

December 3, 2024

New Mexico Environment Department Air Quality Bureau, Permits Section 525 Camino de Los Marquez, Suite 1 Santa Fe, NM 87505

Subject: Revision to New Source Review Permit No. 1092M10R3

Jal #3 Gas Plant

Lea County, New Mexico

ET Gathering & Processing LLC

Dear Sir/Madam:

ET Gathering & Processing LLC (ETGP), is submitting the enclosed Revision to New Source Review (NSR) No. 1092M10R3 for the Jal #3 Gas Plant, which is located approximately 4 miles north-northeast of Jal in Lea County, New Mexico. The facility is a natural gas gathering and boosting station with gas sweetening, dehydration and an acid gas injection well.

With this application, ETGP plans to modify the emissions associated with Startup, Shutdown and Maintenance (SSM) emissions from flares 9F and 10F to reallocate the flaring of gas during periods of acid gas injection compressor downtime. The amine sweetening and glycol dehydration system simulations are also updated.

Sources are also being removed in this application that include removal of the Gas Plant Flare (Unit Number 8F), and a set of storage vessels to include three (3) Scrubber Liquids Tanks (Unit Numbers TK-3, TK-4, and TK-46).

Updates to regulatory applicability for compressor engines and fugitive equipment leaks are also incorporated.

An administrative update to rename the remaining existing plant flares is also incorporated as Unit Number 9F will be described as the Acid Gas Flare and Unit Number 10F will be described as the Plant Flare.

To authorize the change in equipment, ETGP is submitting this application, which has been prepared in accordance with the requirements set forth in NMAC 20.2.72.219.D.1.

If you have any questions or need any additional information, please contact me at 214-840-5217 or by email at james.vanassche@energytransfer.com. Sincerely,

Mr. James VanAssche

Senior Environmental Specialist

Jus Vandrick

Enclosure: GCP O&G Revision Application

Mail Application To:

New Mexico Environment Department Air Quality Bureau Permits Section 525 Camino de los Marquez, Suite 1 Santa Fe, New Mexico, 87505

Phone: (505) 476-4300 Fax: (505) 476-4375 www.env.nm.gov/aqb

For Department use on	l۷	:
-----------------------	----	---

Universal Air Quality Permit Application

Use this application for NOI, NSR, or Title V sources.

Use this application for: the initial application, modifications, technical revisions, and renewals. For technical revisions, complete Sections, 1-A, 1-B, 2-E, 3, 9 and any other sections that are relevant to the requested action; coordination with the Air Quality Bureau permit staff prior to submittal is encouraged to clarify submittal requirements and to determine if more or less than these sections of the application are needed. Use this application for streamline permits as well.

This application is submitted as (check all that apply): ☐ Request for a No Permit Required Determination (no fee) ☐ Updating an application currently under NMED review. Include this page and all pages that are being updated (no fee required). Construction Status: ☐ Not Constructed ☐ Existing Permitted (or NOI) Facility ☐ Existing Non-permitted (or NOI) Facility Minor Source: ☐ NOI 20.2.73 NMAC ☐ 20.2.72 NMAC application or revision ☐ 20.2.72.300 NMAC Streamline application Title V Source: ☐ Title V (new) ☐ Title V renewal ☐ TV minor mod. ☐ TV significant mod. ☐ TV Acid Rain: ☐ New ☐ Renewal PSD Major Source: ☐ PSD major source (new) ☐ Minor Modification to a PSD source ☐ a PSD major modification
Acknowledgements:
☑ I acknowledge that a pre-application meeting is available to me upon request. ☐ Title V Operating, Title IV Acid Rain, and NPR
applications have no fees.
\$500 NSR application Filing Fee enclosed OR □ The full permit fee associated with 10 fee points (required w/ streamline)
applications).
I acknowledge the required submittal format for the hard copy application is printed double sided 'head-to-toe', 2-hole
punched (except the Sect. 2 landscape tables is printed 'head-to-head'), numbered tab separators. Incl. a copy of the check on a
separate page.
I acknowledge there is an annual fee for permits in addition to the permit review fee: www.env.nm.gov/air-quality/permit-fees-2/ .
This facility qualifies for the small business fee reduction per 20.2.75.11.C. NMAC. The full \$500.00 filing fee is included with this
application and I understand the fee reduction will be calculated in the balance due invoice. The Small Business Certification Form
has been previously submitted or is included with this application. (Small Business Environmental Assistance Program Information:
www.env.nm.gov/air-quality/small-biz-eap-2/.)
Citation: Please provide the low level citation under which this application is being submitted: 20.2.72.219.D.1.a NMAC

(e.g. application for a new minor source would be 20.2.72.200.A NMAC, one example for a Technical Permit Revision is 20.2.72.219.B.1.b NMAC, a Title V acid rain application would be: 20.2.70.200.C NMAC)

Section 1 - Facility Information

Sec	tion 1-A: Company Information	AI # if known: 569	Updating Permit/NOI #: 1092M10R3	
1	Facility Name: Jal #3 Gas Plant	Plant primary SIC Code (4 digits): 4922		
1	Jai #3 Gas Flaiit	Plant NAIC code (6 digits): 211130		
а	Facility Street Address (If no facility street address, provide directions from a prominent landmark): The facility is 4 miles north-northeast of Jal, NM.			
2	Plant Operator Company Name: ET Gathering & Processing LLC	Phone/Fax: 432-557-45	530	

а	Plant Operator Address: 1706 South Midkiff Road, Midland, TX 79701		
b	Plant Operator's New Mexico Corporate ID or Tax ID:		
3	Plant Owner(s) name(s): ET Gathering & Processing LLC	Phone/Fax: 432-557-4530	
а	a Plant Owner(s) Mailing Address(s): 1706 South Midkiff Road, Midland, TX 79701		
4	Bill To (Company): ET Gathering & Processing LLC	Phone/Fax: 432-557-4530	
а	Mailing Address: 1706 South Midkiff Road, Midland, TX 79701	E-mail: tanner.foster@energytransfer.com	
5	☑ Preparer: James VanAssche – ET Gathering & Processing LLC☑ Consultant:	Phone/Fax: 214-840-5217	
а	Mailing Address: 1706 South Midkiff Road, Midland, TX 79701	E-mail: james.vanassche@energytransfer.com	
6	Plant Operator Contact: Tanner Foster	Phone/Fax: 432-557-4530	
а	Address: 1706 South Midkiff Road, Midland, TX 79701	E-mail: tanner.foster@energytransfer.com	
7	Air Permit Contact: Tanner Foster	Title: Environmental Specialist	
а	E-mail: tanner.foster@energytransfer.com	Phone/Fax: 432-557-4530	
b	Mailing Address: 1706 South Midkiff Road, Midland, TX 79701		
С	The designated Air permit Contact will receive all official correspondence (i.e. letters, permits) from the Air Quality Bureau.		

Section 1-B: Current Facility Status

1.a	Has this facility already been constructed? ✓ Yes No		1.b If yes to question 1.a, is it currently operating in New Mexico? ☐ Yes ☐ No
2	Intent (NOI) (20.2.73 NMAC) before submittal of this application?		If yes to question 1.a, was the existing facility subject to a construction permit (20.2.72 NMAC) before submittal of this application? ☐ Yes ☐ No
3	Is the facility currently shut down? ☐ Yes ☒ No ☐ If yes, give mo		month and year of shut down (MM/YY):
4	4 Was this facility constructed before 8/31/1972 and continuously operated since 1972? ☐ Yes ☐ No		
5	If Yes to question 3, has this facility been modified (see 20.2.72.7.P NMAC) or the capacity increased since 8/31/1972? ☑ Yes ☐ No ☐ N/A		
6	Does this facility have a Title V operating permit (20.2.70 NMAC)? ☑ Yes ☐ No		If yes, the permit No. is: P-090-R3
7	Has this facility been issued a No Permit Required (NPR)? ☐ Yes ☑ No		If yes, the NPR No. is:
8	Has this facility been issued a Notice of Intent (NOI)? ☐ Yes ☒ No		o If yes, the NOI No. is:
9	Does this facility have a construction permit (20.2.72/20.2.74 NMAC)		C)? If yes, the permit No. is: 1092-M10R3
10	Is this facility registered under a General permit (GCP-1_GCP-2_etc)? If yes, the register No. is:

Section 1-C: Facility Input Capacity & Production Rate

1	What is the facility's maximum input capacity, specify units (reference here and list capacities in Section 20, if more room is required)			
а	Current	Hourly: 2.92 MMscf	Daily: 70 MMscf	Annually: 25,550 MMscf
b	Proposed	Hourly: 2.92 MMscf	Daily: 70 MMscf	Annually: 25,550 MMscf
2	What is the facility's maximum production rate, specify units (reference here and list capacities in Section 20, if more room is required)			n Section 20, if more room is required)
а	Current	Hourly: 2.92 MMscf	Daily: 70 MMscf	Annually: 25,550 MMscf
b	Proposed	Hourly: 2.92 MMscf	Daily: 70 MMscf	Annually: 25,550 MMscf

Section 1-D: Facility Location Information

5000	ion I D. Tacinty Location inito	mation			
1	Latitude (decimal degrees): 32.174281	Longitude	(decimal degrees): -103.174134	County: Lea	Elevation (ft): 3260
2	UTM Zone: 12 or 13		Datum: NAD 83 WGS 84		
a	UTM E (in meters, to nearest 10 meters): 672129	١	UTM N (in meters, to nearest 10 meters)	: 3561167	
3	Name and zip code of nearest New Mexico	88252			
4	Detailed Driving Instructions from nearest NM town (attach a road map if necessary): The facility is 4 miles north-northeast of Jal, NM.				north-northeast
5	The facility is 4 (distance) miles north-northeast (direction) of Jal (nearest town).				
6	Land Status of facility (check one): Private Indian/Pueblo Government BLM Forest Service Military				
7	List all municipalities, Indian tribes, and counties within a ten (10) mile radius (20.2.72.203.B.2 NMAC) of the property on which the facility is proposed to be constructed or operated: Jal, NM; Indian Tribes: None; Counties: Lea (NM)				
8	20.2.72 NMAC applications only: Will the property on which the facility is proposed to be constructed or operated be closer than 50 km (31 miles) to other states, Bernalillo County, or a Class I area (see www.env.nm.gov/air-quality/modeling-publications/)? ☑ Yes ☐ No (20.2.72.206.A.7 NMAC) If yes, list all with corresponding distances in kilometers: 10.1 km from Texas				
9	Name nearest Class I area: Carlsbad Caver	ns National	Park		
10	Shortest distance (in km) from facility boundary to the boundary of the nearest Class I area (to the nearest 10 meters): 112.6 km				neters): 112.6 km
11	Distance (meters) from the perimeter of the Area of Operations (AO is defined as the plant site inclusive of all disturbed lands, including mining overburden removal areas) to nearest residence, school or occupied structure: 2030 meters				
12	Method(s) used to delineate the Restricted Area: "Restricted Area" is an area to which public entry is effectively precluded. Effective barriers include continuous fencing, continuous walls, or other continuous barriers approved by the Department, such as rugged physical terrain with steep grade that would require special equipment to traverse. If a large property is completely enclosed by fencing, a restricted area within the property may be identified with signage only. Public roads cannot be part of a Restricted Area.				
13	Does the owner/operator intend to operate this source as a portable stationary source as defined in 20.2.72.7.X NMAC? Yes No A portable stationary source is not a mobile source, such as an automobile, but a source that can be installed permanently at one location or that can be re-installed at various locations, such as a hot mix asphalt plant that is moved to different job sites.				
14	Will this facility operate in conjunction wit If yes, what is the name and permit number			erty? 🔲 No	Yes
L			11.		

Section 1-E: Proposed Operating Schedule (The 1-E.1 & 1-E.2 operating schedules may become conditions in the permit.)

1	Facility maximum operating (hours day): 24	(days (week): 7	(weeks year): 52	(<u>hours</u>): 8760	
2	2 Facility's maximum daily operating schedule (if less than 24 hours day)? Start: N/A		□AM □PM	End: N/A	②AM ②PM
3	3 Month and year of anticipated start of construction: N/A				
4	4 Month and year of anticipated construction completion: N/A				
5	Month and year of anticipated startup of new or modified facility: Upon permit approval				
6	6 Will this facility operate at this site for more than one year? ☐ Yes ☐ No				

Section 1-F: Other Facility Information

	•
1	Are there any current Notice of Violations (NOV), compliance orders, or any other compliance or enforcement issues related to this facility? Yes No If yes, specify:

а	If yes, NOV date or description of issue:		NOV Tracking No:		
b	Is this application in response to any issue listed in 1-F, 1 or 1a at If Yes, provide the 1c & 1d info below:	oove? Yes No			
С	Document Title:		rement # (or # and paragraph #):		
d	Provide the required text to be inserted in this permit:				
2	Is air quality dispersion modeling or modeling waiver being subm	nitted with this applica	ition? 🛛 Yes 🔲 No		
3	Does this facility require an "Air Toxics" permit under 20.2.72.40	0 NMAC & 20.2.72.50	2, Tables A and/or B? Yes No		
4	Will this facility be a source of federal Hazardous Air Pollutants (HAP)? 🔀 Yes 🔲 No				
а	If Yes, what type of source? ☐ Major (☐ ≥10 tpy of any single OR ☐ Minor (☐ <10 tpy of any single		25 tpy of any combination of HAPS) 25 tpy of any combination of HAPS)		
5	Is any unit exempt under 20.2.72.202.B.3 NMAC? ☐ Yes 🗷 No				
	If yes, include the name of company providing commercial electr	ic power to the facility	y:		
a	Commercial power is purchased from a commercial utility comp on site for the sole purpose of the user.	any, which specifically	y does not include power generated		
Sect	tion 1-G: Streamline Application (This section applies	to 20.2.72.300 NMAC St	reamline applications only)		
1	I have filled out Section 18, "Addendum for Streamline App	lications." N/	A (This is not a Streamline application.)		
(Title \	ion 1-H: Current Title V Information - Required V-source required information for all applications submitted pursuant to (Major PSD/NNSR applications), and/or 20.2.70 NMAC (Title V))	= =			
1	Responsible Official (R.O.) (20.2.70.300.D.2 NMAC): Toby Clark		Phone: 432-614-9387		
а	R.O. Title: VP - Operations	R.O. e-mail: toby.cl	ark@energytransfer.com		
b	R. O. Address: 1706 South Midkiff Road, Midland, TX 79701				
2	Alternate Responsible Official (20.2.70.300.D.2 NMAC): Jesus Martinez		Phone: 432-213-7840		
а	A. R.O. Title: Director - Operations	A. R.O. e-mail: jesu	s.martinez@energytransfer.com		
b	A. R. O. Address: 801 S Loop 464, Monahans, TX 79756				
3	Company's Corporate or Partnership Relationship to any other Air Quality Permittee (List the names of any companies that have operating (20.2.70 NMAC) permits and with whom the applicant for this permit has a corporate or partnership relationship):				
4	Name of Parent Company ("Parent Company" means the primary permitted wholly or in part.): Energy Transfer Equity, L.P.	y name of the organiza	ation that owns the company to be		
а	Address of Parent Company: 8111 Westchester Dr, Dallas, TX 752	225			
5	Names of Subsidiary Companies ("Subsidiary Companies" means owned, wholly or in part, by the company to be permitted.): Not	•	es, divisions or subsidiaries, which are		
6	Telephone numbers & names of the owners' agents and site con 557-4530	Telephone numbers & names of the owners' agents and site contacts familiar with plant operations: Tanner Foster, 432-557-4530			
	Affected Programs to include Other States, local air pollution control programs (i.e. Bernalillo) and Indian tribes: Will the property on which the facility is proposed to be constructed or operated be closer than 80 km (50 miles) from other states, local pollution control programs, and Indian tribes and pueblos (20.2.70.402.A.2 and 20.2.70.7.B)? If yes, state which ones and provide the distances in kilometers: Texas, 10.1 km				

Section 1-I – Submittal Requirements

Each 20.2.73 NMAC (**NOI**), a 20.2.70 NMAC (**Title V**), a 20.2.72 NMAC (**NSR** minor source), or 20.2.74 NMAC (**PSD**) application package shall consist of the following:

Hard Copy Submittal Requirements:

- 1) One hard copy original signed and notarized application package printed double sided 'head-to-toe' 2-hole punched as we bind the document on top, not on the side; except Section 2 (landscape tables), which should be head-to-head. Please use numbered tab separators in the hard copy submittal(s) as this facilitates the review process. For NOI submittals only, hard copies of UA1, Tables 2A, 2D & 2F, Section 3 and the signed Certification Page are required. Please include a copy of the check on a separate page.
- 2) If the application is for a minor NSR, PSD, NNSR, or Title V application, include one working hard **copy** for Department use. This copy should be printed in book form, 3-hole punched, and must be double sided. Note that this is in addition to the head-to-to 2-hole punched copy required in 1) above. Minor NSR Technical Permit revisions (20.2.72.219.B NMAC) only need to fill out Sections 1-A, 1-B, 3, and should fill out those portions of other Section(s) relevant to the technical permit revision. TV Minor Modifications need only fill out Sections 1-A, 1-B, 1-H, 3, and those portions of other Section(s) relevant to the minor modification. NMED may require additional portions of the application to be submitted, as needed.
- 3) The entire NOI or Permit application package, including the full modeling study, should be submitted electronically. Electronic files for applications for NOIs, any type of General Construction Permit (GCP), or technical revisions to NSRs must be submitted with compact disk (CD) or digital versatile disc (DVD). For these permit application submittals, two CD copies are required (in sleeves, not crystal cases, please), with additional CD copies as specified below. NOI applications require only a single CD submittal. Electronic files for other New Source Review (construction) permits/permit modifications or Title V permits/permit modifications can be submitted on CD/DVD or sent through AQB's secure file transfer service.

Electronic files sent by (check one):

CD	/DVD	attached	to	paper	app	lication
----	------	----------	----	-------	-----	----------

Secure electronic transfer. Air Permit Contact Name <u>James VanAssche</u>, Email <u>james.vanassche@energytransfer.com</u> Phone number <u>214-840-5217</u>.

- a. If the file transfer service is chosen by the applicant, after receipt of the application, the Bureau will email the applicant with instructions for submitting the electronic files through a secure file transfer service. Submission of the electronic files through the file transfer service needs to be completed within 3 business days after the invitation is received, so the applicant should ensure that the files are ready when sending the hard copy of the application. The applicant will not need a password to complete the transfer. **Do not use the file transfer service for NOIs, any type of GCP, or technical revisions to NSR permits.**
- 4) Optionally, the applicant may submit the files with the application on compact disk (CD) or digital versatile disc (DVD) following the instructions above and the instructions in 5 for applications subject to PSD review.
- 5) If **air dispersion modeling** is required by the application type, include the **NMED Modeling Waiver** and/or electronic air dispersion modeling report, input, and output files. The dispersion modeling **summary report only** should be submitted as hard copy(ies) unless otherwise indicated by the Bureau.
- 6) If the applicant submits the electronic files on CD and the application is subject to PSD review under 20.2.74 NMAC (PSD) or NNSR under 20.2.79 NMC include,
 - a. one additional CD copy for US EPA,
 - b. one additional CD copy for each federal land manager affected (NPS, USFS, FWS, USDI) and,
 - c. one additional CD copy for each affected regulatory agency other than the Air Quality Bureau.

If the application is submitted electronically through the secure file transfer service, these extra CDs do not need to be submitted.

Electronic Submittal Requirements [in addition to the required hard copy(ies)]:

1) All required electronic documents shall be submitted as 2 separate CDs or submitted through the AQB secure file transfer service. Submit a single PDF document of the entire application as submitted and the individual documents comprising the application.

- 2) The documents should also be submitted in Microsoft Office compatible file format (Word, Excel, etc.) allowing us to access the text and formulas in the documents (copy & paste). Any documents that cannot be submitted in a Microsoft Office compatible format shall be saved as a PDF file from within the electronic document that created the file. If you are unable to provide Microsoft office compatible electronic files or internally generated PDF files of files (items that were not created electronically: i.e. brochures, maps, graphics, etc.), submit these items in hard copy format. We must be able to review the formulas and inputs that calculated the emissions.
- 3) It is preferred that this application form be submitted as 4 electronic files (3 MSWord docs: Universal Application section 1 [UA1], Universal Application section 3-19 [UA3], and Universal Application 4, the modeling report [UA4]) and 1 Excel file of the tables (Universal Application section 2 [UA2]). Please include as many of the 3-19 Sections as practical in a single MS Word electronic document. Create separate electronic file(s) if a single file becomes too large or if portions must be saved in a file format other than MS Word.
- 4) The electronic file names shall be a maximum of 25 characters long (including spaces, if any). The format of the electronic Universal Application shall be in the format: "A-3423-FacilityName". The "A" distinguishes the file as an application submittal, as opposed to other documents the Department itself puts into the database. Thus, all electronic application submittals should begin with "A-". Modifications to existing facilities should use the core permit number (i.e. '3423') the Department assigned to the facility as the next 4 digits. Use 'XXXX' for new facility applications. The format of any separate electronic submittals (additional submittals such as non-Word attachments, re-submittals, application updates) and Section document shall be in the format: "A-3423-9-description", where "9" stands for the section # (in this case Section 9-Public Notice). Please refrain, as much as possible, from submitting any scanned documents as this file format is extremely large, which uses up too much storage capacity in our database. Please take the time to fill out the header information throughout all submittals as this will identify any loose pages, including the Application Date (date submitted) & Revision number (0 for original, 1, 2, etc.; which will help keep track of subsequent partial update(s) to the original submittal. Do not use special symbols (#, @, etc.) in file names. The footer information should not be modified by the applicant.

Table of Contents

Section 1: General Facility Information

Section 2: Tables

Section 3: Application Summary
Section 4: Process Flow Sheet
Section 5: Plot Plan Drawn to Scale

Section 6: All Calculations

Section 7: Information Used to Determine Emissions

Section 8: Map(s)

Section 9: Proof of Public Notice

Section 10: Written Description of the Routine Operations of the Facility

Section 11: Source Determination

Section 12: PSD Applicability Determination for All Sources & Special Requirements for a PSD Application

Section 13: Discussion Demonstrating Compliance with Each Applicable State & Federal Regulation

Section 14: Operational Plan to Mitigate Emissions

Section 15: Alternative Operating Scenarios

Section 16: Air Dispersion Modeling
Section 17: Compliance Test History

Section 18: Addendum for Streamline Applications (streamline applications only)

Section 19: Requirements for the Title V (20.2.70 NMAC) Program (Title V applications only)

Section 20: Other Relevant Information

Section 21: Addendum for Landfill Applications

Section 22: Certification Page

Change Log – Do **not** submit this page with your application.

If you are using a form older than the most current form posted on the website, you are required to incorporate the changes listed. Periodically, AQB will announce when older form versions will no longer be accepted.

	Version Date	Changes Incorporated
April 1, 2021		Current version of this form. Older versions are not accepted.
	July 12, 2023	Removed Section, Township, Range, and NAD 27, changed font to Calibri, inserted active checkboxes.

Table 2-A: Regulated Emission Sources

Unit and stack numbering must correspond throughout the application package. If applying for a NOI under 20.2.73 NMAC, equipment exemptions under 2.72.202 NMAC do not apply.

					Manufact-	Requested	Date of Manufacture ²	Controlled by Unit #				
Unit Number ¹	Source Description	Make	Model #	Serial #	urer's Rated Capacity ³ (Specify Units)	Permitted Capacity ³ (Specify Units)	Date of Construction/ Reconstruction ²	Emissions vented to Stack #	Source Classi- fication Code (SCC)	For Each Piece of Equipment, Check One	RICE Ignition Type (CI, SI, 4SLB, 4SRB, 2SLB) ⁴	Replacing Unit No.
C1	Natural Gas	Caterpillar	G3612TALE	1YG00065	3550	3550	8/7/2018	C1	20200254	☑ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit	4SLB	
CI	Compressor Engine	Caterpinal	GJUIZTALL	11000003	3330	3330	2019	C1	20200254	□ To Be Modified □ To be Replaced	4325	
C2	Natural Gas	Caterpillar	G3612TALE	BKE00660	3550	3550	1/2/2008	C2	20200254	☑ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit	4SLB	
C2	Compressor Engine	caterpinar	GGGIZIALL	BREGOGG	3330	3330	2016	C2	20200234	□ To Be Modified □ To be Replaced	.015	
C3	Natural Gas	Caterpillar	G3612TALE	BKE00662	3550	3550	1/2/2008	C3	20200254	☑ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit	4SLB	
	Compressor Engine	caterpinar	GGGIZIALL	BRE00002	3330	3330	2016	C3	20200234	□ To Be Modified □ To be Replaced		
C4	Natural Gas	Caterpillar	G3612TALE	BKE00659	3550	3550	1/2/2008	C4	20200254	☑ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit	4SLB	
C+	Compressor Engine	caterpinar	GGGIZIALL	BREGGGG	3330	3330	2016	C4	20200234	□ To Be Modified □ To be Replaced	.525	
C5	Natural Gas	Caterpillar	G3606	JFE01462	1875	1875	5/28/2019	C5	20200254	☑ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit	4SLB	
	Compressor Engine	caterpinar	35000	31 201402	1075	1073	2023	C5	20200234	□ To Be Modified □ To be Replaced		
C6	Natural Gas	Caterpillar	G3606	JFE01465	1875	1875	5/1/2019	C6	20200254	☑ Existing (unchanged) ☐ To be Removed ☐ New/Additional ☐ Replacement Unit	4SLB	
CO	Compressor Engine	Caterpinal	43000	31 201403	1073	1075	2023	C6	20200254	□ To Be Modified □ To be Replaced	4565	
12H	Regeneration Gas	TBD	N/A	TBD	28	28	TBD	N/A	31000404	☑ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit		
1211	Heater	100	19/7	160	MMbtu/hr	MMbtu/hr	TBD	N/A	31000404	□ To Be Modified □ To be Replaced		
13H	Dehy Reboiler	TBD	N/A	TBD	2.0	2.0	TBD	N/A	31000404	⊠ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit		
1511	beny Resolici	100	14/7	100	MMbtu/hr	MMbtu/hr	TBD	N/A	31000404	□ To Be Modified □ To be Replaced		
14H	Stabilizer Heater	Heatec	HCI-6010-30-	HI14-220	10	10	4/1/2015	N/A	31000404	⊠ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit		
1411	Stabilizer Heater	Heatee	G	1114 220	MMbtu/hr	MMbtu/hr	2023	N/A	31000404	□ To Be Modified □ To be Replaced		
8F	Gas Plant Flare	John Zink	N/A	N/A	10	10	Unknown	N/A	31000215	☐ Existing (unchanged) ☑ To be Removed ☐ New/Additional ☐ Replacement Unit		
01	Gas Flatte Flate	JOHN ZIIK	IN/A	N/A	MMcf/d	MMcf/d	1971	8F	31000213	□ To Be Modified □ To be Replaced		
9F	Acid Gas Flare	John Zink	N/A	N/A	2.9	2.9	Unknown	N/A	31000215	☐ Existing (unchanged) ☐ To be Removed ☐ New/Additional ☐ Replacement Unit		
91	Acid Gas Flate	JOHN ZIIK	IN/A	N/A	MMcf/d	MMcf/d	1993	9F	31000213	☐ New/Additional ☐ Replacement Office ☐ To be Replaced		
10F	Plant Flare	John Zink	N/A	N/A	75	75	Unknown	N/A	31000215	☐ Existing (unchanged) ☐ To be Removed ☐ New/Additional ☐ Replacement Unit		
101	Platit Flate	JOHN ZIIK	IN/A	N/A	MMcf/d	MMcf/d	1950	10F	31000213	☐ New/Additional ☐ Replacement Unit ☐ To be Replaced		
TK-3	Scrubber Liquids	N/A	N/A	N/A	8,820 gal	8,820 gal	Unknown	N/A	40400201	☐ Existing (unchanged) ☐ To be Removed		
11/-2	Tank	IN/A	IN/A	IN/A	o,ozu gai	o,ozu gai	1970	N/A	40400301	□ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced		
TK-4	Scrubber Liquids	NI/A	N/A	NI/A	0 020 001	0 020 22	Unknown	N/A	40400204	☐ Existing (unchanged) ☑ To be Removed		
I N-4	Tank	N/A	IN/A	N/A	8,820 gal	8,820 gal	1970	N/A	40400301	□ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced		
TK-46	Scrubber Liquids	NI/A	N1/A	NI/A	4 512 60	4 512 col	Unknown	N/A	/A	☐ Existing (unchanged) ☑ To be Removed		
1 K-46	Tank	N/A	N/A	N/A	4,512 gal	4,512 gal	1970	N/A	40400301	□ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced		

					Manufact-	Requested	Date of Manufacture ²	Controlled by Unit #				
Unit Number ¹	Source Description	Make	Model #	Serial #	urer's Rated Capacity ³ (Specify Units)	Permitted Capacity ³ (Specify Units)	Date of Construction/ Reconstruction ²	Emissions vented to Stack#	Source Classi- fication Code (SCC)	For Each Piece of Equipment, Check One	RICE Ignition Type (CI, SI, 4SLB, 4SRB, 2SLB) ⁴	Replacing Unit No.
FUG1	Fugitive Emissions	N/A	N/A	N/A	N/A	N/A	N/A	8F-10F	31088811	⊠ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit		
7001	rugitive Lillissions	N/A	N/A	N/A	N/A	NYA	N/A	8F-10F	31088811	□ To Be Modified □ To be Replaced		
FUG2	Fugitive Emissions	N/A	N/A	N/A	N/A	N/A	N/A	9F	31088811	☑ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit		
	. 481.116 23310113		,//	,,,	.,,,,	74/7	N/A	9F		□ To Be Modified □ To be Replaced		
DR2	Dehydrator Regenerator	TBD	N/A	TBD	70 MMscfd	70 MMscfd	TBD	9F	31000301	☑ Existing (unchanged) ☐ To be Removed ☐ New/Additional ☐ Replacement Unit		
J. L.	(with condenser)	100	14/7	100	70 111113010	70 111113614	TBD	9F	31000301	□ To Be Modified □ To be Replaced		
LOADOUT	Condensate Truck	N/A	N/A	N/A	800	800 bbl/day	Unknown	N/A	40400301	☑ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit		
	Loadout		,//	,/	bbl/day	000 00., 44,	Unknown	N/A		□ To Be Modified □ To be Replaced		
SSM/M	Startup, Shutdown, Maintenance/	N/A	N/A	N/A	N/A	N/A	N/A	8F, 10F	31088811	☑ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit		
	Malfunction		.,,		.,,	. ,,	N/A	8F, 10F		□ To Be Modified □ To be Replaced		
SSM- Inlet (Flare	Routine Inlet Blow	N/A	N/A	N/A	N/A	N/A	N/A	10F	31088811	☑ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit		
10F)	Downs		.,,	,	.,,	,	N/A	10F		□ To Be Modified □ To be Replaced		
TK-519	Gunbarrel	N/A	N/A	N/A	600 bbl	600 bbl	N/A	VRU	40400311	⊠ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit		
			.,,	.,,,,			2015	N/A		□ To Be Modified □ To be Replaced		
TK-	Scrubber Oil Tank	N/A	N/A	N/A	500 bbl	500 bbl	N/A	N/A	40400311	☑ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit		
519C			.,,	.,,,,	000 000		2015	N/A		□ To Be Modified □ To be Replaced		
TK-519A	Water Tank	N/A	N/A	N/A	500 bbl	500 bbl	N/A	N/A	40400311	☑ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit		
323/1			1.77.	, , ,	223 88.	555 881	2015	N/A		□ To Be Modified □ To be Replaced		
LOAD	Scrubber Oil	N/A	N/A	N/A	500 bbl	500 bbl	N/A	N/A		☑ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit		
	Loading must correspond to unit nur		-				2015	N/A	31088811 /A	□ To Be Modified □ To be Replaced		

¹ Unit numbers must correspond to unit numbers in the previous permit unless a complete cross reference table of all units in both permits is provided.

Form Revision: 5/3/2016 Printed 10/25/2024 7:48 AM

² Specify dates required to determine regulatory applicability.

³ To properly account for power conversion efficiencies, generator set rated capacity shall be reported as the rated capacity of the engine in horsepower, not the kilowatt capacity of the generator set.

^{4&}quot;4SLB" means four stroke lean burn engine, "4SRB" means four stroke rich burn engine, "2SLB" means two stroke lean burn engine, "CI" means compression ignition, and "SI" means spark ignition

Table 2-B: Insignificant Activities¹ (20.2.70 NMAC) OR Exempted Equipment (20.2.72 NMAC)

All 20.2.70 NMAC (Title V) applications must list all Insignificant Activities in this table. All 20.2.72 NMAC applications must list Exempted Equipment in this table. If equipment listed on this table is exempt under 20.2.72.202.B.5, include emissions calculations and emissions totals for 202.B.5 "similar functions" units, operations, and activities in Section 6, Calculations. Equipment and activities exempted under 20.2.72.202 NMAC may not necessarily be Insignificant under 20.2.70 NMAC (and vice versa). Unit & stack numbering must be consistent throughout the application package. Per Exemptions Policy 02-012.00 (see http://www.env.nm.gov/aqb/permit/aqb_pol.html), 20.2.72.202.B NMAC Exemptions do not apply, but 20.2.72.202.A NMAC exemptions do apply to NOI facilities under 20.2.73 NMAC. List 20.2.72.301.D.4 NMAC Auxiliary Equipment for Streamline applications in Table 2-A. The List of Insignificant Activities (for TV) can be found online at https://www.env.nm.gov/wp-

Unit Number	Source Description	Manufacturer	Model No.	Max Capacity	List Specific 20.2.72.202 NMAC Exemption (e.g. 20.2.72.202.B.5)	Date of Manufacture /Reconstruction ²	For Each Piece of Equipment, Check Onc
onit Number	Source Description	Manufacturer	Serial No.	Capacity Units	Insignificant Activity citation (e.g. IA List Item #1.a)	Date of Installation /Construction ²	For Each Flece of Equipment, Check Onc
D4	Fire Power	University	Unknown	N/A	20.2.72.202.A.4	Unknown	☑ Existing (unchanged) ☐ To be Removed
P1	Fire Pump	Unknown	Unknown	N/A	N/A	Unknown	□ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced
D2	Fine Dune	Charatan	Unknown	N/A	20.2.72.202.A.4	Unknown	☑ Existing (unchanged) □ To be Removed
P2	Fire Pump	Chrysler	Unknown	N/A	N/A	Unknown	□ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced
TV C	Wests Oil Took	N/A	N/A	8820	20.2.72.202.B.5	Unknown	☑ Existing (unchanged) ☐ To be Removed
TK-6	Waste Oil Tank	N/A	N/A	gal	N/A	Unknown	□ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced
TK-7	Waste Oil Tank	N/A	N/A	390	20.2.72.202.B.5	Unknown	☑ Existing (unchanged) ☐ To be Removed
1K-7	waste oli Tank	N/A	N/A	gal	N/A	Unknown	□ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced
TV 0	Out of Somiles	N/A	N/A	2100	Not a Source of any Regulated Pollutant	Unknown	☑ Existing (unchanged) ☐ To be Removed
TK-8	Out of Service	N/A	N/A	gal	N/A	Unknown	□ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced
TK-9	Jacket Water Tank	N/A	N/A	4200	Not a Source of any Regulated Pollutant	Unknown	☑ Existing (unchanged) ☐ To be Removed ☐ New/Additional ☐ Replacement Unit
14-9	Jacket Water Falls	N/A	N/A	gal	N/A	Unknown	□ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced
TK-10	Lube Oil Tanks	N/A	N/A	8820	20.2.72.202.B.2	Unknown	
117-10	Lube Oil Talliks	N/A	N/A	gal	N/A	Unknown	□ To Be Modified □ To be Replaced
TK-11	Lube Oil Tanks	N/A	N/A	8820	20.2.72.202.B.2	Unknown	☑ Existing (unchanged) ☐ To be Removed ☐ New/Additional ☐ Replacement Unit
IK-11	Lube Oil Talliks	N/A	N/A	gal	N/A	Unknown	□ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced
TK-12	Detergent Tank	N/A	N/A	190	Not a Source of any Regulated Pollutant	Unknown	☑ Existing (unchanged)☐ To be Removed☐ New/Additional☐ Replacement Unit
TR-12	betergent rank	N/A	N/A	gal	N/A	Unknown	□ To Be Modified □ To be Replaced
TK-13	Water Treater	N/A	N/A	930	Not a Source of any Regulated Pollutant	Unknown	☑ Existing (unchanged)☐ To be Removed☐ New/Additional☐ Replacement Unit
TK-13	water freater	N/A	N/A	gal	N/A	Unknown	□ To Be Modified □ To be Replaced
TK-14	Lube Oil Tanks	N/A	N/A	8820	20.2.72.202.B.2	Unknown	☑ Existing (unchanged) ☐ To be Removed ☐ New/Additional ☐ Replacement Unit
11, 14	Ease on rains	NA	N/A	gal	N/A	Unknown	□ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced
TK-15	Antifreeze Tank	N/A	N/A	8820	20.2.72.202.B.5	Unknown	☑ Existing (unchanged) ☐ To be Removed ☐ New/Additional ☐ Replacement Unit
11. 15	Andirecze rank	11/15	N/A	gal	N/A	Unknown	□ To Be Modified □ To be Replaced
TK-16	Lube Oil Tanks	N/A	N/A	8820	20.2.72.202.B.2	Unknown	☑ Existing (unchanged) ☐ To be Removed ☐ New/Additional ☐ Replacement Unit
11.10	Lude Oil Tallics	N/A	N/A	gal	N/A	Unknown	□ To Be Modified □ To be Replaced
TK-17	Lube Oil Tank	N/A	N/A	480	20.2.72.202.B.2	Unknown	☑ Existing (unchanged) ☐ To be Removed ☐ New/Additional ☐ Replacement Unit
115.77	Lube On Talik	IN/C	N/A	gal	N/A	Unknown	□ To Be Modified □ To be Replaced

Unit Number	Source Description	Manufacturer	Model No.	Max Capacity	List Specific 20.2.72.202 NMAC Exemption (e.g. 20.2.72.202.B.5)	Date of Manufacture /Reconstruction ²	For Each Piece of Equipment, Check Onc
Onicivanibei	Source Description	Wallulacturel	Serial No.	Capacity Units	Insignificant Activity citation (e.g. IA List Item #1.a)	Date of Installation /Construction ²	To Lacit Flece of Equipment, check one
TK-18	Solvent Tank	N/A	N/A	660	20.2.72.202.B.2	Unknown	☑ Existing (unchanged) ☐ To be Removed
11/-12	Solvent Tank	N/A	N/A	gal	N/A	Unknown	□ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced
TK-19	Waste Oil Tank	N/A	N/A	1130	20.2.72.202.B.5	Unknown	☑ Existing (unchanged) ☐ To be Removed
14-19	waste Oil Talik	IN/A	N/A	gal	N/A	Unknown	□ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced
TK-20	Detergent Tank	N/A	N/A	1670	Not a Source of any Regulated Pollutant	Unknown	☑ Existing (unchanged) ☐ To be Removed
TK-20	Detergent Tank	N/A	N/A	gal	N/A	Unknown	□ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced
TK-21	Solvent Tank	N/A	N/A	370	20.2.72.202.B.2	Unknown	☑ Existing (unchanged) ☐ To be Removed
TK-21	Solvent Tank	N/A	N/A	gal	N/A	Unknown	□ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced
TK-22	Methanol Tank	NI/A	N/A	290	20.2.72.202.B.5	Unknown	☑ Existing (unchanged) ☐ To be Removed
1K-22	Methanol Tank	N/A	N/A	gal	N/A	Unknown	□ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced
TV 22	Mathamal Taul	N1/A	N/A	2960	20.2.72.202.B.5	Unknown	☑ Existing (unchanged) ☐ To be Removed
TK-23	Methanol Tank	N/A	N/A	gal	N/A	Unknown	□ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced
TV 24		21/2	N/A	2060	20.2.72.202.B.5	Unknown	☑ Existing (unchanged) □ To be Removed
TK-24	Methanol Tank	N/A	N/A	gal	N/A	Unknown	□ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced
			N/A	330	Not a Source of any Regulated Pollutant	Unknown	☑ Existing (unchanged) □ To be Removed
TK-25	Corrosion Inhibitor Tank	N/A	N/A	gal	N/A	Unknown	□ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced
			N/A	410	20.2.72.202.B.5	Unknown	☑ Existing (unchanged) □ To be Removed
TK-26	Waste Oil Tank	N/A	N/A	gal	N/A	Unknown	□ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced
			N/A	110	20.2.72.202.B.2	Unknown	☑ Existing (unchanged) □ To be Removed
TK-27	Lube Oil Tank	N/A	N/A	gal	N/A	Unknown	□ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced
TV 00		21/2	N/A	110	20.2.72.202.B.2	Unknown	☑ Existing (unchanged) □ To be Removed
TK-28	Lube Oil Tank	N/A	N/A	gal	N/A	Unknown	□ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced
TV 00			N/A	730	Not a Source of any Regulated Pollutant	Unknown	☑ Existing (unchanged) □ To be Removed
TK-29	Water Treater Tank	N/A	N/A	gal	N/A	Unknown	□ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced
TV 00	0		N/A	1000	Not a Source of any Regulated Pollutant	Unknown	☑ Existing (unchanged) □ To be Removed
TK-30	Out of Service	N/A	N/A	gal	N/A	Unknown	□ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced
	7		N/A	2820	20.2.72.202.B.2	Unknown	☑ Existing (unchanged) □ To be Removed
TK-31	Triethylene Glycol Tank	N/A	N/A	gal	N/A	Unknown	□ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced
TV 00	Ametric To 1	21/2	N/A	8820	20.2.72.202.B.5	Unknown	☑ Existing (unchanged) ☐ To be Removed
TK-32	Amine Tank	N/A	N/A	gal	N/A	Unknown	□ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced
TV 22	Amelian Total	N1/A	N/A	8820	20.2.72.202.B.2	Unknown	☑ Existing (unchanged) □ To be Removed
TK-33	Amine Tank	N/A	N/A	gal	N/A	Unknown	□ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced
		***	N/A	8820	20.2.72.202.B.2	Unknown	☑ Existing (unchanged) □ To be Removed
TK-34	Amine Tank	N/A	N/A	gal	N/A	Unknown	□ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced
			N/A	8820	20.2.72.202.B.2	Unknown	☑ Existing (unchanged) □ To be Removed
TK-35	Lube Oil Tanks	N/A	N/A	gal	N/A	Unknown	□ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced
	– .		N/A	8820	20.2.72.202.B.5	Unknown	☑ Existing (unchanged) □ To be Removed
TK-36	Antifreeze Tank	N/A	N/A	gal	N/A	Unknown	□ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced

Heit Niveshou	Sauras Description	Manufacturar	Model No.	Max Capacity	List Specific 20.2.72.202 NMAC Exemption (e.g. 20.2.72.202.B.5)	Date of Manufacture /Reconstruction ²	For Foch Diego of Freeinment Charle One
Unit Number	Source Description	Manufacturer	Serial No.	Capacity Units	Insignificant Activity citation (e.g. IA List Item #1.a)	Date of Installation /Construction ²	For Each Piece of Equipment, Check Onc
TV 27	Determent Toul	NI/A	N/A	180	Not a Source of any Regulated Pollutant	Unknown	☑ Existing (unchanged) ☐ To be Removed
TK-37	Detergent Tank	N/A	N/A	gal	N/A	Unknown	□ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced
TK-38	Antifreeze Tank	NI/A	N/A	1690	20.2.72.202.B.5	Unknown	☑ Existing (unchanged) ☐ To be Removed
1138	Antiffeeze rank	N/A	N/A	gal	N/A	Unknown	□ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced
TK-39	Brine Tank	N/A	N/A	12,600	Not a Source of any Regulated Pollutant	Unknown	☑ Existing (unchanged) ☐ To be Removed
1139	billie fallk	N/A	N/A	gal	N/A	Unknown	□ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced
TK-40	Solvent Tank	N/A	N/A	1100	20.2.72.202.B.2	Unknown	☑ Existing (unchanged) ☐ To be Removed
TK-40	Solvent fank	N/A	N/A	gal	N/A	Unknown	□ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced
TK-41	Gasoline Tank	N/A	N/A	560	20.2.72.202.B.5	Unknown	☑ Existing (unchanged) ☐ To be Removed
TK-41	Gasoline Talik	NYA	N/A	gal	N/A	Unknown	□ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced
TK-42	Diesel Tank	N/A	N/A	315	2.72.202.B2	Unknown	⊠ Existing (unchanged) □ To be Removed
TK-42	Diesel Talik	N/A	N/A	gal	N/A	Unknown	□ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced
TK-44	Lube Oil Tank	NI/A	N/A	12,690	20.2.72.202.B.2	Unknown	⊠ Existing (unchanged) □ To be Removed
TK-44	Lube Oil Tank	N/A	N/A	gal	N/A	Unknown	□ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced
TK 45	Determent Tools	N/A	N/A	210	Not a Source of any Regulated Pollutant	Unknown	⊠ Existing (unchanged) □ To be Removed
TK-45	Detergent Tank	N/A	N/A	gal	N/A	Unknown	□ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced
TK-47	Lube Oil Tank	N/A	N/A	510	20.2.72.202.B.2	Unknown	⊠ Existing (unchanged) □ To be Removed
TK-47	Lube Oil Tank	N/A	N/A	gal	N/A	Unknown	□ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced
TK-48	Natural Gas Liquids Tank	N/A	N/A	102,270	Pressure Vessel (not a source)	Unknown	☑ Existing (unchanged) ☐ To be Removed
18-40	Naturai Gas Liquius Tarik	N/A	N/A	gal	N/A	Unknown	□ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced
TK-49	Propane Tank	N/A	N/A	26,040	Pressure Vessel (not a source)	Unknown	☑ Existing (unchanged) ☐ To be Removed
TK-49	Ргорапе тапк	N/A	N/A	gal	N/A	Unknown	□ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced
TK-50	Condensate Tank	N/A	N/A	57,540	Pressure Vessel (not a source)	Unknown	☑ Existing (unchanged) ☐ To be Removed
18-50	Condensate rank	IN/A	N/A	gal	N/A	Unknown	□ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced
TK-51	Condensate Tank	N/A	N/A	57,540	Pressure Vessel (not a source)	Unknown	☑ Existing (unchanged) ☐ To be Removed
1K-21	Condensate rank	N/A	N/A	gal	N/A	Unknown	□ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced
TK-52	Condensate Tank	N/A	N/A	57,540	Pressure Vessel (not a source)	Unknown	☑ Existing (unchanged) ☐ To be Removed
TK-32	Condensate rank	IN/A	N/A	gal	N/A	Unknown	□ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced
TK-53	Treated Water Tank	N/A	N/A	610	Not a Source of any Regulated Pollutant	Unknown	☑ Existing (unchanged) ☐ To be Removed
IN-33	neateu water rank	IV/A	N/A	gal	N/A	Unknown	□ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced
TK CO	Trooted Water Taril	NI/A	N/A	3380	Not a Source of any Regulated Pollutant	Unknown	⊠ Existing (unchanged) □ To be Removed
TK-60	Treated Water Tank	N/A	N/A	gal	N/A	Unknown	□ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced
TV 61	Treated Water Table	NI/A	N/A	8460	Not a Source of any Regulated Pollutant	Unknown	☑ Existing (unchanged) ☐ To be Removed
TK-61	Treated Water Tank	N/A	N/A	gal	N/A	Unknown	□ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced

Unit Number	Source Description	Manufacturer	Model No.	Max Capacity	List Specific 20.2.72.202 NMAC Exemption (e.g. 20.2.72.202.B.5)	Date of Manufacture /Reconstruction ²	For Each Piece of Equipment, Check Onc
Onit Number	Source Description	Manufacturei	Serial No.	Capacity Units	Insignificant Activity citation (e.g. IA List Item #1.a)	Date of Installation /Construction ²	For Each Frece of Equipment, Check Offic
TK-62	Treated Water Tank	N/A	N/A	44,040	Not a Source of any Regulated Pollutant	Unknown	☑ Existing (unchanged) □ To be Removed
TK-02	Treated Water Talik	N/A	N/A	gal	N/A	Unknown	□ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced
TK-63	Treated Water Tank	NI/A	N/A	44,040	Not a Source of any Regulated Pollutant	Unknown	☑ Existing (unchanged) □ To be Removed
1105	Treated Water Talik	N/A	N/A	gal	N/A	Unknown	□ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced
TV 64	Dow Water Tools	NI/A	N/A	426,540	Not a Source of any Regulated Pollutant	Unknown	☑ Existing (unchanged) □ To be Removed
TK-64	Raw Water Tank	N/A	N/A	gal	N/A	Unknown	□ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced
TK-65	Sulfur Tank	N/A	N/A	55	Not a Source of any Regulated Pollutant	Unknown	☑ Existing (unchanged) □ To be Removed
1105	Sullul Talik	N/A	N/A	tons	N/A	Unknown	□ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced
TK-66	Amine Tank	N/A	N/A	8820	20.2.72.202.B.2	Unknown	☑ Existing (unchanged)☐ To be Removed☐ New/Additional☐ Replacement Unit
TK-00	Affilite Talik	N/A	N/A	gal	N/A	Unknown	□ To Be Modified □ To be Replaced
VENT	Plant Vent	Unknown	N/A	N/A	Not a Source of any Regulated Pollutant	Unknown	☑ Existing (unchanged)☐ To be Removed☐ New/Additional☐ Replacement Unit
VEINT	Plant Vent	OHRHOWH	N/A	N/A	N/A	Unknown	□ To Be Modified □ To be Replaced
TK-67	Treated Water Tank	N/A	N/A	TBD	Not a Source of any Regulated Pollutant	Unknown	☑ Existing (unchanged)☐ To be Removed☐ New/Additional☐ Replacement Unit
TK-07	Treated Water Falls	N/A	N/A	TBD	N/A	Unknown	□ To Be Modified □ To be Replaced
TK-68	Bullet Tank	N/A	N/A	TBD	Pressure Vessel (not a source)	Unknown	☑ Existing (unchanged)☐ To be Removed☐ New/Additional☐ Replacement Unit
TK-00	bunet fank	N/A	N/A	TBD	N/A	Unknown	□ To Be Modified □ To be Replaced
TK-71	Underground Water Sump Tank	N/A	N/A	TBD	Not a Source of any Regulated Pollutant	Unknown	☑ Existing (unchanged)☐ To be Removed☐ New/Additional☐ Replacement Unit
TK-71	Onderground Water Sump Tank	N/A	N/A	TBD	N/A	Unknown	□ To Be Modified □ To be Replaced
TK-72	Underground Water Sump Tank	N/A	N/A	TBD	Not a Source of any Regulated Pollutant	Unknown	☑ Existing (unchanged)☐ To be Removed☐ New/Additional☐ Replacement Unit
TR-72	Onderground water 3dmp rank	N/A	N/A	TBD	N/A	Unknown	□ To Be Modified □ To be Replaced
N/A	Electric Compressor	Unknown	N/A	N/A	Not a Source of any Regulated Pollutant	Unknown	☑ Existing (unchanged)☐ To be Removed☐ New/Additional☐ Replacement Unit
14/74	Liectric Compressor	OHMHOWH	N/A	N/A	N/A	Unknown	□ To Be Modified □ To be Replaced
N/A	Electric AGI Compressor 1	Unknown	N/A	N/A	Not a Source of any Regulated Pollutant	Unknown	☑ Existing (unchanged)☐ To be Removed☐ New/Additional☐ Replacement Unit
IV/A	Liectric Adi Compressor I	OHAHOWH	N/A	N/A	N/A	Unknown	□ To Be Modified □ To be Replaced
N/A	Flactric AGI Compressor 2	Unknown	N/A	N/A	Not a Source of any Regulated Pollutant	Unknown	☑ Existing (unchanged) ☐ To be Removed
N/A	Electric AGI Compressor 2	Unknown	N/A	N/A	N/A	Unknown	 □ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced

¹ Insignificant activities exempted due to size or production rate are defined in 20.2.70.300.D.6, 20.2.70.7.Q NMAC, and the NMED/AQB List of Insignificant Activities, dated September 15, 2008. Emissions from these insignificant activities do not need to be reported, unless specifically requested.

² Specify date(s) required to determine regulatory applicability.

Table 2-C: Emissions Control Equipment

Unit and stack numbering must correspond throughout the application package. Only list control equipment for TAPs if the TAP's maximum uncontrolled emissions rate is over its respective threshold as listed in 20.2.72 NMAC, Subpart V, Tables A and B. In accordance with 20.2.72.203.A(3) and (8) NMAC, 20.2.70.300.D(5)(b) and (e) NMAC, and 20.2.73.200.B(7) NMAC, the permittee shall report all control devices and list each pollutant controlled by the control device regardless if the applicant takes credit for the reduction in emissions.

Control Equipment Unit No.	Control Equipment Description	Date Installed	Controlled Pollutant(s)	Controlling Emissions for Unit Number(s) ¹	Efficiency (% Control by Weight)	Method used to Estimate Efficiency
C1	Oxidation Catalyst	8/7/2018	CO, VOC, HCHO	C1	65.63% VOC, 90% CO & HCHO, 83% Acetaldehyde	Mfg. Data
C2	Oxidation Catalyst	1/2/2008	CO, VOC, HCHO	C2	65.63% VOC, 90% CO & HCHO, 83% Acetaldehyde	Mfg. Data
C3	Oxidation Catalyst	1/2/2008	CO, VOC, HCHO	C3	65.63% VOC, 90% CO & HCHO, 83% Acetaldehyde	Mfg. Data
C4	Oxidation Catalyst	1/2/2008	CO, VOC, HCHO	C4	65.63% VOC, 90% CO & HCHO, 83% Acetaldehyde	Mfg. Data
C5	Oxidation Catalyst	5/28/2019	со, voc, нсно	C5	29.58% VOC, 79.51% CO, 60.87% HCHO, 83% Acetaldehyde	Mfg. Data
C6	Oxidation Catalyst	5/1/2019	со, voc, нсно	C6	29.58% VOC, 79.51% CO, 60.87% HCHO, 83% Acetaldehyde	Mfg. Data
9F	Acid Gas Flare	Unknown	H2S	DR2	98%	Engineering Estimate
10F	Plant Flare	Unknown	VOCs, HAPs, H2S	FUG1, Process Vents	98%	Engineering Estimate
DR2	Condenser, Flare	TBD	VOCs	DR2	98%	Simulation
N/A	Acid Gas Injection System	TBD	H2S	N/A	100%	Engineering Estimate
VRU	Vapor Recovery Unit	TBD	VOC	TK-519, TK-519A, TK-519C	95%	Engineering Estimate
		_				

ET Gathering Processing LLC Jal #3 Gas Plant Application Date: October 2024 Revision #10

Table 2-D: Maximum Emissions (under normal operating conditions)

☐ This Table was intentionally left blank because it would be identical to Table 2-E.

Maximum Emissions are the emissions at maximum capacity and prior to (in the absence of) pollution control, emission-reducing process equipment, or any other emission reduction. Calculate the hourly emissions using the worst case hourly emissions for each pollutant. For each pollutant, calculate the annual emissions as if the facility were operating at maximum plant capacity without pollution controls for 8760 hours per year, unless otherwise approved by the Department. List Hazardous Air Pollutants (HAP) & Toxic Air Pollutants (TAPs) in Table 2-I. Unit & stack numbering must be consistent throughout the application package. Fill all cells in this table with the emission numbers or a "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expected. Numbers shall be expressed to at least 2 decimal points (e.g. 0.41, 1.41E-4).

Unit No.	I I with N I w	N	Ох	С	0	V	oc	so	x	PI	M ¹	PIV	110 ¹	PM	2.5 ¹	Н	₂ S	Le	ead
C2 3.91 14.73 21.52 94.27 7.23 31.72 0.01 0.06 0.24 1.06 0.24 1.06 0.24 1.06 0.2 1.0	Unit No.	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
C3 3.91 14.73 21.52 94.27 7.23 31.72 0.01 0.06 0.24 1.06 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02	C1	3.91	14.73	21.52	94.27	7.23	31.72	0.01	0.06	0.24	1.06	0.24	1.06	0.24	1.06	-	-	-	-
C4 3.91 14.73 21.52 94.27 7.23 31.72 0.01 0.06 0.24 1.06 0.24 1.06 0.24 1.06 0.24 1.06 0.24 1.06 0.24 1.06 0.24 1.06 0.24 1.06 0.24 1.06 0.24 1.06 0.24 1.06 0.24 1.06 0.24 1.06 0.24 1.06 0.24 1.06 0.24 1.06 0.24 1.06 0.24 1.06 0.24 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25	C2	3.91	14.73	21.52	94.27	7.23	31.72	0.01	0.06	0.24	1.06	0.24	1.06	0.24	1.06	-	-	-	-
CS	C3	3.91	14.73	21.52	94.27	7.23	31.72	0.01	0.06	0.24	1.06	0.24	1.06	0.24	1.06	-	-	-	-
C6	C4	3.91	14.73	21.52	94.27	7.23	31.72	0.01	0.06	0.24	1.06	0.24	1.06	0.24	1.06	-	-	-	-
12H	C5	1.24	5.43	10.08	44.14	3.90	17.09	0.01	0.04	0.13	0.56	0.13	0.56	0.13	0.56	-	-	1	-
13H 0.2 0.86 0.16 0.72 0.01 0.05 1.00E-03 0.01 0.07 0.01 0.07 0.01 0.07 0.01 0.07 0.01 0.07 0.01 0.07 0.01 0.07 0.03 0.07 0.33 0.07 0.03 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 <	C6	1.24	5.43	10.08	44.14	3.90	17.09	0.01	0.04	0.13	0.56	0.13	0.56	0.13	0.56	1	-	1	-
14H 0.98 4.29 0.82 3.61 0.05 0.24 0.01 0.03 0.07 0.33 0.07 0.33 0.07 0.33 19F 0.14 0.6 0.28 1.21 0.14 0.61	12H	2.75	12.02	2.31	10.10	0.15	0.66	0.02	0.07	0.21	0.91	0.21	0.91	0.21	0.91	-	-	1	-
9F 0.14 0.6 0.28 1.21 0.14 0.61	13H	0.2	0.86	0.16	0.72	0.01	0.05	1.00E-03	0.01	0.01	0.07	0.01	0.07	0.01	0.07	1	-	1	-
10F	14H	0.98	4.29	0.82	3.61	0.05	0.24	0.01	0.03	0.07	0.33	0.07	0.33	0.07	0.33	-	-	1	-
FUG1 3.97 34.75	9F	0.14	0.6	0.28	1.21	0.14	0.61	-	1	-	-	-	-	1	-	1	-	1	-
FUG2 0.001 0.61	10F	0.4	1.76	0.8	3.52	0.41	1.79	-	1	-	-	-	-	-	-	-	-	1	-
LOAD 0.17 0.76	FUG1	-	-	-	-	3.97	34.75	-	1	-	-	-	-	1	-	1	-	1	-
TK-519C 0.02 0.09	FUG2	-	-	-	-	0.001	0.61	-	ı	-	-	ı	-	1	-	1	-	ı	-
TK-519A	LOAD	-	-	-	-	0.17	0.76	-	ı	-	-	ı	-	ı	-	1	-	ı	-
TK-519 6.10E-04 2.70E-03	TK-519C	-	-	-	-	0.02	0.09	-	1	-	-	-	-	-	-	-	-	-	-
LOADOUT - </td <td>TK-519A</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>2.00E-06</td> <td>1.00E-05</td> <td>-</td> <td>ı</td> <td>-</td> <td>-</td> <td>ı</td> <td>-</td> <td>ı</td> <td>-</td> <td>1</td> <td>-</td> <td>ı</td> <td>-</td>	TK-519A	-	-	-	-	2.00E-06	1.00E-05	-	ı	-	-	ı	-	ı	-	1	-	ı	-
DR2 57.86 253.43 399.00 19.95	TK-519	-	-	-	-	6.10E-04	2.70E-03	-	-	-	-	-	-	-	-	-	-	-	-
Amine 4.05 0.2 399.00 19.95	LOADOUT	-	-	-	-	41.75	29.35	-	-	-	-	-	-	-	-	-	-	-	-
	DR2	-	-	-	-	57.86	253.43	-	-	-	-	-	-	-	-	-	-	-	-
Totals 22.59 89.31 110.61 484.52 145.30 483.60 0.09 0.43 1.51 6.67 1.51 6.67 1.51 6.67 399.00 19.95 0 0	Amine	-	-	-	-	4.05	0.2	-	-	-	-	-	-	-	-	399.00	19.95	-	-
Totals 22.59 89.31 110.61 484.52 145.30 483.60 0.09 0.43 1.51 6.67 1.51 6.67 399.00 19.95 0 0.00																			
Totals 22.59 89.31 110.61 484.52 145.30 483.60 0.09 0.43 1.51 6.67 1.51 6.67 399.00 19.95 0 0																			
Totals 22.59 89.31 110.61 484.52 145.30 483.60 0.09 0.43 1.51 6.67 1.51 6.67 1.51 6.67 399.00 19.95 0 0																			
Totals 22.59 89.31 110.61 484.52 145.30 483.60 0.09 0.43 1.51 6.67 1.51 6.67 3.99.00 19.95 0 0																			
Totals 22.59 89.31 110.61 484.52 145.30 483.60 0.09 0.43 1.51 6.67 1.51 6.67 3.99.00 19.95 0 0																			
Totals 22.59 89.31 110.61 484.52 145.30 483.60 0.09 0.43 1.51 6.67 1.51 6.67 3.99.00 19.95 0 0																			
Totals 22.59 89.31 110.61 484.52 145.30 483.60 0.09 0.43 1.51 6.67 1.51 6.67 3.99.00 19.95 0 0																			
Totals 22.59 89.31 110.61 484.52 145.30 483.60 0.09 0.43 1.51 6.67 1.51 6.67 3.99.00 19.95 0 0																			
Totals 22.59 89.31 110.61 484.52 145.30 483.60 0.09 0.43 1.51 6.67 1.51 6.67 1.51 6.67 3.99.00 19.95 0 0																			
	Totals	22.59	89.31	110.61	484.52	145.30	483.60	0.09	0.43	1.51	6.67	1.51	6.67	1.51	6.67	399.00	19.95	0	0

¹Condensable Particulate Matter: Include condensable particulate matter emissions for PM10 and PM2.5 if the source is a combustion source. Do not include condensable particulate matter for PM unless PM is set equal to PM10 and PM2.5. Particulate matter (PM) is not subject to an ambient air quality standard, but PM is a regulated air pollutant under PSD (20.2.74 NMAC) and Title V (20.2.70 NMAC).

Form Revision: 6/14/2019 Table 2-D: Page 1 Printed 10/25/2024 7:48 AM

Table 2-E: Requested Allowable Emissions

Unit & stack numbering must be consistent throughout the application package. Fill all cells in this table with the emission numbers or a "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expected. Numbers shall be expressed to at least 2 decimal points (e.g. 0.41, 1.41, or 1.41E⁻⁴).

Linia Na	N	Ох	C	0	V	oc	SC	Эx	PI	M ¹	PIV	110 ¹	PM	2.5 ¹	H ₂	S	Le	ead
Unit No.	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
C1	3.91	17.12	2.15	9.42	1.96	8.59	0.01	0.06	0.24	1.06	0.24	1.06	0.24	1.06	-	-	-	-
C2	3.91	17.12	2.15	9.42	1.96	8.59	0.01	0.06	0.24	1.06	0.24	1.06	0.24	1.06	-	-	-	-
C3	3.91	17.12	2.15	9.42	1.96	8.59	0.01	0.06	0.24	1.06	0.24	1.06	0.24	1.06	ı	-	ı	-
C4	3.91	17.12	2.15	9.42	1.96	8.59	0.01	0.06	0.24	1.06	0.24	1.06	0.24	1.06	ı	-	ı	-
C5	1.24	5.43	2.06	9.04	2.46	10.76	0.01	0.04	0.13	0.56	0.13	0.56	0.13	0.56	ı	-	ı	-
C6	1.24	5.43	2.06	9.04	2.46	10.76	0.01	0.04	0.13	0.56	0.13	0.56	0.13	0.56	ı	-	ı	-
12H	2.75	12.02	2.31	10.10	0.15	0.66	0.02	0.07	0.21	0.91	0.21	0.91	0.21	0.91	-	-	-	-
13H	0.20	0.86	0.16	0.72	0.01	0.05	1.00E-03	0.01	0.01	0.07	0.01	0.07	0.01	0.07	ı	-	ı	-
14H	0.98	4.29	0.82	3.61	0.05	0.24	0.01	0.03	0.07	0.33	0.07	0.33	0.07	0.33	-	-	-	-
9F	0.35	1.55	0.71	3.09	1.3	5.68	-	1	ı	-	1	-	ı	-	ı	-	ı	-
10F	0.4	1.76	0.8	3.52	0.41	1.79	-	-	1	-	-	-	-	-	ı	-	1	-
FUG1	-	-	-	-	3.97	34.75	-	-	ı	-	-	-	ı	-	ı	-	1	-
FUG2	-	-	-	-	0.001	0.61	-	-	-	-	-	-	-	-	-	-	-	-
LOAD	-	-	-	-	0.17	0.76	-	-	ı	-	-	-	ı	-	ı	-	1	-
TK-519C	-	-	-	-	0.02	0.09	ı	-	1	-	-	-	-	-	ı	-	ı	-
TK-519A	-	-	-	-	2.00E-06	1.00E-05	-	-	-	-	-	-	-	-	-	-	-	-
TK-519	-	-	-	-	6.10E-04	2.70E-03	ı	-	1	-	-	-	ı	-	ı	-	ı	-
LOADOUT	-	-	-	-	41.75	29.35	-	-	ı	-	-	-	1	-	ı	-	ı	-
							-	-	-	-	-	-	-	-	-	-	-	-
							-	-	-	-	-	-	-	-	-	-	-	-
							-	-	-	-	-	-	-	-	-	-	-	-
Totals	22.8	99.82	17.52	76.8	60.59	129.86	0.09	0.43	1.51	6.67	1.51	6.67	1.51	6.67	0	0	0	0

¹Condensable Particulate Matter: Include condensable particulate matter emissions for PM10 and PM2.5 if the source is a combustion source. Do not include condensable particulate matter for PM unless PM is set equal to PM10 and PM2.5. Particulate matter (PM) is not subject to an ambient air quality standard, but it is a regulated air pollutant under PSD (20.2.74 NMAC) and Title V (20.2.70 NMAC).

Form Revision: 6/14/2019 Table 2-E: Page 1 Printed 10/25/2024 7:48 AM

Table 2-F: Additional Emissions during Startup, Shutdown, and Routine Maintenance (SSM)

This table is intentionally left blank since all emissions at this facility due to routine or predictable startup, shutdown, or scehduled maintenance are no higher than those listed in Table 2-E and a malfunction emission limit is not already permitted or requested. If you are required to report GHG emissions as described in Section 6a, include any GHG emissions during Startup, Shutdown, and/or Scheduled Maintenance (SSM) in Table 2-P. Provide an explanations of SSM emissions in Section 6 and 6a.

All applications for facilities that have emissions during routine our predictable startup, shutdown or scheduled maintenance (SSM)¹, including NOI applications, must include in this table the Maximum Emissions during routine or predictable startup, shutdown and scheduled maintenance (20.2.7 NMAC, 20.2.72.203.A.3 NMAC, 20.2.73.200.D.2 NMAC). In Section 6 and 6a, provide emissions calculations for all SSM emissions reported in this table. Refer to "Guidance for Submittal of Startup, Shutdown, Maintenance Emissions in Permit Applications

(https://www.env.nm.gov/agb/permit/agb_pol.html) for more detailed instructions. Numbers shall be expressed to at least 2 decimal points (e.g. 0.41, 1.41, or 1.41E-4).

(TICCPS.//WWW.	N(C		or more deta VO			Ox	ii be expre	ν ²	least 2 de	110 ²	LS (E.g. U.4	2.5 ²		₂ S	1.0	ead
Unit No.	lb/hr		lb/hr		lb/hr		lb/hr	ton/yr	lb/hr		lb/hr		lb/hr		lb/hr	ton/yr	lb/hr	
0.5	_	ton/yr		ton/yr	_	ton/yr		ton/yr	-	ton/yr	_	ton/yr	-	ton/yr		ton/yr	-	ton/yr
9F	3.80	16.66	7.59	33.26	1.38	7.92	750	73.53	-	-	-	-	-	-	7.98	39.92	-	-
10F	413.48		825.45		1443.88		600		-	-	-	-	-	-	6.38		-	-
MSS-1	-	-	-	-	2.2	0.7	-	-	-	-	-	-	-	-	-	-	-	-
Malfunction		10		10		10		10								10	-	-
Totals		26.66		43.26		18.62		83.53		0		0		0		49.92		0

¹ For instance, if the short term steady-state Table 2-E emissions are 5 lb/hr and the SSM rate is 12 lb/hr, enter 7 lb/hr in this table. If the annual steady-state Table 2-E emissions are 21.9 TPY, and the number of scheduled SSM events result in annual emissions of 31.9 TPY, enter 10.0 TPY in the table below.

Form Revision: 6/14/2019 Table 2-F: Page 1 Printed 10/25/2024 7:48 AM

² Condensable Particulate Matter: Include condensable particulate matter emissions for PM10 and PM2.5 if the source is a combustion source. Do not include condensable particulate matter for PM unless PM is set equal to PM10 and PM2.5. Particulate matter (PM) is not subject to an ambient air quality standard, but it is a regulated air pollutant under PSD (20.2.74 NMAC) and Title V (20.2.70 NMAC).

ET Gathering Processing LLC Jal #3 Gas Plant Application Date: October 2024 Revision #10

Table 2-H: Stack Exit Conditions

Unit and stack numbering must correspond throughout the application package. Include the stack exit conditions for each unit that emits from a stack, including blowdown venting parameters and tank emissions. If the facility has multiple operating scenarios, complete a separate Table 2-H for each scenario and, for each, type scenario name here:

Stack	Serving Unit Number(s) from	Orientation (H- Horizontal	Rain Caps	Height Above	Temp.	Flow	Rate	Moisture by	Velocity	Inside
Number	Table 2-A	V=Vertical)	(Yes or No)	Ground (ft)	(F)	(acfs)	(dscfs)	Volume (%)	(ft/sec)	Diameter (ft)
C1	C1	V		51.0	838	401			81.7	2.5
C2	C2	V		51.0	838	401			81.7	2.5
С3	C3	V		51.0	838	401			81.7	2.5
C4	C4	V		51.0	838	401			81.7	2.5
C5	C5	V		30.0	813	199			90.85	1.67
C6	C6	V		30.0	813	199			90.85	1.67
12H	12H	V		35.0	500	280.8			57.2	2.5
13H	13H	V		24.0	500	18.7			10.6	1.5
14H	14H	V		16.7	500	93.6			29.8	2
9F	9F	V		243.5	1832	99.7			65.6	1.4
10F	10F	V		277.2	1832	55.76			65.6	1

 Form Revision: 11/18/2016
 Table 2-H: Page 1
 Printed 10/25/2024 7:48 AM

ET Gathering Processing LLC Jal #3 Gas Plant Application Date: October 2024 Revision # 10

Table 2-I: Stack Exit and Fugitive Emission Rates for HAPs and TAPs

In the table below, report the Potential to Emit for each HAP from each regulated emission unit listed in Table 2-A, only if the entire facility emits the HAP at a rate greater than or equal to one (1) ton per year For each such emission unit, HAPs shall be reported to the nearest 0.1 tpy. Each facility-wide Individual HAP total and the facility-wide Total HAPs shall be the sum of all HAP sources calculated to the nearest 0.1 ton per year. Per 20.2.72.403.A.1 NMAC, facilities not exempt [see 20.2.72.402.C NMAC] from TAP permitting shall report each TAP that has an uncontrolled emission rate in excess of its pounds per hour screening level specified in 20.2.72.502 NMAC. TAPs shall be reported using one more significant figure than the number of significant figures shown in the pound per hour threshold corresponding to the substance. Use the HAP nomenclature as it appears in Section 112 (b) of the 1990 CAAA and the TAP nomenclature as it listed in 20.2.72.502 NMAC. Include tank-flashing emissions estimates of HAPs in this table. For each HAP or TAP listed, fill all cells in this table with the emission numbers or a "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expected or the pollutant is emitted in a quantity less than the threshold amounts described above.

Stack No.	Unit No.(s)	Total	HAPs	Formal HAP o	dehyde r TAP		olein r TAP	Name	Pollutant Here r TAP	Name	Pollutant Here r TAP		Pollutant Here r TAP		Pollutant Here r TAP	Name	Pollutant e Here or TAP	Name	Pollutant e Here or TAP
		lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
C 1	C1	0.3	1.5	0.2	0.9	0.1	0.6												
C2	C2	0.3	1.5	0.2	0.9	0.1	0.6												
С3	С3	0.3	1.5	0.2	0.9	0.1	0.6												
C4	C4	0.3	1.5	0.2	0.9	0.1	0.6												
C5	C5	0.5	1.9	0.4	1.6	0.1	0.3												
C6	C6	0.5	1.9	0.4	1.6	0.1	0.3												
12H	12H	-	-	-	-	-	-												
13H	13H	-	-	-	-	-	-												
14H	14H	-	-	-	-	-	-												
9F	9F	-	-	-	-	-	-												
10F	10F	-	-	-	-	-	-												
N/A	TK-3	-	-	-	-	-	-												
N/A	TK-4	-	-	-	-	-	-												
N/A	TK-46	-	-	-	-	-	-												
8F-10F	FUG1	-	-	-	-	-	-												
9F	FUG2	-	-	-	-	-	-												
N/A	LOAD	-	-	-	-	-	-												
N/A	TK-519C	-	-	-	-	-	-												
N/A	TK-519A	-	-	-	-	-	-												
N/A	TK-519	-	-	-	-	-	-												
N/A	LOADOUT	-	-	-	-	-	-												
Tota	als:	2.2	9.8	1.6	6.8	0.6	3.0												

Form Revision: 10/9/2014 Table 2-I: Page 1 Printed 10/25/2024 7:48 AM

Table 2-J: Fuel

Specify fuel characteristics and usage. Unit and stack numbering must correspond throughout the application package.

	Fuel Type (low sulfur Diesel,	Fuel Source: purchased commercial,		Speci	fy Units		
Unit No.	ultra low sulfur diesel, Natural Gas, Coal,)	pipeline quality natural gas, residue gas, raw/field natural gas, process gas (e.g. SRU tail gas) or other	Lower Heating Value	Hourly Usage	Annual Usage	% Sulfur	% Ash
C1	Natural Gas	Pipeline Quality Natural Gas	1020 Btu/scf	26.2 Mscf	229.5 MMscf	N/A	
C2	Natural Gas	Pipeline Quality Natural Gas	1020 Btu/scf	26.2 Mscf	229.5 MMscf	N/A	
C3	Natural Gas	Pipeline Quality Natural Gas	1020 Btu/scf	26.2 Mscf	229.5 MMscf	N/A	
C4	Natural Gas	Pipeline Quality Natural Gas	1020 Btu/scf	26.2 Mscf	229.5 MMscf	N/A	
C5	Natural Gas	Pipeline Quality Natural Gas	1020 Btu/scf	13.8 Mscf	121.1 MMscf	N/A	
C6	Natural Gas	Pipeline Quality Natural Gas	1020 Btu/scf	13.8 Mscf	121.1 MMscf	N/A	
12H	Natural Gas	Pipeline Quality Natural Gas	1020 Btu/scf	27.5 Mscf	240.5 MMscf	N/A	
13H	Natural Gas	Pipeline Quality Natural Gas	1020 Btu/scf	2.0 Mscf	17.2 MMscf	N/A	
14H	Natural Gas	Pipeline Quality Natural Gas	1020 Btu/scf	9.8 Mscf	85.9 MMscf	N/A	
9F (pilot)	Natural Gas	Pipeline Quality Natural Gas	1020 Btu/scf	1.0 Mscf	8.6 MMscf	N/A	
10F (pilot)	Natural Gas	Pipeline Quality Natural Gas	1020 Btu/scf	2.9 Mscf	25.1 MMscf	N/A	

Form Revision: 9/20/2016 Table 2-J: Page 1 Printed 10/25/2024 7:48 AM

ET Gathering Processing LLC Jal #3 Gas Plant Application Date: October 2024 Revision #10

Table 2-K: Liquid Data for Tanks Listed in Table 2-L

For each tank, list the liquid(s) to be stored in each tank. If it is expected that a tank may store a variety of hydrocarbon liquids, enter "mixed hydrocarbons" in the Composition column for that tank and enter the corresponding data of the most volatile liquid to be stored in the tank. If tank is to be used for storage of different materials, list all the materials in the "All Calculations" attachment, run the newest version of TANKS on each, and use the material with the highest emission rate to determine maximum uncontrolled and requested allowable emissions rate. The permit will specify the most volatile category of liquids that may be stored in each tank. Include appropriate tank-flashing modeling input data. Use additional sheets if necessary. Unit and stack numbering must correspond throughout the application package.

					Vapor	Average Stora	age Conditions	Max Stora	ge Conditions
Tank No.	SCC Code	Material Name	Composition	Liquid Density (lb/gal)	Molecular Weight (lb/lb*mol)	Temperature (°F)	True Vapor Pressure (psia)	Temperature (°F)	True Vapor Pressure (psia)
TK-519	40400311	Scrubber Oil/Water	~12% oil, 88% water	5.7	71.47	72.85	2.04	86.25	2.6
TK-519C	40400311	Scrubber Oil	~100% oil, 0% water	5.7	71.47	72.85	2.04	86.25	2.6
TK-519A	40400315	Water	~0% oil, 100% water	5.7	71.47	72.85	2.04	86.25	2.6

Form Revision: 7/8/2011 Table 2-K: Page 1 Printed 10/25/2024 7:48 AM

ET Gathering Processing LLC Jal #3 Gas Plant Application Date: October 2024 Revision #10

Table 2-L: Tank Data

Include appropriate tank-flashing modeling input data. Use an addendum to this table for unlisted data categories. Unit and stack numbering must correspond throughout the application package. Use additional sheets if necessary. See reference Table 2-L2. Note: 1.00 bbl = 10.159 M3 = 42.0 gal

Tank No.	Date Installed	Materials Stored	Seal Type (refer to Table 2- LR below)	Roof Type (refer to Table 2- LR below)	Сар	acity	Diameter (M)	Vapor Space (M)		llor able VI-C)	Paint Condition (from Table VI-	Annual Throughput	Turn- overs	
			LK below)	LK below)	(bbl)	(M ³)			Roof	Shell	C)	(gal/yr)	(per year)	
TK-519	2015	Scrubber Oil/Water	N/A	FX	600	95	3.7	9.1	MG	MG	Good	8,400,840	11.50	
TK-519C	2015	Scrubber Oil	N/A	FX	500	79	3.7	7.6	MG	MG	Good	735,840	35.04	
TK-519A	2015	Water	N/A	FX	500	79	3.7	7.6	MG	MG	Good	7,665,000	365.00	

Table 2-L2: Liquid Storage Tank Data Codes Reference Table

		<u> </u>	_						
Roof Type	Seal Type, W	elded Tank Seal Type	Seal Type, Rive	Seal Type, Riveted Tank Seal Type					
FX : Fixed Roof	Mechanical Shoe Seal	Liquid-mounted resilient seal	Vapor-mounted resilient seal	Seal Type	WH: White	Good			
IF: Internal Floating Roof	A: Primary only	A: Primary only	A: Primary only	A: Mechanical shoe, primary only	AS: Aluminum (specular)	Poor			
EF : External Floating Roof	B: Shoe-mounted secondary	B: Weather shield	B: Weather shield	B: Shoe-mounted secondary	AD: Aluminum (diffuse)				
P: Pressure	C: Rim-mounted secondary	C: Rim-mounted secondary	C: Rim-mounted secondary	C: Rim-mounted secondary	LG : Light Gray				
					MG : Medium Gray				
Note: 1.00 bbl = 0.159 M	1 ³ = 42.0 gal				BL : Black				
					OT : Other (specify)				

Table 2-M: Materials Processed and Produced (Use additional sheets as necessary.)

	Mater	ial Processed		Material Produced						
Description	Chemical Composition	Phase (Gas, Liquid, or Solid)	Quantity (specify units)	Description	Chemical Composition	Phase	Quantity (specify units)			
Natural Gas	Raw Natural Gas	G	70 MMscf/d	Processed Natural Gas	Residue Gas	G	70 MMscf/d			

Table 2-P: Greenhouse Gas Emissions

Applications submitted under 20.2.70, 20.2.72, & 20.2.74 NMAC are required to complete this Table. Power plants, Title V major sources, and PSD major sources must report and calculate all GHG emissions for each unit. Applicants must report potential emission rates in short tons per year (see Section 6.a for assistance). Include GHG emissions during Startup, Shutdown, and Scheduled Maintenance in this table. For minor source facilities that are not power plants, are not Title V, or are not PSD, there are three options for reporting GHGs 1) report GHGs for each individual piece of equipment; 2) report all GHGs from a group of unit types, for example report all combustion source GHGs as a single unit and all venting GHG as a second separate unit; OR 3) check the following box.

By checking this box, the applicant acknowledges the total CO2e emissions are less than 75,000 tons per year.

		CO ₂ ton/yr	N₂O ton/yr	CH₄ ton/yr	SF ₆ ton/yr	PFC/HFC ton/yr²					Total GHG Mass Basis ton/yr ⁴	Total CO ₂ e
Unit No.	GWPs ¹	1	298	25	22,800	footnote 3						
64	mass GHG	15048	0.03	0.28							15048.31	
C1	CO₂e	15048	7	8								15063
63	mass GHG	15048	0.03	0.28							15048.31	
C2	CO ₂ e	15048	7	8								15063
63	mass GHG	15048	0.03	0.28							15048.31	
С3	CO₂e	15048	7	8								15063
	mass GHG	15048	0.03	0.28							15048.31	
C4	CO₂e	15048	7	8								15063
C.F.	mass GHG	7938	0.01	0.15							7938.16	
C5	CO₂e	7938	4.46	3.74								7946.2
	mass GHG	7938	0.01	0.15							7938.16	
C6	CO₂e	7938	4.46	3.74								7946.2
4211	mass GHG	15769	0.03	0.3							15769.33	
12H	CO₂e	15769	8.9	7.4								15785.3
4211	mass GHG	1126	0.002	0.02							1126.022	
13H	CO ₂ e	1126	0.6	0.5								1127.1
14H	mass GHG	5632	0.01	0.11							5632.12	
1411	CO ₂ e	5632	3	3								5638
9F	mass GHG	107330	0.001	3							107333	
91	CO ₂ e	107330	0.27	78								107408.27
10F	mass GHG	1372	0	5							1377	
101	CO ₂ e	1372	0	125								1497
TK-3	mass GHG											
114-3	CO ₂ e											
TK-4	mass GHG											
11.4	CO ₂ e											
TK-46	mass GHG											
11. 40	CO ₂ e											
FUG1	mass GHG	9		77							86	
1001	CO ₂ e	9		1925								1934
FUG2	mass GHG											
	CO ₂ e											
LOAD	mass GHG			0.2							0.2	
	CO₂e			5								5
TK-519C	mass GHG											
	CO ₂ e											
TK-519A	mass GHG											
	CO ₂ e											
	mass GHG			8							8	
Т	CO ₂ e			182								182
MSS-1	mass GHG											
	CO ₂ e											
	mass GHG											
	CO2e	007777	0.10	05.05							20= 15:	
Total	mass GHG	207306	0.18	95.05							207,401	222 =2
	CO ₂ e	207306	49.69	2365.38								209,721

¹ GWP (Global Warming Potential): Applicants must use the most current GWPs codified in Table A-1 of 40 CFR part 98. GWPs are subject to change, therefore, applicants need to check 40 CFR 98 to confirm GWP values.

² For **HFCs** or **PFCs** describe the specific HFC or PFC compound and use a separate column for each individual compound.

³ For each new compound, enter the appropriate GWP for each HFC or PFC compound from Table A-1 in 40 CFR 98.

⁴ Green house gas emissions on a **mass basis** is the ton per year green house gas emission before adjustment with its GWP.

⁵ CO₂e means Carbon Dioxide Equivalent and is calculated by multiplying the TPY mass emissions of the green house gas by its GWP.

Section 3

Application Summary

The <u>Application Summary</u> shall include a brief description of the facility and its process, the type of permit application, the applicable regulation (i.e. 20.2.72.200.A.X, or 20.2.73 NMAC) under which the application is being submitted, and any air quality permit numbers associated with this site. If this facility is to be collocated with another facility, provide details of the other facility including permit number(s). In case of a revision or modification to a facility, provide the lowest level regulatory citation (i.e. 20.2.72.219.B.1.d NMAC) under which the revision or modification is being requested. Also describe the proposed changes from the original permit, how the proposed modification will affect the facility's operations and emissions, de-bottlenecking impacts, and changes to the facility's major/minor status (both PSD & Title V).

The **Process Summary** shall include a brief description of the facility and its processes.

<u>Startup, Shutdown, and Maintenance (SSM)</u> routine or predictable emissions: Provide an overview of how SSM emissions are accounted for in this application. Refer to "Guidance for Submittal of Startup, Shutdown, Maintenance Emissions in Permit Applications (http://www.env.nm.gov/aqb/permit/app_form.html) for more detailed instructions on SSM emissions.

The ET Gathering & Processing LLC (ETGP) Jal #3 Gas Plant (Jal 3) is a natural gas gathering and boosting station with gas sweetening, dehydration and an acid gas injection well located near Jal, NM in Lea County. Lea County is attainment or non-classifiable for all criteria air pollutants. Jal 3 is a minor source for the Prevention of Significant Deterioration (PSD) and a major source for the Title V Operating Permit programs and is a minor source of hazardous air pollutants (HAPs). ETGP is submitting this application to apply for a Significant Revision (pursuant to NMAC 20.2.72.219.d.1.a) to its current Air Quality NSR Permit 1092-M10R3.

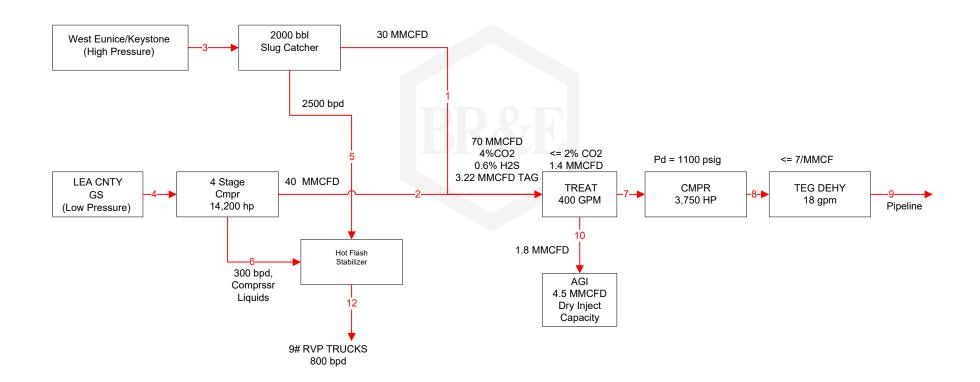
With this application, ETGP plans to modify the emissions associated with Startup, Shutdown and Maintenance (SSM) emissions from flares 9F and 10F to reallocate the flaring of gas during periods of acid gas injection compressor downtime. The amine sweetening and glycol dehydration system simulations are also updated.

Sources are also being removed in this application that include removal of the Gas Plant Flare (Unit Number 8F), and a set of storage vessels to include three (3) Scrubber Liquids Tanks (Unit Numbers TK-3, TK-4, and TK-46).

Updates to regulatory applicability for compressor engines and fugitive equipment leaks are also incorporated.

An administrative update to rename the remaining existing plant flares is also incorporated as Unit Number 9F will be described as the Acid Gas Flare and Unit Number 10F will be described as the Plant Flare.

Section 4

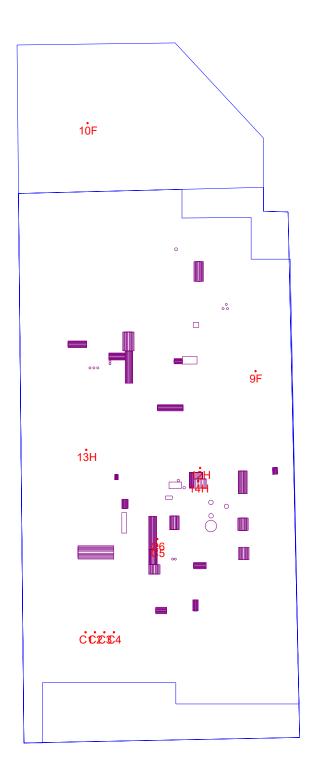

Process Flow Sheet

A <u>process flow sheet</u> and/or block diagram indicating the individual equipment, all emission points and types of control applied to those points. The unit numbering system should be consistent throughout this application.

A process flow diagram is presented below.

