20.2.72 NMAC AIR QUALITY PERMIT APPLICATION

For

VERNON HAMILTON CONSTRUCTION COMPANY

KIRTLAND PIT Kirtland, NM

> Prepared by Montrose Environmental Solutions, Inc. Albuquerque, NM December 2024

Mail Application To:

New Mexico Environment Department Air Quality Bureau Permits Section 525 Camino de los Marquez, Suite 1 Santa Fe, New Mexico, 87505

Phone: (505) 476-4300 Fax: (505) 476-4375 www.env.nm.gov/aqb

Universal Air Quality Permit Application

Use this application for NOI, NSR, or Title V sources.

Use this application for: the initial application, modifications, technical revisions, and renewals. For technical revisions, complete Sections, 1-A, 1-B, 2-E, 3, 9 and any other sections that are relevant to the requested action; coordination with the Air Quality Bureau permit staff prior to submittal is encouraged to clarify submittal requirements and to determine if more or less than these sections of the application are needed. Use this application for streamline permits as well.

 This application is submitted as (check all that apply):
 Request for a No Permit Required Determination (no fee)

 Updating an application currently under NMED review.
 Include this page and all pages that are being updated (no fee required).

 Construction Status:
 Not Constructed
 Existing Permitted (or NOI) Facility
 Existing Non-permitted (or NOI) Facility

 Minor Source:
 NOI 20.2.73 NMAC
 20.2.72 NMAC application or revision
 20.2.72.300 NMAC Streamline application

 Title V Source:
 Title V (new)
 Title V renewal
 TV minor mod.
 TV significant mod.
 TV Acid Rain:
 New
 Renewal

 PSD Major Source:
 PSD major source (new)
 Minor Modification to a PSD source
 a PSD major modification

Acknowledgements:

I acknowledge that a pre-application meeting is available to me upon request. 🔲 Title V Operating, Title IV Acid Rain, and NPR applications have no fees.

S500 NSR application Filing Fee enclosed OR □ The full permit fee associated with 10 fee points (required w/ streamline applications).

Check No.: 4855 in the amount of \$500

I acknowledge the required submittal format for the hard copy application is printed double sided 'head-to-toe', 2-hole punched (except the Sect. 2 landscape tables is printed 'head-to-head'), numbered tab separators. Incl. a copy of the check on a separate page.

I acknowledge there is an annual fee for permits in addition to the permit review fee: <u>www.env.nm.gov/air-quality/permit-fees-</u> 2/.

This facility qualifies for the small business fee reduction per 20.2.75.11.C. NMAC. The full \$500.00 filing fee is included with this application and I understand the fee reduction will be calculated in the balance due invoice. The Small Business Certification Form has been previously submitted or is included with this application. (Small Business Environmental Assistance Program Information: www.env.nm.gov/air-quality/small-biz-eap-2/.)

Citation: Please provide the **low level citation** under which this application is being submitted: **20.2.72.200.A NMAC** (e.g. application for a new minor source would be 20.2.72.200.A NMAC, one example for a Technical Permit Revision is 20.2.72.219.B.1.b NMAC, a Title V acid rain application would be: 20.2.70.200.C NMAC)

Section 1 – Facility Information

Sect	tion 1-A: Company Information	Updating AI # if known: New Permit/NOI #: New				
1	Facility Name: Kirtland Pit	Plant primary SIC Code (4 digits): 1429, 1442				
Т		Plant NAIC code (6 digits): 142901, 144202				
а	Facility Street Address (If no facility street address, provide directions from 32 Rd 6210, Kirtland NM 87417	n a prominent landmark)	:			
2	Plant Operator Company Name: Vernon Hamilton Construction Company (VHCC)	Phone/Fax: 505-722-7855				

а	Plant Operator Address: 32 Rd 6210, Kirtland NM 87417											
b	Plant Operator's New Mexico Corporate ID or Tax ID: 84-5022961											
3	Plant Owner(s) name(s): VHCC, LLC	Pl	hone/Fax: 505-722-7855									
а	Plant Owner(s) Mailing Address(s): P.O. Box 1110, Gallup, NM 87305											
4	Bill To (Company): VHCC, LLC	P	hone/Fax: 505-722-7855									
а	Mailing Address: P.O. Box 1110, Gallup, NM 87305	E	-mail: <u>Bern@vhccmaterial.com</u>									
5	Preparer: Consultant: Paul Wade, Montrose Environmental Solutions, Inc.	PI	hone/Fax: 505-830-9680 x6/505-830-9678									
а	Mailing Address: 9100 2nd Street NW, Suite 200, Albuquerque, N 87114-1664	E-	-mail: pwade@montrose-env.com									
6	Plant Operator Contact: Kevin Bradshaw	Pl	Phone/Fax:505-722-7855									
а	Address: P.O. Box 1110, Gallup, NM 87305	E·	E-mail: Kevin@vhccmaterial.com									
7	Air Permit Contact: Kevin Bradshaw	Ti	Title: General Manager									
а	E-mail: Kevin@vhccmaterial.com	PI	Phone/Fax: 505-722-7855									
b	Mailing Address: P.O. Box 1110, Gallup, NM 87305											
С	The designated Air permit Contact will receive all official correspo	dence (i.e	. letters, permits) from the Air Quality Bureau.									
Sec	tion 1-B: Current Facility Status											
1.a	Has this facility already been constructed? Yes No		ves to question 1.a, is it currently operating in ∕lexico?									
2	If yes to question 1.a, was the existing facility subject to a Notice Intent (NOI) (20.2.73 NMAC) before submittal of this application?	to a co	yes to question 1.a, was the existing facility subject a construction permit (20.2.72 NMAC) before ubmittal of this application? Yes No X N/A									
3	Is the facility currently shut down? 🔲 Yes 🔲 No 🖾 N/A 🛛 If y	s, give mo	nth and year of shut down (MM/YY): N/A									
4	Was this facility constructed before 8/31/1972 and continuously	perated sir	nce 1972? 🔲 Yes 🖂 No									
E	If Yes to question 3, has this facility been modified (see 20.2.72.7.P NMAC) or the capacity increased since 8/31/1972?											

5	If Yes to question 3, has this facility been modified (see 20.2.72.7.P NMAC) or the capacity increased since 8/31/1972?									
6	Does this facility have a Title V operating permit (20.2.70 NMAC)? ☐ Yes ⊠ No	If yes, the permit No. is: P-								
7	Has this facility been issued a No Permit Required (NPR)? □ Yes ☑ No	If yes, the NPR No. is:								
8	Has this facility been issued a Notice of Intent (NOI)? 🔲 Yes 🛛 No	If yes, the NOI No. is:								
9	Does this facility have a construction permit (20.2.72/20.2.74 NMAC)? ☐ Yes ☑ No	If yes, the permit No. is:								
10	Is this facility registered under a General permit (GCP-1, GCP-2, etc.)? ☑ Yes □ No	If yes, the register No. is: GCP-2-3034								

Section 1-C: Facility Input Capacity & Production Rate

1	What is the facility's maximum input capacity, specify units (reference here and list capacities in Section 20, if more room is required)											
а	Current	Hourly:	Daily:	Annually:								
b	Proposed	Hourly: 350 tons	Daily: 3500 tons	Annually: 350,000 tons								
2	What is the facility's maximum production rate, specify units (reference here and list capacities in Section 20, if more room is required)											
а	Current	Hourly:	Daily:	Annually:								
b	Proposed	Hourly: 350 tons	Daily: 3500 tons	Annually: 350,000 tons								

Section 1-D: Facility Location Information

1	Latitude (decimal degrees): 36.743919	Longitude	(decimal degrees): -108.333753		County: an Juan	Elevation (ft): 5270				
2	UTM Zone: 🛛 12 or 🗌 13	Datum: 🛛 NAD 83 🗌 W	GS 84	ļ						
а	UTM E (in meters, to nearest 10 meters): 738,050	0	UTM N (in meters, to nearest 10 met	ers): 4,	,069,780					
3	Name and zip code of nearest New Mexico	o town: Kirtl	and, NM 87417							
4	Detailed Driving Instructions from nearest NM town (attach a road map if necessary): From the intersection of Highways 64 and County Road 6400 in Kirtland, NM, travel east on Highway 64 for 1.65 miles to County Road 6210. Turn north on County Road 6210 and travel 0.4 miles to the site entrance.									
5	The facility is 0.7 miles east-southeast of K	(irtland.								
6	Land Status of facility (check one): 🛛 Priv	vate 🔲 Indi	an/Pueblo 🗌 Government 🗌] BLM	Forest Ser	vice 🔲 Military				
7	List all municipalities, Indian tribes, and co which the facility is proposed to be constr				-					
8	20.2.72 NMAC applications only : Will the property on which the facility is proposed to be constructed or operated be closer than 50 km (31 miles) to other states, Bernalillo County, or a Class I area (see <u>www.env.nm.gov/air-quality/modeling-publications/</u>)? Xes No (20.2.72.206.A.7 NMAC) If yes, list all with corresponding distances in kilometers: Colorado – 27.5 km									
9	Name nearest Class I area: Mesa Verde Na	ational Park								
10	Shortest distance (in km) from facility bou	ndary to the	boundary of the nearest Class I	area (t	to the nearest 10 m	neters): 47.4				
11	Distance (meters) from the perimeter of the lands, including mining overburden remover the second se									
	Method(s) used to delineate the Restricted	d Area: Fenc	ing and Rugged Terrain							
12	² "Restricted Area " is an area to which public entry is effectively precluded. Effective barriers include continuous fencing, continuous walls, or other continuous barriers approved by the Department, such as rugged physical terrain with steep grade that would require special equipment to traverse. If a large property is completely enclosed by fencing, a restricted area within the property may be identified with signage only. Public roads cannot be part of a Restricted Area.									
	Does the owner/operator intend to opera	te this sourc	e as a portable stationary source	as de	fined in 20.2.72	2.7.X NMAC?				
13	A portable stationary source is not a mobi at one location or that can be re-installed sites.									
14	Will this facility operate in conjunction wit If yes, what is the name and permit number			perty	/? 🛛 No	Yes				

Section 1-E: Proposed Operating Schedule (The 1-E.1 & 1-E.2 operating schedules may become conditions in the permit.)

1	Facility maximum operating ($\frac{hours}{day}$): 14	(<mark>days</mark>): 6	(weeks year): 52	(<mark>hours</mark>): 4356							
2	Facility's maximum daily operating schedule (if less	than 24 hours day)? Start: 5	XAM DPM	End: 7	Pam XPM						
3	Month and year of anticipated start of construction: Upon permit issuance										
4	Month and year of anticipated construction completion: Upon permit issuance										
5	Month and year of anticipated startup of new or modified facility: Upon permit issuance										
6	Will this facility operate at this site for more than o	ne year? 🛛 Yes 🗌 No									

Section 1-F: Other Facility Information

1	Are there any current Notice of Violations (NOV), compliance orders, or any other compliance or enforcement issues related
T	to this facility? 🔲 Yes 🖂 No If yes, specify:

а	If yes, NOV date or description of issue: N/A		NOV Tracking No: N/A						
b	Is this application in response to any issue listed in 1-F, 1 or 1a above? Yes No If Yes, provide the 1c & 1d info below:								
С	Document Requirement # (or Title: Date:								
d	Provide the required text to be inserted in this permit:								
2	Is air quality dispersion modeling or modeling waiver being submitted with this application? 🛛 Yes 🗌 No								
3	Does this facility require an "Air Toxics" permit under 20.2.72.400 NMAC & 20.2.72.502, Tables A and/or B? 🔲 Yes 🔀 No								
4	Will this facility be a source of federal Hazardous Air Pollut	ants (HAP)? 🔀 Yes	🗌 No						
а	If Yes, what type of source? Major (≥10 tpy of a OR Minor (<10 tpy of any			tpy of any combination of HAPS) py of any combination of HAPS)					
5	Is any unit exempt under 20.2.72.202.B.3 NMAC?	s 🛛 No							
	If yes, include the name of company providing commercial	electric power to the	e facility: _						
а	Commercial power is purchased from a commercial utility company, which specifically does not include power generated on site for the sole purpose of the user.								

Section 1-G: Streamline Application (This section applies to 20.2.72.300 NMAC Streamline applications only)

1	I have filled out Section 18, "Addendum for Streamline Applications."	N/A (This is not a Streamline application.)

Section 1-H: Current Title V Information - Required for all applications from TV Sources

(Title V-source required information for all applications submitted pursuant to 20.2.72 NMAC (Minor Construction Permits), or 20.2.74/20.2.79 NMAC (Major PSD/NNSR applications), and/or 20.2.70 NMAC (Title V))

1	Responsible Official (R.O.) (20.2.70.300.D.2 NMAC):	Phone:							
а	R.O. Title:	R.O. e-mail:							
b	R. O. Address:								
2	Alternate Responsible Official (20.2.70.300.D.2 NMAC):		Phone:						
а	A. R.O. Title:	A. R.O. e-mail:							
b	A. R. O. Address:								
3	Company's Corporate or Partnership Relationship to any other Air Quality Permittee (List the names of any companies that have operating (20.2.70 NMAC) permits and with whom the applicant for this permit has a corporate or partnership relationship):								
4	Name of Parent Company ("Parent Company" means the primary permitted wholly or in part.):	name of the organiz	ation that owns the company to be						
а	Address of Parent Company:								
5	Names of Subsidiary Companies ("Subsidiary Companies" means o owned, wholly or in part, by the company to be permitted.):	rganizations, branch	nes, divisions or subsidiaries, which are						
6	Telephone numbers & names of the owners' agents and site conta	icts familiar with pla	nt operations:						
7	Affected Programs to include Other States, local air pollution cont Will the property on which the facility is proposed to be construct states, local pollution control programs, and Indian tribes and pue ones and provide the distances in kilometers:	ed or operated be cl	oser than 80 km (50 miles) from other						

Section 1-I – Submittal Requirements

Each 20.2.73 NMAC (NOI), a 20.2.70 NMAC (Title V), a 20.2.72 NMAC (NSR minor source), or 20.2.74 NMAC (PSD) application package shall consist of the following:

Hard Copy Submittal Requirements:

- One hard copy original signed and notarized application package printed double sided 'head-to-toe' <u>2-hole punched</u> as we bind the document on top, not on the side; except Section 2 (landscape tables), which should be head-to-head. Please use numbered tab separators in the hard copy submittal(s) as this facilitates the review process. For NOI submittals only, hard copies of UA1, Tables 2A, 2D & 2F, Section 3 and the signed Certification Page are required. Please include a copy of the check on a separate page.
- 2) If the application is for a minor NSR, PSD, NNSR, or Title V application, include one working hard **copy** for Department use. This <u>copy</u> should be printed in book form, 3-hole punched, and <u>must be double sided</u>. Note that this is in addition to the head-to-to 2-hole punched copy required in 1) above. Minor NSR Technical Permit revisions (20.2.72.219.B NMAC) only need to fill out Sections 1-A, 1-B, 3, and should fill out those portions of other Section(s) relevant to the technical permit revision. TV Minor Modifications need only fill out Sections 1-A, 1-B, 1-H, 3, and those portions of other Section(s) relevant to the minor modification. NMED may require additional portions of the application to be submitted, as needed.
- 3) The entire NOI or Permit application package, including the full modeling study, should be submitted electronically. Electronic files for applications for NOIs, any type of General Construction Permit (GCP), or technical revisions to NSRs must be submitted with compact disk (CD) or digital versatile disc (DVD). For these permit application submittals, two CD copies are required (in sleeves, not crystal cases, please), with additional CD copies as specified below. NOI applications require only a single CD submittal. Electronic files for other New Source Review (construction) permits/permit modifications or Title V permits/permit modifications can be submitted on CD/DVD or sent through AQB's secure file transfer service.

Electronic files sent by (check one):

CD/DVD attached to paper application

Secure electronic transfer. Air Permit Contact Name <u>Paul Wade</u>, Email <u>pwade@montrose-env.com</u>

Phone number <u>505-830-9680 x6</u>.

a. If the file transfer service is chosen by the applicant, after receipt of the application, the Bureau will email the applicant with instructions for submitting the electronic files through a secure file transfer service. Submission of the electronic files through the file transfer service needs to be completed within 3 business days after the invitation is received, so the applicant should ensure that the files are ready when sending the hard copy of the application. The applicant will not need a password to complete the transfer. **Do not use the file transfer service for NOIs, any type of GCP, or technical revisions to NSR permits.**

- 4) Optionally, the applicant may submit the files with the application on compact disk (CD) or digital versatile disc (DVD) following the instructions above and the instructions in 5 for applications subject to PSD review.
- 5) If air dispersion modeling is required by the application type, include the NMED Modeling Waiver and/or electronic air dispersion modeling report, input, and output files. The dispersion modeling <u>summary report only</u> should be submitted as hard copy(ies) unless otherwise indicated by the Bureau.
- 6) If the applicant submits the electronic files on CD and the application is subject to PSD review under 20.2.74 NMAC (PSD) or NNSR under 20.2.79 NMC include,
 - a. one additional CD copy for US EPA,
 - b. one additional CD copy for each federal land manager affected (NPS, USFS, FWS, USDI) and,
 - c. one additional CD copy for each affected regulatory agency other than the Air Quality Bureau.

If the application is submitted electronically through the secure file transfer service, these extra CDs do not need to be submitted.

Electronic Submittal Requirements [in addition to the required hard copy(ies)]:

1) All required electronic documents shall be submitted as 2 separate CDs or submitted through the AQB secure file transfer service. Submit a single PDF document of the entire application as submitted and the individual documents comprising the

application.

- 2) The documents should also be submitted in Microsoft Office compatible file format (Word, Excel, etc.) allowing us to access the text and formulas in the documents (copy & paste). Any documents that cannot be submitted in a Microsoft Office compatible format shall be saved as a PDF file from within the electronic document that created the file. If you are unable to provide Microsoft office compatible electronic files or internally generated PDF files of files (items that were not created electronically: i.e. brochures, maps, graphics, etc.), submit these items in hard copy format. We must be able to review the formulas and inputs that calculated the emissions.
- 3) It is preferred that this application form be submitted as 4 electronic files (3 MSWord docs: Universal Application section 1 [UA1], Universal Application section 3-19 [UA3], and Universal Application 4, the modeling report [UA4]) and 1 Excel file of the tables (Universal Application section 2 [UA2]). Please include as many of the 3-19 Sections as practical in a single MS Word electronic document. Create separate electronic file(s) if a single file becomes too large or if portions must be saved in a file format other than MS Word.
- 4) The electronic file names shall be a maximum of 25 characters long (including spaces, if any). The format of the electronic Universal Application shall be in the format: "A-3423-FacilityName". The "A" distinguishes the file as an application submittal, as opposed to other documents the Department itself puts into the database. Thus, all electronic application submittals should begin with "A-". Modifications to existing facilities should use the core permit number (i.e. '3423') the Department assigned to the facility as the next 4 digits. Use 'XXXX' for new facility applications. The format of any separate electronic submittals (additional submittals such as non-Word attachments, re-submittals, application updates) and Section document shall be in the format: "A-3423-9-description", where "9" stands for the section # (in this case Section 9-Public Notice). Please refrain, as much as possible, from submitting any scanned documents as this file format is extremely large, which uses up too much storage capacity in our database. Please take the time to fill out the header information throughout all submittals as this will identify any loose pages, including the Application Date (date submitted) & Revision number (0 for original, 1, 2, etc.; which will help keep track of subsequent partial update(s) to the original submittal. Do not use special symbols (#, @, etc.) in file names. The footer information should not be modified by the applicant.

Table of Contents

- Section 1: General Facility Information
- Section 2: Tables
- Section 3: Application Summary
- Section 4: Process Flow Sheet
- Section 5: Plot Plan Drawn to Scale
- Section 6: All Calculations
- Section 7: Information Used to Determine Emissions
- Section 8: Map(s)
- Section 9: Proof of Public Notice
- Section 10: Written Description of the Routine Operations of the Facility
- Section 11: Source Determination
- Section 12: PSD Applicability Determination for All Sources & Special Requirements for a PSD Application
- Section 13: Discussion Demonstrating Compliance with Each Applicable State & Federal Regulation
- Section 14: Operational Plan to Mitigate Emissions
- Section 15: Alternative Operating Scenarios
- Section 16: Air Dispersion Modeling
- Section 17: Compliance Test History
- Section 18: Addendum for Streamline Applications (streamline applications only)
- Section 19: Requirements for the Title V (20.2.70 NMAC) Program (Title V applications only)
- Section 20: Other Relevant Information
- Section 21: Addendum for Landfill Applications
- Section 22: Certification Page

Table 2-A: Regulated Emission Sources

Unit and stack numbering must correspond throughout the application package. If applying for a NOI under 20.2.73 NMAC, equipment exemptions under 2.72.202 NMAC do not apply.

Unit Number ¹	Source Description	Make	Model #	Serial #	Manufact- urer's Rated Capacity ³ (Specify Units)	Requested Permitted Capacity ³ (Specify Units)	Date of Manufacture ² Date of Construction/ Reconstruction ²	Controlled by Unit # Emissions vented to Stack #	Source Classi- fication Code (SCC)	For Each Piece of Equipment, Check One		RICE Ignition Type (CI, SI, 4SLB, 4SRB, 2SLB) ⁴	Replacing Unit No.				
PI RAW	Quarry Material	N/A	N/A	N/A	N/A	350 tph	N/A	N/A	305020	Existing (unchanged)	To be Removed Replacement Unit						
FI_KAW		N/A	N/A	N/A	N/A	550 tpi	N/A	N/A	07	To Be Modified	To be Replaced						
RR_RAW	RipRap Screening Plant Raw Material	N/A	N/A	N/A	N/A	350 tph	N/A	N/A	305020 07	Existing (unchanged) New/Additional	To be Removed Replacement Unit						
							N/A	N/A		To Be Modified Existing (unchanged)	To be Replaced						
RR_1	RipRap Screening Plant Feeder	Simplicity	OFC140A	TXR5624179	56" x 24'	350 tph	12/20 2025	N/A N/A	305020 31	✓ New/Additional	Replacement Unit						
	RipRap Screening						12/2020	C2	305020	To Be Modified Existing (unchanged)	To be Replaced						
RR_2	Plant Screen (2- screen setup)	Simplicity	OFC140A	TXR5624179	56" x 24'	350 tph	2025	N/A	305020 15	New/Additional	Replacement Unit To be Replaced						
	RipRap Screening						12/2020	C5	305020	Existing (unchanged)	To be Removed						
RR_3	Plant Stacker Conveyor 1a	Simplicity	OFC140A	TXR5624179	56" x 24'	350 tph	2025	N/A	06	✓ New/Additional To Be Modified	Replacement Unit To be Replaced						
	RipRap Screening						12/2020	C5	305020	Existing (unchanged)	To be Removed						
RR_4	Plant Stacker Conveyor 1b	Simplicity	OFC140A	TXR5624179	56" x 24'	350 tph	2025	N/A	06	06	✓ New/Additional To Be Modified	Replacement Unit To be Replaced					
	RipRap Screening	c: !: ::	0504404	TVD5 62 44 70	561 24	250 1 1	12/2020	C5	305020	Existing (unchanged)	To be Removed						
RR_5	Plant Stacker Convevor 1c	Simplicity	OFC140A	TXR5624179	56" x 24'	350 tph	2025	N/A	06	06	06	✓ New/Additional To Be Modified	Replacement Unit To be Replaced				
	RipRap Screening	NI / A	NI / A	NI / A	NI / A	250 tak	N/A	N/A	305020	Existing (unchanged)	To be Removed						
RR1PILE	Plant Stacker Finish Pile	N/A	N/A	N/A	N/A	350 tph	N/A	N/A	07	07	 ✓ New/Additional To Be Modified 	Replacement Unit To be Replaced					
RR2Pile	RipRap Screening Plant Stacker Finish	NI / A	N/A	NI / A	NI / A	350 tph	N/A	N/A	305020	Existing (unchanged)	To be Removed Replacement Unit						
RRZPIIe	Pile	N/A	N/A	N/A	N/A	550 tph	N/A	N/A	07	07	07	07	07	To Be Modified	To be Replaced		
RR3PILE	RipRap Screening Plant Stacker Finish	N/A	N/A	N/A	N/A	350 tph	N/A	N/A	305020	Existing (unchanged) New/Additional	To be Removed Replacement Unit						
RESPILE	Pile	N/A	N/A	N/A	N/A	550 tpi	N/A	N/A	07	To Be Modified	To be Replaced						
RR_ENG	RipRap Screening	Volvo Penta	TAB871V	TBD	140 kW,	140 kW,	12/2020	N/A	305020	Existing (unchanged)	To be Removed Replacement Unit	CI					
	Plant Engine	volvo i citta	E		188 hp	188 hp	2025	S1	99	To Be Modified	To be Replaced	Ci					
1a, 1b,	Feeder/Jaw Crusher	Codes Douide	47224	TRO	400 to b	250 to b	TBD	1b - C3, 1c - C1	305020	Existing (unchanged)	To be Removed						
1c	w/built in Discharge Conveyor	Cedar Rapids	47334	TBD	400 tph	350 tph	2025	N/A	01	 ✓ New/Additional ☐ To Be Modified 	Replacement Unit To be Replaced						
	Cone Crusher						5/2002	2 - C3, 2a - C1	305020	Existing (unchanged)	To be Removed						
2, 2a	w/built in Discharge Conveyor	Cedar Rapids	S1425	TBD	350 tph	350 tph	2025	N/A	02	New/Additional To Be Modified	Replacement Unit To be Replaced						
	Cone Crusher						2012	3 - C3, 3a - C1	305020	Existing (unchanged)	To be Removed						
3, 3a	w/built in Discharge Conveyor	Cedar Rapids	5411	52221	350 tph	350 tph	2025	N/A	03	 ✓ New/Additional To Be Modified 	Replacement Unit To be Replaced						

					Manufact- urer's Rated	Date of Controlled b Requested Manufacture ² Unit #		Controlled by Unit #	Source Classi-					
Unit Number ¹	Source Description	Make	Model #	Serial #	Capacity ³ (Specify Units)	Capacity ³ (Specify Units)	Date of Construction/ Reconstruction ²	Emissions vented to Stack #	fication Code (SCC)	For Each Piece of Equ		uipment, Check One	RICE Ignition Type (CI, SI, 4SLB, 4SRB, 2SLB) ⁴	Replacing Unit No.
4, 4a	Screen w/Under Conveyor	Thunderbird	MP5163 DST	592	6' x 16'	350 tph	2012	4 - C2, 4a - C1	305020 02, 03,	✓ New/Add		To be Removed Replacement Unit		
	Screen w/Under		S62003D			250 1 1	2025	N/A 5 - C2, 5a - C1	04 305020		unchanged)	To be Replaced		
5, 5a	Conveyor	Cedar Rapids	В	TBD	6' x 20'	350 tph	2025	N/A	02, 03, 04	Vew/Add	odified	Replacement Unit		
6	Conveyor	Peerless	CV15	N/A	30" x 60'	350 tph	N/A 2025	C1 N/A	305020 06	Existing (✓ New/Ado To Be Mo		To be Removed Replacement Unit To be Replaced		
7	Stacker Conveyor	LB Smith	N/A	N/A	24" x 60'	350 tph	N/A 2025	C5 N/A	305020 06	✓ New/Add		To be Removed Replacement Unit		
8	Stacker Conveyor	Camaco	N/A	N/A	24" x 50'	350 tph	N/A	C5	305020	To Be Mo Existing (✓ New/Ado	unchanged)	To be Replaced To be Removed Replacement Unit		
9	Stacker Shuttle	Shop Mada	N/A	N/A	24" x 25'	350 tph	2025 N/A	N/A C1	06 305020	To Be Mo	unchanged)	To be Replaced To be Removed Replacement Unit		
		Shop Made	N/A	N/A	24 X 25	550 tph	2025 9/24/2010	N/A C5	06 305020	To Be Mo		To be Replaced		
10	Stacker Conveyor	Shop Made	N/A	N/A	24" x 50'	350 tph	2025	N/A	06 06	✓ New/Add To Be Mo	ditional odified	Replacement Unit To be Replaced		
11	Shuttle Conveyor	Shop Made	N/A	N/A	24" x 25'	350 tph	N/A 2025	C1 N/A	305020 06	Existing (✓ New/Ado To Be Mo		To be Removed Replacement Unit To be Replaced		
12	Shuttle Conveyor	Shop Made	N/A	N/A	24" x 13'	350 tph	N/A 2025	C1 N/A	305020 06	✓ New/Add		To be Removed Replacement Unit		
13	Cone Oversized	Shop Made	N/A	N/A	30" x 60'	350 tph	3/2005	C1	305020	To Be Mo Existing (Vew/Add	unchanged)	To be Replaced To be Removed Replacement Unit		
	Return Conveyor					250 1 1	2025 N/A	N/A C1	06 305020		unchanged)	To be Replaced		
14	Jaw Conveyor	Shop Made	N/A	N/A	36" x 30'	350 tph	2025	N/A	06	Vew/Add To Be Mo		Replacement Unit To be Replaced To be Removed		
15	Stacker Conveyor	Shop Made	N/A	N/A	24" x 40'	350 tph	10/15/1994 2025	C5 N/A	305020 06	Vew/Add To Be Mo	ditional odified	Replacement Unit To be Replaced		
16	Shuttle Conveyor	Shop Made	N/A	N/A	24" x 15'	350 tph	9/26/2002 2025	C1 N/A	305020 06	Existing (New/Add To Be Mo		To be Removed Replacement Unit To be Replaced		
17	Shuttle Conveyor	Shop Made	N/A	N/A	24" x 16'	350 tph	9/17/2004	C1	305020 06	Existing (unchanged) litional	To be Removed Replacement Unit		
18	Cone feed conveyor	Excel	N/A	00407	30" x 60'	350 tph	2025 N/A	N/A C1	305020	To Be Mo Existing (V New/Ado	unchanged)	To be Replaced To be Removed Replacement Unit		
		2.001					2025 N/A	N/A C1	06 305020	To Be Mo	odified unchanged)	To be Replaced		
19	Conveyor	Helmick	N/A	24-6519	24" x 65'	350 tph	2025	N/A	06	✓ New/Add To Be Mo		Replacement Unit To be Replaced		

					Manufact- urer's Rated	Requested Permitted	Date of Manufacture ²	Controlled by Unit #	Source Classi-			RICE Ignition Type	
Unit Number ¹	Source Description	Make	Model #	Serial #	Capacity ³ (Specify Units)	Capacity ³ (Specify Units)	Date of Construction/ Reconstruction ²	Emissions vented to Stack #	fication Code (SCC)	For Each Piece of Equi	pment, Check One	(CI, SI, 4SLB, 4SRB, 2SLB) ⁴	Replacing Unit No.
20		. .	N1/A	N1 / A	51 401	250 1 1	N/A	C2	305020	Existing (unchanged)	To be Removed		
20	Scalping Screen	Dyster	N/A	N/A	5' x 12'	350 tph	2025	N/A	15	New/Additional To Be Modified	Replacement Unit		
			3412CDI		725 kW.	725 kW.	7/11/2001	N/A	305020	Existing (unchanged)	To be Removed		
21	Generator Set	CAT	TA	BLG00329	1081 hp	1081 hp	2025	S2	99	New/Additional To Be Modified	Replacement Unit	CI	
							N/A	C5	305020	Existing (unchanged)	To be Removed		
22	Stacker Conveyor	Shop Made	CV31	N/A	24" x 70'	350 tph	2025	N/A	06	✓ New/Additional To Be Modified	Replacement Unit		
							N/A	C5	305020	Existing (unchanged)	To be Removed		
24	Stacker Conveyor	Shop Made	CV33	N/A	24" x 80'	350 tph	2025	N/A	06	✓ New/Additional	Replacement Unit		
										To Be Modified Existing (unchanged)	To be Replaced		
25	Stacker Conveyor	Ribble	N/A	N/A	24" x 65'	350 tph	N/A	C5	305020	✓ New/Additional	Replacement Unit		
							2025	N/A	06	To Be Modified	To be Replaced		
26	Scalping Screen	Shop Made	N/A	N/A	24" x 25'	350 tph	N/A	C1	305020	Existing (unchanged) New/Additional	To be Removed Replacement Unit		
20	Conveyor	Shop Made	177	ny A	24 825	550 tpi	2025	N/A	06	To Be Modified	To be Replaced		
FPILE1,							N/A	N/A	305020	Existing (unchanged)	To be Removed		
FPILE2, FPILE3	Finish Piles	N/A	N/A	N/A	N/A	350 tph	N/A	N/A	07	 New/Additional To Be Modified 	Replacement Unit		
FPILE3							N/A	N/A	305020	Existing (unchanged)	To be Removed		
TL	Truck Loading	N/A	N/A	N/A	N/A	350 tph	N/A	N/A	303020	Vew/Additional	Replacement Unit		
							-			To Be Modified Existing (unchanged)	To be Replaced		
W_PILE	Waste Pile	N/A	N/A	N/A	N/A	35 tph	N/A	N/A	305020	✓ New/Additional	Replacement Unit		
							N/A	N/A	07	To Be Modified	To be Replaced		
ROAD	Haul Road	N/A	N/A	N/A	N/A	213	N/A	C4	305020	Existing (unchanged) New/Additional	To be Removed Replacement Unit		
NOAD		N/A	N/A	N/ A	11/7	truck/day	N/A	N/A	11	To Be Modified	To be Replaced		
										Existing (unchanged)	To be Removed		
										New/Additional	Replacement Unit		
Ļ										To Be Modified	To be Replaced		

¹ Unit numbers must correspond to unit numbers in the previous permit unless a complete cross reference table of all units in both permits is provided.

² Specify dates required to determine regulatory applicability.

³ To properly account for power conversion efficiencies, generator set rated capacity shall be reported as the rated capacity of the engine in horsepower, not the kilowatt capacity of the generator set.

⁴ "4SLB" means four stroke lean burn engine, "4SRB" means four stroke rich burn engine, "2SLB" means two stroke lean burn engine, "CI" means compression ignition, and "SI" means spark ignition

Table 2-B: Insignificant Activities¹ (20.2.70 NMAC) OR Exempted Equipment (20.2.72 NMAC)

All 20.2.70 NMAC (Title V) applications must list all Insignificant Activities in this table. All 20.2.72 NMAC applications must list Exempted Equipment in this table. If equipment listed on this table is exempt under 20.2.72.202.B.5, include emissions calculations and emissions totals for 202.B.5 "similar functions" units, operations, and activities in Section 6, Calculations. Equipment and activities exempted under 20.2.72.202 NMAC may not necessarily be Insignificant under 20.2.70 NMAC (and vice versa). Unit & stack numbering must be consistent throughout the application package. Per Exemptions Policy 02-012.00 (see http://www.env.nm.gov/apd/permit/aqb_pol.html), 20.2.72.202.B NMAC Exemptions do not apply, but 20.2.72.202.A NMAC exemptions do apply to NOI facilities under 20.2.73 NMAC. List 20.2.72.301.D.4 NMAC Auxiliary Equipment for Streamline applications in Table 2-A. The List of Insignificant Activities (for TV) can be found online at https://www.env.nm.gov/wp-

content/uploads/sites/2/2017/10/InsignificantListTitleV.pdf. TV sources may elect to enter both TV Insignificant Activities and Part 72 Exemptions on this form.

Unit Number	Source Description	Manufacturer	Model No.	Max Capacity	List Specific 20.2.72.202 NMAC Exemption (e.g. 20.2.72.202.B.5)	Date of Manufacture /Reconstruction ²	For Each Piece of Equipment, Check Onc
onit Number	Source Description	Manufacturer	Serial No.	Capacity Units	Insignificant Activity citation (e.g. IA List Item #1.a)	Date of Installation /Construction ²	
			N/A	4000	20.2.72.202.B.2	N/A	Existing (unchanged) Te Removed
T1	Diesel-Fuel Storage Tank	N/A	N/A	4000		2000	✓ New/Additional R acement Unit To Be Modified T acement
							Existing (unchanged) T Removed
Т2	Water						Vew/Additional Recement Unit
							To Be Modified Te Replaced
							Existing (unchanged) Te Removed
							New/Additional Reacement Unit
							Fo Be Modified To Peplaced
							Existing (unchanged) T Removed
							New/Additional Reacement Unit
							To Be Modified To Be Modified To Be Replaced
							New/Additional Recement Unit
							To Be Modified To Replaced
							Existing (unchanged) T Removed
							New/Additional Recement Unit
							To Be Modified Te Replaced
							Existing (unchanged) Te Removed
							New/Additional Reacement Unit
							o Be Modified To Peplaced
							Listing (unchanged) Terrer Removed
							New/Additional Reacement Unit
							To Be Modified To Peplaced
							Existing (unchanged) Te Removed
							New/Additional Racement Unit
							Existing (unchanged) T Removed
							New/Additional Reacement Unit
							To Be Modified To Peplaced
							Existing (unchanged) Te Removed
							New/Additional Reacement Unit
							o Be Modified To Peplaced
							xisting (unchanged) T Removed
							New/Additional Reacement Unit
							Fo Be Modified To Peplaced
							Existing (unchanged) Te Removed
							New/Additional Reacement Unit
							To Be Modified To Peplaced

¹ Insignificant activities exempted due to size or production rate are defined in 20.2.70.300.D.6, 20.2.70.7.Q NMAC, and the NMED/AQB List of Insignificant Activities, dated September 15, 2008. Emissed from these insignificant activities do not need to be reported, unless specifically requested.

² Specify date(s) required to determine regulatory applicability.

Table 2-C: Emissions Control Equipment

Unit and stack numbering must correspond throughout the application package. Only list control equipment for TAPs if the TAP's maximum uncontrolled emissions rate is over its respective threshold as listed in 20.2.72 NMAC, Subpart V, Tables A and B. In accordance with 20.2.72.203.A(3) and (8) NMAC, 20.2.70.300.D(5)(b) and (e) NMAC, and 20.2.73.200.B(7) NMAC, the permittee shall report all control devices and list each pollutant controlled by the control device regardless if the applicant takes credit for the reduction in emissions.

Control Equipment Unit No.	Control Equipment Description	Date Installed	Controlled Pollutant(s)	Controlling Emissions for Unit Number(s) ¹	Efficiency (% Control by Weight)	Method used to Estimate Efficiency
C1	Conveyor Transfer Points - Wet Dust Suppression System	2000	PM	1c, 2a, 3a, 4a, 5a, 6, 9, 11, 12, 13, 14, 16, 17, 18, 19, 26	95.33%	AP-42 11.19.2 Emission Factors
C2	Screen - Wet Dust Suppression System	2000	PM	4, 5, 20, RR_2	91.20%	AP-42 11.19.2 Emission Factors
C3	Crusher - Wet Dust Suppression System	2000	РМ	1, 2, 3	77.78%	AP-42 11.19.2 Emission Factors
C4	Unpaved Roads - Base Course and Watering	2025	PM	ROAD	80.00%	NMED Policy
C5	Stacker Conveyor Drop to Pile - Wet Dust Suppression System	2000	PM	7, 8, 10, 15, 22, 24, 25, RR_3, RR_4, RR_5	60.00%	AP-42 13.2.4 Emission Factors
List each co	ntrol device on a separate line. For each control device, list all en	nission units c	ontrolled by the control device.			

Table 2-D: Maximum Emissions (under normal operating conditions)

This Table was intentionally left blank because it would be identical to Table 2-E.

Maximum Emissions are the emissions at maximum capacity and prior to (in the absence of) pollution control, emission-reducing process equipment, or any other emission reduction. Calculate the hourly emissions using the worst case hourly emissions for each pollutant. For each pollutant, calculate the annual emissions as if the facility were operating at maximum plant capacity without pollution controls for 8760 hours per year, unless otherwise approved by the Department. List Hazardous Air Pollutants (HAP) & Toxic Air Pollutants (TAPs) in Table 2-I. Unit & stack numbering must be consistent throughout the application package. Fill all cells in this table with the emission numbers or a "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expected. Numbers shall be expressed to at least 2 decimal points (e.g. 0.41, 1.41, or 1.41E-4).

Unit No.	N	Эx	C	0	V	C	S	Dx	PI	Иı	PM	10 ¹	PM	2.5 ¹	Н	₂ S	Le	ad
UNIT NO.	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
PIT_RAW	-	-	-	-	-	-	-	-	2.31	3.29	1.09	1.56	0.17	0.24	-	-	-	-
RAW	-	-	-	-	-	-	-	-	2.31	3.29	1.09	1.56	0.17	0.24	-	-	-	-
RR_RAW	-	-	-	-	-	-	-	-	2.31	3.29	1.09	1.56	0.17	0.24	-	-	-	-
RR_1	-	-	-	-	-	-	-	-	2.31	3.29	1.09	1.56	0.17	0.24	-	-	-	-
RR_2	-	-	-	-	-	-	-	-	8.75	19.16	3.05	6.67	0.21	0.45	-	-	-	-
RR_3	-	-	-	-	-	-	-	-	0.69	0.99	0.33	0.47	0.050	0.071	-	-	-	-
RR1PILE	-	-	-	-	-	-	-	-	0.69	0.99	0.33	0.47	0.050	0.071	-	-	-	-
RR_4	-	-	-	-	-	-	-	-	0.69	0.99	0.33	0.47	0.050	0.071	-	-	-	-
RR2PILE	-	-	-	-	-	-	-	-	0.69	0.99	0.33	0.47	0.050	0.071	-	-	-	-
RR_5	-	-	-	-	-	-	-	-	0.92	1.32	0.44	0.62	0.066	0.094	-	-	-	-
RR3PILE	-	-	-	-	-	-	-	-	0.92	1.32	0.44	0.62	0.066	0.094	-	-	-	-
RR_ENG	1.17	2.57	1.08	2.37	0.062	0.14	0.0020	0.0045	0.062	0.14	0.062	0.14	0.062	0.14	-	-	1.1E-05	2.4E-05
1a	-	-	-	-	-	-	-	-	2.31	3.29	1.09	1.56	0.17	0.24	-	-	-	-
1b	-	-	-	-	-	-	-	-	1.89	4.14	0.84	1.84	0.16	0.34	-	-	-	-
1c	-	-	-	-	-	-	-	-	1.05	2.30	0.39	0.84	0.11	0.25	-	-	-	-
2	-	-	-	-	-	-	-	-	1.13	2.48	0.50	1.10	0.093	0.20	-	-	-	-
2a	-	-	-	-	-	-	-	-	0.63	1.38	0.23	0.51	0.068	0.15	-	-	-	-
3	-	-	-	-	-	-	-	-	1.70	3.73	0.76	1.66	0.14	0.31	-	-	-	-
3a	-	-	-	-	-	-	-	-	0.95	2.07	0.35	0.76	0.10	0.22	-	-	-	-
4	-	-	-	-	-	-	-	-	7.88	17.25	2.74	6.00	0.19	0.41	-	-	-	-
4a	-	-	-	-	-	-	-	-	0.11	0.23	0.040	0.084	0.011	0.025	-	-	-	-
5	-	-	-	-	-	-	-	-	5.25	11.50	1.83	4.00	0.12	0.27	-	-	-	-
5a	-	-	-	-	-	-	-	-	0.21	0.46	0.08	0.17	0.023	0.050	-	-	-	-
6	-	-	-	-	-	-	-	-	0.95	2.07	0.35	0.76	0.10	0.22	-	-	-	-
7	-	-	-	-	-	-	-	-	0.23	0.33	0.11	0.16	0.017	0.024	-	-	-	-
8	-	-	-	-	-	-	-	-	0.23	0.33	0.11	0.16	0.017	0.024	-	-	-	-
9	-	-	-	-	-	-	-	-	0.11	0.23	0.039	0.084	0.011	0.025	-	-	-	-
10	-	-	-	-	-	-	-	-	0.23	0.33	0.11	0.16	0.017	0.024	-	-	-	-
11	-	-	-	-	-	-	-	-	0.21	0.46	0.080	0.17	0.023	0.050	-	-	-	-

Unit No.	N	Эх	C	0	V	C	S	Эx	PI	М1	PM	10 ¹	PM	2.5 ¹	Н	₂ S	Le	ad
Unit No.	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr										
12	-	-	-	-	-	-	-	-	0.32	0.69	0.12	0.25	0.034	0.075	-	-	-	-
13	-	-	-	-	-	-	-	-	0.32	0.69	0.12	0.25	0.034	0.075	-	-	-	-
14	-	-	-	-	-	-	-	-	1.05	2.30	0.39	0.84	0.11	0.25	-	-	-	-
15	-	-	-	-	-	-	-	-	0.23	0.33	0.11	0.16	0.017	0.024	-	-	-	-
16	-	-	-	-	-	-	-	-	0.11	0.23	0.04	0.084	0.011	0.025	-	-	-	-
17	-	-	-	-	-	-	-	-	0.11	0.23	0.039	0.084	0.011	0.025	-	-	-	-
18	-	-	-	-	-	-	-	-	0.63	1.38	0.23	0.51	0.068	0.15	-	-	-	-
19	-	-	-	-	-	-	-	-	0.63	1.38	0.23	0.51	0.068	0.15	-	-	-	-
20	-	-	-	-	-	-	-	-	8.75	19.16	3.05	6.67	0.21	0.45	-	-	-	-
21	14.70	32.20	18.22	39.90	2.08	4.55	0.011	0.024	0.86	1.89	0.86	1.89	0.86	1.89	-	-	6.1E-05	1.34E-04
22	-	-	-	-	-	-	-	-	0.69	0.99	0.33	0.47	0.050	0.071	-	-	-	-
24	-	-	-	-	-	-	-	-	0.46	0.66	0.22	0.31	0.033	0.047	-	-	-	-
25	-	-	-	-	-	-	-	-	0.46	0.66	0.22	0.31	0.033	0.047	-	-	-	-
26	-	-	-	-	-	-	-	-	0.11	0.23	0.039	0.084	0.011	0.025	-	-	-	-
FPILE1	-	-	-	-	-	-	-	-	0.46	0.66	0.22	0.31	0.033	0.047	-	-	-	-
FPILE2	-	-	-	-	-	-	-	-	0.69	0.99	0.33	0.47	0.050	0.071	-	-	-	-
FPILE3	-	-	-	-	-	-	-	-	0.92	1.32	0.44	0.62	0.066	0.094	-	-	-	-
TL	-	-	-	-	-	-	-	-	2.08	2.96	0.98	1.40	0.15	0.21	-	-	-	-
WPILE	-	-	-	-	-	-	-	-	0.23	0.33	0.11	0.16	0.017	0.024	-	-	-	-
ROAD	-	-	-	-	-	-	-	-	59.02	104.46	15.04	26.62	1.50	2.66	-	-	-	-
Totals	15.88	34.78	19.30	42.27	2.14	4.69	0.013	0.029	125.8	233.1	42.38	78.13	6.00	11.24	-	-	7.2E-05	1.58E-04

¹Condensable Particulate Matter: Include condensable particulate matter emissions for PM10 and PM2.5 if the source is a combustion source. Do not include condensable particulate matter for PM unless PM is set equal to PM10 and PM2.5. Particulate matter (PM) is not subject to an ambient air quality standard, but PM is a regulated air pollutant under PSD (20.2.74 NMAC) and Title V (20.2.70 NMAC).

Table 2-E: Requested Allowable Emissions

Unit & stack numbering must be consistent throughout the application package. Fill all cells in this table with the emission numbers or a "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expected. Numbers shall be expressed to at least 2 decimal points (e.g. 0.41, 1.41, or 1.41E⁻⁴).

	N	Ох	C	0	V	C	S	Оx	PI	M1	PM	1 10 ¹	PM	2.5 ¹	н	₂ S	Le	ead
Unit No.	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
PIT_RAW	-	-	-	-	-	-	-	-	2.31	0.75	1.09	0.36	0.17	0.054	-	-	-	-
RAW	-	-	-	-	-	-	-	-	2.31	0.75	1.09	0.36	0.17	0.054	-	-	-	-
RR_RAW	-	-	_	-	-	-	-	-	2.31	0.75	1.09	0.36	0.17	0.054	_	-	-	-
RR_1	-	-	-	-	-	-	-	-	2.31	0.75	1.09	0.36	0.17	0.054	-	-	-	-
RR_2	-	-	-	-	-	-	-	-	0.77	0.39	0.26	0.13	0.018	0.0088	-	-	-	-
RR_3	-	-	-	-	-	-	-	-	0.42	0.14	0.20	0.064	0.030	0.010	-	-	-	-
RR1PILE	-	-	-	-	-	-	-	-	0.69	0.23	0.33	0.11	0.050	0.016	-	-	-	-
RR_4	-	-	-	-	-	-	-	-	0.42	0.14	0.20	0.064	0.030	0.010	-	-	-	-
RR2PILE	-	-	-	-	-	-	-	-	0.69	0.23	0.33	0.11	0.050	0.016	-	-	-	-
RR_5	-	-	-	-	-	-	-	-	0.55	0.18	0.26	0.085	0.04	0.013	-	-	-	-
RR3PILE	-	-	-	-	-	-	-	-	0.92	0.30	0.44	0.14	0.066	0.022	-	-	-	-
RR_ENG	1.17	2.56	1.08	2.36	0.062	0.13	0.0020	0.0044	0.062	0.13	0.062	0.13	0.062	0.13	-	-	1.1E-05	2.4E-05
1a	-	-	-	-	-	-	-	-	2.31	0.75	1.09	0.36	0.17	0.054	-	-	-	-
1b	-	-	-	-	-	-	-	-	0.42	0.21	0.19	0.095	0.035	0.018	-	-	-	-
1c	-	-	-	-	-	-	-	-	0.049	0.025	0.016	0.0081	0.0046	0.0023	-	-	-	-
2	-	-	-	-	-	-	-	-	0.25	0.13	0.11	0.057	0.021	0.011	-	-	-	-
2a	-	-	-	-	-	-	-	-	0.029	0.015	0.0097	0.0048	0.0027	0.0014	-	-	-	-
3	-	-	-	-	-	-	-	-	0.38	0.19	0.17	0.085	0.032	0.016	-	-	-	-
3a	-	-	-	-	-	-	-	-	0.044	0.022	0.014	0.0072	0.0041	0.0020	-	-	-	-
4	-	-	-	-	-	-	-	-	0.69	0.35	0.23	0.12	0.016	0.0079	-	-	-	-
4a	-	-	-	-	-	-	-	-	0.0049	0.0025	0.0016	0.00081	0.00046	0.00023	-	-	-	-
5	-	-	-	-	-	-	-	-	0.46	0.23	0.16	0.078	0.011	0.0053	-	-	-	-
5a	-	-	-	-	-	-	-	-	0.010	0.0049	0.0032	0.0016	0.00091	0.00046	-	-	-	-
6	-	-	-	-	-	-	-	-	0.044	0.022	0.014	0.0072	0.0041	0.0020	-	-	-	-
7	-	-	-	-	-	-	-	-	0.14	0.045	0.066	0.021	0.010	0.0032	-	-	-	-
8	-	-	-	-	-	-	-	-	0.14	0.045	0.066	0.021	0.010	0.0032	-	-	-	-
9	-	-	-	-	-	-	-	-	0.0049	0.0025	0.0016	0.00081	0.00046	0.00023	-	-	-	-
10	-	-	-	-	-	-	-	-	0.14	0.045	0.066	0.021	0.010	0.0032	-	-	-	-
11	-	-	-	-	-	-	-	-	0.010	0.0049	0.0032	0.0016	0.00091	0.00046	-	-	-	-
12	-	-	-	-	-	-	-	-	0.015	0.0074	0.0048	0.0024	0.0014	0.00068	-	-	-	-
13	-	-	-	-	-	-	-	-	0.015	0.0074	0.0048	0.0024	0.0014	0.00068	-	-	-	-
14	-	-	-	-	-	-	-	-	0.049	0.025	0.016	0.0081	0.0046	0.0023	-	-	-	-
15	-	-	-	-	-	-	-	-	0.14	0.045	0.066	0.021	0.010	0.0032	-	-	-	-

Unit No.	N	Ͻх	C	0	VC	C	SC	Эx	PI	M1	PM	10 ¹	PM	2.5 ¹	Н	₂ S	Le	ad
Unit NO.	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
16	-	-	-	-	-	-	-	-	0.0049	0.0025	0.0016	0.00081	0.00046	0.00023	-	-	-	-
17	-	-	-	-	-	-	-	-	0.0049	0.0025	0.0016	0.00081	0.00046	0.00023	-	-	-	-
18	-	-	-	-	-	-	-	-	0.029	0.015	0.0097	0.0048	0.0027	0.0014	-	-	-	-
19	-	-	-	-	-	-	-	-	0.029	0.015	0.0097	0.0048	0.0027	0.0014	-	-	-	-
20	-	-	-	-	-	-	-	-	0.77	0.39	0.26	0.13	0.018	0.0088	-	-	-	-
21	14.70	32.03	18.22	39.69	2.08	4.53	0.011	0.024	0.86	1.88	0.86	1.88	0.86	1.88	-	-	6.1E-05	1.33E-04
22	-	-	-	-	-	-	-	-	0.42	0.14	0.20	0.064	0.030	0.0097	-	-	-	-
24	-	-	-	-	-	-	-	-	0.28	0.090	0.13	0.043	0.020	0.0065	-	-	-	-
25	-	-	-	-	-	-	-	-	0.28	0.090	0.13	0.043	0.020	0.0065	-	-	-	-
26	-	-	-	-	-	-	-	-	0.0049	0.0025	0.0016	0.00081	0.00046	0.00023	-	-	-	-
FPILE1	-	-	-	-	-	-	-	-	0.46	0.15	0.22	0.071	0.033	0.011	-	-	-	-
FPILE2	-	-	-	-	-	-	-	-	0.69	0.23	0.33	0.11	0.050	0.016	-	-	-	-
FPILE3	-	-	-	-	-	-	-	-	0.92	0.30	0.44	0.14	0.066	0.022	-	-	-	-
TL	-	-	-	-	-	-	-	-	2.08	0.68	0.98	0.32	0.15	0.048	-	-	-	-
WPILE	-	-	-	-	-	-	-	-	0.23	0.075	0.11	0.036	0.017	0.0054	-	-	-	-
ROAD	-	-	-	-	-	-	-	-	11.8	4.77	3.01	1.22	0.30	0.12	-	-	-	-
Totals	15.88	34.58	19.30	42.04	2.14	4.66	0.013	0.029	37.98	15.71	15.43	7.23	2.92	2.72	-	-	7.2E-05	1.57E-04

Table 2-F: Additional Emissions during Startup, Shutdown, and Routine Maintenance (SSM)

X This table is intentionally left blank since all emissions at this facility due to routine or predictable startup, shutdown, or scehduled maintenance are no higher than those listed in Table 2-E and a malfunction emission limit is not already permitted or requested. If you are required to report GHG emissions as described in Section 6a, include any GHG emissions during Startup, Shutdown, and/or Scheduled Maintenance (SSM) in Table 2-P. Provide an explanations of SSM emissions in Section 6 and 6a.

All applications for facilities that have emissions during routine our predictable startup, shutdown or scheduled maintenance (SSM)¹, including NOI applications, must include in this table the Maximum Emissions during routine or predictable startup, shutdown and scheduled maintenance (20.2.7 NMAC, 20.2.72.203.A.3 NMAC, 20.2.73.200.D.2 NMAC). In Section 6 and 6a, provide emissions calculations for all SSM emissions reported in this table. Refer to "Guidance for Submittal of Startup, Shutdown, Maintenance Emissions in Permit Applications (https://www.env.nm.gov/aqb/permit/aqb_pol.html) for more detailed instructions. Numbers shall be expressed to at least 2 decimal points (e.g. 0.41, 1.41, or 1.41E-4).

more detailed	N N	0x		o expressed	V	2 decimal	S(. 0.41, 1.41)x	, or 1.41E- Pl	4). M ²	PM	110 ²	PM	2.5 ²	н	₂ S	Le	ead
Unit No.	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
Totals																		
iotais							12 11 /1 1	711 /1										1

¹ For instance, if the short term steady-state Table 2-E emissions are 5 lb/hr and the SSM rate is 12 lb/hr, enter 7 lb/hr in this table. If the annual steady-state Table 2-E emissions are 21.9 TPY, and the number of scheduled SSM events result in annual emissions of 31.9 TPY, enter 10.0 TPY in the table below.

² Condensable Particulate Matter: Include condensable particulate matter emissions for PM10 and PM2.5 if the source is a combustion source. Do not include condensable particulate matter for PM unless PM is set equal to PM10 and PM2.5. Particulate matter (PM) is not subject to an ambient air quality standard, but it is a regulated air pollutant under PSD (20.2.74 NMAC) and Title V (20.2.70 NMAC).

Table 2-G: Stack Exit and Fugitive Emission Rates for Special Stacks

I have elected to leave this table blank because this facility does not have any stacks/vents that split emissions from a single source or combine emissions from more than one source listed in table 2-A. Additionally, the emission rates of all stacks match the Requested allowable emission rates stated in Table 2-E.

Use this table to list stack emissions (requested allowable) from split and combined stacks. List Toxic Air Pollutants (TAPs) and Hazardous Air Pollutants (HAPs) in Table 2-I. List all fugitives that are associated with the normal, routine, and non-emergency operation of the facility. Unit and stack numbering must correspond throughout the application package. Refer to Table 2-E for instructions on use of the "-" symbol and on significant figures.

	Serving Unit	Net	Ox	С	0	V	OC	S	Ох	Р	М	PN	/10	PM	2.5	H ₂ S or	r 🗌 Lead
Stack No.	Number(s) from Table 2-A	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
																	L
-	Totals:																

Table 2-H: Stack Exit Conditions

Unit and stack numbering must correspond throughout the application package. Include the stack exit conditions for each unit that emits from a stack, including blowdown venting parameters and tank emissions. If the facility has multiple operating scenarios, complete a separate Table 2-H for each scenario and, for each, type scenario name here:

Stack	Serving Unit Number(s) from	Orientation (H- Horizontal	Rain Caps	Height Above	Temp.	Flow	Rate	Moisture by	Velocity	Inside
Number	Table 2-A	V=Vertical)	(Yes or No)	Ground (ft)	(F)	(acfs)	(dscfs)	Volume (%)	(ft/sec)	Diameter (ft)
S1	RR_ENG	Н	No	8	750.00	785.4		NA	150.0	0.3333
S2	21	V	No	12	954.32	6251.2		NA	191.0	0.8333

Table 2-I: Stack Exit and Fugitive Emission Rates for HAPs and TAPs

In the table below, report the Potential to Emit for each HAP from each regulated emission unit listed in Table 2-A, only if the entire facility emits the HAP at a rate greater than or equal to one (1) ton per year. For each such emission unit, HAPs shall be reported to the nearest 0.1 tpy. Each facility-wide Individual HAP total and the facility-wide Total HAPs shall be the sum of all HAP sources calculated to the nearest 0.1 ton per year. Per 20.2.72.403.A.1 NMAC, facilities not exempt [see 20.2.72.402.C NMAC] from TAP permitting shall report each TAP that has an uncontrolled emission rate in excess of its pounds per hour screening level specified in 20.2.72.502 NMAC. TAPs shall be reported using one more significant figure than the number of significant figures shown in the pound per hour threshold corresponding to the substance. Use the HAP nomenclature as it appears in Section 112 (b) of the 1990 CAAA and the TAP nomenclature as it listed in 20.2.72.502 NMAC. Include tank-flashing emissions estimates of HAPs in this table. For each HAP or TAP listed, fill all cells in this table with the emission numbers or a "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expected or the pollutant is emitted in a quantity less than the threshold amounts described above.

	Unit No.(s)	Total		Provide Name	Pollutant e Here	Provide Name	Pollutant Here	Provide Name	Pollutant Here r 🗌 TAP	Provide I Name	Here	Provide I Name	Here	Name	Pollutant Here r 🗌 TAP	Name	Pollutant e Here or TAP	Name	Pollutant e Here or TAP
		lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
\$1	RR_ENG	0.0081	0.018																
S2	21	0.044	0.096																
Tota	als:	0.052	0.11																

Table 2-J: Fuel

Specify fuel characteristics and usage. Unit and stack numbering must correspond throughout the application package.

	Fuel Type (low sulfur Diesel,	Fuel Source: purchased commercial, pipeline quality natural gas, residue gas,		Speci	fy Units		
Unit No.	ultra low sulfur diesel, Natural Gas, Coal,)	raw/field natural gas, process gas (e.g. SRU tail gas) or other	Lower Heating Value	Hourly Usage	Annual Usage	% Sulfur	% Ash
RR_ENG	Ultra-Low sulfur diesel	Purchased Commercial	128,000 BTU/Gallon	9.7 gallons	40,006 gallons	0.0015	Neg.
21	Ultra-Low sulfur diesel	Purchased Commercial	128,000 BTU/Gallon	53.1 gallons	231,304 gallons	0.0015	Neg.

Table 2-K: Liquid Data for Tanks Listed in Table 2-L

For each tank, list the liquid(s) to be stored in each tank. If it is expected that a tank may store a variety of hydrocarbon liquids, enter "mixed hydrocarbons" in the Composition column for that tank and enter the corresponding data of the most volatile liquid to be stored in the tank. If tank is to be used for storage of different materials, list all the materials in the "All Calculations" attachment, run the newest version of TANKS on each, and use the material with the highest emission rate to determine maximum uncontrolled and requested allowable emissions rate. The permit will specify the most volatile category of liquids that may be stored in each tank. Include appropriate tank-flashing modeling input data. Use additional sheets if necessary. Unit and stack numbering must correspond throughout the application package.

					Vapor	Average Stora	age Conditions	Max Stora	Max Storage Conditions		
Tank No.	SCC Code	Material Name	Composition	Liquid Density (Ib/gal)	Molecular Weight (Ib/Ib*mol)	Temperature (°F)	True Vapor Pressure (psia)	Temperature (°F)	True Vapor Pressure (psia)		
T1	30500298	Diesel Fuel	Diesel Fuel	7.05	130	58.54	0.0062	65.66	0.0079		

Table 2-L: Tank Data

Include appropriate tank-flashing modeling input data. Use an addendum to this table for unlisted data categories. Unit and stack numbering must correspond throughout the application package. Use additional sheets if necessary. See reference Table 2-L2. Note: 1.00 bbl = 10.159 M3 = 42.0 gal

Tank No.	Date Installed	Materials Stored	Seal Type (refer to Table 2- LR below)	Roof Type (refer to Table 2- LR below)		acity	Diameter (M)	Vapor Space (M)	(from Ta	llor able VI-C)	Paint Condition (from Table VI-	Annual Throughput (gal/yr)	Turn- overs (per year)
					(bbl)	(M ³)			Roof	Shell	C)	(gai/yi)	(per year)
T1	2000	Diesel Fuel	FX	FX	95.2	15.14	1.52		LG	LG	Good	271,300	68.00

Table 2-L2: Liquid Storage Tank Data Codes Reference Table
--

Roof Type	Seal Type, W	elded Tank Seal Type	Seal Type, Rive	ted Tank Seal Type	Roof, Shell Color	Paint Condition
FX: Fixed Roof	Mechanical Shoe Seal	Liquid-mounted resilient seal	Vapor-mounted resilient seal	Seal Type	WH: White	Good
IF: Internal Floating Roof	A: Primary only	A: Primary only	A: Primary only	A: Mechanical shoe, primary only	AS: Aluminum (specular)	Poor
EF: External Floating Roof	B: Shoe-mounted secondary	B: Weather shield	B: Weather shield	B: Shoe-mounted secondary	AD: Aluminum (diffuse)	
P: Pressure	C: Rim-mounted secondary	C: Rim-mounted secondary	C: Rim-mounted secondary	C: Rim-mounted secondary	LG : Light Gray	
					MG: Medium Gray	
Note: 1.00 bbl = 0.159 N	1 ³ = 42.0 gal				BL: Black	
					OT : Other (specify)	

Table 2-M: Materials Processed and Produced (Use additional sheets as necessary.)

	Materi	al Processed		N	Naterial Produced		
Description	Chemical Composition	Phase (Gas, Liquid, or Solid)	Quantity (specify units)	Description	Chemical Composition	Phase	Quantity (specify units)
Aggregate	Aggregate	Solid	350,000 tons	Construction Sand and Gravel	Aggregate	Solid	315,000 tons
				Waste	Aggregate	Solid	35,000 tons

Table 2-N: CEM Equipment

Enter Continuous Emissions Measurement (CEM) Data in this table. If CEM data will be used as part of a federally enforceable permit condition, or used to satisfy the requirements of a state or federal regulation, include a copy of the CEM's manufacturer specification sheet in the Information Used to Determine Emissions attachment. Unit and stack numbering must correspond throughout the application package. Use additional sheets if necessary.

