

November 13, 2024

New Mexico Environment Department Air Quality Bureau, Permits Section 525 Camino de los Marquez, Suite 1 Santa Fe, NM 87505 (505) 476-4300

RE: NSR Permit Application Copperhead Gas Plant Lea County, New Mexico Targa Midstream Services, LLC

Dear Sir or Madam:

On behalf of Targa Midstream Services, LLC (Targa), Altamira-US, LLC is submitting the enclosed NSR Permit Application for the Copperhead Gas Plant (Facility), which is located approximately 23.6 miles southwest of Eunice in Lea County. The compressor station existing at the site is authorized under General Construction Permit Oil & Gas (GCP-OG) No. 7712-M3. The Facility also has various tanks, produced water loading, and an emergency generator that are exempt.

Targa proposes adding two gas plants to the facility that will be collocated with the compressor station.

Two complete copies of the application are enclosed along with a check for \$500. Therefore, Targa is requesting an NSR permit for the Facility.

If you have any questions or comments, please contact Robert Andries of Targa at (713) 584-1360 or <u>randries@targaresources.com</u>.

Sincerely, Altamira-US, LLC

4MW2

Laura Worthen-Lodes, PE Chief Engineering Officer

NSR PERMIT APPLICATION COPPERHEAD GAS PLANT LEA COUNTY, NM

October 2024

Submitted to: **New Mexico Environment Department** Air Quality Bureau, Permits Section 525 Camino de los Marquez, Suite 1 Santa Fe, NM 87505

Prepared for: **Targa Midstream Services, LLC** Box 1909 Eunice, NM 88231 575-394-2534

Prepared by: Altamira-US, LLC 525 Central Park Dr., Suite 500 Oklahoma City, Oklahoma 73105 405-842-1066

TABLE OF CONTENTS

SECTIONS

- Section 1: Universal Air Quality Permit Application
- Section 2: Tables
- Section 3: Application Summary
- Section 4: Process Flow Sheet
- Section 5: Plot Plan Drawn to Scale
- Section 6: All Calculations
- Section 7: Information Used to Determine Emissions
- Section 8: Map(s)
- Section 9: Proof of Public Notice
- Section 10: Written Description of the Routine Operations of the Facility
- Section 11: Source Determination
- Section 12: PSD Applicability Determination for All Sources & Special Requirements for a PSD Application
- Section 13: Discussion Demonstrating Compliance with Each Applicable State & Federal Regulation
- Section 14: Operational Plan to Mitigate Emissions
- Section 15: Alternative Operating Scenarios
- Section 16: Air Dispersion Modeling
- Section 17: Compliance Test History
- Section 20: Other Relevant Information
- Section 22: Certification Page

Mail Application To:

New Mexico Environment Department Air Quality Bureau Permits Section 525 Camino de los Marquez, Suite 1 Santa Fe, New Mexico, 87505

Phone: (505) 476-4300 Fax: (505) 476-4375 www.env.nm.gov/aqb

Universal Air Quality Permit Application

Use this application for NOI, NSR, or Title V sources.

Use this application for: the initial application, modifications, technical revisions, and renewals. For technical revisions, complete Sections, 1-A, 1-B, 2-E, 3, 9 and any other sections that are relevant to the requested action; coordination with the Air Quality Bureau permit staff prior to submittal is encouraged to clarify submittal requirements and to determine if more or less than these sections of the application are needed. Use this application for streamline permits as well.

 This application is submitted as (check all that apply):
 Request for a No Permit Required Determination (no fee)

 Updating an application currently under NMED review.
 Include this page and all pages that are being updated (no fee required).

 Construction Status:
 Not Constructed
 Existing Permitted (or NOI) Facility
 Existing Non-permitted (or NOI) Facility

 Minor Source:
 NOI 20.2.73 NMAC
 20.2.72 NMAC application or revision
 20.2.72.300 NMAC Streamline application

 Title V Source:
 Title V (new)
 Title V renewal
 TV minor mod.
 TV significant mod.
 TV Acid Rain:
 New
 Renewal

 PSD Major Source:
 PSD major source (new)
 Minor Modification to a PSD source
 a PSD major modification

Acknowledgements:

I acknowledge that a pre-application meeting is available to me upon request. 🔲 Title V Operating, Title IV Acid Rain, and NPR applications have no fees.

S500 NSR application Filing Fee enclosed OR □ The full permit fee associated with 10 fee points (required w/ streamline applications).

Check No.: 3500508894 in the amount of 500

I acknowledge the required submittal format for the hard copy application is printed double sided 'head-to-toe', 2-hole punched (except the Sect. 2 landscape tables is printed 'head-to-head'), numbered tab separators. Incl. a copy of the check on a separate page.

I acknowledge there is an annual fee for permits in addition to the permit review fee: <u>www.env.nm.gov/air-quality/permit-fees-</u> <u>2/.</u>

This facility qualifies for the small business fee reduction per 20.2.75.11.C. NMAC. The full \$500.00 filing fee is included with this application and I understand the fee reduction will be calculated in the balance due invoice. The Small Business Certification Form has been previously submitted or is included with this application. (Small Business Environmental Assistance Program Information: www.env.nm.gov/air-quality/small-biz-eap-2/.)

Citation: Please provide the **low level citation** under which this application is being submitted: **20.2.72.219.D.1a NMAC** (e.g. application for a new minor source would be 20.2.72.200.A NMAC, one example for a Technical Permit Revision is 20.2.72.219.B.1.b NMAC, a Title V acid rain application would be: 20.2.70.200.C NMAC)

Section 1 – Facility Information

Sec	tion 1-A: Company Information	AI # if known: 38309	Updating Permit/NOI #: 7712				
1	Facility Name: Copperhead Gas Plant	Plant primary SIC Code (4 digits): 1321					
		Plant NAIC code (6 digits): 211112					
а	Facility Street Address (If no facility street address, provide directions from The subject facility is located approximately 25.9 miles east of Malaga in L	n a prominent landmark ea County, NM. 32.2121): 28, -103.624164				
2	Plant Operator Company Name: Targa Midstream Services LLC	Phone/Fax: 575-631-7	093				
а	a Plant Operator Address: PO Box 1909 Eunice, NM 88231						

b	Plant Operator's New Mexico Corporate ID or Tax ID: 1948249							
3	Plant Owner(s) name(s): Targa Midstream Services LLC	Phone/Fax: 575-631-7093						
а	Plant Owner(s) Mailing Address(s): PO Box 1909 Eunice, NM 88231							
4	Bill To (Company): Targa Midstream Services LLC	Phone/Fax: 575-631-7093						
а	Mailing Address: PO Box 1909 Eunice, NM 88231	E-mail: cschroder@targaresources.com						
5	 Preparer: Laura Worthen Lodes, PE Consultant: Altamira-US LLC 	Phone/Fax: 405-919-4129						
а	Mailing Address:525 Central Park Dr, Suite 500	E-mail: laura.worthen-lodes@altamira-us.com						
6	Plant Operator Contact: Jimmy Oxford	Phone/Fax: (940) 220-2493						
а	Address: 4401 N I-35, Suite 303, Denton, TX 76207	E-mail: joxford@targaresources.com						
7	Air Permit Contact: Catherine Schroder	Title: Supervisor ES&H – Air Quality Permitting – G&P						
а	E-mail: cschroder@targaresources.com Phone/Fax: (405) 749-5614							
b	Mailing Address: 14000 Quail Springs Pkwy Ste 215, Oklahoma City, OK	73134						
с	The designated Air permit Contact will receive all official correspondence	(i.e. letters, permits) from the Air Quality Bureau.						

Section 1-B: Current Facility Status

1.a	Has this facility already been constructed? 🛛 Yes 🔲	1.b If yes to question 1.a, is it currently operating in New Mexico?				
2	If yes to question 1.a, was the existing facility subject t Intent (NOI) (20.2.73 NMAC) before submittal of this a Yes XNO	If yes to question 1.a, was the existing facility subject to a construction permit (20.2.72 NMAC) before submittal of this application? Ves Ves				
3	Is the facility currently shut down? 🔲 Yes 🛛 No	onth and year of shut down (MM/YY):				
4	Was this facility constructed before 8/31/1972 and continuously operated since 1972?					
5	If Yes to question 3, has this facility been modified (see 20.2.72.7.P NMAC) or the capacity increased since 8/31/1972?					
6	Does this facility have a Title V operating permit (20.2.) ☐ Yes ⊠ No	If yes, the permit No. is: P-				
7	Has this facility been issued a No Permit Required (NPF	If yes, the NPR No. is:				
8	Has this facility been issued a Notice of Intent (NOI)?	If yes, the NOI No. is:				
9	Does this facility have a construction permit (20.2.72/2 ☐ Yes ⊠ No	? If yes, the permit No. is:				
10	Is this facility registered under a General permit (GCP-2	1, GCP-2, etc.)?	If yes, the register No. is: 7712			

Section 1-C: Facility Input Capacity & Production Rate

1	What is the facility's maximum input capacity, specify units (reference here and list capacities in Section 20, if more room is required) Natural Gas								
а	Current	Hourly: 6250 MSCF/Hr	Annually: 54750 MMSCF/yr						
b	Proposed	Hourly: 35.42 MMSCF/hr	Daily: 850 MMSCF/D	Annually: 310,250 MMSCF/yr					
2	What is the	facility's maximum production rate, sp	pecify units (reference here and list capacities in	n Section 20, if more room is required)					
а	Current	Hourly:	Daily:	Annually:					
b	Proposed	Hourly:	Annually:						

Section 1-D: Facility Location Information

1	Latitude (decimal degrees): 32.212128	Longitude	(decimal degrees): -103.62	24164	County: Lea	Elevation (ft): 3594				
2	UTM Zone: 🔲 12 or 🔀 13		Datum: 🖾 NAD 83 🔲 WGS 84							
а	UTM E (in meters, to nearest 10 meters): 629663	.29	UTM N (in meters, to nearest	t 10 meters)	: 3564780					
3	Name and zip code of nearest New Mexico	o town: Mala	aga							
4	Detailed Driving Instructions from nearest approximately 25.9 miles east of Malaga in	•	•	• •	e subject facility is	located				
5	The facility is 25.9 (distance) miles East (direction) of Malaga (nearest town).									
6	Land Status of facility (check one): 🗌 Private 🔲 Indian/Pueblo 🔀 Government 📄 BLM 📄 Forest Service 🗌 Military									
7	List all municipalities, Indian tribes, and counties within a ten (10) mile radius (20.2.72.203.B.2 NMAC) of the property on which the facility is proposed to be constructed or operated: N/A									
8	20.2.72 NMAC applications only : Will the than 50 km (31 miles) to other states, Berr <u>publications/</u>)? ☐ Yes ⊠ No (20.2.72.20	nalillo Count	y, or a Class I area (see <u>ww</u>	w.env.nr	m.gov/air-quality/	modeling-				
9	Name nearest Class I area: Carlsbad Caver	ns								
10	Shortest distance (in km) from facility bou	ndary to the	boundary of the nearest (Class I are	a (to the nearest 10 r	meters): 53 miles				
11	Distance (meters) from the perimeter of the lands, including mining overburden remov		-	-						
12	Method(s) used to delineate the Restricted Area: continuous fencing "Restricted Area" is an area to which public entry is effectively precluded. Effective barriers include continuous fencing, continuous walls, or other continuous barriers approved by the Department, such as rugged physical terrain with steep grade that would require special equipment to traverse. If a large property is completely enclosed by fencing, a restricted									
13	area within the property may be identified with signage only. Public roads cannot be part of a Restricted Area. Does the owner/operator intend to operate this source as a portable stationary source as defined in 20.2.72.7.X NMAC? Yes No A portable stationary source is not a mobile source, such as an automobile, but a source that can be installed permanently at one location or that can be re-installed at various locations, such as a hot mix asphalt plant that is moved to different job sites.									
14	Will this facility operate in conjunction wit If yes, what is the name and permit numbe			me prope	erty? 🛛 No	Yes				

Section 1-E: Proposed Operating Schedule (The 1-E.1 & 1-E.2 operating schedules may become conditions in the permit.)

1	Facility maximum operating ($\frac{hours}{day}$): 24	(<mark>days</mark> (week	(week year	^s): 52	(<u>hours</u>): 8760	
2	Facility's maximum daily operating schedule (if less	AM PM	End:	PAM PM		
3	Month and year of anticipated start of construction	: December 2024				
4	Month and year of anticipated construction completion: January 2025					
5	Month and year of anticipated startup of new or modified facility: January 2025					
6	Will this facility operate at this site for more than o	ne year? 🛛 Yes 🗌 No				

Section 1-F: Other Facility Information

1	Are there any current Notice of Violations (NOV), compliance orders, or any other compliance or enforcement issues related to this facility?				
а	If yes, NOV date or description of issue:	NOV Tracking No:			

b	Is this application in response to any issue listed in 1-F, 1 or 1a above? Yes X No If Yes, provide the 1c & 1d info below:							
с	Document	Date:	Requirement # (or					
Ľ	Title:	Date.	page # and paragraph #):					
d	d Provide the required text to be inserted in this permit:							
2	Is air quality dispersion modeling or modeling waiver bein	g submitted with this	application? 🛛 Yes 🗌 No					
3	Does this facility require an "Air Toxics" permit under 20.2	.72.400 NMAC & 20.	2.72.502, Tables A and/or B? 🔲 Yes 🛛 No					
4	Will this facility be a source of federal Hazardous Air Pollutants (HAP)? 🔀 Yes 🔲 No							
а	If Yes, what type of source? \square Major ($\square \ge 10$ tpy of a OR \square Minor ($\square < 10$ tpy of any		$\square \ge 25$ tpy of any combination of HAPS) $\square < 25$ tpy of any combination of HAPS)					
5	Is any unit exempt under 20.2.72.202.B.3 NMAC? 🛛 Ye	5 🗆 No						
	If yes, include the name of company providing commercia	l electric power to th	e facility: <u>Xcel</u>					
а	Commercial power is purchased from a commercial utility on site for the sole purpose of the user.	/ company, which spo	ecifically does not include power generated					

Section 1-G: Streamline Application (This section applies to 20.2.72.300 NMAC Streamline applications only)

1		I have filled out Section 18, "Addendum for Streamline Applications."	\geq	N/A (This is not a Streamline application.)
---	--	---	--------	---

Section 1-H: Current Title V Information - Required for all applications from TV Sources

(Title V-source required information for all applications submitted pursuant to 20.2.72 NMAC (Minor Construction Permits), or 20.2.74/20.2.79 NMAC (Major PSD/NNSR applications), and/or 20.2.70 NMAC (Title V))

1	Responsible Official (R.O.) Jimmy Oxford (20.2.70.300.D.2 NMAC):	Phone: (940) 220-2493						
а	aR.O. Title: Senior Vice President OperationsR.O. e-mail: joxford@targaresources.com							
b	R. O. Address: 4401 North I-35, Suite 303							
2	Alternate Responsible Official (20.2.70.300.D.2 NMAC):		Phone:					
а	A. R.O. Title:	A. R.O. e-mail:						
b	A. R. O. Address:							
3	Company's Corporate or Partnership Relationship to any other Air Quality Permittee (List the names of any companies that have operating (20.2.70 NMAC) permits and with whom the applicant for this permit has a corporate or partnership relationship):							
4	Name of Parent Company ("Parent Company" means the primary name of the organization that owns the company to be permitted wholly or in part.): Targa Resources, Inc.							
а	Address of Parent Company: 811 Louisiana Street, Suite 2100, Ho	ouston, TX 77002						
5	Names of Subsidiary Companies ("Subsidiary Companies" means organizations, branches, divisions or subsidiaries, which are owned, wholly or in part, by the company to be permitted.): None							
6	Telephone numbers & names of the owners' agents and site contacts familiar with plant operations: Catherine Schroder, cschroder@targaresources.com							
7	Affected Programs to include Other States, local air pollution control programs (i.e. Bernalillo) and Indian tribes: Will the property on which the facility is proposed to be constructed or operated be closer than 80 km (50 miles) from other states, local pollution control programs, and Indian tribes and pueblos (20.2.70.402.A.2 and 20.2.70.7.B)? If yes, state which ones and provide the distances in kilometers: 25.72 km from Texas; No Tribes or pueblos or local pollution control programs within 80 km.							

Section 1-I – Submittal Requirements

Each 20.2.73 NMAC (NOI), a 20.2.70 NMAC (Title V), a 20.2.72 NMAC (NSR minor source), or 20.2.74 NMAC (PSD) application package shall consist of the following:

Hard Copy Submittal Requirements:

- One hard copy original signed and notarized application package printed double sided 'head-to-toe' <u>2-hole punched</u> as we bind the document on top, not on the side; except Section 2 (landscape tables), which should be head-to-head. Please use numbered tab separators in the hard copy submittal(s) as this facilitates the review process. For NOI submittals only, hard copies of UA1, Tables 2A, 2D & 2F, Section 3 and the signed Certification Page are required. Please include a copy of the check on a separate page.
- 2) If the application is for a minor NSR, PSD, NNSR, or Title V application, include one working hard copy for Department use. This copy should be printed in book form, 3-hole punched, and must be double sided. Note that this is in addition to the head-to-to 2-hole punched copy required in 1) above. Minor NSR Technical Permit revisions (20.2.72.219.B NMAC) only need to fill out Sections 1-A, 1-B, 3, and should fill out those portions of other Section(s) relevant to the technical permit revision. TV Minor Modifications need only fill out Sections 1-A, 1-B, 1-H, 3, and those portions of other Section(s) relevant to the minor modification. NMED may require additional portions of the application to be submitted, as needed.
- 3) The entire NOI or Permit application package, including the full modeling study, should be submitted electronically. Electronic files for applications for NOIs, any type of General Construction Permit (GCP), or technical revisions to NSRs must be submitted with compact disk (CD) or digital versatile disc (DVD). For these permit application submittals, two CD copies are required (in sleeves, not crystal cases, please), with additional CD copies as specified below. NOI applications require only a single CD submittal. Electronic files for other New Source Review (construction) permits/permit modifications or Title V permits/permit modifications can be submitted on CD/DVD or sent through AQB's secure file transfer service.

Electronic files sent by (check one):

CD/DVD attached to paper application

Secure electronic transfer. Air Permit Contact Name_Laura Worthen Lodes__,

Email Laura.Worthen-Lodes@altamira-us.com Phone number 405-919-4129

a. If the file transfer service is chosen by the applicant, after receipt of the application, the Bureau will email the applicant with instructions for submitting the electronic files through a secure file transfer service. Submission of the electronic files through the file transfer service needs to be completed within 3 business days after the invitation is received, so the applicant should ensure that the files are ready when sending the hard copy of the application. The applicant will not need a password to complete the transfer. **Do not use the file transfer service for NOIs, any type of GCP, or technical revisions to NSR permits.**

- 4) Optionally, the applicant may submit the files with the application on compact disk (CD) or digital versatile disc (DVD) following the instructions above and the instructions in 5 for applications subject to PSD review.
- 5) If air dispersion modeling is required by the application type, include the NMED Modeling Waiver and/or electronic air dispersion modeling report, input, and output files. The dispersion modeling <u>summary report only</u> should be submitted as hard copy(ies) unless otherwise indicated by the Bureau.
- 6) If the applicant submits the electronic files on CD and the application is subject to PSD review under 20.2.74 NMAC (PSD) or NNSR under 20.2.79 NMC include,
 - a. one additional CD copy for US EPA,
 - b. one additional CD copy for each federal land manager affected (NPS, USFS, FWS, USDI) and,
 - c. one additional CD copy for each affected regulatory agency other than the Air Quality Bureau.

If the application is submitted electronically through the secure file transfer service, these extra CDs do not need to be submitted.

Electronic Submittal Requirements [in addition to the required hard copy(ies)]:

1) All required electronic documents shall be submitted as 2 separate CDs or submitted through the AQB secure file transfer service. Submit a single PDF document of the entire application as submitted and the individual documents comprising the

application.

- 2) The documents should also be submitted in Microsoft Office compatible file format (Word, Excel, etc.) allowing us to access the text and formulas in the documents (copy & paste). Any documents that cannot be submitted in a Microsoft Office compatible format shall be saved as a PDF file from within the electronic document that created the file. If you are unable to provide Microsoft office compatible electronic files or internally generated PDF files of files (items that were not created electronically: i.e. brochures, maps, graphics, etc.), submit these items in hard copy format. We must be able to review the formulas and inputs that calculated the emissions.
- 3) It is preferred that this application form be submitted as 4 electronic files (3 MSWord docs: Universal Application section 1 [UA1], Universal Application section 3-19 [UA3], and Universal Application 4, the modeling report [UA4]) and 1 Excel file of the tables (Universal Application section 2 [UA2]). Please include as many of the 3-19 Sections as practical in a single MS Word electronic document. Create separate electronic file(s) if a single file becomes too large or if portions must be saved in a file format other than MS Word.
- 4) The electronic file names shall be a maximum of 25 characters long (including spaces, if any). The format of the electronic Universal Application shall be in the format: "A-3423-FacilityName". The "A" distinguishes the file as an application submittal, as opposed to other documents the Department itself puts into the database. Thus, all electronic application submittals should begin with "A-". Modifications to existing facilities should use the core permit number (i.e. '3423') the Department assigned to the facility as the next 4 digits. Use 'XXXX' for new facility applications. The format of any separate electronic submittals (additional submittals such as non-Word attachments, re-submittals, application updates) and Section document shall be in the format: "A-3423-9-description", where "9" stands for the section # (in this case Section 9-Public Notice). Please refrain, as much as possible, from submitting any scanned documents as this file format is extremely large, which uses up too much storage capacity in our database. Please take the time to fill out the header information throughout all submittals as this will identify any loose pages, including the Application Date (date submitted) & Revision number (0 for original, 1, 2, etc.; which will help keep track of subsequent partial update(s) to the original submittal. Do not use special symbols (#, @, etc.) in file names. The footer information should not be modified by the applicant.

Table of Contents

- Section 1: General Facility Information
- Section 2: Tables
- Section 3: Application Summary
- Section 4: Process Flow Sheet
- Section 5: Plot Plan Drawn to Scale
- Section 6: All Calculations
- Section 7: Information Used to Determine Emissions
- Section 8: Map(s)
- Section 9: Proof of Public Notice
- Section 10: Written Description of the Routine Operations of the Facility
- Section 11: Source Determination
- Section 12: PSD Applicability Determination for All Sources & Special Requirements for a PSD Application
- Section 13: Discussion Demonstrating Compliance with Each Applicable State & Federal Regulation
- Section 14: Operational Plan to Mitigate Emissions
- Section 15: Alternative Operating Scenarios
- Section 16: Air Dispersion Modeling
- Section 17: Compliance Test History
- Section 18: Addendum for Streamline Applications (streamline applications only)
- Section 19: Requirements for the Title V (20.2.70 NMAC) Program (Title V applications only)
- Section 20: Other Relevant Information
- Section 21: Addendum for Landfill Applications
- Section 22: Certification Page

Change Log – Do **not** submit this page with your application.

If you are using a form older than the most current form posted on the website, you are required to incorporate the changes listed. Periodically, AQB will announce when older form versions will no longer be accepted.

Version Date	Changes Incorporated
April 1, 2021	Current version of this form. Older versions are not accepted.
July 12, 2023	Removed Section, Township, Range, and NAD 27, changed font to Calibri, inserted active checkboxes.

Copperhead Gas Plant

Revision #0

Unit and stack numbering must correspond throughout the application package. If applying for a NOI under 20.2.73 NMAC, equipment exemptions under 2.72.202 NMAC do not apply.

Unit	Source Description	Make	Model #		Serial #	Manufact- urer's Rated Capacity ³	Requested Permitted Capacity ³	Date of Manufacture ²	Controlle d by Unit #	Source Classi-	rce Classi- tion Code For Each Piece of Equipment, Check One		Check One	RICE Ignition Type (CI, SI, 4SLB, 4SRB,	Replacing
Number¹					(Specify Units)	(Specify Units)	Date of Construction/ Reconstruction ²	Emissions vented to Stack #	(SCC)				2SLB) ⁴	Unit No.	
EM-1a	Diesel Generator	Aggreko	TD1683G E	TBD	919 HP	919 HP		EM-1a EM-1a	20200102		Existing (unchanged) New/Additional] To Be Modified	To be Removed Replacement Unit To be Replaced			
EM-1b	Diesel Generator	Aggreko	TD1683G E	TBD	919 HP	919 HP		EM-1b EM-1b	20200102		Existing (unchanged) New/Additional To Be Modified	To be Removed Replacement Unit To be Replaced			
EM-2a	Diesel Generator	Aggreko	TD1683G E	TBD	919 HP	919 HP		EM-2a EM-2a	20200102		Existing (unchanged) New/Additional To Be Modified	To be Removed Replacement Unit To be Replaced			
EM-2b	Diesel Generator	Aggreko	TD1683G E	TBD	919 HP	919 HP		EM-2b EM-2b	20200102		Existing (unchanged) New/Additional To Be Modified	To be Removed Replacement Unit To be Replaced			
EM-3a	Diesel Generator	Aggreko	TD1683G E	TBD	919 HP	919 HP		EM-3a EM-3a	20200102		Existing (unchanged) New/Additional To Be Modified	To be Removed Replacement Unit To be Replaced			
EM-3b	Diesel Generator	Aggreko	TD1683G E	TBD	919 HP	919 HP		EM-3b EM-3b	20200102		Existing (unchanged) New/Additional To Be Modified	To be Removed Replacement Unit To be Replaced			
EM-4a	Diesel Generator	Aggreko	TD1683G E	TBD	919 HP	919 HP		EM-4a EM-4a	20200102		Existing (unchanged) New/Additional To Be Modified	To be Removed Replacement Unit To be Replaced			
EM-4b	Diesel Generator	Aggreko	TD1683G E	TBD	919 HP	919 HP		EM-4b EM-4b	20200102		Existing (unchanged) New/Additional To Be Modified	To be Removed Replacement Unit To be Replaced			
FUG	Facility Fugitives	N/A	N/A	N/A	N/A	N/A		FUG FUG	31088811		Existing (unchanged) New/Additional To Be Modified	To be Removed Replacement Unit To be Replaced			
DEHY-1	Glycol Dehydrator	N/A	N/A	N/A	150 MMSCFD	150 MMSCFD		FLARE FLARE	31000227		Existing (unchanged) New/Additional To Be Modified	To be Removed Replacement Unit To be Replaced			
H-1	Dehydrator Boiler	N/A	N/A	N/A	3 MMBTUH	3 MMBTUH		H-1 H-1	31000404		Existing (unchanged) New/Additional To Be Modified	To be Removed Replacement Unit To be Replaced			
FLARE	Flare- Dehydrator/Tank control	N/A	N/A	N/A	150 MMSCFD	150 MMSCFD		FLARE FLARE	31000205		Existing (unchanged) New/Additional To Be Modified	To be Removed Replacement Unit To be Replaced			
Tank-1	Produced Water Tank	N/A	N/A	N/A	400 bbl	400 bbl		Tank-1 Flare	40400315		Existing (unchanged) New/Additional To Be Modified	To be Removed Replacement Unit To be Replaced			
Tank-2	Produced Water Tank	N/A	N/A	N/A	400 bbl	400 bbl		Tank-2 Flare	40400315		Existing (unchanged) New/Additional To Be Modified	To be Removed Replacement Unit To be Replaced			

Targa N	Aidstream Services LLC						Copperhead G	as Plant		Appl	ication Date: October 2024	Revisio	on #0
Unit Number ¹	Source Description	Make	Model #	Serial #	Manufact- urer's Rated Capacity ³ (Specify Units)	Requested Permitted Capacity ³ (Specify Units)	Date of Manufacture ² Date of Construction/ Reconstruction ²	Controlle d by Unit # Emissions vented to Stack #	Source Classi- fication Code (SCC)	For Each Piece of Equipment,	Check One	RICE Ignition Type (CI, SI, 4SLB, 4SRB, 2SLB) ⁴	Replacing Unit No.
Tank-3	Slop Tank	N/A	N/A	N/A	400 bbl	400 bbl		Tank-3	40400311	 Existing (unchanged) New/Additional To Be Modified 	To be Removed Replacement Unit To be Replaced		
Tank-4	Combo Tank	N/A	N/A	N/A	400 bbl	400 bbl		Tank-4	40400311	 Existing (unchanged) New/Additional To Be Modified 	To be Removed Replacement Unit To be Replaced		
Tank-5	New H2S scavenger tank	N/A	N/A	N/A	500 bbl	500 bbl		Tank-5	40400311	Existing (unchanged) Existing (unchanged) To Be Modified	To be Removed Replacement Unit To be Replaced		
Tank-6	Spent H2S scavenger tank	N/A	N/A	N/A	500 bbl	500 bbl		Tank-6	40400311	 Existing (unchanged) New/Additional To Be Modified 	To be Removed Replacement Unit To be Replaced		
Load-1	Load-out of Produced Water	N/A	N/A	N/A	33791.70 bbl/y	33791.70 bbl/y		Load-1 Load-1	40400250	 Existing (unchanged) New/Additional To Be Modified 	To be Removed Replacement Unit To be Replaced		
Load-2	Load-out of Slop Tnk	N/A	N/A	N/A	824,564 bbl/y	824,564 bbl/y		Load-2 Load-2	40400250	 Existing (unchanged) New/Additional To Be Modified 	To be Removed Replacement Unit To be Replaced		
SSM	Pigging and purging pipeline Flare - SSM	N/A	N/A	N/A	150 MMSCFD	150 MMSCFD		SSM SSM	31000299	 Existing (unchanged) New/Additional To Be Modified 	To be Removed Replacement Unit To be Replaced		
м	Malfunction	N/A	N/A	N/A	N/A	N/A		M M	31088811	 ✓ Existing (unchanged) Mew/Additional To Be Modified 	To be Removed Replacement Unit To be Replaced		
H-1701- CHP	HMO Heater 1701	N/A	N/A	N/A	79.4 MMBtu/h r	79.4 MMBtu/hr			31000404	 Existing (unchanged) New/Additional To Be Modified 	To be Removed Replacement Unit To be Replaced		
H-1702- CHP	HMO Heater 1702	N/A	N/A	N/A	79.4 MMBtu/h r	79.4 MMBtu/hr			31000404	 Existing (unchanged) New/Additional To Be Modified 	To be Removed Replacement Unit To be Replaced		
H-1703- CHP	HMO Heater 1703	N/A	N/A	N/A	79.4 MMBtu/h	79.4 MMBtu/hr			31000404	Existing (unchanged) New/Additional To Be Modified	To be Removed Replacement Unit To be Replaced		
H-1704- CHP	HMO Heater 1704	N/A	N/A		37.8	37.8 MMBtu/hr			31000404	Existing (unchanged) Image: Constraint of the second sec	To be Removed Replacement Unit To be Replaced		
H-4701- CHP	Regen Gas Heater 4701	N/A	N/A		16.2	16.2 MMBtu/hr			31000404	 Existing (unchanged) New/Additional To Be Modified 	To be Removed Replacement Unit To be Replaced		
H-1701- CH2	HMO Heater 1701	N/A	N/A	N/A	79.4 MMBtu/h	70 /			31000404	 Existing (unchanged) New/Additional To Be Modified 	To be Removed Replacement Unit To be Replaced		
H-1702- CH2	HMO Heater 1802	N/A	N/A	N/A	79.4 MMBtu/h r	79.4 MMBtu/hr			31000404	Existing (unchanged) Vector Vector Image: Vector New/Additional Image: Vector To Be Modified	To be Removed Replacement Unit To be Replaced		
H-1703- CH2	HMO Heater 1803	N/A	N/A		79.4	79.4 MMBtu/hr			31000405	 ☐ Existing (unchanged) ✓ New/Additional ☐ To Be Modified 	To be Removed Replacement Unit To be Replaced		

Targa N	Aidstream Services LLC						Copperhead G	as Plant		Application Date: October 2024 Revision #0
					Manufact- urer's Rated	Requested Permitted	Date of Manufacture ²	Controlle d by Unit #	Source Classi-	i- RICE Ignition Type
Unit Number ¹	Source Description	Make	Model #	Serial #	Capacity ³ (Specify Units)	Capacity ³ (Specify Units)		Emissions vented to Stack #	(SCC)	e For Each Piece of Equipment, Check One (CI, SI, 4SLB, 4SRB, 2SLB) ⁴ Replacing Unit No.
H-1704- CH2	HMO Heater 1704	N/A	N/A	N/A	r	37.8 MMBtu/hr			31000404	Existing (unchanged) To be Removed New/Additional Replacement Unit To Be Modified To be Replaced
H-4701- CH2	Regen Gas Heater 4701	N/A	N/A	N/A	16.2 MMBtu/h r	16.2 MMBtu/hr			31000404	Existing (unchanged) To be Removed New/Additional Replacement Unit To Be Modified To be Replaced

Targa N	fidstream Services LLC						Copperhead G	as Plant		Appl	ication Date: October 2024	Revisio	on #0
Unit Number ¹	Source Description	Make	Model #	Serial #	Manufact- urer's Rated Capacity ³ (Specify Units)	Requested Permitted Capacity ³ (Specify Units)	Date of Manufacture ² Date of Construction/ Reconstruction ²	Controlle d by Unit # Emissions vented to Stack #	Source Classi-	For Each Piece of Equipment,	Check One	RICE Ignition Type (CI, SI, 4SLB, 4SRB, 2SLB) ⁴	Replacing Unit No.
FL-1800- CHP	Flare 1	N/A	N/A	N/A	0.0255 MMSCFD	0.0255 MMSCFD			31000227	 Existing (unchanged) New/Additional To Be Modified 	To be Removed Replacement Unit To be Replaced		
FL-1800- CH2	Flare 2	N/A	N/A	N/A	0.0255 MMSCFD	0.0255 MMSCFD			31000227	 Existing (unchanged) New/Additional To Be Modified 	To be Removed Replacement Unit To be Replaced		
FL-1800- CHP- SSM	Flare 1 SSM	N/A	N/A	N/A	N/A	N/A			31088811	 Existing (unchanged) New/Additional To Be Modified 	To be Removed Replacement Unit To be Replaced		
FL-1800- CH2-SSM	Flare 2 SSM	N/A	N/A	N/A	N/A	N/A			31088811	 Existing (unchanged) ✓ New/Additional To Be Modified 	To be Removed Replacement Unit To be Replaced		
FUG-CHP	Plant 1 Fugitives	N/A	N/A	N/A	N/A	N/A			31088811	 Existing (unchanged) New/Additional To Be Modified 	To be Removed Replacement Unit To be Replaced		
FUG-CH2	Plant 2 Fugitives	N/A	N/A	N/A	N/A	N/A			31088811	 Existing (unchanged) New/Additional To Be Modified 	To be Removed Replacement Unit To be Replaced		
TK-1907- CHP	Produced Water Tank	N/A	N/A	N/A	500 bbl	500 bbl			40400315	 Existing (unchanged) New/Additional To Be Modified 	To be Removed Replacement Unit To be Replaced		
TK-1908- CHP	Produced Water Tank	N/A	N/A	N/A	500 bbl	500 bbl			40400315	Existing (unchanged) New/Additional To Be Modified	To be Removed Replacement Unit To be Replaced		
TK-1907- CH2	Produced Water Tank	N/A	N/A	N/A	500 bbl	500 bbl			40400315	 Existing (unchanged) New/Additional To Be Modified 	To be Removed Replacement Unit To be Replaced		
TK-1908- CH2	Produced Water Tank	N/A	N/A	N/A	500 bbl	500 bbl			40400315	 Existing (unchanged) New/Additional To Be Modified 	To be Removed Replacement Unit To be Replaced		
L-P	Pressurized Loading	N/A	N/A	N/A	200 Loads/yr	200 Loads/yr			40400250	 Existing (unchanged) New/Additional To Be Modified 	To be Removed Replacement Unit To be Replaced		
VCU	Vapor Combustion Unit	N/A	N/A	N/A	0.45 MMBtu/h r	0.45 MMBtu/hr				 Existing (unchanged) New/Additional To Be Modified 	To be Removed Replacement Unit To be Replaced		
NRU	Nitrogen Rejection Unit	N/A	N/A	N/A						 ☐ Existing (unchanged) ✓ New/Additional ☐ To Be Modified 	To be Removed Replacement Unit To be Replaced		
MSSFUG	MSS - NRU Residue Gas Blowdown	N/A	N/A	N/A						 Existing (unchanged) New/Additional To Be Modified 	To be Removed Replacement Unit To be Replaced		
H-2	Dehydrator Boiler	N/A	N/A	N/A	3 MMBTUH	3 MMBTUH			31000404	 Existing (unchanged) New/Additional To Be Modified 	To be Removed Replacement Unit To be Replaced		
DEHY-2	Glycol Dehydrator	N/A	N/A	N/A	150 MMSCFD	150 MMSCFD		Flare Flare	31000227	Existing (unchanged) Wew/Additional To Be Modified	To be Removed Replacement Unit To be Replaced		

Targa M	Targa Midstream Services LLC				Copperhead Gas Plant						Appli	cation Date: October 2024	Revisio	n #0
					Manufact- urer's Rated	Requested Permitted	Date of Manufacture ²	Controlle d by Unit #	Source Classi-				RICE Ignition Type	
Unit Number ¹	Source Description	Make	Model #	Serial #	Capacity ³ (Specify Units)	Capacity ³ (Specify Units)	Date of Construction/ Reconstruction ²	Emissions vented to Stack #	fication Code (SCC)	For	Each Piece of Equipment, (Check One	(CI, SI, 4SLB, 4SRB, 2SLB) ⁴	Replacing Unit No.
GEN-1	Natural Gas Generator	Cummins	GQSK60- G8	TBD	1,747 Hp	1,747 Hp			20200254		Existing (unchanged) New/Additional To Be Modified	To be Removed Replacement Unit To be Replaced		
GEN-2	Natural Gas Generator	Cummins	GQSK60- G9	TBD	1,747 Hp	1,747 Hp			20200254		Existing (unchanged) New/Additional To Be Modified	To be Removed Replacement Unit To be Replaced		
GEN-3	Natural Gas Generator	Cummins	GQSK60- G10	TBD	1,747 Hp	1,747 Hp			20200254		Existing (unchanged) New/Additional To Be Modified	To be Removed Replacement Unit To be Replaced		
GEN-4	Natural Gas Generator	Cummins	GQSK60- G11	TBD	1,747 Hp	1,747 Hp			20200254		Existing (unchanged) New/Additional To Be Modified	To be Removed Replacement Unit To be Replaced		
GEN-5	Natural Gas Generator	Cummins	GQSK60- G12	TBD	1,747 Hp	1,747 Hp			20200254		Existing (unchanged) New/Additional To Be Modified	To be Removed Replacement Unit To be Replaced		
GEN-6	Natural Gas Generator	Cummins	GQSK60- G13	TBD	1,747 Hp	1,747 Hp			20200254		Existing (unchanged) New/Additional To Be Modified	To be Removed Replacement Unit To be Replaced		

¹ Unit numbers must correspond to unit numbers in the previous permit unless a complete cross reference table of all units in both permits is provided.

² Specify dates required to determine regulatory applicability.

³ To properly account for power conversion efficiencies, generator set rated capacity shall be reported as the rated capacity of the engine in horsepower, not the kilowatt capacity of the generator set.

⁴ "4SLB" means four stroke lean burn engine, "4SRB" means four stroke rich burn engine, "2SLB" means two stroke lean burn engine, "CI" means compression ignition, and "SI" means spark ignition

Table 2-B: Insignificant Activities¹ (20.2.70 NMAC) OR Exempted Equipment (20.2.72 NMAC)

All 20.2.70 NMAC (Title V) applications must list all Insignificant Activities in this table. All 20.2.72 NMAC applications must list Exempted Equipment in this table. If equipment listed on this table is exempted under 20.2.72.202.B.5, include emissions calculations and emissions totals for 202.B.5 "similar functions" units, operations, and activities in Section 6, Calculations. Equipment and activities exempted under 20.2.72.202 NMAC may not necessarily be Insignificant under 20.2.70 NMAC (and vice versa). Unit & stack numbering must be consistent throughout the application package. Per Exemptions Policy 02-012.00 (see http://www.env.nm.gov/aqb/permit/aqb_pol.html), 20.2.72.202.B NMAC Exemptions do not apply, but 20.2.72.202.A NMAC exemptions do apply to NOI facilities under 20.2.73 NMAC. List 20.2.72.301.D.4 NMAC Auxiliary Equipment for Streamline applications in Table 2-A. The List of Insignificant Activities (for TV) can be found online at https://www.env.nm.gov/wp-

content/uploads/sites/2/2017/10/InsignificantListTitleV.pdf. TV sources may elect to enter both TV Insignificant Activities and Part 72 Exemptions on this form Date o List Specific 20.2.72.202 NMAC Exemption Manufacture Model No. Max Capacity (e.g. 20.2.72.202.B.5) /Reconstruction² **Unit Number Source Description** Manufacturer For Each Piece of Equipment, Check Onc Date of Installation Insignificant Activity citation (e.g. IA List Item Serial No. **Capacity Units** #1.a) /Construction² Existing (unchanged) □ To be Removed Lube Oil TANK-7 □ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced Existing (unchanged) To be Removed TANK-8 Lube Oil New/Additional Replacement Unit □ To Be Modified □ To be Replaced ⊠ Existing (unchanged) □ To be Removed **TEG Tank** TANK-9 New/Additional Replacement Unit To Be Modified To be Replaced Existing (unchanged) To be Removed 500 GAL TANK-10 Methanol Tote □ New/Additional Replacement Unit □ To Be Modified To be Replaced Existing (unchanged) To be Removed TK-1901-CHP LUBE OIL DRAIN SUMP □ New/Additional □ Replacement Unit

					To Be Modified	To be Replaced
					🗵 Existing (unchanged)	To be Removed
TK-1902-CHP	OPEN DRAIN SUMP				New/Additional	Replacement Unit
					To Be Modified	To be Replaced
			210 BBL		🛛 Existing (unchanged)	To be Removed
TK-1903-CHP	USED LUBE OIL TANK				New/Additional	Replacement Unit
					To Be Modified	To be Replaced
			210 BBL		🗵 Existing (unchanged)	To be Removed
TK-1904-CHP	USED LUBE OIL TANK				New/Additional	Replacement Unit
					To Be Modified	To be Replaced
			400 BBL		🗵 Existing (unchanged)	To be Removed
TK-1905-CHP	OPEN DRAIN STORAGE TANK				New/Additional	Replacement Unit
					To Be Modified	To be Replaced
			1000 GAL		⊠ Existing (unchanged)	To be Removed
TK-1906-CHP	REFRIGERATION LUBE OIL TANK				New/Additional	Replacement Unit
					To Be Modified	To be Replaced

Targa Midstre	eam Services LLC			Copperhe	ead Gas Plant	Application Date:	November 2024	Revision # 0
Unit Number	Source Description	Manufacturer	Model No.	Max Capacity	List Specific 20.2.72.202 NMAC Exemption (e.g. 20.2.72.202.B.5)	Date of Manufacture /Reconstruction ²	For Each Piece of Equipr	nent Check Onc
	Source Description	Manufacturei	Serial No.	Capacity Units	Insignificant Activity citation (e.g. IA List Item #1.a)	Date of Installation /Construction ²		nent, check onc
				400 BBL			Existing (unchanged)	\Box To be Removed
TK-1909-CHP	LEAN AMINE TANK						New/Additional	Replacement Unit
							To Be Modified	To be Replaced
				1000 BBI			Existing (unchanged)	To be Removed
TK-1910-CHP	WATER MAKEUP TANK						New/Additional	Replacement Unit
							To Be Modified	To be Replaced
				210 BBL			Existing (unchanged)	To be Removed
TK-1911-CHP	TEG TANK						New/Additional	Replacement Unit
							To Be Modified	To be Replaced
	NEW LUBE OIL TANK (ACID			210 BBL			Existing (unchanged)	To be Removed
TK-1917-CHP	GAS)						New/Additional	Replacement Unit
	0.107						To Be Modified	To be Replaced
TK ADCO CUD				500 GAL			Existing (unchanged)	To be Removed
TK-1960-CHP	LUBE OIL MAKEUP TANK						New/Additional	Replacement Unit
							To Be Modified	To be Replaced
TK 4070 CUD				500 GAL			Existing (unchanged)	To be Removed
TK-1970-CHP	CYLINDER OIL TANK						New/Additional	Replacement Unit
							□ To Be Modified	To be Replaced
TV 4000 0110				500 GAL			Existing (unchanged)	To be Removed
TK-1980-CHP	CYLINDER OIL TANK						New/Additional	Replacement Unit
							To Be Modified	To be Replaced
TK 2004 CUD							Existing (unchanged)	To be Removed
TK-2901-CHP	AMINE SUMP						New/Additional	Replacement Unit
							To Be Modified	To be Replaced
TK 2004 CUD							Existing (unchanged)	To be Removed
TK-3901-CHP	GLYCOL SUMP						New/Additional	Replacement Unit
							□ To Be Modified	□ To be Replaced
TK 2020 CUD							Existing (unchanged)	To be Removed
TK-3920-CHP	JW SURGE TANK						□ New/Additional	Replacement Unit
							□ To Be Modified	□ To be Replaced
TK 2021 CUD	LUBE OIL MAKEUP TANK			300 GAL			Existing (unchanged)	□ To be Removed
TK-3921-CHP	LUBE OIL MAREUP TANK						New/Additional	Replacement Unit
							□ To Be Modified	To be Replaced
ТК-3930-СНР	JW SURGE TANK						Existing (unchanged)	□ To be Removed
TK-5950-CHP	JW SORGE TAINK						New/Additional	Replacement Unit
 							 To Be Modified Existing (unchanged) 	 To be Replaced To be Removed
ТК-6900-СНР	ACID GAS CYLINDER LUBE OIL			1000 GAL				
	TANK						 New/Additional To Be Modified 	Replacement Unit
 							Existing (unchanged)	To be Replaced To be Replaced
TK-1901-CH2	LUBE OIL DRAIN SUMP							□ To be Removed
11-1901-012	LOBE OIL DRAIN SOIVIP						New/Additional Ta Da Madified	Replacement Unit Ta he Deplaced
 							 To Be Modified Existing (unchanged) 	To be Replaced To be Replaced
TK-1902-CH2	OPEN DRAIN SUMP							To be Removed
11-1902-CH2	OF LIN DIVAIN SOME						New/Additional	Replacement Unit To be Deplaced
L							To Be Modified	To be Replaced

Targa Midstre	eam Services LLC			Copperh	ead Gas Plant	Application Date:	November 2024	Revision # 0
Unit Number	Source Description	Manufacturer	Model No.	Max Capacity	List Specific 20.2.72.202 NMAC Exemption (e.g. 20.2.72.202.B.5)	Date of Manufacture /Reconstruction ²	For Each Piece of Equipr	nent, Check Onc
			Serial No.	Capacity Units	Insignificant Activity citation (e.g. IA List Item #1.a)	Date of Installation /Construction ²		
				210 BBL			Existing (unchanged)	To be Removed
TK-1903-CH2	USED LUBE OIL TANK						New/Additional	Replacement Unit
							□ To Be Modified	To be Replaced
TK-1904-CH2				210 BBL			Existing (unchanged)	To be Removed
TK-1904-CH2	NEW LUBE OIL TANK						 New/Additional To Be Modified 	Replacement Unit To be Replaced
				400 551			Existing (unchanged)	 To be Replaced To be Removed
TK-1905-CH2	OPEN DRAIN STORAGE TANK			400 BBL			New/Additional	 Replacement Unit
							To Be Modified	 To be Replaced
	REFRIGERATION LUBE OIL			1000 GAL			Existing (unchanged)	□ To be Removed
TK-1906-CH2				1000 GAL			□ New/Additional	Replacement Unit
	TANK						To Be Modified	To be Replaced
				400 BBL			Existing (unchanged)	To be Removed
TK-1909-CH2	LEAN AMINE TANK						New/Additional	Replacement Unit
							To Be Modified	To be Replaced
TK 4040 CU2				1000 BBL			Existing (unchanged)	To be Removed
TK-1910-CH2	WATER MAKEUP TANK						New/Additional	Replacement Unit
							 To Be Modified Existing (unchanged) 	 To be Replaced To be Removed
TK-1911-CH1	TEG TANK			210 BBL			New/Additional	
							To Be Modified	 Replacement Unit To be Replaced
				210 BBL			Existing (unchanged)	To be Removed
TK-1917-CH2	NEW LUBE OIL TANK (ACID			210 BBL			□ New/Additional	Replacement Unit
	GAS)						To Be Modified	To be Replaced
				500 GAL			⊠ Existing (unchanged)	To be Removed
TK-1960-CH2	LUBE OIL MAKEUP TANK						New/Additional	Replacement Unit
							To Be Modified	To be Replaced
				500 GAL			Existing (unchanged)	To be Removed
TK-1970-CH2	CYLINDER OIL TANK						New/Additional	Replacement Unit
							□ To Be Modified	To be Replaced
TK-1980-CH2	CYLINDER OIL TANK			500 GAL			Existing (unchanged)	□ To be Removed
TK-1960-CH2	CTEINDER OIE TANK						 New/Additional To Be Modified 	 Replacement Unit To be Replaced
							Existing (unchanged)	□ To be Removed
TK-2901-CH2	AMINE SUMP						New/Additional	□ Replacement Unit
	· · · ·						To Be Modified	 To be Replaced
							Existing (unchanged)	□ To be Removed
TK-3901-CH2	GLYCOL SUMP						New/Additional	Replacement Unit
							To Be Modified	To be Replaced
							Existing (unchanged)	To be Removed
TK-3920-CH2	JW SURGE TANK						New/Additional	Replacement Unit
							□ To Be Modified	To be Replaced
TK 2024 CU2				300 GAL			Existing (unchanged)	To be Removed
TK-3921-CH2	LUBE OIL MAKEUP TANK						New/Additional Ta Da Madificad	Replacement Unit
							 To Be Modified Existing (unchanged) 	 To be Replaced To be Removed
TK-3930-CH2	JW SURGE TANK						New/Additional	 Replacement Unit
1K 5550 CHZ	STU SOUGE FAIL						 New/Additional To Be Modified 	 Replacement Unit To be Replaced

Targa Midstro	eam Services LLC			Copperhe	ad Gas Plant	Application Date	:: November 2024	Revision # 0
Unit Number	Source Description	Manufacturer	Model No.	Max Capacity	List Specific 20.2.72.202 NMAC Exemption (e.g. 20.2.72.202.B.5)	Date of Manufacture /Reconstruction ²	For Each Piece of Equip	mont Chock Onc
onit Number	Source Description	Manufacturer	Serial No.	Capacity Units	Insignificant Activity citation (e.g. IA List Item #1.a)			nent, check Onc
	ACID GAS CYLINDER LUBE OIL			1000 GAL			Existing (unchanged)	□ To be Removed
TK-6900-CH2	TANK						 New/Additional To Be Modified 	 Replacement Unit To be Replaced
5.4	NATURAL GAS-FIRED			87.17 HP			⊠ Existing (unchanged)	□ To be Removed
E-1	MICROTURBINE						 New/Additional To Be Modified 	 Replacement Unit To be Replaced

¹ Insignificant activities exempted due to size or production rate are defined in 20.2.70.300.D.6, 20.2.70.7.Q NMAC, and the NMED/AQB List of Insignificant Activities, dated September 15, 2008. Emissions from these insignificant activities do not need to be reported, unless specifically requested.

² Specify date(s) required to determine regulatory applicability.

Unit and stack numbering must correspond throughout the application package. Only list control equipment for TAPs if the TAP's maximum uncontrolled emissions rate is over its respective threshold as listed in 20.2.72 NMAC, Subpart V, Tables A and B. In accordance with 20.2.72.203.A(3) and (8) NMAC, 20.2.70.300.D(5)(b) and (e) NMAC, and 20.2.73.200.B(7) NMAC, the permittee shall report all control devices and list each pollutant controlled by the control device regardless if the applicant takes credit for the reduction in emissions.

Control Equipment Unit No.	Control Equipment Description	Date Installed	Controlled Pollutant(s)	Controlling Emissions for Unit Number(s) ¹	Efficiency (% Control by Weight)	Method used to Estimate Efficiency
втех	BTEX Condenser/Incinerator		Total HAP	Dehy/Amine	52	Process simulator
FLARE	Flare		Total HAP	Dehy/Amine	98	Design Calculation
втех	BTEX Condenser/Incinerator		Volatile Organic Compounds (VOC)	Dehy/Amine	33	Process simulator
FLARE	Flare		Volatile Organic Compounds (VOC)	Dehy/Amine	98	Design Calculation
FLARE	Flare		Volatile Organic Compounds (VOC)	Tank-1	98	Design Calculation
FLARE	Flare		Volatile Organic Compounds (VOC)	Tank-2	98	Design Calculation
AGI	Acid Gas Injection Unit		Volatile Organic Compounds (VOC)	Amine	100	Design Calculation
AGI	Acid Gas Injection Unit		Hydrogen Sulfide (H2)	Amine	100	Design Calculation
FL-1800-CHP	Flare		Volatile Organic Compounds (VOC)	Amine/process vents	98	Design Calculation
FL-1800-CHP	Flare		Hydrogen Sulfide (H2)	Amine	98	Design Calculation
FL-1800-CH2	Flare		Volatile Organic Compounds (VOC)	Amine/process vents	98	Design Calculation
FL-1800-CH2	Flare		Hydrogen Sulfide (H2)	Amine	98	Design Calculation
VCU	Vapor Combustion Unit		Volatile Organic Compounds (VOC)	Produced Water Tank	98	Design Calculation
VCU	Vapor Combustion Unit		Hydrogen Sulfide (H2)	Produced Water Tank	98	Design Calculation

Control		Date		Controlling Emissions for Unit	Efficiency	Method used to
Equipment	Control Equipment Description		Controlled Pollutant(s)	e i	(% Control by	Estimate
Unit No.		Installed	controlleur onutant(o)	Number(s) ¹	Weight)	Efficiency
1						
¹ List each cor	trol device on a separate line. For each control device, list all en	nission units o	controlled by the control device.			

Copperhead Gas Plant

Table 2-D: Maximum Emissions (under normal operating conditions)

☑ This Table was intentionally left blank because it would be identical to Table 2-E.

Maximum Emissions are the emissions at maximum capacity and prior to (in the absence of) pollution control, emission-reducing process equipment, or any other emission reduction. Calculate the hourly emissions using the worst case hourly emissions for each pollutant. For each pollutant, calculate the annual emissions as if the facility were operating at maximum plant capacity without pollution controls for 8760 hours per year, unless otherwise approved by the Department. List Hazardous Air Pollutants (HAP) & Toxic Air Pollutants (TAPs) in Table 2-I. Unit & stack numbering must be consistent throughout the application package. Fill all cells in this table with the emission numbers or a "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expected. Numbers shall be expressed to at least 2 decimal points (e.g. 0.41, 1.41, or 1.41E-4).

Unit No.		Ox		0		C		Ох		M		10 ¹		2.5 ¹		₂ S		ead
Unit NO.	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/y										

¹Condensable Particulate Matter: Include condensable particulate matter emissions for PM10 and PM2.5 if the source is a combustion source. Do not include condensable particulate matter for PM unless PM is set equal to PM10 and PM2.5. Particulate matter (PM) is not subject to an ambient air quality standard, but PM is a regulated air pollutant under PSD (20.2.74 NMAC) and Title V (20.2.70 NMAC).

Table 2-E: Requested Allowable Emissions

Unit & stack numbering must be consistent throughout the application package. Fill all cells in this table with the emission numbers or a "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expected. Numbers shall be expressed to at least 2 decimal points (e.g. 0.41, 1.41, or 1.41E⁻⁴).

	N	Оx	C	0	V	C	SO>	(Ы	М1	PM	10 ¹	PM	2.5 ¹	Н	₂ S	Le	ad
Unit No.	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
EM-1a	1.09	4.79	0.42	1.85	0.10	0.44	0.02	0.08	0.02	0.09	0.02	0.09	0.02	0.09	-	-	-	-
EM-1b	1.09	4.79	0.42	1.85	0.10	0.44	0.02	0.08	0.02	0.09	0.02	0.09	0.02	0.09	-	-	-	-
EM-2a	1.09	4.79	0.42	1.85	0.10	0.44	0.02	0.08	0.02	0.09	0.02	0.09	0.02	0.09	-	-	-	-
EM-2b	1.09	4.79	0.42	1.85	0.10	0.44	0.02	0.08	0.02	0.09	0.02	0.09	0.02	0.09	-	-	-	-
EM-3a	1.09	4.79	0.42	1.85	0.10	0.44	0.02	0.08	0.02	0.09	0.02	0.09	0.02	0.09	-	-	-	-
EM-4a	1.09	4.79	0.42	1.85	0.10	0.44	0.02	0.08	0.02	0.09	0.02	0.09	0.02	0.09	-	-	-	-
EM-4a	1.09	4.79	0.42	1.85	0.10	0.44	0.02	0.08	0.02	0.09	0.02	0.09	0.02	0.09	-	-	-	-
EM-4b	1.09	4.79	0.42	1.85	0.10	0.44	0.02	0.08	0.02	0.09	0.02	0.09	0.02	0.09	-	-	-	-
GEN-1	1.93	8.43	1.23	5.40	1.53	6.70	0.01	0.03	0.04	0.17	0.04	0.17	0.04	0.17	-	-	-	-
GEN-2	1.93	8.43	1.23	5.40	1.53	6.70	0.01	0.03	0.04	0.17	0.04	0.17	0.04	0.17	-	-	-	-
GEN-3	1.93	8.43	1.23	5.40	1.53	6.70	0.01	0.03	0.04	0.17	0.04	0.17	0.04	0.17	-	-	-	-
GEN-4	1.93	8.43	1.23	5.40	1.53	6.70	0.01	0.03	0.04	0.17	0.04	0.17	0.04	0.17	-	-	-	-
GEN-5	1.93	8.43	1.23	5.40	1.53	6.70	0.01	0.03	0.04	0.17	0.04	0.17	0.04	0.17	-	-	-	-
GEN-6	1.93	8.43	1.23	5.40	1.53	6.70	0.01	0.03	0.04	0.17	0.04	0.17	0.04	0.17	-	-	-	-
FUG	-	-	-	-	0.43	1.87	-	-	-	-	-	-	-	-	0.00	0.00	-	-
DEHY-1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
H-1	0.29	1.29	0.25	1.08	0.02	0.07	0.02	0.09	0.02	0.10	0.02	0.10	0.02	0.10	-	-	-	-
H-2	0.29	1.29	0.25	1.08	0.02	0.07	0.02	0.09	0.02	0.10	0.02	0.10	0.02	0.10	-	-	-	-
FLARE	1.47	6.43	2.93	12.84	3.10	13.56	8.91	39.02	-	-	-	-	-	-	0.10	0.42	-	-
Tank-1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Tank-2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Tank-3	-	-	-	-	0.01	0.05	-	-	-	-	-	-	-	-	0.00	0.00	-	-
Tank-4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Tank-5	-	-	-	-	0.08	0.35	-	-	-	-	-	-	-	-	-	-	-	-
Tank-6	-	-	-	-	0.08	0.35	-	-	-	-	-	-	-	-	-	-	-	-
LOAD-1	-	-	-	-	116.55	11.35	-	-	-	-	-	-	-	-	-	-	-	-
LOAD-2	-	-	-	-	0.00	0.01	-	-	-	-	-	-	-	-	-	-	-	-
HAUL	-	-	-	-	-	-	-	-	1.38		0.35		0.04		-	-		
H-1701-CHP	2.86	12.52	3.81	16.69	0.43	1.88	0.05	0.23	0.59	2.59	0.59	2.59	0.59	2.59	-	-	-	-
H-1702-CHP	2.86	12.52	3.81	16.69	0.43	1.88	0.05	0.23	0.59	2.59	0.59	2.59	0.59	2.59	-	-	-	-
H-1703-CHP	2.86	12.52	3.81	16.69	0.43	1.88	0.05	0.23	0.59	2.59	0.59	2.59	0.59	2.59	-	-	-	-
H-1704-CHP	1.36	5.96	2.31	10.10	0.20	0.89	0.03	0.11	0.28	1.23	0.28	1.23	0.28	1.23	-	-	-	-

Targa Midstream Servic	es LLC						(Copperhead C	as Plant				Application	on Date: Nov	ember 2024	Ļ	Revi	sion # 0
Unit No.	N	Ох	C	0	V	C	SO	K	PI	M1	PM	10 ¹	PM	2.5 ¹	Н	₂ S	Le	ead
onite No.	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
H-4701-CHP	1.59	6.96	1.33	5.84	0.09	0.38	0.01	0.05	0.12	0.53	0.12	0.53	0.12	0.53	-	-	-	-
H-1701-CH2	2.86	12.52	3.81	16.69	0.43	1.88	0.05	0.23	0.59	2.59	0.59	2.59	0.59	2.59	-	-	-	-
H-1702-CH2	2.86	12.52	3.81	16.69	0.43	1.88	0.05	0.23	0.59	2.59	0.59	2.59	0.59	2.59	-	-	-	-
H-1703-CH2	2.86	12.52	3.81	16.69	0.43	1.88	0.05	0.23	0.59	2.59	0.59	2.59	0.59	2.59				
H-1704-CH2	1.36	5.96	2.31	10.10	0.20	0.89	0.03	0.11	0.28	1.23	0.28	1.23	0.28	1.23	-	-	-	-
H-4701-CH2	1.59	6.96	1.33	5.84	0.09	0.38	0.01	0.05	0.12	0.53	0.12	0.53	0.12	0.53	-	-	-	-
FL-1800-CHP	0.21	0.93	0.43	1.86	0.00	0.00	0.00	0.00	-	-	-	-	-	-	0.00	0.00	-	-
FL-1800-CH2	0.21	0.93	0.43	1.86	0.00	0.00	0.00	0.00	-	-	-	-	-	-	0.00	0.00	-	-
FUG-CHP	-	-	-	-	2.05	8.99	-	-	-	-	-	-	-	-	0.05	0.24	-	-
FUG-CH2	-	-	-	-	2.05	8.99	-	-	-	-	-	-	-	-	0.05	0.24	-	-
TK-1907-CHP	-	-	-	-	0.24	1.05	-	-	-	-	-	-	-	-	-	0.30	-	-
TK-1908-CHP	-	-	-	-	0.24	1.05	-	-	-	-	-	-	-	-	-	0.30	-	-
TK-1907-CH2	-	-	-	-	0.24	1.05	-	-	-	-	-	-	-	-	-	0.30	-	-
TK-1908-CH2	-	-	-	-	0.24	1.05	-	-	-	-	-	-	-	-	-	0.30	-	-
L-P	-	-	-	-	0.54	0.05	-	-	-	-	-	-	-	-	-	-	-	-
VCU	0.06	0.27	0.12	0.54	0.32	1.40	2.59	11.33	-	-	-	-	-	-	0.03	0.12	-	-
NRU	-	-	-	-	0.00	0.00	-	-	-	-	-	-	-	-	-	-	-	
Totals	45.90	201.03	45.32	198.49	139.35	108.89	12.11	53.05	6.18	21.00	5.15	21.00	4.83	21.00	0.22	2.23	-	-

¹Condensable Particulate Matter: Include condensable particulate matter emissions for PM10 and PM2.5 if the source is a combustion source. Do not include condensable particulate matter for PM unless PM is set equal to PM10 and PM2.5. Particulate matter (PM) is not subject to an ambient air quality standard, but it is a regulated air pollutant under PSD (20.2.74 NMAC) and Title V (20.2.70 NMAC).

lication Date. November 2024

Revision # 0

Table 2-F: Additional Emissions during Startup, Shutdown, and Routine Maintenance (SSM)

This table is intentionally left blank since all emissions at this facility due to routine or predictable startup, shutdown, or scenduled maintenance are no higher than those listed in Table 2-E and a malfunction emission limit is not already permitted or requested. If you are required to report GHG emissions as described in Section 6a, include any GHG emissions during Startup, Shutdown, and/or Scheduled Maintenance (SSM) in Table 2-P. Provide an explanations of SSM emissions in Section 6 and 6a.

All applications for facilities that have emissions during routine our predictable startup, shutdown or scheduled maintenance (SSM)¹, including NOI applications, must include in this table the Maximum Emissions during routine or predictable startup, shutdown and scheduled maintenance (20.2.7 NMAC, 20.2.72.203.A.3 NMAC, 20.2.73.200.D.2 NMAC). In Section 6 and 6a, provide emissions calculations for all SSM emissions reported in this table. Refer to "Guidance for Submittal of Startup, Shutdown, Maintenance Emissions in Permit Applications (https://www.env.nm.gov/aqb/permit/aqb_pol.html) for more detailed instructions. Numbers shall be expressed to at least 2 decimal points (e.g. 0.41, 1.41, or 1.41E-4).

Unit No.	NO	Эx	C	0	V	C	SO	x	PI	M ²	PM	110 ²	PM	2.5 ²	Н	₂ S	Le	ad
Unit No.	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
FL-1800-CHP	1801.87	24.04	3597.22	48.00	1630.79	3.49	1260.55	36.91	-	-	-	-	-	-	13.67	0.40	-	-
FL-1800-CH2	1801.87	24.04	3597.22	48.00	1630.79	3.49	1560.55	30.91	-	-	-	-	-	-	13.67	0.40	-	-
SSM	-	-	-	-		10.00	-	-	-	-	-	-	-	-	0.00	0.00	-	-
SSM-Flare	10.88	0.05	21.71	0.09	19.08	0.07	1.15	0.005	-	-	-	-	-	-	0.00	0.00	-	-
М	-	-	-	-	-	10.00	-	-	-	-	-	-	-	-	-	-	-	-
MSSFUG	-	-	-	-	315.76	7.58	-	-	-	-	-	-	-	-	-	-	-	-
Totals	3614.62	24.09	7216.15	48.09	3596.42	31.15	2822.25	36.91	0.00	0.00	0.00	0.00	0.00	0.00	27.33	0.40	0.00	0.00

¹ For instance, if the short term steady-state Table 2-E emissions are 5 lb/hr and the SSM rate is 12 lb/hr, enter 7 lb/hr in this table. If the annual steady-state Table 2-E emissions are 21.9 TPY, and the number of scheduled SSM events result in annual emissions of 31.9 TPY, enter 10.0 TPY in the table below.

² Condensable Particulate Matter: Include condensable particulate matter emissions for PM10 and PM2.5 if the source is a combustion source. Do not include condensable particulate matter for PM unless PM is set equal to PM10 and PM2.5. Particulate matter (PM) is not subject to an ambient air quality standard, but it is a regulated air pollutant under PSD (20.2.74 NMAC) and Title V (20.2.70 NMAC).

Table 2-G: Stack Exit and Fugitive Emission Rates for Special Stacks

I have elected to leave this table blank because this facility does not have any stacks/vents that split emissions from a single source or combine emissions from more than one source listed in table 2-A.
Additionally, the emission rates of all stacks match the Requested allowable emission rates stated in Table 2-E.

Use this table to list stack emissions (requested allowable) from split and combined stacks. List Toxic Air Pollutants (TAPs) and Hazardous Air Pollutants (HAPs) in Table 2-I. List all fugitives that are associated with the normal, routine, and non-emergency operation of the facility. Unit and stack numbering must correspond throughout the application package. Refer to Table 2-E for instructions on use of the "-" symbol and on significant figures.

	Serving Unit	N	Ox	C	0	V	oc	S	Dх	Р	М	PN	110	PN	12.5	\Box H ₂ S or	Lead
Stack No.	Number(s) from Table 2-A	lb/hr	ton/yr	lb/hr	ton/yr												
-	Totals:																

Table 2-P: Greenhouse Gas Emissions

Applications submitted under 20.2.70, 20.2.72, & 20.2.74 NMAC are required to complete this Table. Power plants, Title V major sources, and PSD major sources must report and calculate all GHG emissions for each unit. Applicants must report potential emission rates in short tons per year (see Section 6.a for assistance). Include GHG emissions during Startup, Shutdown, and Scheduled Maintenance in this table. For minor source facilities that are not power plants, are not Title V, or are not PSD, there are three options for reporting GHGs 1) report GHGs for each individual piece of equipment; 2) report all GHGs from a group of unit types, for example report all must calculate all venting GHG as a second separate unit; OR 3) check the following box.

 $\ddot{}$ By checking this box, the applicant acknowledges the total CO2e emissions are less than 75,000 tons per year.

		CO2 ton/yr	N₂O ton/yr	CH₄ ton/yr	SF 6 ton/yr	PFC/HFC ton/yr ²					Total GHG Mass Basis ton/yr ⁴	Total CO₂e ton/yr ⁵
Unit No.	GWPs ¹	1	298	25	22,800	footnote 3						
EM-1a	mass GHG											
	CO ₂ e	7757.63	18.75	7.87								
EM-1b	mass GHG											
	CO ₂ e	7757.63	18.75	7.87								
EM-2a	mass GHG											
	CO ₂ e	7757.63	18.75	7.87								
EM-2b	mass GHG											
	CO ₂ e	7757.63	18.75	7.87								
EM-3a	mass GHG	7757.60	40.75	7.07								
	CO ₂ e	7757.63	18.75	7.87								
EM-3b	mass GHG	7757.60	40.75	7.07								
	CO ₂ e	7757.63	18.75	7.87								
EM-4a	mass GHG		10.75	7.07								
	CO₂e mass GHG	7757.63	18.75	7.87								
EM-4b	CO ₂ e	7757.63	18.75	7.87								
	mass GHG	7737.03	10.75	7.07								
GEN-1	CO ₂ e	5859.503	3.290863	2 7607011								
	mass GHG	2023.202	5.290805	2.7007911								
GEN-2	CO ₂ e	5859.503	3.290863	2 7607911								
	mass GHG	5655.565	3.230003	2.7007511								
GEN-3	CO ₂ e	5859.503	3.290863	2,7607911								
	mass GHG		0.200000									
GEN-4	CO ₂ e	5859.503	3.290863	2.7607911								
	mass GHG											
GEN-5	CO ₂ e	5859.503	3.290863	2.7607911								
	mass GHG											
GEN-6	CO ₂ e	5859.503	3.290863	2.7607911								
11.4	mass GHG											
H-1	CO ₂ e	1394.42	0.78	0.66								
H-1701-	mass GHG											
СНР	CO ₂ e	36905.565	20.727211	17.3886								
H-1702-	mass GHG											
СНР	CO ₂ e	36905.565	20.727211	17.3886								

H-1703-	mass GHG										
CHP	CO ₂ e		20.727211	17.3886							
Н-1704-	mass GHG	50905.505	20.727211	17.5000							
CHP		17560 652	9.8676144	8.2782							
H-4701-	mass GHG	17509.052	9.0070144	0.2702							
CHP	CO ₂ e		4.2289776	2 5 4 7 9							
Н-1701-	mass GHG	7529.6507	4.2269770	5.5476							
CH2			20.727211	21.47							
H-1702-	mass GHG	50905.505	20.727211	21.47							
CH2			20.727211	21 / 7							
Н-1703-	mass GHG	50905.505	20.727211	21.47							
CH2		26005 565	20.727211	21.47							
H-1704-	mass GHG	30903.303	20.727211	21.47							
CH2		17569 652	9.8676144	8 2782							
H-4701-	mass GHG	17505.052	5.0070144	0.2702							
CH2		7529 8507	4.2289776	3 5478							
	mass GHG	7525.0507	4.2203770	5.5470							
VCU	CO ₂ e	208.81	0.12	0.1							
	mass GHG	200.01	0.12	0.1							
FLARE		314.86898	0	260.2							
FL-1800-	- mass GHG										
СНР		37548.505	9.64E-06	3.538494							
FL-1800-	mass GHG										
CH2	CO ₂ e	37548.505	9.64E-06	3.538494							
	mass GHG										
DEHY-1	CO ₂ e	44.99	-	214.14						259.13	285.64
LOADOU	mass GHG										
т	CO ₂ e									182.39	182.39
LOAD	mass GHG										
LUAD	CO ₂ e									4.9	4.9
Dehy-2	mass GHG										
Deny-2	CO ₂ e										
H-2	mass GHG										
11-2	CO ₂ e										
Total	mass GHG										
Total	CO ₂ e										

¹ GWP (Global Warming Potential): Applicants must use the most current GWPs codified in Table A-1 of 40 CFR part 98. GWPs are subject to change, therefore, applicants need to check 40 CFR 98 to confirm GWP values.

² For **HFCs** or **PFCs** describe the specific HFC or PFC compound and use a separate column for each individual compound.

³ For each new compound, enter the appropriate GWP for each HFC or PFC compound from Table A-1 in 40 CFR 98.

⁴ Green house gas emissions on a mass basis is the ton per year green house gas emission before adjustment with its GWP.

⁵ CO₂e means Carbon Dioxide Equivalent and is calculated by multiplying the TPY mass emissions of the green house gas by its GWP.

Form Revision: 5/3/2016

Application Date: November 2024

Table 2-H: Stack Exit Conditions

Unit and stack numbering must correspond throughout the application package. Include the stack exit conditions for each unit that emits from a stack, including blowdown venting parameters and tank emissions. If the facility has multiple operating scenarios, complete a separate Table 2-H for each scenario and, for each, type scenario name here:

Stack Number	Serving Unit Number(s) from	Orientation (H- Horizontal	Rain Caps	Height Above	Temp.	Flow	Rate	Moisture by	Velocity	Inside
Stack Number	Table 2-A	V=Vertical)	(Yes or No)	Ground (ft)	(F)	(acfs)	(dscfs)	Volume (%)	(ft/sec)	Diameter (ft)
EM-1a	EM-1a	V	No	14.8	892				391.30	0.67
EM-1b	EM-1b	V	No	14.8	892				391.30	0.67
EM-2a	EM-2a	V	No	14.8	892				391.30	0.67
EM-2b	EM-2b	V	No	14.8	892				391.30	0.67
EM-3a	EM-3a	V	No	14.8	892				391.30	0.67
EM-4a	EM-4a	V	No	14.8	892				391.30	0.67
EM-4a	EM-4a	V	No	14.8	892				391.30	0.67
EM-4b	EM-4b	V	No	14.8	892				391.30	0.67
GEN-1	GEN-1	V	No	19.0	497				209.90	1.06
GEN-2	GEN-2	V	No	19.0	497				209.90	1.06
GEN-3	GEN-3	V	No	19.0	497				209.90	1.06
GEN-4	GEN-4	V	No	19.0	497				209.90	1.06
GEN-5	GEN-5	V	No	19.0	497				209.90	1.06
GEN-6	GEN-6	V	No	19.0	497				209.90	1.06
FUG	FUG	Fugitive	No	10						
DEHY-1	DEHY	Fugitive	No	10						
H-1	H-1	V	No	20	400				1.37	3.50
H-2	H-2	V	No	20	400				1.37	3.50
FLARE	FLARE	V	No	20	1832				65.60	1.37
Tank-1	Tank-1	Fugitive	No	20						
Tank-2	Tank-2	Fugitive	No	20						
Tank-3	Tank-3	Fugitive	No	20						
Tank-5	Tank-5	Fugitive	No	20						
Tank-6	Tank-6	Fugitive	No	20						
LOAD-1	LOAD-1	Fugitive	No	10						

Targa Midstream	Services LLC			Copperhea	d Gas Plant		Applic	ation Date: November 2	2024	Revision # 0
	Serving Unit Number(s) from	Orientation (H	Rain Caps	Height Above	Temp.	Flow	v Rate	Moisture by	Velocity	Inside
Stack Number	Table 2-A	Horizontal V=Vertical)	(Yes or No)	Ground (ft)	(F)	(acfs)	(dscfs)	Volume (%)	(ft/sec)	Diameter (ft)
LOAD-2	LOAD-2	Fugitive	No	10						
SSM	SSM	Fugitive	No	10						
SSM-Flare	SSM-Flare	V	No	20	1832				65.60	1.37
м	М	Fugitive	No	10						
H-1701-CHP	H-1701-CHP	V	No	32.0	723				13.64	5.00
H-1702-CHP	H-1702-CHP	V	No	32	723				13.64	5.00
H-1703-CHP	H-1703-CHP	V	No	32	723				13.64	5.00
H-1704-CHP	H-1704-CHP	V	No	25.0	475				22.98	2.50
H-4701-CHP	H-4701-CHP	V	No	20	400				1.70	2.50
H-1701-CH2	H-1701-CH2	V	No	32.0	723				13.64	5.00
H-1702-CH2	H-1702-CH2	V	No	32	723				13.64	5.00
H-1703-CH2	H-1703-CH2	V	No	32	723				13.64	5.00
H-1704-CH2	H-1704-CH2	V	No	25.0	475				22.98	2.50
H-4701-CH2	H-4701-CH2	V	No	20	400				1.70	2.50
DEHY-2	DEHY	Fugitive	No	10						
ТК-1907-СНР	Produced Water Tank	Fugitive	No	25						
TK-1908-CHP	Produced Water Tank	Fugitive	No	25						
TK-1907-CH2	Produced Water Tank	Fugitive	No	25						
TK-1908-CH2	Produced Water Tank	Fugitive	No	25						
VCU	Vapor Combustion Unit	V	No	25	1600				18.90	4.00
FL_1800_CHP M	Flare 1: MSS	V	No	157.1	1832				65.62	21.00
FL_1800_CH2 M	Flare 2:MSS	V	No	157.1	1832				65.62	21.00
FL_1800_CHP	Control	V	No	150	1832				65.62	0.86
FL_1800_CH2	Flare 2: Steady State - Amine Control	V	No	150	1832				65.62	0.86

Table 2-I: Stack Exit and Fugitive Emission Rates for HAPs and TAPs

In the table below, report the Potential to Emit for each HAP from each regulated emission unit listed in Table 2-A, only if the entire facility emits the HAP at a rate greater than or equal to one (1) ton per year For each such emission unit, HAPs shall be reported to the nearest 0.1 tpy. Each facility-wide Individual HAP total and the facility-wide Total HAPs shall be the sum of all HAP sources calculated to the nearest 0.1 ton per year. Per 20.2.72.403.A.1 NMAC, facilities not exempt [see 20.2.72.402.C NMAC] from TAP permitting shall report each TAP that has an uncontrolled emission rate in excess of its pounds per hour screening level specified in 20.2.72.502 NMAC. TAPs shall be reported using one more significant figure than the number of significant figures shown in the pound per hour threshold corresponding to the substance. Use the HAP nomenclature as it appears in Section 112 (b) of the 1990 CAAA and the TAP nomenclature as it listed in 20.2.72.502 NMAC. Include tank-flashing emissions estimates of HAPs in this table. For each HAP or TAP listed, fill all cells in this table with the emission numbers or a "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expected or the pollutant is emitted in a quantity less than the threshold amounts described above.

		Tatal		Provide Name	Pollutant Here		Pollutant e Here		Pollutant e Here		Pollutant e Here		Pollutant e Here		Pollutant Here		Pollutant e Here		Pollutant e Here
Stack No.	Unit No.(s)	Iotal	HAPs																
		lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	-	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/y
	EM-1a	0.02	0.07																
	EM-1b	0.02	0.07																
	EM-2a	0.02	0.07																
	EM-2b	0.02	0.07																
	EM-3a	0.02	0.07																
	EM-4a	0.02	0.07																
	EM-4a	0.02	0.07																
	EM-4b	0.02	0.07																
	GEN-1	0.47	2.05																
	GEN-2	0.47	2.05																
	GEN-3	0.47	2.05																
	GEN-4	0.47	2.05																
	GEN-5	0.47	2.05																
	GEN-6	0.47	2.05																
	FUG	0.02	0.10																
	H-1	0.0002	0.001																
	H-2	0.0002	0.001																
	FLARE	0.48	2.12																
	Tank-3	-	0.02																
	Tank-4	-	0.05																
	Tank-5	-	0.35																
	Tank-6	-	0.35																
	LOAD-1	-	2.07																
	LOAD-2	-	0.00																
	SSM	-	0.00																
	м	-	0.00																
	H-1701-CHP	0.01	0.03																
	H-1702-CHP	0.01	0.03																
	Н-1703-СНР	0.01	0.03																
	H-1704-CHP	0.003	0.01																
	H-4701-CHP	0.001	0.01																
	H-1701-CH2	0.01	0.03																
	H-1702-CH2	0.01	0.03																
	H-1703-CH2	0.01	0.03																
	H-1704-CH2	0.003	0.01																
	H-4701-CH2	0.001	0.01																
	FL-1800-CHP	0.00	0.00																
	FL-1800-CH2	0.00	0.00																
	FUG-CHP	0.09	0.39																
	FUG-CH2	0.09	0.39																
	FL-1800-CHP	-	-																
	FL-1800-CH2	-	-																
	ТК-1907-СНР	-	0.89																
	ТК-1908-СНР	-	0.89																
	TK-1907-CH2	-	0.89																
	TK-1907-CH2	_	0.89																
	L-P	-	-																
	VCU	0.29	1.28																
	NRU	0.29	0.00																
	MSSFUG	0.00	0.00																
	WISSEUG	0.00	0.00																
Tota	als:	3.98	23.80							<u>-</u>								<u>-</u>	

Revision # 0

Table 2-J: Fuel

Specify fuel characteristics and usage. Unit and stack numbering must correspond throughout the application package.

	Fuel Type (low sulfur Diesel,	Fuel Source: purchased commercial,		Speci	fy Units		
Unit No.	ultra low sulfur diesel, Natural Gas, Coal,)	pipeline quality natural gas, residue gas, raw/field natural gas, process gas (e.g. SRU tail gas) or other	Lower Heating Value	Hourly Usage	Annual Usage	% Sulfur	% Ash
EM-1a	Diesel		138,700 BTU/gal		756,233 gal/yr		
EM-1b	Diesel		138,700 BTU/gal		756,233 gal/yr		
EM-2a	Diesel		138,700 BTU/gal		756,233 gal/yr		
EM-2b	Diesel		138,700 BTU/gal		756,233 gal/yr		
EM-3a	Diesel		138,700 BTU/gal		756,233 gal/yr		
EM-4a	Diesel		138,700 BTU/gal		756,233 gal/yr		
EM-4a	Diesel		138,700 BTU/gal		756,233 gal/yr		
EM-4b	Diesel		138,700 BTU/gal		756,233 gal/yr		
GEN-1	Natural Gas		1020 BTU/SCF		36.8 MMSCF/yr		
GEN-2	Natural Gas		1020 BTU/SCF		36.8 MMSCF/yr		
GEN-3	Natural Gas		1020 BTU/SCF		36.8 MMSCF/yr		
GEN-4	Natural Gas		1020 BTU/SCF		36.8 MMSCF/yr		
GEN-5	Natural Gas		1020 BTU/SCF		36.8 MMSCF/yr		
GEN-6	Natural Gas		1020 BTU/SCF		36.8 MMSCF/yr		
H-1	Natural gas		1020 BTU/SCF		25.8 MMSCF/yr		
H-2	Natural gas		1020 BTU/SCF		25.8 MMSCF/yr		
FLARE	Natural gas		1020 BTU/SCF		5.04 MMSCF/yr		
H-1701-CHP	Natural gas		1020 BTU/SCF		841.8 MMSCF/yr		

Targa Midstream	Services LLC	(Copperhead Gas Plant	App	plication Date: November 2024	Rev	vision # 0
	Fuel Type (low sulfur Diesel,	Fuel Source: purchased commercial,		Speci	fy Units		
Unit No.	ultra low sulfur diesel, Natural Gas, Coal,)	pipeline quality natural gas, residue gas, raw/field natural gas, process gas (e.g. SRU tail gas) or other	Lower Heating Value	Hourly Usage	Annual Usage	% Sulfur	% Ash
H-1702-CHP	Natural gas		1020 BTU/SCF		841.8 MMSCF/yr		
H-1703-CHP	Natural gas		1021 BTU/SCF		841.8 MMSCF/yr		
H-1704-CHP	Natural gas		1020 BTU/SCF		290.8 MMSCF/yr		
H-4701-CHP	Natural gas		1020 BTU/SCF		123.1 MMSCF/yr		
H-1701-CH2	Natural gas		1020 BTU/SCF		841.8 MMSCF/yr		
H-1702-CH2	Natural gas		1020 BTU/SCF		841.8 MMSCF/yr		
H-1703-CH2	Natural gas		1020 BTU/SCF		841.8 MMSCF/yr		
H-1704-CH2	Natural gas		1020 BTU/SCF		290.8 MMSCF/yr		
H-4701-CH2	Natural gas		1020 BTU/SCF		123.1 MMSCF/yr		
FL-1800-CHP	Natural gas		1020 BTU/SCF		5.04 MMSCF/yr		
FL-1800-CH2	Natural gas		1020 BTU/SCF		5.04 MMSCF/yr		

Table 2-K: Liquid Data for Tanks Listed in Table 2-L

For each tank, list the liquid(s) to be stored in each tank. If it is expected that a tank may store a variety of hydrocarbon liquids, enter "mixed hydrocarbons" in the Composition column for that tank and enter the corresponding data of the most volatile liquid to be stored in the tank. If tank is to be used for storage of different materials, list all the materials in the "All Calculations" attachment, run the newest version of TANKS on each, and use the material with the highest emission rate to determine maximum uncontrolled and requested allowable emissions rate. The permit will specify the most volatile category of liquids that may be stored in each tank. Include appropriate tank-flashing modeling input data. Use additional sheets if necessary. Unit and stack numbering must correspond throughout the application package.

					Vapor	Average Stor	age Conditions	Max Stora	ge Conditions
Tank No.	SCC Code	Material Name	Composition	Liquid Density (lb/gal)	Molecular Weight (lb/lb*mol)	Temperature (°F)	True Vapor Pressure (psia)	Temperature (°F)	True Vapor Pressure (psia)
Tank-1		Produced Water							
Tank-2		Produced Water							
Tank-3		Condensate							
Tank-4		Condensate							
Tank-5		Condensate							
Tank-6		Condensate							
TK-1907-CHP		Produced Water							
TK-1908-CHP		Produced Water							
TK-1907-CH2		Produced Water							
TK-1908-CH2		Produced Water							

Table 2-L: Tank Data

Include appropriate tank-flashing modeling input data. Use an addendum to this table for unlisted data categories. Unit and stack numbering must correspond throughout the application package. Use additional sheets if necessary. See reference Table 2-L2. Note: 1.00 bbl = 10.159 M3 = 42.0 gal

Tank No.	Date Installed	Materials Stored		Roof Type (refer to Table 2-	Сара	acity	Diameter (M)	Vapor Space (M)		blor able VI-C)	Paint Condition (from Table VI-	Annual Throughput	Turn- overs
			LR below)	LR below)	(bbl)	(M ³)			Roof	Shell	C)	(gal/yr)	(per year)
Tank-1		Produced Water		Vertical-Fixed Roof	400-bbl		12		white	white		709,624	84.50
Tank-2		Produced Water		Vertical-Fixed Roof	400-bbl		12		white	white		709,624	84.50
Tank-3		Condensate		Vertical-Fixed Roof	400-bbl		12		white	white		412,374	84.50
Tank-4		Condensate		Vertical-Fixed Roof	400-bbl		12		white	white		412,374	84.50
Tank-5		Condensate		Vertical-Fixed Roof	400-bbl		12		white	white		701	19.64
Tank-6		Condensate		Vertical-Fixed Roof	400-bbl		12		white	white		701	19.64
TK-1907-CHP		Produced Water		Vertical-Fixed Roof	500-bbl		12		white	white		8,657,924	412.28
TK-1908-CHP		Produced Water		Vertical-Fixed Roof	500-bbl		12		white	white		8,657,924	412.28
TK-1907-CH2		Produced Water		Vertical-Fixed Roof	500-bbl		12		white	white		8,657,924	412.28
TK-1908-CH2		Produced Water		Vertical-Fixed Roof	500-bbl		12		white	white		8,657,924	412.28

Table 2-L2: Liquid Storage Tank Data Codes Reference Table

Roof Type	Seal Type, V	Seal Type, Welded Tank Seal Type		Seal Type, Riveted Tank Seal Type		Paint Condition
FX: Fixed Roof	Mechanical Shoe Seal	Liquid-mounted resilient seal	Vapor-mounted resilient seal	Seal Type	WH : White	Good
IF: Internal Floating Roof	A: Primary only	A: Primary only	A: Primary only	A: Mechanical shoe, primary only	AS: Aluminum (specular)	Poor
EF: External Floating Roof	B: Shoe-mounted secondary	B : Weather shield	B: Weather shield	B: Shoe-mounted secondary	AD: Aluminum (diffuse)	
P: Pressure	C: Rim-mounted secondary	C: Rim-mounted secondary	C: Rim-mounted secondary	C: Rim-mounted secondary	LG : Light Gray	
					MG: Medium Gray	
Note: 1.00 bbl = 0.159 N		BL: Black				
					OT : Other (specify)	

Table 2-M: Materials Processed and Produced (Use additional sheets as necessary.)

	Mater	Material Produced					
Description	Chemical Composition	Phase (Gas, Liquid, or Solid)	Quantity (specify units)	Description	Chemical Composition	Phase	Quantity (specify units)

Table 2-N: CEM Equipment

Enter Continuous Emissions Measurement (CEM) Data in this table. If CEM data will be used as part of a federally enforceable permit condition, or used to satisfy the requirements of a state or federal regulation, include a copy of the CEM's manufacturer specification sheet in the Information Used to Determine Emissions attachment. Unit and stack numbering must correspond throughout the application package. Use additional sheets if necessary.

Stack No.	Pollutant(s)	Manufacturer	Model No.	Serial No.	Sample Frequency	Averaging Time	Range	Sensitivity	Accuracy

Table 2-O: Parametric Emissions Measurement Equipment

Unit and stack numbering must correspond throughout the application package. Use additional sheets if necessary.

Unit No.	Parameter/Pollutant Measured	Location of Measurement	Unit of Measure	Acceptable Range	Frequency of Maintenance	Nature of Maintenance	Method of Recording	Averaging Time

Section 3

Application Summary

The <u>Application</u> <u>Summary</u> shall include a brief description of the facility and its process, the type of permit application, the applicable regulation (i.e. 20.2.72.200.A.X, or 20.2.73 NMAC) under which the application is being submitted, and any air quality permit numbers associated with this site. If this facility is to be collocated with another facility, provide details of the other facility including permit number(s). In case of a revision or modification to a facility, provide the lowest level regulatory citation (i.e. 20.2.72.219.B.1.d NMAC) under which the revision or modification is being requested. Also describe the proposed changes from the original permit, how the proposed modification will affect the facility's operations and emissions, de-bottlenecking impacts, and changes to the facility's major/minor status (both PSD & Title V).

The **<u>Process Summary</u>** shall include a brief description of the facility and its processes.

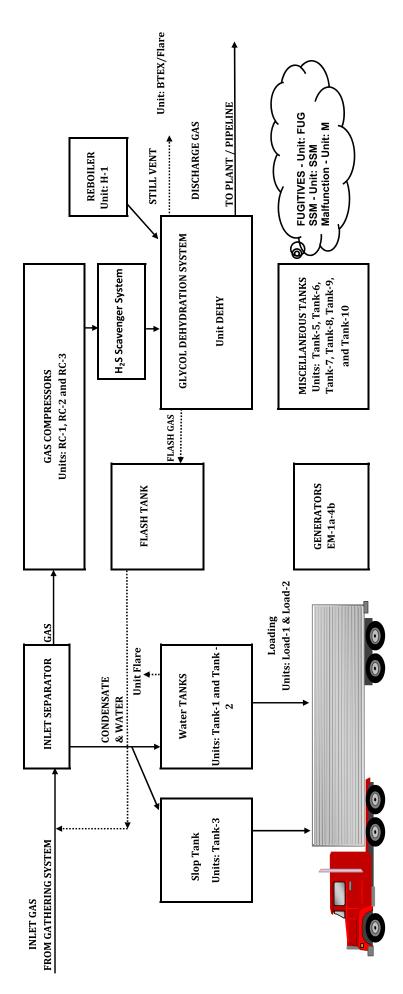
<u>Startup, Shutdown, and Maintenance (SSM)</u> routine or predictable emissions: Provide an overview of how SSM emissions are accounted for in this application. Refer to "Guidance for Submittal of Startup, Shutdown, Maintenance Emissions in Permit Applications (http://www.env.nm.gov/aqb/permit/app_form.html) for more detailed instructions on SSM emissions.

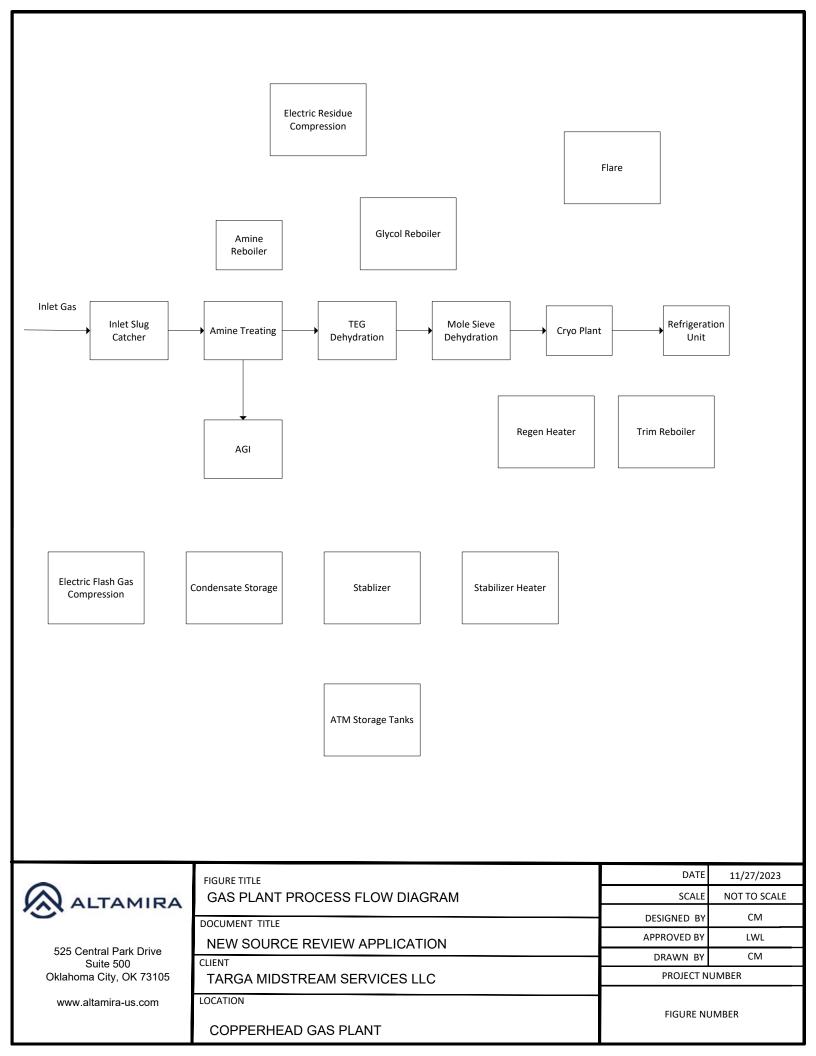
Targa Resources, LLC (Targa) owns and operates the Copperhead Compressor Station located near Malaga in Lea County, NM. The site is current authorized under GCP 7712. Targa is proposing to authorize the installation of proposed processing trains 1 and 2 and to change the name to the Copperhead Gas Plant.

The primary function of the Copperhead Gas Processing Plant is to separate natural gas (methane) from heavier (liquid) hydrocarbons, raw sweet field gas so that the gas can meet pipeline specifications. The plant has been designated a primary Standard Industrial Classification (SIC) Code of 1321. The gas is treated to remove CO₂, H₂S, water and heavy (liquid) hydrocarbons from the gas stream. Stabilized condensate is removed from the site via pipeline with the option to truck it out as needed. Produced water is trucked out from the site. The amine treater vent flows to a thermal oxidizer to remove volatile organic compound (VOC) and hazardous air pollutant (HAP) emissions.

Following is a summary of changes being proposed in this application:

- Increase site processing throughput.
- Construction of proposed processing trains 1 and 2.
- Increase permit limits to allow the ability to process gas containing up to 10,000 ppm H₂S.


This project will not trigger Prevention of Significant Deterioration (PSD) review, as the facility is currently a minor NSR source and the proposed emission changes are less than 250 tons per year (tpy) for each criteria pollutant and will remain an area source of HAPs.


Section 4

Process Flow Sheet

A **process flow sheet** and/or block diagram indicating the individual equipment, all emission points and types of control applied to those points. The unit numbering system should be consistent throughout this application.

Targa Midstream Services, LLC Copperhead Compressor Station



Section 5

Plot Plan Drawn to Scale

A <u>plot plan drawn to scale</u> showing emissions points, roads, structures, tanks, and fences of property owned, leased, or under direct control of the applicant. This plot plan must clearly designate the restricted area as defined in UA1, Section 1-D.12. The unit numbering system should be consistent throughout this application.

A plot plan is attached. Access and haul roads are indicated in green, the facility property boundary is indicated in blue, and the area which will be restricted to public access is indicated in red.

Section 6

All Calculations

Show all calculations used to determine both the hourly and annual controlled and uncontrolled emission rates. All calculations shall be performed keeping a minimum of three significant figures. Document the source of each emission factor used (if an emission rate is carried forward and not revised, then a statement to that effect is required). If identical units are being permitted and will be subject to the same operating conditions, submit calculations for only one unit and a note specifying what other units to which the calculations apply. All formulas and calculations used to calculate emissions must be submitted. The "Calculations" tab in the UA2 has been provided to allow calculations to be linked to the emissions tables. Add additional "Calc" tabs as needed. If the UA2 or other spread sheets are used, all calculation spread sheet(s) shall be submitted electronically in Microsoft Excel compatible format so that formulas and input values can be checked. Format all spread sheets and calculations such that the reviewer can follow the logic and verify the input values. Define all variables. If calculation spread sheets are not used, provide the original formulas with defined variables. Additionally, provide subsequent formulas showing the input values for each variable in the formula. All calculations, including those calculations are imbedded in the Calc tab of the UA2 portion of the application, the printed Calc tab(s), should be submitted under this section.

Tank Flashing Calculations: The information provided to the AQB shall include a discussion of the method used to estimate tank-flashing emissions, relative thresholds (i.e., NOI, permit, or major source (NSPS, PSD or Title V)), accuracy of the model, the input and output from simulation models and software, all calculations, documentation of any assumptions used, descriptions of sampling methods and conditions, copies of any lab sample analysis. If Hysis is used, all relevant input parameters shall be reported, including separator pressure, gas throughput, and all other relevant parameters necessary for flashing calculation.

SSM Calculations: It is the applicant's responsibility to provide an estimate of SSM emissions or to provide justification for not doing so. In this Section, provide emissions calculations for Startup, Shutdown, and Routine Maintenance (SSM) emissions listed in the Section 2 SSM and/or Section 22 GHG Tables and the rational for why the others are reported as zero (or left blank in the SSM/GHG Tables). Refer to "Guidance for Submittal of Startup, Shutdown, Maintenance Emissions in Permit Applications (http://www.env.nm.gov/aqb/permit/app_form.html) for more detailed instructions on calculating SSM emissions. If SSM emissions are greater than those reported in the Section 2, Requested Allowables Table, modeling may be required to ensure compliance with the standards whether the application is NSR or Title V. Refer to the Modeling Section of this application for more guidance on modeling requirements.

Glycol Dehydrator Calculations: The information provided to the AQB shall include the manufacturer's maximum design recirculation rate for the glycol pump. If GRI-Glycalc is used, the full input summary report shall be included as well as a copy of the gas analysis that was used.

Road Calculations: Calculate fugitive particulate emissions and enter haul road fugitives in Tables 2-A, 2-D and 2-E for:

- 1. If you transport raw material, process material and/or product into or out of or within the facility and have PER emissions greater than 0.5 tpy.
- 2. If you transport raw material, process material and/or product into or out of the facility more frequently than one round trip per day.

Significant Figures:

A. All emissions standards are deemed to have at least two significant figures, but not more than three significant figures.B. At least 5 significant figures shall be retained in all intermediate calculations.

C. In calculating emissions to determine compliance with an emission standard, the following rounding off procedures shall be used:

- (1) If the first digit to be discarded is less than the number 5, the last digit retained shall not be changed;
- (2) If the first digit discarded is greater than the number 5, or if it is the number 5 followed by at least one digit other than the number zero, the last figure retained shall be increased by one unit; and
- (3) If the first digit discarded is exactly the number 5, followed only by zeros, the last digit retained shall be rounded upward if it is an odd number, but no adjustment shall be made if it is an even number.

(4) The final result of the calculation shall be expressed in the units of the standard.

Control Devices: In accordance with 20.2.72.203.A(3) and (8) NMAC, 20.2.70.300.D(5)(b) and (e) NMAC, and 20.2.73.200.B(7) NMAC, the permittee shall report all control devices and list each pollutant controlled by the control device regardless if the applicant takes credit for the reduction in emissions. The applicant can indicate in this section of the application if they chose to not take credit for the reduction in emission rates. For notices of intent submitted under 20.2.73 NMAC, only uncontrolled emission rates can be considered to determine applicability unless the state or federal Acts require the control. This information is necessary to determine if federally enforceable conditions are necessary for the control device, and/or if the control device produces its own regulated pollutants or increases emission rates of other pollutants.

Heaters and Reboilers

The facility will be equipped with several heaters and reboilers of various heat input capacities. For units H-1, H-2, H-1704-CH1, H-4701-CH1, H-1704-CH2, H-4701-CH2 AP-42 Chapter 1.4 *Natural Gas Combustion* was used to determine emissions of Nitrogen oxides (NO_x), carbon monoxide (CO)volatile organic compounds (VOC), particulate matter (PM), and hazardous air pollutants (HAPs). For units H-1701-CH1, H-1702-CH1, H-1701-CH2, H-1702-CH2 AP-42 Chapter 1.4 *Natural Gas Combustion* was used to determine emissions of volatile organic compounds (VOC), particulate matter (PM), and hazardous air pollutants (HAPs). Nitrogen oxides (NO_x) and carbon monoxide (CO) were determined based on manufacturer guarantees. Sulfur dioxide emissions were calculated stoichiometrically assuming that the natural gas used as fuel in the heaters and reboilers contains a maximum H₂S content of 5 ppm based on pipeline specifications.

For units H-1701-CHP, H-1702-CHP, H-1701-CH2, and H-1702-CH2, manufacturer specifications were used to determine emissions of nitrogen oxides (NO_x), carbon monoxide (CO), volatile organic compounds (VOC), and particulate matter (PM). AP-42 Chapter 1.4 *Natural Gas Combustion* was used to determine emissions of and hazardous air pollutants (HAPs). Sulfur dioxide emissions were calculated stoichiometrically assuming that the natural gas used as fuel in the heaters and reboilers contains a maximum H₂S content of 5 ppm based on pipeline specifications.

For units H-1, H-2, H-1704-CHP, H-4701-CHP, H-1704-CH2, and H-4701-CH2, AP-42 Chapter 1.4 *Natural Gas Combustion* was used to determine emissions of carbon monoxide (CO), volatile organic compounds (VOC), particulate matter (PM), and hazardous air pollutants (HAPs). Sulfur dioxide emissions were calculated stoichiometrically assuming that the natural gas used as fuel in the heaters and reboilers contains a maximum H₂S content of 5 ppm based on pipeline specifications. Emissions of nitrogen oxides (NO_x) are based on the emission factor presented in 20.2.50.119.B(1) NMAC to comply with 20.2.50.119.B(3) NMAC as these units will be considered new units and must comply upon startup.

Greenhouse gas emissions from all heaters and reboilers were calculated using 40 CFR 98 Subpart C Table C-1 and Table C-2.

TEG Glycol Dehydrators

BR&E ProMax was used to determine emissions from the glycol still vents and non-condensable overheads from the BTEX condensers. The glycol dehydrators associated with the gas plant are routed back to the inlet with a VRU as part of closed loop system. The glycol dehydrators associated with the compressor station are controlled by the flare (FLARE).

Amine Units

BR&E ProMax was used to determine emissions from the amine units. Contactor overheads are routed to the back to the system for further treatment. The regenerator overheads are routed to the acid gas injection (AGI) well for injection. The Flares (FL-1800-CHP and FL-1800-CH2) control the amine units if the AGI is off line for well maintenance.

Flares and Vapor Combustors

The flares at the facility (FLARE, FL-1800-CHP and FL-1800-CH2, VCU) will flare both inlet and residue gas. The expected composition and maximum expected volumes of inlet gas and residue gas were used as the basis of the flare calculation. TNRCC RG-109 flare emission factors for low Btu gas were used to calculate emissions of nitrogen oxides (NOx) and carbon monoxide (CO). VOC, H2S, and SO2 emissions are calculated based on the VOC and H2S content of the inlet and residue gas. An assumed 98% destruction efficiency is applied to the VOC and H2S emissions.

Greenhouse gas emissions from the flares were calculated using 40 CFR 98 Subpart C Table C-1 and Table C-2 with the methodology outlined in 40 CFR 98.233(n).

Condensate Storage Tanks

Emissions from various storage tanks were determined using BR&E ProMax.

H2S Scavenger Storage Tanks

Emissions from the H₂S scavenger storage tanks were determined using BR&E ProMax. Emissions from the H₂S scavenger storage tanks are uncontrolled and are vented to the atmosphere.

Condensate Loading

Condensate loading emissions were calculated using the loading loss equation and variables from AP-42 Section 5.2, *Transportation and Marketing of Petroleum Liquids*. True vapor pressure of loaded liquid, molecular weight of vapor, temperature of bulk liquid, and volatile organic compound (VOC), hazardous air pollutants (HAP), and hydrogen sulfide (H₂S) mass percentage were determined with BR&E ProMax. Condensate loading is vapor balanced with the condensate tanks with a 95% capture efficiency.

Fugitives

The emissions from fugitive components associated with this project are calculated using emission factors from Table 2-4 of the EPA Protocol for Equipment Leak Emission estimates, November 1995. Site specific analyses for inlet gas, residue gas, and condensate were used.

Haul Road Emissions

Unpaved haul road emissions were calculated using constants from AP-42 Table 13.2.2-2 and the methodology outlined in AP-42 Chapter 13.2.2.

Miscellaneous MSS

Miscellaneous MSS emissions include routine pigging activities, routine replacement of glycol solution used in dehydration units, routine replacement of solution used in amine units, use of aerosol lubricants, piping components, and calibration activities.

MSS Blowdowns

MSS Blowdown emissions include venting emissions from blowdowns, starter vents, and any gas operated controllers present at the facility, if any.

uncontrolled St	teady-State Emissions																		
Unit	Description		IO _x	С	-	VC		S			SP	PI		PI	M _{2.5}	Total		H	
FUC	Feelik, fusikuse	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr 1.87	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tpy 0.10	lb/hr 1.08E-04	tpy 4.74E-04
FUG DEHY	Facility fugitives	-		-	-		1.87									-	199.54	1.08E-04	4.74E-04
H-1	Glycol Dehydrator Dehydrator Reboiler	0.29	1.29	0.25	1.08	0.0162	0.071	0.020	0.09	0.022	0.098	0.022	0.098	0.022	0.098	0.000	0.001		
H-2	Dehydrator Reboiler	0.29	1.29	0.25	1.08	0.0162	0.071	0.020	0.09	0.022	0.098	0.022	0.098	0.022	0.098	0.000	0.001		
FLARE	Flare	0.090	0.39	0.18	0.79	-	-	0.049	0.213	-	-	-	-	-	-	-	-	5.16E-04	0.0023
Tank-1	Condensate tank	-		-	-	-	8.2				-					-	0.23	1.34E-03	0.01
Tank-2	Condensate tank	-		-	-	-	8.2				-					-	0.23	1.34E-03	0.01
Tank-3	Produced Water tank	-		-	-	-	0.1	-			-	-			-	-	0.0158	7.07E-04	0.0031
Tank-4	Produced Water tank	-		-	-	-	0.1	-				-				-	0.0158	-	
Tank-5	New H2S scavenger tank	-		-	-	-	0.35	-			-	-			-	-	0.35	-	
Tank-6	Spent H2S scavenger tank	-		-	-	-	0.35	-			-	-			-	-	0.35	-	
LOAD-1	Load-out of condensate	-		-	-	-	12.56	-			-	-			-	-	2.1E+00	-	
LOAD-2	Load-out of Produced Water	-	•	-	-	-	7.68E-04 0.00	-	•	•	-	-		•	-	-	0.0000	- 0.00E+00	0.0000
	Electric Compressors Blowdowns Pigging and purging pipeline	-				-	0.00										0.000	0.00E+00	0.0000
SSM	Pipeline Maintenance	-		-		-	0.0010									-	1.59E-05	1.40E-05	6.1E-05
	Vessel Blowdown	-		-	-	-	0.00	-								-	0.000	0.00E+00	0.0000
	Totals	0.68	2.97	0.67	2.95	0.0324	478.9	0.09	0.39	0.045	0.196	0.04	0.196	0.04	0.196	0.000	202.92	0.004	0.02
Controlled Stea	ady State Emissions									_			- 1					H	26
Unit	Description	N Ib/hr	IO _x tons/yr	C Ib/hr	0 tons/vr	VC lb/hr	DC tons/vr	S lb/hr	O2 tons/yr	T lb/hr	SP tons/yr	Pi lb/hr	M ₁₀ tons/vr	Pi lb/hr	M _{2.5} tons/yr	Total lb/hr	HAPs tpy	lb/hr	23 tpy
Co	mpressor Station Equipment	10/111	to nor yr		10110/ 91	10/111	tonaryi	10/11	10110r yr	/11	tonory	02/10	tonaryı	10/111	101101 91		47	/111	49
EM-1a	Diesel Generator	1.09	4,79	0.42	1.85	0.10	0.44	0.02	0.08	0.02	0.09	0.02	0.09	0.02	0.09	0.02	0.07		
EM-1a EM-1b	Diesel Generator	1.09	4.79 4.79	0.42	1.85	0.10	0.44	0.02	0.08	0.02	0.09	0.02	0.09	0.02	0.09	0.02	0.07		
EM-10 EM-2a	Diesel Generator	1.09	4.79	0.42	1.85	0.10	0.44	0.02	0.08	0.02	0.09	0.02	0.09	0.02	0.09	0.02	0.07		
EM-2a EM-2b	Diesel Generator	1.09	4.79	0.42	1.85	0.10	0.44	0.02	0.08	0.02	0.09	0.02	0.09	0.02	0.09	0.02	0.07		
EM-3a	Diesel Generator	1.09	4.79	0.42	1.85	0.10	0.44	0.02	0.08	0.02	0.09	0.02	0.09	0.02	0.09	0.02	0.07	-	
EM-4a	Diesel Generator	1.09	4.79	0.42	1.85	0.10	0.44	0.02	0.08	0.02	0.09	0.02	0.09	0.02	0.09	0.02	0.07	-	
EM-4a	Diesel Generator	1.09	4.79	0.42	1.85	0.10	0.44	0.02	0.08	0.02	0.09	0.02	0.09	0.02	0.09	0.02	0.07	-	
EM-4b	Diesel Generator	1.09	4.79	0.42	1.85	0.10	0.44	0.02	0.08	0.02	0.09	0.02	0.09	0.02	0.09	0.02	0.07	-	
GEN-1	Cummins GQSK60-G8	1.93	8.43	1.23	5.40	1.53	6.70	0.01	0.03	0.04	0.17	0.04	0.17	0.04	0.17	0.47	2.05	-	
GEN-2	Cummins GQSK60-G8	1.93	8.43	1.23	5.40	1.53	6.70	0.01	0.03	0.04	0.17	0.04	0.17	0.04	0.17	0.47	2.05	-	
GEN-3	Cummins GQSK60-G8	1.93	8.43	1.23	5.40	1.53	6.70	0.01	0.03	0.04	0.17	0.04	0.17	0.04	0.17	0.47	2.05	-	
GEN-4	Cummins GQSK60-G8	1.93	8.43	1.23	5.40	1.53	6.70	0.01	0.03	0.04	0.17	0.04	0.17	0.04	0.17	0.47	2.05	-	
GEN-5 GEN-6	Cummins GQSK60-G8 Cummins GQSK60-G8	1.93	8.43 8.43	1.23	5.40	1.53 1.53	6.70 6.70	0.01	0.03	0.04	0.17	0.04	0.17	0.04	0.17	0.47	2.05	-	•
FUG	Facility fugitives	1.93	8.43	1.23	5.40	1.53	6.70 1.87	0.01	0.03	0.04	0.17	0.04	0.17	0.04	0.17	0.47	2.05	- 1.08E-04	- 4.74E-04
DEHY1	Given Dehvdrator					0.45	1.07									0.02	0.10	1.002-04	4./4E-04
DEHY2	Glycol Dehydrator	-		-	-														
H-1	Dehvdrator Reboiler	0.29	1.29	0.25	1.08	0.0162	0.071	0.02	0.09	0.022	0.098	0.022	0.098	0.022	0.098	0.0002	0.001		
H-2	Dehydrator Reboiler	0.29	1.29	0.25	1.08	0.0162	0.071	0.02	0.09	0.022	0.098	0.022	0.098	0.022	0.098	0.0002	0.001	-	
FLARE	Flare - Dehydrator/Tank Control	1.47	6.43	2.93	12.84	3.10	13.56	8.91	39.02		-					0.48	2.12	0.097	0.42
Tank-1	Produced Water tank	-		-	-	-		-			-	-			-	-		-	
Tank-2	Produced Water tank	-		-	-	-	-	-			-	-			-	-	-	-	-
Tank-3	Slop Tank	-		-	-	0.01	0.05	-			-	-			-	-	0.016	7.07E-04	0.0031
Tank-4	Produced Water Tank	-		-	-	-		-			-	-			-	-			
Tank-5 Tank-6	New H2S scavenger tank	-		-	-	0.08	0.35 0.35				-	-			-	-	0.35	-	
LOAD-1	Spent H2S scavenger tank Load-out of Produced Water	-		-	-	0.08	0.35									-	2.07		•
LOAD-1	Load-out of Slop Tank					0.003	0.007										0.000		
HAUL	Haul Roads	-				-	-			1.38		0.35		0.04		-	-		
	Pigging and purging pipeline	-		-		-	10.00									-	0.00	0.00E+00	0.00E+00
SSM	Pipeline Maintenance	-		-	-	-	0.0010	-		-		-				-	1.59E-05	1.40E-05	6.15E-05
	Flare - SSM	10.88	0.05	21.71	0.09	19.08	0.0746	1.15	4.50E-03		-	-				-		1.11E-05	4.88E-05
М	Malfunction	-		-	-	-	10.00	-		-	-	-	-			-	0.00	-	
Gas	Processing Plant Equipment																		
H-1701-CHP	HMO Heater 1701	2.86	12.52	3.81	16.69	0.43	1.88	0.05	0.23	0.59	2.59	0.59	2.59	0.59	2.59	0.01	0.03	-	
H-1702-CHP		2.86	12.52	3.81	16.69	0.43	1.88	0.05	0.23	0.59	2.59	0.59	2.59	0.59	2.59	0.01	0.03	-	
H-1703-CHP	HMO Heater 1703	2.86	12.52	3.81	16.69	0.43	1.88	0.05	0.23	0.59	2.59	0.59	2.59	0.59	2.59	0.01	0.03	-	
H-1704-CHP	HMO Heater 1704	1.36	5.96	2.31	10.10	0.20	0.89	0.03	0.11	0.28	1.23	0.28	1.23	0.28	1.23	0.003	0.01	-	
H-4701-CHP	Regen Gas Heater 4701	1.59	6.96	1.33	5.84	0.09	0.38	0.01	0.05	0.12	0.53	0.12	0.53	0.12	0.53	0.001	0.01	-	
H-1701-CH2		2.86	12.52	3.81	16.69	0.43	1.88	0.05	0.23	0.59	2.59	0.59	2.59	0.59	2.59	0.01	0.03	-	
H-1702-CH2		2.86	12.52	3.81	16.69	0.43	1.88	0.05	0.23	0.59	2.59	0.59	2.59	0.59	2.59	0.01	0.03	-	
H-1703-CH2	HMO Heater 1703	2.86	12.52	3.81	16.69	0.43	1.88	0.05	0.23	0.59	2.59	0.59	2.59	0.59	2.59	0.01	0.03	-	-
H-1704-CH2		1.36	5.96	2.31	10.10	0.20	0.89	0.03	0.11	0.28	1.23	0.28	1.23	0.28	1.23	0.003	0.01	-	
H-4701-CH2		1.59	6.96	1.33	5.84	0.09	0.38	0.01	0.05	0.12	0.53	0.12	0.53	0.12	0.53	0.001	0.01	-	-
FL-1800-CHP		0.21	0.93	0.43	1.86	0.00	0.00	0.00	0.00	-	-	-		•	-	0.00	0.00	1.40E-06	6.14E-06
FL-1800-CH2 FUG-CHP		0.21	0.93	0.43	1.86	0.00	0.00 8.99	0.00	0.00	-	-	-		•	-	0.00	0.00	1.40E-06 0.05	6.14E-06 0.24
FUG-CHP FUG-CH2	Plant 1 Fugitives	-		-	-	2.05	8.99 8.99	-		-	-	-		•	-	0.09	0.39	0.05	0.24
FUG-CH2 FL-1800-CHP	Plant 2 Fugitives Flare: Startup, Shutdown, Maintenance E	- 1801.87		- 3597.22	-	2.05		- 1260.55			-				-	0.09	0.39	0.05	
FL-1800-CHP FL-1800-CH2		1801.87	24.04	3597.22	48.00	1630.79	3.49	1260.55	36.91			•		•			-	13.67	0.40
FL-1800-CH2 TK-1907-CHP		1001.8/		3081.22	-	1630.79	1.05	1200.55			-				-		- 0.89	13.67	0.301
TK-1907-CHP TK-1908-CHP					-	0.24	1.05				-				-		0.89		0.301
TK-1908-CHP TK-1907-CH2		-			-	0.24	1.05										0.89		0.301
						0.24	1.05										0.89		0.301
	I TOGGOOG WARDE LATER	-	-	1 -	-			-	-	-	-	-	-	-	-	-	0.08		0.301
TK-1908-CH2	Pressurized Loading	-		-				-		-	-						-	-	
TK-1908-CH2 L-P	Pressurized Loading Vapor Combustion Unit	- 0.06	- 0.27	- 0.12	- 0.54	0.54	0.05	- 2.59	- 11.33	-		-	-			- 0.29	- 1.28	- 0.03	0.12
TK-1908-CH2	Vapor Combustion Unit	- 0.06 -	0.27	- 0.12	- 0.54 -	0.32	1.40	- 2.59	- 11.33 -	•	-	-	-	-	-	- 0.29 0.00	- 1.28 0.00	- 0.03 -	0.12
TK-1908-CH2 L-P VCU		- 0.06 -	- 0.27 -	- 0.12 -	- 0.54 -			- 2.59 -	- 11.33 -	•	-	-	-	-	-	- 0.29 0.00 0.00	- 1.28 0.00 0.00	- 0.03 -	0.12

EPN:	FUG																	
COMPONENT	COUNT ¹	EPA FACTOR ² (lb/hr-src)	REDUCTION ALLOWED FOR LDAR	VOC CONTENT IN STREAM	TOTAL VOC EMISSIONS (lb/hr)	TOTAL VOC EMISSIONS (tpy)	H₂S CONTENT IN STREAM ⁴	TOTAL H2S EMISSIONS (lb/hr)	TOTAL H ₂ S EMISSIONS (tpy)	HAP CONTENT IN STREAM ⁴	TOTAL HAP EMISSIONS (lb/hr)	TOTAL HAP EMISSIONS (tpy)	n-Hexane (Ib/hr)	Benzene (Ib/hr)	Toluene (lb/hr)	n-Hexane (tpy)	Benzene (tpy)	Toluene (tpy)
INLET GAS (gas)																		
VALVES	360	0.00992	97%	23.46%	2.51E-02	1.10E-01	0.015%	1.62E-05	7.09E-05	0.39%	4.20E-04	1.84E-03	2.70E-04	9.38E-05	4.90E-05	1.18E-03	4.11E-04	2.15E-04
FLANGES	720	0.00086	30%	23.46%	1.02E-01	4.45E-01	0.015%	6.55E-05	2.87E-04	0.39%	1.70E-03	7.45E-03	1.09E-03	3.80E-04	1.98E-04	4.78E-03	1.66E-03	8.69E-04
CONNECTORS	360	0.00044	30%	23.46%	2.60E-02	1.14E-01	0.015%	1.68E-05	7.34E-05	0.39%	4.35E-04	1.91E-03	2.79E-04	9.71E-05	5.08E-05	1.22E-03	4.25E-04	2.22E-04
PRVs	16	0.01940	97%	23.46%	2.20E-03	9.60E-03	0.015%	1.41E-06	6.16E-06	0.39%	3.65E-05	1.60E-04	2.35E-05	8.16E-06	4.26E-06	1.03E-04	3.57E-05	1.87E-05
OTHER ³	65	0.01940	97%	23.46%	8.90E-03	3.89E-02	0.015%	5.72E-06	2.50E-05	0.39%	1.48E-04	6.50E-04	9.53E-05	3.31E-05	1.73E-05	4.17E-04	1.45E-04	7.59E-05
CONDENSATE (light o	il)																	
VALVES	192	0.00550	97%	100.00%	3.17E-02	1.39E-01	0.001%	3.19E-07	1.40E-06	7.70%	2.44E-03	1.07E-02	1.82E-03	6.25E-04	1.22E-03	7.99E-03	2.74E-03	5.36E-03
FLANGES	384	0.000243	30%	100.00%	6.53E-02	2.86E-01	0.001%	6.58E-07	2.88E-06	7.70%	5.03E-03	2.20E-02	3.76E-03	1.29E-03	2.52E-03	1.65E-02	5.64E-03	1.10E-02
CONNECTORS	192	0.00046	30%	100.00%	6.22E-02	2.73E-01	0.001%	6.26E-07	2.74E-06	7.70%	4.79E-03	2.10E-02	3.58E-03	1.23E-03	2.40E-03	1.57E-02	5.37E-03	1.05E-02
PUMP SEALS	7	0.02866	85%	100.00%	3.01E-02	1.32E-01	0.001%	3.03E-07	1.33E-06	7.70%	2.32E-03	1.02E-02	1.73E-03	5.93E-04	1.16E-03	7.59E-03	2.60E-03	5.09E-03
PRVs	8	0.016535	97%	100.00%	4.00E-03	1.74E-02	0.001%	3.99E-08	1.75E-07	7.70%	3.06E-04	1.34E-03	2.29E-04	7.82E-05	1.53E-04	1.00E-03	3.43E-04	6.71E-04
OTHER ³	2	0.016535	97%	100.00%	1.00E-03	4.30E-03	0.001%	9.99E-09	4.37E-08	7.70%	7.64E-05	3.35E-04	5.71E-05	1.96E-05	3.83E-05	2.50E-04	8.57E-05	1.68E-04
WATER/OIL																		
VALVES	192	0.0002161	97%	100.00%	1.20E-03	5.50E-03	0.0010%	1.25E-08	5.49E-08	7.70%	9.59E-05	4.20E-04	7.17E-05	2.45E-05	4.81E-05	3.14E-04	1.07E-04	2.11E-04
CONNECTORS	384	0.000243	30%	100.00%	6.53E-02	2.86E-01	0.0010%	6.58E-07	2.88E-06	7.70%	5.03E-03	2.20E-02	3.76E-03	1.29E-03	2.52E-03	1.65E-02	5.64E-03	1.10E-02
FLANGES	192	0.0000064	30%	100.00%	9.00E-04	3.80E-03	0.0010%	8.65E-09	3.79E-08	7.70%	6.62E-05	2.90E-04	4.95E-05	1.69E-05	3.32E-05	2.17E-04	7.42E-05	1.45E-04
PRVs	2	0.030864	97%	100.00%	1.90E-03	8.10E-03	0.0010%	1.86E-08	8.17E-08	7.70%	1.43E-04	6.25E-04	1.07E-04	3.65E-05	7.15E-05	4.67E-04	1.60E-04	3.13E-04
TOTAL EMISSIONS		1	I	1	0.43	1.87		1.08E-04	4.74E-04		0.02	0.10	0.02	0.004	0.01	0.06	0.02	0.03

¹ Fugitive emission source counts were calculated based on information provided by the facility. Reduction credits are based on the TCEQ Air Permit Technical Guidance for Chemical Sources: Fugitive Guidance (06/2018), utilizing a 28VHP program.

² Factors are from TCEQ's "Air Permit Technical Guidance for Chemical Sources: Equipment Leak Fugitives," (October 2000). Emission factors pulled from

Facility/Compound Specific Fugitive Emission Factors Table for Oil and Gas Production Operations.

³ Includes compressors and sample points

⁴ For conservative emission calculation purposes, the Total HAP and H₂S content of the water/oil stream was assumed to be equal to that of the condensate stream.