Form-Section 4 last revised: 8/15/2011 Section 4, Page 1 Saved Date: 10/25/2024

Jal 3 Rev3 10/1/2024


Section 5

Plot Plan Drawn to Scale

A <u>plot plan drawn to scale</u> showing emissions points, roads, structures, tanks, and fences of property owned, leased, or under direct control of the applicant. This plot plan must clearly designate the restricted area as defined in UA1, Section 1-D.12. The unit numbering system should be consistent throughout this application.

A plot plan of the Facility is provided below.

Form-Section 5 last revised: 8/15/2011 Section 5, Page 1 Saved Date: 10/25/2024

Section 6

All Calculations

Show all calculations used to determine both the hourly and annual controlled and uncontrolled emission rates. All calculations shall be performed keeping a minimum of three significant figures. Document the source of each emission factor used (if an emission rate is carried forward and not revised, then a statement to that effect is required). If identical units are being permitted and will be subject to the same operating conditions, submit calculations for only one unit and a note specifying what other units to which the calculations apply. All formulas and calculations used to calculate emissions must be submitted. The "Calculations" tab in the UA2 has been provided to allow calculations to be linked to the emissions tables. Add additional "Calc" tabs as needed. If the UA2 or other spread sheets are used, all calculation spread sheet(s) shall be submitted electronically in Microsoft Excel compatible format so that formulas and input values can be checked. Format all spread sheets and calculations such that the reviewer can follow the logic and verify the input values. Define all variables. If calculation spread sheets are not used, provide the original formulas with defined variables. Additionally, provide subsequent formulas showing the input values for each variable in the formula. All calculations, including those calculations are imbedded in the Calc tab of the UA2 portion of the application, the printed Calc tab(s), should be submitted under this section.

Tank Flashing Calculations: The information provided to the AQB shall include a discussion of the method used to estimate tank-flashing emissions, relative thresholds (i.e., NOI, permit, or major source (NSPS, PSD or Title V)), accuracy of the model, the input and output from simulation models and software, all calculations, documentation of any assumptions used, descriptions of sampling methods and conditions, copies of any lab sample analysis. If Hysis is used, all relevant input parameters shall be reported, including separator pressure, gas throughput, and all other relevant parameters necessary for flashing calculation.

SSM Calculations: It is the applicant's responsibility to provide an estimate of SSM emissions or to provide justification for not doing so. In this Section, provide emissions calculations for Startup, Shutdown, and Routine Maintenance (SSM) emissions listed in the Section 2 SSM and/or Section 22 GHG Tables and the rational for why the others are reported as zero (or left blank in the SSM/GHG Tables). Refer to "Guidance for Submittal of Startup, Shutdown, Maintenance Emissions in Permit Applications (http://www.env.nm.gov/aqb/permit/app_form.html) for more detailed instructions on calculating SSM emissions. If SSM emissions are greater than those reported in the Section 2, Requested Allowables Table, modeling may be required to ensure compliance with the standards whether the application is NSR or Title V. Refer to the Modeling Section of this application for more guidance on modeling requirements.

Glycol Dehydrator Calculations: The information provided to the AQB shall include the manufacturer's maximum design recirculation rate for the glycol pump. If GRI-Glycalc is used, the full input summary report shall be included as well as a copy of the gas analysis that was used.

Road Calculations: Calculate fugitive particulate emissions and enter haul road fugitives in Tables 2-A, 2-D and 2-E for:

- 1. If you transport raw material, process material and/or product into or out of or within the facility and have PER emissions greater than 0.5 tpy.
- 2. If you transport raw material, process material and/or product into or out of the facility more frequently than one round trip per day.

Significant Figures:

- A. All emissions standards are deemed to have at least two significant figures, but not more than three significant figures.
- **B.** At least 5 significant figures shall be retained in all intermediate calculations.
- **C.** In calculating emissions to determine compliance with an emission standard, the following rounding off procedures shall be used:
 - (1) If the first digit to be discarded is less than the number 5, the last digit retained shall not be changed;
 - (2) If the first digit discarded is greater than the number 5, or if it is the number 5 followed by at least one digit other than the number zero, the last figure retained shall be increased by one unit; and
 - (3) If the first digit discarded is exactly the number 5, followed only by zeros, the last digit retained shall be rounded upward if it is an odd number, but no adjustment shall be made if it is an even number.

Form-Section 6 last revised: 5/3/16 Section 6, Page 1 Saved Date: 10/25/2024

(4) The final result of the calculation shall be expressed in the units of the standard.

Control Devices: In accordance with 20.2.72.203.A(3) and (8) NMAC, 20.2.70.300.D(5)(b) and (e) NMAC, and 20.2.73.200.B(7) NMAC, the permittee shall report all control devices and list each pollutant controlled by the control device regardless if the applicant takes credit for the reduction in emissions. The applicant can indicate in this section of the application if they chose to not take credit for the reduction in emission rates. For notices of intent submitted under 20.2.73 NMAC, only uncontrolled emission rates can be considered to determine applicability unless the state or federal Acts require the control. This information is necessary to determine if federally enforceable conditions are necessary for the control device, and/or if the control device produces its own regulated pollutants or increases emission rates of other pollutants.

Site wide emissions calculations are provided in the following pages.

TABLE 6-1 POTENTIAL EMISSIONS SUMMARY JAL #3 GAS PLANT ET GATHERING & PROCESSING LLC LEA COUNTY, NEW MEXICO

		NI.	O _v	\/(oc		0	DM	/PM _{2.5}	6	02	H ₂	c	Formal	dehyde	Λ ο ν	olein
Freioriana Course	I Imit Niveshau	(lb/hr)	. ^		- I	(lb/hr)		(lb/hr)		(lb/hr)		_		(lb/hr)		(lb/hr)	
Emissions Source Equipment	Unit Number	(ID/Nr)	(T/yr)	(lb/hr)	(T/yr)	(ID/Nr)	(T/yr)	(ID/Nr)	(T/yr)	(ID/Nr)	(T/yr)	(lb/hr)	(T/yr)	(ID/Nr)	(T/yr)	(ID/Nr)	(T/yr)
3550 Hp Caterpillar 3612	C-1	3.91	17.12	1.96	8.58	2.15	9.42	0.24	1.06	0.01	0.06			0.20	0.89	0.12	0.54
3550 Hp Caterpillar 3612	C-2	3.91	17.12	1.96	8.58	2.15	9.42	0.24	1.06	0.01	0.06			0.20	0.89	0.12	0.54
3550 Hp Caterpillar 3612	C-3	3.91	17.12	1.96	8.58	2.15	9.42	0.24	1.06	0.01	0.06			0.20	0.89	0.12	0.54
3550 Hp Caterpillar 3612	C-4	3.91	17.12	1.96	8.58	2.15	9.42	0.24	1.06	0.01	0.06			0.20	0.89	0.12	0.54
1875 Hp Caterpillar 3606	C-5	1.24	5.43	2.45	10.75	2.06	9.04	0.24	0.56	0.01	0.03			0.20	1.63	0.12	0.29
1875 Hp Caterpillar 3606	C-6	1.24	5.43	2.45	10.75	2.06	9.04	0.13	0.56	0.01	0.03			0.37	1.63	0.07	0.29
Regeneration Gas Heater (28 MMBTU/hr)	12H	2.75	12.02	0.15	0.66	2.31	10.10	0.10	0.91	0.016	0.07						
Dehy Reboiler	13H	0.20	0.86	0.10	0.05	0.16	0.72	0.01	0.07	0.0012	0.01						
Stabilizer Heater	14H	0.98	4.29	0.05	0.24	0.82	3.61	0.07	0.33	0.01	0.03						
Plant Flare	10F			1443.47	6.13					600.00	2.55	6.38	0.03				
Plant Flare - MSS	10F	413.48	3.52	0.41	1.79	825.45	7.03			<0.01	<0.01						
Acid Gas Flare	9F	3.80	16.66	0.14	0.61	7.59	33.26			750.00	73.53	7.98	39.92				
Gunbarrel	TK-519			0.0006	0.0027												
Scrubber Oil Tank	TK-519C			0.020	0.089												
Water Tank	TK-519A			0.000002	0.00001												
Condensate Loading	LOAD			41.75	29.35												
Scubber Oil Loading	LOAD1			0.17	0.76												
MSS Emissions	MSS-1			2.20	0.70												
Site Fugitives	FUG-1			3.97	34.75							<0.01	<0.01				
Site Fugitives	FUG-2			0.0001	0.61							<0.01	<0.01				
Malfunction			10.00		10.00		10.00				10.00		10.00				
Total Facility Emissions W/Fugitives Plus Formaldehyde		439.32	126.71	1505.08 1.56	141.56 6.82	849.07	120.48	1.52	6.64	1350.10	86.50	14.36	49.95	1.56	6.82	0.63	2.75
Total				1506.64	148.37												
Total Facility Emissions minus Fugitives				1502.67	113.01												

Jal3Calcs.xlsx Summary

TABLE 6-2 POTENTIAL EMISSIONS FROM CATERPILLAR 3612 (C-1) JAL #3 GAS PLANT ET GATHERING & PROCESSING LLC LEA COUNTY, NEW MEXICO

		Operating	Emission	n Factors	Potential Em	ission Rate ³
Pollutant	Horsepower	Hours	(grams/Hp-hr) ¹	(lb/MMBtu) ²	(lb/hr)	(T/yr)
NO _x	3,550	8,760	0.50		3.91	17.12
VOC	3,550	8,760	0.22		1.72	7.53
СО	3,550	8,760	0.28		2.15	9.42
SO_2	3,550	8,760		0.000588	0.01	0.06
PM ₁₀	3,550	8,760		0.009987	0.24	1.06
НСНО	3,550	8,760	0.026		0.20	0.89
Benzene	3,550	8,760		0.00044	0.01	0.05
Acetylaldehyde	3,550	8,760		0.00142	0.03	0.15
Acrolein	3,550	8,760		0.00514	0.12	0.54
Ethylbenzene	3,550	8,760		0.00004	0.001	0.004
N-Hexane	3,550	8,760		0.00110	0.03	0.12
Toluene	3,550	8,760		0.00041	0.01	0.04

Notes:

- 1. Emission factors for NOx, VOC, formaldehyde, and CO are based on manufacturer data, with a safety factor on NOx.
- 2. Emission factors for SO₂, PM₁₀, and benzene obtained from AP-42, Table 3.2-2, 4-stroke lean-burn engines, 7/00.
- 3. Potential emissions based on emission factors, maximum horsepower, fuel consumption rate of 6,795 Btu/Hp-hr, operation of an oxidation catalyst, and 8,760 hours of operation per year.

Jal3Calcs.xlsx C-1

TABLE 6-3 POTENTIAL EMISSIONS FROM CATERPILLAR 3612 (C-2) JAL #3 GAS PLANT ET GATHERING & PROCESSING LLC LEA COUNTY, NEW MEXICO

		Operating	Emission	Factors	Potential Em	ission Rate ³
Pollutant	Horsepower	Hours	(grams/Hp-hr) ¹	(lb/MMBtu) ²	(lb/hr)	(T/yr)
NO _x	3,550	8,760	0.50		3.91	17.12
voc	3,550	8,760	0.22		1.72	7.53
co	3,550	8,760	0.28		2.15	9.42
SO ₂	3,550	8,760		0.000588	0.01	0.06
PM ₁₀	3,550	8,760		0.009987	0.24	1.06
нсно	3,550	8,760	0.03		0.20	0.89
Benzene	3,550	8,760		0.00044	0.01	0.05
Acetylaldehyde	3,550	8,760		0.00142	0.03	0.15
Acrolein	3,550	8,760		0.00514	0.12	0.54
Ethylbenzene	3,550	8,760		0.00004	0.001	0.004
N-Hexane	3,550	8,760		0.00110	0.03	0.12
Toluene	3,550	8,760		0.00041	0.01	0.04

Notes:

Jal3Calcs.xlsx C-2

^{1.} Emission factors for NOx, VOC, formaldehyde, and CO are based on manufacturer data, with a safety factor on NOx.

TABLE 6-4 POTENTIAL EMISSIONS FROM CATERPILLAR 3612 (C-3) JAL #3 GAS PLANT ET GATHERING & PROCESSING LLC LEA COUNTY, NEW MEXICO

		Operating	Emission	n Factors	Potential Em	ission Rate ³
Pollutant	Horsepower	Hours	(grams/Hp-hr) ¹	(lb/MMBtu) ²	(lb/hr)	(T/yr)
NO _x	3,550	8,760	0.50		3.91	17.12
VOC	3,550	8,760	0.22		1.72	7.53
co	3,550	8,760	0.28		2.15	9.42
SO ₂	3,550	8,760		0.000588	0.01	0.06
PM ₁₀	3,550	8,760		0.009987	0.24	1.06
нсно	3,550	8,760	0.03		0.20	0.89
Benzene	3,550	8,760		0.00044	0.01	0.05
Acetylaldehyde	3,550	8,760		0.00142	0.03	0.15
Acrolein	3,550	8,760		0.00514	0.12	0.54
Ethylbenzene	3,550	8,760		0.00004	0.001	0.004
N-Hexane	3,550	8,760		0.00110	0.03	0.12
Toluene	3,550	8,760		0.00041	0.01	0.04

Notes:

- 1. Emission factors for NOx, VOC, formaldehyde, and CO are based on manufacturer data, with a safety factor on NOx.
- 2. Emission factors for SO₂, PM₁₀, and benzene obtained from AP-42, Table 3.2-2, 4-stroke lean-burn engines, 7/00.
- 3. Potential emissions based on emission factors, maximum horsepower, fuel consumption rate of 6,795 Btu/Hp-hr, operation of an oxidation catalyst, and 8,760 hours of operation per year.

Jal3Calcs.xlsx

TABLE 6-5 POTENTIAL EMISSIONS FROM CATERPILLAR 3612 (C-4) JAL #3 GAS PLANT ET GATHERING & PROCESSING LLC LEA COUNTY, NEW MEXICO

		Operating	Emission	n Factors	Potential Em	ission Rate ³
Pollutant	Horsepower	Hours	(grams/Hp-hr) ¹	(lb/MMBtu) ²	(lb/hr)	(T/yr)
NO_x	3,550	8,760	0.50		3.91	17.12
VOC	3,550	8,760	0.22		1.72	7.53
CO	3,550	8,760	0.28		2.15	9.42
SO_2	3,550	8,760		0.000588	0.01	0.06
PM ₁₀	3,550	8,760		0.009987	0.24	1.06
нсно	3,550	8,760	0.03		0.20	0.89
Benzene	3,550	8,760		0.00044	0.01	0.05
Acetylaldehyde	3,550	8,760		0.00142	0.03	0.15
Acrolein	3,550	8,760		0.00514	0.12	0.54
Ethylbenzene	3,550	8,760		0.00004	0.001	0.004
N-Hexane	3,550	8,760		0.00110	0.03	0.12
Toluene	3,550	8,760		0.00041	0.01	0.04

Notes:

Jal3Calcs.xlsx

^{1.} Emission factors for NOx, VOC, formaldehyde, and CO are based on manufacturer data, with a safety factor on NOx.

TABLE 6-6 POTENTIAL EMISSIONS FROM CATERPILLAR 3606 (C-5) JAL #3 GAS PLANT ET GATHERING & PROCESSING LLC LEA COUNTY, NEW MEXICO

		Operating	Emission	n Factors	Potential Em	ission Rate ³
Pollutant	Horsepower	Hours	(grams/Hp-hr) ¹	(lb/MMBtu) ²	(lb/hr)	(T/yr)
NO _x	1,875	8,760	0.30		1.24	5.43
VOC	1,875	8,760	0.50		2.06	9.04
co	1,875	8,760	0.50		2.06	9.04
SO ₂	1,875	8,760		0.000588	0.01	0.03
PM ₁₀	1,875	8,760		0.009987	0.13	0.56
нсно	1,875	8,760	0.09		0.37	1.63
Benzene	1,875	8,760		0.00044	0.01	0.02
Acetylaldehyde	1,875	8,760		0.00142	0.02	0.08
Acrolein	1,875	8,760		0.00514	0.07	0.29
Ethylbenzene	1,875	8,760		0.00004	0.001	0.002
N-Hexane	1,875	8,760		0.00110	0.01	0.06
Toluene	1,875	8,760		0.00041	0.01	0.02

Notes:

- 1. Emission factors for NOx, VOC, formaldehyde, and CO are based on manufacturer data, with a safety factor on NOx.
- 2. Emission factors for SO₂, PM₁₀, and benzene obtained from AP-42, Table 3.2-2, 4-stroke lean-burn engines, 7/00.
- 3. Potential emissions based on emission factors, maximum horsepower, fuel consumption rate of 6,811 Btu/Hp-hr, operation of an oxidation catalyst, and 8,760 hours of operation per year.

Jal3Calcs.xlsx C-5

TABLE 6-7 POTENTIAL EMISSIONS FROM CATERPILLAR 3606 (C-6) JAL #3 GAS PLANT ET GATHERING & PROCESSING LLC LEA COUNTY, NEW MEXICO

		Operating	Emission	n Factors	Potential Em	ission Rate ³
Pollutant	Horsepower	Hours	(grams/Hp-hr) ¹	(lb/MMBtu) ²	(lb/hr)	(T/yr)
NO _x	1,875	8,760	0.30		1.24	5.43
VOC	1,875	8,760	0.50		2.06	9.04
co	1,875	8,760	0.50		2.06	9.04
SO ₂	1,875	8,760		0.000588	0.01	0.03
PM ₁₀	1,875	8,760		0.009987	0.13	0.56
нсно	1,875	8,760	0.09		0.37	1.63
Benzene	1,875	8,760		0.00044	0.01	0.02
Acetylaldehyde	1,875	8,760		0.00142	0.02	0.08
Acrolein	1,875	8,760		0.00514	0.07	0.29
Ethylbenzene	1,875	8,760		0.00004	0.001	0.002
N-Hexane	1,875	8,760		0.00110	0.01	0.06
Toluene	1,875	8,760		0.00041	0.01	0.02

Notes:

- 1. Emission factors for NOx, VOC, formaldehyde, and CO are based on manufacturer data, with a safety factor on NOx.
- 2. Emission factors for SO₂, PM₁₀, and benzene obtained from AP-42, Table 3.2-2, 4-stroke lean-burn engines, 7/00.
- 3. Potential emissions based on emission factors, maximum horsepower, fuel consumption rate of 6,811 Btu/Hp-hr, operation of an oxidation catalyst, and 8,760 hours of operation per year.

Jal3Calcs.xlsx C-6

TABLE 6-8 POTENTIAL EMISSIONS FROM REGEN GAS HEATER (12H) JAL #3 GAS PLANT ET GATHERING & PROCESSING LLC LEA COUNTY, NEW MEXICO

	Max Firing Rate	Gas Heating Value	Emission Factor	Potential Emis	sion Rates ²
Pollutant	(MMBtu/hr)	(MMBtu/scf)	(lb/MMSCF) 1	(lb/hr)	(T/yr)
NO _x	28.00	1020	100.0	2.75	12.02
VOC	28.00	1020	5.5	0.15	0.66
co	28.00	1020	84.0	2.31	10.10
SO_2	28.00	1020	0.60	0.016	0.07
PM ₁₀	28.00	1020	7.6	0.21	0.91
Benzene	28.00	1020	0.0021	0.00006	0.0003

Notes:

- 1. Emission factors obtained from AP-42 Table 1.4-1 through 1.4-3 for commercial boilers.
- 2. Potential emissions based on AP-42 emission factors, maximum firing rate of 28 MMBtu/hr. 1,020 Btu/scf fuel heating value, and 8,760 hours per year of operation.

Jal3Calcs.xlsx 12H

TABLE 6-9 POTENTIAL EMISSIONS FROM DEHY REBOILER (13H) JAL #3 GAS PLANT ET GATHERING & PROCESSING LLC LEA COUNTY, NEW MEXICO

	Max Firing Rate	Gas Heating Value	Emission Factor	Potential Emis	sion Rates ³
Pollutant	(MMBtu/hr)	(MMBtu/scf)	(lb/MMSCF) 1	(lb/hr)	(T/yr)
NO _x	2.0	1020	100.0	0.20	0.86
VOC	2.0	1020	5.5	0.01	0.05
co	2.0	1020	84.0	0.16	0.72
SO_2	2.0	1020	0.6	0.00	0.01
PM ₁₀	2.0	1020	7.6	0.01	0.07
Benzene	2.0	1020	0.0021	0.0000	0.0000

Notes:

- 1. Emission factors obtained from AP-42 Table 1.4-1 through 1.4-3 for commercial boilers.
- 3. Potential emissions based on AP-42 emission factors, maximum firing rate of 2.0 MMBtu/hr.

1,020 Btu/scf fuel heating value, and 8,760 hours per year of operation.

Jal3Calcs.xlsx 13H

TABLE 6-10 POTENTIAL EMISSIONS FROM STABILIZER HEATER (14H) JAL #3 GAS PLANT ET GATHERING & PROCESSING LLC LEA COUNTY, NEW MEXICO

	Max Firing Rate	Gas Heating Value	Emission Factor	Potential Emis	sion Rates ³
Pollutant	(MMBtu/hr)	(MMBtu/scf)	(lb/MMSCF) 1	(lb/hr)	(T/yr)
NO _x	10.0	1020	100.0	0.98	4.29
VOC	10.0	1020	5.5	0.05	0.24
CO	10.0	1020	84.0	0.82	3.61
SO ₂	10.0	1020	0.6	0.01	0.03
PM ₁₀	10.0	1020	7.6	0.07	0.33
Benzene	10.0	1020	0.0021	0.0000	0.0001

Notes:

- 1. Emission factors obtained from AP-42 Table 1.4-1 through 1.4-3 for commercial boilers.
- ${\it 3. \ Potential\ emissions\ based\ on\ AP-42\ emission\ factors,\ maximum\ firing\ rate\ of\ 10.0\ MMBtu/hr.}$

1,020 Btu/scf fuel heating value, and 8,760 hours per year of operation.

Jal3Calcs.xlsx 14H

TABLE 6-12 POTENTIAL EMISSIONS SUMMARY PLANT FLARE (10F) JAL #3 GAS PLANT ET GATHERING & PROCESSING LLC LEA COUNTY, NEW MEXICO

					FLARE	FEED AND	EXHAUST RA	ATES																				
		Feed Ra	tes and Com	positions																								
Component	Molecular Weight	Cu Ft/lb	F lb/hr	Process Vents (F T/yr	PROCESS-1) MCF/yr	Flare DRE %	PROCESS Ra		Component Heating Value BTU/SCF	Heat F MMBtu/hr	Heat Release MMBtu/hr MMBtu/yr										Emission	Pil	FLARE EMISS	SION RATES Flare Exhau	st Emission	Total Potent	ial Emission
H2S	34	11.1351	319.20	10,264.70	3.554	114.299	98%	6.38	0.03	586.8	2.08568	67.07036		Factors	Emiss	on Rates ³	Rat	tes	Ra	tes								
N2	28	13.5460	2,615.15	11.11	35.42	301.11		2615.15	11.11				Pollutant	(lb/MMBtu) ²	(lbs/hr)	(T/yr)	(lbs/hr)	(T/yr)	(lbs/hr)	(T/yr)								
SO2								600.00	2.55																			
CO2	44	8.6229	5,937.83	25.24	51.20	435.21		5937.83	25.24				NOx	0.138	0.40	1.76	413.07	1.76	413.48	3.52								
C1	16	23.6540	53,196.46	226.08	1,258.31	10,695.63	98%	1063.93	4.52	909.4	1,144.306	9,726.60	VOC	0.14	0.41	1.79	1443.47	6.13	1443.88	7.92								
C2	30	12.6200	21,115.93	89.74	266.48	2,265.11	98%	422.32	1.79	1,618.7	431.356	3,666.53	CO	0.2755	0.80	3.52	824.65	3.51	825.45	7.03								
C3	44	8.6059	21,823.62	92.75	187.81	1,596.40	98%	436.47	1.86	2,314.9	434.766	3,695.51	SO2				600.00	2.55	600.00	2.55								
IC4	58	6.5291	1,711.12	7.27	11.17	94.96	98%	34.22	0.15	3,000.4	33.521	284.93	H2S				6.38	0.03	6.38	0.03								
NC4	58	6.5291	14,859.72	63.15	97.02	824.68	98%	297.19	1.26	3,010.8	292.110	2,482.93																
IC5	72	5.2596	9,436.79	40.11	49.63	421.89	98%	188.74	0.80	3,699.0	183.595	1,560.56				Flaring Period :	8760	hrs/yr										
NC5	72	5.2596	9,020.46	38.34	47.44	403.27	98%	180.41	0.77	3,706.9	175.870	1,494.90			Flare Pilot/S	weep Gas Rating:	2.92	MMBtu/hr										
Benzene	86	4.4035	473.11	2.01	2.08	17.71	98%	9.46	0.04	3,707.9	7.725	65.66			Pı	ocess Gas Flaring	8.5	hrs/yr										
C6+	86	4.4035	14,848.64	63.11	65.39	555.78	98%	296.973	1.26	4,403.8	287.947	2,447.55		Closed Drain &	Cond. Re-run	Tank Gas Volume:												
Total			155,358.03	10,923.62	2,075.5	17,726.0		12089.08	51.38		2993.28	25492.23		50000	Maximum dail	y rate (Mcfd)												
Total VOC 4								1443.47	6.13					50000	Avg daily thrοι	ighput (Mcf/day)	17,708.33	Annual Max.	throughput (M	cf)								

Notes

- 1. Flare Exhaust (lb/hr) = Total Volume (MCF/hr) x 1000 / (Cu Ft/#) x (100-Flare DRE (%)). Process vents include vapors from equipment such as stabilizer compressors, closed drain tanks, and condensate re-run tanks. Volumes are conservatively assumed to be 50000.0 Mcf/day of gas.
- 2. Flare CO and NOx emission factors from TCEQ Air Permit Techincal Guidance for Chemical Sources: Flares and Vapor Oxidizers, October 2000 RG-109 (Draft), Table 4, high Btu, "other" flare type. VOC based on AP-42 Table 13.5-1 (2/18).
- 3. Pilot gas potential emissions based on AP-42 emission factors, maximum pilot/sweep gas rate of 2.92 MMBtu/hr, 1,020 Btu/scf fuel heating value, and continuous operations of 8,760 hours of operation per year.
- 4. Total VOC includes components C3, IC4, NC4, IC5, NC5, & C6+ $\,$

Jal3Calcs.xlsx10/25/2024 FLARE-2

TABLE 6-13 POTENTIAL EMISSIONS SUMMARY ACID GAS FLARE (9F) JAL #3 GAS PLANT ET GATHERING & PROCESSING LLC LEA COUNTY, NEW MEXICO

	FLARE FEED AND EXHAUST RATES																						
				Feed Rates a	and Compositi	ons				Flare			Component	Total Heat	Total Heat								
	Molecular		D	EHY-2	Assis	st Gas		AMINE		DRE	Flare Exh	aust Rate	Heating Value	Release	Release			FLARE	EMISSIO	N RATES			
Component	Weight	Cu Ft/lb	lb/hr	MCF/hr	lb/hr	MCF/hr	lb/hr	T/yr	MCF/hr	%	lb/hr ¹	T/yr	BTU/SCF	MMBtu/hr	MMBtu/yr				t Gas	Flare E			Potential
H2S	34	11.1351	0.004	0.00005			399.00	39.90	4.446	98%	7.980	39.92	586.80	2.61	521.98		Emission Factors	Emissio		Emissio	n Rates	Emissio	on Rates
N2	28	13.5460	2.22	0.03	6.58	0.49	0.076	0.008	0.001		2.30	9.75				Pollutant	(lb/MMBtu) ²	(lbs/hr)	(T/yr)	(lbs/hr)	(T/yr)	(lbs/hr)	(T/yr)
SO2	64									98%	750.00	73.53											
CO2	44	8.6229	12.30	0.11			7,775.4	777.54	67.046	0%	7,787.66	831.42				NOx	0.138	0.138	0.60	3.67	16.06	3.80	16.66
C1	16	23.6540	60.76	1.44	495.48	20.95	13.242	1.324	0.313	98%	1.48	5.35	909.40	20.64	178,378.31	VOC	0.14	0.140	0.61	1.24	5.08	1.38	5.69
C2	30	12.6200	11.37	0.14	11.79	0.93	5.912	0.591	0.075	98%	0.35	1.01	1,618.70	1.86	15,301.84	CO	0.2755	0.276	1.21	7.32	32.05	7.59	33.26
C3	44	8.6059	8.76	0.08	0.74	0.09	2.472	0.247	0.021	98%	0.22	0.77	2,314.90	0.42	3,272.66	SO2				750.00	73.53	750.00	73.53
IC4	58	6.5291	1.67	0.01	0.10	0.02	0.194	0.019	0.001	98%	0.04	0.15	3,000.40	0.08	701.69	H2S				7.98	39.92	7.98	39.92
NC4	58	6.5291	7.20	0.05	0.15	0.02	0.971	0.097	0.006	98%	0.16	0.63	3,010.80	0.23	1,837.83								
IC5	72	5.2596	3.70	0.02	0.02	0.00	0.094	0.009	0.000	98%	0.08	0.32	3,699.00	0.09	776.03								
NC5	72	5.2596	4.76	0.03	0.02	0.00	0.147	0.015	0.001	98%	0.10	0.42	3,706.90	0.11	959.03		Flar	ring Period	for Dehy:	8760	hrs/yr		
Benzene	86	4.4035	8.21	0.04			0.010	0.001	0.000	98%	0.16	0.72	3,707.90	0.13	1,174.31		Flari	ing Period	for Amine:	200	hrs/yr		
Toluene	92	1.1494	4.43	0.01			0.005	0.001	0.000	98%	0.09	0.39	4,886.20	0.02	217.99						_		
Xylene	106	1.1630	1.17	0.00			0.001	0.0001	0.000	98%	0.02	0.10	5,435.20	0.01	64.95		Flare Pilot and S	Shepard Ri	ng Rating:	1.0	MMBtu/h	•	
Ethylbenzene	106	1.1494	0.39	0.00			0.0005	0.00005	0.000	98%	0.01	0.03	5,435.20	0.00	21.40		As	ssist Gas I	nput Rate:	22.5	MCF/hr		
C6+	86	4.4035	17.57	0.08			0.155	0.016	0.001	98%	0.35	1.54	4,403.80	0.34	2,985.53						_		
Total			144.52	2.02			8,197.641	819.764	71.912		8,551.01	966.06		26.56	206,213.54								
Total VOC 4			57.86				4.050	0.405			1.24	5.08											

Notes

- 1. Flare Exhaust (lb/hr) = Total Volume (MCF/hr) x 1000 / (Cu Ft/#) x (100-Flare DRE (%)). Dehy and Amine rates from Promax process simulation.
- 2. Flare CO and NOx emission factors from TCEQ Air Permit Techincal Guidance for Chemical Sources: Flares and Vapor Oxidizers, October 2000 RG-109 (Draft), Table 4, high Btu, "other" flare type. VOC based on AP-42 Table 13.5-1 (2/18).
- 3. Pilot gas potential emissions based on AP-42 emission factors, maximum pilot/shepard ring gas rate of 1.0 MMBtu/hr, 1,020 Btu/scf fuel heating value, and continuous operations of 8,760 hours of operation per year.
- 4. Total VOC includes components C3, IC4, NC4, IC5, NC5, & C6+

Jal3Calcs.xlsx10/25/2024 FLARE-1

TABLE 6-14 POTENTIAL EMISSIONS FROM STORAGE TANKS - TRAIN 1 JAL #3 GAS PLANT ET GATHERING & PROCESSING LLC LEA COUNTY, NEW MEXICO

				Potential VO	Emissions ¹		
Source	Unit Number	Annual Throughput ¹ (gallons/year)	Tank Capacity (gallons)	Annual Breathing Losses ² (lbs)	Annual Working Losses ² (lbs)	VOC Em (lb/hr)	nissions ⁵ (T/yr)
Scrubber Oil Tank Water Tank Gunbarrel	TK-519C TK-519A TK-519	735,840 7,665,000 8,400,840	500 500 600	-		0.020 0.0000016 0.00061	0.089 0.0000070 0.0027
						0.02	0.09

Notes:

- 1. Based on maximum expected annual condensate and sump tank throughputs.
- 2. Annual breathing and working losses were calculated using AP-42 Section 7 calculations (See Table A-23b). Note that all tanks have negligible flash losses.
- 3. Annual VOC losses from Internal Floating Roof Tanks were estimated using AP-42 Section 7 calculations (See Table A-23c).
- 4. Benzene emissions based on benzene % of condensate analysis and assuming 1% of VOC emissions for diesel and gasoline.
- 5. Emission Calculation Examples:

Total Annual VOC Emissions (T/yr) = (Breathing Losses (lbs) + Working Losses (lbs)) / 2000

Jal3Calcs.xlsx TANKS

TABLE 6-15

POTENTIAL EMISSIONS SUMMARY AP-42 SECTION 7 FIXED-ROOF TANK EMISSIONS JAL #3 GAS PLANT ET GATHERING & PROCESSING LLC LEA COUNTY, NEW MEXICO

Tank Identification	TK-519C	TK-519A
Actual Location	Midland, TX	Midland, TX
Location for Calculation Purposes	Roswell, New Mexico	Roswell, New Mexico
Contents of Tank	Gasoline (RVP 9)	Gasoline (RVP 9)
Tank/Roof Type	Cone	Cone
Underground?	Aboveground	Aboveground
Will flashing occur at the tank?	No	No
Are the tanks vapor balanced?	No	No
Diameter, ft	10.0	10.0
Shell Height or Length, ft	15.0	7.5
Nominal Capacity, gal	210	107
Throughput, gallons/yr	735,840	7,665,000
Tank Paint Color	White	White
Tank Paint Condition	Average	Average
Effective Diameter, ft	10.0	10.0
Geometric Capacity, gal	8,225	3,819
Maximum Liquid Height, ft	14.0	6.5
Average Liquid Height, ft	7.0	3.3
Minimum Liquid Height, ft	1.0	1.0
Cone Tank Roof Slope, ft/ft	0.0625	0.0625
Dome Tank Roof Radius, ft	0.0023 N/A	N/A
Dome Tank Roof Height, ft	N/A	N/A
Roof Outage, ft	0.104	0.104
Vapor Space Outage, ft	8.10	4.35
Vapor Space Outage, ft Vapor Space Volume, ft^3	636	342
Average Daily Minimum Ambient Temperature, F	47.60	47.60
Average Daily Maximum Ambient Temperature, F	75.80	75.80
Daily Maximum Ambient Temperature, F	93.90	93.90
Daily Total Solar Insolation Factor, Btu/ft^2/day	1722	1722
Daily Average Ambient Temperature, F	61.7	61.7
Tank Paint Solar Absorbance, dimensionless	0.250	0.250
Daily Vapor Temperature Range, R	30.6	29.3
Daily Average Liquid Surf. Temperature, F	64.1	64.4
Daily Minimum Liquid Surf. Temperature, F	56.5	57.0
Daily Maximum Liquid Surf. Temperature, F	71.8	71.7
Liquid Bulk Temperature	62.99	62.99
Vapor Molecular Weight, lb/lbmol	67.0	67.0
Antoine's Coefficient A	07.0 N/A	N/A
Antoine's Coefficient B	N/A	N/A
Antoine's Coefficient C	N/A	N/A
Type of Substance (for use in calculations)	Gas	Gas
Vapor Pressure at Daily Av. Liquid Surf. Temp., psia Vapor Pressure at Daily Min. Liquid Surf. Temp., psia	4.998 4.300	5.020 4.348
Vapor Pressure at Daily Max. Liquid Surf. Temp., psia	5.783 AP-42 Figure 7.1-14b: RVP=9	5.774 AP-42 Figure 7.1-14b: RVP=9
Vapor Pressure Calculation Method	ASTM Slope=3	ASTM Slope=3
Vapor Density, lb/ft^3	0.059571	0.059815
Daily Vapor Pressure range, psi	1.482	1.426
Breather Vent Pressure Setting, psig	0.0300	0.0300
Breather Vent Vacuum Setting, psig	-0.0300	-0.0300
Breather Vent Pressure Setting Range, psi	0.0600	0.0600
Ambient Pressure, psia	12.9	12.9
Vapor Space Expansion Factor	0.2388	0.2297
Vented Vapor Saturation Factor	0.318	0.463
Annual Turnovers	96.33	2371.83
Turnover Factor	0.48	0.18
Working Loss K _B Factor	1.00	1.00
Working Loss Product Factor	1.00	1.00
Standing Storage Loss, lb/yr	1,050.39	794.61
Working Loss, lb/yr	2,801.22	10,989.08
Total Losses, lb/yr	3,851.61	11,783.69
Standing Storage Loss, TPY	0.52519	0.39731
Working Loss, TPY	1.40061	5.49454
Total Losses, TPY	1.92580	5.89185
10tai £00000, 11 T	1.92000	0.03 100

TABLE 6-16 POTENTIAL EMISSIONS FROM TRUCK LOADING JAL #3 GAS PLANT ET GATHERING & PROCESSING LLC LEA COUNTY, NEW MEXICO

Material Name	Unit Number	Saturation Factor ¹ (S)	True \ Press (F	sure ²	Molecular Weight of Vapors ² (M)	Temp of Loaded Liquid ² (F)	Max Temp of Loaded Liquid (F)	Emission	ı Factor ¹ c/10 ³ gal)	Annual Throughput ³ (gals)	oughput ³ Throughput ³		itrolled VOC sions
			Avg	Max	(lb/lb-mole)			Avg	Max			(lb/hr) ⁴	(T/yr) ⁵
Condensate Scrubber Oil	LOADOUT LOAD	0.6 -	5.00	5.78 -	67.00 -	62.9915 -	95 -	4.786 -	5.22 -	12,264,000 735,840	8,000 -	41.75 0.17	29.35 0.76
								-			TOTAL	41.92	30.11

Notes:

1. Per AP-42, 5th Edition (6/08), Section 5.2, Equation 1

Emission Factor (lb VOC/10³gal) =

S x P x M x 12.46

F + 460

Saturation Factor = 0.6 for submerged loading: dedicated normal service

- 2. True vapor pressure, weight of vapors and temp of loaded liquid obtained from AP-42 run using Gasoline RVP-9.
- 3. Throughput is the amount of condensate loaded out from the storage tank. It is estimated that one truck can load 8,000 gallons in one hour.
- 4. Uncontrolled Hourly VOC Emissions = Estimated Hourly Throughput (gal/hr) x Max Emission Factor (lb VOC/10³ gal) / 1000
- 5. Uncontrolled Annual VOC Emissions = Annual Throughput (gal) x Avg Emission Factor (lb VOC/10³ gal) / 1000 / 2000 (lb/T)

TABLE 6-17

FUGITIVE EMISSIONS (FUG1) JAL #3 GAS PLANT ET GATHERING & PROCESSING LLC LEA COUNTY, NEW MEXICO

Fugitive Emissions

Emission Unit: 79 & 80 Stack ID: FUG 1

Source Description: Fugitive Emissions

Components

-	Val	ves	Pump	seals	Conn	ectors	Fla	nges	Open	lines	Oth	her		Stream					KKK?	VOC	H2S
																amine			1		
	gas	liq	gas	liq	gas	liq	gas	liq	gas	liq	gas	liq	inlet	residue	product	stream *	refrigerant	acid		%	%
EU 79]		
Fuel ga	s 277		25				1046				36			Х						2%	0.00%
Inlet ga	1648		16				1635		164		18		Х						X	22%	0.65%
Scrubber oil ga	s 172		4				75		34		1				Х				Х	71%	0.00%
Rich amin	е	53						159		11		1				Х		Χ	Х	0%	15.61%
Sweet ga	s 44						53		8		1			Х					Х	2%	0.00%
Dry ga	s 855						2540		171		1			Х					Х	2%	0.00%
NG	L	86		17				137		17		2			Х				Х	71%	0.00%
Refrigerar	t 47	47	2	1			141	141	10	9							Х		Х	100%	0.00%
Residu	e 282		9				846		57					Х						2%	0.00%
"S" Plant unit	s 48	12	12				360	60			6		Х						Х	22%	0.65%
"S" Plant refri	g 9	9	3	3			30	30			1	1					Х		Х	100%	0.00%
EU 80																					
Storage tanks (tota	1)	28				100									Х					71%	0.00%
Storage tanks (per tl	()	7				25									* ass	umed = aci	id gas				

Control Efficiencies

	Valves	;	Pump	seals	Conne	ectors	Flai	nges	Open	lines	Otl	her
g	as	liq	gas	liq	gas	liq	gas	liq	gas	liq	gas	liq

67% 61% 45

Total Fittings

'	√alves	Pump	seals	Conn	ectors	Flai	nges	Open	lines	Otl	her
gas	liq	gas	liq	gas	liq	gas	liq	gas	liq	gas	liq
338	2 235	71	21	0	100	6726	527	444	37	64	4

Emissi	on CalculationsVOC	s		_	Factors	(k	g/hr/sourc	ce)		_		_			
(lb/yr)	_	Val	/es	Pump	seals	Conn	ectors	Fla	nges	Open	lines	Ot	her	Total	
Unit		gas	liq	gas	liq	gas	liq	gas	liq	gas	liq	gas	liq	(lb/yr)	
		4.5E-03	2.5E-03	2.4E-03	1.3E-02	2.0E-04	2.1E-04	3.9E-04	1.1E-04	2.0E-03	1.4E-03	8.8E-03	7.5E-03		
EU 79															
	Fuel gas	415	0	20	0	0	0	136	0	0	0	106	0	677	
	Inlet gas	10379	0	163	0	0	0	2704	0	1391	0	672	0	15309	
	Scrubber oil gas	3518	0	132	0	0	0	403	0	937	0	121	0	5111	
	Rich amine	0	0	0	0	0	0	0	0	0	0	0	0	1	
	Sweet gas	22	0	0	0	0	0	7	0	5	0	3	0	37	
	Dry gas	423	0	0	0	0	0	330	0	114	0	3	0	870	
	NGL	0	1155	0	1674	0	0	0	208	0	328	0	207	3571	
	Refrigerant	1345	883	93	138	0	0	1060	299	385	243	0	0	4445	
	Residue	423	0	7	0	0	0	110	0	38	0	0	0	578	
	"S" Plant units	302	50	122	0	0	0	595	28	0	0	224	0	1321	
	"S" Plant refrig	258	169	139	413	0	0	225	64	0	0	170	145	1582	
EU 80														0	
	Storage tanks (total)	0	964	0	0	0	289	0	0	0	0	0	0	1253	
														lb/yr	tpy
														34755	17

Emission Calculations -- H2S

(lb/yr)		Valv	/es	Pump	seals	Conne	ectors	Flai	nges	Open	lines	Ot	her	Total
Unit		gas	liq	(lb/yr)										
		4.5E-03	2.5E-03	2.4E-03	1.3E-02	2.0E-04	2.1E-04	3.9E-04	1.1E-04	2.0E-03	1.4E-03	8.8E-03	7.5E-03	
	Inlet gas	304	0	5	0	0	0	79	0	41	0	20	0	449
	Rich amine	0	155	0	0	0	0	0	53	0	46	0	23	277
	"S" Plant units	9	1	4	0	0	0	17	1	0	0	7	0	39

765 0.4

100% safety factor

35

100% safety factor

Gas Analyses

Inlet gas composition

Component	MW	Wet vol/mol %	Dry vol/mol %	MW * dry vol %	LHV Btu/scf	Btu/scf * dry vol %		Spec. Volume ft³/lb	Spec. Volume VOC ft ³ /lb
Water	18.02	2.79%						21.06	
Nitrogen	28.01	1.25%	1.29%	0.360	0	0.00	1.70%	13.547	
CO ₂	44.01	1.15%	1.18%	0.521	0	0.00	2.46%	8.623	
H ₂ S	34.08	0.39%	0.40%	0.137	586.71	2.35	0.65%	11.136	
Methane	16.04	77.53%	79.76%	12.795	909.1	725.05	60.40%	23.65	
Ethane	30.07	8.76%	9.01%	2.710	1617.8	145.79	12.79%	12.62	
Propane	44.10	4.21%	4.33%	1.910	2315.9	100.30	9.01%	8.606	4.456
I-Butane	58.12	0.19%	0.20%	0.114	3001	5.87	0.54%	6.529	0.153
N-Butane	58.12	1.65%	1.70%	0.987	3010.5	51.10	4.66%	6.529	1.325
I-Pentane	72.15	0.68%	0.70%	0.505	3697.9	25.87	2.38%	5.26	0.440
N-Pentane	72.15	0.65%	0.67%	0.482	3706.8	24.79	2.28%	5.26	0.421
Hexanes +	86.18	0.75%	0.77%	0.665	4403.9	33.98	3.14%	4.404	0.406
Total		100%	1.00	21.18		1115	100%		7.201
Dry total		97.21%	(mi	xture mol.	wt) (mixtu	re heating	value)		
	NMHC	16.89%							
	NMEHC (VOC)	8.13%					22.01%		