Stack No.	Pollutant(s)	Manufacturer	Model No.	Serial No.	Sample Frequency	Averaging Time	Range	Sensitivity	Accuracy
NA									

Table 2-O: Parametric Emissions Measurement Equipment

Unit and stack numbering must correspond throughout the application package. Use additional sheets if necessary.

Unit No.	Parameter/Pollutant Measured	Location of Measurement	Unit of Measure	Acceptable Range	Frequency of Maintenance	Nature of Maintenance	Method of Recording	Averaging Time
NA								

Table 2-P: Greenhouse Gas Emissions

Applications submitted under 20.2.70, 20.2.72, & 20.2.74 NMAC are required to complete this Table. Power plants, Title V major sources, and PSD major sources must report and calculate all GHG emissions for each unit. Applicants must report potential emission rates in short tons per year (see Section 6.a for assistance). Include GHG emissions during Startup, Shutdown, and Scheduled Maintenance in this table. For minor source facilities that are not power plants, are not Title V, or are not PSD, there are three options for reporting GHGs 1) report GHGs for each individual piece of equipment; 2) report all GHGs from a group of unit types, for example report all combustion source GHGs as a single unit and all venting GHG as a second separate unit; OR 3) check the following box.

By checking this box, the applicant acknowledges the total CO2e emissions are less than 75,000 tons per year.

		CO₂ ton/yr	NO	CH₄ ton/yr	SF 6 ton/yr	PFC/HFC ton/yr ²					Total GHG Mass Basis ton/yr ⁴	Total CO₂e ton/yr ⁵
Unit No.	GWPs ¹	1	298	25	22,800	footnote 3						
	mass GHG	475.5	0.0037	0.019							475.6	
RR_ENG	CO ₂ e	475.5	1.11	0.48								477.1
	mass GHG	2603.2	0.020	0.10							2603.4	
21	CO ₂ e	2603.2	6.08	2.61								2611.9
	mass GHG											
	CO ₂ e											
	mass GHG											
	CO ₂ e											
	mass GHG											
	CO ₂ e											
	mass GHG											
	CO ₂ e											
	mass GHG											
	CO ₂ e											
	mass GHG											
	CO ₂ e											
	mass GHG											
	CO ₂ e											
	mass GHG											
	CO ₂ e											
	mass GHG											
	CO ₂ e											
	mass GHG											
	CO ₂ e											
	mass GHG											
	CO ₂ e											
	mass GHG											
	CO ₂ e											
	mass GHG											
	CO2e			-				-				
Total	mass GHG	3078.8	0.024	0.12							3078.9	
i otar	CO ₂ e	3078.8	7.19	3.09								3089.1

¹ GWP (Global Warming Potential): Applicants must use the most current GWPs codified in Table A-1 of 40 CFR part 98. GWPs are subject to change, therefore, applicants need to check 40 CFR 98 to confirm GWP values.

² For HFCs or PFCs describe the specific HFC or PFC compound and use a separate column for each individual compound.

³ For each new compound, enter the appropriate GWP for each HFC or PFC compound from Table A-1 in 40 CFR 98.

⁴ Green house gas emissions on a mass basis is the ton per year green house gas emission before adjustment with its GWP.

⁵ CO₂e means Carbon Dioxide Equivalent and is calculated by multiplying the TPY mass emissions of the green house gas by its GWP.

Application Summary

The <u>Application Summary</u> shall include a brief description of the facility and its process, the type of permit application, the applicable regulation (i.e. 20.2.72.200.A.X, or 20.2.73 NMAC) under which the application is being submitted, and any air quality permit numbers associated with this site. If this facility is to be collocated with another facility, provide details of the other facility including permit number(s). In case of a revision or modification to a facility, provide the lowest level regulatory citation (i.e. 20.2.72.219.B.1.d NMAC) under which the revision or modification is being requested. Also describe the proposed changes from the original permit, how the proposed modification will affect the facility's operations and emissions, de-bottlenecking impacts, and changes to the facility's major/minor status (both PSD & Title V).

The **Process Summary** shall include a brief description of the facility and its processes.

<u>Startup</u>, <u>Shutdown</u>, <u>and Maintenance</u> (<u>SSM</u>) routine or predictable emissions: Provide an overview of how SSM emissions are accounted for in this application. Refer to "Guidance for Submittal of Startup, Shutdown, Maintenance Emissions in Permit Applications (http://www.env.nm.gov/aqb/permit/app_form.html) for more detailed instructions on SSM emissions.

Vernon Hamilton Construction Company, LLC (VHCC) is applying for a new 20.2.72 NMAC air quality permit for a 350 ton per hour (tph) aggregate crushing and screening plant to be operated within county of San Juan, state of New Mexico. Regulation governing this permit application is 20.2.72.200.A(1) NMAC.

VHCC has retained Montrose Environmental Solutions, LLC (Montrose) to assist with the permit application. The plant will be identified as Kirtland Pit and will be located at 32 Rd 6210, Kirtland NM 87417.

Aggregate Crushing and Screening Plant

The 350 tph aggregate quarry, and crushing and screening operations will include an aggregate quarry, feeder, primary jaw crusher, two (2) secondary cone crushers, two (2) 3-deck screens, one (1) scalping screen, one (1) RipRap plant, fifteen (15) transfer conveyors, and seven (7) stacker conveyors. The main crushing and screening plant will be powered by commercial line power unless relocated to a different location where is will be powered by an 725kW, 1081 horsepower (hp) engine/generator. The RipRap plant will be powered by a 140 kW, 188 hp engine. Aggregate from the quarry will first be processed through the RipRap plant and then the material will be stored in the Raw Material Pile. From the Raw Material Pile the material will be fed into the main plant feeder. Processed aggregate will be stored in Finish Storage Piles until transported from the aggregate crushing plant to off-site sales. Waste material is sent back to the quarry. The aggregate crushing plant will limit hourly processing rate to 350 tph and 350,000 tons per year (tpy). Aggregate processing hours will be limited to daylight hours only. The hours of operation are presented below in Table 3-1.

TABLE 5-1. Aggregate Crushing and Screening Plant Production Hours of Operation (MST)												
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
12:00 AM	0	0	0	0	0	0	0	0	0	0	0	0
1:00 AM	0	0	0	0	0	0	0	0	0	0	0	0
2:00 AM	0	0	0	0	0	0	0	0	0	0	0	0
3:00 AM	0	0	0	0	0	0	0	0	0	0	0	0
4:00 AM	0	0	0	0	0	0	0	0	0	0	0	0
5:00 AM	0	0	0	1	1	1	1	1	0.5	0	0	0
6:00 AM	0	0	1	1	1	1	1	1	1	1	0	0
7:00 AM	0	0	1	1	1	1	1	1	1	1	0	0
8:00 AM	1	1	1	1	1	1	1	1	1	1	1	1
9:00 AM	1	1	1	1	1	1	1	1	1	1	1	1
10:00 AM	1	1	1	1	1	1	1	1	1	1	1	1
11:00 AM	1	1	1	1	1	1	1	1	1	1	1	1
12:00 PM	1	1	1	1	1	1	1	1	1	1	1	1
1:00 PM	1	1	1	1	1	1	1	1	1	1	1	1
2:00 PM	1	1	1	1	1	1	1	1	1	1	1	1
3:00 PM	1	1	1	1	1	1	1	1	1	1	1	1
4:00 PM	1	1	1	1	1	1	1	1	1	1	1	1
5:00 PM	0	0	1	1	1	1	1	1	1	1	0	0
6:00 PM	0	0	0	1	1	1	1	1	0.5	0	0	0
7:00 PM	0	0	0	0	0	0	0	0	0	0	0	0
8:00 PM	0	0	0	0	0	0	0	0	0	0	0	0
9:00 PM	0	0	0	0	0	0	0	0	0	0	0	0
10:00 PM	0	0	0	0	0	0	0	0	0	0	0	0
11:00 PM	0	0	0	0	0	0	0	0	0	0	0	0
Total	9	9	12	14	14	14	14	14	13	12	9	9

 TABLE 3-1: Aggregate Crushing and Screening Plant Production Hours of Operation (MST)

Haul truck traffic entering the facility will be controlled with base course and road watering. Haul truck traffic involving the Kirtland Pit operation will be limited to a maximum of 212 trucks per day.

If you have any questions regarding this significant permit application please call Paul Wade of Montrose. at (505) 830-9680 ext 6 or Kevin Bradshaw of VHCC LLC. at (505) 722-7855.

Routine or predictable emissions during Startup, Shutdown, and Maintenance (SSM)

No SSM emissions are proposed or submitted for this facility. For material processing equipment at the Kirtland Pit, VHCC, LLC will follow normal industry practices in minimizing emissions during startup, shutdown, and maintenance to not exceed the maximum hourly or annual emission rates submitted in Table 2-E. All control equipment and methods will be functioning correctly prior to aggregate processing.

Process Flow Sheet

A **process flow sheet** and/or block diagram indicating the individual equipment, all emission points and types of control applied to those points. The unit numbering system should be consistent throughout this application.

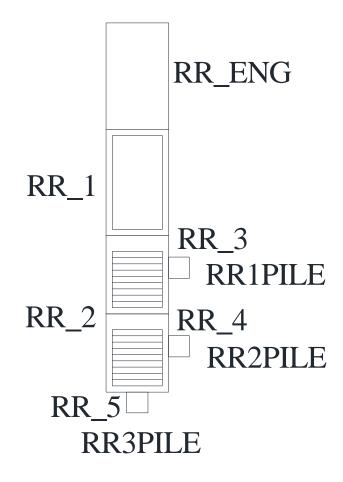


Figure 4-1: Process Flow RipRap Screening Plant

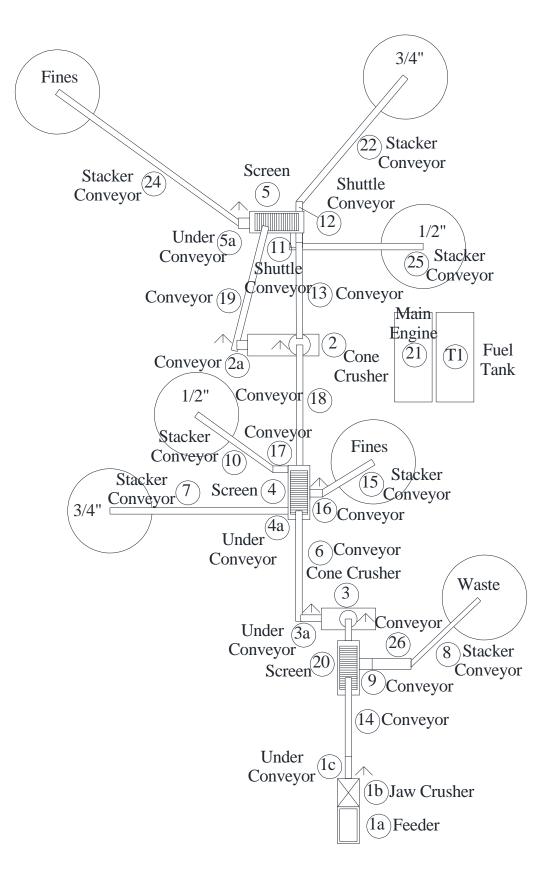


Figure 4-2: Process Flow Main Crushing and Screening Plant

Plot Plan Drawn to Scale

A <u>plot plan drawn to scale</u> showing emissions points, roads, structures, tanks, and fences of property owned, leased, or under direct control of the applicant. This plot plan must clearly designate the restricted area as defined in UA1, Section 1-D.12. The unit numbering system should be consistent throughout this application.

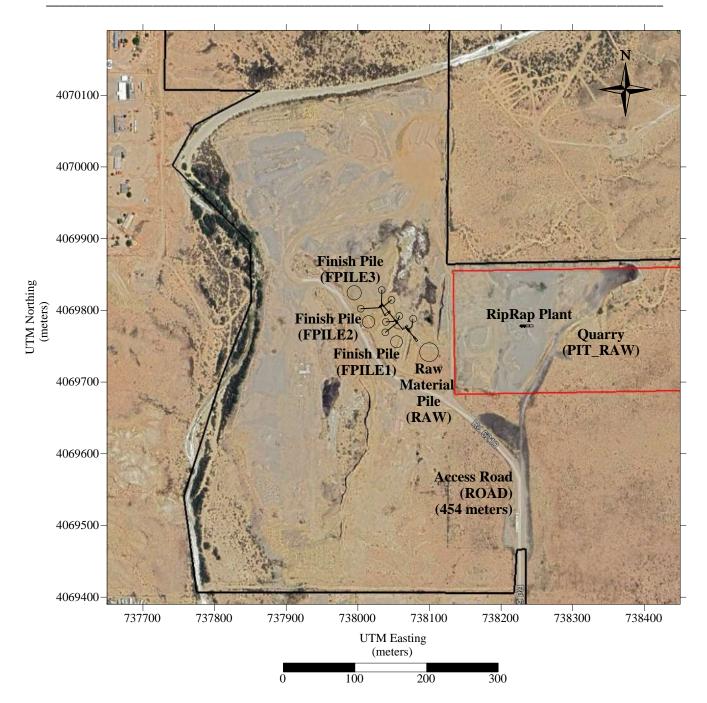


Figure 5-1: Location of VHCC Kirtland Pit Aggregate Crusher and Screening Plant and Surrounding Area

All Calculations

Show all calculations used to determine both the hourly and annual controlled and uncontrolled emission rates. All calculations shall be performed keeping a minimum of three significant figures. Document the source of each emission factor used (if an emission rate is carried forward and not revised, then a statement to that effect is required). If identical units are being permitted and will be subject to the same operating conditions, submit calculations for only one unit and a note specifying what other units to which the calculations apply. All formulas and calculations used to calculate emissions must be submitted. The "Calculations" tab in the UA2 has been provided to allow calculations to be linked to the emissions tables. Add additional "Calc" tabs as needed. If the UA2 or other spread sheets are used, all calculation spread sheet(s) shall be submitted electronically in Microsoft Excel compatible format so that formulas and input values can be checked. Format all spread sheets and calculations such that the reviewer can follow the logic and verify the input values. Define all variables. If calculation spread sheets are not used, provide the original formulas with defined variables. Additionally, provide subsequent formulas showing the input values for each variable in the formula. All calculations, including those calculations are imbedded in the Calc tab of the UA2 portion of the application, the printed Calc tab(s), should be submitted under this section.

Tank Flashing Calculations: The information provided to the AQB shall include a discussion of the method used to estimate tank-flashing emissions, relative thresholds (i.e., NOI, permit, or major source (NSPS, PSD or Title V)), accuracy of the model, the input and output from simulation models and software, all calculations, documentation of any assumptions used, descriptions of sampling methods and conditions, copies of any lab sample analysis. If Hysis is used, all relevant input parameters shall be reported, including separator pressure, gas throughput, and all other relevant parameters necessary for flashing calculation.

SSM Calculations: It is the applicant's responsibility to provide an estimate of SSM emissions or to provide justification for not doing so. In this Section, provide emissions calculations for Startup, Shutdown, and Routine Maintenance (SSM) emissions listed in the Section 2 SSM and/or Section 22 GHG Tables and the rational for why the others are reported as zero (or left blank in the SSM/GHG Tables). Refer to "Guidance for Submittal of Startup, Shutdown, Maintenance Emissions in Permit Applications (http://www.env.nm.gov/aqb/permit/app_form.html) for more detailed instructions on calculating SSM emissions. If SSM emissions are greater than those reported in the Section 2, Requested Allowables Table, modeling may be required to ensure compliance with the standards whether the application is NSR or Title V. Refer to the Modeling Section of this application for more guidance on modeling requirements.

Glycol Dehydrator Calculations: The information provided to the AQB shall include the manufacturer's maximum design recirculation rate for the glycol pump. If GRI-Glycalc is used, the full input summary report shall be included as well as a copy of the gas analysis that was used.

Road Calculations: Calculate fugitive particulate emissions and enter haul road fugitives in Tables 2-A, 2-D and 2-E for:

- 1. If you transport raw material, process material and/or product into or out of or within the facility and have PER emissions greater than 0.5 tpy.
- 2. If you transport raw material, process material and/or product into or out of the facility more frequently than one round trip per day.

Significant Figures:

A. All emissions standards are deemed to have at least two significant figures, but not more than three significant figures.

B. At least 5 significant figures shall be retained in all intermediate calculations.

C. In calculating emissions to determine compliance with an emission standard, the following rounding off procedures shall be used:

- (1) If the first digit to be discarded is less than the number 5, the last digit retained shall not be changed;
- (2) If the first digit discarded is greater than the number 5, or if it is the number 5 followed by at least one digit other than the number zero, the last figure retained shall be increased by one unit; and

- (3) If the first digit discarded is exactly the number 5, followed only by zeros, the last digit retained shall be rounded upward if it is an odd number, but no adjustment shall be made if it is an even number.
- (4) The final result of the calculation shall be expressed in the units of the standard.

Control Devices: In accordance with 20.2.72.203.A(3) and (8) NMAC, 20.2.70.300.D(5)(b) and (e) NMAC, and 20.2.73.200.B(7) NMAC, the permittee shall report all control devices and list each pollutant controlled by the control device regardless if the applicant takes credit for the reduction in emissions. The applicant can indicate in this section of the application if they chose to not take credit for the reduction in emission rates. For notices of intent submitted under 20.2.73 NMAC, only uncontrolled emission rates can be considered to determine applicability unless the state or federal Acts require the control. This information is necessary to determine if federally enforceable conditions are necessary for the control device, and/or if the control device produces its own regulated pollutants or increases emission rates of other pollutants.

Aggregate Crushing and Screening Plant

Pre-Control Particulate Emission Rates

Material Handling (PM_{2.5}, PM₁₀, and PM)

To estimate material handling pre-control particulate emissions rates for crushing, screening, and conveyor transfer operations, emission factors were obtained from EPA's <u>Compilation of Air Pollutant Emission Factors, Volume I:</u> <u>Stationary Point and Area Sources</u>, Aug. 2004, Section 11.19.2, Table 11.19.2-2. To determine missing PM_{2.5} emission factors the ratio of 0.35/0.053 from $PM_{10}/PM_{2.5}$ k factors found in AP-42 Section 13.2.4 (11/2006) were used.

To estimate material handling particulate emission rates for aggregate handling operations (quarry mining/aggregate storage piles/stacker drop to storage pile/loading feed bins), an emission equation was obtained from EPA's <u>Compilation of Air Pollutant Emission Factors, Volume I: Stationary Point and Area Sources</u>, Fifth Edition, Section 13.2.4 (11/2004), where the k (TSP = 0.74, PM₁₀ = 0.35, PM_{2.5} = 0.053), wind speed for determining the maximum hourly emission rate is the NMED default of 11 MPH and for determining the annual emission rate is based on the average wind speed for Farmington Airport (1996 – 2006) of 7.4 mph (see Section 7) and the NMED default moisture content of 2 percent.

Uncontrolled annual emissions for tons per year (tpy) were calculated assuming daylight operation for 4380 hours per year. This limit is based on the natural limitation of daylight hours for the safety of personnel operating the aggregate plant.

Aggregate Material Handling – Quarry Mining, Storage Piles, Stacker drop to Storage Piles, and Feed Bin Loading Emission Equation:

Maximum Hour Emission Factor

E (lbs/ton) = k x 0.0032 x (U/5)^{1.3} / (M/2)^{1.4} E_{PM} (lbs/ton) = 0.74 x 0.0032 x (11/5)^{1.3} / (2/2)^{1.4} E_{PM10} (lbs/ton) = 0.35 x 0.0032 x (11/5)^{1.3} / (2/2)^{1.4} E_{PM2.5} (lbs/ton) = 0.053 x 0.0032 x (11/5)^{1.3} / (2/2)^{1.4} E_{PM} (lbs/ton) = 0.00660 lbs/ton; E_{PM10} (lbs/ton) = 0.00312 lbs/ton E_{PM2.5} (lbs/ton) = 0.00047 lbs/ton

Annual Emission Factor

E (lbs/ton) = k x 0.0032 x (U/5)^{1.3} / (M/2)^{1.4} E_{PM} (lbs/ton) = 0.74 x 0.0032 x (9.4/5)^{1.3} / (2/2)^{1.4} E_{PM10} (lbs/ton) = 0.35 x 0.0032 x (9.4/5)^{1.3} / (2/2)^{1.4} $E_{PM2.5}$ (lbs/ton) = 0.053 x 0.0032 x (9.4/5)^{1.3} / (2/2)^{1.4} E_{PM} (lbs/ton) = 0.00538 lbs/ton; E_{PM10} (lbs/ton) = 0.00254 lbs/ton $E_{PM2.5}$ (lbs/ton) = 0.00039 lbs/ton

AP-42 Section 11.19.2 Table 11.19.2-2 Emission Factors:

All Bin Unloading and Conveyor Transfers = Uncontrolled Conveyor Transfer Point Emission Factor Crushing = Uncontrolled Tertiary Crushing Emission Factor Screening = Uncontrolled Screening Emission Factor

Material Handling Emission Factors:

Process Unit	PM Emission Factor (Ibs/ton)	PM10 Emission Factor (lbs/ton)	PM _{2.5} Emission Factor (Ibs/ton)
Uncontrolled Tertiary Crushing	0.00540	0.00240	0.00036
Uncontrolled Screening	0.02500	0.00870	0.00130
Feed Bin Unloading, and Conveyor Transfers	0.00300	0.00110	0.00017
Uncontrolled Max Hourly Aggregate Storage Piles, Aggregate Drop to Piles, Feeder Loading	0.00660	0.00312	0.00047
Uncontrolled Annual Aggregate Storage Piles, Aggregate Drop to Piles, Feeder Loading	0.00429	0.00203	0.00031

The following equation was used to calculate the hourly emission rate for each process unit:

Emission Rate (lbs/hour) = Process Rate (tons/hour) * Emission Factor (lbs/ton)

The following equation was used to calculate the annual emission rate for each process unit:

Emission Rate (tons/year) = Emission Rate (lbs/hour) * Operating Hour (hrs/year) 2000 lbs/ton

Table 6-1 Pre-Controlled Regulated Process Equipment Emission Rates

Unit #	Process Unit Description	Process Rate (tph)	PM Emission Rate (Ibs/hr)	PM Emission Rate (tons/yr)	PM10 Emission Rate (Ibs/hr)	PM10 Emission Rate (tons/yr)	PM2.5 Emission Rate (Ibs/hr)	PM2.5 Emission Rate (tons/yr)
PIT_RAW	Quarry Material	350	2.31	3.29	1.09	1.56	0.17	0.24
RAW	Raw Material from Quarry	350	2.31	3.29	1.09	1.56	0.17	0.24
	1		Ma	in Plant	T	1	T	
1a	Feeder	350	2.31	3.29	1.09	1.56	0.17	0.24
1b	Jaw Crusher with under conveyor	350	1.89	4.14	0.84	1.84	0.16	0.34
1c	Jaw Crusher under conveyor	350	1.05	2.30	0.39	0.84	0.11	0.25
14	Conveyor	350	1.05	2.30	0.39	0.84	0.11	0.25
20	Scalping Screen w/ under conveyor	350	8.75	19.16	3.05	6.67	0.21	0.45
9	Scalping Screen Shuttle Conveyor	35	0.11	0.23	0.039	0.084	0.011	0.025
26	Conveyor	35	0.11	0.23	0.039	0.084	0.011	0.025
8	Stacker Conveyor drop to Waste	35	0.23	0.33	0.11	0.16	0.017	0.024
3	Cone Crusher with Under Conveyor	315	1.70	3.73	0.76	1.66	0.14	0.31
3a	Cone Crusher Under Conveyor	315	0.95	2.07	0.35	0.76	0.10	0.22
6	Conveyor	315	0.95	2.07	0.35	0.76	0.10	0.22
4	Screen w/ Under Conveyors	315	7.88	17.25	2.74	6.00	0.19	0.41
4a	Screen Under Conveyor	35	0.11	0.23	0.04	0.084	0.011	0.025
7	Stacker Conveyor	35	0.23	0.33	0.11	0.16	0.017	0.024
16	Screen Under Conveyor	35	0.11	0.23	0.04	0.084	0.011	0.025
15	Stacker Conveyor	35	0.23	0.33	0.11	0.16	0.017	0.024
17	Screen Under Conveyor	35	0.11	0.23	0.039	0.084	0.011	0.025
10	Stacker Conveyor	35	0.23	0.33	0.11	0.16	0.017	0.024
18	Screen Conveyor to Cone Crusher	210	0.63	1.38	0.23	0.51	0.068	0.15
2	Cone Crusher with Under Conveyor	210	1.13	2.48	0.50	1.10	0.093	0.20
2a	Cone Crusher Under Conveyor	210	0.63	1.38	0.23	0.51	0.068	0.15
19	Conveyor	210	0.63	1.38	0.23	0.51	0.068	0.15

Unit #	Process Unit Description	Process Rate (tph)	PM Emission Rate (Ibs/hr)	PM Emission Rate (tons/yr)	PM10 Emission Rate (Ibs/hr)	PM10 Emission Rate (tons/yr)	PM _{2.5} Emission Rate (Ibs/hr)	PM2.5 Emission Rate (tons/yr)
5	Screen w/ Under Conveyors	210	5.25	11.50	1.83	4.00	0.12	0.27
5a	Screen Under Conveyor	70	0.21	0.46	0.08	0.17	0.023	0.050
24	Stacker Conveyor	70	0.46	0.66	0.22	0.31	0.033	0.047
12	Shuttle Conveyor	105	0.32	0.69	0.12	0.25	0.034	0.075
22	Stacker Conveyor	105	0.69	0.99	0.33	0.47	0.050	0.071
11	Shuttle Conveyor	70	0.21	0.46	0.08	0.17	0.023	0.050
25	Stacker Conveyor	70	0.46	0.66	0.22	0.31	0.033	0.047
13	Conveyor - return to crusher	105	0.32	0.69	0.12	0.25	0.034	0.075
			Fini	sh Piles				
FPILE1	FPILE Fines	70	0.46	0.66	0.22	0.31	0.033	0.047
FPILE2	FPILE 1/2"	105	0.69	0.99	0.33	0.47	0.050	0.071
FPILE3	FPILE 3/4"	140	0.92	1.32	0.44	0.62	0.066	0.094
			<u>Truc</u>	<u>k Loading</u>		-	-	
TL	Truck Loading	315	2.08	2.96	0.98	1.40	0.15	0.21
			<u>Rip F</u>	Rap Plant				
RR_RAW	RipRap Screening Plant Raw Material	350	2.31	3.29	1.09	1.56	0.17	0.24
RR_Feed er	RipRap Screening Plant Feeder	350	2.31	3.29	1.09	1.56	0.17	0.24
RR_Scre en	RipRap Screening Plant Screen (2- screen setup)	350	8.75	19.16	3.05	6.67	0.21	0.45
RR_1a	RipRap Screening Plant Stacker Conveyor 1a	105	0.69	0.99	0.33	0.47	0.050	0.071
RR1PILE	RipRap Screening Plant Stacker Finish Pile	105	0.69	0.99	0.33	0.47	0.050	0.071
RR_1b	RipRap Screening Plant Stacker Conveyor 1b	105	0.69	0.99	0.33	0.47	0.050	0.071
RR2PILE	RipRap Screening Plant Stacker Finish Pile	105	0.69	0.99	0.33	0.47	0.050	0.071
RR_1c	RipRap Screening Plant Stacker Conveyor 1c	140	0.92	1.32	0.44	0.62	0.066	0.094

Unit #	Process Unit Description	Process Rate (tph)	PM Emission Rate (Ibs/hr)	PM Emission Rate (tons/yr)	PM10 Emission Rate (Ibs/hr)	PM10 Emission Rate (tons/yr)	PM2.5 Emission Rate (Ibs/hr)	PM _{2.5} Emission Rate (tons/yr)
RR3PILE	RipRap Screening Plant Stacker Finish Pile	140	0.92	1.32	0.44	0.62	0.066	0.094
			Waste Pil	e to Open Pi	<u>t</u>			
WPILE	Waste Pile (Dirt Removal to Open Pit)	35	0.23	0.33	0.11	0.16	0.017	0.024
		TOTALS	65.90	126.64	26.42	49.48	3.57	6.55

Controlled Particulate Emission Rates

No fugitive dust controls or emission reductions are proposed for the quarry mining, aggregate storage piles, or loading of the aggregate feed bin with the exception of limiting annual production rates.

A "Wet Suppression" system will control emissions of particulate matter during crushing and screening. Controlled sources (with wet suppression) are those that are part of the processing plant that employs current wet suppression technology similar to the study group found in AP-42 Section 11.19.2. The moisture content of the study group without wet suppression systems operating (uncontrolled) ranged from 0.21 to 1.3 percent, and the same facilities operating wet suppression systems (controlled) ranged from 0.55 to 2.88 percent. Due to carry over of the small amount of moisture required, it has been shown that each source, with the exception of crushers, does not need to employ direct water sprays. Although the moisture content was the only variable measured, other process features may have as much influence on emissions from a given source. No fugitive dust controls are proposed for loading the feeders (RR_1, 1a), and material handling at the raw material source (PIT_RAW, RAW, RR_RAW), storage storage pile (RR1PILE, RR2PILE, RR3PILE, FPILE1, FPILE2, FPILE3, WPILE) or truck loading (TL). Water sprays and moisture carryover will control fugitive dust for Units 1b, 1c, 14, 20, 9, 26, 8, 3, 3a, 6, 4, 4a, 7, 16, 15, 17, 10, 18, 2, 2a, 19, 5, 5a, 24, 12, 22, 11, 25, 13, RR_2, RR_3, RR_4, RR_5.

Fugitive dust control for unloading the aggregate feeder (Units RR_1, 1a) onto conveyors will be controlled, as needed, with enclosures and/or water sprays at the exit of the feed bins. Fugitive dust control for the transfer conveyors (Units 1b, 1c, 14, 9, 26, 3a, 6, 4a, 16, 17, 18, 2a, 19, 5a, 12, 11, 13, RR_2, RR_3, RR_4, RR_5) will be controlled with material moisture content and/or enclosure. It is estimated that these methods will control to an efficiency of 95.3 percent per AP42 Section 11.19.2, Table 11.19.2-2. Additional emission reductions include limiting annual production rates.

Fugitive dust control for the plant crushers (Units 1b, 3, 2) will be controlled, as needed, with enclosures and/or water sprays. It is estimated that these methods will control to an efficiency of 77.8 percent for crushing operations per AP42 Section 11.19.2, Table 11.19.2-2. Additional emission reductions include limiting annual production rates.

Fugitive dust control for the plant screens (Units 20, 4, 5) will be controlled, as needed, with enclosures and/or water sprays. It is estimated that these methods will control to an efficiency of 91.2 percent for screening operations per AP42 Section 11.19.2, Table 11.19.2-2. Additional emission reductions include limiting annual production rates.

Fugitive dust control for the stacker conveyor transfer to storage piles (Units 8, 7, 15, 10, 24, 22, 25) will be controlled with material moisture content and/or enclosure. It is estimated that the additional moisture during processing will increase the moisture content from the default of 2% to the high moisture content value found in footnote b of AP-42 Table 11.19.2-2, 2.88%. This will control fugitive emissions to an efficiency of 60 percent. Additional emission reductions include limiting annual production rates.

To estimate material handling control particulate emissions rates for crushing, screening, and conveyor transfer operations, emission factors were obtained from EPA's <u>Compilation of Air Pollutant Emission Factors</u>, Volume I: <u>Stationary Point and Area Sources</u>, Aug. 2004, Section 11.19.2, Table 11.19.2-2.

To estimate material handling particulate emission rates for aggregate handling operations (mining/aggregate storage piles/loading feed bins/stacker drop to piles), an emission equation was obtained from EPA's <u>Compilation of Air</u> <u>Pollutant Emission Factors, Volume I: Stationary Point and Area Sources</u>, Fifth Edition, Section 13.2.4 (11/2004), where the k (PM = 0.74, PM₁₀ = 0.35, PM_{2.5} = 0.053), wind speed for determining the maximum hourly emission rate is the VHCC, LLC

NMED default of 11 MPH and for determining annual emission rate is based on the average wind speed for Farmington for the years of 1996 through 2006 of 7.4 mph, and the NMED default moisture content of 2 percent.

Mining, Aggregate Storage Piles and Feed Bin Loading Emission Equation:

Maximum Hour Emission Factor

E (lbs/ton) = k x 0.0032 x (U/5)^{1.3} / (M/2)^{1.4} E_{PM} (lbs/ton) = 0.74 x 0.0032 x (11/5)^{1.3} / (2/2)^{1.4} E_{PM10} (lbs/ton) = 0.35 x 0.0032 x (11/5)^{1.3} / (2/2)^{1.4} $E_{PM2.5}$ (lbs/ton) = 0.00660 lbs/ton; E_{PM10} (lbs/ton) = 0.00312 lbs/ton $E_{PM2.5}$ (lbs/ton) = 0.00047 lbs/ton

Aggregate Storage Pile Loading from Stacker Conveyor Emission Equation:

Maximum Hour Emission Factor

E (lbs/ton) = k x 0.0032 x (U/5)^{1.3} / (M/2)^{1.4} E_{PM} (lbs/ton) = 0.74 x 0.0032 x (11/5)^{1.3} / (2.88/2)^{1.4} E_{PM10} (lbs/ton) = 0.35 x 0.0032 x (11/5)^{1.3} / (2.88/2)^{1.4} $E_{PM2.5}$ (lbs/ton) = 0.00396 lbs/ton; E_{PM10} (lbs/ton) = 0.00187 lbs/ton $E_{PM2.5}$ (lbs/ton) = 0.00028 lbs/ton

Mining, Aggregate Storage Piles and Feed Bin Loading Emission Equation:

Annual Emission Factor

$$\begin{split} &\mathsf{E}\;(\mathsf{lbs/ton})=\mathsf{k}\;\mathsf{x}\;0.0032\;\mathsf{x}\;(\mathsf{U}/\mathsf{5})^{1.3}\,/\,(\mathsf{M}/2)^{1.4}\\ &\mathsf{E}_{\mathsf{PM}}\;(\mathsf{lbs/ton})=0.74\;\mathsf{x}\;0.0032\;\mathsf{x}\;(7.4/5)^{1.3}\,/\,(2/2)^{1.4}\\ &\mathsf{E}_{\mathsf{PM10}}\;(\mathsf{lbs/ton})=0.35\;\mathsf{x}\;0.0032\;\mathsf{x}\;(7.4/5)^{1.3}\,/\,(2/2)^{1.4}\\ &\mathsf{E}_{\mathsf{PM2.5}}\;(\mathsf{lbs/ton})=0.00429\;\mathsf{lbs/ton};\\ &\mathsf{E}_{\mathsf{PM10}}\;(\mathsf{lbs/ton})=0.00203\;\mathsf{lbs/ton}\\ &\mathsf{E}_{\mathsf{PM2.5}}\;(\mathsf{lbs/ton})=0.00031\;\mathsf{lbs/ton} \end{split}$$

Aggregate Storage Pile Loading from Stacker Conveyor Emission Equation:

Annual Emission Factor

E (lbs/ton) = k x 0.0032 x (U/5)^{1.3} / (M/2)^{1.4} E_{PM} (lbs/ton) = 0.74 x 0.0032 x (7.4/5)^{1.3} / (2.88/2)^{1.4} E_{PM10} (lbs/ton) = 0.35 x 0.0032 x (7.4/5)^{1.3} / (2.88/2)^{1.4} E_{PM2.5} (lbs/ton) = 0.0053 x 0.0032 x (7.4/5)^{1.3} / (2.88/2)^{1.4} E_{PM} (lbs/ton) = 0.00258 lbs/ton; E_{PM10} (lbs/ton) = 0.00122 lbs/ton E_{PM2.5} (lbs/ton) = 0.00018 lbs/ton

AP-42 Emission Factors:

Feed Bin Unloading = Controlled Conveyor Transfer Point Emission Factor Crusher = Controlled Tertiary Crusher Emission Factor Screen = Controlled Screening Emission Factor Transfer Conveyor = Controlled Conveyor Transfer Point Emission Factor

Material Handling Emission Factors:

Process Unit	PM Emission Factor (lbs/ton)	PM ₁₀ Emission Factor (lbs/ton)	PM _{2.5} Emission Factor (lbs/ton)
Controlled Crushing	0.00120	0.00054	0.00010
Controlled Screening	0.00220	0.00074	0.00005
Controlled Feeder Unloading and Conveyor Transfers	0.00014	0.00005	0.000013
Mining, Aggregate Storage Piles, Feeder Loading Maximum Hourly	0.00660	0.00312	0.00047
Mining, Aggregate Storage Piles, Feeder Loading Annual Hourly	0.00429	0.00203	0.00031
Stacker Conveyor to Pile Maximum Hourly	0.00396	0.00187	0.00028
Stacker Conveyor to Pile Annual Hourly	0.00258	0.00122	0.00018

The following equation was used to calculate the hourly emission rate for each process unit:

Emission Rate (lbs/hour) = Process Rate (tons/hour) * Emission Factor (lbs/ton)

The following equation was used to calculate the annual emission rate for each process unit:

Emission Rate (tons/year) = <u>Hourly Emission Rate (lbs/ton) * Annual Throughput (tons/year)</u> 2000 lbs/ton

Unit #	Process Unit Description	Process Rate (tph)	PM Emission Rate (Ibs/hr)	PM Emission Rate (tons/yr)	PM10 Emission Rate (Ibs/hr)	PM10 Emission Rate (tons/yr)	PM _{2.5} Emission Rate (Ibs/hr)	PM2.5 Emission Rate (tons/yr)
PIT_RAW	Quarry Material	350	2.31	0.75	1.09	0.36	0.17	0.054
RAW	Raw Material from Quarry	350	2.31	0.75	1.09	0.36	0.17	0.054
	ſ		Ma	<u>in Plant</u>	1		1	1
1a	Feeder	350	2.31	0.75	1.09	0.36	0.17	0.054
1b	Jaw Crusher with under conveyor	350	0.42	0.21	0.19	0.095	0.035	0.018
1c	Jaw Crusher under conveyor	350	0.049	0.025	0.016	0.0081	0.0046	0.0023
14	Conveyor	350	0.049	0.025	0.016	0.0081	0.0046	0.0023
20	Scalping Screen w/ under conveyor	350	0.77	0.39	0.26	0.13	0.018	0.0088
9	Scalping Screen Shuttle Conveyor	35	0.0049	0.0025	0.0016	0.00081	0.00046	0.00023
26	Conveyor	35	0.0049	0.0025	0.0016	0.00081	0.00046	0.00023
8	Stacker Conveyor drop to Waste	35	0.14	0.045	0.066	0.021	0.010	0.0032
3	Cone Crusher with Under Conveyor	315	0.38	0.19	0.17	0.085	0.032	0.016
За	Cone Crusher Under Conveyor	315	0.044	0.022	0.014	0.0072	0.0041	0.0020
6	Conveyor	315	0.044	0.022	0.014	0.0072	0.0041	0.0020
4	Screen w/ Under Conveyors	315	0.69	0.35	0.23	0.12	0.016	0.0079
4a	Screen Under Conveyor	35	0.0049	0.0025	0.0016	0.00081	0.00046	0.00023
7	Stacker Conveyor	35	0.14	0.045	0.066	0.021	0.010	0.0032
16	Screen Under Conveyor	35	0.0049	0.0025	0.0016	0.00081	0.00046	0.00023
15	Stacker Conveyor	35	0.14	0.045	0.066	0.021	0.010	0.0032
17	Screen Under Conveyor	35	0.0049	0.0025	0.0016	0.00081	0.00046	0.00023
10	Stacker Conveyor	35	0.14	0.045	0.066	0.021	0.010	0.0032
18	Screen Conveyor to Cone Crusher	210	0.029	0.015	0.0097	0.0048	0.0027	0.0014
2	Cone Crusher with Under Conveyor	210	0.25	0.13	0.11	0.057	0.021	0.011
2a	Cone Crusher Under Conveyor	210	0.029	0.015	0.0097	0.0048	0.0027	0.0014

Table 6-2 Controlled Regulated Process Equipment Emission Rates

Unit #	Process Unit Description	Process Rate (tph)	PM Emission Rate (Ibs/hr)	PM Emission Rate (tons/yr)	PM10 Emission Rate (Ibs/hr)	PM10 Emission Rate (tons/yr)	PM _{2.5} Emission Rate (Ibs/hr)	PM _{2.5} Emission Rate (tons/yr)
19	Conveyor	210	0.029	0.015	0.0097	0.0048	0.0027	0.0014
5	Screen w/ Under Conveyors	210	0.46	0.23	0.16	0.078	0.011	0.0053
5a	Screen Under Conveyor	70	0.010	0.0049	0.0032	0.0016	0.00091	0.00046
24	Stacker Conveyor	70	0.28	0.090	0.13	0.043	0.020	0.0065
12	Shuttle Conveyor	105	0.015	0.0074	0.0048	0.0024	0.00137	0.00068
22	Stacker Conveyor	105	0.42	0.135	0.20	0.064	0.030	0.0097
11	Shuttle Conveyor	70	0.010	0.0049	0.0032	0.0016	0.00091	0.00046
25	Stacker Conveyor	70	0.28	0.090	0.13	0.043	0.020	0.0065
13	Conveyor - return to crusher	105	0.015	0.007	0.0048	0.0024	0.0014	0.00068
	1		<u>Fini</u>	sh Piles			1	
FPILE1	FPILE Fines	70	0.46	0.15	0.22	0.071	0.033	0.011
FPILE2	FPILE 1/2"	105	0.69	0.23	0.33	0.11	0.050	0.016
FPILE3	FPILE 3/4"	140	0.92	0.30	0.44	0.14	0.066	0.022
			<u>Trucl</u>	k Loading	-	-	-	-
TL	Truck Loading	315	2.08	0.68	0.98	0.32	0.15	0.048
			<u>Rip F</u>	Rap Plant	-	-	-	-
RR_RAW	RipRap Screening Plant Raw Material	350	2.31	0.75	1.09	0.36	0.17	0.054
RR_Feed er	RipRap Screening Plant Feeder	350	2.31	0.75	1.09	0.36	0.17	0.054
RR_Scre en	RipRap Screening Plant Screen (2- screen setup)	350	2.31	0.75	1.09	0.36	0.17	0.054
RR_1a	RipRap Screening Plant Stacker Conveyor 1a	105	0.77	0.39	0.26	0.13	0.018	0.0088
RR1PILE	RipRap Screening Plant Stacker Finish Pile	105	0.42	0.14	0.20	0.064	0.030	0.010
RR_1b	RipRap Screening Plant Stacker Conveyor 1b	105	0.69	0.23	0.33	0.11	0.050	0.016
RR2PILE	RipRap Screening Plant Stacker Finish Pile	105	0.42	0.14	0.20	0.064	0.030	0.010
RR_1c	RipRap Screening Plant Stacker Conveyor 1c	140	0.69	0.23	0.33	0.11	0.050	0.016

Unit #	Process Unit Description	Process Rate (tph)	PM Emission Rate (Ibs/hr)	PM Emission Rate (tons/yr)	PM10 Emission Rate (Ibs/hr)	PM10 Emission Rate (tons/yr)	PM2.5 Emission Rate (Ibs/hr)	PM2.5 Emission Rate (tons/yr)
RR3PILE	RipRap Screening Plant Stacker Finish Pile	140	0.55	0.18	0.26	0.085	0.040	0.013
			Waste Pil	e to Open Pi	<u>t</u>			
WPILE	Waste Pile (Dirt Removal to Open Pit)	35	0.23	0.075	0.11	0.036	0.017	0.0054
		TOTALS	25.25	8.93	11.50	4.00	1.70	0.58

Estimates for 1081 hp (725 kW) Main Crushing and Screening Plant Diesel-Fired Engine (21) (NO_x, CO, SO₂, VOC, PM, and CO₂)

A 1081 horsepower (hp), 725 kilowatt (kW) engine (Unit 21) provides power to the Main crushing and screening plant for relocations only. At the initial site the main plant is run by commercial line power. Emission rates for NO_X, CO, PM and NMHC are based on EPA Tier 2 emission factors (See Section 7). Sulfur dioxide (SO₂) emissions are estimated based on sulfur content of diesel fuel, not to exceed 15 ppm fuel content and a fuel usage rate of 53.1 gal/hr. CO₂ emission rates are found in EPA's "Emission Factors for Greenhouse Gas Inventories" (See Section 7). Uncontrolled annual emissions in tons per year (tpy) were calculated assuming daylight operation of 4380 hours per year. Controlled annual emissions in tons per year (tpy) were calculated assuming proposed operation of 4356 hours per year.

EPA Tier 2:

Pollutant	EPA Tier 2 Emission Factor (g-kW/hr)		
Nitrogen Oxide (NOx)	9.20		
Carbon Monoxides (CO)	11.40		
Particulate (PM)	0.54		
Hydrocarbons (VOC)	1.30		

Sulfur dioxide emission rate was calculated using the fuel consumption rate for this engine of 53.1 gallons per hour, a fuel density of 7.0 pounds per gallon, a fuel sulfur content of 15 PPM, and a sulfur to sulfur dioxide conversion factor of two (2). The following equation calculates the emission rate for sulfur dioxide (SO₂).

Emission Rate (lbs/hr) = Fuel (gal/hr) * Density lbs/gal * % Sulfur Content * Factor

Emission Rate (lbs/hr) =	53.1 gallons	7.0 lbs	0.000015 lbs Sulfur	2 lbs Sulfur Dioxide
	hr	gallon	lbs of fuel	1 lb Sulfur

Emission Rate (lbs/hr) = 0.012 lbs/hr

CO₂ emission rates are found in EPA's "Emission Factors for Greenhouse Gas Inventories" (February 13, 2024). CO2 = 10.21 kg/gal (GWP = 1) CH4 = 0.41 g/gal (GWP = 28)

N2O = 0.08 g/gal (GWP = 265)

The following equation was used to calculate the annual emission rate for each engine pollutant:

Emission Rate (tons/year) = Emission Rate (lbs/hour) * Operating Hour (hrs/year) 2000 lbs/ton

Process Unit Number	Pollutant	Engine Rating (hp/kW)	Emission Rate (lbs/hr)	Emission Rate (tons/yr)	
21	NOx	1081/725	14.70	32.20	
	СО	1081/725	18.22	39.90	
	SO ₂	1081/725	0.011	0.024	
	VOC	1081/725	2.08	4.55	
	PM	1081/725	0.86	1.89	

Table 6-3: Uncontrolled Combustion Emission Rates

Table 6-4: Controlled Combustion Emission Rates

Process Unit Number	Pollutant	Engine Rating (hp/kW)	Emission Rate (lbs/hr)	Emission Rate (tons/yr)	
21	NOx	1081/725	14.70	32.03	
	СО	1081/725	18.22	39.69	
	SO ₂	1081/725	0.011	0.024	
	VOC	1081/725	2.08	4.53	
	PM	1081/725	0.86	1.88	

GHG emission rate hourly (lbs/hr) = Emission Factor * gallon/hour * GWP * 2.20462 lbs/kg or 0.0020462 lbs/g GHG emission rate annual (tons/yr) = lbs/hr * annual hours/2000 lbs/ton

Process Unit Number	Pollutant	Emission Factor	Gallons/Hour	GWP (lbs/hr)	GHG Emission Rate (lbs/hr)	GHG Emission Rate (tons/yr)
21	CO ₂	10.21 kg/gal	53.1	1	1195.24	2617.57
	CH4	0.41 g/gal	53.1	28	1.20	2.63
	N ₂ O	0.08 g/gal	53.1	265	2.79	6.11
	GHG				1199.2	2626.3

Table 6-5: Uncontrolled GHG Combustion Emission Rates

Table 6-6: Controlled GHG Combustion Emission Rates

Process Unit Number	Pollutant	Emission Factor	Gallons/Hour	GWP (lbs/hr)	GHG Emission Rate (lbs/hr)	GHG Emission Rate (tons/yr)
21	CO ₂	10.21 kg/gal	53.1	1	1195.24	2603.23
	CH4	0.41 g/gal	53.1	28	1.20	2.61
	N ₂ O	0.08 g/gal	53.1	265	2.79	6.08
	GHG				1199.2	2611.9

Estimates for 188 hp RipRap Screening Plant Diesel-Fired Engine (RR_ENG) (NO_x, CO, SO₂, VOC, PM, and CO₂)

A 188 horsepower (hp), 140 kilowatt (kW) engine (Unit RR_ENG) provides power to the RipRap screening plant. Emission rates for NO_X, CO, PM and NMHC are based on EPA Tier 4 emission factors (See Section 7). Tier 4 emission factors lists NMHC+NO_X. NO_X emission factor is 95% of the NMHC+NO_X emission factor and Hydrocarbons (VOC) is 5% of the NMHC+NO_X emission factor. Sulfur dioxide (SO₂) emissions are estimated based on sulfur content of diesel fuel, not to exceed 15 ppm fuel content and a fuel usage rate of 9.7 gal/hr. CO₂ emissions rates are found in EPA's "Emission Factors for Greenhouse Gas Inventories" (See Section 7). Uncontrolled annual emissions in tons per year (tpy) were calculated assuming daylight operation of 4380 hours per year. Controlled annual emissions in tons per year (tpy) were calculated assuming proposed operation of 4356 hours per year.

EPA Tier 4:

Pollutant	EPA Tier 4 Emission Factor (g-kW/hr)
NMHC+NOx	4.00
Nitrogen Oxide (NOx)	3.80
Carbon Monoxides (CO)	3.50
Particulate (PM)	0.20
Hydrocarbons (VOC)	0.20

Sulfur dioxide emission rate was calculated using the fuel consumption rate for this engine of 9.7 gallons per hour, a fuel density of 7.0 pounds per gallon, a fuel sulfur content of 15 PPM, and a sulfur to sulfur dioxide conversion factor of two (2). The following equation calculates the emission rate for sulfur dioxide (SO₂).

Emission Rate (lbs/hr) = Fuel (gal/hr) * Density lbs/gal * % Sulfur Content * Factor

Emission Rate (lbs/hr) = 0.0020 lbs/hr

CO₂ emission rates are found in EPA's "Emission Factors for Greenhouse Gas Inventories" (February 13, 2024).

CO2 = 10.21 kg/gal (GWP = 1) CH4 = 0.41 g/gal (GWP = 28) N2O = 0.08 g/gal (GWP = 265)

The following equation was used to calculate the annual emission rate for each engine pollutant:

Emission Rate (tons/year) = Emission Rate (lbs/hour) * Operating Hour (hrs/year) 2000 lbs/ton

Process Unit Number	Pollutant	Engine Rating (hp/kW)	Emission Rate (lbs/hr)	Emission Rate (tons/yr)
RR_ENG	NOx	188/140	1.17	2.57
	СО	188/140	1.08	2.37
	SO ₂	188/140	0.0020	0.0045
	VOC	188/140	0.062	0.14
	PM	188/140	0.062	0.14

Table 6-7: Uncontrolled Combustion Emission Rates

Table 6-8: Controlled Combustion Emission Rates

Process Unit Number	Pollutant	Engine Rating (hp/kW)	Emission Rate (lbs/hr)	Emission Rate (tons/yr)
RR_ENG	NOx	188/140	1.17	2.56
	СО	188/140	1.08	2.36
	SO ₂	188/140	0.0020	0.0044
	VOC	188/140	0.062	0.13
	PM	188/140	0.062	0.13

GHG emission rate hourly (lbs/hr) = Emission Factor * gallon/hour * GWP * 2.20462 lbs/kg or 0.0020462 lbs/g GHG emission rate annual (tons/yr) = lbs/hr * annual hours/2000 lbs/ton

Process Unit Number	Pollutant	Emission Factor	Gallons/Hour	GWP (lbs/hr)	GHG Emission Rate (lbs/hr)	GHG Emission Rate (tons/yr)
RR_ENG	CO ₂	10.21 kg/gal	9.7	1	218.34	478.16
	CH4	0.41 g/gal	9.7	28	0.22	0.48
	N ₂ O	0.08 g/gal	9.7	265	0.51	1.12
	GHG				219.1	479.8

Table 6-9: Uncontrolled GHG Combustion Emission Rates

Table 6-10: Controlled GHG Combustion Emission Rates

Process Unit Number	Pollutant	Emission Factor	Gallons/Hour	GWP (lbs/hr)	GHG Emission Rate (lbs/hr)	GHG Emission Rate (tons/yr)
RR_ENG	CO ₂	10.21 kg/gal	9.7	1	218.34	475.54
	CH4	0.41 g/gal	9.7	28	0.22	0.48
	N ₂ O	0.08 g/gal	9.7	265	0.51	1.11
	GHG				219.1	477.1

Estimates for Truck Traffic (PM_{2.5}, PM₁₀ and PM) (Unit 14)

Haul truck travel emissions were estimated using AP-42, Section 13.2.2 (ver.11/06) "Unpaved Roads" emission equation. Haul roads for the aggregate crushing and screening plant use base course and watering as the control method (80% control efficiency allowed). Maximum number of round trip haul trucks per day is 252, which is equivalent to 17.4 haul trucks per hour based on a 14.5 hour day. Tables 6-7 and 6-8 summarizes the emission rate for both the uncontrolled and control method.

$$E = k * (s/12)^{a} * (W/3)^{b} * [(365-p)/365] * VMT$$

Where k = constant PM2.5 = 0.15 PM10 = 1.5PM = 4.9s = % silt content (Table 13.2.2-1, "Sand and Gravel" 4.8%) W = mean vehicle weight (26.5 tons) (Truck Tare Weight - 15 tons; Load Weight - 23 tons) p = number of days with at least 0.01 in of precip. (NMED Policy = 70 days) a = Constant PM2.5 = 0.9 PM10 = 0.9 PM = 0.7 b = Constant PM2.5 = 0.45 PM10 = 0.45PM = 0.45 VMT Vehicle Miles Traveled (road length = 0.56394 miles round trip) = Trucks per hour = 15.2 trucks/hr Maximum Trucks per day Uncontrolled = 66652 trucks/day Maximum Trucks per day Controlled = 15217 trucks/day

Hourly Emission Rate Factor Uncontrolled

PM = 6.8769 lbs/VMT PM10 = 1.7527 lbs/VMT PM2.5 = 0.1753 lbs/VMT

Annual Emission Rate Factor Uncontrolled

PM = 5.5581 lbs/annual VMT PM10 = 1.4165 lbs/annual VMT PM2.5 = 0.1417 lbs/annual VMT

Table 6-11: Uncontrolled Haul Road Fugitive Dust Emission Rates

Process Unit Description	Miles Traveled	PM Emission Rate (Ibs/hr)	PM Emission Rate (tons/yr)	PM10 Emission Rate (Ibs/hr)	PM10 Emission Rate (tons/yr)	PM _{2.5} Emission Rate (Ibs/hr)	PM _{2.5} Emission Rate (tons/yr)
Haul Truck Travel	8.581 miles/hr 37588 miles/yr	59.02	104.46	15.04	26.62	1.50	2.66

Fugitive dust control will include base course and watering for 80% control (NMED Policy). Reduction in emissions due to precipitation was only accounted for in the annual emission rate. Particulate emission rate per vehicle mile traveled for each particle size category is:

Hourly Emission Rate Factor with Base Course and Watering 80% Control

PM = 1.3754 lbs/VMT PM10 = 0.3505 lbs/VMT PM2.5 = 0.0351 lbs/VMT

Annual Emission Rate Factor with Base Course and Watering 80% Control

PM = 1.1116 lbs/annual VMT PM10 = 0.2833 lbs/annual VMT PM2.5 = 0.0283 lbs/annual VMT

Process Unit Description	Miles Traveled	PM Emission Rate (Ibs/hr)	PM Emission Rate (tons/yr)	PM10 Emission Rate (Ibs/hr)	PM10 Emission Rate (tons/yr)	PM2.5 Emission Rate (Ibs/hr)	PM2.5 Emission Rate (tons/yr)
Haul Truck Travel Base Course and Watering	8.581 miles/hr 8582 miles/yr	11.80	4.77	3.01	1.22	0.30	0.12

Table 6-12: Controlled Haul Road Fugitive Dust Emission Rates

	Table 6-13 Summary of Uncontrolled NOx, CO, SO2, VOC, and PM Emission Rates														
		1					Emission 1								
	Description		Ox		0	-	02		ос		M		M ₁₀		A _{2.5}
Unit #		lbs/hr	tons/yr	lbs/hr	tons/yr	lbs/hr	tons/yr	lbs/hr	tons/yr	lbs/hr	tons/yr	lbs/hr	tons/yr	lbs/hr	tons/yr
PIT_RAW	Quarry Material	-	-	-	-	-	-	-	-	2.31	3.29	1.09	1.56	0.17	0.24
RAW	Raw Material from Quarry	-	-	-	-	-	-	-	-	2.31	3.29	1.09	1.56	0.17	0.24
Main Plant															
1a	Feeder	-	-	-	-	-	-	-	-	2.31	3.29	1.09	1.56	0.17	0.24
1b	Jaw Crusher	-	-	-	-	-	-	-	-	1.89	4.14	0.84	1.84	0.16	0.34
1c	Jaw Crusher Under Conveyor	-	-	-	-	-	-	-	-	1.05	2.30	0.39	0.84	0.11	0.25
14	Conveyor	-	-	-	-	-	-	-	-	1.05	2.30	0.39	0.84	0.11	0.25
20	Scalping Screen	-	-	-	-	-	-	-	-	8.75	19.16	3.05	6.67	0.21	0.45
9	Scalping Screen Shuttle Conveyor	-	-	-	-	-	-	-	-	0.11	0.23	0.039	0.084	0.011	0.025
26	Conveyor	-	-	-	-	-	-	-	-	0.11	0.23	0.039	0.084	0.011	0.025
8	Stacker Conveyor drop to Waste	-	-	-	-	-	-	-	-	0.23	0.33	0.11	0.16	0.017	0.024
3	Cone Crusher	-	-	-	-	-	-	-	-	1.70	3.73	0.76	1.66	0.14	0.31
За	Cone Crusher Under Conveyor	-	-	-	-	-	-	-	-	0.95	2.07	0.35	0.76	0.10	0.22
6	Conveyor	-	-	-	-	-	-	-	-	0.95	2.07	0.35	0.76	0.10	0.22
4	Screen	-	-	-	-	-	-	-	-	7.88	17.25	2.74	6.00	0.19	0.41
4a	Screen Under Conveyor	-	-	-	-	-	-	-	-	0.11	0.23	0.04	0.084	0.011	0.025
7	Stacker Conveyor	-	-	_	-	-	-	-	-	0.23	0.33	0.11	0.16	0.017	0.024
16	Screen Under Conveyor	-	-	-	-	-	-	-	-	0.11	0.23	0.04	0.084	0.011	0.025

Table 6-13 Summary of Uncontrolled NOx, CO, SO2, VOC, and PM Emission Rates

	Uncontrolled Emission Totals														
	Description		Ox		0		02	-	ОС		M		M ₁₀	PM _{2.5}	
Unit #	Description	lbs/hr	tons/yr	lbs/hr	tons/yr										
15	Stacker Conveyor	-	-	-	-	-	-	-	-	0.23	0.33	0.11	0.16	0.017	0.024
17	Screen Under Conveyor	-	-	-	-	-	-	-	-	0.11	0.23	0.039	0.084	0.011	0.025
10	Stacker Conveyor	-	-	-	-	-	-	-	-	0.23	0.33	0.11	0.16	0.017	0.024
18	Screen Conveyor to Cone Crusher	-	-	-	-	-	-	-	-	0.63	1.38	0.23	0.51	0.068	0.15
2	Cone Crusher	-	-	-	-	-	-	-	-	1.13	2.48	0.50	1.10	0.093	0.20
2a	Cone Crusher Under Conveyor	-	-	-	-	-	-	-	-	0.63	1.38	0.23	0.51	0.068	0.15
19	Conveyor	-	-	-	-	-	-	-	-	0.63	1.38	0.23	0.51	0.068	0.15
5	Screen	-	-	-	-	-	-	-	-	5.25	11.50	1.83	4.00	0.12	0.27
5a	Screen Under Conveyor	-	-	-	-	-	-	-	-	0.21	0.46	0.08	0.17	0.023	0.050
24	Stacker Conveyor	-	-	-	-	-	-	-	-	0.46	0.66	0.22	0.31	0.033	0.047
12	Shuttle Conveyor	-	-	-	-	-	-	-	-	0.32	0.69	0.12	0.25	0.034	0.075
22	Stacker Conveyor	-	-	-	I	-	-	-	-	0.69	0.99	0.33	0.47	0.050	0.071
11	Shuttle Conveyor	-	-	-	-	-	-	-	-	0.21	0.46	0.08	0.17	0.023	0.050
25	Stacker Conveyor	-	-	-	-	-	-	-	-	0.46	0.66	0.22	0.31	0.033	0.047
13	Conveyor - return to crusher	-	-	-	-	-	-	-	-	0.32	0.69	0.12	0.25	0.034	0.075
21	Main Plant Engine	14.70	32.20	18.22	39.90	0.011	0.024	2.08	4.55	0.86	1.89	0.86	1.89	0.86	1.89
FPILE1	FPILE Fines	-	-	-	-	-	-	-	-	0.46	0.66	0.22	0.31	0.033	0.047
FPILE2	FPILE 1/2"	-	-	-	-	-	-	-	-	0.69	0.99	0.33	0.47	0.050	0.071
FPILE3	FPILE 3/4"	-	-	-	-	-	-	-	-	0.92	1.32	0.44	0.62	0.066	0.094

Table 6-13 Summary of Uncontrolled NOx, CO, SO2, VOC, and PM Emission Rates

		Та	able 6-13 S	Summary	of Uncon	trolled N	Ox, CO, SO	2, VOC, a	and PM Er	nission R	ates				
					Unc	ontrolled	Emission 7			-					
	Description		Ох		0	S	O ₂	v	'OC	F	PM	PM10		PM _{2.5}	
Unit #	Description	lbs/hr	tons/yr	lbs/hr	tons/yr	lbs/hr	tons/yr	lbs/hr	tons/yr	lbs/hr	tons/yr	lbs/hr	tons/yr	lbs/hr	tons/yr
TL	Truck Loading	-	-	-	-	-	-	-	-	2.08	2.96	0.98	1.40	0.15	0.21
					R	lipRap Scr	eening Pla	int							
RR_RAW	RipRap Screening Plant Raw Material	-	-	-	-	-	-	-	-	2.31	3.29	1.09	1.56	0.17	0.24
RR_1	RipRap Screening Plant Feeder	-	-	-	-	-	-	-	-	2.31	3.29	1.09	1.56	0.17	0.24
RR_2	RipRap Screening Plant Screen (2-screen setup)	-	-	-	-	-	-	-	-	8.75	19.16	3.05	6.67	0.21	0.45
RR_3	RipRap Screening Plant Stacker Conveyor 1a	-	-	-	-	-	-	-	-	0.69	0.99	0.33	0.47	0.050	0.071
RR1PILE	RipRap Screening Plant Stacker Finish Pile	-	-	-	-	-	-	-	-	0.69	0.99	0.33	0.47	0.050	0.071
RR_4	RipRap Screening Plant Stacker Conveyor 1b	-	-	-	-	-	-	-	-	0.69	0.99	0.33	0.47	0.050	0.071
RR2PILE	RipRap Screening Plant Stacker Finish Pile	-	-	-	-	-	-	-	-	0.69	0.99	0.33	0.47	0.050	0.071
RR_5	RipRap Screening Plant Stacker Conveyor 1c	-	-	-	-	-	-	-	-	0.92	1.32	0.44	0.62	0.066	0.094
RR3PILE	RipRap Screening Plant Stacker Finish Pile	-	-	-	-	-	-	-	-	0.92	1.32	0.44	0.62	0.066	0.094
RR_ENG	RipRap Screening Plant Engine	1.17	2.57	1.08	2.37	0.0020	0.0045	0.062	0.14	0.062	0.14	0.062	0.14	0.062	0.14
WPILE	Waste Pile (Dirt Removal to Open Pit)	-	-	-	-	-	-	-	-	0.23	0.33	0.11	0.16	0.017	0.024
ROAD	Haul Road	-	-	-	-	-	-	-	-	59.02	104.46	15.04	26.62	1.50	2.66
	Total	15.88	34.78	19.30	42.27	0.013	0.029	2.14	4.69	125.8	233.1	42.38	78.13	6.00	11.24

Table 6-13 Summary of Uncontrolled NOx, CO, SO2, VOC, and PM Emission Rates

		Table	6-14 Sum	mary of	-				OC, and PI	VI Emissio	on Rates				
							Emission 1			-					-
Unit #	Description	N Ibs/hr	Ox tons/yr	lbs/hr	CO tons/yr	Subs/hr	O₂ tons/yr	V lbs/hr	OC tons/yr	lbs/hr	M tons/yr	P lbs/hr	M ₁₀ tons/yr	lbs/hr	A _{2.5} tons/yr
PIT_RAW	Quarry Material	-	-	-	-	-	-	-	-	2.31	0.75	1.09	0.36	0.17	0.054
RAW	Raw Material from Quarry	-	-	-	-	-	-	-	-	2.31	0.75	1.09	0.36	0.17	0.054
Main Plant															
1a	Feeder	-	-	-	-	-	-	-	-	2.31	0.75	1.09	0.36	0.17	0.054
1b	Jaw Crusher	-	-	-	-	-	-	-	-	0.42	0.21	0.19	0.095	0.035	0.018
1c	Jaw Crusher Under Conveyor	-	-	-	-	-	-	-	-	0.049	0.025	0.016	0.0081	0.0046	0.0023
14	Conveyor	-	-	-	-	-	-	-	-	0.049	0.025	0.016	0.0081	0.0046	0.0023
20	Scalping Screen	-	-	-	-	-	-	-	-	0.77	0.39	0.26	0.13	0.018	0.0088
9	Scalping Screen Shuttle Conveyor	-	-	-	-	-	-	-	-	0.0049	0.0025	0.0016	0.00081	0.00046	0.00023
26	Conveyor	-	-	-	-	-	-	-	-	0.0049	0.0025	0.0016	0.00081	0.00046	0.00023
8	Stacker Conveyor drop to Waste	-	-	-	-	-	-	-	-	0.14	0.045	0.066	0.021	0.010	0.0032
3	Cone Crusher	-	-	-	-	-	-	-	-	0.38	0.19	0.17	0.085	0.032	0.016
3a	Cone Crusher Under Conveyor	-	-	-	-	-	-	-	-	0.044	0.022	0.014	0.0072	0.0041	0.0020
6	Conveyor	-	-	-	-	-	-	-	-	0.044	0.022	0.014	0.0072	0.0041	0.0020
4	Screen	-	-	-	-	-	-	-	-	0.69	0.35	0.23	0.12	0.016	0.0079
4a	Screen Under Conveyor	-	-	-	-	-	-	-	-	0.0049	0.0025	0.0016	0.00081	0.00046	0.00023
7	Stacker Conveyor	-	-	-	-	-	-	-	-	0.14	0.045	0.066	0.021	0.010	0.0032
16	Screen Under Conveyor	-	-	-	-	-	-	-	-	0.0049	0.0025	0.0016	0.00081	0.00046	0.00023

Table 6-14 Summary of Requested Allowable NOx, CO, SO2, VOC, and PM Emission Rates

	Uncontrolled Emission Totals														
	Description		Ox		0		02		ос		PM		M ₁₀		A _{2.5}
Unit #	Description	lbs/hr	tons/yr	lbs/hr	tons/yr										
15	Stacker Conveyor	-	-	-	-	-	-	-	-	0.14	0.045	0.066	0.021	0.010	0.0032
17	Screen Under Conveyor	-	-	-	-	-	-	-	-	0.0049	0.0025	0.0016	0.00081	0.00046	0.00023
10	Stacker Conveyor	-	-	-	-	-	-	-	-	0.14	0.045	0.066	0.021	0.010	0.0032
18	Screen Conveyor to Cone Crusher	-	-	-	-	-	-	-	-	0.029	0.015	0.0097	0.0048	0.0027	0.0014
2	Cone Crusher	-	-	-	-	-	-	-	-	0.25	0.13	0.11	0.057	0.021	0.011
2a	Cone Crusher Under Conveyor	-	-	-	-	-	-	-	-	0.029	0.015	0.0097	0.0048	0.0027	0.0014
19	Conveyor	-	-	-	-	-	-	-	-	0.029	0.015	0.0097	0.0048	0.0027	0.0014
5	Screen	-	-	-	-	-	-	-	-	0.46	0.23	0.16	0.078	0.011	0.0053
5a	Screen Under Conveyor	-	-	-	-	-	-	-	-	0.010	0.0049	0.0032	0.0016	0.00091	0.00046
24	Stacker Conveyor	-	-	-	-	-	-	-	-	0.28	0.090	0.13	0.043	0.020	0.0065
12	Shuttle Conveyor	-	-	-	-	-	-	-	-	0.015	0.0074	0.0048	0.0024	0.00137	0.00068
22	Stacker Conveyor	-	-	-	-	-	-	-	-	0.42	0.135	0.20	0.064	0.030	0.0097
11	Shuttle Conveyor	-	-	-	-	-	-	-	-	0.010	0.0049	0.0032	0.0016	0.00091	0.00046
25	Stacker Conveyor	-	-	-	-	-	-	-	-	0.28	0.090	0.13	0.043	0.020	0.0065
13	Conveyor - return to crusher	-	-	-	-	-	-	-	-	0.015	0.007	0.0048	0.0024	0.0014	0.00068
21	Main Plant Engine	14.70	32.03	18.22	39.69	0.011	0.024	2.08	4.53	0.86	1.88	0.86	1.88	0.86	1.88
FPILE1	FPILE Fines	-	-	-	-	-	-	-	-	0.46	0.15	0.22	0.071	0.033	0.011
FPILE2	FPILE 1/2"	-	-	-	-	-	-	-	-	0.69	0.23	0.33	0.11	0.050	0.016
FPILE3	FPILE 3/4"	-	-	-	-	-	-	-	-	0.92	0.30	0.44	0.14	0.066	0.022

Table 6-14 Summary of Requested Allowable NO	CO. SO2. VOC. and PM Emission Rates
Tuble o 14 Summary of Requested Anomable No.	

