	1	area o	f each tank	5,024	ft ²	total area	5,024	ft²		
		1								
Chemical Product	Percent									
ORFOM SX-80	92%									
ACORGA M5910	8%									
Component	D cm ² /sec	MW g/gmole	Ci ppm	Ci g/m ³	Ch ppm	Ch g/m ³	Diff F g/m ² -s	Emission Rate ton/yr-ft ²	Emission Rate tons/year	Emission Rate lb/hr
Benzene	0.0933	78.11	4.87	1.55E-02	0.0018	5.73E-06	2.37E-07	7.66E-07	3.85E-03	8.79E-04
oluene	0.0833	92.13	5.17	1.94E-02	0.067	2.51E-04	2.62E-07	8.45E-07	4.25E-03	9.70E-04
thylbenzene	0.0760	106.16	4.88	2.11E-02	0.057	2.46E-04	2.60E-07	8.40E-07	4.22E-03	9.63E-04
otal Xylene	0.0760	106.16	5.27	2.28E-02	0.037	1.61E-04	2.82E-07	9.12E-07	4.58E-03	1.05E-03
otal HAPs ⁽¹⁾	0.082	103.94	0.00	0.000	0.60	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
,2,4 - trimethylbenzene	0.066	120.19	0.48	0.002	0.00	0.00E+00	2.54E-08	8.21E-08	4.13E-04	9.42E-05
,3,5 - trimethylbenzene	0.066	120.19	0.25	0.001	0.000	0.00E+00	1.34E-08	4.33E-08	2.18E-04	4.97E-05
Other VOCs (non-HAPs)	0.066	112.06	0.00	0.000	0.000	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
								Total HAPs	0.017	0.004
1) Total HAPs Molecular weight and Cl	Where:	D = constituer	t diffusivity	(from EPA Re			iffusion Coeffi	Total VOCs	0.018 ; Assumed Pressure of 1	0.004 1 atm, and Temperature of
1) Total HAPs Molecular weight and Cl	Where:	D = constituer 25.84 deg. C p MW = constitu Ci = constituer Ci, g/m ³ , calcu Deviation).	t diffusivity er 1995 me ient molect ht concentr lated from nt concentr	r (from EPA Re it. data) ular weight ation at liquid ideal gas law. ration at 0.61	eference Link f surface, ppm. Conservative meter, ppm. 7	or Estimated E (from manufa cemperature o	icturer data) f 25.84 deg. C i	cients in Air and Water	; Assumed Pressure of eteorological data (Ave	1 atm, and Temperature of
1) Total HAPs Molecular weight and Cl	Where:	D = constituer 25.84 deg. C p MW = constituer Ci = constituer Ci, g/m ³ , calcu Deviation). Ch = constituer	t diffusivity er 1995 me uent molecu nt concentr lated from nt concentu bove liquid	r (from EPA Re tt. data) ular weight ation at liquid ideal gas law. ration at 0.61 surface = 0.62	eference Link f surface, ppm. Conservative meter, ppm. 7	or Estimated D (from manufa emperature o Assumed same	icturer data) f 25.84 deg. C i	cients in Air and Water used based on 1995 m	; Assumed Pressure of eteorological data (Ave	1 atm, and Temperature of
1) Total HAPs Molecular weight and Cl	Where:	D = constituer 25.84 deg. C p MW = constituer Ci = constituer Ci, g/m ³ , calcu Deviation). Ch = constituer	t diffusivity er 1995 me ient molect ht concentr lated from nt concentr	r (from EPA Re tt. data) ular weight ation at liquid ideal gas law. ration at 0.61 surface = 0.62	eference Link f surface, ppm. Conservative meter, ppm. 7 1 m	or Estimated D (from manufa emperature o Assumed same	icturer data) f 25.84 deg. C i	cients in Air and Water used based on 1995 m	; Assumed Pressure of eteorological data (Ave	1 atm, and Temperature of
Chemical	Where:	D = constituer 25.84 deg. C p MW = constituer Ci = constituer Ci, g/m ³ , calcu Deviation). Ch = constituer H = distance a	t diffusivity er 1995 me uent molecu nt concentr lated from nt concentu bove liquid Ethylbenz	r (from EPA Re it. data) ular weight ation at liquid ideal gas law. ration at 0.61 surface = 0.62	eference Link f surface, ppm. Conservative meter, ppm. 7 1 m	n (from manufa eemperature o Assumed same	icturer data) f 25.84 deg. C i e as BHP's meas	cients in Air and Water used based on 1995 m sured concentrations a Other VOCs	; Assumed Pressure of eteorological data (Ave t H=1 m	1 atm, and Temperature of rage plus Standard
	Where: Benzene	D = constituer 25.84 deg. C p MW = constituer Ci = constituer Ci, g/m ³ , calcu Deviation). Ch = constituer H = distance a	t diffusivity er 1995 me ient molecu it concentri lated from nt concentri bove liquid Ethylbenz ene	r (from EPA Re t. data) Jlar weight ation at liquid ideal gas law. ration at 0.61 surface = 0.63 <u>Conce</u> Total Xylene	eference Link f surface, ppm. Conservative meter, ppm. 1 m entration in ppr Total HAPs	n (from manufa eemperature o Assumed same n 1,2,4 - TMB	icturer data) f 25.84 deg. C i e as BHP's meas 1,3,5 - TMB	cients in Air and Water used based on 1995 m sured concentrations a Other VOCs 0.00	; Assumed Pressure of eteorological data (Ave t H=1 m	1 atm, and Temperature of rage plus Standard Notes

SXEW - Raffinate Tank Emissions

Units: SXEW RT

		area or	each tank	5,024	ft²	total area	5,024	ft²		
Chemical Product	Percent									
ORFOM SX-80	92%									
COGNIS LIX 684N-LV	8%									
Component	D cm ² /sec	MW g/gmole	Ci ppm	Ci g/m³	Ch ppm	Ch g/m ³	Diff F g/m ² -s	Emission Rate ton/yr-ft ²	Emission Rate tons/year	Emission Rate lb/hr
Benzene	0.0933	78.11	4.62	0.01	0.0018	5.73E-06	2.25E-07	7.26E-07	3.65E-03	8.33E-04
Toluene	0.0833	92.13	4.62	0.02	0.067	2.51E-04	2.33E-07	7.54E-07	3.79E-03	8.65E-04
Ethylbenzene	0.0760	106.16	4.62	0.02	0.057	2.46E-04	2.46E-07	7.95E-07	3.99E-03	9.11E-04
Total Xylene	0.0760	106.16	4.62	0.02	0.037	1.61E-04	2.47E-07	7.98E-07	4.01E-03	9.15E-04
Total HAPs ⁽¹⁾	0.082	103.9	3.31	0.014	0.600	2.54E-03	1.54E-07	4.99E-07	2.51E-03	5.72E-04
1,2,4 - trimethylbenzene	0.066	120.2	0.00	0.000	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
1,3,5 - trimethylbenzene	0.066	120.2	0.00	0.000	0.000	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Other VOCs (non-HAPs)	0.066	112.1	4.56	0.021	0.000	0.00E+00	2.24E-07	7.23E-07	3.63E-03	8.30E-04
								Total HAPs	0.018	0.004
								Total VOCs	0.022	0.005

				Conce	ntration in pp	n			
Chemical	Benzene	Toluene	Toluene Ethylbenz ene Total Xylene Total HAPs 1,2,4 - TM		1,2,4 - TMB	1,3,5 - TMB	Other VOCs	Notes	
ORFOM SX-80	5.00	5.00	5.00	5.00	0.00	0.00	0.00	0.00	confidential information supplied by Chevron Phillips
COGNIS LIX 684N-LV	0.00	0.00	0.00	0.00	43.50	0.00	0.00	60.00	confidential information supplied by Cytec
Organic in ppm	4.62	4.62	4.62	4.62	3.31	0.00	0.00	4.56	composite concentration, Ci

SXEW - Raffinate Tank Emissions

Units: SXEW RT

	e based on the BHP C	Copper VOC stu	idy conduct	ed in 1997. A	summary and	copy of the re	eport is include	d in Section 7.		
number of t	anks 1	area o	f each tank	5,024	ft ²	total area	5,024	ft ²]	
Chemical Product	Percent									
DRFOM SX-80	92%									
CORGA M5640	8%									
Component	D cm ² /sec	MW g/gmole	Ci ppm	Ci g/m ³	Ch ppm	Ch g/m ³	Diff F g/m ² -s	Emission Rate ton/yr-ft ²	Emission Rate tons/year	Emission Rate lb/hr
Benzene	0.0933	78.11	5.00	1.59E-02	0.0018	5.73E-06	2.43E-07	7.86E-07	3.95E-03	9.02E-04
oluene	0.0833	92.13	5.98	2.25E-02	0.067	2.51E-04	3.03E-07	9.79E-07	4.92E-03	1.12E-03
thylbenzene	0.0760	106.16	6.39	2.77E-02	0.057	2.46E-04	3.41E-07	1.10E-06	5.54E-03	1.27E-03
otal Xylene	0.0760	106.16	7.26	3.14E-02	0.037	1.61E-04	3.90E-07	1.26E-06	6.32E-03	1.44E-03
otal HAPs ⁽¹⁾	0.082	103.9	0.00	0.000	0.600	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
,2,4 - trimethylbenzene	0.066	120.2	0.00	0.000	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
,3,5 - trimethylbenzene	0.066	120.2	0.00	0.000	0.000	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Other VOCs (non-HAPs)	0.066	112.1	0.00	0.000	0.000	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
· · ·								Total HAPs	0.021	0.005
								Total VOCs	0.021	0.005
	Where:	25.84 deg. C p	er 1995 me Jent molect	t. data) ular weight				cients in Air and Water	r; Assumed Pressure of	1 atm, and Temperature of
		Ci = constituer Ci, g/m ³ , calcu Deviation).	lated from nt concent	ideal gas law. ration at 0.61 surface = 0.62	Conservative meter, ppm. 7	emperature o	f 25.84 deg. C ι	used based on 1995 m	eteorological data (Ave It H=1 m	rage plus Standard
Chemical		Ci = constituer Ci, g/m ³ , calcu Deviation). Ch = constitue	lated from nt concent bove liquid	ideal gas law. ration at 0.61 surface = 0.62 Conce	Conservative	emperature o	f 25.84 deg. C ι			
Chemical		Ci = constituer Ci, g/m ³ , calcu Deviation). Ch = constitue	lated from	ideal gas law. ration at 0.61 surface = 0.62	Conservative meter, ppm. 7	emperature o	f 25.84 deg. C ι			rage plus Standard Notes
Chemical DRFOM SX-80		Ci = constituer Ci, g/m ³ , calcu Deviation). Ch = constitue H = distance a	lated from nt concent bove liquid Ethylbenz	ideal gas law. ration at 0.61 surface = 0.62 Conce	Conservative meter, ppm. 7 1 m	Assumed same	f 25.84 deg. C u as BHP's meas	sured concentrations a	tt H=1 m	Notes
	Benzene	Ci = constituer Ci, g/m ³ , calcu Deviation). Ch = constitue H = distance a Toluene	lated from nt concent bove liquid Ethylbenz ene	ideal gas law. ration at 0.61 surface = 0.62 Conce Total Xylene	Conservative meter, ppm. / I m entration in ppr Total HAPs	n 1,2,4 - TMB	f 25.84 deg. C u as BHP's meas 1,3,5 - TMB	ured concentrations a	tt H=1 m	Notes on supplied by Chevron Phillips

White House Crushing and Screening Plant Unit: WH Crush (Loading & Unloading)

Basis					Conversion	ns
Annual throughput of material to plant	4,380,000.00	US tons/yr	1	1 US ton =	2000	lb
Daily throughput of material to plant	12000	US tons/day				
Hourly throughput of material to plant	500	US tons/hr				
Annual Operating Days	365	days				
Daily Operating Hours	12	hours				
White House Cusher - Conveyor						

	Em	ission Factors (Ib,	/ton)
White House Cusher - Screens	TSP	PM10	PM2.5
Truck Unloading - Fragmented Stone 1	4.18E-05	1.60E-05	2.40E-06
Truck Loading (Drop Equation) ²	0.067	3.16E-02	0.0048

Federal Hazardous Air Pollutants and New Mexico Toxic Air Pollutants Content of Ore for Mill (%)⁽¹⁾

Antimony	Arsenic	Barium	Cadmium	Chromium	Cobalt	Copper	Lead	Manganese	Nickel	Silver	Vanadium	Zinc
7.00E-04	4.00E-04	1.90E-03	2.00E-04	2.50E-03	2.00E-03	5.90E-01	2.70E-03	6.62E-02	1.20E-03	1.00E-04	4.30E-03	1.10E-02

	Hourly Throughput	Operating	Controlled or								Pollutant Er	nissions lb/hr							
Load ID Number	(tons/hr)	Efficiency	Uncontrolled	TSP	PM ₁₀	PM _{2.5}	Antimony	Arsenic	Barium	Cadmium	Chromium	Cobalt	Copper	Lead	Manganese	Nickel	Silver	Vanadium	Zinc
Unload	312.48	0.00%	uncontrolled	0.01	0.0050	7.50E-04	9.14E-08	5.22E-08	2.48E-07	2.61E-08	3.27E-07	2.61E-07	7.71E-05	3.53E-07	8.65E-06	1.57E-07	1.31E-08	5.62E-07	1.44E-06
Load	312.48	0.00%	uncontrolled	20.87	9.87	1.49E+00	1.46E-04	8.35E-05	3.96E-04	4.17E-05	5.22E-04	4.17E-04	1.23E-01	5.63E-04	1.38E-02	2.50E-04	2.09E-05	8.97E-04	2.30E-03
Totals				20.88	9.87	1.50	1.46E-04	8.35E-05	3.97E-04	4.18E-05	5.22E-04	4.18E-04	1.23E-01	5.64E-04	1.38E-02	2.51E-04	2.09E-05	8.98E-04	2.30E-03

	Hourly Throughput	Operating	Controlled or								Pollutant En	nissions ton/yr							
Load ID Number	(tons/hr)	Efficiency	Uncontrolled	TSP	PM ₁₀	PM _{2.5}	Antimony	Arsenic	Barium	Cadmium	Chromium	Cobalt	Copper	Lead	Manganese	Nickel	Silver	Vanadium	Zinc
Unload	312.48	0.00%	uncontrolled	0.03	0.011	0.0016	2.00E-07	1.14E-07	5.43E-07	5.72E-08	7.15E-07	5.72E-07	1.69E-04	7.72E-07	1.89E-05	3.43E-07	2.86E-08	1.23E-06	3.15E-06
Load	312.48	0.00%	uncontrolled	45.70	21.61	3.27	3.20E-04	1.83E-04	8.68E-04	9.14E-05	1.14E-03	9.14E-04	2.70E-01	1.23E-03	3.03E-02	5.48E-04	4.57E-05	1.96E-03	5.03E-03
Totals				45.73	21.62	3.27	3.20E-04	1.83E-04	8.69E-04	9.15E-05	1.14E-03	9.15E-04	2.70E-01	1.23E-03	3.03E-02	5.49E-04	4.57E-05	1.97E-03	5.03E-03

Notes

where

¹The emission factors for material handling are based on AP-42, Chapter 11.19.2, Table 11.19.2-2 Crushed Stone Processing and Pulverized Mineral Processing (August 2004) for Truck Unloading-Fragmented Stone. The basis for these emission factors is the PM10 emission factor for truck unloading of fragmented stone in Table 11.19.2-2. This table provides a PM10 emission factor, but does not provide PM2.5 or TSP emission factors. PM2.5 emission factor was calculated from the available PM10 emission factor subject and to 0.15 PM2.5/PM10 as recommended in the Background Document for AP-42, Chapter 13.2.4, Revisions to Fine Fraction Ratios Used for AP-42 Fugitive Dust Emission Factors - November 2006. An uncontrolled TSP emission factor was calculated from the available uncontrolled PM10 emission factors in Table 11.19.2-2. Tertiany Crushing (0.0054/0.0024 = 2.25); Fine Grushing (0.0390/0.0150 = 2.60); Screening (0.025/0.0087 = 2.87; and Conveyor Transfer Point 0.0030/0.00101 = 2.73).

² Material handling uncontrolled emission factors based on USEPA AP-42 USEPA's Drop Equation in AP-42, Section 13.2.4. Drop equation is as follows:

	(11) 1.3		TSP	PM10	PM _{2.5}	
(lb)		E	0.067	0.032	0.0048	lbs/ton
$E = k \cdot 0.0032$	· (5)	k	0.74	0.35	0.053	unitless
(ton)	(<u>M</u>) ^{1.4}	U	6.95	6.95	6.95	mph
	(2)	м	0.25	0.25	0.25	%

E = Emission Factor (lbs/ton)

k = Particle Size Multiplier, dimensionless (PM25 = 0.053, PM10 = 0.35, PM=0.74)

U = Mean Wind Speed = 6.95 mph (Bayard, NM)

M = Moisture Content = 0.25% Assuming the lowest possible moisture content to be conservative.

_

White House Crushing and Screening Plant Unit: WH Crush (Conveyor Transfer Points)

в	asis		Con	versions	
Annual throguhput of material to plant	4,380,000.00	US tons/yr	1 US ton =	2000	lb
Daily throughput of material to plant	12000	US tons/day			
Hourly throughput of material to plant	500	US tons/hr			
Annual Operating Days	365	days			
Daily Operating Hours	12	hours			

	Emission Factors	
TSP (lb/ton)	PM ₁₀ (lb/ton)	PM _{2.5} (lb/ton)
0.003	0.0011	0.000165
0.00014	0.000046	0.000013
0.067	0.032	0.005
	0.003	TSP (lb/ton) PM ₁₀ (lb/ton) 0.003 0.0011 0.00014 0.000046

Federal Hazardous Air Pollutants and New Mexico Toxic Air Pollutants Content of Ore for Mill (%) Land Manage

reactaritatarac	All I Onuturi		ALCO TOALC ALL T	And the second contents	0.	<i>,</i> , , , , , , , , , ,						
Antimony	Arsenic	Barium	Cadmium	Chromium	Cobalt	Copper	Lead	Manganese	Nickel	Silver	Vanadium	Zinc
7.00E-04	4.00E-04	1.90E-03	2.00E-04	2.50E-03	2.00E-03	5.90E-01	2.70E-03	6.62E-02	1.20E-03	1.00E-04	4.30E-03	1.10E-02

	Transfer Point ⁴			Controlled or								Pollutant E	missions lb/hr							
Conveyor ID Number	Transfer Point	Hourly Throughput (tons/hr)	Operating efficiency	Uncontrolled	TSP	PM10	PM _{2.5}	Antimony	Arsenic	Barium	Cadmium	Chromium	Cobalt	Copper	Lead	Manganese	Nickel	Silver	Vanadium	Zinc
Conv-1	а	38.08	0.00%	uncontrolled	0.11	0.04	0.01	8.00E-07	4.57E-07	2.17E-06	2.28E-07	2.86E-06	2.28E-06	6.74E-04	3.08E-06	7.56E-05	1.37E-06	1.14E-07	4.91E-06	1.26E-05
COIN-1	c	100.00	0.00%	uncontrolled	6.68	3.16	0.48	4.67E-05	2.67E-05	1.27E-04	1.34E-05	1.67E-04	1.34E-04	3.94E-02	1.80E-04	4.42E-03	8.01E-05	6.68E-06	2.87E-04	7.35E-04
Conv-2	а	274.40	0.00%	uncontrolled	0.82	0.30	0.05	5.76E-06	3.29E-06	1.56E-05	1.65E-06	2.06E-05	1.65E-05	4.86E-03	2.22E-05	5.45E-04	9.88E-06	8.23E-07	3.54E-05	9.06E-05
conv r	b	274.40	0.00%	uncontrolled	0.82	0.30	0.05	5.76E-06	3.29E-06	1.56E-05	1.65E-06	2.06E-05	1.65E-05	4.86E-03	2.22E-05	5.45E-04	9.88E-06	8.23E-07	3.54E-05	9.06E-05
Conv-3	а	300.16	0.00%	uncontrolled	0.90	0.33	0.05	6.30E-06	3.60E-06	1.71E-05	1.80E-06	2.25E-05	1.80E-05	5.31E-03	2.43E-05	5.96E-04	1.08E-05	9.00E-07	3.87E-05	9.91E-05
conv 5	b	300.16	0.00%	uncontrolled	0.90	0.33	0.05	6.30E-06	3.60E-06	1.71E-05	1.80E-06	2.25E-05	1.80E-05	5.31E-03	2.43E-05	5.96E-04	1.08E-05	9.00E-07	3.87E-05	9.91E-05
Conv-4	а	300.16	0.00%	uncontrolled	0.90	0.33	0.05	6.30E-06	3.60E-06	1.71E-05	1.80E-06	2.25E-05	1.80E-05	5.31E-03	2.43E-05	5.96E-04	1.08E-05	9.00E-07	3.87E-05	9.91E-05
conv 4	b	300.16	0.00%	uncontrolled	0.90	0.33	0.05	6.30E-06	3.60E-06	1.71E-05	1.80E-06	2.25E-05	1.80E-05	5.31E-03	2.43E-05	5.96E-04	1.08E-05	9.00E-07	3.87E-05	9.91E-05
Conv-5	а	67.20	0.00%	uncontrolled	0.20	0.07	0.01	1.41E-06	8.06E-07	3.83E-06	4.03E-07	5.04E-06	4.03E-06	1.19E-03	5.44E-06	1.33E-04	2.42E-06	2.02E-07	8.67E-06	2.22E-05
com 5	c	100.00	0.00%	uncontrolled	6.68	3.16	0.48	4.67E-05	2.67E-05	1.27E-04	1.34E-05	1.67E-04	1.34E-04	3.94E-02	1.80E-04	4.42E-03	8.01E-05	6.68E-06	2.87E-04	7.35E-04
Conv-6	а	81.76	0.00%	uncontrolled	0.25	0.09	0.01	1.72E-06	9.81E-07	4.66E-06	4.91E-07	6.13E-06	4.91E-06	1.45E-03		1.62E-04	2.94E-06	2.45E-07	1.05E-05	2.70E-05
convo	c	100.00	0.00%	uncontrolled	6.68	3.16	0.48	4.67E-05	2.67E-05	1.27E-04	1.34E-05	1.67E-04	1.34E-04	3.94E-02	1.80E-04	4.42E-03	8.01E-05	6.68E-06	2.87E-04	7.35E-04
Conv-7	а	62.72	0.00%	uncontrolled	0.19	0.07	0.01	1.32E-06	7.53E-07	3.58E-06	3.76E-07	4.70E-06	3.76E-06	1.11E-03	5.08E-06	1.25E-04	2.26E-06	1.88E-07	8.09E-06	2.07E-05
60110-7	c	100.00	0.00%	uncontrolled	6.68	3.16	0.48	4.67E-05	2.67E-05	1.27E-04	1.34E-05	1.67E-04	1.34E-04	3.94E-02	1.80E-04	4.42E-03	8.01E-05	6.68E-06	2.87E-04	7.35E-04
Conv-8	а	61.60	0.00%	uncontrolled	0.18	0.07	0.01	1.29E-06	7.39E-07	3.51E-06	3.70E-07	4.62E-06	3.70E-06	1.09E-03	4.99E-06	1.22E-04	2.22E-06	1.85E-07	7.95E-06	2.03E-05
C010-8	c	100.00	0.00%	uncontrolled	6.68	3.16	0.48	4.67E-05	2.67E-05	1.27E-04	1.34E-05	1.67E-04	1.34E-04	3.94E-02	1.80E-04	4.42E-03	8.01E-05	6.68E-06	2.87E-04	7.35E-04
Conv-9	а	25.76	0.00%	uncontrolled	0.08	0.03	0.00	5.41E-07	3.09E-07	1.47E-06	1.55E-07	1.93E-06	1.55E-06	4.56E-04	2.09E-06	5.12E-05	9.27E-07	7.73E-08	3.32E-06	8.50E-06
C0110-5	b	25.76	0.00%	uncontrolled	0.08	0.03	0.00	5.41E-07	3.09E-07	1.47E-06	1.55E-07	1.93E-06	1.55E-06	4.56E-04	2.09E-06	5.12E-05	9.27E-07	7.73E-08	3.32E-06	8.50E-06
	Total							2.78E-04	1.59E-04	7.55E-04	7.95E-05	9.93E-04	7.95E-04	2.34E-01	1.07E-03	2.63E-02	4.77E-04	3.97E-05	1.71E-03	4.37E-03

				Controlled or								Pollutant Er	nissions ton/yr							
Conveyor ID Number	Transfer Point	Hourly Throughput (tons/hr)	Operating efficiency	Uncontrolled	TSP	PM10	PM _{2.5}	Antimony	Arsenic	Barium	Cadmium	Chromium	Cobalt	Copper	Lead	Manganese	Nickel	Silver	Vanadium	Zinc
Conv-1	а	38.08	0.00%	uncontrolled	0.25	0.09	0.01	1.75E-06	1.00E-06	4.75E-06	5.00E-07	6.25E-06	5.00E-06	1.48E-03	6.76E-06	1.66E-04	3.00E-06	2.50E-07	1.08E-05	2.75E-05
0114-1	c	100.00	0.00%	uncontrolled	14.62	6.92	1.05	1.02E-04	5.85E-05	2.78E-04	2.92E-05	3.66E-04	2.92E-04	8.63E-02	3.95E-04	9.68E-03	1.75E-04	1.46E-05	6.29E-04	1.61E-03
Conv-2	а	274.40	0.00%	uncontrolled	1.80	0.66	0.10	1.26E-05	7.21E-06	3.43E-05	3.61E-06	4.51E-05	3.61E-05	1.06E-02	4.87E-05	1.19E-03	2.16E-05	1.80E-06	7.75E-05	1.98E-04
C0114-2	b	274.40	0.00%	uncontrolled	1.80	0.66	0.10	1.26E-05	7.21E-06	3.43E-05	3.61E-06	4.51E-05	3.61E-05	1.06E-02	4.87E-05	1.19E-03	2.16E-05	1.80E-06	7.75E-05	1.98E-04
Conv-3	а	300.16	0.00%	uncontrolled	1.97	0.72	0.11	1.38E-05	7.89E-06	3.75E-05	3.94E-06	4.93E-05	3.94E-05	1.16E-02	5.32E-05	1.31E-03	2.37E-05	1.97E-06	8.48E-05	2.17E-04
2011-5	b	300.16	0.00%	uncontrolled	1.97	0.72	0.11	1.38E-05	7.89E-06	3.75E-05	3.94E-06	4.93E-05	3.94E-05	1.16E-02	5.32E-05	1.31E-03	2.37E-05	1.97E-06	8.48E-05	2.17E-04
Conv-4	а	300.16	0.00%	uncontrolled	1.97	0.72	0.11	1.38E-05	7.89E-06	3.75E-05	3.94E-06	4.93E-05	3.94E-05	1.16E-02	5.32E-05	1.31E-03	2.37E-05	1.97E-06	8.48E-05	2.17E-04
2011-4	b	300.16	0.00%	uncontrolled	1.97	0.72	0.11	1.38E-05	7.89E-06	3.75E-05	3.94E-06	4.93E-05	3.94E-05	1.16E-02	5.32E-05	1.31E-03	2.37E-05	1.97E-06	8.48E-05	2.17E-04
Conv-5	а	67.20	0.00%	uncontrolled	0.44	0.16	0.02	3.09E-06	1.77E-06	8.39E-06	8.83E-07	1.10E-05	8.83E-06	2.60E-03	1.19E-05	2.92E-04	5.30E-06	4.42E-07	1.90E-05	4.86E-05
conv 5	c	100.00	0.00%	uncontrolled	14.62	6.92	1.05	1.02E-04	5.85E-05	2.78E-04	2.92E-05	3.66E-04	2.92E-04	8.63E-02	3.95E-04	9.68E-03	1.75E-04	1.46E-05	6.29E-04	1.61E-03
Conv-6	а	81.76	0.00%	uncontrolled	0.54	0.20	0.03	3.76E-06	2.15E-06	1.02E-05	1.07E-06	1.34E-05	1.07E-05	3.17E-03	1.45E-05	3.56E-04	6.45E-06	5.37E-07	2.31E-05	5.91E-05
com o	c	100.00	0.00%	uncontrolled	14.62	6.92	1.05	1.02E-04	5.85E-05	2.78E-04	2.92E-05	3.66E-04	2.92E-04	8.63E-02	3.95E-04	9.68E-03	1.75E-04	1.46E-05	6.29E-04	1.61E-03
Conv-7	а	62.72	0.00%	uncontrolled	0.41	0.15	0.02	2.88E-06	1.65E-06	7.83E-06	8.24E-07	1.03E-05	8.24E-06	2.43E-03	1.11E-05	2.73E-04	4.94E-06	4.12E-07	1.77E-05	4.53E-05
com /	c	100.00	0.00%	uncontrolled	14.62	6.92	1.05	1.02E-04	5.85E-05	2.78E-04	2.92E-05	3.66E-04	2.92E-04	8.63E-02	3.95E-04	9.68E-03	1.75E-04	1.46E-05	6.29E-04	1.61E-03
Conv-8	а	61.60	0.00%	uncontrolled	0.40	0.15	0.02	2.83E-06	1.62E-06	7.69E-06	8.09E-07	1.01E-05	8.09E-06	2.39E-03	1.09E-05	2.68E-04	4.86E-06	4.05E-07	1.74E-05	4.45E-05
2011-8	c	100.00	0.00%	uncontrolled	14.62	6.92	1.05	1.02E-04	5.85E-05	2.78E-04	2.92E-05	3.66E-04	2.92E-04	8.63E-02	3.95E-04	9.68E-03	1.75E-04	1.46E-05	6.29E-04	1.61E-03
Conv-9	а	25.76	0.00%	uncontrolled	0.17	0.06	0.01	1.18E-06	6.77E-07	3.22E-06	3.38E-07	4.23E-06	3.38E-06	9.99E-04	4.57E-06	1.12E-04	2.03E-06	1.69E-07	7.28E-06	1.86E-05
2010-5	b	25.76	0.00%	uncontrolled	0.17	0.06	0.01	1.18E-06	6.77E-07	3.22E-06	3.38E-07	4.23E-06	3.38E-06	9.99E-04	4.57E-06	1.12E-04	2.03E-06	1.69E-07	7.28E-06	1.86E-05
	То		87.00	39.67	6.00	6.09E-04	3.48E-04	1.65E-03	1.74E-04	2.17E-03	1.74E-03	5.13E-01	2.35E-03	5.76E-02	1.04E-03	8.70E-05	3.74E-03	9.57E-03		

Notes

¹Emission factors obtained from AP-42 Table 11.19-2.2

¹ Emission factors obtained from A=42 Table 11.9-2.2 ² PM25 emission factors acalculated from the available PM10 emission factor using the ratio of 0.15 PM2.5/PM10 as recommended in the Background Document for AP-42, Chapter 13.2, Revisions to Fine Fraction Ratios Used for AP-42 Fugitive Dust Emission Factors - Nevember 2006. ² Controlled sources (with wet suppression) are to been that are and of the processing plant that employs current wet suppression technology similar to the study group. The moisture content of the study group without wet suppression systems operating (uncontrolled) ranged from 0.21 to 1.3 percent, and the same facilities correcting wet suppression systems (controlled) ranged from 0.55 to 2.8 greenet. Due to carry over of the small amount of mosture requires (has been shown that each source, with the exciption of studes, does not need to employ floets water sprays. Although the moststare content was the only variable measured, other process fedures may have a current on the site of the rank source in the end of the rank source in the end of the rank source in the end of the rank source in the rank source in the end of the rank source in the rank s

employ substandard control measures as indicated by visual observations should use the uncontrolled factor with appropriate control efficiency that best reflects the effectiveness of ⁴ There will be 5 piles and associated drop points. However, each pile has a fraction of the total mass, so the total throughput of 500 tph divided by 5 drop points equals 100 tph per each drop point ⁵ Conveyor drop point uncontrolled emission factors based on USEPA AP-42 USEPA's Drop Equation in AP-42, Section 13.2.4. Drop equation is as follows:

where,

 $E\left(\frac{lb}{ton}\right) = k \cdot 0.0032 - \frac{\left(\frac{U}{5}\right)^{1.4}}{\left(\frac{M}{2}\right)^{1.4}}$

	TSP	PM ₁₀	PM _{2.5}	
E	0.067	0.032	0.0048	lbs/ton
k	0.74	0.35	0.053	unitless
U	6.95	6.95	6.95	mph
м	0.25	0.25	0.25	%

E = Emission Factor (lbs/ton)

k = Particle Size Multiplier, dimensionless (PM25= 0.053, PM10= 0.35, PM=0.74)

U = Mean Wind Speed = 6.95 mph (Bayard, NM)

M = Moisture Content = 0.25% Assuming the lowest possible moisture content to be conservative.

⁶ The conveyor drop point (aggregate handling) AP-42 emission factors takes into account the following activities: 1) loading of aggregate onto the storage pile; 2) wind erosion associated with the pile; 3) load out of aggregate for shipment or for return to the process.

⁷ TSP, PM₂₀, and controlled PM₂₃ emission factors from AP-42, Chapter 11.19.2, Cushed Stone Processing and Pulverized Mineral Processing, Table 11.19.2-2, Screening: uncontrolled PM₂₃ emission factor calculated from uncontrolled PM₂₃ emission factor using the ratio of 0.15 PM₂₂/PM₂₀ as recommended in Background Document for AP-42, Chapter 13.2-4, Revisions for Fire Fraction Ratios Used for AP-42 Fugitive Dust Emission Factors - November 2006. Total Controlled Emissions include emissions from uncontrolled aggregate handling.

⁸ a = the load point conveyor belt; b = the release point of the conveyor belt; c = conveyor drop point into aggregate pile

White House Crushing and Screening Plant Unit: WH Crush (Crushers)

12000 U 500 U 365 C 12 H	US tons/yr US tons/day US tons/hr days hours	-	1 US ton =	2000	lb
500 U 365 C 12 H	US tons/hr days				
365 c	days				
12					
	hours				
	n Factors (lb/ton)				
TSP	PM10	PM2.5	-		
0.0054	0.0024	0.0024			
0.0012	0.00054	0.00054			
0.0054	0.0024	0.0024			
0.0012	0.00054	0.00010	1		
			-		
	0.0054 0.0012				

Federal Hazardous Air Pollutants and New Mexico Toxic Air Pollutants Content of Ore for Mill (%)

Antimon	y	Arsenic	Barium	Cadmium	Chromium	Cobalt	Copper	Lead	Manganese	Nickel	Silver	Vanadium	Zinc
7.00E-04	4	4.00E-04	1.90E-03	2.00E-04	2.50E-03	2.00E-03	5.90E-01	2.70E-03	6.62E-02	1.20E-03	1.00E-04	4.30E-03	1.10E-02

Crusher ID Number	Hourly Throughput	Operating	Material	Controlled or								Pollut	ant Emissions	b/hr						
erasiter ib Hamber	(tons/hr)	efficiency	handling Size	Uncontrolled	TSP	PM ₁₀	PM _{2.5}	Antimony	Arsenic	Barium	Cadmium	Chromium	Cobalt	Copper	Lead	Manganese	Nickel	Silver	Vanadium	Zinc
Crush-1	183.68	0.00%	Primary	uncontrolled	0.99	0.44	0.44	6.94E-06	3.97E-06	1.88E-05	1.98E-06	2.48E-05	1.98E-05	5.85E-03	2.68E-05	6.57E-04	1.19E-05	9.92E-07	4.27E-05	1.09E-04
Crush-2	300.16	0.00%	Tertiary	uncontrolled	1.62	0.72	0.72	1.13E-05	6.48E-06	3.08E-05	3.24E-06	4.05E-05	3.24E-05	9.56E-03	4.38E-05	1.07E-03	1.95E-05	1.62E-06	6.97E-05	1.78E-04
	Totals				2.61	1.16	1.16	1.83E-05	1.05E-05	4.96E-05	5.23E-06	6.53E-05	5.23E-05	1.54E-02	7.05E-05	1.73E-03	3.14E-05	2.61E-06	1.12E-04	2.87E-04

Crusher ID Number	Hourly Throughput	Operating	Material	Controlled or								Pollut	ant Emissions to	on/yr						
Crusher ID Number	(tons/hr)	efficiency	handling Size	Uncontrolled	TSP	PM ₁₀	PM _{2.5}	Antimony	Arsenic	Barium	Cadmium	Chromium	Cobalt	Copper	Lead	Manganese	Nickel	Silver	Vanadium	Zinc
Crush-1	183.68	0.00%	Primary	uncontrolled	2.17	0.97	0.97	1.52E-05	8.69E-06	4.13E-05	4.34E-06	5.43E-05	4.34E-05	1.28E-02	5.86E-05	1.44E-03	2.61E-05	2.17E-06	9.34E-05	2.39E-04
Crush-2	300.16	0.00%	Tertiary	uncontrolled	3.55	1.58	1.58	2.48E-05	1.42E-05	6.74E-05	7.10E-06	8.87E-05	7.10E-05	2.09E-02	9.58E-05	2.35E-03	4.26E-05	3.55E-06	1.53E-04	3.90E-04
	Totals					2.54	2.54	4.01E-05	2.29E-05	1.09E-04	1.14E-05	1.43E-04	1.14E-04	3.38E-02	1.54E-04	3.79E-03	6.87E-05	5.72E-06	2.46E-04	6.29E-04

Notes ¹Emission factors obtained from AP-42 Table 11.19-2.2.

Emission factors obtained from AP-42 table 11.19-22. ³ PM Primary emission factors and PM Tertiary Crushing emission factors. ³ According to AP-42 Table 11.19.2-2 sub note "n": emission factors for PM₁₀ for tertiary crushers can be used as an upper limit for primary or secondary crushing, because there is no data available. ⁴ According to AP-42 Table 11.19.2-2 sub note "n": emission factors for PM₁₀ for uncontrolled tertiary crushers equals PM₂₃ for uncontrolled tertiary crushers.

White House Crushing and Screening Plant Unit: WH Crush (Crushers)

Basis		
Annual throughput of material to plant	4380000	US tons/yr
Daily throughput of material to plant	12000	US tons/day
Hourly throughput of material to plant	500	US tons/hr
Annual Operating Days	365	days
Daily Operating Hours	12	hours
-		-
	E.	nission Fastars (lh/tan

	Er	nission Factors (lb/to	on)
	TSP	PM10	PM2.5
Fine Screening (uncontrolled) ^{1,2}	0.300	0.072	0.011
Fine Screening (controlled) ¹	0.0036	0.0022	0.00033
Screening (uncontrolled) ^{1,2}	0.025	0.0087	0.0013
Screening (controlled) ¹	0.0022	0.00074	0.0005

1 US ton =	2000 2000	lb	

Antimony	Arsenic	Barium	Cadmium	Pollutants Conte Chromium	Cobalt	Copper	Lead	Manganese	Nickel	Silver	Vanadium	Zinc
7.00E-04	4.00E-04	1.90E-03	2.00E-04	2.50E-03	2.00E-03	5.90E-01	2.70E-03	6.62E-02	1.20E-03	1.00E-04	4.30E-03	1.10E-02

	Hourly Throughput	Operating	Material Handling	Controlled or								Pollu	tant Emissions	b/hr						
Screen ID Number	(tons/hr)	Efficiency	Size	Uncontrolled	TSP	PM ₁₀	PM _{2.5}	Antimony	Arsenic	Barium	Cadmium	Chromium	Cobalt	Copper	Lead	Manganese	Nickel	Silver	Vanadium	Zinc
Screen-1	312.48	0.00%	Normal	uncontrolled	7.81	2.72	0.41	5.47E-05	3.12E-05	1.48E-04	1.56E-05	1.95E-04	1.56E-04	4.61E-02	2.11E-04	5.17E-03	9.37E-05	7.81E-06	3.36E-04	8.59E-04
Screen-2	300.16	0.00%	Normal	uncontrolled	7.50	2.61	0.39	5.25E-05	3.00E-05	1.43E-04	1.50E-05	1.88E-04	1.50E-04	4.43E-02	2.03E-04	4.97E-03	9.00E-05	7.50E-06	3.23E-04	8.25E-04
	Totals					5.33	0.80	1.07E-04	6.13E-05	2.91E-04	3.06E-05	3.83E-04	3.06E-04	9.04E-02	4.14E-04	1.01E-02	1.84E-04	1.53E-05	6.59E-04	1.68E-03

	Screen ID Number Hourly Throughput Operating Material Handling Controlled											Pollut	ant Emissions t	on/yr						
Screen ID Number	(tons/hr)	Efficiency	Size	Uncontrolled	TSP	PM10	PM _{2.5}	Antimony	Arsenic	Barium	Cadmium	Chromium	Cobalt	Copper	Lead	Manganese	Nickel	Silver	Vanadium	Zinc
Screen-1	312.48	0.00%	Normal	uncontrolled	17.11	5.95	0.89	1.20E-04	6.84E-05	3.25E-04	3.42E-05	4.28E-04	3.42E-04	1.01E-01	4.62E-04	1.13E-02	2.05E-04	1.71E-05	7.36E-04	1.88E-03
Screen-2	300.16	0.00%	Normal	uncontrolled	16.43	5.72	0.86	1.15E-04	6.57E-05	3.12E-04	3.29E-05	4.11E-04	3.29E-04	9.70E-02	4.44E-04	1.09E-02	1.97E-04	1.64E-05	7.07E-04	1.81E-03
	Totals	5		-	33.54	11.67	1.75	2.35E-04	1.34E-04	6.37E-04	6.71E-05	8.39E-04	6.71E-04	1.98E-01	9.06E-04	2.22E-02	4.03E-04	3.35E-05	1.44E-03	3.69E-03

Notes ¹ Emission factors obtained from AP-42 Table 11.19-2.2

² PM2.5 emission factor was calculated from the available PM10 emission factor using the ratio of 0.15 PM2.5/PM10 as recommended in

Aggregate and Material Handling - Magnetite Stockpile

Unit: CBM MH Mag

Basis		
Maximum daily amount from material handling:	4,500	tons
Maximum annual amount from material handling:	1,346,800	tons
Annual operating days:	365	(7 days/week x 52 weeks/year)
Estimated Average Daily operating hours:	10	

Note: operating basis information provided by Bruce Taylor, Cobre Operations Manager

		Measur	ed Magnetite A	nalysis ⁽¹⁾	
Composite Assay of Samples [mass fraction]	Copper	Chromium	Nickel	Aluminum	Manganese
Magnetite	0.0011	0.00014	0.000060	0.0021	0.0045

	Emis	sion Factors (Ib	/ton)	
Criteria Pollutant	PM	PM10	PM2.5	
Truck Unloading - Fragmented Stone ⁽²⁾	4.18E-05	1.60E-05	2.40E-06	

Emissions Activity ⁽³⁾	Maximum N	Aine Material T	hroughput ⁽⁴⁾	TSP Em	issions	PM ₁₀ Em	issions	PM _{2.5} Emissions		
	tons/hr	tons/day	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	
Unloading - Magnetite Pit to Storage	450	4,500	1,346,800	1.88E-02	2.81E-02	7.20E-03	1.08E-02	1.08E-03	1.62E-03	
Unloading - Haul Truck	450	4,500	1,346,800	1.88E-02	2.81E-02	7.20E-03	1.08E-02	1.08E-03	1.62E-03	
Loading - Rail Car	450	4,500	1,346,800	1.88E-02	2.81E-02	7.20E-03	1.08E-02	1.08E-03	1.62E-03	
тот	AL			0.056	0.084	0.022	0.032	0.0032	0.0048	

FEDERAL HAP/NM TOXIC AIR POLLUTANT EMISSIONS ESTIMATION

					TAP Emission	s (as % PM)				
Emissions Activity	Copper		Chromium		Nickel		Aluminum		Manganese	
	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
Magnetite Pit to Storage (Unloading)	2.07E-05	3.10E-05	2.63E-06	3.94E-06	1.13E-06	1.69E-06	3.97E-05	5.94E-05	8.39E-05	1.26E-04
Haul Truck (Unloading)	2.07E-05	3.10E-05	2.63E-06	3.94E-06	1.13E-06	1.69E-06	3.97E-05	5.94E-05	8.39E-05	1.26E-04
Rail Car Loading	2.07E-05	3.10E-05	2.63E-06	3.94E-06	1.13E-06	1.69E-06	3.97E-05	5.94E-05	8.39E-05	1.26E-04
TOTAL	6.21E-05	9.29E-05	7.90E-06	1.18E-05	3.39E-06	5.07E-06	1.19E-04	1.78E-04	2.52E-04	3.77E-04

Notes:

(1). Mass fraction is based on the average content of the constituent within magnetite. Data obtained from Typical Magnetite Analysis, Phelps Dodge mining Company, Cobre Mining Division.

(2) The emission factors for material handling are based on AP-42, Chapter 11.19.2, Table 11.19.2-2 Crushed Stone Processing and Pulverized Mineral Processing (August 2004) for Truck Unloading - Fragmented Stone & Truck Loading - Conveyor crushed stone . The basis for these emission factors is the PM₁₀ emission factor for truck unloading of fragmented stone & Truck Loading - Conveyor, crushed stone in Table 11.19.2-2. This table provides a PM₁₀ emission factor, but does not provide PM_{2.5} or TSP emission factors. A PM_{2.5} emission factor was calculated from the available PM₁₀ emission factor using the ratio of 0.15 PM_{2.5}/PM₁₀ as recommended in the Background Document for AP-42, Chapter 13.2.4, *Revisions to Fine Fraction Ratios Used for AP-42 Fugitive Dust Emission Factors* - November 2006. An uncontrolled TSP emission factor was calculated from the available uncontrolled TSP and PM₁₀ emission factors in Table 11.19.2-2: Tertiary Crushing (0.0054/0.0024 = 2.25); Fines Crushing (0.0390/0.0150 = 2.60); Screening (0.025/0.0087 = 2.87; and Conveyor Transfer Point 0.0030/0.00110 = 2.73). See sample calculation below.

(3) Material handling in the magnetite pit consists of one handling step: front-end loader pickup/loading into haul truck. Material handling at the loadout consists of two handling steps: haul truck dumping at load out (one step) and front-end loader pickup/loading into rail car or over-the-road truck (one step) for a total of two handling steps.

(4) Provided by Cobre Mining Company, Senior Environmental Engineer. Rail/truck loading occurs during daylight hours, 7 days/week. Average annual daylight hours estimated to be 10 hours/day over the course of a year.

Aggregate and Material Handling - Mining Hanover Mountain

CBM MH			
	Basi	is	
Maximum daily amount handled:	126,000	tons Based on forecasted maximum production rates	
Maximum annual amount handled:	45,990,000	tons	
Maximum daily amount unloaded to SWRDF stockpile:	75,000	tons	
Maximum annual amount unloaded to SWRDF stockpile:	27,375,000	tons	
Maximum daily amount unloaded to North Overburden stockpile:	90,000	tons	
Maximum annual amount unloaded to North Overburden stockpile:	16,790,000	tons	
Maximum daily amount unloaded to Lampbright:	40,000	tons	
Maximum annual amount unloaded to Lampbright:	14,600,000	tons	
Annual operating days:	365	(7 days/week x 52 weeks/year)	
Daily operating hours:	24		

Federal Hazardous Air Pollutants and New Mexico Toxic Air Pollutants Content of Waste Rock (%)⁽¹⁾

Composite Assay of samples (mass maction) 2,005,04 4,005,04 1,115,02 1,005,04 5,605,02 1,455,02 5,225,02 0,005,04 4,405,02 1,105,02 4,005,04 2,705,02 7,0	6	mposite Assay of Samples [mass fraction]	Antimony	Arsenic	Barium	Cadmium	Chromium	Cobalt	Copper	Lead	Manganese	Nickel	Silver	Vanadium	Zinc
3.00E-04 4.00E-04 1.11E-02 1.00E-04 5.05E-03 1.45E-03 5.35E-02 5.00E-04 4.40E-02 1.10E-03 4.00E-04 3.70E-03 7.5		inposite Assay of samples [mass fraction]	3.00E-04	4.00E-04	1.11E-02	1.00E-04	5.69E-03	1.45E-03	5.33E-02	9.00E-04	4.40E-02	1.10E-03	4.00E-04	3.70E-03	7.90E-03

Federal Hazardous Air Pollutants and New Mexico Toxic Air Pollutants Content of Ore for Leach (%)

Companies Associate Complex (many fraction)	Antimony	Arsenic	Barium	Cadmium	Chromium	Cobalt	Copper	Lead	Manganese	Nickel	Silver	Vanadium	Zinc
Composite Assay of Samples [mass fraction]	4.80E-04	3.70E-04	6.80E-03	1.30E-04	9.10E-03	3.90E-03	2.92E-01	1.57E-03	4.93E-02	2.10E-03	8.00E-05	2.70E-03	9.40E-03

Criteria Pollutant	E	mission Factors (lb/ton)
Citeria Polititant	PM	PM10	PM2.5
Truck Unloading - Fragmented Stone ⁽²⁾	4.18E-05	1.60E-05	2.40E-06

Emissions Activity					Emissions	PM ₁₀ Er	nissions	PM _{2.5} Er	missions
	tons/hr	tons/day	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
Loading - Hanover Mountain	5,250	126,000	45,990,000	0.22	0.96	0.084	0.37	0.013	0.06
Unloading - SWRDF Stockpile	3,125	75,000	27,375,000	0.13	0.57	0.050	0.22	0.008	0.033
Unloading - North Overburden	3,750	90,000	16,790,000	0.16	0.35	0.060	0.13	0.009	0.020
Unloading - Hanover/Cobre to Lampbright	1,667	40,000	14,600,000	0.07	0.31	0.027	0.12	0.004	0.018
	TOTAL			0.58	2.19	0.22	0.84	0.033	0.13

FEDERAL HAP/NM TOXIC AIR POLLUTANT EMISSIONS ESTIMATION

						TA	P Emissions ⁽⁴⁾							
Emissions Activity	A	ntimony	Ars	senic	Barium		Cadr	mium	Chro	mium	Co	balt	Cop	pper
	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
Loading - Hanover Mountain	1.05E-06	4.61E-06	8.78E-07	3.84E-06	2.44E-05	1.07E-04	2.85E-07	1.25E-06	2.00E-05	8.75E-05	8.56E-06	3.75E-05	6.40E-04	2.80E-03
Unloading - SWRDF Stockpile	6.27E-07	2.75E-06	5.23E-07	2.29E-06	1.45E-05	6.35E-05	1.70E-07	7.44E-07	1.19E-05	5.21E-05	5.09E-06	2.23E-05	3.81E-04	1.67E-03
Unloading - North Overburden	7.52E-07	1.68E-06	6.27E-07	1.40E-06	1.74E-05	3.90E-05	2.04E-07	4.56E-07	1.43E-05	3.19E-05	6.11E-06	1.37E-05	4.57E-04	1.02E-03
Unloading - Hanover/Cobre to Lampbright	3.34E-07	1.46E-06	2.79E-07	1.22E-06	7.73E-06	3.39E-05	9.06E-08	3.97E-07	6.34E-06	2.78E-05	2.72E-06	1.19E-05	2.03E-04	8.90E-04
TOTAL	2.77E-06	1.05E-05	8.78E-07	3.84E-06	2.44E-05	1.07E-04	2.85E-07	1.25E-06	2.00E-05	8.75E-05	8.56E-06	3.75E-05	6.40E-04	2.80E-03

					TA	P Emissions ⁽⁴⁾						
Emissions Activity		Lead	Man	ganese	Nickel		Sile	ver	Vana	idium	Zi	nc
	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
Loading - Hanover Mountain	3.45E-06	1.51E-05	1.08E-04	4.74E-04	4.61E-06	2.02E-05	8.78E-07	3.84E-06	8.12E-06	3.56E-05	2.06E-05	9.04E-05
Unloading - SWRDF Stockpile	2.05E-06	8.98E-06	6.44E-05	2.82E-04	2.74E-06	1.20E-05	5.23E-07	2.29E-06	4.83E-06	2.12E-05	1.23E-05	5.38E-05
Unloading - North Overburden	2.46E-06	5.51E-06	7.73E-05	1.73E-04	3.29E-06	7.37E-06	6.27E-07	1.40E-06	5.80E-06	1.30E-05	1.47E-05	3.30E-05
Unloading - Hanover/Cobre to Lampbright	1.09E-06	4.79E-06	3.43E-05	1.50E-04	1.46E-06	6.41E-06	2.79E-07	1.22E-06	2.58E-06	1.13E-05	6.55E-06	2.87E-05
TOTAL	9.05E-06	3.44E-05	2.84E-04	1.08E-03	1.21E-05	4.60E-05	2.31E-06	8.76E-06	2.13E-05	8.10E-05	5.42E-05	2.06E-04

Notes:

(1) Process parameters provided by E.P. Bock and Mikel Lindley emails, Chino Mine Engineering, 1/25/11, 3/9/11, and 3/18/2011. Metal content data from Chino TRI Assay data provided by Clyde Durham 1/28/11 email to R. Felty (ARCADIS-US). The mine plan is constantly in flux, and the forecast tonnages can change month to month. Daily overall tonnage and daily Lampbright tonnages fluctuate the most. Therefore, daily tonnages are slightly increased to allow for a buffer and are not directly calculated from annual tonnages and operating schedule.

(2) The emission factors for material handling are based on AP-42, Chapter 11.19.2, Table 11.19.2-2 Crushed Stone Processing and Pulverized Mineral Processing (August 2004) for Truck Unloading - Fragmented Stone. The basis for these emission factors is the PM₁₀ emission factor for truck unloading of fragmented stone in Table 11.19.2-2. This table provides a PM₁₀ emission factor, but does not provide PM_{2.5} or TSP emission factors. A PM_{2.5} emission factor was calculated from the available PM₁₀ emission factor using the ratio of 0.15 PM2 J/PM10 as recommended in the Background Document for AP-42, Chapter 13.2.4, Revisions to Fine Fraction Ratios Used for AP-42 Fugitive Dust Emission Factors - November 2006. An uncontrolled TSP emission factor was calculated from the available uncontrolled PM10 emission factor using the TSP/PM10 ratio calculated from the following uncontrolled TSP and PM10 emission factors in Table 11.19.2-2: Tertiary Crushing (0.0054/0.0024 = 2.25); Fines Crushing (0.0390/0.0150 = 2.60); Screening (0.025/0.0087 = 2.87; and Conveyor Transfer Point (0.0030/0.00110 = 2.73). See sample calculation below.

(3)Maximum Material Throughput is based on maximum annual throughput provided by Freeport

(4) TAP emissions for waste rock and leach rock calculated by multiplying the TSP/PM Emissions by the TAP content (%) in waste rock or in leach rock, respectively. Material handling at Hanover will occur with waste rock and leach rock, so conservative TAPs emissions for material handling are based on the higher TAP % available for waste rock or leach rock. For example, antimony emissions from material handling are based on antimony % in leach rock and barium emissions from material handling in the pit are based on barium % in waste rock.

Aggregate and Material Handling - Mining Hanover Mountain

CBM MH			
	Basi	is	
Maximum daily amount handled:	126,000	tons Based on forecasted maximum production rates	
Maximum annual amount handled:	45,990,000	tons	
Maximum daily amount unloaded to SWRDF stockpile:	75,000	tons	
Maximum annual amount unloaded to SWRDF stockpile:	27,375,000	tons	
Maximum daily amount unloaded to North Overburden stockpile:	90,000	tons	
Maximum annual amount unloaded to North Overburden stockpile:	16,790,000	tons	
Maximum daily amount unloaded to Lampbright:	40,000	tons	
Maximum annual amount unloaded to Lampbright:	14,600,000	tons	
Annual operating days:	365	(7 days/week x 52 weeks/year)	
Daily operating hours:	24		

Federal Hazardous Air Pollutants and New Mexico Toxic Air Pollutants Content of Waste Rock (%)⁽¹⁾

Composite Assay of samples (mass maction) 2,005,04 4,005,04 1,115,02 1,005,04 5,605,02 1,455,02 5,225,02 0,005,04 4,405,02 1,105,02 4,005,04 2,705,02 7,0	6	mposite Assay of Samples [mass fraction]	Antimony	Arsenic	Barium	Cadmium	Chromium	Cobalt	Copper	Lead	Manganese	Nickel	Silver	Vanadium	Zinc
3.00E-04 4.00E-04 1.11E-02 1.00E-04 5.05E-03 1.45E-03 5.35E-02 5.00E-04 4.40E-02 1.10E-03 4.00E-04 3.70E-03 7.5		inposite Assay of samples [mass fraction]	3.00E-04	4.00E-04	1.11E-02	1.00E-04	5.69E-03	1.45E-03	5.33E-02	9.00E-04	4.40E-02	1.10E-03	4.00E-04	3.70E-03	7.90E-03

Federal Hazardous Air Pollutants and New Mexico Toxic Air Pollutants Content of Ore for Leach (%)

Companies Associate Complex (many fraction)	Antimony	Arsenic	Barium	Cadmium	Chromium	Cobalt	Copper	Lead	Manganese	Nickel	Silver	Vanadium	Zinc
Composite Assay of Samples [mass fraction]	4.80E-04	3.70E-04	6.80E-03	1.30E-04	9.10E-03	3.90E-03	2.92E-01	1.57E-03	4.93E-02	2.10E-03	8.00E-05	2.70E-03	9.40E-03

Criteria Pollutant	E	mission Factors (lb/ton)
Citeria Polititant	PM	PM10	PM2.5
Truck Unloading - Fragmented Stone ⁽²⁾	4.18E-05	1.60E-05	2.40E-06

Emissions Activity	Maximu	ım Mine Material Thro	ughput ⁽³⁾	TSP	Emissions	PM ₁₀ Er	nissions	PM _{2.5} Er	missions
	tons/hr	tons/day	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
Loading - Hanover Mountain	5,250	126,000	45,990,000	0.22	0.96	0.084	0.37	0.013	0.06
Unloading - SWRDF Stockpile	3,125	75,000	27,375,000	0.13	0.57	0.050	0.22	0.008	0.033
Unloading - North Overburden	3,750	90,000	16,790,000	0.16	0.35	0.060	0.13	0.009	0.020
Unloading - Hanover/Cobre to Lampbright	1,667	40,000	14,600,000	0.07	0.31	0.027	0.12	0.004	0.018
	TOTAL			0.58	2.19	0.22	0.84	0.033	0.13

FEDERAL HAP/NM TOXIC AIR POLLUTANT EMISSIONS ESTIMATION

						TA	P Emissions ⁽⁴⁾							
Emissions Activity	A	ntimony	Ars	senic	Barium		Cadr	mium	Chro	mium	Co	balt	Cop	pper
	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
Loading - Hanover Mountain	1.05E-06	4.61E-06	8.78E-07	3.84E-06	2.44E-05	1.07E-04	2.85E-07	1.25E-06	2.00E-05	8.75E-05	8.56E-06	3.75E-05	6.40E-04	2.80E-03
Unloading - SWRDF Stockpile	6.27E-07	2.75E-06	5.23E-07	2.29E-06	1.45E-05	6.35E-05	1.70E-07	7.44E-07	1.19E-05	5.21E-05	5.09E-06	2.23E-05	3.81E-04	1.67E-03
Unloading - North Overburden	7.52E-07	1.68E-06	6.27E-07	1.40E-06	1.74E-05	3.90E-05	2.04E-07	4.56E-07	1.43E-05	3.19E-05	6.11E-06	1.37E-05	4.57E-04	1.02E-03
Unloading - Hanover/Cobre to Lampbright	3.34E-07	1.46E-06	2.79E-07	1.22E-06	7.73E-06	3.39E-05	9.06E-08	3.97E-07	6.34E-06	2.78E-05	2.72E-06	1.19E-05	2.03E-04	8.90E-04
TOTAL	2.77E-06	1.05E-05	8.78E-07	3.84E-06	2.44E-05	1.07E-04	2.85E-07	1.25E-06	2.00E-05	8.75E-05	8.56E-06	3.75E-05	6.40E-04	2.80E-03

					TA	P Emissions ⁽⁴⁾						
Emissions Activity		Lead	Man	ganese	Nickel		Sile	ver	Vana	idium	Zi	nc
	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
Loading - Hanover Mountain	3.45E-06	1.51E-05	1.08E-04	4.74E-04	4.61E-06	2.02E-05	8.78E-07	3.84E-06	8.12E-06	3.56E-05	2.06E-05	9.04E-05
Unloading - SWRDF Stockpile	2.05E-06	8.98E-06	6.44E-05	2.82E-04	2.74E-06	1.20E-05	5.23E-07	2.29E-06	4.83E-06	2.12E-05	1.23E-05	5.38E-05
Unloading - North Overburden	2.46E-06	5.51E-06	7.73E-05	1.73E-04	3.29E-06	7.37E-06	6.27E-07	1.40E-06	5.80E-06	1.30E-05	1.47E-05	3.30E-05
Unloading - Hanover/Cobre to Lampbright	1.09E-06	4.79E-06	3.43E-05	1.50E-04	1.46E-06	6.41E-06	2.79E-07	1.22E-06	2.58E-06	1.13E-05	6.55E-06	2.87E-05
TOTAL	9.05E-06	3.44E-05	2.84E-04	1.08E-03	1.21E-05	4.60E-05	2.31E-06	8.76E-06	2.13E-05	8.10E-05	5.42E-05	2.06E-04

Notes:

(1) Process parameters provided by E.P. Bock and Mikel Lindley emails, Chino Mine Engineering, 1/25/11, 3/9/11, and 3/18/2011. Metal content data from Chino TRI Assay data provided by Clyde Durham 1/28/11 email to R. Felty (ARCADIS-US). The mine plan is constantly in flux, and the forecast tonnages can change month to month. Daily overall tonnage and daily Lampbright tonnages fluctuate the most. Therefore, daily tonnages are slightly increased to allow for a buffer and are not directly calculated from annual tonnages and operating schedule.

(2) The emission factors for material handling are based on AP-42, Chapter 11.19.2, Table 11.19.2-2 Crushed Stone Processing and Pulverized Mineral Processing (August 2004) for Truck Unloading - Fragmented Stone. The basis for these emission factors is the PM₁₀ emission factor for truck unloading of fragmented stone in Table 11.19.2-2. This table provides a PM₁₀ emission factor, but does not provide PM_{2.5} or TSP emission factors. A PM_{2.5} emission factor was calculated from the available PM₁₀ emission factor using the ratio of 0.15 PM2 J/PM10 as recommended in the Background Document for AP-42, Chapter 13.2.4, Revisions to Fine Fraction Ratios Used for AP-42 Fugitive Dust Emission Factors - November 2006. An uncontrolled TSP emission factor was calculated from the available uncontrolled PM10 emission factor using the TSP/PM10 ratio calculated from the following uncontrolled TSP and PM10 emission factors in Table 11.19.2-2: Tertiary Crushing (0.0054/0.0024 = 2.25); Fines Crushing (0.0390/0.0150 = 2.60); Screening (0.025/0.0087 = 2.87; and Conveyor Transfer Point (0.0030/0.00110 = 2.73). See sample calculation below.

(3)Maximum Material Throughput is based on maximum annual throughput provided by Freeport

(4) TAP emissions for waste rock and leach rock calculated by multiplying the TSP/PM Emissions by the TAP content (%) in waste rock or in leach rock, respectively. Material handling at Hanover will occur with waste rock and leach rock, so conservative TAPs emissions for material handling are based on the higher TAP % available for waste rock or leach rock. For example, antimony emissions from material handling are based on antimony % in leach rock and barium emissions from material handling in the pit are based on barium % in waste rock.

Aggregate and Material Handling - Chino Mine Material Handling

Basis	
400,000	tons
146,000,000	tons
350,000	tons
127,750,000	tons
300,000	tons
109,500,000	tons
100,000	tons
36,500,000	tons
0	tons
0	tons
170,000	
62,050,000	
365	(7 days/week x 52 weeks/year)
24	
	400,000 146,000,000 350,000 127,750,000 109,500,000 109,500,000 0 36,500,000 0 0 170,000 62,050,000 365

Federal Hazardous Air Pollutants and New Mexico Toxic Air Pollutants Content of Waste Rock (%)⁽¹⁾

Composite Assay of Samples [mass fraction]	Antimony	Arsenic	Barium	Cadmium	Chromium	Cobalt	Copper	Lead	Manganese	Nickel	Silver	Vanadium	Zinc
composite Assay of samples [mass fraction]	3.00E-04	4.00E-04	1.11E-02	1.00E-04	5.69E-03	1.45E-03	5.33E-02	9.00E-04	4.40E-02	1.10E-03	4.00E-04	3.70E-03	7.90E-03
Federal Hazardous Air Pollutants and New Mexico Toxic Air Pollutants Content of Ore for Leach (%) ⁽¹⁾													
Composite Assay of Samples [mass fraction]	Antimony	Arsenic	Barium	Cadmium	Chromium	Cobalt	Copper	Lead	Manganese	Nickel	Silver	Vanadium	Zinc
composite Assay of Samples [mass maction]	4 80E-04	3 70E-04	6.80E-03	1 30F-04	9 10E-03	3.90E-03	2 92F-01	1 57E-03	4 93E-02	2 10E-03	8 00E-05	2 70F=03	9.40E-03

Criteria Pollutant	Em	ission Factors (lb/to	n)
Criteria Polititant	PM	PM10	PM2.5
Truck Unloading - Fragmented Stone ⁽²⁾	4.18E-05	1.60E-05	2.40E-06

Emissions Activity			PM ₁₀ E	missions	PM _{2.5} Emissions				
	tons/hr	tons/day	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
Loading - Santa Rita Pit	16,667	400,000	146,000,000	0.70	3.05	0.27	1.17	0.04	0.18
Unloading - Lampbright North Leach Stockpile	14,583	350,000	127,750,000	0.61	2.67	0.23	1.02	0.035	0.15
Unloading - South Waste + Leach Stockpile	12,500	300,000	109,500,000	0.52	2.29	0.20	0.88	0.03	0.13
Unloading - West Waste Stockpile	4,167	100,000	36,500,000	0.17	0.76	0.07	0.29	0.010	0.04
Unloading - NSPE Waste Stockpile	0	0	0	0.00	0.00	0.00	0.00	0.00	0.00
Unloading - Crusher/Hill Stockpile	7,083	170,000	62,050,000	0.30	1.30	0.11	0.50	0.02	0.07
T	OTAL			2.30	10.07	0.88	3.85	0.13	0.58

FEDERAL HAP/NM TOXIC AIR POLLUTANT EMISSIONS ESTIMATION

							TAP Emission	s ⁽⁴⁾						
Emissions Activity	Ar	timony	ļ A	Irsenic	Bariu	ım	Cadı	nium	Chro	mium	Co	balt	Cop	oper
	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
Material Handling at Santa Rita Pit	3.34E-06	1.46E-05	2.79E-06	1.22E-05	7.73E-05	3.39E-04	9.06E-07	3.97E-06	6.34E-05	2.78E-04	2.72E-05	1.19E-04	2.03E-03	8.90E-03
Unloading - Lampbright North Leach Stockpile	2.93E-06	1.28E-05	2.44E-06	1.07E-05	6.77E-05	2.96E-04	7.92E-07	3.47E-06	5.55E-05	2.43E-04	2.38E-05	1.04E-04	1.78E-03	7.79E-03
Unloading - South Waste + Leach Stockpile	2.51E-06	1.10E-05	2.09E-06	9.15E-06	5.80E-05	2.54E-04	6.79E-07	2.98E-06	4.75E-05	2.08E-04	2.04E-05	8.93E-05	1.52E-03	6.68E-03
Unloading - West Waste Stockpile	8.36E-07	3.66E-06	6.97E-07	3.05E-06	1.93E-05	8.47E-05	2.26E-07	9.92E-07	1.58E-05	6.94E-05	6.79E-06	2.98E-05	5.08E-04	2.23E-03
Unloading - NSPE Waste Stockpile	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00						
Unloading - Crusher/Hill Stockpile	1.42E-06	6.22E-06	1.18E-06	5.19E-06	3.29E-05	1.44E-04	3.85E-07	1.69E-06	2.69E-05	1.18E-04	1.15E-05	5.06E-05	8.64E-04	3.78E-03
TOTAL	1.10E-05	4.83E-05	9.20E-06	4.03E-05	2.55E-04	1.12E-03	2.99E-06	1.31E-05	2.09E-04	9.16E-04	8.97E-05	3.93E-04	6.71E-03	2.94E-02

						TAP Emission	s ⁽⁴⁾					
Emissions Activity		Lead	Ma	nganese	Nick	el	Sil	ver	Vana	idium	Z	nc
	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
Material Handling at Santa Rita Pit	1.09E-05	4.79E-05	3.43E-04	1.50E-03	1.46E-05	6.41E-05	2.79E-06	1.22E-05	2.58E-05	1.13E-04	6.55E-05	2.87E-04
Unloading - Lampbright North Leach Stockpile	9.57E-06	4.19E-05	3.01E-04	1.32E-03	1.28E-05	5.61E-05	2.44E-06	1.07E-05	2.26E-05	9.88E-05	5.73E-05	2.51E-04
Unloading - South Waste + Leach Stockpile	8.20E-06	3.59E-05	2.58E-04	1.13E-03	1.10E-05	4.81E-05	2.09E-06	9.15E-06	1.93E-05	8.47E-05	4.91E-05	2.15E-04
Unloading - West Waste Stockpile	2.73E-06	1.20E-05	8.59E-05	3.76E-04	3.66E-06	1.60E-05	6.97E-07	3.05E-06	6.44E-06	2.82E-05	1.64E-05	7.17E-05
Unloading - NSPE Waste Stockpile	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Unloading - Crusher Hill Stockpile	4.65E-06	2.04E-05	1.46E-04	6.39E-04	6.22E-06	2.72E-05	1.18E-06	5.19E-06	1.10E-05	4.80E-05	2.78E-05	1.22E-04
TOTAL	3.61E-05	1.58E-04	1.13E-03	4.96E-03	4.83E-05	2.11E-04	9.20E-06	4.03E-05	8.51E-05	3.73E-04	2.16E-04	9.47E-04

Notes:

(1) Process parameters provided by E.P. Bock and Mikel Lindley emails, Chino Mine Engineering, 1/25/11, 3/9/11, and 3/18/2011. Metal content data from Chino TRI Assay data provided by Clyde Durham 1/28/11 email to R. Felty (ARCADIS-US). The mine plan is constantly in flux, and the forecast tonnages can change month to month. Daily overall tonnage and daily Lampbright tonnages fluctuate the most. Therefore, daily tonnages are slightly increased to allow for a buffer and are not directly calculated from annual tonnages and operating schedule.

(2) The emission factors for material handling are based on AP-42, Chapter 11.19.2, Table 11.19.2-2 Crushed Stone Processing and Pulverized Mineral Processing (August 2004) for Truck Unloading - Fragmented Stone. The basis for these emission factors is the PM₁₀ emission factor for truck unloading of fragmented stone in Table 11.19.2-2. This table provides a PM₁₀ emission factor, but does not provide PM_{2.5} or TSP emission factors. A PM_{2.5} emission factor was calculated from the available PM₁₀ emission factor using the ratio of 0.15 PM_{2.5}/PM₁₀ as recommended in the Background Document for AP-42, Chapter 13.2.4, Revisions to Fine Fraction Ratios Used for AP-42 Fugitive Dust Emission Factors - November 2006. An uncontrolled TSP emission factor was calculated from the available uncontrolled PM₂₀ emission factor using the TSP/PM₁₀ ratio calculated from the following uncontrolled TSP and PM₁₀ emission factors in Table 11.9.2-2: Tertiary Crushing (0.0054/0.0024 = 2.25); Fines Crushing (0.0390/0.0150 = 2.60); Screening (0.025/0.0087 = 2.87; and Conveyor Transfer Point (0.0030/0.00110 = 2.73). See sample calculation below. (3) Maximum Material Throughput is based on maximum annual throughput provided by Freeport

(4) TAP emissions for material handling are based on the higher TAP % available for waste rock or leach rock, accurated by multiplying the TSP/PM Emissions by the TAP content (%) in waste rock or in leach rock, respectively. Material handling at Hanover will occur with waste rock and leach rock, so conservative TAPs emissions form material handling are based on the higher TAP % available for waste rock or leach rock. For example, antimony emissions from material handling are based on antimony % in leach rock and barum emissions from material handling in the pit are based on barium % in waste rock.

Freeport-McMoRan Chino Mines Company Revised: December 2019 Road Name Maintenance Entrance Road

Road Number

Truck type			Caterpil	lar 793					-						-			
Average Truck Weight [tons]			30	3					0						0			
Hourly VMT [miles/hour] ¹			10.	88					0.0	0					0.00			
Annual VMT [miles/year] ²			46237	8.73					0.0	D					0.00			
Control Efficiency [%] ³			88.8	0%					88.80)%					88.809	6		
Criteria Pollutant	Annual Uncontrolled Emission Factor ⁴	Emission Factor ⁴	Annual Emi [tons/		Hourly Emi [lb/	251011 Hute	Annual Uncontrolled Emission Factor ⁴	Emission Factor ⁴	Annual Emi [tons/		Hourly Emissi [Ib/yr		Annual Uncontrolled Emission Factor ⁴	Hourly Controlled Emission Factor ⁴	Annual Emi [tons/		Annual Emi [lb;	
	[Ib/VMT]	[Ib/VMT]	Uncontrolled	Controlled	Uncontrolled	Controlled	[Ib/VMT]	[Ib/VMT]	Uncontrolled	Controlled	Uncontrolled	Controlled	[Ib/VMT]	[Ib/VMT]	Uncontrolled	Controlled	Uncontrolled	Controlled
Particulate Matter (PM 2.5)	0.42	0.52	98.04	10.98	5.71	0.64	0.000	0.000	0.00	0.00	0.00	0.00	0.000	0.000	0.00	0.00	0.00	0.00
Particulate Matter (PM 10)	4.24	5.25	980.36	109.80	57.10	6.40	0.000	0.00	0.00	0.00	0.00	0.00	0.000	0.000	0.00	0.00	0.00	0.00
Particulate Matter (TSP)	16.64	20.59	3846.62	430.82	224.04	25.09	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Emission Factor Constants	Mai	ntenance Entrance Re	oad
Parameter	PM _{2.5}	PM10	TSP
k*	0.15	1.50	4.90
a*	0.90	0.90	0.70
b*	0.45	0.45	0.45
silt content		4.8	
P [days]		70	

Total Maximum Fugitive Emission Emissions per Volume Source⁷ Number of volume sources Controlled Controlled Uncontrolled Uncontrolled [lb/hr] [tons/year] [lb/hr] [lb/hr] 0.95 [tons/year] [tons/year] [lb/hr] 5.71 57.10 [tons/year] Particulate Matter (PM 2.5) 10.98 98.04 1.83 Particulate Matter (PM 10) 109.80 6.40 980.36 18.30 163.39 9.52 37.34 Particulate Matter (TSP) 430.82 25.09 3846.62 224.04 71.80 4.18 641.10

Fugitive emissions from traffic on unpaved surfaces by vehicles such as haul trucks and maintenance vehicles were estimated using EPA AP-42 emission factors, Section 13.2.2, Unpaved Roads (November 2006). The following equations are recommended for industrial sites:

(AP-42, Chapter 13.2.2, Equation 1a)

 $E\left(\frac{lb}{VMT}\right) = k\left(\frac{s}{12}\right)^a \left(\frac{W}{3}\right)^b$

Hourly Emission Factor:

Where: E_h = hourly emission factor (lb/hr) $E_{h}\left(\frac{lb}{hr}\right) = E \cdot d \cdot L \qquad \begin{cases} e \text{ mission factor (b/Mf)} \\ d \text{ everage hourly daytime traffic rate, roundtrips per hour (h')} \\ L \text{ longest hand urad length in miles (roundtrip)} \end{cases}$

Where: Eest = annual emission factor extrapolated for annual natural mitigation (Ib/VMT) E = barrel = 0 with a transformation of the point of the transformation of the transf

a = empirical constant (unit less) b = empirical constant (unit less) s = surface silt content, (%) W = mean vehicle weight, full vs. empty (tons)

Where: E = emission factor in lb/VMT lb = pounds of pollutant VMT = vehicle miles traveled k = particle size multiplier (lb/VMT)

By considering annual natural mitigation from rainfall, the annual emission factor is affected:

(AP-42, Chapter 13.2.2, Equation 1a)

 $E_{ext}\left(\frac{lb}{VMT}\right) = E \cdot \left[(365 - P) \right]_{365}$

Notes: ¹ Hourly Vehicle Miles Traveled = d (trips/hour) * L (mile/trip) ² Annual Vehicle Miles Traveled = Hourly Vehicle Miles Traveled (miles/hour) * Annual Operating Hours (hours/year) ³Control Efficiency is set at 88.8%; see control efficiency page for more info. ⁴ Emission factors are from AP-42, Chapter 13.2.2, Unpaved Roads, vehicles traveling on unpaved surfaces at industrial sites. ⁵ Annual Emission Rate = Annual Uncontrolled Emission Factor * Annual VMT + 2000 ^{*}Hourly Emission Rate = Hourly Uncontrolled Emission Factor * Hourly VMT 6 Total Emission are the sum of all truck emissions operating on that road 7 Emission per Volume source = Total Emissions + Number of Volume Sources
* Values for k, a, and b obtained from AP-42, Chapter 13.2.2, Unpaved Roads, Table 13.2.2-2 (November 2006)

Revised: December 2019 Road Name

Road Number

Truck type			Cate	rpillar 793					-									
Average Truck Weight [tons]				303					0						0			
Hourly VMT [miles/hour] ¹				86.19					0.00						0.00)		
Annual VMT [miles/year] ²			11	44029.85					0.00						0.00)		
Control Efficiency [%] ³			9	96.80%					96.80%	6					96.80	1%		
Criteria Pollutant	Annual Uncontrolled Emission Factor ⁴	Hourly Controlled Emission Factor ⁴	Annual Emis [tons/			iission Rate ^s 9/yr]	Annual Uncontrolled Emission Factor ⁴	Hourly Controlled Emission Factor ⁴	Annual Emis [tons/y		Hourly Emis [Ib/		Annual Uncontrolled Emission Factor ⁴	Hourly Controlled Emission Factor ⁴	Annual Emiss [tons/y		Annual Emi [Ib/	
	[Ib./VMT]	[Ib./VMT]	Uncontrolled	Controlled	Uncontrolled	Controlled	[Ib/VMT]	[Ib/VMT]	Uncontrolled	Controlled	Uncontrolled	Controlled	[Ib/VMT]	[Ib/VMT]	Uncontrolled	Controlled	Uncontrolled	Controlled
Particulate Matter (PM 2.5)	0.42	0.52	242.56	7.76	45.22	1.45	0.000	0.000	0.00	0.00	0.00	0.00	0.000	0.000	0.00	0.00	0.00	0.00
Particulate Matter (PM 10)	4.24	5.25	2425.64	77.62	452.24	14.47	0.000	0.00	0.00	0.00	0.00	0.00	0.000	0.000	0.00	0.00	0.00	0.00
Particulate Matter (TSP)	16.64	20.59	9517.42	304.56	1774.43	56.78	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Emission Factor Constants		Cobre Haul Ro	ad			T	otal Maximum Fu	gitive Emissions ⁶		Number of stress		Emissions per	Volume Source ⁷	
						Control	ed	Uncontr	olled	Number of volume sources	Cor	trolled	Unco	ontrolled
Parameter	PM _{2.5}	PM10	TSP	T		[tons/year]	[lb/hr]	[tons/year]	[lb/hr]	sources	[tons/year]	[lb/hr]	[tons/year]	[lb/hr]
k*	0.15	1.50	4.90	1	Particulate Matter (PM 2.5)	7.76	1.45	242.56	45.22	109	0.07	0.01	2.23	0.41
a*	0.90	0.90	0.70	I	Particulate Matter (PM 10)	77.62	14.47	2425.64	452.24	109	0.71	0.13	22.25	4.15
b*	0.45	0.45	0.45	I	Particulate Matter (TSP)	304.56	56.78	9517.42	1774.43	109	2.79	0.52	87.32	16.28
silt content		4.8	•											
P [days]		70		I										

Fugitive emissions from traffic on unpaved surfaces by vehicles such as haul trucks and maintenance vehicles were estimated using EPA AP-42 emission factors, Section 13.2.2, Unpaved Roads (November 2006). The following equations are recommended for industrial sites:

(AP-42, Chapter 13.2.2, Equation 1a)

Where: E = emission factor in Ib/VMT $E\left(\frac{lb}{VMT}\right) = k\left(\frac{s}{12}\right)^a \left(\frac{W}{3}\right)^b$

Hourly Emission Factor: Where: E_h = hourly emission factor (lb/hr)

 $E_h\left(\frac{lb}{hr}\right) = E \cdot d \cdot L$

By considering annual natural mitigation from rainfall, the annual emission factor is affected:

Cobre Haul Road

(AP-42, Chapter 13.2.2, Equation 1a) Where: E_{est} = annual emission factor extrapolated for annual natural mitigation (lb/VMT)

 $E_{ext}\left(\frac{lb}{VMT}\right) = E \cdot \left[\binom{(365-P)}{365}\right]$

E = hourly emission factor (Ib/VMT) P = number of days in a year with at least 0.01 inches of precipitation

lb = pounds of pollutant VMT = vehicle miles traveled

E = emission factor (Ib/VMT)

d = average hourly daytime traffic rate, roundtrips per hour (h⁻¹) L = longest haul road length in miles (roundtrip)

k = particle size multiplier (Ib/VMT) a = empirical constant (unit less) b = empirical constant (unit less) s = surface silt content, (%) W = mean vehicle weight, full vs. empty (tons)

Notes: ¹ Hourly Vehicle Miles Traveled = d (trips/hour) * L (mile/trip) ² Annual Vehicle Miles Traveled = Hourly Vehicle Miles Traveled (miles/hour) * Annual Operating Hours (hours/year) ³Control Efficiency is set at 88.8%; see control efficiency page for more info.
 ⁴ Emission factors are from AP-42, Chapter 13.2.2, Unpaved Roads, vehicles traveling on unpaved surfaces at industrial sites. ⁵ Annual Emission Rate = Annual Uncontrolled Emission Factor * Annual VMT ÷ 2000 ⁵ Hourly Emission Rate = Hourly Uncontrolled Emission Factor * Hourly VMT 6 Total Emission are the sum of all truck emissions operating on that road 7 Emission per Volume source = Total Emissions ÷ Number of Volume Sources * Values for k, a, and b obtained from AP-42, Chapter 13.2.2, Unpaved Roads, Table 13.2.2-2 (November 2006)

Freeport-McMoRan Chino Mines Company Revised: December 2019 Road Name SWRDF Ro SWRDF Road

Road Number

Truck type			Caterpill	ar 793												-		
Average Truck Weight [tons]			30	3					0							0		
Hourly VMT [miles/hour] ¹			35.6	58					0.00						0	.00		
Annual VMT [miles/year] ²			41675	3.73					0.00						0	.00		
Control Efficiency [%] ³			88.8	0%					88.80%						88.	80%		
Criteria Pollutant	Annual Uncontrolled Emission Factor ⁴	Hourly Controlled Emission Factor ⁴	Annual Emis [tons/		Hourly Emiss [Ib/y		Annual Uncontrolled Emission Factor ⁴	Hourly Controlled Emission Factor ⁴	Annual Emis [tons/y		Hourly Emi [lb/		Annual Uncontrolled Emission Factor ⁴	Hourly Controlled Emission Factor ⁴	Annual Emi [tons/			iission Rate ^s /yr]
	[Ib/VMT]	[Ib/VMT]	Uncontrolled	Controlled	Uncontrolled	Controlled	[Ib/VMT]	[Ib/VMT]	Uncontrolled	Controlled	Uncontrolled	Controlled	[Ib/VMT]	[Ib/VMT]	Uncontrolled	Controlled	Uncontrolled	Controlled
Particulate Matter (PM 2.5)	0.42	0.52	88.36	9.90	18.72	2.10	0.000	0.000	0.00	0.00	0.00	0.00	0.000	0.000	0.00	0.00	0.00	0.00
Particulate Matter (PM 10)	4.24	5.25	883.63	98.97	187.21	20.97	0.000	0.00	0.00	0.00	0.00	0.00	0.000	0.000	0.00	0.00	0.00	0.00
Particulate Matter (TSP)	16.64	20.59	3467.06	388.31	734.55	82.27	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Emission Factor Constants		SWRDF Road					Total Maximum Fugitive	Emissions ⁶		Number of volume		Emissions per Vol	ume Source ⁷	
						Cont	rolled	Uncontr	olled	sources	Con	trolled	Uncor	ntrolled
Parameter	PM _{2.5}	PM10	TSP			[tons/year]	[lb/hr]	[tons/year]	[lb/hr]	sources	[tons/year]	[lb/hr]	[tons/year]	[lb/hr]
k*	0.15	1.50	4.90	1	Particulate Matter (PM 2.5)	9.90	2.10	88.36	18.72	40	0.25	0.052	2.21	0.47
a*	0.90	0.90	0.70		Particulate Matter (PM 10)	98.97	20.97	883.63	187.21	40	2.47	0.52	22.09	4.68
b*	0.45	0.45	0.45		Particulate Matter (TSP)	388.31	82.27	3467.06	734.55	40	9.71	2.06	86.68	18.36
silt content		4.8											•	
P [days]		70												

Fugitive emissions from traffic on unpaved surfaces by vehicles such as haul trucks and maintenance vehicles were estimated using EPA AP-42 emission factors, Section 13.2.2, Unpaved Roads (November 2006). The following equations are recommended for industrial sites:

(AP-42, Chapter 13.2.2, Equation $E\left(\frac{lb}{VMT}\right) = k\left(\frac{s}{12}\right)^a \left(\frac{W}{3}\right)^b$ Where: E = emission factor in lb/VMT b = pounds of pollutant
 VMT = vehicle miles traveled
 k = particle size multiplier (lb/VMT)
 a = empirical constant (unit less) b = empirical constant (unit less) s = surface silt content, (%) W = mean vehicle weight, full vs. empty (tons)

Where: E_h = hourly emission factor (lb/hr)

Hourly Emission Factor:

 $E_h\left(\frac{lb}{hr}\right) = E \cdot d \cdot L$

E = emission factor (lb/VMT) d = average hourly daytime traffic rate, roundtrips per hour (h⁻¹) L = longest haul road length in miles (roundtrip)

Where: E_{eot} = annual emission factor extrapolated for annual natural mitigation (lb/VMT) E = hourly emission factor (Ib/VMT) P = number of days in a year with at least 0.01 inches of precipitation

By considering annual natural mitigation from rainfall, the annual emission factor is affected:

 $E_{ext}\left(\frac{lb}{VMT}\right) = E \cdot \left[\frac{(365 - P)}{365} \right]$

Annual venuce wines fravesi = hourdy venuce wines fravesit (micer/uou) - Annual Operating hours (hours/year) ¹ Control Efficiency is set at 88.8%; secontrol efficiency age for more info. ⁴ Emission factors are from AP-42, Chapter 13.2.2. Unpaved Reads, vehicles traveling on unpaved surfaces at industrial sites. ⁵ Annual Emission Rate = Annual Uncontrolled Emission Factor * Annual VMT + 2000 ¹ Hourly Chiniston Rate + Hourly Uncontrolled Emission Factor * Hourly VMT 6 Total Emission are the sum of all truck emissions operating on that road 7 Emission per Volume source = Total Emissions ÷ Number of Volume Sources

Freeport-McMoRan Chino Mines Company Revised: December 2019 Road Name Hanover Mountain Road Road Number 5 North 1

Truck type				Caterpill	ar 793				-						-			
Average Truck Weight [tons]				303	3				0						0			
Hourly VMT [miles/hour] ¹				38.7	'9				0.00						0.00			
Annual VMT [miles/year] ²				33977	6.87				0.00						0.00			
Control Efficiency [%] ³				96.80	0%				96.80	%					96.80	%		
Criteria Pollutant	Annual Uncontrolled Emission Factor ⁴	Hourly Controlled Emission Factor ⁴	Annual Emi: [tons/			Hourly Emission Rate ⁵ [lb/yr]	Annual Hourly Annual Hourly Uncontrolled Controlled Annual Emission Rate ⁵ Hourly Emission Rate ⁵ Uncontrolled Controlled Annual Emission Rate ⁵											
	[Ib/VMT]	[Ib/VMT]	Uncontrolled	Controlled	Uncontrolled	Controlled	[Ib/VMT]	[Ib/VMT]	Uncontrolled	Controlled	Uncontrolled	Controlled	[Ib/VMT]	[Ib/VMT]	Uncontrolled	Controlled	Jncontrolled	Controlled
Particulate Matter (PM 2.5)	0.42	0.52	72.04	2.31	20.35	0.65	0.000	0.000	0.00	0.00	0.00	0.00	0.000	0.000	0.00	0.00	0.00	0.00
Particulate Matter (PM 10)	4.24	5.25	720.42	23.05	203.51	6.51	0.000	0.00	0.00	0.00	0.00	0.00	0.000	0.000	0.00	0.00	0.00	0.00
Particulate Matter (TSP)	16.64	20.59	2826.67	90.45	798.50	25.55	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Emission Factor Constants	Hand	ver Mountain I	Road		Tota	l Maximum Fu	gitive Emission	6	Number of		Emissions per	Volume Source ⁷	
					Contr	olled	Uncont	rolled	volume	Con	trolled	Uncont	rolled
Parameter	PM _{2.5}	PM ₁₀	TSP		[tons/year]	[lb/hr]	[tons/year]	[lb/hr]	sources	[tons/year]	[lb/hr]	[tons/year]	[lb/hr]
k*	0.15	1.50	4.90	Particulate Matter (PM 2.5)	2.305	0.65	72.04	20.35	5	0.46	0.13	14.41	4.07
a*	0.90	0.90	0.70	Particulate Matter (PM 10)	23.05	6.51	720.42	203.51	5	4.61	1.30	144.08	40.70
b*	0.45	0.45	0.45	Particulate Matter (TSP)	90.45	25.55	2826.67	798.50	5	18.09	5.11	565.33	159.70
silt content		4.8		· ·									
P [days]		70											

Fugitive emissions from traffic on unpaved surfaces by vehicles such as haul trucks and maintenance vehicles were estimated using EPA AP-42 emission factors, Section 13.2.2, Unpaved Roads (November 2006). The following equations are recommended for industrial sites:

(AP-42, Chapter 13.2.2, Equation

 $E\left(\frac{lb}{VMT}\right) = k\left(\frac{s}{12}\right)^a \left(\frac{W}{3}\right)^b$

Where: E = emission factor in Ib/VMT lb = pounds of pollutant VMT = vehicle miles traveled k = particle size multiplier (lb/VMT) a = empirical constant (unit less) b = empirical constant (unit less) s = surface silt content, (%) W = mean vehicle weight, full vs. empty (tons)

L = longest haul road length in miles (roundtrip)

E = emission factor (Ib/VMT)

Hourly Emission Factor:

Where: E_h = hourly emission factor (lb/hr) $E_{h}\left(\frac{lb}{hr}\right) = E \cdot d \cdot L$ E = emission factor (lb/VMT) d = average hourly daytime traffic rate, roundtrips per hour (h⁻¹) $l = \text{longer than if an iteration of the second

By considering annual natural mitigation from rainfall, the annual emission factor is affected:

(AP-42, Chapter 13.2.2, Equation

 $E_{ext}\left(\frac{lb}{VMT}\right) = E \cdot \left[\binom{(365 - P)}{365}\right]$

Where: Eext = annual emission factor extrapolated for annual natural mitigation (lb/VMT) E = hourly emission factor (lb/VMT) P = number of days in a year with at least 0.01 inches of precipitation

Notes:

¹ Hourly Vehicle Miles Traveled = d (trips/hour) * L (mile/trip)

² Annual Vehicle Miles Traveled = Hourly Vehicle Miles Traveled (miles/hour) * Annual Operating Hours

³Control Efficiency is set at 88.8%; see control efficiency page for more info.

⁴ Emission factors are from AP-42, Chapter 13.2.2, Unpaved Roads, vehicles traveling on unpaved surfaces at industrial sites.

⁵ Annual Emission Rate = Annual Uncontrolled Emission Factor * Annual VMT ÷ 2000

⁵Hourly Emission Rate = Hourly Uncontrolled Emission Factor * Hourly VMT

6 Total Emission are the sum of all truck emissions operating on that road

7 Emission per Volume source = Total Emissions ÷ Number of Volume Sources

Revised: December 2019

Road Name Muffler Road Number 5 South 1

Truck type			Cat	terpillar 793						-					-			
Average Truck Weight [tons]				303						0					0			
Hourly VMT [miles/hour] ¹	•			23.63						0.00					0.00			
Annual VMT [miles/year] ²			1	004022.39						0.00					0.00			
Control Efficiency [%] ³				88.80%						88.80%					88.80%			
Criteria Pollutant	Annual Uncontrolled Emission Factor ⁴	Hourly Controlled Emission Factor ⁴	Annual Emis [tons/y		Hourly Emis [Ib/		Annual Hourly											
	[Ib/VMT]	[Ib/VMT]	Uncontrolled	Controlled	Uncontrolled	Controlled	[Ib/VMT]	[Ib/VMT]	Uncontrolled	Controlled	Uncontrolled	Controlled	[lb/VMT]	[Ib/VMT]	Uncontrolled	Controlled	Uncontrolled	Controlled
Particulate Matter (PM 2.5)	0.42	0.52	212.88	23.84	12.40	1.39	0.000	0.000	0.00	0.00	0.00	0.00	0.000	0.000	0.00	0.00	0.00	0.00
Particulate Matter (PM 10)	4.24	5.25	2128.79	238.42	123.99	13.89	0.000	0.00	0.00	0.00	0.00	0.00	0.000	0.000	0.00	0.00	0.00	0.00
Particulate Matter (TSP)	16.64	20.59	8352.67	935.50	486.50	54.49	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Emission Factor Constants		Muffle	er		-	Total Maximu	m Fugitive Emission	s ⁶	Number of volume		Emissions p	er Volume Source ⁷	
					Contro	lled	Uncontr	olled		Co	ntrolled	Uncon	trolled
Parameter	PM _{2.5}	PM10	TSP		[tons/year]	[lb/hr]	[tons/year]	[lb/hr]	sources	[tons/year]	[lb/hr]	[tons/year]	[lb/hr]
k*	0.15	1.50	4.90	Particulate Matter (PM 2.5)	23.842	1.39	212.88	12.40	12	1.987	0.12	17.74	1.03
a*	0.90	0.90	0.70	Particulate Matter (PM 10)	238.42	13.89	2128.79	123.99	12	19.87	1.16	177.40	10.33
b*	0.45	0.45	0.45	Particulate Matter (TSP)	935.50	54.49	8352.67	486.50	12	77.96	4.54	696.06	40.54
silt content		4.8											
P [days]		70											

Fugitive emissions from traffic on unpaved surfaces by vehicles such as haul trucks and maintenance vehicles were estimated using EPA AP-42 emission factors, Section 13.2.2, Unpaved Roads (November 2006). The following equations are recommended for industrial sites:

(AP-42, Chapter 13.2.2, Equation Where: E = emission factor in Ib/VMT

 $E\left(\frac{lb}{VMT}\right) = k\left(\frac{s}{12}\right)^a \left(\frac{W}{3}\right)^b$

lb = pounds of pollutant VMT = vehicle miles traveled k = particle size multiplier (lb/VMT) a = empirical constant (unitless) b = empirical constant (unitless) s = surface silt content, (%) W = mean vehicle weight, full vs. empty (tons)

Hourly Emission Factor:

Where: E_h = hourly emission factor (lb/hr) E = emission factor (Ib/VMT)

 $E_{h}\left(\frac{lb}{hr}\right) = E \cdot d \cdot L$ = emission factor (lb/VMT) $= E \cdot d \cdot L$ = longers hault rad length in miles (roundtrips per hour (h¹) = longers hault rad length in miles (roundtrip)L = longest haul road length in miles (roundtrip)

P = number of days in a year with at least 0.01 inches of precipitation

By considering annual natural mitigation from rainfall, the annual emission factor is affected:

(AP-42, Chapter 13.2.2, Equation Where: E_{ext} = annual emission factor extrapolated for annual natural mitigation (lb/VMT) E = hourly emission factor (Ib/VMT)

 $E_{ext}\left(\frac{lb}{VMT}\right) = E \cdot \left[\frac{(365 - P)}{365} \right]$

Notes: ¹ Hourly Vehicle Miles Traveled = d (trips/hour) * L (mile/trip)

² Annual Vehicle Miles Traveled = Hourly Vehicle Miles Traveled (miles/hour) * Annual Operating Hours

³Control Efficiency is set at 88.8%; see control efficiency page for more info.

⁴ Emission factors are from AP-42, Chapter 13.2.2, Unpaved Roads, vehicles traveling on unpaved surfaces at industrial sites.