					Emissio	ons Summary												
EPN:	FUG-CHP																	
COMPONENT	COUNT 1	EPA FACTOR ² (lb/hr-src)	REDUCTION ALLOWED FOR LDAR	VOC CONTENT IN STREAM	TOTAL VOC EMISSIONS (lb/hr)	TOTAL VOC EMISSIONS (tpy)	H ₂ S CONTENT IN STREAM ⁴	TOTAL H2S EMISSIONS (lb/hr)	TOTAL H ₂ S EMISSIONS (tpv)	HAP CONTENT IN STREAM ⁴	TOTAL HAP EMISSIONS (lb/hr)	TOTAL HAP EMISSIONS (tpv)	n-Hexane (lb/hr)	Benzene (lb/hr)	Toluene (lb/hr)	n-Hexane (tpy)	Benzene (tpy)	Toluene (tpy)
INLET GAS (gas)		(ID/III-SIC)	FOR LUAR		(iD/iir)	((DA)		(ib/nr)	(tpy)		(10/117)	(tpy)	(10/117)	(ib/nr)	(ID/III)	((ру)	((09)	((py)
VALVES	971	0.00992	97%	25.49%	7.37E-02	3.23E-01	0.014%	4.15E-05	1.82E-04	0.29%	8.37E-04	3.67E-03	6.83E-04	1.04E-04	4.29E-05	2.99E-03	4.56E-04	1.88E-04
FLANGES	1942	0.00086	30%	25.49%	2.98E-01	1.31E+00	0.014%	1.68E-04	7.35E-04	0.29%	3.39E-03	1.48E-02	2.76E-03	4.21E-04	2.48E-04	1.21E-02	1.85E-03	1.09E-03
CONNECTORS	971	0.00044	30%	25.49%	7.62E-02	3.34E-01	0.014%	4.29E-05	1.88E-04	0.29%	8.66E-04	3.79E-03	7.07E-04	1.08E-04	6.34E-05	3.09E-03	4.72E-04	2.78E-04
PRVs	44	0.01940	97%	25.49%	6.50E-03	2.86E-02	0.014%	3.68E-06	1.61E-05	0.29%	7.42E-05	3.25E-04	6.05E-05	9.23E-06	1.27E-04	2.65E-04	4.04E-05	5.55E-04
OTHER ³	1155	0.01940	97%	25.49%	1.71E-01	7.51E-01	0.014%	9.65E-05	4.23E-04	0.29%	1.95E-03	8.53E-03	1.59E-03	2.42E-04	3.33E-03	6.96E-03	1.06E-03	1.46E-02
RESIDUE GAS (gas)																		
VALVES	541	0.00992	97%	0.07%	1.00E-04	5.00E-04	0.00001%	1.88E-08	8.23E-08	0.000001%	2.03E-09	8.87E-09	1.27E-09	7.21E-10	3.83E-11	5.54E-09	3.16E-09	1.68E-10
FLANGES CONNECTORS	1082 541	0.00086	30% 30%	0.07%	4.00E-04 1.00E-04	1.90E-03 5.00E-04	0.00001%	7.60E-08 1.94E-08	3.33E-07 8.51E-08	0.000001%	8.19E-09 2.10E-09	3.59E-08 9.18E-09	5.12E-09 1.31E-09	2.92E-09 7.46E-10	1.55E-10 3.97E-11	2.24E-08 5.74E-09	1.28E-08 3.27E-09	6.79E-10 1.74E-10
PRVs	22	0.00044	30% 97%	0.07%	0.00E+00	5.00E-04 0.00E+00	0.00001%	1.94E-08	6.54E-08	0.000001%	2.10E-09 1.61E-10	9.18E-09 7.06E-10	1.31E-09	5.74E-10	3.97E-11 3.05E-12	5.74E-09 4.41E-10	2.51E-10	1.74E-10 1.33E-11
OTHER ³	750	0.01940	97%	0.07%	3.00E-04	1.30E-03	0.00001%	5.09E-08	2.23E-07	0.000001%	5.49E-09	2.41E-08	3.43E-09	1.96E-09	1.04E-10	1.50E-08	8.56E-09	4.55E-10
PROPANE REFRIGER	ATION GAS (gas)																
VALVES	202	0.00992	97%	99.30%	5.97E-02	2.62E-01	0.000%	0.00E+00	0.00E+00	0.00%	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
FLANGES	404	0.00086	30%	99.30%	2.42E-01	1.06E+00	0.000%	0.00E+00	0.00E+00	0.00%	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
CONNECTORS	202	0.00044	30%	99.30%	6.18E-02	2.71E-01	0.000%	0.00E+00	0.00E+00	0.00%	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
PRVs	7	0.01940	97%	99.30%	4.00E-03	1.77E-02	0.000%	0.00E+00	0.00E+00	0.00%	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
OTHER ³	198	0.01940	97%	99.30%	1.14E-01	5.01E-01	0.000%	0.00E+00	0.00E+00	0.00%	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
ACID GAS (gas)	07	0.00000	0701	0.070/	0.005.00	1.005.01	40.47.407	0.765.00	1.055.00	0.0101	4.425.05	4.005.05	1.645.00	8.005.00	0.775.00	7 405 00	2.555.05	4.045.05
VALVES FLANGES	96 192	0.00992	97% 30%	0.07%	0.00E+00 1.00E-04	1.00E-04 4.00E-04	13.174% 13.174%	3.76E-03 1.52E-02	1.65E-02 6.67E-02	0.04%	1.12E-05 4.53E-05	4.90E-05 1.98E-04	1.64E-08 6.63E-08	8.09E-06	2.77E-06	7.18E-08 2.91E-07	3.55E-05 1.43E-04	1.21E-05 4.91E-05
CONNECTORS	192 96	0.00086	30%	0.07%	1.00E-04 0.00E+00	4.00E-04 1.00E-04	13.174%	1.52E-02 3.90E-03	6.67E-02 1.71E-02	0.04%	4.53E-05 1.16E-05	1.98E-04 5.07E-05	6.63E-08 1.70E-08	3.27E-05 8.38E-06	1.12E-05 2.87E-06	2.91E-07 7.43E-08	1.43E-04 3.67E-05	4.91E-05 1.26E-05
PRVs	2	0.01940	97%	0.07%	0.00E+00	0.00E+00	13.174%	1.53E-04	6.72E-04	0.04%	4.56E-07	2.00E-06	6.68E-10	3.30E-06	1.13E-07	2.93E-09	1.44E-06	4.94E-07
OTHER ³	6	0.01940	97%	0.07%	0.00E+00	0.00E+00	13.174%	4.60E-04	2.01E-03	0.04%	1.37E-06	5.99E-06	2.00E-09	9.89E-07	3.39E-07	8.78E-09	4.33E-06	1.48E-06
																		1
FLARE PRODUCT GAS	S (gas)																	
VALVES	95	0.00992	97%	0.07%	0.00E+00	1.00E-04	13.174%	0.004	1.63E-02	0.04%	1.11E-05	4.85E-05	1.62E-08	8.01E-06	2.74E-06	7.11E-08	3.51E-05	1.20E-05
FLANGES	190	0.00086	30%	0.07%	1.00E-04	4.00E-04	13.174%	0.015	6.60E-02	0.04%	4.48E-05	1.96E-04	6.57E-08	3.24E-05	1.11E-05	2.88E-07	1.42E-04	4.86E-05
CONNECTORS	95	0.00044	30%	0.07%	0.00E+00	1.00E-04	13.174%	0.004	1.69E-02	0.04%	1.15E-05	5.02E-05	1.68E-08	8.29E-06	2.84E-06	7.36E-08	3.63E-05	1.24E-05
PRVs	0	0.01940	97%	0.07%	0.00E+00	0.00E+00	13.174%	0.000	0.00E+00	0.04%	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
OTHER ³	110	0.01940	97%	0.07%	0.00E+00	2.00E-04	13.174%	0.008	3.69E-02	0.04%	2.51E-05	1.10E-04	3.68E-08	1.81E-05	6.21E-06	1.61E-07	7.94E-05	2.72E-05
CONDENSATE (light o	.21)																	
VALVES	602	0.00550	97%	99.66%	9.90E-02	4.34E-01	0.0010%	1.00E-06	4.38E-06	7.70%	7.65E-03	3.35E-02	5.72E-03	1.96E-03	3.84E-03	2.51E-02	8.58E-03	1.68E-02
FLANGES	1204	0.000243	30%	99.66%	2.04E-01	8.94E-01	0.0010%	2.06E-06	9.03E-06	7.70%	1.58E-02	6.91E-02	1.18E-02	4.04E-03	7.91E-03	5.17E-02	1.77E-02	3.46E-02
CONNECTORS	602	0.00046	30%	99.66%	1.94E-01	8.52E-01	0.0010%	1.96E-06	8.60E-06	7.70%	1.50E-02	6.58E-02	1.12E-02	3.85E-03	7.54E-03	4.92E-02	1.68E-02	3.30E-02
PUMP SEALS	4	0.02866	85%	99.66%	1.71E-02	7.51E-02	0.0010%	1.73E-07	7.58E-07	7.70%	1.32E-03	5.80E-03	9.91E-04	3.39E-04	6.64E-04	4.34E-03	1.48E-03	2.91E-03
PRVs	12	0.016535	97%	99.66%	5.90E-03	2.60E-02	0.0010%	5.99E-08	2.62E-07	7.70%	4.59E-04	2.01E-03	3.43E-04	1.17E-04	2.30E-04	1.50E-03	5.14E-04	1.01E-03
OTHER ³	793	0.016535	97%	99.66%	3.92E-01	1.72E+00	0.0010%	3.96E-06	1.73E-05	7.70%	3.03E-02	1.33E-01	2.27E-02	7.75E-03	1.52E-02	9.92E-02	3.40E-02	6.65E-02
METHANOL																		<u> </u>
VALVES	25	0.0002161	97%	100.00%	2.00E-04	7.00E-04	0.0000%	0.00E+00	0.00E+00	100.00%	1.62E-04	7.10E-04	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
FLANGES	50	0.0000064	30%	100.00%	2.00E-04	1.00E-03	0.0000%	0.00E+00	0.00E+00	100.00%	2.24E-04	9.80E-04	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
CONNECTORS	25	0.000243	30%	100.00%	4.30E-03	1.86E-02	0.0000%	0.00E+00	0.00E+00	100.00%	4.25E-03	1.86E-02	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
PUMP SEALS	1	0.02866	85% 97%	100.00%	4.30E-03 9.00E-04	1.88E-02	0.0000%	0.00E+00	0.00E+00	100.00%	4.30E-03	1.88E-02	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
PRVs	1	0.030864	9/%	100.00%	9.00E-04	4.10E-03	0.0000%	0.00E+00	0.00E+00	100.00%	9.26E-04	4.06E-03	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
WATER/OIL					1									1		1		I
VALVES	107	0.0002161	97%	99.66%	7.00E-04	3.00E-03	0.0010%	6.98E-09	3.06E-08	7.70%	5.34E-05	2.34E-04	3.99E-05	1.37E-05	2.68E-05	1.75E-04	5.99E-05	1.17E-04
FLANGES	214	0.0000064	30%	99.66%	1.00E-03	4.20E-03	0.0010%	9.64E-09	4.22E-08	7.70%	7.37E-05	3.23E-04	5.51E-05	1.89E-05	3.70E-05	2.42E-04	8.27E-05	1.62E-04
CONNECTORS	107	0.000243	30%	99.66%	1.81E-02	7.94E-02	0.0010%	1.83E-07	8.03E-07	7.70%	1.40E-03	6.14E-03	1.05E-03	3.59E-04	7.03E-04	4.59E-03	1.57E-03	3.08E-03
PRVs	2	0.030864	97%	99.66%	1.80E-03	8.10E-03	0.0010%	1.86E-08	8.17E-08	7.70%	1.43E-04	6.25E-04	1.07E-04	3.65E-05	7.15E-05	4.67E-04	1.60E-04	3.13E-04
																		I
LIQUID PRODUCT																		
VALVES	287	0.0002161	97%	61.43%	1.10E-03	5.00E-03	0.0004%	7.68E-09	3.36E-08	0.65%	1.21E-05	5.31E-05	1.03E-05	1.25E-06	4.74E-07	4.52E-05	5.48E-06	2.07E-06
FLANGES	574	0.0000064	30%	61.43%	1.60E-03	6.90E-03	0.0004%	1.06E-08	4.64E-08	0.65%	1.67E-05	7.33E-05	1.42E-05	1.73E-06	6.54E-07	6.24E-05	7.57E-06	2.86E-06
CONNECTORS PUMP SEALS	287	0.000243	30% 85%	61.43% 61.43%	3.00E-02 1.32E-02	1.31E-01 5.78E-02	0.0004%	2.02E-07 8.87E-08	8.83E-07 3.89E-07	0.65%	3.18E-04 1.40E-04	1.39E-03 6.13E-04	2.71E-04 1.19E-04	3.29E-05 1.45E-05	1.24E-05 5.47E-06	1.19E-03 5.22E-04	1.44E-04 6.34E-05	5.44E-05 2.40E-05
POMP SEALS PRVs	22	0.02866	97%	61.43%	1.32E-02 1.25E-02	5.48E-02	0.0004%	8.87E-08 8.41E-08	3.68E-07	0.65%	1.40E-04 1.33E-04	5.81E-04	1.19E-04 1.13E-04	1.45E-05 1.37E-05	5.47E-06 5.19E-06	5.22E-04 4.95E-04	6.01E-05	2.40E-05 2.27E-05
	~~~	0.000004	01 /0	01.40/6	1.202-02	5.402-02	0.0004/8	0.412-00	3.00L-07	0.0378	1.002-04	3.012-04	1.132-04	1.572-03	0.102-00	4.000-04	0.012-00	2.272-00
AMINE PRODUCT	İ						İ		İ	İ								
VALVES	229	0.0002161	97%	45.00%	7.00E-04	2.90E-03	0.0517%	7.68E-07	3.36E-06	0.00%	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
FLANGES	458	0.0000064	30%	45.00%	9.00E-04	4.00E-03	0.0517%	1.06E-06	4.64E-06	0.00%	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
CONNECTORS	229	0.000243	30%	45.00%	1.75E-02	7.68E-02	0.0517%	2.01E-05	8.82E-05	0.00%	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
PUMP SEALS	4	0.02866	85%	45.00%	7.70E-03	3.39E-02	0.0517%	8.89E-06	3.90E-05	0.00%	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
PRVs	11	0.030864	97%	45.00%	4.60E-03	2.01E-02	0.0517%	5.27E-06	2.31E-05	0.00%	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
GYCOL PRODUCT																		
VALVES	191	0.0002161	97%	100.00%	1.20E-03	5.40E-03	0.0000%	0.00E+00	0.00E+00	0.01%	3.51E-06	1.54E-05	4.36E-10	3.46E-08	5.00E-08	1.91E-09	1.51E-07	2.19E-07
FLANGES CONNECTORS	382 191	0.0000064	30%	100.00%	1.70E-03 3.25E-02	7.50E-03 1.42E-01	0.0000%	0.00E+00 0.00E+00	0.00E+00 0.00E+00	0.01%	2.08E-07 3.95E-06	9.10E-07 1.73E-05	6.02E-10 1.15E-08	4.77E-08 9.08E-07	6.90E-08 1.31E-06	2.64E-09 5.02E-08	2.09E-07 3.97E-06	3.02E-07 5.74E-06
PUMP SEALS	191	0.000243	30% 85%	100.00%	3.25E-02 1.72E-02	1.42E-01 7.53E-02	0.0000%	0.00E+00 0.00E+00	0.00E+00 0.00E+00	0.01%	3.95E-06 9.76E-06	1.73E-05 4.28E-05	1.15E-08 6.06E-09	9.08E-07 4.80E-07	1.31E-06 6.94E-07	5.02E-08 2.65E-08	3.97E-06 2.10E-06	5.74E-06 3.04E-06
POMP SEALS PRVs	4	0.02866	85% 97%	100.00%	1.72E-02 1.20E-02	7.53E-02 5.27E-02	0.0000%	0.00E+00 0.00E+00	0.00E+00 0.00E+00	0.01%	9.76E-06 3.42E-05	4.28E-05 1.50E-04	4.24E-09	4.80E-07 3.36E-07	6.94E-07 4.86E-07	2.65E-08 1.86E-08	2.10E-06 1.47E-06	2.13E-06
		0.000004	GY /0	100.0076	1.202-02	0.27 2-02	0.000078	0.002700	U.UUL TUU	0.0170	0.722700	1.002-04	7.272.00	0.002-07		1.002-00	1.47 2.00	2.102-00
TOTAL EMISSIONS					2.05	8.99		0.05	0.24		0.09	0.39	0.06	0.01	0.02	0.16	0.05	0.11

 TOTAL EMISSIONS
 2.05
 8.99
 0.05
 0.24
 0.09
 0.39
 u.ve
 u.vi

 * Fugitive emission source counts were calculated based on information provided by the facility. Reduction credits are based on the TCEQ Air Permit Technical Guidance for Chemical Sources: Fugitive Guidance (06/2018), utilizing a 28VHP program.

 * Factors are from TCEQ's Air Permit Technical Guidance for Chemical Sources: Equipment Lask Fugitives." (October 2000). Emission factors pulled from Facility.Compound Specific Fugitive Emission Factors Table for O1 and Gas Production Operations.

 * Includes compressors and sample points

 * For conservative emission calculation purposes, the Total HAP and H₂S content of the water/oil stream was assumed to be equal to that of the condensate stream.

					Emiss													
EPN:	FUG-CH2		1	1	1		1	1		1		1			1		-	
			REDUCTION	VOC CONTENT	TOTAL VOC	TOTAL VOC	H ₂ S	TOTAL H2S	TOTAL H ₂ S	HAP CONTENT IN	TOTAL HAP	TOTAL HAP						
COMPONENT	COUNT ¹	EPA FACTOR ²	ALLOWED	IN STREAM	EMISSIONS	EMISSIONS	CONTENT IN STREAM ⁴	EMISSIONS	EMISSIONS	STREAM ⁴	EMISSIONS	EMISSIONS	n-Hexane	Benzene	Toluene	n-Hexane	Benzene	Toluene
		(lb/hr-src)	FOR LDAR	in ornerai	(lb/hr)	(tpy)	STREAM	(lb/hr)	(tpy)	STREAM	(lb/hr)	(tpy)	(lb/hr)	(lb/hr)	(lb/hr)	(tpy)	(tpy)	(tpy)
INLET GAS (gas)		0.00000	070/	05 4004	7.075.00	0.005.04	0.04.40/	4.455.05	4 005 04	0.000/	0.075.04	0.075.00	0.005.04	1015 01	4.005.05	0.005.00	4.505.04	4 005 04
VALVES FLANGES	971 1942	0.00992 0.00086	97% 30%	25.49% 25.49%	7.37E-02 2.98E-01	3.23E-01 1.31E+00	0.014%	4.15E-05 1.68E-04	1.82E-04 7.35E-04	0.29%	8.37E-04 3.39E-03	3.67E-03 1.48E-02	6.83E-04 2.76E-03	1.04E-04 4.21E-04	4.29E-05 2.48E-04	2.99E-03 1.21E-02	4.56E-04 1.85E-03	1.88E-04 1.09E-03
CONNECTORS	971	0.00044	30%	25.49%	7.62E-02	3.34E-01	0.014%	4.29E-05	1.88E-04	0.29%	8.66E-04	3.79E-03	7.07E-04	1.08E-04	6.34E-05	3.09E-03	4.72E-04	2.78E-04
PRVs	44	0.01940	97%	25.49%	6.50E-03	2.86E-02	0.014%	3.68E-06	1.61E-05	0.29%	7.42E-05	3.25E-04	6.05E-05	9.23E-06	1.27E-04	2.65E-04	4.04E-05	5.55E-04
OTHER ³	1155	0.01940	97%	25.49%	1.71E-01	7.51E-01	0.014%	9.65E-05	4.23E-04	0.29%	1.95E-03	8.53E-03	1.59E-03	2.42E-04	3.33E-03	6.96E-03	1.06E-03	1.46E-02
RESIDUE GAS (gas)						-			-								-	
VALVES	541	0.00992	97%	0.07%	1.00E-04	5.00E-04	0.00001%	1.88E-08	8.23E-08	0.000001%	2.03E-09	8.87E-09	1.27E-09	7.21E-10	3.83E-11	5.54E-09	3.16E-09	1.68E-10
FLANGES CONNECTORS	1082 541	0.00086	30%	0.07%	4.00E-04 1.00E-04	1.90E-03 5.00E-04	0.00001%	7.60E-08 1.94E-08	3.33E-07 8.51E-08	0.000001%	8.19E-09 2.10E-09	3.59E-08 9.18E-09	5.12E-09 1.31E-09	2.92E-09 7.46E-10	1.55E-10 3.97E-11	2.24E-08 5.74E-09	1.28E-08 3.27E-09	6.79E-10 1.74E-10
PRVs	22	0.01940	97%	0.07%	0.00E+00	0.00E+00	0.00001%	1.94E-08	6.54E-09	0.000001%	1.61E-10	9.18E-09 7.06E-10	1.01E-10	5.74E-11	3.05E-12	4.41E-10	2.51E-10	1.33E-11
OTHER ³	750	0.01940	97%	0.07%	3.00E-04	1.30E-03	0.00001%	5.09E-08	2.23E-07	0.000001%	5.49E-09	2.41E-08	3.43E-09	1.96E-09	1.04E-10	1.50E-08	8.56E-09	4.55E-10
PROPANE REFRIGER	ATION GAS (																	
VALVES	202	0.00992	97%	99.30%	5.97E-02	2.62E-01	0.000%	0.00E+00	0.00E+00	0.00%	0.00E+00							
FLANGES	404	0.00086	30%	99.30%	2.42E-01	1.06E+00	0.000%	0.00E+00	0.00E+00	0.00%	0.00E+00							
CONNECTORS	202	0.00044	30%	99.30%	6.18E-02	2.71E-01	0.000%	0.00E+00	0.00E+00	0.00%	0.00E+00							
PRVs OTHER ³	7 198	0.01940	97% 97%	99.30% 99.30%	4.00E-03 1.14E-01	1.77E-02 5.01E-01	0.000%	0.00E+00 0.00E+00	0.00E+00 0.00E+00	0.00%	0.00E+00 0.00E+00	0.00E+00 0.00E+00	0.00E+00 0.00E+00	0.00E+00 0.00E+00	0.00E+00 0.00E+00	0.00E+00 0.00E+00	0.00E+00 0.00E+00	0.00E+00 0.00E+00
SHIEN	180	0.01340	01 /0	00.00 /0	1.146-01	3.012-01	0.000 /6	3.00L+00	3.00L+00	0.0076	0.002+00	3.00L+00	J.UUL TUU	0.002400	0.002700	0.002400	0.002+00	J.UULTUU
ACID GAS (gas)																		
VALVES	96	0.00992	97%	0.07%	0.00E+00	1.00E-04	13.174%	3.76E-03	1.65E-02	0.04%	1.12E-05	4.90E-05	1.64E-08	8.09E-06	2.77E-06	7.18E-08	3.55E-05	1.21E-05
FLANGES	192	0.00086	30%	0.07%	1.00E-04	4.00E-04	13.174%	1.52E-02	6.67E-02	0.04%	4.53E-05	1.98E-04	6.63E-08	3.27E-05	1.12E-05	2.91E-07	1.43E-04	4.91E-05
CONNECTORS	96	0.00044	30%	0.07%	0.00E+00	1.00E-04	13.174%	3.90E-03	1.71E-02	0.04%	1.16E-05	5.07E-05	1.70E-08	8.38E-06	2.87E-06	7.43E-08	3.67E-05	1.26E-05
PRVs	2	0.01940	97%	0.07%	0.00E+00	0.00E+00	13.174%	1.53E-04	6.72E-04	0.04%	4.56E-07	2.00E-06	6.68E-10	3.30E-07	1.13E-07	2.93E-09	1.44E-06	4.94E-07
OTHER ³	6	0.01940	97%	0.07%	0.00E+00	0.00E+00	13.174%	4.60E-04	2.01E-03	0.04%	1.37E-06	5.99E-06	2.00E-09	9.89E-07	3.39E-07	8.78E-09	4.33E-06	1.48E-06
FLARE PRODUCT GA	C (maa)																	
VALVES	95 (gas)	0.00992	97%	0.07%	0.00E+00	1.00E-04	13.174%	3.72E-03	1.63E-02	0.04%	1.11E-05	4.85E-05	1.62E-08	8.01E-06	2.74E-06	7.11E-08	3.51E-05	1.20E-05
FLANGES	190	0.00086	30%	0.07%	1.00E-04	4.00E-04	13.174%	1.51E-02	6.60E-02	0.04%	4.48E-05	1.96E-04	6.57E-08	3.24E-05	1.11E-05	2.88E-07	1.42E-04	4.86E-05
PRVs	0	0.01940	97%	0.07%	0.00E+00	0.00E+00	13.174%	0.00E+00	0.00E+00	0.04%	0.00E+00							
OTHER ³	110	0.01940	97%	0.07%	0.00E+00	2.00E-04	13.174%	8.43E-03	3.69E-02	0.04%	2.51E-05	1.10E-04	3.68E-08	1.81E-05	6.21E-06	1.61E-07	7.94E-05	2.72E-05
CONDENSATE (light o	oil)										_	_	_		_		_	
VALVES	602	0.00550	97%	99.66% 99.66%	9.90E-02	4.34E-01	0.0010%	1.00E-06	4.38E-06	7.70%	7.65E-03	3.35E-02	5.72E-03	1.96E-03	3.84E-03	2.51E-02	8.58E-03 1.77E-02	1.68E-02
FLANGES PUMP SEALS	1204	0.000243	30% 85%	99.66%	2.04E-01 1.71E-02	8.94E-01 7.51E-02	0.0010%	2.06E-06 1.73E-07	9.03E-06 7.58E-07	7.70%	1.58E-02 1.32E-03	6.91E-02 5.80E-03	1.18E-02 9.91E-04	4.04E-03 3.39E-04	7.91E-03 6.64E-04	5.17E-02 4.34E-03	1.77E-02 1.48E-03	3.46E-02 2.91E-03
PRVs	12	0.016535	97%	99.66%	5.90E-03	2.60E-02	0.0010%	5.99E-08	2.62E-07	7.70%	4.59E-04	2.01E-03	3.43E-04	1.17E-04	2.30E-04	1.50E-03	5.14E-04	1.01E-03
OTHER ³	793	0.016535	97%	99.66%	3.92E-01	1.72E+00	0.0010%	3.96E-06	1.73E-05	7.70%	3.03E-02	1.33E-01	2.27E-02	7.75E-03	1.52E-02	9.92E-02	3.40E-02	6.65E-02
METHANOL																		
VALVES	25	0.0002161	97%	100.00%	2.00E-04	7.00E-04	0.0000%	0.00E+00	0.00E+00	100.00%	1.62E-04	7.10E-04	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
FLANGES	50	0.0000064	30% 30%	100.00%	2.00E-04	1.00E-03	0.0000%	0.00E+00	0.00E+00	100.00%	2.24E-04 4.25E-03	9.80E-04	0.00E+00 0.00E+00	0.00E+00	0.00E+00	0.00E+00 0.00E+00	0.00E+00 0.00E+00	0.00E+00
CONNECTORS PUMP SEALS	25		30%	100.00%	4.30E-03 4.30E-03	1.86E-02 1.88E-02	0.0000%	0.00E+00 0.00E+00	0.00E+00		4.25E-03 4.30E-03	1.86E-02 1.88E-02	0.00E+00	0.00E+00 0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00 0.00E+00
PRVs	1	0.02866 0.030864	97%	100.00%	9.00E-04	4.10E-03	0.0000%	0.00E+00	0.00E+00 0.00E+00	100.00%	4.30E-03 9.26E-04	4.06E-02	0.00E+00	0.00E+00	0.00E+00 0.00E+00	0.00E+00	0.00E+00	0.00E+00
WATER/OIL					-	-					· · · · · ·			-	1		1	
VALVES	107	0.0002161	97%	99.66%	7.00E-04	3.00E-03	0.0010%	6.98E-09	3.06E-08	7.70%	5.34E-05	2.34E-04	3.99E-05	1.37E-05	2.68E-05	1.75E-04	5.99E-05	1.17E-04
FLANGES	214	0.0000064	30%	99.66%	1.00E-03	4.20E-03	0.0010%	9.64E-09	4.22E-08	7.70%	7.37E-05	3.23E-04	5.51E-05	1.89E-05	3.70E-05	2.42E-04	8.27E-05	1.62E-04
CONNECTORS	107	0.000243	30%	99.66%	1.81E-02	7.94E-02	0.0010%	1.83E-07	8.03E-07	7.70%	1.40E-03	6.14E-03	1.05E-03	3.59E-04	7.03E-04	4.59E-03	1.57E-03	3.08E-03
PRVs	2	0.030864	97%	99.66%	1.80E-03	8.10E-03	0.0010%	1.86E-08	8.17E-08	7.70%	1.43E-04	6.25E-04	1.07E-04	3.65E-05	7.15E-05	4.67E-04	1.60E-04	3.13E-04
LIQUID PRODUCT																		
VALVES	287	0.0002161	97%	61.43%	1.10E-03	5.00E-03	0.0004%	7.68E-09	3.36E-08	0.65%	1.21E-05	5.31E-05	1.03E-05	1.25E-06	4.74E-07	4.52E-05	5.48E-06	2.07E-06
FLANGES	574	0.0000064	30%	61.43%	1.60E-03	6.90E-03	0.0004%	1.06E-08	4.64E-08	0.65%	1.67E-05	7.33E-05	1.42E-05	1.73E-06	6.54E-07	6.24E-05	7.57E-06	2.86E-06
CONNECTORS	287	0.000243	30%	61.43%	3.00E-02	1.31E-01	0.0004%	2.02E-07	8.83E-07	0.65%	3.18E-04	1.39E-03	2.71E-04	3.29E-05	1.24E-05	1.19E-03	1.44E-04	5.44E-05
PUMP SEALS	5	0.02866	85%	61.43%	1.32E-02	5.78E-02	0.0004%	8.87E-08	3.89E-07	0.65%	1.40E-04	6.13E-04	1.19E-04	1.45E-05	5.47E-06	5.22E-04	6.34E-05	2.40E-05
PRVs	22	0.030864	97%	61.43%	1.25E-02	5.48E-02	0.0004%	8.41E-08	3.68E-07	0.65%	1.33E-04	5.81E-04	1.13E-04	1.37E-05	5.19E-06	4.95E-04	6.01E-05	2.27E-05
AMINE DRODUCT											-				-		+	<u>+</u>
AMINE PRODUCT VALVES	229	0.0002161	97%	45.00%	7.00E-04	2.90E-03	0.0517%	7.68E-07	3.36E-06	0.00%	0.00E+00							
FLANGES	458	0.00002181	30%	45.00%	9.00E-04	2.90E-03 4.00E-03	0.0517%	1.06E-06	4.64E-06	0.00%	0.00E+00							
CONNECTORS	229	0.000243	30%	45.00%	1.75E-02	7.68E-02	0.0517%	2.01E-05	8.82E-05	0.00%	0.00E+00							
PUMP SEALS	4	0.02866	85%	45.00%	7.70E-03	3.39E-02	0.0517%	8.89E-06	3.90E-05	0.00%	0.00E+00							
PRVs	11	0.030864	97%	45.00%	4.60E-03	2.01E-02	0.0517%	5.27E-06	2.31E-05	0.00%	0.00E+00							
																	+	<u> </u>
GYCOL PRODUCT																		<u> </u>
VALVES	191	0.0002161	97%	100.00%	1.20E-03	5.40E-03	0.0000%	0.00E+00	0.00E+00	0.01%	3.51E-06	1.54E-05	4.36E-10	3.46E-08	5.00E-08	1.91E-09	1.51E-07	2.19E-07
FLANGES	382	0.0000064	30%	100.00%	1.70E-03	7.50E-03	0.0000%	0.00E+00	0.00E+00	0.01%	2.08E-07	9.10E-07	6.02E-10	4.77E-08	6.90E-08	2.64E-09	2.09E-07	3.02E-07
CONNECTORS PUMP SEALS	191	0.000243	30% 85%	100.00%	3.25E-02 1.72E-02	1.42E-01 7.53E-02	0.0000%	0.00E+00 0.00E+00	0.00E+00 0.00E+00	0.01%	3.95E-06 9.76E-06	1.73E-05 4.28E-05	1.15E-08 6.06E-09	9.08E-07 4.80E-07	1.31E-06 6.94E-07	5.02E-08 2.65E-08	3.97E-06 2.10E-06	5.74E-06 3.04E-06
PRVs	4	0.02888	97%	100.00%	1.20E-02	5.27E-02	0.0000%	0.00E+00	0.00E+00	0.01%	3.42E-05	4.28E-03 1.50E-04	4.24E-09	4.80E-07 3.36E-07	4.86E-07	1.86E-08	1.47E-06	2.13E-06
									,									
TOTAL EMISSIONS					2.05	8.99		5.49E-02	2.41E-01		0.09	0.39	0.06	0.01	0.02	0.157	0.049	0.105

IOTAL Emissions
 IOTAL Emissions
 IOTAL Emissions
 IOTAL Emissions
 IOTAL Emissions
 IOTAL Emissions
 IOTAL Emissions
 IOTAL Emissions
 IOTAL Emissions
 IOTAL
 IOTAL
 IOTAL
 IOTAL
 IOTAL
 IOTAL
 IOTAL
 IOTAL
 IOTAL
 IOTAL
 IOTAL
 IOTAL
 IOTAL
 IOTAL
 IOTAL
 IOTAL
 IOTAL
 IOTAL
 IOTAL
 IOTAL
 IOTAL
 IOTAL
 IOTAL
 IOTAL
 IOTAL
 IOTAL
 IOTAL
 IOTAL
 IOTAL
 IOTAL
 IOTAL
 IOTAL
 IOTAL
 IOTAL
 IOTAL
 IOTAL
 IOTAL
 IOTAL
 IOTAL
 IOTAL
 IOTAL
 IOTAL
 IOTAL
 IOTAL
 IOTAL
 IOTAL
 IOTAL
 IOTAL
 IOTAL
 IOTAL
 IOTAL
 IOTAL
 IOTAL
 IOTAL
 IOTAL
 IOTAL
 IOTAL
 IOTAL
 IOTAL
 IOTAL
 IOTAL
 IOTAL
 IOTAL
 IOTAL
 IOTAL
 IOTAL
 IOTAL
 IOTAL
 IOTAL
 IOTAL
 IOTAL
 IOTAL
 IOTAL
 IOTAL
 IOTAL
 IOTAL
 IOTAL
 IOTAL
 IOTAL
 IOTAL
 IOTAL
 IOTAL
 IOTAL
 IOTAL
 IOTAL
 IOTAL
 IOTAL
 IOTAL
 IOTAL
 IOTAL
 IOTAL
 IOTAL
 IOTAL
 IOTAL
 IOTAL
 IOTAL
 IOTAL
 IOTAL
 IOTAL
 IOTAL
 IOTAL
 IOTAL
 IOTAL
 IOTAL
 IOTAL
 IOTAL
 IOTAL
 IOTAL
 IOTAL
 IOTAL
 IOTAL
 IOTAL
 IOTAL
 IOTAL
 IOTAL
 IOTAL
 IOTAL
 IOTAL
 IOTAL
 IOTAL
 IOTAL
 IOTAL
 IOTAL
 IOTAL
 IOTAL
 IOTAL
 IOTAL
 IOTAL
 IOTAL
 IOTAL
 IOTAL
 IOTAL
 IOTAL
 IOTAL
 IOTAL
 IOTAL
 IOTAL
 IOTAL
 IOTAL
 IOTAL
 IOTAL
 IOTAL
 IOTAL
 IOTAL
 IOTAL
 IOTAL
 IOTAL
 IOTAL
 IOTAL
 IOTAL
 IOTAL
 IOTAL
 IOTAL
 IOTAL
 IOTAL
 IOTAL
 IOTAL
 IOTAL
 IOTAL
 IOTAL
 IOTAL
 IOTAL
 IOTAL
 IOTAL
 IOTAL
 IOTAL
 IOTAL
 IOTAL
 IOTAL
 IOTAL
 IOTAL
 IOTAL
 IOTAL
 IOTAL
 IOTAL
 IOTAL
 IOTAL
 IOTAL
 IOTAL
 IOTAL
 IOTAL
 IOTAL
 IOTAL
 IOTAL
 IOTAL
 IOTAL
 I

Uncontrolled Dehydrator Emissions¹

	V	C	H2	S	Total	HAP	n-He	xane	Ben	zene	ΤοΙι	lene	Ethylb	enzene	Xyl∉	enes
_	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
Regen Overhead	102.1	447.0	1.54	6.7	45.56	199.54	2.10	9.22	22.72	99.53	17.45	76.42	0.74	3.25	2.54	11.12
Flash Tank	82.6	361.9	0.88	3.9	2.26	9.90	1.04	4.57	0.83	3.63	0.35	1.53	0.01	0.04	0.03	0.13

#### Uncontrolled Dehydrator Emissions¹

	V	OC	H	₂S	Total	HAP	n-He	xane	Ben	zene		uene	Ethylb	enzene	Xyle	nes
	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
Condenser Off-Gas	68.4	299.6	1.51	6.6	21.79	95.45	1.56	6.84	13.71	60.05	6.04	26.44	0.10	0.46	0.38	1.66

#### Controlled Dehydrator Emissions²

	VO	C	H ₂	S	Total	HAP	n-He	xane	Benz	zene	Tolu	ene	Ethylbo	enzene	Xyle	enes
	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
-	3.02	13.23	0.05	0.21	0.48	2.11	0.05	0.23	0.29	1.27	0.13	0.56	0.00	0.01	0.01	0.04

#### Notes

¹ Emissions are calculated using Promax

² Flash tank off gas emissions are recycled and recompressed or sent to the reboiler as fuel.

Dehydrator vent gas is controlled by the flare, with a control efficiency of 98%

98%         98%         98%         98%         98%         Estimated control efficiency for H ₂ S and VOC           100%         100%         0.016         0.03         0.022         0.0002         0.08         0.002         ib/hr         Based on pilot plus flared gas           Dehy vent gas Flaring         NO _x CO         SO ₂ H ₂ S         VOC         HAPs           0.1380         0.2755         4.79         151.02         24.05         Ib/hr         Based on pilot plus flared gas           0.1380         0.2755         4.79         151.02         24.05         Ib/hr         Voc thaps           1.00%         1.00%         0.0958         3.02         0.48         Ib/hr         RG-109 Emission Factors for high-Btu, non-steam assisted           0.1380         0.2755         4.79         151.02         24.05         Ib/hr         Based on pilot plus flared gas           100%         100%         88%         98%         98%         98%         98%         98%         24.05         Ib/hr         Based on pilot plus flared gas         Conversion to SO ₂ (1-1 molar ratio)	(-)	Flare Steady State	- Dehydrator	Control					
0.0138         Msc/id 1134.70         cfm/ids/if         cfm/ids/if         cfm/ids/if           Storage Tank Gas 0.652         0.397         Mkdc/ifv 4.53E-05         Vent gas 0.113         Mkdiz/ifv 0.007         Vent gas 0.113         Storage Tank 0.007         0.397         Mkdiz/ifv 0.007         Vent gas 0.113         Storage Tank 0.0138         Track         Vent gas 0.0138         Storage Tank 0.007         Not         CO         So         HAS         Voc         HAPS         Units         Track CR-109 (high Bu; other) pom	Flow Rate:								
4.53E-05         MMsc/hr         Vent gas           0.113         MBMst/hr         sch * Maximum heating value           57.308         MMsc/hr         vent gas           1509.39         Vid Blu/Scf         9.88           9.88         MMst/hr         sch * Maximum heating value           100.07         MMsc/hr         Vent gas           1509.39         Vid Blu/Scf         9.88           9.88         MMBstu/hr         sch * Maximum heating value           10.69         9.88           Pilot Emissions         Nox         CO           0.138         0.2755           500         mol%           0.138         0.2755           500         mol%           0.39         0.79           0.21         2.3E-04           -         tb/hr           10/hr         B/MMBtu/hr           98%         98%           98%         98%           98%         98%           98%         98%           98%         98%           98%         98%           98%         98%           98%         98%           98%         98%	Pilot	0.0138 1134.70	MMscf/d BTU/scf	scf/hr * 24					
Nox         CO         Solution         Solution         Solution         Solution         The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon	Storage Tank Gas	4.53E-05	MMscf/hr		mum heating	value			
Emission Calculations           Pilot Emissions         NOx         CO         SO2         H2S         VOC         HAPs         Units           0.138         0.2755         500         -         -         -         Pilot Emission         TNRCC RG-109 (high Btu; other) ppm         Fuel H2S content of 60 ppm H2S.           0.090         0.18         -         -         -         Ho/hr         B/MMBtu * MMBtu/hr         B/MMBtu * MBtu/hr           0.39         0.79         0.21         2.3E-03         -         -         Ib/hr         B/MMBtu * MMBtu/hr           0.39         0.79         0.21         2.3E-03         -         -         tb/hr         98% combustion H_2S; 100% conversion to SO2           Storage Tank Flaring         NOx         CO         SO2         H2S         VOC         HAPs            0.11         3.75         0.11         1b/hr         Ib/MMBtu         RG-109 Emission Factors for high-Btu, non-steam assisted            0.00%         0.0002         0.088         0.002         lb/hr         Based on pilot plus flared gas         Estimated control efficiency for H_S and VOC         Estimated do nor store for high-Btu, non-steam assisted           0.014         0.02         0.0001         0.33 <td>Dehy vent gas</td> <td>0.007 1509.89 9.88</td> <td>MMscf/hr Wtd Btu/Scf MMBtu/hr</td> <td>scfh * Maxi</td> <td></td> <td>value</td> <td></td> <td></td> <td></td>	Dehy vent gas	0.007 1509.89 9.88	MMscf/hr Wtd Btu/Scf MMBtu/hr	scfh * Maxi		value			
Pilot Emissions         Nox         CO         SO2         H ₂ S         VOC         HAPs         Units           0.138         0.2755         500         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         - <td></td> <td></td> <td>MMBtu/hr</td> <td>Pilot + vent</td> <td>gas</td> <td></td> <td></td> <td></td> <td></td>			MMBtu/hr	Pilot + vent	gas				
500         ppm         Fuel H2S content of 60 ppm H2S. MSxme no VOC content fuel (methane)           0.090         0.18         -         -         m0%         Assume no VOC content fuel (methane)           0.39         0.79         0.21         2.3E-03         -         -         Ib/hr         Ib/hr         Ib/MBtu 'MMBtu'/ WMBtu'/r           0.39         0.79         0.21         2.3E-03         -         -         tpy         8760 hrs/yr           Storage Tank Flaring         NO _x CO         SO ₂ H ₂ S         VOC         HAPs           0.1380         0.2755         0.01         3.75         0.11         Ib/hr         Ib/MBtu         RG-109 Emission Factors for high-Btu, non-steam assisted           100%         100%         0.016         0.03         0.022         0.0002         0.08         0.002         Ib/hr         Estimated control efficiency for H ₂ S and VOC           Estimated         0.1380         0.2755         4.79         151.02         24.05         Ib/hr         Based on pilot plus flared gas           0.1380         0.2755         4.79         151.02         24.05         Ib/hr         Estimated control efficiency for H ₂ S and VOC           98%         98%         98%         98			со	SO2	H₂S	voc	HAPs	Units	
0.090         0.18         Ib/hr         Ib/hr         Ib/hr         Ib/hr         Ib/hr         Ib/hr         Ib/hr         Ib/hr         98% combustion H_2S; 100% conversion to SO2           0.39         0.79         0.21         2.3E-03         -         -         tpy         8760 hrs/yr           Storage Tank Flaring         NO _x CO         SO2         H ₂ S         VOC         HAPs           0.1380         0.2755         0.01         3.75         0.11         Ib/hr         B/MMBtu         RG-109 Emission Factors for high-Btu, non-steam assisted           0.01         3.75         0.11         Ib/hr         Ib/hr         B/MMBtu         All Controlled VOC and HAP from tanks is represented at the Estimated control efficiency for H ₂ S and VOC         Estimated H ₂ S conversion to SO ₂ (1-1 molar ratio)         Based on pilot plus flared gas           Dehy vent gas         NO _x CO         SO ₂ H ₂ S         VOC         HAPs           0.1380         0.2755         4.79         151.02         24.05         Ib/hr         Ib/MBtu         RG-109 Emission Factors for high-Btu, non-steam assisted           0.100%         98%         98%         98%         98%         Estimated Control efficiency for H ₂ S and VOC         Estimated Control efficiency for H ₂ S and VOC	-	0.138	0.2755		500	-	-	ppm	Fuel H2S content of 60 ppm H2S.
Storage Tank Flaring         NO _x CO         SO ₂ H ₂ S         VOC         HAPs           0.1380         0.2755         0.01         3.75         0.11         lb/MMBtu         RG-109 Emission Factors for high-Btu, non-steam assisted           0.01         3.75         0.11         lb/hr         All Controlled VOC and HAP from tanks is represented at the Estimated control efficiency for H ₂ S and VOC           0.016         0.03         0.002         0.0002         0.08         0.009         Estimated H ₂ S conversion to SO ₂ (1-1 molar ratio)           Dehy vent gas Flaring         NO _x CO         SO ₂ H ₂ S         VOC         HAPs           0.1380         0.2755         4.79         151.02         24.05         lb/MMBtu         RG-109 Emission Factors for high-Btu, non-steam assisted           0.1380         0.2755         4.79         151.02         24.05         lb/hr         B/MMBtu           0.1380         0.2755         4.79         151.02         24.05         lb/hr         B/MBtu         Uncontrolled DEHY emission           0.1380         0.2725         4.79         151.02         24.05         lb/hr         lb/hr         Based on pilot plus flared gas           100%         100%         100%         100%	-	0.090	0.18	0.049	5.2E-04	-		lb/hr	lb/MMBtu * MMBtu/hr
Flaring         NOx         CO         SO2         H2S         VOC         HAPS           0.1380         0.2755         0.01         3.75         0.11         Ib/MMBtu         RG-109 Emission Factors for high-Btu, non-steam assisted           0.1380         0.2755         0.01         3.75         0.11         Ib/M         All Controlled VOC and HAP from tanks is represented at the Estimated control efficiency for H2S and VOC         Estimated control efficiency for H2S and VOC         Estimated control efficiency for H2S and VOC         Estimated Control efficiency for H2S and VOC         Estimated All Controlled VOC and HAP from tanks is represented at the Estimated control efficiency for H2S and VOC         Estimated Control efficiency for H2S and VOC         Estimated Face         Estimated Control efficiency for H2S and VOC         Estimated Face         Estimated Control efficiency for H2S and VOC         Estimated Control efficiency for H2S and VOC         Estimated H2S conversion to SO2 (1-1 molar ratio)         Estimated H2S conversion to SO2 (1-1 mo		0.39	0.79	0.21	2.3E-03	-	-	tpy	8760 hrs/yr
0.01         3.75         0.11         lb/hr         All Controlled VOC and HAP from tanks is represented at the Estimated control efficiency for H ₂ S and VOC           98%         98%         98%         98%         98%         98%         Estimated control efficiency for H ₂ S and VOC           0.016         0.03         0.002         0.008         0.002         b/hr         Based on pilot plus flared gas           Dehy vent gas Flaring         NO _x CO         SO ₂ H ₂ S         VOC         HAPs           0.1380         0.2755         4.79         151.02         24.05         Ib/hr         B/MMBtu         RG-109 Emission Factors for high-Btu, non-steam assisted           0.10%         100%         100%         Estimated H ₂ S conversion to SO ₂ (1-1 molar ratio)         Estimated H ₂ S conversion to SO ₂ (1-1 molar ratio)				SO2	H ₂ S	voc	HAPs	_	
Image: Normal sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector		0.1380	0.2755						All Controlled VOC and HAP from tanks is represented at the tanks
0.07         0.14         0.10         0.001         0.33         0.009         tpy           Dehy vent gas Flaring         NO _x CO         SO ₂ H ₂ S         VOC         HAPs           0.1380         0.2755         4.79         151.02         24.05         Ib/MMBtu         RG-109 Emission Factors for high-Btu, non-steam assisted           98%         98%         98%         98%         28%         Estimated Control efficiency for H ₂ S and VOC           1.363         2.72         8.838         0.0958         3.02         0.48         Ib/hr         Based on pilot plus flared gas	_			100%	3070	3070	3070		, <u> </u>
Flaring     NOx     CO     SO2     H2S     VOC     HAPS       0.1380     0.2755     Ib/MBtu     IB/MMBtu     RG-109 Emission Factors for high-Btu, non-steam assisted       98%     98%     98%     98%     Estimated control efficiency for H2S and VOC       100%     1363     2.72     8.838     0.0958     3.02     0.48     Ib/hr     Based on pilot plus flared gas	-								Based on pilot plus flared gas
4.79         151.02         24.05         lb/hr         Uncontrolled DEHY emissions           98%         98%         98%         58%         58%         58%         58%         58%         58%         58%         58%         58%         58%         58%         58%         58%         58%         58%         58%         58%         58%         58%         58%         58%         58%         58%         58%         58%         58%         58%         58%         58%         58%         58%         58%         58%         58%         58%         58%         58%         58%         58%         58%         58%         58%         58%         58%         58%         58%         58%         58%         58%         58%         58%         58%         58%         58%         58%         58%         58%         58%         58%         58%         58%         58%         58%         58%         58%         58%         58%         58%         58%         58%         58%         58%         58%         58%         58%         58%         58%         58%         58%         58%         58%         58%         58%         58%         58%         58% <t< td=""><td></td><td></td><td></td><td>SO₂</td><td>H₂S</td><td>voc</td><td>HAPs</td><td></td><td></td></t<>				SO ₂	H₂S	voc	HAPs		
1.363 2.72 8.838 0.0958 3.02 0.48 lb/hr Based on pilot plus flared gas		0.1380	0.2755						Uncontrolled DEHY emissions Estimated control efficiency for $H_2S$ and VOC
	-							<u> </u>	, ,
3.3/ 11.32 36./1 0.420 13.23 2.11 ψy		1.363 5.97	2.72 11.92	8.838 38.71	0.0958 0.420	3.02 13.23	0.48 2.11	lb/hr tpy	Based on pilot plus flared gas
Total Pilot + Flaring NO _X CO SO ₂ H ₂ S VOC HAPs	Total Pilot + Flaring	NO _X	со	SO ₂	H ₂ S	voc	HAPs		
1.47 2.93 8.91 0.10 3.10 0.48 lb/hr 6.43 12.84 39.02 0.42 13.56 2.12 tpy	_								

Unit No(s): E	Emergency	Flare						
			ntenance Emis	sions Control	led by Flare			
		,						
Flow Rate:								
SSM flaring	543,337	scf/yr						
	69457.2		SSM flaring					
	78.81	MMBtu/hr						
		MMBtu/yr						
Emission Calculatio		,						
SSM Flaring	NOx	со	SO ₂	H₂S	VOC	HAPs		
	0.138	0.2755					lb/MMBtu	
				0.62	954.0	15.9	lb/hr	
				4.88	7462.6	124.4	lb/yr	Estimated control officiancy for LLS and VOC
				98%	98%	98%		Estimated control efficiency for $H_2S$ and VOC
-	10.876	21.71	100% 1.151	1.2E-02	19.08	0.32	lb/hr	98% combustion $H_2S$ ; 100% conversion to $SO_2$
	0.046	0.09	4.5E-03	1.2E-02 4.9E-05	7.5E-02	0.32 1.2E-03	tpy	Based on pilot plus flared gas
	0.040	0.00				00	·r /	
Total SSM Flaring	NOx	со	SO2	H₂S	voc	HAPs		
	10.88	21.71	1.15	1.25E-02	19.08	0.32	lb/hr	
	0.05	0.09	4.50E-03	4.88E-05	7.46E-02	1.24E-03	tpy	

#### NITROGEN REJECTION UNIT

#### Targa Midstream Services, LLC, Copperhead Gas Plant

Nitrogen Reject Stream MW:		lb/lbmol	
Nitrogen Reject Stream Flow:	4.99	MMSFD	
Component	Mol %	Mass Flow Rate (lb/hr)	Mass Flow Rate (tpy)
Nitrogen	98.52	15,112.00	66,190.56
Carbon Dioxide	0.00	0.00	0.00
Methane	1.48	130.32	570.80
Ethane	0.00	9.61E-09	4.21E-08
Propane	0.00	1.46E-15	6.39E-15
i-Butane	0.00	0.00	0.00
n-Butane	0.00	0.00	0.00
i-Pentane	0.00	0.00	0.00
n-Pentane	0.00	0.00	0.00
Hexanes	0.00	0.00	0.00
Heptanes	0.00	0.00	0.00
Octanes	0.00	0.00	0.00
Benzene	0.00	0.00	0.00
Toluene	0.00	0.00	0.00
Ethylbenzene	0.00	0.00	0.00
Xylenes	0.00	0.00	0.00
Nonanes	0.00	0.00	0.00
Decanes	0.00	0.00	0.00
Total	100.00	15,242	66,761
Total VOC		1.46E-15	6.39E-15
Total HAP		0.00	0.00
Total CO2e		3,258.00	14,270.04

#### MSS - NRU Residue Gas Blowdown Targa Midstream Services, LLC, Copperhead Gas Plant

#### Residue Gas, EPN:

MSSFUG

Input Data		
	Residue Gas	
Duration of Blowdown Event	48	hr/event
Number of Events per Hour	1	event/hr
Estimated Annual Frequency	1	events/yr
Residue Gas Flow Rate	500,000	scf/hr
Residue das riow Rate	24,000,000	scf/yr

#### Residue Gas - VOC and $H_2S$

Compound	Composition ¹	MW	Gas Vented to Atmostphere ^{3,4}			
compound	(Mole %)	(lb/lb-mole)	(lb/hr)	(tpy)		
Carbon Dioxide	0.00%	44.00	2.55E-05	6.12E-07		
Hydrogen Sulfide	0.00%	34.08	2.51E-03	6.03E-05		
Nitrogen	1.84%	28.00	677.95	16.27		
methane	97.60%	16.00	20,573.65	493.77		
ethane	8.06%	30.07	3194.79	76.67		
propane	0.53%	44.10	307.34	7.38		
i-butane	0.01%	58.12	3.83	0.09		
N-butane	0.01%	58.12	4.59	0.11		
i-pentane	0.00%	72.15	0.00	0.00		
n-pentane	0.00%	72.15	0.00	0.00		
cyclopentane	0.00%	70.10	0.00	0.00		
n-hexane	0.00%	86.18	0.00	0.00		
cyclohexane	0.00%	84.16	0.00	0.00		
other hexanes	0.00%	86.18	0.00	0.00		
heptanes	0.00%	100.21	0.00	0.00		
Methylcyclohexane	0.00%	98.18	0.00	0.00		
2,2,4-trimethylpentane	0.00%	114.23	0.00	0.00		
benzene	0.00%	78.11	0.00	0.00		
toluene	0.00%	92.14	0.00	0.00		
ethylbenzene	0.00%	106.17	0.00	0.00		
xylenes	0.00%	106.16	0.00	0.00		
octanes	0.00%	114.23	0.00	0.00		
nonanes	0.00%	128.26	0.00	0.00		
decanes	0.00%	142.29	0.00	0.00		
C11	0.00%	156.31	0.00	0.00		
C12+	0.00%	170.34	0.00	0.00		
Diethanolamine	0.00%	105.14	0.00	0.00		
VOC ⁶	0.54%		315.76	7.58		
Total HAPs	0.00%		0.00	0.00		

¹ Composition of the gas stream is obtained from Residue Gas stream.

² Per TCEQ "Air Permit Guidance For Chemical Sources, Flare And Vapor Oxidizers" (Draft Oct. 2000).

 ³ Gas Vented to Atmosphere (lb/hr) = Hourly Flowrate (scf/hr) x Mole Percent x MW (lb/lb-mole) / 379.5 (scf/lb-mole)

 ⁹ Propane Hourly Gas Vented to Atmosphere (lb/hr) = 500,000 scf

 0.53%
 44.10 lb

 Propane Hourly Gas Vented to Atmosphere (lb/hr) = 500,000 scf

	hr		lb-mole	379.5 scf		hr		
⁴ Annual Gas Vented to Flare (tpy) = Annual Flowrate (scf/yr) x Mole Percent x MW (lb/lb-mole) / 379.5 (scf/lb-mole) x (1 ton / 2000 lb)								
Example Propane Vented to Atmosphere Annual Emi	ssion Rate (tpy) =	24,000,000 scf	0.53%	44.10 lb	lb-mole	1 ton	=	7.38 lb
		yr		lb-mole	379.5 scf	2,000 lb		hr

307.34 lb

=

⁶ Total VOC taken as the sum of NMNEHC.

Unit No(s):	H-1
Unit No(s):	H-2
Description:	Dehydrator Reboiler

#### Heater Data

Heating rate:	3.0 MMBtu/hr	
Fuel heat value:	1020 Btu/scf	
Fuel usage:	0.0029 MMscf/hr	MMBtu/hr * MMscf/MMBtu
	25.8 MMscf/yr	
Operating hours:	8760 hours/year	

#### Emission Rates

ites							
	NOx	со	VOC	SO21	PM ²		
	100	84	5.5		7.6	lb/MMscf	AP-42 Tables 1.4-1 and 1.4-2
	0.098	0.082	0.005		0.0075	lb/MMBtu	
	0.29	0.25	0.016	0.020	0.022	lb/hr	
	1.29	1.08	0.071	0.087	0.098	tpy	
	нсон⁴	Benzene ⁴	Toluene⁴	Acetaldehyde ⁴	Methanol ⁴	Total	
		0.0004	2.405.02				-
	7.50E-02	0.0021	3.40E-03			lb/MMscf	
	7.35E-05	2.06E-06	3.33E-06			lb/MMBtu	
	0.0002	0.00001	0.00001	0.00000	0.00000	0.0002	lb/hr
	0.0010	0.00003	0.00004	0.00000	0.00000	0.0010	tpy
	CO2	CH₄	N ₂ O	CO ₂ e			
	120000	2.3	2.2		lb/MMscf	AP-42 Table	1.4-2
	1545.88	0.030	0.028	1555.07	tpy		
	1	25	298		GWP		
		=9	200				

#### Notes

 1  SO₂ emissions are based on the conversion of H₂S to SO₂ during the combustion process and a 1:1 molar ratio conversion of H₂S to SO₂. The fuel gas concentration is based on 500 ppm of H₂S.

 2  It is assumed that TSP =  $\text{PM}_{10}$  =  $\text{PM}_{2.5}$ 

Unit No(s): H-1701-CHP Description: HMO Heater 1701

#### Heater Data

Heating rate:	79.4	MMBtu/hr	
Fuel heat value:	1020	Btu/scf	
Fuel usage:	0.0778	MMscf/hr	MMBtu/hr * MMscf/MMBtu
	681.9	MMscf/yr	
Operating hours:	8760	hours/year	

#### **Emission Rates**

Rates							
_	NOx	со	VOC	SO ₂ ¹	PM ²	_	
			5.5		7.6	lb/MMscf	AP-42 Tables 1.4-1 and 1.4-2
	0.036	0.048	0.005		0.0075	lb/MMBtu	
	2.86	3.81	0.428	0.053	0.592	lb/hr	
	12.52	16.69	1.875	0.231	2.591	tpy	
	НСОН⁴	Benzene ⁴	Toluene⁴	Acetaldehyde ⁴	Methanol ⁴	Total HAPs⁴	
	7.50E-02	0.0021	3.40E-03			lb/MMscf	
_	7.35E-05	2.06E-06	3.33E-06			lb/MMBtu	
	0.0058	0.0002	0.0003	0.00000	0.00000	0.01	lb/hr
	0.0256	0.0007	0.0012	0.00000	0.00000	0.03	tpy
	CO2	CH₄	N₂O	CO₂e			
	120000	2.3	2.2		lb/MMscf	AP-42 Table	1.4-2
	40914.35	0.784	0.750	41157.49	tpy		
	1	25	298		GWP		

Notes

Unit No(s): H-1702-CHP Description: HMO Heater 1702

#### Heater Data

Heating rate:	79.4 MMI	Btu/hr	
Fuel heat value:	1020 Btu/	/scf	
Fuel usage:	0.0778 MM	scf/hr MMBtu/hr * MMscf/MMBtu	
	681.9 MM	scf/yr	
Operating hours:	8760 houi	rs/year	

#### **Emission Rates**

Rates							
	NOx	со	VOC	SO ₂ ¹	PM ²	_	
			5.5		7.6	lb/MMscf	AP-42 Tables 1.4-1 and 1.4-2
	0.036	0.048	0.005		0.0075	lb/MMBtu	
	2.86	3.81	0.428	0.053	0.592	lb/hr	
	12.52	16.69	1.875	0.231	2.591	tpy	
	нсон⁴	Benzene⁴	Toluene⁴	Acetaldehyde ⁴	Methanol ⁴	Total HAPs ⁴	
	7.50E-02	0.0021	3.40E-03			Ib/MMscf	-
	7.35E-05	2.06E-06	3.33E-06			lb/MMBtu	
	0.0058	0.0002	0.0003	0.00000	0.00000	0.006	lb/hr
	0.0256	0.0007	0.0012	0.00000	0.00000	0.03	tpy
	CO2	CH₄	N₂O	CO₂e			
	120000	2.3	2.2		lb/MMscf	AP-42 Table	1.4-2
	40914.35	0.784	0.750	41157.49	tpy		
	1	25	298		GWP		

Notes

Unit No(s): H-1703-CHP Description: HMO Heater 1703

#### Heater Data

Heating rate:	79.4	MMBtu/hr	
Fuel heat value:	1020	Btu/scf	
Fuel usage:	0.0778	MMscf/hr	MMBtu/hr * MMscf/MMBtu
	681.9	MMscf/yr	
Operating hours:	8760	hours/year	

#### **Emission Rates**

Rates							
_	NOx	со	VOC	SO ₂ ¹	PM ²	_	
-			5.5		7.6	lb/MMscf	AP-42 Tables 1.4-1 and 1.4-2
	0.036	0.048	0.005		0.0075	lb/MMBtu	
-	2.86	3.81	0.428	0.053	0.592	lb/hr	
	12.52	16.69	1.875	0.231	2.591	tpy	
	нсон⁴	Benzene ⁴	Toluene ⁴	Acetaldehyde ⁴	Methanol ⁴	Total	
				/1001010011/00		HAPs⁴	-
	7.50E-02	0.0021	3.40E-03			lb/MMscf	
	7.35E-05	2.06E-06	3.33E-06			lb/MMBtu	
	0.0058	0.0002	0.0003	0.00000	0.00000	0.006	lb/hr
	0.0256	0.0007	0.0012	0.00000	0.00000	0.03	tpy
	CO2	CH₄	N₂O	CO₂e			
-	120000	2.3	2.2		lb/MMscf	AP-42 Table	1.4-2
	40914.35	0.784	0.750	41157.49	tpy		
	1	25	298		GWP		

Notes

Unit No(s): H-1704-CHP Description: HMO Heater 1704

#### Heater Data

Heating rate:	37.8	MMBtu/hr	
Fuel heat value:	1020	Btu/scf	
Fuel usage:	0.0371	MMscf/hr	MMBtu/hr * MMscf/MMBtu
	324.6	MMscf/yr	
Operating hours:	8760	hours/year	

#### **Emission Rates**

Rates							
	NOx	со	VOC	SO ₂ ¹	PM ²	_	
			5.5		7.6	lb/MMscf	AP-42 Tables 1.4-1 and 1.4-2
	0.036	0.061	0.005		0.0075	lb/MMBtu	
	1.36	2.31	0.204	0.025	0.282	lb/hr	
	5.96	10.10	0.893	0.110	1.234	tpy	
	НСОН⁴	Benzene ⁴	Toluene⁴	Acetaldehyde ⁴	Methanol ⁴	Total HAPs⁴	
	7.50E-02	0.0021	3.40E-03			lb/MMscf	-
	7.35E-05	2.06E-06	3.33E-06			lb/MMBtu	
	0.0028	0.0001	0.0001	0.00000	0.00000	0.003	lb/hr
	0.0122	0.0003	0.0006	0.00000	0.00000	0.01	tpy
	CO2	CH₄	N₂O	CO₂e			
	120000	2.3	2.2		lb/MMscf	AP-42 Table	1.4-2
	19478.12	0.373	0.357	19593.87	tpy		
	1	25	298		GWP		

Notes

Unit No(s):	H-4701-CHP
Description:	Regen Gas Heater 4701

#### Heater Data

Heating rate:	16.2	MMBtu/hr	
Fuel heat value:	1020	Btu/scf	
Fuel usage:	0.0159	MMscf/hr	MMBtu/hr * MMscf/MMBtu
	139.1	MMscf/yr	
Operating hours:	8760	hours/year	

#### **Emission Rates**

Rates							
	NOx	со	VOC	SO ₂ ¹	PM ²	_	
	100	84	5.5		7.6	lb/MMscf	AP-42 Tables 1.4-1 and 1.4-2
	0.098	0.082	0.005		0.0075	lb/MMBtu	
	1.59	1.33	0.087	0.011	0.121	lb/hr	
	6.96	5.84	0.383	0.047	0.529	tpy	
		_ 4	4	4	4	Total	
	HCOH⁴	Benzene⁴	Toluene⁴	Acetaldehyde ⁴	Methanol*	HAPs⁴	
	7.50E-02	0.0021	3.40E-03			lb/MMscf	-
	7.35E-05	2.06E-06	3.33E-06			lb/MMBtu	
	0.0012	0.0000	0.0001	0.00000	0.00000	0.001	lb/hr
	0.0052	0.0001	0.0002	0.00000	0.00000	0.01	tpy
	CO2	CH₄	N₂O	CO₂e			
	120000	2.3	2.2		lb/MMscf	AP-42 Table	1.4-2
	8347.76	0.160	0.153	8397.37	tpy		
	1	25	298		GWP		

Notes

Unit No(s): H-1701-CH2 Description: HMO Heater 1701

#### Heater Data

Heating rate:	79.4 MMI	Btu/hr	
Fuel heat value:	1020 Btu/	/scf	
Fuel usage:	0.0778 MM	scf/hr MMBtu/hr * MMscf/MMBtu	
	681.9 MM	scf/yr	
Operating hours:	8760 houi	rs/year	

#### **Emission Rates**

Rates							
	NOx	со	VOC	SO ₂ ¹	PM ²	_	
			5.5		7.6	lb/MMscf	AP-42 Tables 1.4-1 and 1.4-2
	0.036	0.048	0.005		0.0075	lb/MMBtu	
	2.86	3.81	0.428	0.053	0.592	lb/hr	
	12.52	16.69	1.875	0.231	2.591	tpy	
	нсон⁴	Benzene⁴	Toluene⁴	Acetaldehyde ⁴	Methanol ⁴	Total HAPs⁴	
	7.50E-02	0.0021	3.40E-03			Ib/MMscf	-
	7.35E-05	2.06E-06	3.33E-06			lb/MMBtu	
	0.0058	0.0002	0.0003	0.00000	0.00000	0.006	lb/hr
	0.0256	0.0007	0.0012	0.00000	0.00000	0.03	tpy
	CO2	CH₄	N₂O	CO₂e			
	120000	2.3	2.2		lb/MMscf	AP-42 Table	1.4-2
	40914.35	0.784	0.750	41157.49	tpy		
	1	25	298		GWP		

Notes

Unit No(s): H-1702-CH2 Description: HMO Heater 1702

#### Heater Data

Heating rate:	79.4	MMBtu/hr	
Fuel heat value:	1020	Btu/scf	
Fuel usage:	0.0778	MMscf/hr	MMBtu/hr * MMscf/MMBtu
	681.9	MMscf/yr	
Operating hours:	8760	hours/year	

#### **Emission Rates**

Rates							
_	NOx	со	VOC	SO ₂ ¹	PM ²	_	
-			5.5		7.6	lb/MMscf	AP-42 Tables 1.4-1 and 1.4-2
	0.036	0.048	0.005		0.0075	lb/MMBtu	
-	2.86	3.81	0.428	0.053	0.592	lb/hr	
	12.52	16.69	1.875	0.231	2.591	tpy	
	нсон⁴	Benzene ⁴	Toluene ⁴	Acetaldehyde ⁴	Methanol ⁴	Total	
				/1001010011/00		HAPs⁴	-
	7.50E-02	0.0021	3.40E-03			lb/MMscf	
	7.35E-05	2.06E-06	3.33E-06			lb/MMBtu	
	0.0058	0.0002	0.0003	0.00000	0.00000	0.006	lb/hr
	0.0256	0.0007	0.0012	0.00000	0.00000	0.03	tpy
	CO2	CH₄	N₂O	CO₂e			
-	120000	2.3	2.2		lb/MMscf	AP-42 Table	1.4-2
	40914.35	0.784	0.750	41157.49	tpy		
	1	25	298		GWP		

Notes

Unit No(s): H-1703-CH2 Description: HMO Heater 1703

#### Heater Data

Heating rate:	79.4	MMBtu/hr	
Fuel heat value:	1020	Btu/scf	
Fuel usage:	0.0778	MMscf/hr	MMBtu/hr * MMscf/MMBtu
	681.9	MMscf/yr	
Operating hours:	8760	hours/year	

#### **Emission Rates**

Rates							
	NOx	со	VOC	SO ₂ ¹	PM ²	_	
			5.5		7.6	lb/MMscf	AP-42 Tables 1.4-1 and 1.4-2
	0.036	0.048	0.005		0.0075	lb/MMBtu	
	2.86	3.81	0.428	0.053	0.592	lb/hr	
	12.52	16.69	1.875	0.231	2.591	tpy	
	нсон⁴	Benzene⁴	Toluene⁴	Acetaldehyde ⁴	Methanol ⁴	Total HAPs⁴	
	7.50E-02	0.0021	3.40E-03			Ib/MMscf	-
	7.35E-05	2.06E-06	3.33E-06			lb/MMBtu	
	0.0058	0.0002	0.0003	0.00000	0.00000	0.006	lb/hr
	0.0256	0.0007	0.0012	0.00000	0.00000	0.03	tpy
	CO2	CH₄	N₂O	CO₂e			
	120000	2.3	2.2		lb/MMscf	AP-42 Table	1.4-2
	40914.35	0.784	0.750	41157.49	tpy		
	1	25	298		GWP		

Notes

Unit No(s): H-1704-CH2 Description: HMO Heater 1704

#### Heater Data

Heating rate:	37.8	MMBtu/hr	
Fuel heat value:	1020	Btu/scf	
Fuel usage:	0.0371	MMscf/hr	MMBtu/hr * MMscf/MMBtu
	324.6	MMscf/yr	
Operating hours:	8760	hours/year	

#### **Emission Rates**

Rates							
_	NOx	со	VOC	SO ₂ ¹	PM ²	_	
-			5.5		7.6	lb/MMscf	AP-42 Tables 1.4-1 and 1.4-2
	0.036	0.061	0.005		0.0075	lb/MMBtu	
	1.36	2.31	0.204	0.025	0.282	lb/hr	
	5.96	10.10	0.893	0.110	1.234	tpy	
_	НСОН⁴	Benzene ⁴	Toluene ⁴	Acetaldehyde ⁴	Methanol ⁴	Total HAPs ⁴	
	7.50E-02	0.0021	3.40E-03			lb/MMscf	-
_	7.35E-05	2.06E-06	3.33E-06			lb/MMBtu	
-	0.0028	0.0001	0.0001	0.00000	0.00000	0.003	lb/hr
	0.0122	0.0003	0.0006	0.00000	0.00000	0.01	tpy
	CO ₂	CH₄	N₂O	CO₂e			
	120000	2.3	2.2		lb/MMscf	AP-42 Table	1.4-2
	19478.12	0.373	0.357	19593.87	tpy		
	1	25	298		GWP		

Notes

#### Unit No(s): H-4701-CH2 Regen Gas Heater 4701 Description:

#### Heater Data

nouter Duta		
Heating rate:	16.2 MMBtu/hr	
Fuel heat value:	1020 Btu/scf	
Fuel usage:	0.0159 MMscf/hr	MMBtu/hr * MMscf/MMBtu
	139.1 MMscf/yr	
Operating hours:	8760 hours/year	

#### **Emission Rates**

Rates							
	NOx	со	VOC	SO ₂ ¹	PM ²		
	100	84	5.5		7.6	lb/MMscf	AP-42 Tables 1.4-1 and 1.4-2
	0.098	0.082	0.005		0.0075	lb/MMBtu	
	1.59	1.33	0.087	0.011	0.121	lb/hr	
	6.96	5.84	0.383	0.047	0.529	tpy	
	НСОН⁴	Benzene ⁴	Toluene ⁴	Acetaldehyde ⁴	Methanol ⁴	Total HAPs⁴	
	7.50E-02	0.0021	3.40E-03			lb/MMscf	-
	7.35E-05	2.06E-06	3.33E-06			lb/MMBtu	
	0.0012	0.0000	0.0001	0.00000	0.00000	0.001	lb/hr
	0.0052	0.0001	0.0002	0.00000	0.00000	0.01	tpy
	CO ₂	CH₄	N₂O	CO₂e			
	120000	2.3	2.2		lb/MMscf	AP-42 Table	1.4-2
	8347.76	0.160	0.153	8397.37	tpy		
	1	25	298		GWP		

Notes

			Emissions Summary
Unit No(s):	FL	-1800-CHP	
Description:	Fla	are 1: Steady State	
Flow Rate:			
	Pilot Sweep Gas Assist Gas	195.0 scf/hr 1185.0 scf/hr 170.0 scf/hr	flare pilot
		0.0372 MMscf/d	scf/hr * 24 (hr/day) / 1e6 SCF/MMscf
		995.93 BTU/scf 1.544 MMBtu/hr	Nominal, sweet natural gas
Emission Calcu	lations		

Pilot/Sweep/Assist Emissions	NOx	со	SO ₂	H₂S	VOC	HAPs	Units	
_	0.138	0.2755					lb/MMBtu	TNRCC RG-109 (high Btu; other)
				4			ppm	Fuel H2S content of 4 ppm H2S.
					-	-	mol%	Assume no VOC content fuel (metha
	0.213	0.43					lb/hr	lb/MMBtu * MMBtu/hr
			0.000	1.4E-06	-	-	lb/hr	98% combustion H ₂ S; 100% convers
	0.93	1.86	0.00	6.1E-06	-	-	tpy	8760 hrs/yr
Total Pilot/Sweep/Assist + Flaring	NO _x	со	SO ₂	H₂S	voc	HAPs		
_	0.21	0.43	0.0001	0.00	0.00	0.00	lb/hr	
	0.93	1.86	0.0006	0.00	0.000	0.0000	tpy	

					Em	issions Su	immary		
Unit No(s):	F	L-1800-CH2	2						
Description:	F	lare 2: Stea	dy State						
·									
Flow Rate:									
	Pilot 195.0 scf/hr Sweep Gas 1185.0 scf/hr		flare pilot						
A	ssist Gas	170.0 scf/hr 0.0372 MMscf/d							
				scf/hr * 24 (hr/day) / 1e6 SCF/MMscf					
			BTU/scf	Nominal, swe	eet natural gas				
		1.544	MMBtu/hr						
Emission Calculations									
Pilot/Sweep/Assist E	missions	NOx	со	SO ₂	H₂S	voc	HAPs	Units	
FIIOUSWEED/ASSIST		0.138	0.2755	302	H ₂ 3	100	HAFS		
		0.138	0.2755		4			lb/MMBtu	TNRCC RG-109 (high Btu; other)
					4		-	ppm	Fuel H2S content of 60 ppm H2S.
	-	0.213	0.43			-	-	mol% lb/hr	Assume no VOC content fuel (methane)
		0.215	0.43					lb/hr	98% combustion H ₂ S; 100% conversion to SO ₂
				0.000	1.4E-06	-	-		
		0.93	1.86	0.00	6.1E-06	-	-	tpy	8760 hrs/yr
T ( 10% (0) (4) (4)	- ·								
Total Pilot/Sweep/Assist	+ Flaring	NOx	CO	SO ₂	H₂S	VOC	HAPs	_	
		0.21	0.43	0.00	0.00	0.00	0.00	lb/hr	
		0.93	1.86	0.00	0.00	0.000	0.0000	tpy	

				Emissions Su	mmary
Unit No(s):		1800-CHP			
Unit No(s):		1800-CH2			
Description:	Fla	re: Startup, Shu	tdown, Mainte	nance Emissions Controlled by Flare	
Flow Rate:					
	Assist/Residue Gas	660000.0	scf/hr		
		15.8400	MMscf/d	scf/hr * 24 (hr/day) / 1e6 SCF/MMscf	
		36,3000	MMScf/yr	(	
			BTU/scf	Nominal, sweet natural gas	
		657.314	MMBtu/hr	······	
		36152.247	MMBtu/vr		
	Amine	8.37	MMscf/yr		
		0.15	MMscf/hr	Vent gas	
		16.401	MMBtu/hr	scfh * Maximum heating value	
		55.0	AGI Downtim	e hrs	
	Residue	000.04	MA		
	Residue	260.21	MMscf/yr	Martine	
		7.85	MMscf/hr	Vent gas	
			MMBtu/hr	scfh * Maximum heating value	
I		33.1	Residue Gas	Flaring hrs	
	Inlet	41.44	MMscf/yr		
I			MMscf/hr	Vent gas	
I		13,057.044		scfh * Maximum heating value	
I			Inlet Gas Fla		

**Emission Calculations CO** 0.2755 VOC HAPs Assist Emissions NOx SO₂ H₂S Units TNRCC RG-109 (high Btu; other) Fuel H2S content of 60 ppm H2S. 0.138 lb/MMBtu 4 ppm lb/hr 0.0002 226.35 1.60E-03 98% 98% 98% lb/MMBtu * MMBtu/hr 98% combustion H₂S; 100% conversion to SO₂ 90.709 181.09 lb/hr 0.446 4.7E-03 4.527 0.000 lb/hr 2.49 4.98 0.012 1.3E-05 0.124 0.000 tpy Inlet Flaring NO_X 0.1380 со SO₂ H₂S VOC HAPs 0.2755 lb/MMBtu RG-109 Emission Factors for high-Btu, non-steam assisted All Controlled VOC and HAP from tanks is represented at the tanks lb/hr 625.00 581.46 ppm lb/hr 81,539.26 81,537.59 98% 98% 98% Estimated control efficiency for  $H_2S$  and VOC 100% Estimated  $H_2S$  conversion to  $SO_2$  (1-1 molar ratio) 1801.872 3597.216 7.19 1,072.631 2.15 12.5 1,630.79 1,630.752 lb/hr Based on pilot plus flared gas 3.60 0.03 3.26 3.26 tpy Residue Gas Flaring SO₂ VOC HAPs **NO_X** 0.1380 CO H₂S lb/MMBtu RG-109 Emission Factors for high-Btu, non-steam assisted 4.00 ppm lb/hr Uncontrolled Amine emissions Estimated control efficiency for  $H_2S$  and VOC 2.82 226.35 1.60E-03 98% 98% 98% Estimated  $H_2S$  conversion to  $SO_2$  (1-1 molar ratio) 100% 5.201 0.09 2153.774 Based on pilot plus flared gas 1078.841 0.0564 4.53 0.00 lb/hr 17.88 35.70 0.00 0.08 0.00 tpy NO_x **CO** 0.2755 Amine and other vent gas Flaring SO₂ H₂S VOC HAPs lb/MMBtu RG-109 Emission Factors for high-Btu, non-steam assisted 50,000.00 683.33 ppm lb/hr 58.66 32.47 Uncontrolled Amine emissions 98% 98% 98% Estimated control efficiency for  $\mathsf{H}_2\mathsf{S}$  and  $\mathsf{VOC}$ 100% Estimated  $H_2S$  conversion to  $SO_2$  (1-1 molar ratio) 2.263 0.06 4.518 0.12 1,260.547 34.67 13.6666 1.17 0.032 0.65 0.0179 lb/hr Based on pilot plus flared gas 0.38 tpy Total Flaring NOx СО SO₂  $H_2S$ VOC HAPs lb/hr This is based on worst case scenario assuming AGI downtime and inlet flar 3597.22 1260.55 1801.87 13.67 1630.79 1630.75 48.00 36.91 0.40 3.49 24.04 3.28

# Vapor Combustion Unit Targa Midstream Services, LLC, Copperhead Gas Plant Emissions Summary

EPN VCU FIN TK-1907-CHP, TK-1908-CHP, TK-1907-CH2, TK-1908-CH2

#### Total Emissions from VCU

Pollutant	(lb/hr)	(tpy)
NO _x	0.06	0.27
со	0.12	0.54
VOC	0.32	1.40
SO ₂	2.59	11.33
H ₂ S	0.03	0.12
HAPs	0.29	1.28

#### Streams Sent to VCU

Pre-Control Emissions	Produced Wa	Produced Water Tank W&B		Produced Water Tank Flash		Produced Water Loading		ot ¹	TOTAL		Pilot Composition	
	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy		Wt%
Total VOC	1.21	5.29	10.82	47.40	2.95E-03	0.01	5.27E-04	2.31E-03	12.03	52.70	Total VOC	2.44%
Total HAPs	13.45	58.92	9.00	39.41	4.45	19.51	5.32E-09	2.33E-08	26.90	117.84	Total HAPs	2.47108E-07
H2S	0.43	1.88	0.47	2.07	0.47	2.07	1.20E-07	5.28E-07	1.38	6.03	H2S	5.59469E-06
Propane	0.01	0.02	1.10	4.80	1.68E-18	7.36E-18	5.02E-04	2.20E-03	1.10	4.82	Propane	0.023311808
i-Butane	3.82E-04	1.68E-03	0.10	0.45	5.25E-20	2.30E-19	8.53E-06	3.74E-05	0.10	0.46	i-Butane	0.000396265
n-Butane	2.46E-03	0.01	0.51	2.25	4.20E-19	1.84E-18	1.55E-05	6.78E-05	0.52	2.26	n-Butane	0.000718919
i-Pentane	2.45E-04	1.07E-03	0.07	0.31	5.25E-20	2.30E-19	1.74E-07	7.61E-07	0.07	0.31	i-Pentane	8.06476E-06
n-Pentane	4.71E-05	2.06E-04	0.04	0.15	6.57E-21	2.88E-20	2.74E-07	1.20E-06	0.04	0.15	n-Pentane	1.27122E-05
Cyclohexane											Cyclohexane	0
Other C6											Other C6	0
Heptanes	2.80E-06	1.23E-05	4.05E-03	0.02	4.10E-22	1.80E-21	3.85E-10	1.68E-09	4.05E-03	0.02	Heptanes	1.78569E-08
Octanes	1.25E-07	5.47E-07	4.26E-04	1.87E-03	2.56E-23	1.12E-22	3.36E-12	1.47E-11	4.26E-04	1.87E-03	Octanes	1.55957E-10
Nonanes	4.85E-08	2.12E-07	1.56E-04	6.82E-04	6.41E-24	2.81E-23	1.08E-12	4.73E-12	1.56E-04	6.82E-04	Nonanes	5.01525E-11
Decanes +	7.38E-11	3.23E-10	8.02E-07	3.51E-06	1.57E-26	6.86E-26			8.02E-07	3.51E-06	Decanes +	0
Benzene	0.82	3.59	6.14	26.91	3.40	14.88	2.02E-09	8.84E-09	10.36	45.38	Benzene	9.37316E-08
Toluene	0.35	1.52	2.60	11.38	1.00	4.37	9.09E-11	3.98E-10	3.94	17.27	Toluene	4.22149E-09
Ethylbenzene	0.01	0.06	0.11	0.48	0.04	0.16	1.14E-13	4.97E-13	0.16	0.70	Ethyl benzene	5.27222E-12
Xylenes	0.02	0.08	0.14	0.61	0.02	0.10	5.39E-13	2.36E-12	0.18	0.79	Xylenes	2.50437E-11
Cumene									-		Cumene	0
n-Hexane	6.60E-06	2.89E-05	0.01	0.03	1.64E-21	7.19E-21	3.21E-09	1.41E-08	0.01	0.03	n-Hexane	1.49124E-07
2,2,4 Trimethylpentane											2,2,4 Trimethylpent	0

¹ Pilot gas component flow rates are calculated from the pilot gas flow rate and the fuel gas composition as follows: (Component Flow Rate, lb/hr) = (Component Content, Wt%) x (Pilot gas flow rate, scf/hr) x (Pilot Gas Molecular Weight, lb/lb-mole) / (Ideal Gas Constant, scf/lb-mole)

#### Vapor Combustion Unit Targa Midstream Services, LLC, Copperhead Gas Plant Emissions Summary

#### Stream Properties

	Produced Water Tank W&B		Produced Water Tank Flash		Produced Water Loading		Pilot		TOTAL/AVERAGE	
	Hourly	Annual	Hourly	Annual	Hourly	Annual	Hourly	Annual	Hourly	Annual
Vapor MW (lb/lb-mole)	45.02	45.02	41.82	41.82	45.02	45.02	16.35	16.35	41.00	41.00
VOC Content (Wt%)	7.82%	7.82%	6.93%	6.93%	7.8223%	7.8223%	2.4448%	2.4448%	6.8360%	6.8360%
Heat Value (Btu/scf)	363.34	363.34	434.03	434.03	363.34	363.34	996	996	452	452
Vapor Volumetric Flow ¹ (scf)	71.57	626,926	800.5	7,012,136	72	626,926	50	438,000	994	8,703,988

¹ Vapor Volumetric Flow Rates are calculated from the VOC emission rates as follows:

(Vapor Volumetric Flow Rate scf) = (VOC Emissions, Ib) x (Ideal Cas Constant, 379.5 scf/lb-mole) / (Vapor Molecular Weight, Ib/lb-mole) / (Vapor VOC Content, Wt%)

VCU Values	Produced Wa	ter Tank W&B	Produced Wa	ter Tank Flash	Produced W	ater Loading	Pilot		
	Hourly	Annual	Hourly	Annual	Hourly	Annual	Hourly	Annual	
VOC DRE (C3)	99%	99%	99%	99%	99%	99%	99%	99%	
VOC DRE (C4+)	98%	98%	98%	98%	98%	98%	98%	98%	
H ₂ S DRE	98%	98%	98%	98%	98%	98%	98%	98%	
NOx EF(lb/MMBtu) ¹	0.138	0.138	0.138	0.138	0.138	0.138	0.138	0.138	
CO EF(lb/MMBtu) ¹	0.2755	0.2755	0.2755	0.2755	0.2755	0.2755	0.2755	0.2755	

¹ Emission Factors from TCEQ Air Permit Technical Guidance for Chemical Sources: Flares and Vapor Oxidizers (RG-109, 10/2000).

### Vapor Combustion Unit Targa Midstream Services, LLC, Copperhead Gas Plant Emissions Summary

Post-Control Emissions	Produced Wa	ter Tank W&B	Produced Wa	ter Tank Flash	Produced W	ater Loading	Pi	lot	то	TAL
	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
NOx	3.59E-03	0.02	0.05	0.21	3.59E-03	0.02	0.01	0.03	0.06	0.27
СО	0.01	0.03	0.10	0.42	0.01	0.03	0.01	0.06	0.12	0.54
SO ₂	0.81	3.54	0.89	3.90	0.89	3.90	2.26E-07	9.91E-07	2.59	11.33
Total VOC	0.02	0.11	0.21	0.90	0.09	0.39	5.51E-06	2.41E-05	0.32	1.40
Total HAPs	0.02	0.11	0.18	0.79	0.09	0.39	1.06E-10	4.66E-10	0.29	1.28
H2S	0.01	0.04	0.01	0.04	0.01	0.04	2.41E-09	1.06E-08	0.03	0.12
Propane	5.69E-05	2.49E-04	0.01	0.05	1.68E-20	7.36E-20	5.02E-06	2.20E-05	0.01	0.05
i-Butane	7.65E-06	3.35E-05	2.07E-03	0.01	1.05E-21	4.60E-21	1.71E-07	7.48E-07	2.08E-03	0.01
n-Butane	4.91E-05	2.15E-04	0.01	0.05	8.40E-21	3.68E-20	3.10E-07	1.36E-06	0.01	0.05
i-Pentane	4.90E-06	2.15E-05	1.43E-03	0.01	1.05E-21	4.60E-21	3.47E-09	1.52E-08	1.43E-03	0.01
n-Pentane	9.42E-07	4.12E-06	7.01E-04	3.07E-03	1.31E-22	5.75E-22	5.48E-09	2.40E-08	7.02E-04	3.08E-03
Cyclohexane										
Other C6										
Heptanes	5.61E-08	2.46E-07	8.09E-05	3.54E-04	8.21E-24	3.59E-23	7.69E-12	3.37E-11	8.10E-05	3.55E-04
Octanes	2.50E-09	1.09E-08	8.52E-06	3.73E-05	5.13E-25	2.25E-24	6.72E-14	2.94E-13	8.52E-06	3.73E-05
Nonanes	9.70E-10	4.25E-09	3.11E-06	1.36E-05	1.28E-25	5.62E-25	2.16E-14	9.46E-14	3.11E-06	1.36E-05
Decanes +	1.48E-12	6.47E-12	1.60E-08	7.03E-08	3.13E-28	1.37E-27			1.60E-08	7.03E-08
Benzene	0.02	0.07	0.12	0.54	0.07	0.30	4.04E-11	1.77E-10	0.21	0.91
Toluene	0.01	0.03	0.05	0.23	0.02	0.09	1.82E-12	7.96E-12	0.08	0.35
Ethylbenzene	2.83E-04	1.24E-03	2.17E-03	0.01	7.38E-04	3.23E-03	2.27E-15	9.95E-15	3.20E-03	0.01
Xylenes	3.75E-04	1.64E-03	2.79E-03	0.01	4.62E-04	2.02E-03	1.08E-14	4.72E-14	3.63E-03	0.02
Cumene										
n-Hexane	1.32E-07	5.78E-07	1.42E-04	6.24E-04	3.28E-23	1.44E-22	6.42E-11	2.81E-10	1.43E-04	6.24E-04
2,2,4 Trimethylpentane										-

Emissions were calculated as follows:

(NOx or CO Emissions, lb/hr) = (Emission Factor, lb/MMBtu) x (Flow rate, scf/hr) x (Heat Value, Btu/scf) / (1,000,000 Btu/MMBtu)

(NOx or CO Emissions, tpy) = (Emission Factor, Ib/MMBtu) x (Flow rate, scf/yr) x (Heat Value, Btu/scf) / (1,000,000 Btu/MMBtu) / (2,000 Ib/ton)

(SO₂ emissions, lb/hr or tpy) = (Uncontrolled H₂S rate, lb/hr or tpy) x (Molecular Weight of SO₂, 64.06 lb/lb-mole) / (Molecular Weight of H₂S, 34.08 lb/lb-mole)

(VOC or  $H_2$  S emissions, lb/hr or tpy) = (Uncontrolled VOC or  $H_2$  S rate, lb/hr or tpy) x (1 - DRE, %)

### DIESEL ENGINES Targa Midstream Services, LLC, Copperhead Gas Plant

		RATED	ENGINE				MAXIMU	JM HOURLY	EMISSIONS						ANNUAL EMIS	SIONS		
EPN	TYPE	HP	TYPE	RUNTIME	NOx	со	voc	CH ₂ O	HAPs	PM/PM ₁₀ /PM _{2.5}	SO ₂	NOx	со	voc	CH ₂ O	HAPs	PM/PM ₁₀ /PM _{2.5}	SO ₂
		(hp)		(hr/yr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)
EM-1a	Aggreko TD1683GE	919	Diesel >600 hp	8,760	1.09	0.42	0.10	0.00	0.02	0.02	0.02	4.79	1.85	0.44	<0.01	0.07	0.09	0.08
EM-1b	Aggreko TD1683GE	919	Diesel >600 hp	8,760	1.09	0.42	0.10	0.00	0.02	0.02	0.02	4.79	1.85	0.44	<0.01	0.07	0.09	0.08
EM-2a	Aggreko TD1683GE	919	Diesel >600 hp	8,760	1.09	0.42	0.10	0.00	0.02	0.02	0.02	4.79	1.85	0.44	<0.01	0.07	0.09	0.08
EM-2b	Aggreko TD1683GE	919	Diesel >600 hp	8,760	1.09	0.42	0.10	0.00	0.02	0.02	0.02	4.79	1.85	0.44	<0.01	0.07	0.09	0.08
EM-3a	Aggreko TD1683GE	919	Diesel >600 hp	8,760	1.09	0.42	0.10	0.00	0.02	0.02	0.02	4.79	1.85	0.44	<0.01	0.07	0.09	0.08
EM-3b	Aggreko TD1683GE	919	Diesel >600 hp	8,760	1.09	0.42	0.10	0.00	0.02	0.02	0.02	4.79	1.85	0.44	<0.01	0.07	0.09	0.08
EM-4a	Aggreko TD1683GE	919	Diesel >600 hp	8,760	1.09	0.42	0.10	0.00	0.02	0.02	0.02	4.79	1.85	0.44	<0.01	0.07	0.09	0.08
EM-4b	Aggreko TD1683GE	919	Diesel >600 hp	8,760	1.09	0.42	0.10	0.00	0.02	0.02	0.02	4.79	1.85	0.44	<0.01	0.07	0.09	0.08
				TOTAL	8.75	3.38	0.81		0.14	0.17	0.15	38.32	14.79	3.54		0.59	0.73	0.64

		Emission	Factors (Pre-Control	)		С	laimed Contr	ol Efficiency	3			Emission F	actors (Post-	Control)	-	
EPN	NO _x ¹ (g/hp-hr)	CO ¹ (g/hp-hr)	VOC ¹ (g/hp-hr)	CH ₂ O ² (Ib/MMBtu)	HAPs ² (Ib/MMBtu)	NO _x	со	voc	CH₂O	NO _x (g/hp-hr)	CO (g/hp-hr)	VOC (g/hp-hr)	CH ₂ O (Ib/MMBtu)	HAPs ² (Ib/MMBtu)	PM ² (g/hp-hr)	SO2 ² (Ib/MMBtu)
EM-1a	0.5	0.21	0.05	0.0001	0.001	0%	0%	0%	0%	0.5400	0.2084	0.05	0.0001	0.001	0.01022	0.001515
EM-1b	0.5	0.21	0.05	0.0001	0.001	0%	0%	0%	0%	0.5400	0.2084	0.05	0.0001	0.001	0.01022	0.001515
EM-2a	0.5	0.21	0.05	0.0001	0.001	0%	0%	0%	0%	0.5400	0.2084	0.05	0.0001	0.001	0.01022	0.001515
EM-2b	0.5	0.21	0.05	0.0001	0.001	0%	0%	0%	0%	0.5400	0.2084	0.05	0.0001	0.001	0.01022	0.001515
EM-3a	0.5	0.21	0.05	0.0001	0.001	0%	0%	0%	0%	0.5400	0.2084	0.05	0.0001	0.001	0.01022	0.001515
EM-3b	0.5	0.21	0.05	0.0001	0.001	0%	0%	0%	0%	0.5400	0.2084	0.05	0.0001	0.001	0.01022	0.001515
EM-4a	0.5	0.21	0.05	0.0001	0.001	0%	0%	0%	0%	0.5400	0.2084	0.05	0.0001	0.001	0.01022	0.001515
EM-4b	0.5	0.21	0.05	0.0001	0.001	0%	0%	0%	0%	0.5400	0.2084	0.05	0.0001	0.001	0.01022	0.001515

¹ Emission factor based on Manufacturer Data. VOC emission factor includes formaldehyde. ² Emission factor from AP-42 Section 3.4, Large Stationary Diesel and All Stationary Dual-fuel Engines, October 1996. The HAPs emission factor is the sum of all individual AP-42 HAP emission factors, with the exception of formaldehyde (CH₂O). Formaldehyde emissions are calculated separately. The total HAP emission rates are the sum of formaldehyde emissions plus HAPs w/o CH₂O emissions.

### STORAGE TANK EMISSION TOTALS Targa Midstream Services, LLC, Copperhead Gas Plant Emissions Summary

VOC Emissions					Enns	Sions Summa	" y						
EPN	Tank Description	Annual Throughput (gal/yr)	Breathing Losses ¹ (Ib/yr)	Working Losses ¹ (Ib/yr)	Flash Losses ¹ (lb/yr)	Total Losses (Ib/yr)	Uncontrolled Annual VOC Emissions (tpy)	Uncontrolled Annual H₂S Emissions (tpy)	Uncontrolled Annual HAP emissions (tpy)	Control Efficiency ² (%)	Controlled Annual VOC Emissions (tpy)	Controlled Annual H ₂ S emissions (tpy)	Controlled Annual HAP emissions (tpy)
Tank-1	Water Tank	709,624	1,:	396.46	15,040.78	16,437.24	8.22	0.006	0.23	98%	0.16	0.0001	0.005
Tank-2	Water Tank	709,624	1,:	396.46	15,040.78	16,437.24	8.22	0.006	0.23	98%	0.16	0.0001	0.005
Tank-3	Slop Tank	412,374	6	62.44	39.54	101.98	0.05	0.003	0.02	0.0%	0.05	0.003	0.02
Tank-4	Condensate/Water Tank	412,374	6	62.44	39.54	101.98	0.05	0.0031	0.0158	0.0%	0.05	0.0031	0.0158
Tank-5	New H2S scavenger tank	575,000	7	00.87	-	700.87	0.35	-	0.350	0.0%	0.35	-	0.35
Tank-6	Spent H2S scavenger tank	575,000	7	00.87	-	700.87	0.35	-	0.350	0.0%	0.35	-	0.35
Diesel Tank 1	Diesel Tank	3,066,000	1	18.52	-	18.52	0.01	-	-	0.0%	0.01	-	-
Diesel Tank 2	Diesel Tank	3,066,000	1	18.52	-	18.52	0.01	-	-	0.0%	0.01	-	-
Diesel Tank 3	Diesel Tank	1,533,000		7.80	-	7.80	0.00	-	-	0.0%	0.00	-	-
Diesel Tank 4	Diesel Tank	1,533,000		7.80	-	7.80	0.00	-	-	0.0%	0.00	-	-
Diesel Tank 5	Diesel Tank	1,533,000		7.80	-	7.80	0.00	-	-	0.0%	0.00	-	-
Diesel Tank 6	Diesel Tank	1,533,000		7.80	-	7.80	0.00	-	-	0.0%	0.00	-	-
TK-1907-CHP	Produced Water Tank	8,657,924	10,	,586.81	94,799.13	105,385.94	52.69	15.041	44.67	98%	1.05	0.30	0.89
TK-1908-CHP	Produced Water Tank	8,657,924	10,	,586.81	94,799.13	105,385.94	52.69	15.041	44.67	98%	1.05	0.30	0.89
TK-1907-CH2	Produced Water Tank	8,657,924	10,	,586.81	94,799.13	105,385.94	52.69	15.041	44.67	98%	1.05	0.30	0.89
TK-1908-CH2	Produced Water Tank	8,657,924	10,	,586.81	94,799.13	105,385.94	52.69	15.041	44.67	98%	1.05	0.30	0.89

¹ Breathing, working, and flash losses for the condensate tanks are calculated ProMax and AP-42

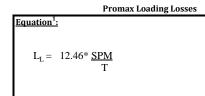
² The control efficiency assumes 98% flare control.

³ Diesel Tank 1-6 are exempt under 20.2.72.202.B.5

### NATURAL GAS ENGINES Targa Midstream Services, LLC, Copperhead Compressor Station

		RATED	ENGINE				ΜΑΧΙΜ	JM HOURLY	EMISSIONS					ŀ	NNUAL EMIS	SIONS		
EPN	TYPE	HP	TYPE	RUNTIME	NOx	со	voc	CH ₂ O	HAPs	PM/PM ₁₀ /PM _{2.5}	SO ₂	NOx	со	VOC	CH₂O	HAPs	PM/PM ₁₀ /PM _{2.5}	SO ₂
		(hp)		(hr/yr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)
GEN-1	Cummins GQSK60-G8	1,747	4SLB	8,760	1.93	1.23	1.53	0.270	0.47	0.0385	<0.01	8.43	5.40	6.70	1.18	2.05	0.17	0.03
GEN-2	Cummins GQSK60-G8	1,747	4SLB	8,760	1.93	1.23	1.53	0.270	0.47	0.04	<0.01	8.43	5.40	6.70	1.18	2.05	0.17	0.03
GEN-3	Cummins GQSK60-G8	1,747	4SLB	8,760	1.93	1.23	1.53	0.270	0.47	0.04	<0.01	8.43	5.40	6.70	1.18	2.05	0.17	0.03
GEN-4	Cummins GQSK60-G8	1,747	4SLB	8,760	1.93	1.23	1.53	0.270	0.47	0.04	<0.01	8.43	5.40	6.70	1.18	2.05	0.17	0.03
GEN-5	Cummins GQSK60-G8	1,747	4SLB	8,760	1.93	1.23	1.53	0.270	0.47	0.04	<0.01	8.43	5.40	6.70	1.18	2.05	0.17	0.03
GEN-6	Cummins GQSK60-G8	1,747	4SLB	8,760	1.93	1.23	1.53	0.270	0.47	0.04	<0.01	8.43	5.40	6.70	1.18	2.05	0.17	0.03
	-			TOTAL	11.55	7.39	9.20	1.62	2.80	0.23	0.04	50.61	32.39	40.22	7.09	12.28	1.01	0.19

		Emission I	Factors (Pre-Control)			С	laimed Contr	ol Efficiency	3			Emission F	actors (Post-	Control)		
EPN	NO _x ¹ (g/hp-hr)	CO ¹ (g/hp-hr)	VOC ¹ (g/hp-hr)	CH₂O ¹ (g/hp- hr)	TOTAL HAPs	NOx	со	voc	CH₂O	NO _x (g/hp-hr)	CO (g/hp-hr)	VOC (g/hp-hr)	CH₂O (g/hp-hr)	TOTAL HAPs	PM ² (Ib/MMBtu)	SO ₂ ² (Ib/MMBtu)
GEN-1	0.5	1.60	0.30	0.07	-	0%	80%	0%	0%	0.50	0.32	0.30	0.07	-	0.00999	0.000588
GEN-2	0.5	1.60	0.30	0.07	-	0%	80%	0%	0%	0.50	0.32	0.30	0.07	-	0.00999	0.000588
GEN-3	0.5	1.60	0.30	0.07	-	0%	80%	0%	0%	0.50	0.32	0.30	0.07	-	0.00999	0.000588
GEN-4	0.5	1.60	0.30	0.07	-	0%	80%	0%	0%	0.50	0.32	0.30	0.07	-	0.00999	0.000588
GEN-5	0.5	1.60	0.30	0.07	-	0%	80%	0%	0%	0.50	0.32	0.30	0.07	-	0.00999	0.000588
GEN-6	0.5	1.60	0.30	0.07	-	0%	80%	0%	0%	0.50	0.32	0.30	0.07	-	0.00999	0.000588


¹ Emission factor based on Manufacturer Data. VOC emission factor includes formaldehyde.

² Emission factor from AP-42 Section 3.4, Large Stationary Disel and All Stationary Dual-fuel Engines, October 1996. The HAPs emission factor is the sum of all individual AP-42 HAP emission factors, with the exception of formaldehyde (CH₂O). Formaldehyde emissions are calculated separately. The total HAP emission rates are the sum of formaldehyde emissions plus HAPs w/o CH₂O emissions.

### STORAGE TANK LIST Targa Midstream Services, LLC, Copperhead Gas Plant Emissions Summary

EPN	ID	Tank Description	Tank Size	Tank Type	Tank Height (ft)	Diameter (ft)	Tank Throughput (bbl/day)	VOC Emissions (tpy)
Tank-1	Tank-1	Water Tank	400 bbl	Vertical Fixed Roof	20	12	46.3	0.16
Tank-2	Tank-2	Water Tank	400 bbl	Vertical Fixed Roof	20	12	46.3	0.16
Tank-3	Tank-3	Slop Tank	400 bbl	Vertical Fixed Roof	20	12	27	0.05
Tank-4	Tank-4	Condensate/Water Tank	400 bbl	Vertical Fixed Roof	20	12	27	0.05
Tank-5	Tank-5	New H2S scavenger Tank	500 bbl	Vertical Fixed Roof	16	15.5	38	0.35
Tank-6	Tank-6	Spent H2S scavenger Tank	500 bbl	Vertical Fixed Roof	16	15.5	38	0.35
Tank-7	Tank-7	Lube Oil	TBD	TBD				
Tank-8	Tank-8	Lube Oil	TBD	TBD		exempt per	20.2.72.202.B(2)	
Tank-9	Tank-9	TEG Tank	TBD	TBD				
Tank-10	Tank-10	Methanol Tote	500 gal	Tote		exempt per	20.2.72.202.B(5)	
TK-1901-CHP	TK-1901-CHP	LUBE OIL DRAIN SUMP	-	TBD				
TK-1902-CHP	TK-1902-CHP	OPEN DRAIN SUMP	-	TBD				
TK-1903-CHP	TK-1903-CHP	USED LUBE OIL TANK	210 BBL	Vertical Fixed Roof		oxompt por	20.2.72.202.B(2)	
TK-1904-CHP	TK-1904-CHP	NEW LUBE OIL TANK	210 BBL	Vertical Fixed Roof		exempt per	20.2.72.202.D(2)	
TK-1905-CHP	TK-1905-CHP	OPEN DRAIN STORAGE TANK	400 BBL	Vertical Fixed Roof				
TK-1906-CHP	TK-1906-CHP	REFRIGERATION LUBE OIL TANK	1000 GAL	TBD				
TK-1907-CHP	TK-1907-CHP	Produced Water Tank	500 BBL	Vertical Fixed Roof	25	12	23720	1.(
TK-1908-CHP	TK-1908-CHP	Produced Water Tank	500 BBL	Vertical Fixed Roof	25	12	23720	1.0
TK-1909-CHP	TK-1909-CHP	LEAN AMINE TANK	400 BBL	Vertical Fixed Roof				
TK-1910-CHP	TK-1910-CHP	WATER MAKEUP TANK	1000 BBL	Vertical Fixed Roof				
TK-1911-CHP	TK-1911-CHP	TEG TANK	210 BBL	Vertical Fixed Roof				
TK-1917-CHP	TK-1917-CHP	NEW LUBE OIL TANK (ACID GAS)	210 BBL	Vertical Fixed Roof				
TK-1960-CHP	TK-1960-CHP	LUBE OIL MAKEUP TANK	500 GAL	TBD				
TK-1970-CHP	TK-1970-CHP	CYLINDER OIL TANK	500 GAL	TBD				
TK-1980-CHP	TK-1980-CHP	CYLINDER OIL TANK	500 GAL	TBD		exempt per	20.2.72.202.B(2)	
TK-2901-CHP	TK-2901-CHP	AMINE SUMP	-	TBD				
TK-3901-CHP	TK-3901-CHP	GLYCOL SUMP	-	TBD				
TK-3920-CHP	TK-3920-CHP	JW SURGE TANK	-	TBD				
TK-3921-CHP	TK-3921-CHP	LUBE OIL MAKEUP TANK	300 GAL	TBD				
TK-3930-CHP	TK-3930-CHP	JW SURGE TANK	-	TBD				
TK-6900-CHP	TK-6900-CHP	ACID GAS CYLINDER LUBE OIL TANK	1000 GAL	TBD				
TK-6901-CHP	TK-6901-CHP	Methanol Tank	500 GAL	Vertical Fixed Roof	3.8	6	0.274	1.5
TK-1901-CH2	TK-1901-CH2	LUBE OIL DRAIN SUMP	-	TBD				
TK-1902-CH2	TK-1902-CH2	OPEN DRAIN SUMP	-	TBD				
TK-1903-CH2	TK-1903-CH2	USED LUBE OIL TANK	210 BBL	TBD			00 0 70 000 D(0)	
TK-1904-CH2	TK-1904-CH2	NEW LUBE OIL TANK	210 BBL	TBD		exempt per	20.2.72.202.B(2)	
TK-1905-CH2	TK-1905-CH2	OPEN DRAIN STORAGE TANK	400 BBL	TBD				
TK-1906-CH2	TK-1906-CH2	REFRIGERATION LUBE OIL TANK	1000 GAL	TBD				
TK-1907-CH2	TK-1907-CH2	Produced Water Tank	500 BBL	TBD	25	12	23720	1.0
TK-1908-CH2	TK-1908-CH2	Produced Water Tank	500 BBL	TBD	25	12		1.0
TK-1909-CH2	TK-1909-CH2	LEAN AMINE TANK	400 BBL	TBD				
TK-1910-CH2	TK-1910-CH2	WATER MAKEUP TANK	1000 BBL	TBD	1			
TK-1911-CH2	TK-1911-CH2	TEG TANK	210 BBL	TBD	1			
TK-1917-CH2	TK-1917-CH2	NEW LUBE OIL TANK (ACID GAS)	210 BBL	TBD	1			
TK-1960-CH2	TK-1960-CH2	LUBE OIL MAKEUP TANK	500 GAL	TBD	1			
TK-1970-CH2	TK-1970-CH2	CYLINDER OIL TANK	500 GAL	TBD	1			
TK-1980-CH2	TK-1980-CH2	CYLINDER OIL TANK	500 GAL	TBD	1	exempt per	20.2.72.202.B(2)	
TK-2901-CH2	TK-2901-CH2	AMINE SUMP	-	TBD	1		. /	
TK-3901-CH2	TK-3901-CH2	GLYCOL SUMP	-	TBD	1			
TK-3920-CH2	TK-3920-CH2	JW SURGE TANK	-	TBD				
TK-3921-CH2	TK-3921-CH2	LUBE OIL MAKEUP TANK	300 GAL	TBD	1			
	TK-3930-CH2	JW SURGE TANK	-	TBD	1			
TK-3930-CH2								

### WATER LOADING EMISSIONS Targa Midstream Services, LLC, Copperhead Gas Plant Emissions Summary



### Variables¹:

L_L - Loading Loss (lbs/1000 gal loaded) S - Saturation Factor (From Table 5.2-1 of AP-42, Section 5.2) P - True Vapor Pressure of Loaded Liquid (psia) M - Molecular Weight of Vapor (lb/lb mol) T- Temperature of Bulk Liquid (°R = [°F + 460])

VOC Emissions

EPN		-	P _{max} ³	M ³	T ³	L _L (lbs/1000		VOC Content ⁵		Max Hourly Emissions
	Loading Method	<b>S</b> ²	(psia)	(lb/lbmol)	(°R)	gal)	(gal/hr)	(wt %)	% Control	(lb/hr)
LOAD-1	Submerged	0.60	13.34	85.88	554.67	15.44	7,560	99.82	0.0	116.55

EPN	Loading Method	S ²	P _{max} (psia)	M (lb/lbmol)	T (°R)	L _L (lbs/1000 gal)	Annual Throughput (gal/yr)	VOC Content ⁵ (wt %)	% Control	Annual Emissions (tpy)
LOAD-1	Submerged	0.60	13.3430	85.88	534.67	16.02	1,419,247.83	99.82	0.0	11.35

¹ Loading Loss Equation and Variables are from AP-42, Section 5.2, Transportation and Marketing of Petroleum Liquids.

² The S-factor is based on submerged loading in dedicated normal service

³ Vapor pressure and molecular weight obtained from ProMax storage tank simulations. The maximum true vapor pressure is used to calculate the hourly emission rate and is based on maximum temperature of 95°F and 75°F.

⁴ The maximum hourly throughput is based on the capability of the tank truck to load liquids in one hour's time.

 $^{\rm 5}$  The hourly and annual VOC content was derived from the ProMax Simulation

Pollutant	Uncontrolled Los	adout Emission
	tpy	lb/hr
H2S	0.0001	0.001
Benzene	0.3009	3.09
Toluene	0.5709	5.86
Ethylbenzene	0.0694	0.71
Xylene (m)	0.2461	2.53
n-Hexane	0.8862	9.10
TOTAL HAPs	2.07	21.29

### SLOP LOADING EMISSIONS Targa Midstream Services, LLC, Copperhead Gas Plant Emissions Summary

Promax Loading Los	ses
Equation ¹ :	<u>Variables¹:</u>
	L _L - Loading Loss (lbs/1000 gal loaded)
$L_{L} = 12.46^{*} \frac{SPM}{T}$	S - Saturation Factor (From Table 5.2-1 of AP-42, Section 5.2) P - True Vapor Pressure of Loaded Liquid (psia) M - Molecular Weight of Vapor (lb/lb mol) T- Temperature of Bulk Liquid ( $^{\circ}R = [^{\circ}F + 460]$ )

**VOC Emissions** 

		3				Max Hourly			Max Hourly
EPN		P _{max} °	M ³	T	LL	Throughput⁴	VOC Content ⁵		Emissions
	S ²	(psia)	(lb/lbmol)	(°R)	(lbs/1000 gal)	(gal/hr)	(wt %)	% Control ⁵	(lb/hr)
LOAD-2	0.60	13.34	18.02	554.67	3.24	7,560	0.01	0	0.003

EPN	S²	P _{max} (psia)	M (lb/lbmol)	T (°R)	L _L (Ibs/1000 gal)	• •	VOC Content ⁵ (wt %)	% Control⁵	Annual Emissions (tpy)
LOAD-2	0.60	13.34	18.02	534.67	3.36	34,631,696	0.01	0	0.0070

¹ Loading Loss Equation and Variables are from AP-42, Section 5.2, Transportation and Marketing of Petroleum Liquids.

² The S-factor is based on submerged loading in dedicated normal service

³ Vapor pressure and molecular weight obtained from ProMax storage tank simulations. The maximum true vapor pressure is used to calculate the hourly emission rate and is based on maximum temperature of 95°F and 75°F.

⁴ The maximum hourly throughput is based on the capability of the tank truck to load liquids in one hour's time.

⁵ VOC weight % determined via Promax

Pollutants	Uncontrolled Loadout Emission tpy
H2S	0.0000
Benzene	0.0000
Toluene	0.0000
Ethylbenzene	0.0000
Xylene (m)	0.0000
n-Hexane	0.0000
TOTAL HAPs	2.73E-06

¹ Loadout HAPs (tpy) =Tank-3 HAP Working and Breathing *(total loadout VOC/ Tank-3 working and breathing losses)

### Pressurized Loading Targa Midstream Services, LLC, Copperhead Gas Plant Emissions Summary

## PRESSURIZED LOADING

Equation:	L = (P+14.7)*(\ 14.7*(359 s	1000		V _{Hose} - Volu	e of Tank (p ime of Hose	sig) (ft ³ ) = pi*D ² *L/4 of Vapor (lb/lb r			
EPN	Material Loaded	Loading Method	L (ft)	D (ft)	P (psig)	MW (lb/lb- mol)	L _L (lbs)	Max Loads per Hour	Max Hourly Emissions (lb/hr)

L-P	Condensate	Pressurized	15.0	0.3	45	65.32	0.544	1	0.5441

	EPN	Material Loaded	Loading Method	L (ft)	D (ft)	P (psig)	MW (lb/lb- mol)	L _L (Ibs)	Loads per Year	Annual Emissions (tpy)	
ľ	L-P	Condensate	Pressurized	15.0	0.3	45	65.32	0.544	200	0.0544	

Notes:

Loading losses from pressurized loading occur when the line between the pressurized tank and tank-truck is disconnected.

### **Speciated Emissions**

Pollutant	Pressurized ( Compos		Total Condensate Loading Emissions				
	Hourly Wt %	Annual Wt %	lb/hr	tpy			
Total			0.5441	0.0544			
$H_2S^2$	0.2064	0.0010	0.0019	0.0000			
Propane	12.9632	12.9632	0.1199	0.0120			
i-Butane	3.7301	3.7301	0.0345	0.0034			
n-Butane	12.5068	12.5068	0.1156	0.0116			
i-Pentane	6.4277	6.4277	0.0594	0.0059			
n-Pentane	8.1712	8.1712	0.0755	0.0076			
Cyclohexane	0.0000	0.0000	0.0000	0.0000			
Other C6	0.0000	0.0000	0.0000	0.0000			
Heptanes	11.4422	11.4422	0.1058	0.0106			
Octanes	3.0512	3.0512	0.0282	0.0028			
Nonanes	0.5510	0.5510	0.0051	0.0005			
Decanes +	0.0075	0.0075	0.0001	0.0000			
Benzene	0.0000	0.0000	0.0000	0.0000			
Toluene	0.0000	0.0000	0.0000	0.0000			
Ethylbenzene	0.0000	0.0000	0.0000	0.0000			
Xylenes	0.0000	0.0000	0.0000	0.0000			
Cumene	0.0000	0.0000	0.0000	0.0000			
n-Hexane	0.0000	0.0000	0.0000	0.0000			
2,2,4 Trimethylpentane	0.0000	0.0000	0.0000	0.0000			
Total	59.0572	58.8518	0.5460	0.0544			
Total VOC	58.8508	58.8508	0.5441	0.0544			
Total HAP	0.0000	0.0000	0.0000	0.0000			

¹The composition used is from the pressurized inlet condensate liquid analysis.

 2  This site handles only sweet natural gas and crude oil/condensate. An H₂S content of 10 ppm was assumed based on the sales specification for the oil.

## Unit(s): HAUL

Description: Truck haul road emissions

### Input Data

Empty vehicle weight ¹ 16 tons	
Load weight ² 21.5 tons	
Loaded vehicle ³ 37.5 tons	
Mean vehicle weight ⁴ 26.8 tons	
Vehicle frequency 1.0 trips/hour	
Round-trip distance 0.20 mile/trip	
Operating hours 8760 hours/yr	
Surface silt content ⁵ 4.8 %	
Annual wet days ⁶ 70 days/yr	
Vehicle miles traveled ⁷ 0.2 mile/hr	
Control percentage 0% nominal, base course chemical tre	atment

## **Emission Factors and Constants**

Parameter	PM ₃₀	PM ₁₀	PM _{2.5}
k, lb/VMT ⁸	4.9	1.5	0.15
a, lb/VMT ⁸	0.70	0.90	0.90
b, lb/VMT ⁸	0.45	0.45	0.45
Hourly EF, Ib/VMT ⁹	6.91	1.76	0.18
Annual EF, lb/VMT ¹⁰	5.58	1.42	0.14

### **Uncontrolled Emissions**

PM ₃₀	PM ₁₀	PM _{2.5}	
1.38	0.35	0.035	lb/hr ¹¹
0.12	0.03	0.003	ton/yr ¹²

## Notes

¹ Empty vehicle weight includes driver and occupants and full fuel load.

² Cargo, transported materials, etc. (5.7 lb/gal RVP5 *7560 gal truck/ 2000lb/ton)

³ Loaded vehicle weight = Empty + Load Size

⁴ Mean Vehicle weight = (Loaded Weight + Empty Weight) / 2

⁵ AP-42 Table 13.2.2-1, Sand and gravel processing

⁶ AP-42 Figure 13.2.2-1

⁷ VMT/hr = Vehicle Miles Traveled per hour = Trips per hour * Segment Length

⁸ Table 13.2.2-2, Industrial Roads

⁹ AP-42 13.2.2, Equation 1a

¹⁰ AP-42 13.2.2, Equation 2

¹¹ lb/hr = Hourly EF (lb/VMT) * VMT (mile/hr)

¹² ton/yr = Annual EF (lb/VMT) * Truck/day * Mile/truck * 365day/yr * 1ton/2000lb

¹³ Uncontrolled emissions * (1 - Control%)

### Targa Midstream Services, LLC, Copperhead Gas Plant

### Capstone G65 Microturbines

Emission Unit: E-1 Ernsson orn. E-1 Source Description: Natural Gas-Fired Microturbine EXEMPT: This unit is exempt pursuant to NMAC 20.72.202.B(5) Annual operating hours: 8,760

Parameters	Value	Unit	Note
Maximum Power Rating	65	kW	Manufacturer data
Maximum Horsepower	87.17	hp	Calculated
Total Mass Flow of Exhaust	1.08	lb/s	Manufacturer data
Fuel Heating Value	1,020	Btu/scf	Nominal
Fuel Usage	842,000	BTU/hr	Manufacturer data
Engine BSFC	9,660	BTU/hp-hr	Calculated
Hourly Fuel Usage	0.8255	Mscf/hr	Calculated
Annual Fuel Usage	7.231	MMscf/yr	Calculated
Heat Input	0.84	MMBtu/hr	Calculated

#### Emissions per Unit

	NOx	со	VOC	SO21	PM ²	Total HAP	Formaldehyde	Acetaldehdye	Acrolein	Benzene	Ethylbenzene	Toluene	Xylene	Naphthalene	PAH	Propolyne Oxide	1,3-Butadiene	CO2	CH₄	N₂O	CO₂e ⁴	Unit	Note
	0.16	0.42	0.034																			g/hp-hr	Manufacturer data
					0.0066		7.10E-04	4.00E-05	6.40E-06	1.20E-05	3.20E-05	1.30E-04	6.40E-05	1.30E-06	2.20E-06	2.90E-05	4.30E-07					lb/MMBtu	AP-42 Table 3.1-2a and Table 3.1-3
Emission Factors					0.0066		7.10E-04	4.00E-05	6.40E-06	1.20E-05	3.20E-05	1.30E-04	6.40E-05	1.30E-06	2.20E-06	2.90E-05	4.30E-07					lb/MMBtu	EF adjusted based on fuel heat value ⁴
																		53.02	0.001	1.0E-04			Table C-1 and C-2 of 40 CFR Part 98
																		116.64	0.0022	2.2E-04		lb/MMBtu	
Emission Rates	0.031	0.081	0.0065	0.0037	0.0056	8.37E-04	5.98E-04	3.37E-05	5.39E-06	1.01E-05	2.69E-05	1.09E-04	5.39E-05	1.09E-06	1.85E-06	2.44E-05	3.62E-07	98.2	0.0019	1.9E-04	98.3	lb/hr	
Emission Rates	0.13	0.35	0.029	0.016	0.024	0.0037	2.62E-03	1.48E-04	2.36E-05	4.43E-05	1.18E-04	4.79E-04	2.36E-04	4.79E-06	8.11E-06	1.07E-04	1.59E-06	430.2	0.0081	8.1E-04	430.6	tpy	8760 hrs/yr
¹ SO ₂ emissions based on fuel co	nsumption and	d fuel sulfur o	content of		1.57	gr S/Mscf																	

 1  SO₂ emissions based on fuel consumption and fuel sulfur content of 2 gr S/Mscf * fuel scf/hr * 1 lb/7000 gr * 64 lb SO₂/ 32 lb S = lb/hr SO₂  2  Assumes TSP = PM₁₀ = PM_{2.5}

 ³ AP42 natural gas heat value is:
 1,020
 Btu/scf

 ⁴ Global Warming Potentials (GWP) are from Table A-1 of the EPA GHG MRR under 40 CFR Part 98.
 CH, GWP =
 25

 CH, GWP =
 25
 N₂O GWP =
 298

#### Exhaust Parameters

Exhaust Falameters			
Parameters	Value	Unit	Note
Exhaust temp	588	°F	Manufacturer data
Stack height		ft	Engineering Estimate
Stack diameter		ft	Engineering Estimate
Exhaust flow (Actual)	0	acfm	Flow (acfm) = Flow (scfm) * (Stack Temp + 460) / 528 * 29.92 / Site Bar. Pres. / (100% - Moisture%)
Exhaust velocity		ft/sec	Exhaust flow / stack area
O ₂ F factor	8,710	dscf/MMBtu	Method 9
Moisture	10	%	nominal
Exhaust flow (Dry)	0.0	dscfm	= heat input * O2 F * [20.9 / (20.9 - O2%)]
O ₂ %	10	%	
Site Elevation		ft MSL	
Pressure at Elevation	29.92	in Hg	

# Section 6.a

# **Green House Gas Emissions**

(Submitting under 20.2.70, 20.2.72 20.2.74 NMAC)

**Title V (20.2.70 NMAC), Minor NSR (20.2.72 NMAC), and PSD (20.2.74 NMAC)** applicants must estimate and report greenhouse gas (GHG) emissions to verify the emission rates reported in the public notice, determine applicability to 40 CFR 60 Subparts, and to evaluate Prevention of Significant Deterioration (PSD) applicability. GHG emissions that are subject to air permit regulations consist of the sum of an aggregate group of these six greenhouse gases: carbon dioxide (CO₂), nitrous oxide (N₂O), methane (CH₄), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride (SF₆).

## **Calculating GHG Emissions:**

**1.** Calculate the ton per year (tpy) GHG mass emissions and GHG CO₂e emissions from your facility.

**2.** GHG mass emissions are the sum of the total annual tons of greenhouse gases without adjusting with the global warming potentials (GWPs). GHG CO₂e emissions are the sum of the mass emissions of each individual GHG multiplied by its GWP found in Table A-1 in 40 CFR 98 <u>Mandatory Greenhouse Gas Reporting</u>.

3. Emissions from routine or predictable start up, shut down, and maintenance must be included.

**4.** Report GHG mass and GHG CO₂e emissions in Table 2-P of this application. Emissions are reported in <u>short</u> tons per year and represent each emission unit's Potential to Emit (PTE).

**5.** All Title V major sources, PSD major sources, and all power plants, whether major or not, must calculate and report GHG mass and CO2e emissions for each unit in Table 2-P.

**6.** For minor source facilities that are not power plants, are not Title V, and are not PSD there are three options for reporting GHGs in Table 2-P: 1) report GHGs for each individual piece of equipment; 2) report all GHGs from a group of unit types, for example report all combustion source GHGs as a single unit and all venting GHGs as a second separate unit; 3) or check the following  $\square$  By checking this box, the applicant acknowledges the total CO2e emissions are less than 75,000 tons per year.

## Sources for Calculating GHG Emissions:

- Manufacturer's Data
- AP-42 Compilation of Air Pollutant Emission Factors at http://www.epa.gov/ttn/chief/ap42/index.html
- EPA's Internet emission factor database WebFIRE at http://cfpub.epa.gov/webfire/
- 40 CFR 98 <u>Mandatory Green House Gas Reporting</u> except that tons should be reported in short tons rather than in metric tons for the purpose of PSD applicability.

• API Compendium of Greenhouse Gas Emissions Methodologies for the Oil and Natural Gas Industry. August 2009 or most recent version.

• Sources listed on EPA's NSR Resources for Estimating GHG Emissions at http://www.epa.gov/nsr/clean-air-act-permitting-greenhouse-gases:

## **Global Warming Potentials (GWP):**

Applicants must use the Global Warming Potentials codified in Table A-1 of the most recent version of 40 CFR 98 Mandatory Greenhouse Gas Reporting. The GWP for a particular GHG is the ratio of heat trapped by one unit mass of the GHG to that of one unit mass of CO₂ over a specified time period.

"Greenhouse gas" for the purpose of air permit regulations is defined as the aggregate group of the following six gases: carbon dioxide, nitrous oxide, methane, hydrofluorocarbons, perfluorocarbons, and sulfur hexafluoride. (20.2.70.7 NMAC, 20.2.74.7 NMAC). You may also find GHGs defined in 40 CFR 86.1818-12(a).

## Metric to Short Ton Conversion:

Short tons for GHGs and other regulated pollutants are the standard unit of measure for PSD and title V permitting programs. 40 CFR 98 <u>Mandatory Greenhouse Reporting</u> requires metric tons.

1 metric ton = 1.10231 short tons (per Table A-2 to Subpart A of Part 98 – Units of Measure Conversions)

# ESTIMATION OF FACILITY-WIDE GHG EMISSIONS Targa Midstream Services, LLC, Copperhead Gas Plant

	Total GHG En	nissions
GHG Emission Source	(m.t. CO ₂ e)	(tons CO ₂ e)
Natural Gas Combustion	446,575	492,264
Fugitives	170	187
Dehy Unit	259	286
tal Estimated Facility Emissions:	447,004	492,737

* Processing emissions for compressor, venting and flaring estimated using EPA's 40 CFR Subpart W Onshore Natural Gas Processing Screening Tool Mole % CO₂ for Acid gas venting used for screening obtained from process simulation data.

## Note:

Carbon Dioxide Equivalent (CO₂e) emissions are calculated in the tables below by multiplying emissions by global warming potentials for each pollutant. Emissions estimates converted to short tons in the tables below using conversion factor from 40 CFR 98 Subpart A for comparison to PSD/TV thresholds. Global Warming Potentials obtained from 40 CFR 98 Supart A, Table A-1. Mol % values obtained from the gas analysis from a representative facility.

# Natural Gas Combustion Emissions

	Emission			Emi	ssions Factors ¹			Emissions			Emissions		Total E	missions
	Point	Rated	Capacity	CO ₂	CH₄	N ₂ O		(m.t.)			(m.t. CO ₂ e)			
Emissions Source	Identification	Horsepower	(MMBtu/hr)	(kg/MMBtu)	(kg/MMBtu)	(kg/MMBtu)	CO ₂	CH₄	N ₂ O	CO ₂	CH₄	N ₂ O	(m.t. CO ₂ e)	(tons CO ₂ e)
Aggreko TD1683GE	EM-1a	919	11.97	73.96	0.0030	0.00060	7,757.63	0.31	0.063	7,757.63	7.87	18.75	7,784	8,581
Aggreko TD1683GE	EM-1b	919	11.97	73.96	0.0030	0.00060	7,757.63	0.31	0.063	7,757.63	7.87	18.75	7,784	8,581
Aggreko TD1683GE	EM-2a	919	11.97	73.96	0.0030	0.00060	7,757.63	0.315	0.0629	7,757.63	7.87	18.75	7,784	8,581
Aggreko TD1683GE	EM-2b	919	11.97	73.96	0.0030	0.00060	7,757.63	0.315	0.0629	7,757.63	7.87	18.75	7,784	8,581
Aggreko TD1683GE	EM-3a	919	11.97	73.96	0.0030	0.00060	7,757.63	0.315	0.0629	7,757.63	7.87	18.75	7,784	8,581
Aggreko TD1683GE	EM-3b	919	11.97	73.96	0.0030	0.00060	7,757.63	0.315	0.0629	7,757.63	7.87	18.75	7,784	8,581
Aggreko TD1683GE	EM-4a	919	11.97	73.96	0.0030	0.00060	7,757.63	0.315	0.0629	7,757.63	7.87	18.75	7,784	8,581
Aggreko TD1683GE	EM-4b	919	11.97	73.96	0.0030	0.00060	7,757.63	0.315	0.0629	7,757.63	7.87	18.75	7,784	8,581
Cummins GQSK60-G8	GEN-1	1,747	12.61	53.06	0.0010	0.00010	5,859.50	0.110	0.0110	5,859.50	2.76	3.29	5,866	6,466
Cummins GQSK60-G8	GEN-2	1,747	12.61	53.06	0.0010	0.00010	5,859.50	0.110	0.0110	5,859.50	2.76	3.29	5,866	6,466
ummins GQSK60-G8	GEN-3	1,747	12.61	53.06	0.0010	0.00010	5,859.50	0.110	0.0110	5,859.50	2.76	3.29	5,866	6,466
Cummins GQSK60-G8	GEN-4	1,747	12.61	53.06	0.0010	0.00010	5,859.50	0.110	0.0110	5,859.50	2.76	3.29	5,866	6,466
Cummins GQSK60-G8	GEN-5	1,747	12.61	53.06	0.0010	0.00010	5,859.50	0.110	0.0110	5,859.50	2.76	3.29	5,866	6,466
Cummins GQSK60-G8	GEN-6	1,747	12.61	53.06	0.0010	0.00010	5,860.32	0.110	0.0110	5,860.32	2.76	3.29	5,866	6,467
Dehydrator Reboiler	H-1		3.00	53.06	0.0010	0.00010	1,394.42	0.026	0.0026	1,394.42	0.66	0.78	1,396	1,539
IMO Heater 1701	H-1701-CHP		79.40	53.06	0.0010	0.00010	36,905.56	0.696	0.0696	36,905.56	17.39	20.73	36,944	40,723
HMO Heater 1702	H-1702-CHP		79.40	53.06	0.0010	0.00010	36,905.56	0.696	0.0696	36,905.56	17.39	20.73	36,944	40,723
IMO Heater 1703	H-1703-CHP		79.40	53.06	0.0010	0.00010	36,905.56	0.696	0.0696	36,905.56	17.39	20.73	36,944	40,723
IMO Heater 1704	H-1704-CHP		37.80	53.06	0.0010	0.00010	17,569.65	0.331	0.0331	17,569.65	8.28	9.87	17,588	19,387
Regen Gas Heater 4701	H-4701-CHP		16.20	53.06	0.0010	0.00010	7,529.85	0.142	0.0142	7,529.85	3.55	4.23	7,538	8,309
IMO Heater 1701	H-1701-CH2		79.40	53.06	0.0010	0.00010	36,905.56	0.696	0.0696	36,905.56	17.39	20.73	36,944	40,723
IMO Heater 1702	H-1702-CH2		79.40	53.06	0.0010	0.00010	36,905.56	0.696	0.0696	36,905.56	17.39	20.73	36,944	40,723
IMO Heater 1703	H-1703-CH2		79.40	53.06	0.0010	0.00010	36,905.56	0.696	0.0696	36,905.56	17.39	20.73	36,944	40,723
IMO Heater 1704	H-1704-CH2		37.80	53.06	0.0010	0.00010	17,569.65	0.331	0.0331	17,569.65	8.28	9.87	17,588	19,387
Regen Gas Heater 4701	H-4701-CH2		16.20	53.06	0.0010	0.00010	7,529.85	0.142	0.0142	7,529.85	3.55	4.23	7,538	8,309
-	VCU		0.45	53.06	0.0010	0.00010	208.81	0.004	0.0004	208.81	0.10	0.12	209	230
										Total	Natural Gas C	combustion:	370,986	408,942

Notes:

1. Emission factors for GHG obtained from 40 CFR 98 Supart C, Tables C-1 and C-2.

			Annual Gas	Annual Gas			Emission Factor		Emissions		Glob	al Warming Pot	ential		Emissions		Total En	missions
		Maximum Hours	Usage	Processed	CO2	CH₄	N ₂ O	CO2	CH₄	N ₂ O				CO ₂	CH₄	N ₂ O		
Source ID Number	Description	of Operation	(scf/hr)	(scf/yr)	(mol %)	(mol %)	(m.t./MMscf)	(m.t.)	(m.t.)	(m.t.)	CO ₂	CH₄	N ₂ O	(m.t. CO ₂ e)	(m.t. CO ₂ e)	(m.t. CO ₂ e)	(m.t. CO ₂ e)	(tons CO ₂ e)
	Flare - Dehydrator/Tank																	
FLARE	Control	8,760						54.67	10.4079	0.0000000	1	25	298	54.67	260.20	0.00000	314.87	347.08
FL-1800-CHP	Flare 1: Steady State	8,760	1,550	13,578,000	0.050	0.68	7.10E-07	37,548.50	3.5385	0.0000096	1	25	298	37,548.50	88.46	0.00287	37,636.97	41,487.61
FL-1800-CH2	Flare 2: Steady State	8,760	1,550	13,578,000	0.050	0.68	7.10E-07	37,548.50	3.5385	0.0000096	1	25	298	37,548.50	88.46	0.00287	37,636.97	41,487.61
Note - CO ₂ and N ₂ O Emissions es	timated using API Compendium Sec	tion 4.6			-		-	•						-	Total Flare	Combustion:	314.87	83,322.30

## Dehy Units

			Annual Gas			Emissions ¹		Glo	bal Warming Pot	ential		Emissions		Total Em	issions
Source ID Number	Description	Maximum Days of Operation	Processed (MMscf/yr)	Conversion Factor (m.t./ton)	CO ₂ (tons)	CH₄ (tons)	N₂O (tons)	CO ₂	СН₄	N ₂ O	CO ₂ (m.t. CO ₂ e)	CH₄ (m.t. CO₂e)	N ₂ O (m.t. CO ₂ e)	(m.t. CO₂e)	(tons CO ₂ e)
DEHY	GLYCOL DEHYDRATOR	365	150	1.10231	49.60	9.44		1	25	298	44.99	214.14		259.13	285.64
¹ Emissions estimated using process	s simulation and a natural gas feed r	ate of 150 MMcf/day.						-			-				

3,

Fugitive S	ources
------------	--------

		Annual	Annual	Default	Emission	Emis	sions	Control	Controlled	Emissions ²	Total E	missions
	Emission	Condensate	Condensate	Liquid CH₄	Factor			(%)		(m.t.)		
	Point	Production	Production	Content ¹	VOC	VOC	VOC		VOC			
Emissions Source	Identification	(bbl/yr)	(1,000 gal/yr)	(mol %)	(lb/1,000 gal)	(tons)	(m.t.)		(m.t.)	CH₄	(m.t. CO ₂ e)	(tons CO ₂ e)
Condensate Truck Loading 1	LOADOUT	292,000	12,264	27.40	4.79	29.35	26.63	0%	26.63	7.30	182.39	182.39
Scrubber Oil	LOAD	17,520	736	28.40	-	0.76	0.69	0%	0.69	0.20	4.90	4.90

Notes: 1. Default CH₄ content for crude oil per API compendium Section 5.4 and Appendix B.

2. Emissions estimated using API Compendium, Section 5.5.

# Section 7

# **Information Used to Determine Emissions**

## Information Used to Determine Emissions shall include the following:

- ☑ If manufacturer data are used, include specifications for emissions units <u>and</u> control equipment, including control efficiencies specifications and sufficient engineering data for verification of control equipment operation, including design drawings, test reports, and design parameters that affect normal operation.
- □ If test data are used, include a copy of the complete test report. If the test data are for an emissions unit other than the one being permitted, the emission units must be identical. Test data may not be used if any difference in operating conditions of the unit being permitted and the unit represented in the test report significantly effect emission rates.
- If the most current copy of AP-42 is used, reference the section and date located at the bottom of the page. Include a copy of the page containing the emissions factors, and clearly mark the factors used in the calculations.
- □ If an older version of AP-42 is used, include a complete copy of the section.
- If an EPA document or other material is referenced, include a complete copy.
- I Fuel specifications sheet.
- If computer models are used to estimate emissions, include an input summary (if available) and a detailed report, and a disk containing the input file(s) used to run the model. For tank-flashing emissions, include a discussion of the method used to estimate tank-flashing emissions, relative thresholds (i.e., permit or major source (NSPS, PSD or Title V)), accuracy of the model, the input and output from simulation models and software, all calculations, documentation of any assumptions used, descriptions of sampling methods and conditions, copies of any lab sample analysis.

Heaters and Reboilers (H-1, H-2, H-1701-CHP, H-1702-CHP, H-1704-CHP, H-4701-CH2, H-1701-CH2, H-1702-CH2, H-1704-CH2, H-4701-CH2)

- AP-42 Chapter 1.4 Natural Gas Combustion
- Manufacturer specifications
- 20.2.50.119.B(1) NMAC
- 40 CFR 98 Subpart C Table C-1 and Table C-2

## TEG Glycol Dehydrators (DEHY1, DEHY2)

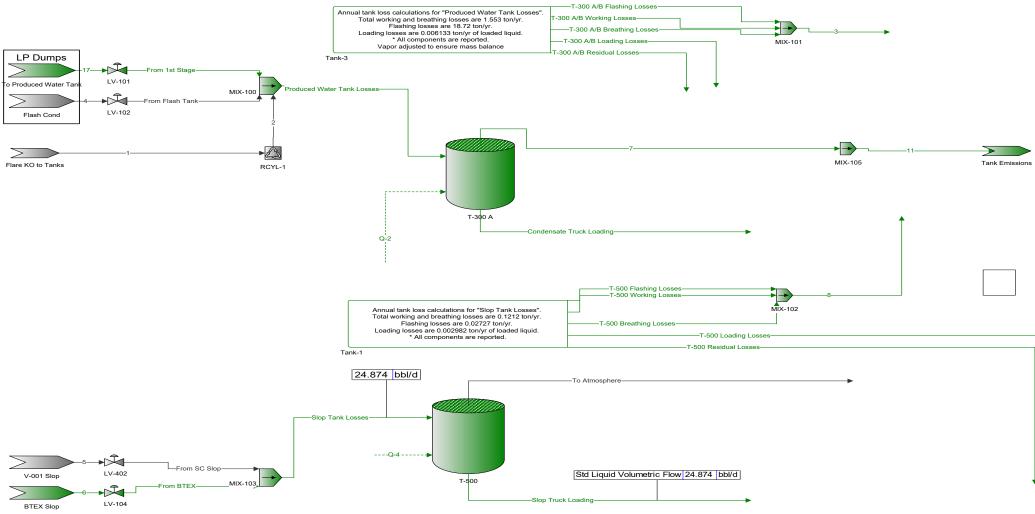
BR&E ProMax

- **Amine Units** 
  - BR&E ProMax
  - Inlet gas analysis

### Flares (FLARE, FL1800-CHP, FL-1800-CH2, VCU)

- TNRCC RG-109 Emission Factors
- Sour Slop Tanks (TK-1907-CHP, TK-1908-CHP, TK-1907-CH2, TK-1908-CH2)

## • BR&E ProMax


- Condensate Loading (LOAD)
  - AP-42 Chapter 5.2, *Transportation and Marketing of Petroleum Liquids*BR&E ProMax

## Fugitives (FUG, FUG-CHP, FUG-CH2)

- Site Specific Analyses
- Table 2-4 of the EPA Protocol for Equipment Leak Emission Estimates, November 1995

### Haul Roads (HAUL)

• AP-42 Chapter 13.2.2, Unpaved Roads, Table 13.2.2-2



Composition	Status:	Solved	Solved	Solved	Solved	Solved
Phase: Total	From Block: To Block:	T-300 A 	LV-104 MIX-103	MIX-100 T-300 A	MIX-103 T-500	T-500 
Nole Fraction		% 0.00280677	% 0.00460828	% 0.0300720	% 0.00460828	<mark>%</mark> 0.004
litrogen		0.00280877		0.0300720	4.38575E-07	4.3857
<i>Aethane</i>		0.0756953		6.74542	0.000684374	0.0006
02		0.0184986		0.582679	0.00817562	0.008
Ethane		0.454825	0.00399201	6.40657	0.00399201	0.003
Propane		2.69092		11.7825	0.0153722	0.01
Butane		1.79100		3.74482	0.00543158	0.005
-Butane		8.54495		13.2811	0.0365708	0.03
-Pentane n-Pentane		7.36556 10.7001		6.95340 9.02215	0.0293997 0.0482889	0.02 0.04
Neohexane		0.142301		9.02215 0.104058	0.0482889	0.02
Cyclopentane		1.43848		1.06828	0.0471466	0.04
2-Methylpentane		4.83796		3.26064	0.0213815	0.02
3-Methylpentane		3.07453		2.02731	0.0171169	0.0
n-Hexane		7.78180	0.0346046	4.95061	0.0346046	0.03
/lethylcyclopentane		3.96875		2.52640	0.0806185	30.0
Benzene		2.91530		1.84578	0.632516	0.6
Cyclohexane		6.86051		4.20030	0.129745	0.1
2-Methylhexane		1.78917		1.05622	0.00721177	0.007
3-Methylhexane		2.97270		1.74225	0.0146180	0.01
I,1-Dimethylcyclopentane		3.16087		1.88089	0.0549262	0.05
n-Heptane		3.37213 7.48256		1.94769	0.0146852	0.01
Methylcyclohexane I,1,2-Trimethylcyclopentane		0.435746		4.32075 0.248396	0.0850681 0.00336538	0.08 0.003
Foluene		4.68852		2.69558	0.678626	0.00
2-Methylheptane		2.59340		1.46035	0.00797897	0.007
B-Methylheptane		0.384231		0.216032	0.00128874	0.001
I,1-Dimethylcyclohexane		1.41540		0.799262	0.00826825	0.008
n-Octane		1.67103		0.934694	0.00479233	0.004
Ethylbenzene		0.494888		0.276228	0.0329130	0.03
n-Xylene		0.700664	0.0431630	0.390658	0.0431630	0.04
-Xylene		0.695201		0.387802	0.0422617	0.04
o-Xylene		0.358407		0.199604	0.0260166	0.02
n-Nonane		3.80075		2.10450	0.00528397	0.005
n-Decane		1.31895		0.728121	0.000959915	0.0009
TEG		0		0	0.00123304	0.001
Vater		0.00120561		0.0297023	97.8511	9
Methanol Molar Flow		0 Ibmol/h	0 Ibmol/h	0 Ibmol/h	0 Ibmol/h	lbmol/h
12S		4.11400E-06		7.99605E-05	0.000840901	0.000
litrogen		2.28186E-07		0.000130822	8.00295E-08	8.002
Methane		0.000110950		0.0179358	0.000124882	0.000
02		2.71142E-05		0.00154932	0.00149186	0.00
Ethane		0.000666655	0.000728447	0.0170349	0.000728447	0.000
Propane		0.00394419	0.00280505	0.0313292	0.00280505	0.002
-Butane		0.00262514	0.000991135	0.00995734	0.000991135	0.0009
n-Butane		0.0125247	0.00667330	0.0353140	0.00667330	0.006
-Pentane		0.0107960		0.0184888	0.00536475	0.005
n-Pentane		0.0156836		0.0239896	0.00881158	0.008
Neohexane		0.000208576		0.000276687	0.000104907	0.000
Cyclopentane		0.00210843		0.00284052	0.00860313	800.0
2-Methylpentane		0.00709119 0.00450646		0.00866993 0.00539054	0.00390161 0.00312342	0.003 0.003
3-Methylpentane n-Hexane		0.0114061		0.00539054	0.00312342	0.000
Vethylcyclopentane		0.00581715		0.00671761	0.0147110	0.00
Benzene		0.00427308		0.00490786	0.115419	0.0
Cyclohexane		0.0100557		0.0111685	0.0236754	0.02
2-Methylhexane		0.00262245		0.00280846	0.00131598	0.00
3-Methylhexane		0.00435720		0.00463259	0.00266744	0.002
I,1-Dimethylcyclopentane		0.00463301		0.00500122	0.0100227	0.0
n-Heptane		0.00494266		0.00517885	0.00267969	0.002
Methylcyclohexane		0.0109675		0.0114887	0.0155229	0.0
1,1,2-Trimethylcyclopentane		0.000638690		0.000660477	0.000614102	0.000
Toluene		0.00687216		0.00716745	0.123833	0.1
2-Methylheptane		0.00380125		0.00388303	0.00145597	0.00
B-Methylheptane		0.000563182		0.000574421	0.000235165	0.0002
,1-Dimethylcyclohexane		0.00207460		0.00212521	0.00150876	0.00
n-Octane		0.00244930		0.00248532	0.000874486	0.000
Ethylbenzene n Xulana		0.000725377		0.000734480	0.00600585	0.00
n-Xylene		0.00102699		0.00103875	0.00787621	0.00
o-Xylene		0.00101898		0.00103115	0.00771176	0.00
o-Xylene		0.000525331		0.000530740	0.00474742	0.004
n-Nonane n-Decane		0.00557091 0.00193324		0.00559578 0.00193605	0.000964200 0.000175162	0.000
i-Decane		0.00193324		0.00193605	0.000175162	0.0002
Vater		1.76712E-06		7.89775E-05	17.8555	0.0002
Methanol		0		0	0	I
Mass Fraction		%	%	%	%	%
12S		0.00111384		0.0148039	0.00806182	0.008
litrogen		5.07812E-05		0.0199084	6.30657E-07	6.306
<i>M</i> ethane		0.0141398		1.56309	0.000563571	0.000
002		0.00947961		0.370407	0.0184693	0.0
Ethane		0.159246		2.78259	0.00616162	0.00
Propane		1.38166		7.50474	0.0347948	0.03
		1.21211		3.14396	0.0162051	0.0
-Butane		5.78304		11.1501	0.109109	0.1
-Butane -Butane		6.18784		7.24652	0.108882	0.1
-Butane n-Butane -Pentane	l		0.178838	9.40249	0.178838	0.1
-Butane h-Butane		8.98922				
-Butane h-Butane -Pentane h-Pentane Neohexane		0.142789	0.00254310	0.129528	0.00254310	
-Butane h-Butane h-Pentane h-Pentane Neohexane Cyclopentane		0.142789 1.17470	0.00254310 0.169729	0.129528 1.08221	0.00254310 0.169729	0.1
-Butane h-Butane h-Pentane h-Pentane Neohexane Cyclopentane 2-Methylpentane		0.142789 1.17470 4.85456	0.00254310 0.169729 0.0945810	0.129528 1.08221 4.05872	0.00254310 0.169729 0.0945810	0.0 0.09
-Butane n-Butane -Pentane		0.142789 1.17470	0.00254310 0.169729 0.0945810 0.0757167	0.129528 1.08221	0.00254310 0.169729	0.002 0.1 0.09 0.07 0.1

Methylcyclopentane	3.88920	0.348274	3.07120	0.348274	0.348274
Benzene	2.65158	2.53614	2.08257	2.53614	2.53614
Cyclohexane	6.72300	0.560502	5.10607	0.560502	0.560502
2-Methylhexane	2.08752	0.0370938	1.52875	0.0370938	0.0370938
3-Methylhexane	3.46841	0.0751879	2.52169	0.0751879	0.0751879
1,1-Dimethylcyclopentane	3.61377	0.276830	2.66758	0.276830	0.276830
n-Heptane	3.93445	0.0755334	2.81903	0.0755334	0.0755334
Methylcyclohexane	8.55469	0.428746	6.12791	0.428746	0.428746
1,1,2-Trimethylcyclopentane	0.569350	0.0193847	0.402615	0.0193847	0.0193847
Toluene	5.03015	3.20963	3.58754	3.20963	3.20963
2-Methylheptane	3.44944	0.0467848	2.40955	0.0467848	0.0467848
3-Methylheptane	0.511058	0.00755656	0.356448	0.00755656	0.00755656
1,1-Dimethylcyclohexane	1.84937	0.0476255	1.29549	0.0476255	0.0476255
n-Octane	2.22261	0.0280999	1.54222	0.0280999	0.0280999
Ethylbenzene	0.611776	0.179363	0.423597	0.179363	0.179363
m-Xylene	0.866155	0.235221	0.599075	0.235221	0.235222
p-Xylene	0.859401	0.230310	0.594696	0.230310	0.230310
o-Xylene	0.443059	0.141780	0.306094	0.141780	0.141780
n-Nonane	5.67607	0.0347872	3.89876	0.0347872	0.0347872
n-Decane	2.18516	0.00701077	1.49643	0.00701077	0.00701077
TEG	0	0.00950504	0	0.00950504	0.00950504
Water	0.000252903	90.4879	0.00772921	90.4879	90.4879
Methanol	0	0	0	0	C
Mass Flow	lb/h	lb/h	lb/h	lb/h	lb/h
H2S	0.000140209	0.0286586	0.00272512	0.0286586	0.0286586
Nitrogen	6.39228E-06	2.24190E-06	0.00366476	2.24190E-06	2.24190E-06
Methane	0.00177990	0.00200342	0.287735	0.00200342	0.00200342
CO2	0.00119328	0.0656558	0.0681849	0.0656558	0.0656558
Ethane	0.0200457	0.0219037	0.512222	0.0219037	0.0219037
Propane	0.173921	0.123691	1.38148	0.123691	0.123691
i-Butane	0.152579	0.0576070	0.578743	0.0576070	0.0576070
n-Butane	0.727962	0.387867	2.05253	0.387867	0.387867
i-Pentane	0.778918	0.387060	1.33395	0.387060	0.387060
n-Pentane	1.13155	0.635745	1.73082	0.635745	0.635745
Neohexane	0.0179741	0.00904037	0.0238436	0.00904037	0.00904037
Cyclopentane	0.147870	0.603362	0.199214	0.603362	0.603362
2-Methylpentane	0.611086	0.336222	0.747134	0.336222	0.336222
3-Methylpentane	0.388346	0.269162	0.464531	0.269162	0.269162
n-Hexane	0.982924	0.544156	1.13437	0.544156	0.544156
Methylcyclopentane	0.489569	1.23807	0.565350	1.23807	1.23807
Benzene	0.333778	9.01561	0.383362	9.01561	9.01561
Cyclohexane	0.846284	1.99251	0.939931	1.99251	1.99251
2-Methylhexane	0.262775	0.131863	0.281413	0.131863	0.131863
3-Methylhexane	0.436600	0.267282	0.464195	0.267282	0.267282
1,1-Dimethylcyclopentane	0.454897	0.984092	0.491050	0.984092	0.984092
n-Heptane	0.495265	0.268511	0.518931	0.268511	0.268511
Methylcyclohexane	1.07685	1.52413	1.12803	1.52413	1.52413
1,1,2-Trimethylcyclopentane	0.0716691	0.0689100	0.0741138	0.0689100	0.0689100
	0.633190	11.4098	0.660397	11.4098	11.4098
2-Methylheptane	0.434212	0.166314	0.443552	0.166314	0.166314
3-Methylheptane	0.0643314	0.0268625	0.0656153	0.0268625	0.0268625
1,1-Dimethylcyclohexane	0.232797 0.279779	0.169302	0.238475	0.169302	0.169302
n-Octane	1.2/4//4	0.0998913	0.283894	0.0998913	0.0998913
		0.007044	0.0779761	0.637611	0.637611
-	0.0770096	0.637611	0.440070	0.000470	0.000170
m-Xylene	0.0770096 0.109031	0.836178	0.110278	0.836178	
m-Xylene p-Xylene	0.0770096 0.109031 0.108180	0.836178 0.818719	0.109472	0.818719	0.818719
m-Xylene p-Xylene o-Xylene	0.0770096 0.109031 0.108180 0.0557717	0.836178 0.818719 0.504010	0.109472 0.0563461	0.818719 0.504010	0.818719 0.504010
m-Xylene p-Xylene o-Xylene n-Nonane	0.0770096 0.109031 0.108180 0.0557717 0.714497	0.836178 0.818719 0.504010 0.123664	0.109472 0.0563461 0.717688	0.818719 0.504010 0.123664	0.818719 0.504010 0.123664
m-Xylene p-Xylene o-Xylene n-Nonane n-Decane	0.0770096 0.109031 0.108180 0.0557717 0.714497 0.275065	0.836178 0.818719 0.504010 0.123664 0.0249223	0.109472 0.0563461 0.717688 0.275464	0.818719 0.504010 0.123664 0.0249223	0.818719 0.504010 0.123664 0.0249223
m-Xylene p-Xylene o-Xylene n-Nonane n-Decane TEG	0.0770096 0.109031 0.108180 0.0557717 0.714497 0.275065 0	0.836178 0.818719 0.504010 0.123664 0.0249223 0.0337891	0.109472 0.0563461 0.717688 0.275464 0	0.818719 0.504010 0.123664 0.0249223 0.0337891	0.818719 0.504010 0.123664 0.0249223 0.0337891
Ethylbenzene m-Xylene p-Xylene o-Xylene n-Nonane n-Decane TEG Water Methanol	0.0770096 0.109031 0.108180 0.0557717 0.714497 0.275065	0.836178 0.818719 0.504010 0.123664 0.0249223	0.109472 0.0563461 0.717688 0.275464	0.818719 0.504010 0.123664 0.0249223	0.836178 0.818719 0.504010 0.123664 0.0249223 0.0337891 321.672

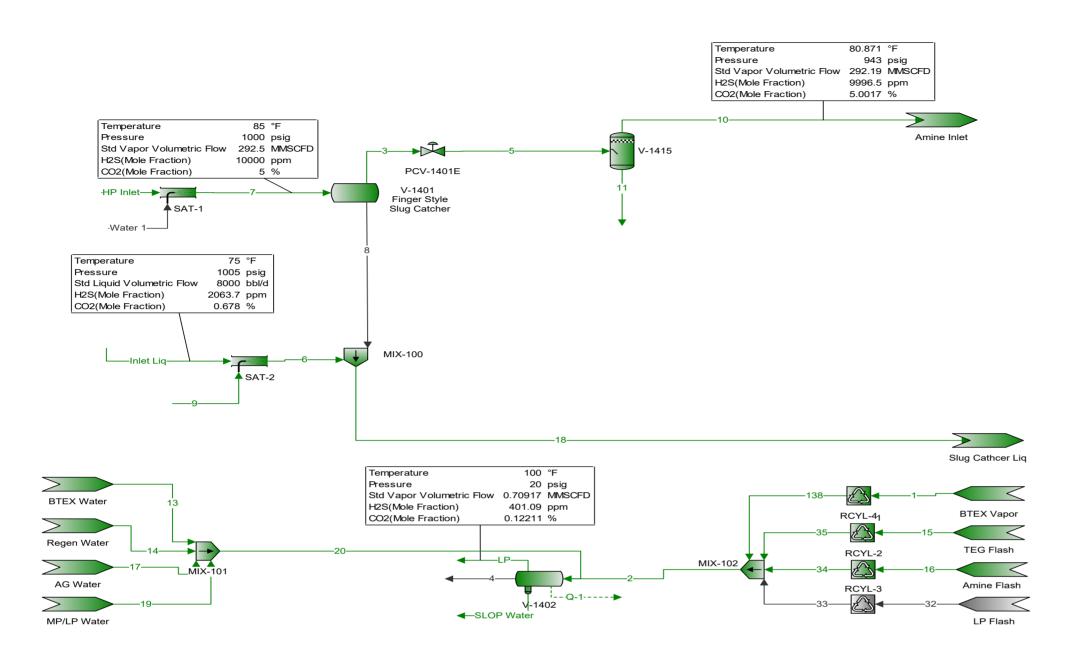
Process Streams		Condensate Truck Loading	From BTEX	Produced Water Tank Losses	Slop Tank Losses	Slop Truck Loading
Properties	Status:	Solved	Solved	Solved	Solved	Solved
Phase: Total	From Block:	T-300 A	LV-104	MIX-100	MIX-103	T-500
	To Block:	_	MIX-103	T-300 A	T-500	
Property	Units					
Temperature	°F	75	119.974	19.3552	119.974	7
Pressure	psig	0.5	0.5*	0.5*	0.5	0.5
Mole Fraction Vapor	%	0	0.00539480	24.0591	0.00539480	(
Mole Fraction Light Liquid	%	100	2.12254	75.9409	2.12254	2.1261
Mole Fraction Heavy Liquid	%	0	97.8721	0	97.8721	97.873
Phase Mole Fraction	%	100	100	100	100	10
Molecular Weight	lb/lbmol	85.8808	19.4812	69.2303	19.4812	19.481
Mass Density	lb/ft^3	43.5442	56.4894	0.849937	56.4894	60.959
Molar Flow	lbmol/h	0.146574	18.2476	0.265897	18.2476	18.247
Mass Flow	lb/h	12.5879	355.486	18.4081	355.486	355.48
Vapor Volumetric Flow	ft^3/h	0.289083	6.29297	21.6582	6.29297	5.8314
Liquid Volumetric Flow	gpm	0.0360415	0.784578	2.70024	0.784578	0.72704
Std Vapor Volumetric Flow	MMSCFD	0.00133494	0.166192	0.00242168	0.166192	0.166193
Std Liquid Volumetric Flow	sgpm	0.0359765	0.725482	0.0576850	0.725482	0.72548
Compressibility		0.00522329	0.000842465	0.240777	0.000842465	0.00084635
Specific Gravity		0.698174				0.97741
API Gravity		68.9284				12.834
Enthalpy	Btu/h	-10548.1?	-2.18650E+06	-17486.1	-2.18650E+06	-2.20132E+06
Mass Enthalpy	Btu/lb	-837.960?	-6150.75	-949.912	-6150.75	-6192.42
Mass Cp	Btu/(lb*°F)	0.492897?	0.926571	0.458857?	0.926571	0.924646
Ideal Gas CpCv Ratio		1.06860	1.30676	1.09219	1.30676	1.3104
Dynamic Viscosity	cP	0.363516				0.88974
Kinematic Viscosity	cSt	0.521161				0.91117
Thermal Conductivity	Btu/(h*ft*°F)	0.0678688				0.31793
Surface Tension	lbf/ft	0.00132245?				0.00462443
Net Ideal Gas Heating Value	Btu/ft^3	4308.04	87.6871	3498.48	87.6871	87.687
Net Liquid Heating Value	Btu/lb	18918.8	734.380	19051.3	734.380	734.38
Gross Ideal Gas Heating Value	Btu/ft^3	4631.45	141.782	3772.06	141.782	141.78
Gross Liquid Heating Value	Btu/lb	20348.0	1788.07	20551.0	1788.07	1788.0

Process Streams		Condensate Truck Loading	From BTEX	Produced Water Tank Losses	Slop Tank Losses	Slop Truck Lo
Composition Phase: Vapor	Status: From Block:	Solved T-300 A	Solved LV-104	Solved MIX-100	Solved MIX-103	Solved T-500
	To Block:	-	MIX-103	T-300 A	T-500	_
Mole Fraction H2S			<u>%</u> 2.54604	0.0994162	2.54604	
Nitrogen			0.00541224	0.203516	0.00541224	
Methane			4.89460	27.4644	4.89460	
CO2 Ethane			13.8466 8.73385	2.25623 22.4255	13.8466 8.73385	
Propane			12.8607	26.5986	12.8607	
i-Butane			2.32006	4.45401	2.32006	
n-Butane i-Pentane			10.1727 3.18237	10.7527 2.15529	10.1727 3.18237	
n-Pentane			4.04423	1.99139	4.04423	
Neohexane			0.0333948	0.0135147	0.0333948	
Cyclopentane 2-Methylpentane			2.18770 0.888290	0.151895 0.271047	2.18770 0.888290	
3-Methylpentane			0.625667	0.145016	0.625667	
n-Hexane			1.07069	0.256305	1.07069	
Methylcyclopentane Benzene			2.19498 10.3759	0.140638 0.100974	2.19498 10.3759	
Cyclohexane			2.53014	0.160841	2.53014	
2-Methylhexane			0.110586	0.0228000	0.110586	
3-Methylhexane			0.197900	0.0322897	0.197900	
1,1-Dimethylcyclopentane n-Heptane			0.769642	0.0467889	0.769642	
n-перtane Methylcyclohexane			0.155650 0.834040	0.0259109 0.0584565	0.155650 0.834040	
1,1,2-Trimethylcyclopentane			0.0208875	0.00251271	0.0208875	
Toluene			3.87444	0.0342695	3.87444	
2-Methylheptane 3-Methylheptane			0.0424298 0.00629792	0.00750195 0.00102389	0.0424298 0.00629792	
3-Methylheptane 1,1-Dimethylcyclohexane			0.00629792 0.0385530	0.00102389 0.00515716	0.00629792	
n-Octane			0.0179932	0.00307543	0.0179932	
Ethylbenzene			0.0582821	0.000814457	0.0582821	
m-Xylene p-Xylene			0.0808155 0.0806482	0.00103735 0.00109222	0.0808155 0.0806482	
p-Xylene o-Xylene			0.0806482	0.00109222	0.0806482	
n-Nonane			0.00837109	0.00159511	0.00837109	
n-Decane			0.000593019	0.000150565	0.000593019	
TEG Water			7.89028E-09 11.1392	0 0.113855	7.89028E-09 11.1392	
Methanol			0	0.113835	0	
Molar Flow			lbmol/h	lbmol/h	lbmol/h	
H2S Nitrogen			2.50638E-05 5.32794E-08	6.35988E-05 0.000130194	2.50638E-05 5.32794E-08	
Methane			4.81835E-05	0.0175696	4.81835E-05	
CO2			0.000136309	0.00144336	0.000136309	
Ethane			8.59781E-05	0.0143461	8.59781E-05	
Propane				0.0170157	0.000126604 2.28392E-05	
i-Butane n-Butane			2.28392E-05 0.000100143	0.00284934 0.00687873	0.000100143	
i-Pentane			3.13280E-05	0.00137879	3.13280E-05	
n-Pentane			3.98123E-05	0.00127394	3.98123E-05	
Neohexane Cyclopentane			3.28746E-07 2.15362E-05	8.64567E-06 9.71706E-05	3.28746E-07 2.15362E-05	
2-Methylpentane			8.74453E-06	0.000173395	8.74453E-06	
3-Methylpentane			6.15921E-06	9.27702E-05	6.15921E-06	
n-Hexane			1.05401E-05	0.000163965	1.05401E-05	
Methylcyclopentane Benzene			2.16079E-05 0.000102143	8.99695E-05 6.45956E-05	2.16079E-05 0.000102143	
Cyclohexane			2.49073E-05	0.000102893	2.49073E-05	
2-Methylhexane			1.08864E-06	1.45857E-05	1.08864E-06	
3-Methylhexane			1.94817E-06	2.06565E-05	1.94817E-06	
1,1-Dimethylcyclopentane n-Heptane			7.57654E-06 1.53225E-06	2.99319E-05 1.65758E-05	7.57654E-06 1.53225E-06	
Methylcyclohexane			8.21048E-06	3.73960E-05	8.21048E-06	
1,1,2-Trimethylcyclopentane			2.05621E-07	1.60744E-06	2.05621E-07	
Toluene 2 Methylhentane			3.81409E-05 4.17688E-07	2.19230E-05 4.79917E-06	3.81409E-05	
2-Methylheptane 3-Methylheptane			4.17688E-07 6.19982E-08	4.79917E-06 6.55009E-07	4.17688E-07 6.19982E-08	
1,1-Dimethylcyclohexane			3.79524E-07	3.29916E-06	3.79524E-07	
n-Octane			1.77129E-07	1.96742E-06	1.77129E-07	
Ethylbenzene m-Xylene			5.73742E-07	5.21027E-07 6.63616E.07	5.73742E-07	
m-Xylene p-Xylene			7.95566E-07 7.93920E-07	6.63616E-07 6.98719E-07	7.95566E-07 7.93920E-07	
o-Xylene			4.94519E-07	3.02090E-07	4.94519E-07	
n-Nonane			8.24070E-08	1.02043E-06	8.24070E-08	
n-Decane			5.83781E-09	9.63197E-08	5.83781E-09	
TEG Water			7.76737E-14 0.000109657	0 7.28358E-05	7.76737E-14 0.000109657	
Methanol			0	0	0.000100001	
Mass Fraction			%	%	%	
H2S Nitrogen			1.65437 0.00289068	0.0913591 0.153726	1.65437 0.00289068	
Methane			1.49708	11.8802	1.49708	
CO2			11.6184	2.67741	11.6184	
Ethane			5.00705	18.1821	5.00705	
Propane i-Butane			10.8123 2.57097	31.6256 6.98036	10.8123 2.57097	
n-Butane			2.57097 11.2729	6.98036 16.8516	2.57097 11.2729	
i-Pentane			4.37760	4.19293	4.37760	
n-Pentane			5.56316	3.87408	5.56316	
Neohexane			0.0548680	0.0314032	0.0548680	
Cyclopentane			2.92527	0.287243 0.629813	2.92527 1.45947	
2-Methylpentane			1.45947	11620813	1 2502 /	

n-Hexane	1.75916	0.595559	1.75916	
<i>M</i> ethylcyclopentane	3.52201	0.319147	3.52201	
Benzene	15.4526	0.212673	15.4526	
Cyclohexane	4.05980	0.364992	4.05980	
2-Methylhexane	0.211269	0.0616020	0.211269	
B-Methylhexane	0.378076	0.0872417	0.378076	
,1-Dimethylcyclopentane	1.44077	0.123873	1.44077	
-Heptane	0.297359	0.0700073	0.297359	
<i>A</i> ethylcyclohexane	1.56133	0.154763	1.56133	
,1,2-Trimethylcyclopentane	0.0446874	0.00760272	0.0446874	
		0.0851399		
	6.80623		6.80623	
2-Methylheptane	0.0924064	0.0231064	0.0924064	
3-Methylheptane	0.0137160	0.00315365	0.0137160	
,1-Dimethylcyclohexane	0.0824814	0.0156040	0.0824814	
n-Octane	0.0391868	0.00947249	0.0391868	
Ethylbenzene	0.117970	0.00233149	0.117970	
n-Xylene	0.163581	0.00296955	0.163581	
p-Xylene	0.163242	0.00312663	0.163242	
p-Xylene	0.101681	0.00135179	0.101681	
n-Nonane	0.0204698	0.00551634	0.0204698	
n-Decane	0.00160870	0.000577639	0.00160870	
EG	2.25913E-08	0	2.25913E-08	
Vater	3.82608	0.0553068	3.82608	
Aethanol	0	0	0	
lass Flow	lb/h	lb/h	lb/h	
128	0.000854195	0.00216750	0.000854195	
Nitrogen	1.49254E-06	0.00364717	1.49254E-06	
<i>A</i> ethane	0.000772982	0.281860	0.000772982	
002	0.00599888	0.0635218	0.00599888	
Ethane	0.00258528	0.431373	0.00258528	
Propane	0.00558269	0.750320	0.00558269	
Butane	0.00132746	0.165610	0.00132746	
n-Butane	0.00582051	0.399807	0.00582051	
Pentane	0.00226028	0.0994777	0.00226028	
n-Pentane	0.00287241	0.0919130	0.00287241	
leohexane	2.83298E-05	0.000745044	2.83298E-05	
Cyclopentane	0.00151040	0.00681486	0.00151040	
2-Methylpentane	0.000753563	0.0149424	0.000753563	
B-Methylpentane	0.000530772	0.00799451	0.000530772	
h-Hexane	0.000908301	0.0141297	0.000908301	
Aethylcyclopentane	0.00181851	0.00757179	0.00181851	
Benzene	0.00797859	0.00504568	0.00797859	
Cyclohexane	0.00209618	0.00865946	0.00209618	
2-Methylhexane	0.000109084	0.00146151	0.000109084	
3-Methylhexane	0.000195211	0.00206982	0.000195211	
,1-Dimethylcyclopentane	0.000743910	0.00293890	0.000743910	
n-Heptane	0.000153535	0.00166093	0.000153535	
/lethylcyclohexane	0.000806155	0.00367176	0.000806155	
,1,2-Trimethylcyclopentane	2.30733E-05	0.000180375	2.30733E-05	
foluene	0.00351424	0.00201995	0.00351424	
2-Methylheptane	4.77119E-05	0.000548202	4.77119E-05	
B-Methylheptane	7.08197E-06	7.48207E-05	7.08197E-06	
,1-Dimethylcyclohexane	4.25874E-05	0.000370207	4.25874E-05	
n-Octane	2.02332E-05	0.000224736	2.02332E-05	
Ethylbenzene	6.09113E-05	5.53148E-05	6.09113E-05	
n-Xylene	8.44613E-05	7.04528E-05	8.44613E-05	
p-Xylene	8.42865E-05	7.41795E-05	8.42865E-05	
p-Xylene	5.25006E-05	3.20714E-05	5.25006E-05	
-Nonane	1.05691E-05	0.000130876	1.05691E-05	
n-Decane	8.30614E-07	1.37045E-05	8.30614E-07	
	1.16645E-11	0	1.16645E-11	
FG				
'EG Nater				
EG Vater <i>I</i> lethanol	0.00197551	0.00131216 0	0.00197551	

Process Streams		Condensate Truck Loading	From BTEX	Produced Water Tank Losses	Slop Tank Losses	Slop Truck Loading
Properties	Status:	Solved	Solved	Solved	Solved	Solved
Phase: Vapor	From Block:	T-300 A	LV-104	MIX-100	MIX-103	T-500
	To Block:	-	MIX-103	T-300 A	T-500	-
Property	Units					
Temperature	°F		119.974	19.3552	119.974	
Pressure	psig		0.5	0.5	0.5	
Nole Fraction Vapor	%		100	100	100	
Nole Fraction Light Liquid	%		0	0	0	
Mole Fraction Heavy Liquid	%		0	0	0	
Phase Mole Fraction	%		0.00539480	24.0591	0.00539480	
Molecular Weight	lb/lbmol		52.4497	37.0865	52.4497	
Mass Density	lb/ft^3		0.130282	0.111416	0.130282	
Molar Flow	lbmol/h		0.000984423	0.0639723	0.000984423	
Mass Flow	lb/h		0.0516327	2.37251	0.0516327	
/apor Volumetric Flow	ft^3/h		0.396315	21.2941	0.396315	
iquid Volumetric Flow	gpm		0.0494107	2.65485	0.0494107	
Std Vapor Volumetric Flow	MMSCFD		8.96575E-06	0.000582635	8.96575E-06	
Std Liquid Volumetric Flow	sgpm		0.000156805	0.0102226	0.000156805	
Compressibility			0.983471	0.983951	0.983471	
Specific Gravity			1.81095	1.28050	1.81095	
API Gravity						
Enthalpy	Btu/h		-57.5562	-2917.34?	-57.5562	
Mass Enthalpy	Btu/lb		-1114.72	-1229.64?	-1114.72	
Mass Cp	Btu/(lb*°F)		0.357419	0.384403?	0.357419	
deal Gas CpCv Ratio	. ,		1.11945	1.16355	1.11945	
Dynamic Viscosity	cP		0.00968300	0.00812981	0.00968300	
Kinematic Viscosity	cSt		4.63986	4.55524	4.63986	
Thermal Conductivity	Btu/(h*ft*°F)		0.0104137	0.0103707?	0.0104137	
Surface Tension	lbf/ft					
Net Ideal Gas Heating Value	Btu/ft^3		2192.54	1903.91	2192.54	
Net Liquid Heating Value	Btu/lb		15686.3	19345.2	15686.3	
Gross Ideal Gas Heating Value	Btu/ft^3		2357.83	2074.41	2357.83	
Gross Liquid Heating Value	Btu/lb		16882.3	21090.4	16882.3	

rocess Streams		Condensate Truck Loading	From BTEX	Produced Water Tank Losses	Slop Tank Losses S	Slop Truck Loadi
omposition hase: Nonspecific Liquid	Status: From Block:	Solved T-300 A	Solved LV-104	Solved MIX-100	Solved MIX-103	Solved T-500
ole Fraction	To Block:	 %	MIX-103 %	T-300 A %	T-500 %	%
2S		0.00280677	0.0913681	0.00810286	0.0913681	0.095
trogen ethane		0.000155680 0.0756953	4.42167E-06 0.0152540	0.000310972 0.181367	4.42167E-06 0.0152540	1.20473 0.024
D2		0.0184986	0.138165	0.0524742	0.138165	0.14
hane		0.454825	0.155749	1.33158	0.155749	0.17
opane Butane		2.69092 1.79100	0.681246 0.248972	7.08853 3.52014	0.681246 0.248972	0.71 0.25
Butane		8.54495	1.68955	14.0822	1.68955	1.7
Pentane		7.36556	1.37561	8.47350	1.37561	1.3
^o entane ohexane		10.7001 0.142301	2.26375 0.0269955	11.2496 0.132743	2.26375 0.0269955	2.2 0.027
clopentane		1.43848	2.21074	1.35860	2.21074	2.2
Aethylpentane		4.83796	1.00484	4.20778	1.00484	1.0 0.80
Methylpentane Hexane		3.07453 7.78180	0.804454 1.62745	2.62364 6.43783	0.804454 1.62745	1.6
thylcyclopentane		3.96875	3.79039	3.28224	3.79039	3.7
nzene		2.91530	29.0540	2.39855	29.0540	29.
clohexane /lethylhexane		6.86051 1.78917	6.10089 0.339475	5.48005 1.38362	6.10089 0.339475	6.0 0.33
<i>I</i> ethylhexane		2.97270	0.688172	2.28399	0.688172	0.68
-Dimethylcyclopentane		3.16087	2.58523	2.46196	2.58523	2.5
leptane thylcyclohexane		3.37213 7.48256	0.691458 4.00496	2.55654 5.67110	0.691458 4.00496	0.69
,2-Trimethylcyclopentane		0.435746	0.158500	0.326295	0.158500	0.1
uene		4.68852	31.7546	3.53871	31.7546	31
lethylheptane lethylheptane		2.59340 0.384231	0.375806 0.0607006	1.92064 0.284149	0.375806 0.0607006	0.3 0.06
-Dimethylcyclohexane		1.41540	0.389441	1.05084	0.389441	0.38
Octane		1.67103	0.225737	1.22984	0.225737	0.22
ylbenzene		0.494888	1.54808	0.363483	1.54808	1.5
Xylene (ylene		0.700664 0.695201	2.03076 1.98815	0.514095 0.510317	2.03076 1.98815	2.0 1.9
(ylene		0.358407	1.22243	0.262692	1.22243	1.2
Vonane		3.80075	0.248925	2.77072	0.248925	0.24 0.04
Decane G		1.31895 0	0.0452234 2.08250E-05	0.958752 0	0.0452234 2.08250E-05	3.73050
ater		0.00120561	0.362944	0.00304157	0.362944	0.14
thanol Iar Flow		0 Ibmol/h	0 Ibmol/h	0 Ibmol/h	0 Ibmol/h	lbmol/h
S		4.11400E-06	0.000353880	1.63616E-05	0.000353880	0.00036
rogen		2.28186E-07	1.71257E-08	6.27927E-07	1.71257E-08	4.6739
thane 2		0.000110950 2.71142E-05	5.90806E-05 0.000535129	0.000366225 0.000105958	5.90806E-05 0.000535129	9.3796 0.0005
ane		0.000666655	0.000603235	0.00268878	0.000603235	0.0006
ppane		0.00394419	0.00263855	0.0143135	0.00263855	0.002
utane Butane		0.00262514 0.0125247	0.000964301 0.00654383	0.00710801 0.0284353	0.000964301 0.00654383	0.0009 0.006
entane		0.0123247	0.00532792	0.0171101	0.00532792	0.005
entane		0.0156836	0.00876780	0.0227157	0.00876780	0.008
phexane		0.000208576	0.000104557	0.000268041	0.000104557	0.0001
clopentane lethylpentane		0.00210843 0.00709119	0.00856246 0.00389187	0.00274335 0.00849653	0.00856246 0.00389187	0.008
lethylpentane		0.00450646	0.00311575	0.00529777	0.00311575	0.003
exane		0.0114061	0.00630333	0.0129995	0.00630333	0.006
thylcyclopentane nzene		0.00581715 0.00427308	0.0146807 0.112530	0.00662764 0.00484326	0.0146807 0.112530	0.01 [.] 0.1
clohexane		0.0100557	0.0236295	0.0110656	0.0236295	0.02
lethylhexane		0.00262245	0.00131483	0.00279387	0.00131483	0.001
1ethylhexane -Dimethylcyclopentane		0.00435720 0.00463301	0.00266537 0.0100129	0.00461194 0.00497129	0.00266537 0.0100129	0.002 0.01
leptane		0.00493301	0.00267810	0.00516227	0.00267810	0.002
thylcyclohexane		0.0109675	0.0155117	0.0114513	0.0155117	0.01
2-Trimethylcyclopentane		0.000638690 0.00687216	0.000613890 0.122989	0.000658869 0.00714552	0.000613890 0.122989	0.0006 0.1
lethylheptane		0.00380125	0.00145554	0.00387823	0.00145554	0.001
lethylheptane		0.000563182	0.000235101	0.000573766	0.000235101	0.0002
Dimethylcyclohexane		0.00207460 0.00244930	0.00150835 0.000874306	0.00212191 0.00248335	0.00150835	0.001
octane ylbenzene		0.00244930	0.00599590	0.00248335	0.000874306 0.00599590	0.0008 0.005
Kylene		0.00102699	0.00786539	0.00103808	0.00786539	0.007
ylene		0.00101898	0.00770035	0.00103045	0.00770035	0.007
ylene onane		0.000525331 0.00557091	0.00473462 0.000964116	0.000530438 0.00559476	0.00473462 0.000964116	0.004 0.0009
ecane		0.00193324	0.000175156	0.00193595	0.000175156	0.0003
3		0	8.06580E-08	0	8.06580E-08	1.4473
ter hanol		1.76712E-06 0	0.00140573 0	6.14166E-06 0	0.00140573 0	0.0005
ss Fraction		%	%	%	%	%
3		0.00111384	0.0361124	0.00347738	0.0361124	0.03
ogen hane		5.07812E-05 0.0141398	1.43649E-06	0.000109696	1.43649E-06	3.9096
hane 2		0.0141398 0.00947961	0.00283795 0.0705170	0.0366381 0.0290801	0.00283795 0.0705170	0.004 0.07
ane		0.159246	0.0543119	0.504184	0.0543119	0.06
pane		1.38166	0.348377	3.93600	0.348377	0.3
utane utane		1.21211 5.78304	0.167820 1.13884	2.57635 10.3066	0.167820 1.13884	0.1 1.
entane		6.18784	1.15100	7.69831	1.15100	1.
entane		8.98922	1.89413	10.2204	1.89413	1.
ohexane		0.142789	0.0269789 1.79808	0.144045 1.19983	0.0269789 1.79808	0.02
				1 19983		1.
clopentane lethylpentane		1.17470 4.85456	1.00422	4.56604	1.00422	1.0


n-Hexane	7.80850	1.62646	6.98596	1.62646	
Methylcyclopentane	3.88920	3.69946	3.47838	3.69946	
Benzene	2.65158	26.3192	2.35923	26.3192	
Cyclohexane	6.72300	5.95453	5.80753	5.95453	
2-Methylhexane	2.08752	0.394489	1.74581	0.394489	
3-Methylhexane	3.46841	0.799694	2.88187	0.799694	
1,1-Dimethylcyclopentane	3.61377	2.94374	3.04392	2.94374	
n-Heptane	3.93445	0.803512	3.22576	0.803512	
Methylcyclohexane	8.55469	4.56036	7.01165	4.56036	
1,1,2-Trimethylcyclopentane	0.569350	0.206263	0.461058	0.206263	
Toluene	5.03015	33.9311	4.10572	33.9311	
2-Methylheptane	3.44944	0.497839	2.76263	0.497839	
3-Methylheptane	0.511058	0.0804115	0.408718	0.0804115	
1,1-Dimethylcyclohexane	1.84937	0.506798	1.48485	0.506798	
n-Octane	2.22261	0.299039	1.76900	0.299039	
Ethylbenzene	0.611776	1.90601	0.485924	1.90601	
m-Xylene	0.866155	2.50029	0.687271	2.50029	
p-Xylene	0.859401	2.44783	0.682220	2.44783	
o-Xylene	0.443059	1.50507	0.351181	1.50507	
n-Nonane	5.67607	0.370249	4.47477	0.370249	
n-Decane	2.18516	0.0746213	1.71774	0.0746213	
TEG	0	3.62684E-05	0	3.62684E-05	6.
Water	0.000252903	0.0758283	0.000689989	0.0758283	0.
Methanol	0	0	0	0	
Mass Flow	lb/h	lb/h	lb/h	lb/h	lb/h
H2S	0.000140209	0.0120605	0.000557619	0.0120605	
Nitrogen	6.39228E-06	4.79749E-07	1.75904E-05	4.79749E-07	1.
Methane	0.00177990	0.000947798	0.00587514	0.000947798	(
CO2	0.00119328	0.0235508	0.00466316	0.0235508	
Ethane	0.0200457	0.0181387	0.0808489	0.0181387	
Propane	0.173921	0.116348	0.631161	0.116348	
i-Butane	0.152579	0.0560473	0.413133	0.0560473	
n-Butane	0.727962	0.380342	1.65272	0.380342	
i-Pentane	0.778918	0.384403	1.23447	0.384403	
n-Pentane	1.13155	0.632586	1.63891	0.632586	
Neohexane	0.0179741	0.00901021	0.0230985	0.00901021	(
Cyclopentane	0.147870	0.600510	0.192399	0.600510	(
2-Methylpentane	0.611086	0.335383	0.192399	0.335383	
	0.388346	0.268501	0.732192	0.335383	
3-Methylpentane					
n-Hexane	0.982924	0.543192	1.12024	0.543192	
Methylcyclopentane	0.489569	1.23552	0.557778	1.23552	
Benzene	0.333778	8.78990	0.378316	8.78990	
Cyclohexane	0.846284	1.98865	0.931272	1.98865	
2-Methylhexane	0.262775	0.131748	0.279951	0.131748	
3-Methylhexane	0.436600	0.267076	0.462125	0.267076	
1,1-Dimethylcyclopentane	0.454897	0.983129	0.488111	0.983129	
n-Heptane	0.495265	0.268351	0.517270	0.268351	
Methylcyclohexane	1.07685	1.52303	1.12436	1.52303	
1,1,2-Trimethylcyclopentane	0.0716691	0.0688862	0.0739335	0.0688862	
Toluene	0.633190	11.3320	0.658377	11.3320	
2-Methylheptane	0.434212	0.166264	0.443004	0.166264	
3-Methylheptane	0.0643314	0.0268552	0.0655404	0.0268552	
1,1-Dimethylcyclohexane	0.232797	0.169256	0.238105	0.169256	
n-Octane	0.279779	0.0998707	0.283670	0.0998707	
Ethylbenzene	0.0770096	0.636554	0.0779208	0.636554	
m-Xylene	0.109031	0.835030	0.110208	0.835030	
p-Xylene	0.108180	0.817508	0.109398	0.817508	
o-Xylene	0.0557717	0.502651	0.0563140	0.502651	
n-Nonane	0.714497	0.123653	0.717557	0.123653	
n-Decane	0.275065	0.0249215	0.275451	0.0249215	
TEG	0	1.21126E-05	0	1.21126E-05	2.
Water	3.18351E-05	0.0253246	0.000110644	0.0253246	

Process Streams		Condensate Truck Loading	From BTEX	Produced Water Tank Losses	Slop Tank Losses	Slop Truck Loading
Properties	Status:	Solved	Solved	Solved	Solved	Solved
Phase: Nonspecific Liquid	From Block:	T-300 A	LV-104	MIX-100	MIX-103	Т-500
	To Block:	-	MIX-103	T-300 A	T-500	
Property	Units					
Temperature	°F	75	119.974	19.3552	119.974	-
Pressure	psig	0.5	0.5	0.5	0.5	0
Nole Fraction Vapor	%	0	0	0	0	
Mole Fraction Light Liquid	%	100	100	100	100	10
Nole Fraction Heavy Liquid	%	0	0	0	0	
Phase Mole Fraction	%	100	2.12254	75.9409	2.12254	2.126
Molecular Weight	lb/lbmol	85.8808	86.2282	79.4139	86.2282	86.32
Mass Density	lb/ft^3	43.5442	49.4409	44.0433	49.4409	50.90
Molar Flow	lbmol/h	0.146574	0.387312	0.201924	0.387312	0.3879
Mass Flow	lb/h	12.5879	33.3972	16.0356	33.3972	33.48
/apor Volumetric Flow	ft^3/h	0.289083	0.675498	0.364087	0.675498	0.6579
_iquid Volumetric Flow	gpm	0.0360415	0.0842180	0.0453926	0.0842180	0.08202
Std Vapor Volumetric Flow	MMSCFD	0.00133494	0.00352749	0.00183905	0.00352749	0.003533
Std Liquid Volumetric Flow	sgpm	0.0359765	0.0814375	0.0474624	0.0814375	0.08169
Compressibility		0.00522329	0.00426055	0.00532994	0.00426055	0.004491
Specific Gravity		0.698174	0.792719	0.706177	0.792719	0.8161
API Gravity		68.9284	40.1143	75.1812	40.1143	40.22
Enthalpy	Btu/h	-10548.1?	-5783.74	-14568.7?	-5783.74	-6351.8
Mass Enthalpy	Btu/lb	-837.960?	-173.180	-908.525?	-173.180	-189.66
Mass Cp	Btu/(lb*°F)	0.492897?	0.439367	0.469873?	0.439367	0.41134
deal Gas CpCv Ratio		1.06860	1.07925	1.08099	1.07925	1.086
Dynamic Viscosity	cP	0.363516	0.403653	0.432016	0.403653	0.5337
Kinematic Viscosity	cSt	0.521161	0.509683	0.612349	0.509683	0.6545
hermal Conductivity	Btu/(h*ft*°F)	0.0678688	0.0705567	0.0720533?	0.0705567	0.07451
Surface Tension	lbf/ft	0.00132245?	0.00153139?	0.00146608?	0.00153139?	0.0017220
Net Ideal Gas Heating Value	Btu/ft^3	4308.04	4086.11	4003.66	4086.11	4092
Net Liquid Heating Value	Btu/lb	18918.8	17827.1	19007.8	17827.1	1783
Gross Ideal Gas Heating Value	Btu/ft^3	4631.45	4313.22	4309.89	4313.22	4319.
Gross Liquid Heating Value	Btu/lb	20348.0	18826.0	20471.3	18826.0	1883

Process Streams		Condensate Truck Loading	From BTEX	Produced Water Tank Losses	Slop Tank Losses	Slop Truck Loadi
Composition Phase: Aqueous Liquid	Status: From Block:	Solved T-300 A	Solved LV-104	Solved MIX-100	Solved MIX-103	Solved T-500
Mole Fraction	To Block:	-	MIX-103	T-300 A	T-500	
H2S			0.00258665		0.00258665	0.0026
Nitrogen			5.38903E-08		5.38903E-08	1.8639
Methane CO2			9.86483E-05 0.00459378		9.86483E-05 0.00459378	0.00017 0.0052
Ethane			0.000219686		0.000219686	0.0002
Propane			0.000223406		0.000223406	0.00022
-Butane n-Butane			2.23698E-05 0.000164243		2.23698E-05 0.000164243	2.4816 0.00013
-Pentane			3.07992E-05		3.07992E-05	2.5751
n-Pentane			2.22276E-05		2.22276E-05	1.23642
Neohexane			1.18827E-07		1.18827E-07	9.9550
Cyclopentane 2-Methylpentane			0.000107095 5.56165E-06		0.000107095 5.56165E-06	8.8408 3.4558
3-Methylpentane			8.48749E-06		8.48749E-06	5.8045
n-Hexane			3.65719E-06		3.65719E-06	1.9598
Methylcyclopentane Benzene			4.86574E-05 0.0156078		4.86574E-05 0.0156078	3.3710 0.01
Cyclohexane			0.000117320		0.000117320	8.6161
2-Methylhexane			3.25071E-07		3.25071E-07	2.5774
3-Methylhexane			6.44724E-07		6.44724E-07	5.3517
1,1-Dimethylcyclopentane n-Heptane			1.25176E-05 3.37055E-07		1.25176E-05 3.37055E-07	1.1388 1.7964
Methylcyclohexane			1.67394E-05		1.67394E-05	1.0921
1,1,2-Trimethylcyclopentane			3.51285E-08		3.51285E-08	1.2018
Toluene 2-Methylheptane			0.00451151 7.36834E-08		0.00451151 7.36834E-08	0.003 3.7680
2-Methylheptane			7.36834E-08 8.81864E-09		7.36834E-08 8.81864E-09	3.7680 3.5924
1,1-Dimethylcyclohexane			1.41092E-07		1.41092E-07	7.0830
n-Octane			1.93849E-08		1.93849E-08	7.6227
Ethylbenzene m-Xylene			5.24957E-05 5.61274E-05		5.24957E-05 5.61274E-05	3.5557 3.2294
p-Xylene			5.94196E-05		5.94196E-05	3.6010
o-Xylene			6.88728E-05		6.88728E-05	4.6741
n-Nonane			5.41357E-09		5.41357E-09	3.2327
n-Decane FEG			1.30551E-10 0.00125940		1.30551E-10 0.00125940	5.9113 0.001
Water			99.9701		99.9701	99
Methanol Molar Flow			0 Ibmol/h		0 Ibmol/h	lbmol/h
H2S			0.000461957		0.000461957	0.0004
Nitrogen			9.62445E-09		9.62445E-09	3.3289
Methane CO2			1.76179E-05 0.000820418		1.76179E-05 0.000820418	3.1085 0.0009
Ethane			3.92344E-05		3.92344E-05	4.7347
Propane			3.98988E-05		3.98988E-05	3.9559
-Butane			3.99509E-06		3.99509E-06	4.4320
n-Butane -Pentane			2.93326E-05 5.50053E-06		2.93326E-05 5.50053E-06	2.3726 4.5991
n-Pentane			3.96969E-06		3.96969E-06	2.2082
Neohexane			2.12217E-08		2.12217E-08	1.7779
Cyclopentane 2-Methylpentane			1.91265E-05 9.93274E-07		1.91265E-05 9.93274E-07	1.5789 6.1721
3-Methylpentane			9.93274E-07 1.51581E-06		1.51581E-06	1.0366
-Hexane			6.53149E-07		6.53149E-07	3.5001
Methylcyclopentane			8.68989E-06		8.68989E-06	6.0205
Benzene Cyclohexane			0.00278745 2.09526E-05		0.00278745 2.09526E-05	0.002 1.5388
2-Methylhexane			5.80554E-08		5.80554E-08	4.6031
3-Methylhexane			1.15143E-07		1.15143E-07	9.5579
1,1-Dimethylcyclopentane			2.23555E-06		2.23555E-06	2.0339
n-Heptane Methylcyclohexane			6.01957E-08 2.98954E-06		6.01957E-08 2.98954E-06	3.2084 1.9505
1,1,2-Trimethylcyclopentane			6.27372E-09		6.27372E-09	2.1463
Foluene			0.000805726		0.000805726	0.0005
2-Methylheptane 3-Methylheptane			1.31594E-08 1.57495E-09		1.31594E-08 1.57495E-09	6.7295 6.4159
I,1-Dimethylcyclohexane			2.51981E-08		2.51981E-08	1.2650
n-Octane			3.46202E-09		3.46202E-09	1.3613
Ethylbenzene			9.37538E-06		9.37538E-06	6.3504
n-Xylene p-Xylene			1.00240E-05 1.06119E-05		1.00240E-05 1.06119E-05	5.7677 6.4313
p-Xylene			1.23002E-05		1.23002E-05	8.3478
n-Nonane			9.66828E-10		9.66828E-10	5.7735
n-Decane			2.33155E-11		2.33155E-11	1.0557
ΓEG Water			0.000224920 17.8540		0.000224920 17.8540	0.0002 17
Methanol			0		0	
Hass Fraction H2S			% 0.00488885		% 0.00488885	0.004
H2S Nitrogen			0.00488885 8.37213E-08		8.37213E-08	2.8961
Methane			8.77646E-05		8.77646E-05	0.0001
CO2			0.0112118		0.0112118	0.01
Ethane Propane			0.000366337 0.000546323		0.000366337 0.000546323	0.0004 0.0005
-ropane -Butane			0.000546323 7.21046E-05		0.000546323 7.21046E-05	8.0001
n-Butane			0.000529404		0.000529404	0.0004
-Pentane			0.000123233		0.000123233	0.0001
n-Pentane Neohexane			8.89365E-05 5.67880E-07		8.89365E-05 5.67880E-07	4.9478 4.7582
Neohexane Cyclopentane			5.67880E-07 0.000416534		5.67880E-07 0.000416534	4.7582 0.0003
· · · · · · · · · · · · · · · · · · ·						
2-Methylpentane			2.65795E-05		2.65795E-05	1.6518

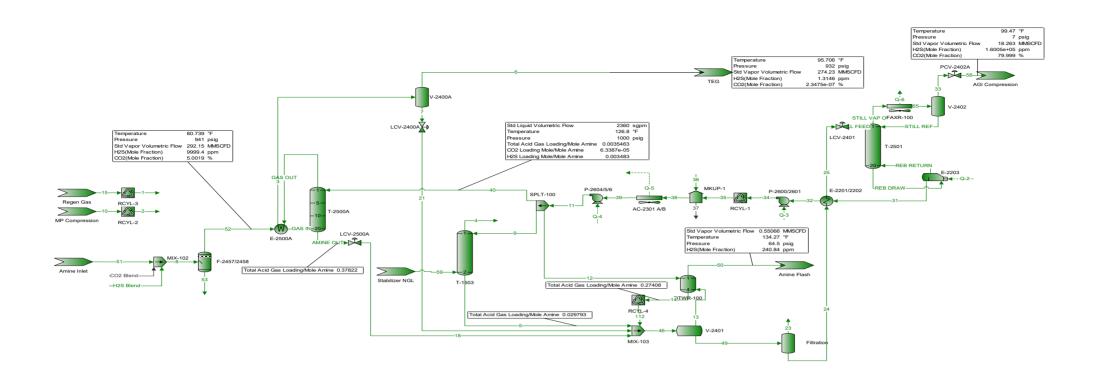
n-Hexane			1.74779E-05		1.74779E-05	9.36750E-0
Methylcyclopentane			0.000227097		0.000227097	0.00015735
Benzene			0.0676110		0.0676110	0.055736
Cyclohexane			0.000547565		0.000547565	0.00040219
2-Methylhexane			1.80640E-06		1.80640E-06	1.43246E-0
3-Methylhexane			3.58269E-06		3.58269E-06	2.97434E-0
1,1-Dimethylcyclopentane			6.81599E-05		6.81599E-05	6.20218E-0
n-Heptane			1.87299E-06		1.87299E-06	9.98424E-0
Methylcyclohexane			9.11481E-05		9.11481E-05	5.94791E-0
1,1,2-Trimethylcyclopentane			2.18605E-07		2.18605E-07	7.47998E-0
Toluene			0.0230527		0.0230527	0.015968
2-Methylheptane			4.66770E-07		4.66770E-07	2.38731E-0
3-Methylheptane			5.58644E-08		5.58644E-08	2.27607E-0
1,1-Dimethylcyclohexane			8.78019E-07		8.78019E-07	4.40842E-0
n-Octane			1.22800E-07		1.22800E-07	4.82954E-0
Ethylbenzene			0.000309075		0.000309075	0.00020938
m-Xylene			0.000330457		0.000330457	0.00019016
-						
p-Xylene			0.000349841		0.000349841	0.00021204
o-Xylene			0.000405497		0.000405497	0.00027523
n-Nonane			3.85051E-08		3.85051E-08	2.29969E-0
n-Decane			1.03012E-09		1.03012E-09	4.66507E-
TEG			0.0104885		0.0104885	0.010493
Water			99.8781		99.8781	99.89
Methanol			0		0	22.00
Mass Flow			lb/h		lb/h	lb/h
H2S			0.0157439		0.0157439	0.016078
Nitrogen			2.69614E-07		2.69614E-07	9.32559E-
Methane			0.000282635		0.000282635	0.0004986
CO2			0.0361062		0.0361062	0.04161
Ethane			0.00117974		0.00117974	0.001423
Propane			0.00175936		0.00175936	0.001744
i-Butane			0.000232204		0.000232204	0.0002576
n-Butane			0.00170488		0.00170488	0.0013790
i-Pentane			0.000396856		0.000396856	0.00033182
n-Pentane			0.000286408		0.000286408	0.00015932
Neohexane			1.82879E-06		1.82879E-06	1.53215E-0
Cyclopentane			0.00134140		0.00134140	0.0011073
2-Methylpentane			8.55957E-05		8.55957E-05	5.31883E-0
3-Methylpentane			0.000130625		0.000130625	8.93351E-0
n-Hexane			5.62854E-05		5.62854E-05	3.01630E-0
Methylcyclopentane			0.000731337		0.000731337	0.0005066
Benzene			0.217732		0.217732	0.1794
Cyclohexane			0.00176336		0.00176336	0.001295
2-Methylhexane			5.81727E-06		5.81727E-06	4.61248E-
-						
3-Methylhexane			1.15376E-05		1.15376E-05	9.57727E-
1,1-Dimethylcyclopentane			0.000219500		0.000219500	0.0001997
n-Heptane			6.03173E-06		6.03173E-06	3.21489E-
Methylcyclohexane			0.000293531		0.000293531	0.0001915
1,1,2-Trimethylcyclopentane			7.03990E-07		7.03990E-07	2.40852E-
Toluene						
2-Methylheptane			0.0742383		0.0742383	0.05141
3-Methylheptane			0.0742383 1.50317E-06		0.0742383 1.50317E-06	0.05141
			1.50317E-06		1.50317E-06	0.05141 7.68705E-
			1.50317E-06 1.79904E-07		1.50317E-06 1.79904E-07	0.05141 7.68705E- 7.32885E-
1,1-Dimethylcyclohexane			1.50317E-06 1.79904E-07 2.82755E-06		1.50317E-06 1.79904E-07 2.82755E-06	0.05141 7.68705E- 7.32885E- 1.41950E-
1,1-Dimethylcyclohexane			1.50317E-06 1.79904E-07		1.50317E-06 1.79904E-07	0.05141 7.68705E- 7.32885E- 1.41950E- 1.55509E-
1,1-Dimethylcyclohexane n-Octane			1.50317E-06 1.79904E-07 2.82755E-06		1.50317E-06 1.79904E-07 2.82755E-06	0.05141 7.68705E- 7.32885E- 1.41950E- 1.55509E-
1,1-Dimethylcyclohexane h-Octane Ethylbenzene			1.50317E-06 1.79904E-07 2.82755E-06 3.95461E-07 0.000995337		1.50317E-06 1.79904E-07 2.82755E-06 3.95461E-07 0.000995337	0.05141 7.68705E- 7.32885E- 1.41950E- 1.55509E- 0.0006741
1,1-Dimethylcyclohexane n-Octane Ethylbenzene m-Xylene			1.50317E-06 1.79904E-07 2.82755E-06 3.95461E-07 0.000995337 0.00106420		1.50317E-06 1.79904E-07 2.82755E-06 3.95461E-07 0.000995337 0.00106420	0.05141 7.68705E- 7.32885E- 1.41950E- 1.55509E- 0.0006741 0.0006123
1,1-Dimethylcyclohexane n-Octane Ethylbenzene m-Xylene p-Xylene			1.50317E-06 1.79904E-07 2.82755E-06 3.95461E-07 0.000995337 0.00106420 0.00112662		1.50317E-06 1.79904E-07 2.82755E-06 3.95461E-07 0.000995337 0.00106420 0.00112662	0.05141 7.68705E- 7.32885E- 1.41950E- 1.55509E- 0.0006741 0.0006123 0.0006827
I,1-Dimethylcyclohexane h-Octane Ethylbenzene m-Xylene b-Xylene			1.50317E-06 1.79904E-07 2.82755E-06 3.95461E-07 0.000995337 0.00106420		1.50317E-06 1.79904E-07 2.82755E-06 3.95461E-07 0.000995337 0.00106420	0.05141 7.68705E- 7.32885E- 1.41950E- 1.55509E- 0.0006741 0.0006123 0.0006827
1,1-Dimethylcyclohexane n-Octane Ethylbenzene m-Xylene o-Xylene o-Xylene			1.50317E-06 1.79904E-07 2.82755E-06 3.95461E-07 0.000995337 0.00106420 0.00112662		1.50317E-06 1.79904E-07 2.82755E-06 3.95461E-07 0.000995337 0.00106420 0.00112662	0.05141 7.68705E- 7.32885E- 1.41950E- 1.55509E- 0.0006741 0.0006123 0.0006827 0.0008862
1,1-Dimethylcyclohexane n-Octane Ethylbenzene m-Xylene o-Xylene o-Xylene n-Nonane			1.50317E-06 1.79904E-07 2.82755E-06 3.95461E-07 0.000995337 0.00106420 0.00112662 0.00130585 1.24001E-07		1.50317E-06 1.79904E-07 2.82755E-06 3.95461E-07 0.000995337 0.00106420 0.00112662 0.00130585 1.24001E-07	0.05141 7.68705E- 7.32885E- 1.41950E- 1.55509E- 0.0006741 0.0006123 0.0006827 0.0008862 7.40491E-
1,1-Dimethylcyclohexane n-Octane Ethylbenzene m-Xylene p-Xylene o-Xylene n-Nonane n-Decane			1.50317E-06 1.79904E-07 2.82755E-06 3.95461E-07 0.000995337 0.00106420 0.00112662 0.00130585 1.24001E-07 3.31737E-09		1.50317E-06 1.79904E-07 2.82755E-06 3.95461E-07 0.000995337 0.00106420 0.00112662 0.00130585 1.24001E-07 3.31737E-09	0.05141 7.68705E- 7.32885E- 1.41950E- 1.55509E- 0.0006741 0.0006123 0.0006827 0.0008862 7.40491E- 1.50213E-
1,1-Dimethylcyclohexane n-Octane Ethylbenzene m-Xylene p-Xylene o-Xylene n-Nonane n-Decane TEG			1.50317E-06 1.79904E-07 2.82755E-06 3.95461E-07 0.000995337 0.00106420 0.00112662 0.00130585 1.24001E-07 3.31737E-09 0.0337770		1.50317E-06 1.79904E-07 2.82755E-06 3.95461E-07 0.000995337 0.00106420 0.00112662 0.00130585 1.24001E-07 3.31737E-09 0.0337770	0.05141 7.68705E- 7.32885E- 1.41950E- 1.55509E- 0.0006741 0.0006123 0.0006827 0.0008862 7.40491E- 1.50213E- 0.03378
1,1-Dimethylcyclohexane n-Octane Ethylbenzene m-Xylene p-Xylene o-Xylene n-Nonane n-Decane TEG			1.50317E-06 1.79904E-07 2.82755E-06 3.95461E-07 0.000995337 0.00106420 0.00112662 0.00130585 1.24001E-07 3.31737E-09		1.50317E-06 1.79904E-07 2.82755E-06 3.95461E-07 0.000995337 0.00106420 0.00112662 0.00130585 1.24001E-07 3.31737E-09	0.05141 7.68705E- 7.32885E- 1.41950E- 1.55509E- 0.0006741 0.0006123 0.0006827 0.0008862 7.40491E- 1.50213E- 0.03378
1,1-Dimethylcyclohexane Octane Ethylbenzene m-Xylene Xylene Xylene Xylene Nonane Decane FEG Water			1.50317E-06 1.79904E-07 2.82755E-06 3.95461E-07 0.000995337 0.00106420 0.00112662 0.00130585 1.24001E-07 3.31737E-09 0.0337770		1.50317E-06 1.79904E-07 2.82755E-06 3.95461E-07 0.000995337 0.00106420 0.00112662 0.00130585 1.24001E-07 3.31737E-09 0.0337770	0.05141 7.68705E 7.32885E 1.41950E 1.55509E 0.0006741 0.0006123 0.0006827 0.0008862 7.40491E 1.50213E 0.03378
1,1-Dimethylcyclohexane Octane Ethylbenzene m-Xylene b-Xylene b-Xylene h-Nonane h-Decane TEG Water			1.50317E-06 1.79904E-07 2.82755E-06 3.95461E-07 0.000995337 0.00106420 0.00112662 0.00130585 1.24001E-07 3.31737E-09 0.0337770 321.645		1.50317E-06 1.79904E-07 2.82755E-06 3.95461E-07 0.000995337 0.00106420 0.00112662 0.00130585 1.24001E-07 3.31737E-09 0.0337770 321.645	0.05141 7.68705E 7.32885E 1.41950E 1.55509E 0.0006741 0.0006123 0.0008827 0.0008862 7.40491E 1.50213E 0.03378
1,1-Dimethylcyclohexane n-Octane Ethylbenzene m-Xylene p-Xylene o-Xylene n-Nonane n-Decane TEG Water Methanol		Condenante Trusie Leodice	1.50317E-06 1.79904E-07 2.82755E-06 3.95461E-07 0.000995337 0.00106420 0.00112662 0.00130585 1.24001E-07 3.31737E-09 0.0337770 321.645 0	Droduood Wotor Touls Loooss	1.50317E-06 1.79904E-07 2.82755E-06 3.95461E-07 0.000995337 0.00106420 0.00112662 0.00130585 1.24001E-07 3.31737E-09 0.0337770 321.645 0	0.05141 7.68705E- 7.32885E- 1.41950E- 1.55509E- 0.0006741 0.0006123 0.0006827 0.0008862 7.40491E- 1.50213E- 0.03378 321.6
1,1-Dimethylcyclohexane n-Octane Ethylbenzene m-Xylene p-Xylene o-Xylene n-Nonane n-Decane TEG Water Methanol		Condensate Truck Loading	1.50317E-06 1.79904E-07 2.82755E-06 3.95461E-07 0.000995337 0.00106420 0.00112662 0.00130585 1.24001E-07 3.31737E-09 0.0337770 321.645	Produced Water Tank Losses	1.50317E-06 1.79904E-07 2.82755E-06 3.95461E-07 0.000995337 0.00106420 0.00112662 0.00130585 1.24001E-07 3.31737E-09 0.0337770 321.645	0.05141 7.68705E-0 7.32885E-0 1.41950E-0 1.55509E-0 0.00067419 0.00068274 0.00088629 7.40491E-0 1.50213E-0 0.033780 321.60
1,1-Dimethylcyclohexane n-Octane Ethylbenzene m-Xylene p-Xylene o-Xylene n-Nonane n-Decane TEG Water Methanol	Status:	Condensate Truck Loading	1.50317E-06 1.79904E-07 2.82755E-06 3.95461E-07 0.000995337 0.00106420 0.00112662 0.00130585 1.24001E-07 3.31737E-09 0.0337770 321.645 0	Produced Water Tank Losses	1.50317E-06 1.79904E-07 2.82755E-06 3.95461E-07 0.000995337 0.00106420 0.00112662 0.00130585 1.24001E-07 3.31737E-09 0.0337770 321.645 0	0.05141 7.68705E- 7.32885E- 1.41950E- 1.55509E- 0.0006741 0.0006123 0.0006827 0.0008862 7.40491E- 1.50213E- 0.03378 321.60
1,1-Dimethylcyclohexane n-Octane Ethylbenzene m-Xylene p-Xylene o-Xylene n-Nonane n-Decane TEG Water Methanol Process Streams Properties		Solved	1.50317E-06 1.79904E-07 2.82755E-06 3.95461E-07 0.000995337 0.00106420 0.00112662 0.00130585 1.24001E-07 3.31737E-09 0.0337770 321.645 0 <b>From BTEX</b> Solvod	Solved	1.50317E-06 1.79904E-07 2.82755E-06 3.95461E-07 0.000995337 0.00106420 0.00112662 0.00130585 1.24001E-07 3.31737E-09 0.0337770 321.645 0 Slop Tank Losses 501vol	0.05141 7.68705E- 7.32885E- 1.41950E- 1.55509E- 0.0006741 0.0006123 0.0006827 0.0008862 7.40491E- 1.50213E- 0.03378 321.6 Slop Truck Loading Scival
1,1-Dimethylcyclohexane n-Octane Ethylbenzene m-Xylene p-Xylene o-Xylene n-Nonane n-Decane TEG Water Methanol	From Block:		1.50317E-06 1.79904E-07 2.82755E-06 3.95461E-07 0.000995337 0.00106420 0.00112662 0.00130585 1.24001E-07 3.31737E-09 0.0337770 321.645 0 From BTEX Solved LV-104	Solved MIX-100	1.50317E-06 1.79904E-07 2.82755E-06 3.95461E-07 0.000995337 0.00106420 0.00112662 0.00130585 1.24001E-07 3.31737E-09 0.0337770 321.645 0 Slop Tank Losses Solved MIX-103	0.05141 7.68705E- 7.32885E- 1.41950E- 1.55509E- 0.0006741 0.0006123 0.0006827 0.0008862 7.40491E- 1.50213E- 0.03378 321.6
1,1-Dimethylcyclohexane n-Octane Ethylbenzene m-Xylene p-Xylene o-Xylene n-Nonane n-Decane TEG Water Methanol Process Streams Properties		Solved	1.50317E-06 1.79904E-07 2.82755E-06 3.95461E-07 0.000995337 0.00106420 0.00112662 0.00130585 1.24001E-07 3.31737E-09 0.0337770 321.645 0 <b>From BTEX</b> Solvod	Solved	1.50317E-06 1.79904E-07 2.82755E-06 3.95461E-07 0.000995337 0.00106420 0.00112662 0.00130585 1.24001E-07 3.31737E-09 0.0337770 321.645 0 Slop Tank Losses 501vol	0.051411 7.68705E- 7.32885E- 1.41950E- 1.55509E- 0.00067419 0.00061233 0.00068273 0.00088629 7.40491E- 1.50213E- 0.03378 321.60

Property	Units			
Temperature	°F	119.974	119.974	75
Pressure	psig	0.5	0.5	0.5
Mole Fraction Vapor	%	0	0	0
Mole Fraction Light Liquid	%	0	0	0
Mole Fraction Heavy Liquid	%	100	100	100
Phase Mole Fraction	%	97.8721	97.8721	97.8739
Molecular Weight	lb/lbmol	18.0319	18.0319	18.0292
Mass Density	lb/ft^3	61.6793	61.6793	62.2387
Molar Flow	lbmol/h	17.8593	17.8593	17.8597
Mass Flow	lb/h	322.037	322.037	321.996
Vapor Volumetric Flow	ft^3/h	5.22115	5.22115	5.17357
Liquid Volumetric Flow	gpm	0.650949	0.650949	0.645016
Std Vapor Volumetric Flow	MMSCFD	0.162656	0.162656	0.162659
Std Liquid Volumetric Flow	sgpm	0.643887	0.643887	0.643791
Compressibility		0.000714174	0.000714174	0.000767177
Specific Gravity		0.988946	0.988946	0.997915
API Gravity		9.98435	9.98435	9.98600
Enthalpy	Btu/h	-2.18066E+06	-2.18066E+06	-2.19497E+06?
Mass Enthalpy	Btu/lb	-6771.46	-6771.46	-6816.75?
Mass Cp	Btu/(lb*°F)	0.977188	0.977188	0.978033?
Ideal Gas CpCv Ratio		1.32716	1.32716	1.32892
Dynamic Viscosity	cP	0.570582	0.570582	0.935016
Kinematic Viscosity	cSt	0.577507	0.577507	0.937859
Thermal Conductivity	Btu/(h*ft*°F)	0.366910	0.366910	0.348887
Surface Tension	lbf/ft	0.00466187	0.00466187	0.00499352?
Net Ideal Gas Heating Value	Btu/ft^3	0.857890	0.857890	0.692920
Net Liquid Heating Value	Btu/lb	-1040.63	-1040.63	-1044.26
Gross Ideal Gas Heating Value	Btu/ft^3	51.1942	51.1942	51.0237
Gross Liquid Heating Value	Btu/lb	18.7041	18.7041	15.1153



Process Streams         Composition       Status:         Phase:       Total       From Block:         To Block:       To Block:       To Block:         Mole Fraction       H2S       CO2	V-14           SAT-1         SAT-2            %         %         %           1.00000         0.206370*         0.0	402         V-1402          BTE            SAT-1         R           %         %         %           0401094         0.000108850         0*         0.	1         2         3         4           olved         Solved         Solved         Solved         Solved           X Vapor         MIX-102         V-1401         V-1402           CYL-4         V-1402         PCV-1401E            %         %         %           00878049         0.0194018         1.00000           0141E-06         0.0880900         5.00002	PCV-1401E         SAT-2         SAT-1         V-14           V-1415         MIX-100         V-1401         MIX-10           %         %         %         10000           1.00000         0.206141         1.00000         5.00002           5.00002         0.677245         5.00002	01          V-1415         V-1415         BTEX           00         SAT-2         Amine Inlet          MiX-           %         %         %         %           0*         0.999652         1.33175         9.887           0*         5.00169         3.43014         6.580	%         %         %           118E-06         7.54928E-05         0.00112585         0.0240845         0.0261723           166E-10         3.49893E-08         1.10131E-06         0.113409         0.0429205	MIX-100         MP/LP Water         MIX-101         LP Flash         RCYL-3           g Cathcer Liq         MIX-101         V-1402         RCYL-3         MIX-102           %         %         %         %         %           0.206141         0.00672849         0.0176745         0.2554123           0.677245         0.0146478         0.0289857         0.000255172	34         35         138           Solved         Solved         Solved           RCYL-2         RCYL-1         RCYL-4           MIX-102         MIX-102         MIX-102           %         %         %           0.0240845         0.00112585         0.00878049           0.113409         1.10131E-06         1.80141E-06
N2 Methane Ethane Propane i-Butane n-Butane n-Butane n-Pentane n-Pentane n-Pentane n-Hexane n-Hexane n-Heptane n-Octane n-Octane n-Octane n-Decane Undecane Benzene Toluene Ethylbenzene m-Xylene Water MDEA Piperazine Phosphoric Acid TEG O2	68.1003       9.60028*       6         12.7147       7.78018*       7         7.38549       12.9632*       9         0.981438       3.73009*       7         2.49118       12.5068*       3         0.456632       6.42769*       0         0.432517       8.17118*       0         0.0649309       22.8844*       0         0.0395754       11.4422*       0         0.00352291       3.05125*       0.00         0.00678106       0.550999*       0.00         0.0109308       0*       0         0.00381449       0*       0         0.00363317       0*       0         0.00340539       0*       2         1.52627E-07       0*       0.000         4.85897E-10       0*       1.494         0       0*       1.494         0       0*       1.122         0       0*       1.122         0       0*       1.122	53.7143       0.00317026       0*         16.6607       0.00110876       0*         9.05164       0.000416715       0*         1.06338       2.96850E-05       0*         3.75390       0.000158870       0*         .595476       1.60753E-05       0*         .136312       1.15763E-06       0*         .122314       6.98195E-07       0*         .140769       3.71772E-08       0*         .0324348       6.38091E-08       0*         .282E-05       4.76203E-11       0*       0.0         .356904       0.00252299       0*       0*         .258643       0.000924541       0*       0*         .258643       0.000924541       0*       0*         .275901       9.9.9700       100*       0.0         .275901       9.9.9700       100*       0.0         .275901       9.9.9700       100*       0.0         .275901       9.9.9196E-05       0*       0.0         .0171E-07       0.00270318       0*       2.4         0       0       0*       0	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	446E-07         0.00680314         0.253083         0.442410         2.35865E-09           229298         1.11408         47.4408         71.3820         4.14538E-06           103166         0.495916         21.9586         15.7876         2.15301E-06           350396         0.399623         17.2137         6.47665         5.15897E-07           118685         0.0544296         2.28481         0.608605         2.48939E-08           851569         0.202526         7.28745         1.98972         1.67600E-07           586873         0.0411627         1.27646         0.137240         2.88328E-09           960229         0.0420202         1.35362         0.173170         2.45050E-09           686460         0.00838353         0.176733         0.0185001         1.43338E-10           202031         0.00667471         0.111274         0.00423774         6.61855E-13           297290         0.00138876         0.0113924         0.000239497         9.40379E-14           117518         2.70111E-06         1.59454E-05         9.78285E-08         0           794123         1.25390E-05         4.69017E-05         1.35569E-07         0           668618         0.0343476         0.0687576	0.550387         6.25571E-09         0.00960406         0.0111423         0           0.00745734         9.62816E-12         3.79632E-05         5.88141E-05         5           0         0         0.000256533         2.72449E-08         1           0         0         0.0216460         0.0163035         1           0         0         0.0265115         0.00276649         1           0         0         0.0324242         4.80842E-05         0           0         0         0.00644813         8.54274E-05         0           0.111099         99.9496         99.8434         0.337128         0           0         0         5.98000E-05         2.21302E-07         0	0.442410         0.253083         0.00823666           71.3820         47.4408         7.71685           15.7876         21.9586         13.3421           6.47665         17.2137         20.3179           0.608605         2.28481         3.67453           1.98972         7.28745         17.2984           0.137240         1.27646         4.76371           0.173170         1.35362         6.04199           0.0185001         0.176733         1.55731           0.00464621         0.111274         1.60053           0.00239497         0.0113924         0.329059           0.78285E-08         1.59454E-05         0.000496851           .35569E-07         4.69017E-05         0.00129829           0.0474756         0.0687576         8.05564           0.0129117         0.0195755         3.71928           0.000468517         0.000687481         0.161950           0.000484138         0.00132291         0.319787           2.77805         0.531960         10.9088           0.000412558         6.93341E-07         0.000558623           0.00104735         5.65168E-05         2.45669E-06           0         0         0 </th
Molar Flow         H2S         CO2         N2         Methane         Ethane         Propane         i-Butane         n-Butane         i-Pentane         n-Pentane         n-Heptane         n-Octane         n-Decane         Undecane         Benzene         Toluene         Ethylbenzene         m-Xylene         Water         MDEA         Piperazine         Phosphoric Acid         TEG	1605.81         7.27569*         0.0           408.962         0*         0.           21871.1         103.022*         4           4083.46         83.4902*         6           2371.92         139.110*         7           315.198         40.0281*         0.           800.067         134.212*         2           146.652         68.9763*         0.           138.907         87.6860*         0.           20.8532         245.575*         0.           12.7100         122.788*         0.00           1.13142         32.7434*         0.0           2.17780         5.91284*         0.0           0.00446481         0.0801147*         5.935           0.0216455         0*         0.00           3.51053         0*         0.           0.122506         0*         0.0           0.16683         0*         0.0           0.116683         0*         0.0           10.9367         0*         2           4.90177E-05         0*         0.000           1.56051E-07         0*         1.163           0         0*         0*         0*	3312313         9.99193E-05         0         0.0           0950841         0.000100080         0         8.1           300434         8.64324E-06         0         0.0           49.6113         0.00291015         0         10           12.9729         0.00101779         0         7.04808         0.000382525         0           828002         2.72495E-05         0         2.92298         0.000145835         0           463669         1.47564E-05         0         .0         .0         .0           463669         1.47564E-05         0         .0         .0         .0           106140         1.06265E-06         0         .0         .0         .0           10952400         6.40911E-07         0         .0         .0         .0         .0           10252555         5.85738E-08         0         .0         .0         .0         .0           10300163         1.71507E-10         0         5.8         .0         .0         .2           2.01393         0.000848686         0         .0         .0         .0         .0         .0         .0         .0         .0         .2         .5	mol/hlbmol/hlbmol/hlbmol/hlbmol/h00395604 $0.0151024$ $321.161$ 01621E-08 $0.0685695$ $1605.81$ 000371102 $0.300440$ $408.962$ 0 $0.347682$ $49.6136$ $21871.1$ 0 $0.601127$ $12.9734$ $4083.46$ 0 $0.915419$ $7.04724$ $2371.92$ 0 $0.165555$ $0.827652$ $315.198$ 0 $0.779375$ $2.92051$ $800.067$ 0 $0.272221$ $0.551174$ $138.907$ 0 $0.0771644$ $0.104101$ $20.8532$ 0 $0.0778871$ $0.00909680$ $1.13142$ 0 $0.0148257$ $0.0164370$ $2.17780$ 0 $0.365946$ $0.400502$ $3.51053$ 0 $0.072964$ $0.0076841$ $0.0594608$ 0 $0.0144080$ $0.0151007$ $0.116683$ 0 $0.0144080$ $0.0151007$ $0.116683$ 0 $0.0144080$ $0.0151007$ $0.116683$ 0 $0.0144080$ $0.00274698$ $4.90177E-05$ 0 $0686E-07$ $0.000640636$ $1.56051E-07$ 0 $0.0689E-09$ $5.48420E-05$ $3.64144E-09$ 0	Ibmol/hIbmol/hIbmol/hIbmol/hIbmol/h $321.161$ $2.21458$ $321.161$ $1605.81$ $7.27569$ $1605.81$ $408.962$ 0 $408.962$ $21871.1$ $103.022$ $21871.1$ $4083.46$ $83.4902$ $4083.46$ $2371.92$ $139.110$ $2371.92$ $315.198$ $40.0281$ $315.198$ $800.067$ $134.212$ $800.067$ $146.652$ $68.9763$ $146.652$ $138.907$ $87.6860$ $138.907$ $20.8532$ $245.575$ $20.8532$ $12.7100$ $122.788$ $12.7100$ $1.13142$ $32.7434$ $1.13142$ $2.17780$ $5.91284$ $2.17780$ $0.00446481$ $0.0801147$ $0.00446481$ $0.0216455$ $0$ $0.22506$ $0.0594608$ $0$ $0.12506$ $0.116683$ $0$ $0.19367$ $1.19354$ $10.9367$ $4.90177E-05$ $0$ $4.90177E-05$ $1.56051E-07$ $0$ $0$ $0$ $0$ $0$ $3.64144E-09$ $0$ $3.64144E-09$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	b/h         Ibmol/h         Ibmol/h         Ibmol/h         Ibmol/h           662E-06         3.36964E-08         0.000144931         0.0145619         0.0162150           88E-10         1.56176E-11         1.41771E-07         0.0685693         0.0265913           19E-08         3.03660E-06         0.0325793         0.267489         1.46129E-09           18E-05         0.000497272         6.10704         43.1589         2.56826E-06           305998         0.000221353         2.82672         9.54550         1.33389E-06           103930         0.000178373         2.21592         3.91590         3.19623E-07           352029         2.42948E-05         0.294123         0.367974         1.54230E-08           252582         9.03978E-05         0.938111         1.20302         1.03836E-07           174071         1.83731E-05         0.164318         0.0829778         1.78633E-09           203610         3.74201E-06         0.0227509         0.0111855         8.88048E-11           599241         2.97927E-06         0.0143242         0.00280918         6.66573E-12           186395         2.99182E-07         0.00105187         0.000256222         4.10051E-13           881785         6.19875E-07 </th <th>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</th> <th>Ibmol/hIbmol/hIbmol/h$0.0145619$$0.000144931$$0.000395604$$0.0685693$$1.41771E-07$$8.11621E-08$$0.267489$$0.0325793$$0.000371102$$43.1589$$6.10704$$0.347682$$9.54550$$2.82672$$0.601127$$3.91590$$2.21592$$0.915419$$0.367974$$0.294123$$0.165555$$1.20302$$0.938111$$0.779375$$0.0829778$$0.164318$$0.214628$$0.104702$$0.174251$$0.272221$$0.0111855$$0.0227509$$0.0701644$$0.00280918$$0.0143242$$0.0721118$$0.00256222$$0.00105187$$0.00778871$$0.00256222$$0.00105187$$0.00778871$$0.002746$$0.0085115$$0.362946$$0.00780667$$0.00251995$$0.167572$$0.00283274$$8.84992E-05$$0.00729664$$0.00283274$$8.84992E-05$$0.0144080$$1.67966$$0.0684790$$0.491493$$0.00249440$$8.92536E-08$$2.51687E-05$$0.00633250$$7.27539E-06$$1.80689E-09$</th>	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ibmol/hIbmol/hIbmol/h $0.0145619$ $0.000144931$ $0.000395604$ $0.0685693$ $1.41771E-07$ $8.11621E-08$ $0.267489$ $0.0325793$ $0.000371102$ $43.1589$ $6.10704$ $0.347682$ $9.54550$ $2.82672$ $0.601127$ $3.91590$ $2.21592$ $0.915419$ $0.367974$ $0.294123$ $0.165555$ $1.20302$ $0.938111$ $0.779375$ $0.0829778$ $0.164318$ $0.214628$ $0.104702$ $0.174251$ $0.272221$ $0.0111855$ $0.0227509$ $0.0701644$ $0.00280918$ $0.0143242$ $0.0721118$ $0.00256222$ $0.00105187$ $0.00778871$ $0.00256222$ $0.00105187$ $0.00778871$ $0.002746$ $0.0085115$ $0.362946$ $0.00780667$ $0.00251995$ $0.167572$ $0.00283274$ $8.84992E-05$ $0.00729664$ $0.00283274$ $8.84992E-05$ $0.0144080$ $1.67966$ $0.0684790$ $0.491493$ $0.00249440$ $8.92536E-08$ $2.51687E-05$ $0.00633250$ $7.27539E-06$ $1.80689E-09$
O2         Mass Fraction         H2S         CO2         N2         Methane         Ethane         Propane         i-Butane         n-Butane         i-Pentane         n-Pentane         n-Heptane         n-Octane         n-Decane         Undecane         Benzene         Toluene         Ethylbenzene         m-Xylene         Water         MDEA         Piperazine         Phosphoric Acid         TEG	9.28868         0.456780*         0.           1.50579         0*         0.           46.1164         2.35769*         4           16.1385         3.58131*         2           13.7471         8.75062*         4           13.7471         8.75062*         4           13.7471         8.75062*         4           1.37471         8.75062*         4           1.37471         8.75062*         4           1.39069         7.09930*         4           1.39069         7.09930*         4           0.236195         30.1894*         0.           0.167393         17.5516*         0.0           0.0169868         5.33561*         0.00           0.0367120         1.08183*         0.           8.34961E-05         0.0162610*         0.000           0.00360416         0*         0.0           0.00148359         0*         0.0           0.00162818         0*         0.0           0.0258966         0*         2           7.67725E-07         0*         0.00           1.76670E-09         0*         5.225           0         0*         0	218130         0.000265908         0*         1.5           .438709         1.46177E-05         0*         0.           .41.4871         0.00281854         0*         0.           20.3338         0.00184763         0*         0.           16.2005         0.00101834         0*         2.           2.50862         9.56177E-05         0*         8.           8.85583         0.000511731         0*         1.           1.74381         6.42757E-05         0*         2.           2.08366         3.76340E-05         0*         4.           4.476785         5.52855E-06         0*         4.           4.97459         3.87714E-06         0*         0.           0.652660         2.35348E-07         0*         0.           1.68846         4.53540E-07         0*         0.           0.440220         3.75491E-10         0*         0.           0.440223         0.0109217         0*         0.           0.9587116         0.000233615         0*         0.           0.57116         0.000330583         0*         2.           0         0         0*         0.         0. <td>0         0         0         0         0           %         %         %           00598911         0.0269299         1.43863         8668E-06         0.157890         9.28868           00461795         0.440351         1.50579         2.47767         41.6436         46.1164           8.02929         20.4102         16.1385         17.9311         16.2589         13.7471           4.27441         2.51690         2.40791         20.1224         8.88130         6.11200           6.87871         1.74372         1.39069         8.72452         2.08063         1.31725           2.68591         0.469368         0.236195         3.20977         0.467833         0.167393           0.395213         0.0543675         0.0169868         0.395213         0.0543675         0.0169868           0.844658         0.110300         0.0367120         00141484         0.000182366         8.34961E-05           00406150         0.000528426         0.000444697         12.5936         1.63681         0.0360416           6.85855         0.857608         0.148359         0.344108         0.0425954         0.000829710           0.679477         0.0838794         0.00162818         3.93323&lt;</td> <td>0         0         0           %         %         %           1.43863         0.107636         1.43863           9.28868         0.456640         9.28868           1.50579         0         1.50579           46.1164         2.35697         46.1164           16.1385         3.58021         16.1385           13.7471         8.74794         13.7471           2.40791         3.31788         2.40791           6.11200         11.1246         6.11200           1.39069         7.09713         1.39069           1.31725         9.02221         1.31725           0.236195         30.1801         0.236195           0.167393         17.5462         0.167393           0.169868         5.33398         0.0169868           0.0367120         1.08149         0.0367120           8.34961E-05         0.0162560         8.34961E-05           0.000444697         0         0.000829710           0.00162818         0         0.00162818           0.0258966         0.0306642         0.0258966           7.67725E-07         0         7.67725E-07           1.76670E-09         0         1.76670E-0</td> <td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td> <td>000000%%%$33E-05$$4.08018E-05$$0.00128782$$0.0380989$$0.0494699$$664E-09$$2.44200E-08$$1.62674E-06$$0.231665$$0.104761$$22E-07$$0.00302231$$0.237953$$0.575249$$3.66451E-09$$201782$$0.283433$$25.5438$$53.1527$$3.68828E-06$$170163$$0.236478$$22.1609$$22.0345$$3.59048E-06$$847549$$0.279453$$25.4761$$13.2560$$1.26167E-06$$378396$$0.0501696$$4.45712$$1.64189$$8.02458E-08$$271501$$0.186674$$14.2161$$5.36783$$5.40260E-07$$232264$$0.0470973$$3.09099$$0.459595$$1.15373E-08$$380026$$0.0480785$$3.27785$$0.579920$$9.80556E-09$$324495$$0.0114571$$0.511169$$0.0739983$$6.85066E-10$$111046$$0.0106065$$0.374223$$0.0216093$$5.97912E-11$$393763$$0.00224656$$0.0490402$$0.00142574$$6.68907E-13$$917197$$6.09473E-06$$7.61459E-05$$6.46070E-07$$0$$286487$$0.0425478$$0.180260$$0.172129$$0.000198194$$414577$$0.0226682$$0.0605364$$0.0552192$$5.16949E-05$$584440$$0.00142773$$0.00244965$$0.00230872$$1.32933E-06$$116228$$0.00268161$$0.00471384$$0.00425824$$2.42606E-06$$28.53$</td> <td>0.0162560         7.60138E-11         0.000298144         0.000148296         6           0         0         0.00221329         7.54685E-08         5           0         0         0.0933273         0.0225682         5           0         0         0.134831         0.00451719         5           0         0         0.0190005         9.04654E-05         5           0         0         0.0377859         0.000160723           0.0306642         99.9130         99.2829         0.107630           0         0         0.000393327         4.67330E-07</td> <td>0         0         0           %         %           0.0380989         0.00128782         0.00598911           0.231665         1.62674E-06         1.58668E-06           0.575249         0.237953         0.00461795           53.1527         25.5438         2.47767           22.0345         22.1609         8.02929           13.2560         25.4761         17.9311           1.64189         4.45712         4.27441           5.36783         14.2161         20.1224           0.459595         3.09099         6.87871           0.579920         3.27785         8.72452           0.0739983         0.511169         2.68591           0.0216093         0.374223         3.20977           0.0024685         0.0313271         0.395213           0.00142574         0.0490402         0.844658           0.46070E-07         7.61459E-05         0.00141484           0.83578E-07         0.00246056         0.0406150           0.172129         0.180260         12.5936           0.00230872         0.00244965         0.344108           0.00230872         0.00244965         0.344108           0.00228186         <td< td=""></td<></td>	0         0         0         0         0           %         %         %           00598911         0.0269299         1.43863         8668E-06         0.157890         9.28868           00461795         0.440351         1.50579         2.47767         41.6436         46.1164           8.02929         20.4102         16.1385         17.9311         16.2589         13.7471           4.27441         2.51690         2.40791         20.1224         8.88130         6.11200           6.87871         1.74372         1.39069         8.72452         2.08063         1.31725           2.68591         0.469368         0.236195         3.20977         0.467833         0.167393           0.395213         0.0543675         0.0169868         0.395213         0.0543675         0.0169868           0.844658         0.110300         0.0367120         00141484         0.000182366         8.34961E-05           00406150         0.000528426         0.000444697         12.5936         1.63681         0.0360416           6.85855         0.857608         0.148359         0.344108         0.0425954         0.000829710           0.679477         0.0838794         0.00162818         3.93323<	0         0         0           %         %         %           1.43863         0.107636         1.43863           9.28868         0.456640         9.28868           1.50579         0         1.50579           46.1164         2.35697         46.1164           16.1385         3.58021         16.1385           13.7471         8.74794         13.7471           2.40791         3.31788         2.40791           6.11200         11.1246         6.11200           1.39069         7.09713         1.39069           1.31725         9.02221         1.31725           0.236195         30.1801         0.236195           0.167393         17.5462         0.167393           0.169868         5.33398         0.0169868           0.0367120         1.08149         0.0367120           8.34961E-05         0.0162560         8.34961E-05           0.000444697         0         0.000829710           0.00162818         0         0.00162818           0.0258966         0.0306642         0.0258966           7.67725E-07         0         7.67725E-07           1.76670E-09         0         1.76670E-0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	000000%%% $33E-05$ $4.08018E-05$ $0.00128782$ $0.0380989$ $0.0494699$ $664E-09$ $2.44200E-08$ $1.62674E-06$ $0.231665$ $0.104761$ $22E-07$ $0.00302231$ $0.237953$ $0.575249$ $3.66451E-09$ $201782$ $0.283433$ $25.5438$ $53.1527$ $3.68828E-06$ $170163$ $0.236478$ $22.1609$ $22.0345$ $3.59048E-06$ $847549$ $0.279453$ $25.4761$ $13.2560$ $1.26167E-06$ $378396$ $0.0501696$ $4.45712$ $1.64189$ $8.02458E-08$ $271501$ $0.186674$ $14.2161$ $5.36783$ $5.40260E-07$ $232264$ $0.0470973$ $3.09099$ $0.459595$ $1.15373E-08$ $380026$ $0.0480785$ $3.27785$ $0.579920$ $9.80556E-09$ $324495$ $0.0114571$ $0.511169$ $0.0739983$ $6.85066E-10$ $111046$ $0.0106065$ $0.374223$ $0.0216093$ $5.97912E-11$ $393763$ $0.00224656$ $0.0490402$ $0.00142574$ $6.68907E-13$ $917197$ $6.09473E-06$ $7.61459E-05$ $6.46070E-07$ $0$ $286487$ $0.0425478$ $0.180260$ $0.172129$ $0.000198194$ $414577$ $0.0226682$ $0.0605364$ $0.0552192$ $5.16949E-05$ $584440$ $0.00142773$ $0.00244965$ $0.00230872$ $1.32933E-06$ $116228$ $0.00268161$ $0.00471384$ $0.00425824$ $2.42606E-06$ $28.53$	0.0162560         7.60138E-11         0.000298144         0.000148296         6           0         0         0.00221329         7.54685E-08         5           0         0         0.0933273         0.0225682         5           0         0         0.134831         0.00451719         5           0         0         0.0190005         9.04654E-05         5           0         0         0.0377859         0.000160723           0.0306642         99.9130         99.2829         0.107630           0         0         0.000393327         4.67330E-07	0         0         0           %         %           0.0380989         0.00128782         0.00598911           0.231665         1.62674E-06         1.58668E-06           0.575249         0.237953         0.00461795           53.1527         25.5438         2.47767           22.0345         22.1609         8.02929           13.2560         25.4761         17.9311           1.64189         4.45712         4.27441           5.36783         14.2161         20.1224           0.459595         3.09099         6.87871           0.579920         3.27785         8.72452           0.0739983         0.511169         2.68591           0.0216093         0.374223         3.20977           0.0024685         0.0313271         0.395213           0.00142574         0.0490402         0.844658           0.46070E-07         7.61459E-05         0.00141484           0.83578E-07         0.00246056         0.0406150           0.172129         0.180260         12.5936           0.00230872         0.00244965         0.344108           0.00230872         0.00244965         0.344108           0.00228186 <td< td=""></td<>