Residue gas composition

Residue gas composi	uon								Spec.
Component	MW	Wet vol/mol %	Dry vol/mol %	MW * dry vol %	LHV Btu/scf	Btu/scf * dry vol %	Mass Fraction (dry)	Spec. Volume ft ³ /lb	Volume VOC ft ³ /lb
Water	18.02	0.00%						21.06	
Nitrogen	28.01	2.16%	2.16%	0.605	0	0.00	3.54%	13.547	
CO ₂	44.01	0.00%	0.00%	0.000	0	0.00	0.00%	8.623	
H ₂ S	34.08	0.00%	0.00%	0.000	586.71	0.00	0.00%	11.136	
Methane	16.04	93.08%	93.10%	14.936	909.1	846.36	87.42%	23.65	
Ethane	30.07	4.15%	4.15%	1.248	1617.8	67.15	7.31%	12.62	
Propane	44.10	0.38%	0.38%	0.168	2315.9	8.80	0.98%	8.606	5.543
I-Butane	58.12	0.07%	0.07%	0.041	3001	2.10	0.24%	6.529	0.775
N-Butane	58.12	0.10%	0.10%	0.058	3010.5	3.01	0.34%	6.529	1.107
I-Pentane	72.15	0.02%	0.02%	0.014	3697.9	0.74	0.08%	5.26	0.178
N-Pentane	72.15	0.02%	0.02%	0.014	3706.8	0.74	0.08%	5.26	0.178
Hexanes +	86.18	0.00%	0.00%	0.000	4403.9	0.00	0.00%	4.404	0.000
Total		100%	1.00	17.08		929	100%		7.781
Dry total		100.0%	(mi	xture mol.	wt) (mixtu	re heating	value)		
	NMHC	4.74%							
	NMEHC (VOC)	0.59%					1.73%		

Product (liquid) composition

Component	MW	Wet vol/mol %	Dry vol/mol %	MW * dry vol %	LHV Btu/scf	Btu/scf * dry vol %	Mass Fraction (dry)	Spec. Volume ft³/lb	Spec. Volume VOC ft ³ /lb
Water	18.02	0.00%						21.06	
Nitrogen	28.01	0.00%	0.00%	0.000	0	0.00	0.00%	13.547	
CO ₂	44.01	0.00%	0.00%	0.000	0	0.00	0.00%	8.623	
H ₂ S	34.08	0.00%	0.00%	0.000	586.71	0.00	0.00%	11.136	
Methane	16.04	0.35%	0.35%	0.056	909.1	3.18	0.13%	23.65	
Ethane	30.07	40.75%	40.75%	12.254	1617.8	659.25	28.40%	12.62	
Propane	44.10	34.10%	34.10%	15.037	2315.9	789.72	34.86%	8.606	4.982
I-Butane	58.12	4.61%	4.61%	2.679	3001	138.35	6.21%	6.529	0.511
N-Butane	58.12	12.00%	12.00%	6.975	3010.5	361.26	16.17%	6.529	1.330
I-Pentane	72.15	1.64%	1.64%	1.183	3697.9	60.65	2.74%	5.26	0.146
N-Pentane	72.15	4.91%	4.91%	3.543	3706.8	182.00	8.21%	5.26	0.438
Hexanes +	86.18	1.64%	1.64%	1.413	4403.9	72.22	3.28%	4.404	0.123
Total		100%	1.00	43.14		2267	100%		7.531
Dry total		100.0%	(mi	xture mol.	wt) (mixtu	re heating	value)		
	NMHC	99.65%							
N	MEHC (VOC)	58.90%					71.47%		

Acid gas composition

Component	MW	Wet vol/mol %	Dry vol/mol %	MW * dry vol %	LHV Btu/scf	Btu/scf * dry vol %	Mass Fraction (dry)	Spec. Volume ft ³ /lb	Spec. Volume VOC ft ³ /lb
Water	18.02	6.00%						21.06	
Nitrogen	28.01	0.00%	0.00%	0.000	0	0.00	0.00%	13.547	
CO ₂	44.01	74.88%	79.66%	35.058	0	0.00	83.86%	8.623	
H_2S	34.08	18.00%	19.15%	6.526	586.71	112.35	15.61%	11.136	
Methane	16.04	1.00%	1.06%	0.171	909.1	9.67	0.41%	23.65	
Ethane	30.07	0.10%	0.11%	0.032	1617.8	1.72	0.08%	12.62	
Propane	44.10	0.00%	0.00%	0.000	2315.9	0.00	0.00%	8.606	0.000
I-Butane	58.12	0.00%	0.00%	0.000	3001	0.00	0.00%	6.529	0.000
N-Butane	58.12	0.00%	0.00%	0.000	3010.5	0.00	0.00%	6.529	0.000
I-Pentane	72.15	0.00%	0.00%	0.000	3697.9	0.00	0.00%	5.26	0.000
N-Pentane	72.15	0.00%	0.00%	0.000	3706.8	0.00	0.00%	5.26	0.000
Hexanes +	86.18	0.02%	0.02%	0.018	4403.9	0.94	0.04%	4.404	4.404
Total		100%	1.00	41.81		125	100%		4.404
Dry total		94.0%	(mi	xture mol.	wt) (mixtu	re heating	value)		
	NMHC	0.12%							
	NMEHC (VOC)	0.02%					0.04%		

Refrigerant composition

Component	MW	Wet vol/mol %	Dry vol/mol %	MW * dry vol %	LHV Btu/scf	Btu/scf * dry vol %		Spec. Volume ft ³ /lb	Spec. Volume VOC ft ³ /lb
Water	18.02	0.00%						21.06	
Nitrogen	28.01	0.00%	0.00%	0.000	0	0.00	0.00%	13.547	
CO ₂	44.01	0.00%	0.00%	0.000	0	0.00	0.00%	8.623	
H ₂ S	34.08	0.00%	0.00%	0.000	586.71	0.00	0.00%	11.136	
Methane	16.04	0.00%	0.00%	0.000	909.1	0.00	0.00%	23.65	
Ethane	30.07	0.00%	0.00%	0.000	1617.8	0.00	0.00%	12.62	
Propane	44.10	100%	100.0%	44.097	2315.9	2315.90	100.0%	8.606	8.606
I-Butane	58.12	0.00%	0.00%	0.000	3001	0.00	0.00%	6.529	0.000
N-Butane	58.12	0.00%	0.00%	0.000	3010.5	0.00	0.00%	6.529	0.000
I-Pentane	72.15	0.00%	0.00%	0.000	3697.9	0.00	0.00%	5.26	0.000
N-Pentane	72.15	0.00%	0.00%	0.000	3706.8	0.00	0.00%	5.26	0.000
Hexanes +	86.18	0.00%	0.00%	0.000	4403.9	0.00	0.00%	4.404	0.000
Total		100%	1.00	44.10		2316	100%		8.606
Dry total		100.0%	(mi	xture mol.	wt) (mixtu	re heating	value)		
	NMHC	100.0%							
	NMEHC (VOC)	100.0%					100.0%		

FUGITIVE EMISSIONS (FUG2) JAL #3 GAS PLANT ET GATHERING & PROCESSING LLC LEA COUNTY, NEW MEXICO

Fugitive Emissions--2nd Treater

Emission Unit: EU81
Stack ID: FUG 2
Source Description: Fugitive

Source Description: Fugitive Emissions emission factors from EPA-453/R-95-017

Components

Emission Calc	ulationsVOC	s Valve	es	Pump	Factors seals	(ł Conne	kg/hr/source	e) I Flar	nges	Open I	inos	Oth	I			
(lb/yr)		vaiv		, amp		Comin	.0.0.0	1 141	Ü	Openi		Oth				
Stream		gas	liq	gas	liq	gas	liq	gas	liq	gas	liq	gas	liq			
	kg/hr	4.5E-03	2.5E-03	2.4E-03	1.3E-02	2.0E-04	2.1E-04	3.9E-04	1.1E-04	2.0E-03	1.4E-03	8.8E-03	7.5E-03			
	Inlet gas	20	20	0	0	6	6	80	60	10	0	10	0			
	Rich amine		64		2		26		164		1		1			
															VOC % V	OC leakage
leakage, lb/yr	_													total lb		
	Inlet gas	1734.48	963.60	0.00	0.00	23.13	24.28	601.29	127.20	385.44	0.00	1695.94	0.00	5555.3	22.01%	1223
	Rich amine	0.00	3083.52	0.00	501.07	0.00	105.23	0.00	347.67	0.00	26.98	0.00	144.54	4209.0	0.04%	2

Emission Calculations -- H2S Valves Pump seals Connectors Flanges (lb/yr) Open lines Stream 1.1E-04 lg/hr 4.5E-03 2.5E-03 2.4E-03 1.3E-02 2.0E-04 2.1E-04 3.9E-04

1.4E-03 8.8E-03 7.5E-03 2.0E-03 Inlet gas 20 20 0 0 6 6 80 60 10 0 10 0 Rich amine 0 64 2 26 164 0 0 0 0 0 leakage, lb/yr

Inlet gas 1734.48 963.60 0.00 0.00 23.13 24.28 601.29 127.20 385.44 0.00 1695.94 0.00 5555.3 0.65% 36 Rich amine 0.00 3083.52 0.00 501.07 4209.0 15.61% 0.00 105.23 0.00 347.67 0.00 26.98 0.00 144.54 657

0.35 tpy

0.61

H2S % H2S leakage

Other

tpy

Gas Analyses (from application for 1092-M4) Inlet gas composition

Component	MW	Wet vol/mol%	Dry vol/mol%	MW * dry vol %	LHV Btu/scf	Btu/scf * dry vol %	Mass Fraction (dry)	Spec. Volume ft³/lb	Spec. Volume VOC ft ³ /lb
Water	18.02	2.79%						21.06	
Nitrogen	28.01	1.25%	1.29%	0.360	0	0.00	1.70%	13.547	
CO ₂	44.01	1.15%	1.18%	0.521	0	0.00	2.46%	8.623	
H_2S	34.08	0.39%	0.40%	0.137	586.71	2.35	0.65%	11.136	
Methane	16.04	77.53%	79.76%	12.795	909.1	725.05	60.40%	23.65	
Ethane	30.07	8.76%	9.01%	2.710	1617.8	145.79	12.79%	12.62	
Propane	44.10	4.21%	4.33%	1.910	2315.9	100.30	9.01%	8.606	4.456
I-Butane	58.12	0.19%	0.20%	0.114	3001	5.87	0.54%	6.529	0.153
N-Butane	58.12	1.65%	1.70%	0.987	3010.5	51.10	4.66%	6.529	1.325
I-Pentane	72.15	0.68%	0.70%	0.505	3697.9	25.87	2.38%	5.26	0.440
N-Pentane	72.15	0.65%	0.67%	0.482	3706.8	24.79	2.28%	5.26	0.421
Hexanes +	86.18	0.75%	0.77%	0.665	4403.9	33.98	3.14%	4.404	0.406
Total		100%	1.00	21.18		1115	100%		7.201
Dry total		97.21%	(m	ixture mol. ı	wt) (mixtu	ire heating	value)		
	NMHC	16.89%							
	NMEHC (VOC)	8.13%					22.01%		

Acid gas composition

Component	MW	Wet vol/mol%	Dry vol/mol%	MW * dry vol %	LHV Btu/scf	Btu/scf * dry vol %	Mass Fraction (dry)	Spec. Volume ft³/lb	Spec. Volume VOC ft ³ /lb
Water	18.02	6.00%						21.06	_
Nitrogen	28.01	0.00%	0.00%	0.000	0	0.00	0.00%	13.547	
CO ₂	44.01	74.88%	79.66%	35.058	0	0.00	83.86%	8.623	
H_2S	34.08	18.00%	19.15%	6.526	586.71	112.35	15.61%	11.136	
Methane	16.04	1.00%	1.06%	0.171	909.1	9.67	0.41%	23.65	
Ethane	30.07	0.10%	0.11%	0.032	1617.8	1.72	0.08%	12.62	
Propane	44.10	0.00%	0.00%	0.000	2315.9	0.00	0.00%	8.606	0.000
I-Butane	58.12	0.00%	0.00%	0.000	3001	0.00	0.00%	6.529	0.000
N-Butane	58.12	0.00%	0.00%	0.000	3010.5	0.00	0.00%	6.529	0.000
I-Pentane	72.15	0.00%	0.00%	0.000	3697.9	0.00	0.00%	5.26	0.000
N-Pentane	72.15	0.00%	0.00%	0.000	3706.8	0.00	0.00%	5.26	0.000
Hexanes +	86.18	0.02%	0.02%	0.018	4403.9	0.94	0.04%	4.404	4.404
Total		100%	1.00	41.81		125	100%		4.404
Dry total		94.0%	(m	ixture mol.	wt) (mixtu	ire heating	value)		
	NMHC	0.12%							
	NMEHC (VOC)	0.02%					0.04%		

Section 6.a

Green House Gas Emissions

(Submitting under 20.2.70, 20.2.72 20.2.74 NMAC)

Title V (20.2.70 NMAC), Minor NSR (20.2.72 NMAC), and PSD (20.2.74 NMAC) applicants must estimate and report greenhouse gas (GHG) emissions to verify the emission rates reported in the public notice, determine applicability to 40 CFR 60 Subparts, and to evaluate Prevention of Significant Deterioration (PSD) applicability. GHG emissions that are subject to air permit regulations consist of the sum of an aggregate group of these six greenhouse gases: carbon dioxide (CO₂), nitrous oxide (N₂O), methane (CH₄), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride (SF₆).

Calculating GHG Emissions:

- 1. Calculate the ton per year (tpy) GHG mass emissions and GHG CO₂e emissions from your facility.
- 2. GHG mass emissions are the sum of the total annual tons of greenhouse gases without adjusting with the global warming potentials (GWPs). GHG CO₂e emissions are the sum of the mass emissions of each individual GHG multiplied by its GWP found in Table A-1 in 40 CFR 98 Mandatory Greenhouse Gas Reporting.
- 3. Emissions from routine or predictable start up, shut down, and maintenance must be included.
- **4.** Report GHG mass and GHG CO₂e emissions in Table 2-P of this application. Emissions are reported in **short** tons per year and represent each emission unit's Potential to Emit (PTE).
- **5.** All Title V major sources, PSD major sources, and all power plants, whether major or not, must calculate and report GHG mass and CO2e emissions for each unit in Table 2-P.
- **6.** For minor source facilities that are not power plants, are not Title V, and are not PSD there are three options for reporting GHGs in Table 2-P: 1) report GHGs for each individual piece of equipment; 2) report all GHGs from a group of unit types, for example report all combustion source GHGs as a single unit and all venting GHGs as a second separate unit; 3) or check the following By checking this box, the applicant acknowledges the total CO2e emissions are less than 75,000 tons per year.

Sources for Calculating GHG Emissions:

- Manufacturer's Data
- AP-42 Compilation of Air Pollutant Emission Factors at http://www.epa.gov/ttn/chief/ap42/index.html
- EPA's Internet emission factor database WebFIRE at http://cfpub.epa.gov/webfire/
- 40 CFR 98 Mandatory Green House Gas Reporting except that tons should be reported in short tons rather than in metric tons for the purpose of PSD applicability.
- API Compendium of Greenhouse Gas Emissions Methodologies for the Oil and Natural Gas Industry. August 2009 or most recent version.
- Sources listed on EPA's NSR Resources for Estimating GHG Emissions at http://www.epa.gov/nsr/clean-air-act-permitting-greenhouse-gases:

Global Warming Potentials (GWP):

Applicants must use the Global Warming Potentials codified in Table A-1 of the most recent version of 40 CFR 98 Mandatory Greenhouse Gas Reporting. The GWP for a particular GHG is the ratio of heat trapped by one unit mass of the GHG to that of one unit mass of CO₂ over a specified time period.

"Greenhouse gas" for the purpose of air permit regulations is defined as the aggregate group of the following six gases: carbon dioxide, nitrous oxide, methane, hydrofluorocarbons, perfluorocarbons, and sulfur hexafluoride. (20.2.70.7 NMAC, 20.2.74.7 NMAC). You may also find GHGs defined in 40 CFR 86.1818-12(a).

Metric to Short Ton Conversion:

Short tons for GHGs and other regulated pollutants are the standard unit of measure for PSD and title V permitting programs. 40 CFR 98 Mandatory Greenhouse Reporting requires metric tons.

1 metric ton = 1.10231 short tons (per Table A-2 to Subpart A of Part 98 – Units of Measure Conversions)

TABLE 6a-1

ESTIMATION OF FACILITY-WIDE GHG EMISSIONS JAL #3 GAS PLANT ET GATHERING & PROCESSING LLC LEA COUNTY, NEW MEXICO

	Total GHG E	missions
GHG Emission Source	(m.t. CO ₂ e)	(tons CO ₂ e)
Natural Gas Combustion	5,912,213	6,517,091
Fugitives Amine Unit	1,555,545	1,714,693
Estimated Facility Emissions:	7,467,758	8,231,784

Conversion	n Factors	Global Warn	ning Potential
1.10231	ton/m.t.	CO ₂	1
0.001	m.t./kg	CH ₄	25
8,760	Hrs/yr	N ₂ O	298

CO ₂	CH ₄	C ₂ H ₃	C ₃ H ₈	C ₄ H ₁₀	C5+
(mol %)	(mol %)	(mol %)	(mol %)	(mol %)	(mol %)
2.45766	60.39883	12.79118	9.01497	5.19325	7.85526

* Processing emissions for compressor, venting and flaring estimated using EPA's 40 CFR Subpart W Onshore Natural Gas Processing Screening Tool Mole % CO₂ for Acid gas venting used for screening obtained from process simulation data.

Note:

Carbon Dioxide Equivalent (CQe) emissions are calculated in the tables below by multiplying emissions by global warming potentials for each pollutant.

Emissions estimates converted to short tons in the tables below using conversion factor from 40 CFR 98 Subpart A for comparison to PSD/TV thresholds.

Global Warming Potentials obtained from 40 CFR 98 Supart A, Table A-1.

Mol % values obtained from the gas analysis from a representative facility.

Natural Gas Combustion Emissions

	Emission			Emis	ssions Factors 1			Emissions			Emissions		Total E	Emissions
	Point	Rated	Capacity	CO ₂	CH₄	N ₂ O		(m.t.)			(m.t. CO ₂ e)			
Emissions Source	Identification	Horsepower	(MMBtu/hr)	(kg/MMBtu)	(kg/MMBtu)	(kg/MMBtu)	CO ₂	CH ₄	N ₂ O	CO ₂	CH ₄	N ₂ O	(m.t. CO ₂ e)	(tons CO ₂ e)
CATERPILLAR 3612 (C1)	C1	3,550	26.72	58.32	0.0011	0.00011	13,651.70	0.26	0.026	13,651.70	6.44	7.67	13,666	15,064
CATERPILLAR 3612 (C2)	C2	3,550	26.72	58.32	0.0011	0.00011	13,651.70	0.26	0.026	13,651.70	6.44	7.67	13,666	15,064
CATERPILLAR 3612 (C3)	C3	3,550	26.72	58.32	0.0011	0.00011	13,651.70	0.257	0.0257	13,651.70	6.44	7.67	13,666	15,064
CATERPILLAR 3612 (C4)	C4	3,550	26.72	58.32	0.0011	0.00011	13,651.70	0.257	0.0257	13,651.70	6.44	7.67	13,666	15,064
CATERPILLAR 3606 (C5)	C5	1,875	14.09	58.32	0.0011	0.00011	7,200.83	0.136	0.0136	7,200.83	3.40	4.05	7,208	7,946
CATERPILLAR 3606 (C6)	C6	1,875	14.09	58.32	0.0011	0.00011	7,200.83	0.136	0.0136	7,200.83	3.40	4.05	7,208	7,946
HOT OIL HEATER (12H)	12H	-	28.00	58.32	0.0011	0.00011	14,305.22	0.270	0.0270	14,305.22	6.75	8.04	14,320	15,785
DEHY REBOILER (13H)	13H	-	2.00	58.32	0.0011	0.00011	1,021.80	0.019	0.0019	1,021.80	0.48	0.57	1,023	1,128
STABILIZER HEATER (14H)	14H	-	10.00	58.32	0.0011	0.00011	5,109.01	0.096	0.0096	5,109.01	2.41	2.87	5,114	5,638
										Total I	Natural Gas C	ombustion:	89,537	98,697

Notes:
1. Emission factors for GHG obtained from 40 CFR 98 Supart C, Tables C-1 and C-2.

			Annual Gas	Annual Gas			Emission Factor		Emissions		Globa	al Warming Pot	ential		Emissions		Total En	nissions
Source ID Number	Description	Maximum Hours of Operation	Usage (scf/hr)	Processed (scf/yr)	CO ₂ (mol %)	CH ₄ (mol %)	N ₂ O (m.t./MMscf)	CO ₂ (m.t.)	CH ₄ (m.t.)	N ₂ O (m.t.)	CO2	CH ₄	N ₂ O	CO ₂ (m.t. CO ₂ e)	CH ₄ (m.t. CO ₂ e)	N ₂ O (m.t. CO ₂ e)	(m.t. CO ₂ e)	(tons CO ₂ e)
8F	PLANT FLARE (8F)	8,760	129,772	364,692,733	0.000	0.00	7.10E-07	1,380,367.17	0.1816	0.0002589	1	25	298	1,380,367.17	4.54	0.07716	1,380,371.79	1,521,597.63
10F	PLANT FLARE (10F)	8,760	2,083,333	17,708,333	0.025	0.60	7.10E-07	67,599.53	4.0930	0.0000126	1	25	298	67,599.53	102.32	0.00375	67,701.86	74,628.44
9F	TREATMENT FLARE (9F)	8,760	130,304	1,141,460,382	0.895	0.01	7.10E-07	4,374,531.34	2.8231	0.0008104	1	25	298	4,374,531.34	70.58	0.24151	4,374,602.16	4,822,167.71
Note - CO 2 and N 2 O Emissions	estimated using API Compendiu	m Section 4.6													Total Flare	Combustion:	1,380,371.79	6,418,393.78

			Annual Gas		Emissions ¹			Glob	al Warming Pote	ential		Emissions		Total Emi	ssions
Source ID Number	Description	Maximum Days of Operation	Processed (MMscf/yr)	Conversion Factor (m.t./ton)	CO ₂ (tons)	CH ₄ (tons)	N ₂ O (tons)	CO ₂	CH4	N ₂ O	CO ₂ (m.t. CO ₂ e)	CH ₄ (m.t. CO ₂ e)	N ₂ O (m.t. CO ₂ e)	(m.t. CO ₂ e)	(tons CO ₂ e)
AMINE	MINE UNIT VENT (AMINE-1	.)	0	1.10231	19,434.65	45.75		1	25	298	17,630.84	1,037.51		18,668.34	20,578.30

Vented Sources

	Emission Point	Days of	AnnualGas Processed	Default CH ₄	CO ₂	CH,	Emission Factor CH ₄	CO,	Emissions CH ₄	N₂O	Glob	al Warming Pot	ential	CO.	Emissions CH,	N ₂ O	Total E	missions
Emissions Source	Identification	Operation	(MMscf/yr)	(mol %)	(mol %)	(mol %)	(m.t./MMscf)	(m.t.)	(m.t.)	(m.t.)	CO ₂	CH ₄	N ₂ O	(m.t. CO ₂ e)	(tons CO ₂ e)			
Pneumatic Devices 1	-	365	40,150	0.868	2.458	60.40	0.0001425	44.55	398.12		1	25	298	44.55	9,952.89		9,997.44	11,020.28

Note - Emissions estimated using API Compendium Sections 5.7.3 and 6.1 for non-routine events and pneumatic devices

Fugitive Sources

		Annual	Annual	Default	Emission	Emis	ssions	Control	Controlled	Emissions 2	Total E	missions
	Emission	Condensate	Condensate	Liquid CH ₄	Factor			(%)		(m.t.)		
	Point	Production	Production	Content '	voc	voc	VOC		voc			
Emissions Source	Identification	(bbl/yr)	(1,000 gal/yr)	(mol %)	(lb/1,000 gal)	(tons)	(m.t.)		(m.t.)	CH ₄	(m.t. CO ₂ e)	(tons CO ₂ e)
Condensate Truck Loading 1	LOADOUT	292,000	12,264	27.40	4.79	29.35	26.63	0%	26.63	7.30	182.39	182.39
Scrubber Oil	LOAD	17,520	736	28.40	-	0.76	0.69	0%	0.69	0.20	4.90	4.90

Default CH₄ content for crude oil per API compendium Section 5.4 and Appendix B.
 Emissions estimated using API Compendium, Section 5.5.

	Emission		Annual Gas	Emission Factor CH ₄	Conversion					Emiss	ions	Global Warm	ing Potential	Emissi	ons	Total Er	missions
Emissions Source	Point Identification	Days of Operation	Processed (MMscf/yr)	(m.t./MMscf processed)	Factor (ton/m.t.)	Default CH ₄ (mol %)	CO ₂ / CH ₄ (mol %)	CH ₄ (mol %)	CO _{2 /} CH ₄ (mol wt)	CO ₂ (m.t.)	CH ₄ (m.t.)	CO ₂	CH ₄	CO ₂ (m.t. CO ₂ e)	CH ₄ (m.t. CO ₂ e)	(m.t. CO ₂ e)	(tons CO ₂ e)
Plant Fugitives 1	FUG-1	365	40,150	0.0025	1.10231	0.868	0.041	60.399	2.75	781.557	6984.48	1	25	781.56	174,612.12	175,393.68	193,338.20

Note - Emissions estimated using API Compendium of Greenhouse Gas Emissions Methodologies for the Oil and Natural Gas Industry Table 6-

	Emission		Annual	Emission Factor	Conversion				Emissions				Global Warm	ning Potential	Emi	ssions	Total Er	nissions
	Point	Days of	Operating	CH₄	Factor	Default CH ₄	CO2/CH4	CH₄	CO2/CH4		CO ₂	CH₄			CO ₂	CH ₄		
Emissions Source	Identification	Operation	Hours (hrs/yr)	(m.t./runtime hr)	(ton/m.t.)	(mol %)	(mol %)	(mol %)	(mol wt)	No. of Comps.	(m.t.)	(m.t.)	CO ₂	CH₄	(m.t. CO ₂ e)	(m.t. CO ₂ e)	(m.t. CO ₂ e)	(tons CO ₂ e)
Reciprocating Comp. Fugitive 1	FUG-1	365	8,760	0.00895	1.10231	0.868	0.041	60.399	2.75	10	6,104.674	54555.18	1	25	6104.67	1,363,879.40	1,369,984.07	1,510,147.14

Note - Emissions estimated using API Compendium of Greenhouse Gas Emissions Methodologies for the Oil and Natural Gas Industry Table 6-!

Section 7

Information Used to Determine Emissions

<u>Information Used to Determine Emissions</u> shall include the following:

If manufacturer data are used, include specifications for emissions units <u>and</u> control equipment, including control efficiencies specifications and sufficient engineering data for verification of control equipment operation, including design drawings, test reports, and design parameters that affect normal operation.
If test data are used, include a copy of the complete test report. If the test data are for an emissions unit other than the one being permitted, the emission units must be identical. Test data may not be used if any difference in operating conditions of the unit being permitted and the unit represented in the test report significantly effect emission rates.
If the most current copy of AP-42 is used, reference the section and date located at the bottom of the page. Include a copy of the page containing the emissions factors, and clearly mark the factors used in the calculations.
If an older version of AP-42 is used, include a complete copy of the section.
If an EPA document or other material is referenced, include a complete copy.
Fuel specifications sheet.
If computer models are used to estimate emissions, include an input summary (if available) and a detailed report, and a disk containing the input file(s) used to run the model. For tank-flashing emissions, include a discussion of the method used to estimate tank-flashing emissions, relative thresholds (i.e., permit or major source (NSPS, PSD or Title V)), accuracy of the model, the input and output from simulation models and software, all calculations, documentation of any assumptions used, descriptions of sampling methods and conditions, copies of any lab sample analysis.

Supporting documentation is provided in the following pages.

Simulation Report

Project: Jal 3 Amine Final Design 400 gpm.pmx

Licensed to Energy Transfer Equity, LP and Affiliates

Client Name: ET Gathering & Processing LLC

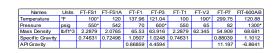
Location: Jal #3

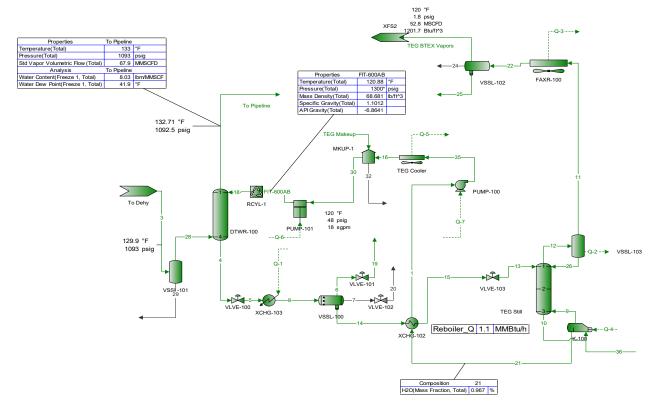
Job: NSR Permit Revision

ProMax Filename: C:\Users\jvanassche\OneDrive - Energy Transfer\Permitting\Jal 3\2024-02 NSR Amendment\Working Files\ProMax\Jal 3 Amine Final Design 400 gpm.pmx

ProMax Version: 6.0.22251.0

Simulation Initiated: 8/16/2024 2:35:34 PM


Bryan Research & Engineering, LLC


Chemical Engineering Consultants P.O. Box 4747 Bryan, Texas 77805 Office: (979) 776-5220 FAX: (979) 776-4818 mailto:sales@bre.com http://www.bre.com/

Report Navigator can be activated via the ProMax Navigator Toolbar.

An asterisk (*), throughout the report, denotes a user specified value.

A question mark (?) after a value, throughout the report, denotes an extrapolated or approximate value.