⁵ Annual Emission Rate = Annual Uncontrolled Emission Factor * Annual VMT ÷ 2000 ⁵Hourly Emission Rate = Hourly Uncontrolled E,ission Factor * Hourly VMT

6 Total Emission are the sum of all truck emissions operating on that road

7 Emission per Volume source = Total Emissions ÷ Number of Volume Sources

Revised: December 2019

Road Name South Stockpile Road Road Number

Truck type			Caterpilla	r 702														1
Average Truck Weight [tons]			303						-						-			
									0						U			
Hourly VMT [miles/hour] ¹			43.53233	3831					0						0			
Annual VMT [miles/year] ²			1849514	.925					0						0			
Control Efficiency [%] ³		88.80%							88.8	0%					88.80%			
Criteria Pollutant	Annual Uncontrolled Emission Factor ⁴	Annual kcontrolled sion Factor ⁴ Hourly Controlled Emission Factor ⁴ Hourly Emission Rate ⁵ Hourly Emission Rate [lb/yr]					Annual Uncontrolled Emission Factor ⁴	Hourly Controlled Emission Factor ⁴	Annual Emiss [tons/y			nission Rate ^s p/yr]	Annual Uncontrolled Emission Factor ⁴	Hourly Controlled Emission Factor ⁴	Annual Emiss [tons/y		Annual Emis [Ib/y	
	[Ib/VMT]	[Ib/VMT]	Uncontrolled	Controlled	Uncontrolled	Controlled	[Ib/VMT]	[Ib/VMT]	Uncontrolled	Controlled	Uncontrolled	Controlled	[Ib/VMT]	[Ib/VMT]	Uncontrolled	Controlled	Uncontrolled	Controlled
Particulate Matter (PM 2.5)	0.42	0.52	392.15	43.92	22.84	2.56	0.000	0.000	0.00	0.00	0.00	0.00	0.000	0.000	0.00	0.00	0.00	0.00
Particulate Matter (PM 10)	4.24	5.25	3921.45	439.20	228.40	25.58	0.000	0.00	0.00	0.00	0.00	0.00	0.000	0.000	0.00	0.00	0.00	0.00
Particulate Matter (TSP)	16.64	20.59	15386.49	1723.29	896.18	100.37	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Emission Factor Constants		South Stockpile Road					Total Maximum	Fugitive Emissions ⁶		Number of volume		Emissions per V	olume Source ⁷	
						Control	lled	Uncontro	olled		Contr	olled	Unco	ntrolled
Parameter	PM _{2.5}	PM10	TSP			[tons/year]	[lb/hr]	[tons/year]	[lb/hr]	sources	[tons/year]	[lb/hr]	[tons/year]	[lb/hr]
k*	0.15	1.50	4.90	1	Particulate Matter (PM 2.5)	43.92	2.56	392.15	22.84	37	1.19	0.07	10.60	0.62
a*	1	0.90	0.70		Particulate Matter (PM 10)	439.20	25.58	3921.45	228.40	37	11.87	0.69	105.99	6.17
b*	0.45	0.45	0.45		Particulate Matter (TSP)	1723.29	100.37	15386.49	896.18	37	46.58	2.71	415.85	24.22
silt content		4.8												
P [days]		70												

Fugitive emissions from traffic on unpaved surfaces by vehicles such as haul trucks and maintenance vehicles were estimated using EPA AP-42 emission factors, Section 13.2.2, Unpaved Roads (November 2006). The following equations are recommended for industrial sites:

(AP-42, Chapter 13.2.2, Equation Where: E = emission factor in lb/VMT

 $E\left(\frac{lb}{VMT}\right) = k\left(\frac{s}{12}\right)^a \left(\frac{W}{3}\right)^b$

Hourly Emission Factor:

 $E_h\left(\frac{lb}{hr}\right) = E \cdot d \cdot L$

By considering annual natural mitigation from rainfall, the annual emission factor is affected:

(AP-42, Chapter 13.2.2, Equation

E = hourly emission factor (lb/VMT) P = number of days in a year with at least 0.01 inches of precipitation $E_{est}\left(\frac{lb}{VMT}\right) = E \cdot \left[\frac{(365 - P)}{365} \right]$

d = average hourly daytime traffic rate, roundtrips per hour (h^{-1}) L = longest haul road length in miles (roundtrip)

Where: E_{ext} = annual emission factor extrapolated for annual natural mitigation (lb/VMT)

Notes:

 ¹ Hourly Vehicle Miles Traveled = d (trips/hour) * L (mile/trip)
 ² Annual Vehicle Miles Traveled = Hourly Vehicle Miles Traveled (miles/hour) * Annual Operating Hours (hours/year) ³Control Efficiency is set at 88.8%; see control efficiency page for more info. ⁴ Emission factors are from AP-42, Chapter 13.2.2, Unpaved Roads, vehicles traveling on unpaved surfaces at industrial sites. ⁵ Annual Emission Rate = Annual Uncontrolled Emission Factor * Annual VMT + 2000 ⁵ Hourly Emission Rate = Hourly Uncontrolled Emission Factor * Hourly VMT 6 Total Emission are the sum of all truck emissions operating on that road 7 Emission per Volume source = Total Emissions ÷ Number of Volume Sources

lb = pounds of pollutant VMT = vehicle miles traveled

Where: E_h = hourly emission factor (lb/hr) E = emission factor (Ib/VMT)

k = particle size multiplier (lb/VMT) a = empirical constant (unit less) b = empirical constant (unit less) s = surface silt content, (%) W = mean vehicle weight, full vs. empty (tons)

7

Revised: December 2019 Road Name 3A / 9 Dam

Road Number

Truck type	Caterpillar 793
Average Truck Weight [tons]	303

index type		Cotterpinal																
Average Truck Weight [tons]				303					()					0			
Hourly VMT [miles/hour] ¹				72.45					0.0	00					0.0	0		
Annual VMT [miles/year] ²			30	78121.27					0.0	00					0.0	10		
Control Efficiency [%] ³				88.80%					88.8	30%					88.8	0%		
Criteria Pollutant	Annual Uncontrolled Emission Factor ⁴	Hourty Annual Emission Rate ⁵ Hourly Emission Rate ⁵ Emission [tons/year] [lb/yr] Factor ⁴ [lb/yr]					Annual Uncontrolled Emission Factor ⁴	Hourly Controlled Emission Factor ⁴	Annual Emis [tons/		Hourly Emiss [lb/yr		Annual Uncontrolled Emission Factor ⁴	Hourly Controlled Emission Factor ⁴	Annual Emis: [tons/y		Annual Emiss [lb/yr	
	[lb/VMT]	[Ib/VMT]	Uncontrolled	Controlled	Uncontrolled	Controlled	[lb/VMT]	[Ib/VMT]	Uncontrolled	Controlled	Uncontrolled	Controlled	[Ib/VMT]	[lb/VMT]	Uncontrolled	Controlled	Uncontrolled	Controlled
Particulate Matter (PM 2.5)	0.42	0.52	652.64	73.10	38.01	4.26	0.000	0.000	0.00	0.00	0.00	0.00	0.000	0.000	0.00	0.00	0.00	0.00
Particulate Matter (PM 10)	4.24	5.25	6526.42	730.96	380.13	42.57	0.000	0.00	0.00	0.00	0.00	0.00	0.000	0.000	0.00	0.00	0.00	0.00
Particulate Matter (TSP)	16.64	20.59	25607.52	2868.04	1491.50	167.05	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Emission Factor Constants		3A / 9 Dam			To	tal Maximum F	ugitive Emissions ⁶				Emissions per	Volume Source ⁷	
					Contro	lled	Uncontr	olled	Number of volume	Con	trolled	Uncon	rolled
Parameter	PM _{2.5}	PM ₁₀	TSP		[tons/year]	[lb/hr]	[tons/year]	[lb/hr]	sources	[tons/year]	[lb/hr]	[tons/year]	[lb/hr]
k*	0.15	1.50	4.90	Particulate Matter (PM 2.5)	73.10	4.26	652.64	38.01	58	1.26	0.07	11.25	0.66
a*	0.90	0.90	0.70	Particulate Matter (PM 10)	730.96	42.57	6526.42	380.13	58	12.60	0.73	112.52	6.55
b*	0.45	0.45	0.45	Particulate Matter (TSP)	2868.04	167.05	25607.52	1491.50	58	49.45	2.88	441.51	25.72
silt content		4.8											· · · ·
P [days]		70											

Fugitive emissions from traffic on unpaved surfaces by vehicles such as haul trucks and maintenance vehicles were estimated using EPA AP-42 emission factors, Section 13.2.2, Unpaved Roads (November 2006). The following equations are recommended for industrial sites:

(AP-42, Chapter 13.2.2, Equation 1: Where: E = emission factor in lb/VMT

lb = pounds of pollutant VMT = vehicle miles traveled k = particle size multiplier (lb/VMT) a = empirical constant (unit less) b = empirical constant (unit less) s = surface silt content, (%)

Hourly Emission Factor:

 $E_{h}\left(\frac{lb}{hr}\right) = E \cdot d \cdot L \qquad \begin{array}{c} \text{E=emission ractor (up, vm1)} \\ \text{d=average hourly daytime traffic rate, roundtrips per hour (h⁻¹)} \\ \text{L=longest haul road length in miles (roundtrip)} \end{array}$

 $E\left(\frac{lb}{VMT}\right) = k\left(\frac{s}{12}\right)^a \left(\frac{W}{3}\right)^b$

 $E_{ext}\left(\frac{lb}{VMT}\right) = E \cdot \left[\binom{(365 - P)}{365}\right]$

Where: E_{ext} = annual emission factor extrapolated for annual natural mitigation (Ib/VMT) E = hourly emission factor (Ib/VMT) P = number of days in a year with at least 0.01 inches of precipitation

Notes: ¹Hourly Vehicle Miles Traveled = d (trips/hour) * L (mile/trip)

² Annual Vehicle Miles Traveled = Hourly Vehicle Miles Traveled (miles/hour) * Annual Operating Hours (hours/year) ³Control Efficiency is set at 88.8%; see control efficiency page for more info. ⁴ Emission factors are from AP-42, Chapter 13.2.2, Unpaved Roads, vehicles traveling on unpaved surfaces at industrial sites. ⁵ Annual Emission Rate = Annual Uncontrolled Emission Factor * Annual VMT ÷ 2000 ⁵Hourly Emission Rate = Hourly Uncontrolled Emission Factor * Hourly VMT 6 Total Emission are the sum of all truck emissions operating on that road 7 Emission per Volume source = Total Emissions ÷ Number of Volume Sources * Values for k, a, and b obtained from AP-42, Chapter 13.2.2, Unpaved Roads, Table 13.2.2-2 (November 2006)

W = mean vehicle weight, full vs. empty (tons) Where: E_h = hourly emission factor (lb/hr) E = emission factor (Ib/VMT)

By considering annual natural mitigation from rainfall, the annual emission factor is affected:

(AP-42, Chapter 13.2.2, Equation 1:

Freeport-McMoRan Chino Mines Company Revised: December 2019 Road Name

Road Number

							1											
Truck type			Caterpi	llar 793					-						-			
Average Truck Weight [tons]			30	13					0						0			
Hourly VMT [miles/hour] ¹			60	63					0.0	5					0.00			
Annual VMT [miles/year] ²			21246	26.87					0.0)					0.00			
Control Efficiency [%] ³			10%				88.8)%					88.80%					
Criteria Pollutant	Annual Uncontrolled Emission Factor ⁴	88.80% nual Uncontrolled Hourly Controlled Annual Emission Rate ⁵ Hourly Emission Rate ³ [tors/year] [lb/yr]					Annual Uncontrolled Emission Factor ⁴	Hourly Controlled Emission Factor ⁴	Annual Emis [tons/		Hourly Emi [Ib,		Annual Uncontrolled Emission Factor ⁴	Hourly Controlled Emission Factor ⁴	Annual Emi [tons/		Annual Emis [Ib/	
	[lb/VMT]	[Ib/VMT]	Uncontrolled	Controlled	Uncontrolled	Controlled	[Ib/VMT]	[Ib/VMT]	Uncontrolled	Controlled	Uncontrolled	Controlled	[Ib/VMT]	[Ib/VMT]	Uncontrolled	Controlled	Uncontrolled	Controlled
Particulate Matter (PM 2.5)	0.42	0.52	450.48	50.45	31.81	3.56	0.000	0.000	0.00	0.00	0.00	0.00	0.000	0.000	0.00	0.00	0.00	0.00
Particulate Matter (PM 10)	4.24	5.25	4504.76	504.53	318.13	35.63	0.000	0.00	0.00	0.00	0.00	0.00	0.000	0.000	0.00	0.00	0.00	0.00
Particulate Matter (TSP)	16.64	20.59	17675.21	1979.62	1248.25	139.80	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Emission Factor Constants		West Stockpile					Total Maximum Fu	igitive Emissions ⁶		Number of volume		Emissions per Vol	ume Source ⁷	
						Contr	olled	Uncont	rolled	sources	Co	ntrolled	Uncont	rolled
Parameter	PM2.5	PM10	TSP			[tons/year]	[lb/hr]	[tons/year]	[lb/hr]	sources	[tons/year]	[lb/hr]	[tons/year]	[lb/hr]
k*	0.15	1.50	4.90	1	Particulate Matter (PM 2.5)	50.45	3.56	450.48	31.81	45	1.12	0.08	10.01	0.71
a*	0.90	0.90	0.70		Particulate Matter (PM 10)	504.53	35.63	4504.76	318.13	45	11.21	0.79	100.11	7.07
b*	0.45	0.45	0.45		Particulate Matter (TSP)	1979.62	139.80	17675.21	1248.25	45	43.99	3.11	392.78	27.74
silt content		4.8												
P [days]		70												

West Stockpile

Fugitive emissions from traffic on unpaved surfaces by vehicles such as haul trucks and maintenance vehicles were estimated using EPA AP-42 emission factors, Section 13.2.2, Unpaved Roads (November 2006). The following equations are recommended for industrial sites:

(AP-42, Chapter 13.2.2, Equation 1a)

 $E\left(\frac{lb}{VMT}\right) = k\left(\frac{s}{12}\right)^a \left(\frac{W}{3}\right)^b$

Where: E = emission factor in lb/VMT lb = pounds of pollutant VMT = vehicle milles traveled k = particle size multiplier (lb/VMT) a = empirical constant (unit less) a = empirical constant (unit less) b = empirical constant (unit less) s = surface silt content, (%) W = mean vehicle weight, full vs. empty (tons)

Hourly Emission Factor:

 $E_h\left(\frac{lb}{hr}\right) = E \cdot d \cdot L$

By considering annual natural mitigation from rainfall, the annual emission factor is affected:

(AP-42, Chapter 13.2.2, Equation 1a)

 $E_{ext}\left(\frac{lb}{VMT}\right) = E \cdot \left[\binom{(365 - P)}{365}\right]$

Notes: ¹Hourly Vehicle Milles Traveled = d (trips/hour) * L (mile/trip) ² Annual Vehicle Miles Traveled = Hourly Vehicle Miles Traveled (miles/hour) * Annual Operating Hours (hours/year) ³Control Efficiency is set at 88.8%; see control efficiency page for more info.
 ⁴ Emission factors are from AP-42, Chapter 13.2.2, Unpaved Roads, vehicles traveling on unpaved surfaces at industrial sites. emission lactors are non-r+4, chapter 32-2, uppare houds, ventices travening on uppared surfaces at inc Annual Emission Rate + Annual Uncontrolled Emission Factor + Annual VM 2000 *hourly Emission Rate + Mourly Uncontrolled Emission Factor + Hourly VMT 6 Total Emission are the sum of all truck emissions performing on that road 7 Emission per Volume source = Total Emissions + Number of Volume Sources + Values for k, and b obtained from Are42, Chapter 1322, Uppared Roads, Table 13.2.2-2 (November 2006)

d = average hourly daytime traffic rate, roundtrips per hour (h⁻¹) L = longest haul road length in miles (roundtrip)

Where: E_h = hourly emission factor (lb/hr) E = emission factor (lb/VMT)

Where: E_{zt} = annual emission factor extrapolated for annual natural mitigation (lb/VMT) E = hourly emission factor (lb/VMT) P = number of days in a year with at least 0.01 inches of precipitation

Road Name Road Number Café to Lampbright 11

Truck type			Caterpilla	r 793					-						-			
Average Truck Weight [tons]			303						0						0			
Hourly VMT [miles/hour] ¹			37.3	L					0.00						0.00			
Annual VMT [miles/year] ²			112360).75					0.00						0.00			
Control Efficiency [%] ³			88.80	%					88.80	%					88.80%			
Criteria Pollutant	Annual Uncontrolled Emission Factor ⁴	Hourly Controlled Emission Factor ⁴	Annual Emi [tons/		Hourly Emiss [Ib/y	non nucc	Annual Uncontrolled Emission Factor ⁴	Hourly Controlled Emission Factor ⁴	Annual Emi: [tons/		Hourly Emis [Ib/	Sionnate	Annual Uncontrolled Emission Factor ⁴	Hourly Controlled Emission Factor ⁴	Annual Emiss [tons/y		Annual Emis [Ib/y	
	[Ib/VMT]	[Ib/VMT] [Ib/VMT] Uncontrolled Controlled Uncontrolled Cor						[Ib/VMT]	Uncontrolled	Controlled	Uncontrolled	Controlled	[Ib/VMT]	[Ib/VMT]	Uncontrolled	Controlled	Uncontrolled	Controlled
Particulate Matter (PM 2.5)	0.42					2.19	0.000	0.000	0.00	0.00	0.00	0.00	0.000	0.000	0.00	0.00	0.00	0.00
Particulate Matter (PM 10)	4.24	5.25	2382.33	266.82	195.77	21.93	0.000	0.00	0.00	0.00	0.00	0.00	0.000	0.000	0.00	0.00	0.00	0.00
Particulate Matter (TSP)	16.64	20.59	9347.47	1046.92	768.15	86.03	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Emission Factor Constants		Café to Lampbright					Total Maximum Fi	ugitive Emissions ⁶		Number of volume		Emissions per	Volume Source ⁷	
						Cont	rolled	Uncont	rolled	sources	Contr	olled	Uncont	rolled
Parameter	PM _{2.5}	PM10	TSP	I		[tons/year]	[lb/hr]	[tons/year]	[lb/hr]	sources	[tons/year]	[lb/hr]	[tons/year]	[lb/hr]
k*	0.15	1.50	4.90	1	Particulate Matter (PM 2.5)	26.68	2.19	238.23	19.58	24	1.11	0.09	9.93	0.82
a*	0.90	0.90	0.70	T	Particulate Matter (PM 10)	266.82	21.93	2382.33	195.77	24	11.12	0.91	99.26	8.16
b*	0.45	0.45	0.45	T	Particulate Matter (TSP)	1046.92	86.03	9347.47	768.15	24	43.62	3.58	389.48	32.01
silt content		4.8		T										
P [days]		70		Ι										

Fugitive emissions from traffic on unpaved surfaces by vehicles such as haul trucks and maintenance vehicles were estimated using EPA AP-42 emission factors, Section 13.2.2, Unpaved Roads (November 2006). The following equations are recommended for industrial sites:

(AP-42, Chapter 13.2.2, Equation

 $E\left(\frac{lb}{VMT}\right) = k\left(\frac{s}{12}\right)^a \left(\frac{W}{3}\right)^b$

lb = pounds of pollutant VMT = vehicle miles traveled k = particle size multiplier (lb/VMT) a = empirical constant (unit less) a = empirical constant (unit less) b = empirical constant (unit less) s = surface silt content, (%) W = mean vehicle weight, full vs. empty (tons)

Where: E = emission factor in lb/VMT

Hourly Emission Factor:

 $E_h\left(\frac{lb}{hr}\right) = E \cdot d \cdot L$

Where: E_h = hourly emission factor (lb/hr) E = emission factor (Ib/VMT) d = average hourly daytime traffic rate, roundtrips per hour (h⁻¹) L = longest haul road length in miles (roundtrip)

Where: E_{xt} = annual emission factor extrapolated for annual natural mitigation (Ib/VMT) E = hourly emission factor (lb/VMT) P = number of days in a year with at least 0.01 inches of precipitation

By considering annual natural mitigation from rainfall, the annual emission factor is affected:

(AP-42, Chapter 13.2.2, Equation

 $E_{ext}\left(\frac{lb}{VMT}\right) = E \cdot \left[\frac{(365 - P)}{365} \right]$

 Notes:

 * Houry Vehicle Miles Traveled = d (trips/hour) * L (mile/trip)

 * Annual Vehicle Miles Traveled = Houry Vehicle Miles Traveled (miles/hour) * Annual Operating Hours (hours/year)

 * Control Efficiency is set 48.8% see control efficiency page for more info.

 * Emission factors are from AP-42, Chapter 13.2.2, Unpaved Roads, vehicles traveling on unpaved surfaces at industrial sites.
 ⁵ Annual Emission Rate = Annual Uncontrolled Emission Factor * Annual WTT + 2000 ⁶ Annual Emission Rate = Nourly Uncontrolled Emission Factor * Nourly VMT ⁷ Hourly VERSION Rate = Nourly Uncontrolled Emission Factor * Nourly VMT ⁸ Total Emission are the sum of all truck emissions operating on that road 7 Emission per Volume source = Total Emissions * Number of Volume Source 7 Values for k, and b obtained from Ar-42, Chapter 132,22, Unpared Roads, Table 13.2.2-2 (November 2006)

12

Revised: December 2019 LBX Road Name

Road Number

Truck type			Caterpilla	r 793					-						-			
Average Truck Weight [tons]			303						0						0			
Hourly VMT [miles/hour] ¹			32.34	1					0.00						0.00			
Annual VMT [miles/year] ²			973787	.31					0.00						0.00			
Control Efficiency [%] ³			88.80	%					88.80%						88.80	%		
Criteria Pollutant	Annual Uncontrolled Hourly Controlled Annual Emission Rate ⁵ Hourly Emission Rate ⁷ [byr] Emission Factor ⁴ [tons/year] [byr]						Annual Uncontrolled Emission Factor ⁴	Hourly Controlled Emission Factor ⁴	Annual Emis [tons/y		Hourly Emi [lb/		Annual Uncontrolled Emission Factor ⁴	Hourly Controlled Emission Factor ⁴	Annual Emis [tons/		Annual Emi: [Ib/	
	[lb/VMT]	[lb/VMT]	Uncontrolled	Controlled	Uncontrolled	Controlled	[lb/VMT]	[lb/VMT]	Uncontrolled	Controlled	Uncontrolled	Controlled	[lb/VMT]	[lb/VMT]	Uncontrolled	Controlled	Uncontrolled	Controlled
Particulate Matter (PM 2.5)	0.42	0.52	206.47	23.12	16.97	1.90	0.000	0.000	0.00	0.00	0.00	0.00	0.000	0.000	0.00	0.00	0.00	0.00
Particulate Matter (PM 10)	4.24	5.25	2064.68	231.24	169.67	19.00	0.000	0.00	0.00	0.00	0.00	0.00	0.000	0.000	0.00	0.00	0.00	0.00
Particulate Matter (TSP)	16.64	20.59	8101.14	907.33	665.73	74.56	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Emission Factor Constants		LBX			1	Fotal Maximum Fug	itive Emissions ⁶		Number of		Emissions per V	olume Source ⁷	
					Control	led	Uncontro	olled	volume sources	Cor	ntrolled	Uncon	trolled
Parameter	PM _{2.5}	PM ₁₀	TSP		[tons/year]	[lb/hr]	[tons/year]	[lb/hr]	volume sources	[tons/year]	[lb/hr]	[tons/year]	[lb/hr]
k*	0.15	1.50	4.90	Particulate Matter (PM 2.5)	23.12	1.90	206.47	16.97	11	2.10	0.17	18.77	1.54
a*	0.90	0.90	0.70	Particulate Matter (PM 10)	231.24	19.00	2064.68	169.67	11	21.02	1.73	187.70	15.42
b*	0.45	0.45	0.45	Particulate Matter (TSP)	907.33	74.56	8101.14	665.73	11	82.48	6.78	736.47	60.52
silt content		4.8											
P [days]		70											

Fugitive emissions from traffic on unpaved surfaces by vehicles such as haul trucks and maintenance vehicles were estimated using EPA AP-42 emission factors, Section 13.2.2, Unpaved Roads (November 2006). The following equations are recommended for industrial sites:

(AP-42, Chapter 13.2.2, Equation $E\left(\frac{lb}{VMT}\right) = k\left(\frac{s}{12}\right)^a \left(\frac{W}{3}\right)^b$ Where: E = emission factor in Ib/VMT lb = pounds of pollutant VMT = vehicle miles traveled k = particle size multiplier (lb/VMT) a = empirical constant (unit less) b = empirical constant (unit less) s = surface silt content, (%) W = mean vehicle weight, full vs. empty (tons)

Where: E_h = hourly emission factor (lb/hr)

E = emission factor (lb/VMT)

Hourly Emission Factor:

 $E_h\left(\frac{lb}{hr}\right) = E \cdot d \cdot L$

By considering annual natural mitigation from rainfall, the annual emission factor is affected:

(AP-42, Chapter 13.2.2, Equation

Where: E_{ext} = annual emission factor extrapolated for annual natural mitigation (Ib/VMT) E = hourly emission factor (lb/VMT) P = number of days in a year with at least 0.01 inches of precipitation

d = average hourly daytime traffic rate, roundtrips per hour (h^{-1}) L = longest haul road length in miles (roundtrip)

 $E_{ext}\left(\frac{lb}{VMT}\right) = E \cdot \left[\frac{(365 - P)}{365}\right]$

Notes:

¹ Hourly Vehicle Miles Traveled = d (trips/hour) * L (mile/trip) ² Annual Vehicle Miles Traveled = Hourly Vehicle Miles Traveled (miles/hour) * Annual Operating Hours (hours/year) ³Control Efficiency is set at 88.8%; see control efficiency page for more info.
⁴ Emission factors are from AP-42, Chapter 13.2.2, Unpaved Roads, vehicles traveling on unpaved surfaces at industrial sites. ⁵ Annual Emission Rate = Annual Uncontrolled Emission Factor * Annual VMT ÷ 2000 ⁵Hourly Emission Rate = Hourly Uncontrolled Emission Factor * Hourly VMT 6 Total Emission are the sum of all truck emissions operating on that road 7 Emission per Volume source = Total Emissions ÷ Number of Volume Sources * Values for k, a, and b obtained from AP-42, Chapter 13.2.2, Unpaved Roads, Table 13.2.2-2 (November 2006)

Revised: December 2019

Road Name Upper Lampbright Road Number 13

Truck type			Caterpi	llar 793					-						-			
Average Truck Weight [tons]			31	03					0						0			
Hourly VMT [miles/hour] ¹			72	.14					0.00						0.0	00		
Annual VMT [miles/year] ²			21722	94.78					0.00						0.0	00		
Control Efficiency [%] ³			88.	80%					88.80%						88.8	0%		
Criteria Pollutant	Annual Uncontrolled Emission Factor ⁴	Hourly Controlled Emission Factor ⁴	Annual Em [tons,	ission Rate ⁵ /year]	Hourly Emis [Ib/		Annual Uncontrolled Emission Factor ⁴	Hourly Controlled Emission Factor ⁴	Annual Emis [tons/y		Hourly Emis [Ib/		Uncontrolled	Hourly Controlled Emission Factor ⁴		ission Rate ^s /year]	Annual Emi [Ib/	
	[Ib/VMT] [Ib/VMT] Uncontrolled Controlled Uncontrolled Cont					Controlled	[Ib/VMT]	[Ib/VMT]	Uncontrolled	Controlled	Uncontrolled	Controlled	[Ib/VMT]	[Ib/VMT]	Uncontrolled	Controlled	Uncontrolled	Controlled
Particulate Matter (PM 2.5)	0.42	0.52	460.58	51.59	37.85	4.24	0.000	0.000	0.00	0.00	0.00	0.00	0.000	0.000	0.00	0.00	0.00	0.00
Particulate Matter (PM 10)	4.24	4.24 5.25 4605.83 515.85 378.50					0.000	0.00	0.00	0.00	0.00	0.00	0.000	0.000	0.00	0.00	0.00	0.00
Particulate Matter (TSP)	16.64	20.59	18071.77	2024.04	1485.10	166.33	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Emission Factor Const	ants	Upper Lampbrigh	t			Total Maximum Fugi	itive Emissions ⁶		Number		Emissions per \	Volume Source ⁷	
					Contro	olled	Uncontr	olled	Number of	Contr	olled	Uncont	trolled
Parameter	PM _{2.5}	PM ₁₀	TSP		[tons/year]	[lb/hr]	[tons/year]	[lb/hr]	volume sources	[tons/year]	[lb/hr]	[tons/year]	[lb/hr]
k*	0.15	1.50	4.90	Particulate Matter (PM 2.5)	51.59	4.24	460.58	37.85	25	2.06	0.170	18.42	1.51
a*	0.90	0.90	0.70	Particulate Matter (PM 10)	515.85	42.39	4605.83	378.50	25	20.63	1.70	184.23	15.14
b*	0.45	0.45	0.45	Particulate Matter (TSP)	2024.04	166.33	18071.77	1485.10	25	80.96	6.65	722.87	59.40
silt content		4.8											
P [days]		70											

Fugitive emissions from traffic on unpaved surfaces by vehicles such as haul trucks and maintenance vehicles were estimated using EPA AP-42 emission factors, Section 13.2.2, Unpaved Roads (November 2006). The following equations are recommended for industrial sites:

(AP-42, Chapter 13.2.2, Equa Where: E = emission factor in Ib/VMT lb = pounds of pollutant VMT = vehicle miles traveled $E\left(\frac{lb}{VMT}\right) = k\left(\frac{s}{12}\right)^{a} \left(\frac{W}{3}\right)^{b}$ k = particle size multiplier (lb/VMT) a = empirical constant (unit less) b = empirical constant (unit less) s = surface silt content, (%) W = mean vehicle weight, full vs. empty (tons)

Hourly Emission Factor:

 $E_h\left(\frac{lb}{hr}\right) = E \cdot d \cdot L$

Where: E_h = hourly emission factor (lb/hr) E = emission factor (Ib/VMT) d = average hourly daytime traffic rate, roundtrips per hour (h⁻¹) L = longest haul road length in miles (roundtrip)

Where: E_{ext} = annual emission factor extrapolated for annual natural mitigation (Ib/VMT)

By considering annual natural mitigation from rainfall, the annual emission factor is affected:

(AP-42, Chapter 13.2.2, Equa

E = hourly emission factor (lb/VMT) $E_{ea}\left(\frac{lb}{VMT}\right) = E \cdot \left[\binom{(365 - P)}{365}\right]$ P = number of days in a year with at least 0.01 inches of precipitation

Notes: ¹ Hourly Vehicle Miles Traveled = d (trips/hour) * L (mile/trip) ² Annual Vehicle Miles Traveled = Hourly Vehicle Miles Traveled (miles/hour) * Annual Operating Hours (hours/year) ² Control Efficiency is set at 88.8%, see control efficiency page for more info. ⁸ Emission Factors are from AP-42, Chapter 13.2.2, Unpagek Boaks, Weitlest traveling on unpaved surfaces at industrial sites. ⁵ Annual Emission Rate = Annual Uncontrolled Emission Factor * Annual VMT ÷ 2000 ⁵ Hourly Emission Rate = Hourly Uncontrolled Emission Factor * Hourly VMT 6 Total Emission are the sum of all truck emissions operating on that road 7 Emission per Volume source = Total Emissions + Number of Volume Sources * Values for k, a, and b obtained from AP-42, Chapter 13.2.2, Unpaved Roads, Table 13.2.2-2 (November 2006)

Revised: December 2019

Road Name Lower Lampbright

Road Number 14

Truck type			Caterpilla	r 793						-								
Average Truck Weight [tons]			303							0					()		
Hourly VMT [miles/hour] ¹			42.79)					(0.00					0.0	00		
Annual VMT [miles/year] ²			1288395	5.52					(0.00					0.0	00		
Control Efficiency [%] ³			88.80	%					88	3.80%					88.8	30%		
Criteria Pollutant	Annual Uncontrolled Emission Factor ⁴	Hourly Controlled Emission Factor ⁴	Annual Emis [tons/y		Hourly Emis [Ib/	ur]	Annual Uncontrolled Emission Factor ⁴	Hourly Controlled Emission Factor ⁴		nission Rate ⁵ s/year]		nission Rate ⁵ o/yr]	Annual Uncontrolled Emission Factor ⁴	Hourly Controlled Emission Factor ⁴	Annual Emi: [tons/		Annual Emis [Ib/y	
	[Ib/VMT]	[Ib/VMT]	Uncontrolled	Controlled	Uncontrolled	Controlled	[lb/VMT]	[Ib/VMT]	Uncontrolled	Controlled	Uncontrolled	Controlled	[Ib/VMT]	[lb/VMT]	Uncontrolled	Controlled	Uncontrolled	Controlled
Particulate Matter (PM 2.5)	0.42	0.52	273.17	30.60	22.45	2.51	0.000	0.000	0.00	0.00	0.00	0.00	0.000	0.000	0.00	0.00	0.00	0.00
Particulate Matter (PM 10)	4.24	5.25	2731.73	305.95	224.49	25.14	0.000	0.00	0.00	0.00	0.00	0.00	0.000	0.000	0.00	0.00	0.00	0.00
Particulate Matter (TSP)	16.64	20.59	10718.43	1200.46	224.49 25.14 0.4			0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

E	mission Factor Constants		Lower Lampbright					Total Maximum	Fugitive Emissions ⁶		Number of		Emissions per V	olume Source ⁷	
							Contr	olled	Uncor	ntrolled	volume sources	Cont	rolled	Uncor	ntrolled
	Parameter	PM _{2.5}	PM10	TSP	I		[tons/year]	[lb/hr]	[tons/year]	[lb/hr]	volume sources	[tons/year]	[lb/hr]	[tons/year]	[lb/hr]
	k*	0.15	1.50	4.90	T	Particulate Matter (PM 2.5)	30.60	2.51	273.17	22.45	16	1.91	0.16	17.07	1.40
	a*	0.90	0.90	0.70	Ī	Particulate Matter (PM 10)	305.95	25.14	2731.73	224.49	16	19.12	1.57	170.73	14.03
	b*	0.45	0.45	0.45	Ī	Particulate Matter (TSP)	1200.46	98.65	10718.43	880.82	16	75.03	6.17	669.90	55.05
	silt content		4.8		Ī										
	P [days]		70		Ī										

Fugitive emissions from traffic on unpaved surfaces by vehicles such as haul trucks and maintenance vehicles were estimated using EPA AP-42 emission factors, Section 13.2.2, Unpaved Roads (November 2006). The following equations are recommended for industrial sites:

(AP-42, Chapter 13.2.2, Equation $E\left(\frac{lb}{VMT}\right) = k\left(\frac{s}{12}\right)^a \left(\frac{W}{3}\right)^b$ Where: E = emission factor in Ib/VMT lb = pounds of pollutant VMT = vehicle miles traveled k = particle size multiplier (lb/VMT) a = empirical constant (unit less) b = empirical constant (unit less) s = surface silt content, (%) W = mean vehicle weight, full vs. empty (tons)

E = emission factor (lb/VMT)

Hourly Emission Factor:

Where: E_h = hourly emission factor (lb/hr) $E_h\left(\frac{lb}{hr}\right) = E \cdot d \cdot L$

By considering annual natural mitigation from rainfall, the annual emission factor is affected:

(AP-42, Chapter 13.2.2, Equation

Where: Eext = annual emission factor extrapolated for annual natural mitigation (Ib/VMT) E = hourly emission factor (lb/VMT) P = number of days in a year with at least 0.01 inches of precipitation

d = average hourly daytime traffic rate, roundtrips per hour (h⁻¹) L = longest haul road length in miles (roundtrip)

 $E_{ex}\left(\frac{lb}{VMT}\right) = E \cdot \left[\binom{(365 - P)}{365}\right]$

Notes:

¹ Hourly Vehicle Miles Traveled = d (trips/hour) * L (mile/trip) ² Annual Vehicle Miles Traveled = Hourly Vehicle Miles Traveled (miles/hour) * Annual Operating Hours (hours/year) ³Control Efficiency is set at 88.8%; see control efficiency page for more info.
⁴Emission factors are from AP-42, Chapter 13.2.2, Unpaved Roads, vehicles traveling on unpaved surfaces at industrial sites. ⁵ Annual Emission Rate = Annual Uncontrolled Emission Factor * Annual VMT ÷ 2000 ⁵Hourly Emission Rate = Hourly Uncontrolled Emission Factor * Hourly VMT 6 Total Emission are the sum of all truck emissions operating on that road 7 Emission per Volume source = Total Emissions ÷ Number of Volume Sources * Values for k, a, and b obtained from AP-42, Chapter 13.2.2, Unpaved Roads, Table 13.2.2-2 (November 2006)

Revised: December 2019

Road Name Crusher / Stockpiles / Rehandle 15

Road Number

Truck type			Caterpilla	793					-									
Average Truck Weight [tons]			303						0						C)		
Hourly VMT [miles/hour] ¹			18.97						0.0)					0.0	00		
Annual VMT [miles/year] ²			415391.	79					0.0)					0.0	00		
Control Efficiency [%] ³			88.80	6					88.8	%					88.8	80%		
Criteria Pollutant	Annual Uncontrolled Emission Factor ⁴	Hourly Controlled Emission Factor ⁴	Annual Emis [tons/		Hourly Emis [Ib/y		Annual Uncontrolled Emission Factor ⁴	Hourly Controlled Emission Factor ⁴	Annual Emi [tons/		Hourly Emis [Ib/y		Annual Uncontrolled Emission Factor ⁴	Hourly Controlled Emission Factor ⁴	Annual Emis [tons/y		Annual Emiss [lb/yı	
	[Ib/VMT]	[Ib/VMT]	Uncontrolled	Controlled	Uncontrolled	Controlled	[Ib/VMT]	[Ib/VMT]	Uncontrolled	Controlled	Uncontrolled	Controlled	[Ib/VMT]	[Ib/VMT]	Uncontrolled	Controlled	Uncontrolled	Controlled
Particulate Matter (PM 2.5)	0.42	0.52	88.07	9.86	9.95	1.11	0.000	0.000	0.00	0.00	0.00	0.00	0.000	0.000	0.00	0.00	0.00	0.00
Particulate Matter (PM 10)	4.24	5.25	880.74	98.64	99.52	11.15	0.000	0.00	0.00	0.00	0.00	0.00	0.000	0.000	0.00	0.00	0.00	0.00
Particulate Matter (TSP)	16.64	20.59	3455.73	387.04	390.48	43.73	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Emissi	ion Factor Constants	Crusher	/ Stockpiles / Rehan	dle			Total Maximum Fu	gitive Emissions ⁶		Number of volume		Emissions per \	/olume Source ⁷	
						Contr	olled	Uncontr	olled	sources	Cont	trolled	Uncon	ntrolled
	Parameter	PM _{2.5}	PM ₁₀	TSP		[tons/year]	[lb/hr]	[tons/year]	[lb/hr]	sources	[tons/year]	[lb/hr]	[tons/year]	[lb/hr]
	k*	0.15	1.50	4.90	Particulate Matter (PM 2.5)	9.86	1.11	88.07	9.95	11	0.90	0.10	8.01	0.90
	a*	0.90	0.90	0.70	Particulate Matter (PM 10)	98.64	11.15	880.74	99.52	11	8.97	1.01	80.07	9.05
	b*	0.45	0.45	0.45	Particulate Matter (TSP)	387.04	43.73	3455.73	390.48	11	35.19	3.98	314.16	35.50
	silt content		4.8											
	P [days]		70											

Fugitive emissions from traffic on unpaved surfaces by vehicles such as haul trucks and maintenance vehicles were estimated using EPA AP-42 emission factors, Section 13.2.2, Unpaved Roads (November 2006). The following equations are recommended for industrial sites:

(AP-42, Chapter 13.2.2, Equatic $E\left(\frac{lb}{VMT}\right) = k\left(\frac{s}{12}\right)^a \left(\frac{W}{3}\right)^b$ Where: E = emission factor in lb/VMT lb = pounds of pollutant VMT = vehicle miles traveled k = particle size multiplier (lb/VMT) a = empirical constant (unit less) b = empirical constant (unit less) s = surface silt content, (%) W = mean vehicle weight, full vs. empty (tons)

Hourly Emission Factor:

 $E_h\left(\frac{lb}{hr}\right) = E \cdot d \cdot L$

Where: E_h = hourly emission factor (lb/hr) E = emission factor (lb/VMT)

> d = average hourly daytime traffic rate, roundtrips per hour (h^{-1}) L = longest haul road length in miles (roundtrip)

By considering annual natural mitigation from rainfall, the annual emission factor is affected:

(AP-42, Chapter 13.2.2, Equatic

 $E_{ext}\left(\frac{lb}{VMT}\right) = E \cdot \left[\frac{(365 - P)}{365}\right]$

Where: E_{ext} = annual emission factor extrapolated for annual natural mitigation (lb/VMT) E = hourly emission factor (Ib/VMT) P = number of days in a year with at least 0.01 inches of precipitation

Notes: ¹ Hourly Vehicle Miles Traveled = d (trips/hour) * L (mile/trip) ² Annual Vehicle Miles Traveled = Hourly Vehicle Miles Traveled (miles/hour) * Annual Operating Hours (hours/year) ³Control Efficiency is set at 88.8%; see control efficiency page for more info. ⁴ Emission factors are from AP-42, Chapter 13.2.2, Unpaved Roads, vehicles traveling on unpaved surfaces at industrial sites. ⁵ Annual Emission Rate = Annual Uncontrolled Emission Factor * Annual VMT ÷ 2000
⁵ Hourly Emission Rate = Hourly Uncontrolled Emission Factor * Hourly VMT 6 Total Emission are the sum of all truck emissions operating on that road 7 Emission per Volume source = Total Emissions ÷ Number of Volume Sources

Revised: December 2019

Road Name Roundabout Road Number 16

Truck type			Caterpillar 79	3					-						-			
Average Truck Weight [tons]			303						0						0			
Hourly VMT [miles/hour] ¹			4.66						0.0	0					0.00			
Annual VMT [miles/year] ²			198162.31						0.0	0					0.00			
Control Efficiency [%] ³			88.80%						88.8	0%					88.805	%		
Criteria Pollutant	Annual Uncontrolled Emission Factor ⁴	Hourly Controlled Emission Factor ⁴	Annual Emis [tons/		Hourly Emiss [Ib/y		Annual Uncontrolled Emission Factor ⁴	Hourly Controlled Emission Factor ⁴	Annual Emi [tons/		Hourly Emis [Ib/	non nute	Annual Uncontrolled Emission Factor ⁴	Hourly Controlled Emission Factor ⁴	Annual Emi [tons/		Annual Emis [Ib/	
	[Ib/VMT]	[Ib/VMT]	Uncontrolled	Controlled	Uncontrolled	Controlled	[Ib/VMT]	[Ib/VMT]	Uncontrolled	Controlled	Uncontrolled	Controlled	[Ib/VMT]	[Ib/VMT]	Uncontrolled	Controlled	Uncontrolled	Controlled
Particulate Matter (PM 2.5)	0.42	0.52	42.02	4.71	2.45	0.27	0.000	0.000	0.00	0.00	0.00	0.00	0.000	0.000	0.00	0.00	0.00	0.00
Particulate Matter (PM 10)	4.24	5.25	420.16	47.06	24.47	2.74	0.000	0.00	0.00	0.00	0.00	0.00	0.000	0.000	0.00	0.00	0.00	0.00
Particulate Matter (TSP)	16.64	20.59	1648.55	184.64	96.02	10.75	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Emission Factor Constants		Roundabout				Total Maximum F	ugitive Emissions ⁶		Number of volume		Emissions per V	olume Source ⁷	
			10		Cont	rolled	Uncont	rolled	sources	Сон	ntrolled	Uncon	trolled
Parameter	PM _{2.5}	PM10	TSP		[tons/year]	[lb/hr]	[tons/year]	[lb/hr]	sources	[tons/year]	[lb/hr]	[tons/year]	[lb/hr]
k*	0.15	1.50	4.90	Particulate Matter (PN	12.5) 4.71	0.27	42.02	2.45	3	1.57	0.09	14.01	0.82
a*	0.90	0.90	0.70	Particulate Matter (PN	410) 47.06	2.74	420.16	24.47	3	15.69	0.91	140.05	8.16
b*	0.45	0.45	0.45	Particulate Matter (PN	1 10) 184.64	10.75	1648.55	96.02	3	61.55	3.58	549.52	32.01
silt content		4.8											
P [days]		70											

Fugitive emissions from traffic on unpaved surfaces by vehicles such as haul trucks and maintenance vehicles were estimated using EPA AP-42 emission factors, Section 13.2.2, Unpaved Roads (November 2006). The following equations are recommended for industrial sites:

(AP-42, Chapter 13.2.2, Equation 1;

Where: E = emission factor in lb/VMT Ib = pounds of pollutant VMT = vehicle miles traveled k = particle size multiplier (Ib/VMT) $E\left(\frac{lb}{VMT}\right) = k\left(\frac{s}{12}\right)^a \left(\frac{W}{3}\right)^b$ a = empirical constant (unit less) b = empirical constant (unit less) s = surface silt content, (%) W = mean vehicle weight, full vs. empty (tons)

Hourly Emission Factor:

 $E_h\left(\frac{lb}{hr}\right) = E \cdot d \cdot L$

By considering annual natural mitigation from rainfall, the annual emission factor is affected:

(AP-42, Chapter 13.2.2, Equation 1;

Where: E_{ext} = annual emission factor extrapolated for annual natural mitigation (Ib/VMT) E = hourly emission factor (Ib/VMT) $E_{ext}\left(\frac{lb}{VMT}\right) = E \cdot \left[\frac{(365 - P)}{365} \right]$ P = number of days in a year with at least 0.01 inches of precipitation

d = average hourly daytime traffic rate, roundtrips per hour (h⁻¹) L = longest haul road length in miles (roundtrip)

Where: E_h = hourly emission factor (lb/hr) E = emission factor (lb/VMT)

Notes: ¹ Hourly Vehicle Milles Traveled = d (trips/hour) * L (mile/trip) ² Annul Vehicle Miles Traveled = Hourly Vehicle Miles Traveled (miles/hour) * Annual Operating Hours (hours/year) ³Control Efficiency is set at 88.8%; see control efficiency page for more info.
⁴Emission factors are from AP-42, Chapter 13.2.2, Unpaved Roads, vehicles traveling on unpaved surfaces at industrial sites. ⁵ Annual Emission Rate = Annual Uncontrolled Emission Factor * Annual VMT + 2000
⁵ Hourly Emission Rate = Hourly Uncontrolled Emission Factor * Hourly VMT
⁶ Total Emission are the sum of all truck emissions operating on that road 7 Emission per Volume source = Total Emissions + Number of Volume Sources * Values for k, a, and b obtained from AP-42, Chapter 13.2.2, Unpaved Roads, Table 13.2.2-2 (November 2006)

Revised: December 2019 Road Name

Princess Ramp Road Number 17

Truck type	2		Caterpil	llar 793														
Average Truck Weight [tons]	1		30)3					0						0			
Hourly VMT [miles/hour]	1		11.	49					0.00						0.00)		
Annual VMT [miles/year]	2		10067	74.63					0.00						0.00)		
Control Efficiency [%]	3		88.8	30%					88.80	%					88.80	%		
Criteria Pollutant	Annual Uncontrolled Emission Factor ⁴	Hourly Controlled Emission Factor ⁴	Annual Emis [tons/		n Rate ⁵ Hourly Emission Rate ⁵ Annual Uncontrolled Hourly Controlled Annual Emission Rate ⁵ Hourly Emission Rate ³ Annual Uncontrolled Hourly Controlled							Hourly Controlled Emission Factor ⁴	Annual Emis [tons/		Annual Emiss [Ib/yı			
	[Ib/VMT]	[Ib/VMT]	Uncontrolled	Controlled	Uncontrolled	Controlled	[Ib/VMT]	[Ib/VMT]	Uncontrolled	Controlled	Uncontrolled	Controlled	[Ib/VMT]	[Ib/VMT]	Uncontrolled	Controlled	Uncontrolled	Controlled
Particulate Matter (PM 2.5)	0.42	0.52	21.35	2.39	6.03	0.68	0.000	0.000	0.00	0.00	0.00	0.00	0.000	0.000	0.00	0.00	0.00	0.00
Particulate Matter (PM 10)	4.24	5.25	213.46	23.91	60.30	6.75	0.000	0.00	0.00	0.00	0.00	0.00	0.000	0.000	0.00	0.00	0.00	0.00
Particulate Matter (TSP)	16.64	20.59	837.53	93.80	236.59	26.50	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

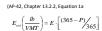
Emission Factor Constants		Princess Ramp				Total Maximum F	ugitive Emissions ⁶		Number of volume		Emissions per V	olume Source ⁷	
					Contro	lled	Uncon	trolled		Cor	trolled	Uncont	rolled
Parameter	PM _{2.5}	PM ₁₀	TSP		[tons/year]	[lb/hr]	[tons/year]	[lb/hr]	sources	[tons/year]	[lb/hr]	[tons/year]	[lb/hr]
k*	0.15	1.50	4.90	Particulate Matter (PM 2.5)	2.39	0.68	21.35	6.03	12	0.20	0.06	1.78	0.50
a*	0.90	0.90	0.70	Particulate Matter (TSP)	23.91	6.75	213.46	60.30	12	1.99	0.56	17.79	5.02
b*	0.45	0.45	0.45	Particulate Matter (PM 10)	93.80	26.50	837.53	236.59	12	7.82	2.21	69.79	19.72
silt content		4.8											
P [days]		70											

Fugitive emissions from traffic on unpaved surfaces by vehicles such as haul trucks and maintenance vehicles were estimated using EPA AP-42 emission factors, Section 13.2.2, Unpaved Roads (November 2006). The following equations are recommended for industrial sites:

(AP-42, Chapter 13.2.2, Equation 1a)

 $E\left(\frac{lb}{VMT}\right) = k\left(\frac{s}{12}\right)^a \left(\frac{W}{3}\right)^b$

k = particle size multiplier (lb/VMT) a = empirical constant (unit less) b = empirical constant (unit less) s = surface silt content, (%) W = mean vehicle weight, full vs. empty (tons)


Where: E = emission factor in Ib/VMT lb = pounds of pollutant VMT = vehicle miles traveled

Hourly Emission Factor:

 $E_h\left(\frac{lb}{hr}\right) = E \cdot d \cdot L$

Where: E_h = hourly emission factor (lb/hr) E = emission factor (Ib/VMT) d = average hourly daytime traffic rate, roundtrips per hour (h^{-1}) L = longest haul road length in miles (roundtrip)

By considering annual natural mitigation from rainfall, the annual emission factor is affected:

Where: E_{est} = annual emission factor extrapolated for annual natural mitigation (lb/VMT) E = hourly emission factor (Ib/VMT) P = number of days in a year with at least 0.01 inches of precipitation

Notes: ¹ Hourly Vehicle Miles Traveled = d (trips/hour) * L (mile/trip) Annual Vehicle Ranies (raivedita's 0 (u)pp/nubur) - L (uniquip) ⁴ Annual Vehicle Ranies (raivedita's 0 (u)pp/nubur) - L (uniquip) ⁴ Control Efficiency is set at 88 38; see control efficiency page for more info-⁴ Emission factors are from AP-42, Chapter 13.22, Uppaved Rodds, whiches traveling on unpaved surfaces at industrial sites. ⁵ Annual Emission Rate = Annual Uncontrolled Emission Factor * Annual VMT + 2000 ⁵ Hourly Emission Rate = Hourly Uncontrolled Emission Factor * Hourly VMT 6 Total Emission are the sum of all truck emissions operating on that road 7 Emission per Volume source = Total Emissions + Number of Volume Sources * Values for k, a, and b obtained from AP-42, Chapter 13.2.2, Unpaved Roads, Table 13.2.2-2 (November 2006)

Revised: December 2019 NOBS

Road Number 18

Truck type			Caterpilla	r 793					-									
Average Truck Weight [tons]			303						0						0			
Hourly VMT [miles/hour] ¹	4		3.43						0.00						0.0	0		
Annual VMT [miles/year] ²			30071.	64					0.00						0.0	0		
Control Efficiency [%] ³			88.80	6					88.80%						88.8	0%		
Criteria Pollutant	Annual Uncontrolled Emission Factor ⁴	Hourly Controlled Emission Factor ⁴	Annual Emis [tons/		Hourly Emis [Ib/y	Jon nate	Annual Uncontrolled Emission Factor ⁴	Hourly Controlled Emission Factor ⁴	Annual Emiss [tons/yı			ission Rate ⁵ /yr]	Annual Uncontrolled Emission Factor ⁴	Hourly Controlled Emission Factor ⁴	Annual Emi: [tons/		Annual Emis [Ib/y	
	[Ib/VMT]	[Ib/VMT]	Uncontrolled	Controlled	Uncontrolled	Controlled	[Ib/VMT]	[Ib/VMT]	Uncontrolled	Controlled	Uncontrolled	Controlled	[Ib/VMT]	[Ib/VMT]	Uncontrolled	Controlled	Uncontrolled	Controlled
Particulate Matter (PM 2.5)	0.42	0.52	6.38	0.71	1.80	0.20	0.000	0.000	0.00	0.00	0.00	0.00	0.000	0.000	0.00	0.00	0.00	0.00
Particulate Matter (PM 10)	4.24	5.25	63.76	7.14	18.01	2.02	0.000	0.00	0.00	0.00	0.00	0.00	0.000	0.000	0.00	0.00	0.00	0.00
Particulate Matter (TSP)	16.64	20.59	250.17	28.02	70.67	7.92	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

														(
Emission Factor Cons	stants		NOBS				Total Maximum Fug	gitive Emissions ⁶		Number of volume		Emissions per Vol	ume Source ⁷	
						Contr	olled	Uncontro	lled	sources	Con	trolled	Uncon	trolled
Parameter		PM _{2.5}	PM ₁₀	TSP		[tons/year]	[lb/hr]	[tons/year]	[lb/hr]	sources	[tons/year]	[lb/hr]	[tons/year]	[lb/hr]
k*		0.15	1.50	4.90	Particulate Matter (PM 2.5)	0.71	0.20	6.38	1.80	12	0.06	0.017	0.53	0.15
a*		0.90	0.90	0.70	Particulate Matter (PM 10)	7.14	2.02	63.76	18.01	12	0.60	0.17	5.31	1.50
b*		0.45	0.45	0.45	Particulate Matter (TSP)	28.02	7.92	250.17	70.67	12	2.33	0.66	20.85	5.89
silt content			4.8											
P [days]			70											

Fugitive emissions from traffic on unpaved surfaces by vehicles such as haul trucks and maintenance vehicles were estimated using EPA AP-42 emission factors, Section 13.2.2, Unpaved Roads (November 2006). The following equations are recommended for industrial sites:

Where: E = emission factor in Ib/VMT

(AP-42, Chapter 13.2.2, Equation 1; $E\left(\frac{lb}{VMT}\right) = k\left(\frac{s}{12}\right)^a \left(\frac{W}{3}\right)^b$

b = pounds of pollutant VMT = vehicle miles traveled k = particle size multiplier (lb/VMT) a = empirical constant (unit less) b = empirical constant (unit less) s = surface silt content, (%)

Hourly Emission Factor:

 $E_h\!\left(\frac{lb}{hr}\right) = E \cdot d \cdot L$

W = mean vehicle weight, full vs. empty (tons) Where: E_h = hourly emission factor (lb/hr) E = emission factor (Ib/VMT) d = average hourly daytime traffic rate, roundtrips per hour (h⁻¹) L = longest haul road length in miles (roundtrip)

Where: E_{ext} = annual emission factor extrapolated for annual natural mitigation (Ib/VMT)

By considering annual natural mitigation from rainfall, the annual emission factor is affected:

(AP-42, Chapter 13.2.2, Equation 1a

E = hourly emission factor (lb/VMT) $E_{ext}\left(\frac{lb}{VMT}\right) = E \cdot \left[\frac{(365 - P)}{365} \right]$ P = number of days in a year with at least 0.01 inches of precipitation

Notes: ¹ Hourly Vehicle Milles Traveled = d (trips/hour) * L (mile/trip) ² Annul Vehicle Milles Traveled = Hourly Vehicle Milles Traveled (miles/hour) * Annual Operating Hours (hours/year)

³Control Efficiency is set at 88.8%; see control efficiency page for more info.
⁴ Emission factors are from AP-42, Chapter 13.2.2, Unpaved Roads, vehicles traveling on unpaved surfaces at industrial sites.

⁵ Annual Emission Rate = Annual Uncontrolled Emission Factor * Annual VMT ÷ 2000

⁵Hourly Emission Rate = Hourly Uncontrolled Emission Factor + Hourly VMT 6 Total Emission are the sum of all truck emissions operating on that road

7 Emission per Volume source = Total Emissions + Number of Volume Sources

* Values for k, a, and b obtained from AP-42, Chapter 13.2.2, Unpaved Roads, Table 13.2.2-2 (November 2006)

Road Name

Magnetite

19

Revised: December 2019

Road Name Road Number

Truck type			Caterpillar 793						-						-			
Average Truck Weight [tons]			303						0						0			
Hourly VMT [miles/hour] ¹			0.36						0.00						0.00			
Annual VMT [miles/year] ²			3186.94						0.00						0.00			
Control Efficiency [%] ³			88.80%						88.80	%					88.809	6		
Criteria Pollutant	Annual Uncontrolled Emission Factor ⁴	Hourly Controlled Emission Factor ⁴	Annual Hourly Annual Emission Rate ⁵ Hourly Emission Rate ⁵ Uncontrolled Controlled Annual Emission Rate ⁵						Hourly Emis: [lb/y		Annual Uncontrolled Emission Factor ⁴	Hourly Controlled Emission Factor ⁴	Annual Emi [tons/		Annual Emis [lb/			
	[Ib/VMT]	[lb/VMT]	Uncontrolled	Controlled	Uncontrolled	Controlled	[lb/VMT]	[Ib/VMT]	Uncontrolled	Controlled	Uncontrolled	Controlled	[lb/VMT]	[Ib/VMT]	Uncontrolled	Controlled	Uncontrolled	Controlled
Particulate Matter (PM 2.5)	0.42	0.52	0.68	0.076	0.19	0.021	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Particulate Matter (PM 10)	4.24	5.25	6.76	0.76	1.91	0.21	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Particulate Matter (TSP)	16.64	20.59	26.51	2.97	7.49	0.84	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Emission Factor Constants		Magnetite			
Parameter	PM _{2.5}	PM10	TSP		[to
k*	0.15	1.50	4.90	Particulate Matter (PM 2.5)	
a*	0.90	0.90	0.70	Particulate Matter (PM 10)	
b*	0.45	0.45	0.45	Particulate Matter (TSP)	
silt content		4.8			
P [days]		70			

Where: E = emission factor in Ib/VMT

	Total Maximum Fugitive Emissions ⁶				Number of	Emissions per Volume Source ⁷			
	Controlled		Uncontrolled		volume	Controlled		Uncontrolled	
	[tons/year]	[lb/hr]	[tons/year]	[lb/hr]	sources	[tons/year]	[lb/hr]	[tons/year]	[lb/hr]
Particulate Matter (PM 2.5)	0.076	0.02	0.68	0.19	12	0.0063	0.0018	0.056	0.016
Particulate Matter (PM 10)	0.76	0.21	6.76	1.91	12	0.063	0.018	0.56	0.16
Particulate Matter (TSP)	2.97	0.84	26.51	7.49	12	0.25	0.070	2.21	0.62

Fugitive emissions from traffic on unpaved surfaces by vehicles such as haul trucks and maintenance vehicles were estimated using EPA AP-42 emission factors, Section 13.2.2, Unpaved Roads (November 2006). The following equations are recommended for industrial sites:

(AP-42, Chapter 13.2.2, Equation 1a

- $E\left(\frac{lb}{VMT}\right) = k\left(\frac{s}{12}\right)^a \left(\frac{W}{3}\right)^b$
- lb = pounds of pollutant VMT = vehicle miles traveled k = particle size multiplier (lb/VMT) a = empirical constant (unit less) b = empirical constant (unit less) s = surface silt content, (%) W = mean vehicle weight, full vs. empty (tons)

Hourly Emission Factor:

Where: E_h = hourly emission factor (lb/hr) E = emission factor (Ib/VMT) $E_h\left(\frac{lb}{hr}\right) = E \cdot d \cdot L$ d = average hourly daytime traffic rate, roundtrips per hour (h⁻¹)

L = longest haul road length in miles (roundtrip)

By considering annual natural mitigation from rainfall, the annual emission factor is affected:

(AP-42, Chapter 13.2.2, Equation 1a

Where: Eext = annual emission factor extrapolated for annual natural mitigation (Ib/VMT) E = hourly emission factor (Ib/VMT) P = number of days in a year with at least 0.01 inches of precipitation

 $E_{ext}\left(\frac{lb}{VMT}\right) = E \cdot \left[\binom{(365 - P)}{365}\right]$

Notes:

¹Hourly Vehicle Miles Traveled = d (trips/hour) * L (mile/trip)

² Annual Vehicle Miles Traveled = Hourly Vehicle Miles Traveled (miles/hour) * Annual Operating Hours (hours/year)

³Control Efficiency is set at 88.8%; see control efficiency page for more info.

⁴ Emission factors are from AP-42, Chapter 13.2.2, Unpaved Roads, vehicles traveling on unpaved surfaces at industrial sites.

⁵ Annual Emission Rate = Annual Uncontrolled Emission Factor * Annual VMT ÷ 2000

⁵Hourly Emission Rate = Hourly Uncontrolled Emission Factor * Hourly VMT

6 Total Emission are the sum of all truck emissions operating on that road

7 Emission per Volume source = Total Emissions ÷ Number of Volume Sources

Section 7

Information Used To Determine Emissions

Information Used to Determine Emissions shall include the following:

- ☑ If manufacturer data are used, include specifications for emissions units <u>and</u> control equipment, including control efficiencies specifications and sufficient engineering data for verification of control equipment operation, including design drawings, test reports, and design parameters that affect normal operation.
- □ If test data are used, include a copy of the complete test report. If the test data are for an emissions unit other than the one being permitted, the emission units must be identical. Test data may not be used if any difference in operating conditions of the unit being permitted and the unit represented in the test report significantly effect emission rates.
- ☑ If the most current copy of AP-42 is used, reference the section and date located at the bottom of the page. Include a copy of the page containing the emissions factors, and clearly mark the factors used in the calculations.
- \Box If an older version of AP-42 is used, include a complete copy of the section.
- \blacksquare If an EPA document or other material is referenced, include a complete copy.
- □ Fuel specifications sheet.
- □ If computer models are used to estimate emissions, include an input summary (if available) and a detailed report, and a disk containing the input file(s) used to run the model. For tank-flashing emissions, include a discussion of the method used to estimate tank-flashing emissions, relative thresholds (i.e., permit or major source (NSPS, PSD or Title V)), accuracy of the model, the input and output from simulation models and software, all calculations, documentation of any assumptions used, descriptions of sampling methods and conditions, copies of any lab sample analysis.

Diesel Emergency Generators (To be modified – addition of emergency standby generators)

- AP-42 Section 3.4 "Natural Gas-Fired Reciprocal Engines" (07/00) Tables 3.4-1, 3.4-2, and 3.4-4
- 40 CFR 98 Table C-1, C-2
- 40 CFR 98 Subpart A, Table A-1

Natural Gas Emergency Generators (Not changing as a result of this application)

- AP-42 Section 3.2 "Large Stationary Diesel and All Stationary Dual-fuel Engines" (10/96) Tables 3.2-1 and 3.2-2
- 40 CFR 98 Table C-1, C-2
- 40 CFR 98 Subpart A, Table A-1
- Manufacturer Data

LPG Emergency Generators (To be modified)

- AP-42 Section 3.2 "Large Stationary Diesel and All Stationary Dual-fuel Engines" (10/96) Tables 3.2-1 and 3.2-2
- 40 CFR 98 Table C-1, C-2
- 40 CFR 98 Subpart A, Table A-1
- Manufacture Data

Tailings Impoundment (Not changing as a result of this application)

Tailings Impoundment (Units CB TLNGS & CM TLNGS)

• AP-42, Section 13.2.5, Industrial Wind Erosion (11/06).

Haul Roads (Not changing as a result of this application)

Haul Roads (Units CBM HR & CM HR)

- AP-42 Section 13.2.2.2, Unpaved Roads
- Western Regional Air Partnership (WRAP) Fugitive Dust Handbook, published September 7, 2006
- Value for s based on NMED default value from http://www.epa.gov/ttn/chief/ap42/ch13/related/r13s0202_dec03.xls

Material Handling

Material Handling (Unit CBM MH)

- AP-42, Chapter 11.19.2, Table 11.19.2-2 Crushed Stone Processing and Pulverized Mineral Processing (August 2004) for Truck Unloading Fragmented Stone.
- Background Document for AP-42, Chapter 13.2.4, Revisions to Fine Fraction Ratios Used for AP-42 Fugitive Dust Emission Factors November 2006.
- Chino TRI Assay data provided by Clyde Durham 1/28/11

Cobre Haul Road Borrow Pit Material Handling (Unit BORR_MH)

- AP-42, Chapter 11.19.2, Table 11.19.2-2 Crushed Stone Processing and Pulverized Mineral Processing (August 2004) for Truck Unloading Fragmented Stone.
- Background Document for AP-42, Chapter 13.2.4, Revisions to Fine Fraction Ratios Used for AP-42 Fugitive Dust Emission Factors November 2006.
- Chino TRI Assay data provided by Clyde Durham 1/28/11

Blasting

Hanover Mountain Blasting (Unit CBM BLST)

- "*NO_x Emissions from Blasting Operations in Open-Cut Coal Mining*" by Moetaz I. Attalla, Stuart J. Day, Tony Lange, William Lilley, and Scott Morgan (2008).
- "Factors Affecting Anfo Fumes Production" by James H. Rowland III and Richard Mainiero (2001).
- AP-42 Section 11, Table 11.9-1.

Chino Mine Blasting (Unit CM BLST)

- "*NO_x Emissions from Blasting Operations in Open-Cut Coal Mining*" by Moetaz I. Attalla, Stuart J. Day, Tony Lange, William Lilley, and Scott Morgan (2008).
- "Factors Affecting Anfo Fumes Production" by James H. Rowland III and Richard Mainiero (2001).
- AP-42 Section 11, Table 11.9-1.

Cobre Haul Road Borrow Pit Blasting (Unit BORR_BLST)

- "*NO_x Emissions from Blasting Operations in Open-Cut Coal Mining*" by Moetaz I. Attalla, Stuart J. Day, Tony Lange, William Lilley, and Scott Morgan (2008).
- "Factors Affecting Anfo Fumes Production" by James H. Rowland III and Richard Mainiero (2001).
- AP-42 Section 11, Table 11.9-1.

Hurly Power Plant (Not changing as a result of this application)

Gas Turbine (Unit F-2-1-1.4)

- AP-42 Chapter 3.1 Stationary Gas Turbine Table 3.1-3
- 40 CFR 98 Table C-1, C-2
- 40 CFR 98 Subpart A, Table A-1

Steam Generator (Unit F-2-1-1.5)

- AP-42, Chapter 1.4, Natural Gas Combustion Tables 1.4-2 and 1.4-3
- 40 CFR 98 Table C-1, C-2

• 40 CFR 98 Subpart A, Table A-1

Filter/Blending Plant (Not changing as a result of this application)

Filter/Blending Plant (Unit FLTR/BLND)

- AP-42 Table 11.19.2-2 in "Crushed Stone Processing and Pulverized Mineral Processing" for uncontrolled Conveyor Transfer Point (08/2004)
- AP-42 Table 11.24-2 in "Metallic Minerals Processing" for Material handling and transfer--all minerals except bauxite (01/1995).

Gasoline Dispensing Facility (Not changing as a result of this application)

Gasoline Dispensing Facility (Unit GDF)

• AP-42, Table 5.2-7

Ivanhoe Concentrator (Not changing as a result of this application)

Enclosed Ore Transfer Point (Unit CV-01C)

- Chino TRI data received from Clyde Durham 1/28/11 email
- Table 11.19.2-2 of USEPA AP-42
- Background Document for AP-42, Chapter 13.2.4, Revisions to Fine Fraction Ratios Used for AP-42 Fugitive Dust Emission Factors November 2006.

SAG Mill Conveyor No.1 & SAG Mill Conveyor No.2 (Units SAF F1 & SAG F2)

- Chino TRI data received from Clyde Durham 1/28/11 email
- Table 11.19.2-2 of USEPA AP-42
- Background Document for AP-42, Chapter 13.2.4, Revisions to Fine Fraction Ratios Used for AP-42 Fugitive Dust Emission Factors November 2006.

Stacker Conveyor Drop Point (Unit SCDP)

- Chino TRI data received from Clyde Durham 1/28/11 email
- Table 11.19.2-2 of USEPA AP-42
- Background Document for AP-42, Chapter 13.2.4, Revisions to Fine Fraction Ratios Used for AP-42 Fugitive Dust Emission Factors November 2006.

Molybdenum Plant Wet Scrubber (Unit IC-01)

- Chino TRI data received from Clyde Durham 1/28/11 email
- Stack test data conducted in October 2008

Ivanhoe Concentrators (Units LHS-01 and LUS-01)

- Table 11.17-4 of AP-42 Section 11.17 Lime Manufacturing
- Background Document for AP-42, Chapter 13.2.4, Revisions to Fine Fraction Ratios Used for AP-42 Fugitive Dust Emission Factors - November 2006

Ivanhoe Concentrator Crusher Dump (Unit PC DUMP)

- Chino TRI data received from Clyde Durham 1/28/11 email
- Table 11.19.2-2, of AP-42 Section 11.19.2 Crushed Stone Processing and Pulverized Mineral Processing
- Background Document for AP-42, Chapter 13.2.4, Revisions to Fine Fraction Ratios Used for AP-42 Fugitive Dust Emission Factors - November 2006

Ivanhoe Concentrator Primary Crusher Baghouse Emissions (Unit PC-01)

• Chino TRI data received from Clyde Durham 1/28/11 email

Screening Plant (Not changing as a result of this application)

Screen Plants (Units CH SCRN & CB SCRN)

- AP-42 Section 13.2.4 Drop Equation
- AP-42, Chapter 11.19.2, Crushed Stone Processing and Pulverized Mineral Processing, Table 11.19.2-2
- Background Document for AP-42, Chapter 13.2.4, Revisions to Fine Fraction Ratios Used for AP-42 Fugitive Dust Emission Factors - November 2006

Screening Engine (Unit CH SCRN ENG)

- Deutz Model BF4M2012 data sheet
- AP-42 Section 3.3 "Gasoline And Diesel Industrial Engines", Table 3.3-1, Table 3.3-2
- 40 CFR 98 Table C-1, C-2
- 40 CFR 98 Subpart A, Table A-1

Screening Engine (Unit CB SCRN ENG)

- CAT specification sheet for C6.6 ACERT industrial open power unit
- AP-42 Section 3.3 "Gasoline And Diesel Industrial Engines", Table 3.3-1, Table 3.3-2
- 40 CFR 98 Table C-1, C-2
- 40 CFR 98 Subpart A, Table A-1

SXEW Plant (Not changing as a result of this application)

SXEW Plant Ten Mixer/Settler Tanks (Unit SXEW 10MST)

- BHP Copper VOC study conducted in 1997
- MSDS for the following chemicals:
 - Acorga OR25 solvent extraction reagent
 - Acorga M5910 extraction reagent
 - Acorga M5640 solvent extraction reagent
 - o LIX 684 N-LV
 - Escaid 115
 - Escaid 110
 - Gasoline, all grades
 - ShellSol D70
 - Penreco 170ES
 - ORFOM SX 80 solvent extraction diluent

SXEW Boilers (Units SXEW Boiler No. 1, SXEW Boiler No. 2, & SXEW Boiler No. 3)

- AP-42 Section 1.5 "Liquefied Petroleum Gas Combustion" (7/08), Table 1.5-1
- 40 CFR 98 Table C-1, C-2
- 40 CFR 98 Subpart A, Table A-1
- Boiler Derating Manufacture Data

SXEW Plant Raffinate Tank (Units SXEW RT)

- BHP Copper VOC study conducted in 1997
- MSDS for the following chemicals:
 - Acorga OR25 solvent extraction reagent
 - o Acorga M5910 extraction reagent
 - Acorga M5640 solvent extraction reagent
 - o LIX 684 N-LV
 - Escaid 115
 - Escaid 110
 - Gasoline, all grades
 - ShellSol D70
 - Penreco 170ES

o ORFOM SX 80 solvent extraction diluent

SXEW Plant Acid Tank House (Units SXEW SAT)

• Equations from the American Society of Heating, Refrigeration and Air Conditioning Engineers (ASHRAE) 2001 Fundamentals Handbook

White House Crusher and Screening Plant (Not changing as a result of this application)

White House Crushing and Screening Plant (Unit WH Crush)

• AP-42 Section 11.19-2.2

SAG Tunnel Baghouse (Unit SAG)

- Golder Conceptual Design Document
- AP-42 Appendix B.2 Table B.2.2 Category 3

SG035 | **4.5L** | **35** kW INDUSTRIAL SPARK-IGNITED GENERATOR SET

EPA Certified Stationary

DEMAND RESPONSE READY

Standby Power Rating 35 kW, 44 kVA, 60 Hz

Demand Response Rating 35 kW, 44 kVA, 60 Hz

Prime Power Rating 32 kW, 39 kVA, 60 Hz

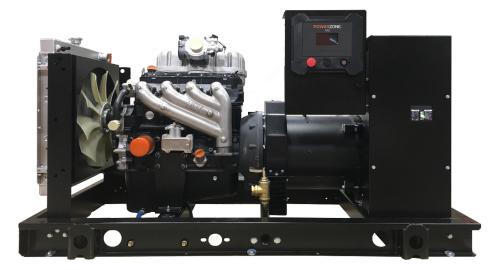


Image used for illustration purposes only

Codes and Standards

Not all codes and standards apply to all configurations. Contact factory for details.

ICC-ES AC-156 (2012)

Powering Ahead

Generac ensures superior quality by designing and manufacturing most of its generator components, such as alternators, enclosures, control systems and communications software. Generac also makes its own spark-ignited engines, and you'll find them on every Generac gaseous-fueled generator. We engineer and manufacture them from the block up - all at our facilities throughout Wisconsin. Applying natural gas and LP-fueled engines to generators requires advanced engineering expertise to ensure reliability, durability and necessary performance. By designing specifically for these dry, hotter-burning fuels, the engines last longer and require less maintenance. Building our own engines also means we control every step of the supply chain and delivery process, so you benefit from singlesource responsibility.

Plus, Generac Industrial Power's distribution network provides all parts and service so you don't have to deal with third-party suppliers. It all leads to a positive owner experience and higher confidence level. Generac spark-ignited engines give you more options in commercial and industrial generator applications as well as extended run time from utility-supplied natural gas. **EPA Certified Stationary**

STANDARD FEATURES

ENGINE SYSTEM

- Oil Drain Extension
- Air Cleaner
- Level 1 Fan and Belt Guards (Open Set Only)
- Stainless Steel Flexible Exhaust Connection
- Factory Filled Oil and Coolant
- Critical Silencer
- Oil Temperature Sender with Alarm
- Air Filter Restriction Indicator

Fuel System

- Fuel Line NPT Connection
- Primary and Secondary Fuel Shutoff

Cooling System

- Closed Coolant Recovery System
- UV/Ozone Resistant Hoses
- Factory-Installed Radiator
- 50/50 Ethylene Glycol Antifreeze
- Radiator Drain Extension

Electrical System

- Battery Charging Alternator
- Battery Cables
- Battery Tray
- Rubber-Booted Engine Electrical Connections
- Solenoid Activated Starter Motor

ALTERNATOR SYSTEM

- UL2200 GENprotect™
- Class H Insulation Material
- 2/3 Pitch
- Skewed Stator
- Brushless Excitation
- Sealed Bearing
- Full Load Capacity Alternator

DEMAND RESPONSE READY

INDUSTRIAL

GENERATOR SET

GENERAC

- Internal Genset Vibration Isolation
- Separation of Circuits High/Low Voltage
- Separation of Circuits Multiple Breakers
- Wrapped Exhaust Piping
- Standard Factory Testing
- 2 Year Limited Warranty (Standby and Demand Response Rated Units)
- 1 Year Limited Warranty (Prime Rated Units)

ENCLOSURE (If Selected)

- Rust-Proof Fasteners with Nylon Washers to Protect Finish
- High Performance Sound-Absorbing Material (Sound Attenuated Enclosures)
- Gasketed Doors
- Upward Facing Discharge Hoods (Radiator and Exhaust)
- Stainless Steel Lift Off Door Hinges
- Stainless Steel Lockable Handles
- RhinoCoat[™] Textured Polyester Powder Coat Paint

CONTROL SYSTEM

Power Zone[®] Pro Controller

- NFPA 110 Level 1 Compliant
- Engine Protective Functions
- Alternator Protective Functions
- Digital Engine Governor Control
- Digital Voltage Regulator
- Multiple Programmable Inputs and Outputs
- Remote Display Capability

- Remote Communication via Modbus[®] RTU, Modbus TCP/IP, and Ethernet 10/100
- Alarm and Event Logging with Real Time Stamping
- Expandable Analog and Digital Inputs and Outputs
- Remote Wireless Software Update Capable
- Wi-Fi[®], Bluetooth[®], BMS, and Remote Telemetry
- Built-In Programmable Logic Eliminates the Need for External Controllers Under Most Conditions
- Programmable I/O Channel Properties
- Built-In Diagnostics

Alarms and Warnings

- High/Low Oil Pressure
- High/Low Coolant Level
- High/Low Coolant Temperature
- Sender/Sensor Failure
- High/Low Oil Temperature
- Over Total kW
- Over/Under Speed
- Over/Under Voltage
- Over/Under Frequency
- Over Current
- High/Low Battery Voltage

- Battery Charger Current
- Phase to Phase and Phase to Neutral Short Circuits (I²T Algorithm)

4.3 Inch Color Touch Screen Display

- Resistive Color Touch Screen
- Easily Identifiable Icons
- Multi-Lingual
- On Screen Editable Parameters
- Key Function Monitoring
- Three Phase Voltage, Amperage, kW, kVA, and kVAr

SPEC SHEET

2 of 6

- Selectable Line to Line or Line to Neutral Measurements
- Frequency
- Engine Speed
- Engine Coolant Temperature
- Engine Oil Pressure
- Engine Oil Temperature
- Battery Voltage
- Hourmeter

Diagnostics

•

• Warning and Alarm Indication

Maintenance Events/Information

EPA Certified Stationary

CONFIGURABLE OPTIONS

ENGINE SYSTEM

- Engine Coolant Heater
- Level 1 Fan and Belt Guards (Enclosed Units Only)
- Baseframe Cover/Rodent Guard
- Radiator Duct Adapter (Open Set Only)

FUEL SYSTEM

Stainless Steel Flexible Fuel Lines

ELECTRICAL SYSTEM

- 10A UL Listed Battery Charger
- Battery Warmer

ALTERNATOR SYSTEM

- Alternator Upsizing
- Anti-Condensation Heater
- Tropical Coating

CIRCUIT BREAKER OPTIONS

- Main Line Circuit Breaker
- $\,\circ\,\,$ 2nd Main Line Circuit Breaker
- 3rd Main Line Circuit Breaker
- Shunt Trip and Auxiliary Contact
- Electronic Trip Breakers

GENERATOR SET

- Extended Factory Testing (3-Phase Only)
- 8 Position Load Center
- $\,\circ\,$ Spring Vibration Isolators
- Pad Vibration Isolators

ENCLOSURE

- Weather Protected Enclosure
- Level 1 Sound Attenuated
- Level 2 Sound Attenuated
- Level 2 Sound Attenuated with Motorized Dampers
- Steel Enclosure
- $\,\circ\,$ Aluminum Enclosure
- Up to 200 MPH Wind Load Rating (Contact Factory for Availability)
- AC/DC Enclosure Lighting Kit
- Enclosure Heaters (with Motorized Dampers Only)

DEMAND RESPONSE READY

CONTROL SYSTEM

- NFPA 110 Compliant 21-Light Remote Annunciator
- Remote Relay Assembly (8 or 16)
- Remote E-Stop (Break Glass-Type, Surface Mount)
- Remote E-Stop (Red Mushroom-Type, Surface Mount)
- Remote E-Stop (Red Mushroom-Type, Flush Mount)
- $\,\circ\,$ 10A Engine Run Relay
- Ground Fault Indication and Protection Functions
- 120V GFCI and 240V Outlets
- 100 dB Alarm Horn

WARRANTY (Standby Gensets Only)

- O 2 Year Extended Limited Warranty
- 5 Year Limited Warranty
- 5 Year Extended Limited Warranty
- O 7 Year Extended Limited Warranty
- 10 Year Extended Limited Warranty

ENGINEERED OPTIONS

○ Spare Inputs (x4) / Outputs (x4)

O Battery Disconnect Switch

CONTROL SYSTEM

- **GENERATOR SET**
- Special Testing
 - Battery Box

SG035 | 4.5L | 35 kW INDUSTRIAL SPARK-IGNITED GENERATOR SET

EPA Certified Stationary

ENGINE SPECIFICATIONS

General

Make

Туре

Cylinder #

Displacement - in³ (L) Bore - in (mm) Stroke - in (mm) **Compression Ratio**

Intake Air Method

Connecting Rods Cylinder Head Cylinder Liners Ignition Piston Type

Crankshaft Type

Intake Valve Material

Exhaust Valve Material Hardened Valve Seats

Engine Governing

Lifter Type

Number of Main Bearings

APPLICATION AND ENGINEERING DATA

Lubrication System

Generac	Oil Pump Type	Gear Driving
4	Oil Filter Type	Full-Flow Spin-On Cartridge
In-Line	Crankcase Capacity - qt (L)	21 (20)
275.0 (4.5)		
4.5 (114.3)	Cooling System	
4.25 (107.95)		
9.94:1	Cooling System Type	Pressurized Closed
Naturally Aspirated	Fan Type	Pusher
5	Fan Speed - RPM	2,100
Forged Steel, Fractured Split, Bushingless	Fan Diameter - in (mm)	20 (508)
Cast Iron		
Cast Iron	Fuel System	
Coil Near Plug Solid State Inductive		
Cast Aluminum Flat Top	Fuel Type	Natural Gas, Propane
Forged Steel	Fuel Injection	Electronic
Hydraulic	Fuel Shut Off	Generac
Stainless Steel	NG Operating Fuel Pressure - in H ₂ O (kPa)	5 - 14 (1.2 - 3.5)
Stainless Steel	LP Operating Fuel Pressure - in H ₂ O (kPa)	7 - 14 (1.7 - 3.5)
High Steel Iron Alloy		
	Engine Electrical System	
	System Voltage	12 VDC
Electronic	Battery Charger Alternator	35 A

Governor Frequency Regulation (Steady State)

 $\pm 0.25\%$

ral Gas, Propane ronic erac 4 (1.2 - 3.5) 4 (1.7 - 3.5)

GENERAC

System Voltage	12 VDC
Battery Charger Alternator	35 A
Battery Size	See Battery Index 0161970SBY
Battery Voltage	12 VDC
Ground Polarity	Negative

ALTERNATOR SPECIFICATIONS

Standard Model	K0035124Y21
Poles	4
Field Type	Revolving
Insulation Class - Rotor	Н
Insulation Class - Stator	Н
Total Harmonic Distortion	<5% (3-Phase Only)
Telephone Interference Factor (TIF)	<50

Standard Excitation	Synchronous Brushless
Bearings	Sealed Ball
Coupling	Direct via Flexible Disc
Prototype Short Circuit Test	Yes
Voltage Regulator Type	Full Digital
Number of Sensed Phases	All
Regulation Accuracy (Steady State)	±0.25%

DEMAND RESPONSE READY

INDUSTRIAL POWER

EPA Certified Stationary

OPERATING DATA

DEMAND RESPONSE READY

INDUSTRIAL

GENERAC

POWER RATINGS

	St	Standby		Prime	
Single-Phase 120/240 VAC @1.0pf	35 kW/35 kVA	Amps: 146	32 kW/32 kVA	Amps: 131	
Three-Phase 120/208 VAC @0.8pf	35 kW/44 kVA	Amps: 122	32 kW/39 kVA	Amps: 109	
Three-Phase 120/240 VAC @0.8pf	35 kW/44 kVA	Amps: 105	32 kW/39 kVA	Amps: 95	
Three-Phase 277/480 VAC @0.8pf	35 kW/44 kVA	Amps: 53	32 kW/39 kVA	Amps: 47	
Three-Phase 346/600 VAC @0.8pf	35 kW/44 kVA	Amps: 42	32 kW/39 kVA	Amps: 38	

MOTOR STARTING CAPABILITIES (skVA)

skVA vs. Voltage Dip						
277/480 VAC	30%	208/240 VAC	30%			
K0035124Y21	61	K0035124Y21	46			
K0060124Y21	124	K0060124Y21	95			

FUEL CONSUMPTION RATES*

Natural Gas – scfh (m ³ /hr)			LP Vapor – scfh (m³/hr)			
Percent Load	Standby	Prime	Percent Load	Standby	Prime	
25%	184 (5.2)	174 (4.9)	25%	98 (2.8)	94 (2.7)	
50%	273 (7.7)	248 (7.0)	50%	129 (3.7)	120 (3.4)	
75%	361 (10.2)	343 (9.7)	75%	159 (4.5)	155 (4.4)	
100%	446 (12.6)	427 (12.1)	100%	191 (5.4)	184 (5.2)	
ial cupply installation a	aust accommodate fuel co	nourantion rates at 100% load				

* Fuel supply installation must accommodate fuel consumption rates at 100% load.

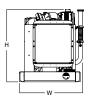
COOLING

		Standby	Prime
Air Flow (Fan Air Flow Across Radiator) - Open Set	scfm (m ³ /min)	3,511 (99	9.4)
Coolant Flow	gpm (Lpm)	37.7 (142	2.7)
Coolant System Capacity	gal (L)	3 (11.4	l)
Max. Operating Ambient Temperature	°F (°C)	122 (50))
Maximum Operating Ambient Temperature (Before Derate)		See Bulletin No. O	199270SSD
Maximum Additional Radiator Backpressure	in H ₂ O (kPa)	0.5 (0.1	2)

COMBUSTION AIR REQUIREMENTS

				Standby Prim	e		
	Flow	at Rated Powe	er - scfm (m³/min)	74 (2.1) 66.3 (*	.9)		
ENGINE				EXHAUST			
		Standby	Prime			Standby	Prime
Rated Engine Speed	RPM	1,800	1,800	Exhaust Flow (Rated Output)	scfm (m ³ /min)	214.2 (6.1)	201.5 (5.7)
Horsepower at Rated kW**	hp	54	49	Maximum Allowable Backpressure (Post Sile	ncer) inHg (kPa)	0.75 (2.54)	0.75 (2.54)
Piston Speed	ft/min (m/min)	1,275 (389)	1,275 (389)	Exhaust Temperature (Rated Output)	°F (°C)	1,342 (728)	1,330 (721)
BMEP	psi (kPa)	88 (606)	80 (554)				

** Refer to "Emissions Data Sheet" for maximum bHP for EPA and SCAQMD permitting purposes.


Deration – Operational characteristics consider maximum ambient conditions. Derate factors may apply under atypical site conditions. Please contact a Generac Power Systems Industrial Dealer for additional details. All performance ratings in accordance with ISO3046, BS5514, ISO8528, and DIN6271 standards. Standby - See Bulletin 0187500SSB Demand Response - See Bulletin 10000018250 Prime - See Bulletin 0187510SSB

5 of 6

EPA Certified Stationary

DIMENSIONS AND WEIGHTS*

LL

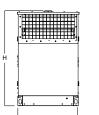
OPEN SET
L x W x H - in (mm)

Weight - Ibs (kg)

78.1 (1,981) x 37.3 (946) x 44.4 (1,128) 1,675 - 1,748 (760 - 793)

Æ

Ð


WEATHER PROTECTED ENCLOSURE

L x W x H - in (mm)	94.8 (2,409) x 38.0 (965) x 57.5 (1,461)
Weight - Ibs (kg)	Steel: 2,160 - 2,233 (980 - 1,013) Aluminum: 1,894 - 1,965 (859 - 891)

LEVEL 1 SOUND ATTENUATED ENCLOSURE

L x W x H - in (mm)	94.8 (2,409) x 38.0 (965) x 57.5 (1,461)
Weight - Ibs (kg)	Steel: 2,258 - 2,329 (1,024 - 1,056) Aluminum: 1,987 - 2,061 (901 - 935)

<i></i>		-	-	
1]
			r	l
·	9		φ.	똅
				1
		Ð	1	1
1.				
			4	4
	ΙĿ		Ī	LŢ
\mathbb{N}	း၀၀	ş		<u>ि</u>
		— L —		

LEVEL 2 SOUND ATTENUATED ENCLOSURE

L x W x H - in (mm)	94.8 (2,409) x 38.0 (965) x 57.5 (1,461)
Weight - Ibs (kg)	Steel: 2,341 - 2,414 (1,062 - 1,095) Aluminum: 2,071 - 2,144 (939 - 972)

* All measurements are approximate and for estimation purposes only.

YOUR FACTORY RECOGNIZED GENERAC INDUSTRIAL DEALER

DEMAND RESPONSE READY

20 KW DIESEL DC GENERATOR PART NUMBER 8220-100-D-20-03

All APUs include:

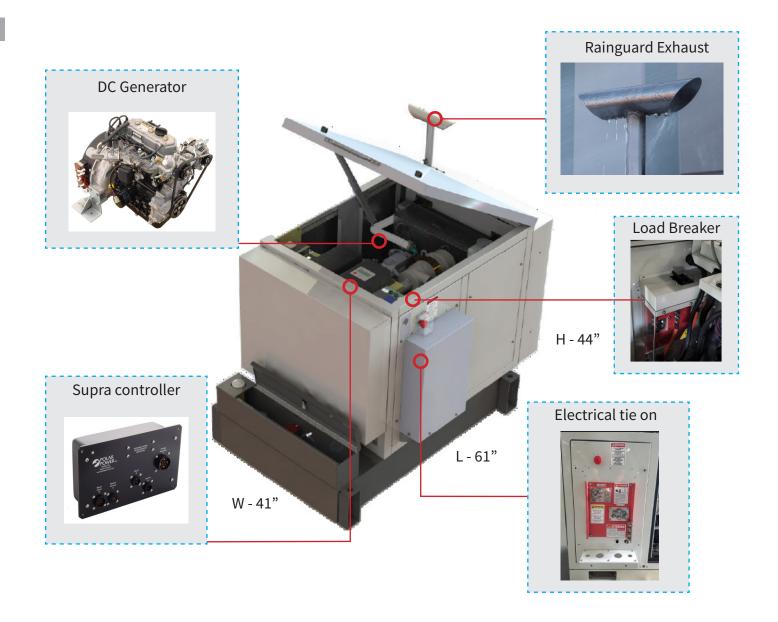
- Ethernet module with SNMP
- Powder coated aluminum enclosure
- V-belt driven radiator fan
- 5 Year Warranty

Options available:

- Electric radiator fans
- Level 2 sound enclosure
- 8-alarm relay board
- Oil refining kit

Standards:

- UL STD 2200
- EPA Compliant


Ø

Founded in 1979 Polar Power specialized in solar photovoltaic systems, solar air conditioning and refrigeration. We developed and provided photovoltaic charging controls for telecommunications in the 1980s along with DC generators for the military. In 1994 we were first to provide DC generators with remote control and monitoring to the telecommunications industry.

Polar's success is based on engineering generators to meet the very specific needs of each application. Telecom site optimization is best met with the DC generator technology as the loads and batteries are DC. It makes no sense to install an AC generator and convert the output to DC. The AC generators are designed for a wide range of applications and they are not specifically produced for telecom applications so there are issues with reliability, space, and fuel efficiency.

Polar can save you considerable time and cost in permitting, installing, purchasing, and maintaining a backup generator. We reduce CAPEX and OPEX costs while improving backup reliability.

SMALL FOOTPRINT.

Polar's DC generator is considerably smaller in size than an AC generator. You can now backup sites that could not accommodate an AC generator. Smaller also means less cost for space leasing.

LOW MAINTENANCE.

LOW ACOUSTIC NOISE. <67 dBA @ 7 meters, and low vibration so as not to disturb the local residents or building landlords.

CORROSION RESISTANT. All-aluminum enclosure with stainless hardware for low maintenance, and long service life.

FUEL EFFICIENT. Up to 85% fuel savings due to smaller engine displacement, high efficiency alternator, and variable speed operation.

ADVANCED MONITORING. Remote diagnostics, control, and monitoring. Ethernet and RS232 standard, with SNMP.

RODENT RESISTANT. Small animals can quickly destroy a generator set by gnawing on wires, fuel lines, radiator hoses, etc. Cooling air inlets and outlets have perforated aluminum screens to keep small rodents and large insects out. Stainless steel wire braid is placed over fuel and radiator lines to prevent damage.

LONG LIFE. Controls and wire harnesses are designed to exceed a 20 year life. Higher grade, longer life electrical wire (UL 3173), weather tight connectors, gold plated connector pins on signal circuits. No transfer switches are required.

SPECIFICATIONS PN 8220-100-D-20-03

Engine

Engine Model	Yanmar 3TNV88-BDSA
Cylinders	3 In-line
Displacement (L)	1.642
Bore (in./mm)	3.4/88
Stroke (in./mm)	3.5/90
Intake Air System	Naturally Aspirated
Engine HP	36
Emissions	U.S. EPA Tier 4 Interim
Emissions Compliance	EPA and CARB Certified
Variable RPM	2300 to 3000

Engine lubrication system

Oil Filter Type	Full flow spin-on canister
Oil Capacity (L)	6.7
Oil Pressure Switch	Yes
Oil Pressure Transducer	Optional

Fuel tank

UL Rated Capacity (gal/L)	54/204
Run Time (hrs)	50 to 60
Tank Alarms	Yes
Visual Gages	Yes
Catch Basin (gal/L)	5/19
Listings	UL 142 (double wall)

Fuel tank reserve time

Load (kW)	Reserve Time (hrs.)
3	99
6	72
9	56
10	55
11	48
12	46
13	44
14	40
15	38
20	30

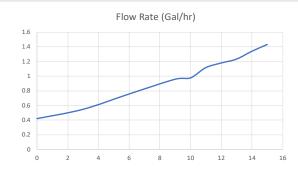
Engine cooling system

Туре	Pressurized Aluminum Radiator
Water Pump	Belt-driven, Pre-lubed, self-sealing
Fan Type	Electric Fans
Airflow CFM	1300
Fan Mode	Pusher
Temperature Sensor	Yes

Environmental

Operating Temperature (°C/°F)	-40 to 72 / -40 to 162
Operating Humidity %	100
Cold Start Aids	Glow Plugs

Optional: manifold heater available for temperatures < -40 °F


Power adjustment for conditions

Temperature Deration	2% derate for every 5.6 °C (10 °F) above 25 °C (77 °F)
Altitude Deration	4% derate for every 300 m (1000 ft) above 91 m (300 ft)

Diesel Fuel system

Туре	Diesel
Fuel Pump Type	Electrical
Injector Type	Mechanical
Fuel Filtering	Paper Element

Diesel fuel consumption

Engine cooling

System coolant capacity (gal/L)	2.2/8.3
Maximum operation air temperature on radiator (°C/°F)	54/129
Maximum ambient temperature (°C/°F)	49/120

Exhaust

Exhaust flow at rated output (cfm/cmm)	90/2.55
Exhaust temperature at rated output (°C/°F)	480/900

Alternator

Alternator Model	8220
Туре	Permanent Magnets, NdFeB
Weight (lb/kg)	46.5/21
Regulation Type	Variable engine speed
Stator	3 phase/32 poles
Overcurrent Protection (A)	20 kW - 500
Disconnect Means	Pull fuse block or Circuit breaker
Voltage Range (VDC)	44 to 60
Alternator Exhaust Flow (cfm/cmm)	130 to 180 / 3.68 to 5.1
MTBF (hr)	100,000+

Enclosure

Model	1odel 88-25-0100	
Type Weather Protective		
Materials Powder coated aluminum		
Door Hardware	Three Point with Padlock Hasp, and Removable Side Panels	
Mounting	ounting Secure Mounting Tabs	
Dims.	L 61" x W 41" x H 44" (Height 59" including Exhaust)	

Optional: L2 option

Weight

Dry Weight (lb/kg)

837.4/380

Starter Supercapacitor

Model	20-16-0001
Storage Rating (Ah)	500
Voltage (VDC)	13-14.4
Weight (lb/kg)	12.1/5.5
Operating Temperature (°C/°F)	-40 to 65 / -40 to 149
Service Life (year)	10 to 15

Charger

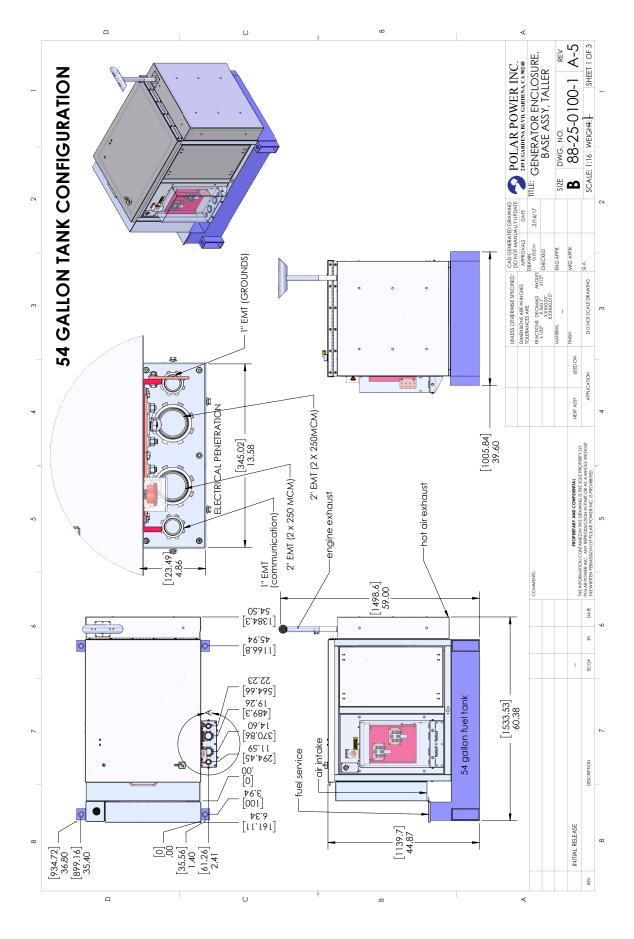
Model	00-10-0015
Input Voltage (VDC)	37 to 62
Output Voltage (VDC)	14 to 14.4
Recharge time from 0 VDC (min)	10
Recharge time from 8 VDC (min)	2
Weight (lb/kg)	2.2/1

Standards

Certification	Intertek 400376
UL Listing	UL STD 2200
Standards	CSA STD C22.2 No. 100

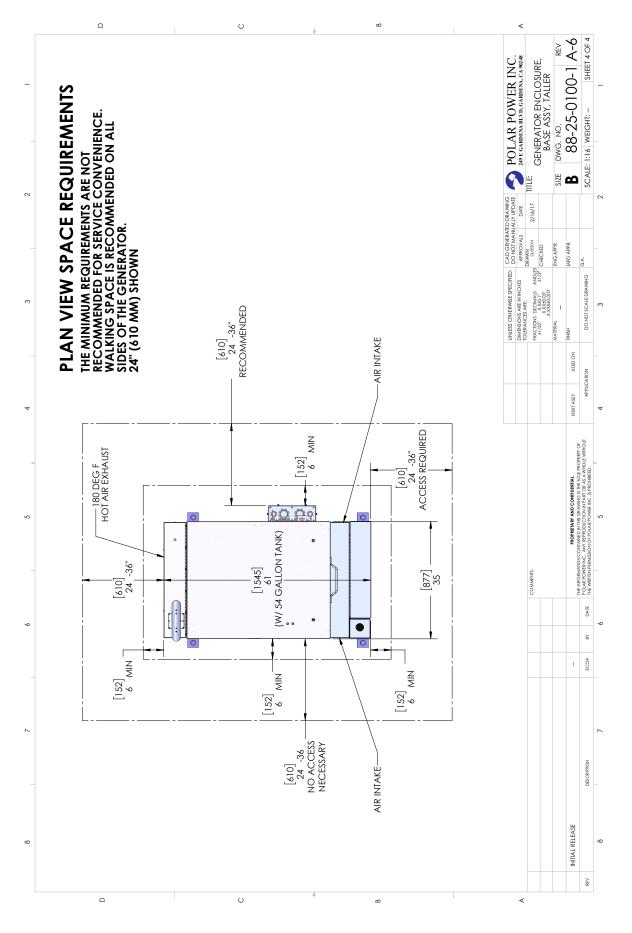
Controller features

Controller Type	Supra Model 250
4-Line Plain Text OLED Display Engine Run Hours Indication Programmable Start Delay Run/Alarm/Maintenance Logs	Simple user interface for ease of operation
Engine Run Hours Indication	Standard
Programmable Start Delay	Standard
Run/Alarm/Maintenance Logs	Standard
Engine Start Sequence	Cyclic cranking: 5 sec on, 45 sec rest (3 attempts maximum)
Starter Supercapacitor Charger	Standard
Automatic Voltage Regulation with Over and Under Voltage Protection	Standard
Automatic Low Oil Pressure/High Oil Temperature Shutdown Overcrank/Overspeed Automatic High Engine Temperature Shutdown	Standard
Overcrank/Overspeed	Standard
Automatic High Engine Temperature Shutdown	Standard
Field Upgradeable Firmware	Standard
Glow Plug Delay	Automatic With Temperature
Engine Start Delay	Adjustable, Set at 60 sec
Return to Utility Delay	Adjustable, Set at 60 sec
Return to Utility Delay Engine Cool-down Exerciser	Adjustable, Set at 60 sec
Exerciser	Programmable


Monitoring

Alarm monitoring and remote control through Ethernet.

Contact closure alarm board


Shutdown Alarm	Standard
WarningAlarm	Standard
Engine Run	Standard
E-Stop Depressed	Standard

DRAWING FOR PN 8220-100-D-20-03

Copyright 2019 Polar Power Inc., All Rights Reserved. For AT&T distribution ONLY

PLANNING FOR PN 8220-100-D-20-03

249 E. Gardena Blvd., Gardena, CA 90248

Tel.: +1(310)8309153 • Fax: +1(310)7192385 info@polarpowerinc.com • www.polarpower.com

> Copyright 2019 Polar Power Inc., All Rights Reserved. For AT&T distribution ONLY

APPENDIX B.2

GENERALIZED PARTICLE SIZE DISTRIBUTIONS

CONTENTS

B.2.1	Rationale For Developing Generalized Particle Size Distributions
B.2.2	How to Use The Generalized Particle Size Distributions for Uncontrolled Processes B.2-5
B.2.3	How to Use The Generalized Particle Size Distributions for Controlled Processes B.2-20
B.2.4	Example Calculation B.2-20
	References

Appendix B.2

Generalized Particle Size Distributions

B.2.1 Rationale For Developing Generalized Particle Size Distributions

The preparation of size-specific particulate emission inventories requires size distribution information for each process. Particle size distributions for many processes are contained in appropriate industry sections of this document. Because particle size information for many processes of local impact and concern are unavailable, this appendix provides "generic" particle size distributions applicable to these processes. The concept of the "generic" particle size distribution is based on categorizing measured particle size data from similar processes generating emissions from similar materials. These generic distributions have been developed from sampled size distributions from about 200 sources.

Generic particle size distributions are approximations. They should be used only in the absence of source-specific particle size distributions for areawide emission inventories.

B.2.2 How To Use The Generalized Particle Size Distributions For Uncontrolled Processes

Figure B.2-1 provides an example calculation to assist the analyst in preparing particle size-specific emission estimates using generic size distributions.

The following instructions for the calculation apply to each particulate emission source for which a particle size distribution is desired and for which no source specific particle size information is given elsewhere in this document:

- 1. Identify and review the AP-42 section dealing with that process.
- 2. Obtain the uncontrolled particulate emission factor for the process from the main text of AP-42, and calculate uncontrolled total particulate emissions.
- 3. Obtain the category number of the appropriate generic particle size distribution from Table B.2-1.
- 4. Obtain the particle size distribution for the appropriate category from Table B.2-2. Apply the particle size distribution to the uncontrolled particulate emissions.

Instructions for calculating the controlled size-specific emissions are given in Table B.2-3 and illustrated in Figure B.2-1.

Figure B.2-1. Example calculation for determining uncontrolled and controlled particle size-specific emissions.

SOURCE IDENTIFICATION

Source name and address:	ABC Brick Manufacturing
	24 Dusty Way
	Anywhere, USA

Process description:	Dryers/Grinders	
AP-42 Section:	8.3, Bricks And Related Clay Products	
Uncontrolled AP-42		
emission factor:	96 lbs/ton	(units)
Activity parameter:	63,700 tons/year	(units)
Uncontrolled emissions	: <u>3057.6 tons/year</u>	(units)

UNCONTROLLED SIZE EMISSIONS

Category name:	Mechanically Generated/Aggregated, Unprocessed Ores
Category number: _	3

	Particle size (µm)		
	≤ 2.5	≤ 6	≤ 10
Generic distribution, Cumulative percent equal to or less than the size:	15	34	51
Cumulative mass ≤ particle size emissions (tons/year):	458.6	1039.6	1559.4

CONTROLLED SIZE EMISSIONS*

Type of control device: Fabric Filter

	Particle size (µm)		
	0 - 2.5	2.5 - 6	6 - 10
Collection efficiency (Table B.2-3):	99.0	99.5	99.5
Mass in size range** before control (tons/year):	458.6	581.0	519.8
Mass in size range after control (tons/year):	4.59	2.91	2.60
Cumulative mass (tons/year):	4.59	7.50	10.10

* These data do not include results for the greater than 10 µm particle size range.

** Uncontrolled size data are cumulative percent equal to or less than the size. Control efficiency data apply only to size range and are not cumulative.

AP-42 Sectior		Category Number*	AP-42 Section		Category Number*
	External combustion		8.5.3	Ammonium phosphates	
1.1	Bituminous and subbituminous coal	а		Reactor/ammoniator-granulator	4
	combustion			Dryer/cooler	4
1.2	Anthracite coal combustion	a	8.7	Hydrofluoric acid	
1.3	Fuel oil combustion			Spar drying	3
	Residual oil			Spar handling	3
	Utility	a		Transfer	3
	Commercial	a	8.9	Phosphoric acid (thermal process)	а
	Distillate oil		8.10	Sulfuric acid	b
	Utility	a	8.12	Sodium carbonate	а
	Commercial	а		Food and agricultural	
	Residential	a	9.3.1	Defoliation and harvesting of cotton	
1.4	Natural gas combustion	а		Trailer loading	6
1.5	Liquefied petroleum gas	а		Transport	6
1.6	Wood waste combustion in boilers	а	9.3.2	Harvesting of grain	
1.7	Lignite combustion	а		Harvesting machine	6
1.8	Bagasse combustion	b		Truck loading	6
1.9	Residential fireplaces	а		Field transport	6
1.10	Residential wood stoves	а	9.5.2	Meat smokehouses	9
1.11	Waste oil combustion	a	9.7	Cotton ginning	b
	Solid waste disposal		9.9.1	Grain elevators and processing plants	а
2.1	Refuse combustion	a	9.9.4	Alfalfa dehydrating	
2.2	Sewage sludge incineration	a		Primary cyclone	b
2.7	Conical burners (wood waste)	2		Meal collector cyclone	7
	Internal combustion engines			Pellet cooler cyclone	7
	Highway vehicles	с		Pellet regrind cyclone	7
3.2	Off highway vehicles	1	9.9.7	Starch manufacturing	7
	Organic chemical processes		9.12	Fermentation	6,7
6.4	Paint and varnish	4	9.13.2	Coffee roasting	6
6.5	Phthalic anhydride	9		Wood products	
6.8	Soap and detergents	a	10.2	Chemical wood pulping	а
	Inorganic chemical processes		10.7	Charcoal	9
8.2	Urea	a		Mineral products	
8.3	Ammonium nitrate fertilizers	а	11.1	Hot mix asphalt plants	а
8.4	Ammonium sulfate		11.3	Bricks and related clay products	
	Rotary dryer	b		Raw materials handling	
	Fluidized bed dryer	b		Dryers, grinders, etc.	b
8.5	Phosphate fertilizers	3			

Table B.2-1. PARTICLE SIZE CATEGORY BY AP-42 SECTION

Table B.2-1	(cont.).
-------------	----------

11.5 F	Tunnel/periodic kilns Gas fired Oil fired Coal fired Refractory manufacturing Raw material dryer Raw material crushing and screening Electric arc melting Curing oven Portland cement manufacturing	a a 3 3 8 3	11.16 11.17 11.18	Gypsum manufacturing Rotary ore dryer Roller mill Impact mill Flash calciner Continuous kettle calciner Lime manufacturing	a 4 4 a a a a
	Oil fired Coal fired Refractory manufacturing Raw material dryer Raw material crushing and screening Electric arc melting Curing oven	a a 3 3 8		Roller mill Impact mill Flash calciner Continuous kettle calciner Lime manufacturing	4 4 a a
	Coal fired Refractory manufacturing Raw material dryer Raw material crushing and screening Electric arc melting Curing oven	a 3 3 8		Impact mill Flash calciner Continuous kettle calciner Lime manufacturing	4 a a
	Refractory manufacturing Raw material dryer Raw material crushing and screening Electric arc melting Curing oven	3 3 8		Flash calciner Continuous kettle calciner Lime manufacturing	a a
	Raw material dryer Raw material crushing and screening Electric arc melting Curing oven	3 8		Continuous kettle calciner Lime manufacturing	a
11.6 F	Raw material crushing and screening Electric arc melting Curing oven	3 8		Lime manufacturing	
11.6 F	Electric arc melting Curing oven	8			a
11.6 F	Curing oven		11.18	Minaral wool manufacturing	
11.6 F		3		Mineral wool manufacturing	
11.6 F	Portland cement manufacturing			Cupola	8
				Reverberatory furnace	8
	Dry process			Blow chamber	8
	Kilns	а		Curing oven	9
	Dryers, grinders, etc.	4		Cooler	9
	Wet process		11.19.1	Sand and gravel processing	
	Kilns	а		Continuous drop	
	Dryers, grinders, etc.	4		Transfer station	а
11.7 (Ceramic clay manufacturing			Pile formation - stacker	а
	Drying	3		Batch drop	а
	Grinding	4		Active storage piles	а
	Storage	3		Vehicle traffic on unpaved road	а
11.8 0	Clay and fly ash sintering		11.19.2	2 Crushed stone processing	
	Fly ash sintering, crushing,			Dry crushing	
	screening, yard storage	5		Primary crushing	а
	Clay mixed with coke			Secondary crushing and screening	а
	Crushing, screening, yard storage	3		Tertiary crushing and screening	3
11.9 V	Western surface coal mining	а		Recrushing and screening	4
11.10 C	Coal cleaning	3		Fines mill	4
11.12 0	Concrete batching	3		Screening, conveying, handling	а
11.13 (Glass fiber manufacturing		11.21	Phosphate rock processing	
	Unloading and conveying	3		Drying	а
	Storage bins	3		Calcining	а
	Mixing and weighing	3		Grinding	b
	Glass furnace - wool	а		Transfer and storage	3
11.15 C	Glass furnace - textile Glass manufacturing	а	11.23	Taconite ore processing Fine crushing	

AP-42 Section	Source Category	Category Number*	AP-42 Section		Category Number*
	Waste gas	a	12.7	Zinc smelting	8
	Pellet handling	4	12.8	Secondary aluminum operations	
	Grate discharge	5		Sweating furnace	8
	Grate feed	4		Smelting	
	Bentonite blending	4		Crucible furnace	8
	Coarse crushing	3		Reverberatory furnace	а
	Ore transfer	3	12.9	Secondary copper smelting	
	Bentonite transfer	4		and alloying	8
	Unpaved roads	а	12.10	Gray iron foundries	а
11.24	Metallic minerals processing	а	12.11	Secondary lead processing	а
	Metallurgical		12.12	Secondary magnesium smelting	8
12.1	Primary aluminum production		12.13	Steel foundries - melting	b
	Bauxite grinding	4	12.14	Secondary zinc processing	8
	Aluminum hydroxide calcining	5	12.15	Storage battery production	b
	Anode baking furnace	9	12.18	Leadbearing ore crushing and grinding	4
	Prebake cell	a		Miscellaneous sources	
	Vertical Soderberg	8	13.1	Wildfires and prescribed burning	a
	Horizontal Soderberg	а	13.2	Fugitive dust	а
12.2	Coke manufacturing	а			
12.3	Primary copper smelting	а			
12.4	Ferroalloy production	а			
12.5	Iron and steel production				
	Blast furnace				
	Slips	а			
	Cast house	а			
	Sintering				
	Windbox	а			
	Sinter discharge	a			
	Basic oxygen furnace	а			
	Electric arc furnace	a			
12.6	Primary lead smelting	а			

Table B.2-1 (cont.).