O2Mass FlowH2SCO2N2MethaneEthanePropanei-Butanen-Butanei-Pentanen-Pentanen-Hexanen-Heptanen-Octanen-Octanen-DecaneUndecaneBenzeneTolueneEthylbenzenem-XyleneWaterMDEAPiperazinePhosphoric AcidTEGO2	0 $0^*$ Ib/hIb/hIb/h10945.475.4749*70670.7320.200*40*3508661652.72*1227862510.47*1227862510.47*1045916134.12*18320.02326.52*46501.77800.69*10022.06326.44*10022.06326.44*1797.0321162.5*1273.5712303.6*129.2403740.23*279.314758.352*279.314758.352*0.63526011.3989*0.003.383370*0.00112.8750*00*00*	1.06439         0.00340534         0         0           4.18461         0.00440447         0         3.5           8.41618         0.000242126         0         0           795.887         0.0466860         0         390.082         0.0306039         0           390.082         0.0306039         0         310.789         0.0168677         0           48.1253         0.00158380         0         169.890         0.00847624         0           33.4531         0.00106466         0         33.4531         0.001623365         0           9.14662         9.15743E-05         0         9         9.54323         6.42205E-05         0           9.254323         6.42205E-05         0         1.25206         3.89827E-06         0           3.23914         7.51238E-06         0         0         0         0           32.6555         0.180906         0         0         0         0           1.12632         0.00386958         0         0         1         38.7024         1653.22         0         0         1284454         0.0108313         0         0         1284454         0         9.5         0         0         0 <td>0         0         0           Ib/h         Ib/h         Ib/h         Ib/h         Ib/h           0.0134825         0.514704         10945.4         0           7190E-06         3.01771         70670.7         0           0.0103958         8.41634         11456.4         0           5.57767         795.924         350866         0           18.0753         390.096         122786         0           40.3660         310.752         104591         0           9.62245         48.1050         18320.0         0           45.2990         169.746         46501.7         0           15.4852         33.3273         10580.7         0           19.6404         39.7666         10022.0         0           6.04645         8.97092         1797.03         0           7.22575         8.94255         1273.57         0           0.889693         1.03911         129.240         0           1.90147         2.10814         279.314         0           00318505         0.00348552         0.635260         0           00318505         0.00348552         0.635260         0</td> <td>000$b/h$$b/h$$b/h$$b/h$$b/h$10945.475.474910945.470670.7320.20070670.711456.4011456.43508661652.723508661227862510.471227861045916134.1210459118320.02326.5218320.046501.77800.6946501.710580.74976.5610580.710022.06326.4410022.01797.0321162.51797.031273.5712303.61273.57129.2403740.23129.240279.314758.352279.3140.63526011.39890.6352603.3833703.38337274.2140274.214112.8750112.8756.3126506.31265197.02821.5020197.0280.0058410500.005841051.34415E-0501.34415E-050005.46846E-0705.46846E-07000</td> <td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td> <td>0         0         0         0         0           h         lb/h         lb/h         lb/h         lb/h         lb/h           62E-05         1.14840E-06         0.00493937         0.496283         0.552622           12E-09         6.87322E-10         6.23927E-06         3.01770         1.17027           27E-07         8.50655E-05         0.912658         7.49328         4.09358E-08           109108         0.00797747         97.9719         692.375         4.12013E-05           920107         0.00665588         84.9968         287.024         4.01088E-05           458288         0.00786545         97.7122         172.674         1.40940E-05           204607         0.00141207         17.0951         21.3875         8.96416E-07           146806         0.00525412         54.5251         69.9222         6.03518E-06           125590         0.00132559         11.8553         5.98675         1.28881E-07           205488         0.001322469         1.96056         0.963913         7.65278E-09           600452         0.000298529         1.43531         0.281485         6.67920E-10           212916         3.41751E-05         0.120153         0.0292678</td> <td>0         0         0           lb/h         lb/h         lb/h         lb/h         lb/h         lb/h           75.4749         0.000366968         0.553090         0         0         0           320.200         0.00103162         1.17130         0         0         0         0           0         0         8.59685E-05         0         0         0         0         0           1652.72         0.000468696         0.00957844         0         0         0         0         0           2510.47         0.000324289         0.0162213         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0&lt;</td> <td>0         0         0           Ib/h         Ib/h         Ib/h           0.496283         0.00493937         0.0134825           3.01770         6.23927E-06         3.57190E-06           7.49328         0.912658         0.0103958           692.375         97.9719         5.57767           287.024         84.9968         18.0753           172.674         97.7122         40.3660           21.3875         17.0951         9.62245           69.9222         54.5251         45.2990           5.98675         11.8553         15.4852           7.55412         12.5720         19.6404           0.963913         1.96056         6.04645           0.281485         1.43531         7.22575           0.0292678         0.120153         0.889693           0.0185719         0.188091         1.90147           3.41581E-06         0.000292054         0.00318505           0.28122E-05         0.000943734         0.00914314           2.24217         0.691380         28.3504           0.719294         0.232184         15.4398           0.0300738         0.00939552         0.774648           0.0297239</td>	0         0         0           Ib/h         Ib/h         Ib/h         Ib/h         Ib/h           0.0134825         0.514704         10945.4         0           7190E-06         3.01771         70670.7         0           0.0103958         8.41634         11456.4         0           5.57767         795.924         350866         0           18.0753         390.096         122786         0           40.3660         310.752         104591         0           9.62245         48.1050         18320.0         0           45.2990         169.746         46501.7         0           15.4852         33.3273         10580.7         0           19.6404         39.7666         10022.0         0           6.04645         8.97092         1797.03         0           7.22575         8.94255         1273.57         0           0.889693         1.03911         129.240         0           1.90147         2.10814         279.314         0           00318505         0.00348552         0.635260         0           00318505         0.00348552         0.635260         0	000 $b/h$ $b/h$ $b/h$ $b/h$ $b/h$ 10945.475.474910945.470670.7320.20070670.711456.4011456.43508661652.723508661227862510.471227861045916134.1210459118320.02326.5218320.046501.77800.6946501.710580.74976.5610580.710022.06326.4410022.01797.0321162.51797.031273.5712303.61273.57129.2403740.23129.240279.314758.352279.3140.63526011.39890.6352603.3833703.38337274.2140274.214112.8750112.8756.3126506.31265197.02821.5020197.0280.0058410500.005841051.34415E-0501.34415E-050005.46846E-0705.46846E-07000	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0         0         0         0         0           h         lb/h         lb/h         lb/h         lb/h         lb/h           62E-05         1.14840E-06         0.00493937         0.496283         0.552622           12E-09         6.87322E-10         6.23927E-06         3.01770         1.17027           27E-07         8.50655E-05         0.912658         7.49328         4.09358E-08           109108         0.00797747         97.9719         692.375         4.12013E-05           920107         0.00665588         84.9968         287.024         4.01088E-05           458288         0.00786545         97.7122         172.674         1.40940E-05           204607         0.00141207         17.0951         21.3875         8.96416E-07           146806         0.00525412         54.5251         69.9222         6.03518E-06           125590         0.00132559         11.8553         5.98675         1.28881E-07           205488         0.001322469         1.96056         0.963913         7.65278E-09           600452         0.000298529         1.43531         0.281485         6.67920E-10           212916         3.41751E-05         0.120153         0.0292678	0         0         0           lb/h         lb/h         lb/h         lb/h         lb/h         lb/h           75.4749         0.000366968         0.553090         0         0         0           320.200         0.00103162         1.17130         0         0         0         0           0         0         8.59685E-05         0         0         0         0         0           1652.72         0.000468696         0.00957844         0         0         0         0         0           2510.47         0.000324289         0.0162213         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0<	0         0         0           Ib/h         Ib/h         Ib/h           0.496283         0.00493937         0.0134825           3.01770         6.23927E-06         3.57190E-06           7.49328         0.912658         0.0103958           692.375         97.9719         5.57767           287.024         84.9968         18.0753           172.674         97.7122         40.3660           21.3875         17.0951         9.62245           69.9222         54.5251         45.2990           5.98675         11.8553         15.4852           7.55412         12.5720         19.6404           0.963913         1.96056         6.04645           0.281485         1.43531         7.22575           0.0292678         0.120153         0.889693           0.0185719         0.188091         1.90147           3.41581E-06         0.000292054         0.00318505           0.28122E-05         0.000943734         0.00914314           2.24217         0.691380         28.3504           0.719294         0.232184         15.4398           0.0300738         0.00939552         0.774648           0.0297239
Process StreamsPropertiesStatus:Phase:TotalFrom Block: To Block:PropertyUnitsTemperature°FPressurepsiaMole Fraction Vapor%Mole Fraction Light Liquid%Mole Fraction Heavy Liquid%Mole Fraction Heavy Liquid%Mole Fraction Heavy Liquid%Mole Fraction Heavy Liquid%Moler FlowIb/fh*3Molar FlowIb/fh*3Molar FlowIb/hVapor Volumetric FlowgpmStd Vapor Volumetric FlowgpmStd Vapor Volumetric FlowsgpmCompressibilitySpecific GravityAPI GravityEnthalpyEnthalpyBtu/hMass CpBtu/(Ib*°F)Ideal Gas CpCv RatioDynamic ViscosityDynamic ViscositycPKinematic ViscositycStThermal ConductivityBtu/(h*ft*°F)Surface TensionIb/ftNet Ideal Gas Heating ValueBtu/IbGross Ideal Gas Heating ValueBtu/IbGross Liquid Heating ValueBtu/Ib	Solvad         Solvad         Solvad           SAT-1         SAT-2            V-14         SAT-1         SAT-2           SAT-1         SAT-2            V-14         SAT-2            SAT-1         SAT-2            V-14         SAT-2            SAT-1         SAT-2 <th>402         V-1402          BTE            SAT-1         R           100*         100         34.6959         1014.70           100         0         0         0           100         0         0         0           0         100         0         0           24.6374         18.0444         18.0153         143855           143855         61.9635         77.8652         91.7954         0           1918.40         1656.39         0         13335.6         26.7317         0           1662.62         3.33278         0         0         0         0           989354         0.00168224         850665         0.993503         9.96683         0           25E+06         -1.12461E+07         0         1496.17         -6789.53         0           1.21020         1.32755         0106287         0.703342         4.61245         0.708614           1069154         0.359307         0         0         1199.81         0           1299.81         0.989131         0         1199.0.4         -1059.76           1427.32         51.3686         50.3100         22.1100<th>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</th><th>81.0007 75 85</th><th>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</th><th>No.d         Solved         Solved<th>Instruction         MIX-101         V-1402         RCYL-3         MIX-102           75         94.7700         102.776         139.696         34.6959           1019.70         214.696         44.6959         139.696         34.6959           0         0         0         0         0           99.9256         100         0.0756072         0.0743603         0         99.9244           65.2707         18.0219         18.1170         56.4288         56.4288           38.4030         62.0089         61.8700         0         0           1074.31         0.160030         91.8203         0         0           70120.8         2.88403         1663.51         0         0           1825.92         0.0465100         26.8871         0         0           227.647         0.00579865         3.35216         0         0           9.78438         0.00145749         0.836264         0         0           0.302047         0.0104870         0.00216835         0         0           0.615742         0.994230         0.992004         95.0785         10.0126         10.0813</th><th>34$35$$138$ScivedScivedScivedRCYL-2RCYL-1RCYL-4MIX-102MIX-102MIX-102134.274143.08512079.195979.695934.695910010081.01220012.0454006.9423321.544429.794649.96520.2718140.3780400.35647260.461812.87304.505491302.61383.545225.1174792.311014.56631.515597.483126.49178.73440.5506630.1172420.04103437.363871.858090.7682060.9848210.9710270.7817650.7438731.0287315745E+06-487018-214223-1656.25-1269.78-951.6050.5057720.4810520.4463151.227141.164731.110050.01159520.0107526.2.663091.77564.0.01948300.01717441147.951588.902441.5620126.820116.918347.31265.651737.922636.3622200.422015.619827.1</th></th></th>	402         V-1402          BTE            SAT-1         R           100*         100         34.6959         1014.70           100         0         0         0           100         0         0         0           0         100         0         0           24.6374         18.0444         18.0153         143855           143855         61.9635         77.8652         91.7954         0           1918.40         1656.39         0         13335.6         26.7317         0           1662.62         3.33278         0         0         0         0           989354         0.00168224         850665         0.993503         9.96683         0           25E+06         -1.12461E+07         0         1496.17         -6789.53         0           1.21020         1.32755         0106287         0.703342         4.61245         0.708614           1069154         0.359307         0         0         1199.81         0           1299.81         0.989131         0         1199.0.4         -1059.76           1427.32         51.3686         50.3100         22.1100 <th>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</th> <th>81.0007 75 85</th> <th>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</th> <th>No.d         Solved         Solved<th>Instruction         MIX-101         V-1402         RCYL-3         MIX-102           75         94.7700         102.776         139.696         34.6959           1019.70         214.696         44.6959         139.696         34.6959           0         0         0         0         0           99.9256         100         0.0756072         0.0743603         0         99.9244           65.2707         18.0219         18.1170         56.4288         56.4288           38.4030         62.0089         61.8700         0         0           1074.31         0.160030         91.8203         0         0           70120.8         2.88403         1663.51         0         0           1825.92         0.0465100         26.8871         0         0           227.647         0.00579865         3.35216         0         0           9.78438         0.00145749         0.836264         0         0           0.302047         0.0104870         0.00216835         0         0           0.615742         0.994230         0.992004         95.0785         10.0126         10.0813</th><th>34$35$$138$ScivedScivedScivedRCYL-2RCYL-1RCYL-4MIX-102MIX-102MIX-102134.274143.08512079.195979.695934.695910010081.01220012.0454006.9423321.544429.794649.96520.2718140.3780400.35647260.461812.87304.505491302.61383.545225.1174792.311014.56631.515597.483126.49178.73440.5506630.1172420.04103437.363871.858090.7682060.9848210.9710270.7817650.7438731.0287315745E+06-487018-214223-1656.25-1269.78-951.6050.5057720.4810520.4463151.227141.164731.110050.01159520.0107526.2.663091.77564.0.01948300.01717441147.951588.902441.5620126.820116.918347.31265.651737.922636.3622200.422015.619827.1</th></th>	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	81.0007 75 85	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	No.d         Solved         Solved <th>Instruction         MIX-101         V-1402         RCYL-3         MIX-102           75         94.7700         102.776         139.696         34.6959           1019.70         214.696         44.6959         139.696         34.6959           0         0         0         0         0           99.9256         100         0.0756072         0.0743603         0         99.9244           65.2707         18.0219         18.1170         56.4288         56.4288           38.4030         62.0089         61.8700         0         0           1074.31         0.160030         91.8203         0         0           70120.8         2.88403         1663.51         0         0           1825.92         0.0465100         26.8871         0         0           227.647         0.00579865         3.35216         0         0           9.78438         0.00145749         0.836264         0         0           0.302047         0.0104870         0.00216835         0         0           0.615742         0.994230         0.992004         95.0785         10.0126         10.0813</th> <th>34$35$$138$ScivedScivedScivedRCYL-2RCYL-1RCYL-4MIX-102MIX-102MIX-102134.274143.08512079.195979.695934.695910010081.01220012.0454006.9423321.544429.794649.96520.2718140.3780400.35647260.461812.87304.505491302.61383.545225.1174792.311014.56631.515597.483126.49178.73440.5506630.1172420.04103437.363871.858090.7682060.9848210.9710270.7817650.7438731.0287315745E+06-487018-214223-1656.25-1269.78-951.6050.5057720.4810520.4463151.227141.164731.110050.01159520.0107526.2.663091.77564.0.01948300.01717441147.951588.902441.5620126.820116.918347.31265.651737.922636.3622200.422015.619827.1</th>	Instruction         MIX-101         V-1402         RCYL-3         MIX-102           75         94.7700         102.776         139.696         34.6959           1019.70         214.696         44.6959         139.696         34.6959           0         0         0         0         0           99.9256         100         0.0756072         0.0743603         0         99.9244           65.2707         18.0219         18.1170         56.4288         56.4288           38.4030         62.0089         61.8700         0         0           1074.31         0.160030         91.8203         0         0           70120.8         2.88403         1663.51         0         0           1825.92         0.0465100         26.8871         0         0           227.647         0.00579865         3.35216         0         0           9.78438         0.00145749         0.836264         0         0           0.302047         0.0104870         0.00216835         0         0           0.615742         0.994230         0.992004         95.0785         10.0126         10.0813	34 $35$ $138$ ScivedScivedScivedRCYL-2RCYL-1RCYL-4MIX-102MIX-102MIX-102134.274143.08512079.195979.695934.695910010081.01220012.0454006.9423321.544429.794649.96520.2718140.3780400.35647260.461812.87304.505491302.61383.545225.1174792.311014.56631.515597.483126.49178.73440.5506630.1172420.04103437.363871.858090.7682060.9848210.9710270.7817650.7438731.0287315745E+06-487018-214223-1656.25-1269.78-951.6050.5057720.4810520.4463151.227141.164731.110050.01159520.0107526.2.663091.77564.0.01948300.01717441147.951588.902441.5620126.820116.918347.31265.651737.922636.3622200.422015.619827.1
Process Streams         Composition       Status:         Phase:       Yapor         From Block:       To Block:         Mole Fraction       Item Block:         H2S       CO2         N2       Methane         Ethane       Propane         i-Butane       Item Propane         i-Butane       Item Propane         i-Pentane       Item Propane         n-Pentane       Item Propane         n-Hexane       Item Propane         n-Hexane       Item Propane         n-Hexane       Item Propane         n-Dectane       Item Propane         n-Nonane       Item Propeane         n-Decane       Item Propeane         Undecane       Benzene         Toluene       Ethylbenzene         m-Xylene       Water         MDEA       Piperazine         Phosphoric Acid       TEG	V-14           SAT-1         SAT-2            %         %           1.00000         0.0           5.00002         0.           1.27339         0.           68.1003         6           12.7147            7.38549         9           0.981438            2.49118            0.456632         0.0           0.432517         0.0           0.00395754         0.0           0.00352291         0.0           0.00649309         0.0           0.00352291         0.00           0.00078106         0.00           0.139021E-05         7.622           6.73979E-05         0.000           0.000381449         0.0           0.000381449         0.0           0.00340539            1.52627E-07         0.000           4.85897E-10         1.494           0         0	Solved         Solved         Solved         Solved         S           402         V-1402          BTE            SAT-1         Rt           401094         C           .122114         2.2           .385839         C           63.7143         6607           9.05164            1.06338            3.75390            .595476            .711528            .136312            .122314            .140769            .0324348            .0324348            .0136250            .0136250            .0136250            .0269310            .0306570         .3.3           .017E-07	1234c)vedSolvedSolvedSolvedSolvedX VaporMDX-102V-1401V-1402CYL-4V-1402PCV-1401E $\frac{\%}{\%}$ $\frac{\%}{\%}$ $\frac{\%}{\%}$ 0.01071120.01940181.000001547E-060.08809005.000020.0106350.3859691.273399.5136563.737768.100316.359516.666612.714724.59269.053467.385494.356981.063270.98143820.10313.751922.491185.098660.5934260.4566326.231200.7080840.4325171.242870.1337360.06493090.7612850.1146520.03957540.03910870.01168650.003522910.03478470.02111640.006781061.301320.2285430.003814490.02260240.009851470.001851440.04691130.01939960.0003633174.855382.877210.034053900258E-050.0003529001.52627E-078822E-090.0008230134.85897E-100000000000000000000000000000000000		01 V-1415 V-1415 BTEX	ved Solved Solved Solved Solved Water Regen Water TEG Flash Amine Flash AG Water	Ig Cathcer Liq MIX-101 V-1402 RCYL-3 MIX-102	34         35         138           Solvad         Solvad         Solvad           RCYL-2         RCYL-1         RCYL-4           MIX-102         MIX-102         MIX-102           %         %         %           0.0240845         0.00112585         0.0107112           0.113409         1.10131E-06         2.21547E-06           0.442410         0.253083         0.0101635           71.3820         47.4408         9.51365           15.7876         21.9586         16.3595           6.47665         17.2137         24.5926           0.608605         2.28481         4.35698           1.98972         7.28745         20.1031           0.137240         1.27646         5.09866           0.173170         1.35362         6.23120           0.0185001         0.176733         1.24287           0.00464621         0.111274         0.761285           0.000423774         0.00817115         0.0391087           0.00239497         0.0113924         0.0347847           0.78285E-08         1.59454E-05         2.21578E-05           0.35569E-07         4.69017E-05         2.28804E-05           0.0474756
O2         Molar Flow         H2S         CO2         N2         Methane         Ethane         Propane         i-Butane         n-Butane         i-Pentane         n-Pentane         n-Hexane         n-Heptane         n-Octane         n-Decane         Undecane         Benzene         Toluene         Ethylbenzene         m-Xylene         Water         MDEA         Piperazine         Phosphoric Acid         TEG         O2	1605.81       0.0         408.962       0.         21871.1       4         4083.46       -         2371.92       -         315.198       0.         800.067       -         146.652       0.         138.907       0.         20.8532       0.         12.7100       0.0         1.13142       0.0         0.00446481       5.935         0.0216455       0.000         3.51053       0.         1.22506       0.         0.116683       0.0         10.9367       -         4.90177E-05       0.000         1.56051E-07       1.163         0       0	3312313       0.0         )950841       8.0         )300434       0.0         49.6113       12.9729         7.04808       828002         2.92298       463669         .554033       0         .106140       0         .9252555       0.1         .9252555       0.1         .9300163       8.3         .418061       201393         .201393       0         .214831       .2         .238711       1.2         .86E-07       2.4         0       0	0         0         0           Innol/h         Ibmol/h         Ibmol/h           00390959 $0.0151024$ $321.161$ 8647E-08 $0.0685695$ $1605.81$ 00370968 $0.300440$ $408.962$ $0.347248$ $49.6136$ $21871.1$ $0.597119$ $12.9734$ $4083.46$ $0.897629$ $7.04724$ $2371.92$ $0.159030$ $0.827652$ $315.198$ $0.733762$ $2.92051$ $800.067$ $0.186101$ $0.461924$ $146.652$ $0.227439$ $0.551174$ $138.907$ $0.0453645$ $0.104101$ $20.8532$ $0.0277869$ $0.0892452$ $12.7100$ $0.0142746$ $0.00909680$ $1.13142$ $0.0126964$ $0.0164370$ $2.17780$ $8757E-07$ $2.44973E-05$ $0.00446481$ $5135E-07$ $6.46139E-05$ $0.0216455$ $0.197798$ $0.420502$ $3.51053$ $0.0474983$ $0.177898$ $1.22506$ $0.0$	0         0           Ibmol/h         Ibmol/h           320.763         321.161           1604.78         1605.81           408.896         408.962           21863.3         21871.1           4078.96         4083.46           2366.18         2371.92           313.865         315.198           795.721         800.067           145.276         146.652           137.364         138.907           20.3392         20.8532           12.1288         12.7100           1.03126         1.13142           1.77042         2.17780           0.00315369         0.00446481           0.0116734         0.0216455           3.43212         3.51053           1.16757         1.22506           0.0540259         0.0594608           0.105231         0.116683           10.9303         10.9367           4.48035E-05         4.90177E-05           1.54552E-07         1.56051E-07           0         0           2.26802E-09         3.64144E-09           0         0	0 Ibmol/h 320.707 1604.64 408.886 21862.3 4078.33 2365.36 313.675 795.099 145.078 137.143 20.2660 12.0475 1.01785 1.72196 0.00301945 0.0109062 3.42098 1.15957 0.0533036 0.103721 10.9294 4.42395E-05 1.54339E-07 0 2.14537E-09 0	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0 0 5 8 8 0 0 0 0 0 0	0         0         0           Ibmol/h         Ibmol/h         Ibmol/h           0.0145619         0.000144931         0.000390959           0.0685693         1.41771E-07 $8.08647E-08$ 0.267489         0.0325793         0.000370968           43.1589 $6.10704$ 0.347248           9.54550         2.82672         0.597119           3.91590         2.21592         0.897629           0.367974         0.294123         0.159030           1.20302         0.938111         0.733762           0.0829778         0.164318         0.186101           0.104702         0.174251         0.227439           0.011855         0.0227509         0.0453645           0.00280918         0.0143242         0.0277869           0.00256222         0.00105187         0.00142746           0.000256222         0.0015187         0.00142746           0.0027666         8.08757E-07         8.19678E-08           8.19678E-08         6.03764E-06         8.35135E-07           0.00283274         8.84992E-05         0.000824986           0.000522474         0.000170298         0.00171226           1.67966         0.0684790
Mass Fraction H2S CO2 N2 Methane Ethane Propane i-Butane n-Butane n-Butane n-Pentane n-Pentane n-Heptane n-Heptane n-Octane n-Nonane n-Decane Undecane Benzene Toluene Ethylbenzene m-Xylene Water MDEA Piperazine Phosphoric Acid TEG O2 Mass Flow	9.28868       0.         1.50579       0.         46.1164       4         16.1385       2         13.7471       2         2.40791       2         6.11200       8         1.39069       2         1.31725       2         0.236195       0.0         0.0169868       0.0         0.0367120       0.         8.34961E-05       0.000         0.000829710       0.0         0.00162818       0.         0.00258966       2         7.67725E-07       0.00         1.76670E-09       5.225         0       7.18753E-11         0       6.844         0       0	218130       2.0         438709       0.1         41.4871       20.3338         16.2005       2.50862         2.50862       8.5583         1.74381       2.08366         .476785       .497459         0652660       0         0.168846       0         0.4440220       6.5         0.587116       0         0.587116       0         0.116048       2.01743         1.142277       8.2         0.711E-07       1.2         0       .38E-08       5.3         0       .5.3	%         %         %           00760658 $0.0269299$ $1.43863$ 3167E-06 $0.157890$ $9.28868$ 00593268 $0.440351$ $1.50579$ $3.18023$ $41.6436$ $46.1164$ $10.2501$ $20.4102$ $16.1385$ $22.5965$ $16.2589$ $13.7471$ $5.27677$ $2.51690$ $2.40791$ $24.3470$ $8.88130$ $6.11200$ $7.66523$ $1.74372$ $1.39069$ $9.36788$ $2.08063$ $1.31725$ $2.23176$ $0.469368$ $0.236195$ $1.58951$ $0.467883$ $0.167393$ $0.0930867$ $0.0543675$ $0.0169868$ $0.0929614$ $0.110300$ $0.0367120$ $6924E-05$ $0.000182366$ $8.34961E-05$ $5223E-05$ $0.000528426$ $0.000444697$ $8.82036$ $1.63681$ $0.0360416$ $2.49843$ $0.857608$ $0.0148359$ $0.0500007$ $0.0425954$ $0.000829710$ <td< td=""><td>%         %           1.43930         1.43863           9.29858         9.28868           1.50811         1.50579           46.1787         46.1164           16.1482         16.1385           13.7372         13.7471           2.40791         6.08916           6.08916         6.11200           1.37999         1.39069           1.30484         1.31725           0.230766         0.236195           0.160011         0.167393           0.0155094         0.0169868           0.0298954         0.0367120           5.90775E-05         8.34961E-05           0.000240233         0.000444697           0.0352967         0.0360416           0.0141637         0.0148359           0.000755157         0.000829710           0.00147089         0.00162818           0.0259266         0.0258966           7.02919E-07         7.67725E-07           1.75272E-09         1.76670E-09           0         0           0         0</td><td>%         1.43939         9.29998         1.50844         46.1876         16.1495         13.7358         2.40094         6.08586         1.37845         1.30305         0.229991         0.158976         0.0153115         0.0290842         5.65765E-05         0.000224498         0.0351905         0.0140701         0.000745241         0.00145013         0.0259297         6.94237E-07         1.75072E-09         0         4.24279E-11         0</td><td>%         %           $0.00128782$ $0.0380989$ $1.62674E-06$ $0.231665$ $0.237953$ $0.575249$ $25.5438$ $53.1527$ $22.1609$ $22.0345$ $25.4761$ $13.2560$ $4.45712$ $1.64189$ $14.2161$ $5.36783$ $3.09099$ $0.459595$ $3.27785$ $0.579920$ $0.511169$ $0.0739983$ $0.374223$ $0.0216093$ $0.0313271$ $0.00224685$ $0.0490402$ $0.0142574$ $7.61459E-05$ $6.46070E-07$ $0.000246056$ $9.83578E-07$ $0.180260$ $0.172129$ $0.000246056$ $9.035782$ $0.00244965$ $0.00230872$ $0.00244965$ $0.00230872$ $0.00471384$ $0.00425824$ $0.321649$ $2.32298$ $2.77299E-06$ $0.00228186$ $0.000163389$ $0.00418738$ $0$ $0$ $0$ $0$</td><td>e s</td><td>%         %         %           0.0380989         0.00128782         0.00760658           0.231665         1.62674E-06         2.03167E-06           0.575249         0.237953         0.00593268           53.1527         25.5438         3.18023           22.0345         22.1609         10.2501           13.2560         25.4761         22.5965           1.64189         4.45712         5.27677           5.36783         14.2161         24.3470           0.459595         3.09099         7.66523           0.579920         3.27785         9.36788           0.0739983         0.511169         2.23176           0.0216093         0.374223         1.58951           0.0024685         0.0313271         0.0930867           0.00142574         0.0490402         0.0929614           6.46070E-07         7.61459E-05         6.56924E-05           0.83578E-07         0.000246056         7.45223E-05           0.172129         0.180260         8.82036           0.0552192         0.0605364         2.49843           0.00230872         0.00244965         0.0500007           0.00228186         2.77299E-06         8.20035E-05     <!--</td--></td></td<>	%         %           1.43930         1.43863           9.29858         9.28868           1.50811         1.50579           46.1787         46.1164           16.1482         16.1385           13.7372         13.7471           2.40791         6.08916           6.08916         6.11200           1.37999         1.39069           1.30484         1.31725           0.230766         0.236195           0.160011         0.167393           0.0155094         0.0169868           0.0298954         0.0367120           5.90775E-05         8.34961E-05           0.000240233         0.000444697           0.0352967         0.0360416           0.0141637         0.0148359           0.000755157         0.000829710           0.00147089         0.00162818           0.0259266         0.0258966           7.02919E-07         7.67725E-07           1.75272E-09         1.76670E-09           0         0           0         0	%         1.43939         9.29998         1.50844         46.1876         16.1495         13.7358         2.40094         6.08586         1.37845         1.30305         0.229991         0.158976         0.0153115         0.0290842         5.65765E-05         0.000224498         0.0351905         0.0140701         0.000745241         0.00145013         0.0259297         6.94237E-07         1.75072E-09         0         4.24279E-11         0	%         % $0.00128782$ $0.0380989$ $1.62674E-06$ $0.231665$ $0.237953$ $0.575249$ $25.5438$ $53.1527$ $22.1609$ $22.0345$ $25.4761$ $13.2560$ $4.45712$ $1.64189$ $14.2161$ $5.36783$ $3.09099$ $0.459595$ $3.27785$ $0.579920$ $0.511169$ $0.0739983$ $0.374223$ $0.0216093$ $0.0313271$ $0.00224685$ $0.0490402$ $0.0142574$ $7.61459E-05$ $6.46070E-07$ $0.000246056$ $9.83578E-07$ $0.180260$ $0.172129$ $0.000246056$ $9.035782$ $0.00244965$ $0.00230872$ $0.00244965$ $0.00230872$ $0.00471384$ $0.00425824$ $0.321649$ $2.32298$ $2.77299E-06$ $0.00228186$ $0.000163389$ $0.00418738$ $0$ $0$ $0$ $0$	e s	%         %         %           0.0380989         0.00128782         0.00760658           0.231665         1.62674E-06         2.03167E-06           0.575249         0.237953         0.00593268           53.1527         25.5438         3.18023           22.0345         22.1609         10.2501           13.2560         25.4761         22.5965           1.64189         4.45712         5.27677           5.36783         14.2161         24.3470           0.459595         3.09099         7.66523           0.579920         3.27785         9.36788           0.0739983         0.511169         2.23176           0.0216093         0.374223         1.58951           0.0024685         0.0313271         0.0930867           0.00142574         0.0490402         0.0929614           6.46070E-07         7.61459E-05         6.56924E-05           0.83578E-07         0.000246056         7.45223E-05           0.172129         0.180260         8.82036           0.0552192         0.0605364         2.49843           0.00230872         0.00244965         0.0500007           0.00228186         2.77299E-06         8.20035E-05 </td
Mass Flow         H2S         CO2         N2         Methane         Ethane         Propane         i-Butane         n-Butane         i-Pentane	10945.4       70670.7       4         70670.7       4       8         350866       7       1         122786       5       1         104591       5       1         18320.0       4       46501.7	1.06439 C 4.18461 3.5	b/h         b/h         b/h           b/h         b/h         b/h           0.0133242         0.514704         10945.4           5881E-06         3.01771         70670.7           0.0103921         8.41634         11456.4           5.57071         795.924         350866           17.9548         390.096         122786           39.5815         310.752         104591           9.24315         48.1050         18320.0           42.6479         169.746         46501.7           13.4269         33.3273         10580.7	Ib/h         Ib/h           10931.9         10945.4           70625.6         70670.7           11454.6         11456.4           350742         350866           122650         122786           104338         104591           18242.5         18320.0           46249.1         46501.7           10481.5         10580.7	b/h 10930.0 70619.3 11454.3 350725 122631 104302 18231.5 46212.9 10467.2	ib/h         ib/h           0.00493937         0.496283           6.23927E-06         3.01770           0.912658         7.49328           97.9719         692.375           84.9968         287.024           97.7122         172.674           17.0951         21.3875           54.5251         69.9222           11.8553         5.98675		Ib/h         Ib/h         Ib/h           0.496283         0.00493937         0.0133242           3.01770         6.23927E-06         3.55881E-06           7.49328         0.912658         0.0103921           692.375         97.9719         5.57071           287.024         84.9968         17.9548           172.674         97.7122         39.5815           21.3875         17.0951         9.24315           69.9222         54.5251         42.6479           5.98675         11.8553         13.4269

max       max       max       max       max       max       max       max       max       max       max       max       max       max       max       max       max       max       max       max       max       max       max       max       max       max       max       max       max       max       max       max       max       max       max       max       max       max       max       max       max       max       max       max       max       max       max       max       max       max       max       max       max       max       max       max       max       max       max       max       max       max       max       max       max       max       max       max       max       max       max       max       max       max       max       max       max       max       max       max       max       max       max       max       max       max       max       max       max       max       max       max       max       max       max       max       max       max       max       max       max       max       max       max       max       max       m	Process Streams		HP Inlet	Inlet Liq	LP ;	SLOP Water	Water 1	1	2	3	4 5	6	7	8	9	10	11	13	14	15	16	17	18	19	20	32	33	34	35	138
Inter         No.         No. </th <th>Properties</th> <th>Status:</th> <th>Solved</th> <th>Solved</th> <th>Solved</th> <th>Solved</th> <th>Solved</th> <th>Solved</th> <th>Solved</th> <th>Solved</th> <th>Solved Solved</th> <th>Solved</th>	Properties	Status:	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved
implicit         implicit         implicit         implicit         implicit         implicit         implicit         implicit         implicit         implicit         implicit         implicit         implicit         implicit         implicit         implicit         implicit         implicit         implicit         implicit         implicit         implicit         implicit         implicit         implicit         implicit         implicit         implicit         implicit         implicit         implicit         implicit         implicit         implicit         implicit         implicit         implicit         implicit         implicit         implicit         implicit         implicit         implicit         implicit         implicit         implicit         implicit         implicit         implicit         implicit         implicit         implicit         implicit         implicit         implicit         implicit         implicit         implicit         implicit         implicit         implicit         implicit         implicit         implicit         implicit         implicit         implicit         implicit         implicit         implicit         implicit         implicit         implicit         implicit         implicit         implicit         implicit         implicit	Phase: Vapor	From Block:			V-1402	V-1402		BTEX Vapor	MIX-102	V-1401	V-1402 PCV-1401E	SAT-2	SAT-1	V-1401		V-1415	V-1415	BTEX Water	Regen Water	TEG Flash	Amine Flash	AG Water	MIX-100	MP/LP Water	MIX-101	LP Flash	RCYL-3	RCYL-2	RCYL-1	RCYL-4
marker         #         66         1.00         1.00         1.00         1.00         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000 <th></th> <th></th> <th>SAT-1</th> <th>SAT-2</th> <th></th> <th></th> <th>SAT-1</th> <th>RCYL-4</th> <th>V-1402</th> <th>PCV-1401E</th> <th> V-1415</th> <th>MIX-100</th> <th>V-1401</th> <th>MIX-100</th> <th>SAT-2</th> <th>Amine Inlet</th> <th></th> <th>MIX-101</th> <th>MIX-101</th> <th>RCYL-1</th> <th>RCYL-2</th> <th>MIX-101</th> <th>Slug Cathcer Liq</th> <th>MIX-101</th> <th>V-1402</th> <th>RCYL-3</th> <th>MIX-102</th> <th>MIX-102</th> <th>MIX-102</th> <th>MIX-102</th>			SAT-1	SAT-2			SAT-1	RCYL-4	V-1402	PCV-1401E	V-1415	MIX-100	V-1401	MIX-100	SAT-2	Amine Inlet		MIX-101	MIX-101	RCYL-1	RCYL-2	MIX-101	Slug Cathcer Liq	MIX-101	V-1402	RCYL-3	MIX-102	MIX-102	MIX-102	MIX-102
min       min       min       min       min       min       min       min       min       min       min       min       min       min       min       min       min       min       min       min       min       min       min       min       min       min       min       min       min       min       min       min       min       min       min       min       min       min       min       min       min       min       min       min       min       min       min       min       min       min       min       min       min       min       min       min       min       min       min       min       min       min       min       min       min       min       min       min       min       min       min       min       min       min       min       min       min       min       min       min       min       min       min       min       min       min       min       min       min       min       min       min       min       min       min       min       min       min       min       min       min       min       min       min       min       min       m	Property	Units	-																											
Michael Markale       No.	Temperature	°F																												120
rest         rest         1         2         2         1         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3 </td <td>Pressure</td> <td>psia</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>5</td> <td></td> <td>34.6959</td>	Pressure	psia										5																		34.6959
net       net       net       net       net       net       net       net       net       net       net       net       net       net       net       net       net       net       net       net       net       net       net       net       net       net       net       net       net       net       net       net       net       net       net       net       net       net       net       net       net       net       net       net       net       net       net       net       net       net       net       net       net       net       net       net       net       net       net       net       net       net       net       net       net       net       net       net       net       net       net       net       net       net       net       net       net       net       net       net       net       net       net       net       net       net       net       net       net       net       net       net       net       net       net       net       net       net       net       net       net       net       net       net       net       net       n		%	100		100			100	100	100	100	)	10	0		100				100	100							100	100	100
Indem         Allower	<b>o</b> 1	% 0/	0		0			0	0	0	(	)		0		0				0	0							0	0	0
bers         5.007         5.007         5.007         5.007         5.000         5.000         5.000         5.000         5.000         5.000         5.000         5.000         5.000         5.000         5.000         5.000         5.000         5.000         5.000         5.000         5.000         5.000         5.000         5.000         5.000         5.000         5.000         5.000         5.000         5.000         5.000         5.000         5.000         5.000         5.000         5.000         5.000         5.000         5.000         5.000         5.000         5.000         5.000         5.000         5.000         5.000         5.000         5.000         5.000         5.000         5.000         5.000         5.000         5.000         5.000         5.000         5.000         5.000         5.000         5.000         5.000         5.000         5.000         5.000         5.000         5.000         5.000         5.000         5.000         5.000         5.000         5.000         5.000         5.000         5.000         5.000         5.000         5.000         5.000         5.000         5.000         5.000         5.000         5.000         5.000         5.000         5.000	, ,	70 lb/lbmol	23 6900		24 6374			47 9910	24 5538	23 6900	23 6716	5	23 690	0		23 6690				20 7046	21 5444							21 5444	29 7946	0 47 9910
thrie         three         three <td>0</td> <td></td>	0																													
market       market       market       market       market       market       market       market       market       market       market       market       market       market       market       market       market       market       market       market       market       market       market       market       market       market       market       market       market       market       market       market       market       market       market       market       market       market       market       market       market       market       market       market       market       market       market       market       market       market       market       market       market       market       market       market       market       market       market       market       market       market       market       market       market       market       market       market       market       market       market       market       market       market       market       market       market       market       market       market       market       market       market       market       market       market       market       market       market       market       market       market	Molar Flow											r 																		
cp: 04 metry is more integrate into a metry is more into a metry is more into a metry is more into a metry is more into a metry is more into a metry is more into a metry is more into a metry is more into a metry is more into a metry is more into a metry is more into a metry is more into a metry is more into a metry is more into a metry is more into a metry is more into a metry is more into a metry is more into a metry is more into a metry is more into a metry is more into a metry is more into a metry is more into a metry is more into a metry is more into a metry is more into a metry is more into a metry is more into a metry is more into a metry is more into a metry is more into a metry is more into a metry is more into a metry is more into a metry is more into a metry is more into a metry is more into a metry is more into a metry is more into a metry is more into a metry is more into a metry is more into a metry is more into a metry is more into a metry is more into a metry is more into a metry is more into a metry is more into a metry is more into a metry is more into a metry is more into a metry is more into a metry is more into a metry is more into a metry is more into a metry is more into a metry is more into a metry is more into a metry is more into a metry is more into a metry is more into a metry is more into a metry is more into a metry is more into a metry is more into a metry is more into a metry is more into a metry is more into a metry is more into a metry is more into a metry is more into a metry is more into a metry is more into a metry is more into a metry is more into a metry is more into a metry is more into a metry is more into a metry is more into a metry is more into a metry is more into a metry is more into a metry is more into a metry is more into a metry is more into a metry is more into a metry is more into a metry is more into a metry is more into a metry is more into a metry is more into a metry is more into metry is more into a metry is more into a metry is more	Mass Flow																													
Miscale       Marce       <	Vapor Volumetric Flow	ft^3/h	135675																											
July 1       July 2       July 3	Liquid Volumetric Flow	gpm	16915.3		1662.62			78.6027	1715.09	17077.5	17864.5	5	16915.	3		17902.4				126.491	597.483							597.483	126.491	78.6027
intro-second control intro-second control intro-second control intro-second control intro-second control intro-second control intro-second control intro-second control intro-second control intro-second control intro-second control intro-second control intro-second control intro-second control intro-second control intro-second control intro-second control intro-second control intro-second control intro-second control intro-second control intro-second control intro-second control intro-second control intro-second control intro-second control intro-second control intro-second control intro-second control intro-second control intro-second control intro-second control intro-second control intro-second control intro-second control intro-second control intro-second control intro-second control intro-second control intro-second control intro-second control intro-second control intro-second control intro-second control intro-second control intro-second control intro-second control intero-second control intro-second contro-second control intro-second control intro	Std Vapor Volumetric Flow	MMSCFD	292.5		0.709167			0.0332428		292.5	292.228	3	292.	5		292.190				0.117242								0.550663	0.117242	0.0332428
ender         ender         ender         ender         ender         ender         ender         ender         ender         ender         ender         ender         ender         ender         ender         ender         ender         ender         ender         ender         ender         ender         ender         ender         ender         ender         ender         ender         ender         ender         ender         ender         ender         ender         ender         ender         ender         ender         ender         ender         ender         ender         ender         ender         ender         ender         ender         ender         ender         ender         ender         ender         ender         ender         ender         ender         ender         ender         ender         ender         ender         ender         ender         ender         ender         ender         ender         ender         ender         ender         ender         ender         ender         ender         ender         ender         ender         ender         ender         ender         ender         ender         ender         ender         ender         ender         ender         ender <th< td=""><td>Std Liquid Volumetric Flow</td><td>sgpm</td><td>3970.32</td><td></td><td>10.0087</td><td></td><td></td><td>0.640390</td><td>9.99017</td><td>3970.32</td><td>3965.26</td><td>6</td><td></td><td></td><td></td><td>3964.55</td><td></td><td></td><td></td><td>1.85809</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.640390</td></th<>	Std Liquid Volumetric Flow	sgpm	3970.32		10.0087			0.640390	9.99017	3970.32	3965.26	6				3964.55				1.85809										0.640390
10 c s s 0 - 1 - 3 404 E - 1 - 3 404 E - 0 - 3 404 E - 0 - 3 404 E - 0 - 3 404 E - 0 - 3 404 E - 0 - 3 404 E - 0 - 3 404 E - 0 - 3 404 E - 0 - 3 404 E - 0 - 3 404 E - 0 - 3 404 E - 0 - 3 404 E - 0 - 3 404 E - 0 - 3 404 E - 0 - 3 404 E - 0 - 3 404 E - 0 - 3 404 E - 0 - 3 404 E - 0 - 3 404 E - 0 - 3 404 E - 0 - 3 404 E - 0 - 3 404 E - 0 - 3 404 E - 0 - 3 404 E - 0 - 3 404 E - 0 - 3 404 E - 0 - 3 404 E - 0 - 3 404 E - 0 - 3 404 E - 0 - 3 404 E - 0 - 3 404 E - 0 - 3 404 E - 0 - 3 404 E - 0 - 3 404 E - 0 - 3 404 E - 0 - 3 404 E - 0 - 3 404 E - 0 - 3 404 E - 0 - 3 404 E - 0 - 3 404 E - 0 - 3 404 E - 0 - 3 404 E - 0 - 3 404 E - 0 - 3 404 E - 0 - 3 404 E - 0 - 3 404 E - 0 - 3 404 E - 0 - 3 404 E - 0 - 3 404 E - 0 - 3 404 E - 0 - 3 404 E - 0 - 3 404 E - 0 - 3 404 E - 0 - 3 404 E - 0 - 3 404 E - 0 - 3 404 E - 0 - 3 404 E - 0 - 3 404 E - 0 - 3 404 E - 0 - 3 404 E - 0 - 3 404 E - 0 - 3 404 E - 0 - 3 404 E - 0 - 3 404 E - 0 - 3 404 E - 0 - 3 404 E - 0 - 3 404 E - 0 - 3 404 E - 0 - 3 404 E - 0 - 3 404 E - 0 - 3 404 E - 0 - 3 404 E - 0 - 3 404 E - 0 - 3 404 E - 0 - 3 404 E - 0 - 3 404 E - 0 - 3 404 E - 0 - 3 404 E - 0 - 3 404 E - 0 - 3 404 E - 0 - 3 404 E - 0 - 3 404 E - 0 - 3 404 E - 0 - 3 404 E - 0 - 3 404 E - 0 - 3 404 E - 0 - 3 404 E - 0 - 3 404 E - 0 - 3 404 E - 0 - 3 404 E - 0 - 3 404 E - 0 - 3 404 E - 0 - 3 404 E - 0 - 3 404 E - 0 - 3 404 E - 0 - 3 404 E - 0 - 3 404 E - 0 - 3 404 E - 0 - 3 404 E - 0 - 3 404 E - 0 - 3 404 E - 0 - 3 404 E - 0 - 3 404 E - 0 - 3 404 E - 0 - 3 404 E - 0 - 3 404 E - 0 - 3 404 E - 0 - 3 404 E - 0 - 3 404 E - 0 - 3 404 E - 0 - 3 404 E - 0 - 3 404 E - 0 - 3 404 E - 0 - 3 404 E - 0 - 3 404 E - 0 - 3 404 E - 0 - 3 404 E - 0 - 3 404 E - 0 - 3 404 E - 0 - 3 404 E - 0 - 3 404 E - 0 - 3 404 E - 0 - 3 404 E - 0 - 3 404 E - 0 - 3 404 E - 0 - 3 404 E - 0 - 3 404 E - 0 - 3 404 E - 0 - 3 404 E - 0 - 3 404 E - 0 - 3 404 E - 0 - 3 404 E - 0 - 3 404 E - 0 - 3 404 E - 0 - 3 404 E - 0 - 3 404 E - 0 - 3 404 E - 0 - 3 404 E - 0 - 3 404 E - 0 - 3 404 E - 0 - 3 404 E - 0 - 3 404 E - 0 - 3 40	Compressibility																													
Indep         1.3841F-00         2.28722E-05         2.28722E-05         2.2872E-05         3.4841E-00         1.3841E-00         1.3841E-00         1.3841E-00         1.3841E-00         1.3841E-00         2.1882E-05         3.4872E-05         .4872E-05        3.4872E-05 </td <td>Specific Gravity</td> <td></td> <td>0.817953</td> <td></td> <td>0.850665</td> <td></td> <td></td> <td>1.65700</td> <td>0.847780</td> <td>0.817953</td> <td>0.817320</td> <td>)</td> <td>0.81795</td> <td>3</td> <td></td> <td>0.817231</td> <td></td> <td></td> <td></td> <td>1.02873</td> <td>0.743873</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.743873</td> <td>1.02873</td> <td>1.65700</td>	Specific Gravity		0.817953		0.850665			1.65700	0.847780	0.817953	0.817320	)	0.81795	3		0.817231				1.02873	0.743873							0.743873	1.02873	1.65700
web       -1400 /F       -1100 /F       -1100 /F       -1100 /F       -1100 /F       -1100 /F       -1100 /F       -1100 /F       -1100 /F       -1100 /F       -1100 /F       -1100 /F       -1100 /F       -1100 /F       -1100 /F       -1100 /F       -1100 /F       -1100 /F       -1100 /F       -1100 /F       -1100 /F       -1100 /F       -1100 /F       -1100 /F       -1100 /F       -1100 /F       -1100 /F       -1100 /F       -110		Btu/b	-1 34641E+09		-2 87025E+06			-162141	-2 85869E+06	-1 34641E+09	-1 34475E+00	<b>a</b>	-1 34641E+0	Q		-1 34452E+09				-487018	-2 15745E+06							-2 15745E+06	-487018	-162141
med (-)         multer (-)         0.670403         0.470013         0.470013         0.670440         0.670403         0.670403         0.670403         0.670403         0.670403         0.670403         0.670403         0.670403         0.62772         0.670403         0.670403         0.670403         0.670403         0.670403         0.670403         0.670403         0.670403         0.670403         0.670403         0.677603         0.670403         0.677603         0.070403         0.070403         0.677603         0.070403         0.070403         0.070403         0.677603         0.070403         0.070403         0.070403         0.070403         0.070403         0.070403         0.070403         0.070403         0.070403         0.070403         0.070403         0.070403         0.070403         0.070403         0.070403         0.070403         0.070403         0.070403         0.070403         0.070403         0.070403         0.070403         0.070403         0.070403         0.070403         0.070403         0.070403         0.070403         0.070403         0.070403         0.070403         0.070403         0.070403         0.070403         0.070403         0.070403         0.070403         0.070403         0.070403         0.070403         0.070403         0.070403         0.070403	Mass Enthalpy																													
India: Color Pairlo         I         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1	Mass Cp																													
nemark       6.81       0.1556x3       0.41924       0.17564       0.41924       0.17564       0.41925       0.17564       0.17764       0.27775       0.17764       0.26780       0.17764       0.27784       0.26780       0.17764       0.27784       0.26780       0.17764       0.26780       0.17764       0.26780       0.17764       0.26780       0.17764       0.26780       0.17764       0.26780       0.17764       0.01776       0.01776       0.01776       0.01776       0.01776       0.01776       0.01776       0.01776       0.01776       0.01776       0.01776       0.01776       0.01776       0.01776       0.01776       0.01776       0.01776       0.01776       0.01776       0.01776       0.01776       0.01776       0.01776       0.01776       0.01776       0.01776       0.01776       0.01776       0.01776       0.01776       0.01776       0.01776       0.01776       0.01776       0.01776       0.017776       0.007776       0.007776       0.007776       0.007776       0.007776       0.007776       0.007776       0.007776       0.0077776       0.007776       0.007776       0.007776       0.007776       0.007776       0.007776       0.007776       0.007776       0.007776       0.007776       0.007776       0.0077776	Ideal Gas CpCv Ratio	, ( )																												
nemic (basic) bit (basic) bit (basic) bit (basic) bit (basic) bit (basic) bit (basic) bit (basic) bit (basic) bit (basic) bit (basic) bit (basic) bit (basic) bit (basic) bit (basic) bit (basic) bit (basic) bit (basic) bit (basic) bit (basic) bit (basic) bit (basic) bit (basic) bit (basic) bit (basic) bit (basic) bit (basic) bit (basic) bit (basic) bit (basic) bit (basic) bit (basic) bit (basic) bit (basic) bit (basic) bit (basic) bit (basic) bit (basic) bit (basic) bit (basic) bit (basic) bit (basic) bit (basic) bit (basic) bit (basic) bit (basic) bit (basic) bit (basic) bit (basic) bit (basic) bit (basic) bit (basic) bit (basic) bit (basic) bit (basic) bit (basic) bit (basic) bit (basic) bit (basic) bit (basic) bit (basic) bit (basic) bit (basic) bit (basic) bit (basic) bit (basic) bit (basic) bit (basic) bit (basic) bit (basic) bit (basic) bit (basic) bit (basic) bit (basic) bit (basic) bit (basic) bit (basic) bit (basic) bit (basic) bit (basic) bit (basic) bit (basic) bit (basic) bit (basic) bit (basic) bit (basic) bit (basic) bit (basic) bit (basic) bit (basic) bit (basic) bit (basic) bit (basic) bit (basic) bit (basic) bit (basic) bit (basic) bit (basic) bit (basic) bit (basic) bit (basic) bit (basic) bit (basic) bit (basic) bit (basic) bit (basic) bit (basic) bit (basic) bit (basic) bit (basic) bit (basic) bit (basic) bit (basic) bit (basic) bit (basic) bit (basic) bit (basic) bit (basic) bit (basic) bit (basic) bit (basic) bit (basic) bit (basic) bit (basic) bit (basic) bit (basic) bit (basic) bit (basic) bit (basic) bit (basic) bit (basic) bit (basic) bit (basic) bit (basic) bit (basic) bit (basic) bit (basic) bit (basic) bit (basic) bit (basic) bit (basic) bit (basic) bit (basic) bit (basic) bit (basic) bit (basic) bit (basic) bit (basic) bit (basic) bit (basic) bit (basic) bit (basic) bit (basic) bit (basic) bit (basic) bit (basic) bit (basic) bit (basic) bit (basic) bit (basic) bit (basic) bit (basic) bit (basic) bit (basic) bit (basic) bit (basic) bit (basic) bit (basic) bit (basic) bit (basic) bit	Dynamic Viscosity	cP	0.0139729					0.00897723	0.0109227	0.0139181	0.0136683	3	0.013972	9		0.0136569				0.0107526	0.0115952							0.0115952	0.0107526	0.00897723
Inferentianin         Inferentianin         Inferentianin         Inferentianin         Inferentianin         Inferentianin         Inferentianin         Inferentianin         Inferentianin         Inferentianin         Inferentianin         Inferentianin         Inferentianin         Inferentianin         Inferentianin         Inferentianin         Inferentianin         Inferentianin         Inferentianin         Inferentianin         Inferentianin         Inferentianin         Inferentianin         Inferentianin         Inferentianin         Inferentianin         Inferentianin         Inferentianin         Inferentianin         Inferentianin         Inferentianin         Inferentianin         Inferentianin         Inferentianin         Inferentianin         Inferentianin         Inferentianin         Inferentianin         Inferentianin         Inferentianin         Inferentianin         Inferentianin         Inferentianin         Inferentianin         Inferentianin         Inferentianin         Inferentianin         Inferentianin         Inferentianin         Inferentianin         Inferentianin         Inferentianin         Inferentianin         Inferentianin         Inferentianin         Inferentianin         Inferentianin         Inferentianin         Inferentianin         Inferentianin         Inferentianin         Inferentianin         Inferentianin         Inferentianin         Inferentianin         Inferent	Kinematic Viscosity	cSt	0.155553		4.61245			2.01710	4.90787	0.156429	0.160975	5	0.15555	3		0.161221				1.77564	2.66309							2.66309	1.77564	2.01710
Interfact shearing Value       Built'3       1146.4       1146.5       1146.54       1146.54       1146.54       1146.54       1146.35       1146.54       1146.35       1146.35       1146.35       1146.35       1146.35       1146.35       1146.35       1146.36       1146.36       1146.36       1146.36       1146.36       1146.36       1146.36       1146.36       1146.36       1146.36       1146.36       1146.36       1146.36       1146.36       1146.36       1146.36       1146.36       1146.36       1146.36       1146.36       1146.36       1146.36       1146.36       1146.36       1146.36       1146.36       1146.36       1146.36       1146.36       1146.36       1146.36       1146.36       1146.36       1146.36       1146.36       1146.36       1146.36       1146.36       1146.36       1146.36       1146.36       1146.36       1146.36       1146.36       1146.36       1146.36       1146.36       1146.36       1146.36       1146.36       1146.36       1146.36       1146.36       1146.36       1146.36       1146.36       1146.36       1146.36       1146.36       1146.36       1146.36       1146.36       1146.36       1146.36       1146.36       1146.36       1146.36       1146.36       1146.36       1146.36 <th< td=""><td>Thermal Conductivity</td><td>Btu/(h*ft*°F)</td><td>0.0217490</td><td></td><td>0.0169154</td><td></td><td></td><td>0.0118734</td><td>0.0176402</td><td>0.0216645</td><td>0.0212843</td><td>3</td><td>0.021749</td><td>0</td><td></td><td>0.0212677</td><td></td><td></td><td></td><td>0.0171744</td><td>0.0194830</td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.0194830</td><td>0.0171744</td><td>0.0118734</td></th<>	Thermal Conductivity	Btu/(h*ft*°F)	0.0217490		0.0169154			0.0118734	0.0176402	0.0216645	0.0212843	3	0.021749	0		0.0212677				0.0171744	0.0194830							0.0194830	0.0171744	0.0118734
th upped parting value ges legicit dealing	Surface Tension	lbf/ft																												
ossibility 1       1280.4       1280.4       1280.4       1280.4       1280.4       1280.4       1280.4       1280.4       1280.4       1280.4       1280.4       1280.4       1280.4       1280.4       1280.4       1280.4       1280.4       1280.4       1280.4       1280.4       1280.4       1280.4       1280.4       1280.4       1280.4       1280.4       1280.4       1280.4       1280.4       1280.4       1280.4       1280.4       1280.4       1280.4       1280.4       1280.4       1280.4       1280.4       1280.4       1280.4       1280.4       1280.4       1280.4       1280.4       1280.4       1280.4       1280.4       1280.4       1280.4       1280.4       1280.4       1280.4       1280.4       1280.4       1280.4       1280.4       1280.4       1280.4       1280.4       1280.4       1280.4       1280.4       1280.4       1280.4       1280.4       1280.4       1280.4       1280.4       1280.4       1280.4       1280.4       1280.4       1280.4       1280.4       1280.4       1280.4       1280.4       1280.4       1280.4       1280.4       1280.4       1280.4       1280.4       1280.4       1280.4       1280.4       1280.4       1280.4       1280.4       1280.4       1280.4<	Net Ideal Gas Heating Value																													
oss Liquid Heating Vale 2115.0 2167.4 2167.4 2167.4 2167.4 2167.4 2201.5 2201.4 2201.5 2201.4 2201.5 2200.4 2201.5 2200.4 2200.4 2200.4 2200.4 2200.4 2200.4 2200.4 2200.4 2200.4 2200.4 2200.4 2200.4 2200.4 2200.4 2200.4 2200.4 2200.4 2200.4 2200.4 2200.4 2200.4 2200.4 2200.4 2200.4 2200.4 2200.4 2200.4 2200.4 2200.4 2200.4 2200.4 2200.4 2200.4 2200.4 2200.4 2200.4 2200.4 2200.4 2200.4 2200.4 2200.4 2200.4 2200.4 2200.4 2200.4 2200.4 2200.4 2200.4 2200.4 2200.4 2200.4 2200.4 2200.4 2200.4 2200.4 2200.4 2200.4 2200.4 2200.4 2200.4 2200.4 2200.4 2200.4 2200.4 2200.4 2200.4 2200.4 2200.4 2200.4 2200.4 2200.4 2200.4 2200.4 2200.4 2200.4 2200.4 2200.4 2200.4 2200.4 2200.4 2200.4 2200.4 2200.4 2200.4 2200.4 2200.4 2200.4 2200.4 2200.4 2200.4 2200.4 2200.4 2200.4 2200.4 2200.4 2200.4 2200.4 2200.4 2200.4 2200.4 2200.4 2200.4 2200.4 2200.4 2200.4 2200.4 2200.4 2200.4 2200.4 2200.4 2200.4 2200.4 22	Net Liquid Heating Value																													
Image: Normal and anticipant of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of th																														
State:       Sale of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the s	Gross Liquid Heating Value	Btu/Ib	20115.0		21874.9			20612.2	21883.8	20115.0	20114.3	5	20115.0	0		20114.2				22015.6	22200.4							22200.4	22015.6	20612.2
State:       Sale of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the sole of the s																														
Age:       Job 1       Job 1       V-1402       V-1402       NIX-102       V-1401       V-1401       V-1401       NIX-101       NIX	Process Streams		HP Inlet	Inlet Liq	LP :	SLOP Water	Water 1	1	2	3	4 5	6	7	8	9	10	11	13	14	15	16	17	18	19	20	32	33	34	35	138
To Block       SAT-2       -       -       SAT-4       RCYL-4       RCYL-4       NIX-10       NIX-10       NIX-10       NIX-10       NIX-10       NIX-10       NIX-102	Composition	Status:	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved
Me Fraction         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         % <th< td=""><td>Phase: Light Liquid</td><td>From Block:</td><td></td><td></td><td>V-1402</td><td>V-1402</td><td></td><td>BTEX Vapor</td><td>MIX-102</td><td>V-1401</td><td>V-1402 PCV-1401E</td><td>SAT-2</td><td>SAT-1</td><td>V-1401</td><td></td><td>V-1415</td><td>V-1415</td><td>BTEX Water</td><td>Regen Water</td><td>TEG Flash</td><td>Amine Flash</td><td>AG Water</td><td>MIX-100</td><td>MP/LP Water</td><td>MIX-101</td><td>LP Flash</td><td>RCYL-3</td><td>RCYL-2</td><td>RCYL-1</td><td>RCYL-4</td></th<>	Phase: Light Liquid	From Block:			V-1402	V-1402		BTEX Vapor	MIX-102	V-1401	V-1402 PCV-1401E	SAT-2	SAT-1	V-1401		V-1415	V-1415	BTEX Water	Regen Water	TEG Flash	Amine Flash	AG Water	MIX-100	MP/LP Water	MIX-101	LP Flash	RCYL-3	RCYL-2	RCYL-1	RCYL-4
No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No. <td></td> <td>To Block:</td> <td>SAT-1</td> <td>SAT-2</td> <td></td> <td></td> <td>SAT-1</td> <td>RCYL-4</td> <td>V-1402</td> <td>PCV-1401E</td> <td> V-1415</td> <td>MIX-100</td> <td>V-1401</td> <td>MIX-100</td> <td>SAT-2</td> <td>Amine Inlet</td> <td></td> <td>MIX-101</td> <td>MIX-101</td> <td>RCYL-1</td> <td>RCYL-2</td> <td>MIX-101</td> <td>Slug Cathcer Liq</td> <td>MIX-101</td> <td>V-1402</td> <td>RCYL-3</td> <td>MIX-102</td> <td>MIX-102</td> <td>MIX-102</td> <td>MIX-102</td>		To Block:	SAT-1	SAT-2			SAT-1	RCYL-4	V-1402	PCV-1401E	V-1415	MIX-100	V-1401	MIX-100	SAT-2	Amine Inlet		MIX-101	MIX-101	RCYL-1	RCYL-2	MIX-101	Slug Cathcer Liq	MIX-101	V-1402	RCYL-3	MIX-102	MIX-102	MIX-102	MIX-102
0.67798       0.00109025       5.38381E-08       3.43249       0.677732       0.4458E-08       3.49893E-08       0.0429205       0.677732       0.0146478       0.870175       5.38381E-08         0       9.41576E-06       2.44210E-05       0.23423       0       0       0.22954       7.9282E-06       0.0080314       2.3865E-09       0       0.00282597       2.44210E-05         0 thane       9.60028       0.00317026       0.0796844       2.5931       9.59672       0.18256       0.099371       0.079684       0.079684				%		%		%			%	%			%		%	%	%			%	%	%	%					%
0       9.41576E-06       2.44210E-05       0       0.223423       0       0.223423       0       0.223423       0       0.000882597       2.44210E-05         9.60028       0.00317026       0.0796844       25.9313       9.59672       0.182566       0.0993871       0.0796844       0.0796844	H2S														0															
9.6028 0.0317026 0.0796844 25.9313 9.59672 0.018256 0.0993871 0.0796844 0.0796844 0.0796844	CO2			0.677998									2		0								0.677732							
	NZ Mathana			0									0		0								0	•						
	Methane Ethano			9.60028 7.78018				0.0796844 0.737988							U							4.14538E-06 2.15301E-06	9.59672	0.0182566						0.0796844 0.737988
	Ethane Propane					0.00110876					15.0846				0		15.0846 19.2587	0.270203												


n-Pentane	10022.0	39.9728	16.4094	39.7666	10022.0	9910.66	10022.0	9894.71	12.5720	7.55412	7.55	412 12.572	20 16.409
n-Hexane	1797.03	9.14662	3.90931	8.97092	1797.03	1752.74	1797.03	1746.43	1.96056	0.963913	0.963	913 1.9605	56 3.9093
n-Heptane	1273.57	9.54323	2.78430	8.94255	1273.57	1215.33	1273.57	1207.19	1.43531	0.281485	0.281	485 1.4353	31 2.7843
n-Octane	129.240	1.25206	0.163057	1.03911	129.240	117.799	129.240	116.268	0.120153	0.0292678	0.0292	678 0.12015	53 0.16305
n-Nonane	279.314	3.23914	0.162838	2.10814	279.314	227.065	279.314	220.851	0.188091	0.0185719	0.0185	719 0.18809	91 0.16283
n-Decane	0.635260	0.00844516	0.000115071	0.00348552	0.635260	0.448712	0.635260	0.429613	0.000292054	8.41581E-06	8.41581	-06 0.00029205	54 0.00011507
Undecane	3.38337	0.0469179	0.000130538	0.0100997	3.38337	1.82464	3.38337	1.70472	0.000943734	1.28122E-05	1.281228	-05 0.00094373	34 0.00013053
Benzene	274.214	32.6555	15.4504	31.2839	274.214	268.089	274.214	267.219	0.691380	2.24217	2.24	217 0.69138	80 15.450
Toluene	112.875	18.5560	4.37641	16.3913	112.875	107.578	112.875	106.841	0.232184	0.719294	0.719	294 0.23218	84 4.3764
Ethylbenzene	6.31265	1.12632	0.0875846	0.814117	6.31265	5.73565	6.31265	5.65898	0.00939552	0.0300738	0.0300	738 0.0093955	52 0.087584
m-Xylene	12.3876	2.22626	0.181782	1.60317	12.3876	11.1719	12.3876	11.0116	0.0180797	0.0554684	0.0554	684 0.018079	97 0.18178
Water	197.028	38.7024	3.19269	40.3476	197.028	196.913	197.028	196.897	1.23367	30.2595	30.2		
MDEA	0.00584105	0.0284454	0.000143643	0.0327337	0.00584105	0.00533889	0.00584105	0.00527168	1.06357E-05	0.0297239	0.0297	.39 1.06357E-0	05 0.00014364
Piperazine	1.34415E-05	1.00250E-05	2.10274E-08	0.0551816	1.34415E-05	1.33125E-05	1.34415E-05	1.32941E-05	0.000626670	0.0545454	0.0545	.54 0.00062667	70 2.10274E-0
Phosphoric Acid	0	0	0	0	0	0	0	0	0	0		0	0
TEG	5.46846E-07	1.31302E-06	9.43713E-12	0.00823579	5.46846E-07	3.40595E-07	5.46846E-07	3.22176E-07	0.00823552	0		0 0.0082355	52 9.43713E-12
02	0	0	0	0	0	0	0	0	0	0		0	0

H2S CO2 N2 Methane Ethane Propane i-Butane n-Butane n-Butane n-Pentane n-Pentane n-Heptane n-Heptane n-Heptane n-Octane n-Heptane n-Octane n-Decane Undecane Benzene Toluene Ethylbenzene m-Xylene Water MDEA Piperazine Phosphoric Acid TEC	0.206370 0.677998 0 9.60028 7.78018 12.9632 3.73009 12.5068 6.42769 8.17118 22.8844 11.4422 3.05125 0.550999 0.00746564 0 0 0 0 0 0 0 0 0 0 0 0 0	0.000108850 0.000109025 9.41576E-06 0.00317026 0.00110876 0.000416715 2.96850E-05 0.000158870 1.60753E-05 9.41223E-06 1.15763E-06 6.98195E-07 3.71772E-08 6.38091E-08 4.76203E-11 1.86836E-10 0.00252299 0.000924541 3.97065E-05 5.61876E-05 99.9700 9.90196E-05 0.00270318 0 0.0185588	0.000841706 5.38381E-08 2.44210E-05 0.0796844 0.737988 3.27743 1.20241 8.40428 5.25650 8.25168 4.56968 8.16741 1.17214 2.49787 0.00397579 0.0106244 30.4203 22.1231 1.19246 2.33930 0.287878 0.00441007 9.91452E-09 0 5.58287E-09	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1.33175 $0.000316174$ $7.54928E-05$ $3.43014$ $1.94455E-08$ $3.49893E-08$ $0.222954$ $7.92282E-06$ $0.00680314$ $25.8988$ $0.0277735$ $1.11408$ $15.0846$ $0.270203$ $0.495916$ $19.2587$ $1.23150$ $0.399623$ $4.47350$ $0.450677$ $0.0544296$ $14.5886$ $3.22358$ $0.202526$ $4.62084$ $2.27994$ $0.0411627$ $5.17984$ $3.74720$ $0.0420202$ $1.72422$ $2.68619$ $0.00838353$ $1.94539$ $7.91056$ $0.00667471$ $0.333468$ $2.46094$ $0.000670281$ $1.33853$ $11.6424$ $0.00138876$ $0.00424414$ $0.0460222$ $2.70111E-06$ $0.0315349$ $0.310994$ $1.25390E-05$ $0.262969$ $21.3599$ $0.0343476$ $0.192292$ $30.3993$ $0.0155136$ $0.0180799$ $3.87216$ $0.000848014$ $0.0380603$ $7.72758$ $0.00159276$ $0.0214601$ $0.316000$ $63.6737$ $1.40305E-05$ $0.0367715$ $0.00963930$ $5.02681E-09$ $1.67745E-06$ $0.148374$ $0$ $0$ $0$	0.0261723 0.0429205 2.35865E-09 4.14538E-06 2.15301E-06 5.15897E-07 2.48939E-08 1.67600E-07 2.88328E-09 2.45050E-09 1.43338E-10 1.07590E-11 6.61855E-13 9.40379E-14 0 0 4.57495E-05 1.01162E-05 2.25769E-07 4.12032E-07 99.9308 8.65978E-10 1.43443E-07 0 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.000841706 5.38381E-08 2.44210E-05 0.0796844 0.737988 3.27743 1.20241 8.40428 5.25650 8.25168 4.56968 8.16741 1.17214 2.49787 0.00397579 0.0106244 30.4203 22.1231 1.19246 2.33930 0.287878 0.00441007 9.91452E-09 0 5.58287E-09
Netar Flow         H2S         CO2         N2         Methane         Ethane         Propane         i-Butane         i-Butane         n-Butane         n-Pentane         n-Hexane         n-Heptane         n-Octane         n-Decane         Undecane         Benzene         Toluene         Ethylbenzene         m-Xylene         Water         MDEA         Piperazine         Phosphoric Acid         TEG         CO2	0 0 1bmol/h 2.21458 7.27569 0 103.022 83.4902 139.110 40.0281 134.212 68.9763 87.6860 245.575 122.788 32.7434 5.91284 0.0801147 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 1bmol/h 9.99193E-05 0.000100080 8.64324E-06 0.00291015 0.00101779 0.000382525 2.72495E-05 0.000145835 1.47564E-05 8.64000E-06 1.06265E-06 6.40911E-07 3.41269E-08 5.85738E-08 4.37132E-11 1.71507E-10 0.00231598 0.000848686 3.64487E-05 5.15776E-05 91.7678 9.08954E-05 0.00248139 0 0 0.0170361 0	0 1bmol/h 4.56798E-06 2.92182E-10 1.32534E-07 0.000432451 0.00400510 0.0177868 0.00652552 0.0456105 0.0285273 0.0447823 0.0247999 0.0443249 0.00636125 0.0135561 2.15768E-05 5.76592E-05 0.165093 0.120063 0.120063 0.120063 0.00647152 0.0156233 2.39337E-05 5.38066E-11 0 3.02985E-11 0	$\begin{array}{c ccccc} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 &$	0 0 1bmol/h 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4.39307E-09 $5.393222E-05$ $3.3.7422$ 0       0       0 <b>bmol/h bmol/h bmol/h</b> 0.4533531 $2.39467E-07$ $3.36964E-08$ 1.16815 $1.47278E-11$ $1.56176E-11$ 0.0759279 $6.00065E-09$ $3.03660E-06$ 8.81995 $2.10353E-05$ $0.000497272$ $5.13713$ $0.00204649$ $0.000221353$ $6.55861$ $0.00932721$ $0.000178373$ $1.52347$ $0.00244150$ $9.03978E-05$ $4.96819$ $0.00244150$ $9.03978E-05$ $1.57364$ $0.00172680$ $1.83731E-05$ $1.76401$ $0.0023449$ $3.74201E-06$ $0.587191$ $0.0023449$ $3.74201E-06$ $0.662510$ $0.00599137$ $2.97927E-06$ $0.113564$ $0.00881779$ $6.19875E-07$ $0.0017433$ $0.000235543$ $5.59683E-09$ $0.0107393$ $0.002302341$ $6.92456E-06$ $0.00615717$ $0.0230241$ $6.92456E-06$ $0.00615717$ $0.00239335$ $0.0284209$ $4.77814E-06$	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00001111 $2.21452$ $1.07676E \cdot 05$ $0.000414466$ $7.27550$ $2.34408E \cdot 05$ $0.000604099$ 00 $1.96187E \cdot 07$ $103.022$ $2.92160E \cdot 05$ $6.89973E \cdot 05$ $83.4901$ $1.07848E \cdot 05$ $0.000201547$ $139.109$ $4.59938E \cdot 06$ $0.000892737$ $40.0281$ $3.54074E \cdot 07$ $0.000340698$ $134.212$ $1.22592E \cdot 06$ $0.00236875$ $68.9763$ $1.85073E \cdot 07$ $0.00171645$ $87.6860$ $8.57249E \cdot 08$ $0.0023567$ $122.788$ $5.59018E \cdot 09$ $0.00599263$ $32.7434$ $2.24501E \cdot 10$ $0.00186411$ $5.91284$ $1.00110E \cdot 11$ $0.00881830$ $0.0801147$ $1.54079E \cdot 14$ $3.48579E \cdot 05$ $0$ $0$ $0.00235549$ $0$ $0$ $0.0027746$ $0$ $0.00284504$ $0$ $0.00573462$ $0.395378$ $0.159949$ $0.000148030$ $0$ $0$ $1.76290E \cdot 05$ $0$ $0$ $0$ $0$ $0$ $0$	0 1bmol/h 4.56798E-06 2.92182E-10 1.32534E-07 0.000432451 0.00400510 0.0177868 0.00652552 0.0456105 0.0285273 0.0447823 0.0247999 0.0443249 0.00636125 0.0135561 2.15768E-05 5.76592E-05 0.165093 0.120063 0.120063 0.0126955 0.00156233 2.39337E-05 5.38066E-11 0
Vass Fraction         H2S         CO2         N2         Methane         Ethane         Propane         i-Butane         i-Pentane         n-Pentane         n-Heptane         n-Heptane         n-Octane         n-Decane         Undecane         Benzene         Toluene         Ethylbenzene         m-Xylene         Water         MDEA         Piperazine         Phosphoric Acid         TEG         O2	%           0.107669           0.456780           0           2.35769           3.58131           8.75062           3.31890           11.1281           7.09930           9.02497           30.1894           17.5516           5.33561           1.08183           0.0162610           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           <	%           0.000205588           0.000265908           1.46177E-05           0.00281854           0.00184763           0.00184763           0.00184763           0.00184763           0.00184763           0.00184763           0.00184763           0.00184763           0.00184763           0.000511731           6.42757E-05           3.76340E-05           5.52855E-06           3.87714E-06           2.35348E-07           4.53540E-07           3.75491E-10           1.61845E-09           0.0109217           0.00472091           0.000233615           0.000330583           99.8089           0.000653911           0.0129037           0           0.154454           0	%           0.000351335           2.90193E-08           8.37875E-06           0.0156565           0.271781           1.77003           0.855940           5.98264           4.64489           7.29157           4.82302           10.0233           1.63985           3.92369           0.00692823           0.0203393           29.1025           24.9653           1.55051           3.04170           0.0635184           0.00643627           1.04593E-08           0           1.02683E-08           0	% $%$ 1.04588         0.107655           3.48059         0.456722           0.144208         0           9.58500         2.35744           10.4508         3.58094           19.5498         8.74973           5.98159         3.31856           19.5038         11.1269           7.66617         7.09858           8.59459         9.02406           3.41977         30.1863           4.49637         17.5498           0.883340         5.33507           4.03409         1.08172           0.0144030         0.0162594           0.120346         0           0.472881         0           0.038669         0           0.0383669         0           0.00891978         0.0101601           3.87714E-05         0           9.96378E-09         0           0         0           0         0           0         0           0         0           0         0	%           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0	% $%$ $%$ 1.04595         0.000116167         4.08018E-05           3.47885         9.22597E-09         2.44200E-08           0.143932         2.39272E-06         0.00302231           9.57477         0.00480338         0.283433           10.4528         0.0875902         0.236478           19.5703         0.585429         0.279453           5.99192         0.282393         0.0501696           19.5403         2.01988         0.186674           7.68292         1.77337         0.0470973           8.61235         2.91461         0.0480785           3.42416         2.49555         0.0114571           4.49221         8.54534         0.0106065           0.877821         3.03055         0.00121421           3.95621         16.0976         0.00282465           0.0139160         0.0705931         6.09473E-06           0.113593         0.524059         3.10820E-05           0.473367         17.9871         0.0425478           0.408300         30.1961         0.0226682           0.0442338         4.43180         0.00142773           0.0931172         8.84444         0.00268161	%           0.0494699           0.104761           3.66451E-09           3.68828E-06           3.59048E-06           1.26167E-06           8.02458E-08           5.40260E-07           1.15373E-08           9.80556E-09           6.85066E-10           5.97912E-11           4.19300E-12           6.68907E-13           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0	0 $0$ $0$ $%$ $%$ $%$ 0.107655         0.0127241         0.218622           0.456722         0.0357699         0.411481           0         0         8.50610E-05           2.35744         0.0162514         0.0171316           3.58094         0.0112443         0.0937972           8.74973         0.00703225         0.609275           3.31856         0.000713569         0.306483           11.1269         0.00247060         2.13087           7.09858         0.000462990         1.91670           9.02406         0.000214455         3.17142           30.1863         0.000140207         2.71509           17.5498         1.94223E-05         9.29369           5.33507         8.89184E-07         3.29565           1.08172         4.45196E-08         17.5047           0.0162594         7.60138E-11         0.0767617           0         0         13.8712           0         0         29.6257           0         0         9.42282           0.0101601         99.9130         0.0412750           0         0         0.325133	%           0.000351335           2.90193E-08           8.37875E-06           0.0156565           0.271781           1.77003           0.855940           5.98264           4.64489           7.29157           4.82302           10.0233           1.63985           3.92369           0.000692823           0.0203393           29.1025           24.9653           1.55051           3.04170           0.0635184           0.00643627           1.04593E-08           0           1.02683E-08           0
Mass FlowH2SCO2N2MethaneEthanePropanei-Butanen-Butanen-Pentanen-Pentanen-Pentanen-Heptanen-Octanen-Octanen-DecaneUndecaneBenzeneTolueneEthylbenzenem-XyleneWaterMDEAPiperazinePhosphoric AcidTEGO2	Ib/h           75.4749           320.200           0           1652.72           2510.47           6134.12           2326.52           7800.69           4976.56           6326.44           21162.5           12303.6           3740.23           758.352           11.3989           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0 <t< td=""><td>Ib/h           0.00340534           0.00440447           0.000242126           0.0466860           0.0306039           0.0168677           0.00158380           0.00847624           0.00106466           0.000623365           9.15743E-05           6.42205E-05           3.89827E-06           7.51238E-06           6.21959E-09           2.68079E-08           0.180906           0.0781966           0.0036958           0.00547574           1653.22           0.0108313           0.213736           0           2.55836           0</td><td>Ib/h           0.000155681           1.28588E-08           3.71273E-06           0.00693759           0.120429           0.784320           0.379277           2.65098           2.05821           3.23099           2.13714           4.44145           0.726636           1.73863           0.00306998           0.00901260           12.8957           11.0624           0.687049           1.34782           0.00285199           4.63466E-09           0           4.55002E-09           0</td><td>bb/hbb/h13.5463$75.4727$45.0807$320.191$1.867790124.145$1652.72$135.359$2510.47$253.210$6134.12$77.4738$2326.52$252.6147800.6999.29254976.56111.317$6326.44$44.292921162.558.237212303.611.44113740.2352.2496758.3520.18654911.39891.5587306.1247705.2971800.57699901.2157700.1155297.122850.000502168000000000</td><td>Ib/h           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0</td><td>lb/h$lb/h$$lb/h$15.45678.16123E-061.14840E-0651.40966.48164E-106.87322E-102.127001.68099E-078.50655E-05141.4940.0003374580.00797747154.4690.006153590.00665588289.2060.04112890.0078654588.54720.01983930.00141207288.7620.1419050.00525412113.5360.1245870.00132559127.2710.2047640.0013532150.60140.1753230.00029852912.97220.2129093.41751E-0558.46401.130937.95022E-050.2056480.004959471.71542E-071.678650.03681748.74830E-076.995301.263670.001197546.033762.121400.0006380180.6536760.3113534.01849E-051.376060.6213607.54763E-050.1316610.004311690.5120110.0005693730.00318700.0005126991.47455E-071.09433E-070.005704530002.24670E-076.75409E-062.26174000</td><td>Ib/h           0.552622           1.17027           4.09358E-08           4.12013E-05           4.01088E-05           1.40940E-05           8.96416E-07           6.03518E-06           1.28881E-07           1.09537E-07           7.65278E-09           6.67920E-10           4.68395E-11           7.47227E-12           0           0.000221400           0.000577477           1.48498E-05           2.71012E-05           1115.36           6.39323E-08           7.65486E-06           0           0           0</td><td>Ib/hIb/hIb/h$75.4727$$0.000366968$$0.0141254$$320.191$$0.00103162$$0.0265861$$0$$0$$5.49586E-06$$1652.72$$0.000468696$$0.00110689$$2510.47$$0.000324289$$0.00606031$$6134.12$$0.000202812$$0.0393658$$2326.52$$2.05796E-05$$0.0198021$$7800.69$$7.12530E-05$$0.137677$$4976.56$$1.33528E-05$$0.123840$$6326.44$$6.18495E-06$$0.204908$$21162.5$$4.04363E-06$$0.175424$$12303.6$$5.60147E-07$$0.600473$$3740.23$$2.56444E-08$$0.212935$$758.352$$1.28396E-09$$1.13099$$11.3989$$2.19226E-12$$0.00495964$$0$$0$$0.302044$$0$$0$$0.302044$$0$$0$$0.00210071$$0$$0$$1.39596E-08$$0$$0$$0$$0$$0$$0$</td><td>Ib/h           0.000155681           1.28588E-08           3.71273E-06           0.00693759           0.120429           0.784320           0.379277           2.65098           2.05821           3.23099           2.13714           4.44145           0.726636           1.73863           0.00306998           0.00306998           0.00306998           0.00306998           0.00306998           0.00306998           0.00306998           0.00306998           0.00306998           0.00306998           0.00306998           0.00306998           0.00306998           0.00306998           0.00306998           0.00306998           0.00306998           0.00306998           0.00306998           0.00281458           0.00281458           0.00285199           4.63466E-09           0           4.55002E-09           0</td></t<>	Ib/h           0.00340534           0.00440447           0.000242126           0.0466860           0.0306039           0.0168677           0.00158380           0.00847624           0.00106466           0.000623365           9.15743E-05           6.42205E-05           3.89827E-06           7.51238E-06           6.21959E-09           2.68079E-08           0.180906           0.0781966           0.0036958           0.00547574           1653.22           0.0108313           0.213736           0           2.55836           0	Ib/h           0.000155681           1.28588E-08           3.71273E-06           0.00693759           0.120429           0.784320           0.379277           2.65098           2.05821           3.23099           2.13714           4.44145           0.726636           1.73863           0.00306998           0.00901260           12.8957           11.0624           0.687049           1.34782           0.00285199           4.63466E-09           0           4.55002E-09           0	bb/hbb/h13.5463 $75.4727$ 45.0807 $320.191$ 1.867790124.145 $1652.72$ 135.359 $2510.47$ 253.210 $6134.12$ 77.4738 $2326.52$ 252.6147800.6999.29254976.56111.317 $6326.44$ 44.292921162.558.237212303.611.44113740.2352.2496758.3520.18654911.39891.5587306.1247705.2971800.57699901.2157700.1155297.122850.000502168000000000	Ib/h           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0	lb/h $lb/h$ $lb/h$ 15.45678.16123E-061.14840E-0651.40966.48164E-106.87322E-102.127001.68099E-078.50655E-05141.4940.0003374580.00797747154.4690.006153590.00665588289.2060.04112890.0078654588.54720.01983930.00141207288.7620.1419050.00525412113.5360.1245870.00132559127.2710.2047640.0013532150.60140.1753230.00029852912.97220.2129093.41751E-0558.46401.130937.95022E-050.2056480.004959471.71542E-071.678650.03681748.74830E-076.995301.263670.001197546.033762.121400.0006380180.6536760.3113534.01849E-051.376060.6213607.54763E-050.1316610.004311690.5120110.0005693730.00318700.0005126991.47455E-071.09433E-070.005704530002.24670E-076.75409E-062.26174000	Ib/h           0.552622           1.17027           4.09358E-08           4.12013E-05           4.01088E-05           1.40940E-05           8.96416E-07           6.03518E-06           1.28881E-07           1.09537E-07           7.65278E-09           6.67920E-10           4.68395E-11           7.47227E-12           0           0.000221400           0.000577477           1.48498E-05           2.71012E-05           1115.36           6.39323E-08           7.65486E-06           0           0           0	Ib/hIb/hIb/h $75.4727$ $0.000366968$ $0.0141254$ $320.191$ $0.00103162$ $0.0265861$ $0$ $0$ $5.49586E-06$ $1652.72$ $0.000468696$ $0.00110689$ $2510.47$ $0.000324289$ $0.00606031$ $6134.12$ $0.000202812$ $0.0393658$ $2326.52$ $2.05796E-05$ $0.0198021$ $7800.69$ $7.12530E-05$ $0.137677$ $4976.56$ $1.33528E-05$ $0.123840$ $6326.44$ $6.18495E-06$ $0.204908$ $21162.5$ $4.04363E-06$ $0.175424$ $12303.6$ $5.60147E-07$ $0.600473$ $3740.23$ $2.56444E-08$ $0.212935$ $758.352$ $1.28396E-09$ $1.13099$ $11.3989$ $2.19226E-12$ $0.00495964$ $0$ $0$ $0.302044$ $0$ $0$ $0.302044$ $0$ $0$ $0.00210071$ $0$ $0$ $1.39596E-08$ $0$ $0$ $0$ $0$ $0$ $0$	Ib/h           0.000155681           1.28588E-08           3.71273E-06           0.00693759           0.120429           0.784320           0.379277           2.65098           2.05821           3.23099           2.13714           4.44145           0.726636           1.73863           0.00306998           0.00306998           0.00306998           0.00306998           0.00306998           0.00306998           0.00306998           0.00306998           0.00306998           0.00306998           0.00306998           0.00306998           0.00306998           0.00306998           0.00306998           0.00306998           0.00306998           0.00306998           0.00306998           0.00281458           0.00281458           0.00285199           4.63466E-09           0           4.55002E-09           0
Properties Status: Se Phase: Light Liquid From Block:	P Inlet         Inlet Liq         LP           olved         Solved         Solved            V-1402           SAT-1         SAT-2            Variation         0         0           1019.70         0         100           0         100         0           100         0         100           0         100         0           100         0         100           0         1073.11         70099.3           1825.70         227.619         9.77351           233.333         0.302346         0.615627           95.1198         -7.55007E+07         -1077.05           0.559604         1.08267         0.213037           0.346377         0.0647725         0.000496625?           3348.26         19295.5         3623.93           20897.4         20897.4		ed Solved Solve BTEX Vapor MIX-1	02 V-1401 V-1402 PCV-1401E SAT-2 SAT-1 V	8         9         10           olved         Solved         Solved           -1401          V-1415           X-100         SAT-2         Amine Intel           362.721         1019.70         0           100         0         100           100         0         18.0153           55.2241         1.19354         21.5020           0.389359         0.0485434         0.0108703           0.0429840         0.0376913         0.885445           9.87676         -140442         -6531.57           1.07993         1.31416         0.148166           0.167494         0.390094         0.00282729           0         -1059.76         50.3100           0         0         0	V-1415 BTEX Water Regen Water TEG Flash		MIX-100 MP/LP Water MIX-101 LP Flash	33         34         35         138           Solved         Solved         Solved         Solved           RCYL-3         RCYL-2         RCYL-1         RCYL-4           MIX-102         MIX-102         MIX-102         MIX-102           120         34.6959         0         0           100         0         0         100           0         0         0         0           121         0.964632         0.120266         0.00494275           0.116540         0.00991362         0.736521         52.4219           -13892.2         -313.515         0.478453         1.07667           0.306512         0.416558         0.0683582         0.00131581?           0.3938.93         18132.9         4178.09         19244.4

rocess Streams		HP Inlet	Inlet Liq	LP	SLOP Water	· Water 1	1	2	3	4	5	6	7	8	9	10	11	13	14	15	16	17	18	19	20	32	33	34	35	138
omposition	Status:	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved
se: Heavy Liquid	From Block:			V-1402	V-1402		BTEX Vapor	MIX-102	V-1401	V-1402	PCV-1401E	SAT-2	SAT-1	V-1401		V-1415	V-1415	BTEX Water	Regen Water	TEG Flash	Amine Flash	AG Water	MIX-100	MP/LP Water	MIX-101	LP Flash	RCYL-3	RCYL-2	RCYL-1	RCYL-4
	To Block:	SAT-1	SAT-2			SAT-1	RCYL-4	V-1402	PCV-1401E		V-1415	MIX-100	V-1401	MIX-100	SAT-2	Amine Inlet		MIX-101	MIX-101	RCYL-1	RCYL-2	<b>MIX-101</b>	Slug Cathcer Liq	MIX-101	V-1402	RCYL-3	MIX-102	MIX-102	MIX-102	MIX-102
le Fraction							%					%						%					%		%					%
S							2.46939E-05					0.00814791						9.10308E-06					0.00814791		0.0172361					2.46939E
02							1.67820E-09					0.0237270						6.09970E-10					0.0237270	)	0.0283492					1.678208
							2.33957E-07					0						8.37290E-08	3				0	)	3.13092E-06					2.33957
thane							0.000439754					0.0428009						0.000158784	ļ				0.0428009	9	0.000575549					0.000439
ane							0.000929745					0.00838255						0.000342569					0.00838255		0.000368306					0.000929
ppane							0.000953283					0.00289938						0.000360261					0.00289938		0.000359516					0.000953
lutane							9.27529E-05					0.000224623						3.61366E-05	5				0.000224623	3	3.92310E-05					9.275298
utane							0.000715176					0.000668990						0.000285014					0.000668990		0.000271169					0.000715
entane							0.000107574					0.000101153						4.70179E-05					0.000101153		4.66746E-05					0.00010
Pentane							7.45308E-05					3.91705E-05						3.39113E-05					3.91705E-05		2.93033E-05					7.45308
lexane							9.11431E-06					2.05663E-05						5.42882E-06					2.05663E-05		4.59955E-06					9.11431
leptane							3.49723E-06					2.47610E-06						3.53543E-06					2.47610E-06		3.02024E-06					3.49723
ctane							8.82234E-08					8.60530E-08						1.90013E-07					8.60530E-08		1.44939E-07					8.82234
onane							4.63914E-08					4.57092E-09						2.16661E-07					4.57092E-09		1.86360E-07					4.63914
ecane							9.93489E-12					6.17143E-12						1.11410E-10					6.17143E-12	2	8.60594E-11					9.93489
lecane							6.58743E-12					0						1.89260E-10					0	)	1.60654E-10					6.58743
izene							0.0177360					0						0.0123510					0	)	0.00915715					0.017
lene							0.00325418					0						0.00441321					0	)	0.00388918					0.0032
ylbenzene							4.31764E-05					0						0.000148554					0	)	0.000144034					4.31764
Kylene							6.90093E-05					0						0.000226296					0	)	0.000202804					6.90093
ater							99.9755					99.9130						99.9690					99.9130	)	99.9188					99.9
ЕA							9.45547E-06					0						7.69142E-05	5				0	)	4.06312E-05					9.45547E
erazine							3.52918E-05					0						0.00599814	Ļ				0	)	0.00200638					3.52918
osphoric Acid							0					0						0	)				0	)	0					
G							5.67971E-07					0						0.00649081					0	)	0.0185080					5.67971E
							0					0						0	)				0	)	0					
ar Flow							lbmol/h					lbmol/h						lbmol/h					lbmol/h		lbmol/h					lbmol/h
6							7.72391E-08					6.50902E-05						2.69315E-06					6.50902E-05		0.0158143					7.72391
2							5.24916E-12					0.000189545						1.80460E-10					0.000189545	5	0.0260106					5.24916
							7.31784E-10					0						2.47713E-08	}				0	)	2.87265E-06					7.31784E
hane							1.37549E-06					0.000341918						4.69765E-05					0.000341918		0.000528071					1.37549E
ane							2.90811E-06					6.69646E-05						0.000101349					6.69646E-05		0.000337924					2.908111
pane							2.98173E-06					2.31619E-05						0.000106584					2.31619E-05		0.000329859					2.98173
ıtane							2.90118E-07					1.79442E-06						1.06910E-05					1.79442E-06		3.59948E-05					2.90118
utane							2.23697E-06					5.34428E-06						8.43217E-05	5				5.34428E-06	3	0.000248799					2.23697
Pentane							3.36476E-07					8.08069E-07						1.39103E-05	5				8.08069E-07	7	4.28244E-05					3.36476E

n-Pentane n-Hexane n-Hexane n-Heptane n-Heptane n-Octane n-Octane n-Decane Undecane Benzene Toluene Ethylbenzene m-Xylene Water MDEA Piperazine Phosphoric Acid TEG Q2 Mass Fraction H2S CO2 N2 Methane Ethane Ethane Propane	2.33122E-07 2.85083E-08 1.09388E-08 2.75950E-10 1.45106E-10 3.10749E-14 2.06046E-14 5.54758E-05 1.01786E-05 1.35050E-07 2.15851E-07 0.312709 2.95754E-08 1.10388E-07 0 1.77653E-09 0 % 4.66791E-05 4.09648E-09 3.63516E-07 0.000391294 0.00155062 0.00233152	3.12916E-07 1.64296E-07 1.97805E-08 6.87441E-10 3.65152E-11 4.93009E-14 0 0 0 0 0 0 0 0 0 0 0 0 0	1.00327E-05 1.60612E-06 1.04596E-06 5.62156E-08 6.40994E-08 3.29607E-11 5.59928E-11 0.00365405 0.00130565 4.39498E-05 6.69500E-05 2.9.5759 2.27551E-05 0.00177455 0 0 0.00192031 0 	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.33122E-07 2.85083E-08 1.09388E-08 2.75950E-10 1.45106E-10 3.10749E-14 2.06046E-14 5.54758E-05 1.01786E-05 1.35050E-07 2.15851E-07 0.312709 2.95754E-08 1.10388E-07 0 1.77653E-09 0 % 4.66791E-05 4.09648E-09 3.63516E-07 0.000391294 0.00155062 0.00233152
i-Butane i-Butane n-Butane i-Pentane n-Pentane n-Hexane n-Hexane n-Heptane n-Octane n-Nonane n-Decane Undecane Benzene Toluene Ethylbenzene m-Xylene Water MDEA Piperazine Phosphoric Acid TEG C2 Mass Flow H2S CO2 N2 Methane Ethane	0.000299014 0.00230556 0.000430485 0.000298254 4.35641E-05 1.94367E-05 5.58959E-07 3.30016E-07 7.84032E-11 5.71110E-11 0.0768413 0.0166305 0.000254244 0.000406360 99.8979 6.24947E-05 0.000168608 0 4.73086E-06 0 <b>Ib/h</b> 2.63238E-06 2.31013E-10 2.04998E-08 2.20662E-05 8.74441E-05	0.00724338 0.00215728 0.000404906 0.000156796 9.83299E-05 1.37654E-05 5.45364E-07 3.25255E-08 4.87170E-11 0 0 0 0 99.8639 0 0 99.8639 0 0 0 0 0 0 0 0 0 0 0 0 0	0.000116431 0.000918307 0.000188049 0.000135629 2.59339E-05 1.96380E-05 1.20320E-06 1.54041E-06 8.78723E-10 1.63991E-09 0.0534807 0.0225411 0.000874268 0.00133180 99.8356 0.000508070 0.0286403 0 0.0286403 0 0 0.0540343 0 0 1b/h 9.17850E-05 7.94195E-09 6.93928E-07 0.00304748	0.000724338         0.000126255           0.00215728         0.000872684           0.000156796         0.000117064           9.83299E-05         2.19470E-05           1.37654E-05         1.67569E-05           5.45364E-07         9.16720E-07           3.25255E-08         1.32344E-06           4.87170E-11         6.77990E-10           0         1.39043E-09           0         0.00986686           0         0.00198415           0         0.00198415           0         0.000268086           0         0.00268086           0         0.002846886           0         0.00284686           0         0.0036910           0         0.153896           0         0.002268086           0         0.00368086           0         0.00368086           0         0.00268086           0         0.00258086           0         0.00258086           0         0.00258086           0         0.00258086           0         0.00258086           0         0.00258086           0         0.00254852           0.00847156	0.000299014 0.00230556 0.000430485 0.000298254 4.35641E-05 1.94367E-05 5.58959E-07 3.30016E-07 7.84032E-11 5.71110E-11 0.0768413 0.0166305 0.000254244 0.000406360 99.8979 6.24947E-05 0.000168608 0 4.73086E-06 0 <b>ib/h</b> 2.63238E-06 2.31013E-10 2.04998E-08 2.20662E-05 8.74441E-05
Propane i-Butane n-Butane i-Butane i-Pentane n-Pentane n-Pentane n-Hexane n-Hexane n-Cotane n-Octane n-Octane n-Nonane n-Decane Undecane Benzene Toluene Ethylbenzene m-Xylene Water MDEA Piperazine Phosphoric Acid TEG Q2 Process Streams HP Inlet Inlet Liq LP SLOP	0.000131481 1.68623E-05 0.000130018 2.42763E-05 1.68195E-05 2.45671E-06 1.09609E-06 3.15214E-08 1.86106E-08 4.42139E-12 3.22066E-12 0.00433331 0.00937843 1.43376E-05 2.29158E-05 5.63354 3.52427E-06 9.50832E-06 0 2.66787E-07 0 2.66787E-07 0	0.00102134 0.000104295 0.000310621 5.83012E-05 2.25765E-05 1.41582E-05 1.98204E-06 7.85254E-08 4.68326E-09 7.01462E-12 0 0 0 0 14.3791 0 0 14.3791 0 0 0 0 0 0 0 0 0 0 0 0 0	0.00469987 0.00490096 0.0010361 0.000723845 0.000138408 0.00014807 6.42143E-06 8.22108E-06 4.68971E-09 8.75214E-09 0.285424 0.120301 0.00466593 0.00710774 532.818 0.00271155 0.152852 0 0.288379 0 10 11 13 14 15 16	0.00102134       0.0145454         0.000104295       0.00209210         0.000310621       0.0144608         5.83012E-05       0.000308973         2.25765E-05       0.000336371         1.41582E-05       0.000277669         7.85254E-08       1.51905E-05         4.68326E-09       2.19300E-05         7.01462E-12       1.12346E-08         0       0.328783         0       0.0144300         0       0.0197546         14.3791       1651.57         0       0.014330         0       0.158564         0       0.158564         0       0.158564         0       0.158564         0       0.158564         0       0.158564         0       0.158564         0       0.158564         0       0         0       0.158564         0       0         0       0         0       2.55012         0       0         0       0         0       0         0       0         0       0         0       0	0.000131481 1.68623E-05 0.000130018 2.42763E-05 1.68195E-05 2.45671E-06 1.09609E-06 3.15214E-08 1.86106E-08 4.42139E-12 3.22066E-12 0.00433331 0.000937843 1.43376E-05 2.29158E-05 5.63354 3.52427E-06 9.50832E-06 0 2.66787E-07 0 2.66787E-07 0
To Block:     SAT-1     SAT-2       Property     Units       Temperature     "F       Pressure     psia       Mole Fraction Vapor     %       Mole Fraction Light Liquid     %       Mole Fraction Heavy Liquid     %       Mole Fraction Heavy Liquid     %       Mole Fraction Heavy Liquid     %       Moler Flow     Ib/Ibmol       Mass Density     Ib/It*3       Molar Flow     Ib/Ibmol       Mass Flow     Ib/Ib       Vapor Volumetric Flow     gpm       Std Vapor Volumetric Flow     gpm       Std Vapor Volumetric Flow     gpm       Std Vapor Volumetric Flow     sgpm       Compressibility     Specific Gravity       API Gravity     Bu//h       API Gravity     Bu//b       Mass Cp     Bu//b       Mass Cp     Bu//b       Mass Cp     Bu//h*f**F)       Ideal Gas CpCv Ratio     Dynamic Viscosity       Dynamic Viscosity     CSt       Thermal Conductivity     Bu//h*3       Net Liquid Heating Value     Bu//h*3       Net Liquid Heating Value     Bu//h*3       Net Liquid Heating Value     Bu//h       Oross Ideal Gas Heating Value     Bu//h	SAT-1         RCYL-4         V-1402         PCV-1401E           120         34.6959         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 <t< td=""><td>75         1019.70         0         100         18.0241         62.2537         0.798858         14.3987         0.231291         0.0288363         0.00727569         0.288245         0.0514530         0.998156         9.95468         -98121.9         -6814.63         0.976849         1.32900         0.944641         0.348175         0.00498538?         0.672989         -1044.26         51.0076         15.4963</td><td>Amine Inlet          MIX-101         MIX-101         RCYL-1         RCYL           120.119         44.6959         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0</td></t<> <td>-2         MIX-101         Stug Catheer Liq         MIX-101         V-1402         RCYL-3         MIX-102         MIX           75         102.776         102.776         1019.70         44.6959         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0</td> <td>-102 MIX-102 MIX-102 120 34.6959 0 0 100 18.0293 61.6764 0.312786 5.63930 0.0914338 0.0113995 0.00284873 0.0112757 0.00163040 0.988899 9.99109 -38189.7 -6772.05 0.977191 1.32718 0.570586 0.577540 0.366985 0.00466199 0.855877 -1040.85 51.1936 18.6701 4 35 138 Val Solvad Solvad 12 RCYL-1 RCYL-4</td>	75         1019.70         0         100         18.0241         62.2537         0.798858         14.3987         0.231291         0.0288363         0.00727569         0.288245         0.0514530         0.998156         9.95468         -98121.9         -6814.63         0.976849         1.32900         0.944641         0.348175         0.00498538?         0.672989         -1044.26         51.0076         15.4963	Amine Inlet          MIX-101         MIX-101         RCYL-1         RCYL           120.119         44.6959         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0	-2         MIX-101         Stug Catheer Liq         MIX-101         V-1402         RCYL-3         MIX-102         MIX           75         102.776         102.776         1019.70         44.6959         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0	-102 MIX-102 MIX-102 120 34.6959 0 0 100 18.0293 61.6764 0.312786 5.63930 0.0914338 0.0113995 0.00284873 0.0112757 0.00163040 0.988899 9.99109 -38189.7 -6772.05 0.977191 1.32718 0.570586 0.577540 0.366985 0.00466199 0.855877 -1040.85 51.1936 18.6701 4 35 138 Val Solvad Solvad 12 RCYL-1 RCYL-4
					10-2         ICOTE-1         ICOTE-4           -102         MIX-102         MIX-102           %         0.000542989         3.47673E-08           1.55777E-05         0.0507109         0.468504           2.07948         0.762815         5.33176           3.33465         5.23471         2.89891           5.18123         0.743579         1.58459           0.00252215         0.00673989         19.3045           14.0356         0.756484         1.48402           36.7358         0.00280111         1.29097E-05           0         2.11204E-07         0           0         10001/h         0
H2S       CO2         N2       Methane         Ethane       Propane         i-Butane       n         n-Butane       n         n-Pentane       n         n-Hexane       n         n-Heptane       n         n-Octane       n         n-Docane       undecane         Benzene       Toluene         Ethylbenzene       mXylene         Water       MDEA         Piperazine       Phosphoric Acid         TEG       O2         Mass Fraction       H2S	4.64522E-06 2.97431E-10 1.33266E-07 0.000433827 0.0040801 0.0177898 0.00652581 0.0456127 0.0285276 0.0447825 0.0247999 0.0443250 0.00636125 0.0135561 2.15768E-05 5.76592E-05 0.165148 0.120073 0.00647165 0.0126957 0.314272 2.39632E-05 1.10442E-07 0 1.80683E-09 0 %	2.21458 7.27569 0 103.022 83.4902 139.110 40.0281 134.212 68.9763 87.6860 245.575 122.788 32.7434 5.91284 0.0801147 0 0 0 0 0 0 0 1.19354 0 0 0 0 0 0 0 0 0 0 0 0 0	2.93262E-06 1.95188E-10 3.07719E-08 6.80118E-05 0.000305998 0.00103930 0.000352029 0.00252582 0.00174071 0.00284812 0.0023610 0.0023610 0.00599241 0.00186395 0.00881785 3.48567E-05 0.000235543 0.0198318 0.0243297 0.00297668 0.00297668 0.00591973 29.5761 5.06054E-05 0.00177455 0 0 0 0.00192036 0 1.84839E-05 1.58864E-09	2.21458 $0.0162287$ 7.27569 $0.0266147$ 0 $3.06883E-06$ 103.022 $0.000597088$ $83.4902$ $0.000597089$ $83.4902$ $0.000376933$ $139.110$ $0.00122260$ $40.0281$ $0.000376933$ $134.212$ $0.00261755$ $68.9763$ $0.00175927$ $87.6860$ $0.0023989$ $122.788$ $0.0023989$ $122.788$ $0.00239540$ $32.7434$ $0.00881847$ $0.0801147$ $3.48580E-05$ $0$ $0.00235549$ $0$ $0.00237720$ $0$ $0.00237720$ $0$ $0.00297720$ $0$ $0.00297720$ $0$ $0.00297720$ $0$ $0.00297720$ $0$ $0.00184087$ $0$ $0.0018913$ $0$ $0.00169813$ $0$ $0$ $0$ $0.0332484$ $0.456640$ $0.0704116$	4.64522E-06 2.97431E-10 1.33266E-07 0.000433827 0.00400801 0.0177898 0.00652581 0.0456127 0.0285276 0.0447825 0.0247999 0.0443250 0.00636125 0.0135561 2.15768E-05 5.76592E-05 0.165148 0.120073 0.00647165 0.0126957 0.314272 2.39632E-05 1.10442E-07 0 1.80683E-09 0 %
N2 N2 Methane Ethane Propane i-Butane n-Butane n-Butane n-Pentane n-Pentane n-Pentane n-Heptane n-Heptane n-Octane n-Octane n-Octane n-Octane n-Nonane n-Decane Undecane Benzene Toluene Ethylbenzene m-Xylene Water MDEA Piperazine Phosphoric Acid TEG Q2 Mass Flow H2S CO2 Na	7.47385E-06 0.0139331 0.241273 1.57046 0.759340 5.30747 4.12054 6.46841 4.27851 8.89169 1.45471 3.48071 0.00614604 0.0180431 25.8256 22.1487 1.37549 2.69835 11.3346 0.00571668 1.90447E-05 0 5.43212E-07 0 <b>Ib/h</b> 0.000158313 1.30898E-08	0 2.35697 3.58021 8.74794 3.31788 11.1246 7.09713 9.02221 30.1801 17.5462 5.33398 1.08149 0.0162560 0 0 0 0 0 0 0 0 0 0 0 0 0	1.59422E-07 0.000201782 0.00170163 0.00847549 0.00378396 0.0271501 0.0232264 0.0328026 0.0324495 0.111046 0.0393763 0.209153 0.209153 0.000917197 0.00680894 0.286487 0.414577 0.00680894 0.286487 0.414577 0.0584440 0.116228 98.5392 0.00111522 0.0282682 0 0 0.0533335 0 0 15/h	0 $5.16791E-06$ 2.35697 $0.000575798$ 3.58021 $0.000975798$ 8.74794 $0.00324081$ 3.31788 $0.00131615$ 11.1246 $0.00914560$ 7.09713 $0.00763023$ 9.02221 $0.0124344$ 30.1801 $0.0165673$ 31.7562 $0.0361135$ 5.33398 $0.0128013$ 1.08149 $0.0679897$ 0.0162560 $0.000291444$ 0 $0.033273$ 0 $0.1348311$ 0 $0.0139005$ 0 $0.0306642$ 9.9.2829 $0.000393327$ 0 $0.0093327$ 0 $0.0093327$ 0 $0.00953194$ 0 $0.00953194$ 0 $0.00953194$ 0 $0.0153298$ 0 $0.0553090$ 320.200 $1.17130$	7.47385E-06 0.0139331 0.241273 1.57046 0.759340 5.30747 4.12054 6.46841 4.27851 8.89169 1.45471 3.48071 0.00614604 0.0180431 25.8256 22.1487 1.37549 2.69835 11.3346 0.00571668 1.90447E-05 0 5.43212E-07 0 <b>ib/h</b> 0.000158313 1.30898E-08
	3.73323E-06 0.00695965 0.120517 0.784452 0.379294 2.65111 2.05823 3.23100 2.13714 4.44145 0.726636 1.73863 0.00306998 0.00901260 12.9000 11.0634 0.687063 1.34784 5.66169 0.00285551 9.51295E-06 0 2.71337E-07 0 <b>Water Water 1 1 2 3</b>	0       1652.72         2510.47       6134.12         2326.52       7800.69         4976.56       6326.44         21162.5       12303.6         3740.23       758.352         11.3989       0         0       0         0       0         0       0         0       0         0       0         0       0         0       0         0       0         0       0         0       0         0       0         0       0         0       0         0       0         0       0         0       0         0       0         0       0         0       0         0       0         0       0         0       0         0       0         0       0         0       0         0       0         0       0         0       0         0       0         0       0	8.62027E-07 0.00109108 0.00920107 0.0458288 0.0204607 0.146806 0.125590 0.205488 0.175461 0.600452 0.212916 1.13093 0.00495948 0.0368174 1.54909 2.24170 0.316019 0.628468 532.823 0.00603025 0.152852 0 0 0.288386 0 10 11 13 14 15 16 20100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100 50100000000	0         8.59685E-05           1652.72         0.00957844           2510.47         0.0162213           6134.12         0.0539111           2326.52         0.0218942           7800.69         0.152138           4976.56         0.126929           6326.44         0.206948           21162.5         0.175788           12303.6         0.600751           3740.23         0.212950           758.352         1.13101           11.3989         0.00495965           0         2.24292           0         0.316074           0         0.224292           0         0.316074           0         0.55251           0         2.15020           15.158         0           0         0.158564           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0 <td>3.73323E-06 0.00695965 0.120517 0.784452 0.379294 2.65111 2.05823 3.23100 2.13714 4.44145 0.726636 1.73863 0.00306998 0.00901260 12.9000 11.0634 0.687063 1.34784 5.66169 0.00285551 9.51295E-06 0 2.71337E-07 0 2.71337E-07 0</td>	3.73323E-06 0.00695965 0.120517 0.784452 0.379294 2.65111 2.05823 3.23100 2.13714 4.44145 0.726636 1.73863 0.00306998 0.00901260 12.9000 11.0634 0.687063 1.34784 5.66169 0.00285551 9.51295E-06 0 2.71337E-07 0 2.71337E-07 0
Phase: Mixed Liquid From Block: V-1402 V-1	Ved         Solved         V-1401         V-1401         V-1401         PCV-1401E         PCV-140	Solved         Solved         Solved         Solved         Solved         Solved         Solved         Solved         Solved         Solved         Solved         Solved         Solved         Solved         Solved         Solved         Solved         Solved         Solved         Solved         Solved         Solved         Solved         Solved         Solved         Solved         Solved         Solved         Solved         Solved         Solved         Solved         Solved           V-1401         WIX-100         V-1401              Solved         Solved         Solved         Solved         Solved         Solved                           Solved         Solved         Solved         Solved         Solved         Solved         Solved         Solved         Solved         Solved         Solved         Solved         Solved         Solved         Solved         Solved         Solved         Solved         Solved         Solved         Solved <td>V-1415 V-1415 BTEX Water Regen Water TEG Flash Amine F</td> <td>Flash AG Water MIX-100 MP/LP Water MIX-101 LP Flash RCYL-3 RCY</td> <td>Ved Solved Solved YL-2 RCYL-1 RCYL-4 -102 MIX-102 MIX-102 120 34.6959 0 63.4379 36.5621 58.3881 47.2987 0.855491 49.9505 1.05607 0.131665 0.00779148 0.127816 0.00688510 0.127816 0.00688510 0.758372 47.6316 -52081.9 -1042.67</td>	V-1415 V-1415 BTEX Water Regen Water TEG Flash Amine F	Flash AG Water MIX-100 MP/LP Water MIX-101 LP Flash RCYL-3 RCY	Ved Solved Solved YL-2 RCYL-1 RCYL-4 -102 MIX-102 MIX-102 120 34.6959 0 63.4379 36.5621 58.3881 47.2987 0.855491 49.9505 1.05607 0.131665 0.00779148 0.127816 0.00688510 0.127816 0.00688510 0.758372 47.6316 -52081.9 -1042.67

ass Cp	Btu/(lb*°F)	0.534759	0.559723	0.970569	0.559723	0.974645	0.53475
l Gas CpCv Ratio		1.10648	1.08274	1.32368	1.08274	1.32643	1.1064
amic Viscosity	cP	0.329376	0.213124	0.568104	0.213124	0.680099	0.3293
ematic Viscosity	cSt	0.434732	0.346455	0.577153	0.346455	0.686232	0.4347
ermal Conductivity	Btu/(h*ft*°F)	0.0942132	0.0648140	0.361872	0.0648140	0.358187	0.0942
rface Tension	lbf/ft	0.00160552?	0.000497625?	0.00460597?	0.000497625?	0.00476709?	0.0016055
t Ideal Gas Heating Value	Btu/ft^3	2499.08	3344.54	12.4881	3344.54	4.78185	2499
t Liquid Heating Value	Btu/lb	15968.2	19289.3	-786.919	19289.3	-953.317	1596
oss Ideal Gas Heating Value	Btu/ft^3	2669.21	3619.96	63.4035	3619.96	55.3237	2669.
ross Liquid Heating Value	Btu/lb	17073.8	20891.0	272.947	20891.0	105.348	1707;



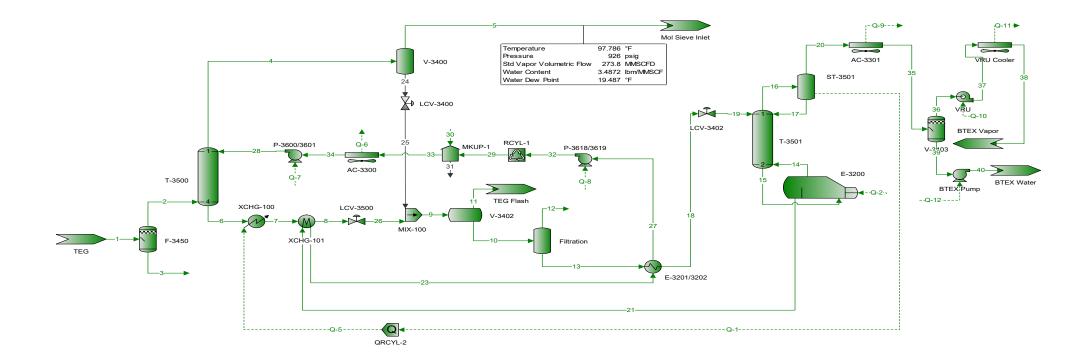
Process Streams		AMINE OUT	CO2 Blend	GAS IN	GAS OUT	58	59	65	112
Composition	Status:	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved
Phase: Total		T-2500A			T-2500A	PCV-2402A		FAXR-100	RCYL-4
mase. Total	From Block: To Block:	LCV-2500A	 MIX-102	E-2500A T-2500A	E-2500A	AGI Compression	Stabilizer NGL T-1503	V-2402	MIX-103
Aole Fraction	TO DIOCK.	%	%	%	<u>~~2300A</u>	%	%	%	%
12S		0.851023	0*	0.999942	0.000162824	16.0055	0.0728404	7.58051	0.44871
02		4.03338	100*	5.00186	5.10616E-07	79.9993	0.00246924	37.8139	3.1119
12		0.000685498	0*	1.27463	1.35544	0.000166085	0.00240924	7.83923E-05	1.61364E-0
iz Iethane		0.116877	0*	68.1501	72.3649	0.142326	0.000346632	0.0671793	0.010842
thane		0.0269744	0*	12.7119	13.4912	0.0535924	1.89219	0.0252964	0.0010842
		0.0209744	0*	7.37140	7.82966	0.0183942	23.9049	0.00868226	0.0041975
ropane Butane		0.00100412	0*	0.977296	1.03863	0.00141250	8.60950	0.000666704	0.00013141
Butane		0.00336470	0*	2.47684	2.63118	0.00647112	27.7879	0.00305442	0.00012227
Pentane		0.000216804	0*	0.451695		0.00047112		8.00114E-05	
Pentane Pentane		0.000278975	0*	0.451695	0.480367 0.453889	0.000308419	9.94983 10.8311	0.000145575	1.68947E-0 2.87966E-0
Hexane		2.87087E-05 7.22157E-06	0* 0*	0.0629645 0.0373174	0.0669631	2.75811E-05 3.00324E-06	13.4735 3.06581	1.30183E-05 1.41752E-06	2.94631E-0 3.83940E-0
Heptane			0* 0*		0.0397003	3.00324E-06 4.04905E-07	0.376567		
-Octane		6.68134E-07	0* 0*	0.00313223	0.00333215			1.91113E-07	4.84792E-0
-Nonane		3.70307E-07	0* 0*	0.00520681 8.91334E-06	0.00554013	7.14663E-08	0.0324763	3.37316E-08	1.23781E-0
Decane		1.49420E-10			9.48457E-06	0	0.000222565	0	
ndecane		2.06503E-10	0*	3.04812E-05	3.24350E-05	0	0	0	0.0040400
enzene		0.000830082	0*	0.0106321	0.0102181	0.0150189	-	0.00711624	0.0012420
oluene		0.000239473	0*	0.00359120	0.00350535	0.00435629	0	0.00206260	0.00040514
thylbenzene		6.56919E-06	0*	0.000163957	0.000165798	0.000116002	0	5.48913E-05	1.15589E-0
-Xylene		1.65997E-05	0*	0.000318690	0.000317212	0.000302910	0	0.000143550	3.13885E-0
/ater		82.0399	0*	0.0340687	0.224400	3.75254	0.000385943	54.4635	83.429
IDEA		11.1939	0*	1.36195E-07	0.000130721	4.42532E-09	0	0.0192130	11.260
iperazine		1.72047	0*	4.80515E-10	0.000266502	4.43171E-09	0	0.00834998	1.7307
hosphoric Acid		0	0*	0	0	0	0	0	
EG		0	0*	6.18310E-12	0	0	0	0	
lolar Flow		Ibmol/h	lbmol/h	Ibmol/h	lbmol/h	Ibmol/h	Ibmol/h	Ibmol/h	lbmol/h
2S		338.610	0	320.762	0.0490840	320.949	0.276392	322.056	2.6321
02		1604.83	0	1604.50	0.000153928	1604.18	0.00936948	1606.51	18.255
2		0.272750	0	408.878	408.605	0.00333041	0	0.00333047	9.46573E-0
lethane		46.5036	0	21861.2	21814.7	2.85398	0.00131529	2.85409	0.063603
thane		10.7327	0	4077.73	4067.00	1.07466	7.17990	1.07471	0.024623
ropane		4.31355	0	2364.60	2360.29	0.368850	90.7067	0.368864	0.0088821
Butane		0.398093	0	313.498	313.100	0.0283241	32.6686	0.0283247	0.00071727
-Butane		1.33877	0	794.521	793.183	0.129762	105.441	0.129766	0.0031726
Pentane		0.0862634	0	144.895	144.809	0.00339920	37.7545	0.00339926	9.91060E-0
-Pentane		0.111000	0	136.938	136.827	0.00618455	41.0984	0.00618469	0.00016892
-Hexane		0.0114228	0	20.1978	20.1864	0.000553069	51.1250	0.000553077	1.72833E-0
-Heptane		0.00287336	0	11.9707	11.9678	6.02223E-05	11.6332	6.02228E-05	2.25222E-0
-Octane		0.000265841	0	1.00476	1.00449	8.11933E-06	1.42888	8.11938E-06	2.84383E-0
Nonane		0.000147340	0	1.67025	1.67010	1.43307E-06	0.123231	1.43308E-06	7.26107E-0
Decane		5.94520E-08	0	0.00285923	0.00285917	0	0.000844519	0	
ndecane		8.21648E-08	0	0.00977778	0.00977770	0	0	0	
		0.330278	0	3.41058	3.08030	0.301167	0	0.302331	0.0072859
		0.0050000	0	1.15199	1.05671	0.0873543	0	0.0876291	0.0023766
oluene		0.0952830			0.0400906	0.00232613	0	0.00233204	6.78056E-0
oluene thylbenzene		0.00261379	0	0.0525944	0.0499806				
oluene thylbenzene				0.0525944 0.102230	0.0499808	0.00607409	0	0.00609869	0.00018412
oluene thylbenzene h-Xylene /ater		0.00261379 0.00660479 32642.5	0	0.102230 10.9286	0.0956250 67.6465	0.00607409 75.2475	0 0.00146445	2313.87	489.40
oluene thylbenzene h-Xylene /ater		0.00261379 0.00660479	0 0	0.102230	0.0956250	0.00607409	•		489.40
enzene oluene thylbenzene h-Xylene /ater IDEA iperazine		0.00261379 0.00660479 32642.5	0 0 0	0.102230 10.9286	0.0956250 67.6465	0.00607409 75.2475	0.00146445	2313.87	489.40 66.054
oluene thylbenzene h-Xylene /ater IDEA		0.00261379 0.00660479 32642.5 4453.88	0 0 0 0	0.102230 10.9286 4.36886E-05	0.0956250 67.6465 0.0394066	0.00607409 75.2475 8.87386E-08	0.00146445 0	2313.87 0.816259	0.00018412 489.40 66.054 10.152

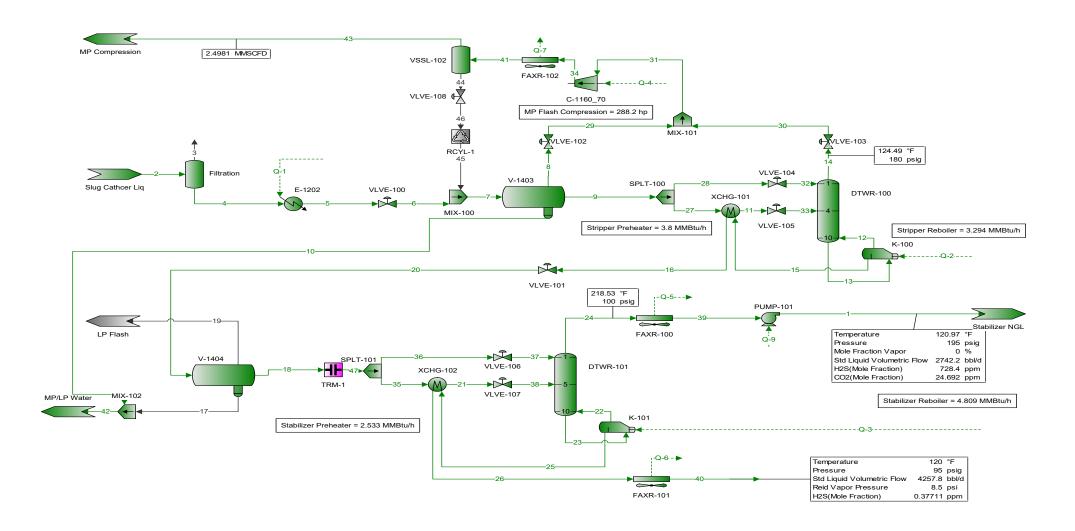
Mass Fraction	%	%	%	%	%	%	%	%
H2S	0.914904	0*	1.43995	0.000247002	13.1738	0.0397582	8.87825	0.485987
CO2	5.59937	100*	9.30125	1.00026E-06	85.0287	0.00174041	57.1894	4.35237
12	0.000605752	0*	1.50874	1.69013	0.000112364	0	7.54670E-05	1.43654E-05
<i>A</i> ethane	0.0591456	0*	46.1956	51.6738	0.0551426	8.90602E-05	0.0370360	0.00552772
Ithane	0.0255855	0*	16.1508	18.0569	0.0389184	0.911231	0.0261394	0.00401108
Propane	0.0150798	0*	13.7344	15.3678	0.0195889	16.8821	0.0131567	0.00212182
Butane	0.00183439	0*	2.40011	2.68704	0.00198273	8.01425	0.00133166	0.000225852
	0.00616896	0*				25.8667	0.00610083	
-Butane			6.08279	6.80715	0.00908352			0.000998979
Pentane	0.000493424	0*	1.37701	1.54267	0.000295373	11.4971	0.000198380	3.87370E-05
-Pentane	0.000634917	0*	1.30139	1.45764	0.000537406	12.5154	0.000360938	6.60259E-05
-Hexane	7.80404E-05	0*	0.229267	0.256857	5.74021E-05	18.5955	3.85526E-05	8.06874E-06
-Heptane	2.28261E-05	0*	0.157998	0.177069	7.26773E-06	4.91999	4.88115E-06	1.22260E-06
-Octane	2.40747E-06	0*	0.0151179	0.0169423	1.11702E-06	0.688907	7.50209E-07	1.75985E-07
-Nonane	1.49817E-06	0*	0.0282169	0.0316276	2.21365E-07	0.0667091	1.48672E-07	5.04512E-08
-Decane	6.70625E-10	0*	5.35862E-05	6.00674E-05	0	0.000507164	0	0
Indecane	1.01820E-09	0*	0.000201315	0.000225667	0	0	0	0
enzene	0.00204532	0*	0.0350913	0.0355271	0.0283328	0	0.0191023	0.00308320
oluene	0.000696019	0*	0.0139812	0.0143762	0.00969372	0	0.00653092	0.00118631
thylbenzene	2.19997E-05	0*	0.000735488	0.000783488	0.000297428	0	0.000200264	3.89981E-05
ylene	5.55910E-05	0*	0.00142960	0.00149900	0.000776654	0	0.000523725	0.000105900
/ater	46.6218	0*	0.0259334	0.179943	1.63267	0.000111354	33.7182	47.7643
IDEA	42.0767	0*	6.85743E-07	0.000693358	1.27355E-08	0.000111001	0.0786777	42.6422
iperazine	4.67469	0*	1.74885E-09	0.00102178	9.21906E-09	0	0.0247164	4.73772
hosphoric Acid	4.07409	0*	0	0.00102178	9.21900E-09 0	0	0.0247104	4.13112
EG	0	0*	3.92339E-11	0	0	0	0	0
lass Flow	lb/h	lb/h	10/h	lb/h	lb/h	lb/h	lb/h	lb/h
2S	11540.1	0	10931.8	1.67282	10938.2	9.41967	10976.0	89.7074
02	70627.7	0	70613.3	0.00677428	70599.3	0.412346	70701.7	803.396
2	7.64065	0	11454.0	11446.4	0.0932960	0	0.0932979	0.00265167
lethane	746.032	0	350708	349962	45.7849	0.0211005	45.7867	1.02035
thane	322.723	0	122613	122291	32.3139	215.893	32.3155	0.740397
ropane	190.209	0	104269	104078	16.2647	3999.77	16.2653	0.391662
Butane	23.1380	0	18221.2	18198.0	1.64626	1898.77	1.64630	0.0416895
-Butane	77.8121	0	46179.3	46101.5	7.54205	6128.44	7.54230	0.184399
Pentane	6.22380	0	10454.0	10447.8	0.245248	2723.94	0.245253	0.00715038
-Pentane	8.00853	0	9879.91	9871.90	0.446208	2965.20	0.446218	0.0121876
-Hexane	0.984362	0	1740.55	1739.57	0.0476610	4405.72	0.0476616	0.00148939
Heptane	0.287917	0	1199.49	1199.20	0.00603439	1165.67	0.00603444	0.000225677
Octane	0.0303667	0	114.772	114.742	0.000927459	163.219	0.000927465	3.24846E-05
Nonane	0.0188971	0	214.217	214.199	0.000183799	15.8050	0.000183800	9.31269E-06
-Decane	8.45893E-06	0	0.406816	0.406807	0.000100700	0.120160	0.000100000	0
ndecane	1.28430E-05	0	1.52835	1.52833	0	0.120100	0	0
	1.28430E-05 25.7986	0	266.406	240.608	23.5247			0 560400
			200 400	240.000	23.3247	0	23.6157	0.569122
						°	0 07404	0 040070
oluene	8.77923	0	106.142	97.3632	8.04869	0	8.07401	0.218978
oluene thylbenzene	8.77923 0.277493	0 0	106.142 5.58368	97.3632 5.30619	8.04869 0.246954	0	0.247581	0.00719858
oluene thylbenzene h-Xylene	8.77923 0.277493 0.701197	0 0 0	106.142 5.58368 10.8532	97.3632 5.30619 10.1520	8.04869 0.246954 0.644855	0 0 0	0.247581 0.647467	0.00719858 0.0195479
oluene thylbenzene h-Xylene /ater	8.77923 0.277493 0.701197 588064	0 0 0 0	106.142 5.58368 10.8532 196.881	97.3632 5.30619 10.1520 1218.67	8.04869 0.246954 0.644855 1355.61	0 0 0 0.0263825	0.247581 0.647467 41684.9	0.00719858 0.0195479 8816.71
oluene thylbenzene I-Xylene /ater IDEA	8.77923 0.277493 0.701197 588064 530735	0 0 0	106.142 5.58368 10.8532 196.881 0.00520603	97.3632 5.30619 10.1520 1218.67 4.69578	8.04869 0.246954 0.644855 1355.61 1.05743E-05	0 0 0 0.0263825 0	0.247581 0.647467 41684.9 97.2673	0.00719858 0.0195479 8816.71 7871.24
oluene thylbenzene I-Xylene /ater IDEA iperazine	8.77923 0.277493 0.701197 588064	0 0 0 0	106.142 5.58368 10.8532 196.881	97.3632 5.30619 10.1520 1218.67	8.04869 0.246954 0.644855 1355.61	0 0 0 0.0263825	0.247581 0.647467 41684.9	0.00719858 0.0195479 8816.71
oluene thylbenzene n-Xylene Vater IDEA Iperazine	8.77923 0.277493 0.701197 588064 530735	0 0 0 0 0	106.142 5.58368 10.8532 196.881 0.00520603	97.3632 5.30619 10.1520 1218.67 4.69578	8.04869 0.246954 0.644855 1355.61 1.05743E-05	0 0 0 0.0263825 0	0.247581 0.647467 41684.9 97.2673	0.00719858 0.0195479 8816.71 7871.24
oluene thylbenzene n-Xylene Vater IDEA Piperazine Phosphoric Acid	8.77923 0.277493 0.701197 588064 530735 58964.1	0 0 0 0 0 0	106.142 5.58368 10.8532 196.881 0.00520603 1.32769E-05	97.3632 5.30619 10.1520 1218.67 4.69578 6.92000	8.04869 0.246954 0.644855 1355.61 1.05743E-05 7.65458E-06	0 0 0.0263825 0 0	0.247581 0.647467 41684.9 97.2673 30.5563	0.00719858 0.0195479 8816.71 7871.24
oluene Ethylbenzene n-Xylene Vater IDEA Piperazine Phosphoric Acid	8.77923 0.277493 0.701197 588064 530735 58964.1 0	0 0 0 0 0 0 0	106.142 5.58368 10.8532 196.881 0.00520603 1.32769E-05 0	97.3632 5.30619 10.1520 1218.67 4.69578 6.92000 0	8.04869 0.246954 0.644855 1355.61 1.05743E-05 7.65458E-06 0	0 0 0.0263825 0 0 0	0.247581 0.647467 41684.9 97.2673 30.5563 0	0.00719858 0.0195479 8816.71 7871.24
Foluene Ethylbenzene n-Xylene Water MDEA Piperazine Phosphoric Acid FEG	8.77923 0.277493 0.701197 588064 530735 58964.1 0	0 0 0 0 0 0 0 0	106.142 5.58368 10.8532 196.881 0.00520603 1.32769E-05 0	97.3632 5.30619 10.1520 1218.67 4.69578 6.92000 0	8.04869 0.246954 0.644855 1355.61 1.05743E-05 7.65458E-06 0	0 0 0.0263825 0 0 0	0.247581 0.647467 41684.9 97.2673 30.5563 0	0.00719858 0.0195479 8816.71 7871.24
Benzene Foluene Ethylbenzene n-Xylene Vater MDEA Piperazine Phosphoric Acid TEG Process Streams Properties Status: Phase: Total From Block:	8.77923 0.277493 0.701197 588064 530735 58964.1 0 0	0 0 0 0 0 0 0 0	106.142 5.58368 10.8532 196.881 0.00520603 1.32769E-05 0 2.97856E-07	97.3632 5.30619 10.1520 1218.67 4.69578 6.92000 0 0	8.04869 0.246954 0.644855 1355.61 1.05743E-05 7.65458E-06 0 0	0 0 0.0263825 0 0 0 0 0	0.247581 0.647467 41684.9 97.2673 30.5563 0 0	0.00719858 0.0195479 8816.71 7871.24 874.527 0 0

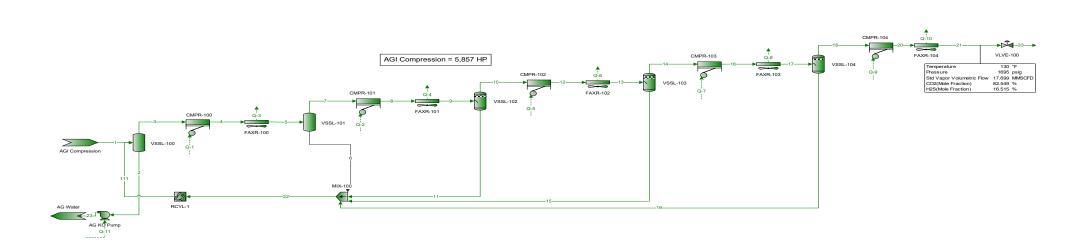
	To Block:	LCV-2500A	MIX-102	T-2500A	E-2500A	AGI Compression	T-1503	V-2402	MIX-103
Property	Units								
Temperature	°F	171.972	90*	110*	126.873	99.4699	120.971	100*	180.17
Pressure	psia	951.696	960.696*	951.696	949.696	21.6959*	209.696	25.6959	79.695
Mole Fraction Vapor	%	0		100	100	100	0	47.1992	
Mole Fraction Light Liquid	%	100		0	0	0	100	52.8008	10
Mole Fraction Heavy Liquid	%	0		0	0	0	0	0	
Molecular Weight	lb/lbmol	31.7013	44.0095	23.6667	22.4661	41.4064	62.4391	29.0993	31.467
Mass Density	lb/ft^3	68.1227		4.66135	4.14879	0.150875	35.0731	0.265810	66.922
Molar Flow	lbmol/h	39788.6	0	32078.1	30145.5	2005.25	379.448	4248.47	586.60
Mass Flow	lb/h	1.26135E+06	0	759181	677252	83030.0	23692.4	123627	18458
Vapor Volumetric Flow	ft^3/h	18515.9	0	162867	163241	550324	675.516	465097	275.82
Liquid Volumetric Flow	gpm	2308.47	0	20305.5	20352.1	68611.9	84.2202	57986.1	34.388
Std Vapor Volumetric Flow	MMSCFD	362.379	0*	292.155	274.554	18.2630	3.45587	38.6935	5.3426
Std Liquid Volumetric Flow	sgpm	2566.06	0	3963.89	3757.83	203.450	79.9795	284.688	37.342
Compressibility		0.0653354		0.790382	0.817012	0.992307	0.0599103	0.468360	0.0054573
Specific Gravity		1.09226		0.817148	0.775697	1.42966	0.562350		1.0730
API Gravity		-4.43498					103.528		-2.8286
Enthalpy	Btu/h	-5.12624E+09	0	-1.33011E+09	-1.05071E+09	-2.81858E+08	-2.48990E+07	-5.56452E+08	-7.54097E+0
Mass Enthalpy	Btu/lb	-4064.09		-1752.03	-1551.44	-3394.66	-1050.93	-4501.04	-4085.3
Mass Cp	Btu/(lb*°F)	0.750016		0.613034	0.634065	0.215402	0.618781	0.471485	0.78523
ldeal Gas CpCv Ratio		1.14277	1.28531	1.22697	1.21977	1.28942	1.08094	1.30794	1.1406
Dynamic Viscosity	cP	2.14849		0.0137109	0.0134053	0.0153173	0.148565		1.8127
Kinematic Viscosity	cSt	1.96889		0.183626	0.201713	6.33790	0.264437		1.6909
Thermal Conductivity	Btu/(h*ft*°F)	0.183869		0.0218188	0.0227357	0.0100352	0.0561235		0.18815
Surface Tension	lbf/ft	0.00333769?					0.000570175?		0.00332825
Net Ideal Gas Heating Value	Btu/ft^3	462.323	0	1144.27	1208.83	97.5087	3222.67	47.1309	461.01
Net Liquid Heating Value	Btu/Ib	4878.45	-74.8536	18272.3	20343.8	785.938	19426.3	196.126	4891.5
Gross Ideal Gas Heating Value	Btu/ft^3	545.113	0	1259.10	1330.33	107.764	3489.50	78.5777	544.37
Gross Liquid Heating Value	Btu/lb	5869.49	-74.8536	20114.0	22396.6	879.953	21048.3	606.242	5896.8

Process Streams		AMINE OUT	CO2 Blend	GAS IN	GAS OUT	58	59	65	112
Composition	Status:	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved
Phase: Vapor	From Block:	T-2500A		E-2500A	T-2500A	PCV-2402A	Stabilizer NGL	FAXR-100	RCYL-4
	To Block:	LCV-2500A	MIX-102	T-2500A	E-2500A	AGI Compression	T-1503	V-2402	MIX-103
Mole Fraction				%	%	%		%	
12S				0.999942	0.000162824	16.0055		16.0055	
CO2				5.00186	5.10616E-07	79.9993		79.9993	
N2				1.27463	1.35544	0.000166085		0.000166085	
Vethane				68.1501	72.3649	0.142326		0.142326	
Ethane				12.7119	13.4912	0.0535924		0.0535924	
Propane				7.37140	7.82966	0.0183942		0.0183942	
-Butane				0.977296	1.03863	0.00141250		0.00141250	
n-Butane				2.47684	2.63118	0.00647112		0.00647112	
-Pentane				0.451695	0.480367	0.000169515		0.000169515	
n-Pentane				0.426890	0.453889	0.000308419		0.000308419	
n-Hexane				0.0629645	0.0669631	2.75811E-05		2.75811E-05	
n-Heptane				0.0373174	0.0397003	3.00324E-06		3.00324E-06	
n-Octane				0.00313223	0.00333215	4.04905E-07		4.04905E-07	
n-Nonane				0.00520681	0.00554013	7.14663E-08		7.14663E-08	
-Decane				8.91334E-06	9.48457E-06	0		0	
Jndecane				3.04812E-05	3.24350E-05	0		0	
Benzene				0.0106321	0.0102181	0.0150189		0.0150189	
Foluene				0.00359120	0.00350535	0.00435629		0.00435629	
Ethylbenzene				0.000163957	0.000165798	0.000116002		0.000116002	
m-Xylene				0.000318690	0.000317212	0.000302910		0.000302910	

Matar	0.0040007	0.004400	0 75054		
Vater //DEA	0.0340687	0.224400	3.75254	3.75254	
/IDEA Piperazine	1.36195E-07 4.80515E-10	0.000130721 0.000266502	4.42532E-09 4.43171E-09	4.42532E-09 4.43171E-09	
•					
Phosphoric Acid EG	0 6.18310E-12	0 0	0 0	0 0	
Molar Flow	lbmol/h	lbmol/h	lbmol/h	lbmol/h	_
					_
125	320.762	0.0490840	320.949 1604.18	320.949 1604.18	
CO2 N2	1604.50	0.000153928			
	408.878	408.605	0.00333041	0.00333041	
/lethane	21861.2	21814.7	2.85398	2.85398	
thane	4077.73	4067.00	1.07466	1.07466	
Propane	2364.60	2360.29	0.368850	0.368850	
Butane	313.498	313.100	0.0283241	0.0283241	
-Butane	794.521	793.183	0.129762	0.129762	
Pentane	144.895	144.809	0.00339920	0.00339920	
-Pentane	136.938	136.827	0.00618455	0.00618455	
-Hexane	20.1978	20.1864	0.000553069	0.000553069	
-Heptane	11.9707	11.9678	6.02223E-05	6.02223E-05 8.11023E-06	
-Octane	1.00476	1.00449	8.11933E-06	8.11933E-06	
n-Nonane	1.67025	1.67010	1.43307E-06	1.43307E-06	
I-Decane	0.00285923	0.00285917	0	0	
Indecane	0.00977778	0.00977770	0 0 301167	0 0.301167	
Benzene	3.41058	3.08030	0.301167		
oluene	1.15199 0.0525944	1.05671	0.0873543 0.00232613	0.0873543	
thylbenzene		0.0499806		0.00232613	
n-Xylene	0.102230 10.9286	0.0956250	0.00607409	0.00607409	
Vater /DEA	4.36886E-05	67.6465 0.0394066	75.2475 8.87386E-08	75.2475 8.87386E-08	
	4.30080E-05	0.0394000	0.0/3000-00	0.0/3000-00	
Diporazino		0 0000004		8 80667E 00	
•	1.54140E-07	0.0803384	8.88667E-08	8.88667E-08	
Phosphoric Acid	0	0	8.88667E-08 0	0	
· hosphoric Acid EG	0 1.98342E-09	0 0	8.88667E-08 0 0	0 0	
hosphoric Acid EG Iass Fraction	0 1.98342E-09 %	0 0 %	8.88667E-08 0 0	0 0 %	
hosphoric Acid EG fass Fraction	0 1.98342E-09 % 1.43995	0 0 % 0.000247002	8.88667E-08 0 0 % 13.1738	0 0 % 13.1738	
Hosphoric Acid EG Hass Fraction 12S CO2	0 1.98342E-09 % 1.43995 9.30125	0 0 % 0.000247002 1.00026E-06	8.88667E-08 0 0 <b>%</b> 13.1738 85.0287	0 0 % 13.1738 85.0287	
Hosphoric Acid EG Hass Fraction H2S CO2 H2	0 1.98342E-09 % 1.43995 9.30125 1.50874	0 0 0.000247002 1.00026E-06 1.69013	8.88667E-08 0 0 <b>%</b> 13.1738 85.0287 0.000112364	0 0 13.1738 85.0287 0.000112364	
Hosphoric Acid EG Mass Fraction 12S CO2 12 Methane	0 1.98342E-09 % 1.43995 9.30125 1.50874 46.1956	0 0 0.000247002 1.00026E-06 1.69013 51.6738	8.88667E-08 0 0 <b>%</b> 13.1738 85.0287 0.000112364 0.0551426	0 0 <b>%</b> 13.1738 85.0287 0.000112364 0.0551426	
hosphoric Acid EG Mass Fraction 12S CO2 12 Methane thane	0 1.98342E-09 % 1.43995 9.30125 1.50874 46.1956 16.1508	0 0 0.000247002 1.00026E-06 1.69013 51.6738 18.0569	8.88667E-08 0 0 <b>%</b> 13.1738 85.0287 0.000112364 0.0551426 0.0389184	0 0 % 13.1738 85.0287 0.000112364 0.0551426 0.0389184	
Phosphoric Acid TEG Mass Fraction 12S CO2 V2 Methane Ethane Propane	0 1.98342E-09 % 1.43995 9.30125 1.50874 46.1956 16.1508 13.7344	0 0 0.000247002 1.00026E-06 1.69013 51.6738 18.0569 15.3678	8.88667E-08 0 0 <b>%</b> 13.1738 85.0287 0.000112364 0.0551426 0.0389184 0.0195889	0 0 13.1738 85.0287 0.000112364 0.0551426 0.0389184 0.0195889	
Prosphoric Acid TEG Mass Fraction 12S CO2 42 Methane Ethane Propane Butane	0 1.98342E-09 % 1.43995 9.30125 1.50874 46.1956 16.1508 13.7344 2.40011	0 0 0.000247002 1.00026E-06 1.69013 51.6738 18.0569 15.3678 2.68704	8.88667E-08 0 0 <b>%</b> 13.1738 85.0287 0.000112364 0.0551426 0.0389184 0.0195889 0.00198273	0 0 13.1738 85.0287 0.000112364 0.0551426 0.0389184 0.0195889 0.00198273	
Prosphoric Acid TEG Ass Fraction Ass Fraction All CO2 Acthane Propane Butane -Butane	0 1.98342E-09 % 1.43995 9.30125 1.50874 46.1956 16.1508 13.7344 2.40011 6.08279	0 0 0.000247002 1.00026E-06 1.69013 51.6738 18.0569 15.3678 2.68704 6.80715	8.88667E-08 0 0 <b>%</b> 13.1738 85.0287 0.000112364 0.0551426 0.0389184 0.0195889 0.00198273 0.00908352	0 0 7 13.1738 85.0287 0.000112364 0.0551426 0.0389184 0.0195889 0.00198273 0.00908352	
Arbosphoric Acid EG Ass Fraction Ass Fraction Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Action Acti	0 1.98342E-09 % 1.43995 9.30125 1.50874 46.1956 16.1508 13.7344 2.40011 6.08279 1.37701	0 0 0.000247002 1.00026E-06 1.69013 51.6738 18.0569 15.3678 2.68704 6.80715 1.54267	8.88667E-08 0 0 <b>%</b> 13.1738 85.0287 0.000112364 0.0551426 0.0389184 0.0195889 0.00198273 0.00908352 0.000295373	0 0 7 13.1738 85.0287 0.000112364 0.0551426 0.0389184 0.0195889 0.00198273 0.00908352 0.000295373	
hosphoric Acid EG Ass Fraction Ass Fraction Al2S CO2 Acthane Chane Propane Butane Butane -Butane -Pentane -Pentane	0 1.98342E-09 % 1.43995 9.30125 1.50874 46.1956 16.1508 13.7344 2.40011 6.08279 1.37701 1.30139	0 0 0 0.000247002 1.00026E-06 1.69013 51.6738 18.0569 15.3678 2.68704 6.80715 1.54267 1.45764	8.88667E-08 0 0 <b>%</b> 13.1738 85.0287 0.000112364 0.0551426 0.0389184 0.0195889 0.00198273 0.00908352 0.000295373 0.000537406	0 0 13.1738 85.0287 0.000112364 0.0551426 0.0389184 0.0195889 0.00198273 0.00908352 0.000295373 0.000295373 0.000537406	
Arbosphoric Acid EG Ass Fraction Ass Fraction Ass Fraction All CO2 All Aethane Chane Propane Butane Butane -Butane -Pentane -Pentane -Pentane -Pentane -Pentane	0 1.98342E-09 % 1.43995 9.30125 1.50874 46.1956 16.1508 13.7344 2.40011 6.08279 1.37701 1.30139 0.229267	0 0 0 0.000247002 1.00026E-06 1.69013 51.6738 18.0569 15.3678 2.68704 6.80715 1.54267 1.45764 0.256857	8.88667E-08 0 0 <b>%</b> 13.1738 85.0287 0.000112364 0.0551426 0.0389184 0.0195889 0.00198273 0.00098352 0.000295373 0.000295373 0.000537406 5.74021E-05	0 0 13.1738 85.0287 0.000112364 0.0551426 0.0389184 0.0195889 0.00198273 0.00908352 0.000295373 0.000295373 0.000537406 5.74021E-05	
Prosphoric Acid EG Ass Fraction Ass Fraction Ass Fraction All CO2 All Methane Chane Propane Butane -Butane -Butane -Pentane -Pentane -Pentane -Pentane -Hexane -Heptane	0 1.98342E-09 % 1.43995 9.30125 1.50874 46.1956 16.1508 13.7344 2.40011 6.08279 1.37701 1.30139 0.229267 0.157998	0 0 0 0.000247002 1.00026E-06 1.69013 51.6738 18.0569 15.3678 2.68704 6.80715 1.54267 1.45764 0.256857 0.177069	8.88667E-08 0 0 <b>%</b> 13.1738 85.0287 0.000112364 0.0551426 0.0389184 0.0195889 0.00198273 0.00908352 0.000295373 0.000295373 0.000537406 5.74021E-05 7.26773E-06	0 0 7% 13.1738 85.0287 0.000112364 0.0551426 0.0389184 0.0195889 0.00198273 0.00908352 0.000295373 0.000537406 5.74021E-05 7.26773E-06	
Prosphoric Acid EG Ass Fraction 42S CO2 42 Methane Ethane Propane Butane -Butane -Pentane -Pentane -Pentane -Pentane -Pentane -Hexane -Heptane -Heptane -Octane	0 1.98342E-09 % 1.43995 9.30125 1.50874 46.1956 16.1508 13.7344 2.40011 6.08279 1.37701 1.30139 0.229267 0.157998 0.0151179	0 0 0 0.000247002 1.00026E-06 1.69013 51.6738 18.0569 15.3678 2.68704 6.80715 1.54267 1.45764 0.256857 0.177069 0.0169423	8.88667E-08 0 0 <b>%</b> 13.1738 85.0287 0.000112364 0.0551426 0.0389184 0.0195889 0.00198273 0.00908352 0.000295373 0.000295373 0.000537406 5.74021E-05 7.26773E-06 1.11702E-06	0 0 7% 13.1738 85.0287 0.000112364 0.0551426 0.0389184 0.0195889 0.00198273 0.00908352 0.000295373 0.0000537406 5.74021E-05 7.26773E-06 1.11702E-06	
Arbosphoric Acid EG Ass Fraction Ass Fraction Ass Fraction Ass Fraction Ass Fraction Association Association Association Association Association Association Association Association Association Association Association Association Association Association Association Association Association Association Association Association Association Association Association Association Association Association Association Association Association Association Association Association Association Association Association Association Association Association Association Association Association Association Association Association Association Association Association Association Association Association Association Association Association Association Association Association Association Association Association Association Association Association Association Association Association Association Association Association Association Association Association Association Association Association Association Association Association Association Association Association Association Association Association Association Association Association Association Association Association Association Association Association Association Association Association Association Association Association Association Association Association Association Association Association Association Association Association Association Association Association Association Association Association Association Association Association Association Association Association Association Association Association Association Association Association Association Association Association Association Association Association Association Association Association Association Association Association Association Association Association Association Association Association Association Association Association Association Association Association Association Asso	0 1.98342E-09 % 1.43995 9.30125 1.50874 46.1956 16.1508 13.7344 2.40011 6.08279 1.37701 1.30139 0.229267 0.157998 0.0151179 0.0282169	0 0 0 0.000247002 1.00026E-06 1.69013 51.6738 18.0569 15.3678 2.68704 6.80715 1.54267 1.45764 0.256857 0.177069 0.0169423 0.0316276	8.88667E-08 0 0 <b>%</b> 13.1738 85.0287 0.000112364 0.0551426 0.0389184 0.0195889 0.00198273 0.00908352 0.000295373 0.000295373 0.000537406 5.74021E-05 7.26773E-06	0 0 7% 13.1738 85.0287 0.000112364 0.0551426 0.0389184 0.0195889 0.00198273 0.00908352 0.000295373 0.000537406 5.74021E-05 7.26773E-06	
Arbosphoric Acid EG Iass Fraction I2S CO2 I2 Methane Arbane Propane Butane -Butane -Butane -Pentane -Pentane -Pentane -Hexane -Heptane -Octane -Nonane -Decane	0 1.98342E-09 % 1.43995 9.30125 1.50874 46.1956 16.1508 13.7344 2.40011 6.08279 1.37701 1.30139 0.229267 0.157998 0.0151179 0.0282169 5.35862E-05	0 0 0 0.000247002 1.00026E-06 1.69013 51.6738 18.0569 15.3678 2.68704 6.80715 1.54267 1.45764 0.256857 0.177069 0.0169423 0.0316276 6.00674E-05	8.88667E-08 0 0 <b>%</b> 13.1738 85.0287 0.000112364 0.0551426 0.0389184 0.0195889 0.00198273 0.00908352 0.000295373 0.000295373 0.000537406 5.74021E-05 7.26773E-06 1.11702E-06	0 0 7% 13.1738 85.0287 0.000112364 0.0551426 0.0389184 0.0195889 0.00198273 0.00908352 0.000295373 0.0000295373 0.000537406 5.74021E-05 7.26773E-06 1.11702E-06 2.21365E-07	
Hosphoric Acid EG Iass Fraction I2S CO2 I2 Methane Cropane Butane Propane Butane -Butane -Pentane -Pentane -Pentane -Hexane -Heptane -Octane -Nonane -Decane Indecane	0 1.98342E-09 % 1.43995 9.30125 1.50874 46.1956 16.1508 13.7344 2.40011 6.08279 1.37701 1.30139 0.229267 0.157998 0.0151179 0.0282169 5.35862E-05 0.000201315	0 0 0 0.000247002 1.00026E-06 1.69013 51.6738 18.0569 15.3678 2.68704 6.80715 1.54267 1.45764 0.256857 0.177069 0.0169423 0.0316276 6.00674E-05 0.000225667	8.88667E-08 0 0 8 85.0287 0.000112364 0.0551426 0.0389184 0.0195889 0.00198273 0.00908352 0.000295373 0.000295373 0.000537406 5.74021E-05 7.26773E-06 1.11702E-06 2.21365E-07 0 0	0 0 7% 13.1738 85.0287 0.000112364 0.0551426 0.0389184 0.0195889 0.00198273 0.00908352 0.000295373 0.000295373 0.000537406 5.74021E-05 7.26773E-06 1.11702E-06 2.21365E-07 0 0	
hosphoric Acid EG Iass Fraction 2S O2 2 Methane thane thane thane thane ropane Butane Butane Butane -Butane Pentane -Pentane -Pentane -Heptane -Octane -Nonane -Decane Indecane enzene	0 1.98342E-09 % 1.43995 9.30125 1.50874 46.1956 16.1508 13.7344 2.40011 6.08279 1.37701 1.30139 0.229267 0.157998 0.0151179 0.0282169 5.35862E-05 0.000201315 0.0350913	0 0 0 0.000247002 1.00026E-06 1.69013 51.6738 18.0569 15.3678 2.68704 6.80715 1.54267 1.45764 0.256857 0.177069 0.0169423 0.0316276 6.00674E-05 0.000225667 0.0355271	8.88667E-08 0 0 8 85.0287 0.000112364 0.0551426 0.0389184 0.0195889 0.00198273 0.00908352 0.000295373 0.000537406 5.74021E-05 7.26773E-06 1.11702E-06 2.21365E-07 0 0 0.0283328	0 0 % 13.1738 85.0287 0.000112364 0.0551426 0.0389184 0.0195889 0.00198273 0.00908352 0.000295373 0.000295373 0.000537406 5.74021E-05 7.26773E-06 1.11702E-06 2.21365E-07 0 0 0 0.0283328	
hosphoric Acid EG Iass Fraction I2S CO2 I2 Methane thane tropane Butane Butane -Butane -Butane -Pentane -Pentane -Pentane -Pentane -Hexane -Heptane -Octane -Nonane -Decane Indecane ienzene oluene	0 1.98342E-09 % 1.43995 9.30125 1.50874 46.1956 16.1508 13.7344 2.40011 6.08279 1.37701 1.30139 0.229267 0.157998 0.0151179 0.0282169 5.35862E-05 0.000201315 0.0350913 0.0139812	0 0 0 0.000247002 1.00026E-06 1.69013 51.6738 18.0569 15.3678 2.68704 6.80715 1.54267 1.45764 0.256857 0.177069 0.0169423 0.0316276 6.00674E-05 0.000225667 0.0355271 0.0143762	8.88667E-08 0 0 8 85.0287 0.000112364 0.0551426 0.0389184 0.0195889 0.00198273 0.00908352 0.000295373 0.000295373 0.000537406 5.74021E-05 7.26773E-06 1.11702E-06 2.21365E-07 0 0 0 0.0283328 0.00969372	0 0 7% 13.1738 85.0287 0.000112364 0.0551426 0.0389184 0.0195889 0.00198273 0.00908352 0.000295373 0.0000537406 5.74021E-05 7.26773E-06 1.11702E-06 2.21365E-07 0 0 0 0.0283328 0.00969372	
Thosphoric Acid EG Iass Fraction I2S CO2 I2 Methane Sthane Propane Butane -Butane -Butane -Butane -Pentane -Pentane -Pentane -Pentane -Heptane -Octane -Heptane -Octane -Nonane -Decane Jodecane Genzene Soluene Sthylbenzene	0 1.98342E-09 % 1.43995 9.30125 1.50874 46.1956 16.1508 13.7344 2.40011 6.08279 1.37701 1.30139 0.229267 0.157998 0.0151179 0.0282169 5.35862E-05 0.000201315 0.0350913 0.0139812 0.000735488	0 0 0 0.000247002 1.00026E-06 1.69013 51.6738 18.0569 15.3678 2.68704 6.80715 1.54267 1.45764 0.256857 0.177069 0.0169423 0.0316276 6.00674E-05 0.000225667 0.0355271 0.0143762 0.000783488	8.88667E-08 0 0 8 85.0287 0.000112364 0.0551426 0.0389184 0.0195889 0.00198273 0.00908352 0.000295373 0.000295373 0.000295373 0.000537406 5.74021E-05 7.26773E-06 1.11702E-06 2.21365E-07 0 0 0 0.0283328 0.00969372 0.000297428	0 0 7% 13.1738 85.0287 0.000112364 0.0551426 0.0389184 0.0195889 0.00198273 0.00908352 0.000295373 0.000295373 0.000537406 5.74021E-05 7.26773E-06 1.11702E-06 2.21365E-07 0 0 0 0.0283328 0.00969372 0.000297428	
Thosphoric Acid EG Iass Fraction I2S CO2 I2 Methane Sthane Propane Butane -Butane -Butane -Butane -Butane -Pentane -Pentane -Pentane -Heptane -Octane -Heptane -Octane -Nonane -Decane Jodecane Jenzene joluene Sthylbenzene n-Xylene	0 1.98342E-09 % 1.43995 9.30125 1.50874 46.1956 16.1508 13.7344 2.40011 6.08279 1.37701 1.30139 0.229267 0.157998 0.0151179 0.0282169 5.35862E-05 0.000201315 0.0350913 0.0139812 0.000735488 0.00142960	0 0 0 0 0.000247002 1.00026E-06 1.69013 51.6738 18.0569 15.3678 2.68704 6.80715 1.54267 1.45764 0.256857 0.177069 0.0169423 0.0316276 6.00674E-05 0.000225667 0.0355271 0.0143762 0.000783488 0.00149900	8.88667E-08 0 0 8 8 85.0287 0.000112364 0.0551426 0.0389184 0.0195889 0.00198273 0.00098352 0.000295373 0.000295373 0.000537406 5.74021E-05 7.26773E-06 1.11702E-06 2.21365E-07 0 0 0.0283328 0.00969372 0.000297428 0.000297428	0 0 7% 13.1738 85.0287 0.000112364 0.0551426 0.0389184 0.0195889 0.00198273 0.00908352 0.000295373 0.000295373 0.000537406 5.74021E-05 7.26773E-06 1.11702E-06 2.21365E-07 0 0 0 0.0283328 0.00969372 0.000297428 0.00027428 0.000776654	
Prosphoric Acid         EG         Jass Fraction         J2S         CO2         J2         Methane         Ethane         Propane         Butane         -Butane         -Pentane         -Pentane         -Heptane         -Octane         -Nonane         -Decane         Jndecane         Benzene         foluene         Ethylbenzene         n-Xylene         Vater	0 1.98342E-09 % 1.43995 9.30125 1.50874 46.1956 16.1508 13.7344 2.40011 6.08279 1.37701 1.30139 0.229267 0.157998 0.0151179 0.0282169 5.35862E-05 0.000201315 0.0350913 0.0139812 0.000735488 0.00142960 0.0259334	0 0 0 0 0.000247002 1.00026E-06 1.69013 51.6738 18.0569 15.3678 2.68704 6.80715 1.54267 1.45764 0.256857 0.177069 0.0169423 0.0316276 6.00674E-05 0.000225667 0.0355271 0.0143762 0.000783488 0.00149900 0.179943	8.88667E-08 0 0 8 8 13.1738 85.0287 0.000112364 0.0551426 0.0389184 0.0195889 0.00198273 0.00098352 0.000295373 0.000537406 5.74021E-05 7.26773E-06 1.11702E-06 2.21365E-07 0 0 0.0283328 0.00969372 0.000297428 0.000297428 0.000776654 1.63267	0 0 % 13.1738 85.0287 0.000112364 0.0551426 0.0389184 0.0195889 0.00198273 0.00908352 0.000295373 0.000537406 5.74021E-05 7.26773E-06 1.11702E-06 2.21365E-07 0 0 0 0.0283328 0.00969372 0.000297428 0.00969372 0.000297428 0.000776654 1.63267	
Abosphoric Acid TEG Ass Fraction 42S CO2 42 Methane Ethane Propane Butane -Porpane Butane -Pentane -Pentane -Pentane -Pentane -Pentane -Pentane -Pentane -Pentane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Decane -Dec	0 1.98342E-09 % 1.43995 9.30125 1.50874 46.1956 16.1508 13.7344 2.40011 6.08279 1.37701 1.30139 0.229267 0.157998 0.0151179 0.0282169 5.35862E-05 0.000201315 0.0350913 0.0139812 0.000735488 0.00142960 0.0259334 6.85743E-07	0 0 0 0 0.000247002 1.00026E-06 1.69013 51.6738 18.0569 15.3678 2.68704 6.80715 1.54267 1.45764 0.256857 0.177069 0.0169423 0.0316276 6.00674E-05 0.000225667 0.0355271 0.0143762 0.000783488 0.00149900 0.179943 0.000693358	8.88667E-08 0 0 8 8 85.0287 0.000112364 0.0551426 0.0389184 0.0195889 0.00198273 0.00098352 0.000295373 0.000537406 5.74021E-05 7.26773E-06 1.11702E-06 2.21365E-07 0 0 0.0283328 0.00969372 0.000297428 0.000297428 0.000297428 0.000776654 1.63267 1.27355E-08	0 0 7% 13.1738 85.0287 0.000112364 0.0551426 0.0389184 0.0195889 0.00198273 0.00908352 0.000295373 0.000295373 0.000537406 5.74021E-05 7.26773E-06 1.11702E-06 2.21365E-07 0 0 0 0.0283328 0.00969372 0.00297428 0.00969372 0.000297428 0.000776654 1.63267 1.27355E-08	
Phosphoric Acid TEG Ass Fraction Ass Fraction Ass Fraction Ass Fraction Ass Fraction Ass Fraction Ass Fraction Ass Fraction Color Ass Fraction Ass F	0 1.98342E-09 % 1.43995 9.30125 1.50874 46.1956 16.1508 13.7344 2.40011 6.08279 1.37701 1.30139 0.229267 0.157998 0.0151179 0.0282169 5.35862E-05 0.000201315 0.0350913 0.0139812 0.000735488 0.00142960 0.0259334 6.85743E-07 1.74885E-09	0 0 0 0 0.000247002 1.00026E-06 1.69013 51.6738 18.0569 15.3678 2.68704 6.80715 1.54267 1.45764 0.256857 0.177069 0.0169423 0.0316276 6.00674E-05 0.000225667 0.0355271 0.0143762 0.000783488 0.00149900 0.179943 0.000693358 0.00102178	8.88667E-08 0 0 8 3.1738 85.0287 0.000112364 0.0551426 0.0389184 0.0195889 0.00198273 0.00098352 0.000295373 0.000537406 5.74021E-05 7.26773E-06 1.11702E-06 2.21365E-07 0 0 0.0283328 0.00969372 0.000297428 0.000297428 0.000297428 0.000297428 0.000776654 1.63267 1.27355E-08 9.21906E-09	0 0 % 13.1738 85.0287 0.000112364 0.0551426 0.0389184 0.0195889 0.00198273 0.00908352 0.000295373 0.0000295373 0.000537406 5.74021E-05 7.26773E-06 1.11702E-06 2.21365E-07 0 0 0 0 0.0283328 0.00969372 0.00297428 0.00969372 0.000297428 0.000776654 1.63267 1.27355E-08 9.21906E-09	
Piperazine Phosphoric Acid TEG Mass Fraction H2S CO2 N2 Methane Ethane Propane -Butane -Propane -Butane -Pentane -Pentane -Pentane -Pentane -Pentane -Pentane -Pentane -Dectane -Nonane -Dectane -Nonane -Dectane -Dectane -Dectane -Nonane -Dectane -Dectane -Dectane -Nonane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -D	0 1.98342E-09 % 1.43995 9.30125 1.50874 46.1956 16.1508 13.7344 2.40011 6.08279 1.37701 1.30139 0.229267 0.157998 0.0151179 0.0282169 5.35862E-05 0.000201315 0.0350913 0.0139812 0.000735488 0.00142960 0.0259334 6.85743E-07	0 0 0 0 0.000247002 1.00026E-06 1.69013 51.6738 18.0569 15.3678 2.68704 6.80715 1.54267 1.45764 0.256857 0.177069 0.0169423 0.0316276 6.00674E-05 0.000225667 0.0355271 0.0143762 0.000783488 0.00149900 0.179943 0.000693358	8.88667E-08 0 0 8 8 85.0287 0.000112364 0.0551426 0.0389184 0.0195889 0.00198273 0.00098352 0.000295373 0.000537406 5.74021E-05 7.26773E-06 1.11702E-06 2.21365E-07 0 0 0.0283328 0.00969372 0.000297428 0.000297428 0.000297428 0.000776654 1.63267 1.27355E-08	0 0 7% 13.1738 85.0287 0.000112364 0.0551426 0.0389184 0.0195889 0.00198273 0.00908352 0.000295373 0.000295373 0.000537406 5.74021E-05 7.26773E-06 1.11702E-06 2.21365E-07 0 0 0 0.0283328 0.00969372 0.00297428 0.00969372 0.000297428 0.000776654 1.63267 1.27355E-08	


H2S	10931.8	1.67282	10938.2	10938.2	
CO2	70613.3	0.00677428	70599.3	70599.3	
N2	11454.0	11446.4	0.0932960	0.0932960	
Methane	350708	349962	45.7849	45.7849	
Ethane	122613	122291	32.3139	32.3139	
Propane	104269	104078	16.2647	16.2647	
i-Butane	18221.2	18198.0	1.64626	1.64626	
n-Butane	46179.3	46101.5	7.54205	7.54205	
i-Pentane	10454.0	10447.8	0.245248	0.245248	
n-Pentane	9879.91	9871.90	0.446208	0.446208	
n-Hexane	1740.55	1739.57	0.0476610	0.0476610	
n-Heptane	1199.49	1199.20	0.00603439	0.00603439	
n-Octane	114.772	114.742	0.000927459	0.000927459	
n-Nonane	214.217	214.199	0.000183799	0.000183799	
n-Decane	0.406816	0.406807	0	0	
Undecane	1.52835	1.52833	0	0	
Benzene	266.406	240.608	23.5247	23.5247	
Toluene	106.142	97.3632	8.04869	8.04869	
Ethylbenzene	5.58368	5.30619	0.246954	0.246954	
m-Xylene	10.8532	10.1520	0.644855	0.644855	
Water	196.881	1218.67	1355.61	1355.61	
MDEA	0.00520603	4.69578	1.05743E-05	1.05743E-05	
Piperazine	1.32769E-05	6.92000	7.65458E-06	7.65458E-06	
, Phosphoric Acid	0	0	0	0	
TEG	2.97856E-07	0	0	0	


Process Streams		AMINE OUT	CO2 Blend	GAS IN	GAS OUT	58	59	65	112
Properties	Status:	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved
Phase: Vapor	From Block:	T-2500A		E-2500A	T-2500A	PCV-2402A	Stabilizer NGL	FAXR-100	RCYL-4
	To Block:	LCV-2500A	MIX-102	T-2500A	E-2500A	AGI Compression	T-1503	V-2402	MIX-103
Property	Units								
Temperature	°F			110	126.873	99.4699		100	
Pressure	psia			951.696	949.696	21.6959		25.6959	
Mole Fraction Vapor	%			100	100	100		100	
Mole Fraction Light Liquid	%			0	0	0		0	
Mole Fraction Heavy Liquid	%			0	0	0		0	
Molecular Weight	lb/lbmol			23.6667	22.4661	41.4064		41.4064	
Mass Density	lb/ft^3			4.66135	4.14879	0.150875		0.178773	
Molar Flow	lbmol/h			32078.1	30145.5	2005.25		2005.25	
Mass Flow	lb/h			759181	677252	83030.0		83030.0	
Vapor Volumetric Flow	ft^3/h			162867	163241	550324		464442	
Liquid Volumetric Flow	gpm			20305.5	20352.1	68611.9		57904.5	
Std Vapor Volumetric Flow	MMSCFD			292.155	274.554	18.2630		18.2630	
Std Liquid Volumetric Flow	sgpm			3963.89	3757.83	203.450		203.450	
Compressibility				0.790382	0.817012	0.992307		0.990908	
Specific Gravity				0.817148	0.775697	1.42966		1.42966	
API Gravity									
Enthalpy	Btu/h			-1.33011E+09	-1.05071E+09	-2.81858E+08		-2.81858E+08	
Mass Enthalpy	Btu/lb			-1752.03	-1551.44	-3394.66		-3394.66	
Mass Cp	Btu/(lb*°F)			0.613034	0.634065	0.215402		0.215787	
Ideal Gas CpCv Ratio				1.22697	1.21977	1.28942		1.28930	
Dynamic Viscosity	cP			0.0137109	0.0134053	0.0153173		0.0153380	
Kinematic Viscosity	cSt			0.183626	0.201713	6.33790		5.35606	
Thermal Conductivity	Btu/(h*ft*°F)			0.0218188	0.0227357	0.0100352		0.0100608	
Surface Tension	lbf/ft								
Net Ideal Gas Heating Value	Btu/ft^3			1144.27	1208.83	97.5087		97.5087	


Vet Liquid Heating Value Gross Ideal Gas Heating Value Gross Liquid Heating Value	Btu/lb Btu/ft^3 Btu/lb			18272.3 1259.10 20114.0	20343.8 1330.33 22396.6	785.938 107.764 879.953		785.938 107.764 879.953	
Process Streams		AMINE OUT	CO2 Blend	GAS IN	GAS OUT	58	59	65	112
Composition	Status:	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved
Phase: Light Liquid	From Block:	T-2500A		E-2500A	T-2500A	PCV-2402A	Stabilizer NGL	FAXR-100	RCYL-4
	To Block:	LCV-2500A	MIX-102	T-2500A	E-2500A	AGI Compression	T-1503	V-2402	MIX-103
Iole Fraction		%					%	%	%
2S		0.851023					0.0728404	0.0493533	0.448714
:02		4.03338					0.00246924	0.103783	3.11197
2		0.000685498					0	2.96422E-09	1.61364E-05
lethane		0.116877					0.000346632	5.09968E-06	0.0108425
thane		0.0269744					1.89219	2.29225E-06	0.00419756
ropane		0.0108412					23.9049	6.21751E-07	0.00151415
Butane		0.00100052					8.60950	2.89851E-08	0.000122275
-Butane		0.00336470					27.7879	1.96279E-07	0.000540841
Pentane		0.000216804					9.94983	2.82818E-09	1.68947E-05
-Pentane		0.000278975					10.8311	6.23158E-09	2.87966E-05
-Hexane		2.87087E-05					13.4735	3.50390E-10	2.94631E-06
-Heptane		7.22157E-06					3.06581	2.21330E-11	3.83940E-07
-Octane		6.68134E-07					0.376567	2.29968E-12	4.84792E-08
-Nonane		3.70307E-07					0.0324763	1.92273E-13	1.23781E-08
-Decane		1.49420E-10					0.000222565	0	0
ndecane		2.06503E-10					0	0	0
enzene		0.000830082					0	5.19245E-05	0.00124205
oluene		0.000239473					0	1.22502E-05	0.000405146
thylbenzene		6.56919E-06					0	2.63274E-07	1.15589E-05
-Xylene		1.65997E-05					0	1.09671E-06	3.13885E-05
/ater		82.0399					0.000385943	99.7946	83.4291
IDEA		11.1939					0	0.0363877	11.2605
iperazine		1.72047					0	0.0158141	1.73078
hosphoric Acid		0					0	0	0
EG		0					0	0	0
lolar Flow		lbmol/h					lbmol/h	lbmol/h	lbmol/h
28		338.610					0.276392	1.10711	2.63219
02		1604.83					0.00936948	2.32809	18.2551
2		0.272750					0.0000000000	6.64942E-08	9.46573E-05
lethane		46.5036					0.00131529	0.000114397	0.0636031
thane		10.7327					7.17990	5.14204E-05	0.0246232
ropane		4.31355					90.7067	1.39473E-05	0.00240232
Butane		0.398093					32.6686	6.50201E-07	0.000717274
-Butane		1.33877					105.441	4.40298E-06	0.00317262
Pentane		0.0862634					37.7545	6.34425E-08	9.91060E-05
-Pentane		0.111000					41.0984	1.39788E-07	0.000168923
Hexane		0.0114228					51.1250	7.86004E-09	1.72833E-05
Heptane		0.00287336					11.6332	4.96494E-10	2.25222E-06
Octane		0.000265841					1.42888	5.15871E-11	2.25222E-00 2.84383E-07
Nonane		0.000265841					0.123231	4.31311E-11	2.04303E-07 7.26107E-08
Decane		5.94520E-08					0.000844519	4.31311E-12 0	1.20107E-00
		5.94520E-08 8.21648E-08					0.000844519	0	0
ndecane							0		0 00720500
enzene		0.330278						0.00116478	0.00728598
oluene		0.0952830					0	0.000274799	0.00237662
thylbenzene		0.00261379					0	5.90583E-06	6.78056E-05
n-Xylene /ater		0.00660479					0	2.46016E-05	0.000184127
4 OTOF		32642.5					0.00146445	2238.62	489.402

1DEA	4453.88	0	0.816259	66.0548
Piperazine	684.550	0	0.354746	10.1529
Phosphoric Acid	0	0	0	0
EG	0	0	0	0
Aass Fraction	%	%	%	%