Process Streams		FIT-600AB TE	G BTEX Vapors T	•	p To Pipeline	1	2	3	4	5	6	7 8	8 (9 1	0 11	12	13	14	15	16	18	19	20 21	22	24 25	26	28	29	30	32	35	36
Composition Phase: Total	Status: From Block:		Solved VSSL-102	Solved 	Solved DTWR-100	Solved XCHG-102	Solved 	Solved To Dehy	Solved DTWR-100			Solved Solvest						VSSL-100		Solved TEG Cooler	Solved RCYL-1	Solved VLVE-101 V			Solved Solve VSSL-102 VSSL-1					Solved MKUP-1	PUMP-100	Solved
Mole Fraction	To Block:	RCYL-1	XFS2 %	MKUP-1 %	 %	**************************************	 %	%	%	%	%	VLVE-102 VSSL	% %	% %	% %	%	%	%	%	MKUP-1 %	DTWR-100 %	 %	%	%	 %	%	DTWR-100 %	%	PUMP-101 %	%	TEG Cooler %	K-100 %
H2S H2O		0 7.69872	0.00205794 10.2841	89.288		3.28716E-08 7.52247	5.85173E-05 0.258323	0.000142832 0.254477	0.000157050 24 5577	0.000157050 24 5577	0.000836982 0.531053	0.000					487 0.00013067 413 25.489	0.000.000.0	0.000.000.0	3.28716E-08 7.52247	0 (7.70287	0.000836982 0.531053	3.28716E-08 7.52247	3 0.000518100 7 77.4824		E-06 1.21367E-0 9939 93.420				3.28716E-08 7.52247	3.28716E-08 7.52247	0* 0*
N2		0.000106555	1.37092		0 2.03085	0.000106785	2.06024	2.02498	0.0192579	0.0192579	0.503480	0.0	192579 0.	299683 6.868		14026 0.327		0.0000.0		0.000106785	0.000105980	0.503480	0.000106785	0.344026	1.45922	E-05 1.06902E-0	5 2.0249	98 0.00145176	6 0.000106555		0.000106785	2*
CO2 C1		0.000733474 0.0104349	4.82616 65.3813	(0 1.74175 0 78.7222	0.000735058 0.0104575	0.0299434 79.8836	1.74233 78.5161	0.458768 2.44601	0.458768 2.44601	6.61637 59.9323						466 0.21994 264 0.21641		0.219946 0.216411		0.000729536 0.0103786	6.61637 59.9323	0.000735058 0.0104575			2078 0.00078899 1098 0.0011720		61 0.0927716	28 0.000733474 6 0.0104349	0.000735058	0.000735058 0.0104575	2^ 91*
C2 C3		0.00116186 5.71429E-06	6.52776 3.42932	(0.00116437 5.72663E-06	10.0004 4.64119	9.82819 4.56134	0.792717 0.558281	0.792717 0.558281	16.1231 9.35694			751035 0.00° 245231 0.0006		63819 1.56 60592 0.819	0.19812 617 0.21702				0.00115560 5.71186E-06	16.1231 9.35694	0.00116437 5.72663E-06			6205 0.00018935 E-05 0.00011338			68 0.00116186 61 5.71429E-06		0.00116437 5.72663E-06	5* 0*
iC4		1.51640E-06	0.496541		0 0.504190	1.51967E-06	0.512327	0.503535	0.0679783	0.0679783	1.01048	0.00	679783 0.000	513533 0.000	143991 0.1	24604 0.118	671 0.031423	0.0314235	0.0314235	1.51967E-06	1.51561E-06	1.01048	1.51967E-06	0.124604	5.14760	E-06 1.22645E-0	5 0.50353	35 0.000109301	1.51640E-06	1.51967E-06	1.51967E-06	0*
nC4 iC5		1.14858E-05 1.08598E-05	2.13958 0.884253	(0 1.24376 0 0.359763	1.15106E-05 1.08832E-05	1.26487 0.366040	1.24307 0.359738	0.240516 0.0832661	0.240516 0.0832661	2.95049 0.787141			323000 0.0009 222021 0.0006		36929 0.511 21899 0.211					1.14824E-05 1.08543E-05	2.95049 0.787141	1.15106E-05 1.08832E-05			E-05 9.84244E-0 E-06 3.45887E-0			27 1.14858E-05 05 1.08598E-05			0* 0*
nC5 C6		1.68765E-05 0.000248326	1.13801 3.52004		0 0.359494 0 0.604911	1.69129E-05 0.000248862	0.366004 0.617061	0.359697 0.606451	0.101141 0.264497	0.101141 0.264497	0.851760 1.33574			316471 0.0008 213822 0.008		35574 0.271 33319 0.841	977 0.072028 264 0.22294		0.0720284	1.69129E-05 0.000248862	= 00	0.851760 1.33574	1.69129E-05 0.000248862			E-06 4.58126E-0 E-05 0.00015248			05 1.68765E-05 05 0.000248326		1.69129E-05 0.000248862	0* 0*
TEG		92.2885	1.47066E-08	10.711	4 0.000212215	92.4647	0.017001	0	70.4097	70.4097	0.000274678	7	70.4097 5	5.83015 7	2.2229 0.001	96013 0.315	074 73.140	73.1405	73.1405	92.4647	92.2844	0.000274678	92.4647	7 0.00196013	0.0026	1677 6.5773	4	0 (0 92.2885	92.4647	92.4647	0*
MDEA O2		2.88326E-05 0	1.74564E-06 0	(0 6.61936E-10 0 0	2.88949E-05 0	0	0	2.21555E-05 0	2.21555E-05 0	1.82296E-09 0	2.215	055E-05 7.216 0	0 2.406 0	97E-05 6.2956 0	7E-07 6.98374E 0	07 2.30148E-0 0	5 2.30148E-05 0 0	2.30148E-05 0	2.88949E-05 0	2.90999E-05 0	1.82296E-09 0	2.88949E-0t	6.29567E-07 0	2.55680	E-07 2.07450E-0 0	6 0	0 0	0 2.88326E-05 0 0	2.88949E-05 0	2.88949E-05 0	0* 0*
JEFFTREAT® MS-100 Solvent CHEMTHERM 550	t	0	0	(0 0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	(0		0	0	0 (0 0	0	0	0* 0*
Molar Flow		lbmol/h	lbmol/h	lbmol/h	lbmol/h	lbmol/h	lbmol/h	lbmol/h	lbmol/h	lbmol/h		lbmol/h lbm	iol/h lbm	nol/h lbm	ol/h lbmo	l/h lbmol/l	n lbmol/h	lbmol/h	lbmol/h	lbmol/h	lbmol/h		lbmol/h lbmol/h	lbmol/h	lbmol/h lbmol		lbmol/h		lbmol/h	lbmol/h		lbmol/h
H2S H2O		0 5.58647	0.000119208 0.595714	0.13966		2.38014E-08 5.44681	0.00491338 21.6900	0.0106764 19.0216	0.000149337 23.3516		2.97154E-05 0.0188540		149337 1.175 23.3516 2	590E-06 1.199 20.8749 2	70E-06 0.0001 6.3217 17		611 0.00011962 642 23.332		0.000119621 23.3327	2.38014E-08 5.44681	0 : 5.58970	2.97154E-05 0.0188540	0 2.38014E-08 0 5.4468	3 0.000119597 1 17.8859		E-07 1.40081E-0 2902 1.0782			0 0 0 5.58647		2.38014E-08 5.44681	0* 0*
N2		7.73200E-05	0.0794118			7.73200E-05		151.362	0.0183121	0.0183121	0.0178751			790425 6.513		94143 0.0794						0.0178751	0 7.73200E-05	0.0794143	0 2.52318	E-06 1.23385E-0	7 151.36	62 (0 7.73200E-05	0	7.73200E-05 (
CO2 C1		0.000532236 0.00757197	0.279560 3.78727	(0 129.799 0 5866.57	0.000532236 0.00757197	2.51418 6707.40	130.235 5868.89	0.436236 2.32588	0.436236 2.32588	0.234902 2.12778			798115 0.00° 3.59716 0.007		79857 0.279 78752 3.78	866 0.20133 753 0.19809			0.000532236 0.00757197		0.234902 2.12778	0 0.000532236 0 0.00757197			7545 9.10648E-0 3976 1.35280E-0			0 0.000532236 0 0.00757197		0.000532236 (0.00757197	
C2 C3		0.000843087 4.14650E-06	0.378126 0.198647			0.000843087 4.14650E-06	839.677 389.696	734.633 340.949	0.753784 0.530862	0.753784 0.530862	0.572420 0.332200			198089 0.00°		78157 0.378 98658 0.198					0.000838578 4.14489E-06	0.572420 0.332200	0 0.000843087 0 4.14650E-06			E-05 2.18553E-0 E-05 1.30870E-0			0 0.000843087 0 4.14650E-06		0.000843087 4.14650E-06	0.197637*
iC4		1.10035E-06	0.0287626		0 37.5734	1.10035E-06	43.0174	37.6380	0.0646396	0.0646396	0.0358751	0 0.00	646396 0.000	135447 0.000	136547 0.02	37635 0.0287	636 0.028764	0.0287646	0.0287646	1.10035E-06	1.09982E-06	0.0358751	0 1.10035E-06	0.0287635	0 8.90084	E-07 1.41556E-0	7 37.638	80 08	0 1.10035E-06	0	1.10035E-06	0*
nC4 iC5		8.33454E-06 7.88024E-06	0.123937 0.0512212	(8.33454E-06 7.88024E-06	106.204 30.7344	92.9168 26.8895	0.228704 0.0791766	0.228704 0.0791766	0.104752 0.0279459			851925 0.0008 585589 0.0008		23944 0.123 12228 0.0512			0.123952 0.0512307		8.33233E-06 7.87655E-06	0.104752 0.0279459	0 8.33454E-06 0 7.88024E-06			E-06 1.13601E-0 E-06 3.99220E-0			0 8.33454E-06 0 7.88024E-06		8.33454E-06 7.88024E-06	0* 0*
nC5 C6		1.22462E-05 0.000180194	0.0659202 0.203902	(1.22462E-05 0.000180194	30.7314 51.8113	26.8865 45.3308	0.0961737 0.251507	0.0961737 0.251507	0.0302401 0.0474228			834705 0.0008 563965 0.008		59214 0.0659 03904 0.203	219 0.065933 906 0.20408	0.0659336 0.204084	0.000000	0 00	1.22417E-05 0.000180144		0 1.22462E-05 0 0.000180194		0 1.16340	E-06 5.28765E-0 E-06 1.76000E-0	7 26.886	65 (0 1.22462E-05 0 0.000180194	0	1.22462E-05 0.000180194	0* 0*
TEG		66.9679	8.51891E-10	0.016754	3 0.0158148	66.9512	01.0113	0	66.9517	66.9517	9.75190E-06	0 6	66.9517 1	1.53773 6	8.4889 0.0004	52473 0.0763	676 66.951	66.9516	66.9516	66.9512	66.9675	9.75190E-06	0 66.9512	0.000452473	0 0.00045	2473 0.075915	1	0 (0 66.9679	0	66.9512	0*
MDEA O2		2.09220E-05 0	1.01118E-07 0	(0 4.93290E-08 0 0	2.09220E-05 0	0	0 0	2.10674E-05 0	2.10674E-05 0	6.47208E-11 0	0 2.106 0	674E-05 1.903 0	325E-06 2.282 0	53E-05 1.4532 0	8E-07 1.69272E 0	E-07 2.10673E-0 0	5 2.10673E-05 0 0	2.10673E-05 0	2.09220E-05 0	2.11167E-05 0	6.47208E-11 0	0 2.09220E-05 0 (1.45328E-07 0	0 4.42103 0	E-08 2.39437E-0 0	8 0	0 0	0 2.09220E-05 0 0	0 0	2.09220E-05 0	0* 0*
JEFFTREAT® MS-100 Solvent CHEMTHERM 550	t	0	0		0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 (0	0	0	0	0 0	0 0	0	0	0* 0*
Mass Fraction		%	<u>%</u>	<u>%</u>	<u>%</u>	<u>%</u>	<u>%</u>	<u>%</u>	<u>%</u>	<u>%</u>	<u>%</u>	9	<u>%</u> %	% %	<u>%</u> %	<u> </u>	<u>%</u>	<u>%</u>	<u>%</u>	<u>%</u>	<u>%</u>	<u>%</u>	<u> </u>	<u>%</u>	<u> </u>	<u>%</u>	<u>%</u>	<u>%</u>	<u>%</u>	<u>%</u>	<u>%</u>	%
H2S H2O		0 990803	0.00288037 7.60869	5(0 0.000229257 0 0.0145015			0.000231811 0.218316	4.78812E-05 3.95772	4.78812E-05 3.95772						00525 0.000843 .1893 70.6	203 3.86945E-0 680 3.9896					0.00108157 0.362751	7.98983E-09 0.966512	9 0.000900525 71 1893		E-06 1.54870E-0 9720 63.014		11 1.17814E-05 16 99.8218		7.98983E-09 0.966512	7.98983E-09 0.966512	0* 0*
N2		2.13239E-05	1.57718		0 2.70917	2.13345E-05	2.80185	2.70135	0.00482604	0.00482604	0.534784	0.004	482604 0.	327040 1.695	64E-05 0.4	91505 0.460	165 0.00011618		0.000116181	2.13345E-05	2.12097E-05	0.534784	2.13345E-05	0.491505	2.26857	E-05 1.12126E-0	5 2.7013	35 0.00225649	9 2.13239E-05	2.13345E-05	2.13345E-05	3.19377*
CO2 C1		0.000230600 0.00119588	8.72273 43.0753			0.000230714 0.00119647	0.0639748 62.2144	3.65151 59.9825	0.180616 0.351031	0.180616 0.351031	11.0407 36.4554			.518784 0.0005 8.52325 0.00			.768 0.084099 6683 0.030163	0.0840998 0.0301636	0.0840998 0.0301636	0.000200111		11.0407 36.4554	0.000230714 0.00119647			0277 0.0013000 5619 0.00070401			3 0.000230600 69 0.00119588		0.000230714 0.00119647	5.01746* 83.2185*
C2 C3		0.000249575 1.80005E-06	8.06098 6.21023	(0.000249698 1.80095E-06	14.5981 9.93543	14.0731 9.57819	0.213233 0.220224	0.213233 0.220224	18.3822 15.6444			.879739 0.0003 421255 0.0002			203 0.051760 197 0.083145				0.000248240 1.79936F-06	18.3822 15.6444	0.000249698 1.80095E-06			4036 0.00021318 6614 0.00018720			28 0.000249575 33 1.80005E-06			8.57032* 0*
iC4		6.29625E-07	1.18523		0 1.39550	6.29937E-07	1.44561	1.39369	0.0353450	0.0353450	2.22689	0.03	353450 0.00	116275 7.375	64E-05 0.3	69357 0.345	807 0.015868		0.0158683	6.29937E-07	6.29324E-07	2.22689	6.29937E-07	0.369357	1.66039	E-05 2.66900E-0	5 1.3936	69 0.000352484	4 6.29625E-07	6.29937E-07	6.29937E-07	0*
nC4 iC5		4.76905E-06 5.59728E-06	5.10712 2.62005	(4.77141E-06 5.60005E-06	3.56902 1.28209	3.44060 1.23598	0.125055 0.0537419	0.125055 0.0537419	6.50229 2.15333			731338 0.0004 624017 0.0003		59159 1.49 16498 0.764	0.068379 0.035082				4.76780E-06 5.59467E-06	6.50229 2.15333	4.77141E-06 5.60005E-06			9870 0.00021419 E-05 9.34370E-0			54 4.76905E-06 52 5.59728E-06			0* 0*
nC5		8.69839E-06	3.37193		0 1.23513	8.70270E-06	1.28197	1.23584	0.0652789	0.0652789	2.33011	0.0	652789 0.00	889482 0.000	567889 1.	05080 0.983					8.69523E-06	2.33011	8.70270E-06	1.05080	2.69400	E-05 0.00012375	7 1.2358	84 0.000137458	88 8.69839E-06	8.70270E-06	8.70270E-06	0*
C6 TEG		0.000152874 99.0073	12.4576 9.07000E-08	50	0 2.48237	0.000152949 99.0316	2.58151 0	2.48871 0	0.203902 94.5890	0.203902 94.5890	4.36450 0.00156403					3.63 50123 2.37	464 0.16692 219 95.429			0.000152949 99.0316		4.36450 0.00156403	0.000152949 99.0316		0.021	E-05 0.00049200 8083 36.982		0 (0 99.0073	99.0316	99.0316	0*
MDEA O2		2.45443E-05 0	8.54277E-06 0		0 3.75619E-09 0 0	2.45564E-05 0	0	0	2.36177E-05 0	2.36177E-05 0	8.23656E-09 0	2.361	77E-05 3.349	973E-05 2.527 0	73E-05 3.8260 0	6E-06 4.17227E 0	E-06 2.38275E-0 0	5 2.38275E-05 0 0	2.38275E-05 0	2.45564E-05 0	2.47727E-05 0	8.23656E-09 0	2.45564E-05	3.82606E-06	1.69083	E-06 9.25566E-0	6 0	0 0	0 2.45443E-05	2.45564E-05 0	2.45564E-05 0	0* 0*
JEFFTREAT® MS-100 Solvent	t	0	0		0 0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	(0		0	0	0 (0 0	0	0	0*
CHEMTHERM 550 Mass Flow		lb/h	lb/h	lb/h	0 0 lb/h	lb/h	lb/h	lb/h	lb/h	lb/h	lb/h	lb/h lb	o/h lb	o/h lb	/ h lb/l	n lb/h	0 lb/h	lb/h	lb/h	lb/h	lb/h	lb/h	lb/h lb/h) 0 	lb/h lb/h	0 lb/h	0 lb/h	0 (b/h	0 0 lb/h	lb/h	lb/h	lb/h
H2S		0 100.642	0.00406272 10.7320	2.5160		8.11174E-07 98.1258	0.167452 390.751	0.363861 342.679	0.00508953 420.685	0.00508953 420.685	0.00101273 0.339660			755E-05 4.088 376.067 4		0.00407 0.00407 0.220 0.00407				8.11174E-07 98.1258	-	0.00101273 0.339660	0 8.11174E-07 0 98.1258			E-05 4.77409E-0 .488 19.424			0 0 0 100.642		8.11174E-07 98.1258	0* 0*
N2		0.00216600	2.22459	2.5100	0 4239.66	0.00216600	4845.96	4240.17	0.512983	0.512983	0.500742	0 0.9	512983 2	2.21425 0.00°	182456 2.5	22467 2.22	467 0.012240	0.0122406	0.0122406	0.00216600	0.00215440	0.500742	0 0.00216600	2.22467	0 7.06828	E-05 3.45643E-0	6 4240.1	17 (0 0.00216600		0.00216600	2.21459*
CO2 C1		0.0234234 0.121473	12.3033 60.7572	(0 5712.40 0 94114.2		110.648 107603		19.1985 37.3128	19.1985 37.3128	10.3379 34.1349						168 8.8606 613 3.1779		0.0000.			10.3379 34.1349	0 0.0234234 0 0.121473			0948 0.00040077 1397 0.00021702			0 0.0234234 0 0.121473	0 0		3.47916* 57.7045*
C2		0.0253508 0.000182842	11.3699 8.75944		0 22067.1	0.0253508 0.000182842	25248.3 17183.9	22089.7 15034.4	22.6656 23.4087	22.6656 23.4087	17.2121 14.6486						709 5.4534 999 8.7601			0.0253508 0.000182842		17.2121 14.6486	0 0.0253508 0 0.000182842	3 11.3708	0 0.00091	6143 6.57167E-0 7970 5.77077E-0	5 22089		0 0.0253508 0 0.000182842	0		5.94275* 0*
iC4		6.39549E-05	1.67174	(6.39549E-05	2500.26	2187.61	3.75700	3.75700	2.08514				793640 1.	67180 1.67	180 1.6718	1.67186	1.67186	6.39549E-05	6.39242E-05	2.08514	0 6.39549E-05	1.67180	0 5.17336	E-05 8.22754E-0	6 2187.6	61 (0 6.39549E-05	0	6.39549E-05	0*
nC4 iC5		0.000484422 0.000568550	7.20352 3.69555	(0.000484422 0.000568550	6172.82 2217.45		13.2928 5.71249	13.2928 5.71249	6.08839 2.01626						396 7.2043 569 3.6962				0.000484294 0.000568283	6.08839 2.01626	0 0.000484422 0 0.000568550			3485 6.60272E-0 4852 2.88032E-0			0 0.000484422 0 0.000568550		0.000484422 0.000568550	0* 0*
nC5		0.000883548	4.75606		0 1932.89	0.000883548	2217.23	1939.83	6.93882	6.93882	2.18179	0 6	6.93882 0.0	602230 0.06	611065 4.	75615 4.75	618 4.7570	3 4.75703	4.75703	0.000883548	0.000883226	2.18179	0 0.000883548	3 4.75615	0 8.39382	E-05 3.81498E-0	5 1939.8	83 (0 0.000883548		0.000883548	0*
C6 TEG		0.0155283 10056.8	17.5713 1.27931E-07	2.5160	0 3884.74 4 2.37495		4464.86 0	3906.39 0	21.6737 10054.3	21.6737 10054.3	4.08668 0.00146447						716 17.587 684 10054.		17.5870 10054.3			4.08668 0.00146447	0 0.0155283 0 10054.3		0 0.00019 0 0.067	2988 0.00015166 9491 11.400		0 (0 0.0155283 0 10056.8	0	0.0155283 10054.3	0* 0*
MDEA O2		0.00249311	1.20494E-05		0 5.87816E-06	0.00249311	0	0	0.00251044	0.00251044	7.71227E-09	0 0.002	251044 0.000	226796 0.002	271991 1.7317 0	6E-05 2.01708E	E-05 0.0025104	0.00251043	0.00251043	0.00249311	0.00251632	7.71227E-09	0 0.0024931	1 1.73176E-05	0 5.26819	E-06 2.85318E-0	6 0	0 (0 0.00249311	0	0.00249311	0* 0*
JEFFTREAT® MS-100 Solvent	t	0	0	·	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0	0	0	0	0 () 0	0	0	0	0 (0 0	0	0	0*
CHEMTHERM 550		0	0		<u> </u>	0	0	0	0	0	0	0	0	0	U	U	U	J 0	0	0	0	0	U (J 0	Ü	U	U	U (υ 0	0	0	0*
Dream Of the			O DTEVV	TO 14.1	- T- P' '	4		^		-		7	0		0 1	10	10	4.4	4.5	40	40	40	20 2:	00	04 07	0.0			00	00	0.5	20
Process Streams Properties	Status:	Solved	G BTEX Vapors T Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved Solved	lved Sol	lved Sol	ved Solv	ed Solver	13 Solved	14 Solved	15 Solved	Solved	18 Solved	19 Solved	Solved Solved	Solved	Solved Solve	d Solved	Solved	Solved	Solved	32 Solved	35 Solved	36 Solved
Phase: Total	From Block:	PUMP-101 RCYL-1	VSSL-102 XFS2	 MKUP-1	DTWR-100	XCHG-102	-	To Dehy				VSSL-100 XCHO		100 TEG				VSSL-100 XCHG-102		TEG Cooler			/LVE-102 K-100		VSSL-102 VSSL-1					MKUP-1	PUMP-100	 K 400
Property	To Block: Units	NOTE-I	AF34	WINUT-1		PUMP-100		VSSL-101	VLVE-100	VOUG-102	VEVE-101	VLVE-102 VSSI	L-100 TEG	S Still K-1	00 FAXR	100 VSSL-10	TEG Still	AUTIG-102	4F4E-103	MKUP-1	DTWR-100		XCHG-102	VSSL-102		TEG Still	DTWR-100	0	PUMP-101		TEG Cooler	1100
Temperature Pressure	°F psia	120.881 1300*	119.895 1.8	75 100	5* 132.708)* 1092.5	255.822 -2.9	120* 550*	129.899 1093	132.885 1093	136.824 100*	142 98	142 98	142* 3 98	390.000 2 2.1	91.548 20 2.1	7.391 281. 2	.878 271.56 2 2	6 142 * 98	275* 96	120* 48	120.822 1300	138.902 60*	390.000 30* 2.7) 120* 1 1.9	119 1.8	0.895 207.39 1.8	1 129.89 2 109			48	255.935 50*	60* 50*
Mole Fraction Vapor	%	0	100	(0 100	0	100	100	0	3.69639	100		3.73368	100	0	100	100 2.6609		0.187241		0	100	(25.0848		0	0 10	00 (0 0)	0	100
Mole Fraction Light Liquid Mole Fraction Heavy Liquid	% %	100	0 0	100	0 0 0	100 0	0	0	100 0	96.3036 0	0		96.2663 0	0	100 0	0	0 97.339 0	0 0	0	100 0	0	0	100	74.9152		100 10	0	0 100	0 0)	100 0	0
Molecular Weight Mass Density	lb/lbmol lb/ft^3	139.982 68.6813	24.3498 0.0648451	32.1712 66.994		140.215 63.6429	20.5986 2.06805	20.9993 4.37380	111.785 66.6887	111.785 30.6753	26.3737 0.473577					.6078 19.9 60484 0.0420					139.977 68.6834	26.3737 0.312590	140.215 58.4695			0192 26.708 6767 62.865				140.215	140.215 63.6441	17.5425 0.205871
Molar Flow	lbmol/h	72.5637	5.79259	0.15641	6 7452.24	72.4073	8396.46	7474.76	95.0887	95.0887	3.55031	0 9	95.0887 2	26.3754 9	4.8299 23	.0838 24.2	380 91.538	91.5384	91.5384	72.4073	72.5664	3.55031	0 72.4073	3 23.0838	0 17.	2912 1.1541	9 7474.7	76	0 72.5637	0	72.4073	3.95273
Mass Flow Vapor Volumetric Flow	lb/h ft^3/h	10157.6 147.895	141.049 2175.16	5.0320 0.075111		10152.6 159.524	172955 83632.3	156965 35887.5	10629.5 159.390	10629.5 346.516	93.6346 197.718					2.624 483 29.31 114					10157.6 147.890	93.6346 299.545	0 10152.6 0 173.639			.575 30.826 5174 0.49035			0 10157.6 0 148.059	0 0	10152.6 159.521	69.3410 336.819
Liquid Volumetric Flow	gpm MMSCFD	18.4388	271.189	0.0093645	8 4501.90	19.8887	10426.9	4474.28	19.8720	43.2021	24.6505	0 4	14.1481 1	1775.11 2	1.4687 12	25.47 143	2.63 162.61	9 19.4975	22.4119	18.4496	18.4383	37.3458	0 21.6485	270.131	0 0.62	9827 0.061134	8 4474.2	28 (0 18.4593	0	19.8883	41.9930
Std Vapor Volumetric Flow Std Liquid Volumetric Flow	MMSCFD sgpm	0.660882 18	0.0527567 0.670818	0.0014245 0.0094824	4 885.136	17.9905	76.4718 997.371	68.0772 886.452	0.866031 19.3152	0.866031 19.3152	0.0323348 0.462999	0 1	19.3152 1	1.59477 1	9.1533 1.5	10239 0.220 29369 1.35	270 18.852	2 18.8522	18.8522	17.9905		0.0323348 0.462999	0 0.659458 0 17.9908	1.29369	0 0.62		4 886.45	.52 (0 0.660882 0 18*	. 0		0.036* 0.432039
Compressibility Specific Gravity		0.430086 1.10121	0.995932 0.840736	0.0095990 1.0741			0.904166 0.711216		0.291985 1.06926	0.0652941	0.972000 0.910614	0.00				93109 0.994 77007 0.688		4 0.0298183 1.08020		0.0205977 1.10003	0.430100 1.10125	0.981099 0.910614	0.00441728 0.937482		0.00077 0.98	4865 0.00099085 8905 1.0079			0.0205646 1.09999	;)	0.0185599 1.02045	0.988517 0.605699
API Gravity	D4 "	-6.86414		-0.22438	5	-6.68886			-3.54635	0.00000=		<u></u>		-5	.90952			-5.30524		-6.69610	-6.86397		-6.68958	3	9.9	9489 2.2473	5		-6.68689)	-6.69638	
Enthalpy Mass Enthalpy	Btu/h Btu/lb	-2.36263E+07 -2325.97	-281213 -1993.73	-23109.0 -4592.4				-2.70013E+08 -1720.22	-2446.08	-2446.08	-158178 -1689.32					3E+06 -2.17232E 41.14 -449			-2367.42	-2328.82	-2.36269E+07 -2326.03	-158178 -1689.32	-2163.71			8.14 -5057.6	0 -2.70013E+0 9 -1720.2				-2.28323E+07 -2248.92	-136618 -1970.23
Mass Cp Ideal Gas CpCv Ratio	Btu/(lb*°F)	0.558215 1.03684	0.459302 1.21687	0.841454 1.1777	4 0.629553	0.614144 1.03182	0.564059 1.24045	0.630861 1.23844	0.587222 1.04562	0.588254 1.04539	0.468637 1.19727	0.9	590507 0.4			67510 0.479 27861 1.26	197 0.63967	0.591590	0.643620	0.558855	0.558192	0.463207 1.19801	0.657602 1.02906	0.816003	0.97	7389 0.93134 2729 1.1994	0.63086	61	0.559036 1.03689	; !	0.614076 1.03181	0.497417 1.30013
Dynamic Viscosity	сР	14.1174	0.0116505	4.6945	7 0.0140136	2.23587	0.0123279	0.0140040	7.45362	1.04008	0.0117322	'	0.0	163283 1	.52905 0.01	33071 0.0147	335	8.13738		13.8462	14.1339	0.0116230	0.798042	2	0.57	1351 0.62249	7 0.014004	40	13.8486	}	2.23901	0.0110428
Kinematic Viscosity Thermal Conductivity	cSt Btu/(h*ft*°F)	12.8320 0.113635	11.2162 0.0178613	4.3745 0.20721					6.97741 0.115270		1.54656 0.0184256					.0405 21.8 77235 0.0200		7.54038 0.117098		12.5991 0.113590	12.8466 0.113635	2.32125 0.0181729	0.852070 0.1071631			3310 0.61816 7435 0.258004			12.6017 0.113623	}	2.19623 0.112756?	3.34861 0.0181906
Surface Tension	lbf/ft Btu/ft^3	0.00294964		0.0042438 404.57	5	0.00251558?	1103.55		0.00282133	2735.14	1261.36	^		0.0024	48581?			0.00290990		0.00295037	0.00294982	1261.36	0.00204829 3492.53	9	0.0046	6323 0.00372460	?		0.00295069)	0.00251528? 3492.53	
Net Ideal Gas Heating Value	⊔tu/It"3	3485.87	1088.90	404.5/	u 1086.94	ა49∠.5პ	1103.55	1004.02	2735.14	∠ <i>1</i> 33.14	1201.30	2	2735.14 3	357.702 2	120.34 21	3.334 272.	140 2/92.3	2192.30	2792.30	ა49∠.5პ	3465.72	1201.30	3492.5	3 273.334	0.11	3458 248.45	6 1084.6	62 1.07919	9 3485.87	3492.53	J49Z.JJ	908.504

9184.96

9182.39

9184.96 4514.21 3821.63 339.331 10075.7 5791.60

8915.52

8915.52

3064.99 3064.99 3064.99 3821.63 3814.28 1384.64 9814.59 9814.59 9814.59 10075.7 10073.1 19830.2

8915.52

4402.77

338.344

5662.25

4514.21

 0.10400323
 0.00372400?
 0.00233009
 0.00233020?

 0.118458
 248.456
 1084.62
 1.07919
 3485.87
 3492.53
 3492.53
 908.504

 -1057.03
 2766.37
 19543.0
 -1035.24
 9182.45
 9184.96
 9184.96
 19636.2

 50.4366
 318.599
 1196.42
 51.4358
 3814.45
 3821.63
 3821.63
 1007.58

 2.67015
 3763.00
 21563.6
 25.0486
 10073.2
 10075.7
 10075.7
 21779.7

18055.9

8996.04

4608.89

8829.68

3002.25 432.989 2996.43 339.331 9902.82 5721.90 9726.30 5791.60

3002.25 1384.64

9902.82 19830.2

8996.04

8996.04

Net Ideal Gas Heating Value Btu/ft^3
Net Liquid Heating Value Btu/lb
Gross Ideal Gas Heating Value Btu/ft^3
Gross Liquid Heating Value Btu/lb

9182.45

3814.45

10073.2

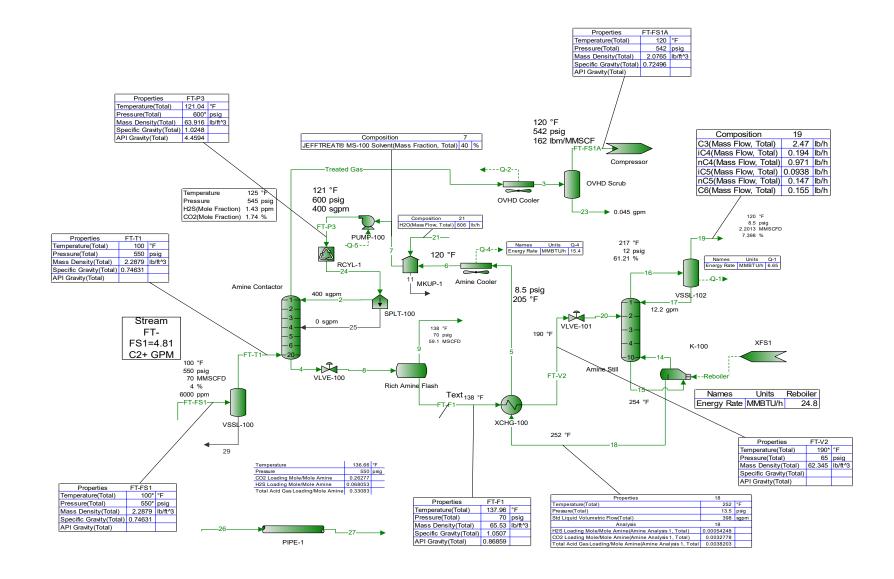
4112.51

487.175 5086.91

16821.0

1201.70

18579.3


9184.96

19586.9

 1198.87
 3821.63
 1217.30
 1196.42
 3002.25

 21609.9
 10075.7
 22369.5
 21563.6
 9902.82

20273.6 19543.0

Process Streams Composition Phase: Total	Status: From Block: To Block:	FT-FS1 Solved (VSSL-100 (Solved OVHD Scrub I	FT-F1 Solved Rich Amine Flash XCHG-100	FT-P3 Solved PUMP-100 RCYL-1	FT-T1 Solved VSSL-100 Amine Contactor	Solved XCHG-100	Treated Gas Solved Amine Contactor OVHD Cooler	2 Solved SPLT-100 Amine Contactor		4 Solved mine Contactor VLVE-100	5 Solved XCHG-100 Amine Cooler	6 Solved Amine Cooler MKUP-1	7 Solved MKUP-1 PUMP-100 R	8 Solved VLVE-100 R Rich Amine Flash	9 Solved Lich Amine Flash	11 Solved MKUP-1				17 Solved VSSL-102 Amine Still X	18 Solved K-100 (CHG-100		20 Solved VLVE-101 Amine Still	21 Solved MKUP-1	23 Solved OVHD Scrub	24 Solved RCYL-1 SPLT-100	25 Solved SPLT-100 Amine Contactor	26 Solved PIPE-1	27 29 Solved Solved PIPE-1 VSSL-100
Mole Fraction H2S H2O N2 CO2 C1 C2 C3 iC4 nC4 iC5 nC5 C6 DEA TEG MDEA Piperazine O2		% 0.6* 0* 1.97* 4* 76.43* 9.57* 4.44* 0.49* 1.21* 0.35* 0.59* 0* 0* 0* 0*	% 0.000142714 0.340709 2.02323 1.74084 78.4482 9.81969 4.55739 0.503099 1.24200 0.359426 0.359386 0.605926 0 0 0 0 0	% 0.606579 88.1161 3.55902E-05 2.33833 0.0107880 0.00256961 0.000732694 4.35130E-05 0.000218352 1.69891E-05 2.66574E-05 2.35815E-05 0 0 0 0	90.8046 0	4 76.43 9.57 4.44 0.49 1.21 0.35 0.35	88.1161 3.55902E-05 2.33833	% 0.000142700 0.356616 2.02290 1.74062 78.4355 9.81811 4.55666 0.503018 1.24180 0.359368 0.359328 0.605829 0 0 0 0 0	% 0.00489785 90.8046 0 0.0300584 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	% 0.000142700 0.356616 2.02290 1.74062 78.4355 9.81811 4.55666 0.503018 1.24180 0.359368 0.359328 0.605829 0 0 0 0 0	% 0.606827 88.0439 0.000645407 2.34316 0.0707870 0.0118079 0.00396233 0.000296880 0.00107446 0.000143969 0.000183653 0.000207588 0 0 0 0 0 0	% 0.00499931 90.7491 0 0.0302072 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	% 0.00499931 90.7491 0 0.0302072 0 0 0 0 0 0 0 0 0 0	% 0.00496929 90.8046 0 0.0300258 0 0 0 0 0 0 0 0 0 0 0 0 0	% 0.606827 88.0439 0.000645407 2.34316 0.0707870 0.0118079 0.00396233 0.000296880 0.00107446 0.000143969 0.000183653 0.000207588 0 0 0 0 0	2.93505 0.719788	% 0.00499931 90.7491 0 0.0302072 0 0 0 0 0 0 0 0 0 0	% 0.00899581 99.4793 0 0.457465 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.100905 0 0 0 0 0 0 0 0		99.9250 1.66468E-08 0.0411574 9.74373E-06 2.58815E-06 5.66590E-07 2.12095E-08 1.60363E-07 5.29240E-09 1.21875E-08	0.0302072 0 0 0 0 0 0 0	% 19.0485 7.39848 0.00112663 73.0955 0.341501 0.0813430 0.0231940 0.00137744 0.00691208 0.000537804 0.000843859 0.000746491 0 0 0 0 0	2.33833 0.0107880 0.00256961 0.000732694 4.35130E-05 0.000218352 1.69891E-05 2.66574E-05	99.9884 0 0 0 0 0 0 0 0	% 5.31089E-05 99.1344 0.000708415 0.375698 0.0485261 0.00570985 0.00176701 0.000108849 0.000397376 4.95087E-05 6.18150E-05 5.16048E-05 0 0 0 0 0	90.8046 0	% 0.00489785 90.8046 0 0.0300584 0 0 0 0 0 0 0 0 0		% 0.470367 0 1.88147 1.88147 79.9624 9.40734 3.76294 0.470367 0.940734 0.470367 0.282220 0 0 0 0 0 0
UCARSOL™ AP-804 UCARSOL™ AP-814 JEFFTREAT® MS-100 Solvent Molar Flow H2S H2O N2 CO2 C1 C2 C3 iC4 nC4 iC5 nC5 C6 DEA TEG MDEA		0* 0* 0* 0* 1bmol/h 46.1152* 0* 151.412* 307.435* 5874.31* 735.538* 341.253* 37.6608* 92.9991* 26.9006* 26.9006* 45.3467* 0* 0*	0 0 4.48496E-07 Ibmol/h 0.0106768 25.4892 151.362 130.237 5868.89 734.634 340.949 37.6380 92.9168 26.8895 26.8865 45.3308 0 0	0 8.92454 Ibmol/h 46.4113 6742.04 0.00272312 178.913 0.825422 0.196609 0.0560608 0.00332932 0.0167068 0.00129989 0.00203964 0.00180430 0	0.370429 6768.91 0 2.23824 0 0 0	0 0 0 1bmol/h 46.1152 0 151.412 307.435 5874.31 735.538 341.253 37.6608 92.9991 26.9006 26.9006 45.3467 0	6742.04 0.00272312 178.913 0.825422 0.196609 0.0560608 0.00332932 0.0167068 0.00129989 0.00203964	0 7.00808E-05 Ibmol/h 0.0106774 26.6836 151.362 130.241 5868.89 734.634 340.949 37.6380 92.9168 26.8895 26.8865 45.3308	0 9.16040 Ibmol/h 0.365104 6768.92 0 2.24067 0 0 0 0	0 0 7.00808E-05 Ibmol/h 0.0106774 26.6836 151.362 130.241 5868.89 734.634 340.949 37.6380 92.9168 26.8895 26.8865 45.3308	0 0 8.91698 Ibmol/h 46.4697 6742.23 0.0494240 179.434 5.42073 0.904226 0.303428 0.0227345 0.0822798 0.0110248 0.0140638 0.0158967 0	0 0 9.21567 Ibmol/h 0.370429 6724.16 0 2.23824 0 0 0 0 0 0	0 0 9.21567 Ibmol/h 0.370429 6724.16 0 2.23824 0 0 0 0 0 0 0	0 0 9.16040 Ibmol/h 0.370429 6768.91 0 0 0 0 0 0 0 0 0	0 0 8.91698 Ibmol/h 46.4697 6742.23 0.0494240 179.434 5.42073 0.904226 0.303428 0.0227345 0.0822798 0.0110248 0.0140638 0.0158967 0 0	0 0.000220906 Ibmol/h 0.0583571 0.190431 0.0467009 0.521534 4.59531 0.707617 0.247367 0.0194052 0.0655730 0.00972495 0.0120242 0.0140924 0		0 0 0 0.0542647 Ibmol/h 0.132162 1461.51 0 6.72087 0 0 0 0 0 0	0.502592 8185.67 0 8.95911 0 0 0 0 0	0 0 1.06882E-05 1 1bmol/h 46.1546 353.626 0.00272317 5 176.813 0.825454 3 0.196618 8 0.0560627 1 0.00332939 7 0.0167073 5 0.00129991 2 0.00203968 4 0.00180432 2 0 0 0 0 0	0.113747 335.743 5.59325E-08 0.138287 3.27385E-05 3.69606E-06 1.90372E-06 7.12629E-08 5.38811E-07 2.11422E-08 4.09496E-08	0.370429 6724.16 0 2.23824 0 0 0 0 0	176.675 0.825422 0.196609 0.0560608 0.00332932 0.0167068 0.00129989	1bmol/h 46.4113 6742.04 0.00272312 178.913 0.825422 0.196609 0.0560608 0.00332932 0.0167068 0.00129989 0.00203964	0 44.7514 0 0 0 0 0 0 0 0 0	lbmol/h 6.39863E-07	lbmol/h	9.16040 Ibmol/h	0* 0* 0* 0* 0* 0* 0* 0* 0* 15.4936* 0* 61.9745* 61.9745* 2633.92* 309.873* 123.949* 15.4936* 30.9873* 15.4936* 15.4936* 0.29618* 0.400* 0.400*	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Piperazine O2 UCARSOL™ AP-804 UCARSOL™ AP-814 JEFFTREAT® MS-100 Solvent Mass Fraction H2S H2O N2 CO2 C1 C2 C3 iC4 nC4 iC5 nC5 C6 DEA TEG MDEA		%	0 0 0 3.35531E-05 % 0.000231647 0.292330 2.69935 3.64884 59.9380 14.0626 9.57107 1.39266 3.43805 1.23506 1.23492 2.48686 0 0	0 0 0 682.845 % 0.745021 57.2092 3.59307E-05 3.70870 0.00623707 0.00278456 0.00116436 9.11447E-05 0.000457371 4.41744E-05 6.93132E-05 7.32360E-05 0 0	% 0.00620600 59.9454 0 0.0484226 0 0 0 0	8.14426 56.7257 13.3130 9.05781 1.31760 3.25366 1.16827 1.16827	57.2092 3.59307E-05 3.70870 0.00623707	0 0 0 0 0 0.00524375 % 0.000231628 0.305984 2.69896 3.64845 59.9295 14.0606 9.56971 1.39246 3.43756 1.23488 1.23474 2.48651 0 0	%	0 0 0 0 0 0.00524375 % 0.000231628 0.305984 2.69896 3.64845 59.9295 14.0606 9.56971 1.39246 3.43756 1.23488 1.23474 2.48651 0 0	0 0 0 0 682.845 % 0.745454 57.1723 0.000651695 3.71700 0.0409326 0.0127979 0.00629784 0.000621967 0.00025100 0.000374405 0.000477609 0.000644807	0 0 0 682.845 % 0.00623072 59.7862 0 0.0486155 0 0 0 0	0 0 0 0 682.845 % 0.00623072 59.7862 0 0.0486155 0 0 0 0	0 0 0 0 682.850 % 0.00620600 59.9454 0 0.0484226 0 0 0 0 0	0 0 0 0 682.845 % 0.745454 57.1723 0.000651695 3.71700 0.0409326 0.0127979 0.00629784 0.000621967 0.00225100 0.000374405 0.000477609 0.000644807 0 0	2.39388 0.912883	0 0 0 0 0 0 0 0 0 0.00623072 59.7862 0 0 0.0486155 0 0 0 0 0	0 0 0 0 0.797233 % 0.0168541 98.5209 0 1.10677 0 0 0 0 0	% 0.00746863 64.2998 0 0 0.171920 0 0 0 0 0 0	0 0 0 0 6.17459E-05 6 % 9.98827 40.4529 0.000484402 2 49.4111 0.0840869 8 0.0375411 4 0.0156976 1 0.00122877 6 0.00616613 5 0.000595536 2 0.000934448 4 0.000987326 2	% 0.0639862 99.8354 2.58623E-08 0.100453 3.66894E-06 1.31597E-06 1.38559E-06 5.83663E-08 5.16910E-07 2.51776E-08 4.87657E-08	% 0.00623072 59.7862 0 0 0.0486155 0 0 0 0 0	% 16.1933 3.32467 0.000787251 80.2420 0.136656	% 0.745021 57.2092 3.59307E-05 3.70870 0.00623707 0.00278456 0.00116436 9.11447E-05 0.000457371 4.41744E-05 6.93132E-05	% 99.9234 0 0 0 0 0 0 0	0 0 0 0 0 0.00521020 % 9.75692E-05 96.2720 0.00106976 0.891292 0.0419644 0.00925505 0.00420018 0.000341036 0.00124503 0.000192551 0.000240413 0.000239722 0 0 0	% 0.00611678 59.9454 0	0.00611678 59.9454 0.00484752 0.00611678	0* 2.56187*	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Piperazine O2 UCARSOL™ AP-804 UCARSOL™ AP-814 JEFFTREAT® MS-100 Solvent Mass Flow H2S H2O N2 CO2 C1 C2 C3 iC4 nC4 iC5 nC5 C6 DEA TEG		0* 0* 0* 0* 0* 0* 0* 1571.65* 0* 4241.56* 13530.1* 94238.4* 22116.9* 15047.8* 2188.93* 5405.31* 1940.84* 1940.84* 3907.76* 0* 0*	0 0 0 0 2.54534E-06 Ib/h 0.363874 459.196 4240.17 5731.65 94151.5 22089.7 15034.4 2187.61 5400.53 1940.05 1939.83 3906.39 0	0 0 0 38.3261 Ib/h 1581.74 121460 0.0762838 7873.87 13.2418 5.91185 2.47203 0.193507 0.971034 0.0937857 0.147157 0.155486 0	121944 0 98.5037 0 0 0 0	0 0 0 0 0 1b/h 1571.65 0 4241.56 13530.1 94238.4 22116.9 15047.8 2188.93 5405.31 1940.84 1940.84 3907.76	121460 0.0762838 7873.87 13.2418 5.91185 2.47203 0.193507 0.971034 0.0937857 0.147157	0 0 0 0 0.000397735 Ib/h 0.363896 480.713 4240.17 5731.85 94151.5 22089.7 15034.4 2187.61 5400.53 1940.05 1939.83 3906.39 0	0 0 0 40 1b/h 12.4431 121944 0 98.6106 0 0 0 0 0	0 0 0 0 0.000397735 1b/h 0.363896 480.713 4240.17 5731.85 94151.5 22089.7 15034.4 2187.61 5400.53 1940.05 1939.83 3906.39 0	0 0 0 38.3002 Ib/h 1583.73 121463 1.38453 7896.82 86.9619 27.1892 13.3798 1.32138 4.78228 0.795429 1.01469 1.36990 0	0 0 0 40.1590 Ib/h 12.6246 121138 0 98.5037 0 0 0 0 0	0 0 0 40.1590 Ib/h 12.6246 121138 0 98.5037 0 0 0 0 0	0 0 0 40 Ib/h 12.6246 121944 0 98.5037 0 0 0 0 0	0 0 0 38.3002 Ib/h 1583.73 121463 1.38453 7896.82 86.9619 27.1892 13.3798 1.32138 4.78228 0.795429 1.01469 1.36990 0	0 0 0 0 0.00119177 Ib/h 1.98886 3.43066 1.30825 22.9525 73.7201 21.2774 10.9078 1.12787 3.81125 0.701643 0.867528 1.21441 0	0 0 0 40.1590 Ib/h 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0.355476 Ib/h 4.50421 26329.4 0 295.782 0 0 0 0	0 0 0 35.5208 4 1b/h 17.1288 147467 0 394.286 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3.87659 6048.51 1.56686E-06 6.08594 0.000525206 0.000261482 3.39456E-05 4.14196E-06 3.13169E-05 1.52538E-06	0 0 0 40.1590 2 1b/h 12.6246 121138 0 98.5037 0 0 0 0 0	0 0 0 0 2.21006E-13 Ib/h 1569.11 322.157 0.0762838 7775.36 13.2418 5.91185 2.47203 0.193507 0.971034 0.0937857 0.147157 0.155486 0 0	0 0 0 38.3261 Ib/h 1581.74 121460 0.0762838 7873.87 13.2418 5.91185 2.47203 0.193507 0.971034 0.0937857 0.147157 0.155486 0	806.208 0 0 0 0 0 0 0 0	lb/h 2.18071E-05	0 0 0 40 1b/h 12.4431 121944 0 98.6106 0 0 0 0 0	00 00 40 1b/h	0* 0* 0* 0* 0* 0* 0* 0* 0* 0* 0* 0* 1b/h 0 528.037* 0* 1736.12* 2727.47* 42254.5* 9317.57* 5465.61* 900.524* 1801.05* 1117.85* 1117.85* 801.101* 0* 0*	0 0 0 0 0 1b/h 1b/h 528.037 0 0 0 0 1736.12 0 2727.47 0 42254.5 0 9317.57 0 5465.61 0 900.524 0 1801.05 0 1117.85 0 1117.85 0 801.101 0 0 0
MDEA Piperazine O2 UCARSOL™ AP-804 UCARSOL™ AP-814 JEFFTREAT® MS-100 Solvent Process Streams Properties	Status:	0* 0* 0* 0* 0* 0* TT-FS1	0 0 0 0 0 0.00399826	0 0 0 0 81369.4 FT-F1 Solved	0 0 0 0 0 81370.0	0 0 0 0 0 0 FT-T1	0 0 0 0 0 81369.4 FT-V2 Solved	0 0 0 0 0 0.624857 Treated Gas	0 0 0 0 0 81370.0	0 0 0 0 0 0 0.624857	0 0 0 0 0 81369.4	0 0 0 0 0 81369.4	0 0 0 0 0 81369.4	0 0 0 0 0 81370.0	0 0 0 0 0 81369.4	0 0 0 0 0 0.00170792	0 0 0 0 0 0	0 0 0 0 0 95.0000	0 0 0 0 0 81464.4	0 0 0 0 0 0.00735777	0 0 0 0 0 0.00735777	0 0 0 0 81369.4 2	0 0 0 0 0 2.14153E-11	0 0 0 0 0 81369.4	0 0 0 0 0 0.617686	0 0 0 0 0 0.620859	0 0 0 0 0 81370.0	25 Solved	0* 0* 0* 0* 0* 0* 0* 0* 0* 0* 0* 0*	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Property Temperature Pressure Mole Fraction Vapor Mole Fraction Light Liquid Mole Fraction Heavy Liquid Molecular Weight Mass Density Molar Flow Mass Flow Vapor Volumetric Flow Liquid Volumetric Flow Std Vapor Volumetric Flow Std Liquid Volumetric Flow Std Liquid Volumetric Flow Compressibility Specific Gravity API Gravity Enthalpy Mass Enthalpy Mass Cp Ideal Gas CpCv Ratio Dynamic Viscosity Kinematic Viscosity Kinematic Viscosity Thermal Conductivity Surface Tension Net Ideal Gas Heating Value Gross Ideal Gas Heating Value Gross Ideal Gas Heating Value	From Block: To Block: Units F psig % % % lb/lbmol lb/ft^3 lbmol/h lb/h ft^3/h gpm MMSCFD sgpm Btu/h Btu/lb Btu/(lb*°F) CP cSt Btu/(h*ft*°F) lb/ft Btu/ft^3 Btu/lb Btu/lb Btu/lb Btu/ft^3 Btu/lb Btu/lb Btu/ft^3 Btu/lb Btu/ft^3 Btu/lb	100* 550* 100 0 21.6150 2.28787 7685.87 166130 72613.4 9053.09 70* 909.597 0.888265 0.746309	120 542 100 0 20.9967 2.07654 7481.24 157081 75645.5 9431.13 68.1362 886.686 0.904865 0.724962 2.68588E+08 -1709.86 0.551577 1.24107 0.0124304 0.373699 0.0211052 1083.68 19527.7 1195.43 21547.6	137.961 70 0 100 27.7479 65.5304 7651.32 212308 3239.84 403.928 69.6853 422.116 0.00559182 1.05069 0.868588 -9.87419E+08 -4650.88 0.781287 1.18001 1.75399 1.67095 0.218798 0.00385891 323.150 3677.76 396.959 4687.18	600* 0 100 0 27.2894 63.9165 7454.37 203425 3182.67 396.800 67.8916 400 0.0421132 1.02482 4.45942 -9.57581E+08 -4707.29 0.860579 1.18301 2.09149 2.04278 0.232422 0.00402835 327.895 3787.51 403.507	VSSL-100 Amine Contactor 100 550 100 0 21.6150 2.28787 7685.87 166130 72613.4 9053.09 70 909.597 0.888265 0.746309 -2.98419E+08 -1796.30 0.536139 1.24716 0.0123221 0.336227 0.0201702 1059.34 18540.6 1168.34 20454.7	190* 65 0.0167472 99.9833 0 27.7479 62.3447 7651.32 212308 3405.39 424.568 69.6853 422.116 0.00508757	Amine Contactor OVHD Cooler 125.131 545 100 0 20.9963 2.06320 7482.44 157104 76145.8 9493.50 68.1472 886.730 0.907577 0.724948 -2.68285E+08 -1707.70 0.552440 1.23974 0.0125116 0.378575 0.0213128 1083.51 19524.8 1195.25 21544.6	121.039 600 0 100 0 27.2893 63.9165 7454.37 203425 3182.67 396.800 67.8916 400 0.0421132 1.02482 4.45941	120* 542 99.9839 0.0161019 0 20.9963 2.07683 7482.44 157104 75645.9 9431.18 68.1472 886.730 0.904723 -2.68736E+08 -1710.56 0.551636 1.24107	136.656 550 0 100 27.7431 65.5457 7657.81 212451 3241.27 404.106 69.7444 422.866 0.0373489 1.05094 0.892206 -9.87716E+08 -4649.14 0.780261 1.18040 1.78694 1.70194 0.218751 0.00386162 323.703 3686.53 397.536 4696.45	205.441 8.5 0 100 27.3453 61.8231 7409.61 202618 3277.39 408.609 67.4839 398.387 0.00143743 0.991251 4.53539 -9.37201E+08 -4625.45 0.916931 1.16141 0.785012 0.792692 0.232340 0.00352128? 329.873 3806.77 405.638 4858.20	120* 5.5 0 100 27.3453 63.8923 7409.61 202618 3171.24 395.376 67.4839 398.387 0.00138948 1.02443 4.53587 -9.52586E+08 -4701.39 0.861408 1.18282 2.11428 2.06582 0.231899 0.00402855 329.873 3806.77 405.638 4858.20	120.001 5.5 0 100 0 27.2894 63.8851 7454.37 203425 3184.23 396.995 67.8916 400* 0.00138680 1.02431 4.55400 -9.58048E+08 -4709.59 0.861946 1.18330 2.10011 2.05221 0.232356 0.00403150 327.895 3787.51 403.507 4838.97	137.961 70.5 0.0845546 99.9154 0 27.7431 57.1040 7657.81 212451 3720.43 463.846 69.7444 422.866 0.00645374 -9.87716E+08 -4649.14 0.781073 1.18005	137.961 70* 100 0 0 22.0879 0.295825 6.48815 143.310 484.442 60.3979 0.0590916 0.750772 0.986021 0.762639 -296186 -2066.75 0.465212 1.24433 0.0124305 2.62321 0.0195297 975.597 16677.7 1077.95 18436.5	5.5 27.3453 0 0 0 0 0 0 0 0 -1. -4701.39 329.873 3806.77 405.638	252.218 13.5 100 0 18.1905 0.0681048 1469.16 26724.7 392406 48923.3 13.3805 53.5514 0.985778 0.628072	254.153 15 0 100 0 25.8305 60.2458 8878.77 229343 3806.79 474.612 80.8644 451.939 0.00166207 0.965961 4.95724	217.192 12 100 0 0 27.2605 0.101193 577.699 15748.4 155628 19402.9 5.26146 35.8444 0.990071 0.941234 6.64608E+07 -4220.17 0.319768 1.29873 0.0160684 9.91292 0.0142660	120.000 8.5 0 100 0 18.0314 61.6838 335.995 6058.48 98.2183 12.2454 3.06012 12.1160 0.00109000 0.989018 9.96971 .09970E+07 -9. -6766.88 0.997752 1.32734 0.569163 0.576029 0.366553	K-100 (CHG-100 252.218 13.5 0 100 0 27.3453 60.3767 7409.61 202618 3355.90 418.398 67.4839 398.387 0.00167157 0.968061 4.53460 .28354E+08 -3 -4581.79 0.949820 1.15161 0.536317 0.554537 0.529829 0.00321643 329.873 3806.77 405.638 4858.20	120.000 8.5 100 0 40.0899 0.150641 241.704 9689.89 64324.3 8019.65 2.20135 23.7284 0.992337 1.38420	VLVE-101 Amine Still 185.647 20* 0.421649 99.5784 0 27.7479 21.9666 7651.32 212308 9665.05 1204.99 69.6853 422.116 0.00632864 9.78573E+08 -4609.21 0.820068 1.16805 323.150 3677.76 396.959 4687.18	120* 60* 0 100 0 18.0270 61.6823 44.7565 806.826 13.0803 1.63080 0.407625 1.61285 0.00350926 0.988995 9.97933 -5.46195E+06 -6769.67 0.997048 1.32704 0.572188 0.579105 0.367309 0.00466182 0.414528 -1050.48 50.7565 9.26074	0 100 0 18.5509 61.9554 1.20481 22.3504 0.360749 0.0449765 0.0109730 0.0447718 0.0267954 0.993373 9.29972 -147627 -6605.13 0.969666 1.31541 0.606186 0.610810 0.351241 0.00460447 16.0746 -701.618 67.4247		SPLT-100 Amine Contactor 121.039 600 27.2893 0 0 0 0 0 0 0 0*	75* 350* 100 0 0 20.5734 1.42376 3293.95 67767.7 47597.5 5934.24 30* 386.705 0.918438 0.710346 0 -1.18158E+081743.57 0.518663 1.25852 0.0114044 0.500051 0.0187565	73.5124 100 331.275 550 100 0 20.5734 1.34955 3293.95 0 67767.7 0 50215.0 0 6260.57 0 30 0 386.705 0 0.921759 0.710346

www.permianls.com 575.397.3713 2609 W MARLAND HOBBS, NEW MEXICO 88240

EXTENDED GAS REPORT SUMMARY OF CHROMATOGRAPHIC ANALYSIS

Sample Name: Jal #3 South Inlet before Slug Catcher 17034G For: Sample Date: 05/25/2023 Cyl. Ident.: 2023069340 Sampled By: CJ Company: **Energy Transfer** Time Sampled: 10:10 Analysis Date: 05/26/2023