* Data for numbered categories are given Table B.2-2. Particle size data on "a" categories are found in the AP-42 text; for "b" categories, in Appendix B.1; and for "c" categories, in AP-42 *Volume II: Mobile Sources.*

Figure B.2-2. CALCULATION SHEET

SOURCE IDENTIFICATION

Source name and address:			
Process description:AP-42 Section:			
Uncontrolled AP-42 emission factor: Activity parameter: Uncontrolled emissions:			(units)
UNCONTROLLED SIZE EMISSIONS Category name: Category number:			
	H	Particle size (µ	m)
	≤ 2.5	≤ 6	≤ 10
Generic distribution, Cumulative percent equal to or less than the size:			
Cumulative mass ≤ particle size emissions (tons/year):			
CONTROLLED SIZE EMISSIONS* Type of control device:			
]	Particle size (µ	um)
	0 - 2.5	2.5 - 6	6 - 10
Collection efficiency (Table B.2-3):			
Mass in size range** before control (tons/year):			
Mass in size range after control (tons/year):			
Cumulative mass (tons/year):			

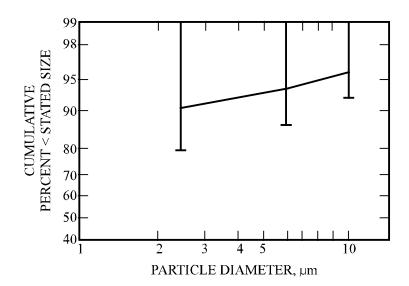
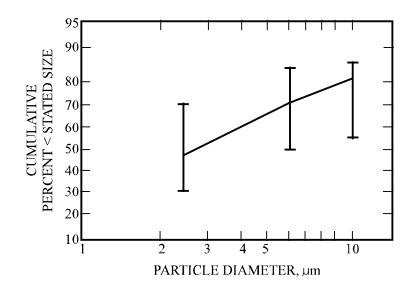

- * These data do not include results for the greater than 10 μm particle size range.
 ** Uncontrolled size data are cumulative percent equal to or less than the size. Control efficiency data apply only to size range and are not cumulative.

Table B.2-2. DESCRIPTION OF PARTICLE SIZE CATEGORIES

Category:1Process:Stationary Internal Combustion EnginesMaterial:Gasoline and Diesel Fuel

Category 1 covers size-specific emissions from stationary internal combustion engines. The particulate emissions are generated from fuel combustion.

REFERENCES: 1,9

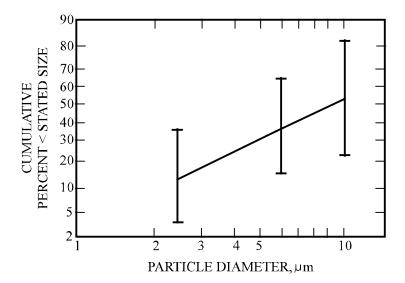


Particle Size, µm	Cumulative % ≤ Stated Size (Uncontrolled)	Minimum Value	Maximum Value	Standard Deviation
1.0 ^a	82			
2.0 ^a	88			
2.5	90	78	99	11
3.0 ^a	90			
4.0 ^a	92			
5.0 ^a	93			
6.0	93	86	99	7
10.0	96	92	99	4

Category: 2 Process: Combustion Material: Mixed Fuels

Category 2 covers boilers firing a mixture of fuels, regardless of the fuel combination. The fuels include gas, coal, coke, and petroleum. Particulate emissions are generated by firing these miscellaneous fuels.

REFERENCE: 1

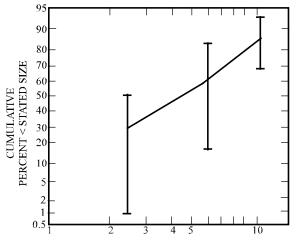


Particle Size, µm	Cumulative % ≤ Stated Size (Uncontrolled)	Minimum Value	Maximum Value	Standard Deviation
1.0 ^a	23			
2.0 ^a	40			
2.5	45	32	70	17
3.0 ^a	50			
4.0 ^a	58			
5.0 ^a	64			
6.0	70	49	84	14
10.0	79	56	87	12

Category:	3
Process:	Mechanically Generated
Material:	Aggregate, Unprocessed Ores

Category 3 covers material handling and processing of aggregate and unprocessed ore. This broad category includes emissions from milling, grinding, crushing, screening, conveying, cooling, and drying of material. Emissions are generated through either the movement of the material or the interaction of the material with mechanical devices.

REFERENCES: 1-2,4,7

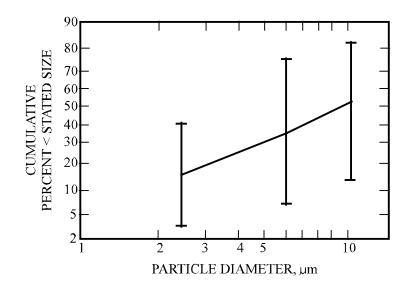


Particle Size, µm	Cumulative % ≤ Stated Size (Uncontrolled)	Minimum Value	Maximum Value	Standard Deviation
1.0 ^a	4			
2.0 ^a	11			
2.5	15	3	35	7
3.0 ^a	18			
4.0 ^a	25			
5.0 ^a	30			
6.0	34	15	65	13
10.0	51	23	81	14

Category:	4
Process:	Mechanically Generated
Material:	Processed Ores and Nonmetallic Minerals

Category 4 covers material handling and processing of processed ores and minerals. While similar to Category 3, processed ores can be expected to have a greater size consistency than unprocessed ores. Particulate emissions are a result of agitating the materials by screening or transfer during size reduction and beneficiation of the materials by grinding and fine milling and by drying.

REFERENCE: 1

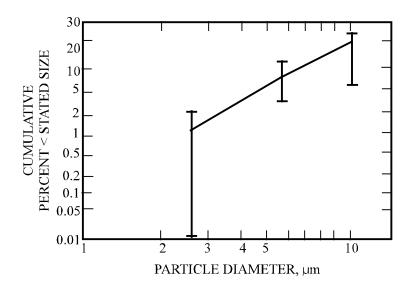

PARTICLE DIAMETER, µm

Particle Size, µm	Cumulative % ≤ Stated Size (Uncontrolled)	Minimum Value	Maximum Value	Standard Deviation
1.0 ^a	6			
2.0 ^a	21			
2.5	30	1	51	19
3.0 ^a	36			
4.0 ^a	48			
5.0 ^a	58			
6.0	62	17	83	17
10.0	85	70	93	7

Category:5Process:Calcining and Other Heat Reaction ProcessesMaterial:Aggregate, Unprocessed Ores

Category 5 covers the use of calciners and kilns in processing a variety of aggregates and unprocessed ores. Emissions are a result of these high temperature operations.

REFERENCES: 1-2,8

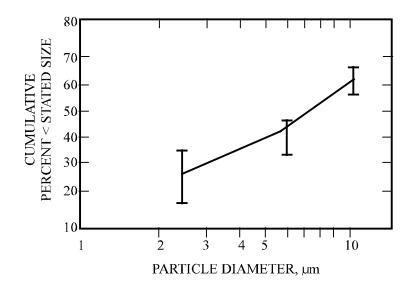


Particle Size, µm	Cumulative % ≤ Stated Size (Uncontrolled)	Minimum Value	Maximum Value	Standard Deviation
1.0 ^a	6			
2.0 ^a	13			
2.5	18	3	42	11
3.0 ^a	21			
4.0 ^a	28			
5.0 ^a	33			
6.0	37	13	74	19
10.0	53	25	84	19

Category: 6 Process: Grain Handling Material: Grain

Category 6 covers various grain handling (versus grain processing) operations. These processes could include material transfer, ginning and other miscellaneous handling of grain. Emissions are generated by mechanical agitation of the material.

REFERENCES: 1,5

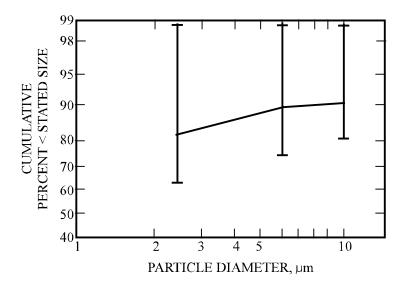


Particle Size, µm	Cumulative % ≤ Stated Size (Uncontrolled)	Minimum Value	Maximum Value	Standard Deviation
1.0 ^a	0.07			
2.0 ^a	0.60			
2.5	1	0	2	1
3.0 ^a	2			
4.0 ^a	3			
5.0 ^a	5			
6.0	7	3	12	3
10.0	15	6	25	7

Category: 7 Process: Grain Processing Material: Grain

Category 7 covers grain processing operations such as drying, screening, grinding, and milling. The particulate emissions are generated during forced air flow, separation, or size reduction.

REFERENCES: 1-2

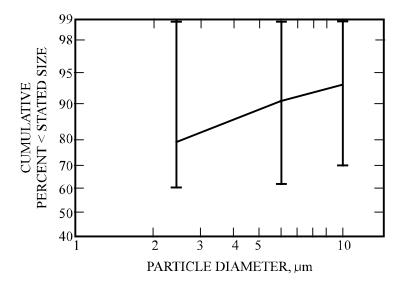


Particle Size, µm	Cumulative % ≤ Stated Size (Uncontrolled)	Minimum Value	Maximum Value	Standard Deviation
1.0 ^a	8			
2.0 ^a	18			
2.5	23	17	34	9
3.0 ^a	27			
4.0 ^a	34			
5.0 ^a	40			
6.0	43	35	48	7
10.0	61	56	65	5

Category:	8
Process:	Melting, Smelting, Refining
Material:	Metals, except Aluminum

Category 8 covers the melting, smelting, and refining of metals (including glass) other than aluminum. All primary and secondary production processes for these materials which involve a physical or chemical change are included in this category. Materials handling and transfer are not included. Particulate emissions are a result of high temperature melting, smelting, and refining.

REFERENCES: 1-2



Particle Size, µm	Cumulative % ≤ Stated Size (Uncontrolled)	Minimum Value	Maximum Value	Standard Deviation
1.0 ^a	72			
2.0 ^a	80			
2.5	82	63	99	12
3.0 ^a	84			
4.0 ^a	86			
5.0 ^a	88			
6.0	89	75	99	9
10.0	92	80	99	7

Category:9Process:Condensation, Hydration, Absorption, Prilling, and DistillationMaterial:All

Category 9 covers condensation, hydration, absorption, prilling, and distillation of all materials. These processes involve the physical separation or combination of a wide variety of materials such as sulfuric acid and ammonium nitrate fertilizer. (Coke ovens are included since they can be considered a distillation process which separates the volatile matter from coal to produce coke.)

REFERENCES: 1,3

Particle Size, µm	Cumulative % ≤ Stated Size (Uncontrolled)	Minimum Value	Maximum Value	Standard Deviation
1.0 ^a	60			
2.0 ^a	74			
2.5	78	59	99	17
3.0 ^a	81			
4.0 ^a	85			
5.0 ^a	88			
6.0	91	61	99	12
10.0	94	71	99	9

B.2.3 How To Use The Generalized Particle Size Distributions For Controlled Processes

To calculate the size distribution and the size-specific emissions for a source with a particulate control device, the user first calculates the uncontrolled size-specific emissions. Next, the fractional control efficiency for the control device is estimated using Table B.2-3. The Calculation Sheet provided (Figure B.2-2) allows the user to record the type of control device and the collection efficiencies from Table B.2-3, the mass in the size range before and after control, and the cumulative mass. The user will note that the uncontrolled size data are expressed in cumulative fraction less than the stated size. The control efficiency data apply only to the size range indicated and are not cumulative. These data do not include results for the greater than 10 μ m particle size range. In order to account for the total controlled emissions, particles greater than 10 μ m in size must be included.

B.2.4 Example Calculation

An example calculation of uncontrolled total particulate emissions, uncontrolled size-specific emissions, and controlled size specific emission is shown in Figure B.2-1. A blank Calculation Sheet is provided in Figure B.2-2.

Table B.2-3. TYPICAL COLLECTION EFFICIENCIES OF VARIOUS PARTICULATE CONTROL DEVICES^a

(%)

AIRS		Particle Size (µm)		
Code ^b	Type Of Collector	0 - 2.5	2.5 - 6	6 - 10
001	Wet scrubber - hi-efficiency	90	95	99
002	Wet scrubber - med-efficiency	25	85	95
003	Wet scrubber - low-efficiency	20	80	90
004	Gravity collector - hi-efficiency	3.6	5	6
005	Gravity collector - med-efficiency	2.9	4	4.8
006	Gravity collector - low-efficiency	1.5	3.2	3.7
007	Centrifugal collector - hi-efficiency	80	95	95
008	Centrifugal collector - med-efficiency	50	75	85
009	Centrifugal collector - low-efficiency	10	35	50
010	Electrostatic precipitator - hi-efficiency	95	99	99.5
011	Electrostatic precipitator - med-efficiency boilers other	50 80	80 90	94 97
012	Electrostatic precipitator - low-efficiency boilers other	40 70	70 80	90 90
014	Mist eliminator - high velocity >250 FPM	10	75	90
015	Mist eliminator - low velocity <250 FPM	5	40	75

AIRS		Particle Size (µm)		
Code ^b	Type Of Collector	0 - 2.5	2.5 - 6	6 - 10
016	Fabric filter - high temperature	99	99.5	99.5
017	Fabric filter - med temperature	99	99.5	99.5
018	Fabric filter - low temperature	99	99.5	99.5
046	Process change	NA	NA	NA
049	Liquid filtration system	50	75	85
050	Packed-gas absorption column	90	95	99
051	Tray-type gas absorption column	25	85	95
052	Spray tower	20	80	90
053	Venturi scrubber	90	95	99
054	Process enclosed	1.5	3.2	3.7
055	Impingement plate scrubber	25	95	99
056	Dynamic separator (dry)	90	95	99
057	Dynamic separator (wet)	50	75	85
058	Mat or panel filter - mist collector	92	94	97
059	Metal fabric filter screen	10	15	20
061	Dust suppression by water sprays	40	65	90
062	Dust suppression by chemical stabilizer or wetting agents	40	65	90
063	Gravel bed filter	0	5	80
064	Annular ring filter	80	90	97
071	Fluid bed dry scrubber	10	20	90
075	Single cyclone	10	35	50
076	Multiple cyclone w/o fly ash reinjection	80	95	95
077	Multiple cyclone w/fly ash reinjection	50	75	85
085	Wet cyclonic separator	50	75	85
086	Water curtain	10	45	90

Table B.2-3 (cont.).

^a Data represent an average of actual efficiencies. Efficiencies are representative of well designed and well operated control equipment. Site-specific factors (e. g., type of particulate being collected, varying pressure drops across scrubbers, maintenance of equipment, etc.) will affect collection efficiencies. Efficiencies shown are intended to provide guidance for estimating control equipment performance when source-specific data are not available. NA = not applicable.

^b Control codes in Aerometric Information Retrieval System (AIRS), formerly National Emissions Data Systems.

References For Appendix B.2

- 1. Fine Particle Emission Inventory System, Office Of Research And Development, U. S. Environmental Protection Agency, Research Triangle Park, NC, 1985.
- 2. Confidential test data from various sources, PEI Associates, Inc., Cincinnati, OH, 1985.
- 3. *Final Guideline Document: Control Of Sulfuric Acid Production Units*, EPA-450/2-77-019, U. S. Environmental Protection Agency, Research Triangle Park, NC, 1977.
- 4. *Air Pollution Emission Test, Bunge Corp., Destrehan, LA*, EMB-74-GRN-7, U. S. Environmental Protection Agency, Research Triangle Park, NC, 1974.
- 5. I. W. Kirk, "Air Quality In Saw And Roller Gin Plants", *Transactions Of The ASAE*, 20:5, 1977.
- 6. *Emission Test Report, Lightweight Aggregate Industry. Galite Corp.*, EMB- 80-LWA-6, U. S. Environmental Protection Agency, Research Triangle Park, NC, 1982.
- 7. Air Pollution Emission Test, Lightweight Aggregate Industry, Texas Industries, Inc., EMB-80-LWA-3, U. S. Environmental Protection Agency, Research Triangle Park, NC, 1975.
- 8. *Air Pollution Emission Test, Empire Mining Company, Palmer, Michigan*, EMB-76-IOB-2, U. S. Environmental Protection Agency, Research Triangle Park, NC, 1975.
- 9. H. J. Taback, et al., Fine Particulate Emissions From Stationary Sources In The South Coast Air Basin, KVB, Inc., Tustin, CA, 1979.
- K. Rosbury, Generalized Particle Size Distributions For Use In Preparing Particle Size-Specific Emission Inventories, U. S. EPA Contract No. 68-02-3890, PEI Associates, Inc., Golden, CO, 1985.

13.2.2 Unpaved Roads

13.2.2.1 General

When a vehicle travels an unpaved road, the force of the wheels on the road surface causes pulverization of surface material. Particles are lifted and dropped from the rolling wheels, and the road surface is exposed to strong air currents in turbulent shear with the surface. The turbulent wake behind the vehicle continues to act on the road surface after the vehicle has passed.

The particulate emission factors presented in the previous draft version of this section of AP-42, dated October 2001, implicitly included the emissions from vehicles in the form of exhaust, brake wear, and tire wear as well as resuspended road surface material²⁵. EPA included these sources in the emission factor equation for unpaved public roads (equation 1b in this section) since the field testing data used to develop the equation included both the direct emissions from vehicles and emissions from resuspension of road dust.

This version of the unpaved public road emission factor equation only estimates particulate emissions from resuspended road surface material ^{23, 26}. The particulate emissions from vehicle exhaust, brake wear, and tire wear are now estimated separately using EPA's MOBILE6.2 ²⁴. This approach eliminates the possibility of double counting emissions. Double counting results when employing the previous version of the emission factor equation in this section and MOBILE6.2 to estimate particulate emissions from vehicle traffic on unpaved public roads. It also incorporates the decrease in exhaust emissions that has occurred since the unpaved public road emission factor equation includes estimates of emissions from exhaust, brake wear, and tire wear based on emission rates for vehicles in the 1980 calendar year fleet. The amount of PM released from vehicle exhaust has decreased since 1980 due to lower new vehicle emission standards and changes in fuel characteristics.

13.2.2.2 Emissions Calculation And Correction Parameters¹⁻⁶

The quantity of dust emissions from a given segment of unpaved road varies linearly with the volume of traffic. Field investigations also have shown that emissions depend on source parameters that characterize the condition of a particular road and the associated vehicle traffic. Characterization of these source parameters allow for "correction" of emission estimates to specific road and traffic conditions present on public and industrial roadways.

Dust emissions from unpaved roads have been found to vary directly with the fraction of silt (particles smaller than 75 micrometers $[\mu m]$ in diameter) in the road surface materials.¹ The silt fraction is determined by measuring the proportion of loose dry surface dust that passes a 200-mesh screen, using the ASTM-C-136 method. A summary of this method is contained in Appendix C of AP-42. Table 13.2.2-1 summarizes measured silt values for industrial unpaved roads. Table 13.2.2-2 summarizes measured silt values for public unpaved roads. It should be noted that the ranges of silt content vary over two orders of magnitude. Therefore, the use of data from this table can potentially introduce considerable error. Use of this data is strongly discouraged when it is feasible to obtain locally gathered data.

Since the silt content of a rural dirt road will vary with geographic location, it should be measured for use in projecting emissions. As a conservative approximation, the silt content of the parent soil in the area can be used. Tests, however, show that road silt content is normally lower than in the surrounding parent soil, because the fines are continually removed by the vehicle traffic, leaving a higher percentage of coarse particles.

Other variables are important in addition to the silt content of the road surface material. For example, at industrial sites, where haul trucks and other heavy equipment are common, emissions are highly correlated with vehicle weight. On the other hand, there is far less variability in the weights of cars and pickup trucks that commonly travel publicly accessible unpaved roads throughout the United States. For those roads, the moisture content of the road surface material may be more dominant in determining differences in emission levels between, for example a hot, desert environment and a cool, moist location.

The PM-10 and TSP emission factors presented below are the outcomes from stepwise linear regressions of field emission test results of vehicles traveling over unpaved surfaces. Due to a limited amount of information available for PM-2.5, the expression for that particle size range has been scaled against the result for PM-10. Consequently, the quality rating for the PM-2.5 factor is lower than that for the PM-10 expression.

	Road Use Or	Plant	No. Of	Silt Content (%)		
Industry	Surface Material	Sites	Samples	Range	Mean	
Copper smelting	Plant road	1	3	16 - 19	17	
Iron and steel production	Plant road	19	135	0.2 - 19	6.0	
Sand and gravel processing	Plant road	1	3	4.1 - 6.0	4.8	
	Material storage area	1	1	-	7.1	
Stone quarrying and processing	Plant road	2	10	2.4 - 16	10	
	Haul road to/from pit	4	20	5.0-15	8.3	
Taconite mining and processing	Service road	1	8	2.4 - 7.1	4.3	
	Haul road to/from pit	1	12	3.9 - 9.7	5.8	
Western surface coal mining	Haul road to/from pit	3	21	2.8 - 18	8.4	
	Plant road	2	2	4.9 - 5.3	5.1	
	Scraper route	3	10	7.2 - 25	17	
	Haul road (freshly graded)	2	5	18 - 29	24	
Construction sites	Scraper routes	7	20	0.56-23	8.5	
Lumber sawmills	Log yards	2	2	4.8-12	8.4	
Municipal solid waste landfills	Disposal routes	4	20	2.2 - 21	6.4	
References 1,5-15.						

Table 13.2.2-1. TYPICAL SILT CONTENT VALUES OF SURFACE MATERIAL ON INDUSTRIAL UNPAVED ROADS^a

11/06

The following empirical expressions may be used to estimate the quantity in pounds (lb) of size-specific particulate emissions from an unpaved road, per vehicle mile traveled (VMT):

For vehicles traveling on unpaved surfaces at industrial sites, emissions are estimated from the following equation:

$$E = k (s/12)^{a} (W/3)^{b}$$
(1a)

and, for vehicles traveling on publicly accessible roads, dominated by light duty vehicles, emissions may be estimated from the following:

$$E = \frac{k (s/12)^{a} (S/30)^{d}}{(M/0.5)^{c}} - C$$
(1b)

where k, a, b, c and d are empirical constants (Reference 6) given below and

- E = size-specific emission factor (lb/VMT)
- s = surface material silt content (%)
- W = mean vehicle weight (tons)
- M = surface material moisture content (%)
- S = mean vehicle speed (mph)
- C = emission factor for 1980's vehicle fleet exhaust, brake wear and tire wear.

The source characteristics s, W and M are referred to as correction parameters for adjusting the emission estimates to local conditions. The metric conversion from lb/VMT to grams (g) per vehicle kilometer traveled (VKT) is as follows:

$$1 \text{ lb/VMT} = 281.9 \text{ g/VKT}$$

The constants for Equations 1a and 1b based on the stated aerodynamic particle sizes are shown in Tables 13.2.2-2 and 13.2.2-4. The PM-2.5 particle size multipliers (k-factors) are taken from Reference 27.

	Industrial Roads (Equation 1a)			Public Roads (Equation 1b)		
Constant	PM-2.5	PM-10	PM-30*	PM-2.5	PM-10	PM-30*
k (lb/VMT)	0.15	1.5	4.9	0.18	1.8	6.0
a	0.9	0.9	0.7	1	1	1
b	0.45	0.45	0.45	-	-	-
с	-	-	-	0.2	0.2	0.3
d	-	-	-	0.5	0.5	0.3
Quality Rating	В	В	В	В	В	В

Table 13.2.2-2. CONSTANTS FOR EQUATIONS 1a AND 1b

*Assumed equivalent to total suspended particulate matter (TSP)

"-" = not used in the emission factor equation

Table 13.2.2-2 also contains the quality ratings for the various size-specific versions of Equation 1a and 1b. The equation retains the assigned quality rating, if applied within the ranges of source conditions, shown in Table 13.2.2-3, that were tested in developing the equation:

Table 13.2.2-3. RANGE OF SOURCE CONDITIONS USED IN DEVELOPING EQUATION 1a AND1b

		Mean Vehicle Weight		Mean Vehicle Speed		Mean	Surface Moisture
Emission Factor	Surface Silt Content, %	Mg	ton	km/hr	mph	No. of Wheels	Content, %
Industrial Roads (Equation 1a)	1.8-25.2	1.8-260	2-290	8-69	5-43	4-17ª	0.03-13
Public Roads (Equation 1b)	1.8-35	1.4-2.7	1.5-3	16-88	10-55	4-4.8	0.03-13

^a See discussion in text.

As noted earlier, the models presented as Equations 1a and 1b were developed from tests of traffic on unpaved surfaces. Unpaved roads have a hard, generally nonporous surface that usually dries quickly after a rainfall or watering, because of traffic-enhanced natural evaporation. (Factors influencing how fast a road dries are discussed in Section 13.2.2.3, below.) The quality ratings given above pertain to the mid-range of the measured source conditions for the equation. A higher mean vehicle weight and a higher than normal traffic rate may be justified when performing a worst-case analysis of emissions from unpaved roads.

The emission factors for the exhaust, brake wear and tire wear of a 1980's vehicle fleet (C) was obtained from EPA's MOBILE6.2 model 23 . The emission factor also varies with aerodynamic size range

Particle Size Range ^a	C, Emission Factor for Exhaust, Brake Wear and Tire Wear ^b lb/VMT
PM _{2.5}	0.00036
PM ₁₀	0.00047
PM ₃₀ °	0.00047

Table 13.2.2-4. EMISSION FACTOR FOR 1980'S VEHICLE FLEETEXHAUST, BRAKE WEAR AND TIRE WEAR

- ^a Refers to airborne particulate matter (PM-x) with an aerodynamic diameter equal to or less than x micrometers.
- ^b Units shown are pounds per vehicle mile traveled (lb/VMT).
- ^c PM-30 is sometimes termed "suspendable particulate" (SP) and is often used as a surrogate for TSP.

It is important to note that the vehicle-related source conditions refer to the average weight, speed, and number of wheels for all vehicles traveling the road. For example, if 98 percent of traffic on the road are 2-ton cars and trucks while the remaining 2 percent consists of 20-ton trucks, then the mean weight is 2.4 tons. More specifically, Equations 1a and 1b are *not* intended to be used to calculate a separate emission factor for each vehicle class within a mix of traffic on a given unpaved road. That is, in the example, one should *not* determine one factor for the 2-ton vehicles and a second factor for the 20-ton trucks. Instead, only one emission factor should be calculated that represents the "fleet" average of 2.4 tons for all vehicles traveling the road.

Moreover, to retain the quality ratings when addressing a group of unpaved roads, it is necessary that reliable correction parameter values be determined for the road in question. The field and laboratory procedures for determining road surface silt and moisture contents are given in AP-42 Appendices C.1 and C.2. Vehicle-related parameters should be developed by recording visual observations of traffic. In some cases, vehicle parameters for industrial unpaved roads can be determined by reviewing maintenance records or other information sources at the facility.

In the event that site-specific values for correction parameters cannot be obtained, then default values may be used. In the absence of site-specific silt content information, an appropriate mean value from Table 13.2.2-1 may be used as a default value, but the quality rating of the equation is reduced by two letters. Because of significant differences found between different types of road surfaces and between different areas of the country, use of the default moisture content value of 0.5 percent in Equation 1b is discouraged. The quality rating should be downgraded two letters when the default moisture content value is used. (It is assumed that readers addressing industrial roads have access to the information needed to develop average vehicle information in Equation 1a for their facility.)

The effect of routine watering to control emissions from unpaved roads is discussed below in Section 13.2.2.3, "Controls". However, all roads are subject to some natural mitigation because of rainfall and other precipitation. The Equation 1a and 1b emission factors can be extrapolated to annual

average uncontrolled conditions (but including natural mitigation) under the simplifying assumption that annual average emissions are inversely proportional to the number of days with measurable (more than 0.254 mm [0.01 inch]) precipitation:

$$E_{ext} = E [(365 - P)/365]$$
 (2)

where:

 E_{ext} = annual size-specific emission factor extrapolated for natural mitigation, lb/VMT

E = emission factor from Equation 1a or 1b

P = number of days in a year with at least 0.254 mm (0.01 in) of precipitation (see

below)

Figure 13.2.2-1 gives the geographical distribution for the mean annual number of "wet" days for the United States.

Equation 2 provides an estimate that accounts for precipitation on an annual average basis for the purpose of inventorying emissions. It should be noted that Equation 2 does not account for differences in the temporal distributions of the rain events, the quantity of rain during any event, or the potential for the rain to evaporate from the road surface. In the event that a finer temporal and spatial resolution is desired for inventories of public unpaved roads, estimates can be based on a more complex set of assumptions. These assumptions include:

1. The moisture content of the road surface material is increased in proportion to the quantity of water added;

2. The moisture content of the road surface material is reduced in proportion to the Class A pan evaporation rate;

3. The moisture content of the road surface material is reduced in proportion to the traffic volume; and

4. The moisture content of the road surface material varies between the extremes observed in the area. The CHIEF Web site (http://www.epa.gov/ttn/chief/ap42/ch13/related/c13s02-2.html) has a file which contains a spreadsheet program for calculating emission factors which are temporally and spatially resolved. Information required for use of the spreadsheet program includes monthly Class A pan evaporation values, hourly meteorological data for precipitation, humidity and snow cover, vehicle traffic information, and road surface material information.

It is emphasized that the simple assumption underlying Equation 2 and the more complex set of assumptions underlying the use of the procedure which produces a finer temporal and spatial resolution have not been verified in any rigorous manner. For this reason, the quality ratings for either approach should be downgraded one letter from the rating that would be applied to Equation 1.

13.2.2.3 Controls¹⁸⁻²²

A wide variety of options exist to control emissions from unpaved roads. Options fall into the following three groupings:

1. <u>Vehicle restrictions</u> that limit the speed, weight or number of vehicles on the road;

2. <u>Surface improvement</u>, by measures such as (a) paving or (b) adding gravel or slag to a dirt road; and

3. Surface treatment, such as watering or treatment with chemical dust suppressants.

Available control options span broad ranges in terms of cost, efficiency, and applicability. For example, traffic controls provide moderate emission reductions (often at little cost) but are difficult to enforce. Although paving is highly effective, its high initial cost is often prohibitive. Furthermore, paving is not feasible for industrial roads subject to very heavy vehicles and/or spillage of material in transport. Watering and chemical suppressants, on the other hand, are potentially applicable to most industrial roads at moderate to low costs. However, these require frequent reapplication to maintain an acceptable level of control. Chemical suppressants are generally more cost-effective than water but not in cases of temporary roads (which are common at mines, landfills, and construction sites). In summary, then, one needs to consider not only the type and volume of traffic on the road but also how long the road will be in service when developing control plans.

<u>Vehicle restrictions</u>. These measures seek to limit the amount and type of traffic present on the road or to lower the mean vehicle speed. For example, many industrial plants have restricted employees from driving on plant property and have instead instituted bussing programs. This eliminates emissions due to employees traveling to/from their worksites. Although the heavier average vehicle weight of the busses increases the base emission factor, the decrease in vehicle-miles-traveled results in a lower overall emission rate.

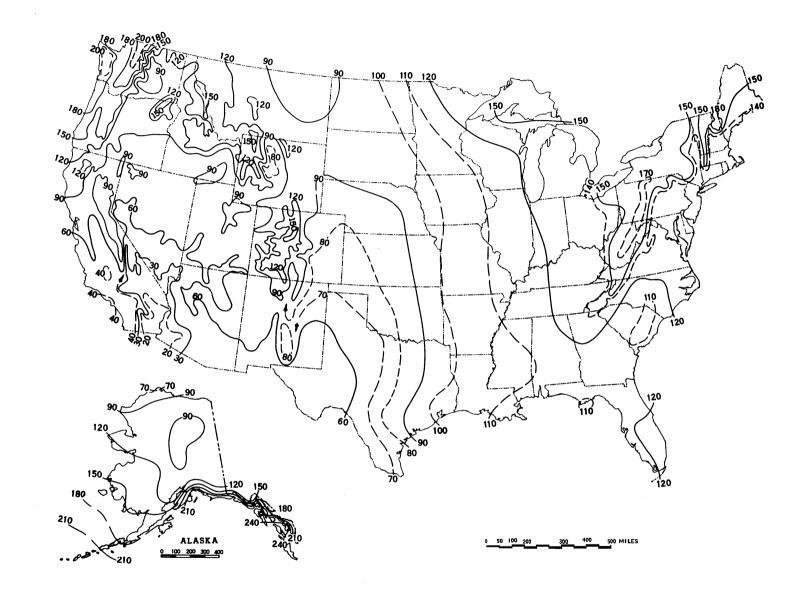


Figure 13.2.2-1. Mean number of days with 0.01 inch or more of precipitation in United States.

Background Document for Revisions to Fine Fraction Ratios Used for AP-42 Fugitive Dust Emission Factors

Prepared by

Midwest Research Institute (Chatten Cowherd, MRI Project Leader)

For Western Governors' Association Western Regional Air Partnership (WRAP) 1515 Cleveland Place, Suite 200 Denver, Colorado 80202

Attn: Richard Halvey

MRI Project No. 110397

February 1, 2006 Finalized November 1, 2006

Responses to Comments Received on Proposed AP-42 Revisions

Commenter and Date	Source Category	Comment	Response
John Hayden, National Stone, Sand and Gravel Association (NSSGA); June 14, 2006	Unpaved Roads	NSSGA- sponsored tests (report dated Oct. 15, 2004) at California aggregate producing plants support the proposed fine fractions.	This comment reference a test report prepared by Air Control Techniques for the National Stone, Sand & Gravel Association, dated October 4, 2004. The report gives the results of tests to determine unpaved road emissions factors for controlled (wet suppression only) haul roads at two aggregate processing plants. A variation of the plume profiling method using TEOM continuous monitors with PM-2.5 and PM-10 inlets was employed. Tests with road surface moisture content below 1.5 percent were considered to be uncontrolled.
			Based on the example PM-10 concentration profiles presented in the report, the maximum roadside PM-10 dust concentrations in the subject study were in the range of 300 micrograms per cubic meter. This is an order of magnitude lower than the concentrations typically found in other unpaved road emission factor studies.
			For the range of plume concentrations measured in the NSSGA-sponsored test program, an average fine fraction (PM-2.5/PM- 10 ratio) of 0.15 was reported. This fine fraction value is consistent with the results of the MRI dust tunnel testing in the same concentration range. At plume concentrations more typical of unpaved road emission factor studies, the proposed value of 0.1 is applicable.
			There is no need for any revisions to the proposed changes to AP-42 as a result of the cited study.
Hao Quinn, Sacramento Metro AQMD; July 20, 2006	Paved vs. unpaved roads	For a particular industrial facility, the PM-10 emission factor equations show higher emissions from paved roads rather than unpaved roads.	<i>This comment does not relate to the proposed changes to the fine particle fractions.</i> It is possible that the emissions from a heavily loaded paved road can exceed emissions from an unpaved road with a low-to-moderate silt content at the same industrial facility, even if traveled by the same vehicles. This is the case in the cited example, for which the paved road silt loading is 70 g/m ² .

Commenter and Date	Source Category	Comment	Response
Brian Leahy, Horizon Environmental; July 26, 2006	Unpaved roads	The k value for PM-2.5 does not appear to have changed in the proposed revision.	The latest (2003) approved AP-42 k values for PM-2.5 in Table 13.2.2-2 are 0.23 and 0.27 Ib/VMT for industrial and public roads, respectively. The proposed values are 0.15 and 0.18 lb/VMT, which are equivalent to 10 percent of the respective k values for PM-10. There is no need for revisions to the proposed
Shengxin Jin, NYSDOT Environmental Analysis Bureau; undated	Paved roads	The conversion of proposed k values from g/VMT to g/VKT does not appear correct	changes to AP-42 as a result of this comment. Regarding the revised k values for PM-2.5, when the k value of 0.66 g/VKT is multiplied by 1.6 km/mi, it becomes 1.06 g/VMT, which rounds to 1.1 g/VKT given in the proposed revision. Because the k values are given only to two significant figures, the converted values can vary by up to five digits in the second figure, depending on which direction the units conversion is made. For example, when k value of 1.1 g/VKT is divided by 1.6 km/mi, the resulting value rounds to 0.69 g/VKT, but if 1.06 g/VKT is divided by 1.6 km/mi, the resulting value rounds to 0.66 g/VKT.
		The stated silt loading impact of antiskid abrasive does not appear correct	This comment does not relate to the proposed changes to the fine particle fractions. The commenter is correct in that 500 lb/mi of antiskid abrasive with a 1% silt content produces a silt loading in the range of 0.5 g/m ² rather than 2 g/m ² . EPA may elect to make a separate modification to correct this discrepancy at a later time.

Proposed Revisions to Fine Fraction Ratios Used for AP-42 Fugitive Dust Emission Factors

ABSTRACT

A number of fugitive dust studies have indicated that the $PM_{2.5} / PM_{10}$ ratios measured by US EPA federal reference method (FRM) samplers are significantly lower than predicted by AP-42 emission factors. As a result, the $PM_{2.5}$ emission estimates are biased high. The controlled exposure study described in this report was conducted to compare fine fraction ratios derived from FRM samplers to those derived from the cyclone/impactor method that had been used to develop AP-42 emission factors for fugitive dust sources. The study was conducted by the Midwest Research Institute using the same cyclone/impactor samplers and operating method that generated the original AP-42 emission factors and associated $PM_{2.5} / PM_{10}$ ratios. This study was sponsored by the Western Regional Air Partnership.

The study found that concentration measurements used to develop $PM_{2.5}$ emission factors in AP-42 were biased high by a factor of two, as compared to $PM_{2.5}$ measurements from FRM samplers. This factor-of-two bias helps to explain why researchers have often seen a discrepancy in the proportion of fugitive dust found in $PM_{2.5}$ emission inventories and modeled ambient air impacts, as compared to the proportion on ambient filter samples. This study also shows that the $PM_{2.5}$ / PM_{10} ratios for fugitive dust should be in the range of 0.1 to 0.15. Currently, the ratios in AP-42 range from 0.15 to 0.4 for most fugitive dust sources.

It is recommended that the results of this study be used to revise the AP-42 PM_{2.5} emission factors for the following four fugitive dust source categories: paved roads, unpaved roads (public and industrial), aggregate handling and storage piles, and industrial wind erosion (AP-42 Sections 13.2.1, 13.2.2, 13.2.4, & 13.2.5, respectively). Emission estimates for other fugitive dust producing activities, such as construction and demolition will also be affected since they are based on these four source categories.

INTRODUCTION

The Dust Emissions Joint Forum (DEJF) of the Western Regional Air Partnership (WRAP) is engaged in gathering and improving data pertaining to the PM_{2.5} and PM₁₀ components of fugitive dust emissions. Most of the PM_{2.5} emission factors in EPA's AP-42 guidance for fugitive dust sources (USEPA, 2005) were determined by using high-volume samplers, each fitted with a cyclone precollector and cascade impactor. Typically, AP-42 recommends that PM_{2.5} emission factors for dust sources be calculated

by using PM_{10} emission factor equations along with $PM_{2.5}/PM_{10}$ ratios that have been published by EPA in AP-42.

Beginning with the introduction of the cyclone/impactor method, it was realized particle bounce from the cascade impactor stages to the backup filter may have resulted in inflated PM_{2.5} concentrations, even though steps were taken to minimize particle bounce. This led to an EPA-funded field study in the late 1990s (MRI, 1997) to gather comparative particle sizing data in dust plumes downwind of paved and unpaved roads around the country. The test results indicated that dichotomous samplers produced consistently lower PM_{2.5}/PM₁₀ ratios than generated with the cyclone/impactor system. Dichotomous samplers are federal reference method (FRM) samplers that are used to measure compliance with federal air quality standards for particulate matter measured as PM_{2.5} and PM₁₀. Pending the eventual collection of additional data, the decision was made that the true ratios would best be represented by an averaging of the cyclone/impactor data with the dichotomous sampler data.

Based on the results of the EPA-funded field program, modifications were made to the appropriate sections of AP-42 for dust emissions from paved and unpaved roads. The $PM_{2.5}/PM_{10}$ ratio for emissions from unpaved roads (dominated by fugitive dust) was reduced from 0.26 to 0.15, and the $PM_{2.5}/PM_{10}$ ratio for the dust component of emissions from paved roads was reduced from 0.46 to 0.25. In the 2003 revision to AP-42, the non-dust component of paved road emissions was assigned a $PM_{2.5}/PM_{10}$ ratio of 0.76, accounting for vehicle exhaust and brake and tire wear.

Subsequent to the modifications of the $PM_{2.5}/PM_{10}$ ratios in AP-42, additional field test results (mostly from ambient air samplers) indicated that further reductions to the ratios were warranted (Pace, 2005). For example, ambient air monitoring data suggested that the fine fraction dust mass is of the order of 10 percent of the PM_{10} mass, based on chemical fingerprinting of the collected fine and coarse fractions of PM_{10} impacted by dust sources. It is important to note, however, that particle size data applicable to fugitive dust emission factors should be gathered either from the emissions plume or near the point where emissions are generated (within 10 m of the downwind edge of the source).

METHODOLOGY

This led DEJF to fund Midwest Research Institute (MRI) in conducting a controlled study of particle sizing in dust plumes. The objective of the study was to resolve the fine particle bias in the cyclone/impactor system, so that reliable $PM_{2.5}/PM_{10}$ ratios could be developed for as many dust source categories as possible. For this purpose, an air exposure chamber connected to a recirculating supply air stream was used in conjunction with a fluidization system for generating well-mixed dust plumes from a variety of western soils and road surface materials. R&P Model 2000 Partisol samplers were selected as the ground-truthing FRM samplers for PM_{10} and $PM_{2.5}$.

This study was performed in two phases (see below), as described in the attached test report (Cowherd and Donaldson, 2005). The test report serves as the background document to support the recommended revisions to AP-42, and it contains all the quality assurance procedures and results of the testing.

Phase I – Compare PM_{2.5} Measured by Cyclone/Impactor to FRM Sampler

In the first testing phase of the project, $PM_{2.5}$ measurements using the high-volume cascade impactors were compared to simultaneous measurements obtained with EPA FRM samplers for $PM_{2.5}$. As stated above, these tests were conducted in a flow-through wind tunnel and exposure chamber, where the PM_{10} concentration level and uniformity were controlled. The results of the tests provided the basis for quantifying more effectively any sampling bias associated with the cascade impactor system.

Phase 2 – Compare PM_{2.5} to PM₁₀ Ratios for Different Geologic Soils

With the same test setup, a second phase of testing was performed with reference method samplers, for the purpose of measuring $PM_{2.5}$ to PM_{10} ratios for fugitive dust from different geologic sources in the West. This testing provided needed information on the magnitude and variability of this ratio, especially for source materials that are recognized as problematic with regard to application of mitigative dust control measures.

RESULTS

The tests that were performed are listed in Tables 6 and 7 of the attached report. The Phase I tests were performed in March and April of 2005. The Phase II tests were performed in June through August of 2005. A total of 100 individual tests were performed, including 17 blank runs (for quality assurance purposes). The raw and intermediate test data are summarized in the tables presented in Appendix A of the attached report.

Based on the 100 wind tunnel tests that were performed in the wind tunnel study, the findings support the following conclusions:

- 1. $PM_{2.5}$ concentrations measured by the high-volume cyclone/impactor system used to develop AP-42 emission factors for fugitive dust sources have a positive bias by a factor of 2, as compared to the $PM_{2.5}$ concentration measurements from reference-method samplers (see Figure 1). The geometric mean bias is 2.01 and the arithmetic mean bias is 2.15.
- 2. The PM_{2.5} bias associated with the cyclone/impactor system, as measured under controlled laboratory conditions with dust concentrations held at nearly steady values, closely replicates the bias observed in the prior EPA-funded field study at distributed geographic locations across the country.

- 3. The PM_{2.5}/PM₁₀ ratios measured by the FRM samplers in the current study for a variety of western soils show a decrease in magnitude with increasing PM₁₀ concentration (see Figure 2). Soils with a nominally spherical shape are observed to have somewhat lower ratios (at given PM₁₀ concentrations) than soils with angular shape. A very similar dependence of PM_{2.5}/PM₁₀ ratio on PM₁₀ concentration was also observed in the prior field study that used dichotomous samplers as FRM devices.
- 4. The test data from the current study support a $PM_{2.5}/PM_{10}$ ratio in the range of 0.1 to 0.15 for typical uncontrolled fugitive dust sources (see Figure 2). The $PM_{2.5}/PM_{10}$ ratio of 0.1 is also supported by numerous other studies including the prior EPA-funded field study that used dichotomous samplers as reference devices. It is possible that a ratio as low as 0.05 (as was found in the prior field tests of unpaved road emission factors) might be appropriate for very dusty sources, but this would require extrapolation of the current test data from the wind tunnel study.

DISCUSSION

Peer Review

The test report on the wind tunnel study (Cowherd and Donaldson, 2005) was issued first in draft form for external peer review. Three peer reviewers (having no prior contact with the study) were selected by the DEJF: Patrick Gaffney (California Air Resources Board), John Kinsey (U.S. Environmental Protection Agency), and Mel Zeldin (Private Consultant). In addition, peer review comments were provided by Duane Ono (Great Basin UAPCD) and Richard Countess (Countess Environmental) who helped to develop this study. After the review comments on the draft test report were received, comment/ response logs were prepared by MRI, listing each comment and the response to each comment. The next step was to modify the draft test report in accordance with the responses to the review comments. The final test report was issued on October 12, 2005.

Recommended Particle Size Ratios

Based on the results of the WRAP/DEJF study (see attached test report) and the prior EPA-funded field study, it is proposed that new $PM_{2.5}/PM_{10}$ ratios be adopted for several categories of (uncontrolled) fugitive dust sources, as addressed in AP-42. The proposed ratios (given to the nearest 0.05) are summarized in Table 1. It should be noted that these fine fraction ratios and the emission factors could change in the future if field studies show other differences than those identified through this study.

The proposed $PM_{2.5}/PM_{10}$ ratios in Table 1, apply to dry surface materials, having moisture contents in the range of 1% or less. Such materials when exposed to energetic disturbances produce dust plumes with core PM_{10} concentrations in the range of 5,000 micrograms per cubic meter, near the point of emissions generation. The wind tunnel test data show that dust plumes with lower core concentrations have higher $PM_{2.5}/PM_{10}$

ratios. This might occur, for example, at higher soil (or other surface material) moisture contents. However, the emissions from such sources typically are substantially lower with correspondingly less impact on the ambient environment.

Fugitive dust source category	AP-42	PM _{2.5} /	PM ₁₀ Ratio
	section	Current	Proposed
Paved Roads	13.2.1	0.25	0.15
Unpaved Roads (Public & Industrial)	13.2.2	0.15	0.1
Construction & Demolition	-	0.208 ¹	0.1
Aggregate Handling & Storage Piles	13.2.4	0.314	0.1 (traffic) 0.15 (transfer)
Industrial Wind Erosion	13.2.5	0.40	0.15
Agricultural Tilling	-	0.222 ²	0.2 (no change)
Open Area Wind Erosion	_	-	0.15

 Table 1. Proposed Particle Size Ratios for AP-42

Notes:

- ¹ AP-42 Section 13.2.3 suggests using emission factors for individual dust producing activities, e.g., materials handling and unpaved roads. The WRAP Fugitive Dust Handbook recommends using a fine fraction ratio of 0.208 from a report prepared for the US EPA, Estimating Particulate Matter Emissions from Construction Operations (MRI, 1999).
- ² Agricultural tilling was dropped from the 5th edition of AP-42. The WRAP Fugitive Dust Handbook recommends using a fine fraction ratio of 0.222 from Section 7.4 of the California Air Resources Board's Emission Inventory Methodology (CARB, 2003).

The justification for each proposed ratio in Table 1 is provided by source category in the sections below. In each case, reference is made to test reports that contain supporting data.

Paved Roads

For the dust component of particulate emissions from paved roads, a $PM_{2.5}/PM_{10}$ ratio of 0.15 is recommended. The proposed ratio is based on the factor-of-two bias in the cyclone/impactor data for the wind tunnel study, which tested western soils and road surface materials. As shown in Table 1, the current AP-42 ratio is 0.25. It should be recalled that the nondust component of paved road particulate emissions has been assigned a much higher ratio of 0.76, based on inputs from the EPA's MOBILE 6 model.

Unpaved Roads

For the dust component of particulate emissions from unpaved roads, which dominates the total particulate emissions from this source category, a $PM_{2.5}/PM_{10}$ ratio of 0.1 is recommended. The proposed ratio is justified from the test results of the wind tunnel study for a variety of western surface materials. It is also consistent with the factor-of-two bias in the cyclone/impactor data from the wind tunnel study and with the results of the prior field study that used dichotomous samplers as FRM devices (MRI, 1997).

Construction and Demolition

The dust component of particulate emissions from construction and demolition dominate the total particulate emissions from this source category. A $PM_{2.5}/PM_{10}$ ratio of 0.1 is recommended for dust emissions from construction and demolition. The proposed ratio is justified by the fact that the dominant dust source associated with construction and demolition projects is emissions from vehicle travel over unpaved surfaces. This is shown by case studies that calculate particulate emissions from representative construction activities (road, building, and nonbuilding construction). For example, the fine fraction ratio for scraper travel averages about 0.2 (Muleski et al., 2005), before correcting for the factor-of- two bias in the cyclone/impactor system. Moreover this includes the diesel emissions that are contained within the fine fraction component.

It should be noted that if large open areas are disturbed (such as in land clearing) and left unprotected, and the areas are exposed to high winds, open area wind erosion can also be an important contributor to dust emissions from this source category. The recommended fine fraction ratio identified below should be used for the open area wind erosion component.

Aggregate Handling and Storage Piles

Although usually not a major source in comparison with traffic around storage piles, the transfer of aggregate associated with bucket loaders and unloaders or conveyor transfer points is addressed directly in this section of AP-42. A $PM_{2.5}/PM_{10}$ ratio of 0.15 is recommended for transfer operations. This is half the current value in AP-42 and reflects adjustment for the factor-of-two bias in the cyclone/impactor test results.

The dominant dust component of particulate emissions from aggregate handling and storage piles typically consists of loader and truck traffic around the storage piles. AP-42 refers the reader to the unpaved roads section to find appropriate emission factors. A $PM_{2.5}/PM_{10}$ ratio of 0.1 is recommended for this source. The proposed ratio is consistent with that recommended above for traffic on unpaved surfaces.

Industrial Wind Erosion

For the dust component of particulate emissions from industrial wind erosion, a $PM_{2.5}/PM_{10}$ ratio of 0.15 is recommended. Industrial wind erosion is associated with crushed aggregate materials, such as coal or metallic ore piles. Examples would include open storage piles at mining operations. The proposed ratio is justified by portable wind tunnel tests of industrial aggregate materials which produced $PM_{2.5}/PM_{10}$ ratios averaging 0.4, as indicated by the current AP-42 fine fraction ratio given in Table 1. When these results are corrected for the bias associated with the cyclone/impactor system at very high PM_{10} concentrations observed in the effluent from the portable wind tunnel (exceeding 10,000 µg/m³), the result is 0.15.

Agricultural Tilling

For the dust component of particulate emissions from agricultural tilling and related land preparation activities, which dominates the total particulate emissions from this source category, no new $PM_{2.5}/PM_{10}$ ratio can be recommended at this time, because of the lack of published test data. However, the current factor of 0.2, as listed in Table 1, appears to be generally consistent with the results of the current wind tunnel tests. It was found that the agricultural soils tested in the wind tunnel produced slightly higher ratios than the other test materials. In addition, the dust plume core concentrations from agricultural operations are generally observed to be less intense because of the lower equipment speeds involved and the lack of repeated travel over the same routes.

Open Area Wind Erosion

For the dust component of particulate emissions from open area wind erosion (not currently addressed in AP-42), a $PM_{2.5}/PM_{10}$ ratio of 0.15 is recommended. Open area wind erosion is associated with exposed soils that have been disturbed, removing the protection afforded by natural crusting. Examples would include freshly tilled agricultural fields prior to planting of crops. The proposed ratio is justified by wind tunnel tests of exposed soils (MRI, 1994), which produced $PM_{2.5}/PM_{10}$ ratios averaging 0.3. When these results are corrected for the bias associated with the cyclone/impactor system, the ratio becomes 0.15. This is consistent with the $PM_{2.5}/PM_{10}$ ratios in the range of 0.12 measured during dust storms on Owens Dry Lake (Ono, 2005).

Specific Revisions to AP-42

This section presents a listing of specific revisions to AP-42, for the purpose of incorporating the proposed $PM_{2.5}/PM_{10}$ ratios. As shown in Table 2, five subsections of AP-42 Section 13.2, Fugitive Dust, are impacted by the proposed changes. However, one of the five sections (13.2.3, Heavy Construction Operations) is impacted only indirectly because it refers to other sections of AP-42 for fugitive dust emission factors.

In most cases, the change in the $PM_{2.5}/PM_{10}$ ratio is accomplished by changing the appropriate PM-2.5 particle size multiplier (k-factor) for the respective emission factor equation. In addition, the changes need to be referenced to the WRAP test report (Cowherd and Donaldson, 2005).

Source	Sub-			
category	section	Title	Revision	Comments
13.2.1 Paved Roads	13.2.1.3	Predictive Emission Factor Equation	In Table 13.2.1-1, reduce k values for PM-2.5 by 40 percent, e.g., the new value is 1.1 g/VMT (and equivalent values for the other units)	Add ref. number for WRAP test report
	13.2.1.5	Changes since Fifth Edition	Modify statement (1) to reflect change in fine fraction	
		References	Add WRAP test report as Ref. 22	
13.2.2 Unpaved Roads	13.2.2.2	Emission Calculation and Correction Parameters	In Table 13.2.2-2, reduce k values for PM-2.5 by 33%, e.g., the new value is 0.15 lb/VMT for industrial roads and 0.18 lb/VMT for public roads (and equivalent values for the other units)	Add ref. number for WRAP test report
	13.2.2.4	Updates since Fifth Edition	Add sentences describing change in fine fraction	
		References	Add WRAP test report	
13.2.3 Heavy Construction Operations	_	-	No changes required	Refers to other AP-42 sections for emission factors
13.2.4 Aggregate Handling and Storage Piles	13.2.4.3	Predictive Emission Factor Equations	In k-factor table for Equation 1 for transfer operations, change PM- 2.5 multiplier to 0.053 (dimensionless)	Add ref. number for WRAP test report
		References	Add WRAP test report	
13.2.5 Industrial Wind Erosion	13.2.5.2	Emissions and Correction Parameters	In k-factor table for Equation 1, change PM-2.5 multiplier to 0.075 (dimensionless)	Add ref. number for WRAP test report
		References	Add WRAP test report	

Table 2. Specific revisions to AP-42 that are incorporated	
into the AP-42 sections included in Attachment A.	

CONCLUSION

This study found that concentration measurements used to develop $PM_{2.5}$ emission factors for AP-42 were biased high by a factor of two, as compared to $PM_{2.5}$ measurements from FRM samplers. This factor-of-two bias helps to explain why researchers have often seen a similar discrepancy in the proportion of fugitive dust found in $PM_{2.5}$ emission inventories and modeled ambient impacts, as compared to the proportion observed on ambient filter samples. This study also shows that the $PM_{2.5}$ / PM_{10} ratios for fugitive dust should be in the range of 0.1 to 0.15. Currently, the fine fraction ratios in AP-42 range from 0.15 to 0.4 for most fugitive dust sources.

It is recommended that the results of this study by used to revise the AP-42 PM_{2.5} emission factors for the following four fugitive dust source categories: paved roads, unpaved roads (public and industrial), aggregate handling and storage piles, and industrial wind erosion (AP-42 Sections 13.2.1, 13.2.2, 13.2.4, & 13.2.5, respectively). Emission estimates for other fugitive dust producing activities, such as construction and demolition, will also be affected since they are based on these four source categories. It is recommended that revisions to the current AP-42 sections for these fugitive dust sources be adopted as shown in Attachment A to this report.

IMPLICATIONS

The proposed revisions to AP-42 are needed to ensure the most accurate $PM_{2.5}$ and PM_{10} fugitive dust emissions inventories that are possible for regional haze regulatory purposes, given the available resources and the significant contribution of fugitive dust to visibility impairment. In particular, the revisions will affect the quantity of dust apportioned to the fine ($PM_{2.5}$) versus coarse ($PM_{2.5-10}$) size modes, which have significantly different effects on visibility and long-range transport potentials. This will reduce $PM_{2.5}$ emission estimates for fugitive dust sources to about half their current level. It will also increase the coarse-mode size fraction for fugitive dust, which would be important in the event that a PM coarse standard is adopted by the US EPA and emission inventories are developed.

The revisions will be helpful in developing accurate emission inventories for PM nonattainment, maintenance, and action plan areas throughout the country. Finally, the proposed modifications to the fine fractions associated with EPA's AP-42 emission factors will ensure widespread availability of the most recent and accurate scientific information.

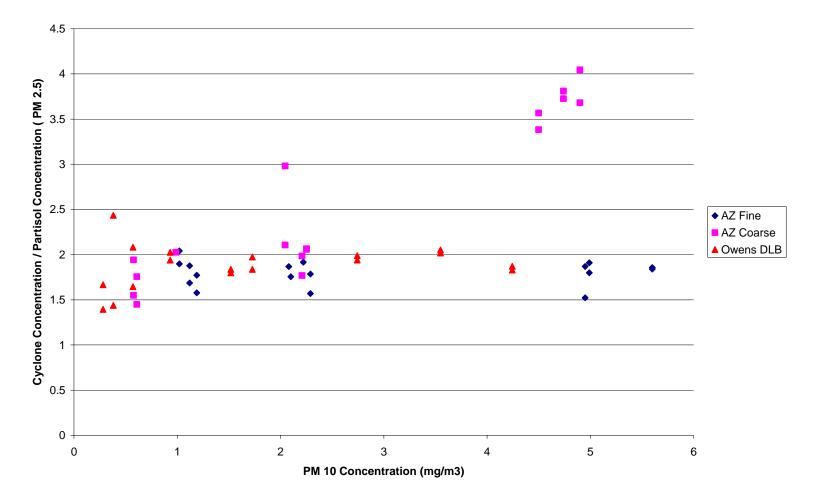
References

Cowherd, C. and J. Donaldson. 2005. *Analysis of the Fine Fraction of Particulate Matter in Fugitive Dust.* Final report prepared for the Western Governors' Association, Western Regional Air Partnership (WRAP), MRI Project No. 110397, October 12, 2005. **[Describes wind tunnel study to determine fine fraction ratios]**

Midwest Research Institute. 1994. *OU3 Wind tunnel Study: Test Report.* Prepared for EG&G Rocky Flats, Golden CO. [Describes portable wind tunnel tests of emissions from soils and sediments]

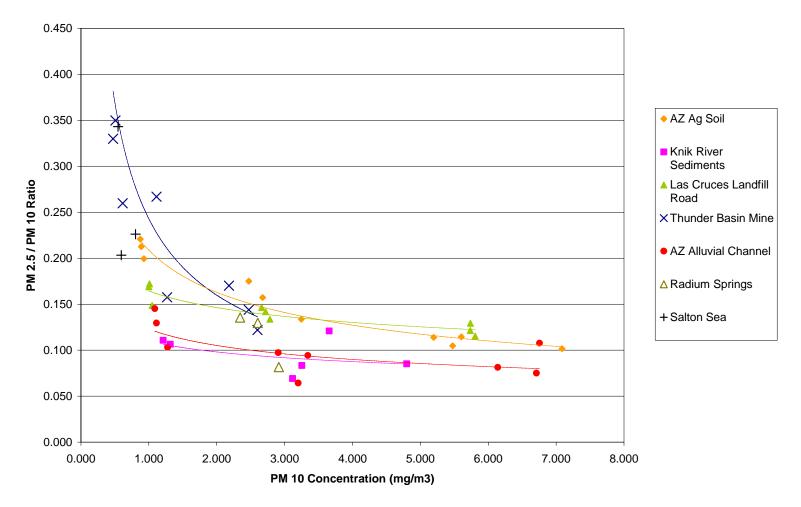
Midwest Research Institute. 1997. *Fugitive Particulate Matter Emissions*. Final report prepared for the U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards. Research Triangle Park NC. April, 1997. [Prior emission factor field study for paved and unpaved roads, comparing performance of cyclone/impactor system with reference method samplers for PM2.5]

Muleski, G. E., C. Cowherd, and J. S. Kinsey. 2005. "Particulate Emissions from Construction Activities," *J. Air & Waste Manage. Assoc.* **55:** 772-783. [Summarizes field test results for emissions from major components of construction projects]


Ono, Duane. 2005. "Ambient PM2.5/PM10 ratios for Dust Events from the Keeler Dunes." Great Basin UAPCD, Bishop, CA. [Describes FRM test results for high-wind events on Owens Dry Lake]

Pace, T. G. 2005. "Examination of Multiplier Used to Estimate $PM_{2.5}$ Fugitive Dust Emissions from PM_{10} ." Presented at the EPA Emission Inventory Conference. Las Vegas NV. April 2005. [Summarizes other field studies that can be used to develop $PM_{2.5}/PM_{10}$ ratios for fugitive dust emissions]

USEPA. 2005. *Compilation of Air Pollutant Emission Factors, AP-42.* 6th Edition. Research Triangle Park, NC. **[EPA's emission factor handbook]**


CARB, 2003. *Emission Inventory Procedural Manual Volume III: Methods for Assessing Area Source Emissions*, California Air Resources Board, Sacramento, CA. November. **[Summarizes the recommended calculation procedures for agricultural emissions and other sources]**

Midwest Research Institute. 1999. *Estimating Particulate Matter Emissions from Construction Operations*. Prepared for USEPA, Research Triangle Park NC, September. [Gives field test results for construction operations] Figure 1. Phase I test results show that the Cyclone/ Impactor method measured $PM_{2.5}$ concentrations that were two times higher than those measured by Federal Reference Method samplers when simultaneously exposed to the well-mixed dust environment in the wind tunnel.

PM 2.5 Ratios for Cyclone and Partisols

Figure 2. Phase II tests show that the $PM_{2.5}/PM_{10}$ ratio decreased with increasing PM concentrations, and could be expected to be in the range of 0.1 at concentrations that are typical of fugitive dust emission plumes.

PM 2.5 / PM 10 Ratio vs PM 10 Concentration

Unpaved Road Surface Material Silt Content Values Used in the 1999 NEI

comment

	Unpaved Road Surface Material Silt Content (%)
State	
Alabama	
Alaska	3.9
Arizona	3.8
Arkansas	3.0
California	3.9
Colorado	2.6
Connecticut	1.5
Delaware	3.9
DC	3.9
Florida	0.0
Georgia	3.9
Hawaii	3.9
Idaho	3.8
Illinois	3.9
Indiana	2.6
lowa	2.6
Kansas	2.5
Kentucky	3.9
Louisiana	3.9
Maine	3.9
Maryland	3.9
Massachusetts	3.9
Michigan	3.9
Minnesota	2.6
Mississippi	2.0
Missouri	3.9
Montana	6.5
Nebraska	6.6
Nevada	4.2
New Hampshire	4.2
New Jersey	3.9
New Mexico	3.9
New York	4.3
North Carolina North Dakota	4.7
	5.1
Ohio Ohio	3.9
Oklahoma	3.1
Oregon	4.4
Pennsylvania	7.2
Rhode Island	3.3
South Carolina	3.9
South Dakota	3.9
Tennessee	3.1
Texas	2.0
Utah	5.6
Vermont	3.9
Virginia	3.9
Washington	3.2
West Virginia	3.9
Wisconsin	3.9
Wyoming	4.2
	7.1
	3.8

TYPICAL MAGNETITE ANALYSIS From FreePort McMorRan Mining Company COBRE MINING DIVISION

Ranges %	
% Fe	65.39 - 67.84
% Fe ₃ O ₄	90.37 - 92.54
Composite Assay of Samples	s 1a through 6A
% Acid Insoluble	4.38
% Ca	1.25
% Cu	0.11
% Cr	0.014
% Ni	0.006
% Mg	0.501
% Al	0.211
% Ba	0.077
% Na	0.015
% S	0.19
% Mn	0.446
% Zn	0.038
% Ti	0.024
% Sr	0.007
% C	0.18
% P ₂ O ₅	0.004

MAGNETICS

SPECIFIC GRAVITY MOISTURE CONTENT 95% 5.02

2.0-10%

TYPICAL MAGNETITE SCREEN ANALYSIS %

SCREEN SIZE	RANGE %
PLUS 65 MESH	.87-1.39
PLUS 100 MESH	2.18-4.56
PLUS 150 MESH	8.93-26.87
PLUS 200 MESH	14.30-19.87
PLUS 270 MESH	17.27-22.98
PLUS 400 MESH	7.02-11.41
MINUS 400 MESH	18.32-38.50

PRECIOUS METALS ANALYSIS

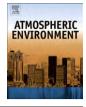
GOLD (AU)	NON-DETECTABLE
SILVER (AG)	NON-DETECTABLE
PLATINUM (PT)	NON-DETECTABLE
PALLADIUM (PD)	NON-DETECTABLE

Table 11.19.2-2 (English Units). EMISSION FACTORS FOR CRUSHED STONE PROCESSING OPERATIONS (lb/Ton)^a

Source ^b	Total	EMISSION	Total	EMISSION	Total	EMISSION
	Particulate	FACTOR	PM-10	FACTOR	PM-2.5	FACTOR
	Matter ^{r,s}	RATING		RATING		RATING
Primary Crushing	ND		ND^{n}		ND^{n}	
(SCC 3-05-020-01)						
Primary Crushing (controlled)	ND		ND^{n}		ND^{n}	
(SCC 3-05-020-01)						
Secondary Crushing	ND		ND^{n}		ND^{n}	
(SCC 3-05-020-02)						
Secondary Crushing (controlled) (SCC 3-05-020-02)	ND		ND^{n}		ND^{n}	
Tertiary Crushing (SCC 3-050030-03)	0.0054 ^d	E	0.0024°	С	ND^n	
Tertiary Crushing (controlled) (SCC 3-05-020-03)	0.0012 ^d	E	0.00054 ^p	С	0.00010 ^q	E
Fines Crushing (SCC 3-05-020-05)	0.0390 ^e	Е	0.0150 ^e	Е	ND	
Fines Crushing (controlled) (SCC 3-05-020-05)	$0.0030^{\rm f}$	Е	0.0012 ^f	E	0.000070 ^q	Е
Screening (SCC 3-05-020-02, 03)	0.025 ^c	Е	0.0087^{1}	С	ND	
Screening (controlled) (SCC 3-05-020-02, 03)	0.0022 ^d	E	0.00074 ^m	С	0.000050 ^q	Е
Fines Screening (SCC 3-05-020-21)	0.30 ^g	E	0.072 ^g	E	ND	
Fines Screening (controlled) (SCC 3-05-020-21)	0.0036 ^g	E	0.0022 ^g	E	ND	
Conveyor Transfer Point (SCC 3-05-020-06)	0.0030 ^h	E	0.00110 ^h	D	ND	
Conveyor Transfer Point (controlled) (SCC 3-05-020-06)	0.00014 ⁱ	E	4.6 x 10 ⁻⁵ⁱ	D	1.3 x 10 ^{-5q}	E
Wet Drilling - Unfragmented Stone (SCC 3-05-020-10)	ND		8.0 x 10 ^{-5j}	Е	ND	
Truck Unloading -Fragmented Stone (SCC 3-05-020-31)	ND		1.6 x 10 ^{-5j}	Е	ND	
Truck Loading - Conveyor, crushed stone (SCC 3-05-020-32)	ND		0.00010 ^k	Е	ND	

a. Emission factors represent uncontrolled emissions unless noted. Emission factors in lb/Ton of material of throughput. SCC = Source Classification Code. ND = No data.

b. Controlled sources (with wet suppression) are those that are part of the processing plant that employs current wet suppression technology similar to the study group. The moisture content of the study group without wet suppression systems operating (uncontrolled) ranged from 0.21 to 1.3 percent, and the same facilities operating wet suppression systems (controlled) ranged from 0.55 to 2.88 percent. Due to carry over of the small amount of moisture required, it has been shown that each source, with the exception of crushers, does not need to employ direct water sprays. Although the moisture content was the only variable measured, other process features may have as much influence on emissions from a given source. Visual observations from each source under normal operating conditions are probably the best indicator of which emission factor is most appropriate. Plants that employ substandard control measures as indicated by visual observations should use the uncontrolled factor with an appropriate control efficiency that best reflects the effectiveness of the controls employed.


c. References 1, 3, 7, and 8

d. References 3, 7, and 8

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/atmosenv

NO_x emissions from blasting operations in open-cut coal mining

Moetaz I. Attalla*, Stuart J. Day, Tony Lange, William Lilley, Scott Morgan

CSIRO Energy Technology, P.O. Box 330, Newcastle, NSW 2300, Australia

ARTICLE INFO

Article history: Received 1 February 2008 Received in revised form 1 July 2008 Accepted 7 July 2008

Keywords: NO_x Open-cut mining Australia Miniaturised ultraviolet spectrometer Mini-DOAS

ABSTRACT

The Australian coal mining industry, as with other industries is coming under greater constraints with respect to their environmental impacts. Emissions of acid gases such as NO_x and SO_x to the atmosphere have been regulated for many years because of their adverse health effects. Although NO_x from blasting in open-cut coal mining may represent only a very small proportion of mining operations' total NO_x emissions, the rapid release and high concentration associated with such activities may pose a health risk. This paper presents the results of a new approach to measure these gas emissions by scanning the resulting plume from an open-cut mine blast with a miniaturised ultraviolet spectrometer. The work presented here was undertaken in the Hunter Valley, New South Wales, Australia during 2006. Overall this technique was found to be simpler, safer and more successful than other approaches that in the past have proved to be ineffective in monitoring these short lived plumes. The average emission flux of NO_x from the blasts studied was about 0.9 kt t⁻¹ of explosive. Numerical modelling indicated that NO_x concentrations resulting about 5 km from the source.

Crown Copyright © 2008 Published by Elsevier Ltd. All rights reserved.

1. Introduction

Open-cut coal mining is widespread in the upper Hunter Valley in New South Wales (NSW) with several large mines operating within close proximity to the towns of Muswellbrook and Singleton. Consequently, there is community concern about the potential environmental impacts of mining on nearby populations.

Blasting, in particular, has the potential to affect areas outside the mine boundary and accordingly, vibration and dust emission limits are set in each mine's environmental licence. However, gaseous emissions of environmental concern, such as nitrogen dioxide (NO₂) may also be released during blasting operations. Currently, there are very little quantitative data relating to the magnitude of these emissions and it is not yet possible to determine if they contribute significantly to ambient levels in the main population centres.

* Corresponding author. *E-mail address:* moetaz.attalla@csiro.au (M.I. Attalla). The explosive ammonium nitrate/fuel oil (ANFO) is used almost universally throughout the open-cut coal mining industry. Under ideal conditions, the only gaseous products from the explosion are carbon dioxide (CO₂), water (H₂O) and nitrogen (N₂).

$$3NH_4NO_3 + CH_2 \rightarrow 3N_2 + CO_2 + 7H_2O$$
 (1)

However, even quite small changes in the stoichiometry (either in the bulk material or caused by localised conditions such as moisture in the blast hole, mineral matter or other factors) can lead to the formation of substantial amounts of the toxic gases carbon monoxide (CO) and nitric oxide (NO) as shown.

$$2NH_4NO_3 + CH_2 \rightarrow 2N_2 + CO + 5H_2O \tag{2}$$

 $5NH_4NO_3 + CH_2 \rightarrow 4N_2 + 2NO + CO_2 + 7H_2O$ (3)

In addition, some of the NO formed may oxidise in the presence of oxygen (O_2) to produce NO₂.

^{1352-2310/\$ –} see front matter Crown Copyright © 2008 Published by Elsevier Ltd. All rights reserved. doi:10.1016/j.atmosenv.2008.07.008

$$2NO + O_2 \rightarrow 2NO_2$$

(4)

Often in practice, large quantities of NO₂ are released from blasts which are observed as intense orange plumes.

Although these gases are not considered in their environmental licences, each mine is required to estimate annual emissions of CO, NO_x and SO_2 for the National Pollutant Inventory (NPI), compiled each year by the Australian government. These estimates are made by multiplying the amount of explosive consumed by an emission factor which is currently 8 kg t⁻¹ for NO_x, 34 kg t⁻¹ for CO and 1 kg t⁻¹ for SO₂ (National Pollutant Inventory, 1999). These emission factors, however, are based on limited overseas data and are subject to high uncertainty.

Most of the studies which have examined NO_x formation from blasting have used blast chambers. The results from these studies do not necessarily correlate with what is observed during actual blasts. Few studies have attempted to measure NO_x emissions under actual field conditions, presumably because of the practical difficulties involved. Plumes from blasting lack confinement, can be very large in size and are affected by prevailing weather conditions. There is also a large quantity of dust associated with the blast and these factors combine to make physical sampling of the plume very difficult. There are also the obvious safety implications which restrict access to blast sites. Consequently, quantitative measurements of plume characteristics are generally unavailable. Nevertheless, it is important for mine operators, particularly when their operations are close to residential areas, to have some method for assessing NO_x formation and more importantly, predicting the severity of the NO_x plume. At present predictions of NO_x formation are subjective and are based on the blast engineer's knowledge of the area to be blasted (e.g. rock type, area of the mine, presence of water in the holes, etc.) and the ratings obtained from blasts performed under similar conditions. Quantitative flux estimations of NO_x released from a blast require measurement of concentration through the plume in both the horizontal and vertical axes.

Some of the options available to make these measurements are given in the following sections.

1.1. Physical sampling

Sampling of blasting fumes involves taking a sample of gas from the plume for subsequent analysis, which could be either on site or in an off site laboratory. Although physical sampling could in principle provide sufficient information to characterise a plume, there are a number of serious logistical problems with this approach:

- The size of the plume means that a large number of sample points would be required to sample across the width and height of the plume.
- The force of the explosion and the resulting debris would restrict the proximity of any sampling packages to the initial gas release.
- The potential toxicity of the plume; personnel cannot move through it to take samples, hence sampling stations must be fixed prior to the blast. This means

that the path of the plume must be anticipated before the blast.

1.2. Continuous analysis

Another option is to use portable analysers to measure NO_x concentrations in real time. There are, however, disadvantages with this approach since a sample of the plume must be presented to the instrument for analysis. Usually a pump draws air through a small diameter tube into the instrument, but to achieve the necessary spatial characterisation of the plume, sample tubes would need to be positioned at various points throughout the plume. Thus many of the problems identified for the physical sampling would also apply to the use of continuous analysers.

1.3. Optical methods

There are several optical methods of analysis currently available that may be applicable to field measurements of NO_x. These include open-path Fourier Transform Infra-Red Spectroscopy (FT-IR), Correlation Spectroscopy (COSPEC) and Differential Optical Absorption Spectroscopy (DOAS). FT-IR has often been used in air pollution studies (e.g. Levine and Russwurm, 1994). It has also been used in mine situations to measure fugitive methane emissions. Kirchgessner et al. (1993) used open-path FT-IR (op-FT-IR) to estimate methane emissions from open-cut coal mines in the United States. The technique relies on passing a collimated infrared beam through ambient air over a path length of up to several hundred metres. In the Kirchgessner et al. (1993) study, the concentration of methane across the plume was measured then wind speed data and a Gaussian plume dispersion model were used to estimate the methane emission rate from the mine. These authors subsequently developed a modification of their method which improved its accuracy (Piccot et al., 1994, 1996). The improved method was essentially the same as described above except that methane concentrations were measured at several elevations to better characterise the plume.

In principle, open-path FT-IR could be used to measure NO_x in blast plumes since it is sensitive to NO, NO_2 , and CO along with other gases. Infrared radiation is also strongly absorbed in many parts of the spectrum by both CO_2 and water which are very likely to be present in high concentrations in blast plumes and this may tend to obscure the NO_x signal. High resolution instruments may resolve at least some of the NO_x absorption lines, however, a more serious drawback with op-FT-IR is that the infrared beam would be substantially attenuated by the dust thrown up by the blast. In the period immediately after the blast when the dust level is very high it is likely that the IR beam would be completely blocked thus making measurements impossible.

Another well established optical method is Correlation Spectroscopy (COSPEC). The system was first described by Moffat and Milan (1971) and was designed to measure point source emissions of SO₂ and NO₂ from industrial plants but found a niche application in the measurement of SO₂ fluxes from volcanoes (Galle et al., 2002). The COSPEC system utilises a "mask correlation" spectrometer and was designed to measure vertical or slant columns using sky-scattered sunlight. By traversing beneath plumes with the mobile instrument, the concentration of the column is calculated and, once multiplied by the plume velocity, produces a source emission rate. These instruments are limited to detecting only those species where masks are available. They also suffer from interferences from other atmospheric gases and light scattering from clouds or aerosols that can produce errors in column densities (Chalmers Radio and Space Science, website).

The DOAS technique is a relatively new technique that is gaining widespread acceptance as an air pollution monitoring method. Like the open-path FT-IR method, the DOAS can simultaneously measure concentrations of a number of species over path lengths which typically range from hundreds of metres to kilometres.

A DOAS, configured as an 'active system', Fig. 1, has three main parts - a light emitter, a light receiver and a spectrometer. The emitter sends a beam of light to the receiver (in some cases the emitter and receiver are contained in the same unit and the light beam is reflected off a remotely located passive reflector). The light beam contains a range of wavelengths, from ultraviolet to visible, although instruments are now available with an infrared source, which extends the range of compounds that can be detected. Different pollutant molecules absorb light at different wavelengths along the path between the emitter and receiver. The receiver is connected to the spectrometer which measures the intensity of the different wavelengths over the entire light path and through the data system converts this signal into concentrations for each of the species being monitored.

DOAS instruments are routinely used to measure SO_2 , NO_2 and O_3 .

More recently, advances in miniaturising UV–vis spectrometers has lead to the development of much more compact DOAS units, configured as a passive system (Fig. 1), which have come to be known as "mini-DOAS". The mini-DOAS system has so far been used mainly in the study of SO₂ fluxes in volcanic emissions (McGonigle et al., 2003).

2. Methodology

2.1. Field measurements

A portable DOAS (mini-DOAS) manufactured by Resonance Ltd was used in this study. The instrument covers a spectral range of 280–420 nm and can measure sub-part per million levels of NO₂ and SO₂. The unit, which comprises a telescope, scanning mirrors, calibration cells and a miniature CCD array spectrometer (Ocean Optics USB2000 spectrometer), is housed in a small package which is mounted on a tripod. Calibration of the instrument was carried out using the internal calibration cell. The concentration of the cell was equivalent 50 ppm m. No SO_x measurements were undertaken.

Data collection and processing were performed by Ocean Optics OOIBase32 software loaded in a laptop computer. This results in a more compact system that is easier to deploy at mine sites and provides greater flexibility in positioning the instrument in relation to the blast plume.

Prior to each monitored blast, a dark spectrum was collected by blocking light from entering the spectrometer and a scan was performed. To produce a reference spectrum, a further scan was performed in a clear sky back-ground which contained background absorption from NO₂. The reference spectrum was required in order to determine the increase in concentration of NO₂ above ambient levels in the blast plumes.

The plume resulting from each blast was tracked with the spectrometer until the NO₂ concentration was indistinguishable from the surrounding sky. During each field measurement, the mini-DOAS and a video camera were positioned a safe operating distance from the blast at all times.

 NO_2 concentrations in the plume were calculated by subtracting the dark spectrum from the measured spectrum and the reference spectrum using the supplied software.

The results obtained from the mini-DOAS are a pathaveraged NO₂ concentration profile measured in units of parts per million metre (ppm m). The mini-DOAS results must be divided by the path length through the plume to yield a concentration. To estimate the amount of NO₂ released from each blast it was necessary to multiply the concentration by the volume of the plume. Hence it was necessary to estimate the dimensions of each plume.

All of the blasts monitored were video-taped using at least one, and sometimes two, video recorders. The distances between the cameras and the blast were measured by locating their positions with a handheld GPS receiver.

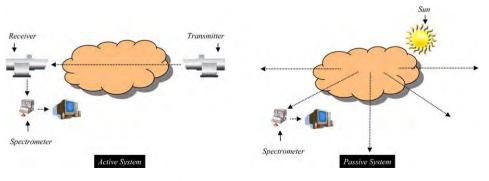


Fig. 1. Schematic diagram of DOAS systems operating in both active and passive modes.

Wind speed and directional data used to plot the directional path of the plume were obtained from a series of meteorological stations located around the mining lease. Simple trigonometry was employed to determine the distance from the video camera to the plume at the corresponding time intervals.

A rudimentary method of photogrammetry was then used to estimate the size of the plume based on still images extracted from the videos. Ratios of the plume to picture size in both the vertical and horizontal planes were made.

Once the plume to camera distance and the constraining angle for the plume is known, a crude three-dimensional estimate of the plume dimension was calculated using basic trigonometric functions. An example of the dimensions determined for a plume using this method is shown in Fig. 2.

Ground level measurements were carried out using a Greenline 8000 portable gas analyser. This instrument is capable of continuous, simultaneous analysis of O₂, CO₂, CO, SO₂, NO and NO₂. It is battery powered and can operate unattended for up to about 2 h. The instrument was calibrated against a standard gas mixture before each use. Data were logged on a laptop computer connected to the instrument.

For each experiment, the instrument was set up downwind of the blast in a location where the plume was expected to pass, but far enough away to avoid flying debris. The inlet probe was fixed at about 2 m above ground level.

It must be noted that selecting an appropriate location for the instrument was often difficult. In many cases, the wind conditions were quite variable, especially within the pit so it was not always possible to correctly anticipate the path of the blast plume. As well, the layout of the mine pit and safety considerations imposed constraints on where the instrument could be placed. Because of these problems, the plumes from many of the blasts did not pass over the analyser and data was not recorded.

2.2. Modelling

A simple modelling exercise was undertaken for this study to determine if the release of NO_2 from a blast could be of detriment to persons exposed to the plume within

5 km of the release. The results of this study are indicative and based on the assumption that the model used is appropriate. Modelling generally relies on local observational data to confirm the performance of the model. The difficulty in measuring emissions from mining blasts has meant that in this case the model is used as an indicator relying on the verifications used in the development of the chosen model. For this reason we have modelled concentrations directly downwind of theoretical blasts with AFTOX (Kunkel, 1991), a USEPA approved dispersion model (http:// www.epa.gov/scram001/dispersion_alt.htm#aftox). The original DOS based QuickBasic code was transformed into Excel macros to enable many scenarios to be run.

AFTOX is a Gaussian Puff model developed for the United States Air Force to assess real time toxic chemical releases. The model uses information from US Air Weather Service (AWS) stations to calculate dispersion based on measured atmospheric conditions. As for all Gaussian models, the spread of pollutants is governed by dispersion coefficients in the horizontal (σ_v) and vertical (σ_z) directions. These coefficients depend on the atmospheric stability derived from the AWS data. In this study, the scenarios were modelled by predefining the wind speed and atmospheric stability classes. The wind speeds modelled ranged from very low (0.5 m s^{-1}) to moderate (10 m s^{-1}) . Stability was modelled in six steps representing the standard Pasquill-Gifford stability classes, i.e. A-F, where A, B and C represent unstable conditions (where A is the most unstable), D is neutral and E and F are stable conditions. These stability classes are used to categorise the rate at which a plume will disperse. Unstable conditions might be found on a sunny day with light winds leading to rapid plume dispersion while the stable conditions may occur in clear skies with light winds and perhaps a temperature inversion present. Plume spread is slow in these circumstances.

AFTOX is operated by assuming an emission release from a single location. The emissions can be either continuous or instantaneous. In this study AFTOX was used to describe an area source by representing it as a large number of individual points. The area of the emission (i.e. the area over which the explosives were distributed) was

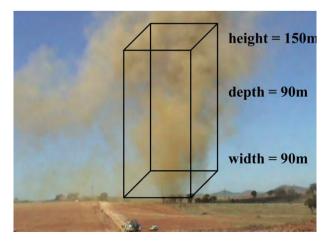


Fig. 2. Blast plume with estimated dimensions.

One hundred and twenty scenarios were modelled in which the 100 kg of emissions were spread randomly throughout the source area. A multi-stage process was employed for this task. In the first step, the total maximum number of points emitting was determined. This was defined by a random number between 20% and 80% of the maximum number of sources (in this case 231). The range chosen was an estimate from the portion of blasts that appeared to fume in conditions witnessed during this study. The total emission was then divided by this number. Each portion of the total emission was then placed randomly within the emission area. This process allowed certain points to receive multiple portions of the total emissions enabling the formation of hot spots. An example of one emission grid (Scenario 1 of 120) is displayed in Fig. 4.

Concentrations were determined for each of the 120 emission scenarios at distances of 200 m, 300 m, 400 m, 500 m, 750 m, 1 km, 1.25 km, 1.5 km, 2 km, 2.5 km, 3 km, 4 km and 5 km from the origin of the source. A concentration was determined for a number of discrete times that encompassed the complete plume travelling past the receptor. Further the concentrations were determined at 21 locations 10 m apart in a plane parallel and directly downwind of the source area (see Fig. 3). An average concentration from each of the receptors was determined; in this case with *N* equal to 21.

$$C^{*} = \frac{1}{N} \sum_{i=1}^{N} C_{i}$$
(5)

The average for each scenario was then used to create an ensemble average and standard deviation for the entire run (i.e. N = 120).

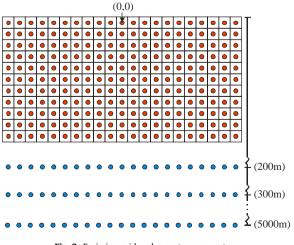


Fig. 3. Emission grid and receptor array setup.

$$\overline{C} = \frac{1}{N} \sum_{j=1}^{N} C_j^* \tag{6}$$

$$\sigma_{\overline{C}} = \frac{1}{N} \sum_{j=1}^{N} \left(C_{j}^{*} - \overline{C} \right)^{2}$$
(7)

$$C_{\max} = \max_{k=1}^{N} [\overline{C}_k]$$
(8)

A dosage expressed in ppm s was determined from the times when the ensemble average plume travelled past the receptors located at each distance downwind of the source. Again N represents each discrete time step (dt) where $C' \neq 0$.

$$C_{\text{dose}} = \sum_{k=1}^{N} (\overline{C}_k) \mathrm{d}t \tag{9}$$

The relative variation for the dosage is provided by similarly treating the ensemble standard deviation.

$$\sigma_{\text{dose}} = \sum_{k=1}^{N} (\sigma_{\overline{c}k}) dt$$
(10)

3. Results and discussion

3.1. Field measurements

Plume measurements were made using the mini-DOAS spectrometer at two open-cut mine sites located in the Hunter Valley. The combination of the spectral analysis and the plume estimation technique allowed for NO₂ concentration and mass flux estimates to be made remotely, totally eliminating the requirement of physical sampling.

An example of the spectral output produced by the mini-DOAS is shown in Fig. 5. The spectral output consists of the NO_2 concentration (ppm m) as a function of time. The figure also contains a series of photographs depicting the formation of a blast plume at time intervals of 70, 110, 163, 250 and 350 s post-blast initiation. It is worth noting the change in intensity of the colour of plume and size as a function of time.

Reliable concentration measurements with the mini-DOAS may only be made when the spectrometer is aimed into a sky background above the horizon from the point of observation. In this example, a peak concentration of 580 ppm m was achieved in 163 s post-blast initiation (third image from the left). At this time the plume has risen above the horizon from the point of observation. The plume to mini-DOAS distance at this stage is approximately 500 m, with an estimated plume depth of 105 m. This results in a NO₂ concentration of 5.6 ppm at that particular stage of the plumes' dispersion.

After 350 s, the plume is barely visible and is now estimated to be approximately 650 m from the mini-DOAS unit. The plume depth has increased to 125 m with

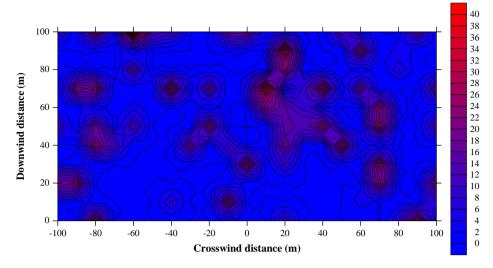


Fig. 4. Example of emission grid for 1 of the 120 scenarios modelled (the scale on the right hand side refers to NO₂ concentration in ppm).

a corresponding increase in plume volume by a factor of two. This expansion of the plume corresponds to a decrease in NO_2 concentration to 2.8 ppm.

At 360 s the plume was no longer visible to the eye and was lost for a short period of time to the mini-DOAS. This, however, was rectified with scanning of the sky with the spectrometer until the invisible plume was tracked for a further period.

Results for all plumes monitored during field work at both mine sites are given in Table 1. The table gives the peak NO₂ concentration as measured by the mini-DOAS above the horizon. Also given in the table is the plume volume at peak concentration and the calculated mass of NO₂ released from the blast. The mass of ANFO typically used in a blast was on average 210 tonnes, ranging from 60 to 565 tonnes. The explosive was distributed over an area of typically $200 \text{ m} \times 100 \text{ m}$ containing approximately 200 bole holes with 200 mm diameter and to a depth of 25 m.

From the table the maximum NO_2 concentrations were found to range from 0 to about 7 ppm. This range of concentrations translated to 0–63.3 kg of NO_2 in the plume. However, no correlation can be made between blast charge and NO_2 levels.

During the measurements with the mini-DOAS ground level measurements were also carried out using a portable combustion gas analyser (Greenline 8000) to augment the airborne measurements made by the mini-DOAS. For NO₂ the ground level measures were higher than those observed using the mini-DOAS at higher altitudes. When the results of both measurement methods were applied to

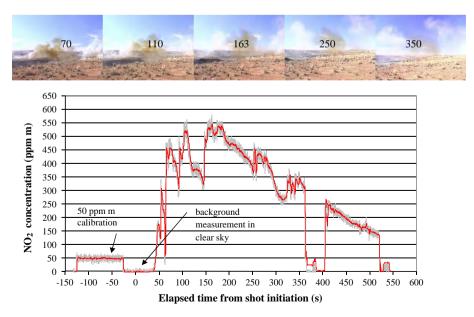


Fig. 5. Typical NO₂ spectrum demonstrating plume colour characteristics relative to concentration level.

Table 1

Through plume measurement results

Date	Total ANFO	Peak NO ₂	Plume volume	Mass of	Emission flux (kg t^{-1} ANFO)			
	charge (t)	Conc (ppm)	$(m^3 imes 10^{-6})$	NO_2 (kg)	NO	NO ₂	NO _x	
12/12/2005	281	3.7	1.4	9.9	0.5	0.03	0.6	
13/12/2005	150	0.4	5.3	3.7	0.4	0.03	0.4	
14/12/2005	119	0.0	0.0	0.0	0.0	0.00	0.0	
21/12/2005	229	1.0	4.4	7.9	0.6	0.04	0.6	
22/12/2005	211	0.0	0.0	0.0	0.0	0.00	0.0	
23/12/2005	222	0.0	0.0	0.0	0.0	0.00	0.0	
5/01/2006	177	1.0	0.2	0.4	0.0	0.00	0.0	
6/01/2006	275	1.1	15.3	30.6	1.8	0.12	1.9	
12/01/2006	225	1.6	6.2	18.3	1.3	0.08	1.4	
18/01/2006	169	1.3	1.7	0.2	0.4	0.02	0.4	
23/01/2006	139	2.1	4.2	16.7	1.9	0.12	2.0	
25/01/2006	155	0.4	4.4	2.9	0.3	0.02	0.4	
30/01/2006	132	0.7	5.3	7.1	0.8	0.05	0.9	
22/02/2006	224	0.0	0.00	0.0	0.0	0.00	0.0	
1/03/2006	194	1.6	20.6	63.3	5.0	0.32	5.3	
12/05/2006	362	6.5	1.9	23.3	1.0	0.06	1.1	
15/05/2006	131	0.3	3.2	1.7	0.2	0.01	0.2	
19/05/2006	168	0.0	0.00	0.0	0.0	0.00	0.0	
30/05/2006	100	0.8	0.00	1.0	0.0	0.00	0.0	
1/06/2006	365	0.7	3.5	4.9	0.2	0.01	0.2	
6/06/2006	145	0.8	11.5	17.5	1.9	0.12	2.0	
15/06/2006	60	0.0	0.00	0.0	0.0	0.00	0.0	
26/06/2006	254	4.3	0.3	2.1	0.1	0.01	0.2	
27/06/2006	212	5.6	0.9	10.0	0.7	0.04	0.7	
28/06/2006	241	0.0	0.00	0.0	0.0	0.00	0.0	
6/07/2006	565	2.8	2.7	14.0	0.4	0.03	0.4	
13/07/2006	184	7.0	1.0	12.6	1.1	0.07	1.2	

dispersion modelling techniques strong agreement was observed.

Point measurements which were made on Greenline 8000 indicated that a loose relationship existed between

NO and NO₂ concentration. Although a strong correlation was not found, there is a general trend of increasing NO₂ with increasing NO. It was generally found that the relative proportion of NO to NO₂ from our data set was 27 to 1. This

Table 2

Maximum calculated NO2 concentrations downwind of source

	200 m	300 m	400 m	500 m	750 m	1000 m	1250 m	1500 m	2000 m	2500 m	3000 m	4000 m	5000 m
WSPD =	$0.5 \mathrm{ms^{-1}}$												
Stab A	83.0	30.0	14.4	7.9	2.5	0.9	0.4	0.2	0.1	0.0	0.0	0.0	0.0
Stab B	145.8	69.3	40.8	25.4	10.1	4.8	2.6	1.6	0.7	0.4	0.2	0.1	0.1
Stab C	219.4	122.0	80.8	55.9	26.8	14.3	8.6	5.6	2.8	1.6	1.0	0.5	0.3
Stab D	321.1	201.5	146.0	113.1	64.6	40.2	26.1	18.6	10.5	6.7	4.5	2.4	1.4
Stab E	390.2	267.4	204.3	165.5	109.6	75.9	54.6	41.3	26.4	17.9	12.7	7.1	4.5
Stab F	464.1	339.8	269.0	222.6	154.5	114.9	88.6	69.7	50.4	37.0	27.8	16.7	11.0
WSPD =	$3 { m m s^{-1}}$												
Stab A	78.5	29.1	14.2	7.7	2.4	0.9	0.4	0.2	0.1	0.0	0.0	0.0	0.0
Stab B	137.6	67.7	39.7	25.1	10.0	4.8	2.6	1.6	0.7	0.4	0.2	0.1	0.1
Stab C	211.6	118.7	77.6	55.2	26.0	14.0	8.6	5.6	2.8	1.6	1.0	0.5	0.3
Stab D	312.5	197.9	143.2	110.0	62.5	39.3	26.1	18.2	10.5	6.7	4.5	2.4	1.4
Stab E	383.0	267.0	202.1	162.6	106.3	73.7	54.1	40.3	26.1	17.7	12.5	7.2	4.5
Stab F	461.5	344.6	268.4	220.8	151.1	112.3	86.1	67.6	48.9	36.4	27.5	16.6	11.0
$WSPD = 7.5 \text{ m s}^{-1}$													
Stab A	62.5	25.5	13.0	7.3	2.3	0.9	0.4	0.2	0.1	0.0	0.0	0.0	0.0
Stab B	111.9	56.1	34.2	22.6	9.4	4.6	2.6	1.6	0.7	0.4	0.2	0.1	0.1
Stab C	173.3	100.4	66.5	47.7	23.8	13.2	8.2	5.4	2.7	1.6	1.0	0.5	0.3
Stab D	261.2	167.9	122.1	92.3	54.8	35.3	23.7	17.2	10.1	6.5	4.4	2.3	1.4
Stab E	325.9	232.2	175.8	139.6	89.5	63.8	46.7	36.0	23.9	16.8	12.1	7.0	4.4
Stab F	394.6	302.7	237.0	194.3	132.2	96.1	73.3	59.0	43.6	33.3	25.7	15.8	10.5
WSPD =	10 m s ⁻¹												
Stab A	53.0	22.6	11.9	6.9	2.3	0.9	0.4	0.2	0.1	0.0	0.0	0.0	0.0
Stab B	92.3	49.7	31.0	20.9	9.0	4.5	2.5	1.5	0.7	0.4	0.2	0.1	0.1
Stab C	140.1	84.2	57.7	42.1	21.7	12.6	7.9	5.3	2.7	1.6	1.0	0.5	0.3
Stab D	205.5	138.3	102.4	79.9	48.6	31.8	22.1	16.4	9.7	6.4	4.3	2.3	1.4
Stab E	254.0	184.0	143.0	116.4	78.0	56.2	42.6	33.1	22.7	16.0	11.6	6.9	4.4
Stab F	306.8	235.8	189.6	157.9	109.9	82.8	64.5	52.2	40.0	30.9	24.0	15.2	10.2

relationship enabled the estimation of the NO fluxes in the blast plume with a reasonable level of confidence.

The results obtained in this study are the only published quantitative data available on blast plume gas composition that the authors are aware of and it is useful to compare them to the emission factors currently used for NPI estimates.

Based on the NO₂ measurements and estimates of NO, the flux for NO_x was calculated to be in the range of 0.04– 5.3 kg t^{-1} ANFO. The average flux level for all the blast plumes measured was 0.9 kg t⁻¹. This figure is considerably lower than the current NPI emission factor which is 8 kg t⁻¹.

3.2. Modelling

Results of the modelling runs are summarised in Table 2 and show the peak NO_2 concentrations (ppm) at various points downwind of the blast for the six atmospheric stability classes considered.

Examples of the modelled data are plotted in Fig. 6 and Fig. 7. In Fig. 6 a plot is displayed for the concentration estimate of one scenario at a distance of 200 m from the source origin and for a wind speed of 2 m s^{-1} and a stability class C. In this plot 21 lines are shown representing the dose received directly downwind of the source at the locations displayed in Fig. 3. In this figure it is apparent that there is a considerable difference in the concentration predicted at each of the 21 receptors. It should be noted that the distance of 200 m is defined from the origin of the source area (0, 0) as displayed in Fig. 3. At this distance emission sources at 100 m will cause significantly higher concentrations than those occurring at positions toward the origin. In comparison the concentrations predicted at the receptor array 1 km from the source show more normally defined distributions with maxima occurring towards the middle receptors as a result of crosswind diffusion.

Receptors toward the edge of the sample array receive less crosswind influence and are, therefore, smaller in concentration. Also apparent in these two figures is the considerable difference in the predicted peak concentrations with the values at 1 km up to 25 times lower than at 200 m. When viewing Table 2, the peak values at 5 km approach ambient levels for all but the most stable conditions which are quite commonly over predicted with Gaussian models. For future studies it is recommended that a long path technique on a mining lease boundary may provide both a measure of the model accuracy as well as a direct measure of the impact in areas directly surrounding the mining area.

The data presented in this study represent a dose directly downwind of the source and as such are a worst case scenario for exposure. The averages of the 21 receptors (i.e. the average concentration directly downwind of the source) for each of the 120 scenarios modelled were used to determine the selected data. The number of scenarios modelled was arbitrarily chosen to allow 10 scenarios to be run on each machine in a cluster of 12 computers. The maximum concentration in Table 2 is the maximum ensemble average obtained from the average of the 21 receptors for the 120 scenarios modelled. Maximum concentrations at individual locations directly downwind of hot spots are obviously higher than the values reported in this table.

When viewing Table 2 it is apparent that the peak concentrations drop dramatically as the receptor moves away from the source. It is also apparent that the peak concentrations vary little as a function of wind speed although the plume width will vary. In AFTOX a downwind concentration is determined in two steps. In the first step the size of the initial plume envelope is estimated. In its default mode AFTOX determines the size of the envelope (assumed to be a cylinder of equal height and width) from the magnitude of the emission rate. In this report the size is set at 10 m to match the grid structure used for the area

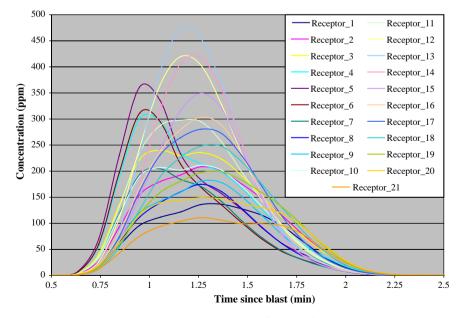


Fig. 6. Calculated NO₂ concentration profiles 200 m from source.

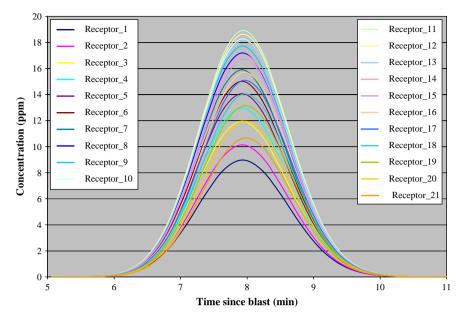


Fig. 7. Calculated NO₂ concentration profiles 1 km from source.

source. AFTOX in this regard ignores the effect of wind speed on the size of the initial envelope and as such the initial concentration of the plume is identical irrespective of wind speed by ignoring longitudinal (i.e. downwind) spread of the initial release. In the second step the concentration downwind of the initial release is determined by estimating the growth of a puff in three dimensions which in this case explicitly includes longitudinal plume spread which is assumed to be equal to the degree of crosswind spread. The degree of this spread is determined solely from the prescribed atmospheric stability class which ignores any wind speed dependence.

While the peak concentrations are similar, the dose received at a receptor is linearly dependent on wind speed. Emissions released into an atmosphere with higher wind speeds result in a receptor receiving doses for a smaller period of time. It should be noted that some of the differences in the peak concentrations displayed in Table 2 result from the number of discrete time steps used to calculate the concentrations. This was set at 25 intervals between the onset and finish of a plume as it passes by the receptor. This time is dependent on atmospheric stability and the distance from the source. In AFTOX, the puffs are assumed to disperse in the direction of plume travel proportionally with the degree of crosswind spread. As such, portions of the plume arrive before and after the main bulk of the emissions and the effect clearly demonstrated in Figs. 6 and 7. The moderate number of discrete times modelled to capture this effect while generally adequate may have led to a degree of variation particularly at larger distances from the source.

Again it should be noted that the modelled figures assume an area wide flux of 100 kg which is larger than observed in the blast recorded during this study. It should also be noted that while some of the concentrations are high close to the source the concentration at a particular location occurs for a brief period of time which is determined by the wind speed.

4. Conclusions

A portable open-path spectroscopic method was found to be effective for measuring NO_2 emissions from blasting. Overall this technique was found to be simpler, safer and more successful than other approaches that in the past have proved to be ineffective in monitoring these short lived plumes.

Quantitative measurements of NO_2 in plumes from blasting were made at two open-cut mines. The results showed that NO_2 was present in most of the plumes but in relatively low concentrations (typically ranging between 0 and 7 ppm). The highest concentration measured during all the field campaigns was about 17 ppm at ground level.

Based on field measurements, the emission factor currently used in compiling the Australian National Pollutant Inventory was found to be approximately eight times greater than that observed in our investigation. This would suggest that an over estimation of NO_x is made if the current factor is used.

Numerical modelling of the behaviour of plumes resulting from blasting was made to assess the possible downwind concentrations of NO₂. These results were compared to ambient NO_x measurements made in Muswellbrook.

- Modelling results were consistent with concentration measurements within the plumes at relatively short distances from the blast (i.e. up to about 1 km).
- Ambient monitoring did not detect NO_x events that could be attributed to individual blasts. Modelling suggested that these emissions would be very low at

distances greater than 5 km from the blast and may be indistinguishable from background levels; typically of the order of several parts per billion, in most cases.

Acknowledgements

We gratefully acknowledge the financial support of the Australian Coal Association Research Program (ACARP) and the staff at the Hunter Valley mine sites.

References

- Chalmers Radio, Space Science. The optical remote sensing group. Available from: http://www.rss.chalmers.se/ors/ >.
- Galle, B., Oppenheimer, C., Geyer, A., McGonigle, A.J.S., Edmonds, M., Horrocks, L., 2002. A miniaturised ultraviolet spectrometer for remote sensing of SO₂ fluxes: a new tool for volcano surveillance. Journal of Volcanology and Geothermal Research 119, 241–254.
- Kirchgessner, D.A., Piccot, S.D., Chadha, A., 1993. Estimation of methane emissions from a surface coal mine using open-path FTIR spectroscopy and modelling techniques. Chemosphere 26, 23–44.