12S	0.914904	0.0397582	0.0929397	0.485987
02	5.59937	0.00174041	0.252375	4.35237
12	0.000605752		4.58828E-09	1.43654E-05
∙∠ ∕lethane	0.0591456		4.52052E-06	0.00552772
Ethane	0.0255855		3.80852E-06	0.00401108
Propane	0.0150798		1.51491E-06	0.00212182
Butane	0.00183439		9.30874E-08	0.000212102
-Butane	0.00616896		6.30362E-07	0.000223832
Pentane	0.000493424		1.12748E-08	3.87370E-05
-Pentane	0.000634917		2.48428E-08	6.60259E-05
-Hexane	7.80404E-05		1.66843E-09	8.06874E-06
-Heptane	2.28261E-05		1.22544E-10	1.22260E-06
-Octane	2.40747E-06		1.45150E-11	1.75985E-07
-Nonane	1.49817E-06		1.36259E-12	5.04512E-08
-Decane	6.70625E-10	0.000507164	0	0
Indecane	1.01820E-09	0	0	0
enzene	0.00204532		0.000224111	0.00308320
oluene	0.000696019		6.23673E-05	0.00118631
thylbenzene	2.19997E-05		1.54441E-06	3.89981E-05
n-Xylene	5.55910E-05		6.43348E-06	0.000105900
Vater	46.6218	0.000111354	99.3395	47.7643
1DEA	42.0767	0	0.239589	42.6422
Piperazine	4.67469	0	0.0752665	4.73772
hosphoric Acid	0	0	0	0
	0	0	0	0
	0 <b>Ib/h</b>	0 <b>Ib/h</b>	lb/h	0 <b>Ib/h</b>
lass Flow	-			0 <b>Ib/h</b> 89.7074
lass Flow 12S	lb/h	lb/h	lb/h	
ass Flow 2S O2	<b>Ib/h</b> 11540.1	<b>b/h</b> 9.41967 0.412346	<b>lb/h</b> 37.7312	89.7074
lass Flow 12S 502 12	<b>Ib/h</b> 11540.1 70627.7	<b>b/h</b> 9.41967 0.412346	lb/h 37.7312 102.458	89.7074 803.396
lass Flow 12S 2O2 12 Methane	<b>Ib/h</b> 11540.1 70627.7 7.64065	<b>Ib/h</b> 9.41967 0.412346 0	lb/h 37.7312 102.458 1.86273E-06 0.00183521	89.7074 803.396 0.00265167 1.02035
lass Flow 12S 12O2 12 Iethane ithane	<b>Ib/h</b> 11540.1 70627.7 7.64065 746.032	<b>Ib/h</b> 9.41967 0.412346 0 0.0211005 215.893	lb/h 37.7312 102.458 1.86273E-06	89.7074 803.396 0.00265167 1.02035 0.740397
EG Ass Flow AS CO2 Aethane Propane Butane	<b>Ib/h</b> 11540.1 70627.7 7.64065 746.032 322.723 190.209	<b>Ib/h</b> 9.41967 0.412346 0 0.0211005 215.893 3999.77	Ib/h           37.7312           102.458           1.86273E-06           0.00183521           0.00154616           0.000615014	89.7074 803.396 0.00265167 1.02035 0.740397 0.391662
<b>Jass Flow</b> J2S CO2 J2 Methane Ethane	<b>Ib/h</b> 11540.1 70627.7 7.64065 746.032 322.723	Ib/h           9.41967           0.412346           0           0.00211005           215.893           3999.77           1898.77	lb/h 37.7312 102.458 1.86273E-06 0.00183521 0.00154616	89.7074 803.396 0.00265167 1.02035 0.740397 0.391662 0.0416895
lass Flow I2S I2O2 I2 Methane Ethane Propane Butane -Butane	Ib/h           11540.1           70627.7           7.64065           746.032           322.723           190.209           23.1380           77.8121	Ib/h           9.41967           0.412346           0           0.00211005           215.893           3999.77           1898.77           6128.44	Ib/h           37.7312           102.458           1.86273E-06           0.00183521           0.00154616           0.000615014           3.77911E-05           0.000255911	89.7074 803.396 0.00265167 1.02035 0.740397 0.391662 0.0416895 0.184399
Ass Flow ASS CO2 Aethane Ethane Propane Butane -Butane Pentane Pentane	Ib/h           11540.1           70627.7           7.64065           746.032           322.723           190.209           23.1380           77.8121           6.22380	Ib/h           9.41967           0.412346           0           0.00211005           215.893           3999.77           1898.77           6128.44           2723.94	Ib/h           37.7312           102.458           1.86273E-06           0.00183521           0.00154616           0.000615014           3.77911E-05           0.000255911           4.57730E-06	89.7074 803.396 0.00265167 1.02035 0.740397 0.391662 0.0416895 0.184399 0.00715038
Aass Flow A2S CO2 I2 Methane Ethane Propane Butane -Butane -Butane -Pentane -Pentane	Ib/h           11540.1           70627.7           7.64065           746.032           322.723           190.209           23.1380           77.8121           6.22380           8.00853	Ib/h           9.41967           0.412346           0           0.00211005           215.893           3999.77           1898.77           6128.44           2723.94           2965.20	Ib/h           37.7312           102.458           1.86273E-06           0.00183521           0.00154616           0.000615014           3.77911E-05           0.000255911           4.57730E-06           1.00856E-05	89.7074 803.396 0.00265167 1.02035 0.740397 0.391662 0.0416895 0.184399 0.00715038 0.0121876
Aass Flow A2S CO2 I2 Methane Ethane Propane Butane -Butane -Butane -Pentane -Pentane -Pentane -Hexane	Ib/h           11540.1           70627.7           7.64065           746.032           322.723           190.209           23.1380           77.8121           6.22380           8.00853           0.984362	Ib/h           9.41967           0.412346           0           0.00211005           215.893           3999.77           1898.77           6128.44           2723.94           2965.20           4405.72	Ib/h           37.7312           102.458           1.86273E-06           0.00183521           0.00154616           0.000615014           3.77911E-05           0.000255911           4.57730E-06           1.00856E-05           6.77342E-07	89.7074 803.396 0.00265167 1.02035 0.740397 0.391662 0.0416895 0.184399 0.00715038 0.0121876 0.00148939
Aass Flow A2S CO2 Aethane Ethane Propane Butane -Butane -Butane -Pentane -Pentane -Pentane -Hexane -Hexane -Heptane	Ib/h           11540.1           70627.7           7.64065           746.032           322.723           190.209           23.1380           77.8121           6.22380           8.00853           0.984362           0.287917	Ib/h           9.41967           0.412346           0           0.00211005           215.893           3999.77           1898.77           6128.44           2723.94           2965.20           4405.72           1165.67	Ib/h           37.7312           102.458           1.86273E-06           0.00183521           0.00154616           0.000615014           3.77911E-05           0.000255911           4.57730E-06           1.00856E-05           6.77342E-07           4.97497E-08	89.7074 803.396 0.00265167 1.02035 0.740397 0.391662 0.0416895 0.184399 0.00715038 0.0121876 0.00148939 0.001225677
Aass Flow A2S CO2 Aethane Ethane Propane Butane -Butane -Butane -Pentane -Pentane -Hexane -Heptane -Heptane -Octane	Ib/h           11540.1           70627.7           7.64065           746.032           322.723           190.209           23.1380           77.8121           6.22380           8.00853           0.984362           0.287917           0.0303667	Ib/h           9.41967           0.412346           0           0.00211005           215.893           3999.77           1898.77           6128.44           2723.94           2965.20           4405.72           1165.67           163.219	Ib/h           37.7312           102.458           1.86273E-06           0.00183521           0.00154616           0.000615014           3.77911E-05           0.000255911           4.57730E-06           1.00856E-05           6.77342E-07           4.97497E-08           5.89272E-09	89.7074 803.396 0.00265167 1.02035 0.740397 0.391662 0.0416895 0.184399 0.00715038 0.0121876 0.00148939 0.00124876 0.00148939 0.000225677 3.24846E-05
Aass Flow A2S CO2 Aethane Ethane Propane Butane -Butane -Butane -Pentane -Pentane -Hexane -Hexane -Heptane -Octane -Nonane	Ib/h           11540.1           70627.7           7.64065           746.032           322.723           190.209           23.1380           77.8121           6.22380           8.00853           0.984362           0.287917           0.0303667           0.0188971	Ib/h           9.41967           0.412346           0           0.00211005           215.893           3999.77           1898.77           6128.44           2723.94           2965.20           4405.72           1165.67           163.219           15.8050	Ib/h           37.7312           102.458           1.86273E-06           0.00183521           0.00154616           0.000615014           3.77911E-05           0.000255911           4.57730E-06           1.00856E-05           6.77342E-07           4.97497E-08           5.89272E-09           5.53179E-10	89.7074 803.396 0.00265167 1.02035 0.740397 0.391662 0.0416895 0.184399 0.00715038 0.0121876 0.00148939 0.001225677
lass Flow 2S CO2 12 Methane tithane Propane Butane -Butane -Butane -Pentane -Pentane -Hexane -Heptane -Octane -Nonane -Decane	Ib/h           11540.1           70627.7           7.64065           746.032           322.723           190.209           23.1380           77.8121           6.22380           8.00853           0.984362           0.287917           0.0303667           0.0188971           8.45893E-06	Ib/h           9.41967           0.412346           0           0.0211005           215.893           3999.77           1898.77           6128.44           2723.94           2965.20           4405.72           1165.67           163.219           15.8050           0.120160	Ib/h           37.7312           102.458           1.86273E-06           0.00183521           0.00154616           0.000615014           3.77911E-05           0.000255911           4.57730E-06           1.00856E-05           6.77342E-07           4.97497E-08           5.89272E-09           5.53179E-10           0	89.7074 803.396 0.00265167 1.02035 0.740397 0.391662 0.0416895 0.184399 0.00715038 0.0121876 0.00148939 0.00124876 0.00148939 0.000225677 3.24846E-05
ass Flow 2S O2 2 lethane thane ropane Butane Butane Butane Pentane -Pentane -Pentane -Hexane -Heptane -Octane -Nonane -Decane ndecane	Ib/h           11540.1           70627.7           7.64065           746.032           322.723           190.209           23.1380           77.8121           6.22380           8.00853           0.984362           0.287917           0.0303667           0.0188971           8.45893E-06           1.28430E-05	Ib/h           9.41967           0.412346           0           0.0211005           215.893           3999.77           1898.77           6128.44           2723.94           2965.20           4405.72           1165.67           163.219           15.8050           0.120160           0	Ib/h           37.7312           102.458           1.86273E-06           0.00183521           0.00154616           0.000615014           3.77911E-05           0.000255911           4.57730E-06           1.00856E-05           6.77342E-07           4.97497E-08           5.89272E-09           5.53179E-10           0           0	89.7074 803.396 0.00265167 1.02035 0.740397 0.391662 0.0416895 0.184399 0.00715038 0.0121876 0.00148939 0.000225677 3.24846E-05 9.31269E-06 0 0
lass Flow 2S CO2 2 lethane thane ropane Butane Butane -Butane -Butane -Pentane -Pentane -Hexane -Heptane -Octane -Nonane -Decane Indecane enzene	Ib/h           11540.1           70627.7           7.64065           746.032           322.723           190.209           23.1380           77.8121           6.22380           8.00853           0.984362           0.287917           0.0303667           0.0188971           8.45893E-06           1.28430E-05           25.7986	Ib/h           9.41967           0.412346           0           0.0211005           215.893           3999.77           1898.77           6128.44           2723.94           2965.20           4405.72           1165.67           163.219           15.8050           0.120160           0           0	Ib/h           37.7312           102.458           1.86273E-06           0.00183521           0.00154616           0.000615014           3.77911E-05           0.000255911           4.57730E-06           1.00856E-05           6.77342E-07           4.97497E-08           5.89272E-09           5.53179E-10           0           0.0909834	89.7074 803.396 0.00265167 1.02035 0.740397 0.391662 0.0416895 0.184399 0.00715038 0.0121876 0.00148939 0.000225677 3.24846E-05 9.31269E-06 0 0 0.569122
lass Flow 2S 2Q 2 lethane thane ropane Butane Butane -Butane -Butane -Pentane -Pentane -Hexane -Heptane -Octane -Nonane -Decane Indecane enzene oluene	Ib/h           11540.1           70627.7           7.64065           746.032           322.723           190.209           23.1380           77.8121           6.22380           8.00853           0.984362           0.287917           0.0303667           0.0188971           8.45893E-06           1.28430E-05           25.7986           8.77923	Ib/h           9.41967           0.412346           0           0.0211005           215.893           3999.77           1898.77           6128.44           2723.94           2965.20           4405.72           1165.67           163.219           15.8050           0.120160           0           0           0           0           0           0           0           0           0           0           0           0           0	Ib/h           37.7312           102.458           1.86273E-06           0.00183521           0.00154616           0.000615014           3.77911E-05           0.000255911           4.57730E-06           1.00856E-05           6.77342E-07           4.97497E-08           5.89272E-09           5.53179E-10           0           0.00909834           0.0253195	89.7074 803.396 0.00265167 1.02035 0.740397 0.391662 0.0416895 0.184399 0.00715038 0.0121876 0.00148939 0.000225677 3.24846E-05 9.31269E-06 0 0 0.569122 0.218978
lass Flow 12S 12 12 14thane 17opane Butane Butane Butane -Butane Pentane -Pentane -Pentane -Hexane -Heptane -Octane -Nonane -Decane Indecane ienzene oluene thylbenzene	Ib/h           11540.1           70627.7           7.64065           746.032           322.723           190.209           23.1380           77.8121           6.22380           8.00853           0.984362           0.287917           0.0303667           0.0188971           8.45893E-06           1.28430E-05           25.7986           8.77923           0.277493	Ib/h           9.41967           0.412346           0           0.0211005           215.893           3999.77           1898.77           6128.44           2723.94           2965.20           4405.72           1165.67           163.219           15.8050           0.120160           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0	Ib/h           37.7312           102.458           1.86273E-06           0.00183521           0.00154616           0.000615014           3.77911E-05           0.000255911           4.57730E-06           1.00856E-05           6.77342E-07           4.97497E-08           5.89272E-09           5.53179E-10           0           0.00909834           0.0253195           0.000626993	89.7074 803.396 0.00265167 1.02035 0.740397 0.391662 0.0416895 0.184399 0.00715038 0.0121876 0.00148939 0.000225677 3.24846E-05 9.31269E-06 0 0.0569122 0.218978 0.00719858
lass Flow 12S 12 12 14thane 15 17opane Butane Butane Butane Butane Pentane -Butane Pentane -Pentane -Pentane -Hexane -Hexane -Heptane -Octane -Nonane -Decane Indecane ienzene oluene thylbenzene n-Xylene	Ib/h           11540.1           70627.7           7.64065           746.032           322.723           190.209           23.1380           77.8121           6.22380           8.00853           0.984362           0.287917           0.0303667           0.0188971           8.45893E-06           1.28430E-05           25.7986           8.77923           0.277493           0.701197	Ib/h           9.41967           0.412346           0           0.0211005           215.893           3999.77           1898.77           6128.44           2723.94           2965.20           4405.72           1165.67           163.219           15.8050           0.120160           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0	Ib/h           37.7312           102.458           1.86273E-06           0.00183521           0.00154616           0.000615014           3.77911E-05           0.000255911           4.57730E-06           1.00856E-05           6.77342E-07           4.97497E-08           5.89272E-09           5.53179E-10           0           0.00909834           0.0253195           0.000626993           0.00261183	89.7074 803.396 0.00265167 1.02035 0.740397 0.391662 0.0416895 0.0416895 0.00715038 0.00715038 0.00121876 0.00148939 0.000225677 3.24846E-05 9.31269E-06 0 0.00195479
lass Flow I2S I2S I2 Methane Ithane Iropane Butane -Butane -Butane -Butane -Butane -Butane -Butane -Butane -Butane -Butane -Butane -Butane -Butane -Butane -Butane -Butane -Butane -Butane -Butane -Butane -Butane -Butane -Butane -Butane -Butane -Butane -Butane -Butane -Butane -Butane -Butane -Butane -Butane -Butane -Butane -Butane -Butane -Butane -Butane -Butane -Butane -Butane -Butane -Butane -Butane -Butane -Butane -Butane -Butane -Dectane -Nonane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Dectane -Decta	Ib/h           11540.1           70627.7           7.64065           746.032           322.723           190.209           23.1380           77.8121           6.22380           8.00853           0.984362           0.287917           0.0303667           0.0188971           8.45893E-06           1.28430E-05           25.7986           8.77923           0.277493           0.701197           588064	Ib/h           9.41967           0.412346           0           0.0211005           215.893           3999.77           1898.77           6128.44           2723.94           2965.20           4405.72           1165.67           163.219           15.8050           0.120160           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0	Ib/h           37.7312           102.458           1.86273E-06           0.00183521           0.00154616           0.000615014           3.77911E-05           0.000255911           4.57730E-06           1.00856E-05           6.77342E-07           4.97497E-08           5.89272E-09           5.53179E-10           0           0.00909834           0.0253195           0.000626993           0.00261183           40329.3	89.7074 803.396 0.00265167 1.02035 0.740397 0.391662 0.0416895 0.00715038 0.00715038 0.00121876 0.00148939 0.000225677 3.24846E-05 9.31269E-06 0 0 0.569122 0.218978 0.00719858 0.00719858 0.0195479 8816.71
Iass Flow         I2S         GO2         I2         Methane         tithane         Propane         Butane         -Butane         Pentane         -Pentane         -Heptane         -Octane         -Nonane         -Decane         Indecane         ienzene         ioluene         titylbenzene         n-Xylene         Vater         IDEA	Ib/h           11540.1           70627.7           7.64065           746.032           322.723           190.209           23.1380           77.8121           6.22380           8.00853           0.984362           0.287917           0.0303667           0.0188971           8.45893E-06           1.28430E-05           25.7986           8.77923           0.277493           0.701197           588064           530735	Ib/h           9.41967           0.412346           0           0.0211005           215.893           3999.77           1898.77           6128.44           2723.94           2965.20           4405.72           1165.67           163.219           15.8050           0.120160           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0	Ib/h           37.7312           102.458           1.86273E-06           0.00183521           0.00154616           0.000615014           3.77911E-05           0.000255911           4.57730E-06           1.00856E-05           6.77342E-07           4.97497E-08           5.89272E-09           5.53179E-10           0           0.00909834           0.0253195           0.000626993           0.00261183           40329.3           97.2673	89.7074 803.396 0.00265167 1.02035 0.740397 0.391662 0.0416895 0.00715038 0.00715038 0.00121876 0.00148939 0.000225677 3.24846E-05 9.31269E-06 0 0.0569122 0.218978 0.00719858 0.00719858 0.0195479 8816.71 7871.24
lass Flow I2S GO2 I2 Methane tithane tropane Butane -Butane -Butane -Butane -Pentane -Pentane -Pentane -Hexane -Heptane -Octane -Nonane -Decane Indecane ienzene oluene thylbenzene -Xylene Vater IDEA ipperazine	Ib/h           11540.1           70627.7           7.64065           746.032           322.723           190.209           23.1380           77.8121           6.22380           8.00853           0.984362           0.287917           0.0303667           0.0188971           8.45893E-06           1.28430E-05           25.7986           8.77923           0.277493           0.701197           588064           530735           58964.1	Ib/h           9.41967           0.412346           0           0.0211005           215.893           3999.77           1898.77           6128.44           27723.94           2965.20           4405.72           1165.67           163.219           15.8050           0.120160           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0	Ib/h           37.7312           102.458           1.86273E-06           0.00183521           0.00154616           0.00015014           3.77911E-05           0.000255911           4.57730E-06           1.00856E-05           6.77342E-07           4.97497E-08           5.89272E-09           5.53179E-10           0           0.00909834           0.0253195           0.000626993           0.00261183           40329.3           97.2673           30.5563	89.7074 803.396 0.00265167 1.02035 0.740397 0.391662 0.0416895 0.00715038 0.00715038 0.00121876 0.00148939 0.000225677 3.24846E-05 9.31269E-06 0 0 0.569122 0.218978 0.00719858 0.00719858 0.0195479 8816.71
lass Flow 2S CO2 2 lethane thane ropane Butane -Butane -Butane -Butane -Butane -Butane -Butane -Butane -Butane -Butane -Butane -Butane -Butane -Butane -Butane -Butane -Butane -Butane -Butane -Butane -Butane -Butane -Butane -Butane -Butane -Butane -Butane -Butane -Butane -Butane -Butane -Butane -Butane -Butane -Butane -Butane -Butane -Butane -Butane -Butane -Butane -Butane -Butane -Butane -Butane -Butane -Butane -Butane -Butane -Decane -Nonane -Decane enzene oluene thylbenzene Xylene Vater IDEA	Ib/h           11540.1           70627.7           7.64065           746.032           322.723           190.209           23.1380           77.8121           6.22380           8.00853           0.984362           0.287917           0.0303667           0.0188971           8.45893E-06           1.28430E-05           25.7986           8.77923           0.277493           0.701197           588064           530735	Ib/h           9.41967           0.412346           0           0.0211005           215.893           3999.77           1898.77           6128.44           2723.94           2965.20           4405.72           1165.67           163.219           15.8050           0.120160           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0	Ib/h           37.7312           102.458           1.86273E-06           0.00183521           0.00154616           0.000615014           3.77911E-05           0.000255911           4.57730E-06           1.00856E-05           6.77342E-07           4.97497E-08           5.89272E-09           5.53179E-10           0           0.00909834           0.0253195           0.000626993           0.00261183           40329.3           97.2673	89.7074 803.396 0.00265167 1.02035 0.740397 0.391662 0.0416895 0.00715038 0.00715038 0.00121876 0.00148939 0.000225677 3.24846E-05 9.31269E-06 0 0.0569122 0.218978 0.00719858 0.00719858 0.0195479 8816.71 7871.24

Process Streams		AMINE OUT	CO2 Blend	GAS IN	GAS OUT	58	59	65	112
Properties	Status:	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved
Phase: Light Liquid	From Block:	T-2500A		E-2500A	T-2500A	PCV-2402A	Stabilizer NGL	FAXR-100	RCYL-4
	To Block:	LCV-2500A	MIX-102	T-2500A	E-2500A	AGI Compression	T-1503	V-2402	MIX-103
Property	Units								
Temperature	°F	171.972					120.971	100	180.17
Pressure	psia	951.696					209.696	25.6959	79.695
Mole Fraction Vapor	%	0					0	0	
Mole Fraction Light Liquid	%	100					100	100	10
Mole Fraction Heavy Liquid	%	0					0	0	
Molecular Weight	lb/lbmol	31.7013					62.4391	18.0978	31.467
Mass Density	lb/ft^3	68.1227					35.0731	61.9990	66.922
Molar Flow	lbmol/h	39788.6					379.448	2243.23	586.60
Mass Flow	lb/h	1.26135E+06					23692.4	40597.5	18458.
√apor Volumetric Flow	ft^3/h	18515.9					675.516	654.809	275.82
Liquid Volumetric Flow	gpm	2308.47					84.2202	81.6385	34.388
Std Vapor Volumetric Flow	MMSCFD	362.379					3.45587	20.4304	5.3426
Std Liquid Volumetric Flow	sgpm	2566.06					79.9795	81.2378	37.342
Compressibility		0.0653354					0.0599103	0.00124885	0.0054573
Specific Gravity		1.09226					0.562350	0.994072	1.0730
API Gravity		-4.43498					103.528	9.87721	-2.8286
Enthalpy	Btu/h	-5.12624E+09					-2.48990E+07	-2.74594E+08	-7.54097E+0
Mass Enthalpy	Btu/lb	-4064.09					-1050.93	-6763.81	-4085.3
Mass Cp	Btu/(lb*°F)	0.750016					0.618781	0.994438	0.78523
deal Gas CpCv Ratio		1.14277					1.08094	1.32676	1.1406
Dynamic Viscosity	cP	2.14849					0.148565	0.702761	1.8127
Kinematic Viscosity	cSt	1.96889					0.264437	0.707624	1.6909
Thermal Conductivity	Btu/(h*ft*°F)	0.183869					0.0561235	0.356782	0.18815
Surface Tension	lbf/ft	0.00333769?					0.000570175?	0.00479325	0.00332825
Net Ideal Gas Heating Value	Btu/ft^3	462.323					3222.67	2.09769	461.01
Net Liquid Heating Value	Btu/lb	4878.45					19426.3	-1010.16	4891.5
Gross Ideal Gas Heating Value	Btu/ft^3	545.113					3489.50	52.4879	544.37
Gross Liquid Heating Value	Btu/Ib	5869.49					21048.3	46.4497	5896.8







Process Streams		1
Composition	Status:	Solved
Phase: Total	From Block:	AGI Compression
	To Block:	VSSL-100
Mole Fraction		%
H2S		16.0055
CO2		79.9993
N2		0.000166085
Methane		0.142326
Ethane		0.0535924
Propane		0.0183942
i-Butane n-Butane		0.00141250 0.00647112
i-Pentane		0.00047112
n-Pentane		0.000308419
n-Hexane		2.75811E-05
n-Heptane		3.00324E-06
n-Octane		4.04905E-07
n-Nonane		7.14663E-08
n-Decane		0
Undecane		0
Benzene		0.0150189
Toluene		0.00435629
Ethylbenzene		0.000116002
m-Xylene		0.000302910
Water		3.75254
MDEA		4.42532E-09
Piperazine Decemberia Acid		4.43171E-09
Phosphoric Acid TEG		0
02		0
Molar Flow		lbmol/h
H2S		
		320.949
CO2		320.949 1604.18
CO2 N2		
N2 Methane		1604.18 0.00333041 2.85398
N2 Methane Ethane		1604.18 0.00333041 2.85398 1.07466
N2 Methane Ethane Propane		1604.18 0.00333041 2.85398 1.07466 0.368850
N2 Methane Ethane Propane i-Butane		1604.18 0.00333041 2.85398 1.07466 0.368850 0.0283241
N2 Methane Ethane Propane i-Butane n-Butane		1604.18 0.00333041 2.85398 1.07466 0.368850 0.0283241 0.129762
N2 Methane Ethane Propane i-Butane n-Butane i-Pentane		1604.18 0.00333041 2.85398 1.07466 0.368850 0.0283241 0.129762 0.00339920
N2 Methane Ethane Propane i-Butane n-Butane i-Pentane n-Pentane		1604.18 0.00333041 2.85398 1.07466 0.368850 0.0283241 0.129762 0.00339920 0.00618455
N2 Methane Ethane Propane i-Butane n-Butane i-Pentane n-Pentane n-Hexane		1604.18 0.00333041 2.85398 1.07466 0.368850 0.0283241 0.129762 0.00339920 0.00618455 0.000553069
N2 Methane Ethane Propane i-Butane n-Butane i-Pentane n-Pentane n-Hexane n-Heptane		1604.18 0.00333041 2.85398 1.07466 0.368850 0.0283241 0.129762 0.00339920 0.00618455
N2 Methane Ethane Propane i-Butane n-Butane i-Pentane n-Pentane n-Hexane		1604.18 0.00333041 2.85398 1.07466 0.368850 0.0283241 0.129762 0.00339920 0.00618455 0.000553069 6.02223E-05
N2 Methane Ethane Propane i-Butane n-Butane i-Pentane n-Pentane n-Hexane n-Heptane n-Octane		1604.18 0.00333041 2.85398 1.07466 0.368850 0.0283241 0.129762 0.00339920 0.00618455 0.000553069 6.02223E-05 8.11933E-06
N2 Methane Ethane Propane i-Butane n-Butane i-Pentane n-Pentane n-Hexane n-Heptane n-Octane n-Nonane		1604.18 0.00333041 2.85398 1.07466 0.368850 0.0283241 0.129762 0.00339920 0.00618455 0.000553069 6.02223E-05 8.11933E-06 1.43307E-06
N2 Methane Ethane Propane i-Butane n-Butane i-Pentane n-Pentane n-Hexane n-Heptane n-Gotane n-Octane n-Nonane n-Decane		1604.18 0.00333041 2.85398 1.07466 0.368850 0.0283241 0.129762 0.00339920 0.00618455 0.000553069 6.02223E-05 8.11933E-06 1.43307E-06 0
N2 Methane Ethane Propane i-Butane n-Butane i-Pentane n-Pentane n-Hexane n-Heptane n-Octane n-Octane n-Nonane n-Decane Undecane Benzene Toluene		1604.18 0.00333041 2.85398 1.07466 0.368850 0.0283241 0.129762 0.00339920 0.00618455 0.000553069 6.02223E-05 8.11933E-06 1.43307E-06 0 0
N2 Methane Ethane Propane i-Butane n-Butane i-Pentane n-Pentane n-Hexane n-Heptane n-Octane n-Octane n-Nonane n-Decane Undecane Benzene Toluene Ethylbenzene		1604.18 0.00333041 2.85398 1.07466 0.368850 0.0283241 0.129762 0.00339920 0.00618455 0.000553069 6.02223E-05 8.11933E-06 1.43307E-06 0 0 0.301167 0.0873543 0.00232613
N2 Methane Ethane Propane i-Butane n-Butane i-Pentane n-Pentane n-Hexane n-Heptane n-Octane n-Octane n-Nonane n-Decane Undecane Benzene Toluene Ethylbenzene m-Xylene		1604.18 0.00333041 2.85398 1.07466 0.368850 0.0283241 0.129762 0.00339920 0.00618455 0.000553069 6.02223E-05 8.11933E-06 1.43307E-06 0 0 0.301167 0.0873543 0.00232613 0.00607409
N2 Methane Ethane Propane i-Butane n-Butane i-Pentane n-Pentane n-Hexane n-Heptane n-Octane n-Octane n-Octane n-Decane Undecane Benzene Toluene Ethylbenzene m-Xylene Water		1604.18 0.00333041 2.85398 1.07466 0.368850 0.0283241 0.129762 0.00339920 0.00618455 0.000553069 6.02223E-05 8.11933E-06 1.43307E-06 0 0 0.301167 0.0873543 0.00232613 0.00607409 75.2475
N2 Methane Ethane Propane i-Butane n-Butane i-Pentane n-Pentane n-Hexane n-Heptane n-Octane n-Octane n-Octane n-Decane Undecane Benzene Toluene Ethylbenzene m-Xylene Water MDEA		1604.18 0.00333041 2.85398 1.07466 0.368850 0.0283241 0.129762 0.00339920 0.00618455 0.000553069 6.02223E-05 8.11933E-06 1.43307E-06 0 0 0.301167 0.0873543 0.00232613 0.00607409 75.2475 8.87386E-08
N2 Methane Ethane Propane i-Butane n-Butane i-Pentane n-Pentane n-Hexane n-Heptane n-Octane n-Octane n-Octane n-Decane Undecane Benzene Toluene Ethylbenzene m-Xylene Water MDEA Piperazine		1604.18 0.00333041 2.85398 1.07466 0.368850 0.0283241 0.129762 0.00339920 0.00618455 0.000553069 6.02223E-05 8.11933E-06 1.43307E-06 0 0 0.301167 0.0873543 0.00232613 0.00607409 75.2475 8.87386E-08 8.88667E-08
N2 Methane Ethane Propane i-Butane n-Butane i-Pentane n-Pentane n-Hexane n-Heptane n-Octane n-Octane n-Octane n-Decane Undecane Benzene Toluene Ethylbenzene m-Xylene Water MDEA Piperazine Phosphoric Acid		1604.18 0.00333041 2.85398 1.07466 0.368850 0.0283241 0.129762 0.00339920 0.00618455 0.000553069 6.02223E-05 8.11933E-06 1.43307E-06 0 0 0.301167 0.0873543 0.00232613 0.00607409 75.2475 8.87386E-08 8.88667E-08 0
N2 Methane Ethane Propane i-Butane n-Butane i-Pentane n-Pentane n-Hexane n-Heptane n-Octane n-Octane n-Octane n-Octane dundecane Benzene Toluene Ethylbenzene m-Xylene Water MDEA Piperazine Phosphoric Acid TEG		1604.18 0.00333041 2.85398 1.07466 0.368850 0.0283241 0.129762 0.00339920 0.00618455 0.000553069 6.02223E-05 8.11933E-06 1.43307E-06 0 0 0.301167 0.0873543 0.00232613 0.00607409 75.2475 8.87386E-08 8.88667E-08 0 0
N2 Methane Ethane Propane i-Butane n-Butane i-Pentane n-Pentane n-Hexane n-Heptane n-Octane n-Octane n-Octane n-Octane n-Decane Undecane Benzene Toluene Ethylbenzene m-Xylene Water MDEA Piperazine Phosphoric Acid TEG O2		1604.18 0.00333041 2.85398 1.07466 0.368850 0.0283241 0.129762 0.00339920 0.00618455 0.000553069 6.02223E-05 8.11933E-06 1.43307E-06 0 0 0.301167 0.0873543 0.00232613 0.00607409 75.2475 8.87386E-08 8.88667E-08 0 0 0
N2 Methane Ethane Propane i-Butane n-Butane i-Pentane n-Pentane n-Hexane n-Heptane n-Heptane n-Octane n-Octane n-Octane n-Decane Undecane Benzene Toluene Ethylbenzene m-Xylene Water MDEA Piperazine Phosphoric Acid TEG O2 Mass Fraction		1604.18 0.00333041 2.85398 1.07466 0.368850 0.0283241 0.129762 0.00339920 0.00618455 0.000553069 6.02223E-05 8.11933E-06 1.43307E-06 0 0 0 0.301167 0.0873543 0.00232613 0.00607409 75.2475 8.87386E-08 8.88667E-08 8.88667E-08 0 0 0
N2 Methane Ethane Propane i-Butane n-Butane i-Pentane n-Pentane n-Hexane n-Heptane n-Octane n-Octane n-Octane n-Decane Undecane Benzene Toluene Ethylbenzene m-Xylene Water MDEA Piperazine Phosphoric Acid TEG O2		1604.18 0.00333041 2.85398 1.07466 0.368850 0.0283241 0.129762 0.00339920 0.00618455 0.000553069 6.02223E-05 8.11933E-06 1.43307E-06 0 0 0.301167 0.0873543 0.00232613 0.00607409 75.2475 8.87386E-08 8.88667E-08 0 0 0

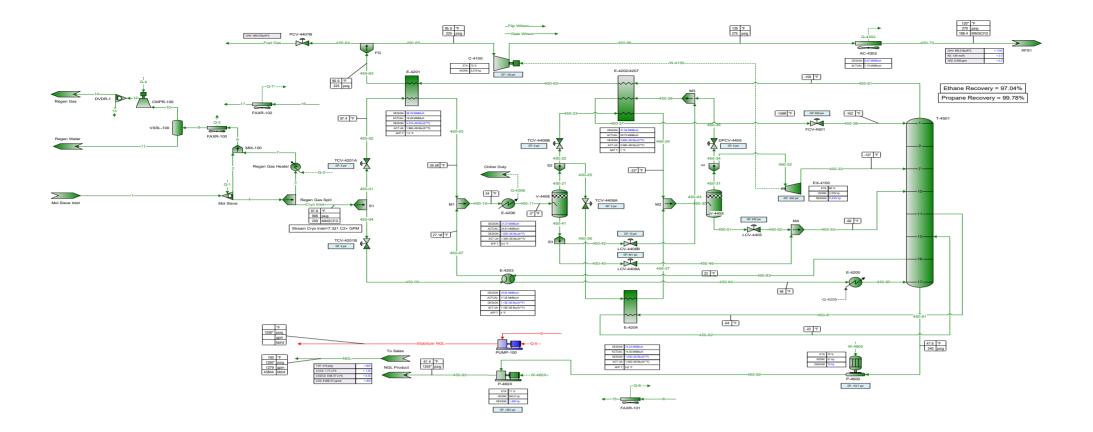
N2		0.000112364
Methane		0.0551426
Ethane		0.0389184
Propane		0.0195889
i-Butane		0.00198273
n-Butane		0.00908352
i-Pentane		0.000295373
n-Pentane		0.000537406
n-Hexane		5.74021E-05
n-Heptane		7.26773E-06
n-Octane		1.11702E-06
n-Nonane		2.21365E-07
n-Decane		2.210000-07
Undecane		0
		-
Benzene		0.0283328
		0.00969372
Ethylbenzene		0.000297428
m-Xylene		0.000776654
Water		1.63267
MDEA		1.27355E-08
Piperazine		9.21906E-09
Phosphoric Acid		0
TEG		0
02		0
Mass Flow		lb/h
H2S		10938.2
CO2		70599.3
N2		0.0932960
Methane		45.7849
Ethane		32.3139
Propane		16.2647
i-Butane		1.64626
n-Butane		7.54205
i-Pentane		0.245248
n-Pentane		0.446208
n-Hexane		0.0476610
n-Heptane		0.00603439
n-Octane		0.000927459
n-Nonane		0.000183799
n-Decane		0.000100700
Undecane		0
Benzene		23.5247
Toluene		8.04869
Ethylbenzene		0.246954
m-Xylene		0.644855
Water		1355.61
MDEA		1.05743E-05
Piperazine		7.65458E-06
Phosphoric Acid		0
TEG		0
O2		0
~=		
		1
Process Streams	Status	1 folged
Process Streams Properties	Status:	Solved
Process Streams	From Block:	Solved AGI Compression
Process Streams Properties Phase: Total		Solved
Process Streams Properties Phase: Total Property	From Block:	Solved AGI Compression
Process Streams Properties Phase: Total Property	From Block: To Block:	Solved AGI Compression
Process Streams Properties Phase: Total	From Block: To Block: Units	Solved AGI Compression VSSL-100
Process Streams Properties Phase: Total Property Temperature Pressure	From Block: To Block: Units °F	Solved AGI Compression VSSL-100 99.4699
Process Streams Properties Phase: Total Property Temperature	From Block: To Block: Units °F psia	Solved AGI Compression VSSL-100 99.4699 21.6959

Mole Fraction Heavy Liquid	%	0
Molecular Weight	lb/lbmol	41.4064
Mass Density	lb/ft^3	0.150875
Molar Flow	lbmol/h	2005.25
Mass Flow	lb/h	83030.0
Vapor Volumetric Flow	ft^3/h	550324
Liquid Volumetric Flow	gpm	68611.9
Std Vapor Volumetric Flow	MMSCFD	18.2630
Std Liquid Volumetric Flow	sgpm	203.450
Compressibility		0.992307
Specific Gravity		1.42966
API Gravity		
Enthalpy	Btu/h	-2.81858E+08
Mass Enthalpy	Btu/lb	-3394.66
Mass Cp	Btu/(lb*°F)	0.215402
Ideal Gas CpCv Ratio		1.28942
Dynamic Viscosity	cP	0.0153173
Kinematic Viscosity	cSt	6.33790
Thermal Conductivity	Btu/(h*ft*°F)	0.0100352
Surface Tension	lbf/ft	
Net Ideal Gas Heating Value	Btu/ft^3	97.5087
Net Liquid Heating Value	Btu/lb	785.938
Gross Ideal Gas Heating Value	Btu/ft^3	107.764
Gross Liquid Heating Value	Btu/lb	879.953

Process Streams1CompositionStatus:SurvedPhase:From Block:AGI Compression VSSL-100Mole Fraction%H2S16.0055CO279.9993N20.000166085Methane0.142326Ethane0.0535924Propane0.0183942i-Butane0.00141250n-Butane0.000169515n-Pentane0.000308419n-Heptane3.00324E-06n-Cotane4.04905E-07n-Nonane7.14663E-08n-Decane0n-Decane0.000116002Undecane0.000302910Water3.75254MDEA4.42532E-09Piperazine4.43171E-09Phosphoric Acid0N20.0033041N21604.18N20.00333041Methane2.85398			
Phase:VipporFrom Block: To Block:AGI Compression VSSL-100Mole Fraction%H2S16.0055CO279.9993N20.000166085Methane0.142326Ethane0.0535924Propane0.0183942i-Butane0.00141250n-Butane0.000169515n-Pentane0.0000169515n-Pentane0.000308419n-Cotane4.04905E-07n-Nonane7.14663E-08n-Decane0Undecane0Benzene0.00116002m-Xylene0.000302910Water3.75254MDEA4.42532E-09Piperazine4.43171E-09Phosphoric Acid0TEG0O20Molar FlowIbmol/hH2S320.949CO21604.18N20.00333041	Process Streams		1
To Block:         VSSL-100           Mole Fraction         %           H2S         16.0055           CO2         79.9993           N2         0.000166085           Methane         0.142326           Ethane         0.0535924           Propane         0.0183942           i-Butane         0.00141250           n-Butane         0.000169515           n-Pentane         0.000308419           n-Hexane         2.75811E-05           n-Heptane         3.00324E-06           n-Octane         4.04905E-07           n-Nonane         7.14663E-08           n-Decane         0           Undecane         0           Benzene         0.000116002           m-Xylene         0.000302910           Water         3.75254           MDEA         4.42532E-09           Piperazine         4.43171E-09           Phosphoric Acid         0           O2         0           Molar Flow         Ibmol/h	Composition	Status:	Solved
Mole Fraction         %           H2S         16.0055           CO2         79.9993           N2         0.000166085           Methane         0.142326           Ethane         0.0535924           Propane         0.0183942           i-Butane         0.00141250           n-Butane         0.000169515           n-Pentane         0.000308419           n-Heptane         2.75811E-05           n-Heptane         3.00324E-06           n-Octane         4.04905E-07           n-Nonane         7.14663E-08           n-Decane         0           Undecane         0           Benzene         0.000302910           Vater         3.75254           MDEA         4.42532E-09           Piperazine         4.43171E-05           Piperazine         4.43171E-09           Piperazine         0.000302910           Otec         0           O2         0           MDEA         4.42532E-09           Piperazine         0.000302910           Otec         0           O2         0           MDEA         4.42532E-09           O2	Phase: Vapor	From Block:	AGI Compression
H2S         16.0055           CO2         79.9993           N2         0.000166085           Methane         0.142326           Ethane         0.0535924           Propane         0.0183942           i-Butane         0.00141250           n-Butane         0.000169515           n-Pentane         0.000308419           n-Hexane         2.75811E-05           n-Heptane         3.00324E-06           n-Octane         4.04905E-07           n-Nonane         7.14663E-08           n-Decane         0           Undecane         0           Benzene         0.00150189           Toluene         0.000302910           Water         3.75254           MDEA         4.42532E-09           Piperazine         4.43171E-09           Phosphoric Acid         0           TEG         0           O2         0           Molar Flow         ibmol/h           H2S         320.949           CO2         1604.18           N2         0.00333041		To Block:	
CO2         79.993           N2         0.000166085           Methane         0.142326           Ethane         0.0535924           Propane         0.0183942           iButane         0.00141250           n-Butane         0.000169515           n-Pentane         0.000308419           n-Hexane         2.75811E-05           n-Heptane         3.00324E-06           n-Octane         4.04905E-07           n-Nonane         7.14663E-08           n-Decane         0           Undecane         0           Benzene         0.00150189           Toluene         0.000302910           Water         3.75254           MDEA         4.42532E-09           Piperazine         4.43171E-09           Phosphoric Acid         0           TEG         0           O2         0           Molar Flow         ibmol/h           H2S         320.949           CO2         1604.18	Mole Fraction		%
N2         0.000166085           Methane         0.142326           Ethane         0.0535924           Propane         0.0183942           i-Butane         0.00141250           n-Butane         0.000169515           n-Pentane         0.000308419           n-Hexane         2.75811E-05           n-Heptane         3.00324E-06           n-Octane         4.04905E-07           n-Nonane         7.14663E-08           n-Decane         0           Undecane         0           Benzene         0.000116002           m-Xylene         0.000302910           Water         3.75254           MDEA         4.42532E-09           Piperazine         4.43171E-09           Phosphoric Acid         0           TEG         0           O2         0           Molar Flow         Ibmol/h           H2S         320.949           CO2         1604.18           N2         0.00333041	H2S		16.0055
Methane         0.14236           Ethane         0.0535924           Propane         0.0183942           i-Butane         0.00141250           n-Butane         0.000169515           n-Pentane         0.000308419           n-Hexane         2.75811E-05           n-Heptane         3.00324E-06           n-Octane         4.04905E-07           n-Nonane         7.14663E-08           n-Decane         0           Undecane         0           Benzene         0.000116002           m-Xylene         0.000302910           Water         3.75254           MDEA         4.42532E-09           Piperazine         4.43171E-09           Phosphoric Acid         0           TEG         0           O2         0           Molar Flow         1bmol/h           H2S         320.949           CO2         1604.18           N2         0.00333041	CO2		79.9993
Ethane         0.0535924           Propane         0.0183942           i-Butane         0.00141250           n-Butane         0.00047112           i-Pentane         0.000308419           n-Hexane         2.75811E-05           n-Heptane         3.00324E-06           n-Octane         4.04905E-07           n-Nonane         7.14663E-08           n-Decane         0           Undecane         0           Benzene         0.00116002           m-Xylene         0.000302910           Water         3.75254           MDEA         4.42532E-09           Piperazine         4.43171E-09           Phosphoric Acid         0           TEG         0           O2         0           Molar Flow         16bmol/h           H2S         320.949           CO2         1604.18           N2         0.00333041	N2		0.000166085
Propane         0.0183942           i-Butane         0.00141250           n-Butane         0.00647112           i-Pentane         0.000169515           n-Pentane         0.000308419           n-Hexane         2.75811E-05           n-Heptane         3.00324E-06           n-Octane         4.04905E-07           n-Nonane         7.14663E-08           n-Decane         0           Undecane         0           Benzene         0.0150189           Toluene         0.000302910           water         3.75254           MDEA         4.42532E-09           Piperazine         4.43171E-09           Phosphoric Acid         0           TEG         0           O2         0           Molar Flow         320.949           CO2         1604.18           N2         0.00333041	Methane		0.142326
i-Butane         0.00141250           n-Butane         0.00647112           i-Pentane         0.000169515           n-Pentane         0.000308419           n-Hexane         2.75811E-05           n-Heptane         3.00324E-06           n-Octane         4.04905E-07           n-Nonane         7.14663E-08           n-Decane         0           Undecane         0           Benzene         0.00116002           m-Xylene         0.000302910           Water         3.75254           MDEA         4.42532E-09           Piperazine         4.43171E-09           Phosphoric Acid         0           CQ2         0           Molar Flow         320.949           N2         0.00333041	Ethane		0.0535924
n-Butane         0.00647112           i-Pentane         0.000169515           n-Pentane         0.000308419           n-Hexane         2.75811E-05           n-Heptane         3.00324E-06           n-Octane         4.04905E-07           n-Nonane         7.14663E-08           n-Decane         0           Undecane         0           Benzene         0.00116002           m-Xylene         0.000302910           Water         3.75254           MDEA         4.42532E-09           Piperazine         4.43171E-09           Phosphoric Acid         0           CQ2         0           Molar Flow         1600.18           N2         0.00333041	Propane		0.0183942
i-Pentane         0.000169515           n-Pentane         0.000308419           n-Hexane         2.75811E-05           n-Heptane         3.00324E-06           n-Octane         4.04905E-07           n-Nonane         7.14663E-08           n-Decane         0           Undecane         0           Benzene         0.0001602           Toluene         0.0001602           m-Xylene         0.000302910           Water         3.75254           MDEA         4.42532E-09           Piperazine         4.43171E-09           Phosphoric Acid         0           Q2         0           Molar Flow         1600.14           H2S         320.949           N2         0.00333041	i-Butane		0.00141250
n-Pentane         0.000308419           n-Hexane         2.75811E-05           n-Heptane         3.00324E-06           n-Octane         4.04905E-07           n-Nonane         7.14663E-08           n-Decane         0           Undecane         0           Benzene         0.00150189           Toluene         0.000302910           m-Xylene         0.000302910           Water         3.75254           MDEA         4.42532E-09           Piperazine         4.43171E-09           Phosphoric Acid         0           TEG         0           Q2         0           Molar Flow         16004.18           N2         0.00333041	n-Butane		0.00647112
n-Hexane         2.75811E-05           n-Heptane         3.00324E-06           n-Octane         4.04905E-07           n-Nonane         7.14663E-08           n-Decane         0           Undecane         0           Benzene         0.0150189           Toluene         0.00435629           Ethylbenzene         0.000116002           m-Xylene         0.000302910           Water         3.75254           MDEA         4.42532E-09           Piperazine         4.43171E-09           Phosphoric Acid         0           TEG         0           O2         0           Molar Flow         Ibmol/h           H2S         320.949           CO2         1604.18           N2         0.00333041	i-Pentane		0.000169515
n-Heptane       3.00324E-06         n-Octane       4.04905E-07         n-Nonane       7.14663E-08         n-Decane       0         Undecane       0         Benzene       0.0150189         Toluene       0.00435629         Ethylbenzene       0.000302910         m-Xylene       0.000302910         Water       3.75254         MDEA       4.42532E-09         Piperazine       4.43171E-09         Phosphoric Acid       0         02       0         Molar Flow       ibmol/h         H2S       320.949         CO2       1604.18         N2       0.00333041	n-Pentane		0.000308419
n-Octane       4.04905E-07         n-Nonane       7.14663E-08         n-Decane       0         Undecane       0         Benzene       0.0150189         Toluene       0.00435629         Ethylbenzene       0.000116002         m-Xylene       0.000302910         Water       3.75254         MDEA       4.42532E-09         Piperazine       4.43171E-09         Phosphoric Acid       0         CQ2       0         MOLar Flow       1600/h         H2S       320.949         N2       0.00333041	n-Hexane		2.75811E-05
n-Nonane       7.14663E-08         n-Decane       0         Undecane       0         Benzene       0.0150189         Toluene       0.00435629         Ethylbenzene       0.000116002         m-Xylene       0.000302910         Water       3.75254         MDEA       4.42532E-09         Piperazine       4.43171E-09         Phosphoric Acid       0         C2       0         Molar Flow       1604.18         N2       0.00333041	n-Heptane		3.00324E-06
n-Decane         0           Undecane         0           Benzene         0.0150189           Toluene         0.00435629           Ethylbenzene         0.000116002           m-Xylene         0.000302910           Water         3.75254           MDEA         4.42532E-09           Piperazine         4.43171E-09           Phosphoric Acid         0           TEG         0           02         0           Molar Flow         1604.18           N2         0.00333041	n-Octane		
Undecane         0           Benzene         0.0150189           Toluene         0.00435629           Ethylbenzene         0.000116002           m-Xylene         0.000302910           Water         3.75254           MDEA         4.42532E-09           Piperazine         4.43171E-09           Phosphoric Acid         0           C2         0           Molar Flow         1604.18           N2         0.00333041	n-Nonane		7.14663E-08
Benzene         0.0150189           Toluene         0.00435629           Ethylbenzene         0.000116002           m-Xylene         0.000302910           Water         3.75254           MDEA         4.42532E-09           Piperazine         4.43171E-09           Phosphoric Acid         0           C2         0           Molar Flow         1604.18           N2         0.00333041			0
Toluene         0.00435629           Ethylbenzene         0.000116002           m-Xylene         0.000302910           Water         3.75254           MDEA         4.42532E-09           Piperazine         4.43171E-09           Phosphoric Acid         0           C2         0           Molar Flow         1604.18           N2         0.00333041	-		Ũ
Ethylbenzene         0.000116002           m-Xylene         0.000302910           Water         3.75254           MDEA         4.42532E-09           Piperazine         4.43171E-09           Phosphoric Acid         0           TEG         0           O2         0           Molar Flow         16001/h           H2S         320.949           CO2         1604.18           N2         0.00333041			
m-Xylene         0.000302910           Water         3.75254           MDEA         4.42532E-09           Piperazine         4.43171E-09           Phosphoric Acid         0           TEG         0           O2         0           Molar Flow         Ibmol/h           H2S         320.949           CO2         1604.18           N2         0.00333041			
Water         3.75254           MDEA         4.42532E-09           Piperazine         4.43171E-09           Phosphoric Acid         0           TEG         0           O2         0           Molar Flow         Ibmol/h           H2S         320.949           CO2         1604.18           N2         0.00333041			
MDEA         4.42532E-09           Piperazine         4.43171E-09           Phosphoric Acid         0           TEG         0           O2         0           Molar Flow         Ibmol/h           H2S         320.949           CO2         1604.18           N2         0.00333041	,		
Piperazine         4.43171E-09           Phosphoric Acid         0           TEG         0           O2         0           Molar Flow         Ibmol/h           H2S         320.949           CO2         1604.18           N2         0.00333041			
Phosphoric Acid         0           TEG         0           O2         0           Molar Flow         Ibmol/h           H2S         320.949           CO2         1604.18           N2         0.00333041			
TEG         0           O2         0           Molar Flow         Ibmol/h           H2S         320.949           CO2         1604.18           N2         0.00333041	•		
O2         0           Molar Flow         Ibmol/h           H2S         320.949           CO2         1604.18           N2         0.00333041			
Molar Flow         Ibmol/h           H2S         320.949           CO2         1604.18           N2         0.00333041	. = +		-
H2S 320.949 CO2 1604.18 N2 0.00333041			•
CO2 1604.18 N2 0.00333041			
N2 0.00333041			
Methane 2.85398	=		
	weinane		2.85398

Ethane	1.07466
Propane	0.368850
i-Butane	0.0283241
n-Butane	0.129762
i-Pentane	0.00339920
n-Pentane	
	0.00618455
n-Hexane	0.000553069
n-Heptane	6.02223E-05
n-Octane	8.11933E-06
n-Nonane	1.43307E-06
n-Decane	0
Undecane	0
Benzene	0.301167
Toluene	0.0873543
Ethylbenzene	0.00232613
m-Xylene	0.00607409
Water	75.2475
MDEA	8.87386E-08
Piperazine	8.88667E-08
Phosphoric Acid	0
TEG	0
02	0
Mass Fraction	%
H2S	13.1738
CO2	85.0287
N2	0.000112364
Methane	0.0551426
Ethane	0.0389184
Propane	0.0195889
i-Butane	0.00198273
n-Butane	0.00908352
i-Pentane	0.000295373
n-Pentane	0.000537406
n-Hexane	5.74021E-05
n-Heptane	7.26773E-06
n-Octane	1.11702E-06
n-Nonane -	2.21365E-07
n-Decane	0
Undecane	0
Benzene	0.0283328
Toluene	0.00969372
	0.000297428
Ethylbenzene	0.000237420
Etnylbenzene m-Xylene	0.000776654
m-Xylene	0.000776654
m-Xylene Water MDEA	0.000776654 1.63267 1.27355E-08
m-Xylene Water MDEA Piperazine	0.000776654 1.63267 1.27355E-08 9.21906E-09
m-Xylene Water MDEA Piperazine Phosphoric Acid	0.000776654 1.63267 1.27355E-08 9.21906E-09 0
m-Xylene Water MDEA Piperazine Phosphoric Acid TEG	0.000776654 1.63267 1.27355E-08 9.21906E-09 0 0
m-Xylene Water MDEA Piperazine Phosphoric Acid TEG O2	0.000776654 1.63267 1.27355E-08 9.21906E-09 0 0 0
m-Xylene Water MDEA Piperazine Phosphoric Acid TEG O2 <b>Mass Flow</b>	0.000776654 1.63267 1.27355E-08 9.21906E-09 0 0 0 0 0
m-Xylene Water MDEA Piperazine Phosphoric Acid TEG O2 <u>Mass Flow</u> H2S	0.000776654 1.63267 1.27355E-08 9.21906E-09 0 0 0 0 0 0 0 0 0 0 0 0
m-Xylene Water MDEA Piperazine Phosphoric Acid TEG O2 Mass Flow H2S CO2	0.000776654 1.63267 1.27355E-08 9.21906E-09 0 0 0 0 0 10938.2 70599.3
m-Xylene Water MDEA Piperazine Phosphoric Acid TEG O2 Mass Flow H2S CO2 N2	0.000776654 1.63267 1.27355E-08 9.21906E-09 0 0 0 10938.2 70599.3 0.0932960
m-Xylene Water MDEA Piperazine Phosphoric Acid TEG O2 Mass Flow H2S CO2 N2 Methane	0.000776654 1.63267 1.27355E-08 9.21906E-09 0 0 0 0 0 10938.2 70599.3 0.0932960 45.7849
m-Xylene Water MDEA Piperazine Phosphoric Acid TEG O2 Mass Flow H2S CO2 N2 Methane Ethane	0.000776654 1.63267 1.27355E-08 9.21906E-09 0 0 0 0 0 0 0 0 0 0 0 0 0
m-Xylene Water MDEA Piperazine Phosphoric Acid TEG O2 Mass Flow H2S CO2 N2 Methane Ethane Propane	0.000776654 1.63267 1.27355E-08 9.21906E-09 0 0 0 0 0 10938.2 70599.3 0.0932960 45.7849 32.3139 16.2647
m-Xylene Water MDEA Piperazine Phosphoric Acid TEG O2 Mass Flow H2S CO2 N2 Methane Ethane Propane i-Butane	0.000776654 1.63267 1.27355E-08 9.21906E-09 0 0 0 0 10938.2 70599.3 0.0932960 45.7849 32.3139 16.2647 1.64626
m-Xylene Water MDEA Piperazine Phosphoric Acid TEG O2 Mass Flow H2S CO2 N2 Methane Ethane Propane i-Butane n-Butane	0.000776654 1.63267 1.27355E-08 9.21906E-09 0 0 0 100 10938.2 70599.3 0.0932960 45.7849 32.3139 16.2647 1.64626 7.54205
m-Xylene Water MDEA Piperazine Phosphoric Acid TEG O2 Mass Flow H2S CO2 N2 Methane Ethane Propane i-Butane n-Butane i-Pentane	0.000776654 1.63267 1.27355E-08 9.21906E-09 0 0 0 0 10/h 10938.2 70599.3 0.0932960 45.7849 32.3139 16.2647 1.64626 7.54205 0.245248
m-Xylene Water MDEA Piperazine Phosphoric Acid TEG O2 Mass Flow H2S CO2 N2 Methane Ethane Propane i-Butane n-Butane	0.000776654 1.63267 1.27355E-08 9.21906E-09 0 0 0 100 10938.2 70599.3 0.0932960 45.7849 32.3139 16.2647 1.64626 7.54205
m-Xylene Water MDEA Piperazine Phosphoric Acid TEG O2 Mass Flow H2S CO2 N2 Methane Ethane Propane i-Butane n-Butane i-Pentane	0.000776654 1.63267 1.27355E-08 9.21906E-09 0 0 0 0 10/h 10938.2 70599.3 0.0932960 45.7849 32.3139 16.2647 1.64626 7.54205 0.245248
m-Xylene Water MDEA Piperazine Phosphoric Acid TEG O2 Mass Flow H2S CO2 N2 Methane Ethane Propane i-Butane n-Butane i-Pentane n-Pentane	0.000776654 1.63267 1.27355E-08 9.21906E-09 0 0 0 0 0 10938.2 70599.3 0.0932960 45.7849 32.3139 16.2647 1.64626 7.54205 0.245248 0.446208

n-Octane	0.000927459
n-Nonane	0.000183799
n-Decane	0
Undecane	0
Benzene	23.5247
Toluene	8.04869
Ethylbenzene	0.246954
m-Xylene	0.644855
Water	1355.61
MDEA	1.05743E-05
Piperazine	7.65458E-06
Phosphoric Acid	0
TEG	0
O2	0


Process Streams		1
Properties	Status:	Solved
Phase: Vapor	From Block:	AGI Compression
	To Block:	VSSL-100
Property	Units	
Temperature	°F	99.4699
Pressure	psia	21.6959
Mole Fraction Vapor	%	100
Mole Fraction Light Liquid	%	0
Mole Fraction Heavy Liquid	%	0
Molecular Weight	lb/lbmol	41.4064
Mass Density	lb/ft^3	0.150875
Molar Flow	lbmol/h	2005.25
Mass Flow	lb/h	83030.0
Vapor Volumetric Flow	ft^3/h	550324
Liquid Volumetric Flow	gpm	68611.9
Std Vapor Volumetric Flow	MMSCFD	18.2630
Std Liquid Volumetric Flow	sgpm	203.450
Compressibility		0.992307
Specific Gravity		1.42966
API Gravity		
Enthalpy	Btu/h	-2.81858E+08
Mass Enthalpy	Btu/lb	-3394.66
Mass Cp	Btu/(lb*°F)	0.215402
Ideal Gas CpCv Ratio		1.28942
Dynamic Viscosity	cP	0.0153173
Kinematic Viscosity	cSt	6.33790
Thermal Conductivity	Btu/(h*ft*°F)	0.0100352
Surface Tension	lbf/ft	
Net Ideal Gas Heating Value	Btu/ft^3	97.5087
Net Liquid Heating Value	Btu/lb	785.938
Gross Ideal Gas Heating Value	Btu/ft^3	107.764
Gross Liquid Heating Value	Btu/lb	879.953

Process Streams		1
Composition	Status:	Solved
Phase: Light Liquid	From Block:	AGI Compression
	To Block:	VSSL-100
Mole Fraction		
H2S		
CO2		
N2		
Methane		
Ethane		

Propane	
i-Butane	
n-Butane	
i-Pentane	
n-Pentane	
n-Hexane	
n-Heptane	
n-Octane	
n-Nonane	
n-Decane	
Undecane	
Benzene	
Toluene	
Ethylbenzene	
m-Xylene	
Water	
MDEA	
Piperazine	
Phosphoric Acid	
TEG	
02	
Molar Flow	
H2S	
CO2	
N2	
Methane	
Ethane	
Propane	
i-Butane	
n-Butane	
i-Pentane	
n-Pentane	
n-Hexane	
n-Heptane	
n-Octane	
n-Octane n-Nonane	
n-Octane n-Nonane n-Decane	
n-Octane n-Nonane n-Decane Undecane	
n-Octane n-Nonane n-Decane Undecane Benzene	
n-Octane n-Nonane n-Decane Undecane Benzene Toluene	
n-Octane n-Nonane n-Decane Undecane Benzene Toluene Ethylbenzene	
n-Octane n-Nonane n-Decane Undecane Benzene Toluene	
n-Octane n-Nonane n-Decane Undecane Benzene Toluene Ethylbenzene m-Xylene	
n-Octane n-Nonane n-Decane Undecane Benzene Toluene Ethylbenzene m-Xylene Water	
n-Octane n-Nonane n-Decane Undecane Benzene Toluene Ethylbenzene m-Xylene Water MDEA	
n-Octane n-Nonane n-Decane Undecane Benzene Toluene Ethylbenzene m-Xylene Water MDEA Piperazine	
n-Octane n-Nonane n-Decane Undecane Benzene Toluene Ethylbenzene m-Xylene Water MDEA Piperazine Phosphoric Acid	
n-Octane n-Nonane n-Decane Undecane Benzene Toluene Ethylbenzene m-Xylene Water MDEA Piperazine Phosphoric Acid TEG	
n-Octane n-Nonane n-Decane Undecane Benzene Toluene Ethylbenzene m-Xylene Water MDEA Piperazine Phosphoric Acid TEG O2	
n-Octane n-Nonane n-Decane Undecane Benzene Toluene Ethylbenzene m-Xylene Water MDEA Piperazine Phosphoric Acid TEG	
n-Octane n-Nonane n-Decane Undecane Benzene Toluene Ethylbenzene m-Xylene Water MDEA Piperazine Phosphoric Acid TEG O2	
n-Octane n-Nonane n-Decane Undecane Benzene Toluene Ethylbenzene m-Xylene Water MDEA Piperazine Phosphoric Acid TEG O2 <u>Mass Fraction</u> H2S	
n-Octane n-Nonane n-Decane Undecane Benzene Toluene Ethylbenzene m-Xylene Water MDEA Piperazine Phosphoric Acid TEG O2 Mass Fraction H2S CO2	
n-Octane n-Nonane n-Decane Undecane Benzene Toluene Ethylbenzene m-Xylene Water MDEA Piperazine Phosphoric Acid TEG O2 Mass Fraction H2S CO2 N2	
n-Octane n-Nonane n-Decane Undecane Benzene Toluene Ethylbenzene m-Xylene Water MDEA Piperazine Phosphoric Acid TEG O2 Mass Fraction H2S CO2 N2 Methane	
n-Octane n-Nonane n-Decane Undecane Benzene Toluene Ethylbenzene m-Xylene Water MDEA Piperazine Phosphoric Acid TEG O2 Mass Fraction H2S CO2 N2 Methane Ethane	
n-Octane n-Nonane n-Decane Undecane Benzene Toluene Ethylbenzene m-Xylene Water MDEA Piperazine Phosphoric Acid TEG O2 Mass Fraction H2S CO2 N2 Methane Ethane Propane	
n-Octane n-Nonane n-Decane Undecane Benzene Toluene Ethylbenzene m-Xylene Water MDEA Piperazine Phosphoric Acid TEG O2 Mass Fraction H2S CO2 N2 Methane Ethane Propane i-Butane	
n-Octane n-Nonane n-Decane Undecane Benzene Toluene Ethylbenzene m-Xylene Water MDEA Piperazine Phosphoric Acid TEG O2 Mass Fraction H2S CO2 N2 Methane Ethane Propane	
n-Octane n-Nonane n-Decane Undecane Benzene Toluene Ethylbenzene m-Xylene Water MDEA Piperazine Phosphoric Acid TEG O2 Mass Fraction H2S CO2 N2 Methane Ethane Propane i-Butane	
n-Octane n-Nonane n-Decane Undecane Benzene Toluene Ethylbenzene m-Xylene Water MDEA Piperazine Phosphoric Acid TEG O2 Mass Fraction H2S CO2 N2 Methane Ethane Propane i-Butane n-Butane i-Pentane	
n-Octane n-Nonane n-Nonane n-Decane Undecane Benzene Toluene Ethylbenzene m-Xylene Water MDEA Piperazine Phosphoric Acid TEG O2 Mass Fraction H2S CO2 N2 Methane Ethane Propane i-Butane n-Butane n-Pentane	
n-Octane n-Nonane n-Nonane n-Decane Undecane Benzene Toluene Ethylbenzene m-Xylene Water MDEA Piperazine Phosphoric Acid TEG O2 Mass Fraction H2S CO2 N2 Methane Ethane Propane i-Butane n-Butane n-Pentane n-Pentane n-Hexane	
n-Octane n-Nonane n-Decane Undecane Benzene Toluene Ethylbenzene m-Xylene Water MDEA Piperazine Phosphoric Acid TEG O2 Mass Fraction H2S CO2 N2 Methane Ethane Propane i-Butane n-Butane n-Pentane n-Pentane n-Hexane n-Heptane	
n-Octane n-Nonane n-Decane Undecane Benzene Toluene Ethylbenzene m-Xylene Water MDEA Piperazine Phosphoric Acid TEG O2 Mass Fraction H2S CO2 N2 Methane Ethane Propane i-Butane n-Butane n-Pentane n-Pentane n-Hexane	

24
ad ression
ression
ression

API Gravity	
Enthalpy	Btu/h
Mass Enthalpy	Btu/lb
Mass Cp	Btu/(lb*°F)
Ideal Gas CpCv Ratio	
Dynamic Viscosity	cP
Kinematic Viscosity	cSt
Thermal Conductivity	Btu/(h*ft*°F)
Surface Tension	lbf/ft
Net Ideal Gas Heating Value	Btu/ft^3
Net Liquid Heating Value	Btu/lb
Gross Ideal Gas Heating Value	Btu/ft^3
Gross Liquid Heating Value	Btu/lb



Process Streams		Fuel Gas	NGL	Stabilizer NGL	1
Composition	Status:	Solved	Solved	Unsolved	Solved
Phase: Total	From Block:	PCV-4407B	To Sales	PUMP-100	Mol Sieve Inlet
Mole Fraction	To Block:	 %	%		Mol Sieve %
H2S		5.59469E-06	0.000482782		0.000129851
CO2		4.40069E-08	7.75079E-07		2.34370E-07
N2		1.83772	4.67837E-07		1.35905
Methane		97.5963	1.40666		72.5419
Ethane		0.541556	50.3711		13.5168
Propane		0.0233118	30.0447		7.84069
i-Butane		0.000396265	3.99262		1.03994
n-Butane		0.000718919	10.1083		2.63266
i-Pentane		8.06476E-06	1.84494		0.480416
n-Pentane		1.27122E-05	1.74208		0.453637
n-Hexane		1.49124E-07	0.256652		0.0668307
n-Heptane		1.78569E-08	0.151699		0.0395015
n-Octane		1.55957E-10	0.0126949		0.00330567
n-Nonane		5.01525E-11	0.0210135		0.00547178
n-Decane		0	3.57664E-05		9.31333E-06
Undecane Benzene		0 9.37316E-08	0.000121070 0.0343437		3.15258E-05 0.00894294
Toluene		4.22149E-09	0.0343437		0.00286815
Ethylbenzene		5.27222E-12	0.000506096		0.000131784
m-Xylene		2.50437E-11	0.000959676		0.000249893
Water		2.004072-11	0.0000000000000000000000000000000000000		0.00734509
MDEA		0	0		6.93017E-08
Piperazine		0	0		4.99661E-06
Phosphoric Acid		0	0		0
TEG		0	0		5.21043E-05
02		0	0		Ţ
Molar Flow		lbmol/h	lbmol/h		lbmol/h
Molar Flow H2S		lbmol/h 1.84286E-05	lbmol/h 0.0357224		lbmol/h 0.0390369
Molar Flow H2S CO2		lbmol/h 1.84286E-05 1.44956E-07	lbmol/h 0.0357224 5.73503E-05		lbmol/h 0.0390369 7.04584E-05
Molar Flow H2S CO2 N2		Ibmol/h 1.84286E-05 1.44956E-07 6.05335	lbmol/h 0.0357224 5.73503E-05 3.46166E-05		ibmoi/h 0.0390369 7.04584E-05 408.571
Molar Flow H2S CO2 N2 Methane		Ibmol/h 1.84286E-05 1.44956E-07 6.05335 321.477	lbmol/h 0.0357224 5.73503E-05 3.46166E-05 104.083		lbmol/h 0.0390369 7.04584E-05 408.571 21808.2
Molar Flow H2S CO2 N2 Methane Ethane		Ibmol/h 1.84286E-05 1.44956E-07 6.05335 321.477 1.78385	lbmol/h 0.0357224 5.73503E-05 3.46166E-05 104.083 3727.11		lbmol/h 0.0390369 7.04584E-05 408.571 21808.2 4063.54
Molar Flow H2S CO2 N2 Methane Ethane Propane		Ibmol/h 1.84286E-05 1.44956E-07 6.05335 321.477 1.78385 0.0767878	lbmol/h 0.0357224 5.73503E-05 3.46166E-05 104.083 3727.11 2223.10		lbmol/h 0.0390369 7.04584E-05 408.571 21808.2 4063.54 2357.14
Molar Flow H2S CO2 N2 Methane Ethane Propane i-Butane		Ibmol/h 1.84286E-05 1.44956E-07 6.05335 321.477 1.78385 0.0767878 0.00130527	lbmol/h 0.0357224 5.73503E-05 3.46166E-05 104.083 3727.11 2223.10 295.425		lbmol/h 0.0390369 7.04584E-05 408.571 21808.2 4063.54 2357.14 312.637
Molar Flow H2S CO2 N2 Methane Ethane Propane i-Butane n-Butane		Ibmol/h 1.84286E-05 1.44956E-07 6.05335 321.477 1.78385 0.0767878 0.00130527 0.00236808	lbmol/h 0.0357224 5.73503E-05 3.46166E-05 104.083 3727.11 2223.10 295.425 747.942		lbmol/h 0.0390369 7.04584E-05 408.571 21808.2 4063.54 2357.14 312.637 791.456
Molar Flow H2S CO2 N2 Methane Ethane Propane i-Butane n-Butane i-Pentane		Ibmol/h 1.84286E-05 1.44956E-07 6.05335 321.477 1.78385 0.0767878 0.00130527 0.00236808 2.65649E-05	lbmol/h 0.0357224 5.73503E-05 3.46166E-05 104.083 3727.11 2223.10 295.425 747.942 136.512		lbmol/h 0.0390369 7.04584E-05 408.571 21808.2 4063.54 2357.14 312.637 791.456 144.427
Molar Flow H2S CO2 N2 Methane Ethane Propane i-Butane n-Butane i-Pentane n-Pentane		Ibmol/h 1.84286E-05 1.44956E-07 6.05335 321.477 1.78385 0.0767878 0.00130527 0.00236808 2.65649E-05 4.18735E-05	lbmol/h 0.0357224 5.73503E-05 3.46166E-05 104.083 3727.11 2223.10 295.425 747.942 136.512 128.902		lbmol/h 0.0390369 7.04584E-05 408.571 21808.2 4063.54 2357.14 312.637 791.456 144.427 136.376
Molar Flow H2S CO2 N2 Methane Ethane Propane i-Butane n-Butane i-Pentane n-Pentane n-Hexane		Ibmol/h 1.84286E-05 1.44956E-07 6.05335 321.477 1.78385 0.0767878 0.00130527 0.00236808 2.65649E-05 4.18735E-05 4.91207E-07	lbmol/h 0.0357224 5.73503E-05 3.46166E-05 104.083 3727.11 2223.10 295.425 747.942 136.512 128.902 18.9904		lbmol/h 0.0390369 7.04584E-05 408.571 21808.2 4063.54 2357.14 312.637 791.456 144.427 136.376 20.0912
Molar Flow H2S CO2 N2 Methane Ethane Propane i-Butane n-Butane n-Butane n-Pentane n-Pentane n-Hexane n-Heptane		Ibmol/h 1.84286E-05 1.44956E-07 6.05335 321.477 1.78385 0.0767878 0.00130527 0.00236808 2.65649E-05 4.18735E-05 4.91207E-07 5.88196E-08	Ibmol/h 0.0357224 5.73503E-05 3.46166E-05 104.083 3727.11 2223.10 295.425 747.942 136.512 128.902 18.9904 11.2247		lbmol/h 0.0390369 7.04584E-05 408.571 21808.2 4063.54 2357.14 312.637 791.456 144.427 136.376 20.0912 11.8753
Molar Flow H2S CO2 N2 Methane Ethane Propane i-Butane n-Butane n-Butane n-Pentane n-Pentane n-Hexane n-Heptane		Ibmol/h 1.84286E-05 1.44956E-07 6.05335 321.477 1.78385 0.0767878 0.00130527 0.00236808 2.65649E-05 4.18735E-05 4.91207E-07	lbmol/h 0.0357224 5.73503E-05 3.46166E-05 104.083 3727.11 2223.10 295.425 747.942 136.512 128.902 18.9904		lbmol/h 0.0390369 7.04584E-05 408.571 21808.2 4063.54 2357.14 312.637 791.456 144.427 136.376 20.0912 11.8753 0.993781
Molar Flow H2S CO2 N2 Methane Ethane Propane i-Butane n-Butane n-Butane n-Pentane n-Pentane n-Hexane n-Hexane n-Heptane n-Octane		Ibmol/h 1.84286E-05 1.44956E-07 6.05335 321.477 1.78385 0.0767878 0.00130527 0.00236808 2.65649E-05 4.18735E-05 4.91207E-07 5.88196E-08 5.13716E-10	Ibmol/h 0.0357224 5.73503E-05 3.46166E-05 104.083 3727.11 2223.10 295.425 747.942 136.512 128.902 18.9904 11.2247 0.939333		Ibmol/h 0.0390369 7.04584E-05 408.571 21808.2 4063.54 2357.14 312.637 791.456 144.427 136.376 20.0912 11.8753 0.993781 1.64498
Molar Flow H2S CO2 N2 Methane Ethane Propane i-Butane n-Butane n-Butane n-Pentane n-Pentane n-Hexane n-Heptane n-Heptane n-Octane n-Nonane		Ibmol/h 1.84286E-05 1.44956E-07 6.05335 321.477 1.78385 0.0767878 0.00130527 0.00236808 2.65649E-05 4.18735E-05 4.91207E-07 5.88196E-08 5.13716E-10 1.65200E-10	Ibmol/h 0.0357224 5.73503E-05 3.46166E-05 104.083 3727.11 2223.10 295.425 747.942 136.512 128.902 18.9904 11.2247 0.939333 1.55485		Ibmol/h 0.0390369 7.04584E-05 408.571 21808.2 4063.54 2357.14 312.637 791.456 144.427 136.376 20.0912 11.8753 0.993781 1.64498 0.00279986
Molar Flow H2S CO2 N2 Methane Ethane Propane i-Butane n-Butane n-Butane n-Pentane n-Pentane n-Hexane n-Hexane n-Heptane n-Octane n-Nonane n-Decane		Ibmol/h 1.84286E-05 1.44956E-07 6.05335 321.477 1.78385 0.0767878 0.00130527 0.00236808 2.65649E-05 4.18735E-05 4.91207E-07 5.88196E-08 5.13716E-10 1.65200E-10 0	Ibmol/h 0.0357224 5.73503E-05 3.46166E-05 104.083 3727.11 2223.10 295.425 747.942 136.512 128.902 18.9904 11.2247 0.939333 1.55485 0.00264646		Ibmol/h 0.0390369 7.04584E-05 408.571 21808.2 4063.54 2357.14 312.637 791.456 144.427 136.376 20.0912 11.8753 0.993781 1.64498 0.00279986 0.00947759
Molar Flow H2S CO2 N2 Methane Ethane Propane i-Butane n-Butane n-Butane n-Pentane n-Pentane n-Hexane n-Heptane n-Heptane n-Octane n-Nonane n-Decane Undecane		Ibmol/h 1.84286E-05 1.44956E-07 6.05335 321.477 1.78385 0.0767878 0.00130527 0.00236808 2.65649E-05 4.18735E-05 4.91207E-07 5.88196E-08 5.13716E-10 1.65200E-10 0 0	Ibmol/h 0.0357224 5.73503E-05 3.46166E-05 104.083 3727.11 2223.10 295.425 747.942 136.512 128.902 18.9904 11.2247 0.939333 1.55485 0.00264646 0.00895833		Ibmol/h 0.0390369 7.04584E-05 408.571 21808.2 4063.54 2357.14 312.637 791.456 144.427 136.376 20.0912 11.8753 0.993781 1.64498 0.00279986 0.00947759 2.68851 0.862250
Molar Flow H2S CO2 N2 Methane Ethane Propane i-Butane n-Butane n-Butane n-Pentane n-Pentane n-Heptane n-Heptane n-Octane n-Nonane n-Decane Undecane Benzene Toluene Ethylbenzene		Ibmol/h 1.84286E-05 1.44956E-07 6.05335 321.477 1.78385 0.0767878 0.00130527 0.00236808 2.65649E-05 4.18735E-05 4.91207E-07 5.88196E-08 5.13716E-10 1.65200E-10 0 0 3.08747E-07 1.39054E-08 1.73664E-11	Ibmol/h 0.0357224 5.73503E-05 3.46166E-05 104.083 3727.11 2223.10 295.425 747.942 136.512 128.902 18.9904 11.2247 0.939333 1.55485 0.00264646 0.00895833 2.54119		lbmol/h 0.0390369 7.04584E-05 408.571 21808.2 4063.54 2357.14 312.637 791.456 144.427 136.376 20.0912 11.8753 0.993781 1.64498 0.00279986 0.00947759 2.68851
Molar Flow H2S CO2 N2 Methane Ethane Propane i-Butane n-Butane n-Butane n-Pentane n-Pentane n-Heptane n-Heptane n-Octane n-Nonane n-Decane Undecane Benzene Toluene Ethylbenzene m-Xylene		Ibmol/h 1.84286E-05 1.44956E-07 6.05335 321.477 1.78385 0.0767878 0.00130527 0.00236808 2.65649E-05 4.18735E-05 4.91207E-07 5.88196E-08 5.13716E-10 1.65200E-10 0 0 3.08747E-07 1.39054E-08 1.73664E-11 8.24927E-11	Ibmol/h 0.0357224 5.73503E-05 3.46166E-05 104.083 3727.11 2223.10 295.425 747.942 136.512 128.902 18.9904 11.2247 0.939333 1.55485 0.00264646 0.00895833 2.54119 0.815008 0.0374475 0.0710092		Ibmol/h 0.0390369 7.04584E-05 408.571 21808.2 4063.54 2357.14 312.637 791.456 144.427 136.376 20.0912 11.8753 0.993781 1.64498 0.00279986 0.00947759 2.68851 0.862250 0.0396181 0.0751251
Molar Flow H2S CO2 N2 Methane Ethane Propane i-Butane n-Butane n-Butane n-Pentane n-Pentane n-Heptane n-Heptane n-Octane n-Nonane n-Decane Undecane Benzene Toluene Ethylbenzene m-Xylene Water		Ibmol/h 1.84286E-05 1.44956E-07 6.05335 321.477 1.78385 0.0767878 0.00130527 0.00236808 2.65649E-05 4.18735E-05 4.91207E-07 5.88196E-08 5.13716E-10 1.65200E-10 0 0 3.08747E-07 1.39054E-08 1.73664E-11 8.24927E-11 0	Ibmol/h 0.0357224 5.73503E-05 3.46166E-05 104.083 3727.11 2223.10 295.425 747.942 136.512 128.902 18.9904 11.2247 0.939333 1.55485 0.00264646 0.00895833 2.54119 0.815008 0.0374475 0.0710092 0		Ibmoi/h 0.0390369 7.04584E-05 408.571 21808.2 4063.54 2357.14 312.637 791.456 144.427 136.376 20.0912 11.8753 0.993781 1.64498 0.00279986 0.00947759 2.68851 0.862250 0.0396181 0.0751251 2.20815
Molar Flow H2S CO2 N2 Methane Ethane Propane i-Butane n-Butane n-Butane n-Pentane n-Pentane n-Pentane n-Heptane n-Heptane n-Octane n-Decane Undecane Benzene Toluene Ethylbenzene m-Xylene Water MDEA		Ibmol/h 1.84286E-05 1.44956E-07 6.05335 321.477 1.78385 0.0767878 0.00130527 0.00236808 2.65649E-05 4.18735E-05 4.91207E-07 5.88196E-08 5.13716E-10 1.65200E-10 0 0 3.08747E-07 1.39054E-08 1.73664E-11 8.24927E-11 0 0 0	Ibmol/h 0.0357224 5.73503E-05 3.46166E-05 104.083 3727.11 2223.10 295.425 747.942 136.512 128.902 18.9904 11.2247 0.939333 1.55485 0.00264646 0.00895833 2.54119 0.815008 0.0374475 0.0710092 0 0 0		Ibmol/h 0.0390369 7.04584E-05 408.571 21808.2 4063.54 2357.14 312.637 791.456 144.427 136.376 20.0912 11.8753 0.993781 1.64498 0.00279986 0.00947759 2.68851 0.862250 0.0396181 0.0751251 2.20815 2.08341E-05
Molar Flow H2S CO2 N2 Methane Ethane Propane i-Butane n-Butane n-Butane n-Pentane n-Pentane n-Pentane n-Hexane n-Heptane n-Heptane n-Octane n-Decane Undecane Benzene Toluene Ethylbenzene m-Xylene Water MDEA Piperazine		Ibmol/h 1.84286E-05 1.44956E-07 6.05335 321.477 1.78385 0.0767878 0.00130527 0.00236808 2.65649E-05 4.18735E-05 4.91207E-07 5.88196E-08 5.13716E-10 1.65200E-10 0 0 3.08747E-07 1.39054E-08 1.73664E-11 8.24927E-11 0 0 0 0 0 0 0 0 0 0 0 0 0	Ibmol/h           0.0357224           5.73503E-05           3.46166E-05           104.083           3727.11           2223.10           295.425           747.942           136.512           128.902           18.9904           11.2247           0.939333           1.55485           0.00264646           0.00895833           2.54119           0.815008           0.0374475           0.0710092           0           0           0           0		Ibmol/h           0.0390369           7.04584E-05           408.571           21808.2           4063.54           2357.14           312.637           791.456           144.427           136.376           20.0912           11.8753           0.993781           1.64498           0.00279986           0.00947759           2.68851           0.862250           0.0396181           0.0751251           2.08341E-05           0.00150213
Molar Flow H2S CO2 N2 Methane Ethane Propane i-Butane n-Butane n-Butane n-Pentane n-Pentane n-Pentane n-Heptane n-Heptane n-Octane n-Decane Undecane Benzene Toluene Ethylbenzene m-Xylene Water MDEA Piperazine Phosphoric Acid		Ibmol/h  1.84286E-05  1.44956E-07  6.05335 321.477  1.78385 0.0767878 0.00130527 0.00236808 2.65649E-05 4.18735E-05 4.91207E-07 5.88196E-08 5.13716E-10 1.65200E-10 0 0 3.08747E-07 1.39054E-08 1.73664E-11 8.24927E-11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Ibmol/h           0.0357224           5.73503E-05           3.46166E-05           104.083           3727.11           2223.10           295.425           747.942           136.512           128.902           18.9904           11.2247           0.939333           1.55485           0.00264646           0.00374475           0.0710092           0           0           0           0           0           0           0           0.0710092           0           0           0           0           0           0           0           0           0.0710092           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0  <		Ibmol/h 0.0390369 7.04584E-05 408.571 21808.2 4063.54 2357.14 312.637 791.456 144.427 136.376 20.0912 11.8753 0.993781 1.64498 0.00279986 0.00947759 2.68851 0.862250 0.0396181 0.0751251 2.20815 2.08341E-05 0.00150213 0
Molar Flow H2S CO2 N2 Methane Ethane Propane i-Butane n-Butane n-Butane n-Pentane n-Pentane n-Pentane n-Heptane n-Heptane n-Heptane n-Octane n-Heptane n-Decane Undecane Benzene Toluene Ethylbenzene m-Xylene Water MDEA Piperazine Phosphoric Acid TEG		Ibmol/h  1.84286E-05  1.44956E-07  6.05335 321.477  1.78385 0.0767878 0.00130527 0.00236808 2.65649E-05 4.18735E-05 4.91207E-07 5.88196E-08 5.13716E-10 1.65200E-10 0 0 3.08747E-07 1.39054E-08 1.73664E-11 8.24927E-11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Ibmol/h           0.0357224           5.73503E-05           3.46166E-05           104.083           3727.11           2223.10           295.425           747.942           136.512           128.902           18.9904           11.2247           0.939333           1.55485           0.00264646           0.00374475           0.0710092           0           0           0           0           0           0           0           0.0710092           0           0           0           0           0           0           0           0           0           0.0710092           0           0           0           0           0           0           0           0           0           0           0           0           0           0  <		Ibmol/h 0.0390369 7.04584E-05 408.571 21808.2 4063.54 2357.14 312.637 791.456 144.427 136.376 20.0912 11.8753 0.993781 1.64498 0.00279986 0.00947759 2.68851 0.862250 0.0396181 0.0751251 2.20815 2.08341E-05 0.00150213 0 0.0156641
Molar Flow H2S CO2 N2 Methane Ethane Propane i-Butane n-Butane n-Butane n-Pentane n-Pentane n-Pentane n-Heptane n-Heptane n-Heptane n-Octane n-Decane Undecane Benzene Toluene Ethylbenzene m-Xylene Water MDEA Piperazine Phosphoric Acid TEG O2		Ibmol/h           1.84286E-05           1.44956E-07           6.05335           321.477           1.78385           0.0767878           0.00130527           0.00236808           2.65649E-05           4.18735E-05           4.91207E-07           5.88196E-08           5.13716E-10           1.65200E-10           0           0           3.08747E-07           1.39054E-08           1.73664E-111           8.24927E-11           0           0           0           0           0	Ibmol/h           0.0357224           5.73503E-05           3.46166E-05           104.083           3727.11           2223.10           295.425           747.942           136.512           128.902           18.9904           11.2247           0.939333           1.55485           0.00264646           0.00374475           0.0710092           0           0           0           0           0           0           0           0           0.0710092           0           0           0           0           0           0           0           0           0           0.0710092           0           0           0           0           0           0           0           0           0           0           0           0           0  <		Ibmol/h           0.0390369           7.04584E-05           408.571           21808.2           4063.54           2357.14           312.637           791.456           144.427           136.376           20.0912           11.8753           0.993781           1.64498           0.00279986           0.00947759           2.68851           0.862250           0.0396181           0.0751251           2.08341E-05           0.00150213           0           0.0156641           0
Molar Flow H2S CO2 N2 Methane Ethane Propane i-Butane n-Butane n-Butane n-Pentane n-Pentane n-Heptane n-Heptane n-Heptane n-Heptane n-Octane n-Heptane n-Decane Undecane Benzene Toluene Ethylbenzene m-Xylene Water MDEA Piperazine Phosphoric Acid TEG O2 Mass Fraction		Ibmol/h           1.84286E-05           1.44956E-07           6.05335           321.477           1.78385           0.0767878           0.00130527           0.00236808           2.65649E-05           4.18735E-05           4.91207E-07           5.88196E-08           5.13716E-10           1.65200E-10           0           0           3.08747E-07           1.39054E-08           1.73664E-11           8.24927E-11           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0	Ibmol/h           0.0357224           5.73503E-05           3.46166E-05           104.083           3727.11           2223.10           295.425           747.942           136.512           128.902           18.9904           11.2247           0.939333           1.55485           0.00264646           0.00895833           2.54119           0.815008           0.0374475           0.0710092           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0 </td <td></td> <td>Ibmol/h           0.0390369           7.04584E-05           408.571           21808.2           4063.54           2357.14           312.637           791.456           144.427           136.376           20.0912           11.8753           0.993781           1.64498           0.00279986           0.00947759           2.68851           0.862250           0.0396181           0.0751251           2.08341E-05           0.00150213           0           0.0156641           0           %</td>		Ibmol/h           0.0390369           7.04584E-05           408.571           21808.2           4063.54           2357.14           312.637           791.456           144.427           136.376           20.0912           11.8753           0.993781           1.64498           0.00279986           0.00947759           2.68851           0.862250           0.0396181           0.0751251           2.08341E-05           0.00150213           0           0.0156641           0           %
Molar Flow H2S CO2 N2 Methane Ethane Propane i-Butane n-Butane n-Butane n-Pentane n-Pentane n-Pentane n-Heptane n-Heptane n-Heptane n-Octane n-Heptane n-Decane Undecane Benzene Toluene Ethylbenzene m-Xylene Water MDEA Piperazine Phosphoric Acid TEG O2		Ibmol/h           1.84286E-05           1.44956E-07           6.05335           321.477           1.78385           0.0767878           0.00130527           0.00236808           2.65649E-05           4.18735E-05           4.91207E-07           5.88196E-08           5.13716E-10           1.65200E-10           0           0           3.08747E-07           1.39054E-08           1.73664E-111           8.24927E-11           0           0           0           0           0	Ibmol/h           0.0357224           5.73503E-05           3.46166E-05           104.083           3727.11           2223.10           295.425           747.942           136.512           128.902           18.9904           11.2247           0.939333           1.55485           0.00264646           0.00374475           0.0710092           0           0           0           0           0           0           0           0           0.0710092           0           0           0           0           0           0           0           0           0           0.0710092           0           0           0           0           0           0           0           0           0           0           0           0           0  <		0.0390369 7.04584E-05 408.571 21808.2 4063.54 2357.14 312.637 791.456 144.427 136.376 20.0912 11.8753 0.993781 1.64498 0.00279986 0.00947759 2.68851 0.862250 0.0396181 0.0751251 2.20815 2.08341E-05 0.00150213 0 0.0156641 0

	0 44055		1 00140
N2	3.14955	3.28814E-07	1.69449
Methane	95.7872	0.566175	51.7959
Ethane	0.996245	38.0007	18.0896
Propane	0.0628890	33.2394	15.3881
i-Butane	0.00140906	5.82223	2.69022
n-Butane	0.00255638	14.7404	6.81040
i-Pentane	3.55979E-05	3.33965	1.54270
n-Pentane	5.61119E-05	3.15347	1.45671
n-Hexane	7.86203E-07	0.554904	0.256327
n-Heptane	1.09468E-07	0.381373	0.176167
n-Octane	1.08989E-09	0.0363826	0.0168062
n-Nonane	3.93523E-10	0.0676182	0.0312348
n-Decane	0	0.000127677	5.89779E-05
Undecane	0	0.000474798	0.000219323
Benzene	4.47926E-07	0.0673060	0.0310908
Toluene	2.37964E-08	0.0254626	0.0117619
Ethylbenzene	3.42435E-11	0.00134804	0.000622701
m-Xylene	1.62661E-10	0.00255620	0.00118079
Water	0	0	0.00588944
MDEA	0	0	3.67551E-07
Piperazine	0	0	1.91555E-05
Phosphoric Acid	0	0	0
TEG	0	0	0.000348258
02	0	0	0
Mass Flow	lb/h	lb/h	lb/h
H2S	0.000628063	1.21745	1.33041
CO2	0.000628063 6.37946E-06	1.21745 0.00252396	1.33041 0.00310084
CO2 N2			
CO2	6.37946E-06	0.00252396 0.000969728 1669.75	0.00310084 11445.5 349857
CO2 N2	6.37946E-06 169.575	0.00252396 0.000969728	0.00310084 11445.5
CO2 N2 Methane	6.37946E-06 169.575 5157.28	0.00252396 0.000969728 1669.75	0.00310084 11445.5 349857
CO2 N2 Methane Ethane	6.37946E-06 169.575 5157.28 53.6388	0.00252396 0.000969728 1669.75 112070	0.00310084 11445.5 349857 122187
CO2 N2 Methane Ethane Propane	6.37946E-06 169.575 5157.28 53.6388 3.38601	0.00252396 0.000969728 1669.75 112070 98028.8	0.00310084 11445.5 349857 122187 103940
CO2 N2 Methane Ethane Propane i-Butane	6.37946E-06 169.575 5157.28 53.6388 3.38601 0.0758654	0.00252396 0.000969728 1669.75 112070 98028.8 17170.8	0.00310084 11445.5 349857 122187 103940 18171.2
CO2 N2 Methane Ethane Propane i-Butane n-Butane	6.37946E-06 169.575 5157.28 53.6388 3.38601 0.0758654 0.137638	0.00252396 0.000969728 1669.75 112070 98028.8 17170.8 43472.0	0.00310084 11445.5 349857 122187 103940 18171.2 46001.1
CO2 N2 Methane Ethane Propane i-Butane n-Butane i-Pentane	6.37946E-06 169.575 5157.28 53.6388 3.38601 0.0758654 0.137638 0.00191662	0.00252396 0.000969728 1669.75 112070 98028.8 17170.8 43472.0 9849.20	0.00310084 11445.5 349857 122187 103940 18171.2 46001.1 10420.2
CO2 N2 Methane Ethane Propane i-Butane n-Butane i-Pentane n-Pentane	6.37946E-06 169.575 5157.28 53.6388 3.38601 0.0758654 0.137638 0.00191662 0.00302112	0.00252396 0.000969728 1669.75 112070 98028.8 17170.8 43472.0 9849.20 9300.11	0.00310084 11445.5 349857 122187 103940 18171.2 46001.1 10420.2 9839.39
CO2 N2 Methane Ethane Propane i-Butane n-Butane i-Pentane n-Pentane n-Hexane n-Hexane n-Heptane n-Gotane	6.37946E-06 169.575 5157.28 53.6388 3.38601 0.0758654 0.137638 0.00191662 0.00302112 4.23299E-05	0.00252396 0.000969728 1669.75 112070 98028.8 17170.8 43472.0 9849.20 9300.11 1636.51	0.00310084 11445.5 349857 122187 103940 18171.2 46001.1 10420.2 9839.39 1731.37
CO2 N2 Methane Ethane Propane i-Butane n-Butane i-Pentane n-Pentane n-Hexane n-Hexane	6.37946E-06 169.575 5157.28 53.6388 3.38601 0.0758654 0.137638 0.00191662 0.00302112 4.23299E-05 5.89384E-06	0.00252396 0.000969728 1669.75 112070 98028.8 17170.8 43472.0 9849.20 9300.11 1636.51 1124.73	0.00310084 11445.5 349857 122187 103940 18171.2 46001.1 10420.2 9839.39 1731.37 1189.93
CO2 N2 Methane Ethane Propane i-Butane n-Butane i-Pentane n-Pentane n-Hexane n-Hexane n-Heptane n-Gotane	6.37946E-06 169.575 5157.28 53.6388 3.38601 0.0758654 0.137638 0.00191662 0.00302112 4.23299E-05 5.89384E-06 5.86810E-08	0.00252396 0.000969728 1669.75 112070 98028.8 17170.8 43472.0 9849.20 9300.11 1636.51 1124.73 107.299	0.00310084 11445.5 349857 122187 103940 18171.2 46001.1 10420.2 9839.39 1731.37 1189.93 113.518
CO2 N2 Methane Ethane Propane i-Butane n-Butane i-Pentane n-Pentane n-Hexane n-Heptane n-Heptane n-Octane n-Nonane	6.37946E-06 169.575 5157.28 53.6388 3.38601 0.0758654 0.137638 0.00191662 0.00302112 4.23299E-05 5.89384E-06 5.86810E-08 2.11877E-08	0.00252396 0.000969728 1669.75 112070 98028.8 17170.8 43472.0 9849.20 9300.11 1636.51 1124.73 107.299 199.418	0.00310084 11445.5 349857 122187 103940 18171.2 46001.1 10420.2 9839.39 1731.37 1189.93 113.518 210.977
CO2 N2 Methane Ethane Propane i-Butane n-Butane i-Pentane n-Pentane n-Hexane n-Heptane n-Octane n-Octane n-Nonane n-Decane	6.37946E-06 169.575 5157.28 53.6388 3.38601 0.0758654 0.137638 0.00191662 0.00302112 4.23299E-05 5.89384E-06 5.86810E-08 2.11877E-08 0	0.00252396 0.000969728 1669.75 112070 98028.8 17170.8 43472.0 9849.20 9300.11 1636.51 1124.73 107.299 199.418 0.376543	0.00310084 11445.5 349857 122187 103940 18171.2 46001.1 10420.2 9839.39 1731.37 1189.93 113.518 210.977 0.398369
CO2 N2 Methane Ethane Propane i-Butane n-Butane n-Butane n-Pentane n-Pentane n-Hexane n-Heptane n-Heptane n-Octane n-Octane n-Decane Undecane	6.37946E-06 169.575 5157.28 53.6388 3.38601 0.0758654 0.137638 0.00191662 0.00302112 4.23299E-05 5.89384E-06 5.86810E-08 2.11877E-08 0 0	0.00252396 0.000969728 1669.75 112070 98028.8 17170.8 43472.0 9849.20 9300.11 1636.51 1124.73 107.299 199.418 0.376543 1.40026	0.00310084 11445.5 349857 122187 103940 18171.2 46001.1 10420.2 9839.39 1731.37 1189.93 113.518 210.977 0.398369 1.48142
CO2 N2 Methane Ethane Propane i-Butane n-Butane n-Pentane n-Pentane n-Hexane n-Heptane n-Heptane n-Octane n-Octane n-Decane Undecane Benzene	6.37946E-06 169.575 5157.28 53.6388 3.38601 0.0758654 0.137638 0.00191662 0.00302112 4.23299E-05 5.89384E-06 5.86810E-08 2.11877E-08 0 0 2.41168E-05	0.00252396 0.000969728 1669.75 112070 98028.8 17170.8 43472.0 9849.20 9300.11 1636.51 1124.73 107.299 199.418 0.376543 1.40026 198.497	0.00310084 11445.5 349857 122187 103940 18171.2 46001.1 10420.2 9839.39 1731.37 1189.93 113.518 210.977 0.398369 1.48142 210.004
CO2 N2 Methane Ethane Propane i-Butane n-Butane n-Butane n-Pentane n-Pentane n-Hexane n-Heptane n-Heptane n-Octane n-Nonane n-Decane Undecane Benzene Toluene	6.37946E-06 169.575 5157.28 53.6388 3.38601 0.0758654 0.137638 0.00191662 0.00302112 4.23299E-05 5.89384E-06 5.86810E-08 2.11877E-08 0 0 2.41168E-05 1.28122E-06	0.00252396 0.000969728 1669.75 112070 98028.8 17170.8 43472.0 9849.20 9300.11 1636.51 1124.73 107.299 199.418 0.376543 1.40026 198.497 75.0936	0.00310084 11445.5 349857 122187 103940 18171.2 46001.1 10420.2 9839.39 1731.37 1189.93 113.518 210.977 0.398369 1.48142 210.004 79.4464
CO2 N2 Methane Ethane Propane i-Butane n-Butane n-Butane n-Pentane n-Pentane n-Heptane n-Heptane n-Octane n-Nonane n-Decane Undecane Benzene Toluene Ethylbenzene	6.37946E-06 169.575 5157.28 53.6388 3.38601 0.0758654 0.137638 0.00191662 0.00302112 4.23299E-05 5.89384E-06 5.86810E-08 2.11877E-08 0 0 2.41168E-05 1.28122E-06 1.84370E-09	0.00252396 0.000969728 1669.75 112070 98028.8 17170.8 43472.0 9849.20 9300.11 1636.51 1124.73 107.299 199.418 0.376543 1.40026 198.497 75.0936 3.97562	0.00310084 11445.5 349857 122187 103940 18171.2 46001.1 10420.2 9839.39 1731.37 1189.93 113.518 210.977 0.398369 1.48142 210.004 79.4464 4.20606
CO2 N2 Methane Ethane Propane i-Butane n-Butane n-Butane n-Pentane n-Pentane n-Pentane n-Heptane n-Heptane n-Octane n-Nonane n-Decane Undecane Benzene Toluene Ethylbenzene m-Xylene	6.37946E-06 169.575 5157.28 53.6388 3.38601 0.0758654 0.137638 0.00191662 0.00302112 4.23299E-05 5.89384E-06 5.86810E-08 2.11877E-08 0 0 2.41168E-05 1.28122E-06 1.84370E-09 8.75784E-09	0.00252396 0.000969728 1669.75 112070 98028.8 17170.8 43472.0 9849.20 9300.11 1636.51 1124.73 107.299 199.418 0.376543 1.40026 198.497 75.0936 3.97562 7.53869	0.00310084 11445.5 349857 122187 103940 18171.2 46001.1 10420.2 9839.39 1731.37 1189.93 113.518 210.977 0.398369 1.48142 210.004 79.4464 4.20606 7.97566
CO2 N2 Methane Ethane Propane i-Butane n-Butane n-Butane n-Pentane n-Pentane n-Heptane n-Heptane n-Octane n-Heptane n-Octane n-Decane Undecane Benzene Toluene Ethylbenzene m-Xylene Water	6.37946E-06 169.575 5157.28 53.6388 3.38601 0.0758654 0.137638 0.00191662 0.00302112 4.23299E-05 5.89384E-06 5.86810E-08 2.11877E-08 0 0 2.41168E-05 1.28122E-06 1.84370E-09 8.75784E-09 0	0.00252396 0.000969728 1669.75 112070 98028.8 17170.8 43472.0 9849.20 9300.11 1636.51 1124.73 107.299 199.418 0.376543 1.40026 198.497 75.0936 3.97562 7.53869 0	0.00310084 11445.5 349857 122187 103940 18171.2 46001.1 10420.2 9839.39 1731.37 1189.93 113.518 210.977 0.398369 1.48142 210.004 79.4464 4.20606 7.97566 39.7804
CO2 N2 Methane Ethane Propane i-Butane n-Butane n-Butane n-Pentane n-Pentane n-Pentane n-Pentane n-Heptane n-Heptane n-Octane n-Heptane n-Octane n-Decane Undecane Benzene Toluene Ethylbenzene m-Xylene Water MDEA Piperazine	6.37946E-06 169.575 5157.28 53.6388 3.38601 0.0758654 0.137638 0.00191662 0.00302112 4.23299E-05 5.89384E-06 5.86810E-08 2.11877E-08 0 0 2.41168E-05 1.28122E-06 1.84370E-09 8.75784E-09 0 0 0	0.00252396 0.000969728 1669.75 112070 98028.8 17170.8 43472.0 9849.20 9300.11 1636.51 1124.73 107.299 199.418 0.376543 1.40026 198.497 75.0936 3.97562 7.53869 0 0	0.00310084 11445.5 349857 122187 103940 18171.2 46001.1 10420.2 9839.39 1731.37 1189.93 113.518 210.977 0.398369 1.48142 210.004 79.4464 4.20606 7.97566 39.7804 0.00248264
CO2 N2 Methane Ethane Propane i-Butane n-Butane n-Butane n-Pentane n-Pentane n-Pentane n-Heptane n-Heptane n-Octane n-Heptane n-Octane n-Decane Undecane Benzene Toluene Ethylbenzene m-Xylene Water MDEA	6.37946E-06 169.575 5157.28 53.6388 3.38601 0.0758654 0.137638 0.00191662 0.00302112 4.23299E-05 5.89384E-06 5.86810E-08 2.11877E-08 0 0 2.41168E-05 1.28122E-06 1.84370E-09 8.75784E-09 0 0 0 0 0 0 0 0 0 0 0 0 0	0.00252396 0.000969728 1669.75 112070 98028.8 17170.8 43472.0 9849.20 9300.11 1636.51 1124.73 107.299 199.418 0.376543 1.40026 198.497 75.0936 3.97562 7.53869 0 0	0.00310084 11445.5 349857 122187 103940 18171.2 46001.1 10420.2 9839.39 1731.37 1189.93 113.518 210.977 0.398369 1.48142 210.004 79.4464 4.20606 7.97566 39.7804 0.00248264 0.129387
CO2 N2 Methane Ethane Propane i-Butane n-Butane n-Butane n-Pentane n-Pentane n-Pentane n-Heptane n-Heptane n-Octane n-Heptane n-Octane n-Decane Undecane Benzene Toluene Ethylbenzene m-Xylene Water MDEA Piperazine Phosphoric Acid	6.37946E-06 169.575 5157.28 53.6388 3.38601 0.0758654 0.137638 0.00191662 0.00302112 4.23299E-05 5.89384E-06 5.86810E-08 2.11877E-08 0 0 2.41168E-05 1.28122E-06 1.84370E-09 8.75784E-09 0 0 0 0 0 0 0 0 0 0 0 0 0	0.00252396 0.000969728 1669.75 112070 98028.8 17170.8 43472.0 9849.20 9300.11 1636.51 1124.73 107.299 199.418 0.376543 1.40026 198.497 75.0936 3.97562 7.53869 0 0 0	0.00310084 11445.5 349857 122187 103940 18171.2 46001.1 10420.2 9839.39 1731.37 1189.93 113.518 210.977 0.398369 1.48142 210.004 79.4464 4.20606 7.97566 39.7804 0.00248264 0.129387 0

Process Streams		Fuel Gas	NGL	Stabilizer NGL	1
Properties	Status:	Solved	Solved	Unsolved	Solved
Phase: Total	From Block:	PCV-4407B	To Sales	PUMP-100	Mol Sieve Inlet
	To Block:				Mol Sieve
Property	Units				
Temperature	°F	91.4895	100.031		97.7857
Pressure	psia	164.696*	1264.70*	1264.70*	940.696
Mole Fraction Vapor	%	100	0		100
Mole Fraction Light Liquid	%	0	100		0

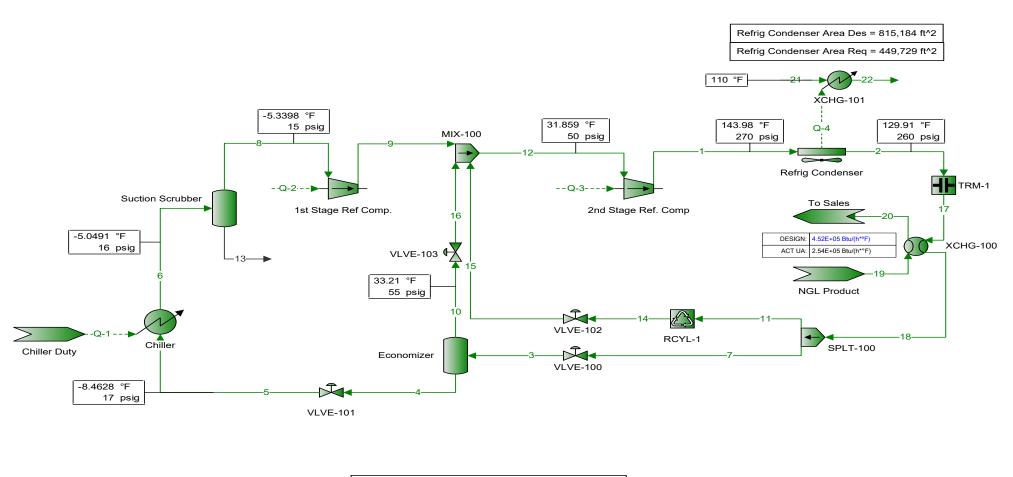
Mole Fraction Heavy Liquid	%	0	0	0
Molecular Weight	lb/lbmol	16.3454	39.8575	22.4680
Mass Density	lb/ft^3	0.464887	28.7530	4.54535
Molar Flow	lbmol/h	329.395	7399.29	30062.9
Mass Flow	lb/h	5384.10	294917	675454
Vapor Volumetric Flow	ft^3/h	11581.5	10256.9	148603
Liquid Volumetric Flow	gpm	1443.93	1278.78	18527.2
Std Vapor Volumetric Flow	MMSCFD	3	67.3899	273.802
Std Liquid Volumetric Flow	sgpm	35.1171	1306.75	3752.81
Compressibility		0.979019	0.291873	0.777272
Specific Gravity		0.564366	0.461016	0.775762
API Gravity			153.791	
Enthalpy	Btu/h	-1.03666E+07	-3.55951E+08	-1.05564E+09
Mass Enthalpy	Btu/lb	-1925.41	-1206.95	-1562.86
Mass Cp	Btu/(lb*°F)	0.541613	0.699466	0.658040
Ideal Gas CpCv Ratio		1.30076	1.13453	1.22724
Dynamic Viscosity	cP	0.0116563	0.0824943	0.0131936
Kinematic Viscosity	cSt	1.56528	0.179110	0.181207
Thermal Conductivity	Btu/(h*ft*°F)	0.0203921	0.0529038	0.0219214
Surface Tension	lbf/ft		0.000110725?	
Net Ideal Gas Heating Value	Btu/ft^3	896.882	2103.73	1211.07
Net Liquid Heating Value	Btu/lb	20820.9	19873.2	20381.8
Gross Ideal Gas Heating Value	Btu/ft^3	995.930	2289.52	1332.70
Gross Liquid Heating Value	Btu/lb	23120.4	21643.0	22436.5

Process Streams		Fuel Gas	NGL	Stabilizer NGL	1
Composition	Status:	Solved	Solved	Unsolved	Solved
Phase: Vapor	From Block:	PCV-4407B	To Sales	PUMP-100	Mol Sieve Inlet
	To Block:				Mol Sieve
Mole Fraction		%			%
H2S		5.59469E-06			0.000129851
CO2		4.40069E-08			2.34370E-07
N2		1.83772			1.35905
Methane		97.5963			72.5419
Ethane		0.541556			13.5168
Propane		0.0233118			7.84069
i-Butane		0.000396265			1.03994
n-Butane		0.000718919			2.63266
i-Pentane		8.06476E-06			0.480416
n-Pentane		1.27122E-05			0.453637
n-Hexane		1.49124E-07			0.0668307
n-Heptane		1.78569E-08			0.0395015
n-Octane		1.55957E-10			0.00330567
n-Nonane		5.01525E-11			0.00547178
n-Decane		0			9.31333E-06
Undecane		0			3.15258E-05
Benzene		9.37316E-08			0.00894294
Toluene		4.22149E-09			0.00286815
Ethylbenzene		5.27222E-12			0.000131784
m-Xylene		2.50437E-11			0.000249893
Water		0			0.00734509
MDEA		0			6.93017E-08
Piperazine		0			4.99661E-06
Phosphoric Acid		0			(
TEG		0			5.21043E-05
O2		0			(
Molar Flow		lbmol/h			lbmol/h
H2S		1.84286E-05			0.0390369
CO2		1.44956E-07			7.04584E-05
N2		6.05335			408.571
Methane		321.477			21808.2

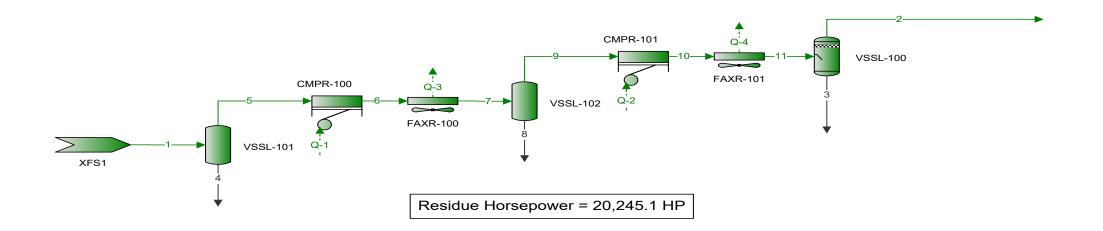
-		
Ethane	1.78385	4063.54
Propane	0.0767878	2357.14
i-Butane	0.00130527	312.637
n-Butane	0.00236808	791.456
i-Pentane	2.65649E-05	144.427
n-Pentane	4.18735E-05	136.376
n-Hexane	4.91207E-07	20.0912
n-Heptane	5.88196E-08	11.8753
n-Octane	5.13716E-10	0.993781
n-Nonane	1.65200E-10	1.64498
n-Decane	0	0.00279986
Undecane	0	0.00947759
Benzene	3.08747E-07	2.68851
Toluene	1.39054E-08	0.862250
Ethylbenzene	1.73664E-11	0.0396181
m-Xylene	8.24927E-11	0.0751251
Water	0	2.20815
MDEA	0	2.08341E-05
Piperazine	0	0.00150213
Phosphoric Acid	0	0
TEG	0	0.0156641
02	0	0
Mass Fraction	%	%
H2S	1.16652E-05	0.000196965
CO2	1.18487E-07	4.59075E-07
N2	3.14955	1.69449
Methane	95.7872	51.7959
Ethane	0.996245	18.0896
	0.0628890	15.3881
Propane i-Butane	0.0028890	2.69022
n-Butane	0.00255638	6.81040
	3.55979E-05	1.54270
i-Pentane		
n-Pentane	5.61119E-05	1.45671
n-Hexane	7.86203E-07	0.256327
n-Heptane	1.09468E-07	0.176167
n-Octane	1.08989E-09	0.0168062
n-Nonane	3.93523E-10	0.0312348
n-Decane	0	5.89779E-05
Undecane	0	0.000219323
Benzene	4.47926E-07	0.0310908
Toluene	2.37964E-08	0.0117619
Ethylbenzene	3.42435E-11	0.000622701
m-Xylene	1.62661E-10	0.00118079
Water	0	0.00588944
MDEA	0	3.67551E-07
Piperazine	0	1.91555E-05
Phosphoric Acid	0	0
TEG	0	0.000348258
02	0	0
Mass Flow	lb/h	lb/h
H2S	0.000628063	1.33041
CO2	6.37946E-06	0.00310084
N2	169.575	11445.5
Methane	5157.28	349857
Ethane	53.6388	122187
Propane	3.38601	103940
i-Butane	0.0758654	18171.2
n-Butane	0.137638	46001.1
i-Pentane	0.00191662	10420.2
n-Pentane	0.00302112	9839.39
n-Hexane	4.23299E-05	1731.37
n-Heptane	5.89384E-06	1189.93
• · ·		

n-Octane	5.86810E-08	113.518
n-Nonane	2.11877E-08	210.977
n-Decane	0	0.398369
Undecane	0	1.48142
Benzene	2.41168E-05	210.004
Toluene	1.28122E-06	79.4464
Ethylbenzene	1.84370E-09	4.20606
m-Xylene	8.75784E-09	7.97566
Water	0	39.7804
MDEA	0	0.00248264
Piperazine	0	0.129387
Phosphoric Acid	0	0
TEG	0	2.35232
O2	0	0

Process Streams		Fuel Gas	NGL	Stabilizer NGL	1
Properties	Status:	Solved	Solved	Unsolved	Solved
Phase: Vapor	From Block:	PCV-4407B	To Sales	PUMP-100	Mol Sieve Inlet
	To Block:				Mol Sieve
Property	Units				
Temperature	°F	91.4895			97.7857
Pressure	psia	164.696			940.696
Mole Fraction Vapor	%	100			100
Mole Fraction Light Liquid	%	0			0
Mole Fraction Heavy Liquid	%	0			0
Molecular Weight	lb/lbmol	16.3454			22.4680
Mass Density	lb/ft^3	0.464887			4.54535
Molar Flow	lbmol/h	329.395			30062.9
Mass Flow	lb/h	5384.10			675454
Vapor Volumetric Flow	ft^3/h	11581.5			148603
Liquid Volumetric Flow	gpm	1443.93			18527.2
Std Vapor Volumetric Flow	MMSCFD	3			273.802
Std Liquid Volumetric Flow	sgpm	35.1171			3752.81
Compressibility		0.979019			0.777272
Specific Gravity		0.564366			0.775762
API Gravity					
Enthalpy	Btu/h	-1.03666E+07			-1.05564E+09
Mass Enthalpy	Btu/lb	-1925.41			-1562.86
Mass Cp	Btu/(lb*°F)	0.541613			0.658040
Ideal Gas CpCv Ratio		1.30076			1.22724
Dynamic Viscosity	cP	0.0116563			0.0131936
Kinematic Viscosity	cSt	1.56528			0.181207
Thermal Conductivity	Btu/(h*ft*°F)	0.0203921			0.0219214
Surface Tension	lbf/ft				
Net Ideal Gas Heating Value	Btu/ft^3	896.882			1211.07
Net Liquid Heating Value	Btu/lb	20820.9			20381.8
Gross Ideal Gas Heating Value	Btu/ft^3	995.930			1332.70
Gross Liquid Heating Value	Btu/lb	23120.4			22436.5


Process Streams		Fuel Gas	NGL	Stabilizer NGL	1
Composition	Status:	Solved	Solved	Unsolved	Solved
Phase: Light Liquid	From Block:	PCV-4407B	To Sales	PUMP-100	Mol Sieve Inlet
	To Block:				Mol Sieve
Mole Fraction			%		
H2S			0.000482782		
CO2			7.75079E-07		
N2			4.67837E-07		
Methane			1.40666		
Ethane			50.3711		

le le	00.0447
Propane	30.0447
i-Butane	3.99262
n-Butane	10.1083
i-Pentane	1.84494
n-Pentane	1.74208
n-Hexane	0.256652
n-Heptane	0.151699
n-Octane	0.0126949
n-Nonane	0.0210135
n-Decane	3.57664E-05
Undecane	0.000121070
Benzene	0.0343437
Toluene	0.0110147
Ethylbenzene	0.000506096
m-Xylene	0.000959676
Water	0
MDEA	0
Piperazine Disease asia	0
Phosphoric Acid	0
TEG	0
02	0
Molar Flow	lbmol/h
H2S	0.0357224
CO2	5.73503E-05
N2	3.46166E-05
Methane	104.083
Ethane	3727.11
Propane	2223.10
i-Butane	295.425
n-Butane	747.942
i-Pentane	136.512
	150.512
n Bontono	128 002
n-Pentane	128.902
n-Hexane	18.9904
n-Hexane n-Heptane	18.9904 11.2247
n-Hexane n-Heptane n-Octane	18.9904 11.2247 0.939333
n-Hexane n-Heptane n-Octane n-Nonane	18.9904 11.2247 0.939333 1.55485
n-Hexane n-Heptane n-Octane n-Nonane n-Decane	18.9904 11.2247 0.939333 1.55485 0.00264646
n-Hexane n-Heptane n-Octane n-Nonane n-Decane Undecane	18.9904 11.2247 0.939333 1.55485 0.00264646 0.00895833
n-Hexane n-Heptane n-Octane n-Nonane n-Decane Undecane Benzene	18.9904 11.2247 0.939333 1.55485 0.00264646 0.00895833 2.54119
n-Hexane n-Heptane n-Octane n-Nonane n-Decane Undecane Benzene Toluene	18.9904 11.2247 0.939333 1.55485 0.00264646 0.00895833
n-Hexane n-Heptane n-Octane n-Nonane n-Decane Undecane Benzene Toluene Ethylbenzene	18.9904 11.2247 0.939333 1.55485 0.00264646 0.00895833 2.54119 0.815008 0.0374475
n-Hexane n-Heptane n-Octane n-Nonane n-Decane Undecane Benzene Toluene Ethylbenzene m-Xylene	18.9904 11.2247 0.939333 1.55485 0.00264646 0.00895833 2.54119 0.815008
n-Hexane n-Heptane n-Octane n-Nonane n-Decane Undecane Benzene Toluene Ethylbenzene m-Xylene Water	18.9904 11.2247 0.939333 1.55485 0.00264646 0.00895833 2.54119 0.815008 0.0374475
n-Hexane n-Heptane n-Octane n-Nonane n-Decane Undecane Benzene Toluene Ethylbenzene m-Xylene Water MDEA	18.9904 11.2247 0.939333 1.55485 0.00264646 0.00895833 2.54119 0.815008 0.0374475 0.0710092
n-Hexane n-Heptane n-Octane n-Nonane n-Decane Undecane Benzene Toluene Ethylbenzene m-Xylene Water	18.9904 11.2247 0.939333 1.55485 0.00264646 0.00895833 2.54119 0.815008 0.0374475 0.0710092 0
n-Hexane n-Heptane n-Octane n-Nonane n-Decane Undecane Benzene Toluene Ethylbenzene m-Xylene Water MDEA	18.9904 11.2247 0.939333 1.55485 0.00264646 0.00895833 2.54119 0.815008 0.0374475 0.0710092 0 0
n-Hexane n-Heptane n-Octane n-Nonane n-Decane Undecane Benzene Toluene Ethylbenzene m-Xylene Water MDEA Piperazine	18.9904 11.2247 0.939333 1.55485 0.00264646 0.00895833 2.54119 0.815008 0.0374475 0.0710092 0 0 0 0 0 0
n-Hexane n-Heptane n-Octane n-Nonane n-Decane Undecane Benzene Toluene Ethylbenzene m-Xylene Water MDEA Piperazine Phosphoric Acid	18.9904 11.2247 0.939333 1.55485 0.00264646 0.00895833 2.54119 0.815008 0.0374475 0.0710092 0 0 0 0 0 0 0 0 0 0 0 0 0
n-Hexane n-Heptane n-Octane n-Nonane n-Decane Undecane Benzene Toluene Ethylbenzene m-Xylene Water MDEA Piperazine Phosphoric Acid TEG	18.9904 11.2247 0.939333 1.55485 0.00264646 0.00895833 2.54119 0.815008 0.0374475 0.0710092 0 0 0 0 0 0 0 0 0 0 0 0 0
n-Hexane n-Heptane n-Octane n-Octane n-Decane Undecane Benzene Toluene Ethylbenzene m-Xylene Water MDEA Piperazine Phosphoric Acid TEG O2 Mass Fraction	18.9904 11.2247 0.939333 1.55485 0.00264646 0.00895833 2.54119 0.815008 0.0374475 0.0710092 0 0 0 0 0 0 0 0 0 0 0 0 0
n-Hexane n-Heptane n-Octane n-Octane n-Decane Undecane Benzene Toluene Ethylbenzene m-Xylene Water MDEA Piperazine Phosphoric Acid TEG O2 Mass Fraction H2S	18.9904 11.2247 0.939333 1.55485 0.00264646 0.00895833 2.54119 0.815008 0.0374475 0.0710092 0 0 0 0 0 0 0 0 0 0 0 0 0
n-Hexane n-Heptane n-Octane n-Octane n-Decane Undecane Benzene Toluene Ethylbenzene m-Xylene Water MDEA Piperazine Phosphoric Acid TEG O2 Mass Fraction H2S CO2	18.9904 11.2247 0.939333 1.55485 0.00264646 0.00895833 2.54119 0.815008 0.0374475 0.0710092 0 0 0 0 0 0 0 0 0 0 0 0 0
n-Hexane n-Heptane n-Octane n-Octane n-Decane Undecane Benzene Toluene Ethylbenzene m-Xylene Water MDEA Piperazine Phosphoric Acid TEG O2 Mass Fraction H2S CO2 N2	18.9904 11.2247 0.939333 1.55485 0.00264646 0.00895833 2.54119 0.815008 0.0374475 0.0710092 0 0 0 0 0 0 0 0 0 0 0 0 0
n-Hexane n-Heptane n-Octane n-Octane n-Nonane n-Decane Undecane Benzene Toluene Ethylbenzene m-Xylene Water MDEA Piperazine Phosphoric Acid TEG O2 Mass Fraction H2S CO2 N2 Methane	18.9904 11.2247 0.939333 1.55485 0.00264646 0.00895833 2.54119 0.815008 0.0374475 0.0710092 0 0 0 0 0 0 0 0 0 0 0 0 0
n-Hexane n-Heptane n-Octane n-Octane n-Decane Undecane Benzene Toluene Ethylbenzene m-Xylene Water MDEA Piperazine Phosphoric Acid TEG O2 Mass Fraction H2S CO2 N2 Methane Ethane	18.9904 11.2247 0.939333 1.55485 0.00264646 0.00895833 2.54119 0.815008 0.0374475 0.0710092 0 0 0 0 0 0 0 0 0 0 0 0 0
n-Hexane n-Heptane n-Octane n-Octane n-Nonane n-Decane Undecane Benzene Toluene Ethylbenzene m-Xylene Water MDEA Piperazine Phosphoric Acid TEG O2 Mass Fraction H2S CO2 N2 Methane Ethane Propane	18.9904 11.2247 0.939333 1.55485 0.00264646 0.00895833 2.54119 0.815008 0.0374475 0.0710092 0 0 0 0 0 0 0 0 0 0 0 0 0
n-Hexane n-Heptane n-Octane n-Octane n-Decane Undecane Benzene Toluene Ethylbenzene m-Xylene Water MDEA Piperazine Phosphoric Acid TEG O2 Mass Fraction H2S CO2 N2 Methane Ethane Propane i-Butane	18.9904 11.2247 0.939333 1.55485 0.00264646 0.00895833 2.54119 0.815008 0.0374475 0.0710092 0 0 0 0 0 0 0 0 0 0 0 0 0
n-Hexane n-Heptane n-Octane n-Octane n-Decane Undecane Benzene Toluene Ethylbenzene m-Xylene Water MDEA Piperazine Phosphoric Acid TEG O2 <b>Mass Fraction</b> H2S CO2 N2 Methane Ethane Propane i-Butane n-Butane	18.9904 11.2247 0.939333 1.55485 0.00264646 0.00895833 2.54119 0.815008 0.0374475 0.0710092 0 0 0 0 0 0 0 0 0 0 0 0 0
n-Hexane n-Heptane n-Octane n-Octane n-Decane Undecane Benzene Toluene Ethylbenzene m-Xylene Water MDEA Piperazine Phosphoric Acid TEG O2 Mass Fraction H2S CO2 N2 Methane Ethane Propane i-Butane n-Butane i-Pentane	18.9904 11.2247 0.939333 1.55485 0.00264646 0.00895833 2.54119 0.815008 0.0374475 0.0710092 0 0 0 0 0 0 0 0 0 0 0 0 0
n-Hexane n-Heptane n-Octane n-Octane n-Decane Undecane Benzene Toluene Ethylbenzene m-Xylene Water MDEA Piperazine Phosphoric Acid TEG O2 Mass Fraction H2S CO2 N2 Methane Ethane Propane i-Butane n-Butane n-Pentane	18.9904 11.2247 0.939333 1.55485 0.00264646 0.00895833 2.54119 0.815008 0.0374475 0.0710092 0 0 0 0 0 0 0 0 0 0 0 0 0
n-Hexane n-Heptane n-Octane n-Octane n-Decane Undecane Benzene Toluene Ethylbenzene m-Xylene Water MDEA Piperazine Phosphoric Acid TEG O2 Mass Fraction H2S CO2 N2 Methane Ethane Propane i-Butane n-Butane n-Pentane n-Pentane n-Pentane n-Hexane	18.9904 11.2247 0.939333 1.55485 0.00264646 0.00895833 2.54119 0.815008 0.0374475 0.0710092 0 0 0 0 0 0 0 0 0 0 0 0 0
n-Hexane n-Heptane n-Octane n-Octane n-Decane Undecane Benzene Toluene Ethylbenzene m-Xylene Water MDEA Piperazine Phosphoric Acid TEG O2 Mass Fraction H2S CO2 N2 Methane Ethane Propane i-Butane n-Butane n-Butane n-Pentane n-Pentane n-Hexane n-Heptane	18.9904 11.2247 0.939333 1.55485 0.00264646 0.00895833 2.54119 0.815008 0.0374475 0.0710092 0 0 0 0 0 0 0 0 0 0 0 0 0
n-Hexane n-Heptane n-Octane n-Octane n-Decane Undecane Benzene Toluene Ethylbenzene m-Xylene Water MDEA Piperazine Phosphoric Acid TEG O2 Mass Fraction H2S CO2 N2 Methane Ethane Propane i-Butane n-Butane n-Pentane n-Pentane n-Pentane n-Hexane	18.9904 11.2247 0.939333 1.55485 0.00264646 0.00895833 2.54119 0.815008 0.0374475 0.0710092 0 0 0 0 0 0 0 0 0 0 0 0 0


n-Nonane	0.0676182	
n-Decane	0.000127677	
Undecane	0.000474798	
Benzene	0.0673060	
Toluene	0.0254626	
Ethylbenzene	0.00134804	
m-Xylene	0.00255620	
Water	0	
MDEA	0	
Piperazine	0	
Phosphoric Acid	0	
TEG	0	
02	0	
Mass Flow	lb/h	
H2S	1.21745	_
CO2	0.00252396	
N2	0.000969728	
Methane	1669.75	
Ethane	112070	
Propane	98028.8	
i-Butane	17170.8	
n-Butane	43472.0	
i-Pentane	9849.20	
n-Pentane	9300.11	
n-Hexane	1636.51	
n-Heptane	1124.73	
n-Octane	107.299	
n-Nonane	199.418	
n-Decane	0.376543	
Undecane	1.40026	
Benzene	198.497	
Toluene	75.0936	
Ethylbenzene	3.97562	
m-Xylene	7.53869	
Water	0	
MDEA	0	
Piperazine	0	
Phosphoric Acid	0	
	0	
02	0	
TEG		

Process Streams		Fuel Gas	NGL	Stabilizer NGL	1
Properties	Status:	Solved	Solved	Unsolved	Solved
Phase: Light Liquid	From Block:	PCV-4407B	To Sales	PUMP-100	Mol Sieve Inlet
	To Block:				Mol Sieve
Property	Units				
Temperature	°F		100.031		
Pressure	psia		1264.70		
Mole Fraction Vapor	%		0		
Mole Fraction Light Liquid	%		100		
Mole Fraction Heavy Liquid	%		0		
Molecular Weight	lb/lbmol		39.8575		
Mass Density	lb/ft^3		28.7530		
Molar Flow	lbmol/h		7399.29		
Mass Flow	lb/h		294917		
Vapor Volumetric Flow	ft^3/h		10256.9		
Liquid Volumetric Flow	gpm		1278.78		
Std Vapor Volumetric Flow	MMSCFD		67.3899		
Std Liquid Volumetric Flow	sgpm		1306.75		
Compressibility			0.291873		
Specific Gravity			0.461016		

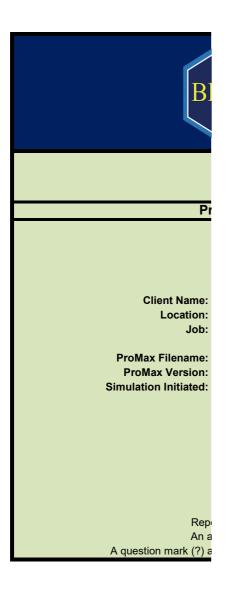
API Gravity		153.791
Enthalpy	Btu/h	-3.55951E+08
Mass Enthalpy	Btu/lb	-1206.95
Mass Cp	Btu/(lb*°F)	0.699466
Ideal Gas CpCv Ratio		1.13453
Dynamic Viscosity	cP	0.0824943
Kinematic Viscosity	cSt	0.179110
Thermal Conductivity	Btu/(h*ft*°F)	0.0529038
Surface Tension	lbf/ft	0.000110725?
Net Ideal Gas Heating Value	Btu/ft^3	2103.73
Net Liquid Heating Value	Btu/lb	19873.2
Gross Ideal Gas Heating Value	Btu/ft^3	2289.52
Gross Liquid Heating Value	Btu/lb	21643.0

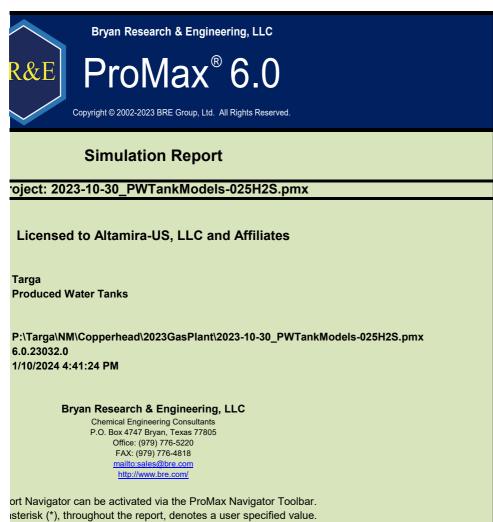


F	Refrigeration Horsepower = 6,154HP	)
	Refrigeration Capacity = 2,068 TR	



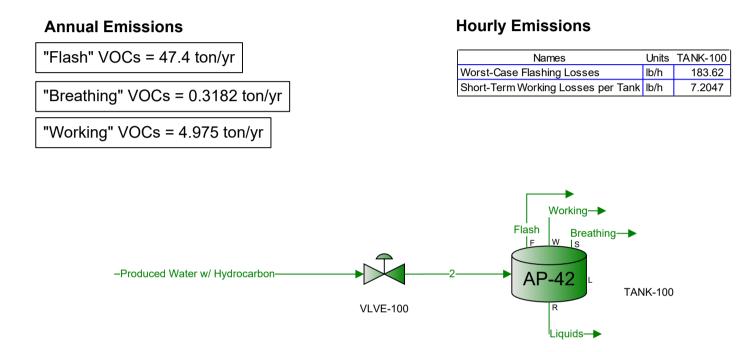
NomePersonal tarboxPersonal tarboxPersonal tarboxPersonal tarboxPersonal tarboxPersonal tarboxPersonal tarboxPersonal tarboxPersonal tarboxPersonal tarboxPersonal tarboxPersonal tarboxPersonal tarboxPersonal tarboxPersonal tarboxPersonal tarboxPersonal tarboxPersonal tarboxPersonal tarboxPersonal tarboxPersonal tarboxPersonal tarboxPersonal tarboxPersonal tarboxPersonal tarboxPersonal tarboxPersonal tarboxPersonal tarboxPersonal tarboxPersonal tarboxPersonal tarboxPersonal tarboxPersonal tarboxPersonal tarboxPersonal tarboxPersonal tarboxPersonal tarboxPersonal tarboxPersonal tarboxPersonal tarboxPersonal tarboxPersonal tarboxPersonal tarboxPersonal tarboxPersonal tarboxPersonal tarboxPersonal tarboxPersonal tarboxPersonal tarboxPersonal tarboxPersonal tarboxPersonal tarboxPersonal tarboxPersonal tarboxPersonal tarboxPersonal tarboxPersonal tarboxPersonal tarboxPersonal tarboxPersonal tarboxPersonal tarboxPersonal tarboxPersonal tarboxPersonal tarboxPersonal tarboxPersonal tarboxPersonal tarboxPersonal tarboxPersonal tarboxPersonal tarboxPersonal tarboxPersonal tarbox	Process Streams	1	2	3	4	5	6	7	8	9	10	11
Martin         Long         Autor         Long         Autor         Long         Autor         A	hase: Total From Block:	XFS1	VSSL-100		VSSL-101	VSSL-101	CMPR-100	FAXR-100	VSSL-102	VSSL-102	CMPR-101	Solved FAXR-101 VSSL-100
C2         4.40025.00         4.40025.00         4.40025.00         4.40025.00         4.40025.00         4.40025.00         4.40025.00         4.40025.00         4.40025.00         4.40025.00         4.40025.00         4.40025.00         4.40025.00         4.40025.00         4.40025.00         4.40025.00         4.40025.00         4.40025.00         4.40025.00         4.40025.00         4.40025.00         4.40025.00         4.40025.00         4.40025.00         4.40025.00         4.40025.00         4.40025.00         4.40025.00         4.40025.00         4.40025.00         4.40025.00         4.40025.00         4.40025.00         4.40025.00         4.40025.00         4.40025.00         4.40025.00         4.40025.00         4.40025.00         4.40025.00         4.40025.00         4.40025.00         4.40025.00         4.40025.00         4.40025.00         4.40025.00         4.40025.00         4.40025.00         4.40025.00         4.40025.00         4.40025.00         4.40025.00         4.40025.00         4.40025.00         4.40025.00         4.40025.00         4.40025.00         4.40025.00         4.40025.00         4.40025.00         4.40025.00         4.40025.00         4.40025.00         4.40025.00         4.40025.00         4.40025.00         4.40025.00         4.40025.00         4.40025.00         4.40025.00         4.40025.00         4.40025.00	ole Fraction	%	%			%	%	%		%	%	%
dens         1.8772         1.8772         1.8772         1.8772         1.8772         1.8772         1.8772         1.8772         1.8772         1.8772         1.8772         1.8772         1.8772         1.8772         1.8772         1.8772         1.8772         1.8772         1.8772         1.8772         1.8772         1.8772         1.8772         1.8772         1.8772         1.8772         1.8772         1.8772         1.8772         1.8772         1.8772         1.8772         1.8772         1.8772         1.8772         1.8772         1.8772         1.8772         1.8772         1.8772         1.8772         1.8772         1.8772         1.8772         1.8772         1.8772         1.8772         1.8772         1.8772         1.8772         1.8772         1.8772         1.8772         1.8772         1.8772         1.8772         1.8772         1.8772         1.8772         1.8772         1.8772         1.8772         1.8772         1.8772         1.8772         1.8772         1.8772         1.8772         1.8772         1.8772         1.8772         1.8772         1.8772         1.8772         1.8772         1.8772         1.8772         1.8772         1.8772         1.8772         1.8772         1.8772 <th1.8772< th=""> <th1.8772< th=""></th1.8772<></th1.8772<>												5.59469E-06 4.40069E-08
bas         C.54150         S.54150         C.54150         C.54150 <thc.55150< th=""> <thc.55150< th=""> <thc.551< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1.83772</td></thc.551<></thc.55150<></thc.55150<>												1.83772
Spene         C. 202110         C. 202110 <thc. 202110<="" th=""> <thc. 202110<="" th=""> <thc. 20<="" td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>97.5963</td></thc.></thc.></thc.>												97.5963
Man.         Decomposition         Decomposition <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.541556</td>												0.541556
Banc         Concritions         Concritions <thconcritions< th=""> <thco< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.0233118</td></thco<></thconcritions<>												0.0233118
Prener         1.27122.60         1.27122.60         1.27122.60         1.27122.60         1.27122.60         1.27122.60         1.27122.60         1.27122.60         1.27122.60         1.27122.60         1.27122.60         1.27122.60         1.27122.60         1.27122.60         1.27122.60         1.27122.60         1.27122.60         1.27122.60         1.27122.60         1.27122.60         1.27122.60         1.27122.60         1.27122.60         1.27122.60         1.27122.60         1.27122.60         1.27122.60         1.27122.60         1.27122.60         1.27122.60         1.27122.60         1.27122.60         1.27122.60         1.27122.60         1.27122.60         1.27122.60         1.27122.60         1.27122.60         1.27122.60         1.27122.60         1.27122.60         1.27122.60         1.27122.60         1.27122.60         1.27122.60         1.27122.60         1.27122.60         1.27122.60         1.27122.60         1.27122.60         1.27122.60         1.27122.60         1.27122.60         1.2712.60         1.2712.60         1.2712.60         1.2712.60         1.2712.60         1.2712.60         1.2712.60         1.2712.60         1.2712.60         1.2712.60         1.2712.60         1.2712.60         1.2712.60         1.2712.60         1.2712.60         1.2712.60         1.2712.60         1.2712.60         1.2712.60         1.												0.000718919
Hamb         1.40128-77         1.40128-77         1.40128-77         1.40128-77         1.40128-77         1.40128-77         1.40128-77         1.40128-77         1.40128-77         1.40128-77         1.40128-77         1.40128-77         1.40128-77         1.40128-77         1.40128-77         1.40128-77         1.40128-77         1.40128-77         1.40128-77         1.40128-77         1.40128-77         1.40128-77         1.40128-77         1.40128-77         1.40128-77         1.40128-77         1.40128-77         1.40128-77         1.40128-77         1.40128-77         1.40128-77         1.40128-77         1.40128-77         1.40128-77         1.40128-77         1.40128-77         1.40128-77         1.40128-77         1.40128-77         1.40128-77         1.40128-77         1.40128-77         1.40128-77         1.40128-77         1.40128-77         1.40128-77         1.40128-77         1.40128-77         1.40128-77         1.40128-77         1.40128-77         1.40128-77         1.40128-77         1.40128-77         1.40128-77         1.40128-77         1.40128-77         1.40128-77         1.40128-77         1.40128-77         1.40128-77         1.40128-77         1.40128-77         1.40128-77         1.40128-77         1.40128-77         1.40128-77         1.40128-77         1.40128-77         1.40128-77         1.40128-77         1.40128-77 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>8.06476E-06</td>												8.06476E-06
heys         1.78887-00         1.78887-00         1.78887-00         1.78887-00         1.78887-00         1.78887-00         1.78887-00         1.78887-00         1.78887-00         1.78887-00         1.78887-00         1.78887-00         1.78887-00         1.78887-00         1.78887-00         1.78887-00         1.78887-00         1.78887-00         1.78887-00         1.78887-00         1.78887-00         1.78887-00         1.78887-00         1.78887-00         1.78887-00         1.78887-00         1.78887-00         1.78887-00         1.78887-00         1.78887-00         1.78887-00         1.78887-00         1.78887-00         1.78887-00         1.78887-00         1.78887-00         1.78887-00         1.78887-00         1.78887-00         1.78887-00         1.78887-00         1.78887-00         1.78887-00         1.78887-00         1.78887-00         1.78887-00         1.78887-00         1.78887-00         1.78887-00         1.78887-00         1.78887-00         1.78887-00         1.78887-00         1.78887-00         1.78887-00         1.78887-00         1.78887-00         1.78887-00         1.78887-00         1.78887-00         1.78887-00         1.78887-00         1.78887-00         1.78887-00         1.78887-00         1.78887-00         1.78887-00         1.78887-00         1.78887-00         1.78887-00         1.78887-00        1.78887-00 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1.27122E-0</td>												1.27122E-0
Chame         1 SMOT-01         1 SMOT-01         1 SMOT-01         1 SMOT-01         2 SMOT-01         2 SMOT-01         2 SMOT-01         2 SMOT-01         2 SMOT-01         2 SMOT-01         2 SMOT-01         2 SMOT-01         2 SMOT-01         2 SMOT-01         2 SMOT-01         2 SMOT-01         2 SMOT-01         2 SMOT-01         2 SMOT-01         2 SMOT-01         2 SMOT-01         2 SMOT-01         2 SMOT-01         2 SMOT-01         2 SMOT-01         2 SMOT-01         2 SMOT-01         2 SMOT-01         2 SMOT-01         2 SMOT-01         2 SMOT-01         2 SMOT-01         2 SMOT-01         2 SMOT-01         2 SMOT-01         2 SMOT-01         2 SMOT-01         2 SMOT-01         2 SMOT-01         2 SMOT-01         2 SMOT-01         2 SMOT-01         2 SMOT-01         2 SMOT-01         2 SMOT-01         2 SMOT-01         2 SMOT-01         2 SMOT-01         2 SMOT-01         2 SMOT-01         2 SMOT-01         2 SMOT-01         2 SMOT-01         2 SMOT-01         2 SMOT-01         2 SMOT-01         2 SMOT-01         2 SMOT-01         2 SMOT-01         2 SMOT-01         2 SMOT-01         2 SMOT-01         2 SMOT-01         2 SMOT-01         2 SMOT-01         2 SMOT-01         2 SMOT-01         2 SMOT-01         2 SMOT-01         2 SMOT-01         2 SMOT-01         2 SMOT-01         2 SMOT-01         2 SMOT-01         2												1.49124E-0
Dispute         Dispute         Dispute         Dispute         Dispute         Dispute         Dispute         Dispute         Dispute         Dispute         Dispute         Dispute         Dispute         Dispute         Dispute         Dispute         Dispute         Dispute         Dispute         Dispute         Dispute         Dispute         Dispute         Dispute         Dispute         Dispute         Dispute         Dispute         Dispute         Dispute         Dispute         Dispute         Dispute         Dispute         Dispute         Dispute         Dispute         Dispute         Dispute         Dispute         Dispute         Dispute         Dispute         Dispute         Dispute         Dispute         Dispute         Dispute         Dispute         Dispute         Dispute         Dispute         Dispute         Dispute         Dispute         Dispute         Dispute         Dispute         Dispute         Dispute         Dispute         Dispute         Dispute         Dispute         Dispute         Dispute         Dispute         Dispute         Dispute         Dispute         Dispute         Dispute         Dispute         Dispute         Dispute         Dispute         Dispute         Dispute         Dispute         Dispute         Dispute <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1.55957E-10</td></t<>												1.55957E-10
dataset         0         0         0         0         0         0         0         0         0           hereare         5.2722-71         5.2722-71         5.2722-71         5.2722-71         5.2722-71         5.2722-71         5.2722-71         5.2722-71         5.2722-71         5.2722-71         5.2722-71         5.2722-71         5.2722-71         5.2722-71         5.2722-71         5.2722-71         5.2722-71         5.2722-71         5.2722-71         5.2722-71         5.2722-71         5.2722-71         5.2722-71         5.2722-71         5.2722-71         5.2722-71         5.2722-71         5.2722-71         5.2722-71         5.2722-71         5.2722-71         5.2722-71         5.2722-71         5.2722-71         5.2722-71         5.2722-71         5.2722-71         5.2722-71         5.2722-71         5.2722-71         5.2722-71         5.2722-71         5.2722-71         5.2722-71         5.2722-71         5.2722-71         5.2722-71         5.2722-71         5.2722-71         5.2722-71         5.2722-71         5.2722-71         5.2722-71         5.2722-71         5.2722-71         5.2722-71         5.2722-71         5.2722-71         5.2722-71         5.2722-71         5.2722-71         5.2722-71         5.2722-71         5.2722-71         5.2722-71         5.2722-71         5	Nonane		5.01525E-11					5.01525E-11				5.01525E-1
mem         Jourson         Jourson <thjourson< th=""> <thjourson< th=""> <thjours< td=""><td></td><td></td><td>Ū.</td><td></td><td></td><td>-</td><td>-</td><td>0</td><td></td><td></td><td>-</td><td>(</td></thjours<></thjourson<></thjourson<>			Ū.			-	-	0			-	(
Lace         4.20148.00         4.20148.00         4.20148.00         4.20148.00         4.20148.00         4.20148.00         4.20148.00         4.20148.00         4.20148.00         4.20148.00         4.20148.00         4.20148.00         4.20148.00         4.20148.00         4.20148.00         4.20148.00         4.20148.00         4.20148.00         4.20148.00         4.20148.00         4.20148.00         4.20148.00         4.20148.00         4.20148.00         4.20148.00         4.20148.00         4.20148.00         4.20148.00         4.20148.00         4.20148.00         4.20148.00         4.20148.00         4.20148.00         4.20148.00         4.20148.00         4.20148.00         4.20148.00         4.20148.00         4.20148.00         4.20148.00         4.20148.00         4.20148.00         4.20148.00         4.20148.00         4.20148.00         4.20148.00         4.20148.00         4.20148.00         4.20148.00         4.20148.00         4.20148.00         4.20148.00         4.20148.00         4.20148.00         4.20148.00         4.20148.00         4.20148.00         4.20148.00         4.20148.00         4.20148.00         4.20148.00         4.20148.00         4.20148.00         4.20148.00         4.20148.00         4.20148.00         4.20148.00         4.20148.00         4.20148.00         4.20148.00         4.20148.00         4.20148.00 <td></td> <td></td> <td>•</td> <td></td> <td></td> <td>-</td> <td>-</td> <td>•</td> <td></td> <td>•</td> <td>-</td> <td>9.37316E-08</td>			•			-	-	•		•	-	9.37316E-08
Xhow         2 50/17-11         2 50/17-11         2 50/17-11         2 50/17-11         2 50/17-11         2 50/17-11         2 50/17-11         2 50/17-11         2 50/17-11         2 50/17-11         2 50/17-11         2 50/17-11         2 50/17-11         2 50/17-11         2 50/17-11         2 50/17-11         2 50/17-11         2 50/17-11         2 50/17-11         2 50/17-11         2 50/17-11         2 50/17-11         2 50/17-11         2 50/17-11         2 50/17-11         2 50/17-11         2 50/17-11         2 50/17-11         2 50/17-11         2 50/17-11         2 50/17-11         2 50/17-11         2 50/17-11         2 50/17-11         2 50/17-11         2 50/17-11         2 50/17-11         2 50/17-11         2 50/17-11         2 50/17-11         2 50/17-11         2 50/17-11         2 50/17-11         2 50/17-11         2 50/17-11         2 50/17-11         2 50/17-11         2 50/17-11         2 50/17-11         2 50/17-11         2 50/17-11         2 50/17-11         2 50/17-11         2 50/17-11         2 50/17-11         2 50/17-11         2 50/17-11         2 50/17-11         2 50/17-11         2 50/17-11         2 50/17-11         2 50/17-11         2 50/17-11         2 50/17-11         2 50/17-11         2 50/17-11         2 50/17-11         2 50/17-11         2 50/17-11         2 50/17-11        2 50/17-11        2 50/17-11												4.22149E-09
she         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0	-											5.27222E-12
	-											2.50437E-1
sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sectric sec		0	0			0	0	0		0	0	(
bispero Asis         0         0         0         0         0         0         0         0           Gi         bisso         bisso <td></td> <td>0</td> <td>0</td> <td></td> <td></td> <td>0</td> <td>0</td> <td>0</td> <td></td> <td>0</td> <td>0</td> <td>(</td>		0	0			0	0	0		0	0	(
A         O         O         O         O         O         O         O         O         O         O         O           PTATA         00101070         00101070         00101070         00101070         00101070         00101070         00101070         00101070         00101070         00101070         00101070         00101070         00101070         00101070         00101070         00101070         00101070         00101070         00101070         00101070         00101070         00101070         00101070         00101070         00101070         00101070         00101070         001010700         001010700         001010700         001010700         001010700         001010700         001010700         001010700         001010700         001010700         001010700         001010700         001010700         001010700         001010700         001010700         001010700         001010700         001010700         001010700         001010700         001010700         001010700         001010700         001010700         001010700         001010700         001010700         001007000         000000         00100000         0000000         00100000         0000000         0000000         0000000         0000000         00000000         0000000000000000000         0000		0	0			0	0	0		0	0	(
International Constraint         International Constraint         International Constraint         International Constraint         International Constraint         International Constraint         International Constraint         International Constraint         International Constraint         International Constraint         International Constraint         International Constraint         International Constraint         International Constraint         International Constraint         International Constraint         International Constraint         International Constraint         International Constraint         International Constraint         International Constraint         International Constraint         International Constraint         International Constraint         International Constraint         International Constraint         International Constraint         International Constraint         International Constraint         International Constraint         International Constraint         International Constraint         International Constraint         International Constraint         International Constraint         International Constraint         International Constraint         International Constraint         International Constraint         International Constraint         International Constraint         International Constraint         International Constraint         International Constraint         International Constraint         International Constraint         International Constraint         International Constraint         Interna	G	0	0			0	0	0		0	0	(
N         0.0011378         0.0011378         0.0011378         0.0011378         0.0011378         0.0011378         0.0011378         0.0011378         0.0011378         0.0011378         0.0011378         0.0011378         0.0011378         0.0011378         0.0011378         0.0011378         0.0011378         0.0011378         0.0011378         0.0011378         0.0011378         0.0011378         0.0011378         0.0011378         0.0011378         0.0011378         0.0011378         0.0011378         0.0011378         0.0011378         0.0011378         0.0011378         0.0011378         0.0011378         0.0011378         0.0011378         0.0011378         0.0011378         0.0011378         0.0011378         0.0011378         0.0011378         0.0011378         0.0011378         0.0011378         0.0011378         0.0011378         0.0011378         0.0011378         0.0011378         0.0011378         0.0011378         0.0011378         0.0011378         0.0011378         0.0011378         0.0011378         0.0011378         0.0011378         0.0011378         0.0011378         0.0011378         0.0011378         0.0011378         0.0011378         0.0011378         0.0011378         0.0011378         0.0011378         0.0011378         0.0011378         0.0011378         0.0011378         0.0011378         0.0011		-		Jh			0	ş	lb and the	ş	<u> </u>	(
20         9         9         9         9         100000-00         9         100000-00         9         100000-00         9         100000-00         9         100000-00         9         100000-00         9         100000-00         9         100000-00         9         100000-00         9         100000-00         9         100000-00         9         100000-00         100000-00         100000-00         100000-00         100000-00         100000-00         100000-00         100000-00         100000-00         100000-00         100000-00         100000-00         100000-00         100000-00         100000-00         100000-00         100000-00         100000-00         100000-00         100000-00         100000-00         100000-00         100000-00         100000-00         100000-00         100000-00         100000-00         100000-00         100000-00         100000-00         100000-00         100000-00         100000-00         100000-00         100000-00         100000-00         100000-00         100000-00         100000-00         100000-00         100000-00         100000-00         100000-00         100000-00         100000-00         100000-00         100000-00         100000-00         100000-00         100000-00         100000-00         100000-00        100000-00												lbmol/h
Sector         Sector         Sector         Sector         Sector         Sector         Sector         Sector         Sector         Sector         Sector         Sector         Sector         Sector         Sector         Sector         Sector         Sector         Sector         Sector         Sector         Sector         Sector         Sector         Sector         Sector         Sector         Sector         Sector         Sector         Sector         Sector         Sector         Sector         Sector         Sector         Sector         Sector         Sector         Sector         Sector         Sector         Sector         Sector         Sector         Sector         Sector         Sector         Sector         Sector         Sector         Sector         Sector         Sector         Sector         Sector         Sector         Sector         Sector         Sector         Sector         Sector         Sector         Sector         Sector         Sector         Sector         Sector         Sector         Sector         Sector         Sector         Sector         Sector         Sector         Sector         Sector         Sector         Sector         Sector         Sector         Sector         Sector         Sector         Sector<					-				-			0.0011572 9.10284E-0
nhm         20178         20178         20178         20178         20178         20178         20178         20178         20178         20178         20178         20178         20178         20178         20178         20178         20178         20178         20178         20178         20178         20178         20178         20178         20178         20178         20178         20178         20178         20178         20178         20178         20178         20178         20178         20178         20178         20178         20178         20178         20178         20178         20178         20178         20178         20178         20178         20178         20178         20178         20178         20178         20178         20178         20178         20178         20178         20178         20178         20178         20178         20178         20178         20178         20178         20178         20178         20178         20178         20178         20178         20178         20178         20178         20178         20178         20178         20178         20178         20178         20178         20178         20178         20178         20178         20178         20178         2				-	•				-			380.13
opene         4.8/208         0         0         4.8/208         4.8/208         4.8/208         6.4/208         6.4/208         6.4/208         6.4/208         6.4/208         6.4/208         6.4/208         6.4/208         6.4/208         6.4/208         6.4/208         6.4/208         0.0/208         0.0/208         0.0/208         0.0/208         0.0/208         0.0/208         0.0/208         0.0/208         0.0/208         0.0/208         0.0/208         0.0/208         0.0/208         0.0/208         0.0/208         0.0/208         0.0/208         0.0/208         0.0/208         0.0/208         0.0/208         0.0/208         0.0/208         0.0/208         0.0/208         0.0/208         0.0/208         0.0/208         0.0/208         0.0/208         0.0/208         0.0/208         0.0/208         0.0/208         0.0/208         0.0/208         0.0/208         0.0/208         0.0/208         0.0/208         0.0/208         0.0/208         0.0/208         0.0/208         0.0/208         0.0/208         0.0/208         0.0/208         0.0/208         0.0/208         0.0/208         0.0/208         0.0/208         0.0/208         0.0/208         0.0/208         0.0/208         0.0/208         0.0/208         0.0/208         0.0/208         0.0/208         0.0/208	ethane	20187.8	20187.8		0	20187.8	20187.8	20187.8		20187.8	20187.8	20187.8
Make         0.081975         0.081975         0.081975         0.081975         0.081975         0.081975         0.081975         0.081975         0.081975         0.081975         0.081975         0.081975         0.081975         0.081975         0.081975         0.081975         0.081975         0.081975         0.081975         0.081975         0.081975         0.081975         0.081975         0.081975         0.081975         0.081975         0.081975         0.081975         0.081975         0.081975         0.081975         0.081975         0.081975         0.081975         0.081975         0.081975         0.081975         0.081975         0.081975         0.081975         0.081975         0.081975         0.081975         0.081975         0.081975         0.081975         0.081975         0.081975         0.081975         0.081975         0.081975         0.081975         0.081975         0.081975         0.081975         0.081975         0.081975         0.081975         0.081975         0.081975         0.081975         0.081975         0.081975         0.081975         0.081975         0.081975         0.081975         0.081975         0.081975         0.081975         0.081975         0.081975         0.081975         0.081975         0.081975         0.081975         0.081975 <th< td=""><td></td><td></td><td></td><td>0</td><td>e e</td><td></td><td></td><td></td><td>-</td><td></td><td></td><td>112.02</td></th<>				0	e e				-			112.02
distance         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0        0         0         0 </td <td></td> <td></td> <td></td> <td></td> <td>Ŭ</td> <td></td> <td></td> <td></td> <td>0</td> <td></td> <td></td> <td>4.8220 0.081967</td>					Ŭ				0			4.8220 0.081967
onthen         0.00168820         0.00168820         0.00168820         0.00168820         0.00168820         0.00168820         0.00168820         0.00168820         0.00168820         0.00168820         0.00168820         0.00168820         0.00168820         0.00168820         0.00168820         0.00168820         0.00168820         0.00168820         0.00168820         0.00168820         0.00168820         0.00168820         0.00168820         0.00168820         0.00168820         0.00168820         0.00168820         0.00168820         0.00168820         0.00168820         0.00168820         0.00168820         0.00168820         0.00168820         0.00168820         0.00168820         0.00168820         0.00168820         0.00168820         0.00168820         0.00168820         0.00168820         0.00168820         0.00168820         0.00168820         0.00168820         0.00168820         0.00168820         0.00168820         0.00168820         0.00168820         0.00168820         0.00168820         0.00168820         0.00168820         0.00168820         0.00168820         0.00168820         0.00168820         0.00168820         0.00168820         0.00168820         0.00168820         0.00168820         0.00168820         0.00168820         0.00168820         0.00168820         0.00168820         0.00168820         0.0016820         0.0016820 <td></td> <td></td> <td></td> <td></td> <td>•</td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td>0.081967</td>					•				-			0.081967
itemare         1.00446/LC0         3.00446/LC0         <				0	-							0.00166820
Headmare         5.85770-06         3.85770-06         3.85770-06         3.85770-06         3.85770-06         3.85770-06         3.85770-06         3.85770-06         3.85770-06         3.85770-06         3.85770-06         3.85770-06         3.85770-06         3.85770-06         3.85770-06         3.85770-06         3.85770-06         3.85770-06         3.25390-05         3.25390-00         3.25390-00         3.25390-00         3.25390-00         3.25390-00         3.25390-00         3.25390-00         3.25390-00         3.25390-00         3.25390-00         3.25390-00         3.25390-00         3.25390-00         3.25390-00         3.25390-00         3.25390-00         3.25390-00         3.25390-00         3.25390-00         3.25390-00         3.25390-00         3.25390-00         3.25390-00         3.25390-00         3.25390-00         3.25390-00         3.25390-00         3.25390-00         3.25390-00         3.25390-00         3.25390-00         3.25390-00         3.25390-00         3.25390-00         3.25390-00         3.25390-00         3.25390-00         3.25390-00         3.25390-00         3.25390-00         3.25390-00         3.25390-00         3.25390-00         3.25390-00         3.25390-00         3.25390-00         3.25390-00         3.25390-00         3.25390-00         3.25390-00         3.25390-00         3.25390-00         3.25390-0	Pentane	0.00262953	0.00262953	0	0	0.00262953	0.00262953	0.00262953	0	0.00262953	0.00262953	0.0026295
Dation         3.22008-08         3.22008-08         3.22008-08         3.22008-08         3.22008-08         3.22008-08         3.22008-08         3.22008-08         3.22008-08         3.22008-08         3.22008-08         3.22008-08         3.22008-08         3.22008-08         3.22008-08         3.22008-08         3.22008-08         3.22008-08         3.22008-08         3.22008-08         3.22008-08         3.22008-08         3.22008-08         3.22008-08         3.22008-08         3.22008-08         3.2008-08         3.2008-08         3.2008-08         3.2008-08         3.2008-08         3.2008-08         3.2008-08         3.2008-08         3.2008-08         3.2008-08         3.2008-08         3.2008-08         3.2008-08         3.2008-08         3.2008-08         3.2008-08         3.2008-08         3.2008-08         3.2008-08         3.2008-08         3.2008-08         3.2008-08         3.2008-08         3.2008-08         3.2008-08         3.2008-08         3.2008-08         3.2008-08         3.2008-08         3.2008-08         3.2008-08         3.2008-08         3.2008-08         3.2008-08         3.2008-08         3.2008-08         3.2008-08         3.2008-08         3.2008-08         3.2008-08         3.2008-08         3.2008-08         3.2008-08         3.2008-08         3.2008-08         3.2008-08         3.2008-08         3.				0	Ŭ				•			3.08464E-0
scheme         103/41E-08         103/41E-08<				0	•				0			3.69370E-06
Decime         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 <td></td> <td></td> <td></td> <td>0</td> <td>e e</td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td>1.03741E-08</td>				0	e e				-			1.03741E-08
none         133844-05         133844-05         133844-05         133844-05         133844-05         133844-05         133844-05         133844-05         133844-05         133844-05         133844-05         133844-05         133844-05         133844-05         133844-05         133844-05         133844-05         133844-05         133844-05         133844-05         133844-05         133844-05         133844-05         133844-05         133844-05         133844-05         133844-05         133844-05         133844-05         133844-05         133844-05         133844-05         133844-05         133844-05         133844-05         133844-05         133844-05         133844-05         133844-05         133844-05         133844-05         133844-05         133844-05         133844-05         133844-05         133844-05         133844-05         133844-05         133844-05         133844-05         133844-05         133844-05         133844-05         133844-05         133844-05         133844-05         133844-05         133844-05         133844-05         133844-05         133844-05         133844-05         133844-05         133844-05         133844-05         133844-05         133844-05         133844-05         133844-05         133844-05         133844-05         133844-05         1338344-05         133844-05         13			0	0	Ŭ			0	0			1.007412 00
Hume         B.732/TE-07         B.732/TE-07 <thb< td=""><td>ndecane</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>(</td></thb<>	ndecane	0	0	0	0	0	0	0	0	0	0	(
Nybene         1.0005E-09         .0005E-09        1.0005E-09 <td></td> <td></td> <td></td> <td>0</td> <td>•</td> <td></td> <td></td> <td></td> <td>0</td> <td></td> <td></td> <td>1.93884E-0</td>				0	•				0			1.93884E-0
Xyenc         5,18031E-09         5,18031E-09 <th< td=""><td></td><td></td><td></td><td>0</td><td>e e</td><td></td><td></td><td></td><td>0</td><td></td><td></td><td>8.73217E-07</td></th<>				0	e e				0			8.73217E-07
enter         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 <td>-</td> <td></td> <td></td> <td>0</td> <td>•</td> <td></td> <td></td> <td></td> <td>•</td> <td></td> <td></td> <td>5.18031E-0</td>	-			0	•				•			5.18031E-0
operadim         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0<	-		0	0	0		0	0	0			(
Display         D         D         D         D         D         D         D         D         D           SG         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D <thd< th="">         D         <thd< th=""> <thd< td=""><td>DEA</td><td>0</td><td>0</td><td>0</td><td>•</td><td>0</td><td>0</td><td>0</td><td>•</td><td>0</td><td>0</td><td>(</td></thd<></thd<></thd<>	DEA	0	0	0	•	0	0	0	•	0	0	(
SG         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D <thd< th="">         D         D         D</thd<>		0	0	0	e e	0	0	0	-	0	0	(
2         0         0         0         0         0         0         0         0           Statement         1.0652E-06         1.1662E-05         1.062E-05         1.062E-05<	•	0	0	0	e e	0	0	0	0	0	0	(
Site Fraction         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         <		0	0	0	-	0	0	0	-	0	0	(
22         1.1848/TE-07						%		%		%		%
2         3.14955         3.14955         3.14955         3.14955         3.14955         3.14955         3.14955         3.14955         3.14955         3.14955         3.14955         3.14955         3.14955         3.14955         3.14955         3.14955         3.14955         3.14955         3.14955         3.14955         3.14955         3.14955         3.14955         3.14955         3.14955         3.14955         3.14955         3.14955         3.14955         3.14955         3.14955         3.14955         3.14955         3.14955         3.14955         3.14955         3.14955         3.14955         3.14955         3.14955         3.14955         3.14955         3.14955         3.14955         3.14955         3.14955         3.14955         3.14955         3.14955         3.14955         3.14955         3.14955         3.14955         3.14955         3.14955         3.14955         3.14955         3.14955         3.14955         3.14955         3.14955         3.14955         3.14955         3.14955         3.14955         3.14955         3.14955         3.14955         3.14955         3.14955         3.14955         3.14955         3.14955         3.14955         3.14955         3.14955         3.14955         3.14955         3.14955         3.14955         3.1												1.16652E-0
shame         96.7872         96.7872         96.7872         96.7872         96.7872         96.7872         96.7872         96.7872         96.7872         96.7872         96.7872         96.7872         96.7872         96.7872         96.7872         96.7872         96.7872         96.7872         96.7872         96.7872         96.7872         96.7872         96.7872         96.7872         96.7872         96.7872         96.7872         96.7872         96.7872         96.7872         96.7872         96.7872         96.7872         96.7872         96.7872         96.7872         96.7872         96.7872         96.7872         96.7872         96.7872         96.7872         96.7872         96.7872         96.7872         96.7872         96.7872         96.7872         96.7872         96.7872         96.7872         96.7872         96.7872         96.7872         96.7872         96.7872         96.7872         96.7872         96.7872         96.7872         96.7872         96.7872         96.7872         96.7872         96.7872         96.7872         96.7872         96.7872         96.7872         96.7872         96.7872         96.7872         96.7872         96.7872         96.7872         96.7872         96.7872         96.7872         96.7872         96.7872												1.18487E-0 3.1495
hame0.9862450.9862450.98624650.98624650.98624650.98624650.98624650.98624650.98624650.98624650.98624650.98624650.98624650.98624650.98624650.98624650.98624650.98624650.98624650.98624650.98624650.98624650.98624650.98624650.98624650.98624650.98624650.98624650.98624650.98625450.98625450.98625450.98625450.98625450.98625450.98625450.98625450.98625450.98625450.98625450.98625450.98625450.98695450.98695450.98695450.98695450.98695450.98695450.98695450.98695450.98695450.98695450.98695450.98695450.98695450.98695450.98695450.98695450.98695450.98695450.98695450.98695450.98695450.98695450.98695450.98695450.98695450.98695450.98695450.98695450.98695450.98695450.98695450.98695450.98695450.98695450.98695450.98695450.98695450.98695450.98695450.98695450.98695450.98695450.98695450.98695450.98695450.98695450.98695450.98695450.98695450.98695450.98695450.98695450.98695450.98695450.98695450.98695450.98695450.98695450.98695450.98695450.98695450.98695450.98695450.98695450.986954550.98595450.98595450.98595450.98595450.98595450.												95.7872
ubane0.001409060.001409060.001409060.001409060.001409060.001409060.001409060.001409060.001409060.001409060.001409060.001409060.001409060.001409060.001409060.001409060.001409060.001409060.001409060.001409060.001409060.001409060.001409060.001409060.001409060.001409060.001409060.001409060.001409060.001409060.001409060.001409060.001409060.001409060.001409060.001409060.001409060.001409060.001409060.001409060.001409060.001409060.001409060.001409060.001409060.001409060.001409060.001409060.001409060.001409060.001409060.001409060.001409060.001409060.001409060.001409060.001409060.001409060.001409060.001409060.001409060.001409060.001409060.001409060.001409060.001409060.001409060.001409060.001409060.001409060.001409060.001409060.001409060.001409060.001409060.001409060.001409060.001409060.001409060.001409060.001409060.001409060.001409060.001409060.001409060.001409060.001409060.001409060.001409060.00149060.00149060.00149060.00149060.00149060.00149060.00149060.00149060.00149060.00149060.00149060.00149960.00149960.00149960.00149960.00149960.00149960.00149960	hane	0.996245	0.996245			0.996245	0.996245	0.996245		0.996245	0.996245	0.99624
Juane         0.00255638         0.00255638         0.00255638         0.00255638         0.00255638         0.00255638         0.00255638         0.00255638         0.00255638         0.00255638         0.00255638         0.00255638         0.00255638         0.00255638         0.00255638         0.00255638         0.00255638         0.00255638         0.00255638         0.00255638         0.00255638         0.00255638         0.00255638         0.00255638         0.00255638         0.00255638         0.00255638         0.00255638         0.00255638         0.00255638         0.00255638         0.00255638         0.00255638         0.00255638         0.00255638         0.00255638         0.00255638         0.00255638         0.00255638         0.00255638         0.00255638         0.00255638         0.00255638         0.00255638         0.00255638         0.00255638         0.00255638         0.00255638         0.00255638         0.00255638         0.00255638         0.00255638         0.00255638         0.00256378         0.00256378         0.00256783         0.00256783         0.00256783         0.00256783         0.00256783         0.00256783         0.00256783         0.00256783         0.00256783         0.00256783         0.00256783         0.00256783         0.00256783         0.00256783         0.00256783         0.00256783         0.00256783 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.062889</td>												0.062889
entame         3 5597E-05         3 5597E-05         3 5597E-05         3 5597E-05         3 5597E-05         5 561119E-05         5 61119E-05         1 0.9408E-07         1 0.9408E-07 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.0014090</td>												0.0014090
Partame         S61119E-05												0.0025563 3.55979E-0
Hexame7 86203E-077 86203E-077 86203E-077 86203E-077 86203E-077 86203E-077 86203E-077 86203E-077 86203E-077 86203E-077 86203E-077 86203E-077 86203E-077 86203E-077 86203E-077 86203E-071 00468E-071 00468E-101 00468E-101 00468E-101 00468E-101 00468E-101 00468E-101 00468E-101 00468E-101 00468E-101 00468E-101 00468E-101 00468E-101 00468E-101 00468E-101 00468E-101 00468E-101 00468E-101 00468E-101 00468E-101 00468E-101 00468E-101 00467E-101 00467E-101 00467E-101 00467E-10 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>5.61119E-0</td>												5.61119E-0
Dctane         1 08889E-09         1 08889E-09         1 08898E-09         1 08898E-09 <t< td=""><td>lexane</td><td></td><td>7.86203E-07</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>7.86203E-0</td></t<>	lexane		7.86203E-07									7.86203E-0
Nonane         3.93523E-10         3.93523E-10 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1.09468E-0</td></t<>												1.09468E-0
beam         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0												1.08989E-0 3.93523E-1
decane         0         0         0         0         0         0         0           nzene         4.47926E-07         <			0.000201-10					0.000202-10				0.00020E-1
buene         2.37964E-08         2.37964E-08 <th< td=""><td></td><td>0</td><td>0</td><td></td><td></td><td>0</td><td>0</td><td>0</td><td></td><td>0</td><td>0</td><td></td></th<>		0	0			0	0	0		0	0	
Nybenzene         3.42435E-11												4.47926E-0
Vylene         1.62661E-10         1.62661E-10 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>2.37964E-0</td></t<>												2.37964E-0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-											3.42435E-1 1.62661E-1
HEA         0         0         0         0         0         0         0         0           erazine         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0			-									2001E-1
opsychoric Acid         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0		0	0			0	0	0		0		
G         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0		0	0			0	0	0		0	-	
1       0       0       0       0       0       0       0         185 Flow       1b/h		-	0			0	0	0		0	0	
ss Flow         lb/h		-	0			0	0	0		0	0	
20.0004006120.0004006120.0004006120.0004006120.0004006120.0004006120.0004006120.0004006120.0004006120.0004006120.0004006120.0004006120.0004006120.0004006120.0004006120.0004006120.0004006120.0004006120.0004006120.0004006120.0004006120.0004006120.0004006120.0004006120.0004006120.0004006120.0004006120.0004006120.0004006120.0004006120.0004006120.0004006120.0004006120.0004006120.0004006120.0004006120.0004006120.0004006120.0004006120.0004006120.0004006120.0004006120.0004006120.0004006120.0004006120.0004006120.0004006120.0004006120.0004006120.0004006120.0004006120.0004006120.0004006120.0004006120.0004006120.0004006120.0004006120.0004006120.0004006120.0004006120.0004006120.0004006120.0004006120.0004006120.0004006120.0004006120.0004006120.0004006120.0004006120.000406120.000406120.000406120.000406120.000406120.000406120.000406120.000406120.000406120.000406120.000406120.000406120.000406120.000406120.000406120.000406120.000406120.000406120.000406120.000406120.000406120.000406120.000406120.000406120.000406120.000406120.000406120.000406120.000406120.000406120.000406120.000406120.000406120.00040612 <td></td> <td></td> <td>-</td> <td>lb/h</td> <td>lb/h</td> <td></td> <td>-</td> <td>-</td> <td>lb/h</td> <td>-</td> <td>-</td> <td>lb/h</td>			-	lb/h	lb/h		-	-	lb/h	-	-	lb/h
thane10648.810648.80010648.810648.810648.810648.810648.810648.810648.810648.810648.810648.810648.810648.810648.810648.810648.810648.810648.810648.810648.810648.810648.810648.810648.810648.810648.810648.810648.810648.810648.810648.810648.810648.810648.810648.810648.810648.810648.810648.810648.810648.810648.810648.810648.810648.810648.810648.810648.810648.810648.810648.810648.810648.810648.810648.810648.810648.810648.810648.810648.810648.810648.810648.810648.810648.810648.810648.810648.810648.810648.810648.810648.810648.810648.810648.810648.810648.810648.810648.810648.810648.810848.810648.810848.810848.810848.810848.810848.810848.810848.810848.810848.810848.810848.810848.810848.810848.810848.810848.810848.810848.810848.810848.810848.810848.810848.810848.810848.810848.810848.810848.810848.810848.810848.810848.810848.810848.810848.810848.810848.810848.810848.810848.810848.8	S	0.0394406		0	0			0.0394406	0			0.039440
thane323862323862323862003238623238623238623238623238623238623238623238623238623238623238623238623238623238623238623238623238623238623238623238623238623238623238623238623238623238623238623238623238623238623238623238623238623238623238623238623238623238623238623238623238623238623238623238623238623238623238623238623238623238623238623238623238623238623238623238623238623238623238623238623238623238623238623238623238623238623238623238623238623238623238623238623238623238623238623238623238623238623238623238623238623238623238623238623238623238623238623238623238623238623238623238623238623238623238623238623238623238623238623238623238623238623238623238623238623238623238623238623238623238623238623238623238623238623238623238623238623238623238623238623238623238623238623238623238623238623238623238623238623238623	2	0.000400612			e e		0.000400612	0.000400612	-		0.000400612	0.00040061
ane3368.363368.36003368.363368.363368.3603368.363368.363368.363368.363368.363368.363368.363368.363368.363368.363368.363368.363368.363368.363368.363368.363368.363368.363368.363368.363368.363368.363368.363368.363368.363368.363368.363368.363368.363368.363368.363368.363368.363368.363368.363368.363368.363368.363368.363368.363368.363368.363368.363368.363368.363368.363368.363368.363368.363368.363368.363368.363368.363368.363368.363368.363368.363368.363368.363368.363368.363368.363368.363368.363368.363368.363368.363368.363368.363368.363368.363368.363368.363368.363368.363368.363368.363368.363368.363368.363368.363368.363368.363368.363368.363368.363368.363368.363368.363368.363368.363368.363368.363368.363368.363368.363368.363368.363368.363368.363368.363368.363368.363368.363368.363368.363368.363368.363368.363368.363368.363368.363368.363368.363368.363368.363368.363368.363368.363368												10648.
pape212.632212.63200212.632212.632212.6320212.632212.632212.632212.632212.632212.632212.632212.632212.632212.632212.632212.632212.632212.632212.632212.632212.632212.632212.632212.632212.632212.632212.632212.632212.632212.632212.632212.632212.632212.632212.632212.632212.632212.632212.632212.632212.632212.632212.632212.632212.632212.632212.632212.632212.632212.632212.632212.632212.632212.632212.632212.632212.632212.632212.632212.632212.632212.632212.632212.632212.632212.632212.632212.632212.632212.632212.632212.632212.632212.632212.632212.632212.632212.632212.632212.632212.632212.632212.632212.632212.632212.632212.632212.632212.632212.632212.632212.632212.632212.632212.632212.632212.632212.632212.632212.632212.632212.632212.632212.632212.632212.632212.632212.632212.632212.632212.632212.632212.632212.632212.632212.632212.632212.632212.632212.632212.632212.632212.632212				-	-							32386
utane4.764134.76413004.764134.764134.7641304.764134.764134.764134.764134.764134.764134.764134.764134.764134.764134.764134.764134.764134.764134.764134.764134.764134.764134.764134.764134.764134.764134.764134.764134.764134.764134.764134.764134.764134.764134.764134.764134.764134.764134.764134.764134.764134.764134.764134.764134.764134.764134.764134.764134.764134.764134.764134.764134.764134.764134.764134.764134.764134.764134.764134.764134.764134.764134.764134.764134.764134.764134.764134.764134.764134.764134.764134.764134.764134.764134.764134.764134.764134.764134.764134.764134.764134.764134.764134.764134.764134.764134.764134.764134.764134.764134.764134.764134.764134.764134.764134.764134.764134.764134.764134.764134.764134.764134.764134.764134.764134.764134.764134.764134.764134.764134.764134.764134.764134.764134.764134.764134.764134.764134.764134.764134.764134.764134.764134.				0	-							3368.3 212.63
Butane8.643288.643288.64328008.643288.643288.643288.643288.643288.643288.643288.643288.643288.643288.643288.643288.643288.643288.643288.643288.643288.643288.643288.643288.643288.643288.643288.643288.643288.643288.643288.643288.643288.643288.643288.643288.643288.643288.643288.643288.643288.643288.643288.643288.643288.643288.643288.643288.643288.643288.643288.643288.643288.643288.643288.643288.643288.643288.643288.643288.643288.643288.643288.643288.643288.643288.643288.643288.643288.643288.643288.643288.643288.643288.643288.643288.643288.643288.643288.643288.643288.643288.643288.643288.643288.643288.643288.643288.643288.643288.643288.643288.643288.643288.643288.643288.643288.643288.643288.643288.643288.643288.643288.643288.643288.643288.643288.643288.643288.643288.643288.643288.643288.643288.643288.643288.643288.643288.643288.643288.643288.643288.643288.643288.643288.64328 <td></td> <td></td> <td></td> <td>0</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>4.7641</td>				0								4.7641
Pentane         0.189718         0.189718         0         0.189718         0.189718         0.189718         0.189718         0.189718         0.189718         0.189718         0.189718         0.189718         0.189718         0.189718         0.189718         0.189718         0.189718         0.189718         0.189718         0.189718         0.189718         0.189718         0.189718         0.189718         0.189718         0.189718         0.189718         0.189718         0.189718         0.189718         0.189718         0.189718         0.189718         0.189718         0.189718         0.189718         0.189718         0.189718         0.189718         0.189718         0.189718         0.189718         0.189718         0.189718         0.189718         0.189718         0.189718         0.189718         0.189718         0.189718         0.189718         0.189718         0.189718         0.189718         0.189718         0.189718         0.189718         0.189718         0.189718         0.189718         0.189718         0.189718         0.189718         0.189718         0.189718         0.189718         0.1918         0.189718         0.1918         0.189718         0.1918         0.189718         0.1918         0.1918         0.1918         0.1918         0.1918         0.1918			8.64328	0	0			8.64328			8.64328	8.6432
Hexane0.002658200.00265820000.002658200.002658200.0026582000.002658200.002658200.002658200.002658200.002658200.002658200.002658200.002658200.002658200.002658200.002658200.002658200.002658200.002658200.002658200.002658200.002658200.002658200.002658200.002658200.002658200.002658200.002658200.002658200.002658200.002658200.002658200.002658200.002658200.002658200.002658200.002658200.002658200.002658200.002658200.002658200.002658200.002658200.002658200.002658200.002658200.002658200.002658200.002658200.002658200.002658200.002658200.002658200.002658200.002658200.002658200.002658200.002658200.002658200.002658200.002658200.002658200.002658200.002658200.002658200.002658200.002658200.002658200.002658200.002658200.002658200.002658200.002658200.002658200.002658200.002658200.002658200.002658200.002658200.002658200.002658200.002658200.002658200.002658200.002658200.002658200.002658200.002658200.002658200.002658200.002658200.002658200.002658200.002658200.002658200.002658200.002658200.002658200.002658200.002658200.002658200.002658200.002658200.002658200.0026582				-								0.12035
Heptane       0.000370116       0.000370116       0.000370116       0.000370116       0.000370116       0.000370116       0.000370116       0.000370116       0.000370116       0.000370116       0.000370116       0.000370116       0.000370116       0.000370116       0.000370116       0.000370116       0.000370116       0.000370116       0.000370116       0.000370116       0.000370116       0.000370116       0.000370116       0.000370116       0.000370116       0.000370116       0.000370116       0.000370116       0.000370116       0.000370116       0.000370116       0.000370116       0.000370116       0.000370116       0.000370116       0.000370116       0.000370116       0.000370116       0.000370116       0.000370116       0.000370116       0.000370116       0.000370116       0.000370116       0.000370116       0.000370116       0.000370116       0.000370116       0.000370116       0.000370116       0.000370116       0.000370116       0.000370116       0.000370116       0.000370116       0.000370116       0.000370116       0.000370116       0.000370116       0.000370116       0.000370116       0.000370116       0.000370116       0.000370116       0.000370116       0.000370116       0.000370116       0.000370116       0.000370116       0.000370116       0.000370116       0.000370116       0.000370116       0.000370116				0					-			0.18971
Octane         3.68500E-06         3.68500E-06         0         0         3.68500E-06				0	-				-			0.0026582
Nonane         1.33053E-06         1.33053E-06         0         0         1.33053E-06					•				-			3.68500E-0