Sample Temp: 60.0 F

Sample Press: 568.0 **H2S (PPM)** = 6000.0

Analysis By: BH
Data File: LS_8366.D

Component	Mole%	GPM REAL	GPM IDEAL
H2S	0.600		
Nitrogen	1.745		
Methane	73.793		
CO2	3.506		
Ethane	10.755	2.876	2.869
Propane	5.966	1.643	1.639
Isobutane	0.732	0.239	0.239
N-Butane	1.806	0.569	0.568
Isopentane	0.372	0.136	0.136
N-Pentane	0.369	0.134	0.133
Hexanes+	0.356	0.143	0.139
Total	100.000	5.740	5.723

CALCULATED PARAMETERS

TOTAL ANALYSIS SU	IMMARY	HEATING VAL	.UE	BTEX SUMM	TEX SUMMARY			
MOLE WT:	22.265	BTU/CUFT (DRY)	1222.6	WT% BENZENE	5.717			
VAPOR PRESS PSIA:	3788.6	BTU/CUFT (WET)	1201.8	WT% TOLUENE	2.339			
SPECIFIC GRA	VITY			WT% E BENZENE	0.337			
AIR = $1 (REAL)$:	0.7641			WT% XYLENES	0.337			
AIR = 1 (IDEAL):	0.7616							
H2O = 1 (IDEAL):	0.366							
REPORTED BASIS:	14.73							
Unnormalized Total:	99.327							
				LAB MANAGER				

www.permianls.com

575.397.3713 2609 W MARLAND HOBBS, NEW MEXICO 88240

Sample Name: Jal #3 South Inlet before Slug Catcher Data File: LS_8366.D

Company: Energy Transfer

*ANALYSIS OF HEXANES PLUS

Component	MOLE%	WT%	*HEXANES PLUS SUMMARY
2,2 DIMETHYL BUTANE	0.003	0.012	AVG MOLE WT 88.670
CYCLOPENTANE	0.029	0.102	VAPOR PRESS PSIA 9.860
2-METHYLPENTANE	0.065	0.250	API GRAVITY @ 60F 69.2
3-METHYLPENTANE	0.038	0.149	SPECIFIC GRAVITY
HEXANE (C6)	0.071	0.272	AIR = 1 (IDEAL): 2.975
DIMETHYLPENTANES	0.004	0.015	H2O = 1 (IDEAL): 0.705
METHYLCYCLOPENTANE	0.033	0.125	
2,2,3 TRIMETHYLBUTANE	0.000	0.000	
BENZENE	0.018	0.063	
CYCLOHEXANE	0.025	0.094	COMPONENT RATIOS
2-METHYLHEXANE	0.006	0.025	
3-METHYLHEXANE	0.009	0.040	HEXANES (C6) MOLE% 57.910
DIMETHYCYCLOPENTANES	0.003	0.014	HEPTANES (C7) MOLE% 32.075
HEPTANE (C7)	0.010	0.044	OCTANES (C8) MOLE% 7.421
METHYLCYCLOHEXANE	0.012	0.054	NONANES (C9) MOLE% 0.932
2,5 DIMETHYLHEXANE	0.000	0.001	DECANES+ (C10+) MOLE% 1.662
TOLUENE	0.008	0.034	
2-METHYLHEPTANE	0.001	0.006	
OTHER OCTANES	0.005	0.021	HEXANES (C6) WT% 55.542
OCTANE (C8)	0.001	0.003	HEPTANES (C7) WT% 32.216
ETHYLCYCLOHEXANE	0.000	0.001	OCTANES (C8) WT% 8.354
ETHYL BENZENE	0.001	0.003	NONANES (C9) WT% 1.164
M,P-XYLENE	0.001	0.007	DECANES+ (C10+) WT% 2.724
O-XYLENE	0.000	0.002	
OTHER NONANES	0.000	0.002	
NONANE (C-9)	0.000	0.001	
IC3 BENZENE	0.000	0.000	
CYCLOOCTANE	0.000	0.000	
NC3 BENZENE	0.000	0.000	
TM BENZENE(S)	0.001	0.004	
IC4 BENZENE	0.000	0.000	
NC4 BENZENE	0.000	0.000	
DECANES + (C10+)	0.004	0.036	

Remarks: spot

Constants: GPA 2145 Method: GPA 2186.m Report Rev 18-05.22 Template: eC6+ Liq

^{*} Hexane+ portion calculated by Allocation Process

G3606

GAS ENGINE SITE SPECIFIC TECHNICAL DATA **Standard Equipment Company New Avalon HWY 285 CS**

GAS COMPRESSION APPLICATION

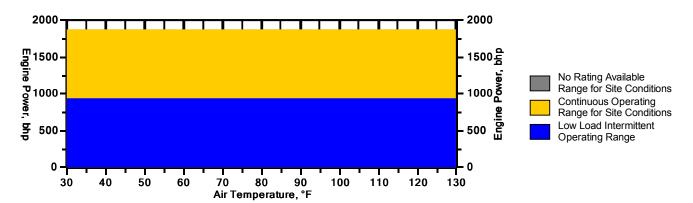
ENGINE SPEED (rpm): COMPRESSION RATIO: 1000 RATING STRATEGY: STANDARD 7.6 RATING LEVEL: CONTINUOUS AFTERCOOLER TYPE: SCAC FUEL SYSTEM: GAV AFTERCOOLER - STAGE 2 INLET (°F): 130 WITH AIR FUEL RATIO CONTROL AFTERCOOLER - STAGE 1 INLET (°F): 214 SITE CONDITIONS: JACKET WATER OUTLET (°F): 230 New Avalon Hwy 285 CS FUEL PRESSURE RANGE(psig): (See note 1) ASPIRATION: TΑ 58.0-70.3 FUEL METHANE NUMBER: COOLING SYSTEM: JW+1AC, OC+2AC 56.7 CONTROL SYSTEM: ADEM4 FUEL LHV (Btu/scf): 1106 EXHAUST MANIFOLD: DRY ALTITUDE(ft): 2950 MAXIMUM INLET AIR TEMPERATURE(°F): STANDARD RATED POWER: LOW EMISSION COMBUSTION: 110 NOX EMISSION LEVEL (g/bhp-hr NOX): SET POINT TIMING:

NOX EMISSION LEVEL (g/bhp-hr NOX): SET POINT TIMING:		ARD RATED PO		E(F).		1875 b	hp@1000rpm
				MAXIMUM RATING	_	TING AT N	_
RATI	NG	NOTES	LOAD	100%	100%	75%	50%
ENGINE POWER	(WITHOUT FAN)	(2)	bhp	1875	1875	1406	938
INLET AIR TEMPERATURE			°F	110	110	110	110
ENGINE	DATA	1					
FUEL CONSUMPTION (LHV)		(3)	Btu/bhp-hr	6816	6816	7093	7673
FUEL CONSUMPTION (HHV)		(3)	Btu/bhp-hr	7517	7517	7823	8462
AIR FLOW (@inlet air temp, 14.7 psia)	(WET)	(. / (- /	ft3/min	5030	5030	3806	2609
AIR FLOW	(WET)	(4)(5)	lb/hr	21011	21011	15900	10897
FUEL FLOW (60°F, 14.7 psia)			scfm	193	193	150	108
INLET MANIFOLD PRESSURE		(6)	in Hg(abs)	103.9	103.9	79.5	56.2
EXHAUST TEMPERATURE - ENGINE OUTLET		(7)	°F	813	813	883	966
EXHAUST GAS FLOW (@engine outlet temp, 14		(8)(5)	ft3/min	11939	11939	9549	6966
EXHAUST GAS MASS FLOW	(WET)	(8)(5)	lb/hr	21645	21645	16395	11254
EMISSIONS DATA	- ENGINE OUT						
NOx (as NO2)		(9)(10)	g/bhp-hr	0.50	0.50	0.50	0.50
co		(9)(10)	g/bhp-hr	2.44	2.44	2.44	2.44
THC (mol. wt. of 15.84)		(9)(10)	g/bhp-hr	3.28	3.28	3.46	3.41
NMHC (mol. wt. of 15.84)		(9)(10)	g/bhp-hr	1.27	1.27	1.34	1.32
NMNEHC (VOCs) (mol. wt. of 15.84)		(9)(10)(11)	g/bhp-hr	0.71	0.71	0.75	0.74
HCHO (Formaldehyde)		(9)(10)	g/bhp-hr	0.23	0.23	0.11	0.12
CO2		(9)(10)	g/bhp-hr	452	452	466	497
EXHAUST OXYGEN		(9)(12)	% DRY	11.4	11.4	11.2	10.8
HEAT REJ	ECTION	1					
HEAT REJ. TO JACKET WATER (JW)		(13)	Btu/min	21024	21024	17260	14209
HEAT REJ. TO ATMOSPHERE \ ^		(13)	Btu/min	6654	6654	6554	6417
HEAT REJ. TO LUBE OIL (OC)		(13)	Btu/min	11716	11716	10807	9353
HEAT REJ. TO A/C - STAGE 1 (1AC)		(13)(14)	Btu/min	17242	17242	8059	1785
HEAT REJ. TO A/C - STAGE 2 (2AC)		(13)(14)	Btu/min	10754	10754	6829	3715
COOLING SYSTEM	SIZING CRITERIA	1					
TOTAL JACKET WATER CIRCUIT (JW+1AC)		(14)(15)	Btu/min	45354			
TOTAL STAGE 2 AFTERCOOLER CIRCUIT (OC	C+2AC)	(14)(15)	Btu/min	27886			
A cooling system safety factor of 10% has been a		(· · /(· - /					
	<u> </u>				•		

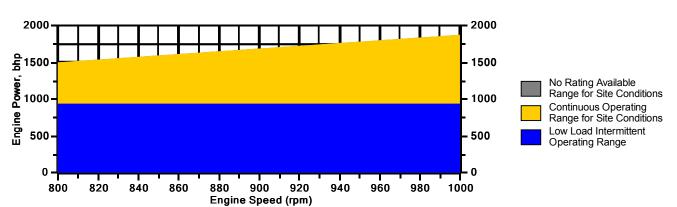
CONDITIONS AND DEFINITIONS

Engine rating obtained and presented in accordance with ISO 3046/1, adjusted for fuel, site altitude and site inlet air temperature. 100% rating at maximum inlet air temperature is the maximum engine capability for the specified fuel at site altitude and maximum site inlet air temperature. Maximum rating is the maximum capability at the specified aftercooler inlet temperature for the specified fuel at site altitude and reduced inlet air temperature. Lowest load point is the lowest continuous duty operating load allowed. No overload permitted at rating shown

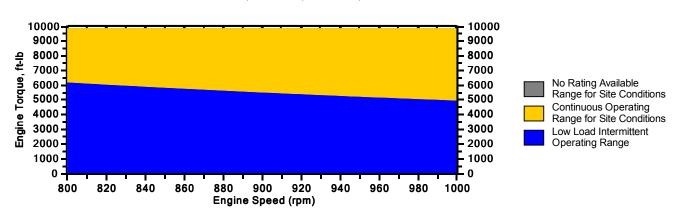
For notes information consult page three.


GAS COMPRESSION APPLICATION

GAS ENGINE SITE SPECIFIC TECHNICAL DATA Standard Equipment Company New Avalon HWY 285 CS


Engine Power vs. Inlet Air Temperature

Data represents temperature sweep at 2950 ft and 1000 rpm


Engine Power vs. Engine Speed

Data represents speed sweep at 2950 ft and 110 °F

Engine Torque vs. Engine Speed

Data represents speed sweep at 2950 ft and 110 °F

Note: At site conditions of 2950 ft and 110°F inlet air temp., constant torque can be maintained down to 800 rpm. The minimum speed for loading at these conditions is 800 rpm.

G3606

GAS ENGINE SITE SPECIFIC TECHNICAL DATA Standard Equipment Company New Avalon HWY 285 CS

GAS COMPRESSION APPLICATION

NOTES

- 1. Fuel pressure range specified is to the engine gas shutoff valve (GSOV). Additional fuel train components should be considered in pressure and flow calculations.
- 2. Engine rating is with two engine driven water pumps. Tolerance is ± 3% of full load.
- 3. Fuel consumption tolerance is ± 2.5% of full load data.
- 4. Air flow value is on a 'wet' basis. Flow is a nominal value with a tolerance of ± 5 %.
- 5. Inlet and Exhaust Restrictions must not exceed A&I limits based on full load flow rates from the standard technical data sheet.
- 6. Inlet manifold pressure is a nominal value with a tolerance of \pm 5 %.
- 7. Exhaust temperature is a nominal value with a tolerance of (+)63°F, (-)54°F.
- 8. Exhaust flow value is on a "wet" basis. Flow is a nominal value with a tolerance of ± 6 %.
- 9. Emissions data is at engine exhaust flange prior to any after treatment.
- 10. Values listed are higher than nominal levels to allow for instrumentation, measurement, and engine-to-engine variations. They indicate the maximum values expected under steady state conditions. Fuel methane number cannot vary more than ± 3. THC, NMHC, and NMNEHC do not include aldehydes. An oxidation catalyst may be required to meet Federal, State or local CO or HC requirements.
- 11. VOCs Volatile organic compounds as defined in US EPA 40 CFR 60, subpart JJJJ
- 12. Exhaust Oxygen level is the result of adjusting the engine to operate at the specified NOx level. Tolerance is ± 0.5.
- 13. Heat rejection values are nominal. Tolerances, based on treated water, are ± 10% for jacket water circuit, ± 50% for radiation, ± 20% for lube oil circuit, and ± 5% for aftercooler circuit.
- 14. Aftercooler heat rejection includes an aftercooler heat rejection factor for the site elevation and inlet air temperature specified. Aftercooler heat rejection values at part load are for reference only. Do not use part load data for heat exchanger sizing.
- 15. Cooling system sizing criteria are maximum circuit heat rejection for the site, with applied factory tolerances and an additional cooling system factor of 10%.

Constituent	Abbrev	Mole %	Norm		
Water Vapor	H2O	0.2700	0.2700		
Methane	CH4	78.4700	78.4700	Fuel Makeup:	New Avalon Hwy 285
Ethane	C2H6	11.0200	11.0200	Unit of Measure:	English
Propane	C3H8	4.8400	4.8400		_
Isobutane	iso-C4H1O	0.6000	0.6000	Calculated Fuel Properties	
Norbutane	nor-C4H1O	1.3600	1.3600	· · · · · · · · · · · · · · · · · · ·	56.7
Isopentane	iso-C5H12	0.2900	0.2900	Caterpillar Methane Number:	36.7
Norpentane	nor-C5H12	0.3100	0.3100		
Hexane	C6H14	0.3800	0.3800	Lower Heating Value (Btu/scf):	1106
Heptane	C7H16	0.0000	0.0000	Higher Heating Value (Btu/scf):	1220
Nitrogen	N2	1.3500	1.3500	WOBBE Index (Btu/scf):	1303
Carbon Dioxide	CO2	1.1100	1.1100	, ,	
Hydrogen Sulfide	H2S	0.0000	0.0000	THC: Free Inert Ratio:	39.54
Carbon Monoxide	CO	0.0000	0.0000	Total % Inerts (% N2, CO2, He):	2.46%
Hydrogen	H2	0.0000	0.0000	,	
Oxygen	O2	0.0000	0.0000	RPC (%) (To 905 Btu/scf Fuel):	100%
Helium	HE	0.0000	0.0000		
Neopentane	neo-C5H12	0.0000	0.0000	Compressibility Factor:	0.997
Octane	C8H18	0.0000	0.0000	Stoich A/F Ratio (Vol/Vol):	11.47
Nonane	C9H20	0.0000	0.0000	Stoich A/F Ratio (Mass/Mass):	15.94
Ethylene	C2H4	0.0000	0.0000	Specific Gravity (Relative to Air):	0.720
Propylene	C3H6	0.0000	0.0000	Fuel Specific Heat Ratio (K):	1.286
TOTAL (Volume %)		100.0000	100.0000	i dei opecilio riedi Natio (N).	1.200

CONDITIONS AND DEFINITIONS

Caterpillar Methane Number represents the knock resistance of a gaseous fuel. It should be used with the Caterpillar Fuel Usage Guide for the engine and rating to determine the rating for the fuel specified. A Fuel Usage Guide for each rating is included on page 2 of its standard technical data sheet.

RPC always applies to naturally aspirated (NA) engines, and turbocharged (TA or LE) engines only when they are derated for altitude and ambient site conditions.

Project specific technical data sheets generated by the Caterpillar Gas Engine Rating Pro program take the Caterpillar Methane Number and RPC into account when generating a site rating.

Fuel properties for Btu/scf calculations are at 60F and 14.696 psia.

Caterpillar shall have no liability in law or equity, for damages, consequently or otherwise, arising from use of program and related material or any part thereof.

FUEL LIQUIDS
Field gases, well head gases, and associated gases typically contain liquid water and heavy hydrocarbons entrained in the gas. To prevent detonation and severe damage to the engine, hydrocarbon liquids must not be allowed to enter the engine fuel system. To remove liquids, a liquid separator and coalescing filter are recommended, with an automatic drain and collection tank to prevent contamination of the ground in accordance with local codes and standards.

To avoid water condensation in the engine or fuel lines, limit the relative humidity of water in the fuel to 80% at the minimum fuel operating temperature.

COMBUSTION:

GAS ENGINE SITE SPECIFIC TECHNICAL DATA

STANDARD

GAV

82.5

936

110

3200

GAS COMPRESSION APPLICATION

ENGINE SPEED (rpm): COMPRESSION RATIO: AFTERCOOLER TYPE: AFTERCOOLER WATER INLET (°F): JACKET WATER OUTLET (°F): ASPIRATION: COOLING SYSTEM: CONTROL SYSTEM: EXHAUST MANIFOLD:

NOx EMISSION LEVEL (g/bhp-hr NOx):

RATING STRATEGY: FUEL SYSTEM: SCAC

1000

9:1

130

190

TΑ

DRY

0.5

JW, OC+AC

CIS/ADEM3

Low Emission

WITH AIR FUEL RATIO CONTROL **SITE CONDITIONS:** Jal Fuel FUEL PRESSURE RANGE(psig): 42.8-47.0

FUEL METHANE NUMBER: FUEL LHV (Btu/scf): ALTITUDE(ft): MAXIMUM INLET AIR TEMPERATURE(°F): STANDARD RATED POWER: 3550 bhp@1000rpm

			MAXIMUM RATING	_	TING AT M	_
RATING	NOTES	LOAD	100%	100%	75%	57%
ENGINE POWER (WITHOUT FAN)	(1)	bhp	3550	3137	2353	1775
INLET AIR TEMPERATURE		°F	88	110	110	110
ENGINE DATA						
FUEL CONSUMPTION (LHV)	(2)	Btu/bhp-hr	6791	6926	7292	7684
FUEL CONSUMPTION (HHV)	(2)	Btu/bhp-hr	7527	7677	8082	8516
AIR FLOW (@inlet air temp, 14.7 psia) (WET)	(3)(4)	ft3/min	9554	8858	6781	5213
AIR FLOW (WET)	(3)(4)	lb/hr	41491	37001	28326	21777
FUEL FLOW (60°F, 14.7 psia)		scfm	429	387	305	243
INLET MANIFOLD PRESSURE	(5)	in Hg(abs)	73.4	65.8	50.8	39.1
EXHAUST TEMPERATURE - ENGINE OUTLET	(6)	°F	838	856	893	925
EXHAUST GAS FLOW (@engine outlet temp, 14.5 psia) (WET)	(7)(4)	ft3/min	24059	21754	17151	13522
EXHAUST GAS MASS FLOW (WET)	(7)(4)	lb/hr	42658	38053	29157	22438
EMISSIONS DATA - ENGINE OUT						
NOx (as NO2)	(8)(9)	g/bhp-hr	0.50	0.50	0.50	0.50
CO	(8)(9)	g/bhp-hr	2.75	2.74	2.74	2.75
THC (mol. wt. of 15.84)	(8)(9)	g/bhp-hr	6.45	6.52	6.67	6.82
NMHC (mol. wt. of 15.84)	(8)(9)	g/bhp-hr	0.97	0.98	1.00	1.02
NMNEHC (VOCs) (mol. wt. of 15.84)	(8)(9)(10)	g/bhp-hr	0.64	0.65	0.67	0.68
HCHO (Formaldehyde)	(8)(9)	g/bhp-hr	0.26	0.27	0.29	0.31
CO2	(8)(9)	g/bhp-hr	441	449	472	499
EXHAUST OXYGEN	(8)(11)	% DRY	12.8	12.5	11.7	11.0
HEAT REJECTION						
HEAT REJ. TO JACKET WATER (JW)	(12)	Btu/min	36519	34748	32164	29648
HEAT REJ. TO ATMOSPHERE	(12)	Btu/min	14063	13855	13307	12502
HEAT REJ. TO LUBE OIL (OC)	(12)	Btu/min	18081	17982	17723	17049
HEAT REJ. TO AFTERCOOLER (AC)	(12)(13)	Btu/min	40529	40529	14117	3172
COOLING SYSTEM SIZING CRITERIA			-			
TOTAL JACKET WATER CIRCUIT (JW)	(13)	Btu/min	44188			
TOTAL AFTERCOOLER CIRCUIT (OC+AC)	(13)(14)	Btu/min	70679			

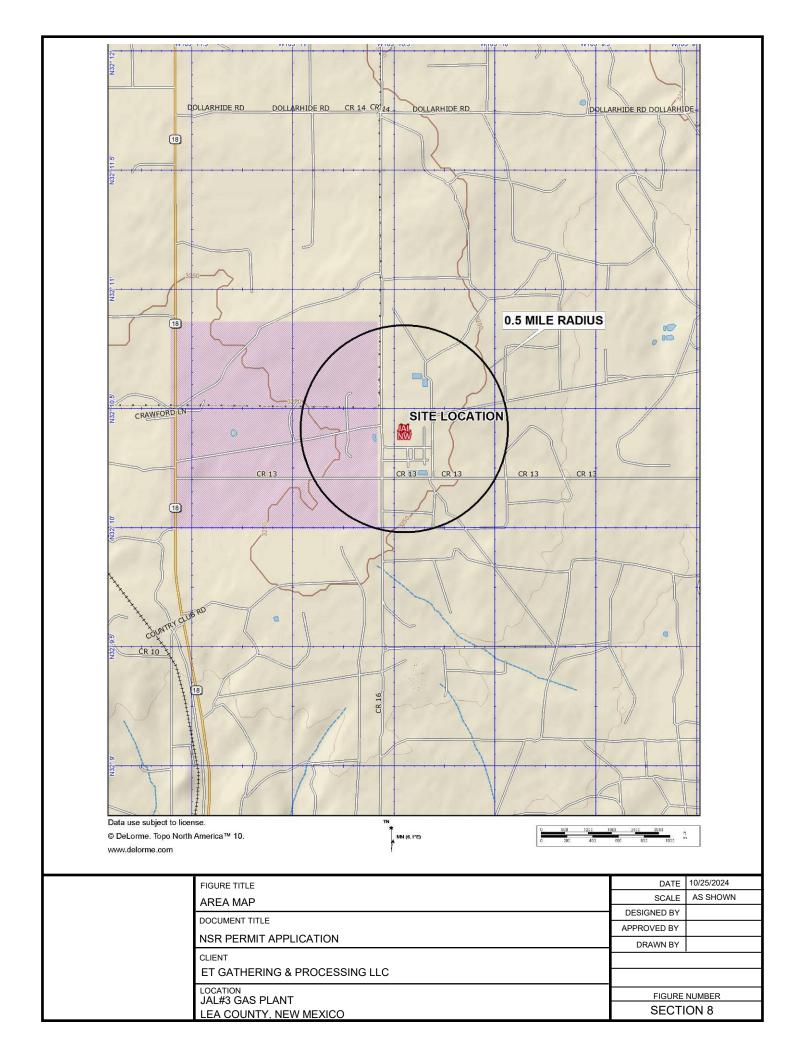
A cooling system safety factor of 10% has been added to the cooling system sizing criteria.

CONDITIONS AND DEFINITIONS

Engine rating obtained and presented in accordance with ISO 3046/1, adjusted for fuel, site altitude and site inlet air temperature. 100% rating at maximum inlet air temperature is the maximum engine capability for the specified fuel at site altitude and maximum site inlet air temperature. Max. rating is the maximum capability for the specified fuel at site altitude and reduced inlet air temperature. Lowest load point is the lowest continuous duty operating load allowed. No overload permitted at rating shown.

For notes information consult page three

Section 8


Map(s)

<u>A map</u> such as a 7.5 minute topographic quadrangle showing the exact location of the source. The map shall also include the following:

The UTM or Longitudinal coordinate system on both axes	An indicator showing which direction is north
A minimum radius around the plant of 0.8km (0.5 miles)	Access and haul roads
Topographic features of the area	Facility property boundaries
The name of the map	The area which will be restricted to public access
A graphical scale	

A Facility Map is provided below.

Form-Section 8 last revised: 8/15/2011 Section 8, Page 1 Saved Date: 10/25/2024

Section 9

Proof of Public Notice

(for NSR applications submitting under 20.2.72 or 20.2.74 NMAC) (This proof is required by: 20.2.72.203.A.14 NMAC "Documentary Proof of applicant's public notice")

☑ I have read the AQB "Guidelines for Public Notification for Air Quality Permit Applications" This document provides detailed instructions about public notice requirements for various permitting actions. It also provides public notice examples and certification forms. Material mistakes in the public notice will require a re-notice before issuance of the permit.

Unless otherwise allowed elsewhere in this document, the following items document proof of the applicant's Public Notification. Please include this page in your proof of public notice submittal with checkmarks indicating which documents are being submitted with the application.

New Permit and Significant Permit Revision public notices must include all items in this list.

Technical Revision public notices require only items 1, 5, 9, and 10.

Per the Guidelines for Public Notification document mentioned above, include:

- 1. A copy of the certified letter receipts with post marks (20.2.72.203.B NMAC)
- 2. A list of the places where the public notice has been posted in at least four publicly accessible and conspicuous places, including the proposed or existing facility entrance. (e.g. post office, library, grocery, etc.)
- 3. ⊠ A copy of the property tax record (20.2.72.203.B NMAC).
- 4. 🛛 A sample of the letters sent to the owners of record.
- A sample of the letters sent to counties, municipalities, and Indian tribes.
- 6. \square A sample of the public notice posted and a verification of the local postings.
- 7. 🛛 A table of the noticed citizens, counties, municipalities and tribes and to whom the notices were sent in each group.
- 8. 🛛 A copy of the public service announcement (PSA) sent to a local radio station and documentary proof of submittal.
- 9. A copy of the <u>classified or legal</u> ad including the page header (date and newspaper title) or its affidavit of publication stating the ad date, and a copy of the ad. When appropriate, this ad shall be printed in both English and Spanish.
- 10. A copy of the <u>display</u> ad including the page header (date and newspaper title) or its affidavit of publication stating the ad date, and a copy of the ad. When appropriate, this ad shall be printed in both English and Spanish.
- 11. A map with a graphic scale showing the facility boundary and the surrounding area in which owners of record were notified by mail. This is necessary for verification that the correct facility boundary was used in determining distance for notifying land owners of record.

Form-Section 9 last revised: 8/15/2011 Section 9, Page 1 Saved Date: 10/25/2024

	H COLUMN TO THE REAL PROPERTY OF THE PERTY O		1	U.S. Postal Service [™]	
	U.S. Postal Service [™]		1	CERTIFIED MAIL® RECE	IDT
	CERTIFIED MAIL® REC	FIPT	문		115-1
Lu l				Domestic Mail Only	
ا الله	Domestic Mail Only		7.5	For delivery information, visit our website at	www.usps.com*
7	For delivery information, visit our website	at www.usps.com®.	iu i	- AFFIAIAI	HOE
Li.	SENSONE ENOUGH A TO	CIE	3	Landowner Cetter	USE
3	Loud owner letter		- an (3	Certified Mail Fee	No. 1
40	Certified Mail Fee		و ت	-0.4100[12]	
2	\$		吉	Extra Services & Fees (check box, add fee as appropriate)	
10	Extra Services & Fees (check box, add fee as appropriate) Return Receipt (hardcopy)			Return Receipt (hardcopy) Return Receipt (electronic)	Postmark
-	Return Receipt (electronic) \$	Postmark		Certified Mail Restricted Delivery \$	Here
	Certified Mall Restricted Delivery \$	Here	2	Adult Signature Required \$	
면	Adult Signature Required \$		امنا	Acult Signature Restricted Delivery \$	
, in	Adult Signature Restricted Delivery \$		1	Postage	
_	Postage	,	밁		
	S Total Poetage and Fees		- 5	Total Postage and Fees	
~	Cost Loers de min Leon			12.1 miles 2	
	\$		11	Lea Partners	
T.	Sent Jol Public Library Ting	t	k en k	Street and Apt. No., or PO Box No.	
4 0	Street and Apt. No., or PO Box No.		L.	5700 W. Plane Parkury 1 Se	aik ald
7.	PO Prox 178			City, State, ZIP+4°	- 1
	Tal NM 88252		1	PS Form 3800, January 2023 PSN 7530-02-000-9047 S	an Powerse for Instructions
	PS Form 3800, January 2023 PS/C 7530-02-000-9047	See Reverse for Instructions		PS Form 3800, January 2023 FSN 75350200-9591	SEE REVELSE FOR MISRIGORIOUS
5270 0468 4275 90 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	S. Postal Service TERTIFIED MAIL® RECEI comestic Mail Only r delivery information, visit our website at w fied Mail Fee Services & Fees (check box, add fee as appropriate) leturn Receipt (lefectronic) Contribed Mail Restricted Delivery Adult Signature Required Adult Signature Restricted Delivery tage	CONTRACTOR OF STREET	75 4554 B 4556 35	Domestic Mail Only For delivery information, visit our website Certified Mail Fee \$ Extra Services & Fees (check box, add fee as appropriate) Return Receipt (sectronic) Certified Mail Restricted Delivery Adult Signature Regulated Adult Signature Restricted Delivery \$ Postage	
C 5	al Postage and Fees		ונלם	Total Postage and Fees	1:1
[-]			_		1
Ser	nt To ite of Jal		UT.	Street and Apt. No., or PO Box No.	1crk
III WELL	eet and Apt. No., or PO Box No.	240	40	1 Main Ale Suite 1	/
FU 24	oot and Apt. No., or PO Box No. 710 W Wyaring Ava, 90	MANY ZIV		and the same of th	
rr (5%	N. M. 28252			COVINGTON, NA COSO	
	S Form 3800, January 2023 PSN 7538-02-000-9047	See Reverse for Instructions		PS Form 3600, January 2023 PSN 7530-02-000-9047	See Reverse for Instructions
P:	S Form 3800, January 2023 Part 13.0				

13	U.S. Postal Service™ CERTIFIED MAIL® RECEIPT	19	U.S. Postal CERTIFIE
	For delivery information, visit our website at www.usps.com*. Certified Mell Fee Statra Services & Fees (check box, add fee as appropriate) Return Receipt (hardcopy) Return Receipt (electronic) Cartified Mell Restricted Delivery Adult Signature Required Adult Signature Restricted Delivery \$ Postage Fotal Postage and Fees	710 5270 0468 4276	For delivery intor Certified Mail Fee \$ Extra Services & Fees (c Return Receipt (hardoo) Return Receipt (electro) Certified Mail Restricts Adult Signature Require Adult Signature Restrict Postage
95	Sireet and Apt. No., or PO Box No. City, State, 219-4 PS Form 3800, January 2023 PS: 7325-0500-90-97 See Reverse for Instructions	9589 0	310 old

P 0P	U.S. Postal Service [™] CERTIFIED MAIL [®] RECEIPT Domestic Mail Only		
427	For delivery information, visit our website a	USE	
0710 5270 0468	Certified Mail Fee \$ Extra Services & Fees (check box, add fee as appropriate) Return Receipt (hardcopy) Return Receipt (electronic) Certified Mail Restricted Delivery Adult Signature Required Adult Signature Restricted Delivery \$ Postage \$ Total Postage and Fees	Postmark Here	
9589 0	Sent To Maxice Stok Loud (Street and Apt. No., or An Box No. 310 pld South Fe Trail City, State, 21A-45 Sector Fe NM 8750 PS Form 3800, January 2023 PSI, 750 0000000000000000000000000000000000		

5 83	U.S. Postal Service [™] CERTIFIED MAIL® RECEIPT Domestic Mail Only		
	For delivery information, visit our website	at wive uses com?	
427	For delivery information, visit our wedsite	at with osporton	
_	Land owner John	USE	
40	Certified Mail Fee	100	
0468	\$		
=	Extra Services & Fees (check box, add fee as appropriate)		
	Return Receipt (hardcopy) \$	TO	
	Return Receipt (electronic) \$	Postmark	
7	Certified Mail Restricted Delivery \$	Here	
5270	Adult Signature Required \$		
L	Adult Signature Restricted Delivery \$		
	Postage		
0770	\$		
2	Total Postage and Fees		
	\$	70. 26.	
	Southwestern Public Ser	at C	
		vice a	
40	Street and Apt. No., or PO Box No.	10	
	6086 W. 482 State A.	P	
M	Angillo . TX 79109		
	PS Form 3800, January 2023 PSN	See Reverse for Instructions	
	ro runii 3000, January 2023 Pak Isaace Caraca	Sec neverse to manachans	

General Posting of Notices – Certification

I, Tanner Foster, the undersigned, certify that on 9/30/2024, posted a true and correct copy ces ir

	nched Public Notice in the following puble of Jal of Lea County, State of New Mexic	
1.	ET Gathering & Processing LLC Jal #3 Facility Entrance	
	9/30/2024	
2.	Woolworth Community Library 100 E. Utah Jal, NM 88252	
	9/30/2024	
3.	Jal City Hall 309 S. Main Street Jal, NM 88252	
	9/30/2024	
4.	US Post Office 111 South Fourth Street Jal, NM 88252	
	9/30/2024	
Signed thi	s on the <u>24th</u> day of <u>October</u> , 2	<mark>2024,</mark>
Tanne	r Foster	10/24/2024
- Signature		Date
Tanner Printed Na	<u>r Foster</u> ame	

<u> Associate Engineer – Environmental – Energy Transfer</u> Title

Area of Interest (AOI) Information

Area: 2,662.38 acres

Oct 1 2024 14:12:27 Central Daylight Time

about:blank 1/8

Parcels

#	Owner #	Calculated Acres	Township	Range	Section
1	90132	2.57	24	37	33
2	90142	3.04	24	37	32
3	90406	4.99	24	37	32
4	90132	6.73	24	37	33
5	51755	40.16	25	37	4
6	51888	40.18	25	37	4
7	90406	70.57	24	37	33
8	51887	161.07	24	37	29
9	51755	240.00	24	37	33
10	51755	249.45	25	37	5
11	51886	280.84	24	37	28
12	51887	316.81	24	37	28
13	51882	319.72	24	37	33
14	51883	320.01	25	37	4
15		606.58	24	37	N/A

#	Parcel Code	Year Built	Number of Stories	SQFT Basement	SQFT 1st Floor
1	4000901320005		N/A	N/A	N/A
2	4000901420002		N/A	N/A	N/A
3	4000904060005		N/A	N/A	N/A
4	4000901320005		N/A	N/A	N/A
5	4000517550002		N/A	N/A	N/A
6	4000518880025		N/A	N/A	N/A
7	4000904060017		N/A	N/A	N/A
8	4000518870002		N/A	N/A	N/A
9	4000517550001		N/A	N/A	N/A
10	4000517550003		N/A	N/A	N/A
11	4000518860001		N/A	N/A	N/A
12	4000518870001		N/A	N/A	N/A
13	4000518830009		N/A	N/A	N/A
14	4000518830014		N/A	N/A	N/A
15	N/A		N/A	N/A	N/A

about:blank 2/8

#	SQFT 2nd Floor	Date Modified	Total SQFT	Inspection Year	Subdivision Name
1	N/A			N/A	N/A
2	N/A			N/A	N/A
3	N/A			N/A	N/A
4	N/A			N/A	N/A
5	N/A			N/A	N/A
6	N/A			N/A	N/A
7	N/A			N/A	N/A
8	N/A			N/A	N/A
9	N/A			N/A	N/A
10	N/A			N/A	N/A
11	N/A			N/A	N/A
12	N/A			N/A	N/A
13	N/A			N/A	N/A
14	N/A			N/A	N/A
15	N/A			N/A	N/A

#	Unit	Block	Lot/Tract	Description	NEQ
1	N/A	N/A	N/A	9.40 AC LOC W2W2	N/A
2	N/A	N/A	N/A	3.00 AC LOC NE4	Υ
3	N/A	N/A	N/A	10.05 AC LOC WITHIN SE4NW4, SW4NE4,	N/A
4	N/A	N/A	N/A	9.40 AC LOC W2W2	N/A
5	N/A	N/A	N/A	40.21 AC BEING LOT 4	N/A
6	N/A	N/A	N/A	120.24 AC BEING LOT 3, SW4NW4,	N/A
7	N/A	N/A	N/A	70.59 AC LOC W2W2	N/A
8	N/A	N/A	N/A	320.00 AC BEING E2	N/A
9	N/A	N/A	N/A	240.00 AC BEING E2NW4, NW4NW4,	N/A
10	N/A	N/A	N/A	280.20 AC BEING LOTS 1-2-3-4,	N/A
11	N/A	N/A	N/A	280.00 AC BEING SE4, S2NE4, NW4NE4	Υ
12	N/A	N/A	N/A	317.00 AC BEING W2 *LESS 3 AC TO	N/A
13	N/A	N/A	N/A	320.00 AC BEING E2	N/A
14	N/A	N/A	N/A	320.26 AC BEING LOT 2, SW4NE4,	Υ
15	N/A	N/A	N/A	N/A	N/A

#	NWQ	SWQ	SEQ	Name	In Care of Name
1	Υ	N/A	N/A	EL PASO NATURAL GAS CO	PROPERTY TAX %
2	N/A	N/A	N/A	SOUTHWESTERN PUBLIC SERVICE CO	N/A
3	N/A	N/A	N/A	LEA PARTNERS	PROPERTY TAX PARTNERS %
4	Υ	N/A	N/A	EL PASO NATURAL GAS CO	PROPERTY TAX %
5	N/A	N/A	N/A	JAL PUBLIC LIBRARY TRUST	N/A
6	Υ	N/A	N/A	JAL PUBLIC LIBRARY TRUST	N/A
7	N/A	N/A	N/A	LEA PARTNERS	PROPERTY TAX PARTNERS %
8	N/A	N/A	N/A	JAL PUBLIC LIBRARY TRUST	N/A
9	Υ	N/A	N/A	JAL PUBLIC LIBRARY TRUST	N/A
10	Υ	N/A	N/A	JAL PUBLIC LIBRARY TRUST	N/A
11	N/A	N/A	N/A	JAL PUBLIC LIBRARY TRUST	N/A
12	N/A	N/A	N/A	JAL PUBLIC LIBRARY TRUST	N/A
13	N/A	N/A	N/A	JAL PUBLIC LIBRARY FUND	N/A
14	N/A	N/A	N/A	JAL PUBLIC LIBRARY FUND	N/A
15	N/A	N/A	N/A	N/A	N/A

#	Mailing Address 1	Mailing Address 2	Mailing City	Mailing State	Country Name
1	PO BOX 4372	N/A	HOUSTON	TX	N/A
2	6086 W 48TH AVE	N/A	AMARILLO	TX	N/A
3	5700 W PLANO PKWY STE 2250	N/A	PLANO	TX	N/A
4	PO BOX 4372	N/A	HOUSTON	TX	N/A
5	N/A	BOX 178	JAL	NM	N/A
6	N/A	BOX 178	JAL	NM	N/A
7	5700 W PLANO PKWY STE 2250	N/A	PLANO	TX	N/A
8	N/A	BOX 178	JAL	NM	N/A
9	N/A	BOX 178	JAL	NM	N/A
10	N/A	BOX 178	JAL	NM	N/A
11	N/A	BOX 178	JAL	NM	N/A
12	N/A	BOX 178	JAL	NM	N/A
13	N/A	BOX 178	JAL	NM	N/A
14	N/A	BOX 178	JAL	NM	N/A
15	N/A	N/A	N/A	N/A	N/A

about:blank 4/8

#	Mailing Zipcode	Mailing Zipcode Extension	District	Туре	Year
1	77210	4372	190	М	2024
2	79109	N/A	190	М	2024
3	75093	2445	190	М	2024
4	77210	4372	190	М	2024
5	88252	N/A	190	М	2024
6	88252	N/A	190	М	2024
7	75093	2445	190	М	2024
8	88252	N/A	190	М	2024
9	88252	N/A	190	М	2024
10	88252	N/A	190	М	2024
11	88252	N/A	190	М	2024
12	88252	N/A	190	М	2024
13	88252	N/A	190	М	2024
14	88252	N/A	190	М	2024
15	N/A	N/A	N/A	N/A	

#	Reception Number	Recording Type	Book	Page	Recorded Date
1	0	N/A	N/A	0	
2	0	N/A	N/A	0	
3	59601	N/A	460	708	03/08/1990
4	0	N/A	N/A	0	
5	0	N/A	N/A	0	
6	0	N/A	N/A	0	
7	29721	N/A	486	853	10/22/1992
8	0	N/A	N/A	0	
9	0	N/A	N/A	0	
10	0	N/A	N/A	0	
11	0	N/A	N/A	0	
12	0	N/A	N/A	0	
13	0	N/A	N/A	0	
14	0	N/A	N/A	0	
15		N/A	N/A	N/A	

about:blank 5/8

#	Property Street Name	Property Street Number	Property Half Number	Property Street Direction	Total Value
1	N/A	N/A	N/A	N/A	0
2	N/A	N/A	N/A	N/A	0
3	N/A	N/A	N/A	N/A	0
4	N/A	N/A	N/A	N/A	0
5	N/A	N/A	N/A	N/A	0
6	N/A	N/A	N/A	N/A	0
7	N/A	N/A	N/A	N/A	0
8	N/A	N/A	N/A	N/A	0
9	N/A	N/A	N/A	N/A	0
10	N/A	N/A	N/A	N/A	0
11	N/A	N/A	N/A	N/A	0
12	N/A	N/A	N/A	N/A	0
13	N/A	N/A	N/A	N/A	0
14	N/A	N/A	N/A	N/A	0
15	N/A	N/A	N/A	N/A	0

#	Total Land Value	Land Value	Improved Value	Cent Value	Pers Value
1	0	0	0	14012283	0
2	0	0	0	127065168	0
3	0	0	0	174147483	0
4	0	0	0	14012283	0
5	0	1854	0	0	0
6	0	23694	0	0	0
7	0	0	0	174147483	0
8	0	2007	141	0	0
9	0	1854	0	0	0
10	0	1854	0	0	0
11	0	1812	69	0	0
12	0	2007	141	0	0
13	0	30591	0	0	0
14	0	4959	0	0	0
15	0	0	0	0	0

about:blank 6/8

#	MFG H Value	Livestock Value	Full Value	Taxable Value	Exempt Value
1	0	0	14012283	4670761	0
2	0	0	127065168	42355056	0
3	0	0	174147483	58049161	0
4	0	0	14012283	4670761	0
5	0	0	1854	618	618
6	0	0	23694	7898	7898
7	0	0	174147483	58049161	0
8	0	0	2148	716	716
9	0	0	1854	618	618
10	0	0	1854	618	618
11	0	0	1881	627	627
12	0	0	2148	716	716
13	0	0	30591	10197	0
14	0	0	4959	1653	0
15	0	0	0	0	0

#	Net Value	Recording Year	Most Current Tax	Value	Code
1	4670761	N/A	\$103,107.00	0	N/A
2	42355056	N/A	\$934,987.00	0	N/A
3	58049161	N/A	\$1,281,435.00	0	N/A
4	4670761	N/A	\$103,107.00	0	N/A
5	0	N/A	\$0.00	0	N/A
6	0	N/A	\$0.00	0	N/A
7	58049161	N/A	\$1,281,435.00	0	N/A
8	0	N/A	\$0.00	0	N/A
9	0	N/A	\$0.00	618	OTN
10	0	N/A	\$0.00	0	N/A
11	0	N/A	\$0.00	627	OTN
12	0	N/A	\$0.00	716	OTN
13	10197	N/A	\$225.00	0	N/A
14	1653	N/A	\$36.00	0	N/A
15	0	N/A	\$	0	N/A

about:blank 7/8

#	ID	Category	Quantity	Location	Square Footage	Acres	Area(acres)
1	N/A	N/A	N/A	N/A	112,090.92	0.00	2.57
2	N/A	N/A	N/A	N/A	132,466.20	0.00	3.04
3	N/A	N/A	N/A	N/A	217,378.75	0.00	4.99
4	N/A	N/A	N/A	N/A	293,172.80	0.00	6.73
5	N/A	N/A	N/A	N/A	1,749,251.47	0.00	40.15
6	N/A	N/A	N/A	N/A	1,750,340.54	75.00	40.18
7	N/A	N/A	N/A	N/A	3,073,929.28	0.00	70.56
8	N/A	N/A	N/A	N/A	7,016,325.19	6.00	161.06
9	N	Other Exemptions	N/A	N/A	10,454,143.80	0.00	239.97
10	N/A	N/A	N/A	N/A	10,865,965.07	0.00	249.38
11	N	Other Exemptions	N/A	N/A	12,233,438.21	5.00	280.81
12	N	Other Exemptions	N/A	N/A	13,800,403.05	6.00	316.78
13	N/A	N/A	N/A	N/A	13,926,826.13	9,711.00	319.68
14	N/A	N/A	N/A	N/A	13,939,755.53	1,573.00	319.98
15	N/A	N/A	N/A	N/A	26,422,328.02	N/A	606.51

Lea County, New Mexico Portico Disclaimer:

Information deeded reliable but not guaranteed. Copyright 2023.