- Kunkel, B.A., 1991. AFTOX 4.0 The Air Force Toxic Chemical Dispersion Model – A User's Guide. PL-TR-91-2119, Environmental Research Papers No. 1083, Phillips Laboratory, Directorate of Geophysics, Air Force Systems Command, Hanscom AFB, MA 01731-5000, p. 62.
- Levine, S.P., Russwurm, G.M., 1994. Fourier transform infrared optical remote sensing for monitoring airborne gas and vapour contaminants in the field. Trends in Analytical Chemistry 13, 263–266.
- Moffat, A.J., Milan, M.M., 1971. The applications of optical correlation techniques to the remote sensing of SO₂ plumes using sky light. Atmospheric Environment 5, 677–690.
- McGonigle, A.J.S., Thomson, C.L., Tsanev, V.I., Oppenheimer, C., 2003. A simple technique for measuring power station SO₂ and NO₂ emissions. Atmospheric Environment 38, 21–25.
- National Pollutant Inventory, 1999. Emission Estimation Technique Manual for Explosives Detonation and Firing Ranges. Environment Australia. Available from: http://www.npi.gov.au/handbooks/ approved_handbooks/fexplos.html>.
- Piccot, S., Masemore, S., Ringler, E., Srinivasan, S., Kirchgessner, D., Herget, W., 1994. Validation of a method for estimating pollution emission rates from area sources using open-path FTIR spectroscopy and dispersion modelling techniques. Journal of the Air & Waste Management Association 44, 271–279.
- Piccot, S., Masemore, S., Ringler, E., Bevan, W.L., Harris, D.H., 1996. Field assessment of a new method for estimating emission rates from volume sources using open-path FTIR spectroscopy. Journal of the Air & Waste Management Association 46, 159–171.

FACTORS AFFECTING ANFO FUMES PRODUCTION

James H. Rowland III and Richard Mainiero

ABSTRACT

For many years there have been small scale tests available for evaluating the toxic fumes production by capsensitive explosives (DOT Class 1.1), but these could not be used with blasting agents due to the large charge sizes and heavy confinement required for proper detonation. Considering the extensive use of blasting agents in construction and mining, there is a need to determine the quantities of toxic fumes generated by blasting agents. At the International Society of Explosive Engineers Twenty Third Annual Conference on Explosives and Blasting Technique in 1997, the authors reported on a facility for detonating large (4.54 kg), confined blasting agent charges in a controlled volume that had been constructed at the National Institute for Occupational Safety and Health's Pittsburgh Research Lab's Experimental Mine. Since 1997, this facility has been used to collect data on toxic fumes produced by the detonation of various ammonium nitrate/fuel oil (ANFO) mixtures and several cap-sensitive explosives.

ANFO composition ranging from 1 to 10 percent (pct) fuel oil have been studied. As expected from previous studies, with an increase in fuel oil content the carbon monoxide production increases, while nitric oxide and nitrogen dioxide production decrease. The detonation velocity varies from 3,000 to 4,000 m/sec for the 1 to 10 pct range of fuel oil content, suggesting that ANFO mixes with improper fuel oil content may appear to detonate properly, while their fume production differs significantly from optimum. The study also considers such factors as degree of confinement, water contamination, and aluminum content on blasting agent fume production, but causes significant increase in nitric oxide and nitrogen dioxide production. Decreasing confinement from Schedule 80 steel pipe to 0.4-mm thick sheet metal also has little effect on carbon monoxide production, but significantly increases nitric oxide and nitrogen dioxide production. Adding 5 and 10 pct aluminum to the ANFO had no clear effect on carbon monoxide, nitric oxide, or nitrogen dioxide production.

INTRODUCTION

In February of 1997 a paper entitled "A Technique for Measuring Toxic Gases Produced by Blasting Agents" was presented at the 23rd Annual Conference on Explosives & Blasting Technique in Las Vegas, Nevada. That paper discussed a method for measuring toxic fumes produced by detonation of blasting agents. The research reported here is a continuation of that work.

Detonating ANFO in steel pipe in the Pittsburgh Research Lab (PRL) mine fumes chamber yields a baseline for comparing relative fumes production for blasting agents, but is by no means a predictor of what will happen in the field. In actual blasting operations, the confinement of the detonating ANFO will probably be less than that offered by the 4-in, Schedule 80 steel pipe employed in most tests. Additionally the ANFO evaluated in the PRL mine chamber is carefully mixed the day before and care is taken to prevent contamination. In practice, ANFO may not be exactly the 94/6 ammonium nitrate/fuel oil ratio desired or may be loaded into boreholes weeks before it is shot, exposing the explosive to water seeping into loaded boreholes and possible fuel oil evaporation. The current research looks at these factors and others in an effort to determine how they affect fumes production. Fumes measurements in the mine chamber were carried out for ANFO mixtures other than 94/6, ANFO contaminated with up to 10 pct water, ANFO detonated with less confinement than that offered by Schedule 80 steel pipe, and ANFO containing up to10 pct aluminum were also studied to gain an understanding of how detonation behavior affects fumes production. In each case carbon monoxide, nitrogen oxides, and ammonia were the toxic gases of primary interest.

EXPERIMENTAL APPROACH

Detonating large blasting agent charges and confining the fumes requires a larger experimental chamber than was employed in past work on cap-sensitive explosives. Towards this end, a chamber was created in the experimental mine at PRL. The facility consists of a portion of mine entry enclosed between two explosion proof bulkheads. Each bulkhead is 40 inches (1 m) thick, constructed of solid concrete block hitched 1 foot (30 cm) into the roof, ribs, and floor. On the intake side, the bulkhead is fitted with a submarine mandoor and a small port for control and sampling lines. On the return side, the bulkhead is fitted with two sealed ventilation ports. Total volume of the chamber is 9,666 ft³ (274 m³). The chamber volume was determined by releasing a known quantity of carbon monoxide into the chamber and sampling the atmosphere after it had mixed. Following the shot, a fan mounted at one end of the chamber mixes the chamber atmosphere at 3,500 ft³/min, after which the chamber is vented using the mine's airflow. The layout of the chamber is illustrated in Figure 1. Up to 10 pound (4.54 kg) charges can be detonated in the chamber using a variety of confinements.

EXPERIMENTAL

A 28-inch (71-cm) length of 4-inch (20-cm) Schedule 80 seamless steel pipe was chosen to provide confinement in most tests of blasting agents and cap-sensitive explosives. Prior to loading the pipe with explosive, a continuous velocity probe of the type described by Santis is taped to the inner surface of the pipe along its length¹. In conducting a test of a blasting agent, the commercial blasting agent minus its wrapper, or premixed ANFO are loaded into the pipe to a weight of 10 lb (4.54 kg). Initiation is provided by a 2-inch (5-cm) diameter, 2-inch (5-cm) thick cast pentolite booster, initiated by a number 8 instantaneous electric

blasting cap. In conducting a test of a cap-sensitive explosive, the cartridge explosive is loaded into the pipe to a weight of about 10 lb (4.54 kg). Cap-sensitive explosives are initiated by a number 8 instantaneous electric blasting cap.

Following detonation of an explosive in the chamber, the fan is run for about 10 minutes to uniformly mix the chamber atmosphere before fumes samples are taken out of the chamber through 1/4-inch (0.6-cm) Teflon or polyethylene tubes for analysis. Teflon sample lines are used for nitrogen oxides and ammonia to minimize loss of these constituents to absorption on the tube surface. Vacutainer¹ samples are taken and sent to the analytical laboratory for analysis; this technique is appropriate for components that are stable in the Vacutainer, namely hydrogen, carbon monoxide, and carbon dioxide. Nitrogen dioxide, nitrogen oxides, and ammonia are not amenable to analysis by the Vacutainer technique and are instead absorbed in chemical solutions in bubbler trains using the technique described by Santis². That method was modified by eliminating the purging of the system with helium and using a gas meter to measure the volume of fumes bubbled through the solutions rather than measuring gas flow rate. An electrochemical carbon monoxide monitor was also employed to act as a backup to the analytical lab's carbon monoxide analysis of the Vacutainer and to allow monitoring of the mixing of the chamber atmosphere.

RESULTS

An ANFO mixture of 94 pct ammonium nitrate, 6 pct fuel oil is close to optimum from the perspective of minimum toxic fumes production. Previous research and theory show that the detonating ANFO will produce excessive levels of nitrogen oxides if the fuel oil content is too low and will produce excessive levels of carbon monoxide and ammonia if the fuel oil content is too high.^{3,4,5} This behavior is supported by data collected in the current research, as illustrated in Figures 2, 3, and 4.

In Figure 5 the data from figures 2, 3, and 4 is presented in terms of oxygen balance. Figure 5 is a plot of carbon monoxide production versus oxygen balance for ANFO and several cap-sensitive explosives. As the oxygen balance is increased for ANFO the carbon monoxide production decreases. This would be expected since there is increasing oxygen to convert the carbon monoxide to carbon dioxide. ANFO mixed at 6 pct fuel oil produces approximately the same amount of carbon monoxide as cap-sensitive explosives of equivalent oxygen balance. The opposite is true when looking at nitrogen oxides production as a function of oxygen balance, as illustrated in Figure 6. When the oxygen balance is increased, the nitrogen oxides and nitrogen dioxide production increased. ANFO mixed at 6 pct fuel oil produces and nitrogen dioxide production increased. Sensitive explosives. Figure 7 illustrates that as the oxygen balance for ANFO is increased the ammonia production decreases. With the exception of a couple data points that may be anomalous, ANFO mixed at 6 pct fuel oil produced about the same quantity of ammonia as cap-sensitive explosives of equivalent oxygen balance.

Figure 8 shows that adding water to an ANFO mixture of 94 pct ammonium nitrate and 6 pct fuel oil had little effect on carbon monoxide production for water percentages from 0 to 10 pct. However the nitrogen oxides and nitrogen dioxide increased dramatically when water is added to the ANFO mixture. This is demonstrated in Figure 9. Figure 10 shows the effect of water on ammonia fumes production; adding water to the ANFO yields an erratic trend, indicating that further study is needed.

¹Reference to Specific products is for informational purposes and does not imply endorsement by NIOSH.

As mentioned earlier, shooting ANFO in 4-inch schedule 80 seamless steel pipe is probably much more confinement than seen in the field. To examine the effect of reduced confinement on fumes production, ANFO was tested in sheet metal and PVC pipe. As seen in Figure 11, reduced confinement doesn't have much effect on carbon monoxide production. Carbon monoxide production for ANFO shot in the PVC pipe was much higher than that for the steel or sheet metal pipe. The high carbon monoxide might be attributed to burning of the PVC pipe. The degree to which the PVC pipe reacted was not studied in detail, but it is safe to assume that at least some of the PVC burned during the ANFO detonation. The high carbon monoxide production would be consistent with the earlier observation that the higher the fuel content of the explosive, the higher the carbon monoxide production.

Explosive packaging is an important consideration relative to toxic fumes production. For example, a blast pattern may contain a number of boreholes that are contaminated with water and the blaster may decide to insert sleeves into the boreholes contaminated with water to keep the ANFO dry. If the sleeves are made of a combustible material they could add to the carbon monoxide production. Figure 12 shows that the production of nitrogen oxides and nitrogen dioxide increases dramatically with lower confinement, while Figure 13 shows that with less confinement ammonia decreases.

Limestone rock dust (approximately 73 pct through 200 mesh) was added to the ANFO mixture to simulate drill cuttings being mixed with the ANFO as it was loaded into a borehole. The rock dust had little effect on the carbon monoxide production, as illustrated in Figure 14. Figure 15 shows that the addition of the rock dust led to an increase in nitrogen oxides production and a decrease in nitrogen dioxide production. Since the nitrogen oxides consist essentially of nitric oxide and nitrogen dioxide, this indicates that nitric oxide production increased significantly. Figure 16 shows that adding rock dust to the ANFO caused a significant increase in ammonia production.

Aluminum is sometimes added to ANFO to increase the velocity and the output energy. Figure 14 illustrates that the aluminum added to the ANFO mixture has little effect on the production of carbon monoxide. From Figure 15 it is not clear whether or not the nitrogen oxides and nitrogen dioxide production is affected by the added aluminum. The ammonia increased with the added aluminum, as illustrated in figure 16. It should be noted that the addition of aluminum had no clear effect on the ANFO's detonation velocity. The aluminum added to the ANFO mixture was Fine Aluminum Paint Pigment Powder, Alcoa # 422 flake. This type was used to give the fastest possible burning rate for experimental purposes. For commercial explosives, the lowest and least expensive grade of aluminum is typically used, consisting of ground scrap aluminum of various particle sizes.

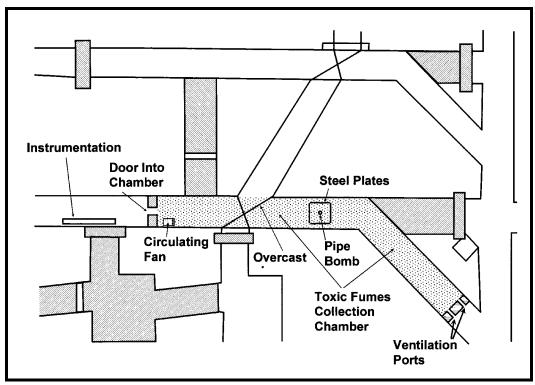
DISCUSSION

Several factors that may effect the fumes production of ANFO have been investigated. Probably the easiest to control is the fuel oil content. To minimize toxic fumes production, the ANFO should be mixed at 6 pct fuel oil. Deviating from the 6 pct will lead to excessive fumes. Water contamination may not have an affect on carbon monoxide production, but it increases the production of nitrogen oxides and nitrogen dioxide. At the present time in our research it is not clear how the production of ammonia is affected. The confinement of ANFO doesn't appear to make a difference in the production of carbon monoxide, but it makes a difference in the production of nitrogen oxides, and ammonia.

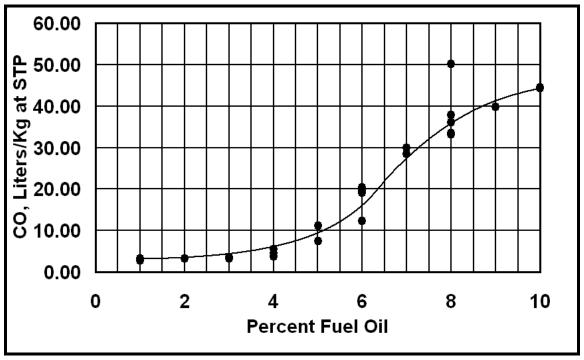
In the case of nitrogen oxides and nitrogen dioxide the fumes production will increase, while the ammonia fumes production will decrease.

Adding aluminum or rock dust to ANFO does not affect the fumes production of carbon monoxide. The addition of aluminum does not have a significant affect on nitrogen oxides and nitrogen dioxide production, but the addition of rock dust leads to an increased production of nitrogen oxides. Additionally, the rock dust appears to have an effect on the ratio of nitric oxide to nitrogen dioxide. The addition of aluminum and rock dust increased the production of ammonia. The effect of rock dust on fume production was based on limited data and requires further study to look at the effect of particle size and dust type.

Its important to understand that the data reported here applies only to the test conditions under which the data was collected. For example, the schedule 80 steel pipe may provide more confinement than many field blasts. The research reported here shows that the confinement will affect the quantity of toxic fumes produced. In the field the toxic fumes released from a blast will differ significantly from the data reported here. There is a need to collect data from the field to develop an understanding of how data from the PRL fumes chamber compare to fumes production in the field. This, in return, will help in developing improved tests for evaluating fumes production.


1. Santis, L. D. and R. A. Cortese, A Method of Measuring Continuous Detonation Rates Using Off-the-Shelf Items, Proceedings of the Twenty-Second Annual Conference on Explosives and Blasting Technique, Orlando, FL, February 4-8, 1996.

2. Santis, L. D., J. H. Rowland, III, D. J. Viscusi, and M. H. Weslowski, The Large Chamber Test for Toxic Fumes Analysis for Permissible Explosives, Proceedings of the Twenty-First Annual Conference on Explosives and Blasting Technique, Nashville, TN, February 5-9, 1995.


3. Mainiero, R.J., A Technique for Measuring Toxic Gases Produced by Blasting Agents, Proceedings of the Twenty Third Annual Conference on Explosives and Blasting Technique, Las Vegas, NV, February 2-5, 1997.

4. <u>Blaster's Handbook</u>, Sixteenth Edition, E.I. du Pont de Nemours and Company, 1977, p. 59.

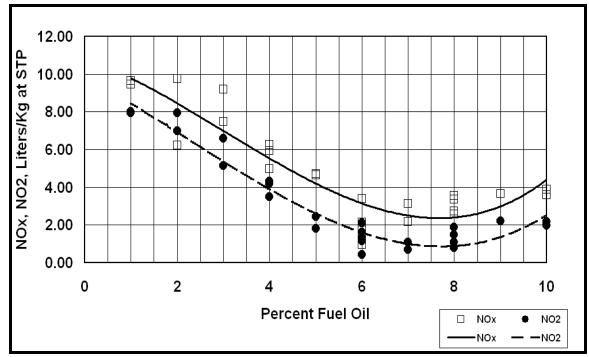
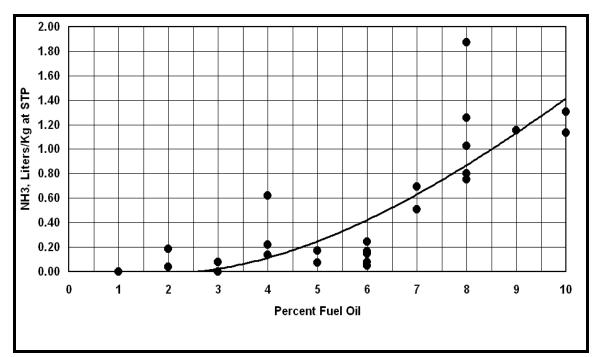
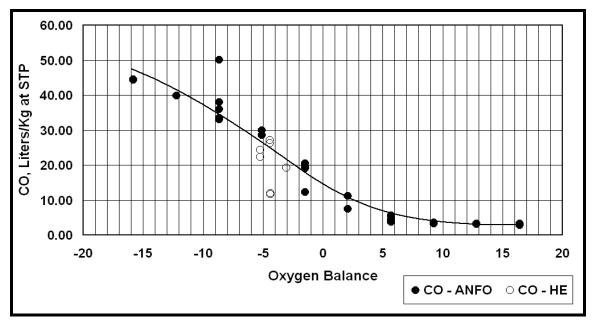
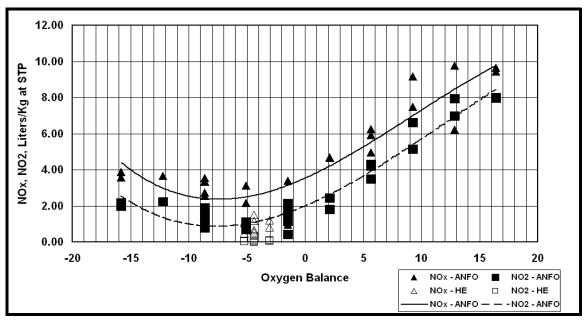
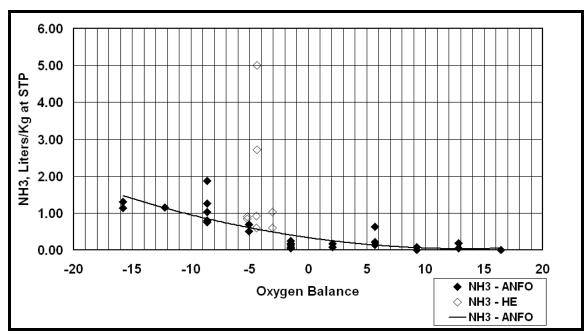

5. Explosives and Rock Blasting, Atlas Powder Company, 1987, p. 25-27.

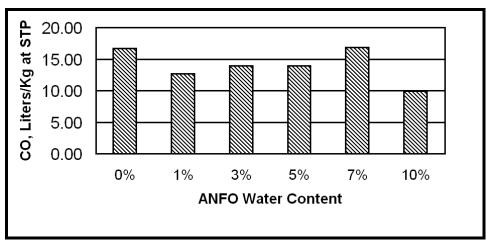
Figure 1. Research was conducted in a chamber created in the underground mine at the Pittsburgh Research Lab.

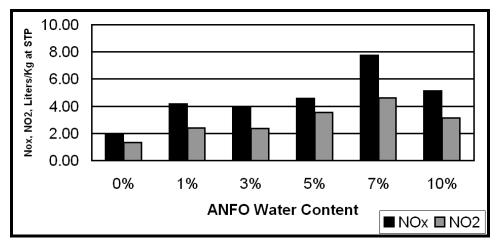
Figure 2. Effect of ANFO fuel oil content on carbon monoxide production. In all figures, the line is a polynomial fit to the data; it is included for illustrative purposes and does not represent a fit of theoretical results.

Figure 3. Effect of ANFO fuel oil content on nitrogen oxides and nitrogen dioxide production.


Figure 4. Effect of ANFO fuel oil content on ammonia production.


Figure 5. Effect of Oxygen Balance on carbon monoxide production for 94/6 ANFO and high explosives (cap-sensitive explosives).


Figure 6. Effect of Oxygen Balance on nitrogen oxides and nitrogen dioxide production for 94/6 ANFO and high explosives (cap-sensitive explosives).

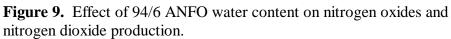


Figure 7. Effect of Oxygen Balance on ammonia production for 94/6 ANFO and high explosives (cap-sensitive explosives).

Figure 8. Effect of ANFO water content on carbon monoxide production for a 94/6 mix.

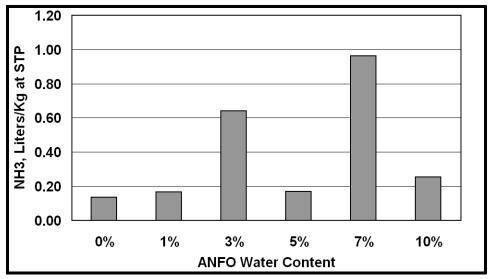
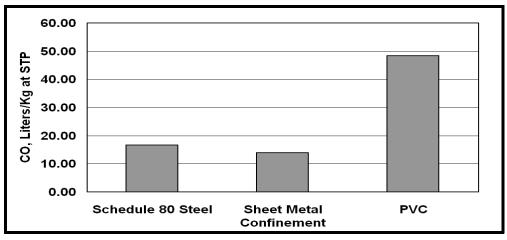
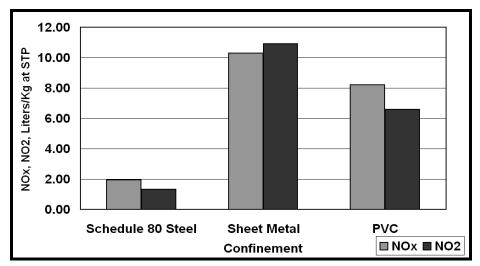
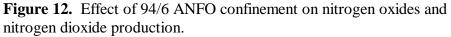
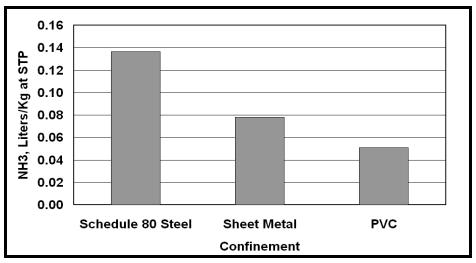
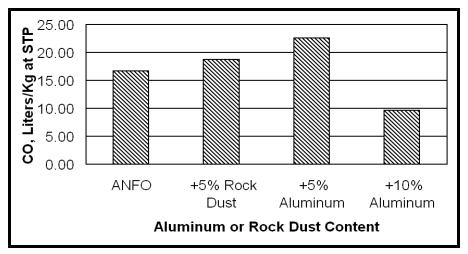
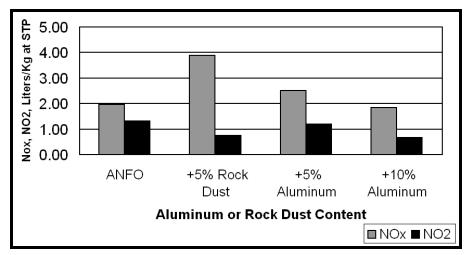





Figure 10. Effect of 94/6 ANFO water content on ammonia production.

Figure 11. Effect of 94/6 ANFO confinement on carbon monoxide production.

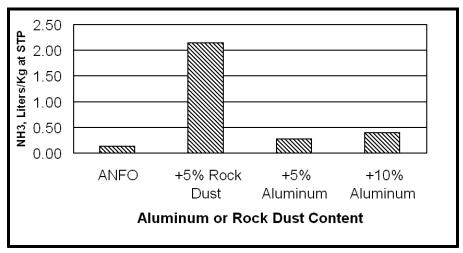

Figure 13. Effect of 94/6 ANFO confinement on ammonia production.

Figure 14. Effect of aluminum and rock dust content on carbon monoxide production.

Figure 15. Effect of aluminum and rock dust content on nitrogen oxides and nitrogen dioxide production.

Figure 16. Effect of aluminum or rock dust content on ammonia production.

11.9 Western Surface Coal Mining

11.9.1 General¹

There are 12 major coal fields in the western states (excluding the Pacific Coast and Alaskan fields), as shown in Figure 11.9-1. Together, they account for more than 64 percent of the surface minable coal reserves in the United States.² The 12 coal fields have varying characteristics that may influence fugitive dust emission rates from mining operations including overburden and coal seam thicknesses and structure, mining equipment, operating procedures, terrain, vegetation, precipitation and surface moisture, wind speeds, and temperatures. The operations at a typical western surface mine are shown in Figure 11.9-2. All operations that involve movement of soil or coal, or exposure of erodible surfaces, generate some amount of fugitive dust.

The initial operation is removal of topsoil and subsoil with large scrapers. The topsoil is carried by the scrapers to cover a previously mined and regraded area as part of the reclamation process or is placed in temporary stockpiles. The exposed overburden, the earth that is between the topsoil and the coal seam, is leveled, drilled, and blasted. Then the overburden material is removed down to the coal seam, usually by a dragline or a shovel and truck operation. It is placed in the adjacent mined cut, forming a spoils pile. The uncovered coal seam is then drilled and blasted. A shovel or front end loader loads the broken coal into haul trucks, and it is taken out of the pit along graded haul roads to the tipple, or truck dump. Raw coal sometimes may be dumped onto a temporary storage pile and later rehandled by a front end loader or bulldozer.

At the tipple, the coal is dumped into a hopper that feeds the primary crusher, then is conveyed through additional coal preparation equipment such as secondary crushers and screens to the storage area. If the mine has open storage piles, the crushed coal passes through a coal stacker onto the pile. The piles, usually worked by bulldozers, are subject to wind erosion. From the storage area, the coal is conveyed to a train loading facility and is put into rail cars. At a captive mine, coal will go from the storage pile to the power plant.

During mine reclamation, which proceeds continuously throughout the life of the mine, overburden spoils piles are smoothed and contoured by bulldozers. Topsoil is placed on the graded spoils, and the land is prepared for revegetation by furrowing, mulching, etc. From the time an area is disturbed until the new vegetation emerges, all disturbed areas are subject to wind erosion.

11.9.2 Emissions

Predictive emission factor equations for open dust sources at western surface coal mines are presented in Tables 11.9-1 and 11.9-2. Each equation applies to a single dust-generating activity, such as vehicle traffic on haul roads. The predictive equation explains much of the observed variance in emission factors by relating emissions to three sets of source parameters: (1) measures of source activity or energy expended (e. g., speed and weight of a vehicle traveling on an unpaved road); (2) properties of the material being disturbed (e. g., suspendable fines in the surface material of an unpaved road); and (3) climate (in this case, mean wind speed).

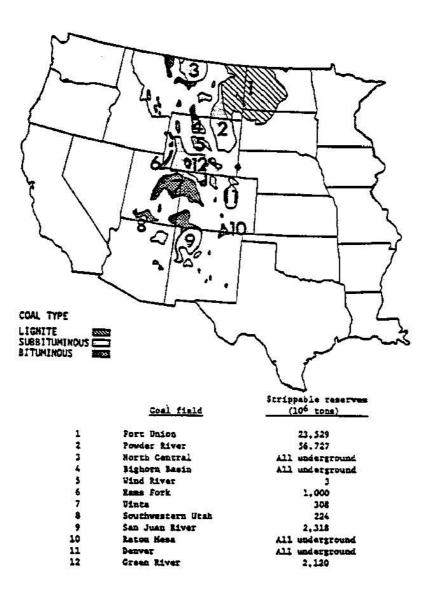
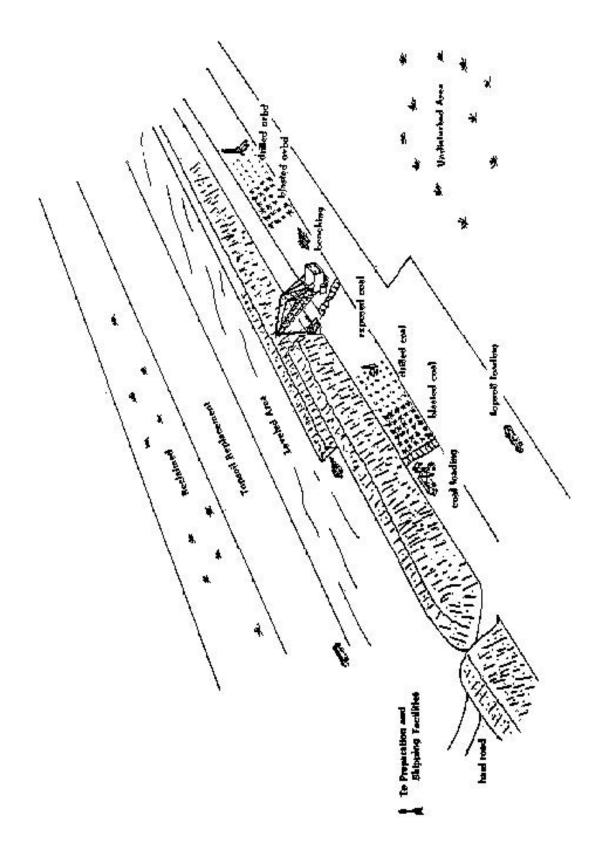



Figure 11.9-1. Coal fields of the western United States.³

The equations may be used to estimate particulate emissions generated per unit of source extent or activity (e. g., distance traveled by a haul truck or mass of material transferred). The equations were developed through field sampling of various western surface mine types and are thus applicable to any of the surface coal mines located in the western United States.

In Tables 11.9-1 and 11.9-2, the assigned quality ratings apply within the ranges of source conditions that were tested in developing the equations given in Table 11.9-3. However, the equations should be derated 1 letter value (e. g., A to B) if applied to eastern surface coal mines.

In using the equations to estimate emissions from sources found in a specific western surface mine, it is necessary that reliable values for correction parameters be determined for the specific sources of interest if the assigned quality ratings of the equations are to be applicable. For example, actual silt content of coal or overburden measured at a facility should be used instead of estimated values. In the event that site-specific values for correction parameters cannot be obtained, the appropriate geometric mean values from Table 11.9-3 may be used, but the assigned quality rating of each emission factor equation should be reduced by 1 level (e. g., A to B).

Emission factors for open dust sources not covered in Table 11.9-3 are in Table 11.9-4. These factors were determined through source testing at various western coal mines.

The factors in Table 11.9-4 for mine locations I through V were developed for specific geographical areas. Tables 11.9-5 and 11.9-6 present characteristics of each of these mines (areas). A "mine-specific" emission factor should be used only if the characteristics of the mine for which an emissions estimate is needed are very similar to those of the mine for which the emission factor was developed. The other (nonspecific) emission factors were developed at a variety of mine types and thus are applicable to any western surface coal mine.

As an alternative to the single valued emission factors given in Table 11.9-4 for train or truck loading and for truck or scraper unloading, two empirically derived emission factor equations are presented in Section 13.2.4 of this document. Each equation was developed for a source operation (i. e., batch drop and continuous drop, respectively) comprising a single dust-generating mechanism that crosses industry lines.

Because the predictive equations allow emission factor adjustment to specific source conditions, the equations should be used in place of the single-valued factors in Table 11.9-4 for the sources identified above, if emission estimates for a specific western surface coal mine are needed. However, the generally higher quality ratings assigned to the equations are applicable only if: (1) reliable values of correction parameters have been determined for the specific sources of interest, and (2) the correction parameter values lie within the ranges tested in developing the equations. Caution must be exercised so that only the unbound (sorbed) moisture (i. e., not any bound moisture) is used in determining the moisture content for input to the Chapter 13 equations.

		Emissions By Particle Size Range (Aerodynamic Diameter) ^{b,c}					
		Emission Fact	tor Equations	Scali	ing Factors		EMISSION FACTOR
Operation	Material	TSP ≤30 μm	≤15 µm	≤10 µm ^d	≤2.5 µm/TSPe	Units	RATING
Blasting ^f	Coal or overburden	0.000014(A) ^{1.5}	ND	0.52°	0.03	lb/blast	C_DD
Truck loading	Coal	$\frac{1.16}{(M)^{1.2}}$	$\frac{0.119}{(M)^{0.9}}$	0.75	0.019	lb/ton	BBCC
Bulldozing	Coal	$\frac{78.4 \text{ (s)}^{1.2}}{\text{(M)}^{1.3}}$	$\frac{18.6 \text{ (s)}^{1.5}}{\text{(M)}^{1.4}}$	0.75	0.022	lb/hr	CCDD
	Overburden	$\frac{5.7 \text{ (s)}^{1.2}}{(\text{M})^{1.3}}$	$\frac{1.0 \text{ (s)}^{1.5}}{(\text{M})^{1.4}}$	0.75	0.105	lb/hr	BCDD
Dragline	Overburden	$\frac{0.0021 (d)^{1.1}}{(M)^{0.3}}$	$\frac{0.0021 (d)^{0.7}}{(M)^{0.3}}$	0.75	0.017	lb/yd³	BCDD
Vehicle traffic ^g							
Grading		0.040 (S) ²⁵	0.051 (S) ^{2.0}	0.60	0.031	lb/VMT	CCDD
Active storage pile ^h (wind erosion and maintenance)	Coal	0.72 u	ND	ND	ND	lb (acre)(hr)	C ⁱ

Table 11.9-1 (English Units). EMISSION FACTOR EQUATIONS FOR UNCONTROLLED OPEN DUST SOURCES AT WESTERN SURFACE COAL MINES^a

Reference 1, except as noted. VMT = vehicle miles traveled. ND = no data. Quality ratings coded where "Q, X, Y, Z" are ratings for $\leq 30 \mu$ m, $\leq 15 \mu$ m, $\leq 10 \mu$ m, and $\leq 2.5 \mu$ m, respectively. See also note below.

^b Particulate matter less than or equal to 30 μm in aerodynamic diameter is sometimes termed "suspendable particulate" and is often used as a surrogate for TSP (total suspended particulate). TSP denotes what is measured by a standard high volume sampler (see Section 13.2).
^cSymbols for equations:

A = horizontal area (ft²), with blasting depth \leq 70 ft. Not for vertical face of a bench.

M = material moisture content (%)

s = material silt content (%)

u = wind speed (mph)

d = drop height (ft)

W = mean vehicle weight (tons)

S = mean vehicle speed (mph)

Chino TRI data received from Clyde Durham 1/28/11 email

Average metal content of waste rock, ore for leach, ore for milling, PLS, wastewater etc.

Waste Rock		
Metal	Conc. (ppm)	Conc. (%)
Antimony	3.2	0.0003
Arsenic	3.8	0.0004
Barium	111.0	0.0111
Beryllium	NA	NA
Cadmium	1.0	0.0001
Chromium	56.9	0.0057
Cobalt	14.5	0.0015
Copper	533.3	0.0533
Lead	9.0	0.0009
Mercury	NA	NA
Manganese	440.0	0.0440
Nickel	11.0	0.0011
Selenium	NA	NA
Silver	4.0	0.0004
Thallium	NA	NA
Vanadium	37.0	0.0037
Zinc	79.0	0.0079

Ore for Mill				
Metal	Conc. (ppm)	Conc. (%)		
Antimony	6.7	0.0007		
Arsenic	3.9	0.0004		
Barium	19	0.0019		
Beryllium	NA	NA		
Cadmium	2.2	0.0002		
Chromium	25.0	0.0025		
Cobalt	20	0.0020		
Copper	5900	0.5900		
Lead	27	0.0027		
Mercury	NA	NA		
Manganese	662	0.0662		
Nickel	12	0.0012		
Selenium	NA	NA		
Silver	0.8	0.0001		
Thallium	NA	NA		
Vanadium	43	0.0043		
Zinc	110	0.0110		

Ore for Lea	ch	
<u>Metal</u>	Conc. (ppm)	Conc. (%)
Antimony	4.8	0.0005
Arsenic	3.7	0.0004
Barium	68	0.0068
Beryllium	NA	NA
Cadmium	1.3	0.0001
Chromium	91.0	0.0091
Cobalt	39	0.0039
Copper	2918	0.2918
Lead	15.7	0.0016
Mercury	NA	NA
Manganese	493	0.0493
Nickel	21	0.0021
Selenium	NA	NA
Silver	0.8	0.0001
Thallium	NA	NA
Vanadium	27	0.0027
Zinc	94	0.0094

Copper Concentrate

copper com	Cone	Cono
Metal	Conc. (ppm)	Conc. (%)
Antimony	50	0.005
Arsenic	40	0.004
Barium	80	0.008
Beryllium	10	0.001
Cadmium	20	0.002
Chromium	50	0.005
Cobalt	50	0.005
Copper	250,000	25
Lead	10	0.001
Mercury	5	0.0005
Manganese	100	0.01
Nickel	50	0.005
Selenium	40	0.004
Silver	10	0.001
Thallium	5	0.0005
Vanadium	5	0.0005
Zinc	80	0.008

Moly Concentrate

1		Conc.	Conc.
	Metal	(ppm)	(%)
5	Antimony	50	0.005
; L	Arsenic	40	0.004
S	Barium	80	0.008
	Beryllium	10	0.001
2	Cadmium	20	0.002
	Chromium	50	0.005
5	Cobalt	50	0.005
	Copper	50	0.005
	Lead	10	0.001
,	Mercury	5	0.0005
	Manganese	100	0.01
)	Nickel	50	0.005
ŀ	Selenium	40	0.004
	Silver	10	0.001
5	Thallium	5	0.0005
5	Vanadium	5	0.0005
3	Zinc	80	0.008

13.2.5 Industrial Wind Erosion

13.2.5.1 General¹⁻³

Dust emissions may be generated by wind erosion of open aggregate storage piles and exposed areas within an industrial facility. These sources typically are characterized by nonhomogeneous surfaces impregnated with nonerodible elements (particles larger than approximately 1 centimeter [cm] in diameter). Field testing of coal piles and other exposed materials using a portable wind tunnel has shown that (a) threshold wind speeds exceed 5 meters per second (m/s) (11 miles per hour [mph]) at 15 cm above the surface or 10 m/s (22 mph) at 7 m above the surface, and (b) particulate emission rates tend to decay rapidly (half-life of a few minutes) during an erosion event. In other words, these aggregate material surfaces are characterized by finite availability of erodible material (mass/area) referred to as the erosion potential. Any natural crusting of the surface binds the erodible material, thereby reducing the erosion potential.

13.2.5.2 Emissions And Correction Parameters

If typical values for threshold wind speed at 15 cm are corrected to typical wind sensor height (7 - 10 m), the resulting values exceed the upper extremes of hourly mean wind speeds observed in most areas of the country. In other words, mean atmospheric wind speeds are not sufficient to sustain wind erosion from flat surfaces of the type tested. However, wind gusts may quickly deplete a substantial portion of the erosion potential. Because erosion potential has been found to increase rapidly with increasing wind speed, estimated emissions should be related to the gusts of highest magnitude.

The routinely measured meteorological variable that best reflects the magnitude of wind gusts is the fastest mile. This quantity represents the wind speed corresponding to the whole mile of wind movement that has passed by the 1 mile contact anemometer in the least amount of time. Daily measurements of the fastest mile are presented in the monthly Local Climatological Data (LCD) summaries. The duration of the fastest mile, typically about 2 minutes (for a fastest mile of 30 mph), matches well with the half-life of the erosion process, which ranges between 1 and 4 minutes. It should be noted, however, that peak winds can significantly exceed the daily fastest mile.

The wind speed profile in the surface boundary layer is found to follow a logarithmic distribution:

$$u(z) = \frac{u^*}{0.4} \quad \ln \frac{z}{z_0} \qquad (z > z_0)$$
(1)

where:

u = wind speed, cm/s

- u^{*} = friction velocity, cm/s
- z = height above test surface, cm
- $z_0 =$ roughness height, cm
- 0.4 = von Karman's constant, dimensionless

The friction velocity (u^*) is a measure of wind shear stress on the erodible surface, as determined from the slope of the logarithmic velocity profile. The roughness height (z_0) is a measure of the roughness of the exposed surface as determined from the y intercept of the velocity profile, i. e., the height at which the wind speed is zero. These parameters are illustrated in Figure 13.2.5-1 for a roughness height of 0.1 cm.

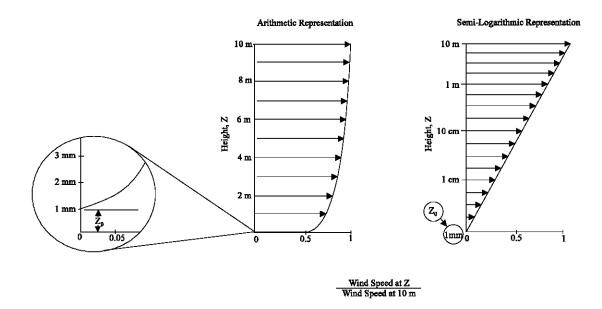


Figure 13.2.5-1. Illustration of logarithmic velocity profile.

Emissions generated by wind erosion are also dependent on the frequency of disturbance of the erodible surface because each time that a surface is disturbed, its erosion potential is restored. A disturbance is defined as an action that results in the exposure of fresh surface material. On a storage pile, this would occur whenever aggregate material is either added to or removed from the old surface. A disturbance of an exposed area may also result from the turning of surface material to a depth exceeding the size of the largest pieces of material present.

13.2.5.3 Predictive Emission Factor Equation⁴

The emission factor for wind-generated particulate emissions from mixtures of erodible and nonerodible surface material subject to disturbance may be expressed in units of grams per square meter (g/m^2) per year as follows:

Emission factor = k
$$\sum_{i=1}^{N} P_i$$
 (2)

where:

- k = particle size multiplier
- N = number of disturbances per year
- P_i = erosion potential corresponding to the observed (or probable) fastest mile of wind for the ith period between disturbances, g/m^2

The particle size multiplier (k) for Equation 2 varies with aerodynamic particle size, as follows:

A	Aerodynamic Particle Size	Multipliers For Equation 2	2
30 µm	<15 µm	<10 µm	<2.5 μm
1.0	0.6	0.5	0.075 ^a

^a Multiplier for < 2.5 um taken from Reference 11.

This distribution of particle size within the under 30 micrometer (μ m) fraction is comparable to the distributions reported for other fugitive dust sources where wind speed is a factor. This is illustrated, for example, in the distributions for batch and continuous drop operations encompassing a number of test aggregate materials (see Section 13.2.4).

In calculating emission factors, each area of an erodible surface that is subject to a different frequency of disturbance should be treated separately. For a surface disturbed daily, N = 365 per year, and for a surface disturbance once every 6 months, N = 2 per year.

The erosion potential function for a dry, exposed surface is:

$$P = 58 (u^* - u_t^*)^2 + 25 (u^* - u_t^*)$$

$$P = 0 \text{ for } u^* \le u_t^*$$
(3)

where:

u^{*} = friction velocity (m/s) u_t = threshold friction velocity (m/s)

Because of the nonlinear form of the erosion potential function, each erosion event must be treated separately.

Equations 2 and 3 apply only to dry, exposed materials with limited erosion potential. The resulting calculation is valid only for a time period as long or longer than the period between disturbances. Calculated emissions represent intermittent events and should not be input directly into dispersion models that assume steady-state emission rates.

For uncrusted surfaces, the threshold friction velocity is best estimated from the dry aggregate structure of the soil. A simple hand sieving test of surface soil can be used to determine the mode of the surface aggregate size distribution by inspection of relative sieve catch amounts, following the procedure described below.

FIELD PROCEDURE FOR DETERMINATION OF THRESHOLD FRICTION VELOCITY (from a 1952 laboratory procedure published by W. S. Chepil):

- 1. Prepare a nest of sieves with the following openings: 4 mm, 2 mm, 1 mm, 0.5 mm, and 0.25 mm. Place a collector pan below the bottom (0.25 mm) sieve.
- 2. Collect a sample representing the surface layer of loose particles (approximately 1 cm in depth, for an encrusted surface), removing any rocks larger than about 1 cm in average physical diameter. The area to be sampled should be not less than 30 cm by 30 cm.
- 3. Pour the sample into the top sieve (4-mm opening), and place a lid on the top.
- 4. Move the covered sieve/pan unit by hand, using a broad circular arm motion in the horizontal plane. Complete 20 circular movements at a speed just necessary to achieve some relative horizontal motion between the sieve and the particles.
- 5. Inspect the relative quantities of catch within each sieve, and determine where the mode in the aggregate size distribution lies, i. e., between the opening size of the sieve with the largest catch and the opening size of the next largest sieve.
- 6. Determine the threshold friction velocity from Table 13.2.5-1.

The results of the sieving can be interpreted using Table 13.2.5-1. Alternatively, the threshold friction velocity for erosion can be determined from the mode of the aggregate size distribution using the graphical relationship described by Gillette.⁵⁻⁶ If the surface material contains nonerodible elements that are too large to include in the sieving (i. e., greater than about 1 cm in diameter), the effect of the elements must be taken into account by increasing the threshold friction velocity.¹⁰

Tyler Sieve No.	Opening (mm)	Midpoint (mm)	u _t * (cm/s)
5	4		
9	2	3	100
16	1	1.5	76
32	0.5	0.75	58
60	0.25	0.375	43

Table 13.2.5-1 (Metric Units). FIELD PROCEDURE FOR DETERMINATION OF THRESHOLD FRICTION VELOCITY

Threshold friction velocities for several surface types have been determined by field measurements with a portable wind tunnel. These values are presented in Table 13.2.5-2.

	Threshold Friction			ind Velocity At n (m/s)
Material	Velocity (m/s)	Roughness Height (cm)	z _o = Act	z _o = 0.5 cm
Overburden ^a	1.02	0.3	21	19
Scoria (roadbed material) ^a	1.33	0.3	27	25
Ground coal (surrounding coal pile) ^a	0.55	0.01	16	10
Uncrusted coal pile ^a	1.12	0.3	23	21
Scraper tracks on coal pile ^{a,b}	0.62	0.06	15	12
Fine coal dust on concrete pad ^c	0.54	0.2	11	10

Table 13.2.5-2 (Metric Units). THRESHOLD FRICTION VELOCITIES

^a Western surface coal mine. Reference 2.

^b Lightly crusted.

^c Eastern power plant. Reference 3.

The fastest mile of wind for the periods between disturbances may be obtained from the monthly LCD summaries for the nearest reporting weather station that is representative of the site in question.⁷ These summaries report actual fastest mile values for each day of a given month. Because the erosion potential is a highly nonlinear function of the fastest mile, mean values of the fastest mile are inappropriate. The anemometer heights of reporting weather stations are found in Reference 8, and should be corrected to a 10-m reference height using Equation 1.

To convert the fastest mile of wind (u^+) from a reference anemometer height of 10 m to the equivalent friction velocity (u^*) , the logarithmic wind speed profile may be used to yield the following equation:

$$u^* = 0.053 u_{10}^+$$
 (4)

where:

u^{*} = friction velocity (m/s)

 u_{10}^{+} = fastest mile of reference anemometer for period between disturbances (m/s)

This assumes a typical roughness height of 0.5 cm for open terrain. Equation 4 is restricted to large relatively flat piles or exposed areas with little penetration into the surface wind layer.

If the pile significantly penetrates the surface wind layer (i. e., with a height-to-base ratio exceeding 0.2), it is necessary to divide the pile area into subareas representing different degrees of exposure to wind. The results of physical modeling show that the frontal face of an elevated pile is exposed to wind speeds of the same order as the approach wind speed at the top of the pile.

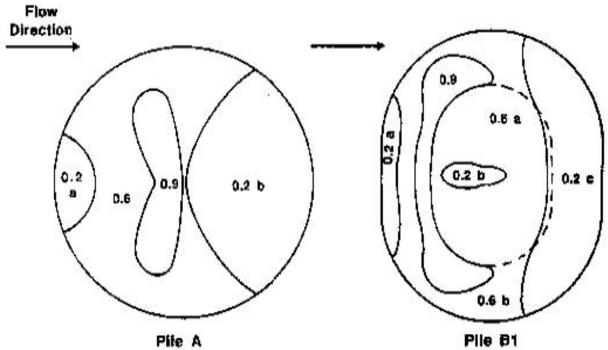
For 2 representative pile shapes (conical and oval with flattop, 37-degree side slope), the ratios of surface wind speed (u_s) to approach wind speed (u_r) have been derived from wind tunnel studies.⁹ The results are shown in Figure 13.2.5-2 corresponding to an actual pile height of 11 m, a reference (upwind) anemometer height of 10 m, and a pile surface roughness height (z_0) of 0.5 cm. The measured surface winds correspond to a height of 25 cm above the surface. The area fraction within each contour pair is specified in Table 13.2.5-3.

	Percent Of Pile Surface Area				
Pile Subarea	Pile A	Pile B1	Pile B2	Pile B3	
0.2a	5	5	3	3	
0.2b	35	2	28	25	
0.2c	NA	29	NA	NA	
0.6a	48	26	29	28	
0.6b	NA	24	22	26	
0.9	12	14	15	14	
1.1	NA	NA	3	4	

Table 13.2.5-3. SUBAREA DISTRIBUTION FOR REGIMES OF u_s/u_r^a

^a NA = not applicable.

The profiles of u_s/u_r in Figure 13.2.5-2 can be used to estimate the surface friction velocity distribution around similarly shaped piles, using the following procedure:


1. Correct the fastest mile value (u^+) for the period of interest from the anemometer height (z) to a reference height of 10 m u_{10}^+ using a variation of Equation 1:

$$u_{10}^{+} = u^{+} \frac{\ln (10/0.005)}{\ln (z/0.005)}$$
(5)

where a typical roughness height of 0.5 cm (0.005 m) has been assumed. If a site-specific roughness height is available, it should be used.

2. Use the appropriate part of Figure 13.2.5-2 based on the pile shape and orientation to the fastest mile of wind, to obtain the corresponding surface wind speed distribution (u_s^+)

$$u_{s}^{+} = \frac{(u_{s})}{u_{r}} \quad u_{10}^{+}$$
 (6)

Pile B1

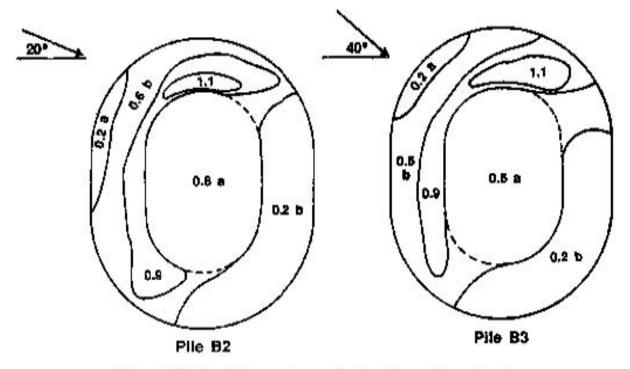


Figure 13.2.5-2. Contours of normalized surface windspeeds, u/u,-

3. For any subarea of the pile surface having a narrow range of surface wind speed, use a variation of Equation 1 to calculate the equivalent friction velocity (u^{*}):

$$\mathbf{u}^{*} = \frac{0.4 \, \mathbf{u}_{s}^{+}}{\frac{25}{\ln 0.5}} = 0.10 \, \mathbf{u}_{s}^{+}$$
(7)

From this point on, the procedure is identical to that used for a flat pile, as described above.

Implementation of the above procedure is carried out in the following steps:

- 1. Determine threshold friction velocity for erodible material of interest (see Table 13.2.5-2 or determine from mode of aggregate size distribution).
- 2. Divide the exposed surface area into subareas of constant frequency of disturbance (N).
- 3. Tabulate fastest mile values (u^+) for each frequency of disturbance and correct them to 10 m (u^+) using Equation 5.5
- 4. Convert fastest mile values (u₁₀) to equivalent friction velocities (u^{*}), taking into account (a) the uniform wind exposure of nonelevated surfaces, using Equation 4, or (b) the nonuniform wind exposure of elevated surfaces (piles), using Equations 6 and 7.
- 5. For elevated surfaces (piles), subdivide areas of constant N into subareas of constant u^* (i. e., within the isopleth values of u_s/u_r in Figure 13.2.5-2 and Table 13.2.5-3) and determine the size of each subarea.
- 6. Treating each subarea (of constant N and u^{*}) as a separate source, calculate the erosion potential (P_i) for each period between disturbances using Equation 3 and the emission factor using Equation 2.
- 7. Multiply the resulting emission factor for each subarea by the size of the subarea, and add the emission contributions of all subareas. Note that the highest 24-hour (hr) emissions would be expected to occur on the windiest day of the year. Maximum emissions are calculated assuming a single event with the highest fastest mile value for the annual period.

The recommended emission factor equation presented above assumes that all of the erosion potential corresponding to the fastest mile of wind is lost during the period between disturbances. Because the fastest mile event typically lasts only about 2 minutes, which corresponds roughly to the half-life for the decay of actual erosion potential, it could be argued that the emission factor overestimates particulate emissions. However, there are other aspects of the wind erosion process that offset this apparent conservatism:

- 1. The fastest mile event contains peak winds that substantially exceed the mean value for the event.
- 2. Whenever the fastest mile event occurs, there are usually a number of periods of

slightly lower mean wind speed that contain peak gusts of the same order as the fastest mile wind speed.

Of greater concern is the likelihood of overprediction of wind erosion emissions in the case of surfaces disturbed infrequently in comparison to the rate of crust formation.

13.2.5.4 Example 1: Calculation for wind erosion emissions from conically shaped coal pile

A coal burning facility maintains a conically shaped surge pile 11 m in height and 29.2 m in base diameter, containing about 2000 megagrams (Mg) of coal, with a bulk density of 800 kilograms per cubic meter (kg/m³) (50 pounds per cubic feet [lb/ft³]). The total exposed surface area of the pile is calculated as follows:

Coal is added to the pile by means of a fixed stacker and reclaimed by front-end loaders operating

$$S = \pi r \sqrt{r^2 + h^2}$$

= 3.14(14.6) $\sqrt{(14.6)^2 + (11.0)^2}$
= 838 m²

at the base of the pile on the downwind side. In addition, every 3 days 250 Mg (12.5 percent of the stored capacity of coal) is added back to the pile by a topping off operation, thereby restoring the full capacity of the pile. It is assumed that (a) the reclaiming operation disturbs only a limited portion of the surface area where the daily activity is occurring, such that the remainder of the pile surface remains intact, and (b) the topping off operation creates a fresh surface on the entire pile while restoring its original shape in the area depleted by daily reclaiming activity.

Because of the high frequency of disturbance of the pile, a large number of calculations must be made to determine each contribution to the total annual wind erosion emissions. This illustration will use a single month as an example.


<u>Step 1</u>: In the absence of field data for estimating the threshold friction velocity, a value of 1.12 m/s is obtained from Table 13.2.5-2.

<u>Step 2</u>: Except for a small area near the base of the pile (see Figure 13.2.5-3), the entire pile surface is disturbed every 3 days, corresponding to a value of N = 120 per year. It will be shown that the contribution of the area where daily activity occurs is negligible so that it does not need to be treated separately in the calculations.

Step 3: The calculation procedure involves determination of the fastest mile for each period of disturbance. Figure 13.2.5-4 shows a representative set of values (for a 1-month period) that are assumed to be applicable to the geographic area of the pile location. The values have been separated into 3-day periods, and the highest value in each period is indicated. In this example, the anemometer height is 7 m, so that a height correction to 10 m is needed for the fastest mile values. From Equation 5,

$$u_{10}^{+} = u_{7}^{+} \left(\frac{\ln (10/0.005)}{\ln (7/0.005)} \right)$$
$$u_{10}^{+} = 1.05 \ u_{7}^{+}$$

Step 4: The next step is to convert the fastest mile value for each 3-day period into

* A portion of G_2 is disturbed daily by reclaiming activities.

		Pile	Surface
Area ID	us.	X	Area (m ²)
A	0.9	12	101
В	0.6	48	402
c ₁ + c ₂	0.2	40	335
			Total 838

Figure 13.2.5-3. Example 1: Pile surface areas within each wind speed regime.

-		thly Sum	gical E nary	ala		
		Wind				
				test ile	Ì	
C Resultant Dir.	Resultant F Speed M.P.H.	Average Speed	5 Speed M.P.H.	1 Direction		22 Date
30 01	5.3 10.5	6.9 10.6	9 (14)	36 01		1 2
10	2.4	6.0	10	02		2
13	2.4 11.0	11.4	16	13		3 4
12	11.3	11.9	15	11		5
20	11.1	19.0	Ő	30		6
29	19.6	19.8	(30)	30		7
29	10.9	11.2	17	30		8
22	3.0	8.1	15	13		9
14	14.6	15.1	23	12	1	0
29	22.3	23.3	31	29		1
17	7.9	13.5	23	17		2
21	7.7	15.5	18	18	1	3
10	4.5	9.6	22	13	1	4
10	6.7	8.8	13	11	1	5
01	13.7	13.8	21	36	1	6
33	11.2	11.5	15	34	1	7
27	4.3	5.8	12	31		8
32	9.3	10.2	14	35		9
24	7.5	7.8	16	24		20
22	10.3	10.6	16	20		21
32	17.1	17.3	25)	32		22
29	2.4	8.5	14	13		23
07	5.9	8.8	15	02		24
34	11.3	11.7		32		25
31	12.1	12.2	16	32		26
30	8.3	8.5	16	26		27
30	8.2	8.3	(13)	32		28
33	5.0	6.6	10	32		29
34	3.1	5.2	9	31 25		30
29	4.9	5.5 For the l	8 Monthi	23		31
30	3.3	For the I 11.1	31	29		
				29 x 11	\vdash	

Figure 13.2.5-4. Example daily fastest miles wind for periods of interest.

equivalent friction velocities for each surface wind regime (i. e., u_s/u_r ratio) of the pile, using Equations 6 and 7. Figure 13.2.5-3 shows the surface wind speed pattern (expressed as a fraction of the approach wind speed at a height of 10 m). The surface areas lying within each wind speed regime are tabulated below the figure.

The calculated friction velocities are presented in Table 13.2.5-4. As indicated, only 3 of the periods contain a friction velocity which exceeds the threshold value of 1.12 m/s for an uncrusted coal pile. These 3 values all occur within the $u_s/u_r = 0.9$ regime of the pile surface.

	u ⁺ ₇		u	u^+_{10} $u^* = 0.1u^+_{10}$		* = 0.1u ⁺ (m/ s	′s)
3-Day Period	mph	m/s	mph	m/s	u _s /u _r : 0.2	u _s /u _r : 0.6	u _s /u _r : 0.9
1	14	6.3	15	6.6	0.13	0.40	0.59
2	29	13.0	31	13.7	0.27	0.82	1.23
3	30	13.4	32	14.1	0.28	0.84	1 .2 7
4	31	1 3.9	33	1 4.6	0.29	0.88	1 .3 1
5	22	9.8	23	10.3	0.21	0.62	0.93
6	21	9.4	22	9.9	0.20	0.59	0.89
7	16	7.2	17	7.6	0.15	0.46	0.68
8	25	11.2	26	11.8	0.24	0.71	1 .06
9	17	7.6	18	8.0	0.16	0.48	0.72
10	13	5.8	14	6.1	0.12	0.37	0.55

Table 13.2.5-4 (Metric And English Units).EXAMPLE 1:CALCULATION OF FRICTION VELOCITIES

<u>Step 5</u>: This step is not necessary because there is only 1 frequency of disturbance used in the calculations. It is clear that the small area of daily disturbance (which lies entirely within the $u_s/u_r = 0.2$ regime) is never subject to wind speeds exceeding the threshold value.

<u>Steps 6 and 7</u>: The final set of calculations (shown in Table 13.2.5-5) involves the tabulation and summation of emissions for each disturbance period and for the affected subarea. The erosion potential (P) is calculated from Equation 3.

For example, the calculation for the second 3-day period is:

$$P = 58(u^* - u_t^*)^2 + 25(u^* - u_t^*)$$
$$P_2 = 58(1.23 - 1.12)^2 + 25(1.23 - 1.12)$$
$$= 0.70 + 2.75 = 3.45 \text{ g/m}^2$$

EMISSION FACTORS

3-Day Period	u [*] (m/s)	u [*] - u _t * (m/s)	P (g/m ²)	D	Pile Surface Area (m ²)	kPA (g)
2	1.23	0.11	3.45	Α	101	170
3	1.27	0.15	5.06	Α	101	260
4	1 .3 1	0.19	6.84	A	101	350
TOTAL						780

^a Where $u_t^* = 1.12$ m/s for uncrusted coal and k = 0.5 for PM-10.

The emissions of particulate matter greater than 10 μ m (PM-10) generated by each event are found as the product of the PM-10 multiplier (k = 0.5), the erosion potential (P), and the affected area of the pile (A).

As shown in Table 13.2.5-5, the results of these calculations indicate a monthly PM-10 emission total of 780 g.

13.2.5.5 Example 2: Calculation for wind erosion from flat area covered with coal dust

A flat circular area 29.2 m in diameter is covered with coal dust left over from the total reclaiming of a conical coal pile described in the example above. The total exposed surface area is calculated as follows:

s = $\frac{\pi}{4}$ d² = 0.785 (29.2)² = 670 m²

This area will remain exposed for a period of 1 month when a new pile will be formed.

<u>Step 1</u>: In the absence of field data for estimating the threshold friction velocity, a value of 0.54 m/s is obtained from Table 13.2.5-2.

Step 2: The entire surface area is exposed for a period of 1 month after removal of a pile and N = 1/yr.

<u>Step 3</u>: From Figure 13.2.5-4, the highest value of fastest mile for the 30-day period (31 mph) occurs on the 11th day of the period. In this example, the reference anemometer height is 7 m, so that a height correction is needed for the fastest mile value. From Step 3 of the previous example, $u_{10}^+ = 1.05 u^+$, so that $u^+ = 33$ mph.

<u>Step 4</u>: Equation 4 is used to convert the fastest mile value of 14.6 m/s (33 mph) to an equivalent friction velocity of 0.77 m/s. This value exceeds the threshold friction velocity from Step 1 so that erosion does occur.

<u>Step 5</u>: This step is not necessary, because there is only 1 frequency of disturbance for the entire source area.

<u>Steps 6 and 7</u>: The PM-10 emissions generated by the erosion event are calculated as the product of the PM-10 multiplier (k = 0.5), the erosion potential (P) and the source area (A). The erosion potential is calculated from Equation 3 as follows:

$$P = 58(u^* - u_t^*)^2 + 25(u^* - u_t^*)$$

$$P = 58(0.77 - 0.54)^2 + 25(0.77 - 0.54)$$

$$= 3.07 + 5.75$$

$$= 8.82 \text{ g/m}^2$$

Thus the PM-10 emissions for the 1-month period are found to be:

$$E = (0.5)(8.82 \text{ g/m}^2)(670 \text{ m}^2)$$
$$= 3.0 \text{ kg}$$

References For Section 13.2.5

- 1. C. Cowherd, Jr., "A New Approach To Estimating Wind Generated Emissions From Coal Storage Piles", Presented at the APCA Specialty Conference on Fugitive Dust Issues in the Coal Use Cycle, Pittsburgh, PA, April 1983.
- K. Axtell and C. Cowherd, Jr., Improved Emission Factors For Fugitive Dust From Surface Coal Mining Sources, EPA-600/7-84-048, U. S. Environmental Protection Agency, Cincinnati, OH, March 1984.
- 3. G. E Muleski, "Coal Yard Wind Erosion Measurement", Midwest Research Institute, Kansas City, MO, March 1985.
- 4. Update Of Fugitive Dust Emissions Factors In AP-42 Section 11.2 Wind Erosion, MRI No. 8985-K, Midwest Research Institute, Kansas City, MO, 1988.
- 5. W. S. Chepil, "Improved Rotary Sieve For Measuring State And Stability Of Dry Soil Structure", Soil Science Society Of America Proceedings, 16:113-117, 1952.
- 6. D. A. Gillette, *et al.*, "Threshold Velocities For Input Of Soil Particles Into The Air By Desert Soils", *Journal Of Geophysical Research*, 85(C10):5621-5630.
- 7. Local Climatological Data, National Climatic Center, Asheville, NC.
- 8. M. J. Changery, *National Wind Data Index Final Report*, HCO/T1041-01 UC-60, National Climatic Center, Asheville, NC, December 1978.
- B. J. B. Stunder and S. P. S. Arya, "Windbreak Effectiveness For Storage Pile Fugitive Dust Control: A Wind Tunnel Study", *Journal Of The Air Pollution Control Association*, 38:135-143, 1988.
- 10. C. Cowherd, Jr., et al., Control Of Open Fugitive Dust Sources, EPA 450/3-88-008, U. S. Environmental Protection Agency, Research Triangle Park, NC, September 1988.

11. C. Cowherd, Background Document for Revisions to Fine Fraction Ratios Used for AP-42 Fugitive Dust Emission Factors. Prepared by Midwest Research Institute for Western Governors Association, Western Regional Air Partnership, Denver, CO, February 1, 2006.

Chino TRI data received from Clyde Durham 1/28/11 email

Average metal content of waste rock, ore for leach, ore for milling, PLS, wastewater etc.

Waste Rock				
Metal	Conc. (ppm)	Conc. (%)		
Antimony	3.2	0.0003		
Arsenic	3.8	0.0004		
Barium	111.0	0.0111		
Beryllium	NA	NA		
Cadmium	1.0	0.0001		
Chromium	56.9	0.0057		
Cobalt	14.5	0.0015		
Copper	533.3	0.0533		
Lead	9.0	0.0009		
Mercury	NA	NA		
Manganese	440.0	0.0440		
Nickel	11.0	0.0011		
Selenium	NA	NA		
Silver	4.0	0.0004		
Thallium	NA	NA		
Vanadium	37.0	0.0037		
Zinc	79.0	0.0079		

Ore for Mill				
Metal	Conc. (ppm)	Conc. (%)		
Antimony	6.7	0.0007		
Arsenic	3.9	0.0004		
Barium	19	0.0019		
Beryllium	NA	NA		
Cadmium	2.2	0.0002		
Chromium	25.0	0.0025		
Cobalt	20	0.0020		
Copper	5900	0.5900		
Lead	27	0.0027		
Mercury	NA	NA		
Manganese	662	0.0662		
Nickel	12	0.0012		
Selenium	NA	NA		
Silver	0.8	0.0001		
Thallium	NA	NA		
Vanadium	43	0.0043		
Zinc	110	0.0110		

Ore for Lea	Ore for Leach				
<u>Metal</u>	Conc. (ppm)	Conc. (%)			
Antimony	4.8	0.0005			
Arsenic	3.7	0.0004			
Barium	68	0.0068			
Beryllium	NA	NA			
Cadmium	1.3	0.0001			
Chromium	91.0	0.0091			
Cobalt	39	0.0039			
Copper	2918	0.2918			
Lead	15.7	0.0016			
Mercury	NA	NA			
Manganese	493	0.0493			
Nickel	21	0.0021			
Selenium	NA	NA			
Silver	0.8	0.0001			
Thallium	NA	NA			
Vanadium	27	0.0027			
Zinc	94	0.0094			

Copper Concentrate

Metal	Conc. (ppm)	Conc. (%)			
Antimony	50	0.005			
Arsenic	40	0.004			
Barium	80	0.008			
Beryllium	10	0.001			
Cadmium	20	0.002			
Chromium	50	0.005			
Cobalt	50	0.005			
Copper	250,000	25			
Lead	10	0.001			
Mercury	5	0.0005			
Manganese	100	0.01			
Nickel	50	0.005			
Selenium	40	0.004			
Silver	10	0.001			
Thallium	5	0.0005			
Vanadium	5	0.0005			
Zinc	80	0.008			

Moly Concentrate

1		Conc.	Conc.
	Metal	(ppm)	(%)
5	Antimony	50	0.005
5	Arsenic	40	0.004
8	Barium	80	0.008
	Beryllium	10	0.001
	Cadmium	20	0.002
5	Chromium	50	0.005
5	Cobalt	50	0.005
,	Copper	50	0.005
	Lead	10	0.001
,	Mercury	5	0.0005
	Manganese	100	0.01
)	Nickel	50	0.005
ŀ	Selenium	40	0.004
	Silver	10	0.001
5	Thallium	5	0.0005
5	Vanadium	5	0.0005
8	Zinc	80	0.008

Table 11.19.2-2 (English Units). EMISSION FACTORS FOR CRUSHED STONE PROCESSING OPERATIONS (lb/Ton)^a

Source ^b	Total	EMISSION	Total	EMISSION	Total	EMISSION
	Particulate	FACTOR	PM-10	FACTOR	PM-2.5	FACTOR
	Matter ^{r,s}	RATING		RATING		RATING
Primary Crushing	ND		ND^{n}		ND^{n}	
(SCC 3-05-020-01)						
Primary Crushing (controlled)	ND		ND^{n}		ND^{n}	
(SCC 3-05-020-01)						
Secondary Crushing	ND		ND^{n}		ND^{n}	
(SCC 3-05-020-02)						
Secondary Crushing (controlled) (SCC 3-05-020-02)	ND		ND^{n}		ND^{n}	
Tertiary Crushing	0.0054 ^d	Е	0.0024°	С	ND ⁿ	
(SCC 3-050030-03)	0.0001	2	0.0021	e	T(D)	
Tertiary Crushing (controlled)	0.0012 ^d	Е	0.00054 ^p	С	0.00010 ^q	Е
(SCC 3-05-020-03)				-		
Fines Crushing	0.0390 ^e	Е	0.0150 ^e	Е	ND	
(SCC 3-05-020-05)						
Fines Crushing (controlled)	$0.0030^{\rm f}$	Е	$0.0012^{\rm f}$	Е	0.000070^{q}	Е
(SCC 3-05-020-05)						
Screening	0.025 ^c	Е	0.0087^{l}	С	ND	
(SCC 3-05-020-02, 03)						
Screening (controlled)	0.0022 ^d	Е	$0.00074^{\rm m}$	С	0.000050 ^q	E
(SCC 3-05-020-02, 03)						
Fines Screening	0.30 ^g	E	0.072 ^g	E	ND	
(SCC 3-05-020-21)						
Fines Screening (controlled)	0.0036 ^g	Е	0.0022 ^g	E	ND	
(SCC 3-05-020-21)						
Conveyor Transfer Point	0.0030 ^h	Е	0.00110 ^h	D	ND	
(SCC 3-05-020-06)			-		5	
Conveyor Transfer Point (controlled)	0.00014 ⁱ	Е	4.6 x 10 ⁻⁵ⁱ	D	1.3 x 10 ⁻⁵	E
(SCC 3-05-020-06)			e:			
Wet Drilling - Unfragmented Stone (SCC 3-05-020-10)	ND		8.0 x 10 ^{-5j}	E	ND	
Truck Unloading -Fragmented Stone	ND		1.6 x 10 ^{-5j}	Е	ND	
(SCC 3-05-020-31)						
Truck Loading - Conveyor, crushed	ND		0.00010 ^k	Е	ND	
stone (SCC 3-05-020-32)						

a. Emission factors represent uncontrolled emissions unless noted. Emission factors in lb/Ton of material of throughput. SCC = Source Classification Code. ND = No data.

b. Controlled sources (with wet suppression) are those that are part of the processing plant that employs current wet suppression technology similar to the study group. The moisture content of the study group without wet suppression systems operating (uncontrolled) ranged from 0.21 to 1.3 percent, and the same facilities operating wet suppression systems (controlled) ranged from 0.55 to 2.88 percent. Due to carry over of the small amount of moisture required, it has been shown that each source, with the exception of crushers, does not need to employ direct water sprays. Although the moisture content was the only variable measured, other process features may have as much influence on emissions from a given source. Visual observations from each source under normal operating conditions are probably the best indicator of which emission factor is most appropriate. Plants that employ substandard control measures as indicated by visual observations should use the uncontrolled factor with an appropriate control efficiency that best reflects the effectiveness of the controls employed.

c. References 1, 3, 7, and 8

d. References 3, 7, and 8

Background Document for Revisions to Fine Fraction Ratios Used for AP-42 Fugitive Dust Emission Factors

Prepared by

Midwest Research Institute (Chatten Cowherd, MRI Project Leader)

For Western Governors' Association Western Regional Air Partnership (WRAP) 1515 Cleveland Place, Suite 200 Denver, Colorado 80202

Attn: Richard Halvey

MRI Project No. 110397

February 1, 2006 Finalized November 1, 2006

Responses to Comments Received on Proposed AP-42 Revisions

Commenter and Date	Source Category	Comment	Response
John Hayden, National Stone, Sand and Gravel Association (NSSGA); June 14, 2006	Unpaved Roads	NSSGA- sponsored tests (report dated Oct. 15, 2004) at California aggregate producing plants support the proposed fine fractions.	This comment reference a test report prepared by Air Control Techniques for the National Stone, Sand & Gravel Association, dated October 4, 2004. The report gives the results of tests to determine unpaved road emissions factors for controlled (wet suppression only) haul roads at two aggregate processing plants. A variation of the plume profiling method using TEOM continuous monitors with PM-2.5 and PM-10 inlets was employed. Tests with road surface moisture content below 1.5 percent were considered to be uncontrolled.
			Based on the example PM-10 concentration profiles presented in the report, the maximum roadside PM-10 dust concentrations in the subject study were in the range of 300 micrograms per cubic meter. This is an order of magnitude lower than the concentrations typically found in other unpaved road emission factor studies.
			For the range of plume concentrations measured in the NSSGA-sponsored test program, an average fine fraction (PM-2.5/PM- 10 ratio) of 0.15 was reported. This fine fraction value is consistent with the results of the MRI dust tunnel testing in the same concentration range. At plume concentrations more typical of unpaved road emission factor studies, the proposed value of 0.1 is applicable.
			There is no need for any revisions to the proposed changes to AP-42 as a result of the cited study.
Hao Quinn, Sacramento Metro AQMD; July 20, 2006	Paved vs. unpaved roads	For a particular industrial facility, the PM-10 emission factor equations show higher emissions from paved roads rather than unpaved roads.	<i>This comment does not relate to the</i> <i>proposed changes to the fine particle</i> <i>fractions.</i> It is possible that the emissions from a heavily loaded paved road can exceed emissions from an unpaved road with a low-to-moderate silt content at the same industrial facility, even if traveled by the same vehicles. This is the case in the cited example, for which the paved road silt loading is 70 g/m ² .

Commenter and Date	Source Category	Comment	Response
Brian Leahy, Horizon Environmental; July 26, 2006	Unpaved roads	The k value for PM-2.5 does not appear to have changed in the proposed revision.	The latest (2003) approved AP-42 k values for PM-2.5 in Table 13.2.2-2 are 0.23 and 0.27 Ib/VMT for industrial and public roads, respectively. The proposed values are 0.15 and 0.18 lb/VMT, which are equivalent to 10 percent of the respective k values for PM-10. There is no need for revisions to the proposed
Shengxin Jin, NYSDOT Environmental Analysis Bureau; undated	Paved roads	The conversion of proposed k values from g/VMT to g/VKT does not appear correct	changes to AP-42 as a result of this comment. Regarding the revised k values for PM-2.5, when the k value of 0.66 g/VKT is multiplied by 1.6 km/mi, it becomes 1.06 g/VMT, which rounds to 1.1 g/VKT given in the proposed revision. Because the k values are given only to two significant figures, the converted values can vary by up to five digits in the second figure, depending on which direction the units conversion is made. For example, when k value of 1.1 g/VKT is divided by 1.6 km/mi, the resulting value rounds to 0.69 g/VKT, but if 1.06 g/VKT is divided by 1.6 km/mi, the resulting value rounds to 0.66 g/VKT.
		The stated silt loading impact of antiskid abrasive does not appear correct	This comment does not relate to the proposed changes to the fine particle fractions. The commenter is correct in that 500 lb/mi of antiskid abrasive with a 1% silt content produces a silt loading in the range of 0.5 g/m ² rather than 2 g/m ² . EPA may elect to make a separate modification to correct this discrepancy at a later time.

Proposed Revisions to Fine Fraction Ratios Used for AP-42 Fugitive Dust Emission Factors

ABSTRACT

A number of fugitive dust studies have indicated that the $PM_{2.5} / PM_{10}$ ratios measured by US EPA federal reference method (FRM) samplers are significantly lower than predicted by AP-42 emission factors. As a result, the $PM_{2.5}$ emission estimates are biased high. The controlled exposure study described in this report was conducted to compare fine fraction ratios derived from FRM samplers to those derived from the cyclone/impactor method that had been used to develop AP-42 emission factors for fugitive dust sources. The study was conducted by the Midwest Research Institute using the same cyclone/impactor samplers and operating method that generated the original AP-42 emission factors and associated $PM_{2.5} / PM_{10}$ ratios. This study was sponsored by the Western Regional Air Partnership.

The study found that concentration measurements used to develop $PM_{2.5}$ emission factors in AP-42 were biased high by a factor of two, as compared to $PM_{2.5}$ measurements from FRM samplers. This factor-of-two bias helps to explain why researchers have often seen a discrepancy in the proportion of fugitive dust found in $PM_{2.5}$ emission inventories and modeled ambient air impacts, as compared to the proportion on ambient filter samples. This study also shows that the $PM_{2.5}$ / PM_{10} ratios for fugitive dust should be in the range of 0.1 to 0.15. Currently, the ratios in AP-42 range from 0.15 to 0.4 for most fugitive dust sources.

It is recommended that the results of this study be used to revise the AP-42 PM_{2.5} emission factors for the following four fugitive dust source categories: paved roads, unpaved roads (public and industrial), aggregate handling and storage piles, and industrial wind erosion (AP-42 Sections 13.2.1, 13.2.2, 13.2.4, & 13.2.5, respectively). Emission estimates for other fugitive dust producing activities, such as construction and demolition will also be affected since they are based on these four source categories.

INTRODUCTION

The Dust Emissions Joint Forum (DEJF) of the Western Regional Air Partnership (WRAP) is engaged in gathering and improving data pertaining to the PM_{2.5} and PM₁₀ components of fugitive dust emissions. Most of the PM_{2.5} emission factors in EPA's AP-42 guidance for fugitive dust sources (USEPA, 2005) were determined by using high-volume samplers, each fitted with a cyclone precollector and cascade impactor. Typically, AP-42 recommends that PM_{2.5} emission factors for dust sources be calculated

by using PM_{10} emission factor equations along with $PM_{2.5}/PM_{10}$ ratios that have been published by EPA in AP-42.

Beginning with the introduction of the cyclone/impactor method, it was realized particle bounce from the cascade impactor stages to the backup filter may have resulted in inflated PM_{2.5} concentrations, even though steps were taken to minimize particle bounce. This led to an EPA-funded field study in the late 1990s (MRI, 1997) to gather comparative particle sizing data in dust plumes downwind of paved and unpaved roads around the country. The test results indicated that dichotomous samplers produced consistently lower PM_{2.5}/PM₁₀ ratios than generated with the cyclone/impactor system. Dichotomous samplers are federal reference method (FRM) samplers that are used to measure compliance with federal air quality standards for particulate matter measured as PM_{2.5} and PM₁₀. Pending the eventual collection of additional data, the decision was made that the true ratios would best be represented by an averaging of the cyclone/impactor data with the dichotomous sampler data.

Based on the results of the EPA-funded field program, modifications were made to the appropriate sections of AP-42 for dust emissions from paved and unpaved roads. The $PM_{2.5}/PM_{10}$ ratio for emissions from unpaved roads (dominated by fugitive dust) was reduced from 0.26 to 0.15, and the $PM_{2.5}/PM_{10}$ ratio for the dust component of emissions from paved roads was reduced from 0.46 to 0.25. In the 2003 revision to AP-42, the non-dust component of paved road emissions was assigned a $PM_{2.5}/PM_{10}$ ratio of 0.76, accounting for vehicle exhaust and brake and tire wear.

Subsequent to the modifications of the $PM_{2.5}/PM_{10}$ ratios in AP-42, additional field test results (mostly from ambient air samplers) indicated that further reductions to the ratios were warranted (Pace, 2005). For example, ambient air monitoring data suggested that the fine fraction dust mass is of the order of 10 percent of the PM_{10} mass, based on chemical fingerprinting of the collected fine and coarse fractions of PM_{10} impacted by dust sources. It is important to note, however, that particle size data applicable to fugitive dust emission factors should be gathered either from the emissions plume or near the point where emissions are generated (within 10 m of the downwind edge of the source).

METHODOLOGY

This led DEJF to fund Midwest Research Institute (MRI) in conducting a controlled study of particle sizing in dust plumes. The objective of the study was to resolve the fine particle bias in the cyclone/impactor system, so that reliable $PM_{2.5}/PM_{10}$ ratios could be developed for as many dust source categories as possible. For this purpose, an air exposure chamber connected to a recirculating supply air stream was used in conjunction with a fluidization system for generating well-mixed dust plumes from a variety of western soils and road surface materials. R&P Model 2000 Partisol samplers were selected as the ground-truthing FRM samplers for PM_{10} and $PM_{2.5}$.

This study was performed in two phases (see below), as described in the attached test report (Cowherd and Donaldson, 2005). The test report serves as the background document to support the recommended revisions to AP-42, and it contains all the quality assurance procedures and results of the testing.

Phase I – Compare PM_{2.5} Measured by Cyclone/Impactor to FRM Sampler

In the first testing phase of the project, $PM_{2.5}$ measurements using the high-volume cascade impactors were compared to simultaneous measurements obtained with EPA FRM samplers for $PM_{2.5}$. As stated above, these tests were conducted in a flow-through wind tunnel and exposure chamber, where the PM_{10} concentration level and uniformity were controlled. The results of the tests provided the basis for quantifying more effectively any sampling bias associated with the cascade impactor system.

Phase 2 – Compare PM_{2.5} to PM₁₀ Ratios for Different Geologic Soils

With the same test setup, a second phase of testing was performed with reference method samplers, for the purpose of measuring $PM_{2.5}$ to PM_{10} ratios for fugitive dust from different geologic sources in the West. This testing provided needed information on the magnitude and variability of this ratio, especially for source materials that are recognized as problematic with regard to application of mitigative dust control measures.

RESULTS

The tests that were performed are listed in Tables 6 and 7 of the attached report. The Phase I tests were performed in March and April of 2005. The Phase II tests were performed in June through August of 2005. A total of 100 individual tests were performed, including 17 blank runs (for quality assurance purposes). The raw and intermediate test data are summarized in the tables presented in Appendix A of the attached report.

Based on the 100 wind tunnel tests that were performed in the wind tunnel study, the findings support the following conclusions:

- 1. $PM_{2.5}$ concentrations measured by the high-volume cyclone/impactor system used to develop AP-42 emission factors for fugitive dust sources have a positive bias by a factor of 2, as compared to the $PM_{2.5}$ concentration measurements from reference-method samplers (see Figure 1). The geometric mean bias is 2.01 and the arithmetic mean bias is 2.15.
- 2. The PM_{2.5} bias associated with the cyclone/impactor system, as measured under controlled laboratory conditions with dust concentrations held at nearly steady values, closely replicates the bias observed in the prior EPA-funded field study at distributed geographic locations across the country.

- 3. The PM_{2.5}/PM₁₀ ratios measured by the FRM samplers in the current study for a variety of western soils show a decrease in magnitude with increasing PM₁₀ concentration (see Figure 2). Soils with a nominally spherical shape are observed to have somewhat lower ratios (at given PM₁₀ concentrations) than soils with angular shape. A very similar dependence of PM_{2.5}/PM₁₀ ratio on PM₁₀ concentration was also observed in the prior field study that used dichotomous samplers as FRM devices.
- 4. The test data from the current study support a $PM_{2.5}/PM_{10}$ ratio in the range of 0.1 to 0.15 for typical uncontrolled fugitive dust sources (see Figure 2). The $PM_{2.5}/PM_{10}$ ratio of 0.1 is also supported by numerous other studies including the prior EPA-funded field study that used dichotomous samplers as reference devices. It is possible that a ratio as low as 0.05 (as was found in the prior field tests of unpaved road emission factors) might be appropriate for very dusty sources, but this would require extrapolation of the current test data from the wind tunnel study.

DISCUSSION

Peer Review

The test report on the wind tunnel study (Cowherd and Donaldson, 2005) was issued first in draft form for external peer review. Three peer reviewers (having no prior contact with the study) were selected by the DEJF: Patrick Gaffney (California Air Resources Board), John Kinsey (U.S. Environmental Protection Agency), and Mel Zeldin (Private Consultant). In addition, peer review comments were provided by Duane Ono (Great Basin UAPCD) and Richard Countess (Countess Environmental) who helped to develop this study. After the review comments on the draft test report were received, comment/ response logs were prepared by MRI, listing each comment and the response to each comment. The next step was to modify the draft test report in accordance with the responses to the review comments. The final test report was issued on October 12, 2005.

Recommended Particle Size Ratios

Based on the results of the WRAP/DEJF study (see attached test report) and the prior EPA-funded field study, it is proposed that new $PM_{2.5}/PM_{10}$ ratios be adopted for several categories of (uncontrolled) fugitive dust sources, as addressed in AP-42. The proposed ratios (given to the nearest 0.05) are summarized in Table 1. It should be noted that these fine fraction ratios and the emission factors could change in the future if field studies show other differences than those identified through this study.

The proposed $PM_{2.5}/PM_{10}$ ratios in Table 1, apply to dry surface materials, having moisture contents in the range of 1% or less. Such materials when exposed to energetic disturbances produce dust plumes with core PM_{10} concentrations in the range of 5,000 micrograms per cubic meter, near the point of emissions generation. The wind tunnel test data show that dust plumes with lower core concentrations have higher $PM_{2.5}/PM_{10}$

ratios. This might occur, for example, at higher soil (or other surface material) moisture contents. However, the emissions from such sources typically are substantially lower with correspondingly less impact on the ambient environment.

Fugitive dust source category	AP-42	PM _{2.5} /	PM _{2.5} /PM ₁₀ Ratio	
	section	Current	Proposed	
Paved Roads	13.2.1	0.25	0.15	
Unpaved Roads (Public & Industrial)	13.2.2	0.15	0.1	
Construction & Demolition	-	0.208 ¹	0.1	
Aggregate Handling & Storage Piles	13.2.4	0.314	0.1 (traffic) 0.15 (transfer)	
Industrial Wind Erosion	13.2.5	0.40	0.15	
Agricultural Tilling	-	0.222 ²	0.2 (no change)	
Open Area Wind Erosion	_	-	0.15	

 Table 1. Proposed Particle Size Ratios for AP-42

Notes:

- ¹ AP-42 Section 13.2.3 suggests using emission factors for individual dust producing activities, e.g., materials handling and unpaved roads. The WRAP Fugitive Dust Handbook recommends using a fine fraction ratio of 0.208 from a report prepared for the US EPA, Estimating Particulate Matter Emissions from Construction Operations (MRI, 1999).
- ² Agricultural tilling was dropped from the 5th edition of AP-42. The WRAP Fugitive Dust Handbook recommends using a fine fraction ratio of 0.222 from Section 7.4 of the California Air Resources Board's Emission Inventory Methodology (CARB, 2003).

The justification for each proposed ratio in Table 1 is provided by source category in the sections below. In each case, reference is made to test reports that contain supporting data.

Paved Roads

For the dust component of particulate emissions from paved roads, a $PM_{2.5}/PM_{10}$ ratio of 0.15 is recommended. The proposed ratio is based on the factor-of-two bias in the cyclone/impactor data for the wind tunnel study, which tested western soils and road surface materials. As shown in Table 1, the current AP-42 ratio is 0.25. It should be recalled that the nondust component of paved road particulate emissions has been assigned a much higher ratio of 0.76, based on inputs from the EPA's MOBILE 6 model.

Unpaved Roads

For the dust component of particulate emissions from unpaved roads, which dominates the total particulate emissions from this source category, a $PM_{2.5}/PM_{10}$ ratio of 0.1 is recommended. The proposed ratio is justified from the test results of the wind tunnel study for a variety of western surface materials. It is also consistent with the factor-of-two bias in the cyclone/impactor data from the wind tunnel study and with the results of the prior field study that used dichotomous samplers as FRM devices (MRI, 1997).

Construction and Demolition

The dust component of particulate emissions from construction and demolition dominate the total particulate emissions from this source category. A $PM_{2.5}/PM_{10}$ ratio of 0.1 is recommended for dust emissions from construction and demolition. The proposed ratio is justified by the fact that the dominant dust source associated with construction and demolition projects is emissions from vehicle travel over unpaved surfaces. This is shown by case studies that calculate particulate emissions from representative construction activities (road, building, and nonbuilding construction). For example, the fine fraction ratio for scraper travel averages about 0.2 (Muleski et al., 2005), before correcting for the factor-of- two bias in the cyclone/impactor system. Moreover this includes the diesel emissions that are contained within the fine fraction component.

It should be noted that if large open areas are disturbed (such as in land clearing) and left unprotected, and the areas are exposed to high winds, open area wind erosion can also be an important contributor to dust emissions from this source category. The recommended fine fraction ratio identified below should be used for the open area wind erosion component.

Aggregate Handling and Storage Piles

Although usually not a major source in comparison with traffic around storage piles, the transfer of aggregate associated with bucket loaders and unloaders or conveyor transfer points is addressed directly in this section of AP-42. A $PM_{2.5}/PM_{10}$ ratio of 0.15 is recommended for transfer operations. This is half the current value in AP-42 and reflects adjustment for the factor-of-two bias in the cyclone/impactor test results.

The dominant dust component of particulate emissions from aggregate handling and storage piles typically consists of loader and truck traffic around the storage piles. AP-42 refers the reader to the unpaved roads section to find appropriate emission factors. A $PM_{2.5}/PM_{10}$ ratio of 0.1 is recommended for this source. The proposed ratio is consistent with that recommended above for traffic on unpaved surfaces.

Industrial Wind Erosion

For the dust component of particulate emissions from industrial wind erosion, a $PM_{2.5}/PM_{10}$ ratio of 0.15 is recommended. Industrial wind erosion is associated with crushed aggregate materials, such as coal or metallic ore piles. Examples would include open storage piles at mining operations. The proposed ratio is justified by portable wind tunnel tests of industrial aggregate materials which produced $PM_{2.5}/PM_{10}$ ratios averaging 0.4, as indicated by the current AP-42 fine fraction ratio given in Table 1. When these results are corrected for the bias associated with the cyclone/impactor system at very high PM_{10} concentrations observed in the effluent from the portable wind tunnel (exceeding 10,000 µg/m³), the result is 0.15.

Agricultural Tilling

For the dust component of particulate emissions from agricultural tilling and related land preparation activities, which dominates the total particulate emissions from this source category, no new $PM_{2.5}/PM_{10}$ ratio can be recommended at this time, because of the lack of published test data. However, the current factor of 0.2, as listed in Table 1, appears to be generally consistent with the results of the current wind tunnel tests. It was found that the agricultural soils tested in the wind tunnel produced slightly higher ratios than the other test materials. In addition, the dust plume core concentrations from agricultural operations are generally observed to be less intense because of the lower equipment speeds involved and the lack of repeated travel over the same routes.

Open Area Wind Erosion

For the dust component of particulate emissions from open area wind erosion (not currently addressed in AP-42), a $PM_{2.5}/PM_{10}$ ratio of 0.15 is recommended. Open area wind erosion is associated with exposed soils that have been disturbed, removing the protection afforded by natural crusting. Examples would include freshly tilled agricultural fields prior to planting of crops. The proposed ratio is justified by wind tunnel tests of exposed soils (MRI, 1994), which produced $PM_{2.5}/PM_{10}$ ratios averaging 0.3. When these results are corrected for the bias associated with the cyclone/impactor system, the ratio becomes 0.15. This is consistent with the $PM_{2.5}/PM_{10}$ ratios in the range of 0.12 measured during dust storms on Owens Dry Lake (Ono, 2005).

Specific Revisions to AP-42

This section presents a listing of specific revisions to AP-42, for the purpose of incorporating the proposed $PM_{2.5}/PM_{10}$ ratios. As shown in Table 2, five subsections of AP-42 Section 13.2, Fugitive Dust, are impacted by the proposed changes. However, one of the five sections (13.2.3, Heavy Construction Operations) is impacted only indirectly because it refers to other sections of AP-42 for fugitive dust emission factors.

In most cases, the change in the $PM_{2.5}/PM_{10}$ ratio is accomplished by changing the appropriate PM-2.5 particle size multiplier (k-factor) for the respective emission factor equation. In addition, the changes need to be referenced to the WRAP test report (Cowherd and Donaldson, 2005).

Source	Sub-			
category	section	Title	Revision	Comments
13.2.1 Paved Roads	13.2.1.3	Predictive Emission Factor Equation	In Table 13.2.1-1, reduce k values for PM-2.5 by 40 percent, e.g., the new value is 1.1 g/VMT (and equivalent values for the other units)	Add ref. number for WRAP test report
	13.2.1.5	Changes since Fifth Edition	Modify statement (1) to reflect change in fine fraction	
		References	Add WRAP test report as Ref. 22	
13.2.2 Unpaved Roads	13.2.2.2	Emission Calculation and Correction Parameters	In Table 13.2.2-2, reduce k values for PM-2.5 by 33%, e.g., the new value is 0.15 lb/VMT for industrial roads and 0.18 lb/VMT for public roads (and equivalent values for the other units)	Add ref. number for WRAP test report
	13.2.2.4	Updates since Fifth Edition	Add sentences describing change in fine fraction	
		References	Add WRAP test report	
13.2.3 Heavy Construction Operations	_	-	No changes required	Refers to other AP-42 sections for emission factors
13.2.4 Aggregate Handling and Storage Piles	13.2.4.3	Predictive Emission Factor Equations	In k-factor table for Equation 1 for transfer operations, change PM- 2.5 multiplier to 0.053 (dimensionless)	Add ref. number for WRAP test report
		References	Add WRAP test report	
13.2.5 Industrial Wind Erosion	13.2.5.2	Emissions and Correction Parameters	In k-factor table for Equation 1, change PM-2.5 multiplier to 0.075 (dimensionless)	Add ref. number for WRAP test report
		References	Add WRAP test report	

Table 2. Specific revisions to AP-42 that are incorporated	
into the AP-42 sections included in Attachment A.	

CONCLUSION

This study found that concentration measurements used to develop $PM_{2.5}$ emission factors for AP-42 were biased high by a factor of two, as compared to $PM_{2.5}$ measurements from FRM samplers. This factor-of-two bias helps to explain why researchers have often seen a similar discrepancy in the proportion of fugitive dust found in $PM_{2.5}$ emission inventories and modeled ambient impacts, as compared to the proportion observed on ambient filter samples. This study also shows that the $PM_{2.5}$ / PM_{10} ratios for fugitive dust should be in the range of 0.1 to 0.15. Currently, the fine fraction ratios in AP-42 range from 0.15 to 0.4 for most fugitive dust sources.

It is recommended that the results of this study by used to revise the AP-42 PM_{2.5} emission factors for the following four fugitive dust source categories: paved roads, unpaved roads (public and industrial), aggregate handling and storage piles, and industrial wind erosion (AP-42 Sections 13.2.1, 13.2.2, 13.2.4, & 13.2.5, respectively). Emission estimates for other fugitive dust producing activities, such as construction and demolition, will also be affected since they are based on these four source categories. It is recommended that revisions to the current AP-42 sections for these fugitive dust sources be adopted as shown in Attachment A to this report.

IMPLICATIONS

The proposed revisions to AP-42 are needed to ensure the most accurate $PM_{2.5}$ and PM_{10} fugitive dust emissions inventories that are possible for regional haze regulatory purposes, given the available resources and the significant contribution of fugitive dust to visibility impairment. In particular, the revisions will affect the quantity of dust apportioned to the fine ($PM_{2.5}$) versus coarse ($PM_{2.5-10}$) size modes, which have significantly different effects on visibility and long-range transport potentials. This will reduce $PM_{2.5}$ emission estimates for fugitive dust sources to about half their current level. It will also increase the coarse-mode size fraction for fugitive dust, which would be important in the event that a PM coarse standard is adopted by the US EPA and emission inventories are developed.

The revisions will be helpful in developing accurate emission inventories for PM nonattainment, maintenance, and action plan areas throughout the country. Finally, the proposed modifications to the fine fractions associated with EPA's AP-42 emission factors will ensure widespread availability of the most recent and accurate scientific information.

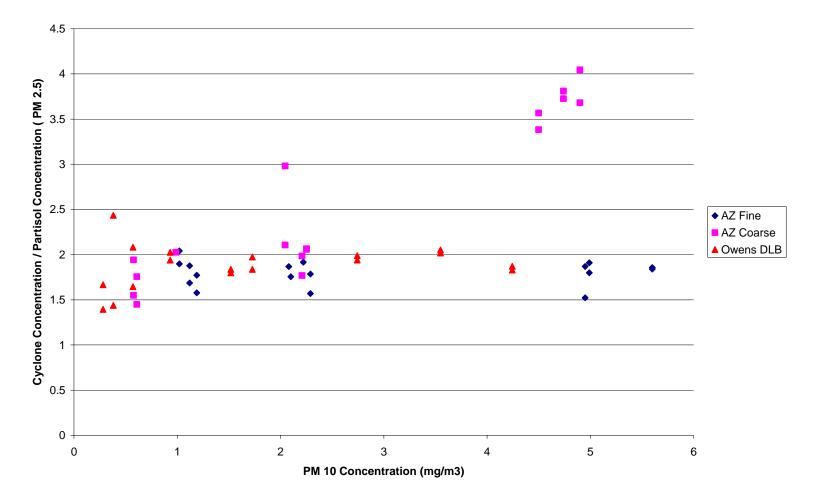
References

Cowherd, C. and J. Donaldson. 2005. *Analysis of the Fine Fraction of Particulate Matter in Fugitive Dust.* Final report prepared for the Western Governors' Association, Western Regional Air Partnership (WRAP), MRI Project No. 110397, October 12, 2005. **[Describes wind tunnel study to determine fine fraction ratios]**

Midwest Research Institute. 1994. *OU3 Wind tunnel Study: Test Report.* Prepared for EG&G Rocky Flats, Golden CO. [Describes portable wind tunnel tests of emissions from soils and sediments]

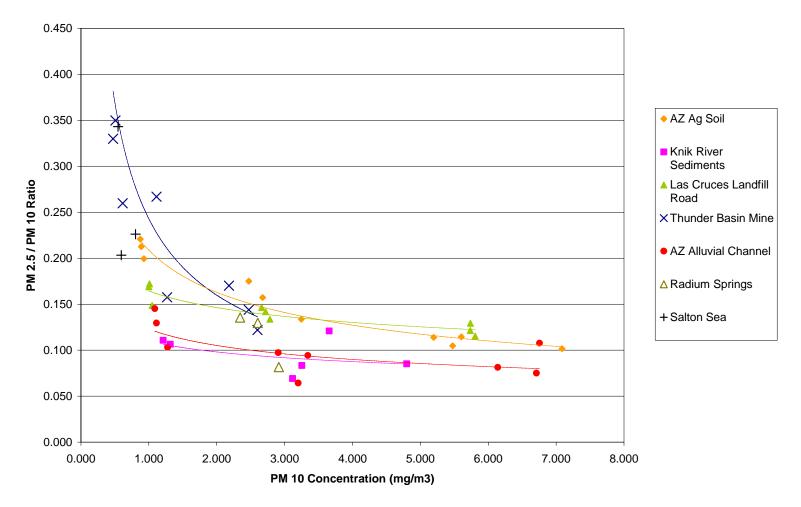
Midwest Research Institute. 1997. *Fugitive Particulate Matter Emissions*. Final report prepared for the U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards. Research Triangle Park NC. April, 1997. [Prior emission factor field study for paved and unpaved roads, comparing performance of cyclone/impactor system with reference method samplers for PM2.5]

Muleski, G. E., C. Cowherd, and J. S. Kinsey. 2005. "Particulate Emissions from Construction Activities," *J. Air & Waste Manage. Assoc.* **55:** 772-783. [Summarizes field test results for emissions from major components of construction projects]


Ono, Duane. 2005. "Ambient PM2.5/PM10 ratios for Dust Events from the Keeler Dunes." Great Basin UAPCD, Bishop, CA. [Describes FRM test results for high-wind events on Owens Dry Lake]

Pace, T. G. 2005. "Examination of Multiplier Used to Estimate $PM_{2.5}$ Fugitive Dust Emissions from PM_{10} ." Presented at the EPA Emission Inventory Conference. Las Vegas NV. April 2005. [Summarizes other field studies that can be used to develop $PM_{2.5}/PM_{10}$ ratios for fugitive dust emissions]

USEPA. 2005. *Compilation of Air Pollutant Emission Factors, AP-42.* 6th Edition. Research Triangle Park, NC. **[EPA's emission factor handbook]**


CARB, 2003. *Emission Inventory Procedural Manual Volume III: Methods for Assessing Area Source Emissions*, California Air Resources Board, Sacramento, CA. November. **[Summarizes the recommended calculation procedures for agricultural emissions and other sources]**

Midwest Research Institute. 1999. *Estimating Particulate Matter Emissions from Construction Operations*. Prepared for USEPA, Research Triangle Park NC, September. [Gives field test results for construction operations] Figure 1. Phase I test results show that the Cyclone/ Impactor method measured $PM_{2.5}$ concentrations that were two times higher than those measured by Federal Reference Method samplers when simultaneously exposed to the well-mixed dust environment in the wind tunnel.

PM 2.5 Ratios for Cyclone and Partisols

Figure 2. Phase II tests show that the $PM_{2.5}/PM_{10}$ ratio decreased with increasing PM concentrations, and could be expected to be in the range of 0.1 at concentrations that are typical of fugitive dust emission plumes.

PM 2.5 / PM 10 Ratio vs PM 10 Concentration

Emission Factors ^b - Uncontrolled				
Pollutant	Emission Factor Emission Factor Ra (lb/MMBtu) ^c			
1,3-Butadiene ^d	< 4.3 E-07	D		
Acetaldehyde	4.0 E-05	С		
Acrolein	6.4 E-06	С		
Benzene ^e	1.2 E-05	А		
Ethylbenzene	3.2 E-05	С		
Formaldehyde ^f	7.1 E-04	А		
Naphthalene	1.3 E-06	С		
РАН	2.2 E-06	С		
Propylene Oxide ^d	< 2.9 E-05	D		
Toluene	1.3 E-04	С		
Xylenes	6.4 E-05	С		

Table 3.1-3. EMISSION FACTORS FOR HAZARDOUS AIR POLLUTANTS FROM NATURAL GAS-FIRED STATIONARY GAS TURBINES^a

^a SCC for natural gas-fired turbines include 2-01-002-01, 2-02-002-01, 2-02-002-03, 2-03-002-02, and 2-03-002-03. Hazardous Air Pollutants as defined in Section 112 (b) of the *Clean Air Act*.

^b Factors are derived from units operating at high loads (≥80 percent load) only. For information on units operating at other loads, consult the background report for this chapter (Reference 16), available at "www.epa.gov/ttn/chief".

^c Emission factors based on an average natural gas heating value (HHV) of 1020 Btu/scf at 60° F. To convert from (lb/MMBtu) to (lb/10⁶ scf), multiply by 1020. These emission factors can be converted to other natural gas heating values by multiplying the given emission factor by the ratio of the specified heating value to this heating value.

^d Compound was not detected. The presented emission value is based on one-half of the detection limit.

^e Benzene with SCONOX catalyst is 9.1 E-07, rating of D.

^f Formaldehyde with SCONOX catalyst is 2.0 E-05, rating of D.

[Amended at 75 FR page 79140, Dec. 17, 2010]

§ 98.31 Reporting threshold.

You must report GHG emissions under this subpart if your facility contains one or more stationary fuel combustion sources and the facility meets the applicability requirements of either \S 98.2(a)(1), 98.2(a)(2), or 98.2(a)(3).

§ 98.32 GHGs to report.

You must report CO_2 , CH_4 , and N_2O mass emissions from each stationary fuel combustion unit, except as otherwise indicated in this subpart.