Decane 0 0 0 0 0 0 0 0 0 0 0 0 0					•				-			1.33053E-0
				-	0				0			
decane         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 <td>decane</td> <td>-</td> <td>-</td> <td></td> <td>-</td> <td>-</td> <td>-</td> <td>•</td> <td></td> <td>e e</td> <td>-</td> <td>0.0015144</td>	decane	-	-		-	-	-	•		e e	-	0.0015144


Toluene	8.04569E-05	8.04569E-05	0	0	8.04569E-05	8.04569E-05	8.04569E-05	0	8.04569E-05	8.04569E-05	8.04569E-05
Ethylbenzene	1.15779E-07	1.15779E-07	0	0	1.15779E-07	1.15779E-07	1.15779E-07	0	1.15779E-07	1.15779E-07	1.15779E-07
m-Xylene	5.49967E-07	5.49967E-07	0	0	5.49967E-07	5.49967E-07	5.49967E-07	0	5.49967E-07	5.49967E-07	5.49967E-07
Water	0	0	0	0	0	0	0	0	0	0	0
MDEA	0	0	0	0	0	0	0	0	0	0	0
Piperazine	0	0	0	0	0	0	0	0	0	0	0
Phosphoric Acid	0	0	0	0	0	0	0	0	0	0	0
TEG	0	0	0	0	0	0	0	0	0	0	0
O2	0	0	0	0	0	0	0	0	0	0	0


Process Streams		1	2	3	4	5	6	7	8	9	10	11
Properties	Status:	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved
Phase: Total	From Block:	XFS1	VSSL-100	VSSL-100	VSSL-101	VSSL-101	CMPR-100	FAXR-100	<b>VSSL-102</b>	VSSL-102	CMPR-101	FAXR-101
	To Block:	VSSL-101				CMPR-100	FAXR-100	VSSL-102		CMPR-101	FAXR-101	VSSL-100
Property	Units											
Temperature	°F	120	119.801			119.894	266.556	120*		119.903	258.198	120*
Pressure	psia	284.994	1244.70	1244.70	282.994	282.994	613.696*	608.696	606.696	606.696	1254.70*	1249.70
Mole Fraction Vapor	%	100	100			100	100	100		100	100	100
Mole Fraction Light Liquid	%	0	0			0	0	0		0	0	0
Mole Fraction Heavy Liquid	%	0	0			0	0	0		0	0	0
Molecular Weight	lb/lbmol	16.3454	16.3454			16.3454	16.3454	16.3454		16.3454	16.3454	16.3454
Mass Density	lb/ft^3	0.771310	3.63998			0.765901	1.31027	1.69826		1.69274	2.74309	3.65374
Molar Flow	lbmol/h	20685.0	20685.0	0	0	20685.0	20685.0	20685.0	0	20685.0	20685.0	20685.0
Mass Flow	lb/h	338106	338106	0	0	338106	338106	338106	0	338106	338106	338106
Vapor Volumetric Flow	ft^3/h	438353	92886.8	0	0	441448	258043	199089	0	199738	123257	92536.9
Liquid Volumetric Flow	gpm	54651.8	11580.7	0	0	55037.7	32171.6	24821.5	0	24902.4	15367.2	11537.1
Std Vapor Volumetric Flow	MMSCFD	188.391	188.391	0	0	188.391	188.391	188.391	0	188.391	188.391	188.391
Std Liquid Volumetric Flow	sgpm	2205.25	2205.25	0	0	2205.25	2205.25	2205.25	0	2205.25	2205.25	2205.25
Compressibility		0.970866	0.898805			0.971038	0.982322	0.941777		0.941900	0.970482	0.898708
Specific Gravity		0.564366	0.564366			0.564366	0.564366	0.564366		0.564366	0.564366	0.564366
API Gravity												
Enthalpy	Btu/h	-6.46941E+08	-6.56132E+08			-6.46941E+08	-6.20008E+08	-6.50144E+08		-6.50144E+08	-6.25564E+08	-6.56132E+08
Mass Enthalpy	Btu/lb	-1913.43	-1940.61			-1913.43	-1833.77	-1922.90		-1922.90	-1850.20	-1940.61
Mass Cp	Btu/(lb*°F)	0.560971	0.658275			0.560755	0.631015	0.592704		0.592490	0.662593	0.658721
Ideal Gas CpCv Ratio		1.29357	1.29362			1.29360	1.25537	1.29357		1.29360	1.25744	1.29357
Dynamic Viscosity	cP	0.0122692	0.0138492			0.0122652	0.0148837	0.0126908		0.0126864	0.0155198	0.0138621
Kinematic Viscosity	cSt	0.993041	0.237522			0.999727	0.709134	0.466514		0.467871	0.353204	0.236849
Thermal Conductivity	Btu/(h*ft*°F)	0.0220092	0.0256321			0.0219981	0.0297804	0.0231243		0.0231131	0.0311444	0.0256598
Surface Tension	lbf/ft											
Net Ideal Gas Heating Value	Btu/ft^3	896.882	896.882			896.882	896.882	896.882		896.882	896.882	896.882
Net Liquid Heating Value	Btu/lb	20820.9	20820.9			20820.9	20820.9	20820.9		20820.9	20820.9	20820.9
Gross Ideal Gas Heating Value	Btu/ft^3	995.930	995.930			995.930	995.930	995.930		995.930	995.930	995.930
Gross Liquid Heating Value	Btu/lb	23120.4	23120.4			23120.4	23120.4	23120.4		23120.4	23120.4	23120.4

Process Streams		1	2	3	4	5	6	7	8	9	10	11
Composition	Status:	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved
Phase: Vapor	From Block:	XFS1	VSSL-100	VSSL-100	<b>VSSL-101</b>	VSSL-101	CMPR-100	FAXR-100	VSSL-102	VSSL-102	CMPR-101	<b>FAXR-101</b>
	To Block:	VSSL-101				CMPR-100	FAXR-100	VSSL-102		CMPR-101	FAXR-101	VSSL-100
Mole Fraction		%	%			%	%	%		%	%	%
H2S		5.59469E-06	5.59469E-06			5.59469E-06	5.59469E-06	5.59469E-06		5.59469E-06	5.59469E-06	5.59469E-
02		4.40069E-08	4.40069E-08			4.40069E-08	4.40069E-08	4.40069E-08		4.40069E-08	4.40069E-08	4.40069E-
N2		1.83772	1.83772			1.83772	1.83772	1.83772		1.83772	1.83772	1.837
Vethane		97.5963	97.5963			97.5963	97.5963	97.5963		97.5963	97.5963	97.59
Ethane		0.541556	0.541556			0.541556	0.541556	0.541556		0.541556	0.541556	0.5415
Propane		0.0233118	0.0233118			0.0233118	0.0233118	0.0233118		0.0233118	0.0233118	0.02331
-Butane		0.000396265	0.000396265			0.000396265	0.000396265	0.000396265		0.000396265	0.000396265	0.0003962
n-Butane		0.000718919	0.000718919			0.000718919	0.000718919	0.000718919		0.000718919	0.000718919	0.0007189
-Pentane		8.06476E-06	8.06476E-06			8.06476E-06	8.06476E-06	8.06476E-06		8.06476E-06	8.06476E-06	8.06476E-
n-Pentane		1.27122E-05	1.27122E-05			1.27122E-05	1.27122E-05	1.27122E-05		1.27122E-05	1.27122E-05	1.27122E-
n-Hexane		1.49124E-07	1.49124E-07			1.49124E-07	1.49124E-07	1.49124E-07		1.49124E-07	1.49124E-07	1.49124E-
n-Heptane		1.78569E-08	1.78569E-08			1.78569E-08	1.78569E-08	1.78569E-08		1.78569E-08	1.78569E-08	1.78569E-
n-Octane		1.55957E-10	1.55957E-10			1.55957E-10	1.55957E-10	1.55957E-10		1.55957E-10	1.55957E-10	1.55957E-
n-Nonane		5.01525E-11	5.01525E-11			5.01525E-11	5.01525E-11	5.01525E-11		5.01525E-11	5.01525E-11	5.01525E-
n-Decane		0	0			0	0	0		0	0	
Jndecane		0	0			0	0	0		0	0	
Benzene		9.37316E-08	9.37316E-08			9.37316E-08	9.37316E-08	9.37316E-08		9.37316E-08	9.37316E-08	9.37316E-
Foluene		4.22149E-09	4.22149E-09			4.22149E-09	4.22149E-09	4.22149E-09		4.22149E-09	4.22149E-09	4.22149E-
Ethylbenzene		5.27222E-12	5.27222E-12			5.27222E-12	5.27222E-12	5.27222E-12		5.27222E-12	5.27222E-12	5.27222E-
n-Xylene		2.50437E-11	2.50437E-11			2.50437E-11	2.50437E-11	2.50437E-11		2.50437E-11	2.50437E-11	2.50437E-
Vater		0	0			0	0	0		0	0	
MDEA		0	0			0	0	0		0	0	
Piperazine		0	0			0	0	0		0	0	
Phosphoric Acid		0	0			0	0	0		0	0	
TEG		0	0			0	0	0		0	0	
02		0	0			0	0	0		0	0	
Molar Flow		lbmol/h	lbmol/h			lbmol/h	lbmol/h	lbmol/h		lbmol/h	lbmol/h	lbmol/h
H2S		0.00115726	0.00115726			0.00115726	0.00115726	0.00115726		0.00115726	0.00115726	0.001157
CO2		9.10284E-06	9.10284E-06			9.10284E-06	9.10284E-06	9.10284E-06		9.10284E-06	9.10284E-06	9.10284E-
N2		380.133	380.133			380.133	380.133	380.133		380.133	380.133	380.1
Vethane		20187.8	20187.8			20187.8	20187.8	20187.8		20187.8	20187.8	20187
Ethane		112.021	112.021			112.021	112.021	112.021		112.021	112.021	112.0
Propane		4.82206	4.82206			4.82206	4.82206	4.82206		4.82206	4.82206	4.822
-Butane		0.0819675	0.0819675			0.0819675	0.0819675	0.0819675		0.0819675	0.0819675	0.08196
n-Butane		0.148709	0.148709			0.148709	0.148709	0.148709		0.148709	0.148709	0.1487
-Pentane		0.00166820	0.00166820			0.00166820	0.00166820	0.00166820		0.00166820	0.00166820	0.001668
n-Pentane		0.00262953	0.00262953			0.00262953	0.00262953	0.00262953		0.00262953	0.00262953	0.002629
n-Hexane		3.08464E-05	3.08464E-05			3.08464E-05	3.08464E-05	3.08464E-05		3.08464E-05	3.08464E-05	3.08464E-
n-Heptane		3.69370E-06	3.69370E-06			3.69370E-06	3.69370E-06	3.69370E-06		3.69370E-06	3.69370E-06	3.69370E-
n-Octane		3.22599E-08	3.22599E-08			3.22599E-08	3.22599E-08	3.22599E-08		3.22599E-08	3.22599E-08	3.22599E-
n-Nonane		1.03741E-08	1.03741E-08			1.03741E-08	1.03741E-08	1.03741E-08		1.03741E-08	1.03741E-08	1.03741E
1-Decane		0	0			0	0	0		0	0	
Jndecane		0	0			0	0	0		0	0	4 0000 15
3enzene		1.93884E-05	1.93884E-05			1.93884E-05	1.93884E-05	1.93884E-05		1.93884E-05	1.93884E-05	1.93884E-
		8.73217E-07	8.73217E-07			8.73217E-07	8.73217E-07	8.73217E-07		8.73217E-07	8.73217E-07	8.73217E-
Ethylbenzene		1.09056E-09	1.09056E-09			1.09056E-09	1.09056E-09	1.09056E-09		1.09056E-09	1.09056E-09	1.09056E-
n-Xylene		5.18031E-09	5.18031E-09			5.18031E-09	5.18031E-09	5.18031E-09		5.18031E-09	5.18031E-09	5.18031E-
Vater		0	0			0	0	0		0	0	
MDEA		0	0			0	0	0		0	0	
Piperazine		0	0			0	0	0		0	0	
Phosphoric Acid IEG		0	0			0	0	0		0	0	
		0	0			0	0	0		0	0	

02	0	0	0	0	0	0	0	0
Mass Fraction	%	%	%	%	%	%	%	%
12S	1.16652E-05	1.16652E-05	1.16652E-05	1.16652E-05	1.16652E-05	1.16652E-05	1.16652E-05	1.16652E-05
02	1.18487E-07	1.18487E-07	1.18487E-07	1.18487E-07	1.18487E-07	1.18487E-07	1.18487E-07	1.18487E-07
2	3.14955	3.14955	3.14955	3.14955	3.14955	3.14955	3.14955	3.14955
lethane	95.7872	95.7872	95.7872	95.7872	95.7872	95.7872	95.7872	95.7872
thane	0.996245	0.996245	0.996245	0.996245	0.996245	0.996245	0.996245	0.996245
ropane	0.0628890	0.0628890	0.0628890	0.0628890	0.0628890	0.0628890	0.0628890	0.0628890
Butane	0.00140906	0.00140906	0.00140906	0.00140906	0.00140906	0.00140906	0.00140906	0.00140906
Butane	0.00255638	0.00255638	0.00255638	0.00255638	0.00255638	0.00255638	0.00255638	0.00255638
Pentane	3.55979E-05	3.55979E-05	3.55979E-05	3.55979E-05	3.55979E-05	3.55979E-05	3.55979E-05	3.55979E-05
Pentane	5.61119E-05	5.61119E-05	5.61119E-05	5.61119E-05	5.61119E-05	5.61119E-05	5.61119E-05	5.61119E-05
Hexane	7.86203E-07	7.86203E-07	7.86203E-07	7.86203E-07	7.86203E-07	7.86203E-07	7.86203E-07	7.86203E-07
Heptane	1.09468E-07	1.09468E-07	1.09468E-07	1.09468E-07	1.09468E-07	1.09468E-07	1.09468E-07	1.09468E-07
Octane	1.08989E-09	1.08989E-09	1.08989E-09	1.08989E-09	1.08989E-09	1.08989E-09	1.08989E-09	1.08989E-09
Nonane	3.93523E-10	3.93523E-10	3.93523E-10	3.93523E-10	3.93523E-10	3.93523E-10	3.93523E-10	3.93523E-10
Decane	0	0	0	0	0	0	0	C
ndecane	0	0	0	0	0	0	0	C
enzene	4.47926E-07	4.47926E-07	4.47926E-07	4.47926E-07	4.47926E-07	4.47926E-07	4.47926E-07	4.47926E-07
oluene	2.37964E-08	2.37964E-08	2.37964E-08	2.37964E-08	2.37964E-08	2.37964E-08	2.37964E-08	2.37964E-08
thylbenzene	3.42435E-11	3.42435E-11	3.42435E-11	3.42435E-11	3.42435E-11	3.42435E-11	3.42435E-11	3.42435E-11
-Xylene	1.62661E-10	1.62661E-10	1.62661E-10	1.62661E-10	1.62661E-10	1.62661E-10	1.62661E-10	1.62661E-10
/ater	0	0	0	0	0	0	0	C
DEA	0	0	0	0	0	0	0	C
iperazine	0	0	0	0	0	0	0	0
hosphoric Acid	0	0	0	0	0	0	0	C
EG	0	0	0	0	0	0	0	C
2	0	0	0	0	0	0	0	C
ass Flow	lb/h	lb/h	lb/h	lb/h	lb/h	lb/h	lb/h	lb/h
2S	0.0394406	0.0394406	0.0394406	0.000//000	0.0204400	0.0394406	0.0004400	
	0.0394400	0.0394400	0.0394400	0.0394406	0.0394406	0.0594400	0.0394406	0.0394406
				0.0394406 0.000400612	0.0394406		0.0394406 0.000400612	
02	0.000400612	0.000400612	0.000400612	0.000400612	0.000400612	0.000400612	0.000400612	0.000400612
O2 2	0.000400612 10648.8	0.000400612 10648.8	0.000400612 10648.8	0.000400612 10648.8	0.000400612 10648.8	0.000400612 10648.8	0.000400612 10648.8	0.000400612 10648.8
O2 2 lethane	0.000400612 10648.8 323862	0.000400612 10648.8 323862	0.000400612 10648.8 323862	0.000400612 10648.8 323862	0.000400612 10648.8 323862	0.000400612 10648.8 323862	0.000400612 10648.8 323862	0.000400612 10648.8 323862
O2 2 lethane thane	0.000400612 10648.8 323862 3368.36	0.000400612 10648.8 323862 3368.36	0.000400612 10648.8 323862 3368.36	0.000400612 10648.8 323862 3368.36	0.000400612 10648.8 323862 3368.36	0.000400612 10648.8 323862 3368.36	0.000400612 10648.8 323862 3368.36	0.000400612 10648.8 323862 3368.36
O2 2 lethane thane ropane	0.000400612 10648.8 323862 3368.36 212.632	0.000400612 10648.8 323862 3368.36 212.632	0.000400612 10648.8 323862 3368.36 212.632	0.000400612 10648.8 323862 3368.36 212.632	0.000400612 10648.8 323862 3368.36 212.632	0.000400612 10648.8 323862 3368.36 212.632	0.000400612 10648.8 323862 3368.36 212.632	0.000400612 10648.8 323862 3368.36 212.632
O2 2 lethane thane ropane Butane	0.000400612 10648.8 323862 3368.36 212.632 4.76413	0.000400612 10648.8 323862 3368.36 212.632 4.76413	0.000400612 10648.8 323862 3368.36 212.632 4.76413	0.000400612 10648.8 323862 3368.36 212.632 4.76413	0.000400612 10648.8 323862 3368.36 212.632 4.76413	0.000400612 10648.8 323862 3368.36 212.632 4.76413	0.000400612 10648.8 323862 3368.36 212.632 4.76413	0.000400612 10648.8 323862 3368.36 212.632 4.76413
O2 2 lethane thane ropane Butane Butane	0.000400612 10648.8 323862 3368.36 212.632 4.76413 8.64328	0.000400612 10648.8 323862 3368.36 212.632 4.76413 8.64328	0.000400612 10648.8 323862 3368.36 212.632 4.76413 8.64328	0.000400612 10648.8 323862 3368.36 212.632 4.76413 8.64328	0.000400612 10648.8 323862 3368.36 212.632 4.76413 8.64328	0.000400612 10648.8 323862 3368.36 212.632 4.76413 8.64328	0.000400612 10648.8 323862 3368.36 212.632 4.76413 8.64328	0.000400612 10648.8 323862 3368.36 212.632 4.76413 8.64328
O2 2 lethane thane ropane Butane Butane Pentane	0.000400612 10648.8 323862 3368.36 212.632 4.76413 8.64328 0.120359	0.000400612 10648.8 323862 3368.36 212.632 4.76413 8.64328 0.120359	0.000400612 10648.8 323862 3368.36 212.632 4.76413 8.64328 0.120359	0.000400612 10648.8 323862 3368.36 212.632 4.76413 8.64328 0.120359	0.000400612 10648.8 323862 3368.36 212.632 4.76413 8.64328 0.120359	0.000400612 10648.8 323862 3368.36 212.632 4.76413 8.64328 0.120359	0.000400612 10648.8 323862 3368.36 212.632 4.76413 8.64328 0.120359	0.0394406 0.000400612 10648.8 323862 3368.36 212.632 4.76413 8.64328 0.120359 0.18718
O2 2 ethane thane ropane Butane Butane Pentane Pentane	0.000400612 10648.8 323862 3368.36 212.632 4.76413 8.64328 0.120359 0.189718	0.000400612 10648.8 323862 3368.36 212.632 4.76413 8.64328 0.120359 0.189718	0.000400612 10648.8 323862 3368.36 212.632 4.76413 8.64328 0.120359 0.189718	0.000400612 10648.8 323862 3368.36 212.632 4.76413 8.64328 0.120359 0.189718	0.000400612 10648.8 323862 3368.36 212.632 4.76413 8.64328 0.120359 0.189718	0.000400612 10648.8 323862 3368.36 212.632 4.76413 8.64328 0.120359 0.189718	0.000400612 10648.8 323862 3368.36 212.632 4.76413 8.64328 0.120359 0.189718	0.000400612 10648.8 323862 3368.36 212.632 4.76413 8.64328 0.120359 0.189718
O2 2 ethane thane ropane Butane Butane Pentane Pentane Hexane	0.000400612 10648.8 323862 3368.36 212.632 4.76413 8.64328 0.120359 0.189718 0.00265820	0.000400612 10648.8 323862 3368.36 212.632 4.76413 8.64328 0.120359 0.189718 0.00265820	0.000400612 10648.8 323862 3368.36 212.632 4.76413 8.64328 0.120359 0.189718 0.00265820	0.000400612 10648.8 323862 3368.36 212.632 4.76413 8.64328 0.120359 0.189718 0.00265820	0.000400612 10648.8 323862 3368.36 212.632 4.76413 8.64328 0.120359 0.189718 0.00265820	0.000400612 10648.8 323862 3368.36 212.632 4.76413 8.64328 0.120359 0.189718 0.00265820	0.000400612 10648.8 323862 3368.36 212.632 4.76413 8.64328 0.120359 0.189718 0.00265820	0.000400612 10648.8 323862 3368.36 212.632 4.76413 8.64328 0.120359 0.189718 0.00265820
O2 2 ethane thane ropane Butane Pentane Pentane Hexane Heptane	0.000400612 10648.8 323862 3368.36 212.632 4.76413 8.64328 0.120359 0.189718 0.00265820 0.000370116	0.000400612 10648.8 323862 3368.36 212.632 4.76413 8.64328 0.120359 0.189718 0.00265820 0.000370116	0.000400612 10648.8 323862 3368.36 212.632 4.76413 8.64328 0.120359 0.189718 0.00265820 0.000370116	0.000400612 10648.8 323862 3368.36 212.632 4.76413 8.64328 0.120359 0.189718 0.00265820 0.000370116	0.000400612 10648.8 323862 3368.36 212.632 4.76413 8.64328 0.120359 0.189718 0.00265820 0.000370116	0.000400612 10648.8 323862 3368.36 212.632 4.76413 8.64328 0.120359 0.189718 0.00265820 0.000370116	0.000400612 10648.8 323862 3368.36 212.632 4.76413 8.64328 0.120359 0.189718 0.00265820 0.000370116	0.000400612 10648.8 323862 3368.36 212.632 4.76413 8.64328 0.120359 0.189718 0.00265820 0.000370116
O2 2 ethane thane ropane Butane Butane Pentane Pentane Hexane Heptane Octane	0.000400612 10648.8 323862 3368.36 212.632 4.76413 8.64328 0.120359 0.189718 0.00265820 0.000370116 3.68500E-06	0.000400612 10648.8 323862 3368.36 212.632 4.76413 8.64328 0.120359 0.189718 0.00265820 0.000370116 3.68500E-06	0.000400612 10648.8 323862 3368.36 212.632 4.76413 8.64328 0.120359 0.189718 0.00265820 0.000370116 3.68500E-06	0.000400612 10648.8 323862 3368.36 212.632 4.76413 8.64328 0.120359 0.189718 0.00265820 0.000370116 3.68500E-06	0.000400612 10648.8 323862 3368.36 212.632 4.76413 8.64328 0.120359 0.189718 0.00265820 0.000370116 3.68500E-06	0.000400612 10648.8 323862 3368.36 212.632 4.76413 8.64328 0.120359 0.189718 0.00265820 0.000370116 3.68500E-06	0.000400612 10648.8 323862 3368.36 212.632 4.76413 8.64328 0.120359 0.189718 0.00265820 0.000370116 3.68500E-06	0.000400612 10648.8 323862 3368.36 212.632 4.76413 8.64328 0.120359 0.189718 0.00265820 0.000370116 3.68500E-06
O2 2 ethane thane ropane Butane Pentane Pentane Hexane Heptane Octane Nonane	0.000400612 10648.8 323862 3368.36 212.632 4.76413 8.64328 0.120359 0.189718 0.00265820 0.000370116 3.68500E-06 1.33053E-06	0.000400612 10648.8 323862 3368.36 212.632 4.76413 8.64328 0.120359 0.189718 0.00265820 0.000370116	0.000400612 10648.8 323862 3368.36 212.632 4.76413 8.64328 0.120359 0.189718 0.00265820 0.000370116 3.68500E-06 1.33053E-06	0.000400612 10648.8 323862 3368.36 212.632 4.76413 8.64328 0.120359 0.189718 0.00265820 0.000370116 3.68500E-06 1.33053E-06	0.000400612 10648.8 323862 3368.36 212.632 4.76413 8.64328 0.120359 0.189718 0.00265820 0.000370116	0.000400612 10648.8 323862 3368.36 212.632 4.76413 8.64328 0.120359 0.189718 0.00265820 0.000370116 3.68500E-06 1.33053E-06	0.000400612 10648.8 323862 3368.36 212.632 4.76413 8.64328 0.120359 0.189718 0.00265820 0.000370116 3.68500E-06 1.33053E-06	0.000400612 10648.8 323862 3368.36 212.632 4.76413 8.64328 0.120359 0.189718 0.00265820 0.000370116 3.68500E-06
O2 2 ethane thane ropane Butane Pentane Pentane Hexane Heptane Octane Nonane Decane	0.000400612 10648.8 323862 3368.36 212.632 4.76413 8.64328 0.120359 0.189718 0.00265820 0.000370116 3.68500E-06 1.33053E-06 0	0.000400612 10648.8 323862 3368.36 212.632 4.76413 8.64328 0.120359 0.189718 0.00265820 0.000370116 3.68500E-06 1.33053E-06 0	0.000400612 10648.8 323862 3368.36 212.632 4.76413 8.64328 0.120359 0.189718 0.00265820 0.000370116 3.68500E-06 1.33053E-06 0	0.000400612 10648.8 323862 3368.36 212.632 4.76413 8.64328 0.120359 0.189718 0.00265820 0.000370116 3.68500E-06 1.33053E-06 0	0.000400612 10648.8 323862 3368.36 212.632 4.76413 8.64328 0.120359 0.189718 0.00265820 0.000370116 3.68500E-06 1.33053E-06 0	0.000400612 10648.8 323862 3368.36 212.632 4.76413 8.64328 0.120359 0.189718 0.00265820 0.000370116 3.68500E-06 1.33053E-06 0	0.000400612 10648.8 323862 3368.36 212.632 4.76413 8.64328 0.120359 0.189718 0.00265820 0.000370116 3.68500E-06 1.33053E-06 0	0.000400612 10648.8 323862 3368.36 212.632 4.76413 8.64328 0.120359 0.189718 0.00265820 0.000370116 3.68500E-06
O2 2 ethane thane ropane Butane Pentane Pentane Hexane Heptane Octane Nonane Decane ndecane	0.000400612 10648.8 323862 3368.36 212.632 4.76413 8.64328 0.120359 0.189718 0.00265820 0.000370116 3.68500E-06 1.33053E-06 0 0	0.000400612 10648.8 323862 3368.36 212.632 4.76413 8.64328 0.120359 0.189718 0.00265820 0.000370116 3.68500E-06 1.33053E-06 0 0	0.000400612 10648.8 323862 3368.36 212.632 4.76413 8.64328 0.120359 0.189718 0.00265820 0.000370116 3.68500E-06 1.33053E-06 0 0	0.000400612 10648.8 323862 3368.36 212.632 4.76413 8.64328 0.120359 0.189718 0.00265820 0.000370116 3.68500E-06 1.33053E-06 0 0	0.000400612 10648.8 323862 3368.36 212.632 4.76413 8.64328 0.120359 0.189718 0.00265820 0.000370116 3.68500E-06 1.33053E-06 0 0	0.000400612 10648.8 323862 3368.36 212.632 4.76413 8.64328 0.120359 0.189718 0.00265820 0.000370116 3.68500E-06 1.33053E-06 0 0	0.000400612 10648.8 323862 3368.36 212.632 4.76413 8.64328 0.120359 0.189718 0.00265820 0.000370116 3.68500E-06 1.33053E-06 0 0	0.000400612 10648.8 323862 3368.36 212.632 4.76413 8.64328 0.120359 0.189718 0.00265820 0.000370116 3.68500E-06 1.33053E-06
O2 2 ethane thane ropane Butane Pentane Pentane Hexane Heptane Octane Nonane Decane ndecane enzene	0.000400612 10648.8 323862 3368.36 212.632 4.76413 8.64328 0.120359 0.189718 0.00265820 0.000370116 3.68500E-06 1.33053E-06 0 0 0.00151446	0.000400612 10648.8 323862 3368.36 212.632 4.76413 8.64328 0.120359 0.189718 0.00265820 0.000370116 3.68500E-06 1.33053E-06 0 0 0	0.000400612 10648.8 323862 3368.36 212.632 4.76413 8.64328 0.120359 0.189718 0.00265820 0.000370116 3.68500E-06 1.33053E-06 0 0 0 0 0 0 0 0 0 0 0 0 0	0.000400612 10648.8 323862 3368.36 212.632 4.76413 8.64328 0.120359 0.189718 0.00265820 0.000370116 3.68500E-06 1.33053E-06 0 0 0	0.000400612 10648.8 323862 3368.36 212.632 4.76413 8.64328 0.120359 0.189718 0.00265820 0.000370116 3.68500E-06 1.33053E-06 0 0 0	0.000400612 10648.8 323862 3368.36 212.632 4.76413 8.64328 0.120359 0.189718 0.00265820 0.000370116 3.68500E-06 1.33053E-06 0 0 0 0 0 0 0 0 0 0 0 0 0	0.000400612 10648.8 323862 3368.36 212.632 4.76413 8.64328 0.120359 0.189718 0.00265820 0.000370116 3.68500E-06 1.33053E-06 0 0 0	0.000400612 10648.8 323862 3368.36 212.632 4.76413 8.64328 0.120359 0.189718 0.00265820 0.000370116 3.68500E-06 1.33053E-06 0.00151446
O2 2 ethane hane opane Butane Pentane Pentane Hexane Heptane Octane Nonane Decane ndecane enzene oluene	0.000400612 10648.8 323862 3368.36 212.632 4.76413 8.64328 0.120359 0.189718 0.00265820 0.000370116 3.68500E-06 1.33053E-06 0 0 0.00151446 8.04569E-05	0.000400612 10648.8 323862 3368.36 212.632 4.76413 8.64328 0.120359 0.189718 0.00265820 0.000370116 3.68500E-06 1.33053E-06 0 0 0 0.00151446 8.04569E-05	0.000400612 10648.8 323862 3368.36 212.632 4.76413 8.64328 0.120359 0.189718 0.00265820 0.000370116 3.68500E-06 1.33053E-06 0 0 0 0.00151446 8.04569E-05	0.000400612 10648.8 323862 3368.36 212.632 4.76413 8.64328 0.120359 0.189718 0.00265820 0.000370116 3.68500E-06 1.33053E-06 0 0 0.00151446 8.04569E-05	0.000400612 10648.8 323862 3368.36 212.632 4.76413 8.64328 0.120359 0.189718 0.00265820 0.000370116 3.68500E-06 1.33053E-06 0 0 0.00151446 8.04569E-05	0.000400612 10648.8 323862 3368.36 212.632 4.76413 8.64328 0.120359 0.189718 0.00265820 0.000370116 3.68500E-06 1.33053E-06 0 0 0 0.00151446 8.04569E-05	0.000400612 10648.8 323862 3368.36 212.632 4.76413 8.64328 0.120359 0.189718 0.00265820 0.000370116 3.68500E-06 1.33053E-06 0 0 0.00151446 8.04569E-05	0.000400612 10648.8 323862 3368.36 212.632 4.76413 8.64328 0.120359 0.189718 0.00265820 0.000370116 3.68500E-06 1.33053E-06 0.000151446 8.04569E-05
O2 2 ethane hane opane Butane Pentane Pentane Hexane Heptane Octane Nonane Decane ndecane enzene oluene hylbenzene	0.000400612 10648.8 323862 3368.36 212.632 4.76413 8.64328 0.120359 0.189718 0.00265820 0.000370116 3.68500E-06 1.33053E-06 0 0 0 0.00151446 8.04569E-05 1.15779E-07	0.000400612 10648.8 323862 3368.36 212.632 4.76413 8.64328 0.120359 0.189718 0.00265820 0.000370116 3.68500E-06 1.33053E-06 0 0 0 0 0.00151446 8.04569E-05 1.15779E-07	0.000400612 10648.8 323862 3368.36 212.632 4.76413 8.64328 0.120359 0.189718 0.00265820 0.000370116 3.68500E-06 1.33053E-06 0 0 0.00151446 8.04569E-05 1.15779E-07	0.000400612 10648.8 323862 3368.36 212.632 4.76413 8.64328 0.120359 0.189718 0.00265820 0.000370116 3.68500E-06 1.33053E-06 0 0 0.00151446 8.04569E-05 1.15779E-07	0.000400612 10648.8 323862 3368.36 212.632 4.76413 8.64328 0.120359 0.189718 0.00265820 0.000370116 3.68500E-06 1.33053E-06 0 0 0.00151446 8.04569E-05 1.15779E-07	0.000400612 10648.8 323862 3368.36 212.632 4.76413 8.64328 0.120359 0.189718 0.00265820 0.000370116 3.68500E-06 1.33053E-06 0 0 0 0.00151446 8.04569E-05 1.15779E-07	0.000400612 10648.8 323862 3368.36 212.632 4.76413 8.64328 0.120359 0.189718 0.00265820 0.000370116 3.68500E-06 1.33053E-06 0 0 0.00151446 8.04569E-05 1.15779E-07	0.000400612 10648.8 323862 3368.36 212.632 4.76413 8.64328 0.120359 0.189718 0.00265820 0.000370116 3.68500E-06 1.33053E-06 0 0.00151446 8.04569E-05 1.15779E-07
D2 2 ethane hane opane Butane Pentane Pentane Heptane Octane Nonane Decane ndecane enzene bluene chylbenzene -Xylene	0.000400612 10648.8 323862 3368.36 212.632 4.76413 8.64328 0.120359 0.189718 0.00265820 0.000370116 3.68500E-06 1.33053E-06 0 0 0.00151446 8.04569E-05	0.000400612 10648.8 323862 3368.36 212.632 4.76413 8.64328 0.120359 0.189718 0.00265820 0.000370116 3.68500E-06 1.33053E-06 0 0 0 0.00151446 8.04569E-05	0.000400612 10648.8 323862 3368.36 212.632 4.76413 8.64328 0.120359 0.189718 0.00265820 0.000370116 3.68500E-06 1.33053E-06 0 0 0 0.00151446 8.04569E-05	0.000400612 10648.8 323862 3368.36 212.632 4.76413 8.64328 0.120359 0.189718 0.00265820 0.000370116 3.68500E-06 1.33053E-06 0 0 0.00151446 8.04569E-05	0.000400612 10648.8 323862 3368.36 212.632 4.76413 8.64328 0.120359 0.189718 0.00265820 0.000370116 3.68500E-06 1.33053E-06 0 0 0.00151446 8.04569E-05	0.000400612 10648.8 323862 3368.36 212.632 4.76413 8.64328 0.120359 0.189718 0.00265820 0.000370116 3.68500E-06 1.33053E-06 0 0 0 0.00151446 8.04569E-05	0.000400612 10648.8 323862 3368.36 212.632 4.76413 8.64328 0.120359 0.189718 0.00265820 0.000370116 3.68500E-06 1.33053E-06 0 0 0.00151446 8.04569E-05	0.000400612 10648.8 323862 3368.36 212.632 4.76413 8.64328 0.120359 0.189718 0.00265820 0.000370116 3.68500E-06 1.33053E-06 0.00151446 8.04569E-05 1.15779E-07
D2 2 ethane hane opane Butane Pentane Pentane Hexane Heptane Octane Nonane Decane ndecane enzene bluene hylbenzene -Xylene ater	0.000400612 10648.8 323862 3368.36 212.632 4.76413 8.64328 0.120359 0.189718 0.00265820 0.000370116 3.68500E-06 1.33053E-06 0 0 0 0.00151446 8.04569E-05 1.15779E-07	0.000400612 10648.8 323862 3368.36 212.632 4.76413 8.64328 0.120359 0.189718 0.00265820 0.000370116 3.68500E-06 1.33053E-06 0 0 0 0 0.00151446 8.04569E-05 1.15779E-07	0.000400612 10648.8 323862 3368.36 212.632 4.76413 8.64328 0.120359 0.189718 0.00265820 0.000370116 3.68500E-06 1.33053E-06 0 0 0.00151446 8.04569E-05 1.15779E-07	0.000400612 10648.8 323862 3368.36 212.632 4.76413 8.64328 0.120359 0.189718 0.00265820 0.000370116 3.68500E-06 1.33053E-06 0 0 0.00151446 8.04569E-05 1.15779E-07	0.000400612 10648.8 323862 3368.36 212.632 4.76413 8.64328 0.120359 0.189718 0.00265820 0.000370116 3.68500E-06 1.33053E-06 0 0 0.00151446 8.04569E-05 1.15779E-07	0.000400612 10648.8 323862 3368.36 212.632 4.76413 8.64328 0.120359 0.189718 0.00265820 0.000370116 3.68500E-06 1.33053E-06 0 0 0 0.00151446 8.04569E-05 1.15779E-07	0.000400612 10648.8 323862 3368.36 212.632 4.76413 8.64328 0.120359 0.189718 0.00265820 0.000370116 3.68500E-06 1.33053E-06 0 0 0.00151446 8.04569E-05 1.15779E-07	0.000400612 10648.8 323862 3368.36 212.632 4.76413 8.64328 0.120359 0.189718 0.00265820 0.000370116 3.68500E-06 1.33053E-06 0.00151446 8.04569E-05 1.15779E-07
D2 2 ethane chane ropane Butane Pentane Pentane Hexane Heptane Octane Nonane Decane enzene chylbenzene -Xylene fater DEA	0.000400612 10648.8 323862 3368.36 212.632 4.76413 8.64328 0.120359 0.189718 0.00265820 0.000370116 3.68500E-06 1.33053E-06 0 0 0 0.00151446 8.04569E-05 1.15779E-07	0.000400612 10648.8 323862 3368.36 212.632 4.76413 8.64328 0.120359 0.189718 0.00265820 0.000370116 3.68500E-06 1.33053E-06 0 0 0 0 0.00151446 8.04569E-05 1.15779E-07	0.000400612 10648.8 323862 3368.36 212.632 4.76413 8.64328 0.120359 0.189718 0.00265820 0.000370116 3.68500E-06 1.33053E-06 0 0 0.00151446 8.04569E-05 1.15779E-07	0.000400612 10648.8 323862 3368.36 212.632 4.76413 8.64328 0.120359 0.189718 0.00265820 0.000370116 3.68500E-06 1.33053E-06 0 0 0.00151446 8.04569E-05 1.15779E-07	0.000400612 10648.8 323862 3368.36 212.632 4.76413 8.64328 0.120359 0.189718 0.00265820 0.000370116 3.68500E-06 1.33053E-06 0 0 0.00151446 8.04569E-05 1.15779E-07	0.000400612 10648.8 323862 3368.36 212.632 4.76413 8.64328 0.120359 0.189718 0.00265820 0.000370116 3.68500E-06 1.33053E-06 0 0 0 0.00151446 8.04569E-05 1.15779E-07	0.000400612 10648.8 323862 3368.36 212.632 4.76413 8.64328 0.120359 0.189718 0.00265820 0.000370116 3.68500E-06 1.33053E-06 0 0 0.00151446 8.04569E-05 1.15779E-07	0.000400612 10648.8 323862 3368.36 212.632 4.76413 8.64328
O2 2 ethane thane ropane Butane Pentane Pentane Hexane Heptane Octane Nonane Decane enzene oluene thylbenzene -Xylene /ater DEA jperazine	0.000400612 10648.8 323862 3368.36 212.632 4.76413 8.64328 0.120359 0.189718 0.00265820 0.000370116 3.68500E-06 1.33053E-06 0 0 0 0.00151446 8.04569E-05 1.15779E-07	0.000400612 10648.8 323862 3368.36 212.632 4.76413 8.64328 0.120359 0.189718 0.00265820 0.000370116 3.68500E-06 1.33053E-06 0 0 0 0 0.00151446 8.04569E-05 1.15779E-07	0.000400612 10648.8 323862 3368.36 212.632 4.76413 8.64328 0.120359 0.189718 0.00265820 0.000370116 3.68500E-06 1.33053E-06 0 0 0.00151446 8.04569E-05 1.15779E-07	0.000400612 10648.8 323862 3368.36 212.632 4.76413 8.64328 0.120359 0.189718 0.00265820 0.000370116 3.68500E-06 1.33053E-06 0 0 0.00151446 8.04569E-05 1.15779E-07	0.000400612 10648.8 323862 3368.36 212.632 4.76413 8.64328 0.120359 0.189718 0.00265820 0.000370116 3.68500E-06 1.33053E-06 0 0 0.00151446 8.04569E-05 1.15779E-07	0.000400612 10648.8 323862 3368.36 212.632 4.76413 8.64328 0.120359 0.189718 0.00265820 0.000370116 3.68500E-06 1.33053E-06 0 0 0 0.00151446 8.04569E-05 1.15779E-07	0.000400612 10648.8 323862 3368.36 212.632 4.76413 8.64328 0.120359 0.189718 0.00265820 0.000370116 3.68500E-06 1.33053E-06 0 0 0.00151446 8.04569E-05 1.15779E-07	0.000400612 10648.8 323862 3368.36 212.632 4.76413 8.64328 0.120359 0.189718 0.00265820 0.000370116 3.68500E-06 1.33053E-06 0 0.00151446 8.04569E-05 1.15779E-07
O2 2 ethane thane ropane Butane Pentane Pentane Hexane Heptane Octane Nonane Decane enzene oluene thylbenzene -Xylene /ater DEA	0.000400612 10648.8 323862 3368.36 212.632 4.76413 8.64328 0.120359 0.189718 0.00265820 0.000370116 3.68500E-06 1.33053E-06 0 0 0 0.00151446 8.04569E-05 1.15779E-07	0.000400612 10648.8 323862 3368.36 212.632 4.76413 8.64328 0.120359 0.189718 0.00265820 0.000370116 3.68500E-06 1.33053E-06 0 0 0 0 0.00151446 8.04569E-05 1.15779E-07	0.000400612 10648.8 323862 3368.36 212.632 4.76413 8.64328 0.120359 0.189718 0.00265820 0.000370116 3.68500E-06 1.33053E-06 0 0 0.00151446 8.04569E-05 1.15779E-07	0.000400612 10648.8 323862 3368.36 212.632 4.76413 8.64328 0.120359 0.189718 0.00265820 0.000370116 3.68500E-06 1.33053E-06 0 0 0.00151446 8.04569E-05 1.15779E-07	0.000400612 10648.8 323862 3368.36 212.632 4.76413 8.64328 0.120359 0.189718 0.00265820 0.000370116 3.68500E-06 1.33053E-06 0 0 0.00151446 8.04569E-05 1.15779E-07	0.000400612 10648.8 323862 3368.36 212.632 4.76413 8.64328 0.120359 0.189718 0.00265820 0.000370116 3.68500E-06 1.33053E-06 0 0 0 0.00151446 8.04569E-05 1.15779E-07	0.000400612 10648.8 323862 3368.36 212.632 4.76413 8.64328 0.120359 0.189718 0.00265820 0.000370116 3.68500E-06 1.33053E-06 0 0 0.00151446 8.04569E-05 1.15779E-07	0.000400612 10648.8 323862 3368.36 212.632 4.76413 8.64328 0.120359 0.189718 0.00265820 0.000370116 3.68500E-06 1.33053E-06 0 0.00151446 8.04569E-05 1.15779E-07
O2 2 ethane thane ropane Butane Pentane Pentane Hexane Heptane Octane Nonane Decane enzene oluene thylbenzene -Xylene /ater DEA jperazine	0.000400612 10648.8 323862 3368.36 212.632 4.76413 8.64328 0.120359 0.189718 0.00265820 0.000370116 3.68500E-06 1.33053E-06 0 0 0 0.00151446 8.04569E-05 1.15779E-07	0.000400612 10648.8 323862 3368.36 212.632 4.76413 8.64328 0.120359 0.189718 0.00265820 0.000370116 3.68500E-06 1.33053E-06 0 0 0 0 0.00151446 8.04569E-05 1.15779E-07	0.000400612 10648.8 323862 3368.36 212.632 4.76413 8.64328 0.120359 0.189718 0.00265820 0.000370116 3.68500E-06 1.33053E-06 0 0 0.00151446 8.04569E-05 1.15779E-07	0.000400612 10648.8 323862 3368.36 212.632 4.76413 8.64328 0.120359 0.189718 0.00265820 0.000370116 3.68500E-06 1.33053E-06 0 0 0.00151446 8.04569E-05 1.15779E-07	0.000400612 10648.8 323862 3368.36 212.632 4.76413 8.64328 0.120359 0.189718 0.00265820 0.000370116 3.68500E-06 1.33053E-06 0 0 0.00151446 8.04569E-05 1.15779E-07	0.000400612 10648.8 323862 3368.36 212.632 4.76413 8.64328 0.120359 0.189718 0.00265820 0.000370116 3.68500E-06 1.33053E-06 0 0 0 0.00151446 8.04569E-05 1.15779E-07	0.000400612 10648.8 323862 3368.36 212.632 4.76413 8.64328 0.120359 0.189718 0.00265820 0.000370116 3.68500E-06 1.33053E-06 0 0 0.00151446 8.04569E-05 1.15779E-07	0.000400612 10648.8 323862 3368.36 212.632 4.76413 8.64328 0.120359 0.189718 0.00265820 0.000370116 3.68500E-06 1.33053E-06 0.00 0.00151446 8.04569E-05 1.15779E-07


Process Streams		1	2	3	4	5	6	7	8	9	10	11
Properties	Status:	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved
Phase: Vapor	From Block:	XFS1	VSSL-100	<b>VSSL-100</b>	<b>VSSL-101</b>	VSSL-101	CMPR-100	FAXR-100	VSSL-102	VSSL-102	CMPR-101	<b>FAXR-101</b>
	To Block:	VSSL-101				CMPR-100	FAXR-100	VSSL-102		CMPR-101	FAXR-101	VSSL-100
Property	Units											
Temperature	°F	120	119.801			119.894	266.556	120		119.903	258.198	1
Pressure	psia	284.994	1244.70			282.994	613.696	608.696		606.696	1254.70	1249.
Nole Fraction Vapor	%	100	100			100	100	100		100	100	1
Mole Fraction Light Liquid	%	0	0			0	0	0		0	0	
Mole Fraction Heavy Liquid	%	0	0			0	0	0		0	0	
Molecular Weight	lb/lbmol	16.3454	16.3454			16.3454	16.3454	16.3454		16.3454	16.3454	16.34
Mass Density	lb/ft^3	0.771310	3.63998			0.765901	1.31027	1.69826		1.69274	2.74309	3.653
Molar Flow	lbmol/h	20685.0	20685.0			20685.0	20685.0	20685.0		20685.0	20685.0	20685
Mass Flow	lb/h	338106	338106			338106	338106	338106		338106	338106	3381
/apor Volumetric Flow	ft^3/h	438353	92886.8			441448	258043	199089		199738	123257	92536
iquid Volumetric Flow	gpm	54651.8	11580.7			55037.7	32171.6	24821.5		24902.4	15367.2	11537
Std Vapor Volumetric Flow	MMSCFD	188.391	188.391			188.391	188.391	188.391		188.391	188.391	188.3
Std Liquid Volumetric Flow	sgpm	2205.25	2205.25			2205.25	2205.25	2205.25		2205.25	2205.25	2205.
Compressibility		0.970866	0.898805			0.971038	0.982322	0.941777		0.941900	0.970482	0.8987
Specific Gravity		0.564366	0.564366			0.564366	0.564366	0.564366		0.564366	0.564366	0.5643
API Gravity												
Enthalpy	Btu/h	-6.46941E+08	-6.56132E+08			-6.46941E+08	-6.20008E+08	-6.50144E+08		-6.50144E+08	-6.25564E+08	-6.56132E+
Vass Enthalpy	Btu/lb	-1913.43	-1940.61			-1913.43	-1833.77	-1922.90		-1922.90	-1850.20	-1940.
Mass Cp	Btu/(lb*°F)	0.560971	0.658275			0.560755	0.631015	0.592704		0.592490	0.662593	0.6587
deal Gas CpCv Ratio		1.29357	1.29362			1.29360	1.25537	1.29357		1.29360	1.25744	1.293
Dynamic Viscosity	cP	0.0122692	0.0138492			0.0122652	0.0148837	0.0126908		0.0126864	0.0155198	0.01386
Kinematic Viscosity	cSt	0.993041	0.237522			0.999727	0.709134	0.466514		0.467871	0.353204	0.2368
Thermal Conductivity	Btu/(h*ft*°F)	0.0220092	0.0256321			0.0219981	0.0297804	0.0231243		0.0231131	0.0311444	0.02565
Surface Tension	lbf/ft											
Net Ideal Gas Heating Value	Btu/ft^3	896.882	896.882			896.882	896.882	896.882		896.882	896.882	896.8
Net Liquid Heating Value	Btu/lb	20820.9	20820.9			20820.9	20820.9	20820.9		20820.9	20820.9	20820
Gross Ideal Gas Heating Value	Btu/ft^3	995.930	995.930			995.930	995.930	995.930		995.930	995.930	995.9
Gross Liquid Heating Value	Btu/lb	23120.4	23120.4			23120.4	23120.4	23120.4		23120.4	23120.4	23120





ifter a value, throughout the report, denotes an extrapolated or approximate value.

## Copperhead Gas Plant - Produced Water Tank Annual & Hourly Worst Case Short Term Emissions Annual Rate= ~8.8 MMgal/Yr



Names	Units	Produced Water w / Hydrocarbon	2	Flash	Working	Breathing	Liquids
Temperature	°F	97.259*	97.126	73.443	73.443	73.443	73.443
Pressure	psia	19.696*	14.696*	13.26	13.26	13.26	13.26
Std Vapor Volumetric Flow	MMSCFD	4.1771	4.1771	0.019211	0.0016144	0.00010324	4.1562
Std Liquid Volumetric Flow	sgpm	16.7*	16.7	0.236	0.019404	0.0012409	16.443
Gross Ideal Gas Heating Value	Btu/ft^3	52.682	52.682	434.03	363.34	363.34	50.791
Net Ideal Gas Heating Value	Btu/ft^3	2.463	2.463	403.64	343.88	343.88	0.46753

Process Streams		Breathing	Flash	Liquids	Produced Water w/ Hydrocarbon	Working	2
Composition Phase: Total	Status: From Block:	Solved TANK-100	Solved TANK-100	Solved TANK-100	Solved	Solved TANK-100	Solved VLVE-100
	To Block:				 VLVE-100		TANK-100
Mole Fraction		%	%	%	%	%	%
Water Gas		0	0	0	0*	0	(
Water Methane		4.26803 0.498967	3.10488	99.9849 4.59143E-20	99.5* 0.0426795*	4.26803 0.498967	99.9 0.042679
Ethane		0.498967	9.23513 3.29476	4.59143E-20 2.44962E-20	0.0426795" 0.0152642*	0.498967 0.269647	0.042679
Propane		0.209047	1.17731	8.35206E-21	0.00544285*	0.209047	0.0054428
-Butane		0.00348920	0.0845441	1.98014E-22	0.000390271*	0.00348920	0.00039027
n-Butane		0.0224010	0.419055	1.58412E-21	0.00193653*	0.0224010	0.0019365
-Pentane		0.00180106	0.0469286	1.59518E-22	0.000216575*	0.00180106	0.00021657
n-Pentane		0.000346043	0.0230406	1.99398E-23	0.000106111*	0.000346043	0.00010611
Neohexane		0	0	0	0*	0	
2,3-Dimethylbutane		0	0	0	0*	0	
2-Methylpentane		0	0	0	0*	0	
3-Methylpentane		0 4.05999E-05	0	0	0* 1.80335E-05*	0 4.05999E-05	1 902255 0
n-Hexane 2,2-Dimethylpentane		4.05999E-05 0	0.00391737 0	4.17355E-24 0	1.80335E-05" 0*	4.05999E-05 0	1.80335E-0
Methylcyclopentane		0	0	0	0*	0	
2,4-Dimethylpentane		0	0	0	0*	0	
Benzene		5.56097	3.72917	0.00952839	0.0289185*	5.56097	0.028918
3,3-Dimethylpentane		0	0	0	0*	0	0.020010
Cyclohexane		0	0	0	0*	0	
-Methylhexane		0	0	0	0*	0	(
2,3-Dimethylpentane		0	0	0	0*	0	(
I,1-Dimethylcyclopentane		0	0	0	0*	0	(
3-Methylhexane		0	0	0	0*	0	(
1,t-3-Dimethylcyclopentane		0	0	0	0* 0*	0	(
I,c-3-Dimethylcyclopentane 2,2,4-Trimethylpentane		0	0 0	0	0* 0*	0	(
n-Heptane		0 1.48381E-05	0.00191418	0 8.97331E-25	8.80980E-06*	0 1.48381E-05	8.80980E-0
Methylcyclohexane		0	0.00191418	0.97551E-25	0*	1.40301E-03	0.00000-00
1,1,3-Trimethylcyclopentane		0	0	0	0*	0	(
2,5-Dimethylhexane		0	0	0	0*	0	(
2,4-Dimethylhexane		0	0	0	0*	0	(
3,3-Dimethylhexane		0	0	0	0*	0	(
1,t-2,c-3-Trimethylcyclopentane		0	0	0	0*	0	(
2,3,4-Trimethylpentane		0	0	0	0*	0	(
Toluene		2.00064	1.33691	0.00237238	0.00933189*	2.00064	0.00933189
2,3-Dimethylhexane		0	0	0 0	0*	0	(
1,1,2-Trimethylcyclopentane 2-Methylheptane		0	0	0	0* 0*	0	(
1-Methylheptane		0	0	0	0*	0	(
3,4-Dimethylhexane		0	0	0	0*	0	(
3-Methylheptane		0	0	0	0*	0	
3-Ethylhexane		0	0	0	0*	0	(
1,c-3-Dimethylcyclohexane		0	0	0	0*	0	(
1,t-4-Dimethylcyclohexane		0	0	0	0*	0	(
1,1-Dimethylcyclohexane		0	0	0	0*	0	(
2,2,4-Trimethylhexane		0	0	0	0*	0	(
Cycloheptane		0	0	0	0*	0	)
n-Octane		5.80025E-07	0.000176739	4.91965E-26	8.13100E-07*	5.80025E-07	8.13100E-07
,t-3-Dimethylcyclohexane		0	0	0	0* 0*	0	(
2,2-Dimethylheptane 2,4-Dimethylheptane		0	0	0	0*	0	(
2,6-Dimethylheptane		0	0	0	0*	0	(
2,5-Dimethylheptane		0	0	0	0*	0	(
Ethylcyclohexane		0	0	0	0*	0	(
3,3-Dimethylheptane		0	0	0	0*	0	(
2,3,4-Trimethylhexane		0	0	0	0*	0	(
Ethylbenzene		0.0705691	0.0485550	7.61804E-05	0.000328131*	0.0705691	0.00032813
2,3-Dimethylheptane		0	0	0	0*	0	(
n-Xylene		0.0936527	0.0623334	4.76363E-05	0.000372591*	0.0936527	0.00037259
p-Xylene 8,4-Dimethylheptane		0	0	0	0* 0*	0	(
3.4-Dimethylneptane		0	0	0	0* 0*	0	(
-Methyloctane		0	0	0	0*	0	(
B-Methyloctane		0	0	0	0*	0	
-Xylene		0	0	0	0*	0	(
,1,2-Trimethylcyclohexane		0	0	0	0*	0	(
n-Nonane		2.00461E-07	5.75137E-05	1.09540E-26	2.64600E-07*	2.00461E-07	2.64600E-0
sopropylbenzene		0	0	0	0*	0	(
-Butylcyclopentane		0	0	0	0*	0	(
n-Propylbenzene		0	0	0	0*	0	(
n-Ethyltoluene		0	0	0	0*	0	(
p-Ethyltoluene		0	0	0	0*	0	(
-Methylnonane		0	0	0	0* 0*	0	(
2-Methylnonane -Butylbenzene		0	0	0	0* 0*	0	(
-Butylbenzene Butylcyclohexane		0	0	0	0* 0*	0	
<b>D</b>		0 1.99389E-10	0 1.95668E-07	0 1.92855E-29	9.00000E-10*	0 1.99389E-10	9 00000⊑_1/
n-Decane Jndecane		6.89353E-11	6.52225E-08	4.38871E-30	3.00000E-10 3.00000E-10*	6.89353E-11	9.00000E-10 3.00000E-10
Dodecane		0.000002 11	0.022202.00	0	0*	0.000001	(
Tridecane		0	0	0	0*	0	(
litrogen		0.000772508	0.0294576	5.13551E-23	0.000135799*	0.000772508	0.000135799
Carbon Dioxide		80.4520	73.2229	4.28462E-18	0.369849*	80.4520	0.369849
lydrogen Sulfide		6.68820	4.17890	0.00304545	0.025*	6.68820	0.025

TABLE 000         CODE 000         CODE 000         CODE 000         CODE 000         CODE 000         CODE 000         CODE 000         CODE 000         CODE 000         CODE 000         CODE 000         CODE 000         CODE 000         CODE 000         CODE 000         CODE 000         CODE 000         CODE 000         CODE 000         CODE 000         CODE 000         CODE 000         CODE 000         CODE 000         CODE 000         CODE 000         CODE 000         CODE 000         CODE 000         CODE 000         CODE 000         CODE 000         CODE 000         CODE 000         CODE 000         CODE 000         CODE 000         CODE 000         CODE 000         CODE 000         CODE 000         CODE 000         CODE 000         CODE 000         CODE 000         CODE 000         CODE 000         CODE 000         CODE 000         CODE 000         CODE 000         CODE 000         CODE 000         CODE 000         CODE 000         CODE 000         CODE 000         CODE 000         CODE 000         CODE 000         CODE 000         CODE 000         CODE 000         CODE 000         CODE 000         CODE 000         CODE 000         CODE 000         CODE 000         CODE 000         CODE 000         CODE 000         CODE 000         CODE 000         CODE 0000         CODE 000         CODE 000		1					_
Methor         LBB255         C.U.SH22         LU.SH22         U.S.D221-11         U.S.D2447         U.S.D2447 <thu.s.d2477< th=""> <thu.s.d24< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>0</td></thu.s.d24<></thu.s.d2477<>							0
Banes         3.15000-05         0.17000-10         0.17000-10         0.020070         0.0200700           Parson         2.15000-05         0.0000-00         0.0000000         0.0000000         0.0000000           Parson         2.15000-05         0.00000000         0.00000000         0.00000000         0.00000000         0.00000000         0.00000000         0.00000000         0.00000000         0.00000000         0.00000000         0.00000000         0.00000000         0.00000000         0.00000000         0.00000000         0.00000000         0.00000000         0.00000000         0.00000000         0.00000000         0.000000000         0.000000000         0.000000000         0.0000000000000         0.00000000000000000000000000000000000							
Decem         7.78652.66         0.201350         0.0011251         0.0011251         0.0011251         0.0011251         0.0011251         0.0011251         0.0011251         0.0011251         0.0011251         0.0011251         0.0011251         0.0011251         0.0011251         0.0011251         0.0011251         0.0011251         0.0011251         0.0011251         0.0011251         0.0011251         0.0011251         0.0011251         0.0011251         0.0011251         0.0011251         0.0011251         0.0011251         0.0011251         0.0011251         0.0011251         0.0011251         0.0011251         0.0011251         0.0011251         0.0011251         0.0011251         0.0011251         0.0011251         0.0011251         0.0011251         0.0011251         0.0011251         0.0011251         0.0011251         0.0011251         0.0011251         0.0011251         0.0011251         0.0011251         0.0011251         0.0011251         0.0011251         0.0011251         0.0011251         0.0011251         0.0011251         0.0011251         0.0011251         0.0011251         0.0011251         0.0011251         0.0011251         0.0011251         0.0011251         0.0011251         0.0011251         0.0011251         0.0011251         0.0011251         0.0011251         0.0011251         0.0011251         0.							
Alders         2 3000000000000000000000000000000000000							
Adama         2 200078-0         0.0381894         7.9388-61         0.0388846         0.1028405         0.0028805           Adama         2.0271870         0.0008807         0.0008807         0.0008807         0.0008807           Adama         2.0271870         0.0008807         0.0008807         0.0008807         0.0008807           Adama         2.0008807         0.0008807         0.0008807         0.0008807         0.0008807           Adama         2.0008807         0.0008807         0.0008807         0.0008807         0.0008807           Adama         0.000807         0.000807         0.000807         0.000807         0.000807           Adama         0.000807         0.000807         0.000807         0.000807         0.000807           Adama         0.000807         0.000807         0.000807         0.000807         0.000807         0.000807           Adama         0.000807         0.000807         0.000807         0.000807         0.000807         0.000807           Adama         0.000807         0.000807         0.000807         0.000807         0.000807         0.000807           Adama         0.0008077         0.000807         0.000807         0.000807         0.000807         0.000807							
Anvana         2 0418727         0 00081286         1 1296-00         0 00081286           Anvana         0         0         0         0         000812866         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0	i-Butane				0.00178993*	6.18475E-06	
Printer         3.922/1 C.0         0.0040392         0.00210000000         0.100200000         0.000038855           Alter points         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>							
Netlense         0         0         0         0         0         0         0           Shori photon         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0	i-Pentane				0.000993295*	3.19246E-06	
Lå Ornsprånne         Lå Ornsprånne         Lå Ornsprånne         Lå Ornsprånne         Lå Ornsprånne         Lå Ornsprånne         Lå Ornsprånne         Lå Ornsprånne         Lå Ornsprånne         Lå Ornsprånne         Lå Ornsprånne         Lå Ornsprånne         Lå Ornsprånne         Lå Ornsprånne         Lå Ornsprånne         Lå Ornsprånne         Lå Ornsprånne         Lå Ornsprånne         Lå Ornsprånne         Lå Ornsprånne         Lå Ornsprånne         Lå Ornsprånne         Lå Ornsprånne         Lå Ornsprånne         Lå Ornsprånne         Lå Ornsprånne         Lå Ornsprånne         Lå Ornsprånne         Lå Ornsprånne         Lå Ornsprånne         Lå Ornsprånne         Lå Ornsprånne         Lå Ornsprånne         Lå Ornsprånne         Lå Ornsprånne         Lå Ornsprånne         Lå Ornsprånne         Lå Ornsprånne         Lå Ornsprånne         Lå Ornsprånne         Lå Ornsprånne         Lå Ornsprånne         Lå Ornsprånne         Lå Ornsprånne         Lå Ornsprånne         Lå Ornsprånne         Lå Ornsprånne         Lå Ornsprånne         Lå Ornsprånne         Lå Ornsprånne         Lå Ornsprånne         Lå Ornsprånne         Lå Ornsprånne         Lå Ornsprånne         Lå Ornsprånne         Lå Ornsprånne         Lå Ornsprånne         Lå Ornsprånne         Lå Ornsprånne         Lå Ornsprånne         Lå Ornsprånne         Lå Ornsprånne         Lå Ornsprånne         Lå Ornsprånne         Lå Ornsprånne         Lå Ornsp	n-Pentane	3.92271E-08	0.000486012	9.09930E-23	0.000486665*	6.13375E-07	0.000486665
Absolution         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C <thc< th="">         C         <thc< th=""> <thc< <="" td=""><td>Neohexane</td><td>0</td><td>0</td><td>0</td><td>0*</td><td>0</td><td>0</td></thc<></thc<></thc<>	Neohexane	0	0	0	0*	0	0
Mothy-periate         non-the	2,3-Dimethylbutane	0	0	0	0*	0	0
sheam         4.002/1-60         0.023/16-00         10.4006.20         10.2006.20         10.2006.20           2.4000000000000000000000000000000000000	2-Methylpentane	0	0	0	0*	0	0
2.4.Bine spectra for the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second sec	3-Methylpentane	•	0	0	0*	0	0
Mediodizational and the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of t		4.60237E-09	8.26318E-05	1.90456E-23	8.27084E-05*	7.19650E-08	8.27084E-05
2.4.0met/system         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0	2,2-Dimethylpentane	0	0	0	0*	0	0
Braces         0.00080339         0.0008039         0.0008039         0.0008039         0.0008039         0.0008039         0.0008039         0.0008039         0.0008039         0.0008039         0.0008039         0.0008039         0.0008039         0.0008039         0.0008039         0.0008039         0.0008039         0.0008039         0.0008039         0.0008039         0.0008039         0.0008039         0.0008039         0.0008039         0.0008039         0.0008039         0.0008039         0.0008039         0.0008039         0.0008039         0.0008039         0.0008039         0.0008039         0.0008039         0.0008039         0.0008039         0.0008039         0.0008039         0.0008039         0.0008039         0.0008039         0.0008039         0.0008039         0.0008039         0.0008039         0.0008039         0.0008039         0.0008039         0.0008039         0.0008039         0.0008039         0.0008039         0.0008039         0.0008039         0.0008039         0.0008039         0.0008039         0.0008039         0.0008039         0.0008039         0.0008039         0.0008039         0.0008039         0.0008039         0.0008039         0.0008039         0.0008039         0.0008039         0.0008039         0.0008039         0.0008039         0.0008039         0.0008039         0.0008039 <th0< td=""><td>Methylcyclopentane</td><td>0</td><td>0</td><td>0</td><td>0*</td><td>0</td><td>0</td></th0<>	Methylcyclopentane	0	0	0	0*	0	0
L3.January pertaine         0         0         0         0         0         0         0         0           2.Source hyperation         0         0         0         0         0         0         0           2.Source hyperation         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0	2,4-Dimethylpentane	0	0	0	0*	0	0
Challmanne         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0        0         0         0	Benzene	0.000630386	0.0786620	0.0434818	0.132631*	0.00985704	0.132631
Challmanne         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0        0         0         0	3,3-Dimethylpentane	0	0	0	0*	0	0
Abendynstrame         0         0         0         0         0         0         0           Abendynstrame         0         0         0         0         0         0           Labendynstrame         0         0         0         0         0         0           Labendynstrame         0         0         0         0         0         0           Labendynstrame         0         0         0         0         0         0         0           Labendynstrame         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0		0	0	0	0*	0	0
1.b.Br.ethyskaperine         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0	2-Methylhexane	0	0	0	0*	0	0
1.b.Br.ethyskaperine         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0	2,3-Dimethylpentane	0	0	0	0*	0	0
Abstrymetric         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 <t< td=""><td></td><td>0</td><td>0</td><td>0</td><td>0*</td><td>0</td><td>0</td></t<>		0	0	0	0*	0	0
11.5.00ml/sponsimie         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0		0	0	0	0*	0	0
1.5.20mms/phyclosentrame         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 <td>-</td> <td>0</td> <td>0</td> <td>0</td> <td>0*</td> <td>0</td> <td>0</td>	-	0	0	0	0*	0	0
2.4.1. minut/spontane         0         0         0         0         0         0         0         0           bergs/printmane         10000-0         40371E0         40371E0         404000-0         20010-0         404000-0           bergs/printmane         0         0         0         0         0         0         0           bergs/printmane         0         0         0         0         0         0         0           2.4-Dimetry/productane         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0<		n	0 0	0		Ū.	0
e-lapanan (1920) Hardycycholanae (1920) 1.3.5 (malybychoratae (1920) 3.5.6 (1920) 3.5.6 (1920) 3.5.6 (1920) 3.5.6 (1920) 3.5.6 (1920) 3.5.6 (1920) 3.5.6 (1920) 3.5.6 (1920) 3.5.6 (1920) 3.5.6 (1920) 3.5.6 (1920) 3.5.6 (1920) 3.5.6 (1920) 3.5.6 (1920) 3.5.6 (1920) 3.5.6 (1920) 3.5.6 (1920) 3.5.6 (1920) 3.5.6 (1920) 3.5.6 (1920) 3.5.6 (1920) 3.5.6 (1920) 3.5.6 (1920) 3.5.6 (1920) 3.5.6 (1920) 3.5.6 (1920) 3.5.6 (1920) 3.5.6 (1920) 3.5.6 (1920) 3.5.6 (1920) 3.5.6 (1920) 3.5.6 (1920) 3.5.6 (1920) 3.5.6 (1920) 3.5.6 (1920) 3.5.6 (1920) 3.5.6 (1920) 3.5.6 (1920) 3.5.6 (1920) 3.5.6 (1920) 3.5.6 (1920) 3.5.6 (1920) 3.5.6 (1920) 3.5.6 (1920) 3.5.6 (1920) 3.5.6 (1920) 3.5.6 (1920) 3.5.6 (1920) 3.5.6 (1920) 3.5.6 (1920) 3.5.6 (1920) 3.5.6 (1920) 3.5.6 (1920) 3.5.6 (1920) 3.5.6 (1920) 3.5.6 (1920) 3.5.6 (1920) 3.5.6 (1920) 3.5.6 (1920) 3.5.6 (1920) 3.5.6 (1920) 3.5.6 (1920) 3.5.6 (1920) 3.5.6 (1920) 3.5.6 (1920) 3.5.6 (1920) 3.5.6 (1920) 3.5.6 (1920) 3.5.6 (1920) 3.5.6 (1920) 3.5.6 (1920) 3.5.6 (1920) 3.5.6 (1920) 3.5.6 (1920) 3.5.6 (1920) 3.5.6 (1920) 3.5.6 (1920) 3.5.6 (1920) 3.5.6 (1920) 3.5.6 (1920) 3.5.6 (1920) 3.5.6 (1920) 3.5.6 (1920) 3.5.6 (1920) 3.5.6 (1920) 3.5.6 (1920) 3.5.6 (1920) 3.5.6 (1920) 3.5.6 (1920) 3.5.6 (1920) 3.5.6 (1920) 3.5.6 (1920) 3.5.6 (1920) 3.5.6 (1920) 3.5.6 (1920) 3.5.6 (1920) 3.5.6 (1920) 3.5.6 (1920) 3.5.6 (1920) 3.5.6 (1920) 3.5.6 (1920) 3.5.6 (1920) 3.5.6 (1920) 3.5.6 (1920) 3.5.6 (1920) 3.5.6 (1920) 3.5.6 (1920) 3.5.6 (1920) 3.5.6 (1920) 3.5.6 (1920) 3.5.6 (1920) 3.5.6 (1920) 3.5.6 (1920) 3.5.6 (1920) 3.5.6 (1920) 3.5.6 (1920) 3.5.6 (1920) 3.5.6 (1920) 3.5.6 (1920) 3.5.6 (1920) 3.5.6 (1920) 3.5.6 (1920) 3.5.6 (1920) 3.5.6 (1920) 3.5.6 (1920) 3.5.6 (1920) 3.5.6 (1920) 3.5.6 (1920) 3.5.6 (1920) 3.5.6 (1920) 3.5.6 (1920) 3.5.6 (1920) 3.5.6 (1920) 3.5.6 (1920) 3.5.6 (1920) 3.5.6 (1920) 3.5.6 (1920) 3.5.6 (1920) 3.5.6 (1920) 3.5.6 (1920) 3.5.6 (1920)		9	•	•	-		0
Methyspentane0000002.5.Drestlyhearne0000002.5.Drestlyhearne0000002.5.Drestlyhearne0000001.2.6.Trestlyhearne00000001.2.6.Trestlyhearne00000000Toilene000000000001.2.6.Trestlyhearne0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000<		-		0		•	4.04050E-05
1.3.7 interlypolation         0         0         0         0         0         0         0           2.4.Derethylpolation         0         0         0         0         0         0         0           2.4.Derethylpolation         0         0         0         0         0         0         0         0           2.4.Derethylpolation         0         0         0         0         0         0         0         0           2.4.Derethylpolation         0         0         0         0         0         0         0         0         0           2.4.Derethylpolation         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0							0
ZDinersymbosine         0         0         0         0         0         0           3Dinersymbosine         0         0         0         0         0         0           3Dinersymbosine         0         0.00226700         0.0222670         0.0222670         0.0222670         0.0222670         0.0222670         0.0222670         0.0222670         0.0222670         0.0222670         0.0222670         0.0222670         0.0222670         0.0222670         0.0222670         0.0222670         0.0222670         0.0222670         0.0222670         0.0222670         0.0222670         0.0222670         0.0222670         0.0222670         0.0222670         0.0222670         0.0222670         0.0222670         0.022670         0.022670         0.0202670         0.0202670         0.0202670         0.0202670         0.0202670         0.0202670         0.0202670         0.0202670         0.0202670         0.0202670         0.0202670         0.0202670         0.0202670         0.0202670         0.0202670         0.0202670         0.0202670         0.0202670         0.0202670         0.0202670         0.0202670         0.0202670         0.0202670         0.0202670         0.0202670         0.0202670         0.0202670         0.0202670         0.0202670         0.0202670         0.0202670		-		•			
2.4-Dim sympane         0         0         0         0         0         0           1.2.2-3         0.0002370         0.022370         0.022370         0.022370         0.022370         0.022370           7.3.Dem sympane         0         0         0         0         0         0         0           7.3.Dem sympane         0         0         0         0         0         0         0           7.3.Dem sympane         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 <td< td=""><td></td><td>-</td><td></td><td>•</td><td></td><td></td><td></td></td<>		-		•			
3.4.Dimstrybestare         0         0         0         0         0         0         0           2.4.T. mutplycic/scientare         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 <td>-</td> <td>0</td> <td>0</td> <td>0</td> <td>-</td> <td>Ũ</td> <td></td>	-	0	0	0	-	Ũ	
1.2.2.3.1.1.1.2.1.3.1.2.2.2.2.2.2.4.1.1.2.1.3.2.2.2.2.2.4.1.1.2.1.3.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2	-	9	•	0			
2.4.Transme         0         0         0         0         0         0           2.4.Drashybeckane         0         0         0         0         0         0           2.4.Drashybeckane         0         0         0         0         0         0         0           2.4.Drashybeckane         0         0         0         0         0         0         0           2.4.Drashybeckane         0         0         0         0         0         0         0           Abanybeckybeckane         0         0         0         0         0         0         0           3.Metrybeckane         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0	-	•	-	0		-	
Tousen         0.00228790         0.0282094         0.0108201         0.0427095         0.0354621           2.2.Dentrightextanc         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0<		-		0			0
2.3-Dimetrylingenane         0         0         0         0         0         0         0           2.4Metrylingenane         0         0         0         0         0         0           2.4Metrylingenane         0         0         0         0         0         0           3.4Dimetrylingenane         0         0         0         0         0         0           3.4Dimetrylingenane         0         0         0         0         0         0           13Dimetrylingenane         0         0         0         0         0         0           14Dimetrylingenane         0         0         0         0         0         0         0           11-Binetrylingenane         0         0         0         0         0         0         0         0           11-Binetrylingenane         0.575115-11         3.72806526         2.240imetrylingenane         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0		-		0		-	0.0427005
1.3.2.1methyloptane       0       0       0       0       0         4.Methyloptane       0       0       0       0       0       0         4.Methyloptane       0       0       0       0       0       0       0         3.Methyloptane       0       0       0       0       0       0       0       0         3.Methyloptane       0       0       0       0       0       0       0       0         1.A-5Drethyloptane       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       <							0.0427995
2.4.ellyskprime         0         0         0         0         0         0           3.4.Dirothylksane         0         0         0         0         0         0           3.4.Dirothylksane         0         0         0         0         0         0           5.8.thyffesane         0         0         0         0         0         0           1.4.Dirothylkycholksane         0         0         0         0         0         0           1.4.Sinterthylkycholksane         0         0         0         0         0         0         0           1.4.Sinterthylkycholksane         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0	-			0			0
4.Mellyfikeplane         0         0         0         0         0         0         0           3.Abernyfikeplane         0         0         0         0         0         0           3.Abernyfikeplane         0         0         0         0         0         0           1.a-S.Dmentyfikeplane         0         0         0         0         0         0           2.2.ATmentyfikeplane         0         0         0         0         0         0         0           2.2.ATmentyfikeplane         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 <td< td=""><td></td><td>0</td><td>0</td><td>0</td><td></td><td></td><td>0</td></td<>		0	0	0			0
34-Dimethylexame         0         0         0         0         0         0           34Bythyskame         0         0         0         0         0         0           34Bythyskame         0         0         0         0         0         0           1.4.5.Dmethykyckohexane         0         0         0         0         0         0           1.4.5.Dmethykyckohexane         0         0         0         0         0         0         0           Cyckologians         6.57511         1.7200E06         24203E25         3.7218E06         1.2820E0         3.7218E06         1.2820E0         3.7218E06         1.2820E0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0<		0	0	0		0	0
3-Mediynfiguna         0         0         0         0         0           1-3-Bithyfocylcheane         0         0         0         0         0           1-3-Bithyfocylcheane         0         0         0         0         0           1-1-Bithyfocylcheane         0         0         0         0         0         0           1-1-Bithyfocylcheane         0         0         0         0         0         0         0           Cyddregrane         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 <td></td> <td>0</td> <td>0</td> <td>0</td> <td>-</td> <td>0</td> <td>0</td>		0	0	0	-	0	0
3-Ethyfexane         0         0         0         0         0         0           1-A-Dinethyfeychokanan         0         0         0         0         0         0           2.A-Tinethyfeychokanan         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0			e e	0	-	0	0
13-Dimethylopothoxane       0       0       0       0       0         1Dimethylopothoxane       0       0       0       0       0       0         2At-Timethylopothoxane       0       0       0       0       0       0       0         Cycioleptane       6.575111-11       3.28096-0       2.24503-25       3.72918-07       1.02816-0       3.72918-07       3.72918-07       3.72918-07       3.72918-07       3.72918-07       3.72918-07       3.72918-07       3.72918-07       3.72918-07       3.72918-07       3.72918-07       3.72918-07       3.72918-07       3.72918-07       3.72918-07       3.72918-07       3.72918-07       3.72918-07       3.72918-07       3.72918-07       3.72918-07       3.72918-07       3.72918-07       3.72918-07       3.72918-07       3.72918-07       3.72918-07       3.72918-07       3.72918-07       3.72918-07       3.72918-07       3.72918-07       3.72918-07       3.72918-07       3.72918-07       3.72918-07       3.72918-07       3.72918-07       3.72918-07       3.72918-07       3.72918-07       3.72918-07       3.72918-07       3.72918-07       3.72918-07       3.72918-07       3.72918-07       3.72918-07       3.72918-07       3.72918-07       3.72918-07       3.72918-07       3.72918-07       3		0	0	0		e e	0
1.4-Dimethyckychonxane         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0		0	0	0	•	0	0
11-Dimethylopiohexane000000Cyclobeptate00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000		0	0	0	•	0	0
2.2.4.Timethylhepane         0         0         0         0         0         0         0           A-Otarae         6.57511E-11         3.72898-00         2.24503E-25         3.72918E-06         1.02812E-09         7.72918E-06           1-3-Dimethylhepane         0         0         0         0         0         0         0           2.4-Dimethylhepane         0         0         0         0         0         0         0           2.4-Dimethylhepane         0         0         0         0         0         0         0           2.4-Dimethylhepane         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0		0	0	0	-	0	0
Cycloheplane         0         0         0         0         0         0         0           1-0-Otane         5.7511E-11         3.7289E-06         2.2450255         3.7291E.06         3.7291E.06           1-3-Dimethyleptane         0         0         0         0         0         0           2-Dimethyleptane         0         0         0         0         0         0           2-Dimethyleptane         0         0         0         0         0         0           2-Dimethyleptane         0         0         0         0         0         0           3-Dimethyleptane         0         0         0         0         0         0         0           3.4-Timethyleptane         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 <td></td> <td>0</td> <td>0</td> <td>0</td> <td>0*</td> <td>0</td> <td>0</td>		0	0	0	0*	0	0
"Ocean"         6.57511E-11         3.72805E-06         2.42903E-25         3.72918E-06*         1.02812E-00         3.72918E-06*           1-3-Dimethylkplane         0         0         0         0         0         0         0           2-Dimethylkplane         0         0         0         0         0         0         0           2-Dimethylkplane         0         0         0         0         0         0         0         0           2-Dimethylkplane         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0	2,2,4-Trimethylhexane	0	0	0	0*	0	0
1.3-Dimethyloptane0000002.4-Dimethyloptane0000002.4-Dimethyloptane0000002.5-Dimethyloptane0000002.5-Dimethyloptane00000003.5-Dimethyloptane000000003.4-Dimethyloptane00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000	Cycloheptane	0	0	0	0*	0	0
2.2-Dentifyhisplane         0         0         0         0         0           2.4-Dentifyhisplane         0         0         0         0         0           2.6-Dinetifyhisplane         0         0         0         0         0           2.5-Dinetifyhisplane         0         0         0         0         0         0           2.3-Dinetifyhisplane         0         0         0         0         0         0         0           2.3-Dinetifyhisplane         0.0012420         0.00347641         0.00104030         0.00170884         0.00170884           2.3-Dinetifyhisplane         0.00164403         0.0012420         0.00347641         0.00160403         0.00170884           2.3-Dinetifyhisplane         0         0         0         0         0         0           3.4-Dinetifyhisplane         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 <td< td=""><td>n-Octane</td><td>6.57511E-11</td><td>3.72809E-06</td><td>2.24503E-25</td><td>3.72918E-06*</td><td>1.02812E-09</td><td>3.72918E-06</td></td<>	n-Octane	6.57511E-11	3.72809E-06	2.24503E-25	3.72918E-06*	1.02812E-09	3.72918E-06
2.4-DimethyNeptane       0       0       0       0       0         2.5-DimethyNeptane       0       0       0       0       0         2.5-DimethyNeptane       0       0       0       0       0       0         3.3-DimethyNeptane       0       0       0       0       0       0       0         3.3-DimethyNeptane       7.99965E-06       0.00127202       0.00034761       0.00150433       0.000170884*       0.000170884*       0.000170884*       0.000170884*       0.000170884*       0.000170884*       0.000170884*       0.000170884*       0.000170884*       0.00170884*       0.00170884*       0.00170884*       0.00170884*       0.00170884*       0.00170884*       0.00170884*       0.00170884*       0.00170884*       0.00170884*       0.00170884*       0.00170884*       0.00170884*       0.00170884*       0.00170884*       0.00170884*       0.00170884*       0.00170884*       0.00170884*       0.00170884*       0.00170884*       0.00170884*       0.00170884*       0.00170884*       0.00170884*       0.00170884*       0.0017084*       0.0017084*       0.0017084*       0.0017084*       0.0017084*       0.0017084*       0.0017084*       0.0017084*       0.0017084*       0.0017084*       0.00170*       0.0014*       0.0014*	1,t-3-Dimethylcyclohexane	0	0	0	0*	0	0
2-0-DimethyNepfane         0         0         0         0         0           2-DimethyNepfane         0         0         0         0         0           2-JohnethyNepfane         0         0         0         0         0         0           2-JohnethyNepfane         0         0.00034761         0.0012697         0.0016093         0.0012697         0.001693           2-JohnethyNepfane         0         0.0012763         0.00170843         0.0017084         0.0016093         0.0017084           2-JohnethyNepfane         0         0.0017084         0.0017084         0.0017084         0.0017084           2-JohnethyNepfane         0         0         0         0         0         0           2-JohnethyNepfane         0         0         0.0017084         0.0017084         0.0017084           2-JohnethyNepfane         0         0         0         0         0         0           2-JohnethyNepfane         0         0         0         0         0         0         0           2-JohnethyNepfane         0         0         0         0         0         0         0         0         0         0         0         0	2,2-Dimethylheptane	0	0	0	0*	0	0
2.5-Dimethylheptane         0         0         0         0         0         0           3.4-Dimethylheptane         0         0         0         0         0         0           2.4-Timethylhexane         7.99665-06         0.0012200         0.00374761         0.00150843*         0.0015087         0.0015084           2.3-Dimethylhexane         7.99665-06         0.0012420         0.000217383         0.0017084*         0.0016003         0.0170884           2.3-Dimethylhexane         0         0         0         0         0         0           mXHyme         0         0         0         0         0         0         0           A-Dimethylheptane         0         0         0         0         0         0         0           A-Dimethylheptane         0         0         0         0         0         0         0         0           A-Dimethylheptane         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 </td <td>2,4-Dimethylheptane</td> <td>0</td> <td>0</td> <td>0</td> <td>0*</td> <td>0</td> <td>0</td>	2,4-Dimethylheptane	0	0	0	0*	0	0
Ehrykepchacane0000002.3.4.Timethylhexane00.000376410.001504830.001250870.001504832.3.5.Dimethylheptane00.000376410.001504830.0011250870.001760842.3.5.Dimethylheptane1.06164E-050.0002173830.0011504830.0011250870.001760842.3.5.Dimethylheptane00000003.4-Dimethylheptane00000003.4-Dimethylheptane00000003.4-Dimethylheptane00000003.4-Dimethylheptane00000003.4-Dimethylheptane00000003.4-Dimethylheptane00000004.Methyloctane000000001.1.2.Timethylhoptohexane00000000n-Nonane2.27241E-111.2138E-064.9987E-261.21386E-063.532E-101.2138E-06bapropylbanene000000000n-Bulykoptohexane000000000000000000000000000	2,6-Dimethylheptane	0	0	0	0*	0	0
3.3-Dimethylheptane       0       0       0       0       0       0         2.4-Timethylheptane       7.99965E-06       0.0012420       0.000247041       0.00150433       0.00125067       0.00150433         2.3-Dimethylheptane       1.06164E-05       0.0131484       0.000217383       0.00170884*       0.00160033       0.0170884*         0.4Vene       0       0       0       0       0       0       0       0         2.4-Timethylheptane       0       0       0       0       0       0       0       0         3.4-Dimethylheptane       0       0       0       0       0       0       0       0         2.4-Methyloctane       0       0       0       0       0       0       0       0         3.4-Dimethyloptane       0       0       0       0       0       0       0       0         2.4-Methyloctane       0       0       0       0       0       0       0       0         3.4-Dimethyloptane       0       0       0       0       0       0       0       0       0         3.4-Methyloctane       0       0       0       0       0	2,5-Dimethylheptane	0	0	0	0*	0	0
3.3-Dimethylheptane       0       0       0       0       0       0         2.4-Timethylheptane       7.99965E-06       0.0012420       0.000247041       0.00150433       0.00125067       0.00150433         2.3-Dimethylheptane       1.06164E-05       0.0131484       0.000217383       0.00170884*       0.00160033       0.0170884*         0.4Vene       0       0       0       0       0       0       0       0         2.4-Timethylheptane       0       0       0       0       0       0       0       0         3.4-Dimethylheptane       0       0       0       0       0       0       0       0         2.4-Methyloctane       0       0       0       0       0       0       0       0         3.4-Dimethyloptane       0       0       0       0       0       0       0       0         2.4-Methyloctane       0       0       0       0       0       0       0       0         3.4-Dimethyloptane       0       0       0       0       0       0       0       0       0         3.4-Methyloctane       0       0       0       0       0		0	0	0	0*	0	0
2.3.4.Timethylhexane         0         0         0         0         0         0           2.3.Dimethylheptane         0         0         0         0         0         0         0         0           2.3.Dimethylheptane         1.06164E-05         0.00131484         0.00217383         0.00170884         0.0016003         0.00170884           p.Xylene         0         0         0         0         0         0         0         0           3.4-Dimethylheptane         0         0         0         0         0         0         0         0           4-Methyloctane         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0		0	0	0	0*	0	0
Entylenzene7.99865E.060.001224200.003476410.00150493*0.00150493*0.001504932.3Dimethyleptane0000000m-Xylene1.06164E-050.001314840.002173830.00170884*0.001660030.00170884p-Xylene00000003-4Dimethyleptane0000002-Methyloctane0000003-Methyloctane0000003-Methyloctane0000003-Methyloctane0000003-Methyloctane0000003-Methyloctane0000003-Methyloctane0000001,1,2.Timethylocylohexane000000n-Nonane2.27241E-111.2138E06.5326E-101.2138E06.5326E-101.2138E01,19.Cimethylocylohexane0000000n-Porylbenzene000000n-Porylbenzene0000000000000000000000000000000		0	0	0	0*	0	0
2.3-Dimethylheptane         0         0         0         0         0         0         0           Avgene         1.06164E-05         0.0131484         0.00217383         0.00170884*         0.00016003         0.0017088           >Avgene         0         0         0         0         0         0         0           3.4-Dimethylheptane         0         0         0         0         0         0         0           Avdethyloctane         0         0         0         0         0         0         0           Avdethyloctane         0         0         0         0         0         0         0         0           Avdethyloctane         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0<		7.99965E-06	0.00102420	0.000347641	0.00150493*	0.000125087	0.00150493
m-Xylene         1.06164E-05         0.00131484         0.000170884         0.000170884         0.000170884         0.00170884           3.4-Dimethylheptane         0         0         0         0         0         0         0           2.4-Bithyloctane         0         0         0         0         0         0         0         0           3-Methyloctane         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0		0	0	0	0*	0	0
p-Xjene         0         0         0         0         0         0           34-Dimethylheptane         0         0         0         0         0         0           Adhethyloctane         0         0         0         0         0         0           AMethyloctane         0         0         0         0         0         0           AMethyloctane         0         0         0         0         0         0         0           AMethyloctane         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0		1.06164E-05	0.00131484	0.000217383	0.00170884*	0.000166003	0.00170884
3.4.Dimethylheptane       0       0       0       0       0         2.Methyloctane       0       0       0       0       0       0         3.Methyloctane       0       0       0       0       0       0       0         3.Methyloctane       0       0       0       0       0       0       0       0         3.Methyloctane       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>0</td></td<>							0
2.4Methyloctane         0         0         0         0         0           AMethyloctane         0         0         0         0         0         0           I.12.Trimethylocylochexane         2.27241E-11         1.2135E-06         4.99876E-26         1.21355E-06         3.55325E-10         1.21355E-06           Isopropylbenzene         0         0         0         0         0         0           n-Propylbenzene         0         0         0         0         0         0           PEthyltoluene         0         0         0         0         0         0         0           AMethylonane         0         0         0         0         0         0         0         0           AMethylonane         2.26026E-14         4.12736E-09         8.80072E-29         4.12774E-09         3.5426E-13         4.12774E-09           Undecane         7.8144E-15		n	0	0	-	•	0
4-Methyloctane       0       0       0       0       0         3-Methyloctane       0       0       0       0       0       0         -Xylene       0       0       0       0       0       0       0         -Nonane       2.27241E.11       1.21318E.06       4.99876E.26       1.21355E-06       3.55325E.10       1.2135E-06         Isopropylenzene       0       0       0       0       0       0       0         n-Potylenzene       0       0       0       0       0       0       0       0         -Propyhenzene       0       0       0       0       0       0       0       0       0         -Potylenzene       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0<		n	0	0	-	n	0
3-Methyloctane         0         0         0         0         0         0           o-Xytene         0         0         0         0         0         0           1.12-Trimethyloyclohexane         0         1.2135E-06         3.5532E-10         1.2135E-06           isopropylbenzene         0         0         0         0         0         0           n-Bronane         2.27241E-11         1.2131E-06         4.99876E-26         1.2135E-06         3.5532E-10         1.2135E-06           isopropylbenzene         0         0         0         0         0         0         0           n-Bronylbenzene         0         0         0         0         0         0         0         0           n-Ethyloluene         0         0         0         0         0         0         0         0         0           2.4Methylonane         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0	-	n	0	n	•	n	0
o-Xylene         0         0         0         0         0           1,1,2-Trimethylcyclohexane         0         0         0         0         0           n-Nonane         2.27241E-11         1.21318E-06         4.99876E-26         1.2135E-06         3.55325E-10         1.2135E-06           isopropybenzene         0         0         0         0         0         0           n-Butylcyclopentane         0         0         0         0         0         0           n-Froythenzene         0         0         0         0         0         0         0           p-Ethytoluene         0         0         0         0         0         0         0         0           2.Methytonane         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0		0 0	0	0 0	, i i i i i i i i i i i i i i i i i i i	n	0
1, 1, 2-Trimethyloglohexane       0       0       0       0       0       0         n-Nonane       2,27241E-11       1.21318E-06       4,99876E-26       1.21355E-06       3,55325E-10       1,21355E-06         lsopropylbenzene       0       0       0       0       0       0       0         n-Butlycyclopentane       0       0       0       0       0       0       0         n-Propylbenzene       0       0       0       0       0       0       0       0         n-Propylbenzene       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0 <t< td=""><td></td><td>0 0</td><td>0 0</td><td>0 N</td><td>6</td><td>0</td><td>ů – – – – – – – – – – – – – – – – – – –</td></t<>		0 0	0 0	0 N	6	0	ů – – – – – – – – – – – – – – – – – – –
n-Nonane         2.27241E-11         1.21318E-06         4.99876E-26         1.21355E-06         3.5532E-10         1.21355E-06           lsopropylenzene         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 <td>· ·</td> <td>0 0</td> <td>0 0</td> <td>0 N</td> <td>-</td> <td>0</td> <td>ů – – – – – – – – – – – – – – – – – – –</td>	· ·	0 0	0 0	0 N	-	0	ů – – – – – – – – – – – – – – – – – – –
Isopropylbenzene         0         0         0         0         0         0           n-Butlycyclopentane         0         0         0         0         0         0           n-Propylbenzene         0         0         0         0         0         0           m-Ethyltoluene         0         0         0         0         0         0           p-Ethyltoluene         0         0         0         0         0         0         0           4-Methylnonane         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 <td< td=""><td></td><td>2.27241F-11</td><td>1.21318E-06</td><td>4.99876F-26</td><td>-</td><td>•</td><td>1.21355F-06</td></td<>		2.27241F-11	1.21318E-06	4.99876F-26	-	•	1.21355F-06
n-Butylcyclopentane         0         0         0         0         0         0         0           n-Propybenzene         0         0         0         0         0         0         0           m-Ethytloluene         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0</td>							0
n-Propylenzene         0         0         0         0         0         0         0           m-Ethyltoluene         0         0         0         0         0         0         0           4-Methylnonane         0         0         0         0         0         0         0         0           2-Methylnonane         0         0         0         0         0         0         0         0         0           2-Methylnonane         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0		n 1	0 0	0 n		•	
m-Ethyltoluene         0         0         0         0         0         0         0           p-Ethyltoluene         0         0         0         0         0         0         0         0           4-Methylnonane         0         0         0         0         0         0         0         0           2-Methylnonane         0         0         0         0         0         0         0         0         0           Butylcyclohexane         0         2.26028E-14         4.12736E-09         8.80072E-29         4.12774E-09*         3.53426E-13         4.12774E-09           Undecane         7.81444E-15         1.37578E-09         2.00274E-29         1.37591E-09*         1.22190E-13         1.37591E-09           Dodecane         0         0         0         0*         0         0         0           Nitrogen         8.75708E-08         0.000621369         2.34353E-22         0.000622826*         1.36930E-06         0.00622826           Carbon Dioxide         0.009011997         1.54454         1.95524E-17         1.69627*         0.142604         1.69627           Hydrogen Sulfide         0.000911997         1.54454         1.95524E-17         1.69827*		0	0	0	-	•	
p-Ethyltoluene         0         0         0         0         0         0         0           4-Methylnonane         0         0         0         0         0         0         0         0           2-Methylnonane         0         0         0         0         0         0         0         0         0           Ethyltonzene         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         <		0	0	0	-	•	
4-Methylnonane       0       0       0       0       0       0       0         2-Methylnonane       0       0       0       0       0       0       0       0       0         4-Butylbonzene       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0	-	0	0	0		e e	
2-Methylnonane         0         0         0         0*         0         0           L-Butylbenzene         0         0         0         0*         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0		0	0	0	•	0	0
t-Butylbenzene       0       0       0       0       0       0       0       0         Butylcyclohexane       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0	-	U	U	0	· · · · · · · · · · · · · · · · · · ·	0	0
Butylcyclohexane         0         0         0         0         0         0         0           n-Decane         2.26026E-14         4.12736E-09         8.80072E-29         4.12774E-09         3.53426E-13         4.12774E-09           Undecane         7.81444E-15         1.37578E-09         2.00274E-29         1.37591E-09*         1.22190E-13         1.37591E-09           Dodecane         0         0         0         0************************************		U	U	0	· · · · · · · · · · · · · · · · · · ·	•	0
n-Decane2.26026E-144.12736E-098.80072E-294.12774E-09*3.53426E-134.12774E-09Undecane7.81444E-151.37578E-092.00274E-291.37591E-09*1.22190E-131.37591E-09Dodecane0000*0000Tridecane0000*000Nitrogen8.75708E-080.0006218692.34353E-220.000622826*1.369012-060.000622826Hydrogen Sulfide0.009719971.544541.95524E-171.69627*0.1426041.69627Hydrogen Sulfide0.0007581680.08814850.01389760.114659*0.1145510.114659Mass Fraction%%%%%%%Water Gas0000*000Water1.707731.3375499.940198.7946*1.7077398.7946Methane0.11777843.542714.08680E-200.0377363*0.11777840.0377363Ethane0.06701621.241392.04340E-200.0132279*0.06701620.0132279Propane0.06701621.241392.04340E-200.0132279*0.006701620.0132279n-Butane0.02881740.5824175.10850E-210.00122014*0.02891740.0289174i-Pentane0.02886090.00896336.38562E-220.00126014*0.02886090.0028861205*	-	0	0	0	•	e e	
Undecane7.81444E-151.37578E-092.00274E-291.37591E-09*1.22190E-131.37591E-09Dodecane00000**00Tridecane0000**00Nitrogen8.75708E-080.0006213692.34353E-220.000622826*1.36930E-060.000622826Carbon Dioxide0.009119971.544541.95524E-171.69627*0.1426041.69627Hydrogen Sulfide0.0007581680.08814850.01389760.114659*0.1185510.114659Mass Fraction%%%%%%Water Gas0000000Water1.707731.3375499.940198.7946*1.7077398.7946Methane0.11777843.542714.08680E-200.0377363*0.1777840.0377363Ethane0.06701621.241392.04340E-200.0132279*0.06150220.0132279Propane0.06701621.241392.04340E-200.0132279*0.004504220.0132279i-Butane0.004504220.1175026.38562E-220.00125019*0.004504220.00125019i-Butane0.0288090.08096336.38562E-220.000861205*0.00280690.0028048			0	0	-	Ũ	
Dodecane         0         0         0         0         0         0         0           Tridecane         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0							
Tridecane0000000Nitrogen8.75708E-080.0006213692.34353E-220.000622826*1.36930E-060.000622826Carbon Dioxide0.009119971.544541.95524E-171.69627*0.1426041.69627Hydrogen Sulfide0.0007581680.08814850.01389760.114659*0.01185510.114659Mass Fraction%%%%%Water Gas0000000Water Gas0.177731.3375499.940198.7946*1.7077398.7946Methane0.1777843.542714.08680E-200.0377363*0.1777840.0377363Ethane0.06701621.241392.04340E-200.0132279*0.06701620.0132279Propane0.06701621.241392.04340E-200.001252064*0.004504220.0132279n-Butane0.02891740.5824175.10850E-210.00262048*0.02891740.0020348i-Pentane0.02886090.8096336.38562E-220.000861205*0.00286090.000861205							1.3/591E-09
Nitrogen8.75708E-080.0006213692.34353E-220.000622826*1.36930E-060.000622826Carbon Dioxide0.009119971.544541.95524E-171.69627*0.1426041.69627Hydrogen Sulfide0.0007581680.08814850.01389760.114659*0.01185510.114659Mass Fraction%%%%%%Water Gas000000Water1.707731.3375499.940198.7946*1.7077398.7946Methane0.1777843.542714.08680E-200.0377363*0.1777840.0377363Ethane0.06701621.241392.04340E-200.0132279*0.06701620.0132279Propane0.06701621.241392.04340E-200.0132279*0.06701620.0132279i-Butane0.02891740.5824175.10850E-210.00620348*0.02891740.00620348i-Pentane0.002886090.08096336.38562E-220.000861205*0.002886090.000861205		-		-			0
Carbon Dioxide0.009119971.54541.95524E-171.69627*0.1426041.69627Hydrogen Sulfide0.0007581680.08814850.01389760.114659*0.01185510.114659Mass Fraction%%%%%%Water Gas0000000Water1.707731.3375499.940198.7946*1.7077398.7946Methane0.1777843.542714.08680E-200.0377363*0.1777840.0377363Ethane0.1800802.369004.08680E-200.0132279*0.06701620.0132279Propane0.06701621.241392.04340E-200.0132279*0.06701620.0132279i-Butane0.02891740.5824175.10850E-210.00620348*0.02891740.0620348i-Pentane0.002886090.08096336.38562E-220.000861205*0.002886090.000861205		-		-		-	0
Hydrogen Sulfide0.0007581680.08814850.01389760.114659*0.01185510.114659Mass Fraction%%%%%Water Gas0000000Water1.707731.3375499.940198.7946*1.7077398.7946Methane0.11777843.542714.08680E-200.0377363*0.11777840.0377363Ethane0.1800802.369004.08680E-200.0132279*0.06701620.0132279Propane0.06701621.241392.04340E-200.0132279*0.06701620.0132279i-Butane0.02891740.5824175.10850E-210.00620348*0.02891740.00620348i-Pentane0.002886090.08096336.38562E-220.000861205*0.002886090.000861205							
Mass Fraction%%%%%Water Gas0000*00Water1.707731.3375499.940198.7946*1.7077398.7946Methane0.1777843.542714.08680E-200.0377363*0.1777840.0377363Ethane0.1800802.369004.08680E-200.0252966*0.1800800.0252966Propane0.06701621.241392.04340E-200.0132279*0.06701620.0132279i-Butane0.004504220.1175026.38562E-220.00125019*0.004504220.00125019n-Butane0.02891740.5824175.10850E-210.00620348*0.02891740.00620348i-Pentane0.002886090.08096336.38562E-220.000861205*0.002886090.000861205							
Water Gas0000*00Water1.707731.3375499.940198.7946*1.7077398.7946Methane0.1777843.542714.08680E-200.0377363*0.1777840.0377363Ethane0.1800802.369004.08680E-200.0252966*0.1800800.0252966Propane0.06701621.241392.04340E-200.0132279*0.06701620.0132279i-Butane0.004504220.1175026.38562E-220.00125019*0.004504220.00125019n-Butane0.02891740.5824175.10850E-210.00620348*0.02891740.00620348i-Pentane0.002886090.08096336.38562E-220.000861205*0.002886090.000861205		0.000758168		0.0138976			
Water1.707731.3375499.940198.7946*1.7077398.7946Methane0.1777843.542714.08680E-200.0377363*0.1777840.0377363Ethane0.1800802.369004.08680E-200.0252966*0.1800800.0252966Propane0.06701621.241392.04340E-200.0132279*0.06701620.0132279i-Butane0.004504220.1175026.38562E-220.00125019*0.004504220.00125019n-Butane0.02891740.5824175.10850E-210.00620348*0.02891740.00620348i-Pentane0.002886090.08096336.38562E-220.000861205*0.002866090.00861205	Mass Fraction	%	%	%	%	%	%
Water1.707731.3375499.940198.7946*1.7077398.7946Methane0.1777843.542714.08680E-200.0377363*0.1777840.0377363Ethane0.1800802.369004.08680E-200.0252966*0.1800800.0252966Propane0.06701621.241392.04340E-200.0132279*0.06701620.0132279i-Butane0.004504220.1175026.38562E-220.00125019*0.004504220.00125019n-Butane0.02891740.5824175.10850E-210.00620348*0.02891740.00620348i-Pentane0.002886090.08096336.38562E-220.000861205*0.002866090.00861205	Water Gas	0	0	0	0*	0	0
Methane0.1777843.542714.08680E-200.0377363*0.1777840.0377363Ethane0.1800802.369004.08680E-200.0252966*0.1800800.0252966Propane0.06701621.241392.04340E-200.0132279*0.06701620.0132279i-Butane0.004504220.1175026.38562E-220.00125019*0.004504220.00125019n-Butane0.02891740.5824175.10850E-210.00620348*0.02891740.00620348i-Pentane0.002886090.08096336.38562E-220.000861205*0.002866090.000861205				99.9401	98.7946*		98.7946
Ethane0.1800802.369004.08680E-200.0252966*0.1800800.0252966Propane0.06701621.241392.04340E-200.0132279*0.06701620.0132279i-Butane0.004504220.1175026.38562E-220.00125019*0.004504220.00125019n-Butane0.02891740.5824175.10850E-210.00620348*0.02891740.00620348i-Pentane0.002886090.08096336.38562E-220.000861205*0.002866090.000861205							
Propane         0.0670162         1.24139         2.04340E-20         0.0132279*         0.0670162         0.0132279           i-Butane         0.00450422         0.117502         6.38562E-22         0.00125019*         0.00450422         0.00125019           n-Butane         0.0289174         0.582417         5.10850E-21         0.00620348*         0.0289174         0.00620348           i-Pentane         0.00288609         0.0809633         6.38562E-22         0.000861205*         0.00288609         0.000861205							
i-Butane0.004504220.1175026.38562E-220.00125019*0.004504220.00125019n-Butane0.02891740.5824175.10850E-210.00620348*0.02891740.00620348i-Pentane0.002886090.08096336.38562E-220.000861205*0.002886090.000861205							
n-Butane         0.0289174         0.582417         5.10850E-21         0.00620348*         0.0289174         0.00620348           i-Pentane         0.00288609         0.0809633         6.38562E-22         0.000861205*         0.00288609         0.000861205							
i-Pentane 0.00288609 0.0809633 6.38562E-22 0.000861205* 0.00288609 0.000861205							
0.00034311 0.0397307 7.90203E-23 0.000421946 0.000394311 0.000421948		0.00200009	0.0009033	0.00002E-22			
		0 000554544	0 0207507	7 000005 00	///////////////////////////////////////	() ()()() [] [] [] [] [] [] [] [] [] [] [] [] []	0 000421049

leohexane ,3-Dimethylbutane	0	0 0	0 0	0* 0*	0 0	0 0
Methylpentane	0	0	0	0*	0	0
-Methylpentane	0	0	0	0*	0	0
-Hexane	7.77069E-05 0	0.00807234 0	1.99551E-23 0	8.56510E-05* 0*	7.77069E-05 0	8.56510E-05
,2-Dimethylpentane lethylcyclopentane	0	0	0	0*	0	0
2,4-Dimethylpentane	0	0	0	0*	0	0
Benzene	9.64758	6.96547	0.0412953	0.124498*	9.64758	0.124498
3,3-Dimethylpentane	0	0	0	0*	0	0
Cyclohexane	0	0	0	0*	0	0
2-Methylhexane	0	0	0	0*	0	0
2,3-Dimethylpentane ,1-Dimethylcyclopentane	0	0	0	0* 0*	0	0
B-Methylhexane	0	0	0	0*	0	0
,t-3-Dimethylcyclopentane	0	0	0	0*	0	0
,c-3-Dimethylcyclopentane	0	0	0	0*	0	0
2,2,4-Trimethylpentane	0	0	0	0*	0	0
i-Heptane	3.30222E-05	0.00458648	4.98877E-24	4.86532E-05*	3.30222E-05	4.86532E-05
/lethylcyclohexane	0	0	0	0*	0	0
,1,3-Trimethylcyclopentane 2,5-Dimethylhexane	0	0	0	0* 0*	0	0
2,4-Dimethylhexane	0	0	0	0*	0	0
3,3-Dimethylhexane	0	0	0	0*	0	0
,t-2,c-3-Trimethylcyclopentane	0	0	0	0*	0	0
2,3,4-Trimethylpentane	0	0	0	0*	0	0
oluene	4.09412	2.94554	0.0121280	0.0473892*	4.09412	0.0473892
2,3-Dimethylhexane	0	0	0	0* 0*	0	0
,1,2-Trimethylcyclopentane 2-Methylheptane	0	0	0	0* 0*	0	U
Metnyineptane Methylheptane	0	0	0	0*	0	0
3,4-Dimethylhexane	0	0	0	0*	0	0
B-Methylheptane	0	0	0	0*	0	0 0
B-Ethylhexane	0	0	0	0*	0	0
,c-3-Dimethylcyclohexane	0	0	0	0*	0	0
,t-4-Dimethylcyclohexane	0	0	0	0*	0	0
,1-Dimethylcyclohexane	0	0	0	0* 0*	0	0
2,2,4-Trimethylhexane Cycloheptane	0	0	0	0^ 0*	0	U
-Octane	1.47154E-06	0.000482758	3.11798E-25	5.11903E-06*	0 1.47154E-06	5.11903E-06
,t-3-Dimethylcyclohexane	0	0	0	0*	0	0
2,2-Dimethylheptane	0	0	0	0*	0	0
2,4-Dimethylheptane	0	0	0	0*	0	0
2,6-Dimethylheptane	0	0	0	0*	0	0
2,5-Dimethylheptane	0	0 0	0	0* 0*	0	0
Ethylcyclohexane 8,3-Dimethylheptane	0	0	0	0*	0	0
2,3,4-Trimethylhexane	0	0	0	0*	0	0
Ethylbenzene	0.166398	0.123264	0.000448734	0.00191998*	0.166398	0.00191998
2,3-Dimethylheptane	0	0	0	0*	0	0
n-Xylene	0.220828	0.158243	0.000280597	0.00218013*	0.220828	0.00218013
p-Xylene	0	0	0	0*	0	0
3,4-Dimethylheptane	0	0	0	0*	0	0
2-Methyloctane I-Methyloctane	0	0	0	0* 0*	0	0
B-Methyloctane	0	0	0	0*	0	0
-Xylene	0	0	0	0*	0	0
,1,2-Trimethylcyclohexane	0	0	0	0*	0	0
-Nonane	5.71027E-07	0.000176387	7.79495E-26	1.87040E-06*	5.71027E-07	1.87040E-06
sopropylbenzene	0	0	0	0*	0	0
Butylcyclopentane	0	0	0	0*	0	0
n-Propylbenzene	0	0	0	0* 0*	0	0
n-Ethyltoluene b-Ethyltoluene	0	0	0	0* 0*	0	U
-Ethyllouene	0	0	0	0*	0	0
2-Methylnonane	0	0	0	0*	0	0
Butylbenzene	0	0	0	0*	0	0
Butylcyclohexane	0	0	0	0*	0	0
I-Decane	6.30090E-10	6.65718E-07	1.52245E-28	7.05766E-09*	6.30090E-10	7.05766E-09
Indecane	2.39318E-10	2.43781E-07	3.80613E-29	2.58447E-09*	2.39318E-10	2.58447E-09
Dodecane Tridecane	0	0 0	0	0* 0*	0 0	U
litrogen	0.000480640	0.0197326	0 7.98203E-23	0.000209668*	0.000480640	0 0.000209668
Carbon Dioxide	78.6384	77.0575	1.04622E-17	0.897099*	78.6384	0.897099
lydrogen Sulfide	5.06257	3.40561	0.00575872	0.0469591*	5.06257	0.0469591
Aass Flow	lb/h	lb/h	lb/h	lb/h	lb/h	lb/h
Vater Gas	0	0	0	0*	0	0
Vater	0.00871615	1.17988	8219.85	8221.17*	0.136290	8221.17
<i>l</i> ethane Ethane	0.000907400 0.000919118	3.12512 2.08976	3.36130E-18 3.36130E-18	3.14022* 2.10505*	0.0141886 0.0143718	3.14022 2.10505
Propane	0.000919118	2.08976	3.36130E-18 1.68065E-18	2.10505* 1.10076*	0.00143718	2.10505
Butane	2.29892E-05	0.103652	5.25203E-20	0.104035*	0.000359471	0.104035
I-Butane	0.000147593	0.513766	4.20162E-19	0.516221*	0.00230783	0.516221
Pentane	1.47304E-05	0.0714199	5.25203E-20		0.000230332	0.0716650
-Pentane	2.83019E-06	0.0350652	6.56504E-21	0.0351123*	4.42542E-05	0.0351123
leohexane	0	0	0	0*	0	0
2,3-Dimethylbutane	0	0	0	0*	0	0
2-Methylpentane	0	0	0	0*	0	0
-Methylpentane	0 3.96611E-07	0 00712083	0 1.64126E-21	0* 0.00712743*	0 6 20161E-06	0 0.00712743
n-Hexane 2,2-Dimethylpentane	3.96611E-07 0	0.00712083 0	1.64126E-21 0	0.00712743* 0*	6.20161E-06 0	0.00712743
/ethylcyclopentane	0	0	0	0*	0	
2,4-Dimethylpentane	0	0	0	0*	0	0
· ·	0.0492406	6.14443	•	10.3601*	0.769951	10.3601

3,3-Dimethylpentane Cyclohexane	0	0 0	0 0	0* 0*	0 0	0
-Methylhexane	0	0	0	0*	0	0
2,3-Dimethylpentane	0	0	0	0*	0	0
I,1-Dimethylcyclopentane	0	0	0	0*	0	0
3-Methylhexane	0	0	0	0*	0	0
I,t-3-Dimethylcyclopentane	0	0	0	0*	0	0
I,c-3-Dimethylcyclopentane	0	0	0	0*	0	0
2,2,4-Trimethylpentane	0	0	0	0*	0	0
n-Heptane	1.68543E-07	0.00404586	4.10315E-22	0.00404866*	2.63542E-06	0.00404866
Methylcyclohexane	0	0.00404000	4.100102 22	0*	0	0.00+0+000
1,1,3-Trimethylcyclopentane	0	0	0	0*	0	0
2,5-Dimethylhexane	0	0	0	0*	0	0
2,4-Dimethylhexane	0	0	0	0*	0	0
,3-Dimethylhexane	0	0	0	0*	0	0
,t-2,c-3-Trimethylcyclopentane	0	ů 0	0	0*	0	0
2,3,4-Trimethylpentane	0	0	0	0*	0	0
oluene	0.0208961	2.59834	0.997502	3.94348*	0.326742	3.94348
,3-Dimethylhexane	0.0206901	2.59834	0.997502	3.94346 0*	0.320742	0.54540
,1,2-Trimethylcyclopentane	0	0	0	0*	0	0
-Methylheptane	0	0	0	0*	0	0
-Methylheptane	0	0	0	0*	0	0
3,4-Dimethylhexane	0	0	0	0*	0	0
3-Methylheptane	0	0	0	0*	0	0
B-Ethylhexane	0	0	0	0*	0	0
,c-3-Dimethylcyclohexane	0	0	0	0*	0	0
,t-4-Dimethylcyclohexane	0	0	0	0*	0	0
,1-Dimethylcyclohexane	0	0	0	0*	0	0
2,2,4-Trimethylhexane	0	0	0	0*	0	0
Cycloheptane	0	0	0	0*	0	0
-Octane	7.51065E-09	0.000425854	2.56447E-23	0.000425979*	0 1.17440E-07	0.000425979
,t-3-Dimethylcyclohexane	7.51005E-09 0	0.000423834	2.50447E-23	0.000423979	1.17440E-07 0	0.000420979
2,2-Dimethylheptane	0	0	0	0*	0	0
2,4-Dimethylheptane	0	0	0	0*	0	0
,,4-Dimethylheptane	0	0	0	0*	0	0
,5-Dimethylheptane	0	0	0	0*	0	0
thylcyclohexane	0	0	0	0*	0	0
3,3-Dimethylheptane	0	0	0	0*	0	0
2,3,4-Trimethylhexane	0	0	0	0*	0	0
Ethylbenzene	0.000849283	0.108735	0.0369073	0.159771*	0.0132798	0.159771
,3-Dimethylheptane	0.000049203	0.108735	0.0309073	0*	0.0132798	0.100771
	0.00112709	0.139590	0.0230785	0.181419*	0.0176237	0.181419
n-Xylene I-Xylene	0.00112709	0.139390	0.0230783	0*	0.0170237	0.101419
,4-Dimethylheptane	0	0	0	0*	0	0
-Methyloctane	0	0	0	0*	0	0
-Methyloctane	0 0	0	0	0*	0	0
B-Methyloctane	0	0	0	0*	0	0
-Xylene	0	0	0	0*	0	0
,1,2-Trimethylcyclohexane	0	0	0	0*	0	0
-Nonane	2.91448E-09	0.000155596	6.41117E-24	0.000155645*	4.55723E-08	0.000155645
sopropylbenzene	2.914402-09	0.000100090	0.411172-24	0*	4.007202-00	0.000100040
-Butylcyclopentane	0	0	0	0*	0	0
-Propylbenzene	0	0	0	0*	0	0
n-Ethyltoluene	0	0	0	0*	0	0
-Ethyltoluene	0	0	0	0*	0	0
-Methylnonane	0	0	0	0*	0	0
-Methylnonane	0	0	0	0*	0	0
Butylbenzene	0	0	0	0*	0	
Butylcyclohexane	0	0	0	0*	0	0
-Decane	Ũ	5.87248E-07	1.25218E-26	5.87301E-07*	5.02860E-11	5.87301E-07
-Decane Indecane	1.22146E-12	2.15046E-07	3.13045E-27	2.15067E-07*	1.90994E-11	2.15067E-07
Dodecane	1.22140E-12	2.15046E-07 0	3.13045E-27	2.15067E-07	1.90994E-11	2.13007E-07
ridecane	0	0	0	0*	0	0
Nitrogen	2.45315E-06	0.0174067	6.56504E-21	0.0174475*	0 3.83588E-05	0.0174475
Carbon Dioxide	0.401365	67.9745	8.60492E-16	74.6519*	3.03500E-05 6.27595	74.6519
Hydrogen Sulfide	0.401303	3.00418	0.473642	3.90769*	0.27595	3.90769
nyuruyen Sumue	0.0258390	3.00418	0.473042	3.90769*	0.404032	3.90769

Process Streams		Breathing	Flash	Liquids	Produced Water w/ Hydrocarbon	Working	2
Properties	Status:	Solved	Solved	Solved	Solved	Solved	Solved
Phase: Total	From Block:	<b>TANK-100</b>	<b>TANK-100</b>	<b>TANK-100</b>	-	<b>TANK-100</b>	<b>VLVE-100</b>
	To Block:				VLVE-100		<b>TANK-100</b>
Property	Units						
Temperature	°F	73.4428	73.4428	73.4428	97.2586*	73.4428	97.1263
Pressure	psia	13.26	13.26	13.26	19.6959*	13.26	14.6959*
Mole Fraction Vapor	%	98.2969	100	0	0.462179	98.2969	0.484842
Mole Fraction Light Liquid	%	0 489425	0	100	99.5378	0 489425	99 5152

iviole Fraction Light Liquid	%	0.489425	0	100
Mole Fraction Heavy Liquid	%	1.21369	0	0
Phase Mole Fraction	%	100	100	100
Molecular Weight	lb/lbmol	45.0245	41.8195	18.0234
Mass Density	lb/ft^3	0.106877	0.0975083	62.2510
Molar Flow	lbmol/h	0.0113359	2.10937	456.340
Mass Flow	lb/h	0.510393	88.2127	8224.77
Vapor Volumetric Flow	ft^3/h	4.77553	904.669	132.123
Liquid Volumetric Flow	gpm	0.595390	112.790	16.4725
Std Vapor Volumetric Flow	MMSCFD	0.000103243	0.0192113	4.15617
Std Liquid Volumetric Flow	sgpm	0.00124091	0.236001	16.4434
Compressibility		0.976395	0.994026	0.000671043
Specific Gravity			1.44392	0.998112
API Gravity				9.99322
Enthalpy	Btu/h	-1579.93	-276135	-5.60973E+07
Mass Enthalpy	Btu/lb	-3095.51	-3130.33	-6820.53
Mass Cp	Btu/(lb*°F)	0.221158	0.233326	0.978251
Ideal Gas CpCv Ratio		1.25647	1.25735	1.32904

99.5378	0.489425	99.5152	
0	1.21369	0	
100	100	100	
18.1439	45.0245	18.1439	
10.7939	0.106877	8.06802	
458.638	0.177254	458.638	
8321.48	7.98077	8321.48	
770.942	74.6725	1031.42	
96.1174	9.30982	128.592	
4.17710	0.00161436	4.17710	
16.7*	0.0194036	16.7	
0.00553944	0.976395	0.00553097	
-5.62084E+07	-24704.6	-5.62084E+07	
-6754.61	-3095.51	-6754.61	
0.968951	0.221158	0.968706	
1.32767	1.25647	1.32768	

Dynamic Viscosity	cP		0.0136471	0.953391			
Kinematic Viscosity	cSt		8.73733	0.956102			
Thermal Conductivity	Btu/(h*ft*°F)		0.0101568	0.348393			
Surface Tension	lbf/ft			0.00500592			
Net Ideal Gas Heating Value	Btu/ft^3	343.877	403.643	0.467530	2.46303	343.877	2.46303
Net Liquid Heating Value	Btu/lb	2784.44	3558.16	-1049.39	-996.637	2784.44	-996.637
Gross Ideal Gas Heating Value	Btu/ft^3	363.341	434.029	50.7909	52.6820	363.341	52.6820
Gross Liquid Heating Value	Btu/lb	2948.47	3833.94	10.1731	53.7056	2948.47	53.7056

Process Streams		Breathing	Flash	Liquids	Produced Water w/ Hydrocarbon	Working	2
Composition	Status:	Solved	Solved	Solved		Solved	Solved
Phase: Vapor	From Block: To Block:	<b>TANK-100</b>	TANK-100	<b>TANK-100</b>	 VLVE-100	TANK-100	VLVE-100 TANK-100
Mole Fraction	TO BIOCK:	 %	 %		<u> </u>	 %	1 ANK-100 %
Water Gas		0	0		0	0	
Water		3.10683	3.10488		4.48858	3.10683	5.97499
Vethane		0.507605	9.23513		9.17745	0.507605	8.76411
Ethane		0.274294	3.29476		3.27496	0.274294	3.12944
Propane		0.0695925	1.17731		1.17075	0.0695925	1.11791
-Butane		0.00354751	0.0845441		0.0841346	0.00354751	0.0802855
		0.0227654	0.419055		0.416729	0.0227654	0.397869
-Pentane n-Pentane		0.00182632 0.000350497	0.0469286 0.0230406		0.0466943 0.0229200	0.00182632 0.000350497	0.0445567 0.0218593
Neohexane		0.000330497	0.0230400		0.0229200	0.000330497	0.0210590
2,3-Dimethylbutane		0	0		0	0	(
2-Methylpentane		0	0		0	0	(
3-Methylpentane		0	0		0	0	(
-Hexane		4.07844E-05	0.00391737		0.00389755	4.07844E-05	0.00371654
2,2-Dimethylpentane		0	0		0	0	(
Methylcyclopentane		0	0		0	0	(
2,4-Dimethylpentane		0 5 44622	0		0	0 5 44622	4 4050
3enzene 3,3-Dimethylpentane		5.44632 0	3.72917 0		3.85618 0	5.44632 0	4.1256 ² (
3,3-Dimethylpentane Cyclohexane		0	0		0	0	(
2-Methylhexane		0	0		0	0	C
2,3-Dimethylpentane		0	0		0	0	C
I,1-Dimethylcyclopentane		0	0		0	0	(
3-Methylhexane		0	0		0	0	C
,t-3-Dimethylcyclopentane		0	0		0	0	C
I,c-3-Dimethylcyclopentane		0	0		0	0	C
2,2,4-Trimethylpentane		0	0		0	0	)
n-Heptane ⁄Iethylcyclohexane		1.44553E-05 0	0.00191418 0		0.00190471	1.44553E-05	0.00181607
vietnylcyclonexane I,1,3-Trimethylcyclopentane		0	0		0	0	( r
2,5-Dimethylhexane		0	0		0	0	(
2,4-Dimethylhexane		0	0		0	0	(
3,3-Dimethylhexane		0	0		0	0	C
,t-2,c-3-Trimethylcyclopentane		0	0		0	0	(
2,3,4-Trimethylpentane		0	0		0	0	(
oluene		1.80694	1.33691		1.36811	1.80694	1.43537
3-Dimethylhexane		0	0		0	0	(
,1,2-Trimethylcyclopentane		0	0		0	0	(
2-Methylheptane I-Methylheptane		0	U		U	0	(
-Methylhexane		0	0		0	0	ſ
3-Methylheptane		0	0		0	0	(
B-Ethylhexane		0	0		0	0	(
,c-3-Dimethylcyclohexane		0	0		0	0	C
,t-4-Dimethylcyclohexane		0	0		0	0	C
,1-Dimethylcyclohexane		0	0		0	0	C
2,2,4-Trimethylhexane		0	0		0	0	C
Cycloheptane		0	0		0	0 5 17014E 07	
-Octane ,t-3-Dimethylcyclohexane		5.17914E-07 0	0.000176739 0		0.000175867 0	5.17914E-07 0	0.000167663
,i-3-Dimethylheptane		0	0		0	0	(
2,4-Dimethylheptane		0	0		0	0	(
2,6-Dimethylheptane		0	0		0	0	(
2,5-Dimethylheptane		0	0		0	0	0
thylcyclohexane		0	0		0	0	(
3,3-Dimethylheptane		0	0		0	0	(
,3,4-Trimethylhexane		0	0		0	0	(
thylbenzene		0.0484194	0.0485550		0.0508977	0.0484194	0.0527365
,3-Dimethylheptane n-Xylene		0 0.0677458	0 0.0623334		0 0.0630062	0 0.0677458	0.0640172
-Xylene		0.0677458	0.0623334		0.0630062	0.0077456	0.00401/2
,4-Dimethylheptane		0	0		0	0	(
-Methyloctane		0	0		0	0	(
-Methyloctane		0	0		0	0	(
-Methyloctane		0	0		0	0	(
-Xylene		0	0		0	0	(
,1,2-Trimethylcyclohexane		0	0		0	0	(
-Nonane		1.54249E-07	5.75137E-05		5.72352E-05	1.54249E-07	5.45640E-05
sopropylbenzene		0	0		0	0	(
n-Butylcyclopentane n-Propylbenzene		0	0		U 0	0	(
n-Ethyltoluene		0	0		0	0	(
-Ethyltoluene		0	0		0	0	(
-Methylnonane		0	ů 0		0	0	(
2-Methylnonane		0	0		0	0	(
-Butylbenzene		0	0		0	0	(
Butylcyclohexane		0	0		0	0	(
n-Decane		1.08210E-10			1.94713E-07	1.08210E-10	1.85616E-07
Jndecane		2.12125E-11	6.52225E-08		6.49055E-08	2.12125E-11	6.18728E-08

Dodecane Fridecane	0	0 0	0 0	0 0	0
Nitrogen Carbon Dioxide	0.000785890	0.0294576	0.0292936	0.000785890	0.0279488
Jarbon Dioxide Hydrogen Sulfide	81.8408 6.80208	73.2229 4.17890	71.9177 4.02656	81.8408 6.80208	70.6148 4.14274
Molar Flow	lbmol/h	lbmol/h	lbmol/h	lbmol/h	lbmol/h
Water Gas	0	0	0	0	0
Vater	0.000346190	0.0654933	0.0951455	0.00541320	0.132864
Methane	5.65617E-05	0.194803	0.194537	0.000884427	0.194885
Ethane Propane	3.05641E-05 7.75459E-06	0.0694987 0.0248339	0.0694201 0.0248166	0.000477916 0.000121255	0.0695884 0.0248585
-Butane	3.95293E-07	0.00178335	0.00178342	6.18101E-06	0.00178528
n-Butane	2.53671E-06	0.00883941	0.00883350	3.96653E-05	0.00884727
-Pentane	2.03504E-07	0.000989898	0.000989791	3.18209E-06	0.000990791
n-Pentane	3.90553E-08	0.000486012	0.000485841	6.10689E-07	0.000486077
Veohexane	0	0	0	0	0
2,3-Dimethylbutane	0	0	0	0	0
2-Methylpentane	0	0	0	0	0
3-Methylpentane	0	0	0	0	0
n-Hexane	4.54454E-09	8.26318E-05	8.26173E-05	7.10607E-08	8.26434E-05
2,2-Dimethylpentane Methylcyclopentane	0	0	0 0	0 0	U
2,4-Dimethylpentane	0	0	0	0	0
Benzene	0.000606875	0.0786620	0.0817403	0.00948940	0.0917397
3,3-Dimethylpentane	0	0.0700020	0	0	0.0011001 C
Cyclohexane	0	0	0	0	0
2-Methylhexane	0	0	0	0	0
2,3-Dimethylpentane	0	0	0	0	0
I,1-Dimethylcyclopentane	0	0	0	0	C
3-Methylhexane	0	0	0	0	0
I,t-3-Dimethylcyclopentane	0	0	0	0	0
I,c-3-Dimethylcyclopentane	0	0	0	0 0	0
2,2,4-Trimethylpentane n-Heptane	0 1.61073E-09	0 4.03771E-05	0 4.03747E-05	0 2.51862E-08	0 4.03833E-05
Aethylcyclohexane	1.01073E-09	4.03771E-03	4.03747⊏-05	2.51602E-06	00000⊑ <b>-</b> 00
I,1,3-Trimethylcyclopentane	0	0	0	0	0
2,5-Dimethylhexane	0	0	0	0	0
2,4-Dimethylhexane	0	0	0	0	0
3,3-Dimethylhexane	0	0	0	0	0
l,t-2,c-3-Trimethylcyclopentane	0	0	0	0	0
2,3,4-Trimethylpentane	0	0	0	0	0
	0.000201345	0.0282004	0.0290002	0.00314833	0.0319179
2,3-Dimethylhexane	0	0	0	0	0
I,1,2-Trimethylcyclopentane 2-Methylheptane	0	U	0	0	0
I-Methylheptane	0	0	0 0	0	0
3,4-Dimethylhexane	0	0	0	0	0
3-Methylheptane	0	0	0	0	0
3-Ethylhexane	0	0	0	0	0
I,c-3-Dimethylcyclohexane	0	0	0	0	0
I,t-4-Dimethylcyclohexane	0	0	0	0	0
I,1-Dimethylcyclohexane	0	0	0	0	0
2,2,4-Trimethylhexane	0	0	0	0	0
Cycloheptane n-Octane	0 5.77103E-11	0 3.72809E-06	0 3.72789E-06	0 9.02388E-10	0 3.72826E-06
I,t-3-Dimethylcyclohexane	0.77103E-11	3.72809E-00 0	3.72703⊑-00 0	9.023882-10	00 <u>-10202-00</u>
2,2-Dimethylheptane	0	0	0	0	0
2,4-Dimethylheptane	0	0	0	0	0
2,6-Dimethylheptane	0	0	0	0	0
2,5-Dimethylheptane	0	0	0	0	0
Ethylcyclohexane	0	0	0	0	0
3,3-Dimethylheptane	0	0	0	0	0
2,3,4-Trimethylhexane	0 5 30530E 06	0	0	0 8 43637E 05	0
Ethylbenzene 2,3-Dimethylheptane	5.39530E-06 0	0.00102420	0.00107889 0	8.43637E-05 0	0.00117268
n-Xylene	7.54881E-06	0.00131484	0.00133556	0 0.000118037	0.00142353
p-Xylene	0	0.00131404	0.00133330	0.000110037	0.00142000
3,4-Dimethylheptane	0	0	0	0	0
2-Methyloctane	0	0	0	0	0
-Methyloctane	0	0	0	0	0
B-Methyloctane	0	0	0	0	0
p-Xylene	0	0	0	0	0
,1,2-Trimethylcyclohexane		0	0	0	0
n-Nonane	1.71878E-11 0	1.21318E-06 0	1.21323E-06	2.68757E-10	1.21332E-06
sopropylbenzene n-Butylcyclopentane	0	U n	0	0	0
n-Propylbenzene	0	0	0	0	0
n-Ethyltoluene	0	0	0	0	0
p-Ethyltoluene	0	0	0	0	0
I-Methylnonane	0	0	0	0	0
2-Methylnonane	0	0	0	0	0
-Butylbenzene	0	0	0	0	C
Butylcyclohexane	0	0	0	0	0
n-Decane		4.12736E-09		1.88540E-13	4.12749E-09
Jndecane		1.37578E-09		3.69596E-14	1.37584E-09
Dodecane	0	0	0	0	0
Tridecane	0	0	0	0	0
Nitrogen		0.000621369	0.000620944	1.36930E-06	0.000621489
Carbon Dioxide	0.00911940	1.54454	1.52446	0.142595	1.57024
Hydrogen Sulfide Mass Fraction	0.000757945	0.0881485	0.0853519	0.0118516	0.0921207
Wass Fraction Water Gas		<u>∽₀</u> 0			/0
Water Gas Water	0 1.23966	0 1.33754	0 1.94600	0 1.23966	0 2.59918
rator	1.23900	1.00704	3.54311	0.180360	3.39498

Ethane Propane -Butane I-Butane -Pentane I-Pentane	0.182675 0.0679676 0.00456677 0.0293063 0.00291843 0.000560089	1.24139 0.117502 0.582417 0.0809633	1.24237 0.117682 0.582891 0.0810747	0.0679676 0.00456677 0.0293063 0.00291843	2.27219 1.19031 0.112678 0.558393 0.0776247 0.0380823
Neohexane	0			0	0
2,3-Dimethylbutane	0			0	0
2-Methylpentane 3-Methylpentane	0	-		0	0
-Merrypenane -Hexane	7.78432E-05				0.00773357
2,2-Dimethylpentane	0	0	0	0	0
<i>Methylcyclopentane</i>	0	0		0	0
2,4-Dimethylpentane Benzene	0 9.42245			0 9.42245	0 7.78150
3,3-Dimethylpentane	0.42240			0.42240	0
Cyclohexane	0	0	0	0	0
2-Methylhexane	0			0	0
2,3-Dimethylpentane ,1-Dimethylcyclopentane	0	0 0	-	0	0
B-Methylhexane	0	0	•	0	0
,t-3-Dimethylcyclopentane	0	0	0	0	0
,c-3-Dimethylcyclopentane	0			0	0
2,2,4-Trimethylpentane	0		-	0	0
n-Heptane	3.20809E-05				0.00439407
/lethylcyclohexane ,1,3-Trimethylcyclopentane	0			0	0
2,5-Dimethylhexane	0	0		0	o
2,4-Dimethylhexane	0	0	-	0	0
3,3-Dimethylhexane	0	-		0	0
,t-2,c-3-Trimethylcyclopentane 2,3,4-Trimethylpentane	0			0	0
2,3,4-1 rimethylpentane Foluene	0 3.68748		-	0 3.68748	0 3.19348
2,3-Dimethylhexane	0			0.007	00
,1,2-Trimethylcyclopentane	0	0	0	0	0
2-Methylheptane	0			0	0
l-Methylheptane	0			0	0
3,4-Dimethylhexane 3-Methylheptane	0	•		0	0
B-Ethylhexane	0	0		0	0
,c-3-Dimethylcyclohexane	0	0	0	0	0
,t-4-Dimethylcyclohexane	0	0	0	0	0
,1-Dimethylcyclohexane	0	0	0	0	0
2,2,4-Trimethylhexane Cycloheptane	0	0	0	0	0
n-Octane	1.31032E-06	-	•	-	0.000462455
,t-3-Dimethylcyclohexane	0			0	0
2,2-Dimethylheptane	0	· ·		0	0
2,4-Dimethylheptane	0	0	-	0	0
2,6-Dimethylheptane 2,5-Dimethylheptane	0	0	•	0	0
Ethylcyclohexane	0	0	6	0	0
3,3-Dimethylheptane	0	0	0	0	0
2,3,4-Trimethylhexane	0	-	-	0	0
	0.113853			0.113853	0.135192
2,3-Dimethylheptane n-Xylene	0 0.159297			0 0.159297	0 0.164110
p-Xylene	0.139297			0.133237	0.104110
3,4-Dimethylheptane	0	0	0	0	0
2-Methyloctane	0	0	0	0	0
l-Methyloctane	0	0	•	0	0
3-Methyloctane	0	0	•	0	0
p-Xylene ,1,2-Trimethylcyclohexane	0	•	•	0	
n-Nonane	4.38169E-07		0.000176657	4.38169E-07	0.000168982
sopropylbenzene	0	-	0	0	0
n-Butylcyclopentane	0	0	-	0	0
n-Propylbenzene n-Ethyltoluene	0	0	•	0	0
n-Ethyltoluene	0	0	-	0	0
I-Methylnonane	0	0	•	0	o
2-Methylnonane	0	0	0	0	0
-Butylbenzene	0	0	•	0	0
Butylcyclohexane I-Decane	0 3.41005E-10	•		0 3.41005E-10	0 6.37710E-07
i-Decane Jndecane	3.41005E-10 7.34374E-11				6.37710E-07 2.33529E-07
Dodecane	0			0	0
ridecane	0	0	0	0	0
Nitrogen	0.000487609			0.000487609	0.0189055
Carbon Dioxide	79.7738				75.0414
Hydrogen Sulfide Ass Flow	5.13448	3.40561 lb/h	3.30245 b/h	5.13448 lb/h	3.40924 lb/h
Vater Gas	0				
Vater	0.00623670				2.39358
Aethane	0.000907389	3.12512	3.12084	0.0141884	3.12643
Ethane	0.000919034	2.08976	2.08740	0.0143705	2.09246
Propane	0.000341943				1.09615
-Butane	2.29753E-05 0.000147439			0.000359254 0.00230543	0.103765 0.514223
-Butane -Pentane	1.46826E-05			0.00230543	0.514223
n-Pentane	2.81779E-06				0.0350699
leohexane	0	0	0	0	
2,3-Dimethylbutane	0			0	0
2-Methylpentane	0	0	0	0	0

3-Methylpentane	0	0	0	0	0
n-Hexane	3.91627E-07	0.00712083	0.00711958	6.12368E-06	0.00712182
2,2-Dimethylpentane	0	0	0	0	0
<i>M</i> ethylcyclopentane	0	0	0	0	0
2,4-Dimethylpentane	0	0	0	0	0
Benzene	0.0474041	6.14443	6.38489	0.741234	7.16596
3,3-Dimethylpentane	0	0	0	0	0
Cyclohexane	0	0	0	0	0
2-Methylhexane	0	0	0	0	0
2,3-Dimethylpentane	0	0	0	0	0
,1-Dimethylcyclopentane	0	0	0	0	0
3-Methylhexane	0	0	0	0	0
,t-3-Dimethylcyclopentane	0	0	0	0	0
,c-3-Dimethylcyclopentane	0	0	0	0	0
2,2,4-Trimethylpentane	0	0	0	0	0
n-Heptane	1.61398E-07	0.00404586	0.00404562	2.52371E-06	0.00404649
Methylcyclohexane	0	0	0	0	0
1,1,3-Trimethylcyclopentane	0	0	0	0	0
2,5-Dimethylhexane	0	0	U	0	0
2,4-Dimethylhexane	0	0	U	0	0
3,3-Dimethylhexane	0	0	0	0	0
,t-2,c-3-Trimethylcyclopentane 2,3,4-Trimethylpentane	0	0	0	0	0
oluene	0.0185516	2.59834	2.67204	0.290082	0 2.94087
2,3-Dimethylhexane	0.0185510	2.59634	2.07204	0.290082	2.34007
,1,2-Trimethylcyclopentane	0	0	0	0	0
2-Methylheptane	0	0	0 n	0	0
I-Methylheptane	0	0	0	0	0
3,4-Dimethylhexane	0	0 0	0	0	0
3-Methylheptane	0 0	0	0	0	
B-Ethylhexane	0	0 0	0	0	0
,c-3-Dimethylcyclohexane	0	0	0	0	0
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	n	n	0 0	0	0
,1-Dimethylcyclohexane	n	n	0	0	0
2,2,4-Trimethylhexane	0	0	0	0	0
Cycloheptane	0	0	0	0	0
n-Octane	6.59217E-09	0.000425854	0.000425831	1.03078E-07	0.000425873
,t-3-Dimethylcyclohexane	0	0	0	0	0
2,2-Dimethylheptane	0	0	0	0	0
2,4-Dimethylheptane	0	0	0	0	0
2,6-Dimethylheptane	0	0	0	0	0
2,5-Dimethylheptane	0	0	0	0	0
thylcyclohexane	0	0	0	0	0
3,3-Dimethylheptane	0	0	0	0	0
2,3,4-Trimethylhexane	0	0	0	0	0
Ethylbenzene	0.000572792	0.108735	0.114540	0.00895647	0.124498
2,3-Dimethylheptane	0	0	0	0	0
n-Xylene	0.000801419	0.139590	0.141790	0.0125314	0.151129
p-Xylene	0	0	0	0	0
3,4-Dimethylheptane	0	0	0	0	0
2-Methyloctane	0	0	0	0	0
I-Methyloctane	0	0	0	0	0
3-Methyloctane	0	0	0	0	0
o-Xylene	0	0	0	0	0
,1,2-Trimethylcyclohexane	0	0	0	0	0
n-Nonane	2.20442E-09	0.000155596	0.000155603	3.44694E-08	0.000155615
sopropylbenzene	0	0	0	0	0
n-Butylcyclopentane	0	0	0	0	0
n-Propylbenzene	0	0	0	0	0
n-Ethyltoluene	0	0	0	0	0
-Ethyltoluene	0	0	0	0	0
-Methylnonane	0	0	0	0	0
2-Methylnonane	0	0	0	0	0
-Butylbenzene	0	0	0	0	0
Butylcyclohexane	0	0	0	0	0
n-Decane	1.71559E-12	5.87248E-07	5.87251E-07	2.68258E-11	5.87266E-07
Jndecane	3.69462E-13	2.15046E-07	2.15052E-07	5.77709E-12	2.15056E-07
Dodecane	0	0	0	0	0
Tridecane	0	0	0	0	0
Nitrogen	2.45315E-06	0.0174067	0.0173948	3.83587E-05	0.0174100
Carbon Dioxide	0.401340	67.9745	67.0906	6.27556	69.1054
Hydrogen Sulfide	0.0258314	3.00418	2.90887	0.403913	3.13956

Process Streams		Breathing	Flash	Liquids	Produced Water w/ Hydrocarbon	Working	2
Properties	Status:	Solved	Solved	Solved	Solved	Solved	Solved
Phase: Vapor	From Block:	<b>TANK-100</b>	<b>TANK-100</b>	<b>TANK-100</b>	-	<b>TANK-100</b>	<b>VLVE-100</b>
	To Block:				VLVE-100		<b>TANK-100</b>
Property	Units						
Temperature	°F	73.4428	73.4428		97.2586	73.4428	97.1263
Pressure	psia	13.26	13.26		19.6959	13.26	14.6959
Mole Fraction Vapor	%	100	100		100	100	100
Mole Fraction Light Liquid	%	0	0		0	0	(
Mole Fraction Heavy Liquid	%	0	0		0	0	(
Phase Mole Fraction	%	98.2969	100		0.462179	98.2969	0.484842
Molecular Weight	lb/lbmol	45.1498	41.8195		41.5535	45.1498	41.4134
Mass Density	lb/ft^3	0.105352	0.0975083		0.138029	0.105352	0.102473
Molar Flow	lbmol/h	0.0111428	2.10937		2.11972	0.174235	2.22367
Mass Flow	lb/h	0.503098	88.2127		88.0820	7.86669	92.089
Vapor Volumetric Flow	ft^3/h	4.77540	904.669		638.142	74.6705	898.67
Liquid Volumetric Flow	gpm	0.595374	112.790		79.5606	9.30957	112.04
Std Vapor Volumetric Flow	MMSCFD	0.000101485	0.0192113		0.0193056	0.00158687	0.0202523
Std Liquid Volumetric Flow	sgpm	0.00122497	0.236001		0.235353	0.0191542	0.24472
Compressibility		0.993286	0.994026		0.992092	0.993286	0.993966

Specific Gravity		1.55891	1.44392	1.43474	1.55891	1.42990
API Gravity						
Enthalpy	Btu/h	-1563.48	-276135	-275176	-24447.4	-286472
Mass Enthalpy	Btu/lb	-3107.71	-3130.33	-3124.09	-3107.71	-3110.79
Mass Cp	Btu/(lb*°F)	0.215859	0.233326	0.240230	0.215859	0.240948
Ideal Gas CpCv Ratio		1.25793	1.25735	1.25062	1.25793	1.25019
Dynamic Viscosity	сP	0.0138851	0.0136471	0.0141843	0.0138851	0.0141287
Kinematic Viscosity	cSt	8.22780	8.73733	6.41533	8.22780	8.60740
Thermal Conductivity	Btu/(h*ft*°F)	0.00906961	0.0101568	0.0108261	0.00906961	0.0107641
Surface Tension	lbf/ft					
Net Ideal Gas Heating Value	Btu/ft^3	329.975	403.643	407.698	329.975	412.917
Net Liquid Heating Value	Btu/lb	2664.85	3558.16	3612.35	2664.85	3665.45
Gross Ideal Gas Heating Value	Btu/ft^3	348.247	434.029	438.857	348.247	444.623
Gross Liquid Heating Value	Btu/lb	2818.42	3833.94	3896.95	2818.42	3956.02

Process Streams		Breathing	Flash	Liquids	Produced Water w/ Hydrocarbon	Working	2
Composition	Status:	Solved	Solved	Solved	Solved	Solved	Solved
	rom Block:	TANK-100	<b>TANK-100</b>	<b>TANK-100</b>	-	TANK-100	<b>VLVE-100</b>
Mole Fraction	To Block:	 %			VLVE-100	 %	TANK-100
Water Gas		<b>/0</b>				<b>/0</b>	
Water		0.255437				0.255437	
Methane		0.00127244				0.00127244	
Ethane		0.00501286				0.00501286	
Propane		0.00419547				0.00419547	
i-Butane n-Butane		0.000431674 0.00475980				0.000431674 0.00475980	
i-Pentane		0.00119523				0.00119523	
n-Pentane		0.000309611				0.000309611	
Neohexane		0				0	
2,3-Dimethylbutane		0				0	
2-Methylpentane		0 0				0	
3-Methylpentane n-Hexane		0.000104235				0.000104235	
2,2-Dimethylpentane		0.000104200				0.000104200	
Methylcyclopentane		0				0	
2,4-Dimethylpentane		0				0	
Benzene		42.3347				42.3347	
3,3-Dimethylpentane		0				0	
Cyclohexane 2-Methylhexane		0				0	
2.3-Dimethylpentane		0				0	
1,1-Dimethylcyclopentane		0				0	
3-Methylhexane		0				0	
1,t-3-Dimethylcyclopentane		0				0	
1,c-3-Dimethylcyclopentane		0				0	
2,2,4-Trimethylpentane n-Heptane		0 0.000128516				0 0.000128516	
Methylcyclohexane		0.000120310				0.000120310	
1,1,3-Trimethylcyclopentane		0				0	
2,5-Dimethylhexane		0				0	
2,4-Dimethylhexane		0				0	
3,3-Dimethylhexane		0				0	
1,t-2,c-3-Trimethylcyclopentane 2,3,4-Trimethylpentane		0 0				0	
Toluene		45.8525				45.8525	
2,3-Dimethylhexane		0				0	
1,1,2-Trimethylcyclopentane		0				0	
2-Methylheptane		0				0	
4-Methylheptane		0				0	
3,4-Dimethylhexane 3-Methylheptane		0				0	
3-Ethylhexane		0				0	
1,c-3-Dimethylcyclohexane		0				0	
1,t-4-Dimethylcyclohexane		0				0	
1,1-Dimethylcyclohexane		0				0	
2,2,4-Trimethylhexane		0				0	
Cycloheptane n-Octane		0 1.44928E-05				0 1.44928E-05	
1,t-3-Dimethylcyclohexane		1.44926E-05 0				1.44928E-05 0	
2,2-Dimethylheptane		0				0	
2,4-Dimethylheptane		0				0	
2,6-Dimethylheptane		0				0	
2,5-Dimethylheptane		0				0	
Ethylcyclohexane 3,3-Dimethylheptane		0				0	
2,3,4-Trimethylhexane		0				0	
Ethylbenzene		4.69388				4.69388	
2,3-Dimethylheptane		0				0	
m-Xylene		5.52886				5.52886	
p-Xylene		0				0	
3,4-Dimethylheptane		0				0	
2-Methyloctane 4-Methyloctane		0				0	
3-Methyloctane		0				0	
o-Xylene		0				0	
1,1,2-Trimethylcyclohexane		0				0	
n-Nonane		9.97883E-06				9.97883E-06	
Isopropylbenzene		0				0	
n-Butylcyclopentane		0				0 0	
n-Propylbenzene		-					
m-Ethyltoluene		0				0	

4-Methylnonane	0	0
2-Methylnonane	0	0
-Butylbenzene	0	0
Butylcyclohexane	0	0
n-Decane Undecane	1.90064E-08	1.90064E-08
Dodecane	9.82461E-09 0	9.82461E-09 0
Tridecane	0	0
Nitrogen	3.86315E-07	3.86315E-07
Carbon Dioxide	0.938501	0.938501
Hydrogen Sulfide	0.378655	0.378655
Molar Flow	lbmol/h	lbmol/h
Water Gas	0	0
Water	1.41719E-07	2.21598E-06
Methane	7.05960E-10	1.10387E-08
Ethane	2.78117E-09	4.34878E-08
Propane	2.32768E-09	3.63967E-08
-Butane	2.39496E-10	3.74488E-09
n-Butane	2.64077E-09	4.12924E-08
-Pentane	6.63125E-10	1.03690E-08
n-Pentane	1.71774E-10	2.68595E-09
Neohexane	0	0
2,3-Dimethylbutane	0	0
2-Methylpentane	0	0
3-Methylpentane	0	0
n-Hexane	5.78302E-11	9.04262E-10
2,2-Dimethylpentane	0	0
Methylcyclopentane	0	0
2,4-Dimethylpentane	0	0
Benzene	2.34876E-05 0	0.000367264 0
3,3-Dimethylpentane Cyclohexane	0	0
Cyclonexane 2-Methylhexane	0	0
2,3-Dimethylpentane	0	0
1,1-Dimethylcyclopentane	0	0
3-Methylhexane	0	0
1,t-3-Dimethylcyclopentane	0	0
1,c-3-Dimethylcyclopentane	0	0
2,2,4-Trimethylpentane	0	0
n-Heptane	7.13015E-11	1.11491E-09
Methylcyclohexane	0	0
1,1,3-Trimethylcyclopentane	0	0
2,5-Dimethylhexane	0	0
2,4-Dimethylhexane	0	0
3,3-Dimethylhexane	0	0
1,t-2,c-3-Trimethylcyclopentane	0	0
2,3,4-Trimethylpentane	0	0
	2.54393E-05	0.000397782
2,3-Dimethylhexane	0	0
1,1,2-Trimethylcyclopentane	0	0
2-Methylheptane	0	0
4-Methylheptane 3,4-Dimethylhexane	0	0
3,4-Dimethylnexane 3-Methylheptane	0	0
3-Ethylhexane	0	0
1,c-3-Dimethylcyclohexane	0	0
1,t-4-Dimethylcyclohexane	0	0
1,1-Dimethylcyclohexane	0	0
2,2,4-Trimethylhexane	0	0
Cycloheptane	0	0
n-Octane	8.04073E-12	1.25729E-10
1,t-3-Dimethylcyclohexane	0	0
2,2-Dimethylheptane	0	0
2,4-Dimethylheptane	0	0
2,6-Dimethylheptane	0	0
2,5-Dimethylheptane	0	0
Ethylcyclohexane	0	0
3,3-Dimethylheptane	0	0
2,3,4-Trimethylhexane	0	0
Ethylbenzene	2.60420E-06	4.07206E-05
2,3-Dimethylheptane	0 3.06745E-06	0 4.79642E-05
m-Xylene p-Xylene	3.06745E-06 0	4.79642E-05 0
р-Хујепе 3,4-Dimethylheptane	0	0
2-Methyloctane	0	0
4-Methyloctane	0	0
3-Methyloctane	0	0
p-Xylene	0	0
1,1,2-Trimethylcyclohexane	0	0
n-Nonane	5.53633E-12	8.65688E-11
sopropylbenzene	0	0
n-Butylcyclopentane	0	0
n-Propylbenzene	0	0
m-Ethyltoluene	0	0
p-Ethyltoluene	0	0
4-Methylnonane	0	0
2-Methylnonane	0	0
Butylbenzene	0	0
Butylcyclohexane	0	0
	1.05449E-14	1.64886E-13
n-Decane		
n-Decane Undecane	5.45077E-15	8.52309E-14
n-Decane Undecane Dodecane	5.45077E-15 0	8.52309E-14 0
n-Decane Undecane	5.45077E-15	8.52309E-14

Carbon Dioxide Hydrogen Sulfide	5.20687E-07 2.10081E-07	8.14173E-06 3.28493E-06
Mass Fraction	%	%
Vater Gas	0	0
Vater	0.0530371	0.0530371
Aethane	0.000235268	0.000235268
thane	0.00173724	0.00173724
Propane -Butane	0.00213221 0.000289169	0.00213221 0.000289169
-Butane	0.00318849	0.00318849
-Pentane	0.000993886	0.00093886
n-Pentane	0.000257454	0.000257454
Neohexane	0	0.000201404
2,3-Dimethylbutane	0	0
2-Methylpentane	0	0
B-Methylpentane	0	0
n-Hexane	0.000103526	0.000103526
2,2-Dimethylpentane	0	0
Vethylcyclopentane	0	0
2,4-Dimethylpentane	0	0
Benzene	38.1126	38.1126
3,3-Dimethylpentane	0	0
Cyclohexane	0	0
2-Methylhexane	0	0
2,3-Dimethylpentane	0	0
1,1-Dimethylcyclopentane	0	0
3-Methylhexane	0	0
1,t-3-Dimethylcyclopentane	0	0
1,c-3-Dimethylcyclopentane	0	0
2,2,4-Trimethylpentane	0	0
n-Heptane	0.000148418	0.000148418
Methylcyclohexane	0	0
1,1,3-Trimethylcyclopentane	0	0
2,5-Dimethylhexane	0	0
2,4-Dimethylhexane	0	0
3,3-Dimethylhexane	0	0
1,t-2,c-3-Trimethylcyclopentane	0	0
2,3,4-Trimethylpentane	0	0
Toluene	48.6921	48.6921
2,3-Dimethylhexane	0	0
1,1,2-Trimethylcyclopentane	0	0
2-Methylheptane	0	0
4-Methylheptane	0	0
3,4-Dimethylhexane	0	0
3-Methylheptane	0	0
3-Ethylhexane	0	0
1,c-3-Dimethylcyclohexane	0	0
1,t-4-Dimethylcyclohexane	0	0
1,1-Dimethylcyclohexane	0	0
2,2,4-Trimethylhexane	0	0
Cycloheptane	0	0
n-Octane	1.90802E-05	1.90802E-05
1,t-3-Dimethylcyclohexane	0	0
2,2-Dimethylheptane	0	0
2,4-Dimethylheptane	0	0
2,6-Dimethylheptane	0	0
2,5-Dimethylheptane	0	0
Ethylcyclohexane	0	0
3,3-Dimethylheptane	0	0
2,3,4-Trimethylhexane	0	0
Ethylbenzene	5.74338	5.74338
2,3-Dimethylheptane	0	0
m-Xylene	6.76505	6.76505
o-Xylene	0	0
3,4-Dimethylheptane	0	0
2-Methyloctane	0	0
4-Methyloctane	0	0
3-Methyloctane	0	0
o-Xylene	0	0
1,1,2-Trimethylcyclohexane	0	0
n-Nonane	1.47506E-05	1.47506E-05
sopropylbenzene	0	0
n-Butylcyclopentane	0	0
n-Propylbenzene	0	0
m-Ethyltoluene	0	0
p-Ethyltoluene	0	0
4-Methylnonane	0	0
2-Methylnonane	0	0
Butylbenzene	0	0
Butylcyclohexane	0	0
n-Decane	3.11677E-08	3.11677E-08
Jndecane	1.76991E-08	1.76991E-08
Dodecane	0	0
Tridecane	0	0
Nitrogen	1.24728E-07	1.24728E-07
Carbon Dioxide	0.476031	0.476031
Hydrogen Sulfide	0.148734	0.148734
Mass Flow	lb/h	<b>ib/h</b>
Water Gas	0	
		0 3 99215E-05
Water Methono	2.55310E-06	3.99215E-05
Methane	1.13253E-08	1.77089E-07
Ethane	8.36272E-08	1.30764E-06
Propane	1.02640E-07 1.39200E-08	1.60494E-06 2.17660E-07
-Butane		2.1/660E-0/

n-Butane		1.53487E-07				2.40001E-06		
i-Pentane		4.78437E-08				7.48108E-07		
n-Pentane		1.23933E-08				1.93788E-07		
Neohexane		0				0		
2,3-Dimethylbutane		0				0		
2-Methylpentane		0				0		
3-Methylpentane		0				0		
n-Hexane		4.98354E-09				7.79251E-08		
2,2-Dimethylpentane		0				0		
Methylcyclopentane 2,4-Dimethylpentane		0				0		
Benzene		0.00183466				0.0286877		
3,3-Dimethylpentane		0.00183400				0.0280877		
Cyclohexane		0				0		
2-Methylhexane		0				0		
2,3-Dimethylpentane		0				0		
1,1-Dimethylcyclopentane		0				0		
3-Methylhexane		0				0		
1,t-3-Dimethylcyclopentane		0				0		
1,c-3-Dimethylcyclopentane		0				0		
2,2,4-Trimethylpentane		0				0		
n-Heptane		7.14455E-09				1.11716E-07		
Methylcyclohexane		0				0		
1,1,3-Trimethylcyclopentane		0				0		
2,5-Dimethylhexane		0				0		
2,4-Dimethylhexane		0				0		
3,3-Dimethylhexane		0				0		
1,t-2,c-3-Trimethylcyclopentane		0				0		
2,3,4-Trimethylpentane		0				0		
		0.00234394				0.0366510		
2,3-Dimethylhexane		0				0		
1,1,2-Trimethylcyclopentane		0				0		
2-Methylheptane		0				0		
4-Methylheptane		0				0		
3,4-Dimethylhexane		0				0		
3-Methylheptane 3-Ethylhexane		0				0		
1,c-3-Dimethylcyclohexane		0				0		
1,t-4-Dimethylcyclohexane		0				0		
1,1-Dimethylcyclohexane		0				0		
2,2,4-Trimethylhexane		0				0		
Cycloheptane		0				0		
n-Octane		9.18481E-10				1.43618E-08		
1,t-3-Dimethylcyclohexane		0				0		
2,2-Dimethylheptane		0				0		
2,4-Dimethylheptane		0				0		
2,6-Dimethylheptane		0				0		
2,5-Dimethylheptane		0				0		
Ethylcyclohevane								
Ethylcyclohexane		0				0		
3,3-Dimethylheptane		0				0		
3,3-Dimethylheptane 2,3,4-Trimethylhexane		0				0		
3,3-Dimethylheptane 2,3,4-Trimethylhexane Ethylbenzene		0 0 0.000276475				0 0 0.00432310		
3,3-Dimethylheptane 2,3,4-Trimethylhexane Ethylbenzene 2,3-Dimethylheptane		0 0 0.000276475 0				0 0 0.00432310 0		
3,3-Dimethylheptane 2,3,4-Trimethylhexane Ethylbenzene 2,3-Dimethylheptane m-Xylene		0 0 0.000276475 0 0.000325656				0 0 0.00432310 0 0.00509212		
3,3-Dimethylheptane 2,3,4-Trimethylhexane Ethylbenzene 2,3-Dimethylheptane m-Xylene p-Xylene		0 0 0.000276475 0 0.000325656 0				0 0 0.00432310 0 0.00509212 0		
3,3-Dimethylheptane 2,3,4-Trimethylhexane Ethylbenzene 2,3-Dimethylheptane m-Xylene p-Xylene 3,4-Dimethylheptane		0 0 0.000276475 0 0.000325656 0 0				0 0 0.00432310 0 0.00509212 0 0		
3,3-Dimethylheptane 2,3,4-Trimethylhexane Ethylbenzene 2,3-Dimethylheptane m-Xylene p-Xylene 3,4-Dimethylheptane 2-Methyloctane		0 0 0.000276475 0 0.000325656 0				0 0 0.00432310 0 0.00509212 0		
3,3-Dimethylheptane 2,3,4-Trimethylhexane Ethylbenzene 2,3-Dimethylheptane m-Xylene p-Xylene 3,4-Dimethylheptane 2-Methyloctane 4-Methyloctane		0 0 0.000276475 0 0.000325656 0 0 0 0				0 0.00432310 0.00509212 0 0 0		
3,3-Dimethylheptane 2,3,4-Trimethylhexane Ethylbenzene 2,3-Dimethylheptane m-Xylene p-Xylene 3,4-Dimethylheptane 2-Methyloctane 4-Methyloctane 3-Methyloctane		0 0 0.000276475 0 0.000325656 0 0 0 0 0 0 0 0				0 0.00432310 0.00509212 0 0 0 0 0		
3,3-Dimethylheptane 2,3,4-Trimethylhexane Ethylbenzene 2,3-Dimethylheptane m-Xylene p-Xylene 3,4-Dimethylheptane 2-Methyloctane 4-Methyloctane 3-Methyloctane o-Xylene		0 0 0.000276475 0 0.000325656 0 0 0 0 0 0 0 0 0 0 0 0 0				0 0.00432310 0.00509212 0 0 0 0 0 0 0 0		
<ul> <li>3,3-Dimethylheptane</li> <li>2,3,4-Trimethylhexane</li> <li>Ethylbenzene</li> <li>2,3-Dimethylheptane</li> <li>m-Xylene</li> <li>p-Xylene</li> <li>3,4-Dimethylheptane</li> <li>2-Methyloctane</li> <li>4-Methyloctane</li> <li>3-Methyloctane</li> <li>o-Xylene</li> <li>1,1,2-Trimethylcyclohexane</li> <li>n-Nonane</li> </ul>		0 0.000276475 0 0.000325656 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				0 0.00432310 0 0.00509212 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
<ul> <li>3,3-Dimethylheptane</li> <li>2,3,4-Trimethylhexane</li> <li>Ethylbenzene</li> <li>2,3-Dimethylheptane</li> <li>m-Xylene</li> <li>p-Xylene</li> <li>3,4-Dimethylheptane</li> <li>2-Methyloctane</li> <li>4-Methyloctane</li> <li>3-Methyloctane</li> <li>o-Xylene</li> <li>1,1,2-Trimethylcyclohexane</li> <li>n-Nonane</li> <li>Isopropylbenzene</li> </ul>		0 0 0.000276475 0 0.000325656 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				0 0.00432310 0.00509212 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
3,3-Dimethylheptane 2,3,4-Trimethylhexane Ethylbenzene 2,3-Dimethylheptane m-Xylene p-Xylene 3,4-Dimethylheptane 2-Methyloctane 4-Methyloctane 3-Methyloctane o-Xylene 1,1,2-Trimethylcyclohexane n-Nonane Isopropylbenzene n-Butylcyclopentane		0 0 0.000276475 0 0.000325656 0 0 0 0 0 0 0 7.10062E-10				0 0.00432310 0 0.00509212 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
3,3-Dimethylheptane 2,3,4-Trimethylhexane Ethylbenzene 2,3-Dimethylheptane m-Xylene p-Xylene 3,4-Dimethylheptane 2-Methyloctane 3-Methyloctane 3-Methyloctane 0-Xylene 1,1,2-Trimethylcyclohexane n-Nonane Isopropylbenzene n-Butylcyclopentane n-Propylbenzene		0 0.000276475 0 0.000325656 0 0 0 0 0 0 7.10062E-10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				0 0.00432310 0 0.00509212 0 0 0 0 0 0 0 0 1.11029E-08 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
3,3-Dimethylheptane 2,3,4-Trimethylhexane Ethylbenzene 2,3-Dimethylheptane m-Xylene p-Xylene 3,4-Dimethylheptane 2-Methyloctane 4-Methyloctane 3-Methyloctane 0-Xylene 1,1,2-Trimethylcyclohexane n-Nonane Isopropylbenzene n-Butylcyclopentane n-Propylbenzene m-Ethyltoluene		0 0.000276475 0 0.000325656 0 0 0 0 0 0 7.10062E-10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				0 0.00432310 0 0.00509212 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
3,3-Dimethylheptane 2,3,4-Trimethylhexane Ethylbenzene 2,3-Dimethylheptane m-Xylene p-Xylene 3,4-Dimethylheptane 2-Methyloctane 4-Methyloctane 3-Methyloctane o-Xylene 1,1,2-Trimethylcyclohexane n-Nonane Isopropylbenzene n-Butylcyclopentane n-Propylbenzene m-Ethyltoluene p-Ethyltoluene		0 0.000276475 0 0.000325656 0 0 0 0 0 0 7.10062E-10 0 0 7.10062E-10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				0 0.00432310 0 0.00509212 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
3,3-Dimethylheptane 2,3,4-Trimethylhexane Ethylbenzene 2,3-Dimethylheptane m-Xylene 3,4-Dimethylheptane 2-Methyloctane 4-Methyloctane 3-Methyloctane 0-Xylene 1,1,2-Trimethylcyclohexane n-Nonane Isopropylbenzene n-Butylcyclopentane n-Propylbenzene m-Ethyltoluene p-Ethyltoluene 4-Methylnonane		0 0.000276475 0 0.000325656 0 0 0 0 0 7.10062E-10 0 7.10062E-10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				0 0.00432310 0 0.00509212 0 0 0 0 0 0 0 0 0 1.11029E-08 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
3,3-Dimethylheptane 2,3,4-Trimethylhexane Ethylbenzene 2,3-Dimethylheptane m-Xylene 3,4-Dimethylheptane 2-Methyloctane 4-Methyloctane 3-Methyloctane 0-Xylene 1,1,2-Trimethylcyclohexane n-Nonane Isopropylbenzene n-Butylcyclopentane n-Propylbenzene m-Ethyltoluene p-Ethyltoluene 4-Methylnonane 2-Methylnonane		0 0.000276475 0 0.000325656 0 0 0 0 0 7.10062E-10 0 7.10062E-10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				0 0.00432310 0 0.00509212 0 0 0 0 0 0 0 0 0 1.11029E-08 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
3,3-Dimethylheptane 2,3,4-Trimethylhexane Ethylbenzene 2,3-Dimethylheptane m-Xylene p-Xylene 3,4-Dimethylheptane 2-Methyloctane 4-Methyloctane o-Xylene 1,1,2-Trimethylcyclohexane n-Nonane Isopropylbenzene n-Butylcyclopentane n-Propylbenzene m-Ethyltoluene p-Ethyltoluene 4-Methylnonane 2-Methylnonane t-Butylbenzene		0 0.000276475 0 0.000325656 0 0 0 0 0 7.10062E-10 0 7.10062E-10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				0 0.00432310 0 0.00509212 0 0 0 0 0 0 0 0 0 1.11029E-08 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
3,3-Dimethylheptane 2,3,4-Trimethylhexane Ethylbenzene 2,3-Dimethylheptane m-Xylene p-Xylene 3,4-Dimethylheptane 2-Methyloctane 4-Methyloctane 3-Methyloctane 0-Xylene 1,1,2-Trimethylcyclohexane n-Nonane Isopropylbenzene n-Butylcyclopentane n-Propylbenzene m-Ethyltoluene p-Ethyltoluene 4-Methylnonane 2-Methylnonane t-Butylcyclohexane		0 0.000276475 0 0.000325656 0 0 0 0 0 7.10062E-10 0 7.10062E-10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				0 0.00432310 0 0.00509212 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
3,3-Dimethylheptane 2,3,4-Trimethylhexane Ethylbenzene 2,3-Dimethylheptane m-Xylene p-Xylene 3,4-Dimethylheptane 2-Methyloctane 4-Methyloctane 3-Methyloctane 0-Xylene 1,1,2-Trimethylcyclohexane n-Nonane Isopropylbenzene n-Butylcyclopentane n-Propylbenzene m-Ethyltoluene p-Ethyltoluene 4-Methylnonane 2-Methylnonane t-Butylcyclohexane n-Decane		0 0.000276475 0 0.000325656 0 0 0 0 0 7.10062E-10 0 7.10062E-10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				0 0.00432310 0 0.00509212 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
3,3-Dimethylheptane 2,3,4-Trimethylhexane Ethylbenzene 2,3-Dimethylheptane m-Xylene p-Xylene 3,4-Dimethylheptane 2-Methyloctane 4-Methyloctane 3-Methyloctane o-Xylene 1,1,2-Trimethylcyclohexane n-Nonane Isopropylbenzene n-Butylcyclopentane n-Propylbenzene m-Ethyltoluene p-Ethyltoluene 4-Methylnonane 2-Methylnonane t-Butylcyclohexane n-Decane Undecane		0 0.000276475 0 0.000325656 0 0 0 0 0 7.10062E-10 0 7.10062E-10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				0 0.00432310 0 0.00509212 0 0 0 0 0 0 0 0 1.11029E-08 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
3,3-Dimethylheptane 2,3,4-Trimethylhexane Ethylbenzene 2,3-Dimethylheptane m-Xylene p-Xylene 3,4-Dimethylheptane 2-Methyloctane 4-Methyloctane 3-Methyloctane 0-Xylene 1,1,2-Trimethylcyclohexane n-Nonane Isopropylbenzene n-Butylcyclopentane n-Propylbenzene m-Ethyltoluene p-Ethyltoluene 4-Methylnonane 2-Methylnonane t-Butylcyclohexane n-Decane Undecane Dodecane		0 0.000276475 0 0.000325656 0 0 0 0 0 7.10062E-10 0 7.10062E-10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				0 0.00432310 0 0.00509212 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
3,3-Dimethylheptane 2,3,4-Trimethylhexane Ethylbenzene 2,3-Dimethylheptane m-Xylene p-Xylene 3,4-Dimethylheptane 2-Methyloctane 3-Methyloctane 3-Methyloctane 0-Xylene 1,1,2-Trimethylcyclohexane n-Nonane Isopropylbenzene n-Butylcyclopentane n-Propylbenzene m-Ethyltoluene p-Ethyltoluene p-Ethyltoluene 4-Methylnonane 2-Methylnonane t-Butylcyclohexane n-Decane Undecane Dodecane Tridecane		0 0.000276475 0 0.000325656 0 0 0 0 0 7.10062E-10 0 7.10062E-10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				0 0.00432310 0 0.00509212 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
3,3-Dimethylheptane 2,3,4-Trimethylhexane Ethylbenzene 2,3-Dimethylheptane m-Xylene p-Xylene 3,4-Dimethylheptane 2-Methyloctane 4-Methyloctane 3-Methyloctane o-Xylene 1,1,2-Trimethylcyclohexane n-Nonane Isopropylbenzene n-Butylcyclopentane n-Propylbenzene m-Ethyltoluene p-Ethyltoluene 4-Methylnonane 2-Methylnonane t-Butylcyclohexane n-Decane Undecane Dodecane Tridecane Nitrogen		0 0.000276475 0 0.000325656 0 0 0 0 0 7.10062E-10 0 7.10062E-10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				0 0.00432310 0 0.00509212 0 0 0 0 0 0 0 0 1.11029E-08 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
3,3-Dimethylheptane 2,3,4-Trimethylhexane Ethylbenzene 2,3-Dimethylheptane m-Xylene p-Xylene 3,4-Dimethylheptane 2-Methyloctane 3-Methyloctane 3-Methyloctane 0-Xylene 1,1,2-Trimethylcyclohexane n-Nonane Isopropylbenzene m-Ethyltoluene p-Ethyltoluene p-Ethyltoluene 4-Methylnonane 2-Methylnonane t-Butylcyclohexane n-Decane Undecane Dodecane Tridecane Nitrogen Carbon Dioxide		0 0.000276475 0 0.000325656 0 0 0 0 0 7.10062E-10 0 7.10062E-10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				0 0.00432310 0 0.00509212 0 0 0 0 0 0 0 0 1.11029E-08 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
3,3-Dimethylheptane 2,3,4-Trimethylhexane Ethylbenzene 2,3-Dimethylheptane m-Xylene p-Xylene 3,4-Dimethylheptane 2-Methyloctane 4-Methyloctane 3-Methyloctane o-Xylene 1,1,2-Trimethylcyclohexane n-Nonane Isopropylbenzene n-Butylcyclopentane n-Propylbenzene m-Ethyltoluene p-Ethyltoluene 4-Methylnonane 2-Methylnonane t-Butylcyclohexane n-Decane Undecane Dodecane Tridecane Nitrogen		0 0.000276475 0 0.000325656 0 0 0 0 0 7.10062E-10 0 7.10062E-10 0 0 7.10062E-10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				0 0.00432310 0 0.00509212 0 0 0 0 0 0 0 0 1.11029E-08 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
3,3-Dimethylheptane 2,3,4-Trimethylhexane Ethylbenzene 2,3-Dimethylheptane m-Xylene p-Xylene 3,4-Dimethylheptane 2-Methyloctane 3-Methyloctane 3-Methyloctane 0-Xylene 1,1,2-Trimethylcyclohexane n-Nonane Isopropylbenzene m-Ethyltoluene p-Ethyltoluene p-Ethyltoluene 4-Methylnonane 2-Methylnonane t-Butylcyclohexane n-Decane Undecane Dodecane Tridecane Nitrogen Carbon Dioxide		0 0.000276475 0 0.000325656 0 0 0 0 0 7.10062E-10 0 7.10062E-10 0 0 7.10062E-10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				0 0.00432310 0 0.00509212 0 0 0 0 0 0 0 0 1.11029E-08 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
3,3-Dimethylheptane 2,3,4-Trimethylhexane Ethylbenzene 2,3-Dimethylheptane m-Xylene p-Xylene 3,4-Dimethylheptane 2-Methyloctane 4-Methyloctane 3-Methyloctane o-Xylene 1,1,2-Trimethylcyclohexane n-Nonane Isopropylbenzene n-Butylcyclopentane n-Propylbenzene m-Ethyltoluene p-Ethyltoluene 4-Methylnonane 2-Methylnonane t-Butylcyclohexane n-Decane Undecane Dodecane Tridecane Nitrogen Carbon Dioxide Hydrogen Sulfide		0 0.000276475 0 0.000325656 0 0 0 0 0 7.10062E-10 0 7.10062E-10 0 0 7.10062E-10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Flash	Liquids	Produced Water w/ Hvdrocarbon	0 0.00432310 0 0.00509212 0 0 0 0 0 0 1.11029E-08 0 0 0 1.11029E-08 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2	
3,3-Dimethylheptane 2,3,4-Trimethylhexane Ethylbenzene 2,3-Dimethylheptane m-Xylene p-Xylene 3,4-Dimethylheptane 2-Methyloctane 4-Methyloctane 3-Methyloctane o-Xylene 1,1,2-Trimethylcyclohexane n-Nonane Isopropylbenzene m-Ethyltoluene p-Ethyltoluene 4-Methylnonane 2-Methylnonane t-Butylcyclohexane n-Decane Undecane Dodecane Tridecane Nitrogen Carbon Dioxide Hydrogen Sulfide	Status	0 0.000276475 0 0.000325656 0 0 0 0 0 7.10062E-10 0 7.10062E-10 0 0 7.10062E-10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		Liquids	Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control	0 0.00432310 0 0.00509212 0 0 0 0 0 0 0 1.11029E-08 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
3,3-Dimethylheptane 2,3,4-Trimethylhexane Ethylbenzene 2,3-Dimethylheptane m-Xylene p-Xylene 3,4-Dimethylheptane 2-Methyloctane 4-Methyloctane 3-Methyloctane o-Xylene 1,1,2-Trimethylcyclohexane n-Nonane Isopropylbenzene n-Butylcyclopentane n-Propylbenzene m-Ethyltoluene p-Ethyltoluene 4-Methylnonane 2-Methylnonane t-Butylcyclohexane n-Decane Undecane Dodecane Tridecane Dodecane Tridecane Nitrogen Carbon Dioxide Hydrogen Sulfide	Status: Erom Block:	0 0.000276475 0 0.000325656 0 0 0 0 0 7.10062E-10 0 7.10062E-10 0 0 7.10062E-10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Solved	Solved	The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s	0 0.00432310 0 0.00509212 0 0 0 0 0 0 0 1.11029E-08 0 0 0 0 1.11029E-08 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Solved	
3,3-Dimethylheptane 2,3,4-Trimethylhexane Ethylbenzene 2,3-Dimethylheptane m-Xylene p-Xylene 3,4-Dimethylheptane 2-Methyloctane 4-Methyloctane 3-Methyloctane o-Xylene 1,1,2-Trimethylcyclohexane n-Nonane Isopropylbenzene m-Ethyltoluene p-Ethyltoluene 4-Methylnonane 2-Methylnonane t-Butylcyclohexane n-Decane Undecane Dodecane Tridecane Nitrogen Carbon Dioxide Hydrogen Sulfide	From Block:	0 0.000276475 0 0.000325656 0 0 0 0 0 0 7.10062E-10 0 0 7.10062E-10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			Solved	0 0.00432310 0 0.00509212 0 0 0 0 0 0 0 1.11029E-08 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Solved VLVE-100	
3,3-Dimethylheptane 2,3,4-Trimethylhexane Ethylbenzene 2,3-Dimethylheptane m-Xylene p-Xylene 3,4-Dimethylheptane 2-Methyloctane 3-Methyloctane 3-Methyloctane o-Xylene 1,1,2-Trimethylcyclohexane n-Nonane Isopropylbenzene m-Butylcyclopentane n-Propylbenzene m-Ethyltoluene p-Ethyltoluene 4-Methylnonane 2-Methylnonane t-Butylcyclohexane n-Decane Undecane Dodecane Tridecane Dodecane Tridecane Nitrogen Carbon Dioxide Hydrogen Sulfide	From Block: To Block:	0 0.000276475 0 0.000325656 0 0 0 0 0 7.10062E-10 0 7.10062E-10 0 0 7.10062E-10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Solved	Solved	-	0 0.00432310 0 0.00509212 0 0 0 0 0 0 0 1.11029E-08 0 0 0 0 1.11029E-08 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Solved	
3,3-Dimethylheptane 2,3,4-Trimethylhexane Ethylbenzene 2,3-Dimethylheptane m-Xylene 9-Xylene 3,4-Dimethylheptane 2-Methyloctane 4-Methyloctane 3-Methyloctane 0-Xylene 1,1,2-Trimethylcyclohexane n-Nonane Isopropylbenzene m-Butylcyclopentane n-Propylbenzene m-Ethyltoluene 4-Methylnonane 2-Methylnonane 2-Methylnonane t-Butylcyclohexane n-Decane Undecane Dodecane Tridecane Nitrogen Carbon Dioxide Hydrogen Sulfide Process Streams Phase: Nonspecific Liquid Property	From Block: To Block: Units	0 0.000276475 0 0.000325656 0 0 0 0 0 7.10062E-10 0 7.10062E-10 0 0 0 7.10062E-10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Solved	Solved	Solved	0 0.00432310 0 0.00509212 0 0 0 0 0 0 1.11029E-08 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Solved VLVE-100	
3,3-Dimethylheptane 2,3,4-Trimethylhexane Ethylbenzene 2,3-Dimethylheptane m-Xylene p-Xylene 3,4-Dimethylheptane 2-Methyloctane 4-Methyloctane 3-Methyloctane o-Xylene 1,1,2-Trimethylcyclohexane n-Nonane Isopropylbenzene m-Butylcyclopentane n-Propylbenzene m-Ethyltoluene 4-Methylnonane 2-Methylnonane 2-Methylnonane t-Butylcyclohexane n-Decane Undecane Dodecane Tridecane Nitrogen Carbon Dioxide Hydrogen Sulfide Process Streams Phase: Nonspecific Liquid Property Temperature	From Block: To Block: Units °F	0 0.000276475 0 0.000325656 0 0 0 0 0 0 7.10062E-10 0 0 7.10062E-10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Solved	Solved	Solved	0 0.00432310 0 0.00509212 0 0 0 0 0 0 0 1.11029E-08 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Solved VLVE-100	
3,3-Dimethylheptane 2,3,4-Trimethylhexane Ethylbenzene 2,3-Dimethylheptane m-Xylene 9-Xylene 3,4-Dimethylheptane 2-Methyloctane 4-Methyloctane 3-Methyloctane 0-Xylene 1,1,2-Trimethylcyclohexane n-Nonane Isopropylbenzene m-Butylcyclopentane n-Propylbenzene m-Ethyltoluene 4-Methylnonane 2-Methylnonane 2-Methylnonane t-Butylcyclohexane n-Decane Undecane Dodecane Tridecane Nitrogen Carbon Dioxide Hydrogen Sulfide Process Streams Phase: Nonspecific Liquid Property	From Block: To Block: Units	0 0.000276475 0 0.000325656 0 0 0 0 0 7.10062E-10 0 7.10062E-10 0 0 0 7.10062E-10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Solved	Solved	Solved	0 0.00432310 0 0.00509212 0 0 0 0 0 0 1.11029E-08 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Solved VLVE-100	
3,3-Dimethylheptane 2,3,4-Trimethylhexane Ethylbenzene 2,3-Dimethylheptane m-Xylene 3,4-Dimethylheptane 2-Methyloctane 3-Methyloctane 3-Methyloctane 0-Xylene 1,1,2-Trimethylcyclohexane n-Nonane Isopropylbenzene m-Butylcyclopentane n-Propylbenzene m-Ethyltoluene 4-Methylnonane 2-Methylnonane 2-Methylnonane 2-Methylnonane t-Butylcyclohexane n-Decane Undecane Dodecane Tridecane Nitrogen Carbon Dioxide Hydrogen Sulfide Process Streams Properties Phase: Nortspecific Liquid Property Temperature Pressure	From Block: To Block: Units °F psia	0 0.000276475 0 0.000325656 0 0 0 0 0 0 7.10062E-10 0 0 7.10062E-10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Solved	Solved	Solved	0 0.00432310 0 0.00509212 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Solved VLVE-100	
3,3-Dimethylheptane 2,3,4-Trimethylhexane Ethylbenzene 2,3-Dimethylheptane m-Xylene 3,4-Dimethylheptane 2-Methyloctane 4-Methyloctane 3-Methyloctane 0-Xylene 1,1,2-Trimethylcyclohexane n-Nonane Isopropylbenzene m-Butylcyclopentane n-Propylbenzene m-Ethyltoluene 4-Methylnonane 2-Methylnonane 2-Methylnonane t-Butylcyclohexane n-Decane Undecane Dodecane Tridecane Nitrogen Carbon Dioxide Hydrogen Sulfide Process Streams Phase: Nonspecific Liquid Property Temperature Pressure Mole Fraction Vapor Mole Fraction Light Liquid Mole Fraction Heavy Liquid	From Block: To Block: Units °F psia %	0 0.000276475 0 0.000325656 0 0 0 0 0 0 7.10062E-10 0 0 7.10062E-10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Solved	Solved	Solved	0 0.00432310 0 0.00509212 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Solved VLVE-100	
3,3-Dimethylheptane 2,3,4-Trimethylhexane Ethylbenzene 2,3-Dimethylheptane m-Xylene 3,4-Dimethylheptane 2-Methyloctane 4-Methyloctane 3-Methyloctane 0-Xylene 1,1,2-Trimethylcyclohexane n-Nonane Isopropylbenzene n-Butylcyclopentane n-Propylbenzene m-Ethyltoluene 4-Methylnonane 2-Methylnonane 2-Methylnonane t-Butylcyclohexane n-Decane Undecane Dodecane Tridecane Dodecane Tridecane Nitrogen Carbon Dioxide Hydrogen Sulfide Process Streams Properties Phase: Nonspecific Liquid Property Temperature Pressure Mole Fraction Vapor Mole Fraction Heavy Liquid Phase Mole Fraction	From Block: To Block: Units °F psia % % % % % %	0 0.000276475 0 0.000325656 0 0 0 0 0 0 0 7.10062E-10 0 0 7.10062E-10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Solved	Solved	Solved	0 0.00432310 0 0.00509212 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Solved VLVE-100	
3,3-Dimethylheptane 2,3,4-Trimethylhexane Ethylbenzene 2,3-Dimethylheptane m-Xylene 3,4-Dimethylheptane 2-Methyloctane 4-Methyloctane 3-Methyloctane 0-Xylene 1,1,2-Trimethylcyclohexane n-Nonane Isopropylbenzene n-Butylcyclopentane n-Propylbenzene m-Ethyltoluene 4-Methylnonane 2-Methylnonane 2-Methylnonane t-Butylcyclohexane n-Decane Undecane Dodecane Tridecane Nitrogen Carbon Dioxide Hydrogen Sulfide Process Streams Properties Phase: Nonspecific Liquid Pressure Mole Fraction Vapor Mole Fraction Light Liquid Mole Fraction Heavy Liquid Phase Mole Fraction Molecular Weight	From Block: To Block: Units °F psia % % % % % % b/lbmol	0 0.000276475 0 0.000325656 0 0 0 0 0 0 0 7.10062E-10 0 0 7.10062E-10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Solved	Solved	Solved	0 0.00432310 0 0.00509212 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Solved VLVE-100	
3,3-Dimethylheptane 2,3,4-Trimethylhexane Ethylbenzene 2,3-Dimethylheptane m-Xylene p-Xylene 3,4-Dimethylheptane 2-Methyloctane 4-Methyloctane 3-Methyloctane o-Xylene 1,1,2-Trimethylcyclohexane n-Nonane Isopropylbenzene m-Butylcyclopentane n-Propylbenzene m-Ethyltoluene 4-Methylnonane 2-Methylnonane 2-Methylnonane t-Butylcyclohexane n-Decane Undecane Dodecane Tridecane Nitrogen Carbon Dioxide Hydrogen Sulfide Process Streams Properties Phase: Nonspecific Liquid Property Temperature Pressure Mole Fraction Vapor Mole Fraction Light Liquid Mole Fraction Heavy Liquid Phase Mole Fraction Molecular Weight Mass Density	From Block: To Block: Units °F psia % % % % % % % b/lbmol lb/ft^3	0 0.000276475 0 0.000325656 0 0 0 0 0 0 0 7.10062E-10 0 0 7.10062E-10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Solved	Solved	Solved	0 0.00432310 0 0.00509212 0 0 0 0 0 0 0 0 1.11029E-08 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Solved VLVE-100	
3,3-Dimethylheptane 2,3,4-Trimethylhexane Ethylbenzene 2,3-Dimethylheptane m-Xylene 3,4-Dimethylheptane 2-Methyloctane 4-Methyloctane 3-Methyloctane 0-Xylene 1,1,2-Trimethylcyclohexane n-Nonane Isopropylbenzene n-Butylcyclopentane n-Propylbenzene m-Ethyltoluene 4-Methylnonane 2-Methylnonane 2-Methylnonane t-Butylcyclohexane n-Decane Undecane Dodecane Tridecane Nitrogen Carbon Dioxide Hydrogen Sulfide Process Streams Properties Phase: Nonspecific Liquid Pressure Mole Fraction Vapor Mole Fraction Light Liquid Mole Fraction Heavy Liquid Phase Mole Fraction Molecular Weight	From Block: To Block: Units °F psia % % % % % % b/lbmol	0 0.000276475 0 0.000325656 0 0 0 0 0 0 0 7.10062E-10 0 0 7.10062E-10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Solved	Solved	Solved	0 0.00432310 0 0.00509212 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Solved VLVE-100	

Mass Flow	lb/h	0.00481380	0.0752709	
Vapor Volumetric Flow	ft^3/h	8.85393E-05	0.00138444	
Liquid Volumetric Flow	gpm	1.10387E-05	0.000172606	
Std Vapor Volumetric Flow	MMSCFD	5.05297E-07	7.90108E-06	
Std Liquid Volumetric Flow	sgpm	1.09853E-05	0.000171771	
Compressibility		0.00369875	0.00369875	
Specific Gravity		0.871736	0.871736	
API Gravity		29.5120	29.5120	
Enthalpy	Btu/h	0.466087	7.28797	
Mass Enthalpy	Btu/lb	96.8231	96.8231	
Mass Cp	Btu/(lb*°F)	0.384719	0.384719	
Ideal Gas CpCv Ratio		1.09550	1.09550	
Dynamic Viscosity	cP	0.590547	0.590547	
Kinematic Viscosity	cSt	0.678082	0.678082	
Thermal Conductivity	Btu/(h*ft*°F)	0.0788674	0.0788674	
Surface Tension	lbf/ft	0.00195349?	0.00195349?	
Net Ideal Gas Heating Value	Btu/ft^3	3986.68	3986.68	
Net Liquid Heating Value	Btu/lb	17254.4	17254.4	
Gross Ideal Gas Heating Value	Btu/ft^3	4169.06	4169.06	
Gross Liquid Heating Value	Btu/lb	18051.5	18051.5	

Process Streams		Breathing	Flash Liquids	Produced Water w/ Hydrocarbon	Working	2
Composition Phase: Aqueous Liquid	Status: From Block:	Solved TANK-100	Solved Solved TANK-100 TANK-100		Solved TANK-100	Solved VLVE-100
hase: Aqueous Liquid	From Block: To Block:	I ANK-100	IANK-100 IANK-100	 VLVE-100	I ANK-100	VLVE-100 TANK-100
Iole Fraction	TO BIOCK.	%	%	%	%	%
Vater Gas		0			0	,*
Vater		99.9314	99.9849	-	99.9314	99.95
<i>l</i> ethane		1.13662E-05	4.59143E-20	0.000264509	1.13662E-05	0.0001883
Ethane		9.31312E-06	2.44962E-20	0.000128605	9.31312E-06	9.17735E-
Propane		1.68000E-06	8.35206E-21		1.68000E-06	2.28773E-
-Butane		6.08721E-08	1.98014E-22		6.08721E-08	1.01774E-
n-Butane		5.05987E-07	1.58412E-21		5.05987E-07	7.53493E-
Pentane		2.91765E-08	1.59518E-22		2.91765E-08 2.19216E-09	5.48529E- 1.28746E-
n-Pentane Neohexane		2.19216E-09 0	1.99398E-23 (		2.19216E-09 0	1.28/40E-
2,3-Dimethylbutane		0	ſ	0	0	
2-Methylpentane		0	C	0	0	
B-Methylpentane		0	C	0	0	
-Hexane		1.76239E-10	4.17355E-24	1.99442E-08	1.76239E-10	1.42464E-
,2-Dimethylpentane		0	C	0	0	
lethylcyclopentane		0	C	0	0	
,4-Dimethylpentane		0	C	0	0	
Benzene		0.0173613	0.00952839		0.0173613	0.008959
,3-Dimethylpentane		0	0	•	0	
Cyclohexane		0	0	0	0	
-Methylhexane		0	(	0	0	
,3-Dimethylpentane		0			0	
,1-Dimethylcyclopentane -Methylhexane		0	l r		0	
,t-3-Dimethylcyclopentane		0		0	0	
,c-3-Dimethylcyclopentane		0	c c	0	0	
2,2,4-Trimethylpentane		0	ſ	0	0	
-Heptane		4.67741E-11	8.97331E-25	· ·	4.67741E-11	4.75693E-
1ethylcyclohexane		0	0.01.00.1		0	
,1,3-Trimethylcyclopentane		0	C	0	0	
,5-Dimethylhexane		0	C	0	0	
,4-Dimethylhexane		0	C	0	0	
,3-Dimethylhexane		0	C	0	0	
,t-2,c-3-Trimethylcyclopentane		0	C	0	0	
,3,4-Trimethylpentane		0	C	0	0	
oluene		0.00435142	0.00237238		0.00435142	0.002384
2,3-Dimethylhexane		0	C	·	0	
,1,2-Trimethylcyclopentane		0	C	0	0	
-Methylheptane		0		0	0	
-Methylheptane		0		0	0	
,4-Dimethylhexane -Methylheptane		0	ĺ		0	
-Ethylhexane		0	c c	0	0	
,c-3-Dimethylcyclohexane		0	ſ	0	0	
,t-4-Dimethylcyclohexane		0	ſ		0	
,1-Dimethylcyclohexane		0	ſ	0	0	
2,2,4-Trimethylhexane		0	(	0	0	
Cycloheptane		0	C	0	0	
-Octane		7.10555E-13	4.91965E-26	2.83443E-10	7.10555E-13	2.02725E
,t-3-Dimethylcyclohexane		0	C	0	0	
,2-Dimethylheptane		0	C	0	0	
,4-Dimethylheptane		0	C	0	0	
,6-Dimethylheptane		0	C	0	0	
,5-Dimethylheptane		0	C	0	0	
thylcyclohexane		0	(	0	0	
,3-Dimethylheptane		0	(	0	0	
,3,4-Trimethylhexane		0			0	7 070505
thylbenzene		0.000105856 0	7.61804E-05		0.000105856	7.27953E
,3-Dimethylheptane		0 9.45665E-05	4.76363E-05	· · · · · · · · · · · · · · · · · · ·	0 9.45665E-05	6.25126E
n-Xylene -Xylene		9.45005E-05	4.76363E-05		9.40000E-00 0	0.20120E
,4-Dimethylheptane		0	ſ	0	0	
-Methyloctane		0	ſ	0	0	
-Methyloctane		0	ſ	0	0	
B-Methyloctane		0	ſ	0	0	
p-Xylene		0	ſ	0	0	
,1,2-Trimethylcyclohexane		0		0	0	

n-Nonane	2.24987E-13	1.09540E-26	7.15464E-11 2.24987E-13 5.13103E-11
sopropylbenzene	0	0	0 0 0
-Butylcyclopentane	0	0	0 0 0
Propylbenzene	0	0	0 0 0
-Ethyltoluene	0	0	
-Ethyltoluene	0	ů 0	
	0	Ŭ	
-Methylnonane	0	0	0 0 0
-Methylnonane	0	0	0 0 0
-Butylbenzene	0	0	0 0 0
Butylcyclohexane	0	0	0 0 0
-Decane	4.62201E-17	1.92855E-29	7.71273E-14
Indecane	9.40794E-18	4.38871E-30	2.06161E-14 9.40794E-18 1.48193E-14
Dodecane			
	0	0	0 0 0
Tridecane	0	0	0 0 0
litrogen	8.53827E-09	5.13551E-23	4.12143E-07 8.53827E-09 2.92920E-07
Carbon Dioxide	0.0372348	4.28462E-18	0.0376349 0.0372348 0.0276131
lydrogen Sulfide	0.00947582	0.00304545	0.00641979 0.00947582 0.00493820
Iolar Flow	lbmol/h	lbmol/h	lbmol/h lbmol/h lbmol/h
	0		
Vater Gas	-	0	0 0 0
Vater	0.000137488	456.271	456.249 0.00214984 456.211
lethane	1.56380E-11	2.09525E-19	0.00120753 2.44523E-10 0.000859470
thane	1.28132E-11	1.11786E-19	0.000587106 2.00354E-10 0.000418867
Propane	2.31139E-12	3.81137E-20	0.000146330 3.61421E-11 0.000104415
Butane	8.37495E-14	9.03618E-22	6.50501E-06 1.30955E-12 4.64509E-06
-Butane	6.96151E-13	7.22895E-21	4.81601E-05 1.08854E-11 3.43905E-05
Pentane	4.01418E-14	7.27944E-22	3.50346E-06 6.27678E-13 2.50356E-06
-Pentane	3.01603E-15	9.09930E-23	8.23689E-07 4.71602E-14 5.87615E-07
leohexane	0	0	0 0 0
,3-Dimethylbutane	0	0	0 0 0
-Methylpentane	0	0	0 0 0
-Methylpentane	0	ů 0	
	2.42475E-16	1.90456E-23	
n-Hexane	2.424/ 3E-10		
2,2-Dimethylpentane	U	0	0 0 0
<i>l</i> ethylcyclopentane	0	0	0 0 0
2,4-Dimethylpentane	0	0	0 0 0
Benzene	2.38862E-08	0.0434818	0.0508909 3.73496E-07 0.0408915
8,3-Dimethylpentane	0	0	
Cyclohexane	0	0	
	0	0	
2-Methylhexane	0	0	0 0 0
2,3-Dimethylpentane	0	0	0 0 0
,1-Dimethylcyclopentane	0	0	0 0 0
B-Methylhexane	0	0	0 0 0
,t-3-Dimethylcyclopentane	0	0	
,c-3-Dimethylcyclopentane	ů O	0	
	0	0	
2,2,4-Trimethylpentane	0	0	0 0 0
i-Heptane	6.43531E-17	4.09488E-24	3.03635E-08 1.00626E-15 2.17113E-08
/lethylcyclohexane	0	0	0 0 0
,1,3-Trimethylcyclopentane	0	0	0 0 0
2,5-Dimethylhexane	0	0	0 0 0
2,4-Dimethylhexane	0	0	
	0	0	
,3-Dimethylhexane	0	U	0 0 0
,t-2,c-3-Trimethylcyclopentane	0	0	0 0 0
2,3,4-Trimethylpentane	0	0	0 0 0
oluene	5.98681E-09	0.0108261	0.0137993 9.36128E-08 0.0108816
2,3-Dimethylhexane	0	0	0 0 0
-	0	0	
,1,2-Trimethylcyclopentane	0	0	
-Methylheptane	0	0	0 0 0
-Methylheptane	0	0	0 0 0
,4-Dimethylhexane	0	0	0 0 0
-Methylheptane	0	0	0 0 0
-Ethylhexane	0	0	0 0 0
,c-3-Dimethylcyclohexane	0	0	
	0	U	
,t-4-Dimethylcyclohexane	U	0	
,1-Dimethylcyclohexane	0	0	0 0 0
2,2,4-Trimethylhexane	0	0	0 0 0
Cycloheptane	0	0	0 0 0
-Octane	9.77601E-19	2.24503E-25	1.29397E-09 1.52863E-17 9.25267E-10
,t-3-Dimethylcyclohexane	0	0	
	0	<b>v</b>	
,2-Dimethylheptane	U	0	0 0 0
,4-Dimethylheptane	0	0	0 0 0
,6-Dimethylheptane	0	0	0 0 0
,5-Dimethylheptane	0	0	0 0 0
thylcyclohexane	0	0	0 0 0
,3-Dimethylheptane	0	- 0	
,3,4-Trimethylhexane	0	0	
		U 0.000047044	
thylbenzene	1.45640E-10	0.000347641	0.000426041 2.27729E-09 0.000332248
,3-Dimethylheptane	0	0	0 0 0
n-Xylene	1.30107E-10	0.000217383	0.000373285 2.03442E-09 0.000285316
-Xylene	0	0	0 0 0
,4-Dimethylheptane	0	0	
	0	0	
-Methyloctane	0	0	
-Methyloctane	0	0	0 0 0
-Methyloctane	0	0	0 0 0
	0	0	0 0 0
-Xylene	0	0	0 0 0
	3.09543E-19	4.99876E-26	3.26622E-10 4.84017E-18 2.34187E-10
,1,2-Trimethylcyclohexane	J.USJ4JE-19	4.330/0E-20	
,1,2-Trimethylcyclohexane -Nonane		U	0 0 0
,1,2-Trimethylcyclohexane -Nonane sopropylbenzene	0		0 0 0
,1,2-Trimethylcyclohexane -Nonane sopropylbenzene -Butylcyclopentane	0	0	
,1,2-Trimethylcyclohexane -Nonane sopropylbenzene -Butylcyclopentane	0 0	0	0 0 0
,1,2-Trimethylcyclohexane -Nonane sopropylbenzene -Butylcyclopentane -Propylbenzene	0 0 0 0	0 0 0	
,1,2-Trimethylcyclohexane -Nonane sopropylbenzene -Butylcyclopentane -Propylbenzene h-Ethyltoluene		0	
,1,2-Trimethylcyclohexane -Nonane sopropylbenzene -Butylcyclopentane -Propylbenzene n-Ethyltoluene -Ethyltoluene		0	
,1,2-Trimethylcyclohexane -Nonane sopropylbenzene -Butylcyclopentane -Propylbenzene h-Ethyltoluene -Ethyltoluene -Ethyltoluene -Methylnonane		0	
Xylene ,1,2-Trimethylcyclohexane I-Nonane sopropylbenzene I-Butylcyclopentane I-Propylbenzene In-Ethyltoluene I-Ethyltoluene I-Methylnonane P-Methylnonane -Butylbenzene		0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Butylcyclohexane	0	0	0 0 0
-Decane	6.35908E-23	8.80072E-29	3.52100E-13 9.94338E-22 2.52469E-13
ndecane	1.29437E-23	2.00274E-29	9.41162E-14 2.02394E-22 6.76373E-14
odecane	0	0	0 0 0
ridecane	0	0	0 0 0
litrogen	1.17472E-14	2.34353E-22	1.88151E-06 1.83685E-13 1.33693E-06
Carbon Dioxide	5.12286E-08	1.95524E-17	0.171810 8.01037E-07 0.126030
Hydrogen Sulfide	1.30371E-08	0.0138976	0.0293075 2.03855E-07 0.0225387
Mass Fraction	%	%	% %
Vater Gas	0	0	0 0 0
Nater	99.7927	99.9401	99.8307 99.7927 99.8711
Methane	1.01075E-05	4.08680E-20	0.000235283 1.01075E-05 0.000167546
Ethane	1.55228E-05	4.08680E-20	0.000214416 1.55228E-05 0.000153048
Propane	4.10640E-06	2.04340E-20	7.83702E-05 4.10640E-06 5.59488E-05
-Butane	1.96117E-07	6.38562E-22	4.59210E-06 1.96117E-07 3.28071E-06
n-Butane	1.63019E-06	5.10850E-21	3.39977E-05 1.63019E-06 2.42892E-05
-Pentane	1.16686E-07	6.38562E-22	3.07006E-06 1.16686E-07 2.19492E-06
n-Pentane	8.76711E-09	7.98203E-23	7.21794E-07 8.76711E-09 5.15174E-07
Neohexane	0.707112-09	0	0 0 0
2,3-Dimethylbutane	0	0	
2-Methylpentane	0	0	
	0	0	0 0 0
3-Methylpentane	0 8.41864E-10	U 4.005545.00	9.52966E-08 8.41864E-10 6.80895E-08
n-Hexane		1.99551E-23	
2,2-Dimethylpentane	0	0	0 0 0
Methylcyclopentane	0	0	0 0 0
2,4-Dimethylpentane	0	0	
Benzene	0.0751718	0.0412953	0.0482812 0.0751718 0.0388135
3,3-Dimethylpentane	0	0	0 0 0
Cyclohexane	0	0	0 0 0
2-Methylhexane	0	U	0 0 0
2,3-Dimethylpentane	0	U	0 0 0
1,1-Dimethylcyclopentane	0	0	0 0 0
3-Methylhexane	0	0	0 0 0
I,t-3-Dimethylcyclopentane	0	0	0 0 0
I,c-3-Dimethylcyclopentane	0	0	0 0 0
2,2,4-Trimethylpentane	0	0	0 0 0
n-Heptane	2.59799E-10	4.98877E-24	3.69529E-08 2.59799E-10 2.64359E-08
Methylcyclohexane	0	0	0 0 0
1,1,3-Trimethylcyclopentane	0	0	0 0 0
2,5-Dimethylhexane	0	0	0 0 0
2,4-Dimethylhexane	0	0	0 0 0
3,3-Dimethylhexane	0	0	0 0 0
1,t-2,c-3-Trimethylcyclopentane	0	0	0 0 0
2,3,4-Trimethylpentane	0	0	0 0 0
Foluene	0.0222243	0.0121280	0.0154425 0.0222243 0.0121834
2,3-Dimethylhexane	0	0	0 0 0
1,1,2-Trimethylcyclopentane	0	0	0 0 0
2-Methylheptane	0	0	0 0 0
1-Methylheptane	0	0	0 0 0
3,4-Dimethylhexane	0	0	0 0 0
3-Methylheptane	0	0	0 0 0
3-Ethylhexane	0	0	0 0 0
I,c-3-Dimethylcyclohexane	0	0	0 0 0
I,t-4-Dimethylcyclohexane	0	0	0 0 0
I,1-Dimethylcyclohexane	0	0	0 0 0
2,2,4-Trimethylhexane	0	0	0 0 0
Cycloheptane	0	0	
n-Octane	4.49913E-12	3.11798E-25	1.79523E-09 4.49913E-12 1.28432E-09
I,t-3-Dimethylcyclohexane	4.43315E-12	0	0 0 0
2,2-Dimethylheptane	0	0	
	0	0	0 0 0
2,4-Dimethylheptane	0	0	
2,6-Dimethylheptane 2,5-Dimethylheptane	0	0	
	0	0	
Ethylcyclohexane	U	0	
3,3-Dimethylheptane	0	0	
2,3,4-Trimethylhexane	ő	Ŭ	0 $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0.000549356$ $0.000622950$ $0.000428624$
	0.000622950	0.000448734	
2,3-Dimethylheptane	0	0	
n-Xylene	0.000556512	0.000280597	0.000481330 0.000556512 0.000368078
p-Xylene	0	0	0 0 0
3,4-Dimethylheptane	0	U	
2-Methyloctane	0	U	
l-Methyloctane	0	U	U 0 0
3-Methyloctane	0	0	0 0 0
-Xylene	0	0	0 0 0
,1,2-Trimethylcyclohexane	0	0	
-Nonane	1.59951E-12	7.79495E-26	5.08793E-10 1.59951E-12 3.64981E-10
sopropylbenzene	0	0	0 0 0
-Butylcyclopentane	0	0	0 0 0
-Propylbenzene	0	0	0 0 0
n-Ethyltoluene	0	0	0 0 0
p-Ethyltoluene	0	0	0 0 0
-Methylnonane	0	0	0 0 0
Methymonane	0	0	0 0 0
	0	0	0 0 0
2-Methylnonane		0	0 0 0
r-Methylnonane -Butylbenzene	0		6.08465E-13 3.64532E-16 4.36505E-13
2-Methylnonane -Butylbenzene Butylcyclohexane	0 3.64532E-16	1.52245E-28	
2-Methylnonane -Butylbenzene Butylcyclohexane n-Decane	0 3.64532E-16 8.15140E-17	1.52245E-28 3.80613E-29	1.78676E-13 8.15140E-17 1.28470E-13
2-Methylnonane -Butylbenzene Butylcyclohexane h-Decane Jndecane			1.78676E-13 8.15140E-17 1.28470E-13 0 0 0
2-Methylnonane -Butylbenzene Butylcyclohexane h-Decane Jndecane Dodecane	8.15140E-17	3.80613E-29	
2-Methylnonane -Butylbenzene Butylcyclohexane h-Decane Jndecane Dodecane Fridecane	8.15140E-17 0 0	3.80613E-29 0 0	0 0 0 0 0 0
2-Methylnonane -Butylbenzene Butylcyclohexane h-Decane Jndecane Oodecane Fridecane Nitrogen	8.15140E-17 0 0 1.32584E-08	3.80613E-29 0 0 7.98203E-23	0 0 0 0 0 0 0 6.40166E-07 1.32584E-08 4.55100E-07
2-Methylnonane -Butylbenzene Butylcyclohexane h-Decane Jndecane Dodecane	8.15140E-17 0 0	3.80613E-29 0 0	0 0 0 0 0 0

Water Gas Water Methane Ethane Propane i-Butane n-Butane n-Pentane Neohexane 2,3-Dimethylbutane 2-Methylpentane 3-Methylpentane n-Hexane 2,2-Dimethylpentane Methylcyclopentane 2,4-Dimethylpentane		0 0.00247689 2.50871E-10 3.85282E-10 1.01922E-10 4.86770E-12	8219.8 3.36130E-1 3.36130E-1 1.68065E-1	8 0.0193717 8 0.0176537	0.0387299 3.92275E-09	0 8218.78 0.0137880 0.0125949
Methane Ethane Propane i-Butane n-Butane i-Pentane n-Pentane 2,3-Dimethylbutane 2-Methylpentane 3-Methylpentane n-Hexane 2,2-Dimethylpentane Methylcyclopentane		2.50871E-10 3.85282E-10 1.01922E-10	3.36130E-1 3.36130E-1	8 0.0193717 8 0.0176537	3.92275E-09	0.0137880
Ethane Propane i-Butane n-Butane i-Pentane n-Pentane 2,3-Dimethylbutane 2.3-Dimethylbutane 3-Methylpentane n-Hexane 2,2-Dimethylpentane Methylcyclopentane		3.85282E-10 1.01922E-10	3.36130E-1	8 0.0176537		
Propane i-Butane i-Pentane n-Pentane 2,3-Dimethylbutane 2-Methylpentane 3-Methylpentane n-Hexane 2,2-Dimethylpentane Methylcyclopentane		1.01922E-10			0.02440E-09	0.0123949
i-Butane n-Butane i-Pentane n-Pentane 2,3-Dimethylbutane 2-Methylpentane 3-Methylpentane n-Hexane 2,2-Dimethylpentane Methylcyclopentane					1.59371E-09	0.00460424
n-Butane I-Pentane n-Pentane 2,3-Dimethylbutane 2-Methylpentane 3-Methylpentane n-Hexane 2,2-Dimethylpentane Methylcyclopentane						
i-Pentane n-Pentane 2,3-Dimethylbutane 2-Methylpentane 3-Methylpentane n-Hexane 2,2-Dimethylpentane Methylcyclopentane		4.04618E-11	5.25203E-2		7.61139E-11 6.32682E-10	0.000269983
n-Pentane Neohexane 2,3-Dimethylbutane 2-Methylpentane 3-Methylpentane n-Hexane 2,2-Dimethylpentane Methylcyclopentane			4.20162E-1			0.00199885
Neohexane 2,3-Dimethylbutane 2-Methylpentane 3-Methylpentane n-Hexane 2,2-Dimethylpentane Methylcyclopentane		2.89618E-12	5.25203E-2			0.000180629
2,3-Dimethylbutane 2-Methylpentane 3-Methylpentane n-Hexane 2,2-Dimethylpentane Methylcyclopentane		2.17603E-13	6.56504E-2			4.23957E-05
2-Methylpentane 3-Methylpentane n-Hexane 2,2-Dimethylpentane Methylcyclopentane		0		0 0	0	0
3-Methylpentane n-Hexane 2,2-Dimethylpentane Methylcyclopentane		0		0 0	0	0
n-Hexane 2,2-Dimethylpentane Methylcyclopentane		0		0 0	0	0
2,2-Dimethylpentane Methylcyclopentane		0		0 0	0	0
Methylcyclopentane		2.08954E-14	1.64126E-2	1 7.84615E-06	3.26730E-13	5.60335E-06
		0		0 0	0	0
		0		0 0	0	0
		0		0 0	0	0
Benzene		1.86579E-06	3.3964	4 3.97518	2.91745E-05	3.19411
3,3-Dimethylpentane		0		0 0	0	0
Cyclohexane		0		0 0	0	0
2-Methylhexane		0		0 0	0	0
2,3-Dimethylpentane		0			0	0
		0			0	0
1,1-Dimethylcyclopentane		0		•	•	0
3-Methylhexane		0		0 0	0	0
1,t-3-Dimethylcyclopentane		0		0 0	0	0
1,c-3-Dimethylcyclopentane		0		0 0	0	0
2,2,4-Trimethylpentane		0		0 0	0	0
n-Heptane		6.44831E-15	4.10315E-2	2 3.04248E-06	1.00829E-13	2.17551E-06
Vethylcyclohexane		0		0 0	0	0
1,1,3-Trimethylcyclopentane		n		0 0	0	
2,5-Dimethylhexane		n		0 0	0	0
2,4-Dimethylhexane		0			0	0
-		0		0 N 0	0	0
3,3-Dimethylhexane		U		•	-	U
1,t-2,c-3-Trimethylcyclopentane		0		0 0	0	0
2,3,4-Trimethylpentane		0		0 0	-	0
Toluene		5.51615E-07	0.99750			1.00262
2,3-Dimethylhexane		0		0 0	0	0
1,1,2-Trimethylcyclopentane		0		0 0	0	0
2-Methylheptane		0		0 0	0	0
4-Methylheptane		0		0 0	0	0
3,4-Dimethylhexane		n N		0 0	0	0 0
3-Methylheptane		n		0 0	0	
3-Ethylhexane		0			0	0
		U			0	U
1,c-3-Dimethylcyclohexane		U		• •	•	0
1,t-4-Dimethylcyclohexane		0		0 0	0	0
1,1-Dimethylcyclohexane		0		0 0	0	0
2,2,4-Trimethylhexane		0		0 0	0	0
Cycloheptane		0		0 0	0	0
n-Octane		1.11670E-16	2.56447E-2	3 1.47808E-07	1.74613E-15	1.05692E-07
1,t-3-Dimethylcyclohexane		0		0 0	0	0
2,2-Dimethylheptane		n		0 0	0	0
2,4-Dimethylheptane		0			0	
		0			0	0
2,6-Dimethylheptane		0			0	0
2,5-Dimethylheptane		U			•	U
Ethylcyclohexane		0		0	0	0