 $\operatorname{\mathsf{MAP}}$ TO BE USED FOR TAX PURPOSES ONLY. NOT TO BE USED FOR CONVEYANCE.

Square Foot and Year Built listed only to be used for comparative purposes, NOT to be used for commerce.

about:blank 8/8

El Paso Natural Gas Co. PO Box 4372 Houston, Texas 77210

CERTIFIED MAIL 9589 0710 5270 0468 4276 13

To Whom It May Concern,

ET Gathering & Processing LLC announces its application submittal to the New Mexico Environment Department for an air quality permit for the modification of its gas treating facility. The expected date of application submittal to the Air Quality Bureau is October 16, 2024.

The exact location for the proposed facility known as the Jal No. 3 Gas Plant, is at latitude 32 deg, 10 min, 25 sec and longitude -103 deg, 10 min, 27 sec. The approximate location of this facility is 4 miles north-northeast of Jal in Lea County.

The proposed modification consists of reallocation of gas flaring emissions and removal of units. The estimated maximum quantities of any regulated air contaminant will be as follows in pound per hour (pph) and tons per year (tpy) and may change slightly during the course of the Department's review:

Pollutant:	Pounds per hour	Tons per year
Particulate Matter (PM)	1.6 pph	6.7 tpy
PM 10	1.6 pph	6.7 tpy
PM 2.5	1.6 pph	6.7 tpy
Sulfur Dioxide (SO2)	5163.7 pph	49.7 tpy
Nitrogen Oxides (NOx)	438.3 pph	118.7 tpy
Carbon Monoxide (CO)	847.1 pph	88.2 tpy
Volatile Organic Compounds (VOC)	1506.1 pph	148.3 tpy
Total sum of all Hazardous Air Pollutants (HAPs)	2.6 pph	11.4 tpy
Green House Gas Emissions as Total CO2e	n/a	209,721 tpy

The standard and maximum operating schedules of the facility will be 24 hours per day, 7 days a week and a maximum of 52 weeks per year.

The owner and/or operator of the Facility is: ET Gathering & Processing LLC, 1706 South Midkiff Road, Midland, TX 79701

If you have any comments about the construction or operation of this facility, and you want your comments to be made as part of the permit review process, you must submit your comments in writing to this address: Permit Programs Manager; New Mexico Environment Department; Air Quality Bureau; 525 Camino de los Marquez, Suite 1; Santa Fe, New Mexico; 87505-1816. Other comments and questions may be submitted verbally. (505) 476-4300; 1 800 224-7009.

Please refer to the company name and facility name, or send a copy of this notice along with your comments, since the Department may have not yet received the permit application. Please include a legible return mailing address with your comments. Once the Department has performed a preliminary

review of the application and its air quality impacts, the Department's notice will be published in the legal section of a newspaper circulated near the facility location.

Attención

Este es un aviso de la oficina de Calidad del Aire del Departamento del Medio Ambiente de Nuevo México, acerca de las emisiones producidas por un establecimiento en esta área. Si usted desea información en español, por favor comuníquese con esa oficina al teléfono 505-629-3395.

Sincerely,

Mr. James VanAssche

Senior Environmental Specialist

Jan Vandricke

Notice of Non-Discrimination

Jal Public Library Trust Jal Public Library Fund PO Box 178 Jal, New Mexico 88252

CERTIFIED MAIL 9589 0710 5270 0468 4276 20

To Whom It May Concern,

ET Gathering & Processing LLC announces its application submittal to the New Mexico Environment Department for an air quality permit for the modification of its gas treating facility. The expected date of application submittal to the Air Quality Bureau is October 16, 2024.

The exact location for the proposed facility known as the Jal No. 3 Gas Plant, is at latitude 32 deg, 10 min, 25 sec and longitude -103 deg, 10 min, 27 sec. The approximate location of this facility is 4 miles north-northeast of Jal in Lea County.

The proposed modification consists of reallocation of gas flaring emissions and removal of units. The estimated maximum quantities of any regulated air contaminant will be as follows in pound per hour (pph) and tons per year (tpy) and may change slightly during the course of the Department's review:

Pollutant:	Pounds per hour	Tons per year
Particulate Matter (PM)	1.6 pph	6.7 tpy
PM 10	1.6 pph	6.7 tpy
PM 2.5	1.6 pph	6.7 tpy
Sulfur Dioxide (SO2)	5163.7 pph	49.7 tpy
Nitrogen Oxides (NOx)	438.3 pph	118.7 tpy
Carbon Monoxide (CO)	847.1 pph	88.2 tpy
Volatile Organic Compounds (VOC)	1506.1 pph	148.3 tpy
Total sum of all Hazardous Air Pollutants (HAPs)	2.6 pph	11.4 tpy
Green House Gas Emissions as Total CO2e	n/a	209,721 tpy

The standard and maximum operating schedules of the facility will be 24 hours per day, 7 days a week and a maximum of 52 weeks per year.

The owner and/or operator of the Facility is: ET Gathering & Processing LLC, 1706 South Midkiff Road, Midland, TX 79701

If you have any comments about the construction or operation of this facility, and you want your comments to be made as part of the permit review process, you must submit your comments in writing to this address: Permit Programs Manager; New Mexico Environment Department; Air Quality Bureau; 525 Camino de los Marquez, Suite 1; Santa Fe, New Mexico; 87505-1816. Other comments and questions may be submitted verbally. (505) 476-4300; 1 800 224-7009.

Please refer to the company name and facility name, or send a copy of this notice along with your comments, since the Department may have not yet received the permit application. Please include a

legible return mailing address with your comments. Once the Department has performed a preliminary review of the application and its air quality impacts, the Department's notice will be published in the legal section of a newspaper circulated near the facility location.

Attención

Este es un aviso de la oficina de Calidad del Aire del Departamento del Medio Ambiente de Nuevo México, acerca de las emisiones producidas por un establecimiento en esta área. Si usted desea información en español, por favor comuníquese con esa oficina al teléfono 505-629-3395.

Sincerely,

Mr. James VanAssche

Senior Environmental Specialist

Jan Varanche

Notice of Non-Discrimination

Lea Partners 5700 W Plano Parkway, Suite 225 Plano, Texas 75093

CERTIFIED MAIL 9589 0710 5270 0468 4275 76

To Whom It May Concern,

ET Gathering & Processing LLC announces its application submittal to the New Mexico Environment Department for an air quality permit for the modification of its gas treating facility. The expected date of application submittal to the Air Quality Bureau is October 16, 2024.

The exact location for the proposed facility known as the Jal No. 3 Gas Plant, is at latitude 32 deg, 10 min, 25 sec and longitude -103 deg, 10 min, 27 sec. The approximate location of this facility is 4 miles north-northeast of Jal in Lea County.

The proposed modification consists of reallocation of gas flaring emissions and removal of units. The estimated maximum quantities of any regulated air contaminant will be as follows in pound per hour (pph) and tons per year (tpy) and may change slightly during the course of the Department's review:

Pollutant:	Pounds per hour	Tons per year
Particulate Matter (PM)	1.6 pph	6.7 tpy
PM 10	1.6 pph	6.7 tpy
PM 2.5	1.6 pph	6.7 tpy
Sulfur Dioxide (SO2)	5163.7 pph	49.7 tpy
Nitrogen Oxides (NOx)	438.3 pph	118.7 tpy
Carbon Monoxide (CO)	847.1 pph	88.2 tpy
Volatile Organic Compounds (VOC)	1506.1 pph	148.3 tpy
Total sum of all Hazardous Air Pollutants (HAPs)	2.6 pph	11.4 tpy
Green House Gas Emissions as Total CO2e	n/a	209,721 tpy

The standard and maximum operating schedules of the facility will be 24 hours per day, 7 days a week and a maximum of 52 weeks per year.

The owner and/or operator of the Facility is: ET Gathering & Processing LLC, 1706 South Midkiff Road, Midland, TX 79701

If you have any comments about the construction or operation of this facility, and you want your comments to be made as part of the permit review process, you must submit your comments in writing to this address: Permit Programs Manager; New Mexico Environment Department; Air Quality Bureau; 525 Camino de los Marquez, Suite 1; Santa Fe, New Mexico; 87505-1816. Other comments and questions may be submitted verbally. (505) 476-4300; 1 800 224-7009.

Please refer to the company name and facility name, or send a copy of this notice along with your comments, since the Department may have not yet received the permit application. Please include a legible return mailing address with your comments. Once the Department has performed a preliminary

review of the application and its air quality impacts, the Department's notice will be published in the legal section of a newspaper circulated near the facility location.

Attención

Este es un aviso de la oficina de Calidad del Aire del Departamento del Medio Ambiente de Nuevo México, acerca de las emisiones producidas por un establecimiento en esta área. Si usted desea información en español, por favor comuníquese con esa oficina al teléfono 505-629-3395.

Sincerely,

Mr. James VanAssche

Senior Environmental Specialist

Jan Vandricke

Notice of Non-Discrimination

Southwestern Public Service Co. 6086 W 48th Avenue Amarillo, Texas 79109

CERTIFIED MAIL 9589 0710 5270 0468 4275 83

To Whom It May Concern,

ET Gathering & Processing LLC announces its application submittal to the New Mexico Environment Department for an air quality permit for the modification of its gas treating facility. The expected date of application submittal to the Air Quality Bureau is October 16, 2024.

The exact location for the proposed facility known as the Jal No. 3 Gas Plant, is at latitude 32 deg, 10 min, 25 sec and longitude -103 deg, 10 min, 27 sec. The approximate location of this facility is 4 miles north-northeast of Jal in Lea County.

The proposed modification consists of reallocation of gas flaring emissions and removal of units. The estimated maximum quantities of any regulated air contaminant will be as follows in pound per hour (pph) and tons per year (tpy) and may change slightly during the course of the Department's review:

Pollutant:	Pounds per hour	Tons per year
Particulate Matter (PM)	1.6 pph	6.7 tpy
PM 10	1.6 pph	6.7 tpy
PM 2.5	1.6 pph	6.7 tpy
Sulfur Dioxide (SO2)	5163.7 pph	49.7 tpy
Nitrogen Oxides (NOx)	438.3 pph	118.7 tpy
Carbon Monoxide (CO)	847.1 pph	88.2 tpy
Volatile Organic Compounds (VOC)	1506.1 pph	148.3 tpy
Total sum of all Hazardous Air Pollutants (HAPs)	2.6 pph	11.4 tpy
Green House Gas Emissions as Total CO2e	n/a	209,721 tpy

The standard and maximum operating schedules of the facility will be 24 hours per day, 7 days a week and a maximum of 52 weeks per year.

The owner and/or operator of the Facility is: ET Gathering & Processing LLC, 1706 South Midkiff Road, Midland, TX 79701

If you have any comments about the construction or operation of this facility, and you want your comments to be made as part of the permit review process, you must submit your comments in writing to this address: Permit Programs Manager; New Mexico Environment Department; Air Quality Bureau; 525 Camino de los Marquez, Suite 1; Santa Fe, New Mexico; 87505-1816. Other comments and questions may be submitted verbally. (505) 476-4300; 1 800 224-7009.

Please refer to the company name and facility name, or send a copy of this notice along with your comments, since the Department may have not yet received the permit application. Please include a legible return mailing address with your comments. Once the Department has performed a preliminary

review of the application and its air quality impacts, the Department's notice will be published in the legal section of a newspaper circulated near the facility location.

Attención

Este es un aviso de la oficina de Calidad del Aire del Departamento del Medio Ambiente de Nuevo México, acerca de las emisiones producidas por un establecimiento en esta área. Si usted desea información en español, por favor comuníquese con esa oficina al teléfono 505-629-3395.

Sincerely,

Mr. James VanAssche

Senior Environmental Specialist

Jan Vandricke

Notice of Non-Discrimination

New Mexico State Land Office Oil, Gas, and Minerals Division Allison Marks, Director 310 Old Santa Fe Trail Santa Fe, New Mexico 87501

CERTIFIED MAIL 9589 0710 5270 0468 4276 06

Dear Ms. Marks,

ET Gathering & Processing LLC announces its application submittal to the New Mexico Environment Department for an air quality permit for the modification of its gas treating facility. The expected date of application submittal to the Air Quality Bureau is October 16, 2024.

The exact location for the proposed facility known as the Jal No. 3 Gas Plant, is at latitude 32 deg, 10 min, 25 sec and longitude -103 deg, 10 min, 27 sec. The approximate location of this facility is 4 miles north-northeast of Jal in Lea County.

The proposed modification consists of reallocation of gas flaring emissions and removal of units. The estimated maximum quantities of any regulated air contaminant will be as follows in pound per hour (pph) and tons per year (tpy) and may change slightly during the course of the Department's review:

Pollutant:	Pounds per hour	Tons per year
Particulate Matter (PM)	1.6 pph	6.7 tpy
PM 10	1.6 pph	6.7 tpy
PM 2.5	1.6 pph	6.7 tpy
Sulfur Dioxide (SO2)	5163.7 pph	49.7 tpy
Nitrogen Oxides (NOx)	438.3 pph	118.7 tpy
Carbon Monoxide (CO)	847.1 pph	88.2 tpy
Volatile Organic Compounds (VOC)	1506.1 pph	148.3 tpy
Total sum of all Hazardous Air Pollutants (HAPs)	2.6 pph	11.4 tpy
Green House Gas Emissions as Total CO2e	n/a	209,721 tpy

The standard and maximum operating schedules of the facility will be 24 hours per day, 7 days a week and a maximum of 52 weeks per year.

The owner and/or operator of the Facility is: ET Gathering & Processing LLC, 1706 South Midkiff Road, Midland, TX 79701

If you have any comments about the construction or operation of this facility, and you want your comments to be made as part of the permit review process, you must submit your comments in writing to this address: Permit Programs Manager; New Mexico Environment Department; Air Quality Bureau; 525 Camino de los Marquez, Suite 1; Santa Fe, New Mexico; 87505-1816. Other comments and questions may be submitted verbally. (505) 476-4300; 1 800 224-7009.

Please refer to the company name and facility name, or send a copy of this notice along with your comments, since the Department may have not yet received the permit application. Please include a legible return mailing address with your comments. Once the Department has performed a preliminary review of the application and its air quality impacts, the Department's notice will be published in the legal section of a newspaper circulated near the facility location.

Attención

Este es un aviso de la oficina de Calidad del Aire del Departamento del Medio Ambiente de Nuevo México, acerca de las emisiones producidas por un establecimiento en esta área. Si usted desea información en español, por favor comuníquese con esa oficina al teléfono 505-629-3395.

Sincerely,

Mr. James VanAssche

Senior Environmental Specialist

Jan. Vandrick

Notice of Non-Discrimination

City of Jal 710 W. Wyoming PO Drawer 340 Jal, NM 88252

CERTIFIED MAIL 9589 0710 5270 0468 4275 90

To Whom It May Concern,

ET Gathering & Processing LLC announces its application submittal to the New Mexico Environment Department for an air quality permit for the modification of its gas treating facility. The expected date of application submittal to the Air Quality Bureau is October 16, 2024.

The exact location for the proposed facility known as the Jal No. 3 Gas Plant, is at latitude 32 deg, 10 min, 25 sec and longitude -103 deg, 10 min, 27 sec. The approximate location of this facility is 4 miles north-northeast of Jal in Lea County.

The proposed modification consists of reallocation of gas flaring emissions and removal of units. The estimated maximum quantities of any regulated air contaminant will be as follows in pound per hour (pph) and tons per year (tpy) and may change slightly during the course of the Department's review:

Pollutant:	Pounds per hour	Tons per year
Particulate Matter (PM)	1.6 pph	6.7 tpy
PM 10	1.6 pph	6.7 tpy
PM 2.5	1.6 pph	6.7 tpy
Sulfur Dioxide (SO2)	5163.7 pph	49.7 tpy
Nitrogen Oxides (NOx)	438.3 pph	118.7 tpy
Carbon Monoxide (CO)	847.1 pph	88.2 tpy
Volatile Organic Compounds (VOC)	1506.1 pph	148.3 tpy
Total sum of all Hazardous Air Pollutants (HAPs)	2.6 pph	11.4 tpy
Green House Gas Emissions as Total CO2e	n/a	209,721 tpy

The standard and maximum operating schedules of the facility will be 24 hours per day, 7 days a week and a maximum of 52 weeks per year.

The owner and/or operator of the Facility is: ET Gathering & Processing LLC, 1706 South Midkiff Road, Midland, TX 79701

If you have any comments about the construction or operation of this facility, and you want your comments to be made as part of the permit review process, you must submit your comments in writing to this address: Permit Programs Manager; New Mexico Environment Department; Air Quality Bureau; 525 Camino de los Marquez, Suite 1; Santa Fe, New Mexico; 87505-1816. Other comments and questions may be submitted verbally. (505) 476-4300; 1 800 224-7009.

Please refer to the company name and facility name, or send a copy of this notice along with your comments, since the Department may have not yet received the permit application. Please include a

legible return mailing address with your comments. Once the Department has performed a preliminary review of the application and its air quality impacts, the Department's notice will be published in the legal section of a newspaper circulated near the facility location.

Attención

Este es un aviso de la oficina de Calidad del Aire del Departamento del Medio Ambiente de Nuevo México, acerca de las emisiones producidas por un establecimiento en esta área. Si usted desea información en español, por favor comuníquese con esa oficina al teléfono 505-629-3395.

Sincerely,

Mr. James VanAssche

Senior Environmental Specialist

Jan Varanche

Notice of Non-Discrimination

Lea County New Mexico Keith Manes, Lea County Clerk 100 N. Main Avenue, Suite 1C Lovington, NM 88260

CERTIFIED MAIL 9589 0710 5270 0468 4276 37

Dear Mr. Manes,

ET Gathering & Processing LLC announces its application submittal to the New Mexico Environment Department for an air quality permit for the modification of its gas treating facility. The expected date of application submittal to the Air Quality Bureau is October 16, 2024.

The exact location for the proposed facility known as the Jal No. 3 Gas Plant, is at latitude 32 deg, 10 min, 25 sec and longitude -103 deg, 10 min, 27 sec. The approximate location of this facility is 4 miles north-northeast of Jal in Lea County.

The proposed modification consists of reallocation of gas flaring emissions and removal of units. The estimated maximum quantities of any regulated air contaminant will be as follows in pound per hour (pph) and tons per year (tpy) and may change slightly during the course of the Department's review:

Pollutant:	Pounds per hour	Tons per year	
Particulate Matter (PM)	1.6 pph	6.7 tpy	
PM 10	1.6 pph	6.7 tpy	
PM 2.5	1.6 pph	6.7 tpy	
Sulfur Dioxide (SO2)	5163.7 pph	49.7 tpy	
Nitrogen Oxides (NOx)	438.3 pph	118.7 tpy	
Carbon Monoxide (CO)	847.1 pph	88.2 tpy	
Volatile Organic Compounds (VOC)	1506.1 pph	148.3 tpy	
Total sum of all Hazardous Air Pollutants (HAPs)	2.6 pph	11.4 tpy	
Green House Gas Emissions as Total CO2e	n/a	209,721 tpy	

The standard and maximum operating schedules of the facility will be 24 hours per day, 7 days a week and a maximum of 52 weeks per year.

The owner and/or operator of the Facility is: ET Gathering & Processing LLC, 1706 South Midkiff Road, Midland, TX 79701

If you have any comments about the construction or operation of this facility, and you want your comments to be made as part of the permit review process, you must submit your comments in writing to this address: Permit Programs Manager; New Mexico Environment Department; Air Quality Bureau; 525 Camino de los Marquez, Suite 1; Santa Fe, New Mexico; 87505-1816. Other comments and questions may be submitted verbally. (505) 476-4300; 1 800 224-7009.

Please refer to the company name and facility name, or send a copy of this notice along with your comments, since the Department may have not yet received the permit application. Please include a

legible return mailing address with your comments. Once the Department has performed a preliminary review of the application and its air quality impacts, the Department's notice will be published in the legal section of a newspaper circulated near the facility location.

Attención

Este es un aviso de la oficina de Calidad del Aire del Departamento del Medio Ambiente de Nuevo México, acerca de las emisiones producidas por un establecimiento en esta área. Si usted desea información en español, por favor comuníquese con esa oficina al teléfono 505-629-3395.

Sincerely,

Mr. James VanAssche

Senior Environmental Specialist

Jan Varanche

Notice of Non-Discrimination

PUBLIC SERVICE ANNOUNCEMENT

ET Gathering & Processing LLC announces its application to the New Mexico Environment Department for an air quality permit for the modification of its gas treating facility. The proposed modification consists of reallocation of gas flaring emissions and removal of units. The expected date of application submittal to the Air Quality Bureau is October 16, 2024. This notice is a requirement according to New Mexico air quality regulations.

The exact location for the facility, known as the Jal No. 3 Gas Plant, is at latitude 32 deg, 10 min, 25 sec North and longitude 103 deg, 10 min, 27 sec West. The approximate location of this facility is roughly 4 miles North-Northeast of Jal, NM, in Lea County.

The site is a natural gas treating plant.

The owner and/or operator of the Facility is: ET Gathering & Processing LLC, 1706 South Midkiff Road, Midland, TX 79701

Notices were posted at the Jal No. 3 gas plant site and the following three locations:

Woolworth Community Library 100 E. Utah Jal, NM 88252

Jal City Hall 309 S. Main Street Jal, NM 88252

US Post Office 111 South Fourth Street Jal, NM 88252

The address for submitting comments to the NMED is as follows:

New Mexico Environment Department Air Quality Bureau – Permits Section 525 Camino de los Marquez, Suite 1 Santa Fe, New Mexico 87505

Submittal of Public Service Announcement – Certification

I, James VanAssche, the undersigned, certify that on October 1, 2024, submitted a public service announcement to **KZOR 94.1 FM** that serves the City\Town\Village of **Jal and surrounding areas**, **Lea** County, New Mexico, in which the source is or is proposed to be located and that KZOR 94.1 FM **RESPONDED THAT IT WOULD AIR THE ANNOUNCEMENT**.

Signed this 1st day of October , 2024,		
June Walland	10/1/2024	
Signature	Date	
James VanAssche Printed Name		
Senior Environmental Specialist – Energy Transfer Title		

Affidavit of Publication

STATE OF NEW MEXICO COUNTY OF LEA

I, Daniel Russell, Publisher of the Hobbs News-Sun, a newspaper published at Hobbs, New Mexico, solemnly swear that the clipping attached hereto was published in the regular and entire issue of said newspaper, and not a supplement thereof for a period of 1 issue(s).

> Beginning with the issue dated October 01, 2024 and ending with the issue dated October 01, 2024.

Publisher

Sworn and subscribed to before me this 1st day of October 2024.

Business Manager

My commission expires

January 2 TE OF NEW MEXICO (\$eal) NOTARY PUBLIC GUSSIE RUTH BLACK

COMMISSION # 1087526 COMMISSION EXPIRES 01/29/2027

This newspaper is duly qualified to publish legal notices or advertisements within the meaning of Section 3, Chapter 167, Laws of 1937 and payment of fees for said publication has been made.

LEGAL NOTICE October 1, 2024

NOTICE OF AIR QUALITY PERMIT APPLICATION

an air quality permit for the modification of its gas treating facility. The expected date of application submittal to the Air Quality Bureau is October 16, 2024.

The exact location for the proposed facility known as the Jal No. 3 Gas Plant, is at latitude 32 deg. 10 min, 25 northeast of Jal in Lea County.

The proposed modification consists of reallocation of gas flaring emissions and removal of units.

The estimated maximum quantities of any regulated air contaminant will be as follows in pound per hour (pph) and tons per year (tpy) and could change slightly during the course of the Department's review:

Pollutant:

to the year (tpy) and could change	slightly during the cour	00 -
Pollutant: Particulate Matter (PM)	Pounds per hour 1.6 pph 1.6 pph	Tons per year 6.7 tpy 6.7 tpy 6.7 tpy
PM _{2.5} Sulfur Dioxide (SO ₂) Nitrogen Oxides (NO.) Carbon Monoxide (CO) Volatile Organic Compounds (VOC) Total sum of all Hazardous Air Pollutants (HAPs) Green House Gas Emissions as Total CO ₂ e	1.6 pph 5163.7 pph 438.3 pph 847.1 pph 1506.1 pph 2.6 pph n/a	49.7 tpy 118.7 tpy 118.7 tpy 88.2 tpy 148.3 tpy 11.4 tpy 209,721 tpy

The standard and maximum operating schedules of the facility will be 24 hours per day, 7 days a week and a maximum of 52 weeks per year.

The owner and/or operator of the Facility is: ET Gathering & Processing LLC, 1706 South Midkiff Road, Midland, TX 79701

If you have any comments about the construction or operation of this facility, and you want your comments to be made as part of the permit review process, you must submit your comments in writing to this address. Permit Programs Manager; New Mexico Environment Department; Air Quality Bureau; 525 Camino de los Marquez, Suite 1; Santa Fe, New Mexico; 87505-1816. Other comments and questions may be submitted verbally. (505) 476-4300; 1 800 224-7009.

Please refer to the company name and site name, or send a copy of this notice along with your comments, since the Department may have not yet as a legible return. riease reter to the company name and site name, or send a copy of this notice along with your comments, since the Department may have not yet received the permit application. Please include a legible return mailing address with your comments. Once the Department has performed a preliminary review of the application and its air quality impacts, the Department's notice will be published in the legal section of a newspaper circulated near the facility location.

General information about air quality and the permitting process, and links to the regulations can be found at the Air Quality Bureau's website: www.env.nm.gov/air-quality/permitting-section- home-page/. The regulation dealing with public participation in the permit review process is 20.2.72.206 NMAC.

Este es un aviso de la oficina de Calidad del Aire del Departamento del Medio Ambiente de Nuevo México, acerca de las emisiones producidas por un establecimiento en esta área. Si usted desea información en español, por favor comuniquese con esa oficina al teléfono 505-629-3395.

Notice of Non-Discrimination

Notice of Non-Discrimination

NMED does not discriminate on the basis of race, color, national origin, disability, age or sex in the
administration of its programs or activities, as required by applicable laws and regulations. NMED is
responsible for coordination of compliance efforts and receipt of inquiries concerning non-discrimination
requirements implemented by 40 C.F.R. Part 7, including Title VI of the Civil Rights Act of 1984, as
amended; Section 504 of the Rehabilitation Act of 1973; the Age Discrimination Act of 1975, Title IX of the
Education Amendments of 1972, and Section 13 of the Federal Water Pollution Control Act Amendments of
1972. If you have any questions about this notice or any of NMED's non-discrimination programs, policies or
procedures, or if you believe that you have been discriminated against with respect to a NMED program or
activity, you may contact: Non-Discrimination Coordinator, NMED, 1190 St. Francis Dr., Suite N4050, P.O.
Box 5469, Santa Fe, NM 87502, (505) 827-2855, nd.coordinator@env.nm.gov. You may also visit our
website at https://www.env.nm.gov/non-employee-discrimination-complaint- page/ to learn how and where to file a complaint of discrimination. #00294595

67118287

00294595

JAMES VANASSCHE **ENERGY TRANSFER** 8111 WESTCHESTER DR., STE. 600 DALLAS, TX 75225

Affidavit of Publication

STATE OF NEW MEXICO COUNTY OF LEA

I, Daniel Russell, Publisher of the Hobbs News-Sun, a newspaper published at Hobbs, New Mexico, solemnly swear that the clipping attached hereto was published in the regular and entire issue of said newspaper, and not a supplement thereof for a period of 1 issue(s).

> Beginning with the issue dated October 01, 2024 and ending with the issue dated October 01, 2024.

Publisher

Sworn and subscribed to before me this 1st day of October 2024.

Business Manager

My commission expires January 29, 2027

(Seal) STATE OF NEW MEXICO
NOTARY PUBLIC
GUSSIE RUTH BLACK
COMMISSION # 1087526
COMMISSION EXPIRES 01/29/2027

This newspaper is duly qualified to publish legal notices or advertisements within the meaning of Section 3, Chapter 167, Laws of 1937 and payment of fees for said publication has been made.

NOTICE OF AIR QUALITY PERMIT APPLICATION

ET Gathering & Processing LLC announces its application to the New Mexico Environment Department for an air quality permit for the modification of its gas treating facility. The expected date of application submittal to the Air Quality Bureau is October 16, 2024.

The exact location for the proposed facility known as the Jal No. 3 Gas Plant, is at latitude 32 deg, 10 min, 25 sec and longitude -103 deg, 10 min, 27 sec. The approximate location of this facility is 4 miles north-northeast of Jal in Lea County.

The proposed modification consists of reallocation of gas flaring emissions and removal of units.

The estimated maximum quantities of any regulated air contaminant will be as follows in pound per hour (pph) and tons per year (tpy) and could change slightly during the course of the Department's review:

Department's review:		
Pollutant: Particulate Matter (PM) PM 10 PM 2.5 Sulfur Dioxide (SO ₂) Nitrogen Oxides (NO _x) Carbon Monoxide (CO) Volatile Organic Compounds (VOC) Total sum of all Hazardous Air Pollutants (HAPs) Green House Gas Emissions as Total CO ₂ e	Pounds per hour 1.6 pph 1.6 pph 1.6 pph 5163.7 pph 438.3 pph 847.1 pph 1506.1 pph 2.6 pph n/a	Tons per year 6.7 tpy 6.7 tpy 6.7 tpy 49.7 tpy 118.7 tpy 88.2 tpy 148.3 tpy 11.4 tpy 209,721 tpy

The standard and maximum operating schedules of the facility will be 24 hours per day, 7 days a week and a maximum of 52 weeks per year.

The owner and/or operator of the Facility is: ET Gathering & Processing LLC, 1706 South Midkiff Road, Midland, TX 79701

If you have any comments about the construction or operation of this facility, and you want your comments to be made as part of the permit review process, you must submit your comments in writing to this address: Permit Programs Manager; New Mexico Environment Comments; Air Quality Bureau; 525 Camino de los Marquez, Suite 1; Santa Fe, New Mexico; 87505-1816. Other comments and questions may be submitted verbally. (505) 476-4300; 1 800 224-7009.

Please refer to the company name and site name, or send a copy of this notice along with your comments, since the Department may have not yet received the permit application. Please include a legible return mailing address with your comments. Once the Department has performed a preliminary review of the application and its air quality impacts, the Department's notice will be published in the legal section of a newspaper circulated near the facility location.

General information about air quality and the permitting process, and links to the regulations can be found at the Air Quality Bureau's website: www.env.nm.gov/air-quality/permitting-section-home-page/. The regulation dealing with public participation in the permit review process is 20.2.72.206 NMAC.

Attención

Este es un aviso de la oficina de Calidad del Aire del Departamento del Medio Ambiente de Nuevo México, acerca de las emisiones producidas por un establecimiento en esta área. Si usted desea información en español, por favor comuníquese con esa oficina al teléfono 505-

Notice of Non-Discrimination

NMED does not discriminate on the basis of race, color, national origin, disability, age or sex in the administration of its programs or activities, as required by applicable laws and regulations. The administration of its programs or activities, as required by applicable laws and regulations of the administration of its programs or activities, as required by applicable laws and receipt of inquiries concerning the administration of its programs or activities. Part 7, including Title VI of the Civil NMED is responsible for coordination simplemented by 40 C.F.R. Part 7, including Title VI of the Age non-discrimination act of 1973; the Age non-discrimination Act of 1974, and Section 13 of Rights Act of 1964, as amended; Section 504 of the Rehabilitation Act of 1972, and Section 13 of its representation Act of 1975, Title IX of the Education Amendments of 1972, and Section 13 of its representation act of 1975, Title IX of the Education Amendments of 1972. If you have any questions about the Federal Water Pollution Control Act Amendments of 1972. If you have any questions about the Federal Water Pollution Control Act Amendments of 1972. If you have any questions about the Federal Water Pollution Control Act Amendments of 1972. If you have any questions about the Federal Water Pollution Control Act Amendments of 1972. If you have any questions about the Federal Water Pollution Control Act Amendments of 1972. If you have any questions about the Federal Water Pollution Control Act Amendments of 1972. If you have any questions about the Federal Water Pollution Control Act Amendments of 1972. If you have any questions are received to the Civil Title IX of the Education Amendments of 1972. If you have any questions are received to the Civil Title IX of the Education Amendments of 1972. If you have any question 1973, and for the Civil Title IX of the Education Amendments of 1972. If you have any question 1973, and for the Civil Title IX of the Education Amendments of 1972. If you have any ques

Lea County Assessor Parcel Map

Written Description of the Routine Operations of the Facility

A written description of the routine operations of the facility. Include a description of how each piece of equipment will be operated, how controls will be used, and the fate of both the products and waste generated. For modifications and/or revisions, explain how the changes will affect the existing process. In a separate paragraph describe the major process bottlenecks that limit production. The purpose of this description is to provide sufficient information about plant operations for the permit writer to determine appropriate emission sources.

The facility is a natural gas gathering and boosting station with amine treating, dehydration and an acid gas injection well. Sour field gas is treated in an amine sweetening unit to remove acid gas.

Acid gas removed from the natural gas stream by the sweetening unit is injected in a Class II underground injection disposal well by a set of electric acid gas injection (AGI) compressor units. Vapors from the flash tank are routed back to inlet. During periods of AGI compressor downtime, acid gasses will be directed to the acid gas flare.

The treated gas is compressed to pipeline delivery pressure by two compressor units. After compression, the treated gas will flow to the glycol dehydration unit. Vapors from the glycol dehydrator still vent will be sent to a flare and vapors from the flash tank will be routed to the site's fuel system.

Liquids from the inlet slug catcher are sent to the condensate stabilizer system that is powered by an HMO heater. Stabilized condensate is stored in pressurized tanks prior to off-site transport via pressurized trucks. Separated slop water from the slug catcher, facility scrubbers and liquid knockouts is sent to a gunbarrel tank that skims oil from the slop water and directs both products for storage to two atmospheric storage vessels. Skimmed oil and produced water are shipped off site via truck.

Form-Section 10 last revised: 8/15/2011 Section 10, Page 1 Saved Date: 10/25/2024

Source Determination

Source submitting under 20.2.70, 20.2.72, 20.2.73, and 20.2.74 NMAC

Sources applying for a construction permit, PSD permit, or operating permit shall evaluate surrounding and/or associated sources (including those sources directly connected to this source for business reasons) and complete this section. Responses to the following questions shall be consistent with the Air Quality Bureau's permitting guidance, <u>Single Source Determination Guidance</u>, which may be found on the Applications Page in the Permitting Section of the Air Quality Bureau website.

Typically, buildings, structures, installations, or facilities that have the same SIC code, that are under common ownership or control, and that are contiguous or adjacent constitute a single stationary source for 20.2.70, 20.2.72, 20.2.73, and 20.2.74 NMAC applicability purposes. Submission of your analysis of these factors in support of the responses below is optional, unless requested by NMED.

C. Make a determination:

with this source.

☑ The source, as described in this application, constitutes the entire source for 20.2.70, 20.2.72, 20.2.73, or 20.2.74 NMAC applicability purposes. If in "A" above you evaluated only the source that is the subject of this application, all "YES" boxes should be checked. If in "A" above you evaluated other sources as well, you must check AT LEAST ONE of the boxes "NO" to conclude that the source, as described in the application, is the entire source for 20.2.70, 20.2.72, 20.2.73, and 20.2.74 NMAC applicability purposes.

Contiguous or Adjacent: Surrounding or associated sources are contiguous or adjacent

□ No

⊠ Yes

☐ The source, as described in this application, **does not** constitute the entire source for 20.2.70, 20.2.72, 20.2.73, or 20.2.74 NMAC applicability purposes (A permit may be issued for a portion of a source). The entire source consists of the following facilities or emissions sources (list and describe):

Form-Section 11 last revised: 10/26/2011 Section 11, Page 1 Saved Date: 10/25/2024

Section 12.A

PSD Applicability Determination for All Sources

(Submitting under 20.2.72, 20.2.74 NMAC)

A PSD applicability determination for all sources. For sources applying for a significant permit revision, apply the applicable requirements of 20.2.74.AG and 20.2.74.200 NMAC and to determine whether this facility is a major or minor PSD source, and whether this modification is a major or a minor PSD modification. It may be helpful to refer to the procedures for Determining the Net Emissions Change at a Source as specified by Table A-5 (Page A.45) of the EPA New Source Review Workshop Manual to determine if the revision is subject to PSD review.

A. This facility is:

a minor PSD source before and after this modification (if so, delete C and D below).

a major PSD source before this modification. This modification will make this a PSD minor source.

an existing PSD Major Source that has never had a major modification requiring a BACT analysis.

an existing PSD Major Source that has had a major modification requiring a BACT analysis

☐ a new PSD Major Source after this modification.

Determination of State & Federal Air Quality Regulations

This section lists each state and federal air quality regulation that may apply to your facility and/or equipment that are stationary sources of regulated air pollutants.

Not all state and federal air quality regulations are included in this list. Go to the Code of Federal Regulations (CFR) or to the Air Quality Bureau's regulation page to see the full set of air quality regulations.

Required Information for Specific Equipment:

For regulations that apply to specific source types, in the 'Justification' column **provide any information needed to determine if the regulation does or does not apply**. **For example**, to determine if emissions standards at 40 CFR 60, Subpart IIII apply to your three identical stationary engines, we need to know the construction date as defined in that regulation; the manufacturer date; the date of reconstruction or modification, if any; if they are or are not fire pump engines; if they are or are not emergency engines as defined in that regulation; their site ratings; and the cylinder displacement.

Required Information for Regulations that Apply to the Entire Facility:

See instructions in the 'Justification' column for the information that is needed to determine if an 'Entire Facility' type of regulation applies (e.g. 20.2.70 or 20.2.73 NMAC).

Regulatory Citations for Regulations That Do Not, but Could Apply:

If there is a state or federal air quality regulation that does not apply, but you have a piece of equipment in a source category for which a regulation has been promulgated, you must provide the low level regulatory citation showing why your piece of equipment is not subject to or exempt from the regulation. For example if you have a stationary internal combustion engine that is not subject to 40 CFR 63, Subpart ZZZZ because it is an existing 2 stroke lean burn stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions, your citation would be 40 CFR 63.6590(b)(3)(i). We don't want a discussion of every non-applicable regulation, but if it is possible a regulation could apply, explain why it does not. For example, if your facility is a power plant, you do not need to include a citation to show that 40 CFR 60, Subpart OOO does not apply to your non-existent rock crusher.

Regulatory Citations for Emission Standards:

For each unit that is subject to an emission standard in a source specific regulation, such as 40 CFR 60, Subpart OOO or 40 CFR 63, Subpart HH, include the low level regulatory citation of that emission standard. Emission standards can be numerical emission limits, work practice standards, or other requirements such as maintenance. Here are examples: a glycol dehydrator is subject to the general standards at 63.764C(1)(i) through (iii); an engine is subject to 63.6601, Tables 2a and 2b; a crusher is subject to 60.672(b), Table 3 and all transfer points are subject to 60.672(e)(1)

Federally Enforceable Conditions:

All federal regulations are federally enforceable. All Air Quality Bureau State regulations are federally enforceable except for the following: affirmative defense portions at 20.2.7.6.B, 20.2.7.110(B)(15), 20.2.7.11 through 20.2.7.113, 20.2.7.115, and 20.2.7.116; 20.2.37; 20.2.42; 20.2.43; 20.2.62; 20.2.63; 20.2.86; 20.2.89; and 20.2.90 NMAC. Federally enforceable means that EPA can enforce the regulation as well as the Air Quality Bureau and federally enforceable regulations can count toward determining a facility's potential to emit (PTE) for the Title V, PSD, and nonattainment permit regulations.

INCLUDE ANY OTHER INFORMATION NEEDED TO COMPLETE AN APPLICABILITY DETERMINATION OR THAT IS RELEVENT TO YOUR FACILITY'S NOTICE OF INTENT OR PERMIT.

EPA Applicability Determination Index for 40 CFR 60, 61, 63, etc: http://cfpub.epa.gov/adi/

To save paper and to standardize the application format, delete this sentence, and begin your submittal for this attachment on this page.