[75 FR page 79140, Dec. 17, 2010]

§ 98.33 Calculating GHG emissions.

You must calculate CO_2 emissions according to paragraph (a) of this section, and calculate CH_4 and N_2O emissions according to paragraph (c) of this section.

98.33(a) CO_2 emissions from fuel combustion.

Calculate CO_2 mass emissions by using one of the four calculation methodologies in paragraphs (a)(1) through (a)(4) of this section, subject to the applicable conditions, requirements, and restrictions set forth in paragraph (b) of this section. Alternatively, for units that meet the conditions of paragraph (a)(5) of this section, you may use CO_2 mass emissions calculation methods from part 75 of this chapter, as described in paragraph (a)(5) of this section. For units that combust both biomass and fossil fuels, you must calculate and report CO_2 emissions from the combustion of biomass separately using the methods in paragraph (e) of this section, except as otherwise provided in paragraphs (a) (5)(iv) and (e) of this section and in §98.36(d).

98.33(a)(1) Tier 1 Calculation Methodology.

Calculate the annual CO_2 mass emissions for each type of fuel by using Equation C-1, C-1a, or C-1b of this section (as applicable).

98.33(a)(1)(i)

Use Equation C-1 except when natural gas billing records are used to quantify fuel usage and gas consumption is expressed in units of therms or million Btu. In that case, use Equation C-1a or C-1b, as applicable.

$$CO_2 = 1 \times 10^{-3} * Fuel * HHV * EF$$
 (Eq. C-1)

Where:

 CO_2 = Annual CO_2 mass emissions for the specific fuel type (metric tons).

Fuel = Mass or volume of fuel combusted per year, from company records as defined in §98.6 (express mass in short tons for solid fuel, volume in standard cubic feet for gaseous fuel, and volume in gallons for liquid fuel).

HHV = Default high heat value of the fuel, from Table C-1 of this subpart (mmBtu per mass or mmBtu per volume, as applicable).

 $EF = Fuel-specific default CO_2$ emission factor, from Table C-1 of this subpart (kg CO_2/mmBtu).

 1×10^{-3} = Conversion factor from kilograms to metric tons.

98.33(a)(1)(ii)

If natural gas consumption is obtained from billing records and fuel usage is expressed in therms, use Equation C-1a.

$$CO_2 = 1 \times 10^{-3} [0.1 * Gas * EF]$$
 (Eq. C-1a)

Where:

 CO_2 = Annual CO_2 mass emissions from natural gas combustion (metric tons).

Gas = Annual natural gas usage, from billing records (therms).

 $EF = Fuel-specific default CO_2$ emission factor for natural gas, from Table C-1 of this subpart (kg CO_2/mmBtu).

0.1 = Conversion factor from therms to mmBtu

 1×10^{-3} = Conversion factor from kilograms to metric tons.

98.33(a)(1)(iii)

If natural gas consumption is obtained from billing records and fuel usage is expressed in mmBtu, use Equation C-1b.

$$CO_2 = 1 x \, 10^{-3} * Gas * EF$$
 (Eq. C-1b)

Where:

 CO_2 = Annual CO_2 mass emissions from natural gas combustion (metric tons).

Gas = Annual natural gas usage, from billing records (mmBtu).

 $EF = Fuel-specific default CO_2$ emission factor for natural gas, from Table C-1 of this subpart (kg CO_2/mmBtu).

 1×10^{-3} = Conversion factor from kilograms to metric tons.

98.33(a)(2) Tier 2 Calculation Methodology.

Calculate the annual CO₂ mass emissions for each type of fuel by using either Equation C2a or C2c of this section, as appropriate.

98.33(a)(2)(i)

Equation C-2a of this section applies to any type of fuel listed in Table C-1 of the subpart, except for municipal solid waste (MSW). For MSW combustion, use Equation C-2c of this section.

$$CO_2 = 1 \times 10^{-3} * Fuel * HHV * EF$$
 (Eq. C-2a)

Where:

 CO_2 = Annual CO_2 mass emissions for a specific fuel type (metric tons).

Fuel = Mass or volume of the fuel combusted during the year, from company records as defined in §98.6 (express mass in short tons for solid fuel, volume in standard cubic feet for gaseous fuel, and volume in gallons for liquid fuel).

HHV = Annual average high heat value of the fuel from all valid samples for the year (mmBtu per mass or volume). The average HHV shall be calculated according to the requirements of paragraph (a)(2)(ii) of this section.

 $EF = Fuel-specific default CO_2$ emission factor, from Table C-1 of this subpart (kg CO_2/mmBtu).

 1×10^{-3} = Conversion factor from kilograms to metric tons.

98.33(a)(2)(ii)

The minimum required sampling frequency for determining the annual average HHV (e.g., monthly, quarterly, semi-annually, or by lot) is specified in §98.34. The method for computing the annual average HHV is a function of unit size and how frequently you perform or receive from the fuel supplier the results of fuel sampling for HHV. The method is specified in paragraph (a)(2)(ii)(A) or (a)(2)(ii)(B) of this section, as

Where:

 CH_4 or $N_2O = Annual CH_4$ or N_2O emissions from the combustion of natural gas (metric tons).

Fuel = Annual natural gas usage, from gas billing records (therms).

EF = Fuel-specific default emission factor for CH₄ or N₂O, from Table C-2 of this subpart (kg CH₄ or N₂O per mmBtu).

0.1 = Conversion factor from therms to mmBtu

 1×10^{-3} = Conversion factor from kilograms to metric tons.

98.33(c)(1)(ii)

Use Equation C-8b to calculate CH_4 and N_2O emissions when natural gas usage is obtained from gas billing records in units of mmBtu.

 $CH_4 \text{ or } N_2O = 1 \times 10^{-3} * Fuel * EF (Eq. C-8b)$

Where:

 CH_4 or N_2O = Annual CH_4 or N_2O emissions from the combustion of natural gas (metric tons).

Fuel = Annual natural gas usage, from gas billing records (mmBtu).

EF = Fuel-specific default emission factor for CH₄ or N₂O, from Table C-2 of this subpart (kg CH₄ or N₂O per mmBtu).

 1×10^{-3} = Conversion factor from kilograms to metric tons.

98.33(c)(2)

Use Equation C-9a of this section to estimate CH_4 and N_2O emissions for any fuels for which you use the Tier 2 Equation C-2a of this section to estimate CO_2 emissions. Use the same values for fuel consumption and HHV that you use for the Tier 2 calculation.

$$CH_4 \text{ or } N_2O = 1 \times 10^{-3} * HHV * EF * Fuel$$
 (Eq. C-9a)

Where:

 CH_4 or N_2O = Annual CH_4 or N_2O emissions from the combustion of a particular type of fuel (metric tons).

Fuel = Mass or volume of the fuel combusted during the reporting year.

HHV = High heat value of the fuel, averaged for all valid measurements for the reporting year (mmBtu per mass or volume).

EF = Fuel-specific default emission factor for CH₄ or N₂O, from Table C-2 of this subpart (kg CH₄ or N₂O per mmBtu).

 1×10^{-3} = Conversion factor from kilograms to metric tons.

98.33(c)(3)

Use Equation C–9b of this section to estimate CH_4 and N_2O emissions for any fuels for which you use Equation C–2c of this section to calculate the CO_2 emissions. Use the same values for steam generation and the ratio "B" that you use for Equation C–2c.

$$CH_4 \text{ or } N_2O = 1 \times 10^{-3} \text{ Steam} * B * EF$$
 (Eq. C-9b)

Where:

Table C-1 to Subpart C of Part 98 — Default CO_2 Emission Factors and High Heat Values for Various Types of Fuel

mmBtu/short ton	kg CO ₂ /mmBtu
25.09	103.69
24.93	93.28
17.25	97.17
14.21	97.72
24.80	113.67
21.39	94.27
26.28	93.90
22.35	94.67
19.73	95.52
mmBtu/scf	kg CO ₂ /mmBtu
1.026 x 10-3	53.06
mmBtu/gallon	kg CO ₂ /mmBtu
0.139	73.25
0.138	73.96
0.146	75.04
0.140	72.93
0.150	75.10
0.138	74.00
0.135	75.20
0.092	61.71
0.091	62.87
0.091	67.77
0.068	59.60
0.084	68.44
0.058	65.96
0.099	64.94
0.103	68.86
0.103	64.77
0.105	68.72
0.125	68.02
	66.88
0.139	76.22
0.110	70.02
0.125	71.02
0.143	102.41
0.125	72.34
0.139	74.54
0.148	74.92
0.144	74.27
0.125	70.22
0.120	69.25
0.135	72.22
	24.93 17.25 14.21 24.80 21.39 26.28 22.35 19.73 mmBtu/scf 1.026 x 10-3 0.139 0.139 0.146 0.140 0.150 0.138 0.136 0.137 0.092 0.091 0.092 0.091 0.068 0.084 0.058 0.099 0.103 0.103 0.105 0.125 0.110 0.125 0.143 0.125 0.143 0.125 0.143 0.125 0.143 0.125 0.144 0.125 0.143 0.125 0.143 0.125 0.143 0.125 0.120

Crude Oil	0.138	74.54
Other fuels—solid	mmBtu/short ton	kg CO ₂ /mmBtu
Municipal Solid Waste	9.95 3	90.7
Tires	28.00	85.97
Plastics	38.00	75.00
Petroleum Coke	30.00	102.41
Other fuels—gaseous	mmBtu/scf	kg CO ₂ /mmBtu
Blast Furnace Gas	0.092 x 10-3	274.32
Coke Oven Gas	0.599 x 10-3	46.85
Propane Gas	2.516 x 10-3	61.46
Fuel Gas 4	1.388 x 10-3	59.00
Biomass fuels—solid	mmBtu/short ton	kg CO ₂ /mmBtu
Wood and Wood Residuals (dry basis) 5	17.48	93.80
Agricultural Byproducts	8.25	118.17
Peat	8.00	111.84
Solid Byproducts	10.39	105.51
Biomass fuels—gaseous	mmBtu/scf	kg CO ₂ /mmBtu
Landfill Gas	0.485 x 10-3	52.07
Other Biomass Gases	0.655 x 10-3	52.07
Biomass Fuels—Liquid	mmBtu/gallon	kg CO ₂ /mmBtu
Ethanol	0.084	68.44
Biodiesel (100%)	0.128	73.84
Rendered Animal Fat	0.125	71.06
Vegetable Oil	0.120	81.55

 1 The HHV for components of LPG determined at 60 °F and saturation pressure with the exception of ethylene.

 2 Ethylene HHV determined at 41 °F (5 °C) and saturation pressure.

³ Use of this default HHV is allowed only for: (a) Units that combust MSW, do not generate steam, and are allowed to use Tier 1; (b) units that derive no more than 10 percent of their annual heat input from MSW and/or tires; and (c) small batch incinerators that combust no more than 1,000 tons of MSW per year.

⁴ Reporters subject to subpart X of this part that are complying with § 98.243(d) or subpart Y of this part may only use the default HHV and the default CO_2 emission factor for fuel gas combustion under the conditions prescribed in § 98.243(d)(2)(i) and (d)(2)(ii) and § 98.252(a)(1) and (a)(2), respectively. Otherwise, reporters subject to subpart X or subpart Y shall use either Tier 3 (Equation C-5) or Tier 4.

⁵ Use the following formula to calculate a wet basis HHV for use in Equation C-1: $HHV_W = ((100 - M)/100)*HHV_d$ where $HHV_W =$ wet basis HHV, M = moisture content (percent) and $HHV_d =$ dry basis HHV from Table C-1.

[78 FR page 71950, Nov. 29, 2013]

Table C-2 to Subpart C of Part 98 —Default CH_4 and N_2O Emission Factors for Various Types of Fuel

Fuel type	Default CH4 emission factor (kg CH4/mmBtu)	Default N2O emission factor (kg N2O/mmBtu)	
Coal and Coke (All fuel types in Table C-1)	1.1 x 10-02	1.6 x 10-03	
Natural Gas	1.0 x 10-03	1.0 x 10-04	
Petroleum (All fuel types in Table C-1)	3.0 x 10-03	6.0 x 10-04	
Fuel Gas	3.0 x 10-03	6.0 x 10-04	
Municipal Solid Waste	3.2 x 10-02	4.2 x 10-03	
Tires			

http://esweb.bna.com/eslw/display/batch_print_display.adp

Environment & Safety Resource Center

	3.2 x 10-02	4.2 x 10-03
Blast Furnace Gas	2.2 x 10-05	1.0 x 10-04
Coke Oven Gas	4.8 × 10-04	1.0 x 10-04
Biomass Fuels—Solid (All fuel types in Table C-1, except wood and wood residuals)	3.2 x 10-02	4.2 x 10-03
Wood and wood residuals	7.2 x 10-03	3.6 x 10-03
Biomass Fuels— Gaseous (All fuel types in Table C-1)	3.2 x 10-03	6.3 x 10-04
Biomass Fuels—Liquid (All fuel types in Table C-1)	1.1 x 10-03	1.1 x 10-04

Note: Those employing this table are assumed to fall under the IPCC definitions of the "Energy Industry" or "Manufacturing Industries and Construction". In all fuels except for coal the values for these two categories are identical. For coal combustion, those who fall within the IPCC "Energy Industry" category may employ a value of 1g of CH_4 /mmBtu.

[75 FR page 79154, Dec. 17, 2010; 78 FR page 71952, Nov. 29, 2013]

Contact us at http://www.bna.com/contact/index.html or call 1-800-372-1033

ISSN 2167-8065

Copyright © 2014, The Bureau of National Affairs, Inc. Reproduction or redistribution, in whole or in part, and in any form, without express written permission, is prohibited except as permitted by the BNA Copyright Policy.

ELECTRONIC CODE OF FEDERAL REGULATIONS e-CFR Data is current as of December 4, 2014

Title 40 \rightarrow Chapter I \rightarrow Subchapter C \rightarrow Part 98 \rightarrow Subpart A \rightarrow Appendix

Title 40: Protection of Environment PART 98—MANDATORY GREENHOUSE GAS REPORTING Subpart A—General Provision

TABLE A-1 TO SUBPART A OF PART 98-GLOBAL WARMING POTENTIALS

GLOBAL WARMING POTENTIALS

Name	CAS No.	Chemical formula	Global warming potential (100 yr.)
Carbon dioxide	124-38-9	CO_2	1
Methane	74-82-8	CH_4	^a 25
Nitrous oxide	10024-97-2	N ₂ O	^a 298
HFC-23	75-46-7	CHF ₃	^a 14,800
HFC-32	75-10-5	CH_2F_2	^a 675
HFC-41	593-53-3	CH ₃ F	^a 92
HFC-125	354-33-6	C ₂ HF ₅	^a 3,500
HFC-134	359-35-3	$C_2H_2F_4$	^a 1,100
HFC-134a	811-97-2	CH ₂ FCF ₃	^a 1,430
HFC-143	430-66-0	$C_2H_3F_3$	^a 353
HFC-143a	420-46-2	$C_2H_3F_3$	^a 4,470
HFC-152	624-72-6	CH ₂ FCH ₂ F	53
HFC-152a	75-37-6	CH ₃ CHF ₂	^a 124
HFC-161	353-36-6	CH ₃ CH ₂ F	12
HFC-227ea	431-89-0	C ₃ HF ₇	a3,220
HFC-236cb	677-56-5	CH ₂ FCF ₂ CF ₃	1,340

[100-Year Time Horizon]

HFC-236ea	431-63-0	CHF ₂ CHFCF ₃	1,370
HFC-236fa	690-39-1	$C_3H_2F_6$	^a 9,810
HFC-245ca	679-86-7	$C_3H_3F_5$	^a 693
HFC-245fa	460-73-1	CHF ₂ CH ₂ CF ₃	1,030
HFC-365mfc	406-58-6	CH ₃ CF ₂ CH ₂ CF ₃	794
HFC-43-10mee	138495-42- 8	CF ₃ CFHCFHCF ₂ CF ₃	^a 1,640
Sulfur hexafluoride	2551-62-4	SF ₆	^a 22,800
Trifluoromethyl sulphur pentafluoride	373-80-8	SF ₅ CF ₃	17,700
Nitrogen trifluoride	7783-54-2	NF ₃	17,200
PFC-14 (Perfluoromethane)	75-73-0	CF₄	^a 7,390
PFC-116 (Perfluoroethane)	76-16-4	C_2F_6	^a 12,200
PFC-218 (Perfluoropropane)	76-19-7	C_3F_8	^a 8,830
Perfluorocyclopropane	931-91-9	$C-C_3F_6$	17,340
PFC-3-1-10 (Perfluorobutane)	355-25-9	C₄F ₁₀	^a 8,860
PFC-318 (Perfluorocyclobutane)	115-25-3	$C-C_4F_8$	^a 10,300
PFC-4-1-12 (Perfluoropentane)	678-26-2	$C_{5}F_{12}$	^a 9,160
PFC-5-1-14 (Perfluorohexane, FC-72)	355-42-0	$C_{6}F_{14}$	^a 9,300
PFC-9-1-18	306-94-5	$C_{10}F_{18}$	7,500
HCFE-235da2 (Isoflurane)	26675-46-7	CHF ₂ OCHClCF ₃	350
HFE-43-10pccc (H-Galden 1040x, HG-11)	E1730133	CHF2OCF2OC2F4OCHF2	1,870
HFE-125	3822-68-2	CHF ₂ OCF ₃	14,900
HFE-134 (HG-00)	1691-17-4	CHF ₂ OCHF ₂	6,320
HFE-143a	421-14-7	CH ₃ OCF ₃	756
HFE-227ea	2356-62-9	CF ₃ CHFOCF ₃	1,540
HFE-236ca12 (HG-10)	78522-47-1	CHF ₂ OCF ₂ OCHF ₂	2,800
HFE-236ea2 (Desflurane)	57041-67-5	CHF ₂ OCHFCF ₃	989
HFE-236fa	20193-67-3	CF ₃ CH ₂ OCF ₃	487

HFE-245cb2	22410-44-2	CH ₃ OCF ₂ CF ₃	708
HFE-245fa1		CHF ₂ CH ₂ OCF ₃	286
HFE-245fa2		CHF2OCH2CF3	659
HFE-254cb2		CH ₃ OCF ₂ CHF ₂	359
HFE-263fb2		CF ₃ CH ₂ OCH ₃	
HFE-329mcc2		CF ₃ CF ₂ OCF ₂ CHF ₂	919
HFE-338mcf2	156053-88-	CF ₃ CF ₂ OCH ₂ CF ₃	552
HFE-338pcc13 (HG-01)	188690-78- 0	CHF2OCF2CF2OCHF2	1,500
HFE-347mcc3 (HFE-7000)	375-03-1	CH ₃ OCF ₂ CF ₂ CF ₃	575
HFE-347mcf2	171182-95- 9	CF ₃ CF ₂ OCH ₂ CHF ₂	374
HFE-347pcf2	406-78-0	CHF ₂ CF ₂ OCH ₂ CF ₃	580
HFE-356mec3	382-34-3	CH ₃ OCF ₂ CHFCF ₃	101
НFE-356рсс3	160620-20-2	CH ₃ OCF ₂ CF ₂ CHF ₂	110
HFE-356pcf2	50807-77-7	CHF ₂ CH ₂ OCF ₂ CHF ₂	265
HFE-356pcf3	35042-99-0	CHF ₂ OCH ₂ CF ₂ CHF ₂	502
HFE-365mcf3	378-16-5	CF ₃ CF ₂ CH ₂ OCH ₃	11
HFE-374pc2	512-51-6	CH ₃ CH ₂ OCF ₂ CHF ₂	557
HFE-449s1 (HFE-7100)	163702-07- 6		297
Chemical blend	163702-08- 7	(CF ₃) ₂ CFCF ₂ OCH ₃	
HFE-569sf2 (HFE-7200)	163702-05- 4	C ₄ F ₉ OC ₂ H ₅	59
Chemical blend	163702-06-	$(CF_3)_2 CFCF_2 OC_2 H_3$	
Sevoflurane (HFE-347mmz1)	28523-86-6	CH ₂ FOCH(CF ₃) ₂	345
HFE-356mm1	13171-18-1	(CF ₃) ₂ CHOCH ₃	27
HFE-338mmz1	26103-08-2	CHF ₂ OCH(CF ₃) ₂	380

(Octafluorotetramethy-lene) hydroxymethyl group	NA	X-(CF ₂) ₄ CH(OH)-X	73
HFE-347mmy1	22052-84-2	$CH_{3}OCF(CF_{3})_{2}$	343
Bis(trifluoromethyl)-methanol	920-66-1	(CF ₃) ₂ CHOH	195
2,2,3,3,3-pentafluoropropanol	422-05-9	CF ₃ CF ₂ CH ₂ OH	42
PFPMIE (HT-70)	NA	CF ₃ OCF(CF ₃)CF ₂ OCF ₂ OCF ₃	10,300

^aThe GWP for this compound is different than the GWP in the version of Table A-1 to subpart A of part 98 published on October 30, 2009.

[78 FR 71948, Nov. 29, 2013]

Pollutant	Emission Factor (lb/10 ⁶ scf)	Emission Factor Rating
CO ₂ ^b	120,000	А
Lead	0.0005	D
N ₂ O (Uncontrolled)	2.2	Е
N ₂ O (Controlled-low-NO _X burner)	0.64	Е
PM (Total) ^c	7.6	D
PM (Condensable) ^c	5.7	D
PM (Filterable) ^c	1.9	В
SO_2^{d}	0.6	А
TOC	11	В
Methane	2.3	В
VOC	5.5	С

TABLE 1.4-2. EMISSION FACTORS FOR CRITERIA POLLUTANTS AND GREENHOUSE GASESFROM NATURAL GAS COMBUSTION^a

^a Reference 11. Units are in pounds of pollutant per million standard cubic feet of natural gas fired. Data are for all natural gas combustion sources. To convert from $lb/10^6$ scf to $kg/10^6$ m³, multiply by 16. To convert from $lb/10^6$ scf to 1b/MMBtu, divide by 1,020. The emission factors in this table may be converted to other natural gas heating values by multiplying the given emission factor by the ratio of the specified heating value to this average heating value. TOC = Total Organic Compounds. VOC = Volatile Organic Compounds.

- ^b Based on approximately 100% conversion of fuel carbon to CO_2 . $CO_2[lb/10^6 \text{ scf}] = (3.67)$ (CON) (C)(D), where CON = fractional conversion of fuel carbon to CO_2 , C = carbon content of fuel by weight (0.76), and D = density of fuel, $4.2 \times 10^4 \text{ lb}/10^6 \text{ scf}$.
- ^c All PM (total, condensible, and filterable) is assumed to be less than 1.0 micrometer in diameter. Therefore, the PM emission factors presented here may be used to estimate PM_{10} , $PM_{2.5}$ or PM_1 emissions. Total PM is the sum of the filterable PM and condensible PM. Condensible PM is the particulate matter collected using EPA Method 202 (or equivalent). Filterable PM is the particulate matter collected on, or prior to, the filter of an EPA Method 5 (or equivalent) sampling train.

^d Based on 100% conversion of fuel sulfur to SO_2 . Assumes sulfur content is natural gas of 2,000 grains/10⁶ scf. The SO_2 emission factor in this table can be converted to other natural gas sulfur contents by multiplying the SO_2 emission factor by the ratio of the site-specific sulfur content (grains/10⁶ scf) to 2,000 grains/10⁶ scf.

CAS No.	Pollutant	Emission Factor (lb/10 ⁶ scf)	Emission Factor Rating
91-57-6	2-Methylnaphthalene ^{b, c}	2.4E-05	D
56-49-5	3-Methylchloranthrene ^{b, c}	<1.8E-06	Е
	7,12-Dimethylbenz(a)anthracene ^{b,c}	<1.6E-05	Е
83-32-9	Acenaphthene ^{b,c}	<1.8E-06	Е
203-96-8	Acenaphthylene ^{b,c}	<1.8E-06	Е
120-12-7	Anthracene ^{b,c}	<2.4E-06	Е
56-55-3	Benz(a)anthracene ^{b,c}	<1.8E-06	Е
71-43-2	Benzene ^b	2.1E-03	В
50-32-8	Benzo(a)pyrene ^{b,c}	<1.2E-06	Е
205-99-2	Benzo(b)fluoranthene ^{b,c}	<1.8E-06	Е
191-24-2	Benzo(g,h,i)perylene ^{b,c}	<1.2E-06	Е
205-82-3	Benzo(k)fluoranthene ^{b,c}	<1.8E-06	Е
106-97-8	Butane	2.1E+00	Е
218-01-9	Chrysene ^{b,c}	<1.8E-06	Е
53-70-3	Dibenzo(a,h)anthracene ^{b,c}	<1.2E-06	Е
25321-22-6	Dichlorobenzene ^b	1.2E-03	Е
74-84-0	Ethane	3.1E+00	Е
206-44-0	Fluoranthene ^{b,c}	3.0E-06	Е
86-73-7	Fluorene ^{b,c}	2.8E-06	Е
50-00-0	Formaldehyde ^b	7.5E-02	В
110-54-3	Hexane ^b	1.8E+00	Е
193-39-5	Indeno(1,2,3-cd)pyrene ^{b,c}	<1.8E-06	Е
91-20-3	Naphthalene ^b	6.1E-04	Е
109-66-0	Pentane	2.6E+00	Е
85-01-8	Phenanathrene ^{b,c}	1.7E-05	D

TABLE 1.4-3. EMISSION FACTORS FOR SPECIATED ORGANIC COMPOUNDS FROM NATURAL GAS COMBUSTION^a

13.4 Wet Cooling Towers

13.4.1 General¹

Cooling towers are heat exchangers that are used to dissipate large heat loads to the atmosphere. They are used as an important component in many industrial and commercial processes needing to dissipate heat. Cooling towers may range in size from less than $5.3(10)^6$ kilojoules (kJ) $(5[10]^6$ British thermal units per hour [Btu/hr]) for small air conditioning cooling towers to over $5275(10)^6$ kJ/hr ($5000[10^6]$ Btu/hr) for large power plant cooling towers.

When water is used as the heat transfer medium, wet, or evaporative, cooling towers may be used. Wet cooling towers rely on the latent heat of water evaporation to exchange heat between the process and the air passing through the cooling tower. The cooling water may be an integral part of the process or may provide cooling via heat exchangers.

Although cooling towers can be classified several ways, the primary classification is into dry towers or wet towers, and some hybrid wet-dry combinations exist. Subclassifications can include the draft type and/or the location of the draft relative to the heat transfer medium, the type of heat transfer medium, the relative direction of air movement, and the type of water distribution system.

In wet cooling towers, heat transfer is measured by the decrease in the process temperature and a corresponding increase in both the moisture content and the wet bulb temperature of the air passing through the cooling tower. (There also may be a change in the sensible, or dry bulb, temperature, but its contribution to the heat transfer process is very small and is typically ignored when designing wet cooling towers.) Wet cooling towers typically contain a wetted medium called "fill" to promote evaporation by providing a large surface area and/or by creating many water drops with a large cumulative surface area.

Cooling towers can be categorized by the type of heat transfer; the type of draft and location of the draft, relative to the heat transfer medium; the type of heat transfer medium; the relative direction of air and water contact; and the type of water distribution system. Since wet, or evaporative, cooling towers are the dominant type, and they also generate air pollutants, this section will address only that type of tower. Diagrams of the various tower configurations are shown in Figure 13.4-1 and Figure 13.4-2.

13.4.2 Emissions And Controls¹

Because wet cooling towers provide direct contact between the cooling water and the air passing through the tower, some of the liquid water may be entrained in the air stream and be carried out of the tower as "drift" droplets. Therefore, the particulate matter constituent of the drift droplets may be classified as an emission.

The magnitude of drift loss is influenced by the number and size of droplets produced within the cooling tower, which in turn are determined by the fill design, the air and water patterns, and other interrelated factors. Tower maintenance and operation levels also can influence the formation of drift droplets. For example, excessive water flow, excessive airflow, and water bypassing the tower drift eliminators can promote and/or increase drift emissions.

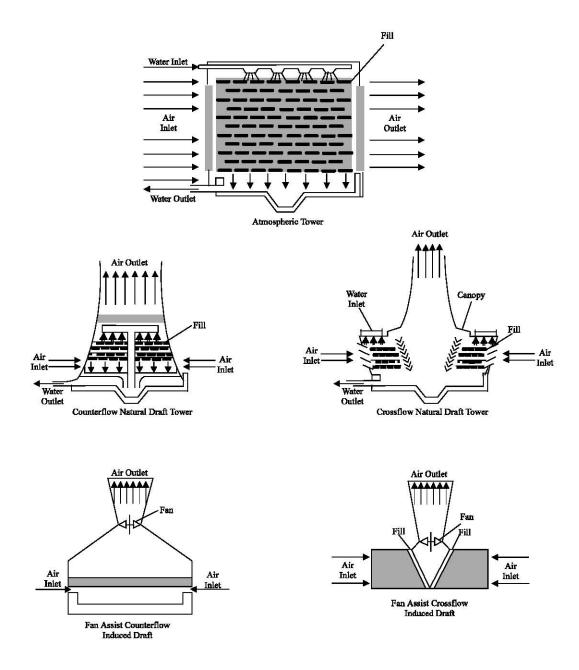


Figure 13.4-1 Atmospheric and natural draft cooling towers.

Because the drift droplets generally contain the same chemical impurities as the water circulating through the tower, these impurities can be converted to airborne emissions. Large drift droplets settle out of the tower exhaust air stream and deposit near the tower. This process can lead to wetting, icing, salt deposition, and related problems such as damage to equipment or to vegetation. Other drift droplets may evaporate before being deposited in the area surrounding the tower, and they also can produce PM-10 emissions. PM-10 is generated when the drift droplets evaporate and leave fine particulate matter formed by crystallization of dissolved solids. Dissolved solids found in cooling tower drift can consist of mineral matter, chemicals for corrosion inhibition, etc.

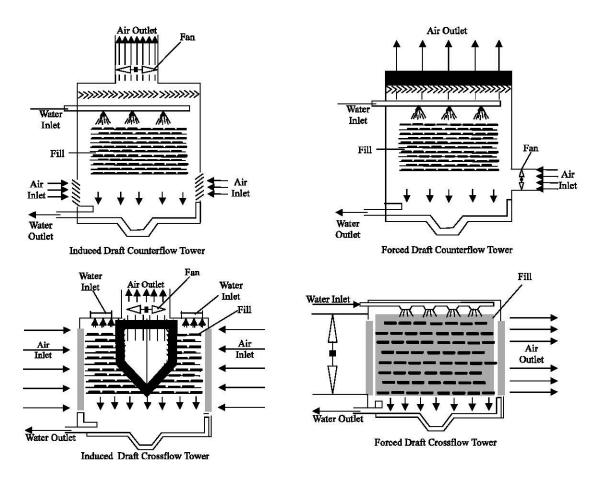


Figure 13.4-2. Mechanical draft cooling towers.

To reduce the drift from cooling towers, drift eliminators are usually incorporated into the tower design to remove as many droplets as practical from the air stream before exiting the tower. The drift eliminators used in cooling towers rely on inertial separation caused by direction changes while passing through the eliminators. Types of drift eliminator configurations include herringbone (blade-type), wave form, and cellular (or honeycomb) designs. The cellular units generally are the most efficient. Drift eliminators may include various materials, such as ceramics, fiber reinforced cement, fiberglass, metal, plastic, and wood installed or formed into closely spaced slats, sheets, honeycomb assemblies, or tiles. The materials may include other features, such as corrugations and water removal channels, to enhance the drift removal further.

Table 13.4-1 provides available particulate emission factors for wet cooling towers. Separate emission factors are given for induced draft and natural draft cooling towers. Several features in Table 13.4-1 should be noted. First, a *conservatively high* PM-10 emission factor can be obtained by (a) multiplying the total liquid drift factor by the total dissolved solids (TDS) fraction in the circulating water and (b) assuming that, once the water evaporates, all remaining solid particles are within the PM-10 size range.

Second, if TDS data for the cooling tower are not available, a source-specific TDS content can be estimated by obtaining the TDS data for the make-up water and multiplying them by the cooling tower cycles of concentration. The cycles of concentration ratio is the ratio of a measured

Table 13.4-1 (Metric And English Units). PARTICULATE EMISSIONS FACTORS FOR WET COOLING TOWERS^a

	Total Liquid Drift ^b				PM-10 ^c		
Tower Type ^d	Circulating Water Flow ^b	g/daL	lb/10 ³ gal	EMISSION FACTOR RATING	g/daL ^e	lb/10 ³ gal	EMISSION FACTOR RATING
Induced Draft (SCC 3-85-001-01, 3-85-001-20, 3-85-002-01)	0.020	2.0	1.7	D	0.023	0.019	Е
Natural Draft (SCC 3-85-001-02, 3-85-002-02)	0.00088	0.088	0.073	Е	ND	ND	—

^a References 1-17. Numbers are given to 2 significant digits. ND = no data. SCC = Source Classification Code.

^b References 2,5-7,9-10,12-13,15-16. Total liquid drift is water droplets entrained in the cooling tower exit air stream. Factors are for % of circulating water flow (10⁻² L drift/L [10⁻² gal drift/gal] water flow) and g drift/daL (lb drift/10³ gal) circulating water flow. 0.12 g/daL = 0.1 lb/10³ gal; 1 daL = 10¹ L.

^c See discussion in text on how to use the table to obtain PM-10 emission estimates. Values shown above are the arithmetic average of test results from References 2,4,8, and 11-14, and they imply an effective TDS content of approximately 12,000 parts per million (ppm) in the circulating water.

^d See Figure 13.4-1 and Figure 13.4-2. Additional SCCs for wet cooling towers of unspecified draft type are 3-85-001-10 and 3-85-002-10.

^e Expressed as g PM-10/daL (lb PM-10/10³ gal) circulating water flow.

parameter for the cooling tower water (such as conductivity, calcium, chlorides, or phosphate) to that parameter for the make-up water. This estimated cooling tower TDS can be used to calculate the PM-10 emission factor as above. If neither of these methods can be used, the arithmetic average PM-10 factor given in Table 13.4-1 can be used. Table 13.4-1 presents the arithmetic average PM-10 factor calculated from the test data in References 2, 4, 8, and 11 - 14. Note that this average corresponds to an effective cooling tower recirculating water TDS content of approximately 11,500 ppm for induced draft towers. (This can be found by dividing the total liquid drift factor into the PM-10 factor.)

As an alternative approach, if TDS data are unavailable for an induced draft tower, a value may be selected from Table 13.4-2 and then be combined with the total liquid drift factor in Table 13.4-1 to determine an apparent PM-10 factor.

As shown in Table 13.4-2, available data do not suggest that there is any significant difference between TDS levels in counter and cross flow towers. Data for natural draft towers are not available.

Table 13.4-2. SUMMARY STATISTICS FOR TOTAL DISSOLVED SOLIDS (TDS) CONTENT IN CIRCULATING WATER^a

Type Of Draft	No. Of Cases	Range Of TDS Values (ppm)	Geometric Mean TDS Value (ppm)
Counter Flow	10	3700 - 55,000	18,500
Cross Flow	7	380 - 91,000	24,000
Overall ^b	17	380 - 91,000	20,600

^a References 2,4,8,11-14.

^b Data unavailable for natural draft towers.

References For Section 13.4

- 1. Development Of Particulate Emission Factors For Wet Cooling Towers, EPA Contract No. 68-D0-0137, Midwest Research Institute, Kansas City, MO, September 1991.
- 2. Cooling Tower Test Report, Drift And PM-10 Tests T89-50, T89-51, And T89-52, Midwest Research Institute, Kansas City, MO, February 1990.
- 3. Cooling Tower Test Report, Typical Drift Test, Midwest Research Institute, Kansas City, MO, January 1990.
- 4. Mass Emission Measurements Performed On Kerr-McGee Chemical Corporation's Westend Facility, Kerr-McGee Chemical Corporation, Trona, CA, And Environmental Systems Corporation, Knoxville, TN, December 1989.
- 5. Confidential Cooling Tower Drift Test Report For Member Of The Cooling Tower Institute, Houston, TX, Midwest Research Institute, Kansas City, MO, January 1989.
- 6. Confidential Cooling Tower Drift Test Report For Member Of The Cooling Tower Institute, Houston, TX, Midwest Research Institute, Kansas City, MO, October 1988.
- 7. Confidential Cooling Tower Drift Test Report For Member Of The Cooling Tower Institute, Houston, TX, Midwest Research Institute, Kansas City, MO, August 1988.
- 8. Report Of Cooling Tower Drift Emission Sampling At Argus And Sulfate #2 Cooling Towers, Kerr-McGee Chemical Corporation, Trona, CA, and Environmental Systems Corporation, Knoxville, TN, February 1987.
- 9. Confidential Cooling Tower Drift Test Report For Member Of The Cooling Tower Institute, Houston, TX, Midwest Research Institute, Kansas City, MO, February 1987.
- 10. Confidential Cooling Tower Drift Test Report For Member Of The Cooling Tower Institute, Houston, TX, Midwest Research Institute, Kansas City, MO, January 1987.

- 11. Isokinetic Droplet Emission Measurements Of Selected Induced Draft Cooling Towers, Kerr-McGee Chemical Corporation, Trona, CA, and Environmental Systems Corporation, Knoxville, TN, November 1986.
- 12. Confidential Cooling Tower Drift Test Report For Member Of The Cooling Tower Institute, Houston, TX, Midwest Research Institute, Kansas City, MO, December 1984.
- 13. Confidential Cooling Tower Drift Test Report For Member Of The Cooling Tower Institute, Houston, TX, Midwest Research Institute, Kansas City, MO, August 1984.
- 14. Confidential Cooling Tower Drift Test Report, Midwest Research Institute, Kansas City, MO, November 1983.
- 15. Chalk Point Cooling Tower Project, Volumes 1 and 2, JHU PPSP-CPCTP-16, John Hopkins University, Laurel, MD, August 1977.
- 16. Comparative Evaluation Of Cooling Tower Drift Eliminator Performance, MIT-EL 77-004, Energy Laboratory And Department of Nuclear Engineering, Massachusetts Institute Of Technology, Cambridge, MA, June 1977.
- 17. G. O. Schrecker, et al., Drift Data Acquired On Mechanical Salt Water Cooling Devices, EPA-650/2-75-060, U. S. Environmental Protection Agency, Cincinnati, OH, July 1975.

Table 11.19.2-2 (English Units). EMISSION FACTORS FOR CRUSHED STONE PROCESSING OPERATIONS (lb/Ton)^a

Source ^b	Total	EMISSION	Total	EMISSION	Total	EMISSION
	Particulate	FACTOR	PM-10	FACTOR	PM-2.5	FACTOR
	Matter ^{r,s}	RATING		RATING		RATING
Primary Crushing	ND		ND^{n}		ND^{n}	
(SCC 3-05-020-01)						
Primary Crushing (controlled)	ND		ND^{n}		ND^{n}	
(SCC 3-05-020-01)						
Secondary Crushing	ND		ND^{n}		ND^{n}	
(SCC 3-05-020-02)						
Secondary Crushing (controlled) (SCC 3-05-020-02)	ND		ND^{n}		ND^{n}	
Tertiary Crushing	0.0054 ^d	Е	0.0024°	С	ND ⁿ	
(SCC 3-050030-03)	0.0001	2	0.0021	e	T(D)	
Tertiary Crushing (controlled)	0.0012 ^d	Е	0.00054 ^p	С	0.00010 ^q	Е
(SCC 3-05-020-03)				-		
Fines Crushing	0.0390 ^e	Е	0.0150 ^e	Е	ND	
(SCC 3-05-020-05)						
Fines Crushing (controlled)	$0.0030^{\rm f}$	Е	$0.0012^{\rm f}$	Е	0.000070^{q}	Е
(SCC 3-05-020-05)						
Screening	0.025 ^c	Е	0.0087^{l}	С	ND	
(SCC 3-05-020-02, 03)						
Screening (controlled)	0.0022 ^d	Е	$0.00074^{\rm m}$	С	0.000050 ^q	E
(SCC 3-05-020-02, 03)						
Fines Screening	0.30 ^g	E	0.072 ^g	E	ND	
(SCC 3-05-020-21)						
Fines Screening (controlled)	0.0036 ^g	Е	0.0022 ^g	E	ND	
(SCC 3-05-020-21)						
Conveyor Transfer Point	0.0030 ^h	Е	0.00110 ^h	D	ND	
(SCC 3-05-020-06)			c.		5	
Conveyor Transfer Point (controlled)	0.00014 ⁱ	Е	4.6 x 10 ⁻⁵ⁱ	D	1.3 x 10 ⁻⁵	E
(SCC 3-05-020-06)			e:			
Wet Drilling - Unfragmented Stone (SCC 3-05-020-10)	ND		8.0 x 10 ^{-5j}	E	ND	
Truck Unloading -Fragmented Stone	ND		1.6 x 10 ^{-5j}	Е	ND	
(SCC 3-05-020-31)						
Truck Loading - Conveyor, crushed	ND		0.00010 ^k	Е	ND	
stone (SCC 3-05-020-32)						

a. Emission factors represent uncontrolled emissions unless noted. Emission factors in lb/Ton of material of throughput. SCC = Source Classification Code. ND = No data.

b. Controlled sources (with wet suppression) are those that are part of the processing plant that employs current wet suppression technology similar to the study group. The moisture content of the study group without wet suppression systems operating (uncontrolled) ranged from 0.21 to 1.3 percent, and the same facilities operating wet suppression systems (controlled) ranged from 0.55 to 2.88 percent. Due to carry over of the small amount of moisture required, it has been shown that each source, with the exception of crushers, does not need to employ direct water sprays. Although the moisture content was the only variable measured, other process features may have as much influence on emissions from a given source. Visual observations from each source under normal operating conditions are probably the best indicator of which emission factor is most appropriate. Plants that employ substandard control measures as indicated by visual observations should use the uncontrolled factor with an appropriate control efficiency that best reflects the effectiveness of the controls employed.

c. References 1, 3, 7, and 8

d. References 3, 7, and 8

Table 11.24-2 (English Units). EMISSION FACTORS FOR METALLIC MINERALS PROCESSING^{a,b}

			Filterable ^{b,c}		
Source	PM	RATING	PM-10	RATING	
Low-moisture ore ^c			•		
Primary crushing (SCC 3-03-024-01) ^d	0.5	С	0.05	С	
Secondary crushing (SCC 303-024-02) ^d	1.2	D	ND		
Tertiary crushing (SCC 3-03-024-03) ^d	2.7	Е	0.16	Е	
Wet grinding	Neg		Neg		
Dry grinding with air conveying and/or air classification (SCC 3-03-024-09) ^e	28.8	С	26	С	
Dry grinding without air conveying and/or air classification (SCC 3-03-024-10) ^e	2.4	D	0.31	D	
Dryingall minerals except titanium/zirconium sands (SCC 3-03-024-11) ^f	19.7	С	12	С	
Dryingtitanium/zirconium with cyclones (SCC 3-03-024-11) ^f	0.5	С	ND	С	
Material handling and transferall minerals except bauxite (SCC 3-03-024-04) ^g	0.12	С	0.06	С	
Material handling and transferbauxite/alumina (SCC 3-03-024-04) ^{g,h}	1.1	С	ND		
High-moisture ore ^c					
Primary crushing (SCC 3-03-024-05) ^d	0.02	С	0.009	С	
Secondary crushing (SCC 3-03-024-06) ^d	0.05	D	0.02	D	
Tertiary crushing (SCC 3-03-024-07) ^d	0.06	Е	0.02	Е	
Wet grinding	Neg		Neg		
Dry grinding with air conveying and/or air classification (SCC 3-03-024-09) ^e	28.8	С	26	С	
Dry grinding without air conveying and/or air classification (SCC 3-03-024-10) ^e	2.4	D	0.31	D	
Dryingall minerals except titanium/zirconium sands (SCC 3-03-024-11) ^f	19.7	С	12	С	
Dryingtitanium/zirconium with cyclones (SCC 3-03-024-11) ^f	0.5	С	ND		
Material handling and transferall minerals except bauxite (SCC 3-03-024-08) ^g	0.01	С	0.004	С	
Material handling and transferbauxite/alumina (SCC 3-03-024-08) ^{g,h}	ND		ND		

EMISSION FACTOR RATINGS: (A-E) Follow The Emission Factor

^a References 9-12; factors represent uncontrolled emissions unless otherwise noted; controlled emission factors are discussed in Section 11.24.3. All emission factors are in lb/ton of material processed unless noted. SCC = Source Classification Code. Neg = negligible. ND = no data.

- ^b Filterable PM is that PM collected on or prior to the filter of an EPA Method 5 (or equivalent) sampling train.
- ^c Defined in Section 11.24.2.
- ^d Based on weight of material entering primary crusher.
- ^e Based on weight of material entering grinder; emission factors are the same for both low-moisture and high-moisture ore because material is usually dried before entering grinder.
- ^f Based on weight of material exiting dryer; emission factors are the same for both high-moisture and low-moisture ores; SO_x emissions are fuel dependent (see Chapter 1); NO_x emissions depend on burner design and combustion temperature (see Chapter 1).
- ^g Based on weight of material transferred; applies to each loading or unloading operation and to each conveyor belt transfer point.
- ^h Bauxite with moisture content as high as 15 to 18% can exhibit the emission characteristics of lowmoisture ore; use low-moisture ore emission factor for bauxite unless material exhibits obvious sticky, nondusting characteristics.

Table 5.2-7 (Metric And English Units). EVAPORATIVE EMISSIONS FROM GASOLINE SERVICE **STATION OPERATIONS^a**

	Emission Rate		
Emission Source	mg/L Throughput	lb/10 ³ gal Throughput	
Filling underground tank (Stage I)	44 G 400 P		
Submerged filling	880	7.3	
Splash filling	1,380	11.5	
Balanced submerged filling	40	0.3	
Underground tank breathing and emptying ^b	120	1.0	
Vehicle refueling operations (Stage II)			
Displacement losses (uncontrolled)°	1,320	11 .0	
Displacement losses (controlled)	132	1.1	
Spillage	80	0.7	

Factors are for VOC as well as total organic emissions, because of the methane and ethane content of gasoline evaporative emissions is negligible.

b Includes any vapor loss between underground tank and gas pump.

[°] Based on Equation 6, using average conditions.

A second source of vapor emissions from service stations is underground tank breathing. Breathing losses occur daily and are attributable to gasoline evaporation and barometric pressure changes. The frequency with which gasoline is withdrawn from the tank, allowing fresh air to enter to enhance evaporation, also has a major effect on the quantity of these emissions. An average breathing emission rate is 120 mg/L (1.0 lb/1000 gal) of throughput.

5.2.2.3 Motor Vehicle Refueling -

Service station vehicle refueling activity also produces evaporative emissions. Vehicle refueling emissions come from vapors displaced from the automobile tank by dispensed gasoline and from spillage. The quantity of displaced vapors depends on gasoline temperature, auto tank temperature, gasoline RVP, and dispensing rate. Equation 6 can be used to estimate uncontrolled displacement losses from vehicle refueling for a particular set of conditions.¹⁴

$$E_{R} = 264.2 [(-5.909) - 0.0949 (\Delta T) + 0.0884 (T_{D}) + 0.485 (RVP)]$$

where:

 E_R = refueling emissions, mg/L E_T = difference between temperature of fuel in vehicle tank and temperature of dispensed fuel, °F T_D = temperature of dispensed fuel, °F

RVP = Reid vapor pressure, psia

Note that this equation and the spillage loss factor are incorporated into the MOBILE model. The MOBILE model allows for disabling of this calculation if it is desired to include these emissions in the stationary area source portion of an inventory rather than in the mobile source portion. It is estimated that the uncontrolled emissions from vapors displaced during vehicle refueling average 1320 mg/L (11.0 lb/1000 gal) of dispensed gasoline.5,13

Spillage loss is made up of contributions from prefill and postfill nozzle drip and from spit-back and

(6)

Table 11.17-4 (English Units). EMISSION FACTORS FOR LIME MANUFACTURING
RAW MATERIAL AND PRODUCT PROCESSING AND HANDLING ^a

	Filterable ^b			
Source	PM	EMISSION FACTOR RATING	PM-10	EMISSION FACTOR RATING
Primary crusher ^c (SCC 3-05-016-01)	0.017	E	ND	
Scalping screen and hammermill (secondary crusher) (SCC 3-05-016-02) ^c	0.62	Е	ND	
Primary crusher with fabric filter ^d (SCC 3-05-016-01)	0.00043	D	ND	
Primary screen with fabric filter ^e (SCC 3-05-016-16)	0.00061	D	ND	
Crushed material conveyor transfer with fabric filter ^f (SCC 3-05-016-24)	8.8x10 ⁻⁵	D	ND	
Secondary and tertiary screen with fabric filter ^g (SCC 3-05-016-25)	0.00013	D	ND	
Product transfer and conveying (SCC 3-05-016-15) ^h	2.2	Е	ND	
Product loading, enclosed truck (SCC 3-05-016-26) ^h	0.61	D	ND	
Product loading, open truck (SCC 3-05-016-27) ^h	1.5	D	ND	

^a Factors represent uncontrolled emissions unless otherwise noted. Factors are lb/ton of material processed unless noted. ND = no data. SCC = Source Classification Code.

- ^b Filterable PM is that PM collected on or before the filter of an EPA Method 5 (or equivalent) sampling train.
- ^c Reference 8; factors are lb/ton.
- ^d Reference 35. Factors are lb/ton of material processed. Includes scalping screen, scalping screen discharges, primary crusher, primary crusher discharges, and ore discharge.
- ^e Reference 35. Factors are lb/ton of material processed. Includes primary screening, including the screen feed, screen discharge, and surge bin discharge.
- ^f Reference 35. Factors are lb/ton of material processed. Based on average of three runs each of emissions from two conveyor transfer points on the conveyor from the primary crusher to the primary stockpile.
- ^g Reference 35. Emission factors in units of kg/Mg of material processed. Based on sum of emissions from two emission points that include conveyor transfer point for the primary stockpile underflow to the secondary screen, secondary screen, tertiary screen, and tertiary screen discharge.
- ^h Reference 12; units are lb/ton of product loaded.

13.2.4 Aggregate Handling And Storage Piles

13.2.4.1 General

Inherent in operations that use minerals in aggregate form is the maintenance of outdoor storage piles. Storage piles are usually left uncovered, partially because of the need for frequent material transfer into or out of storage.

Dust emissions occur at several points in the storage cycle, such as material loading onto the pile, disturbances by strong wind currents, and loadout from the pile. The movement of trucks and loading equipment in the storage pile area is also a substantial source of dust.

13.2.4.2 Emissions And Correction Parameters

The quantity of dust emissions from aggregate storage operations varies with the volume of aggregate passing through the storage cycle. Emissions also depend on 3 parameters of the condition of a particular storage pile: age of the pile, moisture content, and proportion of aggregate fines.

When freshly processed aggregate is loaded onto a storage pile, the potential for dust emissions is at a maximum. Fines are easily disaggregated and released to the atmosphere upon exposure to air currents, either from aggregate transfer itself or from high winds. As the aggregate pile weathers, however, potential for dust emissions is greatly reduced. Moisture causes aggregation and cementation of fines to the surfaces of larger particles. Any significant rainfall soaks the interior of the pile, and then the drying process is very slow.

Silt (particles equal to or less than 75 micrometers $[\mu m]$ in diameter) content is determined by measuring the portion of dry aggregate material that passes through a 200-mesh screen, using ASTM-C-136 method.¹ Table 13.2.4-1 summarizes measured silt and moisture values for industrial aggregate materials.

Table 13.2.4-1. TYPICAL SILT AND MOISTURE CONTENTS OF MATERIALS AT VARIOUS INDUSTRIES*

			Silt	Content (%	6)	Moist	ure Content ((%)
	No. Of		No. Of			No. Of		
Industry	Facilities	Material	Samples	Range	Mean	Samples	Range	Mean
Iron and steel production	9	Pellet ore	13	1.3 - 13	4.3	11	0.64 - 4.0	2.2
		Lump ore	9	2.8 - 19	9.5	6	1. 6 - 8.0	5.4
		Coal	12	2.0 - 7.7	4.6	11	2.8 - 11	4.8
		Slag	3	3.0 - 7.3	5.3	3	0.25 - 2.0	0.92
		Flue dust	3	2.7 - 23	13	1		7
		Coke breeze	2	4.4 - 5.4	4.9	2	6.4 - 9.2	7.8
		Blended ore	1		15	1		6.6
		Sinter	1		0.7	0		_
		Limestone	3	0.4 - 2.3	1 .0	2	ND	0.2
Stone quarrying and processing	2	Crushed limestone	2	1.3 - 1.9	1.6	2	0.3 - 1.1	0.7
		Various limestone products	8	0.8 - 14	3.9	8	0.46 - 5.0	2.1
Taconite mining and processing	1	Pellets	9	2.2 - 5.4	3.4	7	0.05 - 2.0	0.9
		Tailings	2	ND	11	1		0.4
Western surface coal mining	4	Coal	15	3.4 - 16	6.2	7	2.8 - 20	6.9
		Overburden	15	3.8 - 15	7.5	0		_
		Exposed ground	3	5.1 - 21	15	3	0.8 - 6.4	3.4
Coal-fired power plant	1	Coal (as received)	60	0.6 - 4.8	2.2	59	2.7 - 7.4	4.5
Municipal solid waste landfills	4	Sand	1	—	2.6	1		7.4
		Slag	2	3.0 - 4.7	3.8	2	2.3 - 4.9	3.6
		Cover	5	5.0 - 16	9.0	5	8.9 - 16	12
		Clay/dirt mix	1	_	9.2	1		14
		Clay	2	4.5 - 7.4	6.0	2	8.9 - 11	10
		Fly ash	4	78 - 81	80	4	26 - 29	27
		Misc. fill materials	1		12	1		11

^a References 1-10. ND = no data.

13.2.4-2

13.2.4.3 Predictive Emission Factor Equations

Total dust emissions from aggregate storage piles result from several distinct source activities within the storage cycle:

- 1. Loading of aggregate onto storage piles (batch or continuous drop operations).

- Equipment traffic in storage area.
 Wind erosion of pile surfaces and ground areas around piles.
 Loadout of aggregate for shipment or for return to the process stream (batch or continuous) drop operations).

Either adding aggregate material to a storage pile or removing it usually involves dropping the material onto a receiving surface. Truck dumping on the pile or loading out from the pile to a truck with a front-end loader are examples of batch drop operations. Adding material to the pile by a conveyor stacker is an example of a continuous drop operation.

The quantity of particulate emissions generated by either type of drop operation, per kilogram (kg) (ton) of material transferred, may be estimated, with a rating of A, using the following empirical expression:¹¹

$$E = k(0.0016) \qquad \frac{\left(\frac{U}{2.2}\right)^{1.3}}{\left(\frac{M}{2}\right)^{1.4}} \text{ (kg/megagram [Mg])}$$
$$E = k(0.0032) \qquad \frac{\left(\frac{U}{5}\right)^{1.3}}{\left(\frac{M}{2}\right)^{1.4}} \text{ (pound [lb]/ton)}$$

where:

E = emission factor

k = particle size multiplier (dimensionless)

U = mean wind speed, meters per second (m/s) (miles per hour [mph])

M = material moisture content (%)

The particle size multiplier in the equation, k, varies with aerodynamic particle size range, as follows:

Aerodynamic Particle Size Multiplier (k) For Equation 1				
< 30 µm	< 15 µm	< 10 µm	< 5 μm	< 2.5 μm
0.74	0.48	0.35	0.20	0.053ª

^a Multiplier for $< 2.5 \mu m$ taken from Reference 14.

The equation retains the assigned quality rating if applied within the ranges of source conditions that were tested in developing the equation, as follows. Note that silt content is included, even though silt content does not appear as a correction parameter in the equation. While it is reasonable to expect that silt content and emission factors are interrelated, no significant correlation between the 2 was found during the derivation of the equation, probably because most tests with high silt contents were conducted under lower winds, and vice versa. It is recommended that estimates from the equation be reduced 1 quality rating level if the silt content used in a particular application falls outside the range given:

	Ranges Of Source Con	ditions For Equation 1	
Silt Content	Mainture Content	Wind	Speed
Silt Content (%)	Moisture Content (%)	m/s	mph
0.44 - 19	0.25 - 4.8	0.6 - 6.7	1.3 - 15

To retain the quality rating of the equation when it is applied to a specific facility, reliable correction parameters must be determined for specific sources of interest. The field and laboratory procedures for aggregate sampling are given in Reference 3. In the event that site-specific values for

(1)

correction parameters cannot be obtained, the appropriate mean from Table 13.2.4-1 may be used, but the quality rating of the equation is reduced by 1 letter.

For emissions from equipment traffic (trucks, front-end loaders, dozers, etc.) traveling between or on piles, it is recommended that the equations for vehicle traffic on unpaved surfaces be used (see Section 13.2.2). For vehicle travel between storage piles, the silt value(s) for the areas among the piles (which may differ from the silt values for the stored materials) should be used.

Worst-case emissions from storage pile areas occur under dry, windy conditions. Worst-case emissions from materials-handling operations may be calculated by substituting into the equation appropriate values for aggregate material moisture content and for anticipated wind speeds during the worst case averaging period, usually 24 hours. The treatment of dry conditions for Section 13.2.2, vehicle traffic, "Unpaved Roads", follows the methodology described in that section centering on parameter p. A separate set of nonclimatic correction parameters and source extent values corresponding to higher than normal storage pile activity also may be justified for the worst-case averaging period.

13.2.4.4 Controls¹²⁻¹³

Watering and the use of chemical wetting agents are the principal means for control of aggregate storage pile emissions. Enclosure or covering of inactive piles to reduce wind erosion can also reduce emissions. Watering is useful mainly to reduce emissions from vehicle traffic in the storage pile area. Watering of the storage piles themselves typically has only a very temporary slight effect on total emissions. A much more effective technique is to apply chemical agents (such as surfactants) that permit more extensive wetting. Continuous chemical treating of material loaded onto piles, coupled with watering or treatment of roadways, can reduce total particulate emissions from aggregate storage operations by up to 90 percent.¹²

References For Section 13.2.4

- 1. C. Cowherd, Jr., et al., Development Of Emission Factors For Fugitive Dust Sources, EPA-450/3-74-037, U. S. Environmental Protection Agency, Research Triangle Park, NC, June 1974.
- 2. R. Bohn, et al., Fugitive Emissions From Integrated Iron And Steel Plants, EPA-600/2-78-050, U. S. Environmental Protection Agency, Cincinnati, OH, March 1978.
- 3. C. Cowherd, Jr., et al., Iron And Steel Plant Open Dust Source Fugitive Emission Evaluation, EPA-600/2-79-103, U. S. Environmental Protection Agency, Cincinnati, OH, May 1979.
- 4. Evaluation Of Open Dust Sources In The Vicinity Of Buffalo, New York, EPA Contract No. 68-02-2545, Midwest Research Institute, Kansas City, MO, March 1979.
- 5. C. Cowherd, Jr., and T. Cuscino, Jr., *Fugitive Emissions Evaluation*, MRI-4343-L, Midwest Research Institute, Kansas City, MO, February 1977.
- 6. T. Cuscino, Jr., et al., Taconite Mining Fugitive Emissions Study, Minnesota Pollution Control Agency, Roseville, MN, June 1979.
- 7. Improved Emission Factors For Fugitive Dust From Western Surface Coal Mining Sources, 2 Volumes, EPA Contract No. 68-03-2924, PEDCo Environmental, Kansas City, MO, and Midwest Research Institute, Kansas City, MO, July 1981.
- 8. Determination Of Fugitive Coal Dust Emissions From Rotary Railcar Dumping, TRC, Hartford, CT, May 1984.
- 9. *PM-10 Emission Inventory Of Landfills In the Lake Calumet Area*, EPA Contract No. 68-02-3891, Midwest Research Institute, Kansas City, MO, September 1987.

- 10. Chicago Area Particulate Matter Emission Inventory Sampling And Analysis, EPA Contract No. 68-02-4395, Midwest Research Institute, Kansas City, MO, May 1988.
- 11. Update Of Fugitive Dust Emission Factors In AP-42 Section 11.2, EPA Contract No. 68-02-3891, Midwest Research Institute, Kansas City, MO, July 1987.
- 12. G. A. Jutze, et al., Investigation Of Fugitive Dust Sources Emissions And Control, EPA-450/3-74-036a, U. S. Environmental Protection Agency, Research Triangle Park, NC, June 1974.
- 13. C. Cowherd, Jr., et al., Control Of Open Fugitive Dust Sources, EPA-450/3-88-008, U. S. Environmental Protection Agency, Research Triangle Park, NC, September 1988.
- 14. C. Cowherd, *Background Document for Revisions to Fine Fraction Ratios & sed for AP-42 Fugitive Dust Emission Factors.* Prepared by Midwest Research Institute for Western Governors Association, Western Regional Air Partnership, Denver, CO, February 1, 2006.

2012. The engine for construction equipment. 75-147 kW at 1500-2500 rpm

The new 1 litre class.

These are the characteristics of the 2012:

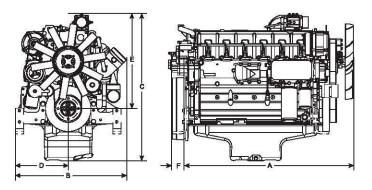
Modern liquid-cooled 4- and 6-cylinder in-line engines. 1 litre displacement per cylinder. Compact design and high power-tovolume-ratio. Turbocharging and turbocharging with charge air cooling. High-pressure fuel injection up to 1600 bar. Electronic engine governor with diagnostic facilities and CAN-bus optional. 3 separate mounting options for gear-driven hydraulic pumps.

Easy accessible service points on one engine side.

Wedge ribbed belt drive with automatic belt tensioner optional.

Your benefits:

- Fast and powerful response to changing operating duties, dynamic power development.
- Low cost for noise insulation measures. High comfort in the driver's cab because of low noise level. Low noise emission, low environmental impact.
- High operating economy thanks to low fuel consumption, long oil change intervals and low maintenance requirement.
- Low exhaust emission for a clean environment. Meets exhaust regulation EU-RL 97/68 (Step 2) and US-RPA Nonroad (Tier 2).
- High reliability even under extreme working conditions.



Engine description

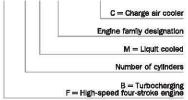
Type of cooling:	Liquid cooling, thermostatically controlled at engine outlet. Charge-air-cooled engines with air-to-air charge air cooler.
Crankcase:	High grey cast iron crankcase, for monobloc construction.
Mass balance shafts:	4-cylinder optional with full mass balance by 2 shafts integrated into the crankcase.
Crankcase breather:	Closed-circuit crankcase breather.
Cylinder head:	Grey cast block-type cylinder head.
Valve arrangement/	
timing:	Two valves per cylinder, actuated from gear driven camshaft via tappets, push rods and rocker arms.
Piston:	Three-ring aluminium piston.
Piston cooling:	Oil cooled with spray nozzles.
Connecting rod:	Forged steed rod.
Crankshaft:	Forged steel shaft with integral counterweights, 4-cylinder version with integral mass balancing shafts.
Camshaft:	Steel shaft.
Lubrication system:	Forced-feed circulation lubrication with geargump.
Lube oil cooler:	Oil cooler integrated in coolant circu
Oil and fuel filter:	Paper-type microfilter as replaceable rettridge, optional exchangeable cup-shaped filter cartridges for environmentally comma ble filter change from above.
Injection pump/ governor:	angle injection numerintegra ed in crinkcase.
Fuel life terms: Injection nume:	Hechanical cent er ou ge vernor (standard); electronic engine governor (EMR) optional. Nechanical gear nump integrated in vibelt drive. The pole pozzle, without leakcil.
Alternator Statter mytor older riter sachistics:	Time onese alternator 24 V. Electric state air premarter for spontaneous and containing comparise conducating
Heating second	characteristics
Options:	Intake manufold, exhaust me onl, urbochaiger positions, air compressed, hydraan pump installation prisitions, for 2/3/4 for meel housings, flywheele are or 24 V electrics, of pans
Va	
0	

Dimensions

1

Engine with beit drive		A	в	C	D	E	F
BF 4 M 2012	mm	742	643	741	300	506	105
BF 4 M 2012 C	mm	742	643	835	300	600	105
BF 6 M 2012 C	mm	998	628	920	300	600	105

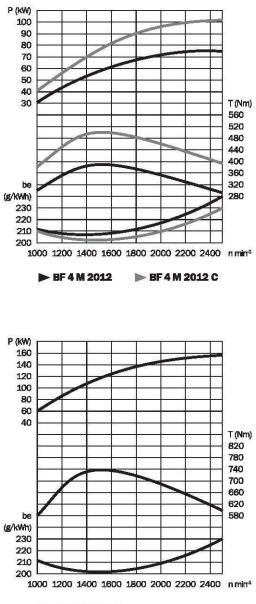
Engine with we ribbed beit drive	and the second s	-V) A	В	C	D	E	F
BF 4 M 2012	mm	798	643	741	300	506	105
BF 4 M 2012 C	mm	798	643	835	300	600	105
BF 6 M 2012 C	mm	1015	628	920	300	600	105


▶ Technical data

Engine type		BF 4 M 2012	BF 4 M 2012 C	BF 6 M 2012 C
Number of cylinders		4	4	6
Bore/stroke	mm	101/126	101/126	101/126
Displacement	1	4.04	4.04	6.06
Compression ratio		19	19	19
Max. rated speed	rpm	2500	2500	2500
Mean piston speed	m/s	10.5	10.5	10.5

Power ratings for industrial engines ²⁾	kW	74.9	103	155
at speed	rpm	2500	2500	2500
Mean effective pressure	bar	8.9	12.2	12.3
Max, torque	Nm	390	493	743
at speed	rpm	1500	1500	1500
Minimum idle speed	npm	800	800	800
Specific fuel consumption 3)	g/kWh	208	202	202
Weight to DIN 70020, part 7A ⁴⁾	kg	391	391	509

Modell designation



- 1) Power ratings without deduction of fan power requirement.
- 2) Fuel stop power to ISO 3046/1.
- Specific fuel consumption based on diesel fuel with a specific gravity of 0.835 kg/dm³ at 15°C.
- Without starter motor/alternator, radiator and liquids, however with flywheel and flywheel housing.

The values given in this data sheet are for information purposes only and not binding. The information given in the offer is decisive.

Standard engines

▶ BF 6 M 2012 C

The engine company.

DEUTZ AG DEUTZ MOTOR

Deutz-Mülheimer Str. 147-149 D-51063 Köln Telephone: +49 (0) 2 21-8 22-0 Fax: +49 (0) 2 21-8 22-25 68 Internet: www.deutz.com eMail: info@deutz.com

3.3 Gasoline And Diesel Industrial Engines

3.3.1 General

The engine category addressed by this section covers a wide variety of industrial applications of both gasoline and diesel internal combustion (IC) engines such as aerial lifts, fork lifts, mobile refrigeration units, generators, pumps, industrial sweepers/scrubbers, material handling equipment (such as conveyors), and portable well-drilling equipment. The three primary fuels for reciprocating IC engines are gasoline, diesel fuel oil (No.2), and natural gas. Gasoline is used primarily for mobile and portable engines. Diesel fuel oil is the most versatile fuel and is used in IC engines of all sizes. The rated power of these engines covers a rather substantial range, up to 250 horsepower (hp) for gasoline engines and up to 600 hp for diesel engines. (Diesel engines greater than 600 hp are covered in Section 3.4, "Large Stationary Diesel And All Stationary Dual-fuel Engines".) Understandably, substantial differences in engine duty cycles exist. It was necessary, therefore, to make reasonable assumptions concerning usage in order to formulate some of the emission factors.

3.3.2 Process Description

All reciprocating IC engines operate by the same basic process. A combustible mixture is first compressed in a small volume between the head of a piston and its surrounding cylinder. The mixture is then ignited, and the resulting high-pressure products of combustion push the piston through the cylinder. This movement is converted from linear to rotary motion by a crankshaft. The piston returns, pushing out exhaust gases, and the cycle is repeated.

There are 2 methods used for stationary reciprocating IC engines: compression ignition (CI) and spark ignition (SI). This section deals with both types of reciprocating IC engines. All diesel-fueled engines are compression ignited, and all gasoline-fueled engines are spark ignited.

In CI engines, combustion air is first compression heated in the cylinder, and diesel fuel oil is then injected into the hot air. Ignition is spontaneous because the air temperature is above the autoignition temperature of the fuel. SI engines initiate combustion by the spark of an electrical discharge. Usually the fuel is mixed with the air in a carburetor (for gasoline) or at the intake valve (for natural gas), but occasionally the fuel is injected into the compressed air in the cylinder.

CI engines usually operate at a higher compression ratio (ratio of cylinder volume when the piston is at the bottom of its stroke to the volume when it is at the top) than SI engines because fuel is not present during compression; hence there is no danger of premature autoignition. Since engine thermal efficiency rises with increasing pressure ratio (and pressure ratio varies directly with compression ratio), CI engines are more efficient than SI engines. This increased efficiency is gained at the expense of poorer response to load changes and a heavier structure to withstand the higher pressures.¹

3.3.3 Emissions

Most of the pollutants from IC engines are emitted through the exhaust. However, some total organic compounds (TOC) escape from the crankcase as a result of blowby (gases that are vented from the oil pan after they have escaped from the cylinder past the piston rings) and from the fuel tank and carburetor because of evaporation. Nearly all of the TOCs from diesel CI engines enter the

atmosphere from the exhaust. Evaporative losses are insignificant in diesel engines due to the low volatility of diesel fuels.

The primary pollutants from internal combustion engines are oxides of nitrogen (NO_x) , total organic compounds (TOC), carbon monoxide (CO), and particulates, which include both visible (smoke) and nonvisible emissions. Nitrogen oxide formation is directly related to high pressures and temperatures during the combustion process and to the nitrogen content, if any, of the fuel. The other pollutants, HC, CO, and smoke, are primarily the result of incomplete combustion. Ash and metallic additives in the fuel also contribute to the particulate content of the exhaust. Sulfur oxides (SO_x) also appear in the exhaust from IC engines. The sulfur compounds, mainly sulfur dioxide (SO_2) , are directly related to the sulfur content of the fuel.²

3.3.3.1 Nitrogen Oxides -

Nitrogen oxide formation occurs by two fundamentally different mechanisms. The predominant mechanism with internal combustion engines is thermal NO_x which arises from the thermal dissociation and subsequent reaction of nitrogen (N_2) and oxygen (O_2) molecules in the combustion air. Most thermal NO_x is formed in the high-temperature region of the flame from dissociated molecular nitrogen in the combustion air. Some NO_x , called prompt NO_x , is formed in the early part of the flame from reaction of nitrogen intermediary species, and HC radicals in the flame. The second mechanism, fuel NO_x , stems from the evolution and reaction of fuel-bound nitrogen compounds with oxygen. Gasoline, and most distillate oils have no chemically-bound fuel N_2 and essentially all NO_x formed is thermal NO_x .

3.3.3.2 Total Organic Compounds -

The pollutants commonly classified as hydrocarbons are composed of a wide variety of organic compounds and are discharged into the atmosphere when some of the fuel remains unburned or is only partially burned during the combustion process. Most unburned hydrocarbon emissions result from fuel droplets that were transported or injected into the quench layer during combustion. This is the region immediately adjacent to the combustion chamber surfaces, where heat transfer outward through the cylinder walls causes the mixture temperatures to be too low to support combustion.

Partially burned hydrocarbons can occur because of poor air and fuel homogeneity due to incomplete mixing, before or during combustion; incorrect air/fuel ratios in the cylinder during combustion due to maladjustment of the engine fuel system; excessively large fuel droplets (diesel engines); and low cylinder temperature due to excessive cooling (quenching) through the walls or early cooling of the gases by expansion of the combustion volume caused by piston motion before combustion is completed.²

3.3.3.3 Carbon Monoxide -

Carbon monoxide is a colorless, odorless, relatively inert gas formed as an intermediate combustion product that appears in the exhaust when the reaction of CO to CO_2 cannot proceed to completion. This situation occurs if there is a lack of available oxygen near the hydrocarbon (fuel) molecule during combustion, if the gas temperature is too low, or if the residence time in the cylinder is too short. The oxidation rate of CO is limited by reaction kinetics and, as a consequence, can be accelerated only to a certain extent by improvements in air and fuel mixing during the combustion process.²⁻³

3.3.3.4 Smoke and Particulate Matter -

White, blue, and black smoke may be emitted from IC engines. Liquid particulates appear as white smoke in the exhaust during an engine cold start, idling, or low load operation. These are formed in the quench layer adjacent to the cylinder walls, where the temperature is not high enough to ignite the fuel. Blue smoke is emitted when lubricating oil leaks, often past worn piston rings, into the combustion chamber and is partially burned. Proper maintenance is the most effective method of preventing blue smoke emissions from all types of IC engines. The primary constituent of black smoke is agglomerated carbon particles (soot) formed in regions of the combustion mixtures that are oxygen deficient.²

3.3.3.5 Sulfur Oxides -

Sulfur oxides emissions are a function of only the sulfur content in the fuel rather than any combustion variables. In fact, during the combustion process, essentially all the sulfur in the fuel is oxidized to SO_2 . The oxidation of SO_2 gives sulfur trioxide (SO_3), which reacts with water to give sulfuric acid (H_2SO_4), a contributor to acid precipitation. Sulfuric acid reacts with basic substances to give sulfates, which are fine particulates that contribute to PM-10 and visibility reduction. Sulfur oxide emissions also contribute to corrosion of the engine parts.²⁻³

3.3.4 Control Technologies

Control measures to date are primarily directed at limiting NO_x and CO emissions since they are the primary pollutants from these engines. From a NO_x control viewpoint, the most important distinction between different engine models and types of reciprocating engines is whether they are rich-burn or lean-burn. Rich-burn engines have an air-to-fuel ratio operating range that is near stoichiometric or fuel-rich of stoichiometric and as a result the exhaust gas has little or no excess oxygen. A lean-burn engine has an air-to-fuel operating range that is fuel-lean of stoichiometric; therefore, the exhaust from these engines is characterized by medium to high levels of O_2 . The most common NO_x control technique for diesel and dual-fuel engines focuses on modifying the combustion process. However, selective catalytic reduction (SCR) and nonselective catalytic reduction (NSCR) which are post-combustion techniques are becoming available. Controls for CO have been partly adapted from mobile sources.⁴

Combustion modifications include injection timing retard (ITR), preignition chamber combustion (PCC), air-to-fuel ratio adjustments, and derating. Injection of fuel into the cylinder of a CI engine initiates the combustion process. Retarding the timing of the diesel fuel injection causes the combustion process to occur later in the power stroke when the piston is in the downward motion and combustion chamber volume is increasing. By increasing the volume, the combustion temperature and pressure are lowered, thereby lowering NO_x formation. ITR reduces NO_x from all diesel engines; however, the effectiveness is specific to each engine model. The amount of NO_x reduction with ITR diminishes with increasing levels of retard.⁴

Improved swirl patterns promote thorough air and fuel mixing and may include a precombustion chamber (PCC). A PCC is an antechamber that ignites a fuel-rich mixture that propagates to the main combustion chamber. The high exit velocity from the PCC results in improved mixing and complete combustion of the lean air/fuel mixture which lowers combustion temperature, thereby reducing NO_x emissions.⁴

The air-to-fuel ratio for each cylinder can be adjusted by controlling the amount of fuel that enters each cylinder. At air-to-fuel ratios less than stoichiometric (fuel-rich), combustion occurs under conditions of insufficient oxygen which causes NO_x to decrease because of lower oxygen and lower temperatures. Derating involves restricting the engine operation to lower than normal levels of power production for the given application. Derating reduces cylinder pressures and temperatures, thereby lowering NO_x formation rates.⁴

SCR is an add-on NO_x control placed in the exhaust stream following the engine and involves injecting ammonia (NH₃) into the flue gas. The NH₃ reacts with NO_x in the presence of a catalyst to form water and nitrogen. The effectiveness of SCR depends on fuel quality and engine duty cycle (load fluctuations). Contaminants in the fuel may poison or mask the catalyst surface causing a reduction or termination in catalyst activity. Load fluctuations can cause variations in exhaust temperature and NO_x concentration which can create problems with the effectiveness of the SCR system.⁴

NSCR is often referred to as a three-way conversion catalyst system because the catalyst reactor simultaneously reduces NO_x , CO, and HC and involves placing a catalyst in the exhaust stream of the engine. The reaction requires that the O_2 levels be kept low and that the engine be operated at fuel-rich air-to-fuel ratios.⁴

The most accurate method for calculating such emissions is on the basis of "brake-specific" emission factors (pounds per horsepower-hour [lb/hp-hr]). Emissions are the product of the brakespecific emission factor, the usage in hours, the rated power available, and the load factor (the power actually used divided by the power available). However, for emission inventory purposes, it is often easier to assess this activity on the basis of fuel used.

Once reasonable usage and duty cycles for this category were ascertained, emission values were aggregated to arrive at the factors for criteria and organic pollutants presented. Factors in Table 3.3-1 are in pounds per million British thermal unit (lb/MMBtu). Emission data for a specific design type were weighted according to estimated material share for industrial engines. The emission factors in these tables, because of their aggregate nature, are most appropriately applied to a population of industrial engines rather than to an individual power plant. Table 3.3-2 shows unweighted speciated organic compound and air toxic emission factors based upon only 2 engines. Their inclusion in this section is intended for rough order-of-magnitude estimates only.

Table 3.3-3 summarizes whether the various diesel emission reduction technologies (some of which may be applicable to gasoline engines) will generally increase or decrease the selected parameter. These technologies are categorized into fuel modifications, engine modifications, and exhaust after-treatments. Current data are insufficient to quantify the results of the modifications. Table 3.3-3 provides general information on the trends of changes on selected parameters.

3.3.5 Updates Since the Fifth Edition

The Fifth Edition was released in January 1995. Revisions to this section since that date are summarized below. For further detail, consult the memoranda describing each supplement or the background report for this section.

Supplement A, February 1996

No changes.

Supplement B, October 1996

- Text was revised concerning emissions and controls.
- The CO_2 emission factor was adjusted to reflect 98.5 percent conversion efficiency.

	Gasoline Fuel (SCC 2-02-003-01, 2-03-003-01)		Diese (SCC 2-02-001-		
Pollutant	Emission Factor (lb/hp-hr) (power output)	Emission Factor (lb/MMBtu) (fuel input)	Emission Factor (lb/hp-hr) (power output)	Emission Factor (lb/MMBtu) (fuel input)	EMISSION FACTOR RATING
NO _x	0.011	1.63	0.031	4.41	D
со	6.96 E-03 ^d	0.99 ^a	6.68 E-03	0.95	D
SO _x	5.91 E-04	0.084	2.05 E-03	0.29	D
PM-10 ^b	7.21 E-04	0.10	2.20 E-03	0.31	D
CO ₂ °	1.08	154	1.15	164	В
Aldehydes	4.85 E-04	0.07	4.63 E-04	0.07	D
TOC					
Exhaust	0.015	2.10	2.47 E-03	0.35	D
Evaporative	6.61 E-04	0.09	0.00	0.00	Е
Crankcase	4.85 E-03	0.69	4.41 E-05	0.01	Е
Refueling	1.08 E-03	0.15	0.00	0.00	Е

Table 3.3-1. EMISSION FACTORS FOR UNCONTROLLED GASOLINE AND DIESEL INDUSTRIAL ENGINES^a

^{1.08} E-03 0.13 0.00 0.00 E
 ⁸ References 2,5-6,9-14. When necessary, an average brake-specific fuel consumption (BSFC) of 7,000 Btu/hp-hr was used to convert from lb/MMBtu to lb/hp-hr. To convert from lb/hp-hr to kg/kw-hr, multiply by 0.608. To convert from lb/MMBtu to ng/J, multiply by 430. SCC = Source Classification Code. TOC = total organic compounds.
 ⁹ PM-10 = particulate matter less than or equal to 10 µm aerodynamic diameter. All particulate is assumed to be ≤ 1 µm in size.
 ⁶ Assumes 99% conversion of carbon in fuel to CO₂ with 87 weight % carbon in diesel, 86 weight % carbon in gasoline, average BSFC of 7,000 Btu/hp-hr, diesel heating value of 19,300 Btu/lb, and gasoline heating value of 20,300 Btu/lb.
 ⁴ Instead of 0.439 lb/hp-hr (power output) and 62.7 lb/mmBtu (fuel input), the correct emissions factors values are 6.96 E-03 lb/hp-hr (power output) and 0.99 lb/mmBtu (fuel input), respectively. This is an editorial correction. March 24, 2009

Table 3.3-2.SPECIATED ORGANIC COMPOUND EMISSIONFACTORS FOR UNCONTROLLED DIESEL ENGINES^a

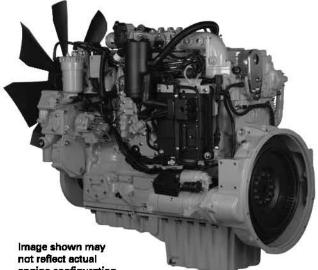
EMISSION FACTOR RATING: E

Pollutant	Emission Factor (Fuel Input) (lb/MMBtu)
Benzene ^b	9.33 E-04
Toluene ^b	4.09 E-04
Xylenes ^b	2.85 E-04
Propylene 💬	2.58 E-03
1,3-Butadiene ^{b,c}	<3.91 E-05
Formaldehyde ^b	1.18 E-03
Acetaldehyde ^b	7.67 E-04
Acrolein ^b	<9.25 E-05
Polycyclic aromatic hydrocarbons (PAH)	
Naphthalene ^b	8.48 E-05
Acenaphthylene	<5.06 E-06
Acenaphthene	<1.42 E-06
Fluorene	2.92 E-05
Phenanthrene	2.94 E-05
Anthracene	1.87 E-06
Fluoranthene	7.61 E-06
Pyrene	4.78 E-06
Benzo(a)anthracene	1.68 E-06
Chrysene	3.53 E-07
Benzo(b)fluoranthene	<9.91 E-08
Benzo(k)fluoranthene	<1.55 E-07
Benzo(a)pyrene	<1.88 E-07
Indeno(1,2,3-cd)pyrene	<3.75 E-07
Dibenz(a,h)anthracene	<5.83 E-07
Benzo(g,h,l)perylene	<4.89 E-07
TOTAL PAH	1.68 E-04

^a Based on the uncontrolled levels of 2 diesel engines from References 6-7. Source Classification Codes 2-02-001-02, 2-03-001-01. To convert from lb/MMBtu to ng/J, multiply by 430.
 ^b Hazardous air pollutant listed in the *Clean Air Act.* ^c Based on data from 1 engine.

	Affecte	ed Parameter
Technology	Increase	Decrease
Fuel modifications		
Sulfur content increase	PM, wear	
Aromatic content increase	PM, NO _x	
Cetane number		PM, NO _x
10% and 90% boiling point		PM
Fuel additives		PM, NO _x
Water/Fuel emulsions		NO _x
Engine modifications		
Injection timing retard	PM, BSFC	NO _x , power
Fuel injection pressure	PM, NO _x	
Injection rate control		NO _x , PM
Rapid spill nozzles		PM
Electronic timing & metering		NO _x , PM
Injector nozzle geometry		PM
Combustion chamber modifications		NO _x , PM
Turbocharging	PM, power	NO _x
Charge cooling		NO _x
Exhaust gas recirculation	PM, power, wear	NO _x
Oil consumption control		PM, wear
Exhaust after-treatment		
Particulate traps		PM
Selective catalytic reduction		NO _x
Oxidation catalysts		TOC, CO, PM

Table 3.3-3. EFFECT OF VARIOUS EMISSION CONTROL TECHNOLOGIES ON DIESEL ENGINES^a


^a Reference 8. PM = particulate matter. BSFC = brake-specific fuel consumption.

References For Section 3.3

- 1. H. I. Lips, et al., Environmental Assessment Of Combustion Modification Controls For Stationary Internal Combustion Engines, EPA-600/7-81-127, U. S. Environmental Protection Agency, Cincinnati, OH, July 1981.
- 2. Standards Support And Environmental Impact Statement, Volume 1: Stationary Internal Combustion Engines, EPA-450/2-78-125a, U. S. Environmental Protection Agency, Research Triangle Park, NC, July 1979.
- 3. M. Hoggan, et al., Air Quality Trends In California's South Coast And Southeast Desert Air Basins, 1976-1990, Air Quality Management Plan, Appendix II-B, South Coast Air Quality Management District, July 1991.
- R. B. Snyder, Alternative Control Techniques Document .. NO_x Emissions From Stationary Reciprocating Internal Combustion Engines, EPA-453/R-93-032, U. S. Environmental Protection Agency, Research Triangle Park, July 1993.
- 5. C. T. Hare and K. J. Springer, Exhaust Emissions From Uncontrolled Vehicles And Related Equipment Using Internal Combustion Engines, Part 5: Farm, Construction, And Industrial Engines, APTD-1494, U. S. Environmental Protection Agency, Research Triangle Park, NC, October 1973.
- 6. Pooled Source Emission Test Report: Oil And Gas Production Combustion Sources, Fresno And Ventura Counties, California, ENSR 7230-007-700, Western States Petroleum Association, Bakersfield, CA, December 1990.
- 7. W. E. Osborn and M. D. McDannel, *Emissions Of Air Toxic Species: Test Conducted Under AB2588 For The Western States Petroleum Association*, CR 72600-2061, Western States Petroleum Association, Glendale, CA, May 1990.
- 8. Technical Feasibility Of Reducing NO_x And Particulate Emissions From Heavy-duty Engines, CARB Contract A132-085, California Air Resources Board, Sacramento, CA, March 1992.
- 9. G. Marland and R. M. Rotty, Carbon Dioxide Emissions From Fossil Fuels: A Procedure For Estimation And Results For 1951-1981, DOE/NBB-0036 TR-003, Carbon Dioxide Research Division, Office of Energy Research, U. S. Department of Energy, Oak Ridge, TN, 1983.
- 10. A. Rosland, Greenhouse Gas Emissions in Norway: Inventories and Estimation Methods, Oslo: Ministry of Environment, 1993.
- 11. Sector-Specific Issues and Reporting Methodologies Supporting the General Guidelines for the Voluntary Reporting of Greenhouse Gases under Section 1605(b) of the Energy Policy Act of 1992 (1994) DOE/PO-0028, Volume 2 of 3, U.S. Department of Energy.
- 12. G. Marland and R. M. Rotty, Carbon Dioxide Emissions From Fossil Fuels: A Procedure For Estimation And Results For 1950-1982, Tellus 36B:232-261, 1984.
- 13. Inventory Of U. S. Greenhouse Gas Emissions And Sinks: 1990-1991, EPA-230-R-96-006, U. S. Environmental Protection Agency, Washington, DC, November 1995.
- 14. IPCC Guidelines For National Greenhouse Gas Inventories Workbook, Intergovernmental Panel on Climate Change/Organization for Economic Cooperation and Development, Paris, France, 1995.

CAT'

C6.6 ACERT™ **Industrial Engine** Tier 4 Interim/Stage IIIB 89-129.4 bkW/119.3-173.5 bhp @ 2200 rpm

engine configuration

FEATURES

Emissions

Designed to meet 2012 EPA (U.S.) Tier 4 Interim. EU Stage IIIB and Japanese MLIT emissions requirements.

Reliable, Quiet, and Durable Power

World-class manufacturing capability and processes coupled with proven core engine designs assure reliability, quiet operation, and many hours of productive life.

High Performance

Turbocharger with smart wastegate available on some ratings for fast response, high power, and increased torque.

Fuel Efficiency

Fuel consumption optimized to match operating cycles of a wide range of equipment and applications. No additional fluids or additives are required, which lowers operating costs.

Fuel & Oil

Tier 4 Interim/Stage IIIB engines require Ultra Low Sulfur Diesel (ULSD) fuel containing a maximum of 15 ppm sulfur, and new oil formulations to support the new technology. Cat[®] engines are designed to accommodate B20 biofuel. Your Cat dealer can provide more information regarding fuel and oil.

Broad Application Range

Industry leading range of factory configurable ratings and options for agricultural, materialshandling, construction, mining, aircraft ground support, and other industrial applications.

CAT* ENGINE SPECIFICATIONS

I-6, 4-Stroke-Cycle Diesel

Bore 105.0 mm (4.13 in)
Stroke
Displacement
Aspiration Turbocharged-Aftercooled
Compression Ratio 16.5:1
Combustion System Direct injection
Rotation (from flywheel end) Counterclockwise
Capacity for Liquids
Cooling System 13.7 L (14.5 U.S. qts)
Lube System (refill) sump
dependent 13-16 L (13.7-16.9 U.S. qts)
Engine Weight, Net Dry
(approximate) 695 kg (1532 lbs)

Package Size

Ideal for equipment with narrow engine compartments. Multiple installation options minimize total package size.

Low-Cost Maintenance

Worldwide service delivers ease of maintenance and simplifies the servicing routine. Hydraulic tappets, multi-vee belts, "no ash service" aftertreatment, and 500-hour oil change intervals enable low-cost maintenance. Many service items have a choice of location on either side of the engine to enable choice of service access. The S•O•S[™] program is available from your Cat dealer to determine oil change intervals and provide optimal performance.

Quality

Every Cat engine is manufactured to stringent standards in order to assure customer satisfaction.

World-class Product Support Offered Through Global Cat Dealer Network

- Scheduled maintenance, including S•O•S[™] sample
- Customer Support Agreements (CSA)
- Cat Extended Service Coverage (ESC)
- Superior dealer service network
- Extended dealer service network through the Cat Industrial Service Distributor (ISD) program

Web Site: For additional information on all your power requirements, visit www.cat-industrial.com.

C6.6 ACERT[™] Industrial Engine

Tier 4 Interim/Stage IIIB

89-129.4 bkW/119.3-173.5 bhp @ 2200 rpm

STANDARD ENGINE EQUIPMENT

Air Inlet

Standard air cleaners

Control System

Full electronic control system, all connectors and wiring looms waterproof and designed to withstand harsh off-highway environments, flexible and configurable software features and well supported SAE J1939 CAN bus enables highly integrated machines

Cooling System

Top tank temperature 108°C (226°F) as standard to minimize cooling pack size, 50:50 water glycol mix, detailed guidance on cooling system design and validation available to ensure machine reliability

Exhaust System

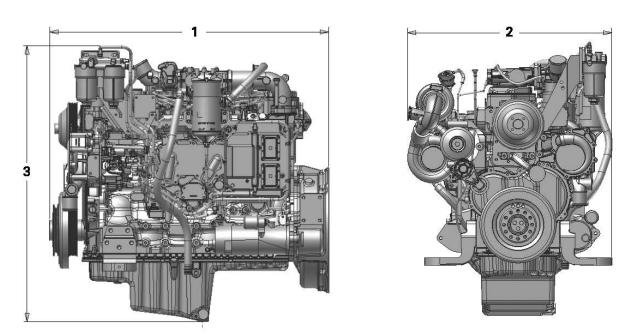
Diesel particulate filter supplied with a range of inlet and outlet options, no ash service requirement, low temperature regeneration

Flywheels and Flywheel Housing

Wide choice of drivetrain interfaces, including but not limited to SAE1, SAE2, and SAE3 configurations

Fuel System

Electronic high pressure common rail, ACERT™ Technology, innovative filter design to ensure maximum protection of the engine


Lube System

Choice of sumps for different applications

Power Take Off

SAE A or SAE B flanges on left-hand side, engine power can also be taken from the front of the engine on some applications, factory fitted compressors are also available.

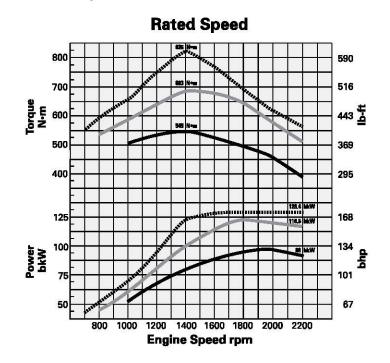
DIMENSIONS

(1) Length — 1063.7 mm (41.9 in)

(2) Width ---- 753 mm (29.6 in)

(3) Height — 907 mm (35.7 in)

Note: Final dimensions dependent on selected options



C6.6 ACERT[™] Industrial Engine

Tier 4 Interim/Stage IIIB 89-129.4 bkW/119.3-173.5 bhp @ 2200 rpm

PERFORMANCE DATA — PRELIMINARY

Turbocharged-Aftercooled - 2200 rpm

Rated Speed

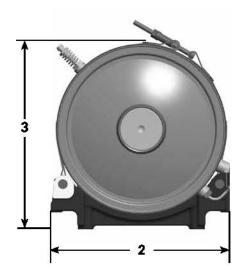
Rating	Speed rpm	Peak Power bkW	Peak Power bhp	Speed rpm	Peak Torque N∙m	Peak Torque lb-ft
C	2200	89.0	119.3	1400	545	402.0
C	2200	116.5	156.2	1400	683	503.8
C	2200	129.4	173.5	1400	825	608.5

RATING DEFINITIONS AND CONDITIONS

IND-C (Intermittent) is the horsepower and speed capability of the engine where maximum power and/or speed are cyclic (time at full load not to exceed 50%).

Additional ratings are available for specific customer requirements. Consult your Cat dealer.

Rating Conditions are based on ISO/TR14396, inlet air standard conditions with a total barometric pressure of 100 kPa (29.5 in Hg), with a vapor pressure of 1 kPa (.295 in Hg), and 25°C (77°F). Performance is measured using fuel to EPA specifications in 40 CFR Part 1065 and EU specifications in Directive 97/68/EC with a density of 0.845-0.850 kg/L @ 15°C (59°F) and fuel inlet temperature 40°C (104°F).



C6.6 ACERT™ Industrial Engine

Tier 4 Interim/Stage IIIB 89-129.4 bkW/119.3-173.5 bhp @ 2200 rpm

AFTERTREATMENT CONFIGURATION

283 mm (11.1 in) DIAMETER BASE CONFIGURATION SHOWN Approximate Size and Weight (1) Length — 852.7 mm (33.6 in) (2) Width — 364.6 mm (14.35 in) (3) Height — 352 mm (13.9 in)

Weight — 40 kg (88.1 lbs)

AFTERTREATMENT FEATURES

Regeneration: Low temperature regeneration completely transparent to the operator

Mounting: Extensive range of inlets and outlets, as well as remote and on-engine installations, provide flexibility for many installations.

Service: Service-free DPF for the emissions life of the engine Available in 12V or 24V systems

STANDARD EMISSIONS CONTROL EQUIPMENT

DOC: Diesel Oxidation Catalyst **DPF:** Diesel Particulate Filter

3" flex pipe connection kit with straight, 45°, and 90° options for flexibility

Materials and specifications are subject to change without notice. The International System of Units (SI) is used in this publication. CAT, CATERPILLAR, their respective logos, ACERT, S-O-S, "Caterpillar Yellow" and the "Power Edge" trade dress, as well as corporate and product identity used herein, are trademarks of Caterpillar and may not be used without permission.

CATERPILLAR

C7.1 ACERT™ **Industrial Engine Tier 4 Interim/Stage IIIB** 140-225 bkW/187.7-301.8 bhp @ 2200 rpm

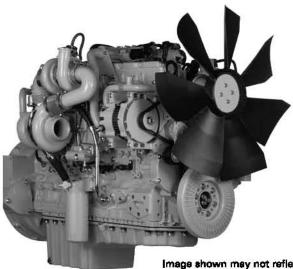


Image shown may not reflect actual engine configuration

FEATURES

Emissions

Designed to meet 2011 EPA (U.S.) Tier 4 Interim and EU Stage IIIB emissions requirements. Also expected to meet Japanese MLIT emissions requirements once available.

Reliable, Quiet, and Durable Power

World-class manufacturing capability and processes coupled with proven core engine designs assure reliability, quiet operation, and many hours of productive life.

High Performance

Series turbocharging with smart wastegate available on all ratings for fast response, high power, and increased torque.

Fuel Efficiency

Fuel consumption optimized to match operating cycles of a wide range of equipment and applications. No additional fluids or additives are required which lowers operating costs.

Broad Application Range

Industry leading range of factory configurable ratings and options for agricultural, materialshandling, construction, mining, aircraft ground support, and other industrial applications.

CAT® ENGINE SPECIFICATIONS

I-6, 4-Stroke-Cycle Diesel Bore 105 mm (4.13 in.) Stroke 135 mm (5.3 in.) Aspiration Series Turbocharged Aftercooled Combustion System Direct Injection Rotation (from flywheel end) ... Counterclockwise Capacity for Liquids Cooling System 15.2 L (16 U.S. qts.) Lube Oil System (refill) sump dependent 16.5-21.5 L (17.4-22.7 U.S. qts.) Engine Weight, Net Dry

Package Size

Exceptional power density enables standardization across numerous applications. Multiple installation options minimize total package size. Ideal for equipment with narrow engine compartments.

Low-Cost Maintenance

Hydraulic tappets, multi-vee belts, minimum 4500-hour diesel particulate filter ash service interval and 500-hour oil change intervals enable low-cost maintenance. Many service items have a choice of location on either side of the engine to enable choice of service access.

Testing

Every Cat[®] engine is quality tested under full load to ensure proper engine performance.

World-class Product Support Offered Through **Global Cat Dealer Network**

- Scheduled maintenance
- Customer Support Agreements (CSA)
- Cat Extended Service Coverage (ESC)
- Superior dealer service network
- Extended dealer service network through the Cat Industrial Service Distributor (ISD) program

Web Site: For additional information on all your power requirements, visit www.cat-industrial.com.

CATERPILLAR®

C7.1 ACERT[™] Industrial Engine

Tier 4 Interim/Stage IIIB

140-225 bkW/187.7-301.8 bhp @ 2200 rpm

STANDARD ENGINE EQUIPMENT

Air Inlet

Heavy-duty air cleaners available

Control System

Full electronic control system, all connectors and wiring looms waterproof and designed to withstand harsh off-highway environments, flexible and configurable software features and well supported SAE J1939 CAN bus enables highly integrated machines

Cooling System

Top tank temperature 108° C (226° F) as standard to minimize cooling pack size, 50:50 water glycol mix, detailed guidance on cooling system design and validation available to ensure machine reliability

Exhaust System

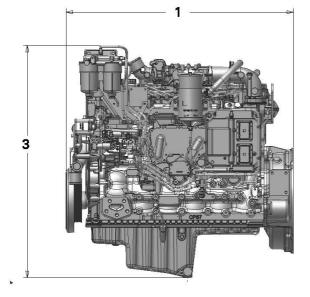
Diesel particulate filter and regeneration system supplied, with a range of inlet and outlet options

Flywheels and Flywheel Housing

Wide choice of drivetrain interfaces, including SAE1, SAE2 or SAE3 configurations

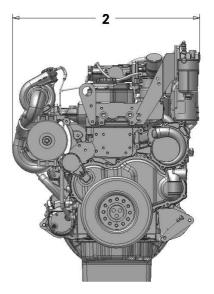
Fuel System

Electronic high pressure common rail, ACERT™ Technology


Lube System

Wide choice of sumps for different applications

Power Take Off


SAE A or SAE B flanges on left-hand side. Righthand side twin PTO also available. Engine power can also be taken from the front of the engine on some applications, factory fitted compressors are also available

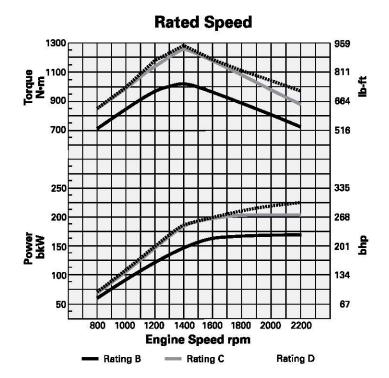
DIMENSIONS

(1) Length — 1065 mm (41.9 in)

(2) Width — 820 mm (32.3 in.)

(3) Height - 907 mm (35.7 in.)

Note: Final dimensions dependent on selected options


CATERPILLAR

C7.1 ACERT[™] Industrial Engine

Tier 4 Interim/Stage IIIB 140-225 bkW/187.7-301.8 bhp @ 2200 rpm

PERFORMANCE DATA — PRELIMINARY

Turbocharged Aftercooled - 2200 rpm (Industrial C Rating) 205 bkW (275 bhp)

Speed Range

Rating	Speed rpm	Peak Power bkW	Peak Power bhp	Speed rpm	Peak Torque N•m	Peak Torque lb-ft
В	2200	168	225	1400	1028	758
C	2200	205	275	1400	1257	927
D	2200	225	301.8	1400	1274	940

RATING DEFINITIONS AND CONDITIONS

IND-B for service where power and/or speed are cyclic (time at full load not to exceed 80%).

IND-C (Intermittent) is the horsepower and speed capability of the engine where maximum power and/or speed are cyclic (time at full load not to exceed 50%).

IND-D for service where maximum power is required for periodic overloads.

Additional ratings are available for specific customer requirements. Consult your Caterpillar dealer.

Engine Performance Diesel Engines — 7 liter and higher are based on SAE J1995, inlet air standard conditions of 99 kPa (29.31 in. Hg) dry barometer and 25° C (77° F) temperature. Performance measured using a standard fuel with fuel gravity of 35° API having a lower heating value of 42,780 kJ/kg (18,390 btu/lb) when used at 29° C (84.2° F) with a density of 838.9 g/L.

CATERPILLAR°

C7.1 ACERT[™] Industrial Engine

Tier 4 Interim/Stage IIIB 140-225 bkW/187.7-301.8 bhp @ 2200 rpm

AFTERTREATMENT CONFIGURATION

Less than or equal to 172 bkW (231 bhp) 10" DIAMETER BASE CONFIGURATION Approximate Size and Weight (1) Length — 886 mm (34.9 in.) (2) Width — 620 mm (24.4 in.) (3) Height — 713 mm (28 in.) Weight — 124 kg (273.4 lbs.)

Greater than 172 bkW (231 bhp) 12" DIAMETER BASE CONFIGURATION Approximate Size and Weight (1) Length — 886 mm (34.9 in.) (2) Width — 644 mm (23.4 in.) (3) Height — 715 mm (28.15 in.) Weight — 134 kg (295.4 lbs.)

AFTERTREATMENT FEATURES

Regeneration: Cat Regeneration System maximizes fuel efficiency during regeneration **Flexibility**: Flexible regen options maximize uptime **CEM Options include:** Basic Aftertreatment Package (DPF/DOC)

Multiple Customizable Configuration Options Available

Each Option Will Be Available As: 250 mm (10 in) Cat Regeneration System + DOC/DPF (up to 172 bkW (231 bhp) 304.8 mm (12 in) Cat Regeneration System + DOC/DPF

Note: Final dimensions dependent on configuration

Mounting: Remote installation options provide OEM flexibility for many applications Service: Minimum 4500-hour diesel particulate filter ash service interval Available in 12- or 24-volt systems

STANDARD EMISSIONS CONTROL EQUIPMENT

Cat Regeneration System CEM: Clean Emissions Module DOC: Diesel Oxidation Catalyst DPF: Diesel Particulate Filter NRS: NOx Reduction System 3" flex pipe connection kit with straight, 45°, and 90° options for flexibility

Materials and specifications are subject to change without notice. The International System of Units (SI) is used in this publication. CAT, CATERPILLAR, their respective logos, ACERT, "Caterpillar Yellow" and the "Power Edge" trade dress, as well as corporate and product identity used herein, are trademarks of Caterpillar and may not be used without permission.

CATERPILLAR®

C9.3 ACERT™ Industrial Power Unit Tier 4 Interim/Stage IIIB

224-261 bkW (300-350 bhp) @ 1800-2200 rpm

Image shown may not reflect actual power unit configuration

CAT® ENGINE SPECIFICATIONS

I-6, 4-Stroke-Cycle DieselBore115 mm (4.53 in.)Stroke149 mm (5.87 in.)Displacement9.3 L (567.5 in³)AspirationTurbocharged AftercooledCompression Ratio17.0:1Combustion SystemDirect InjectionRotation (from flywheel end)CounterclockwiseCapacity for Liquids22.2 L (23.5 U.S. qts.)Lube Oil System (refill)*30 L (31.7 U.S. qts.)Engine Weight, Net Dry
(approximate)885 kg (1950 lb)

*500-hour service interval

FEATURES

Emissions

Designed to meet 2011 EPA (U.S.) Tier 4 Interim and EU Stage IIIB emissions requirements. Also expected to meet Japanese MLIT emissions requirements once available.

Reliable, Quiet, and Durable Power

World-class manufacturing capability and processes coupled with proven core engine designs assure reliability, quiet operation, and many hours of productive life.

High Performance

Simple and efficient turbocharger with balance valve provides optimal air management and improved fuel efficiency.

Fuel Efficiency

Fuel consumption optimized to match operating cycles of a wide range of equipment and applications.

Broad Application Range

Industry leading range of factory configurable ratings and options for agricultural, materialshandling, construction, mining, forestry, waste, and other industrial applications.

Package

Exceptional power density enables standardization across numerous applications. Available factory-installed configurations: full package, including radiator and Clean Emissions Module (CEM); package with CEM, but no radiator; and package with radiator, but no CEM.