3,3-Dimethylheptane		0		0	0	0
2,3,4-Trimethylhexane		0		0 0	0	0
Ethylbenzene		1.54618E-08	0.036907	3 0.0452307	2.41769E-07	0.0352731
2,3-Dimethylheptane		0		0 0	0	0
m-Xylene		1.38128E-08	0.023078	5 0.0396298	2.15984E-07	0.0302906
p-Xylene		0		0 0	0	0
3,4-Dimethylheptane		n n		0 0	0	Ő
2-Methyloctane		0			0	
4-Methyloctane		0			0	
-		0			0	0
3-Methyloctane		U			•	U
o-Xylene		0		0 0	0	0
1,1,2-Trimethylcyclohexane		0		0 0	0	0
n-Nonane		3.97005E-17	6.41117E-2	4 4.18909E-08		3.00357E-08
sopropylbenzene		0		0 0	0	0
n-Butylcyclopentane		0		0 0	0	0
n-Propylbenzene		0		0 0	0	0
m-Ethyltoluene		0		0 0	0	0
p-Ethyltoluene		0		0 0	0	0
4-Methylnonane		n		)	0	0
2-Methylnonane		0			0	
-		0			0	0
-Butylbenzene		U			•	U
Butylcyclohexane		0		0 0	0	0
n-Decane		9.04781E-21	1.25218E-2			3.59217E-11
Jndecane		2.02321E-21	3.13045E-2	7 1.47111E-11	3.16359E-20	1.05723E-11
Dodecane		0		0 0	0	0
Tridecane		0		0 0		0
Nitrogen		3.29079E-13	6.56504E-2			3.74519E-05
-					3.52532E-05	
Carbon Dioxide		2.25455E-06	8.60492E-1			5.54651
Hydrogen Sulfide		4.44316E-07	0.47364	2 0.998824	6.94754E-06	0.768137
Process Streams		Breathing	Flash Liquids	Produced Water w/ Hydrocarbon	Working	2
Properties	Status:	Solved	Solved Solved	Solved	Solved	Solved
Phase: Aqueous Liquid	From Block:	TANK-100	TANK-100 TANK-100		TANK-100	VLVE-100
integration of the second second second second second second second second second second second second second s	To Block:			 VLVE-100		TANK-100
Proporty				VLVE-100		TANK-100
Property	Units	76 1155				
Temperature	°F	73.4428 13.26	73.442 13.2			97.1263 14.6959

Mole Fraction Vapor	%	0	0	0	0	0
Mole Fraction Light Liquid	%	0	100	100	0	100
Mole Fraction Heavy Liquid	%	100	0	0	100	0
Phase Mole Fraction	%	1.21369	100	99.5378	1.21369	99.5152
Molecular Weight	lb/lbmol	18.0403	18.0234	18.0352	18.0403	18.0305
Mass Density	lb/ft^3	62.2648	62.2510	61.9988	62.2648	61.9967
Molar Flow	lbmol/h	0.000137583	456.340	456.518	0.00215131	456.414
Mass Flow	lb/h	0.00248204	8224.77	8233.40	0.0388104	8229.39
Vapor Volumetric Flow	ft^3/h	3.98626E-05	132.123	132.799	0.000623312	132.739
Liquid Volumetric Flow	gpm	4.96989E-06	16.4725	16.5568	7.77116E-05	16.5493
Std Vapor Volumetric Flow	MMSCFD	1.25305E-06	4.15617	4.15779	1.95933E-05	4.15684
Std Liquid Volumetric Flow	sgpm	4.96366E-06	16.4434	16.4646	7.76143E-05	16.4553
Compressibility		0.000671526	0.000671043	0.000958631	0.000671526	0.000715282
Specific Gravity		0.998333	0.998112	0.994069	0.998333	0.994036
API Gravity		9.96085	9.99322	9.96354	9.96085	9.97279
Enthalpy	Btu/h	-16.9127	-5.60973E+07	-5.59332E+07	-264.455	-5.59219E+07
Mass Enthalpy	Btu/lb	-6814.04	-6820.53	-6793.45	-6814.04	-6795.39
Mass Cp	Btu/(lb*°F)	0.977971	0.978251	0.976747	0.977971	0.976850
ldeal Gas CpCv Ratio		1.32895	1.32904	1.32814	1.32895	1.32817
Dynamic Viscosity	cP	0.951221	0.953391	0.720380	0.951221	0.721757
Kinematic Viscosity	cSt	0.953714	0.956102	0.725366	0.953714	0.726777
Thermal Conductivity	Btu/(h*ft*°F)	0.347613	0.348393	0.358036	0.347613	0.358209
Surface Tension	lbf/ft	0.00500180?	0.00500592	0.00482695	0.00500180?	0.00482863
Net Ideal Gas Heating Value	Btu/ft^3	0.875196	0.467530	0.581419	0.875196	0.463276
Net Liquid Heating Value	Btu/Ib	-1039.44	-1049.39	-1045.94	-1039.44	-1048.81
Gross Ideal Gas Heating Value	Btu/ft^3	51.1909	50.7909	50.8889	51.1909	50.7725
Gross Liquid Heating Value	Btu/lb	18.9684	10.1731	12.5900	18.9684	10.0374



October 2, 2024

ASTEC PROPOSAL #: HI 23-15003 Rev 8

### THE WORLD LEADER IN INTEGRATED PROCESS SOLUTIONS

SUPPORT•TECHNOLOGY•TRAINING

## A PROPOSAL TO PROVIDE A THERMAL FLUID HEATING SYSTEM

FOR H-1701, H-1702 and H-1703 HMO for Targa's DOU Copperhead plant in NM

PREPARED EXCLUSIVELY FOR

Bryan Nix **TARGA RESOURCES** 811 Louisiana Street Houston, TX 77002 Office:713-584-1575 Cell:918-557-2676 bnix@targaresources.com

Presented by:

Thomas Franey, Regional Sales Manager Cell: (423) 309-3631 <u>tmfraney@astecindustries.com</u>





October 2, 2024

#### ASTEC PROPOSAL #: HI 23-15003 Rev 8

### ASTEC SCOPE OF SUPPLY (Quote validity is for 30 days):

All equipment will be completely assembled at ASTEC. It will arrive at your facility completely packaged and mock tested. The package you will receive includes the following items:

Model	Description	Investment (U.S. \$)
Heatec HCI 25010-50-Q-G	Thermal Fluid Heater x 1	\$Included
Burner	Low NOx Burner x 1	\$Included
Blower	Blower for burner x 1	\$Included
Control Panel	Panel x 1	\$Included
Fuel Train	Gas Train x 1	\$Included
Economizer	Economizer x 1	\$Included
Stack	Exhaust Stack x 1	\$Included
	Total for Heating Unit #1 - H-1701	\$949,430.00
	Total for Heating Unit #2 - H-1702	\$949,430.00
	Total for Heating Unit #3 - H-1703	\$949,430.00
	Total for Three (3) Identical Heating Units	\$2,848,290.00

NOTE: Our price and delivery are based on ASTEC's "General Terms and Conditions" listed at the end of this proposal. Any purchase order that includes Terms and Conditions different from those will be reviewed, and it may impact the price and delivery offered. ASTEC reserves the right to review and revise the pricing and delivery.

### DELIVERY PERIOD:

The delivery period of the equipment is listed below. Delivery times may vary depending on engineering and production workload when the written P.O. is received. *Long lead items (pumps, burner, blower, relief valves, etc) need to be ordered prior to approvals.* 

Description	Weeks
Drawings Issued for Approval	9 ARO
Equipment Ready to Ship after All Drawings Approved	19 ARAD

ARO = After receipt of written purchase order

ARAD = After receipt of approved drawings from the customer





October 2, 2024

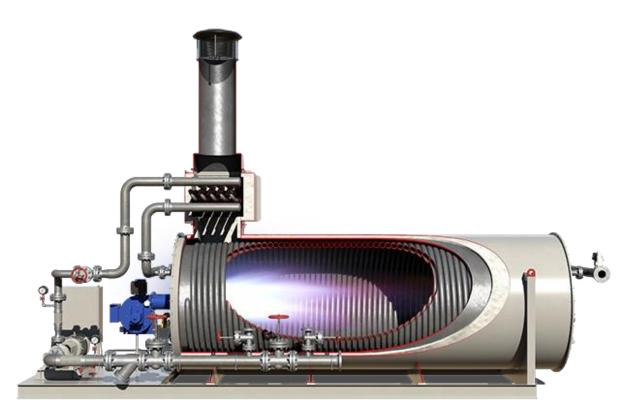
ASTEC PROPOSAL #: HI 23-15003 Rev 8

### **OPTIONAL ITEMS: (NOT REQUIRED FOR HEATER OPERATION)**

Model	Description	Investment (U.S. \$)
5 Days Service On-site	Estimate (1 Man, 1 Trip, 2 Weeks Notice)	See Page 27
Industrial Customer School	Tentatively in April / October	\$1,600.00
Commissioning Spare Parts	Estimate, Class 1 Div 2	\$24,500.00 per heater
2 Years Spare Parts	Estimate, Class 1 Div 2	\$19,750.00 per heater

#### NOTE;

This is only a partial, preliminary spare parts list. The complete parts list will be sent after ASTEC is the successful bidder, the P.O. has been received by ASTEC, and once we have the final scope defined.


COMMISSIONING SPARES:	<u>2 YEAR SPARES:</u>
Flame safeguard	Flame safeguard
Flame scanner	High media controller
High media controller	Stack temp controller
Stack temp controller	Modulation controller
Modulation controller	Ignition transformer
Motor starter	Control relays
Main gas valve	Low combustion air switch
Pilot solenoid valve	Modulating control motor
Modulating control motor	Burner blower wheel
Spark igniter for burner	Rear heater sight glass
Blower motor for burner	Spark igniter for burner
Media Thermocouple	Indicating lights for control panel
Stack Thermocouple	Butterfly valve for burner control
Main gas regulator	High gas pressure switch
Pilot gas regulator	Low gas pressure switch





October 2, 2024

ASTEC PROPOSAL #: HI 23-15003 Rev 8



This is a cut away depiction of our standard horizontal heater internals. It does not necessarily represent the package quoted. The main advantage of this design is the extremely large radiant section. Since this is where most heat transfer occurs, the ideal design utilizes a large radiant section. The two-pass heater life expectancy is 2-4 times that of other styles.





October 2, 2024

www.astecindustries.com Office: 423.821.5200 5200 Wilson Rd Chattanooga, TN 37410 USA

#### ASTEC PROPOSAL #: HI 23-15003 Rev 8

### **ASTEC ADVANTAGES:**

- The radiant heating surface of two pass heaters is typically 50% greater compared to that of other style heaters. The result is that the two-pass heater will have lower radiant flux rates. High radiant heat flux causes high metal wall temperatures, causing premature coil failure and premature degradation of the thermal fluid. The life expectancy of the two-pass heater will be 2-4 times that of other designs
- Should the coil ever have to be replaced, the bolted cover(s) of the two-pass design allow(s) for easy coil replacement without having to replace the entire heater or requiring shipment back to the factory for costly repair
- 3. There is more internal "room" in the less crowded two pass heater which allows for greater space between the flame and the coil. This lessens the chances for flame impingement and thus lengthens coil and thermal fluid life. Ease of inspection is also increased
- 4. The velocity in the coil is in the range of 5 13 fps as recommended by most thermal fluid manufacturers. Due to the low average radiant heat flux of the two pass designs, the heater does not have to rely on excessive fluid velocity (which can lead to erosion) to keep the film temperatures low. The result is the most forgiving heater on the market
- 5. The heater has an 18" bolted man-way. This allows access to the radiant section without removing the cover, the burner, the fuel train, the can and the conduit. This internal inspection is required in many locations
- 6. The heater utilizes complete flow through a uniform diameter coil without mixing or by-passing.
- 7. Front and rear peep sight(s) for viewing flame pattern and coil condition
- 8. No orifice plates required for balancing the flow
- 9. Insulation is on the inside of the heater where it cannot be damaged during shipment
- 10. Totally Packaged Heaters
- 11. In House Panel Shop
- 12. In House Coil Manufacturing
- 13. In House Hydro-Test
- 14. In House Painting / Sandblasting
- 15. In House Fully Function Tested Heaters
- 16. Custom (Highly Specified or Standard Units)
- 17. On Site Training
- 18. In House Service Department which is available for on-site training and start up
- 19. In House Engineering Department
- 20. Seventeen AutoCAD stations utilizing AutoCAD / Inventor / AutoCAD Electrical
- 21. In House Quality Assurance / Control Department
- 22. Heater manufacturer since 1977
- 23. Heatec Coil warranty will be 3 years from ship date. Typical lifetime of this heater without coil replacement is 20 to 30 years

BUILT TO CONNECT Page 5

24. Stamps and Certifications





October 2, 2024

ASTEC PROPOSAL #: HI 23-15003 Rev 8

## EQUIPMENT DESIGN DATA:

HCI 25010-50-Q-G	IP UNITS	SI UNITS
Heater Capacity (Btu/hr) (MW)	55,000,000	16.12
Firing Rate (HHV) (Btu/hr) (MW)	79,365,888	23.26
Heater Circulation Rate (lb/hr) (kg/hr) {Constant}	1,022,363	463,615
Heater Circulation Rate (Gal/min) (m ³ /hr) {Constant}	2,486	565
Minimum Allowable Circulation Rate (Gal/min) (m ³ /hr)	1,989	452
Heater Inlet Temperature (°F) (°C)	282	139
Heater Outlet Temperature (°F) (°C)	375	191
Stack Temperature (°F) (°C)	723	384
Calculated Heater Efficiency (%) (LHV) [See Note 1]	81.6	81.6
Calculated $\Delta P$ through Heater (psid) (Bar) (Clean)	20.7	1.4
Heater Volume (Gallons) (m ³ )	3,015	11.4
Total Coil Surface Area (ft ² ) (m ² )	5,590	519.5
Overall Flux Rate (Btu/hr-ft ² ) (kW/m ² )	9,840	31.0
Radiant Surface Area (ft ² ) (m ² )	1,755	163.1
Average Radiant Flux Rate (Btu/hr-ft ² ) (kW/m ² )	16,521	52.1
Maximum Radiant Flux Rate (Btu/hr-ft ² ) (kW/m ² ) AICHE	22,304	70.3
Maximum Metal Temperature (°F) (°C) AICHE	477	247
Maximum Calculated Film Temperature (°F) (°C) AICHE	460	238
Average Thermal Fluid Velocity (ft/s) (m/s)	10.2	3.1
Combustion Air Flow Rate (sFt ³ /hr) (Nm ³ /hr)	880,259	24,929
Combustion Gas Flow Rate (sFt ³ /hr) (Nm ³ /hr)	71,075	2,013
Flue Gas Flow Rate (sFt ³ /hr) (Nm ³ /hr)	964,160	27,306
Flue Gas Pressure Drop (" WC) (mmHg)	0.90	46.67

Note 1: Based on HHV of typical natural gas. Guaranteed efficiency is 1% less.

Note 2: It is the Customer's responsibility to confirm/verify user volume and pressure drop, which are not in ASTEC's scope of supply. ASTEC assumes no liability for non-verified estimated data.





October 2, 2024

ASTEC PROPOSAL #: HI 23-15003 Rev 8

### SYSTEM PARAMETERS:

The following system parameters are incorporated into this proposal.

Plant location	New Mexico
Plant elevation (fasl)	3,500
Heater location	Outdoor
Ambient Temperature (°F)	0 to 110
Burner turndown	6:1 Gas
Excess air %	15
Flue Gas Recirculation %	15
Noise Limit (dB(A))	< 85 at 3 ft
Heater orientation	Horizontal
Primary fuel (psig @ rated capacity of the burner)	Fuel gas (125)
Compressed air from clean, dry, safe source	10 to 40 scfm @ 116 to 80 psig
Electrical	480 V / 3 PH / 60 Hz
Control voltage	110 V / 1 PH / 60 HZ / 24 V DC
Area Classification	Class 1 Div. 2 Group C & D
Thermal fluid (Not Included)	Chemtherm 550 or Equal

Note: Please confirm fuel pressure and temperature.

	FUEL TABLE	MOL %
N ₂	Nitrogen	1.84
H ₂ O	Water	0.00
H ₂	Hydrogen	0.00
H₂S	Hydrogen Sulfide	0.00001
CO ₂	Carbon Dioxide	0.00
СО	Carbon Monoxide	0.00
CH ₄	Methane	97.6
$C_2H_6$	Ethane	0.54
C₃H ₈	Propane	0.0235
C ₄ H ₁₀	i-Butane	0.00
$C_4H_{10}$	n-Butane	0.00
C5H12	i-Pentane	0.00
$C_5H_{12}$	n-Pentane	0.00
C ₆ H ₁₄	n-Hexane	0.00
O ₂	Oxygen	0.00

THERMAL FLUID PROPERTIES	;
Inlet Temperature (°F)	282.5
Inlet Density (lb/ft ³ )	51.27
Inlet Heat Capacity (Btu/(lb*°F))	0.560
Inlet Thermal Conductivity (Btu/(h*ft*°F))	0.075
Inlet Dynamic Viscosity (cP)	1.923
Outlet Temperature (°F)	375
Outlet Density (lb/ft ³ )	49.23
Outlet Heat Capacity (Btu/(lb*°F))	0.603
Outlet Thermal Conductivity (Btu/(h*ft*°F))	0.067
Outlet Dynamic Viscosity (cP)	1.012





October 2, 2024

#### ASTEC PROPOSAL #: HI 23-15003 Rev 8

### **APPROXIMATE PHYSICAL DATA:**

The equipment will have the following estimated dimensions and dry weights. Piping and controls external to the heater are to be insulated in the field by <u>customer</u>. All equipment will be assembled and mounted as stated below. Items too large for shipment, or subject to damage during shipment, will be shipped loose (unattached) and will require re-assembly in the field.

Equipment	L (ft)	W (ft)	H (ft)	Wt (Lbs)	Mounting
Horizontal Heater	52.8	12.4	12.7	94,850	Skid
Economizer	10.4	6.0	3.5	10,912	Top of Heater
Exhaust Stack		4.0	8.0	1,029	Top of Economizer
Blower (HP)	100	TEFC			Front Cover of Heater
Pilot Gas Train	NPT	0.5	Inch		Side of Heater
Main Gas Train	NPT	4.0	Inch		Side of Heater
Control Panel	3.0	1.0	4.0	500	Front of Heater Skid

### DRAWINGS / ENGINEERING:

Drawing period is based on current engineering load and is subject to change without notice. Drawings will be sent via e-mail or provided on USB thumb drive (AutoCAD). Please note that the tolerance of our drawings is + or  $-\frac{1}{4}$ ". Construction of connections to heater should allow for modifications to be made in the field with at least 2 degrees of freedom.

Description	Description
Manuals on CD	General Arrangement
P&ID	Bill of Material Mechanical
Electrical Diagrams (Ladder Type)	Bill of Material Electrical
Nameplate Details	Hydro-test Report
Lift Lug Details	Spare Parts
Motor Curves	NDT Reports
Motor Data Sheets	Utility Requirements
Material Certifications	Quality Control Manual
Foundation Loadings	Mechanical Design Calculations





October 2, 2024

### ASTEC PROPOSAL #: HI 23-15003 Rev 8

#### **DESIGN CRITERIA:**

The equipment will be designed to the requirements stated below. Quality is assured by our in house quality control department. Thickness of coil and shell will not be affected by the manufacturing process as we keep all diameters above the limits that would have an impact on it. Hydrostatic testing will be carried out at our facility and witnessed by our quality control manager.

Heater Coil Design:
ASME Section VIII design @ 650 °F to -20 °F, @ 300 psig with CA = 0.0625
Heater Shell Design:
Non-code design @ 300 °F to -20 °F @ 15 In W.C. with $CA = 0.0625$
Fuel Train Design:
110 °F to 0 °F / UL / NFPA 87 & 70
NEC Class I Division 2 / Group C & D
Heater Stack Design:
Non-code 800 °F to -20 °F @ +15" W.C. w/ CA = $.0625$
Panel & Controls:
110 °F to 0 °F / UL 508 A / NFPA 87 & 70
NEC Class I Division 2 Group C & D
NEMA 4X (316 Stainless Steel) with "Z" type purging

#### PAINTING:

Customer specified paint system.

Purchased items will be painted with vendors' standard paint, stainless items will remain unpainted.





October 2, 2024

ASTEC PROPOSAL #: HI 23-15003 Rev 8

### EQUIPMENT RECOMMENDATIONS:

The heater is designed, manufactured, wired, and tested at our facility in Chattanooga, Tennessee USA. It is completely packaged and will include the following:

### **HEATEC HCI HEATER:**

- Two-pass tight-wound helical coil heater
- Carbon steel (SA106 Gr. B seamless) schedule 40 tight-wound helical coil
- Single 12" inlet and outlet 300 # (SA105) flanges
- Heater coil hydro-testing per ASME code
- Coil will be stamped and receive National Board Registration
- > 304 SS coil supports (skip welded to shell to help dissipate heat transmission)
- Coil is enclosed by an (minimum ¼" thick) A36 carbon steel shell with bolted end covers (w/ lift eyes)
- Internally insulated with ceramic fiber blanket, using welded 310 SS pins with washers for support. Blanket will receive a coat of rigidizer
- Peep sight in rear cover
- Inert gas smothering connection in front cover. (Gas and controls by others)
- Structural steel skid with saddles welded to channels to form a skid mounted frame, and a five foot skid deck extension for mounting controls
- Skid lifting lugs (minimum of four)
- > 18" diameter bolted access door in rear of heater
- Coil butt welds receive 100% radiography
- Extra convection section to increase heater efficiency. Economizer (Extra Convection Section) with stack transitions and piping to heater inlet (Crossover piping). Economizer consists of a serpentine carbon steel pipe coil with carbon steel serrated fins. Piping to heater inlet is included (Insulation of piping is not included).

#### EXHAUST STACK:

An exhaust stack to disperse the heater flue gasses to the atmosphere.

 Stack with flanged bottom connection and 2 flue gas sampling ports, rain cap and bird screen (Uninsulated)





October 2, 2024

ASTEC PROPOSAL #: HI 23-15003 Rev 8

## POWER FLAME TYPE LNICM BURNER:

The Induced Flue Gas Recirculation (IFGR) System was developed as a compliment to the Power Flame Forced FGR and Staged Fuel systems in order to encompass a broader spectrum of low NOx emissions demands. The LNICM System incorporates Induced Flue Gas Recirculation technology to reduce the level of NOx emissions. The IFGR inlet assembly is adapted directly to Power Flame's standard gas or gas/oil burner.

The combustion air, thoroughly mixed with a percentage of Flue Gas, is introduced to the combustion zone through the standard burner and burner head assembly. This increased "air side" mass flow for a given heat release provides results very similar to lean combustion but, with less added oxygen to combine with nitrogen to form NOx. The rate of thermal NOx formation is primarily temperature dependent, hence lower resultant NOx formation is achieved by the heat absorption effect of the increased mass flow of combustion air/IFGR mixture in the combustion zone. This increased mass flow results in greater turbulence for the combustion process generally providing shorter, more compact flame envelopes.

- Direct spark ignited natural gas pilot (Interrupted type)
- Ignition transformer
- UV self-checking flame detection scanner
- Blower is integral to burner
- > Inlet damper with modulation motor, duct and combustion air differential pressure switch
- Burner is sized for 108% capacity

### GAS TRAIN:

Pilot train with regulator, electric double block safety shutdown valves, manual valve, 1 x pressure gauge

BUILT TO CONNECT Page 11

- Main train
- Drip leg
- Manual shutoff valve
- Gas Strainer
- Tee to pilot train
- Pressure gauge x 2
- Stepdown gas regulator (Must be vented to a safe location)
- Gas regulator (Must be vented to a safe location)
- Vent line with manual shutoff valve for leak testing
- Low and high pressure switches
- Leakage test connection with manual shutoff valve
- Fuel Modulation via modulation valves with linkage-less system
- > Double block (one with proof of closure switch) safety shutdown valves
- > Bleed line with two (2) manual shutoff valves for leak testing
- Heat tracing, if necessary, is <u>by customer</u>



October 2, 2024

ASTEC PROPOSAL #: HI 23-15003 Rev 8

Emission Guarantees based on HHV: NOx (lbs/mmbtu – PPM) = .0365 – 30 CO (lbs/mmbtu - PPM) = .049 – 65 SOx (lbs/mmbtu - PPM) = Negligible PM (lbs/mmbtu - PPM) = Negligible VOC (lbs/mmbtu - PPM) = Negligible

- 1. All emissions are from 50% to 100% of maximum combustion rating (MCR)
- 2. All emissions in the units of PPM are referenced to 3% dry stack oxygen
- 3. Emissions are valid for natural gas (fuel analysis must be submitted by customer) combustion only. The values are based on natural gas containing no bound nitrogen and no sulfur
- 4. If the stack emissions exceed the guarantee level, ASTEC/ Burner manufacturer will work with customer to reduce the emissions to the guaranteed level. ASTEC / Burner manufacturer will, at its costs, make any and all adjustments and / or modifications to burner that it deems appropriate and proper to meet required levels
- 5. Compliance testing of the system must be conducted within 60 days of initial start-up. Start-up must occur no later than 120 days from shipment. Testing is to be accomplished by an independent authorized agency agreed to by ASTEC / burner manufacturer utilizing EPA-Method 7E. All costs of compliance testing shall be paid by customer
- 6. All guarantees contained in these conditions and limits shall end following completion of compliance testing wherein all emission test points are documented to be at or below guaranteed levels

### LOCALLY MOUNTED INSTRUMENTS:

- > Digital differential pressure switch for detection of low thermal fluid flow condition
- Inlet / outlet thermal fluid pressure gauge with isolation valve (NPT)
- Inlet / outlet thermal fluid thermometer with thermo-well (NPT)
- > Outlet thermal fluid temperature thermocouples with thermo-well (NPT)
- Stack temperature thermocouple with thermo-well
- ASME Section VIII Type pressure relief valve(s) on the thermal fluid outlet piping (Must be vented to a safe location) 1.5" 300# inlet, 2" 300# flanged outlet
- Conduit will be used for all wiring





October 2, 2024

ASTEC PROPOSAL #: HI 23-15003 Rev 8

## BURNER MANAGEMENT SYSTEM (BMS) ELECTRICAL CONTROL ENCLOSURE:

The heater's electrical control enclosure contains all of the electrical components to safely operate the heater. The burner management controller provides the proper burner sequencing, pre-purge, ignition and flame monitoring protection for automatically ignited oil or gas fuel burners. The enclosure also has a single-loop, 4-20mA modulating, digital temperature controller and two digital temperature limit controllers; one for the thermal fluid and one for the stack. The burner management controller also monitors other heater safety limits in it's limit circuit. If a limit condition occurs, the burner management controller safety shuts down the burner.

The enclosure and installed components meet NEMA standards. The enclosure is designed and wired to meet the requirments of NFPA 70, National Electric Code (NEC) and the requirements found in Underwriters Laboratories Inc. (UL) 508A Listing for Industrial Control Panels. This listing can be verified on the following website: <u>http://www.ul.com/database</u>.

The BMS control enclosure will be manufactured and tested by ASTEC.

The control panel includes the following:

- > AO ground to -24vdc common
- > All safety devices connected to DI through relays as input for troubleshooting.
- DI register on HMI page
- LOP (light off position) Hold through MTFI (main trial for ignition) and additional 30 seconds, then release to modulate. Program changes from basic package
- Reset PID PV to Zero at the same time it releases to Auto modulation.
- > Heater tied to burner alarm on FAL and FALL shutdown conditions
- Siemens breaker disconnect mounted on back panel with a through-the-door operator handle
- Motor starters are by others
- Fireye BurnerLogix burner management system (BMS) model YB110UVSC with self-check scanner amplifier card. The YB110 has a display with keypad mounted in the enclosure door allowing user to easily scroll through various menus to view the current operating status, review programmer configurations and lockout history. The flame reset button is on the keypad. The YB110 has the capability to communicate its status data via Mod-Bus RTU as a slave with a Mod-Bus RTU master device. Programming of the RTU Master to pole the Fireye is responsibility of the customer. The YB110 BurnerLogix is cUL US Listed, CE and FM approved
- Control relays and fused terminal blocks
- > DI, DO & AI fused connections entering and leaving the rack.
- Control relays and fused terminal blocks
- Yokogawa UT55A-040 (1/4 DIN) thermal fluid temperature controller, digital display, 4-20mA analog control output, second input for remote set-point capability and 4-20 mA re-transmission analog output capability
- Yokogawa UT35L (1/4 DIN) high thermal fluid temperature limit controller with primary output relay, manual reset, digital display and 4-20mA re-transmission output capability
- Yokogawa UT35L (1/4DIN) high stack temperature limit switch with primary output relay, manual reset, digital display and 4-20mA re-transmission output capability.
- Lights for: power and alarm indicator lights
- Switches for: burner off/on, alarm silence, low fire hold and pump select (if applicable)
- Dry contacts on common alarm and heater run status
- Flame safety reset button





October 2, 2024

www.astecindustries.com Office: 423.821.5200 5200 Wilson Rd Chattanooga, TN 37410 USA

### ASTEC PROPOSAL #: HI 23-15003 Rev 8

- Emergency shut down button
- > Alarm horn, to indicate alarm (mounted adjacent to panel)
- Window kit for indicating controls
- "Z" Purge Package
- > Allen-Bradley CompactLogix 5069 PLC with Panelview Plus 12 HMI for air-fuel ratio control.
- > Panelview HMI to be updated to latest firmware version and VNC enabled.
- > PLC rack and programs to have same version.
- > Heating element with panel insulation and thermostat





October 2, 2024

ASTEC PROPOSAL #: HI 23-15003 Rev 8

### **Exceptions and Clarifications**

HEATEC's Quotation is in basic accordance with the specifications, drawings, terms and conditions, and requirements of the invitation to bid; however, the following exceptions have been identified, priced and are attached hereto for consideration

Purchase order must make reference to HEATEC Quotation

Equipment is quoted EXW, HEATEC, Chattanooga, TN, Incoterms® 2020. Equipment will be loaded on truck free of charge. This means the delivery of Equipment on the truck at the specified point of departure (HEATEC) is covered in the quotation price. Purchaser is responsible for the main carriage / freight, cargo insurance and other costs and risks. Purchaser shall furnish all necessary facilities, labor, materials and equipment for unloading and conveying the Equipment to its erection point. The Equipment shall be erected, installed, set and leveled by Purchaser at its expense.

Purchaser shall furnish all necessary labor, materials, equipment, fuel, inert snuffing controls / media, air (if required), nitrogen (if required) and electricity required for starting up the Equipment. HEATEC will not be responsible for the installation or design of the footings, foundations or anchor bolts. Emissions compliance testing, mechanical run test, Site Acceptance Test, and performance tests are not included in Quotation. Testing included in Quotation includes the testing as described in the HEATEC Standard FAT (Available for inspection) and the HEATEC Standard ITP (Available for inspection) and any tests stated in the Quotation.

Heatec warranty, payment terms and cancellation charges are as stated below.

Export packing / preservation / storage are not included. Domestic packing is included. This includes flange / stack covers, wrapping of panel, crating of loose shipped parts.

Taxes, tariffs and duties are not included.

Order will be executed according to USA / TN laws. It is the responsibility of Purchaser to inform HEATEC via specifications of local / jurisdictional laws that may affect Equipment design (i.e. emissions, insurance codes, etc.). Purchaser assumes all responsibility for complying with all federal, state and local statutes, laws, codes, regulations and ordinances in connection with the design, installation and operation of the Equipment and any other activity related thereto, including, without limitation, the Clean Air Act and all rules and regulations promulgated thereunder and the Occupational Safety and Health Act and all rules and regulations promulgated thereunder. Some parts of the heater will exceed OSHA temperature requirements. (Average skin temperature of heater shell is 170°F with 5 mph wind and 70°F ambient.)

Any freight prices that may be quoted are estimates for budgetary purposes only. Due to the volatile nature of freight pricing, HEATEC cannot give a firm price for freight during the proposal phase of the project, because this phase occurs well in advance of the actual delivery. If contracted with HEATEC, freight will be billed at the actual cost plus a 10% handling fee.

All drawings will be standard AUTO-CAD. Delivery time stated in Quotation depends upon the approval process and the changes made during this process. Typical approval time is two weeks after receipt on all drawings. Only those drawings listed above will be offered. Drawings will be submitted electronically. If drawing approval consists of multiple or major changes, delivery time can be affected as well as the price. Drawing period is based on current engineering load and is subject to change without notice. Drawings will be sent via e-mail or provided on disk. <u>Hard copies will require additional cost</u>. Please note that the tolerance of HEATEC drawings is + or - $\frac{1}{4}$ . Construction of connections to heater should allow for modifications to be made in the field with at least 2 degrees of freedom.

Control voltage is as stated in quotation.

Insulation / tracing / personnel protection of piping and equipment external of heater is not included. This is best done in the field by local contractor to eliminate damage during shipment and to allow checking for leaks prior to start up.

Fusible loop system, testing of refractory / insulation materials, burner / blower testing, spreader bar and slings are not included.

Galvanic isolation barriers and cathodic protection are not included.



October 2, 2024

#### ASTEC PROPOSAL #: HI 23-15003 Rev 8

Single line drawings are not included. HEATEC performs ladder type diagrams.

Pipe, fittings, bolts, nuts and steel will be purchased from HEATEC's standard vendors. Plate and shapes are A36 carbon steel. Tubes supports are 304 SS. Stud bolts are SA 193 Br B7. Nuts are SA 194.

All purchased items will remain as painted from respective vendor.

Ladders and platforms are not included unless stated in Quotation.

If area is Class I Div 2 then panel is NEMA 4X with "Z" type purging. All other controls are NEMA 7, hermetically sealed, intrinsically safe or they are purged. Motors are TEFC. Equipment will be designed to NEC area as stated in Quotation.

Unless stated otherwise in Quotation, HEATEC takes exception to ISO, BS, NACE, API, GOST, ATEX, CE, IEC, SIL, & CENELEC specifications. HEATEC will assist in complying with these regulations where required but HEATEC cannot be sure the equipment as quoted will comply.

Heatec standard Quality control manual will be used for all welding, NDE, etc. Heatec standard welding procedures will be used for all welding. Heatec weld procedures and welders are ASME approved/certified. The weld procedures are available for Purchaser review only and revisions are not allowed. If Purchaser specifications have requirements other than what is listed on Heatec weld procedures, then Purchaser specific weld procedures can be produced. New procedures will result in a cost adder and will delay the original shipping date provided in the HEATEC Quotation. The increase in cost and length of delay will be dependent on the extent of the specification requirements. NDE of non-pressure vessel welds is not included unless stated in Quotation. Non pressure vessel welds are continuous but are not full penetration.

Flame arrestor, spark arrestor, UPS, noise test, fire & gas detection, outdoor lights, aviation lights, variable speed motors, soot blowers, lancing ports, fireproofing, knockout tank, insulation rings, insulation clips, vapor barriers, explosion door, spare parts, thermal fluid, shell / structural / piping stress analysis test, export custom clearance and vibration tests, start-up and erection assistance are not included. Only the controls listed in the Quotation are provided.

Hazardous area electrical equipment certification is simply a copy of each electrical item certificate. The entire heater does not have this type of approval.

Liquidated damages shall not apply.

HEATEC takes exception to specifications and required documentation referring to any other language other than English.

HEATEC is not responsible for implementing documentation or paying taxes, duties or other charges relating to exporting/importing proposed equipment into any country outside the Continental United States

Seal offs (If required) are to be poured in the field by Purchaser.

Relief valves and vents should be piped to a safe location by Purchaser.

Noise data sheet is provided by the blower manufacturer only

Redundancy is not included.

Thermal fluid by-pass, relief valve by-pass, relief valve isolation and flow control is not included unless specifically stated in the Quotation. By-pass and isolation valves around flow control valves and regulators have not been included.

Shield rows in convection section are not required or included.

SAT / Performance test is not included. Functional test of all components is included.

Skid drip pan, lip and grating have not been included.

Rupture discs are not included on relief valves.

Galvanizing of any materials is not included unless stated in Quotation.

PWHT is not included.

API guidelines are not included unless specifically stated in the body of this proposal



October 2, 2024

ASTEC PROPOSAL #: HI 23-15003 Rev 8

### **API 560 EXCEPTIONS:**

ANSI / API STANDARE	) 560 4TH EDITION AUGUST 2007
SPEC #	EXCEPTION
2	HEATEC TAKES EXCEPTION TO THE FOLLOWING SPECIFICATIONS: ISO, EN, API 673, MSS
5.2	NOISE DATA SHEET IS NOT INCLUDED EXCEPT FOR THE FAN
5.3.3	TUBE SUPPORT DETAILS & CALCULATIONS ARE NOT INCLUDED.
0.0.0	DECOKING IS NOT ALLOWED.
5.4	TUBE SUPPORTS ARE NOT CASTINGS AND THEY DO NOT HAVE TEST
0.4	CERTIFICATES
6.1.3	HEATER IS A TIGHT WOUND HELICAL COIL WITH NEGLIGIBLE TUBE
0.1.0	SPACING
6	FLUX RATE, VOLUMTERIC HEAT RELEASE AND H/W RATIO ARE AS
0	STATED IN QUOTATION
6.2.6	HEATER IS A FORCED DRAFT HEATER. NEGATIVE PRESSURES ARE
0.2.0	NOT TYPICALLY EXPERIENCED.
6.3.3	SOOTBLOWERS ARE NOT INCLUDED
6.3.2 & 6.3.4	CONVECTION SECTIONS (ECONOMIZER) DOES NOT INCLUDE SPACE
0.3.2 & 0.3.4	FOR FUTURE INSTALLATION OFSOOTBLOWERS, WATERWASHING
	TUBE ROWS, OR STEAM LANCE DOORS.
6.3.7	SHIELD SECTION IN ECONOMIZER DOES NOT HAVE BARE ROWS OF
0.0.7	TUBES
6.3.8	CORBELS / BAFFLES ARE NOT INCLUDED
6.3.9	PLENUM CHAMBER WILL NOT HAVE THE CLEARANCE FROM GRADE
	SPECIFIED.
6.3.10 & 6.3.11	HEATEC TAKES EXCEPTION TO THIS SPECIFICATION AS IT DOES
	NOT APPLY TO HELICAL COIL HEATERS
6.3.12	INDIVIDUAL TUBES ARE NOT REPLACEABLE. ENTIRE COIL IS
	REPLACEABLE.
7.1.2	CORROSION ALLOWANCE FOR TUBE WALL THICKNESS
	CALCULATIONS IS AS STATED IN THE QUOTATION.
7.1.4	HELICAL COIL HAS CIRCUMFERENTIAL WELDS THRUOUT ITS COIL
	LENGTH
10	HELICAL COIL TUBE SUPPORTS 304 SS. THIS SECTION DOES NOT
	APPLY TO HELICAL COILS AND HEATEC TAKES EXCEPTION TO IT.
11.1.5 / 11.4.1	INSULATION TYPE IS AS STATED IN QUOTATION FOR ENTIRE
	HEATER. NO BRICK OR REFRACTORY IS USED EXCEPT IN THE
	BURNER BLOCK. STACKS AND DUCTS ARE NOT INSULATED.
11.1.9	HEATEC PROVIDES THERMO CERAM ROPE OR EQUAL AROUND
	BURNER THROAT. NO EXPANSION JOINT IS REQUIRED.
11.4	CERAMIC FIBER BLANKET IS 6 LB/FT^3 WITH 310 SS PINS AND
	WASHERS. CERAMIC FIBER MODULES ARE 8 OR 10 LB/FT^3 WITH 304
	OR 316 SS ANCHOR SYSTEM. RETAINER CUPS ARE NOT UTILIZED.
11.4.8	FLUE GAS VELOCITY AA STATED IN THE QUOTATION MAY EXCEED
	THIS SPECIFICATION





October 2, 2024

### ASTEC PROPOSAL #: HI 23-15003 Rev 8

12.2.7	FIREPROOFING IS NOT INCLUDED
12.3	HEADER BOX IS BOLTED. PLUG HEADERS ARE NOT UTILIZED.
12.3.2.1 / 12.3.2.2	ONLY ONE 18" DIAMETER RADIANT SECTION ACCESS DOOR IS
	PROVIDED. IT IS BOLTED. IT IS IN THE REAR COVER OF HORIZONTAL
	HEATERS AND THE TOP COVER OF VERTICAL HEATERS. BURNER
	DESIGN DOES NOT HAVE AIR PLENUM DESIGN, IT IS SIMPLY A BLOWER WITH DAMPER AND DUCT. IT HAS NO ACCESS DOOR OR
	PORT.
12.3.2.3 / 12.3.2.4 /	
12.3.2.6	DOOR BEFORE ABD AFTER CONVECTION SECTION IS NOT
	INCLUDED. INDIVIUAL TUBES ARE NOT REPLACEABLE. ENTIRE COIL
	IS REPLACEABLE. END COVERS OF HEATER ARE REMOVED FOR
	THIS PURPOSE. TUBE REMOVAL DOOR IS NOT INCLUDED. DUCTS
13.2.2/13.2.7/13.2.8	AND DAMPERS DO NOT HAVE ACCESS DOORS. STACK IS SEAL WELDED EXTERNALLY ONLY. STACK IS NOT LINED.
13.2.12	BREECHING WILL NOT MEET CLEARANCE SPECIFICATIONS
13.2.15	STACK DOES NOT HAVE A CORROSION ALLOWANCE.
14.1.3	BURNER MAY NOT MEET SPECIFIED CLEARANCES
14.1.8	A SINGLE BURNER IS USED ONLY
14.1.21	IF BURNER IS OIL FIRED. THE OIL GUN IS NOT REMMOVABLE DURING
	OPERATION. MATERIALS OF CONSTRUCTION MAY NOT MEET ALL
	REQUIREMENTS IN TABLE 15.
14.2	SOOTBLOWERS, PORTS AND LANES ARE NOT INCLUDED UNLESS
110	STATED IN QUOTATION.
14.3	FANS AND DRIVERS WILL NOT MEET API REQUIREMENTS
14.4	HEATEC USES BUTTERFLY DAMPERS AND RADIAL DAMPERS IN THE COMBUSTION AIR DUCT. THEY ARE MILD STEEL CONSTRUCTION.
15	FLUE GAS AND COMBUSTION AIR CONNECTIONS ARE SCH 40 NPT
	CONNECTIONS.
15.3.2	VENT AND DRAIN CONNECTIONS ARE NOT INCLUDED
15.4	TUBE SKIN THERMOCOUPLES ARE NOT INCLUDED UNLESS STATED
	IN QUOTATION.
15.5	INSTRUMENT CONNECTIONS ARE NOT NECESSARILY ACCESSIBLE
16.2	FROM GRADE.
16.7	PLATE WELDS ARE SEAMLESSLY WELDED ON THE EXTERIOR
17.3 17.4	FIELD ERECTION / ASSISTANCE ARE NOT INCLUDED.
ANNEX E	HEATEC TAKES EXCEPTION TO 17.3 & 17.4 STRESS CALCULATIONS ARE NOT PERFORMED ON TUBES, SHELL
	OR TUBE SUPPORTS.
ANNEX F	AIR PREHEATER IS NOT INCLUDED.



October 2, 2024

#### ASTEC PROPOSAL #: HI 23-15003 Rev 8

#### SALES PROPOSAL SPECIFIC TERMS AND CONDITIONS

PARTIES: - Heated	c, Inc. shall be referred to as " <b>Heatec</b> " in this Sales Proposal. - Good Customer shall be referred to as " <b>Purchaser</b> " in this Sales Proposal.
PRICING:	<ul> <li>The Price is valid for sixty (60) days after date of this Sales Proposal.</li> <li>The Prices do not include any sale, use, property value added, duties or other taxes or charges, whether federal, state, local or provincial that may be applicable, which shall be the responsibility of the Purchaser.</li> </ul>
<u>TERMS:</u>	<ul> <li>Purchaser shall pay the purchase price in progress payments as follows: Receipt of these progress payments is required before the Equipment will be released for shipment. 20% @ ARO 30% @ Approval Drawing Submittal 30% @ Coil Hydro Test Balance @ ready to ship</li> <li>Electronic Transfer required 30 days after invoice receipt Refundment / security / performance bonds are not included.</li> </ul>
PACKING:	- The Price includes Heatec's standard packing. If Purchaser requires special packing, the extra cost caused thereby shall be borne by Purchaser.
<u>Shipping:</u>	<ul> <li>Transportation charges from point of shipment to point of destination shall be arranged for and paid for by the Purchaser, unless a separate freight contract is entered into between the parties.</li> <li>Purchaser shall control the type of transportation and routing.</li> <li>An anticipated ready for ship date shall be established upon Heatec's receipt of signed Sales Proposal and Heatec's receipt of the down payment.</li> </ul>
DELAY:	<ul> <li>If Heatec is not released by the Purchaser to order materials for fabrication at the time Purchaser signs this</li> <li>Sales Proposal, Heatec reserves the right to review and adjust the Price.</li> <li>In addition, delays in fabrication due to delays in Purchaser's release or other reasons due to Purchaser, will require an adjustment in the anticipated shipment date.</li> </ul>

#### **STEEL PRICES ESCALATION NOTE:**

Because of price volatility from steel manufacturers, any order will be subject to a review of material costs from the time of the proposal to the time that the material is actually allocated to the order. Any steel material cost changes will be based on the #1 Chicago Heavy Melt which is listed daily in numerous publications such as THE AMERICAN METAL MARKET. The calculation for the cost variation will be the difference between the Chicago #1 Heavy Melt scrap index 8 weeks prior to the date of this quotation and that same index price on the date 8 weeks prior to shipment of the respective order, which roughly corresponds to the steel material order date. That calculation will multiply the total weight of the steel plate, structural steel, and steel pipe of the product provided by the applicable index price variation. The increase, or decrease, in price will be shown as an additional line item on the respective invoice. This is the most appropriate and transparent method to deal with the current unpredictability of the steel market today. Please, contact us if you have any questions concerning this Escalation Note.





October 2, 2024

#### ASTEC PROPOSAL #: HI 23-15003 Rev 8

#### SALES PROPOSAL GENERAL TERMS AND CONDITIONS OF SALE

- 1. GENERAL: As used herein, "Equipment" is the equipment and/or parts identified in this Sales Proposal as expressly agreed to be provided by Heatec to Purchaser. As used herein, the "Services", if any, are the services identified in the Sales Proposal as expressly agreed to be provided by Heatec to Purchaser. As used herein, the "Software", if any, is the software identified in the Sales Proposal as expressly agreed to be icensed by Heatec to Purchaser. As used herein, the "Software", if any, is the software identified in the Sales Proposal as expressly agreed to be icensed by Heatec to Purchaser. These General Terms and Conditions of Sale (the "Terms") and all other sections of this Sales Proposal are collectively referred to in the Terms as the "Agreement". The Agreement sets forth the entire, exclusive and complete agreement of Heatec and Purchaser with respect to the sale and purchase of the Equipment, the performance of the Services and the license of the Software and supersedes any prior or contemporaneous written or oral agreement, understanding and communications and any course of dealing, usage of trade or course of performance. This Agreement prevails over any of Purchaser's terms and conditions of purchase or purchase order, regardless of whether or when Purchaser's terms and conditions or purchase order. Fulfillment of Purchaser's order does not constitute acceptance of any of Purchaser's terms and conditions and does not serve to modify or amend these terms and conditions. No waiver or modification of this Agreement shall be effective unless in writing and signed by both Heatec and Purchaser.
- 2. ENGINEERING: Heatec and Purchaser acknowledge and contemplate that any engineering services for which Heatec is responsible pursuant to this Agreement will be performed by engineers employed by Heatec only to the extent allowed by applicable laws and regulations. Otherwise, such engineering services will be provided by qualified, licensed engineers selected and retained by Heatec at Heatec's expense. Except as otherwise provided herein, Heatec and Purchaser acknowledge and contemplate that upon acceptance of this Agreement by Heatec, Heatec's engineering analysis and design is necessary to fulfill its obligations under this Agreement, and will prepare whatever plant layouts, drawings, and design specifications are necessary in Heatec's discretion to facilitate the performance of the Equipment in accordance with this Agreement. Heatec and Purchaser further acknowledge and contemplate that this engineering process may result in modifications or changes which may include, but are not limited to: modifications or parts lists. No such modifications or changes shall constitute a breach of contract by Heatec.
- 3. DRAWINGS: Heatec will furnish Purchaser with necessary drawings and instruction for Purchaser's erection of the Equipment. Heatec will not be held responsible for design and/or installation of footings and/or other items necessary for installing the Equipment unless otherwise stated herein.
- 4. DIFFERING SITE CONDITIONS: If, in the performance of this Agreement, subsurface or latent conditions at the site are found to be materially different from those indicated by geotechnical reports provided by Purchaser, or unknown conditions of an unusual nature are disclosed differing materially from those ordinarily encountered by Heatec, then such conditions may result in adjustments to the Price, anticipated dates for delivery/shipment, and other contractual obligations. No such adjustments shall constitute a breach of contract by Heatec.
- 5. CONFIDENTIALITY: All non-public, confidential or proprietary information of Heatec, including but not limited to specifications, samples, patterns, designs, plans, drawings, documents, data, business operations, purchaser lists, pricing, discounts or rebates, disclosed by Heatec to Purchaser, whether disclosed orally or disclosed or accessed in written, electronic or other form or media, and whether or not marked, designated or otherwise identified as "confidential" in connection with this Agreement shall be treated by Purchaser as confidential and may not be disclosed to any third party or copied by Purchaser unless authorized in advance by Heatec in writing. Upon Heatec's request, Purchaser shall return all documents and other materials received from Heatec. Heatec shall be entitled to seek injunctive relief for any violation of this Paragraph 5. This Paragraph 5 does not apply to information that is: (a) in the public domain; (b) Purchaser can show was known to Purchaser at the time of disclosure; or (c) Purchaser can show was rightfully obtained by Purchaser on a non-confidential basis from a third party. Purchaser's confidentiality, non-disclosure and non-use obligations herein shall remain in force for the maximum term permitted by applicable law.

#### 6. WARRANTY:

- a. Heatec warrants that upon shipment from Heatec's site and continuing for a period of eighteen (18) months after shipment of such Equipment to Purchaser or twelve (12) months after startup, whichever occurs first (the "Equipment Warranty Period"), that the Heatec manufactured Equipment will be free of defects in design, material and workmanship, provided any operation of the Equipment by Purchaser has been in accordance with generally approved practice as instructed by Heatec service personnel or set forth in Heatec service instructions, if any, and provided that Purchaser notifies Heatec in writing as soon as such defect becomes apparent, but in all events during the Equipment Warranty Period. Heatec shall repair, or at its option replace FCA point of shipment, any defective Equipment or parts covered by the warranty. The right to have defective Equipment repaired or replaced shall constitute the Purchaser's sole and exclusive remedy for breach of this limited Equipment warranty. Labor for defective Equipment repair will be paid by Purchaser under a formula determined by Heatec. For helical coils found in Heatec's heaters, the Equipment Warranty Period for the helical coils is three (3) years. Equipment which is repaired or replaced shall carry a warranty equal to the unexpired portion of the Equipment Warranty Period. Heatec warrants to Purchaser that the Equipment will perform at its rated capacity as indicated on the Sales Proposal when properly installed, connected, and correctly operated and maintained. Where the Equipment is merely a part of a whole system, Heatec can only accept responsibility for performance of the Equipment furnished by it. The performance of the Equipment covered in this Agreement cannot be exactly predicted for every operating condition. In consequence, any predicted performance data submitted is intended to show probable operating results which may be closely approximated, but which cannot be guaranteed.
- b. Heatec makes no warranties or guarantees with respect to Equipment not manufactured by Heatec, including but not limited to diesel engines, motors, motor starters, pumps, mixers, mills, scales, speed reducers, and other assemblies, valves, pressure regulators, solenoids, electronic drives, pressure differential switches, temperature sensing switches, flame scanners, gauge boards, modulating actuators, electronic displays, pressure transmitters, radar sensors, other electronic controls and instrumentation and other parts and accessories. Liners, castings, furnace refractories, and refractory materials are subject to wide variations of destructive service, are also not covered by the Equipment warranty and are a maintenance responsibility of Purchaser from the beginning of operation. Heatec will pass through to Purchaser any warranties and limitations provided by the original manufacturer of parts used in the Equipment manufactured by Heatec, but Heatec does not provide any warranty as to such items.





October 2, 2024

www.astecindustries.com Office: 423.821.5200 5200 Wilson Rd Chattanooga, TN 37410 USA

#### ASTEC PROPOSAL #: HI 23-15003 Rev 8

- c. Heatec warrants that the Services performed hereunder shall be free from defects in workmanship for a period of thirty (30) days from the date of performance (the "Service Warranty Period"). Heatec undertakes at its cost to reperform defective Services covered by the warranty, provided that Purchaser notifies Heatec in writing as soon as such defect becomes apparent, but in all events during the Service Warranty Period. The right to have defective Services reperformed shall constitute the Purchaser's sole and exclusive remedy for breach of this limited Service warranty. Services which are reperformed shall carry a warranty equal to the unexpired portion of the Service Warranty Period.
- d. No warranty shall apply to Equipment which has been repaired or altered by others so as, in Heatec's judgment, to adversely affect the same or which shall have been subject to negligence, accident, abuse or improper care, installation, maintenance, storage or other than normal use or service, during or after shipment. No warranty shall apply to any used Equipment or for ordinary wear and tear, or ordinary corrosion or erosion. No warranty shall apply to any Equipment adversely affected by being used with any machinery, part or accessory not manufactured or authorized by Heatec. No warranty shall apply to consumables or parts having a life expectancy shorter than the Equipment Warranty Period.
- e. Except as expressly set forth in this Sales Proposal, Heatec does not warrant or represent that any Equipment furnished by it meets any state or local safety, environmental or electrical regulations. Heatec is wholly discharged from all liability under this warranty in the event that Purchaser fails to pay for the Equipment or Services in accordance with the applicable purchase terms. This Equipment warranty extends only to the first end-user and is not transferable. This warranty may not be modified except pursuant to a written agreement signed by Heatec.
- f. THE EXPRESS WARRANTIES AND WARRANTY REMEDIES PROVIDED IN THIS PARAGRAPH 6 ARE THE SOLE AND EXCLUSIVE WARRANTIES AND WARRANTY REMEDIES PROVIDED BY HEATEC TO PURCHASER AND ARE PROVIDED IN LIEU OF ALL OTHER WARRANTIES, WHETHER EXPRESS OR IMPLIED (EXCEPT WARRANTY OF TITLE), INCLUDING, BUT NOT LIMITED TO, ANY IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE AND ANY IMPLIED WARRANTY FROM COURSE OF DEALING OR USAGE OF TRADE, ALL OF WHICH ARE HEREBY EXPRESSLY WAIVED AND DISCLAIMED.
- 7. LIMITATION OF LIABILITY: NOTWITHSTANDING ANYTHING ELSE TO THE CONTRARY CONTAINED IN THIS AGREEMENT, THE PARTIES AGREE THAT IN NO EVENT OR CIRCUMSTANCE IS HEATEC LIABLE TO PURCHASER FOR SPECIAL, INDIRECT, INCIDENTAL, PUNITIVE OR CONSEQUENTIAL DAMAGES, COSTS OR LOSSES OF ANY NATURE WHATSOEVER, INCLUDING BUT NOT LIMITED TO LOST PROFITS OR REVENUE, LOSS OF PRODUCTION, LOSS OF USE OR LOSS OF CONTRACTS, COSTS FOR RAW MATERIAL, ENERGY, UTILITY, LABOR OR CAPITAL OR FOR ANY OTHER INDIRECT LOSS; OR FOR CLAIMS RAISED BY PURCHASER'S CUSTOMERS; AND WHETHER BASED ON BREACH OF CONTRACT OR WARRANTY, TERMINATION, NEGLIGENCE, TORT, STRICT LIABLITY, INDEMNITY AT LAW OR IN EQUITY OR OTHERWISE. IN NO EVENT SHALL HEATEC'S AGGREGATE LIABILITY ARISING OUT OF OR RELATED TO THIS AGREEMENT, WHETHER ARSING OUT OF OR RELATED TO BREACH OF CONTRACT, TORT (INCLUDING NEGLIGENCE) OR OTHERWISE, EXCEED THE TOTAL OF THE AMOUNTS PAID TO HEATEC FOR THE EQUIPMENT SOLD HEREUNDER.
- 8. SECURITY INTEREST; COST OF RECORDING: Purchaser hereby conveys and grants to Heatec a purchase money security interest in the Equipment to secure payment by Purchaser of all amounts due hereunder including the Price and such other debts, obligations and liabilities of Purchaser to Heatec which may now exist or hereafter arise, whether absolute or contingent, or primary or secondary, together with all extensions or renewals for the foregoing and all expenses, legal or otherwise (including court costs and reasonable attorney's fees) incurred by Heatec in collecting or endeavoring to collect any or all of the foregoing, in protecting any collateral and in enforcing the Agreement. The Equipment shall remain personal property in all respects notwithstanding the manner of annexation of any of the Equipment to realty. Purchaser agrees to execute any instrument or document considered necessary by Heatec to perfect its security interest in the Equipment, including, but not limited to, financing statements, chattel mortgages, deeds of trust, deeds to secure debt, mortgages or other security instruments. Until default hereunder, Purchaser may have possession of the Equipment and use the same in any lawful manner not inconsistent with this Proposal or with any policy of insurance thereon. Purchaser will pay the costs and taxes due for recording and filing any Financing, Continuation or Termination Statements with respect to Heatec's security interest in the Equipment or in connection with any of the other security documents referred to above.
- 9. EQUIPMENT NOT TO BE REMOVED: As long as the security interest in the Equipment is retained by Heatec, the Equipment shall not be removed from the erection site and Purchaser shall not permit, voluntarily or involuntarily, the Equipment or any part of it to be sold, transferred, encumbered, attached, seized or removed in any manner whatsoever.
- 10. DEFAULT: Upon default by Purchaser in the payment of the Price or any portion thereof when due or in the payment of all or any portion of any other indebtedness secured under this Agreement when due or in the performance of any other term or provision hereof, all unpaid amounts due Heatec shall thereupon be immediately due and payable and Heatec shall have the rights and remedies contained herein and the rights and remedies of a secured party under the Uniform Commercial Code of the State of Tennessee or under the laws of any other jurisdiction as a court of competent jurisdiction shall determine to be applicable. In the event of Purchaser's default, the following provisions shall apply: (a) Purchaser shall, upon request of Heatec, disassemble the Equipment and make it available to Heatec at a place designated by Heatec; (b) Heatec may enter Purchaser's premises where any part of the Equipment is located, and take possession of and remove all or any portion of the Equipment for purposes of disposition pursuant hereto; (c) Purchaser agrees that sales for cash or on credit to a wholesaler, retailer, or user or property of the time and place of any sale of any of the Equipment or of the time after which any private sale or any other intended disposition thereof is to be made by notice, postage prepaid and addressed to Purchaser at the latest address of Purchaser agree are reasonable; (e) any proceeds of any disposition of any of the Equipment may be first applied by Heatec to the payment of expenses in connection with exercising its rights and remedies hereunder, including reasonable attorney's fees and legal expenses, and any balance of such proceeds may be applied as Heatec may elect in its sole discretion; (f) if the sale or other disposition of the Equipment fails to satisfy in full obligations of Purchaser secured by this Agreement, and the reasonable expenses of retaking, holding, preparing for sale, selling and the like, including reasonable attorney's fees and legal expenses incurred by Heatec in co





October 2, 2024

#### ASTEC PROPOSAL #: HI 23-15003 Rev 8

- 11. PERMITS AND APPROVAL OF PLANS: Purchaser assumes all responsibility for securing any necessary governmental approvals of the plans and specifications and any permits required for the installation and operation of the Equipment, all at Purchaser's expense.
- 12. PERMIT CONTINGENCY: If the purchase of Equipment under this Agreement is contingent on Purchaser's receipt of one or more permits or other governmental approvals, then the Price set forth in this Agreement will not be binding on Heatec. Once all contingencies have been fulfilled or are waived, the Price will be determined by Heatec taking into account any increase in Heatec's cost of purchased components and/or raw materials, among other factors.
- 13. COMPLIANCE WITH APPLICABLE LAWS: Purchaser assumes all responsibility for complying with all federal, state and local statutes, laws, codes, regulations and ordinances in connection with the installation and operation of the Equipment and any other activity related thereto, including, without limitation, all federal, state and local environmental laws and regulations relating to pollution and protection of the environment and the Occupational Safety and Health Act and all rules and regulations promulgated thereunder.
- 14. PATENTS: In the event that any of the Equipment specified in this Agreement is based upon designs of or furnished by Purchaser, Purchaser shall indemnify Heatec for any loss or expense incurred by it by reason of any claim for infringement of patents.

#### 15. SHIPMENT:

- If Purchaser is in default of any of its obligations under this Agreement, Heatec may, at its election, withhold any further performance of its obligations and duties under this Agreement until such time as such default has been cured by Purchaser, in which event the anticipated date of shipment as set forth herein shall be adjusted accordingly. Heatec shall not be liable or responsible for, nor shall the Price be reduced by any amount because of any matters beyond the control of Heatec which delay or postpone the anticipated date set forth above for the shipment of the Equipment, such matters including, but not limited to, warlike acts, civil disorder, governmental restriction, acts of God, prior sale, acceptance of United States governmental contracts, strike, lockout, accidents, freight embargo, fire, flood, inability of Heatec to obtain necessary materials, supplies, labor or transportation, pandemic, or any unforeseen water, soil or rock conditions.
- b. A detailed shipping list will accompany the bill of lading and Purchaser agrees to check the Equipment as it is unloaded and any claim for shortage against Heatec will be made in writing within twenty-four (24) hours of time of unloading, to be followed by an affidavit (if required) from the person in charge of the unloading. Claims for loss or damage in transit will be made on the carrier by Purchaser.
- c. Except to the extent otherwise provided herein, Purchaser has full responsibility for erection and installation of the Equipment.
- d. Delivery period is based on current manufacturing load and is subject to change without notice. Long lead items will need to be ordered prior to approvals in order to meet the quoted delivery date. If any of these items are changed during the approval process, charges may result for restocking.
- 16. LATE CHARGES AND ATTORNEY'S FEES: Purchaser agrees that in the event any amount payable by Purchaser to Heatec remains unpaid for more than 30 days, a service charge of 1.5% per month (18% per annum) or any portion thereof (or the highest rate of interest allowed by law, whichever is less) shall accrue on such unpaid amount beginning on the thirty-first (31st) day after such date payment is due. If the indebtedness, including late charges, arising out of this or any other transaction between Heatec and Purchaser is placed in the hands of an attorney for collection, or is collected by and through an attorney, Purchaser will pay all costs of collection, including without limitation, court costs and reasonable attorney's fees.
- 17. POSTPONED DELIVERY (INCLUDING SHIPPING DELAY): If, through no fault of Heatec, delivery or shipment is delayed or postponed (including deferral of shipment requested by Purchaser), Purchaser shall pay to Heatec any additional costs, including plant Equipment storage, handling, and insurance, incurred by Heatec arising from such delay, deferral, or postponement. Such a delay, postponement or deferral is considered "offer to ship" or "shipment" for all purposes, including invoicing, payment and transfer of title. Therefore, the balance remaining unpaid on the Price shall bear the risk of loss of or damage to the Equipment during storage and thereafter. If, as a result of the delay, postponement or deferral, the Equipment requires repainting, all costs associated with repainting shall be paid by the Purchaser. Should Purchaser delay/postpone/defer shipment, Purchaser and Heatec will complete the attached "Postponed Delivery/Shipping Delay/Deferral Notice".
- 18. EQUIPMENT CERTIFICATION: Once certification and fabrication has been completed on any Equipment, if state certification specifications change or unit(s) are to be shipped to a location other than that for which the certification was acquired, the cost of any recertification and/or modifications required to be done on the Equipment shall be paid by Purchaser.
- 19. LIMITATION OF PROPOSAL: The Price and terms quoted in this Sales Proposal are subject to formal acceptance (i.e. signature on this Sales Proposal) without change by Purchaser within a period 30 days from the date hereof, except that Heatec shall have the right to withdraw its Sales Proposal at any time before formal acceptance by Purchaser.
- 20. EXECUTION OF CONTRACT: This Sales Proposal is merely the solicitation of an order and is not an offer from Heatec to Purchaser (even though executed on behalf of Heatec under "RESPECTFULLY SUBMITTED,") and does not obligate Heatec in any manner whatsoever until this Agreement is both executed below on behalf of Purchaser as an order made to Heatec as well as executed below on behalf of Heatec as an acceptance of such order from Purchaser, at which time this Agreement shall become a binding contract between Heatec and Purchaser. Once this Agreement has become a binding contract, it cannot be suspended or cancelled without the prior written consent of Heatec, which may be withheld in the sole discretion of Heatec. In the event Purchaser elects to cancel any order, or a portion of thereof, Heatec shall proportionally be paid a percentage of the price of the cancelled order. This portion will be a minimum of ten percent (10%) of the total P.O. value, or will be a percentage relative to the completed portion of the order, whichever is greater. This proportional percentage shall reflect the amount of materials used, purchased materials, and/or work performed prior to the cancellation notice, plus any charges which Heatec can demonstrate resulted from the cancellation including, but not limited to, storage fees, cancellation not restocking charges from sub-vendors, plus the cost of any non-returnable items become the property of Purchaser and are delivered EXW Chattanooga-TN or sub-vendor location.





October 2, 2024

#### ASTEC PROPOSAL #: HI 23-15003 Rev 8

- 21. SEVERABILITY: If any provision of this Agreement is found to be legally invalid or unenforceable: (i) the validity and enforceability of the remainder of this Agreement shall not be affected, (ii) such provision shall be deemed modified to the minimum extent necessary to make such provision consistent with applicable law, and (iii) such provision shall be valid, enforceable and enforced in its modified form.
- 22. ASSIGNMENT: Purchaser shall not assign any of its rights or delegate any of its obligations under this Agreement without the prior written consent of Heatec. Any purported assignment or delegation in violation of this Paragraph 22 is null and void. No assignment or delegation relieves Purchaser of any of its obligations under this Agreement.
- 23. LAW CONTROLLING: This Agreement and all questions regarding the performance of the parties hereunder shall be controlled by the laws of the State of Tennessee (without regard to conflicts of law). The parties agree that the United Nations Convention on Contracts for the International Sale of Goods does not apply to this Agreement, or the transactions contemplated thereby.
- 24. DISPUTE RESOLUTION: Any dispute or claim arising out of or relating to this Agreement, or the breach, termination or invalidity thereof, and any related tort, statutory and equitable claims (each a "Dispute"), which the parties are not able to settle amicably within 3 months from the first written request for such settlement, shall be brought exclusively in a state or federal court in the State of Tennessee, County of Hamilton. The parties hereby waive any right to challenge such choice of jurisdiction or venue or to seek transfer to another jurisdiction. THE PARTIES FURTHER KNOWINGLY AND VOLUNTARILY WAIVE ANY RIGHT TO A JURY TRIAL OF THE DISPUTE.
- 25. TAXES: Prices quoted herein do not include any Federal, State or Municipal Taxes. If under existing or future law passed by the United States, any state or any municipality, Heatec is required to pay or collect a tax, impost or charge upon the manufacture, sale, use or assembly of the material described herein, the Price shall be increased by the amount of such tax, impost or charge. The amount of such increase is to be paid to Heatec upon demand. If Purchaser holds resale tax permits and the material described herein is for resale, such information shall be shown by Purchaser.
- 26. BACK-CHARGES AND ALLOWANCES: Heatec shall not be called upon to make any allowance for material, labor, repairs or alterations made for its account unless authorized by Heatec in writing.
- 27. INSPECTION AND ACCEPTANCE PERIOD: Purchaser agrees to inspect the Equipment immediately after delivery to the site, but in no event later than five (5) calendar days after such delivery (the "Acceptance Period"). Any defect discovered during the Acceptance period is subject to the procedures and remedies set forth in Paragraph 6 (Warranty).
- 28. RESPONSIBILITY OF PURCHASER FOR OPERATION OF EQUIPMENT: The operation of the Equipment at all times shall be the sole and exclusive responsibility of Purchaser. Any Services by Heatec's representatives shall be given solely in a consulting or advisory capacity and shall not release Purchaser in any manner whatsoever from its responsibility for operating the Equipment.
- 29. INDEMNIFICATION: Purchaser agrees to indemnify and hold harmless Heatec, its affiliates and their respective employees from and against any and all liabilities, damages, obligations and claims (including, without limitation, court costs and reasonable attorney's fees) arising from or with respect to the operation of the Equipment. Without limiting the generality of the preceding sentence, the parties acknowledge and agree that if a claim initially was brought against Heatec for defective manufacture, design or the like and was finally determined by a court of competent jurisdiction or otherwise settled (such settlement being with Purchaser's consent) on a basis relating to the negligent operation or use of the Equipment, Heatec will be entitled to indemnification pursuant to the provisions of the preceding sentence.
- 30. TITLE AND RISK OF LOSS: Title to the Equipment shall pass to Purchaser upon shipment or offer to ship should Purchaser delay shipment. The risk of loss or damage to the Equipment shall pass to Purchaser upon delivery of the Equipment (FCA point of shipment Heatec site, Incoterms 2020), unless transferred earlier in accordance with Paragraph 17 (Postponed Delivery (Including Shipping Delay)).
- 31. NOTICES: Each party shall deliver all notices and other communications under this Agreement (each, a "Notice") in writing and addressed to the other party at the addresses set forth on the first page of this Sales Proposal. Each party shall deliver all Notices by personal delivery or through deposit in the mail, certified or registered (in each case, return receipt requested, postage prepaid) or through a nationally recognized overnight courier (with all fees prepaid). If Notice should be given immediately or promptly, then in addition to furnishing a copy of the Notice in the manner aforesaid, a copy shall be sent via e-mail (with confirmation of transmission). A Notice is effective only (a) upon receipt by the receiving party and (b) if the party giving the Notice has complied with the requirements of this Paragraph 31, unless the receiving party has waived its requirements in writing. A copy of all notices to Heatec shall be sent to: Heatec, Inc., 1725 Shepherd Road, Chattanooga, TN 37421, Attr: Legal Counsel.
- 32. INSURANCE: Until the Equipment is accepted and the price is paid in full, Purchaser shall provide and maintain insurance for the full replacement value of the Equipment against customary casualties and risks, including fire and explosion, and liability insurance for accidents or injuries to the public or to employees, in the names of Heatec and Purchaser, as their interests may appear, and in amounts satisfactory to Heatec. If Purchaser fails to provide such insurance, Heatec may provide it and the cost thereof shall be added to the contract price. All loss resulting from failure to affect such insurance shall be the responsibility of Purchaser.
- 33. CHANGE ORDERS: Either Heatec or Purchaser may propose a change in the specifications for the Equipment or Services. Should any change proposed by Heatec or Purchaser cause an increase or decrease in the cost of or time required for performance of this Agreement or otherwise affect any provision of this Agreement, an adjustment shall be made to the corresponding provision(s) of this Agreement in accordance with this Paragraph 33. Within ten (10) business days after receipt of Purchaser's proposal for a change, or with any proposal for a change by Heatec, Heatec shall prepare and submit to Purchaser a change order in the form attached (the "Change Order"), which shall contain (i) a description of the change, (ii) the net increase or decrease in the Price, (iii) the effect of the change on the estimated delivery schedule and (iv) a description of changes to any other provisions of this Agreement. Purchaser shall accept or reject the Change Order within five (5) business days. No change shall be effective unless evidenced by a written Change of Purchaser's acceptance or rejection of any Change Order, then the Change Order shall be deemed accepted by Purchaser and the parties shall proceed on the basis of the change set forth therein. If Purchaser rejects a Change Order, this Agreement shall continue to remain in full force and effect notwithstanding the parties' failure to agree to such Change Order, and the





October 2, 2024

#### ASTEC PROPOSAL #: HI 23-15003 Rev 8

parties shall continue to work reasonably and in good faith (but shall not be obligated) to reach a mutually acceptable agreement with respect to such proposed changes; provided that Heatec shall not be required to proceed with any such proposed change until the parties have mutually agreed on an appropriate Change Order. In the event that Heatec and Purchaser cannot agree to a change in Price, the change will be priced on a time and materials basis, and Heatec's charges shall be equal to direct costs incurred by Heatec for labor, equipment and materials plus 27% for overhead and profit as full compensation for such change. In the event that Heatec and Purchaser cannot agree to any other changes, such dispute will be resolved in accordance with the dispute resolution procedures in Paragraph 24.

#### SALES PROPOSAL SOFTWARE TERMS OF USE (ONLY APPLICABLE IN CASE OF PLC)

These Software Terms of Use ("**Terms of Use**") govern the use of the Software, including all user manuals, technical manuals and any other materials in printed, electronic or other form, that describe the Software or its use (collectively, "**Documentation**") that is or has been furnished by Heatec to Purchaser for use in connection with the Equipment.

1. License Grant. Subject to Purchaser's strict compliance with these Terms of Use and pursuant to and conditioned upon Purchaser's compliance with all of the terms of the Agreement, including, but not limited to its payment terms, Heatec hereby grants to Purchaser a non-exclusive, non-transferable, non-sublicensable, limited license to use the Software solely in connection with its operation of the Equipment pursuant to the instructions contained in the Documentation. The foregoing license will terminate immediately on the earlier to occur of: (a) Purchaser's removal, disposal or transfer of the Equipment; or (b) Purchaser's failure to comply with these Terms of Use.

2. Use Restrictions. Purchaser shall not, directly or indirectly: (a) use the Software or Documentation except as set forth in Paragraph 1 of these Terms of Use; (b) copy the Software or Documentation, in whole or in part; (c) modify, translate, adapt or otherwise create derivative works of the Software or any part thereof; (d) combine the Software or any part thereof with, or incorporate the Software or any part thereof in, any other software or any part thereof; (f) remove, delete, alter or obscure any trademarks or any copyright or other intellectual property or proprietary rights notices included on or in the Software or functionality of the Software, for any reason, to any other person or entity; (h) use or attempt to use the Software or Documentation in, or in association with, components, systems or equipment other than the Equipment; (i) use or attempt to use the Software or Documentation in violation of any law, regulation or rule; or (j) use or attempt to use the Software or any other software, the development of a competing software product or service or any other purpose that is to Heatec's commercial disadvantage.

3. <u>Compliance Measures</u>. The Software contains technological copy protection or other security features designed to prevent unauthorized use of the Software, including features to protect against use of the Software in a manner: (a) that is beyond the scope of the license granted to Purchaser hereby; or (b) that is prohibited under Paragraph 2 of these Terms of Use. Purchaser agrees that it shall not, and shall not attempt to, remove, disable, circumvent or otherwise create or implement any workaround to, any such copy protection or security features.

4. <u>Collection and Use of Information</u>. Heatec may, directly or indirectly through the services of other affiliated parties, collect and store information regarding use of the Software and the Equipment. Purchaser agrees that Heatec may use such information for any purpose that it deems fit. Heatec assumes no duty to review, access, use or retain the information collected. Purchaser consents to the collection, transmission and sharing of the information described above, and authorizes Heatec, its affiliates, subsidiaries and distributors to gather, process and use, without limitation, the information developed or collected by or in connection with the Software. This may include sharing of such information with select third parties and business partners.

5. <u>Remote Access Services</u>. A representative of Heatec may provide technical support through the Software ("Remote Access Services"). Any Remote Access Services are provided at Purchaser's sole risk. The ability for Heatec to remotely access the Software and Equipment significantly enhances Heatec's ability to resolve Purchaser's technical problems quickly. Purchaser understands that the provision of Remote Access Services requires Purchaser to provide Heatec's technical support personnel with access to and control of the Software and Equipment. Heatec may, but has no obligation to, troubleshoot, evaluate, run programs or install/uninstall Software, reconfigure and/or otherwise perform service or technical support work on the Software and Equipment, either directly or through an internal network. Heatec may make any changes that it determines are necessary to increase the performance of the Software or Equipment and/or to alleviate the problem at hand or any other problem discovered during the course of performing the Remote Access Services. Purchaser shall indemnify and hold harmless Heatec against all claims, actions, proceedings, costs, damages, and liabilities, including attorneys' fees and litigation and related costs and expenses, incurred by Heatec for injuries to person, property or otherwise resulting from any cause whatsoever arising out of, connected with, or resulting from any Remote Access Services performed by Heatec.

6. <u>Intellectual Property Rights</u>. Purchaser acknowledges that: (a) Purchaser does not acquire any ownership interest in the Software, or any rights to the Software other than the right to use the Software as provided herein; (b) Heatec reserves and shall retain its entire right, title and interest in and to the Software and all intellectual property rights arising out of or relating to the Software, subject to the license expressly granted to Purchaser by this Agreement; and (c) Purchaser shall use commercially reasonable efforts to safeguard the Software and the media on which it is stored from infringement, misappropriation, theft, misuse or unauthorized access.

7. <u>Limited Warranties</u>. Heatec warrants that, for a period of one year following the date of the purchase of the Equipment from Heatec: (a) any media on which the Software is provided will be free of material damage and defects in materials and workmanship under normal use;





October 2, 2024

### ASTEC PROPOSAL #: HI 23-15003 Rev 8

and (b) the Software will substantially contain the functionality described in the Documentation, and when properly operated in accordance with the Documentation, will substantially perform as described therein. The warranties set out in this Paragraph 7 will not apply and will become null and void if Purchaser materially breaches any provision of this Agreement, or if Purchaser or any other person provided access by Purchaser to the Software or the media on which it is provided, whether or not in violation of this Agreement: (a) uses the Software in a manner other than as described in the Documentation; or (b) damages the Software or the media on which it is provided, including by means of abnormal physical or electrical stress.





October 2, 2024

#### ASTEC PROPOSAL #: HI 23-15003 Rev 8

8. <u>Purchaser's Exclusive Remedy.</u> If, during the warranty period set out in Paragraph 7, the Software fails to perform substantially in accordance with the Documentation, and such failure is not excluded from warranty pursuant to Paragraph 7, Heatec will, subject to Purchaser's promptly notifying Heatec in writing of such failure, but in all events during the warranty period set out in Paragraph 7, at its sole option, either repair or replace the Software, provided that Purchaser provides Heatec with all information Heatec reasonably requests to resolve the reported failure, including sufficient information to enable Heatec to recreate such failure. Upon such repair or replacement of the Software, the warranty will continue to run from the date of the purchase of the Equipment from Heatec, and not from Purchaser's receipt of the repair or replacement. The remedies set forth in this Paragraph 8 are Purchaser's sole and exclusive remedies and Heatec's sole and exclusive liability under the limited warranties described in Paragraph 7.

#### 9. Disclaimer of Warranties; Limitations of Liability.

(A) EXCEPT FOR THE LIMITED WARRANTY SET FORTH IN PARAGRAPH 7, THE SOFTWARE AND DOCUMENTATION AND ANY REMOTE ACCESS SERVICES ARE PROVIDED TO LICENSEE "AS IS" AND WITH ALL FAULTS AND DEFECTS WITHOUT WARRANTY OF ANY KIND. TO THE MAXIMUM EXTENT PERMITTED UNDER APPLICABLE LAW, LICENSOR, ON ITS OWN BEHALF AND ON BEHALF OF ITS AFFILIATES, EXPRESSLY DISCLAIMS ALL WARRANTIES, WHETHER EXPRESS, IMPLIED, STATUTORY OR OTHERWISE, WITH RESPECT TO THE SOFTWARE AND DOCUMENTATION AND ANY REMOTE ACCESS SERVICES, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT, AND WARRANTIES THAT MAY ARISE OUT OF COURSE OF DEALING, COURSE OF PERFORMANCE, USAGE OR TRADE PRACTICE. WITHOUT LIMITING THE FOREGOING, LICENSOR PROVIDES NO WARRANTY OR UNDERTAKING, AND MAKES NO REPRESENTATION OF ANY KIND THAT THE SOFTWARE WILL MEET LICENSEE'S REQUIREMENTS, ACHIEVE ANY INTENDED RESULTS, BE COMPATIBLE OR WORK WITH ANY OTHER SOFTWARE, APPLICATIONS, SYSTEMS OR SERVICES, OPERATE WITHOUT INTERRUPTION, MEET ANY PERFORMANCE OR RELIABILITY STANDARDS OR BE ERROR FREE OR THAT ANY ERRORS OR DEFECTS CAN OR WILL BE CORRECTED.

(B) TO THE FULLEST EXTENT PERMITTED UNDER APPLICABLE LAW, IN NO EVENT WILL LICENSOR OR ITS AFFILIATES BE LIABLE TO LICENSEE OR ANY THIRD PARTY FOR ANY USE, INTERRUPTION, DELAY OR INABILITY TO USE THE SOFTWARE OR THE EQUIPMENT, LOST REVENUES OR PROFITS, DELAYS, INTERRUPTION OR LOSS OF SERVICES, BUSINESS OR GOODWILL, LOSS OR CORRUPTION OF DATA, LOSS RESULTING FROM EQUIPMENT FAILURE, MALFUNCTION OR SHUTDOWN, LOSS RESULTING FROM THE PERFORMANCE OF, OR FAILURE TO PERFORM, ANY REMOTE ACCESS SERVICES, FAILURE TO ACCURATELY TRANSFER, READ OR TRANSMIT INFORMATION, FAILURE TO UPDATE OR PROVIDE CORRECT INFORMATION, SYSTEM INCOMPATIBILITY OR PROVISION OF INCORRECT COMPATIBILITY INFORMATION OR BREACHES IN SYSTEM SECURITY, OR FOR ANY CONSEQUENTIAL, INCIDENTAL, INDIRECT, EXEMPLARY, SPECIAL OR PUNITIVE DAMAGES, WHETHER ARISING OUT OF OR IN CONNECTION WITH THESE TERMS OF USE OR THE AGREEMENT, BREACH OF CONTRACT, TORT (INCLUDING NEGLIGENCE) OR OTHERWISE, REGARDLESS OF WHETHER SUCH DAMAGES WERE FORESEEABLE AND WHETHER OR NOT LICENSOR WAS ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

(C) THE LIMITATIONS SET OUT IN THIS PARAGRAPH 9 SHALL APPLY EVEN IF LICENSEE'S REMEDIES UNDER THESE TERMS OF USE FAIL OF THEIR ESSENTIAL PURPOSE AND SHALL SURVIVE ANY TERMINATION OF THESE TERMS OF USE.

10. <u>Export Regulation</u>. The Software may be subject to U.S. export control laws, including the U.S. Export Administration Act and its associated regulations. Purchaser agrees that it will not, directly or indirectly, export, re-export or release the Software to, or make the Software or Documentation accessible from, any jurisdiction or country to which export, re-export or release is prohibited by law, rule or regulation. Purchaser agrees to comply with all applicable federal laws, regulations and rules, and complete all required undertakings (including obtaining any necessary export license or other governmental approval), prior to exporting, re-exporting, releasing or otherwise making the Software available outside the United States.

11. <u>Interpretation.</u> These Terms of Use are incorporated into and are a part of the Agreement. These Terms of Use apply to updates, supplements, add-on components or internet-based service components of the Software that Heatec may provide to Purchaser or make available to Purchaser after the date Purchaser obtains its initial copy of the Software, unless they are accompanied by separate terms. The headings in these Terms of Use are for reference only and do not affect the interpretation of these Terms of Use or the Agreement.





October 2, 2024

ASTEC PROPOSAL #: HI 23-15003 Rev 8

# SERVICE DEPARTMENT REQUEST FOR PAID SERVICE 2024 Paid Service Agreement

Time Frame of Service Work	North America Work Rate	Daily Overtime Rate > 8 Hours	International Work Rate	International Overtime Rate	Minimum Charges
Monday – Friday	\$183.75/ Hour	\$275.63/Hour	\$220.50/ Hour	\$299.25/ Hour	8 Hour Minimum
Saturday & Sunday	\$275.63/Hour	\$275.63/Hour	\$299.25/ Hour	\$299.25/ Hour	8 Hour Minimum
Holidays	\$367.50/Hour	\$367.50/Hour	\$299.25/ Hour	\$299.25/ Hour	8 Hour Minimum

Travel Charges	North America Travel Rates	International Travel Rates	
Monday-Sunday	\$183.75/Hour	\$220.50/ Hour	Plus mileage at \$0.68/mile
Holidays	\$367.50/Hour	\$367.50/ Hour	Plus mileage at \$0.68/mile

Expense Charges	Expense Rates	
Hotel	\$90.00 per day or actual cost, whichever is greater	High-Cost Area rates may apply
Meals	\$46.00 per day or actual cost, whichever is greater	
Airfare	Actual Cost	
Auto Rental / Fuel	Actual Cost	
Incidentals	Actual Cost	

#### <u>Terms</u>

• This form must be returned with a purchase order number before a technician will be dispatched

- If a purchase order is issued it must incorporate this Request for Paid Service, including the attached terms and conditions
- Weekend rates are charged when the technician is mobilized but does not go to the site
- We reserve the right to request payment in advance
- All invoices will be sent to you at the end of the month following the completion of your project
- The General Terms and Conditions Field Services and Installation North America and International, attached hereto, apply to the work performed hereunder.

Date	Customer Name Completing Request (Print)
Company Name	Astec Job Number / Sales Order Number
Telephone Number	E-mail Address
Plant Address	City, State, and ZIP
Purchase Order Number	Purchase Order Number Authorization (signature)
Trip Purpose	

BUILT TO **CONNECT** Page 27



October 2, 2024

#### ASTEC PROPOSAL #: HI 23-15003 Rev 8

#### GENERAL TERMS AND CONDITIONS FIELD SERVICES AND INSTALLATION – NORTH AMERICA AND INTERNATIONAL

1. GENERAL: As used herein, "Provider" is Heatec, Inc. and "Customer" is the person or entity identified as the customer in Provider's order acknowledgement or quotation (the "Order"). As used herein, the "Services" are the services identified in the Order, as expressly agreed to be provided by Provider to Customer. These General Terms and Conditions for Field Services and Installation (the "Terms") and all other sections of the Order are collectively referred to as and supersedes any prior or contemporaneous written or oral agreement, understanding and communications and any course of dealing, usage of trade or course of performance. This Agreement prevails over any of Customer's terms and conditions or purchase order. Fulfillment of Customer's order does not constitute acceptance of any of Customer's terms and conditions. No waiver or modification of this Agreement shall be effective unless in writing and signed by both Provider and Customer.

2. PAYMENT; TAXES: In consideration of the provision of the Services by Provider, Customer shall pay the fees set forth in the Order. Customer shall make all payments in U.S. dollars. Customer shall reimburse Provider for all additional costs and expenses incurred in accordance with the performance of the Services, within thirty (30) days of receipt by Customer of any invoice from Provider accompanied by receipts and reasonable supporting documentation. Customer shall be responsible for all sales, use and excise taxes, and any other similar taxes, duties and charges of any kind imposed by any federal, state or local governmental entity on any amounts payable by Customer. If any amounts due are placed in the hands of any attorney for collection, Customer will pay all costs of collection, including without limitation, court costs and reasonable atorneys' fees.

3. CHANGES: If either party wishes to change the scope or performance of the Services, it shall submit details of the requested change to the other party in writing. Provider shall, within a reasonable time after such request, provide a written estimate to Customer of (i) the likely time required to implement the change; (ii) any necessary variations to the fees and other charges for the Services arising from the change; and (iii) the likely effect of the change on the Services. Promptly after receipt of the written estimate, the parties shall negotiate and agree in writing on the terms of such change (a "Change Order"). Neither party shall be bound by any Change Order unless mutually agreed upon in writing.

4. PERFORMANCE: Provider shall use reasonable efforts to meet any performance dates specified in the Order, but any such dates shall be estimates only. Provider's performance of the Services is subject to Customer's performance of the obligations identified in the Order as "Customer Responsibility", including without limitation obtaining or providing necessary approvals, information, licenses, permits and instructions on a timely basis. Provider shall not be responsible for any delay or failure to perform the Services due to causes beyond its control, including, but not limited to, accidents, casualty, strikes or other labor disputes, acts of God, delays in transportation, government regulations, shortages, strike, lockout, pandemic, and inability of Provider to obtain necessary materials, supplies, labor or transportation, government, edulations, confidential or proprietary information of Provider, including but not limited to specifications, samples, patterns, designs, plans, drawings, documents, data, business operations, Customer lists, pricing, discounts or rebates, disclosed by Provider to Customer, whether disclosed or and devised or accessed in written, electronic or other form or media, and whether or not marked, designated or otherwise identified as "confidential" in connection with this Agreement shall be treated by Customer as confidential and may not be disclosed to any third party or copied by Customer unless authorized in advance by Provider in writting. Upon Provider's request, Customer shall return all documents and other materials received from Provider. Provider shall be entitled to seek injunctive relief for any violation of this Paragraph 5. This Paragraph 5 does not apply to information that is: (a) in the public domain; (b) Customer can show was known to Customer at the time of disclosure; or (c) Customer can show was rightfully obtained Heatec, Inc. 5200 Wilson Road Chattanooga, TN 37410, USA by Customer on a nonconfidential basis from a third party. Customer's confidentiality, non-di

6. INTELLECTUAL PROPERTY: All intellectual property rights, including copyrights, patents, trademarks, service marks, trade secrets, know-how and other confidential information and all other rights in and to all documents, work product and other materials that are delivered to Customer under the Order or prepared by Provider in the course of performing the Services shall be solely owned by Provider. Provider hereby grants Customer a license to use all such intellectual property rights free of additional charge and on a non-exclusive, worldwide, non-transferable, non-sublicensable, fully paid-up, royalty-free and perpetual basis to the extent necessary to enable Customer to make reasonable use of the Services.

#### 7. WARRANTY:

- a. Provider warrants that the Services performed hereunder shall be free from defects in workmanship for a period of ninety (90) days from the completion of the applicable Services (the "Service Warranty Period"). Provider undertakes at its cost to reperform defective Services covered by the warranty, provided that Customer notifies Provider in writing as soon as such defect becomes apparent, but in all events during the Service Warranty Period. The right to have defective Services reperformed shall constitute the Customer's sole and exclusive remedy for breach of this Service warranty. Services which are reperformed shall carry a warranty equal to the unexpired portion of the Service Warranty Period.
- b. Provider is wholly discharged from all liability under this warranty in the event that Customer fails to pay for the Services in accordance with the Order. This warranty may not be modified except pursuant to a written agreement signed by Provider.
   c. THE EXPRESS WARRANTIES AND WARRANTY REMEDIES PROVIDED IN THIS PARAGRAPH 7 ARE THE SOLE AND EXCLUSIVE
- C. THE EXPRÉSS WARRANTIES AND WARRANTY REMEDIES PROVIDED IN THIS PARAGRAPH 7 ARE THE SOLE AND EXCLUSIVE WARRANTIES AND WARRANTY REMEDIES PROVIDED BY PROVIDER TO CUSTOMER AND ARE PROVIDED IN LIEU OF ALL OTHER WARRANTIES, WHETHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, ANY IMPLIED WARRANTY OF MERCHANTABILITY ORFITNESS FOR A PARTICULAR PURPOSE AND ANY IMPLIED WARRANTY FROM COURSE OF DEALING OR USAGE OF TRADE, ALL OF WHICH ARE HEREBY EXPRESSLY WAIVED AND DISCLAIMED.

8. LIMITATION OF LIABILITY: NOTWITHSTANDING ANYTHING ELSE TO THE CONTRARY CONTAINED IN THIS AGREEMENT, THE PARTIES AGREE THAT IN NO EVENT OR CIRCUMSTANCE IS PROVIDER LIABLE TO CUSTOMER FOR SPECIAL, INDIRECT, INCIDENTAL, PUNITIVE OR CONSEQUENTIAL DAMAGES, COSTS OR LOSSES OF ANY NATURE WHATSOEVER, INCLUDING BUT NOT LIMITED TO LOST PROFITS OR REVENUE, LOSS OF PRODUCTION, LOSS OF USE OR LOSS OF CONTRACTS, COSTS FOR RAW MATERIAL, ENERGY, UTILITY, LABOR OR CAPITAL OR FOR ANY OTHER INDIRECT LOSS; OR FOR CLAIMS RAISED BY CUSTOMER'S CUSTOMERS; AND WHETHER BASED ON BREACH OF CONTRACT OR WARRANTY, TERMINATION, NEGLIGENCE, TORT, STRICT LIABLITY, INDEMNITY AT LAW OR IN EQUITY OR OTHERWISE. IN NO EVENT SHALL PROVIDER'S AGGREGATE LIABILITY ARISING OUT OF OR RELATED TO THIS AGREEMENT, WHETHER ARISING OUT OF OR RELATED TO BREACH OF CONTRACT, TORT (INCLUDING NEGLIGENCE) OR OTHERWISE, EXCEED THE TOTAL OF THE AMOUNTS PAID TO PROVIDER FOR THE SERVICES PERFORMED HEREUNDER.

9. DEFAULT: Upon default by Customer in the payment of the Price or any portion thereof when due or in the payment of all or any portion of any other indebtedness secured under this Agreement when due or in the performance of any other term or provision hereof, all unpaid amounts due Provider shall thereupon be immediately due and payable and Provider shall have the rights and remedies contained herein and the rights and remedies as a court of competent jurisdiction shall determine to be applicable.

10. PERMITS AND APPROVAL OF PLANS: Customer assumes all responsibility for securing any necessary governmental approvals of the plans and specifications and any permits required for the installation and operation of the Equipment, all at Customer's expense.

11. COMPLIANCE WITH APPLICABLE LAWS: Customer assumes all responsibility for complying with all federal, state and local statutes, laws, codes, regulations and ordinances in connection with the installation (if not done by Provider) and operation of the Equipment and any other activity related thereto, including, without

BUILT TO CONNECT Page 28



October 2, 2024

#### ASTEC PROPOSAL #: HI 23-15003 Rev 8

limitation, all federal, state and local environmental laws and regulations relating to pollution and protection of the environment and the Occupational Safety and Health Act and all rules and regulations promulgated thereunder.

12. LATE CHARGES AND ATTORNEY'S FEES: Customer agrees that in the event any amount payable by Customer to Provider remains unpaid for more than 30 days, a service charge of 1.5% per month (18% per annum) or any portion thereof (or the highest rate of interest allowed by law, whichever is less) shall accrue on such unpaid amount beginning on Heatec, Inc. 5200 Wilson Road Chattanooga, TN 37410, USA the thirty-first (31st) day after such date payment is due. If the indebtedness, including late charges, arising out of this or any other transaction between Provider and Customer is placed in the hands of an attorney for collection, or is collected by and through an attorney. Customer will pay all costs of collection, including without limitation, court costs and reasonable attorney's fees.

13. EXECUTION OF CONTRACT: Once an Order has become a binding contract, it cannot be suspended or cancelled without the prior written consent of Provider, which may be withheld in the sole discretion of Provider. In no event will consent to suspension or cancellation be given without full reimbursement by Customer of all Provider's expenses, damages and losses arising from such cancellation or suspension and incurred through the date of cancellation or suspension, plus reasonable overhead and profit allocation on such amounts.

14. RELATIONSHIP OF THE PARTIES: The relationship of the parties is that of independent contractors. Nothing contained herein shall be construed as creating any agency, partnership, joint venture or other form of joint enterprise, employment, or fiduciary relationship between the parties, and neither party shall have authority to contract for or bind the other party in any manner whatsoever. The method and manner for performance of the Services by Provider shall be under its own control. The parties acknowledge that Provider is not performing the Services as a general contractor.

15. SEVERABILITY: If any provision of this Agreement is found to be legally invalid or unenforceable: (i) the validity and enforceability of the remainder of this Agreement shall not be affected, (ii) such provision shall be deemed modified to the minimum extent necessary to make such provision consistent with applicable law, and (iii) such provision shall be valid, enforceable, and enforced in its modified form.

16. ASSIGNMENT: Customer shall not assign any of its rights or delegate any of its obligations under this Agreement without the prior written consent of Provider. Any purported assignment or delegation in violation of this Paragraph 16 is null and void. No assignment or delegation relieves Customer of any of its obligations under this Agreement.

17. LAW CONTROLLING: This Agreement and all questions regarding the performance of the parties hereunder shall be controlled by the laws of the State of Tennessee (without regard to conflicts of law).

18. DISPUTE RESOLUTION: Any dispute or claim arising out of or relating to this Agreement, or the breach, termination or invalidity thereof, and any related tort, statutory and equitable claims (each a "Dispute"), which the parties are not able to settle amicably within 3 months from the first written request for such settlement, shall be brought exclusively in a state or federal court in the State of Tennessee, County of Hamilton. The parties hereby waive any right to challenge such choice of jurisdiction or venue or to seek transfer to another jurisdiction. THE PARTIES FURTHER KNOWINGLY AND VOLUNTARILY WAIVE ANY RIGHT TO A JURY TRIAL OF THE DISPUTE.

**19. TAXES:** Prices quoted herein do not include any Federal, State, Local or Municipal Taxes. If under existing or future law passed by the United States, any state or any municipality, Provider, in its opinion, is required to pay or collect a tax, impost or charge upon the manufacture, sale, use or assembly of the material described herein, the Price shall be increased by the amount of such tax, impost or charge. The amount of such increase is to be paid to Provider upon demand.

20. BACK-CHARGES AND ALLOWANCES: Provider shall not be called upon to make any allowance for material, labor, repairs, or alterations made for its account unless authorized by Provider in writing.

21. RESPONSIBILITY OF CUSTOMER FOR OPERATION OF EQUIPMENT: The operation of the Equipment at all times shall be the sole and exclusive responsibility of Customer. Any Services by Provider's representatives shall not release Customer in any manner whatsoever from its responsibility for operating the Equipment.

22. INDEMNIFICATION: Customer covenants and agrees that it will indemnify and hold harmless Provider, its affiliates and their respective directors, officers, employees and agents from and against any and all claims, actions, demands, damages, costs, expenses, judgments and awards, including without limitation court costs and reasonable attorneys' fees (collectively, "Claims"), including but not limited to any Claims by third parties, arising out of or caused by the acts or omissions of Customer, its directors, officers, employees, agents and/or subcontractors. This indemnity shall survive the execution and performance of the Order.

23. NOTICES: Any notices given between the parties under this Agreement may be given by courier, personal delivery or mail, postage prepaid, or by e-mail. The date of service shall be the date on which the notice is received. A copy of all notices to Provider shall be sent to: Heatec, Inc., 1725 Shepherd Road, Chattanooga, TN 37421, Attn: Legal Counsel.

#### PURCHASER PLANT SETUP RESPONSIBILITIES (TASKS TO BE COMPLETED PRIOR TO HEATEC'S SERVICE TECH'S ARRIVAL AT PLANT)

1. All equipment set, bolted and completely sealed up.

- 2. All Process Lines & Hot Oil Lines put together and tested.
- 3. Fuel lines/Gas lines including all lines for the pilots hooked up and run.
- 4. All air lines run and hooked up from air compressor to all locations on the plant.
- 5. All electrical cables 480vac/120vac pulled and hooked up.
- 6. Main power run and hooked up to main in MCC cabinet.
- 7. Hot oil on site.

NOTE: Items 1, 2, 3, 4 & 5 are performed by Heatec when plant installation is purchased from Heatec.





October 2, 2024

ASTEC PROPOSAL #: HI 23-15003 Rev 8

# SALES PROPOSAL SIGNATURE PAGE

This Agreement is made in Chattanooga, Tennessee.

**RESPECTFULLY SUBMITTED ORDER BY PURCHASER** HEATEC, INC. The foregoing proposal is hereby offered as an order by PURCHASER. Date: Date: By: _____ By: _____ Name: Name: Title: Title: ACCEPTANCE OF ORDER BY HEATEC The foregoing order is hereby accepted at Chattanooga, Tennessee, as of the date of acceptance. HEATEC, INC. Date: Ву:_____

Name: _____

Title:





October 2, 2024

ASTEC PROPOSAL #: HI 23-15003 Rev 8

POSTPONED DELIVERY/SHIPPING	DELAY/DEFERRAL NOTICE
Purchaser:	
Seller: Heatec, Inc.	
Contract or PO Date:	
Contract or PO #:	
<b>Delivery:</b> FCA point of shipment Heatec site	e, Incoterms 2020
Heatec has notified Purchaser that the Equipment (as defined as a set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the	
Purchaser hereby requests deferral of shipment of the Equi	pment until, 20
Reason for delay:	
Pursuant to paragraph 16 of the Heatec General Terms and "offer to ship" or "shipment" for all purposes, including invoi- all risk of loss of or damage to the Equipment during storage	cing, payment, and transfer of title. Purchaser bears
Pursuant to paragraph 29 of the Heatec General Terms and Purchaser upon offer to ship should Purchaser delay/defer	
	Customer
	Customer Signature and Title
	Date
* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *
Heatec Acknowledgments:	
Except as otherwise noted above, there have been no Equipment is complete in accordance with the Contract, rea Heatec inventory.	
General Manager Signature	Date
Controller Signature	Date
Manufacturing Dept Head Signature	Date
BUILT TO CO Page 3	



September 27, 2023

ASTEC PROPOSAL #: HI 23-15004 Rev 2

## THE WORLD LEADER IN INTEGRATED PROCESS SOLUTIONS

SUPPORT-TECHNOLOGY-TRAINING

# A PROPOSAL TO PROVIDE A THERMAL FLUID HEATING SYSTEM

FOR H-1704 HMO for Targa's DOU Copperhead plant in NM

PREPARED EXCLUSIVELY FOR

Bryan Nix TARGA RESOURCES 811 Louisiana Street

Houston, TX 77002 Office:713-584-1575 Cell:918-557-2676 bnix@targaresources.com

Presented by:

Thomas Franey, Regional Sales Manager Cell: (423) 309-3631 <u>tmfraney@astecindustries.com</u>





September 27, 2023

ASTEC PROPOSAL #: HI 23-15004 Rev 2

# ASTEC SCOPE OF SUPPLY (Quote validity is for 60 days):

All equipment will be completely assembled at ASTEC. It will arrive at your facility completely packaged and mock tested. The package you will receive includes the following items:

Model	Description	Investment (U.S. \$)
Heatec HCI 12010-40-D-G	Thermal Fluid Heater x 1	\$Included
Burner	Low NOx Burner x 1	\$Included
Blower	Blower for burner x 1	\$Included
Control Panel	Panel x 1	\$Included
Fuel Train	Gas Train x 1	\$Included
Economizer	Economizer x 1	\$Included
Stack	Exhaust Stack x 1	\$Included
	Total for H-1704 Heating Unit	\$509,658.00

NOTE: Our price and delivery are based on ASTEC's "General Terms and Conditions" listed at the end of this proposal. Any purchase order that includes Terms and Conditions different from those will be reviewed, and it may impact the price and delivery offered. ASTEC reserves the right to review and revise the pricing and delivery.

# DELIVERY PERIOD:

The delivery period of the equipment is listed below. Delivery times may vary depending on engineering and production workload when the written P.O. is received. *Long lead items (pumps, burner, blower, relief valves, etc) need to be ordered prior to approvals.* 

Description	Weeks
Drawings Issued for Approval	8 ARO
Equipment Ready to Ship after All Drawings Approved	16 ARAD

ARO = After receipt of written purchase order

ARAD = After receipt of approved drawings from the customer





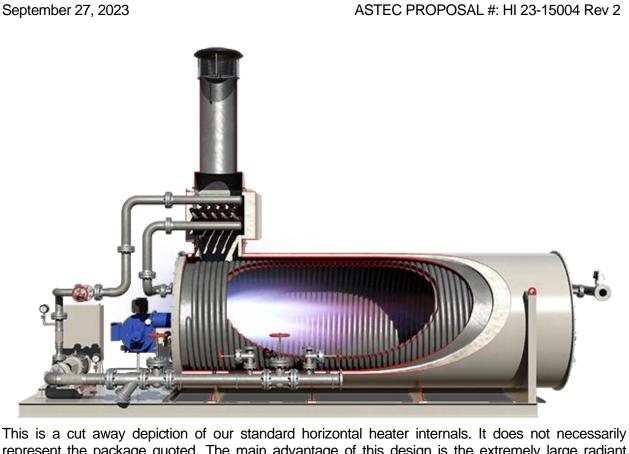
September 27, 2023

# ASTEC PROPOSAL #: HI 23-15004 Rev 2

## **OPTIONAL ITEMS: (NOT REQUIRED FOR HEATER OPERATION)**

Model	Description	Investment (U.S. \$)
5 Days Service On-site	Estimate (1 Man, 1 Trip, 2 Weeks Notice)	See Page 24
Industrial Customer School	Tentatively in April / October	\$1,600.00
Commissioning Spare Parts	Estimate, Class 1 Div 2	\$24,500.00 per heater
2 Years Spare Parts	Estimate, Class 1 Div 2	\$19,750.00 per heater

## NOTE;


This is only a partial, preliminary spare parts list. The complete parts list will be sent after ASTEC is the successful bidder, the P.O. has been received by ASTEC, and once we have the final scope defined.

COMMISSIONING SPARES:	<u>2 YEAR SPARES:</u>
Flame safeguard	Flame safeguard
Flame scanner	High media controller
High media controller	Stack temp controller
Stack temp controller	Modulation controller
Modulation controller	Ignition transformer
Motor starter	Control relays
Main gas valve	Low combustion air switch
Pilot solenoid valve	Modulating control motor
Modulating control motor	Burner blower wheel
Spark igniter for burner	Rear heater sight glass
Blower motor for burner	Spark igniter for burner
Media Thermocouple	Indicating lights for control panel
Stack Thermocouple	Butterfly valve for burner control
Main gas regulator	High gas pressure switch
Pilot gas regulator	Low gas pressure switch






September 27, 2023



represent the package quoted. The main advantage of this design is the extremely large radiant section. Since this is where most heat transfer occurs, the ideal design utilizes a large radiant section. The two-pass heater life expectancy is 2-4 times that of other styles.





September 27, 2023

#### ASTEC PROPOSAL #: HI 23-15004 Rev 2

## **ASTEC ADVANTAGES:**

ASTEC

- The radiant heating surface of two pass heaters is typically 50% greater compared to that of other style heaters. The result is that the two-pass heater will have lower radiant flux rates. High radiant heat flux causes high metal wall temperatures, causing premature coil failure and premature degradation of the thermal fluid. The life expectancy of the two-pass heater will be 2-4 times that of other designs
- Should the coil ever have to be replaced, the bolted cover(s) of the two-pass design allow(s) for easy coil replacement without having to replace the entire heater or requiring shipment back to the factory for costly repair
- 3. There is more internal "room" in the less crowded two pass heater which allows for greater space between the flame and the coil. This lessens the chances for flame impingement and thus lengthens coil and thermal fluid life. Ease of inspection is also increased
- 4. The velocity in the coil is in the range of 5 13 fps as recommended by most thermal fluid manufacturers. Due to the low average radiant heat flux of the two pass designs, the heater does not have to rely on excessive fluid velocity (which can lead to erosion) to keep the film temperatures low. The result is the most forgiving heater on the market
- 5. The heater has an 18" bolted man-way. This allows access to the radiant section without removing the cover, the burner, the fuel train, the can and the conduit. This internal inspection is required in many locations
- 6. The heater utilizes complete flow through a uniform diameter coil without mixing or by-passing.
- 7. Front and rear peep sight(s) for viewing flame pattern and coil condition
- 8. No orifice plates required for balancing the flow
- 9. Insulation is on the inside of the heater where it cannot be damaged during shipment
- 10. Totally Packaged Heaters
- 11. In House Panel Shop
- 12. In House Coil Manufacturing
- 13. In House Hydro-Test
- 14. In House Painting / Sandblasting
- 15. In House Fully Function Tested Heaters
- 16. Custom (Highly Specified or Standard Units)
- 17. On Site Training
- 18. In House Service Department which is available for on-site training and start up
- 19. In House Engineering Department
- 20. Seventeen AutoCAD stations utilizing AutoCAD / Inventor / AutoCAD Electrical
- 21. In House Quality Assurance / Control Department
- 22. Heater manufacturer since 1977
- 23. Heatec Coil warranty will be 3 years from ship date. Typical lifetime of this heater without coil replacement is 20 to 30 years

BUILT TO CONNECT Page 5

24. Stamps and Certifications





September 27, 2023

ASTEC PROPOSAL #: HI 23-15004 Rev 2

## **EQUIPMENT DESIGN DATA:**

HCI 12010-40-D-G	IP UNITS	SI UNITS
Heater Capacity (Btu/hr) (MW)	26,740,928	7.84
Firing Rate (HHV) (Btu/hr) (MW)	37,778,708	11.07
Heater Circulation Rate (lb/hr) (kg/hr) {Constant}	228,688	103,704
Heater Circulation Rate (Gal/min) (m ³ /hr) {Constant}	556	126
Minimum Allowable Circulation Rate (Gal/min) (m ³ /hr)	445	101
Heater Inlet Temperature (°F) (°C)	282	139
Heater Outlet Temperature (°F) (°C)	475	246
Stack Temperature (°F) (°C)	615	324
Calculated Heater Efficiency (%) (LHV) [See Note 1]	83.3	83.3
Calculated $\Delta P$ through Heater (psid) (Bar) (Clean)	17.1	1.2
Heater Volume (Gallons) (m ³ )	1,016	3.8
Total Coil Surface Area (ft ² ) (m ² )	3,157	293.4
Overall Flux Rate (Btu/hr-ft ² ) (kW/m ² )	8,469	26.7
Radiant Surface Area (ft ² ) (m ² )	837	77.8
Average Radiant Flux Rate (Btu/hr-ft ² ) (kW/m ² )	17,655	55.7
Maximum Radiant Flux Rate (Btu/hr-ft ² ) (kW/m ² ) AICHE	23,834	75.1
Maximum Metal Temperature (°F) (°C) AICHE	589	309
Maximum Calculated Film Temperature (°F) (°C) AICHE	571	300
Average Thermal Fluid Velocity (ft/s) (m/s)	7.3	2.2
Combustion Air Flow Rate (sFt ³ /hr) (Nm ³ /hr)	370,662	10,497
Combustion Gas Flow Rate (sFt ³ /hr) (Nm ³ /hr)	33,832	958
Flue Gas Flow Rate (sFt ³ /hr) (Nm ³ /hr)	406,096	11,501
Flue Gas Pressure Drop (" WC) (mmHg)	0.82	42.33

Note 1: Based on HHV of typical natural gas. Guaranteed efficiency is 1% less.

Note 2: It is the Customer's responsibility to confirm/verify user volume and pressure drop, which are not in ASTEC's scope of supply. ASTEC assumes no liability for non-verified estimated data.





September 27, 2023

# ASTEC PROPOSAL #: HI 23-15004 Rev 2

## SYSTEM PARAMETERS:

The following system parameters are incorporated into this proposal.

or 110 as
110
35
t 1 m
ontal
as (125)
40 scfm @ 116 to 80 psig
/ 3 PH / 60 Hz
/ 1 PH / 60 HZ / 24 V DC
1 Div. 2 Group C & D
2

Note: Please confirm fuel pressure and temperature.

	FUEL TABLE	MOL %
N ₂	Nitrogen	1.84
H ₂ O	Water	0.00
$H_2$	Hydrogen	0.00
H₂S	Hydrogen Sulfide	0.00001
CO ₂	Carbon Dioxide	0.00
СО	Carbon Monoxide	0.00
CH ₄	Methane	97.6
$C_2H_6$	Ethane	0.54
C₃H ₈	Propane	0.0235
C ₄ H ₁₀	i-Butane	0.00
$C_4H_{10}$	n-Butane	0.00
$C_5H_{12}$	i-Pentane	0.00
$C_5H_{12}$	n-Pentane	0.00
C ₆ H ₁₄	n-Hexane	0.00
O ₂	Oxygen	0.00

THERMAL FLUID PROPERTIES				
Inlet Temperature (°F)	282.2			
Inlet Density (lb/ft ³ )	51.28			
Inlet Heat Capacity (Btu/(lb*°F))	0.560			
Inlet Thermal Conductivity (Btu/(h*ft*°F))	0.075			
Inlet Dynamic Viscosity (cP)	1.927			
Outlet Temperature (°F)	475			
Outlet Density (lb/ft ³ )	47.06			
Outlet Heat Capacity (Btu/(lb*°F))	0.653			
Outlet Thermal Conductivity (Btu/(h*ft*°F))	0.073			
Outlet Dynamic Viscosity (cP)	0.635			





September 27, 2023

## ASTEC PROPOSAL #: HI 23-15004 Rev 2

## APPROXIMATE PHYSICAL DATA:

The equipment will have the following estimated dimensions and dry weights. Piping and controls external to the heater are to be insulated in the field by <u>customer</u>. All equipment will be assembled and mounted as stated below. Items too large for shipment, or subject to damage during shipment, will be shipped loose (unattached) and will require re-assembly in the field.

Equipment	L (ft)	W (ft)	H (ft)	Wt (Lbs)	Mounting
Horizontal Heater	34.5	10.0	10.2	42,061	Skid
Economizer	9.0	4.2	3.7	5,693	Top of Heater
Exhaust Stack		2.5	8.0	643	Top of Economizer
Blower (HP)	50	TEFC			Front Cover of Heater
Pilot Gas Train	NPT	0.5	Inch		Side of Heater
Main Gas Train	NPT	2.0	Inch		Side of Heater
Control Panel	3.0	1.0	4.0	500	Front of Heater Skid

## DRAWINGS / ENGINEERING:

Drawing period is based on current engineering load and is subject to change without notice. Drawings will be sent via e-mail or provided on USB thumb drive (AutoCAD). Please note that the tolerance of our drawings is + or  $-\frac{1}{4}$ ". Construction of connections to heater should allow for modifications to be made in the field with at least 2 degrees of freedom.

Description	Description
Manuals on CD	General Arrangement
P&ID	Bill of Material Mechanical
Electrical Diagrams (Ladder Type)	Bill of Material Electrical
Nameplate Details	Hydro-test Report
Lift Lug Details	Spare Parts
Motor Curves	NDT Reports
Motor Data Sheets	Utility Requirements
Material Certifications	Quality Control Manual
Foundation Loadings	Mechanical Design Calculations





September 27, 2023

## ASTEC PROPOSAL #: HI 23-15004 Rev 2

## **DESIGN CRITERIA:**

The equipment will be designed to the requirements stated below. Quality is assured by our in house quality control department. Thickness of coil and shell will not be affected by the manufacturing process as we keep all diameters above the limits that would have an impact on it. Hydrostatic testing will be carried out at our facility and witnessed by our quality control manager.

Heater Coil Design:				
ASME Section VIII design @ $650 ^{\circ}$ F to $-20 ^{\circ}$ F, @ $300 $ psig with CA = $0.0625 $				

Heater	Shell	Design:

Non-code design @ 300 °F to -20 °F @ 15 In W.C. with CA = 0.0625

## Fuel Train Design:

110 °F to -20 °F / UL / NFPA 87 & 70

NEC Class I Division 2 / Group C & D

## Heater Stack Design:

Non-code 800 °F to -20 °F @ +15" W.C. w/ CA = .0625

Panel & Controls:
-------------------

110 °F to -20 °F / UL 508 A / NFPA 87 & 70

NEC Class I Division 2 Group C & D

NEMA 4X (316 Stainless Steel) with "Z" type purging

## PAINTING:

Customer specified paint system.

Purchased items will be painted with vendors' standard paint, stainless items will remain unpainted.





September 27, 2023

ASTEC PROPOSAL #: HI 23-15004 Rev 2

# EQUIPMENT RECOMMENDATIONS:

The heater is designed, manufactured, wired, and tested at our facility in Chattanooga, Tennessee USA. It is completely packaged and will include the following:

# **HEATEC HCI HEATER:**

- > Two-pass tight-wound helical coil heater
- > Carbon steel (SA106 Gr. B seamless) schedule 40 tight-wound helical coil
- > Single 6" inlet and outlet 300 # (SA105) flanges
- Heater coil hydro-testing per ASME code
- > Coil will be stamped and receive National Board Registration
- > 304 SS coil supports (skip welded to shell to help dissipate heat transmission)
- Coil is enclosed by an (minimum ¹/₄" thick) A36 carbon steel shell with bolted end covers (w/ lift eyes)
- Internally insulated with ceramic fiber blanket, using welded 310 SS pins with washers for support. Blanket will receive a coat of rigidizer
- Peep sight in rear cover
- Inert gas smothering connection in front cover. (Gas and controls by others)
- Structural steel skid with saddles welded to channels to form a skid mounted frame, and a five foot skid deck extension for mounting controls
- Skid lifting lugs (minimum of four)
- > 18" diameter bolted access door in rear of heater
- Coil butt welds receive 100% radiography
- Extra convection section to increase heater efficiency. Economizer (Extra Convection Section) with stack transitions and piping to heater inlet (Crossover piping). Economizer consists of a serpentine carbon steel pipe coil with carbon steel serrated fins. Piping to heater inlet is included (Insulation of piping is not included).

# EXHAUST STACK:

An exhaust stack to disperse the heater flue gasses to the atmosphere.

Stack with flanged bottom connection and 2 flue gas sampling ports, rain cap and bird screen (Uninsulated)

# POWER FLAME TYPE EVO BURNER:

The Power Flame EVO[™] burner offers staged/premix combustion technology to maximize operating efficiency and reduce NOx emission on natural gas firing below 30 PPM without the use of flue gas recirculation (FGR). Designed to fire a range of gaseous fuels and light oil, this burner utilizes a unique firing head design which provides stable combustion over a wide turndown.

BUILT TO CONNECT Page 10

- Direct spark ignited natural gas pilot (Interrupted type)
- Ignition transformer
- UV self-checking flame detection scanner
- Blower is integral to burner
- > Inlet damper with modulation motor, duct and combustion air pressure switch
- Burner is sized for 101% capacity



September 27, 2023

ASTEC PROPOSAL #: HI 23-15004 Rev 2

## GAS TRAIN:

- Pilot train with regulator, electric double block safety shutdown valves, manual valve, 1 x pressure gauge
- ➢ Main train
- > Drip leg
- Manual shutoff valve
- ➢ Gas Strainer
- Tee to pilot train
- Pressure gauge x 2
- Stepdown gas regulator (Must be vented to a safe location)
- Gas regulator (Must be vented to a safe location)
- Vent line with manual shutoff valve for leak testing
- Low and high pressure switches
- Leakage test connection with manual shutoff valve
- Fuel Modulation via modulation valves with linkage-less system
- > Double block (one with proof of closure switch) safety shutdown valves
- Bleed line with two (2) manual shutoff valves for leak testing
- Heat tracing, if necessary, is by customer

Emission Guarantees based on HHV: NOx (lbs/mmbtu – PPM) = .0365 – 30 CO (lbs/mmbtu - PPM) = .049 – 65 SOx (lbs/mmbtu - PPM) = Negligible PM (lbs/mmbtu - PPM) = Negligible VOC (lbs/mmbtu - PPM) = Negligible

- 1. All emissions are from 50% to 100% of maximum combustion rating (MCR)
- 2. All emissions in the units of PPM are referenced to 3% dry stack oxygen
- 3. Emissions are valid for natural gas (fuel analysis must be submitted by customer) combustion only. The values are based on natural gas containing no bound nitrogen and no sulfur
- 4. If the stack emissions exceed the guarantee level, ASTEC/ Burner manufacturer will work with customer to reduce the emissions to the guaranteed level. ASTEC / Burner manufacturer will, at its costs, make any and all adjustments and / or modifications to burner that it deems appropriate and proper to meet required levels
- 5. Compliance testing of the system must be conducted within 60 days of initial start-up. Start-up must occur no later than 120 days from shipment. Testing is to be accomplished by an independent authorized agency agreed to by ASTEC / burner manufacturer utilizing EPA-Method 7E. All costs of compliance testing shall be paid by customer
- 6. All guarantees contained in these conditions and limits shall end following completion of compliance testing wherein all emission test points are documented to be at or below guaranteed levels





September 27, 2023

### ASTEC PROPOSAL #: HI 23-15004 Rev 2

## LOCALLY MOUNTED INSTRUMENTS:

- > Digital differential pressure switch for detection of low thermal fluid flow condition
- Inlet / outlet thermal fluid pressure gauge with isolation valve (NPT)
- Inlet / outlet thermal fluid thermometer with thermo-well (NPT)
- > Outlet thermal fluid temperature thermocouples with thermo-well (NPT)
- Stack temperature thermocouple with thermo-well
- ASME Section VIII Type pressure relief valve(s) on the thermal fluid outlet piping (Must be vented to a safe location) 1.5" 300# inlet, 2" 300# flanged outlet
- Conduit will be used for all wiring

# BURNER MANAGEMENT SYSTEM (BMS) ELECTRICAL CONTROL ENCLOSURE:

The heater's electrical control enclosure contains all of the electrical components to safely operate the heater. The burner management controller provides the proper burner sequencing, pre-purge, ignition and flame monitoring protection for automatically ignited oil or gas fuel burners. The enclosure also has a single-loop, 4-20mA modulating, digital temperature controller and two digital temperature limit controllers; one for the thermal fluid and one for the stack. The burner management controller also monitors other heater safety limits in it's limit circuit. If a limit condition occurs, the burner management controller safety shuts down the burner.

The enclosure and installed components meet NEMA standards. The enclosure is designed and wired to meet the requirments of NFPA 70, National Electric Code (NEC) and the requirements found in Underwriters Laboratories Inc. (UL) 508A Listing for Industrial Control Panels. This listing can be verified on the following website: <u>http://www.ul.com/database</u>.

The BMS control enclosure will be manufactured and tested by ASTEC.

The control panel includes the following:

- AO ground to -24vdc common
- > All safety devices connected to DI through relays as input for troubleshooting.
- DI register on HMI page
- LOP (light off position) Hold through MTFI (main trial for ignition) and additional 30 seconds, then release to modulate. Program changes from basic package
- Reset PID PV to Zero at the same time it releases to Auto modulation.
- Heater tied to burner alarm on FAL and FALL shutdown conditions
- > Siemens breaker disconnect mounted on back panel with a through-the-door operator handle
- Motor starters are by others
- Fireye BurnerLogix burner management system (BMS) model YB110UVSC with self-check scanner amplifier card. The YB110 has a display with keypad mounted in the enclosure door allowing user to easily scroll through various menus to view the current operating status, review programmer configurations and lockout history. The flame reset button is on the keypad. The YB110 has the capability to communicate its status data via Mod-Bus RTU as a slave with a Mod-Bus RTU master device. Programming of the RTU Master to pole the Fireye is responsibility of the customer. The YB110 BurnerLogix is cUL US Listed, CE and FM approved
- Control relays and fused terminal blocks
- > DI, DO & AI fused connections entering and leaving the rack.
- Control relays and fused terminal blocks
- Yokogawa UT55A-040 (1/4 DIN) thermal fluid temperature controller, digital display, 4-20mA analog control output, second input for remote set-point capability and 4-20 mA re-transmission analog output capability





September 27, 2023

### ASTEC PROPOSAL #: HI 23-15004 Rev 2

- Yokogawa UT35L (1/4 DIN) high thermal fluid temperature limit controller with primary output relay, manual reset, digital display and 4-20mA re-transmission output capability
- Yokogawa UT35L (1/4DIN) high stack temperature limit switch with primary output relay, manual reset, digital display and 4-20mA re-transmission output capability.
- Lights for: power and alarm indicator lights
- Switches for: burner off/on, alarm silence, low fire hold and pump select (if applicable)
- > Dry contacts on common alarm and heater run status
- Flame safety reset button
- Emergency shut down button
- > Alarm horn, to indicate alarm (mounted adjacent to panel)
- Window kit for indicating controls
- "Z" Purge Package
- > Allen-Bradley CompactLogix 5069 PLC with Panelview Plus 12 HMI for air-fuel ratio control.
- > Panelview HMI to be updated to latest firmware version and VNC enabled.
- > PLC rack and programs to have same version.
- > Heating element with panel insulation and thermostat





September 27, 2023

#### ASTEC PROPOSAL #: HI 23-15004 Rev 2

### **Exceptions and Clarifications**

HEATEC's Quotation is in basic accordance with the specifications, drawings, terms and conditions, and requirements of the invitation to bid; however, the following exceptions have been identified, priced and are attached hereto for consideration

Purchase order must make reference to HEATEC Quotation

Equipment is quoted EXW, HEATEC, Chattanooga, TN, Incoterms® 2020. Equipment will be loaded on truck free of charge. This means the delivery of Equipment on the truck at the specified point of departure (HEATEC) is covered in the quotation price. Purchaser is responsible for the main carriage / freight, cargo insurance and other costs and risks. Purchaser shall furnish all necessary facilities, labor, materials and equipment for unloading and conveying the Equipment to its erection point. The Equipment shall be erected, installed, set and leveled by Purchaser at its expense.

Purchaser shall furnish all necessary labor, materials, equipment, fuel, inert snuffing controls / media, air (if required), nitrogen (if required) and electricity required for starting up the Equipment. HEATEC will not be responsible for the installation or design of the footings, foundations or anchor bolts. Emissions compliance testing, mechanical run test, Site Acceptance Test, and performance tests are not included in Quotation. Testing included in Quotation includes the testing as described in the HEATEC Standard FAT (Available for inspection) and the HEATEC Standard ITP (Available for inspection) and any tests stated in the Quotation.

Heatec warranty, payment terms and cancellation charges are as stated below.

Export packing / preservation / storage are not included. Domestic packing is included. This includes flange / stack covers, wrapping of panel, crating of loose shipped parts.

Taxes, tariffs and duties are not included.

Order will be executed according to USA / TN laws. It is the responsibility of Purchaser to inform HEATEC via specifications of local / jurisdictional laws that may affect Equipment design (i.e. emissions, insurance codes, etc.). Purchaser assumes all responsibility for complying with all federal, state and local statutes, laws, codes, regulations and ordinances in connection with the design, installation and operation of the Equipment and any other activity related thereto, including, without limitation, the Clean Air Act and all rules and regulations promulgated thereunder and the Occupational Safety and Health Act and all rules and regulations promulgated thereunder. Some parts of the heater will exceed OSHA temperature requirements. (Average skin temperature of heater shell is 170°F with 5 mph wind and 70°F ambient.)

Any freight prices that may be quoted are estimates for budgetary purposes only. Due to the volatile nature of freight pricing, HEATEC cannot give a firm price for freight during the proposal phase of the project, because this phase occurs well in advance of the actual delivery. If contracted with HEATEC, freight will be billed at the actual cost plus a 10% handling fee.

All drawings will be standard AUTO-CAD. Delivery time stated in Quotation depends upon the approval process and the changes made during this process. Typical approval time is two weeks after receipt on all drawings. Only those drawings listed above will be offered. Drawings will be submitted electronically. If drawing approval consists of multiple or major changes, delivery time can be affected as well as the price. Drawing period is based on current engineering load and is subject to change without notice. Drawings will be sent via e-mail or provided on disk. <u>Hard copies will require additional cost</u>. Please note that the tolerance of HEATEC drawings is + or - $\frac{1}{4}$ ". Construction of connections to heater should allow for modifications to be made in the field with at least 2 degrees of freedom.

Control voltage is as stated in quotation.

Insulation / tracing / personnel protection of piping and equipment external of heater is not included. This is best done in the field by local contractor to eliminate damage during shipment and to allow checking for leaks prior to start up.

Fusible loop system, testing of refractory / insulation materials, burner / blower testing, spreader bar and slings are not included.

BUILT TO CONNECT Page 14

Galvanic isolation barriers and cathodic protection are not included.

Single line drawings are not included. HEATEC performs ladder type diagrams.



September 27, 2023

#### ASTEC PROPOSAL #: HI 23-15004 Rev 2

Pipe, fittings, bolts, nuts and steel will be purchased from HEATEC's standard vendors. Plate and shapes are A36 carbon steel. Tubes supports are 304 SS. Stud bolts are SA 193 Br B7. Nuts are SA 194.

All purchased items will remain as painted from respective vendor.

Ladders and platforms are not included unless stated in Quotation.

If area is Class I Div 2 then panel is NEMA 4X with "Z" type purging. All other controls are NEMA 7, hermetically sealed, intrinsically safe or they are purged. Motors are TEFC. Equipment will be designed to NEC area as stated in Quotation.

Unless stated otherwise in Quotation, HEATEC takes exception to ISO, BS, NACE, API, GOST, ATEX, CE, IEC, SIL, & CENELEC specifications. HEATEC will assist in complying with these regulations where required but HEATEC cannot be sure the equipment as quoted will comply.

Heatec standard Quality control manual will be used for all welding, NDE, etc. Heatec standard welding procedures will be used for all welding. Heatec weld procedures and welders are ASME approved/certified. The weld procedures are available for Purchaser review only and revisions are not allowed. If Purchaser specifications have requirements other than what is listed on Heatec weld procedures, then Purchaser specific weld procedures can be produced. New procedures will result in a cost adder and will delay the original shipping date provided in the HEATEC Quotation. The increase in cost and length of delay will be dependent on the extent of the specification requirements. NDE of non-pressure vessel welds is not included unless stated in Quotation. Non pressure vessel welds are continuous but are not full penetration.

Flame arrestor, spark arrestor, UPS, noise test, fire & gas detection, outdoor lights, aviation lights, variable speed motors, soot blowers, lancing ports, fireproofing, knockout tank, insulation rings, insulation clips, vapor barriers, explosion door, spare parts, thermal fluid, shell / structural / piping stress analysis test, export custom clearance and vibration tests, start-up and erection assistance are not included. Only the controls listed in the Quotation are provided.

Hazardous area electrical equipment certification is simply a copy of each electrical item certificate. The entire heater does not have this type of approval.

Liquidated damages shall not apply.

HEATEC takes exception to specifications and required documentation referring to any other language other than English.

HEATEC is not responsible for implementing documentation or paying taxes, duties or other charges relating to exporting/importing proposed equipment into any country outside the Continental United States

Seal offs (If required) are to be poured in the field by Purchaser.

Relief valves and vents should be piped to a safe location by Purchaser.

Noise data sheet is provided by the blower manufacturer only

Redundancy is not included.

Thermal fluid by-pass, relief valve by-pass, relief valve isolation and flow control is not included unless specifically stated in the Quotation. By-pass and isolation valves around flow control valves and regulators have not been included.

Shield rows in convection section are not required or included.

SAT / Performance test is not included. Functional test of all components is included.

Skid drip pan, lip and grating have not been included.

Rupture discs are not included on relief valves.

Galvanizing of any materials is not included unless stated in Quotation.

PWHT is not included.

API guidelines are not included unless specifically stated in the body of this proposal



September 27, 2023

ASTEC PROPOSAL #: HI 23-15004 Rev 2

## **API 560 EXCEPTIONS:**

ANSI / API STANDARD	0 560 4TH EDITION AUGUST 2007
SPEC #	EXCEPTION
2	HEATEC TAKES EXCEPTION TO THE FOLLOWING SPECIFICATIONS: ISO, EN, API 673, MSS
5.2	NOISE DATA SHEET IS NOT INCLUDED EXCEPT FOR THE FAN
5.3.3	TUBE SUPPORT DETAILS & CALCULATIONS ARE NOT INCLUDED. DECOKING IS NOT ALLOWED.
5.4	TUBE SUPPORTS ARE NOT CASTINGS AND THEY DO NOT HAVE TEST CERTIFICATES
6.1.3	HEATER IS A TIGHT WOUND HELICAL COIL WITH NEGLIGIBLE TUBE SPACING
6	FLUX RATE, VOLUMTERIC HEAT RELEASE AND H/W RATIO ARE AS STATED IN QUOTATION
6.2.6	HEATER IS A FORCED DRAFT HEATER. NEGATIVE PRESSURES ARE NOT TYPICALLY EXPERIENCED.
6.3.3	SOOTBLOWERS ARE NOT INCLUDED
6.3.2 & 6.3.4	CONVECTION SECTIONS (ECONOMIZER) DOES NOT INCLUDE SPACE FOR FUTURE INSTALLATION OFSOOTBLOWERS, WATERWASHING TUBE ROWS, OR STEAM LANCE DOORS.
6.3.7	SHIELD SECTION IN ECONOMIZER DOES NOT HAVE BARE ROWS OF TUBES
6.3.8	CORBELS / BAFFLES ARE NOT INCLUDED
6.3.9	PLENUM CHAMBER WILL NOT HAVE THE CLEARANCE FROM GRADE SPECIFIED.
6.3.10 & 6.3.11	HEATEC TAKES EXCEPTION TO THIS SPECIFICATION AS IT DOES NOT APPLY TO HELICAL COIL HEATERS
6.3.12	INDIVIDUAL TUBES ARE NOT REPLACEABLE. ENTIRE COIL IS REPLACEABLE.
7.1.2	CORROSION ALLOWANCE FOR TUBE WALL THICKNESS CALCULATIONS IS AS STATED IN THE QUOTATION.
7.1.4	HELICAL COIL HAS CIRCUMFERENTIAL WELDS THRUOUT ITS COIL LENGTH
10	HELICAL COIL TUBE SUPPORTS 304 SS. THIS SECTION DOES NOT APPLY TO HELICAL COILS AND HEATEC TAKES EXCEPTION TO IT.
11.1.5 / 11.4.1	INSULATION TYPE IS AS STATED IN QUOTATION FOR ENTIRE HEATER. NO BRICK OR REFRACTORY IS USED EXCEPT IN THE BURNER BLOCK. STACKS AND DUCTS ARE NOT INSULATED.
11.1.9	HEATEC PROVIDES THERMO CERAM ROPE OR EQUAL AROUND BURNER THROAT. NO EXPANSION JOINT IS REQUIRED.
11.4	CERAMIC FIBER BLANKET IS 6 LB/FT^3 WITH 310 SS PINS AND WASHERS. CERAMIC FIBER MODULES ARE 8 OR 10 LB/FT^3 WITH 304 OR 316 SS ANCHOR SYSTEM. RETAINER CUPS ARE NOT UTILIZED.
11.4.8	FLUE GAS VELOCITY AA STATED IN THE QUOTATION MAY EXCEED THIS SPECIFICATION
12.2.7	FIREPROOFING IS NOT INCLUDED
12.3	HEADER BOX IS BOLTED. PLUG HEADERS ARE NOT UTILIZED.
	BUILT TO <b>CONNECT</b> Page 16



	Chattahooga, TN 37410 USA
September 27, 2023	ASTEC PROPOSAL #: HI 23-15004 Rev 2
12.3.2.1 / 12.3.2.2	ONLY ONE 18" DIAMETER RADIANT SECTION ACCESS DOOR IS PROVIDED. IT IS BOLTED. IT IS IN THE REAR COVER OF HORIZONTAL HEATERS AND THE TOP COVER OF VERTICAL HEATERS. BURNER DESIGN DOES NOT HAVE AIR PLENUM DESIGN, IT IS SIMPLY A BLOWER WITH DAMPER AND DUCT. IT HAS NO ACCESS DOOR OR PORT.
12.3.2.3 / 12.3.2.4 / 12.3.2.6	
13.2.2/13.2.7/13.2.8	STACK IS SEAL WELDED EXTERNALLY ONLY. STACK IS NOT LINED.
13.2.12	BREECHING WILL NOT MEET CLEARANCE SPECIFICATIONS
13.2.15	STACK DOES NOT HAVE A CORROSION ALLOWANCE.
14.1.3	BURNER MAY NOT MEET SPECIFIED CLEARANCES
14.1.8	A SINGLE BURNER IS USED ONLY
14.1.21	IF BURNER IS OIL FIRED. THE OIL GUN IS NOT REMMOVABLE DURING OPERATION. MATERIALS OF CONSTRUCTION MAY NOT MEET ALL
14.2	REQUIREMENTS IN TABLE 15. SOOTBLOWERS, PORTS AND LANES ARE NOT INCLUDED UNLESS STATED IN QUOTATION.
14.3	FANS AND DRIVERS WILL NOT MEET API REQUIREMENTS
14.4	HEATEC USES BUTTERFLY DAMPERS AND RADIAL DAMPERS IN THE COMBUSTION AIR DUCT. THEY ARE MILD STEEL CONSTRUCTION.
15	FLUE GAS AND COMBUSTION AIR CONNECTIONS ARE SCH 40 NPT CONNECTIONS.
15.3.2	VENT AND DRAIN CONNECTIONS ARE NOT INCLUDED
15.4	TUBE SKIN THERMOCOUPLES ARE NOT INCLUDED UNLESS STATED IN QUOTATION.
15.5	INSTRUMENT CONNECTIONS ARE NOT NECESSARILY ACCESSIBLE FROM GRADE.
16.2	PLATE WELDS ARE SEAMLESSLY WELDED ON THE EXTERIOR
16.7	FIELD ERECTION / ASSISTANCE ARE NOT INCLUDED.
17.3 17.4	HEATEC TAKES EXCEPTION TO 17.3 & 17.4
ANNEX E	STRESS CALCULATIONS ARE NOT PERFORMED ON TUBES, SHELL OR TUBE SUPPORTS.
ANNEX F	AIR PREHEATER IS NOT INCLUDED.



September 27, 2023

ASTEC PROPOSAL #: HI 23-15004 Rev 2

#### SALES PROPOSAL SPECIFIC TERMS AND CONDITIONS

PARTIES: - Heated	, Inc. shall be referred to as " <b>Heatec</b> " in this Sales Proposal. - Good Customer shall be referred to as " <b>Purchaser</b> " in this Sales Proposal.
PRICING:	<ul> <li>The Price is valid for sixty (60) days after date of this Sales Proposal.</li> <li>The Prices do not include any sale, use, property value added, duties or other taxes or charges, whether federal, state, local or provincial that may be applicable, which shall be the responsibility of the Purchaser.</li> </ul>
<u>TERMS:</u>	<ul> <li>Purchaser shall pay the purchase price in progress payments as follows:         <ul> <li>Receipt of these progress payments is required before the Equipment will be released for shipment.</li> <li>20% @ ARO</li> <li>30% @ Approval Drawing Submittal</li> <li>30% @ Coil Hydro Test</li> <li>Balance @ ready to ship</li> </ul> </li> <li>Electronic Transfer required 30 days after invoice receipt</li> <li>Refundment / security / performance bonds are not included.</li> </ul>
PACKING:	- The Price includes Heatec's standard packing. If Purchaser requires special packing, the extra cost caused thereby shall be borne by Purchaser.
<u>Shipping:</u>	<ul> <li>Transportation charges from point of shipment to point of destination shall be arranged for and paid for by the Purchaser, unless a separate freight contract is entered into between the parties.</li> <li>Purchaser shall control the type of transportation and routing.</li> <li>An anticipated ready for ship date shall be established upon Heatec's receipt of signed Sales Proposal and Heatec's receipt of the down payment.</li> </ul>
DELAY:	<ul> <li>If Heatec is not released by the Purchaser to order materials for fabrication at the time Purchaser signs this Sales Proposal, Heatec reserves the right to review and adjust the Price.</li> <li>In addition, delays in fabrication due to delays in Purchaser's release or other reasons due to Purchaser, will require an adjustment in the anticipated shipment date.</li> </ul>

#### **STEEL PRICES ESCALATION NOTE:**

Because of price volatility from steel manufacturers, any order will be subject to a review of material costs from the time of the proposal to the time that the material is actually allocated to the order. Any steel material cost changes will be based on the #1 Chicago Heavy Melt which is listed daily in numerous publications such as THE AMERICAN METAL MARKET. The calculation for the cost variation will be the difference between the Chicago #1 Heavy Melt scrap index 8 weeks prior to the date of this quotation and that same index price on the date 8 weeks prior to shipment of the respective order, which roughly corresponds to the steel material order date. That calculation will multiply the total weight of the steel plate, structural steel, and steel pipe of the product provided by the applicable index price variation. The increase, or decrease, in price will be shown as an additional line item on the respective invoice. This is the most appropriate and transparent method to deal with the current unpredictability of the steel market today. Please, contact us if you have any questions concerning this Escalation Note.







September 27, 2023

#### ASTEC PROPOSAL #: HI 23-15004 Rev 2

#### SALES PROPOSAL GENERAL TERMS AND CONDITIONS OF SALE

- 1. GENERAL: As used herein, "Equipment" is the equipment and/or parts identified in this Sales Proposal as expressly agreed to be provided by Heatec to Purchaser. As used herein, the "Services", if any, are the services identified in the Sales Proposal as expressly agreed to be provided by Heatec to Purchaser. As used herein, the "Software", if any, is the software identified in the Sales Proposal as expressly agreed to be provided by Heatec to Purchaser. As used herein, the "Software", if any, is the software identified in the Sales Proposal as expressly agreed to be incensed by Heatec to Purchaser. These General Terms and Conditions of Sale (the "Terms") and all other sections of this Sales Proposal are collectively referred to in the Terms as the "Agreement". The Agreement sets forth the entire, exclusive and complete agreement of Heatec and Purchaser with respect to the sale and purchase of the Equipment, the performance of the Services and the license of the Software and supersedes any prior or contemporaneous written or oral agreement, understanding and communications and any course of dealing, usage of trade or course of performance. This Agreement prevails over any of Purchaser's terms and conditions of purchase or purchase order, regardless of whether or when Purchaser's terms and conditions or purchase order. Fulfillment of Purchaser's order does not constitute acceptance of any of Purchaser's terms and conditions and does not serve to modify or amend these terms and conditions. No waiver or modification of this Agreement shall be effective unless in writing and signed by both Heatec and Purchaser.
- 2. ENGINEERING: Heatec and Purchaser acknowledge and contemplate that any engineering services for which Heatec is responsible pursuant to this Agreement will be performed by engineers employed by Heatec only to the extent allowed by applicable laws and regulations. Otherwise, such engineering services will be provided by qualified, licensed engineers elected and retained by Heatec at Heatec's expense. Except as otherwise provided herein, Heatec and Purchaser acknowledge and contemplate that upon acceptance of this Agreement by Heatec, Heatec's engineering department or a qualified, licensed engineer selected and retained by Heatec at Heatec's expense. Except as otherwise is necessary to fulfill its obligations under this Agreement, and will prepare whatever plant layouts, drawings, and design specifications are necessary in Heatec's discretion to facilitate the performance of the Equipment in accordance with this Agreement. Heatec and Purchaser further acknowledge and contemplate that this engineering process may result in modifications or changes which may include, but are not limited to: modifications or parts lists. No such modifications or changes shall constitute a breach of contract by Heatec.
- 3. DRAWINGS: Heatec will furnish Purchaser with necessary drawings and instruction for Purchaser's erection of the Equipment. Heatec will not be held responsible for design and/or installation of footings and/or other items necessary for installing the Equipment unless otherwise stated herein.
- 4. DIFFERING SITE CONDITIONS: If, in the performance of this Agreement, subsurface or latent conditions at the site are found to be materially different from those indicated by geotechnical reports provided by Purchaser, or unknown conditions of an unusual nature are disclosed differing materially from those ordinarily encountered by Heatec, then such conditions may result in adjustments to the Price, anticipated dates for delivery/shipment, and other contractual obligations. No such adjustments shall constitute a breach of contract by Heatec.
- 5. CONFIDENTIALITY: All non-public, confidential or proprietary information of Heatec, including but not limited to specifications, samples, patterns, designs, plans, drawings, documents, data, business operations, purchaser lists, pricing, discounts or rebates, disclosed by Heatec to Purchaser, whether disclosed or ally or disclosed or accessed in written, electronic or other form or media, and whether or not marked, designated or otherwise identified as "confidential" in connection with this Agreement shall be treated by Purchaser as confidential and may not be disclosed to any third party or copied by Purchaser unless authorized in advance by Heatec in writing. Upon Heatec's request, Purchaser shall return all documents and other materials received from Heatec. Heatec shall be entitled to seek injunctive relief for any violation of this Paragraph 5. This Paragraph 5 does not apply to information that is: (a) in the public domain; (b) Purchaser can show was known to Purchaser at the time of disclosure; or (c) Purchaser can show was rightfully obtained by Purchaser on a non-confidential basis from a third party. Purchaser's confidentiality, non-disclosure and non-use obligations herein shall remain in force for the maximum term permitted by applicable law.

#### 6. WARRANTY:

- a. Heatec warrants that upon shipment from Heatec's site and continuing for a period of eighteen (18) months after shipment of such Equipment to Purchaser or twelve (12) months after startup, whichever occurs first (the "Equipment Warranty Period"), that the Heatec manufactured Equipment will be free of defects in design, material and workmanship, provided any operation of the Equipment by Purchaser has been in accordance with generally approved practice as instructed by Heatec service personnel or set forth in Heatec service instructions, if any, and provided that Purchaser notifies Heatec in writing as soon as such defect becomes apparent, but in all events during the Equipment Warranty Period. Heatec shall repair, or at its option replace FCA point of shipment, any defective Equipment or parts covered by the warranty. The right to have defective Equipment repaired or replaced shall constitute the Purchaser's sole and exclusive remedy for breach of this limited Equipment warranty. Labor for defective Equipment repair will be paid by Purchaser under a formula determined by Heatec. For helical coils found in Heatec's heaters, the Equipment Warranty Period for the helical coils is three (3) years. Equipment which is repaired or replaced shall carry a warranty equal to the unexpired portion of the Equipment Warranty Period. Heatec warrants to Purchaser that the Equipment will perform at its rated capacity as indicated on the Sales Proposal when properly installed, connected, and correctly operated and maintained. Where the Equipment is merely a part of a whole system, Heatec can only accept responsibility for performance of the Equipment furnished by it. The performance of the Equipment covered in this Agreement cannot be exactly predicted for every operating condition. In consequence, any predicted performance data submitted is intended to show probable operating results which may be closely approximated, but which cannot be guaranteed.
- b. Heatec makes no warranties or guarantees with respect to Equipment not manufactured by Heatec, including but not limited to diesel engines, motors, motor starters, pumps, mixers, mills, scales, speed reducers, and other assemblies, valves, pressure regulators, solenoids, electronic drives, pressure differential switches, temperature sensing switches, flame scanners, gauge boards, modulating actuators, electronic displays, pressure transmitters, radar sensors, other electronic controls and instrumentation and other parts and accessories. Liners, castings, furnace refractories, and refractory materials are subject to wide variations of destructive service, are also not covered by the Equipment warranty and are a maintenance responsibility of Purchaser from the beginning of operation. Heatec will pass through to Purchaser any warranties and limitations provided by the original manufacturer of parts used in the Equipment manufactured by Heatec, but Heatec does not provide any warranty as to such items.





#### September 27, 2023

#### ASTEC PROPOSAL #: HI 23-15004 Rev 2

- c. Heatec warrants that the Services performed hereunder shall be free from defects in workmanship for a period of thirty (30) days from the date of performance (the "Service Warranty Period"). Heatec undertakes at its cost to reperform defective Services covered by the warranty, provided that Purchaser notifies Heatec in writing as soon as such defect becomes apparent, but in all events during the Service Warranty Period. The right to have defective Services reperformed shall constitute the Purchaser's sole and exclusive remedy for breach of this limited Service warranty. Services which are reperformed shall carry a warranty equal to the unexpired portion of the Service Warranty Period.
- d. No warranty shall apply to Equipment which has been repaired or altered by others so as, in Heatec's judgment, to adversely affect the same or which shall have been subject to negligence, accident, abuse or improper care, installation, maintenance, storage or other than normal use or service, during or after shipment. No warranty shall apply to any used Equipment or for ordinary wear and tear, or ordinary corrosion or erosion. No warranty shall apply to any Equipment adversely affected by being used with any machinery, part or accessory not manufactured or authorized by Heatec. No warranty shall apply to consumables or parts having a life expectancy shorter than the Equipment Warranty Period.
- e. Except as expressly set forth in this Sales Proposal, Heatec does not warrant or represent that any Equipment furnished by it meets any state or local safety, environmental or electrical regulations. Heatec is wholly discharged from all liability under this warranty in the event that Purchaser fails to pay for the Equipment or Services in accordance with the applicable purchase terms. This Equipment warranty extends only to the first end-user and is not transferable. This warranty may not be modified except pursuant to a written agreement signed by Heatec.
- f. THE EXPRESS WARRANTIES AND WARRANTY REMEDIES PROVIDED IN THIS PARAGRAPH 6 ARE THE SOLE AND EXCLUSIVE WARRANTIES AND WARRANTY REMEDIES PROVIDED BY HEATEC TO PURCHASER AND ARE PROVIDED IN LIEU OF ALL OTHER WARRANTIES, WHETHER EXPRESS OR IMPLIED (EXCEPT WARRANTY OF TITLE), INCLUDING, BUT NOT LIMITED TO, ANY IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE AND ANY IMPLIED WARRANTY FROM COURSE OF DEALING OR USAGE OF TRADE, ALL OF WHICH ARE HEREBY EXPRESSLY WAIVED AND DISCLAIMED.
- 7. LIMITATION OF LIABILITY: NOTWITHSTANDING ANYTHING ELSE TO THE CONTRARY CONTAINED IN THIS AGREEMENT, THE PARTIES AGREE THAT IN NO EVENT OR CIRCUMSTANCE IS HEATEC LIABLE TO PURCHASER FOR SPECIAL, INDIRECT, INCIDENTAL, PUNITIVE OR CONSEQUENTIAL DAMAGES, COSTS OR LOSSES OF ANY NATURE WHATSOEVER, INCLUDING BUT NOT LIMITED TO LOST PROFITS OR REVENUE, LOSS OF PRODUCTION, LOSS OF USE OR LOSS OF CONTRACTS, COSTS FOR RAW MATERIAL, ENERGY, UTILITY, LABOR OR CAPITAL OR FOR ANY OTHER INDIRECT LOSS; OR FOR CLAIMS RAISED BY PURCHASER'S CUSTOMERS; AND WHETHER BASED ON BREACH OF CONTRACT OR WARRANTY, TERMINATION, NEGLIGENCE, TORT, STRICT LIABLITY, INDEMNITY AT LAW OR IN EQUITY OR OTHERWISE. IN NO EVENT SHALL HEATEC'S AGGREGATE LIABILITY ARISING OUT OF OR RELATED TO THIS AGREEMENT, WHETHER ARISING OUT OF OR RELATED TO BREACH OF CONTRACT, TORT (INCLUDING NEGLIGENCE) OR OTHERWISE, EXCEED THE TOTAL OF THE AMOUNTS PAID TO HEATEC FOR THE EQUIPMENT SOLD HEREUNDER.
- 8. SECURITY INTEREST; COST OF RECORDING: Purchaser hereby conveys and grants to Heatec a purchase money security interest in the Equipment to secure payment by Purchaser of all amounts due hereunder including the Price and such other debts, obligations and liabilities of Purchaser to Heatec which may now exist or hereafter arise, whether absolute or contingent, or primary or secondary, together with all extensions or renewals for the foregoing and all expenses, legal or otherwise (including court costs and reasonable attorney's fees) incurred by Heatec in collecting or endeavoring to collect any or all of the foregoing, in protecting any collateral and in enforcing the Agreement. The Equipment shall remain personal property in all respects notwithstanding the manner of annexation of any of the Equipment to realty. Purchaser agrees to execute any instrument or document considered necessary by Heatec to perfect its security interest in the Equipment, including, but not limited to, financing statements, chattel mortgages, deeds of trust, deeds to secure debt, mortgages or other security instruments. Until default hereunder, Purchaser may have possession of the Equipment and use the same in any lawful manner not inconsistent with this Proposal or with any policy of insurance thereon. Purchaser will pay the costs and taxes due for recording and filing any Financing, Continuation or Termination Statements with respect to Heatec's security interest in the Equipment or in connection with any of the other security documents referred to above.
- 9. EQUIPMENT NOT TO BE REMOVED: As long as the security interest in the Equipment is retained by Heatec, the Equipment shall not be removed from the erection site and Purchaser shall not permit, voluntarily or involuntarily, the Equipment or any part of it to be sold, transferred, encumbered, attached, seized or removed in any manner whatsoever.
- 10. DEFAULT: Upon default by Purchaser in the payment of the Price or any portion thereof when due or in the payment of all or any portion of any other indebtedness secured under this Agreement when due or in the performance of any other term or provision hereof, all unpaid amounts due Heatec shall thereupon be immediately due and payable and Heatec shall have the rights and remedies contained herein and the rights and remedies of a secured party under the Uniform Commercial Code of the State of Tennessee or under the laws of any other jurisdiction as a court of competent jurisdiction shall determine to be applicable. In the event of Purchaser's default, the following provisions shall apply: (a) Purchaser shall, upon request of Heatec, disassemble the Equipment and make it available to Heatec at a place designated by Heatec; (b) Heatec may enter Purchaser's premises where any part of the Equipment is located, and take possession of and remove all or any portion of the Equipment for purposes of disposition pursuant hereto; (c) Purchaser agrees that sales for cash or on credit to a wholesaler, retailer, or user or property of the type subject to this Agreement or at public auction or private sale are all commercially reasonable; (d) Heatec shall give Purchaser notice of the time and place of any sale of any of the Equipment or of the time after which any private sale or any other intended disposition thereof is to be made by notice, postage prepaid and addressed to Purchaser at the latest address of Purchaser appearing on the records of Heatec at least seven (7) days before the time of the sale or other disposition, which provisions for notice Purchaser and Heatec agree are reasonable; (e) any proceeds of any disposition of any of the Equipment may be first applied by Heatec to the payment of expenses in connection with exercising its rights and remedies hereunder, including reasonable attorney's fees and legal expenses, and any balance of such proceeds may be applied as Heatec may elect in its sole discretion; (f) if the sale or other disposition of the Equipment fails to satisfy in full obligations of Purchaser secured by this Agreement, and the reasonable expenses of retaking, holding, preparing for sale, selling and the like, including reasonable attorney's fees and legal expenses incurred by Heatec in connection with this Agreement or the obligation it secures, Purchaser shall be liable for any deficiency.
- 11. PERMITS AND APPROVAL OF PLANS: Purchaser assumes all responsibility for securing any necessary governmental approvals of the plans and specifications and any permits required for the installation and operation of the Equipment, all at Purchaser's expense.





#### September 27, 2023

#### ASTEC PROPOSAL #: HI 23-15004 Rev 2

- 12. PERMIT CONTINGENCY: If the purchase of Equipment under this Agreement is contingent on Purchaser's receipt of one or more permits or other governmental approvals, then the Price set forth in this Agreement will not be binding on Heatec. Once all contingencies have been fulfilled or are waived, the Price will be determined by Heatec taking into account any increase in Heatec's cost of purchased components and/or raw materials, among other factors.
- 13. COMPLIANCE WITH APPLICABLE LAWS: Purchaser assumes all responsibility for complying with all federal, state and local statutes, laws, codes, regulations and ordinances in connection with the installation and operation of the Equipment and any other activity related thereto, including, without limitation, all federal, state and local environmental laws and regulations relating to pollution and protection of the environment and the Occupational Safety and Health Act and all rules and regulations promulgated thereunder.
- 14. PATENTS: In the event that any of the Equipment specified in this Agreement is based upon designs of or furnished by Purchaser, Purchaser shall indemnify Heatec for any loss or expense incurred by it by reason of any claim for infringement of patents.

#### 15. SHIPMENT:

- a. If Purchaser is in default of any of its obligations under this Agreement, Heatec may, at its election, withhold any further performance of its obligations and duties under this Agreement until such time as such default has been cured by Purchaser, in which event the anticipated date of shipment as set forth herein shall be adjusted accordingly. Heatec shall not be liable or responsible for, nor shall the Price be reduced by any amount because of any matters beyond the control of Heatec which delay or postpone the anticipated date set forth above for the shipment of the Equipment, such matters including, but not limited to, warlike acts, civil disorder, governmental restriction, acts of God, prior sale, acceptance of United States governmental contracts, strike, lockout, accidents, freight embargo, fire, flood, inability of Heatec to obtain necessary materials, supplies, labor or transportation, pandemic, or any unforeseen water, soil or rock conditions.
- b. A detailed shipping list will accompany the bill of lading and Purchaser agrees to check the Equipment as it is unloaded and any claim for shortage against Heatec will be made in writing within twenty-four (24) hours of time of unloading, to be followed by an affidavit (if required) from the person in charge of the unloading. Claims for loss or damage in transit will be made on the carrier by Purchaser.
- c. Except to the extent otherwise provided herein, Purchaser has full responsibility for erection and installation of the Equipment.
- d. Delivery period is based on current manufacturing load and is subject to change without notice. Long lead items will need to be ordered prior to approvals in order to meet the quoted delivery date. If any of these items are changed during the approval process, charges may result for restocking.
- 16. LATE CHARGES AND ATTORNEY'S FEES: Purchaser agrees that in the event any amount payable by Purchaser to Heatec remains unpaid for more than 30 days, a service charge of 1.5% per month (18% per annum) or any portion thereof (or the highest rate of interest allowed by law, whichever is less) shall accrue on such unpaid amount beginning on the thirty-first (31st) day after such date payment is due. If the indebtedness, including late charges, arising out of this or any other transaction between Heatec and Purchaser is placed in the hands of an attorney for collection, or is collected by and through an attorney, Purchaser will pay all costs of collection, including without limitation, court costs and reasonable attorney's fees.
- 17. POSTPONED DELIVERY (INCLUDING SHIPPING DELAY): If, through no fault of Heatec, delivery or shipment is delayed or postponed (including deferral of shipment requested by Purchaser), Purchaser shall pay to Heatec any additional costs, including plant Equipment storage, handling, and insurance, incurred by Heatec arising from such delay, deferral, or postponement. Such a delay, postponement or deferral is considered "offer to ship" or "shipment" for all purposes, including invoicing, payment and transfer of title. Therefore, the balance remaining upaid on the Price shall become due and payable immediately. Purchaser shall bear the risk of loss of or damage to the Equipment during storage and thereafter. If, as a result of the delay, postponement or deferral, the Equipment requires repainting, all costs associated with repainting shall be paid by the Purchaser. Should Purchaser delay/postpone/defer shipment, Purchaser and Heatec will complete the attached "Postponed Delivery/Shipping Delay/Deferral Notice".
- 18. EQUIPMENT CERTIFICATION: Once certification and fabrication has been completed on any Equipment, if state certification specifications change or unit(s) are to be shipped to a location other than that for which the certification was acquired, the cost of any recertification and/or modifications required to be done on the Equipment shall be paid by Purchaser.
- 19. LIMITATION OF PROPOSAL: The Price and terms quoted in this Sales Proposal are subject to formal acceptance (i.e. signature on this Sales Proposal) without change by Purchaser within a period 30 days from the date hereof, except that Heatec shall have the right to withdraw its Sales Proposal at any time before formal acceptance by Purchaser.
- 20. EXECUTION OF CONTRACT: This Sales Proposal is merely the solicitation of an order and is not an offer from Heatec to Purchaser (even though executed on behalf of Heatec under "RESPECTFULLY SUBMITTED,") and does not obligate Heatec in any manner whatsoever until this Agreement is both executed below on behalf of Purchaser as an order made to Heatec as well as executed below on behalf of Heatec. Some a binding contract, it cannot be suspended or cancelled without the prior written consent of Heatec, which may be withheld in the sole discretion of Heatec. In the event Purchaser elects to cancel any order, or a portion of thereof, Heatec shall proportionally be paid a percentage of the price of the cancelled order. This portion will be a minimum of ten percent (10%) of the total P.O. value, or will be a percentage relative to the completed portion of the order, whichever is greater. This proportional percentage shall reflect the amount of materials used, purchased materials, and/or work performed prior to he cancellation notice, plus any charges which Heatec can demonstrate resulted from the cancellation including, but not limited to, storage fees, cancellation or restocking charges from sub-vendors, plus the cost of any non-returnable items. Non-returnable items become the property of Purchaser and are delivered EXW Chattanooga-TN or sub-vendor location.