Form-Section 13 last revised: 5/8/2023 Section 13, Page 1 Saved Date: 10/25/2024

Example of a Table for State Regulations:

State Regulation Citation	Title	Appli es? Enter Yes or No	Unit(s) or Facility	Justification: (You may delete instructions or statements that do not apply in the justification column to shorten the document.)
20.2.1 NMAC	General Provisions	Yes	Facility	General Provisions apply to Notice of Intent, Construction, and Title V permit applications.
20.2.3 NMAC	Ambient Air Quality Standards NMAAQS	Yes	Facility	If subject, this would normally apply to the entire facility. 20.2.3 NMAC is a State Implementation Plan (SIP) approved regulation that limits the maximum allowable concentration of, Sulfur Compounds, Carbon Monoxide and Nitrogen Dioxide. Title V applications, see exemption at 20.2.3.9 NMAC The TSP NM ambient air quality standard was repealed by the EIB effective November 30, 2018.
20.2.7 NMAC	Excess Emissions	Yes	Facility	If subject, this would normally apply to the entire facility. If your entire facility or individual pieces of equipment are subject to emissions limits in a permit or numerical emissions standards in a federal or state regulation, this applies. This would not apply to Notices of Intent since these are not permits.
20.2.23 NMAC	Fugitive Dust Control	No	Facility	The facility is not located in Doña Ana or Luna Counties, and is therefore not subject to 40 CFR §51.930 or 20.2.23 NMAC.
20.2.33 NMAC	Gas Burning Equipment - Nitrogen Dioxide	No	N/A	This facility does not have existing gas burning equipment having a heat input of greater than 1,000,000 million British Thermal Unit per year per unit. The facility is not subject to this regulation and does not have emission sources that meet the applicability requirements under 20.2.33.108 NMAC.
20.2.34 NMAC	Oil Burning Equipment: NO ₂	No	N/A	This facility does not have existing oil burning equipment having a heat input of greater than 1,000,000 million British Thermal Unit per year per unit. The facility is not subject to this regulation and does not have emission sources that meet the applicability requirements under 20.2.34.108 NMAC.
20.2.35 NMAC	Natural Gas Processing Plant – Sulfur	Yes	Facility	This regulation establishes sulfur emission standards for natural gas processing plants. The facility meets the definition of a new natural gas processing plant (the incinerator was added to the facility in 1976) under this regulation and is subject to the requirements of this regulation [20.2.35.7 (B) NMAC]. The facility meets the requirements under 20.2.35.110(B).
20.2.37 and 20.2.36 NMAC	Petroleum Processing Facilities and Petroleum Refineries	N/A	N/A	These regulations were repealed by the Environmental Improvement Board. If you had equipment subject to 20.2.37 NMAC before the repeal, your combustion emission sources are now subject to 20.2.61 NMAC.
20.2.38 NMAC	Hydrocarbon Storage Facility	No	N/A	Not applicable as facility does not have petroleum storage tanks with a capacity > 20,000 gallons. In addition, this plant does not contain a "tank battery" or a "hydrocarbon storage facility" as these terms are understood.
20.2.39 NMAC	Sulfur Recovery Plant - Sulfur	No	N/A	The facility will not operate a sulfur recovery plant.
20.2.50 NMAC	Oil and Gas Sector – Ozone Precursor Pollutants	Yes	C1 – C6 and associated compressors, 9F, FUG-1, FUG-2, DR2, 12H, LOAD, LOADOUT	Check the box for the subparts that are applicable: □ 113 – Engines and Turbines Existing: C1-C6 □ 114 – Compressor Seals Existing: C1-C6 compressors □ 115 – Control Devices and Closed Vent Systems Existing: 9F □ 116 – Equipment Leaks and Fugitive Emissions Existing: FUG-1 and FUG-2

Saved Date: 10/25/2024

State Regulation Citation	Title	Appli es? Enter Yes or No	Unit(s) or Facility	Justification: (You may delete instructions or statements that do not apply in the justification column to shorten the document.)
				□ 117 – Natural Gas Well Liquid Unloading □ 118 – Glycol Dehydrators Existing: DR2 □ 119 – Heaters Existing: 12H □ 120 – Hydrocarbon Liquid Transfers Existing: LOAD, LOADOUT □ 121 – Pig Launching and Receiving □ 122 – Pneumatic Controllers and Pumps □ 123 – Storage Vessels □ 124 – Well Workovers □ 125 – Small Business Facilities □ 126 – Produced Water Management Unit □ 127 – Flowback Vessels and Preproduction Operations
20.2.61.109 NMAC	Smoke & Visible Emissions	Yes	C1 - C6, 12H, 13H, 14H, 8F, 9F, 10F	This regulation that limits opacity to 20% applies to Stationary Combustion Equipment, such as engines, boilers, heaters, and flares. The combustion equipment at the facility is subject to this regulation.
20.2.70 NMAC	Operating Permits	Yes	Facility	Jal 3 has been issued operating permit P-090-R3.
20.2.71 NMAC	Operating Permit Fees	Yes	Facility	The facility is subject to 20.2.70 NMAC and is therefore subject to requirements of this regulation.
20.2.72 NMAC	Construction Permits	Yes	Facility	The facility is subject as emissions are greater than 10 lb/hr and 25 tpy of regulated air contaminants for which there are National or New Mexico Ambient Air Quality Standards.
20.2.73 NMAC	NOI & Emissions Inventory Requirements	Yes	Facility	The facility meets the applicability requirements of 20.2.73.300.A.1 NMAC.
20.2.74 NMAC	Permits – Prevention of Significant Deterioration (PSD)	No	Facility	Jal 3 is not classified as a PSD source.
20.2.75 NMAC	Construction Permit Fees	Yes	Facility	The facility is subject to 20.2.72 NMAC and is therefore subject to requirements of this regulation.
20.2.77 NMAC	New Source Performance	Yes	C1 - C6, FUG1, FUG2	This is a stationary source which is subject to the requirements of 40 CFR Part 60.
20.2.78 NMAC	Emission Standards for HAPS	No	N/A	This facility is not subject to the requirements of 40 CFR Part 61.

State Regulation Citation	Title	Appli es? Enter Yes or No	Unit(s) or Facility	Justification: (You may delete instructions or statements that do not apply the justification column to shorten the document.)				
20.2.79 NMAC	Permits – Nonattainment No N, Areas			This regulation does not apply because the facility is not located in a nonattainment area.				
20.2.80 NMAC	Stack Heights	No	N/A	This regulation established requirements for the evaluation of stack heights and other dispersion techniques. The stacks at the facility will follow good engineering practices. This regulation does not apply as all stacks at the facility will follow good engineering practice.				
20.2.82 NMAC	MACT Standards for source categories of HAPS	Yes	DR2, C1 – C6	The Facility is an Area source of HAP emissions. The glycol dehydrator is subject to 40 CFR 63 Subpart HH and the engines are subject to 40 CFR 63 Subpart ZZZZ.				

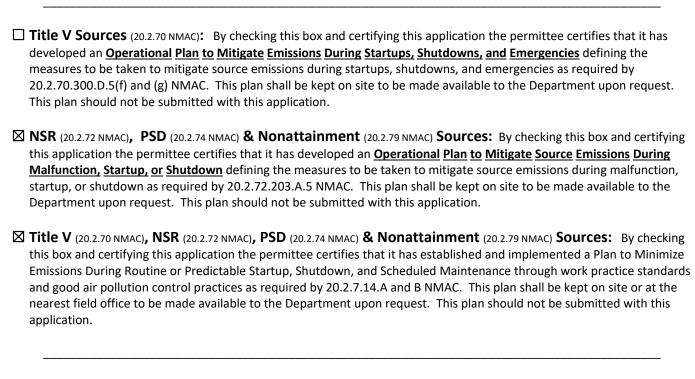
Example of a Table for Applicable Federal Regulations (Note: This is not an exhaustive list):

Federal Regulation Citation	Title	Applies? Enter Yes or No	Unit(s) or Facility	Justification:					
40 CFR 50	NAAQS	Yes	Facility	The facility meets all applicable national ambient air quality standards for NOx, CO, SO2, H2S, PM10, and PM2.5 under this regulation.					
NSPS 40 CFR 60, Subpart A	General Provisions	Yes	C1 - C6, FUG1, FUG2	NSPS JJJJ, OOOO and OOOOa apply.					
NSPS 40 CFR60.40a, Subpart Da	Subpart Da, Performance Standards for Electric Utility Steam Generating Units	No	N/A	This regulation does not apply because the facility does not operate any electric utility steam generating units.					
NSPS 40 CFR60.40b Subpart Db	Electric Utility Steam Generating Units	No	N/A	The regulation does not apply because the facility does not operate any industrial-commercial-institutional steam generating units with heat inputs greater than 100 MMBtu/hr.					

Saved Date: 10/25/2024

Federal Regulation Citation	Title	Applies? Enter Yes or No	Unit(s) or Facility	Justification:
40 CFR 60.40c, Subpart Dc	Standards of Performance for Small Industrial- Commercial- Institutional Steam Generating Units	No	N/A	The regulation does not apply because the facility does not operate any steam generating units.
NSPS 40 CFR 60, Subpart Ka	Standards of Performance for Storage Vessels for Petroleum Liquids for which Construction, Reconstruction, or Modification Commenced After May 18, 1978, and Prior to July 23, 1984	No	N/A	Not applicable as there are no petroleum liquid storage vessels that commenced construction, reconstruction, or modification after May 18, 1978 and prior to July 23, 1984 and/or have capacities greater than 40,000 gallons.
NSPS 40 CFR 60, Subpart Kb	Standards of Performance for Volatile Organic Liquid Storage Vessels (Including Petroleum Liquid Storage Vessels) for Which Construction, Reconstruction, or Modification Commenced After July 23, 1984	No	N/A	Not applicable as there are no volatile organic liquid storage vessels which commenced construction, reconstruction, or modification after July 23, 1984 and/or which have capacities greater than 75 cubic meters (m³).
NSPS 40 CFR 60.330 Subpart GG	Stationary Gas Turbines	No	N/A	The facility does not operate stationary gas turbines and is therefore not subject to this regulation.
NSPS 40 CFR 60, Subpart KKK	Leaks of VOC from Onshore Gas Plants	No	N/A	NSPS KKK applies to equipment leaks of VOC from natural gas processing plants constructed, reconstructed or modified after January 20, 1984 and on or before August 23, 2011. This subpart does not apply as the Facility no longer fits the NSPS KKK definition of a "Natural gas processing plant" as it does not extract natural gas liquids from field gas.
NSPS 40 CFR Part 60 Subpart LLL	Standards of Performance for Onshore Natural Gas Processing: SO ₂ Emissions	No	N/A	This subpart does not apply as the acid gas produced at the facility is completely reinjected into oil-or-gas bearing geologic strata or otherwise not released to the atmosphere.
NSPS 40 CFR Part 60 Subpart 0000	Standards of Performance for Crude Oil and Natural Gas Production, Transmission, and Distribution for which construction,	Yes	C1 – C4 compressors	NSPS OOOO is applicable to the compressor of engine Units C1-C4 since construction commenced after August 23, 2011 (40 CFR 60.5365(e)). In addition, component changes associated with Units C1-C4 are considered a modification under NSPS OOOO.

Federal Regulation Citation	Title	Applies? Enter Yes or No	Unit(s) or Facility	Justification:
	modification or reconstruction commenced after August 23, 2011 and before September 18, 2015			
NSPS 40 CFR Part 60 Subpart OOOOa	Standards of Performance for Crude Oil and Natural Gas Facilities for which Construction, Modification or Reconstruction Commenced After September 18, 2015	Yes	C5, C6, FUG1	NSPS OOOOa is applicable to the compressors of engine Units C5 and C6 as construction commenced after September 18, 2015 (40 CFR 60.5365(e)). NSPS OOOOa applies to these specific fugitive components (portion of FUG1).
NSPS 40 CFR 60 Subpart IIII	Standards of performance for Stationary Compression Ignition Internal Combustion Engines	No	N/A	This facility does not operate compression ignition internal combustion engines.
NSPS 40 CFR Part 60 Subpart JJJJ	Standards of Performance for Stationary Spark Ignition Internal Combustion Engines	Yes	C1 - C6	The engines are subject to NSPS JJJJ per 60.4230(a)(4)(i) and the standards in 60.4233(e) and Table 1. C1-C4 • 3550 hp • Mfr dates: 8/7/2018, 1/2/2008, 1/2/2008, and 1/2/2008 C5 and C6 • 1875 hp • Mfr dates: 5/28/2019 and 5/1/2019
NSPS 40 CFR 60 Subpart TTTT	Standards of Performance for Greenhouse Gas Emissions for Electric Generating Units	No	N/A	There will be no electric generating units at the site.
NSPS 40 CFR 60 Subpart UUUU	Emissions Guidelines for Greenhouse Gas Emissions and Compliance Times for Electric Utility Generating Units	No	N/A	There will be no electric generating units at the site.
NSPS 40 CFR 60, Subparts WWW, XXX, Cc, and Cf	Standards of performance for Municipal Solid Waste (MSW) Landfills	No	N/A	The Facility is not a municipal solid waste landfill.
NESHAP	General Provisions	No	N/A	No Subpart standards apply under this Part.


Federal Regulation Citation	Title	Applies? Enter Yes or No	Unit(s) or Facility	Justification:					
40 CFR 61 Subpart A									
NESHAP 40 CFR 61 Subpart E	National Emission Standards for Mercury	No	N/A	This facility does not process mercury therefore this regulation does not apply.					
NESHAP 40 CFR 61 Subpart V	National Emission Standards for Equipment Leaks (Fugitive Emission Sources)	No	N/A	The regulated activities subject to this regulation do not take place at this facility. The facility is not subject to this regulation.					
MACT 40 CFR 63, Subpart A	General Provisions	Yes	C1 – C6, DR2	40 CFR 63 Subpart HH and ZZZZ apply.					
MACT 40 CFR 63.760 Subpart HH	Oil and Natural Gas Production Facilities	Yes	DR2	This facility is Subject to the requirements of 40 CFR 63 Subpart HH. Facility is a minor source for HAPs (including formaldehyde and total HAPs), as indicated by this application and will comply with the minor source requirements of Subpart HH.					
MACT 40 CFR 63 Subpart HHH		No	N/A	This subpart applies to owners and operators of natural gas transmission and storage facilities that transport or store natural gas prior to entering the pipeline to a local distribution company or to a final end user (if there is no local distribution company), and that are major sources of hazardous air pollutants (HAP) emissions as defined in §63.1271. The facility is not a natural gas transmission or storage facility.					
MACT 40 CFR 63 Subpart DDDDD	National Emission Standards for Hazardous Air Pollutants for Major Industrial, Commercial, and Institutional Boilers & Process Heaters	No	N/A	This subpart established national emission limitation and work practice standards for hazardous air pollutants (HAP) emitted from industrial, commercial, and institutional boilers and process heaters located at major sources of HAP. This facility is not a major source of HAP. This regulation does not apply.					
MACT 40 CFR 63 Subpart UUUUU	National Emission Standards for Hazardous Air Pollutants Coal & Oil Fire Electric Utility Steam Generating Unit	No	N/A	This subpart establishes national emission limitations and work practice standards for hazardous air pollutants (HAP) emitted from coal- and oil-fired electric utility steam generating units (EGUs) as defined in §63.10042 of this subpart. This facility does not contain the affected source. This regulation does not apply.					
MACT 40 CFR 63 Subpart ZZZZ	National Emissions Standards for Hazardous Air Pollutants for Stationary Reciprocating Internal Combustion Engines (RICE MACT)	Yes	C1 – C6	The engines are subject to MACT ZZZZ and meet the requirements by complying with NSPS JJJJ per 63.6590(c)(1).					

Saved Date: 10/25/2024

Federal Regulation Citation	Title	Applies? Enter Yes or No	Unit(s) or Facility	Justification:				
40 CFR 64	Compliance Assurance Monitoring		AGI, 8F, 9F	CAM applies to the acid gas re-injection well and flares 8F and 9F. A plan has been submitted to the state. The IC engines at the facility are equipped with catalysts are not in themselves major sources.				
40 CFR 68	Chemical Accident Prevention	Yes	Facility	Jal 3 is subject to the rule.				
Title IV – Acid Rain 40 CFR 72	Acid Rain	No	N/A	Jal 3 is not an Acid Rain source.				
Title IV – Acid Rain 40 CFR 73	Sulfur Dioxide Allowance Emissions	No	N/A	Jal 3 is not an Acid Rain source.				
Title IV-Acid Rain 40 CFR 75	Continuous Emissions Monitoring	No	N/A	Jal 3 is not an Acid Rain source.				
Title IV – Acid Rain 40 CFR 76	Acid Rain Nitrogen Oxides Emission Reduction Program	No	N/A	Jal 3 is not an Acid Rain source.				
Title VI – 40 CFR 82	Protection of Stratospheric Ozone	Yes	N/A	(82.150) if you service, maintain, or repair appliances, dispose of appliances, refrigerant reclaimers, if you are an owner or operator of an appliance, if you are a manufacturer of appliances or of recycling and recovery equipment, if you are an approved recycling and recovery equipment testing organization, and/or if you sell or offer for sell or purchase class I or class I refrigerants. ETGP owns appliances containing CFCs and is therefore technically subject to this requirement. ETGP uses only certified technicians for the maintenance, service, repair, and disposal of appliances and maintains the appropriate records for this requirement.				

Operational Plan to Mitigate Emissions

(Submitting under 20.2.70, 20.2.72, 20.2.74 NMAC)

Startup and shutdown procedures are based on manufacturer's recommendations or ETGP's experience with specific equipment. The procedures are designed to proactively address the potential for malfunction to the greatest extent possible. These procedures dictate a sequence of operations that are designed to minimize emissions from the facility during events that result in shutdown and subsequent startup. Equipment located at the facility is equipped with various safety devices and features that aid in the prevention of excess emissions in the event of an operational emergency. If an operational emergency does occur and excess emissions occur, ETGP will submit the required Excess Emissions Report per 20.2.7 NMAC. Corrective action to eliminate the excess emissions and prevent recurrence in the future will be undertaken as quickly as safety allows. ETGP has developed an Operational Plan to Mitigate Emissions During Startups, Shutdowns, and Malfunctions as required by 20.2.70.300.D.5 NMAC. This plan is kept on site and will be made available to the Department upon request.

Alternative Operating Scenarios

(Submitting under 20.2.70, 20.2.72, 20.2.74 NMAC)

Alternative Operating Scenarios: Provide all information required by the department to define alternative operating scenarios. This includes process, material and product changes; facility emissions information; air pollution control equipment requirements; any applicable requirements; monitoring, recordkeeping, and reporting requirements; and compliance certification requirements. Please ensure applicable Tables in this application are clearly marked to show alternative operating scenario.

Construction Scenarios: When a permit is modified authorizing new construction to an existing facility, NMED includes a condition to clearly address which permit condition(s) (from the previous permit and the new permit) govern during the interval between the date of issuance of the modification permit and the completion of construction of the modification(s). There are many possible variables that need to be addressed such as: Is simultaneous operation of the old and new units permitted and, if so for example, for how long and under what restraints? In general, these types of requirements will be addressed in Section A100 of the permit, but additional requirements may be added elsewhere. Look in A100 of our NSR and/or TV permit template for sample language dealing with these requirements. Find these permit templates at: https://www.env.nm.gov/air-quality/permitting-section-procedures-and-guidance/. Compliance with standards must be maintained during construction, which should not usually be a problem unless simultaneous operation of old and new equipment is requested.

In this section, under the bolded title "Construction Scenarios", specify any information necessary to write these conditions, such as: conservative-realistic estimated time for completion of construction of the various units, whether simultaneous operation of old and new units is being requested (and, if so, modeled), whether the old units will be removed or decommissioned, any PSD ramifications, any temporary limits requested during phased construction, whether any increase in emissions is being requested as SSM emissions or will instead be handled as a separate Construction Scenario (with corresponding emission limits and conditions, etc.

This application does not include alternative operating scenarios.

Form-Section 15 last revised: 8/15/2011 Section 15, Page 1 Saved Date: 10/25/2024

Saved Date: 10/25/2024

Section 16

Air Dispersion Modeling

- 1) Minor Source Construction (20.2.72 NMAC) and Prevention of Significant Deterioration (PSD) (20.2.74 NMAC) ambient impact analysis (modeling): Provide an ambient impact analysis as required at 20.2.72.203.A(4) and/or 20.2.74.303 NMAC and as outlined in the Air Quality Bureau's Dispersion Modeling Guidelines found on the Planning Section's modeling website. If air dispersion modeling has been waived for one or more pollutants, attach the AQB Modeling Section modeling waiver approval documentation.
- 2) SSM Modeling: Applicants must conduct dispersion modeling for the total short term emissions during routine or predictable startup, shutdown, or maintenance (SSM) using realistic worst case scenarios following guidance from the Air Quality Bureau's dispersion modeling section. Refer to "Guidance for Submittal of Startup, Shutdown, Maintenance Emissions in Permit Applications (http://www.env.nm.gov/aqb/permit/app form.html) for more detailed instructions on SSM emissions modeling requirements.
- 3) Title V (20.2.70 NMAC) ambient impact analysis: Title V applications must specify the construction permit and/or Title V Permit number(s) for which air quality dispersion modeling was last approved. Facilities that have only a Title V permit, such as landfills and air curtain incinerators, are subject to the same modeling required for preconstruction permits required by 20.2.72 and 20.2.74 NMAC.

What is the purpose of this application?	Enter an X for each purpose that applies
New PSD major source or PSD major modification (20.2.74 NMAC). See #1 above.	
New Minor Source or significant permit revision under 20.2.72 NMAC (20.2.72.219.D NMAC). See #1 above. Note: Neither modeling nor a modeling waiver is required for VOC emissions.	Х
Reporting existing pollutants that were not previously reported.	
Reporting existing pollutants where the ambient impact is being addressed for the first time.	
Title V application (new, renewal, significant, or minor modification. 20.2.70 NMAC). See #3	
above.	
Relocation (20.2.72.202.B.4 or 72.202.D.3.c NMAC)	
Minor Source Technical Permit Revision 20.2.72.219.B.1.d.vi NMAC for like-kind unit	
replacements. Other: i.e. SSM modeling. See #2 above.	
This application does not require modeling since this is a No Permit Required (NPR) application.	
This application does not require modeling since this is a Notice of Intent (NOI) application (20.2.73 NMAC).	
This application does not require modeling according to 20.2.70.7.E(11), 20.2.72.203.A(4), 20.2.74.303, 20.2.79.109.D NMAC and in accordance with the Air Quality Bureau's Modeling Guidelines.	

Check each box that applies:

Ш	See attached, approved modeling waiver for all pollutants from the facility.
	See attached, approved modeling waiver for some pollutants from the facility.
\boxtimes	Attached in Universal Application Form 4 (UA4) is a modeling report for all pollutants from the facility
	Attached in UA4 is a modeling report for some pollutants from the facility.
	No modeling is required.

Universal Application 4

Air Dispersion Modeling Report

Refer to and complete Section 16 of the Universal Application form (UA3) to assist your determination as to whether modeling is required. If, after filling out Section 16, you are still unsure if modeling is required, e-mail the completed Section 16 to the AQB Modeling Manager for assistance in making this determination. If modeling is required, a modeling protocol would be submitted and approved prior to an application submittal. The protocol should be emailed to the modeling manager. A protocol is recommended but optional for minor sources and is required for new PSD sources or PSD major modifications. Fill out and submit this portion of the Universal Application form (UA4), the "Air Dispersion Modeling Report", only if air dispersion modeling is required for this application submittal. This serves as your modeling report submittal and should contain all the information needed to describe the modeling. No other modeling report or modeling protocol should be submitted with this permit application.

16-	A: Identification	
1	Name of facility:	Jal #3 Gas Plant
2	Name of company:	ET Gathering & Processing LLC
3	Current Permit number:	1092M10R3
4	Name of applicant's modeler:	James VanAssche
5	Phone number of modeler:	214-840-5217
6	E-mail of modeler:	james.vanassche@energytransfer.com

16	16-B: Brief									
1	Was a modeling protocol submitted and approved?	Yes⊠	No□							
2	Why is the modeling being done? Other (describe below)									
3	Describe the permit changes relevant to the modeling.									
	Updates to hourly emissions rates of SSM flaring from flares 9F and 10F.									
4	What geodetic datum was used in the modeling?									
5	How long will the facility be at this location? Permanent									
6	Is the facility a major source with respect to Prevention of Significant Deterioration (PSD)?	Yes□	No⊠							

7	Identify the Air Quali		155						
	List the PSD baseline	dates for this region	(minor or major, as	appropriate).			I		
	NO2			3/16/1988	3/16/1988				
8	SO2			7/28/1978					
-	PM10			2/20/1979					
-	PM2.5			11/13/2013					
	Provide the name an	d distance to Class I	areas within 50 km	of the facility (3	300 km f	or PSD perm	its).		
No Class I Areas within 50 km of the facility.									
10	Is the facility located	in a non-attainment	area? If so describe	below			Yes□	No⊠	
							I.	<u> </u>	
11	Describe any special	modeling requireme	ents, such as streaml	ine permit requ	uiremen	ts.			
11	N/A								
16-	C: Modeling								
	Describe the modeli Ambient Air Quality modeling waivers).								
	,	· ·	Latest permit and modification						
	Pollutant	number that mo		Date of Permit Comm		nments			
	СО	1092M10R3		10/26/2023					
	NO ₂	1092M10R3			0/26/2023				
1	SO ₂	1092M10R3		0/26/2023					
	H₂S	1092M10R3		0/26/2023					
	PM2.5	1092M10R3	1	0/26/2023	/26/2023				
	PM10	1092M10R3	1	0/26/2023					
	Lead	N/A							
	Ozone (PSD only)	N/A							
	NM Toxic Air								
	Pollutants	N/A							
	(20.2.72.402 NMAC)								
16-	D: Modeling	nerformed fo	or this annlic	ation					
	For each pollutant, i				aic annli	ration			
	Choose the most co						sumes RC	I and cumulativ	⁄e
	analysis were also p	-		, , ,		, ,			
1	Pollutant	ROI	Cumulative analysis	Culpability analysis			oroved	Pollutant not emitted or not changed.	:
	СО	\boxtimes							
	ı		1						

	NO ₂			\boxtimes									
	SO ₂				\boxtimes								
	H ₂ S		\boxtimes										
	PM2.5 □												
	PM10		\boxtimes										
	Lead										\boxtimes		
	Ozone										\boxtimes		
	State air to (20.2.72.40 NMAC)										\boxtimes		
16-	E: New	Mexi	co toxi	c air po	llutants	mo	deling						
1	application N/A						es A and B in 2						
	below, if re	quired.					tack height co	rrection	factor. Add				
2	Pollutant	Emissic (pound	on Rate s/hour)	Emission R Level (pou	late Screening nds/hour)	g Stack Height (meters) Correc			ction Factor			Emission Rate/ Correction Factor	
												-	
16-	F: Mod	eling	option	S									
1	Was the la	test versi	on of AERI	MOD used w	ith regulator	ory default options? If not explain below. Yes⊠					No□		
_													
16-	G: Surre	oundi	ng sou	rce mo	deling								
1	Date of sur					9/26/2024							
2	If the surrounding source inventory provided by the Air Quality Bureau was believed to be inaccurate, describe how the sources modeled differ from the inventory provided. If changes to the surrounding source inventory were made, use the table below to describe them. Add rows as needed.												
۷	AQB Source ID Description of Corre				ions								
16-	16-H: Building and structure downwash												
1	How many	building	s are prese	nt at the fac	cility?	29							
2	How many at the facili		ound stor	age tanks ar	e present	6							
					·			·				·	

3	Was buildir	ng downwash mo	odeled for all b	ouildings and tanks? If n	ot explain why below		Yes⊠	No□	
4	Building co	mments							
LI CONTRACTOR OF THE PROPERTY									
16-	6-I: Receptors and modeled property boundary								
1	"Restricted Area" is an area to which public entry is effectively precluded. Effective barriers include continuous fencing, continuous walls, or other continuous barriers approved by the Department, such as rugged physical terrain with a steep grade that would require special equipment to traverse. If a large property is completely enclosed by fencing, a restricted area within the property may be identified with signage only. Public roads cannot be part of a Restricted Area. A Restricted Area is required in order to exclude receptors from the facility property. If the facility does not have a Restricted Area, then receptors shall be placed within the property boundaries of the facility. Describe the fence or other physical barrier at the facility that defines the restricted area.								
	The facility is fenced.								
2	Receptors must be placed along publicly accessible roads in the restricted area. Are there public roads passing through the restricted area?						Yes□	No⊠	
3	Are restrict	ed area boundar	y coordinates	included in the modeli	ng files?		Yes⊠	No□	
	Describe the receptor grids and their spacing. The table below may be used, adding rows as needed.								
	Grid Type	Shape	Spacing	Start distance from restricted area or center of facility	End distance from restricted area or center of facility	Comments			
4	Fine	Rectangular	100 m	Fenceline	1000 m				
	Medium	Rectangular	250 m	1000 m	2500 m				
	Coarse	Rectangular	500 m	2500 m	5000 m				
	Coarse	Rectangular	1000 m	5000 m	20,000 m				
		ceptor spacing a		line.	•				
5	50 m spaci	ng around the fe	nce line.						
		ne PSD Class I are	a receptors.						
6	N/A								
16	-J: Mod	eling Scena	arios						
	Identify, define, and describe all modeling scenarios. Examples of modeling scenarios include using different production								

dentify, define, and describe all modeling scenarios. Examples of modeling scenarios include using different productio rates, times of day, times of year, simultaneous or alternate operation of old and new equipment during transition periods, etc. Alternative operating scenarios should correspond to all parts of the Universal Application and should be fully described in Section 15 of the Universal Application (UA3).

No alternate scenarios were used.

2	Which scenario produces the highest concentrations? Why?											
_	N/A											
3	Were emiss (This quest the factors	ion pertaiı	ns to the "S	SEASON",	"MONTH",	, "HROFDY'			sets, not to	Yes□		No⊠
4			_						ore the factorification if it makes for		_	
	Hour of Day	Factor	Hour of Day	Factor								
•	1		13									
	2		14									
	3		15									
	4		16									
	5		17									
	6		18									
5	7		19									
	8		20									
	9		21									
	10		22									
	11		23									
	12		24									
	If hourly, variable emission rates were used that were not described above, describe them below.											
											T	
6	Were differ below.	rent emiss	ion rates ι	ised for sh	ort-term a	nd annual	modeling?	' If so desc	ribe	Yes□		No⊠
16-	K: NO ₂											
	Which type Check all th		nodeling v	vere used	?							
4	\boxtimes	ARM2										
1		100% N	IO _X to NO ₂	conversio	n							
		PVMRN	Л									
		OLM										
		Other:										
2	Describe th	ne NO ₂ mo	deling.									

3	Were default NO_2/NO_X ratios (0.5 minimum, 0.9 maximum or equilibrium) used? If not describe and justify the ratios used below.						
4	Describe the design value used for each averaging period modeled.						
•	1-hour: High eighth high						
1	Annual Highest Annual Average of Three Years:						

16-	L: Ozone Analys	sis					
1	NMED has performed a generic analysis that demonstrates sources that are minor with respect to PSD do not cause or contribute to any violations of ozone NAAQS. The analysis follows. The basis of the ozone SIL is documented in <i>Guidance on Significant Impact Levels for Ozone and Fine Particles in the Prevention of Significant Deterioration Permitting Program</i> , EPA, April 17, 2018 and associated documents. NMED accepts this SIL basis and incorporates it into this permit record by reference. Complete documentation of the ozone concentration analysis using MERPS is included in the New Mexico Air Quality Bureau Air Dispersion Modeling Guidelines.						
2	The MERP values presented in Table 10 and Table 11 of the NM AQB Modeling Guidelines that produce the highest concentrations indicate that facilities emitting no more than 250 tons/year of NO _x and no more than 250 tons/year of VOCs will cause less formation of O ₃ than the O ₃ significance level. $ [O_3]_{8-hour} = \left(\frac{250 \frac{ton}{yr}}{340_{MERP_{NOX}}} + \frac{250 \frac{ton}{yr}}{4679_{MERP_{VOC}}}\right) \times 1.96 \ \mu\text{g/m}^3 $ $ = 1.546 \ \mu\text{g/m}^3, \text{ which is below the significance level of } 1.96 \ \mu\text{g/m}^3. $ Sources that produce ozone concentrations below the ozone SIL do not cause or contribute to air contaminant levels exceeding the ozone NAAQS.						
3	VOCs? Sources that emi	least 250 tons per year of t at least 250 tons per yea e analysis above and requ	ar of NO_X or at least 250 to		Yes□		No⊠
		ces or PSD major modific od was used describe belo		ed to account for	ozone fil	l out the i	nformation
5	NO _x (ton/yr)	MERP _{NOX}	VOCs (ton/yr)	MERP _{VOC}		[O ₃] _{8-hour}	r
	N/A	N/A	N/A	N/A		N/A	
						_	

16-	16-M: Particulate Matter Modeling						
	Select the po	Select the pollutants for which plume depletion modeling was used.					
1		PM2.5					
		PM10					
	\boxtimes	None					
•	Describe the particle size distributions used. Include the source of information.						
2							
3	Does the facility emit at least 40 tons per year of NO _X or at least 40 tons per year of SO₂? Sources that emit at least 40 tons per year of No _X or at least 40 Yes ⊠						

	NO_X or at least 40 tons per significant amounts of prec formation of PM2.5.	•					
4	Was secondary PM modeled for PM2.5?			Yes□	No⊠		
	If MERPs were used to accorbelow.	ount for seconda	ation below. If another method v	vas used describe			
	Pollutant	NO _X	SO ₂		[PM2.5] _{24-hour}		
5	MERP _{annual}	26780	14978		0.07156		
	MERP _{24-hour}	7331	1981		[PM2.5] _{annual} 0.002065		
	Emission rate (ton/yr)	126.48	83.96				

16-	-N: Setback Distances
1	Portable sources or sources that need flexibility in their site configuration requires that setback distances be determined between the emission sources and the restricted area boundary (e.g. fence line) for both the initial location and future locations. Describe the setback distances for the initial location.
	N/A
2	Describe the requested, modeled, setback distances for future locations, if this permit is for a portable stationary source. Include a haul road in the relocation modeling.
	N/A

16-	.6-O: PSD Increment and Source IDs							
1		e Tables 2-A, 2-B, 2-C, 2-E, e match? If not, provide a match below.				Yes⊠		No□
	Unit Number in UA-2			Unit Numb	er in Modeling Files			
2	The emission rates in the Tables 2-E and 2-F should match the ones in the modeling files. Do these match? If not, explain why below.					Yes⊠		No□
3	Have the minor NSR exe been modeled?	empt sources or Title V In	significant Ac	tivities" (Tab	le 2-B) sources	Yes□		No⊠
	Which units consume in	ncrement for which pollut	ants?					
	Unit ID	NO ₂	SO ₂		PM10	PI	M2.5	
4	C1	X	Χ		X	Х		
	C2	X	Χ		X	Х	•	
	C3	X	Χ		X	Х		
	C4	Х	Х		Х	Х		_

	C5	X	X		Х		Χ	
	C6	Х	Χ		Х		Χ	
	12H	Х	X		Х		Χ	
	13H	Х	Х		Х		X	
	14H	Х	Х		Х		Χ	
	10F	Х	Х		Х		Χ	
	9F	Х	Х		Х		Χ	
				_				
5	PSD increment descript (for unusual cases, i.e., after baseline date).	ion for sources. baseline unit expanded e	missions	9F, 10F em	issions changes afte	r base	line	
Are all the actual installation dates included in Table 2A of the application form, as required? This is necessary to verify the accuracy of PSD increment modeling. If not please explain how increment consumption status is determined for the missing installation dates below.						Yes⊠ No□		No□

16-	16-P: Flare Modeling								
1	For each flare or flaring scenario, complete the following								
	Flare ID (and scenario)	Average Molecular Weight	Gross Heat Release (cal/s)	Effective Flare Diameter (m)					
	10F	52	209526145.7	38.40					
	9F	52	1929453.8	3.80					

16-	16-Q: Volume and Related Sources							
1	Were the dimensions of volume sources different from standard dimensions in the Air Quality Bureau (AQB) Modeling Guidelines? If not please explain how increment consumption status is determined for the missing installation dates below.	Yes□	No⊠					
	Describe the determination of sigma-Y and sigma-Z for fugitive sources.							
2	Describe the determination of signia-1 and signia-2 for fugitive sources.							
	Describe how the volume sources are related to unit numbers.							
3	Or say they are the same.							
	Describe any open pits.							
4								
	Describe emission units included in each open pit.							

5									
16-	R: Backgi	round Concentra	ntions						
	Were NMED	provided background cond	entrations used? Identify the background s	tation					
	used below. I	f non-NMED provided bac	the data	Yes⊠	No□				
	that was used	d.							
	CO: Del Norte								
	NO ₂ : Hobbs-Jefferson (350250008)								
1	PM2.5: Hobb	PM2.5: Hobbs-Jefferson (350450019)							
	PM10: Hobbs	-Jefferson (350250008)							
	SO ₂ : N/A								
	Other:								
	Comments:								
					T				
2	Were backgro	ound concentrations refine	ed to monthly or hourly values? If so describ	be below.	Yes□	No⊠			
1.0	C. Natao	valasiaal Data							
ΤΩ-		rological Data				1			
	Was NMED provided meteorological data used? If so select the station used.								
1						No□			
	Hobbs								
	If NMED provided meteorological data was not used describe the data set(s) used below. Discuss how missing data were								
2	handled, how stability class was determined, and how the data were processed.								
_	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,								
16-	T: Terraii	1							
		·-							
1	Was complex	terrain used in the model	ing? If not, describe why below.		Yes⊠	No□			
					•	•			
	What was the	source of the terrain data	a?						
2									
	USGS Nationa	al Map							
16-	U: Mode	ling Files							
	Describe the	modeling files:							
	Lakes AERMC	DD View 12.0.0							
_	File name for	folder and file name)	Pollutant(s)		ROI/SIA, cumula				
1		Total and the name)		· -	y analysis, other	r)			
	H2S		H2S	ROI/SIA					
	1-Hr SO2, 3-H		SO2	ROI/SIA					
	NOx, NOx_24	ļ	NOx	ROI/SIA					

PM2.5	PM2.5	ROI/SIA
PM10	PM10	ROI/SIA
СО	CO	ROI/SIA
1-Hr SO2, 3-Hr SO2	SO2	NAAQS/PSD
NOx	NOX	NAAQS/PSD
NOx	NOX	NAAQS/PSD
PM2.5	PM2.5	NAAQS/PSD
PM10	PM10	NAAQS/PSD

16	-V: PSD New or Major Modification Applications		
1	A new PSD major source or a major modification to an existing PSD major source requires additional analysis. Was preconstruction monitoring done (see 20.2.74.306 NMAC and PSD Preapplication Guidance on the AQB website)?	Yes□	No□
2	If not, did AQB approve an exemption from preconstruction monitoring?	Yes□	No□
3	Describe how preconstruction monitoring has been addressed or attach the approved precommonitoring exemption.	nstruction monito	oring or
4	Describe the additional impacts analysis required at 20.2.74.304 NMAC.		
5	If required, have ozone and secondary PM2.5 ambient impacts analyses been completed? If so describe below.	Yes□	No□

TO-AA' IAIC	odeling Re				1	lia a la tito	_1,; _ 1			
1	If ambient standards are exceeded because of surrounding sources, a culpability analysis required for the source to show that the contribution from this source is less than the significance levels for the specific pollutant. Was culpability analysis performed? If so describe below.							Yes□ No⊠		
2	Identify the		entrations fr	rom the modelin	g analysis. Rows	may be mo	dified, add	led and remo	ved from the	e table
Pollutant, Time Period and	Modeled Facility Concentration	Modeled Concentration with Surrounding	Secondary PM	Background Concentration	Cumulative Concentration	Value of Standard	Percent	Location		1
Standard	(μg/m3)	Sources (µg/m3)	(μg/m3)	(μg/m3)	(μg/m3)	(μg/m3)	of Standard	UTM E (m)	UTM N (m)	Elevation (ft)
NOx 1-hr	83.89331	N/A	N/A	65.8	149.69331	188.03	79.6%	671934.9 6	3561522. 48	3263
NOx 24-hr	22.35862	N/A	N/A	N/A	22.35862	188.03	11.9%	671934.2 2	3561567. 65	3263
NOx Annual	3.15667	N/A	N/A	9.3	12.45667	99.66	12.5%	671938.6 8	3561296. 62	3261
CO 1-hr	174.50725	N/A	N/A	N/A	174.50725	500	34.9%	672145.7 0	3560884. 33	3260
CO 8-hr	80.59715	N/A	N/A	N/A	80.59715	2000	4%	672113.3 1	3560846. 25	3261
PM2.5 24-hr	1.14083	N/A	0.07156	16.5	17.71239	35	50.6%	671935.7 1	3561477. 31	3262
PM2.5 Annual	0.26574	N/A	0.002065	7.1	7.367805	9	81.8%	671939.4 2	3561251. 45	3262
PM10 24-hr	1.97446	N/A	N/A	N/A	1.97446	5	26.2%	672145.7 0	3560884. 33	3260
PM10 Annual	0.26618	N/A	N/A	N/A	0.26618	1	26.6%	671939.4 2	3561251. 45	3262
H2S – 30 min	2.58671	N/A	N/A	N/A	2.58671	5	51.7%	673113.3 1	3560846. 25	3215
SO2 1-hr	149.99738	N/A	N/A	3.5	153.49738	196.4	78.2%	672313.3 1	3561746. 25	3262
SO2 3-hr	120.53451	N/A	N/A	N/A	120.53451	1309.3	9.2%	672413.3 1	3561746. 25	3260

Pollutant, Time Period and Standard Conce	Modeled Modeled Concentration Facility Concentration (μg/m3) Surrounding (μg/m3) (μg/m3)	Concentration with	,	'' ' '	Cumulative Value	Value of	Percent			
			(μg/m3)	(μg/m3)	Standard (μg/m3)	of Standard	UTM E (m)	UTM N (m)	Elevation (ft)	
SO2 24-hr	40.39932	N/A	N/A	N/A	40.39932	261.9	15.4%	672213.3 1	3561746. 25	3262
SO2 Annual	9.61351	N/A	N/A	0.04	9.65351	52.4	18.4%	672213.3 1	3561746. 25	3262

16-X: Summary/conclusions

1

A statement that modeling requirements have been satisfied and that the permit can be issued.

The facility modeling has demonstrated compliance with all applicable air quality standards. Modeling requirements have been satisfied and the permit can be issued.

Compliance Test History

(Submitting under 20.2.70, 20.2.72, 20.2.74 NMAC)

To show compliance with existing NSR permits conditions, you must submit a compliance test history. The table below provides an example.

To save paper and to standardize the application format, delete this sentence and the samples in the Compliance Test History Table, and begin your submittal for this attachment on this page.

Compliance Test History Table

Compliance rest history rable							
Unit No.	Test Description	Test Date					
		7/16/2019, 1/7/2020,					
C1	NSPS JJJJ, MACT ZZZZ	7/28/2020, 1/4/2022,					
		2/3/2023					
		2/9/2019, 8/23/2016,					
		1/5/2017, 7/10/2017,					
C2	NSPS JJJJ, MACT ZZZZ	10/2/2017, 1/8/2018,					
CZ	NSFS JJJJ, IVIACT ZZZZ	1/7/2019, 7/9/2019,					
		1/7/2020, 7/28/2020,					
		1/5/2022, 1/10/2023					
		2/9/2016, 8/23/2016,					
	NSPS JJJJ, MACT ZZZZ	1/6/2017, 7/10/2017,					
C3		1/8/2018, 1/7/2019,					
		7/9/2019, 9/15/2021,					
		1/4/2022, 4/20/2023					
		2/9/2019, 8/24/2016,					
		1/26/2017, 7/10/2017,					
		10/2/2017, 1/8/2018,					
C4	NSPS JJJJ, MACT ZZZZ	9/6/2018, 1/7/2019,					
		9/5/2019, 1/22/2020,					
		7/28/2020, 1/5/2022,					
		1/10/2023					
C5	NSPS JJJJ, MACT ZZZZ	TBD					
C6	NSPS JJJJ, MACT ZZZZ	TBD					
8F	Compliance with visible emissions per NSR 1092/TV-P090	02/12					
9F	Compliance with visible emissions per NSR 1092/TV-P090	08/05					
10F	Compliance with visible emissions per NSR 1092/TV-P090	02/12					

Other Relevant Information

<u>Other relevant information</u>. Use this attachment to clarify any part in the application that you think needs explaining. Reference the section, table, column, and/or field. Include any additional text, tables, calculations or clarifying information.

Additionally, the applicant may propose specific permit language for AQB consideration. In the case of a revision to an existing permit, the applicant should provide the old language and the new language in track changes format to highlight the proposed changes. If proposing language for a new facility or language for a new unit, submit the proposed operating condition(s), along with the associated monitoring, recordkeeping, and reporting conditions. In either case, please limit the proposed language to the affected portion of the permit.

No other relevant information is being submitted with this application.

Form-Section 20 last revised: 8/15/2011 Section 20, Page 1 Saved Date: 10/25/2024

Section 22: Certification

Company Name:	ET Gathering & Processing LLC	
	hereby certify that the ble, to the best of my knowledge and p	e information and data submitted in this application are rofessional expertise and experience.
Signed this 18 day of No.	<u>1004, 2024,</u> upon my oath o	r affirmation, before a notary of the State of
Texas	·	
Jesus Marting		
Desai Mortines Printed Name		Title Operations
Scribed and sworn before me	on this 18 day of Novemb	or 2024
My authorization as a notary of	of the State of Texas	expires on the
10th day of 1	lovember 2028	
Notary's Signature	Modows	11-18-2024 Date
Don J. M. Notary's Printed Name	eadows	DONA J. MEADOWS My Notary ID # 6555569

^{*}For Title V applications, the signature must be of the Responsible Official as defined in 20.2.70.7.AE NMAC.

ET GATHERING & PROCESSING LLC 8111 Westchester Dr., Ste 600 Dallas, TX 75225

Payment Date: 11/07/2024

Page: 1 of

Check No.: 213027526 Check Date: 11/07/2024

Vendor: NEW MEXICO ENVIRONMENT DEPT

Vendor ID: 1000002788

Invoice Number	Invoice Date	Document Number	Reference	Gross Amount	Discount	Net Amount
ST_71293	10/25/2024	5800707958	JAL 3	500.00	0.00	500.00
			Check Total			500.00

PLEASE DETACH BEFORE DEPOSITING CHECK. For inquiries call:214-840-5422 or email accountspayable@energytransfer.com

THIS CHECK IS VOID WITHOUT A BLUE & GREEN BACKGROUND - THIS IS WATERMARKED PAPER - HOLD TO LIGHT TO VERIFY WATERMARK

ET GATHERING & PROCESSING LLC 8020 Park Lane, Suite 200

Dallas, TX 75231

Vendor ID: 1000002788

PAY: ***FIVE HUNDRED ------ Check No.: 213027526

Check Date: 11/07/2024

VOID AFTER 90 DAYS

经产品的

\$500.00

To The Order of:

NEW MEXICO ENVIRONMENT DEPT 525 CAMINO DE LOS MARQUEZ STE 1 SANTA FE, NM 87505 1816

Authorized Signature

Payable Through WELLS FARGO BANK, N.A.

66-156

SIGNATURE HAS A COLORED SACKGROUND - SORDER CONTAINS MICROPRINTING