Saved Date: 12/13/2024

	Table 6-14 Summary of Requested Allowable NOx, CO, SO2, VOC, and PM Emission Rates Uncontrolled Emission Totals															
		N	Ox	(20	1	0 ₂		OC	F	PM	P	M ₁₀	PN	PM _{2.5}	
Unit #	Description	lbs/hr	tons/yr	lbs/hr	tons/yr	lbs/hr	tons/yr	lbs/hr	tons/yr	lbs/hr	tons/yr	lbs/hr	tons/yr	lbs/hr	tons/yr	
TL	Truck Loading	-	-	-	-	-	-	-	-	2.08	0.68	0.98	0.32	0.15	0.048	
	RipRap Screening Plant															
RR_RAW	RipRap Screening Plant Raw Material	-	_	-	-	-	-	-	-	2.31	0.75	1.09	0.36	0.17	0.054	
RR_1	RipRap Screening Plant Feeder	-	-	-	-	-	-	-	-	2.31	0.75	1.09	0.36	0.17	0.054	
RR_2	RipRap Screening Plant Screen (2-screen setup)	-	-	-	-	-	-	-	-	0.77	0.39	0.26	0.13	0.018	0.0088	
RR_3	RipRap Screening Plant Stacker Conveyor 1a	-	-	ŀ	-	-	-	-	-	0.42	0.14	0.20	0.064	0.030	0.010	
RR1PILE	RipRap Screening Plant Stacker Finish Pile	-	-	I	-	-	-	-	-	0.69	0.23	0.33	0.11	0.050	0.016	
RR_4	RipRap Screening Plant Stacker Conveyor 1b	-	-	-	-	-	-	-	-	0.42	0.14	0.20	0.064	0.030	0.010	
RR2PILE	RipRap Screening Plant Stacker Finish Pile	-	-	-	-	-	-	-	-	0.69	0.23	0.33	0.11	0.050	0.016	
RR_5	RipRap Screening Plant Stacker Conveyor 1c	-	-	-	-	-	-	-	-	0.55	0.18	0.26	0.085	0.040	0.013	
RR3PILE	RipRap Screening Plant Stacker Finish Pile	-	-	-	-	-	-	-	-	0.92	0.30	0.44	0.14	0.066	0.022	
RR_ENG	RipRap Screening Plant Engine	1.17	2.56	1.08	2.36	0.0020	0.0044	0.062	0.13	0.062	0.13	0.062	0.13	0.062	0.13	
WPILE	Waste Pile (Dirt Removal to Open Pit)	-	-	-	-	-	-	-	-	0.23	0.075	0.11	0.036	0.017	0.0054	
ROAD	Haul Road	-	-	-	-	-	-	-	-	11.80	4.77	3.01	1.22	0.30	0.12	
	Total	15.88	34.58	19.30	42.04	0.013	0.029	2.14	4.66	37.98	15.71	15.43	7.23	2.92	2.72	

Table 6-14 Summary of Requested Allowable NOx, CO	O. SO2. VOC. and PM Emission Rates
Table 0 14 Summary of Requested Anowable Nox, et	

Estimates for Federal HAPs Air Pollutants

The Main Plant engine (Unit 21) and RipRap screening plant engine (Unit RR_ENG) are source of HAPs as it appears in Section 112 (b) of the 1990 CAAA. Emissions of HAPs were determined for Unit 21 and Unit RR_ENG engines using AP-42 Section 3.3 and Section 1.3.

The following tables summarize the HAPs emission rates from the Main Plant engine (Unit 21) and RipRap screening plant engine (Unit RR_ENG). Combined totals for HAPs for the whole facility are 0.052 pounds per hour and 0.11 tons per year.

Table 6-15: HAPs Emission Rates from the Main Plant Engine (Unit RR_ENG)

Horsepower Rating: Fuel Usage: MMBtu/hr: Btu x 10^-12/hr: Yearly Operating Hours:		1081 53.1 6.7968 6.7968E-06 4356	horsepower gallons/hr Btu Btu x10^-12 hours per year	(based on 1280 (based on 1280		•
Type of Fuel: Emission Factors	Diesel AP-42 Sectio	n 3.3 and Secti	on 1.3			
Non-PAH HAPS	CAS#			Emission Factor (Ibs/mmBtu)	Emission Rate (Ibs/hr)	Emission Rate (ton/yr)
Acetaldehyde	75-07-0			7.67E-04	0.005213	0.011354
Acrolein	107-02-8			9.25E-05	0.000629	0.001369
Benzene	71-43-2			9.33E-04	0.006341	0.013812
1,3-Butadiene	106-99-0			3.91E-05	0.000266	0.000579
Formaldehyde	50-00-0			1.18E-03	0.008020	0.017468
Propylene	115-07-1			2.58E-03	0.017536	0.038193
Toluene	108-88-3			4.09E-04	0.002780	0.006055
Xylene	1330-20-7			2.85E-04	0.001937	0.004219
		Т	otal Non-PAH HAPS	6.29E-03	0.042722	0.093048
РАН НАРЅ	CAS#			Emission Factor (Ibs/mmBtu)	Emission Rate (Ibs/hr)	Emission Rate (ton/yr)
-				Factor (lbs/mmBtu)	Rate (Ibs/hr)	Rate (ton/yr)
Acenaphthene	83-32-9			Factor (lbs/mmBtu) 1.42E-06	Rate (lbs/hr) 0.000010	Rate (ton/yr) 0.000021
Acenaphthene Acenaphthylene	83-32-9 208-96-8			Factor (lbs/mmBtu) 1.42E-06 5.06E-06	Rate (lbs/hr) 0.000010 0.000034	Rate (ton/yr) 0.000021 0.000075
Acenaphthene Acenaphthylene Anthracene	83-32-9 208-96-8 120-12-7			Factor (lbs/mmBtu) 1.42E-06 5.06E-06 1.87E-06	Rate (lbs/hr) 0.000010 0.000034 0.000013	Rate (ton/yr) 0.000021 0.000075 0.000028
Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene	83-32-9 208-96-8 120-12-7 56-55-3			Factor (lbs/mmBtu) 1.42E-06 5.06E-06 1.87E-06 1.68E-06	Rate (lbs/hr) 0.000010 0.000034 0.000013 0.000011	Rate (ton/yr) 0.000021 0.000075 0.000028 0.000025
Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene	83-32-9 208-96-8 120-12-7 56-55-3 50-32-8			Factor (lbs/mmBtu) 1.42E-06 5.06E-06 1.87E-06 1.68E-06 1.88E-07	Rate (lbs/hr) 0.000010 0.000034 0.000013 0.000011 0.000001	Rate (ton/yr) 0.000021 0.000025 0.000025 0.000003
Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene	83-32-9 208-96-8 120-12-7 56-55-3 50-32-8 205-99-2			Factor (lbs/mmBtu) 1.42E-06 5.06E-06 1.87E-06 1.68E-06 1.88E-07 9.91E-08	Rate (lbs/hr) 0.000010 0.000034 0.000013 0.000011 0.000001 0.000001	Rate (ton/yr) 0.000021 0.000028 0.000025 0.000003 0.000001
Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(a)pyrene	83-32-9 208-96-8 120-12-7 56-55-3 50-32-8 205-99-2 192-97-2			Factor (lbs/mmBtu) 1.42E-06 5.06E-06 1.87E-06 1.68E-06 1.88E-07 9.91E-08 1.55E-07	Rate (lbs/hr) 0.000010 0.000034 0.000013 0.000011 0.000001 0.000001	Rate (ton/yr) 0.000021 0.000075 0.000028 0.000025 0.000003 0.000001 0.000002
Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(a)pyrene Benzo(g,h,I)perylene	83-32-9 208-96-8 120-12-7 56-55-3 50-32-8 205-99-2 192-97-2 191-24-2			Factor (lbs/mmBtu) 1.42E-06 5.06E-06 1.87E-06 1.68E-06 1.88E-07 9.91E-08 1.55E-07 4.89E-07	Rate (lbs/hr) 0.000010 0.000034 0.000013 0.000011 0.000001 0.000001 0.000001	Rate (ton/yr) 0.000021 0.000025 0.000025 0.000003 0.000001 0.000002 0.000007
Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,I)perylene Benzo(k)fluoranthene	83-32-9 208-96-8 120-12-7 56-55-3 50-32-8 205-99-2 192-97-2			Factor (lbs/mmBtu) 1.42E-06 5.06E-06 1.87E-06 1.68E-06 1.88E-07 9.91E-08 1.55E-07 4.89E-07 1.55E-07	Rate (lbs/hr) 0.000010 0.000034 0.000013 0.000011 0.000001 0.000001 0.000003 0.000001	Rate (ton/yr) 0.000021 0.000028 0.000025 0.000003 0.000001 0.000002 0.000007 0.000002
Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(a)pyrene Benzo(g,h,I)perylene Benzo(k)fluoranthene Dibenz(a,h)anthracene	83-32-9 208-96-8 120-12-7 56-55-3 50-32-8 205-99-2 192-97-2 191-24-2 207-08-9			Factor (lbs/mmBtu) 1.42E-06 5.06E-06 1.87E-06 1.68E-06 1.88E-07 9.91E-08 1.55E-07 4.89E-07 1.55E-07 5.83E-07	Rate (lbs/hr) 0.000010 0.000034 0.000013 0.000011 0.000001 0.000001 0.000001 0.000001 0.000001 0.000004	Rate (ton/yr) 0.000021 0.000028 0.000025 0.000003 0.000001 0.000002 0.000007 0.000002 0.000009
Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(a)pyrene Benzo(g,h,I)perylene Benzo(k)fluoranthene Dibenz(a,h)anthracene Chrysene	83-32-9 208-96-8 120-12-7 56-55-3 50-32-8 205-99-2 192-97-2 191-24-2 207-08-9 218-01-9			Factor (lbs/mmBtu) 1.42E-06 5.06E-06 1.87E-06 1.68E-06 1.88E-07 9.91E-08 1.55E-07 4.89E-07 1.55E-07 5.83E-07 3.53E-07	Rate (lbs/hr) 0.000010 0.000034 0.000013 0.000011 0.000001 0.000001 0.000003 0.000001 0.000004 0.000002	Rate (ton/yr) 0.000021 0.000028 0.000025 0.000003 0.000001 0.000002 0.000007 0.000002 0.000009 0.000005
Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(a)pyrene Benzo(g,h,I)perylene Benzo(k)fluoranthene Dibenz(a,h)anthracene Chrysene Fluoranthene	83-32-9 208-96-8 120-12-7 56-55-3 50-32-8 205-99-2 192-97-2 191-24-2 207-08-9 218-01-9 206-44-0			Factor (lbs/mmBtu) 1.42E-06 5.06E-06 1.87E-06 1.68E-06 1.88E-07 9.91E-08 1.55E-07 4.89E-07 1.55E-07 5.83E-07 3.53E-07 7.61E-06	Rate (lbs/hr) 0.000010 0.000034 0.000013 0.000011 0.000001 0.000001 0.000003 0.000001 0.000004 0.000002 0.000052	Rate (ton/yr) 0.000021 0.000025 0.000025 0.000003 0.000001 0.000002 0.000007 0.000002 0.000005 0.000113
Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,l)perylene Benzo(k)fluoranthene Dibenz(a,h)anthracene Chrysene Fluoranthene Fluorene	83-32-9 208-96-8 120-12-7 56-55-3 50-32-8 205-99-2 192-97-2 191-24-2 207-08-9 218-01-9 206-44-0 86-73-7			Factor (lbs/mmBtu) 1.42E-06 5.06E-06 1.87E-06 1.68E-06 1.88E-07 9.91E-08 1.55E-07 4.89E-07 1.55E-07 5.83E-07 3.53E-07 7.61E-06 2.92E-05	Rate (lbs/hr) 0.000010 0.000034 0.000013 0.000011 0.000001 0.000001 0.000003 0.000001 0.000004 0.000002 0.000052 0.000198	Rate (ton/yr) 0.000021 0.000025 0.000025 0.000003 0.000001 0.000002 0.000007 0.000002 0.000005 0.0000113 0.000432
Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(a)pyrene Benzo(g,h,I)perylene Benzo(k)fluoranthene Dibenz(a,h)anthracene Chrysene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene	83-32-9 208-96-8 120-12-7 56-55-3 50-32-8 205-99-2 192-97-2 191-24-2 207-08-9 218-01-9 206-44-0 86-73-7 193-39-5			Factor (lbs/mmBtu) 1.42E-06 5.06E-06 1.87E-06 1.68E-06 1.88E-07 9.91E-08 1.55E-07 4.89E-07 1.55E-07 5.83E-07 3.53E-07 3.53E-07 7.61E-06 2.92E-05 3.75E-07	Rate (lbs/hr) 0.000010 0.000034 0.000013 0.000011 0.000001 0.000001 0.000001 0.000001 0.000002 0.00002 0.000052 0.000198 0.000003	Rate (ton/yr) 0.000021 0.000028 0.000025 0.000003 0.000001 0.000002 0.000002 0.000009 0.000005 0.000113 0.000432 0.000006
Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,l)perylene Benzo(k)fluoranthene Dibenz(a,h)anthracene Chrysene Fluoranthene Fluorene	83-32-9 208-96-8 120-12-7 56-55-3 50-32-8 205-99-2 192-97-2 191-24-2 207-08-9 218-01-9 206-44-0 86-73-7			Factor (lbs/mmBtu) 1.42E-06 5.06E-06 1.87E-06 1.68E-06 1.88E-07 9.91E-08 1.55E-07 4.89E-07 1.55E-07 5.83E-07 3.53E-07 7.61E-06 2.92E-05 3.75E-07 8.48E-05	Rate (lbs/hr) 0.000010 0.000034 0.000013 0.000011 0.000001 0.000001 0.000003 0.000001 0.000002 0.000052 0.000198 0.00003 0.0000576	Rate (ton/yr) 0.000021 0.000025 0.000025 0.000003 0.000001 0.000002 0.000007 0.000002 0.000005 0.000005 0.000113 0.000432 0.00006 0.001255
Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(a)pyrene Benzo(g,h,I)perylene Benzo(k)fluoranthene Dibenz(a,h)anthracene Chrysene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene Naphthalene	83-32-9 208-96-8 120-12-7 56-55-3 50-32-8 205-99-2 192-97-2 191-24-2 207-08-9 218-01-9 206-44-0 86-73-7 193-39-5 91-20-3			Factor (lbs/mmBtu) 1.42E-06 5.06E-06 1.87E-06 1.68E-06 1.88E-07 9.91E-08 1.55E-07 4.89E-07 1.55E-07 5.83E-07 3.53E-07 3.53E-07 7.61E-06 2.92E-05 3.75E-07	Rate (lbs/hr) 0.000010 0.000034 0.000013 0.000011 0.000001 0.000001 0.000001 0.000001 0.000002 0.00002 0.000052 0.000198 0.000003	Rate (ton/yr) 0.000021 0.000028 0.000025 0.000003 0.000001 0.000002 0.000002 0.000009 0.000005 0.000113 0.000432 0.000006

HAPS Metals		Emission Factor (lbs/Btu^12)	Emission Rate (Ibs/hr)	Emission Rate (ton/yr)
Arsenic		4	0.000027	0.000059
Beryllium		3	0.000020	0.000044
Cadmium		3	0.000020	0.000044
Chromium		3	0.000020	0.000044
Lead		9	0.000061	0.000133
Manganese		6	0.000041	0.000089
Mercury		3	0.000020	0.000044
Nickel		3	0.000020	0.000044
Selenium		15	0.000102	0.000222
	Total Metals HAPS	49	0.000333	0.000725
	Total HAPS		0.04420	0.09626

Kirtland Pit

Table 6-16: HAPs Emission Rates from the RipRap Screening Plant Engine (Unit RR_ENG)

Horsepower Rating: Fuel Usage: MMBtu/hr: Btu x 10^-12/hr: Yearly Operating Hours:		188 9.7 1.2416 1.2416E-06 4356	horsepower gallons/hr Btu Btu x10^-12 hours per year	(based on 1280 (based on 1280	-	-
Type of Fuel: Emission Factors	Diesel AP-42 Section	n 3.3 and Secti	on 1.3			
Non-PAH HAPS	CAS#			Emission Factor (Ibs/mmBtu)	Emission Rate (Ibs/hr)	Emission Rate (ton/yr)
Acetaldehyde	75-07-0			7.67E-04	0.000952	0.002074
Acrolein	107-02-8			9.25E-05	0.000115	0.000250
Benzene	71-43-2			9.33E-04	0.001158	0.002523
1,3-Butadiene	106-99-0			3.91E-05	0.000049	0.000106
Formaldehyde	50-00-0			1.18E-03	0.001465	0.003191
Propylene	115-07-1			2.58E-03	0.003203	0.006977
Toluene	108-88-3			4.09E-04	0.000508	0.001106
Xylene	1330-20-7			2.85E-04	0.000354	0.000771
-		Т	otal Non-PAH HAPS	6.29E-03	0.007804	0.016998
				Emission Factor	Emission Rate	Emission Rate
РАН НАРЅ	CAS#					
PAH HAPS Acenaphthene	CAS# 83-32-9			Factor	Rate	Rate
				Factor (lbs/mmBtu)	Rate (lbs/hr)	Rate (ton/yr)
Acenaphthene	83-32-9			Factor (lbs/mmBtu) 1.42E-06	Rate (lbs/hr) 0.000002	Rate (ton/yr) 0.000004
Acenaphthene Acenaphthylene	83-32-9 208-96-8			Factor (lbs/mmBtu) 1.42E-06 5.06E-06	Rate (lbs/hr) 0.000002 0.000006	Rate (ton/yr) 0.000004 0.000014
Acenaphthene Acenaphthylene Anthracene	83-32-9 208-96-8 120-12-7			Factor (lbs/mmBtu) 1.42E-06 5.06E-06 1.87E-06	Rate (lbs/hr) 0.000002 0.000006 0.000002	Rate (ton/yr) 0.000004 0.000014 0.000005
Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene	83-32-9 208-96-8 120-12-7 56-55-3			Factor (lbs/mmBtu) 1.42E-06 5.06E-06 1.87E-06 1.68E-06	Rate (lbs/hr) 0.000002 0.000006 0.000002 0.000002	Rate (ton/yr) 0.000004 0.000014 0.000005 0.000005
Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene	83-32-9 208-96-8 120-12-7 56-55-3 50-32-8			Factor (lbs/mmBtu) 1.42E-06 5.06E-06 1.87E-06 1.68E-06 1.88E-07	Rate (lbs/hr) 0.000002 0.000006 0.000002 0.000002 0.000000	Rate (ton/yr) 0.000004 0.000014 0.000005 0.000005 0.000001
Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene	83-32-9 208-96-8 120-12-7 56-55-3 50-32-8 205-99-2			Factor (lbs/mmBtu) 1.42E-06 5.06E-06 1.87E-06 1.68E-06 1.88E-07 9.91E-08	Rate (lbs/hr) 0.000002 0.000002 0.000002 0.000002 0.000000 0.000000	Rate (ton/yr) 0.000004 0.000014 0.000005 0.000005 0.000001 0.000000
Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(a)pyrene	83-32-9 208-96-8 120-12-7 56-55-3 50-32-8 205-99-2 192-97-2			Factor (lbs/mmBtu) 1.42E-06 5.06E-06 1.87E-06 1.68E-06 1.88E-07 9.91E-08 1.55E-07	Rate (lbs/hr) 0.000002 0.000002 0.000002 0.000000 0.000000 0.000000	Rate (ton/yr) 0.000004 0.000005 0.000005 0.000001 0.000000 0.000000
Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(a)pyrene Benzo(g,h,I)perylene	83-32-9 208-96-8 120-12-7 56-55-3 50-32-8 205-99-2 192-97-2 191-24-2			Factor (lbs/mmBtu) 1.42E-06 5.06E-06 1.87E-06 1.68E-06 1.88E-07 9.91E-08 1.55E-07 4.89E-07	Rate (lbs/hr) 0.000002 0.000002 0.000002 0.000000 0.000000 0.000000 0.000000	Rate (ton/yr) 0.000004 0.000005 0.000005 0.000001 0.000000 0.000000 0.000000
Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(a)pyrene Benzo(g,h,I)perylene Benzo(k)fluoranthene	83-32-9 208-96-8 120-12-7 56-55-3 50-32-8 205-99-2 192-97-2 191-24-2			Factor (lbs/mmBtu) 1.42E-06 5.06E-06 1.87E-06 1.68E-06 1.88E-07 9.91E-08 1.55E-07 4.89E-07 1.55E-07	Rate (lbs/hr) 0.000002 0.000002 0.000002 0.000000 0.000000 0.000000 0.000001 0.000000	Rate (ton/yr) 0.000004 0.000005 0.000005 0.000001 0.000000 0.000001 0.000001
Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(a)pyrene Benzo(g,h,l)perylene Benzo(k)fluoranthene Dibenz(a,h)anthracene	83-32-9 208-96-8 120-12-7 56-55-3 50-32-8 205-99-2 192-97-2 191-24-2 207-08-9			Factor (lbs/mmBtu) 1.42E-06 5.06E-06 1.87E-06 1.68E-06 1.88E-07 9.91E-08 1.55E-07 4.89E-07 1.55E-07 5.83E-07	Rate (lbs/hr) 0.000002 0.000002 0.000002 0.000000 0.000000 0.000000 0.000001 0.000000 0.000001	Rate (ton/yr) 0.000004 0.000005 0.000005 0.000001 0.000000 0.000000 0.000000 0.000000
Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(a)pyrene Benzo(g,h,I)perylene Benzo(k)fluoranthene Dibenz(a,h)anthracene Chrysene	83-32-9 208-96-8 120-12-7 56-55-3 50-32-8 205-99-2 192-97-2 191-24-2 207-08-9 218-01-9			Factor (lbs/mmBtu) 1.42E-06 5.06E-06 1.87E-06 1.68E-06 1.88E-07 9.91E-08 1.55E-07 4.89E-07 1.55E-07 5.83E-07 3.53E-07	Rate (lbs/hr) 0.000002 0.000002 0.000002 0.000000 0.000000 0.000000 0.000001 0.000001 0.000001 0.000000	Rate (ton/yr) 0.000004 0.000005 0.000005 0.000001 0.000000 0.000000 0.000001 0.000000 0.000002 0.000001
Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(a)pyrene Benzo(g,h,I)perylene Benzo(k)fluoranthene Dibenz(a,h)anthracene Chrysene Fluoranthene	83-32-9 208-96-8 120-12-7 56-55-3 50-32-8 205-99-2 192-97-2 191-24-2 207-08-9 218-01-9 206-44-0			Factor (lbs/mmBtu) 1.42E-06 5.06E-06 1.87E-06 1.68E-06 1.88E-07 9.91E-08 1.55E-07 4.89E-07 1.55E-07 5.83E-07 3.53E-07 7.61E-06	Rate (lbs/hr) 0.000002 0.000002 0.000002 0.000000 0.000000 0.000000 0.000001 0.000000 0.000001 0.000000 0.000000	Rate (ton/yr) 0.000004 0.000014 0.000005 0.000001 0.000000 0.000000 0.000001 0.000001 0.000002 0.000001 0.000001
Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(a)pyrene Benzo(g,h,I)perylene Benzo(k)fluoranthene Dibenz(a,h)anthracene Chrysene Fluoranthene Fluorene	83-32-9 208-96-8 120-12-7 56-55-3 50-32-8 205-99-2 192-97-2 191-24-2 207-08-9 218-01-9 206-44-0 86-73-7			Factor (lbs/mmBtu) 1.42E-06 5.06E-06 1.87E-06 1.68E-06 1.88E-07 9.91E-08 1.55E-07 4.89E-07 1.55E-07 5.83E-07 3.53E-07 7.61E-06 2.92E-05	Rate (lbs/hr) 0.000002 0.000002 0.000002 0.000000 0.000000 0.000000 0.000001 0.000000 0.000001 0.000000 0.000009 0.000036	Rate (ton/yr) 0.000004 0.000005 0.000005 0.000001 0.000000 0.000000 0.000000 0.000000 0.000001 0.000001 0.000021 0.000021
Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(a)pyrene Benzo(a,h)perylene Benzo(k)fluoranthene Dibenz(a,h)anthracene Chrysene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene	83-32-9 208-96-8 120-12-7 56-55-3 50-32-8 205-99-2 192-97-2 191-24-2 207-08-9 218-01-9 206-44-0 86-73-7 193-39-5			Factor (lbs/mmBtu) 1.42E-06 5.06E-06 1.87E-06 1.68E-06 1.88E-07 9.91E-08 1.55E-07 4.89E-07 1.55E-07 5.83E-07 3.53E-07 3.53E-07 7.61E-06 2.92E-05 3.75E-07	Rate (lbs/hr) 0.000002 0.000002 0.000002 0.000000 0.000000 0.000000 0.000001 0.000000 0.000001 0.000000 0.000000 0.000000 0.000000 0.000000	Rate (ton/yr) 0.000004 0.000005 0.000005 0.000001 0.000000 0.000000 0.000000 0.000002 0.000001 0.000001 0.000001 0.000021 0.000079 0.000001
Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(a)pyrene Benzo(a,h)perylene Benzo(k)fluoranthene Dibenz(a,h)anthracene Chrysene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene Naphthalene	83-32-9 208-96-8 120-12-7 56-55-3 50-32-8 205-99-2 192-97-2 191-24-2 207-08-9 218-01-9 206-44-0 86-73-7 193-39-5 91-20-3			Factor (lbs/mmBtu) 1.42E-06 5.06E-06 1.87E-06 1.68E-06 1.88E-07 9.91E-08 1.55E-07 4.89E-07 1.55E-07 5.83E-07 3.53E-07 7.61E-06 2.92E-05 3.75E-07 8.48E-05	Rate (lbs/hr) 0.000002 0.000002 0.000002 0.000000 0.000000 0.000000 0.000001 0.000000 0.000000 0.000000 0.000000 0.000000	Rate (ton/yr) 0.000004 0.000014 0.000005 0.000001 0.000000 0.000000 0.000001 0.000001 0.000021 0.000021 0.000021 0.000021 0.000029

HAPS Metals		Emission Factor (lbs/Btu^12)	Emission Rate (Ibs/hr)	Emission Rate (ton/yr)
Arsenic		4	0.000005	0.000011
Beryllium		3	0.000004	0.000008
Cadmium		3	0.000004	0.000008
Chromium		3	0.000004	0.000008
Lead		9	0.000011	0.000024
Manganese		6	0.000007	0.000016
Mercury		3	0.000004	0.000008
Nickel		3	0.000004	0.000008
Selenium		15	0.000019	0.000041
	Total Metals HAPS	49	0.000061	0.000133
	Total HAPS		0.00807	0.01758

Section 6.a

Green House Gas Emissions

(Submitting under 20.2.70, 20.2.72 20.2.74 NMAC)

Title V (20.2.70 NMAC), Minor NSR (20.2.72 NMAC), and PSD (20.2.74 NMAC) applicants must estimate and report greenhouse gas (GHG) emissions to verify the emission rates reported in the public notice, determine applicability to 40 CFR 60 Subparts, and to evaluate Prevention of Significant Deterioration (PSD) applicability. GHG emissions that are subject to air permit regulations consist of the sum of an aggregate group of these six greenhouse gases: carbon dioxide (CO₂), nitrous oxide (N₂O), methane (CH₄), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride (SF₆).

Calculating GHG Emissions:

1. Calculate the ton per year (tpy) GHG mass emissions and GHG CO₂e emissions from your facility.

2. GHG mass emissions are the sum of the total annual tons of greenhouse gases without adjusting with the global warming potentials (GWPs). GHG CO₂e emissions are the sum of the mass emissions of each individual GHG multiplied by its GWP found in Table A-1 in 40 CFR 98 <u>Mandatory Greenhouse Gas Reporting</u>.

3. Emissions from routine or predictable start up, shut down, and maintenance must be included.

4. Report GHG mass and GHG CO₂e emissions in Table 2-P of this application. Emissions are reported in **<u>short</u>** tons per year and represent each emission unit's Potential to Emit (PTE).

5. All Title V major sources, PSD major sources, and all power plants, whether major or not, must calculate and report GHG mass and CO2e emissions for each unit in Table 2-P.

6. For minor source facilities that are not power plants, are not Title V, and are not PSD there are three options for reporting GHGs in Table 2-P: 1) report GHGs for each individual piece of equipment; 2) report all GHGs from a group of unit types, for example report all combustion source GHGs as a single unit and all venting GHGs as a second separate unit; 3) or check the following **X** By checking this box, the applicant acknowledges the total CO2e emissions are less than 75,000 tons per year.

Sources for Calculating GHG Emissions:

- Manufacturer's Data
- AP-42 Compilation of Air Pollutant Emission Factors at http://www.epa.gov/ttn/chief/ap42/index.html
- EPA's Internet emission factor database WebFIRE at http://cfpub.epa.gov/webfire/
- 40 CFR 98 <u>Mandatory Green House Gas Reporting</u> except that tons should be reported in short tons rather than in metric tons for the purpose of PSD applicability.

• API Compendium of Greenhouse Gas Emissions Methodologies for the Oil and Natural Gas Industry. August 2009 or most recent version.

• Sources listed on EPA's NSR Resources for Estimating GHG Emissions at http://www.epa.gov/nsr/clean-air-act-permitting-greenhouse-gases:

Global Warming Potentials (GWP):

Applicants must use the Global Warming Potentials codified in Table A-1 of the most recent version of 40 CFR 98 Mandatory Greenhouse Gas Reporting. The GWP for a particular GHG is the ratio of heat trapped by one unit mass of the GHG to that of one unit mass of CO₂ over a specified time period.

"Greenhouse gas" for the purpose of air permit regulations is defined as the aggregate group of the following six gases: carbon dioxide, nitrous oxide, methane, hydrofluorocarbons, perfluorocarbons, and sulfur hexafluoride. (20.2.70.7 NMAC, 20.2.74.7 NMAC). You may also find GHGs defined in 40 CFR 86.1818-12(a).

Metric to Short Ton Conversion:

Short tons for GHGs and other regulated pollutants are the standard unit of measure for PSD and title V permitting programs. 40 CFR 98 <u>Mandatory Greenhouse Reporting</u> requires metric tons.

1 metric ton = 1.10231 short tons (per Table A-2 to Subpart A of Part 98 – Units of Measure Conversions)

Section 7

Information Used to Determine Emissions

Information Used to Determine Emissions shall include the following:

- □ If manufacturer data are used, include specifications for emissions units <u>and</u> control equipment, including control efficiencies specifications and sufficient engineering data for verification of control equipment operation, including design drawings, test reports, and design parameters that affect normal operation.
- □ If test data are used, include a copy of the complete test report. If the test data are for an emissions unit other than the one being permitted, the emission units must be identical. Test data may not be used if any difference in operating conditions of the unit being permitted and the unit represented in the test report significantly effect emission rates.
- If the most current copy of AP-42 is used, reference the section and date located at the bottom of the page. Include a copy of the page containing the emissions factors, and clearly mark the factors used in the calculations.
- □ If an older version of AP-42 is used, include a complete copy of the section.
- If an EPA document or other material is referenced, include a complete copy.
- □ Fuel specifications sheet.
- □ If computer models are used to estimate emissions, include an input summary (if available) and a detailed report, and a disk containing the input file(s) used to run the model. For tank-flashing emissions, include a discussion of the method used to estimate tank-flashing emissions, relative thresholds (i.e., permit or major source (NSPS, PSD or Title V)), accuracy of the model, the input and output from simulation models and software, all calculations, documentation of any assumptions used, descriptions of sampling methods and conditions, copies of any lab sample analysis.

A-XXXX-7-AP42S1-3	Diesel-Fired Engine HAPs Emission Factors
A-XXXX-7-AP42S3-3	Diesel-Fired Engine HAPs Emission Factors
A-XXXX-7-AP42S11-19-2	Crusher, Screen and Transfer Point Emission Factors
A-XXXX-7-AP42S13-2-2	Unpaved Road Emission Factors
A-XXXX-7-AP42S13-2-4	Material Handling Emission Factors
A-XXXX-7-WindspeedFarmington	Farmington Airport Wind Speed Average
A-XXXX-7-Unit21	Unit 21: Main Crushing and Screening Plant Engine
A-XXXX-7-UnitRR_ENGTier4	Unit RR_ENG: RipRap Screening Plant Engine
A-XXXX-7-EPA_GHG	EPA's "Emission Factors for Greenhouse Gas Inventories" (February 13, 2024)
A-XXXX-7-CrusherEI.xls	VHCC Crusher Plant Emissions Spreadsheet (Electronic File)

1.3 Fuel Oil Combustion

1.3.1 General¹⁻³

Two major categories of fuel oil are burned by combustion sources: distillate oils and residual oils. These oils are further distinguished by grade numbers, with Nos. 1 and 2 being distillate oils; Nos. 5 and 6 being residual oils; and No. 4 being either distillate oil or a mixture of distillate and residual oils. No. 6 fuel oil is sometimes referred to as Bunker C. Distillate oils are more volatile and less viscous than residual oils. They have negligible nitrogen and ash contents and usually contain less than 0.3 percent sulfur (by weight). Distillate oils are used mainly in domestic and small commercial applications, and include kerosene and diesel fuels. Being more viscous and less volatile than distillate proper atomization. Because residual oils are produced from the residue remaining after the lighter fractions (gasoline, kerosene, and distillate oils) have been removed from the crude oil, they contain significant quantities of ash, nitrogen, and sulfur. Residual oils are used mainly in utility, industrial, and large commercial applications.

1.3.2 Firing Practices⁴

The major boiler configurations for fuel oil-fired combustors are watertube, firetube, cast iron, and tubeless design. Boilers are classified according to design and orientation of heat transfer surfaces, burner configuration, and size. These factors can all strongly influence emissions as well as the potential for controlling emissions.

Watertube boilers are used in a variety of applications ranging from supplying large amounts of process steam to providing space heat for industrial facilities. In a watertube boiler, combustion heat is transferred to water flowing through tubes which line the furnace walls and boiler passes. The tube surfaces in the furnace (which houses the burner flame) absorb heat primarily by radiation from the flames. The tube surfaces in the boiler passes (adjacent to the primary furnace) absorb heat primarily by convective heat transfer.

Firetube boilers are used primarily for heating systems, industrial process steam generators, and portable power boilers. In firetube boilers, the hot combustion gases flow through the tubes while the water being heated circulates outside of the tubes. At high pressures and when subjected to large variations in steam demand, firetube units are more susceptible to structural failure than watertube boilers. This is because the high-pressure steam in firetube units is contained by the boiler walls rather than by multiple small-diameter watertubes, which are inherently stronger. As a consequence, firetube boilers are typically small and are used primarily where boiler loads are relatively constant. Nearly all firetube boilers are sold as packaged units because of their relatively small size.

A cast iron boiler is one in which combustion gases rise through a vertical heat exchanger and out through an exhaust duct. Water in the heat exchanger tubes is heated as it moves upward through the tubes. Cast iron boilers produce low pressure steam or hot water, and generally burn oil or natural gas. They are used primarily in the residential and commercial sectors.

Another type of heat transfer configuration used on smaller boilers is the tubeless design. This design incorporates nested pressure vessels with water in between the shells. Combustion gases are fired into the inner pressure vessel and are then sometimes recirculated outside the second vessel.

Organic Compound	Average Emission Factor ^b (lb/10 ³ Gal)	EMISSION FACTOR RATING
Benzene	2.14E-04	С
Ethylbenzene	6.36E-05 [°]	Е
Formaldehyde ^d	3.30E-02	С
Naphthalene	1.13E-03	С
1,1,1-Trichloroethane	2.36E-04 ^c	Е
Toluene	6.20E-03	D
o-Xylene	1.09E-04 ^c	Е
Acenaphthene	2.11E-05	С
Acenaphthylene	2.53E-07	D
Anthracene	1.22E-06	С
Benz(a)anthracene	4.01E-06	С
Benzo(b,k)fluoranthene	1.48E-06	С
Benzo(g,h,i)perylene	2.26E-06	С
Chrysene	2.38E-06	С
Dibenzo(a,h) anthracene	1.67E-06	D
Fluoranthene	4.84E-06	С
Fluorene	4.47E-06	С
Indo(1,2,3-cd)pyrene	2.14E-06	С
Phenanthrene	1.05E-05	С
Pyrene	4.25E-06	С
OCDD	3.10E-09 ^c	Е

Table 1.3-9. EMISSION FACTORS FOR SPECIATED ORGANIC COMPOUNDS FROM FUEL OIL COMBUSTION^a

^a Data are for residual oil fired boilers, Source Classification Codes (SCCs) 1-01-004-01/04.
 ^b References 64-72. To convert from lb/10³ gal to kg/10³ L, multiply by 0.12.
 ^c Based on data from one source test (Reference 67).

^d The formaldehyde number presented here is based only on data from utilities using No. 6 oil. The number presented in Table 1.3-7 is based on utility, commercial, and industrial boilers.

Table 1.3-10. EMISSION FACTORS FOR TRACE ELEMENTS FROM DISTILLATEFUEL OIL COMBUSTION SOURCES^a

EMISSION FACTOR RATING: E

Firing Configuration					Emission	Factor (1	b/10 ¹² Btu))			
(SCC)	As	Be	Cd	Cr	Cu	Pb	Hg	Mn	Ni	Se	Zn
Distillate oil fired (1-01-005-01, 1-02-005-01, 1-03-005-01)	4	3	3	3	б	9	3	6	3	15	4

^a Data are for distillate oil fired boilers, SCC codes 1-01-005-01, 1-02-005-01, and 1-03-005-01. References 29-32, 40-44 and 83. To convert from lb/10¹² Btu to pg/J, multiply by 0.43.

Metal	Average Emission Factor ^{b, d} (lb/10 ³ Gal)	EMISSION FACTOR RATING
Antimony	5.25E-03 ^c	Е
Arsenic	1.32E-03	С
Barium	2.57E-03	D
Beryllium	2.78E-05	С
Cadmium	3.98E-04	С
Chloride	3.47E-01	D
Chromium	8.45E-04	С
Chromium VI	2.48E-04	С
Cobalt	6.02E-03	D
Copper	1.76E-03	С
Fluoride	3.73E-02	D
Lead	1.51E-03	С
Manganese	3.00E-03	С
Mercury	1.13E-04	С
Molybdenum	7.87E-04	D
Nickel	8.45E-02	С
Phosphorous	9.46E-03	D
Selenium	6.83E-04	С
Vanadium	3.18E-02	D
Zinc	2.91E-02	D

Table 1.3-11. EMISSION FACTORS FOR METALS FROM UNCONTROLLED NO. 6FUEL OIL COMBUSTION^a

^a Data are for residual oil fired boilers, Source Classification Codes (SCCs) 1-01-004-01/04.

^b References 64-72. 18 of 19 sources were uncontrolled and 1 source was controlled with low efficiency ESP. To convert from lb/10³ gal to kg/10³ L, multiply by 0.12.

^c References 29-32,40-44.

^d For oil/water mixture, reduce factors in proportion to water content of the fuel (due to dilution). To adjust the listed values for water content, multiply the listed value by 1-decimal fraction of water (ex: For fuel with 9 percent water by volume, multiply by 1-0.9=.91).

	1	ne Fuel 01, 2-03-003-01)	Diese (SCC 2-02-001-		
Pollutant	Emission Factor (lb/hp-hr) (power output)	Emission Factor (lb/MMBtu) (fuel input)	Emission Factor (lb/hp-hr) (power output)	Emission Factor (lb/MMBtu) (fuel input)	EMISSION FACTOR RATING
NO _x	0.011	1.63	0.031	4.41	D
со	0.439	62.7	6.68 E-03	0.95	D
SO _x	5.91 E-04	0.084	2.05 E-03	0.29	D
PM-10 ^b	7.21 E-04	0.10	2.20 E-03	0.31	D
CO ₂ ^e	1.08	154	1.15	164	В
Aldehydes	4.85 E-04	0.07	4.63 E-04	0.07	D
TOC					
Exhaust	0.015	2.10	2.47 E-03	0.35	D
Evaporative	6.61 E-04	0.09	0.00	0.00	Е
Crankcase	4.85 E-03	0.69	4.41 E-05	0.01	Е
Refueling	1.08 E-03	0.15	0.00	0.00	Е

Table 3.3-1. EMISSION FACTORS FOR UNCONTROLLED GASOLINE AND DIESEL INDUSTRIAL ENGINES^a

^a References 2,5-6,9-14. When necessary, an average brake-specific fuel consumption (BSFC) of 7,000 Btu/hp-hr was used to convert from lb/MMBtu to lb/hp-hr. To convert from lb/hp-hr to kg/kw-hr, multiply by 0.608. To convert from lb/MMBtu to ng/J, multiply by 430. SCC = Source Classification Code. TOC = total organic compounds.

^b PM-10 = particulate matter less than or equal to 10 μ m aerodynamic diameter. All particulate is assumed to be $\leq 1 \ \mu$ m in size.

^c Assumes 99% conversion of carbon in fuel to CO₂ with 87 weight % carbon in diesel, 86 weight % carbon in gasoline, average BSFC of 7,000 Btu/hp-hr, diesel heating value of 19,300 Btu/lb, and gasoline heating value of 20,300 Btu/lb.

11.19.2 Crushed Stone Processing and Pulverized Mineral Processing

11.19.2.1 Process Description ^{24, 25}

Crushed Stone Processing

Major rock types processed by the crushed stone industry include limestone, granite, dolomite, traprock, sandstone, quartz, and quartzite. Minor types include calcareous marl, marble, shell, and slate. Major mineral types processed by the pulverized minerals industry, a subset of the crushed stone processing industry, include calcium carbonate, talc, and barite. Industry classifications vary considerably and, in many cases, do not reflect actual geological definitions.

Rock and crushed stone products generally are loosened by drilling and blasting and then are loaded by power shovel or front-end loader into large haul trucks that transport the material to the processing operations. Techniques used for extraction vary with the nature and location of the deposit. Processing operations may include crushing, screening, size classification, material handling and storage operations. All of these processes can be significant sources of PM and PM-10 emissions if uncontrolled.

Quarried stone normally is delivered to the processing plant by truck and is dumped into a bin. A feeder is used as illustrated in Figure 11.19.2-1. The feeder or screens separate large boulders from finer rocks that do not require primary crushing, thus reducing the load to the primary crusher. Jaw, impactor, or gyratory crushers are usually used for initial reduction. The crusher product, normally 7.5 to 30 centimeters (3 to 12 inches) in diameter, and the grizzly throughs (undersize material) are discharged onto a belt conveyor and usually are conveyed to a surge pile for temporary storage or are sold as coarse aggregates.

The stone from the surge pile is conveyed to a vibrating inclined screen called the scalping screen. This unit separates oversized rock from the smaller stone. The undersized material from the scalping screen is considered to be a product stream and is transported to a storage pile and sold as base material. The stone that is too large to pass through the top deck of the scalping screen is processed in the secondary crusher. Cone crushers are commonly used for secondary crushing (although impact crushers are sometimes used), which typically reduces material to about 2.5 to 10 centimeters (1 to 4 inches). The material (throughs) from the second level of the screen bypasses the secondary crusher because it is sufficiently small for the last crushing step. The output from the secondary crusher and the throughs from the secondary screen are transported by conveyor to the tertiary circuit, which includes a sizing screen and a tertiary crusher.

Tertiary crushing is usually performed using cone crushers or other types of impactor crushers. Oversize material from the top deck of the sizing screen is fed to the tertiary crusher. The tertiary crusher output, which is typically about 0.50 to 2.5 centimeters (3/16th to 1 inch), is returned to the sizing screen. Various product streams with different size gradations are separated in the screening operation. The products are conveyed or trucked directly to finished product bins, to open area stock piles, or to other processing systems such as washing, air separators, and screens and classifiers (for the production of manufactured sand).

Some stone crushing plants produce manufactured sand. This is a small-sized rock product with a maximum size of 0.50 centimeters (3/16 th inch). Crushed stone from the tertiary sizing screen is sized in a vibrating inclined screen (fines screen) with relatively small mesh sizes.

Oversized material is processed in a cone crusher or a hammermill (fines crusher) adjusted to produce small diameter material. The output is returned to the fines screen for resizing.

In certain cases, stone washing is required to meet particulate end product specifications or demands.

Pulverized Mineral Processing

Pulverized minerals are produced at specialized processing plants. These plants supply mineral products ranging from sizes of approximately 1 micrometer to more than 75 micrometers aerodynamic diameter. Pharmaceutical, paint, plastics, pigment, rubber, and chemical industries use these products. Due to the specialized characteristics of the mineral products and the markets for these products, pulverized mineral processing plants have production rates that are less than 5% of the production capacities of conventional crushed stone plants. Two alternative processing systems for pulverized minerals are summarized in Figure 11-19.2-2.

In dry processing systems, the mineral aggregate material from conventional crushing and screening operations is subject to coarse and fine grinding primarily in roller mills and/or ball mills to reduce the material to the necessary product size range. A classifier is used to size the ground material and return oversized material that can be pulverized using either wet or dry processes. The classifier can either be associated with the grinding operation, or it can be a standalone process unit. Fabric filters control particulate matter emissions from the grinding operation and the classifier. The products are stored in silos and are shipped by truck or in bags.

In wet processing systems, the mineral aggregate material is processed in wet mode coarse and fine grinding operations. Beneficiation processes use flotation to separate mineral impurities. Finely ground material is concentrated and flash dried. Fabric filters are used to control particulate matter emissions from the flash dryer. The product is then stored in silos, bagged, and shipped.

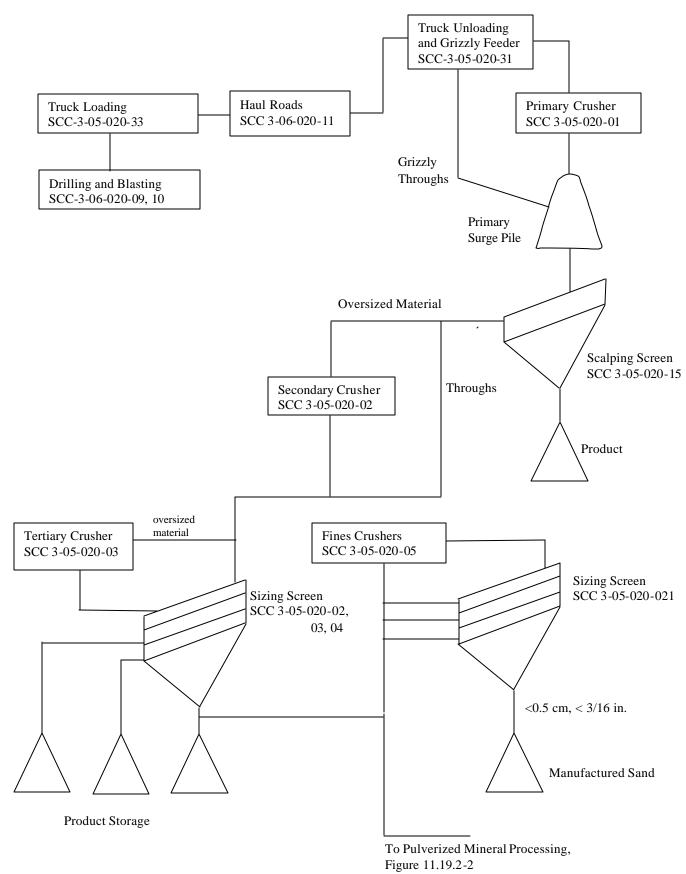


Figure 11.19.2-1. Typical stone processing plant

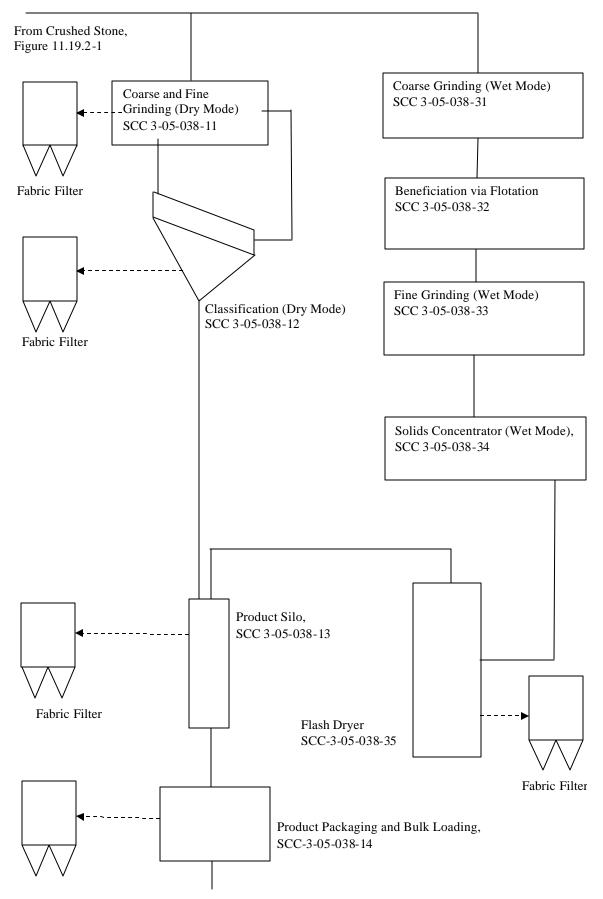


Figure 11.19.2-2 Flowchart for Pulverized Mineral Processing

11.19.2.2 Emissions and Controls ^{10, 11, 12, 13, 14, and 26}

Crushed Stone Processing

Emissions of PM, PM-10, and PM-2.5 occur from a number of operations in stone quarrying and processing. A substantial portion of these emissions consists of heavy particles that may settle out within the plant. As in other operations, crushed stone emission sources may be categorized as either process sources or fugitive dust sources. Process sources include those for which emissions are amenable to capture and subsequent control. Fugitive dust sources generally involve the reentrainment of settled dust by wind or machine movement. Emissions from process sources should be considered fugitive unless the sources are vented to a baghouse or are contained in an enclosure with a forced-air vent or stack. Factors affecting emissions from either source category include the stone size distribution and the surface moisture content of the stone processed, the process throughput rate, the type of equipment and operating practices used, and topographical and climatic factors.

Of graphical and seasonal factors, the primary variables affecting uncontrolled PM emissions are wind and material moisture content. Wind parameters vary with geographical location, season, and weather. It can be expected that the level of emissions from unenclosed sources (principally fugitive dust sources) will be greater during periods of high winds. The material moisture content also varies with geographical location, season, and weather. Therefore, the levels of uncontrolled emissions from both process emission sources and fugitive dust sources generally will be greater in arid regions of the country than in temperate ones and greater during the summer months because of a higher evaporation rate.

The moisture content of the material processed can have a substantial effect on emissions. This effect is evident throughout the processing operations. Surface wetness causes fine particles to agglomerate on or to adhere to the faces of larger stones, with a resulting dust suppression effect. However, as new fine particles are created by crushing and attrition and as the moisture content is reduced by evaporation, this suppressive effect diminishes and may disappear. Plants that use wet suppression systems (spray nozzles) to maintain relatively high material moisture contents can effectively control PM emissions throughout the process. Depending on the geographical and climatic conditions, the moisture content of mined rock can range from nearly zero to several percent. Because moisture content is usually expressed on a basis of overall weight percent, the actual moisture amount per unit area will vary with the size of the rock being handled. On a constant mass-fraction basis, the per-unit area moisture content varies inversely with the diameter of the rock. The suppressive effect of the moisture depends on both the absolute mass water content and the size of the rock product. Typically, wet material contains >1.5 percent water.

A variety of material, equipment, and operating factors can influence emissions from crushing. These factors include (1) stone type, (2) feed size and distribution, (3) moisture content, (4) throughput rate, (5) crusher type, (6) size reduction ratio, and (7) fines content. Insufficient data are available to present a matrix of rock crushing emission factors detailing the above classifications and variables. Available data indicate that PM-10 and PM-2.5 emissions from limestone and granite processing operations are similar. Therefore, the emission factors developed from the emissions data gathered at limestone and granite processing facilities are considered to be representative of typical crushed stone processing operations. Emission factors for filterable PM, PM-10, and PM-2.5 emissions from crushed stone processing operations are presented in Tables 11.19.2-1 (Metric units) and 11.19.2-2 (English units.)

Table 11.19.2-1 (Metric Units). EMISSION FACTORS FOR CRUSHED STONE PROCESSING OPERATIONS (kg/Mg)^a

Source ^b	Total	EMISSION	Total	EMISSION	Total	EMISSION
	Particulate	FACTOR	PM-10	FACTOR	PM-2.5	FACTOR
	Matter ^{r,s}	RATING		RATING		RATING
Primary Crushing	ND		ND^{n}		ND^{n}	
(SCC 3-05-020-01)						
Primary Crushing (controlled)	ND		ND^{n}		ND^{n}	
(SCC 3-05-020-01)						
Secondary Crushing (SCC 3-05-020-02)	ND		ND^{n}		ND^{n}	
Secondary Crushing (controlled) (SCC 3-05-020-02)	ND		ND^{n}		ND^{n}	
Tertiary Crushing (SCC 3-050030-03)	0.0027 ^d	Е	0.0012°	С	ND^{n}	
Tertiary Crushing (controlled) (SCC 3-05-020-03)	0.0006^{d}	E	0.00027 ^p	С	0.00005 ^q	E
Fines Crushing (SCC 3-05-020-05)	0.0195 ^e	E	0.0075 ^e	E	ND	
Fines Crushing (controlled) (SCC 3-05-020-05)	0.0015 ^f	E	$0.0006^{\rm f}$	E	0.000035 ^q	E
Screening (SCC 3-05-020-02, 03)	0.0125 ^c	E	0.0043 ¹	С	ND	
Screening (controlled) (SCC 3-05-020-02, 03)	0.0011 ^d	E	0.00037 ^m	С	0.000025 ^q	E
Fines Screening (SCC 3-05-020-21	0.15 ^g	E	0.036 ^g	E	ND	
Fines Screening (controlled) (SCC 3-05-020-21)	0.0018 ^g	Е	0.0011 ^g	Е	ND	
Conveyor Transfer Point (SCC 3-05-020-06)	0.0015 ^h	E	0.00055 ^h	D	ND	
Conveyor Transfer Point (controlled) (SCC 3-05-020-06)	0.00007 ⁱ	E	2.3 x 10 ⁻⁵ⁱ	D	6.5 x 10 ^{-6q}	E
Wet Drilling - Unfragmented Stone (SCC 3-05-020-10)	ND		4.0 x 10 ^{-5j}	E	ND	
Truck Unloading - Fragmented Stone (SCC 3-05-020-31)	ND		8.0 x 10 ^{-6j}	Е	ND	
Truck Unloading - Conveyor, crushed stone (SCC 3-05-020-32)	ND		5.0 x 10 ^{-5k}	E	ND	

a. Emission factors represent uncontrolled emissions unless noted. Emission factors in kg/Mg of material throughput. SCC = Source Classification Code. ND = No data.

b. Controlled sources (with wet suppression) are those that are part of the processing plant that employs current wet suppression technology similar to the study group. The moisture content of the study group without wet suppression systems operating (uncontrolled) ranged from 0.21 to 1.3 percent, and the same facilities operating wet suppression systems (controlled) ranged from 0.55 to 2.88 percent. Due to carry over of the small amount of moisture required, it has been shown that each source, with the exception of crushers, does not need to employ direct water sprays. Although the moisture content was the only variable measured, other process features may have as much influence on emissions from a given source. Visual observations from each source under normal operating conditions are probably the best indicator of which emission factor is most appropriate. Plants that employ substandard control measures as indicated by visual observations should use the uncontrolled factor with appropriate control efficiency that best reflects the effectiveness of the controls employed.

c. References 1, 3, 7, and 8

d. References 3, 7, and 8

- e. Reference 4
- f. References 4 and 15
- g. Reference 4
- h. References 5 and 6
- i. References 5, 6, and 15
- j. Reference 11
- k. Reference 12
- 1. References 1, 3, 7, and 8
- m. References 1, 3, 7, 8, and 15
- n. No data available, but emission factors for PM-10 for tertiary crushers can be used as an upper limit for primary or secondary crushing
- o. References 2, 3, 7, 8
- p. References 2, 3, 7, 8, and 15
- q. Reference 15
- r. PM emission factors are presented based on PM-100 data in the Background Support Document for Section 11.19.2
- s. Emission factors for PM-30 and PM-50 are available in Figures 11.19.2-3 through 11.19.2-6.

Table 11.19.2-2 (English Units). EMISSION FACTORS FOR CRUSHED STONE PROCESSING OPERATIONS (lb/Ton)^a

Source ^b	Total Particulate	EMISSION FACTOR	Total PM-10	EMISSION FACTOR	Total PM-2.5	EMISSION FACTOR
	Matter ^{r,s}	RATING		RATING		RATING
Primary Crushing (SCC 3-05-020-01)	ND		ND^{n}		ND^{n}	
Primary Crushing (controlled) (SCC 3-05-020-01)	ND		ND^n		ND^{n}	
Secondary Crushing (SCC 3-05-020-02)	ND		ND^n		ND^{n}	
Secondary Crushing (controlled) (SCC 3-05-020-02)	ND		ND^n		ND^{n}	
Tertiary Crushing (SCC 3-050030-03)	0.0054 ^d	Е	0.0024°	С	ND^{n}	
Tertiary Crushing (controlled) (SCC 3-05-020-03)	0.0012 ^d	E	0.00054 ^p	С	0.00010 ^q	Е
Fines Crushing (SCC 3-05-020-05)	0.0390 ^e	E	0.0150 ^e	E	ND	
Fines Crushing (controlled) (SCC 3-05-020-05)	$0.0030^{\rm f}$	E	0.0012 ^f	E	0.000070 ^q	Е
Screening (SCC 3-05-020-02, 03)	0.025°	E	0.0087 ¹	С	ND	
Screening (controlled) (SCC 3-05-020-02, 03)	0.0022 ^d	E	0.00074 ^m	С	0.000050 ⁹	Е
Fines Screening (SCC 3-05-020-21)	0.30 ^g	E	0.072 ^g	E	ND	
Fines Screening (controlled) (SCC 3-05-020-21)	0.0036 ^g	E	0.0022 ^g	E	ND	
Conveyor Transfer Point (SCC 3-05-020-06)	0.0030 ^h	E	0.00110 ^h	D	ND	
Conveyor Transfer Point (controlled) (SCC 3-05-020-06)	0.00014 ⁱ	E	4.6 x 10 ⁻⁵¹	D	1.3 x 10 ^{-5q}	E
Wet Drilling - Unfragmented Stone (SCC 3-05-020-10)	ND		8.0 x 10 ^{-5j}	E	ND	
Truck Unloading -Fragmented Stone (SCC 3-05-020-31)	ND		1.6 x 10 ^{-5j}	Е	ND	
Truck Unloading - Conveyor, crushed stone (SCC 3-05-020-32)	ND		0.00010 ^k	E	ND	

a. Emission factors represent uncontrolled emissions unless noted. Emission factors in lb/Ton of material of throughput. SCC = Source Classification Code. ND = No data.

b. Controlled sources (with wet suppression) are those that are part of the processing plant that employs current wet suppression technology similar to the study group. The moisture content of the study group without wet suppression systems operating (uncontrolled) ranged from 0.21 to 1.3 percent, and the same facilities operating wet suppression systems (controlled) ranged from 0.55 to 2.88 percent. Due to carry over of the small amount of moisture required, it has been shown that each source, with the exception of crushers, does not need to employ direct water sprays. Although the moisture content was the only variable measured, other process features may have as much influence on emissions from a given source. Visual observations from each source under normal operating conditions are probably the best indicator of which emission factor is most appropriate. Plants that employ substandard control measures as indicated by visual observations should use the uncontrolled factor with an appropriate control efficiency that best reflects the effectiveness of the controls employed.

c. References 1, 3, 7, and 8

d. References 3, 7, and 8

e. Reference 4

- f. References 4 and 15
- g. Reference 4
- h. References 5 and 6
- i. References 5, 6, and 15
- j. Reference 11
- k. Reference 12
- 1. References 1, 3, 7, and 8
- m. References 1, 3, 7, 8, and 15
- n. No data available, but emission factors for PM-10 for tertiary crushers can be used as an upper limit for primary or secondary crushing
- o. References 2, 3, 7, 8
- p. References 2, 3, 7, 8, and 15
- q. Reference 15

.