- 21. SEVERABILITY: If any provision of this Agreement is found to be legally invalid or unenforceable: (i) the validity and enforceability of the remainder of this Agreement shall not be affected, (ii) such provision shall be deemed modified to the minimum extent necessary to make such provision consistent with applicable law, and (iii) such provision shall be valid, enforceable and enforced in its modified form.

BUILT TO CONNECT Page 21



#### September 27, 2023

#### ASTEC PROPOSAL #: HI 23-15004 Rev 2

- 22. ASSIGNMENT: Purchaser shall not assign any of its rights or delegate any of its obligations under this Agreement without the prior written consent of Heatec. Any purported assignment or delegation in violation of this Paragraph 22 is null and void. No assignment or delegation relieves Purchaser of any of its obligations under this Agreement.
- 23. LAW CONTROLLING: This Agreement and all questions regarding the performance of the parties hereunder shall be controlled by the laws of the State of Tennessee (without regard to conflicts of law). The parties agree that the United Nations Convention on Contracts for the International Sale of Goods does not apply to this Agreement, or the transactions contemplated thereby.
- 24. DISPUTE RESOLUTION: Any dispute or claim arising out of or relating to this Agreement, or the breach, termination or invalidity thereof, and any related tort, statutory and equitable claims (each a "Dispute"), which the parties are not able to settle amicably within 3 months from the first written request for such settlement, shall be brought exclusively in a state or federal court in the State of Tennessee, County of Hamilton. The parties hereby waive any right to challenge such choice of jurisdiction or venue or to seek transfer to another jurisdiction. THE PARTIES FURTHER KNOWINGLY AND VOLUNTARILY WAIVE ANY RIGHT TO A JURY TRIAL OF THE DISPUTE.
- 25. TAXES: Prices quoted herein do not include any Federal, State or Municipal Taxes. If under existing or future law passed by the United States, any state or any municipality, Heatec is required to pay or collect a tax, impost or charge upon the manufacture, sale, use or assembly of the material described herein, the Price shall be increased by the amount of such tax, impost or charge. The amount of such increase is to be paid to Heatec upon demand. If Purchaser holds resale tax permits and the material described herein is for resale, such information shall be shown by Purchaser.
- 26. BACK-CHARGES AND ALLOWANCES: Heatec shall not be called upon to make any allowance for material, labor, repairs or alterations made for its account unless authorized by Heatec in writing.
- 27. INSPECTION AND ACCEPTANCE PERIOD: Purchaser agrees to inspect the Equipment immediately after delivery to the site, but in no event later than five (5) calendar days after such delivery (the "Acceptance Period"). Any defect discovered during the Acceptance period is subject to the procedures and remedies set forth in Paragraph 6 (Warranty).
- 28. RESPONSIBILITY OF PURCHASER FOR OPERATION OF EQUIPMENT: The operation of the Equipment at all times shall be the sole and exclusive responsibility of Purchaser. Any Services by Heatec's representatives shall be given solely in a consulting or advisory capacity and shall not release Purchaser in any manner whatsoever from its responsibility for operating the Equipment.
- 29. INDEMNIFICATION: Purchaser agrees to indemnify and hold harmless Heatec, its affiliates and their respective employees from and against any and all liabilities, damages, obligations and claims (including, without limitation, court costs and reasonable attorney's fees) arising from or with respect to the operation of the Equipment. Without limiting the generality of the preceding sentence, the parties acknowledge and agree that if a claim initially was brought against Heatec for defective manufacture, design or the like and was finally determined by a court of competent jurisdiction or otherwise settled (such settlement being with Purchaser's consent) on a basis relating to the negligent operation or use of the Equipment, Heatec will be entitled to indemnification pursuant to the provisions of the preceding sentence.
- 30. TITLE AND RISK OF LOSS: Title to the Equipment shall pass to Purchaser upon shipment or offer to ship should Purchaser delay shipment. The risk of loss or damage to the Equipment shall pass to Purchaser upon delivery of the Equipment (FCA point of shipment Heatec site, Incoterms 2020), unless transferred earlier in accordance with Paragraph 17 (Postponed Delivery (Including Shipping Delay)).
- 31. NOTICES: Each party shall deliver all notices and other communications under this Agreement (each, a "Notice") in writing and addressed to the other party at the addresses set forth on the first page of this Sales Proposal. Each party shall deliver all Notices by personal delivery or through deposit in the mail, certified or registered (in each case, return receipt requested, postage prepaid) or through a nationally recognized overnight courier (with all fees prepaid). If Notice should be given immediately or promptly, then in addition to furnishing a copy of the Notice in the manner aforesaid, a copy shall be sent via e-mail (with confirmation of transmission). A Notice is effective only (a) upon receipt by the receiving party and (b) if the party giving the Notice has complied with the requirements of this Paragraph 31, unless the receiving party. As waived its requirements in writing. A copy of all notices to Heatec shall be sent to: Heatec, Inc., 1725 Shepherd Road, Chattanooga, TN 37421, Attn: Legal Counsel.
- 32. INSURANCE: Until the Equipment is accepted and the price is paid in full, Purchaser shall provide and maintain insurance for the full replacement value of the Equipment against customary casualties and risks, including fire and explosion, and liability insurance for accidents or injuries to the public or to employees, in the names of Heatec and Purchaser, as their interests may appear, and in amounts satisfactory to Heatec. If Purchaser fails to provide such insurance, Heatec may provide it and the cost thereof shall be added to the contract price. All loss resulting from failure to affect such insurance shall be the responsibility of Purchaser.
- 33. CHANGE ORDERS: Either Heatec or Purchaser may propose a change in the specifications for the Equipment or Services. Should any change proposed by Heatec or Purchaser cause an increase or decrease in the cost of or time required for performance of this Agreement or otherwise affect any provision of this Agreement, an adjustment shall be made to the corresponding provision(s) of this Agreement in accordance with this Paragraph 33. Within ten (10) business days after receipt of Purchaser's proposal for a change, or with any proposal for a change by Heatec, Heatec shall prepare and submit to Purchaser a change order in the form attached (the "Change Order"), which shall contain (i) a description of the change, (ii) the net increase or decrease in the Price, (iii) the effect of the change on the estimated delivery schedule and (iv) a description of changes to any other provisions of this Agreement. Purchaser shall accept or reject the Change Order within five (5) business days. No change shall be effective unless evidenced by a written Change Order issued by Heatec and signed by authorized representatives of Purchaser and Heatec; provided that if Purchaser does not notify Heatec of Purchaser's acceptance or rejection of any Change Order, then the Change Order shall be deemed accepted by Purchaser and the parties shall proceed on the basis of the changes set forth therein. If Purchaser rejects a Change Order, this Agreement shall continue to remain in full force and effect notwithstanding the parties' failure to agree to such Change Order, and the parties shall continue to work reasonably and in good faith (but shall not be obligated) to reach a mutually acceptable agreement with respect to such proposed changes; provided that Heatec shall not be required to proceed with any such proposed change until the parties have mutually agreed on an appropriate Change Order. In the event that Heatec and Purchaser cannot agree to a change in Price, the change will be priced on a time and materials basis, and Heatec's charges shall be equal to direct costs incurred by Heatec for labor, equipment and materials plus 27% for overhead and profit as full compensation for such change. In the event that Heatec and Purchaser cannot agree to any other changes, such dispute will be resolved in accordance with the dispute resolution procedures in Paragraph 24.





September 27, 2023

ASTEC PROPOSAL #: HI 23-15004 Rev 2

#### SALES PROPOSAL SOFTWARE TERMS OF USE (ONLY APPLICABLE IN CASE OF PLC)

These Software Terms of Use ("**Terms of Use**") govern the use of the Software, including all user manuals, technical manuals and any other materials in printed, electronic or other form, that describe the Software or its use (collectively, "**Documentation**") that is or has been furnished by Heatec to Purchaser for use in connection with the Equipment.

1. <u>License Grant</u>. Subject to Purchaser's strict compliance with these Terms of Use and pursuant to and conditioned upon Purchaser's compliance with all of the terms of the Agreement, including, but not limited to its payment terms, Heatec hereby grants to Purchaser a non-exclusive, non-transferable, non-sublicensable, limited license to use the Software solely in connection with its operation of the Equipment pursuant to the instructions contained in the Documentation. The foregoing license will terminate immediately on the earlier to occur of: (a) Purchaser's removal, disposal or transfer of the Equipment; or (b) Purchaser's failure to comply with these Terms of Use.

2. Use Restrictions. Purchaser shall not, directly or indirectly: (a) use the Software or Documentation except as set forth in Paragraph 1 of these Terms of Use; (b) copy the Software or Documentation, in whole or in part; (c) modify, translate, adapt or otherwise create derivative works of the Software or any part thereof; (d) combine the Software or any part thereof with, or incorporate the Software or any part thereof in, any other software or any part thereof; (f) remove, delete, alter or obscure any trademarks or any copyright or other intellectual property or proprietary rights notices included on or in the Software or Documentation; (g) transfer or otherwise provide any access to or use of the Equipment, Documents or the Software or any features or functionality of the Software, for any reason, to any other person or entity; (h) use or attempt to use the Software or Documentation in, or in association with, components, systems or equipment other than the Equipment; (i) use or attempt to use the Software or Documentation of any law, regulation or rule; or (j) use or attempt to use the Software or any other software, the development of a competing software product or service or any other purpose that is to Heatec's commercial disadvantage.

3. <u>Compliance Measures</u>. The Software contains technological copy protection or other security features designed to prevent unauthorized use of the Software, including features to protect against use of the Software in a manner: (a) that is beyond the scope of the license granted to Purchaser hereby; or (b) that is prohibited under Paragraph 2 of these Terms of Use. Purchaser agrees that it shall not, and shall not attempt to, remove, disable, circumvent or otherwise create or implement any workaround to, any such copy protection or security features.

4. <u>Collection and Use of Information</u>. Heatec may, directly or indirectly through the services of other affiliated parties, collect and store information regarding use of the Software and the Equipment. Purchaser agrees that Heatec may use such information for any purpose that it deems fit. Heatec assumes no duty to review, access, use or retain the information collected. Purchaser consents to the collection, transmission and sharing of the information described above, and authorizes Heatec, its affiliates, subsidiaries and distributors to gather, process and use, without limitation, the information developed or collected by or in connection with the Software. This may include sharing of such information with select third parties and business partners.

5. <u>Remote Access Services</u>. A representative of Heatec may provide technical support through the Software ("Remote Access Services"). Any Remote Access Services are provided at Purchaser's sole risk. The ability for Heatec to remotely access the Software and Equipment significantly enhances Heatec's ability to resolve Purchaser's technical problems quickly. Purchaser understands that the provision of Remote Access Services requires Purchaser to provide Heatec's technical support personnel with access to and control of the Software and Equipment. Heatec may, but has no obligation to, troubleshoot, evaluate, run programs or install/uninstall Software, reconfigure and/or otherwise perform service or technical support work on the Software and Equipment, either directly or through an internal network. Heatec may make any changes that it determines are necessary to increase the performance of the Software or Equipment and/or to alleviate the problem at hand or any other problem discovered during the course of performing the Remote Access Services. Purchaser shall indemnify and hold harmless Heatec against all claims, actions, proceedings, costs, damages, and liabilities, including attorneys' fees and litigation and related costs and expenses, incurred by Heatec for injuries to person, property or otherwise resulting from any cause whatsoever arising out of, connected with, or resulting from any Remote Access Services performed by Heatec.

6. <u>Intellectual Property Rights</u>. Purchaser acknowledges that: (a) Purchaser does not acquire any ownership interest in the Software, or any rights to the Software other than the right to use the Software as provided herein; (b) Heatec reserves and shall retain its entire right, title and interest in and to the Software and all intellectual property rights arising out of or relating to the Software, subject to the license expressly granted to Purchaser by this Agreement; and (c) Purchaser shall use commercially reasonable efforts to safeguard the Software and the media on which it is stored from infringement, misappropriation, theft, misuse or unauthorized access.

7. <u>Limited Warranties</u>. Heatec warrants that, for a period of one year following the date of the purchase of the Equipment from Heatec: (a) any media on which the Software is provided will be free of material damage and defects in materials and workmanship under normal use; and (b) the Software will substantially contain the functionality described in the Documentation, and when properly operated in accordance with the Documentation, will substantially perform as described therein. The warranties set out in this Paragraph 7 will not apply and will become null and void if Purchaser materially breaches any provision of this Agreement, or if Purchaser or any other person provided access by Purchaser to the Software or the media on which it is provided, whether or not in violation of this Agreement: (a) uses the Software in a manner other than as described in the Documentation; or (b) damages the Software or the media on which it is provided, including by means of abnormal physical or electrical stress.

> BUILT TO CONNECT Page 23



September 27, 2023

### ASTEC PROPOSAL #: HI 23-15004 Rev 2

8. <u>Purchaser's Exclusive Remedy.</u> If, during the warranty period set out in Paragraph 7, the Software fails to perform substantially in accordance with the Documentation, and such failure is not excluded from warranty pursuant to Paragraph 7, Heatec will, subject to Purchaser's promptly notifying Heatec in writing of such failure, but in all events during the warranty period set out in Paragraph 7, at its sole option, either repair or replace the Software, provided that Purchaser provides Heatec with all information Heatec reasonably requests to resolve the reported failure, including sufficient information to enable Heatec to recreate such failure. Upon such repair or replacement of the Software, the warranty will continue to run from the date of the purchase of the Equipment from Heatec, and not from Purchaser's receipt of the repair or replacement. The remedies set forth in this Paragraph 8 are Purchaser's sole and exclusive remedies and Heatec's sole and exclusive liability under the limited warranties described in Paragraph 7.

#### 9. Disclaimer of Warranties; Limitations of Liability.

(A) EXCEPT FOR THE LIMITED WARRANTY SET FORTH IN PARAGRAPH 7, THE SOFTWARE AND DOCUMENTATION AND ANY REMOTE ACCESS SERVICES ARE PROVIDED TO LICENSEE "AS IS" AND WITH ALL FAULTS AND DEFECTS WITHOUT WARRANTY OF ANY KIND. TO THE MAXIMUM EXTENT PERMITTED UNDER APPLICABLE LAW, LICENSOR, ON ITS OWN BEHALF AND ON BEHALF OF ITS AFFILIATES, EXPRESSLY DISCLAIMS ALL WARRANTIES, WHETHER EXPRESS, IMPLIED, STATUTORY OR OTHERWISE, WITH RESPECT TO THE SOFTWARE AND DOCUMENTATION AND ANY REMOTE ACCESS SERVICES, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT, AND WARRANTIES THAT MAY ARISE OUT OF COURSE OF DEALING, COURSE OF PERFORMANCE, USAGE OR TRADE PRACTICE. WITHOUT LIMITING THE FOREGOING, LICENSOR PROVIDES NO WARRANTY OR UNDERTAKING, AND MAKES NO REPRESENTATION OF ANY KIND THAT THE SOFTWARE WILL MEET LICENSEE'S REQUIREMENTS, ACHIEVE ANY INTENDED RESULTS, BE COMPATIBLE OR WORK WITH ANY OTHER SOFTWARE, APPLICATIONS, SYSTEMS OR SERVICES, OPERATE WITHOUT INTERRUPTION, MEET ANY PERFORMANCE OR RELIABILITY STANDARDS OR BE ERROR FREE OR THAT ANY ERRORS OR DEFECTS CAN OR WILL BE CORRECTED.

(B) TO THE FULLEST EXTENT PERMITTED UNDER APPLICABLE LAW, IN NO EVENT WILL LICENSOR OR ITS AFFILIATES BE LIABLE TO LICENSEE OR ANY THIRD PARTY FOR ANY USE, INTERRUPTION, DELAY OR INABILITY TO USE THE SOFTWARE OR THE EQUIPMENT, LOST REVENUES OR PROFITS, DELAYS, INTERRUPTION OR LOSS OF SERVICES, BUSINESS OR GOODWILL, LOSS OR CORRUPTION OF DATA, LOSS RESULTING FROM EQUIPMENT FAILURE, MALFUNCTION OR SHUTDOWN, LOSS RESULTING FROM THE PERFORMANCE OF, OR FAILURE TO PERFORM, ANY REMOTE ACCESS SERVICES, FAILURE TO ACCURATELY TRANSFER, READ OR TRANSMIT INFORMATION, FAILURE TO UPDATE OR PROVIDE CORRECT INFORMATION, SYSTEM INCOMPATIBILITY OR PROVISION OF INCORRECT COMPATIBILITY INFORMATION OR BREACHES IN SYSTEM SECURITY, OR FOR ANY CONSEQUENTIAL, INCIDENTAL, INDIRECT, EXEMPLARY, SPECIAL OR PUNITIVE DAMAGES, WHETHER ARISING OUT OF OR IN CONNECTION WITH THESE TERMS OF USE OR THE AGREEMENT, BREACH OF CONTRACT, TORT (INCLUDING NEGLIGENCE) OR OTHERWISE, REGARDLESS OF WHETHER SUCH DAMAGES WERE FORESEABLE AND WHETHER OR NOT LICENSOR WAS ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

(C) THE LIMITATIONS SET OUT IN THIS PARAGRAPH 9 SHALL APPLY EVEN IF LICENSEE'S REMEDIES UNDER THESE TERMS OF USE FAIL OF THEIR ESSENTIAL PURPOSE AND SHALL SURVIVE ANY TERMINATION OF THESE TERMS OF USE.

10. <u>Export Regulation</u>. The Software may be subject to U.S. export control laws, including the U.S. Export Administration Act and its associated regulations. Purchaser agrees that it will not, directly or indirectly, export, re-export or release the Software to, or make the Software or Documentation accessible from, any jurisdiction or country to which export, re-export or release is prohibited by law, rule or regulation. Purchaser agrees to comply with all applicable federal laws, regulations and rules, and complete all required undertakings (including obtaining any necessary export license or other governmental approval), prior to exporting, re-exporting, releasing or otherwise making the Software available outside the United States.

11. <u>Interpretation.</u> These Terms of Use are incorporated into and are a part of the Agreement. These Terms of Use apply to updates, supplements, add-on components or internet-based service components of the Software that Heatec may provide to Purchaser or make available to Purchaser after the date Purchaser obtains its initial copy of the Software, unless they are accompanied by separate terms. The headings in these Terms of Use are for reference only and do not affect the interpretation of these Terms of Use or the Agreement.







September 27, 2023

ASTEC PROPOSAL #: HI 23-15004 Rev 2

# SERVICE DEPARTMENT REQUEST FOR PAID SERVICE 2024 Paid Service Agreement

Time Frame of Service Work	North America Work Rate	Daily Overtime Rate > 8 Hours	International Work Rate	International Overtime Rate	Minimum Charges
Monday – Friday	\$183.75/ Hour	\$275.63/Hour	\$220.50/ Hour	\$299.25/ Hour	8 Hour Minimum
Saturday & Sunday	\$275.63/Hour	\$275.63/Hour	\$299.25/ Hour	\$299.25/ Hour	8 Hour Minimum
Holidays	\$367.50/Hour	\$367.50/Hour	\$299.25/ Hour	\$299.25/ Hour	8 Hour Minimum

Travel Charges	North America Travel Rates	International Travel Rates	
Monday-Sunday	\$183.75/Hour	\$220.50/ Hour	Plus mileage at \$0.68/mile
Holidays	\$367.50/Hour	\$367.50/ Hour	Plus mileage at \$0.68/mile

Expense Charges	Expense Rates	
Hotel	\$90.00 per day or actual cost, whichever is greater	High-Cost Area rates may apply
Meals	\$46.00 per day or actual cost, whichever is greater	
Airfare	Actual Cost	
Auto Rental / Fuel	Actual Cost	
Incidentals	Actual Cost	

#### <u>Terms</u>

- This form must be returned with a purchase order number before a technician will be dispatched
- If a purchase order is issued it must incorporate this Request for Paid Service, including the attached terms and conditions
- Weekend rates are charged when the technician is mobilized but does not go to the site
- · We reserve the right to request payment in advance
- All invoices will be sent to you at the end of the month following the completion of your project
- The General Terms and Conditions Field Services and Installation North America and International, attached hereto, apply to the work performed hereunder.

Date	Customer Name Completing Request (Print)
Company Name	Astec Job Number / Sales Order Number
Telephone Number	E-mail Address
Plant Address	City, State, and ZIP
Purchase Order Number	Purchase Order Number Authorization (signature)
Trip Purpose	





September 27, 2023

#### ASTEC PROPOSAL #: HI 23-15004 Rev 2

#### GENERAL TERMS AND CONDITIONS FIELD SERVICES AND INSTALLATION – NORTH AMERICA AND INTERNATIONAL

1. GENERAL: As used herein, "Provider" is Heatec, Inc. and "Customer" is the person or entity identified as the customer in Provider's order acknowledgement or quotation (the "Order"). As used herein, the "Services" are the services identified in the Order, as expressly agreed to be provided by Provider to Customer. These General Terms and Conditions for Field Services and Installation (the "Terms") and all other sections of the Order are collectively referred to as and supersedes any prior or contemporaneous written or oral agreement, understanding and communications and any course of dealing, usage of trade or course of performance. This Agreement prevails over any of Customer's terms and conditions of purchase order, regardless of whether or when Customer submitted such terms and conditions or purchase order. Fulfillment of Customer's order does not constitute acceptance of any of Customer's terms and conditions. No waiver or modification of this Agreement shall be effective unless in writing and signed by both Provider and customer.

2. PAYMENT; TAXES: In consideration of the provision of the Services by Provider, Customer shall pay the fees set forth in the Order. Customer shall make all payments in U.S. dollars. Customer shall reimburse Provider for all additional costs and expenses incurred in accordance with the performance of the Services, within thirty (30) days of receipt by Customer of any invoice from Provider accompanied by receipts and reasonable supporting documentation. Customer shall be responsible for all sales, use and excise taxes, and any other similar taxes, duties and charges of any kind imposed by any federal, state or local governmental entity on any amounts payable by Customer. If any amounts due are placed in the hands of any attorney for collection, Customer will pay all costs of collection, including without limitation, court costs and reasonable attorneys' fees.

3. CHANGES: If either party wishes to change the scope or performance of the Services, it shall submit details of the requested change to the other party in writing. Provider shall, within a reasonable time after such request, provide a written estimate to Customer of (i) the likely time required to implement the change; (ii) any necessary variations to the fees and other charges for the Services arising from the change; and (iii) the likely effect of the change on the Services. Promptly after receipt of the written estimate, the parties shall negotiate and agree in writing on the terms of such change (a "Change Order"). Neither party shall be bound by any Change Order unless mutually agreed upon in writing.

4. PERFORMANCE: Provider shall use reasonable efforts to meet any performance dates specified in the Order, but any such dates shall be estimates only. Provider's performance of the Services is subject to Customer's performance of the obligations identified in the Order as "Customer Responsibility", including without limitation obtaining or providing necessary approvals, information, licenses, permits and instructions on a timely basis. Provider shall not be responsible for any delay or failure to perform the Services due to causes beyond its control, including, but not limited to, accidents, casualty, strikes or other labor disputes, acts of God, delays in transportation, government regulations, shortages, strike, lockout, pandemic, and inability of Provider to obtain necessary materials, supplies, labor or transportation, government regulations, confidential or proprietary information of Provider, including but not limited to specifications, samples, patterns, designs, plans, drawings, documents, data, business operations, Customer lists, pricing, discounts or rebates, disclosed by Provider to Customer, whether disclosed or ail or or disclosed or accessed in written, electronic or other form or media, and whether or not marked, designated or otherwise identified as "confidential" in connection with this Agreement shall be treated by Customer as confidential and may not be disclosed to any third party or copied by Customer unless authorized in advance by Provider relief for any violation of this Paragraph 5. This Paragraph 5 does not apply to information that is: (a) in the public domain; (b) Customer can show was known to Customer at the time of disclosure; or (c) Customer can show was rightfully obtained Heatec, Inc. 5200 Wilson Road Chattanooga, TN 37410, USA by Customer on a non-confidential basis from a third party. Customer's confidentiality, non-disclosure and non-use obligations herein shall remain in force for the maximum term permitted by applicable law.

6. INTELLECTUAL PROPERTY: All intellectual property rights, including copyrights, patents, trademarks, service marks, trade secrets, know-how and other confidential information and all other rights in and to all documents, work product and other materials that are delivered to Customer under the Order or prepared by Provider in the course of performing the Services shall be solely owned by Provider. Provider hereby grants Customer a license to use all such intellectual property rights free of additional charge and on a non-exclusive, worldwide, non-transferable, non-sublicensable, fully paid-up, royalty-free and perpetual basis to the extent necessary to enable Customer to make reasonable use of the Services.

#### 7. WARRANTY:

- a. Provider warrants that the Services performed hereunder shall be free from defects in workmanship for a period of ninety (90) days from the completion of the applicable Services (the "Service Warranty Period"). Provider undertakes at its cost to reperform defective Services covered by the warranty, provided that Customer notifies Provider in writing as soon as such defect becomes apparent, but in all events during the Service Warranty Period. The right to have defective Services reperformed shall constitute the Customer's sole and exclusive remedy for breach of this Service warranty. Services which are reperformed shall carry a warranty equal to the unexpired portion of the Service Warranty Period.
- b. Provider is wholly discharged from all liability under this warranty in the event that Customer fails to pay for the Services in accordance with the Order. This warranty may not be modified except pursuant to a written agreement signed by Provider.
- c. THE EXPRÉSS WARRANTIES AND WARRANTY REMEDIES PROVIDED IN THIS PARAGRAPH 7 ARE THE SOLE AND EXCLUSIVE WARRANTIES AND WARRANTY REMEDIES PROVIDED BY PROVIDER TO CUSTOMER AND ARE PROVIDED IN LIEU OF ALL OTHER WARRANTIES, WHETHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, ANY IMPLIED WARRANTY OF MERCHANTABILITY ORFITNESS FOR A PARTICULAR PURPOSE AND ANY IMPLIED WARRANTY FROM COURSE OF DEALING OR USAGE OF TRADE, ALL OF WHICH ARE HEREBY EXPRESSLY WAIVED AND DISCLAIMED.

8. LIMITATION OF LIABILITY: NOTVITHSTANDING ANYTHING ELSE TO THE CONTRARY CONTAINED IN THIS AGREEMENT, THE PARTIES AGREE THAT IN NO EVENT OR CIRCUMSTANCE IS PROVIDER LIABLE TO CUSTOMER FOR SPECIAL, INDIRECT, INCIDENTAL, PUNITIVE OR CONSEQUENTIAL DAMAGES, COSTS OR LOSSES OF ANY NATURE WHATSOEVER, INCLUDING BUT NOT LIMITED TO LOST PROFITS OR REVENUE, LOSS OF PRODUCTION, LOSS OF USE OR LOSS OF CONTRACTS, COSTS FOR RAW MATERIAL, ENERGY, UTILITY, LABOR OR CAPITAL OR FOR ANY OTHER INDIRECT LOSS; OR FOR CLAIMS RAISED BY CUSTOMER'S CUSTOMER'S; AND WHETHER BASED ON BREACH OF CONTRACT OR WARRANTY, TERMINATION, NEGLIGENCE, TORT, STRICT LIABLITY, INDEMNITY AT LAW OR IN EQUITY OR OTHERWISE. IN NO EVENT SHALL PROVIDER'S AGREGATE LIABILITY ARISING OUT OF OR RELATED TO THIS AGREEMENT, WHETHER ARISING OUT OF OR RELATED TO BREACH OF CONTRACT, TORT (INCLUDING NEGLIGENCE) OR OTHERWISE, EXCEED THE TOTAL OF THE AMOUNTS PAID TO PROVIDER FOR THE SERVICES PERFORMED HEREUNDER.

9. DEFAULT: Upon default by Customer in the payment of the Price or any portion thereof when due or in the payment of all or any portion of any other indebtedness secured under this Agreement when due or in the performance of any other term or provision hereof, all unpaid amounts due Provider shall thereupon be immediately due and payable and Provider shall have the rights and remedies contained herein and the rights and remedies as a court of competent jurisdiction shall determine to be applicable.

10. PERMITS AND APPROVAL OF PLANS: Customer assumes all responsibility for securing any necessary governmental approvals of the plans and specifications and any permits required for the installation and operation of the Equipment, all at Customer's expense.

11. COMPLIANCE WITH APPLICABLE LAWS: Customer assumes all responsibility for complying with all federal, state and local statutes, laws, codes, regulations and ordinances in connection with the installation (if not done by Provider) and operation of the Equipment and any other activity related thereto, including, without limitation, all federal, state and local environmental laws and regulations relating to pollution and protection of the environment and the Occupational Safety and Health Act and all rules and regulations promulgated thereunder.

BUILT TO CONNECT Page 26



#### September 27, 2023

#### ASTEC PROPOSAL #: HI 23-15004 Rev 2

12. LATE CHARGES AND ATTORNEY'S FEES: Customer agrees that in the event any amount payable by Customer to Provider remains unpaid for more than 30 days, a service charge of 1.5% per month (18% per annum) or any portion thereof (or the highest rate of interest allowed by law, whichever is less) shall accrue on such unpaid amount beginning on Heatec, Inc. 5200 Wilson Road Chattanooga, TN 37410, USA the thirty-first (31st) day after such date payment is due. If the indebtedness, including late charges, arising out of this or any other transaction between Provider and Customer is placed in the hands of an attorney for collection, or is collected by and through an attorney. Customer will pay all costs of collection, including without limitation, court costs and reasonable attorney's fees.

13. EXECUTION OF CONTRACT: Once an Order has become a binding contract, it cannot be suspended or cancelled without the prior written consent of Provider, which may be withheld in the sole discretion of Provider. In no event will consent to suspension or cancellation be given without full reimbursement by Customer of all Provider's expenses, damages and losses arising from such cancellation or suspension and incurred through the date of cancellation or suspension, plus reasonable overhead and profit allocation on such amounts.

14. RELATIONSHIP OF THE PARTIES: The relationship of the parties is that of independent contractors. Nothing contained herein shall be construed as creating any agency, partnership, joint venture or other form of joint enterprise, employment, or fiduciary relationship between the parties, and neither party shall have authority to contract for or bind the other party in any manner whatsoever. The method and manner for performance of the Services by Provider shall be under its own control. The parties acknowledge that Provider is not performing the Services as a general contractor.

15. SEVERABILITY: If any provision of this Agreement is found to be legally invalid or unenforceable: (i) the validity and enforceability of the remainder of this Agreement shall not be affected, (ii) such provision shall be deemed modified to the minimum extent necessary to make such provision consistent with applicable law, and (iii) such provision shall be valid, enforceable, and enforced in its modified form.

16. ASSIGNMENT: Customer shall not assign any of its rights or delegate any of its obligations under this Agreement without the prior written consent of Provider. Any purported assignment or delegation in violation of this Paragraph 16 is null and void. No assignment or delegation relieves Customer of any of its obligations under this Agreement.

17. LAW CONTROLLING: This Agreement and all questions regarding the performance of the parties hereunder shall be controlled by the laws of the State of Tennessee (without regard to conflicts of law).

18. DISPUTE RESOLUTION: Any dispute or claim arising out of or relating to this Agreement, or the breach, termination or invalidity thereof, and any related tort, statutory and equitable claims (each a "Dispute"), which the parties are not able to settle amicably within 3 months from the first written request for such settlement, shall be brought exclusively in a state or federal court in the State of Tennessee, County of Hamilton. The parties hereby waive any right to challenge such choice of jurisdiction or venue or to seek transfer to another jurisdiction. THE PARTIES FURTHER KNOWINGLY AND VOLUNTARILY WAIVE ANY RIGHT TO A JURY TRIAL OF THE DISPUTE.

**19. TAXES:** Prices quoted herein do not include any Federal, State, Local or Municipal Taxes. If under existing or future law passed by the United States, any state or any municipality, Provider, in its opinion, is required to pay or collect a tax, impost or charge upon the manufacture, sale, use or assembly of the material described herein, the Price shall be increased by the amount of such tax, impost or charge. The amount of such increase is to be paid to Provider upon demand.

20. BACK-CHARGES AND ALLOWANCES: Provider shall not be called upon to make any allowance for material, labor, repairs, or alterations made for its account unless authorized by Provider in writing.

21. RESPONSIBILITY OF CUSTOMER FOR OPERATION OF EQUIPMENT: The operation of the Equipment at all times shall be the sole and exclusive responsibility of Customer. Any Services by Provider's representatives shall not release Customer in any manner whatsoever from its responsibility for operating the Equipment.

22. INDEMNIFICATION: Customer covenants and agrees that it will indemnify and hold harmless Provider, its affiliates and their respective directors, officers, employees and agents from and against any and all claims, actions, demands, damages, costs, expenses, judgments and awards, including without limitation court costs and reasonable attorneys' fees (collectively, "Claims"), including but not limited to any Claims by third parties, arising out of or caused by the acts or omissions of Customer, its directors, officers, employees, agents and/or subcontractors. This indemnity shall survive the execution and performance of the Order.

23. NOTICES: Any notices given between the parties under this Agreement may be given by courier, personal delivery or mail, postage prepaid, or by e-mail. The date of service shall be the date on which the notice is received. A copy of all notices to Provider shall be sent to: Heatec, Inc., 1725 Shepherd Road, Chattanooga, TN 37421, Attn: Legal Counsel.

#### PURCHASER PLANT SETUP RESPONSIBILITIES (TASKS TO BE COMPLETED PRIOR TO HEATEC'S SERVICE TECH'S ARRIVAL AT PLANT)

- 1. All equipment set, bolted and completely sealed up.
- 2. All Process Lines & Hot Oil Lines put together and tested.
- 3. Fuel lines/Gas lines including all lines for the pilots hooked up and run.
- 4. All air lines run and hooked up from air compressor to all locations on the plant.
- 5. All electrical cables 480vac/120vac pulled and hooked up.
- 6. Main power run and hooked up to main in MCC cabinet.
- 7. Hot oil on site.

NOTE: Items 1, 2, 3, 4 & 5 are performed by Heatec when plant installation is purchased from Heatec.





September 27, 2023

ASTEC PROPOSAL #: HI 23-15004 Rev 2

## SALES PROPOSAL SIGNATURE PAGE

This Agreement is made in Chattanooga, Tennessee.

RESPECTFULLY SUBMITTED HEATEC, INC.

ORDER BY PURCHASER The foregoing proposal is hereby offered as an order by PURCHASER.

Date:	Date:
Ву:	Ву:
Name:	Name:
Title:	Title:

## ACCEPTANCE OF ORDER BY HEATEC

The foregoing order is hereby accepted at Chattanooga, Tennessee, as of the date of acceptance.

HEATEC, INC.

Date:

By: _____

Name: _____

Title: _____





September 27, 2023

ASTEC PROPOSAL #: HI 23-15004 Rev 2

POSTPONED DELIVERY/SHIPPING DELAY/DEFERRAL NOTICE
---------------------------------------------------

Purchaser:		
Seller: Heatec, Inc.		
Contract or PO Date:		
Contract or PO #:		
<b>Delivery:</b> FCA point of shipment Heaters	ite, Incoterms 2020	
Heatec has notified Purchaser that the Equipment (as de Sale) will be ready for Purchaser to pick up at Heatec's sit		
Purchaser hereby requests deferral of shipment of the Eq	uipment until	, 20
Reason for delay:	·	
Pursuant to paragraph 16 of the Heatec General Terms an "offer to ship" or "shipment" for all purposes, including inv all risk of loss of or damage to the Equipment during stora	oicing, payment, and transfe	
Pursuant to paragraph 29 of the Heatec General Terms a Purchaser upon offer to ship should Purchaser delay/defe		the Equipment passes to
	Customer	
	Customer Signature and	Title
	5	
	Date	
* * * * * * * * * * * * * * * * * * * *	Date	****
++++++++++++++++++++++++++++++++++++++	Date	* * * *
	Date	nts to the Contract. The
Heatec Acknowledgments: Except as otherwise noted above, there have been no Equipment is complete in accordance with the Contract, re	Date	nts to the Contract. The
Heatec Acknowledgments: Except as otherwise noted above, there have been not Equipment is complete in accordance with the Contract, re Heatec inventory.	Date ************************************	nts to the Contract. The
Heatec Acknowledgments: Except as otherwise noted above, there have been not Equipment is complete in accordance with the Contract, re Heatec inventory. General Manager Signature	Date Date written or oral amendmer ady for shipment and has be Date	nts to the Contract. The

Page 29



September 27, 2024

ASTEC PROPOSAL #: HI 23-15005 Rev 2

### THE WORLD LEADER IN INTEGRATED PROCESS SOLUTIONS

SUPPORT•TECHNOLOGY•TRAINING

# A PROPOSAL TO PROVIDE A REGEN GAS HEATING SYSTEM

FOR H-4701 Regen Gas Heater for Targa's DOU Copperhead plant in NM

PREPARED EXCLUSIVELY FOR

Bryan Nix **TARGA RESOURCES** 811 Louisiana Street Houston, TX 77002 Office:713-584-1575 Cell:918-557-2676

bnix@targaresources.com

Presented by:

Thomas Franey, Regional Sales Manager Cell: (423) 309-3631 <u>tmfraney@astecindustries.com</u>





September 27, 2024

ASTEC PROPOSAL #: HI 23-15005 Rev 2

# ASTEC SCOPE OF SUPPLY (Quote validity is for 60 days):

All equipment will be completely assembled at ASTEC. It will arrive at your facility completely packaged and mock tested. The package you will receive includes the following items:

Model	Description	Investment (U.S. \$)
Heatec HCI 10010-40-D-G	Regen Gas Heater x 1	\$Included
Burner	Low NOx Burner x 1	\$Included
Blower	Blower for burner x 1	\$Included
Control Panel	Panel x 1	\$Included
Fuel Train	Gas Train x 1	\$Included
Stack	Exhaust Stack x 1	\$Included
	Total for H-4701 Regen Gas Heating Unit	\$439,827.00

NOTE: Our price and delivery are based on ASTEC's "General Terms and Conditions" listed at the end of this proposal. Any purchase order that includes Terms and Conditions different from those will be reviewed, and it may impact the price and delivery offered. ASTEC reserves the right to review and revise the pricing and delivery.

## **DELIVERY PERIOD:**

The delivery period of the equipment is listed below. Delivery times may vary depending on engineering and production workload when the written P.O. is received. *Long lead items (pumps, burner, blower, relief valves, etc) need to be ordered prior to approvals.* 

Description	Weeks
Drawings Issued for Approval	9 ARO
Equipment Ready to Ship after All Drawings Approved	17 ARAD

ARO = After receipt of written purchase order

ARAD = After receipt of approved drawings from the customer





September 27, 2024

# ASTEC PROPOSAL #: HI 23-15005 Rev 2

## **OPTIONAL ITEMS: (NOT REQUIRED FOR HEATER OPERATION)**

Model	Description	Investment (U.S. \$)
5 Days Service On-site	Estimate (1 Man, 1 Trip, 2 Weeks Notice)	See Page 23
Industrial Customer School	Tentatively in April / October	\$1,875.00
Commissioning Spare Parts	Estimate, Class 1 Div 2	\$24,500.00 per heater
2 Years Spare Parts	Estimate, Class 1 Div 2	\$19,750.00 per heater

## NOTE;

This is only a partial, preliminary spare parts list. The complete parts list will be sent after ASTEC is the successful bidder, the P.O. has been received by ASTEC, and once we have the final scope defined.

COMMISSIONING SPARES:	<u>2 YEAR SPARES:</u>
Flame safeguard	Flame safeguard
Flame scanner	High media controller
High media controller	Stack temp controller
Stack temp controller	Modulation controller
Modulation controller	Ignition transformer
Motor starter	Control relays
Main gas valve	Low combustion air switch
Pilot solenoid valve	Modulating control motor
Modulating control motor	Burner blower wheel
Spark igniter for burner	Rear heater sight glass
Blower motor for burner	Spark igniter for burner
Media Thermocouple	Indicating lights for control panel
Stack Thermocouple	Butterfly valve for burner control
Main gas regulator	High gas pressure switch
Pilot gas regulator	Low gas pressure switch





September 27, 2024

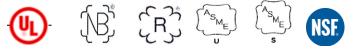


represent the package quoted. The main advantage of this design is the extremely large radiant section. Since this is where most heat transfer occurs, the ideal design utilizes a large radiant section. The two-pass heater life expectancy is 2-4 times that of other styles.





September 27, 2024


## ASTEC PROPOSAL #: HI 23-15005 Rev 2

## **ASTEC ADVANTAGES:**

- The radiant heating surface of two pass heaters is typically 50% greater compared to that of other style heaters. The result is that the two-pass heater will have lower radiant flux rates. High radiant heat flux causes high metal wall temperatures, causing premature coil failure and premature degradation of the thermal fluid. The life expectancy of the two-pass heater will be 2-4 times that of other designs
- Should the coil ever have to be replaced, the bolted cover(s) of the two-pass design allow(s) for easy coil replacement without having to replace the entire heater or requiring shipment back to the factory for costly repair
- 3. There is more internal "room" in the less crowded two pass heater which allows for greater space between the flame and the coil. This lessens the chances for flame impingement and thus lengthens coil and thermal fluid life. Ease of inspection is also increased
- 4. The heater has an 18" bolted man-way. This allows access to the radiant section without removing the cover, the burner, the fuel train, the can and the conduit. This internal inspection is required in many locations
- 5. The heater utilizes complete flow through a uniform diameter coil without mixing or by-passing.
- 6. Front and rear peep sight(s) for viewing flame pattern and coil condition
- 7. No orifice plates required for balancing the flow
- 8. Insulation is on the inside of the heater where it cannot be damaged during shipment
- 9. Totally Packaged Heaters
- 10. In House Panel Shop
- 11. In House Coil Manufacturing
- 12. In House Hydro-Test
- 13. In House Painting / Sandblasting
- 14. In House Fully Function Tested Heaters
- 15. Custom (Highly Specified or Standard Units)
- 16. On Site Training
- 17. In House Service Department which is available for on-site training and start up
- 18. In House Engineering Department
- 19. Seventeen AutoCAD stations utilizing AutoCAD / Inventor / AutoCAD Electrical
- 20. In House Quality Assurance / Control Department
- 21. Heater manufacturer since 1977
- 22. Heatec Coil warranty will be 3 years from ship date. Typical lifetime of this heater without coil replacement is 20 to 30 years

BUILT TO CONNECT Page 5

23. Stamps and Certifications





September 27, 2024

## ASTEC PROPOSAL #: HI 23-15005 Rev 2

## **EQUIPMENT DESIGN DATA:**

HCI 10010-40-D-G	IP UNITS	SI UNITS
Heater Capacity (Btu/hr) (MW)	11,516,583	3.38
Firing Rate (HHV) (Btu/hr) (MW)	16,165,674	4.74
Heater Circulation Rate (lb/hr) (kg/hr) {Constant}	37,000	16,779
Heater Circulation Rate (MMSCFD) (Nm ³ /hr) {Constant}	14.99	17,656
Minimum Allowable Circulation Rate (MMSCFD) (Nm ³ /hr)	11.99	14,125
Heater Inlet Pressure (psig) (Barg)	900	62.1
Heater Outlet Pressure (psig) (Barg)	890.9	61.4
Heater Inlet Temperature (°F) (°C)	98	37
Heater Outlet Temperature (°F) (°C)	550	288
Stack Temperature (°F) (°C)	664	351
Calculated Heater Efficiency (%) (LHV) [See Note 1]	83.9	83.9
Calculated $\Delta P$ through Heater (psid) (Bar) (Clean)	9.1	0.6
Heater Volume (Gallons) (m ³ )	746	2.8
Total Coil Surface Area (ft ² ) (m ² )	1,453	135.0
Overall Flux Rate (Btu/hr-ft ² ) (kW/m ² )	7,926	25.0
Radiant Surface Area (ft ² ) (m ² )	726	67.5
Average Radiant Flux Rate (Btu/hr-ft ² ) (kW/m ² )	10,373	32.7
Maximum Radiant Flux Rate (Btu/hr-ft ² ) (kW/m ² ) AICHE	14,003	44.1
Maximum Metal Temperature (°F) (°C) AICHE	617	325
Maximum Calculated Film Temperature (°F) (°C) AICHE	602	317
Average Fluid Velocity (ft/s) (m/s)	24.5	7.5
Combustion Air Flow Rate (sFt ³ /hr) (Nm ³ /hr)	158,608	4,492
Combustion Gas Flow Rate (sFt ³ /hr) (Nm ³ /hr)	14,477	410
Flue Gas Flow Rate (sFt ³ /hr) (Nm ³ /hr)	173,770	4,921
Flue Gas Pressure Drop (" WC) (mmHg)	0.30	15.77

Note 1: Based on HHV of typical natural gas. Guaranteed efficiency is 1% less.

Note 2: It is the Customer's responsibility to confirm/verify user volume and pressure drop, which are not in ASTEC's scope of supply. ASTEC assumes no liability for non-verified estimated data.





September 27, 2024

## ASTEC PROPOSAL #: HI 23-15005 Rev 2

## SYSTEM PARAMETERS:

The following system parameters are incorporated into this proposal.

Plant location	New Mexico
Plant elevation (fasl)	3,500
Heater location	Outdoor
Ambient Temperature (°F)	-20 to 110
Burner turndown	5:1 Gas
Excess air %	15
Noise Limit (dB(A))	< 85 at 3 ft
Heater orientation	Horizontal
Primary fuel (psig @ rated capacity of the burner)	Fuel gas (125)
Compressed air from clean, dry, safe source	10 to 40 scfm @ 116 to 80 psig
Electrical	480 V / 3 PH / 60 Hz
Control voltage	110 V / 1 PH / 60 HZ / 24 V DC
Area Classification	Class 1 Div. 2 Group C & D
Thermal fluid (Not Included)	Regen Gas
Nata, Diagona angliwa fiyol muanay wa anglitawan anglitawa	

Note: Please confirm fuel pressure and temperature.

	FUEL TABLE	MOL %
N ₂	Nitrogen	1.84
H ₂ O	Water	0.00
$H_2$	Hydrogen	0.00
H ₂ S	Hydrogen Sulfide	0.00
CO ₂	Carbon Dioxide	0.00
CO	Carbon Monoxide	0.00
CH ₄	Methane	97.60
$C_2H_6$	Ethane	0.54
C₃H ₈	Propane	0.02
C ₄ H ₁₀	i-Butane	0.00
C ₄ H ₁₀	n-Butane	0.00
C5H12	i-Pentane	0.00
$C_5H_{12}$	n-Pentane	0.00
C ₆ H ₁₄	n-Hexane	0.00
O ₂	Oxygen	0.00

REGEN GAS PROPERTIE	ES	
Inlet Temperature	e (°F)	98
Inlet Density (	(lb/ft ³ )	4.42
Inlet Heat Capacity (Btu/(Ib	o*°F))	0.651
Inlet Thermal Conductivity (Btu/(h*f	ft*°F))	0.022
Inlet Dynamic Viscosity	y (cP)	0.013
Outlet Temperature	e (°F)	550
Outlet Density (	(lb/ft ³ )	1.87
Outlet Heat Capacity (Btu/(It	o*°F))	0.729
Outlet Thermal Conductivity (Btu/(h*f	ft*°F))	0.042
Outlet Dynamic Viscosity	y (cP)	0.018





## September 27, 2024

	REGEN GAS TABLE	MOL %
N ₂	Nitrogen	1.35931
H ₂ O	Water	0.00
H ₂ S	Hydrogen Sulfide	0.000132193
CO ₂	Carbon Dioxide	2.33237E-07
CH ₄	Methane	72.55050
C ₂ H ₆	Ethane	13.51700
C ₃ H ₈	Propane	7.840360
C ₄ H ₁₀	i-Butane	1.03989
C4H10	n-Butane	2.632210
C5H12	i-Pentane	0.480309
C5H12	n-Pentane	0.453480
C ₆ H ₁₄	n-Hexane	0.0667919
C7H16	Heptane	0.039458
C ₈ H ₁₈	Octane	0.003300
C ₉ H ₂₀	Nonane	0.005458
C ₁₀ H ₂₂	Decane	9.2761E-06
	Undecane	3.13074E-06
	Benzene	0.00871813
	Toluene	0.002751
	Ethylbenzene	0.000123
	m-Xylene	0.000230885

## **APPROXIMATE PHYSICAL DATA:**

The equipment will have the following estimated dimensions and dry weights. Piping and controls external to the heater are to be insulated in the field by <u>customer</u>. All equipment will be assembled and mounted as stated below. Items too large for shipment, or subject to damage during shipment, will be shipped loose (unattached) and will require re-assembly in the field.

Equipment	L (ft)	W (ft)	H (ft)	Wt (Lbs)	Mounting
Horizontal Heater	31.1	9.3	9.6	41,968	Skid
Exhaust Stack		2.5	8.0	643	Top of Heater
Blower (HP)	20	TEFC			Front Cover of Heater
Pilot Gas Train	NPT	0.5	Inch		Side of Heater
Main Gas Train	NPT	2.0	Inch		Side of Heater
Control Panel	3.0	1.0	4.0	500	Front of Heater Skid

## PAINTING:

Customer specified paint system.

Purchased items will be painted with vendors' standard paint, stainless items will remain unpainted.





September 27, 2024

## ASTEC PROPOSAL #: HI 23-15005 Rev 2

## DRAWINGS / ENGINEERING:

Drawing period is based on current engineering load and is subject to change without notice. Drawings will be sent via e-mail or provided on USB thumb drive (AutoCAD). Please note that the tolerance of our drawings is + or  $-\frac{1}{4}$ ". Construction of connections to heater should allow for modifications to be made in the field with at least 2 degrees of freedom.

Description	Description	
Manuals on CD	General Arrangement	
P & ID	Bill of Material Mechanical	
Electrical Diagrams (Ladder Type)	Bill of Material Electrical	
Nameplate Details	Hydro-test Report	
Lift Lug Details	Spare Parts	
Motor Curves	NDT Reports	
Motor Data Sheets	Utility Requirements	
Material Certifications	Quality Control Manual	
Foundation Loadings	Mechanical Design Calculations	

## **DESIGN CRITERIA:**

The equipment will be designed to the requirements stated below. Quality is assured by our in house quality control department. Thickness of coil and shell will not be affected by the manufacturing process as we keep all diameters above the limits that would have an impact on it. Hydrostatic testing will be carried out at our facility and witnessed by our quality control manager.

#### **Heater Coil Design:**

ASME Section VIII design @  $650 \,^{\circ}$ F to  $-20 \,^{\circ}$ F, @  $1100 \,$  psig with CA = 0.0625

## Heater Shell Design:

Non-code design @ 300 °F to -20 °F @ 15 In W.C. with CA = 0.0625

## **Fuel Train Design:**

110 °F to -20 °F / UL / NFPA 87 & 70

## Heater Stack Design:

Non-code 800 °F to -20 °F @ +15" W.C. w/ CA = .0625

## Panel & Controls:

110 °F to -20 °F / UL 508 A / NFPA 87 & 70

NEC Class I Division 2 Group C & D T3

NEMA 4X (316 Stainless Steel) with "Z" type purging

BUILT TO CONNECT Page 9



September 27, 2024

ASTEC PROPOSAL #: HI 23-15005 Rev 2

## EQUIPMENT RECOMMENDATIONS:

The heater is designed, manufactured, wired, and tested at our facility in Chattanooga, Tennessee USA. It is completely packaged and will include the following:

## **HEATEC HCI HEATER:**

- > Two-pass tight-wound helical coil heater
- Carbon steel (SA106 Gr. B seamless) schedule 80 tight-wound helical coil
- > Single 4" inlet and outlet 600 # (SA105) flanges
- Heater coil hydro-testing per ASME code
- > Coil will be stamped and receive National Board Registration
- > 304 SS coil supports (skip welded to shell to help dissipate heat transmission)
- Coil is enclosed by an (minimum ¹/₄" thick) A36 carbon steel shell with bolted end covers (w/ lift eyes)
- Internally insulated with ceramic fiber blanket, using welded 310 SS pins with washers for support. Blanket will receive a coat of rigidizer
- Peep sight in rear cover
- Inert gas smothering connection in front cover. (Gas and controls by others)
- Structural steel skid with saddles welded to channels to form a skid mounted frame, and a five foot skid deck extension for mounting controls
- Skid lifting lugs (minimum of four)
- > 18" diameter bolted access door in rear of heater
- Coil butt welds receive 100% radiography

## EXHAUST STACK:

An exhaust stack to disperse the heater flue gasses to the atmosphere.

 Stack with flanged bottom connection and 2 flue gas sampling ports, rain cap and bird screen (Uninsulated)

## POWER FLAME TYPE EVO BURNER:

The Power Flame EVO[™] burner offers staged/premix combustion technology to maximize operating efficiency and reduce NOx emission on natural gas firing below 30 PPM without the use of flue gas recirculation (FGR). Designed to fire a range of gaseous fuels and light oil, this burner utilizes a unique firing head design which provides stable combustion over a wide turndown.

BUILT TO CONNECT Page 10

- Direct spark ignited natural gas pilot (Interrupted type)
- Ignition transformer
- UV self-checking flame detection scanner
- Blower is integral to burner
- > Inlet damper with modulation motor, duct and combustion air pressure switch
- Burner is sized for 104% capacity



September 27, 2024

www.astecindustries.com Office: 423.821.5200 5200 Wilson Rd Chattanooga, TN 37410 USA

ASTEC PROPOSAL #: HI 23-15005 Rev 2

## GAS TRAIN:

- > Pilot train with regulator, double block safety shutdown valves, manual valve, 1 x pressure gauge
- Main train
- > Drip leg
- Manual shutoff valve
- ➢ Gas Strainer
- Tee to pilot train
- Pressure gauge x 2
- Stepdown gas regulator (Must be vented to a safe location)
- Gas regulator (Must be vented to a safe location)
- Vent line with manual shutoff valve for leak testing
- Low and high pressure switches
- Leakage test connection with manual shutoff valve
- Fuel Modulation via modulation valves with linkage-less system
- > Double block (one with proof of closure switch) safety shutdown valves
- > Bleed line with two (2) manual shutoff valves for leak testing
- > Heat tracing, if necessary, is by customer

Emission Guarantees based on HHV: NOx (lbs/mmbtu – PPM) = .0365 – 30 CO (lbs/mmbtu - PPM) = .049 – 65 SOx (lbs/mmbtu - PPM) = Negligible PM (lbs/mmbtu - PPM) = Negligible VOC (lbs/mmbtu - PPM) = Negligible

- 1. All emissions are from 50% to 100% of maximum combustion rating (MCR)
- 2. All emissions in the units of PPM are referenced to 3% dry stack oxygen
- 3. Emissions are valid for natural gas (fuel analysis must be submitted by customer) combustion only. The values are based on natural gas containing no bound nitrogen and no sulfur
- 4. If the stack emissions exceed the guarantee level, ASTEC/ Burner manufacturer will work with customer to reduce the emissions to the guaranteed level. ASTEC / Burner manufacturer will, at its costs, make any and all adjustments and / or modifications to burner that it deems appropriate and proper to meet required levels
- 5. Compliance testing of the system must be conducted within 60 days of initial start-up. Start-up must occur no later than 120 days from shipment. Testing is to be accomplished by an independent authorized agency agreed to by ASTEC / burner manufacturer utilizing EPA-Method 7E. All costs of compliance testing shall be paid by customer
- 6. All guarantees contained in these conditions and limits shall end following completion of compliance testing wherein all emission test points are documented to be at or below guaranteed levels

## LOCALLY MOUNTED INSTRUMENTS:

- Low flow signal is to be supplied by <u>customer</u>.
- Inlet / outlet Regeneration Gas pressure gauge with isolation valve (NPT)
- Inlet / outlet Regeneration Gas thermometer with thermo-well (NPT)
- Outlet Regeneration Gas temperature thermocouples with thermo-well (NPT)
- Stack temperature thermocouple with thermo-well
- Relief valve is to be supplied by <u>customer</u>.
- Conduit will be used for all wiring





September 27, 2024

ASTEC PROPOSAL #: HI 23-15005 Rev 2

## BURNER MANAGEMENT SYSTEM (BMS) ELECTRICAL CONTROL ENCLOSURE:

The heater's electrical control enclosure contains all of the electrical components to safely operate the heater. The burner management controller provides the proper burner sequencing, pre-purge, ignition and flame monitoring protection for automatically ignited oil or gas fuel burners. The enclosure also has a single-loop, 4-20mA modulating, digital temperature controller and two digital temperature limit controllers; one for the thermal fluid and one for the stack. The burner managment controller also monitors other heater safety limits in it's limit circuit. If a limit condition occurs, the burner managment controller standards. The enclosure is designed and wired to meet the requirments of NFPA 70, National Electric Code (NEC) and the requirements found in Underwriters Laboratories Inc. (UL) 508A Listing for Industrial Control Panels. This listing can be verified on the following website: http://www.ul.com/database.

The BMS control enclosure will be manufactured and tested by ASTEC.

- The control panel includes the following:
- AO ground to -24vdc common
- > All safety devices connected to DI through relays as input for troubleshooting.
- DI register on HMI page
- LOP (light off position) Hold through MTFI (main trial for ignition) and additional 30 seconds, then release to modulate. Program changes from basic package
- Reset PID PV to Zero at the same time it releases to Auto modulation.
- Heater tied to burner alarm on FAL and FALL shutdown conditions
- > Siemens breaker disconnect mounted on back panel with a through-the-door operator handle
- Motor starters are by others
- Fireye BurnerLogix burner management system (BMS) model YB110UVSC with self-check scanner amplifier card. The YB110 has a display with keypad mounted in the enclosure door allowing user to easily scroll through various menus to view the current operating status, review programmer configurations and lockout history. The flame reset button is on the keypad. The YB110 has the capability to communicate its status data via Mod-Bus RTU as a slave with a Mod-Bus RTU master device. Programming of the RTU Master to pole the Fireye is responsibility of the customer. The YB110 BurnerLogix is cUL US Listed, CE and FM approved
- Control relays and fused terminal blocks
- > DI, DO & AI fused connections entering and leaving the rack.
- Control relays and fused terminal blocks
- Yokogawa UT35L (1/4 DIN) high thermal fluid temperature limit controller with primary output relay, manual reset, digital display and 4-20mA re-transmission output capability
- Yokogawa UT35L (1/4DIN) high stack temperature limit switch with primary output relay, manual reset, digital display and 4-20mA re-transmission output capability.
- Lights for: power and alarm indicator lights
- Switches for: burner off/on, alarm silence, low fire hold and pump select (if applicable)
- > Dry contacts on common alarm and heater run status
- Flame safety reset button
- Emergency shut down button
- > Alarm horn, to indicate alarm (mounted adjacent to panel)
- Window kit for indicating controls
- "Z" Purge Package
- > Allen-Bradley CompactLogix 5069 PLC with Panelview Plus 12 HMI for air-fuel ratio control.
- > Panelview HMI to be updated to latest firmware version and VNC enabled.
- > PLC rack and programs to have same version.
- > Heating element with panel insulation and thermostat





September 27, 2024

ASTEC PROPOSAL #: HI 23-15005 Rev 2

## **Exceptions and Clarifications**

HEATEC's Quotation is in basic accordance with the specifications, drawings, terms and conditions, and requirements of the invitation to bid; however, the following exceptions have been identified, priced and are attached hereto for consideration

Purchase order must make reference to HEATEC Quotation

Equipment is quoted EXW, HEATEC, Chattanooga, TN, Incoterms® 2020. Equipment will be loaded on truck free of charge. This means the delivery of Equipment on the truck at the specified point of departure (HEATEC) is covered in the quotation price. Purchaser is responsible for the main carriage / freight, cargo insurance and other costs and risks. Purchaser shall furnish all necessary facilities, labor, materials and equipment for unloading and conveying the Equipment to its erection point. The Equipment shall be erected, installed, set and leveled by Purchaser at its expense.

Purchaser shall furnish all necessary labor, materials, equipment, fuel, inert snuffing controls / media, air (if required), nitrogen (if required) and electricity required for starting up the Equipment. HEATEC will not be responsible for the installation or design of the footings, foundations or anchor bolts. Emissions compliance testing, mechanical run test, Site Acceptance Test, and performance tests are not included in Quotation. Testing included in Quotation includes the testing as described in the HEATEC Standard FAT (Available for inspection) and the HEATEC Standard ITP (Available for inspection) and any tests stated in the Quotation.

Heatec warranty, payment terms and cancellation charges are as stated below.

Export packing / preservation / storage are not included. Domestic packing is included. This includes flange / stack covers, wrapping of panel, crating of loose shipped parts.

Taxes, tariffs and duties are not included.

Order will be executed according to USA / TN laws. It is the responsibility of Purchaser to inform HEATEC via specifications of local / jurisdictional laws that may affect Equipment design (i.e. emissions, insurance codes, etc.). Purchaser assumes all responsibility for complying with all federal, state and local statutes, laws, codes, regulations and ordinances in connection with the design, installation and operation of the Equipment and any other activity related thereto, including, without limitation, the Clean Air Act and all rules and regulations promulgated thereunder and the Occupational Safety and Health Act and all rules and regulations promulgated thereunder. Some parts of the heater will exceed OSHA temperature requirements. (Average skin temperature of heater shell is 170°F with 5 mph wind and 70°F ambient.)

Any freight prices that may be quoted are estimates for budgetary purposes only. Due to the volatile nature of freight pricing, HEATEC cannot give a firm price for freight during the proposal phase of the project, because this phase occurs well in advance of the actual delivery. If contracted with HEATEC, freight will be billed at the actual cost plus a 10% handling fee.

All drawings will be standard AUTO-CAD. Delivery time stated in Quotation depends upon the approval process and the changes made during this process. Typical approval time is two weeks after receipt on all drawings. Only those drawings listed above will be offered. Drawings will be submitted electronically. If drawing approval consists of multiple or major changes, delivery time can be affected as well as the price. Drawing period is based on current engineering load and is subject to change without notice. Drawings will be sent via e-mail or provided on disk. <u>Hard copies will require additional cost</u>. Please note that the tolerance of HEATEC drawings is + or - $\frac{1}{4}$ ". Construction of connections to heater should allow for modifications to be made in the field with at least 2 degrees of freedom.

Control voltage is as stated in quotation.

Insulation / tracing / personnel protection of piping and equipment external of heater is not included. This is best done in the field by local contractor to eliminate damage during shipment and to allow checking for leaks prior to start up.

Fusible loop system, testing of refractory / insulation materials, burner / blower testing, spreader bar and slings are not included.

BUILT TO CONNECT Page 13

Galvanic isolation barriers and cathodic protection are not included.

Single line drawings are not included. HEATEC performs ladder type diagrams.



September 27, 2024

### ASTEC PROPOSAL #: HI 23-15005 Rev 2

Pipe, fittings, bolts, nuts and steel will be purchased from HEATEC's standard vendors. Plate and shapes are A36 carbon steel. Tubes supports are 304 SS. Stud bolts are SA 193 Br B7. Nuts are SA 194.

All purchased items will remain as painted from respective vendor.

Ladders and platforms are not included unless stated in Quotation.

If area is Class I Div 2 then panel is NEMA 4X with "Z" type purging. All other controls are NEMA 7, hermetically sealed, intrinsically safe or they are purged. Motors are TEFC. Equipment will be designed to NEC area as stated in Quotation.

Unless stated otherwise in Quotation, HEATEC takes exception to ISO, BS, NACE, API, GOST, ATEX, CE, IEC, SIL, & CENELEC specifications. HEATEC will assist in complying with these regulations where required but HEATEC cannot be sure the equipment as quoted will comply.

Heatec standard Quality control manual will be used for all welding, NDE, etc. Heatec standard welding procedures will be used for all welding. Heatec weld procedures and welders are ASME approved/certified. The weld procedures are available for Purchaser review only and revisions are not allowed. If Purchaser specifications have requirements other than what is listed on Heatec weld procedures, then Purchaser specific weld procedures can be produced. New procedures will result in a cost adder and will delay the original shipping date provided in the HEATEC Quotation. The increase in cost and length of delay will be dependent on the extent of the specification requirements. NDE of non-pressure vessel welds is not included unless stated in Quotation. Non pressure vessel welds are continuous but are not full penetration.

Flame arrestor, spark arrestor, UPS, noise test, fire & gas detection, outdoor lights, aviation lights, variable speed motors, soot blowers, lancing ports, fireproofing, knockout tank, insulation rings, insulation clips, vapor barriers, explosion door, spare parts, thermal fluid, shell / structural / piping stress analysis test, export custom clearance and vibration tests, start-up and erection assistance are not included. Only the controls listed in the Quotation are provided.

Hazardous area electrical equipment certification is simply a copy of each electrical item certificate. The entire heater does not have this type of approval.

Liquidated damages shall not apply.

HEATEC takes exception to specifications and required documentation referring to any other language other than English.

HEATEC is not responsible for implementing documentation or paying taxes, duties or other charges relating to exporting/importing proposed equipment into any country outside the Continental United States

Seal offs (If required) are to be poured in the field by Purchaser.

Relief valves and vents should be piped to a safe location by Purchaser.

Noise data sheet is provided by the blower manufacturer only

Redundancy is not included.

Thermal fluid by-pass, relief valve by-pass, relief valve isolation and flow control is not included unless specifically stated in the Quotation. By-pass and isolation valves around flow control valves and regulators have not been included.

Shield rows in convection section are not required or included.

SAT / Performance test is not included. Functional test of all components is included.

Skid drip pan, lip and grating have not been included.

Rupture discs are not included on relief valves.

Galvanizing of any materials is not included unless stated in Quotation.

PWHT is not included.

API guidelines are not included unless specifically stated in the body of this proposal



September 27, 2024

ASTEC PROPOSAL #: HI 23-15005 Rev 2

#### SALES PROPOSAL SPECIFIC TERMS AND CONDITIONS

PARTIES: - Heated	, Inc. shall be referred to as " <b>Heatec</b> " in this Sales Proposal. - Good Customer shall be referred to as " <b>Purchaser</b> " in this Sales Proposal.
PRICING:	<ul> <li>The Price is valid for sixty (60) days after date of this Sales Proposal.</li> <li>The Prices do not include any sale, use, property value added, duties or other taxes or charges, whether federal, state, local or provincial that may be applicable, which shall be the responsibility of the Purchaser.</li> </ul>
<u>TERMS:</u>	<ul> <li>Purchaser shall pay the purchase price in progress payments as follows:         <ul> <li>Receipt of these progress payments is required before the Equipment will be released for shipment.</li> <li>20% @ ARO</li> <li>30% @ Approval Drawing Submittal</li> <li>30% @ Coil Hydro Test</li> <li>Balance @ ready to ship</li> </ul> </li> <li>Electronic Transfer required 30 days after invoice receipt</li> <li>Refundment / security / performance bonds are not included.</li> </ul>
PACKING:	- The Price includes Heatec's standard packing. If Purchaser requires special packing, the extra cost caused thereby shall be borne by Purchaser.
<u>Shipping:</u>	<ul> <li>Transportation charges from point of shipment to point of destination shall be arranged for and paid for by the Purchaser, unless a separate freight contract is entered into between the parties.</li> <li>Purchaser shall control the type of transportation and routing.</li> <li>An anticipated ready for ship date shall be established upon Heatec's receipt of signed Sales Proposal and Heatec's receipt of the down payment.</li> </ul>
DELAY:	<ul> <li>If Heatec is not released by the Purchaser to order materials for fabrication at the time Purchaser signs this Sales Proposal, Heatec reserves the right to review and adjust the Price.</li> <li>In addition, delays in fabrication due to delays in Purchaser's release or other reasons due to Purchaser, will require an adjustment in the anticipated shipment date.</li> </ul>

#### **STEEL PRICES ESCALATION NOTE:**

Because of price volatility from steel manufacturers, any order will be subject to a review of material costs from the time of the proposal to the time that the material is actually allocated to the order. Any steel material cost changes will be based on the #1 Chicago Heavy Melt which is listed daily in numerous publications such as THE AMERICAN METAL MARKET. The calculation for the cost variation will be the difference between the Chicago #1 Heavy Melt scrap index 8 weeks prior to the date of this quotation and that same index price on the date 8 weeks prior to shipment of the respective order, which roughly corresponds to the steel material order date. That calculation will multiply the total weight of the steel plate, structural steel, and steel pipe of the product provided by the applicable index price variation. The increase, or decrease, in price will be shown as an additional line item on the respective invoice. This is the most appropriate and transparent method to deal with the current unpredictability of the steel market today. Please, contact us if you have any questions concerning this Escalation Note.







September 27, 2024

#### ASTEC PROPOSAL #: HI 23-15005 Rev 2

#### SALES PROPOSAL GENERAL TERMS AND CONDITIONS OF SALE

- 1. GENERAL: As used herein, "Equipment" is the equipment and/or parts identified in this Sales Proposal as expressly agreed to be provided by Heatec to Purchaser. As used herein, the "Services", if any, are the services identified in the Sales Proposal as expressly agreed to be provided by Heatec to Purchaser. As used herein, the "Software", if any, is the software identified in the Sales Proposal as expressly agreed to be incensed by Heatec to Purchaser. As used herein, the "Software", if any, is the software identified in the Sales Proposal as expressly agreed to be incensed by Heatec to Purchaser. These General Terms and Conditions of Sale (the "Terms") and all other sections of this Sales Proposal are collectively referred to in the Terms as the "Agreement". The Agreement sets forth the entire, exclusive and complete agreement of Heatec and Purchaser with respect to the sale and purchase of the Equipment, the performance of the Services and the license of the Software and supersedes any prior or contemporaneous written or oral agreement, understanding and communications and any course of dealing, usage of trade or course of performance. This Agreement prevails over any of Purchaser's terms and conditions of purchase or purchase order. Fulfillment of Purchaser's order does not constitute acceptance of any of Purchaser's terms and conditions and does not serve to modify or amend these terms and conditions. No waiver or modification of this Agreement shall be effective unless in writing and signed by both Heatec and Purchaser.
- 2. ENGINEERING: Heatec and Purchaser acknowledge and contemplate that any engineering services for which Heatec is responsible pursuant to this Agreement will be performed by engineers employed by Heatec only to the extent allowed by applicable laws and regulations. Otherwise, such engineering services will be provided by qualified, licensed engineers elected and retained by Heatec at Heatec's expense. Except as otherwise provided herein, Heatec and Purchaser acknowledge and contemplate that upon acceptance of this Agreement by Heatec, Heatec's engineering department or a qualified, licensed engineer selected and retained by Heatec at Heatec's expense. Except as otherwise is necessary to fulfill its obligations under this Agreement, and will prepare whatever plant layouts, drawings, and design specifications are necessary in Heatec's discretion to facilitate the performance of the Equipment in accordance with this Agreement. Heatec and Purchaser further acknowledge and contemplate that this engineering process may result in modifications or changes which may include, but are not limited to: modifications or parts lists. No such modifications or changes shall constitute a breach of contract by Heatec.
- 3. DRAWINGS: Heatec will furnish Purchaser with necessary drawings and instruction for Purchaser's erection of the Equipment. Heatec will not be held responsible for design and/or installation of footings and/or other items necessary for installing the Equipment unless otherwise stated herein.
- 4. DIFFERING SITE CONDITIONS: If, in the performance of this Agreement, subsurface or latent conditions at the site are found to be materially different from those indicated by geotechnical reports provided by Purchaser, or unknown conditions of an unusual nature are disclosed differing materially from those ordinarily encountered by Heatec, then such conditions may result in adjustments to the Price, anticipated dates for delivery/shipment, and other contractual obligations. No such adjustments shall constitute a breach of contract by Heatec.
- 5. CONFIDENTIALITY: All non-public, confidential or proprietary information of Heatec, including but not limited to specifications, samples, patterns, designs, plans, drawings, documents, data, business operations, purchaser lists, pricing, discounts or rebates, disclosed by Heatec to Purchaser, whether disclosed or ally or disclosed or accessed in written, electronic or other form or media, and whether or not marked, designated or otherwise identified as "confidential" in connection with this Agreement shall be treated by Purchaser as confidential and may not be disclosed to any third party or copied by Purchaser unless authorized in advance by Heatec in writing. Upon Heatec's request, Purchaser shall return all documents and other materials received from Heatec. Heatec shall be entitled to seek injunctive relief for any violation of this Paragraph 5. This Paragraph 5 does not apply to information that is: (a) in the public domain; (b) Purchaser can show was known to Purchaser at the time of disclosure; or (c) Purchaser can show was rightfully obtained by Purchaser on a non-confidential basis from a third party. Purchaser's confidentiality, non-disclosure and non-use obligations herein shall remain in force for the maximum term permitted by applicable law.

#### 6. WARRANTY:

- a. Heatec warrants that upon shipment from Heatec's site and continuing for a period of eighteen (18) months after shipment of such Equipment to Purchaser or twelve (12) months after startup, whichever occurs first (the "Equipment Warranty Period"), that the Heatec manufactured Equipment will be free of defects in design, material and workmanship, provided any operation of the Equipment by Purchaser has been in accordance with generally approved practice as instructed by Heatec service personnel or set forth in Heatec service instructions, if any, and provided that Purchaser notifies Heatec in writing as soon as such defect becomes apparent, but in all events during the Equipment Warranty Period. Heatec shall repair, or at its option replace FCA point of shipment, any defective Equipment or parts covered by the warranty. The right to have defective Equipment repaired or replaced shall constitute the Purchaser's sole and exclusive remedy for breach of this limited Equipment warranty. Labor for defective Equipment repair will be paid by Purchaser under a formula determined by Heatec. For helical coils found in Heatec's heaters, the Equipment Warranty Period for the helical coils is three (3) years. Equipment which is repaired or replaced shall carry a warranty equal to the unexpired portion of the Equipment Warranty Period. Heatec warrants to Purchaser that the Equipment will perform at its rated capacity as indicated on the Sales Proposal when properly installed, connected, and correctly operated and maintained. Where the Equipment is merely a part of a whole system, Heatec can only accept responsibility for performance of the Equipment furnished by it. The performance of the Equipment covered in this Agreement cannot be exactly predicted for every operating condition. In consequence, any predicted performance data submitted is intended to show probable operating results which may be closely approximated, but which cannot be guaranteed.
- b. Heatec makes no warranties or guarantees with respect to Equipment not manufactured by Heatec, including but not limited to diesel engines, motors, motor starters, pumps, mixers, mills, scales, speed reducers, and other assemblies, valves, pressure regulators, solenoids, electronic drives, pressure differential switches, temperature sensing switches, flame scanners, gauge boards, modulating actuators, electronic displays, pressure transmitters, radar sensors, other electronic controls and instrumentation and other parts and accessories. Liners, castings, furnace refractories, and refractory materials are subject to wide variations of destructive service, are also not covered by the Equipment warranty and are a maintenance responsibility of Purchaser from the beginning of operation. Heatec will pass through to Purchaser any warranties and limitations provided by the original manufacturer of parts used in the Equipment manufactured by Heatec, but Heatec does not provide any warranty as to such items.





## September 27, 2024

### ASTEC PROPOSAL #: HI 23-15005 Rev 2

- c. Heatec warrants that the Services performed hereunder shall be free from defects in workmanship for a period of thirty (30) days from the date of performance (the "Service Warranty Period"). Heatec undertakes at its cost to reperform defective Services covered by the warranty, provided that Purchaser notifies Heatec in writing as soon as such defect becomes apparent, but in all events during the Service Warranty Period. The right to have defective Services reperformed shall constitute the Purchaser's sole and exclusive remedy for breach of this limited Service warranty. Services which are reperformed shall carry a warranty equal to the unexpired portion of the Service Warranty Period.
- d. No warranty shall apply to Equipment which has been repaired or altered by others so as, in Heatec's judgment, to adversely affect the same or which shall have been subject to negligence, accident, abuse or improper care, installation, maintenance, storage or other than normal use or service, during or after shipment. No warranty shall apply to any used Equipment or for ordinary wear and tear, or ordinary corrosion or erosion. No warranty shall apply to any Equipment adversely affected by being used with any machinery, part or accessory not manufactured or authorized by Heatec. No warranty shall apply to consumables or parts having a life expectancy shorter than the Equipment Warranty Period.
- e. Except as expressly set forth in this Sales Proposal, Heatec does not warrant or represent that any Equipment furnished by it meets any state or local safety, environmental or electrical regulations. Heatec is wholly discharged from all liability under this warranty in the event that Purchaser fails to pay for the Equipment or Services in accordance with the applicable purchase terms. This Equipment warranty extends only to the first end-user and is not transferable. This warranty may not be modified except pursuant to a written agreement signed by Heatec.
- f. THE EXPRESS WARRANTIES AND WARRANTY REMEDIES PROVIDED IN THIS PARAGRAPH 6 ARE THE SOLE AND EXCLUSIVE WARRANTIES AND WARRANTY REMEDIES PROVIDED BY HEATEC TO PURCHASER AND ARE PROVIDED IN LIEU OF ALL OTHER WARRANTIES, WHETHER EXPRESS OR IMPLIED (EXCEPT WARRANTY OF TITLE), INCLUDING, BUT NOT LIMITED TO, ANY IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE AND ANY IMPLIED WARRANTY FROM COURSE OF DEALING OR USAGE OF TRADE, ALL OF WHICH ARE HEREBY EXPRESSLY WAIVED AND DISCLAIMED.
- 7. LIMITATION OF LIABILITY: NOTWITHSTANDING ANYTHING ELSE TO THE CONTRARY CONTAINED IN THIS AGREEMENT, THE PARTIES AGREE THAT IN NO EVENT OR CIRCUMSTANCE IS HEATEC LIABLE TO PURCHASER FOR SPECIAL, INDIRECT, INCIDENTAL, PUNITIVE OR CONSEQUENTIAL DAMAGES, COSTS OR LOSSES OF ANY NATURE WHATSOEVER, INCLUDING BUT NOT LIMITED TO LOST PROFITS OR REVENUE, LOSS OF PRODUCTION, LOSS OF USE OR LOSS OF CONTRACTS, COSTS FOR RAW MATERIAL, ENERGY, UTILITY, LABOR OR CAPITAL OR FOR ANY OTHER INDIRECT LOSS; OR FOR CLAIMS RAISED BY PURCHASER'S CUSTOMERS; AND WHETHER BASED ON BREACH OF CONTRACT OR WARRANTY, TERMINATION, NEGLIGENCE, TORT, STRICT LIABLITY, INDEMNITY AT LAW OR IN EQUITY OR OTHERWISE. IN NO EVENT SHALL HEATEC'S AGGREGATE LIABILITY ARISING OUT OF OR RELATED TO THIS AGREEMENT, WHETHER ARISING OUT OF OR RELATED TO BREACH OF CONTRACT, TORT (INCLUDING NEGLIGENCE) OR OTHERWISE, EXCEED THE TOTAL OF THE AMOUNTS PAID TO HEATEC FOR THE EQUIPMENT SOLD HEREUNDER.
- 8. SECURITY INTEREST; COST OF RECORDING: Purchaser hereby conveys and grants to Heatec a purchase money security interest in the Equipment to secure payment by Purchaser of all amounts due hereunder including the Price and such other debts, obligations and liabilities of Purchaser to Heatec which may now exist or hereafter arise, whether absolute or contingent, or primary or secondary, together with all extensions or renewals for the foregoing and all expenses, legal or otherwise (including court costs and reasonable attorney's fees) incurred by Heatec in collecting or endeavoring to collect any or all of the foregoing, in protecting any collateral and in enforcing the Agreement. The Equipment shall remain personal property in all respects notwithstanding the manner of annexation of any of the Equipment to realty. Purchaser agrees to execute any instrument or document considered necessary by Heatec to perfect its security interest in the Equipment, including, but not limited to, financing statements, chattel mortgages, deeds of trust, deeds to secure debt, mortgages or other security instruments. Until default hereunder, Purchaser may have possession of the Equipment and use the same in any lawful manner not inconsistent with this Proposal or with any policy of insurance thereon. Purchaser will pay the costs and taxes due for recording and filing any Financing, Continuation or Termination Statements with respect to Heatec's security interest in the Equipment or in connection with any of the other security documents referred to above.
- 9. EQUIPMENT NOT TO BE REMOVED: As long as the security interest in the Equipment is retained by Heatec, the Equipment shall not be removed from the erection site and Purchaser shall not permit, voluntarily or involuntarily, the Equipment or any part of it to be sold, transferred, encumbered, attached, seized or removed in any manner whatsoever.
- 10. DEFAULT: Upon default by Purchaser in the payment of the Price or any portion thereof when due or in the payment of all or any portion of any other indebtedness secured under this Agreement when due or in the performance of any other term or provision hereof, all unpaid amounts due Heatec shall thereupon be immediately due and payable and Heatec shall have the rights and remedies contained herein and the rights and remedies of a secured party under the Uniform Commercial Code of the State of Tennessee or under the laws of any other jurisdiction as a court of competent jurisdiction shall determine to be applicable. In the event of Purchaser's default, the following provisions shall apply: (a) Purchaser shall, upon request of Heatec, disassemble the Equipment and make it available to Heatec at a place designated by Heatec; (b) Heatec may enter Purchaser's premises where any part of the Equipment is located, and take possession of and remove all or any portion of the Equipment for purposes of disposition pursuant hereto; (c) Purchaser agrees that sales for cash or on credit to a wholesaler, retailer, or user or property of the type subject to this Agreement or at public auction or private sale are all commercially reasonable; (d) Heatec shall give Purchaser notice of the time and place of any sale of any of the Equipment or of the time after which any private sale or any other intended disposition thereof is to be made by notice, postage prepaid and addressed to Purchaser at the latest address of Purchaser appearing on the records of Heatec at least seven (7) days before the time of the sale or other disposition, which provisions for notice Purchaser and Heatec agree are reasonable; (e) any proceeds of any disposition of any of the Equipment may be first applied by Heatec to the payment of expenses in connection with exercising its rights and remedies hereunder, including reasonable attorney's fees and legal expenses, and any balance of such proceeds may be applied as Heatec may elect in its sole discretion; (f) if the sale or other disposition of the Equipment fails to satisfy in full obligations of Purchaser secured by this Agreement, and the reasonable expenses of retaking, holding, preparing for sale, selling and the like, including reasonable attorney's fees and legal expenses incurred by Heatec in connection with this Agreement or the obligation it secures, Purchaser shall be liable for any deficiency.
- 11. PERMITS AND APPROVAL OF PLANS: Purchaser assumes all responsibility for securing any necessary governmental approvals of the plans and specifications and any permits required for the installation and operation of the Equipment, all at Purchaser's expense.





## September 27, 2024

### ASTEC PROPOSAL #: HI 23-15005 Rev 2

- 12. PERMIT CONTINGENCY: If the purchase of Equipment under this Agreement is contingent on Purchaser's receipt of one or more permits or other governmental approvals, then the Price set forth in this Agreement will not be binding on Heatec. Once all contingencies have been fulfilled or are waived, the Price will be determined by Heatec taking into account any increase in Heatec's cost of purchased components and/or raw materials, among other factors.
- 13. COMPLIANCE WITH APPLICABLE LAWS: Purchaser assumes all responsibility for complying with all federal, state and local statutes, laws, codes, regulations and ordinances in connection with the installation and operation of the Equipment and any other activity related thereto, including, without limitation, all federal, state and local environmental laws and regulations relating to pollution and protection of the environment and the Occupational Safety and Health Act and all rules and regulations promulgated thereunder.
- 14. PATENTS: In the event that any of the Equipment specified in this Agreement is based upon designs of or furnished by Purchaser, Purchaser shall indemnify Heatec for any loss or expense incurred by it by reason of any claim for infringement of patents.

#### 15. SHIPMENT:

- a. If Purchaser is in default of any of its obligations under this Agreement, Heatec may, at its election, withhold any further performance of its obligations and duties under this Agreement until such time as such default has been cured by Purchaser, in which event the anticipated date of shipment as set forth herein shall be adjusted accordingly. Heatec shall not be liable or responsible for, nor shall the Price be reduced by any amount because of any matters beyond the control of Heatec which delay or postpone the anticipated date set forth above for the shipment of the Equipment, such matters including, but not limited to, warlike acts, civil disorder, governmental restriction, acts of God, prior sale, acceptance of United States governmental contracts, strike, lockout, accidents, freight embargo, fire, flood, inability of Heatec to obtain necessary materials, supplies, labor or transportation, pandemic, or any unforeseen water, soil or rock conditions.
- b. A detailed shipping list will accompany the bill of lading and Purchaser agrees to check the Equipment as it is unloaded and any claim for shortage against Heatec will be made in writing within twenty-four (24) hours of time of unloading, to be followed by an affidavit (if required) from the person in charge of the unloading. Claims for loss or damage in transit will be made on the carrier by Purchaser.
- c. Except to the extent otherwise provided herein, Purchaser has full responsibility for erection and installation of the Equipment.
- d. Delivery period is based on current manufacturing load and is subject to change without notice. Long lead items will need to be ordered prior to approvals in order to meet the quoted delivery date. If any of these items are changed during the approval process, charges may result for restocking.
- 16. LATE CHARGES AND ATTORNEY'S FEES: Purchaser agrees that in the event any amount payable by Purchaser to Heatec remains unpaid for more than 30 days, a service charge of 1.5% per month (18% per annum) or any portion thereof (or the highest rate of interest allowed by law, whichever is less) shall accrue on such unpaid amount beginning on the thirty-first (31st) day after such date payment is due. If the indebtedness, including late charges, arising out of this or any other transaction between Heatec and Purchaser is placed in the hands of an attorney for collection, or is collected by and through an attorney, Purchaser will pay all costs of collection, including without limitation, court costs and reasonable attorney's fees.
- 17. POSTPONED DELIVERY (INCLUDING SHIPPING DELAY): If, through no fault of Heatec, delivery or shipment is delayed or postponed (including deferral of shipment requested by Purchaser), Purchaser shall pay to Heatec any additional costs, including plant Equipment storage, handling, and insurance, incurred by Heatec arising from such delay, deferral, or postponement. Such a delay, postponement or deferral is considered "offer to ship" or "shipment" for all purposes, including invoicing, payment and transfer of title. Therefore, the balance remaining upaid on the Price shall become due and payable immediately. Purchaser shall bear the risk of loss of or damage to the Equipment during storage and thereafter. If, as a result of the delay, postponement or deferral, the Equipment requires repainting, all costs associated with repainting shall be paid by the Purchaser. Should Purchaser delay/postpone/defer shipment, Purchaser and Heatec will complete the attached "Postponed Delivery/Shipping Delay/Deferral Notice".
- 18. EQUIPMENT CERTIFICATION: Once certification and fabrication has been completed on any Equipment, if state certification specifications change or unit(s) are to be shipped to a location other than that for which the certification was acquired, the cost of any recertification and/or modifications required to be done on the Equipment shall be paid by Purchaser.
- 19. LIMITATION OF PROPOSAL: The Price and terms quoted in this Sales Proposal are subject to formal acceptance (i.e. signature on this Sales Proposal) without change by Purchaser within a period 30 days from the date hereof, except that Heatec shall have the right to withdraw its Sales Proposal at any time before formal acceptance by Purchaser.
- 20. EXECUTION OF CONTRACT: This Sales Proposal is merely the solicitation of an order and is not an offer from Heatec to Purchaser (even though executed on behalf of Heatec under "RESPECTFULLY SUBMITTED,") and does not obligate Heatec in any manner whatsoever until this Agreement is both executed below on behalf of Purchaser as an order made to Heatec as well as executed below on behalf of Heatec. Some a binding contract, it cannot be suspended or cancelled without the prior written consent of Heatec, which may be withheld in the sole discretion of Heatec. In the event Purchaser elects to cancel any order, or a portion of thereof, Heatec shall proportionally be paid a percentage of the price of the cancelled order. This portion will be a minimum of ten percent (10%) of the total P.O. value, or will be a percentage relative to the completed portion of the order, whichever is greater. This proportional percentage shall reflect the amount of materials used, purchased materials, and/or work performed prior to he cancellation notice, plus any charges which Heatec can demonstrate resulted from the cancellation including, but not limited to, storage fees, cancellation or restocking charges from sub-vendors, plus the cost of any non-returnable items. Non-returnable items become the property of Purchaser and are delivered EXW Chattanooga-TN or sub-vendor location.
- 21. SEVERABILITY: If any provision of this Agreement is found to be legally invalid or unenforceable: (i) the validity and enforceability of the remainder of this Agreement shall not be affected, (ii) such provision shall be deemed modified to the minimum extent necessary to make such provision consistent with applicable law, and (iii) such provision shall be valid, enforceable and enforced in its modified form.

BUILT TO CONNECT Page 18



### September 27, 2024

### ASTEC PROPOSAL #: HI 23-15005 Rev 2

- 22. ASSIGNMENT: Purchaser shall not assign any of its rights or delegate any of its obligations under this Agreement without the prior written consent of Heatec. Any purported assignment or delegation in violation of this Paragraph 22 is null and void. No assignment or delegation relieves Purchaser of any of its obligations under this Agreement.
- 23. LAW CONTROLLING: This Agreement and all questions regarding the performance of the parties hereunder shall be controlled by the laws of the State of Tennessee (without regard to conflicts of law). The parties agree that the United Nations Convention on Contracts for the International Sale of Goods does not apply to this Agreement, or the transactions contemplated thereby.
- 24. DISPUTE RESOLUTION: Any dispute or claim arising out of or relating to this Agreement, or the breach, termination or invalidity thereof, and any related tort, statutory and equitable claims (each a "Dispute"), which the parties are not able to settle amicably within 3 months from the first written request for such settlement, shall be brought exclusively in a state or federal court in the State of Tennessee, County of Hamilton. The parties hereby waive any right to challenge such choice of jurisdiction or venue or to seek transfer to another jurisdiction. THE PARTIES FURTHER KNOWINGLY AND VOLUNTARILY WAIVE ANY RIGHT TO A JURY TRIAL OF THE DISPUTE.
- 25. TAXES: Prices quoted herein do not include any Federal, State or Municipal Taxes. If under existing or future law passed by the United States, any state or any municipality, Heatec is required to pay or collect a tax, impost or charge upon the manufacture, sale, use or assembly of the material described herein, the Price shall be increased by the amount of such tax, impost or charge. The amount of such increase is to be paid to Heatec upon demand. If Purchaser holds resale tax permits and the material described herein is for resale, such information shall be shown by Purchaser.
- 26. BACK-CHARGES AND ALLOWANCES: Heatec shall not be called upon to make any allowance for material, labor, repairs or alterations made for its account unless authorized by Heatec in writing.
- 27. INSPECTION AND ACCEPTANCE PERIOD: Purchaser agrees to inspect the Equipment immediately after delivery to the site, but in no event later than five (5) calendar days after such delivery (the "Acceptance Period"). Any defect discovered during the Acceptance period is subject to the procedures and remedies set forth in Paragraph 6 (Warranty).
- 28. RESPONSIBILITY OF PURCHASER FOR OPERATION OF EQUIPMENT: The operation of the Equipment at all times shall be the sole and exclusive responsibility of Purchaser. Any Services by Heatec's representatives shall be given solely in a consulting or advisory capacity and shall not release Purchaser in any manner whatsoever from its responsibility for operating the Equipment.
- 29. INDEMNIFICATION: Purchaser agrees to indemnify and hold harmless Heatec, its affiliates and their respective employees from and against any and all liabilities, damages, obligations and claims (including, without limitation, court costs and reasonable attorney's fees) arising from or with respect to the operation of the Equipment. Without limiting the generality of the preceding sentence, the parties acknowledge and agree that if a claim initially was brought against Heatec for defective manufacture, design or the like and was finally determined by a court of competent jurisdiction or otherwise settled (such settlement being with Purchaser's consent) on a basis relating to the negligent operation or use of the Equipment, Heatec will be entitled to indemnification pursuant to the provisions of the preceding sentence.
- 30. TITLE AND RISK OF LOSS: Title to the Equipment shall pass to Purchaser upon shipment or offer to ship should Purchaser delay shipment. The risk of loss or damage to the Equipment shall pass to Purchaser upon delivery of the Equipment (FCA point of shipment Heatec site, Incoterms 2020), unless transferred earlier in accordance with Paragraph 17 (Postponed Delivery (Including Shipping Delay)).
- 31. NOTICES: Each party shall deliver all notices and other communications under this Agreement (each, a "Notice") in writing and addressed to the other party at the addresses set forth on the first page of this Sales Proposal. Each party shall deliver all Notices by personal delivery or through deposit in the mail, certified or registered (in each case, return receipt requested, postage prepaid) or through a nationally recognized overnight courier (with all fees prepaid). If Notice should be given immediately or promptly, then in addition to furnishing a copy of the Notice in the manner aforesaid, a copy shall be sent via e-mail (with confirmation of transmission). A Notice is effective only (a) upon receipt by the receiving party and (b) if the party giving the Notice has complied with the requirements of this Paragraph 31, unless the receiving party. As waived its requirements in writing. A copy of all notices to Heatec shall be sent to: Heatec, Inc., 1725 Shepherd Road, Chattanooga, TN 37421, Attn: Legal Counsel.
- 32. INSURANCE: Until the Equipment is accepted and the price is paid in full, Purchaser shall provide and maintain insurance for the full replacement value of the Equipment against customary casualties and risks, including fire and explosion, and liability insurance for accidents or injuries to the public or to employees, in the names of Heatec and Purchaser, as their interests may appear, and in amounts satisfactory to Heatec. If Purchaser fails to provide such insurance, Heatec may provide it and the cost thereof shall be added to the contract price. All loss resulting from failure to affect such insurance shall be the responsibility of Purchaser.
- 33. CHANGE ORDERS: Either Heatec or Purchaser may propose a change in the specifications for the Equipment or Services. Should any change proposed by Heatec or Purchaser cause an increase or decrease in the cost of or time required for performance of this Agreement or otherwise affect any provision of this Agreement, an adjustment shall be made to the corresponding provision(s) of this Agreement in accordance with this Paragraph 33. Within ten (10) business days after receipt of Purchaser's proposal for a change, or with any proposal for a change by Heatec, Heatec shall prepare and submit to Purchaser a change order in the form attached (the "Change Order"), which shall contain (i) a description of the change, (ii) the net increase or decrease in the Price, (iii) the effect of the change on the estimated delivery schedule and (iv) a description of changes to any other provisions of this Agreement. Purchaser shall accept or reject the Change Order within five (5) business days. No change shall be effective unless evidenced by a written Change Order issued by Heatec and signed by authorized representatives of Purchaser and Heatec; provided that if Purchaser does not notify Heatec of Purchaser's acceptance or rejection of any Change Order, then the Change Order shall be deemed accepted by Purchaser and the parties shall proceed on the basis of the changes set forth therein. If Purchaser rejects a Change Order, this Agreement shall continue to remain in full force and effect notwithstanding the parties' failure to agree to such Change Order, and the parties shall continue to work reasonably and in good faith (but shall not be obligated) to reach a mutually acceptable agreement with respect to such proposed changes; provided that Heatec shall not be required to proceed with any such proposed change until the parties have mutually agreed on an appropriate Change Order. In the event that Heatec and Purchaser cannot agree to a change in Price, the change will be priced on a time and materials basis, and Heatec's charges shall be equal to direct costs incurred by Heatec for labor, equipment and materials plus 27% for overhead and profit as full compensation for such change. In the event that Heatec and Purchaser cannot agree to any other changes, such dispute will be resolved in accordance with the dispute resolution procedures in Paragraph 24.





September 27, 2024

ASTEC PROPOSAL #: HI 23-15005 Rev 2

## SALES PROPOSAL SOFTWARE TERMS OF USE (ONLY APPLICABLE IN CASE OF PLC)

These Software Terms of Use ("**Terms of Use**") govern the use of the Software, including all user manuals, technical manuals and any other materials in printed, electronic or other form, that describe the Software or its use (collectively, "**Documentation**") that is or has been furnished by Heatec to Purchaser for use in connection with the Equipment.

1. <u>License Grant</u>. Subject to Purchaser's strict compliance with these Terms of Use and pursuant to and conditioned upon Purchaser's compliance with all of the terms of the Agreement, including, but not limited to its payment terms, Heatec hereby grants to Purchaser a non-exclusive, non-transferable, non-sublicensable, limited license to use the Software solely in connection with its operation of the Equipment pursuant to the instructions contained in the Documentation. The foregoing license will terminate immediately on the earlier to occur of: (a) Purchaser's removal, disposal or transfer of the Equipment; or (b) Purchaser's failure to comply with these Terms of Use.

2. Use Restrictions. Purchaser shall not, directly or indirectly: (a) use the Software or Documentation except as set forth in Paragraph 1 of these Terms of Use; (b) copy the Software or Documentation, in whole or in part; (c) modify, translate, adapt or otherwise create derivative works of the Software or any part thereof; (d) combine the Software or any part thereof with, or incorporate the Software or any part thereof in, any other software or any part thereof; (f) remove, delete, alter or obscure any trademarks or any copyright or other intellectual property or proprietary rights notices included on or in the Software or Documentation; (g) transfer or otherwise provide any access to or use of the Equipment, Documents or the Software or any features or functionality of the Software, for any reason, to any other person or entity; (h) use or attempt to use the Software or Documentation in, or in association with, components, systems or equipment other than the Equipment; (i) use or attempt to use the Software or Documentation of any law, regulation or rule; or (j) use or attempt to use the Software or any other software, the development of a competing software product or service or any other purpose that is to Heatec's commercial disadvantage.

3. <u>Compliance Measures</u>. The Software contains technological copy protection or other security features designed to prevent unauthorized use of the Software, including features to protect against use of the Software in a manner: (a) that is beyond the scope of the license granted to Purchaser hereby; or (b) that is prohibited under Paragraph 2 of these Terms of Use. Purchaser agrees that it shall not, and shall not attempt to, remove, disable, circumvent or otherwise create or implement any workaround to, any such copy protection or security features.

4. <u>Collection and Use of Information</u>. Heatec may, directly or indirectly through the services of other affiliated parties, collect and store information regarding use of the Software and the Equipment. Purchaser agrees that Heatec may use such information for any purpose that it deems fit. Heatec assumes no duty to review, access, use or retain the information collected. Purchaser consents to the collection, transmission and sharing of the information described above, and authorizes Heatec, its affiliates, subsidiaries and distributors to gather, process and use, without limitation, the information developed or collected by or in connection with the Software. This may include sharing of such information with select third parties and business partners.

5. <u>Remote Access Services</u>. A representative of Heatec may provide technical support through the Software ("Remote Access Services"). Any Remote Access Services are provided at Purchaser's sole risk. The ability for Heatec to remotely access the Software and Equipment significantly enhances Heatec's ability to resolve Purchaser's technical problems quickly. Purchaser understands that the provision of Remote Access Services requires Purchaser to provide Heatec's technical support personnel with access to and control of the Software and Equipment. Heatec may, but has no obligation to, troubleshoot, evaluate, run programs or install/uninstall Software, reconfigure and/or otherwise perform service or technical support work on the Software and Equipment, either directly or through an internal network. Heatec may make any changes that it determines are necessary to increase the performance of the Software or Equipment and/or to alleviate the problem at hand or any other problem discovered during the course of performing the Remote Access Services. Purchaser shall indemnify and hold harmless Heatec against all claims, actions, proceedings, costs, damages, and liabilities, including attorneys' fees and litigation and related costs and expenses, incurred by Heatec for injuries to person, property or otherwise resulting from any cause whatsoever arising out of, connected with, or resulting from any Remote Access Services performed by Heatec.

6. Intellectual Property Rights. Purchaser acknowledges that: (a) Purchaser does not acquire any ownership interest in the Software, or any rights to the Software other than the right to use the Software as provided herein; (b) Heatec reserves and shall retain its entire right, title and interest in and to the Software and all intellectual property rights arising out of or relating to the Software, subject to the license expressly granted to Purchaser by this Agreement; and (c) Purchaser shall use commercially reasonable efforts to safeguard the Software and the media on which it is stored from infringement, misappropriation, theft, misuse or unauthorized access.

7. <u>Limited Warranties</u>. Heatec warrants that, for a period of one year following the date of the purchase of the Equipment from Heatec: (a) any media on which the Software is provided will be free of material damage and defects in materials and workmanship under normal use; and (b) the Software will substantially contain the functionality described in the Documentation, and when properly operated in accordance with the Documentation, will substantially perform as described therein. The warranties set out in this Paragraph 7 will not apply and will become null and void if Purchaser materially breaches any provision of this Agreement, or if Purchaser or any other person provided access by Purchaser to the Software or the media on which it is provided, whether or not in violation of this Agreement: (a) uses the Software in a manner other than as described in the Documentation; or (b) damages the Software or the media on which it is provided, including by means of abnormal physical or electrical stress.

> BUILT TO CONNECT Page 20



September 27, 2024

## ASTEC PROPOSAL #: HI 23-15005 Rev 2

8. <u>Purchaser's Exclusive Remedy.</u> If, during the warranty period set out in Paragraph 7, the Software fails to perform substantially in accordance with the Documentation, and such failure is not excluded from warranty pursuant to Paragraph 7, Heatec will, subject to Purchaser's promptly notifying Heatec in writing of such failure, but in all events during the warranty period set out in Paragraph 7, at its sole option, either repair or replace the Software, provided that Purchaser provides Heatec with all information Heatec reasonably requests to resolve the reported failure, including sufficient information to enable Heatec to recreate such failure. Upon such repair or replacement of the Software, the warranty will continue to run from the date of the purchase of the Equipment from Heatec, and not from Purchaser's receipt of the repair or replacement. The remedies set forth in this Paragraph 8 are Purchaser's sole and exclusive remedies and Heatec's sole and exclusive liability under the limited warranties described in Paragraph 7.

#### 9. <u>Disclaimer of Warranties; Limitations of Liability.</u>

(A) EXCEPT FOR THE LIMITED WARRANTY SET FORTH IN PARAGRAPH 7, THE SOFTWARE AND DOCUMENTATION AND ANY REMOTE ACCESS SERVICES ARE PROVIDED TO LICENSEE "AS IS" AND WITH ALL FAULTS AND DEFECTS WITHOUT WARRANTY OF ANY KIND. TO THE MAXIMUM EXTENT PERMITTED UNDER APPLICABLE LAW, LICENSOR, ON ITS OWN BEHALF AND ON BEHALF OF ITS AFFILIATES, EXPRESSLY DISCLAIMS ALL WARRANTIES, WHETHER EXPRESS, IMPLIED, STATUTORY OR OTHERWISE, WITH RESPECT TO THE SOFTWARE AND DOCUMENTATION AND ANY REMOTE ACCESS SERVICES, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT, AND WARRANTIES THAT MAY ARISE OUT OF COURSE OF DEALING, COURSE OF PERFORMANCE, USAGE OR TRADE PRACTICE. WITHOUT LIMITING THE FOREGOING, LICENSOR PROVIDES NO WARRANTY OR UNDERTAKING, AND MAKES NO REPRESENTATION OF ANY KIND THAT THE SOFTWARE WILL MEET LICENSEE'S REQUIREMENTS, ACHIEVE ANY INTENDED RESULTS, BE COMPATIBLE OR WORK WITH ANY OTHER SOFTWARE, APPLICATIONS, SYSTEMS OR SERVICES, OPERATE WITHOUT INTERRUPTION, MEET ANY PERFORMANCE OR RELIABILITY STANDARDS OR BE ERROR FREE OR THAT ANY ERRORS OR DEFECTS CAN OR WILL BE CORRECTED.

(B) TO THE FULLEST EXTENT PERMITTED UNDER APPLICABLE LAW, IN NO EVENT WILL LICENSOR OR ITS AFFILIATES BE LIABLE TO LICENSEE OR ANY THIRD PARTY FOR ANY USE, INTERRUPTION, DELAY OR INABILITY TO USE THE SOFTWARE OR THE EQUIPMENT, LOST REVENUES OR PROFITS, DELAYS, INTERRUPTION OR LOSS OF SERVICES, BUSINESS OR GOODWILL, LOSS OR CORRUPTION OF DATA, LOSS RESULTING FROM EQUIPMENT FAILURE, MALFUNCTION OR SHUTDOWN, LOSS RESULTING FROM THE PERFORMANCE OF, OR FAILURE TO PERFORM, ANY REMOTE ACCESS SERVICES, FAILURE TO ACCURATELY TRANSFER, READ OR TRANSMIT INFORMATION, FAILURE TO UPDATE OR PROVIDE CORRECT INFORMATION, SYSTEM INCOMPATIBILITY OR PROVISION OF INCORRECT COMPATIBILITY INFORMATION OR BREACHES IN SYSTEM SECURITY, OR FOR ANY CONSEQUENTIAL, INCIDENTAL, INDIRECT, EXEMPLARY, SPECIAL OR PUNITIVE DAMAGES, WHETHER ARISING OUT OF OR IN CONNECTION WITH THESE TERMS OF USE OR THE AGREEMENT, BREACH OF CONTRACT, TORT (INCLUDING NEGLIGENCE) OR OTHERWISE, REGARDLESS OF WHETHER SUCH DAMAGES WERE FORESEABLE AND WHETHER OR NOT LICENSOR WAS ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

(C) THE LIMITATIONS SET OUT IN THIS PARAGRAPH 9 SHALL APPLY EVEN IF LICENSEE'S REMEDIES UNDER THESE TERMS OF USE FAIL OF THEIR ESSENTIAL PURPOSE AND SHALL SURVIVE ANY TERMINATION OF THESE TERMS OF USE.

10. <u>Export Regulation</u>. The Software may be subject to U.S. export control laws, including the U.S. Export Administration Act and its associated regulations. Purchaser agrees that it will not, directly or indirectly, export, re-export or release the Software to, or make the Software or Documentation accessible from, any jurisdiction or country to which export, re-export or release is prohibited by law, rule or regulation. Purchaser agrees to comply with all applicable federal laws, regulations and rules, and complete all required undertakings (including obtaining any necessary export license or other governmental approval), prior to exporting, re-exporting, releasing or otherwise making the Software available outside the United States.

11. <u>Interpretation.</u> These Terms of Use are incorporated into and are a part of the Agreement. These Terms of Use apply to updates, supplements, add-on components or internet-based service components of the Software that Heatec may provide to Purchaser or make available to Purchaser after the date Purchaser obtains its initial copy of the Software, unless they are accompanied by separate terms. The headings in these Terms of Use are for reference only and do not affect the interpretation of these Terms of Use or the Agreement.







September 27, 2024

ASTEC PROPOSAL #: HI 23-15005 Rev 2

## SERVICE DEPARTMENT REQUEST FOR PAID SERVICE 2024 Paid Service Agreement

Time Frame of Service Work	North America Work Rate	Daily Overtime Rate > 8 Hours	International Work Rate	International Overtime Rate	Minimum Charges
Monday – Friday	\$183.75/ Hour	\$275.63/Hour	\$220.50/ Hour	\$299.25/ Hour	8 Hour Minimum
Saturday & Sunday	\$275.63/Hour	\$275.63/Hour	\$299.25/ Hour	\$299.25/ Hour	8 Hour Minimum
Holidays	\$367.50/Hour	\$367.50/Hour	\$299.25/ Hour	\$299.25/ Hour	8 Hour Minimum

Travel Charges	North America Travel Rates	International Travel Rates	
Monday-Sunday	\$183.75/Hour	\$220.50/ Hour	Plus mileage at \$0.68/mile
Holidays	\$367.50/Hour	\$367.50/ Hour	Plus mileage at \$0.68/mile

Expense Charges	Expense Rates	
Hotel	\$90.00 per day or actual cost, whichever is greater	High-Cost Area rates may apply
Meals	\$46.00 per day or actual cost, whichever is greater	
Airfare	Actual Cost	
Auto Rental / Fuel	Actual Cost	
Incidentals	Actual Cost	

#### <u>Terms</u>

- This form must be returned with a purchase order number before a technician will be dispatched
- If a purchase order is issued it must incorporate this Request for Paid Service, including the attached terms and conditions
- Weekend rates are charged when the technician is mobilized but does not go to the site
- · We reserve the right to request payment in advance
- All invoices will be sent to you at the end of the month following the completion of your project
- The General Terms and Conditions Field Services and Installation North America and International, attached hereto, apply to the work performed hereunder.

Date	Customer Name Completing Request (Print)
Company Name	Astec Job Number / Sales Order Number
Telephone Number	E-mail Address
Plant Address	City, State, and ZIP
Purchase Order Number	Purchase Order Number Authorization (signature)
Trip Purpose	



September 27, 2024

#### ASTEC PROPOSAL #: HI 23-15005 Rev 2

#### GENERAL TERMS AND CONDITIONS FIELD SERVICES AND INSTALLATION – NORTH AMERICA AND INTERNATIONAL

1. GENERAL: As used herein, "Provider" is Heatec, Inc. and "Customer" is the person or entity identified as the customer in Provider's order acknowledgement or quotation (the "Order"). As used herein, the "Services" are the services identified in the Order, as expressly agreed to be provided by Provider to Customer. These General Terms and Conditions for Field Services and Installation (the "Terms") and all other sections of the Order are collectively referred to as and supersedes any prior or contemporaneous written or oral agreement, understanding and communications and any course of dealing, usage of trade or course of performance. This Agreement prevails over any of Customer's terms and conditions of purchase order, regardless of whether or when Customer submitted such terms and conditions or purchase order. Fulfillment of Customer's order does not constitute acceptance of any of Customer's terms and conditions. No waiver or modification of this Agreement shall be effective unless in writing and signed by both Provider and customer.

2. PAYMENT; TAXES: In consideration of the provision of the Services by Provider, Customer shall pay the fees set forth in the Order. Customer shall make all payments in U.S. dollars. Customer shall reimburse Provider for all additional costs and expenses incurred in accordance with the performance of the Services, within thirty (30) days of receipt by Customer of any invoice from Provider accompanied by receipts and reasonable supporting documentation. Customer shall be responsible for all sales, use and excise taxes, and any other similar taxes, duties and charges of any kind imposed by any federal, state or local governmental entity on any amounts payable by Customer. If any amounts due are placed in the hands of any attorney for collection, Customer will pay all costs of collection, including without limitation, court costs and reasonable attorneys' fees.

3. CHANGES: If either party wishes to change the scope or performance of the Services, it shall submit details of the requested change to the other party in writing. Provider shall, within a reasonable time after such request, provide a written estimate to Customer of (i) the likely time required to implement the change; (ii) any necessary variations to the fees and other charges for the Services arising from the change; and (iii) the likely effect of the change on the Services. Promptly after receipt of the written estimate, the parties shall negotiate and agree in writing on the terms of such change (a "Change Order"). Neither party shall be bound by any Change Order unless mutually agreed upon in writing.

4. PERFORMANCE: Provider shall use reasonable efforts to meet any performance dates specified in the Order, but any such dates shall be estimates only. Provider's performance of the Services is subject to Customer's performance of the obligations identified in the Order as "Customer Responsibility", including without limitation obtaining or providing necessary approvals, information, licenses, permits and instructions on a timely basis. Provider shall not be responsible for any delay or failure to perform the Services due to causes beyond its control, including, but not limited to, accidents, casualty, strikes or other labor disputes, acts of God, delays in transportation, government regulations, shortages, strike, lockout, pandemic, and inability of Provider to obtain necessary materials, supplies, labor or transportation, government regulations, confidential or proprietary information of Provider, including but not limited to specifications, samples, patterns, designs, plans, drawings, documents, data, business operations, Customer lists, pricing, discounts or rebates, disclosed by Provider to Customer, whether disclosed or and vertices or accessed in written, electronic or other form or media, and whether or not marked, designated or otherwise identified as "confidential" in connection with this Agreement shall be treated by Customer as confidential and may not be disclosed to any third party or copied by Customer unless authorized in advance by Provider in writing. Upon Provider's request, Customer shall return all documents and other materials received from Provider. Provider shall be entitled to seek injunctive relief for any violation of this Paragraph 5. This Paragraph 5 does not apply to information that is: (a) in the public domain; (b) Customer can show was known to Customer at the time of disclosure; or (c) Customer can show was rightfully obtained Heatec, Inc. 5200 Wilson Road Chattanooga, TN 37410, USA by Customer on a nonconfidential basis from a third party. Customer's confidentiality, non-di

6. INTELLECTUAL PROPERTY: All intellectual property rights, including copyrights, patents, trademarks, service marks, trade secrets, know-how and other confidential information and all other rights in and to all documents, work product and other materials that are delivered to Customer under the Order or prepared by Provider in the course of performing the Services shall be solely owned by Provider. Provider hereby grants Customer a license to use all such intellectual property rights free of additional charge and on a non-exclusive, worldwide, non-transferable, non-sublicensable, fully paid-up, royalty-free and perpetual basis to the extent necessary to enable Customer to make reasonable use of the Services.

#### 7. WARRANTY:

- a. Provider warrants that the Services performed hereunder shall be free from defects in workmanship for a period of ninety (90) days from the completion of the applicable Services (the "Service Warranty Period"). Provider undertakes at its cost to reperform defective Services covered by the warranty, provided that Customer notifies Provider in writing as soon as such defect becomes apparent, but in all events during the Service Warranty Period. The right to have defective Services reperformed shall constitute the Customer's sole and exclusive remedy for breach of this Service warranty. Services which are reperformed shall carry a warranty equal to the unexpired portion of the Service Warranty Period.
- b. Provider is wholly discharged from all liability under this warranty in the event that Customer fails to pay for the Services in accordance with the Order. This warranty may not be modified except pursuant to a written agreement signed by Provider.
- c. THE EXPRÉSS WARRANTIES AND WARRANTY REMEDIES PROVIDED IN THIS PARAGRAPH 7 ARE THE SOLE AND EXCLUSIVE WARRANTIES AND WARRANTY REMEDIES PROVIDED BY PROVIDER TO CUSTOMER AND ARE PROVIDED IN LIEU OF ALL OTHER WARRANTIES, WHETHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, ANY IMPLIED WARRANTY OF MERCHANTABILITY ORFITNESS FOR A PARTICULAR PURPOSE AND ANY IMPLIED WARRANTY FROM COURSE OF DEALING OR USAGE OF TRADE, ALL OF WHICH ARE HEREBY EXPRESSLY WAIVED AND DISCLAIMED.

8. LIMITATION OF LIABILITY: NOTWITHSTANDING ANYTHING ELSE TO THE CONTRARY CONTAINED IN THIS AGREEMENT, THE PARTIES AGREE THAT IN NO EVENT OR CIRCUMSTANCE IS PROVIDER LIABLE TO CUSTOMER FOR SPECIAL, INDIRECT, INCIDENTAL, PUNITIVE OR CONSEQUENTIAL DAMAGES, COSTS OR LOSSES OF ANY NATURE WHATSOEVER, INCLUDING BUT NOT LIMITED TO LOST PROFITS OR REVENUE, LOSS OF PRODUCTION, LOSS OF USE OR LOSS OF CONTRACTS, COSTS FOR RAW MATERIAL, ENERGY, UTILITY, LABOR OR CAPITAL OR FOR ANY OTHER INDIRECT LOSS; OR FOR CLAIMS RAISED BY CUSTOMER'S CUSTOMER'S, AND WHETHER BASED ON BREACH OF CONTRACT OR WARRANTY, TERMINATION, NEGLIGENCE, TORT, STRICT LIABLITY, INDEMNITY AT LAW OR IN EQUITY OR OTHERWISE. IN NO EVENT SHALL PROVIDER'S AGREGATE LIABILITY ARISING OUT OF OR RELATED TO THIS AGREEMENT, WHETHER ARISING OUT OF OR RELATED TO BREACH OF CONTRACT, TORT (INCLUDING NEGLIGENCE) OR OTHERWISE, EXCEED THE TOTAL OF THE AMOUNTS PAID TO PROVIDER FOR THE SERVICES PERFORMED HEREUNDER.

9. DEFAULT: Upon default by Customer in the payment of the Price or any portion thereof when due or in the payment of all or any portion of any other indebtedness secured under this Agreement when due or in the performance of any other term or provision hereof, all unpaid amounts due Provider shall thereupon be immediately due and payable and Provider shall have the rights and remedies contained herein and the rights and remedies as a court of competent jurisdiction shall determine to be applicable.

10. PERMITS AND APPROVAL OF PLANS: Customer assumes all responsibility for securing any necessary governmental approvals of the plans and specifications and any permits required for the installation and operation of the Equipment, all at Customer's expense.

11. COMPLIANCE WITH APPLICABLE LAWS: Customer assumes all responsibility for complying with all federal, state and local statutes, laws, codes, regulations and ordinances in connection with the installation (if not done by Provider) and operation of the Equipment and any other activity related thereto, including, without limitation, all federal, state and local environmental laws and regulations relating to pollution and protection of the environment and the Occupational Safety and Health Act and all rules and regulations promulgated thereunder.

BUILT TO CONNECT Page 23



### September 27, 2024

### ASTEC PROPOSAL #: HI 23-15005 Rev 2

12. LATE CHARGES AND ATTORNEY'S FEES: Customer agrees that in the event any amount payable by Customer to Provider remains unpaid for more than 30 days, a service charge of 1.5% per month (18% per annum) or any portion thereof (or the highest rate of interest allowed by law, whichever is less) shall accrue on such unpaid amount beginning on Heatec, Inc. 5200 Wilson Road Chattanooga, TN 37410, USA the thirty-first (31st) day after such date payment is due. If the indebtedness, including late charges, arising out of this or any other transaction between Provider and Customer is placed in the hands of an attorney for collection, or is collected by and through an attorney. Customer will pay all costs of collection, including without limitation, court costs and reasonable attorney's fees.

13. EXECUTION OF CONTRACT: Once an Order has become a binding contract, it cannot be suspended or cancelled without the prior written consent of Provider, which may be withheld in the sole discretion of Provider. In no event will consent to suspension or cancellation be given without full reimbursement by Customer of all Provider's expenses, damages and losses arising from such cancellation or suspension and incurred through the date of cancellation or suspension, plus reasonable overhead and profit allocation on such amounts.

14. RELATIONSHIP OF THE PARTIES: The relationship of the parties is that of independent contractors. Nothing contained herein shall be construed as creating any agency, partnership, joint venture or other form of joint enterprise, employment, or fiduciary relationship between the parties, and neither party shall have authority to contract for or bind the other party in any manner whatsoever. The method and manner for performance of the Services by Provider shall be under its own control. The parties acknowledge that Provider is not performing the Services as a general contractor.

15. SEVERABILITY: If any provision of this Agreement is found to be legally invalid or unenforceable: (i) the validity and enforceability of the remainder of this Agreement shall not be affected, (ii) such provision shall be deemed modified to the minimum extent necessary to make such provision consistent with applicable law, and (iii) such provision shall be valid, enforceable, and enforced in its modified form.

16. ASSIGNMENT: Customer shall not assign any of its rights or delegate any of its obligations under this Agreement without the prior written consent of Provider. Any purported assignment or delegation in violation of this Paragraph 16 is null and void. No assignment or delegation relieves Customer of any of its obligations under this Agreement.

17. LAW CONTROLLING: This Agreement and all questions regarding the performance of the parties hereunder shall be controlled by the laws of the State of Tennessee (without regard to conflicts of law).

18. DISPUTE RESOLUTION: Any dispute or claim arising out of or relating to this Agreement, or the breach, termination or invalidity thereof, and any related tort, statutory and equitable claims (each a "Dispute"), which the parties are not able to settle amicably within 3 months from the first written request for such settlement, shall be brought exclusively in a state or federal court in the State of Tennessee, County of Hamilton. The parties hereby waive any right to challenge such choice of jurisdiction or venue or to seek transfer to another jurisdiction. THE PARTIES FURTHER KNOWINGLY AND VOLUNTARILY WAIVE ANY RIGHT TO A JURY TRIAL OF THE DISPUTE.

**19. TAXES:** Prices quoted herein do not include any Federal, State, Local or Municipal Taxes. If under existing or future law passed by the United States, any state or any municipality, Provider, in its opinion, is required to pay or collect a tax, impost or charge upon the manufacture, sale, use or assembly of the material described herein, the Price shall be increased by the amount of such tax, impost or charge. The amount of such increase is to be paid to Provider upon demand.

20. BACK-CHARGES AND ALLOWANCES: Provider shall not be called upon to make any allowance for material, labor, repairs, or alterations made for its account unless authorized by Provider in writing.

21. RESPONSIBILITY OF CUSTOMER FOR OPERATION OF EQUIPMENT: The operation of the Equipment at all times shall be the sole and exclusive responsibility of Customer. Any Services by Provider's representatives shall not release Customer in any manner whatsoever from its responsibility for operating the Equipment.

22. INDEMNIFICATION: Customer covenants and agrees that it will indemnify and hold harmless Provider, its affiliates and their respective directors, officers, employees and agents from and against any and all claims, actions, demands, damages, costs, expenses, judgments and awards, including without limitation court costs and reasonable attorneys' fees (collectively, "Claims"), including but not limited to any Claims by third parties, arising out of or caused by the acts or omissions of Customer, its directors, officers, employees, agents and/or subcontractors. This indemnity shall survive the execution and performance of the Order.

23. NOTICES: Any notices given between the parties under this Agreement may be given by courier, personal delivery or mail, postage prepaid, or by e-mail. The date of service shall be the date on which the notice is received. A copy of all notices to Provider shall be sent to: Heatec, Inc., 1725 Shepherd Road, Chattanooga, TN 37421, Attn: Legal Counsel.

### PURCHASER PLANT SETUP RESPONSIBILITIES (TASKS TO BE COMPLETED PRIOR TO HEATEC'S SERVICE TECH'S ARRIVAL AT PLANT)

- 1. All equipment set, bolted and completely sealed up.
- 2. All Process Lines & Hot Oil Lines put together and tested.
- 3. Fuel lines/Gas lines including all lines for the pilots hooked up and run.
- 4. All air lines run and hooked up from air compressor to all locations on the plant.
- 5. All electrical cables 480vac/120vac pulled and hooked up.
- 6. Main power run and hooked up to main in MCC cabinet.
- 7. Hot oil on site.

NOTE: Items 1, 2, 3, 4 & 5 are performed by Heatec when plant installation is purchased from Heatec.





September 27, 2024

ASTEC PROPOSAL #: HI 23-15005 Rev 2

## SALES PROPOSAL SIGNATURE PAGE

This Agreement is made in Chattanooga, Tennessee.

RESPECTFULLY SUBMITTED HEATEC, INC.

ORDER BY PURCHASER The foregoing proposal is hereby offered as an order by PURCHASER.

Date:	Date:
Ву:	Ву:
Name:	Name:
Title:	Title:

## ACCEPTANCE OF ORDER BY HEATEC

The foregoing order is hereby accepted at Chattanooga, Tennessee, as of the date of acceptance.

HEATEC, INC.

Date:

By: _____

Name: _____

Title: _____





September 27, 2024

ASTEC PROPOSAL #: HI 23-15005 Rev 2

Purchaser:		
Seller: Heatec, Inc.		
Contract or PO Date:		
Contract or PO #:		
<b>Delivery:</b> FCA point of shipment Heatec sit	te, Incoterms 2020	
Heatec has notified Purchaser that the Equipment (as def Sale) will be ready for Purchaser to pick up at Heatec's site		
Purchaser hereby requests deferral of shipment of the Equ	ipment until	, 20
Reason for delay:	·	
Pursuant to paragraph 16 of the Heatec General Terms and "offer to ship" or "shipment" for all purposes, including invo all risk of loss of or damage to the Equipment during storage	icing, payment, and transfe	
Pursuant to paragraph 29 of the Heatec General Terms an Purchaser upon offer to ship should Purchaser delay/defer		the Equipment passes to
	Customer	
	Customer Signature and	Title
	Date	
* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *	* * * * *
Heatec Acknowledgments:		
Except as otherwise noted above, there have been no Equipment is complete in accordance with the Contract, readered inventory.		
General Manager Signature	Date	
Controller Signature	Date	
Manufacturing Dept Head Signature	Date	
	DNNECT	

Page 26

# ZEECO QUOTATION

CLIENT:	Targa Resources, Inc.
END USER:	Targa Resources, Inc.
ZEECO QUOTE #:	2023-10875FL-01
QUOTE REV #:	0
DATE OF ISSUE:	September 29, 2023
APPLICATION ENGINEER:	Kendall Konrade



BURNERS | FLARES | THERMAL OXIDIZERS VAPOR CONTROL | RENTALS | AFTERMARKET

FOR 24/7 SERVICE SUPPORT, CALL +1 918 258 8551

OR CALL OUR U.S. TOLL FREE NUMBER: 844 GO ZEECO

Zeeco; Inc 22151 East 91st Street Broken Arrow, OK 74014 USA

Tel: +1 918-258-8551

Fax: +1 918-251-5519 kendall_konrade@zeeco.com zeeco.com



September 29, 2023

Targa Resources, Inc.

Houston, TX

Attention: Brian Nix Ph:

Email:

Subject: Targa Resources, Inc. Ref.: Zeeco Reference: 2023-10875FL-01 -- Rev. 0

Thank you for your interest in Zeeco, Inc. We look forward to the opportunity to work with you on this project. In response to your above referenced inquiry, we are pleased to provide you with our proposal for the combustion equipment designed specifically for your needs.

Zeeco's flare systems are designed to handle peak releases immediately, with no adverse effects on the flare itself or on the pilots or ignition system. Zeeco's design also offers exceptional reliability and life expectancy as well as provisions for easy maintenance and repair.

Zeeco appreciates the opportunity to propose our products to Targa Resources, Inc.. We are confident that we offer the best flaring equipment in the world at competitive prices. Should you have additional questions or require additional information, please feel free to contact us.

Best Regards,

Kendall Konrade Flare Application Engineer (reach me by email at: kendall_konrade@zeeco.com)



## **CELEBRATING 40 YEARS | EST. 1979**

ZEECO

Date of Issue: September 29, 2023

Quote #: 2023-10875FL-01

Revision #: 0

Confidential and Proprietary

## **AVAILABLE ATTACHMENTS**

Attachment A	Company Introduction
Attachment B	Commercial Proposal
Attachment C	Process Conditions
Attachment D	Specification Sheets:
	<ul> <li>Flare Tip Specification Sheet</li> </ul>
	<ul> <li>Flare Pilot Specification Sheet</li> </ul>

Attachment E	Spare Parts <ul> <li>Spare Parts for Start-up &amp; Commissioning</li> <li>Spare Parts for Two Years Operation</li> </ul>
Attachment F	Clarifications and Exceptions
Attachment G	Start-up & Maintenance Services
Attachment H	Radiation Profile
Attachment I	Typical GA Drawing
Attachment J	ISO & ASME Sec. VIII Code Certificates
Attachment K	Sample Inspection and Test Plan
Attachment L	Zeeco Rental Brochure

## Attachment A

Company Introduction



Since its inception in the early 1980's, Zeeco has been committed to providing quality combustion equipment and services for the petroleum, chemical, petrochemical, pharmaceutical and food processing industries worldwide. To fulfill this commitment, Zeeco built a modern facility on 193 acres just outside of Tulsa, Oklahoma. This complex is the home for Zeeco corporate headquarters, an ASME code manufacturing facility and a comprehensive combustion research and testing center.

Zeeco management knew that a world-class facility alone would not be enough to earn customer recognition as a leader in combustion technology. They knew that they also needed the talents of knowledgeable and innovative people. By recruiting a team of engineers with years of hands-on experience in the design and operation of complex combustion and pollution control equipment, Zeeco has achieved its goal of not merely matching the performance of equipment already on the market but creating the next generation of burners, flares, incinerators and combustion systems.

Zeeco feels strongly that its people and its commitment to quality products and services, set it apart from the competition. Zeeco is flexible enough to provide personalized attention to each customer whether the customer requires a small replacement part or multi-million dollar system. With its sound financial strength, modern facility and creative, knowledgeable staff, Zeeco is your logical choice for combustion equipment both now and in the future.



Having manufactured and installed many of the world's largest and most complex flare systems, Zeeco has consistently shown the ability to satisfy any customer requirement. In addition to standard utility flares, Zeeco offers a comprehensive selection of smokeless flares for new installations and retrofits including steam-assisted, air-assisted, gas-assisted, high-pressure/low-pressure, staged, sonic, ground and enclosed models. Zeeco manufactures flares for numerous applications including refineries, petrochemical and gas plants, offshore platforms, pulp and paper mills, landfills and food processing plants.

Zeeco also offers comprehensive engineering services to design, build and erect multi-million dollar flare projects. Zeeco systems include self-supported, guy-supported and derrick-supported flare stacks as well as offshore boom-mounted flares, portable flares and demountable flares.

Zeeco also has the ability to develop specialty flares for custom applications. For example, Zeeco accepted an industry challenge to develop a crude oil flare which could substantially reduce pollution by decreasing the level of smoke and hydrocarbon fallout produced during offshore well testing. The result was the introduction of the ZLF Flare, rated more than 99.99% efficient by independent industry testing firms.

Auxiliary flare system equipment available from Zeeco includes purge reduction devices, liquid seals, knock-out drums and the most reliable pilot ignition systems. Zeeco also refurbishes existing flares and provides spare parts for their flare equipment and that of other flare manufacturers.



## Attachment B

Commercial Proposal



## Scope of Supply

Our scope of supply will include:

- 1) General Arrangement Drawings for customer approval.
- 2) Operation & Maintenance Manual.
- 3) The equipment necessary for flaring the waste streams as specified in the inquiry documents, including:

Air Assisted Flare Tip (F-1) with Integral Velocity Seal & Pilots 150 ft Overall Height Self-supported Flare Stack (STK-1) Manual/Automatic High Energy Spark (HEI-1) Ignition System Pilot Fuel Gas Train Shipped Loose Utility Piping & Supports Along Flare Stack from Tip to Near Grade One (1) Duplex Retractable Thermocouple per Pilot with JB Near Grade Conduit & High Temp HEI Ignition Wiring Along Stack with JB Near Grade One (1) Common Zeeco Navigator Thermocouple Straightener Device One (1) Vane Axial Blower - 150 HP, VFD Compatible Flare Stack Base Plate Template Process Engineering & Design Work for the Complete Flare System Domestic Packing / Shipping Preparation



## Scope of Supply (Continued)

Our Scope of Supply does NOT include:

- 1) Stack or Piping External Insulation, Fireproofing, or Heat Tracing.
- 2) Field Assembly and / or Erection.
- 3) Commissioning, Start-up, Supervision, Training, etc. (PER DIEM BASIS).
- 4) Foundation Design / Supply or Civil Engineering.
- 5) Interconnecting Piping, Wiring or Conduit Between Stack Base and LCP.
- 6) Ocean or Inland Freight to Jobsite.
- 7) Shop Details / Fabrication Drawings of Proprietary Equipment.
- 8) Any Containerization of Equipment for Shipment or Storage Purposes.
- 9) Flare Stack Base Plate Templates.
- 10) Foundation Imbedded Anchor Bolts.
- 11) Spare Parts Quoted Separately and Priced Lists Included in Proposal.
- 12) Any Motor Starters or Motor Drivers or Motor Controls.
- 13) Any Third Party Inspection / Testing / Certification Services.
- 14) Any VFD System
- 15) Any Aircraft Warning Lights



## Scope of Supply (Continued)

## **Pricing and Payment Terms**

Flare System as Detailed In This Proposal:

## Options:

Project is based on duplication of Greenwood I Gas Plant Flare System and Design. As such, all drawings and documentation would be issued for information only, and any additional changes to design will need to be reviewed to determine cost and/or schedule impact.

FCA:	Shop Door, Zeeco (Flare Tip, Pilots & Ignition Point of Manufacture (Stack, Structural Steel,
Base Pricing Validity:	30 days from date of quotation
Optional Pricing Validity:	7 days after receipt of an order or LOI,
	unless specifically defined otherwise
Terms of Payment:	20% Of Order Value Upon Receipt of Order
	25% Of Order Value Upon Submittal of GA and P&ID
	25% Of Order Value Upon Purchase of Flare Stack Material
	25% Of Order Value Upon Readiness for Shipment
	5% Of Order Value Upon Submittal of Final Documents, Latest 90 Days
	After Shipment
	Net 30 Days
Delivery:	
Foundation Loadings:	3 weeks after receipt of order
GA Drawings / P&ID for Approval:	4 weeks after receipt of order
Panel Drawings / IDS for Review:	4 weeks after receipt of order
Equipment Readied for Shipment:	28 weeks after drawing approval
Warranty:	18 months from ship date, or 12 months from start-up,
	whichever condition expires first.



## Attachment C

**Process Conditions** 



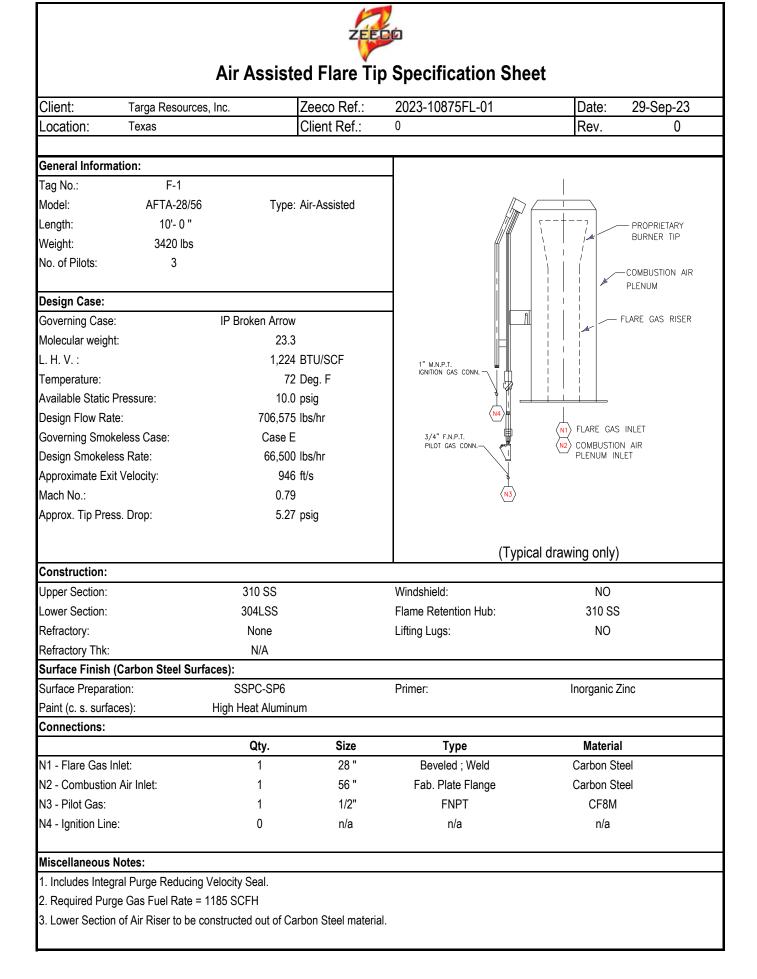


# Process Conditions -- English Units

Client: Targa Resources	s, Inc.	Zeeco Ref.:	2023-10875FL-01		Date:	29-Sep-23			
Location: Texas		Client Ref.:	0		Rev.	0			
			N - 1 0/						
		Mol %							
	Fire Zone 17	Fire Zone 14	Fire Zone 20	Failure	IP Broken Arrow	Flip Wilson Recovery			
METHANE	34.20			73.96	70.45	96.82			
ETHANE	21.96	1.45	0.01	10.81	12.10	0.47			
PROPANE	27.30	96.56	0.11	7.11	8.65	0.02			
BUTANE	12.44	1.99	11.92	3.18	3.61				
PENTANE	3.44		15.06	0.94	1.42				
HEXANE	0.20		25.31	0.28	0.42				
HEPTANE	0.02		23.70	0.04	0.14				
OCTANE			18.42	0.01	0.02				
NONANE			4.74						
DECANE			0.72						
DODECANE									
TRIDECANE									
CYCLOPENTANE									
ETHYLENE									
PROPYLENE									
BUTYLENE									
ACETYLENE									
BENZENE									
TOLUENE									
XYLENE									
CARBON MONOXIDE									
CARBON DIOXIDE				1.50	0.36				
HYDROGEN SULFIDE									
SULFUR DIOXIDE									
AMMONIA									
AIR									
HYDROGEN									
OXYGEN									
NITROGEN				2.05	2.50	2.69			
WATER				0.12	0.34				
BUTADIENE									
METHANOL									
Total	100	100	100	100	100	100			
Mol. Wt.	34.03	44.17	91.55	22.33	23.32	16.44			
L. H. V. (BTU/SCF):	1,809	2,319	4,636	1,157	1,224	888.6			
Temperature (Deg. F):	22.0	85.5	409.8	39.4	71.6	107.2			
Avail. Static Pressure (psig):	10.00	10.00	10.00	10.00	10.00	10.00			
Flow Rate (lbs/hr):	312,439	281,715	155,450	296,622	706,575	360,970			
Smokeless Rate (lbs/hr):	56,500	53,000	46,000	69,500	66,500	360,970			



## **Process Conditions -- English Units**


Client:	Targa Resources	, Inc.	Zeeco Ref.:	2023-10875F	L-01	Date:	29-Sep-23		
Location:	Texas		Client Ref.:	0		Rev.	0		
			Mol %						
		Flip Wilson							
		Rejection	Case B	Case C	Case J	Case K	Case L		
METHANE		87.77							
ETHANE		9.63							
PROPANE		0.16							
BUTANE									
PENTANE									
HEXANE									
HEPTANE									
NONANE DECANE									
DODECANE									
TRIDECANE									
CYCLOPENT	ANF								
ETHYLENE									
PROPYLENE									
BUTYLENE									
ACETYLENE									
BENZENE									
TOLUENE									
XYLENE									
CARBON MO	NOXIDE								
CARBON DIO									
HYDROGEN									
SULFUR DIO	XIDE								
AMMONIA									
AIR									
HYDROGEN									
		0.44							
NITROGEN		2.44							
WATER BUTADIENE									
METHANOL									
Total		100							
		17 70							
Mol. Wt.		17.73							
L. H. V. (BTU/S		958							
Temperature (D		104.6							
Avail. Static Pre	essure (psig):	10.00							
Flow Rate (lbs/ł	nr):	430,263							
Smokeless Rate	e (lbs/hr):	77,000							

# Attachment D

Specification Sheets:

- Flare Tip Specification Sheet
- Flare Pilot Specification Sheet







# Pre-Mix Flare Pilot Assembly Specification Sheet

Location:	Targa Resou	rces, inc.	Zeeco Ref.:	2023-10875FL-01	Date: 29-Sep-2
	exas		Client Ref.:	0	Rev. (
General Information:					
Tag No.:	FP-1				
Model:	HSLF				
Length:	9.135	feet			$\overline{}$
Weight:	68	lbs.		HE HE	71
Pilot Type:	Pre-Mix	High Stability			
gnition Type:	ligh Energy	Ignition/Flame Fr	ont Generator		
Process Design Data	:				
Design Heat Release:			00 BTU/hr		
Fuel Gas MW:		18.0	00		
Fuel Gas LHV:		1,00	00 BTU/SCF	I filh-	
Fuel Gas Temperature	:	10	00 Deg. F		v
Fuel Gas Inlet Pressur	e:	15.0	00 psig		$\mathcal{R} \cap$
Fuel Gas Flow rate:		65	0.0 SCFH		
Design Wind Velocity:		1	70 mph		
Design Rainfall:		50.0	00 inches/hr		Xet
Mounting Position:		Vertic	cal		$\langle O \rangle$
Thermocouple Type:		K	Ungrounded		
Construction:					0
Pilot Firing Tip:		CK-20		<u> </u>	
Nindshield Assembly:		CK-20			
ntegral Thermowell:		CK-20		C4	
FFG Ignition Line:		n/a			
Nounting Brackets:		CK-20			
Premix Fuel Line:		310 SS			
Thermocouple Sheath	:	310 SS			
Thermocouple Head:		CF-3M		C1	
Fuel Mixer / Spud Ass	embly:	CK-20 / SS310	6		, ,
Fuel Strainer Assembl	•	CF-8M			
HEI Probe and Suppor	t:	310 SS			
HEI Junction Head:		CF-3M			
Connections:		Qty.	Size	Туре	Material
C1 - Fuel Gas Inlet:		1	1/2"	FNPT	CF8M
C2 - FFG Ignition Inlet	:	0	n/a	n/a	n/a
C3 - Thermocouple:		1	3/4"	Conduit	CF-3M
C3 - Thermocouple. C4 - HEI Ignition:		1	3/4"	FNPT	CF-3M

4. Thermocouples are duplex retractable type.



# Self-supported Flare Stack Specification Sheet

	irces, Inc. Zeec	o Ref.: 2023-10875FL-01	Date: 29-Sep-23
Client: Targa Resou ocation: Texas		t Ref.: 0	Rev.: 0
eneral Information:			ſĦ
ag No.:	STK-1		
Overall Height:	150'- 0 "		
			$\square$
Design Criteria:			
Vind Design Code:	ASCE 7-10		
Seismic Design Code:	ASCE 7-10		
mportance Factor:	1.25		
Structural Design Code:	ASME STS-1/AISC		
Wind Speed (Structural):	120 mph		
Seismic Zone:	Site Class "D"	_	
lax. Design Temperature:	400 Deg.		
lin. Design Temperature:	-20 Deg.	F	
Design Pressure:	50 psig		
Riser Corrosion Allow.:	0.063 in.		
			Typical drawing only)
Construction:		(1	ypical drawing only
Riser Material:	Carbon Steel	Ladders & Step-offs:	None
Jpper Diameter (approx.):	2'- 0 "	Platform at Tip:	None
/liddle Diameter (approx.):	4'- 0 "	Additional Platforms:	None
Base Diameter (approx.):	8'- 0 "	ACWL:	None
Surface Finish (Carbon Stee	I Surfaces):		
Surface Preparation:	SSPC-SP-6	Primer:	Inorganic Zinc
nt. Coat:	None	Finish Paint:	None
n. 00al.			



# High Energy Electronic Ignition Generator Specification Sheet

Client:	Targa Resources, Inc.	Zeeco Ref.:	2023-10875FL-01	Date:	29-Sep-23
_ocation:	Texas	Client Ref.:	0	Rev.	0
General Informa					П
Tag No.:	HEI-		101	101	
Model No.:	HEIC-3-I				71
Operation:	Manual/Au	tomatic			
No. of Pilots Ignit					
Area Classificatio					
Spark Intensity:	Approx. 1,0	00 Volts			
Fuel Gas Data:					
Molecular Weigh	t:	16.5			
H. V.:		892 BTU/SCF			
Temperature:		60 Deg. F			
Pressure:		15 psig			
Utility Consump	otion:			A	
Pilot Gas (Per Pi		73 SCFH			<b>G</b> • C2
Pilot Gas (Total):	,	219 SCFH			
Power Available:	120 \	/olt, 1 Phase, 60 Hertz	(Тур	pical drawing only)	
Construction:					
Fuel Gas Piping:	Carbon	Steel	Ignition Probe Mat'l:	310 SS	
Mounting Rack:	Carbon	Steel	No. Thermocouples/Pilot:	1	
Enclosure:	NEMA	. 4	Thermocouple Type:	K	
Sun / Rain Shield	d: No		Ignition Probes per Pilot:	1	
	(Carbon Steel Surfaces):				
Surface Preparat	tion: Per Racl	GA	First Coat:	Per Rack G	A
Second Coat:	Per Racl	< GA	Finish Color:	Per Rack GA	
			Enclosure:	Manufacturer	Std.
Connections:					
	Qty.	Size	Туре		Material
Pilot Gas Inlet:	1	1/2"	3000# Thrd. Union	C	arbon Steel
Pilot Gas Outlet:	1	1/2"	3000# Thrd. Union	C	arbon Steel
Miscellaneous N	Notes:				
1. Pilot Fuel Gas	Piping would utilize carbon steel	threaded components			
2. Local Control I	Panel would utilize relay logic.				
3. Ignition Panel	will be mounted on rack while Pile	ot Fuel Gas Regulation 1	Frain to be shipped loose.		
4 Pilot Gas Pinir	ng to be Schedule 80	-			



### Utility Piping Scope of Supply

Client:	Targa Resources	Targa Resources, Inc.				Zeeco Ref.:	2023-10875FL-	-01	Date:	29-Sep-23		
Location:	Texas					Client Ref.:	0		Rev.	0		
Flare	Description	Qty	Pipe	Pipe	Pipe	Origination	Termination	Termination	Termination	Termination	Paint	Insulation
Tag No.			Size	Sch.	Material	Point	Point	Rating	Туре	Material		
F-1	Pilot Gas Line	1	1"	Sch 80	A106-B	Base of Stack	Flare Tip	3000#	Thrd Union	A-105	Inorganic Zinc	n/a
F-1	TC Conduit	3	1/2"	n/a	316 SS	Near Grade	Flare Tip	n/a	Tubing	316 SS	n/a	n/a
F-1	HEI Conduit	1	1-1/2"	Std.	Carbon Steel	Near Grade	Flare Tip	n/a	Coupling	Carbon Steel	Galvanized	n/a

Notes:

All utility piping larger than 2" will be supplied in pre-fabricated spools.
 Piping 2" and smaller will be supplied in random lengths for field fabrication and installation by others.
 Base of Stack = Approximate Flare Stack Inlet Elevation.

### Attachment E

Spare Parts

- Spare Parts for Start-up & Commissioning
  - Spare Parts for Two Years Operation





# Spare Parts for Start-up and Commissioning

Client:	Targa Resourc	ces, Inc.	Zeeco Ref.:	2023-10875FL-01	Date: 29-Sep-23
ocation:	Texas		Client Ref.:	0	Rev. 0
Part No.	Qty [	Descriptio	n	Unit Price	Delivery (Weeks)
	1 P	ilot Tempera	ature Switch		4
		Pilot Thermoo			4
	1 E	Electric Ignito	r Probe Assembly		4
	1 H	IEI Ignition N	lodule		4
		Pilot Light Bu			4
	1 P	Pressure Gau	ige (Pilot Fuel Gas)		4
	Net Deless				
	Net Price:		U. S. Dollars		
	Minimum Invo F.O.B. Point:	oice:	Shan Door Brake	ND Arrow OK LISA	
	•		Shop Door - Broke	H AHUW, UK, USA	
	Terms:		Net 30 Days	at to abando without paties	
	Notes:			ect to change without notice.	proliminary
				tems and quantities listed above are	
			and are subject to	change upon determination of final s	cope of supply.



# Spare Parts for Two Years Operation

Client:	Targa Resour	ces, Inc. Zeeco Ref.:	2023-10875FL-01	Date: 29-Sep-23			
ocation:	Texas	Client Ref.:	0	Rev. 0			
Part No.		Description	Unit Price	Delivery (Weeks)			
		Pilot Temperature Switch		4			
		Pilot Thermocouple		4			
		HSLF-Z-HEI-1T/C		4			
		Electric Ignitor Probe Assembly		4			
		HEI Ignition Module		4			
	4	Pilot Light Bulb		4			
	Net Price:	U. S. Dollars					
	Minimum Inv						
	F.O.B. Point:	·	Shop Door - Broken Arrow, OK, USA				
	Terms:	Net 30 Days					
	Notes:	-	ect to change without notice.				
			items and quantities listed above				
		and are subject to	change upon determination of fin	al scope of supply.			

# Attachment F

Clarifications and Exceptions





### **Clarifications & Exceptions**

Client:	Targa Resources, Inc.	Zeeco Ref .:	2023-10875FL-01	Date:	29-Sep-23
Location:	Texas	Client Ref.:	0	Rev.	0

Please note that it is Zeeco's intention to comply with the specifications received with this inquiry, except as noted below. Please also note that we have done our best to clearly specify what our proposal includes in order to avoid confusion. In the event that any portion of our quotation other than the list below does not meet your specifications or fit your needs, please notify us immediately so that we may rectify the situation.

No.	Specification	Item	Clarification / Exception
1	General	Applicable Specifications	Zeeco is not responsible for specifications not included in the inquiry package or revised after the issuance of the PO. We can provide a cost impact (if any) to meet any particular new or revised specification after receiving the specification.
2	General	Special Tools	No special tools are required for operation or maintenance of the proposed system.
3	General	Spare Parts	Spare parts are listed and quoted separately.
4	General	Assistance / Training	Assistance / training at the job site, or attendance to any meetings outside Zeeco, is available based on our attached per diem rate sheet.
5	General	Sizing	Sizes / dimensions / weights / models noted in this quotation are preliminary only and subject to change upon final equipment design after an order is received.
6	General	Documentation	All required documentation will be submitted in .pdf format and submitted in soft copy. Any hard copies for final documentation can be supplied for additional cost upon request. On receipt of drawing or document approvals, Zeeco will generate a Comment Resolution Form. This form will address all open comments and is to be reviewed and closed prior to any submittal of revised drawings or documents.
7	General	Performance Bonds / Guarantees	Any performance bond or bank guarantee issued by Zeeco for this project will be in the form of a standby letter of credit. The format of this standby letter of credit is to be mutually agreeable to both Zeeco and our customer, subject to the requirements outlined in ICC Publication 500 (Uniform Customs and Practices for Documentary Credits).
8	General	Terms & Conditions	All Terms & Conditions shall be mutually agreed upon prior to issuance of PO.

Confidential and Proprietary

		Clarifications &	Exceptions
9	General	Pricing & Invoices	Unless noted, all prices are US Dollars. Any amounts owed by Buyer under this contract that are not paid when due shall bear interest, from the time the payment was due until the time paid, at a rate of one and a half percent (1.5%) per month, or the maximum allowed by law, whichever
10	General	Pricing & VAT/GST	is lower. Unless specifically noted otherwise, our pricing is exclusive of any local VAT/GST or other taxes/duties in the country of installation.
11	General		Sellers total liability for this purchase order, whether in contract, tort, or otherwise, shall in no event exceed the total amount of the purchase order. In no event shall seller be liable to the buyer for delays, curtailment of plant operation, process failure, loss of profits, or any indirect, incidental, special or consequential damages.
12	General		Consumables such as, but not limited to, bulbs, fuses, thermocouples, gaskets, etc. shall be outside the scope of the above warranties. All warranty work is considered applicable "at grade" for elevated flare systems. Warranty is for material and workmanship only. Except as defined in the contract, there are no warranties, express or implied, of merchantability, fitness for use or otherwise.
13	General		Noise is predicted as +/- 3 dB(A) considering a background noise level of 6 dB(A) less than the measurement point in each frequency.
14	Clarification	Material	Please note that our proposal is based on supplying a tip inlet connection flange that is the same material as the connection flange on the top of the stack in an effort to minimize the thermal expansion differences within the flange material and thus lower the possibility of gas leakage at the flange.
15	Clarification	Smokeless Flaring	Smokeless requirement is estimated as Ringelmann 1.0 or less at one flame length from the end of the flame per EPA Test Methods 9, at steady state process and environmental conditions.
16	General	Testing	B31.3 requires a hydrostatic leak test unless "The Owner" considers a hydrostatic test impractical. We do not hydrostatic- test the piping components of the ignition system. The use of water can damage some of the components as well as cause internal corrosion, which could be detrimental to the operation of the equipment. It is Zeeco's policy to pneumatically pressure test the piping using shop air (90 psig max) and soapy-water on our ignition rack piping.
17	Clarification	Nozzle Loads	The offered equipment has been designed considering maximum nozzle loads as stated in API 537 standard "Flare Details for General Refinery and Petrochemical Service".

### Confidential and Proprietary

		Clarifications 8	& Exceptions
18	General	Inspection and Testing	Testing, NDE, and inspection performed for all Zeeco designed proprietary components of the system (pilot, mixer, flare tip, ignition chamber, etc.) will be per Zeeco standards unless specifically noted otherwise.
19	General	Stack Riser Designs	Stack risers are structural members open to atmosphere and therefore are not considered as piping or pressure vessels. Any piping specification, applicable pipe class to the flare header or pressure vessel specification is not applicable to the flare stack riser. Only the flare stack inlet flange will meet the pipe class applicable to the flare header. In addition, the flare stack riser will follow B31.3 for thickness, internal pressure and NDE (spot RT). Hydrostatic, PWHT or impact testing of the stack risers in the shop is not required and has not been included.
20	General	Equipment Storage	If equipment is not picked up or shipped from Zeeco's shop or other designated sub-fabricators / suppliers within 6 weeks from the notification date that equipment is ready to ship, storage and handling fees will be applied based on the size and storage requirements of the equipment.
21	General	Export Packing / Crating / Containerization	Export crating, when included or offered as an option, provides for break bulk packing of smaller materials in wooden crates or pallets, and skid mounting and bundling of larger components for deck shipment. Packaging for large items is not designed for stacking. Containerization of any material is not included. If materials are quoted as FOB Port of Export basis, or if optional pricing is provided to move the goods to the port of export, this is understood to mean the port nearest to the point of manufacture of the goods, unless an alternative port of export is clearly defined in the inquiry documents.
22	Clarification	Pilot Ignition Rack	Zeeco's proposal is based on the pilot ignition rack located within 600 Feet (185 Meters) from the pilots. If the distance between the ignition rack and pilots is more than 600 Feet (185 Meters), Zeeco shall be notified as the design of the ignition system may need slight modification. FFG system performance is based on the use of nominal 1 inch diameter schedule 40 ignition lines. Additionally, Zeeco requires the use of swing type check valves for air and fuel gas service on FFG ignition racks. Due to operating pressure and flow rates, piston (lift) type check
23	General	Motor Starters	valves in this service may prevent the FFG from lighting the Our proposal does not include for any motor starters, variable frequency drives, or motor controls unless specifically stated otherwise.

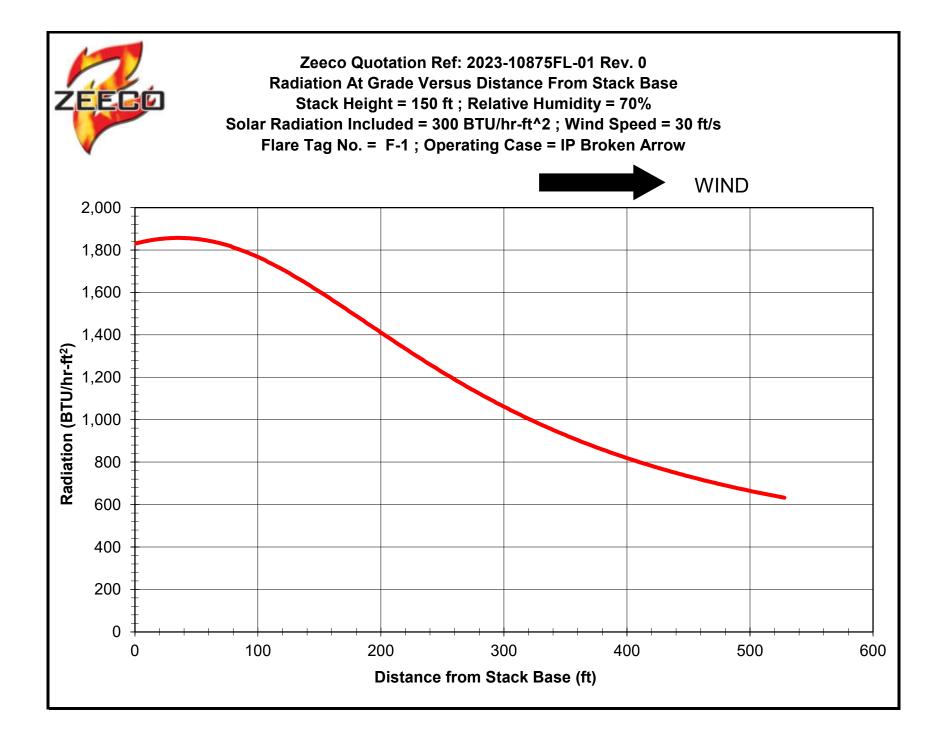
		Clarifications &	& Exceptions
24	General	Lifting Lugs	Zeeco recommends handling flare tip assemblies using slings and straps. If flare tip lifting lugs are supplied, they will be defined as being included on the Zeeco flare tip datasheet. Any lifting lugs supplied on a flare tip are designed for vertical lifting only, lifting along the major axis of the flare tip. Lifting lugs will be carbon steel designed for use when initially installing the flare tip prior to any use of possible heat damage to same. Lifting lugs should not be re-used after the flare tip has been in operation due to safety issues.
25	General	Piping	Piping 2" and smaller will be supplied in random lengths with loose fittings, for field fabrication and installation by others. Fittings are supplied without paint. Pipe joints are prime painted only.
26	General	Radiographic Examination	Radiographic examination, when included, shall be performed by gamma-ray (Iridium 192) radiography. The radiographic sensitivity shall be equal to or better than that specified in the ASME Boiler & Pressure Vessel Code, Section VIII-1 and B31.3.
27	General	Damages	In no event shall seller be liable to the buyer for delays, curtailment of plant operation, process failure, loss of profits, or any indirect, incidental, special or consequential damages.
28	General	Written Communication	Zeeco Inc.'s offer is based on all resulting orders and documents and correspondence with Zeeco Inc. being in the English language.