Low-Cost Maintenance

Worldwide service availability improves ease of maintenance and simplifies the servicing routine. Minimum 4500-hour diesel particulate filter ash service interval and 500-hour oil change intervals (dependent on having lube oil system capacity as listed in Cat[®] engine specifications above) enable low-cost maintenance.

Testing

Every Cat engine is quality tested to ensure proper engine performance.

World-class Product Support Offered Through Global Cat Dealer Network

- Scheduled maintenance
- Customer Support Agreements (CSA)
- Cat Extended Service Coverage (ESC)
- · Superior dealer service network
- Extended dealer service network through the Cat Industrial Service Distributor (ISD) program

Web Site: For additional information on all your power requirements, visit www.cat-industrial.com.

CATERPILLAR

C9.3 ACERT[™] Industrial Power Unit

Tier 4 Interim/Stage IIIB 224-261 bkW (300-350 bhp) @ 1800-2200 rpm

STANDARD ENGINE EQUIPMENT

Air Inlet System

Turbocharged Air-to-Air Aftercooled

Control System

Electronic control system, over-foam wiring harness, automatic altitude compensation, power compensated for fuel temperature, configurable software features, engine monitoring system SAE J1939 broadcast and control, integrated Electronic Control Unit (ECU)

Cooling System

Vertical outlet thermostat housing, centrifugal water pump, guidance on cooling system design available to ensure machine reliability

Exhaust System

CEM that includes Diesel Particulate Filter (DPF), Diesel Oxidation Filter (DOC), and Cat Regeneration System

Flywheels and Flywheel Housing

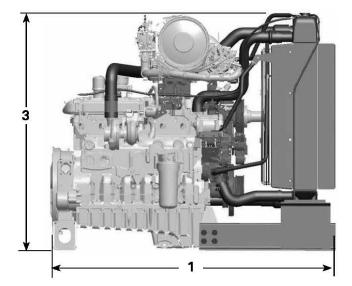
SAE No. 1 flywheel housing

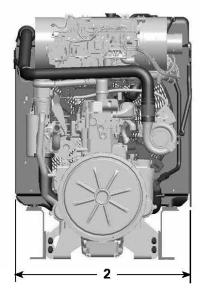
Fuel System

High pressure common rail, primary fuel filter, secondary fuel filters, fuel transfer pump, electronic fuel priming

Lube System

Open crankcase ventilation system, oil cooler, oil filler, oil filter, oil dipstick, oil pump (gear driven), choice of sumps (front, rear, and center)


Power Take Off


SAE A, SAE B, and SAE C drives available

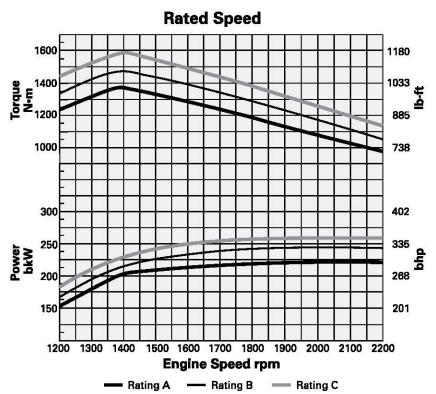
General

Paint: Cat yellow, vibration damper, lifting eyes

DIMENSIONS

(1) Length — 1845 mm (72.6 in.) (2) Width — 1118 mm (44.0 in.) (3) Height — 1554 mm (61.2 in.)

Note: Final dimensions dependent on selected options



C9.3 ACERT™ Industrial Power Unit

Tier 4 Interim/Stage IIIB 224-261 bkW (300-350 bhp) @ 1800-2200 rpm

PERFORMANCE DATA — PRELIMINARY

Turbocharged Aftercooled — 1800-2200 rpm

Speed Range

Rating	Speed rpm	Peak Power bkW	Peak Power bhp	Speed rpm	Peak Torque N∙m	Peak Torque Ib-ft
Α	2200	224	300	1400	1369	1010
В	2200	242	325	1400	1483	1094
C	2200	261	350	1400	1597	1178

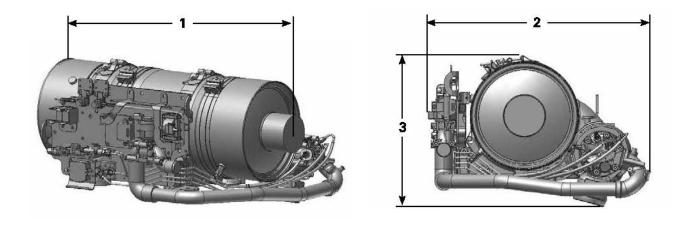
RATING DEFINITIONS AND CONDITIONS

IND-A (Continuous) for heavy duty service where the engine is operated at maximum power and speed up to 100% of the time without interruption or load cycling.

IND-B for service where power and/or speed are cyclic (time at full load not to exceed 80%).

IND-C (Intermittent) is the horsepower and speed capability of the engine where maximum power and/or speed are cyclic (time at full load not to exceed 50%).

Additional ratings are available for specific customer requirements. Consult your Cat dealer.


Engine Performance Diesel Engines — 7 liter and higher are based on SAE J1995, inlet air standard conditions of 99 kPa (29.31 in. Hg) dry barometer and 25° C (77° F) temperature. Performance measured using a standard fuel with fuel gravity of 35° API having a lower heating value of 42,780 kJ/kg (18,390 btu/lb) when used at 29° C (84.2° F) with a density of 838.9 g/L.

C9.3 ACERT™ Industrial Power Unit

Tier 4 Interim/Stage IIIB 224-261 bkW (300-350 bhp) @ 1800-2200 rpm

AFTERTREATMENT CONFIGURATION

Images shown may not reflect actual aftertreatment.

12" DIAMETER BASE CONFIGURATION SHOWN

Approximate Size and Weight (1) Length — 1097 mm (43 in.) (2) Width — 762 mm (30 in.) (3) Height — 468 mm (18 in.) Weight — 130 kg (287 lbs) **CEM Options** Base configuration includes DPF, DOC, and supporting structure

AFTERTREATMENT FEATURES

Regeneration: Cat Regeneration System maximizes fuel efficiency during regeneration **Flexibility**: Flexible regen options maximize uptime **Service:** Minimum 4500-hour diesel particulate filter ash service interval Available in 12- or 24-volt systems

STANDARD EMISSIONS CONTROL EQUIPMENT

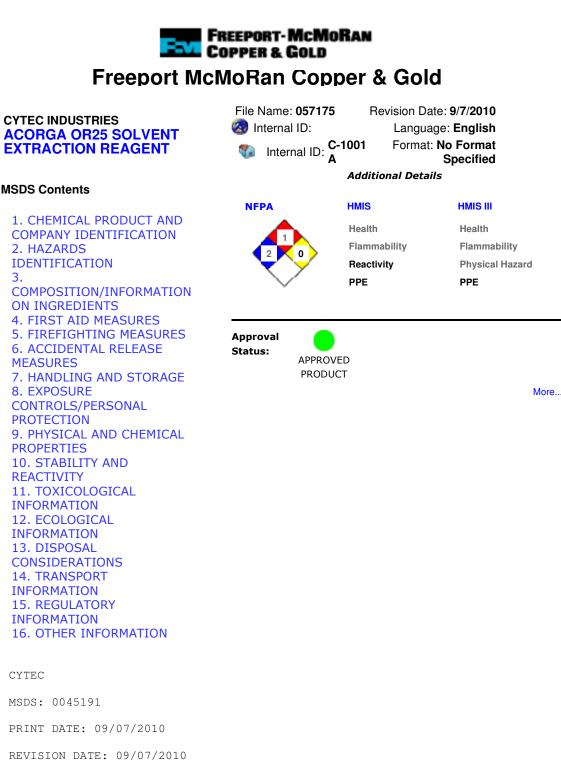
Cat Regeneration System CEM: Clean Emissions Module DOC: Diesel Oxidation Catalyst DPF: Diesel Particulate Filter NRS: NOx Reduction System

Materials and specifications are subject to change without notice. The International System of Units (SI) is used in this publication. CAT, CATERPILLAR, their respective logos, ACERT, "Caterpillar Yellow" and the "Power Edge" trade dress, as well as corporate and product identity used herein, are trademarks of Caterpillar and may not be used without permission.

Chino Mines Company NSR Consolidation Application

Solution Extraction Plant VOC Fugitive Emissions

The fugitive VOC emissions from the solvent extraction tanks were estimated using the methodology developed by BHP Copper in the study "Quantification of Volatile Organic Compound (VOC) Emissions from the Solution Extraction Process" (July 1997). The BHP method is based on Fick's Law to determine the diffusive flux of the individual components in the organic in air. The equation used is:


Diff
$$\mathbf{F} = (Ci - Ch) \times D/H$$

Where: Diff F, g/m^2 -s = diffusive flux of constituent in air C*i*, ppm = constituent concentration at liquid surface (from manufacturer data) C*h*, ppm = constituent concentration at a distance, H, above the liquid surface D = constituent diffusivity (calculated from EPA link: <u>http://www.epa.gov/athens/learn2model/part-two/onsite/estdiffusion.htm;</u> where T = 25.84°C, and P = 1 atm, per 1995 met. data) H, m = distance above liquid surface

This method includes assumptions, fundamental equations, and tabulated chemical data to estimate VOC emissions. Three assumptions govern the scope of their method:

- 1. Only chemicals with a significant vapor pressure are included in the emissions losses calculation.
- 2. The driving force for VOC diffusion is the concentration gradient that exists between the surface of the solution and headspace. In the 1997 study, the headspace was assumed to be 1 meter. For the Tyrone SX/EW tanks, 2 ft (or 0.61 m) was assumed to be a reasonable headspace.

This methodology was selected for the Phelps Dodge Tyrone SX/EW emission calculations due to its direct applicability and credibility.

MATERIAL SAFETY DATA SHEET

1. CHEMICAL PRODUCT AND COMPANY IDENTIFICATION

PRODUCT NAME: ACORGA(R*) OR25 SOLVENT EXTRACTION REAGENT

SYNONYMS: NONE CHEMICAL FAMILY: SALICYLALDOXIME DERIVATIVE MOLECULAR FORMULA: MIXTURE MOLECULAR WEIGHT: MIXTURE CYTEC INDUSTRIES INC. FIVE GARRET MOUNTAIN PLAZA WOODLAND PARK NEW JERSEY 07424 USA FOR PRODUCT INFORMATION CALL: 1-800/652-6013. OUTSIDE THE USA AND CANADA CALL: 1-973/357-3193. EMERGENCY PHONE (24 HOURS/DAY) - FOR EMERGENCY INVOLVING SPILL, LEAK, FIRE, EXPOSURE OR ACCIDENT CALL: ASIA PACIFIC REGION: AUSTRALIA: +61-3-9663-2130 OR 1800-033-111 CHINA (PRC): +86(0)532-8388-9090 (NRCC) NEW GUINEA: +61-3-9663-2130 NEW ZEALAND: +61-3-9663-2130 OR 0800-734-607 ALL OTHERS: +65-633-44-177 (CARECHEM24 SINGAPORE) CANADA: 1-905-356-8310 (CYTEC WELLAND, CANADA PLANT) EUROPE/AFRICA/MIDDLE EAST: +44-(0)208-762-8322 (CARECHEM24 UK) LATIN AMERICA: BRAZIL: 0800 0111 767 (SOS COTEC) CHILE: +56-2-247-3600 (CITUC QUIMICO) ALL OTHERS: +52-376-73 74122 (CYTEC ATEQUIZA, MEXICO PLANT) USA: +1-703-527-3887 OR 1-800-424-9300 (CHEMTREC) (R*) INDICATES TRADEMARK REGISTERED IN THE U.S. OUTSIDE THE U.S., MARK MAY BE

REGISTERED, PENDING OR A TRADEMARK. MARK IS OR MAY BE USED UNDER LICENSE.

2. HAZARDS IDENTIFICATION

EMERGENCY OVERVIEW: APPEARANCE AND ODOR: COLOR: CLEAR AMBER APPEARANCE: LIQUID ODOR: NONE STATEMENTS OF HAZARD: WARNING! CAUSES EYE AND SKIN IRRITATION POTENTIAL HEALTH EFFECTS:

EFFECTS OF EXPOSURE:

THE ACUTE ORAL (RAT) LD50 AND DERMAL (RABBIT) LD50 VALUES ARE ESTIMATED TO BE >1,900 MG/KG AND >2,000 MG/KG, RESPECTIVELY. DIRECT CONTACT WITH THIS MATERIAL MAY CAUSE MODERATE EYE AND SKIN IRRITATION. OVEREXPOSURE TO VAPORS MAY CAUSE IRRITATION OF THE RESPIRATORY TRACT AND EYES AND MAY CAUSE CENTRAL NERVOUS SYSTEM EFFECTS. REFER TO SECTION 11 FOR TOXICOLOGY INFORMATION ON THE REGULATED COMPONENTS OF THIS PRODUCT.

3. COMPOSITION/INFORMATION ON INGREDIENTS

OSHA REGULATED COMPONENTS:

COMPONENT / CAS NO.	% (W/W) CARCINOGEN
SALICYLALDOXIME DERIVATIVE	40 - 60
PETROLEUM DISTILLATE HYDROTREATED LIGHT 64742-47-8	1 – 5

4. FIRST AID MEASURES

INGESTION:

IF SWALLOWED, CALL A PHYSICIAN IMMEDIATELY. ONLY INDUCE VOMITING AT THE INSTRUCTION OF A PHYSICIAN. NEVER GIVE ANYTHING BY MOUTH TO AN UNCONSCIOUS PERSON.

SKIN CONTACT: REMOVE CONTAMINATED CLOTHING AND SHOES WITHOUT DELAY. WASH IMMEDIATELY WITH PLENTY OF WATER. DO NOT REUSE CONTAMINATED CLOTHING WITHOUT LAUNDERING. GET MEDICAL ATTENTION IF PAIN OR IRRITATION PERSISTS AFTER WASHING OR IF SIGNS AND SYMPTOMS OF OVEREXPOSURE APPEAR.

EYE CONTACT: RINSE IMMEDIATELY WITH PLENTY OF WATER FOR AT LEAST 15 MINUTES. OBTAIN MEDICAL ADVICE IF THERE ARE PERSISTENT SYMPTOMS.

INHALATION: REMOVE TO FRESH AIR. IF BREATHING IS DIFFICULT, GIVE OXYGEN. OBTAIN MEDICAL ADVICE IF THERE ARE PERSISTENT SYMPTOMS.

5. FIREFIGHTING MEASURES

SUITABLE EXTINGUISHING MEDIA: USE WATER SPRAY OR FOG, CARBON DIOXIDE OR DRY CHEMICAL.

PROTECTIVE EQUIPMENT: FIREFIGHTERS, AND OTHERS EXPOSED, WEAR SELF-CONTAINED BREATHING APPARATUS. WEAR FULL FIREFIGHTING PROTECTIVE CLOTHING. SEE MSDS SECTION 8 (EXPOSURE CONTROLS/PERSONAL PROTECTION).

SPECIAL HAZARDS: KEEP CONTAINERS COOL BY SPRAYING WITH WATER IF EXPOSED TO FIRE.

6. ACCIDENTAL RELEASE MEASURES

PERSONAL PRECAUTIONS: WHERE EXPOSURE LEVEL IS NOT KNOWN, WEAR APPROVED, POSITIVE PRESSURE, SELF-CONTAINED RESPIRATOR. WHERE EXPOSURE LEVEL IS KNOWN, WEAR APPROVED RESPIRATOR SUITABLE FOR LEVEL OF EXPOSURE. IN ADDITION TO THE PROTECTIVE CLOTHING/EQUIPMENT IN SECTION 8 (EXPOSURE CONTROLS/PERSONAL PROTECTION), WEAR IMPERMEABLE BOOTS.

METHODS FOR CLEANING UP: COVER SPILLS WITH SOME INERT ABSORBENT MATERIAL; SWEEP UP AND PLACE IN A WASTE DISPOSAL CONTAINER. FLUSH SPILL AREA WITH WATER.

ENVIRONMENTAL PRECAUTIONS: USE APPROPRIATE CONTAINMENT TO AVOID ENVIRONMENTAL CONTAMINATION.

7. HANDLING AND STORAGE

HANDLING:

PRECAUTIONARY MEASURES: AVOID CONTACT WITH EYES, SKIN AND CLOTHING. WASH THOROUGHLY AFTER HANDLING.

SPECIAL HANDLING STATEMENTS: NONE

STORAGE: NONE

STORAGE TEMPERATURE: STORE AT 0 - 38 DEG. C 32 - 100.4 DEG. F

REASON: QUALITY.

8. EXPOSURE CONTROLS/PERSONAL PROTECTION

ENGINEERING MEASURES: WHERE THIS MATERIAL IS NOT USED IN A CLOSED SYSTEM, GOOD ENCLOSURE AND LOCAL EXHAUST VENTILATION SHOULD BE PROVIDED TO CONTROL EXPOSURE.

RESPIRATORY PROTECTION: WHERE EXPOSURES ARE BELOW THE ESTABLISHED EXPOSURE LIMIT, NO RESPIRATORY PROTECTION IS REQUIRED. WHERE EXPOSURES EXCEED THE ESTABLISHED EXPOSURE LIMIT, USE RESPIRATORY PROTECTION RECOMMENDED FOR THE MATERIAL AND LEVEL OF EXPOSURE.

EYE PROTECTION: WEAR EYE/FACE PROTECTION SUCH AS CHEMICAL SPLASH PROOF GOGGLES OR FACE SHIELD.

SKIN PROTECTION: AVOID SKIN CONTACT. WEAR IMPERMEABLE GLOVES AND SUITABLE PROTECTIVE CLOTHING.

ADDITIONAL ADVICE: FOOD, BEVERAGES, AND TOBACCO PRODUCTS SHOULD NOT BE CARRIED, STORED, OR CONSUMED WHERE THIS MATERIAL IS IN USE. BEFORE EATING, DRINKING, OR SMOKING, WASH FACE AND HANDS THOROUGHLY WITH SOAP AND WATER.

EXPOSURE LIMIT(S):

64742-47-8 PETROLEUM DISTILLATE HYDROTREATED LIGHT:

OSHA (PEL): 165 PPM (1200 MG/M3) (SUPPLIER)

http://fcx.complyplus.com/MSDS/default.asp?S=15981&noHeader=1

ACGIH (TLV): NOT ESTABLISHED

OTHER VALUE: 1200 MG/M3 (SUPPLIER) 165 PPM (SUPPLIER)

9. PHYSICAL AND CHEMICAL PROPERTIES

COLOR: CLEAR AMBER APPEARANCE: LIQUID ODOR: NONE BOILING POINT: NOT AVAILABLE MELTING POINT: NOT AVAILABLE VAPOR PRESSURE: NOT AVAILABLE SPECIFIC GRAVITY/DENSITY: 0.97 - 0.99 @ 20 DEG. C VAPOR DENSITY: NOT AVAILABLE PERCENT VOLATILE (% BY WT.): NOT AVAILABLE pH: NOT APPLICABLE SATURATION IN AIR (% BY VOL.): NOT AVAILABLE EVAPORATION RATE: NOT AVAILABLE SOLUBILITY IN WATER: INSOLUBLE VOLATILE ORGANIC CONTENT: NOT AVAILABLE FLASH POINT: >130 DEG. C 266 DEG. F - PENSKY-MARTENS CLOSED CUP FLAMMABLE LIMITS (% BY VOL): NOT AVAILABLE AUTOIGNITION TEMPERATURE: NOT AVAILABLE DECOMPOSITION TEMPERATURE: NOT AVAILABLE PARTITION COEFFICIENT (n-OCTANOL/WATER): NOT AVAILABLE ODOR THRESHOLD: NOT AVAILABLE

10. STABILITY AND REACTIVITY

STABILITY: STABLE CONDITIONS TO AVOID: NONE KNOWN POLYMERIZATION: WILL NOT OCCUR CONDITIONS TO AVOID: NONE KNOWN MATERIALS TO AVOID: STRONG OXIDIZING AGENTS. OXYGEN

HAZARDOUS DECOMPOSITION PRODUCTS: OXIDES OF CARBON AND NITROGEN, AMMONIA

11. TOXICOLOGICAL INFORMATION

TOXICOLOGICAL INFORMATION FOR THE PRODUCT IS FOUND UNDER SECTION 2. HAZARDS IDENTIFICATION.

TOXICOLOGICAL INFORMATION ON THE REGULATED COMPONENTS OF THIS PRODUCT IS AS FOLLOWS:

PETROLEUM DISTILLATES, HYDROTREATED LIGHT (CAS# 64742-47-8) HAS ACUTE ORAL (RAT) AND DERMAL (RABBIT) LD50 VALUES OF >5 G/KG AND >3.16 G/KG, RESPECTIVELY. PROLONGED OR REPEATED SKIN CONTACT TENDS TO REMOVE SKIN OILS, POSSIBLY LEADING TO IRRITATION AND DERMATITIS. DIRECT CONTACT MAY CAUSE EYE IRRITATION. OVEREXPOSURE TO HIGH VAPOR CONCENTRATIONS, >APPROX. 700 PPM, ARE IRRITATING TO THE EYES AND RESPIRATORY TRACT AND MAY CAUSE HEADACHES, DIZZINESS, DROWSINESS, AND OTHER CENTRAL NERVOUS SYSTEM EFFECTS, INCLUDING DEATH. ASPIRATION OF MINUTE AMOUNTS DURING INGESTION OR VOMITING MAY CAUSE MILD TO SEVERE PULMONARY INJURY AND POSSIBLY DEATH. IN A 90-DAY ORAL GAVAGE (RATS) STUDY AT 100, 500, OR 1000 MG/KG, NO TREATMENT-RELATED MORTALITIES WERE OBSERVED. THERE WERE NO SIGNIFICANT CHANGES IN BODY WEIGHTS OR FOOD CONSUMPTION IN ANY DOSE GROUPS. INCREASED LIVER WEIGHTS WERE OBSERVED IN MALE AND FEMALE RATS AT 500 AND 1000 MG/KG. INCREASED KIDNEY WEIGHTS WERE OBSERVED ONLY IN MALE RATS AT 500 AND 1000 MG/KG. TESTES WEIGHTS WERE SIGNIFICANTLY ELEVATED IN MALE RATS AT 1000 MG/KG. KIDNEY EFFECTS, INDICATIVE OF LIGHT HYDROCARBON NEPHROPATHY, OCCURED IN MALE RAT KIDNEYS AT ALL DOSE LEVELS. HISTOLOGICAL FINDINGS OF HEPATOCELLULAR HYPERTROPHY WERE SEEN IN THE LIVERS OF MALE RATS AT 1000 MG/KG AND IN FEMALE RATS AT 500 AND 1000 MG/KG. ALL TREATMENT-RELATED EFFECTS WERE REVERSIBLE WITHIN THE 4-WEEK RECOVERY PERIOD. OBSERVED KIDNEY EFFECTS (INCLUDING LIGHT HYDROCARBON NEPHROPATHY AND INCREASED KIDNEY WEIGHT) ARE A UNIQUE RESPONSE BY MALE RATS TO CHRONIC HYDROCARBON EXPOSURE, WHICH THE U.S. EPA HAS DECLARED 'NOT RELEVANT TO HUMANS'. HIGH-DOSE LIVER EFFECTS (INCLUDING HEPATOCELLULAR HYPERTROPHY, OR ENLARGED LIVER CELLS) ARE A DIRECT CONSEQUENCE OF THE SUSTAINED HIGH-FAT 'HYDROCARBON DIET'. THE NO OBSERVED ADVERSE EFFECT LEVEL (NOAEL) FOR THIS STUDY WAS 1000 MG/KG.

SALICYLALDOXIME DERIVATIVE HAS AN ORAL LD50 (RAT) OF 1.25 TO 5 ML/KG, A DERMAL LD50 (RAT) OF >2.5 ML/KG, AND AN INHALATION LC50 (RAT) OF >1.6 MG/L/1 HR./70 DEG. C. RAT SKIN TESTING INDICATES IT IS A MODERATE DERMAL IRRITANT, AND RABBIT EYE TESTING INDICATED A SLIGHT POTENTIAL FOR IRRITATION. GUINEA PIG DERMAL SENSITIZATION TESTS WERE NEGATIVE. IT IS EXPECTED TO BE IRRITATING TO EYES, SKIN, AND ALL MUCOUS MEMBRANES. INGESTION IS EXPECTED TO CAUSE MODERATE TO SEVERE GASTROINTESTINAL IRRITATION. SYMPTOMS OF INHALATION EXPOSURE MAY INCLUDE COUGHING, CHOKING, PAIN AND MODERATE TO SEVERE IRRITATION OF MUCOUS MEMBRANES. DEPENDING ON QUANTITY AND DURATION OF EXPOSURE, CONTACT WILL LIKELY CAUSE MODERATE SKIN AND EYE IRRITATION. OVEREXPOSURE CAN CAUSE CENTRAL NERVOUS SYSTEM (CNS) DEPRESSION, WITH SYMPTOMS RANGING FROM HEADACHE AND CONFUSION TO COMA AND RESPIRATORY FAILURE. THIS MATERIAL IS LIKELY TO BE AN ENDOCRINE DISRUPTER.

CALIFORNIA PROPOSITION 65 WARNING (APPLICABLE IN CALIFORNIA ONLY): THIS PRODUCT CONTAINS (A) CHEMICAL(S) KNOWN TO THE STATE OF CALIFORNIA TO CAUSE BIRTH DEFECTS OR OTHER REPRODUCTIVE HARM.

12. ECOLOGICAL INFORMATION

VERY TOXIC TO AQUATIC ORGANISMS, MAY CAUSE LONG-TERM ADVERSE EFFECTS IN THE AQUATIC ENVIRONMENT.

THE ECOLOGICAL ASSESSMENT FOR THIS MATERIAL IS BASED ON AN EVALUATION OF ITS COMPONENTS.

13. DISPOSAL CONSIDERATIONS

THE INFORMATION ON RCRA WASTE CLASSIFICATION AND DISPOSAL METHODOLOGY PROVIDED BELOW APPLIES ONLY TO THE PRODUCT, AS SUPPLIED. IF THE MATERIAL HAS BEEN ALTERED OR CONTAMINATED, OR IT HAS EXCEEDED ITS RECOMMENDED SHELF LIFE, THE GUIDANCE MAY BE INAPPLICABLE. HAZARDOUS WASTE CLASSIFICATION UNDER FEDERAL REGULATIONS (40 CFR PART 261 ET SEQ) IS DEPENDENT UPON WHETHER A MATERIAL IS A RCRA 'LISTED HAZARDOUS WASTE' OR HAS ANY OF THE FOUR RCRA 'HAZARDOUS WASTE CHARACTERISTICS.' REFER TO 40 CFR PART 261.33 TO DETERMINE IF A GIVEN MATERIAL TO BE DISPOSED OF IS A RCRA 'LISTED HAZARDOUS WASTE'; INFORMATION CONTAINED IN SECTION 15 OF THIS MSDS IS NOT INTENDED TO INDICATE IF THE PRODUCT IS A 'LISTED HAZARDOUS WASTE.'

RCRA HAZARDOUS WASTE CHARACTERISTICS:

THERE ARE FOUR CHARACTERISTICS DEFINED IN 40 CFR SECTION 261.21-61.24: IGNITABILITY, CORROSIVITY, REACTIVITY, AND TOXICITY. TO DETERMINE IGNITABILITY, SEE SECTION 9 OF THIS MSDS (FLASH POINT). FOR CORROSIVITY, SEE SECTIONS 9 AND 14 (pH AND DOT CORROSIVITY). FOR REACTIVITY, SEE SECTION 10 (INCOMPATIBLE MATERIALS). FOR TOXICITY, SEE SECTION 3 (COMPOSITION). FEDERAL REGULATIONS ARE SUBJECT TO CHANGE. STATE AND LOCAL REQUIREMENTS, WHICH MAY DIFFER FROM OR BE MORE STRINGENT THAN THE FEDERAL REGULATIONS, MAY ALSO APPLY TO THE CLASSIFICATION OF THE MATERIAL IF IT IS TO BE DISPOSED. THE COMPANY ENCOURAGES THE RECYCLE, RECOVERY AND REUSE OF MATERIALS, WHERE PERMITTED, AS AN ALTERNATE TO DISPOSAL AS A WASTE. THE COMPANY RECOMMENDS THAT ORGANIC MATERIALS CLASSIFIED AS RCRA HAZARDOUS WASTES BE DISPOSED OF BY THERMAL TREATMENT OR INCINERATION AT EPA APPROVED FACILITIES. THE COMPANY HAS PROVIDED THE FOREGOING FOR INFORMATION ONLY; THE PERSON GENERATING THE WASTE IS RESPONSIBLE FOR DETERMINING THE WASTE CLASSIFICATION AND DISPOSAL METHOD.

14. TRANSPORT INFORMATION

THIS SECTION PROVIDES BASIC SHIPPING CLASSIFICATION INFORMATION. REFER TO APPROPRIATE TRANSPORTATION REGULATIONS FOR SPECIFIC REQUIREMENTS.

US DOT:

DANGEROUS GOODS?: X

PROPER SHIPPING NAME: ENVIRONMENTALLY HAZARDOUS SUBSTANCE, LIQUID, N.O.S.

HAZARD CLASS: 9

PACKING GROUP: III

UN/ID NUMBER: UN3082

TRANSPORT LABEL REQUIRED: MISCELLANEOUS MARINE POLLUTANT

MARINE POLLUTANT:

TECHNICAL NAME (N.O.S.): SALICYLALDOXIME DERIVATIVE

COMMENTS:

MARINE POLLUTANTS: DOT REQUIREMENTS SPECIFIC TO MARINE POLLUTANTS DO NOT APPLY TO NON-BULK PACKAGINGS TRANSPORTED BY MOTOR VEHICLES, RAIL CARS OR AIRCRAFT.

TRANSPORT CANADA:

DANGEROUS GOODS ?: X

PROPER SHIPPING NAME: ENVIRONMENTALLY HAZARDOUS SUBSTANCE, LIQUID, N.O.S.

HAZARD CLASS: 9

PACKING GROUP: III

UN NUMBER: UN3082

TRANSPORT LABEL REQUIRED: MISCELLANEOUS MARINE POLLUTANT

MARINE POLLUTANT:

TECHNICAL NAME (N.O.S.): SALICYLALDOXIME DERIVATIVE

ICAO / IATA:

DANGEROUS GOODS?: X

PROPER SHIPPING NAME: ENVIRONMENTALLY HAZARDOUS SUBSTANCE, LIQUID, N.O.S.

HAZARD CLASS: 9

PACKING GROUP: III

UN NUMBER: UN3082

TRANSPORT LABEL REQUIRED: MISCELLANEOUS

PACKING INSTRUCTIONS/MAXIMUM NET QUANTITY PER PACKAGE: PASSENGER AIRCRAFT: 914; 450 L CARGO AIRCRAFT: 914; 450 L

TECHNICAL NAME (N.O.S.): SALICYLALDOXIME DERIVATIVE

IMO:

DANGEROUS GOODS?: X

PROPER SHIPPING NAME: ENVIRONMENTALLY HAZARDOUS SUBSTANCE, LIQUID, N.O.S.

HAZARD CLASS: 9

UN NUMBER: UN3082

PACKING GROUP: III

TRANSPORT LABEL REQUIRED: MISCELLANEOUS MARINE POLLUTANT

MARINE POLLUTANT:

TECHNICAL NAME (N.O.S.): SALICYLALDOXIME DERIVATIVE

CYTEC INDUSTRIES - ACORGA OR25 SOLVENT EXTRACTION REAGENT - 9/7/... Page 9 of 10

15. REGULATORY INFORMATION

INVENTORY INFORMATION:

UNITED STATES (USA): ALL COMPONENTS OF THIS PRODUCT ARE INCLUDED ON THE TSCA CHEMICAL INVENTORY OR ARE NOT REQUIRED TO BE LISTED ON THE TSCA CHEMICAL INVENTORY.

THIS PRODUCT CONTAINS A CHEMICAL SUBSTANCE THAT IS SUBJECT TO EXPORT NOTIFICATION UNDER SECTION 12 (B) OF THE TOXIC SUBSTANCES CONTROL ACT, 15 U. S. C. 2601 ET. SEQ. (THIS REQUIREMENT APPLIES TO EXPORTS FROM THE UNITED STATES ONLY.)

CANADA:

COMPONENTS OF THIS PRODUCT HAVE BEEN REPORTED TO ENVIRONMENT CANADA IN ACCORDANCE WITH SECTIONS 66 AND/OR 81 OF THE CANADIAN ENVIRONMENTAL PROTECTION ACT (1999), AND ARE INCLUDED ON THE DOMESTIC SUBSTANCES LIST.

AUSTRALIA: ALL COMPONENTS OF THIS PRODUCT ARE INCLUDED IN THE AUSTRALIAN INVENTORY OF CHEMICAL SUBSTANCES (AICS) OR ARE NOT REQUIRED TO BE LISTED ON AICS.

CHINA: ALL COMPONENTS OF THIS PRODUCT ARE INCLUDED ON THE CHINESE INVENTORY OR ARE NOT REQUIRED TO BE LISTED ON THE CHINESE INVENTORY.

JAPAN: ALL COMPONENTS OF THIS PRODUCT ARE INCLUDED ON THE JAPANESE (ENCS) INVENTORY OR ARE NOT REQUIRED TO BE LISTED ON THE JAPANESE INVENTORY.

KOREA: ALL COMPONENTS OF THIS PRODUCT ARE INCLUDED ON THE KOREAN (ECL) INVENTORY OR ARE NOT REQUIRED TO BE LISTED ON THE KOREAN INVENTORY.

PHILIPPINES: ALL COMPONENTS OF THIS PRODUCT ARE NOT INCLUDED ON THE PHILIPPINE (PICCS) INVENTORY.

OTHER ENVIRONMENTAL INFORMATION:

THE FOLLOWING COMPONENTS OF THIS PRODUCT MAY BE SUBJECT TO REPORTING REQUIREMENTS PURSUANT TO SECTION 313 OF CERCLA (40 CFR 372), SECTION 12(B) OF TSCA, OR MAY BE SUBJECT TO RELEASE REPORTING REQUIREMENTS (40 CFR 307, 40 CFR 311, ETC.) SEE SECTION 13 FOR INFORMATION ON WASTE CLASSIFICATION AND WASTE DISPOSAL OF THIS PRODUCT.

COMPONENT / CAS NO.%TPQ (LBS)RQ(LBS)S313TSCA 12BSALICYLALDOXIME DERIVATIVE40 - 60NONE0NOYESPRODUCT HAZARD CLASSIFICATION UNDER SECTION 311 OF SARA: ACUTE

16. OTHER INFORMATION

NFPA HAZARD RATING (NATIONAL FIRE PROTECTION ASSOCIATION): HEALTH 2 - MATERIALS THAT, UNDER EMERGENCY CONDITIONS, CAN CAUSE TEMPORARY INCAPACITATION OR RESIDUAL INJURY. FIRE 1 - MATERIALS THAT MUST BE PREHEATED BEFORE IGNITION CAN OCCUR. INSTABILITY 0 - MATERIALS THAT IN THEMSELVES ARE NORMALLY STABLE, EVEN UNDER

http://fcx.complyplus.com/MSDS/default.asp?S=15981&noHeader=1

FIRE EXPOSURE CONDITIONS.

REASONS FOR ISSUE: NEW PRODUCT

RANDY DESKIN, PH.D., DABT +1-973-357-3100

THIS INFORMATION IS GIVEN WITHOUT ANY WARRANTY OR REPRESENTATION. WE DO NOT ASSUME ANY LEGAL RESPONSIBILITY FOR SAME, NOR DO WE GIVE PERMISSION, INDUCEMENT, OR RECOMMENDATION TO PRACTICE ANY PATENTED INVENTION WITHOUT A LICENSE. IT IS OFFERED SOLELY FOR YOUR CONSIDERATION, INVESTIGATION, AND VERIFICATION. BEFORE USING ANY PRODUCT, READ ITS LABEL.

> Hosted as Freeport McMoRan Copper & Gold. Comply Plus[®] Copyright © IHS Inc, 1999-2011. All Rights Reserved.

MSDS: 0015532 Print Date: 01/08/2008 Revision Date: 07/19/2004

MATERIAL SAFETY DATA SHEET

1. CHEMICAL PRODUCT AND COMPANY IDENTIFICATION

Product Name: Synonyms: Chemical Family: Molecular Formula: Molecular Weight:

ACORGA® M5910 Extraction Reagent

None 5-Nonyl-salicylaldoxime solvent hydrotreated distillate Mixture Mixture

CYTEC INDUSTRIES INC., FIVE GARRET MOUNTAIN PLAZA, WEST PATERSON, NEW JERSEY 07424, USA For Product Information call 1-800/652-6013. Outside the USA and Canada call 1-973/357-3193. EMERGENCY PHONE: For emergency involving spill, leak, fire, exposure or accident call CHEMTREC: 1-800/424-9300. Outside the USA and Canada call 1-703/527-3887.

® indicates trademark registered in the U.S. Outside the U.S., mark may be registered, pending or a trademark. Mark is or may be used under license.

2. COMPOSITION/INFORMATION ON INGREDIENTS

OSHA REGULATED COMPONENTS

Component / CAS No.	% (w/w)	OSHA (PEL):	ACGIH (TLV)	Carcinogen
Salicylaldoxime derivative	30 - 60	Not established	Not established	-
Petroleum distillate hydrotreated light 64742-47-8	2.5	500 ppm 1200 mg/m ³ (Supplier) 165 ppm (Supplier)	(skin)	-

3. HAZARDS IDENTIFICATION

EMERGENCY OVERVIEW

APPEARANCE AND ODOR:

Color:clear amberAppearance:liquidOdor:none

STATEMENTS OF HAZARD:WARNING!CAUSES EYE AND SKIN IRRITATION

POTENTIAL HEALTH EFFECTS

EFFECTS OF EXPOSURE:

The acute oral (rat) and dermal (rabbit) LD50 values are estimated to be between 1,200 - 5,000 mg/kg and greater than 2,000 mg/kg, respectively.

Direct contact with this material may cause moderate eye and skin irritation. Overexposure to vapors may cause irritation of the respiratory tract and eyes and may cause central nervous system effects. Refer to Section 11 for toxicology information on the regulated components of this product.

4. FIRST AID MEASURES

Ingestion:

If swallowed, call a physician immediately. Only induce vomiting at the instruction of a physician. Never give anything by mouth to an unconscious person.

Skin Contact:

Wash immediately with plenty of water and soap.

Eye Contact:

Rinse immediately with plenty of water for at least 15 minutes. Obtain medical advice if there are persistent symptoms.

Inhalation:

Remove to fresh air. If breathing is difficult, give oxygen. Obtain medical advice if there are persistent symptoms.

5. FIRE-FIGHTING MEASURES

Suitable Extinguishing Media:

Use water spray or fog, carbon dioxide or dry chemical.

Protective Equipment:

Firefighters, and others exposed, wear self-contained breathing apparatus. Wear full firefighting protective clothing. See MSDS Section 8 (Exposure Controls/Personal Protection).

Special Hazards:

Keep containers cool by spraying with water if exposed to fire.

6. ACCIDENTAL RELEASE MEASURES

Personal precautions:

Where exposure level is not known, wear approved, positive pressure, self-contained respirator. Where exposure level is known, wear approved respirator suitable for level of exposure. In addition to the protective clothing/equipment in Section 8 (Exposure Controls/Personal Protection), wear impermeable boots.

Methods For Cleaning Up:

Remove sources of ignition. Cover spills with some inert absorbent material; sweep up and place in a waste disposal container. Flush spill area with water.

Environmental Precautions:

Use appropriate containment to avoid environmental contamination.

7. HANDLING AND STORAGE

HANDLING

Precautionary Measures: Avoid contact with eyes, skin and clothing. Wash thoroughly after handling.

Special Handling Statements: None

STORAGE

Areas containing this material should have fire safe practices and electrical equipment in accordance with applicable regulations and/or guidelines. Standards are primarily based on the material's flashpoint, but may also take into account properties such as miscibility with water or toxicity. All local and national regulations should be followed. In the Americas, National Fire Protection Association (NFPA) 30: Flammable and Combustible Liquids Code, is a widely used standard. NFPA 30 establishes storage conditions for the following classes of materials: Class I Flammable Liquids, Flashpoint <37.8 °C. Class II Combustible Liquids, 37.8 °C < Flashpoint <60 °C. Class IIIa Combustible Liquids, 60 °C < Flashpoint < 93 °C.

Storage Temperature: Room temperature

Reason: Integrity.

8. EXPOSURE CONTROLS/PERSONAL PROTECTION

Engineering Measures:

Where this material is not used in a closed system, good enclosure and local exhaust ventilation should be provided to control exposure.

Respiratory Protection:

For operations where inhalation exposure can occur, use an approved respirator recommended by an industrial hygienist after an evaluation of the operation. Where inhalation exposure can not occur, no respiratory protection is required. A full facepiece respirator also provides eye and face protection.

Eye Protection:

Wear eye/face protection such as chemical splash proof goggles or face shield. Eyewash equipment and safety shower should be provided in areas of potential exposure.

Skin Protection:

Avoid skin contact. Wear impermeable gloves and suitable protective clothing.

Additional Advice:

Food, beverages, and tobacco products should not be carried, stored, or consumed where this material is in use. Before eating, drinking, or smoking, wash face and hands thoroughly with soap and water.

9. PHYSICAL AND CHEMICAL PROPERTIES

9. PHYSICAL AND CHEMICAL PROPERTIES

10. STABILITY AND REACTIVITY

Stability:	Stable
Conditions To Avoid:	None known
Polymerization:	Will not occur
Conditions To Avoid:	None known
Materials To Avoid:	oxygen Strong oxidizing agents.
Hazardous Decomposition Products:	oxides of carbon Ammonia (NH3) nitrogen oxides

11. TOXICOLOGICAL INFORMATION

Toxicological information for the product is found under Section 3. HAZARDS IDENTIFICATION. Toxicological information on the regulated components of this product is as follows:

Petroleum distillates, hydrotreated light (CAS# 64742-47-8) has acute oral (rat) and dermal (rabbit) LD50 values of >5 g/kg and >3.16 g/kg, respectively. Prolonged or repeated skin contact tends to remove skin oils, possibly leading to irritation and dermatitis. Direct contact may cause eve irritation. Overexposure to high vapor concentrations, >~700 ppm, are irritating to the eyes and respiratory tract and may cause headaches, dizziness, drowsiness, and other central nervous system effects, including death. Aspiration of minute amounts during ingestion or vomiting may cause mild to severe pulmonary injury and possibly death. In a 90-day oral gavage (rats) study at 100, 500, or 1000 mg/kg, no treatment-related mortalities were observed. There were no significant changes in body weights or food consumption in any dose groups. Increased liver weights were observed in male and female rats a 500 and 1000 mg/kg. Increased kidney weights were observed only in male rats at 500 and 1000 mg/kg. Testes weights were significantly elevated in male rats at 1000 mg/kg. Kidney effects, indicative of light hydrocarbon nephropathy, occured in male rat kidneys at all dose levels. Histological findings of hepatocellular hypertrophy were seeen in the livers of male rats at 1000 mg/kg and in female rats at 500 and 1000 mg/kg. All treatment-related effects were reversible within the 4-week recovery period. Observed kidney effects (including light hydrocarbon nephropathy and increased kidney weight) are a unique response by male rats to chronic hydrocarbon exposure, which th U.S. EPA has declared `not relevant to humans`. High-dose liver effects (including hepatocellular hypertrophy, or enlarged liver cells) are a direct consequence of the sustained high-fat `hydrocarbon diet`. The No Observed Adverse Effect Level (NOAEL) for this study was 1000 mg/kg.

Salicylaldoxime derivative has an oral LD50 (rat) of 1.25 to 5 mL/Kg, a dermal LD50 (rat) of > 2.5 mL/Kg, and an inhalation LC50 (rat) of > 1.6 mg/L/1 hr./70 °C. Rat skin testing indicates it is a moderate dermal irritant, and rabbit eye testing indicated a slight potential for irritation. Guinea pig dermal sensitization tests were negative. It is expected to be irritation. Symptoms of inhalation exposure may include coughing, choking, pain and moderate to severe irritation of mucous membranes. Depending on quantity and duration of exposure, contact will likely cause moderate skin and eye irritation. Overexposure can cause central nervous system (CNS) depression, with symptoms ranging from headache and confusion to coma and respiratory failure. This material is likely to be an endocrine disrupter.

12. ECOLOGICAL INFORMATION

Very toxic to aquatic organisms, may cause long-term adverse effects in the aquatic environment. The ecological assessment for this material is based on an evaluation of its components.

12. ECOLOGICAL INFORMATION

13. DISPOSAL CONSIDERATIONS

The information on RCRA waste classification and disposal methodology provided below applies only to the product, as supplied. If the material has been altered or contaminated, or it has exceeded its recommended shelf life, the guidance may be inapplicable. Hazardous waste classification under federal regulations (40 CFR Part 261 et seq) is dependent upon whether a material is a RCRA `listed hazardous waste`or has any of the four RCRA `hazardous waste characteristics. Refer to 40 CFR Part 261.33 to determine if a given material to be disposed of is a RCRA listed hazardous waste'; information contained in Section 15 of this MSDS is not intended to indicate if the product is a 'listed hazardous waste. RCRA Hazardous Waste Characteristics: There are four characteristics defined in 40 CFR Section 261.21-61.24: Ignitability, Corrosivity, Reactivity, and Toxicity. To determine Ignitability, see Section 9 of this MSDS (flash point). For Corrosivity, see Sections 9 and 14 (pH and DOT corrosivity). For Reactivity, see Section 10 (incompatible materials). For Toxicity, see Section 2 (composition). Federal regulations are subject to change. State and local requirements, which may differ from or be more stringent than the federal regulations, may also apply to the classification of the material if it is to be disposed. The Company encourages the recycle, recovery and reuse of materials, where permitted, as an alternate to disposal as a waste. The Company recommends that organic materials classified as RCRA hazardous wastes be disposed of by thermal treatment or incineration at EPA approved facilities. The Company has provided the foregoing for information only; the person generating the waste is responsible for determining the waste classification and disposal method.

14. TRANSPORT INFORMATION

This section provides basic shipping classification information. Refer to appropriate transportation regulations for specific requirements.

US DOT

Proper Shipping Name: ENVIRONMENTALLY HAZARDOUS SUBSTANCE, LIQUID, N.O.S. Hazard Class: 9 Packing Group: III UN/ID Number: UN3082 Transport Label Required: Miscellaneous Marine Pollutant Technical Name (N.O.S.): Salicylaldoxime derivative Hazardous Substances: Not applicable Comments: Marine Pollutants - DOT requirements specific to Marine Pollutants do not apply to non-bulk packagings transported by motor vehicles, rail cars or aircraft.

TRANSPORT CANADA

Proper Shipping Name: ENVIRONMENTALLY HAZARDOUS SUBSTANCE, LIQUID, N.O.S. Hazard Class: 9 Packing Group: III

Miscellan
Marine Po

Technical Name (N.O.S.):

Miscellaneous Marine Pollutant Salicylaldoxime derivative

ICAO / IATA

Proper Shipping Name: Environmentally hazardous substance, liquid, n.o.s. Hazard Class: 9 Packing Group: III UN Number: UN3082 Transport Label Required: Miscellaneous Packing Instructions/Maximum Net Quantity Per Package: Passenger Aircraft: 914; 450 L Cargo Aircraft: 914; 450 L Technical Name (N.O.S.): Salicylaldoxime derivative

Comments:

Special Provision A97 states that substances classified as UN3077 or UN3082 by the regulations of other modes of transport may also be transported by air under these entries. This classification does NOT apply if the regulations of the other modes of transport allow the substances to be shipped as "Non-Dangerous Goods" because of package size or transport mode.

IMO

Proper Shipping Name: ENVIRONMENTALLY HAZARDOUS SUBSTANCE, LIQUID, N.O.S. Hazard Class: 9 UN Number: UN3082 Packing Group: III Transport Label Required: Miscellaneous Marine Pollutant Technical Name (N.O.S.): Salicylaldoxime derivative

15. REGULATORY INFORMATION

INVENTORY INFORMATION

United States (USA): All components of this product are included on the TSCA Chemical Inventory or are not required to be listed on the TSCA Chemical Inventory.

This product contains a chemical substance that is subject to export notification under Section 12 (b) of the Toxic Substances Control Act, 15 U. S. C. 2601 et. seq. (This requirement applies to exports from the United States only.)

Canada: All components of this product are included on the Domestic Substances List (DSL) or are not required to be listed on the DSL.

European Union (EU): All components of this product are included on the European Inventory of Existing Chemical Substances (EINECS) or are not required to be listed on EINECS.

Australia: All components of this product are included in the Australian Inventory of Chemical Substances (AICS).

China: All components of this product are included on the Chinese inventory or are not required to be listed on the Chinese inventory.

Japan: All components of this product are included on the Japanese (ENCS) inventory or are not required to be listed on the Japanese inventory.

Korea: All components of this product are included on the Korean (ECL) inventory or are not required to be listed on the Korean inventory.

Philippines: All components of this product are NOT included on the Philippine (PICCS) inventory.

OTHER ENVIRONMENTAL INFORMATION

The following components of this product may be subject to reporting requirements pursuant to Section 313 of CERCLA (40 CFR 372), Section 12(b) of TSCA, or may be subject to release reporting requirements (40 CFR 307, 40 CFR 311, etc.) See Section 13 for information on waste classification and waste disposal of this product.

Component / CAS No.	%	TPQ (lbs)	RQ(lbs)	S313	TSCA 12B
Salicylaldoxime derivative	30 - 60	None	0	No	Yes

PRODUCT HAZARD CLASSIFICATION UNDER SECTION 311 OF SARA

Acute

16. OTHER INFORMATION

NFPA Hazard Rating (National Fire Protection Association)

Health: 2 - Materials that, under emergency conditions, can cause temporary incapacitation or residual injury.

Fire: 1 - Materials that must be preheated before ignition can occur.

Reactivity: 0 - Materials that in themselves are normally stable, even under fire exposure conditions.

Reasons For Issue: Revised Section 14

Randy Deskin, Ph.D., DABT +1-973-357-3100

This information is given without any warranty or representation. We do not assume any legal responsibility for same, nor do we give permission, inducement, or recommendation to practice any patented invention without a license. It is offered solely for your consideration, investigation, and verification. Before using any product, read its label.

MSDS: 0014831 Date: 10/01/2003

MATERIAL SAFETY DATA SHEET

1. CHEMICAL PRODUCT AND COMPANY IDENTIFICATION

Product Name:

Synonyms: Molecular Weight: ACORGA® M5640 Solvent Extraction Reagent none Mixture

CYTEC INDUSTRIES INC., FIVE GARRET MOUNTAIN PLAZA, WEST PATERSON, NEW JERSEY 07424, USA For Product Information call 1-800/652-6013. Outside the USA and Canada call 1-973/357-3193. EMERGENCY PHONE: For emergency involving spill, leak, fire, exposure or accident call CHEMTREC: 1-800/424-9300. Outside the USA and Canada call 1-703/527-3887.

® indicates trademark registered in the U.S. Outside the U.S., mark may be registered, pending or a trademark. Mark is or may be used under license.

2. COMPOSITION/INFORMATION ON INGREDIENTS

OSHA REGULATED COMPONENTS

Component / CAS No. Petroleum distillate hydrotreated light 64742-47-8	% (w/w 10 − 30	OSHA (PEL): 500 ppm 1200 mg/m³ (Supplier) 165 ppm (Supplier)	ACGIH (TLV) Not Established	Carcinogen -
5-Nonyl-2-hydroxy- benzaldoxime 174333-80-3	30 - 60	Not Established	Not Established	~

3. HAZARDS IDENTIFICATION

EMERGENCY OVERVIEW

APPEARANCE AND ODOR:

Color:	clear amber		
Appearance:	liquid		
Odor:	none		

STATEMENTS OF HAZARD: WARNING! CAUSES EYE AND SKIN IRRITATION COMBUSTIBLE LIQUID AND VAPOR

POTENTIAL HEALTH EFFECTS

EFFECTS OF OVEREXPOSURE:

The acute oral (rat) and dermal (rabbit) LD50 is estimated to be between 1,600 - 3,000 mg/kg and greater than 2,000 mg/kg, respectively.

Direct contact with this material may cause moderate eye and skin irritation. Overexposure to vapors may cause irritation of the respiratory tract and eyes and may cause central nervous system effects. Refer to Section 11 for toxicology information on the regulated components of this product.

4. FIRST AID MEASURES

Ingestion:

If swallowed, call a physician immediately. Only induce vomiting at the instruction of a physician. Never give anything by mouth to an unconscious person.

Skin Contact:

Wash immediately with plenty of water and soap.

Eye Contact:

Rinse immediately with plenty of water for at least 15 minutes. Obtain medical advice if there are persistent symptoms.

Inhalation:

Remove to fresh air. If breathing is difficult, give oxygen. Obtain medical advice if there are persistant symptoms.

5. FIRE-FIGHTING MEASURES

Extinguishing Media:

Use water spray, alcohol foam, carbon dioxide or dry chemical to extinguish fires. Water stream may be ineffective.

Protective Equipment:

Firefighters, and others exposed, wear self-contained breathing apparatus. Wear full firefighting protective clothing. See Section 8 (Exposure Controls/Personal Protection).

Special Hazards:

Keep containers cool by spraying with water if exposed to fire.

6. ACCIDENTAL RELEASE MEASURES

Personal Precautions:

Where exposure level is not known, wear approved, positive pressure, self-contained respirator. Where exposure level is known, wear approved respirator suitable for level of exposure. In addition to the protective clothing/equipment in Section 8 (Exposure Controls/Personal Protection), wear impermeable boots.

Methods For Cleaning Up:

Remove sources of ignition. Cover spills with some inert absorbent material; sweep up and place in a waste disposal container. Flush spill area with water.

7. HANDLING AND STORAGE

HANDLING

Precautionary Measures: Avoid contact with eyes, skin and clothing. Wash thoroughly after handling. Keep away from heat, sparks and flame. Keep container closed.

Handling Statements: None

STORAGE

Areas containing this material should have fire safe practices and electrical equipment in accordance with applicable regualtions and/or guidelines. Standards are primarily based on the material's flashpoint, but may also take into account properties such as miscibility with water or toxicity. All local and national regulations should be followed. In the Americas, National Fire Protection Association (NFPA) 30: Flammable and Combustible Liquids Code, is a widely used standard. NFPA 30 establishes storage conditions for the following classes of materials: Class I Flammable Liquids, Flashpoint <37.8 °C. Class II Combustible Liquids, 37.8 °C < Flashpoint <60 °C. Class IIIa Combustible Liquids, Flashpoint <93 °C.

8. EXPOSURE CONTROLS/PERSONAL PROTECTION

Engineering Measures:

Where this material is not used in a closed system, good enclosure and local exhaust ventilation should be provided to control exposure.

Respiratory Protection:

Where exposures are below the established exposure limit, no respiratory protection is required. Where exposures exceed the established exposure limit, use respiratory protection recommended for the material and level of exposure.

Eye Protection:

Wear eye/face protection such as chemical splash proof goggles or face shield.

Skin Protection:

Avoid skin contact. Wear impermeable gloves and suitable protective clothing.

Additional Advice:

Food, beverages, and tobacco products should not be carried, stored, or consumed where this material is in use. Before eating, drinking, or smoking, wash face and hands thoroughly with soap and water.

9. PHYSICAL AND CHEMICAL PROPERTIES

Color:	clear amber
Appearance:	liquid
Odor:	none
Boiling Point:	Not available
Melting Point:	Not available
Vapor Pressure:	mm Hg @ 20 °C Not available
Specific Gravity:	0.96 - 0.97
Vapor Density:	(air = 1)Not available
Percent Volatile (By Wt.):	Not available
pH:	Not available
Saturation In Air (% By Vol.):	Not available
Evaporation Rate:	Not available
Solubility In Water:	Insoluble
Volatile Organic Content:	Not available
Flash Point:	91 °C 196 °F Pensky-Martens Closed Cup
Flammable Limits (% By Vol):	Not available
Autoignition Temperature:	Not available
Decomposition Temperature:	Not available
Partition coefficient (n-	Not available
octanol/water):	
Odor Threshold:	See Section 2 for exposure limits.

10. STABILITY AND REACTIVITY

Stability:	Stable
Conditions To Avoid:	None known
Polymerization:	Will not occur
Conditions To Avoid:	None known
Materials To Avoid:	oxygen Strong oxidizing agents.
Hazardous Decomposition Products:	oxides of carbon and nitrogen, ammonia

11. TOXICOLOGICAL INFORMATION

Toxicological information for the product is found under Section 3. HAZARDS IDENTIFICATION. Toxicological information on the regulated components of this product is as follows:

Petroleum distillates, hydrotreated light (CAS# 64742-47-8) has acute oral (rat) and dermal (rabbit) LD50 values of >5 g/kg and >3.16 g/kg, respectively. Prolonged or repeated skin contact tends to remove skin oils, possibly leading to irritation and dermatitis. Direct contact may cause eye irritation. Overexposure to high vapor concentrations, >~700 ppm, are irritating to the eyes and respiratory tract and may cause headaches, dizziness, drowsiness, and other central nervous system effects, including death. Aspiration of minute amounts during ingestion or vomiting may cause mild to severe pulmonary injury and possibly death. In a 90-day oral gavage (rats) study at 100, 500, or 1000 mg/kg, no treatment-related mortalities were observed. There were no significant changes in body weights or food consumption in any dose groups. Increased liver weights were observed in male and female rats a 500 and 1000 mg/kg. Increased kidney weights were observed only in male rats at 500 and 1000 mg/kg. Testes weights were significantly elevated in male rats at 1000 mg/kg. Kidney effects, indicative of light hydrocarbon nephropathy, occured in male rat kidneys at all dose levels. Histological findings of hepatocellular hypertrophy were seeen in the livers of male rats at 1000 mg/kg and in female rats at 500 and 1000 mg/kg. All treatment-related effects were reversible within the 4-week recovery period. Observed kidney effects (including light hydrocarbon nephropathy and increased kidney weight) are a unique response by male rats to chronic hydrocarbon exposure, which th U.S. EPA has declared `not relevant to humans`. High-dose liver effects (including hepatocellular hypertrophy, or enlarged liver cells) are a direct consequence of the sustained high-fat 'hydrocarbon diet'. The No Observed Adverse Effect Level (NOAEL) for this study was 1000 mg/kg.

5-Nonyl-2-hydroxy-benzaldoxime has an oral LD50 (rat) of 1.25 to 5 mL/Kg, a dermal LD50 (rat) of > 2.5 mL/Kg, and an inhalation LC50 (rat) of > 1.6 mg/L/1 hr./70 °C. Rat skin testing indicates it is a moderate dermal irritant, and rabbit eye testing indicated a slight potential for irritation. Guinea pig dermal sensitization tests were negative. It is expected to be irritating to eyes, skin, and all mucous membranes. Ingestion of 5-Nonyl-2-hydroxy-benzaldoxime is expected to cause moderate to severe gastrointestinal irritation. Symptoms of inhalation exposure may include coughing, choking, pain and moderate to severe irritation of mucous membranes. Depending on quantity and duration of exposure, contact will likely cause moderate skin and eye irritation. In a 14-day subacute feeding study in rats, doses of 0.1 ml/kg did not produce any adverse effects. Overexposure (based on aromatic oxime) can cause central nervous system (CNS) depression, with symptoms ranging from headache and confusion to coma and respiratory failure. This material is likely to be an endocrine disrupter.

California Proposition 65 Warning (applicable in California only) - This product contains (a) chemical(s) known to the State of California to cause birth defects or other reproductive harm.

12. ECOLOGICAL INFORMATION

Very toxic to aquatic organisms, may cause long-term adverse effects in the aquatic environment. The ecological assessment for this material is based on an evaluation of its components.

13. DISPOSAL CONSIDERATIONS

The information on RCRA waste classification and disposal methodology provided below applies only to the Cytec product, as supplied. If the material has been altered or contaminated, or it has exceeded its recommended shelf life, the guidance may be inapplicable. Hazardous waste classification under federal regulations (40 CFR Part 261 et seq) is dependent upon whether a material is a RCRA `listed hazardous waste`or has any of the four RCRA hazardous waste characteristics. Refer to 40 CFR Part 261.33 to determine if a given material to be disposed of is a RCRA 'listed hazardous waste'; information contained in Section 15 of this MSDS is not intended to indicate if the product is a `listed hazardous waste. `RCRA Hazardous Waste Characteristics: There are four characteristics defined in 40 CFR Section 261.21-61.24: Ignitability, Corrosivity, Reactivity, and Toxicity. To determine Ignitability, see Section 9 of this MSDS (flash point). For Corrosivity, see Sections 9 and 14 (pH and DOT corrosivity). For Reactivity, see Section 10 (incompatible materials). For Toxicity, see Section 2 (composition). Federal regulations are subject to change. State and local requirements, which may differ from or be more stringent than the federal regulations, may also apply to the classification of the material if it is to be disposed. Cytec encourages the recycle. recovery and reuse of materials, where permitted, as an alternate to disposal as a waste. Cytec recommends that organic materials classified as RCRA hazardous wastes be disposed of by thermal treatment or incineration at EPA approved facilities. Cytec has provided the foregoing for information only; the person generating the waste is responsible for determining the waste classification and disposal method.

14. TRANSPORT INFORMATION

This section provides basic shipping classification information. Refer to appropriate transportation regulations for specific requirements.

US DOT

 Proper Shipping Name: Combustible liquid, n.o.s.

 Hazard Class: Combustible liquid

 Packing Group: III

 UN/ID Number: NA1993

 Transport Label Required:
 Marine Pollutant

 Technical Name (N.O.S.):
 Contains alkyl phenol and alkanes

 Hazardous Substances:
 Not applicable

 Comments:
 DOT requirements specific to marine pollutat

DOT requirements specific to marine pollutants do not apply to non-bulk packagings transported by motor vehicles, rail cars or aircraft.

TRANSPORT CANADA

Proper Shipping Name: Environmentally hazardous substance, liquid, n.o.s. Hazard Class: 9 Packing Group: III ACORGA® M5640 Solvent Extraction Reagent

Miscellaneous
Marine Pollutant
Contains alkyl phenol and alkanes

ICAO / IATA

Proper Shipping Name: Not applicable/Not regulated Packing Instructions/Maximum Net Quantity Per Package: Passenger Aircraft: -Cargo Aircraft: -

IMO

Proper Shipping Name: Environmentally hazardous substance, liquid, n.o.s. Hazard Class: 9 UN Number: 3082 Packing Group: III Transport Label Required: Miscellaneous Marine Pollutant Technical Name (N.O.S.): Contains alkyl phenol and alkanes

15. REGULATORY INFORMATION

INVENTORY INFORMATION

United States (USA): All components of this product are included on the TSCA Inventory in compliance with the Toxic Substances Control Act, 15 U. S. C. 2601 et. seq. This product contains a chemical substance that is subject to export notification under Section 12 (b) of the Toxic Substances Control Act, 15 U. S. C. 2601 et. seq. (This requirement applies to exports from the United States only.)

Canada: Components of this product have been reported to Environment Canada in accordance with Sections 66 and/or 81 of the Canadian Environmental Protection Act (1999), and are included on the Domestic Substances List.

European Union (EU): All components of this product are included in the European Inventory of Existing Chemical Substances (EINECS) in compliance with Council Directive 67/548/EEC and its amendments.

Australia: All components of this product are included in the Australian Inventory of Chemical Substances (AICS).

China: All components of this product are included on the Chinese inventory or are not required to be listed on the Chinese inventory.

Japan: All components of this product are included on the Japanese (ENCS) inventory or are not required to be listed on the Japanese inventory.

Korea: All components of this product are included on the Korean (ECL) inventory or are not required to be listed on the Korean inventory.

Philippines: All components of this product are NOT included on the Philippine (PICCS) inventory.

OTHER ENVIRONMENTAL INFORMATION

The following components of this product may be subject to reporting requirements pursuant to Section 313 of CERCLA (40 CFR 372), Section 12(b) of TSCA, or may be subject to release reporting requirements (40 CFR 307, 40 CFR 311, etc.) See Section 13 for information on waste classification and waste disposal of this product.

ACORGA® M5640 Solvent Extraction Reagent

Component / CAS No.	%	TPQ(lbs)	RQ(lbs)	S313	TSCA 12B
5-Nonyl-2-hydroxy-benzaldoxime	30 - 60	None	Ó	No	Yes
174333-80-3					

PRODUCT HAZARD CLASSIFICATION UNDER SECTION 311 OF SARA

Acute

Fire

16. OTHER INFORMATION

NFPA Hazard Rating (National Fire Protection Association)

Health: 2 - Materials that, under emergency conditions, can cause temporary incapacitation or residual injury.

Fire: 2 - Materials that must be moderately heated or exposed to relatively high ambient temperatures before ignition can occur.

Reactivity: 0 - Materials that in themselves are normally stable, even under fire exposure conditions.

Reasons For Issue: New Product

Randy Deskin, Ph.D., DABT +1-973-357-3100

This information is given without any warranty or representation. We do not assume any legal responsibility for same, nor do we give permission, inducement, or recommendation to practice any patented invention without a license. It is offered solely for your consideration, investigation, and verification. Before using any product, read its label.

Material Safety Data Sheet

	Page 1 of 10
	SDS no. : 320811
LIX 684 N-LV	Revision: 08/10/2010
	printing date: 08/10/2010

1. Chemical product and company identification

 Product name:
 LIX 684 N-L∨

 Supplier
 Cognis Corporation

 5051 Estecreek Drive
 Cincinnati, OH

 45232-1446
 USA

 Phone:
 +1 (866) 910-0598

 Fax-no.:
 +1 (513) 482-3576

Emergency Information Chemtrec:

+1-800-424-9300

2. Composition/information on ingredients

General chemical description:

Alkylated phenol oxime solution

COMPONENT:	CAS-No.	CONCENTRATION (Wt. %):
Proprietary component(s)		100

3. Hazards identification

EMERGENCY OVERVIEW

Warning:	Combustible liquid.
	Causes skin and eye irritation.
	May cause an allergic skin reaction.

State:

liquid

Odor: of mineral oil

Color(s): amber

Material Safety Data Sheet

	Page 2 of 10
	SDS no. : 320811
LIX 684 N-LV	Revision: 08/10/2010
	printing date: 08/10/2010

Routes of entry:

Skin contact, Eye contact

Potential Health Acute Effects:

Inhalation:

Prolonged or excessive inhalation may cause respiratory tract irritation.

Skin contact:

Causes skin irritation. May cause an allergic skin reaction.

Eye contact:

Causes eye irritation.

Ingestion:

May be harmful if swallowed.

Existing conditions aggravated by exposure:

May aggravate existing skin, eye and respiratory conditions.

Potential Chronic Health Effects:

None known

4. First aid measures

After inhalation:

After inhalation of spray mist: seek medical advice. Move to fresh air.

After skin contact:

Remove contaminated clothing and footwear. Wash thoroughly with soap and water. If adverse health effects develop seek medical attention.

After eye contact:

Rinse immediately with plenty of running water (for 10 minutes). Seek medical attention if necessary.

After ingestion:

Do not induce vomiting, seek medical advice immediately.

Product presents an aspiration hazard.

If vomiting occurs naturally, keep airway clear. Never give anything by mouth if the victim is rapidly losing consciousness, or is unconscious or convulsing.

Material Safety Data Sheet

	Page 3 of 10
	SDS no. : 320811
LIX 684 N-LV	Revision: 08/10/2010
	printing date: 08/10/2010

5. Fire fighting measures

Flash point:

> 201,2 °F (> 94 °C) ISO 2719-88;; flashpoint

Autoignition temperature:

Not determined

Flammable/Explosive limits: Lower limits:

Not determined. **Upper limits:** Not determined.

Suitable extinguishing media:

Water Spray Carbon dioxide. Foam. Dry Chemical

Improper extinguishing media: High pressure waterjet

Special protection equipment for firefighters:

Wear self-contained breathing apparatus. Wear full protective clothing.

Unusual fire or explosion hazards:

Formation of toxic gases is possible during heating or in fires.

Hazardous combustion products:

Carbon dioxide., carbon monoxide, nitrogen oxides

Additional fire fighting advice:

In case of fire, keep containers cool with water spray.

6. Accidental release measures

General information:

Avoid open flames and sources of ignition. Clean up spills immediately.

Material Safety Data Sheet

	Page 4 of 10
	SDS no. : 320811
LIX 684 N-LV	Revision: 08/10/2010
	printing date: 08/10/2010

Personal precautions:

Avoid contact with skin and eyes. Ensure adequate ventilation. Keep unprotected persons away. Ensure cleanup is performed only by trained personnel wearing appropriate personal protective clothing and equipment.

Environmental precautions:

Do not empty into drains / surface water / ground water.

Methods for cleaning and take-up:

Contain by diking then pump into suitable containers. Soak up small spills with absorbent material and place in labeled containers for recovery or disposal.

7. Handling and storage

<u>Handling:</u>

Handling advice:

Avoid naked flames, sparking and sources of ignition. Ensure that workrooms are adequately ventilated. Open and handle container with care.

Storage:

Shelf life:

36 months

Storage conditions to keep:

Store in a cool place in closed original container. Ensure that storage and workrooms are adequately ventilated.

8. Exposure controls/personal protection

Indication for system design: Ensure adequate ventilation.

Material Safety Data Sheet

	Page 5 of 10
	SDS no. : 320811
LIX 684 N-LV	Revision: 08/10/2010
	printing date: 08/10/2010

Components with specific control parameters for workplace:

Valid for NAFTA Region (CA, US, MX)

Name on list	Basis	Туре	Value	Category	Remarks
JET FUELS (NON-AEROSOL), AS TOTAL HYDROCARBON VAPOR	ACGIH	Skin designation.			Can be absorbed through the skin.
JET FUELS (NON-AEROSOL), AS TOTAL HYDROCARBON VAPOR	ACGIH	Time Weighted Average (TWA).	200 mg/m ³		P: Application restricted to conditions in which there are negligible aerosol exposures.
KEROSENE (NON-AEROSOL), AS TOTAL HYDROCARBON VAPOR	ACGIH	Time Weighted Average (TWA).	200 mg/m ³		P: Application restricted to conditions in which there are negligible aerosol exposures.
KEROSENE (NON-AEROSOL), AS TOTAL HYDROCARBON VAPOR	ACGIH	Skin designation.			Can be absorbed through the skin.
KEROSENE	NIOSH	Recommended exposure limit (REL):	100 mg/m ³		
EXX-PRINT 283D, EXXSOL (HEAVY ALIPHATIC PETROLEUM SOLVENT)LPA- 142, 150, 170 SOLVENT (100% PARAFFINIC, NAPHTHENIC SOLVENT, HEAVY ALIPHATIC PETROLEUM SOLVENT; HYDROTREATED DISTILLATE)ISOPAR M (SYNTHETIC ISOPARAFFINIC HYDROCARBON)LVT 200 SOLVENT (HYDROTREATED LIGHT DISTILLATE)OROFOM SX (HYDROTREATED DISTILLATE, LIGHT C1 - C16) OROFOM SX	TX ESL TX ESL	Short-Term ESL:	3500 others 350 others	1 hourug/m3	
(HYDROTREATED DISTILLATE, LIGHT C1 - C16)ISOPAR M (SYNTHETIC ISOPARAFFINIC HYDROCARBON)EXX-PRINT 283D, EXXSOL (HEAVY ALIPHATIC PETROLEUM SOLVENT)LVT 200 SOLVENT (HYDROTREATED LIGHT DISTILLATE)LPA-142, 150, 170 SOLVENT (100% PARAFFINIC,					

Material Safety Data Sheet

LIX 684 N-LV

Page 6 of 10

SDS no. : 320811 Revision: 08/10/2010 printing date: 08/10/2010

NAPHTHENIC SOLVENT,			
HEAVY ALIPHATIC			
PETROLEUM SOLVENT;			
HYDROTREATED DISTILLATE)			

Personal protection measures:

Respiratory protection:

Suitable breathing mask when there is inadequate ventilation. NIOSH/MSHA approved respirator if necessary. Follow manufacturer's recommendations.

Hand protection:

Appropriate chemical resistant gloves.

Eye protection:

Goggles which can be tightly sealed.

Skin protection:

Wear suitable protective clothing.

9. Physical and chemical properties

General description:		
State:	liquid	
Odor:	of mineral oil	
Color(s):	amber	
Designedian	Valaa	Mathad
Designation	Value	Method
Density	0.97 - 0.98 g/cm3	no information
(25 °C (77°F))		
Solubility in	Insoluble	no information

10. Stability and reactivity

Stability:

Conditions to avoid:

Avoid heating.

Prolonged exposure to elevated temperatures may result in exothermic decomposition accompanied by a pressure buildup

in sealed containers.

Material Safety Data Sheet

	Page 7 of 10
	SDS no. : 320811
LIX 684 N-LV	Revision: 08/10/2010
	printing date: 08/10/2010

Decomposition advices:

No decomposition if used according to specifications.

Reactivity:

Materials to avoid: Reaction with oxidants.

Hazardous polymerization:

Will not occur

11. Toxicological information

General toxicological information:

No toxicity information available or testing conducted on this product. Any health or toxicological information included in Section 3 was based on data associated with the components or an analogous product.

Acute oral toxicity:

LD50 > 2000 mg/kg body weight

Skin irritation: irritating

Eye irritation: irritating

12. Ecological information

General ecological information:

The ecological evaluation of the product is based on data from the raw material and/or comparable substances.

Acute bacterial toxicity:

 $EC0 > 10 - \le 100 \text{ mg product/l.}$

Ultimate biodegradation:

The total of the organic components contained in the product achieve values below 60% BOD/COD or CO2 liberation, or below 70% DOC reduction in tests for ease of degradability. Threshold values for 'readily degradable' (e.g. to OECD method 301) are not reached.

Material Safety Data Sheet

	Page 8 of 10
	SDS no. : 320811
LIX 684 N-LV	Revision: 08/10/2010
	printing date: 08/10/2010

13. Disposal considerations

Waste disposal of product:

Dispose of product by incineration in an approved chemical waste facility (or by other approved methods) in accordance with applicable federal, state, and local regulations. Avoid landfilling liquids.

Reclaim where possible.

14. Transport information

U.S. Department of Transportation	Ground (49 CFR):
Proper shipping name:	Environmentally hazardous substances, liquid, n.o.s. (Alkylated Phenol
	oxime)
Hazard class or division:	9
Danger Labels:	9
Identification number:	UN 3082
Packing group:	III
Marine pollutant:	Environmentally Hazardous
ERG/EMS:	171
RQ:	None
International Air Transportation (IC	CAO/IATA):
Proper shipping name:	Environmentally hazardous substance, liquid, n.o.s. (Alkylated Phenol
	oxime)
Hazard class or division:	9
Danger Labels:	9
Identification number:	UN 3082
Packing group:	III
RQ:	None
Water Transportation (IMO/IMDG)	<u>:</u>
Proper shipping name:	ENVIRONMENTALLY HAZARDOUS SUBSTANCE, LIQUID,
	N.O.S. (Alkylated Phenol oxime)
Hazard class or division:	9
Danger Labels:	9
Identification number:	UN 3082
Packing group:	III
Marine pollutant:	Environmentally Hazardous
ERG/EMS:	F-A;S-F
RQ:	None

The transport information provided represents the regulatory transport classification of the product without consideration to packaging, quantity, or modal restrictions and exceptions. It is the user's responsibility to determine the appropriate packaging and modal requirements and/or limitations for the product quantity being shipped.

Material Safety Data Sheet

	Page 9 of 10
	SDS no. : 320811
LIX 684 N-LV	Revision: 08/10/2010
	printing date: 08/10/2010

15. Regulatory information

TSCA Inventory Status:	This product and/or all of its components are either included on or exempt from the TSCA Inventory of Chemical Substances.
SARA 311/312 Hazard Categories:	Immediate Health, Fire
TSCA 12(b) Components:	none
SARA 313 Toxic Chemicals:	none
SARA 302 Extremely Hazardous Substances:	none
CERCLA Hazardous Chemicals:	none
California Proposition 65:	No California Proposition 65 listed chemicals are known to be present.

16. Other information

NFPA Rating (US)	Value
Health	2
Fire	2
Reactivity	1
Special Hazard	

HMIS Rating (US)	Value
Health	2
Flammability	2
Reactivity	1

All information, recommendations, and suggestions appearing herein concerning our product are based upon tests and data believed to be reliable. However, it is the user's responsibility to determine the safety, toxicity, and suitability for his own use of the product described herein. Since the actual use by others is beyond our control, no guarantee, express or implied, is being made as to the effects of such use, the results obtained, or the safety and toxicity of the product nor is their any assumed liability arising out of use, by others, of the product referred to herein. The information herein is not to be construed as absolutely complete since additional information may be necessary or desirable when particular or exceptional conditions or circumstances exist or because of applicable laws or government regulations.

Material Safety Data Sheet

	Page 10 of 10
	SDS no. : 320811
LIX 684 N-LV	Revision: 08/10/2010
	printing date: 08/10/2010

730721-00 ESCAID 115 MATERIAL SAFETY DATA BULLETIN _____ _____ 1. PRODUCT AND COMPANY IDENTIFICATION _____ PRODUCT NAME: ESCAID 115 SUPPLIER: EXXON MOBIL CORPORATION 3225 GALLOWS RD. FAIRFAX, VA 22037 24 - Hour Health and Safety Emergency (call collect): 609-737-4411 24 - Hour Transportation Emergency (Primary) CHEMTREC: 800-424-9300 (Secondary) 281-834-3296 Product and Technical Information: Lubricants and Specialties: 800-662-4525 800-443-9966 Fuels Products: 800-947-9147 MSDS Fax on Demand: 713-613-3661 MSDS on Internet: http://www.exxon.com http://www.mobil.com _____ 2. COMPOSITION/INFORMATION ON INGREDIENTS _____ CHEMICAL NAMES AND SYNONYMS: HYDROCARBON GLOBALLY REPORTABLE MSDS INGREDIENTS: Substance Name Approx. Wt% _____ _____ 100 REFINED MINERAL OIL (64771 - 72 - 8)See Section 8 for exposure limits (if applicable). _____ 3. HAZARDS IDENTIFICATION _____ This product is considered hazardous according to regulatory guidelines (See Section 15). EMERGENCY OVERVIEW: Clear Straw Yellow Liquid. DOT ERG No. : NA POTENTIAL HEALTH EFFECTS: This product can irritate and defat the skin. Prolonged and/or repeated skin contact may cause dermatitis. High concentrations of vapors may be irritating to

the eyes and respiratory system and act as an anesthetic. Low viscosity material-if swallowed may enter the lungs and cause lung damage.

For further health effects/toxicological data, see Section 11.

_____ 4. FIRST AID MEASURES _____ EYE CONTACT: Flush thoroughly with water. If irritation occurs, call a physician. SKIN CONTACT: Wash contact areas with soap and water. Immediately remove contaminated clothing. Launder contaminated clothing before reuse. (See Section 16 - Injection Injury) INHALATION: Remove from further exposure. If respiratory irritation, dizziness, nausea, or unconsciousness occurs, seek immediate medical assistance. If breathing has stopped, assist ventilation with mechanical device or use mouth-to-mouth resuscitation. INGESTION: Seek immediate medical attention. Do not induce vomiting. NOTE TO PHYSICIANS: Material if aspirated into the lungs may cause chemical pneumonitis. PRE-EXISTING MEDICAL CONDITIONS WHICH MAY BE AGGRAVATED BY EXPOSURE: Hydrocarbon Solvents/Petroleum Hydrocarbons- Skin contact may aggravate an existing dermatitis. _____ 5. FIRE-FIGHTING MEASURES _____ EXTINGUISHING MEDIA: Carbon dioxide, foam, dry chemical and water fog. SPECIAL FIRE FIGHTING PROCEDURES: Water should be used to keep fire-exposed containers cool. Prevent runoff from fire control or dilution from entering streams, sewers, or drinking water supply. SPECIAL PROTECTIVE EQUIPMENT: For fires in enclosed areas, fire fighters must use self-contained breathing apparatus. UNUSUAL FIRE AND EXPLOSION HAZARDS: None. COMBUSTION PRODUCTS: Fumes, smoke, carbon monoxide, sulfur oxides, aldehydes and other decomposition products, in the case of incomplete combustion. Flash Point C(F): > 93(200) (ASTM D-93). Flammable Limits (approx.% vol.in air) - LEL: 1.4%, UEL: 8.7% NFPA HAZARD ID: Health: 1, Flammability: 1, Reactivity: 0 _____ 6. ACCIDENTAL RELEASE MEASURES _____ NOTIFICATION PROCEDURES: Report spills/releases as required to appropriate authorities. U.S. Coast Guard and EPA regulations require immediate reporting of spills/releases that could reach any waterway including intermittent dry creeks. Report spill/release to Coast Guard National Response Center toll free number (800)424-8802. In case of accident or road spill notify CHEMTREC (800) 424-9300. PROCEDURES IF MATERIAL IS RELEASED OR SPILLED: LAND SPILL: Eliminate sources of ignition. Shut off source taking normal safety precautions. Take measures to minimize the effects on ground water. Recover by pumping using explosion-proof equipment or contain spilled liquid with sand or other suitable absorbent and

remove mechanically into containers. If necessary, dispose of adsorbed residues as directed in Section 13. WATER SPILL: Eliminate sources of ignition and warn other ships in the vicinity to stay clear. Notify port and other relevant authorities. Confine with booms if skimming equipment is avaliable to recover the spill. Otherwise disperse in unconfined waters, if permitted by local authorities and environmental agencies. If permitted by regulatory authorities the use of suitable dispersants should be considered where recommended in local oil spill procedures.

ENVIRONMENTAL PRECAUTIONS: Prevent material from entering sewers, water sources or low lying areas; advise the relevant authorities if it has, or if it contaminates soil/vegetation. PERSONAL PRECAUTIONS: See Section 8

7. HANDLING AND STORAGE

- HANDLING: Keep product away from high energy ignition sources, heat, sparks, pilot lights, static electricity, and open flame. Harmful in contact with or if absorbed through the skin. Avoid inhalation of vapors or mists. Use in well ventilated area away from all ignition sources. Do not fill container in or on a vehicle. Static electricity may ignite vapors and cause fire. Place container on ground when filling and keep nozzle in contact with container. See Section 8 for additional personal protection advice when handling this product.
- STORAGE: Store in a cool area. Small containers of approved design, properly sealed and labeled, should be stored in well ventilated surroundings and kept out of reach of children. Eliminate all sources of ignition from the storage and handling area.
- SPECIAL PRECAUTIONS: To prevent and minimize fire or explosion risk from static accumulation and discharge, effectively bond and/or ground product transfer system. Do not use electronic devices (including but not limited to cellular phones, computers, calculators, pagers, etc.) in or around any fueling operation or storage area unless the devices are certified intrinsically safe by an approved national testing agency and to the safety standards required by national and/or local laws and regulations. Electrical equipment and fittings must comply with local fire prevention regulations for this class of product. Use the correct grounding procedures. Refer to national or local regulations covering safety at petroleum handling and storage areas for this product.
- EMPTY CONTAINER WARNING: Empty containers retain residue (liquid and/or vapor) and can be dangerous. DO NOT PRESSURIZE, CUT, WELD, BRAZE, SOLDER, DRILL, GRIND OR EXPOSE SUCH CONTAINERS TO HEAT, FLAME, SPARKS, STATIC ELECTRICITY, OR OTHER SOURCES OF IGNITION; THEY MAY EXPLODE AND CAUSE INJURY OR DEATH. Do not attempt to refill or clean container since residue is difficult to remove. Empty drums should be completely drained, properly bunged and promptly returned to a drum reconditioner. All containers should be disposed of in an environmentally safe manner and in accordance with governmental regulations.

8. EXPOSURE CONTROLS/PERSONAL PROTECTION

_____ OCCUPATIONAL EXPOSURE LIMITS: ExxonMobil recommends an 8-hour time-weighted average (TWA) exposure of 1200 mg/m3 total vapor (approx. 165 ppm). VENTILATION: Use in well ventilated area with local exhaust ventilation. If mists are generated, use adequate ventilation, local exhaust or enclosures to control below exposure limits. RESPIRATORY PROTECTION: Use supplied-air respiratory protection in confined or enclosed spaces, if needed. EYE PROTECTION: If splash with liquid is possible, chemical type goggles should be worn. SKIN PROTECTION: Impervious gloves should be worn. Good personal hygiene practices should always be followed. _____ 9. PHYSICAL AND CHEMICAL PROPERTIES _____ Typical physical properties are given below. Consult Product Data Sheet for specific details. APPEARANCE: Liquid COLOR: Clear Straw Yellow ODOR: Hydrocarbon ODOR THRESHOLD-ppm: NE pH: NA BOILING POINT C(F): > 232(450) MELTING POINT C(F): NA FLASH POINT C(F): > 93(200) (ASTM D-93) FLAMMABILITY (solids): NE AUTO FLAMMABILITY C(F): NE EXPLOSIVE PROPERTIES: NA OXIDIZING PROPERTIES: NA VAPOR PRESSURE-mmHg 20 C: < 5.0 VAPOR DENSITY: NE EVAPORATION RATE: NE RELATIVE DENSITY, 15/4 C: 0.77 SOLUBILITY IN WATER: Negligible PARTITION COEFFICIENT: > 3.5 VISCOSITY AT 40 C, cSt: < 7.0 VISCOSITY AT 100 C, cSt: NE POUR POINT C(F): 9(48) FREEZING POINT C(F): NE VOLATILE ORGANIC COMPOUND: NE DMSO EXTRACT, IP-346 (WT.%): NA NA=NOT APPLICABLE NE=NOT ESTABLISHED D=DECOMPOSES FOR FURTHER TECHNICAL INFORMATION, CONTACT YOUR MARKETING REPRESENTATIVE _____ 10. STABILITY AND REACTIVITY _____ STABILITY (THERMAL, LIGHT, ETC.): Stable. CONDITIONS TO AVOID: Extreme heat and high energy sources of ignition.

INCOMPATIBILITY (MATERIALS TO AVOID): Halogens, strong acids,

alkalies, and oxidizers. HAZARDOUS DECOMPOSITION PRODUCTS: Product does not decompose at ambient temperatures. HAZARDOUS POLYMERIZATION: Will not occur. _____ 11. TOXICOLOGICAL DATA _____ ---ACUTE TOXICOLOGY---ORAL TOXICITY (RATS): Practically non-toxic (LD50: greater than 2000 mg/kg). ---Based on testing of similar products and/or the components. DERMAL TOXICITY (RABBITS): Practically non-toxic (LD50: greater than 2000 mg/kg). ---Based on testing of similar products and/or the components. INHALATION TOXICITY (RATS): Practically non-toxic (LC50: greater than 5 mg/l). ---Based on testing of similar products and/or the components. EYE IRRITATION (RABBITS): Practically non-irritating. (Draize score: greater than 6 but 15 or less). ---Based on testing of similar products and/or the components. SKIN IRRITATION (RABBITS): Practically non-irritating. (Primary Irritation Index: greater than 0.5 but less than 3). ---Based on testing of similar products and/or the components. ---CHRONIC TOXICOLOGY (SUMMARY) ---Prolonged repeated skin contact with low viscosity materials may defat the skin resulting in possible irritation and dermatitis. _____ 12. ECOLOGICAL INFORMATION ENVIRONMENTAL FATE AND EFFECTS: In the absence of specific environmental data for this product, this assessment is based on information for representative products. ECOTOXICITY: Available ectoxicity data (LL50 >1000 mg/L) indicates that adverse effects to aquatic organisms are not expected from this product. MOBILITY: When released into the environment, adsorption to sediment and soil will be the predominant behavior. PERSISTENCE AND DEGRADABILITY: This product is expected to be inherently biodegradable. BIOACCUMULATIVE POTENTIAL: Bioaccumulation is unlikely due to the very low water solubility of this product, therefore bioavailability to aquatic organisms is minimal. _____ 13. DISPOSAL CONSIDERATIONS

WASTE DISPOSAL: Product is suitable for burning for fuel value in

compliance with applicable laws and regulations and consideration of product characteristics at time of disposal.

RCRA INFORMATION: The unused product, in our opinion, is not specifically listed by the EPA as a hazardous waste (40 CFR, Part 261D), nor is it formulated to contain materials which are listed hazardous wastes. It does not exhibit the hazardous characteristics of ignitability, corrosivity, or reactivity. The unused product is not formulated with substances covered by the Toxicity Characteristic Leaching Procedure (TCLP). However, used product may be regulated.

14. TRANSPORT INFORMATION

USA DOT: NOT REGULATED BY USA DOT.

IMO: NOT REGULATED BY IMO.

IATA: NOT REGULATED BY IATA.

STATIC ACCUMULATOR (50 picosiemens or less): YES

15. REGULATORY INFORMATION

US OSHA HAZARD COMMUNICATION STANDARD: Product assessed in accordance with OSHA 29 CFR 1910.1200 and determined to be hazardous.

Governmental Inventory Status: All components comply with TSCA, EINICS/ELINCS, AICS, DSL, KOREA, and PHILIPPINES.

- U.S. Superfund Amendments and Reauthorization Act (SARA) Title III: This product contains no "EXTREMELY HAZARDOUS SUBSTANCES".
 - SARA (311/312) REPORTABLE HAZARD CATEGORIES: CHRONIC ACUTE

This product contains no chemicals subject to the supplier notification requirements of SARA (313) toxic release program.

The following product ingredients are cited on the lists below: CHEMICAL NAME CAS NUMBER LIST CITATIONS * ---- REGULATORY LISTS SEARCHED ---1=ACGIH ALL 6=IARC 1 11=TSCA 4 16=CA P65 CARC 21=LA RTK 2=ACGIH A1 7=IARC 2A 12=TSCA 5a2 17=CA P65 REPRO 22=MI 293

3=ACGIH A2	8=IARC 2B	13=TSCA 50	e 18=CA	RTK	23=MN	RTK
4=NTP CARC	9=OSHA CARC	14=TSCA 6	19=FL	RTK	24=NJ	RTK
5=NTP SUS	10=OSHA Z	15=TSCA 12	2b 20=IL	RTK	25=PA	RTK
					26=RI	RTK

* EPA recently added new chemical substances to its TSCA Section 4 test rules. Please contact the supplier to confirm whether the ingredients in this product currently appear on a TSCA 4 or TSCA 12b list.

Code key:CARC=Carcinogen; SUS=Suspected Carcinogen; REPRO=Reproductive

16. OTHER INFORMATION

USE: DRILLING FLUID

NOTE: PRODUCTS OF EXXON MOBIL CORPORATION AND ITS AFFILIATED COMPANIES ARE NOT FORMULATED TO CONTAIN PCBS.

Health studies have shown that many hydrocarbons pose potential human health risks which may vary from person to person. Information provided on this MSDS reflects intended use. This product should not be used for other applications. In any case, the following advice should be considered:

INJECTION INJURY WARNING: If product is injected into or under the skin, or into any part of the body, regardless of the appearance of the wound or its size, the individual should be evaluated immediately by a physician as a surgical emergency. Even though initial symptoms from high pressure injection may be minimal or absent, early surgical treatment within the first few hours may significantly reduce the ultimate extent of injury.

Precautionary Label Text:

CONTAINS PARAFFINS

CAUTION!

MAY CAUSE SKIN IRRITATION ON PROLONGED, REPEATED CONTACT. MAY CAUSE NOSE, THROAT AND LUNG IRRITATION, DIZZINESS, NAUSEA, LOSS OF CONSCIOUSNESS. LOW VISCOSITY MATERIAL-IF SWALLOWED, MAY BE ASPIRATED AND CAN CAUSE SERIOUS OR FATAL LUNG DAMAGE.

Keep away from heat, sparks, and flame. Avoid breathing vapor. Avoid contact with skin or clothing. Keep container closed. Use with adequate ventilation.

In case of contact, wash skin with soap and water. Remove contaminated clothing. Destroy or wash clothing before reuse. If swallowed, seek immediate medical attention. Do not induce vomiting. Only induce vomiting at the instruction of a physician.

For industrial use only. Not intended or suitable for use in or around a household or dwelling.

Refer to product Material Safety Data Sheet for further safety and health information.

Information given herein is offered in good faith as accurate, but without guarantee. Conditions of use and suitability of the product for particular uses are beyond our control; all risks of use of the product are therefore assumed by the user and WE EXPRESSLY DISCLAIM ALL WARRANTIES OF EVERY KIND AND NATURE, INCLUDING WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE IN RESPECT TO THE USE OR SUITABILITY OF THE PRODUCT. Nothing is intended as a recommendation for uses which infringe valid patents or as extending license under valid patents. Appropriate warnings and safe handling procedures should be provided to handlers and users. Alteration of this document is strictly prohibited. Except to the extent required by law, republication or retransmission of this document, in whole or in part, is not permitted. Exxon Mobil Corporation and its affiliated companies assume no responsibility for accuracy of information unless the document is the most current available from an official ExxonMobil distribution system. Exxon Mobil Corporation and its affiliated companies neither represent nor warrant that the format, content or product formulas contained in this document comply with the laws of any other country except the United States of America.

Prepared by: ExxonMobil Oil Corporation Environmental Health and Safety Department, Clinton, USA

Email Address: Karina.Correa@arcadis-us.com

Issue Date: 03 MAY 2011

Subject: Regulatory Declaration and/or Product Stewardship Information Statement(s) - Request

Dear Sir/Madam:

In response to your request, please find enclosed the regulatory declaration and/or product stewardship information statement(s) for the following product(s):

ESCAID 115 FLUID

These statements are provided by or on behalf of the above referenced ExxonMobil selling affiliate.

If you have any questions or need additional information please contact your ExxonMobil sales representative.

Enclosure(s): ESCAID 115 FLUID - HAZARDOUS AIR POLLUTANTS-HAPS Reference Number: 0065562

STATEMENT

Issue Date: 03 MAY 2011 At request of: WSP CHEMICALS & TECHNOLOGY LLC Product Name(s): ESCAID 115 FLUID Material Code(s): 5221643

With regard to the compliance status of the ExxonMobil Chemical product referenced above with the regulation(s) identified below the following can be declared:

The federal Clean Air Act Amendments of 1990 (CAAA) established a federal operating permit program under the Title V of the Act. This program applies to all sources of air pollutants and is administered at the state level. One category of pollutants covered by Title V is Hazardous Air Pollutants (HAPs). ExxonMobil Chemical Company has identified nine listed HAPs which may be contituents in Hydrocarbon Fluid products. For many ExxonMobil Chemical Company solvents, these individual HAPs appear at levels below 10 parts per million, possibly resulting in an insignificant contribution toward permitted HAP emissions.

Benzene: < 0.4 ppm (Periodic Analysis Minimum Detection Limit)

Toluene: < 0.4 ppm (Periodic Analysis Minimum Detection Limit)

Xylenes (all isomers): < 1 ppm

Ethylbenzene: < 0.4 ppm (Periodic Analysis Minimum Detection Limit)

Cumene: < 0.4 ppm (Periodic Analysis Minimum Detection Limit)

Naphthalene: < 0.4 ppm (Periodic Analysis Minimum Detection Limit)

n-Hexane: < 1 ppm

Styrene: < 0.4 ppm (Periodic Analysis Minimum Detection Limit)

2,2,4-Trimethylpentane: < 1 ppm

Total HAP: < 10 ppm

VALIDITY DATE: This document is valid until the next relevant legislative and/or regulatory change with a maximum of one year as of the date of issue of the statement.

Reference Number: 0065562

EXXON MOBIL CHEMICAL

MATERIAL SAFETY DATA SHEET

EXXON MOBIL CHEMICAL COMPANY A DIVISION OF EXXON MOBIL CORPORATION

ESCAID 110 FLUID

DATE PREPARED: AUG 13, 2002

MSDS NO.: 92881582

-----SECTION 1 CHEMICAL PRODUCT AND COMPANY IDENTIFICATION ------

PRODUCT NAME: ESCAID 110 FLUID

CHEMICAL NAME: ALIPHATIC HYDROCARBON

CAS: 64742-47-8

CHEMICAL FAMILY: PETROLEUM HYDROCARBON

PRODUCT DESCRIPTION: CLEAR COLORLESS LIQUID.

CONTACT ADDRESS: EXXONMOBIL CHEMICAL COMPANY P.O. BOX 3272 HOUSTON, TEXAS 77253-3272

EMERGENCY TELEPHONE NUMBERS: (24 HOURS) CHEMTREC: (800) 424-9300 EXXONMOBIL CHEMICAL COMPANY: (800) 726-2015

NON EMERGENCY TELEPHONE NUMBERS: (8AM-5PM M-F)

FOR GENERAL PRODUCT INFORMATION CALL: (281) 870-6000

FOR HEALTH AND MEDICAL INFORMATION CALL: (281) 870-6884

-----SECTION 2 COMPOSITION/INFORMATION ON INGREDIENTS ------

THIS PRODUCT IS HAZARDOUS AS DEFINED IN 29 CFR 1910.1200.

OSHA HAZARD: COMBUSTIBLE

-----SECTION 3 HAZARDS IDENTIFICATION ------

POTENTIAL HEALTH EFFECTS:

EYE CONTACT: SLIGHTLY IRRITATING BUT DOES NOT INJURE EYE TISSUE.

SKIN CONTACT:

LOW ORDER OF TOXICITY. FREQUENT OR PROLONGED CONTACT MAY IRRITATE AND CAUSE DERMATITIS. SKIN CONTACT MAY AGGRAVATE AN EXISTING DERMATITIS CONDITION.

INHALATION:

HIGH VAPOR/AEROSOL CONCENTRATIONS (ATTAINABLE AT ELEVATED TEMPERATURES WELL ABOVE AMBIENT) ARE IRRITATING TO THE EYES AND THE RESPIRATORY TRACT, AND MAY CAUSE HEADACHES, DIZZINESS, ANESTHESIA, DROWSINESS, UNCONSCIOUSNESS, AND OTHER CENTRAL NERVOUS SYSTEM EFFECTS, INCLUDING DEATH EFFECTS, INCLUDING DEATH.

INGESTION:

SMALL AMOUNTS OF THIS PRODUCT ASPIRATED INTO THE RESPIRATORY SYSTEM DURING INGESTION OR VOMITING MAY CAUSE MILD TO SEVERE PULMONARY INJURY, POSSIBLY PROGRESSING TO DEATH. MINIMAL TOXICITY.

CHRONIC EFFECTS:

AT HIGH ORAL DOSES, THIS PRODUCT CAUSED REVERSIBLE DAMAGE TO THE LIVER AND KIDNEY (MALE ONLY) OF RATS. THESE EFFECTS ARE NOT RELEVANT TO HUMANS AT OCCUPATIONAL LEVELS OF EXPOSURE.

-----SECTION 4 FIRST AID MEASURES ------

EYE CONTACT: FLUSH EYES WITH LARGE AMOUNTS OF WATER UNTIL IRRITATION SUBSIDES. IF IRRITATION PERSISTS, GET MEDICAL ATTENTION.

SKIN CONTACT: FLUSH WITH LARGE AMOUNTS OF WATER; USE SOAP IF AVAILABLE. REMOVE GROSSLY CONTAMINATED CLOTHING, INCLUDING SHOES, AND LAUNDER BEFORE REUSE.

INHALATION:

USING PROPER RESPIRATORY PROTECTION, IMMEDIATELY REMOVE THE AFFECTED VICTIM FROM EXPOSURE. ADMINISTER ARTIFICIAL RESPIRATION IF BREATHING IS STOPPED. KEEP AT REST. CALL FOR PROMPT MEDICAL ATTENTION.

INGESTION:

IF SWALLOWED, DO NOT INDUCE VOMITING. KEEP AT REST. GET PROMPT MEDICAL ATTENTION.

-----SECTION 5 FIRE-FIGHTING MEASURES ------

FLASH POINT: 170 DEG F. METHOD: PMCC ASTM D93 NOTE: MINIMUM

FLAMMABLE LIMITS: LEL: 1.3 UEL: 8.1 @ 77 DEG F.

NOTE: APPROXIMATE

AUTOIGNITION TEMPERATURE: 421 DEG F. NOTE: APPROXIMATE

GENERAL HAZARD: COMBUSTIBLE LIQUID, CAN FORM COMBUSTIBLE MIXTURES AT TEMPERATURES AT OR ABOVE THE FLASHPOINT.

STATIC DISCHARGE, MATERIAL CAN ACCUMULATE STATIC CHARGES WHICH CAN CAUSE AN INCENDIARY ELECTRICAL DISCHARGE.

"EMPTY" CONTAINERS RETAIN PRODUCT RESIDUE (LIQUID AND/OR VAPOR) AND CAN BE DANGEROUS. DO NOT PRESSURIZE, CUT, WELD, BRAZE, SOLDER, DRILL, GRIND, OR EXPOSE SUCH CONTAINERS TO HEAT, FLAME, SPARKS, STATIC ELECTRICITY, OR OTHER SOURCES OF IGNITION; THEY MAY EXPLODE AND CAUSE INJURY OR DEATH. EMPTY DRUMS SHOULD BE COMPLETELY DRAINED, PROPERLY BUNGED AND PROMPTLY RETURNED TO A DRUM RECONDITIONER, OR PROPERLY DISPOSED OF.

FIRE FIGHTING:

USE WATER SPRAY TO COOL FIRE EXPOSED SURFACES AND TO PROTECT PERSONNEL ISOLATE "FUEL" SUPPLY FROM FIRE. USE FOAM, DRY CHEMICAL, OR WATER SPRAY TO EXTINGUISH FIRE. AVOID SPRAYING WATER DIRECTLY INTO STORAGE CONTAINERS DUE TO DANGER OF BOILOVER.

THIS LIQUID IS VOLATILE AND GIVES OFF INVISIBLE VAPORS. EITHER THE LIQUID OR VAPOR MAY SETTLE IN LOW AREAS OR TRAVEL SOME DISTANCE ALONG THE GROUND OR SURFACE TO IGNITION SOURCES WHERE THEY MAY IGNITE OR EXPLODE.

DECOMPOSITION PRODUCTS UNDER FIRE CONDITIONS: NO UNUSUAL

-----SECTION 6 ACCIDENTAL RELEASE MEASURES ------

LAND SPILL:

ELIMINATE SOURCES OF IGNITION. PREVENT ADDITIONAL DISCHARGE OF MATERIAL, IF POSSIBLE TO DO SO WITHOUT HAZARD. FOR SMALL SPILLS IMPLEMENT CLEANUP PROCEDURES; FOR LARGE SPILLS IMPLEMENT CLEANUP PROCEDURES AND, IF IN PUBLIC AREA, KEEP PUBLIC AWAY AND ADVISE AUTHORITIES. ALSO, IF THIS PRODUCT IS SUBJECT TO CERCLA REPORTING (SEE SECTION 15 REGULATORY INFORMATION) NOTIFY THE NATIONAL RESPONSE CENTER.

PREVENT LIQUID FROM ENTERING SEWERS, WATERCOURSES, OR LOW AREAS. CONTAIN SPILLED LIQUID WITH SAND OR EARTH. DO NOT USE COMBUSTIBLE MATERIALS SUCH AS SAWDUST.

RECOVER BY PUMPING (USE AN EXPLOSION PROOF OR HAND PUMP) OR WITH A SUITABLE ABSORBENT.

CONSULT AN EXPERT ON DISPOSAL OF RECOVERED MATERIAL AND ENSURE CONFORMITY TO LOCAL DISPOSAL REGULATIONS.

WATER SPILL:

ELIMINATE SOURCES OF IGNITION. WARN OCCUPANTS AND SHIPPING IN SURROUNDING AND DOWNWIND AREAS OF FIRE AND EXPLOSION HAZARD AND REQUEST ALL TO STAY CLEAR.

REMOVE FROM SURFACE BY SKIMMING OR WITH SUITABLE ADSORBENTS. IF ALLOWED BY LOCAL AUTHORITIES AND ENVIRONMENTAL AGENCIES, SINKING AND/OR SUITABLE DISPERSANTS MAY BE USED IN NON-CONFINED WATERS. CONSULT AN EXPERT ON DISPOSAL OF RECOVERED MATERIAL AND ENSURE CONFORMITY TO LOCAL DISPOSAL REGULATIONS.