- r. PM emission factors are presented based on PM-100 data in the Background Support Document for Section 11.19.2
- s. Emission factors for PM-30 and PM-50 are available in Figures 11.19.2-3 through 11.19.2-6.

Emission factor estimates for stone quarry blasting operations are not presented because of the sparsity and unreliability of available tests. While a procedure for estimating blasting emissions is presented in Section 11.9, Western Surface Coal Mining, that procedure should not be applied to stone quarries because of dissimilarities in blasting techniques, material blasted, and size of blast areas. Emission factors for fugitive dust sources, including paved and unpaved roads, materials handling and transfer, and wind erosion of storage piles, can be determined using the predictive emission factor equations presented in AP-42 Section 13.2.

The data used in the preparation of the controlled PM calculations was derived from the individual A-rated tests for PM-2.5 and PM-10 summarized in the Background Support Document. For conveyor transfer points, the controlled PM value was derived from A-rated PM-2.5, PM-10, and PM data summarized in the Background Support Document.

The extrapolation line was drawn through the PM-2.5 value and the mean of the PM-10 values. PM emission factors were calculated for PM-30, PM-50, and PM-100. Each of these particle size limits is used by one or more regulatory agencies as the definition of total particulate matter. The graphical extrapolations used in calculating the emission factors are presented in Figures 11.19.2-3, -4, -5, and -6.

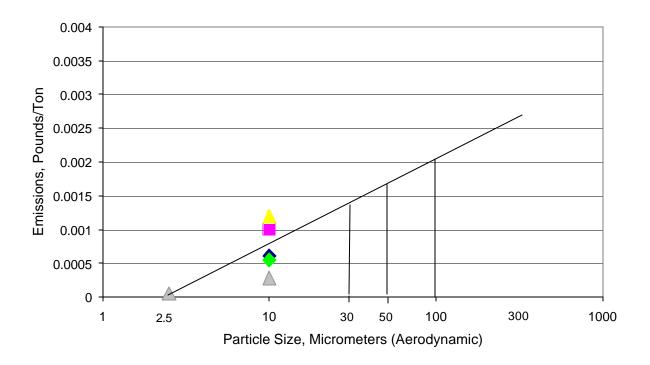


Figure 11-19-3. PM Emission Factor Calculation, Screening (Controlled)

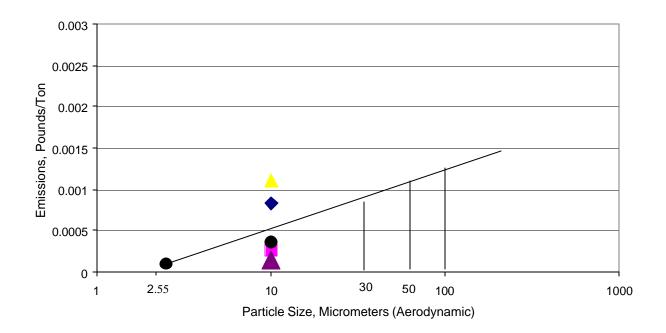


Figure 11.19-4. PM Emission Factor Calculation, Tertiary Crushing (Controlled)

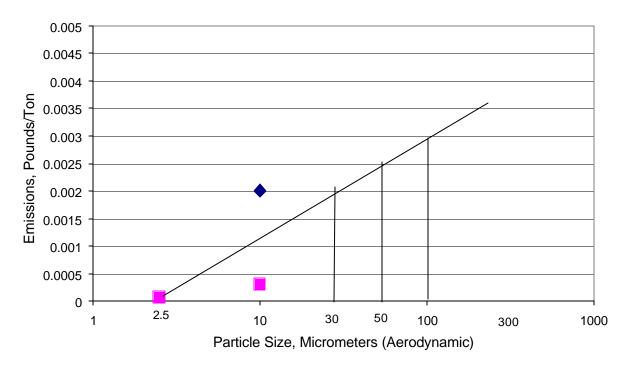


Figure 11-19.5. PM Emission Factor Calculation, Fines Crushing (Controlled)

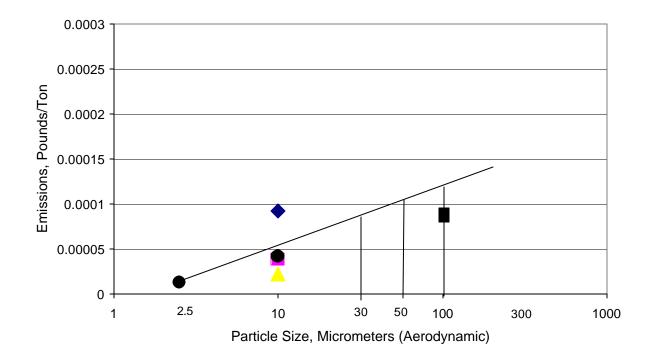


Figure 11.19-6. PM Emission Factor Calculation, Conveyor Transfer Points (Controlled)

The uncontrolled PM emission factors have been calculated from the controlled PM emission factors calculated in accordance with Figures 11.19.2-3 through 11.19.2-6. The PM-10 control efficiencies have been applied to the PM controlled emission factor data to calculate the uncontrolled PM emission rates.

Screening PM-10

Controlled = 0.00073 Lbs./Ton.

Uncontrolled = 0.00865 Lbs./Ton.

Efficiency = 91.6%

Tertiary Crushing PM-10

Controlled = 0.00054Uncontrolled = 0.00243

Efficiency = 77.7%

Fines Crushing PM-10:

Controlled = 0.0012

Uncontrolled = 0.015

Efficiency = 92.0%

Conveyor Transfer Points PM-10

Controlled = 0.000045 Uncontrolled = 0.0011 Efficiency = 95.9%

The uncontrolled total particulate matter emission factor was calculated from the controlled total particulate matter using Equation 1:

Uncontrolled emission factor = <u>Controlled total particulate emission factor</u> (100% – PM-10 Efficiency %)/100%

Equation 1

The Total PM emission factors calculated using Figures 11.19.2-3 through 11.19.2-6 were developed because (1) there are more A-rated test data supporting the calculated values and (2) the extrapolated values provide the flexibility for agencies and source operators to select the most appropriate definition for Total PM. All of the Total PM emission factors have been rated as E due to the limited test data and the need to estimate emission factors using extrapolations of the PM-2.5 and PM-10 data.

13.2.2 Unpaved Roads

13.2.2.1 General

When a vehicle travels an unpaved road, the force of the wheels on the road surface causes pulverization of surface material. Particles are lifted and dropped from the rolling wheels, and the road surface is exposed to strong air currents in turbulent shear with the surface. The turbulent wake behind the vehicle continues to act on the road surface after the vehicle has passed.

The particulate emission factors presented in the previous draft version of this section of AP-42, dated October 2001, implicitly included the emissions from vehicles in the form of exhaust, brake wear, and tire wear as well as resuspended road surface material²⁵. EPA included these sources in the emission factor equation for unpaved public roads (equation 1b in this section) since the field testing data used to develop the equation included both the direct emissions from vehicles and emissions from resuspension of road dust.

This version of the unpaved public road emission factor equation only estimates particulate emissions from resuspended road surface material ^{23, 26}. The particulate emissions from vehicle exhaust, brake wear, and tire wear are now estimated separately using EPA's MOBILE6.2 ²⁴. This approach eliminates the possibility of double counting emissions. Double counting results when employing the previous version of the emission factor equation in this section and MOBILE6.2 to estimate particulate emissions from vehicle traffic on unpaved public roads. It also incorporates the decrease in exhaust emissions that has occurred since the unpaved public road emission factor equation includes estimates of emissions from exhaust, brake wear, and tire wear based on emission rates for vehicles in the 1980 calendar year fleet. The amount of PM released from vehicle exhaust has decreased since 1980 due to lower new vehicle emission standards and changes in fuel characteristics.

13.2.2.2 Emissions Calculation And Correction Parameters¹⁻⁶

The quantity of dust emissions from a given segment of unpaved road varies linearly with the volume of traffic. Field investigations also have shown that emissions depend on source parameters that characterize the condition of a particular road and the associated vehicle traffic. Characterization of these source parameters allow for "correction" of emission estimates to specific road and traffic conditions present on public and industrial roadways.

Dust emissions from unpaved roads have been found to vary directly with the fraction of silt (particles smaller than 75 micrometers $[\mu m]$ in diameter) in the road surface materials.¹ The silt fraction is determined by measuring the proportion of loose dry surface dust that passes a 200-mesh screen, using the ASTM-C-136 method. A summary of this method is contained in Appendix C of AP-42. Table 13.2.2-1 summarizes measured silt values for industrial unpaved roads. Table 13.2.2-2 summarizes measured silt values for public unpaved roads. It should be noted that the ranges of silt content vary over two orders of magnitude. Therefore, the use of data from this table can potentially introduce considerable error. Use of this data is strongly discouraged when it is feasible to obtain locally gathered data.

Since the silt content of a rural dirt road will vary with geographic location, it should be measured for use in projecting emissions. As a conservative approximation, the silt content of the parent soil in the area can be used. Tests, however, show that road silt content is normally lower than in the surrounding parent soil, because the fines are continually removed by the vehicle traffic, leaving a higher percentage of coarse particles.

Other variables are important in addition to the silt content of the road surface material. For example, at industrial sites, where haul trucks and other heavy equipment are common, emissions are highly correlated with vehicle weight. On the other hand, there is far less variability in the weights of cars and pickup trucks that commonly travel publicly accessible unpaved roads throughout the United States. For those roads, the moisture content of the road surface material may be more dominant in determining differences in emission levels between, for example a hot, desert environment and a cool, moist location.

The PM-10 and TSP emission factors presented below are the outcomes from stepwise linear regressions of field emission test results of vehicles traveling over unpaved surfaces. Due to a limited amount of information available for PM-2.5, the expression for that particle size range has been scaled against the result for PM-10. Consequently, the quality rating for the PM-2.5 factor is lower than that for the PM-10 expression.

	Road Use Or	Plant	No. Of	Silt Conte	ent (%)
Industry	Surface Material	Sites	Samples	Range	Mean
Copper smelting	Plant road	1	3	16 - 19	17
Iron and steel production	Plant road	19	135	0.2 - 19	6.0
Sand and gravel processing	Plant road	1	3	4.1 - 6.0	<mark>4.8</mark>
	Material storage area	1	1	-	7.1
Stone quarrying and processing	Plant road	2	10	2.4 - 16	10
	Haul road to/from pit	4	20	5.0-15	8.3
Taconite mining and processing	Service road	1	8	2.4 - 7.1	4.3
	Haul road to/from pit	1	12	3.9 - 9.7	5.8
Western surface coal mining	Haul road to/from pit	3	21	2.8 - 18	8.4
	Plant road	2	2	4.9 - 5.3	5.1
	Scraper route	3	10	7.2 - 25	17
	Haul road (freshly graded)	2	5	18 - 29	24
Construction sites	Scraper routes	7	20	0.56-23	8.5
Lumber sawmills	Log yards	2	2	4.8-12	8.4
Municipal solid waste landfills	Disposal routes	4	20	2.2 - 21	6.4
^a References 1,5-15.					

Table 13.2.2-1. TYPICAL SILT CONTENT VALUES OF SURFACE MATERIAL ON INDUSTRIAL UNPAVED ROADS^a

The following empirical expressions may be used to estimate the quantity in pounds (lb) of size-specific particulate emissions from an unpaved road, per vehicle mile traveled (VMT):

For vehicles traveling on unpaved surfaces at industrial sites, emissions are estimated from the following equation:

$$E = k (s/12)^{a} (W/3)^{b}$$
(1a)

and, for vehicles traveling on publicly accessible roads, dominated by light duty vehicles, emissions may be estimated from the following:

$$E = \frac{k (s/12)^{a} (S/30)^{d}}{(M/0.5)^{c}} - C$$
(1b)

where k, a, b, c and d are empirical constants (Reference 6) given below and

- E = size-specific emission factor (lb/VMT)
- s = surface material silt content (%)
- W = mean vehicle weight (tons)
- M = surface material moisture content (%)
- S = mean vehicle speed (mph)
- C = emission factor for 1980's vehicle fleet exhaust, brake wear and tire wear.

The source characteristics s, W and M are referred to as correction parameters for adjusting the emission estimates to local conditions. The metric conversion from lb/VMT to grams (g) per vehicle kilometer traveled (VKT) is as follows:

1 lb/VMT = 281.9 g/VKT

The constants for Equations 1a and 1b based on the stated aerodynamic particle sizes are shown in Tables 13.2.2-2 and 13.2.2-4. The PM-2.5 particle size multipliers (k-factors) are taken from Reference 27.

	Industria	al Roads (Equa	ation 1a)	Public Roads (Equation 1b)			
Constant	PM-2.5	PM-10	PM-30*	PM-2.5	PM-10	PM-30*	
k (lb/VMT)	0.15	1.5	<mark>4.9</mark>	0.18	1.8	6.0	
а	<mark>0.9</mark>	<mark>0.9</mark>	0.7	1	1	1	
b	0.45	0.45	0.45	-	-	-	
с	-	-	-	0.2	0.2	0.3	
d	-	-	-	0.5	0.5	0.3	
Quality Rating	В	В	В	В	В	В	

Table 13.2.2-2. CONSTANTS FOR EQUATIONS 1a AND 1b

*Assumed equivalent to total suspended particulate matter (TSP)

"-" = not used in the emission factor equation

Table 13.2.2-2 also contains the quality ratings for the various size-specific versions of Equation 1a and 1b. The equation retains the assigned quality rating, if applied within the ranges of source conditions, shown in Table 13.2.2-3, that were tested in developing the equation:

Table 13.2.2-3. RANGE OF SOURCE CONDITIONS USED IN DEVELOPING EQUATION 1a AND 1b

		• • • •	Vehicle ight		Vehicle eed	Mean	Surface Moisture
Emission Factor	Surface Silt Content, %	Mg	ton	km/hr	mph	No. of Wheels	Content, %
Industrial Roads (Equation 1a)	1.8-25.2	1.8-260	2-290	8-69	5-43	4-17ª	0.03-13
Public Roads (Equation 1b)	1.8-35	1.4-2.7	1.5-3	16-88	10-55	4-4.8	0.03-13

^a See discussion in text.

As noted earlier, the models presented as Equations 1a and 1b were developed from tests of traffic on unpaved surfaces. Unpaved roads have a hard, generally nonporous surface that usually dries quickly after a rainfall or watering, because of traffic-enhanced natural evaporation. (Factors influencing how fast a road dries are discussed in Section 13.2.2.3, below.) The quality ratings given above pertain to the mid-range of the measured source conditions for the equation. A higher mean vehicle weight and a higher than normal traffic rate may be justified when performing a worst-case analysis of emissions from unpaved roads.

The emission factors for the exhaust, brake wear and tire wear of a 1980's vehicle fleet (C) was obtained from EPA's MOBILE6.2 model ²³. The emission factor also varies with aerodynamic size range

13.2.4 Aggregate Handling And Storage Piles

13.2.4.1 General

Inherent in operations that use minerals in aggregate form is the maintenance of outdoor storage piles. Storage piles are usually left uncovered, partially because of the need for frequent material transfer into or out of storage.

Dust emissions occur at several points in the storage cycle, such as material loading onto the pile, disturbances by strong wind currents, and loadout from the pile. The movement of trucks and loading equipment in the storage pile area is also a substantial source of dust.

13.2.4.2 Emissions And Correction Parameters

The quantity of dust emissions from aggregate storage operations varies with the volume of aggregate passing through the storage cycle. Emissions also depend on 3 parameters of the condition of a particular storage pile: age of the pile, moisture content, and proportion of aggregate fines.

When freshly processed aggregate is loaded onto a storage pile, the potential for dust emissions is at a maximum. Fines are easily disaggregated and released to the atmosphere upon exposure to air currents, either from aggregate transfer itself or from high winds. As the aggregate pile weathers, however, potential for dust emissions is greatly reduced. Moisture causes aggregation and cementation of fines to the surfaces of larger particles. Any significant rainfall soaks the interior of the pile, and then the drying process is very slow.

Silt (particles equal to or less than 75 micrometers $[\mu m]$ in diameter) content is determined by measuring the portion of dry aggregate material that passes through a 200-mesh screen, using ASTM-C-136 method.¹ Table 13.2.4-1 summarizes measured silt and moisture values for industrial aggregate materials.

Table 13.2.4-1. TYPICAL SILT AND MOISTURE CONTENTS OF MATERIALS AT VARIOUS INDUSTRIES^a

			Silt	Content (%)	Moist	ure Content	(%)
	No. Of		No. Of			No. Of		
Industry	Facilities	Material	Samples	Range	Mean	Samples	Range	Mean
Iron and steel production	9	Pellet ore	13	1.3 - 13	4.3	11	0.64 - 4.0	2.2
		Lump ore	9	2.8 - 19	9.5	6	1.6 - 8.0	5.4
		Coal	12	2.0 - 7.7	4.6	11	2.8 - 11	4.8
		Slag	3	3.0 - 7.3	5.3	3	0.25 - 2.0	0.92
		Flue dust	3	2.7 - 23	13	1		7
		Coke breeze	2	4.4 - 5.4	4.9	2	6.4 - 9.2	7.8
		Blended ore	1		15	1		6.6
		Sinter	1		0.7	0		
		Limestone	3	0.4 - 2.3	1.0	2	ND	0.2
Stone quarrying and processing	2	Crushed limestone	2	1.3 - 1.9	1.6	2	0.3 - 1.1	0.7
		Various limestone products	8	0.8 - 14	3.9	8	0.46 - 5.0	2.1
Taconite mining and processing	1	Pellets	9	2.2 - 5.4	3.4	7	0.05 - 2.0	0.9
		Tailings	2	ND	11	1		0.4
Western surface coal mining	4	Coal	15	3.4 - 16	6.2	7	2.8 - 20	6.9
		Overburden	15	3.8 - 15	7.5	0		
		Exposed ground	3	5.1 - 21	15	3	0.8 - 6.4	3.4
Coal-fired power plant	1	Coal (as received)	60	0.6 - 4.8	2.2	59	2.7 - 7.4	4.5
Municipal solid waste landfills	4	Sand	1		2.6	1		7.4
		Slag	2	3.0 - 4.7	3.8	2	2.3 - 4.9	3.6
		Cover	5	5.0 - 16	9.0	5	8.9 - 16	12
		Clay/dirt mix	1		9.2	1	—	14
		Clay	2	4.5 - 7.4	6.0	2	8.9 - 11	10
		Fly ash	4	78 - 81	80	4	26 - 29	27
		Misc. fill materials	1		12	1		11

^a References 1-10. ND = no data.

13.2.4.3 Predictive Emission Factor Equations

Total dust emissions from aggregate storage piles result from several distinct source activities within the storage cycle:

- 1. Loading of aggregate onto storage piles (batch or continuous drop operations).

- Equipment traffic in storage area.
 Wind erosion of pile surfaces and ground areas around piles.
 Loadout of aggregate for shipment or for return to the process stream (batch or continuous drop operations).

Either adding aggregate material to a storage pile or removing it usually involves dropping the material onto a receiving surface. Truck dumping on the pile or loading out from the pile to a truck with a front-end loader are examples of batch drop operations. Adding material to the pile by a conveyor stacker is an example of a continuous drop operation.

The quantity of particulate emissions generated by either type of drop operation, per kilogram (kg) (ton) of material transferred, may be estimated, with a rating of A, using the following empirical expression:¹¹

$$E = k(0.0016) \qquad \frac{\left(\frac{U}{2.2}\right)^{1.3}}{\left(\frac{M}{2}\right)^{1.4}} \text{ (kg/megagram [Mg])}$$
$$E = k(0.0032) \qquad \frac{\left(\frac{U}{5}\right)^{1.3}}{\left(\frac{M}{2}\right)^{1.4}} \text{ (pound [lb]/ton)}$$

where:

E = emission factor

k = particle size multiplier (dimensionless)

U = mean wind speed, meters per second (m/s) (miles per hour [mph])

M = material moisture content (%)

The particle size multiplier in the equation, k, varies with aerodynamic particle size range, as follows:

Aerodynamic Particle Size Multiplier (k) For Equation 1										
$< 30 \ \mu m$	$< 30 \ \mu m$ $< 15 \ \mu m$ $< 10 \ \mu m$ $< 5 \ \mu m$ $< 2.5 \ \mu m$									
0.74 0.48 0.35 0.20 0.053 ^a										

^a Multiplier for $< 2.5 \mu m$ taken from Reference 14.

The equation retains the assigned quality rating if applied within the ranges of source conditions that were tested in developing the equation, as follows. Note that silt content is included, even though silt content does not appear as a correction parameter in the equation. While it is reasonable to expect that silt content and emission factors are interrelated, no significant correlation between the 2 was found during the derivation of the equation, probably because most tests with high silt contents were conducted under lower winds, and vice versa. It is recommended that estimates from the equation be reduced 1 quality rating level if the silt content used in a particular application falls outside the range given:

Ranges Of Source Conditions For Equation 1									
Silt Contont	Maisture Contout	Wind Speed							
(%)	Silt Content Moisture Content (%) (%)	m/s	mph						
0.44 - 19	0.25 - 4.8	0.6 - 6.7	1.3 - 15						

To retain the quality rating of the equation when it is applied to a specific facility, reliable correction parameters must be determined for specific sources of interest. The field and laboratory procedures for aggregate sampling are given in Reference 3. In the event that site-specific values for

(1)

correction parameters cannot be obtained, the appropriate mean from Table 13.2.4-1 may be used, but the quality rating of the equation is reduced by 1 letter.

For emissions from equipment traffic (trucks, front-end loaders, dozers, etc.) traveling between or on piles, it is recommended that the equations for vehicle traffic on unpaved surfaces be used (see Section 13.2.2). For vehicle travel between storage piles, the silt value(s) for the areas among the piles (which may differ from the silt values for the stored materials) should be used.

Worst-case emissions from storage pile areas occur under dry, windy conditions. Worst-case emissions from materials-handling operations may be calculated by substituting into the equation appropriate values for aggregate material moisture content and for anticipated wind speeds during the worst case averaging period, usually 24 hours. The treatment of dry conditions for Section 13.2.2, vehicle traffic, "Unpaved Roads", follows the methodology described in that section centering on parameter p. A separate set of nonclimatic correction parameters and source extent values corresponding to higher than normal storage pile activity also may be justified for the worst-case averaging period.

13.2.4.4 Controls¹²⁻¹³

Watering and the use of chemical wetting agents are the principal means for control of aggregate storage pile emissions. Enclosure or covering of inactive piles to reduce wind erosion can also reduce emissions. Watering is useful mainly to reduce emissions from vehicle traffic in the storage pile area. Watering of the storage piles themselves typically has only a very temporary slight effect on total emissions. A much more effective technique is to apply chemical agents (such as surfactants) that permit more extensive wetting. Continuous chemical treating of material loaded onto piles, coupled with watering or treatment of roadways, can reduce total particulate emissions from aggregate storage operations by up to 90 percent.¹²

References For Section 13.2.4

- 1. C. Cowherd, Jr., et al., Development Of Emission Factors For Fugitive Dust Sources, EPA-450/3-74-037, U. S. Environmental Protection Agency, Research Triangle Park, NC, June 1974.
- 2. R. Bohn, et al., Fugitive Emissions From Integrated Iron And Steel Plants, EPA-600/2-78-050, U. S. Environmental Protection Agency, Cincinnati, OH, March 1978.
- 3. C. Cowherd, Jr., *et al., Iron And Steel Plant Open Dust Source Fugitive Emission Evaluation*, EPA-600/2-79-103, U. S. Environmental Protection Agency, Cincinnati, OH, May 1979.
- 4. *Evaluation Of Open Dust Sources In The Vicinity Of Buffalo, New York*, EPA Contract No. 68-02-2545, Midwest Research Institute, Kansas City, MO, March 1979.
- 5. C. Cowherd, Jr., and T. Cuscino, Jr., *Fugitive Emissions Evaluation*, MRI-4343-L, Midwest Research Institute, Kansas City, MO, February 1977.
- 6. T. Cuscino, Jr., *et al.*, *Taconite Mining Fugitive Emissions Study*, Minnesota Pollution Control Agency, Roseville, MN, June 1979.
- 7. *Improved Emission Factors For Fugitive Dust From Western Surface Coal Mining Sources*, 2 Volumes, EPA Contract No. 68-03-2924, PEDCo Environmental, Kansas City, MO, and Midwest Research Institute, Kansas City, MO, July 1981.
- 8. Determination Of Fugitive Coal Dust Emissions From Rotary Railcar Dumping, TRC, Hartford, CT, May 1984.
- 9. *PM-10 Emission Inventory Of Landfills In the Lake Calumet Area*, EPA Contract No. 68-02-3891, Midwest Research Institute, Kansas City, MO, September 1987.

AVERAGE WIND SPEED - MPH

STATION	ID Years	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec	I	Ann
ALAMOGORDO AIRPORT ASOS	KALM 1996-2006	5.1	6.3	7.1	7.9	7.1	6.9	6.1	5.3	5.2	5.2	5.0	5.0		6.0
ALAMOGORDO-HOLLOMAN AFB	KHMN 1996-2006	8.5	9.7	10.6	11.8	10.8	10.6	9.8	9.1	8.8	8.5	8.1	8.3	- i	9.6
ALBUQUERQUE AP ASOS	KABQ 1996-2006	7.0	8.2	9.3	11.1	10.0	10.0	8.7	8.3	8.0	7.9	7.2	6.9	1	8.5
ALBUQUERQUE-DBLE EAGLE	KAEG 1999-2006	7.1	7.9	9.0	10.6	9.5	8.6	7.0	6.2	7.0	6.5	6.5	6.1	1	7.7
ARTESIA AIRPORT ASOS	KATS 1997-2006	7.8	9.1	10.1	10.9	10.2	9.9	7.8	6.9	7.6	7.8	7.6	7.4	1	8.5
CARLSBAD AIRPORT ASOS	KCNM 1996-2006	9.2	9.8	10.9	11.4	10.4	9.9	8.5	7.7	8.2	8.5	8.4	8.8		9.3
CLAYTON MUNI AP ASOS	KCAO 1996-2006	11.9	12.7	13.4	14.6	13.4	13.0	11.7	10.8	11.8	12.1	12.1	12.0		12.4
CLINES CORNERS	KCQC 1998-2006	16.2	16.1	15.7	16.9	14.6	13.5	10.6	10.1	11.8	13.3	15.0	16.0	1	14.1
CLOVIS AIRPORT AWOS	KCVN 1996-2006	12.3	12.3	13.4	13.8	12.4	11.9	9.7	8.9	9.7	10.9	11.6	12.2		11.6
CLOVIS-CANNON AFB	KCVS 1996-2006	12.5	12.6	13.6	13.8	12.2	12.5	10.7	10.0	10.2	11.3	11.7	12.4		12.0
DEMING AIRPORT ASOS	KDMN 1996-2006	8.7	9.7	10.9	12.0	10.6	10.1	8.9	8.1	8.4	8.2	8.5	8.1		9.3
FARMINGTON AIRPORT ASOS	KFMN 1996-2006	7.3	8.3	9.0	9.8	9.4	9.4	8.7	8.2	8.0	7.8	7.6	7.3		8.4
GALLUP AIRPORT ASOS	KGUP 1996-2006	5.7	6.9	7.8	10.0	9.0	8.8	6.9	6.0	6.5	6.1	5.6	5.3		7.0
GRANTS-MILAN AP ASOS	KGNT 1997-2006	7.8	8.8	9.6	10.9	10.0	9.8	8.1	7.2	7.9	8.4	8.0	7.6		8.7
HOBBS AIRPORT AWOS	KHOB 1996-2006	11.3	11.9	12.6	13.4	12.5	12.3	11.0	10.0	10.2	10.6	10.7	11.1		11.4
LAS CRUCES AIRPORT AWOS	KLRU 2000-2006	6.4	7.5	8.8	10.1	8.7	8.2	6.8	6.0	6.2	6.1	6.4	6.0		7.3
LAS VEGAS AIRPORT ASOS	KLVS 1996-2006	10.9	12.2	12.5	14.3	12.4	11.8	10.0	9.2	10.9	10.8	11.0	10.9		11.4
LOS ALAMOS AP AWOS	KLAM 2005-2006	3.9	5.7	7.5	8.1	7.1	7.3	5.3	4.8	5.7	5.1	4.4	3.2		5.4
RATON AIRPORT ASOS	KRTN 1998-2006	8.9	9.4	10.4	12.2	10.8	10.2	8.4	8.1	8.6	9.0	8.6	8.5		9.4
ROSWELL AIRPORT ASOS	KROW 1996-2006	7.4	8.9	9.9	11.1	10.3	10.2	8.8	7.9	8.3	8.0	7.5	7.3		8.8
RUIDOSO AIRPORT AWOS	KSRR 1996-2006	8.8	9.6	10.0	11.6	10.0	8.4	5.9	5.3	6.4	7.4	7.9	8.7		8.3
SANTA FE AIRPORT ASOS	KSAF 1996-2006	8.9	9.5	9.9	11.2	10.6	10.5	9.2	8.8	8.8	9.1	8.7	8.5		9.5
SILVER CITY AP AWOS	KSVC 1999-2006	8.1	8.7	9.9	10.8	10.2	9.9	8.5	7.2	6.9	7.6	7.9	7.7		8.5
TAOS AIRPORT AWOS	KSKX 1996-2006	5.8	6.5	7.7	9.1	8.6	8.5	7.1	6.6	6.7	6.6	6.0	5.7		7.0
TRUTH OR CONSEQ AP ASOS	KTCS 1996-2006	7.4	8.7	9.9	11.1	10.4	9.8	8.1	7.4	7.7	8.0	7.7	7.3		8.6
TUCUMCARI AIRPORT ASOS	KTCC 1999-2006	10.0	11.2	11.9	13.6	11.9	11.6	9.9	9.3	10.0	10.0	10.4	10.2		10.8

GEN SET PACKAGE PERFORMANCE DATA [BLG00329]

(BLG00329)-Engine (AFR00201)-Generator (BCW00403)-Genset

Performance Number: DM9135

NOVEMBER 18, 2024

For Help Desk Phone Numbers <u>Click here</u>

Change Level: 01 ✓

Sales Model: 3412CDITA	Combustion: DI	Aspr: TA				
Engine Power:						
725 W/F 758 W/O F EKW EKW	Speed: 1,800 RPM	M After Cooler: JWAC				
1,081 HP						
Manifold Type: DRY	Governor Type: PEEC	After Cooler Temp(F):				
Turbo Quantity: 4	Engine App: GP	Turbo Arrangement: Series				
Hertz: 60	Application Type: PACKAGE-DIE	Engine Rating: PGS Strategy:				
Rating Type: PRIME	Certification: STAT-USE EPA-T1 2006 - 2006	5				

General Performance Data

GEN W/F EKW	PERCENT LOAD	ENGINE POWER BHP	engine Bmep Psi	FUEL BSFC LB/BHP- HR	FUEL RATE GPH	INTAKE MFLD TEMP DEG F	INTAKE MFLD P IN-HG	INTAKE AIR FLOW CFM	EXH MFLD TEMP DEG F	EXH STACK TEMP DEG F	EXH GAS FLOW CFM
725	100	1081	288.34	0.34	53.05	205.16	68.11	2,246.01	1,250.06	954.32	6,250.7
652.5	90	968	258.32	0.34	47.37	198.5	56.95	2,005.88	1,215.5	942.98	5,540.88
580	80	861	229.6	0.34	42.08	193.1	47.29	1,786.92	1,182.56	931.46	4,894.62
543.8	75	809	215.67	0.34	39.55	190.94	42.91	1,691.57	1,165.46	924.44	4,608.57
507.5	70	757	201.9	0.34	37.06	188.96	38.79	1,599.76	1,147.82	916.16	4,333.11
435	60	656	175.06	0.34	32.31	185.18	31.24	1,430.25	1,110.92	896.9	3,817.52
362.5	50	557	148.52	0.35	27.98	181.76	24.58	1,274.86	1,067.36	870.98	3,340.77
290	40	460	122.56	0.36	23.75	178.52	18.66	1,133.6	1,014.62	835.34	2,881.68
217.5	30	360	96.02	0.37	19.21	175.46	13.18	988.81	939.38	780.44	2,408.46
181.3	25	309	82.38	0.38	16.85	174.02	10.66	921.71	890.06	742.64	2,168.32
145	20	257	68.6	0.39	14.48	172.76	8.29	854.62	833.18	698	1,928.18
72.5	10	152	40.61	0.46	9.91	171.86	4.21	752.2	686.48	578.3	1,515

MECHANICAL Sound Data: 49.21 FEET

GEN W/F EKW	PERCENT LOAD	OVERALL SOUND DB(A)	OBCF 63HZ DB	OBCF 125HZ DB	OBCF 250HZ DB	OBCF 500HZ DB	OBCF 1000HZ DB	OBCF 2000HZ DB	OBCF 4000HZ DB	OBCF 8000HZ DB
725	100	88	81	84	92	85	80	79	74	62
652.5	90	88	81	84	92	85	80	79	74	62
580	80	88	81	84	92	85	80	79	74	62
543.8	75	88	81	84	92	85	80	79	74	62
507.5	70	88	81	84	92	85	80	79	74	62
435	60	88	81	84	92	85	80	79	74	62
362.5	50	88	81	84	92	85	80	79	74	62
290	40	88	81	84	92	85	80	79	74	62
217.5	30	88	81	84	92	85	80	79	74	62
181.3	25	88	81	84	92	85	80	79	74	62
145	20	88	81	84	92	85	80	79	74	62
72.5	10	88	81	84	92	85	80	79	74	62

EMISSIONS DATA

Gaseous emissions data measurements are consistent with those described in EPA 40 CFR PART 89 SUBPART D and ISO 8178 for measuring HC, CO, PM, and NOx.

Gaseous emissions values are WEIGHTED CYCLE AVERAGES and are capable of meeting the following non-road emission levels:

LOCALITY	AGENCY/LEV	/EL	MAX LIMITS - g/kW-hr			
U. S. (incl Calif)	EPA/TIER-1	CO:11.4	HC:1.3	NOx:9.2	PM:0.5	

REFERENCE EXHAUST STACK DIAMETER	8 IN
WET EXHAUST MASS	10,337.5 LB/HR
WET EXHAUST FLOW (953.60 F STACK TEMP)	6,254.23 CFM
WET EXHAUST FLOW RATE (32 DEG F AND 29.98 IN HG)	2,127.00 STD CFM
DRY EXHAUST FLOW RATE (32 DEG F AND 29.98 IN HG)	1,949.02 STD CFM
FUEL FLOW RATE	53 GAL/HR

GEN PWR EKW	PERCENT LOAD	ENGINE POWER BHP	TOTAL NOX (AS NO2) LB/HR	TOTAL CO LB/HR	TOTAL HC LB/HR	PART MATTER LB/HR	OXYGEN IN EXHAUST PERCENT	DRY SMOKE OPACITY PERCENT	BOSCH SMOKE NUMBER
725	100	1081	17.1100	3.0200	.5700	.4800	9.9000	1.4000	1.2800
543.8	75	809	12.8100	2.0800	.3300	.4000	10.0000	1.4000	1.2800
362.5	50	557	8.1800	1.6200	.2900	.3700	10.7000	2.0000	1.2800
181.3	25	309	4.1700	1.6800	.4100	.2800	12.4000	2.5000	1.2800
72.5	10	152	2.4000	1.8600	.9200	.2000	14.8000	2.0000	1.2800

RATED SPEED "Potential site variation"

RATED SPEED "Nominal Data"

GEN PWR EKW	PERCENT LOAD	engine Power Bhp	TOTAL NOX (AS NO2) LB/HR	TOTAL CO LB/HR	TOTAL HC LB/HR	TOTAL CO2 LB/HR	PART MATTER LB/HR	OXYGEN IN EXHAUST PERCENT	DRY SMOKE OPACITY PERCENT	BOSCH SMOKE NUMBER
725	100	1081	14.1400	1.6100	.3000	1,184.1	.2400	9.9000	1.4000	1.2800
543.8	75	809	10.5800	1.1100	.1800	873.9	.2100	10.0000	1.4000	1.2800
362.5	50	557	6.7600	.8700	.1600	618.8	.1900	10.7000	2.0000	1.2800
181.3	25	309	3.4500	.9000	.2200	369.4	.1400	12.4000	2.5000	1.2800
72.5	10	152	1.9800	.9900	.4900	215.2	.1000	14.8000	2.0000	1.2800

Altitude Capability Data(Corrected Power Altitude Capability)

Ambient Operating Temp. A I t i t u d e	50 F	68 F	86 F	104 F	122 F	NORMAL
0 FT	1,080.86 hp					
984.25 FT	1,080.86 hp					
1,640.42 FT	1,080.86 hp					
3,280.84 FT	1,080.86 hp	1,080.86 hp	1,080.86 hp	1,078.18 hp	1,044.65 hp	1,080.86 hp
4,921.26 FT	1,080.86 hp	1,080.86 hp	1,047.34 hp	1,013.81 hp	982.97 hp	1,080.86 hp
6,561.68 FT	1,055.38 hp	1,019.18 hp	985.65 hp	953.47 hp	923.96 hp	1,028.56 hp
8,202.1 FT	991.01 hp	957.49 hp	925.3 hp	895.8 hp	868.98 hp	976.26 hp
9,842.52 FT	930.67 hp	898.48 hp	868.98 hp	840.82 hp	815.34 hp	927.99 hp
11,482.94 FT	873 hp	843.5 hp	815.34 hp	789.86 hp	764.38 hp	879.71 hp
13,123.36 FT	818.02 hp	789.86 hp	764.38 hp	740.24 hp	717.45 hp	834.11 hp
14,763.78 FT	765.72 hp	740.24 hp	716.1 hp	693.31 hp	671.85 hp	791.2 hp

The powers listed above and all the Powers displayed are Corrected Powers

Identification Reference and Notes

Engine Arrangement:	2819205	Lube Oil Press @ Rated Spd(PSI):	61.6
Effective Serial No:	BLG02982	Piston Speed @ Rated Eng SPD(FT/Min):	1,773.6
Primary Engine Test Spec:	0K2179	Max Operating Altitude(FT):	4,921.3
Performance Parm Ref:	TM5739	PEEC Elect Control Module Ref	
Performance Data Ref:	DM9135	PEEC Personality Cont Mod Ref	
Aux Coolant Pump Perf Ref:			
Cooling System Perf Ref:		Turbocharger Model	TV9215-2.00
Certification Ref:	STAT USE EPA T1	Fuel Injector	
Certification Year:	2006	Timing-Static (DEG):	18.50
Compression Ratio:	13.0	Timing-Static Advance (DEG):	3.50
Combustion System:	DI	Timing-Static (MM):	0.00
Aftercooler Temperature (F):		Unit Injector Timing (MM):	
Crankcase Blowby Rate(CFH):		Torque Rise (percent)	
Fuel Rate (Rated RPM) No Load(Gal/HR):		Peak Torque Speed RPM	
Lube Oil Press @ Low Idle Spd(PSI):	61.2	Peak Torque (LB.FT):	

Nonroad Compression-Ignition Engines: Exhaust Emission Standards

	Rated Power (kW)	Tier	Model Year	NMHC (g/kW-hr)	NMHC + NOx (g/kW-hr)	NOx (g/kW-hr)	PM (g/kW-hr)	CO (g/kW-hr)	Smoke ^a (Percentage)	Useful Life (hours /years) ^b	Warranty Period (hours /years) ^b
		1	2000- 2004	-	10.5	-	1.0	8.0			
	kW < 8	2	2005- 2007	-	7.5	-	0.80	8.0		3,000/5	1,500/2
		4	2008+	-	7.5	-	0.40 °	8.0			
	0	1	2000- 2004	-	9.5	-	0.80	6.6			1,500/2
	8 ≤ kW < 19	2	2005- 2007	-	7.5	-	0.80	6.6		3,000/5	
		4	2008+	-	7.5	-	0.40	6.6			
		1	1999- 2003	-	9.5	-	0.80	5.5			
	19 ≤ kW < 37	2	2004- 2007	-	7.5	-	0.60	5.5		5,000/7 ^d	3,000/5 °
	- 01	4	2008- 2012	-	7.5	-	0.30	5.5			
			2013+	-	4.7	-	0.03	5.5			
		1	1998- 2003	-	-	9.2	-	-			
		2	2004- 2007	-	7.5	-	0.40	5.0			
Federal	37 ≤ kW < 56	3 ^f	2008- 2011	-	4.7	-	0.40	5.0	20/15/50		
reuerai	< 50	4 (Option 1) ^g	2008- 2012	-	4.7	-	0.30	5.0			
		4 (Option 2) ^g	2012	-	4.7	-	0.03	5.0			
		4	2013+	-	4.7	-	0.03	5.0			
		1	1998- 2003	-	-	9.2	-	-			
	50 41144	2	2004- 2007	-	7.5	-	0.40	5.0		8,000/10	3,000/5
	56 ≤ kW < 75	3	2008- 2011	-	4.7	-	0.40	5.0			0,00010
		4	2012- 2013 ^h	-	4.7	-	0.02	5.0			
			2014+ ⁱ	0.19	-	0.40	0.02	5.0			
		1	1997- 2002	-	-	9.2	-	-			
	75 ≤ kW	2	2003- 2006	-	6.6	-	0.30	5.0			
	75 ≤ KVV < 130		2007- 2011	-	4.0	-	0.30	5.0			
		4	2012- 2013 ^h	-	4.0	-	0.02	5.0			
			2014+	0.19	-	0.40	0.02	5.0			

	Rated Power (kW)	Tier	Model Year	NMHC (g/kW-hr)	NMHC + NOx (g/kW-hr	NOx (g/kW-hr	PM (g/kW-hr	CO (g/kW-hr)	Smoke ^a (Percentage)	Useful Life (hours /years) ^b	Warranty Period (hours /years) ^b	
		1	1996- 2002	1.3 ^j	-	9.2	0.54	11.4				
		2	2003- 2005	-	6.6	-	0.20	3.5				
	130 ≤ kW < 225	3	2006- 2010	-	4.0	-	0.20	3.5				
		4	2011- 2013 ^h	-	<mark>4.0</mark>	F	<mark>0.02</mark>	<mark>3.5</mark>				
			2014+ ⁱ	0.19	-	0.40	0.02	3.5				
		1	1996- 2000	1.3 ^j	-	9.2	0.54	11.4				
		2	2001- 2005	-	6.4	-	0.20	3.5			3,000/5	
	225 ≤ kW < 450	3	2006- 2010	-	4.0	-	0.20	3.5				
		4	2011- 2013 ^h	-	4.0	-	0.02	3.5				
			2014+ ⁱ	0.19	-	0.40	0.02	3.5				
		1	1996- 2001	1.3 ^j	-	9.2	0.54	11.4		8,000/10		
Federal		2	2002- 2005	-	6.4	-	0.20	3.5	20/15/50			
	450 ≤ kW < 560	3	2006- 2010	-	4.0	-	0.20	3.5				
		4	2011- 2013 ^h	-	4.0	-	0.02	3.5				
			2014+ ⁱ	0.19	-	0.40	0.02	3.5				
		1	2000- 2005	1.3 ^j	-	9.2	0.54	11.4				
	560 ≤ kW < 900	2	2006- 2010	-	6.4	-	0.20	3.5				
	< 900	4	2011- 2014	0.40	-	3.5	0.10	3.5				
			2015+ ⁱ	0.19	-	3.5 ^k	0.04 1	3.5				
		1	2000- 2005	1.3 ^j	-	9.2	0.54	11.4				
	kW > 900	2	2006- 2010	-	6.4	-	0.20	3.5				
		4	2011- 2014	0.40	-	3.5 ^k	0.10	3.5				
			2015+ ⁱ	0.19	-	3.5 ^k	0.04 ^I	3.5				

Notes on following page.

Notes:

- For Tier 1, 2, and 3 standards, exhaust emissions of nitrogen oxides (NOx), carbon monoxide (CO), hydrocarbons (HC), and non-methane hydrocarbons (NMHC) are measured using the procedures in 40 Code of Federal Regulations (CFR) Part 89 Subpart E. For Tier 1, 2, and 3 standards, particulate matter (PM) exhaust emissions are measured using the California Regulations for New 1996 and Later Heavy-Duty Off-Road Diesel Cycle Engines.
- For Tier 4 standards, engines are tested for transient and steady-state exhaust emissions using the procedures in 40 CFR Part 1039 Subpart F. Transient standards do not apply to engines below 37 kilowatts (kW) before the 2013 model year, constant-speed engines, engines certified to Option 1, and engines above 560 kW.
- Tier 2 and later model naturally aspirated nonroad engines shall not discharge crankcase emissions into the atmosphere unless these emissions are permanently routed into the exhaust. This prohibition does not apply to engines using turbochargers, pumps, blowers, or superchargers.
- In lieu of the Tier 1, 2, and 3 standards for NOX, NMHC + NOX, and PM, manufacturers may elect to participate in the averaging, banking, and trading (ABT) program described in 40 CFR Part 89 Subpart C.
- a Smoke emissions may not exceed 20 percent during the acceleration mode, 15 percent during the lugging mode, and 50 percent during the peaks in either mode. Smoke emission standards do not apply to single-cylinder engines, constant-speed engines, or engines certified to a PM emission standard of 0.07 grams per kilowatt-hour (g/kW-hr) or lower. Smoke emissions are measured using procedures in 40 CFR Part 86 Subpart I.
- **b** Useful life and warranty period are expressed hours and years, whichever comes first.
- c Hand-startable air-cooled direct injection engines may optionally meet a PM standard of 0.60 g/kW-hr. These engines may optionally meet Tier 2 standards through the 2009 model years. In 2010 these engines are required to meet a PM standard of 0.60 g/kW-hr.
- **d** Useful life for constant speed engines with rated speed 3,000 revolutions per minute (rpm) or higher is 5 years or 3,000 hours, whichever comes first.

- e Warranty period for constant speed engines with rated speed 3,000 rpm or higher is 2 years or 1,500 hours, whichever comes first.
- f These Tier 3 standards apply only to manufacturers selecting Tier 4 Option 2. Manufacturers selecting Tier 4 Option 1 will be meeting those standards in lieu of Tier 3 standards.
- **g** A manufacturer may certify all their engines to either Option 1 or Option 2 sets of standards starting in the indicated model year. Manufacturers selecting Option 2 must meet Tier 3 standards in the 2008-2011 model years.
- h These standards are phase-out standards. Not more than 50 percent of a manufacturer's engine production is allowed to meet these standards in each model year of the phase out period. Engines not meeting these standards must meet the final Tier 4 standards.
- These standards are phased in during the indicated years. At least 50 percent of a manufacturer's engine production must meet these standards during each year of the phase in. Engines not meeting these standards must meet the applicable phase-out standards.
- **j** For Tier 1 engines the standard is for total hydrocarbons.
- k The NOx standard for generator sets is 0.67 g/kW-hr.
- I The PM standard for generator sets is 0.03 g/kW-hr.

Citations: Code of Federal Regulations (CFR) citations:

- 40 CFR 89.112 = Exhaust emission standards
- 40 CFR 1039.101 = Exhaust emission standards for after 2014 model year
- 40 CFR 1039.102 = Exhaust emission standards for model year 2014 and earlier
- 40 CFR 1039 Subpart F = Exhaust emissions transient and steady state test procedures
- 40 CFR 86 Subpart I = Smoke emission test procedures
- 40 CFR 1065 = Test equipment and emissions measurement procedures

Blue text indicates an update from the 2023 version of this document.

Typically, greenhouse gas emissions are reported in units of carbon dioxide equivalent (CO₂e). Gases are converted to CO₂e by multiplying by their global warming potential (GWP). In most cases, the emission factors listed in this document generally have not been converted to CO₂e. To do so, multiply the emissions by the corresponding GWP listed in the table below.

Gas	100-Year GWP
CH ₄	28
N ₂ O	265
Source: Intergovernmental Panel on Clim	
Report (AR5), 2013. See the source note	to Table 11 for further explanation.

Notes: 7 These GWP values represent a change from the previous version of this document. In alignment with the U.S. Inventory of U.S. GHG Emissions and Sinks 1990-2021 Inventory Report, the recommended GWP values have been updated to Intergovernmental Panel on Climate Change (IPCC), Fifth Assessment Report (ARS) values.