29	General	Approved Manufacturer's Lists (AML)	All proprietary items including flare tip assemblies, flare tip accessories (steam / gas risers, steam / gas manifolds, etc.), liquid seal internals, gas seals, pilot assemblies, etc. shall follow Zeeco's AML in conjunction with Zeeco's ISO requirements. All process and utility connections for flare tip assemblies, gas seals, pilots, etc. shall meet any applicable project AML if separately provided to Zeeco and agreed.
30	General	Materials of Origin	Zeeco confirms its proposal is in full compliance with received project material sourcing requirements for all non-proprietary components. For any proprietary components and small bore (2" and less) commodity valves critical to proper operation of the system and to the Zeeco performance guarantee of the system, Zeeco will use its normal stock components and castings in which many of our casting are sourced from Chinese foundries, which Zeeco have used for many years and have partnering relationships with. These casting are stocked in Zeeco's facility and all machining is performed in our facility to Zeeco standards and Zeeco NDE requirements.

	-	Clarifications 8	•
31	General	Purge Rates	Please note, the purge gas rate we have quoted is the minimum purge gas recommended to ensure the safety of the upstream systems, and to prevent flashbacks from occurring in the flare stack. If the flare system will be required to meet the proposed EPA Combustion Zone Net Heating Value requirements for Flares, it is likely this purge gas flow rate will have to be increased above our stated quantity. The gas required to meet the CZNHV requirements is a function of the turndown capability of the control system applied for the assist medium.
32	General	Pipe Specification Conformation	Any project pipe specification will be applicable up to the pilot inlet connections only: FFG Ignition Connection and Pilot Gas Manifold Connection (more than one pilot) or Pilot Gas Connection (when no manifold is included).
33	General	Stack Foundation Type	For the purpose of the flare structural calculations, Zeeco has assumed an elastic foundation type per ASME STS-1. Please advise if rigid foundation type is to be considered
34	General	Point of Manufacture / Material Selection when Utilizing India or China Fabrication	Structural plates, pipes and shapes will be to IS/GB standards, but will not be less in Tensile Properties than the minimum specified in ASTM A36 / A36M or equivalent for plates and shapes and A53B or equivalent for pipe.
35	Clarification	Blower	Zeeco will supply (1) vane axial blower and associated motor. Any VFD or other controls are outside of Zeeco's scope of supply.
36	Clarification	Exit Velocity	Zeeco has considered maximum exit velocity as per 40 CFR for normal operating conditions. Zeeco understands normal operating conditions to be continuous purge. Zeeco has not considered these exit velocity requirements for any emergency releases.
37	Clarification	Paint	Zeeco has only considered painting of the external air riser. Internal Gas riser will be primered only.
38	Clarification	Flare Design	The Flare Design is based on the same design as the Greenwood I Gas Plant Flare. Any associated drawings and documentation will be submitted for information only.
39	Clarification	Thermocouple	Pilot Thermocouples will be retractable, duplex type. One element per thermocouple will be monitored at ignition control panel, with the other terminated at the JB at the base of the stack, acting as a spare.
40	Clarification	Blower	Zeeco has considered supply of a 150 hp blower as requested. Blower would provide for necessary air needed for smokeless flaring of rates indicated within Proposal Attachment C. Please note, as blower will be vane axial type, motor enclosure would be Totally Enclosed, Air Over (TEAO) rather than TEFC. Blower will be VFD compatible, with any VFD Device Provided by others.

	Clarifications & Exceptions							
41	Clarification	Allowable Pressure	The allowable pressure for each gas case was not given, therefore Zeeco has confirms that a minimum of 10 psig will be required at the base of the stack.					

# Attachment G

Start-up & Maintenance Services

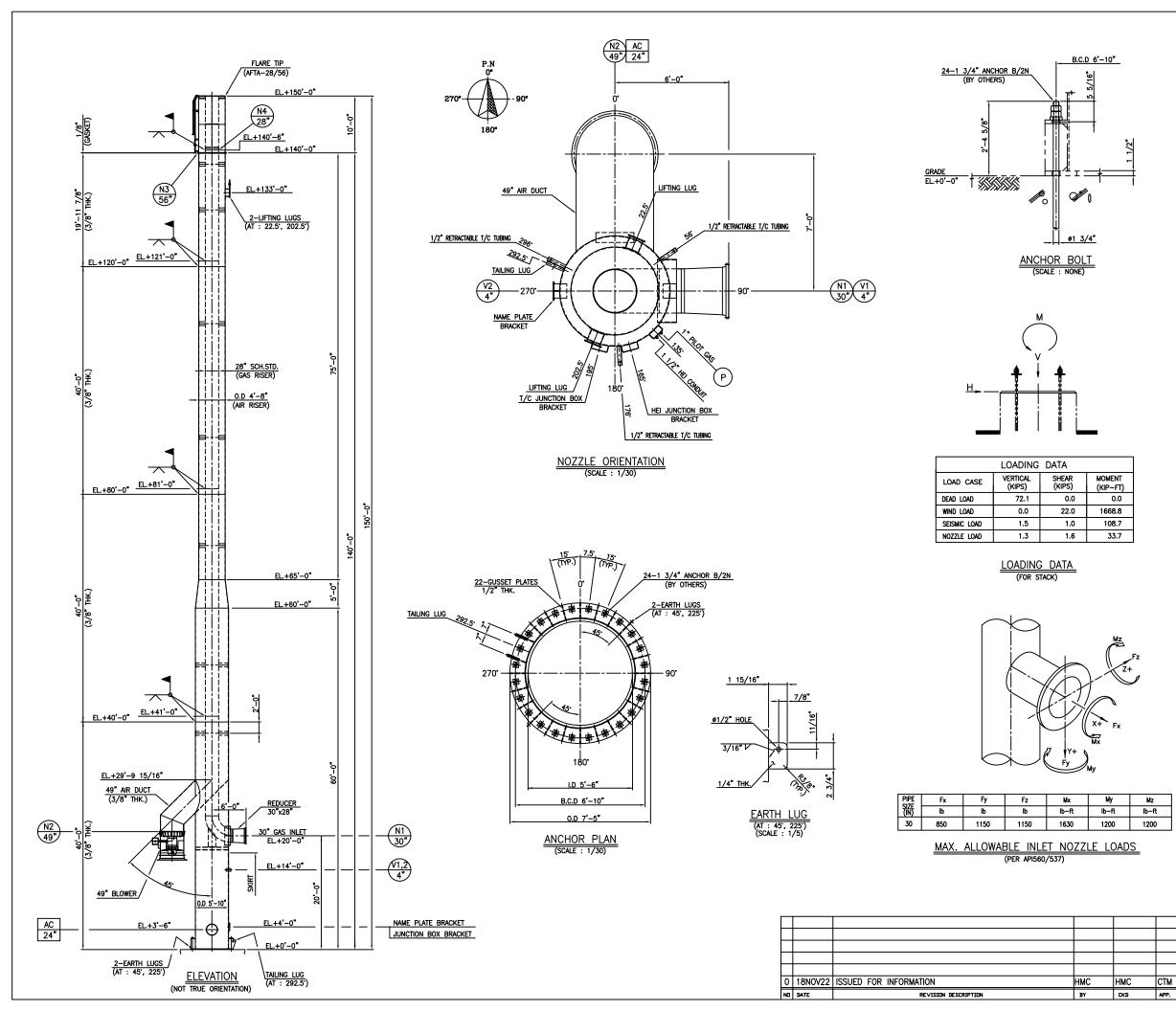

Refer to priced proposal



### Attachment H

**Radiation Profile** 





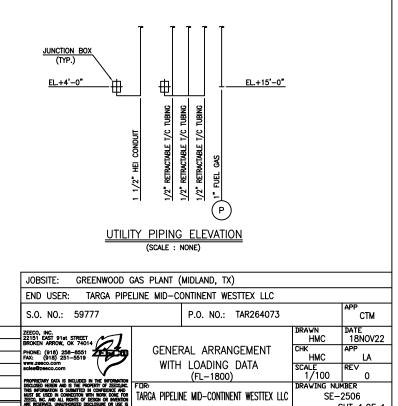

Confidential and Proprietary

### Attachment I

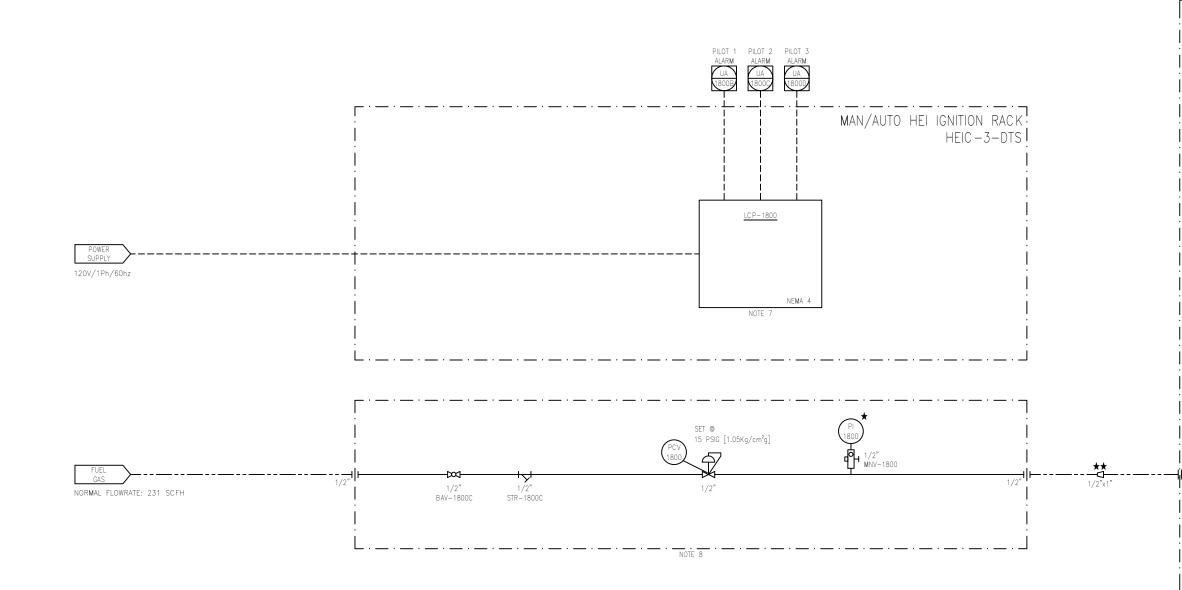
Typical GA Drawing

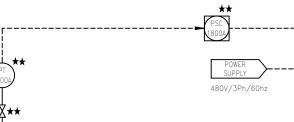





MATERIAL SPECIFICATIONS							DESIGN DATA					
GAS	RISEF	2		A53-B ERW (	OR EQ.	TYPE	SELF SUPF	ORTED				
AIR	AIR RISER A36 OR EQ.					DESIGN (	CODE	-	ASME STS-1	/ AISC		
SKIR	श			A36 OR	EQ.		WIN	d design coe	E ASCE 7	-10		
FLAF	re tip			SEE FLARE TI	P DWG.	WIND	EXF	».	С			
BASI	E PLA	TE		A36		LOAD	WIN	id speed	120 m	ph		
GAS	RISEF	r Flang	E	A105.			CAT	EGORY				
AIR	riser	FLANGE		A36			SEIS	MIC DESIGN CO	IDE ASCE 7	-10		
RISE	R GAS	SKET		C4401 OR	EQ.	SEISMIC	SIT	e class	D			
FITTI	NG			A234-WI	РВ	LOAD	Ss		0.098	-		
LIFTI	NG LL	JGS / F	PAD	A36			S1		0.031			
TAIL	ING LL	JG		A36			I.F		1.25	1.25		
EAR	THING	LUGS		304 S.:	S	design pr	ESS.	(gas/air)	50 / 2	psig		
NAM	e pla	TE		304 S.	design tei	MP. (	(gas/air)	-20~400 / -20	-20~400 / -20~120 °F			
NAM	e pla	te brac	KET	A36	OPERATING	PRES	SURE (GAS/A	R) 0~31.4 /	ATM psig			
FUEI	l gas			A106-6	OPERATING	TEM	p. (gas/air)	26~104 / 4	MB F			
FLANG	e con	i. stud B	olt/nut	A193-B7/A1	C.A (GAS/	AIR)		1/16	•			
ANC	HOR BO	olt (By	others)	A307-0	PAINTING			SEE NOT	SEE NOTE 2			
RETF	RACTAE	BLE TUB	ING	316SS TU	NDE			AS PER	AS PER ITP			
CON	Duit			C.S+GAL	C.S+GALV.							
				NOZZL	E AND C	ONNECTIO	NS					
MARK	Q'TY	SIZE	SCH.	RATING	FACING	FLG.MA	۲'L	NOZZLE MAT'L	SERVICE	REMARKS		
N1	1	30"	STD.	ASME B16.47 SERIES "B" 150#	WN, RF	A105		a53-b erw or eq.	GAS INLET	6-0"		
N2	1	49"	3/8" THK.	FABRICATED	PLATE	A36 OR	EQ.	A36 OR EQ.	AIR INLET			
N3	1	56"	3/8" thk.	FABRICATED	A36 OR	EQ.	A36 OR EQ.	AIR OUTLET				
N4	1	28"	STD.	PIPE EN	-		a53-b erw or eq.	GAS OUTLET				
V1,2	2	4"	40	-	-	-		A53-B ERW	VENT HOLES			
AC	1	24"	3/8" THK.	-	-	-		A36	ACCESS HOLE			
Р	1	1"	80	ASME 150#	SW, RF	A105		A106-B	FUEL GAS			

#### NOTE


1. FLANGE BOLTING TO STRADDLE CENTERLINES INDICATED BY CENTERLINE UNLESS NOTED OTHERWISE.


2. PAINTING

- EXTERNAL CARBON STEEL SURFACE
- SURFACE PREPARATION : SSPC-SP10
   PRIMER : SHERWIN-WILLIAMS ZINC CLAD II(B69V3) 3 ~ 4 MILS
   FINAL : SHERWIN-WILLIAMS HEAT-FLEX HI-TEMP 1000(859-820) 1.5 ~ 2MILS
- * COLOR: SHERWIN WILLIAMS SW-4031 STRUCTURAL GRAY
- GAS RISER, SKIRT INSIDE, TEMPLATE, AND SHIP LOOSE UTILITY PIPING
- * SURFACE PREPARATION : SSPC SP10 * PRIMER ONLY : SHERWIN-WILLIAMS ZINC CLAD II(B69V3) 3 ~ 4 MILS * FINAL COAT OF PAINT ONLY NECESSARY FOR UTILITY PIPING, BY OTHERS.
- 3. PIPING 2" AND SMALLER WILL BE SUPPLIED IN RANDOM LENGTHS WITH LOOSE FITTINGS, FOR FIELD FABRICATION AND INSTALLATION BY OTHERS, FITTINGS ARE SUPPLIED WITHOUT PAINT, PIPE JOINTS ARE PRIME PAINTED ONLY.
- 4. CONCRETE COMPRESSIVE STRENGTH AT 28 DAYS , FC' = 4000 PSI
- 5. LOADING DATA INCLUDES OVERAGE FACTOR OF 10% ABOVE CALCULATED LOADS.
- 6. FLARE STACK STRUCTURAL DESIGN ASSUMES ELASTIC FOUNDATION SUPPORT PER ASME STS-1.
- 7. ALL SHIP LOOSE UTILITY PIPING CARBON STEEL FITTINGS TO BE SHIPPED IN THE BLACK.



SHT. 1 OF 1

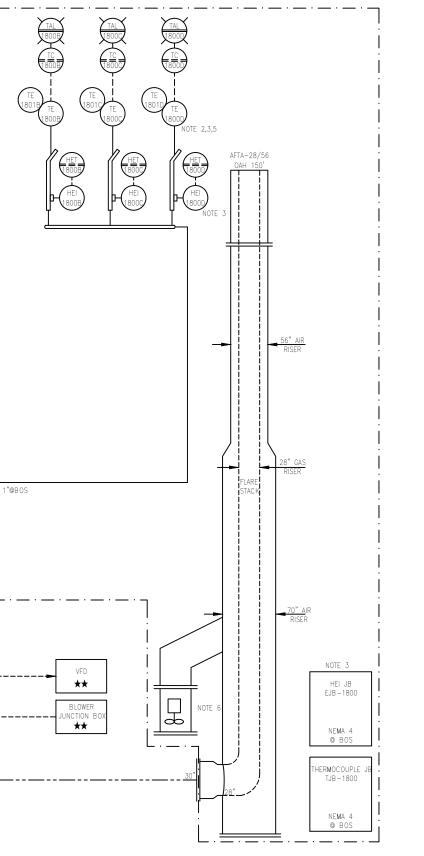






*

#### NOTES:


- AREA CLASSIFICATION: NON-HAZARDOUS.
   THERMOCOUPLES ARE DUPLEX TYPE K, RETRACTABLE.
   THERMOCOUPLE/HEI WIRING BETWEEN JUNCTION BOXES AT BASE OF FLARE STACK AND LOCAL CONTROL PANEL IS SUPPLIED AND INSTALLED BY OTHERS.
   FUEL GAS SUPPLY FOR PILOT OPERATION IS CONTINUOUS.
   THE PILOT THERMOCOUPLE IS FOR ON/OFF INDICATION ONLY. IT IS NOT FOR ACCURATE MEASUREMENT OF THE PILOT FLAME TEMPERATURE.
   BLOWER IS 150 HP TEAO, VFD DUTY.
   CONTROL PANEL TO BE INSTALLED ON RACK.
   PILOT FUEL GAS REGULATION TRAIN SHALL BE SHIPPED LOOSE.
- · · ZEECO SCOPE LIMITS
- - ITEMS FURNISHED BY ZEECO AND INSTALLED BY OTHERS
- ** ITEMS FURNISHED AND INSTALLED BY OTHERS

FLARE

BOS BASE OF STACK

- PIPING ----- PIPING BY OTHERS ---- ELECTRICAL ------ DCS SOFTWARE

						JOB SITE: GREENWOOD G	AS PLANT, (	MIDLAND, TX)		
						END USER: TARGA PIPELIN	E MID-CONT	INENT WESTTEX LLC		
						S.O. NO.: 59777		P.O. NO.: TAR264073		APP CTM
						ZEECO, INC. 22151 EAST 91st STREET BROKEN ARROW, OK 74014	PIPIN	IG AND INSTRU <b>m</b> ent	DRAWN SC	DATE 21NOV22
-						PHONE: (918) 258-8551 FAX: (918) 251-5519		DIAGRAM	снк R <b>M</b>	APP LA
						www.zeeco.com sales@zeeco.com PROPRIETARY DATA IS INCLUDED IN THE INFORMATION			SCALE NONE	REV O
0	21N0V22	ISSUED FOR INFORMATION	SC	RM	I A	DISCLOSED HEREIN AND IS THE PROPERTY OF ZEEO.INC. THIS INFORMATION IS SUBMITTED IN CONFIDENCE AND MUST BE USED IN CONNECTION WITH WORK DONE FOR ZEECO, INC. AND ALL RIGHTS OF DESIGN OR INVENTION ARE RESERVED. UNALITIORIZED DISCLOSURE OR USE IS	FOR:	NE MID-CONTINENT WESTTEX LLC	DRAWING NUM	BER -4196
NO.	DATE	REVISION DESCRIPTION	BY	CKD.	APP.	ZEECO, INC. AND ALL RIGHTS OF DESIGN OR INVENTION ARE RESERVED. UNAUTHORIZED DISCLOSURE OR USE IS PROHIBITED BY LAW.	IARGA PIPELI	NE MID-CONTINENT WESTER LLC		HT. 1 OF 1



# Attachment J

ISO &ASME Sec. VIII Code Certificates





# Certificate of Registration

This certifies that the Quality Management System of



22151 E. 91st Street Broken Arrow, Oklahoma, 74014, United States

has been assessed by NSF-ISR and found to be in conformance to the following standard(s):

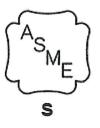
# **ISO 9001:2015**

### **Scope of Registration:**

Design, manufacture, installation, and testing of flares, burners, and incinerators.



Certificate Number:
Certificate Issue Date:
Registration Date:
Expiration Date *:


0Z911-IS6 03-AUG-2018 02-AUG-2018 01-AUG-2021

Blagik

Carl Blazik, Director, Technical Operations & Business Units, NSF-ISR, Ltd.

### **NSF International Strategic Registrations**

789 North Dixboro Road, Ann Arbor, Michigan 48105 | (888) NSF-9000 | www.nsf-isr.org

Authorized Registration and /or Accreditation Marks. This certificate is property of NSF-ISR and must be returned upon request. *Company is audited for conformance at regular intervals. To verify registrations call (888) NSF-9000 or visit our web site at www.nsf-isr.org 

# CERTIFICATE OF AUTHORIZATION

The named company is authorized by the American Society of Mechanical Engineers (ASME) for the scope of activity shown below in accordance with the applicable rules of the ASME Boiler and Pressure Vessel Code. The use of the certification mark and the authority granted by this Certificate of Authorization are subject to the provisions of the agreement set forth in the application. Any construction stamped with this certification mark shall have been built strictly in accordance with the provisions of the ASME Boiler and Pressure Vessel Code.

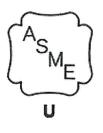
COMPANY:

#### Zeeco, Inc. 22151 East 91st Street Broken Arrow, Oklahoma 74014

SCOPE:

Manufacture and assembly of power boilers at the above location and field sites controlled by the above location

AUTHORIZED: June 2 EXPIRES: Augus CERTIFICATE NUMBER: 29,790


June 27, 2018 August 20, 2021

Board Chair, Conformity Assessment

logt loved

Managing Director, Conformity Assessment





# CERTIFICATE OF AUTHORIZATION

The named company is authorized by the American Society of Mechanical Engineers (ASME) for the scope of activity shown below in accordance with the applicable rules of the ASME Boiler and Pressure Vessel Code. The use of the certification mark and the authority granted by this Certificate of Authorization are subject to the provisions of the agreement set forth in the application. Any construction stamped with this certification mark shall have been built strictly in accordance with the provisions of the ASME Boiler and Pressure Vessel Code.

COMPANY:

Zeeco, Inc. 22151 East 91st Street Broken Arrow, Oklahoma 74014

SCOPE:

Manufacture of pressure vessels at the above location and field sites controlled by the above location (This authorization does not cover impregnated graphite)

AUTHORIZED: June 2 EXPIRES: Augus CERTIFICATE NUMBER: 29,791

June 27, 2018 August 20, 2021

Board Chair, Conformity Assessment

logt loved

Managing Director, Conformity Assessment



# Attachment K

Sample Inspection and Test Plan



		1.000	Zeeco, Inc. Qual	ity Assurance Manua	I. Volume II						
		ZEEDO	Inspection and T	est Plan	•						
			Document #: ZC	S-QUA-IV-160						Revision:	0
		V	Created By: Bol							<b>Revision Date:</b>	7/1/03
				LEGACY GAS PLANT	FLARE FL-1800		ITP NUMBER:	51592-4010			LEGEND
		SHC	OP ORDER NUMBER:		TEMETE 1000		ION NUMBER:	0		W-WITNESS	M-MONITOR
			SE ORDER NUMBER:			KE VIC	PAGES:	3		R-REVIEW	I-IN HOUSE
		Токена	TAG NUMBER:				TAGES.	5		H-HOLD	S-SUBCONTRACTORS
		S	UPPLIER CONTACT:							V-VERIFY	SW-SPOT WITNESS
		6		SELF SUPPORTED AI	P FI ADE SVSTEM					V-VEKIPI	Sw-SFOT WIINESS
	-			SELF SOTTORIED AI	KTEAKE STSTEM		INSPE	CTION REQUI	REMENTS V/W	/H/P/O	
TASK		TASK	LOCATION		ACCEPTANCE	VERIFYING	10511		NSPECTION	/11/10/0	
NUMBE		DESCRIPTION	CODE	PROCEDURE	CRITERIA	DOCUMENT			R TO INITIAL)		NOTES
NUMBL		DESCRIPTION	(I OR S)		CKITEKIA	DOCOMENT	SUB	ZEECO			
Δ	-	APPROVALS					565	LLLCO			
A	1 1	PRE-INSPECTION MEETING	Ĭ	PROJECT	PROJECT	PROJECT		Н			
		WPS & PQR	I/S	ASME SECT. IX	ASME SECT IX		Н	Н			NOTE 1
		WELDER QUALIFICATION	I/S	ASME SECT. IX	ASME SECT IX	QW-484	Н	Н			
		NDE QUALIFICATION	S	ASNT SNT-TC-1A	ASNT SNT-TC-1A	CERTIFICATE		Н			
		NDE PROCEDURES	S	GLOBE	ASME	PROCEDURES		Н			NOTE 2
A	6 I	PAINT PROCEDURES	I/S	PROJECT	PROJECT	PROJECT	Н	Н			
10		ZEECO USA									MDMT = -20F
1.0		AFTA-28/56									
		AIR PLENUM									
		MATERIAL CONFORMANCE	I	ASTM	ASTM	PO/BOM		R			
		MATERIAL IDENTIFICATION	I	ASTM	ASTM	MTR		W			
1.5		IN-PROCESS INSPECTION									
		A. DIMENSIONAL INSPECTION	I	DRAWING	DRAWING	DRAWING		V			
	I	B. VISUAL INSPECTION	I	DRAWING	DRAWING	DRAWING		V			
	0	C. WELD INSPECTION	I	DRAWING	DRAWING	DRAWING		V			
1.4		NON-DESTRUCTIVE EXAMINATION									
	1	A. RADIOGRAPHY - SPOT	S	GLOBE I-B	ASME VIII-1, UW-52	REPORT		R			NOTE 6
		GAS RISER									
		MATERIAL CONFORMANCE	I	ASTM	ASTM	PO/BOM		R			EN 10204 3.1 CERTIFICATION
		MATERIAL IDENTIFICATION	I	ASTM	ASTM	MTR		W			
1.	7 1	IN-PROCESS INSPECTION									
	1	A. DIMENSIONAL INSPECTION	I	DRAWING	DRAWING	DRAWING		V			
	I	B. VISUAL INSPECTION	I	DRAWING	DRAWING	DRAWING		V			
		C. WELD INSPECTION	Ι	DRAWING	DRAWING	DRAWING		V			
1.		NON-DESTRUCTIVE EXAMINATION									
	I	A. RADIOGRAPHY - SPOT	S	GLOBE I-B	ASME VIII-1, UW-52	REPORT		R			NOTE 6
		PILOTS (QTY. 3) W/ MANIFOLD									
1.9	9 1	MATERIAL CONFORMANCE	I	ASTM	ASTM	PO/BOM		R			EN 10204 3.1 CERTIFICATION
1.1	10 1	MATERIAL IDENTIFICATION	I	ASTM	ASTM	MTR		W			
1.1	11 1	IN PROCESS INSPECTION					1				
	I	A. DIMENSIONAL INSPECTION	I	DRAWING	DRAWING	DRAWING	1	V			
		B. VISUAL INSPECTION	I	DRAWING	DRAWING	DRAWING		v			
	(	C. WELD INSPECTION	I	DRAWING	DRAWING	DRAWING		V			
	ľ	FINAL INSPECTION					1				
1.1	12 1	TEST FIT OF PILOTS AND MANIFOLD TO FLARE TIP	I	DRAWING	DRAWING	PICTURES		W			
		DIMENSIONAL INSPECTION	I	DRAWING	DRAWING	REPORT	1	W			
		VISUAL INSPECTION	I	DRAWING	DRAWING	REPORT		W			
		WELD INSPECTION	I	WPS	ASME IX	ITP SIGN OFF	1	W			
	-	COATING INSPECTION									
1 2	16	SURFACE PREPARATION	Ĭ	DRAWING	SSPC	REPORT		R			CS ONLY
		MEK RUB TEST	I	ASTM D4752	ASTM D4752	REPORT		H			INORGANIC ZINC PRIMER
1,1		COATING INSPECTION	T	DRAWING	DFT/MILLAGE	REPORT		W			CS ONLY
1.1		CLEANING/PAINT TOUCH-UP	T	DRAWING	DRAWING	DRAWING		W H			

<b></b>		PROJECT	LEGACY GAS PLANT	FLARE FL-1800		ITP NUMBER:	51592-4010		LEGEND
F	SHO				ON NUMBER:	0	W-WITNES		
		SE ORDER NUMBER:					ES: 3 R-REVIEW		
	TORCHIN	TAG NUMBER:					5	H-HOLD	S-SUBCONTRACTORS
	(		JOSHUA HARRISON					V-VERIFY	
			SELF SUPPORTED AI	DELADE SVSTEM			ł	V-VERIF1	Sw-SPOT WITNESS
		DESCRIPTION.	SELF SUFFORTED AI	A FLAKE ST STEW	1	INSPE	CTION REQUIR	EMENTS V/W/H/R/O	
TASK	TASK	LOCATION		ACCEPTANCE	VERIFYING	113112	PROJECT IN		-
NUMBE		CODE	PROCEDURE	CRITERIA	DOCUMENT		(INSPECTOR		NOTES
NUMBE	DESCRI HON	(I OR S)		CRITERIA	DOCOMENT	SUB	ZEECO		
2.0	IGNITION RACK ASSEMBLY WITH PANEL					BCB	ZELCO		
	MATERIAL CONFORMANCE	I	ASTM	ASTM	PO/BOM		R		EN 10204 3.1 CERTIFICATION FOR PRESSURE PARTS
	3 IN PROCESS INSPECTION								
	A. DIMENSIONAL INSPECTION	Ĭ	DRAWING	DRAWING	DRAWING		v		
	B. VISUAL INSPECTION	I	DRAWING	DRAWING	DRAWING		V		
$\vdash$	C. WELD INSPECTION		WPS	ASME IX	ITP SIGN OFF		н		
	COATING INSPECTION	-		7 10/012/171	III BIOI OIT				
2	4 SURFACE PREPARATION	т	DRAWING	SSPC	REPORT		P		CS ONLY
	5 MEK RUB TEST	T	ASTM D4752	ASTM D4752	REPORT		H		INORGANIC ZINC PRIMER
	5 COATING INSPECTION	T	DRAWING	DFT/MILLAGE	REPORT		W		CS ONLY
Ζ.	FINAL INSPECTION	1	DKAWING	DF1/MILLAGE	KEPUKI		w		CS ONL1
2	7 DIMENSIONAL INSPECTION	T	DRAWING	DRAWING	REPORT		TT		
	VISUAL INSPECTION	T	DRAWING	DRAWING	REPORT		п		
		1					н		
	0 FACTORY ACCEPTANCE TEST	1	FUNCTIONAL	DATA SHEET	CHECKLIST		н		
	2 CLEANING/PAINT TOUCH-UP	1	DRAWING	DRAWING	DRAWING		н		
3.0	FUEL GAS SPOOL MATERIAL CONFORMANCE	Y	A CTD (	A CITE I	PO/BOM		D		SHIPPED LOOSE FROM RACK
		1	ASTM	ASTM			K V		EN 10204 3.1 CERTIFICATION FOR PRESSURE PARTS
	2 MATERIAL IDENTIFICATION 3 IN PROCESS INSPECTION	I	ASTM	ASTM	MTR		v		
3			DD HUIDIG	DD I WIDIG	DD I WIDIG		V		
	A. DIMENSIONAL INSPECTION	1	DRAWING	DRAWING	DRAWING		V		
	B. VISUAL INSPECTION	I	DRAWING	DRAWING	DRAWING		v		
	C. WELD INSPECTION	I	WPS	ASME IX	ITP SIGN OFF		Н		
	D. PNEUMATIC TEST BEFORE PAINT	1	ZQS-QUA-III-070	NO LEAKAGE	REPORT		W		70-120 PSIG MAX
	COATING INSPECTION						-		
	SURFACE PREPARATION	I	DRAWING	SSPC	REPORT		R		CS ONLY
	5 MEK RUB TEST	I	ASTM D4752	ASTM D4752	REPORT		Н		INORGANIC ZINC PRIMER
3.	5 COATING INSPECTION	I	DRAWING	DFT/MILLAGE	REPORT		W		CS ONLY
	FINAL INSPECTION								
	7 DIMENSIONAL INSPECTION	I	DRAWING	DRAWING	REPORT		Н		
	3 VISUAL INSPECTION	I	DRAWING	DRAWING	REPORT		Н		
	PNEUMATIC TEST AFTER PAINT	I	ZQS-QUA-III-070	NO LEAKAGE	REPORT		Н		70-120 PSIG MAX
	CLEANING/PAINT TOUCH-UP	I	DRAWING	DRAWING	DRAWING		Н		
4.0	BUYOUT ITEMS								
	VANE AXIAL BLOWER	S	DATA SHEET	DATA SHEET	CERTIFICATE		R		
5.0	SHIPPING INSPECTION @ ZEECO								
	MARKING/TAGGING	I	PO/BOM	PO/BOM	PICTURES		Н		
	2 PACKING INSPECTION	I	SPECIFICATION	DRAWING	PACKING LIST		Н		
	3 INSPECTION RELEASE	I	PROJECT	PROJECT	RELEASE		Н		
5.4	FINAL DOCUMENTATION REVIEW	I	SPECIFICATION	SPECIFICATION	MDR		Н		

				PROFECT	LEGACY CAS DI ANT				51502 4010		LECEND	
			SHOP			FLAKE FL-1800			51592-4010	W/ WITNIEGO	LEGEND	
							REVIS		0			
INTERNATION OF A DATA DATA DATA DATA DATA DATA DATA D			PURCHASE				PAGES:	3				
UNDER         UNDERSTORM         UNDERSTORM </td <td></td> <td></td> <td>CI IDI</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>			CI IDI									
TAX: DXX PROP         TAX: DXX PROP         TAX: DXX PROP         TAX: DXX PROP         TAX: DXX PROP         TAX: DXX PROP         TAX: DXX PROP         TAX: DXX PROP         TAX: DXX PROP         TAX: DXX PROP         TAX: DXX PROP         TAX: DXX PROP         TAX: DXX PROP         TAX: DXX PROP         TAX: DXX PROP         TAX: DXX PROP         TAX: DXX PROP         TAX: DXX PROP         TAX: DXX PROP         TAX: DXX PROP         TAX: DXX PROP         TAX: DXX PROP         TAX: DXX PROP         TAX: DXX PROP         TAX: DXX PROP         TAX: DXX PROP         TAX: DXX PROP         TAX: DXX PROP         TAX: DXX PROP         TAX: DXX PROP         TAX: DXX PROP         TAX: DXX PROP         TAX: DXX PROP         TAX: DXX PROP         TAX: DXX PROP         TAX: DXX PROP         TAX: DXX PROP         TAX: DXX PROP         TAX: DXX PROP         TAX: DXX PROP         TAX: DXX PROP         TAX: DXX PROP         TAX: DXX PROP         TAX: DXX PROP         TAX: DXX PROP         TAX: DXX PROP         TAX: DXX PROP         TAX: DXX PROP         TAX: DXX PROP         TAX: DXX PROP         TAX: DXX PROP         TAX: DXX PROP         TAX: DXX PROP         TAX: DXX PROP         TAX: DXX PROP         TAX: DXX PROP         TAX: DXX PROP         TAX: DXX PROP         TAX: DXX PROP         TAX: DXX PROP         TAX: DXX PROP         TAX: DXX PROP         TAX: DXX PROP         TAX: DXX PROP        TAX: DXX PROP        TAX: DXX P			SUPI							V-VERIFY	SW-SPOT WITNESS	
TAM     TAM     TAM     TAM     TAM     CUPPANE     MULTIPAL     MULTIPAL     MULTIPAL     MULTIPAL     MULTIPAL       Image: State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State Sta	_			DESCRIPTION:	SELF SUPPORTED AI	R FLARE SYSTEM		INCOL	OTION DEALUDEMENT			
NUME         OPCOME         CONSTRUM         OPCOME         CONSTRUMTION CONSTRUMTION CONSTRUMTION CONSTRUMTION CONSTRUMTION CONSTRUMTION CONSTRUMTION CONSTRUMTION CONSTRUMTION CONSTRUMTION CONSTRUMTION CONSTRUMTION CONSTRUMTION CONSTRUMTION CONSTRUMTION CONSTRUMTION CONSTRUMTION CONSTRUMTION CONSTRUMTION CONSTRUMTION CONSTRUMTION CONSTRUMTION CONSTRUMTION CONSTRUMTION CONSTRUMTION CONSTRUMTION CONSTRUMTION CONSTRUMTION CONSTRUMTION CONSTRUMTION CONSTRUMTION CONSTRUMTION CONSTRUMTION CONSTRUMTION CONSTRUMTION CONSTRUMTION CONSTRUMTION CONSTRUMTION CONSTRUMTION CONSTRUMTION CONSTRUMTION CONSTRUMTION CONSTRUMTION CONSTRUMTION CONSTRUMTION CONSTRUMTION CONSTRUMTION CONSTRUMTION CONSTRUMTION CONSTRUMTION CONSTRUMTION CONSTRUMTION CONSTRUMTION CONSTRUMTION CONSTRUMTION CONSTRUMTION CONSTRUMTION CONSTRUMTION CONSTRUMTION CONSTRUMTION CONSTRUMTION CONSTRUMTION CONSTRUMTION CONSTRUMTION CONSTRUMTION CONSTRUMTION CONSTRUMTION CONSTRUMTION CONSTRUMTION CONSTRUMTION CONSTRUMTION CONSTRUMTION CONSTRUMTION CONSTRUMTION CONSTRUMTION CONSTRUMTION CONSTRUMTION CONSTRUMTION CONSTRUMTION CONSTRUMTION CONSTRUMTION CONSTRUMTION CONSTRUMTION CONSTRUMTION CONSTRUMTION CONSTRUMTION CONSTRUMTION CONSTRUMTION CONSTRUMTION CONSTRUMTION CONSTRUMTION CONSTRUMTION CONSTRUMTION CONSTRUMTION CONSTRUMTION CONSTRUMTION CONSTRUMTION CONSTRUMTION CONSTRUMTION CONSTRUMTION CONSTRUMTION CONSTRUMTION CONSTRUMTION CONSTRUMTION CONSTRUMTION CONSTRUMTION CONSTRUMTION CONSTRUMTION CONSTRUMTION CONSTRUMTION CONSTRUMTION CONSTRUMTION CONSTRUMTION CONSTRUMTION CONSTRUMTION CONSTRUMTION CONSTRUMTION CONSTRUMTION CONSTRUMTION CONSTRUMTION CONSTRUMTION CONSTRUMTION CONSTRUMTION CONSTRUMTION CONSTRUMTION CONSTRUMTION CONSTRUMTION CONSTRUMTION CONSTRUMTION CONSTRUMTION CONSTRUMTION CONSTRUMTION CONSTRUMTION CONSTRUMTION CONSTRUMTION CONSTRUMTION CONSTRUMTION CONSTRUMTION CONSTRUMTION CONSTRUMTION CONSTRUMTION CONSTRUMTION CONSTRUMTION CONSTRUMTION CONSTRUMTION CONSTRUMTION CONSTRUMTION CONSTRUMTION CON		CTZ	TACK	LOCATION		ACCEPTANCE	VEDIEVING	INSPE			-	
Process         Process         Process         Process         Process         Process         Process         Process         Process         Process         Process         Process         Process         Process         Process         Process         Process         Process         Process         Process         Process         Process         Process         Process         Process         Process         Process         Process         Process         Process         Process         Process         Process         Process         Process         Process         Process         Process         Process         Process         Process         Process         Process         Process         Process         Process         Process         Process         Process         Process         Process         Process         Process         Process         Process         Process         Process         Process         Process         Process         Process         Process         Process         Process         Process         Process         Process         Process         Process         Process         Process         Process         Process         Process         Process         Process         Process         Process         Process         Process         Process <t< td=""><td></td><td></td><td></td><td>CODE</td><td>PROCEDURE</td><td></td><td></td><td></td><td></td><td></td><td>NOTES</td></t<>				CODE	PROCEDURE						NOTES	
UNITY OF         NUMBER 1	NUN	IDEK	DESCRIPTION	(I OR S)		CRITERIA	DOCUMENT	SUD		IAL)	-	
op     op     op     op     op     op     op     op     op     op     op     op     op     op     op     op     op     op     op     op     op     op     op     op     op     op     op     op     op     op     op     op     op     op     op     op     op     op     op     op     op     op     op     op     op     op     op     op     op     op     op     op     op     op     op     op     op     op     op     op     op     op     op     op     op     op     op     op     op     op     op     op     op     op     op     op     op     op     op     op     op     op     op     op     op     op<      <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>30B</td> <td>ZEECO</td> <td></td> <td></td>								30B	ZEECO			
Image: Province of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon	60										MDM1 = -20F	
0     0     MATTER     S     ATT     ATT     ATT     MATE     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N <td>0.0</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td>	0.0									-		
1     1     Martined Description     3     ATM     Martined Description     4     ATM     Martined Description     4     Atm     Atm     Atm     Martined Description     4     Atm	-	6.1		c	ASTM	ASTM	PO/POM	м	D			
Col       Dir Revices ResPECTION       Image: Col       Col       Dir Revices ResPECTION       Image: Col       Dir Revices ResPECTION       Image: Col       Dir Revices ResPECTION       Image: Col       Dir Revices ResPECTION       Image: Col       Dir Revices ResPECTION       Image: Col       Dir Revices ResPECTION       Image: Col       Dir Revices ResPECTION       Image: Col       Dir Revices ResPECTION       Image: Col       Dir Revices ResPECTION       Image: Col       Dir Revices ResPECTION       Image: Col       Dir Revices ResPECTION       Image: Col       Dir Revices ResPECTION       Image: Col       Dir Revices ResPECTION       Image: Col       Dir Revices ResPECTION       Image: Col       Dir Revices ResPECTION       Image: Col       Dir Revices ResPECTION       Image: Col       Dir Revices ResPECTION       Image: Col       Dir Revices ResPECTION       Image: Col       Dir Revices ResPECTION       Image: Col       Dir Revices ResPECTION       Image: Col       Dir Revices ResPECTION       Image: Col       Dir Revices ResPECTION       Image: Col       Dir Revices ResPECTION       Image: Col       Dir Revices ResPECTION       Image: Col       Dir Revices ResPECTION       Image: Col       Dir Revices ResPECTION       Image: Col       Dir Revices ResPECTION       Image: Col       Dir Revices ResPECTION       Image: Col       Dir Revices ResPECTION       Image: Col       Dimage: Col       Dimage: Col       Dim												
<ul> <li></li></ul>				3	ASTM	ASTM	WIIK	IVI	vv			
Image: Construction         S         Parameter		0.5		c	DRAWING	DRAWING	DRAWING	м	cw			
Image: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note:												
N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N												
64     55     76     76     76     76     76     76     76     76     76     76     76     76     76     76     76     76     76     76     76     76     76     76     76     76     76     76     76     76     76     76     76     76     76     76     76     76     76     76     76     76     76     76     76     76     76     76     76     76     76     76     76     76     76     76     76     76     76     76     76     76     76     76     76     76     76     76     76     76     76     76     76     76     76     76     76     76     76     76     76     76     76     76     76     76     76     76     76     76     76     76     76     76     76     76     76     76     76     76     76     76     76     76     76     76     76     76     76     76     76     76     76     76     76     76     76     76     76     76     76     76     76     76     76     76     76     <											<u> </u>	
15     15     Now Destructive submittion     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1	$\vdash$											
Image: Base of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se	$\vdash$			5	DRAWING	DRAWING	TIP SIGN OFF	191	**			
B         D         DEPRINT OF MARGENE PARTULE-1000         S         PROCENUE         APP 64         PROT         M         V         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I<	$\vdash$	0.3		6	DROCEDUBE	ASME VIII 1 TIM 52	DEDODT	м	D		NOTE 6	
Image: Solution of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of th	$\vdash$											
64         MATERAL CONFIGNANCE         S         ASTM         ASTM         ASTM         MODECN         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N				S	PROCEDURE	ASME VIII-I, APP. 6/8	REPORT	IVI	**		LIFTING DEVICES	
62         MATERIAL IDENTIFICATION         S         ASTM         ASTM         MTR         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         <				0	A (777) 4	ACTLA	DO/DOM	м	D		EN 10204 2 1 CEDTIFICATION	
6.8 <i>P</i> PROCESS INFECTOR         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1	$\vdash$										EN 10204 3.1 CERTIFICATION	
Image: Note of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se	$\vdash$			S	ASTM	ASTM	MTR	M	w			
Image: mark         Image: mark         Image: mark         Image: mark         Image: mark         Image: mark         Image: mark         Image: mark         Image: mark         Image: mark         Image: mark         Image: mark         Image: mark         Image: mark         Image: mark         Image: mark         Image: mark         Image: mark         Image: mark         Image: mark         Image: mark         Image: mark         Image: mark         Image: mark         Image: mark         Image: mark         Image: mark         Image: mark         Image: mark         Image: mark         Image: mark         Image: mark         Image: mark         Image: mark         Image: mark         Image: mark         Image: mark         Image: mark         Image: mark         Image: mark         Image: mark         Image: mark         Image: mark         Image: mark         Image: mark         Image: mark         Image: mark         Image: mark         Image: mark         Image: mark         Image: mark         Image: mark         Image: mark         Image: mark         Image: mark         Image: mark         Image: mark         Image: mark         Image: mark         Image: mark         Image: mark         Image: mark         Image: mark         Image: mark         Image: mark         Image: mark         Image: mark         Image: mark         Image: mark         Image: mark		6.8		c.	DD I WIDIG	DD I WIDIG	DD I UMIC		<b>GW</b>			
C         VSUAL INSPECTION         S         DRAWING         DRAWING         TP SCO OFF         M         W         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M												
D         Description         S         DRAWING         Report         N         R         Note         DRAWING           4         A RADOCRAPT'S SPOT         S         ASME 'HILL UNC 2         Report         N         R         N         R         Note 6         SH         SH         ASME 'HILL UNC 2         Report         Note 6         SH         SH         ASME 'HILL UNC 2         Report         Note 6         SH         SH         ASME 'HILL UNC 2         Report         Note 6         SH         SH         ASME 'HILL UNC 2         Report         Note 6         SH         SH <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>												
Image: Probability of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s												
Image:         Image:         Image:         Image:         Image:         Image:         Image:         Image:         Image:         Image:         Image:         Image:         Image:         Image:         Image:         Image:         Image:         Image:         Image:         Image:         Image:         Image:         Image:         Image:         Image:         Image:         Image:         Image:         Image:         Image:         Image:         Image:         Image:         Image:         Image:         Image:         Image:         Image:         Image:         Image:         Image:         Image:         Image:         Image:         Image:         Image:         Image:         Image:         Image:         Image:         Image:         Image:         Image:         Image:         Image:         Image:         Image:         Image:         Image:         Image:         Image:         Image:         Image:         Image:         Image:         Image:         Image:         Image:         Image:         Image:         Image:         Image:         Image:         Image:         Image:         Image:         Image:         Image:         Image:         Image:         Image:         Image: <th image:<="" td=""><td></td><td></td><td></td><td>S</td><td>DRAWING</td><td>DRAWING</td><td>ITP SIGN OFF</td><td>М</td><td>W</td><td></td><td></td></th>	<td></td> <td></td> <td></td> <td>S</td> <td>DRAWING</td> <td>DRAWING</td> <td>ITP SIGN OFF</td> <td>М</td> <td>W</td> <td></td> <td></td>				S	DRAWING	DRAWING	ITP SIGN OFF	М	W		
Image: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note: Note:		6.9							_			
6.0     MATERIAL CONFORMANCE     S     ASTM     ASTM     ASTM     MATM     N     R     C     C       6.11     MATERIAL CONFORMANCE     S     ASTM     ASTM     MATM     MR     N     N     N       6.13     JUREAL DESTIFICATION     S     DRAWING     DRAWING     DRAWING     N     W     N     N       6.13     JURUAL INSPECTION     S     DRAWING     DRAWING     DRAWING     N     W     N     N       6.14     HEST FUNDYLOLAL SECTIONS     S     DRAWING     DRAWING     REPORT     M     W     M     M       6.16     VIELA INSPECTION     S     DRAWING     DRAWING     REPORT     M     W     M     M       6.16     VIELA INSPECTION     S     DRAWING     DRAWING     REPORT     M     W     M     M       6.16     VIELA INSPECTION     S     DRAWING     DRAWING     REPORT     M     W     M     M       6.16     NEAR INTST     S     DRAWING     DRAWING     REPORT     M     W     M     M       6.16     NEAR INTST     S     DRAWING     DRAWING     REPORT     M     W     M       6.11     ILARARARIT PR				S	PROCEDURE	ASME VIII-1, UW-52	REPORT	М	R			
6.1     MATERIAL IDENTIFICATION     S     ASTM     ASTM     MTR     M     W     C     Inclusion       6.12     DERAWING     S     DRAWING     DRAWING     DRAWING     N     W     C     C       6.13     VISUAL INSPECTION     S     DRAWING     DRAWING     DRAWING     N     W     C     C       6.14     THST TH INDUDUAL SCTIONS     S     DRAWING     DRAWING     REFORT     M     W     C     PRECORD       6.15     JORIAL INSPECTION     S     DRAWING     DRAWING     REFORT     M     W     C     PRECORD       6.16     VISUAL INSPECTION     S     DRAWING     DRAWING     REFORT     M     W     C     PRECORD       6.17     VISUAL INSPECTION     S     DRAWING     DRAWING     REFORT     M     W     C     PRECORD       6.18     VIRFACE PREPARATON     S     DRAWING     DRAWING     REFORT     H     W     C     CONTYG CINCE CINC       6.18     VIRFACE PREPARATON     S     DRAWING     DFFINILLACE     REFORT     H     W     C     CONTYG CINCE CINC       6.20     CATTIG INSPECTION     S     DRAWING     DFFINILLACE     REFORT     H     W											SHIP LOOSE IN RANDOM LENGHTS	
612     IMAXING     S     DRAWING     DRAWING     M     W     M     M     M       613     VISUALINSPECTION     S     DRAWING     DRAWING     M     W     M     M       614     TSTAL INSPECTION     S     DRAWING     DRAWING     M     N     N     M       614     TST INDIVIDUAL SECTIONS     S     DRAWING     DRAWING     REVORT     M     N     M       614     TST INDIVIDUAL SECTIONS     S     DRAWING     DRAWING     REVORT     M     W     M     PER OSHA       614     TST INDIVIDUAL SECTIONS     S     DRAWING     DRAWING     REVORT     M     W     M     PER OSHA       616     ISULINSPECTION     S     DRAWING     DRAWING     REVORT     M     W     M     PER OSHA       616     ISULINSPECTION     S     DRAWING     SSEC     REVORT     M     W     M     C     OACONCANCZEV PERIOR       619     ISUR REPETION     S     DRAWING     SSEC     REVORT     H     H     M     CONCANCZEV PERIOR       621     CLANNG PARTON     S     DRAWING     DRAWING     PER OSHA     H     H     M     CONCANCZEV PERIOR       72 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>												
6.3         VSUAL INSPECTION         S         DRAWING         DRAWING         M         W         Image: Constraint of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the st												
Image: Product spectrom         Image: Product spectrom         Image: Product spectrom         Image: Product spectrom         Image: Product spectrom         Image: Product spectrom         Image: Product spectrom         Image: Product spectrom         Image: Product spectrom         Image: Product spectrom         Image: Product spectrom         Image: Product spectrom         Image: Product spectrom         Image: Product spectrom         Image: Product spectrom         Image: Product spectrom         Image: Product spectrom         Image: Product spectrom         Image: Product spectrom         Image: Product spectrom         Image: Product spectrom         Image: Product spectrom         Image: Product spectrom         Image: Product spectrom         Image: Product spectrom         Image: Product spectrom         Image: Product spectrom         Image: Product spectrom         Image: Product spectrom         Image: Product spectrom         Image: Product spectrom         Image: Product spectrom         Image: Product spectrom         Image: Product spectrom         Image: Product spectrom         Image: Product spectrom         Image: Product spectrom         Image: Product spectrom         Image: Product spectrom         Image: Product spectrom         Image: Product spectrom         Image: Product spectrom         Image: Product spectrom         Image: Product spectrom         Image: Product spectrom         Image: Product spectrom         Image: Product spectrom         Image: Product spectrom         Image: Product spectrom         Image: Product												
6.14         TEST FT INVIDUAL SECTIONS         S         DRAWING         DRAWING         PLAWING         PLAWING         R         N         R         NATCH MARK           6.15         JORNINGAL INSPECTION         \$         DRAWING         DRAWING         REPORT         M         W         PER OBIA           6.16         VISUAL INSPECTION         \$         DRAWING         DRAWING         REPORT         M         W         PER OBIA           6.17         WELD INSPECTION         \$         DRAWING         DRAWING         REPORT         M         W         PER OBIA           6.18         VIREACE PREPARATION         \$         DRAWING         SSPC         REPORT         H         R         CONLY           6.18         SURFACE PREPARATION         \$         DRAWING         DEST         REPORT         H         H         NORGANICZINC PRIMER           6.21         CLATING INSPECTION         \$         DRAWING         DEFAWING         HAWING         DRAWING         NORDAN         H         H         CONLY           7.1         MRKING TAGGING         \$         DRAWING         DRAWING         PRAWING         N         H         CONLY           7.1         NKING TAGGING         \$ </td <td></td> <td>6.13</td> <td></td> <td>S</td> <td>DRAWING</td> <td>DRAWING</td> <td>DRAWING</td> <td>М</td> <td>W</td> <td></td> <td></td>		6.13		S	DRAWING	DRAWING	DRAWING	М	W			
6.15     DMENSIONAL NSPECTION     S     DRAWING     REPORT     M     W     PR OSHA       6.16     VISUAL NSPECTION     S     DRAWING     REPORT     M     W     Image: Constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the cons		614		6	DD I WIDIG	DD I WIDLO	DIGTUDES		<b>D</b>			
6.6     VIAL INSPECTION     S     DRAWING     DRAWING     REPORT     M     W     Image: Control inspection       6.7     VELO INSPECTION     S     WPS     ASME IX     TP SGN OFF     M     W     Image: Control inspection       6.16     SUEACE PREPARATION     S     MPS     ASME IX     TP SGN OFF     M     W     Image: Control inspection       6.17     MER RUB TEST     S     ASTM D4752     ASTM D4752     REPORT     H     H     Image: Control inspection       6.20     COATING INSPECTION     S     DRAWING     DPT MILLAGE     REPORT     H     H     Image: Control inspection       6.21     CLAINIGFAINT TOUCH-UP     S     DRAWING     DPT MILLAGE     REPORT     H     W     Image: Control inspection       7.1     MARKINGT/AGGNG     S     PO-BOM     PO BOM     PO Integree     Image: Control inspection     Image: Control inspection     Image: Control inspection     Image: Control inspection       7.2     PACKING INSPECTION     S     SPECIFICATION     DRAWING     PACKING IAST     M     H     Image: Control inspection       7.1     MARKINGT/AGGNG     S     SPECIFICATION     DRAWING     PACKING IAST     M     H     Image: Control inspecin       7.2     PACKING I												
6.17     VIELD INSPECTION     S     WS     ASME IX     ITP SERV OFF     M     W     M     M       6.18     URFACE PREPARATION     S     DRAWING     SSPC     REPORT     H     R     CSONLY       6.19     MER RUB TIST     S     DRAWING     SSPC     REPORT     H     H     NORGANIC ZINC PRIMER       6.20     COATING INSPECTION     S     DRAWING     DFT/MILLAGE     REPORT     H     W     CSONLY       6.21     CLANING INSPECTION     S     DRAWING     DRAWING     DRAWING     DRAWING     NORGANIC ZINC PRIMER       6.22     CLANING INSPECTION     S     DRAWING     DRAWING     DRAWING     NORGANIC ZINC PRIMER       6.21     CLANING INSPECTION @SUBVEDOR     S     DRAWING     DRAWING     DRAWING     NORGANIC ZINC PRIME       7.2     PACKING INSPECTION @SUBVEDOR     S     SPECIFICATION     DRAWING     PACKING INSPECTION     S     SPECIFICATION       7.3     INSPECTION RELEASE     S     SPECIFICATION     DRAWING     PACKING INSPECTION     IM     H     IM     IM       7.4     IMAL DOCUMENTATION RELEASE     S     SPECIFICATION     NMR     M     H     IM     IM       7.4     IMAL DOCUMENTATION REVEW     S <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>PER OSHA</td>											PER OSHA	
Image: Construct Instruction         Image: Construction         Image: Construct	$\vdash$											
6.18     SURFACE PREPARATION     S     DRAWING     SSPC     REPORT     H     R     C SONLY       6.19     MEK RUB TEST     S     ASTM 04752     REPORT     H     H     NORGANIC ZINC PRIMER       6.20     COATING INSPECTION     S     DRAWING     DF/MILLAGE     REPORT     H     W     C SONLY       6.20     COATING INSPECTION     S     DRAWING     DRAWING     DRAWING     REPORT     H     W     C SONLY       6.20     COATING INSPECTION     S     DRAWING     DRAWING     DRAWING     DRAWING     Nord     H     W     C SONLY       7.1     MARKING TOGUNG INSECTION © SUBENDOR     S     DROM     POBOM     POLICHES     M     H     M     M     M       7.1     MARKING INSPECTION RULEASE     S     SPECIFICATION     DRAWING     PACKING INSPECTION     H     H     M     M       7.3     INSPECTION RULEASE     S     SPECIFICATION     DRAWING     M     H     M     M     M       7.4     INACLOCUMENTATION REVEW     S     SPECIFICATION     MRR     M     M     M     M     M       7.2     INSPECTION RULEASE     S     SPECIFICATION     SMD     M     M     M <t< td=""><td></td><td>0.17</td><td></td><td>S</td><td>wPS</td><td>ASME IX</td><td>11P SIGN OFF</td><td>IVI</td><td>**</td><td></td><td></td></t<>		0.17		S	wPS	ASME IX	11P SIGN OFF	IVI	**			
6.19     MEK RUB TEST     S     ASTM D4752     MEPORT     H     H     M     NORGANIC ZINC PRIMER       6.20     CATING INSPECTION     S     DRAWING     DFT/MILLAGE     REPORT     H     W     CS OLY       6.21     CLEANNG/PAINT TOUCH-UP     S     DRAWING     DFT/MILLAGE     REPORT     H     W     CS ONLY       7.0     S     DRAWING     DFT/MILLAGE     NORGANIC ZINC PRIMER     CS ONLY       7.1     MARKING/TAGGING     S     DRAWING     DRAWING     PACKING INSPECTION     S     COMPACINC PRIMER       7.1     MARKING/TAGGING     S     POBOM     PO'BOM     PACKING INSPECTION RELEASE     M     H     L     L       7.1     MARKING/TAGGING     S     SPCIECATION     DRAWING     PACKING INSPECTION     L     L     L       7.2     PACKING INSPECTION     S     SPECIFICATION     DRAWING     PACKING INSPECTION     H     H     L     L       7.3     INSPECTION RELEASE     S     SPECIFICATION     DRAWING     PACKING INSPECTION     H     H     L     L       7.4     FINAL DOCUMENTATION REVIEW     S     SPECIFICATION     MDR     H     H     L     L       2     ZEECUSA UPS LSSE TOF COLOBE X-RAY		6.10		6	DRAWING	CCDC .	DEPODT	TT	D		CS ONLY	
6.20     COATING INSPECTION     S     DRAWING     DET/MILAGE     REPORT     H     W     C     SONLY       6.21     CLEANINGPAINT TOUCH-UP     S     DRAWING     DRAWING     DRAWING     H     H     H     H       7     SHIPPING INSPECTION © SUBVENDOR     S     DRAWING     DRAWING     PROF     H     H     H     H       7.1     MARKINGTAGGING     S     DPOBOM     POBOM     PICTURES     M     H     H     H     H       7.2     PACKING INSPECTION     S     SPECIFICATION     DRAWING     PACKING INSPECTION     H     H     H     H       7.3     INSPECTION RELEASE     S     SPECIFICATION     SPECIFICATION     SPECIFICATION     MDR     M     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H												
6.21         CLEANING/PAINT TOUCH-UP         S         DRAWING         DRAWING         DRAWING         H         H         H         H         H           7.0         SHIPPING INSPECTION @ SUBVENDOR         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C												
1.0         M         MIHPING INSPECTION @ SUBVENDOR         Image          Image         Ima											CS UNLY	
	7.0	0.21		S	DRAWING	DRAWING	DRAWING	п	н			
7.2       PACKING INSPECTION       S       SPECIFICATION       DRAWING       PACKING LIST       M       H       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M	7.0	7.1		C	DO/DOM	DO/DOM	DICTUDES	м	TT			
7.3       INSPECTION RELEASE       S       PROJECT       PROJECT       RELEASE       M       H       Image: Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control o												
7.4       FINAL DOCUMENTATION REVIEW       S       SPECIFICATION       MDR       M       H       Image: Constrained of the constrained of the constrained of the constrained of the constrained of the constrained of the constrained of the constrained of the constrained of the constrained of the constrained of the constrained of the constrained of the constrained of the constrained of the constrained of the constrained of the constrained of the constrained of the constrained of the constrained of the constrained of the constrained of the constrained of the constrained of the constrained of the constrained of the constrained of the constrained of the constrained of the constrained of the constrained of the constrained of the constrained of the constrained of the constrained of the constrained of the constrained of the constrained of the constrained of the constrained of the constrained of the constrained of the constrained of the constrained of the constrained of the constrained of the constrained of the constrained of the constrained of the constrained of the constrained of the constrained of the constrained of the constrained of the constrained of the constrained of the constrained of the constrained of the constrained of the constrained of the constrained of the constrained of the constrained of the constrained of the constrained of the constrained of the constrained of the constrained of the constrained of the constrained of the constrained of the constrained of the constrained of the constrained of the constrained of the constrained of the constrained of the constrained of the constrained of the constrained of the constrained of the constrained of the constrained of the constrained of the constrained of the constrained of the constrained of the constrained of the constrained of the constrained of the constrained of the constrained of the constrained of the constrained of the constrained of the constrained of the const												
General Notes:         1       ZEECO USA WPS LIST: 111, 135A, 136B, 190, 203, 501, 900, 901         2       ZEECO USA WPS LIST: 111, 135A, 136B, 190, 203, 501, 900, 901         3       ZEECO USA SUP SCONTRACTS ALL NDE TO GLOBE X-RAY SERVICES         3       ZEECO USA ISO PROCEDURES BEGIN WITH ZQS         4       SUBVENDOR WPS LIST: TO FOLLOW         5       ASME B31.3: 5% OF EACH WELDERS WELD (BUTTWELDS) SHALL BE 100% RADIOGRAPHED.         6       ASME VII-I, UW-52 SPOT: MINIMUM ONE 6° SPOT EXAMINED FOR EACH SO'OF WELD FOR EACH WELDER.         Revision       Description         0       Initial Issue         1       Andrea Dominguez       8/3/2021												
1       ZEECO USA WPS LIST: 111, 135A, 135B, 136A, 136B, 190, 203, 501, 900, 901         2       ZEECO USA SUB-CONTRACTS ALL DDE TO GLOBE X-RAY SERVICES         3       ZEECO USA ISO PROCEDURES BEGIN WTH ZQS         4       SUBVENDOR WPS LIST: TO FOLOW         5       ASME B31.3: 5% OF EACH WELDERS WELD (BUTTWELDS) SHALL BE 100% RADIOGRAPHED.         6       ASME VIII-I, UW-52 SPOT: MINIMUM ONE 6" SPOT EXAMINED FOR EACH 50' OF WELD FOR EACH WELDER.         Revision       Description         1       Made By         0       Initial Issue         -       Andrea Dominguez         8/3/2021	<u>.</u>			S	SPECIFICATION	SPECIFICATION	MDR	M	н		1	
2       ZEECO USA SUB-CONTRACTS ALL NDE TO GLOBE X-RAY SERVICES         3       ZEECO USA SUB PROCEDURES BEGIN WITH ZQS         4       SUBVENDR WPS LIST: TO FOLLOW         5       ASME B31.3: 5% OF EACH WELDERS WELD (BUTTWELDS) SHALL BE 100% RADIOGRAPHED.         6       ASME VII-I, UW-52 SPOT: MINIMUM ONE 6" SPOT EXAMINED FOR EACH WELDER.         Revision       Description         1       Initial Issue         -       -												
3       ZEECO USA ISO PROCEDURES BEGIN WITH ZQS         4       SUBVENDOR WPS LIST: TO FOLLOW         5       ASME B1.3: 5% OF EACH WELDERS WELD (BUTTWELDS) SHALL BE 100% RADIOGRAPHED.         6       ASME VII-L, UW-52 SPOT: MINIUM ONE 6" SPOT EXAMINED FOR EACH 50' OF WELD FOR EACH WELDER.         Revision       Description         Initial Issue       Andrea Dominguez         8/3/2021												
4       SUBVENDOR WPS LIST: TO FOLLOW         5       ASME B31.3: 5% OF EACH WELDERS WELD (BUTTWELDS) SHALL BE 10% RADIOGRAPHED.         6       ASME VIII-I, UW-52 SPOT: MINIMUM ONE 6" SPOT EXAMINED FOR EACH 50' OF WELD FOR EACH WELDER.         Revision       Description         Made By       Date         Initial Issue       Andrea Dominguez         VIII-I, UW-52 SPOT: MINIMUM ONE 6" SPOT EXAMINED FOR EACH SO' OF WELD FOR EACH WELDER.         Revision       Andrea Dominguez         Native By Bobby Martin				\$								
5     ASME B31.3:5% OF EACH WELDERS WELD (BUTTWELDS) SHALL BE 10% RADIOGRAPHED.       6     ASME VIII-I, UW-52 SPOT: MINIMUM ONE 6" SPOT EXAMINED FOR EACH 50' OF WELD FOR EACH WELDER.       Revision     Description       Initial Issue     Andrea Dominguez       8/3/2021												
6       ASME VIII-I, UW-52 SPOT: MINIMUM ONE 6" SPOT EXAMINED FOR EACH 50' OF WELD FOR EACH WELDER.         Revision       Description       Made By       Date         Initial Issue       Andrea Dominguez       8/3/2021         Version       Hardcopy       Name	4				DUED							
Revision         Description         Made By         Date           0         Initial Issue         Andrea Dominguez         8/3/201           -         -         -         -	5											
0         Initial Issue         Andrea Dominguez         8/3/2021												
Image: Constraint of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second sec												
Hardcopy		,	initial 1550C	Andrea	Dominguez	0/3/2021						
Hardcopy						1						
			Hardsony								Approved by Bobby Martin	
Page 3 of 3 Page 3 of 3 Page 3 of 3 Page 3 of 3 Page 3 of 3 Page 3 of 3 Page 3 of 3 Page 3 of 3 Page 3 of 3 Page 3 of 3 Page 3 of 3 Page 3 of 3 Page 3 of 3 Page 3 of 3 Page 3 of 3 Page 3 of 3 Page 3 of 3 Page 3 of 3 Page 3 of 3 Page 3 of 3 Page 3 of 3 Page 3 of 3 Page 3 of 3 Page 3 of 3 Page 3 of 3 Page 3 of 3 Page 3 of 3 Page 3 of 3 Page 3 of 3 Page 3 of 3 Page 3 of 3 Page 3 of 3 Page 3 of 3 Page 3 of 3 Page 3 of 3 Page 3 of 3 Page 3 of 3 Page 3 of 3 Page 3 of 3 Page 3 of 3 Page 3 of 3 Page 3 of 3 Page 3 of 3 Page 3 of 3 Page 3 of 3 Page 3 of 3 Page 3 of 3 Page 3 of 3 Page 3 of 3 Page 3 of 3 Page 3 of 3 Page 3 of 3 Page 3 of 3 Page 3 of 3 Page 3 of 3 Page 3 of 3 Page 3 of 3 Page 3 of 3 Page 3 of 3 Page 3 of 3 Page 3 of 3 Page 3 of 3 Page 3 of 3 Page 3 of 3 Page 3 of 3 Page 3 of 3 Page 3 of 3 Page 3 of 3 Page 3 of 3 Page 3 of 3 Page 3 of 3 Page 3 of 3 Page 3 of 3 Page 3 of 3 Page 3 of 3 Page 3 of 3 Page 3 of 3 Page 3 of 3 Page 3 of 3 Page 3 of 3 Page 3 of 3 Page 3 of 3 Page 3 of 3 Page 3 of 3 Page 3 of 3 Page 3 of 3 Page 3 of 3 Page 3 of 3 Page 3 of 3 Page 3 of 3 Page 3 of 3 Page 3 of 3 Page 3 of 3 Page 3 of 3 Page 3 of 3 Page 3 of 3 Page 3 of 3 Page 3 of 3 Page 3 of 3 Page 3 of 3 Page 3 of 3 Page 3 of 3 Page 3 of 3 Page 3 of 3 Page 3 of 3 Page 3 of 3 Page 3 of 3 Page 3 of 3 Page 3 of 3 Page 3 of 3 Page 3 of 3 Page 3 of 3 Page 3 of 3 Page 3 of 3 Page 3 of 3 Page 3 of 3 Page 3 of 3 Page 3 of 3 Page 3 of 3 Page 3 of 3 Page 3 of 3 Page 3 of 3 Page 3 of 3 Page 3 of 3 Page 3 of 3 Page 3 of 3 Page 3 of 3 Page 3 of 3 Page 3 of 3 Page 3 of 3 Page 3 of 3 Page 3 of 3 Page 3 of 3 Page 3 of 3 Page 3 of 3 Page 3 of 3 Page 3 of 3 Page 3 of 3 Page 3 of 3 Page 3 of 3 Page 3 of 3 Page 3 of 3 Page 3 of 3 Page 3 of 3 Page 3 of 3 Page 3 of 3 Page 3 of 3 Page 3 of 3 Page 3 of 3 Page 3 of 3 Page 3 of 3 Page 3 of 3 Page 3 of 3 Page 3 of 3 Page 3 of 3 Page 3 of 3 Page 3 of 3 Page 3 of 3 Page 3 of 3 Page 3 of 3 Page 3 of 3 Page 3 of 3 Page 3 of 3 Page 3 of 3 Page 3 of 3 Page 3 of 3 Page 3 of 3 Page 3 of 3 Page 3 of 3 Page 3 of 3 Page 3			1,5									
	G:\Cor	mon\Qu	ality/II\ZQS-QUA-IV-160.xls								Page 3 of 3	

# Attachment L

Zeeco Rental Brochure





# ZEEGO FLARE SYSTEMS

22151 East 91st Street | Broken Arrow, OK 74014 USA | +1 (918) 258 8551 | zeeco.com



### **INSTALLATION, CONSTRUCTION, & ERECTION SERVICES**

Managing an array of system engineers and contractors and dealing with unpleasant surprises can result in significant downtime for installations and lead to business losses. Let Zeeco's Global Field Services eliminate the hassles, reduce costs, and save time and resources by assuming single-point responsibility for your project. With Zeeco, there are no contractual layers between the customer, the OEM supplier, and the contractors. You're guaranteed a single team with a single vision and singular commitment to your success – all backed by the world leader's engineering experience in combustion and environmental solutions.



#### **FLAREGUARDIAN**[™]

The award-winning ZEECO® FlareGuardian flare monitor is a revolutionary instrument utilizing patented Video Imaging Spectro-Radiometry (VISR) technology. The innovative device allows operators to directly, continuously, and autonomously measure flare performance – including Combustion Effeciency (CE), smoke index levels, flame stability, flame footprint, heat release, and pilot presence – in real-time. Eliminate the tedious aiming, data reduction, and ongoing operation and maintenance costs associated with other flare monitoring methods while staying in compliance with the most stringent EPA or other environmental regulations.



#### PARTS

It doesn't matter if your equipment was manufactured by Zeeco or another combustion equipment supplier. We have what you need to restore or improve your equipment's safety, efficiency, functionality, and environmental performance at a competitive price. Plus, our experts understand the complexities of your system, not just the replacement parts. If you need custom components made specifically for your project, Zeeco can engineer a solution to fit seamlessly into your system and have it operating like new or better.



#### FLARE TIP ENGINEERED SOLUTIONS

There are many reasons why flare tips shouldn't be replaced like-in-kind, especially if a failure is being replicated. Regardless of the original equipment manufacturer, let Zeeco's Engineered Solutions team evaluate the root cause of your flare tip failure or revised process requirements. Whether the need for change is due to mechanical failures, operational struggles, or updated environmental rules, our team of engineers is ready to provide the optimal technology for your plant moving forward.



22151 East 91st Street | Broken Arrow, OK 74014 USA +1.918.258.8551 | zeeco.com

# **DO YOU NEED TO SHUTDOWN YOUR FLARE?**

ZEECO® Combustion Rentals span the scope and capacity to keep any facility's essential operations online during both planned and emergency flare outages. Our rental flare systems are supported entirely by ZEECO Turnkey Combustion Services and can keep specific processes online or eliminate the need to fully de-inventory plants - shortening turnarounds by days. Go with the industry's largest, most dependable combustion rental fleet. Go Zeeco.

### **ZEECO COMBUSTION RENTAL CAPABILITIES**



### **100% PLANT CAPACITY**

- » Keep entire facilities online at design capacity to maintain revenues
- » Flare options up to 300-feet-tall and 50-inch-diameter
- » Flare capacity: 0 to 3 MM lb/Hr
- » Smokeless, steam, air, and unassisted available
- » Multiple installation and support options
- » Rapid deployment and installation
- » Self-contained operation and controls



#### **PARTIAL PLANT OR IDLE RELIEF CAPACITY**

- » Leave relief gathering systems intact
- » Reduce required isolation
- » Lower capacity required for plant during reduced / idle operation
- » Allows full service of main flare while keeping critical systems online
- » Reduce outages by days by eliminating purge-out
- » Mobile units ensure rapid deployment and installation



### SINGLE PROCESS AREA MAINTENANCE CAPACITY

- » Service a single system during maintenance activity
- » Installation can be in close proximity to emissions point
- » Enclosed flare option shields visible flames from community view
- » Mobile units ensure rapid deployment and installation



# The Zeeco Difference.



Our only business is the combustion business. By concentrating on what we do best, Zeeco has grown into a worldwide leader in combustion solutions. We are a privately held company whose ownership stays highly involved in daily operations, with upper management comprised of the world's leading combustion experts.

When you call Zeeco, we answer. When you make a request, you get a quick, efficient response. We are lean and efficient, able to make decisions quickly, without bureaucracy and red tape. Our sales, engineering, and purchasing groups work hand-in-hand to deliver highly competitive quotes and heroic turnaround times. We stand ready and willing to travel anywhere in the world to discuss upcoming projects firsthand, and to ensure that every existing project runs seamlessly.

Visit zeeco.com/contact for additional Global Location contact information



Choose to work with our dedicated, flexible, and innovative team, and you won't be disappointed. Call or email us today to request a quote or to learn more about our proprietary combustion systems.

Certifications apply to Zeeco Headquarters.



✓ sales@zeeco.com
▲ +1 (918) 258 8551

# Section 8

# Map(s)

<u>A map</u> such as a 7.5 minute topographic quadrangle showing the exact location of the source. The map shall also include the following:

The UTM or Longitudinal coordinate system on both axes	An indicator showing which direction is north
A minimum radius around the plant of 0.8km (0.5 miles)	Access and haul roads
Topographic features of the area	Facility property boundaries
The name of the map	The area which will be restricted to public access
A graphical scale	



18	10000
	FEET

# **Proof of Public Notice**

(for NSR applications submitting under 20.2.72 or 20.2.74 NMAC) (This proof is required by: 20.2.72.203.A.14 NMAC "Documentary Proof of applicant's public notice")

□ I have read the AQB "Guidelines for Public Notification for Air Quality Permit Applications" This document provides detailed instructions about public notice requirements for various permitting actions. It also provides public notice examples and certification forms. Material mistakes in the public notice will require a re-notice before issuance of the permit.

Unless otherwise allowed elsewhere in this document, the following items document proof of the applicant's Public Notification. Please include this page in your proof of public notice submittal with checkmarks indicating which documents are being submitted with the application.

New Permit and Significant Permit Revision public notices must include all items in this list.

Technical Revision public notices require only items 1, 5, 9, and 10.

Per the Guidelines for Public Notification document mentioned above, include:

- 1. A copy of the certified letter receipts with post marks (20.2.72.203.B NMAC)
- 2. A list of the places where the public notice has been posted in at least four publicly accessible and conspicuous places, including the proposed or existing facility entrance. (e.g: post office, library, grocery, etc.)
- 3. A copy of the property tax record (20.2.72.203.B NMAC).
- 4. 🛛 A sample of the letters sent to the owners of record.
- 5. 🛛 A sample of the letters sent to counties, municipalities, and Indian tribes.
- 6. 🛛 A sample of the public notice posted and a verification of the local postings.
- 7. 🛛 A table of the noticed citizens, counties, municipalities and tribes and to whom the notices were sent in each group.
- 8. 🛛 A copy of the public service announcement (PSA) sent to a local radio station and documentary proof of submittal.
- 9. A copy of the <u>classified or legal</u> ad including the page header (date and newspaper title) or its affidavit of publication stating the ad date, and a copy of the ad. When appropriate, this ad shall be printed in both English and Spanish.
- 10. A copy of the <u>display</u> ad including the page header (date and newspaper title) or its affidavit of publication stating the ad date, and a copy of the ad. When appropriate, this ad shall be printed in both English and Spanish.
- 11. A map with a graphic scale showing the facility boundary and the surrounding area in which owners of record were notified by mail. This is necessary for verification that the correct facility boundary was used in determining distance for notifying land owners of record.

# NOTICE OF AIR QUALITY PERMIT APPLICATION

Targa Midstream Services, LLC announces its application submittal to the New Mexico Environment Department for an air quality permit for the modification of its gas plant. The expected date of application submittal to the Air Quality Bureau is October 31, 2024.

The exact location for the facility, known as Copperhead Gas Plant, is at latitude 32.212128 North and longitude -103.624164 West. The approximate location of this facility is 25.9 miles east of Malaga in Lea County.

The proposed modification consists of adding process trains 1 and 2 at the facility.

The estimated maximum quantities of any regulated air contaminants will be as follows in pound per hour (pph) and tons per year (tpy). These reported emissions could change slightly during the course of the Department's review:

Pollutant:	Pounds per hour	Tons per year
Particulate Matter (PM)	4.85	15.20
PM ₁₀	3.82	15.20
PM _{2.5}	3.51	15.20
Sulfur Dioxide (SO ₂ )	2,536.98	89.83
Nitrogen Oxides (NO _x )	4,289.49	195.16
Carbon Monoxide (CO)	8,526.21	226.58
Volatile Organic Compounds (VOC)	3,734.80	135.84
Total sum of all Hazardous Air Pollutants (HAPs)	3.93	23.57
Toxic Air Pollutant (TAP)	n/a	n/a
Green House Gas Emission as Total CO ₂ e	n/a	306,289

The standard and maximum operating schedules of the facility will be 24 hours per day, 7 days a week and a maximum of 52 weeks per year.

The owner/operator of the Facility is: Targa Midstream Services, LLC, Box 1909, Eunice, NM 88231.

If you have any comments about the construction or operation of this facility, and you want your comments to be made as part of the permit review process, you must submit your comments in writing to this address: Permit Programs Manager; New Mexico Environment Department; Air Quality Bureau; 525 Camino de los Marquez, Suite 1; Santa Fe, New Mexico; 87505-1816. Other comments and questions may be submitted verbally. (505) 476-4300; 1 800 224-7009.

Please refer to the company name and site name, or send a copy of this notice along with your comments, since the Department may have not yet received the permit application. Please include a legible return mailing address with your comments. Once the Department has performed a preliminary review of the application and its air quality impacts, the Department's notice will be published in the legal section of a newspaper circulated near the facility location.

General information about air quality and the permitting process, and links to the regulations can be found at the Air Quality Bureau's website: www.env.nm.gov/air-quality/permitting-section-home-page/. The regulation dealing with public participation in the permit review process is 20.2.72.206 NMAC.

### Atención

Este es un aviso de la oficina de Calidad del Aire del Departamento del Medio Ambiente de Nuevo México, acerca de las emisiones producidas por un establecimiento en esta área. Si usted desea información en español, por favor comuníquese con esa oficina al teléfono 505-629-3395.

## **Notice of Non-Discrimination**

NMED does not discriminate on the basis of race, color, national origin, disability, age or sex in the administration of its programs or activities, as required by applicable laws and regulations. NMED is responsible for coordination of compliance efforts and receipt of inquiries concerning non-discrimination requirements implemented by 40 C.F.R. Part 7, including Title VI of the Civil Rights Act of 1964, as amended; Section 504 of the Rehabilitation Act of 1973; the Age Discrimination Act of 1975, Title IX of the Education Amendments of 1972, and Section 13 of the Federal Water Pollution Control Act Amendments of 1972. If you have any questions about this notice or any of NMED's non-discrimination programs, policies or procedures, or if you believe that you have been discriminated against with respect to a NMED program or activity, you may contact: Non-Discrimination Coordinator, NMED, 1190 St. Francis Dr., Suite N4050, P.O. Box 5469, Santa Fe, NM 87502, (505) 827-2855, nd.coordinator@env.nm.gov. You may also visit our website at https://www.env.nm.gov/non-employee-discrimination-complaint-page/ to learn how and where to file a complaint of discrimination.

# **General Posting of Notices – Certification**

I, _____, the undersigned, certify that on _____, posted a true and correct copy of the attached Public Notice in the following publicly accessible and conspicuous places in, or near, **Jal, Lea** County, state of New Mexico on the following dates:

- 1. Targa Midstream Services, LLC Copperhead Gas Plant Date:_____
- Woolworth Community Library 100 E. Utah Jal, NM 88252 Date:_____
- Jal City Hall710 W Wyoming Ave.Jal, NM 88252Date:
- 4. US Post Office 111 South Fourth Street Jal, NM 88252 Date:

Signed this ______ day of ______, 2024 ,

Signature

Date

Printed Name

Title

### PUBLIC SERVICE ANNOUNCEMENT

Targa Midstream Services LLC announces its application to the New Mexico Environment Department for an air quality permit for the modification of its gas plant. The proposed modification consists of installing process train 1 and 2. The expected date of application submittal to the Air Quality Bureau is October 31, 2024. This notice is a requirement according to New Mexico air quality regulations.

The exact location for the facility, known as the Copperhead Gas Plant, is at latitude 32.212128 North and longitude -103.624164 West. The approximate location of this facility is roughly 25.9 East of Malaga, NM, in Lea County.

The site will be a natural gas processing plant.

The owner and/or operator of the Facility is: Targa Midstream Services LLC PO Box 1909 Eunice, NM 88231

Notices were posted at the Copperhead Compressor Station site and the following three locations:

Woolworth Community Library 100 E. Utah Jal, NM 88252

Jal City Hall 710 W. Wyoming Ave. Jal, NM 88252

US Post Office 111 South Fourth Street Jal, NM 88252

The address for submitting comments to the NMED is as follows:

New Mexico Environment Department Air Quality Bureau – Permits Section 525 Camino de los Marquez, Suite 1 Santa Fe, New Mexico 87505

# <u>Submittal of Public Service Announcement – Certification</u>

I, <u>Angie Dawson</u>, the undersigned, certify that on <u>January 31, 2024</u>, submitted a public service announcement to KZOR - KIXN- KPZA -KEJL - KYKK/KOOL FM Radio that serves the City\Town\Village of Jal and the surrounding areas, Lea County, New Mexico, in which the source is or is proposed to be located and that KZOR - KIXN- KPZA -KEJL - KYKK/KOOL FM Radio has responded that it will air the announcement.

Signed this <u>24th</u> day of <u>October</u>, <u>2024</u>,

Angie Dawson

Signature

<u>10/24/2024</u> Date

Angie Dawson Printed Name

<u>Consultant</u> Title {APPLICANT OR RELATIONSHIP TO APPLICANT}

#### Angie Dawson

From:	Aaron Forrister <aaron@noalmark.com></aaron@noalmark.com>
Sent:	Thursday, October 24, 2024 11:43 AM
То:	Angie Dawson
Subject:	Re: PSA Needed As Soon As Possible
Attachments:	CREDIT CARD FORM.docx

Hi Angie,

Sure...we can run it Monday 10/28/24.

The fee is \$75 for one time. Credit Card Form attached. Please fill out the form and return to me.

Aaron Forrister, CRMC New Mexico Market Manager KZOR-KIXN-KPZA-KEJL-KLEA-KBIM FM-KBIM 575-318-7217 mobile 575-397-4969 office 575-393-4310 fax 619 North Turner Hobbs, NM 88240



Noalmark Broadcasting Corporation and its stations do not discriminate in advertising contracts on the basis of race or ethnicity, and will not accept any advertising which is intended to discriminate on the basis of race or ethnicity. Advertiser represents and warrants that it is not purchasing advertising time from Noalmark Broadcasting Corporation or its stations that is intended to discriminate on the basis of race or ethnicity.

From: Angie Dawson <Angie.Dawson@altamira-us.com>
Sent: Thursday, October 24, 2024 9:32 AM
To: Aaron Forrister <aaron@noalmark.com>
Cc: Laura Worthen-Lodes <Laura.Worthen-Lodes@Altamira-US.com>
Subject: PSA Needed As Soon As Possible

Hi Aaron,

My company is doing an air application for our client Targa. It is for their Copperhead Gas Plant. The application requires a public

service announcement on a local station that services the Lea county area. The attached announcement will only need to run

one time. Is this something that you can help with?

# **Angie Dawson**

Air Quality Technician | 405-317-0942 | <u>altamira-us.com</u> 525 Central Park Dr., Suite 500 Oklahoma City, OK 73105



# New Mexico Municipalities (04-2023)

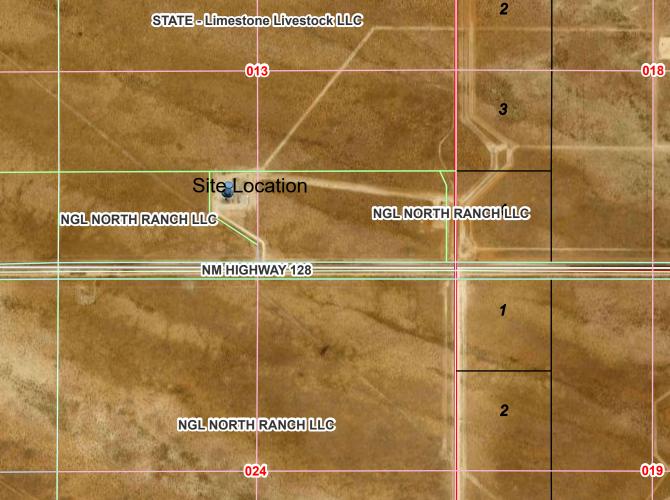
Municipality	Mayor (as of 4-2023)	County	2010 Population	2020 Population	% Change (2010 to 2020)	Incorporation Date
Alamogordo	Susan Payne	Otero	30,403	31,361	3%	1912
Albuquerque	Timothy Keller	Bernalillo	545,852	564,648	3%	1885
Angel Fire	Jo Mixon	Colfax	1,216	1,211	0%	1986
Anthony		Dona Ana	9,360	8,701	-7%	2010
Artesia	Jon Henry	Eddy	11,301	12,844	14%	1905
Aztec	Michael Padilla	San Juan	6,763	6,196	-8%	1905
Bayard	Chon Fierro	Grant	2,328	2,124	-9%	1938
Belen	Robert Noblin	Valencia	7,269	7,386	2%	1918
Bernalillo	Jack Torres	Sandoval	8,320	9,084	9%	1948
Bloomfield	Cynthia Atencio	San Juan	8,112	7,407	-9%	1958
Bosque Farms	Russel Walkup	Valencia	3,904	4,053	4%	1974
Capitan	Ron Lowrance	Lincoln	1,489	1,396	-6%	1937
Carlsbad	Dale Janway	Eddy	26,138	32,248	23%	1918
Carrizozo	Ray Dean	Lincoln	996	968	-3%	1917
Causey	Kris King	Roosevelt	104	69	-34%	1959
Chama	Ernest Vigil	Rio Arriba	1,022	914	-11%	1961
Cimarron	Matthew Gonzales	Colfax	1,021	802	-21%	1910
Clayton	Ernest Sanches	Union	2,980	2,731	-8%	1912
Cloudcroft	Bill Denney	Otero	674	768	14%	1948
Clovis	Michael Morris	Curry	37,775	38,244	14%	1948
Columbus	Esequiel Salas	Luna	1,664	1,451	-13%	1913
Corona	Samuel Seely	Lincoln	172	130	-24%	1947
Corrales	James Fahey, Jr., MD	Sandoval	8,329	8,517	24%	1971
Cuba		Sandoval	731	630	-14%	1964
	Denny Herrera	Luna	14,855		-14%	1964
Deming Dec maines	Benny Jasso Jonathan Valdez	Union	14,855	14,787 109	-24%	1902
Des moines		Chaves			-24%	1913
Dexter Dora	Mitch Daubert	Roosevelt	1,266 133	1,079 117	-15%	1903
	Michey Burkett Jeff Carr	Colfax	290	328	13%	1939
Eagle Nest Edgewood		Santa Fe	3,735	6,183	66%	1978
Elephant Butte	Audrey Jaramillo	Sierra	1,431	1,432	0%	1999
Elida	Philip Mortensen Durwood Dixon	Roosevelt	1,431	1,432	-19%	1998
Encino	Boyd Herrington	Torrance	82	51	-38%	1907
Espanola	John Ramon	Rio Arriba	10,224	10,514	-38%	1938
Estancia	Nathan Dial	Torrance	1,655	1,487	-10%	1923
			2,922	3,065	5%	1936
Eunice Farmington	Billy Hobbs Nate Duckett	Lea San Juan	45,877	46,596	2%	1938
Floyd	Colin Chandler	Roosevelt	133	40,390	-36%	1901
Folsom	Stephanie King	Union	56	43	-23%	1908
Fort Sumner	Louie Gallegos	De Baca	1,031	877	-23%	1908
Gallup	Louie Bonaguidi	McKinley	21,678	21,765	0%	1891
Grady	Wesley Shafer	Curry	107	88	-18%	1936
Grants	Erik Garcia	Cibola	9,182	9,141	-18%	1933
Grenville	Judy Jacobs	Union	38	22	-42%	1933
Hagerman	Tony Garcia	Chaves	1,257	982	-42%	1920
Hatch	James Whitlock	Dona Ana	1,237	1,550	-22%	1903
Hatch	Sam Cobb	Lea	34,122	40,618	-6%	1927
Hope	Bill Fletcher	Eddy	105	40,018	9%	1910
House	Sherman Martin	Quay	68	55	-19%	1910
Hurley	Ed Stevens	Grant	1,297	1,262	-19%	1959
Jal	Stephen Aldridge	Lea	2,047	2,196	-3%	1950
Jemez Springs	Roger Sweet	Sandoval	2,047	2,196 197	-21%	1955
Kirtland	Mark Duncan	San Juan	7,875	580	-21%	2015
Lake Arthur	Ysidro Salazar	Chaves	436	382	-93%	1906
		Dona Ana	97,618			1906
Las Cruces	Ken Miyagishima		13,753		-4%	
Las Vegas	Louie Trujillo David Babb	San Miguel Quay	1,042	13,163 974	-4%	<u>1888</u> 1959

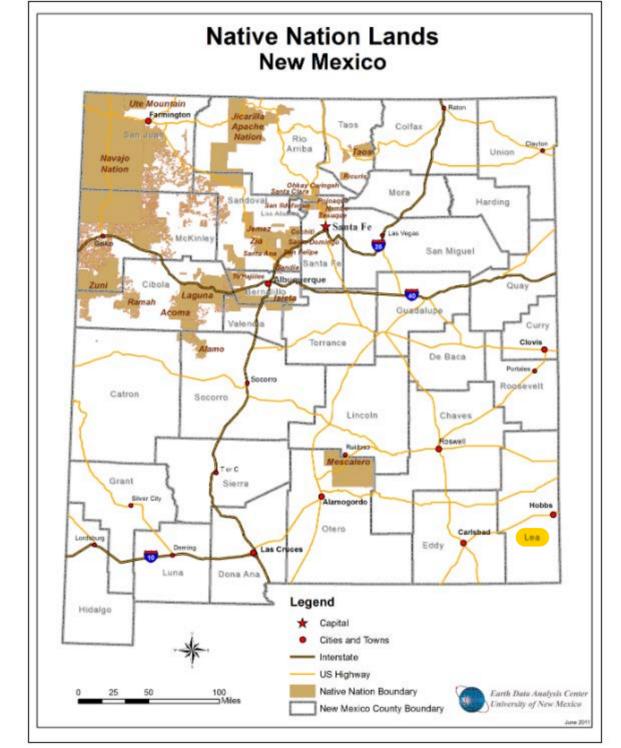
Municipality	Mayor (as of 4-2023)	County	2010 Population	2020 Population	% Change (2010 to 2020)	Incorporation Date
Lordsburg	Glenda Greene	Hidalgo	2,797	2,318	-17%	1916
Los Alamos	Randall Tyti	Los Alamos	17,744	12,978	-27%	1969
Los Lunas	Charles Griego	Valencia	14,835	17,370	17%	1928
Los Ranchos	Don Lopez	Bernalillo	6,024	5,881	-2%	1958
Loving	Pete Estrada	Eddy	1,413	1,386	-2%	1945
Lovington	David Ttrujillo	Lea	11,009	11,678	6%	1917
Magdalena	Richard Rumpf	Socorro	938	821	-12%	1918
Maxwell	Shantelle Gallegos	Colfax	254	230	-9%	1912
Melrose	Barry Green	Curry	651	612	-6%	1916
Mesilla	Nora Barraza	Dona Ana	2,196	1,804	-18%	1959
Milan	Felix Gonzales	Cibola	3,245	2,531	-22%	1957
Moriarty	Ted Moriarty	Torrance	1,910	1,908	0%	1953
Mosquero	Victor Vihil	Harding	93	100	8%	1922
Mountainair	Peter Nieto	Torrance	928	869	-6%	1903
Pecos	Telesfor Benavidez	San Miguel	1,398	1,377	-2%	1953
Peralta	Bryan Olguin	Valencia	3,660	3,380	-8%	2007
Portales	Ronald Jackson	Roosevelt	12,280	12,109	-1%	1909
Questa	John Ortega	Taos	1,770	1,724	-3%	1964
Raton	Neil Segotta	Colfax	6,885	6,031	-12%	1891
Red River	Linda Calhoun	Taos	477	537	13%	1971
Reserve	Hilda Kellar	Catron	289	290	0%	1974
Rio Communities	Joshua Ramsell	Valencia	5,000	4,965	-1%	2013
Rio Rancho	Greggory Hull	Sandoval	87,521	104,257	19%	1981
Roswell	Timothy Jennings	Chaves	48,366	48,541	0%	1903
Roy	Matthew Baca	Harding	234	194	-17%	1916
Ruidoso	Lynn Crawford	Lincoln	8,029	7,693	-4%	1945
Ruidoso Downs	Dean holman	Lincoln	2,815	2,632	-7%	1947
San Jon	Billie jo Barnes	Quay	216	195	-10%	1946
San Ysidro	Steve Lucero	Sandoval	193	166	-14%	1967
Santa Clara	Richard Bauch	Grant	1,686	1,624	-4%	1947
Santa Fe	Alan Webber	Santa Fe	67,947	87,684	29%	1891
Santa Rosa	Nelson Kotiar	Guadalupe	2,848	2,846	0%	1914
Silver City	Ken Ladner	Grant	10,315	9,689	-6%	1878
Socorro	Ravi Bhasker	Socorro	9,051	8,549	-6%	1894
Springer	Boe Lopez	Colfax	1,047	939	-10%	1910
Sunland Park	Javier Perea	Dona Ana	14,106	16,807	19%	1983
T or C	Amanda Forrister	Sierra	6,475	6,064	-6%	1916
Taos	Pascualito Maestas	Taos	5,716	6,577	15%	1934
Taos Ski Valley	Christof Brownell	Taos	69	79	14%	1996
Tatum	Amy Gutierrez	Lea	798	711	-11%	1948
Texico	Jerry Bradley	Curry	1,130	938	-17%	1908
Tijeras	Jake Bruton	Bernalillo	541	465	-14%	1973
Tucumcari	Ruth Ann Litchfield	Quay	5,363	5,252	-2%	1908
Tularosa	Margaret Trujillo	Otero	2,842	2,610	-8%	1916
Vaugn	Roman Garcia	Guadalupe	446	282	-37%	1919
Virden	Jacob Bigler	Hidalgo	152	125	-18%	1932
Wagon Mound	Andres Martinez	Mora	314	264	-16%	1918
Willard	David Dean	Torrance	253	201	-21%	1910
Williamsburg	Deb Stubblefield	Sierra	449	461	3%	1949



Search by	Owner #	Owner Name	Mailing Zip Code	Property Code	Physical Address	Subdivision	<u>Metes</u>	Assessor Map Lookup	<u>Plats</u>
-----------	---------	------------	------------------	---------------	------------------	-------------	--------------	---------------------	--------------

Click to Print


Owner Information		
<b>Owner #</b> 206138 <b>District</b> 190		
VERSADO GAS PROCESSORS LLC		
KE ANDREWS & CO %		
2424 RIDGE RD		
ROCKWALL TX 75087		
Estimated Taxes for Own	51.	
Estimated Tax	Estimated Year used	
\$.		
Calculate Estimated Tax		


Recap Value Information-

•			
Central Full Value	46583352	Full Value	46583352
Land Full Value	0	Taxable Value	15527784
Improvements Full value	0	Exempt Value	0
Personal Property Full Value	0	Net Value	15527784
Manufactured Home Full Value	0		
Livestock Full Value	0		

#### Property Information

Property Code 4000051757005	
Book 2132 Page 32 Reception# 22911	
Physical Address	
Bldg Apt	
Section 13 Township 24 S Range 32 E	
80.00 AC LOC IN \$2\$2	
BEG AT THE NE CORNER OF THE SE4	
BEARS N89D32'53"E 183.74'AND	
N0D20'02''W 1320.33';	
TH S24D46'49"E 215.77',	
TH S0D20'02''E 1006.52',	
TH S89D42'18"W 2503.90',	
TH N0D20'02"W 224.49',	
TH N57D26'36"W 763.82',	
TH N0D20'02"W 555.68',	
TH N89D32'53"W 3056.00', TO THE POB	
8/19/10-KELLER, JAMES & LANETT	
10/11/11-WRIGHT, WILLIAM J &	
MARJORIE TRUST	
12/22/17 BK 2, PG 487, MCCLOY LAND	
DIVISION	
3/01/17 BK 2129/788 MEMORANDUM OF	
OPTION TO PURCHASE AGREEMENT	
04/09/18-MC CLOY, MARK & ANNETTE	
TRUST	
04/09/18 REDESC FROM #206181	







October 24, 2024

Lea County New Mexico Keith Manes, Lea County Clerk 100 N. Main Avenue, Suite 1C Lovington, NM 88260 (575) 396-8619

### Certified Mail 9589 0710 5270 1125 5841 51

Dear Mr. Manes,

Targa Midstream Services, LLC announces its application submittal to the New Mexico Environment Department for an air quality permit for its gas plant. The expected date of application submittal to the Air Quality Bureau is October 31, 2024.

The exact location for the facility, known as Copperhead Gas Plant, is at latitude 32.212128 north and longitude -103.624164 west. The approximate location of this facility is 25.9 miles east of Malaga in Lea County.

The proposed modification consists of adding process trains 1 and 2 at the facility.

The estimated maximum quantities of any regulated air contaminants will be as follows in pound per hour (pph) and tons per year (tpy). These reported emissions could change slightly during the course of the Department's review:

Pollutant:	Pounds per hour	Tons per year
Particulate Matter (PM)	4.85	15.20
PM ₁₀	3.82	15.20
PM _{2.5}	3.51	15.20
Sulfur Dioxide (SO ₂ )	2,536.98	89.83
Nitrogen Oxides (NO _x )	4,289.49	195.16
Carbon Monoxide (CO)	8,526.21	226.58
Volatile Organic Compounds (VOC)	3,734.80	135.84
Total sum of all Hazardous Air Pollutants (HAPs)	3.93	23.57
Toxic Air Pollutant (TAP)	n/a	n/a
Green House Gas Emission as Total CO ₂ e	n/a	306,289

The standard and maximum operating schedules of the facility will be 24 hours per day, 7 days a week and a maximum of 52 weeks per year.

The owner/operator of the Facility is: Targa Midstream Services, LLC, Box 1909, Eunice, NM 88231.

 $\label{eq:angleton} Angleton \bullet Houston \bullet Irving \bullet Oklahoma City \bullet Tulsa$ 



If you have any comments about the construction or operation of this facility, and you want your comments to be made as part of the permit review process, you must submit your comments in writing to this address: Permit Programs Manager; New Mexico Environment Department; Air Quality Bureau; 525 Camino de los Marquez, Suite 1; Santa Fe, New Mexico; 87505-1816. Other comments and questions may be submitted verbally. (505) 476-4300; 1 800 224-7009.

Please refer to the company name and facility name or send a copy of this notice along with your comments, since the Department may have not yet received the permit application. Please include a legible return mailing address with your comments. Once the Department has performed a preliminary review of the application and its air quality impacts, the Department's notice will be published in the legal section of a newspaper circulated near the facility location.

## Attención

Este es un aviso de la oficina de Calidad del Aire del Departamento del Medio Ambiente de Nuevo México, acerca de las emisiones producidas por un establecimiento en esta área. Si usted desea información en español, por favor comuníquese con esa oficina al teléfono 505-629-3395.

Sincerely, Altamira-US, LLC

HMW

Laura Worthen Lodes Chief Engineering Officer

## **Notice of Non-Discrimination**

NMED does not discriminate on the basis of race, color, national origin, disability, age or sex in the administration of its programs or activities, as required by applicable laws and regulations. NMED is responsible for coordination of compliance efforts and receipt of inquiries concerning non-discrimination requirements implemented by 40 C.F.R. Part 7, including Title VI of the Civil Rights Act of 1964, as amended; Section 504 of the Rehabilitation Act of 1973; the Age Discrimination Act of 1975, Title IX of the Education Amendments of 1972, and Section 13 of the Federal Water Pollution Control Act Amendments of 1972. If you have any questions about this notice or any of NMED's non-discrimination programs, policies or procedures, or if you believe that you have been discriminated against with respect to a NMED program or activity, you may contact: Non-Discrimination Coordinator, NMED, 1190 St. Francis Dr., Suite N4050, P.O. Box 5469, Santa Fe, NM 87502, (505) 827-2855, nd.coordinator@env.nm.gov. You may also visit our website at https://www.env.nm.gov/non-employee-discrimination-complaint-page/ to learn how and where to file a complaint of discrimination.





October 24, 2024

NGL North Ranch LLC 6120 S Yale Ave., Suite 805 Tulsa, OK 74136

### Certified Mail 9589 0710 5270 1125 5841 44

Dear Ms. Marks,

Targa Midstream Services, LLC announces its application submittal to the New Mexico Environment Department for an air quality permit for its gas plant. The expected date of application submittal to the Air Quality Bureau is October 31, 2024.

The exact location for the facility, known as Copperhead Gas Plant, is at latitude 32.212128 north and longitude -103.624164 west. The approximate location of this facility is 25.9 miles east of Malaga in Lea County.

The proposed modification consists of adding process trains 1 and 2 at the facility.

The estimated maximum quantities of any regulated air contaminants will be as follows in pound per hour (pph) and tons per year (tpy). These reported emissions could change slightly during the course of the Department's review:

Pollutant:	Pounds per hour	Tons per year
Particulate Matter (PM)	4.85	15.20
PM ₁₀	3.82	15.20
PM _{2.5}	3.51	15.20
Sulfur Dioxide (SO ₂ )	2,536.98	89.83
Nitrogen Oxides (NO _x )	4,289.49	195.16
Carbon Monoxide (CO)	8,526.21	226.58
Volatile Organic Compounds (VOC)	3,734.80	135.84
Total sum of all Hazardous Air Pollutants (HAPs)	3.93	23.57
Toxic Air Pollutant (TAP)	n/a	n/a
Green House Gas Emission as Total CO ₂ e	n/a	306,289

The standard and maximum operating schedules of the facility will be 24 hours per day, 7 days a week and a maximum of 52 weeks per year.

The owner/operator of the Facility is: Targa Midstream Services, LLC, Box 1909, Eunice, NM 88231.



If you have any comments about the construction or operation of this facility, and you want your comments to be made as part of the permit review process, you must submit your comments in writing to this address: Permit Programs Manager; New Mexico Environment Department; Air Quality Bureau; 525 Camino de los Marquez, Suite 1; Santa Fe, New Mexico; 87505-1816. Other comments and questions may be submitted verbally. (505) 476-4300; 1 800 224-7009.

Please refer to the company name and facility name or send a copy of this notice along with your comments, since the Department may have not yet received the permit application. Please include a legible return mailing address with your comments. Once the Department has performed a preliminary review of the application and its air quality impacts, the Department's notice will be published in the legal section of a newspaper circulated near the facility location.

### Attención

Este es un aviso de la oficina de Calidad del Aire del Departamento del Medio Ambiente de Nuevo México, acerca de las emisiones producidas por un establecimiento en esta área. Si usted desea información en español, por favor comuníquese con esa oficina al teléfono 505-629-3395.

### Sincerely, Altamira-US, LLC

Laura Worthen Lodes Chief Engineering Officer

## **Notice of Non-Discrimination**

NMED does not discriminate on the basis of race, color, national origin, disability, age or sex in the administration of its programs or activities, as required by applicable laws and regulations. NMED is responsible for coordination of compliance efforts and receipt of inquiries concerning non-discrimination requirements implemented by 40 C.F.R. Part 7, including Title VI of the Civil Rights Act of 1964, as amended; Section 504 of the Rehabilitation Act of 1973; the Age Discrimination Act of 1975, Title IX of the Education Amendments of 1972, and Section 13 of the Federal Water Pollution Control Act Amendments of 1972. If you have any questions about this notice or any of NMED's non-discrimination programs, policies or procedures, or if you believe that you have been discriminated against with respect to a NMED program or activity, you may contact: Non-Discrimination Coordinator, NMED, 1190 St. Francis Dr., Suite N4050, P.O. Box 5469, Santa Fe, NM 87502, (505) 827-2855, nd.coordinator@env.nm.gov. You may also visit our website at https://www.env.nm.gov/non-employee-discrimination-complaint-page/ to learn how and where to file a complaint of discrimination.





October 24, 2024

New Mexico State Land Officer Oil, Gas and Minerals Division Allison Marks, Director 310 Old Santa Fe Trail Santa Fe, NM 87501 (505) 827-5745

#### Certified Mail 9589 0710 5270 1125 5841 68

Dear Ms. Marks,

Targa Midstream Services, LLC announces its application submittal to the New Mexico Environment Department for an air quality permit for its gas plant. The expected date of application submittal to the Air Quality Bureau is October 31, 2024.

The exact location for the facility, known as Copperhead Gas Plant, is at latitude 32.212128 north and longitude -103.624164 west. The approximate location of this facility is 25.9 miles east of Malaga in Lea County.

The proposed modification consists of adding process trains 1 and 2 at the facility.

The estimated maximum quantities of any regulated air contaminants will be as follows in pound per hour (pph) and tons per year (tpy). These reported emissions could change slightly during the course of the Department's review:

Pollutant:	Pounds per hour	Tons per year
Particulate Matter (PM)	4.85	15.20
PM ₁₀	3.82	15.20
PM _{2.5}	3.51	15.20
Sulfur Dioxide (SO ₂ )	2,536.98	89.83
Nitrogen Oxides (NO _x )	4,289.49	195.16
Carbon Monoxide (CO)	8,526.21	226.58
Volatile Organic Compounds (VOC)	3,734.80	135.84
Total sum of all Hazardous Air Pollutants (HAPs)	3.93	23.57
Toxic Air Pollutant (TAP)	n/a	n/a
Green House Gas Emission as Total CO ₂ e	n/a	306,289

The standard and maximum operating schedules of the facility will be 24 hours per day, 7 days a week and a maximum of 52 weeks per year.

The owner/operator of the Facility is: Targa Midstream Services, LLC, Box 1909, Eunice, NM 88231.

 $\mathsf{Angleton} \bullet \mathsf{Houston} \bullet \mathsf{Irving} \bullet \mathsf{Oklahoma} \, \mathsf{City} \bullet \mathsf{Tulsa}$ 



If you have any comments about the construction or operation of this facility, and you want your comments to be made as part of the permit review process, you must submit your comments in writing to this address: Permit Programs Manager; New Mexico Environment Department; Air Quality Bureau; 525 Camino de los Marquez, Suite 1; Santa Fe, New Mexico; 87505-1816. Other comments and questions may be submitted verbally. (505) 476-4300; 1 800 224-7009.

Please refer to the company name and facility name or send a copy of this notice along with your comments, since the Department may have not yet received the permit application. Please include a legible return mailing address with your comments. Once the Department has performed a preliminary review of the application and its air quality impacts, the Department's notice will be published in the legal section of a newspaper circulated near the facility location.

### Attención

Este es un aviso de la oficina de Calidad del Aire del Departamento del Medio Ambiente de Nuevo México, acerca de las emisiones producidas por un establecimiento en esta área. Si usted desea información en español, por favor comuníquese con esa oficina al teléfono 505-629-3395.

### Sincerely, Altamira-US, LLC

Laura Worthen Lodes Chief Engineering Officer

## **Notice of Non-Discrimination**

NMED does not discriminate on the basis of race, color, national origin, disability, age or sex in the administration of its programs or activities, as required by applicable laws and regulations. NMED is responsible for coordination of compliance efforts and receipt of inquiries concerning non-discrimination requirements implemented by 40 C.F.R. Part 7, including Title VI of the Civil Rights Act of 1964, as amended; Section 504 of the Rehabilitation Act of 1973; the Age Discrimination Act of 1975, Title IX of the Education Amendments of 1972, and Section 13 of the Federal Water Pollution Control Act Amendments of 1972. If you have any questions about this notice or any of NMED's non-discrimination programs, policies or procedures, or if you believe that you have been discriminated against with respect to a NMED program or activity, you may contact: Non-Discrimination Coordinator, NMED, 1190 St. Francis Dr., Suite N4050, P.O. Box 5469, Santa Fe, NM 87502, (505) 827-2855, nd.coordinator@env.nm.gov. You may also visit our website at https://www.env.nm.gov/non-employee-discrimination-complaint-page/ to learn how and where to file a complaint of discrimination.





# Written Description of the Routine Operations of the Facility

<u>A written description of the routine operations of the facility</u>. Include a description of how each piece of equipment will be operated, how controls will be used, and the fate of both the products and waste generated. For modifications and/or revisions, explain how the changes will affect the existing process. In a separate paragraph describe the major process bottlenecks that limit production. The purpose of this description is to provide sufficient information about plant operations for the permit writer to determine appropriate emission sources.

To save paper and to standardize the application format, delete this sentence, and begin your submittal for this attachment on this page.

The Copperhead Gas Processing Plant is a natural gas processing plant located in Lea County near Malaga, NM. The primary function of the plant is to separate natural gas (methane) from heavier (liquid) hydrocarbons, raw sweet field gas so that the gas can meet pipeline specifications. The plant has been designated a primary Standard Industrial Classification (SIC) Code of 1311.

The operation of the Copperhead Gas Processing Plant is intended to process 850 MMscfd of gas from the combined compressor station and two (2) gas processing plants at the facility. The gas will be treated to remove CO₂ and H₂S, dehydrated to remove water, and processed to remove heavy (liquid) hydrocarbons from the gas stream. Several plant systems will be involved to perform these functions.

#### Slug Catcher / Separator

A large slug catcher has been placed at the front of the plant to catch and separate any free hydrocarbon liquids and water present in the inlet pipeline gas stream. It is capable of handling large slugs of liquid brought into the plant from pipeline pigging operations. The equipment also serves as a three-phase separator to separate the free hydrocarbons, gas to be processed, and any water that may have condensed out in the pipeline after field dehydration.

#### Stabilizers

The overhead stabilization system is in place to lower the Reid Vapor Pressure (RVP) of the pipeline liquids and condensate after they are dropped out of the gas stream. Through a process that heats the condensate to flash off lighter hydrocarbons so the RVP is lowered to 9. The liquids out of the slug catcher are stabilized and sent to the tank farm for truck sales. Any remaining vapors are recycled back to the front of the Slug Catcher. The liquid in the tank farm is then stable and thus does not give off significant flashing vapors. Significant working and standing losses will occur at the tank farm. These emissions will be controlled with a vapor combustor.

#### **Amine Treating**

The amine units are designed to remove CO₂ and H₂S (from the natural gas stream) to meet pipeline specifications. Streams containing up to 10,000 ppm H₂S will be processed at the plants. Amine treating is an exothermic chemical reaction process. The treating solution is a mixture of 50% RO water, 40% methyl-diethanolamine (MDEA) and 10% Piperazine. This aqueous mixture is regenerated and reused. Lean MDEA solution is pumped to the top of the contactor and allowed to flow downward. Wet gas is fed into the bottom of the contactor and flows upward. As the lean MDEA solution flows down through the contactor, it comes into contact with the wet gas. The CO₂ and H₂S are absorbed by amine. The amine is now known as rich amine and the remaining gas is sweet and continues to the dehydration systems.

The regeneration of the amine utilizes one 98 MMBtu/hr heater (H-1701-CHP for plant 1 and H-1702-CH2 for plant 2) and one 98 MMBtu/hr heater (H-1702-CHP for plant 1 and H-1702-CH2 for plant 2). Significant amounts of VOC and HAP can be generated in this process. The acid gas is sent to an acid gas injection well.

#### **Glycol Dehydration**

Triethylene glycol (TEG) is used to remove water from the natural gas stream. For the TEG units associated with the plants, water is saturated into the sweet gas stream during the Amine Treating process. This water is absorbed by the TEG solution. The wet gas is brought into contact with dry glycol in an absorber. Water vapor is absorbed in the glycol and consequently, the water content is reduced. The wet rich glycol then flows from the absorber to a regeneration system in which the entrained gas is separated and fractionated in a column and re-boiler. The heating allows boiling off the absorbed water vapor and the water dry

lean glycol is cooled (via heat exchange) and pumped back to the absorber. The regeneration of the TEG utilizes small heaters. This process produces VOC and HAP emission. This stream is condensed. The wastewater stream is sent to a wastewater tank. The non-condensable stream is sent back to the inlet for a closed loop system. The dehydration flash gas stream is used as plant fuel.

#### **Molecular Sieve Dehydration**

Molecular sieve dehydration is used upstream of the cryogenic processes to achieve a -160°F water dew point. The process uses three molecular sieve vessels with two vessels in service adsorbing moisture from the gas stream and the other vessel in the regeneration mode. During the regeneration mode, hot, dry gas (regen gas) is passed up through the vessel to drive off the adsorbed moisture from the molecular sieve. The gas comes from the discharge of the residue compressors and it is passed through a heat exchanger and a heater to achieve a temperature of approximately 500°F. After the gas passes through the bed it is cooled in an air cooled exchanger. The water in the gas condenses and is separated from the gas stream in a separator. The regen gas is routed to the inlet of the cryogenic unit. There is one unit associated with each plant

#### Cryogenic Unit

The cryogenic units are designed to liquefy natural gas components from the sweet, dehydrated inlet gas by removing work from the gas be means of the turbo expander/compressor. The cryogenic unit recovers natural gas liquids (NGL) by cooling the gas stream to extremely cold temperatures (-160°F and lower) and condensing components such as ethane, propane, butanes and heavier. The gas is cooled by a series of heat exchangers and by lowering the pressure of the gas from around 950 PSIG to approximately 190 PSIG. Once the gas has passed through the system of heat exchangers and expansion it is re-compressed using the energy obtained from expanding the gas. The gas will flow through the following heat exchangers:

• Gas to Gas Exchanger – This unit exchanges heat from the warm inlet gas and the cold residue gas that has already been expanded. This cools the inlet gas.

• Product Heater - This unit will cool the inlet gas by exchanging heat with the cold liquid product that has been recovered.

• Side-Reboiler – This unit uses heat from the inlet gas to boil the methane out of the liquid. One stream comes off the side of the tower and one stream comes off of the bottom of the tower. This also cools the inlet gas. The gas is expanded and recompressed in the expander/compressor.

#### **Emergency Flares**

Three flares are proposed. These flares' header system gathers hydrocarbons from Pressure Safety Devices in the plant, and routes them to the flares. These systems are also used to safely control blow-down hydrocarbons from equipment in the plant.

#### Compressors

The site will operate a total of 30 electric-driven compressors, there are 8 electric compressors associated with the compressor station and 11 compressors associated with each gas plant. No internal combustion engines or turbines will be used to drive compressors.

#### Nitrogen Rejection Unit

The site will operate a nitrogen rejection unit (NRU) which will remove nitrogen from the residue gas stream as necessary so the gas meets pipeline specifications. The NRU consists of various heat exchangers, separation, and recompression.

# **Source Determination**

Source submitting under 20.2.70, 20.2.72, 20.2.73, and 20.2.74 NMAC

Sources applying for a construction permit, PSD permit, or operating permit shall evaluate surrounding and/or associated sources (including those sources directly connected to this source for business reasons) and complete this section. Responses to the following questions shall be consistent with the Air Quality Bureau's permitting guidance, <u>Single Source Determination Guidance</u>, which may be found on the Applications Page in the Permitting Section of the Air Quality Bureau website.

Typically, buildings, structures, installations, or facilities that have the same SIC code, that are under common ownership or control, and that are contiguous or adjacent constitute a single stationary source for 20.2.70, 20.2.72, 20.2.73, and 20.2.74 NMAC applicability purposes. Submission of your analysis of these factors in support of the responses below is optional, unless requested by NMED.

## A. Identify the emission sources evaluated in this section (list and describe):

The proposed Copperhead Gas Plant and adjacent Copperhead Compressor Station are considered in this application and treated as a single source.

## B. Apply the 3 criteria for determining a single source:

**<u>SIC Code</u>**: Surrounding or associated sources belong to the same 2-digit industrial grouping (2-digit SIC code) as this facility, <u>OR</u> surrounding or associated sources that belong to different 2-digit SIC codes are support facilities for this source.

X Yes 🗆 No

<u>Common</u> <u>Ownership</u> or <u>Control</u>: Surrounding or associated sources are under common ownership or control as this source.

X Yes 🗆 No

<u>Contiguous</u> or <u>Adjacent</u>: Surrounding or associated sources are contiguous or adjacent with this source.

X Yes 🗌 No

### C. Make a determination:

- X The source, as described in this application, constitutes the entire source for 20.2.70, 20.2.72, 20.2.73, or 20.2.74 NMAC applicability purposes. If in "A" above you evaluated only the source that is the subject of this application, all "YES" boxes should be checked. If in "A" above you evaluated other sources as well, you must check AT LEAST ONE of the boxes "NO" to conclude that the source, as described in the application, is the entire source for 20.2.70, 20.2.72, 20.2.73, and 20.2.74 NMAC applicability purposes.
- The source, as described in this application, <u>does not</u> constitute the entire source for 20.2.70, 20.2.72, 20.2.73, or 20.2.74 NMAC applicability purposes (A permit may be issued for a portion of a source). The entire source consists of the following facilities or emissions sources (list and describe):

Section 12.A

# **PSD Applicability Determination for All Sources**

(Submitting under 20.2.72, 20.2.74 NMAC)

<u>A PSD applicability determination for all sources</u>. For sources applying for a significant permit revision, apply the applicable requirements of 20.2.74.AG and 20.2.74.200 NMAC and to determine whether this facility is a major or minor PSD source, and whether this modification is a major or a minor PSD modification. It may be helpful to refer to the procedures for Determining the Net Emissions Change at a Source as specified by Table A-5 (Page A.45) of the <u>EPA New Source Review Workshop Manual</u> to determine if the revision is subject to PSD review.

- A. This facility is:
  - X a minor PSD source before and after this modification (if so, delete C and D below).
  - □ a major PSD source before this modification. This modification will make this a PSD minor source.
  - □ an existing PSD Major Source that has never had a major modification requiring a BACT analysis.
  - □ an existing PSD Major Source that has had a major modification requiring a BACT analysis
  - □ a new PSD Major Source after this modification.
- B. This facility is not one of the listed 20.2.74.501 Table I PSD Source Categories. The "project" emissions for this modification are not significant. Project increases are less than 250 tpy. The "project" emissions listed below do only result from changes described in this permit application, thus no emissions from other revisions or modifications, past or future to this facility. Also, specifically discuss whether this project results in "de-bottlenecking", or other associated emissions resulting in higher emissions. Debottlenecked emissions are not accounted for since the source is an existing minor NSR site. The project emissions (before netting) for this project are as follows [see Table 2 in 20.2.74.502 NMAC for a complete list of significance levels]:
  - a. NOx: 225.12 TPY
  - b. CO: 246.58 TPY
  - c. VOC: 140.04 TPY
  - d. SOx: 89.96 TPY
  - e. PM: 21.00 TPY
  - f. PM10: 21.00 TPY
  - g. PM2.5: 21.00 TPY
  - h. Sulfur compounds (listed in Table 2): 2.63 TPY
  - i. GHG: 492,737 TPY
- C. Netting N/A
- D. BACT N/A
- E. If this is an existing PSD major source, or any facility with emissions greater than 250 TPY (or 100 TPY for 20.2.74.501 Table 1 PSD Source Categories), determine whether any permit modifications are related, or could be considered a single project with this action, and provide an explanation for your determination whether a PSD modification is triggered. N/A

# **Determination of State & Federal Air Quality Regulations**

# This section lists each state and federal air quality regulation that may apply to your facility and/or equipment that are stationary sources of regulated air pollutants.

Not all state and federal air quality regulations are included in this list. Go to the Code of Federal Regulations (CFR) or to the Air Quality Bureau's regulation page to see the full set of air quality regulations.

#### **Required Information for Specific Equipment:**

For regulations that apply to specific source types, in the 'Justification' column **provide any information needed to determine if the regulation does or does not apply**. **For example**, to determine if emissions standards at 40 CFR 60, Subpart IIII apply to your three identical stationary engines, we need to know the construction date as defined in that regulation; the manufacturer date; the date of reconstruction or modification, if any; if they are or are not fire pump engines; if they are or are not emergency engines as defined in that regulation; their site ratings; and the cylinder displacement.

#### Required Information for Regulations that Apply to the Entire Facility:

See instructions in the 'Justification' column for the information that is needed to determine if an 'Entire Facility' type of regulation applies (e.g. 20.2.70 or 20.2.73 NMAC).

#### Regulatory Citations for Regulations That Do Not, but Could Apply:

If there is a state or federal air quality regulation that does not apply, but you have a piece of equipment in a source category for which a regulation has been promulgated, you must **provide the low level regulatory citation showing why your piece of equipment is not subject to or exempt from the regulation. For example** if you have a stationary internal combustion engine that is not subject to 40 CFR 63, Subpart ZZZZ because it is an existing 2 stroke lean burn stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions, your citation would be 40 CFR 63.6590(b)(3)(i). **We don't want a discussion of every non-applicable regulation, but if it is possible a regulation could apply, explain why it does not. For example,** if your facility is a power plant, you do not need to include a citation to show that 40 CFR 60, Subpart OOO does not apply to your non-existent rock crusher.

#### **Regulatory Citations for Emission Standards:**

For each unit that is subject to an emission standard in a source specific regulation, such as 40 CFR 60, Subpart OOO or 40 CFR 63, Subpart HH, include the low level regulatory citation of that emission standard. Emission standards can be numerical emission limits, work practice standards, or other requirements such as maintenance. Here are examples: a glycol dehydrator is subject to the general standards at 63.764C(1)(i) through (iii); an engine is subject to 63.6601, Tables 2a and 2b; a crusher is subject to 60.672(b), Table 3 and all transfer points are subject to 60.672(e)(1)

#### Federally Enforceable Conditions:

All federal regulations are federally enforceable. All Air Quality Bureau State regulations are federally enforceable except for the following: affirmative defense portions at 20.2.7.6.B, 20.2.7.110(B)(15), 20.2.7.11 through 20.2.7.113, 20.2.7.115, and 20.2.7.116; 20.2.37; 20.2.42; 20.2.43; 20.2.62; 20.2.63; 20.2.86; 20.2.89; and 20.2.90 NMAC. Federally enforceable means that EPA can enforce the regulation as well as the Air Quality Bureau and federally enforceable regulations can count toward determining a facility's potential to emit (PTE) for the Title V, PSD, and nonattainment permit regulations.

# INCLUDE ANY OTHER INFORMATION NEEDED TO COMPLETE AN APPLICABILITY DETERMINATION OR THAT IS RELEVENT TO YOUR FACILITY'S NOTICE OF INTENT OR PERMIT.

#### EPA Applicability Determination Index for 40 CFR 60, 61, 63, etc: <u>http://cfpub.epa.gov/adi/</u>

To save paper and to standardize the application format, delete this sentence, and begin your submittal for this attachment on this page.

## Example of a Table for State Regulations:

<u>State</u> <u>Regulation</u> Citation	Title	Applies? Enter Yes or No	Unit(s) or Facility	Justification: (You may delete instructions or statements that do not apply in the justification column to shorten the document.)
20.2.1 NMAC	General Provisions	Yes	Facility	General Provisions apply to Notice of Intent, Construction, and Title V permit applications.
				If subject, this would normally apply to the entire facility. 20.2.3 NMAC is a State Implementation Plan (SIP) approved regulation that limits
20.2.3 NMAC	Ambient Air Quality Standards	Yes	Facility	the maximum allowable concentration of, Sulfur Compounds, Carbon Monoxide and Nitrogen Dioxide.
	NMAAQS			Title V applications, see exemption at 20.2.3.9 NMAC
				The TSP NM ambient air quality standard was repealed by the EIB effective November 30, 2018.
				If subject, this would normally apply to the entire facility.
20.2.7 NMAC	Excess Emissions	Yes	Facility	If your entire facility or individual pieces of equipment are subject to emissions limits in a permit or numerical emissions standards in a federal or state regulation, this applies. This would not apply to Notices of Intent since these are not permits.
				This regulation may apply if,
				this is an application for a notice of intent (NOI) per 20.2.73 NMAC,
			Facility	if the activity or facility is a fugitive dust source listed at 20.2.23.108.A NMAC, <b>and</b> if the activity or facility is located in an area subject to a mitigation plan pursuant to 40 CFR 51.930.
				As of January 2019, the only areas of the State subject to a mitigation plan per 40 CFR 51.930 are in Doña Ana and Luna Counties.
20.2.23	Fugitive Dust			Sources exempt from 20.2.23 NMAC are activities and facilities subject to a permit issued pursuant to the NM Air Quality Control Act, the Mining Act, or the Surface Mining Act (20.2.23.108.B NMAC.
NMAC	Control	No		
				<ul> <li>20.2.23.108 APPLICABILITY:</li> <li>A. This part shall apply to persons owning or operating the following fugitive dust sources in areas requiring a mitigation plan in accordance with 40 CFR Part 51.930:</li> <li>(1) disturbed surface areas or inactive disturbed surface areas, or a combination thereof, encompassing an area equal to or greater than one acre;</li> <li>(2) any commercial or industrial bulk material processing, handling, transport or</li> </ul>
				storage operations. B. The following fugitive dust sources are exempt from this part:
				<ul> <li>(1) agricultural facilities, as defined in this part;</li> <li>(2) roadways, as defined in this part;</li> </ul>
				(3) operations issued permits pursuant to the state of New Mexico Air Quality Control Act, Mining Act or Surface Mining Act; and
				(4) lands used for state or federal military activities. [20.2.23.108 NMAC - N, 01/01/2019]
20.2.33	Gas Burning			
NMAC	Equipment - Nitrogen Dioxide	No	N/A	The site does not have gas burning equipment larger than 1,000,000 MM Btu/year.
20.2.34 NMAC	Oil Burning Equipment: NO ₂	No	N/A	The site does not have oil burning equipment larger than 1,000,000 MM Btu/year.
20.2.35 NMAC	Natural Gas Processing Plant – Sulfur	Yes	Facility	This regulation could apply to existing (prior to July 1, 1974) or new (on or after July 1, 1974) natural gas processing plants that use a Sulfur Recovery Unit to reduce sulfur emissions.
				The Facility will comply with all applicable requirements of 20.2.35 NMAC.

<u>State</u> <u>Regulation</u> Citation	Title	Applies? Enter Yes or No	Unit(s) or Facility	Justification: (You may delete instructions or statements that do not apply in the justification column to shorten the document.)
20.2.37 and 20.2.36 NMAC	Petroleum Processing Facilities and Petroleum Refineries	N/A	N/A	These regulations were repealed by the Environmental Improvement Board. If you had equipment subject to 20.2.37 NMAC before the repeal, your combustion emission sources are now subject to 20.2.61 NMAC.
20.2.38 NMAC	Hydrocarbon Storage Facility	N/A	N/A	This regulation could apply to storage tanks at petroleum production facilities, processing facilities, tanks batteries, or hydrocarbon storage facilities. The facility does not have tank sizes that meet the applicability criteria.
20.2.39 NMAC	Sulfur Recovery Plant - Sulfur	N/A	N/A	This regulation could apply to sulfur recovery plants that are not part of petroleum or natural gas processing facilities.
				This regulation establishes emission standards for volatile organic compounds (VOC) and oxides of nitrogen (NOx) for oil and gas production, processing, compression, and transmission sources. 20.2.50 NMAC subparts below: Include the construction status of applicable units as "New", "Existing",
20.2.50 NMAC	Oil and Gas Sector – Ozone Precursor Pollutants	Yes	Facility	<ul> <li>"Relocation of Existing", or "Reconstructed" as defined by this Part in your justification:</li> <li>Check the box for the subparts that are applicable:</li> <li>113 – Engines and Turbines</li> <li>114 – Compressor Seals</li> <li>115 – Control Devices and Closed Vent Systems</li> <li>116 – Equipment Leaks and Fugitive Emissions</li> <li>117 – Natural Gas Well Liquid Unloading</li> <li>118 – Glycol Dehydrators</li> <li>119 – Heaters</li> <li>120 – Hydrocarbon Liquid Transfers</li> <li>121 – Pig Launching and Receiving</li> <li>123 – Storage Vessels</li> <li>124 – Well Workovers</li> <li>125 – Small Business Facilities</li> <li>126 – Produced Water Management Unit</li> <li>127 – Flowback Vessels and Preproduction Operations</li> </ul>
20.2.61.109 NMAC	Smoke & Visible Emissions	Yes	EM-1a EM-1b EM-2a EM-2b EM-3a EM-3b EM-4a EM-4b GEN-1 GEN-2 GEN-3 GEN-3 GEN-4 GEN-5 GEN-6 H-1 H-2 Flare	This regulation that limits opacity to 20% applies to Stationary Combustion Equipment, such as engines, boilers, heaters, and flares unless your equipment is subject to another state regulation that limits particulate matter such as 20.2.19 NMAC (see 20.2.61.109 NMAC). If equipment at your facility was subject to the repealed regulation 20.2.37 NMAC it is now subject to 20.2.61 NMAC.

<u>State</u> <u>Regulation</u> Citation	Title	Applies? Enter Yes or No	Unit(s) or Facility	Justification: (You may delete instructions or statements that do not apply in the justification column to shorten the document.)
			H-1701- CHP H-1702- CHP H-1703- CHP H-1704- CHP H-4701- CHP FL- 1800- CHP H-1701- CH2 H-1702- CH2 H-1703- CH2 H-1704- CH2 H-1704- CH2 H-4701- CH2 FL- 1800- CH2 VCU	
20.2.70 NMAC	Operating Permits	Yes	Facility	If subject, this would normally apply to the entire facility. Applies if your facility's potential to emit (PTE) is 100 tpy or more of any regulated air pollutant other than HAPs; and/or a HAPs PTE of 10 tpy or more for a single HAP or 25 or more tpy for combined HAPs; is subject to a 20.2.79 NMAC nonattainment permit; or is a facility subject to a federal regulation that requires you to obtain a Title V permit such as landfills or air curtain incinerators. Include both stack and fugitive emissions to determine the HAP's PTE regardless of the facility type. If your facility is one of those listed at 20.2.70.7(2)(a) through (aa) state which source type your facility is and count both fugitive and stack emissions to determine your PTE. If your facility is not in this (a) through (aa) list, count only stack emissions to determine your PTE. Landfills and Air Curtain Incinerators are not Title V Major Sources, but it would apply pursuant to 20.2.70.200.B NMAC.
20.2.71 NMAC	Operating Permit Fees	Yes	Facility	If subject to 20.2.70 NMAC and your permit includes numerical ton per year emission limits, you are subject to 20.2.71 NMAC and normally applies to the entire facility.
20.2.72 NMAC	Construction Permits	No	Facility	If subject, this would normally apply to the entire facility. Could apply if your facility's potential emission rate (PER) is greater than 10 pph or greater than 25 tpy for any pollutant subject to a state or federal ambient air quality standard (does not include VOCs or HAPs); if the PER of lead is 5 tpy or more; if your facility is subject to 20.2.72.400 NMAC; or if you have equipment subject to 40 CFR 60 Subparts I and OOO, 40 CFR 61 Subparts C and D. Include both stack and fugitive emissions to determine PER.

<u>State</u> <u>Regulation</u> Citation	Title	Applies? Enter Yes or No	Unit(s) or Facility	Justification: (You may delete instructions or statements that do not apply in the justification column to shorten the document.)
20.2.73 NMAC	NOI & Emissions Inventory Requirements	Yes	Facility	If subject, this would normally apply to the entire facility. A Notice of Intent application 20.2.73.200 NMAC could apply if your facility's PER of <u>any</u> regulated air pollutant, including VOCs and HAPs, is 10 tpy or more or if you have lead emissions of 1 tpy or more. Include both fugitive and stack emissions to determine your PER. You could be required to submit Emissions Inventory Reporting per 20.2.73.300 NMAC if your facility is subject to 20.2.73.200, 20.2.72, or emits more than 1 ton of lead or 10 tons of PM10, PM2.5, SOx, NOx CO, or VOCs in any calendar year. All facilities that are a Title V Major Source as defined at 20.2.70.7.R NMAC, are subject to Emissions Inventory Reporting.
20.2.74 NMAC	Permits – Prevention of Significant Deterioration (PSD)	No	Facility	If subject to enhance of nepering. If subject, this would normally apply to the entire facility. If you are an existing PSD major source you are subject to the applicability determination requirements at 20.2.74.200 NMAC to determine if you are subject to a PSD permit, <u>before</u> commencing actual construction of any modifications at your facility. Complete the applicability determination in Section 12 of the application. If you are constructing a new PSD major source or are proposing a major modification to an existing PSD major source, you must obtain a PSD permit. Minor NSR Exemptions at 20.2.72.200 NMAC nor Title V Insignificant Activities do not apply to the PSD permit regulation. <b>Choose which applies and delete the rest.</b> See NMACS 20.2.74.7.AE and AG Major Modification and Major Stationary Source, 20.2.74.200 Applicability, and 20.2.74.7.AG(1) A stationary source listed in Table 1 of this Part (20.2.74.501 NMAC) which emits, or has the potential to emit, emissions equal to or greater than one hundred (100) tons per year of any stack and fugitive emissions (as defined) of any regulated air pollutant; or <b>20.2.74.7.AG(2)</b> A stationary source not listed in Table 1 of this Part (20.2.74.501 NMAC) and which emits or has the potential to emit stack emissions of two hundred fifty (250) tons per year or more of any regulated pollutant; or <b>20.2.74.7.AG(3)</b> A physical change that would occur at a stationary source not otherwise qualifying under paragraphs (1) or (2) of subsection if the change would constitute a major stationary source by itself (e.g. an increase of 250 tpy or more); or <b>20.2.74.200.7.AG(5)</b> The fugitive emissions of a stationary source or major modification solely due to a relaxation in any enforceable limitation established after August 7, 1980, on the capacity of the source or modification otherwise to emit a pollutant, such as a restriction on hours of operation, then this part shall apply to the source or modification as through construction had not yet commenced.
20.2.75 NMAC	Construction Permit Fees	No	Facility	If subject, this would apply to the entire facility. It is not necessary to include each low level regulatory citation for this regulation. This regulation applies if you are submitting an application pursuant to 20.2.72, 20.2.73, 20.2.74, and/or 20.2.79 NMAC. If this is a 20.2.73 NMAC application it is subject to the filing fee at 20.2.75.10 NMAC. If this is a 20.2.72, 20.2.74, and/or 20.2.79 NMAC application it is subject to 20.2.75.10, 11 permit fee, and 11.E annual fees. You are not subject to the 75.11.E annual fees if you are subject to 20.2.71 NMAC.

<u>State</u> <u>Regulation</u> Citation	Title	Applies? Enter Yes or No	Unit(s) or Facility	Justification: (You may delete instructions or statements that do not apply in the justification column to shorten the document.)
20.2.77 NMAC	New Source Performance	Yes	Units subject to 40 CFR 60	This is a stationary source which is subject to the requirements of 40 CFR Part 60.
20.2.78 NMAC	Emission Standards for HAPS	No	N/A	No units are subject to the requirements of 40 CFR Part 61.
20.2.79 NMAC	Permits – Nonattainment Areas	No	Facility	Site is not located in a nonattainment county
20.2.80 NMAC	Stack Heights	No	N/A	Not cited in NSR permit. No stacks exceed GEP Height
20.2.82 NMAC	MACT Standards for source categories of HAPS	Yes	Units Subject to 40 CFR 63	The site has equipment that is subject to MACT Subpart HH and ZZZZ.

## Table for Applicable Federal Regulations

<u>Federal</u> <u>Regulation</u> Citation	Title	Applies? Enter Yes or No	Unit(s) or Facility	Justification:
40 CFR 50	NAAQS	No	N/A	The modeling and conditions developed from the modeling are the applicable requirements to demonstration compliance with the NAAQs
NSPS 40 CFR 60, Subpart A	General Provisions	Yes	Units subject to 40 CFR 60	The site has units subject to an NSPS shown below
NSPS 40 CFR60.40a, Subpart Da	Subpart Da, Performance Standards for Electric Utility Steam Generating Units	No	N/A	No units are subject to NSPS Subpart Da.

Federal Regulation Citation	Title	Applies? Enter Yes or No	Unit(s) or Facility	Justification:
NSPS 40 CFR60.40b Subpart Db	Electric Utility Steam Generating Units	No	N/A	No units are subject to NSPS Subpart Db.
40 CFR 60.40c, Subpart Dc	Standards of Performance for Small Industrial- Commercial- Institutional Steam Generating Units	Yes	H-1 H-2 Flare H-1701- CHP H-1702- CHP H-1703- CHP H-1704- CHP H-1701- CH2 H-1701- CH2 H-1702- CH2 H-1703- CH2 H-1703- CH2 H-1704- CH2 H-1704- CH2 H-1704- CH2 H-1704- CH2	Applicability: facility has steam generating units for which construction, modification or reconstruction is commenced after June 9, 1989 and that have a maximum design heat input capacity of 29 MW (100 MMBtu/hr) or less, but greater than or equal to 2.9 MW (10 MMBtu/hr).
NSPS 40 CFR 60, Subpart Ka	Standards of Performance for Storage Vessels for Petroleum Liquids for which Construction, Reconstruction, or Modification Commenced After May 18, 1978, and Prior to July 23, 1984	No	N/A	All tanks have a storage capacity greater than 151,416 liters (40,000 gallons) that are used to store petroleum liquids for which construction is commenced after May 18, 1978.
NSPS 40 CFR 60, Subpart Kb	Standards of Performance for Volatile Organic Liquid Storage Vessels (Including Petroleum Liquid Storage Vessels) for Which Construction, Reconstruction, or Modification	No	TK-1907- CHP TK-1908- CHP TK-1910- CHP TK-1907- CH2 TK-1908- CH2	This facility has storage vessels with a capacity greater than or equal to 75 cubic meters (m ³ ) that is used to store volatile organic liquids (VOL) for which construction, reconstruction, or modification is commenced after July 23, 1984.

Federal Regulation Citation	Title	Applies? Enter Yes or No	Unit(s) or Facility	Justification:
	Commenced <b>After</b> July 23, 1984		TK-1910- CH2	
NSPS 40 CFR 60.330 Subpart GG	Stationary Gas Turbines	No	N/A	No stationary gas turbines are operated at the site.
NSPS 40 CFR 60, Subpart KKK	Leaks of VOC from Onshore Gas Plants	No	N/A	This facility commenced construction after August 23, 2011. Thus, the facility is not subject to this subpart.
NSPS 40 CFR Part 60 Subpart LLL	Standards of Performance for <b>Onshore Natural</b> <b>Gas Processing</b> : SO ₂ Emissions	No	N/A	The facility is a natural gas processing plant; however, there is no sulfur recovery plant. Thus, this location does not meet the applicability criteria of 40 CFR 60.640.
NSPS 40 CFR Part 60 Subpart OOOO	Standards of Performance for Crude Oil and Natural Gas Production, Transmission, and Distribution for which construction, modification or reconstruction commenced after August 23, 2011 and before September 18, 2015	No	N/A	This facility commenced construction after September 18, 2015. Thus, the facility is not subject to this subpart.
NSPS 40 CFR Part 60 Subpart OOOOa	Standards of Performance for Crude Oil and Natural Gas Facilities for which Construction, Modification or Reconstruction Commenced <b>After</b> September 18, 2015	Yes	Compres sors, Storage Tanks, Fugitives	Targa will make a final determination of NSPS OOOO/a/b applicability upon completion of installation of the equipment. There are 27 electric- driven compressors associated with the compressor stations, Plant 1 and Plant 2 and were manufactured after September 18, 2015. The ones associated with the compressor station were constructed prior to December 6, 2022 are subject to 60.5385a, 60.5410a, 60.5415a, and 60.5420a. The ones associated with the plant will be evaluated upon installation for applicability with OOOOa and OOOOb T-1, T-2, T-3, T-4, and T-5 are storage vessels constructed after September 18, 2015 with federally enforceable limitations that limit emissions to less than 6 tpy of VOCs. As such, T1 to T6 are not subject to 60.5395a, 60.5410a, 60.5417a, 60.5420a. The amine units are sweetening units as defined in this subpart that were constructed after September 18, 2015. Per 60.5365a(g) (3) the amine units are required to comply with 60.5423a(c) but not required to comply with 60.5405a through 60.5407 and 60.5410a(g) and 60.5415a(g). The facility is defined as an onshore natural gas processing plant. Therefore, fugitives are covered by 60.5400a, 60.5401a, 60.5402a, 60.5421a, and 60.5422a. Pneumatic devices and pumps will utilize instrument air.

Federal Regulation Citation	Title	Applies? Enter Yes or No	Unit(s) or Facility	Justification:
NSPS 40 CFR 60 Subpart IIII	Standards of performance for Stationary Compression Ignition Internal Combustion Engines	Yes	EM-1a, EM-1b, EM-2a, EM-2b, EM-3a, EM-3b, EM-4a, EM-4b	See 60.4200 and EPA Region 1's Reciprocating Internal Combustion Guidance website.
NSPS 40 CFR Part 60 Subpart JJJJ	Standards of Performance for Stationary Spark Ignition Internal Combustion Engines	No	GEN-1 GEN-2 GEN-3 GEN-4 GEN-5 GEN-6	No spark ignited RICE are operated at the site.
NSPS 40 CFR 60 Subpart TTTT	Standards of Performance for Greenhouse Gas Emissions for Electric Generating Units	No	N/A	No affected units at the Facility
NSPS 40 CFR 60 Subpart UUUU	Emissions Guidelines for Greenhouse Gas Emissions and Compliance Times for Electric Utility Generating Units	No	N/A	No affected units at the Facility
NSPS 40 CFR 60, Subparts WWW, XXX, Cc, and Cf	Standards of performance for Municipal Solid Waste (MSW) Landfills	No	N/A	No affected units at the Facility
NESHAP 40 CFR 61 Subpart A	General Provisions	No	Units Subject to 40 CFR 61	No 40 CFR 61 sources at the site.
NESHAP 40 CFR 61 Subpart E	National Emission Standards for <b>Mercury</b>	No	N/A	No units at the facility
NESHAP 40 CFR 61 Subpart V	National Emission Standards for <b>Equipment Leaks</b> (Fugitive Emission Sources)	No	N/A	No units at the site operate in more than 10 wt% VHAP service.
MACT 40 CFR 63, Subpart A	General Provisions	Yes	Units Subject to 40 CFR 63	This facility is an area source for HAPs. Area source provisions of 40 CFR Part 63 subpart HH apply to the glycol dehydrators at the site

Federal Regulation Citation	Title	Applies? Enter Yes or No	Unit(s) or Facility	Justification:
MACT 40 CFR 63.760 Subpart HH	Oil and Natural Gas Production Facilities	Yes	DEHY1, DEHY2, DEHY- CHP, DEHY- CH2	This facility is a HAP Area Source and is subject to the requirements of 40 CFR 63 Subpart HH. Dehydrators DEHY1, DEHY2, DEHY-CHP, DEHY-CH2 have actual and potential emissions less than 1 tpy (0.9 Megagrams per year) and are therefore exempt from control requirements per 40 CFR 63.764(e)(1)(ii). Records of the exempt status will be maintained as required in 40 CFR 63.774(d)(1).
MACT 40 CFR 63 Subpart HHH		No	N/A	This Facility is not a natural gas transmission facility.
MACT 40 CFR 63 Subpart DDDDD	National Emission Standards for Hazardous Air Pollutants for Major Industrial, Commercial, and Institutional Boilers & Process Heaters	No	N/A	This regulation establishes national emission standards for hazardous air pollutants for major industrial, commercial, and institutional boilers and process heaters at Major sources of HAPs. The facility is an area source of HAPs; therefore, this regulation does not apply
MACT 40 CFR 63 Subpart UUUUU	National Emission Standards for Hazardous Air Pollutants Coal & Oil Fire Electric Utility Steam Generating Unit	No	N/A	There are no affected units at the Facility
MACT 40 CFR 63 Subpart ZZZZ	National Emissions Standards for Hazardous Air Pollutants for Stationary Reciprocating Internal Combustion Engines (RICE MACT)	Yes	EM-1a, EM-1b, EM-2a, EM-2b, EM-3a, EM-3b, EM-4a, EM-4b GEN-1 GEN-2 GEN-3 GEN-4 GEN-5 GEN-6	The units are subject to and will comply with the area source requirements of 40 CFR Part 63 Subpart ZZZZ.

Federal Regulation Citation	Title	Applies? Enter Yes or No	Unit(s) or Facility	Justification:
40 CFR 64	Compliance Assurance Monitoring			CAM will be addressed as part of the initial Title V permit application
40 CFR 68	Chemical Accident Prevention	Yes	Facility	An owner or operator of a stationary source that has more than a threshold quantity of a regulated substance in a process, as determined under §68.115, See 40 CFR 68
Title IV – Acid Rain 40 CFR 72	Acid Rain	No	N/A	This regulation establishes a regulation for protection of the stratospheric ozone. The regulation is not applicable because the facility does not "service", "maintain", or "repair" class I or class II appliances nor "disposes" of the appliances [40 CFR Part 82.1(a)].

# **Operational Plan to Mitigate Emissions**

(Submitting under 20.2.70, 20.2.72, 20.2.74 NMAC)

- Title V Sources (20.2.70 NMAC): By checking this box and certifying this application the permittee certifies that it has developed an <u>Operational Plan to Mitigate Emissions During Startups, Shutdowns, and Emergencies</u> defining the measures to be taken to mitigate source emissions during startups, shutdowns, and emergencies as required by 20.2.70.300.D.5(f) and (g) NMAC. This plan shall be kept on site to be made available to the Department upon request. This plan should not be submitted with this application.
- ☑ NSR (20.2.72 NMAC), PSD (20.2.74 NMAC) & Nonattainment (20.2.79 NMAC) Sources: By checking this box and certifying this application the permittee certifies that it has developed an <u>Operational Plan to Mitigate Source Emissions During</u> <u>Malfunction, Startup, or Shutdown</u> defining the measures to be taken to mitigate source emissions during malfunction, startup, or shutdown as required by 20.2.72.203.A.5 NMAC. This plan shall be kept on site to be made available to the Department upon request. This plan should not be submitted with this application.
- ☑ Title V (20.2.70 NMAC), NSR (20.2.72 NMAC), PSD (20.2.74 NMAC) & Nonattainment (20.2.79 NMAC) Sources: By checking this box and certifying this application the permittee certifies that it has established and implemented a Plan to Minimize Emissions During Routine or Predictable Startup, Shutdown, and Scheduled Maintenance through work practice standards and good air pollution control practices as required by 20.2.7.14.A and B NMAC. This plan shall be kept on site or at the nearest field office to be made available to the Department upon request. This plan should not be submitted with this application.

### **Alternative Operating Scenarios**

(Submitting under 20.2.70, 20.2.72, 20.2.74 NMAC)

Alternative Operating Scenarios: Provide all information required by the department to define alternative operating scenarios. This includes process, material and product changes; facility emissions information; air pollution control equipment requirements; any applicable requirements; monitoring, recordkeeping, and reporting requirements; and compliance certification requirements. Please ensure applicable Tables in this application are clearly marked to show alternative operating scenario.

**Construction Scenarios**: When a permit is modified authorizing new construction to an existing facility, NMED includes a condition to clearly address which permit condition(s) (from the previous permit and the new permit) govern during the interval between the date of issuance of the modification permit and the completion of construction of the modification(s). There are many possible variables that need to be addressed such as: Is simultaneous operation of the old and new units permitted and, if so for example, for how long and under what restraints? In general, these types of requirements will be addressed in Section A100 of the permit, but additional requirements may be added elsewhere. Look in A100 of our NSR and/or TV permit template for sample language dealing with these requirements. Find these permit templates at: <a href="https://www.env.nm.gov/air-quality/permitting-section-procedures-and-guidance/">www.env.nm.gov/air-quality/permitting-section-procedures-and-guidance/</a>. Compliance with standards must be maintained during construction, which should not usually be a problem unless simultaneous operation of old and new equipment is requested.

In this section, under the bolded title "Construction Scenarios", specify any information necessary to write these conditions, such as: conservative-realistic estimated time for completion of construction of the various units, whether simultaneous operation of old and new units is being requested (and, if so, modeled), whether the old units will be removed or decommissioned, any PSD ramifications, any temporary limits requested during phased construction, whether any increase in emissions is being requested as SSM emissions or will instead be handled as a separate Construction Scenario (with corresponding emission limits and conditions, etc.

Either the natural gas fired generators or the diesel fired generators will be installed. The SSM from the flare is assumed to occur outside of steady state operations.

### **Air Dispersion Modeling**

- 1) Minor Source Construction (20.2.72 NMAC) and Prevention of Significant Deterioration (PSD) (20.2.74 NMAC) ambient impact analysis (modeling): Provide an ambient impact analysis as required at 20.2.72.203.A(4) and/or 20.2.74.303 NMAC and as outlined in the Air Quality Bureau's Dispersion Modeling Guidelines found on the Planning Section's modeling website. If air dispersion modeling has been waived for one or more pollutants, attach the AQB Modeling Section modeling waiver approval documentation.
- 2) SSM Modeling: Applicants must conduct dispersion modeling for the total short term emissions during routine or predictable startup, shutdown, or maintenance (SSM) using realistic worst case scenarios following guidance from the Air Quality Bureau's dispersion modeling section. Refer to "Guidance for Submittal of Startup, Shutdown, Maintenance Emissions in Permit Applications (<u>http://www.env.nm.gov/aqb/permit/app_form.html</u>) for more detailed instructions on SSM emissions modeling requirements.
- 3) Title V (20.2.70 NMAC) ambient impact analysis: Title V applications must specify the construction permit and/or Title V Permit number(s) for which air quality dispersion modeling was last approved. Facilities that have only a Title V permit, such as landfills and air curtain incinerators, are subject to the same modeling required for preconstruction permits required by 20.2.72 and 20.2.74 NMAC.

What is the purpose of this application?	Enter an X for each purpose that applies
New PSD major source or PSD major modification (20.2.74 NMAC). See #1 above.	
New Minor Source or significant permit revision under 20.2.72 NMAC (20.2.72.219.D NMAC).	Х
See #1 above. Note: Neither modeling nor a modeling waiver is required for VOC emissions.	
Reporting existing pollutants that were not previously reported.	
Reporting existing pollutants where the ambient impact is being addressed for the first time.	
Title V application (new, renewal, significant, or minor modification. 20.2.70 NMAC). See #3 above.	
Relocation (20.2.72.202.B.4 or 72.202.D.3.c NMAC)	
Minor Source Technical Permit Revision 20.2.72.219.B.1.d.vi NMAC for like-kind unit replacements.	
Other: i.e. SSM modeling. See #2 above.	
This application does not require modeling since this is a No Permit Required (NPR) application.	
This application does not require modeling since this is a Notice of Intent (NOI) application (20.2.73 NMAC).	
This application does not require modeling according to 20.2.70.7.E(11), 20.2.72.203.A(4), 20.2.74.303, 20.2.79.109.D NMAC and in accordance with the Air Quality Bureau's Modeling Guidelines.	

#### Check each box that applies:

- □ See attached, approved modeling **waiver for all** pollutants from the facility.
- □ See attached, approved modeling **waiver for some** pollutants from the facility.
- Attached in Universal Application Form 4 (UA4) is a **modeling report for all** pollutants from the facility.
- Attached in UA4 is a **modeling report for some** pollutants from the facility.
- □ No modeling is required.

## **Universal Application 4**

### **Air Dispersion Modeling Report**

Refer to and complete Section 16 of the Universal Application form (UA3) to assist your determination as to whether modeling is required. If, after filling out Section 16, you are still unsure if modeling is required, e-mail the completed Section 16 to the AQB Modeling Manager for assistance in making this determination. If modeling is required, a modeling protocol would be submitted and approved prior to an application submittal. The protocol should be emailed to the modeling manager. A protocol is recommended but optional for minor sources and is required for new PSD sources or PSD major modifications. Fill out and submit this portion of the Universal Application form (UA4), the "Air Dispersion Modeling Report", only if air dispersion modeling is required for this application submittal. This serves as your modeling report submittal and should contain all the information needed to describe the modeling. No other modeling report or modeling protocol should be submitted with this permit application.

16-	16-A: Identification		
1	Name of facility:	Copperhead Gas Plant	
2	Name of company:	Targa Midstream Services, LLC	
3	Current Permit number:	7712	
4	Name of applicant's modeler:	Laura Worthen Lodes, PE	
5	Phone number of modeler:	405-702-1618	
6	E-mail of modeler:	Laura.Worthen-Lodes@Altamira-US.com	

16	.6-B: Brief				
1	Was a modeling protocol submitted and approved?	Yes⊠	No□		
2	Why is the modeling being done?	Adding New E	quipment		
3	Describe the permit changes relevant to the modeling.				
	The addition of 2 gas processing trains to the facility.				
4	What geodetic datum was used in the modeling?	NAD83			
5	How long will the facility be at this location?	Permanent			
6	Is the facility a major source with respect to Prevention of Significant Deterioration (PSD)?	Yes□	No⊠		

7	Identify the Air Quality Control Region (AQCR) in which the facility is located				
	List the PSD baseline dates for this region (minor or major, as	appropriate).			
8	NO2	3/16/1988			
0	SO2	7/28/1978			
	PM10	2/20/1979			
	PM2.5	11/13/2013			
	Provide the name and distance to Class I areas within 50 km o	f the facility (300 km for PSD perm	its).		
9	Carlsbad Caverns National Park is located 86.1 km from the Facility, the Class I Area Analysis is not applicable.				
10	) Is the facility located in a non-attainment area? If so describe below Yes□ No⊠			No⊠	
	Describe any special modeling requirements, such as streamline permit requirements.				
11 N/A					

16-	16-C: Modeling History of Facility						
	•	Describe the modeling history of the facility, including the air permit numbers, the pollutants modeled, the National Ambient Air Quality Standards (NAAQS), New Mexico AAQS (NMAAQS), and PSD increments modeled. (Do not include modeling waivers).					
	Pollutant	Latest permit and modification number that modeled the pollutant facility-wide.	Date of Permit	Comments			
	СО	N/A					
	NO ₂	N/A					
1	SO ₂	N/A					
	H ₂ S	N/A					
	PM2.5	N/A					
	PM10	N/A					
	Lead	N/A					
	Ozone (PSD only)	N/A					
	NM Toxic Air Pollutants (20.2.72.402 NMAC)	N/A					

16-	16-D: Modeling performed for this application					
1	-	omplicated modeling		mitted with this applic Ilutant, i.e., culpabilit		OI and cumulative
	Pollutant	ROI	Cumulative analysis	Culpability analysis	Waiver approved	Pollutant not emitted or not changed.

CO	$\boxtimes$		
NO ₂	$\boxtimes$		
SO ₂	$\boxtimes$		
H ₂ S	$\boxtimes$		
PM2.5	$\boxtimes$		
PM10	$\boxtimes$		
Lead			$\boxtimes$
Ozone	$\boxtimes$		
State air toxic(s) (20.2.72.402 NMAC)			

16-	16-E: New Mexico toxic air pollutants modeling					
1	List any Ne application N/A		pollutants (NMTAPs) from T	ables A and B in	20.2.72.502 NMAC that	are modeled for this
	List any NN below, if re		tted but not modeled becau	ise stack height c	orrection factor. Add ad	ditional rows to the table
2	Pollutant	Emission Rate (pounds/hour)	Emission Rate Screening Level (pounds/hour)	Stack Height (meters)	Correction Factor	Emission Rate/ Correction Factor

16-	16-F: Modeling options				
	Was the latest version of AERMOD used with regulatory default options? If not explain below.	Yes⊠	No□		
1	BEEST AERMOD with US EPA executable 23132 which provides more detailed background concentration tools and added flexibility.				
	The model was run in regulatory default mode for all pollutants other than NO _x . The NO _x model	was run utilizin	g the Tier 2,		

The model was run in regulatory default mode for all pollutants other than NO_x. The NO_x model was run utilizing the Tier 2, Ambient Ratio Method 2 (ARM2): 0.5 ambient ratio of NO₂ to NO_x.

16-	16-G: Surrounding source modeling					
1	Date of surround	ing source retrieval	Background monitoring data was utilized. 5ZS for NOx, PM2.5, PM10, 350010023 for CO and 1H for SO2 per the July 2024 modeling guidance			
2	sources modeled	If the surrounding source inventory provided by the Air Quality Bureau was believed to be inaccurate, describe how the sources modeled differ from the inventory provided. If changes to the surrounding source inventory were made, use the table below to describe them. Add rows as needed.				
	AQB Source ID	Description of Corrections				

16-	16-H: Building and structure downwash				
1	How many buildings are present at the facility?	There is one building present at the fac	ility.		
2	How many above ground storage tanks are present at the facility? There are two (2) produced water storage tanks, one (1) condensate storage tank, one (1) new H ₂ S scavenger tank, and one (1) Spent H ₂ S scavenger tank present at the facility.				
3	Was building downwash modeled for all buildings and	tanks? If not explain why below.	Yes⊠	No□	
4	Building comments				

#### **16-I: Receptors and modeled property boundary**

	"Restricted Area" is an area to which public entry is effectively precluded. Effective barriers include continuous fencing,
	continuous walls, or other continuous barriers approved by the Department, such as rugged physical terrain with a steep
	grade that would require special equipment to traverse. If a large property is completely enclosed by fencing, a restricted
	area within the property may be identified with signage only. Public roads cannot be part of a Restricted Area. A Restricted
	Area is required in order to exclude receptors from the facility property. If the facility does not have a Restricted Area, then
1	receptors shall be placed within the property boundaries of the facility.

Describe the fence or other physical barrier at the facility that defines the restricted area.

The facility has a continuous fence line which defines the restricted area.

2	Receptors must be placed along publicly accessible roads in the restricted area. Are there public roads passing through the restricted area?						Yes□	No⊠
3	Are restricted	area boundary	coordinates	included in the modelir	g files?		Yes⊠	No□
	Describe the re	eceptor grids a	and their space	ing. The table below ma	ay be used, adding ro	ws as nee	eded.	
	Grid Type	Shape	Spacing	Start distance from restricted area or center of facility	End distance from restricted area or center of facility	Comme		
4	Very Fine	Rectangle	100 m	Fenceline	1,000 m			
	Fine	Rectangle	250 m	1,000 m	2,500 m			
	Medium	Rectangle	500 m	2,500 m	5,000 m			
	Coarse	Rectangle	1,000 m	5,000 m	10,000 m			
	Describe recep	otor spacing al	ong the fence	line.				
5	50 m spacing a	along the fence	e line					
	Describe the P	SD Class I area	receptors.					
6	N/A							

16	-J: Mod	eling S	Scenari	os								
1	Identify, define, and describe all modeling scenarios. Examples of modeling scenarios include using different production rates, times of day, times of year, simultaneous or alternate operation of old and new equipment during transition periods, etc. Alternative operating scenarios should correspond to all parts of the Universal Application and should be fully described in Section 15 of the Universal Application (UA3).											
	There are	There are no modeling scenarios as described above. The maximum NO _x lb/hr rate was utilized for all sources.										
2	Which scenario produces the highest concentrations? Why?											
										1		
3	Were emis (This quest the factors	tion pertai	ns to the "S	SEASON",	"MONTH"	, "HROFD			sets, not to	Yes□		No⊠
4			-						ore the facto if it makes fo		-	
	Hour of Day	Factor	Hour of Day	Factor								
	1		13									
	2		14									
	3		15									
	4		16									
	5		17									
5	6		18									
5	7		19									
	8		20									
	9		21									
	10		22									
	11 12		23 24									
	If hourly, v	ariable em	nission rate	s were us	ed that we	ere not des	cribed abo	ove, describ	be them belo	w.		
6	Were diffe below.	rent emiss	sion rates u	ised for sh	ort-term a	and annua	modeling	? If so desc	ribe	Yes□		No⊠
	A worst case hourly rate was used for the SSM from the flares, annual modeling was based on the expect annual emissions.											

16-	L6-K: NO ₂ Modeling					
1	Which types Check all tha	s of NO2 modeling were used? at apply.				
	$\boxtimes$	ARM2				

		100% NO _x to NO ₂ conversion								
	OLM									
		Other:								
2	Describe the	e NO ₂ modeling.								
-	Modeling was performed utilizing Tier 2, ARM2 within AERMOD.									
3		It NO ₂ /NO _x ratios (0.5 minimum, 0.9 maximum or equilibrium) used? If not d justify the ratios used below.								
	N/A									
4	Describe the	Describe the design value used for each averaging period modeled.								
	1-hour: High eighth high Annual One Year Annual Average:									

16-	L: Ozone Analy	sis						
1	contribute to any violat The basis of the ozone s <u>Prevention of Signific</u> accepts this SIL basis an concentration analysis The MERP values prese concentrations indicate	ions of ozone NAAQS. The SIL is documented in <u>Guant Deterioration Perri</u> d incorporates it into the <u>using MERPS is included</u> inted in Table 10 and Table that facilities emitting r	he analysis follows. <u>idance on Significant Im</u> <u>nitting Program</u> , EPA, Ap is permit record by refere <u>in the New Mexico Air Qu</u> ole 11 of the NM AQB Moo no more than 250 tons/yea	are minor with respect to F pact Levels for Ozone and pril 17, 2018 and associated nce. Complete documenta ality Bureau Air Dispersion deling Guidelines that proc ar of NO _X and no more tha	nd Fine Particles in the d documents. NMED ation of the ozone n Modeling Guidelines. duce the highest			
2		will cause less formation of O ₃ than the O ₃ significance level. $[O_3]_{8-hour} = \left(\frac{250\frac{ton}{yr}}{340_{MERP_{NOX}}} + \frac{250\frac{ton}{yr}}{4679_{MERP_{VOC}}}\right) \times 1.96 \mu\text{g/m}^3$ =1.546 $\mu\text{g/m}^3$ , which is below the significance level of 1.96 $\mu\text{g/m}^3$ . Sources that produce ozone concentrations below the ozone SIL do not cause or contribute to air contaminant levels						
3	VOCs? Sources that em	it at least 250 tons per y	of NO _x or at least 250 ton ear of NO _x or at least 250 quire an individual analysis	tons per year of Yes	No⊠			
		rces or PSD major modif od was used describe be		sed to account for ozone fi	ill out the information			
5	NO _x (ton/yr)	MERP _{NOX}	VOCs (ton/yr)	MERPvoc	[O3]8-hour			

### 16-M: Particulate Matter Modeling

	Select the pollu	Select the pollutants for which plume depletion modeling was used.									
1	□ P	□ PM2.5									
	□ P	D PM10									
	×N	None									
2	Describe the pa	Describe the particle size distributions used. Include the source of information.									
Z											
3	Does the facility emit at least 40 tons per year of NO _x or at least 40 tons per year of SO ₂ ? Sources that emit at least 40 tons per year of NO _x or at least 40 tons per year of SO ₂ are considered to emit significant amounts of precursors and must account for secondary formation of PM2.5.					Yes⊠	No□				
4	Was secondary PM modeled for PM2.5?				Yes⊠	No□					
	If MERPs were below.	used to accour	nt for secondary	PM2.5 fill out the in	forma	tion below. If another method was us	ed describe				
	Pollutant		NOx	SO ₂		[PM2.5]24-hour					
5	MERPannual		26780	14978		0.092 μg/m³					
	MERP _{24-hour}		7331	1981		[PM2.5] _{annual}					
Emission rate (ton/yr) 225.75 90.34 0.0029 μg/m ³											

16-	-N: Setback Distances
1	Portable sources or sources that need flexibility in their site configuration requires that setback distances be determined between the emission sources and the restricted area boundary (e.g. fence line) for both the initial location and future locations. Describe the setback distances for the initial location.
2	Describe the requested, modeled, setback distances for future locations, if this permit is for a portable stationary source. Include a haul road in the relocation modeling. N/A

16-	16-O: PSD Increment and Source IDs								
1	The unit numbers in the Tables 2-A, 2-B, 2-C, 2-E, 2-F, and 2-I should match the ones in the modeling files. Do these match? If not, provide a cross-reference table between unit numbers if they do not match below. Yes⊠								
	Unit Number in UA-2								
	FUG	COMPFUG							
2	The emission rates in the Tables 2-E and 2-F should match the ones in the modeling files. Do these match? If not, explain why below.			No□					

Have the minor NSF been modeled?	R exempt sources or 1	itle v insignificant Activi	ties" (Table 2-B) sources	Yes⊠ No□						
	Which units consume increment for which pollutants?									
¹ Unit ID	NO ₂	SO ₂	PM10	PM2.5						
H_1704_CH1	X	X	X	X						
FL_1800_CHP	Х	X								
FL_1800_CH2	х	x								
H_1701_CH1	х	x	x	x						
H_1702_CH1	Х	x	x	x						
H_4701_CH1	х	x	x	x						
H_1701_CH2	Х	x	x	x						
H_1702_CH2	Х	x	x	x						
H_1704_CH2	Х	x	x	x						
H_4701_CH2	Х	x	x	х						
H_1	Х	x	x	х						
SSM	x	x								
EM_1A	х	x	x	x						
EM_1B	х	x	x	х						
EM_2A	Х	x	x	х						
EM_2B	Х	x	x	х						
EM_3A	Х	x	x	x						
EM_3B	Х	x	x	x						
EM_4A	x	x	x	x						
EM_4B	x	x	x	x						
VCU	х	x								
H_1703_CHP	х	x	x	x						
H_1703_CH2	х	x	x	x						
GEN1	х	x	x	х						
GEN2	x	x	x	x						

ſ

1

-

T

	GEN3	Х	х		х		х	
	GEN4	Х	х		х		х	
	GEN5	x	х		х		х	
	GEN6	х	х		х		х	
	H_2	x	х		х		х	
5	PSD increment description for sources. (for unusual cases, i.e., baseline unit expanded emissions after baseline date).							
6	Are all the actual installation dates included in Table 2A of the application form, as required? This is necessary to verify the accuracy of PSD increment modeling. If not please explain how increment consumption status is determined for the missing installation dates below.					Yes	$\triangleleft$	No□

-<u>-</u>--

16-	16-P: Flare Modeling									
1	For each flare or flaring scenario, complete the following									
	Flare ID (and scenario)	Average Molecular Weight	Gross Heat Release (cal/s)	Effective Flare Diameter (m)						
	FL-1800-CHP	58.69 g/mol	13,650 cal/s	0.4188						
	FL-1800-CH2	58.69 g/mol	13,650 cal/s	0.4189						
	SSM			0.4188						

16	Q: Volume and Related Sources		
1	Were the dimensions of volume sources different from standard dimensions in the Air Quality Bureau (AQB) Modeling Guidelines?	Yes□	No⊠
	If not please explain how increment consumption status is determined for the missing installation dates below.		
2	Describe the determination of sigma-Y and sigma-Z for fugitive sources.		
3	Describe how the volume sources are related to unit numbers. Or say they are the same.		
4	Describe any open pits.		
5	Describe emission units included in each open pit.		

16-	R: Backg	round Concentrations					
	used below. I	Were NMED provided background concentrations used? Identify the background stationVesionused below. If non-NMED provided background concentrations were used describe the dataYesNothat was used.NoNoNo					
	CO: Del Norte	High School (350010023)					
	NO ₂ : Outside Carlsbad (350151005)						
1	PM2.5: Hobbs-Jefferson (350450019)						
	PM10: Hobbs-Jefferson (350250008)						
	SO ₂ : Shiprock Substation (350451005)						
	Other:						
	Comments:						
2	Were background concentrations refined to monthly or hourly values? If so describe below. Yes No						

16-S: Meteorological Data						
	Was NMED provided meteorological data used? If so select the station used.					
1	Carlsbad	Yes⊠	No□			
2	If NMED provided meteorological data was not used describe the data set(s) used below. Discuss how missing data were handled, how stability class was determined, and how the data were processed.					

16-T: Terrain						
1	Was complex terrain used in the modeling? If not, describe why below.	Yes⊠	No□			
2	What was the source of the terrain data?					
2	USGS					

#### **16-U: Modeling Files**

 1
 Describe the modeling files:

 1
 File name (or folder and file name)
 Pollutant(s)
 Purpose (ROI/SIA, cumulative, culpability analysis, other)

 Copperhead_XXXX_CO.XX
 CO
 ROI/SIA/Cumulative

 Copperhead_XXXX_SO2.XX
 SO2
 ROI/SIA/Cumulative

 Copperhead_XXXX_NO2.XX
 NO2
 ROI/SIA/Cumulative

 Copperhead_XXXX_PM10.XX
 PM10
 ROI/SIA/Cumulative

 Copperhead_XXXX_PM2.5.XX
 PM2.5
 ROI/SIA/Cumulative

 Copperhead_XXXX_H2S.XX
 H2S
 ROI/SIA/Cumulative

 Image: Copperhead_XXXX_H2S.XX
 H2S
 ROI/SIA/Cumulative

 Image: Copperhead_XXXX_H2S.XX
 H2S
 ROI/SIA/Cumulative

 Image: Copperhead_XXXX_H2S.XX
 H2S
 ROI/SIA/Cumulative

 Image: Copperhead_XXXX_H2S.XX
 H2S
 ROI/SIA/Cumulative

16-	V: PSD New or Major Modification Applications				
1	A new PSD major source or a major modification to an existing PSD major source requires additional analysis. Was preconstruction monitoring done (see 20.2.74.306 NMAC and PSD Preapplication Guidance on the AQB website)?	Yes□	No□		
2	If not, did AQB approve an exemption from preconstruction monitoring?	Yes□	No□		
3	Describe how preconstruction monitoring has been addressed or attach the approved preconstruction monitoring or monitoring exemption.				
4	Describe the additional impacts analysis required at 20.2.74.304 NMAC.				
т					
5	If required, have ozone and secondary PM2.5 ambient impacts analyses been completed? If so describe below.	Yes□	No□		

16-W: N	1odeling R	esults								
1	requirec significa	If ambient standards are exceeded because of surrounding sources, a culpability analysis is required for the source to show that the contribution from this source is less than the significance levels for the specific pollutant. Was culpability analysis performed? If so describe below.								
2		the maximum co s necessary.	ncentrations	from the modelir	ng analysis. Rows	may be mo	dified, add	ed and remov	ed from the	e table
Pollutant, Time	Modeled Facility	Modeled Concentratio n with	Secondary	Background Concentratio	Cumulative Value of	Value of	Percent	Location		
Period and Standard	0 (	PM Concentratio (μg/m3) n (μg/m3)	Concentratio n (μg/m3)	Standard (µg/m3)	of Standard	UTM E (m)	UTM N (m)	Elevation (ft)		
NOx – 1hr	132.92			54.5	187.4	188.03	99.68	629910. 09	356498 7.12	1090.66
NOx-24-hr	64.86489				64.9	188.03	34.50	629882. 86	356461 9.80	1090.62
NOx - annual	25.15829			9.3	34.5	94.02	36.65	629573. 38	356498 7.45	1093.43
CO-1 hr	565.9			2148	2,713.9	14,997.5	18.10	631000. 00	356520 0.00	1081.47
CO-8 hr	353.6			1265	1,618.6	9,960.1	16.25	630700. 00	356520 0.00	1082.80
PM10 – 24hr	15.30934			37.3	52.6	150	35.07	629882. 86	356461 9.80	1090.62
PM10 – Annual	2.80496				2.8	17	16.50	629573. 38	356498 7.45	1093.43
PM2.5 – 24hr	5.87127		0.0917	16.5	22.5	35	64.18	629882. 86	356461 9.80	1090.62
PM2.5 – Annual	1.28952		0.0029	7.1	8.4	9	93.25	629621. 48	356498 7.40	1092.72

Pollutant, Time	Modeled Facility		Secondary	Background	Cumulative Concentratio n (μg/m3)	Concentratio Value of	rd of	Location		
Period and Standard	Concentratio n (μg/m3)	Surrounding Sources (μg/m3)	PM (μg/m3)	Concentratio n (µg/m3)				UTM E (m)	UTM N (m)	Elevation (ft)
SO2-1hr	167.64896			27.9	195.5	196.4	99.57	631000. 00	356520 0.00	1081.47
SO2-3hr	122.11756				122.1	1309.3	9.33	629300. 00	356530 0.00	1096.76
SO2-24hr	44.02670				44.0	261.9	16.81	631100. 00	356530 0.00	1082.60
SO2- Annual	9.64136			1.0	10.6	52.4	20.31	629600. 00	356530 0.00	1093.65
H2S-1hr	11.98				11.98	13.9	86.19	630031. 48	356475 5.76	1089.74
H2S-1/2hr	11.98				11.98	139.3	8.6	630031. 48	356475 5.76	1089.74

16-	6-X: Summary/conclusions				
	A statement that modeling requirements have been satisfied and that the permit can be issued.				
1					

#### **Compliance Test History**

(Submitting under 20.2.70, 20.2.72, 20.2.74 NMAC)

To show compliance with existing NSR permits conditions, you must submit a compliance test history. The table below provides an example.

N/A – there is no compliance test history for this facility. This is a proposed construction project.

### **Other Relevant Information**

**Other relevant information**. Use this attachment to clarify any part in the application that you think needs explaining. Reference the section, table, column, and/or field. Include any additional text, tables, calculations or clarifying information.

Additionally, the applicant may propose specific permit language for AQB consideration. In the case of a revision to an existing permit, the applicant should provide the old language and the new language in track changes format to highlight the proposed changes. If proposing language for a new facility or language for a new unit, submit the proposed operating condition(s), along with the associated monitoring, recordkeeping, and reporting conditions. In either case, please limit the proposed language to the affected portion of the permit.

The required Compliance History Disclosure Form is attached.

According to 20.2.72.203.A(3), all information, including all calculations and computations, to describe the specific chemical and physical nature and to estimate the maximum quantities of any regulated air contaminants the source will emit through routine operations after construction, modification or installation is completed, and estimate maximum potential emissions during malfunction, startup, shutdown must be included with an application. With respect to a toxic air pollutant as defined by Subsection H of 20.2.72.401 NMAC this requirement only applies when the toxic air pollutant is emitted in such a manner that a permit is required under the provisions of 20.2.72.400 NMAC - 20.2.72.499 NMAC. Calculations and computations for toxic air pollutants are included in this section. No toxic air pollutant, as defined in 20.2.72.401 NMAC, is emitted in a quantity exceeding the screening threshold established in 20.2.72.502 Table A and Table B.



#### Air Permit Application Compliance History Disclosure Form

Pursuant to Subsection 74-2-7(S) of the New Mexico Air Quality Control Act ("AQCA"), NMSA §§ 74-2-1 to -17, the New Mexico Environment Department ("Department") may deny any permit application or revoke any permit issued pursuant to the AQCA if, within ten years immediately preceding the date of submission of the permit application, the applicant met any one of the criteria outlined below. In order for the Department to deem an air permit application administratively complete, or issue an air permit for those permits without an administrative completeness determination process, the applicant must complete this Compliance History Disclosure Form as specified in Subsection 74-2-7(P). An existing permit holder (permit issued prior to June 18, 2021) shall provide this Compliance History Disclosure Form to the Department upon request.

Perm	ittee/Applicant Company Name	Expected Application Submitt	Expected Application Submittal Date			
Targa	a Midstream Services, LLC	10/31/2024	10/31/2024			
Perm	iittee/Company Contact	Email	Email			
Robe	rt Andries	randries@targaresources.com				
With	in the 10 years preceding the expected date	e of submittal of the a	pplication, has the permittee or applic	ant:		
1	Knowingly misrepresented a material fact	in an application for	a permit?	🗆 Yes 🖾 No		
2	Refused to disclose information required	by the provisions of t	ne New Mexico Air Quality Control Act?	🗆 Yes 🖂 No		
3	Been convicted of a felony related to envi	ironmental crime in a	ny court of any state or the United State	es? 🗆 Yes 🗵 No		
4	Been convicted of a crime defined by stat price fixing, bribery, or fraud in any court			Yes 🛛 No		
5a	Constructed or operated any facility for which a permit was sought, including the current facility, without the required air quality permit(s) under 20.2.70 NMAC, 20.2.72 NMAC, 20.2.74 NMAC, 20.2.79 NMAC, or 20.2.84 NMAC?					
5b	If "No" to question 5a, go to question 6. If "Yes" to question 5a, state whether eac air quality permit met at least one of the a. The unpermitted facility was discovered					
	authorized by the Department; or		ing a timely environmental addit that w	las		
	b. The operator of the facility estimated t the operator applied for an air permit wit required for the facility.	· · · · · · · · · · · · · · · · · · ·	• • •	nd		
6	Had any permit revoked or permanently s or the United States?	suspended for cause u	nder the environmental laws of any sta	ite 🗌 Yes 🖾 No		
7	For each "yes" answer, please provide an	explanation and docu	imentation.			

### **Section 22: Certification**

Company Name: <u>Targa Midstream Serv</u> ices	,LLC
I, $$ hereby certify that the information of the set of my knowledge and professible, to the best of my knowledge and profession of the set of the set of my knowledge and profession of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of	
Signed this 16 day of October 2024 upon my oath or affin	
Texas	
*Signature	Date Date VP operations
Timmy E O Kafard Printed Name	VP operations Title
Scribed and sworn before me on this 6 day of 6 00000	<u>. 2024</u>
My authorization as a notary of the State of	expires on the
20th day of Junuary, 2024.	16
Notary's Signature	10 04 2024 Date BETTY SUE HERNANDEZ
Be Hy Sue Hernandez Notary's Printed Name	Notary Public, State of Texas Comm. Expires 01-20-2026 Notary ID 133543174

*For Title V applications, the signature must be of the Responsible Official as defined in 20.2.70.7.AE NMAC.

1