-----SECTION 7 STORAGE AND HANDLING ------

ELECTROSTATIC ACCUMULATION HAZARD: YES, USE PROPER BONDING AND/OR GROUNDING PROCEDURE. ADDITIONAL INFORMATION REGARDING SAFE HANDLING OF PRODUCTS WITH STATIC ACCUMULATION POTENTIAL CAN BE ORDERED BY CONTACTING THE AMERICAN PETROLEUM INSTITUTE (API) FOR API RECOMMENDED PRACTICE 2003, ENTITLED "PROTECTION AGAINST IGNITIONS ARISING OUT OF STATIC, LIGHTNING, AND STRAY CURRENTS" (AMERICAN PETROLEUM INSTITUTE, 1220 L STREET NORTHWEST, WASHINGTON, DC 20005), OR THE NATIONAL FIRE PROTECTION ASSOCIATION, (NFPA) FOR NFPA 77 ENTITLED "STATIC ELECTRICITY" (NATIONAL FIRE PROTECTION ASSOCIATION, 1 BATTERYMARCH PARK, P.O. BOX 9101, QUINCY, MA 02269-9101).

STORAGE TEMPERATURE, DEG. F: AMBIENT

LOADING/UNLOADING TEMPERATURE, DEG. F: AMBIENT

STORAGE/TRANSPORT PRESSURE, MMHg: ATMOSPHERIC

LOADING/UNLOADING VISCOSITY, CST: 2.0 APPROXIMATE

STORAGE AND HANDLING:

KEEP CONTAINER CLOSED. HANDLE AND OPEN CONTAINERS WITH CARE. STORE IN A COOL, WELL VENTILATED PLACE AWAY FROM INCOMPATIBLE MATERIALS. DO NOT HANDLE OR STORE NEAR AN OPEN FLAME, HEAT OR OTHER SOURCES OF IGNITION. PROTECT MATERIAL FROM DIRECT SUNLIGHT. MATERIAL WILL ACCUMULATE STATIC CHARGES WHICH MAY CAUSE AN ELECTRICAL SPARK (IGNITION SOURCE). USE PROPER BONDING AND/OR GROUNDING PROCEDURES. DO NOT PRESSURIZE, CUT, HEAT, OR WELD CONTAINERS. EMPTY PRODUCT CONTAINERS MAY CONTAIN PRODUCT RESIDUE. DO NOT REUSE EMPTY CONTAINERS WITHOUT COMMERCIAL CLEANING OR RECONDITIONING.

-----SECTION 8 EXPOSURE CONTROLS/PERSONAL PROTECTION ------

EXPOSURE CONTROLS:

THE USE OF LOCAL EXHAUST VENTILATION IS RECOMMENDED TO CONTROL PROCESS EMISSIONS NEAR THE SOURCE. LABORATORY SAMPLES SHOULD BE HANDLED IN A LAB HOOD. PROVIDE MECHANICAL VENTILATION OF CONFINED SPACES. SEE RESPIRATORY PROTECTION RECOMMENDATIONS.

PERSONAL PROTECTION: FOR OPEN SYSTEMS WHERE CONTACT IS LIKELY, WEAR SAFETY GLASSES WITH SIDE SHIELDS, LONG SLEEVES, AND CHEMICAL RESISTANT GLOVES. WHERE CONTACT MAY OCCUR, WEAR SAFETY GLASSES WITH SIDE SHIELDS. WHERE CONCENTRATIONS IN AIR MAY EXCEED THE LIMITS GIVEN IN THIS SECTION AND ENGINEERING, WORK PRACTICE OR OTHER MEANS OF EXPOSURE REDUCTION ARE NOT

ADEQUATE, NIOSH APPROVED RESPIRATORS MAY BE NECESSARY TO PREVENT OVEREXPOSURE BY INHALATION.

WORKPLACE EXPOSURE GUIDELINES:

EXXONMOBIL RECOMMENDS THE FOLLOWING OCCUPATIONAL EXPOSURE LIMITS: A TWA OF 1200 MG/M3 (165 PPM) BASED ON TOTAL HYDROCARBON.

-----SECTION 9 PHYSICAL AND CHEMICAL PROPERTIES ------

SPECIFIC GRAVITY, AT DEG. F: 0.80 AT 60

VAPOR PRESSURE, MMHg AT DEG. F: <1 AT 68

DENSITY AT DEG. F: 67 LBS/GAL AT 59

SOLUBILITY IN WATER, WT. % AT DEG. F: LESS THAN 0.01 AT 77

VISCOSITY OF LIQUID, CST AT DEG. F: 1.3-1.9 AT 100

SP. GRAV. OF VAPOR, AT 1 ATM (AIR = 1): 5.30

FREEZING/MELTING POINT, DEG. F: -22

EVAPORATION RATE, n-Bu ACETATE = 1: LESS THAN 0.1

BOILING POINT, DEG. F: 408 TO 442

-----SECTION 10 STABILITY AND REACTIVITY ------

STABILITY: STABLE

CONDITIONS TO AVOID INSTABILITY: NOT APPLICABLE

HAZARDOUS POLYMERIZATION: WILL NOT OCCUR

CONDITIONS TO AVOID HAZARDOUS POLYMERIZATION: NOT APPLICABLE

MATERIALS AND CONDITIONS TO AVOID INCOMPATIBILITY: STRONG OXIDIZING AGENTS

HAZARDOUS DECOMPOSITION PRODUCTS: NONE

-----SECTION 11 TOXICOLOGICAL INFORMATION ------

PLEASE REFER TO SECTION 3 FOR AVAILABLE INFORMATION ON POTENTIAL HEALTH EFFECTS.

-----SECTION 12 ECOLOGICAL INFORMATION ------

NO SPECIFIC ECOLOGICAL DATA ARE AVAILABLE FOR THIS PRODUCT. PLEASE REFER

TO SECTION 6 FOR INFORMATION REGARDING ACCIDENTAL RELEASES AND SECTION 15 FOR REGULATORY REPORTING INFORMATION.

-----SECTION 13 DISPOSAL CONSIDERATIONS ------

PLEASE REFER TO SECTIONS 5,6 AND 15 FOR DISPOSAL AND REGULATORY INFORMATION.

-----SECTION 14 TRANSPORT INFORMATION ------

DEPARTMENT OF TRANSPORTATION (DOT): DOT SHIPPING DESCRIPTION: PETROLEUM DISTILLATE, N.O.S., COMBUSTIBLE LIQUID. UN 1268, III

NOTE: IN CONTAINERS OF 119 GALLONS CAPACITY OR LESS THIS PRODUCT IS NOT REGULATED BY DOT.

-----SECTION 15 REGULATORY INFORMATION ------

TSCA:

THIS PRODUCT IS LISTED ON THE TSCA INVENTORY AT CAS REGISTRY NUMBER 64742-47-8

CLEAN WATER ACT/OIL POLLUTION ACT:

THIS PRODUCT IS CLASSIFIED AS AN OIL UNDER SECTION 311 OF THE CLEAN WATER ACT (40 CFR 110) AND THE OIL POLLUTION ACT OF 1990. DISCHARGE OR SPILLS WHICH PRODUCE A VISIBLE SHEEN ON EITHER SURFACE WATER, OR IN WATERWAYS/SEWERS WHICH LEAD TO SURFACE WATER, MUST BE REPORTED TO THE NATIONAL RESPONSE CENTER AT 800-424-8802.

CERCLA:

IF THIS PRODUCT IS ACCIDENTALLY SPILLED, IT IS NOT SUBJECT TO ANY SPECIAL REPORTING UNDER THE REQUIREMENTS OF THE COMPREHENSIVE ENVIRONMENTAL RESPONSE, COMPENSATION, AND LIABILITY ACT (CERCLA). WE RECOMMEND YOU CONTACT LOCAL AUTHORITIES TO DETERMINE IF THERE MAY BE OTHER LOCAL REPORTING REQUIREMENTS.

SARA TITLE III:

UNDER THE PROVISIONS OF TITLE III, SECTIONS 311/312 OF THE SUPERFUND AMENDMENTS AND REAUTHORIZATION ACT, THIS PRODUCT IS CLASSIFIED INTO THE FOLLOWING HAZARD CATEGORIES: FIRE. THIS INFORMATION MAY BE SUBJECT TO THE PROVISIONS OF THE COMMUNITY RIGHT-TO-KNOW REPORTING REQUIREMENTS (40 CFR 370) IF THRESHOLD QUANTITY CRITERIA ARE MET. THIS PRODUCT DOES NOT CONTAIN SECTION 313 REPORTABLE INGREDIENTS.

-----SECTION 16 OTHER INFORMATION ------

HAZARD RATING SYSTEMS: THIS INFORMATION IS FOR PEOPLE TRAINED IN:

NATIONAL PAINT & COATINGS ASSOCIATION'S (NPCA) HAZARDOUS MATERIALS IDENTIFICATION SYSTEM (HMIS) NATIONAL FIRE PROTECTION ASSOCIATION (NFPA 704)

IDENTIFICATION OF THE FIRE HAZARDS OF MATERIALS:

NPCA-HMIS NFPA 704 HEALTH 1 1 FLAMMABILITY 2 2 REACTIVITY 0 0

KEY:

- 4 = SEVERE
- 3 = SERIOUS
- 2 = MODERATE
- 1 =**SLIGHT**
- 0 = MINIMAL

CAUTION:

HMIS RATINGS ARE BASED ON A 0-4 RATING SCALE WITH 1 REPRESENTING MINIMAL HAZARD OR RISKS, AND 4 REPRESENTING SIGNIFICANT HAZARDS OR RISKS. RECOMMENDED HMIS RATINGS SHOULD NOT BE USED IN THE ABSENCE OF A FULLY IMPLEMENTED HMIS HAZARD COMMUNICATION PROGRAM.

REVISION SUMMARY: SINCE JUNE 16, 2000 THIS MSDS HAS BEEN REVISED IN SECTION(S): 3

REFERENCE NUMBER: HDHA-C-25168

SUPERSEDES ISSUES DATE: JUNE 16, 2000

THIS INFORMATION RELATES TO THE SPECIFIC MATERIAL DESIGNATED AND MAY NOT BE VALID FOR SUCH MATERIAL USED IN COMBINATION WITH ANY OTHER MATERIALS OR IN ANY PROCESS. SUCH INFORMATION IS TO THE BEST OF OUR KNOWLEDGE AND BELIEF, ACCURATE AND RELIABLE AS OF THE DATE COMPILED. HOWEVER, NO REPRESENTATION, WARRANTY OR GUARANTEE IS MADE AS TO ITS ACCURACY, RELIABILITY OR COMPLETENESS. IT IS THE USER'S RESPONSIBILITY TO SATISFY HIMSELF AS TO THE SUITABILITY AND COMPLETENESS OF SUCH INFORMATION FOR HIS OWN PARTICULAR USE. WE DO NOT ACCEPT LIABILITY FOR ANY LOSS OR DAMAGE THAT MAY OCCUR FROM THE USE OF THIS INFORMATION NOR DO WE OFFER WARRANTY AGAINST PATENT INFRINGEMENT.

Gasoline, All Grades

MSDS No. 9950

EMERGENCY OVERVIEW DANGER! EXTREMELY FLAMMABLE - EYE AND MUCOUS MEMBRANE IRRITANT - EFFECTS CENTRAL NERVOUS SYSTEM - HARMFUL OR FATAL IF SWALLOWED - ASPIRATION HAZARD

High fire hazard. Keep away from heat, spark, open flame, and other ignition sources.

If ingested, do NOT induce vomiting, as this may cause chemical pneumonia (fluid in the lungs). Contact may cause eye, skin and mucous membrane irritation. Harmful if absorbed through the skin. Avoid prolonged breathing of vapors or mists. Inhalation may cause irritation, anesthetic effects (dizziness, nausea, headache, intoxication), and respiratory system effects.

Long-term exposure may cause effects to specific organs, such as to the liver, kidneys, blood, nervous system, and skin. Contains benzene, which can cause blood disease, including anemia and leukemia.

1. CHEMICAL PRODUCT and COMPANY INFORMATION Hess Corporation 1 Hess Plaza Woodbridge, NJ 07095-0961

EMERGENCY TELEPHONE NUMBER (24 hrs): COMPANY CONTACT (business hours): MSDS (Environment, Health, Safety) Internet Website **CHEMTREC (800)424-9300** Corporate Safety (732)750-6000 www.hess.com

SYNONYMS: Hess Conventional (Oxygenated and Non-oxygenated) Gasoline; Reformulated Gasoline (RFG); Reformulated Gasoline Blendstock for Oxygenate Blending (RBOB); Unleaded Motor or Automotive Gasoline

See Section 16 for abbreviations and acronyms.

2. COMPOSITION and INFORMATION ON INGREDIENTS *			
INGREDIENT NAME (CAS No.)	CONCENTRATION PERCENT BY WEIGHT		
Gasoline (86290-81-5)	100		
Benzene (71-43-2)	0.1 - 4.9 (0.1 - 1.3 reformulated gasoline)		
n-Butane (106-97-8)	< 10		
Ethyl Alcohol (Ethanol) (64-17-5)	0 - 10		
Ethyl benzene (100-41-4)	< 3		
n-Hexane (110-54-3)	0.5 to 4		
Methyl-tertiary butyl ether (MTBE) (1634-04-4)	0 to 15.0		
Tertiary-amyl methyl ether (TAME) (994-05-8)	0 to 17.2		
Toluene (108-88-3)	1 - 25		
1,2,4- Trimethylbenzene (95-63-6)	< 6		
Xylene, mixed isomers (1330-20-7)	1 - 15		

A complex blend of petroleum-derived normal and branched-chain alkane, cycloalkane, alkene, and aromatic hydrocarbons. May contain antioxidant and multifunctional additives. Non-oxygenated Conventional Gasoline and RBOB do not have oxygenates (Ethanol or MTBE and/or TAME).

Gasoline, All Grades

MSDS No. 9950

Oxygenated Conventional and Reformulated Gasoline will have oxygenates for octane enhancement or as legally required.

3. HAZARDS IDENTIFICATION

<u>EYES</u>

Moderate irritant. Contact with liquid or vapor may cause irritation.

<u>SKIN</u>

Practically non-toxic if absorbed following acute (single) exposure. May cause skin irritation with prolonged or repeated contact. Liquid may be absorbed through the skin in toxic amounts if large areas of skin are exposed repeatedly.

INGESTION

The major health threat of ingestion occurs from the danger of aspiration (breathing) of liquid drops into the lungs, particularly from vomiting. Aspiration may result in chemical pneumonia (fluid in the lungs), severe lung damage, respiratory failure and even death.

Ingestion may cause gastrointestinal disturbances, including irritation, nausea, vomiting and diarrhea, and central nervous system (brain) effects similar to alcohol intoxication. In severe cases, tremors, convulsions, loss of consciousness, coma, respiratory arrest, and death may occur.

INHALATION

Excessive exposure may cause irritations to the nose, throat, lungs and respiratory tract. Central nervous system (brain) effects may include headache, dizziness, loss of balance and coordination, unconsciousness, coma, respiratory failure, and death.

WARNING: the burning of any hydrocarbon as a fuel in an area without adequate ventilation may result in hazardous levels of combustion products, including carbon monoxide, and inadequate oxygen levels, which may cause unconsciousness, suffocation, and death.

CHRONIC EFFECTS and CARCINOGENICITY

Contains benzene, a regulated human carcinogen. Benzene has the potential to cause anemia and other blood diseases, including leukemia, after repeated and prolonged exposure. Exposure to light hydrocarbons in the same boiling range as this product has been associated in animal studies with systemic toxicity. See also Section 11 - Toxicological Information.

MEDICAL CONDITIONS AGGRAVATED BY EXPOSURE

Irritation from skin exposure may aggravate existing open wounds, skin disorders, and dermatitis (rash). Chronic respiratory disease, liver or kidney dysfunction, or pre-existing central nervous system disorders may be aggravated by exposure.

4. FIRST AID MEASURES

EYES

In case of contact with eyes, immediately flush with clean, low-pressure water for at least 15 min. Hold eyelids open to ensure adequate flushing. Seek medical attention.

<u>SKIN</u>

Remove contaminated clothing. Wash contaminated areas thoroughly with soap and water or waterless hand cleanser. Obtain medical attention if irritation or redness develops.

INGESTION

Gasoline, All Grades

MSDS No. 9950

DO NOT INDUCE VOMITING. Do not give liquids. Obtain immediate medical attention. If spontaneous vomiting occurs, lean victim forward to reduce the risk of aspiration. Small amounts of material which enter the mouth should be rinsed out until the taste is dissipated.

INHALATION

Remove person to fresh air. If person is not breathing, ensure an open airway and provide artificial respiration. If necessary, provide additional oxygen once breathing is restored if trained to do so. Seek medical attention immediately.

5. FIRE FIGHTING MEASURES

FLAMMABLE PROPERTIES:

FLASH POINT: AUTOIGNITION TEMPERATURE: OSHA/NFPA FLAMMABILITY CLASS: LOWER EXPLOSIVE LIMIT (%): UPPER EXPLOSIVE LIMIT (%): -45 °F (-43°C) highly variable; > 530 °F (>280 °C) 1A (flammable liquid) 1.4% 7.6%

FIRE AND EXPLOSION HAZARDS

Vapors may be ignited rapidly when exposed to heat, spark, open flame or other source of ignition. Flowing product may be ignited by self-generated static electricity. When mixed with air and exposed to an ignition source, flammable vapors can burn in the open or explode in confined spaces. Being heavier than air, vapors may travel long distances to an ignition source and flash back. Runoff to sewer may cause fire or explosion hazard.

EXTINGUISHING MEDIA

SMALL FIRES: Any extinguisher suitable for Class B fires, dry chemical, CO2, water spray, fire fighting foam, or Halon.

LARGE FIRES: Water spray, fog or fire fighting foam. Water may be ineffective for fighting the fire, but may be used to cool fire-exposed containers.

During certain times of the year and/or in certain geographical locations, gasoline may contain MTBE and/or TAME. Firefighting foam suitable for polar solvents is recommended for fuel with greater than 10% oxygenate concentration - refer to NFPA 11 "Low Expansion Foam - 1994 Edition."

FIRE FIGHTING INSTRUCTIONS

Small fires in the incipient (beginning) stage may typically be extinguished using handheld portable fire extinguishers and other fire fighting equipment.

Firefighting activities that may result in potential exposure to high heat, smoke or toxic by-products of combustion should require NIOSH/MSHA- approved pressure-demand self-contained breathing apparatus with full facepiece and full protective clothing.

Isolate area around container involved in fire. Cool tanks, shells, and containers exposed to fire and excessive heat with water. For massive fires the use of unmanned hose holders or monitor nozzles may be advantageous to further minimize personnel exposure. Major fires may require withdrawal, allowing the tank to burn. Large storage tank fires typically require specially trained personnel and equipment to extinguish the fire, often including the need for properly applied fire fighting foam.

See Section 16 for the NFPA 704 Hazard Rating.

Gasoline, All Grades

MSDS No. 9950

6. ACCIDENTAL RELEASE MEASURES

ACTIVATE FACILITY SPILL CONTINGENCY or EMERGENCY PLAN.

Evacuate nonessential personnel and remove or secure all ignition sources. Consider wind direction; stay upwind and uphill, if possible. Evaluate the direction of product travel, diking, sewers, etc. to confirm spill areas. Spills may infiltrate subsurface soil and groundwater; professional assistance may be necessary to determine the extent of subsurface impact.

Carefully contain and stop the source of the spill, if safe to do so. Protect bodies of water by diking, absorbents, or absorbent boom, if possible. Do not flush down sewer or drainage systems, unless system is designed and permitted to handle such material. The use of fire fighting foam may be useful in certain situations to reduce vapors. The proper use of water spray may effectively disperse product vapors or the liquid itself, preventing contact with ignition sources or areas/equipment that require protection.

Take up with sand or other oil absorbing materials. Carefully shovel, scoop or sweep up into a waste container for reclamation or disposal - caution, flammable vapors may accumulate in closed containers. Response and clean-up crews must be properly trained and must utilize proper protective equipment (see Section 8).

7. HANDLING and STORAGE HANDLING PRECAUTIONS

******USE ONLY AS A MOTOR FUEL****** ******DO NOT SIPHON BY MOUTH******

Handle as a flammable liquid. Keep away from heat, sparks, and open flame! Electrical equipment should be approved for classified area. Bond and ground containers during product transfer to reduce the possibility of static-initiated fire or explosion.

Special slow load procedures for "switch loading" must be followed to avoid the static ignition hazard that can exist when higher flash point material (such as fuel oil) is loaded into tanks previously containing low flash point products (such as this product) - see API Publication 2003, "Protection Against Ignitions Arising Out Of Static, Lightning and Stray Currents.

STORAGE PRECAUTIONS

Keep away from flame, sparks, excessive temperatures and open flame. Use approved vented containers. Keep containers closed and clearly labeled. Empty product containers or vessels may contain explosive vapors. Do not pressurize, cut, heat, weld or expose such containers to sources of ignition.

Store in a well-ventilated area. This storage area should comply with NFPA 30 "Flammable and Combustible Liquid Code". Avoid storage near incompatible materials. The cleaning of tanks previously containing this product should follow API Recommended Practice (RP) 2013 "Cleaning Mobile Tanks In Flammable and Combustible Liquid Service" and API RP 2015 "Cleaning Petroleum Storage Tanks".

WORK/HYGIENIC PRACTICES

Emergency eye wash capability should be available in the near proximity to operations presenting a potential splash exposure. Use good personal hygiene practices. Avoid repeated and/or prolonged skin exposure. Wash hands before eating, drinking, smoking, or using toilet facilities. Do not use as a cleaning solvent on the skin. Do not use solvents or harsh abrasive skin cleaners for washing this product from exposed skin areas. Waterless hand cleaners are effective. Promptly remove contaminated clothing and launder before reuse. Use care when laundering to prevent the formation of flammable vapors which could ignite via washer or dryer. Consider the need to discard contaminated leather shoes and gloves.

MSDS No. 9950

8. EXPOSURE CONTROLS and	PERSON		OTECTIO	ON
EXPOSURE LIMITS				
Component (CAS No.)				Exposure Limits
	Source	TWA (ppm)	STEL (ppm)	Note
Gasoline (86290-81-5)	ACGIH	300	500	A3
Benzene (71-43-2)	OSHA	1	5	Carcinogen
	ACGIH	0.5	2.5	A1, skin
	USCG		5	
n-Butane (106-97-8)	ACGIH	1000		Aliphatic Hydrocarbon Gases Alkane (C1-C4)
Ethyl Alcohol (ethanol) (64-17-5)	OSHA	1000		
	ACGIH	1000		A4
Ethyl benzene (100-41-4)	OSHA	100		
	ACGIH	100	125	A3
n-Hexane (110-54-3)	OSHA	500		
	ACGIH	50		Skin
Methyl-tertiary butyl ether [MTBE] (1634-04-4)	ACGIH	50		A3
Tertiary-amyl methyl ether [TAME] (994-05-8)				None established
Toluene (108-88-3)	OSHA	200		Ceiling: 300 ppm; Peak: 500 ppm (10 min.)
· ·	ACGIH	20		A4
1,2,4- Trimethylbenzene (95-63-6)	ACGIH	25		
Xylene, mixed isomers (1330-20-7)	OSHA	100		
-	ACGIH	100	150	A4

ENGINEERING CONTROLS

Use adequate ventilation to keep vapor concentrations of this product below occupational exposure and flammability limits, particularly in confined spaces.

EYE/FACE PROTECTION

Safety glasses or goggles are recommended where there is a possibility of splashing or spraying.

SKIN PROTECTION

Gloves constructed of nitrile or neoprene are recommended. Chemical protective clothing such as that made of of E.I. DuPont Tychem ®, products or equivalent is recommended based on degree of exposure.

Note: The resistance of specific material may vary from product to product as well as with degree of exposure. Consult manufacturer specifications for further information.

RESPIRATORY PROTECTION

A NIOSH-approved air-purifying respirator with organic vapor cartridges or canister may be permissible under certain circumstances where airborne concentrations are or may be expected to exceed exposure limits or for odor or irritation. Protection provided by air-purifying respirators is limited. Refer to OSHA 29 CFR 1910.134, NIOSH Respirator Decision Logic, and the manufacturer for additional guidance on respiratory protection selection and limitations.

Use a positive pressure, air-supplied respirator if there is a potential for uncontrolled release, exposure levels are not known, in oxygen-deficient atmospheres, or any other circumstance where an air-purifying respirator may not provide adequate protection.

9. PHYSICAL and CHEMICAL PROPERTIES

APPEARANCE

A translucent, straw-colored or light yellow liquid

Gasoline, All Grades

MSDS No. 9950

<u>ODOR</u>

A strong, characteristic aromatic hydrocarbon odor. Oxygenated gasoline with MTBE and/or TAME may have a sweet, ether-like odor and is detectable at a lower concentration than non-oxygenated gasoline.

ODOR THRESHOLD

	Odor Detection	Odor Recognition	
Non-oxygenated gasoline:	0.5 - 0.6 ppm	0.8 - 1.1 ppm	
Gasoline with 15% MTBE:	0.2 - 0.3 ppm	0.4 - 0.7 ppm	
Gasoline with 15% TAME:	0.1 ppm	0.2 ppm	
BASIC PHYSICAL PROPERT	IES		

BOILING RANGE: VAPOR PRESSURE: VAPOR DENSITY (air = 1): SPECIFIC GRAVITY ($H_2O = 1$): EVAPORATION RATE: PERCENT VOLATILES: SOLUBILITY (H_2O): 50
85 to 437 °F (39 to 200 °C)
6.4 - 15 RVP @ 100 °F (38 °C) (275-475 mm Hg @ 68 °F (20 °C)
AP 3 to 4
0.70 - 0.78
10-11 (n-butyl acetate = 1)
100 %
Non-oxygenated gasoline - negligible (< 0.1% @ 77 °F). Gasoline with 15%
MTBE - slight (0.1 - 3% @ 77 °F); ethanol is readily soluble in water

10. STABILITY and REACTIVITY

STABILITY: Stable. Hazardous polymerization will not occur.

CONDITIONS TO AVOID

Avoid high temperatures, open flames, sparks, welding, smoking and other ignition sources

INCOMPATIBLE MATERIALS

Keep away from strong oxidizers.

HAZARDOUS DECOMPOSITION PRODUCTS

Carbon monoxide, carbon dioxide and non-combusted hydrocarbons (smoke). Contact with nitric and sulfuric acids will form nitrocresols that can decompose violently.

11. TOXICOLOGICAL PROPERTIES

ACUTE TOXICITY

Acute Dermal LD50 (rabbits): > 5 ml/kg Primary dermal irritation (rabbits): slightly irritating Guinea pig sensitization: negative Acute Oral LD50 (rat): 18.75 ml/kg Draize eye irritation (rabbits): non-irritating

CHRONIC EFFECTS AND CARCINOGENICITY

Carcinogenicity:OSHA: NO IARC: YES - 2B

NTP: NO ACG

ACGIH: YES (A3)

IARC has determined that gasoline and gasoline exhaust are possibly carcinogenic in humans. Inhalation exposure to completely vaporized unleaded gasoline caused kidney cancers in male rats and liver tumors in female mice. The U.S. EPA has determined that the male kidney tumors are species-specific and are irrelevant for human health risk assessment. The significance of the tumors seen in female mice is not known. Exposure to light hydrocarbons in the same boiling range as this product has been associated in animal studies with effects to the central and peripheral nervous systems, liver, and kidneys. The significance of these animal models to predict similar human response to gasoline is uncertain.

This product contains benzene. Human health studies indicate that prolonged and/or repeated overexposure to benzene may cause damage to the blood-forming system (particularly bone marrow), and serious blood disorders such as aplastic anemia and leukemia. Benzene is listed as a human carcinogen by the NTP, IARC, OSHA and ACGIH.

Gasoline, All Grades

MSDS No. 9950

This product may contain methyl tertiary butyl ether (MTBE): animal and human health effects studies indicate that MTBE may cause eye, skin, and respiratory tract irritation, central nervous system depression and neurotoxicity. MTBE is classified as an animal carcinogen (A3) by the ACGIH.

12. ECOLOGICAL INFORMATION

Keep out of sewers, drainage areas and waterways. Report spills and releases, as applicable, under Federal and State regulations. If released, oxygenates such as ethers and alcohols will be expected to exhibit fairly high mobility in soil, and therefore may leach into groundwater. The API (<u>www.api.org</u>) provides a number of useful references addressing petroleum and oxygenate contamination of groundwater.

13. DISPOSAL CONSIDERATIONS

Consult federal, state and local waste regulations to determine appropriate disposal options.

14. TRANSPORTATION INFORMATION

DOT PROPER SHIPPING NAME: DOT HAZARD CLASS and PACKING GROUP: DOT IDENTIFICATION NUMBER: DOT SHIPPING LABEL: Gasoline 3, PG II UN 1203 FLAMMABLE LIQUID

15. REGULATORY INFORMATION

U.S. FEDERAL, STATE, and LOCAL REGULATORY INFORMATION

This product and its constituents listed herein are on the EPA TSCA Inventory. Any spill or uncontrolled release of this product, including any substantial threat of release, may be subject to federal, state and/or local reporting requirements. This product and/or its constituents may also be subject to other federal, state, or local regulations; consult those regulations applicable to your facility/operation.

CLEAN WATER ACT (OIL SPILLS)

Any spill or release of this product to "navigable waters" (essentially any surface water, including certain wetlands) or adjoining shorelines sufficient to cause a visible sheen or deposit of a sludge or emulsion must be reported immediately to the National Response Center (1-800-424-8802) as required by U.S. Federal Law. Also contact appropriate state and local regulatory agencies as required.

CERCLA SECTION 103 and SARA SECTION 304 (RELEASE TO THE ENVIRONMENT)

The CERCLA definition of hazardous substances contains a "petroleum exclusion" clause which exempts crude oil, refined, and unrefined petroleum products and any indigenous components of such. However, other federal reporting requirements (e.g., SARA Section 304 as well as the Clean Water Act if the spill occurs on navigable waters) may still apply.

SARA SECTION 311/312 - HAZARD CLASSES

ACUTE HEALTH	CHRONIC HEALTH	FIRE	SUDDEN RELEASE OF PRESSURE	REACTIVE
Х	Х	Х		

SARA SECTION 313 - SUPPLIER NOTIFICATION

This product contains the following toxic chemicals subject to the reporting requirements of section 313 of the Emergency Planning and Community Right-To-Know Act (EPCRA) of 1986 and of 40 CFR 372:

INGREDIENT NAME (CAS NUMBER)	CONCENTRATION WT. PERCENT
Benzene (71-43-2)	0.1 to 4.9 (0.1 to 1.3 for reformulated gasoline)
Ethyl benzene (100-41-4)	< 3

 Gasoline, All Grades
 MSDS No. 9950

 n-Hexane (110-54-3)
 0.5 to 4

 Methyl-tertiary butyl ether (MTBE) (1634-04-4)
 0 to 15.0

 Toluene (108-88-3)
 1 to 15

 1,2,4- Trimethylbenzene (95-63-6)
 < 6</td>

US EPA guidance documents (<u>www.epa.gov/tri</u>) for reporting Persistent Bioaccumulating Toxics (PBTs) indicate this product may contain the following deminimis levels of toxic chemicals subject to Section 313 reporting:

1 to 15

INGREDIENT NAME (CAS NUMBER)CONCENTRATION - Parts per million (ppm) by weightPolycyclic aromatic compounds (PACs)17Benzo (g,h,i) perylene (191-24-2)2.55Lead (7439-92-1)0.079

CALIFORNIA PROPOSITION 65 LIST OF CHEMICALS

This product contains the following chemicals that are included on the Proposition 65 "List of Chemicals" required by the California Safe Drinking Water and Toxic Enforcement Act of 1986:

INGREDIENT NAME (CAS NUMBER)	Date Listed
Benzene	2/27/1987
Ethyl benzene	6/11/2004
Toluene	1/1/1991

CANADIAN REGULATORY INFORMATION (WHMIS)

Class B, Division 2 (Flammable Liquid) Class D, Division 2A (Very toxic by other means) and Class D, Division 2B (Toxic by other means)

16. OTHER INFORMATION

Xylene, mixed isomers (1330-20-7)

NFPA® HAZARD RATING	HEALTH:	1	Slight
	FIRE:	3	Serious
	REACTIVITY:	0	Minimal
HMIS® HAZARD RATING	HEALTH: FIRE: PHYSICAL:	1 * 3 0	Slight Serious Minimal * CHRONIC

SUPERSEDES MSDS DATED: 07/01/06

ABBREVIATIONS:

AP = Approximately	< = Less than	> = Greater than
N/A = Not Applicable	N/D = Not Determined	ppm = parts per million

ACRONYMS:

ACGIH	American Conference of Governmental	CERCLA	Comprehensive Emergency Response,
	Industrial Hygienists		Compensation, and Liability Act
AIHA	American Industrial Hygiene Association	DOT	U.S. Department of Transportation
ANSI	American National Standards Institute		[General Info: (800)467-4922]
	(212)642-4900	EPA	U.S. Environmental Protection Agency
API	American Petroleum Institute	HMIS	Hazardous Materials Information System
	(202)682-8000		

Gasoline, All Grades

MSDS No. 9950

IARC	International Agency For Research On Cancer	REL SARA	Recommended Exposure Limit (NIOSH) Superfund Amendments and
MSHA	Mine Safety and Health Administration		Reauthorization Act of 1986 Title III
NFPA	National Fire Protection Association	SCBA	Self-Contained Breathing Apparatus
	(617)770-3000	SPCC	Spill Prevention, Control, and
NIOSH	National Institute of Occupational Safety		Countermeasures
	and Health	STEL	Short-Term Exposure Limit (generally 15
NOIC	Notice of Intended Change (proposed		minutes)
	change to ACGIH TLV)	TLV	Threshold Limit Value (ACGIH)
NTP	National Toxicology Program	TSCA	Toxic Substances Control Act
OPA	Oil Pollution Act of 1990	TWA	Time Weighted Average (8 hr.)
OSHA	U.S. Occupational Safety & Health	WEEL	Workplace Environmental Exposure
	Administration		Level (AIHA)
PEL	Permissible Exposure Limit (OSHA)	WHMIS	Workplace Hazardous Materials
RCRA	Resource Conservation and Recovery Act		Information System (Canada)

DISCLAIMER OF EXPRESSED AND IMPLIED WARRANTIES

Information presented herein has been compiled from sources considered to be dependable, and is accurate and reliable to the best of our knowledge and belief, but is not guaranteed to be so. Since conditions of use are beyond our control, we make no warranties, expressed or implied, except those that may be contained in our written contract of sale or acknowledgment.

Vendor assumes no responsibility for injury to vendee or third persons proximately caused by the material if reasonable safety procedures are not adhered to as stipulated in the data sheet. Additionally, vendor assumes no responsibility for injury to vendee or third persons proximately caused by abnormal use of the material, even if reasonable safety procedures are followed. Furthermore, vendee assumes the risk in their use of the material.

Data Sheet	Issued: 23-Jul-2009			
Product Name	ShellSol D70			
Product Code	Q7712 Africa			
Product Category	Aliphatics			
CAS Registry Number	64742-47-8			
EINECS Number	265-149-8			
Description	ShellSol D70 is a very low aromatic,	inert hydroc	arbon solvent.	
Typical Properties	Property	Unit	Method	Value
	Density @15°C	kg/l	ASTM D4052	0.793
	Density @20°C	kg/l	ASTM D4052	0.790
	Cubic Expansion Coefficient @20°C	(10^-4)/°C	-	9
	Refractive Index @20°C	-	ASTM D1218	1.436
	Color	Saybolt	ASTM D156	+30
	Distillation, IBP	°C	ASTM D1078	200
	Distillation, DP	°C	ASTM D1078	240
	Relative Evaporation Rate (nBuAc=1)	-	ASTM D3539	0.01
	Vapor Pressure @20°C	kPa	Calculated	0.05
	Saturated Vapor Concentration @20°C	g/m³	Calculated	4
	Paraffins	%	GC	60
	Naphthenes	%	GC	40
	Aromatics	% m/m	SMS 2728	< 0.5
	Benzene	mg/kg	GC	< 3
	Sulfur	mg/kg	ASTM D5453	< 10
	Flash Point	°C	ASTM D93	77
	Explosion Limit: Lower	%v/v	-	0.6
	Explosion Limit: Upper	%v/v	-	5.5
	Electrical Conductivity @20°C	pS/m	-	< 1
	Aniline Point	°C	ASTM D611	77
	Pour Point	°C	ASTM D97	< -50
	Surface Tension @20°C	mN/m	Du Nouy ring	26
	Viscosity @25°C	mm²/s	ASTM D445	2.0
	Hildebrand Solubility Parameter	(cal/cm ³)^1/ ₂	-	7.6
	Hydrogen Bonding Index	-	-	0

	Fractional Polarity	-	-	0	
	Molecular Weight	g/mol	Calculated	174	
Test Methods	Copies of copyrighted test methods can be obtained from the issuing organisations			suing organisations:	
	American Society for Testing and Materials (ASTM) : www.astm.org				
	Shell Method Series (SMS) methods are issued by Shell Golabl Solutions International B.V., Shell Research and Technology Centre, Amsterdam, The Netherlands. Copies of SMS can be obtained through your local Shell Chemicals company.				
	For routine quality control analyses, local test methods may be applied that are different from those mentioned in this datasheet. Such methods have been validated and can be obtained through your local Shell Chemicals company.				
Quality	ShellSol D70 does not contain detectable quantities of polycyclic aromatics, heavy metals or chlorinated compounds.				
Storage and Handling	Provided proper storage and handling precautions are taken we would expect ShellSol D70 to be technically stable for at least 12 months. For detailed advice on Storage and Handling please refer to the Material Safety Data Sheet on www.shell.com/chemicals				
Hazard Information	For detailed Hazard Information please refer to the Material Safety Data Sheet on www.shell.com/chemicals.				
Warranty	All products purchased or su conditions set out in the con Chemicals warrant that their such herein or in other publ supplied by Shell Chemicals condition that the customer suitability for a particular pu- expressed or implied, regar same is based, or the results be merchantable or fit for a product will not infringe any The expression 'Shell Chemi engaged in chemical busine	tract, order acknowle r product will meet the lications. All other info s is considered accurc shall make its own as urpose. Shell Chemica ding such other inform s to be obtained from my purpose; or that the y patent.	edgment and/or ose specification ormation includi ate but is furnishe assessment to dete als make no othe mation, the data use thereof; that ne use of such ot	bill of lading. Shell as designated as ng that herein, ed upon the express ermine the products' er warranty either a upon which the any products shall her information or hell Group that are	
	Group of companies is an in				
Trademark	ShellSol is a Shell Trademar	·k.			

PENRECO(R*)

MATERIAL SAFETY DATA SHEET

PENRECO(R*) 170ES

MSDS CODE: 776576

STATUS: FINAL

DATE OF ISSUE: 02-AUG-2006

-----1. PRODUCT AND COMPANY IDENTIFICATION ------

PRODUCT NAME: PENRECO(R*) 170ES

INTENDED USE: HIGH-PURITY HYDROCARBON SOLVENT

RESPONSIBLE PARTY: PENRECO 8701 NEW TRAILS DR. SUITE 175 THE WOODLANDS, TX 77381

CUSTOMER SERVICE: 800-245-3952 WWW.PENRECO.COM

TECHNICAL INFORMATION: 800-245-3952

EMERGENCY OVERVIEW:

24 HOUR EMERGENCY TELEPHONE NUMBERS: SPILL, LEAK, FIRE OR ACCIDENT CALL CHEMTREC: NORTH AMERICA: (800) 424-9300 OTHERS: (703) 527-3887 (COLLECT) CALIFORNIA POISON CONTROL SYSTEM: (800) 356-3129

HEALTH HAZARDS/PRECAUTIONARY MEASURES: ASPIRATION HAZARD IF SWALLOWED. CAN ENTER LUNGS AND CAUSE DAMAGE. USE WITH VENTILATION ADEQUATE TO KEEP EXPOSURE BELOW RECOMMENDED LIMITS, IF ANY. AVOID CONTACT WITH EYES, SKIN AND CLOTHING. WASH THOROUGHLY AFTER HANDLING. DO NOT TASTE OR SWALLOW.

PHYSICAL HAZARDS/PRECAUTIONARY MEASURES: COMBUSTIBLE LIQUID AND VAPOR. KEEP AWAY FROM HEAT, SPARKS, FLAMES, STATIC ELECTRICITY OR OTHER SOURCES OF IGNITION.

APPEARANCE: CLEAR, COLORLESS

PHYSICAL FORM: LIQUID

ODOR: NEGLIGIBLE

NFPA 704 HAZARD CLASS: HEALTH 1 FLAMMABILITY 2 INSTABILITY 0

LEGEND: 0 (LEAST) 1 (SLIGHT) 2 (MODERATE) 3 (HIGH) 4 (EXTREME)

-----2. COMPOSITION / INFORMATION ON INGREDIENTS ------

NON-HAZARDOUS COMPONENTS:

COMPONENT CONCENTRATION ACGIH OSHA NIOSH OTHER (WT%)

HYDROTREATED 100 NE NE NE NE

DISTILLATE, LIGHT..C9-16 64742-47-8

NOTE:

STATE, LOCAL OR OTHER AGENCIES OR ADVISORY GROUPS MAY HAVE ESTABLISHED MORE STRINGENT LIMITS. CONSULT AN INDUSTRIAL HYGIENIST OR SIMILAR PROFESSIONAL, OR YOUR LOCAL AGENCIES, FOR FURTHER INFORMATION.

1% = 10,000 PPM.

NE = NOT ESTABLISHED

-----3. HAZARDS IDENTIFICATION ------

POTENTIAL HEALTH EFFECTS:

EYE:

CONTACT MAY CAUSE MILD EYE IRRITATION INCLUDING STINGING, WATERING, AND REDNESS.

SKIN:

CONTACT MAY CAUSE MILD SKIN IRRITATION INCLUDING REDNESS, AND A BURNING SENSATION. PROLONGED OR REPEATED CONTACT CAN WORSEN IRRITATION BY CAUSING DRYING AND CRACKING OF THE SKIN LEADING TO DERMATITIS (INFLAMMATION). NO HARMFUL EFFECTS FROM SKIN ABSORPTION ARE EXPECTED.

INHALATION (BREATHING): EXPECTED TO HAVE A LOW DEGREE OF TOXICITY BY INHALATION.

INGESTION (SWALLOWING): LOW DEGREE OF TOXICITY BY INGESTION.

ASPIRATION HAZARD:

THIS MATERIAL CAN ENTER LUNGS DURING SWALLOWING OR VOMITING AND CAUSE LUNG INFLAMMATION AND DAMAGE.

SIGNS AND SYMPTOMS:

EFFECTS OF OVEREXPOSURE MAY INCLUDE IRRITATION OF THE RESPIRATORY TRACT, IRRITATION OF THE DIGESTIVE TRACT, NAUSEA, VOMITING, TRANSIENT EXCITATION FOLLOWED BY SIGNS OF NERVOUS SYSTEM DEPRESSION (E.G., HEADACHE, DROWSINESS, DIZZINESS, LOSS OF COORDINATION, DISORIENTATION AND FATIGUE).

CANCER:

THERE IS INADEQUATE INFORMATION TO EVALUATE THE CANCER HAZARD OF THIS MATERIAL. SEE SECTION 11 FOR INFORMATION ON THE INDIVIDUAL COMPONENTS, IF ANY.

TARGET ORGANS: INADEQUATE DATA AVAILABLE FOR THIS MATERIAL.

DEVELOPMENTAL: INADEQUATE DATA AVAILABLE FOR THIS MATERIAL.

PRE-EXISTING MEDICAL CONDITIONS: CONDITIONS AGGRAVATED BY EXPOSURE MAY INCLUDE SKIN DISORDERS.

-----4. FIRST AID MEASURES ------

EYE:

IF IRRITATION OR REDNESS DEVELOPS, MOVE VICTIM AWAY FROM EXPOSURE AND INTO FRESH AIR. FLUSH EYES WITH CLEAN WATER. IF SYMPTOMS PERSIST, SEEK MEDICAL ATTENTION.

SKIN:

WIPE MATERIAL FROM SKIN AND REMOVE CONTAMINATED SHOES AND CLOTHING. CLEANSE AFFECTED AREA(S) THOROUGHLY BY WASHING WITH MILD SOAP AND WATER AND, IF NECESSARY, A WATERLESS SKIN CLEANSER. IF IRRITATION OR REDNESS DEVELOPS AND PERSISTS, SEEK MEDICAL ATTENTION.

INHALATION (BREATHING):

IF RESPIRATORY SYMPTOMS DEVELOP, MOVE VICTIM AWAY FROM SOURCE OF EXPOSURE AND INTO FRESH AIR. IF SYMPTOMS PERSIST, SEEK MEDICAL ATTENTION. IF VICTIM IS NOT BREATHING, CLEAR AIRWAY AND IMMEDIATELY BEGIN ARTIFICIAL RESPIRATION. IF BREATHING DIFFICULTIES DEVELOP, OXYGEN SHOULD BE ADMINISTERED BY QUALIFIED PERSONNEL. SEEK IMMEDIATE MEDICAL ATTENTION.

```
INGESTION (SWALLOWING):
```

ASPIRATION HAZARD:

DO NOT INDUCE VOMITING OR GIVE ANYTHING BY MOUTH BECAUSE THIS MATERIAL CAN ENTER THE LUNGS AND CAUSE SEVERE LUNG DAMAGE. IF VICTIM IS DROWSY OR UNCONSCIOUS AND VOMITING, PLACE ON THE LEFT SIDE WITH THE HEAD DOWN. IF POSSIBLE, DO NOT LEAVE VICTIM UNATTENDED AND OBSERVE CLOSELY FOR ADEQUACY OF BREATHING. SEEK MEDICAL ATTENTION.

-----5. FIRE-FIGHTING MEASURES ------

FLAMMABLE PROPERTIES:

FLASH POINT: 170 DEG. F/77 DEG. C TEST METHOD: PENSKY-MARTENS CLOSED CUP (PMCC), ASTM D93, EPA 1010

OSHA FLAMMABILITY CLASS: COMBUSTIBLE LIQUID

LEL (VOL % IN AIR): 1.0 UEL (VOL % IN AIR): 6.0

AUTOIGNITION TEMPERATURE: NO DATA

UNUSUAL FIRE & EXPLOSION HAZARDS: THIS MATERIAL IS COMBUSTIBLE AND CAN BE IGNITED BY HEAT, SPARKS, FLAMES, OR OTHER SOURCES OF IGNITION (E.G., STATIC ELECTRICITY, PILOT LIGHTS, OR MECHANICAL/ELECTRICAL EQUIPMENT). MAY CREATE VAPOR/AIR EXPLOSION HAZARD IF HEATED. IF CONTAINER IS NOT PROPERLY COOLED, IT CAN RUPTURE IN THE HEAT OF A FIRE. VAPORS ARE HEAVIER THAN AIR AND CAN ACCUMULATE IN LOW AREAS.

EXTINGUISHING MEDIA:

DRY CHEMICAL, CARBON DIOXIDE, FOAM, OR WATER SPRAY IS RECOMMENDED. WATER OR FOAM MAY CAUSE FROTHING OF MATERIALS HEATED ABOVE 212 DEG. F. CARBON DIOXIDE CAN DISPLACE OXYGEN. USE CAUTION WHEN APPLYING CARBON DIOXIDE IN CONFINED SPACES.

FIRE FIGHTING INSTRUCTIONS:

FOR FIRES BEYOND THE INCIPIENT STAGE, EMERGENCY RESPONDERS IN THE IMMEDIATE HAZARD AREA SHOULD WEAR BUNKER GEAR. WHEN THE POTENTIAL CHEMICAL HAZARD IS UNKNOWN, IN ENCLOSED OR CONFINED SPACES, OR WHEN EXPLICITLY REQUIRED BY DOT, A SELF CONTAINED BREATHING APPARATUS SHOULD BE WORN. IN ADDITION, WEAR OTHER APPROPRIATE PROTECTIVE EQUIPMENT AS CONDITIONS WARRANT (SEE SECTION 8).

ISOLATE IMMEDIATE HAZARD AREA, KEEP UNAUTHORIZED PERSONNEL OUT. STOP SPILL/RELEASE IF IT CAN BE DONE WITH MINIMAL RISK. MOVE UNDAMAGED CONTAINERS FROM IMMEDIATE HAZARD AREA IF IT CAN BE DONE WITH MINIMAL RISK.

WATER SPRAY MAY BE USEFUL IN MINIMIZING OR DISPERSING VAPORS AND TO PROTECT PERSONNEL. COOL EQUIPMENT EXPOSED TO FIRE WITH WATER, IF IT CAN BE DONE WITH MINIMAL RISK. AVOID SPREADING BURNING LIQUID WITH WATER USED FOR COOLING PURPOSES.

-----6. ACCIDENTAL RELEASE MEASURES ------

COMBUSTIBLE. KEEP ALL SOURCES OF IGNITION AWAY FROM SPILL/RELEASE. THE USE OF EXPLOSION-PROOF ELECTRICAL EQUIPMENT IS RECOMMENDED.

STAY UPWIND AND AWAY FROM SPILL/RELEASE. NOTIFY PERSONS DOWN WIND OF THE SPILL/RELEASE, ISOLATE IMMEDIATE HAZARD AREA AND KEEP UNAUTHORIZED PERSONNEL OUT. STOP SPILL/RELEASE IF IT CAN BE DONE WITH MINIMAL RISK. WEAR APPROPRIATE PROTECTIVE EQUIPMENT, INCLUDING RESPIRATORY PROTECTION, AS CONDITIONS WARRANT (SEE SECTION 8). PREVENT SPILLED MATERIAL FROM ENTERING SEWERS, STORM DRAINS, OTHER UNAUTHORIZED DRAINAGE SYSTEMS, AND NATURAL WATERWAYS. DIKE FAR AHEAD OF SPILL FOR LATER RECOVERY OR DISPOSAL. SPILLED MATERIAL MAY BE ABSORBED INTO AN APPROPRIATE ABSORBENT MATERIAL. NOTIFY FIRE AUTHORITIES AND APPROPRIATE FEDERAL, STATE, AND LOCAL AGENCIES. IMMEDIATE CLEANUP OF ANY SPILL IS RECOMMENDED.

-----7. HANDLING AND STORAGE ------

HANDLING:

OPEN CONTAINER SLOWLY TO RELIEVE ANY PRESSURE. BOND AND GROUND ALL EQUIPMENT WHEN TRANSFERRING FROM ONE VESSEL TO ANOTHER. CAN ACCUMULATE STATIC CHARGE BY FLOW OR AGITATION. CAN BE IGNITED BY STATIC DISCHARGE. THE USE OF EXPLOSION-PROOF ELECTRICAL EQUIPMENT IS RECOMMENDED AND MAY BE REQUIRED (SEE APPROPRIATE FIRE CODES). REFER TO NFPA-704 AND/OR API RP 2003 FOR SPECIFIC BONDING/GROUNDING REQUIREMENTS. DO NOT ENTER CONFINED SPACES SUCH AS TANKS OR PITS WITHOUT FOLLOWING PROPER ENTRY PROCEDURES SUCH AS ASTM D-4276 AND 29 CFR 1910.146. THE USE OF APPROPRIATE RESPIRATORY PROTECTION IS ADVISED WHEN CONCENTRATIONS EXCEED ANY ESTABLISHED EXPOSURE LIMITS (SEE SECTIONS 2 AND 8).

DO NOT WEAR CONTAMINATED CLOTHING OR SHOES. KEEP CONTAMINATED CLOTHING AWAY FROM SOURCES OF IGNITION SUCH AS SPARKS OR OPEN FLAMES. USE GOOD PERSONAL HYGIENE PRACTICES.

"EMPTY" CONTAINERS RETAIN RESIDUE AND MAY BE DANGEROUS. DO NOT PRESSURIZE, CUT, WELD, BRAZE, SOLDER, DRILL, GRIND, OR EXPOSE SUCH CONTAINERS TO HEAT, FLAME, SPARKS, OR OTHER SOURCES OF IGNITION. THEY MAY EXPLODE AND CAUSE INJURY OR DEATH. "EMPTY" DRUMS SHOULD BE COMPLETELY DRAINED, PROPERLY BUNGED, AND PROMPTLY SHIPPED TO THE SUPPLIER OR A DRUM RECONDITIONER. ALL CONTAINERS SHOULD BE DISPOSED OF IN AN ENVIRONMENTALLY SAFE MANNER AND IN ACCORDANCE WITH GOVERNMENTAL REGULATIONS.

BEFORE WORKING ON OR IN TANKS WHICH CONTAIN OR HAVE CONTAINED THIS MATERIAL, REFER TO OSHA REGULATIONS, ANSI Z49.1, AND OTHER REFERENCES PERTAINING TO CLEANING, REPAIRING, WELDING, OR OTHER CONTEMPLATED OPERATIONS.

STORAGE:

KEEP CONTAINER(S) TIGHTLY CLOSED. USE AND STORE THIS MATERIAL IN COOL, DRY, WELL-VENTILATED AREAS AWAY FROM HEAT AND ALL SOURCES OF IGNITION. POST AREA "NO SMOKING OR OPEN FLAME." STORE ONLY IN APPROVED CONTAINERS. KEEP AWAY FROM ANY INCOMPATIBLE MATERIAL (SEE SECTION 10). PROTECT CONTAINER(S) AGAINST PHYSICAL DAMAGE. OUTDOOR OR DETACHED STORAGE IS PREFERRED. INDOOR STORAGE SHOULD MEET OSHA STANDARDS AND APPROPRIATE FIRE CODES. KEEP AWAY FROM ANY INCOMPATIBLE MATERIAL (SEE SECTION 10). PROTECT CONTAINER(S) AGAINST PHYSICAL DAMAGE. OUTDOOR OR DETACHED STORAGE IS PREFERRED. INDOOR STORAGE SHOULD MEET OSHA STANDARDS AND APPROPRIATE FIRE CODES.

-----8. EXPOSURE CONTROLS / PERSONAL PROTECTION ------

ENGINEERING CONTROLS: IF CURRENT VENTILATION PRACTICES ARE NOT ADEQUATE TO MAINTAIN AIRBORNE CONCENTRATIONS BELOW THE ESTABLISHED EXPOSURE LIMITS (SEE SECTION 2), ADDITIONAL ENGINEERING CONTROLS MAY BE REQUIRED. WHERE EXPLOSIVE MIXTURES MAY BE PRESENT, ELECTRICAL SYSTEMS SAFE FOR SUCH LOCATIONS MUST BE USED (SEE APPROPRIATE ELECTRICAL CODES).

PERSONAL PROTECTIVE EQUIPMENT (PPE):

RESPIRATORY:

THE USE OF RESPIRATORY PROTECTION IS ADVISED WHEN CONCENTRATIONS ARE EXPECTED TO EXCEED THE ESTABLISHED EXPOSURE LIMITS (SEE SECTION 2). DEPENDING ON THE AIRBORNE CONCENTRATION, USE A RESPIRATOR WITH ORGANIC VAPOR CARTRIDGES (NIOSH CERTIFIED) OR SUPPLIED-AIR EQUIPMENT.

SKIN:

THE USE OF NITRILE GLOVES IMPERVIOUS TO THE SPECIFIC MATERIAL HANDLED IS ADVISED TO PREVENT SKIN CONTACT, POSSIBLE IRRITATION, AND SKIN DAMAGE (SEE GLOVE MANUFACTURER LITERATURE FOR INFORMATION ON PERMEABILITY). DEPENDING ON CONDITIONS OF USE, NITRILE APRON AND/OR ARM COVERS MAY BE NECESSARY.

EYE/FACE:

APPROVED EYE PROTECTION TO SAFEGUARD AGAINST POTENTIAL EYE CONTACT, IRRITATION, OR INJURY IS RECOMMENDED. DEPENDING ON CONDITIONS OF USE, A FACE SHIELD MAY BE NECESSARY.

OTHER PROTECTIVE EQUIPMENT:

A SOURCE OF CLEAN WATER SHOULD BE AVAILABLE IN THE WORK AREA FOR FLUSHING EYES AND SKIN. IMPERVIOUS CLOTHING SHOULD BE WORN AS NEEDED.

SUGGESTIONS FOR THE USE OF SPECIFIC PROTECTIVE MATERIALS ARE BASED ON READILY AVAILABLE PUBLISHED DATA. USERS SHOULD CHECK WITH SPECIFIC MANUFACTURERS TO CONFIRM THE PERFORMANCE OF THEIR PRODUCTS.

-----9. PHYSICAL AND CHEMICAL PROPERTIES ------

NOTE:

UNLESS OTHERWISE STATED, VALUES ARE DETERMINED AT 20 DEG. C (68 DEG. F) AND 760 MMHg (1 ATM).

APPEARANCE: CLEAR, COLORLESS

PHYSICAL FORM: LIQUID

ODOR: NEGLIGIBLE

ODOR THRESHOLD: NO DATA

pH: NOT APPLICABLE

VAPOR PRESSURE (MMHg): <0.5 @ 68 DEG. F / 20 DEG. C

VAPOR DENSITY (AIR=1): 6.2

BOILING POINT/RANGE: 370-470 DEG. F (187.8-243.3 DEG. C)

MELTING/FREEZING POINT: NOT APPLICABLE

SOLUBILITY IN WATER: INSOLUBLE

SOLUBILITY IN OTHER SOLVENTS: SOLUBLE IN HYDROCARBONS

PARTITION COEFFICIENT (n-OCTANOL/WATER) (KOW): NO DATA

SPECIFIC GRAVITY: 0.80-0.82

EVAPORATION RATE (nBuAc=1): NO DATA

FLASH POINT: 170 DEG. F/77 DEG. C TEST METHOD: PENSKY-MARTENS CLOSED CUP (PMCC), ASTM D93, EPA 1010

LEL (VOL % IN AIR): 1.0 UEL (VOL % IN AIR): 6.0

AUTOIGNITION TEMPERATURE: NO DATA

DECOMPOSITION TEMPERATURE: NO DATA

-----10. STABILITY AND REACTIVITY ------

STABILITY:

STABLE UNDER NORMAL AMBIENT AND ANTICIPATED STORAGE AND HANDLING CONDITIONS OF TEMPERATURE AND PRESSURE.

CONDITIONS TO AVOID: AVOID ALL POSSIBLE SOURCES OF IGNITION (SEE SECTIONS 5 AND 7).

MATERIALS TO AVOID (INCOMPATIBLE MATERIALS): AVOID CONTACT WITH STRONG OXIDIZING AGENTS, STRONG REDUCING AGENTS.

HAZARDOUS DECOMPOSITION PRODUCTS: COMBUSTION CAN YIELD CARBON DIOXIDE AND CARBON MONOXIDE.

HAZARDOUS POLYMERIZATION: WILL NOT OCCUR.

-----11. TOXICOLOGICAL INFORMATION ------

CHRONIC DATA:

HYDROTREATED DISTILLATE, LIGHT .. C9-16 64742-47-8:

CARCINOGENICITY:

PROLONGED AND REPEATED SKIN EXPOSURE OF MICE TO CERTAIN MIDDLE DISTILLATE STREAMS HAS RESULTED IN DERMATITIS, WHICH HAS BEEN ASSOCIATED WITH THE PROMOTION OF SKIN TUMORS VIA A NON-GENOTOXIC MECHANISM. THIS MATERIAL HAS NOT BEEN IDENTIFIED AS A CARCINOGEN BY NTP, IARC, OR OSHA.

ACUTE DATA:

HYDROTREATED DISTILLATE, LIGHT ..C9-16 64742-47-8: DERMAL LD50 = >2 G/KG (RABBIT) (BASED ON SIMILAR MATERIAL) INHALATION LC50 = >5 MG/L (4-HR., RAT) (BASED ON SIMILAR MATERIAL) ORAL LD50 = >5 G/KG (RAT) (BASED ON SIMILAR MATERIAL)

-----12. ECOLOGICAL INFORMATION ------

NOT EVALUATED.

-----13. DISPOSAL CONSIDERATIONS ------

THIS MATERIAL, IF DISCARDED AS PRODUCED, WOULD BE A RCRA "CHARACTERISTIC" HAZARDOUS WASTE DUE TO THE CHARACTERISTIC(S) OF IGNITABILITY (D001). IF THE SPILLED OR RELEASED MATERIAL IMPACTS SOIL, WATER, OR OTHER MEDIA, CHARACTERISTIC TESTING OF THE CONTAMINATED MATERIALS MAY BE REQUIRED PRIOR TO THEIR DISPOSAL. FURTHER, THIS MATERIAL, ONCE IT BECOMES A WASTE, IS SUBJECT TO THE LAND DISPOSAL RESTRICTIONS IN 40 CFR 268.40 AND MAY REQUIRE TREATMENT PRIOR TO DISPOSAL TO MEET SPECIFIC STANDARDS. CONSULT STATE AND LOCAL REGULATIONS TO DETERMINE WHETHER THEY ARE MORE STRINGENT THAN THE FEDERAL REQUIREMENTS.

CONTAINER CONTENTS SHOULD BE COMPLETELY USED AND CONTAINERS SHOULD BE EMPTIED PRIOR TO DISCARD. CONTAINER RINSATE COULD BE CONSIDERED A RCRA HAZARDOUS WASTE AND MUST BE DISPOSED OF WITH CARE AND IN FULL COMPLIANCE WITH FEDERAL, STATE AND LOCAL REGULATIONS. LARGER EMPTY CONTAINERS, SUCH AS DRUMS, SHOULD BE RETURNED TO THE DISTRIBUTOR OR TO A DRUM RECONDITIONER. TO ASSURE PROPER DISPOSAL OF SMALLER EMPTY CONTAINERS, CONSULT WITH STATE AND LOCAL REGULATIONS AND DISPOSAL AUTHORITIES.

-----14. TRANSPORTATION INFORMATION ------

U.S. DEPARTMENT OF TRANSPORTATION (DOT):

SHIPPING DESCRIPTION: PETROLEUM DISTILLATES, N.O.S., COMBUSTIBLE LIQUID, UN1268, III (BULK ONLY)

BULK PACKAGE/PLACARD MARKING: COMBUSTIBLE/1268

NON-BULK PACKAGE MARKING: NOT REGULATED (173.150 (F) (2))

NON-BULK PACKAGE LABELING: NOT REGULATED (173.150 (F) (2))

PACKAGING - REFERENCES (EXCEPTIONS, NON-BULK, BULK): NONE, NONE, 49 CFR 173.241

HAZARDOUS SUBSTANCE: NONE

EMERGENCY RESPONSE GUIDE: 128

INTERNATIONAL MARITIME DANGEROUS GOODS (IMDG):

SHIPPING DESCRIPTION: NOT REGULATED. FLASH POINT IS ABOVE 61 DEG. C, CC. NOTE: FEDERAL COMPLIANCE REQUIREMENTS MAY APPLY. SEE 49 CFR 171.12.

INTERNATIONAL CIVIL AVIATION ORG. / INTERNATIONAL AIR TRANSPORT ASSOC. (ICAO/IATA): UN/ID #: NOT REGULATED. FLASH POINT IS ABOVE 61 DEG. C, CC. NOTE: FEDERAL COMPLIANCE REQUIREMENTS MAY APPLY. SEE 49 CFR 171.11.

-----15. REGULATORY INFORMATION ------

U.S. REGULATIONS:

CERCLA/SARA - SECTION 311/312 (TITLE III HAZARD CATEGORIES): ACUTE HEALTH: NO CHRONIC HEALTH: NO FIRE HAZARD: YES PRESSURE HAZARD: NO REACTIVE HAZARD: NO

CERCLA/SARA - SECTION 313 AND 40 CFR 372: THIS MATERIAL CONTAINS THE FOLLOWING CHEMICALS SUBJECT TO THE REPORTING REQUIREMENTS OF SARA 313 AND 40 CFR 372: NONE KNOWN

EPA (CERCLA) REPORTABLE QUANTITY (IN POUNDS): NONE KNOWN

CERCLA/SARA - SECTION 302 EXTREMELY HAZARDOUS SUBSTANCES AND TPQS (IN POUNDS):

THIS MATERIAL CONTAINS THE FOLLOWING CHEMICALS SUBJECT TO THE REPORTING REQUIREMENTS OF SARA 302 AND 40 CFR 372: NONE KNOWN

CALIFORNIA PROPOSITION 65:

WARNING:

THIS MATERIAL MAY CONTAIN THE FOLLOWING CHEMICALS WHICH ARE KNOWN TO THE STATE OF CALIFORNIA TO CAUSE CANCER, BIRTH DEFECTS OR OTHER REPRODUCTIVE HARM, AND ARE SUBJECT TO THE REQUIREMENTS OF CALIFORNIA PROPOSITION 65 (CA HEALTH & SAFETY CODE SECTION 25249.5): NONE KNOWN

CARCINOGEN IDENTIFICATION:

THIS MATERIAL HAS NOT BEEN IDENTIFIED AS A CARCINOGEN BY NTP, IARC, OR OSHA. SEE SECTION 11 FOR CARCINOGENICITY INFORMATION OF INDIVIDUAL COMPONENTS, IF ANY.

TSCA: ALL COMPONENTS ARE LISTED ON THE TSCA INVENTORY.

INTERNATIONAL REGULATIONS:

CANADIAN REGULATIONS: THIS PRODUCT HAS BEEN CLASSIFIED IN ACCORDANCE WITH THE HAZARD CRITERIA OF THE CONTROLLED PRODUCTS REGULATIONS (CPR) AND THE MSDS CONTAINS ALL THE INFORMATION REQUIRED BY THE CPR.

DOMESTIC SUBSTANCES LIST: LISTED

WHMIS HAZARD CLASS: B3 - COMBUSTIBLE LIQUIDS

INTERNATIONAL INVENTORIES: AUSTRALIA (AICS) CANADA (DSL) CHINA EUROPE (EINECS) JAPAN (ENCS) KOREA (ECL) PHILIPPINES (PICCS)

EXPORT CONTROL CLASSIFICATION NUMBER: EAR99

-----16. OTHER INFORMATION ------

ISSUE DATE: 02-AUG-2006

PREVIOUS ISSUE DATE: 06-APR-2001

REVISED SECTIONS OR BASIS FOR REVISION: PERIODIC REVIEW AND UPDATE

MSDS CODE: 776576

DISCLAIMER OF EXPRESSED AND IMPLIED WARRANTIES:

THE INFORMATION PRESENTED IN THIS MATERIAL SAFETY DATA SHEET IS BASED ON DATA BELIEVED TO BE ACCURATE AS OF THE DATE THIS MATERIAL SAFETY DATA SHEET WAS PREPARED. HOWEVER, NO WARRANTY OF MERCHANTABILITY, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY OTHER WARRANTY IS EXPRESSED OR IS TO BE IMPLIED REGARDING THE ACCURACY OR COMPLETENESS OF THE INFORMATION PROVIDED ABOVE, THE RESULTS TO BE OBTAINED FROM THE USE OF THIS INFORMATION OR THE PRODUCT, THE SAFETY OF THIS PRODUCT, OR THE HAZARDS RELATED TO ITS USE. NO RESPONSIBILITY IS ASSUMED FOR ANY DAMAGE OR INJURY RESULTING FROM ABNORMAL USE OR FROM ANY FAILURE TO ADHERE TO RECOMMENDED PRACTICES, THE INFORMATION PROVIDED ABOVE, AND THE PRODUCT, ARE FURNISHED ON THE CONDITION THAT THE PERSON RECEIVING THEM SHALL MAKE THEIR OWN DETERMINATION AS TO THE SUITABILITY OF THE PRODUCT FOR THEIR PARTICULAR PURPOSE AND ON THE CONDITION THAT THEY ASSUME THE RISK OF THEIR USE. IN ADDITION, NO AUTHORIZATION IS GIVEN NOR IMPLIED TO PRACTICE ANY PATENTED INVENTION WITHOUT A LICENSE.

APPENDIX K-2. EMISSIONS FACTORS FOR FUEL COMBUSTION FROM NATURAL GAS, LPG, AND OIL-FIRED RESIDENTIAL WATER HEATERS

TABLE OF CONTENTS

K-2.1	OVERVIE	EW
K-2.2	EMISSIO	NS FACTORS BY FUEL TYPE K-2.2
	K-2.2.1	All Fuels: Carbon
	K-2.2.2	Natural Gas K-2.3
		K-2.2.2.1 Oxides of Nitrogen
		K-2.2.2.2 Sulfur Dioxide
	K-2.2.3	Fuel Oil #2
		K-2.2.3.1 Oxides of Nitrogen
		K-2.2.3.2 Sulfur Dioxide
	K-2.2.4	LPG K-2.4
		K-2.2.4.1 Oxides of Nitrogen K-2.4
		K-2.2.4.2 Sulfur Dioxide
K-2.3	SUMMAF	RY K-2.5

TABLE

Table K-2.1	Estimated National Average Emissions Factors for Household Fuel	
	Combustion of Natural Gas, Fuel Oil #2, and LPG	K-2.2

	Carbon (kg/GJ)	NO _x (g/GJ)	SO ₂ (g/GJ)
Natural Gas	13.8	42	0
Fuel Oil #2	18.7	61	218
LPG	16.0	66	7

Table K-2.1	Estimated National Average Emissions Factors for Household Fuel
	Combustion of Natural Gas, Fuel Oil #2, and LPG

There are significant differences in state regulations, making it difficult to generalize about localized emissions. For residential fuel oil combustion, stricter state standards exist in the northeastern United States and southern California than elsewhere. State and local agencies like southern California's South Coast Air Quality Management District (SCAQMD), the New Jersey Department of Environmental Protection, and the New York Department of Environmental Conservation have established regulations for residential fuel combustion emissions. These regulations, however, are local to individual counties and do not apply to all regions in the Northeast or even all of California.

K-2.2 EMISSIONS FACTORS BY FUEL TYPE

K-2.2.1 All Fuels: Carbon

NEMS-BRS tracks emissions of carbon as CO_2 , but factors are included here for completeness. The combustion of natural gas, fuel oil #2, and LPG oxidizes virtually all carbon in the fuel to CO_2 . This facilitates estimating carbon emissions factors because the carbon content of the fuel is the only determinant of emissions. The carbon estimates in Table K-2.1 are based on EPA's assessment of carbon combustion from natural gas, fuel oil #2, and LPG use. Other sources of information include the U.S. DOE's Energy Information Administration (EIA), Oregon State EPA, and the Gas Research Institute (GRI). All agree to within ± 2.0 % of EPA's assessed estimate of carbon emissions. EPA's carbon emissions factors for natural gas, fuel oil #2, and LPG combustion are therefore a reasonable evaluation of nationally averaged carbon emissions rates.

Carbon monoxide (CO) can be formed by incomplete carbon oxidization, causing a severe health hazard. CO emissions only result from poorly functioning appliances, and since NEMS-BRS assumes that all water heaters are functioning properly, it is unlikely that these emissions will change.

K-2.2.3.2 Sulfur Dioxide

Emissions of SO₂ are a direct function of the sulfur content of the fuel. Assuming complete combustion of sulfur to SO₂ makes it easy to assess and compare emissions across data sources. Individual state and county regulations limiting the amount of sulfur in residential fuel oil, however, reveal substantial variability in SO₂ emissions factors from EPA's estimate of 218g of SO₂/GJ of fuel energy content. This is roughly equivalent to 0.5% sulfur content by weight using an emissions factor for fuel oil #2 of 43,950 g/GJ weight per unit energy content. A straight multiplication of the fuel energy content and the percentage of sulfur content in the fuel provide the emissions factor.

In the state of New York, SO₂ emissions limits range from 88-659 g/GJ depending on the county. In New Hampshire, the emissions rate of SO₂ from high-sulfur distillate fuel oil combustion cannot exceed 176 g/GJ. In Maine and Michigan, the regulations are higher than EPA's assessment, limiting SO₂ emissions from fuel oil to 500 g of SO₂/GJ of heat input. Such broad ranges and varying limits in certain regions are a strong argument for using EPA's averaged national value over a regionally weighted average incorporating the various state and county regulations.

Comparing the sulfur content of fuel oil from different refineries also demonstrates regional variability. Most sources were obtained through online websites detailing product specifications. Mobil Corporation's residential heating fuel oil (#2 high-sulfur) for most states contains a maximum 0.5% sulfur by mass (219 g of SO₂/GJ of heat input), which is very close to EPA's emissions factor. Mobil also markets fuel with lower sulfur content to some regions in the Northeast. For example, Mobil's lowest sulfur content residential heating fuel oil contains 0.2% sulfur by weight (88 g/GJ), as required in New York City, Philadelphia, parts of Delaware, and most of New Jersey. Other regional regulations adhered to by Mobil are 132 g/GJ for most of Pennsylvania and parts of New Jersey, a limit of 127 g of SO₂/GJ of heat input for the state of Illinois, and an SO₂ emissions factor of 145 g/GJ in Massachusetts. The sulfur contents of distillate fuel oil from Chevron, Phillips 66, and the American Society for Testing and Materials (ASTM) exactly match EPA's estimate, substantiating the use of the latter for the analysis. Considerable variation does exist among counties and states, especially in the Northeast. Nonetheless, EPA provides a reasonable estimate of emissions from residential oil-fired water heaters that is representative of the national average.

K-2.2.4 LPG

K-2.2.4.1 Oxides of Nitrogen

Although NES results are presented for LPG, EPA estimates emissions for only propane and butane, fuels within the LPG family of gases. In the United States, the composition of LPG is typically 90% propane (C_3H_8) by liquid volume, 5% propylene (C_3H_6), and 2.5% butane (C_4H_{10}).⁴ This analysis uses EPA's propane emissions estimate to verify its comparability with LPG combustion or determines a more suitable estimate from other sources that best represents LPG emissions rates.

REFERENCES

- U.S. Environmental Protection Agency, Compilation of Air Pollutant Emission Factors, AP-42, Fifth Edition, Volume I: Stationary Point and Area Sources, 1998. October.
 < <u>http://www.epa.gov/ttn/chief/ap42.html</u>>
- 2. South Coast Air Quality Management District, March, 1995. < <u>http://www.aqmd.gov/rules/r1121.html</u>>
- 3. New Jersey State Department of Environmental Protection, September 1993. <<u>http://www.state.nj.us/dep/aqm/2719968.htm#Boilers</u>>
- 4. United States Hemispheric Clean Cities Program, 1994. <<u>http://www.hemis-</u> ccities.doe.gov/altfuels/propane.html>
- 5. U.S. Environmental Protection Agency, Compilation of Air Pollutant Emission Factors, AP-42, Fifth Edition, Volume I: Stationary Point and Area Sources, Chapter 1, External Combustion Sources, 1998. October. < <u>http://www.epa.gov/ttn/chief/ap42c1.html</u>>

1.5 Liquefied Petroleum Gas Combustion

1.5.1 General¹

Liquefied petroleum gas (LPG or LP-gas) consists of propane, propylene, butane, and butylenes; the product used for domestic heating is composed primarily of propane. This gas, obtained mostly from gas wells (but also, to a lesser extent, as a refinery by-product) is stored as a liquid under moderate pressures. There are three grades of LPG available as heating fuels: commercial-grade propane, engine fuel-grade propane (also known as HD-5 propane), and commercial-grade butane. In addition, there are high-purity grades of LPG available for laboratory work and for use as aerosol propellants. Specifications for the various LPG grades are available from the American Society for Testing and Materials and the Gas Processors Association. A typical heating value for commercialgrade propane and HD-5 propane is 90,500 British thermal units per gallon (Btu/gal), after vaporization; for commercial-grade butane, the value is 97,400 Btu/gal.

The largest market for LPG is the domestic/commercial market, followed by the chemical industry (where it is used as a petrochemical feedstock) and the agriculture industry. Propane is also used as an engine fuel as an alternative to gasoline and as a standby fuel for facilities that have interruptible natural gas service contracts.

1.5.2 Firing Practices²

The combustion processes that use LPG are very similar to those that use natural gas. Use of LPG in commercial and industrial applications may require a vaporizer to provide the burner with the proper mix of air and fuel. The burner itself will usually have different fuel injector tips as well as different fuel-to-air ratio controller settings than a natural gas burner since the LPG stoichiometric requirements are different than natural gas requirements. LPG is fired as a primary and backup fuel in small commercial and industrial boilers and space heating equipment and can be used to generate heat and process steam for industrial facilities and in most domestic appliances that typically use natural gas.

1.5.3 Emissions^{1,3-5}

1.5.3.1 Criteria Pollutants -

LPG is considered a "clean" fuel because it does not produce visible emissions. However, gaseous pollutants such as nitrogen oxides (NO_x), carbon monoxide (CO), and organic compounds are produced as are small amounts of sulfur dioxide (SO₂) and particulate matter (PM). The most significant factors affecting NO_x, CO, and organic emissions are burner design, burner adjustment, boiler operating parameters, and flue gas venting. Improper design, blocking and clogging of the flue vent, and insufficient combustion air result in improper combustion and the emission of aldehydes, CO, hydrocarbons, and other organics. NO_x emissions are a function of a number of variables, including temperature, excess air, fuel and air mixing, and residence time in the combustion zone. The amount of SO₂ emitted is directly proportional to the amount of sulfur in the fuel. PM emissions are very low and result from soot, aerosols formed by condensable emitted species, or boiler scale dislodged during combustion. Emission factors for LPG combustion are presented in Table 1.5-1.

Table 1.5-1 presents emission factors on a volume basis ($lb/10^3$ gal). To convert to an energy basis (lb/MMBtu), divide by a heating value of 91.5 MMBtu/10³gal for propane and 102 MMBtu/10³gal for butane.

1.5.3.2 Greenhouse Gases⁶⁻¹¹ -

Carbon dioxide (CO₂), methane (CH₄), and nitrous oxide (N₂O) emissions are all produced during LPG combustion. Nearly all of the fuel carbon (99.5 percent) in LPG is converted to CO₂ during the combustion process. This conversion is relatively independent of firing configuration. Although the formation of CO acts to reduce CO₂ emissions, the amount of CO produced is insignificant compared to the amount of CO₂ produced. The majority of the 0.5 percent of fuel carbon not converted to CO₂ is due to incomplete combustion in the fuel stream. Formation of N_2O during the combustion process is governed by a complex series of reactions and its formation is dependent upon many factors. Formation of N_2O is minimized when combustion temperatures are kept high (above 1475°F) and excess air is kept to a minimum (less than 1 percent).

Methane emissions are highest during periods of low-temperature combustion or incomplete combustion, such as the start-up or shut-down cycle for boilers. Typically, conditions that favor formation of N_2O also favor emissions of CH_4 .

1.5.4 Controls

The only controls developed for LPG combustion are to reduce NO_x emissions. NO_x controls have been developed for firetube and watertube boilers firing propane or butane. Vendors are now guaranteeing retrofit systems to levels as low as 30 to 40 ppm (based on 3 percent oxygen). These systems use a combination of low-NO_x burners and flue gas recirculation (FGR). Some burner vendors use water or steam injection into the flame zone for NO_x reduction. This is a trimming technique which may be necessary during backup fuel periods because LPG typically has a higher NO_x -forming potential than natural gas; conventional natural gas emission control systems may not be sufficient to reduce LPG emissions to mandated levels. Also, LPG burners are more prone to sooting under the modified combustion conditions required for low NO_x emissions. The extent of allowable combustion modifications for LPG may be more limited than for natural gas.

One NO_x control system that has been demonstrated on small commercial boilers is FGR. NO_x emissions from propane combustion can be reduced by as much as 50 percent by recirculating about 16 percent of the flue gas. NO_x emission reductions of over 60 percent have been achieved with FGR and low-NO_x burners used in combination.

1.5.5 Updates Since the Fifth Edition

The Fifth Edition was released in January 1995. Revisions to this section since that date are summarized below. For further detail, consult the memoranda describing each supplement or the background report for this section.

Supplement A, February 1996

No changes.

Supplement B, October 1996

- Text was added concerning firing practices.
- The CO₂ emission factor was updated.
- Emission factors were added for N₂O and CH₄.

July 2008

The PM filterable, NOx, CO and TOC emissions factors were updated and the PM condensable and PM total emissions factors were added using the revised PM, NOx, CO and TOC emissions factors for natural gas combustion for small boilers (see July 1998 revisions to section 1.4, Natural Gas Combustion).

Table 1.5-1. EMISSION FACTORS FOR LPG COMBUSTION^a

	Butane Emi (lb/10	ssion Factor)³ gal)	Propane Emission Factor (lb/10 ³ gal)		
Pollutant	Industrial Boilers ^b (SCC 1-02-010-01)	Commercial Boilers ^e (SCC 1-03-010-01)	Industrial Boilers ^b Commercial (SCC 1-02-010-02) (SCC 1-03-010-		
PM, Filterable ^d	0.2	0.2	0.2	0.2	
PM, Condensable	0.6	0.6	0.5	0.5	
PM, Total	0.8	0.8	0.7	0.7	
SO ₂ °	0.09S	0.09S	0.10S	0.10S	
NO _x ^f	15	15	13	13	
N_2O^g	0.9	0.9	0.9	0.9	
$\mathrm{CO}_2^{\mathrm{h}\mathrm{j}}$	14,300	14,300	12,500	12,500	
со	8.4	8.4	7.5	7.5	
TOC	1.1	1.1	1.0	1.0	
CH ₄ ^k	0.2	0.2	0.2	0.2	

EMISSION FACTOR RATING: E

^a Assumes PM, CO, and TOC emissions are the same, on a heat input basis, as for natural gas combustion. Use heat contents of 91.5 x 10⁶ Btu/10³ gallon for propane, 102 x 10⁶ Btu/10³ gallon for butane, 1020 x 10⁶ Btu/10⁶ scf for methane when calculating an equivalent heat input basis. For example, the equation for converting from methane's emissions factors to propane's emissions factors is as follows: lb pollutant/10³ gallons of propane = (lb pollutant /10⁶ ft³ methane) * (91.5 x 10⁶ Btu/10³ gallons of propane) / (1020 x 10⁶ Btu/10⁶ scf of methane). The NO_x emission factors have been multiplied by a correction factor of 1.5, which is the approximate ratio of propane/butane NO_x emissions to natural gas NO_x emissions. To convert from lb/10³ gal to kg/10³ L, multiply by 0.12. SCC = Source Classification Code.

- ^b Heat input capacities generally between 10 and 100 million Btu/hour.
- [°] Heat input capacities generally between 0.3 and 10 million Btu/hour.

^d Filterable particulate matter (PM) is that PM collected on or prior to the filter of an EPA Method 5 (or equivalent) sampling train. For natural gas, a fuel with similar combustion characteristics, all PM is less than 10 μm in aerodynamic equivalent diameter (PM-10).

- ^c S equals the sulfur content expressed in gr/100 ft³ gas vapor. For example, if the butane sulfur content is 0.18 gr/100 ft³, the emission factor would be $(0.09 \times 0.18) = 0.016$ lb of SO₂/10³ gal butane burned.
- ^f Expressed as NO₂.
- ^g Reference 12.
- ^h Assuming 99.5% conversion of fuel carbon to CO₂.
- ^j EMISSIÕN FACTOR RATING = C.
- ^k Reference 13.

References For Section 1.5

- 1. Written Communication from W. Butterbaugh of the National Propane Gas Association, Lisle, Illinois, to J. McSorley of the U. S. Environmental Protection Agency, Research Triangle Park, NC, August 19, 1992.
- 2. Emission Factor Documentation for AP-42 Section 1.5. *Liquefied Petroleum Gas Combustion*. April 1993.
- 3. *Air Pollutant Emission Factors*, Final Report, Contract No. CPA-22-69-119, Resources Research, Inc., Reston, VA, Durham, NC, April 1970.
- 4. Nitrous Oxide Reduction With The Weishaupt Flue Gas Recirculation System, Weishaupt Research and Development Institute, January 1987.
- 5. Phone communication memorandum of conversation between B. Lusher of Acurex Environmental and D. Childress of Suburban/Petrolane, Durham, NC, May 14, 1992.
- 6. L. P. Nelson, et al., Global Combustion Sources Of Nitrous Oxide Emissions, Research Project 2333-4 Interim Report, Radian Corporation, Sacramento, CA, 1991.
- 7. R. L. Peer, et al., Characterization Of Nitrous Oxide Emission Sources, EPA Contract No. 68-D1-0031, Research Triangle Park, NC, 1995.
- S. D. Piccot, et al., Emissions And Cost Estimates For Globally Significant Anthropogenic Combustion Sources Of NO_x, N₂O, CH₄, CO, And CO₂, EPA Contract No. 68-02-4288, Research Triangle Park, NC, 1990.
- 9. G. Marland and R. M. Rotty, Carbon Dioxide Emissions From Fossil Fuels: A Procedure For Estimation And Results For 1951-1981, DOE/NBB-0036 TR-003, Carbon Dioxide Research Division, Office of Energy Research, U.S. Department of Energy, Oak Ridge, TN, 1983.
- 10. G. Marland and R.M. Rotty, Carbon Dioxide Emissions From Fossil Fuels: A Procedure For Estimation And Results For 1950-1982, Tellus, 36B: 232-261.
- 11. Sector-Specific Issues And Reporting Methodologies Supporting The General Guidelines For The Voluntary Reporting Of Greenhouse Gases Under Section 1605(b) Of The Energy Policy Act Of 1992, Volume 2 of 3, DOE/PO-0028, U.S. Department of Energy, 1994.
- 12. A. Rosland, Greenhouse Gas Emissions In Norway: Inventories And Estimation Methods, Ministry of Environment, Oslo, Norway, 1993.
- 13. Inventory Methods Manual For Estimating Canadian Emissions Of Greenhouse Gases, Prepared for Environment Canada by Ortech Corporation, 1994.

Chino Mines Company NSR Consolidation Application

Sulfuric Acid Mist Emissions from SX/EW Tankhouse

The following sections describe the derivation of equations used to calculate annual acid mist emissions.

A. Driving Mechanisms for Natural Ventilation

The two driving forces that produce natural ventilation in a building are wind pressure (wind effect) and thermal buoyancy (stack effect) caused by a temperature difference.

1. Flow due to wind effect (Q_w) :

Factors affecting ventilation wind forces include average velocity, prevailing direction, seasonal and daily variation in velocity and direction, and local obstructions such as nearby buildings, hills, trees, and shrubbery. The following equation shows the quantity of air forced through ventilation inlet openings by wind:

$$Q_w = (88)C_wA_wV \tag{1}$$

where

 $Q_w =$ wind effect air flow (ft³/min)

C_w = effectiveness of openings (orifice coefficient)

 $A_w =$ area of windward inlet openings (ft²) V = wind velocity (MPH) 88 = conversion factor (MPH to ft/min)

2. Flow due to stack effect (Q_s) :

The pressure flow relationship for the movement of air through a building is given by the following equation:

$$\mathbf{h}_{\mathrm{th}} = \mathbf{h}(1 - \mathbf{s}_{\mathrm{h}}) \tag{2}$$

where

 h_{th} = thermostatic head (ft of air)

h = height of feet of hot air in an enclosure

 s_{h} = specific gravity of hot air relative to cold air

But, since the specific gravity of the cooler air is equal to unity (since it is made the point of reference), s_h becomes:

$$s_{h} = \frac{s_{c}T_{o}}{T_{i}} = \frac{T_{o}}{T_{i}}$$
(3)

where $s_c =$ specific gravity of cool air in an enclosure

 T_i = absolute temperature of the hot interior air

 T_0 = absolute temperature of the cooler air

Combining equations (2) and (3):

$$h_{th} = h(1 - \frac{T_o}{T_i}) = h \frac{(T_i - T_o)}{T_i} = h \frac{\Delta T}{T_i}$$
 (4)

Since the value of h_{th} is in feet of air, it can be used directly in the following equation to ascertain velocity through an orifice:

$$v = C_s \sqrt{2gh_{th}}$$
 (5)

where

v = orifice velocity (ft/s) C_s = effectiveness of openings (orifice coefficient) g = gravitational constant (32.2 ft/s²) h_{th} = thermostatic head (ft)

Combining equations (4) and (5):

$$\mathbf{v} = \mathbf{C}_{s} \sqrt{(2)(32.2)h\frac{\Delta T}{T_{i}}} = 8.02\mathbf{C}_{s} \sqrt{h\frac{\Delta T}{T_{i}}}$$
(6)

Orifice flowrates can be calculated by multiplying the orifice velocity by the orifice cross sectional area:

$$Q_{s} = (8.02)(60)C_{s}A_{\sqrt{h}}\frac{\Delta T}{T_{i}}$$
(7)

where

where

 Q_s = stack effect air flow (ft³/min) A = flow area (ft²) 60 = conversion factor (ft/s to ft/min)

According to the ASHRAE Fundamentals Handbook, the thermal effect flowrate is greatest when the inlet and outlet openings are equal. In the case of unequal openings, the smaller area should be used in the equation and the flowrate corrected using the correction factor F_c . This correction is determined from Figure 7 located on page 26.11 of the 2005 Fundamentals Handbook.

To calculate h, the following equation can be used:

$$h = \frac{H}{1 + \frac{A_1^2 T_i}{A_2^2 T_o}}$$
(8)
 A_1 = area of lower openings (ft²)
 A_2 = area of upper openings (ft²)

H = distance from lower to upper openings (ft)

Combining equations (7) and (8), and taking into account the correction factor, F_c :

$$Q_{s} = (481.2)F_{c}C_{s}A \sqrt{\frac{\frac{H\Delta T}{T_{i}}}{1 + \frac{A_{1}^{2}T_{i}}{A_{2}^{2}T_{o}}}}$$
(9)

3. Combining wind effect and stack effect flowrates:

Wind effect and stack effect ventilation rates are combined according to the following equation:

$$Q = \sqrt{Q_w^2 + Q_s^2} \tag{10}$$

Substituting equations (1) and (9) into (10) yields the final equation:

$$Q = \sqrt{(7,744)C_{w}^{2}A_{w}^{2}V^{2} + (231,533.44)F_{c}^{2}C_{s}^{2}A^{2}\frac{H\Delta T}{T_{i}}}{1 + \frac{A_{1}^{2}T_{i}}{A_{2}^{2}T_{o}}}}$$
(11)

4. Calculation of acid mist emission

When the ventilation rate and acid mist concentration are known, the acid mist emissions can be determined from the following equation:

$$E_A = kQZ \tag{12}$$

where

 E_A = Acid mist emission rate (ton/yr) k = Conversion factor Z = A cid mist concentration (mg/m³)

Z = Acid mist concentration (mg/m³)

References ASHRAE Fundamentals Handbook. Chapter 26, "Ventilation and Infiltration" Atlanta, GA: American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc., 2001.

through ventilation inlet openings by wind or determines the proper size of openings to produce given airflow rates:

$$Q = C_{v}AU \tag{29}$$

where

 $Q = airflow rate, m^3/s$

- $\overline{C_{\nu}}$ = effectiveness of openings (C_{ν} is assumed to be 0.5 to 0.6 for perpendicular winds and 0.25 to 0.35 for diagonal winds)
- A = free area of inlet openings, m²
- U = wind speed, m/s

Inlets should face directly into the prevailing wind. If they are not advantageously placed, flow will be less than that predicted by Equation (29); if the inlets are unusually well placed, flow will be slightly more. Desirable outlet locations are (1) on the leeward side of the building directly opposite the inlet, (2) on the roof, in the lowpressure area caused by a flow discontinuity of the wind, (3) on the side adjacent to the windward face where low-pressure areas occur, (4) in a dormer on the leeward side, (5) in roof ventilators, or (6) by stacks. Chapter 16 gives a general description of the wind pressure distribution on a building. The inlets should be placed in the exterior high-pressure regions; the outlets should be placed in the exterior low-pressure regions.

Flow Caused by Thermal Forces Only

If building internal resistance is not significant, the flow caused by stack effect can be expressed by

$$Q = C_D A_{\sqrt{2g\Delta H_{\text{NPL}}(T_i - T_o)/T_i}}$$
(30)

where

 $Q = airflow rate, m^3/s$

- C_D = discharge coefficient for opening
- $\Delta H_{\rm NPL}$ = height from midpoint of lower opening to NPL, m
 - T_i = indoor temperature, K
 - $T_o =$ outdoor temperature, K

Equation (30) applies when $T_i > T_o$. If $T_i < T_o$, replace T_i in the denominator with T_o , and replace $(T_i - T_o)$ in the numerator with $(T_o - T_i)$. An average temperature should be used for T_i if there is thermal stratification. If the building has more than one opening, the outlet and inlet areas are considered equal. The discharge coefficient C_D accounts for all viscous effects such as surface drag and interfacial mixing.

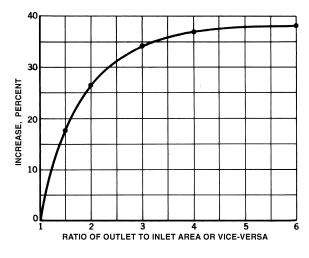


Fig. 7 Increase in Flow Caused by Excess Area of One Opening over the Other

Estimation of ΔH_{NPL} is difficult for naturally ventilated buildings. If one window or door represents a large fraction (approximately 90%) of the total opening area in the envelope, then the NPL is at the mid-height of that aperture, and $\Delta H_{\rm NPL}$ equals one-half the height of the aperture. For this condition, flow through the opening is bidirectional (i.e., air from the warmer side flows through the top of the opening, and air from the colder side flows through the bottom). Interfacial mixing occurs across the counterflow interface, and the orifice coefficient can be calculated according to the following equation (Kiel and Wilson 1986):

$$C_D = 0.40 + 0.0045 \left| T_i - T_o \right| \tag{31}$$

If enough other openings are available, the airflow through the opening will be unidirectional, and mixing cannot occur. A discharge coefficient of $C_D = 0.65$ should then be used. Additional information on stack-driven airflows for natural ventilation can be found in Foster and Down (1987).

Greatest flow per unit area of openings is obtained when inlet and outlet areas are equal; Equations (30) and (31) are based on this equality. Increasing the outlet area over inlet area (or vice versa) increases airflow but not in proportion to the added area. When openings are unequal, use the smaller area in Equation (30) and add the increase as determined from Figure 7.

Natural Ventilation Guidelines

Several general guidelines should be observed in designing for natural ventilation. Some of these may conflict with other climateresponsive strategies (such as using orientation and shading devices to minimize solar gain) or other design considerations.

- 1. In hot, humid climates, use mechanical cooling. If mechanical cooling is not available, air velocities should be maximized in the occupied zones. In hot, arid climates, consider evaporative cooling. Airflow throughout the building should be maximized for structural cooling, particularly at night when the temperature is low.
- 2. Topography, landscaping, and surrounding buildings should be used to redirect airflow and give maximum exposure to breezes. Vegetation can funnel breezes and avoid wind dams, which reduce the driving pressure differential around the building. Site objects should not obstruct inlet openings.
- 3. The building should be shaped to expose maximum shell openings to breezes.
- 4. Architectural elements such as wing walls, parapets, and overhangs should be used to promote airflow into the building interior.
- 5. The long facade of the building and the majority of the door and window openings should be oriented with respect to the prevailing summer breezes. If there is no prevailing direction, openings should be sufficient to provide ventilation regardless of wind direction.
- 6. Windows should be located in opposing pressure zones. Two openings on opposite sides of a space increase the ventilation flow. Openings on adjacent sides force air to change direction, providing ventilation to a greater area. The benefits of the window arrangement depend on the outlet location relative to the direction of the inlet airstream.
- 7. If a room has only one external wall, better airflow is achieved with two widely spaced windows.
- 8. If the openings are at the same level and near the ceiling, much of the flow may bypass the occupied level and be ineffective in diluting contaminants there.
- 9. Vertical distance between openings is required to take advantage of the stack effect; the greater the vertical distance, the greater the ventilation.

Chino Mines Company NSR Consolidation Application

Solution Extraction Plant VOC Fugitive Emissions

The fugitive VOC emissions from the solvent extraction tanks were estimated using the methodology developed by BHP Copper in the study "Quantification of Volatile Organic Compound (VOC) Emissions from the Solution Extraction Process" (July 1997). The BHP method is based on Fick's Law to determine the diffusive flux of the individual components in the organic in air. The equation used is:

Diff
$$\mathbf{F} = (Ci - Ch) \times D/H$$

Where: Diff F, g/m^2 -s = diffusive flux of constituent in air C*i*, ppm = constituent concentration at liquid surface (from manufacturer data) C*h*, ppm = constituent concentration at a distance, H, above the liquid surface D = constituent diffusivity (calculated from EPA link: <u>http://www.epa.gov/athens/learn2model/part-two/onsite/estdiffusion.htm;</u> where T = 25.84°C, and P = 1 atm, per 1995 met. data) H, m = distance above liquid surface

This method includes assumptions, fundamental equations, and tabulated chemical data to estimate VOC emissions. Three assumptions govern the scope of their method:

- 1. Only chemicals with a significant vapor pressure are included in the emissions losses calculation.
- 2. The driving force for VOC diffusion is the concentration gradient that exists between the surface of the solution and headspace. In the 1997 study, the headspace was assumed to be 1 meter. For the Tyrone SX/EW tanks, 2 ft (or 0.61 m) was assumed to be a reasonable headspace.

This methodology was selected for the Phelps Dodge Tyrone SX/EW emission calculations due to its direct applicability and credibility.

ENGINE MODEL:	D399 (JWAC)
GENERAL ENGINE DATA	
Rated BHP (29.38 in Hg at 85° F) Full Load rpm Bore and stroke — inches Displacement — cubic inches Combustion system Aspiration type Compression ratio	1300 1300 6.25 X 8.0 3927 PC TA 15.1
MOUNTING	
Dry weight - Engine pounds	15,145
AIR INTAKE SYSTEM	
Maximum allowable system restriction: clean dry element — inches water dirty element	15 30
EXHAUST SYSTEM	
Maximum allowable back pressure inches water	27
COOLING SYSTEM	
Top tank temperature: maximum allowable — ° F Cooling capability for:	210
maximum ambient temperature — ° F Heat rejection — BTU/minute:	110
rated	51,000
Coolant capacity – quarts	340
Minimum recommended pressure cap – psi	7

FUEL AND GOVERNOR SYSTEM

Туре	SCROLI
Maximum fuel flow to transfer pump at gph at rated conditions	104.6
Maximum fuel consumption — gph at rated conditions	73.5
Fuel return line flow – gph	10
Maximum allowable restriction to pump — inches Hg	11
Maximum allowable return line restriction inches Hg	10
Shutoff:	
Energized to run	NO
Energized to shutoff	YES
Mechanical shaft	NO

LUBE OIL SYSTEM

Capacity – refill – filter and	
lines – quarts	440
Sump capacity - low - quarts	392
Type oil – API* class	
Oil pressure - psi - SAE** 30 at 210° F:	
maximum	63
minimum	56

ELECTRICAL SYSTEM

Minimum recommended battery capacity 0° F and above	
24V starter—CCA @ 0° F Below 0° F	1260
24V starter—CCA @ 0° F	1260

PERFORMANCE DATA

Low idle rpm	600
High idle rpm	1420
Altitude capability – feet	5500
Performance curve number	.TD0231-0
Peak torgue - pound foot .	5555
Peak torque rpm	1100
Combustion air flow — CFM	3005
Exhaust stack air flow	
CFM	7795
Specific heat rejection -	
BTU/BHP minute:	
full load	39.2
ign lodd i i i i i i i i i i i i	0012

*American Petroleum Institute **Society of Automotive Engineers

INDUSTRIAL ENGINE DATA SHEET D399 PCTA 1300 @ 1300 RPM

3.4 Large Stationary Diesel And All Stationary Dual-fuel Engines

3.4.1 General

The primary domestic use of large stationary diesel engines (greater than 600 horsepower [hp]) is in oil and gas exploration and production. These engines, in groups of 3 to 5, supply mechanical power to operate drilling (rotary table), mud pumping, and hoisting equipment, and may also operate pumps or auxiliary power generators. Another frequent application of large stationary diesels is electricity generation for both base and standby service. Smaller uses include irrigation, hoisting, and nuclear power plant emergency cooling water pump operation.

Dual-fuel engines were developed to obtain compression ignition performance and the economy of natural gas, using a minimum of 5 to 6 percent diesel fuel to ignite the natural gas. Large dual-fuel engines have been used almost exclusively for prime electric power generation. This section includes all dual-fuel engines.

3.4.2 Process Description

All reciprocating internal combustion (IC) engines operate by the same basic process. A combustible mixture is first compressed in a small volume between the head of a piston and its surrounding cylinder. The mixture is then ignited, and the resulting high-pressure products of combustion push the piston through the cylinder. This movement is converted from linear to rotary motion by a crankshaft. The piston returns, pushing out exhaust gases, and the cycle is repeated.

There are 2 ignition methods used in stationary reciprocating IC engines, compression ignition (CI) and spark ignition (SI). In CI engines, combustion air is first compression heated in the cylinder, and diesel fuel oil is then injected into the hot air. Ignition is spontaneous because the air temperature is above the autoignition temperature of the fuel. SI engines initiate combustion by the spark of an electrical discharge. Usually the fuel is mixed with the air in a carburetor (for gasoline) or at the intake valve (for natural gas), but occasionally the fuel is injected into the compressed air in the cylinder. Although all diesel- fueled engines are compression ignited and all gasoline- and gas-fueled engines are spark ignited, gas can be used in a CI engine if a small amount of diesel fuel is injected into the compressed gas/air mixture to burn any mixture ratio of gas and diesel oil (hence the name dual fuel), from 6 to 100 percent diesel oil.

CI engines usually operate at a higher compression ratio (ratio of cylinder volume when the piston is at the bottom of its stroke to the volume when it is at the top) than SI engines because fuel is not present during compression; hence there is no danger of premature autoignition. Since engine thermal efficiency rises with increasing pressure ratio (and pressure ratio varies directly with compression ratio), CI engines are more efficient than SI engines. This increased efficiency is gained at the expense of poorer response to load changes and a heavier structure to withstand the higher pressures.¹

3.4.3 Emissions And Controls

Most of the pollutants from IC engines are emitted through the exhaust. However, some total organic compounds (TOC) escape from the crankcase as a result of blowby (gases that are vented from the oil pan after they have escaped from the cylinder past the piston rings) and from the fuel tank

and carburetor because of evaporation. Nearly all of the TOCs from diesel CI engines enter the atmosphere from the exhaust. Crankcase blowby is minor because TOCs are not present during compression of the charge. Evaporative losses are insignificant in diesel engines due to the low volatility of diesel fuels. In general, evaporative losses are also negligible in engines using gaseous fuels because these engines receive their fuel continuously from a pipe rather than via a fuel storage tank and fuel pump.

The primary pollutants from internal combustion engines are oxides of nitrogen (NO_x) , hydrocarbons and other organic compounds, carbon monoxide (CO), and particulates, which include both visible (smoke) and nonvisible emissions. Nitrogen oxide formation is directly related to high pressures and temperatures during the combustion process and to the nitrogen content, if any, of the fuel. The other pollutants, HC, CO, and smoke, are primarily the result of incomplete combustion. Ash and metallic additives in the fuel also contribute to the particulate content of the exhaust. Sulfur oxides also appear in the exhaust from IC engines. The sulfur compounds, mainly sulfur dioxide (SO₂), are directly related to the sulfur content of the fuel.²

3.4.3.1 Nitrogen Oxides -

Nitrogen oxide formation occurs by two fundamentally different mechanisms. The predominant mechanism with internal combustion engines is thermal NO_x which arises from the thermal dissociation and subsequent reaction of nitrogen (N_2) and oxygen (O_2) molecules in the combustion air. Most thermal NO_x is formed in the high-temperature region of the flame from dissociated molecular nitrogen in the combustion air. Some NO_x , called prompt NO_x , is formed in the early part of the flame from reaction of nitrogen intermediary species, and HC radicals in the flame. The second mechanism, fuel NO_x , stems from the evolution and reaction of fuel-bound nitrogen compounds with oxygen. Gasoline, and most distillate oils, have no chemically-bound fuel N_2 and essentially all NO_x formed is thermal NO_x .

3.4.3.2 Total Organic Compounds -

The pollutants commonly classified as hydrocarbons are composed of a wide variety of organic compounds and are discharged into the atmosphere when some of the fuel remains unburned or is only partially burned during the combustion process. Most unburned hydrocarbon emissions result from fuel droplets that were transported or injected into the quench layer during combustion. This is the region immediately adjacent to the combustion chamber surfaces, where heat transfer outward through the cylinder walls causes the mixture temperatures to be too low to support combustion.