Table 1 Stationary Combustion

Calq C0, per moltoq C0, per moltoq C0, per short toq C0, per short to <t< th=""><th></th><th></th><th>00 F</th><th></th><th></th><th>00 F</th><th></th><th></th></t<>			00 F			00 F		
Control Section 1 Section 2	Fuel Type	Heat Content (HHV)	CO ₂ Factor	CH ₄ Factor	N ₂ O Factor	CO ₂ Factor	CH ₄ Factor	N ₂ O Factor
Interse Solo	Cool and Colve	mmBtu per short ton	kg CO ₂ per mmBtu	g CH ₄ per mmBtu	g N ₂ O per mmBtu	kg CO ₂ per short ton	g CH ₄ per short ton	g N ₂ O per short
Banchos Ale 3 <		25.00	402.00	44	4.0	0.000	0.70	40
Sake turning 11/2 0/17 11 16 0.00								
Cycles 11/2 0/7 11 11 16 0/00 0/00 Control 11/2 0/7 0/7 0/7 0/7 0/7 0/7 Mad Industry Cargo 2.00 0/7								28
Mail Contracting Sector) 21.00 24.00 11 1 6 2.00 <th2.00< th=""> 2.00 <th2.00< th=""></th2.00<></th2.00<>								23
Made (belief) Paue (bach) 1075 6.62 11 1.6 1.866 1.27 3.3 Made (back) 2.23 3.497 1.1 1.6 1.200 2.20 3.3 Carl Carl 3.50 1.157 1.1 1.6 2.00 2.00 3.0 4.0 Macro (Sat (Sat) 0.00 0.01 0.0 0.01 0.0 0.01 0.0 0.01 0.0 0.01 0.0 0.00 0.01 0.0 0.00 0.01 0.0 0.01 0.0 0.01 0.0 0.01 0.01 0.00 0.01 0.01 0.01 0.00 0.01 0.00 0								34
Mad () Mad () 2007 94.07 11 16 2.111 16 2.111 <th2.111< th=""> 2.111 <th2.111< th=""> <</th2.111<></th2.111<>	Mixed (Electric Power Sector)				1.6	1,885	217	32
Col Colo Col		26.28	93.90					42
Other Fuils U U U U Availage Soft Watters 0.00			94.67			2,116		36
Mancage Sale 8.8 80.70 32 4.42 9.02 318 4.4 Section 9.00 9.67 32 4.42 9.00 10 10 Sinna Fuh-Soid 9.00 9.67 32 4.42 9.02 10 10 Sinna Fuh-Soid 9.00 110.71 32 4.42 9.02 2.43 9.02		24.80	113.67	11	1.6	2,819	273	40
Particle Loss (Skid) 38.00 10.6.41 38.1 4.2 3.872 3800 195 Design and particular solid 2.00 2.00 2.00 2.00 2.00 190 State logical solid 3.00 10.5.01 3.00 10.5.01 3.00 10.5.01 3.00 10.5.01 3.00 10.5.01 3.00 10.5.01 3.00 10.5.01 3.00 10.5.01 3.00 10.5.01 3.00 10.5.01 3.00 10.5.01 3.00 10.5.01 3.00 3		0.05	00.70	33	4.2	003	219	42
Paulin 300 700 32 442 2.80 1.11 100 Bornage Net - Sold 300 807 30 42 420 111 100 Bornage Net - Sold 300 300 320 421 421 955 430 300 Note Deal 100 101 300 241 421 956 430 300 Note Deal 100 100 241 960 421 960 960 300	Petroleum Coke (Solid)	30.00	102.41		4.2		318	
Time 68:00 68:07 32 4.2 2.407 68:08 111 Biomach 63:0 111.14 22 4.2 68:0 15:0 97:0								160
Bioma Frake - Sold								118
Age observed 4.2 978 3.64 9.83 Mage observed 4.20 978 3.64 9.83 3.64 9.83 3.64 9.83 3.64 9.83	Biomass Fuels - Solid							
Part 0 1114 2 42 90 28 28 State parts 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 0000000 0000000		8.25	118.17	32	4.2	975	264	35
Word and Reschaft 17.8 0.5.9 17.2 3.6 1.6.60 1.6.80 1.6.80 1.6.80 1.6.80 1.6.80 1.6.80 1.6.80 1.0.	Peat							34
<table-container>network Image: bit of the second seco</table-container>	Solid Byproducts							44
Natural Gas	Wood and Wood Residuals							63
Name is 0.010 0.010 0.010 0.00444 0.0010 0.0001 Other Fiels Classes 0.00000 72.42 0.020 0.010 0.02544 0.00000 0.00000 Fiel Gas 0.000000 72.42 0.020 0.010 0.02544 0.000000 0.000000 Bornas Fiels - Gascos 0.000000 72.20 <th72.20< th=""> 72.20 72.20 <</th72.20<>		mmBtu per scf	kg CO ₂ per mmBtu	g CH ₄ per mmBtu	g N ₂ O per mmBtu	kg CO ₂ per scf	g CH₄ per scf	g N ₂ O per scf
Other Funds					1		0.0000	0.000
Bits Funca Cis 0.00002 271.32 0.022 0.10 0.02264 0.00002 <		0.001026	53.06	1.0	0.10	0.05444	0.00103	0.00010
Cate Oren Gas 0.00009 46.85 0.46 0.10 0.02285 0.00028 0.00028 Find Gas 0.00138 66.00 3.0 0.60 0.01188 0.00028		0.000000	074.00	0.022	0.40	0.00504	0.000000	0.000000
Fuel Gas 0.001388 96.00 3.0 0.60 0.08189 0.004164 0.000451 Bioma Gase 0.000451 52.07 0.00 0.00152 0.001550 0.000550 Dir Bioma Gase 0.000455 52.07 0.22 0.63 0.02554 0.001550 0.000057 Dir Bioma Gase 0.000455 52.07 0.21 0.63 0.02554 0.000057 Percleam Foducts bg Cop, per mmbu g Cop, per mmbu g Cop, per mmbu g Cop, per mmbu g Cop, per galon g Cip p								0.000009
Proper Gas 0.000516 61.46 3.0 0.60 0.15463 0.00768 0.00050 Dimas Fuels Gaso 0.00048 52.07 3.2 0.03 0.025245 0.00150 0.00000 One Bornas Gases mellu per galon kg Co, per mellu g AO per mellu g AO per mellu kg Co, per mellu g AO per galon g Ci per galon <								
Unit of a constraint of a c								
Landiii Gas 0.000485 52/7 32.2 0.63 0.025254 0.00058 0.000047 Definition Scass 0.000485 12/7 32.2 0.63 0.025254 0.000047 0.000047 Definition Scass 0.000415 0.000415 0.000047			**					
Pertoantsg C0, per annBug C0, per annBug C0, per galtong C4, per galtong C4, per galtong C4, per galtonAsphat and Road C80.15875.363.00.6611.910.470.05Asphat and Road C80.15069.253.00.66011.910.470.05Butarn0.10069.253.00.6606.230.560.15Butarn0.10169.253.00.6606.230.560.15Butarn0.10369.273.00.6606.1220.410.06Deallas Fusi C1No.20.13877.353.00.6601.0180.440.06Deallas Fusi C1No.20.13877.353.00.6601.0290.440.06Deallas Fusi C1No.20.1686.5603.00.6601.0590.440.05Deallas Fusi C1No.20.0686.4623.00.6601.0590.0200.02Deallas Fusi C1No.20.0686.300.0601.0500.0200.020.02Deallas Fusi C1No.20.0686.300.0601.0500.0200.0200.0200.0000.0200.020Deallas Fusi C1No.20.0686.300.0601.0500.0200.0200.0200.0200.0200.0200.0200.0200.020Deallas Fusi C1No.20.0606.640.030.0601.0500.0200.0200.0200.0200.0200.0200.020 <t< td=""><td></td><td>0.000485</td><td>52.07</td><td>3.2</td><td>0.63</td><td></td><td>0.001552</td><td>0.000306</td></t<>		0.000485	52.07	3.2	0.63		0.001552	0.000306
Petroleum Products Petroleum Products Adation 0.158 0.050 <	Other Biomass Gases	0.000655	52.07	3.2	0.63	0.034106	0.002096	0.000413
Asphet and Road Oil 0.158 75.8 3.0 0.66 11.91 0.47 0.65 Butano 0.103 64.77 3.0 0.60 6.57 0.31 0.68 Butano 0.103 64.77 3.0 0.60 6.57 0.31 0.60 Butano 0.103 64.77 3.0 0.60 6.57 0.31 0.60 Deciliate Fuel Ol No. 1 0.139 73.56 3.0 0.60 10.21 0.41 0.60 Deciliate Fuel Ol No. 2 0.138 73.56 3.0 0.60 10.21 0.44 0.60 Deciliate Fuel Ol No. 2 0.146 75.04 3.0 0.60 10.35 0.44 0.60 Deciliate Fuel Ol No. 4 0.68 65.66 3.0 0.60 11.43 0.43 0.40 0.60 Deciliate Fuel Ol No. 4 0.05 65.66 3.0 0.60 11.43 0.60 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61<		mmBtu per gallon	kg CO ₂ per mmBtu	g CH₄ per mmBtu	g N ₂ O per mmBtu	kg CO ₂ per gallon	g CH₄ per gallon	g N ₂ O per gallon
Aviation Gasoline 0.120 69.25 3.0 0.60 8.31 0.36 0.07 Butynen 0.105 66.17 3.0 0.60 7.22 0.32 0.06 Cude OI 0.138 74.54 3.0 0.60 10.29 0.41 0.05 Deallate Fuel OI No. 1 0.138 74.54 3.0 0.60 10.11 0.42 0.06 Deallate Fuel OI No. 1 0.138 74.54 3.0 0.60 10.18 0.42 0.06 Deallate Fuel OI No. 4 0.046 75.04 3.0 0.60 10.058 0.42 0.06 Ethane 0.058 65.56 3.0 0.60 3.43 0.17 0.05 Heavy Gas OIs 0.148 74.02 3.0 0.60 6.43 0.30 0.60 6.43 0.30 0.60 Heavy Gas OIs 0.133 6.86 3.0 0.60 6.43 0.30 0.60 Ibouylane 0.133 6.86 3.0 0.6								
Butane 0.103 64.77 3.0 0.60 6.67 0.31 0.00 Crude OI 0.138 74.54 3.0 0.60 7.22 0.32 0.41 0.05 Crude OI 0.138 74.54 3.0 0.60 10.29 0.41 0.05 Deallase Fuel OI No. 1 0.138 77.35 3.0 0.60 10.21 0.41 0.05 Deallase Fuel OI No. 4 0.168 7.36 3.0 0.60 10.21 0.41 0.05 Deallase Fuel OI No. 4 0.168 7.36 3.0 0.60 10.49 0.42 0.0 0.60 10.49 0.05 0.0 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>								
Buylene 0.105 68.72 3.0 0.60 7.22 0.32 0.00 Diedlate Fuel Ol No. 1 0.138 74.54 3.0 0.60 10.29 0.41 0.05 Diedlate Fuel Ol No. 2 0.138 73.86 3.0 0.60 10.21 0.44 0.06 Diedlate Fuel Ol No. 4 0.046 75.04 3.0 0.60 10.28 0.44 0.06 Diedlate Fuel Ol No. 4 0.048 56.00 3.0 0.60 10.98 0.44 0.06 Diedlate Fuel Ol No. 4 0.068 66.60 3.0 0.60 1.63 0.00 0.06 0.04 0.06 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>								
Crude OI 0.138 74.54 3.0 0.60 10.29 0.41 0.00 Distilate Fuel OI No.1 0.139 73.35 3.0 0.60 10.18 0.42 0.60 Distilate Fuel OI No.1 0.138 77.36 3.0 0.60 10.21 0.41 0.00 Distilate Fuel OI No.4 0.146 75.04 3.0 0.60 10.95 0.44 0.05 Ename 0.066 56.60 3.0 0.60 4.05 0.20 0.05 Ename 0.066 65.68 3.0 0.60 1.33 0.14 0.05 Stobulater 0.050 F4.54 3.0 0.60 7.69 0.31 0.00 Stobulater 0.053 75.20 3.0 0.60 10.15 0.41 0.08 Kerosene 0.059 F4.54 7.22 3.0 0.60 10.69 0.33 0.00 Liquified Fuel OI No.5 0.41 0.08 0.60 0.60 0.60 0.60<								
Distillate Fuel OH No. 1 0.139 77.35 3.0 0.60 10.18 0.42 0.00 Distillate Fuel OH No. 2 0.138 73.85 3.0 0.60 10.21 0.41 0.06 Distillate Fuel OH No. 4 0.668 75.04 3.0 0.60 10.25 0.44 0.05 Ethane 0.068 65.96 3.0 0.60 1.09 0.44 0.05 Ethysine 0.058 65.96 3.0 0.60 1.09 0.44 0.05 Biobulane 0.059 64.94 3.0 0.60 64.3 0.31 0.05 Biobulane 0.059 64.94 3.0 0.60 1.015 0.41 0.05 Korosene 0.138 72.22 3.0 0.60 1.05 0.41 0.00 Lipiciants 0.144 74.27 3.0 0.60 8.78 0.38 0.06 Naphtha (scoti dig F) 0.125 70.22 3.0 0.60 8.50 0.38 <	Crude Oil							
Distillate Fuel Oli No. 2 0.188 73.96 3.0 0.60 10.21 0.41 0.04 Distillate Fuel Oli No. 4 0.166 75.04 3.0 0.66 10.36 0.44 0.06 Ethane 0.068 55.60 3.0 0.66 1.03 0.07 0.00 Heavy Gas Ols 0.148 74.92 3.0 0.66 1.133 0.17 0.00 Globulane 0.099 64.94 3.0 0.66 64.83 0.30 0.06 Stocolighten 0.1135 75.20 3.0 0.660 1.015 0.41 0.08 Kercsene 0.135 77.22 3.0 0.660 1.069 0.03 0.00 Marca Sassie 0.125 77.22 3.0 0.660 1.63 0.00								
Diellate Fuel Ol No. 4 0.166 75,04 3.0 0.60 10.96 0.44 0.06 Ethane 0.068 55,60 3.0 0.60 4.05 0.20 0.06 Ethylene 0.068 65,96 3.0 0.60 3.83 0.17 0.00 Isobulane 0.069 64,94 3.0 0.60 6.43 0.30 0.06 Isobulytene 0.133 68,86 3.0 0.60 7.09 0.31 0.06 Kercsene 0.135 75.20 3.0 0.60 9.75 0.41 0.06 Lipuefied Petroleum Gassei (LPG) 0.092 61.71 3.0 0.60 10.65 0.42 0.06 Matria Gasoline 0.125 70.22 3.0 0.60 8.50 0.38 0.00 Natural Gasoline 0.110 66.88 3.0 0.60 7.36 0.33 0.00 Natural Gasoline 0.110 70.22 3.0 0.60 7.70 0.38 <td< td=""><td>Distillate Fuel Oil No. 2</td><td>0.138</td><td>73.96</td><td>3.0</td><td>0.60</td><td>10.21</td><td>0.41</td><td>0.08</td></td<>	Distillate Fuel Oil No. 2	0.138	73.96	3.0	0.60	10.21	0.41	0.08
Ethane 0.068 59.60 3.0 0.60 4.05 0.20 0.04 Heavy Gas Ols 0.058 65.96 3.0 0.60 3.83 0.17 0.00 Heavy Gas Ols 0.044 74.92 3.0 0.60 6.43 0.30 0.60 Isobutane 0.039 66.44 3.0 0.60 6.43 0.30 0.60 Isobutyten 0.135 75.20 3.0 0.60 10.15 0.41 0.00 Kercsene-Yype Jat Fuel 0.135 77.22 3.0 0.60 5.68 0.28 0.00 Lubricants 0.144 74.27 3.0 0.60 10.69 0.43 0.00 Naphta (401 dg F) 0.125 70.22 3.0 0.60 8.78 0.38 0.00 Naphta (401 dg F) 0.125 70.22 3.0 0.60 7.36 0.33 0.00 Other OL(401 dg F) 0.125 70.22 3.0 0.60 7.7 0.33 0.00 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.09</td>								0.09
Heavy Gas Ols 0.148 74.92 3.0 0.60 11.09 0.44 0.00 Isobulyten 0.099 64.94 3.0 0.60 6.43 0.30 0.00 Isobulyten 0.135 75.20 3.0 0.60 10.15 0.41 0.00 Kerosene 0.135 77.22 3.0 0.60 9.75 0.41 0.00 Lupication Sass (LPG) 0.092 61.71 3.0 0.60 5.68 0.28 0.00 Mor Gasoline 0.125 70.22 3.0 0.60 8.76 0.38 0.00 Naphta (401 dg F) 0.125 70.22 3.0 0.60 8.76 0.38 0.00 Naphta (401 dg F) 0.125 70.22 3.0 0.60 7.36 0.33 0.00 Proteincial Feedstocks 0.110 70.02 3.0 0.60 7.75 0.33 0.00 Propane 0.091 62.77 3.0 0.60 6.17 0.27 0.00<		0.068	59.60	3.0	0.60	4.05		0.04
Isobutane 0.09 64.94 3.0 0.60 6.43 0.30 0.00 Kercsene 0.103 68.86 3.0 0.60 7.09 0.31 0.00 Kercsene-Type Jaf Fuel 0.135 75.20 3.0 0.60 9.75 0.41 0.00 Liquefied Petroleum Gases (PG) 0.092 61.71 3.0 0.60 5.68 0.28 0.00 Univierant 0.144 74.27 3.0 0.60 16.69 0.43 0.00 Motor Gascine 0.125 70.22 3.0 0.60 8.50 0.38 0.00 Natural Gascine 0.110 66.88 3.0 0.60 7.36 0.33 0.00 Natural Gascine 0.110 70.02 3.0 0.60 7.36 0.33 0.00 Pertanes Plus 0.110 70.02 3.0 0.60 6.85 0.30 0.60 Propene 0.091 62.77 3.0 0.60 6.17 0.22 0.								0.03
Isobulytene 0.103 66.86 3.0 0.60 7.09 0.31 0.00 Kerosene 0.135 75.20 3.0 0.60 10.15 0.41 0.00 Kerosene 0.135 77.22 3.0 0.60 9.75 0.41 0.00 Lubricants 0.144 74.27 3.0 0.60 16.68 0.28 0.00 Motr Gasoline 0.125 70.22 3.0 0.60 8.76 0.38 0.00 Naphta (-401 deg F) 0.125 68.02 3.0 0.60 7.36 0.38 0.00 Naphta (-401 deg F) 0.139 76.22 3.0 0.60 7.36 0.33 0.00 Phatras Plus 0.110 70.02 3.0 0.60 7.70 0.33 0.00 Propare 0.091 62.87 3.0 0.60 5.72 0.27 0.00 Propare 0.091 67.77 3.0 0.60 11.27 0.45 0.05 <tr< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr<>								
Kerosene 0.135 75.20 3.0 0.60 10.15 0.41 0.00 Liquefied Petroleum Gases (LPG) 0.035 72.22 3.0 0.60 9.75 0.41 0.06 Liquefied Petroleum Gases (LPG) 0.092 61.71 3.0 0.60 5.68 0.28 0.06 Motor Gascine 0.125 70.22 3.0 0.60 8.78 0.38 0.06 Natural Gascine 0.110 66.88 3.0 0.60 8.73 0.38 0.00 Natural Gascine 0.110 66.88 3.0 0.60 7.73 0.33 0.00 Pertones Plus 0.110 70.22 3.0 0.60 7.73 0.33 0.00 Pertones Plus 0.110 70.22 3.0 0.60 8.58 0.30 0.00 Pertones Plus 0.110 70.22 3.0 0.60 6.77 0.33 0.00 Prophen 0.091 62.77 3.0 0.60 6.71 0.22 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
Kerosene-Type Jet Fuel 0.135 72.22 3.0 0.60 9.75 0.41 0.00 Lubricants 0.144 74.27 3.0 0.60 5.68 0.28 0.00 Lubricants 0.144 74.27 3.0 0.60 10.69 0.43 0.00 Naphta (-401 deg F) 0.125 70.22 3.0 0.60 8.78 0.38 0.00 Naphta (-401 deg F) 0.125 68.02 3.0 0.60 8.78 0.38 0.00 Natural Gascine 0.110 66.88 3.0 0.60 7.36 0.33 0.00 Other OI (-401 deg F) 0.139 76.22 3.0 0.60 7.70 0.33 0.00 Pertanse Plus 0.110 70.02 3.0 0.60 7.77 0.33 0.00 Propare 0.091 67.77 3.0 0.60 6.17 0.27 0.00 Residual Fuel OI No. 5 0.140 77.23 3.0 0.60 10.21 0.44 </td <td></td> <td></td> <td>68.86</td> <td></td> <td>0.60</td> <td></td> <td>0.31</td> <td>0.06</td>			68.86		0.60		0.31	0.06
Liquefied Petroleum Gases (LPG) 0.092 61.71 3.0 0.60 5.68 0.28 0.00 Motor Gase (LPG) 0.144 74.27 3.0 0.60 10.69 0.43 0.00 Motor Gasoline 0.125 70.22 3.0 0.60 8.78 0.38 0.00 Natural Gasoline 0.110 66.88 3.0 0.60 8.50 0.38 0.00 Natural Gasoline 0.110 66.88 3.0 0.60 7.36 0.33 0.00 Pertatens Plus 0.110 70.02 3.0 0.60 7.73 0.33 0.00 Propane 0.091 62.27 3.0 0.60 5.72 0.27 0.00 Residual Fuel OI No.5 0.140 77.23 3.0 0.60 6.77 0.22 0.0 0.60 6.77 0.02 0.00 0.60 6.77 0.02 0.00 0.00 0.012 0.42 0.00 0.00 0.012 0.42 0.00 0.00								
Lubricants 0.144 74.27 3.0 0.60 10.69 0.43 0.00 Motro Gascine 0.125 70.22 3.0 0.60 8.78 0.38 0.00 Naphta (401 deg F) 0.125 68.02 3.0 0.60 8.76 0.38 0.00 Naphta (401 deg F) 0.139 76.22 3.0 0.60 7.36 0.33 0.00 Other Ol (401 deg F) 0.139 76.22 3.0 0.60 7.76 0.33 0.00 Pertanse Plus 0.110 70.02 3.0 0.60 7.70 0.33 0.00 Propare 0.091 62.87 3.0 0.60 5.72 0.27 0.00 Propare 0.091 67.77 3.0 0.60 10.21 0.42 0.00 Residual Fuel Ol No. 5 0.140 72.33 3.0 0.60 10.21 0.42 0.00 Urrinished Olis 0.138 74.00 3.0 0.60 10.21 0.44 <								
Mator Gasoline 0.125 70.22 3.0 0.60 8.76 0.38 0.00 Natural Gasoline 0.125 66.02 3.0 0.60 8.50 0.38 0.00 Natural Gasoline 0.110 66.88 3.0 0.60 7.36 0.33 0.00 Dhrer Cil (-401 Geg F) 0.139 76.22 3.0 0.60 7.73 0.33 0.00 Pertochenical Feedstocks 0.125 71.02 3.0 0.60 7.70 0.33 0.00 Propene 0.091 62.67 3.0 0.60 5.72 0.27 0.00 Residual Fuel Ol No. 5 0.140 72.93 3.0 0.60 61.71 0.27 0.00 Special Maphinia 0.150 75.10 3.0 0.60 10.21 0.42 0.00 Special Maphinia 0.126 72.44 3.0 0.60 10.21 0.42 0.00 Uninshed Olis 0.139 74.45 3.0 0.60 10.21								
Naphta (<01 dog F) 0.125 66.02 3.0 0.60 8.50 0.38 0.00 Other Ol (<01 dog F)								0.08
Other OI (-401 deg F) 0.139 76.22 3.0 0.60 10.59 0.42 0.00 Pertanse Plus 0.110 70.02 3.0 0.60 7.70 0.33 0.00 Pertones Plus 0.051 71.02 3.0 0.60 8.88 0.38 0.00 Propane 0.091 62.87 3.0 0.60 5.72 0.27 0.00 Proprien 0.091 67.77 3.0 0.60 6.17 0.27 0.00 Residual Fuel OI No. 5 0.140 77.293 3.0 0.60 11.27 0.45 0.00 Residual Fuel OI No. 5 0.150 75.10 3.0 0.60 11.27 0.45 0.00 Unfinished OIs 0.138 74.00 3.0 0.60 10.21 0.44 0.00 Used OI 0.138 74.00 3.0 0.60 10.21 0.44 0.00 Biodesel (100%) 0.128 73.84 1.1 0.11 9.4 0.00 <		0.125	68.02	3.0	0.60	8.50	0.38	0.08
Other Ol (-401 deg F) 0.139 76.22 3.0 0.60 10.59 0.42 0.00 Pertranse Plus 0.110 70.02 3.0 0.60 7.70 0.33 0.00 Pertones Plus 0.0110 70.02 3.0 0.60 7.72 0.33 0.00 Propare 0.091 62.87 3.0 0.60 5.72 0.27 0.00 Program 0.091 62.87 3.0 0.60 6.17 0.27 0.00 Residual Fuel Ol No. 5 0.140 77.23 3.0 0.60 11.27 0.44 0.06 Residual Fuel Ol No. 5 0.150 77.510 3.0 0.60 11.27 0.45 0.00 Urinished Olis 0.138 74.00 3.0 0.60 10.21 0.44 0.00 Used Ol 0.138 74.40 3.0 0.60 10.21 0.44 0.00 Biomass Fuels - Liguid 0.128 73.84 1.1 0.11 9.4 0.04	Natural Gasoline	0.110	66.88	3.0	0.60	7.36	0.33	0.07
Pertochemical Feedstocks 0.125 71.02 3.0 0.60 8.88 0.38 0.00 Propane 0.091 62.87 3.0 0.60 5.72 0.27 0.00 Propylene 0.091 67.77 3.0 0.60 6.17 0.27 0.00 Residual Fuel Ol No. 5 0.140 72.93 3.0 0.60 10.21 0.42 0.00 Residual Fuel Ol No. 5 0.150 77.10 3.0 0.60 11.27 0.45 0.00 Residual Fuel Ol No. 5 0.153 77.24 3.0 0.60 10.21 0.42 0.00 Urifinished Ols 0.138 74.00 3.0 0.60 10.21 0.44 0.00 Used Ol 0.138 74.00 3.0 0.60 10.21 0.44 0.00 Biodicese (100%) 0.0128 73.84 1.1 0.11 9.45 0.04 0.00 Endered Animal Fat 0.125 71.06 1.1 0.11 8.88 <t< td=""><td></td><td>0.139</td><td></td><td></td><td>0.60</td><td>10.59</td><td></td><td>0.08</td></t<>		0.139			0.60	10.59		0.08
Progane 0.091 62.87 3.0 0.60 5.72 0.27 0.02 Proydne 0.091 67.77 3.0 0.60 6.17 0.27 0.08 Residual Fuel Ol No. 5 0.140 77.2 3.0 0.60 6.17 0.27 0.08 Residual Fuel Ol No. 5 0.140 77.2 3.0 0.60 10.21 0.42 0.06 Special Maphtha 0.125 77.510 3.0 0.60 10.21 0.42 0.06 Special Maphtha 0.125 72.34 3.0 0.60 10.21 0.44 0.00 Used Oli 0.139 74.44 3.0 0.60 10.21 0.41 0.00 Used Oli 0.138 74.00 3.0 0.60 10.21 0.41 0.00 Biomass Fuels - Liquid 0.128 73.4 1.1 0.11 9.45 0.14 0.00 Ethnise (10%) 0.84 68.44 1.1 0.11 5.75 0.00 0.0	Pentanes Plus				0.60	7.70		
Procylene 0.091 67.77 3.0 0.60 6.17 0.27 0.08 Residual Fuel Ol No. 5 0.140 72.93 3.0 0.60 10.21 0.42 0.00 Residual Fuel Ol No. 5 0.150 77.10 3.0 0.60 11.27 0.45 0.00 Special Naphtha 0.125 72.34 3.0 0.60 9.04 0.38 0.00 Unfinished Ols 0.139 74.54 3.0 0.60 10.21 0.44 0.00 Used Ol 0.138 74.00 3.0 0.60 10.21 0.44 0.00 Biodicese (100%) 0.128 73.84 1.1 0.11 9.45 0.04 0.00 Ethand (100%) 0.028 73.84 1.1 0.11 9.45 0.14 0.01 Vegetabe Oil 0.120 81.55 1.1 0.11 8.88 0.14 0.00 Vegetabe Oil 0.120 81.55 1.1 0.11 9.79 0.13 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>								
Residual Fuel Oli No. 5 0.140 72.93 3.0 0.60 10.21 0.42 0.08 Special Maphha 0.150 75.10 3.0 0.60 11.27 0.45 0.05 Special Maphha 0.155 72.34 3.0 0.60 9.04 0.38 0.06 Uninshed Olis 0.139 74.54 3.0 0.60 10.36 0.42 0.06 Used Ol 0.138 74.00 3.0 0.60 10.21 0.41 0.06 Biomass Fuels - Liquid 0.138 74.00 3.0 0.60 10.21 0.41 0.06 Biomass Fuels - Liquid 0.128 73.84 1.1 0.11 5.75 0.09 0.07 Renderd Anima Fat 0.125 71.06 1.1 0.11 5.75 0.09 0.07 Renderd Anima Fat 0.120 81.55 1.1 0.11 9.73 0.13 0.01 Vegetable Oli 0.120 81.55 1.1 0.11 9.73 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>								
Residual Fuel Oli No. 6 0.150 75.10 3.0 0.60 11.27 0.45 0.00 Unfinished Olis 0.125 72.34 3.0 0.60 9.04 0.38 0.06 Used Ol 0.139 74.54 3.0 0.60 10.21 0.44 0.06 Biomass Fuels - Liguid 0.138 74.00 3.0 0.60 10.21 0.41 0.07 Bioliceel (100%) 0.128 73.84 1.1 0.11 9.45 0.09 0.01 Ethand (100%) 0.122 73.84 1.1 0.11 9.45 0.04 0.00 Vegetable Oil 0.120 81.55 1.1 0.11 8.88 0.14 0.01 Vegetable Oil 0.120 81.55 1.1 0.11 9.78 0.03 0.07 Biomass Fuels - Kraft Pulping Liquor, by Wood Furtish merican Softwood 93.7 1.9 0.42 9.55 1.9 0.42 Bagase 93.7 1.9 0.42 9.37 1.9	Residual Fuel Oil No. 5				0.00			
Special Naphtha 0.125 72.34 3.0 0.60 9.04 0.38 0.00 Uninshed Olis 0.139 74.54 3.0 0.60 10.36 0.42 0.00 Biomass Fuels - Liquid 0 10.38 74.00 3.0 0.60 10.31 0.41 0.00 Biomass Fuels - Liquid 0 1.38 74.00 3.0 0.60 10.21 0.41 0.00 Biomass Fuels - Liquid 0 1.1 0.11 9.45 0.04 0.00 <td></td> <td></td> <td></td> <td></td> <td>0.60</td> <td></td> <td>0.45</td> <td>0.09</td>					0.60		0.45	0.09
Urfinished Ols 0.139 74.54 3.0 0.60 10.36 0.42 0.00 Biomass Fuels - Liquid 0 0.138 74.00 3.0 0.60 10.21 0.41 0.01 Biodised (100%) 0.128 73.84 1.1 0.11 9.45 0.14 0.00 Rendered Animal Fat 0.025 77.84 1.1 0.11 5.75 0.09 0.00 Vegetable Oil 0.125 77.16 1.1 0.11 8.88 0.14 0.01 Biomass Fuels - Kraft Pulping Liquor, by Wood Furtish 94.4 1.9 0.42 0.42 0.43 0.01 North American Schtwood 93.7 1.9 0.42	Special Naphtha	0.125	72.34				0.38	0.08
Used OI 0.138 74.00 3.0 0.60 1.021 0.41 0.08 Biomass Fuels - Liquid Endende (100%) 0.128 73.84 1.1 0.11 9.45 0.14 0.00 Biomass Fuels 0.084 68.44 1.1 0.11 5.75 0.09 0.00 Rendered Animal Fat 0.125 77.16 1.1 0.11 8.88 0.14 0.07 Biomass Fuels - Kraft Pulping Liquor, by Wood Burnass Fuels - Kraft Pulping Liquor, by Wood Burth American Schwood 94.4 1.9 0.42 9.79 0.13 0.07 North American Schwood Bagasse 94.4 1.9 0.42 0.42 9.0 0.42 9.0 4.2 9.0 4.2 9.0 0.42 9.0 4.2 9.0 4.2 9.0 4.2 9.0 0.42 9.0 0.42 9.0 4.2 9.0 0.42 9.0 0.42 9.0 0.42 9.0 0.42 0.42 9.0 0.42 0.42 0.42 0.42 0.42 0.42	Unfinished Oils	0.139	74.54	3.0	0.60	10.36	0.42	0.08
Biodised (100%) 0.128 73.84 1.1 0.11 9.45 0.14 0.07 Render(100%) 0.084 68.44 1.1 0.11 5.75 0.09 0.00 Render(100%) 0.125 71.06 1.1 0.11 5.75 0.09 0.01 Signass Fuels 0.120 81.55 1.1 0.11 9.79 0.13 0.01 Kraft Pulping Liquer, by Wood Fursish North American Schwood 94.4 1.9 0.42 Bagasse 95.5 1.9 0.42 Bamboo 93.7 1.9 0.42	Used Oil	0.138	74.00	3.0	0.60	10.21	0.41	0.08
Ethanol (100%) 0.084 68.44 1.1 0.11 5.75 0.09 0.00 Rendered Animal Fat 0.125 71.06 1.1 0.11 8.88 0.14 0.00 Vegetable Oil 0.120 81.55 1.1 0.11 8.88 0.14 0.01 Biomass Fuels- runsiah 9.79 0.13 0.01 North American Schtwood North American Hardwood 93.7 1.9 0.42 Bagasse 99.5 1.9 0.42								
Gendered Animal Fat 0.125 71.06 1.1 0.11 8.88 0.14 0.00 Vegetable 01 0.120 81.55 1.1 0.11 9.79 0.13 0.01 Kraft Pulping Liquer, by Wood Furnish North American Schwood 94.4 1.9 0.42 Bagasse 95.5 1.9 0.42 Bamboo 93.7 1.9 0.42		0.128	73.84	1.1	0.11	9.45	0.14	0.01
Sector 94.4 1.9 0.42 North American Softwood 93.7 1.9 0.42 Bagase 99.5 1.9 0.42								
Biomass Fuels - Kraft Pulping Liquor, by Wood Kart Pulping Liquor, by Wood North American Softwood North American Softwood Q3.7 1.9 O.42 Bagasse Bomboo 93.7 9.37 1.9 0.42								
Kraft Pulping Liquor, by Wood Furnish 94.4 1.9 0.42 North American Schtwood 93.7 1.9 0.42 North American Asdwood 93.7 1.9 0.42 Bagasse 95.5 1.9 0.42 Banboo 93.7 1.9 0.42		0.120	81.55	1.1	0.11	9.79	0.13	0.01
Furnish 94.4 1.9 0.42 North American Vardwood 93.7 1.9 0.42 Bagasse 95.5 1.9 0.42 Bamboo 93.7 1.9 0.42								
North American Softwood 94.4 1.9 0.42 North American Nardwood 93.7 1.9 0.42 Bagasse 95.5 1.9 0.42 Bamboo 93.7 1.9 0.42								
North American Hardwood 93.7 1.9 0.42 Bagasse 96.5 1.9 0.42 samboo 93.7 1.9 0.42]	94.4	1.9	0.42			
Bagasse 95.5 1.9 0.42 Bamboo 93.7 1.9 0.42	North American Hardwood		93.7	1.9	0.42			
	Bagasse		95.5	1.9				
Straw 95.1 1.9 0.42								
	Straw		95.1	1.9	0.42			

 Straw
 Source

 Source:
 Federal Register EPA: 40 CFR Part 98: e-CFR, (see link below), Table C-1 and Table C-2 (78 FR 71950, Nov. 29, 2013, as amended at 81 FR 89252, Dec. 9, 2016), Table AA-1 (78 FR 71965, Nov. 29, 2013).

 https://www.ecfr.gov/current/litle-40/chapter-l/subchapter-C/part-98
 Notes:

 Emission factors are per unit of heat content using higher heating values (HHV). If heat content is available from the fuel supplier, it is preferable to use that value. If not, default heat contents are provided.

 AI CO2, emission factors assume that 100 percent of the cabon content of the fuel is oxid/ard to CO2, as is recommended by the Intergovernmental Panel on Climate Change (IPCC).

 The CH, and N_o emission factors provided represent emissions in terms of fuel type and by end-use sector (i.e., residential, commercial, industrial, electricity generation).

 The factors represented in the table above represent combustion emissions only and do not represent upstream emissions.

Section 8

Map(s)

<u>A map</u> such as a 7.5 minute topographic quadrangle showing the exact location of the source. The map shall also include the following:

The UTM or Longitudinal coordinate system on both axes	An indicator showing which direction is north
A minimum radius around the plant of 0.8km (0.5 miles)	Access and haul roads
Topographic features of the area	Facility property boundaries
The name of the map	The area which will be restricted to public access
A graphical scale	

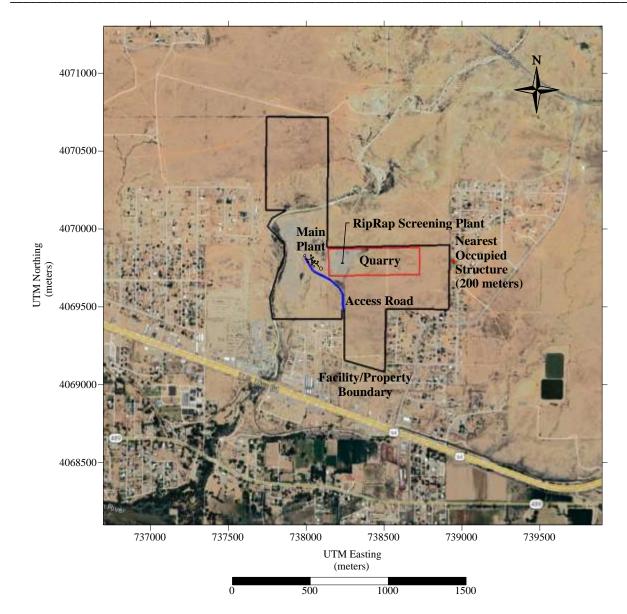


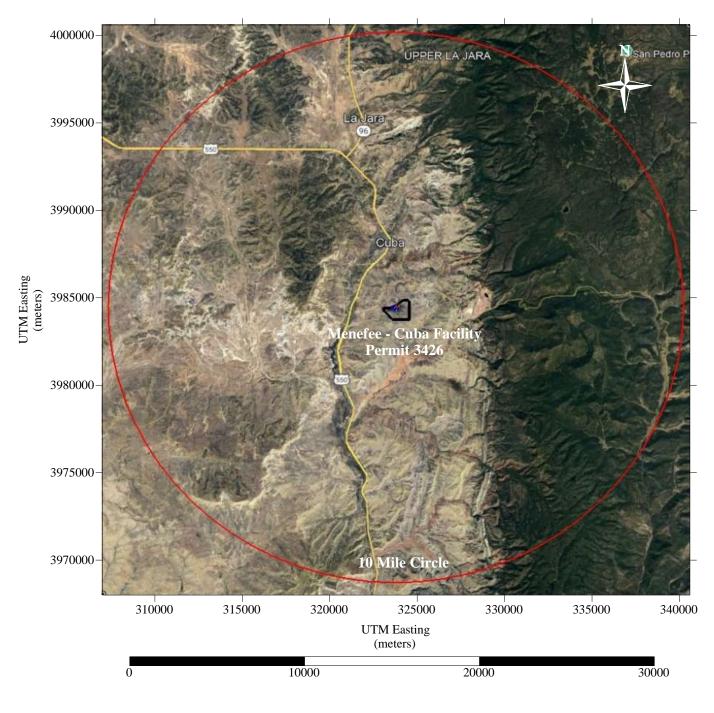
Figure 8-1: VHCC's Kirtland Pit Facility Map with Surrounding Area

Section 9

Proof of Public Notice

(for NSR applications submitting under 20.2.72 or 20.2.74 NMAC) (This proof is required by: 20.2.72.203.A.14 NMAC "Documentary Proof of applicant's public notice")

X I have read the AQB "Guidelines for Public Notification for Air Quality Permit Applications" This document provides detailed instructions about public notice requirements for various permitting actions. It also provides public notice examples and certification forms. Material mistakes in the public notice will require a re-notice before issuance of the permit.


Unless otherwise allowed elsewhere in this document, the following items document proof of the applicant's Public Notification. Please include this page in your proof of public notice submittal with checkmarks indicating which documents are being submitted with the application.

New Permit and Significant Permit Revision public notices must include all items in this list.

Technical Revision public notices require only items 1, 5, 9, and 10.

Per the Guidelines for Public Notification document mentioned above, include:

- 1. X A copy of the certified letter receipts with post marks (20.2.72.203.B NMAC)
- 2. X A list of the places where the public notice has been posted in at least four publicly accessible and conspicuous places, including the proposed or existing facility entrance. (e.g: post office, library, grocery, etc.)
- 3. **X** A copy of the property tax record (20.2.72.203.B NMAC).
- 4. **X** A sample of the letters sent to the owners of record.
- 5. **X** A sample of the letters sent to counties, municipalities, and Indian tribes.
- 6. **X** A sample of the public notice posted and a verification of the local postings.
- 7. X A table of the noticed citizens, counties, municipalities and tribes and to whom the notices were sent in each group.
- 8. **X** A copy of the public service announcement (PSA) sent to a local radio station and documentary proof of submittal.
- 9. X A copy of the <u>classified or legal</u> ad including the page header (date and newspaper title) or its affidavit of publication stating the ad date, and a copy of the ad. When appropriate, this ad shall be printed in both English and Spanish.
- 10. **X** A copy of the <u>display</u> ad including the page header (date and newspaper title) or its affidavit of publication stating the ad date, and a copy of the ad. When appropriate, this ad shall be printed in both English and Spanish.
- 11. X A map with a graphic scale showing the facility boundary and the surrounding area in which owners of record were notified by mail. This is necessary for verification that the correct facility boundary was used in determining distance for notifying land owners of record.

Government List within 10 Miles

GOVERNMENT ENTITY	GOVERNMENT REPRESENTATIVE	MAILADD	MCITY	STATE	ZIP
San Juan County	Tanya Shelby, County Clerk	PO Box 550	Aztec	NM	87410
City of Farmington	Andrea Jones, City Clerk	800 Municipal Drive	Farmington	NM	87401
Town of Kirtland	Jonathan LaMone, Town Clerk	47 Rd 6500	Kirtland	NM	87417
Navajo Nation EPA	Stephan B. Etsitty, Executive Director	PO Box 339	Window Rock	AZ	86515

Landowner List within 100 Feet (San Juan County - Class A county)

Acct_No	OWNNAME	MAILADD	MCITY	STATE	ZIP
R0083446	ANCHONDO JOEL	6 ROAD 6212	KIRTLAND	NM	87417
R0081697	ANDREWS DANNY	47 ROAD 6200	KIRTLAND	NM	87417
R4004873	BEGAY RENAE LEE	34 ROAD 6406	KIRTLAND	NM	87417
R0081967	BEGAY SHAYNE D	15 ROAD 6207	KIRTLAND	NM	87417
R4004870	BEGAY VIDA A	PO BOX 3206	INDIAN WELLS	AZ	86031
R0083444	BETONEY COURTNEY AMBER	10 ROAD 6212	KIRTLAND	NM	87417
R0081175	BOLACK TOMMY TRUST	3901 BLOOMFIELD HWY	FARMINGTON	NM	87401
R4006506	BOLACK TOMMY TRUST	3901 BLOOMFIELD HWY	FARMINGTON	NM	87401
R0080212	BOLACK TOMMY TRUST	3901 BLOOMFIELD HWY	FARMINGTON	NM	87401
R0081825	BOUGEANT CHRETIEN J	1 ROAD 6207	KIRTLAND	NM	87417
R0082214	BROWN LARRY AND MORRIS BROWN BONNIE JEAN	PO BOX 1034	FRUITLAND	NM	87416-1034
R0082213	BROWN LARRY AND MORRIS BROWN BONNIE JEAN	PO BOX 1034	FRUITLAND	NM	87416-1034
R0082212	CARLSTON PETER AND MAGGIE	13 ROAD 6193	KIRTLAND	NM	87417
R0082210	CHRISTIANSON DAVID AND MELISSA J	9 ROAD 6193	KIRTLAND	NM	75231-4466
R0081683	DAN LILLIE	PO BOX 2004	KIRTLAND	NM	87417-2004
R0083448	DELANEY WELDON V JR AND LOLITA	2305 E 14TH ST	FARMINGTON	NM	87401
R0081669	DENETCLAW JATONNA	PO BOX 1004	KIRTLAND	NM	87417
R4004872	DIAMOND D CONSTRUCTION CO INC	PO BOX 1841	KIRTLAND	NM	87417
R0082211	EATON BESSIE M ET AL	PO BOX 3493	SHIPROCK	NM	87027-0065
R0083445	EMERSON LUCINDA A REVOCABLE LIVING TRUST	8 ROAD 6212	KIRTLAND	NM	87417
R0081362	F AND D HOLDINGS LLC	5011 TAMPICO WAY	FARMINGTON	NM	87402
R0081487	GARLINGTON BILLY L III	41 ROAD 6200	KIRTLAND	NM	87417-0000
R0080022	HATATHLE ARNOLD AND DENISE	18 ROAD 6207	KIRTLAND	NM	87417
R0082509	HENDRIX BRADLEY D AND CATHY B TRUST	PO BOX 814	KIRTLAND	NM	87417-0000
R0080893	HORSLEY PATRICK B AND TRACY V	9 ROAD 6207	KIRTLAND	NM	87417-0000

Acct_No	OWNNAME	MAILADD	MCITY	STATE	ZIP
R6002383	HWY 64 TRUCK AND AUTO SALVAGE LLC	4551 US 64	FARMINGTON	NM	87401
R0082512	INGRAHAM RONALD	3480 LA PLATA HWY	FARMINGTON	NM	87401
R0082513	INVESTORS TRUST LC C/O1	31 ROAD 6195	KIRTLAND	NM	87417
R0082166	ISBELL DOROTHY L	6440 HAWKEYE ST	FARMINGTON	NM	87402
R0081172	JAKE EVANGELINE	7 ROAD 6207	KIRTLAND	NM	87417
R0081721	JARAMILLO STEVEN D AND DANA S	5 ROAD 6207	KIRTLAND	NM	87013
R0082209	KIDDIE TODD B	7 ROAD 6193	KIRTLAND	NM	87048-9104
R4004877	KIRTLAND 6406 LLC ATTN SCULLY RUBY D AND	10206 ARVILLA AVE NE	ALBUQUERQUE	NM	87111
R0080415	KRIEG ERIC W AND FREDRICA	3 ROAD 6207	KIRTLAND	NM	75231-4466
R0082501	KUECKS GEORGE J TRUSTEES	19 ROAD 6193	KIRTLAND	NM	87417-9329
R0082502	KUECKS GEORGE J TRUSTEES	19 ROAD 6193	KIRTLAND	NM	87417-9329
R0082526	KUECKS HOLLY	37 ROAD 6195	KIRTLAND	NM	87417
R0081351	LEE CALVIN	PO BOX 313	FRUITLAND	NM	87416-0313
R0083095	LINK THOMAS G	4346 US 64	KIRTLAND	NM	87417
R4004874	LOGG MELLISA	PO BOX 3301	KIRTLAND	NM	87417
R0083449	LUCERO OSCAR M ET AL	PO BOX 1412	FRUITLAND	NM	87013
R4004875	MOORE LEONARD BRYAN TRUST	PO BOX 1753	KIRTLAND	NM	87417
R0083442	REBELES TED AND DANIELLE	14 ROAD 6212	KIRTLAND	NM	87417
R0083447	RENDON REBECCA JEAN	2 ROAD 6212	KIRTLAND	NM	87417
R0082511	RIVERA DORIS AND SABINO	PO BOX 415	CANJILON	NM	87515
R0082508	ROOTS PROPERTIES LLC	2012 SAN JUAN BLVD	FARMINGTON	NM	87401
R6002384	ROSE LARSON ENTERPRISES LLC	PO BOX 3704	GLENDALE	AZ	85311
R0081759	SEYFERT DENNIS R	45 ROAD 6200	KIRTLAND	NM	87417
R4004871	SHORTY LINDA	40 ROAD 6406	KIRTLAND	NM	87417-9436
R0082510	SHORTY MICHAEL AND SHERRI A	21 ROAD 6195	KIRTLAND	NM	87417-9332
R6002344	SILVA JAMES R	PO BOX 403	KIRTLAND	NM	87417-0403
R0081784	SINGLETON SHERMANN SAMALA TRUST	2001 E MAIN ST	FARMINGTON	NM	87401-7713
R0080230	SMALLCANYON ALBERTA	13 ROAD 6207	KIRTLAND	NM	87417
R0081493	STEVENSON CALVIN AND LENA	PO BOX 504	FRUITLAND	NM	87416-0504
R0081507	TAPAHA JOHN DAVID AND ROSIE	4 ROAD 6209	KIRTLAND	NM	87417-9745
R0080235	TSO ROBERT J AND LAPRINCESS D	7 ROAD 6206	KIRTLAND	NM	87417
R0080935	VAN ARSDALE GERALD L AND MARY L	43 ROAD 6200	KIRTLAND	NM	87417
R0083443	VAZQUEZ KARLA JACELL AND VAZQUEZ DOMINQU	12 ROAD 6212	KIRTLAND	NM	87417
R0082208	WILLIS ALICE E	5 ROAD 6193	KIRTLAND	NM	87417-0000
R0080256	WILLIS BOBBY L AND CARRIE S	PO BOX 377	KIRTLAND	NM	87417
R0082525	YAZZIE JOE B AND NORMA	37 ROAD 6195	KIRTLAND	NM	87417-0000

NOTICE

Vernon Hamilton Construction Company (VHCC), LLC announces its application submittal to the New Mexico Environment Department for a new minor source NSR permit application for an Air Quality Permit. The permit is for the VHCC's Kirtland Pit which processes aggregate material. The expected date of application submittal to the Air Quality Bureau is December 2, 2024.

The address for the facility known as, VHCC's Kirtland Pit, is 32 Rd 6210, Kirtland, NM. The exact location of the VHCC's Kirtland Pit is at Latitude (decimal degrees): 36.743919 and Longitude (decimal degrees): -108.333753. The approximate location of this facility is 0.7 miles east-southeast of Kirtland in San Juan County.

The function of the facility is to crush and screen aggregate material from the on-site quarry into usable construction sand and gravel.

The 350 ton per hour and 350,000 ton per year aggregate quarry, and crushing and screening operations will include an aggregate quarry, feeder, primary jaw crusher, two (2) secondary cone crushers, two (2) 3-deck screens, one (1) scalping screen, one (1) RipRap plant, fifteen (15) transfer conveyors, and seven (7) stacker conveyors. The main crushing and screening plant will be powered by commercial line power unless relocated to a different location where is will be powered by an 725 kW, 1081 horsepower (hp) engine/generator. The RipRap plant will be powered by a 140 kW, 188 hp engine. Aggregate from the quarry will first be processed through the RipRap plant and then the material will be stored in the Raw Material Pile. From the Raw Material Pile the material will be fed into the main plant feeder. Processed aggregate will be stored in Finish Storage Piles until transported from the aggregate crushing plant to off-site sales.

The estimated maximum quantities of any regulated air contaminant will be as follows in pound per hour (pph) and maximum tons per year (tpy) and may change slightly during the course of the Department's review:

Pollutant:	Maximum Pounds per hour	Maximum Tons per year
PM 10	15.4 pph	7.2 tpy
PM _{2.5}	2.9 pph	2.7 tpy
Sulfur Dioxide (SO ₂)	0.013 pph	0.029 tpy
Nitrogen Oxides (NO _x)	15.9 pph	34.6 tpy
Carbon Monoxide (CO)	19.3 pph	42.0 tpy
Volatile Organic Compounds (VOC)	2.1 pph	4.7 tpy
Total sum of all Hazardous Air Pollutants (HAPs)	0.052 pph	0.11 tpy
Toxic Air Pollutant (TAP)	0.0003 pph	0.0008 tpy
Green House Gas Emissions as Total CO2e	n/a	1676 tpy

The maximum operating schedule for material processing is 9 hours per day (8 am to 5 pm) for the months of November through February, and daylight hours (14 hours per day maximum) for the months of March through October, 6 days per week, and 52 weeks per year. The standard schedule for material processing is 10 hours per day.

The owner and/or operator mailing address for the Facility is: Vernon Hamilton Construction Company, LLC P.O. Box 1110 Gallup, NM 87305 If you have any comments about the construction or operation of this facility, and you want your comments to be made as part of the permit review process, you must submit your comments in writing to this address: Permit Programs Manager; New Mexico Environment Department; Air Quality Bureau; 525 Camino de los Marquez, Suite 1; Santa Fe, New Mexico; 87505-1816. Other comments and questions may be submitted verbally. (505) 476-4300; 1 800 224-7009.

With your comments, please refer to the company name and facility name, or send a copy of this notice along with your comments. This information is necessary since the Department may have not yet received the permit application. Please include a legible return mailing address. Once the Department has completed its preliminary review of the application and its air quality impacts, the Department's notice will be published in the legal section of a newspaper circulated near the facility location.

Attención

Este es un aviso de la oficina de Calidad del Aire del Departamento del Medio Ambiente de Nuevo México, acerca de las emisiones producidas por un establecimiento en esta área. Si usted desea información en español, por favor comuníquese con esa oficina al teléfono 505-629-3395.

Notice of Non-Discrimination

NMED does not discriminate on the basis of race, color, national origin, disability, age or sex in the administration of its programs or activities, as required by applicable laws and regulations. NMED is responsible for coordination of compliance efforts and receipt of inquiries concerning non-discrimination requirements implemented by 40 C.F.R. Part 7, including Title VI of the Civil Rights Act of 1964, as amended; Section 504 of the Rehabilitation Act of 1973; the Age Discrimination Act of 1975, Title IX of the Education Amendments of 1972, and Section 13 of the Federal Water Pollution Control Act Amendments of 1972. If you have any questions about this notice or any of NMED's non-discrimination programs, policies or procedures, or if you believe that you have been discriminated against with respect to a NMED program or activity, you may contact: Non-Discrimination Coordinator, NMED, 1190 St. Francis Dr., Suite N4050, P.O. Box 5469, Santa Fe, NM 87502, (505) 827-2855, nd.coordinator@env.nm.gov. You may also visit our website at https://www.env.nm.gov/non-employee-discrimination-complaint-page/ to learn how and where to file a complaint of discrimination.

General Posting of Notices – Certification

I, <u>Daniel Flack</u>, the undersigned, certify that on November 19-20, 2024, posted a true and correct copy of the attached Public Notice in the following publicly accessible and conspicuous places in the Town of Kirtland San Juan County, State of New Mexico on the following dates:

- 1. Facility entrance 11-19-24
- 2. Town of Kirtland Town Hall 11-20-24
- 3. Kirtland Post Office 11-20-24
- 4. Lower Valley Water Users 11-20-24

Signed this <u>20</u> day of <u>November</u> <u>2024</u>

Signature

<u>November 20, 2024</u> Date

Daniel Flack Printed Name

Engineer Title {APPLICANT OR RELATIONSHIP TO APPLICANT}

Facility Entrance to the Kirtland Pit 32 Rd 6210, Kirtland, NM

NOTICE -

Cale Series, Names A., VICC'S K. Manuel Phys. 32 104 (2018). Exclused Web, Theorem J. Cardon Phys. Rev. D 100 (1997) 2017 [Control of Cardina Control of Cardina C

	All Manual Cold	- Marine
had a set of the set o	August douber	Care law Lond
	Dis gen	
Patr	10.00	118-
Per-	a strad	and Press
Andre Round (Said)	at at.	
TemporConte-Chil		1000
Andre Manager 10	aran.	174
Tellader Tigeral Fattph/dd./Y/81	11.00	****
And should depend on her to see all only	10.00	1000 0
Name of a Profession Frage	1.000 +00	
		and the second s

Town of Kirtland Town Hall 47 Rd 6500, Kirtland, NM

NOTICE

Version Hamilton Construction Company (VHCC), LLC announces in application submitted to the New Mexico Environment Department for a new minor source NSR permit application for an Ale Quality Permit. The permit is for the VIRCC's Kardand Pa which processes aggregate naterial. The expected date of application submittal

The address for the facility known as, VICCE's Kirtland Pit, is 32 Rd 6210, Kinfand, NM. The exact location of the VHCC's Kintaed Pit is at Latitude (decimal degrees): 36,743919 and Longitude (decimal degrees): -106.333753. The approximate location of this facility is 0.7 miles sum-seatherer of Kirtland in Saw Joan

The function of the facility is to crash and screen aggregate material from the on-aist quarty into usable

The 350 ton per hour and 350,000 ton per your aggregate query, and enabling and screening operations will include an aggregate quarry, fooder, primary jaw (mather, two (2) secondary cone crushers, two (2) 3-deck screens, one (1) scalping screen, one (1) Rightap plant, fifteen (15) stransfer conveyors, and neven (7) stocker conveyors. The mails creating and scronning plant will be powered by communital fine power unless relocated to a different location where is will be powered by an 725 kW, 1081 horsepower (3p) engine-presentor. The Replicap plant will be powered by a 140 kW, 188 hp engine. Aggregate from the quarry will first be processed Replace point will not posteria by a very well in the posterior suggestion and the dealby will have be provedued dressing the Replace plant and then the metrical will be moved in the Row Material Pile. From the Raw Material Pile the material will be fed into the metric plane feeder. Processed aggregate will be moved in illustationage

The estimated macimum quantities of any regulated air contaminant will be as follows in pound per hour (spik) The measurements some per year (pp) and may sharing slightly during the owner of the Department's review

The environment approximag acknowled for respectencing in 0 hours puriday (0 are to 5 perc) for the resorder of housemaker through Futurery, and des light hours (14 hours per day was irread) for the instability of March through Opening, 6 days per week, and 52 works per year. The standard schedule for material processing in 20 hours per

our station operator coaling address for the Tactity is: Versus Paraline Consequing Congress, LLC 7-0. Nov 1110 Callon, 2014 #7300

US Post Office 4211 US 64, Kirtland, NM

NOTICE

The answer is applicated atomic to be two blocks to the second statement of th To the URE Competence for a star dense works To the URE Collariant Pointick protocols in the Art Danky Ration is December 2, 2021

hence for the facility statuse as, VERC V-K-Hage PL to 1. Spectrals. K advant, Mic. This result for MIC. 1. Kalawards in an improved streamed supports in VERCE wards and public filterated depend 1999. The approximate locations of this facility of C-solar statusesticant of College in New York

en Verschwerzeiten beschrijt is is sonde and sonder aggregen statistich fitter werden and and gravit. 1991 War generation of 2000 ten per sone aggreget igener, and ere de daggegege sone, kenne generation generation (einer dag eine sone (einer dag aggeste sone einer fittering parts with sone (einer dag wert einer (einer dags generation auch einer dag and einer dag einer (einer dags generation auch einer dags generation), diese (einer dags wert einer (einer dags generation auch einer dags generation). to shart will be Which the Radian plane and then the analysis of the Associal II for Fa Shorthe Boltz of the Radian Barrane plane balan. Proceedings where and represented these the supergrades coulding plane to of one of the supergrades.

The defense of enclosed quantities of any regulated an evenement will be as follows in and mechanisms have per year type: and may design slightly during the control of the Deput

Perman	Real Property lines	the stati	
All a second sec	11/24	12.00	
and an	214.68	27.84	
Name (South 1011)	eetingh	1.07144	
Wanger-Teller-Wild	117.44	201 BP	
Cabe Manual 11.0	-101240	1114	
Walk Part (March 2010)	2140	4745	
Name and all Distances in Column Prophy 1	945.245	d-last.	
Will an Weighter Taffy	1.000 all	1.008.00	
Clear there is a finite or installing		Lobiet.	

equipping in Scheme per Ado (1) we set (per) for the months of in larger per Ago Sectors () in the months of March Darright The manhaet schemes in a material processing in 17 March () tainesses, and dering to begin I of the rands, and 12 benches not reast. The

See and a second coulding address for the base from the other Counterface Company, 1.47 and Apr. 2010 Conference Of COUNTER Count

۲

VALUE AND ADDRESS OF	and the second se	Contraction of the local division of the loc		
			*	2
of the period of the same	Second and the second	ars	OURCES	
ating hist subandy.	gasurer pre-	The full-basis during French, Source all Chevanian Lipsong calenders for pacing anglescolarist, challing, French	\$152-ber	
Interest & Name And	201 Indiana and 201 Indiana.	TWP Johns In Furningins, T.M. 2740		
	Set, Sol. 750) and Sec. 258 april	Landerik bakatria al 194 (aligkey weit, Yatsam) 1 Mil V. Basta Ant. 1 yestagina, 4 M. Khali	NU ZDAGNY	
Oliving & Spin Familys	Call-Sell Line	The ART of Section Court (scholars) Set of Tecning The object TM (Film)	91-01-10	
a beries	AST-226-Will unit-analogy biot.com	Chain Chande: The Lot of Party Hitself & citebing Transmission, 9 M	B125(5)	
	Internet and the second	Process Ready & Dates States Recording Chards (Society & Insurable Read)	0125-652	
	101-bas data F 1 1 generativity	The Oxphice Tear To company, 9, 94		
israe	An ant and area separate framework	The Public senses and children dark months. Landshipman, 19,194	101.2(1.1CH	
	84 (0.10)	Tan takan Linne (setat) publis akanoni Lantingka, N.M.	8) (21429	
	We 125-0127	Sac Sate Calledia, Okabiliti Demogrami, Andreas, anagading, ding (n. 2002) - Ferningdon, N.M.	NG 425-254	
	149-236-6238	Anni Apat Vintend Wage - Parminghan (4) Mil. Lowel, and have - dauber, fand, annualdung, beginne Healer,	96.08.0.8	
	101.071746	whole equilies, comparisoner		
	NAL TO-STAT	Consultation from And Ford & Streams Consultation, NUME & Science	28 WARDOW 10140-014	
		BORD Food Red (Robbe Red Income	30.04.018	
AM COD	#3(.105-1118	Altern Manufact Design articipation adultar - same Ta-	81.34.318	

Lower Valley Water Users 4286 US 64, Kirtland, NM

NOTICE

33

an Analisis Constanting Constants (COUCS 111 Con-temporary Representation and Representation) and a the COUCS of Contemporary Statistics processes that pro-ter the Courts Constant is December 1. Inco. 4 Quarty Areas The pro-

(and the formula of the second of the second sec

The formation of the state of t

ter,	and the second s	NAME OF TAXABLE PARTY.
PR	And the second s	and the second se
	and the second second	
		No.
Contract of the second s		And and a second s
and the second se	17.85	
Statement Street, Stre	The set	in the second se
		The -
	Press.	and the second se
tions and a sub-	71 m	Contract of Contra
The state is not as a second state of the st		
	1.	and the second sec
		A COLORADO
	Trans.	1000
In succession of the local division of the l	and the second sec	
		1000
Contraction of the local division of the loc		P company
Concession of the local data in the local data i		and the second sec
the second		
States of the local division of the local di		
The same state of the same	the state of the state	T T T T T T T T T T T T T T T T T T T

In the local distance in the second s

NOTICE OF AIR QUALITY PERMIT APPLICATION

Vernon Hamilton Construction Company (VHCC), LLC announces its application submittal to the New Mexico Environment Department for a new minor source NSR permit application for an Air Quality Permit. The permit is for the VHCC's Kirtland Pit which processes aggregate material. The expected date of application submittal to the Air Quality Bureau is December 2, 2024.

The address for the facility known as, VHCC's Kirtland Pit, is 32 Rd 6210, Kirtland, NM. The exact location of the VHCC's Kirtland Pit is at Latitude (decimal degrees): 36.743919 and Longitude (decimal degrees): -108.333753. The approximate location of this facility is 0.7 miles east-southeast of Kirtland in San Juan County.

The function of the facility is to crush and screen aggregate material from the on-site quarry into usable construction sand and gravel.

The 350 ton per hour and 350,000 ton per year aggregate quarry, and crushing and screening operations will include an aggregate quarry, feeder, primary jaw crusher, two (2) secondary cone crushers, two (2) 3-deck screens, one (1) scalping screen, one (1) RipRap plant, fifteen (15) transfer conveyors, and seven (7) stacker conveyors. The main crushing and screening plant will be powered by commercial line power unless relocated to a different location where is will be powered by a 725 kW, 1081 horsepower (hp) engine/generator. The RipRap plant will be powered by a 140 kW, 188 hp engine. Aggregate from the quarry will first be processed through the RipRap plant and then the material will be stored in the Raw Material Pile. From the Raw Material Pile the material will be fed into the main plant feeder. Processed aggregate will be stored in Finish Storage Piles until transported from the aggregate crushing plant to off-site sales.

The estimated maximum quantities of any regulated air contaminant will be as follows in pound per hour (pph) and maximum tons per year (tpy) and may change slightly during the course of the Department's review:

Pollutant:	Maximum Pounds per hour	Maximum Tons per year
PM 10	15.4 pph	7.2 tpy
PM 2.5	2.9 pph	2.7 tpy
Sulfur Dioxide (SO ₂)	0.013 pph	0.029 tpy
Nitrogen Oxides (NO _x)	15.9 pph	34.6 tpy
Carbon Monoxide (CO)	19.3 pph	42.0 tpy
Volatile Organic Compounds (VOC)	2.1 pph	4.7 tpy
Total sum of all Hazardous Air Pollutants (HAPs)	0.052 pph	0.11 tpy
Toxic Air Pollutant (TAP)	0.0003 pph	0.0008 tpy
Green House Gas Emissions as Total CO2e	n/a	1676 tpy

The maximum operating schedule for material processing is 9 hours per day (8 am to 5 pm) for the months of November through February, and daylight hours (14 hours per day maximum) for the months of March through October, 6 days per week, and 52 weeks per year. The standard schedule for material processing is 10 hours per day.

The owner and/or operator mailing address for the Facility is:

Vernon Hamilton Construction Company, LLC P.O. Box 1110 Gallup, NM 87305

If you have any comments about the construction or operation of this facility, and you want your comments to be made as part of the permit review process, you must submit your comments in writing to this address: Permit Programs Manager; New Mexico Environment Department; Air Quality Bureau; 525 Camino de los Marquez,

Suite 1; Santa Fe, New Mexico; 87505-1816. Other comments and questions may be submitted verbally. (505) 476-4300; 1 800 224-7009.

With your comments, please refer to the company name and facility name, or send a copy of this notice along with your comments. This information is necessary since the Department may have not yet received the permit application. Please include a legible return mailing address. Once the Department has completed its preliminary review of the application and its air quality impacts, the Department's notice will be published in the legal section of a newspaper circulated near the facility location.

Attención

Este es un aviso de la oficina de Calidad del Aire del Departamento del Medio Ambiente de Nuevo México, acerca de las emisiones producidas por un establecimiento en esta área. Si usted desea información en español, por favor comuníquese con esa oficina al teléfono 505-629-3395.

Notice of Non-Discrimination

NMED does not discriminate on the basis of race, color, national origin, disability, age or sex in the administration of its programs or activities, as required by applicable laws and regulations. NMED is responsible for coordination of compliance efforts and receipt of inquiries concerning non-discrimination requirements implemented by 40 C.F.R. Part 7, including Title VI of the Civil Rights Act of 1964, as amended; Section 504 of the Rehabilitation Act of 1973; the Age Discrimination Act of 1975, Title IX of the Education Amendments of 1972, and Section 13 of the Federal Water Pollution Control Act Amendments of 1972. If you have any questions about this notice or any of NMED's non-discrimination programs, policies or procedures, or if you believe that you have been discriminated against with respect to a NMED program or activity, you may contact: Non-Discrimination Coordinator, NMED, 1190 St. Francis Dr., Suite N4050, P.O. Box 5469, Santa Fe, NM 87502, (505) 827-2855, nd.coordinator@env.nm.gov. You may also visit our website at https://www.env.nm.gov/non-employee-discrimination-complaint-page/ to learn how and where to file a complaint of discrimination.

to generate sales by providing

creative solutions to clients that

BCI is an equal opportunity

Apply employer. Apply at https://ballantinecommunicationsi

meet their business needs.

nc.com/

Apply online: https://careers.

southernute.com/pfund

Human Resources

(970) 563-4750

TERO - Native American

Preference

THE TRI-CITY RECORD WEDNESDAY, NOVEMBER 27, 2024 21A

Public Legals

Public Legals

Drivate Lod

*	Hale Wanted /	Hale Wested /	*	Private Legals	Private Legals
ANNOUNCEMENTS	Help Wanted/ Full Time	Help Wanted/ Full Time	LEGALS	STATE OF NEW MEXICO to Josh Rowland, Respondent(s).	thich this notice is intend ave an objection, you
	In compliance with the Navajo	Executive Director of the	Private Legals	Greetings:	equired to respond with
Notices	Preference in Employment Act, Dickens Quality Demolition, LLC	New Mexico Academy of Family Physicians Chapter. Full-time.		You are hereby notified that April Rowland, Petitioner(s),	wenty (20) days from the d f this publication. Please r
Durango's Cowboy Church	(a licensed contractor within the state of Arizona) would like to	Serve as chief administrative	LEGAL NOTICE	filed a Petition to Appoint	our objection lef
Christmas Bazaar	announce the start of a	officer of the NMAFP, responsible to the BOD. Experience in	FORT DEFIANCE - APACHE COUNTY ARIZONA	divorce/custody for XR 2012 against you in the above	eferencing the well det bove, to the New Mexico
Saturday, December 7	demolition project at the Many Farms Community School, in	organization leadership,		entitled court and cause.	ionservation Division's Sa
9am - 3pm 1867 Hwy 172	Many Farms, Arizona	BA/Related job experience.	Fort Defiance Indian Hospital Board, Inc. is soliciting for	Unless you enter your appearance and written	e office.
Variety of vendors!	Qualified applicants are	Competitive, based on prior experience, More info/to apply;	sealed proposal bids from	response in this cause on or	ublished in Tri-City Record
	encouraged to apply via the following methods,	familydoctomm.org/join	qualified Contractors to provide Construction services, for 12	before thirty (30) days after the last date of publication, a	lovember 27, 2024 5317
Lighted billboard at	Contraction of the second second	Na' Nizhoozhi Center Inc. "A	new Staff Housing units near	judgment by default will be	NOTICE OF AIR QUALITY
CO/NM state line	1. In person at 1111 N. 19th Ave Phoenix, AZ 85009	Bridge To Recovery' is hiring an Executive Director. A full	the Nahata'Dzill Health Center in Sanders, Arizona. Inquiries	entered against you	PERMIT APPLICATION
available for lease.	2. Email – nsuffon@dickensquality.com	job description may be requested	for proposal information and		emon Hamilton Construct
Call 970-749-2297	Mandatory qualifications include	or submit letter of interest, resume and writing sample to	questions during the bid period should be directed to:	or Petitioner's attorney: April Rowland, 3 Rd 3192, Aztec, NM	company (VHCC), L
	the following:	nci gallup@gmail.com		87410	ubmittal to the New Mer
LIVESTOCK	1. 10 Hour OSHA Card	and the second	Ms. Chris Begay, Lead Buyer (928) 729-3795	Published in Tri-City Record	invironment Department fo
& PETS	2. 2 Years experience as a demo tech	Help Wanted/	Email: Chris Begay@fdihb.org	November 13, 20, 27, 2024	ew minor source NSR per pplication for an Air Qua
12	3. DPS Fingerprint Card 4. Able to work night shift	Part Time	The proposal packet is	25251	ermit. The permit is for 'HCC's Kirtland Pit wf
Pets	en en en en en en Franke en	TDI CITV	available during regular	Notice by Hilcorp Energy Company for Downhole	rocesses aggregate mate
	The project is scheduled to start on Monday - December 2nd ,	IKICIII	business hours (MST) beginning November 10, 2024	Commingling, San Juan	he expected date
Margaret and	2024. Interviews will be scheduled	RECORD	through November 27, 2024 at	County, New Mexico. Pursuant to Paragraph (2) of Subsection	pplication submittal to the juality Bureau is December
	when evidence of qualifications	Independent Carrier,	Albuquerque Reprographics	C of 19.15.12.11 NMAC,	024.
	are received. Dickens Quality Demolition, LLC	part-time, needed to early	ARI Graphix & Signs	Hilcorp Energy Company, as Operator, has filed form C-107A	he address for the fac
A state a state	gives preference to eligible and	morning newspaper delivery. Great for Stay-At-Home moms,	4716 McLeod NE Albuquerque, New Mexico	with the New Mexico Energy,	nown as, VHCC's Kirtland
	accordance with the Navajo	Students, Retirees, morning	87109	Minerals and Natural Resources Department – Oil	; 32 Rd 6210, Kirtland, M he exact location of
AKC corgi puppies	Preference in Employment Act	people, or anyone interested in making extra money. Delivery on	Phone: 1 (505) 884-0862 www.arigraphix.com	Conservation Division	'HCC's Kirtland Pit is atitude (decimal degree
for sale Contect (505) 220, 4590	SALIT	Monday, Wednesday, and Friday. Vehicle and valid driver's license	www.aigrapiix.com	(NMOCD) seeking administrative approval to	atitude (decimal degree 6.743919 and Longit
Contact (505) 330-4589	A	required. If interested apply at	The cost of drawing sets will be as followed:	downhole commingle new	Jecimal degree
+	A STATE OF	http://ballantinecommunications inc.com/careers or email	as init/web.	production from the Basin- Fruitland Coal Pool (71629) and	108.333753. The approxim scation of this facility is
×	FISTE	scorwingtiscmedia.com	Hard Copy – \$389.80 (Plus Tax, Shipping if applicable)	and analysis there are and	niles east-southeast of Kirth
EMPLOYMENT		CONTRACT CONTRACTOR AND	Electronic Copy - \$194.90	(72359) with existing production from the Blanco Mesaverde	1 San Juan County. he function of the facility is
		THE JOURNAL	(Plus Tax)	(72319) in the Moore LS 007A	rush and screen aggreg naterial from the on-site gua
Hote Weeks d.(Part-Time Sports Reporter: The Journal covering Cortez and	The proposal package shall be	well (API No. 30-045-22826) located in Unit F, Section 25,	to usable construction si
Help Wanted/ Full Time	GRACID CAL	Montezuma County is looking for	submitted in a sealed envelope and to clearly read "RFP# 25-	Township 32 North, Range 12	nd gravel. The 350 ton per hour a
r un time	SOUTHERN UTE INDIAN TRIBE	an experienced reporter to cover area sports stories. This position	001 Sanders: Nahata'Dzil	West, NMPM, San Juan County, New Mexico.	50,000 ton per year aggreg
TEIGHT 14	JOB OPENINGS	requires some nights and	Health Center Housing Project". Acceptance of sealed proposals	Commingling will not reduce the	uarry, and crushing a
DSOLUTIONS	Auto-Mechanic I	weekends. Bachelor's degree in Journalism, Communications, or	bids for RFP 25-001 shall end	value of production. Allocation method to be determined upon	creening operations iclude an aggregate qua
814 Solutions LLC. is advertising	Bus Driver (PT) Community Health	related fields preferred. 2 years of reporting experience is also		completion of this project. This	seder, primary jaw crusher, 2) secondary cone crush
for laborers. This is a Navajo Preference Advertising. Previous	Representative Controller	preferred. BCI is an equal	packets will not be accepted	notice is intended for certain unlocatable royalty interest	vo (2) 3 deck screens, one
experience is required in Rip Rap	Custodial Team Leader	opportunity employer. Apply at https://ballantine	and all late submissions of proposals will be disqualified.	owners in the aforementioned	calping screen, one tipRap plant, fifteen (
and Fencing and for the position to be applied for Applicants shall	Custodian Dentist (PT w/Benefits)	communications/rc.com/	· · ·	well for which certified mail delivery is not possible. Should	ansfer conveyors, and se
request an application by calling 814 Solutions at 505 872-0846	Director of Strategic Planning Dispatcher	+	Fort Deflance Indian Hospital Board Inc. reserves the right to	you (the interest owner for	(7) stacker conveyors.
M-F 7am-3pm Drug-Free	Dispatcher Trainee	TANCOOTATION	reject any and all proposals		
Workplace, EEO, NPEA	Early Childhood Teacher Economic Development	TRANSPORTATION	submitted, to waive any informalities and irregulatories.	\sim -	
TDI CITV	Project Coordinator		The advertisement for		
TR:=CITY	Elementary Teacher Gaming Investigator I	RV's/Campers	proposals does not commit Fort Defiance Indian Hospital Board		RO
RECORD	Grants Financial Analyst Group Exercise Instructor	& Travel Trailers	Inc. to award a contract nor to		
Ballantine Communications Inc.	Heavy Equipment Operator	2015 Coachman 2150	pay any costs for the preparation of the proposals.		
is seeking a Multimedia Sales	HVAC Technician Lifeguard (FT)	Class C Motorhome Mercedes 3500 Chassis, 43806	A farmer and the second		
Representative to join our team! As a Multi-Media Sales	Patrol Officer (I & II) Patrol Officer Trainee	miles. Drives Great, All 7 New	Published in Tri-City Record November 11, 13, 15, 18, 20,	CON	
Representative, you will present advertising solutions to clients,	Project Aware Program	Tires, comes with extras such as bedding, dishes, pots and pans,	22, 25, 27, 2024		
consult with them about their	Manager Property Manager	cast iron pans and dutch oven. Leveling blocks, water hoses,	25087 STATE OF NEW MEXICO		
business objectives, craft high commercial messages, and	Property Manager Public Health Nurse				
choose the appropriate marketing channels to connect to the	Scorekeeper Security Officer	hoses and fittings in a storage bin. Tool box with basic tools.	ELEVENTH JUDICIAL		
correct demographic group. The	Umpire/Referee Water Quality & Remediation	A/C. Heat. Rear view camera in	DISTRICT No. D-1116-DM-2024-00162		
likely candidate will be energetic, have a solid understanding of	Division Head	dash when in reverse. Tow hitch plus a raised bracket for bicycle			ASIN
local markets, and proven ability		rack Tire monitoring system	April Rowland, Petitioner(s)		

Rowland, Respondent(s).

IN THE MATTER OF THE

Divorce/Custody of XR, (a)

Child(ren), and concerning Josh

NOTICE OF PENDENCY OF

ACTION

Separate review camera installed

will need monitor. Add food ready

to go. On consignment at Ray

Parkway Farmington NM 505-320-3000 Asking 45,000.00 price

negotiable.

Vickers Main St and Browning

	Private Legals	Private Legals	Private Lega
	main crushing and screenin plant will be powered b	10. Box 1110 Jallup, NM 87305	Title IX of the Amendments of 1
	commercial line power unles relocated to a different locatio	' you have any comment	Section 13 of the Fed Pollution Control
	where is will be powered by 725 kW, 1081 horsepower (hp	peration of this facility, an	Amendments of 197 have any questions
gals	engine/generator. The RipRa plant will be powered by a 14	ou want your comments to b hade as part of the perm	notice or any of NM discrimination
is intended) in, you are	kW, 188 hp engine. Aggregat from the quarry will first b	eview process, you mus ubmit your comments i	policies or procedure believe that you h
pond within	processed through the RipRa	riting to this address. Perm	discriminated again
rom the date Please mail	plant and then the material w be stored in the Raw Materia	Programs Manager; Nev Nexico Environmer	respect to a NMED p activity, you may con
n letter,	Pile. From the Raw Materia	kepartment; Air Quality Bureau	Discrimination Ca
well details v Mexico Oil	Pile the material will be fed int the main plant feede	25 Carnino de los Marquez juite 1; Santa Fe, New Mexico	NMED, 1190 St. Fr Suite N4050, P.O. H
sion's Santa	Processed aggregate will b stored in Finish Storage Pilc	7505-1816. Other comment nd questions may b	Santa Fe, NM 875 827-2855,
	until transported from th	ubmitted verbally. (505) 476	nd coordinator@env r
y Record	aggregate crushing plant to of site sales.	300; 1 800 224-7009.	You may also visit o at https://www.env.nm
	The estimated maximur	Vith your comments, pleas	non-employee-discrin
ICATION	quantities of any regulated a contaminant will be as follow	eler to the company name an acility name, or send a copy c	complaint-page/ to 1 and where to file a co
	in pound per hour (pph) an	his notice along with you omments. This information i	discrimination.
Construction CC), LLC	maximum tons per year (tp) and may change slightly durin	ecessary since th	Published in Tri-City P
application	the course of the Department' review:	repartment may have not ye acceived the permit application	November 27, 2024
New Mexico artment for a		Nease include a legible retur	25327 Notice by Hilcorp
NSR permit Air Quality	Pollutant: Maximum	hailing address. Once the repartment has completed it	Company for
it is for the	Pounds per hour	reliminary review of th	County, New
Pit which ale material.	Maximum Tons per year	pplication and its air qualit npacts, the Department'	Pursuant to Paragra Subsection C of 1
date of	PM 10 15.4 pph 7.2 tpy	ofice will be published in the sgal section of a newspape	NMAC, Hilcorp
tal to the Air December 2.	PM 2.5 2.9 pph 2.7 tpy Sulfur Dioxide (SO2) 0.013 pp	inculated near the facilit	Company, as Oper filed form C-107A wit
	0.029 tpy Nitrogen Oxides (NOx) 15	scation.	Mexico Energy, Min
the facility	pph 34.6 tpy	uttención	 Natural Resources D OII Conservation
Kirtland Pit, Kirtland, NM.	Carbon Monoxide (CO) 19. pph 42.0 tpy	iste es un aviso de la oficin le Calidad del Aire de	(NMOCD) administrative app
ion of the	Volatile Organic Compound (VOC) 2.1 pph 4.7 lpy	Jepartamento del Medi	downhole comming
Pit is at degrees)	Total sum of all Hazardous A	umbiente de Nuevo México icerca de las emisione	production from th Mesaverde (7231
Longitude	Pollutants (HAPs) 0.052 pp 0.11 lpy	roducidas por u stablecimiento en esta área	existing production
degrees): approximate	Toxic Air Pollutant (TAP) 0.000	a usted desea información e	Basin Dakota (7159 Grenier 023 well (Al
acility is 0.7 ist of Kirtland	pph 0.0008 tpy Green House Gas Emission	spañol, por favc omuniquese con esa oficina a	045 23021) located i Section 31, Township
у.	as Total CO2e n/a 1676 tpy	slétono 505-629-3395.	Range 11 West, NN
e facility is to n aggregate	The maximum operatin	lotice of Non-Discrimination	Juan County, New Commingling will not a
n site quarry	schedule for materia processing is 9 hours per da	IMED does not discriminate o he basis of race, color, nations	value of production.
ruction sand	(8 am to 5 pm) for the month	rigin, disability, age or sex t	completion of this pr
r hour and	of November through Februar and daylight hours (14 hour	regrams or activities, a	notice is intended t unlocatable royalty
ar aggregate ushing and	per day maximum) for th	equired by applicable laws an	owners in the afore
ations will	months of March throug October, 6 days per week, an	egulations. NMED i esponsible for coordination c	well for which cert delivery is not possib
gate quarry, crusher, two	52 weeks per year. Th	ompliance efforts and receip	you (the interest of
ne crushers, eens, one (1)	standard schedule for materia processing is 10 hours per day	 Inquiries concerning nor iscrimination requirement 	which this notice is have an objection,
one (1)	The owner and/or operate	including Title VI of the Civ	required to respon
fifteen (15) i, and seven	mailing address for the Facilit	lights Act of 1964, a	twenty (20) days from of this publication. P
veyors. The	Is: Vernon Hamilton Constructio	mended, Section 504 of the tehabilitation Act of 1973; the	your objection
	Company, LLC	ge Discrimination Act of 1971	above, to the New M
	-	1990 (1990)	Conservation Divisio Fe office.
	Have a N	News Tip	2000000000
		uggestion?	Published in Tri-City F November 27, 2024 25353
	Contact our Newsy	oom at 505-592-0182	STATE OF NEW MED
		tyrecordnm.com	COUNTY OF SAN JU 11th JUDICIAL COURT
	INCOMPANY AND		No. D-1116-DM-2024
		1º-	JOSSELYN Y DUARTE DUARTE Petitioner,
		8	Y.

BASIN

SYSTEMS

Private Legals	Private Legals	Private Legals	Private Legal
crushing and screenin	20. Box 1110	Title IX of the Education	NOTICE OF PENDEN
will be powered b ercial line power unles	Jallup, NM 87305	Amendments of 1972, and Section 13 of the Federal Water	ACTION
ted to a different locatio	' you have any comment	Pollution Control Act	O: Respondent, D
is will be powered by	bout the construction c	Amendments of 1972. If you	OSE DUARTE MENT
W, 1081 horsepower (hp eigenerator. The RipRa	peration of this facility, an ou want your comments to b	have any questions about this notice or any of NMED's non-	terr and branches and
will be powered by a 14	nade as part of the perm	discrimination programs,	'ou are hereby notif OSSELYN YO
88 hp engine. Aggregat	eview process, you mus	policies or procedures, or if you	MARTE DUARTE, P
the quarry will first b ssed through the RipRa	ubmit your comments i riting to this address. Perm	believe that you have been discriminated against with	as filed a Petition in th
and then the material wi	Programs Manager; Nev	respect to a NMED program or	f the Kinship Guar (Y.D.D, requesting
ored in the Raw Materia	Nexico Environmer Vepartment; Air Quality Bureau	activity, you may contact: Non- Descrimination Coordinator,	ppointed guardian of t
From the Raw Materia in material will be fed inf	25 Camino de los Marques	Discrimination Coordinator, NMED, 1190 St. Francis Dr.,	hild, K.Y.D.D. You ha 30) days to enter a r
main plant feede	suite 1; Santa Fe, New Mexico	Suite N4050, P.O. Box 5469,	/th the Eleventh
ssed aggregate with b I in Finish Storage Pile	7505-1816. Other comment ind questions may b	Santa Fe, NM 87502, (505) 827-2855,	Histrict Court at
transported from th	ubmitted verbally. (505) 476	nd coordinator@env nm gov	DDRESS] and send t Petitioner's
gale crushing plant to of	300; 1 800 224-7009.	You may also visit our websile	legarding this pelition
ales. estimated maximur	Vilh your comments, pleas	at https://www.env.nm.gov/ non-employee-discrimination-	o not enter a respo
ities of any regulated a	eler to the company name an	complaint-page/ to learn how	end the same 'etitioner's attorney, th
minant will be as follow	acility name, or send a copy t	and where to file a complaint of	hary enter a default jud
und per hour (pph) an sum tons per year (tp)	nis notice along with you omments. This information i	discrimination.	our absence.
hay change slightly durin	ecessary since th	Published in Tri-City Record	dtomey for Petitioner is
ourse of the Department	repartment may have not ye acceived the permit application	November 27, 2024	Strange Stepler, Po
r.	lease include a legible retur	25327 Notice by Hilcorp Energy	lox 656633, Albuquero
ant	halling address. Once th	Company for Downhole	4exico 87193-5633, 335.
num 1s per hour	Repartment has completed it reliminary review of th	Commingling, San Juan	
num	pplication and its air qualit	County, New Mexico. Pursuant to Paragraph (2) of	Ionorable Judge Bran
per year	npacts, the Department'	Subsection C of 19.15.12.11	laticy, District Judge Seventh Judicial Distri
0 15.4 pph 7.2 tpy 5 2.9 pph 2.7 tpy	ofice will be published in the egal section of a newspape	NMAC, Hilcorp Energy	I the State of New Mer
Dioxide (SO2) 0.013 pp	irculated near the facilit	Company, as Operator, has filed form C-107A with the New	he seal of the District ian Juan County, this 2
тру	scation.	Mexico Energy, Minerals and	(November, 2024.
en Oxides (NOx) 15. 4.6 lpy	uttención	Natural Resources Department	
n Monoxide (CO) 19.	iste es un aviso de la oficin	 OI Conservation Division (NMOCD) seeking 	'ublished in Tri-City Re
2.0 tpy	le Calidad del Aire de	administrative approval to	lovember 27, Decemb
e Organic Compound) 2.1 pph 4.7 tpy	tepartamento del Medi unbiente de Nuevo México	downhole commingle new production from the Blanco	1024
sum of all Hazardous A	cerca de las emisione	Mesaverde (72319) with	15356 Jolice in charp that A
ants (HAPs) 0.052 pp	roducidas por u	existing production from the	Iolice is given that A ilorage located at 58
py Air Pollutant (TAP) 0.000	stablecimiento en esta área il usted desea información e	Basin Dakota (71599) in the Grenier 023 well (API No. 30-	4 intends to sell or do
0008 tpy	spañol, por fave	045-23021) located in Unit M,	ersonal property d elow to enforce a lien
al CO2e n/a 1676 tpy	omuniquese con esa oficina a siétono 505-529-3395	Section 31, Township 31 North,	n the property as
a conclusion of py	30010 3050 3000	Range 11 West, NMPM, San Juan County, New Mexico.	nder the Self-Service
maximum operatin	lotice of Non-Discrimination	Commingling will not reduce the	ien Acl of New Mexis fler 12-7-24 Jenifer
ule for materia ssing is 9 hours per da	IMED does not discriminate o he basis of race, color, nationa	value of production. Allocation	load 5389 #19, Mish
to 5 pm) for the month	rigin, disability, age or sex i	method to be determined upon completion of this project. This	boad 3776, Aide M
vember through Februar	ve administration of it	notice is intended for certain	toad 5777, all of Far IM 87401
taylight hours (14 hour day maximum) for th	rograms or activities, a equired by applicable laws an	unlocatable royalty interest owners in the aforementioned	
is of March throug	egulations. NMED i	well for which certified mail	'ublished in Tri-City Re
er, 6 days per week, an weeks per year. Th	esponsible for coordination c ompliance efforts and receip	delivery is not possible. Should	lov. 27 and Dec. 4, 203
vecks per year. Th and schedule for materia	f inquiries concerning nor	you (the interest owner for which this notice is intended)	Public Legals
ssing is 10 hours per day	Iscrimination requirement	have an objection, you are	5331
owner and/or operate	including Title VI of the Civ	required to respond within	The Aztec Board of Ed
g address for the Facilit	lights Act of 1964, a	twenty (20) days from the date of this publication. Please mail	changed from Thurs
n Hamilton Constructio	mended, Section 504 of th	your objection letter,	December 12, 202
any, LLC	tehabilitation Act of 1973; th ope Discrimination Act of 1971	referencing the well details	Wednesday, December 11, 20
		above, to the New Mexico Oil Conservation Division's Santa	Special Meeting @ 41
	1 (10)	Fe office.	Working Meeting @ 5:
Have a N	News Tip	Published in Tri-City Record	Regular Board Mex @ 6.00 p.m.
	And the second	November 27, 2024	This Board Meeting will
or Story S	uggestion?	25353	at Central Office
		STATE OF NEW MEXICO	ublished in Tri-City Re
Contact our Newsro	oom at 505-592-0182	COUNTY OF SAN JUAN	kovember 27, 2024
contact@tricit	tyrecordnm.com	11th JUDICIAL DISTRICT	5332
		COURT	Aztec Board of Educ
CONTRACTOR OF CONTRACTOR		No. D-1116-DM-2024-00462	SPECIAL MEETIN
以出了39.00	A CONTRACT		December 11, 20 4:00 PM
	1	JOSSELYN YORIBETH DUARTE DUARTE	Board Room
	2 million	Petitioner,	1118 W Azlec BL
	3		Aztec, New Mexico 8
	11	v.	. Call To Order
	2	MARIA FELIX DUARTE	Verification of Quo
	0	SEQUEIRA	Approach of Approxitat

DONALD JOSE DUARTE

MENDOZA

sion As Permitted Under access and download NCY OF section 10-15-1(H)(2) for from the Internet at the ntenm Superintendent's following address: Evaluation www.biddingo.com/sjc DONALC 5. Adjournment TOZA: BID DUE DATE AND TIME: * Indicates action item. The due date and time is tified that December 9, 2024 at 2:00 p.m ORIBETH The Board invites the MT. Bids must be uploaded to Petitioner viewpoints of citizens Biddingo, the College's online the Matte throughout the District and Purchasing System. ardian o considers the responsible www.biddingo.com/sjc, as soon to be presentation of these as possible but no later than the the Mino viewpoints vital to the efficient due date and time. ave thirty operation of the District. response Bids uploaded after the due Judicia Notice - Individuals with date and time will not be ICOUR1 disabilities who need any form accepted. the same of auxiliary aid to attend or attorney participate in this meeting Published in Tri-City Record in, if you please contact the November 27, 2024 onse and Superintendent's Secretary at In the 334-9474 at least 48 hours prior the Cour to the meeting. Upon request, dgment in public documents will be 25369 provided in the accessible form PLANNING & ZONING necessary to the individual COMMISSION is Sharor requesting the particular aid. NOTICE OF PUBLIC ost Office This agenda is to be posted a HEARING rque, Nev each school and at the Central 505-537 Office of the Azlec Municipal Notice is hereby given that the School District. If duplicate following agenda items will be copies are requested, a minimal Indford J presented to the Planning & fee may be charged. Zoning Commission of the City e of the of Farmington, New Mexico. trict Cour This meeting is for discussion exico, and of items on the agenda only. Petrtion ZC 24-91 - A request t Court o Please refer to the pamphiet for a Zone Change from 22nd day titled Welcome to a Board of General Commercial to Education Meeting in the Aztec Industrial. Localed within lot 2 Municipal School District for of the Macnat Subdivision. more information regarding ecord public input at Board Meetings. Petition ZC 24-92 - A request ter 4, 11 for a Zone Change from Single Published in Tri-City Record Family 7 to Multi-Family November 27, 2024 Medium Density. Located at Any Size 25340 613 N. Wall Ave. 5827 HW CITY OF FARMINGTON, ionate the NEW MEXICO Petrtion PP 24-95 - A request describer NOTICE TO BIDDERS from Joe & Stan, LLC, imposer Three Phase Padmount represented by Robert Echols. provider Transformers, Bid #25-160529 Cheney-Wallers-Echols. Inc. for e Storage Opening Date: December 17, a Preliminary Plan approval for aco on a 2024 @ 2:00 P.M. an 18-lot subdivision located in Tso, 25 the City of Farmington's Tier II Smith, Bid documents may be Planning & Platting Jurisdiction. Aolina, retrieved by accessing the Located at lot R6002199 armington Purchasing page of the City of Directly west of Liffle Creek websile al Subdivision Phase VIII Farmington www.farmingtonnm.gov or by lecord visiting the Central Purchasing Petition ZC 24-100 - A request 024 Office at 805 Municipal Drive, for a Zone Change from Single Farmington, New Mexico. Family 7 In General Commercial. Located at 6401 The above document has been and 6405 E. Main St. ducation issued by the City of c been Farmington for a competitive Petition ZC 24-101 - A request rsday. for a Zone Change from solicitation. 24, 10 General Commercial to Mixed Publication Date: November 27, Use. Located at the SE corner 024. 2024 of Locke SL and Animas SL 00 p.m. 25346 (Parcel No. R0025384) 5:00 p.m. -NOTICEeeting Pursuant to the provisions of Section 3-21-6, New Mexico Invitation to Bid: 25-02600 ill be held Statutes Annotated, 1978 TITLE: Cosmetology Student Compilation, notice is hereby given that items listed above ecord will be considered at the COMMODITY CODES: 095-00 regularly scheduled public PURPOSE: San Juan College hearing of the Planning & cation seeks to establish a pricing Zoning Commission of the City agreement for student kits for of Farmington on Thursday the College's Cosmetology December 12, 2024 at 3:00 024 p.m. In the City Council Program Chambers, City Hall, 800 GENERAL INFORMATION: All Municipal Drive, Farmington, VD questions about the contents of New Mexico. All persons of 87410 the ITB document shall be interest are invited to attend directed to: Biddingo, San Juan and shall have an opportunity to College's online procurement be heard. orum/Rol system: www.biddingo.com/sjc Tami Spencer ISSUANCE: The ITB will be Administrative Assistant Approval of Agenda* issued on November 27, 2024. 505-599-1301 Executive Session - The loard of Education Wil Those interested in obtaining a Janwese in a Clased Executive, copy of the documents may Published in Tri-City Record November 27, 2024

AFFIDAVIT OF PUBLICATION

STATE OF NEW MEXICO

County of San Juan

the undersigned, authorized

Representative of the Tri-City Record, on oath states that this newspaper is duly qualified to publish legal notices or advertisements within the meaning of Section 3, Chapter 167, Session Law of 1937, that payment therefore has been made of assessed as court cost; and that the notice, copy of which is hereto attached, was published in said paper in the regular daily edition, for _____ time(s) on the following date(s):

<u>11/27/2024</u>

Sworn and subscribed before me, a notary public in and for the county of La Plata and the State of Colorado, -4/1/27/2024.

Notary Public

PRICE:

Statement to come at the end of the month.

Olo

ACCOUNT NUMBER: 111170

CASSANDRA RAMIREZ NOTARY PUBLIC STATE OF COLORADO NOTARY ID 20234009147 MY COMMISSION EXPIRES MARCH 09, 2027

COPY OF ADVERTISEMENT

25317 NOTICE OF AIR QUALITY PERMIT APPLICATION

Vernon Hamilton Construction LLC Company (VHCC). announces its application submittal to the New Mexico Environment Department for a new minor source NSR permit application for an Air Quality Permit. The permit is for the VHCC's Kirtland Pit which processes aggregate material. expected The date of application submittal to the Air Quality Bureau is December 2, 2024

The address for the facility known as, VHCC's Kirtland Pit, is 32 Rd 6210, Kirtland, NM. The exact location of the VHCC's Kirtland Pit is at (decimal Latitude degrees): 36.743919 and Longitude degrees): (decimal -108.333753. The approximate location of this facility is 0.7 miles east-southeast of Kirtland in San Juan County.

The function of the facility is to crush and screen aggregate material from the on-site quarry into usable construction sand and gravel.

The 350 ton per hour and

350,000 ton per year aggregate quarry, and crushing and screening operations will include an aggregate quarry, feeder, primary jaw crusher, two (2) secondary cone crushers, two (2) 3-deck screens, one (1) scalping screen. one (1)RipRap plant, fifteen (15)transfer conveyors, and seven (7) stacker conveyors. The main crushing and screening plant will be powered by commercial line power unless relocated to a different location where is will be powered by a 725 kW, 1081 horsepower (hp) engine/generator. The RipRap plant will be powered by a 140 kW, 188 hp engine. Aggregate from the quarry will first be processed through the RipRap plant and then the material will be stored in the Raw Material Pile, From the Raw Material Pile the material will be fed into plant the main feeder. Processed aggregate will be stored in Finish Storage Piles until transported from the aggregate crushing plant to offsite sales. SM 900ACSOS GLYBAT

The estimated maximum quantities of any regulated air contaminant will be as follows in pound per hour (pph) and maximum tons per year (tpy) and may change slightly during the course of the Department's review:

Pollutant: Maximum Pounds per hour Maximum

Page 2 of 6

Tons per year PM 10 15.4 pph 7.2 tpy PM 2.5 2.9 pph 2.7 tpy Sulfur Dioxide (SO2) 0.013 pph 0.029 tpy Nitrogen Oxides (NOx) 15.9 pph 34.6 tpy Carbon Monoxide (CO) 19.3 pph 42.0 tpv Volatile Organic Compounds (VOC) 2.1 pph 4.7 tpy Total sum of all Hazardous Air Pollutants (HAPs) 0.052 pph 0.11 tpy Toxic Air Pollutant (TAP) 0.0003 pph 0.0008 tpy Green House Gas Emissions as Total CO2e n/a 1676 tpy

The maximum operating schedule for material processing is 9 hours per day (8 am to 5 pm) for the months of November through February. and daylight hours (14 hours per day maximum) for the months of March through October, 6 days per week, and weeks per year. 52 The standard schedule for material processing is 10 hours per day.

The owner and/or operator mailing address for the Facility is: Vernon Hamilton Construction Company, LLC P.O. Box 1110 Gallup, NM 87305

If you have any comments about the construction or operation of this facility, and you want your comments to be made as part of the permit

In the Advention of the adventional of the second of the second

The owner and/or operator mailing address for the Facility is: Vernon Hamilton Construction Company, LLC P.O. Box 1110 Callur NM 87305

If you have any comments about the construction or operation of this techty and you want your comments to be made as part of the permit

process, you review must submit your comments in writing to this address: Permit Programs Manager; New Mexico Environment Department; Air Quality Bureau; 525 Camino de los Marquez, Suite 1: Santa Fe, New Mexico: 87505-1816. Other comments and questions may be submitted verbally. (505) 476-4300; 1 800 224-7009.

With your comments, please refer to the company name and facility name, or send a copy of this notice along with your comments. This information is since necessarv the Department may have not yet received the permit application. Please include a legible return mailing address. Once the Department has completed its preliminary review of the application and its air quality Department's impacts. the notice will be published in the legal section of a newspaper circulated near facility the location.

Attención

Este es un aviso de la oficina Calidad del Aire del de Departamento del Medio Ambiente de Nuevo México, de acerca las emisiones producidas por un establecimiento en esta área. Si usted desea información en español, favor por comuníquese con esa oficina al teléfono 505-629-3395.

Notice of Non-Discrimination NMED does not discriminate on the basis of race, color, national origin, disability, age or sex in the administration of its programs or activities as required by applicable laws and regulations. NMED is responsible for coordination of compliance efforts and receipt of inquiries concerning nondiscrimination requirements implemented by 40 C.F.R. Part 7, including Title VI of the Civil Rights Act of 1964. as amended: Section 504 of the Rehabilitation Act of 1973; the Age Discrimination Act of 1975. Title IX of the Education Amendments of 1972. and Section 13 of the Federal Water Control Pollution Act Amendments of 1972. If you have any questions about this notice or any of NMED's nondiscrimination programs, policies or procedures, or if you believe that you have been discriminated against with respect to a NMED program or activity, you may contact: Non-Discrimination Coordinator. NMED, 1190 St. Francis Dr., Suite N4050, P.O. Box 5469, Santa Fe, NM 87502, (505) 827-2855. nd.coordinator@env.nm.gov. You may also visit our website at https://www.env.nm.gov/

non-employee-discriminationcomplaint-page/ to learn how and where to file a complaint of discrimination.

nd.coordinator@env.nm.gov. You may also viait our website

at hitsoniverwhere neingow non-employee-discriminationcomplaint-page/ to learn how and where to file a complaint of discrimination. Published in Tri-City Record November 27, 2024 LOCAL

NOTICE OF AIR QUALITY PERMIT APPLICATION

Vernon Hamilton Construction Company (VHCC), LLC announces its application submittal to the New Mexico Environment Department for a new minor source NSR permit application for an Air Quality Permit. The permit is for the VHCC's Kirtland Pit which processes aggregate material. The expected date of application submittal to the Air Quality Bureau is December 2, 2024.

The address for the facility known as, VHCC's Kirtland Pit, is 32 Rd 6210, Kirtland, NM. The exact location of the VHCC's Kirtland Pit is at Latitude (decimal degrees): 36.743919 and Longitude (decimal degrees): -108.333753. The approximate location of this facility is 0.7 miles east-southeast of Kirtland in San Juan County.

The function of the facility is to crush and screen aggregate material from the on-site quarry into usable construction sand and gravel.

The 350 ton per hour and 350,000 ton per year aggregate quarry, and crushing and screening operations will include an aggregate quarry, feeder, primary jaw crusher, two (2) secondary cone crushers, two (2) 3-deck screens, one (1) scalping screen, one (1) RipRap plant, fifteen (15) transfer conveyors, and seven (7) stacker conveyors. The main crushing and screening plant will be powered by commercial line power unless relocated to a different location where is will be powered by a 725 kW, 1081 horsepower (hp) engine/generator. The RipRap plant will be powered by a 140 kW, 188 hp engine. Aggregate from the quarry will first be processed through the RipRap plant and then the material will be stored in the Raw Material Pile. From the Raw Material Pile the material will be fed into the main plant feeder. Processed aggregate will be stored in Finish Storage Piles until transported from the aggregate crushing plant to off-site sales.

The estimated maximum quantities of any regulated air contaminant will be as follows in pound per hour (pph) and maximum tons per year (tpy) and may change slightly during the course of the Department's review:

Pollutant:	Maximum Pounds per hour	Maximum Tons per year
РМ "	15.4 pph	7.2 tpy
PM 23	2.9 pph	2.7 tpy
Sulfur Dioxide (S0,)	0.013 pph	0.029 tpy
Nitrogen Oxides (NO ₂)	15.9 pph	34.6 tpy
Carbon Monoxide (CO)	19.3 pph	42.0 tpy
Volatile Organic Compounds (VOC)	2.1 pph	4.7 tpy
fotal sum of all Hazardous Air Pollutants (HAPs)	0.052 pph	0.11 tpy
Texic Air Pollutant (TAP)	0.0003 pph	0.008 tpy
Green House Gas Emissions as Total CD,+	N/A	1676 tpy

The maximum operating schedule for material processing is 9 hours per day (8 am to 5 pm) for the months of November through February, and daylight hours (14 hours per day maximum) for the months of March through October, 6 days per week, and 52 weeks per year. The standard schedule for material processing is 10 hours per day.

The owner and /or operator mailing address for the Facility is: Vernon Hamilton Construction Company, LLC P.O. Box 1110 Gallup, NM 87305

If you have any comments about the construction or operation of this facility, and you want your comments to be made as part of the permit review process, you must submit your comments in writing to this address: Permit Programs Manager; New Mexico Environment Department; Air Quality Bureau; 525 Camino de los Marquez, Suite t; Santa Fe, New Mexico; 87505-1816. Other comments and questions may be submitted verbally. (505) 476-4300; 1 800 224-7009.

With your comments, please refer to the company name and facility name, or send a copy of this notice along with your comments. This information is nocessary since the Department may have not yet received the permit application. Please include a legible return mailing address. Once the Department has completed its preliminary review of the application and its air quality impacts, the Department's notice will be published in the legal section of a newspaper circulated near the facility location.

Attención

Este es un aviso de la oficina de Calidad del Aire del Departamento del Medio Ambiente de Nuevo México, acerca de las emisiones producidas por un establecimiento en esta área. Si usted desea información en espailol, por favor comuniquese con esa oficina al teléfono 505-629-3395.

Notice of Non-Discrimination

NMED does not discriminate on the basis of race, color, national origin, disability, age or sex in the administration of its programs or activities, as required by applicable laws and regulations. NMED is responsible for coordination of compliance efforts and receipt of inquiries concerning non-discrimination requirements implemented by 40 C.F.R. Part 7, including Title VI of the Civil Rights Act of 1964, as amended; Section 504 of the Rehabilitation Act of 1973; the Age Discrimination Act of 1975, Title IX of the Education Amendments of 1972, and Section 13 of the Federal Water Pollution Control Act Amendments of 1972. If you have any questions about this notice or any of NMED's non-discrimination programs, policies or procedures, or if you believe that you have been discriminated against with respect to a NMED program or activity, you may contact: Non-Discrimination Coordinator, NMED, 1190 St. Francis Dr., Suite N4050, P.O. Box 5469, Santa Fe, NM 87502, (505) 827-2855, nd. coordinator@ emx.mm.gov. You may also visit our website at https://www.env.nm.gov/non-employee-discrimination-complaint-page/ to learn how and where to Tile a complaint of discrimination.

A solar panel is seen at Positive Energy Solar on Sept. 11, 2023.

Community solar developers still waiting on PRC to make decisions

The commission may issue an order this week, months after developers expected it to be made

BY HANNAH GROVER

NM POLITICAL REPORT

Before community solar developers can look for potential subscribers, they need to know exactly how receiving a portion or all of a customer's electricity from a community array will benefit that household or organization.

The New Mexico Public Regulation Commission has not reached an agreement on some of the key aspects to determining those benefits.

The commission may issue an order this week that could at least provide some new clarity, but developers expected an answer to those questions months ago and some are feeling frustrated by the delay. While developers hope for more clarity, the commission could also decide to take more time reviewing the issues, including opening a new rulemaking docket into bill credits.

The potential order that the PRC will consider during its Tuesday meeting comes after it punted on the decision in its last meeting.

During its last meeting, Commissioner James Ellison proposed a new rulemaking focused on the bill credits. Ellison said the current rule closely mirrors language in the Community Solar Act, but he argued that it does not "clarify or operationalize" the statute.

Kevin Cray with the Coalition for Community Solar Access said he was "a little caught off guard" when the commission began discussing closing the existing docket without any resolution and opening a new rulemaking to revisit the credit rate "which has already gone to the (New Mexico) Supreme Court for adjudication."

He said the state Supreme Court already affirmed that the rate credit aligned with state statute.

"I guess I'm unclear whether that subsequent docket would even come to a different conclusion, and then they'd still need to come back and make all the same decisions that are before right now," Cray said.

During the commission meeting, Commissioner Gabriel Aguilera expressed concerns that the commission could end up in a similar place after the potential rulemaking.

Cray said that a new rulemaking could "punt this

AFFIDAVIT OF PUBLICATION

STATE OF NEW MEXICO

County of San Juan

Ode He Zamino, the undersigned, authorized

Representative of the Tri-City Record, on oath states that this newspaper is duly qualified to publish legal notices or advertisements within the meaning of Section 3, Chapter 167, Session Law of 1937, that payment therefore has been made of assessed as court cost; and that the notice, copy of which is hereto attached, was published in said paper in the regular daily edition, for $\int_{-\infty}^{\infty}$ time(s) on the following date(s):

<u>11/27/2024</u>

Sworn and subscribed before me, a notary public in and for the county of La Plata and the State of Colorado 2/3/2024.

Notary Public

PRICE:

Statement to come at the end of the month.

1706.12

ACCOUNT NUMBER: 111170

CASSANDRA RAMIREZ NOTARY PUBLIC STATE OF COLORADO NOTARY ID 20234009147 MY COMMISSION EXPIRES MARCH 09, 2027

COPY OF ADVERTISEMENT

NOTICE OF AIR QUALITY PERMIT APPLICATION

enne Hanflin Carde villes Company (1962). Lite momente De application solucitario de Mertilectus Entre manet Department file a ser Inter corres XES provid application de a del Tanity Provid. The permit is for the UESS Without PL which processo appropria andorful, Inception faits of application solucitatio the 16 kanity Dersonia Teamine 2, 2014.

The wires for the Solid Jawan as, VIEC's Britnel Fit is 32 bi 82 ft 2017. Extend, MJ. The exert institute of the VIEC's Estimate Pitis at Estimate (declarat layered; 2017. VIEC and Longfords (declarat dayres); - 111.233753. The approximate lawnium of this builty is 12 adhes expl sumband; of Kritural in Son Jaya Comby.

The function of the facility is in creek and screek appreprise material iron. He or othe query into makin construction can land gravel.

references a term being is to second in the second graph to graph to the second graph to the second second second second graph to the second to the second graph to the second graph to the second graph to the second graph to the second to the second graph to the second to the second graph to the second to the second

The estimated maximum possibles of any regulated at contradicate will be as follows in possible to contradicate has per year (bys) and may change slightly sincing the catera of the logarithment's review.

Pullulant	Maximum Pounds per hour	Antinen Texper p
19. j	E.4pph	7.2 107
PIII	2.1 pp	27tm
Salie Binik (58.)	C.Incl. ppl	0.879 tay
Hirogen Existen (HD.)	15.9 pph	34.61pp
Carlas Manuclin (Cit)	18.3 pph	42.0 199
Yalaitie Ingenic Compounds (VBC)	21 pph	47tm
Total non of all ficantines. Un Polisicasts (UAPs)	0.052 pph	0.H typ
Tests Air Polletast (WP)	0.0083 pph	D.COS tyy
Group Source Case Enviroiment an Total City	H/A	TERE IN

The standman operating solvede for notes in generaling is Shown per day (if an 'to Sun) for the another through Solverage and dapply howe (if News per large matural) for the month of Hards Reging Solver, Solye per week, and Solverbe per year. The standard solvedee is a matural presenting in 18 News per here.

The summary and /or operator mailing address for the Fault ty by

Yorner Law Proc Construction Company, LLC 7.6. Soc 110

Galog, NM 87305

If you have any comments along the construction or speciales of this facility, and you work your comments to be made as part of the parallerator process, provide the special special

With your conversite, please refer to the company owner and facility ensure, or word a copy of this notice along with your conversite. This Information to a secamp value the logarithmic range have net percendent to point applicables. Verse is before a logative refers undiring valueses. Desettle Inspectrum is no completed by synthesizers of the spatiation and its drivently impacts, the logarithmethy undirected in point desettle secalities of no company classification with the spatiation and its drivently impacts, the logarithmethy undirected in the spatiation of th

Finite

Extre sum anise de la militara de Califari del Aire del Nepartamento del Media Amiliante de Nevar Méxica, asperar de las unividanes producidas p un establicitamento as esta área. Si esteri de sua información as expedial, por taxos comorigones esto esta dística al telebros 1056-028-3305.

Notice of New-Weschnigston

MBCP data to describe the two in a new concerning a final single, datability and a results for maintain that a fit program watching as a result of applications and regulations. MCC is respectively in a second or a surplus end of a bit has defined by the surplus of the surplu

Page 1 of 1

November 20, 2024

CERTIFIED MAIL

Dear [Neighbor/Environmental Director/county or municipal official]

Vernon Hamilton Construction Company (VHCC), LLC announces its application submittal to the New Mexico Environment Department for a new minor source NSR permit application for an Air Quality Permit. The permit is for the VHCC's Kirtland Pit which processes aggregate material. The expected date of application submittal to the Air Quality Bureau is December 2, 2024.

The address for the facility known as, VHCC's Kirtland Pit, is 32 Rd 6210, Kirtland, NM. The exact location of the VHCC's Kirtland Pit is at Latitude (decimal degrees): 36.743919 and Longitude (decimal degrees): -108.333753. The approximate location of this facility is 0.7 miles east-southeast of Kirtland in San Juan County.

The function of the facility is to crush and screen aggregate material from the on-site quarry into usable construction sand and gravel.

The 350 ton per hour and 350,000 ton per year aggregate quarry, and crushing and screening operations will include an aggregate quarry, feeder, primary jaw crusher, two (2) secondary cone crushers, two (2) 3-deck screens, one (1) scalping screen, one (1) RipRap plant, fifteen (15) transfer conveyors, and seven (7) stacker conveyors. The main crushing and screening plant will be powered by commercial line power unless relocated to a different location where is will be powered by an 725 kW, 1081 horsepower (hp) engine/generator. The RipRap plant will be powered by a 140 kW, 188 hp engine. Aggregate from the quarry will first be processed through the RipRap plant and then the material will be stored in the Raw Material Pile. From the Raw Material Pile the material will be fed into the main plant feeder. Processed aggregate will be stored in Finish Storage Piles until transported from the aggregate crushing plant to off-site sales.

The estimated maximum quantities of any regulated air contaminant will be as follows in pound per hour (pph) and maximum tons per year (tpy) and may change slightly during the course of the Department's review:

Pollutant:	Maximum Pounds per hour	Maximum Tons per year
PM 10	15.4 pph	7.2 tpy
PM _{2.5}	2.9 pph	2.7 tpy
Sulfur Dioxide (SO ₂)	0.013 pph	0.029 tpy
Nitrogen Oxides (NO _x)	15.9 pph	34.6 tpy
Carbon Monoxide (CO)	19.3 pph	42.0 tpy
Volatile Organic Compounds (VOC)	2.1 pph	4.7 tpy
Total sum of all Hazardous Air Pollutants (HAPs)	0.052 pph	0.11 tpy
Toxic Air Pollutant (TAP)	0.0003 pph	0.0008 tpy
Green House Gas Emissions as Total CO2e	n/a	1676 tpy

The maximum operating schedule for material processing is 9 hours per day (8 am to 5 pm) for the months of November through February, and daylight hours (14 hours per day maximum) for the

months of March through October, 6 days per week, and 52 weeks per year. The standard schedule for material processing is 10 hours per day.

The owner and/or operator mailing address for the Facility is: Vernon Hamilton Construction Company, LLC P.O. Box 1110 Gallup, NM 87305

If you have any comments about the construction or operation of this facility, and you want your comments to be made as part of the permit review process, you must submit your comments in writing to this address: Permit Programs Manager; New Mexico Environment Department; Air Quality Bureau; 525 Camino de los Marquez, Suite 1; Santa Fe, New Mexico; 87505-1816. Other comments and questions may be submitted verbally. (505) 476-4300; 1 800 224-7009.

With your comments, please refer to the company name and facility name, or send a copy of this notice along with your comments. This information is necessary since the Department may have not yet received the permit application. Please include a legible return mailing address. Once the Department has completed its preliminary review of the application and its air quality impacts, the Department's notice will be published in the legal section of a newspaper circulated near the facility location.

Attención

Este es un aviso de la oficina de Calidad del Aire del Departamento del Medio Ambiente de Nuevo México, acerca de las emisiones producidas por un establecimiento en esta área. Si usted desea información en español, por favor comuníquese con esa oficina al teléfono 505-629-3395.

Sincerely,

Vernon Hamilton Construction Company

Notice of Non-Discrimination

NMED does not discriminate on the basis of race, color, national origin, disability, age or sex in the administration of its programs or activities, as required by applicable laws and regulations. NMED is responsible for coordination of compliance efforts and receipt of inquiries concerning nondiscrimination requirements implemented by 40 C.F.R. Part 7, including Title VI of the Civil Rights Act of 1964, as amended; Section 504 of the Rehabilitation Act of 1973; the Age Discrimination Act of 1975, Title IX of the Education Amendments of 1972, and Section 13 of the Federal Water Pollution Control Act Amendments of 1972. If you have any questions about this notice or any of NMED's non-discrimination programs, policies or procedures, or if you believe that you have been discriminated against with respect to a NMED program or activity, you may contact: Non-Discrimination Coordinator, NMED, 1190 St. Francis Dr., Suite N4050, P.O. Box 5469, Santa Fe, NM 87502, (505) 827-2855, nd.coordinator@env.nm.gov. You may also visit our website at https://www.env.nm.gov/non-employee-discrimination-complaint-page/ to learn how and where to file a complaint of discrimination.

Government Entities within 10 Miles

November 2024

San Juan County	Tanya Shelby, County Clerk	PO Box 550	Aztec	NM	87410
City of Farmington	Andrea Jones, City Clerk	800 Municipal Drive	Farmington	NM	87401
Town of Kirtland	Jonathan LaMone, Town Clerk	47 Rd 6500	Kirtland	NM	87417
Navajo Nation EPA	Stephan B. Etsitty, Executive Director	PO Box 339	Window Rock	AZ	86515

7 87	U.S. Postal Service [™] CERTIFIED MAIL [®] RECEIPT Domestic Mail Only		
270 1474 025	For delivery information, visit our websit Aztecr NH 87410 All Certified Mail Fee \$4.85 \$0.00 Extra Services & Fees (check box, add fee scappingingte) Return Receipt (hardcopy) \$11.100 Return Receipt (electronic) \$0.100 \$11.100 Contified Mail Restricted Delivery \$0.100 Adult Signature Required \$0.100	e at www.usps.com°. USE 0109 05 Postmark Here	
39 0710 5	Adult Signature Restricted Delivery \$ Postage \$ Total Postage and Fees \$ Sent Ti San Juan County	12/13/2024	
926	Operation Tanya Shelby, County Clerk Tanya Shelby, County Clerk City, S PO Box 550	See Reverse for Instructions	

Landowners within 100 FEET November 2024

NAME	ADDRESS1	СІТҮ	STATE	ZIPCODE
ANCHONDO JOEL	6 ROAD 6212	KIRTLAND	NM	87417
ANDREWS DANNY	47 ROAD 6200	KIRTLAND	NM	87417
BEGAY RENAE LEE	34 ROAD 6406	KIRTLAND	NM	87417
			NM	87417
BEGAY SHAYNE D	15 ROAD 6207	KIRTLAND		
BEGAY VIDA A	PO BOX 3206	INDIAN WELLS	AZ	86031
	10 ROAD 6212	KIRTLAND	NM	87417
BOLACK TOMMY TRUST	3901 BLOOMFIELD HWY	FARMINGTON	NM	87401
BOUGEANT CHRETIEN J	1 ROAD 6207	KIRTLAND	NM	87417
BROWN LARRY AND MORRIS BROWN BONNIE JEAN	PO BOX 1034	FRUITLAND	NM	87416-1034
CARLSTON PETER AND MAGGIE	13 ROAD 6193	KIRTLAND	NM	87417
CHRISTIANSON DAVID AND MELISSA J	9 ROAD 6193	KIRTLAND	NM	75231-4466
	PO BOX 2004	KIRTLAND	NM	87417-2004
DELANEY WELDON V JR AND LOLITA	2305 E 14TH ST	FARMINGTON	NM	87401
DENETCLAW JATONNA	PO BOX 1004	KIRTLAND	NM	87417
DIAMOND D CONSTRUCTION CO INC	PO BOX 1841	KIRTLAND	NM	87417
EATON BESSIE M ET AL	PO BOX 3493	SHIPROCK	NM	87027-0065
EMERSON LUCINDA A REVOCABLE LIVING TRUST	8 ROAD 6212	KIRTLAND	NM	87417
F AND D HOLDINGS LLC	5011 TAMPICO WAY	FARMINGTON	NM	87402 87417-0000
GARLINGTON BILLY L III	41 ROAD 6200	KIRTLAND	NM	
HATATHLE ARNOLD AND DENISE	18 ROAD 6207	KIRTLAND	NM	87417
HENDRIX BRADLEY D AND CATHY B TRUST	PO BOX 814	KIRTLAND	NM	87417-0000
HORSLEY PATRICK B AND TRACY V	9 ROAD 6207	KIRTLAND	NM	87417-0000
HWY 64 TRUCK AND AUTO SALVAGE LLC	4551 US 64 3480 LA PLATA HWY	FARMINGTON	NM	87401
		FARMINGTON	NM	87401
	31 ROAD 6195	KIRTLAND	NM	87417
ISBELL DOROTHY L JAKE EVANGELINE	6440 HAWKEYE ST	FARMINGTON KIRTLAND	NM NM	87402 87417
JARE EVANGELINE JARAMILLO STEVEN D AND DANA S	7 ROAD 6207	KIRTLAND	NM	87013
KIDDIE TODD B	5 ROAD 6207 7 ROAD 6193	KIRTLAND	NM	87048-9104
KIRTLAND 6406 LLC ATTN SCULLY RUBY D AND	10206 ARVILLA AVE NE	ALBUQUERQUE	NM	87048-9104
KRIEG ERIC W AND FREDRICA	3 ROAD 6207	KIRTLAND	NM	75231-4466
KUECKS GEORGE J TRUSTEES	19 ROAD 6193	KIRTLAND	NM	87417-9329
KUECKS HOLLY	37 ROAD 6195	KIRTLAND	NM	87417-9529
LEE CALVIN	PO BOX 313	FRUITLAND	NM	87416-0313
LINK THOMAS G	4346 US 64	KIRTLAND	NM	87417
LOGG MELLISA	PO BOX 3301	KIRTLAND	NM	87417
LUCERO OSCAR M ET AL	PO BOX 1412	FRUITLAND	NM	87013
MOORE LEONARD BRYAN TRUST	PO BOX 1753	KIRTLAND	NM	87417
REBELES TED AND DANIELLE	14 ROAD 6212	KIRTLAND	NM	87417
RENDON REBECCA JEAN	2 ROAD 6212	KIRTLAND	NM	87417
RIVERA DORIS AND SABINO	PO BOX 415	CANJILON	NM	87515
ROOTS PROPERTIES LLC	2012 SAN JUAN BLVD	FARMINGTON	NM	87401
ROSE LARSON ENTERPRISES LLC	PO BOX 3704	GLENDALE	AZ	85311
SEYFERT DENNIS R	45 ROAD 6200	KIRTLAND	NM	87417
SHORTY LINDA	40 ROAD 6406	KIRTLAND	NM	87417-9436
SHORTY MICHAEL AND SHERRI A	21 ROAD 6195	KIRTLAND	NM	87417-9332
SILVA JAMES R	PO BOX 403	KIRTLAND	NM	87417-0403
SINGLETON SHERMANN SAMALA TRUST	2001 E MAIN ST	FARMINGTON	NM	87401-7713
SMALLCANYON ALBERTA	13 ROAD 6207	KIRTLAND	NM	87401-7713
STEVENSON CALVIN AND LENA	PO BOX 504	FRUITLAND	NM	87416-0504
TAPAHA JOHN DAVID AND ROSIE	4 ROAD 6209	KIRTLAND	NM	87410-0304
TSO ROBERT J AND LAPRINCESS D	7 ROAD 6206	KIRTLAND	NM	87417-9745
VAN ARSDALE GERALD L AND MARY L	43 ROAD 6200	KIRTLAND	NM	87417
VAN ARSDALE GERALD LAND MARY L VAZQUEZ KARLA JACELL AND VAZQUEZ DOMINQU	12 ROAD 6212	KIRTLAND	NM	87417
WILLIS ALICE E	5 ROAD 6193	KIRTLAND	NM	87417-0000
WILLIS BOBBY L AND CARRIE S	PO BOX 377	KIRTLAND	NM	87417

\$0,00

12/13/2024

See Reverse for Instructions

m

m

m

n I

NU

Postage

\$E,58H

Total Postage and Fees

Street & 37 ROAD 6195

City, St KIRTLAND, NM 0

Adult Signature Restricted Delivery \$

Sent TC YAZZIE JOE B AND NORMA

\$0.73

PS Form 3800, April 2015 PSN 7530-02-000-9047

355	U.S. Postal Service [™] CERTIFIED MAIL [®] REC Domestic Mail Only	
566	For delivery information, visit our website	at <i>www.usps.com</i> °.
1 5270 0373	Certified Mail Fee \$4.85 Extra Services & Fees (check box, add fee as epoperiate) Return Receipt (leactronic) \$ \$1.00 Certified Mail Restricted Delivery \$ \$0.00 Adult Signature Required \$ \$0.00 Postage \$0.73	01 09 05 Postmark Here
9589 0710	Sent To ANCHONDO JOEL Street a 6 ROAD 6212 City, Sta KIRTLAND, NM 87417	12/13/2024
	PS Form 3800. January 2023 PSN 7530-02-000-9047	See Beverse for Instructions

PS Form 3800, January 2023 PSN 7530-02-000-9047

See Reverse for Instruction:

0109

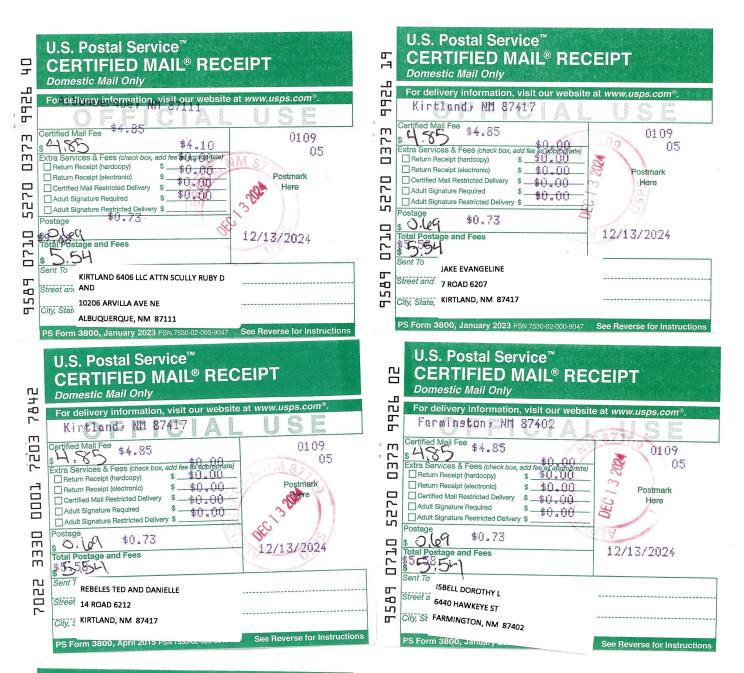
Here

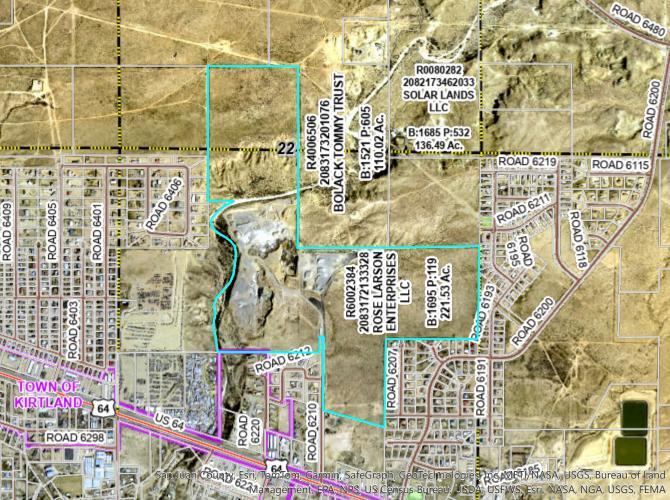
05

U.S. Postal Service[™] **CERTIFIED MAIL® RECEIPT** m m Domestic Mail Only п For delivery information, visit our at www.usps.com nu П Kirtland, NM 87417 Г ertified Mail Fee \$4.85 0109 m 4,85 \$ 05 \$0.00 5 Services & Fees (check box, add fee as appropriate m Return Receipt (hardcopy) \$0.00 Postmark Return Receipt (electronic) DEC Here Certified Mail Restricted Delivery \$0.00 \$ n-Adult Signature Required \$ \$0.00 'n and the owned Adult Signature Restricted Delivery CU. ŝ Postage \$0.73 0,69 710 12/13/2024 Total Postage and Fees 5.04 Sent To KIDDIE TODD B Street ar 7 ROAD 6193 -0 S City, Sta KIRTLAND, NM 8 7 117 T PS Form 3800, January 2023 PSN 7530-02-000-9047 See Reverse for Instruction

лл	U.S. Postal Service [™] CERTIFIED MAIL [®] RECEIPT Domestic Mail Only		
2	For delivery information, visit our website a	t www.usps.com®.	
m	Kintland, NH 87417 AL	USE	
	Certified Mail Fee \$4.85	0109	
	\$4,87	05	
1000	Extra Services & Fees (check box, add fee as appropriate) Return Receipt (hardcopy) Return Receipt (electronic) Certified Mail Restricted Delivery Adult Signature Required Adult Signature Restricted Delivery	Postmark Here	
DEEE	Postage \$ 0.73 Total Postage and Fees \$ 5.54	12/13/2024	
7022	Sent To MOORE LEONARD BRYAN TRUST Street and, PO BOX 1753 City, State, KIRTLAND, NM 87417		
	PS Form 3800, April 2010 1 0	ee Reverse for Instructions	

U.S. Postal Service[™] **CERTIFIED MAIL® RECEIPT** Domestic Mail Only For delivery information, visit our website at www.usps.com® Fruitland, Nri 87416 Certified Mail Fee 0109 \$4.85 \$4.85 Extra Services & Fees (check box, add fee as appropria 05 iate Return Receipt (hardcopy) Return Receipt (electronic) \$0.00 Postmark \$ DECAN JUN Here Certified Mail Restricted Delivery Adult Signature Required Adult Signature Restricted Delivery \$ Postage \$0.73 0.109 12/13/2024 Total Postage and Fees Sent To LEE CALVIN Street and PO BOX 313 City. State FRUITLAND, NM 87416 PS Form 3800, April 2015 PSN 7530-02-000-9047 e Reverse for Instructions



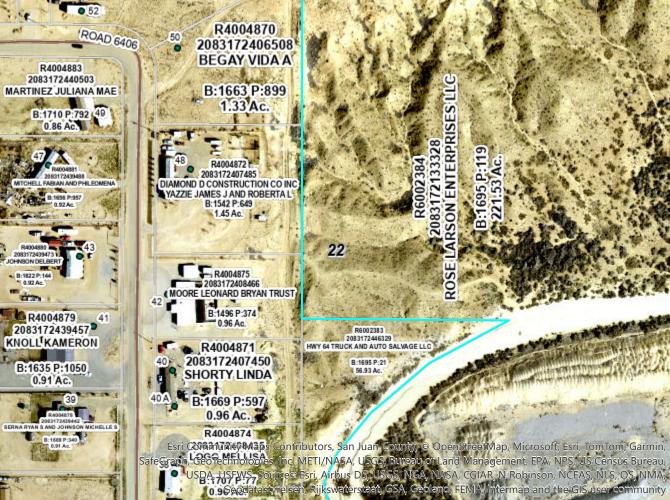


	Domestic Mail Only	CEIPT
L.	For delivery information visit owned to	
LT I	For delivery information, visit our websit Farmington, NM 87402	te at www.usps.com®.
		I C E
m	Certified Mail Fee \$4.85	· · · · · · · · · · · · · · · · · · ·
r-		0109
m	Extra Services & Fees (check box, add fee as appropriate)	- 05
	Return Receipt (electronic) \$	Postmark
5	Certified Mail Restricted Delivery	Here
5270	Adult Signature Restricted Delivery	
ŋ	Postage	
	DLa \$0.73	
710	Total Postage and Fees	10/10/066
5	The restricted and rees	12/13/2024
	Sent To	
m		
=0	F AND D HOLDINGS LLC	
5	5011 TAMPICO WAY	
	City, Ste FARMINGTON, NM 87402	
	PS Form 3800, January 2023 For 1966 0	Sec. B
		See Reverse for Instructions

14 -0 Pm Ы r-m m m ГЦ

R6002383 2083172446329 HWY 64 TRUCK AND AUTO SALVAGE LLC

B:1695 P:21 56.93 Ac.


12.000

R6002384 2083172133328 ROSE LARSON ENTERPRISES LLC

> B:1695 P:119 221.53 Ac.

Town of Friends of the Control of the State of the

R0080256 2083173462066 WILLIS BOBBY LAND CARRIES

B:1493 P:853 58.94 Ac.

R4004877

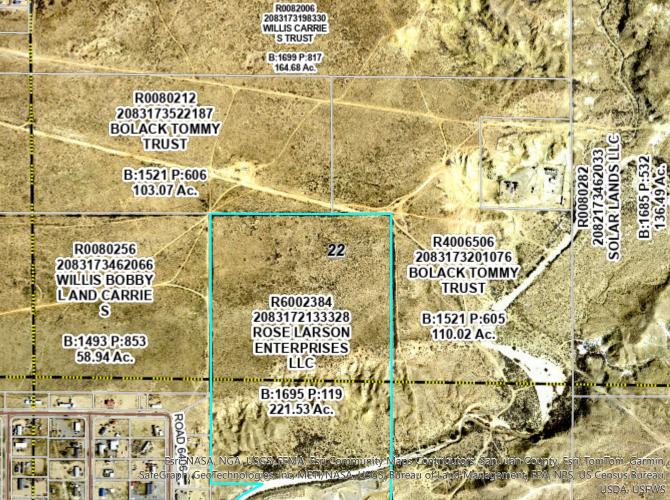
2083172423522

KIRTLAND 6406 LLC ATTN SCULLY RUBY D AND 521
B:1637 P:509
0.96 Ac

ROAD 6406

R4004883 2083172440503 MARTINEZ JULIANA MAR

B:1710 P:792


0.86 Ac. 49

8 R4004870 2083172406508 BEGAY.VIDAA B:1663 P:899 1.33 Ac.

2083172133328 LARSON ENTERPRISES B:1695 P:119

3600

Estr Community Maps Contributors, San Juan County, © OpenStreetMap, Microsoft, Esri, TomTom, Gammin, SafeGronh Centerbonlogies Noc. METI/NASA, USGS, Bureau of Land Management, ERA, NPS, US Census Bureau YAZIE JUSDA, USFIWSESOUTCESS Esri, Airbus DS, USGS, NGA, NASA, CGIAR, N Robinson, NCEAS, NLS, OS, NMA Bureau, Second Street, Second Street, Street,

R0081175 2083172066462 BOLACK TOMMY TRUST

B:1521 P:600 40.0 Ac.

R6002384 2083172133328 ROSE LARSON ENTERPRISES LLC

B:1695 P:119 221.53 Ac.

Esri Community Maps Contributors, San (Lan Agunty, © OpenStreetMap, Microsoft, Esri, TomTom, Barmin, SafeGraph, GeoTechnologies, Inc. METI/NASA, USGS, Bureau of Land Management, ERA, NPS, US Census Bureau, USDA, USFWS, Sources: Esri, Airbus DS, USGS, NGA2 NASA, CGIAR, N Robinson, NCEAS, NLS, OS, NMA, Geodatastyre son, Rijkswaterstaat, GSA, Geoland, FEMA, Intermap and the GIS user community

Geodatastyrelse

relsen, Rijkswaterstaat, GSA, Geoland, FEMA, Intermap and the GIS user community

FRPRISES 328 Z R6003 ARSON 2083 ROSE

695 ic m

0.33 453 OpenStree Contributors, San Juan County, © Tom, ommunit Maps ESTI. Vanagement, EPA, NF GIAR, N'Robinson, N METI/N Bι NPS, U Census atec hnoloc es reau of 10 ese Esni, Althus DS, USGS, NGA, NASA, CGIARS N RObinson, NCCAS, Theorem, 1997, See Seni, Althus DS, USGS, NGA, NASA, CGIARS N RObinson, Necessary Community Isen, Rijkswaterstaat, GSA, Geoland, FEMA Untermap and the GIS user community Geodatas

ITANIA MENALA

÷

JTRU

GEORGE

₹

LEWIS FRANK B:1205 P:354

Ac

0.49

3346

20821

R0082501

ROUB2509 2082172518364 HEMORIX BRADLEY DAND CATHY B TRUST.

B 1581 P 28 0.42 Ac

BODSHOTHER 1980 TUANDOS

RUSTEES

B:1205 p.

0

ISON,

1081 R0082

ROORPS 208217251 LEWIS FR CRUECKS GEORG

7.19

Gisen te

13

2009250

7087

ABUTETERMAN

. 9

0.

ASON PHI

1608 p

PC.

Current sugar a for the

R0082504 2082

125013

AND 3 0.00

PORDETOS

$\overline{\mathbf{r}}$ 3328 FRPF R600238 2 Z 20831 SON è 4 SE 202

B:1695 P .53 221

> BROWN LARRY AND MORRIS BROWN BONNIE JEAN Contributors, San Juan County, © OpenStreetMap, Microso

22

KUECKS GEORGE J TRU LEWIS FRANK 2082172523340

R008250

B:1205 P:354

0.49 Ac.

ft, Esri, TomTo Management/EPA: NPS. US®Census Burea CGIAR, N Robinson NCEAS, NLS, OS, NM USGS, Bureau of Land N , NGA, N Riikswaterstaat, GSA, Geoland, FEMA, Intermap and the GIS user community datastyrels<mark>en</mark>

EES

R00825

S

20821

0.33 AC

I'E AND HEATHER

40 Maintenant

RODEZSOS FORATI NSB TSTR

200217354 Church Georgest

19

ARGENZIA AROWN LARRY AND MORING BROWN BONNIE JEAN

8:1762 P.948 0.39 Ac.

LEWIS FRAM B.1205 P.354

TERPRI 33328 N N N 2 R600 RSON 2083 Ŷ

SafeGraph

Esri Community Maps Contributors, San Juan County, & OpenStreetMap, Microsoft, Esri, TomTom, Garmin, SafeGraph, GeoTechnologies, Inc, METI/NASA, USGS, Bureau of Land Management, ERA, NPS, US Census Bureau, USDA, USFWS, Sources: Esri, Airbus DS, USGS, NGA, NASA, CGIAR, N Robinson, NCEAS, NLS, OS, NMA, Geodatastyrelsen, Rijkswaterstaat, GSA, Geoland, FEMA, Intermap and the GIS user community

R6002384 2083172133328 ROSE LARSON ENTERPRISES LLC

B:1695 P:119 221:53 Ac.

B:885 P:2Ess, Community Maps Contributors, San Juan County, @ OpenStreetMap, Microsoft, Esri, Tontiom, Garmin, 0.59 Acc., USDA, USFWS, Sources: Esri, Albus DS, USGS, NGA, NASA, CGIAR, N Robinson, NCEAS, NLS, OS, NMA, Geodatastyrelsen, Rijkswaterstaat, GSA, Geoland, FEMA, Intermap and the GIS user community

R6002384 2083172133328 ROSELARSON ENTERPRISES LLC B:1695 P:119

221.53 Ac.

R6002384 2083172133328 ROSE LARSON ENTERPRISES LLG

> B:1695 P:119 221.53 Ac.

Geodatastyrelsen, Rijkswaterstaat, GSA, Geoland, FEMA, Intermap and the GIS user community

R0083452 2083172268212 VALLEJOS RUBY

ORN DAVID A ET AL

0.87 Ac.

R0083450 2083172268185 BAKER CHARLES

B:1667 P:593

B:1570 P:912

B:1525 P:602 5:5 AG

2003172239219 DON REBECCA JEAN

8:1632 P-30

DON V JR AND LOLITA

1575 P.541

ROAD 6210

22

R6002344 2083172184114 SILVA JAMES R

ENTERPRISES

ROSE

5

B:1695

22

2133328

20831 RSON

R6002384

Esti Community Maps Contributors, San Juan County, © OpenStreetMap, Microsoft, Esri, TomTom, Garmin, SafeGraph, GeoTechnologies, Inc, METI/NASA, USGS, Bureau of Land Management, EPA, NPS, US Census Bureau, USDA, USFWS, Sources: Esti, Alifous DS, USGS, NGA, NASA, CGIAR, N Robinson, NCEAS, NLS, OS, NMA, Geodatastyreisen, Rijkswatenstaat, GSA, Geoland, FEMA, Intermap and the GIS user community

March Martin Particular R6002384 2083172133328 ROSE LARSON ENTERPRISES LLC

B:1695 P:119 221.53 Ac.

m

GIS use

R6002384 2083172133328 **ROSE LARSON ENTERPRISES LLC**

> B:1695 P:119 221.53 Ac.

> > R0083445 EMERSON LUCINDA A REVOCABLE LIVING TRUST

> > > B:1694 P:74 0.75 Ac.

2083172241234 INCHONDO JOEL R0083446

1703

AMBEI

RTNE

m

2008344

ß

AZQU

щ

R0083442

2083

REBEI

2083172307207 SMITH HERBERT AND EVELYN

> B: P: 0.77 Ac.