Partially burned hydrocarbons can occur because of poor air and fuel homogeneity due to incomplete mixing, before or during combustion; incorrect air/fuel ratios in the cylinder during combustion due to maladjustment of the engine fuel system; excessively large fuel droplets (diesel engines); and low cylinder temperature due to excessive cooling (quenching) through the walls or early cooling of the gases by expansion of the combustion volume caused by piston motion before combustion is completed.²

3.4.3.3 Carbon Monoxide -

Carbon monoxide is a colorless, odorless, relatively inert gas formed as an intermediate combustion product that appears in the exhaust when the reaction of CO to CO_2 cannot proceed to completion. This situation occurs if there is a lack of available oxygen near the hydrocarbon (fuel) molecule during combustion, if the gas temperature is too low, or if the residence time in the cylinder is too short. The oxidation rate of CO is limited by reaction kinetics and, as a consequence, can be accelerated only to a certain extent by improvements in air and fuel mixing during the combustion process.²⁻³

3.4.3.4 Smoke, Particulate Matter, and PM-10 -

White, blue, and black smoke may be emitted from IC engines. Liquid particulates appear as white smoke in the exhaust during an engine cold start, idling, or low load operation. These are formed in the quench layer adjacent to the cylinder walls, where the temperature is not high enough to ignite the fuel. Blue smoke is emitted when lubricating oil leaks, often past worn piston rings, into the combustion chamber and is partially burned. Proper maintenance is the most effective method of preventing blue smoke emissions from all types of IC engines. The primary constituent of black smoke is agglomerated carbon particles (soot).²

3.4.3.5 Sulfur Oxides -

Sulfur oxide emissions are a function of only the sulfur content in the fuel rather than any combustion variables. In fact, during the combustion process, essentially all the sulfur in the fuel is oxidized to SO₂. The oxidation of SO₂ gives sulfur trioxide (SO₃), which reacts with water to give sulfuric acid (H₂SO₄), a contributor to acid precipitation. Sulfuric acid reacts with basic substances to give sulfates, which are fine particulates that contribute to PM-10 and visibility reduction. Sulfur oxide emissions also contribute to corrosion of the engine parts.^{2,3}

Table 3.4-1 contains gaseous emission factors for the pollutants discussed above, expressed in units of pounds per horsepower-hour (lb/hp-hr), and pounds per million British thermal unit (lb/MMBtu). Table 3.4-2 shows the particulate and particle-sizing emission factors. Table 3.4-3 shows the speciated organic compound emission factors and Table 3.4-4 shows the emission factors for polycyclic aromatic hydrocarbons (PAH). These tables do not provide a complete speciated organic compound and PAH listing because they are based only on a single engine test; they are to be used only for rough order of magnitude comparisons.

Table 3.4-5 shows the NO_x reduction and fuel consumption penalties for diesel and dual-fueled engines based on some of the available control techniques. The emission reductions shown are those that have been demonstrated. The effectiveness of controls on a particular engine will depend on the specific design of each engine, and the effectiveness of each technique could vary considerably. Other NO_x control techniques exist but are not included in Table 3.4-5. These techniques include internal/external exhaust gas recirculation, combustion chamber modification, manifold air cooling, and turbocharging.

3.4.4 Control Technologies

Control measures to date are primarily directed at limiting NO_x and CO emissions since they are the primary pollutants from these engines. From a NO_x control viewpoint, the most important distinction between different engine models and types of reciprocating engines is whether they are rich-burn or lean-burn. Rich-burn engines have an air-to-fuel ratio operating range that is near stoichiometric or fuel-rich of stoichiometric and as a result the exhaust gas has little or no excess oxygen. A lean-burn engine has an air-to-fuel operating range that is fuel-lean of stoichiometric; therefore, the exhaust from these engines is characterized by medium to high levels of O_2 . The most common NO_x control technique for diesel and dual fuel engines focuses on modifying the combustion process. However, selective catalytic reduction (SCR) and nonselective catalytic reduction (NSCR) which are post-combustion techniques are becoming available. Control for CO have been partly adapted from mobile sources.⁵

Combustion modifications include injection timing retard (ITR), preignition chamber combustion (PCC), air-to-fuel ratio, and derating. Injection of fuel into the cylinder of a CI engine initiates the combustion process. Retarding the timing of the diesel fuel injection causes the combustion process to occur later in the power stroke when the piston is in the downward motion and combustion chamber volume is increasing. By increasing the volume, the combustion temperature and pressure are lowered, thereby lowering NO_x formation. ITR reduces NO_x from all diesel engines; however, the effectiveness is specific to each engine model. The amount of NO_x reduction with ITR diminishes with increasing levels of retard.⁵

Improved swirl patterns promote thorough air and fuel mixing and may include a precombustion chamber (PCC). A PCC is an antechamber that ignites a fuel-rich mixture that propagates to the main combustion chamber. The high exit velocity from the PCC results in improved mixing and complete combustion of the lean air/fuel mixture which lowers combustion temperature, thereby reducing NO_x emissions.⁵

The air-to-fuel ratio for each cylinder can be adjusted by controlling the amount of fuel that enters each cylinder. At air-to-fuel ratios less than stoichiometric (fuel-rich), combustion occurs under conditions of insufficient oxygen which causes NO_x to decrease because of lower oxygen and lower temperatures. Derating involves restricting engine operation to lower than normal levels of power production for the given application. Derating reduces cylinder pressures and temperatures thereby lowering NO_x formation rates.⁵

SCR is an add-on NO_x control placed in the exhaust stream following the engine and involves injecting ammonia (NH₃) into the flue gas. The NH₃ reacts with the NO_x in the presence of a catalyst to form water and nitrogen. The effectiveness of SCR depends on fuel quality and engine duty cycle (load fluctuations). Contaminants in the fuel may poison or mask the catalyst surface causing a reduction or termination in catalyst activity. Load fluctuations can cause variations in exhaust temperature and NO_x concentration which can create problems with the effectiveness of the SCR system.⁵

NSCR is often referred to as a three-way conversion catalyst system because the catalyst reactor simultaneously reduces NO_x , CO, and HC and involves placing a catalyst in the exhaust stream of the engine. The reaction requires that the O_2 levels be kept low and that the engine be operated at fuel-rich air-to-fuel ratios.⁵

3.4.5 Updates Since the Fifth Edition

The Fifth Edition was released in January 1995. Revisions to this section since that date are summarized below. For further detail, consult the memoranda describing each supplement or the background report for this section.

Supplement A, February 1996

No changes.

Supplement B, October 1996

- The general text was updated.
- Controlled NO_x factors and PM factors were added for diesel units.
- Math errors were corrected in factors for CO from diesel units and for uncontrolled NO_x from dual fueled units.

	Diesel Fuel (SCC 2-02-004-01)		Dual Fuel ^b (SCC 2-02-004-02)			
Pollutant	Emission Factor (lb/hp-hr) (power output)	Emission Factor (lb/MMBtu) (fuel input)	EMISSION FACTOR RATING	Emission Factor (lb/hp-hr) (power output)	Emission Factor (lb/MMBtu) (fuel input)	EMISSION FACTOR RATING
NO _x						
Uncontrolled	0.024	3.2	В	0.018	2.7	D
Controlled	0.013 ^c	1.9 ^c	В	ND	ND	NA
CO	5.5 E-03	0.85	С	7.5 E-03	1.16	D
SO _x ^d	8.09 E-03S ₁	1.01S ₁	В	4.06 E-04S ₁ + 9.57 E-03S ₂	$0.05S_1 + 0.895S_2$	В
CO_2^e	1.16	165	В	0.772	110	В
PM	0.0007 ^c	0.1 ^c	В	ND	ND	NA
TOC (as CH ₄)	7.05 E-04	0.09	С	5.29 E-03	0.8	D
Methane	f	f	Е	3.97 E-03	0.6	E
Nonmethane	f	f	Е	1.32 E-03	0.2 ^g	Ε

Table 3.4-1. GASEOUS EMISSION FACTORS FOR LARGE STATIONARY DIESEL AND ALL STATIONARY DUAL-FUEL ENGINES^a

^a Based on uncontrolled levels for each fuel, from References 2,6-7. When necessary, the average heating value of diesel was assumed to be 19,300 Btu/lb with a density of 7.1 lb/gallon. The power output and fuel input values were averaged independently from each other, because of the use of actual brake-specific fuel consumption (BSFC) values for each data point and of the use of data possibly sufficient to calculate only 1 of the 2 emission factors (e.g., enough information to calculate lb/MMBtu, but not lb/hp-hr). Factors are based on averages across all manufacturers and duty cycles. The actual emissions from a particular engine or manufacturer could vary considerably from these levels. To convert from lb/hp-hr to kg/kw-hr, multiply by 0.608. To convert from lb/MMBtu to ng/J, multiply by 430. SCC = Source Classification Code.

- ^b Dual fuel assumes 95% natural gas and 5% diesel fuel.
- ^c References 8-26. Controlled NO_x is by ignition timing retard. ^d Assumes that all sulfur in the fuel is converted to SO₂. $S_1 = \%$ sulfur in fuel oil; $S_2 = \%$ sulfur in natural gas. For example, if sulfer content is 1.5%, then S = 1.5.
- ^e Assumes 100% conversion of carbon in fuel to CO₂ with 87 weight % carbon in diesel, 70 weight % carbon in natural gas, dual-fuel mixture of 5% diesel with 95% natural gas, average BSFC of 7,000 Btu/hp-hr, diesel heating value of 19,300 Btu/lb, and natural gas heating value of 1050 Btu/scf.
- Based on data from 1 engine, TOC is by weight 9% methane and 91% nonmethane.
- ^g Assumes that nonmethane organic compounds are 25% of TOC emissions from dual-fuel engines. Molecular weight of nonmethane gas stream is assumed to be that of methane.

Table 3.4-2. PARTICULATE AND PARTICLE-SIZINGEMISSION FACTORS FOR LARGE UNCONTROLLED STATIONARY DIESEL ENGINES^a

Pollutant	Emission Factor (lb/MMBtu) (fuel input)
Filterable particulate ^b	
< 1 µm	0.0478
< 3 µm	0.0479
< 10 µm	0.0496
Total filterable particulate	0.0620
Condensable particulate	0.0077
Total PM-10 ^c	0.0573
Total particulate ^d	0.0697

EMISSION FACTOR RATING: E

^a Based on 1 uncontrolled diesel engine from Reference 6. Source Classification Code 2-02-004-01. The data for the particulate emissions were collected using Method 5, and the particle size distributions were collected using a Source Assessment Sampling System. To convert from lb/MMBtu to ng/J, multiply by 430. PM-10 = particulate matter ≤ 10 micrometers (µm) aerometric diameter.

^b Particle size is expressed as aerodynamic diameter.

^c Total PM-10 is the sum of filterable particulate less than 10 μ m aerodynamic diameter and condensable particulate.

^d Total particulate is the sum of the total filterable particulate and condensable particulate.

Table 3.4-3. SPECIATED ORGANIC COMPOUND EMISSION FACTORS FOR LARGE UNCONTROLLED STATIONARY DIESEL ENGINES^a

Pollutant	Emission Factor (lb/MMBtu) (fuel input)
Benzene ^b	7.76 E-04
Toluene ^b	2.81 E-04
Xylenes ^b	1.93 E-04
Propylene	2.79 E-03
Formaldehyde ^b	7.89 E-05
Acetaldehyde ^b	2.52 E-05
Acrolein ^b	7.88 E-06

EMISSION FACTOR RATING: E

^aBased on 1 uncontrolled diesel engine from Reference 7. Source Classification Code 2-02-004-01. Not enough information to calculate the output-specific emission factors of lb/hp-hr. To convert from lb/MMBtu to ng/J, multiply by 430. ^bHazardous air pollutant listed in the *Clean Air Act*.

Table 3.4-4. PAH EMISSION FACTORS FOR LARGE UNCONTROLLED STATIONARY DIESEL ENGINES^a

EMISSION FACTOR RATING: E

РАН	Emission Factor (lb/MMBtu) (fuel input)
Naphthalene ^b	1.30 E-04
Acenaphthylene	9.23 E-06
Acenaphthene	4.68 E-06
Fluorene	1.28 E-05
Phenanthrene	4.08 E-05
Anthracene	1.23 E-06
Fluoranthene	4.03 E-06
Pyrene	3.71 E-06
Benz(a)anthracene	6.22 E-07
Chrysene	1.53 E-06
Benzo(b)fluoranthene	1.11 E-06
Benzo(k)fluoranthene	<2.18 E-07
Benzo(a)pyrene	<2.57 E-07
Indeno(1,2,3-cd)pyrene	<4.14 E-07
Dibenz(a,h)anthracene	<3.46 E-07
Benzo(g,h,l)perylene	<5.56 E-07
TOTAL PAH	<2.12 E-04

^a Based on 1 uncontrolled diesel engine from Reference 7. Source Classification Code 2-02-004-01. Not enough information to calculate the output-specific emission factors of lb/hp-hr. To convert from lb/MMBtu to ng/J, multiply by 430. ^b Hazardous air pollutant listed in the *Clean Air Act*.

		Diesel (SCC 2-02-004-01)		Dual Fuel (SCC 2-02-004-02)	
Control Approach		NO _x Reduction (%)	ΔBSFC ^b (%)	NO _x Reduction (%)	ΔBSFC (%)
Derate	10%	ND	ND	<20	4
	20%	<20	4	ND	ND
	25%	5 - 23	1 - 5	1 - 33	1 - 7
Retard	2°	<20	4	<20	3
	4°	<40	4	<40	1
	8°	28 - 45	2 - 8	50 - 73	3 - 5
Air-to-fuel	3%	ND	ND	<20	0
	±10%	7 - 8	3	25 - 40	1 - 3
Water injection (H ₂ O/fuel ratio)	50%	25 - 35	2 - 4	ND	ND
SCR		80 - 95	0	80 - 95	0

Table 3.4-5. NO_x REDUCTION AND FUEL CONSUMPTION PENALTIES FOR LARGE STATIONARY DIESEL AND DUAL-FUEL ENGINES^a

^a References 1,27-28. The reductions shown are typical and will vary depending on the engine and duty cycle. SCC = Source Classification Code. $\Delta BSFC$ = change in brake-specific fuel consumption. ND = no data.

References For Section 3.4

- 1. H. I. Lips, et al., Environmental Assessment Of Combustion Modification Controls For Stationary Internal Combustion Engines, EPA-600/7-81-127, U. S. Environmental Protection Agency, Cincinnati, OH, July 1981.
- 2. Standards Support And Environmental Impact Statement, Volume I: Stationary Internal Combustion Engines, EPA-450/2-78-125a, U. S. Environmental Protection Agency, Research Triangle Park, NC, July 1979.
- 3. M. Hoggan, et. al., Air Quality Trends in California's South Coast and Southeast Desert Air Basins, 1976-1990, "Air Quality Management Plan, Appendix II-B", South Coast Air Quality Management District, July 1991.
- 4. Limiting Net Greenhouse Gas Emissions In the United States, Volume II: Energy Responses, report for the Office of Environmental Analysis, Office of Policy, Planning and Analysis, Department of Energy (DDE), DOE/PE-0101 Volume II, September 1991.
- Snyder, R. B., Alternative Control Techniques Document—NO_x Emissions from Stationary Reciprocating Internal Combustion Engines, EPA-453/R-93-032, U. S. Environmental Protection Agency, Research Triangle Park, July 1993.
- C. Castaldini, Environmental Assessment Of NO_x Control On A Compression Ignition Large Bore Reciprocating Internal Combustion Engine, Volume I: Technical Results, EPA-600/7-86/001a, U. S. Environmental Protection Agency, Cincinnati, OH, April 1984.
- 7. Pooled Source Emission Test Report: Oil And Gas Production Combustion Sources, Fresno And Ventura Counties, California, ENSR # 7230-007-700, Western States Petroleum Association, Bakersfield, CA, December 1990.
- 8. Final Report For An Emission Compliance Test Program On Two Standby Generators Located At American Car Company, Greenwich, CT, York Services Corp., 1987.
- 9. Final Report For An Emission Compliance Test Program On A Standby Diesel Generator At South Central Connecticut Regional Water Authority, West Haven, CT, York Services Corp., 1988.
- 10. Air Emission From Stationary Diesel Engines For The Alaska Rural Electric Cooperative Association, Environmetrics, 1992.
- 11. Compliance Test Report For Particulate Emissions From A Caterpillar Diesel Generator, St. Mary's Hospital, Waterburg, CT, TRC Environmental Consultants, 1987.
- 12. Compliance Measured Particulate Emissions From An Emergency Diesel Generator, Silorsky Aircraft, United Technologies, Stratford, CT, TRC Environmental Consultants, 1987.
- 13. Compliance Test Report For Particulate Emissions From A Cummins Diesel Generator, Colonial Gold Limited Partnership, Hartford, CT, TRC Environmental Consultants, 1988.
- 14. Compliance Test Report For Particulate Emissions From A Cummins Diesel Generator, CIGNA Insurance Company, Bloomfield, CT, TRC Environmental Consultants, 1988.

- 15. Compliance Test Report For Particulate Emission From A Waukesha Diesel Generator, Bristol Meyers, Wallinsford, CT, TRC Environmental Consultants, 1987.
- 16. Compliance Test Report For Particulate Emissions From A Cummins Diesel Generator, Connecticut General Life Insurance, Windsor, CT, TRC Environmental Consultants, 1987.
- 17. Compliance Measured Particulate Emissions From An Emergency Diesel Generator, Danbury Hospital, Danbury, CT, TRC Environmental Consultants, 1988.
- 18. Compliance Test Report For Particulate Emissions From A Caterpillar Diesel Generator, Colonial Metro Limited Partnership, Hartford, CT, TRC Environmental Consultants, 1988.
- 19. Compliance Test Report For Particulate Emissions From A Caterpillar Diesel Generator, Boehringer -Ingelheim Pharmaceuticals, Danbury, CT, TRC Environmental Consultants, 1988.
- 20. Compliance Test Report For Emissions Of Particulate From An Emergency Diesel Generator, Meriden - Wallingford Hospital, Meriden, CT, TRC Environmental Consultants, 1987.
- 21. Compliance Test Report Johnson Memorial Hospital Emergency Generator Exhaust Stack, Stafford Springs, CT, ROJAC Environmental Services, 1987.
- 22. Compliance Test Report Union Carbide Corporation Generator Exhaust Stack, Danbury, CT, ROJAC Environmental Services, 1988.
- 23. Compliance Test Report Hartford Insurance Company Emergency Generator Exhaust Stack, Bloomfield, CT, ROJAC Environmental Services, 1987.
- 24. Compliance Test Report Hartford Insurance Group Emergency Generator Exhaust Stack, Hartford, CT, ROJAC Environmental Services, 1987.
- 25. Compliance Test Report Southern New England Telephone Company Emergency Generator Exhaust Stack, North Haven, CT, ROJAC Environmental Services, 1988.
- 26. Compliance Test Report Pfizer, Inc. Two Emergency Generator Exhaust Stacks, Groton, CT, ROJAC Environmental Services, 1987.
- L. M. Campbell, et al., Sourcebook: NO_x Control Technology Data, Control Technology Center, EPA-600/2-91-029, U. S. Environmental Protection Agency, Cincinnati, OH, July 1991.
- 28. Catalysts For Air Pollution Control, Manufacturers Of Emission Controls Association (MECA), Washington, DC, March 1992.

CATERPILLAR®

3056 MARINE PROPULSION

Image may not reflect actual engine

SPECIFICATIONS

I-6, 4-Stroke-Cycle-Diesel
Emissions IMO Compliant
Bore 100 mm (3.94 in.)
Stroke 127 mm (5.0 in.)
Displacement 6 L (365 cu. in.)
Aspiration DITA
Rotation (from flywheel end) Counterclockwise
Compression Ratio 16.0:1
Capacity for Liquids
Cooling System 25.3 L (6.5 gal)
Lube Oil System (refill) 15 L (3.9 gal)
Oil Change Interval 400 hr API CF-4, 15W40, 10W30
Engine Weight (approx) 609 kg (1,342 lb)

STANDARD ENGINE EQUIPMENT

Air Inlet System

Air cleaner with closed system fumes disposal, sea water aftercooler, dry insulated turbocharger, thermostart air inlet heater

Charging System

Charging alternator (12-volt, 70 ampere or 24-volt, 40 ampere)

Control System Mechanical governor

Cooling System

Gear-driven centrifugal jacket water pump and self-priming sea water pump, heat exchanger with cupro-nickel tube bundle or keel cooling connections, de-aeration expansion tank, integral plate-type engine oil cooler, sea water strainer, thermostat and housing

Exhaust System

Dry insulated turbocharger, watercooled exhaust manifold

Flywheel and Flywheel Housing SAE No. 3 (126 teeth)

Fuel System

Twin fuel filter

Lube System

Crankcase breather (closed system), twin oil filter, engine-mounted oil sump drain pump, RH service oil level gauge

Mounting System

Adjustable mounts

Protection System

Shutoff solenoid (ETS), alarm switches (high jacket water temperature, low oil pressure)

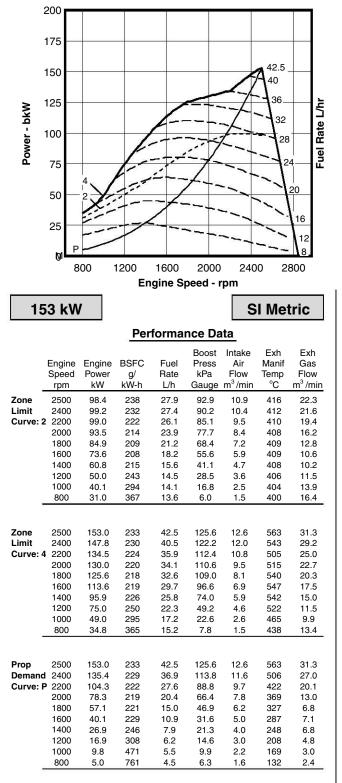
Starting System

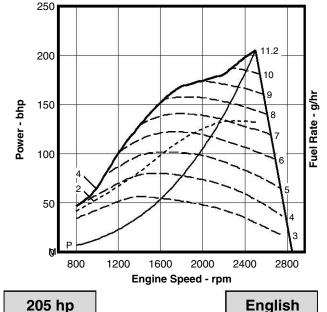
Electric starting motor (12-volt and 24-volt)

General

Vibration damper, Caterpillar yellow paint, lifting eyes

CATERPILLAR°


3056 MARINE PROPULSION

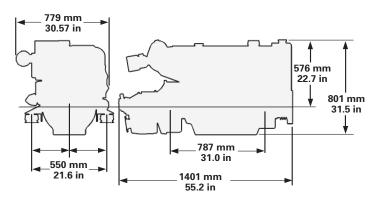

153 bkW (205 bhp)

PERFORMANCE CURVES

C Rating — DM6309-00

Performance Data

	T enformance Data							
	Engine Speed rpm	Engine Power hp	BSFC lb/ hp-h	Fuel Rate gph	Boost Press in.Hg. Gauge	Intake Air Flow cfm	Exh Manif Temp °F	Exh Gas Flow cfm
Zone Limit	2500 2400	132 133	.392 .381	7.4 7.2	27.5 26.7	385 367	781 774	788 762
Curve:		133	.364	6.9	25.2	335	769	685
	2000	125	.352	6.3	23.0	296	766	572
	1800	114	.344	5.6	20.2	254	768	452
	1600	99	.342	4.8	16.5	208	769	374
	1400	82	.353	4.1	12.2	166	767	360
	1200	67	.399	3.8	8.4	127	763	406
	1000	54	.483	3.7	5.0	88	758	491
	800	42	.604	3.6	1.8	53	752	579
,								18
Zone	2500	205	.383	11.2	37.2	445	1046	1105
Limit	2400	198	.377	10.7	36.2	423	1010	1031
Curve:	4 2200	180	.368	9.5	33.3	381	941	883
	2000	174	.362	9.0	3 <mark>2.8</mark>	335	960	802
	1800	168	.358	8.6	32.3	286	1003	717
	1600	152	.360	7.8	28.6	244	1016	618
	1400	129	.372	6.8	21.9	208	1008	530
	1200	101	.410	5.9	14.6	162	972	406
	1000	66	.486	4.5	6.7	92	869	350
	800	47	.601	4.0	2.3	53	820	473
,								· · · ·
Prop	2500	205	.383	11.2	37.2	445	1046	1105
Demano	d 2400	182	.376	9.7	33.7	410	943	953
Curve:	P 2200	140	.364	7.3	26.3	343	792	710
	2000	105	.360	5.4	19.7	275	696	459
	1800	77	.363	4.0	13.9	219	620	240
	1600	54	.376	2.9	9.4	177	548	251
	1400	36	.404	2.1	6.3	141	479	240
	1200	23	.506	1.6	4.3	106	406	170
	1000	13	.774	1.5	2.9	78	335	106
	800	7	1.250	1.2	1.9	57	269	85
								6


Brake Mean Effective Pressure

CATERPILLAR®

3056 MARINE PROPULSION

153 bkW (205 bhp)

DIMENSIONS

with ZF Hurth HSW 630 A Gearbox

RATING DEFINITIONS AND CONDITIONS

C RATING – Vessels such as ferries, harbor tugs, fishing boats moving at higher speeds out and back (e.g. lobster, crayfish, and tuna), offshore service boats, and also displacement hull yachts and short trip coastal freighters where engine load and speed are cyclical.

RATINGS are based on SAE J1228/ISO8665 standard conditions of 100 kPa (29.61 in. Hg), 25° C (77° F), and 30% relative humidity. These ratings also apply at ISO3046/1, DIN6271/3, and BS5514 conditions of 100 kPa (29.61 in. Hg), 27° C (81° F), and 60% relative humidity. Ratings are valid for air cleaner inlet temperatures up to and including 50° C (122° F) and for sea water temperatures up to and including 38° C (100° F) at sea level. **FUEL RATES** are based on fuel oil of 35° API [16° C (60° F)] gravity having an LHV of 42 780 kJ/kg (18,390 Btu/lb) when used at 29° C (85° F) and weighing 838.9 g/liter (7.001 lbs/U.S. gal). Fuel consumption shown with all oil, fuel, and water pumps, engine driven. For a "without pumps" condition, deduct approximately 0.5% for each pump not engine driven.

Additional ratings may be available for specific customer requirements. Consult your Caterpillar representative for additional information.

		ne Fuel 01, 2-03-003-01)		Diesel Fuel (SCC 2-02-001-02, 2-03-001-01)		
Pollutant	Emission Factor (lb/hp-hr) (power output)	Emission Factor (lb/MMBtu) (fuel input)	Emission Factor (lb/hp-hr) (power output)	Emission Factor (lb/MMBtu) (fuel input)	EMISSION FACTOR RATING	
NO _x	0.011	1.63	0.031	4.41	D	
СО	6.96 E-03 ^d	0.99 ^d	6.68 E-03	0.95	D	
SO _x	5.91 E-04	0.084	2.05 E-03	0.29	D	
PM-10 ^b	7.21 E-04	0.10	2.20 E-03	0.31	D	
CO ₂ ^c	1.08	154	1.15	164	В	
Aldehydes	4.85 E-04	0.07	4.63 E-04	0.07	D	
TOC						
Exhaust	0.015	2.10	2.47 E-03	0.35	D	
Evaporative	6.61 E-04	0.09	0.00	0.00	Е	
Crankcase	4.85 E-03	0.69	4.41 E-05	0.01	Е	
Refueling	1.08 E-03	0.15	0.00	0.00	Е	

Table 3.3-1. EMISSION FACTORS FOR UNCONTROLLED GASOLINE AND DIESEL INDUSTRIAL ENGINES^a

^a References 2,5-6,9-14. When necessary, an average brake-specific fuel consumption (BSFC) of 7,000 Btu/hp-hr was used to convert from lb/MMBtu to lb/hp-hr. To convert from lb/hp-hr to kg/kw-hr, multiply by 0.608. To convert from lb/MMBtu to ng/J, multiply by 430. SCC = Source Classification Code. TOC = total organic compounds.

Classification Code. TOC = total organic compounds.
^b PM-10 = particulate matter less than or equal to 10 µm aerodynamic diameter. All particulate is assumed to be ≤ 1 µm in size.
^c Assumes 99% conversion of carbon in fuel to CO₂ with 87 weight % carbon in diesel, 86 weight % carbon in gasoline, average BSFC of 7,000 Btu/hp-hr, diesel heating value of 19,300 Btu/lb, and gasoline heating value of 20,300 Btu/lb.
^d Instead of 0.439 lb/hp-hr (power output) and 62.7 lb/mmBtu (fuel input), the correct emissions factors values are 6.96 E-03 lb/hp-hr (power output) and 0.99 lb/mmBtu (fuel input), respectively. This is an editorial correction. March 24, 2009

Table 3.3-2.SPECIATED ORGANIC COMPOUND EMISSIONFACTORS FOR UNCONTROLLED DIESEL ENGINES^a

Pollutant	Emission Factor (Fuel Input) (lb/MMBtu)
Benzene ^b	9.33 E-04
Toluene ^b	4.09 E-04
Xylenes ^b	2.85 E-04
Propylene 💬	2.58 E-03
1,3-Butadiene ^{b,c}	<3.91 E-05
Formaldehyde ^b	1.18 E-03
Acetaldehyde ^b	7.67 E-04
Acrolein ^b	<9.25 E-05
Polycyclic aromatic hydrocarbons (PAH)	
Naphthalene ^b	8.48 E-05
Acenaphthylene	<5.06 E-06
Acenaphthene	<1.42 E-06
Fluorene	2.92 E-05
Phenanthrene	2.94 E-05
Anthracene	1.87 E-06
Fluoranthene	7.61 E-06
Pyrene	4.78 E-06
Benzo(a)anthracene	1.68 E-06
Chrysene	3.53 E-07
Benzo(b)fluoranthene	<9.91 E-08
Benzo(k)fluoranthene	<1.55 E-07
Benzo(a)pyrene	<1.88 E-07
Indeno(1,2,3-cd)pyrene	<3.75 E-07
Dibenz(a,h)anthracene	<5.83 E-07
Benzo(g,h,l)perylene	<4.89 E-07
TOTAL PAH	1.68 E-04

^a Based on the uncontrolled levels of 2 diesel engines from References 6-7. Source Classification Codes 2-02-001-02, 2-03-001-01. To convert from lb/MMBtu to ng/J, multiply by 430.
 ^b Hazardous air pollutant listed in the *Clean Air Act*.
 ^c Based on data from 1 engine.

Environment & Safety Resource Center[™]

Federal Environment and Safety Codified Regulations TITLE 40—Protection of Environment PART 98—MANDATORY GREENHOUSE GAS REPORTING SUBPART C—General Stationary Fuel Combustion Sources

Table C-1 to Subpart C of Part 98 — Default CO₂ Emission Factors and High Heat Values for Various Types of Fuel

Fuel type	Default high heat value	Default CO ₂ emission factor
Coal and coke	Coal and coke mmBtu/short ton	
Anthracite	25.09	103.69
Bituminous	24.93	93.28
Subbituminous	17.25	97.17
Lignite	14.21	97.72
Coal Coke	24.80	113.67
Mixed (Commercial sector)	21.39	94.27
Mixed (Industrial coking)	26.28	93.90
Mixed (Industrial sector)	22.35	94.67
Mixed (Electric Power sector)	19.73	95.52
Natural gas	mmBtu/scf	kg CO ₂ /mmBtu
(Weighted U.S. Average)	1.026×10^{-3}	53.06
Petroleum products—liquid	mmBtu/gallon	kg CO ₂ /mmBtu
Distillate Fuel Oil No. 1	0.139	73.25
Distillate Fuel Oil No. 2	0.138	73.96
Distillate Fuel Oil No. 4	0.146	75.04
Residual Fuel Oil No. 5	0.140	72.93
Residual Fuel Oil No. 6	0.150	75.10
Used Oil	0.138	74.00
Kerosene	0.135	75.20
Liquefied petroleum gases (LPG) $^{ m 1}$	0.092	61.71
Propane ¹	0.091	62.87
Propylene ²	0.091	67.77
Ethane ¹	0.068	59.60
Ethanol	0.084	68.44
Ethylene ²	0.058	65.96
Isobutane ¹	0.099	64.94
Isobutylene ¹	0.103	68.86
Butane ¹	0.103	64.77
Butylene ¹	0.105	68.72
Naphtha (<401 deg F)	0.125	68.02
Natural Gasoline	0.110	66.88
Other Oil (>401 deg F)	0.139	76.22

http://esweb.bna.com/eslw/display/batch_print_display.adp

Bloomberg Environment

Environment & Safety Resource Center[™]

Federal Environment and Safety Codified Regulations TITLE 40—Protection of Environment PART 98—MANDATORY GREENHOUSE GAS REPORTING SUBPART C—General Stationary Fuel Combustion Sources

Table C-2 to Subpart C of Part 98 —Default CH_4 and N_2O Emission Factors for Various Types of Fuel

Fuel type	Default CH ₄ emission factor (kg CH ₄ /mmBtu)	Default N ₂ O emission factor (kg N ₂ O/mmBtu)
Coal and Coke (All fuel types in Table C-1)	1.1 x 10 ⁻⁰²	1.6 x 10 ⁻⁰³
Natural Gas	1.0 × 10 ⁻⁰³	1.0×10^{-04}
Petroleum Products (All fuel types in Table C-1)	3.0 x 10 ⁻⁰³	6.0 x 10 ⁻⁰⁴
Fuel Gas	3.0 x 10 ⁻⁰³	6.0 x 10 ⁻⁰⁴
Other Fuels—Solid	3.2 x 10 ⁻⁰²	4.2 x 10 ⁻⁰³
Blast Furnace Gas	2.2 x 10 ⁻⁰⁵	1.0×10^{-04}
Coke Oven Gas	4.8 x 10 ⁻⁰⁴	1.0×10^{-04}
Biomass Fuels—Solid (All fuel types in Table C-1, except wood and wood residuals)	3.2 x 10 ⁻⁰²	4.2 x 10 ⁻⁰³
Wood and wood residuals	7.2 x 10 ⁻⁰³	3.6 x 10 ⁻⁰³
Biomass Fuels—Gaseous (All fuel types in Table C-1)	3.2 x 10 ⁻⁰³	6.3 x 10 ⁻⁰⁴
Biomass Fuels—Liquid (All fuel types in Table C-1)	1.1 × 10 ⁻⁰³	1.1×10^{-04}

Note: Those employing this table are assumed to fall under the IPCC definitions of the "Energy Industry" or "Manufacturing Industries and Construction". In all fuels except for coal the values for these two categories are identical. For coal combustion, those who fall within the IPCC "Energy Industry" category may employ a value of 1g of CH₄ /mmBtu.

[75 FR page 79154, Dec. 17, 2010; 78 FR page 71952, Nov. 29, 2013; 81 FR page 89252, Dec. 9, 2016]

Contact us at http://www.bna.com/contact-us or call 1-800-372-1033

ISSN 2167-8065

Copyright © 2018, The Bureau of National Affairs, Inc. Reproduction or redistribution, in whole or in part, and in any form, without express written permission, is prohibited except as permitted by the BNA Copyright Policy.

Environment & Safety Resource Center[™]

Federal Environment and Safety Codified Regulations TITLE 40—Protection of Environment PART 98—MANDATORY GREENHOUSE GAS REPORTING SUBPART A—General Provision

Table A-1 to Subpart A of Part 98 — Global Warming Potentials

[100-Year Time Horizon]

Name	CAS No.	Chemical formula	Global warming potential (100 yr.)
Che	emical-Specific (GWPs	
Carbon dioxide	124-38-9	CO ₂	1
Methane	74-82-8	CH ₄	^a 25
Nitrous oxide	10024-97-2	N ₂ O	^a 298
Fu	lly Fluorinated G	GHGs	
Sulfur hexafluoride	2551-62-4	SF ₆	^a 22,800
Trifluoromethyl sulphur pentafluoride	373-80-8	SF ₅ CF ₃	17,700
Nitrogen trifluoride	7783-54-2	NF ₃	17,200
PFC-14 (Perfluoromethane)	75-73-0	CF ₄	^a 7,390
PFC-116 (Perfluoroethane)	76-16-4	C ₂ F ₆	^a 12,200
PFC-218 (Perfluoropropane)	76-19-7	C ₃ F ₈	^a 8,830
Perfluorocyclopropane	931-91-9	C-C ₃ F ₆	17,340
PFC-3-1-10 (Perfluorobutane)	355-25-9	C ₄ F ₁₀	^a 8,860
PFC-318 (Perfluorocyclobutane)	115-25-3	C-C ₄ F ₈	^a 10,300
PFC-4-1-12 (Perfluoropentane)	678-26-2	C ₅ F ₁₂	^a 9,160
PFC-5-1-14 (Perfluorohexane, FC-72)	355-42-0	C ₆ F ₁₄	^a 9,300
PFC-6-1-12	335-57-9	C ₇ F ₁₆ ; CF ₃ (CF ₂) ₅ CF ₃	^b 7,820
PFC-7-1-18	307-34-6	C ₈ F ₁₈ ; CF ₃ (CF ₂) ₆ CF ₃	^b 7,620
PFC-9-1-18	306-94-5	C ₁₀ F ₁₈	7,500
PFPMIE (HT-70)	NA	CF ₃ OCF(CF ₃)CF ₂ OCF ₂ OCF ₃	10,300
Perfluorodecalin (cis)	60433-11-6	Z-C ₁₀ F ₁₈	^b 7,236
Perfluorodecalin (trans)	60433-12-7	E-C ₁₀ F ₁₈	^b 6,288
Saturated Hydrofluorocarbons (HFCs) With Two	or Fewer Carbon-Hydrog	en Bonds
HFC-23	75-46-7	CHF ₃	^a 14,800
HFC-32	75-10-5	CH ₂ F ₂	^a 675
HFC-125	354-33-6	C ₂ HF ₅	^a 3,500
HFC-134	359-35-3	C ₂ H ₂ F ₄	^a 1,100
HFC-134a	811-97-2	CH ₂ FCF ₃	^a 1,430
HFC-227ca	2252-84-8	CF ₃ CF ₂ CHF ₂	^b 2640

http://esweb.bna.com/eslw/display/batch_print_display.adp

		Filterable ^b			Condensable PM ^c			
Source	PM	EMISSION FACTOR RATING	PM-10	EMISSION FACTOR RATING	Inorganic	EMISSION FACTOR RATING	Organic	EMISSION FACTOR RATING
Gas-fired parallel flow regenerative kiln with fabric filter (SCC 3-05-016-23)	0.026 ^z	D	ND		ND		ND	
Atmospheric hydrator with wet scrubber (SCC 3-05-016-09)	0.067^{aa}	D	ND		0.013 ^{aa}	D	ND	
Product cooler (SCC 3-05-016-11)	6.8 ^y	Е	ND		0.023 ^y	Е	ND	

Factors represent uncontrolled emissions unless otherwise noted. Factors are lb/ton of lime produced unless noted. ND = no data. SCC = Source Classification Code. Filterable PM is that PM collected on or prior to the filter of an EPA Method 5 (or equivalent) sampling train. Condensable PM is that PM collected in the impinger portion of a PM sampling train. References 11-12. References 9,13. Peferences 9,13. а

b

с

- d
- e
- ^g Reference 11.
- ^h Reference 12.
- j References 12,20,31,33. k References 4,12,20,31,33. m References 8,20-23,33.

- ⁿ References 4,12.
 ^p References 10,28-29.
 ^q References 10,15-16.
- ^r Reference 14.
- ^s References 17,32.
- Reference 19. t
- ^u Reference 30.
- ^v Reference 13.
- ^w Reference 18.
- ^x Reference 34.
- ^y Reference 25.
- ^z Reference 35.
- ^{aa} Reference 24; units are lb/ton of hydrated lime produced.

The quantity of particulate emissions generated by either type of drop operation, per kilogram (kg) (ton) of material transferred, may be estimated, with a rating of A, using the following empirical expression:¹¹

$$E = k(0.0016) \qquad \frac{\left(\frac{U}{2.2}\right)^{1.3}}{\left(\frac{M}{2}\right)^{1.4}} \text{ (kg/megagram [Mg])}$$
$$E = k(0.0032) \qquad \frac{\left(\frac{U}{5}\right)^{1.3}}{\left(\frac{M}{2}\right)^{1.4}} \text{ (pound [lb]/ton)}$$

where:

E = emission factor

k = particle size multiplier (dimensionless)

U = mean wind speed, meters per second (m/s) (miles per hour [mph])

M = material moisture content (%)

The particle size multiplier in the equation, k, varies with aerodynamic particle size range, as follows:

Aerodynamic Particle Size Multiplier (k) For Equation 1						
$< 30 \ \mu m$ $< 15 \ \mu m$ $< 10 \ \mu m$ $< 5 \ \mu m$ $< 2.5 \ \mu m$						
0.74 0.48 0.35 0.20 0.053ª						

^a Multiplier for $< 2.5 \mu m$ taken from Reference 14.

The equation retains the assigned quality rating if applied within the ranges of source conditions that were tested in developing the equation, as follows. Note that silt content is included, even though silt content does not appear as a correction parameter in the equation. While it is reasonable to expect that silt content and emission factors are interrelated, no significant correlation between the 2 was found during the derivation of the equation, probably because most tests with high silt contents were conducted under lower winds, and vice versa. It is recommended that estimates from the equation be reduced 1 quality rating level if the silt content used in a particular application falls outside the range given:

Ranges Of Source Conditions For Equation 1					
Silt Contont	Maisture Contout	Wind S	Speed		
Silt Content (%)	Moisture Content (%)	m/s	mph		
0.44 - 19	0.25 - 4.8	0.6 - 6.7	1.3 - 15		

To retain the quality rating of the equation when it is applied to a specific facility, reliable correction parameters must be determined for specific sources of interest. The field and laboratory procedures for aggregate sampling are given in Reference 3. In the event that site-specific values for

(1)

Table 11.19.2-2 (English Units). EMISSION FACTORS FOR CRUSHED STONE PROCESSING OPERATIONS (lb/Ton)^a

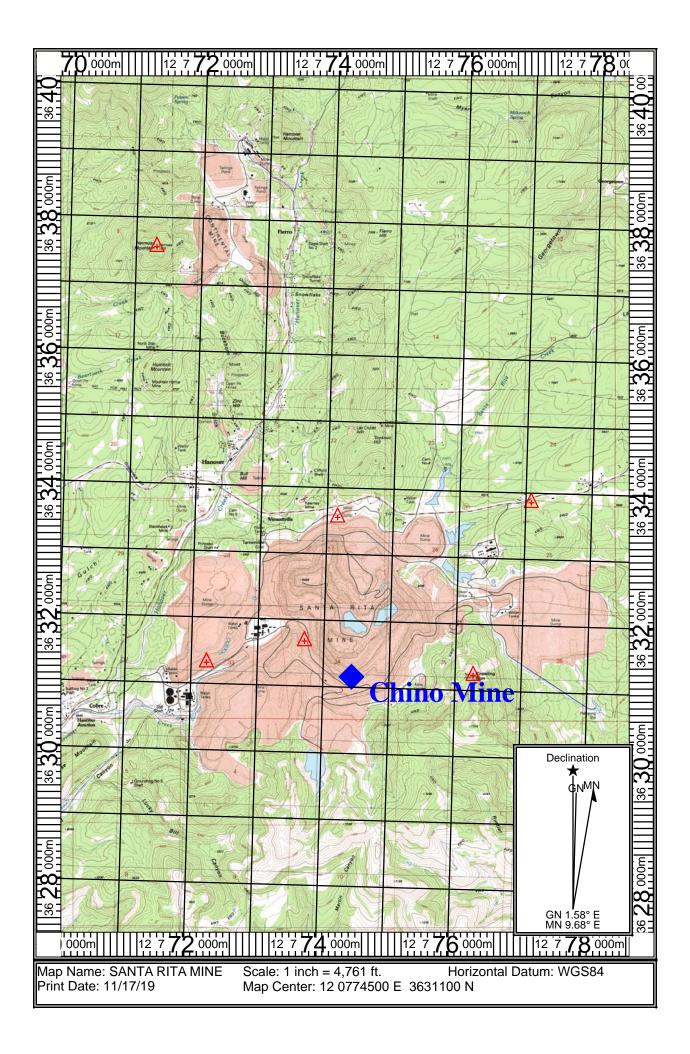
Source ^b	Total	EMISSION	Total	EMISSION	Total	EMISSION
	Particulate	FACTOR	PM-10	FACTOR	PM-2.5	FACTOR
	Matter ^{r,s}	RATING		RATING		RATING
Primary Crushing	ND		ND^{n}		ND^{n}	
(SCC 3-05-020-01)						
Primary Crushing (controlled)	ND		ND^{n}		ND^{n}	
(SCC 3-05-020-01)						
Secondary Crushing	ND		ND^{n}		ND^{n}	
(SCC 3-05-020-02)						
Secondary Crushing (controlled)	ND		ND^{n}		ND^{n}	
(SCC 3-05-020-02)						
Tertiary Crushing	0.0054 ^d	Е	0.0024°	С	ND^n	
(SCC 3-050030-03)						
Tertiary Crushing (controlled)	0.0012 ^d	E	0.00054 ^p	С	0.00010 ^q	E
(SCC 3-05-020-03)						
Fines Crushing	0.0390 ^e	E	0.0150 ^e	E	ND	
(SCC 3-05-020-05)	£		F		-	
Fines Crushing (controlled)	$0.0030^{\rm f}$	Е	$0.0012^{\rm f}$	Е	0.000070 ^q	Е
(SCC 3-05-020-05)				-	20 20 20 20 20 20 20 20 20 20 20 20 20 2	
Screening	0.025 ^c	E	0.0087^{l}	С	ND	
(SCC 3-05-020-02, 03)					~	
Screening (controlled)	0.0022 ^d	Е	0.00074 ^m	С	0.000050 ^q	Е
(SCC 3-05-020-02, 03)					20 20 20 20 20 20 20 20 20 20 20 20 20 2	
Fines Screening	0.30 ^g	Е	0.072 ^g	E	ND	
(SCC 3-05-020-21)	~		~			
Fines Screening (controlled)	0.0036 ^g	Е	0.0022^{g}	E	ND	
(SCC 3-05-020-21)	1					
Conveyor Transfer Point	0.0030 ^h	Е	0.00110^{h}	D	ND	
(SCC 3-05-020-06)						
Conveyor Transfer Point (controlled)	0.00014 ⁱ	Е	4.6 x 10 ⁻⁵ⁱ	D	1.3 x 10 ^{-5q}	E
(SCC 3-05-020-06)						
Wet Drilling - Unfragmented Stone	ND		8.0 x 10 ^{-5j}	E	ND	
(SCC 3-05-020-10)						
Truck Unloading -Fragmented Stone	ND		1.6 x 10 ⁻⁵	E	ND	
(SCC 3-05-020-31)						
Truck Loading - Conveyor, crushed	ND		0.00010 ^k	E	ND	
stone (SCC 3-05-020-32)						

a. Emission factors represent uncontrolled emissions unless noted. Emission factors in lb/Ton of material of throughput. SCC = Source Classification Code. ND = No data.

b. Controlled sources (with wet suppression) are those that are part of the processing plant that employs current wet suppression technology similar to the study group. The moisture content of the study group without wet suppression systems operating (uncontrolled) ranged from 0.21 to 1.3 percent, and the same facilities operating wet suppression systems (controlled) ranged from 0.55 to 2.88 percent. Due to carry over of the small amount of moisture required, it has been shown that each source, with the exception of crushers, does not need to employ direct water sprays. Although the moisture content was the only variable measured, other process features may have as much influence on emissions from a given source. Visual observations from each source under normal operating conditions are probably the best indicator of which emission factor is most appropriate. Plants that employ substandard control measures as indicated by visual observations should use the uncontrolled factor with an appropriate control efficiency that best reflects the effectiveness of the controls employed.

c. References 1, 3, 7, and 8

d. References 3, 7, and 8


Section 8

Map(s)

<u>A map</u> such as a 7.5 minute topographic quadrangle showing the exact location of the source. The map shall also include the following:

The UTM or Longitudinal coordinate system on both axes	An indicator showing which direction is north
A minimum radius around the plant of 0.8km (0.5 miles)	Access and haul roads
Topographic features of the area	Facility property boundaries
The name of the map	The area which will be restricted to public access
A graphical scale	

A map of the facility is attached.

Section 9

Proof of Public Notice

(for NSR applications submitting under 20.2.72 or 20.2.74 NMAC) (This proof is required by: 20.2.72.203.A.14 NMAC "Documentary Proof of applicant's public notice")

☑ I have read the AQB "Guidelines for Public Notification for Air Quality Permit Applications" This document provides detailed instructions about public notice requirements for various permitting actions. It also provides public notice examples and certification forms. Material mistakes in the public notice will require a re-notice before issuance of the permit.

Unless otherwise allowed elsewhere in this document, the following items document proof of the applicant's Public Notification. Please include this page in your proof of public notice submittal with checkmarks indicating which documents are being submitted with the application.

New Permit and Significant Permit Revision public notices must include all items in this list.

Technical Revision public notices require only items 1, 5, 9, and 10.

Per the Guidelines for Public Notification document mentioned above, include:

- 1. \Box A copy of the certified letter receipts with post marks (20.2.72.203.B NMAC)
- 2. \Box A list of the places where the public notice has been posted in at least four publicly accessible and conspicuous places, including the proposed or existing facility entrance. (e.g: post office, library, grocery, etc.)
- 3. \Box A copy of the property tax record (20.2.72.203.B NMAC).
- 4. \Box A sample of the letters sent to the owners of record.
- 5. \Box A sample of the letters sent to counties, municipalities, and Indian tribes.
- 6. \Box A sample of the public notice posted and a verification of the local postings.
- 7. \Box A table of the noticed citizens, counties, municipalities and tribes and to whom the notices were sent in each group.
- 8. 🗆 A copy of the public service announcement (PSA) sent to a local radio station and documentary proof of submittal.
- 9. A copy of the <u>classified or legal</u> ad including the page header (date and newspaper title) or its affidavit of publication stating the ad date, and a copy of the ad. When appropriate, this ad shall be printed in both English and Spanish.
- 10. \Box A copy of the <u>display</u> ad including the page header (date and newspaper title) or its affidavit of publication stating the ad date, and a copy of the ad. When appropriate, this ad shall be printed in both English and Spanish.
- 11. A map with a graphic scale showing the facility boundary and the surrounding area in which owners of record were notified by mail. This is necessary for verification that the correct facility boundary was used in determining distance for notifying land owners of record.

This application is being submitted pursuant to 20.2.70.300.B.(2) NMAC and 20.2.70.404.C.(1)(a). No public notice is required.

Written Description of the Routine Operations of the Facility

<u>A written description of the routine operations of the facility</u>. Include a description of how each piece of equipment will be operated, how controls will be used, and the fate of both the products and waste generated. For modifications and/or revisions, explain how the changes will affect the existing process. In a separate paragraph describe the major process bottlenecks that limit production. The purpose of this description is to provide sufficient information about plant operations for the permit writer to determine appropriate emission sources.

Freeport-McMoRan Chino Mines Company owns and operates the Chino Mine (Chino). The Chino mine is an open-pit copper mining operation located approximately 15 miles east of Silver City in Grant County, New Mexico (UTM Zone 12 and Air Quality Control Region 12). The primary purpose of the facility is to produce copper cathode using the Solvent Extraction/Electrowinning (SXEW) process and copper concentrate using a wet flotation process. Chino is a minor source under the Prevention of Significant Deterioration (PSD) rules as currently permitted and will remain a minor source after the proposed significant revision. Chino will also remain a major source for operating permit purposes under Title V (20.2.70 NMAC).

Chino includes two open pits, the Santa Rita open pit and the Continental open pit (formally known as the Cobre Mine or herein as "Cobre") located approximately 3 miles north of the Santa Rita open pit. Chino consists of unpaved haul roads and storage stockpiles. Ore mined from Cobre is transported via the Cobre Haul Road for future processing. Additional operations include a mill, which includes a primary crusher, conveyor belts and concentrator, two screening plants, loading of magnetite into over-the road trucks, a power plant, and a solution extraction and electrowinning plant.

In this Title V Renewal and Significant Modification Application, Freeport requests the authorization for blasting near the Cobre Haul Road Borrow Pit; the authorization of 119,700 lb/day for Borrow Pit blasting; the retirement of Mase 1 from the facility; the construction of baghouse to control SAG mill tunnel; the removal of units LmSlk and ENG-1; the replacement of Fire Emergency Pump; and the addition of two emergency standby generators.

Section 11 Source Determination

Source submitting under 20.2.70, 20.2.72, 20.2.73, and 20.2.74 NMAC

Sources applying for a construction permit, PSD permit, or operating permit shall evaluate surrounding and/or associated sources (including those sources directly connected to this source for business reasons) and complete this section. Responses to the following questions shall be consistent with the Air Quality Bureau's permitting guidance, <u>Single Source Determination Guidance</u>, which may be found on the Applications Page in the Permitting Section of the Air Quality Bureau website.

Typically, buildings, structures, installations, or facilities that have the same SIC code, that are under common ownership or control, and that are contiguous or adjacent constitute a single stationary source for 20.2.70, 20.2.72, 20.2.73, and 20.2.74 NMAC applicability purposes. Submission of your analysis of these factors in support of the responses below is optional, unless requested by NMED.

A. Identify the emission sources evaluated in this section (list and describe):

Please refer to Table 2-A of this Title V Renewal.

B. Apply the 3 criteria for determining a single source:

<u>SIC</u> <u>Code</u>: Surrounding or associated sources belong to the same 2-digit industrial grouping (2-digit SIC code) as this facility, <u>OR</u> surrounding or associated sources that belong to different 2-digit SIC codes are support facilities for this source.

☑ Yes □ No

<u>Common</u> <u>Ownership</u> <u>or</u> <u>Control</u>: Surrounding or associated sources are under common ownership or control as this source.

🗹 Yes 🗆 🗆 No

<u>Contiguous or Adjacent</u>: Surrounding or associated sources are contiguous or adjacent with this source.

☑ Yes □ No

C. Make a determination:

- ☑ The source, as described in this application, constitutes the entire source for 20.2.70, 20.2.72, 20.2.73, or 20.2.74 NMAC applicability purposes. If in "A" above you evaluated only the source that is the subject of this application, all "YES" boxes should be checked. If in "A" above you evaluated other sources as well, you must check AT LEAST ONE of the boxes "NO" to conclude that the source, as described in the application, is the entire source for 20.2.70, 20.2.72, 20.2.73, and 20.2.74 NMAC applicability purposes.
- ☑ The source, as described in this application, <u>does not</u> constitute the entire source for 20.2.70, 20.2.72, 20.2.73, or 20.2.74 NMAC applicability purposes (A permit may be issued for a portion of a source). The entire source consists of the following facilities or emissions sources (list and describe):

Section 12.A PSD Applicability Determination for All Sources

(Submitting under 20.2.72, 20.2.74 NMAC)

<u>A PSD applicability determination for all sources</u>. For sources applying for a significant permit revision, apply the applicable requirements of 20.2.74.AG and 20.2.74.200 NMAC and to determine whether this facility is a major or minor PSD source, and whether this modification is a major or a minor PSD modification. It may be helpful to refer to the procedures for Determining the Net Emissions Change at a Source as specified by Table A-5 (Page A.45) of the <u>EPA New Source Review</u> <u>Workshop Manual</u> to determine if the revision is subject to PSD review.

- A. This facility is:
 - **a** minor PSD source before and after this modification (if so, delete C and D below).
 - □ a major PSD source before this modification. This modification will make this a PSD minor source.
 - □ an existing PSD Major Source that has never had a major modification requiring a BACT analysis.
 - □ an existing PSD Major Source that has had a major modification requiring a BACT analysis
 - □ a new PSD Major Source after this modification.
- B. This facility will remain a PSD Minor

Determination of State & Federal Air Quality Regulations

This section lists each state and federal air quality regulation that may apply to your facility and/or equipment that are stationary sources of regulated air pollutants.

Not all state and federal air quality regulations are included in this list. Go to the Code of Federal Regulations (CFR) or to the Air Quality Bureau's regulation page to see the full set of air quality regulations.

Required Information for Specific Equipment:

For regulations that apply to specific source types, in the 'Justification' column **provide any information needed to determine if the regulation does or does not apply**. **For example**, to determine if emissions standards at 40 CFR 60, Subpart IIII apply to your three identical stationary engines, we need to know the construction date as defined in that regulation; the manufacturer date; the date of reconstruction or modification, if any; if they are or are not fire pump engines; if they are or are not emergency engines as defined in that regulation; their site ratings; and the cylinder displacement.

Required Information for Regulations that Apply to the Entire Facility:

See instructions in the 'Justification' column for the information that is needed to determine if an 'Entire Facility' type of regulation applies (e.g. 20.2.70 or 20.2.73 NMAC).

Regulatory Citations for Regulations That Do Not, but Could Apply:

If there is a state or federal air quality regulation that does not apply, but you have a piece of equipment in a source category for which a regulation has been promulgated, you must **provide the low level regulatory citation showing why your piece of equipment is not subject to or exempt from the regulation. For example** if you have a stationary internal combustion engine that is not subject to 40 CFR 63, Subpart ZZZZ because it is an existing 2 stroke lean burn stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions, your citation would be 40 CFR 63.6590(b)(3)(i). We don't want a discussion of every non-applicable regulation, but if it is possible a regulation could apply, explain why it does not. For example, if your facility is a power plant, you do not need to include a citation to show that 40 CFR 60, Subpart OOO does not apply to your non-existent rock crusher.

Regulatory Citations for Emission Standards:

For each unit that is subject to an emission standard in a source specific regulation, such as 40 CFR 60, Subpart OOO or 40 CFR 63, Subpart HH, include the low level regulatory citation of that emission standard. Emission standards can be numerical emission limits, work practice standards, or other requirements such as maintenance. Here are examples: a glycol dehydrator is subject to the general standards at 63.764C(1)(i) through (iii); an engine is subject to 63.6601, Tables 2a and 2b; a crusher is subject to 60.672(b), Table 3 and all transfer points are subject to 60.672(e)(1)

Federally Enforceable Conditions:

All federal regulations are federally enforceable. All Air Quality Bureau State regulations are federally enforceable except for the following: affirmative defense portions at 20.2.7.6.B, 20.2.7.110(B)(15), 20.2.7.11 through 20.2.7.113, 20.2.7.115, and 20.2.7.116; 20.2.37; 20.2.42; 20.2.43; 20.2.62; 20.2.63; 20.2.86; 20.2.89; and 20.2.90 NMAC. Federally enforceable means that EPA can enforce the regulation as well as the Air Quality Bureau and federally enforceable regulations can count toward determining a facility's potential to emit (PTE) for the Title V, PSD, and nonattainment permit regulations.

INCLUDE ANY OTHER INFORMATION NEEDED TO COMPLETE AN APPLICABILITY DETERMINATION OR THAT IS RELEVENT TO YOUR FACILITY'S NOTICE OF INTENT OR PERMIT.

EPA Applicability Determination Index for 40 CFR 60, 61, 63, etc: http://cfpub.epa.gov/adi/

Table for STATE REGULATIONS:

STATE REGU-	Title	Applies? Enter Yes or	Unit(s) or Facility	JUSTIFICATION:
LATIONS CITATION		No		(You may delete instructions or statements that do not apply in the justification column to shorten the document.)
20.2.1 NMAC	General Provisions	Yes	Facility	General Provisions apply to Notice of Intent, Construction, and Title V permit applications.
20.2.3 NMAC	Ambient Air Quality Standards NMAAQS	Yes	Facility	20.2.3 NMAC is a SIP approved regulation that limits the maximum allowable concentration of Total Suspended Particulates, Sulfur Compounds, Carbon Monoxide and Nitrogen Dioxide. The facility meets maximum allowable concentrations of TSP, SO ₂ , H ₂ S, NO _x , and CO under this regulation.
20.2.7 NMAC	Excess Emissions	Yes	Facility	This regulation establishes requirements for the facility if operations at the facility result in any excess emissions. The owner or operator will operate the source at the facility having an excess emission, to the extent practicable, including associated air pollution control equipment, in a manner consistent with good air pollution control practices for minimizing emissions. The facility will also notify the NMED of any excess emission per 20.2.7.110 NMAC.
20.2.23 NMAC	Fugitive Dust Control	No	N/A	This facility is authorized under a construction permit pursuant to the New Mexico Air Quality Control Act and is therefore not subject to this regulation.
20.2.33 NMAC	Gas Burning Equipment - Nitrogen Dioxide	No	N/A	This facility does not have gas burning equipment having a heat input of greater than 1,000,000 million British Thermal Units per year per unit. This regulation does not apply.
20.2.34 NMAC	Oil Burning Equipment: NO ₂	No	N/A	This facility does not have oil burning equipment having a heat input of greater than 1,000,000 million British Thermal Units per year per unit. The facility is not subject to this regulation and does not have emission sources that meet the applicability requirements under 20.2.34.108 NMAC.
20.2.35 NMAC	Natural Gas Processing Plant – Sulfur	No	N/A	The purpose of this regulation is to establish sulfur emissions standards for natural gas processing plants [20.2.35.6 NMAC]. This facility is not a natural gas processing plant, as defined in the regulation [20.2.35.7 NMAC]. As this facility is not defined as a natural gas processing plant under this regulation, the facility is not subject to this regulation.
20.2.37 and 20.2.36 NMAC	Petroleum Processing Facilities and Petroleum Refineries	No	N/A	The purpose of this regulation is to minimize emissions from petroleum or natural gas processing facilities [20.2.37.6 NMAC]. This facility not a natural gas or petroleum processing facility, as defined in the regulation [20.2.37.7 NMAC]. As this facility is not defined as a natural gas or petroleum processing facility, the facility is not subject to this regulation.
20.2.38 NMAC	Hydrocarbon Storage Facility	No	N/A	This regulation applies to storage facilities which are operated in conjunction with a petroleum production or petroleum processing facility. The Chino facility is not a petroleum production or processing facility, therefore this regulation does not apply.
20.2.39 NMAC	Sulfur Recovery Plant - Sulfur	No	N/A	This regulation establishes sulfur emission standards for sulfur recovery plants which are not part of petroleum or natural gas processing facilities. This regulation does not apply to this facility because it does not have elements of a sulfur recovery plant.
20.2.61.109 NMAC	Smoke & Visible Emissions	Yes	F-2-1-1.4, F-2-1-1.5, CH SCRN ENG, CB SCRN ENG, SXEW Boilers No. 1-3	All stationary combustion equipment (emergency generators, boilers, heat recovery generator, engines, and turbine) at the facility are subject to this regulation and comply by limiting opacity to a maximum of 20%.
20.2.70 NMAC	Operating Permits	Yes	Facility	This regulation establishes requirements for obtaining an operating permit. This regulation does apply as the facility is a Title V major source of NO _x , CO, PM ₁₀ , and PM _{2.5} . This facility operates under Title V Permit P066-R3M1.

STATE REGU- LATIONS CITATION	Title	Applies? Enter Yes or No	Unit(s) or Facility	JUSTIFICATION: (You may delete instructions or statements that do not apply in the justification column to shorten the document.)
20.2.71 NMAC	Operating Permit Fees	Yes	Facility	This regulation establishes a schedule of operating permit emission fees. The facility is subject to 20.2.70 NMAC and is therefore subject to requirements of this regulation.
20.2.72 NMAC	Construction Permits	Yes	Facility	This regulation establishes the requirements for obtaining a construction permit. The facility is a stationary source that has potential emission rates greater than 10 pounds per hour or 25 tons per year of any regulated air contaminant for which there is a National or New Mexico Air Quality Standard. The facility has a construction permit (NSR Permit) 0298-M10R1 to meet the requirements of this regulation.
20.2.73 NMAC	NOI & Emissions Inventory Requirements	Yes	Facility	This regulation establishes emission inventory requirements. The facility meets the applicability requirements of 20.2.73.300 NMAC. The facility will meet all applicable reporting requirements under 20.2.73.300.B.1 NMAC.
20.2.74 NMAC	Permits – Prevention of Significant Deterioration (PSD)	No	N/A	This regulation establishes requirements for obtaining a prevention of significant deterioration permit. Facility-wide non-fugitive emission rates are below PSD major thresholds. This regulation does not apply.
20.2.75 NMAC	Construction Permit Fees	Yes	Facility	This application is being submitted pursuant to 20.2.70.300.B.2 NMAC, which is subject to 20.2.71 NMAC which establishes Operating Emission Fees. Freeport- McMoRan is expected to submit a payment for their facility's emission rate. 20.2.75 NMAC establishes fees associated with permits submitted under 20.2.72 NMAC, therefore this facility is not subject to this regulation.
20.2.77 NMAC	New Source Performance	Yes	Diesel Emergency Generators, Natural Gas emergency Generator, LPG Emergency Generators, F-2-1-1.5, F-2-1-1.4, PC-01, PC DUMP, CTS-01, PC-01, PC DUMP, CTS-01, CV-01B, CV-01B, CV-01B, CV-01C, SAG-F1, IC-01, SCDP, CB SCRN ENG, CH SCRN ENG, WH Crush	 This regulation establishes state authority to implement NSPS for stationary sources subject to 40 CFR 60. This regulation applies as the following NSPS subparts apply: Subpart Dc – Unit F-2-1-1.5 is subject Subpart GG – Unit F-2-1-1.4 is subject Subpart LL – Metallic mineral processing units are subject: PC-01, PC DUMP, CTS-01, CV-01A, CV-01B, CV-01C, SAG-F1, IC 01, SCDP Subpart OOO – Nonmetallic mineral processing unit is WH Crush Subpart JJJJ-1 natural gas emergency generator and 6 LPG emergency generators
20.2.78 NMAC	Emission Standards for HAPS	No	N/A	This regulation establishes state authority to implement emission standards for hazardous air pollutants subject to 40 CFR Part 61, as amended through December 31, 2010. This facility does not emit hazardous air pollutants which are subject to the requirements of 40 CFR Part 61 and is therefore not subject to this regulation.

STATE REGU- LATIONS CITATION	Title	Applies? Enter Yes or No	Unit(s) or Facility	JUSTIFICATION: (You may delete instructions or statements that do not apply in the justification column to shorten the document.)
20.2.79 NMAC	Permits – Nonattainmen t Areas	No	N/A	This regulation establishes the requirements for obtaining a nonattainment area permit. The facility is not located in a non-attainment area and therefore is not subject to this regulation.
20.2.80 NMAC	Stack Heights	No	N/A	This regulation establishes requirements for the evaluation of stack heights and other dispersion techniques. This regulation does not apply as all stacks at the facility follow good engineering practice.
20.2.82 NMAC	MACT Standards for source categories of HAPS	Yes	Diesel Emergency Generators, Natural Gas emergency Generator, LPG Emergency Generators, CH SCRN ENG, CB SCRN ENG, GDF	 This regulation established state authority to implement MACT Standards for source categories of HAPs. This regulation applies to all sources emitting hazardous air pollutants, which are subject to the requirements of 40 CFR Part 63. This regulation applies as the following MACT subparts apply: Subpart ZZZZ – The following engines are subject: Diesel Emergency Generators, Natural Gas emergency Generator, LPG Emergency Generators, CH SCRN ENG, CB SCRN ENG Subpart CCCCCC – Unit GDF is subject

Table for Applicable FEDERAL REGULATIONS:

FEDERA L REGU- LATIONS CITATIO N	Title	Applies? Enter Yes or No	Unit(s) or Facility	JUSTIFICATION:
40 CFR 50	NAAQS	Yes	Facility	This regulation defines national ambient air quality standards. The facility meets all applicable national ambient air quality standards for NO _x , CO, SO ₂ , lead, ozone, PM ₁₀ , and PM _{2.5} under this regulation.
NSPS 40 CFR 60, Subpart A	General Provisions	Yes	Diesel Emergency Generators, Natural Gas emergency Generator, LPG Emergency Generators, F-2- 1-1.5, F-2-1-1.4, PC-01, PC DUMP, CTS-01, CV-01A, CV-01B, CV-01C, SAG-F1, IC-01, SCDP, CB SCRN ENG, CH SCRN ENG, WH Crush	 This regulation defines general provisions for relevant standards that have been set under this part. This subpart applies as the following NSPS subparts apply: Subpart Dc – Unit F-2-1-1.5 is subject Subpart GG – Unit F-2-1-1.4 is subject Subpart LL – Metallic mineral processing units are subject: PC-01, PC DUMP, CTS-01, CV-01A, CV-01B, CV-01C, SAG-F1, IC 01, SCDP Subpart OOO – Nonmetallic mineral processing unit is WH Crush. Subpart IIII –12 diesel emergency generators Subpart JJJJ-1 natural gas emergency generators
NSPS 40 CFR60.4 0a, Subpart Da	Subpart Da, Performance Standards for Electric Utility Steam Generating Units	No	N/A	This regulation establishes standards of performance for electric utility steam generating units. This regulation does not apply as this facility does not operate any electric utility steam generating units.
NSPS 40 CFR60.4 0b Subpart Db	Electric Utility Steam Generating Units	No	N/A	This regulation establishes standards of performance for industrial-commercial-institutional steam generating units. This regulation does not apply because the facility's steam generating units do not have capacities which exceed the 100 MMBtu/hr threshold.
40 CFR 60.40c, Subpart Dc	Standards of Performance for Small Industrial- Commercial- Institutional Steam Generating Units	Yes	F-2-1-1.5	This regulation establishes standards of performance for small industrial-commercial-institutional steam generating units. This regulation applies to unit F-2-1-1.5 as its heat input (48.8 MMBtu/hr) exceeds the 10 MMBtu/hr threshold. The SXEW Boilers No. 1, 2, 3, 4, and 5 are below the 10 MMBtu/hr threshold and are not subject.
NSPS 40 CFR 60, Subpart Ka	Standards of Performance for Storage Vessels for Petroleum Liquids for which Construction, Reconstruction, or Modification Commenced After May 18, 1978, and Prior to July 23, 1984	No	N/A	This regulation establishes performance standards for storage vessels for petroleum liquids for which construction, reconstruction, or modification commenced after May 18, 1978, and prior to July 23, 1984. There are no petroleum liquid storage vessels located at the facility which are an affected facility under this subpart. Specifically, there are no storage vessels with capacity greater than 40,000 gallons which are used to store petroleum liquids as defined in §60.111a(b). Diesel fuel is not considered petroleum liquid under this definition. Accordingly, this regulation does not apply.
NSPS 40 CFR	Standards of Performance for	No	N/A	This regulation establishes performance standards for storage vessels with a capacity greater than or equal to 75 cubic meters

Form-Section 13 last revised: 5/29/2019

FEDERA L REGU- LATIONS CITATIO N	Title	Applies? Enter Yes or No	Unit(s) or Facility	JUSTIFICATION:
60, Subpart Kb	Volatile Organic Liquid Storage Vessels (Including Petroleum Liquid Storage Vessels) for Which Construction, Reconstruction, or Modification Commenced After July 23, 1984			 (m³) that is used to store volatile organic liquids (VOL) for which construction, reconstruction, or modification is commenced after July 23, 1984. This facility does not have any organic liquid storage vessels with capacities greater than or equal to 151 m 3 storing a liquid with a maximum true vapor pressure less than 3.5 kilopascals (kPa) or with capacities greater than or equal to 75 m 3 but less than 151 m 3 storing a liquid with a maximum true vapor pressure less than 151 m 3 storing a liquid is the storing a liquid with a maximum true vapor pressure less than 150 kPa; therefore, this regulation is not applicable §60.110b(b)].
NSPS 40 CFR 60.330 Subpart GG	Stationary Gas Turbines	Yes	F-2-1-1.4	This regulations establishes standards of performance for stationary gas turbines with a heat input at a peak load equal to or greater than 10 MMBtu/hr based on the lower heating value of the fuel fired and have commenced construction, modification, or reconstruction after October 3, 1977. Unit F-2- 1-1.4 has a heat input of 455 MMBtu/hr which exceeds the threshold and commenced construction after October 3, 1977. Accordingly, this regulation applies.
NSPS 40 60.380 Subpart LL	Performance Standards for Metallic Mineral Processing Plants	Yes	PC-01, PC DUMP, CTS-01, CV-01A, CV-01B, CV-01C, SAG-F1, IC-01, SCDP	The provisions of this subpart are applicable to the following affected facilities in metallic mineral processing plants: each crusher and screen in open-pit mines; each crusher, screen, bucket elevator, conveyor belt transfer point, thermal dryer, product packaging station, storage bin, enclosed storage area, truck loading station, truck unloading station, railcar loading station, and railcar unloading station at the mill or concentrator. This facility includes several units involved in metallic mineral (copper and molybdenum) processing, therefore this regulation is applicable.
NSPS 40 CFR 60, Subpart KKK	Leaks of VOC from Onshore Gas Plants	No	N/A	This regulation establishes standards of performance for equipment leaks of VOC from onshore natural gas processing plants for which construction, reconstruction, or modification commenced after January 20, 1984, and on or before August 23, 2011. The facility is not a natural gas processing plant as defined in this regulation [40 CFR Part 60.631]. This regulation does not apply because this facility does not meet the definition of a natural gas processing plant as stated in the regulation.
NSPS 40 CFR Part 60 Subpart LLL	Standards of Performance for Onshore Natural Gas Processing : SO ₂ Emissions	No	N/A	This regulation establishes standards of performance for SO ₂ emissions from onshore natural gas processing for which construction, reconstruction, or modification commenced after January 20, 1984 and on or before August 23, 2011. The facility does not have a sweetening unit or considered a natural gas processing plant and does not meet the applicability requirements of this regulation under 40 CFR Part 60.640 (a). The facility is not subject to this regulation.
NSPS 40 Part 60 Subpart OOO	Standards of Performance for Nonmetallic Mineral Processing Plants	Yes	WH Crush	This regulation establishes standards for the following affected facilities in fixed or portable nonmetallic mineral processing plants: each crusher, grinding mill, screening operation, bucket elevator, belt conveyor, bagging operation, storage bin, enclosed truck or railcar loading station is an applicable unit. The unit WH Crush processes nonmetallic minerals through a crusher at greater than 150 tph, therefore this regulation is applicable.
NSPS 40 CFR	Standards of Performance for	No	N/A	The rule applies to "affected" facilities that are constructed, modified, or reconstructed after August 23, 2011 (40 CFR 60.5365): gas wells, including fractured and hydraulically

FEDERA L REGU- LATIONS CITATIO N	Title	Applies? Enter Yes or No	Unit(s) or Facility	JUSTIFICATION:
Part 60 Subpart 0000	Crude Oil and Natural Gas Production, Transmission, and Distribution for which construction, modification or reconstruction commenced after August 23, 2011 and before September 18, 2015			refractured wells, centrifugal compressors, reciprocating compressors, pneumatic controllers, certain equipment at natural gas processing plants, sweetening units at natural gas processing plants, and storage vessels. The facility does not contain any "affected" facilities. This regulation is not applicable.
NSPS 40 CFR Part 60 Subpart OOOOa	Standards of Performance for Crude Oil and Natural Gas Facilities for which Construction, Modification or Reconstruction Commenced After September 18, 2015	No	N/A	The rule applies to "affected" facilities that are constructed, modified, or reconstructed after August 23, 2011 (40 CFR 60.5365): gas wells, including fractured and hydraulically refractured wells, centrifugal compressors, reciprocating compressors, pneumatic controllers, certain equipment at natural gas processing plants, sweetening units at natural gas processing plants, and storage vessels. The facility does not contain any "affected" facilities. This regulation is not applicable.
NSPS 40 CFR 60 Subpart IIII	Standards of performance for Stationary Compression Ignition Internal Combustion Engines	Yes	Diesel Emergency Generators, CB SCRN ENG, CH SCRN ENG	This regulation establishes standards of performance for stationary compression ignition combustion engines. The 12 diesel emergency engines commenced construction after July 11, 2005. These engines are subject to this regulation. Engines CB SCRN ENG and CH SCRN ENG commenced construction after July 11, 2005 and were manufactured after April 1, 2006. Engine CB SCRN ENG was manufactured in February 2012 and engine CH SCRN ENG was manufactured in August 2006. These engines are subject to NSPS Subpart IIII.
NSPS 40 CFR Part 60 Subpart JJJJ	Standards of Performance for Stationary Spark Ignition Internal Combustion Engines	Yes	Natural Gas emergency Generator, LPG Emergency Generators	This regulation establishes standards of performance for stationary spark ignition combustion engines which commenced construction after June 12, 2006. The only units at the facility that have been constructed after the JJJJ trigger date are the natural gas and LPG emergency engines. Therefore this regulation is applicable.
NSPS 40 CFR 60 Subpart TTTT	Standards of Performance for Greenhouse Gas Emissions for Electric Generating Units	No	N/A	This subpart establishes emission guidelines and approval criteria for State or multi-State plans that establish emission standards limiting greenhouse gas (GHG) emissions from an affected steam generating unit, integrated gasification combined cycle (IGCC), or stationary combustion turbine. An affected steam generating unit, IGCC, or stationary combustion turbine shall, for the purposes of this subpart, be referred to as an affected EGU. This regulation does not apply as this facility does not operate any electric utility steam generating units.
NSPS 40 CFR 60 Subpart UUUU	Emissions Guidelines for Greenhouse Gas Emissions and Compliance Times for Electric Utility Generating Units	No	N/A	This subpart establishes national emission limitations and work practice standards for hazardous air pollutants (HAP) emitted from coal- and oil-fired electric utility steam generating units (EGUs) as defined in § <u>63.10042</u> of this subpart. This subpart also establishes requirements to demonstrate initial and continuous compliance with the emission limitations. The turbine and heat recovery steam

FEDERA L REGU- LATIONS CITATIO N	Title	Applies? Enter Yes or No	Unit(s) or Facility	JUSTIFICATION:
				generator located at the facility are fueled by natural gas, therefore this regulation does not apply.
NESHAP 40 CFR 61 Subpart A	General Provisions	No	N/A	This regulation defines general provisions for relevant standards that have been set under this part. This regulation does not apply to the facility because the facility does not emit or have the triggering substances on site and/or the facility is not involved in the triggering activity. The facility is not subject to this regulation. None of the subparts of Part 61 apply.
NESHAP 40 CFR 61 Subpart E	National Emission Standards for Mercury	No	N/A	This regulation establishes a national emission standard for mercury. The facility does not have stationary sources which process mercury ore to recover mercury, use mercury chlor- alkali cells to produce chlorine gas and alkali metal hydroxide, and incinerate or dry wastewater treatment plant sludge [40 CFR Part 61.50]. The facility is not subject to this regulation.
NESHAP 40 CFR 61 Subpart V	National Emission Standards for Equipment Leaks (Fugitive Emission Sources)	No	N/A	This regulation establishes national emission standards for equipment leaks (fugitive emission sources). The facility does not have equipment that operates in volatile hazardous air pollutant (VHAP) service [40 CFR Part 61.240]. The regulated activities subject to this regulation do not take place at this facility. The facility is not subject to this regulation.
MACT 40 CFR 63, Subpart A	General Provisions	Yes	Diesel Emergency Generators, Natural Gas emergency Generator, LPG Emergency Generators, CH SCRN ENG, CB SCRN ENG, GDF	 This regulation defines general provisions for relevant standards that have been set under this part. This subpart applies as the following MACT subparts apply: Subpart ZZZZ – The following engines are subject: Diesel Emergency Generators, Natural Gas emergency Generator, LPG Emergency Generators, CH SCRN ENG, CB SCRN ENG Subpart CCCCCC – Unit GDF is subject
MACT 40 CFR 63.760 Subpart HH	Oil and Natural Gas Production Facilities	No	N/A	This regulation establishes national emission standards for hazardous air pollutants from oil and natural gas production facilities. Not applicable because the facility is not an "Oil and Natural Gas Production Facility."
MACT 40 CFR 63 Subpart HHH	Oil and Natural Gas Production Facilities	No	N/A	This subpart applies to owners and operators of natural gas transmission and storage facilities that transport or store natural gas prior to entering the pipeline to a local distribution company or to a final end user (if there is no local distribution company), and that are major sources of hazardous air pollutants (HAP) emissions as defined in §63.1271. This regulation does not apply because this facility is not a natural gas transmission or storage facility as defined in this regulation [40 CFR Part 63.1270(a)].
MACT 40 CFR 63 Subpart DDDDD	National Emission Standards for Hazardous Air Pollutants for Major Industrial, Commercial, and Institutional Boilers & Process Heaters	No	N/A	This subpart establishes national emission limitations and work practice standards for hazardous air pollutants (HAP) emitted from industrial, commercial, and institutional boilers and process heaters located at major sources of HAP. This subpart also establishes requirements to demonstrate initial and continuous compliance with the emission limitations and work practice standards. Chino is not a major source of HAP therefore this regulation does not apply.

FEDERA L REGU- LATIONS CITATIO N	Title	Applies? Enter Yes or No	Unit(s) or Facility	JUSTIFICATION:
MACT 40 CFR 63 Subpart UUUUU	National Emission Standards for Hazardous Air Pollutants Coal & Oil Fire Electric Utility Steam Generating Unit	No	N/A	This subpart establishes national emission limitations and work practice standards for hazardous air pollutants (HAP) emitted from coal- and oil-fired electric utility steam generating units (EGUs) as defined in § <u>63.10042</u> of this subpart. This subpart also establishes requirements to demonstrate initial and continuous compliance with the emission limitations. The turbine and heat recovery steam generator located at the facility are fueled by natural gas, therefore this regulation does not apply.
MACT 40 CFR 63 Subpart ZZZZ	National Emissions Standards for Hazardous Air Pollutants for Stationary Reciprocating Internal Combustion Engines (RICE MACT)	Yes	15-Diesel Emergency Generators, 1-Natural Gas emergency Generator, 8- LPG Emergency Generators, CH SCRN, ENG, CB SCRN ENG	 This regulation defines national emissions standards for HAPs for stationary reciprocating Internal Combustion Engines. The natural gas and LPG emergency generators are new SI RICE sources located at an area source of HAPs. These units must meet the requirements of 40 CFR 60 Subpart JJJJ which also comply with the requirements of 40CFR 63 Subpart ZZZZ. Units CB SCRN ENG, CH SCRN ENG, and the diesel emergency generators are new stationary RICE located at an area source of HAPs as the engines commenced construction after June 12, 2006. New compression ignition RICE at an area source of HAPs must meet the requirements of 40 CFR 63 Subpart ZZZZ by complying with the requirements of 40 CFR 63 Subpart ZZZZ by complying with the requirements of 40 CFR 63 Subpart ZZZZ by complying with the requirements of 40 CFR 60 Subpart IIII.
MACT 40 CFR 63, Subpart CCCCCC	National Emission Standards for Hazardous Air Pollutants for Source Category: Gasoline Dispensing Facilities	Yes	GDF	This subpart establishes national emission limitations and management practices for hazardous air pollutants (HAP) emitted from the loading of gasoline storage tanks at gasoline dispensing facilities (GDF). The affected source to which this subpart applies is each GDF that is located at an area source. This facility is an area source which has loading of gasoline storage tanks at gasoline dispensing facilities. This regulation applies.
40 CFR 64	Compliance Assurance Monitoring	Yes	N/A	This regulation defines compliance assurance monitoring. The facility does not use a control device to meet an emission standard or limitation for units with potential uncontrolled emissions greater than 100 tons per year of a regulated pollutant. This regulation does not apply.
40 CFR 68	Chemical Accident Prevention	No	N/A	The facility is not an affected facility because it does not have quantities of materials regulated by 40 CFR Part 68 that are in excess of the triggering threshold.
Title IV – Acid Rain 40 CFR 72	Acid Rain	No	N/A	This part establishes the acid rain program. This part does not apply because the facility is not covered by this regulation [40 CFR Part 72.6].

FEDERA L REGU- LATIONS CITATIO N	Title	Applies? Enter Yes or No	Unit(s) or Facility	JUSTIFICATION:
Title IV – Acid Rain 40 CFR 73	Sulfur Dioxide Allowance Emissions	No	N/A	This regulation establishes sulfur dioxide allowance emissions for certain types of facilities. This part does not apply because the facility is not the type covered by this regulation [40 CFR Part 73.2].
Title IV- Acid Rain 40 CFR 75	Continuous Emissions Monitoring	No	N/A	This regulation does not apply as this facility does not generate commercial electric power or electric power for sale.
Title IV – Acid Rain 40 CFR 76	Acid Rain Nitrogen Oxides Emission Reduction Program	No	N/A	This regulation establishes an acid rain nitrogen oxides emission reduction program. This regulation applies to each coal-fired utility unit that is subject to an acid rain emissions limitation or reduction requirement for SO ₂ . This part does not apply because the facility does not operate any coal-fired units [40 CFR Part 76.1].
Title VI – 40 CFR 82	Protection of Stratospheric Ozone	Yes	Facility	This regulation establishes a regulation for protection of the stratospheric ozone. The regulation is applicable because the facility does "service", "maintain" or "repair" class I or class II appliances and "disposes" of the appliances [40 CFR Part 82.1(a)].

Operational Plan to Mitigate Emissions

(Submitting under 20.2.70, 20.2.72, 20.2.74 NMAC)

☑ Title V Sources (20.2.70 NMAC): By checking this box and certifying this application the permittee certifies that it has developed an <u>Operational Plan to Mitigate Emissions During Startups</u>, <u>Shutdowns</u>, <u>and Emergencies</u> defining the measures to be taken to mitigate source emissions during startups, shutdowns, and emergencies as required by 20.2.70.300.D.5(f) and (g) NMAC. This plan shall be kept on site to be made available to the Department upon request. This plan should not be submitted with this application.

□ NSR (20.2.72 NMAC), PSD (20.2.74 NMAC) & Nonattainment (20.2.79 NMAC) Sources: By checking this box and certifying this application the permittee certifies that it has developed an <u>Operational Plan to Mitigate Source Emissions</u> <u>During Malfunction, Startup, or Shutdown</u> defining the measures to be taken to mitigate source emissions during malfunction, startup, or shutdown as required by 20.2.72.203.A.5 NMAC. This plan shall be kept on site to be made available to the Department upon request. This plan should not be submitted with this application.

☑ Title V (20.2.70 NMAC), NSR (20.2.72 NMAC), PSD (20.2.74 NMAC) & Nonattainment (20.2.79 NMAC) Sources: By checking this box and certifying this application the permittee certifies that it has established and implemented a Plan to Minimize Emissions During Routine or Predictable Startup, Shutdown, and Scheduled Maintenance through work practice standards and good air pollution control practices as required by 20.2.7.14.A and B NMAC. This plan shall be kept on site or at the nearest field office to be made available to the Department upon request. This plan should not be submitted with this application.

N/A – All SSM emissions at this facility do not require an increase in requested allowables greater than those listed in Table 2-E. Equipment located at this facility is equipped with various safety devices and features that aid in the prevention of excess emissions in the event of an operational emergency. If an operational emergency does occur and excess emissions occur Freeport will submit the required Excess Emissions Report per 20.2.7 NMAC. Corrective action to eliminate the excess emissions and prevent recurrence in the future will be undertaken as quickly as safety allows.

Alternative Operating Scenarios

(Submitting under 20.2.70, 20.2.72, 20.2.74 NMAC)

Alternative Operating Scenarios: Provide all information required by the department to define alternative operating scenarios. This includes process, material and product changes; facility emissions information; air pollution control equipment requirements; any applicable requirements; monitoring, recordkeeping, and reporting requirements; and compliance certification requirements. Please ensure applicable Tables in this application are clearly marked to show alternative operating scenario.

Construction Scenarios: When a permit is modified authorizing new construction to an existing facility, NMED includes a condition to clearly address which permit condition(s) (from the previous permit and the new permit) govern during the interval between the date of issuance of the modification permit and the completion of construction of the modification(s). There are many possible variables that need to be addressed such as: Is simultaneous operation of the old and new units permitted and, if so for example, for how long and under what restraints? In general, these types of requirements will be addressed in Section A100 of the permit, but additional requirements may be added elsewhere. Look in A100 of our NSR and/or TV permit template for sample language dealing with these requirements. Find these permit templates at: https://www.env.nm.gov/aqb/permit/aqb_pol.html. Compliance with standards must be maintained during construction, which should not usually be a problem unless simultaneous operation of old and new equipment is requested.

In this section, under the bolded title "Construction Scenarios", specify any information necessary to write these conditions, such as: conservative-realistic estimated time for completion of construction of the various units, whether simultaneous operation of old and new units is being requested (and, if so, modeled), whether the old units will be removed or decommissioned, any PSD ramifications, any temporary limits requested during phased construction, whether any increase in emissions is being requested as SSM emissions or will instead be handled as a separate Construction Scenario (with corresponding emission limits and conditions, etc.

Chino seeks to continue operation under the below Control, mining and blasting scenarios, as currently permitted.

Mining Scenario	Throughput (tons/day)	Control Efficiency ¹ (%)
Total Material	126,000	96.8
South Waste Rock Disposal (SWRDF stockpile)	75,00	88.8
Chino (Ore)	86,000	96.8

Table 105.D1: Control Scenario 1 (Cobre Haul Roads)

¹ Control efficiencies are derived from a combination of controls. A control efficiency of 88.8% is based on a combination of base-course treatment, blading, and watering with a maximum speed limit of 35 miles/hour. A control efficiency of 96.8% is based on a combination of base-course treatment, blading, watering, and a dust suppressant.

The Cobre Mining Scenarios table is included for reference only as it relates to the historical air dispersion modeling for the facility. Four different mining scenarios at the Cobre portion of the mine were modeled to ensure that the most conservative impacts were represented within the model. The four mining scenarios have been previously reviewed and approved by NMED and are not changing with this application. This Table details the Cobre Mining Scenarios with volume associated source elevations.

Cobre Mining Scenarios					
Scenario with Description	Height of Hanover Mountain (ft)				
Scenario1 (S1) – Mining Hanover Mountain	7,261.2				
Scenario 2 (S2) – Mining Hanover Middle	7,145.0				
Scenario 3 (S3) – Mining Hanover Mountain	7,043.0				
Scenario 4 (S4) – Mining Hanover Base	6,948.8				

Blasting at Hanover Mountain (Scenario B1) and Santa Rita Pit (Scenario B2) never occur within the same hour; and continue to operate at different times as permitted in NSR permit 0298-M10. Table 5 below represents the mining and blasting scenarios that have been previously modeled and approved by NMED.

Table 5. Current Winnig and Diasting Scenarios						
Scenario Number	Height of Hanover Mountain (ft)	Blasting Location				
S1-B1	7,261.2	Hanover Mountain				
S1-B2	7,261.2	Santa Rita Pit				
S2-B1	7,145.0	Hanover Mountain				
S2-B2	7,145.0	Santa Rita Pit				
S3-B1	7,043.0	Hanover Mountain				
S3-B2	7,043.0	Santa Rita Pit				
S4-B1	6,948.8	Hanover Mountain				
S4-B2	6,948.8	Santa Rita Pit				

Table 5. Current Mining and Blasting Scenarios

Blasting at both Hanover Mountain and Santa Rita Pit occur up to four times per day during daylight hours only. In the previous permitting action of NSR permit 0298-M10 these blasting scenarios were modeled and have not been modified with this permitting action. Blasting will remain unchanged from the currently permitted and approved methodologies as described in this section.

Emissions from haul roads, screening operations, and material handling in Control Scenario 2 will not be modified with this permitting action and will continue to operate at the rates below in Table 105.D2.

Table 105.D2: Control Scenario 2 (Chino-Cobre Haul Roads)			
Haul Road	Throughput (tons/day)	Control Efficiency ¹ (%)	
Maintenance Entrance Road	100,000	88.8	
Cobre Haul Road	66,000	96.8	
SWRDF Road	75,000	88.8	
Hanover Mountain Road	126,000	96.8	
Muffler Road	100,000	88.8	
South Stockpile Road	100,000	88.8	
3A/9 Dam	100,000	88.8	
West Stockpile	100,000	88.8	
Café to Lampbright	160,000	88.8	
LBX Road	160,000	88.8	
Upper Lampbright	160,000	88.8	
Lower Lampbright	160,000	88.8	
Crusher/Stockpiles/Rehandle	100,000	88.8	
Roundabout	100,000	88.8	
Princess Ramp/Lee Hill Road	66,000	88.8	
NOBS	46,000	88.8	
Magnetite	4,500	88.8	

-----. .

¹ Control efficiencies are derived from a combination of controls. A control efficiency of 88.8% is based on a combination of base-course treatment, blading, and watering with a maximum speed limit of 35 miles/hour. A control efficiency of 96.8% is based on a combination of bas

In addition to the pre-existing Control Scenarios 1 & 2, a borrow pit is to be constructed near the Cobre Haul Road. Four onetime blasts will be conducted to construct the pit, they are set to occur during daylight hours from 0900 hrs to 1500 hrs and will never occur simultaneously as blasting at either Hanover Mountain or the Santa Rita Pit. Furthermore, these blasts and associated material handling are not to interfere with any other operations at the facility.

Air Dispersion Modeling

- Minor Source Construction (20.2.72 NMAC) and Prevention of Significant Deterioration (PSD) (20.2.74 NMAC) ambient impact analysis (modeling): Provide an ambient impact analysis as required at 20.2.72.203.A(4) and/or 20.2.74.303 NMAC and as outlined in the Air Quality Bureau's Dispersion Modeling Guidelines found on the Planning Section's modeling website. If air dispersion modeling has been waived for one or more pollutants, attach the AQB Modeling Section modeling waiver approval documentation.
- 2) SSM Modeling: Applicants must conduct dispersion modeling for the total short term emissions during routine or predictable startup, shutdown, or maintenance (SSM) using realistic worst case scenarios following guidance from the Air Quality Bureau's dispersion modeling section. Refer to "Guidance for Submittal of Startup, Shutdown, Maintenance Emissions in Permit Applications (<u>http://www.env.nm.gov/aqb/permit/app_form.html</u>) for more detailed instructions on SSM emissions modeling requirements.
- 3) Title V (20.2.70 NMAC) ambient impact analysis: Title V applications must specify the construction permit and/or Title V Permit number(s) for which air quality dispersion modeling was last approved. Facilities that have only a Title V permit, such as landfills and air curtain incinerators, are subject to the same modeling required for preconstruction permits required by 20.2.72 and 20.2.74 NMAC.

What is the purpose of this application?	Enter an X for each purpose that applies
New PSD major source or PSD major modification (20.2.74 NMAC). See #1 above.	
New Minor Source or significant permit revision under 20.2.72 NMAC (20.2.72.219.D NMAC).	
See #1 above. Note: Neither modeling nor a modeling waiver is required for VOC emissions.	
Reporting existing pollutants that were not previously reported.	
Reporting existing pollutants where the ambient impact is being addressed for the first time.	
Title V application (new, renewal, significant, or minor modification. 20.2.70 NMAC). See #3	Х
above.	
Relocation (20.2.72.202.B.4 or 72.202.D.3.c NMAC)	
Minor Source Technical Permit Revision 20.2.72.219.B.1.d.vi NMAC for like-kind unit	
replacements.	
Other: i.e. SSM modeling. See #2 above.	
This application does not require modeling since this is a No Permit Required (NPR) application.	
This application does not require modeling since this is a Notice of Intent (NOI) application (20.2.73 NMAC).	
This application does not require modeling according to 20.2.70.7.E(11), 20.2.72.203.A(4), 20.2.74.303, 20.2.79.109.D NMAC and in accordance with the Air Quality Bureau's Modeling Guidelines.	

Check each box that applies:

- \Box See attached, approved modeling **waiver for all** pollutants from the facility.
- \Box See attached, approved modeling waiver for some pollutants from the facility.
- □ Attached in Universal Application Form 4 (UA4) is a modeling report for all pollutants from the facility.
- \Box Attached in UA4 is a **modeling report for some** pollutants from the facility.
- \square No modeling is required.

Compliance Test History

(Submitting under 20.2.70, 20.2.72, 20.2.74 NMAC)

To show compliance with existing NSR permits conditions, you must submit a compliance test history. The table below provides an example.

Compliance Test Instory Tuble		
Unit No.	Test Description	Test Date
F-2-1-1.4	Testing in accordance with EPA Test Method 19 as required by NSR permit 0298-M8-R5 and Title V permit P066R3M1 sections A401(B) and B11A(1).	03/06/2018
F-2-1-1.4	Testing in accordance with EPA Test Method 19 as required by NSR permit 0298-M8-R5 and Title V permit P066R3M1 sections A401(B) and B11A(1).	11/16/2022
CB SCRN ENG	Testing in accordance with EPA Test Method 19 as required by NSR permit 0298-M8-R5 and Title V permit P066R3M1 sections A401(B) and B11A(1).	11/16/2022

Compliance Test History Table

Requirements for Title V Program

Who Must Use this Attachment:

* Any major source as defined in 20.2.70 NMAC.

- * Any source, including an area source, subject to a standard or other requirement promulgated under Section 111 Standards of Performance for New Stationary Sources, or Section 112 Hazardous Air Pollutants, of the 1990 federal Clean Air Act ("federal Act"). Non-major sources subject to Sections 111 or 112 of the federal Act are exempt from the obligation to obtain an 20.2.70 NMAC operating permit until such time that the EPA Administrator completes rulemakings that require such sources to obtain operating permits. In addition, sources that would be required to obtain an operating permit solely because they are subject to regulations or requirements under Section 112(r) of the federal Act are exempt from the requirement to obtain an Operating Permit.
- * Any Acid Rain source as defined under title IV of the federal Act. The Acid Rain program has additional forms. See <u>http://www.env.nm.gov/aqb/index.html</u>. Sources that are subject to both the Title V and Acid Rain regulations are encouraged to submit both applications simultaneously.
- * Any source in a source category designated by the EPA Administrator ("Administrator"), in whole or in part, by regulation, after notice and comment.

19.1 - 40 CFR 64, Compliance Assurance Monitoring (CAM) (20.2.70.300.D.10.e NMAC)

Any source subject to 40CFR, Part 64 (Compliance Assurance Monitoring) must submit all the information required by section 64.7 with the operating permit application. The applicant must prepare a separate section of the application package for this purpose; if the information is already listed elsewhere in the application package, make reference to that location. Facilities not subject to Part 64 are invited to submit periodic monitoring protocols with the application to help the AQB to comply with 20.2.70 NMAC. Sources subject to 40 CFR Part 64, must submit a statement indicating your source's compliance status with any enhanced monitoring and compliance certification requirements of the federal Act.

The Chino Mine is not subject to 40 CFR 64 for a Compliance Assurance Monitoring (CAM) plan.

19.2 - Compliance Status (20.2.70.300.D.10.a & 10.b NMAC)

Describe the facility's compliance status with each applicable requirement at the time this permit application is submitted. This statement should include descriptions of or references to all methods used for determining compliance. This statement should include descriptions of monitoring, recordkeeping and reporting requirements and test methods used to determine compliance with all applicable requirements. Refer to Section 2, Tables 2-N and 2-O of the Application Form as necessary. (20.2.70.300.D.11 NMAC) For facilities with existing Title V permits, refer to most recent Compliance Certification for existing requirements. Address new requirements such as CAM, here, including steps being taken to achieve compliance.

Based on information provided, Freeport believes that the Chino Mine is in compliance with each applicable requirement identified in Section 13. In the event that Freeport should discover new information affecting the compliance status of the facility, Freeport will make appropriate notifications and/or take corrective actions.

19.3 - Continued Compliance (20.2.70.300.D.10.c NMAC)

Provide a statement that your facility will continue to be in compliance with requirements for which it is in compliance at the time of permit application. This statement must also include a commitment to comply with other applicable requirements as they come into effect during the permit term. This compliance must occur in a timely manner or be consistent with such schedule expressly required by the applicable requirement.

The facility will continue to be in compliance with requirements for which it is in compliance at the time of this Title V renewal and significant modification and will comply with other applicable requirements as they come into effect during the permit term.

19.4 - Schedule for Submission of Compliance (20.2.70.300.D.10.d NMAC)

You must provide a proposed schedule for submission to the department of compliance certifications during the permit term. This certification must be submitted annually unless the applicable requirement or the department specifies a more frequent period. A sample form for these certifications will be attached to the permit.

Compliance certification will be submitted annually, as required by Title V Operating Permit P-066R3M1, condition A109.B.

19.5 - Stratospheric Ozone and Climate Protection

In addition to completing the four (4) questions below, you must submit a statement indicating your source's compliance status with requirements of Title VI, Section 608 (National Recycling and Emissions Reduction Program) and Section 609 (Servicing of Motor Vehicle Air Conditioners).

- 1. Does your facility have any air conditioners or refrigeration equipment that uses CFCs, HCFCs or other ozonedepleting substances?
- 2. Does any air conditioner(s) or any piece(s) of refrigeration equipment contain a refrigeration charge greater than 50 lbs?
 I Yes
 I No
 (If the answer is yes, describe the type of equipment and how many units are at the facility.)
- 3. Do your facility personnel maintain, service, repair, or dispose of any motor vehicle air conditioners (MVACs) or appliances ("appliance" and "MVAC" as defined at 82. 152)? □ Yes □ No
- 4. Cite and describe which Title VI requirements are applicable to your facility (i.e. 40 CFR Part 82, Subpart A through G.)

This regulation establishes requirements for protection of the stratospheric ozone. Chino hires a contractor to perform the service, maintenance, and repairs of appliances. These contractors will meet all of the applicable requirements.

19.6 - Compliance Plan and Schedule

B.

Applications for sources, which are not in compliance with all applicable requirements at the time the permit application is submitted to the department, must include a proposed compliance plan as part of the permit application package. This plan shall include the information requested below:

- A. Description of Compliance Status: (20.2.70.300.D.11.a NMAC) A narrative description of your facility's compliance status with respect to all applicable requirements (as defined in 20.2.70 NMAC) at the time this permit application is submitted to the department.
 - Compliance pla

Compliance plan: (20.2.70.300.D.11.B NMAC)

A narrative description of the means by which your facility will achieve compliance with applicable requirements with which it is not in compliance at the time you submit your permit application package.

С.

Chino Mine

Compliance schedule: (20.2.70.300D.11.c NMAC)

A schedule of remedial measures that you plan to take, including an enforceable sequence of actions with milestones, which will lead to compliance with all applicable requirements for your source. This schedule of compliance must be at least as stringent as that contained in any consent decree or administrative order to which your source is subject. The obligations of any consent decree or administrative order are not in any way diminished by the schedule of compliance.

D. Schedule of Certified Progress Reports: (20.2.70.300.D.11.d NMAC) A proposed schedule for submission to the department of certified progress reports must also be included in the compliance schedule. The proposed schedule must call for these reports to be submitted at least every six (6) months.

E. Acid Rain Sources: (20.2.70.300.D.11.e NMAC)

If your source is an acid rain source as defined by EPA, the following applies to you. For the portion of your acid rain source subject to the acid rain provisions of title IV of the federal Act, the compliance plan must also include any additional requirements under the acid rain provisions of title IV of the federal Act. Some requirements of title IV regarding the schedule and methods the source will use to achieve compliance with the acid rain emissions limitations may supersede the requirements of title V and 20.2.70 NMAC. You will need to consult with the Air Quality Bureau permitting staff concerning how to properly meet this requirement.

NOTE: The Acid Rain program has additional forms. See <u>http://www.env.nm.gov/aqb/index.html</u>. Sources that are subject to both the Title V and Acid Rain regulations are **encouraged** to submit both applications **simultaneously**.

The facility is not subject to 40 CFR 64 therefore no compliance plan is required.

19.7 - 112(r) Risk Management Plan (RMP)

Any major sources subject to section 112(r) of the Clean Air Act must list all substances that cause the source to be subject to section 112(r) in the application. The permittee must state when the RMP was submitted to and approved by EPA.

The Freeport Chino Mine is not required to have a Risk Management Plan.

19.8 - Distance to Other States, Bernalillo, Indian Tribes and Pueblos

Will the property on which the facility is proposed to be constructed or operated be closer than 80 km (50 miles) from other states, local pollution control programs, and Indian tribes and pueblos (20.2.70.402.A.2 and 20.2.70.7.B NMAC)?

(If the answer is yes, state which apply and provide the distances.)

There are not any states, local pollution control programs, or Indian tribes and pueblos closer than 50 miles to the Chino Mine.

19.9 - Responsible Official

Provide the Responsible Official as defined in 20.2.70.7.AD NMAC:

Randy Ellison - Plant Operator (575) 912-5640; rellsion@fmi.com P.O Box 10 Bayard, NM 88023

Other Relevant Information

<u>Other relevant information</u>. Use this attachment to clarify any part in the application that you think needs explaining. Reference the section, table, column, and/or field. Include any additional text, tables, calculations or clarifying information.

Additionally, the applicant may propose specific permit language for AQB consideration. In the case of a revision to an existing permit, the applicant should provide the old language and the new language in track changes format to highlight the proposed changes. If proposing language for a new facility or language for a new unit, submit the proposed operating condition(s), along with the associated monitoring, recordkeeping, and reporting conditions. In either case, please limit the proposed language to the affected portion of the permit.

N/A - No other relevant information is being included with this application.

Chino Mine

Section 22: Certification

Company Name: Freeport-McMoRan Chino Mines Go.

I, Rang Euison, hereby certify that the information and data submitted in this application are true

and as accurate as possible, to the best of my knowledge and professional expertise and experience.

Signed this _____ day of ______ day of ______ day of ______, aoa2 , upon my oath or affirmation, before a notary of the State of

exico

Ellisor Printed Nam

2/2022 Date

Vice President, General Manager

Scribed and sworn before me on this 2 day of <u>Hugust</u>, <u>2022</u>

My authorization as a notary of the State of NEW MERICO expires on the

day of <u>TEbruary</u>, 2025

Signature

Date

STATE OF NEW MEXICO NOTARY PUBLIC RUTH FOX Commission # 1068850 My Comm. Exp. Feb. 27, 2025

*For Title V applications, the signature must be of the Responsible Official as defined in 20.2.70.7.AE NMAC.

Saved Date: 7/14/2022