ROAD 6212

Esri Community Maps Contributors, San Juan County, © OpenStreetMap, Microsoft, SafeGraph, GeoTechnologies, Inc, METENASA USGS, Bureau of Land Management, EPA, NPS, US Cens USDA, USFWS, Sources: Esri, Airous Designes, NGA, NASA, CGIAR, N Robinson, NCEAS, N Geodatastyrelsen, Rikswaterstaat, GSA, Geoland, FEMA, Intermap and the GIS user community

R6002384 2083172133328 ROSE LARSON ENTERPRISES LLC

B:1695 P:119 221.53 Ac.

PUBLIC SERVICE ANNOUNCEMENT

Vernon Hamilton Construction Company (VHCC), LLC announces its application submittal to the New Mexico Environment Department for a new minor source NSR permit application for an Air Quality Permit. The permit is for the VHCC's Kirtland Pit which processes aggregate material. The expected date of application submittal to the Air Quality Bureau is December 2, 2024.

The address for the facility known as, VHCC's Kirtland Pit, is 32 Rd 6210, Kirtland, NM. The exact location of the VHCC's Kirtland Pit is at Latitude (decimal degrees): 36.743919 and Longitude (decimal degrees): -108.333753. The approximate location of this facility is 0.7 miles east-southeast of Kirtland in San Juan County.

VHCC is proposing a new 350 ton per hour and 350,000 ton per year crushing and screening operations which will process aggregate out of the Kirtland Pit quarry.

Public notices have been posted in the following locations for review by the public:

- 1. Town Hall of Kirtland at 47 Rd 6500, Kirtland, NM;
- 2. US Post Office at 4211 US 64, Kirtland, NM;
- 3. Lower Valley Water Users at 4286 US 64, Kirtland, NM;
- 4. At the main entrance to the Kirtland Pit at 32 Rd 6210, Kirtland, NM.

The owner and/or operator mailing address for the Facility is:

Vernon Hamilton Construction Company, LLC P.O. Box 1110 Gallup, NM 87305

If you have any comments about the construction or operation of this facility, and you want your comments to be made as part of the permit review process, you must submit your comments in writing to this address:

Permit Programs Manager New Mexico Environment Department Air Quality Bureau 525 Camino de los Marquez, Suite 1 Santa Fe, New Mexico; 87505-1816 Telephone Number (505) 476-4300 or 1 800 224-7009

November 25, 2024

KISS Radio 212 West Apache Street Farmington, NM 87401

CERTIFIED MAIL

Dear KISS Radio:

SUBJECT: PSA Request - Proposed New Air Quality Construction Permit Vernon Hamilton Construction Company, LLC – Kirtland Pit at 32 Rd 6210, Kirtland, NM.

Attached is a copy of a public service announcement regarding a proposed new air quality construction permit application for Vernon Hamilton Construction Company, LLC – Kirtland Pit. This announcement is being submitted by Montrose Environmental Solutions, Inc., Albuquerque, NM on behalf of Vernon Hamilton Construction Company.

The announcement request is being made to fulfill the requirements of the New Mexico Environmental Department air quality permitting regulations. Please consider reading the attached announcement as a public service message.

If you have any questions or need additional information, please contact me at (505) 830-9680 ext 6 (voice), (505) 830-9678 (fax) or email at <u>pwade@montrose-env.com</u>.

Thank you.

Sincerely,

Paul Wade

Paul Wade Principal/Senior Associate Engineer

Montrose Environmental Solutions, Inc. 9100 2nd St., Suite 200 Albuquerque, NM 87114-1664 T: 505.830.9680 ext. 6 F: 505.830.9678 Pwade@montrose-env.com www.montrose-env.com

Section 10

Written Description of the Routine Operations of the Facility

<u>A written description of the routine operations of the facility</u>. Include a description of how each piece of equipment will be operated, how controls will be used, and the fate of both the products and waste generated. For modifications and/or revisions, explain how the changes will affect the existing process. In a separate paragraph describe the major process bottlenecks that limit production. The purpose of this description is to provide sufficient information about plant operations for the permit writer to determine appropriate emission sources.

The VHCC LLC's Kirtland Pit plant consists of an aggregate quarry, feeder, primary jaw crusher, two (2) secondary cone crushers, two (2) 3-deck screens, one (1) scalping screen, one (1) RipRap plant, fifteen (15) transfer conveyors, and seven (7) stacker conveyors. At the initial site the main plant is powered by commercial line power. For relocations from the Kirtland Pit, the main plant is powered by a 725 kW, 1081 horsepower (hp) engine/generator. The RipRap plant will be powered by a 140 kW, 188 hp engine. No emission controls are proposed for the generator/engines.

From the aggregate quarry (Unit PIT_RAW), raw material is mined and stored in a stockpile (Unit RR_RAW) near the RipRap Screening Plant. A front-end loader transfers aggregate into the RipRap Screening Plant feeder (Unit RR_1). From the feeder, material is screened in a two phase system (Unit RR_2). Screened material is transferred to one of three screen under conveyors (Units RR_3, RR_4, RR_5) and dropped to one of three storage piles (Units RR1PILE, RR2PILE, RR3PILE). Material from the RipRap Screening Plant or Quarry will be loaded by front-end loader onto the main plant raw material pile (RAW).

A front-end loader will transport from the main plant raw material pile to the main plant feeder (Unit 1a). From the feeder, material is processed through the jaw crusher (Unit 1b) then transferred by the jaw crusher conveyor (Unit 1c) and transfer conveyor (Unit 14) to the scalping screen (Unit 20). At the scalping screen, waste material is removed by transfer conveyors (Units 9, 26) and stack conveyor (Unit 8) to the waste storage pile. Product material from the scalping screen is transferred by conveyor to the first cone crusher (Unit 3). From the first cone crusher, processed material is conveyor (Unit 4a) and stacker conveyor (Unit 7). Screened 3/4" material is transferred to a stacker storage pile by a conveyor (Unit 17) and stacker conveyor (Unit 10). Screened fine material is transferred to a stacker storage pile by a conveyor (Unit 17) and stacker conveyor (Unit 15). Oversized material is conveyed (Unit 18) to the second cone crusher (Unit 2). From the second cone crusher, processed material is conveyed (Unit 2a, 19) to the second 3-deck screen (Unit 5). Screened 1/2" material is transferred to a stacker conveyor (Unit 2). From the second cone crusher, processed material is conveyed (Unit 11) and stacker conveyor (Unit 25). Screened 1/2" material is transferred to a stacker storage pile by a conveyor (Unit 24). Screened 3/4" material is transferred to a stacker conveyor (Unit 24). Screened 3/4" material is transferred to a stacker storage pile by a conveyor (Unit 24). Screened 3/4" material is transferred to a stacker storage pile by a conveyor (Unit 22). Oversized screened material is transferred to a stacker conveyor (Unit 24). Screened 3/4" material is transferred to a stacker storage pile by a shuttle conveyor (Unit 12) and stacker conveyor (Unit 22). Oversized screened material is sent back to the second cone crusher (Unit 2) by way of conveyor (Unit 13). Material is transported by front-end loader from the stacker storage piles to the finish storage piles (FPILE1, FPILE2).

Fugitive dust generated during aggregate processing will be controlled by the inherent moisture content of the material and a "Wet Dust Suppression System" to no more than 7% opacity at screening and conveyor transfer points and 12% opacity at crushing operations. No fugitive dust controls are proposed for the raw material storage piles (Units PIT_RAW, RR_RAW, RAW), feeder loading (Units RR_1, 1a) or finish storage piles (Units RR1PILE, RR2PILE, RR3PILE, FPILE1, FPILE2, FPILE3).

The VHCC LLC Las Vegas Aggregate Crushing & Screening plant will be permitted to co-located with a hot mix asphalt plant identified as VHCC LLC's Kirtland Pit. The Kirtland Pit has submitted a separate 20.2.72 NMAC permit application that is going through technical review.

Truck traffic (ROAD) will be limited to a maximum 213 trucks per day. Fugitive road dust will be controlled by basecourse and watering to reduce excess fugitive emissions.

A process flow diagram is presented as Figures 4-1 and 4-2 in Section 4. A facility layout is presented as Figure 5-1 in Section 5.

Kirtland Pit

Section 11

Source Determination

Source submitting under 20.2.70, 20.2.72, 20.2.73, and 20.2.74 NMAC

Sources applying for a construction permit, PSD permit, or operating permit shall evaluate surrounding and/or associated sources (including those sources directly connected to this source for business reasons) and complete this section. Responses to the following questions shall be consistent with the Air Quality Bureau's permitting guidance, <u>Single Source Determination Guidance</u>, which may be found on the Applications Page in the Permitting Section of the Air Quality Bureau website.

Typically, buildings, structures, installations, or facilities that have the same SIC code, that are under common ownership or control, and that are contiguous or adjacent constitute a single stationary source for 20.2.70, 20.2.72, 20.2.73, and 20.2.74 NMAC applicability purposes. Submission of your analysis of these factors in support of the responses below is optional, unless requested by NMED.

A. Identify the emission sources evaluated in this section (list and describe): Aggregate crushing and screening plant - produce construction aggregate and sand

B. Apply the 3 criteria for determining a single source:

<u>SIC Code</u>: Surrounding or associated sources belong to the same 2-digit industrial grouping (2-digit SIC code) as this facility, <u>OR</u> surrounding or associated sources that belong to different 2-digit SIC codes are support facilities for this source.

X Yes 🛛 No

<u>Common</u> <u>Ownership</u> or <u>Control</u>: Surrounding or associated sources are under common ownership or control as this source.

X Yes 🛛 No

<u>Contiguous</u> or <u>Adjacent</u>: Surrounding or associated sources are contiguous or adjacent with this source.

X Yes 🗌 No

C. Make a determination:

- X The source, as described in this application, constitutes the entire source for 20.2.70, 20.2.72, 20.2.73, or 20.2.74 NMAC applicability purposes. If in "A" above you evaluated only the source that is the subject of this application, all "YES" boxes should be checked. If in "A" above you evaluated other sources as well, you must check AT LEAST ONE of the boxes "NO" to conclude that the source, as described in the application, is the entire source for 20.2.70, 20.2.72, 20.2.73, and 20.2.74 NMAC applicability purposes.
- The source, as described in this application, <u>does not</u> constitute the entire source for 20.2.70, 20.2.72, 20.2.73, or 20.2.74 NMAC applicability purposes (A permit may be issued for a portion of a source). The entire source consists of the following facilities or emissions sources (list and describe):

Section 12

Section 12.A

PSD Applicability Determination for All Sources

(Submitting under 20.2.72, 20.2.74 NMAC)

<u>A PSD applicability determination for all sources</u>. For sources applying for a significant permit revision, apply the applicable requirements of 20.2.74.AG and 20.2.74.200 NMAC and to determine whether this facility is a major or minor PSD source, and whether this modification is a major or a minor PSD modification. It may be helpful to refer to the procedures for Determining the Net Emissions Change at a Source as specified by Table A-5 (Page A.45) of the <u>EPA New Source Review Workshop Manual</u> to determine if the revision is subject to PSD review.

- A. This facility is:
 - X a minor PSD source before and after this modification (if so, delete C and D below).
 - □ a major PSD source before this modification. This modification will make this a PSD minor source.
 - □ an existing PSD Major Source that has never had a major modification requiring a BACT analysis.
 - **an existing PSD Major Source that has had a major modification requiring a BACT analysis**
 - □ a new PSD Major Source after this modification.
- B. This facility is not one of the listed 20.2.74.501 Table I PSD Source Categories:
 - a. NOx: 34.6 TPY
 - b. CO: 42.0 TPY
 - c. VOC: 4.7 TPY
 - d. SOx: 0.029 TPY
 - e. PM: 15.7 TPY
 - f. **PM10: 7.2 TPY**
 - g. PM2.5: 2.7 TPY
 - h. Fluorides: 0.0 TPY
 - i. Lead: 0.00015 TPY
 - j. Sulfur compounds (listed in Table 2): 0.0 TPY
 - k. GHG: 1676 TPY

Section 13

Determination of State & Federal Air Quality Regulations

This section lists each state and federal air quality regulation that may apply to your facility and/or equipment that are stationary sources of regulated air pollutants.

Not all state and federal air quality regulations are included in this list. Go to the Code of Federal Regulations (CFR) or to the Air Quality Bureau's regulation page to see the full set of air quality regulations.

Required Information for Specific Equipment:

For regulations that apply to specific source types, in the 'Justification' column **provide any information needed to determine if the regulation does or does not apply**. **For example**, to determine if emissions standards at 40 CFR 60, Subpart IIII apply to your three identical stationary engines, we need to know the construction date as defined in that regulation; the manufacturer date; the date of reconstruction or modification, if any; if they are or are not fire pump engines; if they are or are not emergency engines as defined in that regulation; their site ratings; and the cylinder displacement.

Required Information for Regulations that Apply to the Entire Facility:

See instructions in the 'Justification' column for the information that is needed to determine if an 'Entire Facility' type of regulation applies (e.g. 20.2.70 or 20.2.73 NMAC).

Regulatory Citations for Regulations That Do Not, but Could Apply:

If there is a state or federal air quality regulation that does not apply, but you have a piece of equipment in a source category for which a regulation has been promulgated, you must **provide the low level regulatory citation showing why your piece of equipment is not subject to or exempt from the regulation. For example** if you have a stationary internal combustion engine that is not subject to 40 CFR 63, Subpart ZZZZ because it is an existing 2 stroke lean burn stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions, your citation would be 40 CFR 63.6590(b)(3)(i). We don't want a discussion of every non-applicable regulation, but if it is possible a regulation could apply, explain why it does not. For example, if your facility is a power plant, you do not need to include a citation to show that 40 CFR 60, Subpart OOO does not apply to your non-existent rock crusher.

Regulatory Citations for Emission Standards:

For each unit that is subject to an emission standard in a source specific regulation, such as 40 CFR 60, Subpart OOO or 40 CFR 63, Subpart HH, include the low level regulatory citation of that emission standard. Emission standards can be numerical emission limits, work practice standards, or other requirements such as maintenance. Here are examples: a glycol dehydrator is subject to the general standards at 63.764C(1)(i) through (iii); an engine is subject to 63.6601, Tables 2a and 2b; a crusher is subject to 60.672(b), Table 3 and all transfer points are subject to 60.672(e)(1)

Federally Enforceable Conditions:

All federal regulations are federally enforceable. All Air Quality Bureau State regulations are federally enforceable except for the following: affirmative defense portions at 20.2.7.6.B, 20.2.7.110(B)(15), 20.2.7.11 through 20.2.7.113, 20.2.7.115, and 20.2.7.116; 20.2.37; 20.2.42; 20.2.43; 20.2.62; 20.2.63; 20.2.86; 20.2.89; and 20.2.90 NMAC. Federally enforceable means that EPA can enforce the regulation as well as the Air Quality Bureau and federally enforceable regulations can count toward determining a facility's potential to emit (PTE) for the Title V, PSD, and nonattainment permit regulations.

INCLUDE ANY OTHER INFORMATION NEEDED TO COMPLETE AN APPLICABILITY DETERMINATION OR THAT IS RELEVENT TO YOUR FACILITY'S NOTICE OF INTENT OR PERMIT.

EPA Applicability Determination Index for 40 CFR 60, 61, 63, etc: <u>http://cfpub.epa.gov/adi/</u>

To save paper and to standardize the application format, delete this sentence, and begin your submittal for this attachment on this page.

Table for State Regulations:

<u>State</u> <u>Regulation</u> Citation	Title	Applies? Enter Yes or No	Unit(s) or Facility	Justification: (You may delete instructions or statements that do not apply in the justification column to shorten the document.)
20.2.1 NMAC	General Provisions	Yes	Facility	General Provisions apply to Notice of Intent, Construction, and Title V permit applications.
20.2.3 NMAC	Ambient Air Quality Standards NMAAQS	Yes	Facility	20.2.3 NMAC is a State Implementation Plan (SIP) approved regulation that limits the maximum allowable concentration of, Sulfur Compounds, Carbon Monoxide and Nitrogen Dioxide.
20.2.7 NMAC	Excess Emissions	Yes	Facility	This facility is subject to emissions limits in a permit or numerical emissions standards in a federal or state regulation.
20.2.61.109 NMAC	Smoke & Visible Emissions	Yes	21, RR_EN G	Units 21 and RR_ENG is limited to opacity of 20% per 20.2.61.109 NMAC.
20.2.70 NMAC	Operating Permits	No	Facility	The facility does not have potential to emit (PTE) of 100 tpy or more of any regulated air pollutant other than HAPs; and/or a HAPs PTE of 10 tpy or more for a single HAP or 25 or more tpy for combined HAPs
20.2.71 NMAC	Operating Permit Fees	No	Facility	If subject to 20.2.70 NMAC and your permit includes numerical ton per year emission limits, you are subject to 20.2.71 NMAC and normally applies to the entire facility.
20.2.72 NMAC	Construction Permits	Yes	Facility	VHCC is applicable to "Construction Permit" 20.2.72 NMAC.
20.2.73 NMAC	NOI & Emissions Inventory Requirements	Yes	Facility	The facility is applicable to the Emissions Inventory Reporting per 20.2.73.300 NMAC since the facility is subject to 20.2.72.
20.2.74 NMAC	Permits – Prevention of Significant Deterioration (PSD)	No	Facility	The facility is not a major PSD source
20.2.75 NMAC	Construction Permit Fees	Yes	Facility	This regulation applies to this facility since VHCC is applying for a permit pursuant to 20.2.72 NMAC.
20.2.77 NMAC	New Source Performance	Yes	1b, 1c, 14, 20, 9, 26, 8, 3, 3a, 6, 4, 4a, 7, 16, 15, 17, 10, 18, 2, 2a, 19, 5, 5a, 24, 12, 22, 11, 25, 13, 21, RR_2,	This is a stationary source which is subject to the requirements of 40 CFR Part 60, Subpart OOO or stationary sources subject to the requirements of 40 CFR Part 60, Subpart IIII.

<u>State</u> <u>Regulation</u> Citation	Title	Applies? Enter Yes or No	Unit(s) or Facility	Justification: (You may delete instructions or statements that do not apply in the justification column to shorten the document.)
			RR_3, RR_4, RR_5, RR_EN G	
20.2.78 NMAC	Emission Standards for HAPS	No	Units Subject to 40 CFR 61	This facility does not emit hazardous air pollutants which are subject to the requirements of 40 CFR Part 61.
20.2.80 NMAC	Stack Heights	No		No citation applicable.
20.2.82 NMAC	MACT Standards for source categories of HAPS	Yes	21, RR_EN G	This facility is potentially subject to the requirements of 40 CFR Part 63, Subpart ZZZZ.

Table for Applicable Federal Regulations:

Federal Regulation Citation	Title	Applies? Enter Yes or No	Unit(s) or Facility	Justification:
40 CFR 50	NAAQS	Yes	Facility	Defined as applicable at 20.2.72, Any national ambient air quality standard
NSPS 40 CFR 60, Subpart A	General Provisions	Yes	1b, 1c, 14, 20, 9, 26, 8, 3, 3a, 6, 4, 4a, 7, 16, 15, 17, 10, 18, 2, 2a, 19, 5, 5a, 24, 12, 22, 11, 25, 13, 21, RR_2, RR_3, RR_4, RR_5, RR_EN G	Subparts IIII and OOO in 40 CFR 60 apply to this facility.
NSPS 40 CFR 60, Subpart 000	Standards of Performance for Nonmetallic Mineral Processing Plants	Yes	1b, 1c, 14, 20, 9, 26, 8, 3, 3a, 6, 4, 4a, 7, 16, 15, 17, 10, 18, 2, 2a, 19, 5, 5a, 24, 12, 22, 11, 25, 13, RR_2, RR_3, RR_4, RR_5,	The provisions of this subpart are applicable to the following affected facilities in fixed or portable nonmetallic mineral processing plants: each crusher, grinding mill, screening operation, bucket elevator, belt conveyor, bagging operation, storage bin, enclosed truck or railcar loading station. Also, crushers and grinding mills at hot mix asphalt facilities that reduce the size of nonmetallic minerals embedded in recycled asphalt pavement and subsequent affected facilities up to, but not including, the first storage silo or bin are subject to the provisions of this subpart.
NSPS 40 CFR 60 Subpart IIII	Standards of performance for Stationary Compression Ignition Internal Combustion Engines	Yes	21, RR_EN G	If the plant is only located at the site for less than 12 months, the plant engine is defined by EPA as a "non-road" engine, and as such is not applicable to 40 CFR Part 60 Subpart IIII. If the plant operates at the site for more than 12 months, Unit RR_ENG would then be applicable to Subpart IIII.

Federal Regulation Citation	Title	Applies? Enter Yes or No	Unit(s) or Facility	Justification:
NESHAP 40 CFR 61 Subpart A	General Provisions	No	Units Subject to 40 CFR 61	Applies if any other Subpart in 40 CFR 61 applies.
MACT 40 CFR 63, Subpart A	General Provisions	Yes	21, RR_EN G	Applies if any other Subpart in 40 CFR 63 applies.
MACTNational Emissions Standards for Hazardous Air Pollutants for21,40 CFR 63 Subpart ZZZZStationary Reciprocating Internal Combustion Engines (RICE MACT)YesRR_EN G		RR_EN	If the plant is only located at the site for less than 12 months, the plant engine is defined by EPA as a "non-road" engine, and as such is not applicable to 40 CFR Part 63 Subpart ZZZZ. If the plant operates at the site for more than 12 months, Unit RR_ENG would then be applicable to Subpart ZZZZ. If Unit RR_ENG meets the requirement of Subpart IIII it also meets the requirement of Subpart ZZZZ.	

Section 14

Operational Plan to Mitigate Emissions

(Submitting under 20.2.70, 20.2.72, 20.2.74 NMAC)

Title V Sources (20.2.70 NMAC): By checking this box and certifying this application the permittee certifies that it has developed an <u>Operational Plan to Mitigate Emissions During Startups, Shutdowns, and Emergencies</u> defining the measures to be taken to mitigate source emissions during startups, shutdowns, and emergencies as required by 20.2.70.300.D.5(f) and (g) NMAC. This plan shall be kept on site to be made available to the Department upon request. This plan should not be submitted with this application.

- NSR (20.2.72 NMAC), PSD (20.2.74 NMAC) & Nonattainment (20.2.79 NMAC) Sources: By checking this box and certifying this application the permittee certifies that it has developed an <u>Operational Plan to Mitigate Source Emissions During</u> <u>Malfunction, Startup, or Shutdown</u> defining the measures to be taken to mitigate source emissions during malfunction, startup, or shutdown as required by 20.2.72.203.A.5 NMAC. This plan shall be kept on site to be made available to the Department upon request. This plan should not be submitted with this application.
- ☑ Title V (20.2.70 NMAC), NSR (20.2.72 NMAC), PSD (20.2.74 NMAC) & Nonattainment (20.2.79 NMAC) Sources: By checking this box and certifying this application the permittee certifies that it has established and implemented a Plan to Minimize Emissions During Routine or Predictable Startup, Shutdown, and Scheduled Maintenance through work practice standards and good air pollution control practices as required by 20.2.7.14.A and B NMAC. This plan shall be kept on site or at the nearest field office to be made available to the Department upon request. This plan should not be submitted with this application.

The preliminary operational plan defining the measures to be taken to mitigate source emissions during malfunction, startup, or shutdown are as follows:

STARTUP AND SHUTDOWN PROCEDURES

Water Truck

<u>Startup</u>

Check water supply, inspect nozzles and open all associated valves before startup.

Shutdown

Inspect nozzles and close all associated valves after shutdown.

Processing Plant Water Spray Dust Suppression System

<u>Startup</u>

Daily visual inspection of water spray operation prior to material processing. All plant water sprays, required to maintain opacity limits to required levels, will be operational prior to material processing.

<u>Shutdown</u>

No additional requirements are proposed.

OPERATIONS PLAN

Water Truck Operation

A water truck to be operated, as needed, at plant site disturbed areas, storage piles, and haul truck traffic areas to prevent excess visible emissions. These activities include; unpaved haul roads, storage piles and active disturbed

areas. Water spray application rate will be determined based on the occurrence of visible dust and may vary depending on existing road conditions, traffic, wind, temperature, and precipitation.

Processing Plant Water Spray Dust Suppression System

Water spray dust suppression will be operated at all times when pertinent equipment is operating to maintain equipment opacity limits.

MAINTENANCE PLAN

Water Truck Maintenance

A safety check and equipment check will be conducted daily. Normal vehicle maintenance will be performed regularly or as needed.

Processing Plant Water Spray Dust Suppression Maintenance

Visual inspections will be made monthly to verify proper functioning of control equipment. When emissions are suspected to approach compliance values, equipment will be checked for problems and repaired.

No startup/shutdown emission rates are expected to be greater than what is proposed for normal operations of the plant. All controls will be operating and functioning correctly prior to the start of production.

Section 15

Alternative Operating Scenarios

(Submitting under 20.2.70, 20.2.72, 20.2.74 NMAC)

Alternative Operating Scenarios: Provide all information required by the department to define alternative operating scenarios. This includes process, material and product changes; facility emissions information; air pollution control equipment requirements; any applicable requirements; monitoring, recordkeeping, and reporting requirements; and compliance certification requirements. Please ensure applicable Tables in this application are clearly marked to show alternative operating scenario.

Construction Scenarios: When a permit is modified authorizing new construction to an existing facility, NMED includes a condition to clearly address which permit condition(s) (from the previous permit and the new permit) govern during the interval between the date of issuance of the modification permit and the completion of construction of the modification(s). There are many possible variables that need to be addressed such as: Is simultaneous operation of the old and new units permitted and, if so for example, for how long and under what restraints? In general, these types of requirements will be addressed in Section A100 of the permit, but additional requirements may be added elsewhere. Look in A100 of our NSR and/or TV permit template for sample language dealing with these requirements. Find these permit templates at: www.env.nm.gov/air-quality/permitting-section-procedures-and-guidance/. Compliance with standards must be maintained during construction, which should not usually be a problem unless simultaneous operation of old and new equipment is requested.

In this section, under the bolded title "Construction Scenarios", specify any information necessary to write these conditions, such as: conservative-realistic estimated time for completion of construction of the various units, whether simultaneous operation of old and new units is being requested (and, if so, modeled), whether the old units will be removed or decommissioned, any PSD ramifications, any temporary limits requested during phased construction, whether any increase in emissions is being requested as SSM emissions or will instead be handled as a separate Construction Scenario (with corresponding emission limits and conditions, etc.

NA

Section 16

Air Dispersion Modeling

- Minor Source Construction (20.2.72 NMAC) and Prevention of Significant Deterioration (PSD) (20.2.74 NMAC) ambient impact analysis (modeling): Provide an ambient impact analysis as required at 20.2.72.203.A(4) and/or 20.2.74.303 NMAC and as outlined in the Air Quality Bureau's Dispersion Modeling Guidelines found on the Planning Section's modeling website. If air dispersion modeling has been waived for one or more pollutants, attach the AQB Modeling Section modeling waiver approval documentation.
- 2) SSM Modeling: Applicants must conduct dispersion modeling for the total short term emissions during routine or predictable startup, shutdown, or maintenance (SSM) using realistic worst case scenarios following guidance from the Air Quality Bureau's dispersion modeling section. Refer to "Guidance for Submittal of Startup, Shutdown, Maintenance Emissions in Permit Applications (<u>http://www.env.nm.gov/aqb/permit/app_form.html</u>) for more detailed instructions on SSM emissions modeling requirements.
- 3) Title V (20.2.70 NMAC) ambient impact analysis: Title V applications must specify the construction permit and/or Title V Permit number(s) for which air quality dispersion modeling was last approved. Facilities that have only a Title V permit, such as landfills and air curtain incinerators, are subject to the same modeling required for preconstruction permits required by 20.2.72 and 20.2.74 NMAC.

What is the purpose of this application?	Enter an X for each purpose that applies
New PSD major source or PSD major modification (20.2.74 NMAC). See #1 above.	
New Minor Source or significant permit revision under 20.2.72 NMAC (20.2.72.219.D NMAC). See #1 above. Note: Neither modeling nor a modeling waiver is required for VOC emissions.	x
Reporting existing pollutants that were not previously reported.	
Reporting existing pollutants where the ambient impact is being addressed for the first time.	
Title V application (new, renewal, significant, or minor modification. 20.2.70 NMAC). See #3 above.	
Relocation (20.2.72.202.B.4 or 72.202.D.3.c NMAC)	
Minor Source Technical Permit Revision 20.2.72.219.B.1.d.vi NMAC for like-kind unit replacements.	
Other: i.e. SSM modeling. See #2 above.	
This application does not require modeling since this is a No Permit Required (NPR) application.	
This application does not require modeling since this is a Notice of Intent (NOI) application (20.2.73 NMAC).	
This application does not require modeling according to 20.2.70.7.E(11), 20.2.72.203.A(4), 20.2.74.303, 20.2.79.109.D NMAC and in accordance with the Air Quality Bureau's Modeling Guidelines.	

Check each box that applies:

- □ See attached, approved modeling **waiver for all** pollutants from the facility.
- □ See attached, approved modeling **waiver for some** pollutants from the facility.
- Attached in Universal Application Form 4 (UA4) is a **modeling report for all** pollutants from the facility.
- Attached in UA4 is a **modeling report for some** pollutants from the facility.
- □ No modeling is required.

Universal Application 4

Air Dispersion Modeling Report

Refer to and complete Section 16 of the Universal Application form (UA3) to assist your determination as to whether modeling is required. If, after filling out Section 16, you are still unsure if modeling is required, e-mail the completed Section 16 to the AQB Modeling Manager for assistance in making this determination. If modeling is required, a modeling protocol would be submitted and approved prior to an application submittal. The protocol should be emailed to the modeling manager. A protocol is recommended but optional for minor sources and is required for new PSD sources or PSD major modifications. Fill out and submit this portion of the Universal Application form (UA4), the "Air Dispersion Modeling Report", only if air dispersion modeling is required for this application submittal. This serves as your modeling report submittal and should contain all the information needed to describe the modeling. No other modeling report or modeling protocol should be submitted with this permit application.

16-	16-A: Identification				
1	Name of facility:	Kirtland Pit			
2	Name of company:	Vernon Hamilton Construction Company (VHCC), LLC			
3	Current Permit number:	New Permit			
4	Name of applicant's modeler:	Paul Wade			
5	Phone number of modeler:	505 830-9680 x6			
6	E-mail of modeler:	pwade@montrose-env.com			

16	16-B: Brief					
1	Was a modeling protocol submitted and approved? 12/04/2024 – Change in model protocol includes revise the Ozone background to Substation instead of Bloomfield. Substation is closer to site. Ozone background used is the season/hour format from Substation Years 2021-2023.	Yes⊠	No□			
2	Why is the modeling being done?	New Facility				
3	Describe the permit changes relevant to the modeling.					
	New Facility					
4	What geodetic datum was used in the modeling?	NAD83				
5	How long will the facility be at this location? 1 Year, Relocation Allowe					
6	Is the facility a major source with respect to Prevention of Significant Deterioration (PSD)?	Yes□	No⊠			

7	Identify the Air Quality Control Region (AQCF	R) in which the facility is located	014			
	List the PSD baseline dates for this region (minor or major, as appropriate).					
8	NO2	06/06/1989	06/06/1989			
0	SO2	08/07/1978				
	PM10	08/07/1978				
	PM2.5 N/A					
	Provide the name and distance to Class I area	as within 50 km of the facility (300 km for PSD perm	nits).			
9	Mesa Verde National Park – 47 km					
10	y Is the facility located in a non-attainment area? If so describe below Yes□ No⊠			No⊠		
11	Describe any special modeling requirements, such as streamline permit requirements.					

16	16-C: Modeling History of Facility								
	-	Describe the modeling history of the facility, including the air permit numbers, the pollutants modeled, the National Ambient Air Quality Standards (NAAQS), New Mexico AAQS (NMAAQS), and PSD increments modeled. (Do not include modeling waivers).							
	Pollutant	Latest permit and modification number that modeled the pollutant facility-wide.	Date of Permit	Comments					
	СО	New Permit							
	NO ₂	New Permit							
1	SO ₂	New Permit							
	H ₂ S	N/A							
	PM2.5	New Permit							
	PM10	New Permit							
	Lead	New Permit							
	Ozone (PSD only)	Not a PSD Source							
	NM Toxic Air Pollutants (20.2.72.402 NMAC)	N/A							

16-	16-D: Modeling performed for this application								
		mplicated modeling a		nitted with this applic llutant, i.e., culpabilit		DI and cumulative			
1	Pollutant	ROI	Cumulative analysis	Culpability analysis	Waiver approved	Pollutant not emitted or not changed.			
	СО	\boxtimes							

NO ₂	\boxtimes	\boxtimes			
SO ₂	\boxtimes				
H ₂ S					\boxtimes
PM2.5	\boxtimes	\boxtimes			
PM10	\boxtimes	\boxtimes	\boxtimes		
Lead	\boxtimes				
Ozone				\boxtimes	
State air toxic(s) (20.2.72.402 NMAC)				\boxtimes	

16	16-E: New Mexico toxic air pollutants modeling							
1	List any New Mexico toxic air pollutants (NMTAPs) from Tables A and B in 20.2.72.502 NMAC that are modeled for this application.							
	List any NMTAPs that are emitted but not modeled because stack height correction factor. Add additional rows to the table below, if required.							
2	Pollutant	Emission Rate (pounds/hour)	Emission Rate Screening Level (pounds/hour)	Stack Height (meters)	Correction Factor	Emission Rate/ Correction Factor		
	N/A							

16-F: Modeling options					
1	Was the latest version of AERMOD used with regulatory default options? If not explain below.	Yes⊠	No□		
	Version 23132				

16-	16-G: Surrounding source modeling						
1	Date of surround	ing source retrieval	11/06/2024				
2	sources modeled table below to de PM10 and PM2.5	If the surrounding source inventory provided by the Air Quality Bureau was believed to be inaccurate, describe how the sources modeled differ from the inventory provided. If changes to the surrounding source inventory were made, use the table below to describe them. Add rows as needed. PM10 and PM2.5 GCP emission sources were set to 71.25 tpy and 17.875 tpy, respectively. GCP2 and GCP3 hours of operation were limited to daylight hours only.					
AQB Source ID Description of Corrections							
26718@1 Location was changed from 784150.84E; 3949359N to 761654E; 4072417N).84E; 3949359N to 761654E; 4072417N				

16-	16-H: Building and structure downwash							
1	How many buildings are present at the facility?	None						
2	How many above ground storage tanks are present at the facility?	1						
3	Was building downwash modeled for all buildings and	ownwash modeled for all buildings and tanks? If not explain why below. Yes□ No⊠						
	No buildings or tanks that would influence point source emissions							
4	Building comments							

16-	I: Recepto	ors and m	nodeled p	property boun	dary			
1	continuous wal grade that wou area within the Area is required receptors shall	lls, or other co ild require spe property ma d in order to e be placed wit	ontinuous barr ecial equipmen y be identified exclude recepto hin the proper	c entry is effectively pr iers approved by the D it to traverse. If a large with signage only. Pub ors from the facility pro ty boundaries of the fa r at the facility that def	epartment, such as re property is complete lic roads cannot be p operty. If the facility o acility.	ugged ph ely enclos art of a F does not	ysical terrain sed by fencing Restricted Are	with a steep g, a restricted a. A Restricted
	Fencing and Ro	ough Terrain						
2	•	•	• • •	ccessible roads in the re restricted area?	estricted area.		Yes	No⊠
3	Are restricted a	area boundary	v coordinates in	ncluded in the modelin	g files?		Yes⊠	No□
	Describe the re	ceptor grids a	and their spacio	ng. The table below ma	ay be used, adding ro	ws as nee	eded.	
	Grid Type	Shape	Spacing	Start distance from restricted area or center of facility	End distance from restricted area or center of facility	Comme	ents	
4	Very Fine	Cartesian	50 meters	Border	500 Meters			
4	Very Fine	Cartesian	100 meters	500 Meters	1 Kilometers			
	Fine	Cartesian	250 meters	1 Kilometers	3 Kilometers			
	Course	Cartesian	500 meters	3 Kilometers	5 Kilometers			
	Course	Cartesian	1000 meters	10 Kilometers	50 Kilometers			
5	Describe recep	tor spacing al	ong the fence l	line.				
	25 Meters							
6	Describe the PS							
	100 meters on	border and w	ithin boundary	1				

16-J: Modeling Scenarios

Identify, define, and describe all modeling scenarios. Examples of modeling scenarios include using different production rates, times of day, times of year, simultaneous or alternate operation of old and new equipment during transition periods, etc. Alternative operating scenarios should correspond to all parts of the Universal Application and should be fully described in Section 15 of the Universal Application (UA3).

The hours of operation are presented below in Table 1. They represent daylight hours for the months of March through October and 8 AM to 5 PM for the months of November through February. The aggregate crushing plant will limit the daily throughput per month to the values listed in Table 2. For combustion modeling hours of operation are found in Table 1.

			TABL	E 1: Aggr	egate Crus	ner Hours	of Opera	ation (MS	<u> </u>			
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
12:00 AN	1 0	0	0	0	0	0	0	0	0	0	0	0
1:00 AM	0	0	0	0	0	0	0	0	0	0	0	0
2:00 AM	0	0	0	0	0	0	0	0	0	0	0	0
3:00 AM	0	0	0	0	0	0	0	0	0	0	0	0
4:00 AM	0	0	0	0	0	0	0	0	0	0	0	0
5:00 AM	0	0	0	1	1	1	1	1	0.5	0	0	0
6:00 AM	0	0	1	1	1	1	1	1	1	1	0	0
7:00 AM	0	0	1	1	1	1	1	1	1	1	0	0
8:00 AM	1	1	1	1	1	1	1	1	1	1	1	1
9:00 AM	1	1	1	1	1	1	1	1	1	1	1	1
10:00 AN	1 1	1	1	1	1	1	1	1	1	1	1	1
11:00 AN	1 1	1	1	1	1	1	1	1	1	1	1	1
12:00 PN	1 1	1	1	1	1	1	1	1	1	1	1	1
1:00 PM	1	1	1	1	1	1	1	1	1	1	1	1
2:00 PM	1	1	1	1	1	1	1	1	1	1	1	1
3:00 PM	1	1	1	1	1	1	1	1	1	1	1	1
4:00 PM	1	1	1	1	1	1	1	1	1	1	1	1
5:00 PM	0	0	1	1	1	1	1	1	1	1	0	0
6:00 PM	0	0	0	1	1	1	1	1	0.5	0	0	0
7:00 PM	0	0	0	0	0	0	0	0	0	0	0	0
8:00 PM	0	0	0	0	0	0	0	0	0	0	0	0
9:00 PM	0	0	0	0	0	0	0	0	0	0	0	0
10:00 PN	1 0	0	0	0	0	0	0	0	0	0	0	0
11:00 PN	1 0	0	0	0	0	0	0	0	0	0	0	0
Total	9	9	12	14	14	14	14	14	13	12	9	9
		ТА	BLE 2: Agg	gregate D	aily Produ	ction Rate	s		_			
Γ		Mor	nth			Tons Pe	r Dav					

TABLE 1: Aggregate Crusher Hours of Operation (MST)

Month	Tons Per Day
November through February	2800
March through October	3500

Since the daily production rate is less than the proposed hours of operation running at maximum hourly production rate, two modeling scenarios will be performed, one for morning and one for afternoon hours. The model hours for particulate modeling are presented in Tables 3 and 4.

	-					ing widu		irs of Op	-	19131)		
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
12:00 AM	0	0	0	0	0	0	0	0	0	0	0	0
1:00 AM	0	0	0	0	0	0	0	0	0	0	0	0
2:00 AM	0	0	0	0	0	0	0	0	0	0	0	0
3:00 AM	0	0	0	0	0	0	0	0	0	0	0	0
4:00 AM	0	0	0	0	0	0	0	0	0	0	0	0
5:00 AM	0	0	0	1	1	1	1	1	0.5	0	0	0
6:00 AM	0	0	1	1	1	1	1	1	1	1	0	0
7:00 AM	0	0	1	1	1	1	1	1	1	1	0	0
8:00 AM	1	1	1	1	1	1	1	1	1	1	1	1
9:00 AM	1	1	1	1	1	1	1	1	1	1	1	1
10:00 AM	1	1	1	1	1	1	1	1	1	1	1	1
11:00 AM	1	1	1	1	1	1	1	1	1	1	1	1
12:00 PM	1	1	1	1	1	1	1	1	1	1	1	1
1:00 PM	1	1	1	1	1	1	1	1	1	1	1	1
2:00 PM	1	1	1	1	1	1	1	1	1	1	1	1
3:00 PM	1	1	1	0	0	0	0	0	0.5	1	1	1
4:00 PM	0	0	0	0	0	0	0	0	0	0	0	0
5:00 PM	0	0	0	0	0	0	0	0	0	0	0	0
6:00 PM	0	0	0	0	0	0	0	0	0	0	0	0
7:00 PM	0	0	0	0	0	0	0	0	0	0	0	0
8:00 PM	0	0	0	0	0	0	0	0	0	0	0	0
9:00 PM	0	0	0	0	0	0	0	0	0	0	0	0
10:00 PM	0	0	0	0	0	0	0	0	0	0	0	0
11:00 PM	0	0	0	0	0	0	0	0	0	0	0	0
Total	8	8	10	10	10	10	10	10	10	10	8	8

TABLE 3: Aggregate Crusher Morning Modeled Hours of Operation (MST)

TABLE 4: Aggregate Crusher Afternoon Modeled Hours of Operation (MST)

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
12:00 AM	0	0	0	0	0	0	0	0	0	0	0	0
1:00 AM	0	0	0	0	0	0	0	0	0	0	0	0
2:00 AM	0	0	0	0	0	0	0	0	0	0	0	0
3:00 AM	0	0	0	0	0	0	0	0	0	0	0	0
4:00 AM	0	0	0	0	0	0	0	0	0	0	0	0
5:00 AM	0	0	0	0	0	0	0	0	0	0	0	0
6:00 AM	0	0	0	0	0	0	0	0	0	0	0	0
7:00 AM	0	0	0	0	0	0	0	0	0	0	0	0
8:00 AM	0	0	1	0	0	0	0	0	0.5	1	0	0

		9:00 AM	1	1	1	1	1	1	1	1	1	1	1	1	
		10:00 AM	1	1	1	1	1	1	1	1	1	1	1	1	
		11:00 AM	1	1	1	1	1	1	1	1	1	1	1	1	
		12:00 PM	1	1	1	1	1	1	1	1	1	1	1	1	
		1:00 PM	1	1	1	1	1	1	1	1	1	1	1	1	
		2:00 PM	1	1	1	1	1	1	1	1	1	1	1	1	
		3:00 PM	1	1	1	1	1	1	1	1	1	1	1	1	
		4:00 PM	1	1	1	1	1	1	1	1	1	1	1	1	
		5:00 PM	0	0	1	1	1	1	1	1	1	1	0	0	
		6:00 PM	0	0	0	1	1	1	1	1	0.5	0	0	0	
		7:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	
		8:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	
		9:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	
		10:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	
		11:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	
		Total	8	8	10	10	10	10	10	10	10	10	8	8	
	ever Wer	n scenarios fo ning hours. Th re emission fa	nese hou ctor sets	irs consis used to	st of low	wind sp ission ra	eeds and ites or ho	stable b urs of op	oundary peration	r layers. ?		rs and S	cenario 2	2 has earl [.]	У
3	-	s question per factors used f							related f	actor set	s, not to	Yes□		No⊠	
4		, describe fac dify or duplica rces:													
5	If ho	ourly, variable	emissio	n rates w	vere usec	l that w	ere not d	escribed	above, o	describe	them belo	ow.			
	Wer belo	e different er w.	nission ra	ates use	d for sho	rt-term	and annu	al mode	ling? If s	o descrit)e	Yes⊠		No□	
6	anni abov tons	PM10 and PN ual throughpu ve, this is equ s per year and rly factor of 0	it. Based ivalent to the proc	d on the o 3410 h duction,	facility op ours per based or	perating year or maxim	at 350 to 1,193,50 um hourl	ons per h 0 tons pe y produe	nour and er year. ction and	the dail Since the d hours b	y through e annual p ased on d	put limit production laily thro	ts found on limit i	in Table 2 s 350,000	<u>2</u>)

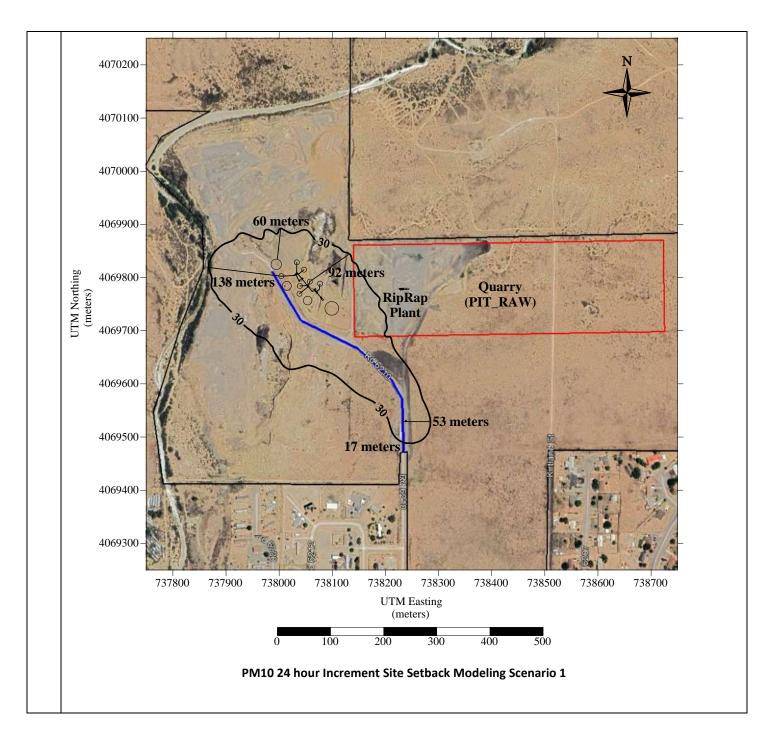
16-	-K: NO ₂ I	Vodeling		
	Which type Check all th	s of NO2 modeling were used? at apply.		
	\boxtimes	ARM2 – Initial Site		
1		100% NO _x to NO ₂ conversion		
	\boxtimes	PVMRM – Relocation Modeling		
		OLM		
		Other:		
	Describe th	e NO2 modeling.		
2	(Main Plant 2021-2023 proposed co diminishing towards bac The ozone o three years	te modeling only Unit RR_ENG was modeled using ARM2. For relocation modelin Generator/Engine) were modeled using PVMRM. The input for ozone into the P monitor data formatted into season/hour data following EPA guidance. Based on onservative NO ₂ /NO _x ISR ratio for Diesel-fired RICE is 0.15. For neighboring source impact on ambient NO ₂ /NO _x ratios as a plume is transported farther downwind of ckground ambient NO ₂ /NO _x ratios, a default ISR of 0.30 based on the NMED Mode concentration for each hour of the day per season (winter, spring, summer, and fa 2021-2023, of the average of the highest for each year for each season/hour.	/MRM model wa EPA's ISR datab es, since the ISR lue to mixing an eling Guidelines	as Substation bases, a has a d reaction will be used.
3		lt NO2/NOx ratios (0.5 minimum, 0.9 maximum or equilibrium) used? If not d justify the ratios used below.	Yes⊠	No□
4	Describe th	e design value used for each averaging period modeled.		
		n percentile as calculated by AERMOD nest Annual Average of Three Years:		

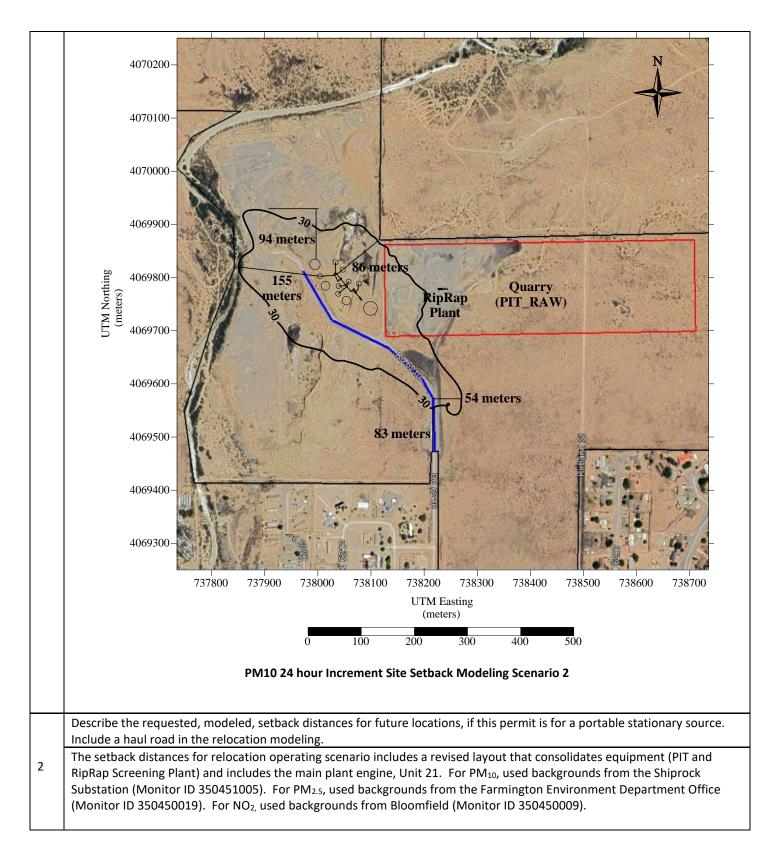
16	-L: Ozone Analysis
1	 NMED has performed a generic analysis that demonstrates sources that are minor with respect to PSD do not cause or contribute to any violations of ozone NAAQS. The analysis follows. The basis of the ozone SIL is documented in <i>Guidance on Significant Impact Levels for Ozone and Fine Particles in the Prevention of Significant Deterioration Permitting Program</i>, EPA, April 17, 2018 and associated documents. NMED accepts this SIL basis and incorporates it into this permit record by reference. Complete documentation of the ozone concentration analysis using MERPS is included in the New Mexico Air Quality Bureau Air Dispersion Modeling Guidelines.
2	The MERP values presented in Table 10 and Table 11 of the NM AQB Modeling Guidelines that produce the highest concentrations indicate that facilities emitting no more than 250 tons/year of NO _x and no more than 250 tons/year of VOCs will cause less formation of O ₃ than the O ₃ significance level. $[O_3]_{8-hour} = \left(\frac{250\frac{ton}{yr}}{340_{MERP_{NOX}}} + \frac{250\frac{ton}{yr}}{4679_{MERP_{VOC}}}\right) \times 1.96 \mu\text{g/m}^3$
	=1.546 μ g/m ³ , which is below the significance level of 1.96 μ g/m ³ . Sources that produce ozone concentrations below the ozone SIL do not cause or contribute to air contaminant levels exceeding the ozone NAAQS.

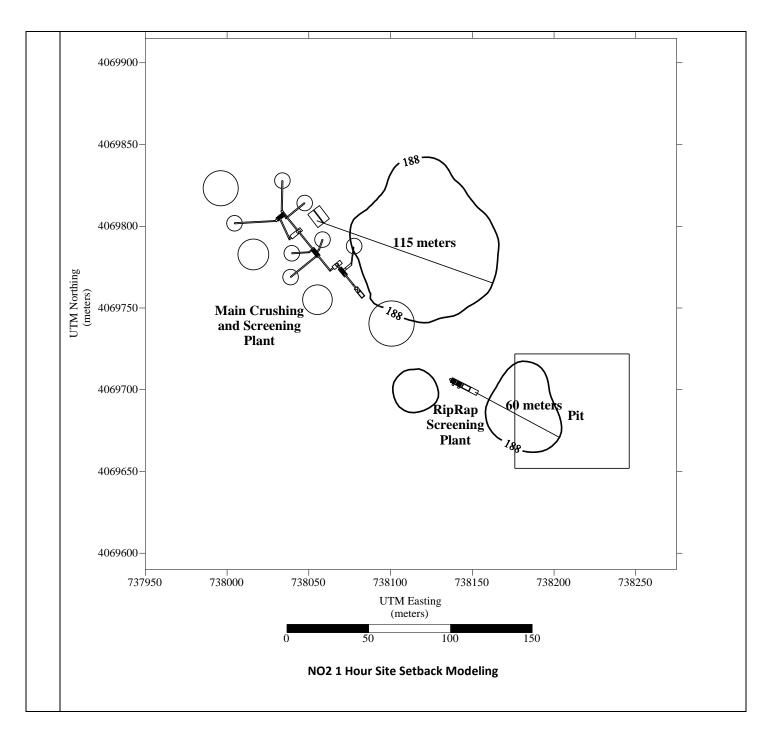
3	VOCs? Sources that emi	t at least 250 tons per ye	f NOx or at least 250 tons ar of NOx or at least 250 t iire an individual analysis.	ons per year of	Yes□		No⊠
	•	rces or PSD major modific od was used describe belo	cations, if MERPs were use	ed to account for	ozone fil	l out the i	information
5	NO _x (ton/yr)	MERP _{NOX}	VOCs (ton/yr)	MERP _{VOC}		[O ₃] _{8-hou}	r
		• •					

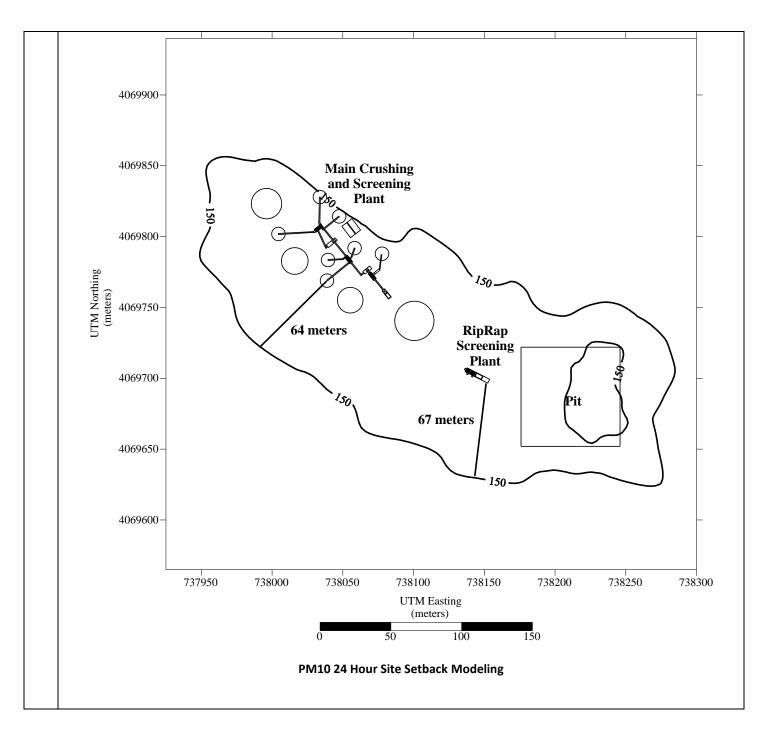
	Select the polluta	ants for which plume deplet	ion modeling was used.			
	D PM	2.5				
	⊠ PM	10				
	□ No	ne				
	· · ·		Include the source of informatio			
			e deposition. Plume deposition			
	-		ume travels downwind. Therefore			
	-	. –	he effect of plume deposition an	-	-	
			particle mass fraction, and partic	cle density are required inpu	its to the model to	
	perform this fund	ction.				
		-	t on unpaved roads; material ha		d combustion will	
	use the particle s	size distribution found in the	NMED Modeling Section approv	ved values.		
	The mass-mean particle diameters were calculated using the formula:					
		$d = ((d^{3}_{1} + d^{2}_{1}d_{2} + d_{1}d^{2}_{2} + d^{3}_{1}d^{2}_{2})$	³ ₂) / 4) ^{1/3}			
	Where:	d = mass-mean pa	rticle diameter			
			rticle size category range			
			article size category range			
	Representative a	verage particle densities we	re obtained from NMED accepte	d values.		
		Material	Density (g/cm ³)	Reference		
		Road Dust	2.5	NMED Value		
		Combustion	1.5	NMED Value		
		Fugitive Dust	2.5	NMED Value		
			I I			

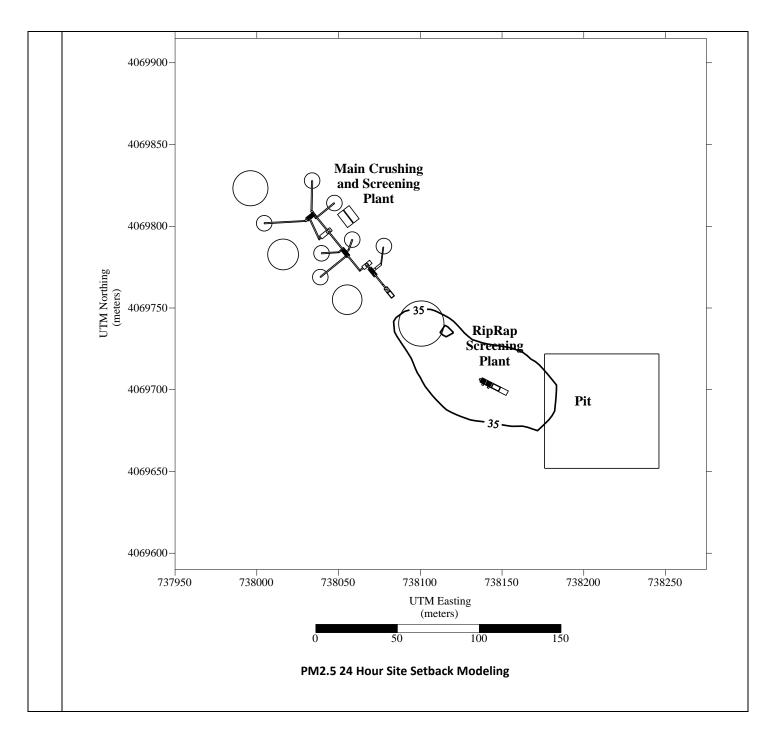
	Road Vehicle Fugitive Dust	Deposition Parameters	
Particle Size Category (μm)	Mass Mean Particle Diameter (μm)	Mass Weighted Size Distribution (%)	Density (g/cm ³)
(p)	 PM1	•	
0 – 2.5	1.57	25.0	2.5
2.5 – 10	6.91	75.0	2.5
Based on NMED Model (Guideline – June 2024 (Vehicle Fugi	tive)	
	Combustion Source Dep	position Parameters	
Particle Size	Mass Mean	Mass Weighted	Density
Category	Particle Diameter	Size Distribution	(g/cm ³)
(μm)	(μm) ΡΜ1	(%) 0	
0 - 2.5	1.57	100.0	1.5
	Guideline – June 2024 (Combustion		_
Particle Size	Material Handling (Fugitive) Dust Mass Mean	Mass Weighted	
Category	Particle Diameter	Size Distribution	Density
(μm)	(μm)	(%)	(g/cm³)
	PM1	0	
0 - 2.5	1.57	7.8	2.5
2.5 – 5	3.88	27.0	2.5
5 – 10	7.77	65.2	2.5
Based on NMED Model	Guideline – June 2024 (Coal Handli	ing)	
tons per year of SO ₂ ? Sources	40 tons per year of NO _X or at least that emit at least 40 tons per year ear of SO ₂ are considered to emit	of	NoÞ
tons per year of SO_2 ? Sources NO_x or at least 40 tons per year		r of Yes□	No
tons per year of SO ₂ ? Sources NO _X or at least 40 tons per yes significant amounts of precur	s that emit at least 40 tons per year ear of SO ₂ are considered to emit sors and must account for seconda	r of Yes□	No No No
tons per year of SO ₂ ? Sources NO _x or at least 40 tons per yes significant amounts of precur formation of PM2.5. Was secondary PM modeled	s that emit at least 40 tons per year ear of SO ₂ are considered to emit sors and must account for seconda	r of Irry Yes□ Yes□	No
tons per year of SO ₂ ? Sources NO _x or at least 40 tons per year significant amounts of precur formation of PM2.5. Was secondary PM modeled If MERPs were used to accou	s that emit at least 40 tons per year ear of SO ₂ are considered to emit rsors and must account for seconda for PM2.5?	r of Irry Yes□ Yes□	No
tons per year of SO ₂ ? Sources NO _x or at least 40 tons per year significant amounts of precur formation of PM2.5. Was secondary PM modeled If MERPs were used to accour below.	s that emit at least 40 tons per year ear of SO ₂ are considered to emit sors and must account for seconda for PM2.5? nt for secondary PM2.5 fill out the	rof Yes Yes information below. If another	No
 tons per year of SO ₂ ? Sources NO _x or at least 40 tons per yes significant amounts of precur formation of PM2.5. Was secondary PM modeled If MERPs were used to accou below. Pollutant	s that emit at least 40 tons per year ear of SO ₂ are considered to emit sors and must account for seconda for PM2.5? nt for secondary PM2.5 fill out the	rof Yes Yes information below. If another	No

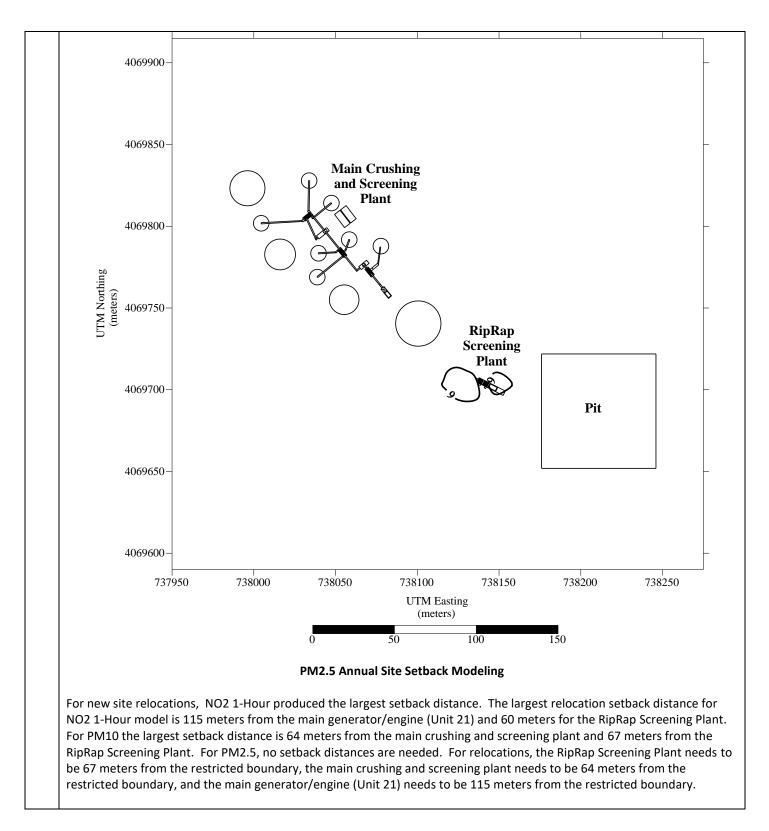

16-N: Setback Distances


Portable sources or sources that need flexibility in their site configuration requires that setback distances be determined between the emission sources and the restricted area boundary (e.g. fence line) for both the initial location and future locations. Describe the setback distances for the initial location.


Initial Site modeling for NO2, PM10 NAAQS, PM10 Increment, and PM2.5 NAAQS shows that, with background and neighboring sources, the NO2 NAAQS, PM10 NAAQS, and PM2.5 NAAQS were not exceeded. The PM10 24 hour Increment setback distances are based on site operating scenarios 1 and 2. For initial site relocations, PM10 24-Hour Increment produced the largest setback distances.


1


Direction at Site	Meters	Max Pollutant
West	155	PM10 24-Hour Scenario 2
South	17	PM10 24-Hour Scenario 1
East	54	PM10 24-Hour Scenario 2
North	94	PM10 24-Hour Scenario 2
Northeast	92	PM10 24-Hour Scenario 2



16-	O: PSD In	creme	nt a	nd Source I	Ds						
1	The unit numbers in the Tables 2-A, 2-B, 2-C, 2-E, 2-F, and 2-I should match the ones in the modeling files. Do these match? If not, provide a cross-reference table between unitYes□No⊠numbers if they do not match below.										
							umber in N	1odeling Files			
	ROAD					HR1-33		0			
	The emission these match?			s 2-E and 2-F shou iy below.	ld match the	ones in t	the model	ng files. Do	Yes□	No⊠	
	•			r material handlin d for Moriarty.	g sources (Em	issions o	calculated	using AP-42 S	ection 13.2.4	are calculated	
							Permit E	mission Rate	Modeled	Emission Rate	
						Ē	PM10	PM2.5	PM10	PM2.5	
	Permit ID	Model	ID	Source I	Description		Lb/Hr	Lb/Hr	Lb/Hr	Lb/Hr	
	PIT_RAW	PIT		Quarry	/ Material		1.09254	0.16544	0.71046	0.10758	
	RR_RAW	PIT			RipRap Screening Plant Raw Material			0.16544	0.71046	0.10758	
	RR_3	PIT		RipRap Screening Plant Stacker Conveyor 1a			0.19672	0.02979	0.12792	0.01937	
	RR_4	PIT		RipRap Screen Conv	ning Plant Stac veyor 1b	ker	0.19672	0.02979	0.12792	0.01937	
2	RR_5	PIT		RipRap Screen Conv	ning Plant Stac	ker	0.26229	0.03972	0.17057	0.02583	
	RR1PILE	PIT		RipRap Screening Plant Stacker Finish Pile		ker	0.32776	0.04963	0.21314	0.03228	
	RR2PILE	PIT		RipRap Screening Plant Stacker Finish Pile		ker	0.32776	0.04963	0.21314	0.03228	
	RR3PILE	PIT		RipRap Screening Plant Stacker Finish Pile		ker	0.43701	0.06618	0.28418	0.04303	
	WPILE	PIT		Waste Pile (Dirt	t Removal to C Pit)	Open	0.10925	0.01654	0.07105	0.01076	
	RAW	RAW	1	Raw Material from Quarry		у	1.09254	0.16544	0.71046	0.10758	
	8	8		Stacker Convey		aste	0.06557	0.00993	0.04264	0.00646	
	7	7			Conveyor		0.06557	0.00993	0.04264	0.00646	
	15	15			Conveyor		0.06557	0.00993	0.04264	0.00646	
	10	10			Conveyor		0.06557	0.00993	0.08528	0.01291	
	24	24			Conveyor		0.13115	0.01986	0.12792	0.01937	
	22	22			Conveyor		0.19672	0.02979	0.15268	0.02312	
	25	25			Conveyor		0.13115	0.01986	0.08528	0.01291	
3	Have the mine been modelee		mpt so	urces or Title V Ins	significant Act	ivities" (Table 2-B)	sources	Yes□	No⊠	
			cremer	nt for which polluta	ants?						
	Unit ID		NO ₂		SO ₂		PM1	0	PM2.5		
4	21			Х	X			X			
	RRGEN			Х	Х			Х			
	RAW							Х			
	1a							Х			

1b 1c 14 20 9 26 8 3 3a 6 4 4a 7 16 15 17 10 18 2 2a 19 5 5a 24				X X X X X X X X X X X X X X X X X X X					
14 20 9 26 8 3 3a 6 4 4a 7 16 15 17 10 18 2 2a 19 5 5a				X X X X X X X X X X X X X X X					
20 9 26 8 3 3a 6 4 4a 7 16 15 17 10 18 2 2a 19 5 5a				X X X X X X X X X X X X X X					
9 26 8 3 3a 6 4 4a 7 16 17 10 18 2 2a 19 5 5a				X X X X X X X X X X X X					
26 8 3 3a 6 4 4a 7 16 15 17 10 18 2 2a 19 5 5a				X X X X X X X X X X					
8 3 3a 6 4 4 4a 7 16 15 17 10 18 2 2 2a 19 5 5 3a				X X X X X X X X X					
3 3a 6 4 4a 7 16 15 17 10 18 2 2a 19 5 5a				X X X X X X X					
3a 6 4 4a 7 16 15 17 10 18 2 2a 19 5 5a				X X X X X X					
6 4 4a 7 16 15 17 10 18 2 2 2 3 19 5 5 3				X X X X X					
4 4a 7 16 15 17 10 18 2 2a 2a 19 5 5 3				X X X					
4a 7 16 15 17 10 18 2 2a 2a 19 5 5 3				X X					
7 16 15 17 10 18 2 2a 19 5 5 3				Х					
16 15 17 10 18 2 2a 19 5 5a									
15 17 10 18 2 2a 19 5 5 3a				X		·			
17 10 18 2 2a 19 5 5a									
10 18 2 2a 19 5 5a		<u> </u>		X					
18 2 2a 19 5 5a				X					
2 2a 19 5 5a		·		X					
2a 19 5 5a				Х					
19 5 5a				Х					
5 5a				Х					
5a				Х					
				Х					
24				Х					
				Х					
12				Х					
22				Х					
11				Х					
25				Х					
13				Х					
FPILE1				Х					
FPILE2				Х					
FPILE3		1		Х					
TL1		1		X					
TL2		1		X					
TL3		1		X					
PIT		1		X					
HR1-33 (ROAD)		+		x					
	otion for sources.	<u>.I</u>			I				
	PSD increment description for sources. (for unusual cases, i.e., baseline unit expanded emissions after baseline date)								
Are all the actual insta This is necessary to ve	allation dates included in Ta rify the accuracy of PSD inc on status is determined for	crement mode	eling. If not p	lease explain how	Yes	No⊠			

16-P: Flare Modeling

1

For each flare or flaring scenario, complete the following

Flare ID (and scenario)	Average Molecular Weight	Gross Heat Release (cal/s)	Effective Flare Diameter (m)
N/A			

16-	Q: Volume and Related Sources						
1	Were the dimensions of volume sources different from standard dimensions in the Air Quality Bureau (AQB) Modeling Guidelines?	Yes⊠	No□				
	If not please explain how increment consumption status is determined for the missing installation dates below.						
	Describe the determination of sigma-Y and sigma-Z for fugitive sources.						
2	For storage piles the model inputs were based on the size of the pile (50 feet)/4.3 (sigma-Y) and a release height of 8 feet or						
3	Describe how the volume sources are related to unit numbers. Or say they are the same.						
5	Same						
	Describe any open pits.						
4	For the site quarry, fugitive dust operation emissions within the open pit will be combined and source. The open pit dimensions are input as 168 meters north, 600 meters east, with a depth 1,008,000 meters ³ . The release height will be zero.						
	For the relocation quarry, fugitive dust operation emissions within the open pit will be combined and input into the open pit source. The open pit dimensions are input as 70 meters north, 70 meters east, with a depth of 10 meters for a volume of 49,000 meters ³ . The release height will be zero.						
	Describe emission units included in each open pit.						
5	Model ID for Initial Site: PIT – Emission Sources; PIT_RAW, RR_RAW, RR_1, RR_2, RR_3, RR_4, RR3PILE, WPILE	RR_5, RR1PILE,	RR2PILE,				
	Model ID for Relocation Site: PIT – Emission Sources; PIT_RAW, WPILE						

16-	R: Background Concentrations		
	Were NMED provided background concentrations used? Identify the background station used below. If non-NMED provided background concentrations were used describe the data that was used.	Yes⊠	No□
	CO: Del Norte High School (350010023)		
1	NO ₂ : Shiprock Substation (350451005)		
	PM2.5: Farmington Environment Department Office (350450019)		
	PM10: Shiprock Substation (350451005)		
	SO ₂ : Bloomfield(350450009)		
	Other:		

		Comments: Backgrounds used for both the initial site and relocation sites.						
	2	Were background concentrations refined to monthly or hourly values? If so describe below. Yes No						
	2	Ozone background for PVMRM relocation modeling was refined to season/hour format. Ozone monitoring used in the background determination was 2021-2023 Shiprock Substation (350451005)						
L		BuckBround e						

16	16-S: Meteorological Data						
1	Was NMED provided meteorological data used? If so select the station used. Four Corners (Farmington)	Yes⊠	No□				
2	If NMED provided meteorological data was not used describe the data set(s) used below. Discu handled, how stability class was determined, and how the data were processed.	iss how missing	data were				
	ΝΑ						

16-T: Terrain							
1	Was complex terrain used in the modeling? If not, describe why below.	Yes⊠	No□				
	Yes, for point sources only. For volume sources and openpit sources, model was run in source	selected flat te	rrain mode.				
2	What was the source of the terrain data?						
2	USGS National Elevation Data (NED)						

16-U: Modeling Files

Describe the modeling files:				
File name (or folder and file name)	Pollutant(s)	Purpose (ROI/SIA, cumulative, culpability analysis, other)		
VHCC ROI Combust	NO2, CO, SO2	ROI/SIA		
VHCC ROI Lead	Lead	ROI/SIA		
VHCC ROI PMS1	PM10, PM2.5 Scenario 1	ROI/SIA		
VHCC ROI PMS2	PM10, PM2.5 Scenario 2	ROI/SIA		
VHCC NO2 CIA	NO2 1 hour CIA	cumulative		
VHCC PM10 CIA S1	PM10 NAAQS and Class 2 Increment Scenario 1	cumulative		
1 VHCC PM10 CIA S2	PM10 NAAQS and Class 2 Increment Scenario 2	cumulative		
VHCC PM25 24hr CIA S1	PM2.5 24 hour NAAQS Scenario 1	cumulative		
VHCC PM25 24hr CIA S2	PM2.5 24 hour NAAQS Scenario 2	cumulative		
VHCC PM25 24hr CIA S2	PM2.5 Annual NAAQS Scenario 1	cumulative		
VHCC PM25 24hr CIA S2	PM2.5 Annual NAAQS Scenario 2	cumulative		
VHCC PM10 CIA S1 CA	PM10 24 hour Increment Scenario 1	culpability analysis		
VHCC PM10 CIA S2 CA	PM10 24 hour Increment Scenario 1	culpability analysis		
VHCC Class 1 NOx	NO2 Annual Class 1 Increment	Class 1		
VHCC Class 1 PMS2	PM10 Class 1 Increment Scenario 1	Class 1		
VHCC Class 1 PMS2	PM10 Class 1 Increment Scenario 2	Class 1		
VHCC Setback Combust	Relocation Combustion Setback	Relocation Setback		
VHCC NO2 1hr Setback	Relocation NO2 1 hour Setback	Relocation Setback		

VHCC Setback PM10 S1	Relocation PM10 Setback Scenario 1	Relocation Setback
VHCC Setback PM10 S2	Relocation PM10 Setback Scenario 2	Relocation Setback
VHCC Setback PM25 S1	Relocation PM2.5 24 hour Setback Scenario 1	Relocation Setback
VHCC Setback PM25 S2	Relocation PM2.5 24 hour Setback Scenario 2	Relocation Setback
VHCC Setback PM25 Annual S1	Relocation PM2.5 Annual Setback Scenario 1	Relocation Setback
VHCC Setback PM25 Annual S2	Relocation PM2.5 Annual Setback Scenario 2	Relocation Setback

16-	V: PSD New or Major Modification Applications							
1	Yes	No⊠						
2	2 If not, did AQB approve an exemption from preconstruction monitoring? Yes□ No⊠							
3	Describe how preconstruction monitoring has been addressed or attach the approved preconstruction monitoring or monitoring exemption.							
	N/A							
4	Describe the additional impacts analysis required at 20.2.74.304 NMAC.							
-	N/A							
5	If required, have ozone and secondary PM2.5 ambient impacts analyses been completed? If so describe below.	Yes□	No⊠					
	N/A							

16 \ \ /• N	Andoling Po	sulte										
LO-VV: I\	If ambient		e exceeded	because of	surrounding	sources, a c	ulpability and	alysis is				
	required fo	r the source e levels for th	to show tha	at the contril	oution from	this source i	s less than th formed? If so	e ,	Yes⊠	No□		
	near "Valle	PM10 24 hour increment modeling was exceeded. When looking at the model inputs the exceedances were located south of the facility near "Valley Scrap Metal - Aluminum Sweat Furnace". Culpability modeling for the 4 receptors that showed exceedance for the dates of exceedance show that VHCC impacts are well below significant levels with the highest impacts from the VHCC facility being 1.8 µg/m ³ .										
	Scenario 1	T		1		1		r	_			
	Year	Month	Day	Average Period	UTNE	UTMN	PSD ALL	VHCC				
	18	10	17	24	737350	4069150	46.871	0.036				
	18	3	11	24	737350	4069150	40.740	0.000				
	20	9	10	24	737350	4069150	39.405	0.021				
	17	10	3	24	737350	4069150	38.829	0.938				
	19	3	31	24	737350	4069150	37.585	0.000				
	17	2	12	24	737350	4069150	36.050	0.000				
	21	1	19	24	737350	4069150	31.047	0.008				
	19	3	20	24	737350	4069150	30.772	0.070				
	21	5	21	24	737450	4069200	51.086	0.006				
	20	3	18	24	737450	4069200	32.117	0.016				
	18	3	3	24	737500	4069200	54.906	0.016				
	17	9	21	24	737500	4069200	50.188	1.803				
	18	3	14	24	737500	4069200	49.583	0.489				
	19	5	26	24	737500	4069200	44.636	0.000				
	18	2	18	24	737500	4069200	42.101	0.000				
	19	2	4	24	737500	4069200	40.630	0.007				
	19	9	28	24	737500	4069200	37.104	0.018				
	21	10	18	24	737500	4069200	35.366	0.091				
	21	10	12	24	737500	4069200	33.378	0.007				

Kirtland Pit

19	9	30	24	737500	4069200	33.105	0.018
17	3	22	24	737500	4069200	31.761	0.040
21	4	15	24	737500	4069200	30.645	0.013
19	10	1	24	737500	4069200	30.355	0.611
18	3	3	24	737500	4069250	33.659	0.020
18	3	14	24	737500	4069250	30.152	0.748
Scenario 2							
			Average				
Year	Month	Day	Period	UTNE	UTMN	PSD ALL	VHCC
18	10	17	24	737350	4069150	46.840	0.005
18	3	11	24	737350	4069150	40.740	0.000
20	9	10	24	737350	4069150	39.407	0.023
17	10	3	24	737350	4069150	37.904	0.013
19	3	31	24	737350	4069150	37.585	0.000
17	2	12	24	737350	4069150	36.050	0.000
21	1	19	24	737350	4069150	31.050	0.010
19	3	20	24	737350	4069150	30.769	0.066
18	3	3	24	737500	4069200	54.900	0.010
18	3	14	24	737500	4069200	49.110	0.017
17	9	21	24	737500	4069200	48.400	0.014
19	5	26	24	737500	4069200	44.636	0.000
18	2	18	24	737500	4069200	42.101	0.000
19	2	4	24	737500	4069200	40.629	0.006
19	9	28	24	737500	4069200	37.099	0.012
21	10	18	24	737500	4069200	35.283	0.008
21	10	12	24	737500	4069200	34.521	1.150
19	9	30	24	737500	4069200	33.101	0.014
17	3	22	24	737500	4069200	31.755	0.034
21	4	15	24	737500	4069200	30.638	0.006

		21		5	21	24	737450	4069200	51.086	0.006							
		20)	3	18	24	737450	4069200	32.113	0.011							
2			-	maximum co	ncentrations	from the	modeling	g analysis. Rows r	nay be modifi	ed, added ai	nd removed fro	om the table b	elow as				
Pollutant, Modeled Time Facility		SSARY. Modeled Concentration with			-	Background Cumulation		Value of	Percent	Location							
Period and Standard	Concen (µg/			rrounding Sources (μg/m3)	(μg/m3)		/m3)	(μg/m3)	Standard (μg/m3)	of Standard	UTM E (m)	UTM N (m)	Elevation (ft)				
CO 1hr	58.03		NA		NA	NA		NA	SIL – 2000	2.9	738221.8	4069868.7	1608.24				
CO 8hr	14.88		NA		NA	NA NA		NA	SIL – 500	3.0	738270.7	4069871.1	1610.05				
NO2 1hr	7.95		48.3	3	NA	45.7		101.95	188.0	54.2	738368.6	4069875.8	1612.35				
NO2 Annual	0.61		NA		NA NA		NA	SIL – 1.0	61.0	738270.7	4069871.1	1610.05					
NO2 Yr Class 1	0.00003	5	NA		NA NA			NA	SIL – 0.1	0.03	725768.0	4115250.3	Flat Terrain				
PM10 24hr	24.1		25.:	1	NA	66.0		91.1	150.0	59.7	738124.0	4069864.0	1610.78				
PM10 24hr Class 2	27.9		29.0)	NA	NA		29.0	30.0	96.7	738124.0	4069864.0	1610.78				
PM10 Yr Class 2	4.7		5.3		NA	NA		5.3	17.0	26.1	737844.0	4069804.0	1591.82				
PM10 24hr Class 1	0.054		NA		NA	NA		NA		NA		NA	SIL – 0.3	18.0	732870.2	4122060.9	Flat Terrain
PM10 Yr Class 1	0.00028	3	NA		NA NA		NA		SIL – 0.2	0.14	725171.6	4115234.3	Flat Terrain				
PM2.5 24hr	1.84		3.60	5	NA	11.77		15.43	35.0	44.1	737124.0	4069864.0	1610.78				
PM2.5 Yr	0.21		0.68	3	NA	4.19		5.06	9.0	56.2	737836.0	4069783.0	1592.01				

VHCC, LLC

Pollutant, Time	Time Facility		Secondary	Background	Cumulative	Value of	Percent	Location			
Period and Standard	Concentration (µg/m3)	Surrounding Sources (μg/m3)	ΡΜ (μg/m3)	Concentration (µg/m3)	Concentration (µg/m3)	Standard (µg∕m3)	of Standard	UTM E (m)	UTM N (m)	Elevation (ft)	
SO2 1hr	0.11	NA	NA	NA	NA	SIL – 7.8	1.4	738270.7	4069871.1	1610.05	
SO2 3hr	0.050	NA	NA	NA	NA	SIL – 25.0	0.2	738270.7	4069871.1	1610.05	
SO2 24hr	0.017	NA	NA	NA	NA	SIL – 5.0	0.34	738246.3	4069869.9	1609.13	
SO2 Annual	0.0012	NA	NA	NA	NA	SIL – 1.0	0.12	738270.7	4069871.1	1610.05	
SO2 3hr Class 1	0.00006	NA	NA	NA	NA	SIL – 1.0	0.006	732770.6	4122058.2	Flat Terrain	
SO2 24hr Class 1	0.00001	NA	NA	NA	NA	SIL – 0.2	0.005	725569.2	4115245.0	Flat Terrain	
SO2 Yr Class 1	0.0	NA	NA	NA	NA	SIL – 0.1	0.0	725768.0	4115250.3	Flat Terrain	
Lead Quarterly	0.0	NA	NA	NA	NA	SIL – 0.03	0.0	725768.0	4115250.3	Flat Terrain	

16-	16-X: Summary/conclusions							
	A statement that modeling requirements have been satisfied and that the permit can be issued.							
1	Dispersion modeling was performed for the new permit application for VHCC Kirtland Pit. All facility pollutants with							
	ambient air quality standards and PSD Increment standards were modeled to show compliance with those standards. All							
	results of this modeling showed the facility in compliance with applicable ambient air quality standards.							

DISPERSION MODEL PROTOCOL FOR KIRTLAND PIT NSR MINOR SOURCE PERMIT APPLICATION

Kirtland, New Mexico

PREPARED FOR

Vernon Hamilton Construction Company, LLC

Dated November 19, 2024

Prepared by

Montrose Environmental Solutions, Inc.

CONTENTS

TABLE OF CONTENTS	PAGE
1.0 INTRODUCTION	2
1.1 FACILITY DESCRIPTION	2
1.1.1 Aggregate Crushing Plant	
1.2 FACILITY IDENTIFICATION AND LOCATION	5
2.0 SIGNIFICANT MONITORING AIR QUALITY IMPACT ANALYSIS	7
2.1 DISPERSION MODEL SELECTION	9
2.2 BUILDING WAKE EFFEMONTROSE	9
2.3 METEOROLOGICAL DATA	9
2.4 RECEPTORS AND TOPOGRAPHY	11
2.5 MODELED EMISSION SOURCES INPUTS	11
2.5.1 Kirtland Sand and Gravel Road Vehicle Traffic Model Inputs	11
2.5.2 Kirtland Sand and Gravel Material Handling Volume Source Model Inputs	11
2.5.3 Kirtland Sand and Gravel Material Handling Point Source Model Inputs	11
2.5.4 Kirtland Sand and Gravel Material Open Pit Model Inputs	12
2.6 PARTICLE SIZE DISTRIBUTION	12
2.7 PM2.5 SECONDARY EMISSIONS MODELING	
2.8 NO ₂ Dispersion Modeling analysis	14
2.9 SIGNIFICANT NEIGHBORING BACKGROUND SOURCES	
2.10 REGIONAL BACKGROUND CONCENTRATIONS	15

TABLE OF TABLES

PAGE

	-
TABLE 1 Aggregate Crusher Hours of Operation	3
TABLE 2 Aggregate Daily Production Throughput	3
TABLE 3 Modeled Hours of Operation – Morning	4
TABLE 4 Modeled Hours of Operation – Afternoon	4
TABLE 5 National and New Mexico Ambient Air Quality Standard Summary	8
TABLE 6 Standards for Which Modeling Is Not Required by NMED AQD	8
TABLE 7 Unpaved Road Fugitive Source Depletion Parameters	13
TABLE 8 Combustion Source Depletion Parameters	13
TABLE 9 Material Handling Fugitive Dust Depletion Parameters	13
TABLE 10 Summary of Selected ISR	15

TABLE OF FIGURES	PAGE
FIGURE 1 VHCC's Kirtland Sand and Gravel Aerial View	6

FIGURE I VHCC's Kirtland Sand and Gravel Aer	ial View)
FIGURE 2 Farmington 2017 – 2022 Windrose)

1.0 INTRODUCTION

This dispersion modeling analysis will be conducted by Montrose Environmental Solutions, Inc. (Montrose) on behalf of Vernon Hamilton Construction Company, LLC (VHCC), to evaluate ambient air quality impacts from the Kirtland Pit, as part of a minor source NSR permitting action. This permit application is for a 350 tons per hour (tph) aggregate crushing and screening plant.

The objective of this modeling evaluation is to predict if, operating at requested maximums, the facility operations would result in ambient air concentrations for nitrogen dioxide, (NO₂), carbon monoxide (CO), sulfur dioxide (SO₂), and particulate matter; both 10 microns or less (PM₁₀) and 2.5 microns or less (PM_{2.5}); would exceed the New Mexico and federal ambient air quality standards, NMAAQS and NAAQS respectively. Since Kirtland Pit is a minor source for NSR permitting and is located in AQRC Region 014, where the minor source baseline date has been triggered for NO₂ (06/06/1989), SO₂ (08/07/1978), and PM₁₀ (08/07/1978), a PSD Class I and II Increment analysis will be performed. The only Class I area located within 50 km of the site is Mesa Verde National Park at 47 kilometers.

The dispersion modeling will be conducted using the American Meteorological Society/Environmental Protection Agency Regulatory Model Improvement Committee Dispersion Model (AERMOD), Version 23132. This model is recommended by EPA for determining Class II impacts within 50 km of the source being assessed. Additionally, AERMOD was developed to handle complex terrain. The objective of this evaluation is to determine whether ambient air concentrations from the maximum operation of the facility for nitrogen dioxide, (NO₂), carbon monoxide (CO), sulfur dioxide (SO₂), and particulate matter; both 10 microns or less (PM₁₀) and 2.5 microns or less (PM_{2.5}); are below Class II federal and state ambient air quality standards (NAAQS and NMAAQS) found in 40 CFR part 50 and the state of New Mexico's air quality regulation 20.2.3 NMAC from Kirtland Pit emission sources.

1.1 FACILITY DESCRIPTION

VHCC's Kirtland Pit is a proposed site that will operate an aggregate quarry and crushing and screening operation. This pit previously consisted of a concrete plant, HMA plant, aggregate crushing and screening plant, and aggregate wash plant. At present no other permitted facilities are located within the site boundaries.

1.1.1 Aggregate Crushing Plant

The 350 tph aggregate quarry, and crushing and screening operations will include an aggregate quarry, feeder, primary jaw crusher, two (2) secondary cone crushers, two (2) 3-deck screens, one (1) scalping screen, one (1) RipRap plant, fifteen (15) transfer conveyors, and seven (7) stacker conveyors. The main crushing and screening plant will be powered by commercial line power unless relocated to a different location where is will be powered by an 725kW, 1081 horsepower (hp) engine/generator. The RipRap plant will be powered by a 140 kW, 188 hp engine. Aggregate

from the quarry will first be processed through the RipRap plant and then the material will be stored in the Raw Material Pile. From the Raw Material Pile the material will be fed into the main plant feeder. Processed aggregate will be stored in Finish Storage Piles until transported from the aggregate crushing plant to off-site sales. Waste material is sent back to the quarry. The aggregate crushing plant will limit hourly processing rate to 350 tph and 350,000 tons per year (tpy). The hours of operation is presented below in Table 1, but the aggregate crushing plant will limit the daily throughput per season to the values listed in Table 2.

	TABLE 1: Aggregate Crusher Hours of Operation (MS1)											
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
12:00 AM	0	0	0	0	0	0	0	0	0	0	0	0
1:00 AM	0	0	0	0	0	0	0	0	0	0	0	0
2:00 AM	0	0	0	0	0	0	0	0	0	0	0	0
3:00 AM	0	0	0	0	0	0	0	0	0	0	0	0
4:00 AM	0	0	0	0	0	0	0	0	0	0	0	0
5:00 AM	0	0	0	1	1	1	1	1	0.5	0	0	0
6:00 AM	0	0	1	1	1	1	1	1	1	1	0	0
7:00 AM	0	0	1	1	1	1	1	1	1	1	0	0
8:00 AM	1	1	1	1	1	1	1	1	1	1	1	1
9:00 AM	1	1	1	1	1	1	1	1	1	1	1	1
10:00 AM	1	1	1	1	1	1	1	1	1	1	1	1
11:00 AM	1	1	1	1	1	1	1	1	1	1	1	1
12:00 PM	1	1	1	1	1	1	1	1	1	1	1	1
1:00 PM	1	1	1	1	1	1	1	1	1	1	1	1
2:00 PM	1	1	1	1	1	1	1	1	1	1	1	1
3:00 PM	1	1	1	1	1	1	1	1	1	1	1	1
4:00 PM	1	1	1	1	1	1	1	1	1	1	1	1
5:00 PM	0	0	1	1	1	1	1	1	1	1	0	0
6:00 PM	0	0	0	1	1	1	1	1	0.5	0	0	0
7:00 PM	0	0	0	0	0	0	0	0	0	0	0	0
8:00 PM	0	0	0	0	0	0	0	0	0	0	0	0
9:00 PM	0	0	0	0	0	0	0	0	0	0	0	0
10:00 PM	0	0	0	0	0	0	0	0	0	0	0	0
11:00 PM	0	0	0	0	0	0	0	0	0	0	0	0
Total	9	9	12	14	14	14	14	14	13	12	9	9

 TABLE 1: Aggregate Crusher Hours of Operation (MST)

TABLE 2: Aggregate Daily Production Rates

Season	Tons Per Day
Winter	2800
Spring	3500
Summer	3500
Fall	3500

Since the daily production rate is less than the proposed hours of operation running at maximum hourly production rate, two modeling scenarios will be performed, one for morning and one for afternoon hours. The model hours are presented in Tables 3 and 4.

	TABLE 5. Aggregate Crusher Morning Moueleu Hours of Operation (MST)											
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
12:00 AM	0	0	0	0	0	0	0	0	0	0	0	0
1:00 AM	0	0	0	0	0	0	0	0	0	0	0	0
2:00 AM	0	0	0	0	0	0	0	0	0	0	0	0
3:00 AM	0	0	0	0	0	0	0	0	0	0	0	0
4:00 AM	0	0	0	0	0	0	0	0	0	0	0	0
5:00 AM	0	0	0	1	1	1	1	1	0.5	0	0	0
6:00 AM	0	0	1	1	1	1	1	1	1	1	0	0
7:00 AM	0	0	1	1	1	1	1	1	1	1	0	0
8:00 AM	1	1	1	1	1	1	1	1	1	1	1	1
9:00 AM	1	1	1	1	1	1	1	1	1	1	1	1
10:00 AM	1	1	1	1	1	1	1	1	1	1	1	1
11:00 AM	1	1	1	1	1	1	1	1	1	1	1	1
12:00 PM	1	1	1	1	1	1	1	1	1	1	1	1
1:00 PM	1	1	1	1	1	1	1	1	1	1	1	1
2:00 PM	1	1	1	1	1	1	1	1	1	1	1	1
3:00 PM	1	1	1	0	0	0	0	0	0.5	1	1	1
4:00 PM	0	0	0	0	0	0	0	0	0	0	0	0
5:00 PM	0	0	0	0	0	0	0	0	0	0	0	0
6:00 PM	0	0	0	0	0	0	0	0	0	0	0	0
7:00 PM	0	0	0	0	0	0	0	0	0	0	0	0
8:00 PM	0	0	0	0	0	0	0	0	0	0	0	0
9:00 PM	0	0	0	0	0	0	0	0	0	0	0	0
10:00 PM	0	0	0	0	0	0	0	0	0	0	0	0
11:00 PM	0	0	0	0	0	0	0	0	0	0	0	0
Total	8	8	10	10	10	10	10	10	10	10	8	8

 TABLE 3: Aggregate Crusher Morning Modeled Hours of Operation (MST)

IAI	DLL 4.	Aggre	gale Cl	usiter	Altern		oueleu	110015	or Ope	auon	$(\mathbf{W}\mathbf{S}\mathbf{I})$	
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
12:00 AM	0	0	0	0	0	0	0	0	0	0	0	0
1:00 AM	0	0	0	0	0	0	0	0	0	0	0	0
2:00 AM	0	0	0	0	0	0	0	0	0	0	0	0
3:00 AM	0	0	0	0	0	0	0	0	0	0	0	0
4:00 AM	0	0	0	0	0	0	0	0	0	0	0	0
5:00 AM	0	0	0	0	0	0	0	0	0	0	0	0
6:00 AM	0	0	0	0	0	0	0	0	0	0	0	0
7:00 AM	0	0	0	0	0	0	0	0	0	0	0	0
8:00 AM	0	0	1	0	0	0	0	0	0.5	1	0	0
9:00 AM	1	1	1	1	1	1	1	1	1	1	1	1
10:00 AM	1	1	1	1	1	1	1	1	1	1	1	1
11:00 AM	1	1	1	1	1	1	1	1	1	1	1	1
12:00 PM	1	1	1	1	1	1	1	1	1	1	1	1
1:00 PM	1	1	1	1	1	1	1	1	1	1	1	1
2:00 PM	1	1	1	1	1	1	1	1	1	1	1	1
3:00 PM	1	1	1	1	1	1	1	1	1	1	1	1
4:00 PM	1	1	1	1	1	1	1	1	1	1	1	1
5:00 PM	0	0	1	1	1	1	1	1	1	1	0	0
6:00 PM	0	0	0	1	1	1	1	1	0.5	0	0	0
7:00 PM	0	0	0	0	0	0	0	0	0	0	0	0
8:00 PM	0	0	0	0	0	0	0	0	0	0	0	0
9:00 PM	0	0	0	0	0	0	0	0	0	0	0	0
10:00 PM	0	0	0	0	0	0	0	0	0	0	0	0
11:00 PM	0	0	0	0	0	0	0	0	0	0	0	0
Total	8	8	10	10	10	10	10	10	10	10	8	8

 TABLE 4: Aggregate Crusher Afternoon Modeled Hours of Operation (MST)

1.2 FACILITY IDENTIFICATION AND LOCATION

VHCC's Kirtland Sand and Gravel is located at 32 Road 6210 in Kirtland, San Juan County, New Mexico. This is approximately 0.7 miles east-southeast of Kirtland, New Mexico. The UTM Coordinates of the facility are 738,070 meters East and 4,069,800 meters North, Zone 12, with NAD83 datum at an elevation of approximately 5,295 feet above mean sea level.

Figure 1 below presents a layout of the site showing the area where each material is handled.

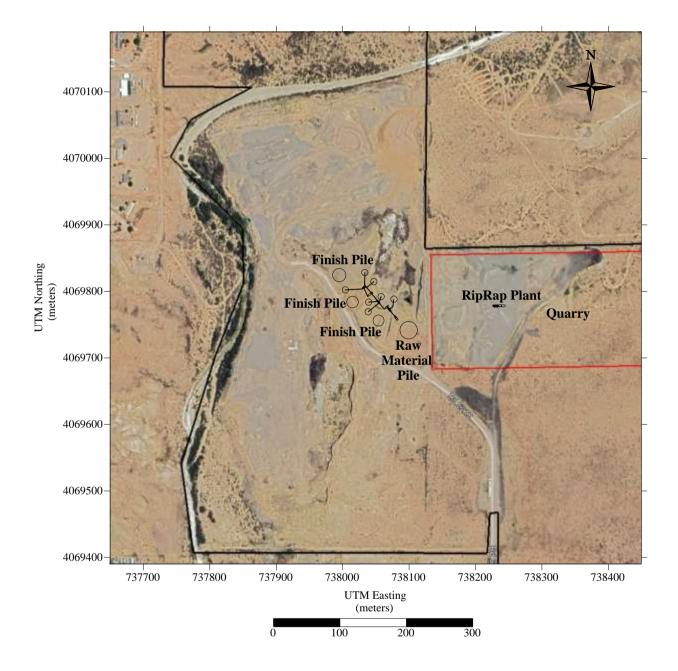


Figure 1: VHCC's Kirtland Pit Aerial View with Material Handling Areas

2.0 SIGNIFICANT MONITORING AIR QUALITY IMPACT ANALYSIS

This section identifies the technical approach and dispersion model inputs that will be used for the Class II federal and State ambient air quality standards and PM₁₀ Class II Increment impacts for this stationary source. NMED AQB requires that all applicable criteria pollutant emissions be modeled using the most recent versions of US EPA's approved models and be compared with National Ambient Air Quality Standards (NAAQS), and New Mexico Ambient Air Quality Standards (NMAAQS). Table 5 shows the NAAQS and NMAAQS (without footnotes) that the source's ambient impacts must meet in order to demonstrate compliance. Table 5 also lists the Class II Significant Impact Levels (SILs) which are used to assess whether a source has a significant impact at downwind receptors. Table 6 lists all standards for which modeling is not required by NMED AQB.

The dispersion modeling analysis will be performed to estimate concentrations resulting from the operation of the Kirtland Pit using the maximum hourly emission rates while all emission sources are operating. The modeling will determine maximum off-site concentrations for nitrogen dioxide, (NO₂), carbon monoxide (CO), sulfur dioxide (SO₂), and particulate matter with aerodynamic diameter less than 10 micrometers (PM₁₀) and particulate matter with aerodynamic diameter less than 2.5 micrometers (PM_{2.5}), for comparison with modeling significance levels, and national/New Mexico ambient air quality standards (AAQS). Additionally, modeling will determine maximum off-site concentrations for NO₂ annual average; SO₂ 3 hour, 24hour, and annual averages; and PM₁₀ 24 hour and annual average increment limits. The modeling will follow the guidance and protocols outlined in the New Mexico Air Quality Bureau "Air Dispersion Modeling Guidelines" (Revised June, 2024) and the most up to date EPA's *Guideline on Air Quality Models*.

Initial site modeling will be performed with Kirtland Pit sources only to determine pollutant and averaging periods that exceeds pollutant SILs. If initial modeling for any pollutant and averaging period exceeds the SILs, than cumulative modeling will be performed for those pollutants and averaging periods and will include significant neighboring sources along with background ambient concentrations as defined in the NMED's modeling guidelines. For the PSD Class I and II Increment analysis, Kirtland Pit sources and neighboring increment consuming source within 50 kilometers will be included.

Relocation modeling will be performed and include all sources and methodology found in the initial site modeling plus the main crushing and screening plant 725kW, 1081 horsepower (hp) engine/generator. Relocation modeling will be done in flat terrain mode and use Farmington 2017 – 2021 meteorological data.

TABLE 5: National and New Mexico Ambient Air Quality Standard Summary							
Pollutant	Avg. Period	Sig. Lev. (µg/m ³)	Class I Sig. Lev. (µg/m ³)	NAAQS	NMAAQS	PSD Increment Class I	PSD Increment Class II
60	8-hour	500		9,000 ppb ⁽¹⁾	8,700 ppb ⁽²⁾		
СО	1-hour	2,000		35,000 ppb ⁽¹⁾	13,100 ppb ⁽²⁾		
	annual	1.0	0.1	53 ppb ⁽³⁾	50 ppb ⁽²⁾	2.5 µg/m ³	$25 \ \mu g/m^3$
NO ₂	24-hour	5.0			100 ppb ⁽²⁾		
	1-hour	7.52		100 ppb ⁽⁴⁾			
DM	annual	0.13	0.05	9 $\mu g/m^{3(5)}$		1 μg/m ³	$4 \ \mu g/m^3$
PM _{2.5}	24-hour	1.2	0.27	$35 \ \mu g/m^{3(6)}$		$2 \ \mu g/m^3$	9 μg/m ³
DM	annual	1.0	0.2			$4 \ \mu g/m^3$	$17 \ \mu g/m^3$
PM_{10}	24-hour	5.0	0.3	$150 \ \mu g/m^{3(7)}$		8 μg/m ³	$30 \ \mu g/m^3$
	annual	1.0	0.1		20 ppb ⁽²⁾	$2 \ \mu g/m^3$	$20 \ \mu g/m^3$
50	24-hour	5.0	0.2		100 ppb ⁽²⁾	5 µg/m ³	91 µg/m ³
SO_2	3-hour	25.0	1.0	500 ppb ⁽¹⁾		25 µg/m ³	$512 \ \mu\text{g/m}^3$
	1-hour	7.8		75 ppb ⁽⁸⁾			

TABLE 5: National and New Mexico Ambient Air Quality Standard Summary

Standards converted from ppb to $\mu g/m^3$ use a reference temperature of 25° C and a reference pressure of 760 millimeters of mercury.

(1) Not to be exceeded more than once each year.

(2) Not to be exceeded.

(3) Annual mean.

(4) 98th percentile of 1-hour daily maximum concentrations, averaged over 3 years.

(5) Annual mean, averaged over 3 years.

(6) 98th percentile, averaged over 3 years.

(7) Not to be exceeded more than once per year on average over 3 years.

(8) 99th percentile of 1-hour daily maximum concentrations, averaged over 3 years.

TABLE 6: Standards for Which Modeling Is Not Required by NMED AQB.

Standard not Modeled	Surrogate that Demonstrates Compliance
CO 8-hour NAAQS	CO 8-hour NMAAQS
CO 1-hour NAAQS	CO 1-hour NMAAQS
NO ₂ annual NAAQS	NO2 annual NMAAQS
NO ₂ 24-hour NMAAQS	NO ₂ 1-hour NAAQS
O ₃ 8-hour	Regional modeling
SO ₂ annual NMAAQS	SO ₂ 1-hour NAAQS
SO ₂ 24-hour NMAAQS	SO ₂ 1-hour NAAQS
SO ₂ 3-hour NAAQS	SO ₂ 1-hour NAAQS

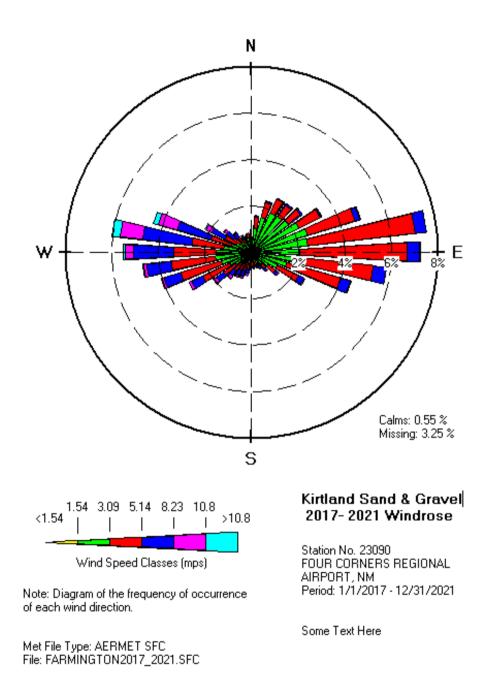
2.1 DISPERSION MODEL SELECTION

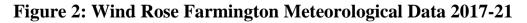
The dispersion modeling will be conducted using the American Meteorological Society/Environmental Protection Agency Regulatory Model Improvement Committee Dispersion Model (AERMOD), Version 23132. This model is recommended by EPA for determining Class II impacts within 50 km of the source being assessed. Additionally, AERMOD was developed to handle complex terrain. In this analysis, AERMOD will be used to estimate pollutant ambient air concentrations of NO₂, CO, SO₂, PM₁₀, and PM_{2.5} from VHCC's Kirtland Pit emission sources.

AERMOD is a Gaussian plume dispersion model that is based on planetary boundary layer principles for characterizing atmospheric stability. The model evaluates the non-Gaussian vertical behavior of plumes during convective conditions with the probability density function and the superposition of several Gaussian plumes. AERMOD modeling system has three components: AERMAP, AERMET, and AERMOD. AERMAP is the terrain preprocessor program. AERMET is the meteorological data preprocessor. AERMOD includes the dispersion modeling algorithms and was developed to handle simple and complex terrain issues using improved algorithms. AERMOD uses the dividing streamline concept to address plume interactions with elevated terrain.

AERMOD will be run using all the regulatory default options including use of stack-tip downwash, buoyancy-induced dispersion, calms processing routines, upper-bound downwash concentrations for super-squat buildings, default wind speed profile exponents, vertical potential temperature gradients, and no use of gradual plume rise. Beta version options include the use of flat terrain mode for fugitive ground release sources. The model incorporated local terrain into the calculations for point sources and neighboring sources only.

2.2 BUILDING WAKE EFFEMONTROSE


AERMOD can account for building downwash and cavity zone effects. Evaluation of building downwash on adjacent stack sources is deemed necessary, since most (if not all) of the stack source heights may be below Good Engineering Practice (GEP) heights. The formula for GEP height estimation is:


$$\begin{split} H_{s} &= H_{b} + 1.50 L_{b} \\ \text{where: } H_{s} &= GEP \text{ stack height} \\ H_{b} &= \text{building height} \\ L_{b} &= \text{the lesser building dimension of the height, length, or width} \end{split}$$

The effects of aerodynamic downwash due to buildings and other structures will be accounted for by using wind direction-specific building parameters calculated by the USEPA-approved Building Parameter Input Program Prime (BPIP-Prime (*Version 04274*)) and the algorithms included in the AERMOD air dispersion model. No buildings are located at the site that will cause building wake effects for facility point sources.

2.3 METEOROLOGICAL DATA

Dispersion model meteorological input files were select for the years 2017-21 from NMED Model Section meteorological data collected at Farmington Airport, NM about 5 kilometers from the site. The similar elevation, topography, terrain, vegetation, and climate of both sites make this meteorological data representative of the model area. Figure 2 shows wind rose diagram of the meteorological wind speed versus direction data that has been collected for the years 2017-21.

2.4 RECEPTORS AND TOPOGRAPHY

For each pollutant, the radius of significant impact around the facility is established using a Cartesian grid. A 25-meter grid spacing is used for the facility boundary receptors. A 50-meter spacing and 100-meter spacing are extended to 500-meters and 1-km beyond the facility boundary, respectively from the facility boundary in each direction for a very fine grid resolution. Receptors for a fine grid resolution are placed with 250-meter spacing to a distance of 2.5-km from the facility boundary. Receptors for a course grid resolution are placed with 500-meter, and 1000-meter spacing to a distance of 5-km and 50-km, respectively from the facility boundary.

All model receptors will be preprocessed using the AERMAP software (*Version 18081*) associated with AERMOD. The AERMAP software establishes a base elevation and a height scale for each receptor location. The height scale is a measure of the receptor's location and base elevation and its relation to the terrain feature that has the greatest influence in dispersion for that receptor. AERMAP will be processed using U.S. Geological Survey (USGS) national elevation data (NED). Output from AERMAP will be used as input to the AERMOD runstream file for each model run. The AERMAP domain will be large enough to encompass the 10 percent slope factor required for calculating the controlling hill height.

2.5 MODELED EMISSION SOURCES INPUTS

Kirtland Sand and Gravel proposes to operate 8 AM to 5 PM Monday through Saturday for the months of November through February and daylight hours Monday through Saturday for the months of March through October. To represent the worst-case modeling scenario, two modeling runs will be performed, morning and afternoon.

2.5.1 Kirtland Sand and Gravel Road Vehicle Traffic Model Inputs

The unpaved road fugitive dust for truck traffic is modeled as a line of volume sources. The AQB's approved procedure for Modeling Haul Roads was followed to develop modeling input parameters for unpaved haul roads. Volume source characterization followed the steps described in the Air Quality Bureau's Guidelines (Tables 42 and 43).

2.5.2 Kirtland Sand and Gravel Material Handling Volume Source Model Inputs

Material handling and processing will follow the procedure found in AQB's Modeling Guidelines for Fugitive Equipment Sources (Table 41).

2.5.3 Kirtland Sand and Gravel Material Handling Point Source Model Inputs

For exhaust from engines, the release height will be the height from the ground to the exhaust exit height. The stack diameter will be determined by measuring the stack. Stack temperature and flow rate (stack velocity) will be determined from manufacturer's data or conservative parameters.

2.5.4 Kirtland Sand and Gravel Material Open Pit Model Inputs

For the site quarry, fugitive dust operation emissions within the open pit will be combined and input into the open pit source. The open pit dimensions are input as 168 meters north, 600 meters east, with a depth of 10 meters for a volume of 1,008,000 meters³. The release height will be zero.

2.6 PARTICLE SIZE DISTRIBUTION

 PM_{10} emissions may be modeled using plume deposition. Plume deposition simulates the effect of gravity as particles "fall-out" from the plume to the ground as the plume travels downwind. Therefore, the farther the plume travels from the emission point to the receptor, the greater the effect of plume deposition and the greater the decrease in modeled impacts or concentrations. Particle size distribution, particle mass fraction, and particle density are required inputs to the model to perform this function.

Particle size distribution for fugitive road dust on unpaved roads; material handling fugitive emissions; and combustion will use the particle size distribution found in the NMED Modeling Section approved values.

The mass-mean particle diameters were calculated using the formula:

$$\mathbf{d} = ((\mathbf{d}^{3}_{1} + \mathbf{d}^{2}_{1}\mathbf{d}_{2} + \mathbf{d}_{1}\mathbf{d}^{2}_{2} + \mathbf{d}^{3}_{2}) / 4)^{1/3}$$

Where: d = mass-mean particle diameter $d_1 = low end of particle size category range$

 $d_2 =$ high end of particle size category range

Representative average particle densities were obtained from NMED accepted values.

	Density	
Material	(g/cm ³)	Reference
Road Dust	2.5	NMED Value
Combustion	1.5	NMED Value
Fugitive Dust	2.5	NMED Value

The size distribution for PM₁₀ emission sources are presented in Tables 7-9.

	0	-				
Particle Size	Mass Mean	Mass Weighted	Density			
Category	Particle Diameter	Size Distribution	(g/cm^3)			
(μ m)	(μm) (μm)		(g/cm ^e)			
PM10						
0 - 2.5	1.57	25.0	2.5			
2.5 - 10	6.91	75.0	2.5			

TABLE 7: Road Vehicle Fugitive Dust Deposition Parameters

Based on NMED Model Guideline – June 2024 (Vehicle Fugitive)

TABLE 8: Combustion Source Deposition Parameters

Particle Size Category (µm)	Mass Mean Particle Diameter (µm)	Mass Weighted Size Distribution (%)	Density (g/cm³)			
PM10						
0 - 2.5	1.57	100.0	1.5			

Based on NMED Model Guideline – June 2024 (Combustion)

TABLE 9: Material Handling (Fugitive) Dust Source Deposition Parameters

Particle Size Category (µm)	Mass Mean Particle Diameter (µm)	ticle Diameter Size Distribution					
	PM10						
0 - 2.5	1.57	7.8	2.5				
2.5 - 5	3.88	27.0	2.5				
5 - 10	7.77	65.2	2.5				

Based on NMED Model Guideline – June 2024 (Coal Handling)

2.7 PM2.5 SECONDARY EMISSIONS MODELING

Particulate matter includes both "primary" PM, which is directly emitted into the air, and "secondary" PM, which forms in the atmosphere from chemical reactions involving primary gaseous emissions of precursor air contaminants. Primary PM consists of carbon (soot)—emitted from cars, trucks, heavy equipment, forest fires, and burning waste—and crustal material from unpaved roads, stone crushing, construction sites, and metallurgical operations. Secondary PM forms in the atmosphere from gases. Some of these reactions require sunlight and/or water vapor. Secondary PM includes:

- Sulfates formed from SO₂ emissions from power plants and industrial facilities;
- Nitrates formed from NO_X emissions from cars, trucks, industrial facilities, and power plants; and
- Carbon formed from reactive organic gas (ROG or VOC) emissions from cars, trucks, industrial facilities, forest fires, and biogenic sources such as trees.

AERMOD does not account for secondary formation of $PM_{2.5}$ for near-field modeling. Any secondary contribution of the VHCC source emissions is not explicitly accounted for in the model results. While representative background monitoring data for $PM_{2.5}$ should adequately account for secondary contribution from existing background sources, the VHCC assessment of their potential contribution to cumulative impacts as secondary $PM_{2.5}$ was performed based on guidance from the NMED Modeling Section and using prescribed equations. The permit application for VHCC's Kirtland Pit emissions of precursors include:

- $NO_X 2.0$ tons per year (below SER)
- $SO_2 0.004$ tons per year (below SER)
- Volatile Organic Compounds (VOC) 0.11 tons per year (below SER)
- Particulate Matter with an aerodynamic diameter of 2.5 micron or less $(PM_{2.5}) 0.81$ tons per year (below SER).

Since all precursor emissions are below the significant emission rate (SER), PM_{2.5} secondary emission concentration analysis was performed.

2.8 NO₂ Dispersion Modeling analysis

The AERMOD model predicts ground-level concentrations of any generic pollutant without chemical transformations. Thus, the modeled NO_X emission rate will give ground-level modeled concentrations of NO_X. NAAQS values are presented as NO₂.

EPA has a three-tier approach to modeling NO₂ concentrations.

- Tier I total conversion, or all $NOx = NO_2$
- Tier II Ambient Ratio Method 2 (ARM2)
- Tier III case-by-case detailed screening methods, such as OLM and Plume Volume Molar Ratio Method (PVMRM) and NO₂/NO_X in-stack ratio

Initial modeling will be performed using both Tier I and Tier II methodologies. If these modeling iterations demonstrate that less conservative methods for determining 1-hour and annual NO_2 compliance would be needed for this project, then ambient impact of 1-hour and annual NOx predicted by the model will use Tier III – OLM or PVMRM.

For OLM or PVMRM, three inputs can be selected in the model, the ISR, the NO_2/NO_X equilibrium ratio for the ambient air, and the ambient ozone concentration. The ISR will be determined for each source or group of sources. The NO_2/NO_X equilibrium ratio will be the EPA default of 0.90. Ozone input will be from monitored ozone data collected from an approved monitoring station.

Based on EPA's ISR databases, a proposed conservative NO_2/NO_X ISR ratio for Diesel-fired RICE is 0.15. For neighboring sources, since the ISR has a diminishing impact on ambient NO_2/NO_X ratios as a plume is transported farther downwind due to mixing and reaction towards background

ambient NO_2/NO_X ratios, a default ISR of 0.30 based on the NMED Modeling Guidelines will be used. Table 10 summarizes the ISR selected for each NO_X source in the NO_2 1-hour modeling.

TABLE 10. Summary of Selected ISK	
Source Description	Selected ISR
Plant Generator/Engine (RICE)	0.15
Neighboring Sources	0.30

TABLE 10: Summary of Selected ISR

Model Ozone Data

For OLM or PVMRM, modeling of the project-generated 1-hour NO₂ concentrations requires use of ambient monitored ozone concentrations. This hourly ozone data will be prepared based on the Bloomfield ozone station (Monitor ID 350450009) near the site for the years 2017 - 2021.

2.9 SIGNIFICANT NEIGHBORING BACKGROUND SOURCES

For all Cumulative Impact Analysis (CIA) combustion emissions above the SILs dispersion modeling (NO_X, CO, SO₂), will include all significant neighboring sources within 50 kilometers of the VHCC's Kirtland Pit. PM CIA particulate dispersion modeling will include all significant neighboring sources within 10 kilometers of the VHCC's Kirtland Pit and regional monitored background. These sources will be obtained from the Air Quality Bureau's modeling guideline.

2.10 REGIONAL BACKGROUND CONCENTRATIONS

Ambient background concentrations represent the contribution of pollutant sources that are not included in the modeling analysis, including naturally occurring sources. If the modeled concentration of a criteria pollutant is above the modeling significance level, the background concentration for each criteria pollutant will be added to the maximum modeled concentration to calculate the total estimated pollutant concentration for comparison with the AAQS.

The ambient background concentrations are listed in the Air Quality Bureau Guidelines for NO₂, CO, SO₂, PM₁₀, and PM_{2.5}. For CO and SO₂, VHCC is proposing using backgrounds for the generic "Rest of New Mexico". For PM₁₀, VHCC is proposing using backgrounds from the Shiprock Substation (Monitor ID 350451005). For PM_{2.5}, VHCC is proposing using backgrounds from the Farmington Environment Department Office (Monitor ID 350450019). For NO₂, VHCC is proposing using backgrounds from the Shiprock Substation Environment Department Office (Monitor ID 350450019).

	PM _{2.5}	PM ₁₀	NO ₂	CO	SO_2
	$(\mu g/m^3)$	$(\mu g/m^3)$	$(\mu g/m^3)$	$(\mu g/m^3)$	$(\mu g/m^3)$
1 Hour			61.4	2148	3.5
8 Hour				1265	
24 Hour	11.77	66.0			
Annual	4.19		18.5		0.04

Paul Wade

From:	Mustafa, Sufi A., ENV <sufi.mustafa@env.nm.gov></sufi.mustafa@env.nm.gov>
Sent:	Wednesday, December 4, 2024 2:32 PM
То:	Paul Wade; Kassanjee, Sahil, ENV
Cc:	Flack, Daniel; John Betz
Subject:	RE: [EXTERNAL] Modeling Protocol New Permit VHCC

EXTERNAL EMAIL - This email was sent by a person from outside your organization. Exercise caution when clicking links, opening attachments or taking further action, before validating its authenticity.

Paul This modeling protocol is acceptable. Thank you.

Sufi A. Mustafa, Ph.D. Manager Air Dispersion Modeling and Emission Inventory Section New Mexico Environment Department's Air Quality Bureau Office: (505) 629 6186 <u>sufi.mustafa@state.nm.us</u> 525 Camino de los Marquez Suite 1 Santa Fe, New Mexico, 87505 <u>https://www.env.nm.gov/air-quality/</u>

"Innovation, Science, Collaboration, Compliance"

From: Paul Wade <pwade@montrose-env.com>
Sent: Tuesday, November 19, 2024 1:04 PM
To: Mustafa, Sufi A., ENV <sufi.mustafa@env.nm.gov>; Kassanjee, Sahil, ENV <sahil.kassanjee@env.nm.gov>
Cc: Flack, Daniel <dflack@dtfengineering.com>; John Betz <jobetz@montrose-env.com>
Subject: [EXTERNAL] Modeling Protocol New Permit VHCC

CAUTION: This email originated outside of our organization. Exercise caution prior to clicking on links or opening attachments.

Sufi

Attached is a modeling protocol for Vernon Hamilton Construction Company's Kirtland Pit aggregate plant new NSR permit application.

Let me know if you have any questions.

Thanks

Paul Wade Senior Associate Engineer Montrose Environmental Solutions, Inc. Albuquerque, NM I US Mountain Time

Office: +1-505-830-9680 x6 | Mobile:

pwade@montrose-env.com |www.montrose-env.com

NEW Office Location:

9100 2nd Street NW, Suite 200 Albuquerque, NM 87114-1664

CONFIDENTIALITY NOTICE: The contents of this email message and any attachments are intended solely for the addressee(s) and may contain confidential, proprietary and/or privileged information and may be legally protected from disclosure. If you are not the intended recipient of this message or their agent, or if this message has been addressed to you in error, please immediately alert the sender by reply email and then delete this message and any attachments and the reply from your system. If you are not the intended recipient, you are hereby notified that any disclosure, use, dissemination, copying, or storage of this message or its attachments is strictly prohibited.

CONFIDENTIALITY NOTICE: The contents of this email message and any attachments are intended solely for the addressee(s) and may contain confidential, proprietary and/or privileged information and may be legally protected from disclosure. If you are not the intended recipient of this message or their agent, or if this message has been addressed to you in error, please immediately alert the sender by reply email and then delete this message and any attachments and the reply from your system. If you are not the intended recipient, you are hereby notified that any disclosure, use, dissemination, copying, or storage of this message or its attachments is strictly prohibited.

CONFIDENTIALITY NOTICE: The contents of this email message and any attachments are intended solely for the addressee(s) and may contain confidential, proprietary and/or privileged information and may be legally protected from disclosure. If you are not the intended recipient of this message or their agent, or if this message has been addressed to you in error, please immediately alert the sender by reply email and then delete this message and any attachments and the reply from your system. If you are not the intended recipient, you are hereby notified that any disclosure, use, dissemination, copying, or storage of this message or its attachments is strictly prohibited.

Section 17

Compliance Test History

(Submitting under 20.2.70, 20.2.72, 20.2.74 NMAC)

To show compliance with existing NSR permits conditions, you must submit a compliance test history. The table below provides an example.

	Compliance Test History Table	
Unit No.	Test Description	Test Date
1b, 1c, 14, 20, 9, 26,		
8, 3, 3a, 6, 4, 4a, 7,		
16, 15, 17, 10, 18, 2,		
2a, 19, 5, 5a, 24, 12,	New Permitted Facility	TBD
22, 11, 25, 13, 21,		IBD
RR_2, RR_3, RR_4,		
RR_5,		
RR_ENG		

Compliance Test History Table

Section 20

Other Relevant Information

Other relevant information. Use this attachment to clarify any part in the application that you think needs explaining. Reference the section, table, column, and/or field. Include any additional text, tables, calculations or clarifying information.

Additionally, the applicant may propose specific permit language for AQB consideration. In the case of a revision to an existing permit, the applicant should provide the old language and the new language in track changes format to highlight the proposed changes. If proposing language for a new facility or language for a new unit, submit the proposed operating condition(s), along with the associated monitoring, recordkeeping, and reporting conditions. In either case, please limit the proposed language to the affected portion of the permit.

No other relevant information.

Kirtland Pit

Section 22: Certification

Company Name: VHCC LLC

I, <u>Kevin Bradshaw</u>, hereby certify that the information and data submitted in this application are true and as accurate as possible, to the best of my knowledge and professional expertise and experience.

Signed this 6^{-h} day of <u>Decemben</u>, 202^{+} , upon my oath or affirmation, before a notary of the State of

Mexico

*Signature

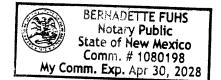
6-10 Date

Kevin Bradshaw Printed Name

General Manager Title

Scribed and sworn before me on this 1th day of December 2024.

My authorization as a notary of the State of <u>Dew Monico</u> expires on the



)th day of April 2028

lotary's Signature

Printed Name

12/6/2024

*For Title V applications, the signature must be of the Responsible Official as defined in 20.2.70.7.AE NMAC.

	Vernon Hamilton Construction Company VHCC, LLC P.O. Box 1110 Gallup, NM 87305 505-722-7855	Pinnacle Bank Gallup, NM 87301 800-866-2737 82-244/1070	48 12/06/2024	355
PAY TO THE ORDER OF Five h	NM Environment Dpt., Air Quality Bureau	****	\$ **500.00	OLLARS
мемо	NM Environment Dpt., Air Quality Bureau 525 Camino de los Marquez Suite 1 Santa Fe, NM 87505-1816	VALIO VALIO VALIO VALIO VALIO VALIO VALIO VALIO VALIO	to Julys	MP

"004855" 1:1070024481 3010301495

Vernon Hamilton Construction Company VHCC, LLC 4855 12/06/2024 NM Environment Dpt., Air Quality Bureau Payment 500.00 500.00 **Type** Bill **Original Amount** Balance Due Date Reference 500.00 12/06/2024 Section 22 500.00 **Check Amount**

AUTHORIZ

112 3000

Pinnacle Bank A/P Ac

500.00

Air Permit Application Compliance History Disclosure Form

Pursuant to Subsection 74-2-7(S) of the New Mexico Air Quality Control Act ("AQCA"), NMSA §§ 74-2-1 to -17, the New Mexico Environment Department ("Department") may deny any permit application or revoke any permit issued pursuant to the AQCA if, within ten years immediately preceding the date of submission of the permit application, the applicant met any one of the criteria outlined below. In order for the Department to deem an air permit application administratively complete, or issue an air permit for those permits without an administrative completeness determination process, the applicant must complete this Compliance History Disclosure Form as specified in Subsection 74-2-7(P). An existing permit holder (permit issued prior to June 18, 2021) shall provide this Compliance History Disclosure Form to the Department upon request.

Perm	ittee/Applicant Company Name	Expected Application Submittal Date				
Vernon Hamilton Construction Company, LLC			December 13, 2024			
Permittee/Company Contact		Phone	Email			
Kevin Bradshaw		(505) 722-7855	Kevin@vernonhamiltoncon.com			
Within the 10 years preceding the expected date of submittal of the application, has the permittee or applicant:						
1	Knowingly misrepresented a material fact	🗆 Yes 🛛 No				
2	Refused to disclose information required	🗆 Yes 🖂 No				
3	Been convicted of a felony related to envi	🗆 Yes 🗵 No				
4	Been convicted of a crime defined by stat price fixing, bribery, or fraud in any court	🗆 Yes 🗵 No				
5a	Constructed or operated any facility for which a permit was sought, including the current facility, without the required air quality permit(s) under 20.2.70 NMAC, 20.2.72 NMAC, 20.2.74 NMAC, 20.2.79 NMAC, or 20.2.84 NMAC?					
5b	If "No" to question 5a, go to question 6. If "Yes" to question 5a, state whether eac air quality permit met at least one of the a. The uppermitted facility was discovered	🗆 Yes 🗆 No				
	a. The unpermitted facility was discovered after acquisition during a timely environmental audit that was authorized by the Department; or					
	b. The operator of the facility estimated t the operator applied for an air permit wit required for the facility.					
6	Had any permit revoked or permanently suspended for cause under the environmental laws of any state or the United States?		🗆 Yes 🖂 No			
7	For each "yes" answer, please provide an	explanation and documenta	tion.			

December 13, 2024

New Mexico Environment Department Air Quality Bureau Permits Section 525 Camino de los Marquez, Suite 1 Santa Fe, New Mexico 87507-3313

Subject: New Minor NSR Permit Application for Vernon Hamilton Construction Company's Kirtland Pit

To Whom it May Concern:

Attached please find two (2) hardcopies of the New 20.2.72 NMAC Permit Application for Vernon Hamilton Construction Company's (VHCC) Kirtland Pit. Electronic files will be submitted to the bureau under a file share program. This letter is attached to the application copy that has the original notarized signature page (Section 22), along with an application submittal fee of \$500.

VHCC is applying for a new minor NSR 20.2.72 NMAC Air Quality Permit for the Kirtland Pit to be operated within county of San Juan, state of New Mexico. Regulation governing this permit application is 20.2.72.200.A(1) NMAC. The function of the facility is to crush and screen aggregate material from the on-site quarry into usable construction sand and gravel.

The address for the facility known as, VHCC's Kirtland Pit, is 32 Rd 6210, Kirtland, NM. The approximate location of this facility is 0.7 miles east-southeast of Kirtland in San Juan County.

Please let me know if you have any questions or need additional information. If you have any questions regarding this significant permit revision application please call Paul Wade of Montrose Environmental Solutions, Inc. at (505) 830-9680 ext 6 or Kevin Bradshaw of VHCC at (505) 722-7855

Sincerely,

Paul Wade Senior Associate Engineer Montrose Environmental Solutions, Inc.

Cc: Kevin Bradshaw, VHCC

Montrose Environmental Solutions, Inc. 9100 2nd Street NW, Suite 200 Albuquerque, NM 87114-1664 T: 505.830.9680 ext. 6 F: 505.830.9678 Pwade@montrose-env.com www.montrose-env.com